

UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO

FACULTAD DE QUÍMICA

Estudio de la reacción de hidrogenación de tereftalato de dioctilo (DOTP) empleando diferentes catalizadores.

TESIS PROFESIONAL QUE PARA OBTENER EL TÍTULO DE INGENIERO QUÍMICO

PRESENTA: URIEL JOSÉ ROMERO CETINA

México, D.F.

2012.

Universidad Nacional Autónoma de México

UNAM – Dirección General de Bibliotecas Tesis Digitales Restricciones de uso

DERECHOS RESERVADOS © PROHIBIDA SU REPRODUCCIÓN TOTAL O PARCIAL

Todo el material contenido en esta tesis esta protegido por la Ley Federal del Derecho de Autor (LFDA) de los Estados Unidos Mexicanos (México).

El uso de imágenes, fragmentos de videos, y demás material que sea objeto de protección de los derechos de autor, será exclusivamente para fines educativos e informativos y deberá citar la fuente donde la obtuvo mencionando el autor o autores. Cualquier uso distinto como el lucro, reproducción, edición o modificación, será perseguido y sancionado por el respectivo titular de los Derechos de Autor.

JURADO ASIGNADO:

- PRESIDENTE: Profesor: Uresti Maldonado Marco Antonio
- VOCAL: Profesor: López Serrano Ramos Francisco
- SECRETARIO: Profesor: Cruz Gómez Modesto Javier
- 1er. SUPLENTE: Profesor: Vivaldo Lima Eduardo
- 2° SUPLENTE: Profesor: Milton Thadeu García Medeiros de Olivera

SITIO DONDE SE DESARROLLÓ EL TEMA:

LABORATORIO 212 DEL CONJUNTO D Y E DE LA FACULTAD DE QUÍMICA. UNAM

CIRCUITO INSTITUTOS S/N CIUDAD UNIVERSITARIA, COYOACÁN. C.P. 09510 D.F.

ASESOR DEL TEMA:

Dr. M. Javier Cruz Gómez ------

SUPERVISOR TÉCNICO:

Dr. Néstor Noé López Castillo ------

SUSTENTANTE:

Uriel José Romero Cetina ------

AGRADECIMIENTOS

Agradezco a mis padres y hermana por haberme apoyado todo este tiempo, gran parte de éste logro es gracias a ustedes.

Al Dr. M. Javier Cruz Gómez y al Dr. Néstor Noé López Castillo, por brindarme la oportunidad de realizar mi proyecto de tesis y por sus invaluables consejos.

A mis amigos, compañeros, y esas personas sin las cuales la vida no sabría igual, Diana, Isaías, Tania, Jair, Alejandro, Alfredo, Arturo, Carlos, Cristian, Daniel, Eduardo G, Eduardo H, Erick, Félix, Gustavo, Hugo, Julián, Luis, Mauricio. Miguel y Wendy, a ustedes muchas gracias por todos esos momentos que hemos vivido juntos.

A Marlen, por ser mi compañera y amiga, por todas esas noches que nos desvelamos estudiando, por todas esas materias que pasamos juntos, porque cada vez que esto se torno difícil, siempre estuviste ahí.

México! Pumas! Universidad!

ÍNDICE DE CONTENIDO

ÍNDICE DE TABLAS	II
ÍNDICE DE ILUSTRACIONES	IV
ÍNDICE DE GRÁFICAS	V
ÍNDICE DE ABREVIATURAS	VI
PRIMER CAPÍTULO	1
INTRODUCCIÓN OBJETIVO GENERAL OBJETIVOS PARTICULARES HIPÓTESIS METODOLOGÍA	1 2 2 3 3
SEGUNDO CAPITULO	4
ANTECEDENTES SOBRE EL PROYECTO. MARCO TEÓRICO. REACCIÓN DE HIDROGENACIÓN SELECTIVA DEL ANILLO AROMÁTICO. CATALIZADORES. CARACTERIZACIÓN DE LOS REACTIVOS Y PRODUCTOS DE LA HIDROGENACIÓN.	4 7 7 8
TERCER CAPITULO	12
DESARROLLO DE LA METODOLOGÍA DE HIDROGENACIÓN DE PLASTIFICANTES AROMÁTICOS EQUIPO Y REACTIVOS UTILIZADOS	12 13 14 15 18 24 27 29 VAS A 31 32 35 35 35 38 41 44 47 50 53 56 57
CUARTO CAPÍTULO	56
ANÁLISIS DE RESULTADOS Estudio cinético de las reacciones de hidrogenación con catalizador de rodio Cinética de la primera reacción con catalizador de rodio	56 56 58

Segunda reacción con catalizador de rodio5 Tercera reacción con catalizador de rodio6 Cálculo de la energía de activación y la constante de Arrhenius6 Estéreo-selectividad de los catalizadores en la reacción de Hidrogenación6	59 50 50 52
QUINTO CAPÍTULO6	54
Conclusiones	54
BIBLIOGRAFÍA6	6
ANEXOS	. .I
ANEXO 1. TABLA DE LONGITUDES DE ONDA PARA ESPECTRO DE IR ANEXO 2. ECUACIÓN DE PENG-ROBINSON Y CONSIDERACIONES EMPLEADAS PARA SU USO ANEXO 3. HOJA SE SEGURIDAD DEL DOTP	I .II IV DS V DS (V

ÍNDICE DE TABLAS.

TABLA 1. PROPIEDADES DEL DOTP	5
TABLA 2. PROPIEDADES DEL HIDRÓGENO	13
TABLA 3. PRIMERA REACCIÓN	15
tabla 4. Segunda Reacción.	15
TABLA 5. CONVERSIÓN DE LA PRIMERA REACCIÓN.	16
TABLA 6. CONVERSIÓN DE LA SEGUNDA REACCIÓN	17
TABLA 7. CONDICIONES INICIALES DE LA TERCERA REACCIÓN	18
TABLA 8. COMPORTAMIENTO DE LA TERCERA REACCIÓN	18
TABLA 9. CONVERSIÓN FINAL DE LA TERCERA REACCIÓN	19
TABLA 10. CONDICIONES INICIALES DE LA CUARTA REACCIÓN	24
TABLA 11. COMPORTAMIENTO DE LA CUARTA REACCIÓN	24
TABLA 12. CONVERSIÓN FINAL DE LA CUARTA REACCIÓN	25
TABLA 13. CONDICIONES INICIALES DE LA QUINTA REACCIÓN	27
TABLA 14. COMPORTAMIENTO DE LA QUINTA REACCIÓN	27
TABLA 15. CONVERSIÓN FINAL DE LA QUINTA REACCIÓN	28
TABLA 16. CONDICIONES INICIALES DE LA SEXTA REACCIÓN.	29
TABLA 17 . COMPORTAMIENTO DE LA SEXTA REACCIÓN	29
TABLA 18. CONVERSIÓN FINAL DE LA SEXTA REACCIÓN	30
TABLA 19. CONDICIONES INICIALES DE LA PRIMERA CARGA EN LA SÉPTIMA REACCIÓN	32
tabla 20. Séptima reacción (primera carga)	32
TABLA 21. CONVERSIÓN FINAL DE LA SÉPTIMA REACCIÓN (PRIMERA CARGA)	32
TABLA 22. CONDICIONES INICIALES DE LA SEGUNDA CARGA EN LA SÉPTIMA REACCIÓN.	33
tabla 23. Séptima reacción (segunda carga).	33
TABLA 24. CONVERSIÓN FINAL DE LA SÉPTIMA REACCIÓN (SEGUNDA CARGA).	33
TABLA 25. CONDICIONES INICIALES DE LA OCTAVA REACCIÓN (PRIMERA CARGA).	35
TABLA 26. OCTAVA REACCIÓN (PRIMERA CARGA)	35
TABLA 27. CONVERSIÓN FINAL DE LA OCTAVA REACCIÓN (PRIMERA CARGA).	35

TABLA 28. Condiciones iniciales de la octava reacción (segunda carga).	
TABLA 29. Octava reacción (segunda carga).	
TABLA 30. CONVERSIÓN FINAL DE LA OCTAVA REACCIÓN (SEGUNDA CARGA).	
TABLA 31. CONDICIONES INICIALES DE LA NOVENA REACCIÓN (PRIMERA CARGA).	
tabla 32. Novena reacción (primera carga).	
TABLA 33. CONVERSIÓN FINAL DE LA NOVENA REACCIÓN (PRIMERA CARGA).	
TABLA 34. Condiciones iniciales de la novena reacción (segunda carga).	
tabla 35. Novena reacción (segunda carga).	
TABLA 36. CONVERSIÓN FINAL DE LA NOVENA REACCIÓN (SEGUNDA CARGA).	
TABLA 37. CONDICIONES INICIALES DE LA DECIMA REACCIÓN (PRIMERA CARGA).	41
tabla 38. Decima reacción (primera carga)	41
TABLA 39. CONVERSIÓN FINAL DE LA DECIMA REACCIÓN (PRIMERA CARGA).	41
TABLA 40. CONDICIONES INICIALES DE LA DECIMA REACCIÓN (SEGUNDA CARGA).	42
TABLA 41. DECIMA REACCIÓN (SEGUNDA CARGA)	42
TABLA 42. CONVERSIÓN FINAL DE LA DECIMA REACCIÓN (SEGUNDA CARGA).	
TABLA 43. CONDICIONES INICIALES DE LA ONCEAVA REACCIÓN (PRIMERA CARGA).	
TABLA 44. ONCEAVA REACCIÓN (PRIMERA CARGA).	
TABLA 45. CONVERSIÓN FINAL DE LA ONCEAVA REACCIÓN (PRIMERA CARGA)	
TABLA 46. CONDICIONES INICIALES DE LA ONCEAVA REACCIÓN (SEGUNDA CARGA).	45
TABLA 47. ONCEAVA REACCIÓN (SEGUNDA CARGA)	45
TABLA 48. CONVERSIÓN FINAL DE LA ONCEAVA REACCIÓN (SEGUNDA CARGA)	45
TABLA 49. CONDICIONES INICIALES DE LA DOCEAVA REACCIÓN (PRIMERA CARGA).	
TABLA 50. DOCEAVA REACCIÓN (PRIMERA CARGA).	
TABLA 51. CONVERSIÓN FINAL DE LA DOCEAVA REACCIÓN (PRIMERA CARGA).	
	48
TABLA 52. CONDICIONES INICIALES DE LA DOCEAVA REACCION (SEGUNDA CARGA).	
TABLA 52. CONDICIONES INICIALES DE LA DOCEAVA REACCIÓN (SEGUNDA CARGA). TABLA 53. DOCEAVA REACCIÓN (SEGUNDA CARGA).	
TABLA 52. CONDICIONES INICIALES DE LA DOCEAVA REACCIÓN (SEGUNDA CARGA). TABLA 53. DOCEAVA REACCIÓN (SEGUNDA CARGA) TABLA 54. CONVERSIÓN FINAL DE LA DOCEAVA REACCIÓN (SEGUNDA CARGA)	
TABLA 52. CONDICIONES INICIALES DE LA DOCEAVA REACCIÓN (SEGUNDA CARGA). TABLA 53. DOCEAVA REACCIÓN (SEGUNDA CARGA). TABLA 54. CONVERSIÓN FINAL DE LA DOCEAVA REACCIÓN (SEGUNDA CARGA). TABLA 55. CONDICIONES INICIALES DE LA TRECEAVA REACCIÓN (PRIMERA CARGA).	
TABLA 52. CONDICIONES INICIALES DE LA DOCEAVA REACCIÓN (SEGUNDA CARGA). TABLA 53. DOCEAVA REACCIÓN (SEGUNDA CARGA). TABLA 54. CONVERSIÓN FINAL DE LA DOCEAVA REACCIÓN (SEGUNDA CARGA). TABLA 55. CONDICIONES INICIALES DE LA TRECEAVA REACCIÓN (PRIMERA CARGA). TABLA 55. TRECEAVA REACCIÓN (PRIMERA CARGA).	
TABLA 52. CONDICIONES INICIALES DE LA DOCEAVA REACCIÓN (SEGUNDA CARGA). TABLA 53. DOCEAVA REACCIÓN (SEGUNDA CARGA). TABLA 54. CONVERSIÓN FINAL DE LA DOCEAVA REACCIÓN (SEGUNDA CARGA). TABLA 55. CONDICIONES INICIALES DE LA TRECEAVA REACCIÓN (PRIMERA CARGA). TABLA 55. CONDICIONES INICIALES DE LA TRECEAVA REACCIÓN (PRIMERA CARGA). TABLA 56. TRECEAVA REACCIÓN (PRIMERA CARGA). TABLA 57. CONVERSIÓN FINAL DE LA TRECEAVA REACCIÓN (PRIMERA CARGA).	
TABLA 52. CONDICIONES INICIALES DE LA DOCEAVA REACCIÓN (SEGUNDA CARGA). TABLA 53. DOCEAVA REACCIÓN (SEGUNDA CARGA). TABLA 54. CONVERSIÓN FINAL DE LA DOCEAVA REACCIÓN (SEGUNDA CARGA). TABLA 55. CONDICIONES INICIALES DE LA TRECEAVA REACCIÓN (PRIMERA CARGA). TABLA 56. TRECEAVA REACCIÓN (PRIMERA CARGA). TABLA 56. TRECEAVA REACCIÓN (PRIMERA CARGA). TABLA 57. CONVERSIÓN FINAL DE LA TRECEAVA REACCIÓN (PRIMERA CARGA). TABLA 57. CONVERSIÓN FINAL DE LA TRECEAVA REACCIÓN (PRIMERA CARGA). TABLA 58. CONDICIONES INICIALES DE LA TRECEAVA REACCIÓN (PRIMERA CARGA). TABLA 58. CONDICIONES INICIALES DE LA TRECEAVA REACCIÓN (PRIMERA CARGA).	
TABLA 52. CONDICIONES INICIALES DE LA DOCEAVA REACCIÓN (SEGUNDA CARGA). TABLA 53. DOCEAVA REACCIÓN (SEGUNDA CARGA). TABLA 54. CONVERSIÓN FINAL DE LA DOCEAVA REACCIÓN (SEGUNDA CARGA). TABLA 55. CONDICIONES INICIALES DE LA TRECEAVA REACCIÓN (PRIMERA CARGA). TABLA 56. TRECEAVA REACCIÓN (PRIMERA CARGA). TABLA 56. TRECEAVA REACCIÓN (PRIMERA CARGA). TABLA 57. CONVERSIÓN FINAL DE LA TRECEAVA REACCIÓN (PRIMERA CARGA). TABLA 57. CONVERSIÓN FINAL DE LA TRECEAVA REACCIÓN (PRIMERA CARGA). TABLA 58. CONDICIONES INICIALES DE LA TRECEAVA REACCIÓN (SEGUNDA CARGA). TABLA 58. CONDICIONES INICIALES DE LA TRECEAVA REACCIÓN (SEGUNDA CARGA). TABLA 59. TRECEAVA REACCIÓN (SEGUNDA CARGA).	48 48 50 50 50 50 51 51
TABLA 52. CONDICIONES INICIALES DE LA DOCEAVA REACCIÓN (SEGUNDA CARGA). TABLA 53. DOCEAVA REACCIÓN (SEGUNDA CARGA). TABLA 54. CONVERSIÓN FINAL DE LA DOCEAVA REACCIÓN (SEGUNDA CARGA). TABLA 55. CONDICIONES INICIALES DE LA TRECEAVA REACCIÓN (PRIMERA CARGA). TABLA 56. TRECEAVA REACCIÓN (PRIMERA CARGA). TABLA 57. CONVERSIÓN FINAL DE LA TRECEAVA REACCIÓN (PRIMERA CARGA). TABLA 57. CONVERSIÓN FINAL DE LA TRECEAVA REACCIÓN (PRIMERA CARGA). TABLA 58. CONDICIONES INICIALES DE LA TRECEAVA REACCIÓN (SEGUNDA CARGA). TABLA 59. TROUBLES INICIALES DE LA TRECEAVA REACCIÓN (SEGUNDA CARGA). TABLA 59. TRECEAVA REACCIÓN (SEGUNDA CARGA). TABLA 60. CONVERSIÓN FINAL DE LA TRECEAVA REACCIÓN (SEGUNDA CARGA).	48 48 50 50 50 51 51 51
TABLA 52. CONDICIONES INICIALES DE LA DOCEAVA REACCIÓN (SEGUNDA CARGA). TABLA 53. DOCEAVA REACCIÓN (SEGUNDA CARGA). TABLA 54. CONVERSIÓN FINAL DE LA DOCEAVA REACCIÓN (SEGUNDA CARGA). TABLA 55. CONDICIONES INICIALES DE LA TRECEAVA REACCIÓN (PRIMERA CARGA). TABLA 56. TRECEAVA REACCIÓN (PRIMERA CARGA). TABLA 57. CONVERSIÓN FINAL DE LA TRECEAVA REACCIÓN (PRIMERA CARGA). TABLA 57. CONVERSIÓN FINAL DE LA TRECEAVA REACCIÓN (PRIMERA CARGA). TABLA 58. CONDICIONES INICIALES DE LA TRECEAVA REACCIÓN (SEGUNDA CARGA). TABLA 59. TRECEAVA REACCIÓN (SEGUNDA CARGA). TABLA 59. TRECEAVA REACCIÓN (SEGUNDA CARGA). TABLA 60. CONVERSIÓN FINAL DE LA TRECEAVA REACCIÓN (SEGUNDA CARGA). TABLA 61. CONDICIONES INICIALES DE LA CATORCEAVA REACCIÓN (PRIMERA CARGA).	48 48 50 50 50 51 51 51 51 53
TABLA 52. CONDICIONES INICIALES DE LA DOCEAVA REACCIÓN (SEGUNDA CARGA). TABLA 53. DOCEAVA REACCIÓN (SEGUNDA CARGA). TABLA 54. CONVERSIÓN FINAL DE LA DOCEAVA REACCIÓN (SEGUNDA CARGA). TABLA 55. CONDICIONES INICIALES DE LA TRECEAVA REACCIÓN (PRIMERA CARGA). TABLA 56. TRECEAVA REACCIÓN (PRIMERA CARGA). TABLA 57. CONVERSIÓN FINAL DE LA TRECEAVA REACCIÓN (PRIMERA CARGA). TABLA 57. CONVERSIÓN FINAL DE LA TRECEAVA REACCIÓN (PRIMERA CARGA). TABLA 58. CONDICIONES INICIALES DE LA TRECEAVA REACCIÓN (SEGUNDA CARGA). TABLA 59. TRECEAVA REACCIÓN (SEGUNDA CARGA). TABLA 59. TRECEAVA REACCIÓN (SEGUNDA CARGA). TABLA 60. CONVERSIÓN FINAL DE LA TRECEAVA REACCIÓN (SEGUNDA CARGA). TABLA 61. CONDICIONES INICIALES DE LA CATORCEAVA REACCIÓN (SEGUNDA CARGA). TABLA 62. CATORCEAVA REACCIÓN (SEGUNDA CARGA). TABLA 64. CONVERSIÓN FINAL DE LA TRECEAVA REACCIÓN (SEGUNDA CARGA). TABLA 64. CONVERSIÓN FINAL DE LA CATORCEAVA REACCIÓN (SEGUNDA CARGA). TABLA 64. CONDICIONES INICIALES DE LA CATORCEAVA REACCIÓN (PRIMERA CARGA).	48 48 50 50 50 51 51 51 51 53 53
TABLA 52. CONDICIONES INICIALES DE LA DOCEAVA REACCIÓN (SEGUNDA CARGA). TABLA 53. DOCEAVA REACCIÓN (SEGUNDA CARGA). TABLA 54. CONVERSIÓN FINAL DE LA DOCEAVA REACCIÓN (SEGUNDA CARGA). TABLA 55. CONDICIONES INICIALES DE LA TRECEAVA REACCIÓN (PRIMERA CARGA). TABLA 56. TRECEAVA REACCIÓN (PRIMERA CARGA). TABLA 56. TRECEAVA REACCIÓN (PRIMERA CARGA). TABLA 57. CONVERSIÓN FINAL DE LA TRECEAVA REACCIÓN (PRIMERA CARGA). TABLA 57. CONVERSIÓN FINAL DE LA TRECEAVA REACCIÓN (PRIMERA CARGA). TABLA 58. CONDICIONES INICIALES DE LA TRECEAVA REACCIÓN (SEGUNDA CARGA). TABLA 59. TRECEAVA REACCIÓN (SEGUNDA CARGA). TABLA 50. CONVERSIÓN FINAL DE LA TRECEAVA REACCIÓN (SEGUNDA CARGA). TABLA 60. CONVERSIÓN FINAL DE LA TRECEAVA REACCIÓN (SEGUNDA CARGA). TABLA 60. CONVERSIÓN FINAL DE LA TRECEAVA REACCIÓN (SEGUNDA CARGA). TABLA 61. CONDICIONES INICIALES DE LA CATORCEAVA REACCIÓN (PRIMERA CARGA). TABLA 62. CATORCEAVA REACCIÓN (PRIMERA CARGA). TABLA 63. CONVERSIÓN FINAL DE LA CATORCEAVA REACCIÓN (PRIMERA CARGA). TABLA 63. CONVERSIÓN FINAL DE LA CATORCEAVA REACCIÓN (PRIMERA CARGA).	48 48 50 50 50 51 51 51 51 53 53 53 53
TABLA 52. CONDICIONES INICIALES DE LA DOCEAVA REACCIÓN (SEGUNDA CARGA). TABLA 53. DOCEAVA REACCIÓN (SEGUNDA CARGA). TABLA 54. CONVERSIÓN FINAL DE LA DOCEAVA REACCIÓN (SEGUNDA CARGA). TABLA 55. CONDICIONES INICIALES DE LA TRECEAVA REACCIÓN (PRIMERA CARGA). TABLA 56. TRECEAVA REACCIÓN (PRIMERA CARGA). TABLA 57. CONVERSIÓN FINAL DE LA TRECEAVA REACCIÓN (PRIMERA CARGA). TABLA 57. CONVERSIÓN FINAL DE LA TRECEAVA REACCIÓN (PRIMERA CARGA). TABLA 58. CONDICIONES INICIALES DE LA TRECEAVA REACCIÓN (SEGUNDA CARGA). TABLA 59. TRECEAVA REACCIÓN (SEGUNDA CARGA). TABLA 59. TRECEAVA REACCIÓN (SEGUNDA CARGA). TABLA 60. CONVERSIÓN FINAL DE LA TRECEAVA REACCIÓN (SEGUNDA CARGA). TABLA 61. CONDICIONES INICIALES DE LA CATORCEAVA REACCIÓN (PRIMERA CARGA). TABLA 62. CATORCEAVA REACCIÓN (PRIMERA CARGA). TABLA 63. CONVERSIÓN FINAL DE LA CATORCEAVA REACCIÓN (PRIMERA CARGA). TABLA 64. CONDICIONES INICIALES DE LA CATORCEAVA REACCIÓN (PRIMERA CARGA). TABLA 64. CONVERSIÓN FINAL DE LA CATORCEAVA REACCIÓN (PRIMERA CARGA). TABLA 64. CONDICIONES INICIALES DE LA CATORCEAVA REACCIÓN (SEGUNDA CARGA). TABLA 64. CONDICIONES INICIALES DE LA CATORCEAVA REACCIÓN (SEGUNDA CARGA).	48 48 50 50 50 51 51 51 53 53 53 53 53 54
TABLA 52. CONDICIONES INICIALES DE LA DOCEAVA REACCIÓN (SEGUNDA CARGA). TABLA 53. DOCEAVA REACCIÓN (SEGUNDA CARGA). TABLA 54. CONVERSIÓN FINAL DE LA DOCEAVA REACCIÓN (SEGUNDA CARGA). TABLA 55. CONDICIONES INICIALES DE LA TRECEAVA REACCIÓN (PRIMERA CARGA). TABLA 56. TRECEAVA REACCIÓN (PRIMERA CARGA). TABLA 57. CONVERSIÓN FINAL DE LA TRECEAVA REACCIÓN (PRIMERA CARGA). TABLA 57. CONVERSIÓN FINAL DE LA TRECEAVA REACCIÓN (PRIMERA CARGA). TABLA 58. CONDICIONES INICIALES DE LA TRECEAVA REACCIÓN (SEGUNDA CARGA). TABLA 59. TRECEAVA REACCIÓN (SEGUNDA CARGA). TABLA 69. CONVERSIÓN FINAL DE LA TRECEAVA REACCIÓN (SEGUNDA CARGA). TABLA 60. CONVERSIÓN FINAL DE LA TRECEAVA REACCIÓN (SEGUNDA CARGA). TABLA 61. CONDICIONES INICIALES DE LA CATORCEAVA REACCIÓN (PRIMERA CARGA). TABLA 62. CATORCEAVA REACCIÓN (PRIMERA CARGA). TABLA 63. CONVERSIÓN FINAL DE LA CATORCEAVA REACCIÓN (PRIMERA CARGA). TABLA 63. CONVERSIÓN FINAL DE LA CATORCEAVA REACCIÓN (PRIMERA CARGA). TABLA 64. CONDICIONES INICIALES DE LA CATORCEAVA REACCIÓN (PRIMERA CARGA). TABLA 64. CONDICIONES INICIALES DE LA CATORCEAVA REACCIÓN (PRIMERA CARGA). TABLA 64. CONDICIONES INICIALES DE LA CATORCEAVA REACCIÓN (PRIMERA CARGA). TABLA 64. CONDICIONES INICIALES DE LA CATORCEAVA REACCIÓN (SEGUNDA CARGA). TABLA 65. CATORCEAVA REACCIÓN (SEGUNDA CARGA). TABLA 65. CATORCEAVA REACCIÓN (SEGU	48 48 50 50 50 51 51 51 53 53 53 53 54 54
TABLA 52. CONDICIONES INICIALES DE LA DOCEAVA REACCIÓN (SEGUNDA CARGA). TABLA 53. DOCEAVA REACCIÓN (SEGUNDA CARGA). TABLA 54. CONVERSIÓN FINAL DE LA DOCEAVA REACCIÓN (SEGUNDA CARGA). TABLA 55. CONDICIONES INICIALES DE LA TRECEAVA REACCIÓN (PRIMERA CARGA). TABLA 56. TRECEAVA REACCIÓN (PRIMERA CARGA). TABLA 57. CONVERSIÓN FINAL DE LA TRECEAVA REACCIÓN (PRIMERA CARGA). TABLA 57. CONVERSIÓN FINAL DE LA TRECEAVA REACCIÓN (PRIMERA CARGA). TABLA 58. CONDICIONES INICIALES DE LA TRECEAVA REACCIÓN (SEGUNDA CARGA). TABLA 59. TRECEAVA REACCIÓN (SEGUNDA CARGA). TABLA 60. CONVERSIÓN FINAL DE LA TRECEAVA REACCIÓN (SEGUNDA CARGA). TABLA 61. CONDICIONES INICIALES DE LA TRECEAVA REACCIÓN (SEGUNDA CARGA). TABLA 62. CATORCEAVA REACCIÓN (SEGUNDA CARGA). TABLA 63. CONVERSIÓN FINAL DE LA CATORCEAVA REACCIÓN (PRIMERA CARGA). TABLA 63. CONVERSIÓN FINAL DE LA CATORCEAVA REACCIÓN (PRIMERA CARGA). TABLA 63. CONVERSIÓN FINAL DE LA CATORCEAVA REACCIÓN (PRIMERA CARGA). TABLA 64. CONDICIONES INICIALES DE LA CATORCEAVA REACCIÓN (PRIMERA CARGA). TABLA 64. CONDICIONES INICIALES DE LA CATORCEAVA REACCIÓN (SEGUNDA CARGA). TABLA 64. CONDICIONES INICIALES DE LA CATORCEAVA REACCIÓN (SEGUNDA CARGA). TABLA 65. CATORCEAVA REACCIÓN (SEGUNDA CARGA). TABLA 64. CONDICIONES INICIALES DE LA CATORCEAVA REACCIÓN (SEGUNDA CARGA). TABLA 65. CATORCEAVA REACCIÓN (SEGU	48 48 50 50 50 51 51 51 53 53 53 53 54 54 54 54
TABLA 52. CONDICIONES INICIALES DE LA DUCEAVA REACCIÓN (SEGUNDA CARGA). TABLA 53. DOCEAVA REACCIÓN (SEGUNDA CARGA). TABLA 54. CONVERSIÓN FINAL DE LA DOCEAVA REACCIÓN (SEGUNDA CARGA). TABLA 55. CONDICIONES INICIALES DE LA TRECEAVA REACCIÓN (PRIMERA CARGA). TABLA 56. TRECEAVA REACCIÓN (PRIMERA CARGA). TABLA 57. CONVERSIÓN FINAL DE LA TRECEAVA REACCIÓN (PRIMERA CARGA). TABLA 57. CONVERSIÓN FINAL DE LA TRECEAVA REACCIÓN (PRIMERA CARGA). TABLA 58. CONDICIONES INICIALES DE LA TRECEAVA REACCIÓN (SEGUNDA CARGA). TABLA 59. TRECEAVA REACCIÓN (SEGUNDA CARGA). TABLA 60. CONVERSIÓN FINAL DE LA TRECEAVA REACCIÓN (SEGUNDA CARGA). TABLA 61. CONDICIONES INICIALES DE LA CATORCEAVA REACCIÓN (PRIMERA CARGA). TABLA 62. CATORCEAVA REACCIÓN (PRIMERA CARGA). TABLA 63. CONVERSIÓN FINAL DE LA CATORCEAVA REACCIÓN (PRIMERA CARGA). TABLA 63. CONVERSIÓN FINAL DE LA CATORCEAVA REACCIÓN (PRIMERA CARGA). TABLA 64. CONDICIONES INICIALES DE LA CATORCEAVA REACCIÓN (PRIMERA CARGA). TABLA 64. CONVERSIÓN FINAL DE LA CATORCEAVA REACCIÓN (PRIMERA CARGA). TABLA 64. CONDICIONES INICIALES DE LA CATORCEAVA REACCIÓN (SEGUNDA CARGA). TABLA 65. CATORCEAVA REACCIÓN (SEGUNDA CARGA). TABLA 64. CONDICIONES INICIALES DE LA CATORCEAVA REACCIÓN (SEGUNDA CARGA). TABLA 65. CATORCEAVA REACCIÓN (SEGUNDA CARGA). TABLA 66. CONVERSIÓN FINAL DE LA CATORCEAVA REACCIÓN (SEGUNDA	48 48 50 50 50 51 51 51 53 53 53 53 53 54 54 54 56
TABLA 52. CONDICIONES INICIALES DE LA DOCEAVA REACCIÓN (SEGUNDA CARGA). TABLA 53. DOCEAVA REACCIÓN (SEGUNDA CARGA). TABLA 54. CONVERSIÓN FINAL DE LA DOCEAVA REACCIÓN (SEGUNDA CARGA). TABLA 55. CONDICIONES INICIALES DE LA TRECEAVA REACCIÓN (PRIMERA CARGA). TABLA 56. TRECEAVA REACCIÓN (PRIMERA CARGA). TABLA 57. CONVERSIÓN FINAL DE LA TRECEAVA REACCIÓN (PRIMERA CARGA). TABLA 58. CONDICIONES INICIALES DE LA TRECEAVA REACCIÓN (PRIMERA CARGA). TABLA 59. TRECEAVA REACCIÓN (SEGUNDA CARGA). TABLA 59. TRECEAVA REACCIÓN (SEGUNDA CARGA). TABLA 60. CONVERSIÓN FINAL DE LA TRECEAVA REACCIÓN (SEGUNDA CARGA). TABLA 61. CONDICIONES INICIALES DE LA CATORCEAVA REACCIÓN (PRIMERA CARGA). TABLA 62. CATORCEAVA REACCIÓN (PRIMERA CARGA). TABLA 63. CONVERSIÓN FINAL DE LA CATORCEAVA REACCIÓN (PRIMERA CARGA). TABLA 63. CONVERSIÓN FINAL DE LA CATORCEAVA REACCIÓN (PRIMERA CARGA). TABLA 64. CONDICIONES INICIALES DE LA CATORCEAVA REACCIÓN (PRIMERA CARGA). TABLA 65. CATORCEAVA REACCIÓN (REGUNDA CARGA). TABLA 65. CATORCEAVA REACCIÓN (SEGUNDA CARGA). TABLA 65. CONVERSIÓN FINAL DE LA CATORCEAVA REACCIÓN (SEGUNDA CARGA). TABLA 66. CONVERSIÓN FINAL DE LA CATORCEAVA REACCIÓN (SEGUNDA CARGA). TABLA 66. CONVERSIÓN FINAL DE LA CATORCEAVA REACCIÓN (SEGUNDA CARGA). TABLA 66. CONVERSIÓN FINAL DE LA CATORCEAVA REACCIÓN (SEGUNDA CARGA).	48 48 50 50 50 51 51 51 53 53 53 53 53 54 54 54 54 56 56
TABLA 52. CONDICIONES INICIALES DE LA DOCEAVA REACCIÓN (SEGUNDA CARGA). TABLA 53. DOCEAVA REACCIÓN (SEGUNDA CARGA). TABLA 54. CONVERSIÓN FINAL DE LA DOCEAVA REACCIÓN (SEGUNDA CARGA). TABLA 55. CONDICIONES INICIALES DE LA TRECEAVA REACCIÓN (PRIMERA CARGA). TABLA 56. TRECEAVA REACCIÓN (PRIMERA CARGA). TABLA 57. CONVERSIÓN FINAL DE LA TRECEAVA REACCIÓN (PRIMERA CARGA). TABLA 57. CONVERSIÓN FINAL DE LA TRECEAVA REACCIÓN (PRIMERA CARGA). TABLA 58. CONDICIONES INICIALES DE LA TRECEAVA REACCIÓN (SEGUNDA CARGA). TABLA 59. TRECEAVA REACCIÓN (SEGUNDA CARGA). TABLA 50. CONVERSIÓN FINAL DE LA TRECEAVA REACCIÓN (SEGUNDA CARGA). TABLA 60. CONVERSIÓN FINAL DE LA TRECEAVA REACCIÓN (SEGUNDA CARGA). TABLA 61. CONDICIONES INICIALES DE LA CATORCEAVA REACCIÓN (PRIMERA CARGA). TABLA 62. CATORCEAVA REACCIÓN (PRIMERA CARGA). TABLA 63. CONVERSIÓN FINAL DE LA CATORCEAVA REACCIÓN (PRIMERA CARGA). TABLA 64. CONDICIONES INICIALES DE LA CATORCEAVA REACCIÓN (PRIMERA CARGA). TABLA 63. CONVERSIÓN FINAL DE LA CATORCEAVA REACCIÓN (SEGUNDA CARGA). TABLA 64. CONDICIONES INCIALES DE LA CATORCEAVA REACCIÓN (SEGUNDA CARGA). TABLA 65. CATORCEAVA REACCIÓN (SEGUNDA CARGA). TABLA 66. CONVERSIÓN FINAL DE LA CATORCEAVA REACCIÓN (SEGUNDA CARGA). TABLA 66. CONVERSIÓN FINALES DE REACCIONES 7. 8. 9 Y 10. TABLA 66. CONVERSIONES FINALES DE REACCIONES 7. 8. 9 Y 10.<	48 48 50 50 50 51 51 53 53 53 53 53 53 54 54 54 54 54 56 56 57
TABLA 52. CONDICIONES INICIALES DE LA DOCEAVA REACCIÓN (SEGUNDA CARGA). TABLA 53. DOCEAVA REACCIÓN (SEGUNDA CARGA). TABLA 54. CONVERSIÓN FINAL DE LA DOCEAVA REACCIÓN (SEGUNDA CARGA). TABLA 55. CONDICIONES INICIALES DE LA TRECEAVA REACCIÓN (PRIMERA CARGA). TABLA 56. TRECEAVA REACCIÓN (PRIMERA CARGA). TABLA 57. CONVERSIÓN FINAL DE LA TRECEAVA REACCIÓN (PRIMERA CARGA). TABLA 58. CONDICIONES INICIALES DE LA TRECEAVA REACCIÓN (PRIMERA CARGA). TABLA 59. TRECEAVA REACCIÓN (SEGUNDA CARGA). TABLA 59. TRECEAVA REACCIÓN (SEGUNDA CARGA). TABLA 60. CONVERSIÓN FINAL DE LA TRECEAVA REACCIÓN (SEGUNDA CARGA). TABLA 61. CONDICIONES INICIALES DE LA CATORCEAVA REACCIÓN (PRIMERA CARGA). TABLA 62. CATORCEAVA REACCIÓN (PRIMERA CARGA). TABLA 63. CONVERSIÓN FINAL DE LA CATORCEAVA REACCIÓN (PRIMERA CARGA). TABLA 64. CONDICIONES INICIALES DE LA CATORCEAVA REACCIÓN (PRIMERA CARGA). TABLA 65. CATORCEAVA REACCIÓN (PRIMERA CARGA). TABLA 66. CONVERSIÓN FINAL DE LA CATORCEAVA REACCIÓN (SEGUNDA CARGA). TABLA 65. CATORCEAVA REACCIÓN (SEGUNDA CARGA). TABLA 66. CONVERSIÓN FINALES DE LA CATORCEAVA REACCIÓN (SEGUNDA CARGA). TABLA 66. CONVERSIÓN FINALES DE LA CATORCEAVA REACCIÓN (SEGUNDA CARGA). TABLA 67. CONVERSIÓN FINALES DE REACCIÓN ST. TABLA 67. CONVERSIÓN FINALES DE REACCIÓN ST. TABLA 68. CONVERSIÓN FINALES DE REAC	48 48 50 50 50 51 51 51 51 53 53 53 53 53 53 54 54 54 54 54 56 56 57 58
TABLA 52. CONDICIONES INICIALES DE LA DOCEAVA REACCIÓN (SEGUNDA CARGA). TABLA 53. DOCEAVA REACCIÓN (SEGUNDA CARGA). TABLA 54. CONVERSIÓN FINAL DE LA DOCEAVA REACCIÓN (SEGUNDA CARGA). TABLA 55. CONDICIONES INICIALES DE LA TRECEAVA REACCIÓN (PRIMERA CARGA). TABLA 56. TRECEAVA REACCIÓN (PRIMERA CARGA). TABLA 57. CONVERSIÓN FINAL DE LA TRECEAVA REACCIÓN (PRIMERA CARGA). TABLA 58. CONDICIONES INICIALES DE LA TRECEAVA REACCIÓN (SEGUNDA CARGA). TABLA 59. TRECEAVA REACCIÓN (SEGUNDA CARGA). TABLA 59. TRECEAVA REACCIÓN (SEGUNDA CARGA). TABLA 60. CONVERSIÓN FINAL DE LA TRECEAVA REACCIÓN (SEGUNDA CARGA). TABLA 61. CONDICIONES INICIALES DE LA CATORCEAVA REACCIÓN (PRIMERA CARGA). TABLA 62. CATORCEAVA REACCIÓN (PRIMERA CARGA). TABLA 63. CONVERSIÓN FINAL DE LA CATORCEAVA REACCIÓN (PRIMERA CARGA). TABLA 64. CONDICIONES INICIALES DE LA CATORCEAVA REACCIÓN (PRIMERA CARGA). TABLA 65. CATORCEAVA REACCIÓN (FRIMERA CARGA). TABLA 66. CONVERSIÓN FINAL DE LA CATORCEAVA REACCIÓN (SEGUNDA CARGA). TABLA 65. CATORCEAVA REACCIÓN (SEGUNDA CARGA). TABLA 66. CONVERSIÓN FINAL DE LA CATORCEAVA REACCIÓN (SEGUNDA CARGA). TABLA 66. CONVERSIÓN FINAL DE LA CATORCEAVA REACCIÓN (SEGUNDA CARGA). TABLA 66. CONVERSIÓN FINALES DE LA CATORCEAVA REACCIÓN (SEGUNDA CARGA). TABLA 67. CONVERSIÓN FINALES DE LA CATORCEAVA REACCIÓN (SEGUNDA CARGA). TABLA 66. CONVERSIÓN FINALES DE LA CATORCEAVA REACCIÓN (SEGUNDA CARGA). TABLA 67. CONVERSIÓN FINALES DE REACCIONES 7. 8. 9 Y 10. TABLA 68. CONVERSIONES FINALES DE REACCIÓNES 7. 8. 9 Y 10. TABLA 68. CONVERSIONES FINALES DE LA CATORCEAVA REACCIÓN (SEGUNDA CARGA). TABLA 68. CONVERSIONES FINALES DE LA CATORCEAVA REACCIÓN (SEGUNDA CARGA). TABLA 67. ESTUDIO CINÉTICO DE LA PRIMERA REACCIÓN. TABLA 70. ESTUDIO CINÉTICO DE LA PRIMERA REACCIÓN. TABLA 71. ESTUDIO CINÉTICO DE LA SEGUNDA REACCIÓN.	48 48 50 50 50 51 51 51 53 53 53 53 53 53 54 54 54 54 56 56 57 58 59
TABLA 52. CONDERISES INCIALES DE LA DOCEAVA REACCIÓN (SEGUNDA CARGA). TABLA 53. DOCEAVA REACCIÓN (SEGUNDA CARGA). TABLA 54. CONVERSIÓN FINAL DE LA DOCEAVA REACCIÓN (SEGUNDA CARGA). TABLA 55. CONDICIONES INCIALES DE LA TRECEAVA REACCIÓN (PRIMERA CARGA). TABLA 56. TRECEAVA REACCIÓN (PRIMERA CARGA). TABLA 57. CONVERSIÓN FINAL DE LA TRECEAVA REACCIÓN (PRIMERA CARGA). TABLA 58. CONDICIONES INCIALES DE LA TRECEAVA REACCIÓN (SEGUNDA CARGA). TABLA 59. TRECEAVA REACCIÓN (SEGUNDA CARGA). TABLA 60. CONVERSIÓN FINAL DE LA TRECEAVA REACCIÓN (SEGUNDA CARGA). TABLA 61. CONDICIONES INCIALES DE LA CATORCEAVA REACCIÓN (PRIMERA CARGA). TABLA 62. CATORCEAVA REACCIÓN (PRIMERA CARGA). TABLA 63. CONVERSIÓN FINAL DE LA CATORCEAVA REACCIÓN (PRIMERA CARGA). TABLA 64. CONDICIONES INCIALES DE LA CATORCEAVA REACCIÓN (PRIMERA CARGA). TABLA 65. CATORCEAVA REACCIÓN (PRIMERA CARGA). TABLA 64. CONDICIONES INCIALES DE LA CATORCEAVA REACCIÓN (PRIMERA CARGA). TABLA 65. CATORCEAVA REACCIÓN (SEGUNDA CARGA). TABLA 65. CATORCEAVA REACCIÓN (SEGUNDA CARGA). TABLA 66. CONVERSIÓN FINAL DE LA CATORCEAVA REACCIÓN (SEGUNDA CARGA). TABLA 67. CONVERSIÓN FINALES DE REACCIÓNS 7. 8. 9 Y 10. TABLA 68. CONVERSIONES FINALES DE LACATORCEAVA REACCIÓN (SEGUNDA CARGA). TABLA 68. CONVERSIONES FINALES DE LAS PLASTE/ICANTES. TABLA 69. PROPIED	48 48 50 50 50 51 51 51 53 53 53 53 53 53 54 54 54 54 54 56 56 56 57 58 59 60
TABLA 52. CONVERSIÓN FINAL DE LA DOCEAVA REACCIÓN (SEGUNDA CARGA). TABLA 53. DOCEAVA REACCIÓN (SEGUNDA CARGA). TABLA 54. CONVERSIÓN FINAL DE LA DOCEAVA REACCIÓN (SEGUNDA CARGA). TABLA 55. CONVERSIÓN FINAL DE LA TRECEAVA REACCIÓN (PRIMERA CARGA). TABLA 56. TRECEAVA REACCIÓN (PRIMERA CARGA). TABLA 57. CONVERSIÓN FINAL DE LA TRECEAVA REACCIÓN (PRIMERA CARGA). TABLA 58. CONDICIONES INICIALES DE LA TRECEAVA REACCIÓN (SEGUNDA CARGA). TABLA 59. TRECEAVA REACCIÓN (SEGUNDA CARGA). TABLA 59. TRECEAVA REACCIÓN (SEGUNDA CARGA). TABLA 50. CONVERSIÓN FINAL DE LA TRECEAVA REACCIÓN (SEGUNDA CARGA). TABLA 60. CONVERSIÓN FINAL DE LA TRECEAVA REACCIÓN (SEGUNDA CARGA). TABLA 61. CONDICIONES INICIALES DE LA CATORCEAVA REACCIÓN (SEGUNDA CARGA). TABLA 61. CONDICIONES INICIALES DE LA CATORCEAVA REACCIÓN (PRIMERA CARGA). TABLA 62. CATORCEAVA REACCIÓN (PRIMERA CARGA). TABLA 63. CONVERSIÓN FINAL DE LA CATORCEAVA REACCIÓN (SEGUNDA CARGA). TABLA 64. CONDICIONES INICIALES DE LA CATORCEAVA REACCIÓN (SEGUNDA CARGA). TABLA 65. CATORCEAVA REACCIÓN (SEGUNDA CARGA). TABLA 66. CONVERSIÓN FINAL DE LA CATORCEAVA REACCIÓN (SEGUNDA CARGA). TABLA 67. CONVERSIÓN FINAL DE LA CATORCEAVA REACCIÓN (SEGUNDA CARGA). TABLA 68. CONVERSIÓN FINAL DE LA CATORCEAVA REACCIÓN (SEGUNDA CARGA). TABLA 67. CONVERSIÓN FINAL DE LA CATORCEAVA REACCIÓN (SEGUNDA CARGA). TABLA 68. CONVERSIÓN FINALES DE REACCIONES 7. 8. 9 Y 10. TABLA 68. CONVERSIÓN FINALES DE REACCIONES 7. 8. 9 Y 10. TABLA 69. PROPIEDADES FISICOQUÍMICAS DE LOS PLASTFICANTES. TABLA 69. PROPIEDADES FISICOQUÍMICAS DE LOS PLASTFICANTES. TABLA 70. ESTUDIO CINÉTICO DE LA REACCIÓN SEGUNDA CARGA). TABLA 71. ESTUDIO CINÉTICO DE LA SEGUNDA REACCIÓN. TABLA 72. ESTUDIO CINÉTICO DE LA SEGUNDA REACCIÓN. TABLA 73. RECOPILACIÓN DE LAS PROPIEDADES.	48 48 50 50 50 51 51 53 53 53 53 53 53 54 54 54 54 54 54 54 56 56 56 57 58 59 60 60 61
TABLA 52. CONDICIONES INICIALES DE LA DUCEAVA REACCIÓN (SEGUNDA CARGA). TABLA 53. DOCEAVA REACCIÓN (SEGUNDA CARGA). TABLA 54. CONVERSIÓN FINAL DE LA DUCEAVA REACCIÓN (SEGUNDA CARGA). TABLA 55. CONVERSIÓN FINAL DE LA TRECEAVA REACCIÓN (PRIMERA CARGA). TABLA 56. TRECEAVA REACCIÓN (PRIMERA CARGA). TABLA 57. CONVERSIÓN FINAL DE LA TRECEAVA REACCIÓN (PRIMERA CARGA). TABLA 58. CONDICIONES INICIALES DE LA TRECEAVA REACCIÓN (SEGUNDA CARGA). TABLA 59. TRECEAVA REACCIÓN (SEGUNDA CARGA). TABLA 59. TRECEAVA REACCIÓN (SEGUNDA CARGA). TABLA 59. TRECEAVA REACCIÓN (SEGUNDA CARGA). TABLA 50. CONVERSIÓN FINAL DE LA TRECEAVA REACCIÓN (SEGUNDA CARGA). TABLA 50. CONVERSIÓN FINAL DE LA TRECEAVA REACCIÓN (SEGUNDA CARGA). TABLA 61. CONDICIONES INICIALES DE LA CATORCEAVA REACCIÓN (PRIMERA CARGA). TABLA 62. CONVERSIÓN FINAL DE LA CATORCEAVA REACCIÓN (PRIMERA CARGA). TABLA 64. CONVICIONES INICIALES DE LA CATORCEAVA REACCIÓN (PRIMERA CARGA). TABLA 65. CATORCEAVA REACCIÓN (PRIMERA CARGA). TABLA 65. CATORCEAVA REACCIÓN (SEGUNDA CARGA). TABLA 64. CONVERSIÓN FINAL DE LA CATORCEAVA REACCIÓN (SEGUNDA CARGA). TABLA 65. CATORCEAVA REACCIÓN (SEGUNDA CARGA). TABLA 64. CONVERSIÓN FINAL DE LA CATORCEAVA REACCIÓN (SEGUNDA CARGA). TABLA 64. CONVERSIÓN FINAL DE LA CATORCEAVA REACCIÓN (SEGUNDA CARGA). TABLA 65. CATORCEAVA REACCIÓN (SEGUNDA CARGA). TABLA 66. CONVERSIÓN FINAL DE LA CATORCEAVA REACCIÓN (SEGUNDA CARGA). TABLA 67. CONVERSIÓN FINAL DE LA CATORCEAVA REACCIÓN (SEGUNDA CARGA). TABLA 67. CONVERSIÓN FINAL DE LA CATORCEAVA REACCIÓN (SEGUNDA CARGA). TABLA 68. CONVERSIÓN FINAL DE LA CATORCEAVA REACCIÓN (SEGUNDA CARGA). TABLA 67. CONVERSIÓN FINAL DE LA CATORCEAVA REACCIÓN (SEGUNDA CARGA). TABLA 67. CONVERSIÓN FINAL DE LA CATORCEAVA REACCIÓN (SEGUNDA CARGA). TABLA 67. SUDIO CINÉTICO DE LA PRIMERA REACCIÓN (SEGUNDA CARGA). TABLA 70. ESTUDIO CINÉTICO DE LA PRIMERA REACCIÓN. TABLA 71. ESTUDIO CINÉTICO DE LA PRIMERA REACCIÓN. TABLA 73. RECOPILACIÓN DE LAS EROPEDADES. TABLA 74. ENERGÍA DE ACTIVACIÓN	48 48 50 50 50 51 51 51 53 53 53 53 53 53 53 54 54 54 54 54 54 56 56 56 57 58 59 60 61 61
TABLA 52. CONUCIONES INICIALES DE LA DUCEAVA REACCIÓN (SEGUNDA CARGA). TABLA 54. CONVERSIÓN FINAL DE LA DUCEAVA REACCIÓN (SEGUNDA CARGA). TABLA 55. CONVERSIÓN FINAL DE LA TRECEAVA REACCIÓN (PRIMERA CARGA). TABLA 56. TRECEAVA REACCIÓN (PRIMERA CARGA). TABLA 57. CONVERSIÓN FINAL DE LA TRECEAVA REACCIÓN (PRIMERA CARGA). TABLA 58. CONDICIONES INICIALES DE LA TRECEAVA REACCIÓN (SEGUNDA CARGA). TABLA 59. TRECEAVA REACCIÓN (SEGUNDA CARGA). TABLA 59. TRECEAVA REACCIÓN (SEGUNDA CARGA). TABLA 59. TRECEAVA REACCIÓN (SEGUNDA CARGA). TABLA 50. CONVERSIÓN FINAL DE LA TRECEAVA REACCIÓN (SEGUNDA CARGA). TABLA 61. CONDICIONES INICIALES DE LA TRECEAVA REACCIÓN (SEGUNDA CARGA). TABLA 62. CONVERSIÓN FINAL DE LA TRECEAVA REACCIÓN (SEGUNDA CARGA). TABLA 64. CONDICIONES INICIALES DE LA CATORCEAVA REACCIÓN (PRIMERA CARGA). TABLA 64. CONVERSIÓN FINAL DE LA CATORCEAVA REACCIÓN (PRIMERA CARGA). TABLA 65. CONVERSIÓN FINAL DE LA CATORCEAVA REACCIÓN (PRIMERA CARGA). TABLA 65. CONVERSIÓN FINAL DE LA CATORCEAVA REACCIÓN (SEGUNDA CARGA). TABLA 65. CATORCEAVA REACCIÓN (SEGUNDA CARGA). TABLA 65. CATORCEAVA REACCIÓN (SEGUNDA CARGA). TABLA 66. CONVERSIÓN FINAL DE LA CATORCEAVA REACCIÓN (SEGUNDA CARGA). TABLA 66. CONVERSIÓN FINAL DE LA CATORCEAVA REACCIÓN (SEGUNDA CARGA). TABLA 67. CONVERSIÓN FINAL DE LA CATORCEAVA REACCIÓN (SEGUNDA CARGA). TABLA 67. CONVERSIÓN FINAL DE LA CATORCEAVA REACCIÓN (SEGUNDA CARGA). TABLA 68. CONVERSIÓN SENALES DE REACCIONES 7. 8. 9 Y 10. TABLA 68. CONVERSIÓN SE FINALES DE REACCIONES 7. 8. 9 Y 10. TABLA 64. CONVERSIONES FINALES DE REACCIONES 7. 8. 9 Y 10. TABLA 64. CONVERSIONES FINALES DE REACCIONES 7. 8. 9 Y 10. TABLA 64. CONVERSIONES FINALES DE REACCIÓN (SEGUNDA CARGA). TABLA 70. ESTUDIO CINÉTICO DE LA PRIMERA REACCIÓN. TABLA 71. ESTUDIO CINÉTICO DE LA PRIMERA REACCIÓN. TABLA 72. ESTUDIO CINÉTICO DE LA PRIMERA REACCIÓN. TABLA 73. RECOPILACIÓN DE LAS PROPIEDADES. TABLA 74. ENERGÍA DE ACTIVACIÓN . TABLA 74. ENERGÍA DE ACTIVACIÓN . TABLA 75. CONSTANTE DE ARTHENUS.	48 48 50 50 50 51 51 51 53 53 53 53 53 53 54 54 54 54 54 56 56 57 58 59 60 61 61 61

ÍNDICE DE ILUSTRACIONES.

LUSTRACIÓN 1. REACCIÓN PARA LA OBTENCIÓN DEL DOTP	4
ILUSTRACIÓN 2. ESTRUCTURA QUÍMICA DEL DOTP	5
ILUSTRACIÓN 3 DIAGRAMA DE MODULO ELÁSTICO PARA PCV Y PVC PLASTIFICADO CON DOTP	5
ILUSTRACIÓN 4. REACCIÓN DE HIDROGENACIÓN DE DOTP	7
ILUSTRACIÓN 5. DIAGRAMA DE ENERGÍA LIBRE	7
ILUSTRACIÓN 6. DIAGRAMA DE CROMATOGRAFO DE GASES	9
ILUSTRACIÓN 7. TIPOS DE VIBRACIONES GENERADAS POR LA ABSORCIÓN DEL HAZ IR.	. 11
ILUSTRACIÓN 8. CROMATOGRAMA DEL DOTP PURO	. 19
ILUSTRACIÓN 9. COMPARACIÓN DE CROMATOGRAMAS DE DOTP, DOTP HIDROGENADO Y DOTP REACCIONADO.	. 20
ILUSTRACIÓN 11. ESPECTRO DE MASAS DEL DOTP Y DEL PRODUCTO HIDROGENADO.	. 21
ILUSTRACIÓN 10. DESGLOSE DE ESTRUCTURAS.	. 21
ILUSTRACIÓN 12. ESPECTRO INFRARRO JO DEL DOTP.	. 22
ILUSTRACIÓN 13. DOBLES ENLACES	. 22
ILUSTRACIÓN 14. ESPECTRO INFRARRO JO DE DOTP DESPUÉS DE LA REACCIÓN DE HIDROGENACIÓN.	. 23
ILUSTRACIÓN 15. CROMATOGRAMA DE LA CUARTA REACCIÓN.	. 25
ILUSTRACIÓN 16. ESPECTRO DE MASAS DE LA CUARTA REACCIÓN (TRANS-1,4-CICLOHEXANDICARBOXILATO DE OCTILO).	. 26
ILUSTRACIÓN 17. CROMATOGRAMA DE LA QUINTA REACCIÓN.	. 28
ILUSTRACIÓN 18. CROMATOGRAMA DE LA SEXTA REACCIÓN.	. 30
ILUSTRACIÓN 19. CROMATOGRAMA DEL PRODUCTO FINAL DE LA SÉPTIMA REACCIÓN. (PALADIO)	. 34
ILUSTRACIÓN 20. CROMATOGRAMA DEL PRODUCTO FINAL DE LA OCTAVA REACCIÓN (PLATINO).	. 37
ILUSTRACIÓN 21. CROMATOGRAMA DEL PRODUCTO FINAL DE LA NOVENA REACCIÓN (RODIO).	. 40
ILUSTRACIÓN 22. CROMATOGRAMA DEL PRODUCTO FINAL DE LA DECIMA REACCIÓN (RUTENIO).	. 43
ILUSTRACIÓN 23. CROMATOGRAMA DEL PRODUCTO FINAL DE LA ONCEAVA REACCIÓN (PALADIO)	. 46
ILUSTRACIÓN 24. CROMATOGRAMA DEL PRODUCTO FINAL DE LA DOCEAVA REACCIÓN (PLATINO).	. 49
ILUSTRACIÓN 25. CROMATOGRAMA DEL PRODUCTO DE LA TRECEAVA REACCIÓN (RODIO).	. 52
ILUSTRACIÓN 26. CROMATOGRAMA DEL PRODUCTO FINAL DE LA CATORCEAVA REACCIÓN (RUTENIO)	. 55
IUSTRACIÓN 27. PELÍCULAS DE PVC PLASTIFICADO	. 55
IL USTRACIÓN 28. PASTILLAS DE PVC PLASTEICADO	.55
IL ISTRACIÓN 29. TRANS-1 4-CICI OFEXANDICARROXI ATO DE OCTILO	63
ILISTRACIÓN 30 CIS-1 4-CICI ONEXANDICAPROXILATO DE OCTILO	63
IL USTRACIÓN 31 ESPECTRO DE MASAS DE LA QUINTA REACCIÓN (TRANS-1 4-CICL OFEXANDICABROXILATO DE OCTILO)	. 00 V
LISTRACIÓN 32 ESPECTRO DE MASAS DE LA SEXTA DEACCIÓN (TRANS-1, 4 ORICOLEVANDICADROXILATO DE OCTUO)	v
IL USTRACIÓN 32. ESPECTRO DE MASAS DE LE GENTA ILECCIÓN (MARIO EL TOLEDE LA MIDICARIOSALATO DE OCINICO NON DAL ADIO	v
IL USTRACIÓN 34 ESPECTRO DE MASAS DEL MARIO A E CECENERANDICARBOXE ATO DE OCTE O DE LA REACCIÓN CON PALADIO	VI
LISTRACIÓN 35. ESPECTRO DE MASAS DEL TRANS-1 4-CICI OHEXANDICARROXI ATO DE OCTILO DE LA REACCIÓN CON PLATINO	VII
LI USTRACIÓN 36. ESPECTRO DE MASAS DEL MARIO A FOCEDENCIARIO DE CONECO DE CANENCION CON PLATINO.	VII
LISTRACIÓN 37 ESPECTRO DE MASAS DEL TERFETALATO DE DIOCTILO DE LA REACCIÓN CON PLATINO	VIII
ILISTRACIÓN 38. ESPECTRO DE MASAS DEL TELIS TREAS DE DISCINES DE LA IRACIONI CONTRATINO.	VIII
	IX
	X
	х
	۸ ۲
	^ VI
	וא יע
ILUSTRACION 44. ESPECTRO DE MASAS DEL TRANSTI, 4-CICLOHEXANDICARBOXILATO DE OCTILO DE LA REACCION CON PLATINO.	

ILUSTRACIÓN 45. ESPECTRO DE MASAS DEL CIS-1,4-CICLOHEXANDICARBOXILATO DE OCTILO DE LA REACCIÓN CON PLATINO.	XII
ILUSTRACIÓN 46. ESPECTRO DE MASAS DEL TEREFTALATO DE DIOCTILO DE LA REACCIÓN CON PLATINO	XII
ILUSTRACIÓN 47. ESPECTRO DE MASAS DEL TRANS-1.4-CICLOHEXANDICARBOXILATO DE OCTILO DE LA REACCIÓN CON RODIO	XIII
ILUSTRACIÓN 48. ESPECTRO DE MASAS DEL CIS-1,4-CICLOHEXANDICARBOXILATO DE OCTILO DE LA REACCIÓN CON RODIO	XIII
ILUSTRACIÓN 49. ESPECTRO DE MASAS DEL TRANS-1.4-CICLOHEXANDICARBOXILATO DE OCTILO DE LA REACCIÓN CON RUTENIO	XIV
ILUSTRACIÓN 50. ESPECTRO DE MASAS DEL CIS-1,4-CICLOHEXANDICARBOXILATO DE OCTILO DE LA REACCIÓN CON RUTENIO	XIV
ILUSTRACIÓN 51 VISCOSÍMETRO BROOKFIELD	XV
ILUSTRACIÓN 52. KARL FISCHER, 870 TRITINO PLUS	XV
ILUSTRACIÓN 53. MEDIDOR DE PUNTO DE FLAMA DE COPA ABIERTA	XV

ÍNDICE DE GRÁFICAS.

GRÁFICA 1. COMPORTAMIENTO TEÓRICO Y REAL DE LA PRIMERA Y SEGUNDA REACCIÓN	15
GRÁFICA 2. VARIACIÓN DE LA PRESIÓN EN LA PRIMERA REACCIÓN.	16
GRÁFICA 3. VARIACIÓN DE LA PRESIÓN EN LA SEGUNDA REACCIÓN.	17
GRÁFICA 4. VARIACIÓN DE LA PRESIÓN EN LA TERCERA REACCIÓN.	18
GRÁFICA 5. VARIACIÓN DE LA PRESIÓN EN LA CUARTA REACCIÓN.	24
GRÁFICA 6. VARIACIÓN DE LA PRESIÓN EN LA QUINTA REACCIÓN	27
GRÁFICA 7. VARIACIÓN DE LA PRESIÓN EN LA SEXTA REACCIÓN.	29
GRÁFICA 8. VARIACIÓN DE LA PRESIÓN EN LA SÉPTIMA REACCIÓN (PRIMERA CARGA)	32
GRÁFICA 9. VARIACIÓN DE LA PRESIÓN EN LA SÉPTIMA REACCIÓN (SEGUNDA CARGA)	33
GRÁFICA 10. VARIACIÓN DE LA PRESIÓN EN LA OCTAVA REACCIÓN (PRIMERA CARGA).	35
GRÁFICA 11. VARIACIÓN DE LA PRESIÓN EN LA OCTAVA REACCIÓN (SEGUNDA CARGA).	36
GRÁFICA 12. VARIACIÓN DE LA PRESIÓN EN LA NOVENA REACCIÓN (PRIMERA CARGA)	38
GRÁFICA 13. VARIACIÓN DE LA PRESIÓN EN LA NOVENA REACCIÓN (SEGUNDA CARGA)	39
GRÁFICA 14. VARIACIÓN DE LA PRESIÓN EN LA DECIMA REACCIÓN (PRIMERA CARGA)	41
GRÁFICA 15. VARIACIÓN DE LA PRESIÓN EN LA DECIMA REACCIÓN (SEGUNDA CARGA)	42
GRÁFICA 16. VARIACIÓN DE LA PRESIÓN EN LA ONCEAVA REACCIÓN (PRIMERA CARGA).	44
GRÁFICA 17. VARIACIÓN DE LA PRESIÓN EN LA ONCEAVA REACCIÓN (SEGUNDA CARGA)	45
GRÁFICA 18. VARIACIÓN DE LA PRESIÓN EN LA DOCEAVA REACCIÓN (PRIMERA CARGA).	47
GRÁFICA 19. VARIACIÓN DE LA PRESIÓN EN LA DOCEAVA REACCIÓN (SEGUNDA CARGA)	48
GRÁFICA 20. VARIACIÓN DE LA PRESIÓN EN LA TRECEAVA REACCIÓN (PRIMERA CARGA).	50
GRÁFICA 21. VARIACIÓN DE LA PRESIÓN EN LA TRECEAVA REACCIÓN (SEGUNDA CARGA)	51
GRÁFICA 22. VARIACIÓN DE LA PRESIÓN EN LA CATORCEAVA REACCIÓN (PRIMERA CARGA)	53
GRÁFICA 23. VARIACIÓN DE LA PRESIÓN EN LA CATORCEAVA REACCIÓN (SEGUNDA CARGA).	54
GRÁFICA 24. COMPARACIÓN DE TODAS LAS REACCIONES	56
GRÁFICA 25. OBTENCIÓN DE CONSTANTE DE REACCIÓN	57
GRÁFICA 26. CINÉTICA DE LA PRIMERA REACCIÓN.	58
GRÁFICA 27. CINÉTICA SEGUNDA REACCIÓN	59
GRÁFICA 28. CINÉTICA TERCERA REACCIÓN.	60
GRÁFICA 29. OBTENCIÓN DE LA ENERGÍA DE ACTIVACIÓN	61
GRÁFICA 30. REPRESENTACIÓN DE LA ECUACIÓN DE ARRHENIUS	61
GRÁFICA 31. SELECTIVIDAD DE LOS CATALIZADORES.	62

ÍNDICE DE ABREVIATURAS.

Símbolo	Nombre	Unidades
K	Grados Kelvin	
n	Moles	
mol	Moles	
atm	Atmosferas	
g	Gramos	
mL	Mililitros	
m ³	Metros cúbicos	
Р	Presión	
bar	Bares	
p°	Presión de vapor	
min	Minutos	
θ	Tiempo	
t	Tiempo	
seg	Segundos	
Тс	Temperatura critica	K
Pc	Presión critica	atm
Vm	Volumen molar	m ³ /mol
J	Joule	Kg m²/s²
cal	Caloría	
ΔH	Entropía	Kcal/mol
Ea	Energía de activación	J/mol
A	Constante de Arrhenius	
cP	Centipoises	
рН	Potencial de hidrógeno	
Ω	Ohm	J/(seg A ²)

Estudio de la reacción de hidrogenación de tereftalato de dioctilo (DOTP) empleando diferentes catalizadores

Primer capítulo

Introducción

I reciente aumento en el interés por los ftalatos es resultado de varias acusaciones por parte de diferentes organizaciones ambientalistas en temas de salud, tales como la European Union Scientific Committe y la subsecuente difusión por los medios. Una de las consecuencias de esto, ha hecho que algunos gobiernos, como los que conforman la Unión Europea, han tomado acciones regulatorias debido al supuesto efecto nocivo que generan. Los ftalatos son sustancias químicas usadas principalmente como plastificantes, principalmente para otorgar flexibilidad al poli(cloruro de vinilo) también conocido como PVC.

Para la plastificación del PVC, en un principio se utilizaba como plastificante el DOP (ftalato de dioctilo), que fue sustituido por el DOTP (tereftalato de dioctilo), ya que tiene propiedades físicas y mecánicas similares a las de DOP, pero tiene una mejor resistencia al calor, baja volatilidad y baja temperatura de transición vítrea al usarse para plastificar resinas de PVC.

La restricción en el uso de estos plastificantes, ha generado como solución, ideas para modificar la estructura química de estos compuestos, de modo que, mantengan sus propiedades plastificantes y eviten cualquier efecto nocivo para los humanos y el medio ambiente. Una propuesta es modificar la parte aromática del DOTP mediante un proceso de hidrogenación selectiva del anillo aromático.

En éste trabajo se desarrollará el análisis y la experimentación de la propuesta de modificación del anillo aromático, así como el estudio bibliográfico necesario para realizar:

- La reacción de hidrogenación.
- La caracterización de los reactivos utilizados.
- El modelado para el análisis del comportamiento del sistema utilizado.
- El estudio de las propiedades finales de los productos de la hidrogenación.
- La aplicación en pruebas de plastificación con resina de PVC.

Y con todas estas bases se han establecido los siguientes objetivos.

Objetivo general

 Modificar el anillo aromático presente en el DOTP, el cual se cree, es el causante del problema de salud, por medio de la reacción de hidrogenación selectiva, con ayuda de diferentes catalizadores, para obtener las mejores condiciones de esta reacción y seleccionar el mejor catalizador.

Objetivos particulares

- Encontrar por medio de una revisión bibliográfica, los catalizadores existentes para la reacción de hidrogenación selectiva del anillo aromático de plastificantes y seleccionar los más adecuados para realizar el estudio.
- Llevar a cabo la hidrogenación con cada uno de los catalizadores encontrados y determinar cuál es el que realiza mejor la reacción, por medio de su conversión.
- Determinar las condiciones de presión, temperatura y número de cargas para llevar a cabo las reacciones de hidrogenación con conversión de 100% empleando todos los catalizadores.
- Caracterizar las propiedades fisicoquímicas y mecánicas de los plastificantes obtenidos en las reacciones de hidrogenación.
- Plastificar con ellos muestras de resina de PVC y compararlos con una plastificación de DOTP.

Hipótesis

Al realizar las reacciones de hidrogenación del DOTP con las condiciones óptimas y varios catalizadores, existirá uno que mejore las condiciones y la conversión de la reacción hasta un 100%.

Metodología

- 1. Revisión bibliográfica del tema.
- 2. Selección de los catalizadores y desarrollo de la metodología de hidrogenación de plastificantes aromáticos.
- 3. Caracterización del DOTP.
- 4. Aplicación de la metodología y desarrollo de la reacción de hidrogenación.
- 5. Caracterización de los productos de la hidrogenación.

Segundo capítulo

Antecedentes sobre el proyecto.

Éste proyecto cuenta con una tesis previa, en ésta, el objetivo fue encontrar las condiciones óptimas para la reacción de hidrogenación de tereftalato de dioctilo, con un catalizador efectivo para esta reacción. En éste trabajo se lograron obtener condiciones muy buenas para la reacción de hidrogenación, con una conversión cercana al 98 %.

Por lo tanto, el objetivo principal de éste trabajo de investigación es, encontrar algún otro catalizador o catalizadores que pueda mejorar las condiciones del trabajo previo mencionado, en el cual, se utilizo un catalizador de rutenio al 5% soportado en carbón activado. También se busca poder utilizar los plastificantes obtenidos con resinas de PVC y ver su efectividad real en plastificación.

Marco teórico.

El DOTP es adecuado especialmente para plastificar productos de PVC flexible que deban soportar temperaturas entre 70 y 90 °C, como cables altamente aislantes, pieles sintéticas, botellas de agua, cauchos sintéticos, aditivos para aceites lubricantes y como agente de ablandamiento en la fabricación de papel.

La de obtención del DOTP, se realiza con una reacción de esterificación entre el tereftalato de dimetilo y el 2-etil-1-hexanol como se ve en la ilustración 1.

ILUSTRACIÓN 1. REACCIÓN PARA LA OBTENCIÓN DEL DOTP

Las propiedades del DOTP y su estructura química se muestran en la tabla 1 e ilustración 2.

TABLA 1. PROPIEDADES DEL DOTP

D	OTP		
C ₂₄ H ₃₈ O ₄			
Masa molar	390.56	g/mol	
Viscosidad	95	сР	
Densidad	0.981	g/mL	
Color	30	APHA	
T flama	210	°C	

ILUSTRACIÓN 2. ESTRUCTURA QUÍMICA DEL DOTP

Una forma de estudiar que es lo que pasa en un proceso de plastificación, es entender como la temperatura de transición vítrea del polímero, que está estrechamente relacionada con la composición y estructura química de las macromoléculas puede ser alterada sensiblemente con la presencia de moléculas pequeñas y móviles que se interponen entre las del polímero como en una disolución, estas son el plastificantes.

Un PVC plastificado con el 30% de DOTP amplía la meseta elastomérica con respecto al mismo PVC sin plastificante y en consecuencia baja también la temperatura de transición vítrea ilustración 3.

ILUSTRACIÓN 3 DIAGRAMA DE MODULO ELÁSTICO PARA PCV Y PVC PLASTIFICADO CON DOTP

En fechas recientes se estudia también la posibilidad de obtener el DOTP a partir de chatarra de tereftalato de poliésteres tales como tereftalato de polietileno (PET) mediante un método conocido como transesterificación degradativa. El objetivo principal de esos estudios es demostrar que el plastificante obtenido por éste proceso es tan bueno como el DOTP comercial, y que potencialmente puede reemplazar al DOP. Por todo esto el uso de esta tecnología para la obtención de DOTP a partir de desechos de PET puede proporcionar una solución a una parte de nuestro problema de los desechos sólidos.

Reacción de hidrogenación selectiva del anillo aromático

Son raras las excepciones en las que se puede realizar la reacción de hidrogenación con compuestos orgánicos por debajo de los 480 °C, en ausencia de catalizadores metálicos. Entonces, para poder realizar esta reacción, el sistema necesita muy altas presiones y temperaturas elevadas, por ello, es necesario el uso de catalizadores, como se puede ver en la ilustración 4.

ILUSTRACIÓN 4. REACCIÓN DE HIDROGENACIÓN DE DOTP

Catalizadores

La razón de utilizar catalizadores, es porque, el catalizador se une tanto al hidrógeno (H₂), como al sustrato saturado del compuesto orgánico y así facilita su unión, esto hace que la reacción se pueda llevar a cabo a temperaturas y presiones más bajas y, por tanto la energía necesaria para la reacción sea menor, ilustración 5.

Cuando se utilizan catalizadores con base de metales económicos especialmente los basados en níquel (níquel-Raney y níquel-Urushibara), a menudo hacen la reacción un poco más lenta que algunos otros catalizadores o requieren temperaturas más altas. Por otra parte, también existen los catalizadores con base en metales más caros o preciosos tales como:

*Platino

*Paladio

*Rodio

*Rutenio

Al utilizar éste tipo de metales se incrementa el precio del catalizador, pero se hace mucho más eficiente la reacción, ya que, disminuye el tiempo de la reacción, y tanto la temperatura de reacción como la presión de hidrógeno necesaria son menores.

Entonces los catalizadores a utilizar en la experimentación serán de metales preciosos y los factores a considerar para la selección del mejor catalizador son la rapidez de reacción, la conversión final que alcanza el catalizador y la energía para la operación del sistema.

Caracterización de los reactivos y productos de la hidrogenación

Posterior a cada reacción de hidrogenación, se realiza una caracterización de los productos obtenidos de la hidrogenación de DOTP, pero, para lograrlo primero se logró caracterizar el DOPT puro con dos técnicas, las cuales también fueron las utilizadas para caracterizar los productos de la reacción:

- Cromatografía de gases y espectroscopia de masas(CG-EM)
- Espectroscopia infrarroja.

Cromatografía de gases y espectroscopia de masas (CG-EM)

Esta caracterización se basa en dos técnicas analíticas acopladas, en la cual una mezcla de compuestos es inyectada en el cromatógrafo, se separa en la columna cromatográfica obteniendo la separación sucesiva de los componentes de la mezcla que pasan inmediatamente al espectrómetro de masas. Cada uno de estos componentes se registra en forma de pico cromatográfico y se identifica mediante su respectivo espectro de masas.

Cromatografía de gases

En un análisis por cromatografía de gases (ilustración 6), la muestra se inyecta en una fase móvil, la cual es un gas inerte (generalmente He o N_2). En esta fase, los distintos componentes de la muestra pasan a través de la fase estacionaria que se encuentra fijada en una columna (las más empleadas son las columnas capilares, ya que son más pequeñas y trabajan con flujos de gases menores), esta columna se encuentra dentro de un horno con programación de temperatura.

ILUSTRACIÓN 6. DIAGRAMA DE CROMATOGRAFO DE GASES

Cada soluto presente en la muestra tiene diferente afinidad hacia la fase estacionaria, los componentes fuertemente retenidos por esta fase se moverán lentamente en la fase móvil, mientras que los débilmente retenidos lo harán rápidamente, esto permite su separación. Un factor clave en éste equilibrio es la presión de vapor de los compuestos, en general, a mayor presión de vapor, menor tiempo de retención en la columna.

Existen tres técnicas básicas de inyección de muestras (líquidas o gaseosas) en columnas capilares: split, split-less y on column. Las dos primeras consisten en inyectar y vaporizar la muestra en una cámara de vaporización. El sistema split desvía la mayor parte de la muestra fuera del sistema cromatográfico y envía sólo una pequeña fracción a la columna. El método split-less dirige toda la muestra a la columna, por lo que resulta más adecuado para el análisis de trazas o de componentes muy volátiles. La inyección on column se lleva a cabo en frío, eliminando la etapa de vaporización que podría producir la descomposición de los compuestos termolábiles.

Espectroscopia de masas

La espectrometría de masas (MS) es una de las técnicas analíticas más completas que existen. Recientemente, esta técnica se utiliza no sólo en investigación, sino también en los análisis de rutina de los procesos industriales, en control de calidad, etc, esto se debe a que sus principales cualidades son:

- Capacidad de identificación (ya que proporciona un espectro característico de cada molécula).
- Es una técnica rápida ya que se puede realizar un espectro en décimas de segundo, por lo que puede monitorizarse para obtener información en tiempo real sobre la composición de una mezcla de gases.

La forma en que se obtienen las señales, es por medio de la ionización de la muestra con un sistema de impacto electrónico que bombardea las moléculas con electrones de una cierta energía, capaces de provocar la emisión estimulada de un electrón de las moléculas y así ionizarlas, junto con estas moléculas ionizadas o iones moleculares (M+) también se forman fragmentos de iones debido a la descomposición de los iones moleculares con exceso de energía.

Una vez ionizadas las moléculas, se aceleran y se conducen hacia el sistema colector mediante campos eléctricos o magnéticos. La velocidad alcanzada por cada ión será dependiente de su masa.

La detección consecutiva de los iones formados a partir de las moléculas de la muestra, suponiendo que se trate de una sustancia pura, produce el espectro de masas de la sustancia, que es diferente para cada compuesto químico y que constituye una identificación prácticamente inequívoca del compuesto analizado.

El espectro de masas puede almacenarse en la memoria del ordenador para compararse con los espectros de una colección de espectros y proceder a su identificación o puede estudiarse para averiguar la naturaleza de la molécula que le dio origen.

Espectroscopia infrarroja

Esta espectroscopia se fundamenta en la absorción que las moléculas en vibración tienen de la radiación infrarroja IR, ya que éstas absorberán la energía de un haz de luz infrarroja cuando dicha energía sea igual a la necesaria para que se dé una transición vibracional de la molécula (ilustración 7).

De esta forma, analizando cuales son las longitudes de onda que absorbe una sustancia en la zona del infrarrojo, podemos obtener información acerca de las moléculas que componen dicha sustancia. Algunas de las características de esta espectroscopia son:

1. Si dos moléculas están constituidas por átomos distintos, o tienen distinta distribución isotópica, o configuración, los espectros infrarrojos serán distintos.

2. Los espectros pueden ser considerados como las huellas digitales de dicha sustancia.

3. Los espectros muestran bandas que son típicas de grupos funcionales particulares y que tienen localizaciones e intensidades específicas dentro de los espectros infrarrojos.

ILUSTRACIÓN 7. TIPOS DE VIBRACIONES GENERADAS POR LA ABSORCIÓN DEL HAZ IR.

4. A partir de los espectros se pueden inferir las estructuras moleculares.

5. El tiempo necesario para obtener y almacenar un espectro infrarrojo es del orden de minutos.

Tercer capítulo

Desarrollo de la metodología de hidrogenación de plastificantes aromáticos

Ya que el hidrógeno es sumamente inflamable, se necesitan tomar varias medidas para que la reacción se realice con un alto nivel de seguridad. Esto se debe a que la simple mezcla entre aire e hidrógeno es muy explosiva, por ello la reacción no se puede realizar en presencia de aire, éste se elimina de la reacción burbujeando nitrógeno en el DOTP, previamente puesto en el reactor, esto desplaza todo el aire que se pueda encontrar solubilizado en el plastificante y crea dentro del reactor una atmosfera inerte.

Después de desplazar todo el aire con ayuda del nitrógeno, se conecta el reactor al sistema de tuberías para cargar el reactor con hidrógeno, se quita el nitrógeno que se encuentra dentro el reactor y al mismo tiempo se crea esta atmósfera inerte también en las tuberías del sistema, después se procede a suministrar el hidrógeno al reactor, esto se hace teniendo cuidado y viendo que no existan fugas en el sistema de tuberías ni en las llaves del reactor.

Equipo y reactivos utilizados

Como ya se sabe, la hidrogenación de compuestos orgánicos necesita condiciones de altas presiones y temperaturas, además de que el hidrógeno es una sustancia sumamente explosiva, por eso, para realizar la hidrogenación se necesita equipo especial, medidas de seguridad adecuadas y una metodología estricta para poder trabajar con él.

Equipo:

Reactor de acero inoxidable con sistema de agitación - Parr Instrument Company

1370HC2 T316 090299 10514

Especificaciones:

Presión de diseño 139.90 atm a 350 °C

Capacidad 2 litros

Reactivos:

Los reactivos utilizados en esta reacción sólo son dos, el DOTP e hidrogeno (propiedades tabla 2).

TABLA 2. PROPIEDADES DEL HIDRÓGENO

Propiedades del H ₂			
T flama	255 K		
p°	209 Pa a 23 K		
Тс	23.97 К		
Рс	12.8 atm		
Vm	22.42×10 ⁻³ m ³ /mol		

Con base en lo investigado anteriormente se seleccionaron catalizadores de metales preciosos, para la primera parte de la experimentación y aprendizaje en el manejo del equipo, se utilizó el catalizador de rutenio soportado en carbón activado al 5% previamente estudiado. Posteriormente se utilizaron catalizadores de platino, paladio y rodio con características similares a las del catalizador de rodio para así poder comparar las eficiencias tanto en conversión como en condiciones entre estos catalizadores.

Descripción del sistema y entendimiento de la reacción de hidrogenación

En esta primera parte de la experimentación se muestran 6 reacciones de hidrogenación de DOTP, las primeras dos con cantidades mínimas de hidrógeno, un gramo de catalizador de rutenio soportado en carbón activado al 5% (Ru/C 5%) y 300 mL de DOTP, esto fue para entender el funcionamiento del reactor y aplicar la metodología de hidrogenación de plastificantes. Las restantes cuatro reacciones se realizaron con cada uno de los catalizadores seleccionados para realizar la reacción de hidrogenación, cargando el reactor con aproximadamente 1.7 gramos de catalizador, hidrogeno a 73 atmosferas de presión y 300 mL de DOTP.

Procedimiento experimental de la reacción de hidrogenación

Para realizar la reacción de hidrogenación para cada catalizador seleccionado se utilizó el siguiente procedimiento:

- Caracterizar el DOTP por medio de cromatografía de gases e IR
- Preparar el reactor y el sistema para su correcto funcionamiento
- Realizar la reacción de hidrogenación con las condiciones establecidas anteriormente
- Elaborar una memoria de cálculo de las condiciones de reacción
- Obtener datos de conversión de la reacción y comportamiento del sistema.
- Descargar reactor y purificar el producto por filtrado al vacío
- Caracterizar los productos de la reacción
- Realizar el análisis de los datos obtenidos
- Comparar los resultados entre los catalizadores utilizados

Primera y segunda reacción de hidrogenación.

Estas reacciones se realizaron para entender el comportamiento del sistema y el correcto funcionamiento del reactor, posteriormente se comparó el comportamiento de estas dos reacciones realizadas, con el comportamiento teórico que describe la ecuación de Peng Robinson (anexo 2) para el sistema, y se encontró que esta ecuación de estado describía muy bien el comportamiento real del sistema, por lo cual se utilizó para describir el comportamiento de todas las reacciones realizadas.

El comportamiento de estas reacciones se muestra en la tabla 3 y tabla 4, en la gráfica 1, se realiza la comparación del comportamiento real que se tuvo en las primeras dos reacciones con el comportamiento teórico que describe la ecuación de Peng Robinson (P-R).

TABLA 3. PRIMERA REACCIÓN.	•

Reacción 1				
t(min)	t(min) P(atm)			
0	3.40	19		
20	4.97	115		
40	6.26	215		
60	6.12	217		
80	6.12	208		
100	6.26	219		
120	6.12	210		

TABLA 4. SEGUNDA REACCIÓN.			
Re	acción 2		
t(min)	P(atm)	T(°C)	
0	4.5	17	
20	6.6	113	
40	8.2	214	
60	8.1	205	
80	8.2	204	
100	8.1	203	
120	8.1	203	

Utilizando el modelado de P-R se obtuvo la cantidad de moles de H₂ presentes al principio y al final de la reacción de hidrogenación, los cuales se reflejan en la diferencia de presiones del estado inicial y final, y con esta diferencia se logró calcular la conversión final de la reacción.

A continuación, en la tabla 5 se muestran los resultados de la conversión de la reacción 1 y el comportamiento que se tuvo a lo largo de la reacción se muestra en la gráfica 2.

	Reacción 1		
	P (atm)	T(°C)	n (H₂)
inicial	3.402	19	0.2412
final	3.334	17	0.2380
0.0032		moles de H ₂ consumidas	
	0 14%	de conversión	

TABLA 5. CONVERSIÓN DE LA PRIMERA REACCIÓN.

GRÁFICA 2. VARIACIÓN DE LA PRESIÓN EN LA PRIMERA REACCIÓN.

Como se puede ver en la gráfica 2, entre el punto inicial de 3.40 atm y el final de 3.33 atm, obtenido al dejar enfriando el reactor hasta alcanzar la temperatura ambiente, existe muy poca diferencia entre sí, lo cual indica que la reacción no obtuvo un grado considerable de conversión, igual que los datos de conversión obtenidos por la diferencia teórica de moles de H₂ presentes en el reactor.

Los resultados de la conversión de la reacción 2 se pueden ver en la tabla 6, esta conversión al igual que en la tabla anterior fue calculada por la diferencia de presiones existente en el sistema, con esta diferencia de presiones se calculó la cantidad inicial de 0.3156 moles y la final de 0.2914 moles de H₂, y finalmente con estos datos el porcentaje de conversión final de la reacción de hidrogenación; el comportamiento de esta reacción se muestra en la gráfica 3 y también se puede observar que no existe una gran diferencia entre el estado inicial a 4.42 atm y el final de 4.08 atm.

TABLA 6. CONVERSIÓN DE LA SEGUNDA REACCIÓN.

		Reacción 2	
	P (atm)	T(°C)	n(H₂)
inicial	4.422	17	0.3156
final	4.082	17	0.2914
	0.024	moles de H ₂ consumidas	
	1.07%	de conversión	

Reacción 2

GRÁFICA 3. VARIACIÓN DE LA PRESIÓN EN LA SEGUNDA REACCIÓN.

La razón de que las reacciones no se den en estas condiciones es porque la estequiometria de la reacción es 1:3 lo cual indica que por cada mol de DOTP se deben cargar tres de H₂, en estos casos se agregaron en promedio 0.25 moles de H₂ en cada reacción, cuando, la cantidad mínima debería haber sido de 2.27 moles de H₂ para la cantidad de DOTP que se cargó.

Tercera reacción (rutenio).

En las siguientes cuatro reacciones, de la tercera a la sexta reacción, la carga de hidrógeno en el reactor fue mayor que en la última reacción, a modo de que la cantidad necesaria de moles para una reacción tuviera un ligero exceso. Esta tercera reacción con catalizador de rutenio se llevó a cabo a las condiciones descritas en la tabla 7 y su comportamiento se puede ver en la gráfica 4 y tabla 8.

			/
CONDICIONICO		TEDOEDA	DEACCION
CONDICIONES	INICIALES DE LA	IFRUFRA	REALLION
 CONDICIONED			

Condiciones de carga del reactor (rutenio)				
DOTP (g)	n DOTP	n H₂	n H₂	Pu/C 5%(a)
cargado	cargadas	necesarias	cargadas	
295.2	0.76	2.27	2.613	1.772

TABLA 8. COMPORTAMIENTO DE LA TERCERA REACCIÓN.

Como se logra apreciar, en esta reacción, el reactor se cargó con un ligero exceso de H₂, para que la estequiometria de la reacción fuera completa. los resultados de esta reacción se pueden ver en la tabla 9.

TABLA 9. CONVERSIÓN FINAL DE LA TERCERA REACCIÓN.

	Reacción 3		
	P (atm)	n(H₂)	
inicial	36.516	21	2.5454
final	21.712	21	1.5207
	1.025	moles consumidas	
	45.19%	de conversión	

Resultados del análisis de caracterización.

El análisis cromatográfico se realizó inyectando 1 µL de DOTP en un cromatógrafo HP 6890 series GC system, en la modalidad de inyección split a un flujo de helio de 130 mL/min y una presión de 29.5 psi.

En la parte de la columna se programó un tren de temperaturas establecido de la siguiente manera:

- Temperatura de inicio 150 °C por 2 min.
- Rampa de temperatura de 30 °C/min hasta llegar a 280 °C.
- Temperatura final 280 °C por 5 min.

En el cromatograma obtenido, ilustración 8, se observa que, con éste tren de temperaturas y las condiciones establecidas, en el cromatografo, el DOTP tiene un tiempo de residencia de 6.50 min y que la muestra es pura.

DOTP		
		A
2.0 '	14.0	

ILUSTRACIÓN 8. CROMATOGRAMA DEL DOTP PURO.

En la ilustración 9, se muestran la comparación de los tiempos de retención en el cromatógrafo de gases, en color azul se ve el comportamiento del DOTP y su tiempo de retención de 6.50 min, en color rojo es la muestra hidrogenada de DOTP con la que se cuenta como estándar, y la verde es el producto de la reacción realizada en el laboratorio, como se ve la curva verde muestra dos especies, una que empieza exactamente en el tiempo de retención del DOPT hidrogenado y la siguiente que aparece cuando se cumple el tiempo de retención del DOTP, y por lo tanto, en el producto de la reacción existen ambas especies.

ILUSTRACIÓN 9. COMPARACIÓN DE CROMATOGRAMAS DE DOTP, DOTP HIDROGENADO Y DOTP REACCIONADO.

En éste de obtenido espectro masas conjuntamente al análisis cromatográfico Ilustración 11, se logran observar varias señales características del DOTP en color negro, en escala de masa sobre carga, como ya se vio antes, cada una de estas señales representa secciones diferentes de la molécula original, y con ayuda de la ilustración 10, se puede relacionar cada señal con la sección de la molécula que lanzaría esa señal.

En el análisis posterior a cada una de las reacciones de hidrogenación se podrá notar que las diferentes secciones de la molécula presentan cambios en la señal que lanzan, teniendo un aumento en la energía de seis unidades en comparación con el producto hidrogenado en color rojo, esto comprobará que

ILUSTRACIÓN 10. DESGLOSE DE ESTRUCTURAS.

los seis átomos de hidrógeno están presentes en la nueva molécula.

ILUSTRACIÓN 11. ESPECTRO DE MASAS DEL DOTP Y DEL PRODUCTO HIDROGENADO.

El análisis de espectrografía infrarroja fue realizado fabricando pastillas con aproximadamente 0.3 mL de la muestra de DOTP y 0.4 gramos de bromuro de potasio. El análisis se realizó con el equipo Varian 800 FT-IR Scimitar Series y se obtuvo el espectro de la ilustración 12.

ILUSTRACIÓN 12. ESPECTRO INFRARROJO DEL DOTP.

Con ayuda del Anexo 1 (Tabla de longitudes de onda para espectro de IR), se

ÉSTERES ILUSTRACIÓN 13. DOBLES ENLACES. logra apreciar que la muestra tiene presencia de alcanos (pico 1), dobles enlaces de carbonilo ilustración 13, los cuales se muestran en longitudes de onda entre los 1725 y 1750 (pico 2), los rangos de 1300 a 1000 también son característicos de los esteres pero en particular de las uniones C-O(pico 3), el último, pico 4, de longitud de onda de 700 que en general entra en los rangos por debajo de 1000, representa a los

aromáticos característico de nuestro compuesto.

El espectro de IR del producto de la reacción se muestra en la ilustración 14, y se puede ver que, comparándolo con el anterior del DOTP puro, ilustración 12 éste no cambia mucho en los picos del muestreo, esto es porque al tener ambas especies en la solución del producto las señales se mezclan y siguen apareciendo en el espectro infrarrojo, lo único que si se logra apreciar es un cambio en el ancho de las bandas con longitud de onda entre 1600 y 1400, éstas son las que representan los dobles enlaces aromáticos del compuesto.

Ya que éste tipo de caracterización en mezclas de especies tan similares genera una mezcla en las señales que arroja el espectro infrarrojo, no se utilizó en las siguientes caracterizaciones.

ILUSTRACIÓN 14. ESPECTRO INFRARRO JO DE DOTP DESPUÉS DE LA REACCIÓN DE HIDROGENACIÓN.

Cuarta reacción (paladio)

Esta reacción se llevó a cabo a las condiciones descritas en la tabla 10 y su comportamiento se puede ver en la gráfica 5 y tabla 11:

TABLA 10. CONDICIONES INICIALES DE LA CUARTA REACCIÓN.

Condiciones de carga del reactor (paladio)				
g DOTP	n DOTP	n H₂	n H₂	Pd/C 5%(g)
cargado	cargadas	necesarias	cargadas	1 U/C 3/0(g)
288	0.74	2.21	2.795	1.773

TABLA 11. COMPORTAMIENTO DE LA CUARTA REACCIÓN.

P(atm)

36.5

45.9

49.3

48.4

47.4

46.4

45.4

45.4

44.4

43.4

43.4

25.7

t(min)

0

20

40

60

80

100

120

140

160

180

200

 ∞

Esta reacción se intentó hacer con las condiciones más similares a la reacción anterior, para así poder tener una buena comparación con todas las demás reacciones. El catalizador utilizado es paladio soportado en carbón activado al 5%, y como se puede ver en éste caso la diferencia de presiones es de aproximadamente 11 atmosferas entre el estado inicial y el final, de 36.5 atm y 25.66 atm respectivamente, que comparada con la diferencia de la reacción anterior es menor ya que la anterior tuvo una diferencia de 15 atm.

Con las condiciones establecidas anteriormente se obtuvieron los resultados de la tabla 12, en la cual podemos ver que existe una disminución en el porcentaje de la conversión final con respecto a la reacción anterior.

		Reacción con Pd		
		n(H₂)		
I	inicial	36.516	22	2.5368
	final	25.660	27	1.7590
		0.778	moles consumidas	
		35.16%	de conversión	

TABLA 12. CONVERSIÓN FINAL DE LA CUARTA REACCIÓN.

En la cromatografía de gases de la ilustración 15 se observa que, como en el caso anterior, al caracterizar los productos de la reacción se tiene principalmente 2 picos, el primero que aparece en un tiempo de retención de 6.10 min y el segundo en un tiempo de 6.50 min, debido a esto sabemos que el primer pico de éste cromatograma es el respectivo al DOTP hidrogenado, y el segundo al DOTP puro, también se puede apreciar que en proporción, de ares del cromatograma el DOTP hidrogenado no es mucho, lo cual indica una conversión baja al igual que la conversión obtenida por medio de las diferencias de presiones.

ILUSTRACIÓN 15. CROMATOGRAMA DE LA CUARTA REACCIÓN.

En la ilustración 16, se observa el espectro de masas del trans-1,4ciclohexandicarboxilato de octilo del cromatograma del producto final de la reacción con catalizador de paladio, que a comparación del espectro de DOTP puro, varias señales nos muestran un cambio de seis unidades, esta diferencia de 6 unidades entre todas las señales, se debe a los 6 átomos de hidrógeno que se le están agregando a la molécula de DOTP, esto comprueba que la señal que aparece en el cromatograma efectivamente es el trans-1,4-ciclohexandicarboxilato de octilo.

26

En los análisis posteriores a cada reacción de los diferentes catalizadores, se realizó el estudio cromatográfico de cada producto de la hidrogenación, y también el estudio del espectro de masas para tener mayores evidencias de que las señales de los cromatogramas efectivamente eran los productos hidrogenados del tereftalato de dioctilo, todos estos espectros de masas se encuentran juntos en el **Anexo 5. Espectros de masas de los productos de la hidrogenacion de todos los catalizadores.**

Quinta reacción (platino)

Esta reacción se llevó a cabo a las condiciones descritas en la tabla 13 y su comportamiento se puede ver en la gráfica 6 y tabla 14:

g DOTP	n DOTP	n H₂	n H₂	
cargado	cargadas	necesarias	cargadas	ru/C J/0(g)
290	0.74	2.23	2.727	1.773

TABLA 13. CONDICIONES INICIALES DE LA QUINTA REACCIÓN.

TABLA 14. COMPORTAMIENTO DE LA QUINTA REACCIÓN.

Esta reacción se realizó a 37 atm y 203 °C, el catalizador utilizado es platino soportado en carbón activado al 5% y como se puede ver, si existe una reducción en de la presión al final de la reacción, pero en esta reacción la diferencia de presiones es un poco menor que en los casos anteriores, siendo sólo de 5.42 atm.

Con las condiciones establecidas anteriormente se obtuvieron los resultados de la tabla 15.

	Reacción con Pt		
	P (atm)	T(°C)	n(H₂)
inicial	37.010	27	2.5278
final	31.582	23	2.1901
	0.338	moles consumidas	
	15.16%	de conversión	

TABLA 15. CONVERSIÓN FINAL DE LA QUINTA REACCIÓN.

En el cromatograma de la ilustración 17, al igual que en el cromatograma anterior se logran apreciar los tiempos de residencia del DOTP y de los productos dé la hidrogenación, pero en éste caso tampoco es mucha la proporción del producto de la hidrogenación y esto se refleja en la conversión que sólo fue del 15%, en el caso del estudio del espectro de masas de los productos, se dio el cambio en las 6 unidades entre las señales del DOTP y de nuestros productos.

ILUSTRACIÓN 17. CROMATOGRAMA DE LA QUINTA REACCIÓN.

Esta reacción se llevó a cabo a las condiciones descritas en la tabla 16 y su comportamiento se puede ver en la gráfica 7 y tabla 17:

TABLA 16. CONDICIONES INICIALES DE LA SEXTA REACCIÓN.

	Cond	iciones de carga de	el reactor rodio	
g DOTP cargado	n DOTP cargadas	n H₂ necesarias	n H₂ cargadas	Pd/C 5%(g)
295	0.76	2.27	2.613	1.772

TABLA 17. COMPORTAMIENTO DE LA SEXTA REACCIÓN.

Reac	Reacción con Rh				
t(min)	P(atm)	T(°C)			
0	37.5	24			
20	47.4	112			
40	46.4	210			
60	39.5	207			
80	34.0	204			
100	29.6	203			
120	26.6	202			
140	25.7	200			
160	24.7	201			
180	24.7	200			
200	23.7	200			
∞	17.8	22			

Reacción con Rh

Esta reacción se hizo con un catalizador de rodio, en la misma proporción que todos los anteriores, 5% la única diferencia es que éste catalizador no está soportado en carbón activado, éste catalizador está soportado en alúmina, pero se utilizó en la experimentación ya que, en la .literatura se encontró que éste tipo de catalizadores también era efectivo para realizar la reacción de hidrogenación selectiva del anillo aromático. Como se puede ver en la gráfica 7, la diferencia de

presiones entre el punto inicial de 37.5 atm y el final de 17.76, es más grande que

las obtenidas en las reacciones anteriores, siendo ésta de 19.74 atm.

Las conversiones obtenidas en esta reacción con catalizador de rodio se muestran en la tabla 18.

-	TABLA 18. CONVERSION FINAL DE LA SEXTA REACCION.				
	Reacción con Rh				
	P (atm) T(°C) n(H ₂)				
inicial	37.503	24	2.5870		
final	17.765	22	1.2415		
	1.345	moles consumidas			
	60.40%	de conversión			

En el cromatograma obtenido en esta reacción se ve, que al contrario de los casos anteriores, el producto de la reacción es mucho mayor en proporción que el DOTP puro, esto obtiene sentido cuando se compara con la conversión teórica, que es mucho mayor que con los otros tres catalizadores empleados anteriormente.

ILUSTRACIÓN 18. CROMATOGRAMA DE LA SEXTA REACCIÓN.

Reacciones de hidrogenación del anillo aromático del DOTP con conversiones cercanas a 100%

En esta sección se muestran las reacciones de hidrogenación de DOTP con los mismos catalizadores utilizados anteriormente, paladio, platino, rodio y rutenio, pero con el objetivo de obtener las máximas conversiones posibles y establecer las mejores condiciones de reacción. Para esto se aumentó la presión de hidrogeno presente en la reacción y se realizó el numero de recargas necesarias de hidrógeno al sistema, para alcanzar conversiones lo más cercanas a 100%.

Para cada catalizador se realizó el siguiente procedimiento:

- Verificar el correcto funcionamiento del reactor y del sistema.
- Realizar la reacción de hidrogenación con 300 mL de DOTP, 2.5 gramos de catalizador, 55 bares de presión y una temperatura de 245 °C aproximadamente.
- Obtener datos de conversión de la reacción y comportamiento del sistema.
- Recargar las veces que sea necesario el reactor y realizar la reacción nuevamente.
- Descargar reactor y purificar el producto por filtrado al vacío.
- Caracterizar los productos de la reacción por CG-EM
- Realizar el análisis de los datos obtenidos.
- Comparar los resultados de los distintos catalizadores.
- Realizar la caracterización de las propiedades fisicoquímicas de los plastificantes obtenidos en las reacciones de hidrogenación.
- Plastificar resina de PVC con los plastificantes obtenidos y comparar las muestras entre sí.

Séptima reacción (paladio).

Primera Carga

Esta reacción se llevó a cabo a las condiciones descritas en la tabla 19 y su comportamiento se puede ver en la gráfica 8 y tabla 20.

TABLA 19. CONDICIONES INICIALES DE LA PRIMERA CARGA EN LA SÉPTIMA REACCIÓN.

	Condiciones de primera carga del reactor (paladio)					
g DOTP cargados	n DOTP iniciales	n H₂ necesarias	n H₂ cargadas	Exceso de H₂	Pd/C 5%(g)	
293	0.75020	2.25	3.824	1.573	2.511	

TABLA 20. SÉPTIMA REACCIÓN (PRIMERA CARGA).

REACCIO	ÓN CON	PALADIO	
t(min)	P(bar)	P(atm)	T(°C)
0	55	54.3	24
20	74	73.0	106
40	93	91.8	245
60	75	74.0	246
80	68	67.1	241
100	62	61.2	241
120	58	57.2	240
140	54	53.3	243
160	52	51.3	242
180	50	49.3	242
200	48	47.4	242
∞	29	28.6	20

En la tabla 21 se puede ver que la conversión final obtenida a partir de la diferencia de presiones, para la primer carga en esta reacción fue de 76.23%.

_				
	REACCIÓN CON PALADIO			
	P (atm)	P (atm) T(°C) n(H₂)		
inicial	54.281	24	3.7227	
final	28.621	20	2.0071	
	1.7156	moles de H₂ consumidas		
	76.23%	de conversión de DOTP		

TABLA 21. CONVERSIÓN FINAL DE LA SÉPTIMA REACCIÓN (PRIMERA CARGA).

La segunda carga en el reactor se realizó para continuar la reacción y lograr el objetivo de acercar la conversión a 100%, las condiciones para esta reacción se muestran en la tabla 22 y el comportamiento a lo largo de la reacción se muestra en la tabla 23 y la gráfica 9.

	Condicionardo com		to (Deledia)	
	Condiciones de segu	nda carga del reac	tor (Paladio)	
n DOTP	n H₂	n H₂	Evceso de H.	Pd/C
sobrantes	necesarias	cargadas		5%(g)
0.17832	0.53	3.517	2.982	2.511

TABLA 22. CONDICIONES INICIALES DE LA SEGUNDA CARGA EN LA SÉPTIMA REACCIÓN.

		,	,		
	22	CEDTIMA	DEACCION		CADCA
IADLA	Z J.	SEP LINIA	REALLIUN	USEGUNDA	CARGAL
				(

REACCIÓ	REACCIÓN CON		
t(min)	P(bar)	P(atm)	T(°C)
0	50	49.3	21
20	66	65.1	123
40	82	80.9	245
60	80	79.0	245
80	78.5	77.5	244
100	78	77.0	246
120	78	77.0	247
140	77.5	76.5	247
160	76	75.0	246
180	76	75.0	246
200	76	75.0	246
8	42.5	41.9	20

En la tabla 24 se muestra la conversión final de la reacción que a su vez en la conversión final de ambas reacciones.

	REACCIÓN CON PALADIO		
	P (atm)	T(°C)	n(H₂)
inicial	49.346	21	3.4248
final	41.944	20	2.9285
	0.496	moles de H₂ consumidas	
	98.28%	de conversión de DOTP	

TABLA 24. CONVERSIÓN FINAL DE LA SÉPTIMA REACCIÓN (SEGUNDA CARGA).

En el cromatograma de la ilustración 19, se observan 3 especies al final de la reacción, la primera que aparece en un tiempo de 6.10 min es el trans-1,4ciclohexandicarboxilato de octilo, como segunda especie en un tiempo de 6.45 min, el cis-1,4-ciclohexandicarboxilato de octilo, y por último, en muy poca proporción a las dos anteriores, el tereftalato de dioctilo en un tiempo de 6.60 min. El estudio del espectro de masas también confirmó que los dos productos tenían el aumento de las seis unidades esperadas generadas por la reacción de hidrogenación del anillo aromático.

ILUSTRACIÓN 19. CROMATOGRAMA DEL PRODUCTO FINAL DE LA SÉPTIMA REACCIÓN. (PALADIO)

Octava reacción (platino).

Primera Carga

Esta reacción se llevó a cabo a las condiciones descritas en la tabla 25 y su comportamiento se puede ver en la gráfica 10 y tabla 26.

Condiciones de primera carga del reactor (Platino)					
g DOTP cargado	n DOTP iniciales	n H₂ necesarias	n H₂ cargadas	Exceso de H₂	Pt/C 5%(g)
295	0.7553	2.27	3.751	1.485	2.502

TABLA 25. CONDICIONES INICIALES DE LA OCTAVA REACCIÓN (PRIMERA CARGA).

REACCIO	ÓN CON	PLATINO	
t(min)	P(bar)	P(atm)	T(°C)
0	55	54.3	22
20	73	72.0	131
40	85	83.9	246
60	84	82.9	246
80	84	82.9	246
100	84	82.9	246
120	84	82.9	246
140	84	82.9	246
160	84	82.9	246
180	84	82.9	246
200	84	82.9	246
~	50	49.3	19

TABLA 26. OCTAVA REACCIÓN (PRIMERA CARGA).

Como se puede en la gráfica 10 la diferencia de presiones entre el estado inicial y final, no es mucha lo cual nos indica una baja conversión, como se puede ver en la tabla 27.

	REACCIÓN CON PLATINO				
	P (atm)	T(°C)	n(H₂)		
inicial	54.281	22	3.7479		
final	49.346	19	3.4483		
	0.2997	moles de H₂ o	consumidas		
	13.23%	de conversió	n de DOTP		

TABLA 27. CONVERSIÓN FINAL DE LA OCTAVA REACCIÓN (PRIMERA CARGA).

Segunda Carga

Esta segunda carga del reactor se realizó a las condiciones establecidas en la tabla 28 y el comportamiento de éste sistema su puede ver en la tabla 29 y la gráfica 11.

	TABLA 28. CONDICIONES INICIALES DE LA OCTAVA REACCION (SEGUNDA CARGA).				
Condiciones de segunda carga del reactor (Platino)					
n DOTP sobrantes	n H₂ necesarias	n H₂ cargadas	Exceso de H₂	Pt/C 5%(g)	
0.65543	1.97	3.517	1.551	2.502	

TABLA 29. OCTAVA REACCIÓN (SEGUNDA CARGA).

Al final de esta segunda carga de la octava reacción, se puede ver que la diferencia de presiones es muy pequeña, y los datos calculados por medio de esta diferencia se muestran en la tabla 30.

	REACCIÓN CON PLATINO				
	P (atm) T(°C) $n(H_2)$				
inicial	55.268	20	3.8408		
final	53.294	25	3.6440		
	0.197 moles de H₂ consumidas				
	21.91% de conversión de DOTP				

TABLA 30. CONVERSIÓN FINAL DE LA OCTAVA REACCIÓN (SEGUNDA CARGA).

En el cromatograma de la ilustración 20 se observa que las cantidades de los productos de la hidrogenación, trans-1,4-ciclohexandicarboxilato de octilo y cis-1,4-ciclohexandicarboxilato de octilo, son bastante menores a la de DOTP, lo cual concuerda con los datos teóricos calculados por medio de la diferencia de presiones.

ILUSTRACIÓN 20. CROMATOGRAMA DEL PRODUCTO FINAL DE LA OCTAVA REACCIÓN (PLATINO).

Novena reacción (rodio).

Primera Carga

Esta reacción se llevó a cabo a las condiciones descritas en la tabla 31 y su comportamiento se puede ver en la gráfica 12 y tabla 32.

TABLA 31. CONDICIONES INICIALES DE LA NOVENA REACCIÓN (PRIMERA CARGA).

Condiciones de primera carga del reactor (rodio) g DOTP n DOTP n H₂ n H₂ Exceso de H₂ Rh/Al 5%(g) cargados iniciales necesarias cargadas 0.77581 2.33 2.972 0.644 2.506 303

TABLA 32. NOVENA REACCIÓN (PRIMERA CARGA).

REA	REACCIÓN CON RODIO				
t(min) P(bar) P(atm) T(°					
0	42	41.5	29		
20	54	53.3	120		
40	52	51.3	218		
60	43	42.4	219		
80	36	35.5	222		
100	30	29.6	215		
120	26	25.7	236		
140	23	22.7	223		
160	22	21.7	228		
180	20	19.7	232		
200	17	16.8	227		
∞	8	7.9	25		

En la tabla 33 se observa la conversión final calculada por la diferencia de presiones en el sistema, la cual fue bástate buena, comparándola con el catalizador utilizado anteriormente.

		REACCIÓN CON RODIO					
_		P (atm) T(°C) n(H₂)					
inic	ial	41.451	29	2.8082			
fin	al	7.895	25	0.5478			
		2.2604	moles de H₂ consumidas				
		97.12%	de conversión de DOTP				

TABLA 33. CONVERSIÓN FINAL DE LA NOVENA REACCIÓN (PRIMERA CARGA).

Segunda Carga

A pesar de que la conversión de la primera reacción fue muy cercana a 100%, se realizó una segunda carga para lograr acercar más éste valor al objetivo, las condiciones de esta reacción se muestran en la tabla 34 y su comportamiento en la tabla 35 y la gráfica 13

n DOTP sobrantes	n H₂ necesarias	n H₂ cargadas	Exceso de H₂	Rh/Al 5%(g)
0.07055	0.21	2.647	2.435	2.506

TABLA 34. CONDICIONES INICIALES DE LA NOVENA REACCIÓN (SEGUNDA CARGA).

		/		
TADIA 25		DEVCCION		CADCA)
TADLA JJ.	NUVLINA	REACCION	SLOUNDA	CARGA).

REACCIÓN CON RODIO					
t(min)	t(min) P(bar) P(atm)				
0	38	37.5	25		
20	47	46.4	143		
40	58	57.2	239		
60	56	55.3	226		
80	56	55.3	226		
100	56	55.3	226		
120	56	55.3	226		
140	56	55.3	226		
160	56	55.3	226		
180	56	55.3	226		
200	56	55.3	226		
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	37.0	36.5	24		



En la tabla 36 se muestra la conversión final de las dos cargas para éste sistema.

	REACCIÓN CON RODIO					
	P (atm)	P (atm) T(°C) n(H ₂ )				
inicial	37.503	25	2.5783			
final	36.516	24	2.5197			
	0.059	moles de H₂ consumidas				
	99.64%	de conversión de DOTP				

TABLA 36. CONVERSIÓN FINAL DE LA NOVENA REACCIÓN (SEGUNDA CARGA).

En el cromatograma de la ilustración 21, se observan 2 especies, la primera el trans-1,4-ciclohexandicarboxilato de octilo en un tiempo de 6.10 min y el cis-1,4-ciclohexandicarboxilato de octilo en un tiempo de 6.45 min, en éste caso el pico del DOTP puro no aparece, lo cual nos indica que si se obtuvo un 99.64% de conversión final.



ILUSTRACIÓN 21. CROMATOGRAMA DEL PRODUCTO FINAL DE LA NOVENA REACCIÓN (RODIO).

## Decima reacción (rutenio).

## Primera Carga

Esta reacción se llevó a cabo a las condiciones descritas en la tabla 37 y su comportamiento se puede ver en la gráfica 14 y tabla 38.

	I ABLA 3	7. CONDICIONES INICIALES	DE LA DECIMA REACC	CION (PRIMERA CARGA).	
	Conc	liciones de primer	a carga del re	actor (Rutenio)	
g DOTP	n DOTP	n H₂	n H ₂	Exceso de H₂	Ru/C S

_____

	Condiciones de primera carga del reactor (Rutenio)				
g DOTP cargados	n DOTP iniciales	n H₂ necesarias	n H₂ cargadas	Exceso de H₂	Ru/C 5%(g)
303	0.77581	2.33	3.755	1.428	2.503

TABLA 38. DECIMA REACCIÓN (PRIMERA CARGA).

REACCI	ÓN CON	RUTENIO	
t( min)	P(bar)	P(atm)	T(°C)
0	54	53.3	24
20	73	72.0	133
40	70	69.1	244
60	57	56.3	232
80	51	50.3	238
100	45	44.4	238
120	42	41.5	238
140	40	39.5	238
160	39	38.5	238
180	38	37.5	238
200	37	36.5	238
∞	22	21.7	21





En la tabla 39 se muestra la conversión final de esta reacción, tomando en cuenta la diferencia de presiones de 31.58 atm entre el estado inicial y final.

	REACCIÓN CON RUTENIO				
	P (atm) T(°C) n(H₂)				
inicial	53.294	24	3.6563		
final	21.712	21	1.5207		
	2.1356	moles de H₂ cor	isumidas		
	91.76%	de conversión de DOTP			

TABLA 39. CONVERSIÓN FINAL DE LA DECIMA REACCIÓN (PRIMERA CARGA).

## Segunda Carga

Esta segunda carga también se realizó para intentar aproximar le valor de la conversión a 100% y sus condiciones iniciales se muestra en la tabla 40, en la tabla 41 y gráfica 15 se muestra el comportamiento del sistema durante la reacción.

1712				
Condiciones de primera carga del reactor (Rutenio)				
n DOTP sobrantes n H ₂ necesarias n H ₂ Exceso de H ₂ <b>Ru/C</b> Exceso de H ₂ <b>Ru/C</b>				
0.06394	0.19	2.813	2.621	2.503

TABLA 40. CONDICIONES INICIALES DE LA DECIMA REACCIÓN (SEGUNDA CARGA).

TABLA 41. DECIMA REACCIÓN (SEGUNDA CARGA).

REACCI	ÓN CON	RUTENIO	
t( min)	P(bar)	P(atm)	T(°C)
0	40	39.5	22
20	55	54.3	124
40	67	66.1	233
60	67	66.1	244
80	67	66.1	242
100	67	66.1	245
120	66.5	65.6	245
140	66.5	65.6	248
160	66	65.1	248
180	66	65.1	248
200	66	65.1	248
8	37	36.5	20



En la tabla 42 se muestra la conversión final la reacción con catalizador de rutenio soportado en carbón activado al 5%, después de dos recargas del reactor.

	REACCIÓN CON RUTENIO				
	P (atm)	T(°C)	n(H₂)		
inicial	39.477	22	2.7398		
final	36.516	20	2.5541		
	0.186	moles de H₂ cor	nsumidas		
	99.73%	.73% de conversión de DOTP			

TABLA 42. CONVERSIÓN FINAL DE LA DECIMA REACCIÓN (SEGUNDA CARGA).

En la cromatografía de gases de la reacción con rutenio de la ilustración 22, sólo se obtuvieron dos picos, al igual que en la reacción con rodio, el trans-1,4ciclohexandicarboxilato de octilo en un tiempo de 6.10 min y el cis-1,4ciclohexandicarboxilato de octilo en un tiempo de 6.40 min, descartando esto, que alguno de los sea DOTP sin reacciona.



ILUSTRACIÓN 22. CROMATOGRAMA DEL PRODUCTO FINAL DE LA DECIMA REACCIÓN (RUTENIO).

#### Onceava reacción (paladio).

#### Primera Carga

Esta segunda reacción de paladio se llevó a cabo a las condiciones descritas en la tabla 43 y su comportamiento se puede ver en la gráfica 16 y tabla 44.

TABLA 43. CONDICIONES INICIALES DE LA ONCEAVA REACCIÓN (PRIMERA CARGA).

Condiciones de primera carga del reactor (paladio)					
g DOTP cargados	n DOTP iniciales	n H₂ necesarias	n H₂ cargadas	Exceso de H₂	Pd/C 5%(g)
307	0.78605	2.36	3.734	1.376	2.517

TABLA 44. ONCEAVA REACCIÓN (PRIMERA CARGA).

REACCIO	ÓN CON	PALADIO	
t( min)	P(bar)	P(atm)	T(°C)
0	55.5	54.8	23
20	75	74.0	123
40	88	86.8	245
60	74	73.0	246
80	66	65.1	247
100	62	61.2	243
120	58	57.2	243
140	54	53.3	243
160	53	52.3	244
180	50	49.3	245
200	48	47.4	245
8	29	28.6	20

Pd/C 5% A



GRÁFICA 16. VARIACIÓN DE LA PRESIÓN EN LA ONCEAVA REACCIÓN (PRIMERA CARGA).

La conversión final de la primera carga se muestra en la tabla 45.

REACCIÓN CON PALADIO T(°C) n(H₂) P (atm) inicial 54.774 23 3.734 final 28.621 20 2.007 1.762 moles de H₂ consumidas 74.70% de conversión de DOTP

TABLA 45. CONVERSIÓN FINAL DE LA ONCEAVA REACCIÓN (PRIMERA CARGA).

# Segunda Carga

La segunda carga del sistema se realizó a las condiciones establecidas en la tabla 46 y el comportamiento de éste se muestra en la tabla 47 y la gráfica 17.

#### TABLA 46. CONDICIONES INICIALES DE LA ONCEAVA REACCIÓN (SEGUNDA CARGA).

Condiciones de segunda carga del reactor (Paladio)					
n DOTP	n H ₂	n H ₂	Exceso de H ₂	Pd/C 5%(g)	
sobrantes	necesarias	cargadas	<b>-</b>	.,	
0.19888	0.60	3.427	2.830	2.517	

#### TABLA 47. ONCEAVA REACCIÓN (SEGUNDA CARGA).

REACCI	REACCIÓN CON		
t( min)	P(bar)	P(atm)	T(°C)
0	50	49.3	21
20	67	66.1	125
40	82	80.9	245
60	78	77.0	244
80	77	76.0	246
100	76	75.0	247
120	76	75.0	247
140	75	74.0	247
160	74	73.0	246
180	74	73.0	246
200	74	73.0	246
$\infty$	41.5	41.0	21



La conversión final de las dos cargas para esta reacción se muestra en la tabla 48.

	/			,		
TADIA 40 CONV				DEACCION		CADCA)
TADLA 40. CUNV		<b>DE LA</b>	UNCEAVA	REACCION	USEGUNDA	CARGAI
					<b>`</b>	,

	REACC	CIÓN CON PALADI	0	
	P (atm)	T(°C)	n(H₂)	
inicial	49.346	21	3.4248	
final	40.957	21	2.8508	
	0.574	moles de H₂ con	sumidas	
	99.04%	de conversión de DOTP		

En la cromatograma de la ilustración 23, se observan 3 especies al final la reacción, la primera que aparece en un tiempo de 6.10 min es el trans-1,4ciclohexandicarboxilato de octilo, como segunda especie en un tiempo de 6.45 min, el cis-1,4-ciclohexandicarboxilato de octilo, y por último en muy poca proporción a las dos anteriores, el tereftalato de dioctilo en un tiempo de 6.60 min.



ILUSTRACIÓN 23, CROMATOGRAMA DEL PRODUCTO FINAL DE LA ONCEAVA REACCIÓN (PALADIO).

## Doceava reacción (platino).

## Primera Carga

Esta reacción se llevó a cabo a las condiciones descritas en la tabla 49 y su comportamiento se puede ver en la gráfica 18 y tabla 50.

Condiciones de primera carga del reactor (platino)					
g DOTP cargados	n DOTP iniciales	n H₂ necesarias	n H₂ cargadas	Exceso de H₂	Pt/C 5%(g)
295	0.75533	2.27	3.751	1.485	2.502

TABLA 49. CONDICIONES INICIALES DE LA DOCEAVA REACCIÓN (PRIMERA CARGA).

REACCI	ÓN CON	PLATINO	
t( min)	P(bar)	P(atm)	T(°C)
0	55.5	54.3	22
20	73	72.0	131
40	85	83.9	246
60	84	82.9	245
80	84	82.9	245
100	84	82.9	245
120	84	82.9	245
140	84	82.9	245
160	84	82.9	245
180	84	82.9	246
200	84	82.9	246
8	50	49.3	19

TABLA 50. DOCEAVA REACCIÓN (PRIMERA CARGA).



En la tabla 51 se muestra la conversión final de la primera carga del sistema.

	REACCIÓN CON PLATINO				
	P (atm)           T(°C)         n(H₂)				
inicial	54.281	22	3.7479		
final	49.346	19	3.4483		
	0.2997	moles de H₂ con	sumidas		
	13.10%	de conversión de DOTP			

TABLA 51. CONVERSIÓN FINAL DE LA DOCEAVA REACCIÓN (PRIMERA CARGA).

# Segunda Carga

La segunda carga del sistema se realizó a las condiciones establecidas en la tabla 52 y el comportamiento de éste se muestra en la tabla 53 y la gráfica 19

Condiciones de segunda carga del reactor (Platino)				
n DOTP sobrantes	n H₂ necesarias	n H₂ cargadas	Exceso de H₂	Pt/C 5%(g)
0.65543	1.97	3.517	1.551	2.502

TABLA 52. CONDICIONES INICIALES DE LA DOCEAVA REACCIÓN (SEGUNDA CARGA).

		,		
	DOCENVA	DEVCCION		CADCA)
TADLA JJ.	DUCLAVA	RLACCION	(SLOUNDA	CARGA)
			<b>`</b>	

REACCIÓN CON		PLATINO	
t( min)	P(bar)	P(atm)	T(°C)
0	56	55.3	20
20	74	73.0	109
40	95	93.8	240
60	93	91.8	244
80	93	91.8	244
100	94	92.8	246
120	94	92.8	246
140	94	92.8	246
160	94	92.8	246
180	94	92.8	246
200	94	92.8	246
∞	54	53.3	25



La conversión final de las dos cargas para esta reacción se muestra en la tabla 54.

		REACCIÓN CON PLATINO				
		P (atm)	T(°C)	n(H₂)		
	inicial	55.268	20	3.8408		
	final	53.294	25	3.6440		
_		0.197	moles de H₂ consu	midas		
		21.87%	de conversión de DOTP			

TABLA 54. CONVERSIÓN FINAL DE LA DOCEAVA REACCIÓN (SEGUNDA CARGA).

En el cromatograma de la ilustración 24 se observa que las cantidades de los productos de la hidrogenación, trans-1,4-ciclohexandicarboxilato de octilo y cis-1,4-ciclohexandicarboxilato de octilo, son bastante menores a la de DOTP, igual que en la conversión calculada teóricamente por medio de la diferencia de presiones en el estado inicial y final del sistema.



ILUSTRACIÓN 24. CROMATOGRAMA DEL PRODUCTO FINAL DE LA DOCEAVA REACCIÓN (PLATINO).

## Treceava reacción (rodio).

# Primera Carga

Esta reacción se llevó a cabo a las condiciones descritas en la tabla 55 y su comportamiento se puede ver en la gráfica 20 y tabla 56.

	C	ondiciones de prim	nera carga del	reactor (Rodio)	
g DOTP cargados	n DOTP iniciales	n H₂ necesarias	n H₂ cargadas	Exceso de H₂	Rh/Al 5%(g)
322	0.82446	2.47	3.810	1.337	2.508

TABLA 55. CONDICIONES INICIALES DE LA TRECEAVA REACCIÓN (PRIMERA CARGA).

	TDECEAVA	<b>ΒΕΛΟΟΙΟΝ</b>		CADCA
TADLA JU.	TRECEAVA	NEACCION	(ENIMENA	CARGAJ.

REACCI	ÓN CON	RODIO	
t( min)	t(min) P(bar)		T(°C)
0	55.5	54.8	20
20	74	73.0	109
40	70	69.1	240
60	68	67.1	248
80	62	61.2	246
100	55.5	54.8	245
120	48.5	47.9	246
140	44	43.4	246
160	40	39.5	246
180	39.5	39	246
200	39	38.5	246
8	20	19.7	19



En la tabla 57.se muestra la conversión final de la primera carga del sistema.

	REACCIÓN CON RODIO				
	P (atm)            T(°C)         n(H₂)				
inicial	54.774	20	3.8072		
final	19.738	19	1.3928		
	2.414	moles de H₂ con	sumidas		
	97.61%	de conversión de DOTP			

TABLA 57. CONVERSIÓN FINAL DE LA TRECEAVA REACCIÓN (PRIMERA CARGA).

# Segunda Carga

La segunda carga del sistema se realizó a las condiciones establecidas en la tabla 58 y el comportamiento de éste se muestra en la tabla 59 y la gráfica 21.

n DOTP sobrantes	n H₂ necesarias	n H₂ cargadas	Exceso de H₂	Rh/Al 5%(g)
0.06578	0.20	3.123	2.926	2.508

#### TABLA 58. CONDICIONES INICIALES DE LA TRECEAVA REACCIÓN (SEGUNDA CARGA).

TABLA 59. TRECEAVA REACCIÓN (SEGUNDA CARGA).

REACCIÓN CON RODIO								
t( min)	P(bar)	P(atm)	T(°C)					
0	45.5	44.9	21					
20	63	62.2	119					
40	77	76.0	235					
60	76	75.0	249					
80	75	74.0	240					
100	74	73.0	240					
120	74	73.0	240					
140	74	73.0	240					
160	74	73.0	240					
180	74	73.0	240					
200	74	73.0	240					
$\infty$	44.5	43.9	20					



La conversión final de las dos cargas para esta reacción se muestra en la tabla 60.

	REACCIÓN CON RODIO						
	P (atm)	T(°C)	n(H₂)				
inicial	44.905	21	3.1214				
final	43.918	20	3.0642				
	0.057	moles de H₂ con	sumidas				
	99.92% de conversión de DOTP						

TABLA 60. CONVERSIÓN FINAL DE LA TRECEAVA REACCIÓN (SEGUNDA CARGA).

En el cromatograma de la ilustración 25, se observan 2 especies, la primera el trans-1,4-ciclohexandicarboxilato de octilo en un tiempo de 6.10 min y el cis-1,4-ciclohexandicarboxilato de octilo en un tiempo de 6.45 min.



ILUSTRACIÓN 25. CROMATOGRAMA DEL PRODUCTO DE LA TRECEAVA REACCIÓN (RODIO).

### Catorceava reacción (rutenio).

## Primera Carga

Esta reacción se llevó a cabo a las condiciones descritas en la tabla 61 y su comportamiento se puede ver en la gráfica 22 y tabla 62.

TABLA 61. CONDICIONES INICIALES DE LA CATORCEAVA REACCIÓN (PRIMERA CARGA).

Condiciones de primera carga del reactor (rutenio)								
g DOTP cargados	n DOTP iniciales	n H₂ necesarias	n H₂ cargadas	Exceso de H₂	Ru/C 5%(g)			
284.19	0.72765	2.18	3.831	1.648	2.500			

TABLA 62. CATORCEAVA REACCIÓN (PRIMERA CARGA).

REACCI	ÓN CON	RUTENIO	
t( min)	P(bar)	P(atm)	T(°C)
0	56	56.0	21
20	74	73.0	126
40	71	70.1	242
60	59	58.2	244
80	53	52.3	244
100	46	45.4	243
120	43	42.4	242
140	41	40.5	243
160	40	39.5	243
180	39	38.5	243
200	39	38.5	243
8	27	26.6	20



En la tabla 63 se muestra la conversión final de la primera carga del sistema.

TABLA 63. CONVERSIÓN FINAL DE LA CATORCEAVA REACCIÓN (PRIMERA CARGA).

	REACCIÓN CON RUTENIO						
	P (atm)	T(°C)	n(H₂)				
inicial	56.000	21	3.8774				
final	26.647	20	1.8698				
	2.008	moles de H ₂ cor	nsumidas				
	91.97%	de conversión de DOTP					

# Segunda Carga

La segunda carga del sistema se realizó a las condiciones establecidas en la tabla 64 y el comportamiento de éste se muestra en la tabla 65 y la gráfica 23.

Condiciones de segunda carga del reactor (rutenio)						
n DOTP sobrantes	Exceso de H₂	Ru/C 5%(g)				
0.05845	0.18	2.759	2.584	2.500		

TABLA 64. CONDICIONES INICIALES DE LA CATORCEAVA REACCIÓN (SEGUNDA CARGA).

REACCI	ÓN CON	RUTENIO	
t( min)	P(bar)	P(atm)	T(°C)
0	40	39.5	20
20	54	53.3	109
40	68	67.1	240
60	68	67.1	244
80	68	67.1	244
100	68	67.1	246
120	66	65.1	246
140	66	65.1	246
160	65	64.2	246
180	65	64.2	246
200	65	64.2	246
$\infty$	38	37.5	24



La conversión final de las dos cargas para esta reacción se muestra en tabla 66.

TABLA 66. CONVERSIÓN FINAL DE LA CATORCEAVA REACCIÓN (SEGUNDA CARGA).

	REACCIÓN CON RUTENIO							
	P (atm) T(°C) n(H₂)							
inicial	39.477	20	2.7585					
final	37.503	24	2.5870					
	0.172	.172 moles de H ₂ consumidas						
	99.83%	de conversión de DOTP						

En la cromatografía de la ilustración 26 de la reacción con rutenio, sólo se obtuvieron dos picos al igual que en la reacción con rodio, el trans-1,4ciclohexandicarboxilato de octilo en un tiempo de 6.10 min y el cis-1,4ciclohexandicarboxilato de octilo en un tiempo de 6.40 min.



ILUSTRACIÓN 26. CROMATOGRAMA DEL PRODUCTO FINAL DE LA CATORCEAVA REACCIÓN (RUTENIO).

# **Conversiones finales.**

En las tablas tabla 67 y tabla 68 se muestran todas las conversiones de las reacciones dobles que se realizaron en éste estudio.

Tabla final de conversiones								
	1° carga de H ₂			2° carga de H ₂				
Catalizador	P(bar)	T (°C)	conversión	P(bar)	T (°C)	Conversión final		
Paladio	55	241	76.23%	50.0	245	98.28%		
Platino	55	246	13.23%	56.0	246	21.91%		
Rodio	42	225	97.12%	38.0	226	99.64%		
Rutenio	54	238	91.76%	40.0	245	99.73%		

#### TABLA 67. CONVERSIONES FINALES DE REACCIONES 7, 8, 9 Y 10.

TABLA 68. CONVERSIONES FINALES DE REACCIONES 11, 12, 13 Y 14.

Tabla final de conversiones								
	1	° carga	de H ₂	$2^{\circ}$ carga de H ₂				
Catalizador	P(bar)	T (°C)	conversión	P(bar)	T (°C)	Conversión final		
Paladio	55.5	244	74.70%	50.0	247	99.04%		
Platino	55.5	245	13.10%	56.0	246	21.87%		
Rodio	55.5	246	97.61%	45.0	240	99.92%		
Rutenio	56	244	91.97%	40.0	246	99.83%		

Como se aprecia en las tablas anteriores, con la mayor parte de las reacciones se obtienen conversiones altas de alrededor de 99.5%, sólo el catalizador de platino soportado en carbon activado obtiene una conversion de casi 22% y que en comparación con las otras tres, es muy baja.

# Propiedades fisicoquímicas de los plastificantes.

Las pruebas para la caracterización de las propiedades fisicoquímicas aplicadas a los productos finales de la hidrogenación de DOTP, fueron las pruebas implementadas por el sistema de control de calidad de la empresa RYMSA-Resinas y Materiales S.A. de C.V., éstas son utilizadas para comprobar la calidad del DOTP y algunos otros plastificantes. Las propiedades medidas son:

- Viscosidad
- Densidad
- pH
- Porcentaje de humedad
- Prueba da color

- Punto de flama
- Resistividad
- Porcentaje de compuestos volátiles
- Plastificación

En la tabla 69 se muestran los resultados del estudio de las propiedades fisicoquímicas realizadas. La metodología del análisis de estas propiedades se puede ver en el Anexo 6 Metodología empleada para medir las propiedades fisicoquímicas de los plastificantes.

								%
Plastificante	μ (cP)	ρ (g/mL)	рΗ	% H₂O	Color	P. Flama °C	Ω	Volátiles
DOTP	63	0.983	8.5	0.050	0.5	210	5.09E-05	0.46%
Pd	52.5	0.951	7.5	0.115	0.5	191	6.38E-05	0.94%
Pt	53.5	0.979	7.9	0.080	0.5	209	9.46E-05	0.20%
Rh	58.5	0.951	7.9	0.072	1.5	207	4.37E-05	0.52%
Ru	58.4	0.952	7.7	0.097	1.5	199	1.57E-06	0.10%

					/				
	60	DDODIFD	VUEC EI	ICICOOL	IMICAS	DEL		ACTIFIC	VITEC
TADLA	07.	FROFILD	ADLUTI		JIMICAS		03 FL	.AJTILIC	ANTLO.

En las ilustraciones 25 y 26 se muestra el producto final de la plastificación de la resina de PVC con los plastificantes obtenidos de las reacciones de hidrogenación con cada uno de los catalizadores empleados. La metodología utilizada para la plastificación de las resinas se puede ver también en el anexo 6.



ILUSTRACIÓN 28. PASTILLAS DE PVC PLASTIFICADO



ILUSTRACIÓN 27. PELÍCULAS DE PVC PLASTIFICADO

# **Cuarto capítulo**

## Análisis de resultados.

En esta gráfica se pueden observar las conversiones de las tres reacciones realizadas a cada catalizador, pero sólo finalizada la etapa de la primera carga, esto nos ayuda a visualizar con discernimiento cual de todas las reacciones es la que alcanza las mejores conversiones.



GRÁFICA 24. COMPARACIÓN DE TODAS LAS REACCIONES.

## Estudio cinético de las reacciones de hidrogenación con catalizador de rodio.

En la gráfica 24 se observa, que el mejor catalizador es el de rodio soportado en carbón activado al 5%, por lo tanto el estudio cinético se realizó a la reacción catalizada con rodio.

El objetivo principal de éste estudio es obtener la energía de activación (E_a) y la constante de Arrhenius (A) para esta reacción, basándonos en los datos experimentales obtenidos en las reacciones de hidrogenación.

El modelo que se utilizó, es el de una reacción de segundo orden del tipo:

$$aA + bB => Producto$$

Para éste tipo de reacciones se obtiene una ecuación cinética que describe su comportamiento su comportamiento y con ésta se obtienen las constantes de la reacción. Para una reacción como la realizada la ecuación cinética obtenida es la siguiente.

$$\frac{1}{c_a} - \frac{1}{c_{a_0}} = \frac{b}{a} k t$$

Ya que las constantes de la reacción son dependientes de la temperatura se tendrán que obtener tres constantes de esta reacción, una para cada reacción que se realizó, y con ayuda de estas constantes, poder obtener la energía de activación (E_a) y la constante de Arrhenius (A) que es nuestro objetivo principal.



La forma de obtener estas constantes cinéticas (k) de la reacción será graficando los valores de la diferencia de los inversos de la concentración de DOTP al tiempo t, menos la concentración del DOTP inicial, pero sólo en intervalos donde la temperatura fue constante, como se puede ver en la gráfica 25.

GRÁFICA 25. OBTENCIÓN DE CONSTANTE DE REACCIÓN

#### Cinética de la primera reacción con catalizador de rodio.

Esta reacción es la primer reacción de rodio que se realizó, para su estudio cinético sólo se considero el rango de presiones en el cual la temperatura se mantuvo estable, ya que la constante de reacción debe ser obtenida a una temperatura constante; de éste rango de temperaturas se manejó el promedio de éstas, siendo la primera temperatura promedio de 475.98 K.

El estudio cinético de la reacción realizada a 475.98 K se muestra en la gráfica 26 y la tabla 70.

	Reacción a 475.98 K					
	t(seg)	[DOTP]	<u>    1    -    1      </u>			
	0	2.518	[DOTP] [DOTP] ₀			
	1200	2.437				
1°	2400	1.827				
	3600	1.517	0.000			
e rra	4800	1.272	0.127			
eratu tant	6000	1.064	0.280			
mpe	7200	0.926	0.421			
Tei	8400	0.884	0.472			
	9600	0.834	0.540			
	10800	0.837				
	12000	0.789				
	8	0.997				

#### TABLA 70. ESTUDIO CINÉTICO DE LA PRIMERA REACCIÓN.



GRÁFICA 26. CINÉTICA DE LA PRIMERA REACCIÓN.

Por medio de la pendiente de esta grafica y conociendo la estequiometría de la reacción, es posible obtener la constante de esta reacción, que es de 0.000277seg⁻¹ mol⁻¹.

# Segunda reacción con catalizador de rodio.

Esta reacción se realizó a una temperatura promedio de 496.98 K y su estudio cinético se muestra en la tabla 71 y la gráfica 27.

TABLA 71. ESTUDIO CINÉTICO DE LA SEGUNDA REACCIÓN.

							_/ [ = 0 ] = / [ = 0 ] 0 0				
		Reacción a 496.98 K				1.6					
		t(seg)	[DOTP]	<u>    1     -      1     </u>		1 /	<b>A</b>				
		0	2.586	[DOTP] [DOTP] ₀		1.4	y = 0.0003x - 0.0629				
		1200	2.539		+1/[DОТР]0	1.2					
	2°	2400	1.840			1.0	•				
		3600	1.430	0.000		0.8					
	Temperatura constante	4800	1.103	0.207	TP]						
		6000	0.852	0.474	/	0.4					
		7200	0.619	0.916	ਜ	0.2	<b>/</b>				
		8400	0.513	1.248		0.0					
		9600	0.458	1.483		0.0	0 1000 2000 3000 4000 5000 6000 7000				
		10800	0.361			-0.2	seg				
		12000	0.235				GRÁFICA 27. CINÉTICA SEGUNDA REACCIÓN.				
		∞	0.074								

1/[DOTP]+1/[DOTP]₀ Vs. t

Por medio de la pendiente de esta grafica se obtuvo la constante de esta reacción, que es de 0.000784 seg⁻¹ mol⁻¹.
#### Tercera reacción con catalizador de rodio.

Reacción realizada a 519.32 K, su estudio cinético se muestra en la tabla 72 y gráfica 28.

TABLA 72. ESTUDIO CINÉTICO DE LA TERCERA REACCIÓN.

	Reacción a 519.32			
	t(seg)	[DOTP]	<u>    1     -     1</u>	
	0	2.748	[DOTP] [DOTP] ₀	
	1200	2.822		
3°	2400	1.563		
	3600	1.432	0.000	
e a	4800	1.105	0.207	
ratu tante	6000	0.726	0.679	
mpe	7200	0.466	1.449	
Te	8400	0.337	2.266	
	9600	0.252	3.275	
	10800	0.230		
	12000	0.209		
	∞	0.066		

# 1/[DOTP]+1/[DOTP]0 Vs. t



La constante k obtenida para esta reacción es de 0.001666 seg⁻¹ mol⁻¹.

#### Cálculo de la energía de activación y la constante de Arrhenius.

El cálculo de estas constantes se realizará por medio de la ecuación de Arrhenius.

$$k = Ae^{-E_a/RT}$$

Que es su forma lineal se expresa de la siguiente manera:

$$\ln(k) = \ln(A) - \frac{E_a}{R} \left(\frac{1}{T}\right)$$



Con la forma lineal de la ecuación de Arrhenius se elabora la grafica del Ln k contra 1/T, como la representada en la gráfica 29, donde la ordenada al origen es la constante de Arrhenius y la pendiente de ésta es igual a –Ea/R, donde R es la constante universal de los gases ideales.

GRÁFICA 29. OBTENCIÓN DE LA ENERGÍA DE ACTIVACIÓN

De la gráfica 30, se obtiene la energía de activación por medio de la pendiente y la constante de Arrhenius con la ordenada al origen, estos valores se encuentran reportados en la tabla 74 y tabla 75 respectivamente.

TABLA 73. RECOPILACIÓN DE LAS PROPIEDADES

DE ARRHENIUS PARA LAS TRES REACCIONES.

Propiedades de Arrhenius					
Reacción	K(seg ⁻¹ mol ⁻¹ )	Т(К)	Ln K	1/T	
3°	0.001666	519.32	-6.40	1.93E-03	
2°	0.000784	496.98	-7.15	2.01E-03	
1°	0.000277	475.98	-8.19	2.10E-03	

#### TABLA 74. ENERGÍA DE ACTIVACIÓN

Ξ	a
(J/mol)	(cal/mol)
85181.31	20358.83

TABLA 75. CONSTANTE DE ARRHENIUS.

Ln A	Α
13.38	643786.0



GRÁFICA 30. REPRESENTACIÓN DE LA ECUACIÓN DE ARRHENIUS

#### Estéreo-selectividad de los catalizadores en la reacción de hidrogenación.

En el desarrollo de la recopilación de datos se logró observar que al final de reacción de hidrogenación, los catalizadores, favorecían la proporción obtenida de alguno de los dos compuestos isométricos del DOTP, trans-1,4-ciclohexandicarboxilato de octilo o cis-1,4-ciclohexandicarboxilato de octilo, como se puede ver en la tabla 76 y gráfica 31.

	Catalizador			
	Paladio	Platino	Rodio	Rutenio
trans-1,4-ciclohexandicarboxilato de octilo	45%	35%	80%	65%
cis-1,4-ciclohexandicarboxilato de octilo	55%	65%	20%	35%
Conversión (12 000 seg)	76.23%	21.87%	97.61%	91.76%

TABLA 76. PROPORCIÓN DE LOS ISÓMEROS DEL 1.4-CICLOHEXANDICARBOXILATO DE OCTILO.



GRÁFICA 31. SELECTIVIDAD DE LOS CATALIZADORES.

Analizando la gráfica 24 y la gráfica 31 conjuntamente, nos damos cuenta que el hecho de que la proporción del trans-1,4-ciclohexandicarboxilato de octilo representado en la ilustración 29 o cis-1,4-ciclohexandicarboxilato de octilo representado en la ilustración 30 sea mayor, influye directamente en la conversión final y en la rapidez de la reacción.



ILUSTRACIÓN 30. CIS-1,4-CICLOHEXANDICARBOXILATO DE OCTILO

#### Quinto capítulo

#### **Conclusiones.**

Se lograron encontrar entre los catalizadores utilizados varios con los cuales se obtuvieron conversiones bastante cercanas al 100%.

En el desarrollo de la experimentación se logró modelar el comportamiento de la reacción adecuadamente y obtener las conversiones que se fijaron como objetivo, esto se logró adoptando un método, donde se cargaba el reactor con un ligero exceso de hidrógeno y se realizaba la reacción a 240 °C aproximadamente, posterior a esta reacción, se hacia una segunda carga de hidrógeno con las mismas condiciones, éste método probó ser bastante efectivo, ya que se logró hidrogenar el DOTP cargado en el reactor casi en su totalidad.

A pesar de que todos los catalizadores se trabajaron a las mismas condiciones, el catalizador de platino soportado en carbón activado al 5%, sólo logró obtener menos de un tercio de la conversión final que obtuvieron los otros catalizadores, por lo tanto, se concluye que el catalizador de platino no es tan buen catalizador como los otros para realizar la hidrogenación del anillo aromático del plastificante. Por otra parte, los otros catalizadores elegidos para realizar la reacción de hidrogenación, si obtuvieron conversiones muy cercanas a 100%, operando en las condiciones establecidas para la reacción, estos catalizadores fueron el de paladio, rodio y rutenio. Estos tres catalizadores lograron una conversión no menor a 98% al finalizar las dos cargas del reactor, por lo tanto, los tres son muy buenas opciones.

Desglosando un poco los resultados obtenidos de estos tres catalizadores es muy interesante notar que a pesar de que los tres obtuvieron una muy buena conversión final, en el estudio de la primera carga, se notó bastante diferencia en la conversión que obtuvieron entre sí, dando un 76.23% el de paladio, 97.12% el de rodio y 91.76% el de rutenio, estos valores reflejan que si existe gran diferencia en el comportamiento de cada catalizador. Se observó que en éste comportamiento del catalizador, existe una relación directa entre el nivel de conversión de la primera carga de todos los catalizadores, y el porcentaje del

isómero trans-1,4-ciclohexandicarboxilato de octilo obtenido por cada uno, podemos notar que mientras más afín sea el catalizador para formar éste isómero, mucho más rápida será la reacción y alcanzará mejores conversiones. Tomando en cuenta lo anterior, se logró entender por qué el catalizador de platino no fue muy efectivo para esta reacción, y esto se debe a que es el que menor cantidad de trans-1,4-ciclohexandicarboxilato de octilo logró formar. Por tanto, se concluye que el catalizador de rodio soportado en alúmina al 5%, es el mejor catalizador para esta reacción, ya que es el que mayor porcentaje del isómero trans logró formar, y por ende el que obtuvo la mejor conversión y la mejor rapidez, aparte de que, es mucho más sencillo el proceso de separación del catalizador y el producto.

En las pruebas fisicoquímicas realizadas en RYMSA a los plastificantes, se observó que, en general, las propiedades fisicoquímicas de los plastificantes hidrogenados y el DOTP (T400), varían muy poco entre sí, lo cual es bueno, ya que esto daría pie a que sea más fácil la sustitución del DOTP por los plastificantes hidrogenados, en los procesos de plastificación que actualmente existen. Otro resultado importante en estas pruebas, se observó en la plastificación de la resina de PVC, al final del horneado del plastificante y la resina, ya que al sacar las pastillas y películas del horno, en algunos más que en otros, se notó cierta coloración cobriza debida al calentamiento al que se efectúa esta plastificación, siendo el más notorio el del T400, que incluso sufrió deformaciones, por otro lado, los plastificantes hidrogenados no muestran tan notoria esta coloración, por lo cual se concluye que, en el proceso de la plastificación de las resinas de PVC, tienen mayor resistencia al calor los plastificantes hidrogenados, que el DOTP.

Se concluye también, que el uso de los plastificantes obtenidos es muy viable ya que se obtuvieron plastificantes de propiedades muy similares al T400, tanto pre y post-plastificación, además su uso es una alternativa que podría solucionar el problema social actual del uso del DOTP y por ende al impacto nocivo a la salud por sus posibles efectos cancerígenos.

## Bibliografía.

- César León Felipe Ramírez Barajas. "Determinación de las condiciones de reacción de la hidrogenación del tereftalato de dioctilo (DOTP)", UNAM, 2010
- Patricia Bustamante Montes/ Beatriz Lizama Soberanis/ Gustavo Olaiz Fernández/ Flavio Vázquez Moreno. "Ftalatos y efectos en la salud". Revista internacional de la contaminación ambiental. Año/vol. 17, numero 004. Universidad Nacional Autónoma de México. Pag. 205-215.
- Gilbert W. Castellan. "Fisicoquímica" segunda edición Grupo Pearson Addison Wesley. Pag. 841 - 912.
- George Odian "Principles of polymerization" cuarta edición Wiley Interscience. Pag. 304-310.
- Ralph J. Fessender. "Química orgánica", 2^{da}. Edición, Grupo editorial Iberoamerica Pag. 466 – 473.
- Ernö Prestsch "Structure Determition of Organic Compounds" Tables of Spectral Data 4^a edición 2009
- Raúl Gómez y Rogelio Murillo "Espectroscopía infrarroja" Facultad de ciencias UNAM http://sistemas.fciencias.unam.mx~famInfrarroja.pdf
- http://www.ytsun.com/pages/product485048_en.htm (Propiedades del DOTP)
- http://www.chemland.ca/Plastic-Rubber-Additives/01-DOTP.html (Propiedades y aplicaciones del DOTP)
- http://www.unioviedo.es/QFAnalitica/trans/ExpquimDimas/PRACT_18_Espe ctroscopia_IR.pdf. (Análisis de espectroscopia)

# ANEXOS

#### Anexos

Enlace		Tensión	Flexión
C-H	alcanos	2960–2850 ( <i>f</i> )	1470–1350 ( <i>f</i> )
C–H	alquenos	3080-3020 (m)	1000–1675 (f)
C–H	aromáticos	3100-3000 (d)	870–675 (v)
C–H	aldehídos	2900-2700 (m, 2 bandas)	
C–H	alquinos	3300 (/)	
C≡C	alquinos	2260–2100 (v)	
C≡N	nitrilo	2260–2220 (v)	
C=C	alquenos	1680–1620 (v)	
C=C	aromáticos	1600–1450 (v)	
C=O	cetonas	1725–1705 (/)	
C=O	aldehídos	1740–1720 (ƒ)	
C=O	cetonas $\alpha$ , $\beta$ -insaturadas	1685–1665 ( <i>f</i> )	
C=O	aril-cetonas	1700-1680 (/)	
C=O	ésteres	1750–1735 ( <i>f</i> )	
C=O	ácidos	1725–1700 ( <i>f</i> )	
C=O	amidas	1690–1650 ( <i>f</i> )	
C=O	anhídridos	1850–1740 (f, 2 bandas)	
O-H	alcoholes ( <u>sin</u> puentes de H)	3650-3590 (v)	
O-H	alcoholes ( <u>con</u> puentes de H)	3600-3200 (f, ancha)	1620–1590 (v)
O-H	ácidos	3000–2500 (f, ancha)	1655-1510 (f)
N–H	aminas	3500-3330 (m)	
N–H	amidas	3500-3350 (m)	
C-O	alcoholes, éteres, ésteres	1300–1000 ( <i>f</i> )	
C-N	alquil-aminas	1220–1020 (d)	
C-N	aminas aromáticas	1360-1250 (/)	
C-N	amidas primarias (CO-NH2)	1600–1640 ( <i>f</i> )	
Intensidad de absorción:		(A) débil	(v) variable
() idei	(m) mould		
		C≡C C≡O C≡N C≡N	=C

# Anexo 1. Tabla de longitudes de onda para espectro de IR



## Anexo 2. Ecuación de Peng-Robinson y consideraciones empleadas para su uso

#### Ecuación de Peng Robinson



Volumen del reactor

$\subset$	$\supset$					
		L (reactor)	0.255	m		
		D(reactor)	0.1	m		
		V(reactor)	0.002	m³	2.00	L
		V(DOPT)	0.0003	m³	0.30	L
		V(H ₂ )	0.0017	m³	1.70	L
	J					

#### Anexo 3. Hoja se seguridad del DOTP





# RYMSAPLAS T-400 MR

#### DESCRIPCIÓN

El RYMSAPLAS T-400 ó DOTP **(DI-OCTIL TEREFTALATO)**, es un plastificante primario para resinas de PVC y que puede ser usado como substituto de DOP con mejores características. El RYMSAPLAS T-400 ofrece mejor comportamiento al ser menos volátil, más flexible a baja temperatura y proporciona mejor estabilidad.

#### **Propiedades Típicas**

Apariencia Punto de Flama °C Gravedad Específica a 20/20°C Viscosidad a 25°C, cps Líquido Claro 234 0.983 63

#### Especificaciones

Apariencia	Líquido Claro
Color Apha	25 max
Punto de Flama °C	230 min
Gravedad Específica a 20/20°	c 0.981 – 0.985
Acidez (c/Ac. Acético)	0.008 max
Humedad (%H ₂ O)	0.05 max

#### USOS

Las aplicaciones del RYMSAPLAS T-400 incluyen recubrimientos para conductores, vestiduras para automóviles, telas recubiertas, películas cristal, pisos PVC etc. El RYMSAPLAS T-400 esta disponible en grado alimenticio.

La información dada en este boletín es lo mas aproximada posible y cierta a nuestro saber, pero no deberá de ser considerada como garantía de uso. Es responsabilidad del usuario determinar la veracidad y hacer sus propias evaluaciones.

OFICINA BOULEVARD MANUEL AVILA CAMACHO No. 1994-1101 COL. SAN LUCAS TEPETLACALCO, TLALNEPANTLA EDO. DE MEXICO C.P. 54055 TEL: 1086-5970 FAX:1086-5980 PLANTA BOULEVARD TULTITLAN ORIENTE S/N BARRIO SANTIAGUITO TULTITLAN, EDO. DE MEXICO TEL. 1086-5940 FAX: 1086-5944

#### Anexo 4. Hoja de seguridad del Pantopox



Especificaciones				
Apariencia	Liquido claro			
Viscosidad a 25°C, cps	300 - 400			
No. Ácido, mg KOH/g	0,8 máx			
Gravedad Especifica a 25°C	0,988 - 0,996			
Índice de Yodo, (% Yodo)	1,8 máx			
Índice de Oxirano, (% Oxirano)	6,7 min			
Color APHA	150 máx			

# **PANTOPOX** es compatible con hule clorado, nitrocelulosa, neopreno, EVA y emulsiones y soluciones de PVC.

de dispersión para pigmentos.

la información proporcionada en este boletín es lo más aproximada posible, y cierta a nuestro saber, pero no deberá ser considerada como garantía de uso. Es responsabilidad del usuario determinar la veracidad y hacer sus propias evaluaciones.

> Resinas y Materiales, S.A. de C.V. Blvd. Manuel A. Camacho 1994-1101, Col. San Lucas Tepetlacialco, Tialnepantia, Estado de México, C.P. 54055 Tel. (5255) 1086 5988, 89 FAX (5255) 1086 5980



Anexo 5. Espectros de masas de los productos de la hidrogenacion de todos los catalizadores.

ILUSTRACIÓN 32. ESPECTRO DE MASAS DE LA SEXTA REACCIÓN (TRANS-1.4-CICLOHEXANDICARBOXILATO DE OCTILO).



ILUSTRACIÓN 33. ESPECTRO DE MASAS DEL TRANS-1,4-CICLOHEXANDICARBOXILATO DE OCTILO DE LA REACCIÓN CON PALADIO



ILUSTRACIÓN 34. ESPECTRO DE MASAS DEL CIS-1,4-CICLOHEXANDICARBOXILATO DE OCTILO DE LA REACCIÓN CON PALADIO







ILUSTRACIÓN 36. ESPECTRO DE MASAS DEL CIS-1,4-CICLOHEXANDICARBOXILATO DE OCTILO DE LA REACCIÓN CON PLATINO.



ILUSTRACIÓN 37. ESPECTRO DE MASAS DEL TEREFTALATO DE DIOCTILO DE LA REACCIÓN CON PLATINO.



ILUSTRACIÓN 38. ESPECTRO DE MASAS DEL TRANS-1,4-CICLOHEXANDICARBOXILATO DE OCTILO DE LA REACCIÓN CON RODIO



#### ILUSTRACIÓN 40. ESPECTRO DE MASAS DEL TRANS-1.4-CICLOHEXANDICARBOXILATO DE OCTILO DE LA REACCIÓN CON RUTENIO







ILUSTRACIÓN 41. ESPECTRO DE MASAS DEL CIS-1.4-CICLOHEXANDICARBOXILATO DE OCTILO DE LA REACCIÓN CON RUTENIO



ILUSTRACIÓN 42. ESPECTRO DE MASAS DEL TRANS-1.4-CICLOHEXANDICARBOXILATO DE OCTILO DE LA REACCIÓN CON PALADIO







ILUSTRACIÓN 44. ESPECTRO DE MASAS DEL TRANS-1.4-CICLOHEXANDICARBOXILATO DE OCTILO DE LA REACCIÓN CON PLATINO.





ILUSTRACIÓN 45. ESPECTRO DE MASAS DEL CIS-1,4-CICLOHEXANDICARBOXILATO DE OCTILO DE LA REACCIÓN CON PLATINO.

ILUSTRACIÓN 46. ESPECTRO DE MASAS DEL TEREFTALATO DE DIOCTILO DE LA REACCIÓN CON PLATINO.



ILUSTRACIÓN 47. ESPECTRO DE MASAS DEL TRANS-1.4-CICLOHEXANDICARBOXILATO DE OCTILO DE LA REACCIÓN CON RODIO.



ILUSTRACIÓN 48. ESPECTRO DE MASAS DEL CIS-1,4-CICLOHEXANDICARBOXILATO DE OCTILO DE LA REACCIÓN CON RODIO



ILUSTRACIÓN 49. ESPECTRO DE MASAS DEL TRANS-1.4-CICLOHEXANDICARBOXILATO DE OCTILO DE LA REACCIÓN CON RUTENIO.



ILUSTRACIÓN 50. ESPECTRO DE MASAS DEL CIS-1.4-CICLOHEXANDICARBOXILATO DE OCTILO DE LA REACCIÓN CON RUTENIO

# Anexo 6. Metodología empleada para medir las propiedades fisicoquímicas de los plastificantes.



Viscosidad

La prueba de viscosidad fue realizada a 25 °C, con ayuda de un viscosímetro Brookfield LUTP A04797, con 500 mL de la muestra en un vaso de precipitados de 600 mL, utilizando el usillo #1 y a 30 rpm.

• Densidad

ILUSTRACIÓN 51 VISCOSÍMETRO BROOKFIELD Esta prueba se realizó con densímetro a 20 °C con 250 mL de muestra en una probeta de 300 mL

• pH

El valor de pH del plastificante fue tomado de manera directa con un potenciómetro digital portátil conductronic pH10



ILUSTRACIÓN 52. KARL FISCHER, 870 TRITINO PLUS

Porcentaje de humedad

Esta propiedad se midió con un valorador Karl Fischer para la determinación volumétrica de agua, Metrohm Swiss modelo 870 KF Titrino plus. Con 20 mL de muestra.

• Prueba de color

La prueba de color se realizó con un Hellinge Tester en el cual el valor de color se otorga comparando la muestra con estándares de valores numéricos asignados



ILUSTRACIÓN 53. MEDIDOR DE PUNTO DE FLAMA DE COPA ABIERTA

según el nivel de color.

• Punto de flama

Se realizó con un medidor de punto de flama de copa abierta y una pequeña porción de muestra, colocado la muestra a calentamiento y midiendo la temperatura a la cual la mezcla volátil hacia ignición. • Resistividad eléctrica.

Se realizó en un medidor de resistencia de copa, con 42 mL de muestra y haciendo pasar corriente eléctrica a través de la muestra.

• Porcentaje de compuestos volátiles

Éste análisis se hizo colocando aproximadamente 10 mL de muestra de cada plastificante por separado en un horno a 150 °C por una hora y registrando el peso final de la muestra, para así obtener el porcentaje de peso perdido.

• Plastificación

Las pruebas de plastificación se realizaron con la siguiente metodología:

∘ Pesar 100 gramos de resina de PVC.

 Agregar 50 gramos de plastificante y, como estabilizador térmico, 3 gramos de pantopox (Anexo 4. Hoja de seguridad del Pantopox)

o Mezclar perfectamente, hasta obtener una consistencia lechosa.

o Calentar en un horno a 180 °C hasta que la mezcla se solidifique.

## Anexo 7. Obtención de la ecuación cinética de 2° orden.

Tipo de reacción de 2° orden

$$aA + bB => Producto$$

$$\frac{c_{A_0}}{a}=\frac{c_{B_0}}{b}$$
.....(1)

Despejando 
$$C_{B_0}$$
 de (1)

$$C_{B_0} = \frac{b}{a} C_{A_0}$$
 .....(1.1)  $C_B = \frac{b}{a} C_A$ .....(1.2)

$$r = \frac{dC_A}{d\theta} = k C_A C_B \dots \dots (2)$$

Sustituyendo (1.2) en (2)

$$r = \frac{-dC_A}{d\theta} = k \frac{b}{a} C_A^2 \dots (3)$$

Integrando (4)

$$-\int_{C_{A_0}}^{C_A}\frac{dC_A}{c_A^2}=k\,\frac{b}{a}\int_0^\theta d\theta\,.....(4)$$

$$\frac{1}{c_a} - \frac{1}{c_{a_0}} = \frac{b}{a} \ k \ t \dots \dots (5)$$

Α	Reactivo
2	Coeficiente
a	estequimétrico de A
В	Reactivo
h	Coeficiente
b	estequimétrico de A
C	Concentración inicial
$\mathbf{v}_{A_0}$	de A
6-	Concentración inicial
$c_{B_0}$	de B
C _A	Concentración de A
C _B	Concentración de B
Ŀ	Constante de
ĸ	reacción
r	Rapidez de reacción
θ	Tiempo