
UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO
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INGENIERÍA
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Resumen

El presente trabajo es un estudio numrico de la conveccin natural en contenedores cil-
ndricos esbeltos. Se estudia el caso cuando la flotacin es la nica fuerza de cuerpo que
afecta el movimiento del fluido y cuando fuerzas de rotacin o fuerzas electromagnticas
modifican el comportamiento del flujo, generando una gran variacin en las inestabilidades
hidrodinmicas del flujo.

El propsito de esta tesis es desarrollar modelos computacionales para profundizar en el
conocimiento de flujos convectivos. Este estudio se realiza mediante la solucin numrica
de las ecuaciones de balance de masa cantidad de movimiento y energa en coordenadas
cilndricas. Se emplearon las tcnicas de volumen finito y mtodos espectrales para la mod-
elacin computacional de la conveccin en un contenedor cilndrico lleno de agua. Se valid
los resultados numricos con observaciones experimentales reportadas en la literatura, lo
que permiti que se tuviera una mayor certeza del resto de la informacin del flujo obtenida
por la solucion numerica y que no fue accesible de manera experimental.

Se propuso una formulacin hbrida para resolver las ecuaciones gobernantes de la conveccin
en coordenadas cilndricas. Se utiliza el mtodo de Fourier Galerkin en la direccin azimutal
y el mtodo de volumen finito para la direccin radial y axial. Un metodo de correccin de
la presin para el desacople de la ecuaciones de Navier-Stokes tambien fue propuesto.

Adicionalmente se explora el efecto de fuerzas electromagnticas y fuerzas de rotacin uti-
lizando estas herramientas numricas desarrolladas.
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Abstract

This work is a numerical study of natural convection in slender cylinders. We study the
case when buoyancy is the only body force affecting the fluid motion and when rotational
forces or electromagnetic forces change the flow behavior, generating a large variation in
the hydrodynamic instabilities of the flow.

The purpose of this thesis is to develop computational models to deepen the knowledge
of convective flows. This is done by numerical solution of the mass balance equations of
momentum and energy in cylindrical coordinates. The techniques of finite volume and
spectral methods for computational modeling of convection in a cylindrical container filled
with water were used. Numerical results were validated with experimental observations
reported in the literature, which had allowed certainty of the rest of the information of
flow obtained by the numerical which was not accessible experimentally.

A hybrid formulation was proposed to solve the governing equations of convection in
cylindrical coordinates, using the Fourier method Galerkin in the azimuth direction and
finite volume method for radial and axial direction, also a pressure correction method for
Navier-Stokes equations the decoupling was proposed.

Additionally, we explore the effect of electromagnetic forces and rotational forces devel-
oped using these numerical tools.
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Introduction

Natural convection is the motion of a fluid generated by density gradients in presence of
a volumetric force. The density gradient can be caused by inhomogeneous concentrations
of a solute or by non uniform temperature fields. Examples of volumetric forces are
the gravitational, centrifugal, Coriolis or Lorentz forces or combinations of them. Natural
convection is the continuum counterpart of the Archimedes force. Pioneering observations
on the natural convection of extended shallow layers of a thick oil heated from below were
made by Benard in 1900 and revealed a rich dynamical behavior that included convective
cells with clearly defined spatial patterns, stability exchange between different patterns,
bifurcations, and steady and time-dependent flows. Lord Rayleigh devised a theoretical
model considering that the fluid layer is unbounded in the horizontal directions and and
confined between two horizontal planes separated a distance h. He also introduced a
fundamental non-dimensional parameter that describes the qualitative behavior of the
flow and has since been called the Rayleigh number. Its formal definition is

Ra =
ρgβ∆Th3

αν
, (1)

where ρ, g, and β are respectively the density, acceleration of gravity and the volumetric
expansion coefficient. The characteristic temperature difference is ∆T . One of the main
conclusions of the analysis is the determination of a critical Rayleigh number equal to 1708
below which no motion occurs in the fluid layer. Lord Rayleigh’s study has been profusely
expanded, generalized and specialized by numerous studies in the almost 100 years since
it was originally published. A comprehensive summary of the work on the subject up
1993 has been presented by Koschmieder (1993) [1]. The influence of the lateral walls
of the fluid container on the stability of the flow was incorporated in the analysis after
reliable numerical solutions to the stability equations were available. It is interesting to
observe that the Rayleigh number does not include a characteristic horizontal length,
and also that this geometrical feature is incorporated into the problem via the boundary
conditions. As expected, the effect of the lateral walls is to stabilize the flow and the
critical Rayleigh number is larger for more slender containers where the influence of the
lateral walls is larger. See Catton and Buell ([2]). Also, accurate algorithms for the
numerical integration of the full conservation equations have been proposed and nonlinear
analyses are now available.

The study of natural convection in cylindrical geometries is important for many problems
present in industry like for instance, flow in heat exchangers, nuclear reactor cooling,

9



10 Introduction

mixers and crystal growth processes. It is this last application that we mostly have in
mind in the present investigation. It has been noted that the quality of optical and
electronic properties of semiconductor crystals grown with the Czochralski or Bridgman
methods depend strongly on the compositional homogeneity which in turn is dictated by
the dynamics of the molten materials from which the crystal is obtained. For this reason,
understanding the transport properties of the natural convective flows is of paramount
importance for the semiconductor industry. In this same context, it is known that the
presence of other body forces during the crystallization process can change the qualitative
properties of the natural convective flow of the molten material and this can be used to
control the convective flow dynamics. Studies on the effects of the Coriolis force when
the solidification process takes place in a rotating frame of reference or Lorentz force due
to the presence of electromagnetic effects while the crystallization occurs, are available in
the literature, but the comprehensive picture of their effect on the quality of the crystals
is far from being complete.

The present investigation starts with the statement of the conservation equations for mass,
momentum and energy. As is well known, a general analytical solution to this set of equa-
tions under the initial and boundary conditions of interest is not known. In this thesis,
we use and develop several methodologies for the numerical solution of the conservation
equations of fluid dynamics in cylindrical coordinates. These include finite volume meth-
ods and Fourier- Galerkin methods with Chebyshev polynomials: We proposed a hybrid
approach involving both of these techniques. Each methodology has advantages and dis-
advantages from the points of view of the accuracy of the solution and the computational
effort. For this reason, one or more methods can be identified as the most appropriate for
specific applications.

The flow patterns and instabilities of the flow are described and a detailed validation
of the numerical solution with experimental observations tailor made for the purpose
by a member of our group (Miguel Lopez), is also presented [3]. Since experimental
observations are in general limited due to technical reasons, the numerical solutions we
can be extremely useful to fill in the gaps of information and define a much more complete
picture of the physical phenomenon. Indeed, numerical simulations and experimental
observations, constitute complementary tools that validate each other and give certitude
to the results.

Chapter I of this thesis is a description and a literature’s review of the equations of fluid
mechanics. The assumptions for modeling natural convection are mentioned.

From chapter II to IV is the description of the methodologies to solve the equations of
fluid dynamics in cylindrical coordinates.

Chapter II describes the algorithm of the finite volume method. This method produces
low-order solutions but is characterized by its simplicity of implementation and that can
easily handle problems with discontinuities in the boundary conditions of the system. For
this reason the finite volume method is widely applied in this work.

In chapter III we describe the spectral methods for solving the governing equations of
fluid dynamics. Spectral methods are techniques that provide very accurate solutions.
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For problems in cylindrical coordinates the Fourier spectral Galerkin method is the best
methodology that guarantees the periodicity of the solution.

Based on the experience gained working with finite volume methods and spectral methods,
in Chapter IV we present a proposed hybrid methodology with Fourier Galerkin and
finite volume method for the solution of the equations of fluid dynamics in cylindrical
coordinates. We used Fourier Galerkin in the azimuthal direction and finite volume for
the radial an axial directions.

In chapter V we present the study of natural convection in a cylindrical container heated
from below and cooled from above. All the numerical tools developed and described in
Chapters II-IV were very useful to made this analysis.

In chapter VI we present the study of other configurations of interest for the natural
convection problem. The effect of a rotational force or a magnetic field in the case of
electrically conductive fluid is considered.





Chapter 1

Governing equations for natural
convection

Convection in general means fluid motions caused by temperatures differences with the
temperature gradient pointing in any direction.

In natural convection, fluid surrounding a heat source receives heat, becomes less dense
and rises. The surrounding, cooler fluid then moves to replace it. This cooler fluid is then
heated and the process continues, forming a convection current; this process transfers
heat energy from the bottom of the convection cell to top.

The driving force for natural convection is buoyancy, a result of differences in fluid density.
Because of this, the presence of gravity or an equivalent force (such as acceleration,
centrifugal force or Coriolis force) is essential for natural convection.

To study natural convection should be need it a little review of heat transfer and fluid
mechanics as the theory of convection rests on both these subjects.

The equations which describes the motion of a Newtonian fluid are, the continuity equa-
tion, the Navier-Stokes equations, the energy equation, and some equations of state. For
purpose of summary the governing equations of natural convection will be presented here,
they could be found in many books [4], [5].

1.1 The fluid dynamics equations

Consider a fluid in which the density ρ is a function of position ~r = (xk), k = 1, 2, 3.
Let uk (k = 1, 2, 3) the components of the fluid velocity ~u and p, T are the pressure and
the temperature of the fluid respectively. The equations governing these variables are
the principles of mass, momentum, and energy conservation. In writing the conserva-
tion equations, we shall use the notation of cartesian tensors with the usual summation
convention and the vector operator notation.

1.1.1 Conservation of mass

The equation expressing conservation of mass is

∂ρ

∂t
+

∂

∂xk
(ρuk) = 0 (1.1)

13



14 Chapter 1. Governing equations for natural convection

Equation (1.1) is usually called the continuity equation.

In many practical cases of fluid flows, the variation of the density of the fluid may be
ignored, in such cases the fluid is said to be incompressible. For an incompressible fluid
the equation of continuity reduces to

∂uk
∂xk

= 0 (1.2)

using vector operator notation, conservation of mass rewrites as follows

∇ · ~u = 0 (1.3)

1.1.2 Conservation of momentum

We can write the conservation of momentum equations as follows

ρ
∂uj
∂t

+ ρuk
∂uj
∂xk

= − ∂p

∂xj
+

∂

∂xj

(
λ
∂uk
∂xk

)
+

∂

∂xi

[
µ

(
∂ui
∂xj

+
∂uj
∂xi

)]
+ ρfj (1.4)

where µ, λ are the coefficient of viscosity and the second coefficient of viscosity respec-
tively, fj is the j th component of whatever external force may be acting on the fluid.

For an incompressible fluid in which µ is constant, equation (1.4) simplifies to

ρ
∂uj
∂t

+ ρuk
∂uj
∂xk

= − ∂p

∂xj
+ µ

∂

∂xk

(
∂uj
∂xk

)
+ ρfj (1.5)

in vector operator notation

ρ

(
∂~u

∂t
+ (~u · ∇) ~u

)
= −∇p+ µ∇2~u+ ρ~F (1.6)

Equations 1.6 are called the Navier-Stokes equations.

1.1.3 Conservation of energy

The equation which expresses the conservation of energy is

ρ
∂e

∂t
+ ρuk

∂e

∂xk
= −p∂uk

∂xk
+

∂

∂xj

(
k
∂T

∂xj

)
+ λ

(
∂uk
∂xk

)2

+ µ

(
∂ui
∂xj

+
∂uj
∂xi

)
∂uj
∂xi

(1.7)

using the equation of state
e = e(ρ, T ) = cV T

making use of the equation of continuity, neglecting dissipations terms, for an incompress-
ible fluid, we can simplify the foregoing equation to the form

ρ
∂

∂t
(cV T ) + ρuk

∂

∂xk
(cV T ) =

∂

∂xj

(
k
∂T

∂xj

)
(1.8)

or
∂T

∂t
+ (~u · ∇)T = α∇2T (1.9)

for a constant coefficients k, ρ, cV , where α = k/(ρcV ).
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1.2 The Boussinesq approximation

Equations (1.1),(1.4) and (1.7) are the basic hydrodynamic equations to describes the
fluid motion of a compressible fluid. For natural convection density variations provides the
driving mechanism of the convective motions, therefore should be solved as compressible
problem.

However for many fluid flows the density variations is important only in the body force
term of conservation of momentum equations. In all other places in which the density
appears in the governing equations,the variations of density leads to an insignificant effect.

The Boussinesq approximation consist in neglecting any variation the variation with the
temperature of the material properties of the fluid such as the kinematic viscosity, the
thermal diffusivity, and the volume expansion coefficient. This may be considered to be
reasonable where relatively small density difference exist over moderate distances. The
density is also considered constant except in the body force term of the Navier-Stokes
equations. The later term is the prime importance since it represents the force which
causes the motion. The variation in density is neglected in the continuity equation as well
as in the energy equation.

In the frame of Boussinesq approximation the fluid is treated as incompressible. The
equations governing the flow of an incompressible fluid are 1.3,1.6. If gravity provides the
only significant body force the Navier-Stokes equations are

∂~u

∂t
+ (~u · ∇) ~u = −∇p/ρ0 + ν∇2~u+ (1 +

δρ

ρ0
)~g (1.10)

we take ~g = −gêz, here êz is the unit vector acting in the positive z direction, and its
assumed that the gravity acts in the negative z direction.

In thermal convection the density variation is caused by a temperature variations in the
fluid. The density is usually expressed in terms of the temperature by the following
relationship

δρ = −β(T − T0) (1.11)

β is the coefficient of thermal expansion of the fluid, and T0 is the mean temperature of
the fluid which exist at the static equilibrium. Substituting this value

∂~u

∂t
+ (~u · ∇) ~u = −∇p/ρ0 + ν∇2~u+ βg(T − T0)êz (1.12)

In order to achieve a closed mathematical system, the energy equation (1.9) must be
employed.

1.3 Non dimensional form of the equations for natu-

ral convection problems

The governing equations for natural convection are commonly written in dimensionless
form, its means that we choose characteristics quantities to scale the system. We can use
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a characteristic length L , the temperature difference ∆T , the velocity uc =
√
gβ∆TL

namely the free fall velocity, and a reference time L/uc. With these scales we defined the
dimensionless quantities as follows

~x∗ =
~x

L
, t∗ =

t

L/uc
, ~u∗ =

~u

uc
(1.13)

p∗ =
p

ρ0u2c
, T ∗ =

T − T0
∆T

(1.14)

The governing equations in dimensionless form is written below

∇ · ~u = 0 (1.15)

∂~u

∂t
+ (~u · ∇) ~u = −∇p+

(
Pr

Ra

) 1
2

∇2~u+ T êz (1.16)

∂T

∂t
+ (~u · ∇)T =

(
1

PrRa

) 1
2

∇2T. (1.17)

The flow is characterized by two dimensionless parameters, the Rayleigh number and the
Prandtl number, which is defined as

Ra =
gβ∆TL3

να
, Pr =

ν

α
(1.18)

In order to achieve a closed system the boundary conditions must be specified.



Chapter 2

Finite volume method to solve fluid
dynamics equations in cylindrical

geometries

The finite volume method is a numerical technique that has been used intensively to
obtain approximate solutions of partial differential equations. The finite volume method
has been described in great detail in many books for instance, [6], [7],[8] and [9].

The basic idea behind the finite volume discretization strategy is as follows: First, divide
the domain in a set of non overlapping control volumes, then integrate the incumbent
equation on each volume using a linear approximation for the variation of the functions
inside the volume. The resulting expression, is the discrete version of the equation which
has the form of a linear system of algebraic equations. This system is then solved in a
exact or in approximate way, using for example direct or iterative solvers.

In the next section we describe briefly the finite volume method to solve the fluid dynamic
equations in cylindrical coordinates.

2.1 General scalar transport equation

A scalar transport equation is a partial differential equation that describes transport
phenomena such as heat, mass, momentum transfer, that has the form

∂φ

∂t
+∇ · (~uφ) = ∇ · (Γ∇φ) + S, (2.1)

where φ is a generalized variable, Γ is a generalized diffusion coefficient. The second term
on the left and the first term on the right hand side of the previous equation are the con-
vective and diffusive terms respectively, S is the source term. In cylindrical coordinates,
equation [2.1] takes the form

∂φ

∂t
+

1

r

[
∂(rurφ)

∂r
+
∂(uθφ)

∂θ
+
∂(ruzφ)

∂z

]
=

Γ

r

[
∂

∂r

(
r
∂φ

∂r

)
+

∂

∂θ

(
1

r

∂φ

∂θ

)
+

∂

∂z

(
r
∂φ

∂z

)]
+S.

(2.2)
where ur, uθ and uz are the velocity components.
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Chapter 2. Finite volume method to solve fluid dynamics equations in

cylindrical geometries

2.1.1 Governing equations as a transport equations

In this subsection, we give the specialized form of the transport equation for mass, mo-
mentum, and energy in cylindrical geometry.

Mass conservation
1

r

∂

∂r
(rur) +

1

r

∂uθ
∂θ

+
∂uz
∂z

= 0. (2.3)

Momentum conservation

∂ur
∂t

+ (~u · ∇)ur −
u2θ
r

= −∂p
∂r

+

(
Pr

Ra

) 1
2
(
∇2ur −

ur
r2
− 2

r2
∂uθ
∂θ

)
+ fr, (2.4)

∂uθ
∂t

+ (~u · ∇)uθ +
uθur
r

= −1

r

∂p

∂θ
+

(
Pr

Ra

) 1
2
(
∇2uθ −

uθ
r2

+
2

r2
∂ur
∂θ

)
+ fθ, (2.5)

∂uz
∂t

+ (~u · ∇)uz = −∂p
∂z

+

(
Pr

Ra

) 1
2

∇2uz + fz, (2.6)

where fr, fθ and fz are the components of the body force term.

Energy conservation

∂T

∂t
+ (~u · ∇)T =

(
1

PrRa

) 1
2

∇2T. (2.7)

where

~u · ∇ = ur
∂

∂r
+
uθ
r

∂

∂θ
+ uz

∂

∂z
(2.8)

and

∇2 =
1

r

∂

∂r

(
r
∂

∂r

)
+

1

r2
∂2

∂θ2
+

∂2

∂z2
(2.9)

The previous equations can be obtained from the general expression (equation 2.1 ) using
the parameters listed in table 2.1

Equation φ Γ S
Mass 1 0 0

r-Momentum ur
(
Pr
Ra

) 1
2 u2θ

r
− ∂p

∂r
+
(
Pr
Ra

) 1
2
(
−ur
r2
− 2

r2
∂uθ
∂θ

)
+ fr

θ-Momentum uθ
(
Pr
Ra

) 1
2 −uθur

r
− 1

r
∂p
∂θ

+
(
Pr
Ra

) 1
2
(
−uθ
r2

+ 2
r2
∂ur
∂θ

)
+ fz

z-Momentum uz
(
Pr
Ra

) 1
2 −∂p

∂z
+ fz

Energy T
(

1
PrRa

) 1
2 0

Table 2.1: Parameter definitions to obtain the conservation equations (equations 2.3-2.7)
from the general expression (equation 2.1)
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2.2 Discrete equations: Integrating over a control

volume

The discrete form of the governing equations is obtained by integrating all terms of the
general advection-diffusion equation [2.1] over each control volume.

In symbols: ∫
V

∂φ

∂t
dV +

∮
~uφ · n̂dA =

∮
Γ∇φ · n̂dA+

∫
V

Sφ dV (2.10)

Using the Gauss theorem, the volume integrals in the partial differential equation that
contain a divergence term are expressed in terms of surface integrals.∫

V

∇ · ~adV =

∫
A

~a · n̂dA (2.11)

Where n̂ is the normal outwards to the surface and A is the area enclosing the volume V.
Figure 2.1 shows a control volume for a mesh in the (r, θ) plane of cylindrical coordinates.
The nomenclature used throughout this document is illustrated in figure 2.1, lowercase
letters are used to denote variables evaluated at the boundaries to the volume’s contour.
Uppercase letters are used to denote variables calculated at the center of the volume.

Figure 2.1: Control volume in the (r, θ) plane of cylindrical coordinates

In this study, all integrals are approximate, using the midpoint rule as follows: Convection
and diffusion terms are taken implicitly, and the source term explicitly.

Integration of first term of equation [2.10]∫
∂φ

∂t
dV = (φP − φ0

P )
δV

δt
. (2.12)

The Green’s theorem is used to calculate the volume integral in the convective terms as
the sum of integrals over the surface of the volume∫

∇ · (~uφ)dV =

∫
(~uφ) · n̂dA =

(uθ)eAeφe − (uθ)wAwφw + (ur)nAnφn − (ur)sAsφs + (uz)fAfφf − (uz)bAbφb.
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the continuity equation is integrated to yield

(uθ)eAe − (uθ)wAw + (ur)nAn − (ur)sAs + (uz)fAf − (uz)bAb = 0. (2.13)

In order to calculate the variables on the volume’s surface we use a second order central
approximation

φe =
φE + φP

2
, φw =

φW + φP
2

, (2.14)

φn =
φN + φP

2
, φs =

φS + φP
2

, (2.15)

φf =
φF + φP

2
, φb =

φB + φP
2

. (2.16)

The convective terms in the general scalar transport equations need be calculated carefully
since they are their nonlinear part in the momentum equations. Other approximations to
calculate the convection terms are not discussed here, they are shown in the recommended
books of the finite volume method [6], [7],[8] and, [9].

For the diffusive terms∫
V

∇ · (Γ∇φ)dV =

∫
A

(Γ∇φ) · n̂dA =

(
Γ

r

∂φ

∂θ

)
e

Ae −
(

Γ

r

∂φ

∂θ

)
w

Aw+(
Γ
∂φ

∂r

)
n

An −
(

Γ
∂φ

∂r

)
s

As +

(
Γ
∂φ

∂z

)
f

Af −
(

Γ
∂φ

∂z

)
b

Ab.

These terms are calculated with a central differences scheme which is also a second order
approximation (

Γ

r

∂φ

∂θ

)
e

=
Γ

rp

φE − φP
δθ

,

(
Γ

r

∂φ

∂θ

)
w

=
Γ

rp

φP − φW
δθ

, (2.17)

(
Γ
∂φ

∂r

)
n

= Γ
φN − φP

δr
,

(
Γ
∂φ

∂r

)
s

= Γ
φP − φS
δr

, (2.18)(
Γ
∂φ

∂z

)
f

= Γ
φF − φP

δz
,

(
Γ
∂φ

∂r

)
b

= Γ
φP − φB

δz
. (2.19)

The volume and its surface are calculated in the following way

δV =
(r2n − r2s)

2
δθδz = rpδrδθδz; rp =

(rn + rs)

2
.

An = rnδθδz; As = rsδθδz; Ae = Aw = δrδz; Af = Ab = rpδrδθ.

Finally, the source term is ∫
SφdV = S̄P δV. (2.20)



2.2. Discrete equations: Integrating over a control volume 21

With the approximations described in the previous paragraphs, we have the following
discrete version of the general scalar transport equation [2.1]

(φP − φ0
P )
δV

δt
+ (uθ)eAe(

φE + φP
2

)− (uθ)wAw(
φW + φP

2
) + (ur)nAn(

φN + φP
2

)− (2.21)

(ur)sAs(
φS + φP

2
) + (uz)fAf (

φF + φP
2

)− (uz)bAb(
φB + φP

2
) =(

Γ

rp

φE − φP
δθ

)
Ae −

(
Γ

rp

φP − φW
δθ

)
Aw +

(
Γ
φN − φP

δr

)
An −

(
Γ
φP − φS
δr

)
As+(

Γ
φF − φP

δz

)
Af −

(
Γ
φP − φB

δz

)
Ab + S̄P δV.

This equation can be transformed in to

aPφP = aNφN + aSφS + aWφW + aEφE + aFφF + aBφB + SP . (2.22)

where the aP ’s coefficients are

aE =
Γ

rp

Ae
δθ
− (uθ)eAe

2
, (2.23)

aW =
Γ

rp

Aw
δθ

+
(uθ)wAw

2
, (2.24)

aN =
ΓAn
δr
− (ur)nAn

2
, (2.25)

aS =
ΓAs
δr

+
(ur)sAs

2
, (2.26)

aF =
ΓAf
δz
− (uz)fAf

2
, (2.27)

aB =
ΓAb
δz

+
(uz)bAb

2
, (2.28)

aP = aE + aW + aN + aS + aF + aB +
δV

δt
, (2.29)

SP = φ0
P

δV

δt
+ S̄δV. (2.30)

Note that this system of equations is not complete. In order to close the system, we apply
the boundary conditions for the domain. The solution of this linear system of equations
is an approximate numerical solution of the partial differential equation.

2.2.1 Boundary conditions

In many problems, the boundary conditions are represented by a given value of φ in
the boundary; this cases are known as boundary conditions of the first kind or Dirichlet
boundary conditions. In other cases, the the normal derivative of φ is known in the
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boundary. These cases are boundary conditions of the second kind or Neumann boundary
conditions. For problems in cylindrical coordinates, we have periodic boundary conditions
in the angular direction.The required algorithm to specify the boundary conditions is
described in the subsequents paragraphs. The origin of the frame of reference needs a
similar treatment like a boundary condition.

Dirichlet boundary conditions

Let us consider that φ is known on the external radius and denoted by φb. In the discrete
equation for all volumes adjacent to that boundary, the unknown value φN is interpolated
from φb as

φn = φb ≈
φN + φP

2
⇒ φN = 2φb − φP . (2.31)

Substituting in equation 2.22 we have

a∗PφP = a∗NφN + aSφS + aWφW + aEφE + aFφF + aBφB + S∗P , (2.32)

where

a∗P = aP + aN ; a∗N = 0; S∗P = SP + 2aNφb (2.33)

Neumann boundary condition

In this case the normal derivative φ′b is known at the exterior radius. The value of φN is
interpolated in the following way

φ′b =

(
∂φ

∂r

)
n

≈ φN − φP
δr

⇒ φN = φP + δrφ′b. (2.34)

Substituting in equation 2.22 we have

a∗PφP = a∗NφN + aSφS + aWφW + aEφE + aFφF + aBφB + S∗P , (2.35)

where

a∗P = aP − aN ; a∗N = 0; S∗P = SP + aNδrφ
′
b (2.36)

Calculations involving the origin of coordinates

When polar (or cylindrical) coordinates are used, a singularity is introduced at the origin
of coordinates. Calculations involving this point must be treated differently from other
points to avoid the singularity.

Different treatments have been proposed (see [10] or [11]). In the present study, an
artificial boundary condition for the origin is used as shown in the next figure.
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Figure 2.2: Axis treatment in cylindrical coordinates

The firs proposed is applied as follows

φi,0 = φi,1 (2.37)

Where φi,0 is an artificial boundary value at the origin and φi,1 sis the value at the
first internal radius. It is an explicit boundary condition which is basically a Newman
boundary condition at the pole.

The second methodology for the axis treatment is a streamwise average boundary condi-
tion

φ(i,0) = (φ(i,1,k) − φ(i+nθ/2,1))/2 (2.38)

2.3 Implementing finite volume method to solve the

fluid dynamics equations

Once the discrete version the general scalar transport equation resulting from the finite
volume discretization has been obtained, we describe the strategy to solve the coupled
fluid dynamics equations.

We apply a pressure correction method to determined the pressure, that is an iterative
procedure described as follows: We start with a guess for the pressure, with this pres-
sure the solutions of the Navier-Stokes equations don’t satisfied the continuity equation,
then we correct the pressure and we correct the velocity iteratively until we have small
divergence in each control volume.

There are many decoupling strategies to solve the fluid dynamics equations which are not
going to be described here. The SIMPLEC method has the advantages that the pressure
correction equation is not to ill conditioned and these iterative procedure guarantees a
low divergence convergence rate.

The velocity components ui of the momentum equations, satisfies special cases of the
general scalar transport equation [2.1] if we take the nonlinear terms of the equations in
a semi implicit way for each time iteration.
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In the fluid dynamics equations the pressure gradient is part of the source term therefore
we cannot solve the equations unless the pressure is known. Since there is not an explicit
equation for the pressure, the continuity equation should be used to calculate the correct
pressure distribution.

It is convenient to use a staggered mesh to avoid unphysical solutions [7]. In a staggered
mesh, the velocities are calculated at the surfaces and scalar fields are calculated at the
center of the volumes. Figure 2.3 illustrate a staggered mesh in cylindrical coordinates

Figure 2.3: Staggered mesh in cylindrical coordinates

2.3.1 Pressure correction methods

The discrete version of the general scalar transport equation resulting from the finite
volume[2.22] can be written as

anun =
∑

anbunb + b+ An(pP − pN), (2.39)

where b is all source terms without the pressure gradient, An is the area where the pressure
force is acting. Coefficients anb are calculated as described above by taking into account
the staggered mesh arrangement. We can write similar equations for each velocity com-
ponent.

With an initial pressure field guess p∗, we solve the velocity equations. The result is an
expression for the velocity field u∗

anu
∗
n =

∑
anbu

∗
nb + b+ An(p∗P − p∗N). (2.40)

In general this solution for the velocity field u∗ does not satisfy the continuity equation.
In a second step, we correct the guess for the pressure until the resulting velocity field
satisfies the continuity equation using the following procedure.

Let p′ the pressure correction, corresponding to u∗ we defined the correction u′, such that

p = p∗ + p′ y u = u∗ + u′. (2.41)
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From 2.39 and 2.40, we get

anu
′
n =

∑
anbu

′
nb + An(p′P − p′N). (2.42)

Simplifications of the term
∑
anbu

′
nb defines a series of methods with names having the

generic root SIMPLE (Semi Implicit Pressure Linked Equations). This method was orig-
inally proposed by Patankar [9].

2.3.2 SIMPLEC method

In these method the equation 2.42 is simplified by subtracting the term
∑
anbu

′
n, from

the two sides of equations 2.39

(an −
∑

anb)u
′
n =

∑
anb(u

′
nb − u′n) + An(p′P − p′N), (2.43)

and neglecting the term
∑
anb(u

′
nb − u′n)

un = u∗ + dn(p′P − p′N), (2.44)

where

dn =
An

an −
∑
anb

. (2.45)

Corresponding equations are written for each velocity component, in the next step we sub-
stitute the resulting equations in the continuity equation to obtain the following equation
for the pressure correction.

aPp
′
P = aNp

′
N + aSp

′
s + aWp

′
W + aEp

′
E + aFp

′
F + abp

′
B + bp, (2.46)

where
aN = Andn (2.47)

aP = aE + aW + aN + aS + aF + aB (2.48)

bp = (u∗θ)eAe − (u∗θ)wAw + (u∗r)nAn − (u∗r)sAs + (u∗z)fAf − (u∗z)bAb (2.49)

Since no correction is necessary for the velocity in the boundary, the pressure correction
is zero at the boundary

In summary the SIMPLEC strategy comprises in the following steps

1. Start with a guess for the variables u∗r, u
∗
θ, u
∗
z, p

∗,T ∗

2. Calculate the coefficients for the balance equations

3. Solve the equations for velocity components

4. Calculate coefficients for pressure correction

5. Solve the equations for the pressure correction p′
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6. Apply the correction for the pressure p = p′ + p∗

7. Correct the velocities

8. Solve equations for other variables T ∗

9. Repeat until convergence is reached.



Chapter 3

Fourier Galerkin with Chebyshev
pseudo spectral method to solve

fluid dynamics equations in
cylindrical geometries

In this chapter we will show the way to implement spectral methods to solve the fluid
dynamics equations in cylindrical geometries. First, the basis to implement spectral meth-
ods to solve second order differential equations is presented. It includes, the discretized
equations and the treatment of boundary conditions using Galerkin and collocation meth-
ods. Then, we present a direct method to solve the linear system of equations resulting
from Chebyshev collocation method. Finally, we show the procedure to solve the fluid
dynamics equations.

3.1 Spectral methods

Spectral methods is the generic name given to numerical techniques to solve differential
equations using basis of the function space. The most common formulations used in
spectral methods are Galerkin and collocation methods. It can be demonstrated that the
convergence of spectral methods is exponential while the convergence of finite difference is
only algebraic (see [12]). The idea is to approximate the exact solution of the differential
equation as a linear combination of known basis functions.

In spectral methods, the solution of an equation is expressed in terms of trigonometric
functions eikx for periodic problems, and Chebyshev Tk (x) or Legendre Lk (x) polyno-
mials, for non periodic problems. To solve the fluid dynamic equations in cylindrical
coordinates we can use, Fourier-Galerkin method in the azimuthal direction, and pseudo
spectral Chebyshev collocation method for the axial and radial directions.

Many books show how to apply spectral methods to solve partial differential equations in
Cartesian coordinates [13], [14], [12], but the case in cylindrical coordinates has not been
profusely.

27
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3.1.1 The method of weighted residuals

Consider a differential equation

Lu(x) = f(x) over the interval a ≤ x ≤ b, (3.1)

with the boundary conditions

Bu(x) = g on x = a and x = b. (3.2)

Here, L is a second order partial differential operator and B denotes a Dirichlet, Newman
or Robin boundary conditions

The weighted residual method uses a finite number of functions {φi(x)}Ni=0 to approximate
the solution to equation 3.1 as a truncated series expansion.

A trial solution is defined as follows:

uN (x) =
N∑
n=0

ûnφn (x) (3.3)

The trial (or basis) functions are assumed to be known, then, only the expansion coeffi-
cients must be determined to. The trial functions span is a finite-dimensional subspace
of square integrable functions.

Useful sets of basis functions must have the following properties:

1. Easy to compute. For example trigonometric functions and polynomials both cer-
tainly satisfy this criterion

2. Rapid convergence. This means that any solution can be represented to arbitrarily
high accuracy by taking a sufficiently large truncation N parameter .

3. Completeness. The basis functions must be sufficient to represent all functions in
the class we are interested in. A rigorous completeness proof is too complicated
to discuss here, Fourier series and Chebyshev polynomials do have the property of
completeness.

The goal is to construct uN(x) such that the residual

r(x) = LuN(x)− f(x) (3.4)

is minimized by the scalar product

(wk(x), r(x)) =

∫ b

a

wk(x)(Lu(x)− f(x))dx, k = 0, 1, ..., N (3.5)

for some choices of weight functions wk(x).

Weighted residuals method is a general theory that describes many types of different
numerical methods; the particular choice of the trial and weight functions defines the
specific method. Spectral methods are classified according test functions as follows:
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• Galerkin-type methods: The test functions are equal to the trial functions, i.e.

wk = φk . (3.6)

• Collocation method: Test functions are Dirac’s delta functions at some special points
called collocations points

wk = δ (x− xk) (3.7)

The collocations points xk are selected points on (a, b). The choice of such points is not
completely arbitrary. There is a set of collocation points that gives an optimal solution
methodology.

In the collocation method, the residual is exactly zero at the collocation points whereas
in the Galerkin-type method the residual is zero in the mean.

3.2 Approximation of the solution of a differential

equation with the Galerkin method

Galerkin methods apply when the trial functions φk satisfy the boundary conditions as-
sociated, i.e.:

B−φk = g− at x = a, and B+φk = g+ at x = b. (3.8)

Then, according to the general formulation expressed in equations (3.1), (3.3) and (3.5),
the Galerkin equations are

(r, φi) = (LuN − f, φi) = 0, i = 0, . . . , N (3.9)

replacing uN by the series expansion

N∑
k=0

ûk (Lφk, φi) = (f, φi) , i = 0, . . . , N (3.10)

The scalar product (Lφk, φi) is evaluated using the properties of the trial functions. In
particular, if they are orthogonal functions the following relation holds,

(φk, φl) = ckδk,l (3.11)

where ck is some constant and δk,l is the Kronecker delta. The scalar product (f, φi) is

equal to cif̂i where f̂i, i = 0, . . . , N , is the expansion coefficient for f .
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3.2.1 Fourier Galerkin method in cylindrical coordinates

In this section, we describe some details is to solve partial differential equations in cylin-
drical coordinates using the Fourier Galerkin method. More complete discussion can be
found in references [15], [12], [16], The Fourier Galerkin method is naturally applied in
the azimuthal direction since the harmonic functions satisfy periodic boundary conditions,
and grants full periodicity of the solution.

As an example to illustrate the method, let us consider a two dimensional Poisson equation
in cylindrical coordinates:

∂2φ

∂r2
+

1

r

∂φ

∂r
+

1

r2
∂2φ

∂θ2
= f. (3.12)

First, we approximate φ as a truncated Fourier expansion in the azimuthal coordinate

φ =

N/2−1∑
k=−N/2

φ̂k(r)e
ikθ (3.13)

Substituting in equation (3.12) we obtain

N/2−1∑
k=−N/2

(
∂2φk
∂r2

+
1

r

∂φk
∂r
− k2

r2
φk

)
eikθ = f (3.14)

Using the Galerkin method and applying the orthogonality condition for the Fourier series,
the result is a system of partial differential equations for the expansion coefficients (Fourier
modes).

∂2φk
∂r2

+
1

r

∂φk
∂r
− k2

r2
φk = fk for k = −N/2, N/2− 1 (3.15)

This process can be described as translation of the problem from the physical space to the
Fourier space. The resulting equations can be solved using a pseudo spectral collocation
method with Chebyshev polynomials [12]. Combining these two method we can solve
the Poisson equation in cylindrical coordinates. In the next section, we will describe the
Chebyshev collocation method.

The coefficients, fk are the Fourier coefficients of f and can be found from the orthogonal
projection (f, eikθ) which is the well known Fourier Transform. The Fourier Galerkin
method requires the evaluation of integrals to compute the orthogonal projections. This
calculation procedure can be combined with the Fast Fourier Transform algorithm to
optimize the calculation. An alternative procedure is to represent the function f in terms
of grid point values by way of an interpolant. Such approximations are called nodal.
Nodal approximations are used to introduce of a rule that we used to find the modal
coefficients in the next section.
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3.2.2 Discrete Fourier transform

In this section we present a methodology to obtain the Fourier modes of a series expansion
of a real function φ defined on a discrete set of points (collocation points). First we present
some properties of the Fourier modes of the Fourier expansion of a real function.

• In general, Fourier modes are complex, i.e. φ̂k = ak + ibk

• If φ is a real function, then the Fourier modes satisfy the following properties:

φ̂0 = a0 is real,

φ̂−N/2 = a−N/2 is real,

and for k = 1, N/2− 1
φ̂−k = ak − ibk

.

• If φ is real, then the derivative of φ is real

∂φ

∂θ
=

N/2−1∑
k=−N/2

ikφ̂ke
ikθ, (3.16)

and the Fourier coefficients for the derivative of φ must satisfy the conditions of real
Fourier expansion.

Direct forward Fourier transform

The truncated Fourier series expansion of φ is:

φ =

N/2−1∑
k=−N/2

φ̂ke
ikθ, 0 ≤ θ ≤ 2π (3.17)

where φ̂k = ak + ibk for all k. φ is determined at the N collocations points

θj =
2πj

N
j = 0, ..., N − 1. (3.18)

Then, for φj j = 0, ..., N − 1

φj =

N/2−1∑
k=−N/2

φ̂ke
ikθj , (3.19)

and therefore

φj =

N/2−1∑
k=1

(ak + ibk)e
ikθj +

N/2−1∑
k=1

(ak − ibk)e−ikθj + a0e
i0 + a−N/2e

−iθjN/2. (3.20)
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Given that φ is assumed to be a real function, using the assumptions for a real function
Fourier expansion

φj = a0 +

N/2−1∑
k=1

2 [ak cos(kθj)− bk sin(kθj)] + a−N/2 cos(πj) (3.21)

Equation (3.21) can be interpreted as a matrix multiplication that evaluates φ at the
collocation points from the Fourier modes.

Inverse Fourier transform

The objective of the inverse Fourier transform is calculate the Fourier modes at the
collocation points for j = 0, ..., N − 1.

φ̂k =
1

N

N−1∑
j=0

φje
−ikθj (3.22)

or

φ̂k =
1

N

N−1∑
j=0

φj(cos(kθj)− i sin(kθj)) (3.23)

Specifically

φ̂0 =
1

N

N−1∑
j=0

φj (3.24)

φ̂k = ak + ibk =
1

N

N−1∑
j=0

φj cos(kθj) + i
1

N

N−1∑
j=0

φj(− sin(kθj)) (3.25)

φ̂−N/2 =
1

N

N−1∑
j=0

φj(cos(Nθj/2)) (3.26)

Equations 3.24-3.26 is a matrix multiplication to calculate the Fourier modes of φ expan-
sion from its values at the collocation points.

3.3 The collocation method

In this section we give a brief summary of the procedure to obtain the solution of a
differential equations with Chebyshev collocation spectral method. Different algorithms
to compute the derivative matrices are discussed and the treatment for pole conditions at
r=0 are also presented.
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The collocation equations were obtained by considering a truncated expansion and by
making the associated residual r = LuN − f equal to zero at the inner collocation points
xi, i = 1, . . . , N − 1. The collocation equations are

L

(
N∑
n=0

ûnφn(xi)

)
= f(xi), i = 1, . . . , N − 1, (3.27)

which constitute a linear system of N + 1 equations for the N + 1 coefficients ûk, k =
0, . . . , N . The system is closed with the boundary conditions

B−uN(x0) = g−, B+uN(xN) = g+ (3.28)

However, an equivalent formulation is generally preferred. It consist of considering the
values uN(xi) at the collocation points xi, i = 0, . . . , N , as unknowns rather than the
coefficients ûk. This is possible since the expansion coefficients ûk, k = 0, . . . , N , can be
expressed in terms of the uN(xi), i = 0, . . . , N .

As consequence, we can construct differentiation formulas expressing the derivative, of
any order, at a given collocation point in terms of the values of the function itself at all
collocation points. The derivatives of the function u(x) , in the collocation points u

(p)
N (xi)

are calculated in the following manner

u
(p)
N (xi) =

N∑
j=0

d
(p)
i,j uN(xj). (3.29)

If u(x) is defined over the interval −1 ≤ x ≤ 1, the Gauss-Lobatto collocation points are
calculated by

xj = cos

(
jπ

N

)
(3.30)

for those collocation points first and second order derivative matrices are the optimum
positions since they have analytical expressions [12].

3.3.1 Matrix derivatives

The derivatives of u(x) at the collocation points xi can be calculated in many different
ways. Here we present the most commonly used expressions.

First order derivative

d
(1)
i,j =

c̄i
c̄j

(−1)i+j

xi − xj
0 ≤ i, j ≤ N, i 6= j

d
(1)
i,i =− xi

2(1− x2i )
, 1 ≤ i ≤ N − 1

d
(1)
0,0 =− d(1)N,N =

2N2 + 1

6
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Second order derivative

d
(2)
i,j =

(−1)i+j

c̄j

x2i + xixj − 2

(1− x2i )(xi − xj)2
, 0 ≤ i ≤ N − 1

0 ≤ j ≤ N, i 6= j

d
(2)
i,i =− (N2 − 1)(1− x2i ) + 3

3(1− x2i )2
, 1 ≤ i ≤ N − 1

d
(2)
0,j =

2

3

(−1)j

c̄j

(2N2 + 1)(1− xj)− 6

(1− xj)2
, 1 ≤ j ≤ N

d
(2)
N,j =

2

3

(−1)j+N

c̄j

(2N2 + 1)(1 + xj)− 6

(1 + xj)2
, 1 ≤ j ≤ N

d
(2)
0,0 =d

(1)
N,N =

N4 − 1

15

When problem is a defined in an arbitrary interval r0 ≤ x ≤ r1 we use the following
coordinate transformation

r = a+ bx, a =
r1 + r0

2
, b =

r1 − r0
2

(3.31)

Which maps the function and the differential equation over the interval −1 ≤ x ≤ 1. For
cylindrical coordinates in an annular domains we can use the matrix derivatives defined
above. Only for a region containing the origin we need a different form of the matrix
derivatives which includes a special treatment for the axis of coordinates.

Radial derivative matrix

To calculate the derivative matrix using collocation technique two alternatives have been
proposed. In order to avoid coordinate singularities, we do not define the point at r = 0
as a collocation point.

Gauss Radau points

The first methodology consist in considering the interval −1 < x ≤ 1, and use the Gauss
Radau points defined by

yj = cos

(
jπ

N + 1

)
. (3.32)

A matrix derivative, based on those points,can be constructed

dr
(1)
i,j =

1 + yj
1 + yi

d
(1)
i,j −

δi,j
1 + yj

, (3.33)

where d
(1)
i,j is the first order derivative based on Gauss Lobatto points. It should be noted

the if we use N Gauss Radau collocation points,N+1 Gauss Lobatto collocation points
must be used.
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Odd, Even, derivatives matrices

The second option to calculate a radial derivative matrix is based on the parity of the
Fourier modes. Taking Nx = 2Nr + 1 collocations points over the interval [−1, 1] we
construct d(1)i,j , d(2)i,j derivatives and calculate a matrix derivative over the interval (0, 1].
Radial derivatives matrices are constructed as follows:

First order derivative

dr
(1)
i,j = d

(1)
i,j + d

(1)
i,Nx−j; 0 ≤ i ≤ Nr, 0 ≤ j ≤ Nr, k = even

dr
(1)
i,j = d

(1)
i,j − d

(1)
i,Nx−j; 0 ≤ i ≤ Nr, 0 ≤ j ≤ Nr, k = odd

Second order derivative

dr
(2)
i,j = d

(2)
i,j + d

(2)
i,Nx−j; 0 ≤ i ≤ Nr, 0 ≤ j ≤ Nr, k = even

dr
(2)
i,j = d

(2)
i,j − d

(2)
i,Nx−j; 0 ≤ i ≤ Nr, 0 ≤ j ≤ Nr, k = odd

3.3.2 Boundary conditions

The collocation method fort the interior points leads to an algebraic system for the un-
knowns uN(xi), i = 0, . . . , N . The boundary values u(x0) = u0 and u(xN) = uN are
given by the boundary conditions. We add the contributions of the information at the
boundaries to get a closed the linear system of equations.

Let us consider for example the one dimensional Poisson equation

d2u

dx2
= h, −1 < x < 1 (3.34)

Using the collocation method, for the inner collocations points i = 1, N − 1 we have

N∑
l=0

d2i,lul = hi, (3.35)

and taking the values at the boundary

N−1∑
l=1

d2i,lul + d2i,0u0 + d2i,nun = hi, (3.36)

the linear system of equations is closed. It means that the form of the linear system of
equations present changes dependent on the combination of boundary conditions. It must
be remarked that different set of boundary conditions ca be considered, as is described as
follows
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Dirichlet-Dirichlet boundary conditions

For Dirichlet-Dirichlet boundary conditions, the values of the dependent variables at the
boundary are known, and therefore the form of the linear system of equation is

N−1∑
l=1

d̃2i,lul = h̃i, (3.37)

where

d̃2i,l = d2i,l, (3.38)

and

h̃i = hi − d2i,0u0 − d2i,nun. (3.39)

Dirichlet-Neumann boundary conditions

For Dirichlet-Neumann boundary conditions, one value at the boundary is known and the
other can be can calculated from the Newman boundary condition

N∑
l=0

d10,lul = g0. (3.40)

Extracting the first and the last term of the sum

N−1∑
l=1

d10,lul + d10,0u0 + d10,nun = g0 (3.41)

u0 is defined by

u0 =
1

d10,0
g0 −

1

d10,0

(
N−1∑
l=1

d10,lul + d10,nun

)
. (3.42)

Substituting this expression in equation (3.36), the linear system of equations has the
form

N−1∑
l=1

d̃2i,lul = h̃i (3.43)

where

d̃2i,l = d2i,l −
d2i,0d

1
0,l

d10,0
(3.44)

and

h̃i = hi − d2i,nun +
d2i,0d

1
0,nun

d10,0
−
d2i,0g0

d10,0
(3.45)
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Neumann-Neumann boundary conditions

For Neumann-Neumann boundary conditions, the values at the boundary can be obtained
from Neumann boundary conditions at the initial point

N∑
l=0

d10,lul = g0 (3.46)

N−1∑
l=1

d10,lul + d10,0u0 + d10,nun = g0, (3.47)

an at the final point
N∑
l=0

d1n,lul = gn (3.48)

N−1∑
l=1

d1n,lul + d1n,0u0 + d1n,nun = gn (3.49)

This is a linear system of equations whose solution are

u0 =
d1n,ng0 − d10,ngn

ex
−
d1n,n
ex

N−1∑
l=1

d10,lul +
d10,n
ex

N−1∑
l=1

d1n,lul (3.50)

un = −
d1n,0g0 − d10,0gn

ex
+
d1n,0
ex

N−1∑
l=1

d10,lul −
d10,0
ex

N−1∑
l=1

d1n,lul (3.51)

where

ex = d10,0d
1
n,n − d10,nd1n,0 (3.52)

Substituting expressions (3.50) and (3.51) in equation 3.36, the form of the linear system
of equations for Neumann-Neumann boundary conditions is

N−1∑
l=1

d̃2i,lul = h̃i, (3.53)

where

d̃2i,l = d2i,l +
d2i,0
ex

(−d1n,nd10,l + d10,nd
1
n,l) +

d2i,n
ex

(d1n,0d
1
0,l − d10,0d1n,l) (3.54)

and

h̃i = hi −
d2i,0
ex

(d1n,ng0 − d10,ngn)−
d2i,n
ex

(−d1n,0g0 + d10,0gn). (3.55)
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Boundary conditions in cylindrical geometries

In order to illustrate the treatment of boundary conditions in cylindrical geometries, let
us consider the one dimensional Poisson equation in cylindrical coordinates

∂2φ

∂r2
+

1

r

∂φ

∂r
= f. (3.56)

Using collocation method, for the inner collocations points i = 1, Nr we have,

nr∑
l=0

(d2i,l +
d1i,l
ri

)φl = fi. (3.57)

Defining

dr2i,l = d2i,l +
d1i,l
ri
, (3.58)

we have a linear system of equations with the following form

nr∑
l=0

dr2i,lφl = fi. (3.59)

Is very important take the contribution of the boundary conditions. For an annular
domain the implementation of boundary condition is similar as that described in the last
section 3.3.2. When the domain includes the origin we must use matrix derivatives for
the the pole. When the origin is part of the domain there is no boundary condition at
the pole, the only boundary condition being at the exterior radius. In the notation of the
spectral method, the exterior radius is r0, while the nearest point to origin is rNr

Dirichlet boundary conditions

For Dirichlet boundary conditions the form of the linear system is(see equation 3.59)

nr∑
l=1

dr2i,lφl = fi − dr2i,0φ0 (3.60)

Neumann boundary condition

For Neumann boundary condition the value at the boundary is calculated in the following
manner

nr∑
l=0

d10,lφl =
nr∑
l=1

d10,lφl + d10,0φ0 = g0 (3.61)

φ0 =

(
g0−

nr∑
l=1

d10,lφl

)
/d10,0 (3.62)
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therefore the form of the linear system of equations is

nr∑
l=1

(dr2i,l − (dr2i,0/d
1
0,0)d

1
0,l)φl = fi − ((dr2i,0/d

1
0,0) ∗ g0 (3.63)

3.4 Solution of the linear system of equations: Diag-

onalization method

Applying spectral method to a discretized differential equation, gives as result a linear
system of equations which is required to be solved with high accuracy. For this reason
a direct method is preferred to an iterative method. In spectral method for collocation
with Chebyshev polynomials and Gauss Lobatto points, the matrix of the linear system
of equations can be diagonalized. As is well known this property allows one to rewrite the
matrix in terms of its eigenvectors and eigenvalues. This procedure is described in detail
in references [12] and [17] here we present only a brief summary.

For an efficient application of the matrix-diagonalization technique in the two-dimensional
case, it is convenient to write the discrete system to be solved in the following matrix form,

DxU + UDTy − σU = H, (3.64)

where U is the matrix of dimension N̄x × N̄y, with the inner unknowns N̄x = N̄x − 1 and
N̄y = N̄y − 1 , i.e.

U = [uN(xi, yi)], i = 1, ..., N̄x, j = 1, ..., N̄y, (3.65)

In equation (3.64) Dx and Dy are matrices of dimension N̄x × N̄y , analogous to the
one-dimensional case described in equations (3.38),(3.44),(3.54). H is an N̄x× N̄y matrix
containing the inner values of f and the boundary conditions.

Let us denote by Λx and Λy the diagonal matrices whose whose entries are the eigenvalues
Λx,i, i = 1, ..., N̄x and Λy,j, j = 1, ..., N̄y of the matrices Dx and Dy respectively, so that

Dx = PΛxP−1, Dy = QΛyQ−1, (3.66)

where P and Q are the matrices whose columns are the eigenvectors of matrix (3.38).

In summary, the calculation steps of the algorithm are:

1. Calculate H̃ = P−1H

2. Calculate Ĥ = H̃(QT )−1

3. Calculate Û with

ûi,j =
ĥi,j

Λx,i + Λy,j − σ
, i = 1, ..., N̄x, j = 1, ..., N̄y, (3.67)
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4. Calculate Ũ = ÛQT

5. Calculate U = PŨ

6. Calculate the boundary values

The computational effort associated with the matrix-diagonalization procedure is made
of two parts. The first part consists of the calculation of the eigenvalues and eigenvectors,
as well as the inversion of the eigenvector matrices. This part is called preprocessing
and it has to be made only once. In the second part, described in the above algorithm,
essentially four matrix-matrix products have to be performed.

3.5 Numerical solution of fluid dynamics equations

using spectral methods

In this section we will show how to implement spectral methods to the numerical solution
of the conservation equations of fluid dynamics.

Consider the mass conservation equation of a Newtonian incompressible fluid

∇ · ~u = 0 (3.68)

the momentum conservation equation (Navier-Stokes equations) in non-dimensional form
is:

∂~u

∂t
+ ~u · ∇~u = −∇p+

1

Re
∇2~u+ ~F in Ω (3.69)

where ~u is the velocity vector, p is the static pressure, ~F a body force and Re the Reynolds
number characteristic of the flow.

The conservation equations are a system of four parabolic, non-linear, coupled partial
differential equations. Many authors used spectral method for the numerical solution of
incompressible flows, see references [18], [19], [20] for a detailed description.

The numerical solution using Chebyshev pseudo-spectral (or collocation) method has the
following properties

• High spectral accuracy

• No spurious modes other than the physical one (constant mode)

• No staggered grids.

• No special treatment of convective terms.
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To begin, first we put the conservation equation in the following form

∇ · ~u = 0 in Ω (3.70)

∂~u

∂t
+N(~u) = −∇p+

1

Re
L(~u) + ~F in Ω (3.71)

Specific initial and boundary conditions ~W are given for the velocity field, such that

~u = ~W on ∂Ω and ~u0 = ~W 0 t=0 in Ω (3.72)

with

∇ · ~W 0 = 0 in Ω. (3.73)

The first step to derive a Poisson equation for the pressure from equations (3.70), and
(3.71)

∇2p = ∇ · [−N(~u) + ~F ] in Ω. (3.74)

A consistent boundary condition is required to solve this elliptic equation 3.74 because
no natural condition exist. A straight consistent Neumann condition can be derived form
form equations 3.70, 3.71

∂p

∂n
= n̂ · [−∂~u

∂t
−N(~u) +

1

Re
L(~u) + ~F ] on ∂Ω (3.75)

In this condition Karniadakis [21] have separated the diffusion term L(~u) in solenoidal
part, approximated by an explicit scheme, and the irrotational part approximated by an
implicit scheme

L(~u) = ∇(∇ · ~u)−∇× (∇× ~u) (3.76)

The time accuracy for the global solution is directly dependent of the treatment of this
pressure boundary condition [21].

3.5.1 Projection method

Since the conservation equations are a coupled partial differential equations, a procedure
to handle this difficulty is required. There are many recent papers discussing the solution
of the fluid dynamics equations in cylindrical geometries using the spectral method.The
details of these methods can be found in references [20], [19] and [22].

The implementation of the algorithm to decouple the governing equations involves the
solution of three partial differential equations. The fractional steps procedure is as follows

(i) The predictor for the pressure: before each time integration, solve a preliminary pres-
sure p̄n+1 according to the following expression obtained from the Navier-Stokes and
continuity equations

∇2p̄n+1 = ∇ · [−2N(~un) +N(~un−1) + ~F n+1] in Ω, (3.77)
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with

∂p

∂n
= n̂ ·

[
−3~wn+1 + 4~un − ~un−1

2∆t
− 2N(~un) +N(~un−1) +

1

Re
[2L(~un)− L(~un−1)] + ~F n+1

]
.

(3.78)

(ii) Solve implicitly for a predictor ~u∗ for the velocity from the momentum equation,
including this pressure field

3~u∗ − 4~un + ~un−1

2∆t
+2N(~un)−N(~un−1) = −∇p̄n+1+

1

Re
∇2~u∗+ ~F n+1 in Ω, (3.79)

with the actual boundary condition

~u∗ = ~W n+1 on ∂Ω. (3.80)

(iii) The correction step consists of the explicit evaluation of the final divergence free
velocity field defined by

3~un+1 − 3~u∗

2∆t
= −∇(pn+1 − p̄n+1) in Ω̄ = Ω ∪ ∂Ω (3.81)

and
∇ · ~un+1 = 0 in Ω (3.82)

with
n̂ · ~un+1 = n̂ · ~W n+1 = n̂ · ~u∗ on ∂Ω (3.83)

This step is solved through an intermediate variable φ, defined as

φ =
2∆t

3
(pn+1 − p̄n+1). (3.84)

Taking the divergence of equation (3.81) with (3.84) yields a Poisson equation for φ

∇2φ = ∇ · ~u∗ in Ω, (3.85)

with the consistent Neumann boundary condition

∂φ

∂n
= 0 on ∂Ω. (3.86)

Finally, update the corrected pressure and velocity fields in Ω̄ = Ω ∪ ∂Ω

pn+1 = p̄n+1 +
3

2∆t
φ, (3.87)

~un+1 = ~u∗ −∇φ. (3.88)

This method is very powerful because it includes high order integration methods and a
spectral discretization schemes.

The design of the spectral method is very important since, a properly constructed spectral
method can be used to obtain solutions very accurate and efficient, but a poorly designed
spectral method may perform much worse than simpler finite difference or finite element
techniques.



Chapter 4

Mixed Fourier Galerkin – finite
volume method to solve the fluid
dynamics equations in cylindrical

geometries1

In this chapter, we describe a hybrid method based on the combined use of Fourier
Galerkin and finite volume techniques to solve the fluid dynamics equations in cylindrical
geometries. The proposal is to use a Fourier expansion in the angular direction, partially
translating the problem to the Fourier space and then solve the resulting equations using
a finite volume technique. We also describe an algorithm required to solve the coupled
mass and momentum conservation equations similar to a pressure correction method [23]
that was adapted for the present formulation .

Using the Fourier Galerkin method for the azimuthal direction has two advantages. First,
it has a high order approximation of the partial derivatives in the angular direction, and
second, it naturally satisfies the azimuthal periodic boundary conditions. In contrast, us-
ing finite volume method in the radial and axial directions, allows one to handle boundary
conditions with discontinuities these directions. Also, the resulting linear system of equa-
tions are band diagonal which are easier to solve fast and efficiently. The benefits of the
mixed method are illustrated with sample examples.

4.1 Introduction

The formulation of fluid dynamics equations is based on the physical concepts of mass
and momentum conservation and constitutive equations, and they form a coupled sys-
tem of nonlinear partial differential equations. When a numerical solution is sought, the
equations for continuous variables must be turned into their approximate discrete ver-
sions. The fact that the conservation equations are coupled is an important feature that
determines the method for the numerical solution.

1The concepts contained in this chapter are described in the article ’José Núñez, Eduardo Ramos and
Juan M. Lopez. Mixed Fourier-Galerkin-finite-volume method to solve the fluid dynamics equations in
cylindrical geometries. Fluid Dynamics Research. 2012’

43
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In this chapter, we present a numerical scheme to solve the fluid dynamics equations in
cylindrical geometries. The spatial discretization of the equations is made using a mixed
formulation based on the Fourier Galerkin spectral method and the finite volume method.
The decoupling strategy used to solve the momentum equations is an iterative procedure,
first calculating an intermediate velocity field based on an estimated pressure field and
then obtaining appropriate corrections to satisfy the continuity equation.

Several numerical algorithms to solve the fluid dynamics equations in the cylindrical coor-
dinate system have been reported in the literature. The well known discretization meth-
ods, finite difference/finite volume have been used in these algorithms, see for instance [10],
[24], [11]. These studies explore the convenience of using discretization schemes like central
differences, high-order compact or energy-conservative. Also, different treatments to avoid
the singularity in the axis have been presented and discussed. The decoupling strategies
examined in these investigations include the fractional step or projection method [25] and
the SIMPLE algorithm introduced by Patankar [23]. With these methods, it is possible to
find the solution to the a pressure equation by a sequence of steps. Briefly, the projection
method can be described as follows: First, ignoring the pressure gradient and the continu-
ity equation, the Navier-Stokes equations are solved to obtain a first guess of the velocity
field; then, the velocity distribution is projected over a divergence free space, this is done
by solving a Poisson equation for the pressure with Neumann boundary conditions. An-
other decoupling strategy frequently used together with the finite volume method is the
Semi Implicit Method for Pressure Linked Equations (SIMPLE), this method is an itera-
tive procedure to solve the system of equations and consists of the following steps. First,
the momentum equations are solved using a guessed value for the pressure to get a first
approximation for the velocity; a pressure corrections is then calculated using the mass
conservation equation. The process is repeated until the velocity satisfies the divergence
free condition. Many improvements that accelerate the convergence rate of this iterative
procedure are available in the literature [26], [27], [28]. A major feature to be considered
in the implementation of finite differences in cylindrical coordinates is the periodicity in
the azimuthal direction. To satisfy the periodic boundary condition, the domain must be
chosen to exceed the period length by one cell width resulting in an overlap of the first
an the last cells. The velocity, and the pressure are to be set to coincide in the overlap
cells. The resulting linear system of equations is a slightly perturbed tridiagonal system,
that can be solved, for instance, using Gaussian elimination [29].

If the system under analysis can be conveniently described in terms of a spatially cyclic co-
ordinate, the harmonic functions are the natural basis to represent the dependent variables
since these functions automatically and individually satisfy the periodic conditions. The
Fourier representation and the corresponding identification of the expansion coefficients
are the basic idea behind the spectral methods. The numerical solution of incompressible
viscous flows in cylindrical domains using spectral methods have been published in many
studies, like for instance references [30], [18], [19]. A further advantage of this representa-
tion is that for an equivalent computational effort, the solution is more accurate since the
error decays exponentially. For this reason, Fourier spectral methods have been used for
direct numerical simulations of turbulent flows [13] or as a tool for an stability analyses
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in fluid flows [31]. In most works, the spatial discretization for the azimuthal direction
is done with Fourier series, while Chebyshev or Legendre polynomials are used for the
radial and axial directions. Examples of these analyses are references [12] or [32]. The
pressure-velocity decoupling strategies that have been used with the spectral methods
representation are for example, projection methods [20] and influence matrix [33]. In
spite of their advantages, spectral methods are not well suited for problems with discon-
tinuities in the axial or radial directions due to the occurrence of Gibbs phenomenon.
The linear system of equations resulting from the spectral discretization methods is full
and therefore, more difficult to solve that. In these cases it turns out that using a finite
volume discretization is more convenient.

A mixed formulation that includes finite volume and Fourier spectral method can take
advantage of the two techniques described in the previous paragraph. Barbosa and Daube
[34] implemented a mixed Fourier/finite-difference method to solve fluid dynamics equa-
tions in cylindrical geometries. Their work is closely related to the present study and
deserves a somewhat detailed description. The integration is based upon the use of
mimetic discrete first-order operators (divergence, gradient, curl). The non-linear terms
were discretized in such a way that they are energetically neutral. No artificial boundary
conditions are required on the axis r = 0 since they used a ad hoc definition for the diver-
gence operator at the centers of the cells adjacent to the axis, and for the definition of the
axial component of the vorticity on the axis. The velocity-pressure coupling is handled
by means of an incremental projection method. It must be observed however that these
fractional step methods introduce an error on the tangential component of the velocity
along the boundary, which is sometimes referred as a spurious numerical boundary layer.
They solved the flow in a circular lid driven cavity and the flow in a cylindrical tank with
a rotating lid.

In this work, we propose a mixed method to solve the conservation equations in a cylin-
drical domain. Fourier expansion is used in the azimuthal direction, and finite volume
discretization is the radial and axial directions. Also, we implement a pressure correction
method to handle velocity-pressure coupling in fluid dynamics equations. The idea is to
calculate pressure and velocity corrections for each Fourier mode of the solution’s expan-
sion until mass conservation is fullfilled. This can be made because the linear system of
equations obtained in the finite volume discretization is sparse, band diagonal due to the
local approximation.

In the next section, we describe the procedure to implement a mixed Fourier-Galerkin and
finite volume method to discretize the fluid dynamics equations in cylindrical coordinates.
In a following section, we present the pressure decoupling strategy. Finally we describe
examples of solutions obtained with the hybrid method.
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4.2 Conservation equations and Fourier expansion

The conservation equations for an incompressible fluid in cylindrical coordinates (θ, r, z)
with velocity (u, v, w) can be written as

∂v

∂t
+ (~u · ∇)v − u2

r
= −∂p

∂r
+ Γ

(
∇2v − v

r2
− 2

r2
∂u

∂θ

)
+ fr , (4.1)

∂u

∂t
+ (~u · ∇)u+

uv

r
= −1

r

∂p

∂θ
+ Γ

(
∇2u− u

r2
+

2

r2
∂v

∂θ

)
+ fθ , (4.2)

∂w

∂t
+ (~u · ∇)w = −∂p

∂z
+ Γ∇2w + fz, (4.3)

1

r

∂

∂r
(rv) +

1

r

∂u

∂θ
+
∂w

∂z
= 0 , (4.4)

where

~u · ∇ = v
∂

∂r
+
u

r

∂

∂θ
+ w

∂

∂z
, (4.5)

and

∇2 =
1

r

∂

∂r

(
r
∂

∂r

)
+

1

r2
∂2

∂θ2
+

∂2

∂z2
. (4.6)

We start by rewriting the equations for the velocity components in a convenient form for
the analysis. The expression for the azimuthal velocity component is

∂u

∂t
+Nu = −1

r

∂p

∂θ
+ Γ∇2u+ fu , (4.7)

where
Nu = (~u · ∇)u+

uv

r
, (4.8)

is the nonlinear term and

fu = Γ

(
− u
r2

+
2

r2
∂v

∂θ

)
+ fθ , (4.9)

is the body force plus terms that arise in the cylindrical coordinate formulation. Similar
expressions can be written for the axial and radial components.

We approximate the velocity, pressure, N and f with truncated Fourier series expansions
in the azimuthal direction as follows

u =

K/2−1∑
k=−K/2

ûke
ikθ, v =

K/2−1∑
k=−K/2

v̂ke
ikθ, w =

K/2−1∑
k=−K/2

ŵke
ikθ, θ ∈ [0, 2π) , (4.10)

p =

K/2−1∑
k=−K/2

p̂ke
ikθ, N =

K/2−1∑
k=−K/2

N̂ke
ikθ, f =

K/2−1∑
k=−K/2

f̂ke
ikθ, θ ∈ [0, 2π) , (4.11)
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Figure 4.1: Staggered arrangement: (a) control volume in the physical space, and (b)
control volume in Fourier space.

where ûk, v̂k, ŵk, N̂k and f̂k, are the Fourier expansion coefficients of the corresponding
variables. In the previous expressions, K collocation points are used to evaluate the
discrete Fourier transform.

Substituting Fourier expansions (4.10) and (4.11) into equations (4.1)–(4.4), the governing
equations can be written in terms of the Fourier modes.

4.3 Discrete equations

The mass conservation equation (4.4) is expressed in terms of the Fourier modes as

ik

r
û+

1

r

∂

∂r
(rv̂) +

∂ŵ

∂z
= 0, for all k . (4.12)

For simplicity, the subindex k has been omitted and also, the range for k is only specified
when required to avoid confusion.

The resulting equations are discretized with the finite-volume method. All equations
are integrated on a control volume (Fig. 4.1), where the integral over the volume is
approximated by the middle-point rule. As is commonly implemented in finite-volume
techniques, we use a staggered arrangement for the velocity components and scalar fields
(see Fig. 4.1a). In the present method we have also used a staggered arrangement for the
Fourier modes (see Fig. 4.1b). Note that since the Fourier projection is only made in the
azimuthal direction, the staggered mesh is only shown in the v̂, ŵ space.

Using the notation of Fig. 4.1, the discretized mass conservation equation is∫
V

(
ik

r
û+

1

r

∂

∂r
(rv̂) +

∂ŵ

∂z

)
dV = ik

rP
ûP δV + 1

rP

rnv̂n−rsv̂s
δr

δV +
ŵf−ŵb
δz

δV ,

= ik
rP
ûP δV + v̂nAn − v̂sAs + ŵfAs − ŵbAb , (4.13)
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where δV = rP δrδθδz, An = rnδθδz, As = rsδθδz, and Af = Ab = rP δrδθ.

The equation for the u-component, in terms of the Fourier modes, with the time derivative
approximated using the backward-Euler method, is

û− û0
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u . (4.14)

Rearranging, we have(
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Integrating over a control volume gives(
1

δt
+ Γ
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r2P

)
ûP δV = Γ
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ûN−ûP
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δz

Af − ûP−ûB
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+
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f̂ 0
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− N̂0

uP
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û0P
δt

)
δV − ik

rP
p̂P δV ,

which can be expressed as the following linear system

aP ûP = aN ûN + aSûS + aF ûF + aBûB + SûP −
ik

rP
p̂P δV, (4.17)

where

aN = ΓAn
δr
, aS = ΓAs

δr
, aF = Γ

Af
δz
, aB = ΓAb

δz
, (4.18)

aP = aN + aS + aF + aB +
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1
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+ Γ k2

r2P

)
δV, (4.19)

SûP =
(
f̂ 0
uP
− N̂0

uP
+

û0P
δt

)
δV. (4.20)

Applying analogous approximations and discretizations to the radial momentum conser-
vation equation (v-velocity component), the following linear system is obtained

aP v̂P = aN v̂N + aS v̂S + aF v̂F + aB v̂B + Sv̂P − (p̂N − p̂P )Ap , (4.21)

where Ap = δV/δr, and the coefficients are

aN = ΓAn
δr
, aS = ΓAs

δr
, aF = Γ

Af
δz
, aB = ΓAb

δz
, (4.22)

aP = aN + aS + aF + aB +
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1
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+ Γ k2

r2P

)
δV, (4.23)

Sv̂P =
(
f̂ 0
vP
− N̂0

vP
+ v̂P

0

δt

)
δV . (4.24)

The axial momentum conservation equation (w-velocity component) can be treated sim-
ilarly to get

aP ŵP = aN ŵN + aSŵS + aF ŵF + aBŵB + SŵP − (p̂F − p̂P )Af , (4.25)
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where

aN = ΓAn
δr
, aS = ΓAs

δr
, aF = Γ

Af
δz
, aB = ΓAb

δz
, (4.26)

aP = aN + aS + aF + aB +
(

1
δt

+ Γ k2

r2P

)
δV, (4.27)

SŵP =
(
f̂ 0
wP
− N̂0

wP
+ ŵP

0

δt

)
δV . (4.28)

4.3.1 Nonlinear terms

The nonlinear terms in the conservation of momentum equations N̂0
w are part of the

source terms in the discretized equations. The nonlinear terms are calculated with a
central difference scheme (

w
∂w

∂z

)
P

≈ wP

(
wF − wB

2δz

)
. (4.29)

Observe that other approximations, such as upwind or QUICK, could be used. Now,
the nonlinear terms must be expressed in Fourier modes, and the most convenient way
to do this is to calculate the products in physical space and then Fourier transform the
products.

4.3.2 Axis treatment

Different treatments for the radial velocity at the origin have been proposed by many au-
thors in the context of the finite volume discretization method ([10], [11]). These strategies
can also be implemented in the present formulation for the Fourier mode equations. Fre-
quently, an artificial boundary condition for the radial velocity v at the origin is used.
Two examples are the Neumann-like condition v(i, 0, k) = v(i, 1, k) and the streamwise
average of the radial velocities v(i, 0, k) = ((v(i, 1, k) + v(i+ nθ/2, 1, k))/2.

4.4 Pressure-velocity decoupling strategy

There are many decoupling strategies for the fluid dynamics equations. One of these
methods is known as pressure-correction method [23] where a pressure field is guessed
to solve the Navier-Stokes equations. If the velocity field does not satisfy the continu-
ity equation, then a pressure correction is calculated to better approximate the velocity
solution. This procedure is repeated until the mass conservation is satisfied.
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4.4.1 Pressure correction method

Let p̂∗ denote an initial guess for pressure. According to expressions (4.17), (4.21), and
(4.25), the velocity corresponding to such a pressure field is û∗ , v̂∗ and ŵ∗, given by

aP û
∗
P =

∑
nb

anbû
∗
nb + SûP −

ik

rP
p̂∗P δV , (4.30)

aP v̂
∗
P =

∑
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∗
nb + Sv̂P − (p̂∗N − p̂∗P )Ap , (4.31)

and

aP ŵ
∗
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∑
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anbŵ
∗
nb + SŵP − (p̂∗F − p̂∗P )Af . (4.32)

Note that û∗ , v̂∗ and ŵ∗ in general do not satisfy the incompressibility condition. The
pressure and velocity corrections (p̂′k, û

′
k) are defined by

p̂k = p̂∗k + p̂′k , (4.33)

and

ûk = û∗k + û′k, v̂k = v̂∗k + v̂′k, ŵk = ŵ∗k + ŵ′k . (4.34)

Subtracting (4.30), (4.31) and (4.32) from (4.17),(4.21) and (4.25) respectively, we get the
following expressions for the velocity corrections
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′
P =

∑
nb

anbŵ
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corresponding expressions for the second and third equations, gives(
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If the term
∑

nb anb(û
′
nb − û′p) is neglected, equations for the correction of the velocity

components in terms of the pressure correction are obtained as

û′P = − δV
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nb anb

ik

rP
p̂′P = −du

ik

rP
p̂′P , (4.41)

v̂′P = − Ap
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∑
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(p̂′N − p̂′P ) = −dv(p̂′N − p̂′P ) , (4.42)

and

ŵ′P = − Af
aP −
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(p̂′F − p̂′P ) = −dw(p̂′F − p̂′P ) . (4.43)

Substituting equations (4.41)–(4.43) into the mass conservation equation (4.13) gives

ik

rP
(û∗P + û′P )δV + (v̂∗n + v̂′n)An − (v̂∗s + v̂′s)As + (ŵ∗f + ŵ′f )As − (ŵ∗b + ŵ′b)Ab = 0 , (4.44)

and the following expression for the pressure correction is obtained

aP p̂
′
P = aN p̂

′
N + aS p̂

′
S + aF p̂

′
F + aB p̂

′
B + SP , (4.45)

where

aN = (dv)nAn, aS = (dv)sAs , (4.46)

aF = (dw)fAf , aB = (dw)bAb , (4.47)

aP = aN + aS + aF + aB + k2

r2P
∗ du ∗ δV , (4.48)

SP = −( ik
rP
û∗P δV + v̂∗nAn − v̂∗sAs + ŵ∗fAs − ŵ∗bAb) . (4.49)

Note that the linear system of equations for the pressure correction contains complex
numbers, but the entries of the matrix are real and therefore no calculations in the complex
domain are necessary to find the inverse matrix.

When the pressure correction equation is solved, the pressure and velocity are modified
to get a better approximation. In the next iteration step, the updated values are used as
initial guesses and the procedure is repeated until the velocity satisfies the divergence-free
criterion.

4.5 Validation of the methodology

Two examples are presented to illustrate the applicability of the proposed methodology
for the numerical solution of Navier-Stokes equations in cylindrical domains. In the ex-
amples, one or more important characteristics that a robust method must have and a
comparison with the corresponding numerical solution using a finite-volume method and
Fourier-Chebyshev spectral method is presented. The algorithms used to solve the exam-
ple problems with a finite-volume method and a Fourier-Galerkin and Chebyshev spectral
method can be found in the literature [11, 8, 12, 15].
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Figure 4.2: Streamlines and magnitude of the velocity field of the lid-driven flow at
Re = 400 (left), and (right) radial velocity profiles at θ = π/4 using a spectral method
(continuous line) and Fourier/finite-volume method (triangular dots).

4.5.1 Lid driven flow

The first example is the lid driven flow in a circular domain with the tangential velocity
condition at the outer radius defined by u = cos θ for a Reynolds number Re = 400;
the same conditions as in [34]. The motion of the boundary generates a flow with non-
zero flow at r=0 and therefore, a correct calculation of the radial velocity at the origin
is very important for an accurate numerical solution. In this particular calculation the
streamwise average condition (see §4.3.2) strategy was used to avoid the singularity at the
origin. The solution obtained with a Fourier-Chebyshev spectral method does not require
any special treatment at the origin and can be used as a reference for a quantitative
assessment. The left panel of Fig. 4.2 shows a color map for the velocity magnitude and
the corresponding streamlines. The right panel shows radial velocity profiles at θ = π/4
obtained from the two solution techniques; the flow field around the origin is smooth and
the two radial velocity profiles agree.

We use the total kinetic energy K to compare the solutions obtained with the three
different methods described previously. K is defined by

K =
1

V

∫
(u2 + v2)dV , (4.50)

where V is the volume occupied by the fluid. In principle, to determine the convergence of
the approximate solution, it would be necessary to know a priori the exact solution; but
such information is usually unknown. An alternative criterion for the grid convergence
error of steady-state flows can be estimated from ε = |Kn−Kn−1|/Knmax , where n denotes
the number of points used in the discretization. This relative convergence criterion is
shown in Fig. 4.3 for the three integration methods. As can be appreciated, the spectral
convergence in the angular direction of the proposed mixed method is very close to that of
the Fourier-Chebyshev method, and has significantly better convergence properties than
the finite-volume method.
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Figure 4.3: Relative convergence for a lid driven flow as a function of nθ, using the spectral
method (green line), Fourier/finite-volume method (red line), and finite-volume method
(blue line). In all cases, nr = 60.

4.5.2 Vortex breakdown in a cylindrical tank with a rotating
lid.

The second example is the study of vortex breakdown in a cylinder driven by a rotating
bottom. The flow is characterized by the aspect ratio Λ = H/R where the H is the
height and R the radius, and the Reynolds number defined by Re = ΩR2/ν, where Ω
is the angular velocity. Using a projection scheme for the velocity-pressure decoupling
and a Legendre-Fourier approximation for the space variables, at Re = 2730 for Λ = 3.0
axisymmetric flow losses stability to a m = 4 rotating wave solution [35]. On increasing
Re to 2900, a second bifurcation to a modulated rotating wave takes place, introducing
an m = 1 mode that manifests itself near the axis. The results obtained with the method
proposed here are illustrated in Figs. 4.4 and 4.5. All major features described in previous
studies are correctly captured by the present model. Figure 4.4 shows contours of the axial
velocity in a meridional plane and in a horizontal plane at z = 0.8Λ for Re = 2800 and
Λ = 3.0. The mode m = 4 flow is clearly observed and is confined to the region near the
jet close to the lateral wall, as expected.

As the Reynolds number is increased, a second instability occurs and a modulated rotating
wave that causes a precession with an m = 1 mode near the axis of symmetry appears.
This flow at Re = 3000 is illustrated in Fig 4.5 where the secondary instability is well
developed. The flow close to the lateral wall displays an m = 4 distribution while the flow
near axis of the cylinder is clearly non-axisymmetric. The agreement with the results of
[35] is very good.

4.6 Conclusions

A technique to solve the Navier-Stokes equations in cylindrical geometries with rigid
boundary conditions that combines the advantages of the azimuthal periodicity and accu-
racy of the spectral methods with the possibility of considering discontinuous boundary
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Figure 4.4: Instantaneous contours of the axial velocity of the m = 4 rotating wave at
Re = 2800 and Λ = 3.0 in a meridional plane (left) and a horizontal plane at z = 0.8Λ
(right).

Figure 4.5: Instantaneous contours of the axial velocity of the modulated rotating wave
with m = 4 and m = 1 at Re = 3000 and Λ = 3.0 in a meridional plane (left) and a
horizontal plane at z = 0.8Λ (right).
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conditions in the axial and/or radial directions has been proposed. An important part of
the method is a pressure-correction technique where the different Fourier components are
required to satisfy mass conservation individually. In all tests, the method was demon-
strated to have the expected properties and is potentially useful for a variety of problems
that might be more difficult to solve with other methods. In particular, the proposed
technique can be used for stability analyses of flows confined to cylindrical containers. It
is expected that the present integration strategy will be useful to model flows encountered
in the crystal growth processes when the Czochralski or Bridgman techniques are used,
as these often have discontinuous boundary conditions.





Chapter 5

Verification and experimental
validation of a numerical simulation
of natural convection in a slender

cylinder 1

5.1 Introduction

Natural convection in containers this phenomenon has attracted much attention due to
potential applications in the field of crystal growth where techniques like Czochralski,
Bridgman and zone-melting involve natural convective motions that are determinant for
the quality of the crystal. Recent monographs on these process are [36] and [37].

This flow is similar to the Rayleigh-Benard flow that describes the natural convection in a
layer of fluid subject to a destabilizing temperature gradient, but with a strong influence
of the lateral wall. It is well established that the convective pattern can be specified with
three parameters, the aspect ratio (a = height/diameter), the Prandtl number and the
Rayleigh number (for the definition of these parameters, see Section 5.2).

Several reviews on the subject that describe the generalities of the natural convective
flows have appeared in the literature The works of Chandrasekhar [38] and Koschmieder
[1] are comprehensive although somewhat old descriptions. Here, we restrict on review to
only the papers that are closely related to our study.

Early investigations clarified the stability of the flow and determined the critical Rayleigh
number for the onset of convection as a function of the aspect ratio of the container.
The linear perturbation theory of Charlson and Sani [39], [40] is based on a variational
formulation and uses the Rayleigh -Ritz method to solve the linearized equations that
allows the calculation of the first critical Rayleigh number. They examined the cases
where the convective flow is axisymmetric [39] and nonaxisymmetric [40].

Their results indicate that the stable steady state flow is non-axisymmetric (azimuthal
mode m=1) for a > 0.62 and occurs at Ra ≈ 6590 for a container with a = 1.25 and

1The concepts contained in this chapter are described in the article ’José Núñez, Miguel Lopez, Ed-
uardo Ramos Guillermo Hernadez-Cruz, Minerva vargas and Sergio Cuevas. Verification and experimental
validation of a numerical simulation of natural convection in a slender cylinder. Preprinted submitted’

57
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adiabatic walls. The critical Rayleigh (Rac1)numbers for the onset of convection were also
calculated with linear Galerkin method by Buell and Catton [2] finding critical Rayleigh
numbers up to 20% smaller than those obtained by Charlson and Sani for the nonaxisym-
metric modes.

Experimental investigations of the convective instabilities in closed vertical cylinders have
been made using arrangements of thermal sensors [41] to infer global dynamic features of
the flow. Although relevant results on the critical Rayleigh numbers have been found with
this technique that confirm the theoretical predictions for a = 3, details of the motion
were not resolved.

The theoretical and experimental investigation of Mueller et al. [42] on the convective
patterns in cylindrical container is closely related to the present study and deserves a
somewhat detailed description. They made qualitative observations of motion inside
water filled cylinders with aspect ratios ranging from 0.5 to 5 using the light cut technique
which yields observations of the flow patterns in planes. A stability diagram (Ra vs a)
indicating the regions with no flow, steady and time-dependent flow is presented. They
report that the steady, two dimensional flow pattern observed for a = 1 and Ra =
17, 500 is different depending on the orientation of the plane observed. In one section (of
unspecified orientation), a single, non-axisymmetric cell is found, while the pattern in the
perpendicular section is composed of four rolls. The observations were interpreted with
a theoretical model obtained by numerically solving the conservation equations. They
described the non-axisymmetric flow patterns obtained for a=1 in terms of the vertical
velocity at horizontal planes and explained that the flow is rather complicated with a
three dimensional structure.

Neumann [29], obtained a numerical solution based on the finite differences discretization
of the conservation equations with boundary conditions corresponding to natural convec-
tive flow in cylinders. The solution was found using cylindrical coordinates and a mesh of
20 points in the r, θ and z directions. The aspect ratio of the cylinders considered are 0.5
and 1 which are, according to the linear theories, below and above the critical aspect ratio
for the transition from axisymmetric to non-axisymmetric flow patterns. In the second
case, he obtains a steady state, non-axisymmetric flow composed of a single convective
cell for Ra = 5 × 104 and Pr = 6.7 with fluid ascending on one side of the cavity and
descending on the opposite with the orientation of the roll given by the initial temperature
distribution. His results are in qualitative agreement with experimental results of Müller
et al. [42].

A finite difference method was also used by Crespo et al. [43] to simulate natural con-
vection in cylinders. They described the features of steady and time dependent non-
axisymmetric convective patterns with a = 2 and Prandtl number 0.002.

5.2 Numerical Analysis

The natural convective motion inside the cylindrical container under the conditions of
interest can be described by numerically solving the mass, momentum and energy con-
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servation equations. Given that the maximum temperature differences are small, the
Boussinesq approximation is used. In the frame of this approximation, the kinematic vis-
cosity ν, the thermal diffusivity α, and the volume expansion coefficient β, are constant.
The density ρ is also considered constant except for the body force term in the momen-
tum conservation equation in the axial direction. The cylindrical sidewall is chosen to be
adiabatic, i.e. the temperature gradient normal to the wall is set equal to zero. At all
container walls the no-slip velocity boundary condition is prescribed.

The set of conservation equations have been solved in its dimensionless form. The scaling
we have used was the most convenient for the numerical solution and includes the following
characteristic quantities: the axial and radial coordinates are expressed in terms of the
height (h) and diameter (D) of the cylinder respectively. The characteristic velocity (uc) is
the free fall velocity, namely uc =

√
gβ∆Th where g is the terrestrial gravity acceleration.

The symbol ∆T = TH − TC denotes the characteristic temperature scale with TH and
TC the temperatures of the lower and upper walls respectively. The time scale is defined
using the characteristic velocity as h/uc.

In dimensionless form, the governing equations written in cylindrical coordinates (r, θ, z)
are:

1
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) 1
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where ~u = (ur, uθ, uz) is the velocity, p is the pressure and T is the temperature. The
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The flow is characterized by two dimensionless parameters, the Rayleigh and Prandtl
numbers, defined by

Ra =
gβ∆Th3

να
and Pr =

ν

α
. (5.6)

The boundary conditions corresponding to the physical situation of interest are:

T = 0 on z = 0, T = 1 on z = 1, (5.7)

∂T

∂r
= 0 on r = D/2h, (5.8)

and
~u = 0 on all boundaries. (5.9)

In most runs, the initial conditions for the time integrations are zero velocity in the whole
volume. The temperature and pressure distributions along the axial direction are assumed
to be linear and quadratic, respectively.

The governing equations and boundary conditions are invariant under arbitrary rotations
about the axis of the cylinder. If Rψ is a rotation of angle ψ around the z-axis, its action
is

Rψ(u, v, w, T, p)(r, θ, z) = (u, v, w, T, p)(r, θ + ψ, z). (5.10)

This property indicates that if a solution is obtained, the same velocity, pressure and
temperature fields with a different orientation with respect to the vertical axis, constitute
also a solution. These rotations generate the symmetry group O(2).

The conservation equations were discretized using the finite volume method and then
solved numerically. The cylindrical volume is divided in small cells having edge lengths
∆r, r∆θ and ∆z. The derivatives in time and space were respectively approximated with
first order forward differences and second order central differences. An appropriately
staggered mesh is used where the velocity components are located at the cell faces and
scalar fields are defined at the center of the cell [29]. The SIMPLEC algorithm was used for
pressure decoupling [44], [45]. This algorithm is iterative and stops with a small velocity
divergence criterion. A mesh refinement calculation was done to verify the accuracy of the
numerical solution. In Table 2 we show results for the maximum of the three components
of the velocity as functions of the mesh fineness. For further comments on the verification
of the solution see Section 5.4.

Mesh umaxθ umaxr umaxz

20× 20× 20 8.0424488E-02 7.8527927E-02 0.1240261
30× 30× 30 7.9905130E-02 7.8891858E-02 0.1216930
40× 40× 40 7.9648100E-02 7.9282701E-02 0.1215185

Table 5.1: Mesh refinement test for numerical accuracy of the steady flow at Ra =
5.12× 105 and Pr = 6.667.
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5.3 Results

The theoretical and experimental results presented in this section correspond to the in-
terval 3.0 × 105 < Ra < 2.0 × 106 and in all cases the Prandtl number is 6.67. The
conditions chosen for the analysis were determined by limitations in the experimen-
tal equipment and also to comply with the restrictions imposed by the Boussinesq ap-
proximation. For the smaller Rayleigh numbers considered, the flow was found to be
steady, in contrast to the time dependent flow observed for the large Rayleigh numbers.
The experimentally determined critical Rayleigh number where the transition occurs is
5.12 × 105 < Rac < 1.46 × 106, while the numerical calculations indicate that the tran-
sition occurs at Rac ∼ 1.3 × 106. These results are consistent with the (interpolated)
values reported by Mueller et al. [42] for the aspect ratio of the cavity studied here. In
the following subsection we describe the dynamics of the flow with Ra = 5.12× 105, and
in subsection 5.3.2, the time-averaged velocity fields for Ra = 1.53 × 106 are presented.
The estimation of the experimental uncertainties was made according to the following
procedure.

in steady state, 15 pairs of images were captured and averaged for every experimental
observation reported. Histograms of the velocity in each individual observation at every
point in the velocity field, allow us to calculate a standard deviation of an adjusted normal
distribution. Considering the standard deviation as the uncertainty at every point of the
interrogation grid, it is possible to build an uncertainty map. In the velocity as a function
of position plots the uncertainty in position is due to instrumental precision.

5.3.1 Steady flow

For clarity in the presentation, we start by describing the structure of the flow using
information from the numerical solution. Once we have identified the dominant features
of the flow patterns, we proceed to compare with the experimental velocity fields. The
velocity and temperature fields obtained with the numerical integration for Ra = 5.12×
105, which corresponds to steady flow, for two mutually perpendicular vertical planes,
are shown in Figures 5.1 and 5.3, respectively. The planes on the left and right panels
of these figures are labeled AA’ and BB’ respectively. The left panel of Figure 5.1 shows
that the dominant flow pattern in plane AA’ is a single convective cell rotating clockwise
with its center defined by the point of vanishing velocity located near the geometrical
center of the plane. Fluid ascends on one side of the plane and descends on the opposite
with small vortical structures present in the left upper corner and right lower corner. The
figure is symmetric under the composition of two rotations Ωh ◦ Ωv. The first rotation
(Ωv) is around a vertical axis passing through the center of the cavity and the second
rotation Ωh is taken around the central horizontal axis. An examination of the magnitude
of the velocity in the whole volume indicates that the point with maximum velocity is
located in this plane. The velocity field in the right panel of the same figure indicates
that the convective pattern in plane BB’ is composed of four rotating structures one in
each quadrant of the rectangle. The velocity distribution displays specular symmetry with
respect to the vertical and horizontal lines passing through the center of the rectangular
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plane, i.e. if the origin of Cartesian coordinates is defined at the center of the rectangle,
the following relations hold,

u(x, y) = −u(−x, y), v(x, y) = v(−x, y) (5.11)

and

u(x, y) = u(x,−y), v(x, y) = −v(x,−y). (5.12)

The remarks leading to equation (5.10) indicate that there is no preferred orientation
implicit in the conservation equations and boundary conditions. However, as indicated in
the left panel of Figure 5.1, the solution is clearly non-axisymmetric and solutions with
the same convective pattern, but different azimuthal orientations exist. The calculation
procedure used in the numerical integration defines a specific orientation of the convec-
tive pattern, and for this reason we have no control on the resulting orientation of the
calculated flow. It was found that the symmetries described in the flow shown in the right
panel of Figure 5.1 and equation (5.11) occur only in this particular plane. Hence, this
plane can be used as a reference for the definition of the orientation of the convective cell.
In all other planes containing the axis of the cylinder, it was observed that the flow does
not feature these symmetries but are smooth transitions from one of the two patterns in
Figure 5.1 to the other.

Figure 5.1: Velocity fields in two mutually perpendicular vertical planes containing the
cylinder axis. Left and right panels show respectively planes AA’ and BB’ of Figure 5.2.

In order to give a global idea of the flow inside the cavity, we use the concept of vortex
core as a visualization tool, calculated according to the definition of Jeong and Hussain
[46] and shown in Figure 5.2. The volume contained in the vortex core indicates the
region where local rotational motion dominates over strain deformation. The outline
of the container and the position of planes AA’ and BB’are also shown in Figure 5.2.
As expected, the vortex core is not axisymmetric but displays clearly the symmetries
discussed in the context of Figures 5.1.
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Figure 5.2: Vortex core for Ra = 5.12× 105.

Figure 5.3 shows the temperature fields corresponding to planes AA’ and BB’. As ex-
pected, the temperature distributions are deformed by the convective motion, but in a
large part of the the volume, the temperature has approximately the same value. In some
experimental studies reported in the literature, the flow has been characterized by a lo-
cal recording of the temperature. The temperature distribution displayed in Figure 5.3
makes it clear that the correct positioning of the temperature sensors is critical for this
characterization strategy.

Figure 5.3: Temperature fields at planes AA’(left) and BB’(right).

Comparison with experimental data

As explained in previous sections, a cylindrical coordinate system was used for the nu-
merical calculations, while the information from the experimental system was acquired
by moving the light planes in Cartesian directions; see Figure 5.4.
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Figure 5.4: The central sketch shows the positions of the horizontal (H) and vertical (V)
planes where experimental observations were made. Planes V± are located at ± 4 mm
from the central vertical plane, while planes H± are located at ± 5 mm from the central
horizontal plane. The figures on the sides are samples of the horizontal and vertical images
of the tracers.

Hence, in order to compare the theoretical and experimental results, interpolations were
required. Given that the density of data in the calculations is far larger than that of
the experimental observations, we chose to interpolate the numerical calculations to find
the velocities in the points where the experimental data were observed. We attempt to
compare the projection of the velocity field on a vertical plane that contains the axis of the
cylinder (plane V in Figure 5.4), but since the orientation of the experimentally observed
plane is not known a priori, it is required to search for the best fit of the calculated
velocity fields with different orientations. Even though all orientations can be calculated,
we find that this is not a straightforward task since differences between calculated velocity
fields and the experimentally observed velocity field are similar for a relatively wide range
of orientations and it is difficult to single out the optimum orientation. However, using
information from the velocity fields in the horizontal planes, the relative orientation is
relatively simple to find. Figure 5.5 shows the experimental (upper row) and calculated
(lower row) projection of the velocity field on the three horizontal planes, H+, H and
H- of Figure 5.4. As can be clearly seen, the velocity fields display analogous qualitative
features. The first and last velocity fields show that the flow is mostly one directional
and in opposite sense from each other; the central field displays a sink at the center of
the circular region.



5.3. Results 65

Figure 5.5: Upper row, experimental horizontal projection of the velocity field; lower row,
calculated horizontal projection of the velocity field. The first, second and third columns
correspond, respectively, to planes H-, H and H+ of Figure 5.4.

Figure 5.6 shows the velocity field projections in vertical planes V-, V and V+ of Figure
5.4. As can be appreciated, all major features of the flow are correctly captured by the
numerical solution, in particular, the displacements of the center of the dominant vortex as
the planes examined are moved toward (V+) or away (V-) from the observer. Another
interesting feature clearly displayed in both velocity fields at position (V) are the two
small counter-rotating cells in the upper left and lower right corners.
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Figure 5.6: Upper row, experimental vertical projection of the velocity field; lower row,
calculated vertical projection of the velocity field. The first, second and third columns
correspond respectively to planes V-, V and V+ of Figure 5.4.

In order to make a quantitative comparison, we plot the two components (u,v) of the
velocity field in the vertical plane V (see Figure5.4) as functions of the Cartesian coor-
dinate x, defined as the horizontal coordinate on plane V. The axis of coordinates is at
the center of V. The velocity distributions are taken at z = −5.0 mm, z = 0 and z = 5.0
mm. In the upper row of Figure 5.7, the velocity component u is plotted as a function
of x. The dots are experimental observations and the continuous lines are numerical cal-
culations; the green and blue dots were obtained with the horizontal and vertical PIV
systems, respectively. In the lower row, the velocity component v is plotted as a function
of x the coordinate. The method to calculate the experimental uncertainty is described
in the first paragraph of this section.

As can be appreciated in Figure 5.7, experimental observations coincide with the numer-
ically calculated velocity profiles in most cases. It is interesting to note that the largest
discrepancies between the numerical calculations and the observations are found for the
green dots (horizontal PIV system) and z = 5.0 mm where limitations in the experimental
equipment result in poor quality of the PIV images. Also, for the same reason, in this
location the uncertainty bars are the largest. Figure 5.8, shows the vertical velocity (w)
profiles at the plane V and z = −5.0 mm, 0 and 5.0 mm as functions of x. At the center
of the cavity, where the velocity is larger, the observed and calculated profiles coincides
quantitatively. Above and below these positions, although there is a qualitative coinci-
dence, the calculated profiles underestimate the observed velocities in some intervals.
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Figure 5.7: Upper row: x-velocity component (u) as a function of x. Left, z = −5.0
mm, center z = 0 right z = 5.0 mm. The continuous lines are numerical calculations and
the dots are experimental observations. Green and blue dots are data obtained with the
horizontal and vertical PIV systems respectively. Lower row: y-velocity component (v)
as a function of x for the same vertical locations as in the upper line.

Figure 5.8: Numerical and experimental w velocity component in the central vertical
plane as a function of x at z = −5.0 mm (left), z = 0 (center) z = 5.0 mm (right).

5.3.2 Time dependent flow

The results presented in this section correspond to the unsteady flow occurring at Ra =
1.53 × 106. Given the time-dependent nature of this flow, it was not possible to explore
more than one vertical plane with the present experimental equipment. Also, no attempt
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was made to resolve the dynamics of the flow since the time resolution of the cameras
was not fast enough to record the flow evolution. In addition, memory limitations in
our equipment did not allow us to capture more than 300 subsequent images. We ob-
tained time average velocity fields using 1760 vector fields which correspond to 540 s long
observations. The numerical calculations indicate that the flow is periodic with an approx-
imate characteristic time of 9 s and although the detailed time evolution of the flow does
not coincide with experimental records, we could compare theoretical and experimental
averaged velocity fields.

The dominant averaged convective structure observed is a single convective cell, similar to
that observed in the steady state flow with two small counter rotating cells at the upper
left and lower right corners, see Figure 5.9 left. The corresponding numerical simulation
displays the same features as can be appreciated from Figure 5.9 right.

Figure 5.9: Averaged experimental (left) and numerical (right) velocity field at the central
vertical plane. Ra = 1.53× 106.

Quantitative comparisons of the velocity profiles have been made using the same geomet-
rical nomenclature and definitions of Section 5.3.1. Figure 5.10 shows experimental and
numerical results of(u) and (w) at z = −5.0 mm, z = 0 and z = 5.0 mm.
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Figure 5.10: Upper row, average x-velocity (u) as a function of the horizontal coordinate
x. Lower row, average z-velocity (w) as a function of the horizontal coordinate x. Left
column, z = 5.0 mm, center column, z = 0, right column z = −5.0 mm. Ra = 1.53× 106.

As observed in Figure 5.10, the qualitative behavior calculated with the numerical model
agrees with the corresponding experimental data in all cases. Also, the quantitative
differences are small in most cases, particularly for the vertical component of the velocity
where the signal to noise ratio is largest.

Figure 5.11: Averaged velocity fields for Ra = 1.53× 106 in two mutually perpendicular
planes. The structures are similar to those obtained in steady state, see Figure 5.1.

Given the close similarity of the flow patterns in steady state and averaged time dependent
conditions, it is interesting to explore whether a four circulating structure like the one
observed in Figure 5.1, can be identified in the (averaged) time-dependent flow, if the
orientation is correctly chosen. Figure 5.11 shows the calculated velocity fields for the
equivalent AA’ and BB’ planes of Figure 5.1, demonstrating that this is indeed the case.
Note however that for the averaged, time-dependent flow, the centers of the rotating
structures are closer to the lateral walls as compared with the steady state case.
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5.4 Discussion and Conclusions

Experimental and numerical investigations of steady and time-dependent natural convec-
tion in a slender cylindrical cavity filled with water and heated from below are reported.
Steady and time-dependent flows were considered. We have followed the verification and
validation methodology 2 to test adequacy of the physical model and numerical solution.

As a further verification of the numerical calculations, we solved the governing equations
with a spectral method using Fourier-Galerkin for the azimuthal coordinate and Cheby-
shev polynomials for the radial an axial coordinates; we used a projection method for
pressure decoupling [15]. Both methodologies gave equivalent results for the steady con-
vective flow in the cylinder. We conclude that our results are verified and given that
the finite volume method is a simpler methodology, we used it for obtaining the results
presented in this report. Since the numerical solution is independent of the mesh and
two different discretization methods give coincident results, the numerical solution was
considered to be verified.

Although studies of flows similar to the one studied here are available in the literature,
there have been very few attempts at detailed comparison between experimental obser-
vations and calculations from numerical simulations for natural convection flows. The
present study contains such a comparison for a particular aspect ratio and range of
Rayleigh numbers. In the context of numerical model credibility, this procedure con-
stitutes the validation. It is interesting to note that a particular difficulty of the analysis
of the flow explored here is the fact that the azimuthal orientation of the experimen-
tally observed non-axisymmetric convective cell is not known. We solved this problem
by simultaneously recording the velocity in horizontal and vertical planes. We conclude
that the qualitative features of the observed flow are correctly modeled by the numerical
solution and that in many specific comparisons, a quantitative agreement has been found.
In turn, the numerical solution gives valuable information on flow features not directly
observed.

2According to [47] verification is guaranteeing that the results obtained with an approximate numerical
integration are independent of the method of integration used. validation is the comparison of the results
of the numerical model and the experimental observations to determine the range of parameters for which
the comparison is satisfactory.



Chapter 6

The effect of rotation on the natural
convective flow in a cylindrical

container

Consider a fluid in rotation about some fixed axis with a constant angular velocity ω.
In many important examples, it is convenient to describe its motion as it appears to an
observer at rest in a frame rotating about the same axis and with the same angular velocity.
For example, this would be the case in many physical situations found in geophysical
flows, like for instance, the analyses in the β plane [48]. Also, many industrial applications
involving rotating machinery are better described in a frame of reference rotating with the
system. In the present study, the most important application is the potential improvement
of the crystals grown in rotating crucibles as described by that we have in mind is the
natural convective flow in crucibles.

The establishment of the balance equations in a rotating frame of reference is due to
Laplace who was interested in describing the formation of the solar system. According to
Laplace’s description of the hypothesis, the solar system had evolved from a globular mass
of incandescent gas rotating around an axis through its center of mass [49], and Coriolis
[50] who developed the mathematical theory of rotating engines. A modern account of
the theory which includes a careful and detailed development of the equations from first
principles can be found in [38].

The phenomenon of natural convection in a rotating frame depends fundamentally on
the relative orientation and position of three vectors, the gravity acceleration vector, the
rotation vector, and the temperature gradient vector, which indicates the direction of the
temperature difference imposed in the system. By and large, the situation that has been
analyzed in more thoroughly is when all three vectors are in the same direction (paral-
lel or anti-parallel) since this configuration corresponds to local geophysical conditions;
specifically, flows in the β plane. Important references in this area are Greenspan [51]
and Koschmieder [1]. Another situation which has received much less attention in the
literature, but one which is of interest here is when the (generalized) gravity acceleration
vector and the temperature gradient are parallel, but the rotation vector is perpendicular
to them. This situation coincides with that occurring when a natural convective flow
takes place in a centrifuge. The generalized gravity acceleration is the vector sum of the
gravity and the centrifugal acceleration vectors. Figure 6.1 shows a sketch of the two sets
of vector orientations described in the previous paragraphs.

71
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Figure 6.1: Left: Configuration where the gravity, rotation and temperature gradient
are parallel. Right: Configuration where temperature gradient and effective gravity are
parallel to each other but the rotation vector has a component perpendicular to this two
vectors.

Regardless of the relative orientation of the rotation, gravity and temperature gradient
vectors, the expression for momentum conservation in a rotating frame of reference in-
cludes terms that arise from the fact that the axis of coordinates rotates. These terms are
known as the centrifugal and Coriolis accelerations. The centrifugal acceleration is pro-
portional to the product of the angular velocity and the distance to the center of rotation
and as is well known, it can be expressed as a gradient. This term can be interpreted as a
pseudo pressure in the same sense as it is done with the terrestrial gravity, thus the name
generalized gravity. The Coriolis acceleration which incidentally was originally deduced
by Laplace, is proportional to the local velocity and is entirely new effect.

In many important cases, the study of natural convective flows is made using the Boussi-
nesq approximation which assumes that all physical properties of the working fluid are
constant except for the density in the buoyancy term. The validity of this approximation
for a non-rotating natural convective flow was discussed in references [52] and [53].

6.0.1 The equations of natural convection in a rotating frame of
reference

In a rotating fluid, the Boussinesq approximation has a slightly different interpretation.
For the case when all three vectors are parallel, Lopez et al [52] indicate that the density
should be considered constant in the centrifugal term, but variable in the Coriolis term.
A more quantitative treatment of the ranges of validity of the Boussinesq approximation
for rotating flows where the important fact that the base flow is not zero velocity, can be
found in [53]

In the rotating frame of reference, the governing equations are

∂~u

∂t
+ (~u · ∇) ~u = −∇p/ρ0 + ν∇2~u+ βT~g − 2~ω × ~u (6.1)

∂T

∂t
+ (~u · ∇)T = α∇2T (6.2)
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where ~u is the velocity field T = T ∗ − T0 is the temperature deviation with respect to
the mean temperature T0, p is the pressure which incorporates the hydrostatic pressure
due to the gravitational and centrifugal forces, g is the gravitational acceleration, β is
the coefficient of volume expansion, ν is the kinematic viscosity, and α is the thermal
diffusivity. The term 2~ω × ~u in this equation represents the Coriolis acceleration. To
describe fluid motion in this system we must add a fictitious force to the Navier Stokes
equations the Coriolis force from its definition it is seen that the Coriolis force occurs only
if the system is in motion and therefore has an influence only under dynamic conditions.

The system is nondimensionalized using the same scales definitions as in chapter I, (see
section 1.3) , here the magnitude of angular velocity ω is included. For natural convection
under the influence of rotation the governing equations in dimensionless form are

∇ · ~u = 0 (6.3)

∂~u

∂t
+ (~u · ∇) ~u = −∇p+

(
Pr

Ra

) 1
2

∇2~u+ T êz − 2Ω

(
Pr

Ra

) 1
2

ω̂ × ~u (6.4)

∂T

∂t
+ (~u · ∇)T =

(
1

PrRa

) 1
2

∇2T. (6.5)

The dimensionless boundary conditions on the temperature and velocity are written as:

T = 0, for (r, θ, 1, t) (6.6)

T = 1, for (r, θ, 0, t) (6.7)

∂T

∂r
= 0 for (A, θ, 0 < z < 1, t) (6.8)

and

~u = 0 on all boundaries, at all times (6.9)

Where A Where A = h/2D. There are four non-dimensional parameters

Rayleigh number: Ra = βgL3∆T/αν
Prandtl number: Pr = ν/α
Coriolis number: Ω = ωL2/ν
Aspect ratio: γ = r0/L

The effect of rotation on natural convection introduces a number of new elements into the
problem and therefore a new group of dimensionless parameters. In this study we kept
fixed the aspect ratio, the Rayleigh and the Prandtl number, we only explore the effect
of the variations in the Coriolis number.
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6.1 Results

In this section we study natural convection in a vertical cylinder heated from below in
a system in a rotating frame of reference. Numerical solutions are obtained using finite
volume method. We applied the same methodology as described in section 5.2, with the
Coriolis force added as an explicit term in the the numerical integration of the Navier-
Stokes equations.

6.1.1 Steady state flow

In the present study we assume that the rotation vector and the gravity vector are per-
pendicular to each other, and since the gravity vector runs along the z-axis we choose the
angular velocity vector along the x-axis. In cylindrical coordinates

x̂ = cos θ ρ̂− sen θ θ̂. (6.10)

Inspection of the governing equations (equations 6.3 to 6.5) and boundary conditions (ex-
pressions 6.6 to 6.8) indicate that for Ω = 0, the system has angular symmetry: These
rotations generate the symmetry group O(2) it can be concluded that the solution is in-
finitely degenerate.

However, for Ω 6= 0, the symmetry is broken and the system is not degenerate since
there is an externally imposed specific orientation, namely, the orientation of the rotation
vector in the rotating frame of reference. Given that frequently the symmetries lead to
instabilities, in this sense, the rotation stabilizes the flow. As will be indicated below this
is the case even for small but finite rotations. Note that this geometrical configuration
corresponds to that of a cylinder rotating at the extreme of an arm o a centrifuge (see
the right panel figure 6.1 and references [54]).

In all examples presented, we consider a cylindrical container of aspect ratio 1.25 filled with
water Pr = 6.67, heated from below and cooled from above. In order to analyze the effect
of rotation we fix the Rayleigh number at such Ra = 5.12 × 105 and make a parametric
study considering the angular velocity ω =0.01, 0.1, 1, and 10, the corresponding Coriolis
numbers are Ω = 4.167, 416.7, and 4167.

The left panel of the upper line in figure 6.2 obtain with no rotation shows that the
dominant flow pattern in plane AA’ is a convective cell rotating clockwise with its center
defined by the point of vanishing velocity located near the geometrical center of the plane.
Fluid ascends on one side of the plane and descends on the opposite with small vortical
structures present in the left upper corner and right lower corner. The velocity field in
the right panel of the same figure indicates that the convective pattern in plane BB’
is composed of four rotating structures one in each quadrant of the rectangle. At low
rotation rates ω = 0.01, Ω = 4.167 the flow is indistinguishable from the structure of
obtain with no rotation as can be appreciate from the second line in figure 6.2.
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Although the flow patterns are the same there is a major different between the two
solutions in the no rotating case the solutions is infinity degenerate while in the rotating
case the orientation is fix.

At high rotation rates (ω = 10,Ω = 4167) there is only one single convective cell, since the
vortical structures on the corners have disappeared. Also dramatic changes are observed
in the plane BB’ where no rotating structures are present. These flow patterns in the
bottom line of figure 6.2.

Figure 6.2: Upper line: Velocity field in the AA’ (left) and BB’ (right) for Ra = 5.12×105
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and Ω = 0. Center line: Velocity field in the AA’ (left) and BB’ (right) for Ra = 5.12×105

and Ω = 4.167. Bottom line: Velocity field in the AA’ (left) and BB’ (right) for Ra =
5.12× 105 and Ω = 4167.

Shape transitions when the rotation in the flow is increased are evident in the vortex core
[46] of the flow. In figure 6.3 the vortex cores corresponding to cases Ω = 0, Ω = 4.167,
Ω = 416.7 and Ω = 4167 are shown. For low rotation rates the flow has a similar structure
as the non rotating case. For high rotation rates the influence of rotation is clearly seem
in a reduction of the region occupied by main vortex core of the flow.

Figure 6.3: Vortex cores of the flow at Ω = 0, Ω = 4.167 and Ω = 4167 in all case
Ra = 5.12× 105. The bold arrow represent the position of the position vector note that
the distance form the rotation axis to the cylinder has been greatly reduce for drawing
purpose.
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The relative orientation of the convective cell with respect to the rotation vector is also
illustrated in figure 6.3.

6.1.2 Time dependent flow

One of the main objectives of the present study is to clarify the dynamic changes generated
on the qualitative behavior of the flow by the rotation. The most notable effect is that
at a fixed Rayleigh number a non rotating time dependent flow becomes steady when it
rotates at a large angular velocity. In order to illustrate this observation we plot in figure
6.4 the z-component of the velocity at the point (A/2,π,1/2) as function of the time for
a rotating and a non-rotating flow at a Rayleigh number Ra = 1.5× 106. As is it clearly
observed in the non rotating case the velocity reflects an oscillatory behavior with an
amplitude of 0.047. In contrast, where the cylinder is rotating, the initial oscillatory is
transient and dies away at approximately 150 dimensionless time.

Figure 6.4: Time evolution of the flow with (ω = 10, blue line) and without (ω = 0, black
line) the effect of rotation. Ra = 1.5× 106

The next issue that arises naturally from the observation described in the previous para-
graph is the following: given a fixed Rayleigh number, which is the minimum angular
velocity to suppress the oscillation that occurs in the non-rotating case?. In figure 6.5 we
show the information required to answer this question for Ra = 1.5× 106. In this figure
the amplitude of the oscillation is plotted as a function of the Coriolis number.
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Figure 6.5: Amplitude vs angular velocity

The qualitative behavior indicates a monotonous decreasing function and a quadratic
polynomial fit indicates that ω = 4.0278 (Ω = 1678.2) results in zero amplitude of the
oscillation. The minimum Coriolis number required to turn the time dependent motion
in to a steady state is defined as the critical Coriolis number.

The critical Coriolis number as a function of the Rayleigh number for an aspect ratio of
1.25 is plotted in figure 6.6

Figure 6.6: Rayleigh number vs angular velocity

Flows with Rayleigh numbers small than 1.28e+6 and zero Coriolis number are degenerate
steady flows. The same range of Rayleigh numbers that for finite Coriolis numbers are also
steady, that not degenerate since the convective cell orientation is fixed by the position
of rotation vector.

For Ra > 1.28e + 6 the flows are time dependent or steady depending on the Coriolis
number. The trace of the critical Coriolis number as function of the Rayleigh number is
non-linear as indicated in figure 6.6 .



Chapter 7

The effect of electromagnetic forces
on the natural convective flow in a

cylindrical container

In this chapter we briefly analyze the effect of an externally imposed magnetic field on
the natural convective flow in a cylinder filled with an electrically conducting fluid. This
is an example of how the numerical tools developed in this work can be used to study
other physical systems of interest.

A general discussion of the effect of a magnetic field on the natural convection motion can
be found in Chandrasekhar [38]. Informative references of similar flows are [55] and [56].

The analysis of the interaction of fluid motion of electrically conducting fluids with mag-
netic fields is called magnetohydrodynamics (MHD). In this subfield of physics fluid dy-
namics an electromagnetism are combined. Authoritative treatises on the subject are [57]
and [58]. Here we just present the basis concepts required to illustrate the usefulness of
the numerical tools to describe MHD flows.

If it can be assumed that in the flow of interest, the characteristic velocity is much smaller
than the velocity of light, the time changes of the magnetic field are of low frequency
and that the electric fields are of the order of the electromotive force induced by the
motion of the fluid, then the accumulation or redistribution of electric charges can be
neglected. This major simplification that renders the problem tractable is what is known
the magnetohydrodynamic approximation.

The task is to solve the Maxwell equations coupled with the conservation equations of
non isothermal fluid dynamics, where the body force on the fluid, called the Lorentz force
term is

~f = ~j × ~B

where ~j is the electric current and ~B is the magnetic field.

The magnetic field can be interpreted as the sum of the external magnetic field ~B0 and
the induced field ~b. In general, it can be stated that the magnetic field propagates due
to convection and diffusion. When diffusion is the dominant effect, the induced magnetic
field is negligible compared to the externally imposed field, and in this case, the magnetic
field is not an unknown in the problem anymore.
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One of these formulations uses the scalar electric potential φ. Using the inductionless
approximation the electric field can be treated as potential and expressed in terms of the
electric potential, such that ~E = −∇φ. This formulation is very common in the literature
of MHD flows [59], [55].

For natural convection under the influence of a constant magnetic field, the governing
equations (using a magnetohydrodynamic approximation) in dimensionless form are

∇ · ~u = 0 (7.1)

∂~u

∂t
+ (~u · ∇) ~u = −∇p+

(
Pr

Ra

) 1
2

∇2~u+ T êz +Ha2
(
Pr

Ra

) 1
2

~j × ~B0 (7.2)

∂T

∂t
+ (~u · ∇)T =

(
1

PrRa

) 1
2

∇2T. (7.3)

∇2φ = ~B0 · ∇ × ~u (7.4)

~j = −∇φ+ ~u× ~B0 (7.5)

As a specific example consider the case where the magnetic field is parallel to the axis of
the cylinder as shown in figure 7.1

Figure 7.1: Configuration where the gravity, magnetic field and temperature gradient are
parallel.
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The dimensionless boundary conditions on the temperature the velocity and the electric
potential are written as:

T = 0, for (r, θ, 1, t) (7.6)

T = 1, for (r, θ, 0, t) (7.7)

∂T

∂r
= 0 for (A, θ, 0 < z < 1, t) (7.8)

∂φ

∂n
= 0, on all boundaries (7.9)

and

~u = 0 on all boundaries (7.10)

Where A = h/2D and the equations are nondimensionalized using the same scales defi-
nitions as in chapter I, (see section 1.3), adding the magnitude of the external magnetic
field B0, and a characteristic electrical potential φ0 = ucB0L. The new dimensionless
parameter is the Hartmann number defined as Ha = B0L

√
σ/ρν which is the ratio of

electromagnetic forces and viscous effects.

The governing equations 7.1 - 7.1 and boundary conditions 7.6 - 7.10 are invariant under
arbitrary rotations about the axis of the cylinder. If Rψ is a rotation of angle ψ around
the z-axis, its action is

Rψ(u, v, w, T, p, φ)(r, θ, z) = (u, v, w, T, p, φ)(r, θ + ψ, z). (7.11)

This property indicates that if a solution is obtained, the same velocity, pressure, electric
potential and temperature fields with a different orientation with respect to the vertical
axis, constitute also a solution. These rotations generate the symmetry group O(2).

Numerical solutions are obtained using finite volume method. We applied the same
methodology as described in section 5.2, with the Lorentz force added as an explicit
term in the the numerical integration of the Navier-Stokes equations.

7.1 Results

We shall study the effect of Hartmann number, considering to cases. In the firs case we fix
Ra = 5.5×105 which corresponds to a steady state in the absence of magnetic field. In the
second case we explore the MHD effects on a time dependent flow with a Ra = 1.5× 106.
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7.1.1 Steady state flow

We consider a cylindrical container of aspect ratio 1.25 filled with water Pr = 6.67, heated
from below and cooled from above. The Rayleigh number is Ra = 5.5× 105.

In figure 7.2 the vortex core of the flow for Hartmann numbers Ha =0, 10, 20 and 30 is
shown

Figure 7.2: Evolution of the vortex core of the flow. a) Ha=0 (left top), b) Ha=10 (right
top), c) Ha=20(left bottom) and d) Ha=30 (right bottom). Ra = 5.5× 105

For low Hartmann numbers Ha < 10 the electromagnetic force leads to insignificant
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modifications on the flow, but the flow pattern obtained is oriented different direction
due to the degeneration on the solution brought about by the symmetries of the flow (see
equation 7.11).

As discussed in section 5.3.1 the vortex core indicates that the dominant structure is a
non-axisymmetric convective cell with two minor structure near the horizontal walls. The
vortex core for the case Ha=10 is qualitatively the same and topologically equivalent,
convective cells are slightly pushed towards the lateral walls.

At a high Hartmann number Ha = 20 the vortex core is noticeably displaced to the regions
near to the lateral wall indicating that the convective cells are pushed further towards this
wall. It is found that the flow patterns is symmetric with respect to a vertical plane which
is interpreted as the reminiscence of the plane AA’ but the vertical-azimuthal symmetry
composition of the non- MHD case is lost (see section 5.3.1).

For the highest Hartmann explored Ha = 30 (see figure 7.2), the vortex core display a
four lobe structure approximately symmetric with respect to two mutually perpendicular
vertical planes. An interesting observation is that the vortex core is composed of four
column-shaped structures.

Figure 7.3 shows the distribution of the vertical velocity at the mid-height of the cylinder
for Ha=0, 10, 20 y 30. The plot corroborate the geometrical properties presented in
the discussion of figure 7.2. For Ha=20 and Ha=30 lines are drown to emphasize the
symmetries. It interesting to note the columnar geometry of the ascendant/descendant
flow in the case of the largest Hartmann number.

Figure 7.3: Color map of the w velocity at the center of the cylinder. a) Ha=0 (left top), b)
Ha=10 (right top) c), Ha=20(left bottom) and d) Ha=30 (right bottom). Ra = 5.5× 105

The two dimensional velocity fields corresponding to cases Ha=0 and Ha=30 are shown
int figure 7.4 to highlight the effect of the magnetic field on the flow. The orientation of
the vertical planes shown in the previous figure 7.3 d) correspond to the velocity fields in
the lower row of figure 7.4.
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Figure 7.4: Planes AA’ and BB’. Top Line: Natural convection without the effect of a
magnetic field. Bottom line: Natural convection under the influence of a magnetic field
Ha = 30. Ra = 5.5× 105

The dynamic properties discussed before are fully consistent with the velocity distribution
shown in the figure 7.4. However the vertical symmetry is clearly displayed in the case
Ha=30; i.e. flipping the velocity field of the lower left figure around the mid-height
horizontal line, gives the lower right distribution.

7.1.2 Time dependent flow

We consider a cylindrical container of aspect ratio 1.25 filled with water Pr = 6.67,
heating from below and cooled from above, the Rayleigh number is Ra = 1.5×106, which
is a time dependent flow without the effect of a magnetic field.

The structure of the flow in this case has an average behavior like the previous discussed
situation an only a few comments will give to emphasize that the application of a magnetic
field parallel to the axis of symmetry of the cylinder might transform a time dependent
flow in to a steady state motion. This is of great importance in engineering application
such the crystal growth processes.
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The time dependent features corresponding to the case of the zero magnetic field is il-
lustrated in figure 7.5 where the axial velocity field at point (A/2,π,1/2) is plotted as
a function of the time, an initial transient flow is followed by a periodic motion (Black
line). When Hartmann number is set to 40, the flow displays a large oscillations for times
smaller than 700 followed by a constant velocity (zero amplitude for this particular point,
blue line).

Figure 7.5: Time evolution of the flow with (Ha=40, blue line) and without (Ha=0, black
line) the effect of a magnetic field. Ra = 1.5× 106

It is tempting to build a plot to find the critical Hartmann number required to kill the
oscillation. However in contrast to the rotation case (see section 6.1.2). It is no possible
to do such a calculation for the present conditions, since the system displays multiple
solutions for the same Rayleigh and Hartmann numbers based on the initial conditions of
the system. If we restrict ourselves to a single convective pattern obtained by zero velocity
initial conditions, then a critical Hartmann number can be identified. An example of this
calculation is shown in figure 7.6 the amplitude of the oscillation as a function of the
Hartmann number.

Figure 7.6: Amplitude vs Hartmann. Natural convection Ra = 1.5× 106.
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The qualitative behavior indicates a monotonous decreasing function and a quadratic
polynomial fit indicates that Ha = 29.0446 results in zero amplitude of the oscillation.

The multiplicity generated by the symmetric preserving conditions might be considered. A
deep study should be needed, we only explore the efficacy of the numerical tools developed
to study natural convection in cylindrical geometries now including the effect of a magnetic
field for the case of an electrically conducting fluids.



Conclusions

A numerical techniques to solve the fluid dynamics equations in cylindrical coordinates
were presented.

The finite volume method was widely applied in this study due to its simplicity and
implementation facilitates but this methodology has issues with the periodicity and low
order accuracy.

Spectral methods have proved to be very useful tools with high precision of the solution,
ensuring periodicity and no special treatment of origin. Spectral codes to solve two dimen-
sional and three dimensional flows was developed. Spectral method are more complicated
to implemented and the numerical calculations are slower than the calculations with the
finite volume method.

The difficulties handling discontinuous problems as many operations that characterize
spectral methods begin the process that become a hybrid methodology proposal between
finite volume and spectral methods. With this method the solutions obtained with finite
volume can include the advantages of spectral methods as the guarantee of periodicity
which can be obtained with the Fourier method as well as an accuracy increment in the
azimuthal direction.

A methodology proposal were presented in chapter IV, it combines finite volume and
a spectral methodology, conserving the simplicity of the finite volume code and solving
periodicity problems and improving the accuracy with a Fourier spectral method.

The numerical strategies presented were proved for the case of natural convection in a
cylindrical container. Those tools was used to solve the natural convection flows of fluid
in a cylindrical container, also the effect of rotation or a electromagnetic force was added.
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