

Validación de una ecuación para predecir la producción de esporomas silvestres comestibles en bosques de *Pinus spp en* Tlaxco, Tlaxcala

TESIS

QUE PARA OBTENER EL TÍTULO DE BIOLOGO

PRESENTA

JULIO ANGEL GODOY TORRES

DIRECTORA DE TESIS

M. en C. MARISELA C. ZAMORA-MARTÍNEZ

TLALNEPANTLA DE BAZ, ESTADO DE MÉXICO. 2011.

UNAM – Dirección General de Bibliotecas Tesis Digitales Restricciones de uso

DERECHOS RESERVADOS © PROHIBIDA SU REPRODUCCIÓN TOTAL O PARCIAL

Todo el material contenido en esta tesis esta protegido por la Ley Federal del Derecho de Autor (LFDA) de los Estados Unidos Mexicanos (México).

El uso de imágenes, fragmentos de videos, y demás material que sea objeto de protección de los derechos de autor, será exclusivamente para fines educativos e informativos y deberá citar la fuente donde la obtuvo mencionando el autor o autores. Cualquier uso distinto como el lucro, reproducción, edición o modificación, será perseguido y sancionado por el respectivo titular de los Derechos de Autor.

INDICE	Pág.
Resumen	1
Abstract	1
1. Introducción	2
2. Antecedentes	4
3. Ecuación a validar	9
4. Hipótesis	10
5. Objetivos	10
5.1. General	10
5.2. Particulares	10
6. Material y Método	11
6.1. Área de estudio	11
6.1.1. Clima	11
6.1.2. Suelos	12
6.1.3. Vegetación	13
6.2. Trabajo de campo	13
6.2.1. Seleccion del área de estudio	13
6.2.2. Establecimiento de las unidades de muestreo	14
6.2.3. Recolecta fúngica y mediciones arbóreas	16
6.3. Trabajo de gabinete	17
6.3.1 Análisis de correlación y regresión lineal	18
7. Resultados y Discusión	19
7.1. Variables fúngicas	19
7.2 Variables dasométricas	23

7.3 Resultados del análisis de correlación y regresión lineal	26
8. Conclusiones	33
9. Recomendaciones	34
Bibliografía	35
Anexos	42

Validación de una ecuación para predecir la producción de esporomas silvestres comestibles en bosques de Pinus spp en Tlaxco, Tlaxcala.

Hablan mucho de la belleza de la certidumbre como si ignorasen la belleza sutil de la duda. Creer es muy monótono; la duda es apasionante.....Oscar Wilde

El momento más triste de un poeta es cuando su corazón deja de latir y su pluma de escribir....Julito Ramone

Ocupa tu mente y resiste, no hay luz sin día ni libertad sin anarquía!!!!....Punk anónimo

No future for me.....Sid Vicious

I hate myself and I want to die.....Kurt Kobain

Será acaso el hombre un error de Dios o es Dios un error del Hombre???... F. Nietszche

Cuando los ricos se hacen la guerra, son los pobres los que mueren...J. P. Sartre

Lo he dicho antes, y lo diré de nuevo. Cuando encuentras algo en lo que eres realmente talentoso, haces esa cosa (lo que sea) hasta que tus dedos sangren o tus ojos... Stephen King

El hombre envejece pronto sino no se alimenta de sus propios sueños....Shakespeare

La ciencia no es perfecta, con frecuencia se utiliza mal, no es más que una herramienta, pero es la mejor herramienta que tenemos, se corrige a sí misma, está siempre evolucionando y se puede aplicar a todo. Con esta herramienta conquistamos lo imposible...Carl Sagan

Considero más valiente al que conquista sus deseos que al que conquista a sus enemigos ya que la victoria más dura es la victoria sobre uno mismo......Aristóteles

¿Qué sería del hombre sin los animales? Si todos fueran exterminados, el hombre también moriría de una gran soledad espiritual, porque lo que les sucede a los animales también le sucederá al hombre. Todo va unido. Todo lo que hiere a la Tierra también herirá a los hijos de la Tierra... Esto es lo que sabemos: la tierra no pertenece al hombre; es el hombre el que pertenece a la tierra...Fragmento de la carta del Jefe Sioux

Agradecimientos

Tanto pensar que poner en este apartado de la tesis, me puso a reflexionar acerca de la importancia de las personas que en mi caminar han aportado, aunque sea, un granito de arena para poder salir adelante y para agradecer a todo el que se lo merece necesito más hojas de las que mi trabajo pudo dar, por eso incondicionalmente todos están en este apartado.

Agradezco primero a Dios, porque en momentos de reflexión Él, sea como sea, estuvo para escuchar y brindar un apoyo extraño.

A la máxima casa de estudios, la UNAM, que me abrió sus puertas desde mis 15 "añitos" y no me soltó hasta verme hecho un profesionista y por ende agradezco a la FES IZTACALA, mi orgullo, te llevo en el corazón, porque en tus aulas se imparte la carrera de Biología, la mejor carrera del mundo, Izta por tus enseñanzas, por tus profesores, por tu laboratorios, por la Biología.

A mis padres, los viejos "enojones" que tanto aprecio, estas personas han estado siempre al pie del cañón, cuidando mis pasos, pasos que por lo general van por caminos que ellos no quisieran, pero que me han llevado a esto, a darle este libro que los llena de orgullo. También a mis hermanos Felpo y Manolo que siempre me regañaron por ser tan "locochón", pero se que los dos me quieren, en su forma única y extraña. Además, a mi primita querida mi "mostra", Karen.

A mi directora de tesis la Maestra Mary, su apoyo incondicional, su preciado tiempo otorgado para soportarme en el INIFAP, en el campo, sin ella esta tesis no estaría donde está, es una súper master!!, le debo la identificación de mis "honguitos", el trabajo en el campo y el apoyo en la revisión de la tesis.

Por supuesto que le agradezco al "Ing. Efra" con él aprendí mucho, con sus clases express de regresión lineal y de SAS, que son la fuente principal para el análisis de los datos, de igual manera me soportó días y días en el INIFAP, uno enfrente del otro sin dirigir muchas palabras, pero siempre pendiente al trabajo.

Porque no, a mi súper mega equipo de trabajo empezando por la maestra Mary, Lau, Jazmín, Yuriss y mi estimado Bruno, de gran ayuda en el campo, el trabajo se hizo menos y más chévere, con nuestra gran recompensa las comidas en Texcoco, si les debo casi media tesis.

Al Doc. Murguia, que me ayudó con las revisiones, con algunas pláticas, enseñanzas y mejoras de la tesis

En este punto se me complica la existencia, tantos amigos, tanta banda que aprecio que jufff! mínimo unas cuantas páginas necesitaría para ponerlos a todos, espero no me cause conflicto con los que no aparecen, pero serán nombrados de alguna manera.

Empezaré por agradecer a la MSG, mi banda, mis hermanos, mis carnales, apasionados por el mejor equipo de México las chivas del Guadalajara, pasamos ratos y ratos juntos (y los que faltan), apoyo incondicional, consejos, todo de ellos he recibido, pero "pos" resaltaré a una persona en especial gracias, Caramon, tu sabes todo de mí, me conoces más de lo que yo me conozco.

Ahora, son muchos para nombrar pero a toda, toda, toditititititititititi mi banda CCHera la mejor época de mi vida, la que me forjó y me hizo quien soy, con ayuda de todos ustedes, mi Banda del O, Annel, David, Ayme, Iris, Julio, Ale, Hilda, Silvidirri, Pame, y Fany (la rebel sur), por nombrar algunos.

Siguiendo con mi formación, la carrera de biología me dio la dicha de conocer grandes personalidades, que mejor grupo que el 53, sobresaliendo mis mejores amigos de la carrera: Sam, Anahi, Oscar, Daniel, Pao, Jaz, Andrea (como amiga, compañera y algo más), consejos, fiestas, trabajo en equipo, fiestas, siempre estuvieron junto a mí y seguirán hasta que el estudio en Biología se acabe por siempre. También, no mi compañera de grupo, pero si mi consejera, mi confesora, gracias Beta por ti no dejé la carrera. Pero ¡uff!... aquí no paramos con la banda de Izta, agradezco a la banda chévere del 51, Ule, Karla, Diana, Anita (mi hermanita) Lili; aunque poco tiempo los conocí la banda del 2 son la neta del planeta: Diana, Gus, Beca por nombrar a algunos y toda la banda "biologuita" que me aprecia o de mínimo me conoce, a mis reos favoritos los PRECOPses.

Sobresale del 2, efectivamente Yuriss, que por ella conocí el INIFAP, conocí a todos los investigadores, por sus consejos, las serenatas nocturnas, ¡ufff! los viajes a la irrealidad, Mazunte,, Chiapas, qué más puedo decir, el vivir la última etapa de mi vida con su apoyo, por todo, "werita" GRACIAS (tqm).

Tengo a una niña súper especial en mi vida, que daría todo por ella, si eso es amar es lo que siento por ella, no lo sabe aún pero me apoyó en momento difíciles sin palabras, sin gestos solo con el abrazo de sus manitas y un beso en mi cachete, el ser más maravilloso de este mundo mi Alondrita, mi niña, espero que cuando aprenda a leer y entienda esto sepa que me ayudó a ser el Biólogo que quise ser.

Ahora me dirán loco, que por que pongo esto, pero agradezco a la cerveza, mi fiel compañera, conmigo en todo momento, tristeza, alegría, felicidad, fiesta, fiesta, tú si que en todo momento estuviste conmigo, sin tu dulce y amargo sabor no podría estar aquí eres como el amor de mi vida y espero que nunca nos peleemos (o suban tus precios hasta el cielo).

Al Instituto Nacional de Investigaciones Forestales Agrícolas y Pecuarias por el apoyo económico otorgado a través del proyecto: Validación de un modelo predictivo de la producción de hongos silvestres comestibles en bosques de *Pinus* spp.

Resumen

Se realizó la validación de la ecuación predictiva de la producción de esporomas silvestres comestibles en dos predios de Tlaxco, Tlaxcala. Se identificaron y pesaron 149 esporomas comestibles pertenecientes a 24 especies de 17 géneros, de ellos, el género más representativo fue Russula. Además se determinaron los parámetros dasométricos; se contabilizaron 389 árboles, de los cuales 202 ae cuantificaron en el predio el Chaparral y 187 en el de Acopinalco. Las especies identificadas fueron: Pinus rudis Endl, Pinus patula Schiede ex Schltdl. & Cham, Pinus pseudostrobus Lindl y Pinus teocote Schlecht & Cham. Se creó una base de datos y se realizó un análisis de correlación (Pearson). Las correlaciones más altas se obtuvieron entre altura total y diámetro normal (r=0.77), en cuanto al peso fresco, correspondieron a la altura media de los árboles (r=0.55) y al número de especies (r=0.74). Por último, se procedió a la validación de la ecuación: \hat{y} = 128.67 – 1.52 x_1 + 22.40 x_2 – 6.11 x_3 + 6.36 x_4 con los valores obtenidos en campo. En cuanto a lo real y lo predicho, no se observaron diferencias entre ellos, lo anterior se corroboró estadísticamente con una prueba pareada "t de Student". Los datos evidencian que, efectivamente, no hay diferencias significativas (p<0.01) obteniendo (Pr > 0.03), por lo tanto la ecuación se valida satisfactoriamente. Por lo que se concluyó que lo predicho y observado de peso fresco de esporomas silvestres comestibles, por parcela, no son estadísticamente diferentes con lo predicho.

Abstract

A validation of the predictive equation for the production of edible wild sporome, was permormed in two farms of Tlaxco, Tlaxcala state. Were identified and weighed edible sporome wich belong 149 to 24 species of 17 genus, the genus more representative was Russula. Dasometric parameters of 389 trees also were determinatos, of which 202 correspond to the Chaparral and 187 to Acopinalco locations. The species identified were: Pinus rudis Endl, Pinus patula Schiede ex Schltdl. & Cham, Pinus teocote Schlecht & Cham and Pinus pseudostrobus Lindl. A database of the trees and sporomes was created. A correlation analysis using SAS 9.0 was conducted, in which the highest correlations were obtained between total height and normal diameter of the trees (0.77); in terms of fresh weight the highests correlation where obtained for the average height of the trees (0.55) and the number of species (0.74). Finally, the equation $\hat{y}=128.67-1.52~x_1+22.40$ $x_2 - 6.11 x_3 + 6.36x_4$ was proceed with the values from the field. There were no differences between the field data and the predicted ones. This was statistically confirmed with a paired statistical Student-t test. The data confirmed that there were no significant differences at p<0.01 (r> 0.03) so the model was successfully validated. It was concluded that the predicted and observed fresh weight of edible wild sporomas per plot are not statistically different form that predicted.

Palabras clave: esporoma, regrecion lineal, ecuacion, SAS 9.0, variavles dasométricas

1. Introducción

El desarrollo sustentable comprende dos aspectos: el que se refiere a la exigencia de conservación de los recursos naturales y el relativo a la necesidad de aprovechamiento de éstos. Ambos criterios deben mantener armonía entre sí y un equilibrio permanente (Soto *et al.*, 2007). En la búsqueda de alternativas para preservarlos, la Conferencia de las Naciones Unidas sobre el Medio Ambiente y el Desarrollo, también conocida como la "Cumbre de la Tierra", identificó a los Productos Forestales No Maderables (PFNM) como un grupo importante que requiere una acción concertada, para asegurar su potencial y contribuir al desarrollo económico, así como a la generación de empleos e ingresos de manera sustentable (CNUMAD, 1992; Tapia y Reyes-Chilpa, 2008).

Los Productos Forestales No Maderables son todos los productos y servicios vegetales y animales, excluida la madera en rollo y la de uso energético, derivados de los bosques y otras áreas forestales y de árboles fuera del bosque. Otra definición de estos es la siguiente: los bienes de origen biológico, distintos a la madera, la leña y el carbón vegetal que representan un potencial relevante como fuente alternativa de ingresos y empleo. El uso de los PFNM es tan antiguo como la civilización, y ha sido para la humanidad la principal fuente de alimento, forraje, fibras, medicinas, cosméticos, etc. (Tapia y Reyes-Chilpa, 2008).

Dentro de toda la gama de productos forestales no maderables se incluyen a los hongos silvestres comestibles, que son organismos macroscópicos, carentes de clorofila, formados por masas blancas y algodonosas (micelio) y por pequeños filamentos (hifas) provistos de núcleo. Se reproducen por medio de esporas y viven sobre el suelo o sobre algún tipo de sustrato orgánico, tanto vivo como muerto (Soto *et al.*, 2007).

En México se utilizan alrededor de 1,000 productos no maderables, cuyo origen son los casi 5,000 taxa de plantas útiles y 240 de hongos que se han identificado en los diferentes ecosistemas presentes en el territorio nacional. De entre los que destacan: el hongo blanco (*Tricholoma magnivelare* (Peck) Redhead), morillas (*Morchella* spp.), panza (*Boletus edulis* Bull: Fr), masayel (*Boletus pinicola* (Vittad.) R. Venturi), cema (*Boletus aestivalis* (Paul.) Fr.) y duraznillo (*Cantharellus cibarius* (Paulet) Fr.) (Zamora-Martínez *et al.*, 2000). Es importante señalar que de estas especies, el hongo blanco es el que alcanza un mejor precio, de tal manera que es uno de los ocho principales productos forestales no maderables con mayor derrama económica en México, tan sólo superado por el barbasco y la candelilla (Soto *et al.*, 2007).

Los hongos silvestres comestibles deben ser sujetos a un manejo sustentable para que sus poblaciones se mantengan y se garantice su conservación mediante políticas restrictivas de acceso o recolección, las cuales son poco aceptadas por los usuarios, o bien a través de estrategias de planificación y gestión forestal que permitan incrementar la biodiversidad y productividad de los bosques, lo que a su vez asegura la conservación de todo el sistema (Martínez *et al.*, 2008).

La investigación de modelos predictivos capaces de explicar la producción de esporomas a partir de parámetros fácilmente medibles, como los climáticos, edafoclimáticos y fitoclimáticos que relacionan meteorología, suelo y vegetación simplificaría la ejecución de los inventarios y disminuiría los costos del aprovechamiento (Martínez, 2008). Además la normatividad vigente que rige el aprovechamiento de los hongos silvestres establece la notificación de la cantidad de producto por aprovechar en cada predio. Por lo que la estimación de los existencias reales es un aspecto de interés para el seguimiento y control de la recolecta de dichos productos forestales no maderables (Zamora-Martínez, 2008). Aunado a lo anterior, algunos hongos comestibles como: Lactarius deliciosus (L. ex Fr.) S.F.Gray, Tricholoma magnivelare, Cantharellus cibarius, entre otros,

tienen una función importante en el bosque, ya que forman asociaciones micorrízicas con las raíces de diversas plantas, principalmente de hábito arbóreo, brindándoles múltiples beneficios (Carrillo, 2003). La absorción de los nutrimentos del suelo y translocación a la planta, así mismo le suministra resistencia a ciertas condiciones adversas, tales como: la tolerancia a los cambios de temperaturas del suelo, la acidez extrema y protección contra ciertos patógenos. En compensación, el hongo obtiene los azúcares y otros productos de la fotosíntesis necesarios para su crecimiento. Las micorrizas, son los principales órganos encargados de la absorción de nutrimentos y agua en las plantas, que forman este tipo de simbiosis en condiciones naturales, además ayudan a incrementar el área fisiológicamente activa de las raíces (Galindo-Flores y Santiago-Martínez, 2003).

2. Antecedentes

El conocimiento de los hongos como productos alimenticios es muy antiguo; al respecto, en el imperio romano ya era muy apreciada *Amanita caesarea* (Scop) Pers. (yema, amarillo, tecomate), cuyo nombre hace referencia al César; pues por su exquisito sabor era el hongo preferido en la dieta de los gobernantes romanos. Otra especie muy consumida por los habitantes de la antigua Roma fue *Pholiota aegerita* (V. Brig.) Quélt. (Herrera y Ulloa, 1990).

En Japón ha sido relevante la recolección de *Tricholoma matzutake* (S. Ito & S. Imai) Singer (matzutake) desde hace 1200 años, incluso se menciona la existencia de un mercado para la venta del "matzutake" en el siglo XVIII (Neda, 1994).

En América del Norte, México sobresale por su gran tradición micófaga, misma que se manifiesta durante la temporada de lluvias en los mercados locales y regionales del centro del país, donde es posible observar expuestas para su venta, una gran diversidad de especies fúngicas. (Zamora-Martínez, 1999).

El estado de Tlaxcala tiene una superficie de 51,709 hectáreas (SARH, 1994) cubiertas por bosques templados, los cuales son ambientes ricos en especies de macromicetos, pero con poca exploración micológica, por lo cual es difícil determinar la variedad fúngica que se desarrolla en la entidad. Sin embargo, con base en el método propuesto por Hawksworth (1991) que consideran una relación 1:5 entre las especies de plantas vasculares y las de hongos, el número estimado de taxa fúngicos para Tlaxcala podría llegar a 10,000, si el total de plantas vasculares es cercano a las 2,000 especies (Acosta-Pérez y Kong, 1991).

Hasta el momento se han registrado más de 200 macromicetos en el territorio tlaxcalteca, lo cual implicaría un conocimiento cercano al 2% de hongos del estado. No obstante, para una región, municipio, tipo de vegetación o localidad se carece de un inventario micológico completo, pese a que se ha enfatizado la importancia del conocimiento de los recursos forestales para su manejo sustentable (Zamora-Martínez, 1999).

A la fecha se tienen estimaciones de la producción y abundancia para aproximadamente 160 especies de hongos silvestres comestibles distribuidas en cuatro municipios de las principales regiones forestales de Tlaxcala, así como la productividad (peso fresco) total para los hongos que se desarrollaron en los diferentes rodales de *Pinus* spp. y *Abies religiosa* (Zamora-Martínez, 2008).

En general, se observa una mayor producción y riqueza de especies en los bosques de *Abies religiosa*, lo cual obedece a la existencia de más humedad relativa y un contenido de humedad en el suelo superior a lo que prevalece en los bosques de pino. Los valores obtenidos en estos últimos se ubican dentro del intervalo 20-65 kg/ha citado en otras regiones de México, donde se ha monitoreado la producción de hongos silvestres comestibles en periodos de tres años. Algo similar ocurre con las estimaciones para los oyametales, cuya producción varía de 26 a 73 kg/ha (Zamora-Martínez, 2008).

Calderón (2008) evaluó la producción natural de hongos silvestres comestibles de 35 especies en un bosque de *Abies religiosa* en Tlaxco, Tlaxcala. Durante el 2004 se establecieron dos áreas de muestreo con una superficie total de una hectárea en cada una. La mayor abundancia se obtuvo en el mes de septiembre y el mes con mayor biomasa fue octubre con 918 g. La especie más representativa fue *Laccaria laccata* Scopoli ex Fries con 363 esporomas/ha, mientras que en biomasa *Amanita rubescens* (Pers.: Fries) S.F. Gray tuvo los valores más altos con 7323g/ha. El mayor valor económico estimado fue \$5,400 (pesos mexicanos) para las especies de *Morchella spp*.

Alvarado y Manzola (1993) evaluaron la producción natural de hongos silvestres comestibles en dos tipos de vegetación (bosque de pino y bosque oyamel) en el ciclo de lluvias 1992. Asimismo, estimaron su valor económico en la región. Establecieron cuatro sitios de muestreo de 2,500m² cada uno, ubicados equitativamente en las dos comunidades vegetales estudiadas. Se visitaron periódicamente para recolectar los hongos comestibles existentes. Se determinaron 49 especies fúngicas. El bosque con los registros de biomasa y diversidad de macromicetos más alta fue el de oyamel con 85.70 kg/ha y 47 taxa, respectivamente; en cuanto al bosque de pino se identificaron 35 especies de macromicetos con un peso de 17.02 kg/ha. El valor económico estimado de la producción correspondió a \$ 2,308.32 en pino y de \$1,199.80 en el oyametal.

Martínez y Moreno (2006) realizaron un estudio sobre la producción de hongos comestibles silvestres en el bosque de coníferas de Santa Catarina del Monte, Estado de México. La fase experimental se llevó a cabo en cinco parcelas de una hectárea cada una. Determinaron la producción por unidad de superficie y el valor económico por hectárea, además de las condiciones ecológicas del lugar. Analizaron la producción mensual para los tipos de vegetación en función de la temperatura, precipitación y humedad relativa, durante un año. Describieron por medio del método de correlación el grado de asociación entre la población de hongos y las variables: número de especies de hongos, cobertura arbórea, edad y

diámetros promedios del arbolado. La producción en el bosque de pino fue de 107.3 kg/ha con un valor económico de \$5,962.00/ha/año y en el bosque de *Abies* la producción alcanzó un valor de 214.10kg/ha y el económico de \$9,744.00/ha/año. Así mismo indican que la producción de hongos aumenta al incrementarse el número de especies, el porcentaje de cobertura arbórea, la temperatura y la precipitación, pero disminuye al aumentar la edad y diámetro del arbolado.

Martínez (2008) estudió la producción de esporomas epigeos en masas ordenadas de árboles del sistema Ibérico norte (Soria). Su diseño experimental consistió en 18 parcelas permanentes de 35x5m establecidas al azar en masas monoespecíficas de *Pinus sylvestris* L. Se ubicaron en un área de 1.750ha con vegetación, fisiografía y suelo homogéneos. Se muestreó la producción de esporomas de la semana 35 a la 50 en los años de 1995 al 2004 y se estimó la producción media estratificada semanal y otoñal. Se obtuvo un total de 119 taxa; la producción media de las masas estudiadas fue de 151,7±12,5 kg/ha con una acusada variabilidad interanual, con 60% de otoños malos, 20% de regulares y 20% buenos. En el mes de septiembre se registró el 18% de la producción de esporomas, en octubre 63% y 19%para noviembre.

Garibay et al. (2009) evaluaron la disponibilidad de 81 hongos por medio de la abundancia, distribución temporal y espacial e integraron estas variables en un índice de importancia ecológica. El estudio lo realizaron en los años de 2002 y 2004 en los bosques de *Pinus-Quercus* de Ixtlán de Juárez, Oaxaca. La especie con mayor producción de biomasa húmeda (2.21 kg/sitio de muestreo) fue *Laccaria laccata var. padifolia* (Peck). La riqueza de hongos comestibles en el sitio se determinó en 96 especies recolectadas en transectos de cuatro metros de ancho y 33m de largo.

En la búsqueda de crear modelos para predecir la producción de los productos no maderables se efectuaron trabajos en diferentes PFNM, como el estudio de

Velasco *et al.* (2010b), en el cual se generaron modelos predictivos para la producción de agaves mezcaleros a partir de la altura de la planta y el diámetro de la roseta. Los datos se tomaron en dos predios del estado de Oaxaca.

Velasco et al. (2010a) desarrollaron modelos predictivos para la producción de hongos silvestres comestibles en bosques de coníferas de Tlaxcala. Llevaron a cabo un monitoreo de los esporomas comestibles durante tres temporadas de lluvias en el periodo de 2004 a 2006, en tres localidades. En cada sitio se establecieron 10 parcelas de 33x33 m, en éstas registraron datos ambientales, peso fresco de los esporomas y las características dasométricas del arbolado. Se identificaron 153 especies de esporomas comestibles, la producción total fue de 193.668 kg. Se generaron modelos de regresión múltiple para cada localidad, en los que la variable dependiente fue la producción más alta de hongos silvestres comestibles alcanzada durante los meses de junio a noviembre, en función del promedio de los tres años de estudio. Los modelos generados estiman la producción total de macromicetos comestibles en las localidades estudiadas con R² que varían de 76% a 99%, valores aceptables si se parte del hecho de que el tamaño de muestra utilizado para generarlas fue reducido, 10 por localidad; lo anterior confirma la relevancia de las variables consideradas, tanto del arbolado como las de tipo meteorológico, sobre la producción de hongos silvestres comestibles en las tres localidades estudiadas del estado de Tlaxcala. En cada una de ellas la respuesta varió como resultado de las características del arbolado y las condiciones topográficas prevalecientes en los predios estudiados. El modelo de regresión que mejor explica la relación existente entre el arbolado y la producción de hongos silvestres comestibles (99%) fue el obtenido para la localidad de Rancho Viejo. El modelo de regresión que mejor explica la relación existente entre el clima y la producción de hongos silvestres comestibles (91%) correspondió al generado para la localidad de Piedra Canteada.

3. Ecuación a validar

La ecuación realizada por Velasco y Zamora-Martínez (2010b) en Rancho Viejo municipio de Terrenate Tlax. para estimar la producción de hongos es una herramienta para los técnicos y los productores forestales que les permitirá estimar la cantidad de hongos comestibles por unidad de superficie susceptibles de ser recolectados. Esta ecuación requiere ser validada en otros predios de la región forestal donde se generó, y que tengan características ecológicas similares. Una vez que se demuestre su eficacia en la predicción de la producción fúngica, su aplicación podrá ser recomendada a nivel regional.

La ecuación se presenta a continuación: incluye cuatro variables:

$$\hat{y}$$
= 128.67 - 1.52 x_1 + 22.40 x_2 - 6.11 x_3 + 6.36 x_4

Donde

ŷ= Producción estimada de hongos (g) en la parcela de 1089 m²

 x_1 = Número total de árboles en la parcela de 1,089 m²

 x_2 = Altura (m) promedio del arbolado en la parcela 1.089 m²

x₃= Cobertura de la copa (m) promedio en la parcela de 1,089 m²

 x_4 = Diámetro normal (cm) promedio en la parcela de 1,089 m²

La r^2 de la ecuación aplicada a los datos del estudio fue de 0.9943

4. Hipótesis

La producción estimada mediante el modelo de Velasco *et al.* (2010a) no será diferente significativamente de la producción real.

5. Objetivos

5.1 Objetivo general

Validar una ecuación predictiva de la producción de esporomas silvestres comestibles en dos bosques de *Pinus spp.*

5.2 Objetivos particulares

- Estimar el peso fresco de los esporomas silvestres comestibles presentes en dos localidades.
- Identificar y cuantificar los esporomas silvestres comestibles presentes en dos localidades.
- Realizar la caracterización dasométrica del arbolado en dos localidades.
- Generar una base de datos con las variables dasométricas y fúngicas
- Establecer la correlación entre las variables dasométricas y el peso fresco de esporomas comestibles.

6. Materiales y Métodos

6.1 Área de Estudio

El municipio de Tlaxco, Tlaxcala se ubica en el altiplano central mexicano a 2520 msnm en las coordenadas geográficas 19°37' latitud norte y 90°07' longitud oeste. Colinda al norte con el estado de Puebla al sur con los municipios de Atlangatepec, Tetla y Muñoz de Domingo Arenas; al oriente se establecen linderos con los municipios de Emiliano Zapata y Lázaro Cárdenas; al poniente con el estado de Hidalgo y el municipio de Benito Juárez (Figura 1) (Calderón, 2008). Ocupa 14.4% de la superficie del estado, cuenta con 303 localidades y una población total de 36,506 habitantes (INEGI, 2009).

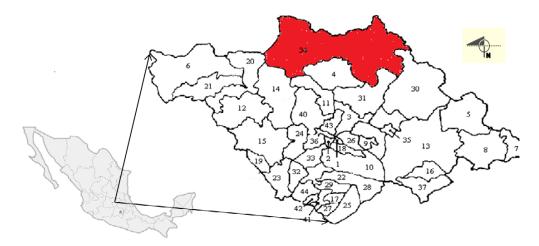


Figura. 1 Ubicación geográfica de Tlaxco.

6.1.1. Clima

De acuerdo con la clasificación de Köppen, modificada por García (1988) el clima que predomina es templado subhúmedo $C(W_2)W$ con lluvias en verano (INEGI, 2009); con precipitación en el verano de lluvia invernal, menor a 5 mm; el régimen pluvial en la región varía de los 600 a los 900 mm anuales. Los meses con mayor precipitación son junio, julio y agosto con valores que van de los 110 a los 160 mm mensuales (Figura 2) (Calderón, 2008).

Validación de una ecuación para predecir la producción de esporomas silvestres comestibles en bosques de Pinus spp en Tlaxco, Tlaxcala.

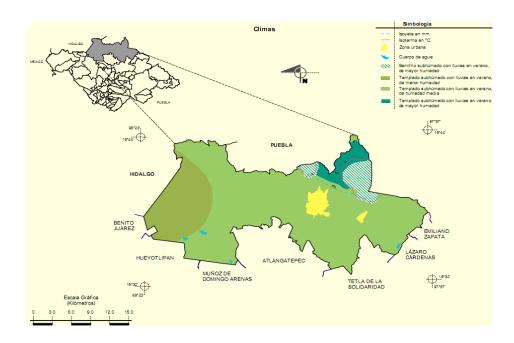


Figura 2. Tipos de climas presentes en Tlaxco (INEGI, 2009).

La temperatura media anual varía de 11° a 14°C con una máxima de 19°C y una mínima de 11 a 12°C. Los meses más cálidos corresponden a abril, mayo y junio.

6.1.2. Suelos

La variabilidad edáfica es poca, los suelos son de origen residual y volcánico, con un desarrollo de incipiente a moderado, predomina la textura media a arenosa. En la sierra de Tlaxco dominan los litosoles, además se tiene, feozem, andosoles, vertisoles y durisoles (Figura 3) (Calderón, 2008).

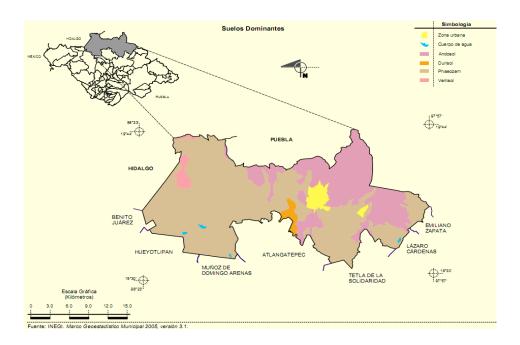


Figura 3. Tipos de suelo para el Tlaxco (INEGI, 2009).

6.1.3. Vegetación

La vegetación se compone de bosque de pino y oyamel, las especies representativas son: *Pinus ayacahuite* C. A. Erenb., *P. montezumae Lamb.*, *P. patula* Schiede ex Schltdl. *et* Cham., *P pseudostrobus Lindl.* y *P. tecote* Schiede ex Schltdl. y *Abies religiosa* en asociación con algunos individuos aislados de *Pseudotsuga macrolepis* Flous, taxón de gran valor ecológico y botánico para la entidad, aunque solo crece en pequeños manchones (Carrillo y Acosta, 2008).

6.2 Trabajo en campo

6.2.1 Selección del área de estudio

El estudio se realizó en dos predios con condiciones ecológicas similares a Rancho Viejo Terrenate. El criterio de selección fue la presencia de las siguientes especies de pinos: *Pinus rudis, P. pseudoestrobus, P. teocote P. patula, P ayacahuite.*

En estos predios se realizaron recorridos de campo para trazar la poligonal de las dos áreas de estudio en las cuales se establecieron las unidades de muestreo.

6.2.2. Establecimiento de las unidades de muestreo

En cada localidad se delimitaron nueve parcelas de 33x33m con una equidistancia de 100m. La parcela se delimitó a partir del árbol central, midiendo una distancia de 16.5m hacia los cuatro puntos cardinales. Esta actividad se realizó con un longimetro y una brújula Brunton (Figura 4).

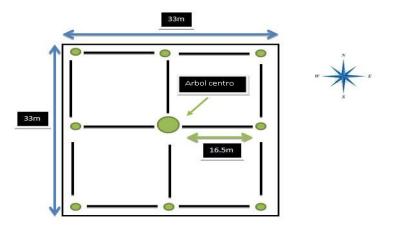


Figura 4. Forma geométrica de las unidades de muestreo.

Las parcelas establecidas en campo se ubicaron en una imagen satelital de Googleeart, (figuras 5 y 6). En la Figura 5 se muestra al paraje el Chaparral y en la Figura 6 el rancho Acopinalco del Peñón.

En el Cuadro 1 se presentan las coordenadas en unidades UTM, la pendiente y la altitud de cada parcela en ambos predios.

Figura 5. Parcelas establecidas en el paraje el Chaparral.

Figura 6. Parcelas establecidas en el ejido Acopinalco del Peñón.

6.2.3. Recolecta fúngica y mediciones arbóreas

Se realizaron visitas semanales en el periodo septiembre-octubre del 2011 a cada una de las parcelas (Unidades de Muestreo). Se hicieron caminatas en zigzag, en las cuales se procedió a la búsqueda de los esporomas comestibles, los cuales se pesaron en fresco además de cuantificar el número de esporomas de cada especie, se identificaron con el uso de claves taxonómicas y folletos técnicos de Tlaxcala (Zamora-Martínez *et al.*, 2000, Zamora-Martínez *et al.*, 2007). El material recolectado se transportó al Herbario Nacional Forestal (INIF) del CENID-COMEF (INIFAP) para su posterior herborización.

Se tomaron las medidas dasométricas de todos los ejemplares de pino presentes dentro de las parcelas con diámetro normal superior a 10 cm. Los parámetros considerados fueron: altura total la cual se midió con pistola Haga, DAP con una cinta diamétrica (MTS), y se obtuvieron los diámetros mayor y menor de la copa; además se registraron la pendiente de cada parcela, igualmente con la pistola Haga, la exposición y la altitud con el GSP (map 60CSx-Garmin) (Cuadro 1).

Cuadro 1. Coordenadas, altitud y pendiente de las unidades de muestreo establecidas en los predios de San Antonio Acopinalco y el Chaparral.

Predio	Unidad de Muestreo	Coordenada x (UTM)	Coordenada y (UTM)	Altitud (msnm)	Pendiente (%)
Chaparral	1	589482	2176424	2924	9
Chaparral	2	589481	2176325	2925	12
Chaparral	3	589486	2176233	2924	19
Chaparral	4	589478	2176124	2931	20
Chaparral	5	589380	2176127	2902	8
Chaparral	6	589372	2176241	2932	10
Chaparral	7	589581	2176126	2940	10
Chaparral	8	589678	2176125	2935	12
Chaparral	9	589581	2176226	2928	12
Acopinalco	1	590373	2172669	2931	16
Acopinalco	2	590297	2172661	2929	18
Acopinalco	3	590421	2172721	2949	16
Acopinalco	4	589937	2172600	2864	10
Acopinalco	5	589938	2172508	2860	12
Acopinalco	6	589930	2172407	2847	12
Acopinalco	7	590123	2172406	2870	14
Acopinalco	8	589803	2172678	2850	16
Acopinalco	9	589788	2172554	2840	18

6.3. Trabajo de gabinete

Se generó una tabla de datos en Microsoft Office Excel 2007 con altura total, diámetro normal y diámetro mayor y menor de la copa de los árboles a su vez se generó otra tabla para los esporomas recolectados a partir de mediciones como peso fresco, número de esporomas, además de la fecha de colecta.

6.3.1. Análisis de correlación y regresión lineal

Mediante PROC MEANS se obtuvieron los totales y medias por unidad de muestreo de las variables dasométricas y fúngicas. A través del comando "proc corr" de SAS se aplicó la correlación de las variables del arbolado y de la producción de esporomas.

Para las variables peso fresco, número de esporomas por unidad de muestreo y número de las especies fúngicas, el total se consideró como el agregado de los resultados parciales en las fechas de periodo de evaluación ya que por razones ajenas al trabajo de investigación, el estudio se inició a la mitad de la temporada de lluvias que comprende de junio a noviembre, por lo que se generó un factor de corrección para simular los datos a la temporada completa; para este fin se utilizaron los datos de Terrenate (Velasco et al., 2010a) (Cuadro 2). El factor consideró el coeficiente del promedio de peso fresco de Terrenate y el promedio de biomasa fúngica del Chaparral y Acopinalco. Se procedió de manera similar con el número de esporomas.

Cuadro 2. Pendiente, coordenadas geográficas, altitud y especies arbóreas en la localidad de Terrenate.

Localidad	Coordenadas	Altitud	Pendiente		Especies arbóreas
	geográficas	(msnm)	(%)	Exposición	
Rancho Viejo (Terrenate)	N19°29′3.4′′ N19°29′59.0′′ O- 97°52′50.3′′- O-97°53′9.6′′	3,029- 3,222	10-40	SE, NNE, NE, E, S	Pinus rudis, P. pseudoestrobus, P. teocote P. patula, P ayacahuite.

Los totales y medias de las variables fúngicas y dasométricas, respectivamente, se utilizaron en el modelo propuesto por Velasco *et al.* (2010a) mediante un análisis de regresión lineal.

Finalmente, se llevó a cabo una prueba pareada de *t* de Student, con un alfa de 0.05, para determinar la existencia de diferencias significativas entre el peso predicho por el modelo de Velasco *et al.*, (2010a) y el peso real.

7. Resultados y Discusión

7.1. Variables Fúngicas

Se identificaron y pesaron un total de 149 de esporomas comestibles pertenecientes a 24 especies de 17 géneros (Cuadro 3), de los cuales la gran mayoría fueron descritos por Zamora-Martínez *et al.* (2000) para el estado de Tlaxcala. El género *Russula* presentó el mayor peso, aunque la especie *Helvella crispa* (Scop.) Fr. tuvo el mayor número de esporomas. El tamaño y peso fresco registrado para *Russula* responde a que llega a tener un píleo de más de 15 cm, en cambio en las helvelas el diámetro es de 2 a 3 cm (Alexopoulos, 1985) (Cuadro 3). Calderón (2008) muestra que *Russula* es de los más representativos en cuanto al peso fresco en un estudio realizado en un bosque de *Abies religiosa* en Tlaxco, Tlaxcala. De igual forma sobresale en cuanto al peso fresco *Ramaria stricta* (Pers) Quél. del cual solo se recolectaron dos ejemplares, pero con un peso de 210 g.

Cuadro 3. Peso fresco y número de esporomas por especie recolectados en el paraje el Chaparral y el ejido Acopinalco del Peñón.

Observación	Especie	Número de. esporomas	Peso fresco (g)
1	Agaricus af.silvaticus Schaeff	1	20
2	Agaricus sp.	1	20
3	Amanita rubescen Pers.	2	12
4	Cantharelus sp.	5	15
5	Clavulina cinerea (Bull.) J. Schröt	14	20
6	Clitocibe gibba (Pers.:Fr.) Kummer	10	41
7	Collybia sp.	1	1
8	Collybia dryophilla (Bull.:Fr.) Kumm	7	9
9	Helvella crispa Bull	35	83
10	Hebeloma fastibile (Pers.) P. Kumm	5	6
11	Hygrophorus chrysodon (Batsch) Fr.	14	44
12	Hygrophorus russula (Schaeff.) Kauffman	4	48
13	Hypomyces lactifluorum (Schwein.) Tul. & C. Tul.	1	4
14	Laccaria amethystina (Huds.) Cooke	15	24
15	Laccaria laccata (Scop.) Cooke	6	28
16	Lactarius sp.	3	13
17	Lyophyllum sp.	5	30
18	Ramaria stricta (Pers.) Quél.	2	210
19	Russula brevipes Peck	6	205
20	Russula alutacea (Fr.) Fr.	10	65
21	Russula cyanoxantha (Schaeff.) Fr.	4	41
22	Russula sp.	1	10
23	Suillus granulatus (L.) Roussel	15	114
24	Tricholoma equestre (L.) P. Kumm	6	50

La baja producción registrada de esporomas (Cuadro 4) se debe a que el estudio se realizó en los meses de septiembre-octubre 2010, casi al final de la temporada de fructificación. Soto *et al.* (2007) señalan que la aparición de los esporomas se inicia con las primeras lluvias en mayo y puede continuar hasta finales de año, periodo en el cual la humedad ambiental y edáfica es alta. En general, la mayor producción y diversidad de esporomas se registra en los meses de julio y agosto, ya que en estos meses las lluvias se han establecido, debido a la baja producción registrada se aplicó el factor para inferir la producción total (Cuadro 5). En el cuadro 6 se presentan los totales y promedios de las variables dasométricas, se observa una densidad máxima de 396 árboles/ha, que es baja en comparación con el valor obtenido por Calderón (2008).

Por las características ecológicas de los sitios se esperaría una producción relativamente alta, como es el caso de Terrenate (Velasco *et al.*, 2010a), la cual fue mayor a la del presente estudio. La mayor producción se obtiene en los bosques de *Pinus* en comparación de los bosques de *Pinus*-Abies (Calderón, 2008).

El peso fresco y número de esporomas se obtuvo por unidad de muestreo (parcela) para proceder a su análisis en SAS. El peso fresco total fue de 1074 g en las dos localidades (Cuadro 4). El predio con mayor número de esporomas fue el Chaparral con un total de 71 y Acopinalco con 78; por otra parte, el predio que registró el peso fresco más alto del estudio fue Chaparral con 828g.

Cuadro 4. Pesos frescos y número de esporomas determinados en el estudio.

Predio	Unidad de muestreo	Esporomas	Peso fresco (g)
Acopinalco	1	1	1
Acopinalco	2	18	68
Acopinalco	3	33	60
Acopinalco	4	4	25
Acopinalco	5	3	11
Acopinalco	6	6	7
Acopinalco	7	6	28
Acopinalco	8	7	44
Acopinalco	9	1	1
Chaparral	1	9	153
Chaparral	2	11	248
Chaparral	3	15	92
Chaparral	4	3	26
Chaparral	5	5	36
Chaparral	6	19	126
Chaparral	7	1	1
Chaparral	8	5	112
Chaparral	9	4	35
Total		151	1074

Se puede observar claramente que en la parcela siete de el Chaparral y en la parcela nueve de Acopinalco, solo hubo un esporomas comestible, pero se observaron otras especies fúngicas, como *Amanita muscaria* (L.) Lam., lo cual puede deberse a la época tardía de muestreo, así como a la baja densidad arbórea en algunas unidades de muestreo (parcela seis y nueve de Acopinalco) en relación a las otras parcelas (Cuadro 6), ya que la presencia de los pinos es importante si se considera su asociación con macromicetos ectomicorrizógenos (Díaz y Marmolejo, 2005). Zamora-Martínez (1999) cita que los hongos desempeñan diversas funciones de tipo ecológico, además de que pueden ser mediadores e integradores que contribuyen al desarrollo de las poblaciones vegetales.

Cuadro 5. Datos de peso freso y número de esporomas determinados con el factor de corrección.

		Número de.	Peso
Predio	U.M.	Esporomas	Fresco (g)
Acopinalco	1	3.88	7.54
Acopinalco	2	66.03	505.26
Acopinalco	3	139.83	226.23
Acopinalco	4	38.84	339.35
Acopinalco	5	11.65	82.95
Acopinalco	6	23.30	52.78
Acopinalco	7	23.30	211.15
Acopinalco	8	50.49	414.77
Acopinalco	9	3.88	7.54
Chaparral	1	34.95	1153.81
Chaparral	2	81.57	1998.44
Chaparral	3	58.26	693.79
Chaparral	4	11.65	120.66
Chaparral	5	19.42	271.48
Chaparral	6	73.80	1214.14
Chaparral	7	3.88	7.54
Chaparral	8	19.42	844.62
Chaparral	9	15.53	263.94

7.2. Variables Dasometricas

En el estudio se determinaron los parámetros dasométricos, se contabilizaron 389 árboles, de los cuales 202 corresponden al predio el Chaparral y 187 al predio de Acopinalco (Cuadro 6). Las especies identificadas fueron: *Pinus rudis* Endl, *Pinus patula* Schiede ex Schltdl. & Cham, *Pinus pseudostrobus* Lindl y *Pinus teocote* Schlecht & Cham.

Cuadro 6. Promedios por parcela de las mediciones dasométricas en los predios.

Predio	Unidad de muestreo	Número de arboles	Diámetro normal (cm)	Altura total (m)	Área de copa (m)	Densidad (arboles/ha)
Acopinalco	1	25	37.3±10.4	15.96±2.6	12.09±7.3	242
Acopinalco	2	17	34.42±20.3	18±10.3	7.42±6.3	164
Acopinalco	3	21	30.54±15. 2	14±7.5	9.4±8	203
Acopinalco	4	41	24.27±11.3	11±3.5	23.52±13.7	396
Acopinalco	5	15	37.63±18	16±9. 5	17.30±16.2	145
Acopinalco	6	8	32.89±17.5	12.06±9.4	15.72±15.1	77
Acopinalco	7	34	53.52±18.87	27.6±9	12.44±9.2	329
Acopinalco	8	17	37.79±21.7	17.06±9.7	13.63±12.6	164
Acopinalco	9	9	34.3±26.8	12±11.9	17.11±24.06	87
Chaparral	1	19	47.83±11.3	31±3	22.26±16.7	183
Chaparral	2	16	38.04±7.3	26±2. 4	19.42±9.4	154
Chaparral	3	21	37.67±7.4	28±2. 9	16.15±10.4	203
Chaparral	4	11	48.83±11.5	26±2. 5	5.64±5.4	106
Chaparral	5	21	62.35±7.06	33±2. 9	18.72±12. 19	203
Chaparral	6	38	29.04±9.7	18±3. 1	20.24±17.41	367
Chaparral	7	27	38.37±7.3	22.48±2.6	15.04±10.17	261
Chaparral	8	24	37.98±7.6	22±2.8	19.17±14. 27	232
Chaparral	9	29	39.25±16.02	20.86±4	22.67±29.4	280

La especie arbórea más abundante en este estudio fue *P. rudis* taxón que se distribuye hasta los 3,000 m de altitud, en asociación con *P. montezumae* y *P. teocote* (Rzedowski, 2006).

En las unidades de muestreo número seis y nueve del predio de Acopinalco, el número de árboles fue el menor, además predominaron árboles jóvenes, cuya altura fue de 12 m en promedio por lo que se trata de un bosque abierto y por ende se espera que la temperatura sea más alta y menor humedad, lo cual explicaría la nula presencia de esporomas comestibles (Cuadro 3), ya que las condiciones de cobertura de copa y densidad arbórea son determinantes en la presencia y producción de los esporomas. La parcela que presentó mayor altura fue la cinco del Chaparral (Figura 7), lo que favoreció la producción de los

esporomas (Calderón, 2008). En cuanto a los diámetros normales la parcela cinco tuvo las cifras más altas (Figura 8)

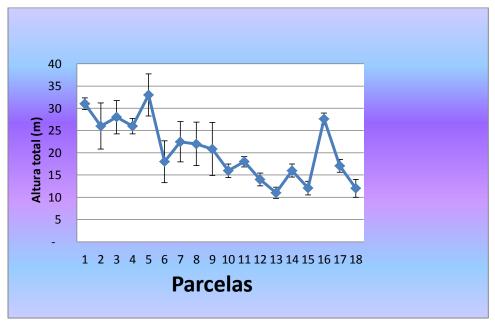


Figura 7. Altura total media (m) de los árboles de las parcelas estudiadas.

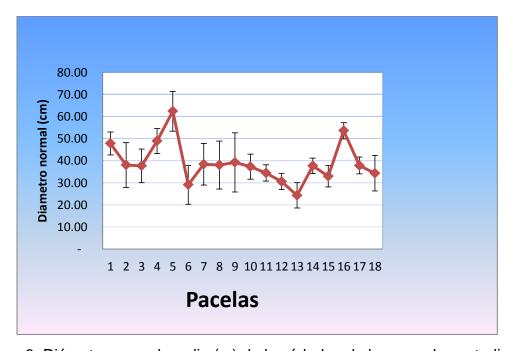


Figura 8. Diámetro normal medio (m) de los árboles de las parcelas estudiadas.

En cuanto al área de copa media se ve una variación (Figura 9), puesto que las especies de *P. patula* eran árboles jóvenes de diámetros chicos, en comparación de *P. rudis* los cuales alcanzan diámetros 62 cm (Anexo 1)

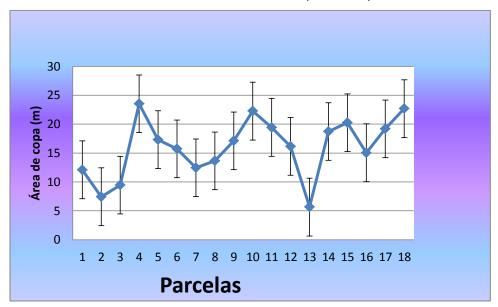


Figura 9. Área de copa medio (m²) de los árboles de las parcelas estudiadas.

7.3. Resultados del análisis de correlación y regresión lineal

La correlación de Pearson de los datos de las variables dasométricas resultó mayor entre la altura de los árboles y el diámetro normal (DAP) con r=0.77265 (Cuadro 7, Figura 10).

Cuadro 7. Correlación de Pearson de las variables diámetro normal, altura total y área de copa.

Coeficiente de Correlación de Pearson , n= 389				
Diámetro normal Altura total Área de copa				
Diámetro normal	1.000			
Altura total	0.773 (<.0001)	1.000		
Área de copa	0.539 (<.0001)	0.289 (<.0001)	1.000	

Costas *et al* (2006) señalan que el aumento de altura arbórea favorece el crecimiento del diámetro a la altura de pecho (DAP), el cual incide en el mayor potencial de fotosíntesis que tienen las plantas.

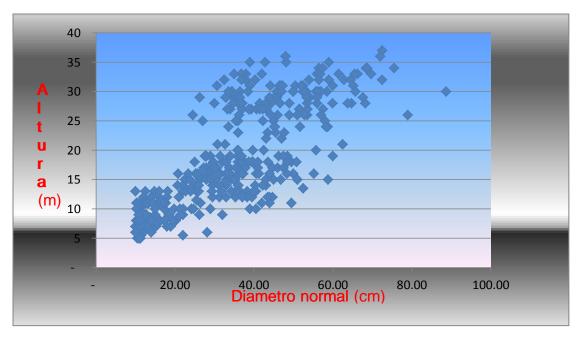


Figura 10. Gráfica de las variables dasométricas más representativas en el estudio altura total y diámetro normal.

Las correlaciones de las variables dasométricas por especie mostraron que a *P. teocote* y *P. pseudostrobus* les correspondieron los valores de correlación más altos como se observa en los cuadros 8 y 9, respectivamente.

De manera particular se observa que el diámetro normal y altura total de *P. pseudostrobus* presentan una correlación superior al 0.9. La correlación entre altura y diámetro de copa supera el 0.95.

Cuadro 8. Correlación de Pearson para la especie P. pseudostrobus.

Coeficiente de Correlación de Pearson, n= 5				
	Diámetro normal Altura total Área de copa			
Diámetro normal	1.000			
Altura total	0.921 (0.026)	1.000		
Área de copa	0.989 0.0013	0.966 0.0073	1.000	

Cuadro 9. Correlación de Pearson para la especie P. teocote.

Coeficiente de Correlación de Pearson, n= 18				
	Diámetro normal Altura total Área de copa			
Diámetro normal	1.000			
Altura total	0.869 (<.0001)	1.000		
Área de copa	0.893 (<.0001)	0.853 (<.0001)	1.000	

En el cuadro 10 se resumen los datos para la correlación de las variables fúngicas y dasométricas. Se observa que la relación más alta ocurre entre el número de esporomas recolectados con el número de especies identificadas, r=0.745, dado que a partir del número de especies se puede inferir el peso fresco por parcela, lo cual es congruente con lo registrado por Martínez y Moreno (2006), quienes citan pocos ejemplares de *Russula*, pero su tamaño y peso fresco es mayor, llega a tener un píleo de más de 15 cm, que también concuerda con lo observado por Alvarado y Manzola (1993), cuyos resultados consignan a *Russula lutea* (Huds.) Gray, con la mayor biomasa (3.77 kg/ha).

Las correlaciones más altas y de gran importancia para el objetivo del estudio se determinaron entre el peso fresco de los esporomas y la altura media de los árboles 0.55 (Cuadro 10), lo cual es un indicativo importante para predecir la producción fúngica, si se tiene presente que la composición y estructura de la vegetación en los rodales constituyen elementos que limitan o promueven la emergencia, abundancia y la distribución espacial de los esporomas, particularmente, de los hongos ectomicorrizógenos (Velasco et al., 2010a). Pilz (1996 citado en Velasco et al., 2010a) concluyó que la edad del arbolado, la composición y la estructura de la comunidad tienen una gran influencia sobre la producción del recurso.

Aunque se esperaría que la relación de número de árboles tuviera influencia en el peso fresco o el número de esporomas, esto no ocurrió, otra variable que se esperaría se relacionara con la producción de esporomas es la cobertura de copa; Calderón (2008) señala que las condiciones de cobertura media (4.92 m²) y la densidad (492/individuos/ha.) del arbolado presentes en el área inciden favorablemente en las condiciones de humedad del suelo, mismas que son determinantes para el desarrollo de los hongos.

Cuadro 10. Correlaciones de las variables que se obtuvieron en el estudio.

		C	peficientes d	e correlaci	ón de Pears	son n= 18		
	Esporoma	Peso fresco	Diámetro normal medio	Altura total media	Área de copa media	Número de especies	Diámetro- altura	Arboles por parcela
Esporoma	1.00	0.46 (0.05)	-0.27 (0.26)	0.02 (0.90)	-0.32 (0.18)	0.75 (0.0004)	-0.13 (0.6)	0.11 (0.65)
Peso fresco	0.46 (0.05)	1.00	0.13 (0.60)	0.55 (0.01)	-0.57 (0.01)	0.74 (0.0004)	0.34 (0.16)	0.12 (0.62)
Diámetro normal medio	-0.27798 (0.26)	0.13 (0.60)	1.00	0.76 (0.0002)	0.24 (0.33)	0.02 (0.92)	0.91 (<.0001)	-0.55 (0.01)
Altura total media	0.02 (0.90)	0.55 (0.01)	0.76 (0.0002)	1.00	-0.31 (0.20)	0.46 (0.05)	0.91 (<.0001)	-0.14 (0.56)
Área de copa media	-0.32 (0.18)	-0.57 (0.01)	0.24 (0.33)	-0.31 (0.20)	1.00	-0.47 (0.04)	-0.07 (0.77)	-0.52 (0.02)
Número de especies	0.74 (0.0004)	0.74 (0.0004)	0.02 (0.92)	0.46 (0.05)	-0.47 (0.04)	1.00	0.23 (0.34)	0.01 (0.95)
Diámetro- altura	-0.13 (0.60)	0.34 (0.16)	0.91 (<.0001)	0.91 (<.0001)	-0.07 (0.77)	0.23 (0.34)	1.00	-0.32 (0.19)
Arboles por parcela	0.11 (0.65)	0.12 (0.62)	-0.55 (0.01)	-0.14 (0.56)	-0.524 (0.02)	0.014 (0.95)	-0.32 (0.19)	1.00

En el Cuadro 11 se presenta la tabla de datos que contiene las variables fúngicas y dasométricas por parcela. De manera particular se observa que las columnas, Peso real y Peso predicho obtenido por el modelo de Velasco *et al.* (2010a), son muy similares entre sí (Figura 11).

Lo anterior se corroboró estadísticamente, para verificar que no hubiera diferencias significativas entre ambos valores, se analizaron los datos en una prueba estadística apareada "t de Student" (Durán et al., 2006). Los datos evidencian que efectivamente no hay diferencias significativas al 0.01 obteniendo Pr > 0.03, por lo tanto la ecuación se valida satisfactoriamente.

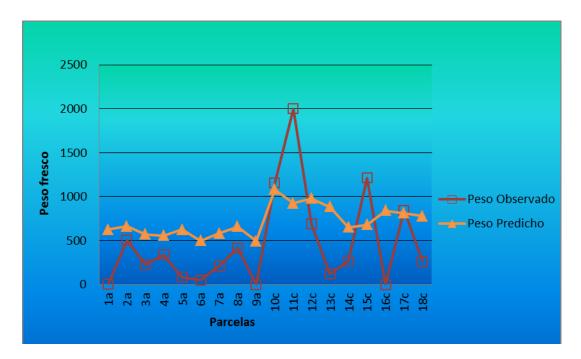


Figura 11. Gráfico que compara los valores predichos con los observados correspondientes a los pesos frescos de los esporomas en cada parcela en el estudio.

Cuadro 11. Variables utilizadas en las diferentes ecuaciones. En la columna tres se muestra el peso real y en la once el predicho.

Predio	UM	Esporoma	Peso real	No.	diamnoM	alttotaM	AreacopM	arbolpar	DiamcopM	Peso
	0	2οροιοιπα	. 000 .00.	especies	Giairiiioivi	antotair.	7	ansonpan	Biamoopin	predicho
Acopinalco	1	3.88	7.54	1	37.30	15.96	22.26	25	4.88	625.38
Acopinalco	2	66.03	505.27	5	35.44	17.88	19.42	17	4.83	661.81
Acopinalco	3	139.83	226.24	5	30.53	14.14	16.15	21	4.32	572.93
Acopinalco	4	38.84	339.36	3	24.26	10.95	5.64	41	2.48	556.14
Acopinalco	5	11.65	82.95	2	37.63	15.66	18.72	15	4.69	627.38
Acopinalco	6	23.30	52.79	3	32.88	12.12	20.24	8	4.65	497.90
Acopinalco	7	23.30	211.16	3	27.54	14.26	15.04	34	4.13	583.18
Acopinalco	8	50.49	414.77	5	37.78	17.05	19.17	17	4.69	659.77
Acopinalco	9	3.88	7.54	1	34.30	12.22	22.67	9	4.41	495.72
Chaparral	1	34.96	1153.82	5	47.83	31.00	12.09	19	3.66	1082.28
Chaparral	2	81.57	1998.44	8	38.03	25.68	7.42	16	2.78	924.95
Chaparral	3	58.26	693.80	8	37.67	28.38	9.43	21	3.15	978.25
Chaparral	4	11.65	120.66	3	48.82	25.63	23.52	11	5.27	886.46
Chaparral	5	19.42	271.49	3	32.65	17.42	17.30	21	4.22	652.93
Chaparral	6	73.80	1214.15	6	29.03	18.21	15.72	38	4.07	682.95
Chaparral	7	3.88	7.54	1	38.37	22.51	12.44	27	3.69	842.13
Chaparral	8	19.42	844.62	2	37.97	21.79	13.63	24	3.74	811.47
Chaparral	9	15.53	263.95	3	39.24	20.88	17.11	25	3.76	779.44

8. Conclusiones

Se validó satisfactoriamente la ecuación generada por Velasco *et al.* (2010a), puesto que lo predicho y observado de peso fresco de los esporomas silvestres comestibles por parcela no son estadísticamente diferentes.

Se identificaron, cuantificaron y pesaron un total de 149 de esporomas silvestres comestibles pertenecientes a 24 especies de 17 géneros con un peso fresco total de 1113q.

Se caracterizaron dasométricamente 389 árboles pertenecientes a cuatro especies de pinos (*P. pseudostrobus*, *P. patula.*, *P. rudis P. teocote*).

Se determinó una correlación de r=0.77 entre la altura total y diámetro normal para las variables arbóreas

Se observó que las correlaciones más altas, en cuanto al peso fresco, se obtienen con la altura media de los arboles (r=0.55) y el número de especies fúngicas (r=0.74).

El uso sustentable de los PFNM propicia la conservación de los ecosistemas boscosos y por ende mayor producción fúngica.

Recomendaciones

- Aplicación del modelo a bosques de Pinus Quercus.
- Aumentar al modelo otras variables como temperatura, altitud y pendiente.
- Tomar en cuenta las actividades humanas para determinar la producción.

Bibliografía

- Aceñolaza P. G., Zamboni L. P. y Gallardo-Lancho J. F. 2009. Aporte de hojarasca en bosques del predelta del río Paraná (Argentina) Universidad Autónoma de Entre Ríos, Argentina. BOSQUE 30(3): 135-145.
- Acosta-Pérez R. y Kong-Luz A. 1991. Guía de las excursiones botánicas y micolológicas al cerro El Peñón y Cañada Grande del estado de Tlaxcala. Jardín Botánico Tizatlán-Universidad Autónoma de Tlaxcala-Sociedad Mexicana de Micología-Gobierno del estado de Tlaxcala. Tizatlán. Tlaxcala México Folleto Divulgativo No. 8. 82p.
- Alexopoulos C. J. 1985. Introducción a la micología, Ediciones Omega, Barcelona España. 638 pp.
- Alvarado L. G. y Manzola J. M. 1993. Análisis de la producción de hongos silvestres comestibles en dos tipos de vegetación del campo experimental forestal "San Juan Tetla", Puebla, Informe del Servicio Social que para obtener el título de Biólogo, Facultad de Estudios Superiores Zaragoza, México D.F. México. 80p.
- Arteaga M. B. y Moreno Z. 2006. Los hongos comestibles silvestres de Santa Catarina del Monte, Estado de México. Revista Chapingo, Serie Ciencias Forestales y del Ambiente. 12 (2): 125-131.
- Calderón P. L. 2008. Análisis de producción de hongos silvestres comestibles en un bosque de *Abies Religiosa* en el municipio de Tlaxco, Tlaxcala. Tesis que para obtener el título de Licenciada en Biología Agropecuaria, Universidad Autónoma de Tlaxcala. Tlaxcala, Tlax. México. 76p.
- Carrillo A. F. y Acosta M. M. 2008. Regeneración natural de los bosques bajo manejo forestal. *In.* Mallén R. C. y V. Guerra de la C. (Comp.). Tlaxcala sus recursos

- forestales, conservación, aprovechamiento y bases para su manejo sustentable. Libro Técnico Núm. 4 CENID-COMEF, México. D. F. México. 45 p.
- Carrillo L. 2003. Microbiología Agrícola. Hongos Capítulo 7 pp. 1-14. Universidad Nacional de Salta, Argentina.
- Costas R., Mc Donagh, Weber E., Figueredo S., Gómez C y Irschick P. 2006 Modelos predictivos de la producción de *Pinus taeda* empleando variables vinculadas con las podas Universidad Nacional de Misiones, Facultad de Ciencias Forestales Bosque 27(2): 98-107p.
- CNUMAD. 1992. Principios Forestales, capítulo 11 de la Agenda 21 (CNUMAD). En línea: http://www.fao.org. 11 de mayo del 2011
- Díaz M. R. y Marmolejo M. J. G. 2005. Flora micológica de bosques de pino y pinoencino en Durango, México. Ciencia UANL, julio-septiembre VIII (003) Universidad Autónoma de Nuevo León, Monterrey, México pp. 362-369.
- Durán D. A., Cisneros C. A. E. y Vargas V. A. 2006. Bioestadística. Segunda edición, Universidad Nacional Autónoma de México, Facultad de Estudios Superiores Iztacala, México, 260p.
- García E. 1988. Modificaciones al sistema de clasificación climática de Köppen, México, Offset Larios, 217 p.
- Galindo F. G. y Martínez G. 2003. El manejo de los hongos ectomicorrizógenos en el laboratorio *In.* Avances en el estudio de la ectomicorriza en el estado de Tlaxcala Universidad Autónoma de Tlaxcala, Fundación PRODUCE Tlaxcala, SIZA-CONACYT, Tlaxcala, Tlaxcala, México, pp 42-55.

- Garibay-Orijel R., Martínez M. y Cifuentes J. 2009. Disponibilidad de esporomas de hongos comestibles en los bosques de pino-encino de Ixtlán de Juárez, Oaxaca, Revista Mexicana de Biodiversidad 80: 521-534.
- González D. V. 2003. Los Productos Naturales No Maderables (PNNM): Estado del arte de la investigación y otros aspectos. Biocomercio Sostenible, Instituto de Investigación de Recursos Biológicos "Alexander von Humboldt". Bogotá, Colombia. 77p.
- Hawksworth D. L., 1991 The fungal dimension of biodiversity: magnitude, significance and conservation. Micol. Res. 95: 641-655
- Herrera T. y Ulloa M. 1990, El reino de los hongos, Micología Básica y aplicada. UNAM. F.C.E. México, D. F. México. Pp. 443-469.
- Instituto Nacional de Estadística Geografía e Informática. 2009. Prontuario de información geográfica municipal de los Estados Unidos Mexicanos Tlaxco, Tlaxcala Clave geoestadística 29034.
- Instituto Nacional de Investigaciones Forestales, Agrícolas y Pecuarias (INIFAP). 2007. Reporte anual de investigación e Innovación Tecnológica. INIFAP, SAGARPA. Hongos silvestres comestibles, Ecuación para estimar la producción de hongos silvestres comestibles a partir de variables dasométricas. Primera edición. 2008 México, D. F. México. pp. 99-100.
- Neda H. Matzutake y otros hongos. 1994. Ecosistemas y producción en Japón. JICA. 32p.
- Manzola C. J. M. 1995. El aprovechamiento de los hongos silvestres. *In*: Memorias de la Reunión Nacional de Productos y Recolectores de Hongos, SEDESOL. México, D.F. México.

- Martínez de Aragón J., Bonet J., Fischer C., R. y Colinas C. 2007. Productivity of ectomycorrhizal and selected edible saprotrophic fungi in pine forests of the pre-Pyrenees mountains, Spain: Predictive equations for forest management. Mycological Resources. Vol. 252 (1-3): 239-256.
- Martínez de Aragón J., Enriques R. y Colinas C. 2008. Los recursos micológicos en espacios protegidos: caso del "PNIN" de Poblet, Center Tecnologic Forestal de Catalunya.5º Congreso Forestal Español, Montes y sociedad: Saber qué hacer. Del 21 al 25 septiembre 2009. Centro Municipal de Congresos y Exposiciones Ávila. 231p.
- Martínez A. B. y Moreno Z. C. 2006. Los hongos comestibles silvestres de Santa Catarina del Monte, Estado de México, Revista Chapingo, Serie ciencias forestales y del ambiente, julio-diciembre. 12(002): 125-131.
- Martínez P. F. 2008. Producción de carpóforos de macromicetes epigeos en masas ordenadas de *Pinus sylvestris* L, Tesis Doctoral, Departamento de Silvopascicultura, Escuela Técnica Superior de Ingenieros de Montes, Universidad Politécnica de Madrid, España. 291p.
- Montoya A. 2005. Aprovechamiento de los hongos comestibles en el Volcán la Malinche, Tlaxcala, Tesis de Doctorado en Ciencias. Facultad de Ciencias, UNAM, México, D.F. México. 154p.
- Pilz D., Smith J., Amaranthus M. P., Alexander S., Molina R. y Luoma D., 1999. Managing the commercial harvest of the American matsutake and timber in the southern Oregon Cascade Range. J. For. 97 (2): pp8–15.
- Rzedowski J. 2006. Vegetación de México. 1a. Edición digital, Comisión Nacional para el Conocimiento y Uso de la Biodiversidad. México. Consultado en http://www.biodiversidad.gob.mx/publicaciones/librosDig/pdf/VegetacionMxC17.pdf (29 de mayo del 2011).

- Secretaría de Agricultura y Recursos Hidráulicos (SARH). 1994. Inventario Nacional Forestal. Estado de Tlaxcala. Subsecretaria Forestal y de la Fauna Silvestre. México, D.F. México. 81p.
- Soto R. E., Galván H. A. B. y Fernández I. C. 2007. Los hongos comestibles silvestres: Una alternativa para el desarrollo regional. Instituto Nacional de Ecología, México, http://www2.ine.gob.mx/publicaciones/gacetas/154/hongos.html (3 de septiembre del 2010).
- Tapia-Tapia E. C. y Reyes-Chilpa R. 2008. Productos forestales no maderables en México: Aspectos económicos para el desarrollo sustentable. Madera y Bosques [en línea] 2008, vol. 14. Disponible en Internet: http://redalyc.uaemex.mx/src/inicio/ArtPdfRed.jsp?iCve=61712189005. ISSN 1405-0471. (12 de octubre del 2010).
- Velasco B. E., Zamora-Martínez M. C., Nieto de Pascual P., C., Martínez-Valdez, J. I. y Montoya A. 2010(a). Modelos predictivos de la producción de hongos silvestres comestibles en bosques de coníferas. Rev. Mex. Cienc. Forest. 1(1): 16p.
- Velasco B. E., Zamora-Martínez M. C., Espinoza P. H., Sampayo B. C., y Moreno S. F., 2010(b), Modelos Predictivos Para la Producción de Productos Forestales no Maderables, Agaves Mezacaleros, Instituto Nacional de Investigaciones Forestales, Agrícolas y Pecuarias CENID-COMEF, manual técnico núm. 3 60p.
- Villareal L. y Guzmán. 1985. Producción de los hongos comestibles silvestres en los Bosques de México, (parte I). Rev. Mex. Mic. 1: 51-90.
- Zamora-Martínez M. C. 1999. Hongos Comestibles en México. *In*: Memorias del Ciclo de Conferencias "La Investigación y Educación Forestal en México 6 de abril al 29 de junio de 1999. SEMARNAP. México D.F. México pp. 87-104.

- Zamora-Martínez M. C., Alvarado L. y J.M Domínguez G, 2000 Hongos comestibles de Tlaxcala parte I INIFAP, / Fundación Produce Tlaxcala, A. C., Tlaxcala, folleto técnico No. 21. 20p.
- Zamora-Martínez M. C. y G. Alvarado L. 2003. Producción de hongos silvestres comestibles en Nanacamilpa, Tlaxcala, *In:* memorias del VIII Congreso Nacional de Micología. Universidad Autónoma del estado de México. Soc. Mex. Micol. Toluca, Edo de Mex., México, p 35.
- Zamora-Martínez M.C., Montoya A., Nieto de Pascual C. P., Kong A, Calderón P., Méndez E. R. y Maya S. 2005. Producción de hongos silvestres comestibles en bosques templados de Tlaxcala (ciclo 2004). *In:* Memorias del VII Congreso Mexicano de Recursos Forestales. UACh. Sociedad Mexicana de Recursos Forestales, A. C. Chihuahua, Chih. México, pp. 248-249.
- Zamora-Martínez M. C., Velasco B., E., López V., E. L. I., Islas G., F. y Quero R. 2006. Distribución actual y potencial de 20 especies de hongos silvestres comestibles en Oaxaca, Memoria de Resúmenes de la Reunión Nacional de Investigación Forestal, INIFAP.
- Zamora-Martínez M. C., A. Montoya, Nieto de Pascual P. C., Kong A., Gonzales H. A. y J. Martinez-Valdes I. 2007. Hongos silvestres comestibles de Tlaxcala II. INIFAP/ CENID-COMEF/ Universidad Autónoma de Tlaxcala, México, D.F. México. Libro Técnico No. 3 125p.
- Zamora-Martínez M. C. 2008. Los Hongos Silvestres Comestibles. Tlaxcala sus recursos forestales. Conservación, Aprovechamiento y Bases para su Manejo Sustentable. Libro Técnico Núm. 4 CENID-COMEF, Mexico, pp. 151-168.
- Zamora-Martínez M. C y Velazco B. E. 2008. Ecuación para estimar la producción de hongos silvestres comestibles a partir de variables dasométricas. *In:* Reporte anual

de Investigación tecnológica.2007.SAGARPA. INIFAP. MEXICO, D.F. México, pp. 99-100.

Zamora-Martínez M. C, Velazco B. E., González H. A., Nieto de Pascual P. C., Moreno S. F., Romero S. M. E. y Flores G. A. 2009. Modelos Predictivos para la Producción de Productos Forestales No Maderables Hongos, CENID-COMEF, INIFAP. México, D.F. México, Manual Técnico núm. 1 60p.

Anexo 1

Datos Fúngicos

Obs	Prediooo	Unidamue	claveesp	NusporF1	pesofres1	NusporF2	pesofres2	NusporF3	pesofres3
1	chaparap	1c	russcyan	1	20	0	0	0	0
2	chaparap	1c	rusbrevi	3	90	0	0	0	0
3	chaparap	1c	russalut	1	15	0	0	0	0
4	chaparap	1c	lacclaca	0	0	0	0	1	1
5	chaparap	1c	triceque	1	12	2	15	0	0
6	chaparap	2c	laccamet	7	10	0	0	0	0
7	chaparap	2c	lacclaca	0	0	1	5	2	2
8	chaparap	2c	russalut	4	10	0	0	0	0
9	chaparap	2c	colldryo	2	4	0	0	0	0
10	chaparap	2c	triceque	1	13	0	0	0	0
11	chaparap	2c	russcyan	2	11	0	0	0	0
12	chaparap	2c	hygroch	1	10	0	0	0	0
13	chaparap	2c	ramaestr	1	200	0	0	0	0
14	chaparap	3c	lacclaca	1	15	0	0	0	0
15	chaparap	3c	rusbrevi	0	0	2	15	0	0
16	chaparap	3c	amanrube	0	0	2	12	0	0
17	chaparap	3c	hygroru	0	0	0	0	1	15
18	chaparap	3c	lacclaca	0	0	1	5	0	0
19	chaparap	3c	triceque	2	10	0	0	0	0
20	chaparap	3c	clavcinn	5	5	0	0	0	0
21	chaparap	3c	russalut	1	15	0	0	0	0
22	chaparap	4c	rusulasp	0	0	0	0	1	10
23	chaparap	4c	canthasp	0	0	0	0	1	5
24	chaparap	4c	colldryo	1	1	0	0	0	0
25	chaparap	5c	hygroru	1	8	0	0	1	15
26	chaparap	5c	colldryo	0	0	2	3	0	0
27	chaparap	5c	russalut	1	10	0	0	0	0
28	chaparap	6c	ellbcris	3	40	0	0	0	0
29	chaparap	6c	clitgibb	5	25	4	15	0	0

30	chaparap	6c	hygroch	0	0	4	26	0	0
31	chaparap	6c	lactarsp	1	10	0	0	0	0
32	chaparap	6c	suilgran	1	25	0	0	0	0
33	chaparap	6c	agaricsp	0	0	0	0	1	20
34	chaparap	7c	rusulasp	0	0	0	0	0	0
35	chaparap	8c	laccamet	0	0	4	12	0	0
36	chaparap	8c	rusbrevi	1	100	0	0	0	0
37	chaparap	9c	ramaestr	1	10	0	0	0	0
38	chaparap	9c	agaafsi	1	20	0	0	0	0
39	chaparap	9c	clavcinn	2	5	0	0	0	0
40	Acopinal	1a	herbfast	1	1	0	0	0	0
41	Acopinal	2a	lactarsp	0	0	0	0	2	3
42	Acopinal	2a	colibisp	1	1	0	0	0	0
43	Acopinal	2a	suilgran	6	50	0	0	0	0
44	Acopinal	2a	ellbcris	1	3	0	0	0	0
45	Acopinal	2a	clavcinn	7	10	0	0	0	0
46	Acopinal	3a	herbfast	2	2	0	0	0	0
47	Acopinal	3a	laccamet	4	3	0	0	0	0
48	Acopinal	3a	hygroch	4	4	0	0	0	0
49	Acopinal	3a	ellbcris	25	20	0	0	0	0
50	Acopinal	3a	suilgran	1	1	0	0	0	0
51	Acopinal	4a	ellbcris	6	20	0	0	0	0
52	Acopinal	4a	hygroru	0	0	0	0	1	10
53	Acopinal	4a	russalut	3	15	0	0	0	0
54	Acopinal	5a	hygroch	2	1	0	0	0	0
55	Acopinal	5a	suilgran	1	10	0	0	0	0
56	Acopinal	6a	hygroch	3	3	0	0	0	0
57	Acopinal	6a	suilgran	2	3	0	0	0	0
58	Acopinal	6a	clitgibb	1	1	0	0	0	0
59	Acopinal	7a	suilgran	3	15	0	0	0	0

60	Acopinal	7a	herbfast	2	3	0	0	0	0
61	Acopinal	7a	russcyan	1	10	0	0	0	0
62	Acopinal	8a	colldryo	2	1	0	0	0	0
63	Acopinal	8a	canthasp	4	10	0	0	0	0
64	Acopinal	8a	suilgran	0	0	0	0	1	10
65	Acopinal	8a	hypolact	0	0	0	0	1	4
66	Acopinal	8a	lyophysp	5	30	0	0	0	0
67	Acopinal	9a	rusulasp	0	0	0	0	0	0

Validación de una ecuación para predecir la producción de esporomas silvestres comestibles en bosques de
Pinus spp en Tlaxco, Tlaxcala.

Anexo 2

Datos de Variables dasometricas

Ob	Predioo	Unidam	coorde	coorde	altitud	pendie	numarb	clavees	diamno	alttot	diamco	diamco	Diamco	Areaco
S	. 0	ue	nx	ny	S	nt	ol	<u>р</u>	m	al	p1	p2	pa	pa
1	chapar ap	1c	589482	217642 4	2924	9	1	pinnrud i	41.50	28	3.60	0.80	2.200	3.8013
2	chapar ap	1c	589482	217642	2924	9	2	pinnrud i	52.50	31	6.00	2.10	4.050	12.8825
3	chapar ap	1c	589482	217642 4	2924	9	3	pinnrud i	62.80	32	6.55	3.77	5.160	20.9117
4	chapar ap	1c	589482	217642 4	2924	9	4	pinnrud i	56.50	34	8.00	1.90	4.950	19.2443
5	chapar ap	1c	589482	217642 4	2924	9	5	pinnrud i	35.00	33	3.10	0.70	1.900	2.8353
6	chapar ap	1c	589482	217642 4	2924	9	6	pinnrud i	56.00	33	6.77	1.90	4.335	14.7594
7	chapar ap	1c	589482	217642	2924	9	7	pinnrud i	59.00	32	5.32	2.80	4.060	12.9462
8	chapar ap	1c	589482	217642 4	2924	9	8	pinnrud i	42.00	33	5.73	2.90	4.315	14.6235
9	chapar ap	1c	589482	217642 4	2924	9	9	pinnrud i	58.50	30	6.80	3.20	5.000	19.6350
10	chapar ap	1c	589482	217642 4	2924	9	10	pinnrud i	45.80	30	6.82	1.60	4.210	13.9205
11	chapar ap	1c	589482	217642	2924	9	11	pinnrud i	54.00	32	3.60	1.76	2.680	5.6411
12	chapar ap	1c	589482	217642	2924	9	12	pinnrud i	38.70	27	6.00	1.39	3.695	10.7231
13	chapar ap	1c	589482	217642 4	2924	9	13	pinnrud i	53.30	30	8.75	0.80	4.775	17.9076
14	chapar ap	1c	589482	217642 4	2924	9	14	pinnrud i	34.70	29	1.00	0.70	0.850	0.5675
15	chapar ap	1c	589482	217642 4	2924	9	15	pinnrud i	59.00	35	8.60	3.00	5.800	26.4209
16	chapar ap	1c	589482	217642 4	2924	9	16	pinnrud i	48.20	35	5.98	1.00	3.490	9.5663
17	chapar ap	1c	589482	217642 4	2924	9	17	pinnrud i	34.30	30	4.23	1.00	2.615	5.3707
18	chapar ap	1c	589482	217642 4	2924	9	18	pinnrud i	27.00	25	1.60	0.30	0.950	0.7088
19	chapar	1c	589482	217642	2924	9	19	pinnrud	50.00	30	6.78	2.60	4.690	17.2757

	ар			4				i						
20	chapar ap	2c	589481	217632 5	2925	12	1	pinnrud i	50.50	31	5.90	1.00	3.450	9.3482
21	chapar ap	2c	589481	217632 5	2925	12	2	pinnrud i	46.80	31	4.31	1.57	2.940	6.7887
22	chapar ap	2c	589481	217632 5	2925	12	3	pinnrud i	38.00	32	3.96	1.00	2.480	4.8305
23	chapar ap	2c	589481	217632 5	2925	12	4	pinnrud i	72.50	37	7.13	2.10	4.615	16.7276
24	chapar ap	2c	589481	217632 5	2925	12	5	pinnrud i	72.00	36	8.42	2.10	5.260	21.7301
25	chapar ap	2c	589481	217632 5	2925	12	6	pinnpat u	17.30	10	2.00	0.50	1.250	1.2272
26	chapar ap	2c	589481	217632 5	2925	12	7	pinnpat u	16.00	11	2.10	0.55	1.325	1.3789
27	chapar ap	2c	589481	217632 5	2925	12	8	pinnrud i	57.00	30	5.90	1.90	3.900	11.9459
28	chapar ap	2c	589481	217632 5	2925	12	9	pinnrud i	33.00	29	3.00	0.90	1.950	2.9865
29	chapar ap	2c	589481	217632 5	2925	12	10	pinnrud i	36.50	30	4.20	1.20	2.700	5.7256
30	chapar ap	2c	589481	217632 5	2925	12	11	pinnpat u	11.80	11	1.00	0.50	0.750	0.4418
31	chapar ap	2c	589481	217632 5	2925	12	12	pinnpat u	12.40	11	2.10	1.00	1.550	1.8869
32	chapar ap	2c	589481	217632 5	2925	12	13	pinnpat u	10.00	13	1.90	0.82	1.360	1.4527
33	chapar ap	2c	589481	217632 5	2925	12	14	pinnrud i	48.00	36	5.43	3.10	4.265	14.2866
34	chapar ap	2c	589481	217632 5	2925	12	15	pinnrud i	46.50	31	5.00	1.40	3.200	8.0425
35	chapar ap	2c	589481	217632 5	2925	12	16	pinnrud i	40.30	32	5.55	1.58	3.565	9.9818
36	chapar ap	3c	589486	217623 3	2924	19	1	pinnrud i	49.00	26	3.96	1.69	2.825	6.2680
37	chapar ap	3c	589486	217623 3	2924	19	2	pinnrud i	34.50	30	6.40	1.60	4.000	12.5664
38	chapar ap	3c	589486	217623 3	2924	19	3	pinnrud i	32.50	32	2.40	1.00	1.700	2.2698

39	chapar ap	3c	589486	217623 3	2924	19	4	pinnrud i	56.80	33	4.93	1.40	3.165	7.8675
40	chapar ap	3c	589486	217623 3	2924	19	5	pinnrud i	30.70	31	3.10	1.40	2.250	3.9761
41	chapar ap	3c	589486	217623 3	2924	19	6	pinnrud i	32.50	32	8.70	1.65	5.175	21.0335
42	chapar ap	3c	589486	217623 3	2924	19	7	pinnrud i	42.80	35	5.14	3.00	4.070	13.0101
43	chapar ap	3c	589486	217623 3	2924	19	8	pinnrud i	30.00	28	3.00	1.00	2.000	3.1416
44	chapar ap	3c	589486	217623 3	2924	19	9	pinnrud i	57.40	34	6.80	3.90	5.350	22.4801
45	chapar ap	3c	589486	217623 3	2924	19	10	pinnrud i	39.00	35	3.10	1.70	2.400	4.5239
46	chapar ap	3c	589486	217623 3	2924	19	11	pinnrud i	68.40	34	7.40	2.20	4.800	18.0956
47	chapar ap	3c	589486	217623 3	2924	19	12	pinnrud i	38.00	33	4.42	1.20	2.810	6.2016
48	chapar ap	3c	589486	217623 3	2924	19	13	pinnrud i	26.30	29	3.20	1.00	2.100	3.4636
49	chapar ap	3c	589486	217623 3	2924	19	14	pinnpat u	11.30	11	1.20	0.90	1.050	0.8659
50	chapar ap	3c	589486	217623 3	2924	19	15	pinnrud i	56.50	30	9.00	2.70	5.850	26.8784
51	chapar ap	3c	589486	217623 3	2924	19	16	pinnrud i	32.80	29	7.10	3.42	5.260	21.7301
52	chapar ap	3c	589486	217623 3	2924	19	17	pinnrud i	35.90	29	5.44	1.64	3.540	9.8423
53	chapar ap	3c	589486	217623 3	2924	19	18	pinnrud i	44.20	31	4.16	0.80	2.480	4.8305
54	chapar ap	3c	589486	217623 3	2924	19	19	pinnrud i	47.30	31	4.50	1.30	2.900	6.6052
55	chapar ap	3c	589486	217623 3	2924	19	20	pinnpat u	12.00	12	2.00	0.60	1.300	1.3273
56	chapar ap	3c	589486	217623	2924	19	21	pinnpat u	13.20	11	1.75	0.75	1.250	1.2272
57	chapar ap	4c	589478	217612 4	2931	20	1	pinnrud i	45.20	24	6.13	1.10	3.615	10.2638
58	chapar	4c	589478	217612	2931	20	2	pinnrud	46.00	26	7.53	1.50	4.515	16.0106

	ар			4				i						
59	chapar ap	4c	589478	217612 4	2931	20	3	pinnrud i	45.90	29	7.10	2.76	4.930	19.0891
60	chapar ap	4c	589478	217612 4	2931	20	4	pinnrud i	65.20	31	7.00	2.50	4.750	17.7206
61	chapar ap	4c	589478	217612 4	2931	20	5	pinnrud i	64.70	28	8.60	2.90	5.750	25.9673
62	chapar ap	4c	589478	217612 4	2931	20	6	pinnrud i	59.90	28	6.60	2.70	4.650	16.9823
63	chapar ap	4c	589478	217612 4	2931	20	7	pinnrud i	37.00	27	4.70	1.30	3.000	7.0686
64	chapar ap	4c	589478	217612 4	2931	20	8	pinnrud i	42.50	20	13.40	2.50	7.950	49.6392
65	chapar ap	4c	589478	217612 4	2931	20	9	pinnrud i	58.70	24	11.30	4.25	7.775	47.4779
66	chapar ap	4c	589478	217612 4	2931	20	10	pinnrud i	36.00	20	9.90	1.80	5.850	26.8784
67	chapar ap	4c	589478	217612 4	2931	20	11	pinnrud i	36.00	25	8.60	1.90	5.250	21.6476
68	chapar ap	5c	589380	217612 7	2902	8	1	pinnrud i	62.50	21	11.80	4.50	8.150	52.1682
69	chapar ap	5c	589380	217612 7	2902	8	2	pinnrud i	47.00	22	7.00	1.50	4.250	14.1863
70	chapar ap	5c	589380	217612 7	2902	8	3	pinnrud i	11.30	5	2.80	0.95	1.875	2.7612
71	chapar ap	5c	589380	217612 7	2902	8	4	pinnrud i	45.50	23	10.25	1.50	5.875	27.1086
72	chapar ap	5c	589380	217612 7	2902	8	5	pinnrud i	43.50	23	6.23	1.10	3.665	10.5497
73	chapar ap	5c	589380	217612 7	2902	8	6	pinnpat u	18.00	7	4.98	0.74	2.860	6.4243
74	chapar ap	5c	589380	217612 7	2902	8	7	pinnrud i	45.00	25	7.00	3.90	5.450	23.3283
75	chapar ap	5c	589380	217612 7	2902	8	8	pinnpat u	11.40	6	3.80	1.20	2.500	4.9088
76	chapar ap	5c	589380	217612 7	2902	8	9	pinnpat u	19.40	8	3.80	2.50	3.150	7.7931
77	chapar ap	5c	589380	217612 7	2902	8	10	pinnpat u	13.80	7	4.70	2.70	3.700	10.7521

78	chapar ap	5c	589380	217612 7	2902	8	11	pinnpat u	14.20	7	2.72	1.20	1.960	3.0172
79	chapar ap	5c	589380	217612 7	2902	8	12	pinnrud i	24.50	26	10.70	3.76	7.230	41.0551
80	chapar ap	5c	589380	217612 7	2902	8	13	pinnrud i	57.50	27	12.40	1.14	6.770	35.9972
81	chapar ap	5c	589380	217612 7	2902	8	14	pinnpat u	13.80	8	4.20	0.92	2.560	5.1472
82	chapar ap	5c	589380	217612 7	2902	8	15	pinnrud i	51.00	26	10.00	6.60	8.300	54.1062
83	chapar ap	5c	589380	217612 7	2902	8	16	pinnpat u	13.00	7	3.71	1.00	2.355	4.3558
84	chapar ap	5c	589380	217612 7	2902	8	17	pinnrud i	58.00	25	8.10	1.70	4.900	18.8575
85	chapar ap	5c	589380	217612 7	2902	8	18	pinnrud i	44.30	26	6.86	2.45	4.655	17.0189
86	chapar ap	5c	589380	217612 7	2902	8	19	pinnrud i	39.30	27	2.40	1.80	2.100	3.4636
87	chapar ap	5c	589380	217612 7	2902	8	20	pinnrud i	13.80	9	1.98	0.85	1.415	1.5725
88	chapar ap	5c	589380	217612 7	2902	8	21	pinnps eu	39.00	31	5.50	4.32	4.910	18.9345
89	chapar ap	6c	589372	217624 1	2932	10	1	pinnteo c	14.80	13	2.75	0.90	1.825	2.6159
90	chapar ap	6c	589372	217624 1	2932	10	2	pinnteo c	12.50	13	2.80	1.60	2.200	3.8013
91	chapar ap	6c	589372	217624 1	2932	10	3	pinnpat u	15.20	7	3.60	1.68	2.640	5.4739
92	chapar ap	6c	589372	217624 1	2932	10	4	pinnrud i	57.00	26	12.60	1.00	6.800	36.3169
93	chapar ap	6c	589372	217624 1	2932	10	5	pinnteo c	11.00	7	3.93	0.83	2.380	4.4488
94	chapar ap	6c	589372	217624 1	2932	10	6	pinnteo c	10.70	8	3.90	1.75	2.825	6.2680
95	chapar ap	6c	589372	217624 1	2932	10	7	pinnteo c	18.50	9	4.22	2.56	3.390	9.0259
96	chapar ap	6c	589372	217624	2932	10	8	pinnteo c	13.40	8	4.25	1.18	2.715	5.7894
97	chapar	6c	589372	217624	2932	10	9	pinnteo	11.00	10	3.24	1.80	2.520	4.9876

	ар			1				С						
98	chapar ap	6c	589372	217624 1	2932	10	10	pinnteo c	12.80	9	3.90	1.30	2.600	5.3093
99	chapar ap	6c	589372	217624 1	2932	10	11	pinnteo c	10.30	11	4.15	2.37	3.260	8.3469
10 0	chapar ap	6c	589372	217624 1	2932	10	12	pinnrud i	51.60	27	8.80	1.30	5.050	20.0297
10 1	chapar ap	6c	589372	217624 1	2932	10	13	pinnteo c	38.80	27	9.40	3.49	6.445	32.6240
10 2	chapar ap	6c	589372	217624 1	2932	10	14	pinnpat u	10.00	7	6.20	1.40	3.800	11.3412
10 3	chapar ap	6c	589372	217624 1	2932	10	15	pinnteo c	15.00	9	4.10	2.77	3.435	9.2671
10 4	chapar ap	6c	589372	217624 1	2932	10	16	pinnteo c	11.40	11	3.80	2.13	2.965	6.9046
10 5	chapar ap	6c	589372	217624 1	2932	10	17	pinnteo c	10.60	11	4.20	1.66	2.930	6.7426
10 6	chapar ap	6c	589372	217624 1	2932	10	18	pinnrud i	45.30	24	7.84	5.46	6.650	34.7324
10 7	chapar ap	6c	589372	217624 1	2932	10	19	pinnpat u	13.20	7	3.34	0.78	2.060	3.3329
10 8	chapar ap	6c	589372	217624 1	2932	10	20	pinnpat u	12.90	7	2.12	1.00	1.560	1.9113
10 9	chapar ap	6c	589372	217624 1	2932	10	21	pinnpat u	15.70	11	4.62	2.30	3.460	9.4025
11 0	chapar ap	6c	589372	217624 1	2932	10	22	pinnrud i	36.00	23	5.20	1.64	3.420	9.1864
11 1	chapar ap	6c	589372	217624 1	2932	10	23	pinnteo c	42.30	25	8.00	3.68	5.840	26.7865
11 2	chapar ap	6c	589372	217624 1	2932	10	24	pinnrud i	53.50	26	9.39	2.00	5.695	25.4729
11 3	chapar ap	6c	589372	217624 1	2932	10	25	pinnrud i	44.40	28	7.30	5.30	6.300	31.1725
11 4	chapar ap	6c	589372	217624 1	2932	10	26	pinnrud i	36.00	28	3.90	1.56	2.730	5.8535
11 5	chapar ap	6c	589372	217624 1	2932	10	27	pinnrud i	36.30	26	5.80	1.66	3.730	10.9272
11 6	chapar ap	6c	589372	217624 1	2932	10	28	pinnrud i	36.00	29	5.98	1.44	3.710	10.8103

11 7	chapar ap	6c	589372	217624	2932	10	29	pinnpat u	12.20	9	3.69	1.89	2.790	6.1136
11	chapar ap	6c	589372	217624	2932	10	30	pinnrud i	53.60	27	5.40	1.28	3.340	8.7616
11	chapar ap	6c	589372	217624	2932	10	31	pinnpat u	12.50	7	3.67	2.30	2.985	6.9981
12 0	chapar ap	6c	589372	217624 1	2932	10	32	pinnrud i	36.50	29	5.60	2.00	3.800	11.3412
12 1	chapar ap	6c	589372	217624 1	2932	10	33	pinnrud i	37.10	28	8.92	2.20	5.560	24.2795
12 2	chapar ap	6c	589372	217624 1	2932	10	34	pinnrud i	51.50	27	8.10	1.30	4.700	17.3495
12 3	chapar ap	6c	589372	217624 1	2932	10	35	pinnrud i	36.80	28	7.50	2.58	5.040	19.9504
12 4	chapar ap	6c	589372	217624 1	2932	10	36	pinnrud i	57.00	30	10.30	4.96	7.630	45.7236
12 5	chapar ap	6c	589372	217624 1	2932	10	37	pinnrud i	53.50	28	16.00	3.60	9.800	75.4298
12 6	chapar ap	6c	589372	217624 1	2932	10	38	pinnrud i	56.50	32	8.40	4.50	6.450	32.6746
12 7	chapar ap	7c	589581	217612 6	2940	10	1	pinnpat u	12.70	12	1.56	0.60	1.080	0.9161
12 8	chapar ap	7c	589581	217612 6	2940	10	2	pinnrud i	45.20	29	7.20	2.80	5.000	19.6350
12 9	chapar ap	7c	589581	217612 6	2940	10	3	pinnrud i	46.60	28	4.70	2.50	3.600	10.1788
13 0	chapar ap	7c	589581	217612 6	2940	10	4	pinnpat u	10.00	7	1.44	0.60	1.020	0.8171
13 1	chapar ap	7c	589581	217612 6	2940	10	5	pinnpat u	13.70	9	2.00	1.60	1.800	2.5447
13 2	chapar ap	7c	589581	217612 6	2940	10	6	pinnrud i	63.80	28	10.00	1.90	5.950	27.8051
13 3	chapar ap	7c	589581	217612 6	2940	10	7	pinnrud i	34.00	27	6.40	1.50	3.950	12.2542
13 4	chapar ap	7c	589581	217612 6	2940	10	8	pinnrud i	35.50	25	4.70	1.70	3.200	8.0425
13 5	chapar ap	7c	589581	217612 6	2940	10	9	pinnrud i	47.70	23	7.40	2.70	5.050	20.0297
13	chapar	7c	589581	217612	2940	10	10	pinnrud	58.30	24	1.70	5.20	3.450	9.3482

6	ар			6				li						
13	chapar	7c	589581	217612	2940	10	11	pinnrud	68.20	28	10.80	3.40	7.100	39.5920
7	ap ·			6				i						
13	chapar	7c	589581	217612	2940	10	12	pinnrud	54.20	29	6.80	2.30	4.550	16.2597
8	ар			6				i						
13	chapar	7c	589581	217612	2940	10	13	pinnrud	34.70	28	4.90	1.80	3.350	8.8142
9	ар			6				i						
14	chapar	7c	589581	217612	2940	10	14	pinnrud	67.60	29	6.40	2.80	4.600	16.6191
0	ар	_		6	00.10	4.0		i	40.50		2.22	o - o	4.0=0	4 00=0
14	chapar	7c	589581	217612	2940	10	15	pinnrud	10.50	8	2.00	0.50	1.250	1.2272
14	ap	7c	589581	6 217612	2940	10	16	l ninnrud	40.70	27	3.00	1.40	2.200	3.8013
2	chapar ap	70	209201	6	2940	10	10	pinnrud	40.70	21	3.00	1.40	2.200	3.6013
14	chapar	7c	589581	217612	2940	10	17	pinnrud	53.40	29	5.00	2.10	3.550	9.8980
3	ap	70	303301	6	2340	10	17	i piiiiiuu	33.40	23	3.00	2.10	5.550	3.0300
14	chapar	7c	589581	217612	2940	10	18	pinnrud	33.30	27	4.10	2.20	3.150	7.7931
4	ар			6				i						
14	chapar	7c	589581	217612	2940	10	19	pinnpat	12.70	11	3.80	1.40	2.600	5.3093
5	ap ·			6				u						
14	chapar	7c	589581	217612	2940	10	20	pinnrud	49.90	30	4.50	3.50	4.000	12.5664
6	ар			6				i						
14	chapar	7c	589581	217612	2940	10	21	pinnrud	55.70	30	7.22	2.60	4.910	18.9345
7	ар			6				i						
14	chapar	7c	589581	217612	2940	10	22	pinnrud	33.60	24	4.00	1.30	2.650	5.5155
8	ap	7.	500504	6	00.40	40	00	1	40.40	07	0.40	0.00	4.450	45.5500
14	chapar	7c	589581	217612	2940	10	23	pinnrud	43.10	27	8.10	0.80	4.450	15.5529
9 15	ap	7c	589581	6 217612	2940	10	24	pinnrud	52.80	26	7.85	4.10	5.975	28.0393
0	chapar ap	76	309301	6	2940	10	24	i piririud	32.00	20	7.00	4.10	5.975	20.0393
15	chapar	7c	589581	217612	2940	10	25	pinnrud	36.80	33	4.40	1.60	3.000	7.0686
1	ap	'	000001	6	2010		20	i	00.00	00	1. 10	1.00	0.000	7.0000
15	chapar	7c	589581	217612	2940	10	26	pinnpat	10.90	5	6.65	2.83	4.740	17.6461
2	ар	_		6				u					-	
15	chapar	7c	589581	217612	2940	10	27	pinnpat	10.50	5	3.99	3.10	3.545	9.8701
3	ap .			6				u						
15	chapar	8c	589678	217612	2935	12	1	pinnpat	14.50	11	2.50	1.50	2.000	3.1416
4	ар			5				u						
15	chapar	8c	589678	217612	2935	12	2	pinnpat	10.30	10	2.00	0.73	1.365	1.4634
5	ар			5				u						

15 6	chapar ap	8c	589678	217612 5	2935	12	3	pinnpat u	13.40	11	2.40	1.30	1.850	2.6880
15 7	chapar ap	8c	589678	217612 5	2935	12	4	pinnrud	44.00	29	4.10	2.70	3.400	9.0792
15 8	chapar	8c	589678	217612 5	2935	12	5	pinnrud	52.40	30	7.40	1.10	4.250	14.1863
15	ap chapar	8c	589678	217612 5	2935	12	6	pinnrud	61.50	33	7.00	2.20	4.600	16.6191
9 16 0	ap chapar	8c	589678	217612 5	2935	12	7	pinnpat u	12.50	9	3.00	1.80	2.400	4.5239
16	ap chapar ap	8c	589678	217612 5	2935	12	8	pinnrud	49.00	28	4.90	1.40	3.150	7.7931
16	chapar ap	8c	589678	217612 5	2935	12	9	pinnrud	43.00	28	4.80	1.80	3.300	8.5530
16	chapar ap	8c	589678	217612 5	2935	12	10	pinnpat u	10.80	8	2.70	1.00	1.850	2.6880
16 4	chapar ap	8c	589678	217612 5	2935	12	11	pinnpat u	14.90	10	1.80	0.60	1.200	1.1310
16	chapar ap	8c	589678	217612 5	2935	12	12	pinnpat u	14.30	11	2.10	1.20	1.650	2.1383
16	chapar ap	8c	589678	217612 5	2935	12	13	pinnpat u	16.00	12	2.50	0.50	1.500	1.7672
16 7	chapar ap	8c	589678	217612 5	2935	12	14	pinnrud i	38.50	30	5.60	1.80	3.700	10.7521
16	chapar ap	8c	589678	217612 5	2935	12	15	pinnrud	56.00	30	7.20	1.60	4.400	15.2053
16 9	chapar ap	8c	589678	217612 5	2935	12	16	pinnps eu	75.50	34	9.10	3.60	6.350	31.6693
17 0	chapar ap	8c	589678	217612 5	2935	12	17	pinnteo c	79.00	26	10.80	3.00	6.900	37.3929
17	chapar ap	8c	589678	217612 5	2935	12	18	pinnteo c	51.00	26	11.00	2.60	6.800	36.3169
17	chapar ap	8c	589678	217612 5	2935	12	19	pinnrud i	47.00	30	6.80	2.60	4.700	17.3495
17	chapar ap	8c	589678	217612 5	2935	12	20	pinnrud i	56.00	29	7.00	2.70	4.850	18.4746
17 4	chapar ap	8c	589678	217612 5	2935	12	21	pinnpat u	12.00	6	3.60	2.90	3.250	8.2958
17	chapar	8c	589678	217612	2935	12	22	pinnrud	41.50	27	5.90	2.75	4.325	14.6914

5	ар			5				i						
17	chapar	8c	589678	217612	2935	12	23	pinnrud	42.30	27	6.20	2.50	4.350	14.8617
6	ap .			5				i						
17	chapar	8c	589678	217612	2935	12	24	pinnrud	56.00	28	11.40	4.00	7.700	46.5664
7	ар			5				i						
17	chapar	9c	589581	217622	2928	12	1	pinnrud	88.70	30	8.20	1.40	4.800	18.0956
8	ар			6				i						
17	chapar	9c	589581	217622	2928	12	2	pinnpat	11.40	8	2.30	0.63	1.465	1.6856
9	ар		500504	6	0000	40		u · ·	40.00		0.00	4.00	4.050	0.4000
18	chapar	9c	589581	217622	2928	12	3	pinnpat	16.00	8	2.00	1.30	1.650	2.1383
18	ap chapar	9c	589581	6 217622	2928	12	4	U	15.70	8	2.50	0.67	1.585	1.9731
1	ap	90	209201	6	2920	12	4	pinnpat u	15.70	0	2.50	0.67	1.565	1.9731
18	chapar	9c	589581	217622	2928	12	5	pinnrud	52.70	30	6.95	0.90	3.925	12.0996
2	ap	30	303301	6	2320	12	0	i piiiiida	32.70	50	0.55	0.50	0.020	12.0000
18	chapar	9c	589581	217622	2928	12	6	pinnpat	10.20	8	2.20	0.88	1.540	1.8627
3	ар			6				u						
18	chapar	9c	589581	217622	2928	12	7	pinnpat	10.50	8	2.20	1.30	1.750	2.4053
4	ap			6				u						
18	chapar	9c	589581	217622	2928	12	8	pinnpat	10.90	8	2.40	0.70	1.550	1.8869
5	ар			6				u						
18	chapar	9c	589581	217622	2928	12	9	pinnrud	13.70	8	1.90	0.90	1.400	1.5394
6	ap			6				i						
18	chapar	9c	589581	217622	2928	12	10	pinnrud	66.30	33	3.50	1.20	2.350	4.3374
7	ap	0-	E00E04	6	0000	40	4.4	1	00.70	33	0.00	1.20	4.700	47.0405
18 8	chapar	9c	589581	217622 6	2928	12	11	pinnrud	69.70	33	8.20	1.20	4.700	17.3495
18	ap chapar	9c	589581	217622	2928	12	12	pinnrud	64.50	32	6.20	0.70	3.450	9.3482
9	ap	90	309301	6	2920	12	12	i piririuu	04.50	32	0.20	0.70	3.430	9.3462
19	chapar	9c	589581	217622	2928	12	13	pinnrud	68.70	34	8.38	2.70	5.540	24.1052
0	ap			6	2020		.0	i	00.70	0.	0.00	20	0.010	2002
19	chapar	9c	589581	217622	2928	12	14	pinnrud	33.60	30	1.73	0.40	1.065	0.8908
1	ар			6				i		·				
19	chapar	9c	589581	217622	2928	12	15	pinnpat	11.00	9	2.30	0.70	1.500	1.7672
2	ар			6				u						
19	chapar	9с	589581	217622	2928	12	16	pinnrud	51.70	24	6.50	1.00	3.750	11.0447
3	ар			6				i						
19	chapar	9c	589581	217622	2928	12	17	pinnpat	11.00	8	1.80	1.20	1.500	1.7672
4	ар			6				u						

19 5	chapar ap	9c	589581	217622 6	2928	12	18	pinnpat u	11.40	8	2.40	1.00	1.700	2.2698
19 6	chapar ap	9c	589581	217622 6	2928	12	19	pinnrud i	60.00	31	4.80	2.40	3.600	10.1788
19 7	chapar ap	9c	589581	217622 6	2928	12	20	pinnrud i	65.70	30	13.70	6.20	9.950	77.7566
19 8	chapar ap	9c	589581	217622 6	2928	12	21	pinnrud i	52.00	31	9.20	4.50	6.850	36.8529
19 9	chapar ap	9c	589581	217622 6	2928	12	22	pinnpat u	10.90	6	3.25	1.93	2.590	5.2685
20 0	chapar ap	9c	589581	217622 6	2928	12	23	pinnrud i	72.50	32	11.00	5.80	8.400	55.4178
20 1	chapar ap	9c	589581	217622 6	2928	12	24	pinnrud i	65.50	33	13.65	7.30	10.475	86.1785
20 2	chapar ap	9c	589581	217622 6	2928	12	25	pinnrud i	36.90	32	9.60	4.60	7.100	39.5920
20 3	Acopin al	1a	590373	217266 9	2931	16	1	pinnrud i	51.00	15	15.00	1.50	8.250	53.4563
20 4	Acopin al	1a	590373	217266 9	2931	16	2	pinnrud i	26.50	11	4.89	1.80	3.345	8.7879
20 5	Acopin al	1a	590373	217266 9	2931	16	3	pinnrud i	35.30	15	4.85	1.10	2.975	6.9513
20 6	Acopin al	1a	590373	217266 9	2931	16	4	pinnrud i	46.00	17	12.10	1.05	6.575	33.9533
20 7	Acopin al	1a	590373	217266 9	2931	16	5	pinnrud i	40.60	16	7.68	2.55	5.115	20.5486
20 8	Acopin al	1a	590373	217266 9	2931	16	6	pinnrud i	23.00	15	3.80	1.10	2.450	4.7144
20 9	Acopin al	1a	590373	217266 9	2931	16	7	pinnrud i	25.50	13	6.60	2.90	4.750	17.7206
21 0	Acopin al	1a	590373	217266 9	2931	16	8	pinnrud i	43.00	15	13.45	1.60	7.525	44.4738
21 1	Acopin al	1a	590373	217266 9	2931	16	9	pinnrud i	26.40	15	3.97	1.00	2.485	4.8500
21 2	Acopin al	1a	590373	217266 9	2931	16	10	pinnrud i	47.50	17	10.40	3.00	6.700	35.2566
21 3	Acopin al	1a	590373	217266 9	2931	16	11	pinnrud i	33.80	17	4.85	1.60	3.225	8.1687
21	Acopin	1a	590373	217266	2931	16	12	pinnrud	43.60	18	11.75	1.60	6.675	34.9940

21	4	al			9				i						
Acopin Section Secti	21	Acopin	1a	590373	217266	2931	16	13	pinnrud	60.00	19	12.15	4.60	8.375	55.0884
6 al			10	E00272	- 1	2024	16	1.1	ninnrud	F0 00	16	11.06	1 50	6.745	25 7240
7 al 21 Acopin 1a 590373 217266 2931 16 18 pinnrud 29.70 18 1.70 1.56 1.630 2.0867 21 Acopin 1a 590373 217266 2931 16 17 pinnrud 32.00 18 4.13 1.13 2.630 5.4325 22 Acopin 1a 590373 217266 2931 16 18 pinnrud 37.60 18 9.18 1.80 5.490 23.6720 22 Acopin 1a 590373 217266 2931 16 19 pinnrud 48.50 19 10.78 4.27 7.525 44.4738 1 al 9 10.78 4.27 7.525 44.4738 22 Acopin 1a 590373 217266 2931 16 20 pinnrud 12.08 11 1.45 0.80 1.125 0.9940 22 Acopin 1a 590373 217266 2931 16 21 pinnrud 28.20 6 4.56 1.30 2.930 6.7426 22 Acopin 1a 590373 217266 2931 16 22 pinnrud 28.20 6 4.56 1.30 2.930 6.7426 23 al 9 9 16 22 pinnrud 27.60 19 4.75 1.64 3.195 8.0174 4 al 9 9 16 23 pinnrud 30.70 17 6.30 2.27 4.285 14.4209 5 al 9 9 16 23 pinnrud 36.00 18 9.80 3.30 6.550 33.6956 22 Acopin 1a 590373 217266 2931 16 24 pinnrud 48.50 18 10.10 1.51 5.805 26.4664 6 al 1			la	590373		2931	16	14	pinnrua i	50.00	16	11.96	1.53	6.745	35.7318
21			1a	590373		2931	16	15	pinnrud	49.50	18	9.56	1.93	5.745	25.9221
8 al				500070		0004	40	4.0		00.70	4.0	4.70	4.50	4.000	0.0007
Acopin 1a 590373 217266 2931 16 17 pinnrud 32.00 18 4.13 1.13 2.630 5.4325 22 Acopin 1a 590373 217266 2931 16 18 pinnrud 37.60 18 9.18 1.80 5.490 23.6720 22 Acopin 1a 590373 217266 2931 16 19 pinnrud 48.50 19 10.78 4.27 7.525 44.4738 23 Acopin 1a 590373 217266 2931 16 20 pinnrud 12.08 11 1.45 0.80 1.125 0.9940 2 Acopin 1a 590373 217266 2931 16 21 pinnrud 28.20 6 4.56 1.30 2.930 6.7426 24 Acopin 1a 590373 217266 2931 16 22 pinnrud 27.60 19 4.75 1.64 3.195 8.0174 25 Acopin 1a 590373 217266 2931 16 22 pinnrud 27.60 19 4.75 1.64 3.195 8.0174 26 Acopin 1a 590373 217266 2931 16 23 pinnrud 30.70 17 6.30 2.27 4.285 14.4209 27 Acopin 1a 590373 217266 2931 16 23 pinnrud 30.70 17 6.30 2.27 4.285 14.4209 28 Acopin 1a 590373 217266 2931 16 24 pinnrud 36.00 18 9.80 3.30 6.550 33.6956 29 Acopin 1a 590373 217266 2931 16 25 pinnrud 36.00 18 9.80 3.30 6.550 33.6956 20 Acopin 2a 590297 217266 2929 18 1 pinnrud 35.90 20 5.65 1.00 3.325 8.6831 21 Acopin 2a 590297 217266 2929 18 2 pinnrud 35.90 20 5.65 1.00 3.325 8.6831 23 Acopin 2a 590297 217266 2929 18 3 pinnrud 46.30 19 8.20 1.80 5.000 19.6350 24 Acopin 2a 590297 217266 2929 18 5 pinnrud 46.30 19 8.20 1.80 5.000 19.6350 24 Acopin 2a 590297 217266 2929 18 5 pinnrud 44.00 12 7.98 2.49 5.235 21.5241 25 Acopin 2a 590297 217266 2929 18 5 pinnrud 28.00 17 3.35 1.40 2.375 4.4301 25 Acopin 2a 590297 217266 2929 18 5 pinnrud 28.00 17 3.35 1.40 2.375 4.4301 26 Acopin 2a 590297 217266 2929 18 5 pinnrud 28.00			1a	590373		2931	16	16	pinnrud i	29.70	18	1.70	1.56	1.630	2.0867
Acopin 1a S90373 217266 2931 16 18 pinnrud 37.60 18 9.18 1.80 5.490 23.6720	21	Acopin	1a	590373	217266	2931	16	17	pinnrud	32.00	18	4.13	1.13	2.630	5.4325
O al									İ						
Acopin 1a 590373 217266 2931 16 19 pinnrud 48.50 19 10.78 4.27 7.525 44.4738 22 Acopin 1a 590373 217266 2931 16 20 pinnrud 12.08 11 1.45 0.80 1.125 0.9940 2 Acopin 1a 590373 217266 2931 16 21 pinnrud 28.20 6 4.56 1.30 2.930 6.7426 3 Acopin 1a 590373 217266 2931 16 22 pinnrud 27.60 19 4.75 1.64 3.195 8.0174 4 Al 22 Acopin 1a 590373 217266 2931 16 23 pinnrud 27.60 19 4.75 1.64 3.195 8.0174 4 Al 22 Acopin 1a 590373 217266 2931 16 23 pinnrud 30.70 17 6.30 2.27 4.285 14.4209 5 Al 590373 217266 2931 16 24 pinnrud 48.50 18 10.10 1.51 5.805 26.4664 6 Al 9 9 9 18 1 pinnrud 36.00 18 9.80 3.30 6.550 33.6956 7 Al 9 1 1.94 2.37 7.155 40.2078 8 Acopin 2a 590297 217266 2929 18 2 pinnrud 35.90 20 5.65 1.00 3.325 8.6831 23 Acopin 2a 590297 217266 2929 18 3 pinnrud 39.50 18 6.26 1.00 3.630 10.3491 1 23 Acopin 2a 590297 217266 2929 18 5 pinnrud 39.50 18 6.26 1.00 3.630 10.3491 24 Acopin 2a 590297 217266 2929 18 5 pinnrud 39.50 18 6.26 1.00 3.630 10.3491 23 Acopin 2a 590297 217266 2929 18 5 pinnrud 44.00 12 7.98 2.49 5.235 21.5241 24 25 25 25 25 25 25 25			1a 	590373		2931	16	18	pinnrud i	37.60	18	9.18	1.80	5.490	23.6720
22 Acopin 1a 590373 217266 2931 16 20 pinnrud 12.08 11 1.45 0.80 1.125 0.9940 22 Acopin 3 3 3 3 3 3 3 3 3	22	Acopin	1a	590373	217266	2931	16	19	pinnrud	48.50	19	10.78	4.27	7.525	44.4738
2 al 9 i i 22 Acopin 3 al 1a 590373 217266 2931 16 21 pinnrud in pinnrud 28.20 6 4.56 1.30 2.930 6.7426 3 al 590373 217266 2931 16 22 pinnrud 27.60 19 4.75 1.64 3.195 8.0174 4 al 590373 217266 2931 16 23 pinnrud 30.70 17 6.30 2.27 4.285 14.4209 5 al 590373 217266 2931 16 24 pinnrud 48.50 18 10.10 1.51 5.805 26.4664 6 al 9 16 24 pinnrud 48.50 18 10.10 1.51 5.805 26.4664 6 al 1a 590373 217266 2931 16 25 pinnrud 36.00 18 9.80 3.30 6.550 33.6956 7 al 1a 590297 217266 2929 18 1 pin				500070		0004	40	00		40.00	4.4	4.45	0.00	4.405	0.0040
Acopin 1a 590373 217266 2931 16 21 pinnrud 28.20 6 4.56 1.30 2.930 6.7426			1a 	590373		2931	16	20	pinnrud	12.08	11	1.45	0.80	1.125	0.9940
3 al			1a	590373		2931	16	21	ninnrud	28 20	6	4 56	1 30	2 930	6 7426
4 al 9 i i 6 22 Acopin sl 1a 590373 217266 2931 16 23 pinnrud is 30.70 17 6.30 2.27 4.285 14.4209 14.4209 14.4209 14.4209 15 pinnrud is 48.50 18 10.10 1.51 5.805 26.4664 26.4664 24 pinnrud is 48.50 18 10.10 1.51 5.805 26.4664 26.4664 27 pinnrud is 36.00 18 9.80 3.30 6.550 33.6956 34.6956 34.6956 34.6956 34.6956 34.6956 34.6			l Id	000070		2501	10	21	i	20.20	Ü	4.00	1.00	2.000	0.7 420
22 Acopin al 1a 590373 217266 2931 16 23 pinnrud i 30.70 17 6.30 2.27 4.285 14.4209 22 Acopin al 1a 590373 217266 2931 16 24 pinnrud i 48.50 18 10.10 1.51 5.805 26.4664 6 al 9 1a 590373 217266 2931 16 25 pinnrud i 36.00 18 9.80 3.30 6.550 33.6956 22 Acopin al 2a 590297 217266 2929 18 1 pinnrud i 51.00 15 11.94 2.37 7.155 40.2078 22 Acopin al 2a 590297 217266 2929 18 2 pinnrud i 35.90 20 5.65 1.00 3.325 8.6831 23 Acopin al 2a 590297 217266 2929 18 3 pinnrud i 46.30 19		Acopin	1a	590373	217266	2931	16	22	pinnrud	27.60	19	4.75	1.64	3.195	8.0174
5 al 9 i i 1 1 590373 217266 2931 16 24 pinnrud i 48.50 18 10.10 1.51 5.805 26.4664 22 Acopin al 1a 590373 217266 2931 16 25 pinnrud i 36.00 18 9.80 3.30 6.550 33.6956 7 al 9 1 16 25 pinnrud i 36.00 18 9.80 3.30 6.550 33.6956 22 Acopin al 2a 590297 217266 2929 18 1 pinnrud i 51.00 15 11.94 2.37 7.155 40.2078 22 Acopin al 2a 590297 217266 2929 18 2 pinnrud i 35.90 20 5.65 1.00 3.325 8.6831 23 Acopin al 2a 590297 217266 2929 18 3 pinnrud i 46.30 19 8.20 1.80 5.000 19.6350 23 Acopin al 2a 590297									i						
22 Acopin fall 1a 590373 217266 2931 16 24 pinnrud fall 48.50 18 10.10 1.51 5.805 26.4664 22 Acopin fall 1a 590373 217266 2931 16 25 pinnrud fall 36.00 18 9.80 3.30 6.550 33.6956 7 al 2a 590297 217266 2929 18 1 pinnrud fall 51.00 15 11.94 2.37 7.155 40.2078 22 Acopin fall 2a 590297 217266 2929 18 2 pinnrud fall 35.90 20 5.65 1.00 3.325 8.6831 23 Acopin fall 2a 590297 217266 2929 18 3 pinnrud fall 46.30 19 8.20 1.80 5.000 19.6350 23 Acopin fall 2a 590297 217266 2929 18 4 pinnrud fall 39.50 18 <td></td> <td></td> <td>1a</td> <td>590373</td> <td></td> <td>2931</td> <td>16</td> <td>23</td> <td>pinnrud i</td> <td>30.70</td> <td>17</td> <td>6.30</td> <td>2.27</td> <td>4.285</td> <td>14.4209</td>			1a	590373		2931	16	23	pinnrud i	30.70	17	6.30	2.27	4.285	14.4209
6 al 9 i i 9 36.00 18 9.80 3.30 6.550 33.6956 7 al 22 Acopin al 2a 590297 217266 2929 18 1 pinnrud in p			1a	590373	-	2931	16	24	pinnrud	48.50	18	10.10	1.51	5.805	26.4664
7 al 9 i i 22 Acopin 8 al 22 Acopin 2a Acopin 9 al 23 Acopin 2a Acopin					9				i						
22 Acopin 8 al 2a 590297 217266 2929 18 1 pinnrud i 51.00 15 11.94 2.37 7.155 40.2078 22 Acopin 9 al 2a 590297 217266 2929 18 2 pinnrud i 35.90 20 5.65 1.00 3.325 8.6831 23 Acopin 2a 590297 217266 2929 18 3 pinnrud i 46.30 19 8.20 1.80 5.000 19.6350 23 Acopin 2a 590297 217266 2929 18 4 pinnrud 39.50 18 6.26 1.00 3.630 10.3491 23 Acopin 2a 590297 217266 2929 18 5 pinnrud 44.00 12 7.98 2.49 5.235 21.5241 23 Acopin 2a 590297 217266 2929 18 5 pinnrud 44.00 12 7.98 2.49 5.235 21.5241 23 Acopin 2a 590297 217266 2929 <td< td=""><td></td><td></td><td>1a</td><td>590373</td><td></td><td>2931</td><td>16</td><td>25</td><td>pinnrud</td><td>36.00</td><td>18</td><td>9.80</td><td>3.30</td><td>6.550</td><td>33.6956</td></td<>			1a	590373		2931	16	25	pinnrud	36.00	18	9.80	3.30	6.550	33.6956
8 al 1 1 i i 35.90 20 5.65 1.00 3.325 8.6831 22 Acopin al 2a 590297 217266 2929 18 3 pinnrud i 46.30 19 8.20 1.80 5.000 19.6350 23 Acopin al 2a 590297 217266 2929 18 4 pinnrud i 39.50 18 6.26 1.00 3.630 10.3491 1 al 1 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>i</td><td></td><td></td><td></td><td></td><td></td><td></td></td<>									i						
22 Acopin al 2a 590297 217266 2929 18 2 pinnrud i 35.90 20 5.65 1.00 3.325 8.6831 23 Acopin old al 2a 590297 217266 2929 18 3 pinnrud i 46.30 19 8.20 1.80 5.000 19.6350 23 Acopin old al 2a 590297 217266 2929 18 4 pinnrud old al 39.50 18 6.26 1.00 3.630 10.3491 1 al 1<			2a	590297	217266	2929	18	1	pinnrud i	51.00	15	11.94	2.37	7.155	40.2078
9 al 1 i i 46.30 19 8.20 1.80 5.000 19.6350 23 Acopin old al 2a 590297 217266 2929 18 4 pinnrud old al 39.50 18 6.26 1.00 3.630 10.3491 23 Acopin old al 2a 590297 217266 2929 18 5 pinnrud old al 44.00 12 7.98 2.49 5.235 21.5241 23 23 Acopin old al 2a 590297 217266 2929 18 5 pinnrud old al 44.00 12 7.98 2.49 5.235 21.5241 23 Acopin old al 2a 590297 217266 2929 18 6 pinnrud old al 28.00 17 3.35 1.40 2.375 4.4301			2a	590297	217266	2929	18	2	pinnrud	35.90	20	5.65	1.00	3.325	8.6831
0 al 1 i i 0 al 1 0 al 1 al 1 al 1 al 1 al 1 al 1 al					1				i						
23 Acopin 1 al 2a 590297 217266 2929 18 4 pinnrud i 39.50 18 6.26 1.00 3.630 10.3491 23 Acopin 2 al 590297 217266 2929 18 5 pinnrud 44.00 12 7.98 2.49 5.235 21.5241 23 Acopin 2a 590297 217266 2929 18 6 pinnrud 28.00 17 3.35 1.40 2.375 4.4301		Acopin	2a	590297	217266	2929	18	3	pinnrud	46.30	19	8.20	1.80	5.000	19.6350
1 al 1 i i	0				•				i						
23 Acopin 2a 590297 217266 2929 18 5 pinnrud 44.00 12 7.98 2.49 5.235 21.5241 23 Acopin 2a 590297 217266 2929 18 6 pinnrud 28.00 17 3.35 1.40 2.375 4.4301	l .		2a	590297		2929	18	4	pinnrud	39.50	18	6.26	1.00	3.630	10.3491
2 al 23 Acopin 2a 590297 217266 2929 2929 18 6 pinnrud 28.00 17 3.35 1.40 2.375 4.4301			0-	500007	•	0000	40	-	1	44.00	40	7.00	0.40	F 00F	04 5044
23 Acopin 2a 590297 217266 2929 18 6 pinnrud 28.00 17 3.35 1.40 2.375 4.4301	l .		2a	590297		2929	18	5	pinnrud	44.00	12	7.98	2.49	5.235	21.5241
			2a	590297	•	2929	18	6	pinnrud	28.00	17	3 35	1 40	2 375	4 4301
				300207		2020	.0	J	j	20.00		0.00	0	2.0.0	1.1001

23 4	Acopin al	2a	590297	217266 1	2929	18	7	pinnrud i	32.70	21	7.50	1.20	4.350	14.8617
23 5	Acopin al	2a	590297	217266 1	2929	18	8	pinnrud i	30.80	21	7.50	2.62	5.060	20.1091
23 6	Acopin al	2a	590297	217266 1	2929	18	9	pinnrud i	29.00	19	8.80	1.20	5.000	19.6350
23 7	Acopin al	2a	590297	217266 1	2929	18	10	pinnrud i	27.60	19	6.78	2.52	4.650	16.9823
23 8	Acopin al	2a	590297	217266 1	2929	18	11	pinnrud i	39.70	20	12.50	1.30	6.900	37.3929
23 9	Acopin al	2a	590297	217266 1	2929	18	12	pinnrud i	28.50	17	5.58	1.82	3.700	10.7521
24 0	Acopin al	2a	590297	217266 1	2929	18	13	pinnrud i	25.30	16	7.83	2.40	5.115	20.5486
24 1	Acopin al	2a	590297	217266 1	2929	18	14	pinnrud i	38.70	18	7.70	2.98	5.340	22.3962
24 2	Acopin al	2a	590297	217266 1	2929	18	15	pinnrud i	34.30	15	7.22	3.27	5.245	21.6064
24 3	Acopin al	2a	590297	217266 1	2929	18	16	pinnrud i	39.80	18	10.60	1.27	5.935	27.6651
24 4	Acopin al	2a	590297	217266 1	2929	18	17	pinnrud i	31.50	19	5.74	2.55	4.145	13.4940
24 5	Acopin al	3a	590421	217272 1	2949	16	1	pinnrud i	40.50	13	10.21	3.00	6.605	34.2639
24 6	Acopin al	3a	590421	217272 1	2949	16	2	pinnrud i	22.00	9	5.49	1.74	3.615	10.2638
24 7	Acopin al	3a	590421	217272 1	2949	16	3	pinnrud i	22.00	6	5.00	1.10	3.050	7.3062
24 8	Acopin al	3a	590421	217272 1	2949	16	4	pinnrud i	25.50	14	5.20	2.55	3.875	11.7933
24 9	Acopin al	3a	590421	217272 1	2949	16	5	pinnrud i	14.00	12	3.00	1.23	2.115	3.5133
25 0	Acopin al	3a	590421	217272 1	2949	16	6	pinnrud i	36.00	14	7.90	2.80	5.350	22.4801
25 1	Acopin al	3a	590421	217272 1	2949	16	7	pinnrud i	41.00	17	9.00	6.00	7.500	44.1788
25 2	Acopin al	3a	590421	217272 1	2949	16	8	pinnrud i	31.50	16	4.88	1.30	3.090	7.4991
25	Acopin	3a	590421	217272	2949	16	9	pinnrud	29.30	15	6.60	1.10	3.850	11.6416

3	al			1				i						
25 4	Acopin al	3a	590421	217272 1	2949	16	10	pinnrud i	34.00	19	7.46	3.10	5.280	21.8957
25 5	Acopin al	3a	590421	217272 1	2949	16	11	pinnrud i	37.00	17	6.67	2.85	4.760	17.7953
25 6	Acopin	3a	590421	217272	2949	16	12	pinnrud	33.00	15	6.23	2.05	4.140	13.4614
25 7	Acopin	3a	590421	217272	2949	16	13	pinnrud i	22.00	13	3.90	1.45	2.675	5.6200
25 8	Acopin	3a	590421	217272	2949	16	14	pinnrud i	33.00	14	8.60	2.23	5.415	23.0297
25 9	Acopin al	3a	590421	217272	2949	16	15	pinnrud i	30.50	15	5.00	1.90	3.450	9.3482
26 0	Acopin al	3a	590421	217272	2949	16	16	pinnrud i	26.00	14	4.10	1.60	2.850	6.3794
26 1	Acopin al	3a	590421	217272 1	2949	16	17	pinnrud i	34.00	16	7.82	3.17	5.495	23.7152
26 2	Acopin al	3a	590421	217272 1	2949	16	18	pinnrud i	43.00	14	7.30	1.30	4.300	14.5220
26 3	Acopin al	3a	590421	217272 1	2949	16	19	pinnrud i	36.00	17	11.00	1.10	6.050	28.7476
26 4	Acopin al	3a	590421	217272 1	2949	16	20	pinnrud i	25.00	14	6.00	1.20	3.600	10.1788
26 5	Acopin al	3a	590421	217272 1	2949	16	21	pinnrud i	26.00	13	6.56	1.10	3.830	11.5210
26 6	Acopin al	4a	589937	217260 0	2864	10	1	pinnrud i	16.00	11	3.50	1.60	2.550	5.1071
26 7	Acopin al	4a	589937	217260 0	2864	10	2	pinnrud i	17.00	11	2.90	1.30	2.100	3.4636
26 8	Acopin al	4a	589937	217260 0	2864	10	3	pinnrud i	18.00	12	3.00	1.60	2.300	4.1548
26 9	Acopin al	4a	589937	217260 0	2864	10	4	pinnrud i	12.60	11	3.39	1.20	2.295	4.1367
27 0	Acopin al	4a	589937	217260 0	2864	10	5	pinnps eu	10.90	7	2.60	0.73	1.665	2.1773
27 1	Acopin al	4a	589937	217260 0	2864	10	6	pinnps eu	13.00	7	2.30	0.85	1.575	1.9483
27 2	Acopin al	4a	589937	217260 0	2864	10	7	pinnrud i	14.00	12	4.00	1.60	2.800	6.1575

27 3	Acopin al	4a	589937	217260 0	2864	10	8	pinnrud i	19.80	10	1.76	1.30	1.530	1.8385
27 4	Acopin al	4a	589937	217260 0	2864	10	9	pinnrud i	13.00	11	2.10	1.10	1.600	2.0106
27 5	Acopin al	4a	589937	217260 0	2864	10	10	pinnrud i	35.00	15	2.00	1.32	1.660	2.1642
27 6	Acopin al	4a	589937	217260 0	2864	10	11	pinnrud i	35.30	12	3.97	1.80	2.885	6.5371
27 7	Acopin al	4a	589937	217260 0	2864	10	12	pinnrud i	10.80	9	10.93	1.25	6.090	29.1290
27 8	Acopin al	4a	589937	217260 0	2864	10	13	pinnrud i	11.50	7	2.50	1.16	1.830	2.6302
27 9	Acopin al	4a	589937	217260 0	2864	10	14	pinnrud i	14.30	11	2.58	1.07	1.825	2.6159
28 0	Acopin al	4a	589937	217260 0	2864	10	15	pinnrud i	16.20	8	1.93	0.92	1.425	1.5949
28 1	Acopin al	4a	589937	217260 0	2864	10	16	pinnrud i	17.70	11	2.10	0.90	1.500	1.7672
28 2	Acopin al	4a	589937	217260 0	2864	10	17	pinnrud i	21.00	12	1.80	0.83	1.315	1.3581
28 3	Acopin al	4a	589937	217260 0	2864	10	18	pinnrud i	17.20	11	3.60	1.77	2.685	5.6621
28 4	Acopin al	4a	589937	217260 0	2864	10	19	pinnrud i	11.30	8	2.90	0.58	1.740	2.3779
28 5	Acopin al	4a	589937	217260 0	2864	10	20	pinnrud i	17.00	11	1.76	0.40	1.080	0.9161
28 6	Acopin al	4a	589937	217260 0	2864	10	21	pinnrud i	37.30	16	2.20	0.88	1.540	1.8627
28 7	Acopin al	4a	589937	217260 0	2864	10	22	pinnrud i	37.00	16	3.80	1.40	2.600	5.3093
28 8	Acopin al	4a	589937	217260 0	2864	10	23	pinnrud i	28.40	16	4.46	0.90	2.680	5.6411
28 9	Acopin al	4a	589937	217260 0	2864	10	24	pinnrud i	36.10	14	2.90	0.80	1.850	2.6880
29 0	Acopin al	4a	589937	217260 0	2864	10	25	pinnrud i	44.70	12	8.00	1.30	4.650	16.9823
29 1	Acopin al	4a	589937	217260 0	2864	10	26	pinnrud i	31.30	12	3.35	2.38	2.865	6.4467
29	Acopin	4a	589937	217260	2864	10	27	pinnrud	39.50	12	4.37	1.70	3.035	7.2345

2	al			0				i						
29 3	Acopin al	4a	589937	217260 0	2864	10	28	pinnrud i	20.20	8	4.16	2.40	3.280	8.4496
29 4	Acopin al	4a	589937	217260	2864	10	29	pinnrud i	29.50	14	3.44	1.23	2.335	4.2822
29 5	Acopin	4a	589937	217260	2864	10	30	pinnrud	17.30	8	4.70	1.17	2.935	6.7656
29 6	Acopin	4a	589937	217260	2864	10	31	pinnrud	58.80	15	2.13	0.63	1.380	1.4957
29 7	Acopin	4a	589937	217260 0	2864	10	32	pinnrud i	22.10	10	8.80	1.50	5.150	20.8308
29 8	Acopin al	4a	589937	217260 0	2864	10	33	pinnrud i	24.20	10	3.87	1.27	2.570	5.1875
29 9	Acopin al	4a	589937	217260 0	2864	10	34	pinnrud i	21.30	10	4.20	1.12	2.660	5.5572
30 0	Acopin al	4a	589937	217260 0	2864	10	35	pinnrud i	26.20	9	4.43	1.00	2.715	5.7894
30 1	Acopin al	4a	589937	217260 0	2864	10	36	pinnrud i	24.70	10	3.44	0.84	2.140	3.5968
30 2	Acopin al	4a	589937	217260 0	2864	10	37	pinnrud i	19.80	8	5.72	1.15	3.435	9.2671
30 3	Acopin al	4a	589937	217260 0	2864	10	38	pinnrud i	21.40	9	4.27	1.13	2.700	5.7256
30 4	Acopin al	4a	589937	217260 0	2864	10	39	pinnrud i	32.00	9	4.95	1.10	3.025	7.1869
30 5	Acopin al	4a	589937	217260 0	2864	10	40	pinnrud i	29.00	10	5.17	1.80	3.485	9.5389
30 6	Acopin al	4a	589937	217260 0	2864	10	41	pinnrud i	52.50	14	3.36	1.05	2.205	3.8186
30 7	Acopin al	5a	589938	217250 8	2860	12	1	pinnrud i	44.00	11	6.30	1.30	3.800	11.3412
30 8	Acopin al	5a	589938	217250 8	2860	12	2	pinnrud i	31.30	16	6.25	1.22	3.735	10.9565
30 9	Acopin al	5a	589938	217250 8	2860	12	3	pinnrud i	37.80	17	7.80	2.53	5.165	20.9523
31 0	Acopin al	5a	589938	217250 8	2860	12	4	pinnrud i	32.80	18	8.85	1.10	4.975	19.4391
31 1	Acopin al	5a	589938	217250 8	2860	12	5	pinnrud i	27.30	17	3.89	2.21	3.050	7.3062

31 2	Acopin al	5a	589938	217250 8	2860	12	6	pinnrud i	28.00	19	5.54	3.15	4.345	14.8276
31 3	Acopin al	5a	589938	217250 8	2860	12	7	pinnrud i	47.50	19	5.80	1.10	3.450	9.3482
31 4	Acopin al	5a	589938	217250 8	2860	12	8	pinnrud i	42.00	11	7.32	1.30	4.310	14.5897
31 5	Acopin al	5a	589938	217250 8	2860	12	9	pinnrud i	29.12	16	6.80	1.25	4.025	12.7240
31 6	Acopin al	5a	589938	217250 8	2860	12	10	pinnrud i	41.00	18	12.56	2.40	7.480	43.9434
31 7	Acopin al	5a	589938	217250 8	2860	12	11	pinnrud i	37.00	18	6.73	2.00	4.365	14.9644
31 8	Acopin al	5a	589938	217250 8	2860	12	12	pinnrud i	44.70	17	10.56	1.44	6.000	28.2744
31 9	Acopin al	5a	589938	217250 8	2860	12	13	pinnrud i	36.00	14	6.16	2.19	4.175	13.6900
32 0	Acopin al	5a	589938	217250 8	2860	12	14	pinnrud i	36.50	13	5.70	1.67	3.685	10.6651
32 1	Acopin al	5a	589938	217250 8	2860	12	15	pinnrud i	49.50	11	10.60	5.00	7.800	47.7837
32 2	Acopin al	6a	589930	217240 7	2847	12	1	pinnrud i	45.00	15	11.44	3.18	7.310	41.9687
32 3	Acopin al	6a	589930	217240 7	2847	12	2	pinnrud i	14.00	6	2.70	1.40	2.050	3.3006
32 4	Acopin al	6a	589930	217240 7	2847	12	3	pinnrud i	29.50	12	4.70	1.60	3.150	7.7931
32 5	Acopin al	6a	589930	217240 7	2847	12	4	pinnrud i	25.50	12	4.39	1.86	3.125	7.6699
32 6	Acopin al	6a	589930	217240 7	2847	12	5	pinnrud i	38.30	13	1.00	4.98	2.990	7.0216
32 7	Acopin al	6a	589930	217240 7	2847	12	6	pinnrud i	35.50	13	7.20	3.00	5.100	20.4283
32 8	Acopin al	6a	589930	217240 7	2847	12	7	pinnrud i	36.30	16	8.40	2.70	5.550	24.1923
32 9	Acopin al	6a	589930	217240 7	2847	12	8	pinnrud i	39.00	10	12.10	3.79	7.945	49.5768
33 0	Acopin al	7a	590123	217240 6	2870	14	1	pinnrud i	22.50	15	7.81	1.68	4.745	17.6833
33	Acopin	7a	590123	217240	2870	14	2	pinnrud	41.30	16	9.45	5.50	7.475	43.8847

1	al			6				i						
33 2	Acopin al	7a	590123	217240 6	2870	14	3	pinnrud i	11.00	5	2.50	1.00	1.750	2.4053
33 3	Acopin al	7a	590123	217240 6	2870	14	4	pinnrud i	22.00	14	6.80	2.42	4.610	16.6914
33 4	Acopin al	7a	590123	217240 6	2870	14	5	pinnrud i	22.70	13	3.73	1.50	2.615	5.3707
33 5	Acopin al	7a	590123	217240 6	2870	14	6	pinnrud i	33.00	12	5.87	3.50	4.685	17.2389
33 6	Acopin al	7a	590123	217240 6	2870	14	7	pinnrud i	29.40	13	3.24	0.84	2.040	3.2685
33 7	Acopin al	7a	590123	217240 6	2870	14	8	pinnrud i	42.20	14	6.47	4.40	5.435	23.2001
33 8	Acopin al	7a	590123	217240 6	2870	14	9	pinnrud i	25.00	18	4.72	1.30	3.010	7.1158
33 9	Acopin al	7a	590123	217240 6	2870	14	10	pinnrud i	33.00	16	5.66	3.20	4.430	15.4134
34 0	Acopin al	7a	590123	217240 6	2870	14	11	pinnrud i	40.30	14	6.82	1.64	4.230	14.0531
34 1	Acopin al	7a	590123	217240 6	2870	14	12	pinnrud i	23.80	15	4.78	3.18	3.980	12.4411
34 2	Acopin al	7a	590123	217240 6	2870	14	13	pinnrud i	34.30	13	7.36	1.10	4.230	14.0531
34 3	Acopin al	7a	590123	217240 6	2870	14	14	pinnrud i	20.80	16	6.63	1.10	3.865	11.7325
34 4	Acopin al	7a	590123	217240 6	2870	14	15	pinnrud i	18.20	13	4.81	2.90	3.855	11.6718
34 5	Acopin al	7a	590123	217240 6	2870	14	16	pinnrud i	28.80	16	8.81	1.40	5.105	20.4683
34 6	Acopin al	7a	590123	217240 6	2870	14	17	pinnrud i	27.40	16	7.80	3.44	5.620	24.8064
34 7	Acopin al	7a	590123	217240 6	2870	14	18	pinnrud i	20.70	14	4.49	1.00	2.745	5.9180
34 8	Acopin al	7a	590123	217240 6	2870	14	19	pinnrud i	30.00	17	8.32	2.90	5.610	24.7182
34 9	Acopin al	7a	590123	217240 6	2870	14	20	pinnrud i	23.40	16	3.75	1.10	2.425	4.6186
35 0	Acopin al	7a	590123	217240 6	2870	14	21	pinnrud i	28.00	15	6.15	3.60	4.875	18.6655

35 1	Acopin al	7a	590123	217240 6	2870	14	22	pinnrud	26.00	16	6.79	1.20	3.995	12.5350
35 2	Acopin	7a	590123	217240	2870	14	23	pinnrud	24.00	14	6.22	3.65	4.935	19.1278
35	Acopin	7a	590123	6 217240 6	2870	14	24	pinnrud	16.00	13	3.60	0.75	2.175	3.7154
35	Acopin	7a	590123	217240	2870	14	25	pinnrud	18.90	7	4.81	2.46	3.635	10.3777
35	Acopin	7a	590123	217240	2870	14	26	pinnrud	32.70	15	3.93	1.61	2.770	6.0263
35 6	Acopin	7a	590123	6 217240	2870	14	27	pinnrud	35.70	17	11.86	2.61	7.235	41.1119
35 7	al Acopin al	7a	590123	6 217240 6	2870	14	28	pinnrud	26.00	14	7.78	4.15	5.965	27.9455
35 8	Acopin al	7a	590123	217240	2870	14	29	pinnrud	24.00	13	3.31	0.90	2.105	3.4801
35 9	Acopin al	7a	590123	217240 6	2870	14	30	pinnrud	25.70	16	3.82	0.80	2.310	4.1910
36 0	Acopin al	7a	590123	217240 6	2870	14	31	pinnrud i	31.50	16	6.55	2.56	4.555	16.2955
36	Acopin al	7a	590123	217240	2870	14	32	pinnrud i	27.00	17	5.35	1.80	3.575	10.0379
36	Acopin al	7a	590123	217240	2870	14	33	pinnrud i	30.80	16	5.08	2.68	3.880	11.8237
36	Acopin al	7a	590123	217240 6	2870	14	34	pinnrud i	40.50	10	9.76	2.46	6.110	29.3206
36 4	Acopin al	8a	589803	217267 8	2850	16	1	pinnrud i	34.00	19	5.65	3.33	4.490	15.8337
36 5	Acopin al	8a	589803	217267 8	2850	16	2	pinnrud i	35.90	19	6.70	1.20	3.950	12.2542
36 6	Acopin al	8a	589803	217267 8	2850	16	3	pinnrud i	34.00	19	7.92	4.58	6.250	30.6797
36 7	Acopin al	8a	589803	217267 8	2850	16	4	pinnrud i	27.80	19	5.74	3.20	4.470	15.6930
36 8	Acopin al	8a	589803	217267 8	2850	16	5	pinnrud i	35.50	17	5.00	4.60	4.800	18.0956
36 9	Acopin	8a	589803	217267 8	2850	16	6	pinnrud i	50.80	18	5.35	1.10	3.225	8.1687
37	Acopin	8a	589803	217267	2850	16	7	pinnrud	29.00	15	10.63	4.90	7.765	47.3559

0	al			8				i						
37 1	Acopin al	8a	589803	217267 8	2850	16	8	pinnrud i	46.80	15	7.48	2.20	4.840	18.3985
37 2	Acopin al	8a	589803	217267 8	2850	16	9	pinnrud i	43.10	22	11.68	5.70	8.690	59.3103
37 3	Acopin al	8a	589803	217267 8	2850	16	10	pinnrud i	38.70	18	6.10	1.10	3.600	10.1788
37 4	Acopin al	8a	589803	217267 8	2850	16	11	pinnrud i	33.00	18	7.72	2.63	5.175	21.0335
37 5	Acopin al	8a	589803	217267 8	2850	16	12	pinnrud i	36.90	19	5.90	2.90	4.400	15.2053
37 6	Acopin al	8a	589803	217267 8	2850	16	13	pinnrud i	55.70	20	6.20	1.90	4.050	12.8825
37 7	Acopin al	8a	589803	217267 8	2850	16	14	pinnrud i	31.20	14	6.27	2.90	4.585	16.5109
37 8	Acopin al	8a	589803	217267 8	2850	16	15	pinnrud i	31.70	13	5.12	1.92	3.520	9.7314
37 9	Acopin al	8a	589803	217267 8	2850	16	16	pinnrud i	40.00	13	3.60	1.33	2.465	4.7723
38 0	Acopin al	8a	589803	217267 8	2850	16	17	pinnrud i	38.30	12	6.20	0.92	3.560	9.9538
38 1	Acopin al	9a	589788	217255 4	2840	18	1	pinnrud i	48.40	16	11.40	3.77	7.585	45.1858
38 2	Acopin al	9a	589788	217255 4	2840	18	2	pinnrud i	37.10	12	6.10	2.27	4.185	13.7557
38 3	Acopin al	9a	589788	217255 4	2840	18	3	pinnrud i	55.20	16	15.80	5.80	10.800	91.6091
38 4	Acopin al	9a	589788	217255 4	2840	18	4	pinnrud i	37.10	16	5.85	2.26	4.055	12.9144
38 5	Acopin al	9a	589788	217255 4	2840	18	5	pinnrud i	44.00	16	5.40	1.96	3.680	10.6362
38 6	Acopin al	9a	589788	217255 4	2840	18	6	pinnteo c	19.40	8	7.70	3.70	5.700	25.5176
38 7	Acopin al	9a	589788	217255 4	2840	18	7	pinnteo c	14.00	8	2.80	1.30	2.050	3.3006
38 8	Acopin al	9a	589788	217255 4	2840	18	8	pinnps eu	10.00	6	1.24	0.60	0.920	0.6648
38 9	Acopin al	9a	589788	217255 4	2840	18	9	pinnrud i	43.50	12	1.00	0.60	0.800	0.5027

Validación de una ecuación para predecir la producción de esporomas silvestres comestibles en bosques de Pinus spp en Tlaxco, Tlaxcala.
Anexo 3
Esporomas comestibles silvestres encontrados en las localidades Chaparral y San Antonio del peñón
(67)

Ramaria stricta

Amanita rubescen (Pers. ex Fr.) Quél

Cantharelus sp Schwein

Helvella crispa Scop. Ex Fr

Clitocibe gibba

Suillus granulatus

Russula brevipes

Laccaria laccata (Scop. ex Fr) Berk & Broome

Hygrophorus chrysodon Batsch ex Fr.