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Heureux I'homme occupé

Heurensc 'homme, occupé de I'éternel destin,
qui, tel gu'un voyagenr qui part de grand matin,
se réveille, l'esprit rempli de réverie,

et, des l'anbe du jour, se met a lire et prie!

A mesure qu'il lit, le jour vient lentement

et se fait dans son dme ainsi qu'an firmament.
1/ voit distinctement, a cette clarté bléme,

des choses dans sa chambre et d'autres en lui-méme;
tout dort dans la maison ; il est seul, il le croit;
et, cependant, fermant lenr bonche de leur doigt,
derriere lui, tandis que ['extase ['enivre,

les anges souriants se penchent sur son livre.

Victor Hugo
Les contemplations

Dedico esta tesis a Papa, Mama y Kena, por su amor incondicional. . .



Abstract

volutionary Algorithms have proved to be well suited for optimization problems with multiple
E conflicting objectives. In this PhD thesis a new Multi-Objective Evolutionary Algorithm called
RankMOEA is proposed; it involves the design of innovative niching and ranking-mutation procedures
which avoid the need of parameters definition and are compliant with search structure space; such

procedures outperform traditional diversity-preservation mechanisms under spread-hardness situations.

Several quality indicators have been proposed in Evolutionary Multi-Objective Optimization literature and
some studies have been performed in order to evaluate their inferential power. However, such inferential
power becomes restricted at the time of dealing with approximations to the Pareto-optimal front with
similar convergence, therefore one will be interested in how well such approximations achieve one or more
of the multi-objective evaluation goals (convergence, uniformity and spread) by means of which quality
differences can be inferred. Most of the existent quality indicators have been conceived in the scope of
such goals, therefore it will be helpful to use them in order to untie incomparable approximation to the
Pareto-optimal front. Although, a study of how appropriate the quality indicators measure what they claim
to assess has not been performed. In this PhD thesis is presented a summarized review and an empirical
taxonomy framework based on multi-objective evaluation goals of most of the quality indicators found in
literature (about 38 indicators). Two additional contributions are reported: a new quality indicator to
measure spread within the approximation to the Pareto-optimal front and a methodology to compare

performance of stochastic multi-objective optimizers.

Additionally, RankMOEA is applied to approximate the Pareto Front of a Dynamic Principal-Agent model
with discrete actions posed in a Multi-Objective Optimization framework, cutting edge modelling that
allows to consider more powerful assumptions than those used in the traditional single-objective
optimization approach. Within this new framework a set of feasible contracts is described, while other
similar studies focus only on one single contract; hence a better economic analysis can be accomplished by
characterizing contracts in the trade-off surface. RankMOEA performance is compared with those of
other state of the art Multi-Objective Evolutionary Algorithms using the comparison methodology
developed, the results suggest that RankMOEA is very effective in sampling from along the entire Pareto-
optimal front and distributing the generated solutions over the trade-off surface, this by showing better

spread and minor convergence error.
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Chapter 1 Introduction

[Where the world ceases to be the scene of our personal hopes and
wishes, where we face it as free beings admiring, asking and observing,

there we enter the realm of Art and Science. . .

Albert Einstein






1 INTRODUCTION

1.1 MULTI-OBJECTIVE OPTIMIZATION

nnumerable situations in the real world involve in natural way problems with multiple criteria or
I objectives to be optimized, such picture emerges frequently in scientific and engineering areas. Mu/ti-
Objectives Optimization (MO), also called Multi-Criteria Optimization, studies the process of simultaneously
taking optimal decisions in the presence of trade-offs between two or more conflicting objectives. This
mathematical discipline was conceived in the middle of last century, starting from principles proposed by
Koopmans [1] and Kuhn & Tucker [2], whose inspiration was based on Edgeworth [3] and Pareto’s [4]
earlier works. MO is considerably more elaborate than the classical optimization approach, where the

decision of an optimal point is trivial.

Maximizing profit and minimizing the cost of a product, maximizing performance and minimizing fuel
consumption of a vehicle, and minimizing weight while maximizing the strength of a particular component
are examples of Multi-Objective Optimization Problems (MOPs). Since MO implies to optimize conflicting
objectives subject to certain constraints, most of the time it is impossible to determine a unique solution.
Hence, MOPs are characterized by a set of alternative optimal solutions that must be considered as
equivalents given the lack of information about relevance of one objective with regard to the others; such
set of solutions is discriminated based on dominance relations which entail a pre-order structure in a

multidimensional objective function space.

In MO a space for decision variables and a space for their objective functions evaluation are considered. In
real valued functions, those two spaces are related by a mapping F: R™ — R¥. Tt is assumed that a solution

to the MOP can be defined in terms of a decision vector X = [xq, X, ..., X, ]T

in the decision space R™.
The set of imposed constraints defines a feasible region Q0 € R™ in the decision space along with its
corresponding image A € R¥ on the objective space, which involves the evaluation of every point in Q

with the k = 2 conflicting objective functions F(x) = [f1(x), f2(x), ..., fx (x)] that constitute the MOP,

see Figure 1.1.

By definition, thete is a possibly infinite set of optimal solutions which are found at the frontier of A and
are called the Pareto Optimal Front (PF™), while their corresponding decision variables values in  are
called the Pareto Optimal Set (PS™). A solution x in PS™ is Pareto optimal (also called non-dominated with

respect to 1), which means that there is no other solution y € Q for which F(y) dominates F(x)
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(denoted by F(y) < F(x)). F(y) is said to dominate F(x) if and only if ¥ improves any objective to
optimize with respect to X without inducing some simultaneous deterioration in at least another objective,
e.g. assuming only minimization F(y) is partially less than F(x), ie., Vf; € F: fi(y) < fi(x) A3f; €
F: f;(y) < fi(x).

@ Pareto Optimal Set 4
@ Parecto Front

QC R

[
|

f

decision space objective space

Figure 1.1 Decision and objective spaces in MO. A solution parameterization X is mapped by a vector function F into
a vector in the objective space.

In mathematical terms, without loose of generality, a MOP can be written as:

min  F(x
x (x) 1.1
s.t. x€l
Since each Pareto optimal solution represents a different compromise among objectives, finding different

Pareto optimal solutions implies finding the structure of the trade-off surface involved in the MOP.

1.2 EVOLUTIONARY OPTIMIZATION

Evolutionary Algorithms (EAs) are stochastic methods of search often applied to optimization [5]. As the
history of the field suggests there are many variants of EAs. The common underlying idea behind all these

techniques is an evolutionary analogy of the “survival of the fittest” which takes its inspiration from the
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modern evolutionary synthesis, where natural selection can be seen as a learning process which a long the

time generates fittest individuals to survive in a defined environment.

An EA maintains a set of individuals P(t) ot population of strings at each stage or generation t, each
string ¥ € P(t) is also called chromosome and encodes a candidate solution to the problem’s domain
(classically encoded in a binary string or real vector, but now in almost any conceivable representation). A
mapping function @ encapsulates the decoding algorithm to derive the decision vector x = ®(y) from x.
As in nature, every individual has a fitness value associated to its performance in the environment, which is
defined as an abstract measure of the maximizing quality function of the problem. P(t) is evolved from
generation t to generation ¢ + 1 attempting to adapt itself to the difficulties of the environment by varying
and selecting the genetic material of the individuals (notion of inheritance), environment pressure causes
natural selection, thus a rise in the fitness of the population is induced. Selection weeds out poor candidate
solutions in generation ¢ by favouring individuals according to their fitness, desirably fittest individuals are
chosen to seed a pool of parents P'(t). Genetic material variation from parents is used to generate
offspring, which compete based on their fitness with their parents for a place in generation t + 1. This
cycle of birth/death influenced by fitness is iterated until a candidate solution with sufficient quality is

found or a previously set computational limit is reached.

The combined application of genetic material variation and selection commonly leads to improving fitness
values in consecutive generations, thus biasing solutions towards promising regions of the search space. It
is easy to see such process as if the evolution is optimizing, or at least approximating, by approaching
optimal values closer and closer over its course. Alternatively, evolution is often seen as a process of
adaptation; from this perspective, the fitness is not seen as an objective function to be optimized but as an
expression of environmental requirements, matching these requirements more closely implies an increased
viability reflected in a higher number of offspring. The evolutionary process makes the population adapt to

the environment better and better.

The ability of EAs to maintain a diverse set of candidate solutions not only provides a way to escape from
local optimum, but a way to cope with large and discontinuous search spaces. Besides, if several copies of a
good solution can be maintained, it provides a natural and robust way of dealing with problems where

there is noise or uncertainty associated with the assignment of fitness to candidate solutions.
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Genetic Algorithms (GAs) are one of the best known approaches in EAs, their abstraction of the modern
evolutionary synthesis is at the level of individuals [6], thus mating and mutation are involved as methods
of genetic material variation, with a pre-eminence of mating over mutation. Selected parents P'(t) are
mated among them by swapping parts of their genetic material producing the intermediate generation
P"'(t); this mechanism accelerates search process by exploitation of the gathered information. Mutation
provides diversity by performing a small random variation to a single element of P’ (t), i.e. exploration of

new regions in the search space, the offspring achieved after mutation is stored in P""' (t).

1.3 EVOLUTIONARY MULTI-OBJECTIVE OPTIMIZATION

In recent years, several stochastic search strategies have been developed and adapted in order to deal with
MO, because most of the time the complexity of the underlying MOPs prevents close solution methods
from being applicable [7], since generating PS™ can be computationally expensive and often infeasible.
Such strategies find Pareto Front approximations based on multiple execution of their optimizer algorithm.
It is in the late 1960s, when Rosenberg suggested with a study in his PhD thesis [8] to apply EAs to MO,
that the area known as Ewolutionary Multi-Objective Optimization (EMO) was born.

EAs viability to deal with MO is related to their population approach that suits well to find multiple
solutions in the same algorithm execution, their diversity-preservation mechanism that can be exploited to
keep heterogeneous candidate solutions, their ability to deal with search and multiple decision
simultaneously, their implicit parallelism, among other some well-known intrinsic EAs advantages.
Aforesaid features constitute EMO as a reliable methodology to achieve two ideal goals of MO: attaining
good convergence to PF* and maintaining the distribution of the Pareto Front approximation as diverse as

possible.

Interest in EMO has considerably increased during the last two decades, when many Multi-Objective
Evolutionary Algorithms (MOEAs) have been proposed. MOEAs constitute a promising approach to deal
with real world MOPs [9], even they usually do not guarantee to identify optimal trade-offs, but to find

good assessments, i.e., sets of solutions whose objective vectors are not too far away from PF™.

One of the major heuristic experimental goals within EMO research is to compare well-engineered

MOEAs in terms of efficiency and effectiveness as regards selected MOPs through the use of appropriate
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metrics. These metrics are an essential part of a successful experimental methodology able to characterize
accurately the performance of different algorithms. A trade-off between efficiency and effectiveness is
always present in heuristic approaches. How to measure efficiency in the sense of computational effort has
been widely studied along Computer Sciences history. Contrariwise, how to measure effectiveness in the

sense of the accuracy and convergence of experimental outcomes is still an open problem in EMO.

1.4 STATEMENT OF THE PROBLEM

MOEAs have evolved by reformulating and improving some of their inherent elements as fitness
assignment, diversity-preservation mechanism and elitism, a continuous improvement process is pursued.
When solving real MOPs, good assortment of the Pateto Front approximation (PFyy,oyn, outcome of the
MOEA) is preferred since wider variety of heterogeneous solutions could give a better sight of the trade-
off surface. Thus, better spread and dispersion of the candidate solutions in PFypown with good
convergence towards PF* will contribute with important information of the approximated structure of
PF*, giving rise to better informed decision making process by choosing the solutions in PFpy gy that

best meet with compromises among objectives.

Therefore, the design of a MOEA that involves a robust diversity-preservation mechanism with non-
parameter definition compliant with search structure space and, consequently, able to achieve PFyp,onS
with low convergence error and good spread and dispersion is desirable. Furthermore, how to compare the
performance of stochastic multi-objective optimizers is not clear at this time, since several effectiveness
metrics (referred as quality indicators hereinafter) have been designed. Thus, a statistically confidence
methodology which may discriminate and involve a suitable subset of quality indicators in order to assess
MOEASs outcomes compliant with dominance relations between non-dominated sets could provide a first

attempt to the problem of measuring outcomes effectiveness in EMO.

1.4.A How to improve the diversity of MOEAs?

Diversity-preservation mechanisms impulse divergence in tangential direction to the promising regions
discovered by the MOEA, this through probability selection bias in less conglomerated regions. Most of

the designed diversity mechanisms in EMO require parameters specification or are unable to deal with
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incommensurable objectives or were not designed to be compliant with the search space. Hence, three
premises are considered in order to design a new MOEA which emphasizes spread and dispersion of

PFyown and preserves equilibrium between exploitation and exploration:

= Since Pareto dominance rules sort candidate solutions in a certain order according to their
proximity to the frontier of A, some advantage can be taken from such arrangement by
intensifying exploration in candidate solutions far from the frontier and reducing exploration in
candidate solutions close to the frontier. This assuming that the first type of solutions does not
have much information about PF* structure and need more effort to achieve a good performance.

®  The structure of the search is defined by ) and not by A, thus, diversity preservation mechanisms
should wotk better in € if they are compliant with Q structure. Hence, exploitation of the
information could be successful by mating nearby candidate solutions in {) since such process is
less disruptive.

® In most of the cases, after a certain threshold in the evolutionary process of MOEAs, the number
of non-dominated solutions grows rapidly, thus reduced mutation in solutions closer to the
frontier of A that are less conglomerated in ) should improve performance by controlling

exploration and preserving the emphasized exploitation in such regions.

1.4.B How to measure outcomes quality of MOEAs?

A wide number of quality indicators (quality features of the found non-dominated solutions set or
PFyown expressed in a quantitative way) have been proposed in EMO literature along history, even
though it is not obvious which of such indicators must be used in practice [10] [11]. Zitzler ez a/ [12]
propose that the number of indicators to use should be proportional to the number of objectives to be
optimized; however, a wide stock of indicators does not guarantee a precise and detailed PFpnown
description. In addition, several studies have been performed in order to discriminate quality indicators by
their inferential power, though, such inferential power becomes restricted at the time of dealing with
PFypown’s with similar convergence, therefore one will be interested in how well PFy,, oy, achieves one or
more of the MO evaluation goals (convergence, uniformity and spread) by means of which quality
differences can be inferred. Most of the existent quality indicators have been conceived in the scope of

such goals, therefore it will be helpful to use them in order to untie incomparable PFjpum’s-
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Actually, several papers have included analysis from some indicators [10] [12] [13] [14] [15] [16] [17] [18].
Although, a study of how accurately the quality indicators measure what they claim to assess has not been
performed (in this case one or more MO evaluation goals), an important concern at the time to select the
most adequate quality indicator(s). Thus, a summarized review and an empirical taxonomy framework
based on multi-objective evaluation goals of most of the quality indicators found in literature should be
accomplished in order to compose a methodology to compare performance of stochastic multi-objective

optimizers.

1.5 DISSERTATION CONTRIBUTIONS

The main contributions of this thesis to achieve the degree of PhD in Computer Sciences are:

®* A new efficient and effective MOEA called RankMOEA, which includes a robust diversity-
preservation mechanism with non-parameters definition compliant with search space structure
and able to accomplish good performance over spread-harness situations.

®= A methodology to compare the quality of outcomes of MOEAs, covering the analysis of most of
the quality indicators known at the present, for this purpose the following sub-targets are
achieved:

» An empirical taxonomy framework of quality indicators based on MO evaluation goals
accuracy, i.e. how well the quality indicator measures the MO evaluation goals, including
important features (some have already been reported for a few indicators but not studied
for all of them e.g. set dependence, evaluated characteristics, monotony, relativity,
computational complexity), attempting to develop a guide to choose suitable quality
indicators according to experimental goals.

> A new quality indicator to measure spread within PFyp, oS, achieving a more accurate
assessment since former indicators offer a superior bound or are susceptible to
convergence error and uniformity variation.

» A methodology to quantify the outcomes quality of stochastic multi-objective optimizers
and compare their performance, conceived as statistically confident and compliant with
dominance relations between non-dominated sets, using only a suitable subset of quality

indicators that fulfil requirements according to MO evaluation goals.
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= Additionally, RankMOEA is applied to approximate the Pareto Front of a Dynamic Principal-
Agent model with Discrete Actions posed in a multi-objective optimization framework, cutting
edge modelling that allows to consider more powerful assumptions than those used in the
traditional single objective optimization approach. Within this new framework a set of feasible
contracts is described, while others similar studies only focus on one single contract. The results
achieved with RankMOEA show better spread and minor error than those obtained by already
well-known MOEAs, allowing to perform better economic analysis by characterizing contracts in

the trade-off surface.

1.6 DISSERTATION OUTLINE

The remainder of this PhD thesis is organized as follows. Chapter 2 includes a description of the key
concepts in EMO, a brief overview of most relevant state of the art MOEAs and a summary of most of
the MO quality indicators found in the literature. The proposed MOEA, called RankMOEA, which
includes a new diversity-preservation mechanism with non-parameters definition is described in detail and
tested over spread-harness situations in Chapter 3. A complete study of the summarized MO quality
indicators with regard to the outperformance relations and the MO evaluation goals is shown in Chapter 4,
also an experimental methodology to compare stochastic multi-objective optimizers is proposed and
tested. Chapter 5 presents the performance comparison of RankMOEA versus some well-known MOEAs
over various theoretical MOPs. Chapter 6 introduces the Dynamic Principal-Agent problem as a MOP,
shows the outstanding PFypown achieved with RankMOEA and presents some conclusions that can be

deduced from the analysis of the achieved results. Finally, conclusions and future work are drawn in

Chapter 7.
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Chapter 2 Review of the Literature

[Iz @5 not the strongest of the species that survives, nor the most
intelligent that survives. It is the one that is the most adaptable to

change. . .|

Charles Darwin
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2 REVIEW OF THE LITERATURE

2.1 INTRODUCTION

n order to propose alternatives solution to the two main goals posed in this PhD thesis: improve
MOEAs diversity and compose a methodology to compare performance of stochastic multi-objective
optimizers, this chapter presents the review of the state of the art concerning to key issues in EMO, the
idea behind some well-known successful MOEAs and a summarized review of most of the quality

indicators found in literature (38 indicators).

2.2 KEYS ISSUES IN EVOLUTIONARY MULTI-OBJECTIVE OPTIMIZATION

Zitzler [19] reformulates, in a general way, the optimization aspiration pursued when optimizing MOPs

based on three goals:

* The distance of the resulting PFp, oy to PF* should be minimized.
* The distribution of PFy, oy, should be uniform in most cases.
* The spread of PFy,,0wn should be maximized, i.e. for each objective a wide range of values should

be covered by the non-dominated solutions.

According to Zitzler, in the intention of achieving the aforesaid goals, two major problems must be

addressed when an EA is applied to MO:

= How to accomplish fitness assignment and selection, respectively, in order to guide the search
towards PS™.
®* How to maintain a diverse population in order to prevent premature convergence and achieve a

well distributed and well spread PFypown-

In the following, a categorization of general techniques which deal with these issues is presented; the

modified usage of elitism is also included, given that its notion interacts with both situations.

13
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2.2.A Fitness Assignment and Selection

Within EMO, the way in which fitness is assigned and selection is performed is modified in order to deal
with several objectives simultaneously. Three types of fitness assignment and selection are distinguished in

the state of the art [9] [19]: aggregation-based, objective-based and Pareto dominance-based.

Aggregation-Based Fitness Assignment

The objectives to be optimized are combined into one single linear or nonlinear parameterized function;
the parameters of such function ate not changed for different optimization runs, but systematically varied
during the same run. The potential bias towards convex portions of PF* may restrict the effectiveness of

this approach.

Objective-Based Fitness Assignment

The most suitable sequence of the objective(s) to be optimized is chosen during the selection phase, i.c.,
only one subset of objectives is optimized at the time by the entire population or by portions of the entire
population. E.g. initially only the most important objective is optimized, as the population evolves more
objectives are consecutively considered in the process according to their pre-eminence [20]; the mating
pool (selected parents) is filled with equal portions according to the distinct objectives [21]. This approach

may have bias towards extreme solutions and be sensitive to non-convex PF™.

Pareto Dominance-Based Fitness Assignment

Every individual in the population is ranked according to the Pareto dominance concept, the rank of an
individual determines its fitness value where it is clearly related to the whole population, contrariwise to the
abovementioned techniques where the raw fitness of an individual is calculated independently of the other
individuals. Several distinctive rules to rank have been conceived along EMO history, the first one was
proposed by Goldberg [5], whose idea is to assign rank one to all non-dominated individuals in the
population and temporarily remove them from the population, then, the next non-dominated individuals
are assigned rank two and also temporarily remove them from the population, then, the next non-
dominated individuals are assigned rank three and so forth (see Figure 2.1 a). Equation (2.1) describes this

recursive Pareto rank rule where x = ®(y) and y = ®({).

14
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1 iffA¢ € P(t): F(y) < F(x)

[rankg @« t)] +1 otherwise (2.1)

rankg(x, t) = {

max
7EP(£):F(y)<F (%)

Fonseca & Fleming [22] proposed a Pareto rank rule where every individual has a rank equivalent to the
number of individuals that dominate it increased by one, thus non-dominated individuals have rank one

(see Figure 2.1 b). This Pareto rank rule is defined in Equation (2.2).

ranksr(x,t) = {{ € P(t): F(y) < F(x)}| +1 2.2)

In 1998, an innovative Pareto rank rule which involves an off-line population Pyygyn (t) that stores all
non-dominated individuals found up to generation t was proposed by Zitzler & Thiele [23]. The rank for
each individual in P(t) is computed with the strength of the individuals in Pjpeyy (t) that dominate it, the
strength of an individual { in Pprpown(t) is proportional to the number of population members it
dominates, strength; = |{g:¢ € P(t) AF(y) < F(2)}| where z = ®(¢) (see Figure 2.1 c). Equation
(2.3) describes this Pareto rank rule.

. strength )
,t) = —+
CEPLown (E):F(¥)<F(x)
Van Veldhuizen [24] proposed in his PhD thesis a simpler Pareto rank rule defined in Equation (2.4), here

non-dominated individuals get rank zero and dominated individuals get rank one (see Figure 2.1 d).

rank,,(xt) = {(1) iff [{¢ € P(t?):tge(ggi; F(x)}|=0 2.4
Later, Zitzler & Thiele [25] improved their previously proposed Pareto rank rule in order to avoid the
situation that individuals dominated by the same Py oy (t) members have identical fitness values, within
this new approach for each individual dominating and dominated individuals are taken into account (see
Figure 2.1 €). In detail, the rank of an individual in P(t) is composed by a redefined strength value
strengthy = |{¢:¢ € {P(t) + Pnown ()} A F(¥) < F(2)}| of individuals in P(t) and Pgpoyn () that
dominate it and a density estimate incorporated as the inverse of the distance in the objective space to the
k-neatest neighbour in P(t) and Pipown(t). As a common setting, they proposed to use k as the square-
root of the sample size. Equation (2.5) describes this Pareto rank rule, where two is added in the

denominator of the density estimate to ensure that its value is greater than zero and less than one.
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Figure 2.1 Graphic examples of Pareto rank rules: a) Goldberg b) Fonseca & Fleming c) Zitzler & Thiele first version
d) Van Veldhuizen e) Zitzler & Thiele improved version.

2.2.B Elitism

Elitism or an elitist strategy is a mechanism which ensures that the chromosome(s) of the most highly fit
member(s) of P(t) are passed on to the next generation without being altered in order to prevent losing
them due to sampling effects or operators disruption. In EMO, elitism is extended to the concept of an
offline population Pgy,un(t), which stores all non-dominated solutions found up to epoch t. The set of
decision vectors decoded from Prpown(t) is PSknown(t), and its corresponding image in A is
PFynown(t). Since generally PF* is an infinite set, the maximum size of Pgpown(t) must be taken in

consideration by physical memory restrictions, thus most of the time its growth is controlled, e.g. using

16



2 REVIEW OF THE LITERATURE

mechanisms of clustering or truncation. Two classes of elitism can be distinguished within the EMO

approach: isolated and interactive.

Isolated Elitism

Prrnown(t) can act only as a repository unit to store non-dominated individuals, it is updated along the

evolutionary process.

Interactive Elitism
Prrown (t) can be interactive, which means that besides being updated it can cooperate in the evolutionary

process by selecting new parents from it to generation t + 1.

2.2.C Diversity Preservation Mechanisms

A simple EA tends to converge towards a single solution and often losses solutions due to three effects:
selection pressure, selection noise and operator disruption [23]. To overcome this problem, which is
known as genetic drift, several methods called diversity-preservation mechanisms have been developed, the
ones most frequently used in EMO are briefly summarized here. A diversity-preservation mechanism
attempts to impulse divergence in tangential direction to the promising regions discovered by the MOEA,

this through probability selection bias towards less conglomerated regions.

Fitness Sharing

Fitness shating is a niching mechanism which was proposed by Goldberg & Richardson [26]; a niche
describes the relational position of a species or population in its ecosystem to each other, i.e., how an
organism or population responds to the distribution of resources and competitors and how it in turn alters
those same factors. In EMO, individuals in the same niche have presumably similar features and, as in
nature, they have to share available resources; thus the fitness value of a certain individual is more
degraded as more individuals are located in the same niche; such idea allows to maintain stable
subpopulations (niches) providing additional selective pressure. The niche size Ogpqpe defines a
neighbourhood in terms of distance between individuals and can be measured in the genotype || x, {||, the
phenotype ||x,¥|| or the objective space ||[F(x), F(¥)|| (see Figure 2.2 a). Mathematically, the shared

fitness sf; of an individual ¥ is equal to its raw fitness divided by its niche count, see Equation (2.6).
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fitness
sf, S

= 2.6
X = S ero shllx D 20

An individual’s niche count is a measure of how saturated is its niche, it is computed as the sum of sharing
function values sh(||x, {||) between itself and the individuals in P(t), sharing functions commonly used

are of the form shown in Equation (2.7) whetre Qgpqre tegulates the shape of the function sh(||x, {|l).

1 llx, 11\ “here 2l <o
sh(llx ¢l = Tenare X share @.7)
0 otherwise

Restricted Mating

Restricted mating [22] is a mechanism which ideally limits mating to individuals with similar genetic
material, thus it is expected that offspring with similar features to their parents can be generated. It is
preferred to mate individuals within the same niche since it may avoid the formation of lethal individuals
and therefore improve the online performance by controlling diversity (see Figure 2.2 b). In a homologous

way to fitness sharing, the parameter of niche size Oyqee should be defined.

Reinitialization
Reinitialization of the whole or parts of P(t) after a certain number of generations or whenever the search

stagnates is a way to prevent premature convergence that was proposed by Fonseca & Fleming [27].

Clustering

Zitzler & Thiele [23] proposed to involve a hierarchical clustering as a mechanism to maintain diversity. In
their approach the offspring in generation t and the individuals in Py (t) compete for a place in
generation t + 1, thus a selection of survivors compliant with their good distribution in the objective space
should be used. Initially every individual is seen as a cluster, distance between clusters is computed in A,
the two clusters with the minimum distance between them are combined into a single cluster, this process
continues until there are as many clusters as individuals that can be preserved to generation t + 1. The
centroid in every cluster is selected as the individual to be preserved. The main drawback of this approach

is that tends to delete individuals whose projection in PFjpon (t) is an exterior solution.
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Grid Mapping

A mechanism that attempts to maintain a uniform sampling of the solutions over PF* using a grid
mapping was suggested by Knowles & Corne [28]. This procedure recursively divides A into hypercubes,
so it is possible to compute the density of every hypercube as the number of individuals that it contains
(see Figure 2.2 ¢), thus an individual with high density in the hypercube that contain it has less probability
to survive when Prpown(t) is redefined. A priori knowledge of the geometric structure of PF* is

necessary in order to define the most appropriate number of divisions in every dimension of A.
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Figure 2.2 Graphic examples of diversity-preservation mechanisms: a) Fitness sharing b) Restricted Mating ¢) Grid
Mapping d) Crowding e) Truncation.

Crowding
Crowding, proposed by Deb et al [29], was conceived with the idea of non-parameter definition; this
mechanism estimates the density of the projection in A of an individual by taking the average distance of

the two points on either side of such projection along each of the objectives. This quantity, called
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crowding distance, serves as an estimate of the size of the largest cuboid enclosing the aforesaid individual
without including any other individual in P(t). The higher the crowding distance of an individual, the
higher the disaggregation of the points surrounding its projection in A, whereas lower the crowding
distance of an individual, higher the concentration of the points surrounding its projection in A (see Figure
2.2 d). The crowding distance can be used to bias selection in the evolutionary process towards a uniformly

spread out PF0wn-

Truncation

In order to improve the clustering approach, Zitzler & Thiele [23] proposed to use a truncation
mechanism when Ppy, o, (t) exceeds its limit size. The idea is to maintain a highly representative sampling
of Prnown (t) by deleting iteratively an individual of Pyyown (t) until its size is suitable. The individual to
be deleted is the one with the minor distance to its closest neighbour in A, in case of a tie, the distance to

the second closest neighbour is considered and so forth (see Figure 2.2 ¢).

2.3 SOME WELL-KNOWN MULTI-OBJECTIVE EVOLUTIONARY ALGORITHMS

Six MOEAs whose diversity-preservation mechanisms and features have had significant contributions to
EMO research are briefly summarized in the following. Such MOEAs have been chosen with the purpose
of studying their advantages and drawbacks in order to propose a new MOEA in this PhD thesis. Table
2.1 draws the most relevant features (evolutionary approach, fitness assignment, diversity-preservation

mechanism, parents’ selection and elitism) of every MOEA here described.

VEGA

The Vector Evaluated Genetic Algorithm (VEGA) was proposed by Schaffer [21], it is a GA with objective-
based fitness assignment and generational elitism, i.e., no offline population is used. VEGA modifies the
selection process in order to favour survival of the best individuals in every objective and those that are
better than the average in more than one objective. P'(t) is generated by shuffling k subpopulations, every
subpopulation is formed by |P(t)|/k individuals chosen with regard to one of the k objectives to be
optimized. VEGA evolves P(t) until build a suitable set of solutions to the MOP. Although some setious
drawbacks are known, as instability to search in concave PF”s and inability to create middling individuals,

this algorithm has been used as a strong point of reference up to now.
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MOGA

The Multi-Objective Genetic Algorithm (MOGA) was proposed by Fonseca & Fleming [27] [30], it is a GA
with Pareto dominance-based fitness assignment and isolated elitism. MOGA was innovative with its
fitness assignment process by attempting to avoid the genetic drift effect. Fitness assignment is performed
with Fonseca & Fleming’s Pareto rank rule using an interpolation function (usually linear but no
necessaty). Then fitness sharing is applied in order to maintain a controlled selective pressure, the niche
count is computed in A with an infinity norm ||*||e, thus it is expected that P(t) may evolve with a

uniform distribution. In order to generate P’ (t), restricted mating and reinitialization are utilized.

NPGA

The Niched Pareto Genetic Algorithm (NPGA) was proposed by Horn et a/ [31], it is a GA with Pareto
dominance-based fitness assignment and generational elitism. NPGA enhances selection process by using
a modified version of tournament selection with replacement called tournament by Pareto dominance. In
tournament by Pareto dominance two candidates to tournament and a comparison subset subP(t) €
P(t) are randomly chosen, |[subP(t)| € {1,2,.., |P(t)| — 2}, every candidate is compared with subP(t),
if any of both is dominated by subP(t) and the other is not, the one that is non-dominated is the winner.,
contrariwise if both are dominated or non-dominated a fitness sharing modification called equivalence

class sharing is used, here the winner is the candidate whose niche count in the phenotypic space is lower.

NSGA-IT

The Non-dominated Sorting Genetic Algorithm 1I INSGA-II) was proposed by Deb e a/ [29], it is a GA with
Pareto dominance-based fitness assighment and interactive elitism. NSGA-II was one of the first attempts
to avoid parameter definition; the main idea is to create layers of individuals (also called sub-Pareto Fronts
approximations) according to its dominance using Goldberg’s Pareto rank rule and crowding. P'(t + 1) is
generated from Pppown(t) and P''(t) using a binaty tournament with replacement consideting in a
hierarchical pre-eminence the rank and crowding distance. NSGA-II outstanding efficiency is because of

reducing multiple objectives optimization to one single criterion using the non-dominated sorting.

SPEA2
The Strength Pareto Evolutionary Algorithm 2 (SPEA2) was proposed by Zitzler ef al [25], it is an EA with
Pareto dominance-based fitness assignment and interactive elitism. SPEA2 is inspired in immune systems

approach; it uses Prpown (t) to evaluate P(t) fitness with Zitzler & Thiele’s improved Pareto rank rule,
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while Pgpown (t) is updated with non-dominated individuals in Pypown(t — 1) and P(t — 1). Given that

Prrnown(t) should always keep the same size that P(t), two situations can occur: if Pryown(t) exceeds

such size a truncation process is used to achieve a reduced representation, if Pypown(t) lacks of such size

it is complemented with dominated individuals. In order to generate P'(t), a binary tournament with

replacement is performed over Pppown(t); non exceptional modifications over mating or mutation are

used.
Table 2.1. Summarized features of VEGA, MOGA, NPGA, NSGA-II, SPEA2 and PAES.
Evolutionary Fitness D1ver51t§7- Parents’ .. OfﬂmF
MOEA . preservation . Elitism population
Approach assignment . Selection
mechanism growth
Genetic Objective- Cooperative
VEGA Algorithm based - subpopulations - -
Fonseca & Fitness sharing,
i ing’ tricted i
MOGA Genetic Fleming’s restete Proportional =y ) g No limit
Algorithm Pareto rank mating and selection
rule reinitialization
Geneti Paret K Eauival Tournament by
NPGA enetic areto ran quivalence Parcto B 3
Algorithm rule class sharing .
dominance
Binary
Genetic Goldberg’s tournament with Limited by non-
NSGA-II ) Pareto rank Crowding replacement Interactive dominated
Algorithm . .
rule from offline sorting
population
Zitzler & Binary
Evolutionary Thiele’s tournament with Limited by
SPEA2 Vortonary improved Truncation replacement Interactive Y
Algorithm . truncation
Pareto rank from offline
rule population
PAES Evolutionary - Grid mapping - Interactive lel.ted b}j
Strategy sorted inclusion
PAES

The Pareto Archived Evolution Strategy (PAES) was proposed by Knowles & Corne [28], it is an Evolutionary

Strategy with Pareto dominance-based fitness assignment and interactive elitism. PAES is conceived under

a reproductive scheme (1 + 1), i.e., a unique parent generates a unique offspring, thus only mutation can

be conceptualized. Pypown(t) is used as an historical record of compatison versus every offspring. Once
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an offspring is generated by mutation, Pypown (t) update is performed if such offspring is non-dominated
by the parent or by any individual in Ppyouwn (t), when Pryown (t) exceeds its maximum size, grid mapping
is used to eliminate an individual within the region of higher density. The offspring becomes the parent in
the next generation only if it dominates the parent or it is located in a region with lower density according

to grid mapping in the current generation.

2.4 QUALITY INDICATORS IN EVOLUTIONARY MULTI-OBJECTIVE OPTIMIZATION

This section summarizes contributions accomplished by Srinivas & Deb [32], Schott [33], Gong ez a/ [34],
Esbensen & Kuh [35], Fonseca & Fleming [36], Van Veldhuizen [24], Van Veldhuizen & Lamont [37] [13],
Zitzler [38], Zitzler & Thiele [39] [40], Zitzler e a/ [12], Hansen & Jaszkiewicz [41], Wu & Azarm [14],
Knowles ¢f a/ [18], Deb & Jain [10], Czyzak & Jaszkiewicz [42], Leung & Wang [43], Meng ¢f a/ [44],
Lizarraga ef a/ [45] and Li & Zheng [46]. Indicators acronyms are modified in some cases to simplify its
future categorization. Due to indicators work over PFr,own(t) of PFg,own, in this section the term

solution refers to a point in any of this sets.

Spacing Distribution (SD)

Srinivas & Deb [32] developed a measurement schema to know how well distributed each solution is over
the non-dominated region. They propose to divide the non-dominated region in q subspaces, expressing

distribution horizon from solutions as in Equation (2.8).

q+1 Y,

SD & Z (ni ;i ni) 2.8)

where 7; is the expected number of non-dominated solutions for the th subspace, n; the number of

solutions which are non-dominated within the /~th subspace, and 0; the standard deviation of the expected

number of non-dominated solutions for the /th subspace defined in Equation (2.9).
i (1 s > 2.9)
o =n(1—7—— .
|P F knownl
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The (g+1)—th subspace represents the dominated region, thus 71541 = 0. Based on a statistic study [32]

demonstrated dg44 to be defined as in Equation (2.10).

Og+1 = o'l.z (2.10)

-

=1

Distribution is ideal if there are 71; solutions in each subspace «> SD = 0.

Extended Spacing Efficiency (ESE)

Schott [33] proposed a dispersion indicator based on distance variation among nearby solutions from
PFypown called Spacing Efficiency (SE). Afterward, Gong et a/ [34] generalized SE to k—dimensions,
amplifying the idea by proposing progressive integration of solutions cluster with minor distance. SE
extension is defined in Equations (2.11) and (2.12).

1,

|PFinownl

1 i}
[d - ESE!]”

. (2.11)
|P F) I:nown| -1

ESE £

i=1

k
ESE] = min Zj=1| fi@®) = f; | 2.12)

F(x)EPFI:nown,i—1
F(Y)E{PFlinown_PFk*nown,i—l}

* * R * * _ *
where  PFinowni-1 S PFienown:t = L2, o, [PFinownl,  PFinowni = PFinowni-1 Y {F(¥)}, by
definition PFyy,yn o contains the first solution in PFyy 5y, and d is the minimum average distance among

every two solutions in PFyp,wn described in Equation (2.13).

PFy; !
Zl: 1known | ESEL

2.13)
|PFI:TIOWTL |

d=
An equidistance spacing among every PFy,,,,,n point occurs <> ESE = 0.

Weighted-Sum Aggregation (WSA)

Esbensen & Kuh [35] proposed an indicator based on the creation of linear combinations with certain
probability distribution; each linear combination denotes Decision Maker (DM) possible preferences. For

each linear combination, every vector solution from PFjpgn is evaluated with the purpose of calculating
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the minimum weighted-sum, the PFjpy quality is obtained as the average of the minimum weighted-

sums, as in Equation (2.14).

Z'Lcl min g (F(x))]

':1 *
I=2 LF(0)EPF;, 0um

ILC|

WSA 2 (2.14)

where Ic; € LC is the j-th linear combination.

Performance Assessment through Attainment Surfaces (PAAS)

Fonseca & Fleming [36] developed a non-parametric statistical procedure to quantitatively measure the
relative performance among different multi-criterion optimizers. Each multi-criterion optimizer is executed
n times, storing in each iteration the achieved PFyyown- From each PFypom is possible to divide A into

two regions:

® objective vectors whose correspondent decision vectors are not dominated by at least an element
of PFypown, and

= objective vectors whose correspondent decision vectors are dominated by at least an element of

*
PF, known-

Such limit function adjusts achieved objective vectors, named as attainment surface. An attainment surface
combines information about solutions convergence and dispersion (see Figure 2.3 a). When attainment
surfaces from each multi-criterion optimizer execution are overlapped in the same graphic, it is possible to

visualize (see Figure 2.3 b):

® an area from A which contains the never achieved vectors in any optimizer execution, lower left
section,

= an area from A which contains the always achieved and improved vectors in any optimizer
execution, upper right section, and

* an area from A which contains achieved vectors in some optimizer executions, section enclosed
between extreme attainment surfaces. This area can be subdivided in smaller ones based on

executions percentage with achieved objective vectors.
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v
v
v

— Attainment surface Interpolation

Figure 2.3 Performance Assessment through Attainment Surfaces in bi-objective A: a) comparison between
interpolation and the attainment surface from solutions set, b) overlapping of three attainment surfaces, c) attainment
mid-surface construction from the intersection between an attainment surfaces set and a straight line which denotes
solutions order in the sample.

When n executions are considered, it is possible to compute attainment mid-surfaces from using auxiliary
straight lines, diagonal to axes and in the same direction as criteria improvement, and the sample of its
intersections with the achieved attainment surfaces (see Figure 2.3 ¢). It is possible to evaluate samples
represented by the mid-surface attainment involving convergence and dispersion statistically detailed. Such
process gives feasible estimations to support comparison among optimizers in terms of the best
performance optimizer; however, its disadvantages are not enough clarity to express how different the
performance is and the fact that it was designed to bi-dimensional spaces that is why its visualization in

more complex spaces is difficult.

Found Ratio of Pareto Front (FRPF)

Error Ratio (ER) was a first attempt to model this quality indicator. Gong ¢# a/ [34] extended this definition
to be able to use any set R* (where R* can be: PF*, PFp,oun from another MOEA, or an arbitrary set R
defined by the user), measuring the percentage of PFp,own solutions which form the absolute Pareto
Front in relation to PFypown and R, see Equation (2.15).

F PFnown: 2F R*,F F
prpp o 1F) € PRaown: BF(y) € R, F(y) < F(0)}] 215

|PFI:TLOWT1. |
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where VF(x) € PFpown3F(y) €E R:F(y) < F(x) & FRPF =0 and VF(x) € PF,,.,+AF(y) €
R*:F(y) < F(x) & FRPF = 1.

Generational Distance (GD.) and Generational Convergence Velocity (GCV)

Van Veldhuizen & Lamont [13] [24] [37] introduced GD; as the average distance between PFyyo,n and R*
in the #th MOEA generation; i.e. the deviation from PFyy, .y, with regard to R* in a specific evolution
time, see Equation (2.16). They also modified the definition of progress measure proposed by Bick [47] in
otder to define GCV from GDy, as in Equation (2.17).

1/,
(ZF(x)EPFk*nown [Fg)i&*llF (x) - F (3’)”5]) (2.16)
GD, £
‘ |PFI:nown(t)|
1

GD: Y2

GCV 2 In (G—Dl) 217)
t

PFnown S R* & GD = 0.

Overall Non-dominated Vector Generation (ONVG) and Overall Non-dominated
Vector Generation Ratio (ONVGR)

Schott [33] proposed to measure the total amount of non-dominated vectors found during MOEA
execution, as in Equation (2.18). Later on, this indicator was extended by Van Veldhuizen & Lamont [13]

as the percentage of non-dominated solutions, see Equation (2.19).

ONVG = |PF;ownl (2.18)
PF;
ONVGR 2 ll’;% 2.19)

PF}pown = R* & ONVGR = 1.

Generational Non-dominated Vector Generation (GNVG)

In general, a MOEA adds at each evolutionary step non-dominated solutions found during current
generation PFly rent t0 PFinown(t). Van Veldhuizen [24] proposed to monitor the amount of non-

dominated solutions along evolutionary process as quality measure, Equation (2.20).
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GNVG £ |PFcyrrent (t)] (2.20)

whete PFZrent (t) represents non-dominated solutions found during the #th MOEA’s generation.

Hypervolume (H)

Zitzler & Thiele published in [40] a PFy,own etror measure in reference to lower boundaries (worst value)

from each objective: fiinf ,i=12,..,k. His obtained from coveting hypervolumes merging formed by

each solution in PFoun as in Equation (2.21).

H =

U a;:F(x') € PF,;“nown} (2.21)

4

where a; is the covering hypervolume for the objective vector corresponding to /~th decision vector (see

Figure 2.4 a).

Coverage of Two Sets (CTS)

Zitzler & Thiele proposed in [39] [40] a relative covering comparison between two sets, based in the

number of dominated solutions in both sets. Let X, Y € A be two decision vectors sets to be compared.

Mapping ordered pairs (X,Y) into the interval [0,1] can be mathematically expressed as Equation (2.22).
[{F(y) € Y:3F(x) € X, F(y) < F(x)}|

CTS(X,Y) = Y (2.22)

In other words, previous equation computes the percentage of non-dominated elements in the second
objective vectors set by elements from first set. By definition CTS = 1 if every objective vector in X is
dominated by Y. 3F(x) € X:F(y) < F(x)VF(y) €Y - CTS =1, otherwise AF(x) € X:F(y) <
F(x)VF(y) €Y = CTS = 0. Both CTS(X,Y) and CTS(Y,X) must be considered, since XNY is not
necessarily the empty set. CTS disadvantage, just like PAAS, is its inability to express how different the

performance is.
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Coverage Difference of Two Sets (CDTS)

Zitzler defined in [19] a new indicator attempting to solve CTS inability to express differences in
performance magnitude. Let X, Y € A be two decision vectors sets to be compared, the size of the space

weakly dominated by X but not by Y is computed in Equation (2.23).

CDTS(X,Y) = HX +Y) — H(Y) (2.23)

It is said that F(x) strictly dominates F(y) (denoted by F(x) << F(y)) if and only if X improves all
objectives to optimize with respect to Y, e.g. assuming only minimization F(x) is less than F(y), i.c.,
Vf, € F: fi(X) < fi(y). X << Y i and only if VF(y) € YIF(x) € X: F(x) << F(). Thus X << Y ©
CDTS(X,Y) = 0 A CDTS(Y,X) > 0.

Probability of Superiority (PS)

Hansen & Jaszkiewicz [41] proposed to statistically measure how much better a solutions set is over

another by computing integration over a utility functions set FU, see Equation (2.24).

PS(X,Y,FU,p) & j CXY, gp(fu)dfu 2.24)
fueru

where the performance comparative function between two solutions sets X and Y is given by Equations

(2.25) and (2.26).

1 if fur(X) > fu*(Y)
CXY, fu) =105 if fu'(X) = fu*(Y) (2.25)
0 if fuX) < fu*(Y)

fuX) = Fr(r;lr?é(X f u(F (x)) (2.26)

p(fu) is an intensity function which expresses the probability of the utility function fu, fu € FU: R¥ -
R is DM’s preferences model which relates each point from the objective space with an utility value, it is
assumed that DM task is to maximize utility. Therefore, it is possible to assure that PS states the DM’s
preference rate over a solutions set in reference to another. PS(X,Y,FU,p) =1 — PS(Y,X,FU,p). [41]

also suggested to use Equation (2.27).
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PSR(X,FU,p) = PS(X,R,FU,p) 2.27)

such that R is an arbitrary reference set common to every set to be evaluated. Nevertheless, measurements
produced by PS will greatly depend on the defined R set. In order to eliminate such influence, it is useful
to consider more than one R set. PS drawbacks are the number of fu’s needed, their respective intensity
functions, computational cost and the fact that it only performs comparisons in an homologous way to
CTS. Two final generalizations of C(X, Y, fu) were presented as alternatives in [41]: 1) more than only two

solutions sets and 2) a group of reference sets.

Expected Degree of Superiority (EDS) and Expected Proportion of Superiority
(EPS)

In order to solve the PS conflict, Hansen & Jaszkiewicz [41] defined in a homologous way to CDTS, two
indicators to express magnitude of difference in the superiority level from a solutions set over another.
The first one measures the expected degree of superiority, while the second one, anticipates that in certain
cases is more significant to measure the percentage of the best profit values instead of the discrepancies.

Mathematically, these two quality indicators can be expressed as in Equations (2.28) and (2.29).

EDS(X,Y,FU,p) & f (furX) = fu(N)p(fwdfu 2.28)

fUueru

fur () - fur(X)
fur(Y)

EPS(X,Y,FU,p) & f

fUueru

p(fwdfu (2.29)

EDS(X,Y,FU,p) = —EDS(Y,X,FU,p). In an analogous way to PSp: EDSR(X FU,p)=
EDS(R, X, FU,p) and EPSg(X, FU, p) = EPS(X, R, FU, p).

Maximum Pareto Front Error (MPFE)

This indicator specifies the line possessing maximum etror with regard to PFy,,oyn containing each vector
in PF*, based on the computation of the maximum distance between each objective vector in PFynown
and the closest element from the corresponding PF* [9] [24]. Initially, it was defined for bi-objective

problems and can be mathematically expressed as in Equation (2.30).
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1,

min  [Ii(x) - AI? + 12(x) — (1] (2.30)

MPFE £ max
F(x)EPF* LF(Y)EPFip0wn

However, its extension to &-dimensions is hypothetically possible. PF,own & PF* < MPFE = 0.

Non-dominated Vector Addition (NVA)

It defines the amount of non-dominated vectors from cardinal difference between PFyy,o,ns in different

generations [24], see Equation (2.31).

NVA £ |PFI:nown(t)| - |PFI:nown(t - 1)' (2'31)

where PFp, oun(t) represents non-dominated solutions found until #th MOEA’s generation.

Average Distance to Pareto Front (ADPF)

Zitzler et al presented in [39] a function to measure the average distance from PFy,,q,n to PF* using the

Equation (2.32).

S i | 0 IFCO = FOI|

|PFI:TlOW7'l|

2.32)

ADPF £

Distribution of the Found Pareto Front (DFPF)

Zitzler et al [39] proposed to measure PFjp,,yn uniformity as combination of its distribution and its

cardinality with Equation (2.33).

S rwerippun (FO) € PRinown: IF() = )| > o}

DFPF & "
|PFknown| -1

(2.33)

wherte 0 is a neighbourhood parameter. High uniformity exist € DFPF = |PF;,own| and high swarming

< DFPF = 0.
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Extent of the Found Pareto Front (EFPF)

The last indicator proposed by Zitzler et al [39] takes in count PFyy,on spread and is defined in Equation
(2.34).

EFPF 2 1f:(0) — £:() ||] @34

[ max .
F(x),F(Y)EPF;00m

k Y2
i=1
Hypervolume Difference (HD)

Wu & Azarm [14] suggested a performance measure based on covering hypervolumes difference between

two solutions subsets, they defined Equation (2.35).

HD 2 space(H(R") — H(PFinown)) (2.35)

where space( ) is a scaling function which maps the objective space into [0,1], (see Figure 2.4 b).

Knowles ¢# a/ [18] proposed a similar indicator but without scaling.

Overall Pareto Spread (OPS) and k" Objective Pareto Spread (OPS,)

Wu & Azarm [14] defined two indicators to quantify how widely dispersed PFipown is in A when
objectives are considered as a whole. The first one, OPS, provides a global sight of PFyy, oy, uniformity,
see Equation (2.36); the second one, OPSy, quantitatively measures solutions range with regard to each

objective in an individual way, see Equation (2.37).

H,x (PF;
OPS 2 M (2.36)
Hyp
PS, 2 _ ; '
OPSie = |0 max i) = i fi ) 2.37)

where Hey (PFynown) defines the hypervolume formed by extreme points from PFypoyn and Hgp is the

hypervolume delimited by upper and lower values of each objective (see Figure 2.4 c).
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Figure 2.4 Bi-dimensional illustration of a) covering Hypervolumes for objective vectors b) HD between two
objective vectors sets ¢) OPS and d) AOPF.

Accuracy of the Observed Pareto Front (AOPF)

Wu & Azarm [14] introduced AOPF as the inverse of the frontier approximation to PFp,oun, see

Equation (2.38).

-1
AOPF 2 (1= space(H(PFiyown)) — space(Hao(PFinown))) (2.38)

where Hy, is the supetior covering hypervolumes merging of dominated solutions from PFyp,own (see
Figure 2.4 d). AOPF computes the percentage of the area in white inside Hgy, it is easy to see that

PFpown solutions better distributed and closer to superior objectives values will let AOPF — oo.
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Number of Distinct Choices (NDC,)

High |PFipown| does not necessary imply more options to the MOP, some solutions could be too close,
L.e. variations between them can be indistinguishable. In a strict way, only strongly distinguishable solutions

should be counted. Let 4 € [0,1] be a defined £—dimensional division value, it is possible to divide the

-1
scaled A—dimensional A in (,uk) grids, each grid is a &-dimensional hypercube, T,,(q) is specified as the
indifferent region, i.e. the space where any two solutions are considered as indistinguishable. Wu & Azarm

[14] defined NDC,, as in Equation (2.39).

v, Yy Y

NDCH = Z Z Z NTu(qll,lz,...,lk'PFI:nown) 2.39)

lk=1 lz=1 ll=1

% 0 ifAF € PF;, . F eT
NTu(qh.lz.....lk'PFknown) :{1 if AF (x) known: F(x) #(ql1,lz,...,lk) (2.40)

otherwise

where qy, 1,1, is the grid identifier to be explored.

Cluster (CL,)

According to Wu & Azarm [14], cluster phenomenon cannot be correctly interpreted by NDC),. Then they

proposed Equation (2.41), an additional indicator able to achieve such phenomenon:
| PFl:nown |

2 i 2.41
K= NDCy (PFipmm) @4)

CL

A PFpown posseses good uniformity if every solution is found in different T,(q) <> CL, = 1. The

PFynown clustering index is greater than 1 as CLy, is.

Running Metric for Convergence (RMC) and Running Metric for Diversity (RMD)

Deb & Jain [10] proposed the use of two indicators during MOEA evolutionary process, arguing that
information about how a MOEA achieves final population has not been commonly analysed. The first
execution indicator is RMC, which is defined in Equation (2.42) and computes a ratio from minimum
normalized Euclidian distance between each element in the PFgyrens(t) and an arbitrary reference

decision vectors set R to be compated on PFgypent (t) cardinality. The second indicator, RMD defined in
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Equation (2.43), evaluates PF,;rene (t) uniformity, i.e., each solution vector is projected into a hyperplane

from the objective hyperspace, one dimension is reduced during this process. The hyperplane is divided

|

into a mesh of h gtids, each gtid is a (#~1)—dimensional hyperarea.

i) - fiy)
sup f “psup pinf

ZF(x)EP Feurrent [F(y)ER [2

RMC, 2
‘ urrent (t) |

RMC;

normalized with RMC, £ RMC
]

Z?k_1=1 2?2=1 2;1:1 neighborhood (h(qllrIZr---rlk—l’ t))

RMD, £ : 2.43)
Zlk =1 le 1211 ,neighborhood (H(qh.lz.....lk_l))
where qy, 1, .1, 18 the grid identifier to be explored and
0 if (1, 15,.00.,) = 0V
h(qlplz'---'lk—ﬂt) = AF(x) € PF, current PFinow n(t): F(x) € Tﬂ(ql1:12~--:lk—1) 244)
1 otherwise
H(q ) — {0 ifﬂF(X) € PFI:TIOWTL: F(.X') € Tﬂ(qll,lz,...,lk_l) (2.45)
Il l—1 . .
1 otherwise
PF. rentp B (t) represents non-dominated solutions from PFiren:(t) by  PFinowns

) values in the

neighborhood (g(qh,lz.---.lk—J) provides an evaluation by analysing g(‘lll,l

2reenli—1

Qi 15,1, Deighbourhood.

Average Distance (AD) and Worst Distance (WD)

Czyzak & Jaszkiewicz [42] proposed indicators to measure convergence error based on distance between
solutions from two decision vectors sets. Let X, Y € A be two decision vectors sets to be compared. The
first proposal measures the average distance from solutions in set Y with regard to the closest solution in
set X, while the second one evaluates the worst distance instead of the average, see Equations (2.46) and

(2.47) respectively.
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Srier min | max [pilfi() — fi@)]]

Foex Li=1,2,..k
14

AD 2 (2.46)

WD £ max [ [
F(y)EY F(x)EX

x o i) = G| 247

where a weighted vector P =[pq,p,,..,pr] is defined in advance p; = |minp(y)eyfi(y)—

-1
maxr(y)ey fi (}’)|

Indicator € (1)

Knowles ¢ a/ [18] and Zitzler et al [12] suggested a quality indicator & which compares two solutions sets
X, Y € A. Two versions of such indicator exists: multiplicative I, and additive I.y. The & indicator
computes the minimum value € by which each F(y) € Y is modifed in order to make it worse than any

F(x) € X. The multiplicative version is defined in Equation (2.48).

I, = 1nf{E|F(x) EX:F(x) <, FQ)VF(y) €Y} =

(2.48)

[ [ max fl(x):|:|
FOYRY |FODex |i=1on 3167

where F(x) <, F(y) © fi(x) < ef;(y)Vi=1,2,...,k. It is said that F(x) weakly dominates F(y)
(denoted by F(x) < F(y)) if and only if F(x) < F(y) or F(x) = F(y), e.g. assuming only minimization
Vf; € F: fi(x) < f;(y). X is better than Y (denoted by X <Y) if and only if VF(y) € YAF(x) €
X:F(X) S F(y) AX#Y. Thus X<aY o L, >1, YCXo [, =1 and X Y ¢ I, < 1. The additive

version is defined in Equation (2.49).

ley £ Inf{3F(x) € X: F(x) <4 F(Y)VF(y) €Y}

(2.49)

= max | min | max [£G0) - f0)]]]

whete F(x) <., Fy) o fi(x) <e+fi(y)Vi=12,...,k, X<Y eI, >0, YS X1, =0 and
XeYel, <O0.
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U-measure

Leung & Wang [43] proposed an indicator to measure uniformity by computing the discrepancy among the
. . . . . L . in

distance between neighbours of each solution in every f;. First, domains in the Pareto frontier (f; T and
sup . . . inf

f;) are determined. Next, to every f; abstraction of F two extreme solutions (computed by f;~ and
su . . .

f Py are added. Then for evety f; abstraction and every solution two neatest neighbours are found (one

in every f; direction), for every extreme solution the nearest neighbour is found. Then for every solution

and extreme solution at every f; abstraction, the distance d;; between its neighbours is computed in F and

valuated using Equation (2.50).

1 k
U — measure £ — E E
D i=1 j=|PFI:nown|+2

where D = k(|PFgnown| + 2), j > |PFgnownl| ate the extreme solutions at f; whose d;; are computed by

-1 (2.50)
al

dide

the distance between them and their closest neighbour and modified by adding d;; non-extreme solutions
average, digear = Sy Zj=|pp;nown|+2 d;;j/D.
Uniformity of the Pareto Optimal Set (UPOS)

Meng et al [44] suggested a quality indicator to measure uniformity in order to improve Schott [33] works.

UPOS is defined in Equation (2.51).

/2
1 —~12
UPOS & | — . z 1—inv(d,,d 2.51)

F(xi) EPF’:TIOWTL

| k , 2\ /2 (2.52)
dyt = F(Y)E{Png?vn—F(xi)} <Zj=1[fj(x )=o) > |

- d.i/d ifd:>d
inv(d,i,d) =1 * /d ifd, . (2.53)
x d/d, otherwise

where d is the minimum average distance among every F(x) € PFjpown. If UPOS gets an equal value for

two PFipowns, then each PFy,,.n is reduced by the union of the two closest solutions and UPOS is

recalculated.
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Well-Extended of the Pareto Optimal Set (W-EPOS)

Meng et a/ [44] also attempted to measure PFyy,,n well-extent by computing for every solution in a R*
(which may be the PF* or the non-dominated solutions achieved by several runs) the average distance to

the closest solution in PFyp,gn, it is mathematically expressed in Equation (2.54).

Y F(y)erR* e IF(x) — F)l

F*
W — EPOS 2 known (2.54)
|R*|

G-metric

Lizarraga et al [45] proposed G — metric, a n-ary indicator that ranks PFyp,,ms based on their
convergence and dispersion. Initially every vector in every PFp,wn must be normalized using the
maximum and minimum value of the non-dominated solutions product of the union: U} X;. Then two
components are computed for every X; and combined to create a number that represents its relative
performance respect to the others Xy, ..., Xj—1, Xj+1, .. Xn. The first component is calculated by means of
the outperformance relation O [41], classifying every X; according to the partial order that O¢ gives by
levels, e.g. the first level includes those X; so that ﬂXj,j =12,..,i—1,i+1,..,n: XjOCXi. The second
component is calculated from the zone of influence of every F(x) € X;, computing regions of integration

for every solution with a radius v, avoiding intersecting zones.

Spread Assessment (SA)

Li & Zheng [46] suggested SA to quantify how widely PFypown spreads over A. The idea is to compute

the hypervolume product (with fiinf = 0) of every BS;:i = 1,2, ..., k, set of boundary solutions in the 7th
PF}pown projection € RE™1 where such projection is on {f1, ., fi—1, fi+1, -+» fx}. The average value of
fi is computed for every projection: w; = Zp(x)epF,:nownﬁ-(x)/|PF;nown|. The total assessment of SA is

computed using Equation (2.55).

1
£ H(BS) >/'<
SA & ——r (2.55)
(1_[1'=1H§'€=1,j¢ilwi|
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Chapter 3 RankMOEA

[Smzall minds are concerned with the extraordinary, great minds with

the ordinary. ..

Blaise Pascal
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3.1 INTRODUCTION

D iversity-preservation mechanisms impulse divergence in tangential direction to the promising
regions discovered by the MOEA, this through probability selection bias in less conglomerated
regions. Most of the designed diversity mechanism in EMO require the specification of parameters, or are
unable to deal with incommensurable objectives, or were not designed to be compliant with the search
space. Hence, three premises are considered in order to design a new MOEA (called RankMOEA) which
emphasizes spread and dispersion of PFpown and preserves equilibrium between exploitation and

exploration:

= Since Pareto dominance rules sort candidate solutions in a certain order according to their
proximity to the frontier of A, some advantage can be taken from such arrangement by
intensifying exploration in candidate solutions far from the frontier and reducing exploration in
candidate solutions close to the frontier. This assuming that the first type of solutions does not
have much information about PF”* structure and need more effort to achieve a good performance.

= The structure of the search is defined by (1 and not by A, thus, diversity preservation mechanisms
should work better in ) if they are compliant with € structure. Hence, exploitation of the
information could be successful by mating nearby candidate solutions in () since such process is
less disruptive.

® In most of the cases, after a certain threshold in the evolutionary process of MOEAs, the number
of non-dominated solutions grows rapidly, thus reduced mutation in solutions closer to the
frontier of A that are less conglomerated in ) should improve performance by controlling

exploration and preserving the emphasized exploitation in such regions.

The first and third premises are related with exploration, recent works [48] [49] have shown the advantage
of using exploration applied with probabilities that depend on the fitness rank of a genotype or phenotype
in single objective problems, such approach has shown to be a robust alternative since it avoids some
questions of mutation rates tuning without having to introduce an explicit encoded self-adaptation
mechanism. Thus, the ideas behind RankMOEA are motivated by appealing to previous theoretical
analysis [48] that show how different landscapes and population states require different mutation rates to

dynamically optimize the balance between exploration and exploitation.
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3.2 RANKMOEA DESCRIPTION

RankMOEA extends the rank mutation presented in [48] [49] to the MO framework, overcoming the
mutation fine tuning drawbacks and promoting a controlled diversity according to Pareto dominance and

the degree of conglomerate. RankMOEA is described in Figure 3.1.

RankMOEA ()
1 te1

2 random initialization of cach individual y € P(t)

3 Vy € P(t) evaluate fl(CD()())Vfl EF

4 rankingyepq) < rankg (){,P(t)), Vyx € P(t)

5 Pinown(t) « nondominated(P(t))

6 do while t < stopping criterion

7 P'(t) « selection(P(t))

8 P'(t) « mst_niching (P'(t).P(t))

9 P (t) « rank_mutation(P ”(t))

10 V¢ € P"(t) evaluate f;(®(¢))Vf; € F

11 rankingzep(y < rankg (g‘, P'”(t)), V¢ EP(t)

12 Pinown (t + 1) « nondominated ({Pyyouwn (t) U P(£)})
13 if |P1:nown(t + 1)| > Psize

14 Prrown (t + 1) « truncation(Pr,own (t + 1), Pgize)

15 P(t+1) « Peown(t + 1)

16 else

17 sort {P"(t) — Pipown(t + 1)} by TankingCE{Pm(t)—Pinown(t“)} ascendant

18 P(t+ 1) « {Pinown(t + 1) U{P"(t) — Pipown(t + 131: Psize — |Pinown (t + D1}
19 end if

20 t—t+1

21  end do

Figure 3.1 RankMOEA.
First, a set of Pg; individuals are initialized as the eatly population ¥ € P(1) and evaluated in the set of k

objectives to be optimized (lines 1 to 3). Then, Goldberg’s ranking is used to sort non-dominated and

dominated individuals (line 4):
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1 iffAC € P(t): F(y) < F(x)

ranky(x,P(D)) = { [rank, (¢, P(1))] + 1 otherwise 31

max
7EP(£):F(y)<F (%)

By definition, non-dominated individuals in P(t) have ranking value of 1, thus individuals closer to such
non-dominated individuals in A have lower ranking values. Goldberg’s ranking was preferred since it
allows smoother ranking landscapes of Pareto domination. RankMOEA uses an interactive online file
PFipown(t) to store continuously its approximation to PF* (line 5). During the evolution process only

Pgize/2 of the patents P(t) are chosen (line 7) by the selection procedure.

Mates of the Pg;,./2 parents are chosen using a minimum spanning tree niching which works over the
phenotypic space (line 8). This mechanism builds a minimum spanning tree in £) including all individuals in
P(t), distance in Q is computed normalizing every phenotypic feature which allows to handle
incommensurable variables. In this approach, niches are not isolated elements, moreover they are elements
partially coupled by the tree structure (see left side of Figure 3.2). Since each individual in the minimum

spanning tree can be connected with more than one individual, every ¥ € P(t) is weighted with Equation

(3.2).

mst(y) =

- . 3.2)
rankgy(x,t) + <1 mgt_arity(cl)(x)))

where mst_arity(cb(x)) counts the number of decision vectors (produced by mapped individuals)
connected to @ () in the minimum spanning tree. So individuals with lower Goldberg ranking value and

lower arity (conglomerate measure) in Q will accomplish a higher value of mst()), a hierarchical

preference of ranking over arity is denoted.

In order to select the mates of the Pg;,, /2 parents, a stochastic selection process (e.g. stochastic universal
selection) can be used with mst() as the desirability of selection, including all the neighbours of the
parent in the minimum spanning tree, then parents will be mated with less conglomerated individuals
whose projection in A is closer to PFypown- It is important to observe that there is no need to define a
proximity value. This procedure can be performed using Chazelle’s algorithm [50] which is based on the
soft heap, the most asymptotically efficient known structure to find the minimum spanning tree. Its

running time is 0(A @(4,m)), where 4 is the number of edges and « is the classical functional inverse of
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the Ackermann function. The function @ grows extremely slowly, so that for all practical purposes it may

be considered a constant no greater than 4; thus Chazelle’s algorithm takes very close to linear time.

@ o0
@ F(o(n)

Qc R

decision space objective space

Figure 3.2 Minimum spanning tree niching and ranking mutation.

The proposed rank mutation considers pre-order, the intrinsic inconvenient of MOPs. Rank mutation (line
9) consists of the definition of a mutation rate range and the assignment of a uniformly distributed
mutation rate to individuals according to their inherited mst() value, i.e. individuals with lower Goldberg
ranking value and lower arity will get a lower mutation rate and individuals with higher Goldberg ranking
value and higher arity will get a higher mutation rate, denoting tight exploration in the neighbourhood of
individuals closer to PF* and widespread exploration in the neighbourhood of individuals farther from

PF* (sce right side of Figure 3.2).

When the entire population is non-dominated, tight exploration is performed in the neighbourhood of
individuals with lower arity and widespread exploration in the neighbourhood of individuals with higher
arity. The mutation rate range will be specified by a minimum and maximum mutation rates, Py and
Pmax tespectively, and divided into Pgj,e steps to generate the deterministic rule of choosing the mutation
rate. So the mutation rate of the /th individual in P"'(t) sorted in descendant order according to mst(y)
is Pmin + 1 Pmax — Pmin)/ (Psize — 1). According to [48] a natural range to cover any eventuality is
Pmin = 0 and Py = 1 — 1/1, where [ is individual length (when working with binary representation),

however if there is knowledge of the vicinity of the optimum, and the population is in the vicinity, then a
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lower ppqx may be appropriate. Mutation range remains fixed during entire evolution. Since mutation only

requires to sort individuals in order to assign the mutation rate, this step has a complexity of

O(Psize 1Og Psize)-

Thereafter, RankMOEA evaluates the offspring in the set of k objectives and ranks them with Goldberg’s
ranking (lines 10 and 11). Pgpown (t) is updated with new non-dominated individuals (line 12). Finally, if
Prrown (t) size is larger than Pg;,,, a truncation process proposed in [23] is used to reduce its size (lines 14
and 15) and the P(t + 1) is constituted by such reduction; else P(t + 1) is constituted by Pppown (t) and
a controlled insertion using ranking based selection of the best offspring that were not already included in

Prrown(t) (lines 17 and 18).

The speed performance of RankMOEA is ruled by the mutation process, therefore the computational
complexity of RankMOEA can be calculated as O (Pg;,e 10g Pg;,e), which makes it a fast algotrithm, worthy

to compete with other state of the art MOEAs.

3.3 TESTING RANKMOEA

In the following tests some well-known MOEAs (VEGA, MOGA, NPGA, NSGA-II, SPEA2 and PAES)
were used to compare the performance of RankMOEA. The seven MOEAs used binary-coded
chromosomes, one point crossover and bit-wise mutation. VEGA, MOGA and RankMOEA were tested
using the stochastic universal sampling, PAES its natural reproductive scheme, while NPGA, NSGA-II
and SPEA2 were tested using their tournament selection operator. MOGA’s restricted mating, NPGA’s
equivalence class sharing, NSGA-II’s crowding, SPEA2’s k-nearest neighbour, PAES’s grid mapping and

RankMOEA’s minimum spanning tree niching were implemented in the phenotypic space.

The mating rates used for the seven MOEAs were: 70%, 80% and 90%. The mutation rates used for
VEGA, MOGA, NPGA, NSGA-II and SPEA2 were 1%, 2%, 3%, 4%, 5% and 6%, whereas for
RankMOEA ppin was set to 0% and Ppqy to 6%. A precision of 0.001 was set for each variable in the
phenotype. The seven algorithms were run 30 times with each mating-mutation configuration, the average
behavior of each configuration was assessed using a version of G — metric [45] to work in (), the n-ary

quality indicator that ranks PFy,, s based on the their attained dispersion and convergence.
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3.3.A Spread-hardness Test

The first test was designed to examine the robustness of the diversity-preservation mechanisms of the
seven MOEAs by finding a good diversity of the solutions in (). A function with three reference points
Z;:i = 1,2,3 in a bidimensional Q was defined; the idea is to minimize the distance to such reference
points, ie., min F(X) = [f1(X), f,(X), f5(X)] with f;(X) = |Z; — %||, where Z; = (2,1), Z, = (3,5),
Z3 = (4,1) and subject to x; € [0,6]:j = 1,2. It is clear that PS is formed by all the points located within
the triangle constituted by the three reference points. It is expected that a diversity-preservation
mechanism with good performance and compliant with ) structure will achieve a quasi-uniform spread. A
population and PFypown(t) size of 50 individuals with 20,000 objective function evaluations were
considered. Figure 3.3 shows the best approximation to PS achieved by the best run of the best mating-

mutation configuration of each MOEA according to the average of G — metric over the 30 runs.

The best mating-mutation configuration of MOGA, NSGA-II, SPEA2, PAES and RankMOEA found
enough non-dominated solutions to complete PFyp,n (t) until its boundary size, while best mating-
mutation configuration of VEGA and NPGA only found 20.9 and 41.3 non-dominated solutions in
average respectively. By sorting MOEASs’ performance according to the average of G — metric over the
30 runs of their best mating-mutation configuration, the following order is accomplished: RankMOEA,
SPEA2, NSGA-II, PAES, MOGA, NPGA and VEGA; where clearly VEGA achieves the worst
distribution and RankMOEA the best distribution.

3.3.B Complicated Pareto Set Test

The second test was performed using the UF4 problem from the CEC’09 contest [51], a MOP with
complicated PS which demonstrated to be a very hard problem even for the best algorithms that
participated in MO contest in CEC’09. Figure 3.4 shows the best PFyp,own achieved by the best run of the
best mating-mutation configuration of each MOEA according to the average of G — metric over the 30
runs. A population and PFyyun () size of 100 individuals with 300,000 objective function evaluations
were considered. The best mating-mutation configuration of NSGA-II, SPEA2 and RankMOEA found

enough non-dominated solutions to complete PFypopn(t) until its boundaty size, while best mating-
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Figure 3.3 VEGA, MOGA, NPGA, NSGA-II, SPEA2, PAES and RankMOEA best approximation to Spread-
hardness test.
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mutation configuration of VEGA, MOGA, NPGA and PAES only found 28.1, 98.8, 30.4 and 92.9 non-
dominated solutions in average respectively. By sorting MOEAs’ performance according to the average of
G —metric over the 30 runs of their best mating-mutation configuration, the following order is
accomplished: RankMOEA, NSGA-II, SPEA2, MOGA, PAES, NPGA and VEGA. RankMOEA achieves
the best spread and the lowest convergence error, followed by NSGA-II with worse spread and by SPEA2
with worse convergence error; on other hand MOGA, PAES, NPGA and VEGA show poor performance.

In Chapter 5 several additional experiments with different MOPs are shown.

X X
]:é% 4
0.8+
0.6
“_('\l
VEGA
NPGA
0.4 PAES
X MOGA
O SPEA2
0.2+ O NSGA-I
O RankMOEA
0 r r r
0 0.2 0.4 0.6
fl

Figure 3.4 VEGA, MOGA, NPGA, NSGA-II, SPEA2, PAES and RankMOEA best approximation to Complicated
Pareto Set test.
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Chapter 4 Inferential Power of
Quality Indicators in Evolutionary

Multi-Objective Optimization

[Common sense is not so common. ..

Voltaire
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4.1 INTRODUCTION

S everal quality indicators classifications have been proposed in EMO field attempting to described
dissimilarities among them and discriminate which ones should be used in practice. A very early
quality indicators classification divides them in: wnary indicators, which take a single PFyp,own as atgument
and assign a real number that reflects a quality aspect; binary indicators, which take two PFynowns as
arguments and assign them a real number that reflects the relative quality of the first one with regard to the
other one; n-ary indicators, which, in analogous way to binary indicators, analyse more than two PFypowns at
the same time; and a last branch which assess performance through attainment surfaces. Despite this
classification and indicators variety, quality indicators advantages and drawbacks are not clear, hence
Hansen & Jaszkiewicz [41] proposed a first attempt to inferential power quantification by means of three

“outperformance relations”:

= Complete outperformance. Let X and Y be two different PFyyowns, X completely outperforms Y (X O¢ Y) if
VF(y) €Y,3F(x) EX:F(x) < F(y).
= Strong outperformance. X strongly outperforms Y (X OsY) if VF(y) €Y, IF(x) EX:F(x) < F(y) VvV
F(x) = F(y)and 3F(2),F(2'):F(2) € X,F(2") € Y such F(z) < F(2).
» Weak outperformance. X weakly outperforms Y X Oy Y) if VF(y) €Y, 3F(x) EX:F(x) < F(y) VvV
F(x) = F(y) and 3F(z) € Y such F(z) ¢ X.
It is clear that Og C Og € Oy,. Additionally, Hansen & Jaszkiewicz [41] studied whether certain quality
indicators were compatible with each outperformance relation. In order to enhance Hansen & Jaszkiewicz
[41] study, Zitzler et a/ [12] provided a rigorous analysis of quality indicators inference power limitations,

aiming to define what statements can be made on the basis of the information provided by quality

indicators.

Zitzler ef al [12] first important contribution was the formal definition of comparison method, conceived
from a boolean function which combines one or more quality indicators in order to offer measures
interpretation. Let E: R® X R® — {false, true} be a function mapping vectors with length @ of real
numbets to boolean values, A the feasible solutions space, I; an m-ary quality indicator: I;: A™ — R, and
I = (4,1, ...,1,) a combination of quality indicators. A comparison method that only considers unary

indicators is defined as C; g (X,Y) = E (I X),1 (Y)), meanwhile one that only considers binary indicators is
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defined as: C;p(X,Y) = E(I(X,Y),1(Y,X)), where I(X") = (I,(X'), L,(X"), ..., [,(X")) and I(X',Y") =
(LX, YD, LEX, YN, ..., Iw(X',Y')), X",Y" € A. The second important contribution of Zitzler et a/ [12]
was coupling comparison method concept with dominance relations, i.c., the agreement with the most
general notions in terms of dominance relations between PFypowns (see Table 4.1) under two conditions.

Let X be a dominance relation between PFypouns:

» Compatibility. The compatison method C; g is denoted as X-compatible, if either for any X, Y € A:

CeXY)=>XxYorCg(X,Y) =Y x X sufficient condition.

» Completeness. 'The compatison method Cjg is denoted as M-complete if either for any X, Y € A:

XxY=CpXY)orY X = C (X Y), necessary condition.

Table 4.1. Dominance relations between sets of non-dominated solutions.

Dominance Relation Description
X strictly dominates Y X<<Y VF(y) e YAF(x) e X:F(x) << F(y)
X dominates Y X<Y VE(y) EYaF(x) e X:F(x) < F(y)
X is better than Y XY VE(y) EYIF(x) EX:F(x) S FO)AX %Y
X weakly dominates Y XY VE(y) EYaF(x) eX:F(x) < F(y)
X and Y are incomparable XY neither X < Ynor Y < X

Despite that Zitzler et a/ [12] gave a proof to verify a theorem that states that in the general case, it is not
possible to create a compatible and complete unary comparison method, Lizarraga e a/ [52] recently
demonstrated that under practical conditions, the afore mentioned theorem does not hold, giving two
possibilities: to find another demonstration for theorem or to demonstrate that a compatible and complete

unary comparison method is possible in practice.

In spite of such deductions, a compatible and complete comparison method is restricted in its inference
powet, as it is unable to distinguish among PFyp,owns with incomparable dominance between them but
with features that clearly make one better than other one in a none preference objective space. Because in
many cases when none of the compatred PFjp s improves the other within dominance relations, one

will be interested in whether there are MO evaluation goals by means of which quality differences can be
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inferred. Such features have been already defined [39] [34] in order to compute quality in a quantitative way

(PFy0wns accuracy, tendency and concordance):

= Convergence, it describes how well and how fast PFyp, o progress towards R* (where R* can be: the
real Pareto front PF*, PFy,on from another MOEA, or an arbitrary set R defined by the user), i.e.
how close PFypown is from R* (error) and how quick PFyy,wn approximates to R* in relation to the
evolution process (speed).

» Uniformity, it describes how appropriate PFypon distribution is, meaning the relative distance among
solutions; most of the time a homogeneous dispersion is ideal.

® Spread, it describes how appropriate PFypown extension is; a wider PFyp oy involves more options.

1 T T T T T T T T
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Figure 4.1 Two incomparable approximation to the Pareto Front by a compatible and complete compatison method,
X is clearly preferable over Y by MO evaluation goals.

Uniformity and spread imply broader solution choices. Convergence requires a search towards PF*, while
uniformity and spread require a search along PF*, thus convergence could be seen as orthogonal to
uniformity and spread. These MO evaluation goals allow to establish certain judgments when PFyponS
have similar closeness to PF*. Figure 4.1 shows an example of two Pareto fronts indistinguishable by
dominance relations (or a compatible and complete comparison method) but clearly distinguishable by
MO evaluation goals. Using MO evaluation goals to untie incomparable PFy,,wns tequites an

appropriated knowledge of indicators accuracy with regard to evaluation goals, though, as it was
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mentioned before, such study has not been performed. The present empirical framework is proposed as a
guide to know how well an indicator measures what it claims to assess, e.g. each one of the MO evaluation

goals.

This chapter presents a new indicator to measure spread, the experimental design and conditions that
attempt to classify quality indicators according to the MO evaluation goals, a detailed analysis and
discussion of achieved results, and also the description and test of a proposed methodology to compate

stochastic multi-objective optimizers.

4.2 A NEW INDICATOR: AVERAGE SPREAD OF THE FOUND PARETO FRONT (ASFPF)

Since some quality indicators assess only a superior bound with similar PF*, and others ate susceptible to
uniformity (as it will be seen in the experiments section), we propose a new quality indicator that attempts
to achieve a more accurate measure of spread independent of PFyy, gy, uniformity and/or convergence.
Average Spread of the Found Pareto Front (ASFPF) is an improved quality indicator inspired in Lizarraga e a/
[45] and Li & Zheng [46] works, conceived as an #-ary indicator. ASFPF is computed as follows:

1. To avoid convergence dependence, PFypouns are classified according to the partial order that O¢
gives by levels as in G — metric. Let X;p, be the p-th PFyy0yy, in the dominance level [, where

XipOcXyr oWl > 1.

2.k sets of BS; are obtained from every X, as in SA. BS; is the set of boundary solutions in the i-

th Xy, projection € R*~1 where only {fi, .., fi—1, fi+1s - fic} are involved.

3. BS; computation can be seen as the non-dominated solutions choice of Xj;, in the projection
subspace { by minimizing and maximizing dominance, BS; = NDy,;, (Xip) U NDmax(X;.p). Due
to different number of solutions can be expected from both process according to X;;, distribution,
it is necessary to normalize the amount of boundary solutions implicated in order to avoid
uniformity dependence. It is achieved by computing the minimum number of solutions in the

dominance process of minimization and maximization of every BS; of Xy, by level, by calculating

a;g = nvlijnlNDmin(Xipﬂ and ‘Bli - nvlianlNDmax(Xép)

, and restricting NDmin(Xf'p) and
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NDpax (Xfp) cardinality to such bounds by truncation process [25], obtaining BS;, which are new
BS; versions keeping original spread but with homogeneous cardinality in the projection i and the

dominance level [.

4. Every BS| is normalized within the subspace defined by minimum and maximum projection

€ R*"! computed only with BS/ from the same projection i and the same dominance level .

5. The BS; spread is calculated as the size of the space covered by BS;, measured by Hypervolume
indicator, over BS] centroid. The total assessment result ASFPF for Xp,, is computed as in

Equation (4.1).

/ Y
ASFPF = nk Aes) k @.1)
=1 L roess: i 0/ |BS{]

When compating PFypnowns, the PFipnown With a larger ASFPF value has a wider spread.

4.3 EXPERIMENT DESIGN

The aim of this section is to describe the experiments performed to study quality indicators previously
shown within MO evaluation goals (convergence, uniformity and spread) in order to perform an empirical
taxonomy framework, this through analysing the accuracy and stability of the achieved quality assessment

in different PF*s.

4.3.A Experiment Goal

Four experiments are performed with the aim of visualizing the effectiveness of quality indicators. The
first experiment attempts to detect if indicators performance is affected by PFy,wn shape. The second
experiment evaluates if indicators performance is affected by PFy,own telative position. The third
experiment pursues to determine indicators performance with regard to MO evaluation goals. The fourth

experiment evaluates how robust are the indicators that measure spread.
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4.3.B Experiment Description

Experiment 1
Two PFppowns are used to evaluate quality indicators sensitivity shape: Aconcave and Beonpey With the

same convergence, uniformity, spread and number of solutions but different convexity (see Figure 4.2 a)

[53].

Experiment 2
Five PFipowns are used to evaluate quality indicators sensitivity to PFypown telative position with regard
to PF*: Cy, C;, C3, C4 and Cs5 with the same convergence, uniformity, spread and number of solutions but

they are located in different zones in relation to PF™* (see Figure 4.2 b) [53].
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Figure 4.2 Pareto Fronts used in a) Experiment 1 and b) Experiment 2.

Experiment 3

Several synthetic PFp,,ns With representative characteristics with regard to MO evaluation goals are
generated. Thus starting in a PFy,; (initial PF™) with specific characteristics, several artificial PFyp, oS ate
constructed through PF;,; degeneration on each MO evaluation goal (see Figure 4.3 a). Such process can
be viewed as the construction of artificial PFy,,,,ns cube formed by circumscribed cubes, where each
inner cube represents a synthetic PFy,,0wn, the otigin contains PF,; and as it moves away, MO evaluation

goals are detetiorated (see Figure 4.3 b). Any PFypown located at the same distance from the origin with
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regard to an axis, has the same value in the evaluation goal related to such axis. PFy,;s with different shape
(concave, concave-convex and disjoined) in two and three dimensions are used (see Figure 4.4),
normalizing them within an unitary square or cube. Synthetic PFjp,pns construction can be
contextualized as three nested procedures: convergence error increase, uniformity loss and spread
deterioration, hence such procedures can be viewed as creating synthetic PFypopns vectors parallel to
error axis. Procedures to degenerate MO evaluation goals are explained as follows. Let PF,,y be a
synthetic PFypown With spread deterioration level ¢, uniformity loss level t and convergence error level .

As PFjy; has the best feasible convergence, uniformity and spread: PFiy; = PFy g .

a) b)

error

uniformity

v

spread =

Figure 4.3 Synthetic Pareto Fronts generation: a) describes evaluation criteria dimensions b) represents the total set of
synthetic Pareto Fronts generated.

Spread is degenerated by PFy o = PFin; — FBS,,, where FBS,, is the forbidden boundary subspace at
the spread deterioration level ¢@. By definiion FBSy = {@}, FBS, = {F(x) € PFyy;|fi(x) <
minpg,, f;(2) + dsa (9, D) V f;(x) = maxpp,, f;(x) — dsq(9,0),Vf; EF},  where  dgq(@,0) =
0/(2" edgesize + 1) [maxpp,, fi(x) — minp,, fi®)], 0= ¢ < edgeyse and edgegye is the
amount of circumscribed cubes by goal axis, gathering edgesize3 synthetic PFpowns (see Figure 4.3 b).

Spread is degenerated by gradually deleting solutions sections at the boundaries of PF,; (see Figure 4.5 a).

Uniformity is lost by PFy, 419 = PFy 0 — FISy,, where FIS,,, is the forbidden inner subspace at the

uniformity loss level ¢ within PFy g4, by definition FIS,o = {@}, FIS,, = {F(x) € PFy; |fi(x) =
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maxpr,,, fix) —dyn(o, ) A fi(x) < maxpp,, , , fi(x), Vi =2, ...,k}, where dyn(@, i) =
t/(edgegize +1) - [maXPF(p 00 J1(X) — minp, , | ﬁ(x)] Uniformity is lost by gradually deleting

solutions within a subspace located at the extreme of PFy, o keeping boundary points to guarantee

controlled spread degeneration (see Figure 4.5 a).

Since this experiment pursues to find out how well quality indicators measure each MO evaluation goal in
independent way, a “good uniformity” is kept despite spread degeneration, “good uniformity” in the sense
of an appropriated (equidistant) distribution within the PF,, o boundary solutions progressive
degenerated, not in the sense of an appropriated distribution according to PF;. This approach will allow
to determine indicators sensibility to spread and uniformity correlation. It is easy to observe that the
cardinality of synthetic PFyy, oS decrease according to spread and uniformity detetioration, which is why
PF;; with cardinality large enough to allow synthetic PFyp,ovnS generation with at least edgeg;,, + 2 was
used. In a similar way, aiming to avoid comparative inequality by having PFypowns with low spread-
uniformity deterioration level and high cardinality in one hand, and in the other one PFypns with high
spread-uniformity deterioration level and low cardinality, a truncation process [25] was performed before
starting incremental error phase, guarantying attificial PFyp,ons with homogenous cardinality. As PFiy;
was created using a known function, every solution in any PF, , y, is equidistance over the hyper-curve to
its closest neighbours, except for the outer and inner boundary solutions in PFy y (it is important to

remark that such distance is measured over the hyper-curve and not as Euclidian distance).

Finally, the convergence error is increased by PFy, 41 = {P YU PF 1/) U..UPF, ! YU

PFY,y} where PFp,y, € PF, .y and {PF} ., 0 PF

= @, such sets are created b
"’"’w}j,l=1,2,...,LAj¢l ’ Y

inclusion of vectors belonging to PF, , y, according to a lexicographic sorting where the sorting index will

associate every F(x) € PF,,,, to an specific PF}. o.ups Preserving homogeneous cardinality in every

PF, L - At every 1, convergence error level is augmented as VF(x) € PF, q(:li wl)mOdL fix) = filx) +

Oerror Vfi € F, where the increasing rate Oppror = inf{minp(x)lp(y)emei|fi(x) — i, vfi € F}.
Note than despite of alternate error increase, initial lexicographic sorting is not affected due to Sgrpor

definition. Convergence error is increased by incrementing a specific PF} @ At every iteration process
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Figure 4.4 Experiment 3: PF, s used with different shape (concave, disjoined and concave-convex) in two and three
dimensions.
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with 8grror (see Figure 4.5 b), such error expression was conceived instead of a simple progressive
deterioration attempting to include performance improvement relations described in [41]. For this
experiment two configurations are used: edgeg, = 1000 and L =10 to visualize a detailed

petformance panorama, and edgeg;,, = 100 and L = 2 to visualize a general performance panorama.
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Figure 4.5 Graphic illustration of synthetic Pareto Fronts degeneration, lowest curve represents PL,,: a) progressive

ini®

error degeneration is showed aiming to cleatly view extension and dispersion degeneration b) error alternate increase
with =2 and edge_size=4.

Experiment 4

Fout PFypowns are used to evaluate quality indicators robustness in measuring PFypown spread: Dy, Do,
D3 and D, with the same convergence, number of solutions and extreme solutions in each axis,
equidistance solutions but different spread (see Figure 4.6). Even Experiment 3 is able to determine if
quality indicators measure spread with no influence of convergence or uniformity, some indicators can
only get a supertior bound for some PF*s family, thus this expetiment is added with the aim to show

ASFPF superior performance over other spread indicators.
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Figure 4.6 Pareto Fronts used in Experiment 4.

4.3.C Experiment Conditions

In the case of quality indicators configuration, for those which involve weighted vectors or utility vectors, a
uniform distribution [0,1] is used to create them using a proportional intensity function for each vector
produced; those indicators which use utility functions are tested with functions sets of the same type (e.g.
maximum aggregation sum and Chebyshev distance). |||, is used for every indicator that uses a non-
predefined norm. PAAS and OPS}, indicators ate not included in experimentation due to their graphics as
values of utility are difficult to interpret. Concerning to indicators which measure convergence speed

(GCV, GNVG, NVA and RMC), they are not evaluated through synthetic PF,owns, rather a MOEA
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applied to a specific MOP is used. Experiment 3 only involves quality indicators that measure spread.
Finally, neither ONV G nor ONVGR are included in Experiment 4 due to their evaluated characteristics are
not compatible with the MO evaluation goals, since PFyyowns With same indicator value could have very

different MO evaluation goals levels.

4.4 RESULTS AND DISCUSSION

4.4.A Results of Experiments 1 and 2

Results of Experiment 1 and 2 are shown in Table 4.2, and summarized in Table 4.4 columns 9 and 10. A
quality indicator independent of PFypwn convexity gets the same value for Aconcave a0d Beonvexs
meanwhile, a quality indicator independent of PFyp,,n telative position gets the same value for every
C;i:1 < i < 5. Quality indicators that show convexity and relative position independence are: SD, ESE,

FRPF,ONVG,ONVGR, CTS, DFPF, EFPF,NDC,, CL,, G — metric and ASFPF.

4.4.B Results of Experiment 3

As a result of evaluating quality indicators with synthetic PFypowns, three bebaviour graphics wetre obtained
by every PF;,; by every experiment configuration for each indicator in a three-dimensional space:
uniformity-convergence, spread-convergence and spread-uniformity. In every case, the axis Z represents
quality indicator estimation, whose value is computed as the average of the synthetic PFypoyns contained
in the parallel vector to the MO evaluation goal absent in the graphic. Goal axis scale of behaviour
graphics is denoted by 1 as the best synthetic PFyp, oy and 0 as the worst synthetic PFyp,on in the related
MO evaluation goal. Due to PFy,;s with different shape-scalability were used and that most of the
indicators show normal changes in their behaviour according to PFyy,; type, graphics of 3D-concave PFy,;
are included and indicated only in situations where different PF;,;s shape clear up extra information. The
same applies to experiment configuration, most of the time a general panorama is visualized; only when

detailed panorama gives extra information such graphic is shown and explained. Every behaviour graphic
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Table 4.2. Results of Experiment 1 and 2.

(Y | Aconcave| Beomvex| €1 | € | € | € | G
SD 10 10 10 10 10 10 10
ESE 0.0120 0.0120 0.0068 0.0068 0.0068 | 0.0068 0.0068
WSA 0.3762 0 0.452 0.451 0.4 0.2 0

FRPF 0 0 0 0 0 0 0
GD 0.2189 0.1812 0.2708 0.2310 0.2161 0.2310 0.2708
ONVG 17 17 12 12 12 12 12
ONVGR 1.7 1.7 1.2 1.2 1.2 1.2 1.2
H 0.2972 0.4390 0.1669 0.2866 0.3266 | 0.2866 0.1669
CTS 1 1 1 1 1 1 1
CDTS 0.7027 0.5609 0.8330 0.7133 0.6733 | 0.7133 0.8330
PS 0.6772 0.3781 1 0.9845 0.7564 | 0.9845 1
ED -0.002 -0.003 0.001 -0.002 -0.003 -0.002 0.001
EPS 0.001 0.002 0.001 0.002 0.003 0.002 0.001
MPFE 0.8413 0.7868 0.9083 0.8495 0.8495 | 0.8495 0.9083
ADPF 0.8977 0.7377 0.9363 0.7995 0.7486 | 0.7995 0.9363
DFPF 15 15 6.5454 6.5454 | 6.5454 | 6.5454 | 6.5454
EFPF 0.9995 0.9995 0.6321 0.6321 0.6321 0.6321 0.6321
HD 0.7027 0.5609 0.8330 0.7133 0.6733 | 0.7133 0.8330
OPS 0.4990 0.4990 0.1996 0.3193 0.3592 | 0.3193 0.1996
AOPF 3.8130 3.8130 1.5567 2.4822 3.0958 | 2.4822 1.5567
NDCH 17 17 12 12 12 12 12
CL# 0.5882 0.5882 0.8333 0.8333 0.8333 | 0.8333 0.8333
RMD 6.321 6.982 5.269 5.257 5.789 5.257 5.269
AD 0.501 0.501 0.801 0.601 0.5521 0.601 0.801
WD 0.501 0.501 0.801 0.601 0.5521 0.601 0.801
I, 0.4995 0.4995 0.7992 0.5994 | 0.4685 | 0.5994 | 0.7992
Iy -0.504 -0.504 -0.207 -0.405 -0.534 -0.405 -0.207
U —measure 1.2623 1.2623 1.3044 1.2841 1.2748 1.2841 1.3044
UPOS 4.5244 3.6043 1.1142 1.2032 3.6983 1.2032 1.1142
W — EPOS 0.0416 0.0364 0.0687 0.0601 0.0601 0.0601 0.0687
G — metric 0.7831 0.7831 0.6624 0.6624 | 0.6624 | 0.6624 | 0.6624
SA 1.7093 2.4200 1.7622 1.8849 1.9015 1.8849 1.7622
ASFPF 6 6 18 18 18 18 18
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is interpreted according to optimum value of quality indicator (PS, EDS and EPS imply opt in the

evaluation set FU). For facilitating discussion understanding use Table 4.4.

After analysing every indicator behaviour three possible views in MO evaluation goals were found: 1) the
indicator measures only one MO evaluation goal; 2) the indicator measures more than one MO evaluation
goal considering them with the same pre-eminence; and 3) the indicator measures more than one MO
evaluation goal considering them with different pre-eminence level; such views are determined by
observing slope of behaviour graphics, e.g. largest slope implies highest pre-eminence. With Pareto
compliant indicators conception [18], indicators classification by MO evaluation goals is not complete, thus
overlapping classes are possible, that is why through experimentation three types of assessments are
defined. Indicators characterization under situations 1 and 2, and the indicator connection with the MO
evaluation goal of highest hierarchy in the situation 3 will be called strong assessment. In the other hand, MO
evaluation goals whose relation with the indicators is not the highest hierarchy will be called weak and
weafkest assessment according to their measurement hierarchy. Monotony and relativity of quality indicators
are also analysed; (weak) monotony is defined as the fact of given a non-dominated set, adding a non-
dominated point improves (does not degrade) its evaluation; meanwhile (weak) relativity is related to PF*
evaluations as (non)-uniquely optimal [15]. Results of Experiment 3 and discussion of the whole

experimentation are presented in the following.

Quality Indicators measuring Convergence error

Indicators that only assess convergence error are: FRPF, GD, CTS, ADPF, I, and I.,. FRPF measures
the non-dominated solutions proportion from PFy, oy, with regard to R*, hence not relevant information
is provided when the PFy, o, does not include any non-dominated solutions with regard to R*, it is seen
in behaviour graphics as convergence error increases (see Figure 4.7 a and b). Furthermore FRPF
measurement could be highly subjective due to defining R* is not a trivial task. As FRPF is based on ER
definition, it is not monotonic but weak relative [15]. GD measures effectively convergence error as it is
seen in behaviour graphics (see Figure 4.7 ¢ and d), however according to [15] this indicator is not

monotonic but weak relative.

CTS was measured by CTS (PF<p,l,1l)' PF *), i.e. solutions percentage in PF* that dominate solutions in the
synthetic PF,, . CTS behaviour graphics show its capability to measure convergence but its inability to

measure uniformity and spread (see Figure 4.7 e and f); CTS behaviour is distuptive in relation to
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uniformity and spread, since a better achievement of such goals produces that more solutions in PF*
dominate PF, , y, letting CTS — 1. In its unary version CTS violates relativity, given two subsets, the first
one a PF* subset and the second an arbitrary non-Pareto optimal subset but with wider spread than the
PF™ subset; CTS will favor the second subset over the first. Otherwise CTS exhibits weak monotony, due

to adding solutions to a non-dominated subset could not improve CTS evaluation.

ADPF measures convergence error (see Figure 4.7 g and h), slight variation in top of behaviour graphics is
explained by uniformity-spread degeneration. ADPF is not monotonic but weak relative for the same
reasons that GD is. I and Iy show total independence from uniformity and spread, computing effectively
convergence error by performing uniformity-convergence and spread-convergence monotonic behaviour
graphics with regard to convergence error. Such petformance is due to I, and Iy compute the infimum
(see Figure 4.7 1, j, k and 1). Unary versions of both indicators are weak relative and weak monotonic, since
any PF” subset has an optimal value and the addition of solutions to a non-dominated subset may not

improve their value.

Quality Indicator measuring Spread

EFPF and ASFPF are the only indicators formulated able to isolate spread estimation from convergence
and uniformity; however as it will be shown in Experiment 4, EFPF only computes a spread supetior
bound, meanwhile ASFPF achieves a more accurate measurement. Only EFPF graphics ate shown (see
Figure 4.8 a and b) given that both indicators get exactly the same behaviour in this experiment. Due to
adding a non-dominated solution does not degrade quality indicator and a PFyp, 4, With wider extension
in the objective space than PF* does not imply better performance, EFPF and ASFPF are both weak

monotonic but not relative.

Quality Indicators measuring Convergence error and Spread

Indicators that assess convergence error and spread are: WSA, PS, EDS, EPS, OPS, RMD and SA. WSA
measures convergence and spread (see Figure 4.8 ¢, d and e), though the hierarchy level of both goals is
highly dependent of the distribution used to generate LC; the main drawback of this indicator is that the
quality assessment by linear combination is defined only by the worst solution. As WSA is LC dependent it

is neither monotonic nor relative.
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PS, EDS and EPS perform estimations over FU. Consequently, according to utility functions type the
efficiency of measurement and computed MO evaluation goals may vary. In this experiment aggregative
addition functions and Chebyshev functions are used, the first one allows to compute convergence error
and spread (see Figure 4.8 f, g, h, I, Figure 4.9 a, b, f, ¢ and h), meanwhile the second one allows to
compute convergence error and misunderstand spread (see Figure 4.8 1, j, k, Figure 4.9 ¢, d, e, 1, j and k).
EDS and EPS complement PS by expressing how much the difference between solutions sets is,
computing discrepancy of expected degree of superiority and the expected proportion of superiority. Due
to a wide FU variety is required, these indicators are in general computationally expensive. As PS, EDS

and EPS are FU dependent, they are neither monotonic nor relative.

OPS denotes hierarchical distinction between spread and convergence. Giving a major preeminence to
spread, such fact is induced because Hgy( ) is defined by boundary solutions, influencing mainly OPS
sensitivity to PFpnown spread (see Figure 4.9 1, Figure 4.10 a and b). OPS is weak monotonic and weak
relative, because of adding solutions to a non-dominated subset could not improve OPS, and a nonempty
PF* subset could have an optimal OPS. RMD was implemented with neighbourhood analysis schema
suggested by the author, whose definition is by itself very subjective. As it is seen in behaviour graphics
(see Figure 4.10 ¢ and d), RMD measures spread over convergence and fails to measure uniformity; it is
shown when spread is close to the maximum. Due to neighbourhood definition and RMD susceptibility to

PFyown Position, it is weak monotonic but not relative.

SA measures correctly convergence over spread and erroneously uniformity. This is due to 1) using H
within SA, 2) as uniformity is reduced, the average value of f; computed for every projection (W;) is
affected, producing a bias towards the region with the highest solutions concentration (see Figure 4.10 ¢, £
and @), making it disturbed by uniformity variation. SA exhibits weak monotony and weak relativity,
because adding non-boundary solutions to a non-dominated subset does not improve SA, and a PF*

subset could achieve SA optimal value.

Quality Indicators measuring Convergence error and Uniformity
Indicators that assess convergence etror and uniformity are: MPFE, AD, WD and W — EPOS. MPFE
measures the maximum error between R* and PFy,own, as it is shown in behaviour graphics (see Figure

4.10 h and i), MPFE measures convergence etrror and uniformity with a hierarchical distinction favoring
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convergence; however spread estimation is misunderstood, such fact is deduced by not monotony in its

measurements as in Figure 4.10 j, and explained by MPFE susceptibility to PFypowns location.

AD and WD were designed aiming to offer information about divergence between PFyy,,uwn and R,
measuring the average and the major separation tespectively. Due to synthetic PFynowns continuous
degeneration in MO evaluation goals and artificial equidistance solutions, behaviour graphics from both
indicators are equal in the scope of Experiment 3. However in a non-controlled environment, WD
decrease could be a more fortuitous because it computes the worst distance. Even AD and WD were
created to measure only convergence, they measure uniformity with a minor hierarchy and misunderstand
spread; such behaviour is more evident for a concave-convex PFp,oun (see Figure 4.10 k, 1 and Figure
4.11 a). This performance is due to average and worst distance are computed from every solution in R* to
the closest solution in PFyown»> 25 PFinown spread decreases some solutions in R* will compute a bigger
distance to the closest solution in PFypown. As MPFE, W — EPOS measures convergence etror over
uniformity (see Figure 4.11 b and c¢); misunderstanding spread (see Figure 4.11 d), fact explained by their
susceptibility to PFypowns location. Due to MPFE, AD, WD and W — EPOS have similar conception
they share weak relativity and their absence of monotony. They are not monotonic, because given a non-
dominated set, the addition of a non-dominated solution with a large enough convergence error could

degrades evaluation; and exhibit weak relativity, since any P* subset has an optimal quality indicator value.
g > y P quality

Quality Indicators measuring Uniformity and Spread

Indicators that assess uniformity and spread are: SD, ESE, AOPF, NDC,, CL,, DFPF, U —measure and
UPOS. SD measures spacing between PFyp o, solutions within indifference regions. In the experiment
indifference regions as those defined by NDC;, and CL, were used. Due to regions definition is quite
subjective, as soon as PFp,,n drives enough away from R*, SD measurement becomes useless (see
Figure 4.11 ¢ and f). SD with a maximum convergence error minor to the size of the indifference region is

showed in Figute 4.11 g and h in order to visualize SD instability.

ESE computes spacing between solutions using Euclidian distance, even ESE measures correctly
uniformity, spread is impropetly computed (see Figure 4.11 i, j and k). It is mainly caused by ESE
sensitivity to uniformity-spread correlation, widespread synthetic PFypgypns Will allow a wider uniformity

variation impacting ESE assessment. Besides, ESE is unstable before disjoined PFjp s (see Figure 4.11
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1, behaviour graphic achieved with a disjoined PFj,;). To avoid its degeneration, distance exclusion
between limit points in PF* formed from two or more Pareto curves is needed. Due to PF* could be

disjoined, ESE is neither monotonic nor relatively.

AOPF measures propetly uniformity and spread (see Figure 4.12 ¢); nevertheless it is unstable with regard
to convergence (see Figure 4.12 a and b) due to its measurement is highly dependent on PFjp,gn location
within normalized objective space, ie. the hypervolume computed by boundary solutions varies as
PFipown position does. Figure 4.12 d shows two PFp,owns with the same uniformity and spread but
different position generating dissimilar AOPF measurement. As AOPF is based on H, it is monotonic but

not relative, since its PFyy0n location dependence.

NDC, and CL, measure uniformity and spread using a grid of hypercubes to define indifferent regions.
Both indicators show roughness in their behaviour graphics (see Figure 4.12 e, f, g, h, i and j) due to the
grid concept they utilize and PFyp,gpns location, conceiving a conditioned measurement and giving raise to
no reflexivity. The principal difference between NDC,, and CLy, is CL, capacity to give higher priority to
uniformity over spread. In the other hand, DFPF is not susceptible to PFypowns location, as a result of
indifferent regions conceptualization as hyperspheres, allowing to achieve smoother behaviour graphics

(see Figure 4.12 k, 1 and Figure 4.13 a) and as a consequence, a better inference power about uniformity.

SD, NDC,, CL, and DFPF compute their assessment considering only solutions located in the same
indifference region. Thus indifference regions definition is very important to these indicators
characterization, since in an environment with a very small or very large indifference region none measure
could be achieved. Such indicators are highly susceptible to indifference space resolution, factor defined by
q, 1 ora.SD, NDCy, CL, and DFPF are weak monotonic because adding solutions to a non-dominated
subset could not improve indicator value. NDC,, and CL, are not relative due to a non-dominated subset
far from PF* with wider extension and more solutions could get a better value than PF*. Due to SD uses
indifferent regions fixed to R* and that DFPF can be conceived under an appropriated definition of
resolution factor, both indicators are weak relative, since non-dominated subsets could achieve at most the

same assessment than PF*.

Finally, U —measure and UPOS measure uniformity and spread too; as U —measure sets a slightly preference

of spread over uniformity (see Figure 4.13 b, ¢ and d), UPOS does in a stronger way of uniformity over
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spread (see Figure 4.13 e, f and g). UPOS improves ESE by both, inv( ) function and PFynown
reduction in case of tide. Due to both indicators are sensible to disjoined PFpnowns, they are neither

monotonic nor relatively.

Quality Indicators attempting to measure Convergence Error, Uniformity and Spread

Indicators that assess convergence etror, uniformity and spread are: H, HD, CDTS and G — metric. On
the basis of experimentation none indicator is able to measure with the same hierarchy the three MO
evaluation goals. H (see Figure 4.13 h, i and j) and HD (see Figure 4.13 k, 1 and Figure 4.14 a) are able to
measure convergence error, spread and uniformity; convergence error with the highest level, spread with
medium level and uniformity with the lowest level. Due to by experiment definition R* dominates weakly
any solution in the synthetic PFy,oyns, CDTS has the same performance that HD. As H, HD and CDTS

are based on hypervolume computation they are monotonic and relative.

G — metric measures in hierarchical order convergence error, spread and uniformity (see Figure 4.14 b, ¢
and d). This indicator is monotonic and relative and overcomes a drawback common in H, HD and CDTS:
their inability to distinguish between PFjpowns with the different level of complete outperformance, since
G — metric does not allow to a nondominate subset get a better assessment than another if the first
subset does not outperformance the second one. Despite, a new disadvantage rises with G — metric
projection, Figure 4.14 ¢ shows a concave-convex PFj, ., with equidistance solutions. Figure 4.14 f is
Figure 4.14 ¢ projection; such graphic supports G — metric susceptibility to mix up uniformity in relation

to PFynown shape, since center solutions in the projection are closer than the remaining solutions.

Quality Indicators measuring Convergence speed

Indicators that assess MOEAs convergence speed according to its evolution through generations are:
GNVG, NVA, GCV and RMC. GNVG and NVA are independent from any other MO evaluation goal;
regardless, they provide poor information since they describe in a limited sense PFypowrn robustness.
GNVG measures effectiveness of evolutionary process, meanwhile NVA measures the evolutionary steps
certainty given through evolutionaty process (see Figute 4.14 h). In the other hand, GCV and RMC get the

speed ratio from PF(prent () approximation to PFy,gwn (see Figure 4.14 g).
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4.4.C Results of Experiment 4

Results of Experiment 4 are shown in Table 4.3. This expetiment validates ASFPF robustness, since it is

the only indicator able to distinguish among the four different PFyy, g, s and order them from Dy to D,.
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4.4.D Quality Indicators Summary

Table 4.4 summarizes relevant characteristics from each of the thirty-eight quality indicators reviewed and
ASFPF (proposed in this research). For each quality indicator information about type, reference set
requirement, MO evaluation goals achieved, evaluated characteristic (cardinality gets its index value from
solution sets or solution subsets elements counting to be evaluated; distance is founded in the use of

norms to measure length; volume calculates solution quality based on dominance hypetvolume), sensitivity

Table 4.3. Results of Experiment 4.

Igizggr Dy D, D; D,
SD 10 10 10 10
WSA 0.0001 0.0001 0.0001 | 0.0001
GD 0.0857 0.0857 0.0857 | 0.0857
H 0.0270 0.0178 0.0441 | 0.0578
CDTS 0.9729 0.9821 0.9558 | 0.9421
PS 1 1 1 1
EDS -0.001 -0.001 -0.001 | -0.001
EPS 0.001 0.001 0.001 0.001
ADPF 1.0045 1.0048 1.0050 | 1.0051
DFPF 76 76 76 75.955
EFPF 1.7311 1.7311 1.7311 | 1.7296
HD 0.9729 0.9821 0.9558 | 0.9421
OPS 0.9970 0.9970 0.9970 | 0.9970
AOPF 1.0461 1.0566 1.0813 | 1.0965
NDC” 76 76 76 66
CL, 0.0735 0.0735 0.0735 | 0.0793
RMD 21 21 21 21
U —measure 0.6594 0.5974 0.5928 | 0.7315
UPOS 0.0509 0.0443 0.5745 | 0.5034
G — metric 6.9134 6.9134 | 6.7960 | 6.0926
SA 5.0597 4.9180 4.8200 | 6.9181
ASFPF 12.9310 | 10.3346 | 8.1016 | 3.1871
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Table 4.4. Taxonomy of studied Quality Indicators.

MO evaluation °
goals | g8 128 ||, ¢
Quality o Nw é é ‘g - % 'g g 'g .g é 'g % § g qéld >E Computational
Indicator IE: § gn'g §n§ & § % § §.E ig = g g & é complexity
Z|z4 28 F | AEHI0IRE FE (R |F 2
< 3 =] &/ £ 0 o
o |O I
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ESE v d| v | v [0,0) 0 OUPFnown!®)

WSA u v v d LC [0, o) 0 O(IPFinown| - IFU)
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to convexity, sensitivity to relative position, additional parameters, monotony, relativity, value ranges,
optimum value and computational complexity is given. First column specifies quality indicator acronym.
Second column denotes type of indicator (# = unary, / = binary and #» = n-ary). Third column indicates
whether the indicator needs any type of R*. From the fourth column to the seventh MO evaluation goals
are related (V' = strong assessment, * = weak assessment, ** = weakest assessment). Eighth column
describes what kind of evaluated characteristic use the indicator (4 = distance, ¢ = cardinality and » =
volume). Ninth column indicates whether the indicator is sensible or not to PFy,own convexity. Tenth
column indicates whether the indicator is sensible or not to the relative position of the PFypown- Eleventh
column shows indicators parameters that need be specified by the user (nh™ = analysis of neighborhood).
Twelfth and thirteenth columns specify whether the indicator exhibits monotony or relativity (v =
monotony/relativity, * = weak monotony/weak relativity). Fourteenth and fifteenth columns detail the
range of possible values achieved by the quality indicator and the best value that the non-dominated set
under assessment could achieve. Sixteenth column describes computational complexity estimated for the

quality indicator.

4.5 A PERFORMANCE COMPARISON METHODOLOGY TO STOCHASTIC MULTI-

OBJECTIVE OPTIMIZERS

In EMO, how to evaluate PFjp, oy quality that different MOEAs generate is still an open problem. Based
on that fact, it is suggested in this PhD thesis an approach to solve such problem. The proposed
methodology summatizes PFyy,ons achieved on certain number of MOEA runs to accomplish an average
PFyown achieved by the MOEA, then it compares MOEAs results in the context of [12] and [41]
relations and finally untied incomparable front using MO evaluation goal, i.e., it is proposed to combine
attainment surfaces, a binary comparison method compatible and complete, and unary indicators in order

to discriminate among PFyp,owns quality. The methodology is shown below:

Step 1: For each MOEA; € I:i = 1,2,...,0 to be compared, use its S runs to compute a summary
attainment surface. Since such process can take a long time [54], it is suggested to use an approximation

method as the one presented in [54], where an approximated summary attainment surface is computed in
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ey

lines, PFypown,is is the PFipn oy achieved by MOEA; in its s-th run.

Step 2: Use a binaty comparison method <-compatible and <-complete in order to sort summary
attainment surfaces according to <-relation. Cergp'(X,Y) and €;_p(X,Y) are <-compatible and <-
complete comparison methods computationally not too expensive that could be used, where E' :=
(CTSX,Y) =1 ACTS(Y,X) <1) and E” == (I.(X,Y) < 1AL (Y,X) > 1) [12]. Step 1 is included in

this methodology since it reduces Step 2 complexity from g(@ — 1)s? to o(g — 1).

Step 3: Calculate MO evaluation goals mean and vatiance using unaty indicators and R* over the S runs of
each MOEA;; R* is formed as the total Pareto Front taking in count every run from every MOEA. On the
basis of this research it is suggested to use: Iz or I, to assess convergence error, DFPF to assess

uniformity and ASFPF to assess spread.

Step 4: Rank MO evaluation goals using a statistical measure, e.g. €' presented in [48] and shown in

Equation (4.2).

, M1,MOEA; ~ HI,MOEA;

ij =

€ 4.2)

2 2
JUI,MOEAi T 0/, MOEA;

where the numerator is the difference in average of indicator I between MOEA; and MOEA;, and the
denominator is the variance difference. If we assume a normal distribution then, Sil, j > 2 corresponds to a
95% confidence interval which will take to mean that it is statistically significant that MOEA; is leading to

better I values than MOEA;. The rank process of every indicator I can be petformed with Equation (4.3).

0 if AMOEA; € T|¢/; > 2
rank,(MOEA;) = max [rank,(MOEAj)] +1 otherwise 43)
MOEA j€T:¢} >2
Step 5: Combine binary comparison method assessment and MO evaluation goals rank using a
lexicographical approach, giving the highest hierarchy to binary comparison method and then to MO
evaluation goals in some predefined order. In this PhD thesis it is suggested to use the following

lexicographical order: 1) binary comparison method, 2) convergence error, 3) uniformity and 4) spread.
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Detailed analysis in each of the unary quality indicators is possible; however discrimination among their
measurements constitutes itself a MOP. So we propose to combine the MO quality indicators in order to
discriminate among PFy,wns quality. Since linear combination of the quality indicators could smooth
differences and hide trade-offs when there is no an absolute winner-MOEA in all indicators, we propose a
lexicographic combination of their preference according to expectations of the user, hence providing a
suitable framework of analysis from the point of view of the user. It is easy to see that the MOEA with the
best performance according to the defined order of the MO quality indicators will have the highest ranking

value.
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Figure 4.15 NSGA-II performance measured using the proposed methodology to compare stochastic multi-objective
optimizers, mutation and mating percentages are varied from 1% to 99%. a) Performance achieved using only steps 1
and 2, b) Performance achieved using the five steps.

This suggested methodology is cleatly statistically confidence and compliant with dominance relations
between non-dominated sets, showing a supetior inference power. In order to test correctness of the
proposed methodology, it is applied to measure NSGA-II performance over Kursawe’s MOP [9]. The
performance landscape generated by using different combinations of mating and mutation is showed in
Figure 4.15, for each mating-mutation combination 50 runs of NSGA-II were executed, a higher value in
the graphic indicates better performance. Figure 4.15 a shows the performance achieved using only steps 1
and 2, it is evident how a binary comparison method <-compatible and <-complete is limited in its
inference power, since results produced with mutation between 1% and 15% are indistinguishable among

them. On other hand, Figure 4.15 b shows the performance achieved using the five steps, amplifying
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inference power and suggesting than the best NSGA-II outcomes in Kursawe’s MOP can be achieved

within the intersection of mating from 60% to 95% and mutation from 7% to 11%.
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Chapter 5 Approaching the Pareto
Front of Theoretical MOPs

[Everything is theoretically impossible, until it is done. ..

Robert Heinlein
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5 APPROACHING THE PARETO FRONT OF THEORETICAL MOPS

5.1 INTRODUCTION

n order to broaden RankMOEA’s assessment several theoretical MOPs suggested in EMO literature
I were included to test RankMOEA’s performance. Due to the results presented in Section 3.3, besides
RankMOEA, only NSGA-II and SPEA2 were included in this comparison. The same algorithmic
specifications described in Section 3.3 were used. A precision of 0.0001 was required for each variable in
the phenotype, the size of the binary chromosomes varies according to MOP specifications, a population
and Pjpown (t) size of 100 individuals with 100,000 objective function evaluations were considered. The
three algorithms were run 50 times with different mating and mutation rates combination, the comparison

methodology described in Section 4.5. was utilized to show MOEASs’ performance.

The mating rates used for NSGA-II, SPEA2 and RankMOEA were: 50%, 60%, 70%, 80% and 90%. The
mutation rates used for NSGA-II and SPEA2 were 1%, 2%, 3%, 4%, 5% and 6%, whereas for
RankMOEA pp,in was set to 0% and Ppgy to 6%. In the following sections test results over different

benchmarks of unconstrained numeric MOPs are presented.

5.2 BASIC BENCHMARK OF MOPS

FonsecaZ2

min  F(x) = [f, (), f,()]
-3 _L)Z
fix)=1-e v (5.1)
n (L)
f,(x) =1- o Zhe)
x; € [-4,4]; i =1,2,3

Fonseca2 [9] has a connected and symmetric PS™ and a connected and concave PF* curve, which are
plotted in Figure 5.1 a and b. The performance of the three MOEAs in Fonseca2 using the comparison
process is plotted in Figure 5.1 ¢, d and e. The NSGA-II and SPEA2’s performance seems to be highly
affected by the mutation rate. The best PFypowns achieved by SPEA2 and RankMOEA with their best
mutation-mating configuration are plotted in Figure 5.1 f, in order to facilitate visualization only such
MOEAs are included in the graphic since their performance is better than NSGA-IL. It is possible to see

how RankMOEA achieves a slightly better uniformity than SPEAZ2 in this simple test problem.

87



5 APPROACHING THE PARETO FRONT OF THEORETICAL MOPS

)1 b) RN

0.9

08 \\

07 05
TRy
0.6 N\

0.4 054

0.3

0.2

0.1 \
0

~—

=

=)}
GHMwbmm\JmmD

w

NANANANAVAY

~

AN

w

o
lexicographic ranking of quality indicators 2

lexicographic ranking of quality indicators 0

mating . . ] - mating

0.05 405 percentage 0.05 506 percentage
mutation percentage mutation percentage
¢ f
= ——
4 ®  RankMOEA |
E 0 09 | D sPea2
2
S 91 08 E!qitﬂﬁhl
3 :
c
£ g
£ 07 !Ebb-“ﬁ
T 7 Y
3
o 0.6 !
5 6 iy,
8o M
-_E 5 1 N 05
g “?%
: 4 0.4
5
a 0.3
£ 27
b 1 0.2
0 1 1 . y 0.1
0.5 0.6 0.7 0.8 0.9 E&
mating percentage 00 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Figure 5.1 Fonseca2: a) PF", b) PS*, ¢) NSGA-II performance, d) SPEA2 performance, ¢) RankMOEA performance
and f) SPEA2 and RankMOZEA’s best achieved outcome.
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Kursawe

min F(x) = [f,(x),f,(x)]

n—1
—0.2- .2+ 2
fi(x) = —Z 10e NI 10021l
i=1
n

(5.2)
£, = ) (lxl + 5sin’ x)
i=1
x; €[-55];i=123;a=0.8;b=3

Kursawe [9] has a disconnected and symmetric PS™ and disconnected and concave PF* curves, which are
plotted in Figure 5.2 a and b. The performance of the three MOEAs in Kursawe using the comparison
process is plotted in Figure 5.2 ¢, d and e. The NSGA-II’s performance seems to be clearly affected my
mutation rate, while SPEA2’s performance attaints a more stable performance landscape. The best
PFypowns achieved by SPEA2 and RankMOEA with their best mutation-mating configuration are plotted
in Figure 5.2 f, in order to facilitate visualization only such MOEAs are included in the graphic since their

performance is better than NSGA-II. SPEA2 and RankMOEA achieve similar PFyy,0,ns-

Poloni

mxin F(x) = [f,(), f,(®)]
f1(x) = =1— (4, = B,)* — (4, — B)*
2(x) = =(x; +3)% = (x, + 1)?
xi €[-mm]; i=12 (5.3)
A; =0.5sin1—2cos1+sin2 — 1.5cos 2
A, =1.5sin1—cos1+ 2sin2 — 0.5cos 2
B; = 0.5sinx; — 2cosx; +sinx, — 1.5cos x,
B, = 1.5sinx; — cosx; + 2sinx, — 0.5 cos x,
Poloni [9] has a disconnected PS™ and disconnected and concave PF* curves, which are plotted in Figure
5.3 a and b. The performance of the three MOEAs in Poloni using the comparison process is plotted in
Figure 5.3 ¢, d and e. SPEA2 seems to be very sensitive to mutation rate changes, whereas NSGA-II is
more robust to such changes achieving its best performance with medium mutation-mating rates. The best
PFipowns achieved by NSGA-II and RankMOEA with their best mutation-mating configuration are

plotted in Figure 5.3 f, in order to facilitate visualization only such MOEAs are included in the graphic

since their performance is better than SPEA2. RankMOEA clearly outperforms NSGA-II uniformity.
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Viennetl
mxin F(x) = [fl (X), fz(x)’ f3(x)]
x? + x%
fi(x) = ! 5 2 4 sin(x3 + x2)
= + +15 5.4
£, (30) = e 1167
=——1.1e
3 XK +x+1

x; € [-30,30]; i = 1,2

Viennetl [9] has a connected and symmetric PS™ and a connected and convex PF* surface, which atre
plotted in Figure 5.4 a and b. The performance of the three MOEAs in Viennet] using the comparison
process is plotted in Figure 5.4 ¢, d and e. The NSGA-II and SPEA2’s performance seems to be highly
affected by mutation rate. The best PFypons achieved by NSGA-II and RankMOEA with their best
mutation-mating configuration are plotted in Figure 5.4 f, in order to facilitate visualization only such
MOEAs are included in the graphic since their performance is better than SPEA2. RankMOEA clearly
achieves a better spread in A than NSGA-II.

Viennet2
min F(x) = [£,(0).£,(2), £, ()]
f ) = (xy ; 2)? N (x21-|-31)2 i3
£00 = (o, + ;CZ -3)? L +;C2 +2)° . (5.5)
f3(x) _ (x; + i;c; - 1) N (2x21—7x1)2 13

x; € [-40,40]; i = 1,2

Viennet2 [9] has a connected PS™ and a connected and concave PF* sutface, which are plotted in Figure
5.5 a and b. The performance of the three MOEAs in Viennet2 using the comparison process is plotted in
Figure 5.5 ¢, d and e. The SPEA2’s performance seems to be affected by mutation rate, whereas NSGA-I1
attains a more flat performance landscape. The best PFy,0wns achieved by SPEA2 and RankMOEA with
their best mutation-mating configuration are plotted in Figure 5.5 £, in order to facilitate visualization only

such MOEAs are included in the graphic since their performance is better than NSGA-II. RankMOEA
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clearly achieves a better spread in A than SPEA2.

5.3 OKA’Ss MOPSs
OKA1
min F(x) = [£,(x).f,(x)]
fl(x,) =X
fz(x’) = \/2_1'[—\/|X{| + Zi/lxé — 3 cosx; — 3|
x{ == xl Ccos 7-[/12 - xz sin T[/lz (5.6)

Xé = X1 sin 7-[/12 + X, cos T[/lz
X, € [6 sin”/12,6sin ”/12 + 2ncos”/12]
X € [_Znsinn/12,6COST[/12]

OKA1 [55] has a connected PS* and a PF* curve no piecewise linear in parameter space, which are
plotted in Figure 5.6 a and b. The performance of the three MOEAs in OKA1 using the comparison
process is plotted in Figure 5.6 ¢, d and e. The SPEA2’s performance is clearly affected by mutation rate,
whereas NSGA-IT’s performance is less susceptible to such vatiations. The best PFpowns achieved by
SPEA2 and RankMOEA with their best mutation-mating configuration are plotted in Figure 5.6 f, in order
to facilitate visualization only such MOEAs are included in the graphic since their performance is better

than NSGA-II. RankMOEA outcome clearly outperforms SPEA2 in uniformity and spread.

OKA2

min F(x) = [f,(x), f,(x)]

fi(x) =x,

5.7)
(x, + m)? (
14—2+ Vlx, = 5cosx;| + 3/ |x; — 5sinx|

T

X1 € [-m, ] x,,x3 € [-5,5]

f,=1-

OKAZ2 [55] has a connected PS* and a PF* curve no piecewise linear in parameter space, which are
plotted in Figure 5.7 a and b. The performance of the three MOEAs in OKA2 using the comparison
process is plotted in Figure 5.7 ¢, d and e. The best PFy,ouwns achieved by NSGA-II and RankMOEA
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with their best mutation-mating configuration are plotted in Figure 5.7 £, in order to facilitate visualization
only such MOEAs are included in the graphic since their performance is better than SPEA2. RankMOEA

outcome clearly outperforms NSGA-II in uniformity.

5.4 DTLZ’S MOPs
DTLZ1
min F(x) = [£,(0), f,(®), o, £, ()]

£,00) = 51+ 3 (14 ()

1
f,(x) = Exlxz - (1- xk—l)(l + g(x’))

fio () = %xl(l - xz)(l + g(x’)) (5.8)

1
i@ =5 =x)(1+9(x)

g(x) =100]|x'| + Z (x; — 0.5)% — cos(20m(x; — 0.5))

xex'!
x; €[01);i=12,..,n

For all DTLZ MOPs discussed in this chapter we adopted k=3. DTLZ1 [56] is a k-objective MOP with a
linear PF* surface, the functional g(x") requires |x'| = @ variables. It is recommended to use @ = 5, the
total number of variables is n = k + @ — 1. A good sample of PF* surface is plotted in Figure 5.8 a. The
performance of the three MOEAs in DTLZ1 using the comparison process is plotted in Figure 5.8 b, ¢
and d. The NSGA-II and SPEA2’s performance is cleatly affected by mutation rate. The best PFypowns
achieved by SPEA2 and RankMOEA with their best mutation-mating configuration are plotted in Figure
5.8 e and f, in order to facilitate visualization only such MOEAs are included in the graphic since their
performance is better than NSGA-II. SPEA2 and RankMOEA achieve similar outcomes, however in this
particular problem SPEA2 achieves a slightly better spread than RankMOEA does.
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DTLZ2
mn P = [£,00.£,(0, . £, )]
£, = (1 +g(x)) cos (S) - cos
£, = (1+ g(x)) cos (1) = sin (=)

”xk—1)

. . (5.9)
f,(x) = (1 + g(x')) sin (Tl)
g(x') = Z (x; — 0.5)2

xex!
x €[01);i=12,..,n
DTLZ2 [56] is a k-objective MOP with a spherical PF* surface, the functional g(x") requires |x'| = @
variables. It is recommended to use @ = 10, the total number of variables is n = k + @ — 1. A good
sample of PF™ surface is plotted in Figure 5.9 a. The performance of the three MOEAs in DTLZ2 using
the comparison process is plotted in Figure 5.9 b, ¢ and d. The NSGA-II, SPEA2 and RankMOEA’s
performance is cleatly affected by mutation rate. The best PFpowns achieved by SPEA2 and RankMOEA
with their best mutation-mating configuration are plotted in Figure 5.9 e and f, in order to facilitate
visualization only such MOEAs are included in the graphic since their performance is better than NSGA-

II. RankMOEA achieves minor error and better uniformity than SPEA2.

DTLZ3

min F(x) = [f,). f,(®), .. f,(2)]
£, = (1 + 9(&)) cos (S2) - cos
£,00) = (1 + D) cos (7) - sin (=57)

T[xk—l)

' (5.10)
£, = (1+g(x))sin (=)

X
2

g(x') =100||x'| + Z (x; — 0.5)% — cos(207r(xi - 0.5))

xjex!

x;€[01];i=12,..,n
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DTLZ3 [56] is a k-objective MOP with a concave PF* surface, the functional g(x") requires |x'| = @
variables. It is recommended to use @ = 10, the total number of vatiables is n = k + @ — 1. A good
sample of PF™ surface is plotted in Figure 5.10 a. The performance of the three MOEAs in DTLZ3 using
the comparison process is plotted in Figure 5.10 b, ¢ and d. The NSGA-II and SPEA2’s performance is
clearly affected by mutation rate. The best PFyy,yns achieved by SPEA2 and RankMOEA with their best
mutation-mating configuration are plotted in Figure 5.10 e and f, in order to facilitate visualization only
such MOEAs are included in the graphic since their performance is better than NSGA-II. RankMOEA

achieves minor error, better spread and uniformity than SPEA2.

DTLZ4

min Fx) = [£,(0).£,@), .. £, (0]
f,(x) = (1 + g(x’)) cos (?) o COS (nx§_1>
£, = (1+g(x)) cos (”T) - sin (ﬂz)

: (5.11)
£, = (1+g(x"))sin ("7’“)
g(x') = Z (x; — 0.5)?

x; €[01];i=12,..,n

DTLZ4 [56] is a k-objective MOP with a concave and separable PF* surface, the functional g(x")
trequites |x'| = @ wvariables. It is recommended to use @ = 100 and @ = 10, the total number of
variables is 1 = k + @ — 1. A good sample of PF” sutface is plotted in Figure 5.11 a. The petformance
of the three MOEAs in DTLZ4 using the comparison process is plotted in Figure 5.11 b, ¢ and d. The
NSGA-II and SPEA2’s performance is cleatly affected by mutation rate. The best PFyp, g s achieved by
SPEA2 and RankMOEA with their best mutation-mating configuration are plotted in Figure 5.11 e and f,

in order to facilitate visualization only such MOEAs are included in the graphic since their performance is

slightly better than NSGA-II. RankMOEA achieves minor error than SPEA2.
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In the experiments presented in this Chapter, NSGA-II and SPEA2 showed to be more susceptible to
mutation rate changes than mating rate changes in most of the cases; this suggests that mutation rate is a
key feature to maintain equilibrium between exploration and exploitation in order to be compliant with the
structure of the search space. Even RankMOEA is not the absolute MOEA-winner in every problem that
was presented in this Chapter (or can be conceivable), the attained results in the above subset of problems
suggest that RankMOEA is more robust to deal with changes in the structure of search space of the
problems. Thus, using a robust technique, as RankMOEA, could be an important advantage in the case of
time-consuming scenarios where the resources needed to tune a super specialized algorithm whose

performance could overcome RankMOEA’s performance is not feasible.
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Chapter 6 Approaching the Pareto
Front of a Dynamic Principal-Agent

Model

[The eyes of the Lord preserve knowledge. . .|

Proverbs 22:12a
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6 APPROACHING THE PARETO FRONT OF A DYNAMIC PRINCIPAL-AGENT MODEL

6.1 INTRODUCTION

T he Principal-Agent problem is a political science and economics well known problem which analyses
a situation of asymmetric information where a risk neutral Principal delegates tasks to a risk averse
Agent, i.e., it treats the difficulties that arise under asymmetric information conditions when a Principal
hires an Agent, such as the problem that the two may not have the same interests, while the Principal is,

presumably, hiring the Agent to pursue the interests of the former.

Asymmetric information, a specific aspect of imperfect information in markets, arises when one individual
to an economic decision has different information to that of another, i.e. the Principal cannot observe the

effort level that the Agent chooses, due to monitoring the Agent is too costly for the Principal.

Thus, the idea behind the Principal-Agent problem is to try to align the interests of the Agent in solidarity
with those of the Principal using a compensation plan, though the existence of uncertainty in the
production process makes the design of the Agent’s compensation plan a non-trivial problem [57]. In
theory, and assuming perfect competition, both parties to an exchange would be acting for their own
interests but would also be aware of the basis on which the other was operating, the resulting exchange

would benefit both parties to an equal degree (see Figure 6.1).

o
=8
(=]
3
)
=
1S
5

Principal self

performs

Figure 6.1 Principal-Agent’s problem interaction.
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A dynamic problem can be modelled when the Principal-Agent relationship is recurrent, ie., the
relationship goes on for infinite periods [58] [59]. In such context, the Agent’s compensation plan has two
components: present and future compensation. Both components of the Agent’s compensation plan aim
to link the Agent’s wealth with the Principal’s wealth. In the Dynamic Principal-Agent problem, the
Principal maximizes his discounted expected utility subject to two fundamental constraints: the
participation constraint (i.e. the contractual relationship should be accepted by the Agent), and the
incentive compatibility constraint (i.e. the level of effort implemented by the Principal in every period

should be chosen by the Agent given the unobservability of his effort).

6.2 A MULTI-OBJECTIVE APPROACH

The contractual arrangement between the Principal and the Agent affects how the economic surplus is
divided and the sheer magnitude of such surplus. Hence, characterizing a Pareto Front where the Principal
and the Agent have different levels of bargaining power is an interesting exercise to shed light into how the
economic surplus is affected by those different contractual arrangements. Demougin & Helm [60] analyse
this problem using a static Principal-Agent model where the Principal and the Agent are risk neutral. They
found that the same set of contracts emerge by varying the Agent’s reservation utility in the frame of the
Principal-Agent model, by varying the discount factor in the Rubinstein game [61], or by varying the
bargaining power coefficient in the Nash bargaining game. These authors obtain a Pareto Frontier that is
concave, thus the previous equivalence result is not surprising; however, they find that the variation in the

ratio of the bargaining power of individuals affects the outcome of the negotiation.

Given that in MO, each Pareto optimal solution represents a different compromise among objectives,
finding different Pareto optimal solutions implies finding the structure of the trade-off surface involved in
the problem. Thus, since the Principal-Agent model represents a situation of conflict of interests, the

characterization of its PF™* will allow:

® to consider diverse contractual arrangements between the Principal and the Agent in which they
have dissimilar levels of bargaining power,
= to achieve a better insight on how the creation of economic surplus is affected by the diverse

contractual arrangements, and
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®  to obtain a better idea of how the conflict of interest and asymmetry of information between the

Principal and the Agent affect the creation of economy surplus.

The difference with regard to the same exercise in a static model is that the contracts derived from the
dynamic model have two components (present and future compensations), and thus the interrelation of
these two components of managerial compensation with all the variables mentioned above can be
analysed. Given the difficulty of obtaining analytical results with dynamic Principal-Agent models, close
solutions methods are not applicable, hence it is common in the literature to numerically approximate the
optimal contracts, see e.g. Wang [59] and Fernandes & Phelan [62]. Now, if we envision the dynamic
Principal-Agent as a MOP in which both the Principal and the Agent’s expected discounted utilities are
maximized subject to the usual constraints, then the proposed RankMOEA can be used to approximate

the dynamic Principal-Agent problem’s PF*.

6.3 MATHEMATICAL MODEL

In order to reconceive the Dynamic Principal-Agent model in a MO framework, two objectives are
considered: maximize the Principal’s discounted expected utility U, and maximize the Agent’s discounted
expected utility V. The Dynamic Principal-Agent model is about choosing an action plan, a compensation
plan for each level of production and a future utility plan such that U and V' are simultaneously maximized.

It can be stated as in Equations (6.1).

max uv
a(V).w(y.V).V(y.V){ J (6.1)

As in Wang [59], it is considered an infinite horizon Principal-Agent model where time is discrete and
denoted by t =0,1,2,.., and t =0 is the initial period contract. There is only one perishable
consumption good, which is consumed by both individuals. The Principal and the Agent are assumed to

be risk neutral and risk averse, respectively.

The Agent’s expected utility at time t is v; (a(V), w(y, V)), it is assumed to be closed, strictly increasing
and concave with respect to the current compensation w(y, V), and strictly decreasing with respect to

action a(V); where w(y, V) is consumption or salary at the current period, and a(V) is the action chosen
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by the Agent, which is not observed by the Principal. The Principal’s expected utility at time t is
ut(y,w(y, V)), it associates the realization of the production activity output y and the current

compensation w(y, V). Thus, the Principal and Agent’s discounted expected utility by t can be modeled as

in Equations (6.2) and (6.3).

Ue =) f(r:a0))ee(y,w( 1) + BUess (T 1))

6.2)
yEY

Ve =) f(5:a0N)v(a0) W@ 1) + Vs (1)

& 6.3)

where f (y; a(V)) is the probability function that associates action a(V) and the output Yy, V is the

Agent's reservation utility, V(y, V) is the state variables for tomorrow on, and 8 is the discount factor.
This Dynamic Principal-Agent model with Discrete Actions can be represented as a Bellman equation

given [58] methodology. This model is subject to the participation constraint,

> £ aW)w(a®),w, 1)) + BT, 7) = 7

4 6.4)
to the fact that the actions are in the space of feasible actions,
a(V)eA (6.5)
where A is the action set, to the inability of temporal borrow,
0<w(yV)<y VyeyY (6.6)
where Y is the output set, and to the fact that the future compensation is in the feasible space.
Vi,V)EV VyeyY ©.7)
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6.4 APPROXIMATING THE PRINCIPAL AGENT MODEL

6.4.A Finding the Optimal Contract: a Numerical Example

The same functional forms and parameters of Wang [59] are used. In particular, the Agent’s expected
utility function is assumed to be exponential, i.e. vt(a(V),W(y, V)) = —eV(@W)-awy") pecause the
Agent is risk averse, where ¥ > 0 is the coefficient of absolute risk aversion and @ > 0 measures the
relative cost for the Agent of exercising a unit of effort. On the other hand, the Principal’s expected utility

is up (y, w(y, V)) =y — w(y, V) because risk neutral is assumed.

For the standard model y = @ = 1 and two feasible action levels A = {a; = 0.1,ay = 0.2} are assumed,
i.e., the Agent can choose cither to shirk or to work. Hence, ay > a indicates that shirking is less costly
than working. Also, it is assumed that there are two levels of output: low or high Y = {y; = 0.4,yy =

0.8}, and the probability function that associates effort and output is defined as in Equation (6.8).

fuay) =fu,ay) =2/3
fOuan) =flwa) =1/3 6.8)

These probabilities capture the idea that the more diligently the Agent works, the greater the likelihood of
the realization of the high output level. Finally, the Principal and the Agent’s common discount factor was

setto § = 0.96.

The numerical solution of the Bellman equation is {U,V,a(V),w(yy, V),w(y., V), V(yy, V), V(y,, V)}
where @(V) is the optimal action. Given a finite horizon, the chromosome of the individuals in the
population is characterized by 3 substrings of length N, where N is the number of periods of time an
individual lives, i.e. the length of each chromosome is 3N. The first substring indicates the history of
actions of the individual, the second and third one show the history of compensations conditional on a

high or low output level respectively. Therefore, the phenotype of an individual is defined as in Equation

(6.9).
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_ _ _ _ _ —. (6.9
[al (V): a, (V): Ay (V); Wl(yHr V)r w» (yH' V)' ey WN(yHJ V), Wy (yLl V), w» (yLl V), ey WN(yL! V (

In order to compute U and V a backward induction must be used [63]. The number of petiods in the

Agent’s life-span was set as N = 70.

6.4.B Experimental Results

In this test, besides NSGA-II, SPEA2 and RankMOEA, MOGA was included as an inferior bound. The
same algorithmic specifications described in Section 3.3 were used. A precision of 0.0001 was required for
each variable in the phenotype, thus binary chromosomes of 1820 bits were used, a population and
Prrown (t) size of 200 individuals with 100,000 objective function evaluations were considered. The four
algorithms were run 50 times with different mating and mutation rates combination, the comparison

methodology described in Section 4.5. was utilized to show MOEASs’ performance.

The mating rates used for MOGA, NSGA-II, SPEA2 and RankMOEA were: 40%, 50%, 60%, 70%, 80%
and 90%. The mutation rates used for MOGA, NSGA-II and SPEA2 were 1%, 2%, 3%, 4%, 5%, 6%, 7%
and 8%, whereas for RankMOEA Py, was set to 0% and Ppax to 8%. For the four algorithms,
constraints were handled with the idea of superiority of feasible points proposed in [64]. The performance
of the four MOEAs in the Dynamic Principal-Agent model with Discrete Actions using the comparison

process is plotted in Figure 6.2.

MOEA’s configuration with performance ranking values lower than 2 did not achieved feasible solutions
by violating some constraints. MOGA shows a bad performance, since only four configurations achieved
feasible solutions but with very low ranking value, i.e. poor convergence and spread, besides mutation

percentage seems to affect the performance of MOGA in an erratic way.

Mutation percentage seems to have an important role in the performance of NSGA-II and SPEA2, since
lower mutations rates allow to achieve a better performance. In NSGA-II higher values of mating rate
seem to offer a bettet PFypown, while in SPEA2, medium values of mating rate subjugated to a low
mutation rate is cleatly a key to achieve bettet PFy,ouwns. Both algorithms have analogous average
behavior over all the combinations of mutation and mating rates. About RankMOEA’s performance,

lower values of mating rates allow to achieve a better performance, even better than those obtained by
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NSGA-II and SPEA2. A remarkable fact of RankMOEA’s performance contrary to the other three
MOEAs, is that it always achieves feasible solutions. Even worst approximations of RankMOEA are

comparable to best approximations of NSGA-1I and SPEA2.
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Figure 6.2 Performance in Principal-Agent model: 2) MOGA, b) NSGA-II, ¢) SPEA2 and d) RankMOEA.

In order to have a better idea of MOEAs performance, the best PFypown achieved by every MOEA with
its best mutation-mating configuration is plotted in Figure 6.3. The success of the proposed comparison

process is confirmed by the correct classification of the quality of the achieved MOEA’s outcomes.

RankMOEA cleatly enhances the convergence and spread achieved by MOGA, NSGA-II and SPEA2.
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Figure 6.3 Best Pareto Front approximations achieved by the best configuration of every MOEA tested in the
Dynamic Principal-Agent model with Discrete Actions.

6.4.C Analysis of the Achieved Approximation to the Pareto Front

As a result, a concave PF* is numerically approximated, which is consequence of the information
asymmetry between the Principal and the Agent, see Figure 6.3. As contracts vary in the trade-off surface
towards those that are more advantageous to the Agent, it is observed the prevalence of compensation
plans in which the Principal assumes most of the risk of the productive activity. When the Principal and
the Agent are more patient, both obtain higher values of their discounted expected utilities, which
generates a higher level of economic surplus. The Agent faces lower variability in future compensation
when it is costlier for him to exert an additional effort unit. In Figure 6.4 the current compensation
schedules of the most advantageous contract for the Principal (PC) and the most advantageous contract
for the Agent (AC) can be observed over the periods of time. Low and high salaries of AC are higher than
those of PC, moreover, in most of the cases the low level of the salary for AC is higher than the high level
of the salary for PC. Note that the low salary schedules of these two contracts do not vary, i.e., both PC

and AC provide incentives to the Agent through variability in the high levels of salary.
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Chapter 7 Conclusions and Future

Work

[The beginning of wisdom is this: Get wisdom. Though it cost all you
bave, get understanding. Cherish her, and she will exalt yon; embrace
ber, and she will honour yon. She will give you a garland to grace yonr

head and present you with a glorious crown.. .

Proverbs 4:7-9

119






7 CONCLUSIONS AND FUTURE WORK

7.1 CONCLUSIONS

n this thesis we have proposed a new efficient and effective MOEA called RankMOEA, which was
I designed using a minimum spanning tree niching and a ranking-mutation procedure. The new
diversity-preservation mechanism involved does not need extra parameters to work and is compliant with
the structure of the search space. RankMOEA outperforms traditional diversity-preservation mechanisms
under spread-hardness situations, showing good spread and lower convergence error compared with other
state of the art MOEAs. RankMOEA was tested with benchmarks of theoretical MOPs observing in most

of the cases an outstanding performance.

An empirical taxonomy framework of quality indicators based on MO evaluation goals accuracy, including
important features as computation complexity, monotony, relative, sensitivity to shape and position is
presented. Table 4.4 is the result of such analysis (discussed in Chapter 4), attempting to be a helpful guide
for EMO researchers at the time of choosing suitable quality indicators according to experimental goals,
since the wide variety of published quality indicators. Besides, a new quality indicator to measure spread
called Average Spread of the Found Pareto Front was proposed; overcoming general spread indicators
drawbacks and offering a more accurate assessment by being not sensible to uniformity, showing a robust

behaviout.

Within the scope that a unique indicator cannot completely describe the Pareto Front quality and that
besides outperformance relations, MO evaluation goals may be helpful to untie non-dominated sets, an
alternative methodology to compare performance of stochastic multi-criterion optimizers statistically
confident and compliant with dominance relations between non-dominated sets was proposed and tested.
Such methodology is accurate, reliable, consistent and adjustable with regard to the included

lexicographical order.

In addition, RankMOEA is applied to approximate the Pareto Front of the Dynamic Principal-Agent
model with Discrete Actions. The results achieved with RankMOEA show better spread and minor error
than those obtained by some well-known MOEAs, allowing to perform better economic analysis by
characterizing contracts in the trade-off surface. The achieved approximation of the Patreto Front allows to
observe different compensation plans at different levels of bargaining power of the Agent and the

Principal, and how the different contractual arrangements affect the generation of economic surplus.
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7.2 FUTURE WORK

RankMOEA was designed with mechanisms that are compliant with search space structure, in spite of that
more tests about its robustness and how it can be affected by MOPs with many objectives could be
performed in the future. Also a combination of RankMOEA with an objective reduction technique could

provide a good solution to MO with many objectives.

Parallelization of RankMOEA using GPGPU maybe an interesting future work in order to execute

demanding computing tasks faster, thus achieving good results in shorter time.

RankMOEA was also tested within an autonomous robot navigation system and within a feature selection
procedure in data mining; even though these works were not included in this document. The application of

RankMOEA to the solution of other real MOPs is likely to produce significant improved results
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