

UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO

FACULTAD DE ESTUDIOS SUPERIORES CUAUTITLÁN

"DESARROLLO Y VALIDACIÓN DE UN MÉTODO ANALÍTICO POR ADICIONES PATRÓN PARA EVALUAR Y COMPARAR PERFILES DE DISOLUCIÓN DE CINCO MARCAS DIFERENTES DE TABLETAS DE METOPROLOL EN EQUIPOS II Y IV USP"

TESIS

QUE PARA OBTENER EL TÍTULO DE: QUÍMICO FARMACÉUTICO BIÓLOGO

PRESENTAN:

HERNÁNDEZ PATLÁN DANIEL SOLÍS CRUZ BRUNO

ASESOR: M. en C. ELVIA ADRIANA MORALES HIPÓLITO

COASESOR: Dra. RAQUEL LÓPEZ ARELLANO

CUAUTITLÁN IZCALLI. EDO. DE MÉX.

UNAM – Dirección General de Bibliotecas Tesis Digitales Restricciones de uso

DERECHOS RESERVADOS © PROHIBIDA SU REPRODUCCIÓN TOTAL O PARCIAL

Todo el material contenido en esta tesis esta protegido por la Ley Federal del Derecho de Autor (LFDA) de los Estados Unidos Mexicanos (México).

El uso de imágenes, fragmentos de videos, y demás material que sea objeto de protección de los derechos de autor, será exclusivamente para fines educativos e informativos y deberá citar la fuente donde la obtuvo mencionando el autor o autores. Cualquier uso distinto como el lucro, reproducción, edición o modificación, será perseguido y sancionado por el respectivo titular de los Derechos de Autor.

FACULTAD DE ESTUDIOS SUPERIORES CUAUTITLÁN UNIDAD DE ADMINISTRACIÓN ESCOLAR DEPARTAMENTO DE EXÁMENES PROFESIONALES

ASUNTO SVOTO APROBATORIO

DRA. SUEMI RODRÍGUEZ ROMO DIRECTORA DE LA FES CUAUTITLÁN PRESENTE

ATN: L.A. ARACELI HERRERA HERNÁNDEZ

Jefa del Departamento de Exámenes

Profesionales de la FES Cuautitlán

Con base en el Art. 28 del Reglamento de Exámenes Profesionales nos permitimos comunicar a usted que revisamos la **Tesis**:

Desarrollo y Validación de un Método Analítico por Adiciones Patrón para evaluar y comparar Perfiles de Disolución de cinco marcas diferentes de tabletas de Metoprolol en Equipos II y IV USP

Que presenta el pasante: Daniel Hernández Patlán

Con número de cuenta: 303013837 para obtener el Título de: : Químico Farmacéutico Biólogo

Considerando que dicho trabajo reúne los requisitos necesarios para ser discutido en el EXAMEN PROFESIONAL correspondiente, otorgamos nuestro VOTO APROBATORIO.

ATENTAMENTE

"POR MI RAZA HABLARA EL ESPÍRITU"

Cuautitlán Izcallí, Méx. a 09 de agosto de 2011.

PROFESORES QUE INTEGRAN EL JURADO

	NOMBRE	FIRMA
PRESIDENTE	Dra. Guadalupe Pérez Caballero	Madelone
VOCAL	QBP. Martha Elena García Corrales	Court
SECRETARIO	M. en C. Elvia Adriana Morales Hipólito	Uka,
1er SUPLENTE	Dr. Roberto Díaz Torres	Slyt
2do SUPLENTE	M.I. Claudia Mariano Hernández	William
		0 9

NOTA: los sinodales suplentes están obligados a presentarse el día y hora del Examen Profesional (art. 120). HHA/pm

FACULTAD DE ESTUDIOS SUPERIORES CUAUTITLÁN UNIDAD DE ADMINISTRACIÓN ESCOLAR DEPARTAMENTO DE EXÁMENES PROFESIONALES

ASUNTO: VOTO APROBATORIO

DRA. SUEMI RODRÍGUEZ ROMO DIRECTORA DE LA FES CUAUTITLÁN PRESENTE

ATN: L.A. ARACELI HERRERA HERNÁNDEZ

Jefa del Departamento de Exámenes

Profesionales de la FES Cuautitlán

Con base en el Art. 28 del Reglamento de Exámenes Profesionales nos permitimos comunicar a usted que revisamos la **Tesis**:

Desarrollo y Validación de un Método Analítico por Adiciones Patrón para evaluar y comparar Perfiles de Disolución de cinco marcas diferentes de tabletas de Metoprolol en Equipos II y IV USP

Que presenta el pasante: Bruno Solís Cruz

Con número de cuenta: 303257154 para obtener el Título de: : Químico Farmacéutico Biólogo

Considerando que dicho trabajo reúne los requisitos necesarios para ser discutido en el **EXAMEN PROFESIONAL** correspondiente, otorgamos nuestro **VOTO APROBATORIO**.

ATENTAMENTE

"POR MI RAZA HABLARA EL ESPÍRITU"

Cuautitlán Izcallí, Méx. a 09 de agosto de 2011.

PROFESORES QUE INTEGRAN EL JURADO

	NOMBRE	FIRMA
PRESIDENTE	Dra. Guadalupe Pérez Caballero	 Hadelyce
VOCAL	QBP. Martha Elena García Corrales	Gaire.
SECRETARIO	M. en C. Elvia Adriana Morales Hipólito	CONT.
1er SUPLENTE	Dr. Roberto Díaz Torres	Jag
2do SUPLENTE	M.I. Claudia Mariano Hernández	

NOTA: los sinodales suplentes están obligados a presentarse el día y hora del Examen Profesional (art. 120). HHA/pm

DEDICATORIAS DE DANIEL

Con mucho cariño principalmente a mis padres Leticia Patlán Boyzo y Jesús Hernández Gómez porque me han guiado en esta vida por el camino correcto. Gracías por su amor, comprensión, tolerancia, dedicación y apoyo incondicional. Este logro también es de ustedes.

A mís hermanos Jorge Eduardo Hernández Patlán y Jesús Arturo Hernández Patlán porque siempre he contado con ellos para todo, gracías a la confianza que siempre nos hemos tenido, por el apoyo y amistad. Gracías.

A mi novia por su cariño y amor que siempre me ha brindado en los momentos de felicidad y tristeza, te amo muchisimo Ale Zaragoza.

A la M. en C. Elvia Adriana Morales Hipólito por creer siempre en mi aun en los momentos más difíciles por los que pase. Gracías por ayudarme a levantarme y concluir este trabajo que también es tuyo.

A la Dra. Raquel López Arellano y al DAR Juan José Díaz Esquivel por darme la confianza, ayuda y el apoyo para formar parte de un gran equipo de trabajo, pero sobre todo por brindarme su amistad.

A mi amigo Bruno Solis Cruz que lo conozco desde antes de la mitad de la carrera, y ha sido un apoyo mutuo el que hemos tenido para con nuestra formación profesional y que hasta ahora y más adelante esperemos seguirla y seguirlo conservando.

A todos mís compañeros y amigos de la FES Cuautitlán, así como a los del lugar de donde soy, este logro también es de ustedes.

A mí tío Carlos Federico Aroche Castañeda y esposa Adela Juárez Jiménez y toda su honorable família por el apoyo económico que siempre me han brindado y que hasta el momento lo siguen haciendo.

Y no me puedo ir sin antes decirles, que sin ustedes a mi lado no lo hubiera logrado, tantas desveladas sirvieron de algo y aquí está el fruto. Les agradezco a todos ustedes con toda mi alma el haber llegado a mi vida y el compartir momentos agradables y momentos tristes, pero esos momentos son los que nos hacen crecer y valorar a las personas que nos rodean. Los quiero mucho y nunca los olvidaré.

AGRADECIMIENTOS DE BRUNO

A la Universidad Nacional Autónoma de México y a la Facultad de Estudios Superiores Cuautitlán por abrirme sus puertas, por todo lo que en ella he aprendido y por permitirme cumplir una de mis grandes metas.

A la Dra. Raquel López Arellano por el tiempo y conocimientos compartidos, y por permitirme pertenecer a su equipo de trabajo. Mi admiración y mi total gratitud.

A la M. en C. Elvía Adriana Morales Hípólito por la confianza, la ayuda y el apoyo para la realización de este trabajo.

Al DAR Juan José Díaz Esquivel por la confianza y el apoyo para formar parte de un gran equipo de trabajo.

A todos los profesores y colaboradores del LEDEFAR (Claus, Gaby, Lupita, Prof. Pepe), por permitirme realizar este trabajo experimental y darme el apoyo necesario para concluirlo.

A mís sinodales, gracías por darme la oportunidad y por el tiempo que me han dedicado para leer este trabajo.

Y a todas las personas que de alguna manera y sín saberlo han influido en mí para concluir este cíclo, a todas ellas GRACIAS.

DEDICATORIAS DE BRUNO

Principalmente a mis padres, Rosa María Cruz Arreola y José Daniel Solís Oliveros, porque su fuerza y su amor me han dirigido en esta vida por el camino correcto y me han dado las alas que necesitaba para volar. Recuerden siempre que Los Amo y que me siento muy orgulloso de ustedes y muy agradecido de tenerlos como padres. Mi éxito también es suyo.

A mís hermanos, Isaac y Renato, son los mejores hermanos que puedo tener, me han apoyado cuando lo he necesitado y hemos pasado tantas cosas juntos, los quiero mucho y les deseo mucho éxito en la vida.

A Nolis y Rox, creo que no pueden haber mejores cuñadas que ustedes.

A toda mi familia, ya que siempre me ha motivado para seguir adelante en el camino que llevo recorrido y nunca dejarme vencer, gracias a mis abuelos, a mis tios, primos.

A Daniel, Marís y Karlita, gracías amigos por pasar a mi lado los mejores momentos de mi vida universitaria y estar siempre en las buenas y en las malas, jamás los olvidaré. Ca, este logro es de los dos.

A todos mís amigos, sin excluir a ninguno, pero en especial a Adrian, Sergio, Víctor, Miguel, Abraham, D. Isaac, Abad, J. Luís, Juan, Jhon, míl gracias por todos los momentos que hemos pasado juntos.

A todos mis profes no solo de la carrera sino de toda la vida, mil gracias porque de alguna manera forman parte de lo que ahora soy. Especialmente a la Dra. Raquel, a Adí, a Claus y al Profe Juanjo.

ÍNDICE

ÍNDICE

		Página
SÍ	MBOLOS Y ABREVIATURAS	V
LI	STA DE FIGURAS	VI
LI	STA DE TABLAS	VIII
LI	STA DE GRÁFICOS	XIII
RI	ESUMEN	1
IN	TRODUCCIÓN	2
Ol	BJETIVOS	6
M	ARCO TEÓRICO	7
1.	DISOLUCIÓN	7
	1.1. Consideraciones Generales Acerca del Proceso de Disolución	7
	1.2. Factores que Influyen en la Velocidad de Disolución	9
	1.3. Importancia del Proceso de Disolución	10
2.	BIODISPONIBILIDAD Y BIOEQUIVALENCIA	12
	2.1. Concepto y Definiciones	12
	2.2. Objetivos de los Estudios de Biodisponibilidad	15
	2.3. Criterios para Establecer los Requerimientos de Bioequivalencia	15
3.	PRUEBA DE DISOLUCIÓN IN VITRO	17
	3.1. Perfiles de disolución	18
4.	SISTEMA DE CLASIFICACIÓN BIOFARMACÉUTICA (BSC)	22
	4.1. Bioexenciones	24
5.	DESARROLLO DE LA PRUEBA PARA PERFILES DE DISOLUCIÓN	25
	5.1. Selección del Aparato de Disolución	25
	5.1.1. Aparato de Disolución I	26
	5.1.2. Aparato de Disolución II	28
	5.1.3. Aparato de Disolución IV	29
	5.2. Selección del Volumen y Medio de Disolución	33
	5.2.1. Condiciones de <i>Sink</i>	33

,			
N	D.	ľ	T
IIN	1)	ı	. Η.

)
	?
*	7
	_
LEDEE	,

	5.3. Selección de la Velocidad de Agitación	34
	5.4. Temperatura del Medio de Disolución	34
6.	VALIDACION DE METODOS ANALITICOS	36
	6.1. Concepto de Validación	36
	6.2. Tipos de Validación	37
	6.3. Tipos de Métodos Analíticos a ser Validados	38
	6.4. Parámetros de Desempeño	39
	6.4.1. Linealidad del sistema	40
	6.4.2. Linealidad del método	40
	6.4.3. Precisión	40
	6.4.3.1. Repetibilidad	41
	6.4.3.2. Reproducibilidad	41
	6.4.4. Exactitud	41
	6.4.5. Selectividad	41
	6.5. Criterios de aceptación	42
	6.6. Errores Incorregibles	43
	6.7. Errores Corregibles	43
	6.8. Determinación de Errores Sistemáticos	43
	6.9. Método de las Adiciones Patrón	44
7.	MONOGRAFÍA DEL TARTRATO DE METOPROLOL	46
M	ATERIAL Y METODOLOGÍA EXPERIMENTAL	50
1.	DIAGRAMA DE FLUJO	50
2.	SUSTANCIAS, REACTIVOS, SOLUCIONES Y EQUIPOS	51
3.	PRODUCTOS ANALIZADOS	52
4.	CONDICIONES ESPECTROFOTOMÉTRICAS	53
	4.1. Concentraciones para la Cuantificación	54
5.	VALIDACIÓN DEL MÉTODO ANALÍTICO	56
	5.1. Validación del Sistema	56
	5.1.1. Linealidad	56
	5.1.2. Precisión	58
	5.1.3. Influencia del Filtro	59

ÍNDI<u>CE</u>

•	>	
5	₹.	
	$\overline{}$	
7	_	
4	⇒	

	5.2. Validación del Método	60
	5.2.1. Linealidad	60
	5.2.2. Precisión y Exactitud	62
	5.2.3. Repetibilidad	64
	5.2.4. Reproducibilidad	64
	5.2.5. Selectividad	65
	5.2.6. Estabilidad de la Muestra	65
	5.3. Validación de la Dilución para las muestras de los Perfiles de	66
6.	Disolución obtenidos con el Aparato IV OBTENCIÓN DE LOS PERFILES DE DISOLUCIÓN	68
0.	6.1. Estudio de los Perfiles de Disolución en Aparato USP II	68
	6.2. Estudio de los Perfiles de Disolución en Aparato USP IV	70
DΙ	ESULTADOS Y DISCUSIÓN	70
	DESARROLLO DEL MÉTODO ANALÍTICO	72
1.	1.1. Condiciones Espectrofotométricas	72
	1.2. Concentraciones para la Cuantificación	74
2.	VALIDACIÓN DEL MÉTODO ANALÍTICO	76
	2.1. Validación del Sistema	76
	2.1.1. Linealidad	76
	2.1.2. Precisión	79
	2.1.3. Influencia del Filtro	80
	2.2. Validación del Método	81
	2.2.1. Linealidad	81
	2.2.2. Precisión y Exactitud	84
	2.2.3. Repetibilidad	86
	2.2.4. Reproducibilidad	87
	2.2.5. Selectividad	89
	2.2.6. Estabilidad de la Muestra	90
	2.3. Validación de la Dilución para las muestras de los Perfiles de	91
3.	Disolución obtenidos con el Aparato IV Comparación de los Perfiles de Tartrato de Metoprolol disuelto obtenidos en	71
J.	el Aparato USP II	93
4.	Comparación de los Perfiles de Tartrato de Metoprolol disuelto obtenidos en	98

ÍNDICE

	LEDEFA
el Aparato USP IV	
5. Análisis Cinético	104
CONCLUSIONES	114
REFERENCIAS BIBLIOGRÁFICAS	116
APÉNDICE I. Validación del Método Analítico	121
APÉNDICE II. Perfiles de Disolución de los cinco productos en el Aparato USP II	128
APÉNDICE III. Perfiles de Disolución de los cinco productos en el Aparato USP IV	154

SÍMBOLOS Y ABREVIATURAS

C. V. Coeficiente de variación

D. E. Desviación estándar

FEUM Farmacopea de los Estados Unidos Mexicanos

USP United States Pharmacopeia

NOM Norma Oficial Mexicana

SSA Secretaria de Salud

mg Miligramos

min Minutos

mL Mililitros

μ**g** Microgramos

nm Nanómetros

λ Longitud de onda

T Temperatura

rpm Revoluciones por minuto

Log Logaritmo base 10

% Porcentaje

± Más, menos

ABC Área Bajo la Curva

Abs Absorbancia

ε Coeficiente de Extinción Específico

f₂ Factor de similitud

LISTA DE FIGURAS

Figura		Página
1	Eventos simultáneos para la disolución de un principio activo.	11
2	Perfil con aparato I y II de disolución. Gráfico de perfil de disolución acumulativo.	20
3	Perfil con aparato IV de disolución. Gráfico de un perfil de disolución con flujo continuo.	20
4	Aparato de disolución I, también llamado de canastilla.	27
5	Elemento de Agitación de Canastilla.	27
6	Aparato de disolución II, también llamado de paleta.	28
7	Elemento de Agitación de Paleta.	28
8	Aparato de disolución IV, también llamado celda de flujo continuo.	29
9	Estación comercial para desgasificación del medio de disolución. MPS Medium Preparation Station®	30
10	Sistema Abierto, con divisor, recolector de fracciones y selector de medio.	31
11	Celda de flujo continuo.	32
12	Celda grande y celda pequeña para tabletas y cápsulas.	32
13	Diagrama de flujo de la metodología experimental.	50
14	Preparación del estándar de Tartrato de Metoprolol en medio acido.	53
15	Metodología seguida construir una curva de calibración de Tartrato de Metoprolol.	55
16	Metodología seguida para evaluar linealidad del sistema de Tartrato de Metoprolol.	57
17	Metodología seguida para evaluar precisión del sistema de Tartrato de Metoprolol.	58

LISTA DE FIGURAS

18	Metodología seguida para evaluar la influencia del filtro utilizando tres	59
	diferentes filtros.	
19	Metodología seguida para la validación de linealidad del método de	60
	Tartrato de Metoprolol por adiciones patrón. Parte I.	
20	Metodología seguida para la validación de linealidad del método de	61
	Tartrato de Metoprolol por adiciones patrón. Parte II.	
21	Metodología seguida para la validación de exactitud del método de	62
	Tartrato de Metoprolol por adiciones patrón. Parte I.	
22	Metodología seguida para la validación de exactitud del método de	63
	Tartrato de Metoprolol por adiciones patrón. Parte II.	
23	Metodología seguida para evaluar la repetibilidad del método.	64
24	Metodología seguida para evaluar la estabilidad de las muestras de	65
	Tartrato de Metoprolol.	
25	Metodología seguida para validar la dilución hecha para las muestras de los perfiles de disolución obtenidos con el aparato IV.	67

LISTA DE TABLAS

Fabla		Página
1	Clasificación de los fármacos de acuerdo con el BSC.	22
2	Correlaciones in vitro - in vivo esperadas para productos de liberación inmediata, sobre la base de la clasificación biofarmacéutico.	23
3	Aparatos utilizados en la prueba de disolución para productos de liberación oral y productos transdérmicos.	26
4	Rangos típicos para las condiciones de operación para la prueba de disolución.	35
5	Características mínimas consideradas para validar un método analítico según su tipo.	39
6	Especificaciones y criterios de aceptación para la validación del método analítico.	42
7	Productos analizados.	52
8	Intervalo de concentraciones para el método analítico.	54
9	Curva de calibración utilizada en los perfiles de disolución.	54
10	Curva de calibración para evaluar linealidad del sistema	57
11	Niveles de concentración para evaluar exactitud del sistema.	58
12	Curva de calibración para validar la dilución hecha para las muestras de los perfiles de disolución obtenidos con el aparato IV.	66
13	Condiciones de operación de la prueba de disolución en el aparato USP II	68
14	Condiciones de operación de la prueba de disolución en el aparato USP IV	70
15	Máximos de absorción del Tartrato de Metoprolol en diferentes medios de disolución	73
16	Concentración de cada sistema (µg/ml) y respuesta analítica (absorbancia)	74
17	Resultados del análisis de regresión, C. V. e intervalo de confianza (95%) de la ordenada al origen para determinar que el sistema es lineal.	75
18	Concentración de cada sistema (µg/ml) y respuesta analítica (absorbancia) obtenida para evaluar la linealidad del sistema.	76
19	Resultados del análisis de regresión, C. V. e intervalo de confianza (95%) de la ordenada al origen para determinar que el sistema es lineal	77
20	Análisis de varianza realizado para determinar la relación lineal entre la concentración de Tartrato de Metoprolol y la respuesta analítica.	78
21	Respuesta analítica obtenida para evaluar la precisión del sistema.	79

22	Resultados de la influencia del filtro utilizando dos soluciones de concentraciones diferentes de Tartrato de Metoprolol: 36.96 y 147.84	80
23	μg/ml Concentraciones adicionadas, concentraciones recuperadas y porcentajes de recuperación de Tartrato de Metoprolol para evaluar la linealidad del método.	81
24	Resultados del análisis de regresión, C. V. e intervalos de confianza (95%) para determinar que el método es lineal.	82
25	Análisis de varianza realizado para evaluar linealidad del método considerando un nivel de significancia de α=0.05.	83
26	Porcentajes de recobro obtenidos para evaluar la exactitud del método.	84
27	Parámetros determinados para evaluar la exactitud del método.	84
28	Parámetros determinados para evaluar la precisión del método.	85
29	Resultados de los porcentajes de recobro obtenidos para evaluar la repetibilidad de método.	86
30	Resultados de los porcentajes de recobro obtenidos para evaluar la reproducibilidad del método.	87
31	Análisis de varianza para evaluar la reproducibilidad del método considerando un nivel de significancia de α=0.05.	87
32	Estabilidad de una solución de Tartrato de Metoprolol a 37°C con una concentración de 110.88 µg/mL.	90
33	Concentración de cada sistema (µg/ml) y respuesta analítica (absorbancia) obtenida para validar la dilución.	91
34	Resultados del análisis de regresión, C. V. e intervalo de confianza (95%) de la ordenada al origen para validar la dilución de las muestras.	92
35	Porcentajes promedio de Metoprolol disuelto por producto obtenidos en el Aparato USP II.	93
36	Factor de similitud de los productos evaluados con el Aparato USP II.	96
37	Perfiles de concentración (µg/mL) de Metoprolol disuelto de cada uno de los productos, datos puntuales no acumulados obtenidos con el Aparato USP IV.	98
38	Porcentajes promedio de Metoprolol disuelto por producto obtenidos en el Aparato USP IV.	100
39	Factor de similitud de los productos evaluados con el Aparato USP IV.	102
40	Datos de concentración máxima de Tartrato de Metoprolol disuelto para cada producto en el Aparato USP IV.	105
41	Intervalos de confianza de las medias de la concentración máxima de Tartrato de Metoprolol disuelto (nivel de significancia de 0.2).	105
42	Datos de Área bajo la curva de cero a tiempo t de Tartrato de Metoprolol disuelto.	107
43	Intervalos de confianza del ABC ₀ ^t de Tartrato de Metoprolol disuelto (nivel de significancia de 0.2).	107

44	Datos de Área bajo la curva de cero a $C_{\text{máx}}$ de Tartrato de Metoprolol disuelto.	109
45	Intervalos de confianza del ABC ₀ ^{Cmáx} de Tartrato de Metoprolol disuelto (nivel de significancia de 0.2).	109
46	Datos de Tiempo máximo (t _{máx}) de Tartrato de Metoprolol disuelto.	111
47	Intervalos de confianza del tmáx de Tartrato de Metoprolol disuelto (nivel de significancia de 0.2).	111
48	Peso del Estándar de Tartrato de Metoprolol y volumen para obtener una solución stock de una concentración de 1701 µg/mL.	121
49	Estándares preparados para la validación de linealidad del método que sirven como los cinco niveles de concentración que se requieren para evaluar este parámetro.	121
50	Volumen tomado para la preparación de los cinco niveles de concentración que requiere la linealidad del método para ser evaluada.	121
51	Resultados de los sistemas preparados para evaluar linealidad del método por adiciones patrón.	122
52	Resultados de los sistemas preparados para evaluar exactitud y precisión del método por adiciones patrón.	125
53	Datos de absorbancia de Metoprolol disuelto obtenidos en cada uno de los tiempos de muestreo con el Aparato USP II del producto Lopresor 100.	129
54	Datos de concentración de Tartrato de Metoprolol disuelto obtenidos en cada uno de los tiempos de muestreo con el Aparato USP II del producto Lopresor 100.	130
55	Datos de porcentaje de Tartrato de Metoprolol disuelto obtenidos en cada uno de los tiempos de muestreo con el Aparato USP II del producto Lopresor 100.	131
56	Datos de absorbancia de Metoprolol disuelto obtenidos en cada uno de los tiempos de muestreo con el Aparato USP II del producto Kenaprol.	134
57	Datos de concentración de Tartrato de Metoprolol disuelto obtenidos en cada uno de los tiempos de muestreo con el Aparato USP II del producto Kenaprol.	135
58	Datos de porcentaje de Tartrato de Metoprolol disuelto obtenidos en cada uno de los tiempos de muestreo con el Aparato USP II del producto Kenaprol.	136
59	Datos de absorbancia de Metoprolol disuelto obtenidos en cada uno de los tiempos de muestreo con el Aparato USP II del producto Proken M.	139
60	Datos de concentración de Tartrato de Metoprolol disuelto obtenidos en cada uno de los tiempos de muestreo con el Aparato USP II del producto Proken M.	140
61	Datos de porcentaje de Tartrato de Metoprolol disuelto obtenidos en cada uno de los tiempos de muestreo con el Aparato USP II del producto Proken M.	141
62	Datos de absorbancia de Metoprolol disuelto obtenidos en cada uno de	144

los tiempos de muestreo con el Aparato USP II del producto Nipresol.

63 Datos de concentración de Tartrato de Metoprolol disuelto obtenidos en 145 cada uno de los tiempos de muestreo con el Aparato USP II del producto Nipresol. 64 Datos de porcentaje de Tartrato de Metoprolol disuelto obtenidos en cada 146 uno de los tiempos de muestreo con el Aparato USP II del producto Nipresol. Datos de absorbancia de Metoprolol disuelto obtenidos en cada uno de 149 **65** los tiempos de muestreo con el Aparato USP II del producto Metobest. Datos de concentración de Tartrato de Metoprolol disuelto obtenidos en 150 66 cada uno de los tiempos de muestreo con el Aparato USP II del producto Metobest. 151 67 Datos de porcentaje de Tartrato de Metoprolol disuelto obtenidos en cada uno de los tiempos de muestreo con el Aparato USP II del producto Metobest. 68 Datos de absorbancia de Metoprolol disuelto y volumen de muestra 155 obtenidos en cada uno de los tiempos de muestreo con el Aparato USP IV del producto Lopresor 100. 69 Datos de concentración de Tartrato de Metoprolol disuelto obtenidos en 157 cada uno de los tiempos de muestreo con el Aparato USP IV del producto Lopresor 100. Cálculo del Área Bajo la Curva de cero a tiempo t de Tartrato de 160 **70** Metoprolol disuelto por el método de los trapezoides para el producto Lopresor 100. 71 Datos de porcentaje de Tartrato de Metoprolol disuelto obtenidos en cada 162 uno de los tiempos de muestreo con el Aparato USP IV del producto Lopresor 100. 165 72 Datos de absorbancia de Metoprolol disuelto y volumen de muestra obtenidos en cada uno de los tiempos de muestreo con el Aparato USP IV del producto Kenaprol. **73** Datos de concentración de Tartrato de Metoprolol disuelto obtenidos en 167 cada uno de los tiempos de muestreo con el Aparato USP IV del producto Kenaprol. 74 Cálculo del Área Bajo la Curva de cero a tiempo t de Tartrato de 170 Metoprolol disuelto por el método de los trapezoides para el producto Kenaprol. 75 Datos de porcentaje de Tartrato de Metoprolol disuelto obtenidos en cada 172 uno de los tiempos de muestreo con el Aparato USP IV del producto Kenaprol. **76** Datos de absorbancia de Metoprolol disuelto y volumen de muestra 175 obtenidos en cada uno de los tiempos de muestreo con el Aparato USP IV del producto Proken M. 77 Datos de concentración de Tartrato de Metoprolol disuelto obtenidos en 177 cada uno de los tiempos de muestreo con el Aparato USP IV del producto

Proken M.

78	Cálculo del Área Bajo la Curva de cero a tiempo t de Tartrato de Metoprolol disuelto por el método de los trapezoides para el producto	180
	Proken M.	
79	Datos de porcentaje de Tartrato de Metoprolol disuelto obtenidos en cada uno de los tiempos de muestreo con el Aparato USP IV del producto Proken M.	182
80	Datos de absorbancia de Metoprolol disuelto y volumen de muestra obtenidos en cada uno de los tiempos de muestreo con el Aparato USP IV del producto Nipresol.	185
81	Datos de concentración de Tartrato de Metoprolol disuelto obtenidos en cada uno de los tiempos de muestreo con el Aparato USP IV del producto Nipresol.	187
82	Cálculo del Área Bajo la Curva de cero a tiempo t de Tartrato de Metoprolol disuelto por el método de los trapezoides para el producto Nipresol.	190
83	Datos de porcentaje de Tartrato de Metoprolol disuelto obtenidos en cada uno de los tiempos de muestreo con el Aparato USP IV del producto Nipresol.	192
84	Datos de absorbancia de Metoprolol disuelto y volumen de muestra obtenidos en cada uno de los tiempos de muestreo con el Aparato USP IV del producto Metobest.	195
85	Datos de concentración de Tartrato de Metoprolol disuelto obtenidos en cada uno de los tiempos de muestreo con el Aparato USP IV del producto Metobest.	197
86	Cálculo del Área Bajo la Curva de cero a tiempo t de Tartrato de Metoprolol disuelto por el método de los trapezoides para el producto Metobest.	200
87	Datos de porcentaje de Tartrato de Metoprolol disuelto obtenidos en cada uno de los tiempos de muestreo con el Aparato USP IV del producto Metobest.	202

LISTA DE GRÁFICOS

Gráfico		Página
1	Comparación de los espectros de absorción UV de Tartrato de Metoprolol en diferentes medios a una concentración de 50 µg/mL.	72
2	Gráfico de absorbancia en función de la concentración de Tartrato de Metoprolol.	75
3	Gráfico de absorbancia en función de la concentración de Tartrato de Metoprolol para evaluar la linealidad del sistema.	77
4	Gráfico de concentración adicionada contra concentración recuperada de Tartrato de Metoprolol para evaluar linealidad del método.	82
5	Gráfico de absorbancia en función de la concentración de Tartrato de Metoprolol para evaluar la dilución.	92
6	Porcentajes promedio de Metoprolol disuelto por producto obtenidos en el Aparato USP II.	94
7	Valores del factor de similitud de los perfiles de disolución de los cinco productos obtenidos en el Aparato USP II.	97
8	Perfiles de concentración (µg/mL) de Metoprolol disuelto de cada uno de los productos, datos puntuales no acumulados obtenidos con el Aparato USP IV.	99
9	Porcentajes promedio de Metoprolol disuelto por producto obtenidos en el Aparato USP IV.	101
10	Valores del factor de similitud de los perfiles de disolución de los cinco productos obtenidos en el Aparato USP IV.	103
11	Comparación de los intervalos de confianza de la $C_{\text{máx}}$ de Tartrato de Metoprolol disuelto.	106
12	Comparación de los intervalos de confianza del ABC de cero a tiempo t de Tartrato de Metoprolol disuelto.	108
13	Comparación de los intervalos de confianza del ABC de cero a $C_{\text{máx}}$ de Tartrato de Metoprolol disuelto.	110
14	Comparación de los intervalos de confianza de $t_{máx}$ de Tartrato de Metoprolol disuelto	112

LISTA DE GRÁFICOS

15	Perfiles Acumulativos de Disolución del Producto Lopresor 100 obtenidos en el Aparato USP II.	132
16	Perfil Acumulativo de Disolución Promedio del Producto Lopresor 100 obtenido en el Aparato USP II.	133
17	Perfiles Acumulativos de Disolución del Producto Kenaprol obtenidos en el Aparato USP II.	137
18	Perfil Acumulativo de Disolución Promedio del Producto Kenaprol obtenido en el Aparato USP II.	138
19	Perfiles Acumulativos de Disolución del Producto Proken M obtenidos en el Aparato USP II.	142
20	Perfil Acumulativo de Disolución Promedio del Producto Proken M obtenido en el Aparato USP II.	143
21	Perfiles Acumulativos de Disolución del Producto Nipresol obtenidos en el Aparato USP II.	147
22	Perfil Acumulativo de Disolución Promedio del Producto Nipresol obtenido en el Aparato USP II.	148
23	Perfiles Acumulativos de Disolución del Producto Metobest obtenidos en el Aparato USP II.	152
24	Perfil Acumulativo de Disolución Promedio del Producto Metobest obtenido en el Aparato USP II.	153
25	Perfiles de concentración (µg/mL) de Metoprolol disuelto del Producto Lopresor 100 obtenidos en el Aparato USP IV.	158
26	Perfiles de concentración (µg/mL) de Metoprolol disuelto del Producto Lopresor 100 obtenido en el Aparato USP IV.	159
27	Trapezoides delimitados por las concentraciones de Metoprolol obtenidas en cada intervalo de muestreo para el producto Lopresor 100.	161
28	Perfiles Acumulativos de Disolución del Producto Lopresor 100 obtenidos en el Aparato USP IV.	163
29	Perfil Acumulativo de Disolución Promedio del Producto Lopresor 100 obtenido en el Aparato USP IV.	164
30	Perfiles de concentración (µg/mL) de Metoprolol disuelto del Producto Kenaprol obtenidos en el Aparato USP IV.	168
31	Perfiles de concentración (μg/mL) de Metoprolol disuelto del Producto Kenaprol obtenido en el Aparato USP IV.	169
32	Trapezoides delimitados por las concentraciones de Metoprolol	171

LISTA DE GRÁFICOS

33	Perfiles Acumulativos de Disolución del Producto Kenaprol obtenidos en el Aparato USP IV.	173
34	Perfil Acumulativo de Disolución Promedio del Producto Kenaprol obtenido en el Aparato USP IV.	174
35	Perfiles de concentración (µg/mL) de Metoprolol disuelto del Producto Proken M obtenidos en el Aparato USP IV.	178
36	Perfiles de concentración (µg/mL) de Metoprolol disuelto del Producto Proken M obtenido en el Aparato USP IV.	179
37	Trapezoides delimitados por las concentraciones de Metoprolol obtenidas en cada intervalo de muestreo para el producto Proken M.	181
38	Perfiles Acumulativos de Disolución del Producto Proken M obtenidos en el Aparato USP IV.	183
39	Perfil Acumulativo de Disolución Promedio del Producto Proken M obtenido en el Aparato USP IV.	184
40	Perfiles de concentración (µg/mL) de Metoprolol disuelto del Producto Nipresol obtenidos en el Aparato USP IV.	188
41	Perfiles de concentración (µg/mL) de Metoprolol disuelto del Producto Nipresol obtenido en el Aparato USP IV.	189
42	Trapezoides delimitados por las concentraciones de Metoprolol obtenidas en cada intervalo de muestreo para el producto Nipresol.	191
43	Perfiles Acumulativos de Disolución del Producto Nipresol obtenidos en el Aparato USP IV.	193
44	Perfil Acumulativo de Disolución Promedio del Producto Nipresol obtenido en el Aparato USP IV.	194
45	Perfiles de concentración (µg/mL) de Metoprolol disuelto del Producto Metobest obtenidos en el Aparato USP IV.	198
46	Perfiles de concentración (µg/mL) de Metoprolol disuelto del Producto Metobest obtenido en el Aparato USP IV.	199
47	Trapezoides delimitados por las concentraciones de Metoprolol obtenidas en cada intervalo de muestreo para el producto Metobest.	201
48	Perfiles Acumulativos de Disolución del Producto Metobest obtenidos en el Aparato USP IV.	203
49	Perfil Acumulativo de Disolución Promedio del Producto Metobest obtenido en el Aparato USP IV	204

RESUMEN

En este trabajo experimental se presentan los criterios necesarios para validar un método analítico que fue utilizado durante la prueba de disolución de tabletas de liberación inmediata de Tartrato de Metoprolol, así como la comparación de perfiles de disolución de cinco diferentes marcas comerciales de esta forma farmacéutica, obtenidos con los Aparatos II y IV USP, buscando seleccionar y optimizar las condiciones de operación para demostrar su confiabilidad.

Se utilizaron cinco formulaciones del fármaco; uno de ellos el medicamento innovador (Lopresor 100), un genérico intercambiable (Kenaprol) y los demás genéricos de marca (Proken M, Nipresol y Metobest). Cada medicamento se sometió a 12 ensayos independientes en cada uno de los Aparatos de disolución, con cuyos datos se obtuvieron parámetros que permitieron caracterizar el perfil de disolución de cada formulación y de esta manera mostrar las diferencias que existen entre los dos Aparatos de disolución.

El método analítico utilizado para la evaluación de estos perfiles de disolución fue validado mediante adiciones patrón, siguiendo los criterios de la NOM-177-SSA1-1998 y de la guía de validación de métodos analíticos del Colegio Nacional de Químicos Farmacéuticos Biólogos.

En la primera parte de este trabajo se presentan generalidades sobre el proceso de disolución; posteriormente se hace referencia a temas como biodisponibilidad, desarrollo de una prueba de disolución, equipos utilizados y validación de métodos analíticos. Finalmente se mencionan algunas generalidades del principio activo.

La segunda parte contiene toda la información referente a la metodología experimental, material, equipos y reactivos involucrados en la elaboración de este trabajo, haciendo uso de diagramas y tablas que faciliten su comprensión.

La parte final indica, por medio de gráficos, figuras y tablas, los resultados obtenidos de la validación del método, el respectivo análisis a cada parámetro de validación evaluado, la comparación de los perfiles de disolución obtenidos para cada marca comercial y para cada equipo de disolución empleado, así como las conclusiones a las que se llegó.

INTRODUCCIÓN

En el ámbito farmacéutico es más que sabido que la absorción de un fármaco desde una forma de dosificación sólida tras la administración oral depende de la liberación del fármaco de la forma farmacéutica, la disolución o solubilización del fármaco bajo condiciones fisiológicas y la permeabilidad del mismo por el sistema gastrointestinal²⁴. Debido a la naturaleza crítica de estos primeros dos pasos y a la creciente tendencia en el uso de productos bioequivalentes, se debe tener en cuenta que la disolución de un principio activo debe mantenerse dentro de ciertas especificaciones para lograr la respuesta terapéutica esperada⁴⁹. En base a esta consideración general, se utilizan las pruebas de disolución o los perfiles de disolución para las formas farmacéuticas orales sólidas, como comprimidos y cápsulas, ya que se ha determinado que para algunos fármacos la velocidad de disolución *in vitro* puede ser una predicción del comportamiento *in vivo*⁵⁴.

La prueba de disolución es una prueba físico química que determina la cantidad de fármaco que se disuelve por unidad de tiempo bajo condiciones estandarizadas de la interfase líquida/sólida, la temperatura y la composición del solvente. Asimismo podríamos afirmar que los ensayos de disolución son básicos e imprescindibles para la liberación de cada lote de las formas farmacéuticas sólidas fabricadas.

Dicha prueba evalúa la cantidad de principio activo disuelto en un tiempo determinado y el criterio de aceptación es útil para el control de calidad del medicamento, pero no proporcionan información de la velocidad a la cual el fármaco se disuelve; por lo tanto, cuando en el presente trabajo se hable de pruebas de disolución se estará haciendo referencia sobre todo a los perfiles de disolución. Un perfil de disolución considera diversos tiempos de muestreo, lo que permite establecer la velocidad de disolución.

Tanto las pruebas de disolución como los perfiles de disolución son empleados desde el comienzo del desarrollo de la formulación y utilizados en fases posteriores a éste porque permiten el estudio de los mecanismos de liberación del principio activo en las formulaciones, pero también son utilizados para evaluar los procesos de fabricación e identificar la influencia de las variables críticas en el proceso, ya que permiten la comparación y estudio de la calidad intra e interlotes, sirven como un indicador de estabilidad del preparado farmacéutico y nos dan la pauta para saber cómo serán la biodisponibilidad y bioequivalencia *in vitro* de las formas farmacéuticas sólidas orales, ya que las pruebas y perfiles de disolución deben corresponder con las de los lotes pilotos con los que se hizo el ensayo clínico³.

Si una prueba comparativa de los perfiles de disolución entre el medicamento de referencia y el de prueba, se diseña y se lleva a cabo de acuerdo con un procedimiento establecido, equivalentes farmacéuticos que muestran comportamiento semejante en relación con sus características de velocidad de disolución, probablemente tendrán también una biodisponibilidad comparable.

Para comparar los perfiles de disolución se utiliza el factor de similitud (f_2), que es un valor puntual que proviene de un modelo matemático y permite relacionar a través de una transformación logarítmica la semejanza entre los perfiles de disolución de los medicamentos de referencia y de prueba. Si el valor de f_2 es igual o mayor que 50 (entre 50 y 100), los perfiles son similares²¹.

Dichas pruebas de comparación de perfiles, se encuentran incluidas en la Norma Oficial Mexicana NOM-177-SSA1-1998, que establece las pruebas y procedimientos para demostrar que un medicamento es intercambiable. Requisitos a que deben sujetarse los terceros autorizados que realicen las pruebas⁴¹.

Para los estudios de disolución se emplean fundamentalmente las modalidades de ensayo correspondientes al uso del Aparato II de Paleta ó al uso del Aparato I de canastillas³⁹. Los métodos de canastilla y paleta son simples, robustos, están bien normalizados y se utilizan mundialmente. Estos métodos son lo suficientemente flexibles como para permitir la realización de pruebas de disolución de una gran variedad de productos farmacéuticos. Por este motivo, para la realización de las pruebas de disolución *in vitro* descritas en la Farmacopea Estadounidense (USP) deberían utilizarse el Aparato I y II, salvo que se pruebe que no son satisfactorios²⁴. Sin embargo, en los últimos años, ha habido un fuerte impulso para identificar problemas de biodisponibilidad de una formulación del fármaco sobre la base de los resultados de las pruebas de disolución de una forma pertinente. En particular, para las formas de dosificación de liberación inmediata (IR), el Aparato II de Paleta ha evolucionado como el método de elección para este fin²⁴,²⁵. Los otros aparatos de la USP o métodos alternativos solo deben usarse si es necesario basados en la superioridad para un producto/ forma farmacéutica en particular.

Entre los diferentes sistemas *in vitro* disponibles para la prueba de disolución, el Aparato IV de la USP ofrece una opción viable para llevar a cabo las pruebas de disolución de nuevas formas de dosificación⁴⁸. El uso de las celdas de flujo continuo para la prueba de disolución de tabletas y cápsulas no es una idea nueva. Hace más de 40 años fue desarrollado un método en celdas de flujo continuo en los laboratorios de la FDA (Food and Drug Administration) en los Estados Unidos y con esto se iniciaron los debates y discusiones entre los expertos en disolución de la Farmacopea de los Estados Unidos

(USP). Las celdas de flujo continuo que se utilizan en la actualidad están basadas en el trabajo desarrollado posteriormente por el Dr. F. Langenbucher y el Prof. H. Moeller y fue incorporado durante los años 90 como Aparato IV en la USP, la Farmacopea Europea y la Farmacopea Japonesa³⁰.

Hoy en día el aparato más comúnmente utilizado (Aparato USP I y II) está equipado con un agitador de paleta o una canasta y tienen un volumen de medio de disolución fijo de máximo 2000 mL, el cual se mantiene a una temperatura de 37°C, por lo que se trata de sistemas cerrados. Contrariamente, el método de flujo continuo con el Aparato IV utiliza una cantidad ilimitada de medio de disolución y es considerado un sistema abierto, lo cual ofrece una serie de ventajas en comparación con el Aparato I y II. Una de las principales ventajas que tiene el aparato abierto de flujo continuo sobre el aparato cerrado tradicional (de tipo paleta y/o canastilla) es que se pueden mantener fácilmente condiciones Sink o de no saturación del medio de disolución por periodos más largos. Esta aplicación es especialmente importante para los fármacos poco solubles, por lo que el desarrollo de correlaciones in vitro-in vivo es más fácil para estos fármacos^{3, 27}. Otra ventaja importante que tiene el Aparato IV es que el medio de disolución y/o los cambios en la velocidad de flujo se pueden realizar fácilmente dentro de la misma prueba, por lo que se pueden realizar cambios de pH durante la prueba. Esta aplicación es útil para probar la robustez de la formulación con respecto a las variaciones en el entorno intraluminal, ya que la hidrodinámica intraluminal es simulada más eficiente en este sistema que en otros sistemas in vitro. El cambio de medio de disolución se realiza por el cambio de una válvula de un medio a otro. Como el volumen de la celda es de sólo 10 mL y se utiliza una velocidad de flujo típica de 16 mL/min, sólo se requiere cerca de un minuto para un cambio de pH completo.

Los Aparatos I y II descritos en la USP se pueden usar con procedimientos de muestreo manual o automático; sin embargo, el muestreo en los métodos de agitación a menudo conduce a problemas. La introducción de la sonda de muestreo puede cambiar la hidrodinámica y por lo tanto las condiciones de disolución. Además, la zona de muestreo debe estar siempre en el mismo punto para garantizar la reproducibilidad. En el método de flujo continuo no hay problemas relacionados con el muestreo. No son necesarias manipulaciones manuales ni automatizadas. La solución muestra se filtra automáticamente a la salida de la celda y puede ser analizada directamente o después de fraccionarla sin interferir en el proceso de disolución. Algunos estudios han demostrado que las velocidades de disolución que se obtienen con el Aparato II son más rápidas que las obtenidas con el Aparato IV con el mismo medio de disolución. Esto probablemente se debe al hecho de que el Aparato II tiene una mayor fuerza de agitación y mezclado que el Aparato IV. Los resultados también han demostrado que el Aparato IV tiene más poder discriminatorio que

INTRODUCCIÓN

el Aparatos II; por lo tanto, los métodos con el Aparato IV son más adecuados para evaluar los excipientes y/o los cambios en el proceso que podrían afectar la velocidad de liberación del fármaco desde la forma de dosificación durante el desarrollo de la formulación²⁸.

Aunado a las ventajas antes mencionadas, en el Aparato IV se pueden estudiar más fácilmente las formas de dosificación flotantes y otras formas especiales⁴³. Actualmente están disponibles comercialmente los diferentes tipos de celdas para tabletas, cápsulas, implantes, polvos, granulados, pomadas, cremas, así como para supositorios²⁶. Sin embargo, este aparato tiene el inconveniente de ser caro para muchas empresas farmacéuticas nacionales que prefieren invertir en aparatos de disolución tradicionales que son más accesibles económicamente hablando y más necesarios desde el punto de vista de control de calidad. Es por ello que uno de los objetivos del presente trabajo es evidenciar algunas de las ventajas y aplicaciones que puede tener este Aparato de disolución sobre los tradicionales.

Actualmente la industria farmacéutica tiene un particular interés en calibrar los equipos y validar los métodos analíticos empleados en las determinaciones de materias primas y principios activos, para de esta forma asegurar la calidad de los medicamentos. La validación del método analítico para un perfil de disolución se realiza con el medicamento de referencia y con el medicamento de prueba y utiliza la misma metodología para ambos medicamentos, ya sea por adiciones patrón o calculando el porcentaje de recuperación. Pero la adopción de un método analítico debe estar soportada por suficientes datos de laboratorio y una validación bien documentada, que cumpla con los requisitos establecidos.

OBJETIVO GENERAL

Desarrollar y validar un método analítico por adiciones patrón utilizando espectrofotometría ultravioleta para evaluar y comparar perfiles de disolución de tabletas de tartrato de metoprolol de cinco marcas comerciales (Lopresor 100, Kenaprol, Nipresol, Proken y Metobest), utilizando Aparato II (Paletas) y IV (Celdas de flujo continuo).

OBJETIVOS PARTICULARES

- Realizar una investigación de antecedentes teóricos y normativos sobre la validación de métodos analíticos por adiciones patrón para tener un concepto claro acerca de los requisitos implicados en su realización y demostrar que las cualidades del método son adecuadas para obtener resultados confiables.
- Seleccionar las condiciones espectrofotométricas óptimas que permitan la cuantificación de Tartrato de Metoprolol en tabletas.
- Establecer un ensayo analítico confiable para cuantificar Tartrato de Metoprolol durante la prueba de disolución de tabletas.
- Realizar los estudios de laboratorio pertinentes para obtener la información necesaria y demostrar que las cualidades del método son adecuadas para obtener resultados confiables, cumpliendo con los criterios de aceptación establecidos en la Guía de Validación del Colegio de Químicos Farmacéuticos Biólogos y en la NOM 177-SSA1-1998.
- Evaluar el desempeño de las siguientes cualidades del método por adiciones patrón: especificidad, precisión del método, precisión del sistema, linealidad del método, linealidad del sistema, exactitud, repetibilidad y reproducibilidad.
- Realizar el Estudio de Disolución aparente con los productos innovador, genérico intercambiable y genérico de Tartrato de Metoprolol para determinar sus perfiles de disolución con los Aparatos II y IV USP y realizar así su comparación mediante la prueba de f2 y evaluar si existen diferencias significativas entre los productos de prueba y el producto de referencia.

MARCO TEÓRICO

1. DISOLUCIÓN

La disolución es el proceso por el cual un fármaco entra en solución en presencia de un disolvente; es decir, cuando una tableta u otra forma farmacéutica sólida se introducen en un recipiente con alguna solución acuosa o llega al estómago, el principio activo que contiene se libera hasta formar parte de la solución. Participan entonces diversos procesos fisicoquímicos como la humidificación de la superficie de los preparados sólidos, controlándose así el acceso de disolvente hacia la superficie del sólido. Posteriormente ocurre la desintegración del preparado a gránulos o agregados y finalmente la disgregación de ellos a partículas finas que al disolverse, podrán ser absorbidas dentro de un sistema biológico¹⁸.

La administración oral de formulaciones sólidas ha sido la principal vía de administración de fármacos durante casi un siglo. Sin embargo, fue sólo hasta hace poco más de 50 años que los científicos se dieron cuenta de la importancia de los procesos de disolución en la disponibilidad fisiológica de los fármacos. Mientras tanto, el estudio del proceso de disolución se ha venido desarrollando desde finales del siglo XIX por los fisicoquímicos. Por lo tanto, la mayor parte de la investigación fundamental en el campo no estaba relacionada con los fármacos en absoluto, y las leyes básicas para la descripción del proceso de disolución ya estaban disponibles cuando el interés en la disolución de los fármacos comenzó a aumentar⁴ y desde entonces el progreso ha sido importante.

1.1. Consideraciones Generales Acerca del Proceso de Disolución

La disolución de un sólido en un líquido no reactivo puede ser considerada como el fenómeno inverso a la cristalización. Desde el punto de vista macroscópico, la disolución de un sólido corresponde a la desintegración de la estructura cristalina bajo la acción del disolvente que la rodeé. Las partículas así liberadas, se distribuyen en la fase solvente mediante el proceso de difusión que tiene lugar a partir de la superficie del sólido, llegando a ocupar todo el seno de la solución. El proceso de disolución involucra la transferencia de las moléculas de un fármaco desde su estado sólido a un medio acuoso.

La velocidad de disolución se define como la cantidad de fármaco que se disuelve por unidad de tiempo bajo condiciones estandarizadas de la interfase líquida/sólida, la temperatura y la composición del solvente.

La velocidad a la cual un sólido se disuelve en un solvente fue estudiada, en términos cuantitativos por Noyes y Whitney⁴², quienes gracias a sus estudios establecieron la siguiente ecuación:

$$\frac{dC}{dt} = K(C_s - C)$$

Donde C es la concentración del soluto a tiempo t, dC/dt es la velocidad de cambio de la concentración respecto al tiempo, K es una constante con dimensiones de 1/tiempo y C_s , es la concentración de una solución saturada del soluto en el medio de disolución o bien, la solubilidad del sólido en este medio.

El siguiente desarrollo fue de Eric Brunner y Stanislaus von Tolloczko, que publicaron un artículo basado en una serie de experimentos en los que se demostraba que la velocidad de disolución depende de la superficie expuesta, la velocidad de agitación, la temperatura, la estructura de la superficie y el equipo de disolución⁹. El modelo propuesto se deriva de la ecuación de Noyes y Whitney, dejando a K como K_1S , siendo S el área superficial:

$$\frac{dC}{dt} = K_1 S(C_S - C)$$

Nernst y Brunner¹⁰, en 1904 hicieron una generalización teórica de la ley de Noyes y Whitney incluyendo el proceso de disolución dentro de las reacciones heterogéneas. Como tal, la velocidad de disolución estaría determinada por los procesos de difusión involucrados en el sistema. De este modo, aplicando la primera ley de difusión de Fick, la cantidad dm de una substancia que difunde en un tiempo dt a través de un plano perpendicular de área A, es directamente proporcional al cambio de concentración dc e inversamente proporcional a la distancia recorrida dx. Esto puede expresarse mediante la ecuación siguiente:

$$\frac{dm}{dt} = -DA \frac{dc}{dx}$$

En la que D es el coeficiente de difusión, el cual se define como la cantidad de soluto que difunde por unidad de área en la unidad de tiempo, cuando dc/dx, llamado gradiente de concentración, es igual a la unidad D tiene, por lo tanto, dimensiones de área por unidad de tiempo, como, por ejemplo, cm² seg⁻¹.

Nernst y Brunner postularon que sobre la superficie del sólido introducido en un líquido se forma una capa saturada de espesor h desde donde el soluto difunde hacia el seno de la

solución. En esta película estática existiría un flujo laminar, o sea, el líquido circula en capas separadas y superpuestas las unas a las otras a una velocidad idéntica. En cambio, en el seno de la solución existiría un flujo turbulento. La ecuación de Noyes y Whitney, modificada por Nernst y Brunner, bajo las circunstancias descritas se expresa como:

$$\frac{dC}{dt} = \frac{DS}{Vh}(C_s - C) = K(C_s - C)$$

Donde:

D = coeficiente de difusión del soluto en la solución

S = superficie del sólido expuesta al solvente

V = volumen de medio de disolución

h =espesor de capa de difusión

Con este método se mide la velocidad de disolución intrínseca, la cual se expresa en masa/tiempo/área. Esta forma de cuantificar la velocidad de disolución es útil para predecir las características de disolución en una forma farmacéutica. Una substancia que posea una velocidad de disolución intrínseca mayor de 1 mg/min/cm² no provocaría problemas de biodisponibilidad; en cambio si la velocidad es inferior a 0,1 mg/min/cm² podría producir problemas en la absorción.

1.2. Factores que Influyen en la Velocidad de Disolución

Las ecuaciones señaladas precedentemente incluyen, de modo directo o indirecto, a la mayoría de los factores susceptible de modificar la velocidad de disolución de substancias sólidas en un solvente no reactivo. La disolución de sólidos depende de factores fisicoquímicos que aportan ya sea, cambios en las características del soluto, esencialmente su solubilidad, o bien modificaciones en el medio donde se lleva a cabo la disolución, en particular el espesor de la capa a través de la cual se realiza el intercambio de materia entre las partículas disolver y el disolvente así como en la composición de este último.

Los factores que determinan la velocidad de disolución han sido expuestos en detalle en muchas publicaciones⁴⁰, distinguiendo los factores dependientes del medio de disolución de aquellos que dependen del sólido a disolver. En esta clasificación de factores se incluyen sólo aquellos que pueden afectar a sustancias puras y no a formas farmacéuticas, donde el efecto de los excipientes y los factores tecnológicos involucrados hacen variar notablemente las características de disolución de fármacos puros.

El estudio de los factores que se resumen a continuación puede servir de guía para la evaluación biofarmacéutica de materias primas en la industria farmacéutica y poder seleccionar aquellas más apropiadas para un determinado proceso¹⁵:

A. Factores que dependen del medio de disolución

- a) Intensidad de la agitación
- b) Temperatura
- c) Composición del medio:
 - pH
 - Viscosidad
 - Mezcla de disolventes
 - Presencia de adsorbentes
 - Tensión superficial
 - Sales u otros compuestos

B. Factores que dependen del sólido a disolver:

- a) La solubilidad, que depende de:
 - La naturaleza química: sal, ácido, éster, etc.
 - El polimorfismo
 - Las impurezas
- b) La superficie libre, que depende de:
 - El tamaño de las partículas
 - La porosidad
 - Forma geométrica

1.3. Importancia del Proceso de Disolución

El efecto terapéutico de un medicamento es la suma de dos aspectos complementarios: la calidad biofarmacéutica uniforme y reproducible del producto y el estado fisiopatológico del organismo que lo recibe. El primer aspecto es fundamental para la optimización de la terapia y es la meta de los estudios biofarmacéuticos¹².

Para que un fármaco ejerza su acción debe ser absorbido, distribuido, biotransformado y excretado por el organismo. Lo anterior está en función de las características intrínsecas de absorción y su estado físico, que debe ser el de la molécula disuelta. Es requisito indispensable que el fármaco esté en solución, si se desea que pase a circulación sistémica, ya que la disolución es usualmente la limitante para la absorción de fármacos con baja solubilidad.

La cinética de disolución de sustancias sólidas ha generado gran atención por su aplicación al estudio de productos farmacéuticos, relacionando este proceso con la biodisponibilidad de fármacos en el organismo¹⁴. Muchos investigadores han establecido el concepto de que el proceso de absorción de fármacos a nivel del tracto gastrointestinal está controlado por la velocidad con que éstos se disuelven en los medios fisiológicos que allí se encuentran.

Cuando el fármaco se encuentra dentro de una formulación sólida, los procesos de disolución se verán modificados debido a los componentes de la misma. Por lo tanto, conocer los factores que afectan este proceso es de suma importancia; esto permite correlacionar los resultados con parámetros *in vivo*, y por ende asegurar que el fármaco se encuentre biodisponible para ser absorbido. La figura 1 muestra el proceso de disolución *in vivo* de una forma farmacéutica sólida. Se puede observar que la disolución del fármaco dependerá de la liberación del mismo medicamento, y esto a su vez será un factor determinante para la absorción del mismo. Así que las pruebas de disolución son discriminantes de los factores de formulación que pueden afectar la biodisponibilidad del fármaco.

Por la importancia de los criterios enunciados en el punto anterior, la prueba de disolución *in vitro* puede ser relevante al orientar el comportamiento del producto *in vivo*. La justificación de los estudios de disolución *in vitro* se fundamentan en que para lograr una adecuada absorción del medicamento, se requiere que el mismo esté disuelto en el fluido biológico del sitio de absorción, independientemente del mecanismo de absorción a través del cual esto ocurra³⁸.

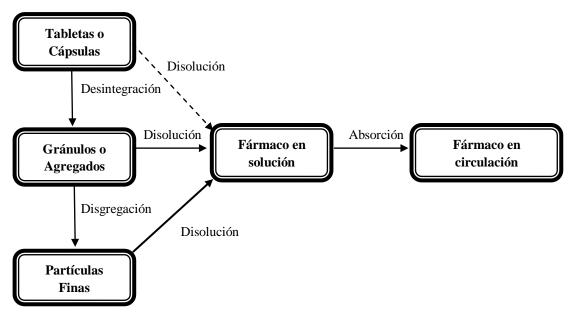


Figura 1. Eventos simultáneos para la disolución de un principio activo.

2. BIODISPONIBILIDAD Y BIOEQUIVALENCIA

Cuando se dispone de una sustancia de eficacia farmacológica totalmente comprobada debe formularse y elaborarse tecnológicamente, de modo que su aprovechamiento por el organismo resulte óptimo. Para que un determinado principio activo ejerza una acción terapéutica óptima, la formulación que lo contiene debe liberarlo de forma que alcance una concentración eficaz en su lugar de acción durante un determinado periodo de tiempo⁵¹. El proceso de liberación del fármaco de la forma farmacéutica debe ser lo más constante posible sin que se presenten variaciones significativas entre los distintos lotes de fabricación, con la finalidad de que pueda garantizarse una respuesta terapéutica reproducible; en otras palabras, debe conocerse la biodisponibilidad de un principio activo contenido en una forma farmacéutica y ser ésta reproducible para garantizar, a su vez, la reproducibilidad de las respuestas terapéuticas. Este aspecto es especialmente importante en el control de calidad de los lotes de fabricación y muy especialmente en el caso de la sustitución terapéutica de medicamentos¹⁹. Debido a ello, en la actualidad se exige que, como paso previo a la comercialización de un medicamento, se determine su biodisponibilidad. Un ensayo clínico cuyo objetivo sea la comparación de la biodisponibilidad de dos formulaciones farmacéuticas de un mismo principio activo, se denomina estudio de bioequivalencia.

2.1. Concepto y Definiciones

La Biodisponibilidad, según la OMS y la FDA, se define como la cantidad y velocidad con las que el principio activo contenido en una forma farmacéutica alcanza la circulación sistémica²³, determinadas mediante la curva concentración/tiempo o la excreción urinaria.

Teniendo en cuenta que la sustancia está en equilibrio entre el sitio de acción y la circulación general, se asume que los parámetros medidos en sangre del medicamento son representativos de la biodisponibilidad del mismo, de modo que la biodisponibilidad evalúa el rendimiento de una forma farmacéutica. Por ello, se acepta como definición operativa que la biodisponibilidad es la propiedad de una forma farmacéutica que determina cuánto y cómo llega el fármaco contenido en ella hasta la circulación sistémica.

Generalmente, la actividad de un fármaco en el sitio de acción está relacionada con su concentración en la sangre u otros fluidos de distribución y con la velocidad a la cual el cuerpo excreta o biotransforma el fármaco. De acuerdo a este concepto, la importancia de la biodisponibilidad en la terapia recae en el hecho de que aquellas formas farmacéuticas que

muestran una baja tasa de absorción pueden, en principio, afectar la respuesta terapéutica de un paciente a un determinado principio activo.

La FDA también ha dado una serie de definiciones tendientes a clarificar algunos conceptos²²:

a) Equivalentes farmacéuticos: productos que contienen cantidades idénticas del mismo principio activo, por ejemplo, la misma sal o éster de la especie terapéutica, en la misma forma farmacéutica, pero que no necesariamente contienen los mismos ingredientes inactivos, y que reúnen idénticos estándares de identidad, potencia, calidad y pureza y, cuando es aplicable, uniformidad de contenido, tiempo de desintegración y/o velocidad de: disolución.

Según esta definición, comprimidos de ácido acetilsalicílico de 500 mg del Laboratorio A y del Laboratorio B, se consideran equivalentes farmacéuticos dado que contienen la misma cantidad del mismo principio activo, en la misma forma farmacéutica.

b) Alternativas farmacéuticas: productos que contienen idéntica especie terapéutica o su precursor, pero no necesariamente en la misma cantidad o forma farmacéutica o la misma sal o éster. Cada producto, en forma individual, reúne los estándares de identidad, potencia, calidad y pureza y, cuando es aplicable, uniformidad de contenido, tiempo de desintegración y/o velocidad de disolución.

De acuerdo a esta definición, suspensiones de palmitato o de estearato de cloranfenicol son consideradas alternativas farmacéuticas, así corno también lo son cápsulas de 250 mg de ampicilina con cápsulas de 500 mg de este mismo antibiótico.

c) Productos bioequivalentes: son equivalentes farmacéuticos o alternativas farmacéuticas cuya velocidad y magnitud de la absorción no muestran una diferencia significativa cuando se administran en la misma dosis molar de la porción terapéutica, bajo condiciones experimentales similares, ya sea por una administración simple o en dosis múltiples.

Algunos equivalentes farmacéuticos o alternativas farmacéuticas pueden ser equivalentes en cuanto a la magnitud de la absorción pero no en la velocidad de este proceso y pueden considerarse bioequivalentes siempre que tales diferencias en la velocidad de absorción sean intencionales y estén debidamente informadas, no sean esenciales en el logro de una concentración efectiva del fármaco en el cuerpo durante su uso crónico o sean consideradas médicamente insignificantes en la forma farmacéutica particular en estudio.

A estas definiciones podemos agregar:

- d) Equivalentes terapéuticos: formas farmacéuticas que contienen el mismo principio terapéutico y que originan idénticos efectos in vivo.
- e) Alternativas terapéuticas: formas farmacéuticas que contienen diferentes principios activos que son indicados para el mismo objetivo clínico o terapéutico.

La Bioequivalencia implica la comparación de dos o más productos basada en la velocidad y magnitud de la absorción y, mientras esto no se verifique, dos productos no podrán ser considerados bioequivalentes aún cuando se obtengan resultados equivalentes en los ensayos tradicionales de control de calidad, de contenido y de desintegración o de disolución.

También el término bioequivalencia, según la definición dada por la FDA, significa que sólo pueden declararse bioequivalentes dos o más productos con el solo requisito de la cantidad absorbida, independientemente de su velocidad de absorción²³. Esto ha sido incluido para aquellos productos de acción prolongada, donde la velocidad de cesión desde la forma farmacéutica ha sido intencionalmente modificada.

Se considera que dos medicamentos son bioequivalentes si:

- 1. Son equivalentes farmacéuticos: contienen la misma cantidad del mismo principio activo en la misma forma de dosificación.
- 2. Poseen igual biodisponibilidad: no exhiben diferencias significativas en la cantidad y velocidad de absorción de un mismo principio activo, cuando se administran en la misma dosis, bajo condiciones experimentales similares. Así, en términos de eficacia y seguridad, los efectos serán esencialmente los mismos (equivalencia terapéutica) y una de las especialidades farmacéuticas puede sustituir a la otra en el tratamiento de una enfermedad o síntoma en un paciente concreto.

En síntesis, podemos decir que la Bioequivalencia es la Biodisponibilidad comparada de dos productos, el producto de prueba y el producto de referencia, para el cual la eficacia y seguridad han sido establecidas. Se acepta que el producto en estudio es bioequivalente con el de referencia, cuando sus valores (especialmente ABC y $C_{máx}$) se encuentran dentro del intervalo de confianza del 90% (80%- 125%).

2.2. Objetivos de los Estudios de Biodisponibilidad

En general, los objetivos de los estudios de biodisponibilidad pueden ser resumidos de la manera siguiente³¹:

- I. Establecer equivalencias.
 - A. Entre diferentes formulaciones farmacéuticas.
 - B. Entre diferentes partidas de la misma formulación.
 - C. Entre productos comerciales del mismo fármaco.
- II. Establecer posologías.
 - A. Importancia de la dosis y de la forma de administración.
 - B. Elección de la vía de administración.
 - C. Consideraciones farmacocinéticas.
- III. Estudio de interacciones.
 - A. Compatibilidad con excipientes, alimentos y otros fármacos.
 - B. Tratamiento de intoxicaciones debido a sobredosis.
 - C. Interferencia con el metabolismo: inhibición o potenciación.
- V. Estudio de correlaciones in vivo entre animales de laboratorio y el hombre.
- VI. Estudio de correlaciones entre la biodisponibilidad y actividad farmacológica.

2.3. Criterios para Establecer los Requerimientos de Bioequivalencia

De acuerdo a la FDA^{22, 37} deben considerarse los siguientes criterios para establecer la bioequivalencia de equivalentes farmacéuticos y de alternativas farmacéuticas:

- a) Evidencia de juicios clínicos y observaciones en pacientes que estos productos no proporcionan efectos terapéuticos comparables.
- b) Evidencia de estudios de bioequivalencia que indiquen que tales productos no son bioequivalentes.
- c) Evidencia de que los fármacos presentan un estrecho margen terapéutico por ejemplo, existe una diferencia menor de dos en la relación de concentración tóxica mínima y concentración efectiva mínima en la sangre.
- d) Determinación médica competente de que una falta de bioequivalencia podría tener un efecto adverso serio en el tratamiento o prevención de una enfermedad.

e) Evidencia físico - química que:

- 1. El fármaco tiene una baja solubilidad en agua, por ejemplo, menor de 5 mg por mL, o, si la disolución en el estómago es crítica para la absorción y el volumen del fluido gástrico requerido para disolver la dosis recomendada excede largamente el volumen de fluido presente en el estómago (estimado en 100 mL para una persona adulta).
- 2. La velocidad de disolución de los productos es baja, por ejemplo, menor de 50% en 30 minutos cuando se determina por alguno de los métodos de la USP, a 100 r.p.m. en el método del canastillo o a 50 r.p.m. en el método de la paleta, en 900 mL de agua destilada a 37°C.
- 3. El tamaño de partículas o la superficie específica del fármaco es crítica en la biodisponibilidad.
- 4. Cuando existen polimorfos, solvatos, complejos y cualquier modificación cristalina de baja solubilidad y la disolución pueda afectar la absorción.
- 5. Cuando en las formas farmacéuticas existe una alta relación de excipiente en relación al fármaco, por ejemplo, mayor de 5 a 1.
- 6. Cuando los agentes inactivos (excipientes) puedan interferir con la absorción.

f) Evidencias farmacocinéticas que:

- 1. El principio activo o su precursor es absorbido principalmente en algún segmento particular del tracto gastrointestinal o en algún sitio localizado.
- 2. El grado de absorción del principio activo o su precursor es bajo, por ejemplo, menor del 50% comparado con una inyección intravenosa cuando se administra en forma pura en solución.
- 3. Existe un rápido metabolismo del fármaco en la pared intestinal o en el hígado durante el proceso de absorción, de modo que el efecto terapéutico y/ o la toxicidad de tal producto son determinados tanto por la velocidad como por el grado de absorción.
- 4. El producto es rápidamente metabolizado o excretado, de modo que se requiere una rápida disolución y absorción para lograr su efectividad.
- 5. El fármaco es inestable en porciones específicas del tracto gastrointestinal y requiere recubrimientos o formulaciones especiales, por ejemplo, tampones, recubrimientos entéricos o de películas, para asegurar una absorción adecuada.
- 6. El principio activo está sujeto a una cinética dosis dependiente en o cerca del rango terapéutico y la velocidad y magnitud de la absorción son importantes en la bioequivalencia.

3. PRUEBA DE DISOLUCIÓN IN VITRO

La prueba de disolución es un método para medir la liberación de un principio activo, a partir de la forma farmacéutica que lo contiene y la disolución de éste, en el medio de prueba. Las condiciones óptimas para la realización de este tipo de pruebas difieren de acuerdo con la formulación de cada producto farmacéutico.

En la industria farmacéutica el uso de las pruebas de disolución *in vitro* cumplen diferentes propósitos, ya sea en el desarrollo de nuevos productos, en el control de calidad para conocer la liberación del fármaco a partir de la forma farmacéutica, para evaluar variabilidad interlote o bien para predecir la biodisponibilidad y bioequivalencia de los productos²⁵.

Durante las tres últimas décadas la prueba de disolución se ha convertido en una valiosa herramienta para caracterizar la calidad de los productos farmacéuticos orales. En un primer momento, se usaba exclusivamente como una prueba de control de calidad y actualmente está surgiendo como un sustituto de la prueba de bioequivalencia para ciertas categorías de productos farmacéuticos de administración oral. Para estos productos una semejanza comparativa de sus perfiles de disolución *in vitro* puede ser usada para documentar su equivalencia⁵³.

Este tipo de prueba *in vitro* sirve como una guía durante el desarrollo de una forma farmacéutica, para evaluar la cantidad de fármaco que está siendo liberado por unidad de tiempo en un medio de disolución determinado. La disponibilidad fisiológica de las formas farmacéuticas normalmente no puede ser determinada por un simple estudio de desintegración *in vitro*. Hasta la fecha, la evaluación de la velocidad de disolución *in vitro* parece ser el predictor más sensible y confiable del desempeño *in vivo*. La disolución de una forma de dosificación es frecuentemente el factor que determina la disponibilidad fisiológica de un fármaco, es muy probable que la medida de la velocidad de disolución *in vitro* nos ayude a predecir la disponibilidad fisiológica⁷.

De manera general, la utilidad de la prueba de disolución se puede resumir en:

- Puede ser un indicador del desempeño *in vivo*.
- Sirve como una prueba de control de calidad que provee evidencia sobre la consistencia física del producto y el proceso de fabricación.
- Sirve como una herramienta de aseguramiento de calidad en la evaluación lote a lote.

- Es útil durante las primeras etapas del desarrollo del producto y de su formulación. Ayuda en la selección de la formulación más deseable para desarrollo.
- Utilizada ampliamente para probar la estabilidad del producto.
- Provee los datos para facilitar la aprobación inicial y los cambios referentes al escalamiento y post-aprobación del producto.
- Permite a las entidades regulatorias tomar la decisión de aprobar cambios menores en la formulación y procesos de fabricación.
- Es un requisito regulatorio en las pruebas de evaluación de formas farmacéuticas sólidas.

3.1. Perfiles de disolución

El perfil de disolución se define como la curva característica al proceso de disolución, cuando se representa gráficamente la cantidad o concentración de fármaco disuelto contra tiempo¹². A diferencia de la prueba de disolución, el perfil contempla un muestreo del fármaco disuelto en intervalos de tiempos cortos durante un periodo tal que permita la cuantificación del 100% de la dosis contenida en la forma de dosificación, obteniendo mayor información para intentar establecer la correlación de parámetros de disolución *in vitro* con resultados de biodisponibilidad para establecer la bioequivalencia de productos genéricos¹⁸.

Las pruebas de disolución *in vitro* deben imitar directamente al medio ambiente en el tracto gastrointestinal, por lo que los medios de disolución se preparan de acuerdo a las características del mismo.

La NOM-177-SSA1-1998 establece en su apartado siete los criterios y requisitos para la evaluación de perfiles de disolución como prueba de intercambiabilidad para formas farmacéuticas de liberación inmediata. Entre las características que debe tener el estudio destacan las siguientes:

- 1. El método de evaluación del perfil de disolución debe realizarse de acuerdo con las monografías de perfiles de disolución de la FEUM cuando esté descrito.
- Los estudios de perfil de disolución se llevarán a cabo en el aparato I (canastilla) a 100 rpm o el aparato II (paletas) a 50 rpm empleando 900 mL de los siguientes medios de disolución:
 - a) Solución 0.1 N de ácido clorhídrico o fluido gástrico simulado sin enzima.
 - b) Solución reguladora pH 4.5.
 - c) Solución reguladora pH 4.5 o fluido intestinal simulado sin enzima.

- 3. Realizar los perfiles de disolución con 12 unidades, tanto del medicamento de prueba como el de referencia, en cada uno de los medios de disolución.
- 4. Para realizar el perfil de disolución, deben seleccionarse por lo menos 5 tiempos de muestreo, que permitan caracterizar apropiadamente la curva ascendente y la fase de meseta.
- En cada uno de los medios de disolución utilizar una curva de calibración de la sustancia de referencia para calcular por interpolación la concentración del fármaco disuelto.
- 6. Se debe validar el método analítico de cuantificación de fármaco.
- 7. El porcentaje disuelto debe calcularse con respecto a la dosis nominal del fármaco.
- 8. Se deben reportar los porcentajes disueltos a cada tiempo de muestreo en cada unidad de dosificación, así como los porcentajes disueltos promedio, los coeficientes de variación y los valores máximo y mínimo en cada uno de los medios de disolución.
- 9. Se deben graficar los porcentajes disueltos promedio en cada uno de los medios de disolución.
- 10. Si el coeficiente de variación del porcentaje disuelto promedio en cada uno de los medios de disolución es menor o igual que el 20% para el primer tiempo de muestreo y menor o igual que el 10% para los tiempos subsecuentes, se comparan los perfiles de disolución usando el factor de similitud (f₂) definido en la siguiente ecuación:

$$f_2 = 50 Log \left\{ \left[1 + \left(\frac{1}{n} \right) \sum_{t=1}^{n} (R_t - P_t)^2 \right] \right\}^{-0.5} \times 100$$

Donde:

n = número de tiempos de muestreo

 R_t = porcentaje disuelto promedio en el tiempo t del medicamento de referencia

 P_t = porcentaje disuelto promedio en el tiempo t del medicamento de prueba

- 11. Calcular el valor de f₂ en cada uno de los medios de disolución. Si el valor de f₂ es mayor a 50, en los tres medios de disolución, los perfiles de disolución son similares.
- 12. En el caso que tanto el producto de prueba como el producto de referencia se disuelvan más del 85% en menos de 15 minutos en los tres medios de disolución, no es necesario emplear el factor de similitud y los productos se clasifican como de rápida disolución.
- 13. Si el coeficiente de variación del porcentaje disuelto es mayor al establecido en el numeral 10, utilizar una prueba estadística científicamente sustentable.

Generalmente, los perfiles que se obtienen con el aparato I y II de disolución son como se indica en la figura 2, mientras que el tipo de perfil que se genera con el aparato IV de disolución es del tipo de la figura 3.

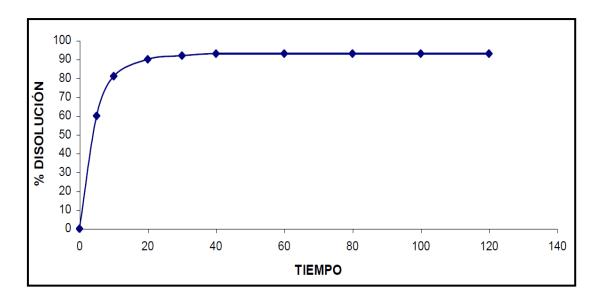


Figura 2. Perfil con aparatos I y II de disolución. Gráfico de un perfil de disolución acumulativo.

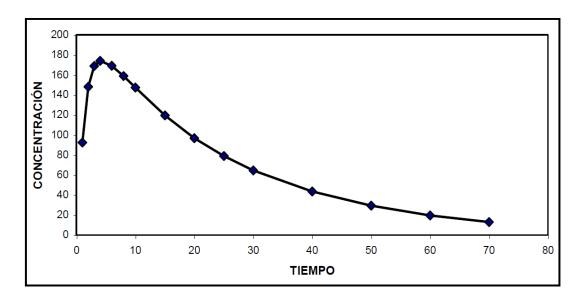


Figura 3. Perfil con aparato IV de disolución. Gráfico de un perfil de disolución con flujo continuo.

MARCO TEÓRICO

Ya se han comentado los aspectos estadísticos respecto del gráfico en la figura 2 que se refieren principalmente al factor de similitud, con lo que prácticamente queda cubierto el análisis de este tipo de perfiles.

El gráfico de la figura 3 es típico del aparato IV de disolución, del aparato de disolución cinética y de los perfiles que se obtienen en estudios *in vivo*. Esto significa que los aparatos mencionados simulan de mejor manera lo que sucede en un organismo vivo cuando se le administra un medicamento por vía extravascular. A partir de este perfil se obtienen una serie de parámetros cinéticos que sirven para caracterizar un medicamento; es a través de estos parámetros que es posible realizar comparaciones cuantitativas y cualitativas entre dos formulaciones.

4. SISTEMA DE CLASIFICACIÓN BIOFARMACÉUTICA (BSC)

El sistema de clasificación biofarmacéutica (BSC), propuesto en 1995 por Amidon et al, se basa en un sólido fundamento científico para clasificar un fármaco considerando los parámetros de solubilidad y permeabilidad, factores estrechamente relacionados con el proceso de absorción, y plantea como objetivo, la posibilidad de establecer correlaciones *in vitro-in vivo* que permitan sustituir los ensayos realizados en humanos por ensayos de disolución *in vitro* (bioexención), de acuerdo con la clasificación obtenida para el fármaco^{32, 53, 54}.

De acuerdo con el BSC, los fármacos se pueden clasificar en cuatro categorías, basados en su solubilidad y permeabilidad, como se presenta en la Tabla 1²⁵.

Clase	Solubilidad	Permeabilidad
I	Alta	Alta
II	Baja	Alta
III	Alta	Baja
IV	Baja	Baja

Tabla 1. Clasificación de los fármacos de acuerdo con el BSC.

Según sea la solubilidad o la permeabilidad del fármaco el factor limitante, se define cuál de ellas determina el proceso de absorción, lo cual permite relacionar la clasificación del fármaco con la posibilidad de establecer correlaciones *in vitro-in vivo* (CIVIV)³³.

Al momento de realizar la clasificación se deben conocer los límites a los que se hace referencia en cada uno de los casos, tanto para la solubilidad como para la permeabilidad y que se encuentran establecidos en las guías de la FDA y en el anexo 7 del informe 40 de la OMS^{25, 55}:

- *Solubilidad*: se considera de alta solubilidad, cuando el fármaco en su mayor dosis (recomendada por la OMS o disponible en el mercado como forma sólida oral) es soluble en 250 mL o menos de medio acuoso en un rango de pH de 1,2-7,5, según la FDA, y de 1,2 6,8, según la OMS.
- *Permeabilidad*: se clasifica como altamente permeable, si la cantidad absorbida en humanos es mayor al 85%, según la OMS, y 90%, según la FDA.

Es posible determinar la solubilidad por el método clásico⁶ en el rango de pH establecido y a la temperatura de 37°C. La permeabilidad se puede conocer a partir de la fracción

absorbida, obtenida mediante parámetros farmacocinéticos *in vivo* en humanos, mediante estudios de perfusión en humanos o en animales (*in situ* o *ex vivo*)^{8, 32}, y evaluándola en cultivos celulares (Caco-2)⁵, en membranas artificiales¹⁷ o mediante predicción *in silico*³⁶. Los últimos dos métodos son objeto de varias investigaciones en los últimos años para evaluar su posible empleo futuro como métodos predictivos, por lo que aún se encuentran en fase de estudio.

Una vez clasificado el fármaco de acuerdo con estas propiedades, se evalúa la posibilidad de emplear los estudios de disolución *in vitro* como predictores del comportamiento *in vivo* del medicamento, siempre y cuando se puedan establecer las correlaciones requeridas, lo cual se ilustra en la Tabla 2.

Tabla 2. Correlaciones in vitro - in vivo esperadas para productos de liberación inmediata, sobre la base de la clasificación biofarmacéutica²⁵.

Clase	Correlación CIVIV esperada
I	CIVIV si la velocidad de disolución es menor que la velocidad de vaciamiento gástrico. De lo contrario la correlación es limitada* o puede no existir.
II	Se espera CIVIV si la velocidad de disolución in vitro es similar a la velocidad
	in vivo, exceptuando los casos en que la dosis sea muy elevada.
III	La absorción (permeabilidad) es el paso determinante y la CIVIV limitada* o
111	no por la etapa de disolución.
IV	La CIVIV es limitada*, o simplemente puede no existir.

^{*} Una correlación limitada significa que la velocidad de disolución, mientras no esté controlada, puede ser similar a la velocidad de absorción y el grado de la correlación dependerá de las velocidades relativas.

Solamente cuando el proceso de absorción está limitado por la velocidad de disolución se pueden obtener correlaciones *in vitro-in vivo*. El objetivo final del BSC es tener la posibilidad de utilizar estas correlaciones para predecir el comportamiento de medicamentos de liberación inmediata de administración oral².

Con el fin de explicar la Tabla 1, es necesario aclarar los límites definidos para la disolución, y los establecidos para la solubilidad, la permeabilidad y los tipos de CIVIV existentes.

- *Medicamento de disolución muy rápida*: se considera como tal, cuando no menos del 85% de la cantidad etiquetada del fármaco se ha disuelto en 15 min, a pH 1,2, 4,5 y 6,8, en las condiciones establecidas⁵⁵.

- *Medicamento de disolución rápida*: se considera tal, si no menos del 85% de la cantidad etiquetada del fármaco se ha disuelto en 30 min, a pH 1,2, 4,5 y 6,8, en las condiciones establecidas⁵⁵.

Las CIVIV se definen como un modelo matemático predictivo que describe la relación entre una característica *in vitro* de la forma de dosificación y una variable respuesta *in vivo*. La característica *in vitro* más utilizada es la fracción disuelta (*Fd*) a un determinado tiempo, y la variable respuesta *in vivo* es la fracción absorbida (*Fa*) al mismo tiempo.

4.1. Bioexenciones

Bioexención significa que los estudios de biodisponibilidad *in vivo* y/o bioequivalencia pueden ser exentos para la aprobación del producto. Se pueden sustituir estudios *in vivo* caros y que consumen tiempo, por una prueba de disolución para equivalentes farmacéuticos^{53, 54}.

Tomando como base a la clasificación biofarmacéutica del fármaco, las características de disolución del producto farmacéutico, la similitud del perfil de disolución de los productos de prueba y referencia en medios a pH de 1.2, 4.5 y 6.8, los excipientes usados en la formulación, el riesgo del fármaco en términos del índice terapéutico y las indicaciones para el ingrediente activo; se puede autorizar la bioexención de productos de prueba.

Actualmente, según lo establecido en el anexo 7 del informe 40 de la OMS, se puede solicitar exención de pruebas de biodisponibilidad y bioequivalencia *in vivo* de productos farmacéuticos de liberación inmediata que contengan⁵⁵:

- Fármacos de la clase I del BSC.
- Fármacos de la clase II del BSC que son ácidos débiles, que requieran 250 mL o menos para disolver la dosis a pH 6,8, el medicamento debe ser de disolución rápida y los perfiles de disolución entre el comparador y el comparado, muy similares en el rango de pH establecido.
- Fármacos de la clase III del BSC, siempre y cuando la velocidad de disolución del medicamento (tanto el comparado como el comparador) sea muy rápida.

En el inicio del BSC solamente podían ser eximidos de estudios *in vivo* los fármacos incluidos en la clase I³². Hoy día, después de numerosas discusiones científicas y publicaciones realizadas respecto al tema⁴⁵, la bioexención se ha ampliado a las categorías explicadas anteriormente.

5. DESARROLLO DE LA PRUEBA PARA PERFILES DE DISOLUCIÓN

Establecer especificaciones de disolución permite la liberación de nuevos lotes dentro del mercado de venta. Las especificaciones de disolución *in vitro* se establecen para asegurar la constancia de lote a lote y para indicar posibles problemas con la biodisponibilidad *in vivo*.

El desarrollo de la prueba debe hacerse utilizando aparatos de disolución calibrados y siguiendo las recomendaciones descritas en las diferentes guías de la FDA y en los capítulos de la USP para disolución, Liberación de fármacos, Disolución intrínseca y Evaluación de formas farmacéuticas, *in vitro* e *in vivo*, respectivamente.

Las variables importantes que se deben de considerar cuando se desarrolla una prueba para perfiles de disolución son:

- Selección del aparato de disolución
- Selección del volumen y medio de disolución
- Condiciones de Sink
- Selección de la velocidad de agitación
- Temperatura (37°C)
- Duración de la Prueba
- Perfiles de Disolución
- Especificaciones y limites de aceptación
- Selección y validación del método analítico

5.1. Selección del Aparato de Disolución

Actualmente la USP hace referencia a 7 aparatos oficialmente reconocidos para llevar a cabo pruebas de disolución⁵⁰; sin embargo, la elección de este depende de la forma farmacéutica en cuestión. En México, la mayor parte de las pruebas de disolución que se llevan a cabo es utilizando los aparatos I y II de disolución, bajo las condiciones de prueba que marca la Farmacopea Nacional o bien, la USP. Los métodos con estos aparatos son simples, robustos, estándares, y se usan mundialmente. Estos métodos son suficientemente flexibles para usarse en las pruebas de disolución de una gran variedad de productos farmacéuticos. Los otros aparatos de la USP o métodos alternativos deben usarse si es necesario basándose en lo que sea más conveniente para un producto o forma farmacéutica en particular.

Tabla 3. Aparatos utilizados en la prueba de disolución para productos de liberación oral y productos transdérmicos.

Sistemas de Liberación Oral						
	Aparato	Inmediata (IR)	Extendida (ER)	Retardada (RR)	Controlada (CR)	Productos Transdérmicos
USP I	Canastilla	×	×	×		
USP II	Paletas	×	×	×		
USP III	Cilindro oscilante		×	×	×	
USP IV	Celda de flujo continuo		×	×	×	
USP V	Paleta / Disco					×
USP VI	Cilindro					×
USP VII	Soporte de oscilación vertical			×		×

5.1.1. Aparato de Disolución I

El aparato I de disolución es utilizado para productos de liberación oral inmediata (IR), extendida (ER), retardada (RR) (por ejemplo: cápsulas de gelatina dura y blanda, tabletas sin recubrimiento, tabletas con recubrimiento simple y recubrimiento entérico). Este aparato consiste en un vaso de vidrio u otro material inerte y transparente con tapa, un motor, un dispositivo giratorio y una canastilla cilíndrica. El vaso debe estar inmerso en un baño de agua o enchaquetado de manera que permita que la temperatura del medio contenido por el vaso sea de 37±5°C durante toda la prueba; a su vez, la tapa retarda la evaporación. La transparencia del vaso permite visualizar el proceso de desintegración de la forma farmacéutica (es el aparato de elección principal para cápsulas y productos que tienden a flotar). El vaso cilíndrico con un fondo semiesférico de distintas dimensiones dependiendo de la capacidad del mismo: si el vaso es de 1 litro, la altura es de 160-210 mm y el diámetro interno es de 98-106 mm; si la capacidad es de 2 litros, la altura va de 280-300 mm y el diámetro interno también de 98-106 mm; si la capacidad es de 4 litros, la altura va de 280-300 mm y el diámetro interno de 145-155 mm. Ninguna parte del aparato o de su entorno debe ser fuente de vibración, movimiento o agitación que no sea la proporcionada por el elemento rotatorio del mismo. La excentricidad del dispositivo

giratorio no debe ser mayor de 2 mm del eje vertical central del vaso ni a menos de 2.5 cm del fondo del vaso y la velocidad de agitación elegida no debe variar más allá de \pm 4%. La canastilla y el elemento giratorio deben ser de acero inoxidable tipo 316; a menos que se especifique lo contrario, el numero de malla de la canastilla debe ser de 40 y puede usarse recubierta de oro con espesor de 0.0001 pulgadas. Siempre que se inicie una prueba, la canastilla debe estar completamente seca⁵⁰. La distancia entre el fondo interno del vaso y el fondo de la canastilla se mantiene a 25 \pm 2 mm durante la prueba.

Figura 4. Aparato de disolución I, también llamado de canastilla.

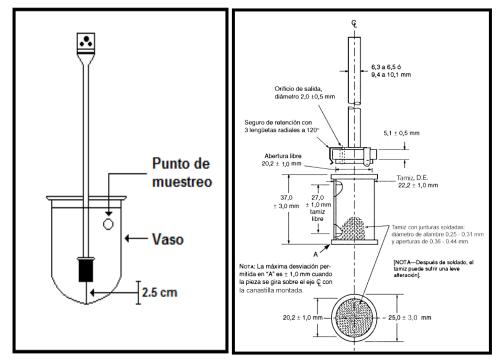


Figura 5. Elemento de Agitación de Canastilla.

5.1.2. Aparato de Disolución II

Este método es utilizado para productos de liberación oral inmediata (IR), controlada (CR), extendida (ER) y retardada (RR). El aparato II de disolución tiene las mismas especificaciones que el aparato I, lo único que cambia es el elemento giratorio que en este caso es un sólo cuerpo consistente de un eje y una paleta. En este caso la forma farmacéutica; que generalmente es una tableta; se coloca libremente en el vaso antes de comenzar la prueba, no está atrapada en una canastilla como en el aparato anterior 50 . La paleta cumple con las especificaciones que se indican en la Figura 7. La distancia entre el fondo interno del vaso y el borde inferior del aspa se mantiene a 25 ± 2 mm durante la prueba. El aspa metálica o de otro material inerte adecuado y el eje forman una unidad. El eje y el aspa de la paleta pueden estar recubiertos con un material inerte adecuado.

Figura 6. Aparato de disolución II, también llamado de paleta.

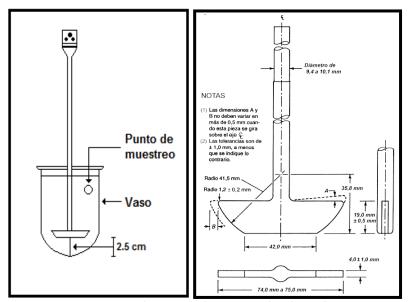


Figura 7. Elemento de Agitación de Paleta

5.1.3. Aparato de Disolución IV

Utilizado para productos de liberación controlada (CC), extendida (ER) y retardada (RR). El aparato IV es un sistema abierto de flujo continuo automático y estandarizado que consiste en lo siguiente: un reservorio de medio de disolución y una bomba; una celda de flujo continuo y un baño de agua que mantenga el medio de disolución en 37±0.5°C. La bomba lleva el medio de disolución hacia arriba a través de la celda a una velocidad de flujo estándar de 4, 8 y 16 mL por minuto; el flujo debe ser volumétrico para que sea constante independientemente de la resistencia del dispositivo de filtrado, el perfil de flujo es sinusoidal con una pulsación de 120±10 pulsos por minuto. Los procedimientos de la prueba de disolución en los que se usa una celda de flujo deben estar caracterizados con respecto a la velocidad y a las pulsaciones. La celda de flujo continuo debe ser de material inerte y transparente, se monta verticalmente con un sistema de filtrado que evita la salida de partículas no disueltas por la parte superior de la misma. Los diámetros estándares de las celdas son de 12 y de 22.6 mm, el fondo cónico se rellena con perlas de alrededor de 1 mm de diámetro y con una de 5 mm colocada en el vértice para evitar la entrada de chorro. Se dispone de un contenedor de tableta para formas farmacéuticas especiales. El aparato está ensamblado con abrazaderas para evitar su movimiento y la bomba es independiente de la celda para evitar vibraciones, la posición de la bomba no debe ser más alta que la de los reservorios de medio, las conexiones deben ser lo más cortas posible de material llamado polytef de 1.6 mm de diámetro interno⁵⁰.

Figura 8. Aparato de disolución IV, también llamado celda de flujo continuo.

La bomba de pistón cumple todos estos requisitos y ha demostrado ser a la vez precisa y fiable, mientras que las bombas peristálticas se pueden utilizar en casos especiales, como en las pruebas de implantes. La desgasificación de los medios de prueba es esencial para asegurar que no se formen burbujas. Hay una serie de variaciones en la prueba asociadas a burbujas de aire²⁶:

Irregularidad

Variacion en la velocidad de flujo Burbujas de aire entran en la celda a gran velocidad y pueden dañar la forma de dosificacion Burbujas de aire se pegan a la tableta Burbujas de aire se pegan a los *pellets*, resultando en la flotacion de los *pellets*, los cuales se pegan al filtro

Resultado

Resultados con alta variacion Liberación del farmaco muy rápida

Liberación del farmaco muy lenta Liberación del farmaco muy lenta

Hay diferentes métodos de desgasificación. Algunos grupos lo hacen manualmente según el método descrito en la USP⁵⁰, el cual lleva mucho tiempo para los grandes volúmenes requeridos. Otros trabajan con una estación comercial de preparación del medio. También se puede utilizar la desgasificación en línea, en la que el medio fluye a través de tubos de gas permeables al vacío.

Figura 9: Estación comercial para desgasificación del medio de disolución. MPS Medium Preparation Station[®].

Con el método de flujo continuo el sistema se puede configurar de dos formas. Ya sea como un sistema abierto o como un sistema cerrado.

Sistema Abierto

El sistema abierto tiene una configuración donde se bombea medio de disolución fresco a través de la celda y las fracciones se recogen. Esta configuración permite que la prueba de disolución se realice siempre en las mejores condiciones posibles de no saturación o *Sink*. Cada 30 a 60 minutos las fracciones se recogen, lo que resulta en volúmenes de las fracciones bastante altos. Una velocidad de flujo típica de 16 mL/min con un intervalo de fracciones de 30 minutos resulta en un volumen de fracción de 480 mL. Esto no es muy práctico para el laboratorio y por lo tanto se utiliza un dispositivo de separación de volumen

(*splitter*). El *splitter* gestiona una válvula de tiempo de tres vías, que controla desde el recolector de fracciones hasta los residuos. Normalmente, sólo el 10% del medio efluido se recoge, lo que resulta en fracciones de 48 mL.

También se pueden realizar fácilmente cambios de pH. Para realizar los cambios de pH se requiere un selector de medio, el cual cuenta con una válvula de siete canales que cambia de un medio a otro medio de disolución.

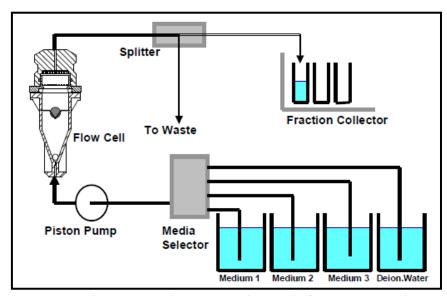


Figura 10: Sistema Abierto, con divisor, recolector de fracciones y selector de medio.

Una de las principales ventajas que tiene el aparato abierto de flujo continuo sobre el aparato cerrado tradicional (de tipo paleta y/o canastilla) es que se pueden mantener fácilmente condiciones *Sink* o de no saturación el medio de disolución por periodos más largos. Esta aplicación es especialmente importante para los fármacos poco solubles, por lo que el desarrollo de correlaciones *in vitro-in vivo* es más fácil para estos fármacos³. Otra ventaja importante que tiene el Aparato IV es que el medio de disolución y/o los cambios en la velocidad de flujo se pueden realizar fácilmente dentro de la misma prueba, por lo que se pueden realizar cambios de pH durante la prueba. Esta aplicación es útil para probar la robustez de la formulación con respecto a las variaciones en el entorno intraluminal, ya que la hidrodinámica intraluminal es simulada más eficiente en este sistema que en otros sistemas *in vitro*.

Las desventajas de este aparato son las dificultades operacionales de preparar grandes volúmenes de medio para operación en el modo de circuito abierto y el tiempo agregado en el arranque y limpieza del sistema.

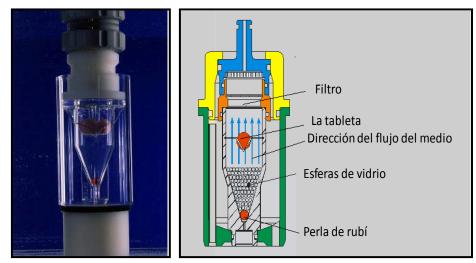


Figura 11. Celda de flujo continuo.

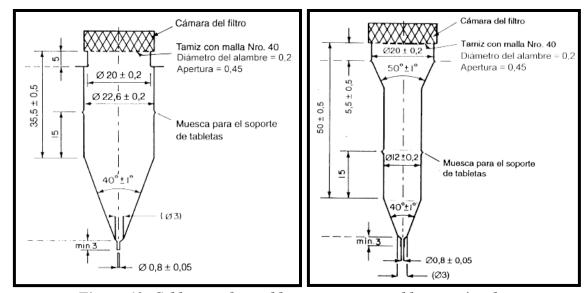


Figura 12. Celda grande y celda pequeña para tabletas y cápsulas.

5.2. Selección del Volumen y Medio de Disolución

Durante el desarrollo, la FDA recomienda que la disolución se evalúe en condiciones fisiológicas, si es posible²⁴. Esto permitirá la interpretacion de los datos de disolución en relación con el comportamiento *in vivo* del producto. Sin embargo, no hace falta una adherencia estricta al ambiente gastrointestinal en las pruebas de disolución rutinarias. Las condiciones fisicoquímicas del fármaco y las condiciones ambientales a las cuales podría estar expuesta la forma de dosificación tras la administración oral.

La FDA recomienda que se utilicen medios acuosos dentro del rango de pH de 1.2 a 6.8. generalmente los siguientes medios se prueban:

- HCl 0.1 N (pH 1.2)
- Buffer de acetatos USP a pH 4.5
- Buffer de fosfatos USP a pH 6.8
- Fluido gástrico simulado a pH 1.2 (sin enzimas)
- Fluido intestinal simulado a pH 6.8 (sin enzimas)

El uso de agua como medio de disolución no se recomienda porque las condiciones de prueba como el pH y la tensión superficial pueden cambiar dependiendo de donde se obtuvo el agua, y tambien pueden cambiar durante la prueba de disolución misma debido a la influencia de los ingredientes activos e inactivos.

El uso de enzimas en los fluidos simulados gástrico e intestinal dependerá del producto y se debe justificar. Por ejemplo para cápsulas de gelatina se usan enzimas (pepsina para el gástrico y pancreatina para el intestinal) para disolver la película que puede formarse e impide la disolución del fármaco.

Algunos productos farmacéuticos son sensibles al aire disuelto en el medio de disolución y necesitarán desgasificación, al menos que se demuestre que la formulación no es sensitiva a la presencia de aire en el medio.

5.2.1. Condiciones de *Sink*

El ensayo de disolución debe realizarse en condiciones de mínima concentración, condiciones sumidero, de no saturación o de gradiente máximo (*Sink*), de modo que la concentración de fármaco en el medio de disolución no rebase nunca el 15% de su concentración a saturación¹.

Sink es cuando Ct << Cs donde:

Ct = Concentración a tiempo

Cs = Concentración de saturación o máxima solubilidad

Para mantener las condiciones de *Sink* tipicamente Ct debe ser menor del 10% de Cs. Las condiciones de *Sink* son recomendadas pero no obligatorias.

Para simular la condición de sumidero *in vivo*, las pruebas de disolución *in vitro* en general se llevan a cabo por medio del empleo de un gran volumen del medio de disolución o de su mecanismo por el cual el medio de disolución es repuesto en forma constante con solvente fresco a una velocidad especifica, de modo que la concentración del soluto nunca llega a más del 15% de su solubilidad máxima. Si se mantiene este parámetro, se dice que la prueba de disolución está siendo realizada en condiciones *Sink*, es decir, sin influencia del gradiente de concentración.

El criterio de USP para las condiciones finales es que la concentración saturada del fármaco es igual o mayor que tres veces la concentración de una tableta completamente disuelta. Regularmente el volumen del medio de disolución es de 500, 900 o 1000 mL.

5.3. Selección de la Velocidad de Agitación

Por lo general, se deberán mantener condiciones de agitación suave durante las pruebas de disolución para permitir un poder discriminatorio máximo y para detectar productos con un pobre rendimiento *in vivo*. Utilizando el método de canastilla, la velocidad de agitación común es de 50-100 rpm; con el método de paleta, la velocidad de agitación es de 50-75 rpm¹. Pocas veces se utilizan los aparatos III y IV para evaluar la disolución de formas farmacéuticas de liberación inmediata.

5.4. Temperatura del Medio de Disolución

La USP específica que la temperatura del medio de disolucion debe ser de 37±0.5°C. A través de baños comerciales de agua puede encontrarse un desarrollo estandarizado, así que se supone que la temperatura del baño y la del vaso son las mismas. Cuando no se cuente con un implemento o dispositivo y sea imposible mantener la temperatura del vaso a 37°C se puede aumentar la temperatura a 40°C.

En general las sustancias se disuelven más rápido si al sistema se le aplica calor. Si una sustancia absorbe calor en el proceso de disolución, su solubilidad incrementará por un aumento en la temperatura, esto a su vez suministra un incremento en el gradiente de concentración, de lo cual resulta un incremento en la velocidad de disolución. Al incrementar la temperatura el movimiento cinético y la difusión del soluto en la solución aumentan, acelerando así la velocidad de disolución.

A continuación se presenta una tabla que resume los parámetros de las pruebas de disolución y los rangos típicos:

Tabla 4. Rangos típicos para las condiciones de operación para la prueba de disolución.

Condición de Operación	Rango Típico	
Medio de disolución	Depende de las propiedades fisicoquímicas	
Wiedlo de disoldeion	del fármaco	
Método de desgasificación	Si es necesario	
Aparatos	Depende de la forma farmacéutica	
Velocidad de agitación	50 rpm - Paletas	
Velocidad de agriación	100 rpm - Canastilla	
Temperatura	37±0.5°C	
Volumen del medio	500 a 900 mL	
Método de detección	HPLC / Espectrofotometría / Otro	

6. VALIDACION DE METODOS ANALITICOS

Las exigencias de los mercados y la toma de conciencia de sus derechos por parte de los consumidores, obligan a las empresas manufactureras a enfrentar escenarios cada día más competitivos. Esta demanda en la calidad así como en la necesidad de optimizar los procesos productivos ha hecho necesario que se dispongan de métodos analíticos rápidos y fiables y que el proceso de manufactura sea estable. Una de las herramientas con las que se cuenta para asegurar la calidad de los productos y procedimientos es la validación de los mismos, por lo cual, la adopción de un nuevo método analítico debe estar soportado por suficientes datos de laboratorio y una validación bien documentada, que cumpla con los requisitos establecidos.

Para asegurar la confiabilidad y seguridad, los métodos analíticos se someten a un proceso de validación. Esto se realiza con carácter obligatorio cuando se desarrolla un nuevo procedimiento, ya que permite asegurar que el método propuesto hace lo que tiene que hacer. La validación de métodos analíticos se fundamenta en la determinación de diversos parámetros que se aplican de acuerdo con la categoría a la que pertenezcan^{II}.

Para el comportamiento de las buenas prácticas de laboratorio la validación es un requisito imprescindible que está establecido por agencias regulatorias y por comisiones de Farmacopeas para el registro de nuevos medicamentos.

Es necesario señalar que los métodos descritos en farmacopeas u otros textos oficiales se consideran validados, aunque debe aclararse que ellos se refieren solamente a métodos generales y a materias primas. Estos no precisan la validación, aunque deben de ser comprobados antes de su utilización rutinaria con la verificación de la idoneidad en las condiciones de laboratorio³⁵.

6.1. Concepto de Validación

La NOM-177-SSA1-1998 y la Guía de Validación del Colegio de Químicos Farmacéuticos Biólogos coinciden en definir la validación como: "La evidencia experimental documentada de que un procedimiento cumple con el propósito para el que fue diseñado".

6.2. Tipos de Validación

Existen básicamente cuatro aproximaciones a la validación: validación retrospectiva, validación prospectiva, validación concurrente y revalidación⁴⁷.

A. *Validación retrospectiva*. Es la evidencia documentada basada en los datos acumulados de producción (datos históricos), análisis y control de un producto que ya está siendo fabricado.

La validación retrospectiva es la forma más ampliamente utilizada para validar un proceso que está controlado y en donde se tienen evidencias de la confiabilidad de los datos generados durante el proceso y sus resultados analíticos.

B. *Validación prospectiva*. Es la evidencia documentada realizada antes de que el producto salga al mercado, demostrando que las operaciones se encuentran bajo control y que a través de un proceso determinado se obtienen productos con la calidad diseñada. Se le considera como una parte integral de un programa cuidadosamente planeado y lógico del desarrollo de un producto o proceso.

Un programa efectivo de validación prospectiva deberá de estar apoyado por una documentación extensa generada desde el desarrollo del producto hasta la producción industrial, obteniendo el historial del producto de manera completa; dicha documentación es llamada documentación maestra, la cual cuenta con reportes, procedimientos, protocolos, especificaciones, métodos analíticos y algunos otros documentos pertenecientes a la fabricación, los cuales pueden fundamentar los aspectos del proceso del producto.

C. Validación concurrente. Es el estudio de un proceso en forma científica y por etapas a un producto que ya está en el mercado. Este tipo de validación es usual en ciertas situaciones excepcionales, tales como el escalamiento de un proceso de fabricación, en lotes de reproceso y en operaciones tempranas de un proceso continuo.

Este tipo de validación esta conducido a productos que pretenden ser distribuidos para su comercialización probándose de manera minuciosa el lote para demostrar el desempeño y cumplimiento de las especificaciones del producto y los criterios de aceptación de validación.

D. *Revalidación*. Es la repetición parcial o total de un programa de validación con arreglo al grado de las alteraciones introducidas en el procedimiento ya validado.

Según la Federación Internacional Farmacéutica (FIP), por lo general una revalidación es necesaria:

- En caso de modificación de la composición, del procedimiento o del tamaño de lote.
- En caso de cambiar de fabricante o de la calidad de las materias primas.
- En caso de alteración en las instalaciones capaces de influir en el proceso.
- En caso de cambiar de instalaciones.
- Cuando se modifican parámetros en el proceso.
- Después de revisiones a fondo en máquinas y aparatos.
- Cuando se modifican los métodos de control.
- Y cuando así lo exijan los resultados de los controles en proceso y los controles finales.

La revalidación dependerá de la naturaleza del cambio o como impacta sobre los aspectos de producción que previamente se han validado. Puede no ser necesario revalidar un proceso solamente porque una circunstancia ha cambiado.

6.3. Tipos de Métodos Analíticos a ser Validados

A partir del criterio de que no existe un modelo único para validar y de que existe una gran variedad de métodos analíticos. La validación de los métodos analíticos se fundamenta en la determinación de diversos parámetros, que se aplican de acuerdo con algunas de las siguientes categorías a la que pertenezca:

- Categoría I: Método analítico para la cuantificación de los componentes mayoritarios o principales de fármacos a granel o principios activos (incluyendo conservadores) en productos farmacéuticos terminados.
- Categoría II: Métodos analíticos para la determinación de impurezas en fármacos a granel o productos de degradación en el producto farmacéutico terminado. Estos métodos incluyen ensayos cuantitativos o pruebas limite.
- Categoría III: Métodos analíticos para la determinación de características de desempeño (disolución, medicamentos de liberación modificada, etc.).
- Categoría IV: Pruebas de identificación.

Tabla 5. Características mínimas consideradas para validar un método analítico según su tipo. En esta tabla: (+) debe ser evaluado, (-) no debe ser evaluado y (*) puede ser evaluado, dependiendo de los requerimientos del método 16.

Parámetro de	Contenido/Potencia	Pruebas de impur	Identificación	
desempeño	Valoración	Contenido/Valoración	Limite	Identificación
Precisión	+	+	*	-
Exactitud	+	+	•	-
Especificidad	+	+	+	+
Limite de detección	-	-	+	-
Limite de cuantificación	-	+	•	-
Linealidad	+	+	-	-

6.4. Parámetros de Desempeño

Los métodos analíticos empleados en las pruebas de disolución pertenecen a la categoría III, y por lo tanto tienen que ser validados. Esto se justifica en virtud de que al realizar las pruebas de perfil de disolución se cuantifican las concentraciones menores al valor de Q, además de que hay que evaluar que no haya interferencias debidas a los excipientes²¹.

Los parámetros a evaluar en la validación de un método analítico de cuantificación de principio activo en la prueba de disolución son los siguientes^{24, 46}:

a) Validación del Sistema

- Linealidad
- Precisión

b) Validación del Método

- Linealidad
- Precisión
 - Repetibilidad
 - Reproducibilidad
- Exactitud
- Especificidad

6.4.1. Linealidad del sistema

La linealidad del sistema es la habilidad del mismo para asegurar que los resultados obtenidos directamente o por medio de una transformación matemática definida, son directamente proporcionales a la concentración del analito dentro de un intervalo determinado.

Para evaluar linealidad del sistema, un analista debe preparar una curva de calibración con al menos 5 niveles de concentración por triplicado, preparadas a partir de una solución estándar. El intervalo de concentraciones por analizar dependerá del propósito del método.

Los parámetros estadísticos que deben considerarse para determinar si el sistema es lineal, son: coeficiente de correlación (r), el coeficiente de determinación (r²), la pendiente (m), la ordenada al origen (b) y el coeficiente de variación global. Es conveniente trazar la grafica de concentración versus la respuesta analítica (absorbancia).

6.4.2. Linealidad del método

La linealidad del método es la capacidad del mismo para obtener resultados directamente proporcionales a la concentración o cantidad del analito en un intervalo de concentraciones determinadas.

Para evaluar la linealidad del método, un analista debe de preparar una curva de calibración con al menos 5 niveles de concentración por triplicado. Trazar la gráfica concentración adicionada

6.4.3. Precisión

La precisión es el grado de concordancia entre los resultados analíticos individuales, cuando el procedimiento se aplica repetidamente a diferentes porciones de una muestra homogénea del producto de referencia.

La precisión del sistema debe ser evaluada con el coeficiente de variación del factor de respuesta obtenido de los datos de linealidad, este factor debe ser menor o igual al 2 %.

La precisión del método debe ser evaluada realizando la determinación de la concentración de tres diferentes muestras, con seis ensayos cada una.

6.4.3.1. Repetibilidad

La repetibilidad entre días es la precisión de un método analítico, expresada como la concordancia obtenida entre determinaciones independientes (diferentes días) realizadas por un sólo analista, usando los mismos instrumentos y método.

6.4.3.2. Reproducibilidad

La reproducibilidad es la precisión de un método analítico, expresada para la concordancia entre determinaciones independientes realizadas bajo diferentes condiciones de análisis (diferentes analistas, instrumentos, laboratorios, etc.).

Para determinar la repetibilidad y la reproducibilidad se debe evaluar el efecto de los eventos aleatorios en la precisión del método analítico, tales como los días (repetibilidad), los analistas o los instrumentos (reproducibilidad). Debe analizarse una muestra homogénea del producto, por lo menos por triplicado para probar cada condición.

6.4.4. Exactitud

Es el grado de concordancia entre un valor obtenido experimentalmente y el valor de referencia.

La exactitud del método debe ser evaluada realizando la determinación de la concentración de tres diferentes muestras, con seis ensayos cada una.

A diferencia de la precisión que describe la magnitud de los errores aleatorios, la exactitud establece la magnitud de los errores sistemáticos, en general, se requiere que el valor medido no difiera significativamente del valor de referencia.

6.4.5. Selectividad

Es la capacidad del método analítico para obtener una respuesta debida únicamente al analito de interés y no a otros componentes de la muestra.

6.5. Criterios de aceptación

Los parámetros de validación fueron evaluados de acuerdo a lo establecido en la Guía de Validación del Colegio Nacional de Químicos Farmacéuticos Biólogos, A.C., así como en la NOM-177-SSA1-1998. Los criterios de aceptación se muestran en la siguiente tabla:

Tabla 6. Especificaciones y criterios de aceptación para la validación del método analítico.

Parámetro de Desempeño	Factor de Evaluación	Criterio de Aceptación
	r (coeficiente de correlación)	r ≥ 0.99
Linealidad del Sistema	r ² (coeficiente de determinación)	$r^2 \ge 0.98$
	IC (B ₀) (intervalo de confianza de la	IC (B ₀) debe incluir el
	ordenada al origen)	cero
Precisión del Sistema	C.V. (coeficiente de variación)	C.V. ≤ 2%
	r (coeficiente de correlación)	r ≥ 0.99
	r ² (coeficiente de determinación)	$r^2 \ge 0.98$
	IC (B ₁) (intervalo de confianza de la	IC (B ₁) debe incluir la
	pendiente)	unidad
Linealidad del Método	IC (B ₀) (intervalo de confianza de la	IC (B ₀) debe incluir el
	ordenada al origen)	cero
	IC (μ) (intervalo de confianza de la	IC (μ) debe incluir el
	media)	100%
	C.V. (coeficiente de variación)	C.V. ≤ 2%
Precisión del Método	C.V. (coeficiente de variación)	C.V. ≤ 2%
	Prueba de t de Student	$t_{cal} < t_{crítica} (\alpha=0.05, gl)$
Exactitud del Método	% Recobro	97 - 103%
	C.V. (coeficiente de variación)	C.V. ≤ 2%
Repetibilidad	C.V. (coeficiente de variación)	C.V. _{global} ≤ 3%
Reproducibilidad	Análisis de varianza: Modelo Anidado	$P > 0.05_{(\alpha=0.05)}$

6.6. Errores Incorregibles

Cualquier error en el proceso de calibración, tanto en la referencia como en el sistema de medición, es la causa del error sistemático presente en los resultados de análisis de una muestra; muchos errores se consideran incorregibles y se conoce bien como tendencias sistemáticas, donde cualquier sustancia en la matriz de la muestra y que es responsable de una respuesta de magnitud proporcional, presenta respuestas de mayor o menor magnitud con respecto al real. Como ejemplos se pueden mencionar la resolución de la señal de un analito producto de una interferencia en el método o la presencia de un grupo funcional que interfiere con la respuesta del analito¹³.

6.7. Errores Corregibles

Un error corregible es una respuesta relativamente significativa, la cual puede ser positiva o negativa, no atribuible al analito e independiente a la magnitud de la respuesta de la muestra, debida a interferencia en la matriz o a propiedades del sistema de medición.

La forma directa y común para detectar errores constantes en el análisis de una muestra es a través del uso de un blanco; el cual presenta la respuesta obtenida de una solución que contienen únicamente al analito y es procesada bajo una misma metodología. Un blanco del método es aquella respuesta obtenida a partir de de una muestra libre de analito procesada bajo la misma metodología que el blanco¹³.

6.8. Determinación de Errores Sistemáticos

Algunas muestras, tales como diferentes formas farmacéuticas, se consideran como matrices de muestra las cuales contienen los excipientes y el analito de interés. Dicha matriz puede fabricarse en un laboratorio y realizar una preparación a escala donde únicamente se contenga en proporciones normales todos los excipientes y excluyendo por completo el analito de interés. Cuando el placebo está disponible se puede evaluar su interferencia a través de la detección y eliminación de la interferencia de la matriz mediante tendencias de error dentro de un procedimiento de validación del método.

Cuanto el placebo no está disponible para la validación del método, existen varias opciones, una de ellas es considerar la comparación de los resultados experimentales obtenidos a partir de una sustancia estándar de referencia, la cual se puede utilizar para preparar una curva patrón cuando se conoce la matriz de la muestra para poder compararla con el

análisis experimental de los resultados de una sustancia estándar de referencia de diferente calidad.

Existen otras metodologías para realizar la validación de un método cuando el placebo es difícil de obtener; sin embargo, se consideran pruebas análogas, donde es fundamental el uso de una sustancia de referencia, para la elaboración de las curvas de calibración y donde se toman en consideración los controles estadísticos y las pruebas con reproducibles. La única limitante para utilizar las distintas metodologías, es la capacidad y adecuación de realizar alguno de los métodos propuestos.

6.9. Método de las Adiciones Patrón

Dentro de las metodologías existentes para la determinación de errores sistemáticos, el método de las adiciones patrón, es uno de los más importantes. Esta técnica se conoce también como método del estándar adicionado, método de adiciones incrementada, método de auto estandarización y método de adición estándar.

El método del estándar adicionado puede ser utilizado en el análisis de muestras con la finalidad de realizar calibraciones y determinar posibles interferencias e interacciones de la matriz en la respuesta del analito en estudio. Mediante un análisis apropiado de los datos, la técnica es capaz de detectar y eliminar algunas tendencias de error.

El método de estar adicionado puede utilizarse en metodologías donde el analito se presenta en distintas formas²⁹:

- En cantidades muy bajas en forma de trazas del analito, por ejemplo en análisis ambientales.
- En concentraciones nominales definidas, tales como en las formas farmacéuticas. La técnica define su eficiencia mediante la adición de cantidades determinadas de un estándar a una muestra.

Un requisito importante del método de las adiciones patrón es que todas las soluciones (estándar y muestra), deben ser aforadas al mismo volumen, cualquier posible interferencia estará siempre presente a las mismas concentraciones y representara un efecto igual sobre la respuesta que se obtenga en la adición estándar. También, es importante considerar la naturaleza del analito para utilizar soluciones apropiadas y así evitar su descomposición o posibles interacciones no deseadas. La linealidad del método se conserva si el intervalo

creciente de respuesta es de 2 a 4 veces mayor, este es un parámetro indispensable para la validación. El análisis de los datos debe realizarse mediante modelos matemáticos y estadísticos que satisfagan los requerimientos; la desviación estándar de la curva se estima estadísticamente y la linealidad debe analizarse en forma precisa no sólo con métodos estadísticos tales como la desviación estándar relativa o el análisis de la desviación estándar; sino por métodos matemáticos tales como el error relativo respecto a la linealidad de la curva, la cual brinda datos más confiables para el análisis de la curva estándar y de la muestra.

Además, el método de adiciones patrón requiere muestras recientes para brindar confiabilidad al método; es decir, la matriz y el analito deben presentar una fecha de caducidad de a lo menos dos años después de la fecha de realización de la validación del método.

Si no existen los errores incorregibles en la calibración y en la interferencia directa, el nuevo método propuesto proveerá un resultado analítico correcto; dicho resultado obtenido a partir del método de las adiciones patrón será concordante con los resultados obtenidos de una técnica convencional de curva estándar de la misma muestra. La técnica del método de adiciones patrón se considera una herramienta diagnóstico para la detección y determinación de errores corregibles, proporcionales y constantes.

7. MONOGRAFÍA DEL TARTRATO DE METOPROLOL³⁴

Nombre genérico: Tartrato de Metoprolol

Nombre químico: 1-(Isopropilamino)-3-[p-(2-metoxietil)-fenoxi]-2-propanol (2:1) sal de

dextrotartrato

Forma condensada: $(C_{15}H_{25}NO_3)_2*C_4H_6O_6$

Forma desarrollada:

Masa molecular: 684.82 g/mol

Descripción: Polvo blanco cristalino o cristales incoloros. Presenta polimorfismo.

Rotación óptica: Dextro ácido tartárico [α] 20°C 2% = 6.5° y 10.5°

Punto de fusión: 120 – 123°C

pka: $8.9\pm0.2~H_2O~25^{\circ}C$

9.6±0.2 Solución iónica 0.1%

λmáx: 223, 274, 280 nm

Solubilidad²¹:

	mg/mL
Agua	>1000
Metanol	>500
Cloroformo	496
Acetona	1.1
Acetonitrilo	0.89
Hexano	0.001

Clasificación biofarmacéutica⁵²: Clase I alta solubilidad, alta permeabilidad.

Presentaciones disponibles en el mercado Nacional $^{2\theta}$:

Marca	Forma farmacéutica	Dosis (mg)	Fabricante
Lopresor 100	Grageas	100	Sandoz, S. A. de C.V. para Novartis Company
Metobest	Tabletas	100	Laboratorios Best, S.A de C.V.
Nipresol	Tabletas	100	Importadora y Manufacturera Bruluart
Kenaprol	Tabletas	100	Laboratorios Kener
Proken M	Tabletas	100	Laboratorios Kendrick
Promiced	Tabletas	100	IQFA, S.A de C.V.
Metopresol	Tabletas	100	Tecnofarma, S.A de C.V.
Sermetrol	Tabletas	100	Laboratorios Serral, S.A de C.V.
Mezelol	Tabletas	100	Victory Enterprises, S.A de C.V.
Prolaken	Tabletas	100	Ivax Pharmaceuticals México, S. A. de C.V.

Indicaciones terapéuticas²⁰: Es un bloqueador beta-adrenérgico que se utiliza para el control de hipertensión en régimen monoterapéutico o en combinación con otros antihipertensivos preferentemente con un diurético o un vasodilatador periférico. También está indicado para la profilaxis prolongada en angina de pecho, arritmias cardiacas y como prevención de la migraña.

Farmacocinética²⁰: El metoprolol se absorbe completamente tras la administración oral. Más de 95% de una dosis oral se detecta en general en forma de metoprolol y sus metabolitos en la orina.

Las concentraciones plasmáticas máximas se alcanzan al cabo de 1½ a 2 horas aproximadamente con las grageas de liberación prolongada. Debido al efecto de primer paso, alrededor de 50% de una dosis simple oral de metoprolol alcanza la circulación sistémica.

Si se repite la dosis, el porcentaje de la dosis disponible sistémicamente es mayor que con una dosis simple, y se eleva también en función de la dosis. La disponibilidad sistémica de cada dosis simple oral puede aumentar en 20 - 40% aproximadamente, si se administra junto con alimentos. Aunque la variabilidad interindividual es grande, los perfiles del nivel plasmático pueden reproducirse bien en cada individuo.

Menos de 5% de la dosis se excreta en forma inalterada en la orina de la mayoría de los sujetos. Los malos hidroxiladores pueden excretar 30% en forma inalterada.

La vida media de eliminación promedio es aproximadamente de 3½ horas (extremos: una y nueve horas). El aclaramiento sistémico de una dosis intravenosa es de 1 litro/minuto aproximadamente y la fijación proteica se eleva a cerca de 10%. Las concentraciones plasmáticas del metoprolol en personas de edad avanzada no son significativamente diferentes de las de los jóvenes.

La insuficiencia renal apenas influye en la biodisponibilidad de la tasa de eliminación de metoprolol, sin embargo, disminuye la excreción de los metabolitos. Se ha observado una acumulación significativa de metabolitos en los pacientes con una tasa de filtración glome-rular de 5 mL/min aproximadamente, pero la acumulación de los metabolitos no disminuye las propiedades betabloqueadoras de metoprolol. La cirrosis hepática puede incrementar la biodisponibilidad del metoprolol inalterado y reducir el aclaramiento total.

Farmacocinética²⁰: El metoprolol es un betabloqueador cardioselectivo, es decir, que actúa sobre los receptores β1, localizados principalmente en el corazón, a dosis menores que las necesarias para influir sobre los receptores β2 que se encuentran ante todo en los bronquios y los vasos periféricos. El metoprolol no tiene una acción estabilizante de membrana ni posee una actividad agonista parcial [actividad simpaticomimética intrínseca (ASI)].

El metoprolol disminuye o inhibe el efecto estimulante de las catecolaminas en el corazón, lo que da lugar a una reducción de la frecuencia cardiaca, de la contractilidad cardiaca y del gasto cardiaco. El metoprolol baja la presión arterial elevada tanto si el enfermo está de pie como en decúbito y aminora la elevación de la presión a causa del esfuerzo físico o psíquico.

El metoprolol incrementa primero la resistencia en los vasos periféricos, que se normaliza o incluso desciende en el curso del tratamiento prolongado. En la angina de pecho, el metoprolol reduce la frecuencia y gravedad de las crisis, y aumenta la tolerancia física al esfuerzo. El metoprolol regula la frecuencia cardiaca en caso de taquicardias supraventriculares, fibrilación auricular y extrasístoles ventriculares. Su efecto antiarrítmico se basa en primer lugar en que inhibe el automatismo de las células marcapasos y alarga el tiempo de conducción auriculoventricular.

El metoprolol disminuye la mortalidad en los pacientes con infarto del miocardio supuesto o confirmado. Este efecto se basa posiblemente en la menor incidencia de arritmias ventriculares graves, así como en limitación de la extensión del infarto. También se ha comprobado que la frecuencia de los reinfartos no mortales desciende durante el tratamiento con metoprolol.

En virtud de su acción inhibidora sobre los receptores β , el metoprolol es adecuado para el tratamiento de los trastornos cardiovasculares funcionales con palpitaciones, la profilaxis de la migraña y como suplemento de la terapéutica de hipertiroidismo.

El metoprolol interfiere menos en la liberación de la insulina y el metabolismo de los hidratos de carbono que los betabloqueadores no selectivos. En contraposición con los betabloqueadores no selectivos, el metoprolol sólo enmascara parcialmente los síntomas de una hiperglucemia en los diabéticos.

Los estudios a corto plazo han mostrado que el metoprolol puede influir en los lípidos hemáticos, siendo posible que aumenten los triglicéridos y disminuyan los ácidos grasos libres. En algunos casos se ha observado un ligero descenso de las HDL, pero en menor medida que con los betabloqueadores no selectivos. En un estudio a largo plazo se ha comprobado que desciende el nivel de colesterol.

MATERIAL Y METODOLOGÍA EXPERIMENTAL

1. DIAGRAMA DE FLUJO

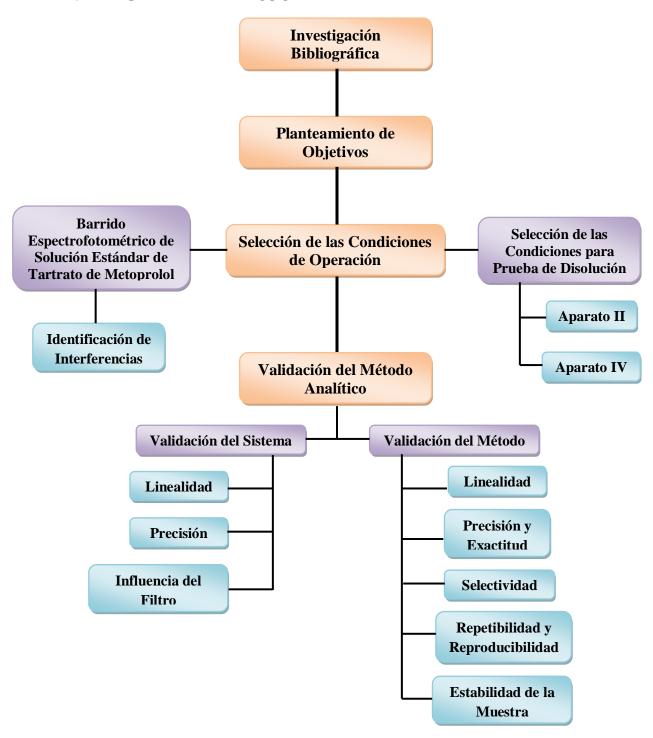


Figura 13. Diagrama de flujo de la Metodología Experimental.

2. SUSTANCIAS, REACTIVOS, SOLUCIONES Y EQUIPOS

Todas las sustancias, reactivos y equipos utilizados se encuentran en el Laboratorio de Ensayos de Desarrollo Farmacéutico (LEDEFAR), en la Unidad Multidisciplinaria de Investigación de la Facultad de Estudios Superiores Cuautitlán Campo Cuatro.

2.1. Sustancia de Referencia

 Sustancia de referencia Tartrato de Metoprolol Novartis Farma S.A. de C.V.
 Lote C0214

2.2. Reactivos

- Ácido clorhídrico (HCl). J. T. Baker 36.5-38.0% Lote: H42C15
- Agua destilada

2.3. Soluciones

- Ácido clorhídrico (HCl) 0.1 N
- Buffer de fosfatos 0.2 M
- Buffer de acetatos 0.2 M

2.4. Equipos

- Balanza analítica marca Mettler Toledo, modelo AB204-S
- Baño Ultrasonido Marca Elma, modelo Transsonic 570/H
- Purificador de Agua Millipore (Milli Q)
- Espectrofotómetro UV-Vis marca Varian modelo Cary 1E, con celdas de paso de 1 cm.
- Disolutor marca Vankel con paletas, modelo VK 7000.
- Disolutor marca SOTAX de celdas de flujo continuo, modelo CH-4008 BASEL.

3. PRODUCTOS ANALIZADOS

Se analizaron cinco productos comerciales deferentes conteniendo Tartrato de Metoprolol como principio activo; los productos corresponden al producto innovador, a un genérico intercambiable y a tres productos genéricos de marca.

Tabla 7. Productos analizados.

Producto	Marca comercial	Presentación	Laboratorio	Lote
Tabletas de Tartrato de Metoprolol de liberación inmediata de 100 mg	Lopresor 100 (innovador)	Lopresor® 100 metoprolol tobletas 100 mg SANDOZ Coja can 20 tobletas Lopresor® 100 metoprolol tobletas AMDOZ AM	Sandoz, S. A. de C.V. para Novartis Company	N0059
	Kenaprol (genérico intercambiable)	Kenaprol Redordol Marke stor to species	Laboratorios Kener, S. A. de C.V.	M07410
	Proken M (genérico)	Metoprolol CAJA CON 20 TABLETAS 100 mg Tozbertas Farmacum	Laboratorios Kendrick, S.A.	OJS957
	Nipresol (genérico)	NIPRESOL Metoprolol Tabletas 100 mg	Importadora y Manufacturera Bruluart, S. A.	01052
	Metobest (genérico)	METOBEST Introprotol Likhets O Phase can in street	Laboratorios Best, S.A.	1009042

4. CONDICIONES ESPECTROFOTOMÉTRICAS

La prueba de disolución para Tartrato de Metoprolol en tabletas se encontró reportada en la USP y en la FEUM, en donde se sugiere que para el ensayo se utilice como medio de disolución fluido gástrico simulado sin enzimas (HCl 0.1 N pH 1.2). Sin embargo, con el propósito de establecer las mejores condiciones espectrofotométricas para el desarrollo del método analítico y para analizar el comportamiento de la sustancia en función del pH, se procedió a realizar barridos espectrofotométricos del Tartrato de Metoprolol en un intervalo de longitudes de onda que van de los 350 a 200 nm en tres medios diferentes. Estos medios fueron:

- 1. HCl 0.1 N pH = 1.2
- 2. Buffer de acetatos pH=4.5
- 3. Buffer de fosfatos pH= 6.8

Estos medios sirvieron para solubilizar la sustancia de referencia Tartrato de Metoprolol y llevar a la marca de aforo, pero también se solubilizó la sustancia de referencia Tartrato de Metoprolol en Agua destilada y posteriormente se llevó a la marca de aforo con cada uno de los medios de disolución. Las soluciones que se utilizaron para realizar los barridos espectrales tuvieron una concentración de 50 μg/mL.

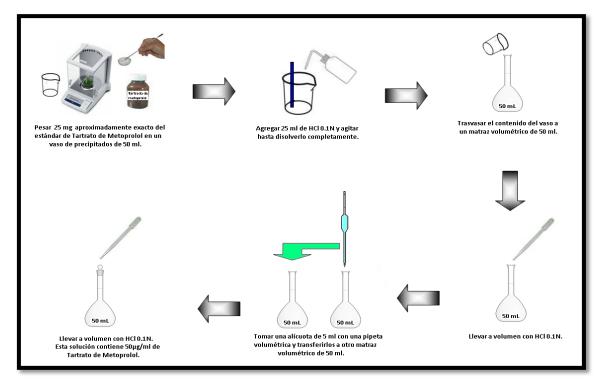


Figura 14. Preparación del estándar de Tartrato de Metoprolol en medio ácido.

4.1. Concentraciones para la Cuantificación

Para el desarrollo y la validación del método analítico que sería utilizado durante la prueba de disolución, se propuso un intervalo de concentraciones que oscilan entre 16.56 y 165.6 % de la concentración teórica para el estudio de linealidad. En la tabla 8 se presentan las concentraciones utilizadas para el método analítico.

Numero de sistema Concentración (µg/mL) % Equivalente 18.4 16.56 2 36.8 33.12 3 73.6 66.24 4 110.4 99.36 5 147.2 132.48 6 184.0 165.6

Tabla 8. Intervalo de concentraciones para el método analítico.

Para construir este intervalo de concentraciones se consideró que la máxima concentración que se podía obtener para mantener condiciones *Sink* en el estudio de disolución en el Aparato USP II era de 111.111 μg/mL. (100 mg de Tartrato de Metoprolol en la tableta/900 mL de medio de disolución). De acuerdo a lo anterior, se preparó una curva de calibración que cumple con todas las especificaciones normativas. Esta curva de calibración se realizó con el propósito de ser utilizada en los perfiles de disolución (cuantificación).

Para la preparación de la curva de calibración se colocaron 92 mg de la sustancia estándar de Tartrato de Metoprolol en un matraz volumétrico de 100 mL, se disolvió y se llevó a la marca de aforo con el medio de disolución HCl 0.1 N. Esta solución tiene una concentración de 920 µg/mL de Tartrato de Metoprolol. A partir de esta solución estándar de Tartrato de Metoprolol se realizaron las diluciones correspondientes para preparar el resto de los 6 niveles de concentración de la curva de calibración, cada uno de los niveles de concentración se preparó por triplicado.

Tabla 9. Curv	va ae caubraci	on utuizaaa e	en ios perfiles	ae aisolucion.

Sistema	Concentración Real (µg/mL)	Alícuota (mL)	Volumen de Aforo (mL)
1	18.42	0.5	25.0
2	36.84	1.0	25.0
3	73.68	2.0	25.0
4	110.52	3.0	25.0
5	147.36	4.0	25.0
6	184.2	5.0	25.0

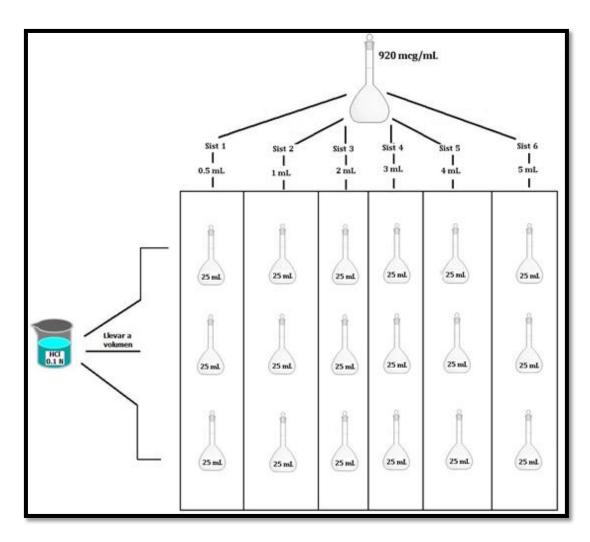


Figura 15. Metodología seguida construir una curva de calibración de Tartrato de Metoprolol.

5. VALIDACIÓN DEL MÉTODO ANALÍTICO

Para el desarrollo experimental de este trabajo, se realizó previamente una investigación bibliográfica que nos permitiera conocer los métodos analíticos existentes para cuantificar Tartrato de Metoprolol durante la prueba de disolución de tabletas. Los resultados de esta investigación muestran que ya existen antecedentes sobre este tema, incluso en la FEUM y en la USP se tienen las condiciones para llevar a cabo este ensayo, de tal manera que sólo tuvimos que ajustar las condiciones de operación y optimizar el método analítico para posteriormente demostrar que es confiable y reproducible.

De acuerdo con el diagrama de flujo, para cumplir con nuestros objetivos, se seleccionaron las condiciones de operación, comenzando por las condiciones para la prueba de disolución en cada uno de los aparatos (medio, temperatura, velocidad de agitación, velocidad de flujo y duración de la prueba) seguidas de las condiciones espectrofotométricas óptimas para la cuantificación.

Una vez establecidas las condiciones de trabajo, se validó el método analítico cumpliendo con los criterios de aceptación establecidos en la Guía de Validación del Colegio de Químicos Farmacéuticos Biólogos edición 2002 y en la NOM 177-SSA1-1998. Los parámetros de desempeño evaluados para el sistema fueron linealidad y precisión; los parámetros evaluados para el método fueron linealidad, precisión y exactitud, reproducibilidad, repetibilidad, selectividad.

5.1. Validación del Sistema

5.1.1. Linealidad

Se preparó una curva de calibración con seis puntos de concentración utilizando HCl 0.1N como medio de disolución, se graficaron los valores de absorbancia obtenidos contra concentración y de ahí se obtuvo el coeficiente de regresión (r²), la pendiente (m) y el intercepto (b); además también se pudo calcular el coeficiente de variación (C. V.).

• Curva de calibración para Tartrato de Metoprolol

Se colocaron 92 mg de la sustancia de referencia de Tartrato de Metoprolol en un matraz volumétrico de 100 mL, se disolvió y se llevó a la marca de aforo con el medio de disolución HCl 0.1~N. Esta solución tiene una concentración de 920 μ g/mL de Tartrato de Metoprolol.

A partir de esta solución estándar de Tartrato de Metoprolol se realizaron las diluciones correspondientes para preparar el resto de las soluciones de la curva de acuerdo a la siguiente tabla:

Sistema	Concentración Real (µg/mL)	Alícuota (mL)	Volumen de Aforo (mL)
1	18.42	0.5	25.0
2	36.84	1.0	25.0
3	73.68	2.0	25.0
4	110.52	3.0	25.0
5	147.36	4.0	25.0
6	184.2	5.0	25.0

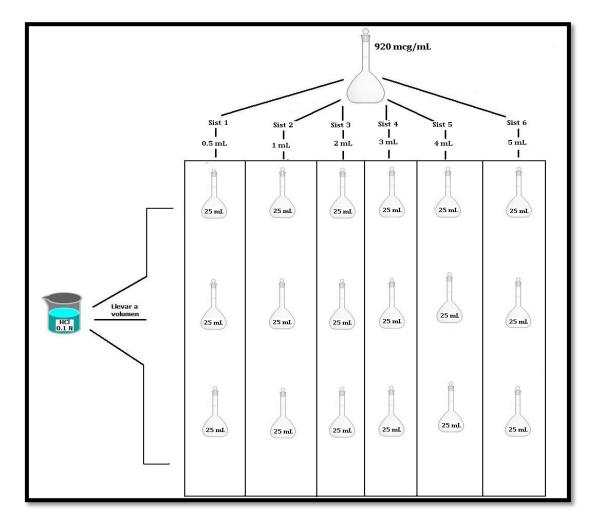


Figura 16. Metodología seguida para evaluar linealidad del sistema de Tartrato de Metoprolol.

5.1.2. Precisión

Para evaluar la precisión del sistema se realizó la determinación de tres niveles de concentración de una solución estándar de Tartrato de Metoprolol, el ensayo se realizó por sextuplicado.

A partir de esta solución estándar de Tartrato de Metoprolol se realizaron las diluciones correspondientes para preparar los tres niveles de concentración a utilizar. Cada sistema se preparó por sextuplicado de acuerdo a la siguiente tabla:

 Sistema
 Concentración Real (μg/mL)
 Alícuota (mL)
 Volumen de Aforo (mL)

 1
 36.84
 1.0
 25.0

 2
 110.52
 3.0
 25.0

 3
 184.2
 5.0
 25.0

Tabla 11. Niveles de concentración para evaluar exactitud del sistema.

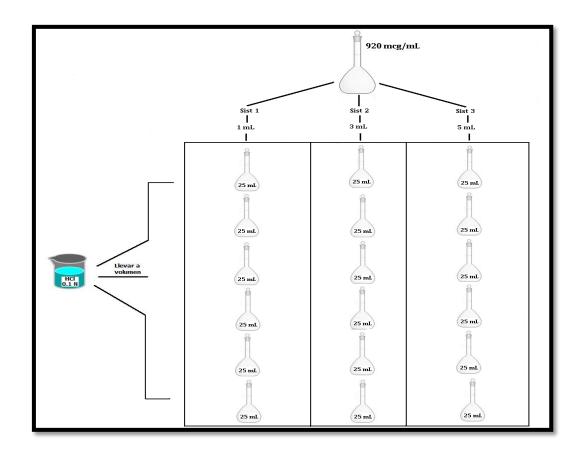


Figura 17. Metodología seguida para evaluar precisión del sistema de Tartrato de Metoprolol.

5.1.3. Influencia del Filtro

El Método General de Análisis recomienda que para tomar alícuotas correspondientes en un perfil de disolución o prueba de solubilidad, el filtro debe tener un poro nominal no mayor a 0.45 µm, de material inerte y no causar absorción significativa del principio activo de la solución, además de no inferir en los procedimientos analíticos establecidos.

En esta prueba se evaluó la interferencia de 3 filtros. Para ello se preparó una solución de Tartrato de Metoprolol a una concentración de 924 μ g/mL. Se prepararon a partir de la solución anterior dos soluciones de concentraciones diferentes y se tomaron seis alícuotas y se filtraron con los tres diferentes filtros y cada una de ellas se leyó a una longitud de onda de 273 nm, utilizando como blanco el medio de disolución (HCl 0.1N) y se comparó el valor de la absorbancia con el de las mismas soluciones pero sin filtrar. La siguiente figura muestra paso a paso lo realizado para evaluar la influencia del filtro además de mostrar los tipos de filtros que se utilizaron.

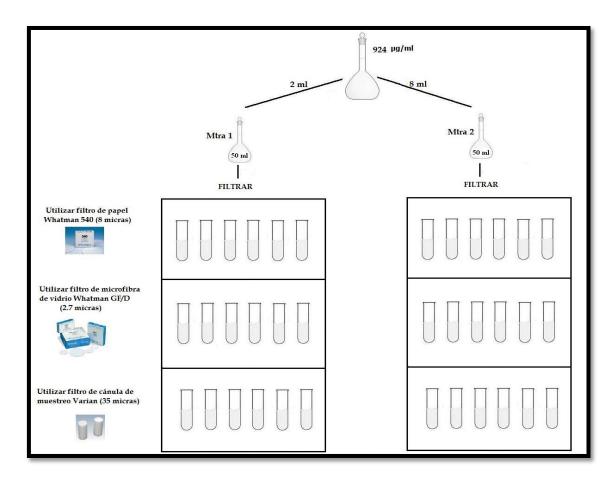


Figura 18. Metodología seguida para evaluar la influencia del filtro utilizando tres diferentes filtros.

5.2. Validación del Método

El método de adiciones patrón tiene como objetivo evaluar el sesgo de cuantificación, expresado como error, en un método de análisis. La metodología es útil en la validación de métodos analíticos cuando se desconocen los excipientes contenidos en la matriz.

5.2.1. Linealidad

La metodología seguida para evaluar linealidad del método se representa en las siguientes dos figuras.

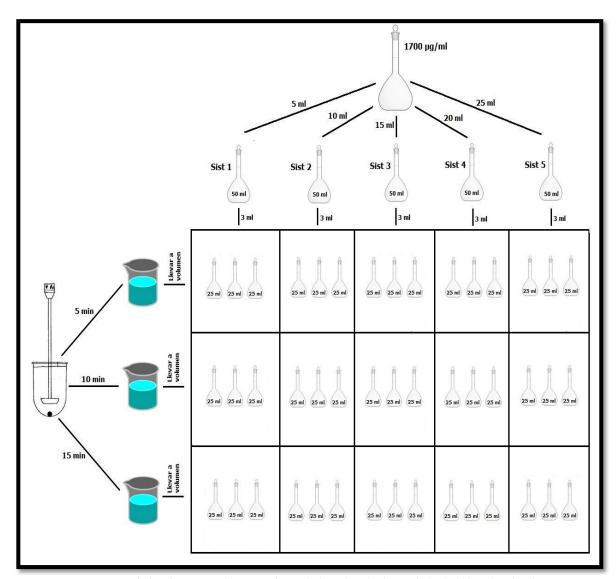


Figura 19. Metodología seguida para la validación de linealidad del método de Tartrato de Metoprolol por adiciones patrón. Parte I.

Como se indica en la figura anterior, a partir de una solución estándar de Tartrato de Metoprolol de concentración 1700 µg/mL se prepararon 5 sistemas de diferente concentración, de los cuales se adicionó el mismo volumen (3 mL) a cada una las soluciones de los 5 niveles de concentración todas utilizados para evaluar la linealidad. Cada uno de estos niveles se preparó por triplicado.

Cada una de estas soluciones se llevó a un volumen final de 25 mL con medio de la prueba de disolución de las tabletas innovadoras de Tartrato de Metoprolol (Lopresor 100) hasta los 5 minutos. Este medio fue previamente filtrado con papel Whatman. Estos sistemas se prepararon también utilizando el medio de la prueba de disolución de las mismas tabletas hasta los 10 y 15 minutos.

También se prepararon los 5 sistemas de concentración (3 mL) pero se llevaron al volumen final (25 mL) únicamente con medio de disolución (HCl 0.1 N). Así como los tres niveles de concentración provenientes de la disolución de las tabletas de Metoprolol a los 5, 10 y 15 minutos. Esto último se realizó porque un requisito importante del método de las adiciones patrón es que todas las soluciones (estándar y muestra), deben ser aforadas al mismo volumen, de esta forma cualquier posible interferencia estará siempre presente a las mismas concentraciones y representará un efecto igual sobre la respuesta que se obtenga en la adición estándar.

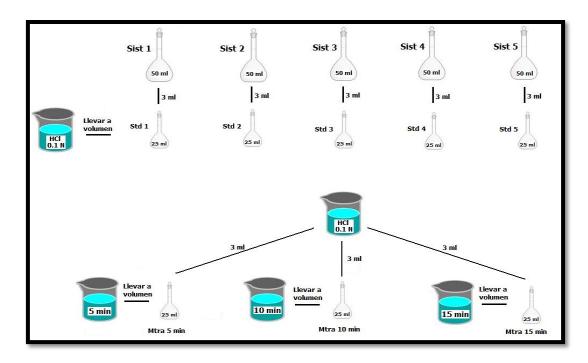


Figura 20. Metodología seguida para la validación de linealidad del método de Tartrato de Metoprolol por adiciones patrón. Parte II.

5.2.2. Precisión y Exactitud

La metodología seguida para evaluar precisión y exactitud del método se representa en las siguientes dos figuras.

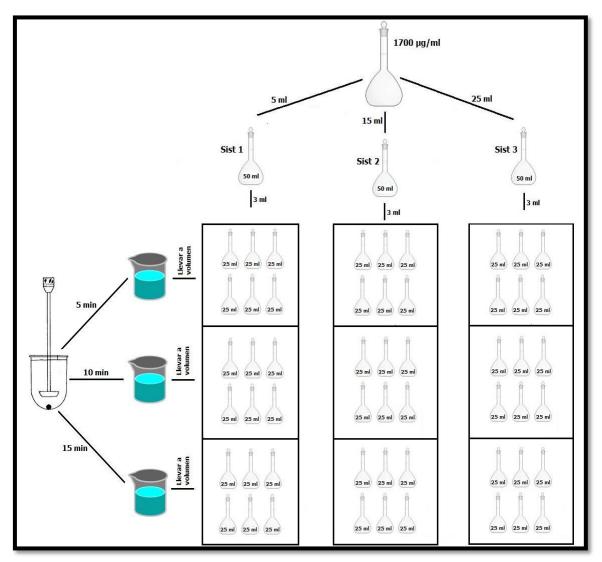


Figura 21. Metodología seguida para la validación de exactitud del método de Tartrato de Metoprolol por adiciones patrón. Parte I.

Como se indica en la figura anterior, a partir de una solución estándar de Tartrato de Metoprolol de concentración 1700 µg/mL se prepararon 3 sistemas de diferente concentración, de los cuales se adicionó el mismo volumen (3 mL) a cada una las soluciones de los 3 niveles de concentración todas utilizados para evaluar la exactitud. Cada uno de estos niveles se preparó por sextuplicado.

Cada una de estas soluciones se llevó a un volumen final de 25 mL con medio de la prueba de disolución de las tabletas innovadoras de Tartrato de Metoprolol (Lopresor 100) hasta los 5 minutos. Este medio fue previamente filtrado con papel Whatman. Estos sistemas se prepararon también utilizando el medio de la prueba de disolución de las mismas tabletas hasta los 10 y 15 minutos.

También se prepararon los 5 sistemas de concentración (3 mL) pero se llevaron al volumen final (25 mL) únicamente con medio de disolución (HCl 0.1 N). Así como los tres niveles de concentración provenientes de la disolución de las tabletas de Metoprolol a los 5, 10 y 15 minutos. De la misma forma que se hizo para evaluar la linealidad del método.

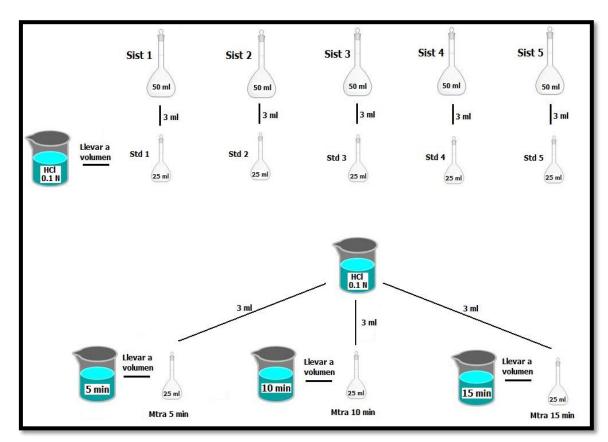


Figura 22. Metodología seguida para la validación de exactitud del método de Tartrato de Metoprolol por adiciones patrón. Parte II.

5.2.3. Repetibilidad

La repetibilidad se realizó a partir de determinaciones independientes, es decir diferentes días por un solo analista, usando los mismos instrumentos y método.

Se preparó una curva de calibración con tres niveles de concentración por triplicado. La metodología seguida para evaluar repetibilidad se muestra a continuación.

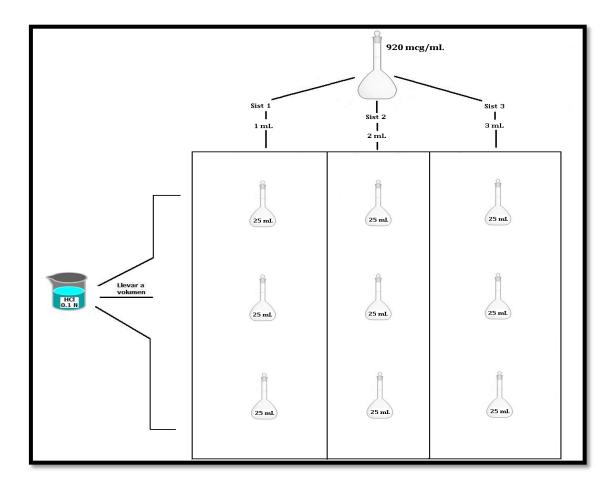


Figura 23. Metodología seguida para evaluar la repetibilidad del método.

5.2.4. Reproducibilidad

La reproducibilidad se realizó a partir de determinaciones independientes realizadas bajo diferentes condiciones de análisis (diferentes analistas).

Este parámetro se evaluó siguiendo la misma metodología que la de repetibilidad. Se realizó en dos días diferentes y con dos analistas diferentes.

5.2.5. Selectividad

La selectividad se evaluó tomando los sistemas preparados para la linealidad o exactitud del método y se les realizó un barrido espectrofotométrico. Además se demostró la selectividad del método para el Tartrato de Metoprolol ante otros componentes de la muestra, ya que cualquier interferencia no produjo un error mayor al aceptado en precisión y exactitud.

5.2.6. Estabilidad de la Muestra

Se preparó una solución de Tartrato de Metoprolol con una concentración de 924 $\mu g/mL$. En tres matraces volumétrico de 50 mL se transfirieron 6 mL de la solución anterior y se llevaron a volumen con medio de disolución. Se mantuvieron en un baño a 37°C y se tomaron muestras a los 15, 30, 45 y 90 min, las cuales se leyeron directamente a una longitud de onda de 273 nm.

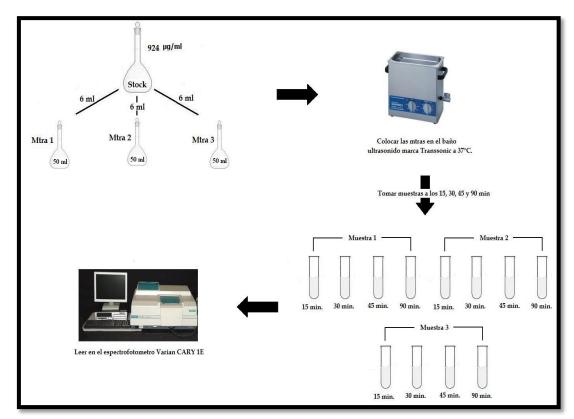


Figura 24. Metodología seguida para evaluar la estabilidad de las muestras de Tartrato de Metoprolol.

5.3. Validación de la Dilución para las muestras de los Perfiles de Disolución obtenidos con el Aparato IV

Se preparó una curva de calibración con seis puntos de concentración utilizando HCl 0.1N como medio de disolución, se graficaron los valores de absorbancia obtenidos contra concentración y de ahí se obtuvo el coeficiente de regresión (r²), la pendiente (m) y el intercepto (b); además también se pudo calcular el coeficiente de variación (C. V.).

• Preparación de la curva de calibración

Se colocaron 920 mg de la sustancia de referencia de Tartrato de Metoprolol en un matraz volumétrico de 100 mL, se disolvió y se llevó a la marca de aforo con el medio de disolución HCl 0.1 N. Esta solución tiene una concentración de 9200 μ g/mL de Tartrato de Metoprolol.

A partir de esta solución estándar de Tartrato de Metoprolol se prepararon 6 sistemas de concentraciones diferentes. De cada una de estas soluciones se tomó 1 mL y se llevó a un volumen de 10 mL con ácido clorhídrico. Cada sistema se realizó por triplicado. En la siguiente tabla se muestra la preparación de los cada uno de los sistemas:

Tabla 12. Curva de calibración para validar la dilución hecha para las muestras de los perfiles de disolución obtenidos con el aparato IV.

Sistema	Volumen de Estándar (mL)	Aforo (mL)	Concentración (µg/mL)	Alícuota (mL)	Aforo (mL)	Concentración (µg/mL)
1	0.5	25.0	184.24	1.0	10.0	18.424
2	1.0	25.0	368.48	1.0	10.0	36.848
3	2.0	25.0	736.96	1.0	10.0	73.696
4	3.0	25.0	1105.44	1.0	10.0	110.54
5	4.0	25.0	1473.92	1.0	10.0	147.39
6	5.0	25.0	1842.4	1.0	10.0	184.24

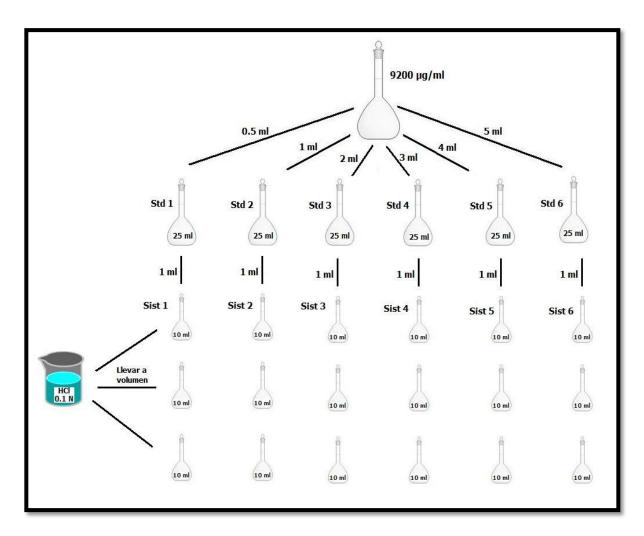


Figura 25. Metodología seguida para validar la dilución hecha para las muestras de los perfiles de disolución obtenidos con el aparato IV.

6. OBTENCIÓN DE LOS PERFILES DE DISOLUCIÓN

6.1. Estudio de los Perfiles de Disolución en Aparato USP II (Paletas)

La metodología utilizada para obtener los perfiles de disolución en el Aparato USP II es la propuesta en la FEUM y en la USP para el desarrollo de la prueba. El valor de Q no debe ser menor a 75% en 30 minutos. Las condiciones de operación para la obtención de los perfiles de disolución en este aparato son las siguientes.

Tabla 13. Condiciones de operación de la prueba de disolución en el Aparato USP II.

Condición de Operación Especificación	
Equipo de disolución	Equipo 2 de la USP (Paletas) marca Vankel VK 7000
Medio de disolución	Ácido clorhídrico 0.1 N
Volumen de medio	900 mL
Filtro	Filtros para cánula de muestreo Varian (35 µm)
Temperatura de la prueba $37^{\circ}\text{C} \pm 0.5$	
Velocidad de agitación 50 rpm	
Muestra	Una tableta por vaso
Tiempos de muestreo (min)	2, 3, 4, 5, 6, 7, 8, 10, 12, 14, 16, 18, 20, 25, 30, 40, 50 y 60.
Instrumento para cuantificar el Espectrofotómetro UV-Vis marca Varian mode	
Metoprolol disuelto 1E, con celdas de paso de luz de 1 cm	
Longitud de onda 273 nm	
Dilución de muestras	Sin dilución

6.1.1. Procedimiento

Se colocaron 900 mL del medio de disolución en cada vaso del disolutor, éste se calentó a través de un baño de agua con temperatura constante hasta obtener una temperatura de 37±0.5°C. Se colocó una tableta del producto a estudiar en el interior de cada vaso del disolutor, y se empezó la agitación. Se tomaron 5 mL de muestra en los tiempos indicados con filtración inmediata. Las muestras se leyeron directamente en el espectrofotómetro a 273 nm utilizando como blanco el medio de disolución. Estos resultados se interpolaron en la curva de calibración para obtener las concentraciones de tartrato de Metoprolol.

El porcentaje de tartrato de Metoprolol recuperado se obtuvo por medio de las siguientes ecuaciones:

$$D_i = \left[Y_i - \left(\frac{A}{B} \right) \right] \times \left[V_0 - (N-1) v \right]$$

Donde D_i son los miligramos del principio activo disueltos en el volumen de muestra tomada al i-ésimo tiempo de muestreo, Y_i es la absorbancia del principio activo en la preparación de la muestra al i-ésimo tiempo de muestreo, A la ordenada al origen de la curva de calibración, B la pendiente de la curva de calibración, V_0 es el volumen inicial del medio de disolución, N es el numero de extracciones y v es el volumen de la muestra tomada.

$$\% D_i = \frac{D_i}{Dosis} \times 100$$

Donde % Di es el porciento de principio activo disuelto al i-ésimo tiempo de muestreo, D_i son los miligramos del principio activo disuelto al i-ésimo tiempo de muestreo, y la Dosis son los miligramos de principio activo indicados en la etiqueta.

6.1.2. Especificaciones

Cuando el 85% del fármaco se disuelve en un tiempo menor o igual a 15 minutos, no es necesario caracterizar la curva ascendente.

Si el 85% del fármaco se disuelve en un tiempo mayor a 15 minutos es necesario comparar los perfiles de disolución mediante el cálculo del factor de similitud (f₂), tomando en cuenta lo siguiente: el coeficiente de variación del porcentaje disuelto es menor o igual que el 20% para el primer tiempo de muestreo y menor o igual que el 10% para los tiempos subsecuentes.

6.2. Estudio de los Perfiles de Disolución en Aparato USP IV (Celdas de Flujo Continuo)

Para la obtención de los perfiles de disolución en el Aparato USP IV, el equipo se utilizó con una configuración de sistema abierto, por lo que nuevo medio de disolución estuvo siendo bombeado a través de la celdas durante la prueba. Se utilizaron las celdas de 22.6 mm de diámetro con una cama inferior de 3 g de perlas de vidrio. En la siguiente tabla se resumen las condiciones de operación con las cuales evaluaron los perfiles de disolución

Tabla 14. Condiciones de operación de la prueba de disolución en el Aparato USP IV.

Condición de Operación	Especificación		
Equipo de disolución	Equipo 4 de la USP (celdas de flujo continuo) marca SOTAX modelo CH-4008 BASEL		
Medio de disolución	Ácido clorhídrico 0.1 N		
Filtro	Filtros de Microfibra de Vidrio Whatman GF/D (2.7 μm)		
Temperatura de la prueba	$37^{\circ}\text{C} \pm 0.5$		
Velocidad de flujo	8 mL/min		
Perlas de vidrio	3 g de perlas de 3.7 mm de diámetro para cada una de las celdas en la cama inferior		
Muestra Una tableta una por cada celda			
Tiempos de muestreo (min) 1, 2, 3, 4, 5, 6, 7, 8, 10, 12, 14, 16, 18, 20, 25, 30, 35, 50, 55 y 60. El conteo del tiempo se inició una vez qua la primera gota en la probeta			
Instrumento para cuantificar el Metoprolol disuelto	Espectrofotómetro UV-Vis marca Varian modelo Cary 1E, con celdas de paso de luz de 1 cm		
Longitud de onda	273 nm		
Dilución de muestras	1 mL en 10 mL de HCl 0.1 N		

6.2.1. Procedimiento

Encender el termostato del baño de temperatura ajustándolo a una temperatura de 37°C ± 0.5. Colocar el extremo de los tubos más próximo a la bomba de pistones en el contenedor con el medio de disolución. Poner en posición las celdas de 22,6 mm y colocar en cada celda una cuenta de rubí seguida de una cama de 3 g de perlas de vidrio. Colocar en cada celda, sobre la cama de perlas, una tableta del producto a estudiar.

Una vez insertada la muestra se colocan en cada celda los filtros en los cabezales de filtro y el empaque superior. Posteriormente se acoplan los cabezales en cada celda y se cierran presionando hacia abajo la palanca de tensión. Antes de comenzar la prueba, girar las llaves del baño de temperatura hacia la derecha para que el agua del termostato se introduzca en cada unidad de disolución y mantenga la temperatura de prueba deseada. Encender la bomba de pistones para que el medio de disolución comience a fluir a través de las celdas. Las muestras se recolectaran en recipientes y se deberá cronometrar la prueba a partir de la caída de la primera gota.

El porcentaje de tartrato de Metoprolol recuperado se obtuvo por medio de las siguientes ecuaciones:

$$X_i = \frac{Y_i - A}{B} \times Fd$$

Donde X_i es la concentración del principio activo al i-ésimo tiempo de muestreo, Y_i es la absorbancia del principio activo en la preparación de la muestra al i-ésimo tiempo de muestreo, A la ordenada al origen de la curva de calibración, B es la pendiente de la curva de calibración y Fd es el factor de dilución de la muestra. A partir de estos datos de concentración en función del tiempo se obtiene el perfil de disolución completo (no acumulativo) para cada producto.

Para la obtención de los perfiles acumulativos es necesario obtener el porcentaje disuelto de principio activo en cada tiempo de muestreo a partir de las siguientes ecuaciones:

$$D_i = (X_i)(v)$$

En donde D_i son los mg disueltos en el volumen de muestra tomada al i-ésimo tiempo de muestreo y v es el volumen de la muestra tomada.

$$\% D_i = \frac{D_i}{Dosis} \times 100$$

Donde % Di es el porciento de principio activo disuelto al i-ésimo tiempo de muestreo, D_i son los miligramos del principio activo disuelto al i-ésimo tiempo de muestreo, y la Dosis son los miligramos de principio activo indicados en la etiqueta. Para obtener el porcentaje de fármaco disuelto acumulado en cada punto de muestreo solamente se debe sumar el porcentaje de disuelto de todos los tiempos de muestreo inferiores o iguales al valor considerado. En base a esto se pueden construir los perfiles de disolución acumulativos para los productos analizados.

RESULTADOS Y DISCUSIÓN

1. DESARROLLO DEL MÉTODO ANALÍTICO

1.1. Condiciones Espectrofotométricas

En el gráfico 1 se presenta el comportamiento espectrofotométrico y se observa que están presentes dos picos, las longitudes de onda correspondientes a estos picos son 225 y 273 nm. Sin embargo, la longitud onda seleccionada para el análisis fue 273 nm para los tres medios de disolución. En la tabla 15 se presentan los máximos de absorción obtenidos en cada medio.

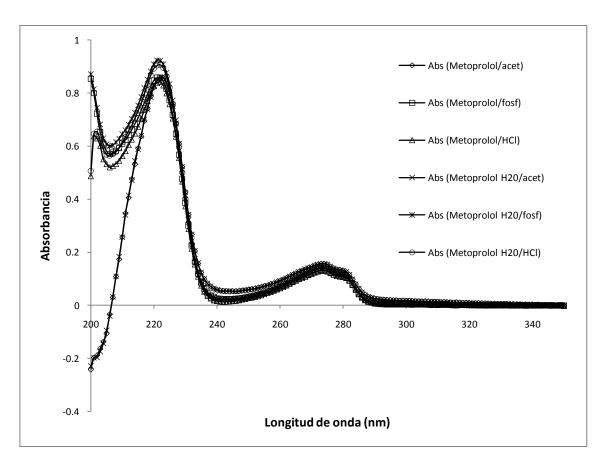


Gráfico 1. Comparación de los espectros de absorción UV de Tartrato de Metoprolol en diferentes medios a una concentración de 50 µg/mL. Metoprolol/acetatos: la solución estándar se preparó solubilizando el Tartrato de Metoprolol en buffer de acetatos y se llevó a volumen la solución con el mismo buffer.

RESULTADOS Y DISCUSIÓN

La leyenda que aparece en la parte derecha del gráfico anterior significa:

- Metoprolol/acetatos: la solución estándar se preparó solubilizando el Tartrato de Metoprolol en buffer de acetatos y se llevó a volumen la solución con el mismo.
- Metoprolol/fosfatos: la solución estándar se preparó solubilizando el Tartrato de Metoprolol en buffer de fosfatos y se llevó a volumen la solución con el mismo.
- Metoprolol/HCl: la solución estándar se preparó solubilizando el Tartrato de Metoprolol en HCl 0.1N y se llevó a volumen la solución con el mismo.
- Metoprolol H₂O/acetatos: la solución estándar se preparó solubilizando el Tartrato de Metoprolol en agua destilada y se llevó a volumen la solución con buffer de acetatos.
- Metoprolol H₂O/fosfatos: la solución estándar se preparó solubilizando el Tartrato de Metoprolol en agua destilada y se llevó a volumen la solución con buffer de fosfatos.
- Metoprolol H₂O/HCl: la solución estándar se preparó solubilizando el Tartrato de Metoprolol en agua destilada y se llevó a volumen la solución con buffer de acetatos.

En el gráfico se observa que no hay diferencias entre los espectros de absorción UV de Tartrato de Metoprolol en los tres medios, por lo que se decidió trabajar solamente con HCl 0.1 N pH 1.2 puesto que tiene ventajas sobre los otros, tales como: fácil de preparar, no cristaliza, más estable, menos costoso, etc.

Tabla 15. Máximos de absorción del Tartrato de Metoprolol en diferentes medios de disolución.

Solución Estándar	Medio de disolución	λ máxima (nm)
	Ácido clorhídrico 0.1 N pH 1.2	222, 273
Tartrato de Metoprolol	Buffer de acetatos 0.2 M pH 4.5	223, 273
	Buffer de fosfatos 0.2 M pH 6.8	221, 273

1.2. Concentraciones para la Cuantificación

En la tabla 16 se presentan los resultados obtenidos de la curva de calibración del estándar de Tartrato de Metoprolol en medio ácido (HCl 0.1 N, pH= 1.2). Se puede observar que el sistema sigue una tendencia lineal en un intervalo de concentraciones de 18.42 a 184.2 μg/mL, ya que como se mencionó cumple con las especificaciones de que el coeficiente de correlación es mayor o igual a 0.99 y el error relativo debido a la regresión en todos los casos es menor al 2%.

Tabla 16. Concentración de cada sistema (µg/mL) y respuesta analítica (absorbancia).

Sistema	Concentración (µg/mL)	Abs	ε (mL/μg·cm)
	18.42	0.0779	0.004229099
1	18.42	0.0763	0.004142237
	18.42	0.0776	0.004212812
	36.84	0.1535	0.004166667
2	36.84	0.1482	0.004022801
	36.84	0.1495	0.004058089
	73.68	0.3008	0.004082519
3	73.68	0.3027	0.004108306
	73.68	0.3028	0.004109663
	110.52	0.4562	0.00412776
4	110.52	0.4566	0.004131379
	110.52	0.4512	0.004082519
	147.36	0.6039	0.004098127
5	147.36	0.6037	0.00409677
	147.36	0.6021	0.004085912
	184.2	0.7497	0.004070033
6	184.2	0.7551	0.004099349
	184.2	0.7531	0.004088491

Para evidenciar que el sistema es lineal, en el gráfico 2 se muestra que el cambio de la respuesta analítica del Tartrato de Metoprolol es directamente proporcional a la concentración.

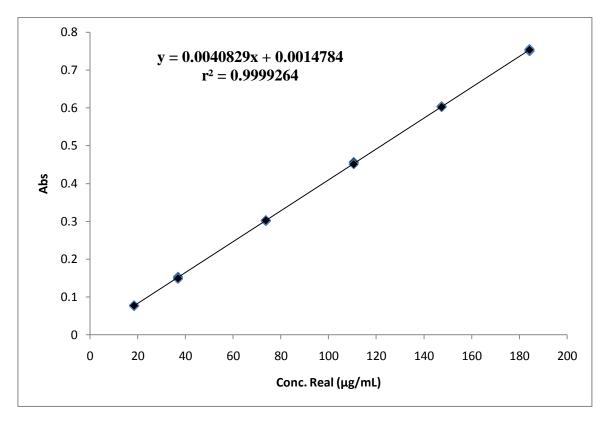


Gráfico 2. Gráfico de absorbancia en función de la concentración de Tartrato de Metoprolol.

En la siguiente tabla se presentan los parámetros estadísticos obtenidos del análisis de regresión y se observa que se encuentran dentro de los límites de aceptación establecidos.

Tabla 17. Resultados del análisis de regresión, C. V. e intervalo de confianza (95%) de la ordenada al origen para determinar que el sistema es lineal.

Parámetros estadísticos de la regresión	Valor obtenido
r	0.99996
\mathbf{r}^2	0.99993
Pendiente	0.00148
Intercepto	0.00408
C. V.	1.24570
IC (Bo)	-0.00060 a 0.00355

2. VALIDACIÓN DEL MÉTODO ANALÍTICO

2.1. Validación del Sistema

2.1.1. Linealidad

En la tabla 18 se presentan los resultados obtenidos de la curva de calibración del estándar de Tartrato de Metoprolol en medio ácido (HCl 0.1 N, pH= 1.2). Se puede observar que el sistema sigue una tendencia lineal en un intervalo de concentraciones de 18.42 a 184.2 μg/mL, ya que cumple con las especificaciones de que el coeficiente de correlación es mayor o igual a 0.99 y el error relativo debido a la regresión en todos los casos es menor al 2%.

Tabla 18. Concentración de cada sistema (µg/mL) y respuesta analítica (absorbancia) obtenida para evaluar la linealidad del sistema.

Sistema	Concentración (µg/mL)	Abs	ε (mL/μg·cm)
	18.42	0.0741	0.0040228
1	18.42	0.0746	0.00404995
	18.42	0.0741	0.0040228
	36.84	0.151	0.00409881
2	36.84	0.1511	0.00410152
	36.84	0.1513	0.00410695
	73.68	0.2999	0.0040703
3	73.68	0.299	0.00405809
	73.68	0.3001	0.00407302
	110.52	0.4501	0.00407257
4	110.52	0.4504	0.00407528
	110.52	0.4501	0.00407257
	147.36	0.5977	0.00405605
5	147.36	0.5974	0.00405402
	147.36	0.5975	0.0040547
	184.2	0.7485	0.00406352
6	184.2	0.7484	0.00406298
	184.2	0.7487	0.0040646

Para evidenciar la linealidad del sistema, en el gráfico 3 se muestra que el cambio de la respuesta analítica del Tartrato de Metoprolol es directamente proporcional a la concentración.

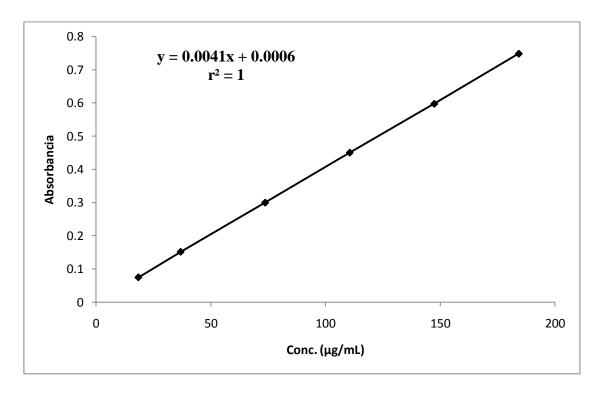


Gráfico 3. Gráfico de absorbancia en función de la concentración de Tartrato de Metoprolol para evaluar la linealidad del sistema.

En la siguiente tabla se presentan los parámetros estadísticos obtenidos del análisis de regresión y se observa que se encuentran dentro de los límites de aceptación establecidos.

Tabla 19. Resultados del análisis de regresión, C. V. e intervalo de confianza (95%) de la ordenada al origen para determinar que el sistema es lineal.

Parámetros estadísticos de la regresión	Valor obtenido
r	0.99999
r ²	0.99998
Pendiente	0.00406
Intercepto	0.00058
C. V.	0.55617
IC (Bo)	-0.00035 a 0.00151

RESULTADOS Y DISCUSIÓN

Una prueba adicional para corroborar que el sistema es lineal fue un análisis de varianza para el cual se estableció la siguiente hipótesis:

Hipótesis:

- Ho: No existe una relación lineal entre la concentración y la respuesta analítica.
- Ha: Existe una relación lineal entre la concentración y la respuesta analítica.

Criterios de aceptación:

- Si F cal < F crítica no se rechaza Ho
- Si F cal >F crítica se rechaza Ho

Tabla 20. Análisis de varianza realizado para determinar la relación lineal entre la concentración de Tartrato de Metoprolol y la respuesta analítica.

Fuente de variación	Grados de libertad	Suma de cuadrados	Cuadrados medios	F calculada	${f F}_{ m crítica}$
Regresión	1	1.02025	1.02025	1072874.43	4.80417E-40
Residuos	16	1.52152E-05	9.50947E-07		
Total	17	1.02026			

De acuerdo a la hipótesis establecida y a los resultados obtenidos del análisis de varianza se evidenció que, estadísticamente hablando, existe una relación lineal entre la respuesta analítica y la concentración de Tartrato de Metoprolol puesto que $F_{cal} < F_{crítica}$.

2.1.2. Precisión

Los resultados obtenidos de los tres niveles de concentración por sextuplicado para evaluar la precisión del sistema se muestran en la siguiente tabla:

Tabla 21. Respuesta analítica obtenida para evaluar la precisión del sistema.

Sistema	Concentración (µg/mL)	Abs	ε (mL/μg·cm)
	36.8	0.1515	0.04117
	36.8	0.1526	0.004147
1	36.8	0.1540	0.004185
1	36.8	0.1526	0.004147
	36.8	0.1515	0.004117
	36.8	0.1524	0.004141
	110.4	0.4505	0.004081
	110.4	0.4509	0.004084
2	110.4	0.4501	0.004077
2	110.4	0.4508	0.004083
	110.4	0.4504	0.004080
	110.4	0.4501	0.004077
	184.0	0.7482	0.004066
	184.0	0.7489	0.004070
3	184.0	0.7500	0.004076
3	184.0	0.7484	0.004067
	184.0	0.7488	0.004070
	184.0	0.7487	0.004069
		Promedio	0.00409742
		Desv. Est.	3.5673E-05
		C. V.	0.87062265

En la tabla 21 se puede observar que el valor del coeficiente de variación obtenido se encuentra dentro del criterio de aceptación establecido (C. V. < 2%), por lo que se afirma que la dispersión de los datos es mínima y por lo tanto el sistema se considera preciso.

2.1.3. Influencia del Filtro

En la tabla 22 se presentan los resultados de la evaluación de la influencia del filtro.

Tabla 22. Resultados de la influencia del filtro utilizando dos soluciones de concentraciones diferentes de Tartrato de Metoprolol: 36.96 y 147.84 µg/mL

	Absorbancia a 273 nm						
Muestra		e Papel n 540 (8.0 n)	Filtro de Fibra de Vidrio (2.7 µm)		Filtro cánula de muestreo Varian (35 µm)		
	36.96	147.84	36.96	147.84	36.96	147.84	
	μm/mL	μm/mL	μm/mL	μm/mL	μm/mL	μm/mL	
Sin Filtrar	0.1526	0.6024	0.1521	0.603	0.1523	0.6028	
1	0.1526	0.6013	0.1521	0.6027	0.1528	0.6021	
2	0.1529	0.6021	0.1519	0.6025	0.1526	0.6027	
3	0.1525	0.6022	0.1517	0.6021	0.1522	0.6025	
4	0.1529	0.6015	0.1519	0.6024	0.1526	0.6028	
5	0.1521	0.602	0.152	0.6027	0.1523	0.602	
6	0.1527	0.6019	0.1522	0.6023	0.1522	0.6025	
Promedio	0.1526	0.6018	0.1520	0.6025	0.1525	0.6024	
Desv. Est.	0.0003	0.0004	0.0002	0.0002	0.0003	0.0003	
C.V.	0.1962	0.0591	0.1152	0.0389	0.1646	0.0532	

En los resultados que se presentan en la tabla anterior, se observa que en todos los casos los coeficientes de variación fueron menores al 2%. Por lo tanto se eligió el filtro de fibra de vidrio para llevar a cabo el estudio de los perfiles de disolución del Aparato USP IV. Mientras que para los perfiles de disolución del Aparato USP II se utilizó el filtro de cánula de muestreo Varian. Por último se optó por el filtro de papel Whatman 540 para ser utilizado en la validación del método.

2.2. Validación del Método

2.2.1. Linealidad

Para evaluar linealidad del método se analizaron cinco concentraciones diferentes por triplicado. Los resultados de linealidad utilizando el método de adiciones patrón se muestran a continuación:

Tabla 23. Concentraciones adicionadas, concentraciones recuperadas y porcentajes de recuperación de Tartrato de Metoprolol para evaluar la linealidad del método.

Sistema	Concentración Recuperada (µg/mL)	Concentración Adicionada (µg/mL)	% Recuperado
	20.538	20.412	100.620
1	20.667	20.412	101.248
	20.692	20.412	101.373
	41.538	40.824	101.750
2	41.590	40.824	101.876
	41.436	40.824	101.499
	61.872	61.236	101.038
3	61.949	61.236	101.164
	61.795	61.236	100.913
	82.846	81.648	101.467
4	82.795	81.648	101.405
	82.795	81.648	101.405
	103.513	102.06	101.423
5	103.487	102.06	101.398
	100.850	102.06	98.814

Para evidenciar la linealidad del método, en el gráfico 4 se muestra la relación lineal que existe entre la concentración adicionada y la concentración recuperada de Tartrato de Metoprolol.

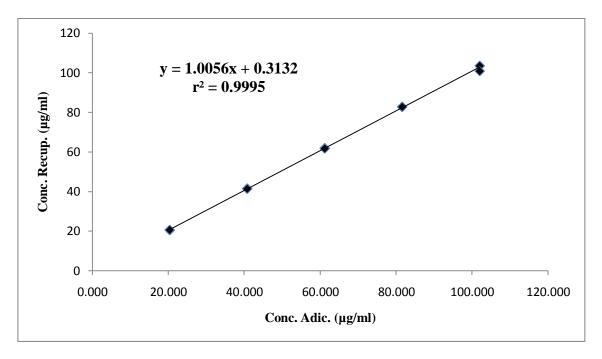


Gráfico 4. Gráfico de concentración adicionada contra concentración recuperada de Tartrato de Metoprolol para evaluar linealidad del método.

En la tabla 24 se presentan los resultados obtenidos del análisis de regresión y se observa que el 99.9% de la variación de la concentración recuperada está explicada por los cambios en la concentración adicionada.

Tabla 24. Resultados del análisis de regresión, C. V. e intervalos de confianza (95%) para determinar que el método es lineal.

Parámetros estadísticos de la regresión	Valor obtenido
r	0.99977
\mathbf{r}^2	0.99955
Pendiente	1.00558
Intercepto	0.31316
C. V.	0.71082
IC (m)	0.99277 a 1.01839
IC (Bo)	-0.55392 a 1.18025

RESULTADOS Y DISCUSIÓN

También se estableció una hipótesis, mediante un análisis de varianza para afirmar o rechazar si existe una relación lineal entre la concentración recuperada y la concentración adicionada. Los resultados se muestran a continuación.

Hipótesis:

- Ho: No existe una relación lineal entre la concentración adicionada y la concentración recuperada del analíto.
- Ha: Existe una relación lineal entre la concentración adicionada y la concentración recuperada del analíto.

Criterios de aceptación

- Si F cal < F crítica no se rechaza Ho
- Si F cal >F crítica se rechaza Ho

Tabla 25. Análisis de varianza realizado para evaluar linealidad del método considerando un nivel de significancia de α=0.05.

Fuente de variación	Grados de libertad	Suma de cuadrados	Cuadrados medios	F calculada	F crítica
Regresión	1	12639.3740	12639.3740	28769.4621	3.9175E-39
Residuos	13	5.7113	0.4393		
Total	14	12645.0853			

Con los resultados obtenidos en el análisis de varianza y en los intervalos de confianza se evidenció estadísticamente que existe una relación lineal entre la concentración recuperada y la concentración adicionada de Tartrato de Metoprolol.

2.2.2. Precisión y Exactitud

Para evaluar la exactitud del método se analizaron tres concentraciones diferentes por sextuplicado. Los resultados se muestran en la siguiente tabla.

Tabla 26. Porcentajes de recobro obtenidos para evaluar la exactitud del método.

Sistema	Concentración Recuperada (µg/mL)	Concentración Adicionada (µg/mL)	% Recuperado
	20.744	20.412	101.624
	20.538	20.412	100.620
1	20.667	20.412	101.248
1	20.667	20.412	101.248
	20.667	20.412	101.248
	20.692	20.412	101.373
	61.974	61.236	101.206
	61.872	61.236	101.038
2	62.077	61.236	101.373
2	61.949	61.236	101.164
	62.000	61.236	101.248
	61.795	61.236	100.913
	103.513	102.06	101.423
	103.487	102.06	101.398
3	100.800	102.06	98.765
3	103.564	102.06	101.474
	103.513	102.06	101.423
	100.850	102.06	98.814

En la siguiente tabla se presentan los parámetros estadísticos para determinar la exactitud del método y se puede observar que el coeficiente de variación global está dentro del criterio de aceptación establecido (C. $V \le 2\%$).

Tabla 27. Parámetros determinados para evaluar la exactitud del método.

Promedio Total de %Recuperado	Desv. Est.	C. V. global (%)
100.9778	0.8275	0.8195

RESULTADOS Y DISCUSIÓN

Por normatividad, el método es exacto ya que el intervalo de recuperación oscila entre 98 y 102 % y los porcentajes de recobro obtenidos son de 100.9778 %. Además de que el coeficiente de variación es menor al 2%.

En la tabla 28 se presentan los parámetros estadísticos estimados para determinar la precisión del método y se puede observar que los valores de los coeficientes de variación obtenidos para cada nivel de concentración entran dentro del criterio de aceptación establecido (C. $V \le 2\%$), por lo que se afirma que la dispersión de los datos es mínima y por lo tanto se considera preciso.

Tabla 28. Parámetros determinados para evaluar la precisión del método.

Concentración Recuperada (µg/mL)	Promedio (% Recuperado)	Desv. Est. (% Recuperado)	C. V. (% Recuperado)
20.7436	101.2267	0.3316	0.3275
61.9744	101.1569	0.1620	0.1601
103.5128	100.5498	1.3635	1.3561

2.2.3. Repetibilidad

En la siguiente tabla se muestran los porcentajes de recobro obtenidos por un analista en tres días diferentes.

Tabla 29. Resultados de los porcentajes de recobro obtenidos para evaluar la repetibilidad de método.

Tantnata	Tartrato de Metoprolol		Dromodio	Desv. Est.	C. V.		
Tartrato	de Metoproioi	Conc. 1	Conc. 2	Conc. 3	r romeulo	Desv. Est.	C. V.
		101.34	101.14	100.88			
	Día 1	101.21	101.12	100.89	101.11	0.19762	0.1954
		101.41	101.14	100.88			
sta		101.47	101.36	101.04			
Analista	Día 2	101.27	101.32	101.04	101.25	0.16501	0.1630
An		101.34	101.34	101.05			
		101.74	101.43	100.78			
	Día 3	101.54	101.50	100.75	101.27	0.38514	0.3803
		101.47	101.45	100.78			

Promedio	101.21
Desviación Estándar	0.26685
Coeficiente de variación (C. V.)	0.26366

Para determinar si los resultados son repetibles se debe de calcular el coeficiente de variación global, ya que por norma éste debe de ser menor al 3%. Por lo tanto, como los coeficientes de variación por cada día son menores a 3% y el coeficiente de variación global es de 0.26366 % se puede afirmar que el método es repetible entre días.

2.2.4. Reproducibilidad

La reproducibilidad se evaluó a partir de determinaciones independientes realizadas bajo diferentes condiciones de análisis (diferentes analistas). En la siguiente tabla se muestran los porcentajes de recobro obtenidos por los dos analistas.

Tabla 30. Resultados de los porcentajes de recobro obtenidos para evaluar la reproducibilidad del método.

Tai	rtrato de	Porcentajes de recobro			
Me	Metoprolol		Conc. 2	Conc. 3	
		100.00	99.33	99.49	
1	Día 1	99.98	99.28	99.36	
Analista		99.98	99.38	99.48	
nal	Día 2	101.74	101.21	101.43	
A		101.54	101.24	101.50	
		101.47	101.17	101.45	
	Día 1	100.93	100.88	100.88	
7		100.91	100.89	100.94	
ista		100.94	100.88	100.88	
Analista		101.47	101.18	101.36	
	Día 2	101.27	101.14	101.32	
		101.34	101.08	101.34	

Para determinar si existen diferencias significativas entre los resultados obtenidos por los dos analistas en los dos días diferentes, se realizó un Análisis de Varianza Anidado, en el cual se estableció como factor fijo el analista y como factor aleatorio el día; además también se realizó una prueba de hipótesis para ayudar a dar una explicación acerca de la reproducibilidad del método.

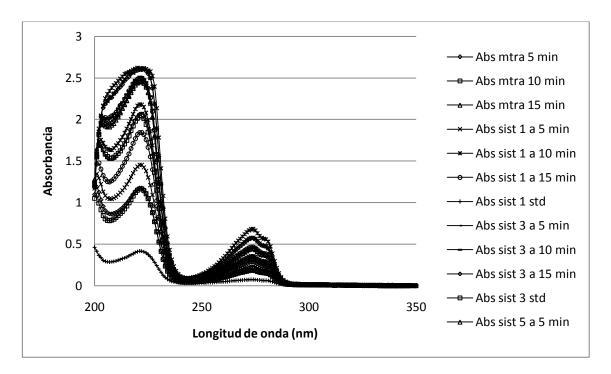
Tabla 31. Análisis de varianza para evaluar la reproducibilidad del método considerando un nivel de significancia de α=0.05.

Fuente de variación	Grados libertad	Suma de cuadrados	Promedio de los cuadrados	F calculada	F critica
Analista	1	5.06304409	5.063044092	0.789225982	18.5
Día	2	12.830404	6.415201991	82.81168733	3.29
Error experimental	32	2.47895521	0.07746735		
Total	35				

Hipótesis:

- Ho: Analista ₁ = Analista ₂. No hay diferencias significativas en los resultados obtenidos por los dos analistas.
- Ha: Analista 1 ≠ Analista 2. Si hay diferencias significativas en los resultados obtenidos por los dos analistas (Los resultados obtenidos por el analista 1 son diferentes a los obtenidos por el analista 2).

Criterios de aceptación


- Si F $_{calculada} \le F$ $_{crítica}$ no se rechaza Ho y por lo tanto el no hay diferencias significativas entre los resultados de los analistas.
- Si F _{calculada} ≥ F _{crítica} se rechaza Ho y por lo tanto hay diferencias significativas entre los resultados de los analistas.

Los resultados obtenidos del análisis de varianza indican que no hay diferencias significativas entre los porcentajes de recobro obtenidos por los dos analistas, ya que F $_{\rm calculada} \leq F$ $_{\rm crítica}$, lo que indica que el método analítico es reproducible entre analistas, pero el día está causando diferencias significativas ya que F $_{\rm calculada} \geq F$ $_{\rm crítica}$.

2.2.5. Selectividad

En el siguiente gráfico se presenta el espectro de absorción del Tartrato de Metoprolol disuelto en HCl 0.1N como medio de disolución. Para evaluar este parámetro de desempeño se siguió la metodología de linealidad y exactitud del método, es decir, a los sistemas preparados se les realizó un barrido, obteniéndose lo siguiente:

Aunque la absorbancia va en aumento, debido a que la concentración va a ser mayor de un sistema a otro, se mantiene 273 nm como la longitud de máxima absorción. El método analítico se puede considerar específico debido a que los excipientes presentes en las tabletas de Tartrato de Metoprolol (Lopresor 100) no interfieren en la respuesta analítica. Además de que el método cumple con lo establecido en la norma, que dice que el método selectivo si cumple con los criterios de linealidad, exactitud y precisión.

2.2.6. Estabilidad de la Muestra

En la tabla 32 se presentan los resultados de estabilidad del Tartrato de Metoprolol en HCl 0.1N durante un periodo de 90 min a 37°C.

Tabla 32. Estabilidad de una solución de Tartrato de Metoprolol a 37°C con una concentración de 110.88 µg/mL.

Tiempo	Absorbancia a 273 nm			
(min)	Mtra. 1	Mtra. 2	Mtra. 3	
15	0.4473	0.4473	0.4474	
30	0.4464	0.446	0.4466	
45	0.4455	0.4459	0.4457	
90	0.4479	0.4439	0.446	
Promedio	0.4468	0.4458	0.4464	
Desv. Est.	0.0011	0.0014	0.0008	
C.V.	0.2350	0.3148	0.1680	

De los resultados de estabilidad que se presentan en la tabla anterior se observa que al analizar la misma muestra a diferentes tiempos, el coeficiente de variación fue menor al 2%, lo que indica que el Tartrato de Metoprolol es estable en una solución de HCl 0.1N por al menos un periodo de 90 min a una temperatura de 37°C.

2.3. Validación de la Dilución para las muestras de los Perfiles de Disolución obtenidos con el Aparato IV USP

En la tabla 33 se presentan los resultados obtenidos de la curva de calibración del estándar de Tartrato de Metoprolol en medio ácido (HCl 0.1~N, pH= 1.2). Se puede observar que el sistema sigue una tendencia lineal en un intervalo de concentraciones de $18.42~a~184.2~\mu g/mL$, ya que cumple con las especificaciones de que el coeficiente de correlación es mayor o igual a 0.99~y el error relativo debido a la regresión en todos los casos es menor al 2%.

Tabla 33. Concentración de cada sistema (µg/mL) y respuesta analítica (absorbancia) obtenida para validar la dilución.

Sistema	Concentración (µg/mL)	Abs	ε (mL/µg·cm)
	18.424	0.0742	0.0040274
1	18.424	0.0743	0.0040328
	18.424	0.0742	0.0040274
	36.848	0.1463	0.0039704
2	36.848	0.1465	0.0039758
	36.848	0.1461	0.0039649
	73.696	0.2952	0.0040056
3	73.696	0.2956	0.0040111
	73.696	0.2953	0.0040070
	110.544	0.4448	0.0040237
4	110.544	0.4453	0.0040283
	110.544	0.4451	0.0040265
	147.392	0.5908	0.0040084
5	147.392	0.591	0.0040097
	147.392	0.5911	0.0040104
	184.24	0.7379	0.0040051
6	184.24	0.7378	0.0040046
	184.24	0.7374	0.0040024

En el gráfico 5 se puede observar que la linealidad se conserva, ya que el cambio de la respuesta analítica del Tartrato de Metoprolol sigue siendo directamente proporcional a la concentración aún haciendo una dilución de uno en diez.

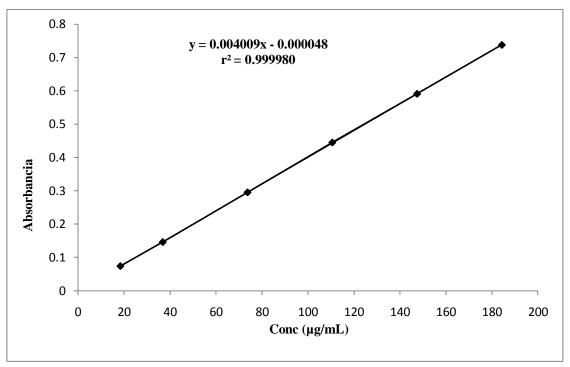


Gráfico 5. Gráfico de absorbancia en función de la concentración de Tartrato de Metoprolol para evaluar la dilución.

En la siguiente tabla se presentan los parámetros estadísticos obtenidos del análisis de regresión y se observa que se encuentran dentro de los límites de aceptación establecidos.

Tabla 34. Resultados del análisis de regresión, C. V. e intervalo de confianza (95%) de la ordenada al origen para validar la dilución de las muestras.

Parámetros estadísticos de la regresión	Valor obtenido
r	0.99998
\mathbf{r}^2	0.99997
Pendiente	0.00400
Intercepto	-4.78539E-05
C. V.	0.55617
IC (Bo)	-0.001121 a 0.0010251

3. Comparación de los Perfiles de Tartrato de Metoprolol disuelto obtenidos en el Aparato USP II

Una vez determinadas las respuestas analíticas, se procedió a obtener las concentraciones y el porcentaje disuelto para cada uno de los perfiles obtenidos. En la siguiente tabla se muestran los valores promedios de los perfiles de disolución de cada producto a los diferentes tiempos de muestreo.

Tabla 35. Porcentajes promedio de Metoprolol disuelto por producto obtenidos en el Aparato USP II.

	Porcentaje Disuelto (%) Tiempo (min) Promedio (± Desv. Est.)					
Tiempo (min)						
	Lopresor 100	Kenaprol	Proken M	Nipresol	Metobest	
2	8.026 (1.37)	14.967 (1.62)	16.103 (1.78)	8.277 (1.13)	10.119 (1.02)	
4	16.671 (1.63)	30.299 (1.66)	24.874 (1.88)	19.199 (1.21)	18.118 (1.52)	
6	29.253 (2.75)	43.520 (2.68)	35.507 (2.76)	27.642 (1.59)	27.508 (1.75)	
8	40.354 (3.28)	56.740 (3.54)	45.716 (3.64)	37.121 (2.89)	37.228 (2.02)	
10	51.187 (3.47)	67.417 (4.20)	55.002 (4.59)	45.090 (2.96)	46.370 (3.04)	
12	60.535 (3.18)	76.457 (5.13)	63.926 (5.69)	55.625 (2.43)	54.150 (2.63)	
14	69.779 (3.47)	84.154 (5.27)	70.511 (5.63)	61.770 (2.96)	62.516 (3.09)	
16	79.011 (3.12)	90.026 (4.72)	77.767 (5.89)	68.703 (4.33)	69.220 (3.00)	
18	84.905 (3.34)	93.531 (4.25)	83.087 (4.94)	77.076 (3.81)	76.809 (4.38)	
20	92.001 (3.87)	95.495 (4.17)	87.657 (4.16)	84.165 (4.49)	81.475 (3.51)	
25	98.168 (1.14)	97.366 (2.91)	94.713 (3.12)	94.436 (3.24)	90.629 (3.47)	
30	98.236 (1.31)	97.097 (2.62)	98.059 (1.83)	101.741 (2.23)	97.018 (2.91)	
40	98.334 (1.24)	97.383 (2.56)	97.979 (2.02)	103.153 (.98)	98.488 (2.00)	
50	97.353 (1.57)	96.723 (2.43)	96.627 (.87)	102.470 (.96)	98.303 (2.48)	
60	97.190 (1.23)	96.126 (2.25)	96.411 (.67)	101.588 (.97)	99.868 (3.82)	

En ella se puede apreciar que los cinco productos cumplen con la especificación de Q requerida tanto en la Farmacopea Mexicana como en la USP, que es de no menos del 75% en 30 minutos.

En el siguiente gráfico se presentan los perfiles de disolución de los productos bajo estudio. Se pueden apreciar las diferencias en el comportamiento de disolución de los productos en relación al innovador. El Kenaprol mostró un perfil característico, correspondiente a la más rápida velocidad de disolución; sin embargo, es el producto que presenta mayor variabilidad y su disolución no alcanza el 100% del valor declarado en la etiqueta.

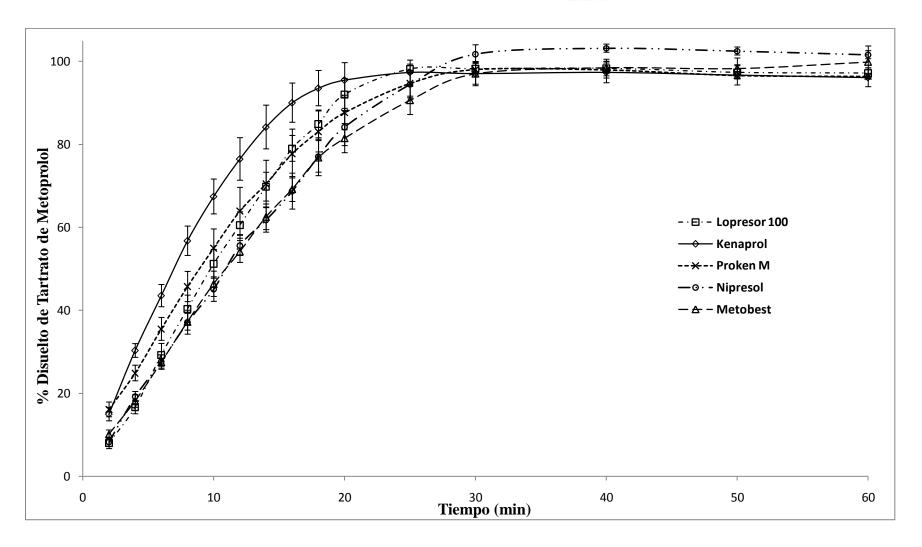


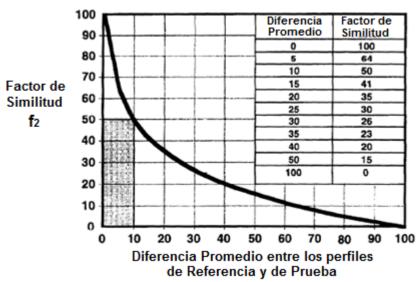
Gráfico 6. Porcentajes promedio de Metoprolol disuelto por producto obtenidos en el Aparato USP II. Las barras horizontales representan las desviaciones estándar obtenidas en cada punto de muestreo.

Los perfiles de disolución pueden considerarse similares en razón de (1) similitud global de los perfiles y (2) similitud en cada punto temporal de disolución de la muestra. Se puede realizar la comparación de los perfiles de disolución utilizando un método independiente de modelo o dependiente de modelo. Un enfoque independiente de modelo sencillo utiliza un factor de similitud (f_2) para comparar los perfiles de disolución, haciendo una transformación de la raíz cuadrada recíproca logarítmica de la suma del error cuadrado y es una medición de la similitud en la disolución porcentual (%) entre las dos curvas.

$$f_2 = 50 \cdot \log \left\{ \left[1 + \frac{1}{n} \cdot \sum_{t=1}^{n} (R_t - T_t)^2 \right]^{-0.5} \cdot 100 \right\}$$

logaritmo base 10

número de tiempos de muestreo


% disuelto promedio de la referencia a cada

tiempo de muestreo t

% disuelto promedio del producto de prueba a cada tiempo de muestreo t

Se decidió utilizar el factor de similitud f_2 para la comparación de los perfiles de disolución ya que actualmente es el procedimiento que se usa más comúnmente. El factor de similitud, f_2 , es inversamente proporcional al promedio elevado al cuadrado de la diferencia entre los dos perfiles y determina la cercanía de los dos perfiles.

Un valor de cien para f_2 indica que las dos curvas son iguales. Desde el punto de vista práctico esto no es posible. Por lo tanto, un valor entre 50 y 100 para f_2 es considerado aceptable.

El factor de similitud se calculó para los cinco productos; comparados todos con el medicamento de referencia (Lopresor 100) y entre sí mismos. En la siguiente tabla se muestran los valores obtenidos del factor de similitud para los cinco productos evaluados y comparados entre sí; en ésta se observa que no todos los productos presenta un factor de similitud mayor de 50, lo cual nos indica que no necesariamente todos los productos tienen que ser equivalentes. Este comportamiento puede deberse principalmente a diferencias en su formulación o a los procesos de manufactura.

Tabla 36. Factor de similitud de los productos evaluados con el Aparato USP II.

Factor de Similitud (f_2)						
	Lopresor 100	Kenaprol	Proken M	Nipresol	Metobest	
Lopresor 100	100	48.920	68.265	62.284	62.155	
Kenaprol		100	53.791	41.660	41.757	
Proken M			100	57.975	59.080	
Nipresol				100	78.327	
Metobest					100	

Basándonos en los valores del factor de similitud que se obtuvieron con el Aparato USP II, podemos decir que los únicos productos cuyos perfiles de disolución se comportan de manera similar y que, por lo tanto, tienen altas posibilidades de ser equivalentes son:

- Lopresor 100 Proken M
- Lopresor 100 Nipresol
- Lopresor 100 Metobest
- Kenaprol Proken M
- Proken M Nipresol
- Proken M Metobest
- Nipresol Metobest

Siendo Nipresol y Metobest los dos productos cuyos perfiles de disolución presentan la mayor similitud. Y los productos cuyos perfiles no se consideran similares y no tienen gran posibilidad de ser equivalentes son:

- Lopresor 100 Kenaprol
- Kenaprol Nipresol
- Kenaprol Metobest

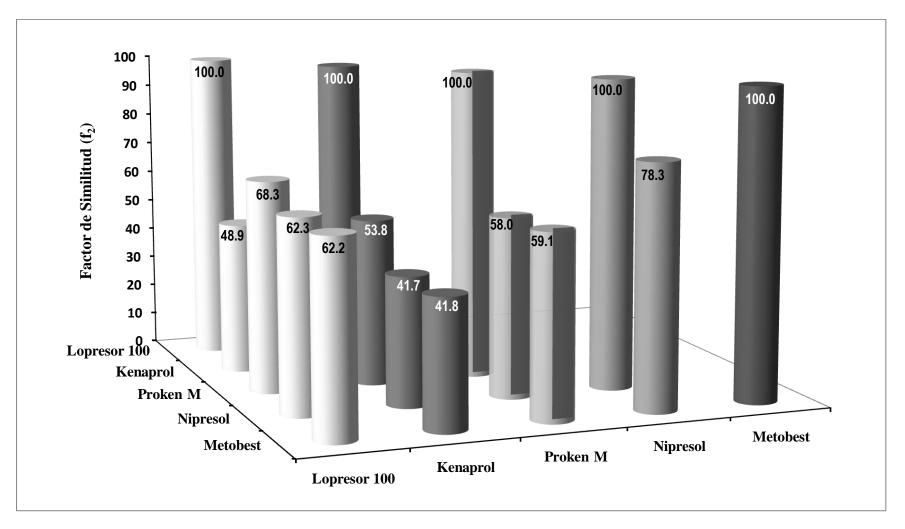


Gráfico 7. Valores del factor de similitud de los perfiles de disolución de los cinco productos obtenidos en el Aparato USP II.

4. Comparación de los Perfiles de Tartrato de Metoprolol disuelto obtenidos en el Aparato USP IV

Se procedió de la misma forma que con los datos que se obtuvieron con el Aparato USP II, es decir, una vez determinadas las respuestas analíticas se obtuvieron las concentraciones y el porcentaje disuelto para cada uno de los perfiles obtenidos. De modo que para cada producto se pudo obtener el perfil de concentración contra tiempo y el perfil acumulativo de porcentaje disuelto en función del tiempo. A continuación se muestran los perfiles que se obtuvieron para cada producto.

Tabla 37. Perfiles de concentración (µg/mL) de Metoprolol disuelto de cada uno de los productos, datos puntuales no acumulados obtenidos con el Aparato USP IV.

	Concentración (µg/mL) Promedio (± Desv. Est.)				
Tiempo (min)	Lopresor 100	Kenaprol	Proken M	Nipresol	Metobest
1	97.238 (24.95)	334.168 (47.83)	202.869 (30.78)	210.237 (21.16)	161.722 (23.46)
2	164.734 (19.86)	506.328 (67.38)	329.311 (22.28)	323.575 (10.99)	207.829 (23.53)
3	293.531 (57.98)	643.322 (83.10)	377.642 (19.17)	388.766 (12.71)	246.445 (25.06)
4	383.541 (57.75)	763.885 (111.82)	406.788 (15.52)	404.461 (18.80)	288.470 (30.47)
5	466.304 (44.20)	822.197 (117.73)	429.341 (17.96)	420.136 (17.72)	315.881 (31.43)
6	519.942 (57.09)	856.813 (112.65)	441.771 (14.42)	435.321 (20.72)	324.800 (35.92)
7	562.130 (44.75)	841.219 (105.35)	420.401 (21.31)	447.731 (21.87)	342.740 (41.59)
8	538.740 (43.85)	803.848 (100.39)	391.072 (26.10)	468.733 (23.05)	356.232 (44.15)
10	518.248 (46.95)	742.230 (97.95)	365.743 (29.18)	441.465 (22.56)	364.886 (29.41)
12	496.287 (43.44)	628.280 (111.22)	347.374 (25.87)	426.606 (26.36)	368.886 (21.97)
14	482.469 (36.56)	511.676 (80.51)	324.841 (29.36)	403.012 (24.91)	351.619 (27.63)
16	461.732 (33.49)	371.723 (69.14)	313.493 (26.25)	372.539 (34.87)	333.107 (30.81)
18	439.118 (32.68)	275.434 (72.84)	296.287 (22.94)	341.842 (30.58)	320.616 (26.47)
20	425.218 (41.68)	191.816 (64.71)	284.796 (24.59)	315.330 (24.01)	304.002 (23.98)
25	399.501 (47.48)	107.351 (41.64)	253.405 (28.68)	268.447 (26.70)	285.327 (21.78)
30	124.116 (29.26)	49.253 (29.88)	224.831 (21.55)	233.770 (33.90)	266.161 (19.81)
35	44.408 (18.35)	16.695 (15.86)	179.376 (14.79)	157.025 (20.08)	241.098 (20.76)
40	14.658 (7.00)	11.964 (6.57)	151.637 (26.10)	79.189 (34.58)	165.004 (26.30)
45	5.675 (2.12)	-	103.208 (26.30)	23.720 (10.69)	84.040 (36.25)
50	-	-	57.209 (23.39)	6.251 (3.33)	29.790 (16.37)
55	-	-	28.876 (15.50)	-	12.208 (10.69)
60	-	-	10.996 (4.67)	-	-

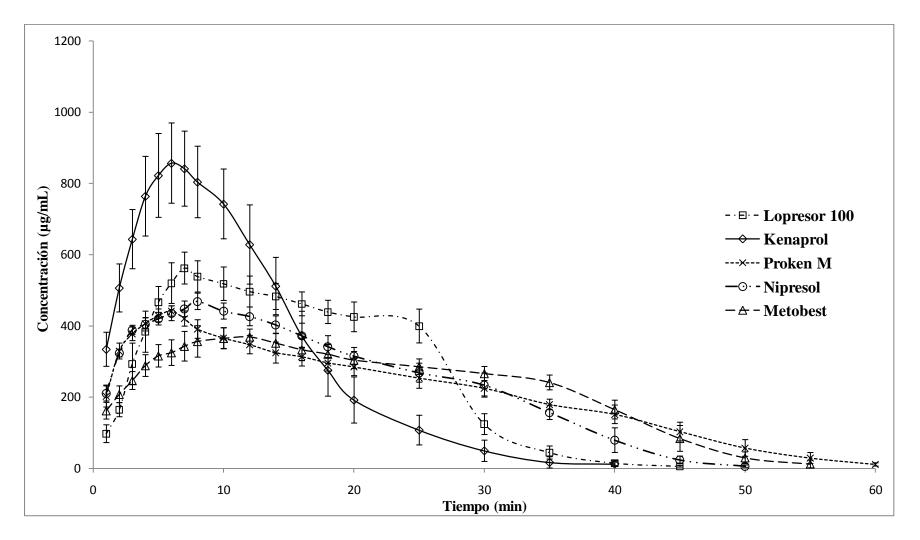


Gráfico 8. Perfiles de concentración (µg/mL) de Metoprolol disuelto de cada uno de los productos, datos puntuales no acumulados obtenidos con el Aparato USP IV. Las barras horizontales representan las desviaciones estándar obtenidas en cada punto de muestreo.

RESULTADOS Y DISCUSIÓN

Además de los perfiles de concentración que se obtuvieron para cada producto, se pudo también obtener el perfil de porcentajes disueltos en función del tiempo para cada uno de ellos.

Tabla 38. Porcentajes promedio de Metoprolol disuelto por producto obtenidos en el Aparato USP IV.

Tiempo (min)	Porcentaje Disuelto (%) Promedio (± Desv. Est.)					
	Lopresor 100	Kenaprol	Proken M	Nipresol	Metobest	
1	0.804 (0.21)	2.757 (0.39)	1.664 (0.25)	1.727 (0.17)	1.312 (0.19)	
2	2.159 (0.37)	6.909 (0.91)	4.353 (0.30)	4.375 (0.26)	2.993 (0.35)	
3	4.569 (0.76)	12.184 (1.50)	7.443 (0.41)	7.563 (0.23)	4.987 (0.52)	
4	7.708 (1.13)	18.436 (2.16)	10.738 (0.51)	10.859 (0.27)	7.332 (0.69)	
5	11.540 (1.22)	25.165 (2.91)	14.251 (0.58)	14.304 (0.34)	9.905 (0.86)	
6	15.813 (1.42)	32.191 (3.70)	17.866 (0.63)	17.867 (0.45)	12.550 (1.08)	
7	20.432 (1.68)	39.089 (4.40)	21.306 (0.67)	21.531 (0.60)	15.342 (1.33)	
8	24.859 (1.95)	45.693 (5.03)	24.506 (0.73)	25.367 (0.73)	18.244 (1.62)	
10	33.171 (2.44)	57.222 (6.11)	30.315 (0.95)	32.431 (1.03)	23.916 (1.97)	
12	41.130 (2.86)	67.202 (7.42)	35.873 (1.29)	39.256 (1.41)	29.721 (2.08)	
14	48.868 (3.26)	75.213 (8.27)	41.031 (1.73)	45.705 (1.70)	35.185 (2.33)	
16	56.272 (3.44)	81.146 (7.85)	46.047 2.11 ()	51.665 (2.11)	40.411 (2.41)	
18	63.314 (3.68)	85.482 (7.16)	50.751 (2.45)	57.135 (2.45)	45.394 (2.62)	
20	70.132 (3.93)	87.642 (6.52)	55.308 (2.79)	62.180 (2.65)	50.152 (2.80)	
25	86.161 (5.15)	91.936 (5.10)	65.444 3.65 ()	72.869 (2.78)	61.566 (3.40)	
30	91.141 (4.72)	93.906 (4.35)	74.438 (4.29)	82.101 (3.16)	72.189 (3.82)	
35	92.923 (4.36)	94.575 (4.07)	81.613 (4.26)	88.263 (3.31)	81.813 (4.27)	
40	93.510 (4.27)	94.725 (3.98)	87.678 4.23 ()	91.376 (4.03)	88.397 (3.70)	
45	93.738 (4.28)	-	91.807 (4.37)	92.312 (4.29)	91.759 (3.03)	
50	-	-	94.095 (4.21)	92.560 (4.36)	92.951 (2.81)	
55	-	-	95.250 (4.01)	-	93.438 (2.69)	
60	-	-	95.690 (3.97)	-	-	

En el siguiente gráfico podemos observar con mayor claridad la diferencia que existe entre los perfiles de disolución de cada producto, lo que nos estaría indicando que no todos los productos son equivalentes entre sí.

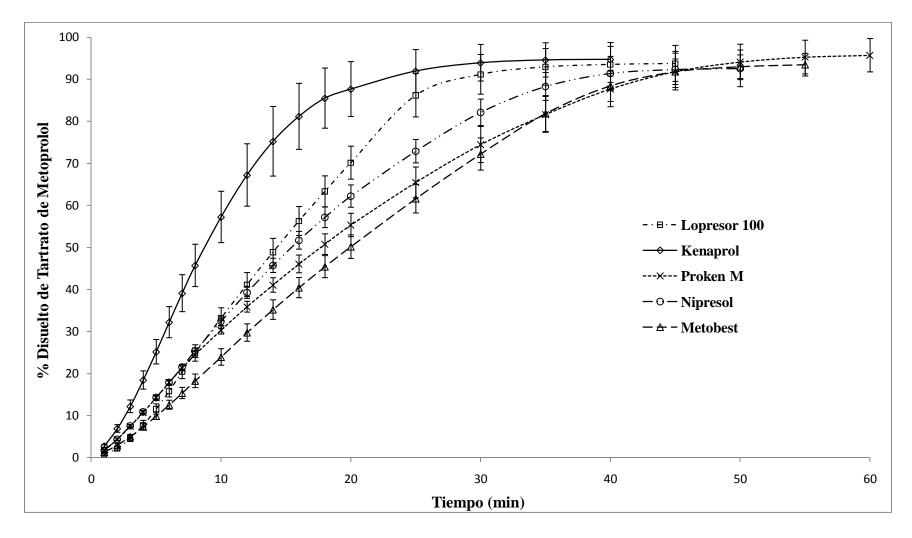


Gráfico 9. Porcentajes promedio de Metoprolol disuelto por producto obtenidos en el Aparato USP IV. Las barras horizontales representan las desviaciones estándar obtenidas en cada punto de muestreo.

RESULTADOS Y DISCUSIÓN

Para comparar estos perfiles de disolución acumulativos, obtenidos con el Aparato USP IV, también se utilizó el factor de similitud f_2 . En la siguiente tabla se muestran los valores obtenidos del factor de similitud para los cinco productos evaluados y comparados entre sí. De la misma forma que ocurrió con el Aparato USP II, se observa que no todos los productos presenta un factor de similitud mayor de 50, lo cual nos indica que no necesariamente todos los productos tienen que ser equivalentes. Al igual que en los resultados obtenidos con el aparato USP II, en los perfiles que se obtienen con el aparato USP IV, tanto de concentración o diferenciales, como acumulativos (gráficos 8 y 9) podemos observar que el producto que tiene un comportamiento de disolución diferente y con mayor variabilidad es el Kenaprol. Sin embargo, con este aparato se pueden observar con mayor claridad las diferencias que existen entre los productos comparados. Esto se pudo corroborar cuando se calculó el factor de similitud para los cinco productos; comparados todos con el medicamento de referencia (Lopresor 100) y entre sí mismos. Los valores se muestran en la siguiente tabla.

Tabla 39. Factor de similitud de los productos evaluados con el Aparato USP IV.

Factor de Similitud (f_2)						
	Lopresor 100	Kenaprol	Proken M	Nipresol	Metobest	
Lopresor 100	100	39.300	51.959	64.411	46.046	
Kenaprol		100	32.704	36.415	28.932	
Proken M			100	67.846	66.882	
Nipresol				100	55.002	
Metobest					100	

Basándonos en los valores del factor de similitud que se obtuvieron con el Aparato USP IV, podemos decir que los únicos productos cuyos perfiles de disolución se comportan de manera similar y que, por lo tanto, tienen altas posibilidades de ser equivalentes son:

- Lopresor 100 Proken M
- Lopresor 100 Nipresol
- Proken M Nipresol
- Proken M Metobest
- Nipresol Metobest

Y los productos cuyos perfiles no se consideran similares y tienen una mínima posibilidad de ser equivalentes son:

- Lopresor 100 Kenaprol
- Lopresor 100 Metobest
- Kenaprol Proken M
- Kenaprol Nipresol
- Kenaprol Metobest

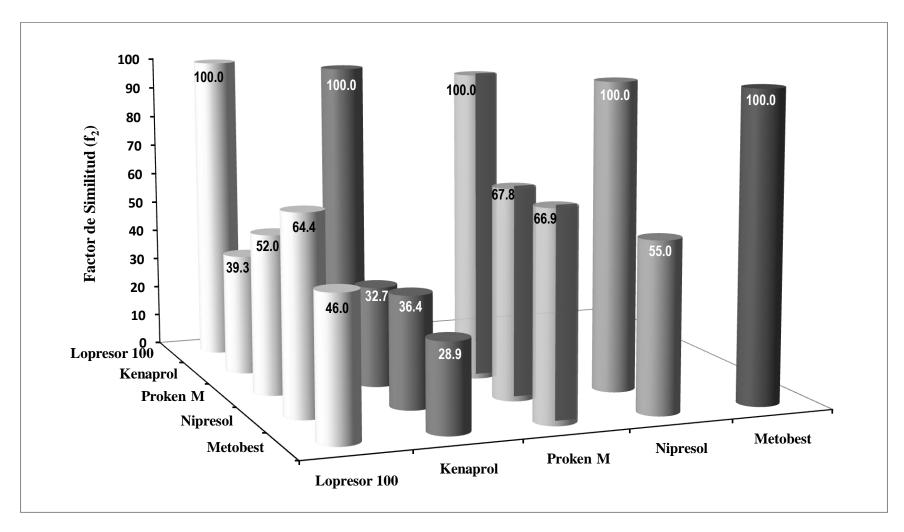


Gráfico 10. Valores del factor de similitud de los perfiles de disolución de los cinco productos obtenidos en el Aparato USP IV.

5. Análisis Cinético

Como ya hemos mencionado, la biodisponibilidad se define como la cantidad y velocidad a la cual llega un fármaco a torrente sanguíneo. Para determinar la velocidad es necesario determinar la concentración máxima y el tiempo máximo, y para evaluar la cantidad presente en torrente sanguíneo es necesario determinar el área bajo la curva; dichos parámetros se evalúan con el perfil de concentraciones en función del tiempo que se obtuvo con el Aparato USP IV.

Para evaluar si existe diferencia en la concentración máxima ($C_{máx}$) que alcanza cada uno de los productos, se determinaron los intervalos de confianza (Tabla 41) con un nivel de significancia del 0.20; se encontró que entre los cinco productos analizados existe diferencia significativa entre sus concentraciones máximas. Esto se puede observar en el gráfico 11, en el cual el intervalo de confianza de ninguno de los productos se traslapan entre sí. Lo mismo se observa con el tiempo máximo ($t_{máx}$), ya que los intervalos de confianza de ninguno de los productos tampoco se traslapan entre sí. Esto significa que ninguno de los cinco productos evaluados alcanza la misma concentración máxima después de que se han disuelto, y el tiempo en que cada producto la alcanza es diferente.

Al existir diferencia entre la máxima concentración disuelta que alcanza cada producto, el ABC que calculamos únicamente del tiempo cero hasta el tiempo en que se alcanza dicha concentración (ABC₀^{Cmáx}), también presenta diferencias (ver gráfico 13). Únicamente son similares en este parámetro los productos Nipresol y Metobest, cuyos intervalos de confianza se traslapan por completo. Sin embargo, en el gráfico 12 se observa que los intervalos de confianza de los cinco productos calculados para el parámetro ABC desde el tiempo cero hasta el último tiempo de muestreo (ABC₀^t), se traslapan por completo. Lo que nos indica que la cantidad de fármaco liberado y disuelto de cada producto si es la misma para los cinco productos evaluados, pero la forma y el tiempo en que cada uno lo hace es diferente, lo cual podemos atribuir a diferencias de formulación o de proceso de fabricación principalmente.

Esto nos lleva a inferir que a partir de los perfiles de disolución no acumulativos (diferenciales) que se obtienen con el Aparato USP IV se puede calcular y utilizar el ABC_0^{t} como una medida de la cantidad de fármaco disuelto, mientras que la $C_{m\acute{a}x}$, el $t_{m\acute{a}x}$ y el $ABC_0^{Cm\acute{a}x}$ como factores relacionados más con la velocidad de disolución, estos parámetros cinéticos (especialmente el ABC y la $C_{m\acute{a}x}$) son un factor y un requisito obligatorio para la equivalencia.

Tabla 40. Datos de concentración máxima de Tartrato de Metoprolol disuelto para cada producto en el Aparato USP IV.

C _{máx} (µg/mL)							
Lopresor 100	Kenaprol	Proken M	Nipresol	Metobest			
646.159	838.423	456.834	470.304	382.377			
604.277	879.080	424.994	455.854	338.781			
527.371	820.054	445.567	501.165	402.951			
509.737	949.128	449.976	444.832	430.382			
544.516	829.116	433.321	467.855	397.317			
591.296	901.123	414.707	480.101	406.869			
565.089	760.783	449.731	499.205	395.603			
554.803	759.803	444.832	482.551	370.866			
611.625	1029.953	462.957	445.567	412.748			
484.020	806.828	425.239	439.934	358.865			
549.170	1103.185	451.690	441.893	353.721			
594.480	758.823	441.404	495.531	364.008			

Tabla 41. Intervalos de confianza de las medias de la concentración máxima de Tartrato de Metoprolol disuelto (nivel de significancia de 0.2).

	$C_{m\acute{a}x} \left(\mu g/mL \right)$				
	Lopresor 100	Kenaprol	Proken M	Nipresol	Metobest
LCS	583.468	912.947	447.447	477.806	395.376
Promedio	565.212	869.692	441.771	468.733	384.541
LCI	546.956	826.436	436.095	459.660	373.705

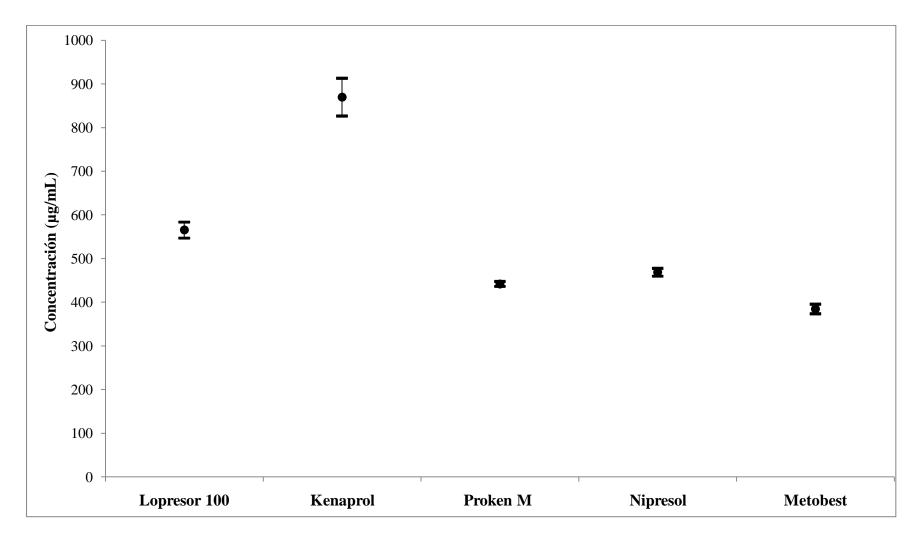


Gráfico 11. Comparación de los intervalos de confianza de la $C_{máx}$ de Tartrato de Metoprolol disuelto

Tabla 42. Datos de Área bajo la curva de cero a tiempo t de Tartrato de Metoprolol disuelto.

		ABC_0^t		
Lopresor 100	Kenaprol	Proken M	Nipresol	Metobest
12647.211	12227.782	13746.224	12312.761	12231.955
12849.187	13133.262	12049.950	11666.287	11941.109
13038.120	12333.296	12453.338	12893.840	12797.237
12104.744	12835.025	12102.425	12907.004	12853.862
11824.405	12791.105	12534.897	11555.031	12859.998
12992.430	12677.760	11983.821	12537.722	12271.388
13323.137	11368.056	12138.857	13065.286	12023.955
12536.604	12564.429	12143.388	12212.036	12110.718
13165.517	12770.882	13201.393	11536.233	12734.414
11870.071	12868.391	12748.653	12424.017	12177.460
12616.694	13015.851	12646.766	11906.311	12558.070
11117.093	12376.640	12336.510	11794.994	11664.837

Tabla 43. Intervalos de confianza del ABC_0^t de Tartrato de Metoprolol disuelto (nivel de significancia de 0.2).

	ABC_0^t					
	Lopresor 100	Kenaprol	Proken M	Nipresol	Metobest	
LCS	12765.259	12765.203	12714.182	12449.370	12509.299	
Promedio	12507.101	12580.207	12507.185	12234.294	12352.084	
LCI	12248.943	12395.210	12300.188	12019.217	12194.868	

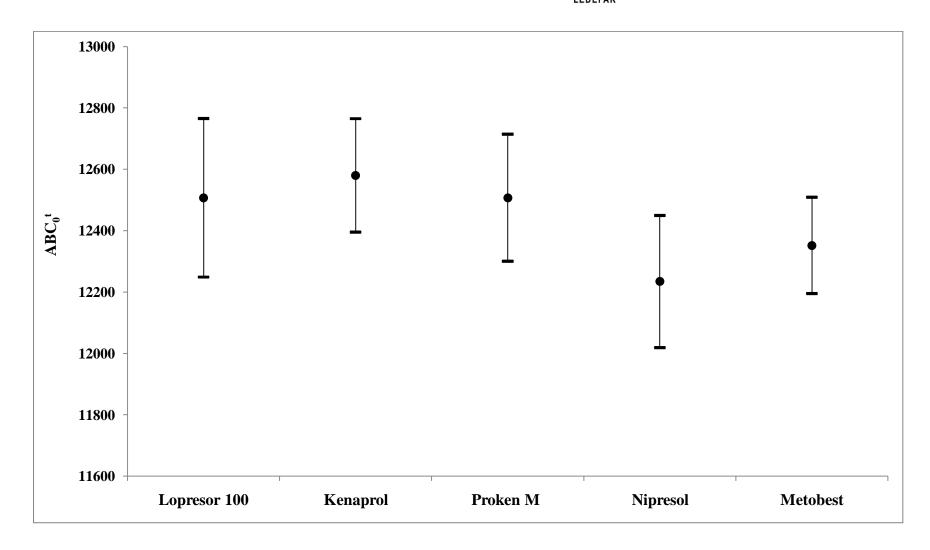


Gráfico 12. Comparación de los intervalos de confianza del ABC de cero a tiempo t de Tartrato de Metoprolol disuelto

Tabla 44. Datos de Área bajo la curva de cero a $C_{m\acute{a}x}$ de Tartrato de Metoprolol disuelto.

$ABC_0^{Cm\acute{a}x}$								
Lopresor 100	Kenaprol	Proken M	Nipresol	Metobest				
2268.110	3590.735	2070.745	3008.537	3027.991				
3981.846	4081.315	2052.865	2824.722	3047.691				
1943.293	4047.936	1953.916	2949.265	4383.972				
1982.261	4728.699	2058.253	2778.309	2303.772				
2196.421	3788.195	1902.238	2883.136	2852.382				
2159.732	5183.818	1855.947	2884.851	2289.566				
2474.702	3273.927	1991.757	2917.915	3084.446				
2235.511	3162.977	1898.196	2880.197	2552.106				
2346.534	4036.984	2000.819	2862.440	3284.898				
1900.971	3317.524	1895.992	2707.037	2593.498				
2352.339	4039.801	1928.812	2835.131	1889.485				
2376.341	3041.251	1992.492	2843.581	3453.772				

Tabla 45. Intervalos de confianza del $ABC_0^{Cm\acute{a}x}$ de Tartrato de Metoprolol disuelto (nivel de significancia de 0.2).

	ABC ₀ ^{Cmáx} Lopresor 100 Kenaprol Proken M Nipresol Metobest					
LCS	2565.806	4110.247	1995.119	2895.289	3154.118	
Promedio	2351.505	3857.763	1966.836	2864.594	2896.965	
LCI	2137.205	3605.280	1938.553	2833.899	2639.812	

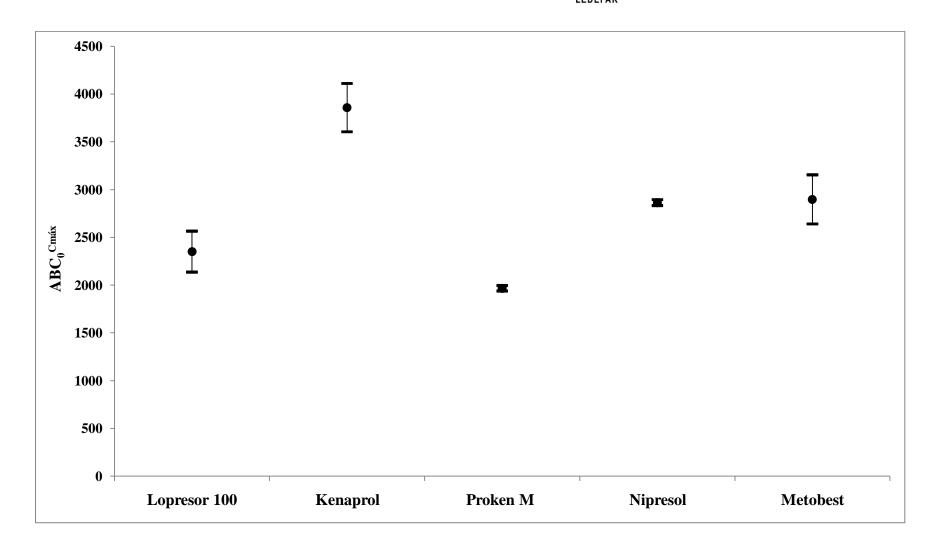


Gráfico 13. Comparación de los intervalos de confianza del ABC de cero a $C_{máx}$ de Tartrato de Metoprolol disuelto

Tabla 46. Datos de Tiempo máximo $(t_{máx})$ de Tartrato de Metoprolol disuelto.

$\mathbf{t_{m\acute{a}x}}$ (min)							
Lopresor 100	Kenaprol	Proken M	Nipresol	Metobest			
7	6	6	8	10			
10	6	6	8	12			
7	7	6	8	14			
7	7	6	8	8			
7	7	6	8	10			
7	8	6	8	8			
7	6	6	8	10			
7	6	6	8	10			
7	6	6	8	12			
7	6	6	8	10			
7	6	6	8	8			
7	6	6	8	12			

Tabla 47. Intervalos de confianza del tmáx de Tartrato de Metoprolol disuelto (nivel de significancia de 0.2).

	t _{máx} (min) Lopresor 100 Kenaprol Proken M Nipresol Metobest					
LCS	7.591	6.680	6.0	8.0	11.071	
Promedio	7.250	6.417	6.0	8.0	10.333	
LCI	6.909	6.154	6.0	8.0	9.595	

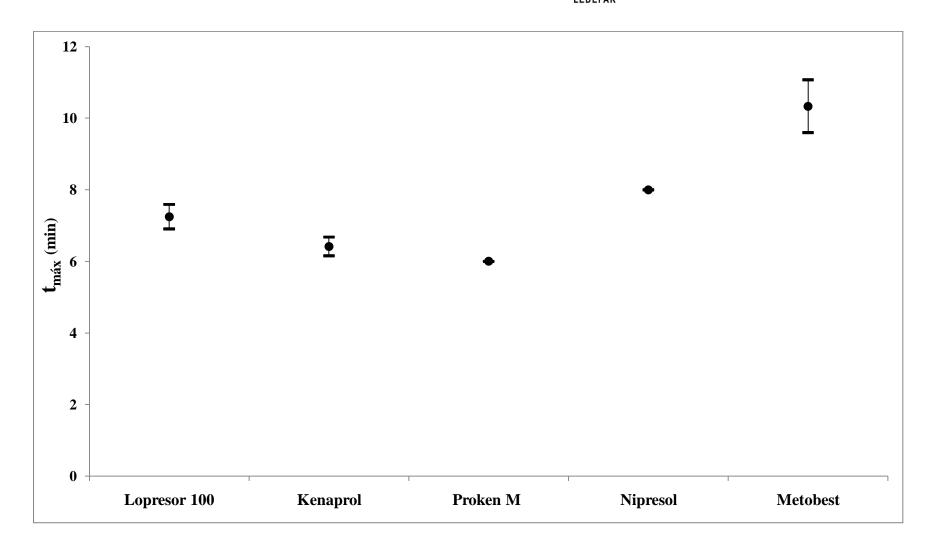


Gráfico 14. Comparación de los intervalos de confianza de $t_{máx}$ de Tartrato de Metoprolol disuelto

RESULTADOS Y DISCUSIÓN

El porcentaje de Tartrato de Metoprolol disuelto a los 30 minutos para cada producto, utilizando el aparato USP II y el Aparato USP IV, se muestra en las tablas 35 y 38, respectivamente. Considerando la especificación de un sólo punto a 30 minutos (Q=75), vemos que los cinco productos cumplen con esta especificación de no menos del 75% de fármaco disuelto en el Aparato USP II. Mientras que en el Aparato USP IV, solamente tres de los productos cumplen con la especificación (Lopresor 100, Kenaprol y Nipresol), y los dos productos restantes (Proken M y Metobest) quedan por debajo de la misma.

Aunque la velocidad de disolución que se observa para todos los productos con el Aparato USP IV fue más lenta, los productos de referencia y genérico intercambiable (Lopresor 100 y Kenaprol, respectivamente) alcanzan un alto porcentaje disuelto después de 30 minutos (>90%). El producto genérico de marca Nipresol también cumple con la especificación pero solamente alcanza un 80% en 30 minutos; mientras que los dos productos genéricos de marca Proken M y Metobest no cumplen con la misma alcanzando solamente el 70% de fármaco disuelto en el mismo tiempo. La menor velocidad de disolución observada en el Aparato USP IV puede ser explicada por diferencia en las condiciones hidrodinámicas que caracterizan a cada sistema. El Aparato USP IV utiliza un mecanismo sin agitación, por lo que la forma de dosificación y las partículas de fármaco están continuamente expuestas a un flujo laminar, homogéneo y no turbulento, causando una baja velocidad de disolución. Por otro lado, en los métodos de vaso -como es el caso del Aparato USP II- el flujo turbulento del solvente asociado con el mecanismo de agitación imparte un grado variable de abrasión física de los sólidos, debido a la velocidad de corte no homogénea de la transferencia sobre la superficie de las partículas, mejorando así la velocidad de disolución. No obstante, la continua reposición del medio de disolución en el Aparato USP IV, permite mantener las concentraciones de Tartrato de Metoprolol en el medio por debajo del límite de saturación (< 0.1 Cs) para mantener las condiciones Sink.

Las diferencias entre los perfiles de disolución de los productos genéricos de Tartrato de Metoprolol y del producto innovador también se encontraron al calcular el factor de similitud (f_2) en ambos sistemas de disolución (tablas 36 y 39). Utilizando el Aparato USP II los valores de f_2 que se encontraron comparando los productos genéricos únicamente con el innovador fueron: Kenaprol 48.9, Proken M 68.3, Nipresol 62.3 y Metobest 62.2. Cuando se utiliza el Aparato USP IV las diferencias fueron más notorias; los valores de f_2 fueron Kenaprol 39.3, Proken M 52.0, Nipresol 64.4 y Metobest 46.0. Los resultados anteriores muestran nuevamente que el Aparato USP IV es método más sensitivo para distinguir las diferencias entre los perfiles de disolución de diferentes productos de Tartrato de Metoprolol.

CONCLUSIONES

El método analítico para evaluar perfiles de disolución en Tabletas de Tartrato de Metoprolol en ácido clorhídrico 0.1 N por espectrofotometría ultravioleta después de haber sido validado de acuerdo a lo establecido en la Guía de Validación del CNQFB y en la NOM-177-SSA1-1998, demostró ser:

- Lineal en un rango de concentraciones de $18.42 184.2 \mu g/mL$.
- Preciso en las concentraciones de 36.8, 110.4 y 184.2 µg/mL, obteniéndose C. V. para cada concentración de: 0.3275, 0.1601 y 1.3561%, respectivamente, que es menor a lo especificado en la norma y guía de validación (C. V. ≤ 2%).
- Exacto en las concentraciones de 36.8, 110.4 y 184.2 μg/mL, obteniéndose un C. V. global de 0.8195, que cae dentro de lo especificado en la norma y en la guía de validación (C. V. ≤ 2%), estos niveles de concentración están incluidos en el intervalo de linealidad.
- Repetible entre días obteniéndose un C. V. global de 0.2637%, está dentro de lo especificado en la norma y guía de validación (C. V. ≤ 3%).
- Reproducible entre analistas debido a que no hay diferencias significativas entre los porcentajes de recobro obtenidos por los dos analistas, según el análisis de varianza (F calculada ≤ F crítica).

Así mismo las muestras analíticas procesadas demostraron ser estables a una temperatura de 37°C y expuesta a la luz.

Se obtuvo la evidencia experimental documentada de que el método analítico desarrollado cumple con el propósito para el cual fue diseñado, por lo tanto es una herramienta para cuantificar confiablemente Tartrato de Metoprolol liberado durante la prueba de disolución de tabletas.

Los perfiles de disolución de los diferentes productos comerciales que contenían Tartrato de Metoprolol (Lopresor 100, Kenaprol, Proken M, Nipresol y Metobest) presentaron más del 75% de fármaco disuelto en un intervalo de 30 minutos cuando se utilizó el Aparato USP II, cumpliendo con la especificación farmacopeica de punto único. Sin embargo, cuando se utilizó el Aparato USP IV, los productos Proken M y Metobest no cumplen con esta misma especificación.

Al evaluar los perfiles de disolución de los productos, se encontró que no todos cumplen con el factor de similitud. Utilizando el Aparato USP II el producto Kenaprol presenta un

valor f_2 menor de 50. Mientras que con el Aparato USP IV los productos con valores f_2 menores de 50 fueron Kenaprol y Metobest.

El Aparato USP IV de disolución, celda de flujo continuo, es capaz de mostrar diferencias cinéticas entre dos o más formulaciones genéricas. La evaluación de la diferenciación entre formulaciones está respaldada por pruebas estadísticas confiables, tales como intervalos de confianza y el factor de similitud.

En este estudio, el Aparato USP IV fue el sistema más sensible y discriminativo; sin embargo, no hay que olvidar que el principal objetivo en el diseño de las pruebas de disolución es reflejar el comportamiento *in vivo* del producto farmacéutico. El estudio reveló diferencias significativas en el comportamiento de disolución entre los productos genéricos de Tartrato de Metoprolol y el innovador, pero la relación de estas diferencias con su comportamiento *in vivo* no ha sido demostrada aún.

El Aparato USP II tiene sus ventajas y desventajas inherentes y por lo tanto es ideal para pruebas de disolución de distintos sistemas. Mientras que este aparato de agitación convencional es más adecuado para las pruebas de disolución de las formas de dosificación de liberación inmediata de fármacos con buenas características de solubilidad, el Aparato USP IV, tiene ventajas de aplicación para la mayoría de formas de dosificación sólidas, ofreciendo un máximo beneficio en la evaluación de la disolución de fármacos poco solubles, principalmente debido al hecho de que el sistema proporciona condiciones de no saturación del medio (condiciones "sink") similares a las que se encuentran en condiciones fisiológicas.

El perfil de disolución es una herramienta que permite encontrar diferencias en la formulación, calidad de excipientes, así como en el proceso de manufactura de los sólidos orales, con el fin de controlar la homogeneidad de lote a lote.

El Aparato USP IV, con una validación adecuada, puede ser utilizado para diseñar pruebas de disolución *in vitro* que puedan utilizarse para el control de calidad, desarrollo de formulaciones e incluso podrían realizarse correlaciones *in vivo* – *in vitro* de gran auge por los enormes beneficios que brindaría al ramo farmacéutico en general.

- **1.** Abdou, H. M. (2003). Disolución. En Remington, Farmacia (20a ed., Vol. I, págs. 765-768). Argentina: Editorial Panamericana.
- **2.** Abrahamsson, B. y. (2003). Application of the Biopharmaceutic Classification System Now and in the Future. En H. Waterbeemd, & H. y. Lennernas, Drug Bioavailbility: Estimation of Solubility, Permeability, Absorption and Bioavailability, Methods and Principles in Medicinal Chemistry (Vol. 18, págs. 520-521). Germany: Wiley-vch.
- **3.** Aguilar-Díaz, J. E. (2008). Aspectos Generales del Ensayo de Disolución USP I y USP II para Formas Farmacéuticas Sólidas. Obtenido de Novartis Pharmaceutical Spain: http://www.docstoc.com/docs/21476575/ASPECTOS-GENERALES-DEL-ENSAYO-DE-DISOLUCI%C3%93N-USP-I-y
- **4.** Aristides, D. a. (2006). A century of dissolution research: From Noyes and Whitney to the Biopharmaceutics Classification System. International Journal of Pharmaceutics, 321, 1–11.
- **5.** Artursson, P., Palm, K., & and Luthman, K. (2001). Caco-2 monolayers in experimental and theoretical predictions of drug transport. Advanced Drug Delivery Reviews, 46, 27-43.
- **6.** Baena, Y., Pinzón, J. A., & Barbosa, H. J. (2004). Temperature-Dependence of the Solubility of Some Acetanilide Derivatives in Several Organic and Aqueous Solvents. Physics and Chemistry of Liquids, 42 (6), 603-613.
- **7.** Banakar, U. V. (1992). Drugs and the Pharmaceutical Science. En J. Swarbrick, Pharmaceutical Dissolution Testing (Vol. 49, págs. 133-179). New York: Marcel Dekker.
- **8.** Bermejo M. and Amidon, G. L. (2003). Modern Biopharmaceutics (6a Ed.). Michigan, U.S.A: TSRL inc. Predicting Fa module.
- **9.** Bruner, L. a. (1900). Über die Auflösungsgeschwindigkeit Fester Köorper. Zeitschrift für Physikalische Chemie, 35, 283–290.
- **10.** Brunner, E. (1904). Reactionsgeschwindigkeit in heterogenen Systemen. Zeitschrift für Physikalische Chemie , 47, 56-102.
- **11.** Calpena, A. C., & Escribano, E. y. (1990). Validación de métodos analíticos. Farmacia Clínica, 17 (9), 749-758.

- **12.** Cárdenas, R. y. (1996). Aspectos biofarmacéutica de la evaluación de medicamentos (1a ed.). México: UAM.
- **13.** Cardone, M. J. (1983). Detection and determination of error in analytical methodology. Part 1: In the method verification program. Journal Association of Official Analytical Chemists, 66 (5), 1257-1282.
- **14.** Cid Cárcamo, E. (1981). Cinética de disolución de medicamentos. Washington, D. C.: Secretaría General de Organización de Estados Americanos.
- **15.** Cid Cárcamo, E. (1992). Control de Calidad Biofarmacéutico de Medicamentos. Obtenido de Universidad de Chile. Edición Digital: http://mazinger.sisib.uchile.cl/repositorio/lb/ciencias_quimicas_y_farmaceuticas/cide01
- **16.** CNQFB, C. N. (2002). Guía de validación de métodos analíticos. México: Comisión de Validación de Métodos Analíticos.
- **17.** Corti, G., Maestrelli, F., Cirri, M., & Furlanetto, S. a. (2006). Development and evaluation of an in vitro method for prediction of human drug absorption I. Assessment of artificial membrane composition. European Journal of Pharmaceutical Sciences., 27, 346-353.
- **18.** DiPiro, J. T. (2003). Biopharmaceuticals. En Encyclopedia of Clinical Pharmacy (págs. 82-101). USA: Mercel Dekker.
- **19.** Estevéz Carrizo, F. E. (2000). Estudios de Bioequivalencia, enfoque metodológico y aplicaciones prácticas en la evaluación de medicamentos genéricos. Revista Médica, 16 (2), 133-143.
- **20.** Facultad de Medicina, U. (2008). Diccionario de Especialidades Farmacéuticas, PLM. Edición Digital. Obtenido de http://www.facmed.unam.mx/bmnd/dirijo.php?bib_vv=6
- **21.** Farmacopea de los Estados Unidos Mexicanos: FEUM (8a ed.). (2004). México: Secretaria de Salud.
- **22.** FDA, F. a. (1977). Bioavailability and Bioequivalence Requirements. Obtenido de Federal Register, Part 320.
- **23.** FDA, F. a. (2003). Bioavailability and Bioequivalence Studies for Orally Administered Drug Products General Considerations. Guidance for Industry. Obtenido de Department of Health and Human Services. Center for Drug Evaluation and Research: http://www.fda.gov/downloads/Drugs/GuidanceComplianceRegulatoryInformation/Guidances/ucm070124.pdf

- **24.** FDA, F. a. (1997). Dissolution testing of immediate release solid oral dosage forms. Guidance for Industry. Obtenido de Department of Health and Human Services. Center for Drug Evaluation and Research: http://www.fda.gov/downloads/Drugs/GuidanceComplianceRegulatoryInformation/Guidances/ucm070237.pdf
- 25. FDA, F. a. (2002). Waiver of in vivo Bioavailability and Bioequivalence Studies for Immediate-Release Solid Oral Dosage Forms Based on a Biopharmaceutics Classification System. Guidance for Industry. Obtenido de Department of Health and Human Services. Center for Drug Evaluation and Research.: http://www.fda.gov/downloads/Drugs/GuidanceComplianceRegulatoryInformation/Guidances/ucm070246.pdf
- **26.** Glantzmann, J. M. (2007). A Review of Dissolution tests with the Flow Through Method (USP 4). Obtenido de http://www.setecltd.kr/info/Application/A-Review-of-Dissolution-tests-with-the-Flow-Through-Method.pdf
- **27.** Hodson, A. a. (2005). Simultaneous Sampling and HPLC Injection from USP Apparatus 4 using a Dual Sampling Rack. Dissolution Technology, 12 (2), 44-45.
- **28.** Hu, J., Kyad, A., Ku, V., & Zhou, P. a. (2005). A Comparison of Dissolution Testing on Lipid Soft Gelatin Capsules Using USP Apparatus 2 and Apparatus 4. Dissolution Technology, 12 (6), 6-9.
- **29.** Koupil, P. a. (1988). Comparison of absolute calibration method whit method of standar addition for determining of halothane in blood by gas chromatography. Journal of Chromatography A, 425, 99-105.
- **30.** Langenbucher, F., Benz, D., Kürth, W., & Möller, H. a. (1989). Standardized flow-cell method as an alternative to existing pharmacopoeial dissolution testing. Pharmazeutische Industrie, 51 (11), 1276-1281.
- **31.** Lesne, M. (1976). Bioavailability Testing in Man: Pharmacokinetic Considerations. En P. y. Deasy, The Quality Control of Medicines. Amsterdam: Elsevier Scientific Publishing Company.
- **32.** Lindenberg, M., & Kopp, S. a. (2004). Classification of orally administered drugs on the World Health Organization Model list of Essential Medicines according to the biopharmaceutics classification system. European Journal of Pharmaceutics and Biopharmaceutics. , 58, 265–278.
- **33.** Lipka, E. a. (1999). Setting bioequivalence requirements for drug development based on preclinical data: optimizing oral drug delivery systems. Journal of Controlled Release, 62, 41–49.

- **34.** Luch, J. (1983). Metoprolol Tartrate. En Florey, Analytical profiles of drug substances (Vol. 12, págs. 325-353). EUA: American Pharmaceutical Association.
- **35.** Lugo Santos, N. A. (2006). Tesis: Desarrollo y validación de procesos farmacéuticos. Desarrollo y validación de un método analítico para evaluar perfiles de disolución de clorhidrato de propafenona en tabletas por espectrofotometría ultravioleta. México: UNAM, FESC.
- **36.** Mälkiä, A., Murtomäki, L., & Urtti, A. a. (2004). Drug permeation in biomembranes In vitro and in silico prediction and influence of physicochemical properties. European Journal of Pharmaceutical Sciences, 23, 13–47.
- **37.** Martin, A. & Doluisio, J.T. (1977). Industrial Bioavailability and Pharmacokinétics, Guidelines, Regulations and Controls. Austin, Texas: College of Pharmacy, Drug Dinamics Institute, University of Texas.
- **38.** Ministerio de Salud de Costa Rica. (2009). Guía técnica para la presentación y evaluación de los estudios de perfiles de disolución comparativos. Dirección de Regulación de la Salud.
- **39.** Nicolaides, E., Symillides, M., & Dressman, J. B. (2001). Biorelevant dissolution testing to predict the plasma profile of highly lipophilic drugs after oral administration. Pharmaceutical Research, 18 (3), 380-388.
- **40.** Niebergall, P. J., & Milosovich, G. a. (1963). Dissolution rate studies, II: dissolution of particles under condition of rapid agitation. Journal of Pharmaceutical Sciences, 52 (3), 236–241.
- **41.** NOM-177-SSA1-1998. Que establece las pruebas y procedimientos para demostrar que un medicamento es intercambiable. Requisitos a que deben sujetarse los terceros autorizados que realicen las pruebas. Diario Oficial de la Federación. 26 de enero de 1998
- **42.** Noyes, A. A. (1897). The Rate of Solution of Solid Substances in their Own Solutions. Journal of the American Chemical Society, 19 (12), 930-934.
- **43.** Ozdemir, N., & Ordu, S. a. (2000). Studies of floating dosage forms of furosemide: in vitro and in vivo evaluations of bilayer tablet formulations". Drug Development and Industrial Pharmacy, 26 (8), 857-866.
- **44.** Parrot, L. E. (1971). Pharmaceutical Technology. Fundamental Pharmaceutics. USA: Burgess Publishing Company.
- **45.** Polli, J. E., Yu, L. X., Cook, J. A., Amidon, G. L., Borchardt, R. T., Burnside, B. A., y otros. (2004). Summary Workshop Report: Biopharmaceutics Classification System -

- Implementation Challenges and Extension Opportunities. Journal of Pharmaceutical Sciences, 93 (6), 1375-1381.
- **46.** Q2A, I. (1995). Guidance for industry. Text on validation of analytical procedures. Obtenido de http://www.fda.gov/downloads/Drugs/GuidanceComplianceRegulatoryInformation/Guidances/ucm073381.pdf
- **47.** Rojo Garduño, J. H. (2004). Tesis: Desarrollo y validación de procesos farmacéuticos: validación y prospectiva del proceso de fabricación de bolos de liberación prolongada de sulfametazina sódica. México: UNAM, FESC.
- **48.** Singh, I. a.-E. (2006). Advantages of USP Apparatus IV (Flow-through Cell Apparatus) in Dissolution Studies. Journal of the Iranian Chemical Society, 3 (3), 220-222.
- **49.** Tauguinas, A. a. (2001). Estudio comparativo de las características de liberación in vitro de comprimidos de Ibuprofeno. Obtenido de Comunicaciones Científicas y Tecnológicas-UNNE. SGCyT- UNNE Corrientes: http://www.unne.edu.ar/Web/cyt/2001/Exactas-E-028.pdf.
- **50.** USP 32 The United States Pharmacopeia. NF 27 The National Formulary. (2008). Rockville, MA.: Twinbrook Parkway.
- **51.** Vila Jato, J. L. (2001). Tecnología Farmacéutica. Aspectos fundamentales de los sistemas farmacéuticos y operaciones básicas. España: Editorial Síntesis.
- **52.** Wagh, M. P. (2010). Biopharmaceutical Classification System: Scientific Basis for Biowaiver Extensions. International Journal of Pharmacy and Pharmaceutical Sciences, 2 (1), 12-19.
- **53.** WHO, W. H. (2005). Multisource (generic) pharmaceutical products: guidelines or registration requirements to establish interchangeability. Obtenido de http://www.who.int/medicines/services/expertcommittees/pharmprep/QAS04_093Rev4_final.pdf
- **54.** WHO, W. H. (2005). Proposal to waive in vivo bioequivalence requeriments for the WHO Model list of essential medicines inmediate release, solid oral dosage forms. Obtenido de http://www.who.int/medicines/services/expertcommittees/pharmprep/QAS04_109Rev1

nttp://www.wno.int/medicines/services/expertcommittees/pnarmprep/QAS04_10_ _Waive_invivo_bioequiv.pdf

55. WHO, W. H. (2006). WHO Expert Committee on Specifications for Pharmaceutical Preparations. Obtenido de Who Technical Report Series, fortieth report, Geneva, Annex 7: http://whqlibdoc.who.int/trs/who_trs_902.pdf

APÉNDICE I

Validación del Método Analítico

En este anexo se presentan los resultados, así como la forma de analizarlos para evaluar la linealidad, precisión y exactitud del método.

Tabla 48. Peso del Estándar de Tartrato de Metoprolol y volumen para obtener una solución stock de una concentración de 1701 µg/mL.

Peso del Estándar de Tartrato de Metoprolol (mg)				
Volumen (mL)	200			
Concentración de la solución stock (µg/mL)	1701			

A continuación se muestra los sistemas que se requieren preparar para llevar a cabo la validación de linealidad del método por adiciones patrón. Estos sistemas son los estándares que se ocuparon para llevar a cabo la validación, además de ser los cinco niveles de concentración que se requieren para evaluar la linealidad del método.

Tabla 49. Estándares preparados para la validación de linealidad del método que sirven como los cinco niveles de concentración que se requieren para evaluar este parámetro.

Sistema	Alícuota (ml)	Volumen de Aforo (ml)	Concentración (µg/mL)
1	5.0	50.0	170.1
2	10.0	50.0	340.2
3	15.0	50.0	510.3
4	20.0	50.0	680.4
5	25.0	50.0	850.5

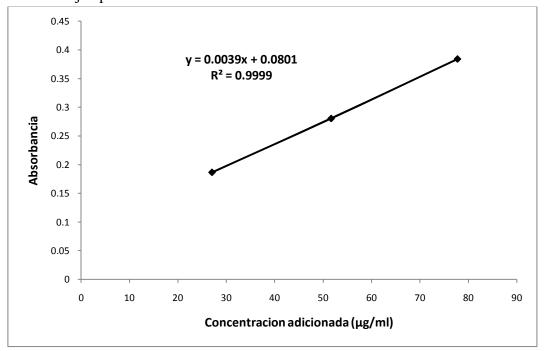
En la siguiente tabla se muestra el volumen que se tomo para preparar cada uno de los sistemas que se requirieron para evaluar el parámetro de linealidad de método. Así mismo se muestra la concentración que se obtiene teóricamente y la respuesta analítica que se obtuvo, que en este caso fue el valor de absorbancia.

Tabla 50. Volumen tomado para la preparación de los cinco niveles de concentración que requiere la linealidad del método para ser evaluada.

Sistema	Alícuota (ml)	Volumen de Aforo (ml)	Concentración (µg/mL)	Respuesta (Abs)
1	3.0	25.0	20.412	0.0768
2	3.0	25.0	40.824	0.1613
3	3.0	25.0	61.236	0.2413
4	3.0	25.0	81.648	0.3243
5	3.0	25.0	102.06	0.407

• Linealidad del método

A continuación se muestran los resultados obtenidos para evaluar la linealidad del método por adiciones patrón.


Tabla 51. Resultados de los sistemas preparados para evaluar linealidad del método por adiciones patrón.

Sistema	Concentración Adicionada	Abs	Concentración Recuperada	Concentración Recuperada	Concentración Adicionada	% Recuperado
	27.0525	0.1864	27.1795			
	51.6433	0.2803	51.2564			
	77.7314	0.3841	77.8718	20.5385	20.4120	100.6195
	27.0525	0.1867	27.2051			
1	51.6433	0.2803	51.2051			
	77.7314	0.3841	77.8205	20.6667	20.4120	101.2476
	27.0525	0.1867	27.1795			
	51.6433	0.2804	51.2051			
	77.7314	0.3840	77.7692	20.6923	20.4120	101.3732
	27.0525	0.2685	27.3077			
	51.6433	0.3591	50.5385			
	77.7314	0.4649	77.6667	41.5385	40.8240	101.7501
	27.0525	0.2686	27.2821			
2	51.6433	0.3594	50.5641			
	77.7314	0.4649	77.6154	41.5897	40.8240	101.8757
	27.0525	0.2681	27.3077			
	51.6433	0.3589	50.5897			
	77.7314	0.4646	77.6923	41.4359	40.8240	101.4989
	27.0525	0.3482	27.4103			
	51.6433	0.4401	50.9744			
	77.7314	0.5458	78.0769	61.8718	61.2360	101.0383
	27.0525	0.3480	27.2821			
3	51.6433	0.4405	51.0000			
	77.7314	0.5452	77.8462	61.9487	61.2360	101.1639
	27.0525	0.3479	27.4103			
	51.6433	0.4404	51.1282			
	77.7314	0.5458	78.1538	61.7949	61.2360	100.9127

	27.0525	0.4305	27.5385			
	51.6433	0.5239	51.4872			
	77.7314	0.6296	78.5897	82.8462	81.6480	101.4675
	27.0525	0.4305	27.5897			
4	51.6433	0.5236	51.4615			
	77.7314	0.6297	78.6667	82.7949	81.6480	101.4047
	27.0525	0.4304	27.5641			
	51.6433	0.5238	51.5128			
	77.7314	0.6296	78.6410	82.7949	81.6480	101.4047
	27.0525	0.5114	27.6154			
	51.6433	0.6057	51.7949			
	77.7314	0.7114	78.8974	103.5128	102.0600	101.4235
	27.0525	0.5115	27.6667			
5	51.6433	0.6056	51.7949			
	77.7314	0.7116	78.9744	103.4872	102.0600	101.3984
	27.0525	0.5113	26.9750			
	51.6433	0.6056	50.5500			
	77.7314	0.7115	77.0250	100.8500	102.0600	98.8144

Para calcular la cantidad recuperada se construye el grafico concentración adicionada vs absorbancia. Ejemplo:

A partir del cálculo de la pendiente y ordenada al origen del gráfico anterior se puede calcular la concentración recuperada:

Concentración recuperada
$$\rightarrow \frac{0.0801}{0.0039} = 20.538 \,\mu g/ml$$

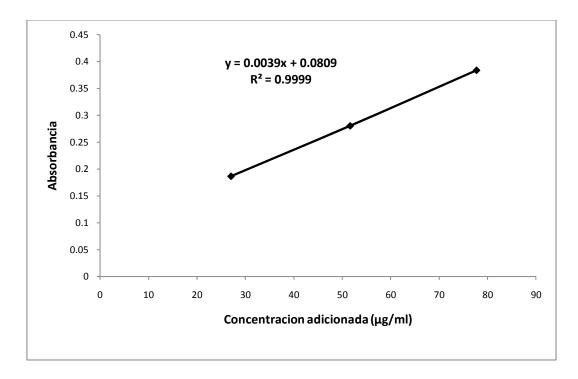
Ya que se conoce la concentración recuperada se hace la relación de concentración teórica y concentración adicionada (proviene de la concentración de los estándares) para calcular el porcentaje de recuperación:

$$\frac{20.412}{20.538} \times 100 = 100.620 \%$$
 recuperado de Tartrato de Metoprolol

• Exactitud y Precisión del Método

A continuación se muestran los resultados obtenidos para evaluar la exactitud y precisión del método por adiciones patrón.

Tabla 52. Resultados de los sistemas preparados para evaluar exactitud y precisión del método por adiciones patrón.


Sistema	Concentración Adicionada	Abs	Concentración	Concentración	Concentración Adicionada	%
	27.0525	0.1868	Recuperada 27.1538	Recuperada	Adicionada	Recuperado
	51.6433	0.1808	51.2051			
	77.7314	0.2800	77.7179	20.7436	20.4120	101.6245
	77.7314	0.3040	11.1119	20.7430	20.4120	101.0243
	27.0525	0.1864	27.1795			
	51.6433	0.2803	51.2564			
	77.7314	0.3841	77.8718	20.5385	20.4120	100.6195
	7717611	0.00.11	7710710	20,000	2011120	10010170
	27.0525	0.1868	27.2051			
	51.6433	0.2804	51.2051			
	77.7314	0.3842	77.8205	20.6667	20.4120	101.2476
1						
	27.0525	0.1867	27.2051			
	51.6433	0.2803	51.2051			
	77.7314	0.3841	77.8205	20.6667	20.4120	101.2476
	27.0525	0.1865	27.1538			
	51.6433	0.2805	51.2564			
	77.7314	0.3838	77.7436	20.6667	20.4120	101.2476
	27.0525	0.1867	27.1795			
	51.6433	0.2804	51.2051			
	77.7314	0.3840	77.7692	20.6923	20.4120	101.3732
	25.0525	0.040-	27.2046			
	27.0525	0.3485	27.3846			
	51.6433	0.4407	51.0256	61.0744	61.00.60	404.60.50
	77.7314	0.5461	78.0513	61.9744	61.2360	101.2058
	27.0525	0.2492	27 4102			
2	27.0525	0.3482	27.4103			
2	51.6433	0.4401	50.9744	61 0710	61 2260	101 0202
	77.7314	0.5458	78.0769	61.8718	61.2360	101.0383
	27.0525	0.3484	27.2564			
	51.6433	0.3484	50.9487			
	77.7314	0.4408	77.7692	62.0769	61.2360	101.3732
	77.7314	0.5454	11.1092	02.0709	01.2300	101.5752

	1			T	T	1
	27.0525	0.3480	27.2821			
	51.6433	0.4405	51.0000			
	77.7314	0.5452	77.8462	61.9487	61.2360	101.1639
	27.0525	0.3482	27.2821			
	51.6433	0.4409	51.0513			
	77.7314	0.5455	77.8718	62.0000	61.2360	101.2476
	27.0525	0.3479	27.4103			
	51.6433	0.4404	51.1282			
	77.7314	0.5458	78.1538	61.7949	61.2360	100.9127
	27.0525	0.5114	27.6154			
	51.6433	0.6057	51.7949			
	77.7314	0.7114	78.8974	103.5128	102.0600	101.4235
	27.0525	0.5115	27.6667			
	51.6433	0.6056	51.7949			
	77.7314	0.7116	78.9744	103.4872	102.0600	101.3984
	27.0525	0.5111	26.9750			
	51.6433	0.6056	50.6000	_		
	77.7314	0.7115	77.0750	100.8000	102.0600	98.7654
3						
	27.0525	0.5117	27.6410			
	51.6433	0.6058	51.7692	_		
	77.7314	0.7117	78.9231	103.5641	102.0600	101.4737
	27.0525	0.5115	27.6410			
	51.6433	0.6054	51.7179			
	77.7314	0.7114	78.8974	103.5128	102.0600	101.4235
						1020.203
	27.0525	0.5113	26.9750			
	51.6433	0.6056	50.5500			
	77.7314	0.7115	77.0250	100.8500	102.0600	98.8144

Para calcular la cantidad recuperada se construye el gráfico concentración adicionada vs absorbancia. Ejemplo:

A partir del cálculo de la pendiente y ordenada al origen del gráfico anterior se puede calcular la concentración recuperada:

Concentración recuperada
$$\rightarrow \frac{0.0809}{0.0039} = 20.743 \,\mu g/ml$$

Ya que se conoce la concentración recuperada se hace la relación de concentración teórica y concentración adicionada (proviene de la concentración de los estándares) para calcular el porcentaje de recuperación:

$$\frac{20.412}{20.743} \times 100 = 100.624$$
% recuperado de Tartrato de Metoprolol

Perfiles de Disolución de los cinco productos en el Aparato USP II

Lopresor 100 Lote N0059

Tabla 53. Datos de absorbancia de Metoprolol disuelto obtenidos en cada uno de los tiempos de muestreo con el Aparato USP II.

					Lopres	sor 100						
					Lote 1	N0059						
Tiempo (min)						Abs a 2	273 nm					
Tiempo (mm)	V1	V2	V3	V4	V5	V6	V7	V8	V9	V10	V11	V12
2	0.0314	0.0313	0.0318	0.0303	0.0334	0.0299	0.044	0.0429	0.048	0.0339	0.0409	0.0387
4	0.0767	0.0657	0.067	0.074	0.0741	0.0649	0.0875	0.0829	0.0835	0.0825	0.0746	0.0784
6	0.1359	0.1227	0.1191	0.1295	0.1286	0.1107	0.1518	0.139	0.1529	0.1413	0.1404	0.137
8	0.178	0.1631	0.1729	0.182	0.177	0.1662	0.2084	0.1916	0.2073	0.1996	0.1934	0.1925
10	0.2418	0.2205	0.2194	0.2339	0.2303	0.2067	0.2597	0.2439	0.2596	0.2492	0.2431	0.2392
12	0.2768	0.2664	0.278	0.2817	0.2802	0.2492	0.3027	0.286	0.3019	0.2964	0.2825	0.2847
14	0.3264	0.3082	0.3259	0.3231	0.3182	0.2903	0.3455	0.335	0.3464	0.3441	0.3333	0.3297
16	0.3637	0.3521	0.3615	0.3616	0.3603	0.3608	0.3908	0.3726	0.3917	0.3847	0.3767	0.3947
18	0.3952	0.3776	0.3858	0.4016	0.3985	0.3798	0.4222	0.4126	0.4221	0.4189	0.4049	0.4135
20	0.4308	0.4138	0.422	0.4301	0.4253	0.412	0.4575	0.4502	0.4555	0.4521	0.4641	0.4538
25	0.4758	0.4689	0.4846	0.4733	0.4661	0.4735	0.4687	0.4671	0.4699	0.4724	0.4694	0.4636
30	0.4742	0.4701	0.4853	0.4713	0.4654	0.4816	0.4688	0.4718	0.4693	0.475	0.4842	0.4737
40	0.4807	0.474	0.4913	0.4752	0.4736	0.4787	0.4707	0.471	0.4733	0.4833	0.4824	0.4761
50	0.4804	0.4835	0.49	0.4694	0.469	0.4837	0.4692	0.4686	0.4676	0.4736	0.4811	0.471
60	0.48	0.4795	0.483	0.4681	0.4693	0.4786	0.4707	0.475	0.4773	0.4812	0.4891	0.4801

Tabla 54. Datos de concentración de Tartrato de Metoprolol disuelto obtenidos en cada uno de los tiempos de muestreo con el Aparato USP II.

						L	opreso	r 100							
	Lote N0059														
Tiempo							Concen	tración (μg/mL)						
(min)	V1	V2	V3	V4	V5	V6	V 7	V8	V9	V10	V11	V12	$\overline{\mathbf{X}}$	Desv. Est.	C.V.
2	7.698	7.673	7.796	7.428	8.188	7.330	10.787	10.517	11.767	8.311	10.027	9.487	8.917	1.527	17.128
4	18.803	16.106	16.425	18.141	18.165	15.910	21.450	20.323	20.470	20.225	18.288	19.220	18.627	1.817	9.756
6	33.316	30.080	29.197	31.747	31.526	27.138	37.213	34.076	37.483	34.639	34.419	33.585	32.868	3.090	9.402
8	43.636	39.984	42.386	44.617	43.391	40.744	51.089	46.970	50.819	48.932	47.412	47.191	45.598	3.709	8.134
10	59.277	54.055	53.785	57.340	56.458	50.672	63.665	59.792	63.640	61.091	59.595	58.639	58.167	3.940	6.773
12	67.857	65.307	68.151	69.058	68.690	61.091	74.206	70.112	74.010	72.662	69.254	69.794	69.183	3.636	5.256
14	80.016	75.555	79.894	79.207	78.006	71.166	84.699	82.125	84.919	84.355	81.708	80.825	80.206	3.992	4.977
16	89.160	86.317	88.621	88.645	88.327	88.449	95.804	91.342	96.024	94.308	92.347	96.760	91.342	3.607	3.949
18	96.882	92.568	94.578	98.451	97.691	93.107	103.501	101.148	103.477	102.692	99.260	101.369	98.727	3.879	3.929
20	105.610	101.442	103.452	105.438	104.261	101.001	112.155	110.366	111.665	110.831	113.773	111.248	107.604	4.525	4.205
25	116.641	114.950	118.799	116.029	114.263	116.078	114.901	114.509	115.195	115.808	115.072	113.651	115.491	1.340	1.161
30	116.249	115.244	118.970	115.538	114.092	118.063	114.925	115.661	115.048	116.445	118.701	116.127	116.255	1.551	1.334
40	117.843	116.200	120.441	116.494	116.102	117.352	115.391	115.465	116.029	118.480	118.259	116.715	117.064	1.479	1.264
50	117.769	118.529	120.122	115.072	114.974	118.578	115.023	114.876	114.631	116.102	117.941	115.465	116.590	1.884	1.616
60	117.671	117.548	118.406	114.754	115.048	117.328	115.391	116.445	117.009	117.965	119.902	117.696	117.097	1.487	1.270

Tabla 55. Datos de porcentaje de Tartrato de Metoprolol disuelto obtenidos en cada uno de los tiempos de muestreo con el Aparato USP II.

						L	opreso	r 100							
]	Lote N	0059							
Tiempo (min)							Porce	ntaje D	isuelto ((%)					
Tiempo (mm)	V1	V2	V3	V4	V5	V6	V7	V8	V9	V10	V11	V12	$\overline{\mathbf{X}}$	Desv. Est.	C.V.
2	6.928	6.906	7.016	6.685	7.369	6.597	9.708	9.465	10.590	7.479	9.024	8.539	8.026	1.375	17.128
4	16.829	14.415	14.700	16.236	16.258	14.240	19.198	18.189	18.321	18.101	16.368	17.202	16.671	1.626	9.756
6	29.651	26.771	25.985	28.255	28.058	24.153	33.120	30.327	33.360	30.829	30.633	29.891	29.253	2.750	9.402
8	38.618	35.386	37.512	39.486	38.401	36.058	45.214	41.569	44.975	43.304	41.959	41.764	40.354	3.282	8.134
10	52.164	47.569	47.331	50.459	49.683	44.591	56.025	52.617	56.004	53.760	52.444	51.603	51.187	3.467	6.773
12	59.375	57.144	59.632	60.426	60.104	53.455	64.930	61.348	64.759	63.579	60.598	61.069	60.535	3.182	5.256
14	69.614	65.732	69.508	68.910	67.865	61.915	73.688	71.448	73.880	73.389	71.086	70.318	69.779	3.473	4.977
16	77.124	74.664	76.657	76.678	76.403	76.509	82.870	79.011	83.061	81.577	79.880	83.697	79.011	3.120	3.949
18	83.319	79.608	81.337	84.668	84.015	80.072	89.011	86.987	88.990	88.316	85.364	87.177	84.905	3.336	3.929
20	90.296	86.733	88.452	90.150	89.144	86.356	95.893	94.363	95.473	94.761	97.276	95.117	92.001	3.869	4.205
25	99.145	97.707	100.979	98.624	97.124	98.666	97.666	97.332	97.916	98.437	97.812	96.603	98.168	1.139	1.161
30	98.231	97.381	100.530	97.630	96.408	99.763	97.112	97.733	97.216	98.396	100.302	98.127	98.236	1.311	1.334
40	98.988	97.608	101.171	97.855	97.526	98.576	96.929	96.990	97.464	99.523	99.338	98.041	98.334	1.243	1.264
50	98.337	98.972	100.302	96.085	96.004	99.013	96.045	95.922	95.717	96.945	98.480	96.413	97.353	1.573	1.616
60	97.667	97.565	98.277	95.246	95.490	97.382	95.775	96.650	97.118	97.911	99.519	97.687	97.190	1.234	1.270

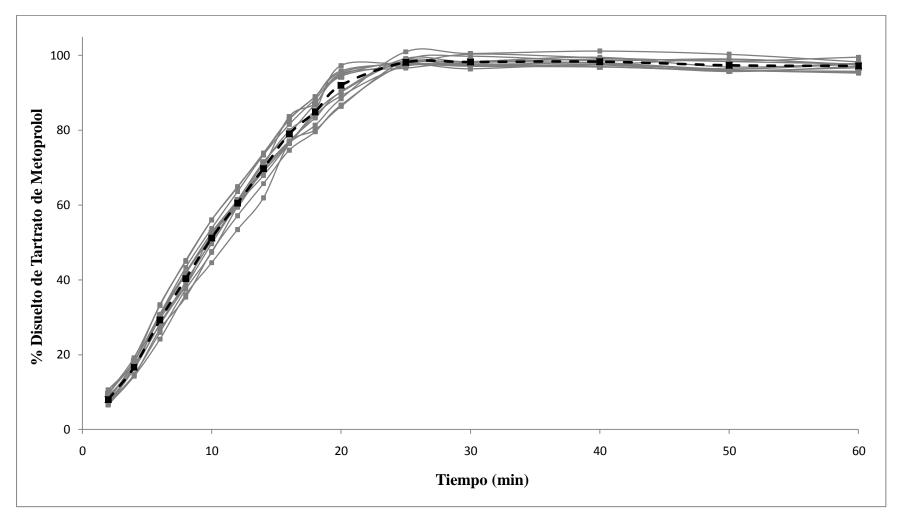


Gráfico 15. Perfiles Acumulativos de Disolución del Producto Lopresor 100 obtenidos en el Aparato USP II. La línea punteada representa el promedio de los perfiles de disolución.

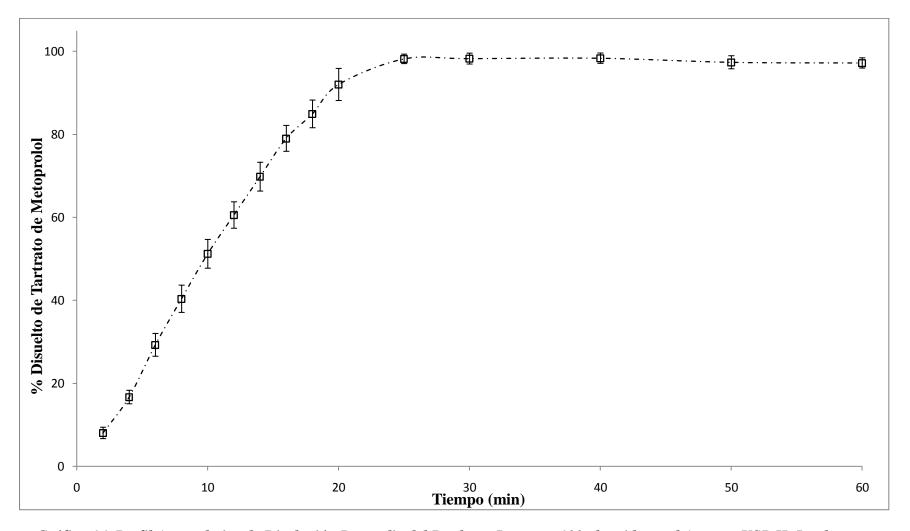


Gráfico 16. Perfil Acumulativo de Disolución Promedio del Producto Lopresor 100 obtenido en el Aparato USP II. Las barras horizontales representan las desviaciones estándar obtenidas en cada punto de muestreo.

Kenaprol Lote M07410

Tabla 56. Datos de absorbancia de Metoprolol disuelto obtenidos en cada uno de los tiempos de muestreo con el Aparato USP II.

					Kena	aprol						
					Lote N	107410						
Tiempo (min)						Abs a 2	273 nm					
Tiempo (mm)	V1	V2	V3	V4	V5	V6	V7	V8	V9	V10	V11	V12
2	0.0806	0.0711	0.0647	0.0801	0.0676	0.0617	0.0609	0.0534	0.0692	0.0697	0.066	0.0614
4	0.1398	0.1503	0.135	0.1397	0.1493	0.1278	0.1427	0.1232	0.1359	0.1273	0.1355	0.1351
6	0.192	0.2124	0.1963	0.1829	0.2149	0.1885	0.2142	0.1854	0.2012	0.184	0.1998	0.1998
8	0.2526	0.2799	0.2597	0.2503	0.2785	0.2309	0.2682	0.2462	0.2721	0.2424	0.2695	0.2605
10	0.2967	0.339	0.3096	0.287	0.3291	0.2947	0.3233	0.2963	0.3312	0.2858	0.315	0.3116
12	0.3378	0.3813	0.3579	0.3319	0.3824	0.3209	0.3735	0.3401	0.3787	0.3277	0.3589	0.3532
14	0.3737	0.4254	0.3886	0.3708	0.4232	0.3589	0.4123	0.3788	0.4106	0.368	0.4	0.3909
16	0.4087	0.4487	0.4231	0.4061	0.4443	0.3899	0.4416	0.4072	0.441	0.402	0.4267	0.422
18	0.4325	0.4592	0.4382	0.4225	0.4579	0.4162	0.4538	0.4306	0.4595	0.4284	0.4497	0.4432
20	0.448	0.4645	0.4483	0.4369	0.4651	0.4332	0.4648	0.4468	0.4777	0.4381	0.4606	0.4535
25	0.463	0.469	0.4765	0.453	0.4698	0.4646	0.4674	0.4587	0.4741	0.4522	0.4781	0.455
30	0.4685	0.4705	0.4768	0.4584	0.4715	0.4694	0.4673	0.4631	0.4789	0.4509	0.4725	0.455
40	0.4709	0.4728	0.4755	0.4722	0.476	0.4741	0.4726	0.4658	0.4843	0.4758	0.4596	0.4567
50	0.4767	0.4726	0.4761	0.4719	0.4769	0.4722	0.4733	0.46	0.4845	0.472	0.4612	0.4581
60	0.4762	0.473	0.4765	0.4723	0.4762	0.4721	0.4767	0.4647	0.4616	0.4744	0.4722	0.4621

Tabla 57. Datos de concentración de Tartrato de Metoprolol disuelto obtenidos en cada uno de los tiempos de muestreo con el Aparato USP II.

							Kenar	orol							
	Lote M07410														
Tiempo							Concen	tración (μg/mL)						
(min)	V1	V2	V3	V4	V5	V6	V 7	V8	V9	V10	V11	V12	$\overline{\mathbf{X}}$	Desv. Est.	C.V.
2	19.611	17.299	15.742	19.489	16.448	15.012	15.355	13.464	17.448	17.574	16.641	15.481	16.630	1.796	10.798
4	34.014	36.569	32.846	33.990	36.326	31.095	35.980	31.063	34.265	32.097	34.164	34.063	33.873	1.855	5.477
6	46.715	51.678	47.761	44.501	52.287	45.863	54.007	46.746	50.729	46.393	50.376	50.376	48.953	2.993	6.113
8	61.459	68.102	63.187	60.900	67.761	56.179	67.622	62.075	68.606	61.117	67.950	65.681	64.220	3.966	6.176
10	72.189	82.481	75.328	69.829	80.072	71.702	81.515	74.707	83.507	72.060	79.422	78.565	76.781	4.720	6.147
12	82.189	92.773	87.079	80.753	93.040	78.077	94.172	85.751	95.483	82.624	90.491	89.054	87.624	5.780	6.596
14	90.924	103.503	94.549	90.218	102.967	87.323	103.955	95.508	103.526	92.785	100.854	98.559	97.056	5.944	6.124
16	99.439	109.172	102.943	98.807	108.101	94.865	111.342	102.669	111.191	101.358	107.586	106.401	104.489	5.274	5.048
18	105.230	111.726	106.617	102.797	111.410	101.264	114.418	108.569	115.856	108.014	113.385	111.746	109.253	4.622	4.230
20	109.001	113.016	109.074	106.301	113.162	105.400	117.192	112.654	120.444	110.460	116.133	114.343	112.265	4.460	3.972
25	112.651	114.111	115.936	110.218	114.305	113.040	117.847	115.654	119.537	114.015	120.545	114.721	115.215	2.935	2.547
30	113.989	114.476	116.009	111.532	114.719	114.208	117.822	116.763	120.747	113.687	119.133	114.721	115.651	2.575	2.227
40	114.573	115.035	115.692	114.889	115.814	115.352	119.159	117.444	122.109	119.965	115.881	115.150	116.755	2.407	2.062
50	115.984	114.987	115.838	114.816	116.033	114.889	119.335	115.982	122.159	119.007	116.284	115.503	116.735	2.249	1.927
60	115.863	115.084	115.936	114.914	115.863	114.865	120.192	117.167	116.385	119.612	119.058	116.511	116.787	1.850	1.584

Tabla 58. Datos de porcentaje de Tartrato de Metoprolol disuelto obtenidos en cada uno de los tiempos de muestreo con el Aparato USP II.

							Kena	prol							
							Lote M	07410							
Tiempo (min)							Porc	entaje I	Disuelto ((%)					
Tiempo (mm)	V1	V2	V3	V4	V5	V6	V7	V8	V9	V10	V11	V12	$\overline{\mathbf{X}}$	Desv. Est.	C.V.
2	17.649	15.569	14.168	17.540	14.803	13.511	13.819	12.118	15.703	15.816	14.977	13.933	14.967	1.616	10.798
4	30.443	32.729	29.398	30.421	32.511	27.830	32.202	27.801	30.667	28.727	30.577	30.487	30.316	1.660	5.477
6	41.576	45.994	42.507	39.606	46.535	40.818	48.066	41.604	45.149	41.289	44.835	44.835	43.568	2.663	6.113
8	54.391	60.270	55.920	53.896	59.968	49.719	59.846	54.937	60.716	54.089	60.136	58.128	56.835	3.510	6.176
10	63.526	72.583	66.288	61.450	70.464	63.098	71.733	65.742	73.486	63.413	69.892	69.137	67.568	4.153	6.147
12	71.915	81.176	76.195	70.659	81.410	68.317	82.401	75.032	83.548	72.296	79.180	77.922	76.671	5.057	6.596
14	79.104	90.047	82.258	78.490	89.582	75.971	90.441	83.092	90.068	80.723	87.743	85.747	84.439	5.171	6.124
16	86.015	94.434	89.046	85.468	93.507	82.058	96.311	88.809	96.180	87.675	93.062	92.037	90.383	4.562	5.048
18	90.498	96.085	91.691	88.405	95.813	87.087	98.400	93.369	99.636	92.892	97.511	96.101	93.957	3.975	4.230
20	93.196	96.629	93.259	90.887	96.753	90.117	100.199	96.319	102.980	94.443	99.294	97.763	95.987	3.813	3.972
25	95.753	96.994	98.545	93.685	97.160	96.084	100.170	98.306	101.606	96.913	102.464	97.513	97.933	2.494	2.547
30	96.321	96.732	98.027	94.244	96.938	96.506	99.560	98.665	102.031	96.066	100.668	96.939	97.725	2.176	2.227
40	96.241	96.630	97.182	96.507	97.284	96.895	100.093	98.653	102.571	100.771	97.340	96.726	98.074	2.022	2.062
50	96.847	96.014	96.725	95.872	96.887	95.933	99.645	96.845	102.003	99.371	97.097	96.445	97.474	1.878	1.927
60	96.166	95.520	96.227	95.378	96.166	95.338	99.760	97.248	96.600	99.278	98.818	96.704	96.934	1.536	1.584

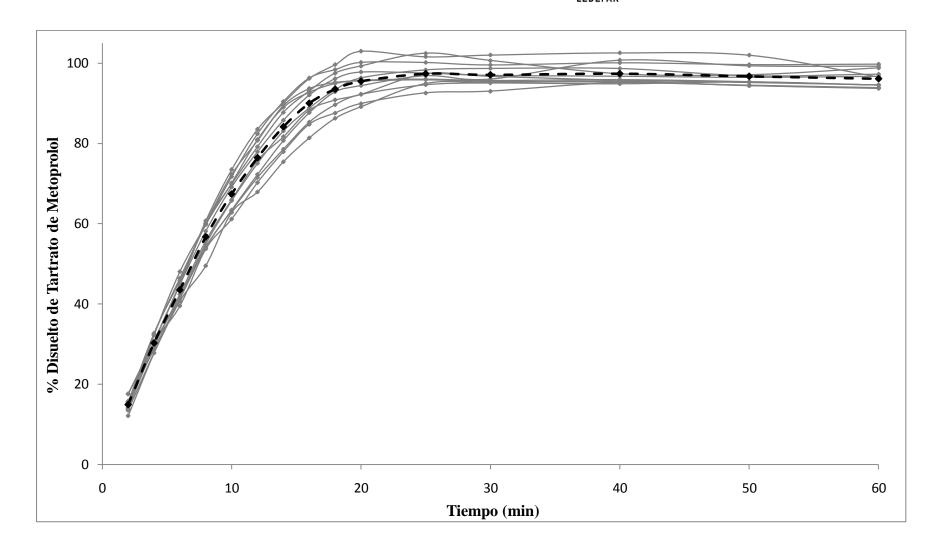


Gráfico 17. Perfiles Acumulativos de Disolución del Producto Kenaprol obtenidos en el Aparato USP II. La línea punteada representa el promedio de los perfiles de disolución.

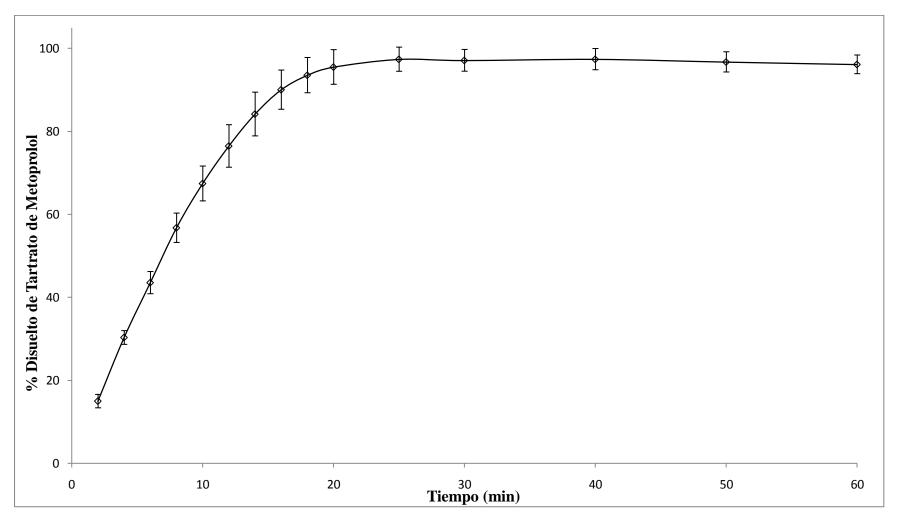


Gráfico 18. Perfil Acumulativo de Disolución Promedio del Producto Kenaprol obtenido en el Aparato USP II. Las barras horizontales representan las desviaciones estándar obtenidas en cada punto de muestreo.

Proken M Lote OJS957

Tabla 59. Datos de absorbancia de Metoprolol disuelto obtenidos en cada uno de los tiempos de muestreo con el Aparato USP II.

					Prok	en M						
					Lote C)JS957						
Tiempo (min)						Abs a 2	273 nm					
Tiempo (mm)	V1	V2	V3	V4	V5	V6	V7	V8	V9	V10	V11	V12
2	0.0691	0.0662	0.0607	0.0641	0.0728	0.0791	0.0688	0.0814	0.0769	0.0879	0.0743	0.0727
4	0.1104	0.1023	0.1038	0.1106	0.1041	0.1234	0.1059	0.1264	0.1184	0.1186	0.1155	0.1184
6	0.1572	0.1475	0.1477	0.1576	0.1507	0.1732	0.1538	0.1843	0.1703	0.171	0.1736	0.1621
8	0.2045	0.1947	0.1895	0.2027	0.1934	0.2207	0.197	0.2387	0.22	0.2212	0.2295	0.2116
10	0.2411	0.2367	0.223	0.2488	0.2364	0.2736	0.24	0.291	0.2595	0.2671	0.2763	0.2599
12	0.281	0.2754	0.2585	0.2904	0.2746	0.3281	0.2768	0.333	0.2994	0.31	0.3331	0.3088
14	0.3112	0.3107	0.2872	0.3235	0.3124	0.3607	0.3058	0.3639	0.336	0.3408	0.3586	0.3487
16	0.346	0.3481	0.3183	0.3574	0.3486	0.3928	0.3426	0.4003	0.3727	0.3803	0.397	0.3881
18	0.386	0.3697	0.3507	0.3898	0.3818	0.417	0.3744	0.4212	0.3964	0.4102	0.4132	0.4099
20	0.4116	0.4107	0.3742	0.4103	0.4117	0.4369	0.4016	0.4337	0.4202	0.4368	0.4309	0.4307
25	0.4545	0.4473	0.4214	0.451	0.4469	0.4645	0.4457	0.4628	0.4516	0.4687	0.4646	0.4656
30	0.4674	0.4764	0.4604	0.4748	0.466	0.4712	0.4666	0.4801	0.4758	0.4802	0.481	0.4707
40	0.474	0.4663	0.4712	0.4704	0.4687	0.4757	0.4711	0.4813	0.4802	0.4939	0.4762	0.4706
50	0.4628	0.4747	0.4773	0.4726	0.4743	0.4765	0.4646	0.4702	0.4711	0.4715	0.4711	0.4684
60	0.472	0.473	0.4775	0.4816	0.4768	0.4808	0.4671	0.4678	0.4734	0.4702	0.4706	0.4658

Tabla 60. Datos de concentración de Tartrato de Metoprolol disuelto obtenidos en cada uno de los tiempos de muestreo con el Aparato USP II.

							Proke	n M							
	Lote OJS957														
Tiempo							Concen	tración (μg/mL)						_
(min)	V1	V2	V3	V4	V5	V6	V7	V8	V9	V10	V11	V12	$\overline{\mathbf{X}}$	Desv. Est.	C.V.
2	16.851	16.143	14.802	15.631	17.753	19.289	17.012	20.128	19.015	21.735	18.372	17.976	17.892	1.973	11.026
4	26.922	24.947	25.313	26.971	25.386	30.092	26.186	31.255	29.277	29.326	28.560	29.277	27.792	2.104	7.569
6	38.335	35.969	36.018	38.432	36.749	42.236	38.030	45.572	42.110	42.283	42.926	40.082	39.895	3.103	7.778
8	49.869	47.479	46.211	49.430	47.162	53.820	48.712	59.023	54.399	54.696	56.748	52.322	51.656	4.114	7.965
10	58.794	57.721	54.380	60.672	57.648	66.720	59.345	71.955	64.166	66.046	68.320	64.265	62.503	5.213	8.340
12	68.524	67.159	63.037	70.817	66.964	80.010	68.444	82.341	74.032	76.653	82.365	76.357	73.059	6.502	8.900
14	75.889	75.767	70.036	78.888	76.181	87.960	75.615	89.981	83.082	84.269	88.671	86.223	81.047	6.471	7.984
16	84.375	84.887	77.620	87.155	85.009	95.788	84.714	98.982	92.157	94.036	98.166	95.965	89.905	6.804	7.568
18	94.129	90.155	85.521	95.056	93.105	101.689	92.578	104.150	98.017	101.430	102.172	101.356	96.613	5.745	5.946
20	100.372	100.153	91.252	100.055	100.397	106.542	99.303	107.241	103.902	108.007	106.548	106.499	102.523	4.868	4.748
25	110.834	109.078	102.762	109.980	108.980	113.272	110.208	114.436	111.667	115.895	114.881	115.128	111.427	3.676	3.299
30	113.979	116.174	112.272	115.784	113.638	114.906	115.376	118.714	117.651	118.739	118.936	116.390	116.047	2.165	1.866
40	115.589	113.711	114.906	114.711	114.296	116.004	116.488	119.011	118.739	122.126	117.750	116.365	116.641	2.408	2.064
50	112.858	115.760	116.394	115.248	115.662	116.199	114.881	116.266	116.488	116.587	116.488	115.821	115.721	1.047	0.904
60	115.101	115.345	116.442	117.442	116.272	117.247	115.499	115.672	117.057	116.266	116.365	115.178	116.157	0.809	0.697

Tabla 61. Datos de porcentaje de Tartrato de Metoprolol disuelto obtenidos en cada uno de los tiempos de muestreo con el Aparato USP II.

							Prok	en M							
							Lote O	JS957							
Tiempo (min)							Porc	entaje D	isuelto	(%)					
Tiempo (mm)	V1	V2	V3	V4	V5	V6	V7	V8	V9	V10	V11	V12	$\overline{\mathbf{X}}$	Desv. Est.	C.V.
2	15.166	14.529	13.322	14.068	15.978	17.360	15.311	18.115	17.113	19.561	16.535	16.179	16.103	1.776	11.026
4	24.095	22.327	22.655	24.139	22.720	26.932	23.436	27.973	26.203	26.247	25.561	26.203	24.874	1.883	7.569
6	34.118	32.013	32.056	34.205	32.707	37.590	33.847	40.559	37.478	37.632	38.204	35.673	35.507	2.762	7.778
8	44.134	42.019	40.897	43.746	41.739	47.630	43.110	52.235	48.143	48.406	50.222	46.305	45.716	3.641	7.965
10	51.739	50.795	47.855	53.391	50.730	58.713	52.223	63.321	56.466	58.120	60.122	56.553	55.002	4.587	8.340
12	59.959	58.764	55.158	61.964	58.593	70.009	59.889	72.048	64.778	67.072	72.070	66.812	63.926	5.690	8.900
14	66.023	65.917	60.931	68.633	66.278	76.525	65.785	78.284	72.282	73.314	77.143	75.014	70.511	5.630	7.984
16	72.984	73.427	67.141	75.389	73.533	82.856	73.278	85.619	79.716	81.341	84.913	83.010	77.767	5.886	7.568
18	80.951	77.533	73.548	81.748	80.070	87.453	79.617	89.569	84.295	87.230	87.868	87.166	83.087	4.941	5.946
20	85.818	85.631	78.020	85.547	85.839	91.093	84.904	91.691	88.837	92.346	91.099	91.056	87.657	4.162	4.748
25	94.209	92.716	87.348	93.483	92.633	96.281	93.677	97.271	94.917	98.511	97.649	97.859	94.713	3.124	3.299
30	96.313	98.167	94.870	97.838	96.024	97.096	97.492	100.313	99.415	100.334	100.501	98.349	98.059	1.829	1.866
40	97.095	95.517	96.521	96.357	96.009	97.443	97.850	99.969	99.740	102.586	98.910	97.746	97.979	2.022	2.064
50	94.236	96.659	97.189	96.232	96.578	97.026	95.926	97.082	97.268	97.350	97.268	96.710	96.627	0.874	0.904
60	95.534	95.736	96.647	97.477	96.506	97.315	95.864	96.008	97.157	96.501	96.583	95.598	96.411	0.672	0.697

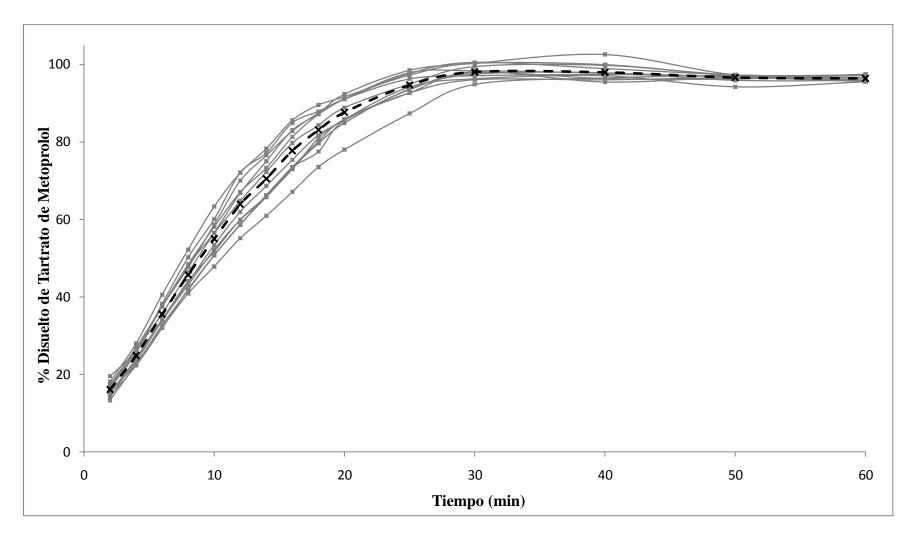


Gráfico 19. Perfiles Acumulativos de Disolución del Producto Proken M obtenidos en el Aparato USP II. La línea punteada representa el promedio de los perfiles de disolución.

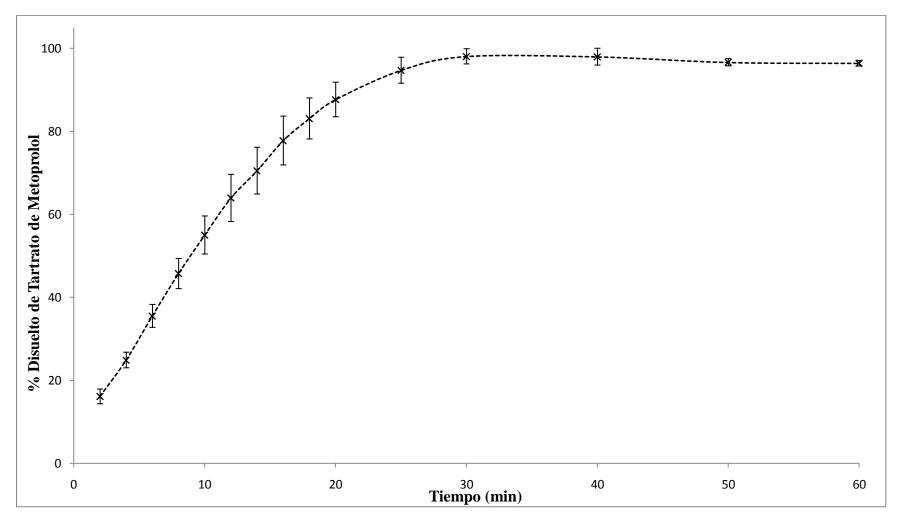


Gráfico 20. Perfil Acumulativo de Disolución Promedio del Producto Proken M obtenido en el Aparato USP II. Las barras horizontales representan las desviaciones estándar obtenidas en cada punto de muestreo.

Nipresol Lote 01052

Tabla 62. Datos de absorbancia de Metoprolol disuelto obtenidos en cada uno de los tiempos de muestreo con el Aparato USP II.

					Nip	resol						
					Lote	01052						
Tiempo (min)						Abs a 2	273 nm					
Tempo (mm)	V1	V2	V3	V4	V5	V6	V7	V8	V9	V10	V11	V12
2	0.0345	0.0328	0.0349	0.0463	0.0458	0.0344	0.0385	0.0394	0.0316	0.0393	0.0427	0.0323
4	0.0852	0.0902	0.0871	0.0923	0.0916	0.0919	0.0846	0.0866	0.0997	0.0872	0.082	0.0783
6	0.1154	0.131	0.1405	0.1311	0.1336	0.1253	0.1305	0.131	0.1305	0.1158	0.1261	0.1209
8	0.1525	0.1769	0.1673	0.1721	0.1798	0.1599	0.1739	0.172	0.1862	0.1566	0.1714	0.2023
10	0.2001	0.2201	0.2014	0.2081	0.22	0.1913	0.2185	0.2121	0.2204	0.192	0.209	0.2397
12	0.2606	0.2646	0.2518	0.2543	0.2698	0.2586	0.2849	0.2628	0.2684	0.2446	0.25	0.2756
14	0.2984	0.3032	0.2806	0.2841	0.3086	0.277	0.3076	0.293	0.2901	0.2708	0.2878	0.3166
16	0.3368	0.3466	0.3162	0.3186	0.352	0.2932	0.3493	0.3297	0.3259	0.2953	0.3219	0.3545
18	0.3791	0.39	0.3553	0.3546	0.3924	0.3626	0.3966	0.3713	0.3724	0.3317	0.3699	0.3754
20	0.4097	0.4248	0.3926	0.3886	0.4139	0.3882	0.437	0.4102	0.4132	0.3715	0.3979	0.4476
25	0.4599	0.4725	0.4573	0.4506	0.462	0.4588	0.4758	0.44	0.4415	0.4435	0.4842	0.4857
30	0.4749	0.5062	0.5172	0.5099	0.4967	0.5098	0.4948	0.4946	0.4972	0.4928	0.5046	0.5039
40	0.5014	0.5132	0.5144	0.5128	0.5143	0.5132	0.5067	0.502	0.5098	0.5149	0.5144	0.5129
50	0.5028	0.5135	0.5076	0.5135	0.5164	0.5151	0.5089	0.5025	0.5108	0.5152	0.5156	0.512
60	0.5039	0.5138	0.5074	0.5126	0.5155	0.5129	0.5036	0.5023	0.511	0.515	0.5153	0.5125

Tabla 63. Datos de concentración de Tartrato de Metoprolol disuelto obtenidos en cada uno de los tiempos de muestreo con el Aparato USP II.

							Nipre	esol							
							Lote 01	1052							
Tiempo							Concen	tración (μg/mL)						
(min)	V1	V2	V3	V4	V5	V6	V 7	V8	V9	V10	V11	V12	$\overline{\mathbf{X}}$	Desv. Est.	C.V.
2	8.414	7.999	8.511	11.292	11.170	8.389	9.389	9.609	7.707	9.584	10.414	7.877	9.196	1.252	13.617
4	20.778	21.998	21.242	22.510	22.339	22.412	20.632	21.120	24.315	21.266	19.998	19.096	21.475	1.358	6.325
6	28.143	31.948	34.265	31.972	32.582	30.558	31.826	31.948	31.826	28.241	30.753	29.485	31.129	1.794	5.762
8	37.191	43.142	40.801	41.971	43.849	38.996	42.410	41.947	45.410	38.191	41.801	49.336	42.087	3.281	7.795
10	48.800	53.677	49.117	50.751	53.653	46.654	53.287	51.726	53.751	46.824	50.970	58.457	51.472	3.374	6.555
12	63.554	64.530	61.408	62.018	65.798	63.067	69.481	64.091	65.457	59.652	60.969	67.213	63.937	2.792	4.367
14	72.773	73.944	68.432	69.286	75.261	67.554	75.017	71.456	70.749	66.042	70.188	77.212	71.493	3.420	4.784
16	82.138	84.528	77.114	77.699	85.845	71.505	85.186	80.406	79.480	72.017	78.504	86.455	80.073	5.045	6.300
18	92.454	95.112	86.650	86.479	95.697	88.430	96.722	90.552	90.820	80.894	90.210	91.552	90.464	4.469	4.940
20	99.917	103.599	95.746	94.771	100.941	94.673	106.574	100.038	100.770	90.600	97.039	109.159	99.486	5.303	5.330
25	112.159	115.232	111.525	109.891	112.671	111.891	116.037	107.306	107.672	108.160	118.085	118.451	112.423	3.860	3.434
30	115.817	123.451	126.133	124.353	121.134	124.329	120.671	120.622	121.256	120.183	123.061	122.890	121.992	2.672	2.191
40	122.280	125.158	125.451	125.060	125.426	125.158	123.573	122.426	124.329	125.572	125.451	125.085	124.581	1.182	0.949
50	122.622	125.231	123.792	125.231	125.938	125.621	124.109	122.548	124.573	125.646	125.743	124.865	124.660	1.171	0.939
60	122.890	125.304	123.743	125.012	125.719	125.085	122.817	122.500	124.621	125.597	125.670	124.987	124.495	1.189	0.955

Tabla 64. Datos de porcentaje de Tartrato de Metoprolol disuelto obtenidos en cada uno de los tiempos de muestreo con el Aparato USP II.

							Nipre	sol							
							Lote 01	.052							
Tiempo							Porcent	aje Disu	elto (%)						
(min)	V1	V2	V3	V4	V5	V6	V 7	V8	V9	V10	V11	V12	$\overline{\mathbf{X}}$	Desv. Est.	C.V.
2	7.572	7.199	7.660	10.162	10.053	7.550	8.450	8.648	6.936	8.626	9.372	7.090	8.277	1.127	13.617
4	18.576	19.666	18.990	20.124	19.971	20.037	18.445	18.881	21.737	19.012	17.878	17.071	19.199	1.214	6.325
6	24.991	28.370	30.427	28.391	28.933	27.135	28.261	28.370	28.261	25.078	27.309	26.182	27.642	1.593	5.762
8	32.803	38.051	35.986	37.019	38.675	34.394	37.406	36.997	40.052	33.685	36.868	43.515	37.121	2.894	7.795
10	42.749	47.021	43.026	44.458	47.000	40.869	46.680	45.312	47.085	41.018	44.650	51.209	45.090	2.956	6.555
12	55.292	56.141	53.425	53.956	57.244	54.868	60.448	55.759	56.947	51.898	53.043	58.475	55.625	2.429	4.367
14	62.876	63.887	59.125	59.863	65.025	58.367	64.814	61.738	61.127	57.060	60.642	66.711	61.770	2.955	4.784
16	70.474	72.525	66.164	66.666	73.655	61.351	73.090	68.989	68.194	61.791	67.357	74.178	68.703	4.328	6.300
18	78.771	81.036	73.825	73.680	81.534	75.342	82.407	77.150	77.379	68.922	76.859	78.002	77.076	3.807	4.940
20	84.529	87.645	81.001	80.176	85.396	80.094	90.162	84.633	85.252	76.648	82.095	92.349	84.165	4.486	5.330
25	94.214	96.795	93.681	92.309	94.644	93.988	97.471	90.137	90.444	90.854	99.192	99.499	94.436	3.243	3.434
30	96.592	102.958	105.195	103.710	101.026	103.690	100.639	100.599	101.127	100.232	102.632	102.490	101.741	2.229	2.191
40	101.248	103.631	103.873	103.550	103.853	103.631	102.318	101.369	102.944	103.974	103.873	103.570	103.153	0.979	0.949
50	100.795	102.940	101.757	102.940	103.521	103.261	102.018	100.735	102.399	103.281	103.361	102.639	102.470	0.962	0.939
60	100.278	102.248	100.975	102.009	102.587	102.069	100.218	99.960	101.691	102.487	102.547	101.990	101.588	0.971	0.955

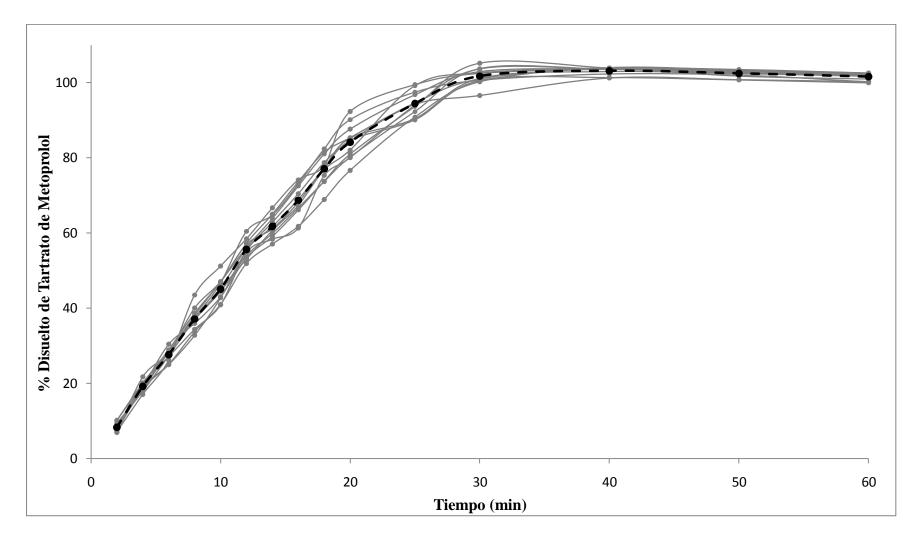


Gráfico 21. Perfiles Acumulativos de Disolución del Producto Nipresol obtenidos en el Aparato USP II. La línea punteada representa el promedio de los perfiles de disolución.

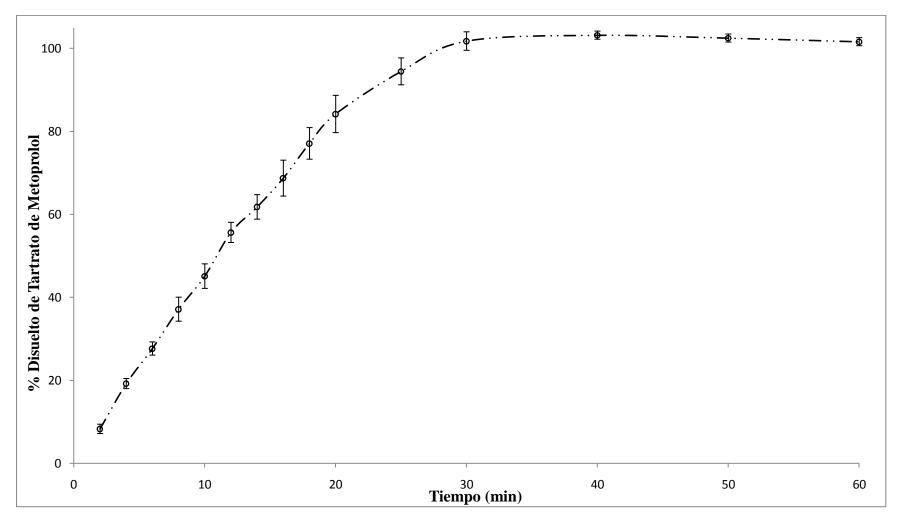


Gráfico 22. Perfil Acumulativo de Disolución Promedio del Producto Nipresol obtenido en el Aparato USP II. Las barras horizontales representan las desviaciones estándar obtenidas en cada punto de muestreo.

Metobest Lote1009042

Tabla 65. Datos de absorbancia de Metoprolol disuelto obtenidos en cada uno de los tiempos de muestreo con el Aparato USP II.

					Met	obest						
					Lote 1	009042						
Tiempo (min)						Abs a 2	273 nm					
Tiempo (mm)	V1	V2	V3	V4	V5	V6	V7	V8	V9	V10	V11	V12
2	0.0393	0.0503	0.0522	0.0429	0.0455	0.049	0.0385	0.0423	0.0438	0.044	0.0454	0.0498
4	0.0778	0.0895	0.0819	0.0859	0.0806	0.0909	0.0763	0.0767	0.0792	0.0733	0.0752	0.0903
6	0.1218	0.1351	0.1309	0.1284	0.1222	0.1261	0.1266	0.118	0.1203	0.1126	0.1166	0.1342
8	0.1714	0.1818	0.1688	0.1675	0.1692	0.1757	0.1594	0.167	0.1733	0.1564	0.1601	0.1813
10	0.2169	0.2378	0.2097	0.2145	0.21	0.2118	0.2	0.2107	0.2034	0.197	0.2001	0.2332
12	0.2426	0.2659	0.2549	0.2527	0.2453	0.2589	0.2418	0.2532	0.2434	0.2377	0.2318	0.2611
14	0.2931	0.3171	0.2904	0.283	0.2773	0.2967	0.2791	0.2955	0.2871	0.2736	0.2764	0.3019
16	0.3091	0.348	0.3288	0.3182	0.3116	0.3275	0.312	0.3352	0.3216	0.3085	0.3113	0.3342
18	0.3472	0.4071	0.3586	0.3566	0.346	0.3719	0.3488	0.3687	0.3527	0.3462	0.3389	0.3716
20	0.3693	0.4123	0.3794	0.378	0.3748	0.3844	0.3794	0.3987	0.3826	0.3703	0.3631	0.4118
25	0.401	0.4406	0.4258	0.4258	0.4028	0.4332	0.4277	0.4528	0.4407	0.427	0.4136	0.4616
30	0.4538	0.4676	0.4642	0.4644	0.451	0.4757	0.466	0.4813	0.466	0.4535	0.4356	0.468
40	0.4737	0.4687	0.4727	0.4744	0.4762	0.4769	0.4761	0.4778	0.4696	0.4675	0.4588	0.4721
50	0.4707	0.468	0.4723	0.4796	0.4783	0.4897	0.4738	0.4847	0.473	0.4682	0.4583	0.471
60	0.4899	0.489	0.4888	0.4799	0.509	0.5042	0.4745	0.4812	0.4852	0.4724	0.4624	0.4754

Tabla 66. Datos de concentración de Tartrato de Metoprolol disuelto obtenidos en cada uno de los tiempos de muestreo con el Aparato USP II.

							Metol	oest							
]	Lote 10(9042							
Tiempo							Concen	tración (μg/mL)						
(min)	V1	V2	V3	V4	V5	V6	V 7	V8	V9	V10	V11	V12	$\overline{\mathbf{X}}$	Desv. Est.	C.V.
2	9.888	12.655	13.133	10.794	11.448	12.328	9.438	10.370	10.737	10.787	11.130	12.208	11.243	1.138	10.125
4	19.574	22.518	20.606	21.612	20.279	22.870	18.705	18.803	19.416	17.969	18.435	22.137	20.244	1.697	8.384
6	30.645	33.991	32.934	32.305	30.745	31.727	31.036	28.927	29.491	27.604	28.584	32.899	30.907	1.967	6.364
8	43.124	45.741	42.470	42.143	42.571	44.206	39.077	40.940	42.484	38.341	39.248	44.445	42.066	2.286	5.434
10	54.572	59.830	52.760	53.968	52.836	53.289	49.030	51.653	49.863	48.294	49.054	57.169	52.693	3.459	6.564
12	61.038	66.900	64.133	63.579	61.717	65.139	59.277	62.071	59.669	58.272	56.825	64.008	61.886	3.005	4.855
14	73.744	79.782	73.064	71.202	69.768	74.649	68.421	72.441	70.382	67.072	67.759	74.010	71.858	3.556	4.948
16	77.769	87.556	82.726	80.059	78.398	82.399	76.486	82.174	78.840	75.628	76.315	81.928	80.023	3.473	4.340
18	87.355	102.426	90.223	89.720	87.053	93.570	85.508	90.386	86.464	84.870	83.081	91.097	89.313	5.095	5.704
20	92.915	103.734	95.457	95.104	94.299	96.715	93.009	97.740	93.794	90.778	89.013	100.952	95.293	4.104	4.307
25	100.891	110.854	107.131	107.131	101.344	108.993	104.850	111.003	108.037	104.678	101.393	113.160	106.622	4.078	3.825
30	114.176	117.648	116.792	116.843	113.471	119.686	114.239	117.990	114.239	111.175	106.786	114.729	114.814	3.444	2.999
40	119.182	117.924	118.931	119.359	119.811	119.988	116.715	117.132	115.121	114.607	112.474	115.734	117.248	2.383	2.032
50	118.428	117.748	118.830	120.667	120.340	123.208	116.151	118.823	115.955	114.778	112.351	115.465	117.729	2.966	2.519
60	123.258	123.032	122.982	120.742	128.064	126.856	116.323	117.965	118.946	115.808	113.356	116.543	120.323	4.597	3.821

Tabla 67. Datos de porcentaje de Tartrato de Metoprolol disuelto obtenidos en cada uno de los tiempos de muestreo con el Aparato USP II.

						M	etobes	st							
						Lot	e 10090	42							
Tiempo (min)						I	Porcenta	ije Disu	elto (%))					
Tiempo (mm)	V1	V2	V3	V4	V5	V6	V7	V8	V9	V10	V11	V12	$\overline{\mathbf{X}}$	Desv. Est.	C.V.
2	8.899	11.390	11.820	9.714	10.303	11.096	8.494	9.333	9.664	9.708	10.017	10.988	10.119	1.025	10.125
4	17.519	20.154	18.442	19.343	18.150	20.469	16.741	16.829	17.377	16.083	16.499	19.812	18.118	1.519	8.384
6	27.274	30.252	29.312	28.752	27.363	28.237	27.622	25.745	26.247	24.567	25.440	29.280	27.508	1.751	6.364
8	38.165	40.481	37.586	37.296	37.675	39.122	34.583	36.232	37.598	33.932	34.735	39.334	37.228	2.023	5.434
10	48.023	52.651	46.429	47.492	46.495	46.894	43.146	45.454	43.880	42.499	43.168	50.308	46.370	3.044	6.564
12	53.408	58.538	56.116	55.632	54.003	56.997	51.867	54.313	52.210	50.988	49.722	56.007	54.150	2.629	4.855
14	64.157	69.410	63.566	61.946	60.698	64.945	59.526	63.024	61.232	58.353	58.950	64.389	62.516	3.093	4.948
16	67.270	75.736	71.558	69.251	67.814	71.275	66.161	71.080	68.196	65.418	66.012	70.868	69.220	3.004	4.340
18	75.125	88.086	77.592	77.159	74.866	80.470	73.537	77.732	74.359	72.988	71.449	78.343	76.809	4.381	5.704
20	79.443	88.693	81.615	81.314	80.626	82.691	79.523	83.568	80.194	77.615	76.106	86.314	81.475	3.509	4.307
25	85.757	94.226	91.061	91.061	86.142	92.644	89.122	94.353	91.831	88.976	86.184	96.186	90.629	3.467	3.825
30	96.478	99.412	98.689	98.732	95.883	101.134	96.532	99.701	96.532	93.943	90.235	96.946	97.018	2.910	2.999
40	100.113	99.057	99.902	100.261	100.642	100.790	98.041	98.391	96.702	96.270	94.478	97.217	98.488	2.001	2.032
50	98.887	98.320	99.223	100.757	100.484	102.879	96.986	99.217	96.822	95.840	93.813	96.413	98.303	2.476	2.519
60	102.304	102.116	102.075	100.216	106.293	105.291	96.548	97.911	98.725	96.121	94.086	96.731	99.868	3.816	3.821

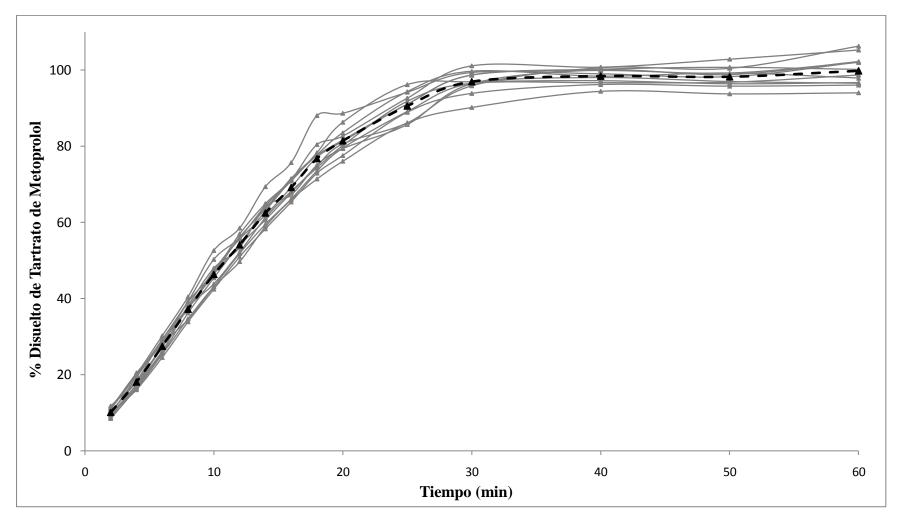


Gráfico 23. Perfiles Acumulativos de Disolución del Producto Metobest obtenidos en el Aparato USP II. La línea punteada representa el promedio de los perfiles de disolución.

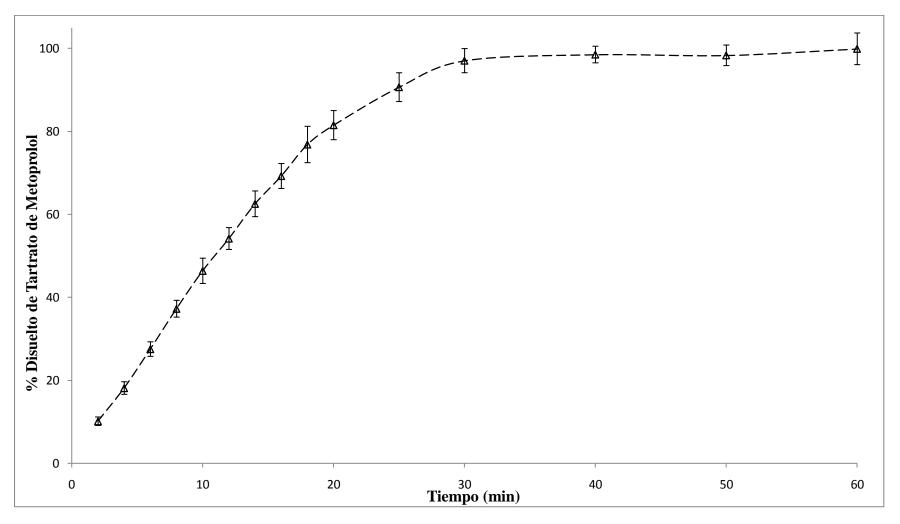


Gráfico 24. Perfil Acumulativo de Disolución Promedio del Producto Metobest obtenido en el Aparato USP II. Las barras horizontales representan las desviaciones estándar obtenidas en cada punto de muestreo.

Perfiles de Disolución de los cinco productos en el Aparato USP IV

Lopresor 100 Lote N0059

Tabla 68. Datos de absorbancia de Metoprolol disuelto y volumen de muestra obtenidos en cada uno de los tiempos de muestreo con el Aparato USP IV.

			Lopreso	or 100									
			Lote N	0059									
Tiempo (min)	Dilución (Vol. Mtra. / Vol. aforo)			Abs a 2	273 nm			Vo	lume	n de 1	nuest	ra (m	ıL)
Tiempo (iiiii)		V1	V2	V3	V4	V5	V 6	V1	V2	V3	V4	V5	V6
1	-	0.2394	0.2327	0.2371	0.412	0.4354	0.4632	8.2	8	8.2	8.4	8.2	8.2
2	-	0.5871	0.5542	0.5247	0.6829	0.7839	0.6968	8	8	8.2	8.4	8.2	8
3	1 mL/10 mL	0.1047	0.1123	0.086	0.1084	0.1038	0.0946	8.2	8	8.2	8.2	8.2	8
4	1 mL/10 mL	0.1464	0.1619	0.1245	0.1247	0.1549	0.1699	8	8.2	8.2	8.2	8.2	8
5	1 mL/10 mL	0.21	0.2205	0.1936	0.1796	0.189	0.1766	8.2	8.2	8.2	8.2	8.2	8.2
6	1 mL/10 mL	0.2566	0.2316	0.2117	0.1893	0.2222	0.2102	8.2	8.2	8.2	8.2	8.2	8.2
7	1 mL/10 mL	0.2653	0.2331	0.2168	0.2096	0.2238	0.2429	8.2	8.2	8.2	8.2	8.2	8.2
8	1 mL/10 mL	0.2573	0.2339	0.209	0.2022	0.2196	0.2154	8.2	8.2	8.2	8.2	8.2	8.2
10	1 mL/10 mL	0.2484	0.2482	0.2086	0.2018	0.2063	0.2042	16	16	16	16	16	16
12	1 mL/10 mL	0.2245	0.2402	0.2085	0.1973	0.1787	0.2022	16	16	16	16	16	16
14	1 mL/10 mL	0.2158	0.2272	0.2082	0.189	0.1784	0.2	16	16	16	16	16	16
16	1 mL/10 mL	0.1833	0.212	0.2041	0.1881	0.1775	0.1995	16	16	16	16	16	16
18	1 mL/10 mL	0.1787	0.1861	0.1922	0.1796	0.1662	0.1985	40	40	40	40	40	40
20	1 mL/10 mL	0.1611	0.1739	0.1915	0.1782	0.1535	0.1976	40	40	40	40	40	40
25	1 mL/10 mL	0.1538	0.1646	0.1797	0.1564	0.1467	0.1807	40	40	40	40	40	40
30	-	0.3781	0.3656	0.677	0.6267	0.5707	0.5596	40	40	40	40	40	40
35	-	0.1891	0.0698	0.2643	0.1818	0.2199	0.1923	40	40	40	40	40	40
40	-	0.053	0.0348	0.0966	0.0617	0.0732	0.0538	40	40	40	40	40	40
45	-	0.0306	0.0119	0.0401	0.0213	0.0231	0.018	40	40	40	40	40	40

Tabla 68. Datos de absorbancia de Metoprolol disuelto y volumen de muestra obtenidos en cada uno de los tiempos de muestreo con el Aparato USP IV (continuación).

			Lopre	sor 100											
	Lote N0059 Tiempo (min) Dilución (Vol. Mtra. / Vol. aforo)														
Tiomno (min)	Dilución (Vol. Mtno. / Vol. ofono)			Abs a 2	273 nm			1	olun	en de	mues	tra (m	L)		
Tiempo (min)	Dilucion (voi. Mura. / voi. aloro)	V7	V8	V9	V10	V11	V12	V7	V8	V9	V10	V11	V12		
1	-	0.4969	0.4537	0.406	0.4908	0.4833	0.4314	8.4	8.2	8.4	8.2	8.4	8.2		
2	-	0.6986	0.6352	0.7432	0.7287	0.7281	0.7255	8.2	8.2	8.4	8.2	8.4	8.2		
3	1 mL/10 mL	0.1467	0.1529	0.1449	0.1127	0.1406	0.1483	8.2	8.2	8.4	8.2	8.2	8.2		
4	1 mL/10 mL	0.2027	0.1572	0.172	0.1318	0.1823	0.1686	8.2	8.2	8.2	8.2	8.2	8.2		
5	1 mL/10 mL	0.2098	0.1919	0.1998	0.1513	0.1891	0.1912	8.2	8.2	8.2	8.2	8.2	8.2		
6	1 mL/10 mL	0.2225	0.1948	0.2078	0.1658	0.2214	0.2313	8.2	8.2	8.2	8.2	8.2	8.2		
7	1 mL/10 mL	0.2322	0.228	0.2512	0.1991	0.2257	0.2442	8.2	8.2	8.2	8.2	8.2	8.2		
8	1 mL/10 mL	0.2297	0.2144	0.2445	0.1922	0.2176	0.2215	8.2	8.2	8.2	8.2	8.2	8.2		
10	1 mL/10 mL	0.2142	0.2057	0.226	0.1833	0.2102	0.2	16	16	16	16	16	16		
12	1 mL/10 mL	0.2065	0.204	0.2141	0.1825	0.2077	0.1831	16	16	16	16	16	16		
14	1 mL/10 mL	0.2031	0.1977	0.2067	0.1811	0.1939	0.1805	16	16	16	16	16	16		
16	1 mL/10 mL	0.2011	0.1942	0.194	0.18	0.1843	0.1619	16	16	16	16	16	16		
18	1 mL/10 mL	0.1981	0.1825	0.1865	0.1665	0.1805	0.1538	40	40	40	40	40	40		
20	1 mL/10 mL	0.1973	0.181	0.181	0.1625	0.1799	0.1436	40	40	40	40	40	40		
25	1 mL/10 mL	0.1927	0.1758	0.1797	0.1514	0.1712	0.1224	40	40	40	40	40	40		
30	-	0.4532	0.4066	0.5275	0.6969	0.4693	0.3676	40	40	40	40	40	40		
35	-	0.1042	0.172	0.1511	0.358	0.1514	0.1396	40	40	40	40	40	40		
40	-	0.0349	0.0548	0.052	0.1331	0.0537	0.0343	40	40	40	40	40	40		
45	-	0.0215	0.023	0.0238	0.0352	0.0338	0.0135	40	40	40	40	40	40		

Tabla 69. Datos de concentración de Tartrato de Metoprolol disuelto obtenidos en cada uno de los tiempos de muestreo con el Aparato USP IV.

						L	opreso	r 100							
							Lote No	0059							
Tiempo							Concen	tración (μg/mL)						
(min)	V1	V2	V3	V4	V5	V6	V 7	V8	V9	V10	V11	V12	$\overline{\mathbf{X}}$	Desv. Est.	C.V.
1	58.272	56.631	57.709	100.546	106.277	113.086	121.340	110.759	99.077	119.846	118.009	105.298	97.238	24.951	25.660
2	143.432	135.374	128.149	166.896	191.633	170.300	170.741	155.213	181.664	178.113	177.966	177.329	164.734	19.862	12.057
3	252.813	271.427	207.012	261.875	250.609	228.076	355.681	370.866	351.272	272.407	340.740	359.599	293.531	57.980	19.752
4	354.946	392.909	301.308	301.798	375.764	412.503	492.837	381.397	417.646	319.187	442.873	409.319	383.541	57.752	15.058
5	510.717	536.434	470.549	436.260	459.283	428.912	510.227	466.386	485.735	366.947	459.528	464.671	466.304	44.196	9.478
6	624.851	563.620	514.880	460.018	540.597	511.206	541.332	473.488	505.328	402.461	538.638	562.885	519.942	57.094	10.981
7	646.159	567.294	527.371	509.737	544.516	591.296	565.089	554.803	611.625	484.020	549.170	594.480	562.130	44.751	7.961
8	626.565	569.253	508.267	491.613	534.229	523.942	558.966	521.493	595.215	467.120	529.331	538.883	538.740	43.846	8.139
10	604.767	604.277	507.288	490.633	501.655	496.511	521.003	500.185	549.904	445.322	511.206	486.224	518.248	46.949	9.059
12	546.230	584.683	507.043	479.611	434.056	491.613	502.144	496.021	520.758	443.363	505.083	444.832	496.287	43.438	8.753
14	524.922	552.843	506.308	459.283	433.321	486.224	493.817	480.591	502.634	439.934	471.284	438.464	482.469	36.556	7.577
16	445.322	515.615	496.266	457.079	431.117	485.000	488.919	472.019	471.529	437.240	447.772	392.909	461.732	33.491	7.253
18	434.056	452.180	467.120	436.260	403.441	482.551	481.571	443.363	453.160	404.175	438.464	373.070	439.118	32.682	7.443
20	390.949	422.300	465.406	432.831	372.335	480.346	479.611	439.689	439.689	394.378	436.995	348.088	425.218	41.678	9.802
25	373.070	399.522	436.505	379.438	355.681	438.954	468.345	426.953	436.505	367.192	415.687	296.164	399.501	47.476	11.884
30	92.243	89.182	165.451	153.131	139.415	136.697	110.637	99.223	128.835	170.325	114.580	89.671	124.116	29.256	23.572
35	45.953	16.734	64.371	44.165	53.496	46.737	25.159	41.765	36.646	87.320	36.719	33.829	44.408	18.353	41.328
40	12.619	8.161	23.297	14.750	17.566	12.815	8.186	13.060	12.374	32.237	12.790	8.039	14.658	6.999	47.750
45	7.133	2.552	9.459	4.855	5.296	4.047	4.904	5.271	5.467	8.259	7.916	2.944	5.675	2.124	37.425

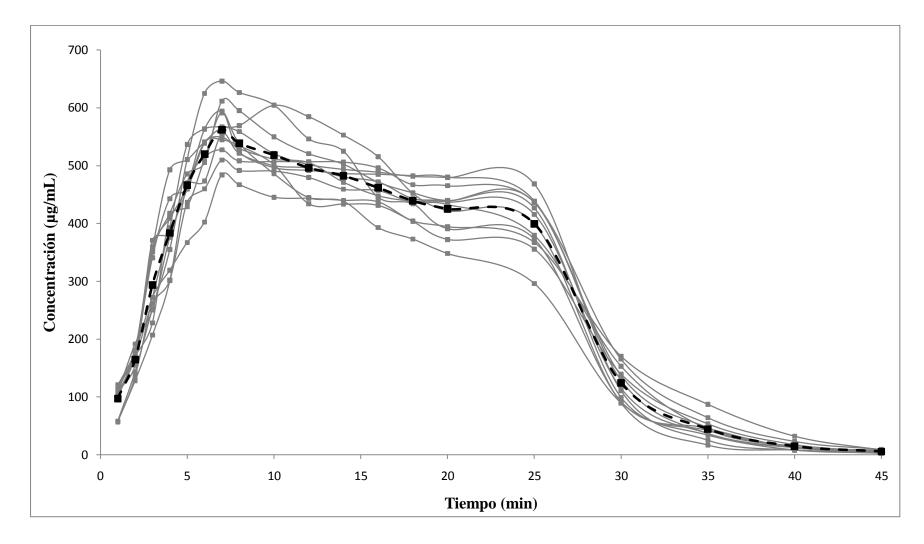


Gráfico 25. Perfiles de concentración (µg/mL) de Metoprolol disuelto del Producto Lopresor 100 obtenidos en el Aparato USP IV. La línea punteada representa el promedio de los perfiles de disolución.

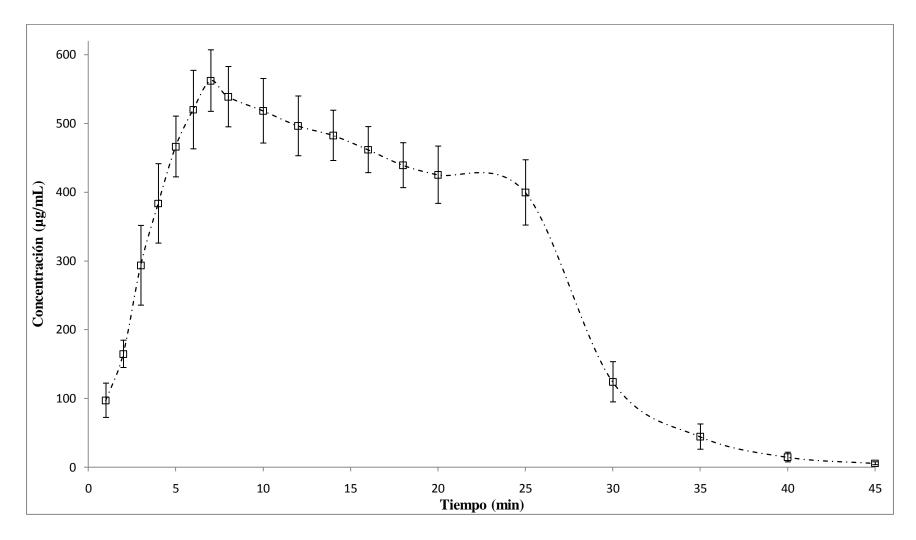


Gráfico 26. Perfiles de concentración (µg/mL) de Metoprolol disuelto del Producto Lopresor 100 obtenido en el Aparato USP IV.

Las barras horizontales representan las desviaciones estándar obtenidas en cada punto de muestreo.

Tabla 70. Cálculo del Área Bajo la Curva de cero a tiempo t de Tartrato de Metoprolol disuelto por el método de los trapezoides para el producto Lopresor 100.

	I	opresor 1	00	
		Lote N005	9	
Tiempo (min)	Concentración (µg/mL)	t_2-t_1	$(C_2+C_1)/2$	$ABC_{t1}^{t2} = (C_2 + C_1)/2)*(t_2-t_1)$
0	0	0	0	0
1	97.238	1	48.619	48.619
2	164.734	1	130.986	130.986
3	293.531	1	229.133	229.133
4	383.541	1	338.536	338.536
5	466.304	1	424.922	424.922
6	519.942	1	493.123	493.123
7	562.130	1	541.036	541.036
8	538.740	1	550.435	550.435
10	518.248	2	528.494	1056.988
12	496.287	2	507.267	1014.535
14	482.469	2	489.378	978.756
16	461.732	2	472.101	944.201
18	439.118	2	450.425	900.850
20	425.218	2	432.168	864.336
25	399.501	5	412.360	2061.799
30	124.116	5	261.809	1309.043
35	44.408	5	84.262	421.309
40	14.658	5	29.533	147.664
45	5.675	5	10.167	50.833
			ABC ⁴⁵ ₀	12507.101

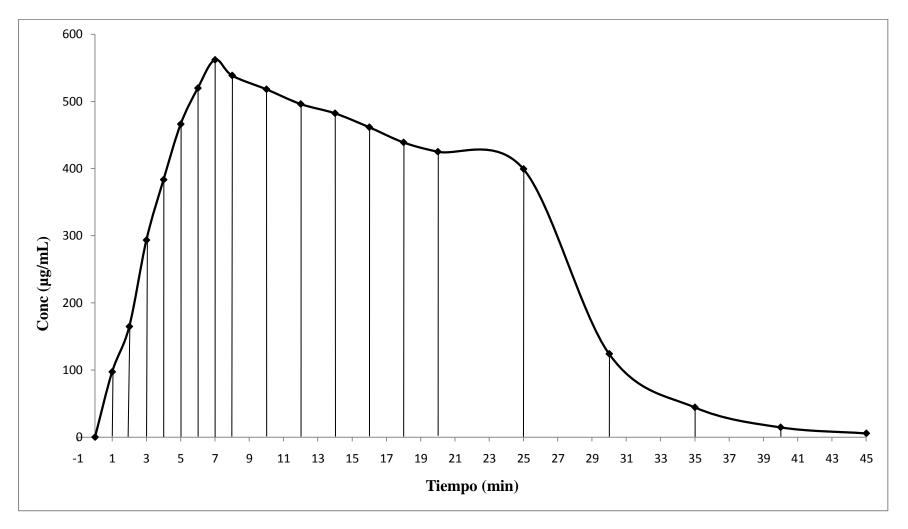


Gráfico 27. Trapezoides delimitados por las concentraciones de Metoprolol obtenidas en cada intervalo de muestreo para el producto Lopresor 100.

Tabla 71. Datos de porcentaje de Tartrato de Metoprolol disuelto obtenidos en cada uno de los tiempos de muestreo con el Aparato USP IV.

							opreso Lote N0								
TEV*						-		aje Disuc	elto (%)						
Tiempo (min)	V1	V2	V3	V4	V5	V6	V7	V8	V9	V10	V11	V12	$\overline{\mathbf{X}}$	Desv. Est.	c.v.
1	0.4778	0.4531	0.4732	0.8446	0.8715	0.9273	1.0193	0.9082	0.8322	0.9827	0.9913	0.8634	0.804	0.211	26.231
2	1.6253	1.5361	1.5240	2.2465	2.4429	2.2897	2.4193	2.1810	2.3582	2.4433	2.4862	2.3530	2.159	0.371	17.190
3	3.6984	3.7075	3.2216	4.3939	4.4979	4.1143	5.3359	5.2221	5.3089	4.6770	5.2803	5.3737	4.569	0.756	16.544
4	6.5380	6.9294	5.6923	6.8687	7.5792	7.4144	9.3772	8.3496	8.7337	7.2944	8.9119	8.8120	7.708	1.126	14.601
5	10.7259	11.3281	9.5508	10.4460	11.3453	10.9315	13.5611	12.1740	12.7167	10.3034	12.6800	12.7152	11.540	1.219	10.565
6	15.8497	15.9498	13.7729	14.2182	15.7782	15.1234	18.0001	16.0566	16.8604	13.6036	17.0969	17.4435	15.813	1.425	9.010
7	21.1482	20.6017	18.0973	18.3980	20.2433	19.9720	22.6338	20.6060	21.8758	17.5725	21.6001	22.4371	20.432	1.676	8.203
8	26.2861	25.2696	22.2651	22.4293	24.6240	24.2684	27.2174	24.8823	26.7565	21.4029	25.9406	26.9638	24.859	1.953	7.856
10	35.9624	34.9381	30.3818	30.2795	32.6505	32.2126	35.5535	32.8853	35.5551	28.5281	34.1200	34.9865	33.171	2.439	7.353
12	44.7021	44.2930	38.4945	37.9533	39.5954	40.0785	43.5878	40.8216	43.8872	35.6220	42.2013	42.3263	41.130	2.859	6.951
14	53.1009	53.1386	46.5955	45.3018	46.5286	47.8581	51.4889	48.5111	51.9294	42.6610	49.7419	49.5610	48.868	3.257	6.664
16	60.2261	61.3885	54.5358	52.6151	53.4265	55.6181	59.3117	56.0635	59.4739	49.6568	56.9063	56.0440	56.272	3.444	6.120
18	67.1710	68.6234	62.0098	59.5953	59.8816	63.3390	67.0168	63.1573	66.7245	56.1237	63.9218	62.1997	63.314	3.681	5.814
20	73.4263	75.3802	69.4563	66.5207	65.8390	71.0246	74.6907	70.1924	73.7596	62.4338	70.9137	67.9432	70.132	3.928	5.601
25	88.3491	91.3612	86.9166	81.6983	80.0663	88.5828	93.4246	87.2706	91.2199	77.1215	87.5413	80.3822	86.161	5.152	5.979
30	92.0389	94.9285	93.5346	87.8236	85.6429	94.0507	97.8501	91.2396	96.3733	83.9345	92.1245	84.1484	91.141	4.717	5.176
35	93.8770	95.5978	96.1095	89.5902	87.7828	95.9202	98.8564	92.9102	97.8391	87.4274	93.5933	85.5692	92.923	4.357	4.689
40	94.3818	95.9242	97.0414	90.1801	88.4854	96.4328	99.1838	93.4325	98.3341	88.7169	94.1049	85.9069	93.510	4.270	4.566
45	94.6671	96.0263	97.4198	90.3743	88.6973	96.5946	99.3800	93.6434	98.5528	89.0472	94.4216	86.0305	93.738	4.279	4.565

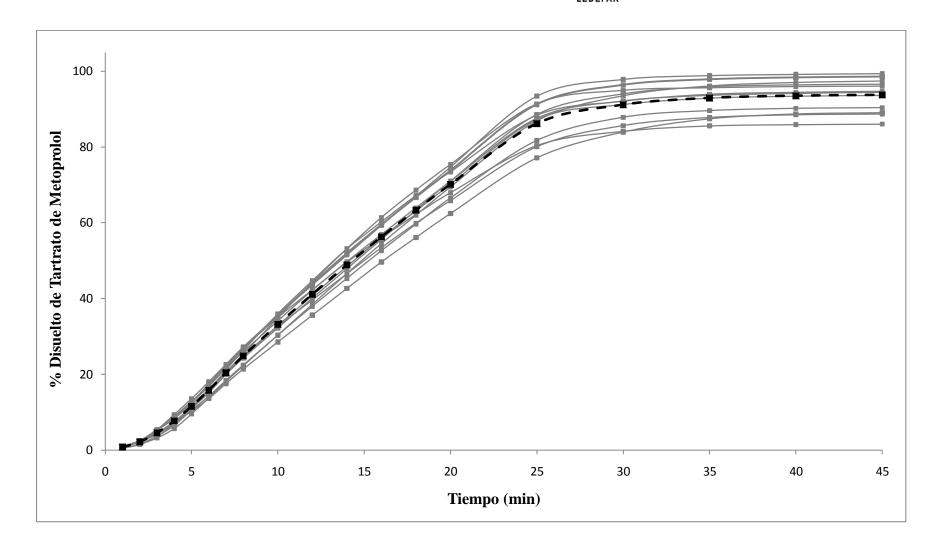


Gráfico 28. Perfiles Acumulativos de Disolución del Producto Lopresor 100 obtenidos en el Aparato USP IV. La línea punteada representa el promedio de los perfiles de disolución.

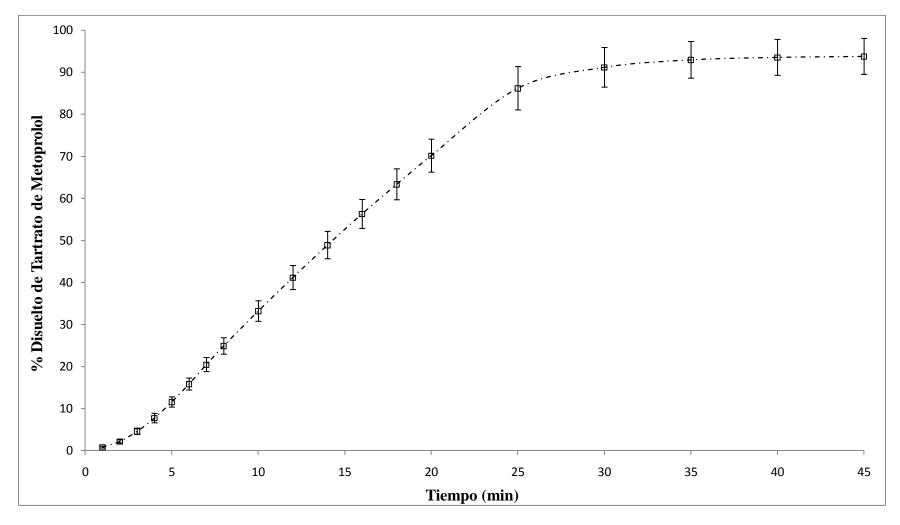


Gráfico 29. Perfil Acumulativo de Disolución Promedio del Producto Lopresor 100 obtenido en el Aparato USP IV. Las barras horizontales representan las desviaciones estándar obtenidas en cada punto de muestreo.

Kenaprol Lote M07410

Tabla 72. Datos de absorbancia de Metoprolol disuelto y volumen de muestra obtenidos en cada uno de los tiempos de muestreo con el Aparato USP IV.

			Ke	enaprol									
			Lote	e M0741	.0								
Tiempo	Dilución (Vol. Mtra. / Vol.			Abs a 2	273 nm			,	Volum	en de 1	muestr	a (mL))
(min)	aforo)	V1	V2	V3	V4	V5	V6	V1	V2	V3	V4	V5	V6
1	1 mL/10 mL	0.1388	0.1883	0.1456	0.1523	0.1193	0.1446	8.4	8.2	8.4	8.2	8.2	8.2
2	1 mL/10 mL	0.2159	0.2725	0.188	0.221	0.1734	0.2364	8.2	8.2	8.2	8.2	8.2	8.2
3	1 mL/10 mL	0.2768	0.3216	0.2485	0.2884	0.2123	0.267	8.2	8.2	8.2	8.2	8.2	8.2
4	1 mL/10 mL	0.3316	0.3544	0.2843	0.3402	0.26	0.2771	8.2	8.2	8.2	8.2	8.2	8.2
5	1 mL/10 mL	0.3392	0.3575	0.3097	0.3604	0.2968	0.3069	8.2	8.2	8.2	8.2	8.2	8.2
6	1 mL/10 mL	0.3438	0.3604	0.3181	0.3835	0.3245	0.3455	8.2	8.2	8.2	8.2	8.2	8.2
7	1 mL/10 mL	0.3132	0.3531	0.3363	0.389	0.34	0.3654	8.2	8.2	8.2	8.2	8.2	8.2
8	1 mL/10 mL	0.2949	0.3282	0.3147	0.3788	0.3334	0.3694	8.4	8.2	8.2	8.2	8.2	8.2
10	1 mL/10 mL	0.2745	0.3023	0.2822	0.3628	0.3271	0.3482	15	15.5	16	15.5	15.5	15.5
12	1 mL/10 mL	0.2422	0.2488	0.2196	0.3164	0.2887	0.3165	15.5	15.5	15.5	16	16	16
14	1 mL/10 mL	0.1984	0.2198	0.1746	0.2164	0.2305	0.2625	15.5	15.5	16	15.5	15.5	15.5
16	1 mL/10 mL	0.1823	0.1865	0.145	0.1143	0.2013	0.1343	16	16	15.5	16	16	16
18	1 mL/10 mL	0.127	0.1422	0.1151	0.0745	0.1461	0.0878	16	15.5	16	15.5	16	15.5
20	-	0.0863	0.0786	0.0935	0.4585	0.0839	0.5069	40	40	16	16	16	16
25	-	0.3784	0.3436	0.6318	0.3043	0.461	0.3138	40	40	40	40	40	40
30	-	0.1258	0.0843	0.3682	0.1313	0.1914	0.1273	40	40	40	40	40	40
35	-	0.0453	0.0172	0.1216	0.0409	0.0472	0.0255	40	40	40	40	41	40
40	-	0	0	0.0284	0	0	0	40	40	40	40	40	40

Tabla 72. Datos de absorbancia de Metoprolol disuelto y volumen de muestra obtenidos en cada uno de los tiempos de muestreo con el Aparato USP IV (continuación).

			Kei	naprol									
			Lote	M07410									
Tiempo	Dilución (Vol. Mtra. / Vol.			Abs a 2	273 nm				Volum	ien de	muesti	ra (mL	<i>.</i>)
(min)	aforo)	V7	V8	V9	V10	V11	V12	V7	V8	V9	V10	V11	V12
1	1 mL/10 mL	0.1227	0.1235	0.1377	0.139	0.1252	0.118	8.2	8.2	8.2	8.2	8.4	8.2
2	1 mL/10 mL	0.2034	0.2059	0.203	0.2101	0.198	0.1709	8.2	8.2	8.2	8.2	8.2	8.2
3	1 mL/10 mL	0.256	0.2378	0.3196	0.2558	0.2638	0.2221	8.2	8.2	8.2	8.2	8.2	8.2
4	1 mL/10 mL	0.3028	0.2732	0.3816	0.2831	0.3946	0.2775	8	8.2	8.2	8.2	8.2	8.2
5	1 mL/10 mL	0.3039	0.3033	0.4035	0.3092	0.45	0.3057	8	8.2	8.2	8.2	8.2	8.2
6	1 mL/10 mL	0.3121	0.3117	0.422	0.3309	0.4519	0.3113	8.2	8.2	8.2	8.2	8.2	8.2
7	1 mL/10 mL	0.291	0.3088	0.3831	0.3199	0.4379	0.3016	8.2	8.2	8.2	8.2	8.2	8.2
8	1 mL/10 mL	0.2612	0.3077	0.3661	0.3083	0.3992	0.2943	8.2	8.2	8.2	8.2	8.2	8.2
10	1 mL/10 mL	0.2342	0.3073	0.3256	0.2778	0.3523	0.26	16	15.5	15.5	15.5	15.5	15.5
12	1 mL/10 mL	0.1857	0.2875	0.2925	0.2145	0.283	0.2006	16	16	16	16	16	16
14	1 mL/10 mL	0.1645	0.2505	0.2433	0.1899	0.2086	0.1657	16	15.5	16	15.5	16	15.5
16	1 mL/10 mL	0.1496	0.1699	0.1209	0.1668	0.1217	0.1464	16	16	16	16	16	16
18	1 mL/10 mL	0.1317	0.1294	0.561	0.1416	0.0862	0.1282	16	15.5	16	15.5	16	15.5
20	1 mL/10 mL	0.0959	0.0931	0.4005	0.1226	0.4983	0.1119	16	16	16	16	16	16
25	-	0.5341	0.4352	0.272	0.6136	0.2119	0.0791	40	40	40	40	40	40
30	-	0.2125	0.191	0.1427	0.3307	0.0653	0.4604	40	40	40	40	40	40
35	-	0.0875	0.0216	0.0354	0.1625	0.0151	0.2159	40	40	40	40	40	40
40	-	0.0352	0	0	0.0601	0	0.0776	40	40	40	40	40	40

Tabla 73. Datos de concentración de Tartrato de Metoprolol disuelto obtenidos en cada uno de los tiempos de muestreo con el Aparato USP IV.

							Kena	aprol							
								107410							
Tiempo							Conce	ntración	(μg/mL)						
(min)	V1	V2	V3	V4	V5	V6	V 7	V8	V9	V10	V11	V12	$\overline{\mathbf{X}}$	Desv. Est.	C.V.
1	336.332	457.568	352.986	369.396	288.572	350.537	296.899	298.859	333.638	336.822	303.022	285.388	334.168	47.832	14.314
2	525.167	663.793	456.834	537.658	421.075	575.376	494.552	500.675	493.572	510.962	481.326	414.952	506.328	67.384	13.308
3	674.325	784.050	605.012	702.736	516.350	650.323	623.381	578.805	779.152	622.891	642.485	540.352	643.322	83.102	12.918
4	808.543	864.385	692.694	829.606	633.178	675.060	738.005	665.508	931.004	689.755	962.844	676.039	763.885	111.815	14.638
5	827.157	871.978	754.905	879.080	723.310	748.047	740.699	739.230	984.642	753.680	1098.531	745.108	822.197	117.727	14.319
6	838.423	879.080	775.478	935.658	791.153	842.587	760.783	759.803	1029.953	806.828	1103.185	758.823	856.813	112.650	13.148
7	763.477	861.201	820.054	949.128	829.116	891.327	709.104	752.700	934.678	779.887	1068.896	735.066	841.219	105.350	12.523
8	718.656	800.215	767.151	924.146	812.951	901.123	636.117	750.006	893.041	751.476	974.110	717.186	803.848	100.392	12.489
10	668.692	736.780	687.551	884.959	797.521	849.200	569.988	749.026	793.847	676.774	859.242	633.178	742.230	97.954	13.197
12	589.582	605.747	534.229	771.314	703.471	771.559	451.200	700.532	712.778	521.738	689.510	487.694	628.280	111.222	17.703
14	482.306	534.719	424.014	526.392	560.926	639.301	399.277	609.910	592.276	461.487	507.288	402.216	511.676	80.514	15.735
16	442.873	453.160	351.517	276.326	489.408	325.310	362.783	412.503	292.491	404.910	294.450	354.946	371.723	69.139	18.600
18	307.431	344.659	278.285	178.846	354.211	211.421	318.942	313.309	137.040	343.190	207.502	310.370	275.434	72.841	26.446
20	207.747	188.888	225.382	111.935	201.869	123.789	231.260	224.402	97.729	296.654	121.683	270.447	191.816	64.710	33.736
25	92.317	83.793	154.380	74.168	112.547	76.495	130.451	106.228	66.257	149.922	51.537	190.113	107.351	41.641	38.790
30	30.449	20.285	89.818	31.796	46.516	30.817	51.684	46.418	34.588	80.634	15.631	112.400	49.253	29.882	60.670
35	10.733	3.851	29.420	9.655	11.198	5.883	21.069	4.928	8.308	39.438	3.336	52.517	16.695	15.857	94.983
40	0.000	0.000	6.594	0.000	0.000	0.000	8.259	0.000	0.000	14.358	0.000	18.644	3.988	6.568	164.711

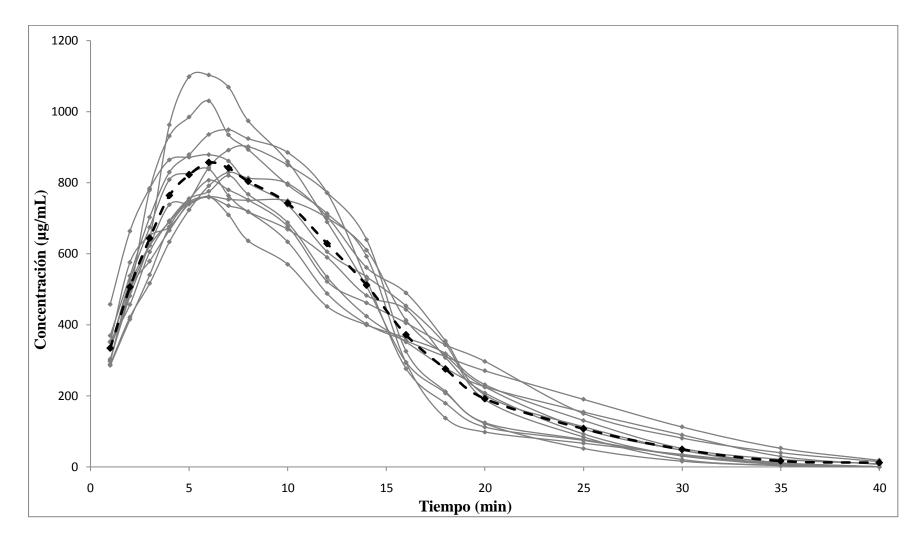


Gráfico 30. Perfiles de concentración (µg/mL) de Metoprolol disuelto del Producto Kenaprol obtenidos en el Aparato USP IV. La línea punteada representa el promedio de los perfiles de disolución.

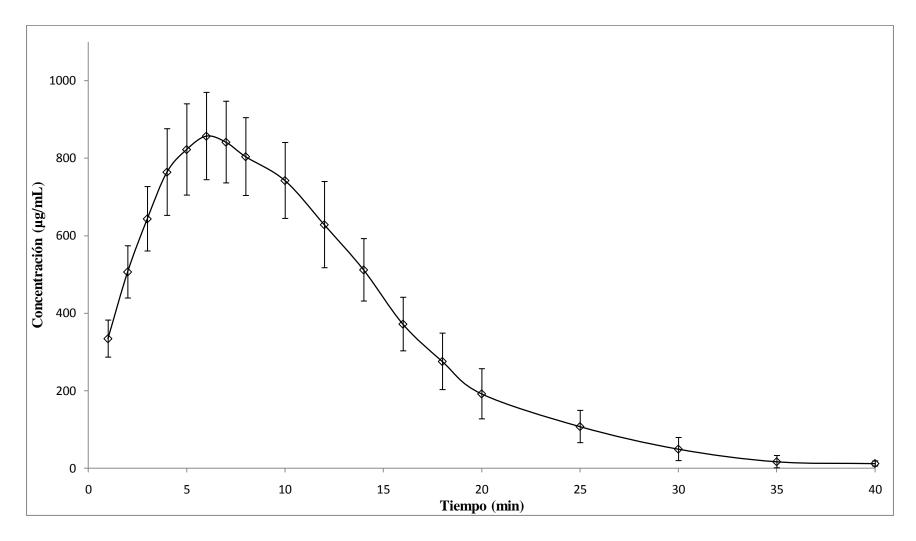


Gráfico 31. Perfiles de concentración (µg/mL) de Metoprolol disuelto del Producto Kenaprol obtenido en el Aparato USP IV. Las barras horizontales representan las desviaciones estándar obtenidas en cada punto de muestreo.

Tabla 74. Cálculo del Área Bajo la Curva de cero a tiempo t de Tartrato de Metoprolol disuelto por el método de los trapezoides para el producto Kenaprol.

		Kenapro Lote M074		
Tiempo (min)	Concentración (µg/mL)	t_2-t_1	$(C_2+C_1)/2$	$ABC^{t2}_{t1} = (C_2 + C_1)/2)*(t_2 - t_1)$
0	0	0	0	0
1	334.168	1	167.084	167.084
2	506.328	1	420.248	420.248
3	643.322	1	574.825	574.825
4	763.885	1	703.603	703.603
5	822.197	1	793.041	793.041
6	856.813	1	839.505	839.505
7	841.219	1	849.016	849.016
8	803.848	1	822.534	822.534
10	742.230	2	773.039	1546.078
12	628.280	2	685.255	1370.509
14	511.676	2	569.978	1139.955
16	371.723	2	441.699	883.399
18	275.434	2	323.578	647.157
20	191.816	2	233.625	467.249
25	107.351	5	149.583	747.916
30	49.253	5	78.302	391.510
35	16.695	5	32.974	164.870
40	3.988	5	10.341	51.706
			ABC ⁴⁰ ₀	12507.101

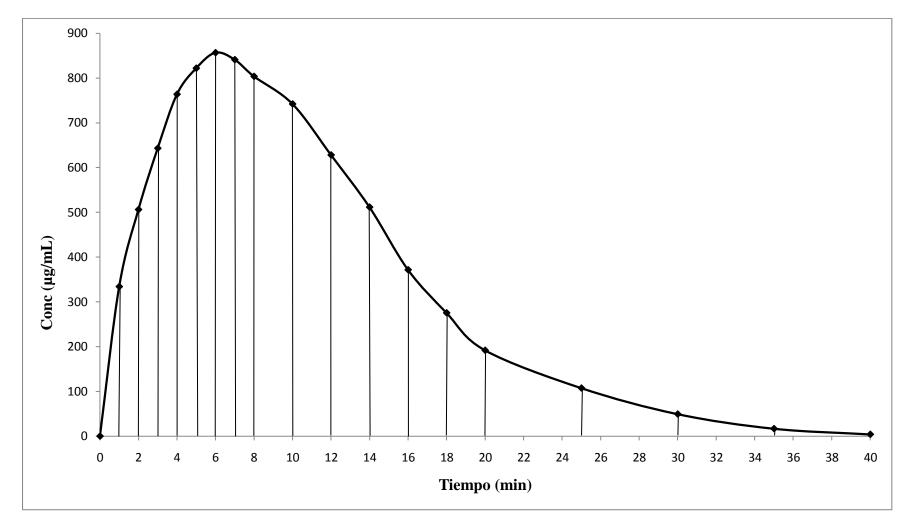


Gráfico 32. Trapezoides delimitados por las concentraciones de Metoprolol obtenidas en cada intervalo de muestreo para el producto Kenaprol.

Tabla 75. Datos de porcentaje de Tartrato de Metoprolol disuelto obtenidos en cada uno de los tiempos de muestreo con el Aparato USP IV.

							Kenap	rol							
						I	ote M0'								
Tiempo							Porcent	aje Disu	elto (%)						
(min)	V1	V2	V3	V4	V5	V6	V 7	V8	V9	V10	V11	V12	$\overline{\mathbf{X}}$	Desv. Est.	C.V.
1	2.8252	3.7521	2.9651	3.0291	2.3663	2.8744	2.4346	2.4507	2.7358	2.7620	2.5454	2.3402	2.757	0.393	14.241
2	7.1316	9.1952	6.7112	7.4379	5.8191	7.5925	6.4899	6.5562	6.7832	6.9519	6.4923	5.7428	6.909	0.910	13.166
3	12.6611	15.6245	11.6723	13.2004	10.0532	12.9252	11.6017	11.3024	13.1722	12.0596	11.7607	10.1737	12.184	1.501	12.318
4	19.2912	22.7125	17.3524	20.0032	15.2453	18.4607	17.5058	16.7596	20.8065	17.7156	19.6561	15.7173	18.436	2.164	11.740
5	26.0739	29.8627	23.5427	27.2117	21.1765	24.5947	23.4314	22.8213	28.8806	23.8958	28.6641	21.8272	25.165	2.912	11.570
6	32.9490	37.0712	29.9016	34.8841	27.6640	31.5040	29.6698	29.0518	37.3263	30.5118	37.7102	28.0496	32.191	3.703	11.504
7	39.2095	44.1331	36.6261	42.6670	34.4628	38.8129	35.4845	35.2239	44.9907	36.9070	46.4752	34.0772	39.089	4.400	11.257
8	45.2463	50.6949	42.9168	50.2450	41.1290	46.2022	40.7007	41.3740	52.3136	43.0691	54.4630	39.9581	45.693	5.035	11.019
10	55.2767	62.1150	53.9176	63.9619	53.4906	59.3648	49.8206	52.9840	64.6183	53.5591	67.7813	49.7724	57.222	6.108	10.675
12	64.4153	71.5042	62.1982	76.3030	64.7462	71.7098	57.0398	64.1926	76.0228	61.9070	78.8135	57.5756	67.202	7.423	11.046
14	71.8911	79.7924	68.9825	84.4622	73.4406	81.6191	63.4283	73.6462	85.4993	69.0601	86.9301	63.8099	75.213	8.273	10.999
16	78.9771	87.0430	74.4310	88.8834	81.2712	86.8240	69.2328	80.2463	90.1792	75.5387	91.6414	69.4891	81.146	7.854	9.679
18	83.8960	92.3852	78.8836	91.6555	86.9386	90.1011	74.3359	85.1026	92.3718	80.8581	94.9614	74.2999	85.482	7.157	8.372
20	84.7270	93.1408	79.2442	93.4465	87.2616	92.0817	78.0361	88.6931	93.9355	85.6046	96.9084	78.6270	87.642	6.516	7.435
25	88.4197	96.4925	85.4195	96.4132	91.7635	95.1415	83.2542	92.9422	96.5858	91.6016	98.9698	86.2316	91.936	5.100	5.547
30	89.6376	97.3039	89.0122	97.6851	93.6242	96.3742	85.3215	94.7989	97.9693	94.8269	99.5951	90.7276	93.906	4.354	4.636
35	90.0670	97.4579	90.1890	98.0713	94.0833	96.6095	86.1643	94.9961	98.3017	96.4045	99.7286	92.8283	94.575	4.070	4.304
40	90.0525	97.4434	90.4528	98.0568	94.0688	96.5950	86.4947	94.9816	98.2872	96.9788	99.7141	93.5741	94.725	3.981	4.202

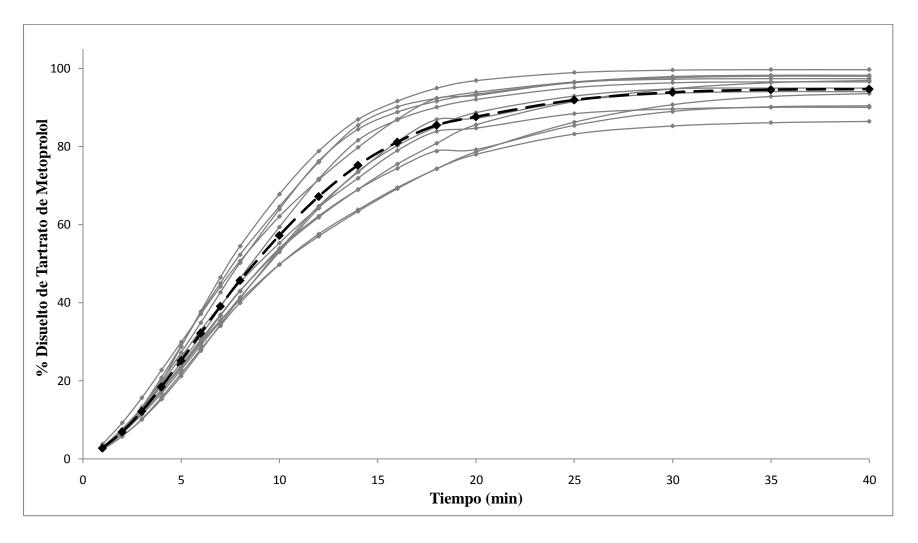


Gráfico 33. Perfiles Acumulativos de Disolución del Producto Kenaprol obtenidos en el Aparato USP IV. La línea punteada representa el promedio de los perfiles de disolución.

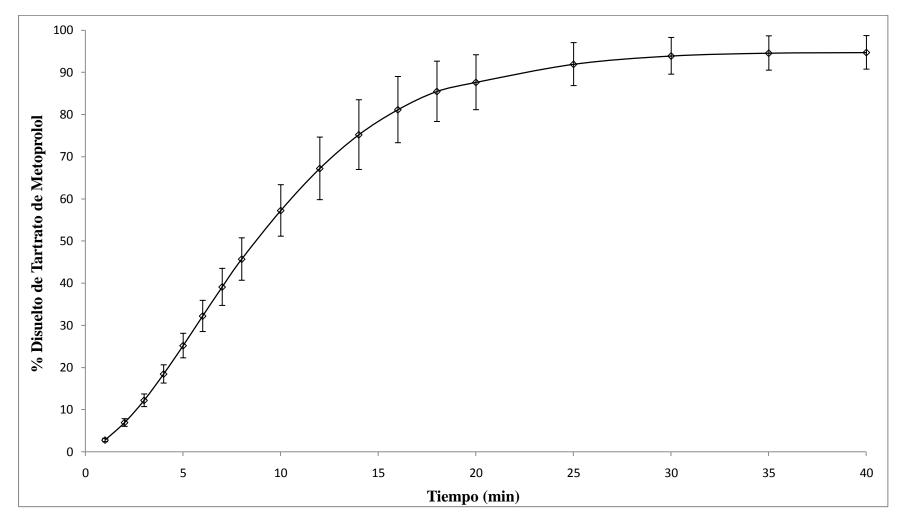


Gráfico 34. Perfil Acumulativo de Disolución Promedio del Producto Kenaprol obtenido en el Aparato USP IV. Las barras horizontales representan las desviaciones estándar obtenidas en cada punto de muestreo.

Proken M Lote OJS957

Tabla 76. Datos de absorbancia de Metoprolol disuelto y volumen de muestra obtenidos en cada uno de los tiempos de muestreo con el Aparato USP IV.

			Prok	ken M									
			Lote (OJS957									
Tiempo (min)	Dilución (Vol. Mtra. / Vol. aforo)			Abs a 2	273 nm			V	olumer	ı de n	nuestra	a (mL	<i>i</i>)
Tiempo (iiiii)	Dilucion (vol. with a. / vol. aloro)	V1	V2	V3	V4	V5	V6	V1	V2	V 3	V4	V5	V6
1	1 mL/10 mL	0.0904	0.1021	0.0727	0.0959	0.0961	0.0668	8.2	8.2	8.2	8.2	8.2	8.2
2	1 mL/10 mL	0.1352	0.145	0.1431	0.1491	0.1231	0.1355	8.2	8.2	8.2	8.2	8.2	8.2
3	1 mL/10 mL	0.1659	0.166	0.16	0.1617	0.14	0.1495	8.2	8.2	8.2	8.2	8.2	8.2
4	1 mL/10 mL	0.1826	0.1721	0.1659	0.17	0.1609	0.164	8.2	8.2	8.2	8.2	8.2	8.2
5	1 mL/10 mL	0.1855	0.1736	0.1725	0.1792	0.1755	0.1647	8.2	8.2	8.2	8.2	8.2	8.2
6	1 mL/10 mL	0.188	0.175	0.1834	0.1852	0.1784	0.1708	8.2	8.2	8.2	8.2	8.2	8.2
7	1 mL/10 mL	0.1784	0.1523	0.1746	0.1726	0.1743	0.1635	8.2	8.2	8.2	8.2	8.2	8.2
8	1 mL/10 mL	0.1616	0.1378	0.1639	0.1576	0.1707	0.1479	8.2	8.2	8.2	8.2	8.2	8.2
10	1 mL/10 mL	0.1522	0.1359	0.1568	0.1454	0.1521	0.1446	15.5	15.5	16	15.5	16	16
12	1 mL/10 mL	0.1445	0.1313	0.1436	0.137	0.1462	0.1406	16	16	16	16	16	16
14	1 mL/10 mL	0.1408	0.1154	0.1355	0.1306	0.139	0.1296	15.5	15.5	16	15.5	16	16
16	1 mL/10 mL	0.1375	0.1136	0.1294	0.124	0.1363	0.1274	16	16	16	16	16	16
18	1 mL/10 mL	0.1325	0.1107	0.1189	0.1161	0.1282	0.1166	15.5	15.5	16	15.5	16	16
20	1 mL/10 mL	0.1298	0.1074	0.1114	0.1148	0.126	0.1141	16	16	16	16	16	16
25	1 mL/10 mL	0.1136	0.0831	0.1091	0.0983	0.1097	0.0947	40	40	40	40	40	40
30	1 mL/10 mL	0.0966	0.0794	0.0985	0.0855	0.103	0.0889	40	40	40	40	40	40
35	-	0.823	0.7528	0.7675	0.7789	0.734	0.6188	40	40	40	40	40	40
40	-	0.756	0.6395	0.6021	0.6612	0.5044	0.5087	40	40	40	40	40	40
45	-	0.6575	0.5635	0.446	0.3938	0.3086	0.4184	40	40	40	40	40	40
50	-	0.3631	0.2877	0.1528	0.1125	0.1917	0.3746	40	40	40	40	40	40
55	-	0.1344	0.2721	0.0638	0.0695	0.1485	0.1946	40	40	40	40	40	40
60	-	0.0326	0.0739	0.0221	0.0306	0.0529	0.0605	40	40	40	40	40	40

Tabla 76. Datos de absorbancia de Metoprolol disuelto y volumen de muestra obtenidos en cada uno de los tiempos de muestreo con el Aparato USP IV (continuación).

			Prok	en M									
			Lote (OJS957									
Tiomno (min)	Dilución (Vol. Mtra. / Vol. aforo)			Abs a 2	273 nm			7	olun	ien de	mues	tra (m	L)
Tiempo (min)	Dilucion (voi. Mura. / voi. aloro)	V7	V8	V9	V10	V11	V12	V7	V8	V9	V10	V11	V12
1	1 mL/10 mL	0.0742	0.0645	0.0833	0.0912	0.0799	0.0946	8.2	8.2	8.2	8.2	8.2	8.2
2	1 mL/10 mL	0.1472	0.1391	0.1316	0.1315	0.1209	0.1299	8	8.2	8	8.2	8.2	8.2
3	1 mL/10 mL	0.1598	0.1502	0.1542	0.1487	0.1524	0.1596	8	8.2	8.2	8.2	8.2	8.2
4	1 mL/10 mL	0.1675	0.1635	0.1708	0.1575	0.1685	0.1675	7	8.2	8.2	8.2	8.2	8.2
5	1 mL/10 mL	0.1801	0.1743	0.1899	0.1658	0.181	0.1792	8	8.2	8.2	8.2	8.2	8.2
6	1 mL/10 mL	0.1851	0.1831	0.1905	0.1751	0.1859	0.1817	8	8.2	8.2	8.2	8.2	8.2
7	1 mL/10 mL	0.1776	0.1748	0.1867	0.1687	0.18	0.174	8	8.2	8.2	8.2	8.2	8.2
8	1 mL/10 mL	0.1657	0.1569	0.1706	0.1588	0.1776	0.1647	8	8.2	8.2	8.2	8.2	8.2
10	1 mL/10 mL	0.1627	0.1355	0.1621	0.1464	0.1754	0.1406	16	16	16	16	16	16
12	1 mL/10 mL	0.1486	0.1312	0.1593	0.1355	0.1654	0.1365	16	16	16	16	16	16
14	1 mL/10 mL	0.1355	0.1208	0.1587	0.1266	0.1496	0.1272	16	16	16	16	16	16
16	1 mL/10 mL	0.1248	0.1169	0.1504	0.1261	0.1437	0.1236	16	16	16	16	16	16
18	1 mL/10 mL	0.1211	0.1145	0.1443	0.1173	0.1283	0.1209	16	16	16	16	16	16
20	1 mL/10 mL	0.1201	0.1042	0.1401	0.1141	0.1182	0.1129	16	16	16	16	16	16
25	1 mL/10 mL	0.0981	0.1022	0.1292	0.1112	0.0985	0.1116	40	40	40	40	40	40
30	1 mL/10 mL	0.0837	0.0923	0.1094	0.0952	0.0867	0.1001	40	40	40	40	40	40
35	-	0.6647	0.7775	0.6587	0.7784	0.704	0.748	40	40	40	40	40	40
40	-	0.4815	0.7351	0.4743	0.7671	0.6608	0.6565	40	40	40	40	40	40
45	-	0.3158	0.3399	0.3152	0.5052	0.4157	0.3948	40	40	40	40	40	40
50	-	0.2936	0.3	0.1263	0.3082	0.1687	0.1415	40	40	40	40	40	40
55	-	0.1293	0.11	0.0916	0.0973	0.0676	0.0538	40	40	40	40	40	40
60	-	0.0413	0.0733	0.05	0.0664	0.0282	0.0247	40	40	40	40	40	40

Tabla 77. Datos de concentración de Tartrato de Metoprolol disuelto obtenidos en cada uno de los tiempos de muestreo con el Aparato USP IV.

							Prokei	n M							
]	Lote OJ	S957							
Tiomno							Concen	tración (μg/mL)						
Tiempo (min)	V1	V2	V3	V4	V5	V6	V7	V8	V9	V10	V11	V12	$\bar{\mathbf{x}}$	Desv. Est.	C.V.
1	217.789	246.445	174.438	231.260	231.750	159.987	178.112	154.354	200.400	219.748	192.072	228.076	202.869	30.78	15.170
2	327.514	351.517	346.863	361.559	297.879	328.249	356.905	337.066	318.697	318.452	292.491	314.534	329.311	22.28	6.765
3	402.706	402.951	388.255	392.419	339.271	362.538	387.765	364.253	374.050	360.579	369.641	387.276	377.642	19.17	5.077
4	443.608	417.891	402.706	412.748	390.460	398.052	406.624	396.828	414.707	382.132	409.074	406.624	406.788	15.52	3.815
5	450.711	421.565	418.871	435.280	426.218	399.767	437.485	423.279	461.487	402.461	439.689	435.280	429.341	17.96	4.183
6	456.834	424.994	445.567	449.976	433.321	414.707	449.731	444.832	462.957	425.239	451.690	441.404	441.771	14.42	3.264
7	433.321	369.396	424.014	419.116	423.279	396.828	431.362	424.504	453.650	409.564	437.240	422.544	420.401	21.31	5.069
8	392.174	333.882	397.807	382.377	414.462	358.620	402.216	380.663	414.217	385.316	431.362	399.767	391.072	26.10	6.674
10	369.151	329.229	380.418	352.497	368.906	350.537	394.868	328.249	393.399	354.946	425.973	340.740	365.743	29.18	7.978
12	350.292	317.962	348.088	331.923	354.456	340.740	360.334	317.718	386.541	328.249	401.481	330.698	347.374	25.87	7.446
14	341.230	279.020	328.249	316.248	336.822	313.799	328.249	292.246	385.071	306.451	362.783	307.921	324.841	29.36	9.040
16	333.148	274.611	313.309	300.083	330.209	308.410	302.042	282.694	364.743	305.226	348.333	299.103	313.493	26.25	8.373
18	320.902	267.508	287.592	280.734	310.370	281.959	292.980	276.815	349.802	283.673	310.615	292.491	296.287	22.94	7.742
20	314.289	259.426	269.223	277.550	304.982	275.836	290.531	251.588	339.516	275.836	285.878	272.897	284.796	24.59	8.633
25	274.611	199.910	263.590	237.138	265.059	228.321	236.648	246.690	312.819	268.733	237.628	269.713	253.405	28.68	11.319
30	232.974	190.848	237.628	205.788	248.649	214.115	201.379	222.443	264.324	229.545	208.727	241.547	224.831	21.55	9.583
35	201.209	184.016	187.616	190.408	179.411	151.196	162.438	190.065	160.968	190.286	172.063	182.840	179.376	14.79	8.246
40	184.799	156.266	147.106	161.581	123.177	124.230	117.568	179.681	115.805	187.518	161.483	160.430	151.637	26.10	17.214
45	160.675	137.652	108.873	96.088	75.221	102.114	76.984	82.887	76.838	123.373	101.452	96.333	103.208	26.30	25.483
50	88.569	70.102	37.062	27.192	46.590	91.386	71.547	73.115	30.572	75.123	40.956	34.294	57.209	23.39	40.877
55	32.556	66.281	15.264	16.660	36.009	47.300	31.306	26.579	22.073	23.469	16.195	12.815	28.876	15.50	53.681
60	7.622	17.738	5.051	7.133	12.594	14.456	9.753	17.591	11.884	15.901	6.545	5.687	10.996	4.67	42.434

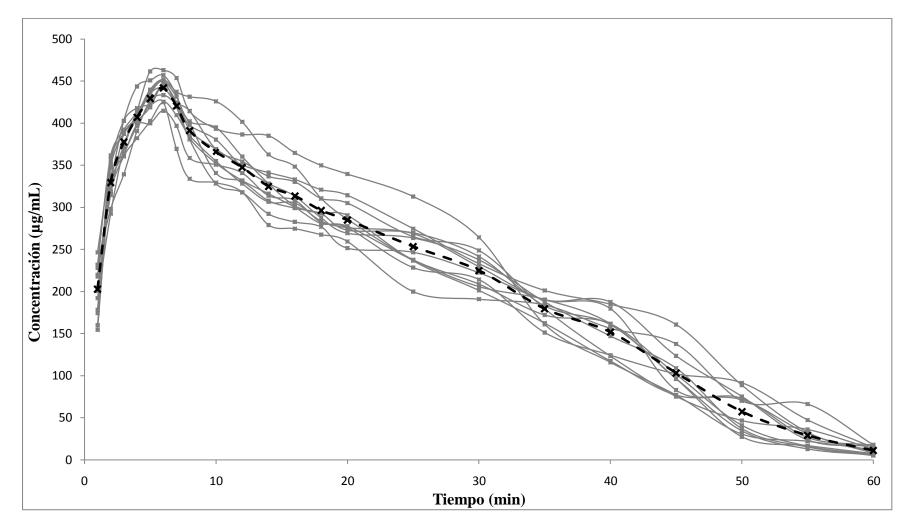


Gráfico 35. Perfiles de concentración (µg/mL) de Metoprolol disuelto del Producto Proken M obtenidos en el Aparato USP IV. La línea punteada representa el promedio de los perfiles de disolución.

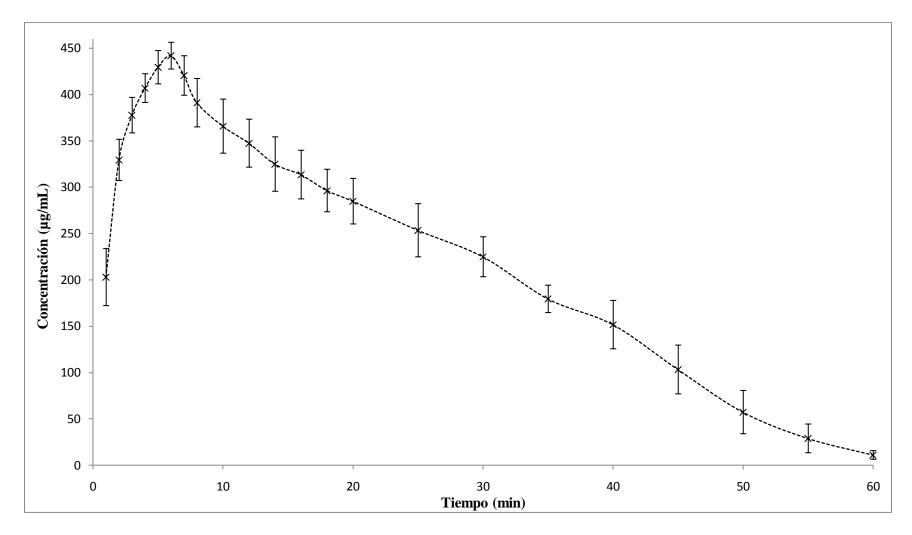


Gráfico 36. Perfiles de concentración (µg/mL) de Metoprolol disuelto del Producto Proken M obtenido en el Aparato USP IV. Las barras horizontales representan las desviaciones estándar obtenidas en cada punto de muestreo.

Tabla 78. Cálculo del Área Bajo la Curva de cero a tiempo t de Tartrato de Metoprolol disuelto por el método de los trapezoides para el producto Proken M.

		Proken N	A	
	I	ote OJS9	57	
Tiempo (min)	Concentración (µg/mL)	t ₂ -t ₁	$(C_2+C_1)/2$	$ABC_{t1}^{t2} = (C_2 + C_1)/2)*(t_2 - t_1)$
0	0	0	0	0
1	202.869	1	101.435	101.435
2	329.311	1	266.090	266.090
3	377.642	1	353.476	353.476
4	406.788	1	392.215	392.215
5	429.341	1	418.064	418.064
6	441.771	1	435.556	435.556
7	420.401	1	431.086	431.086
8	391.072	1	405.737	405.737
10	365.743	2	378.407	756.815
12	347.374	2	356.558	713.116
14	324.841	2	336.107	672.214
16	313.493	2	319.167	638.333
18	296.287	2	304.890	609.779
20	284.796	2	290.541	581.083
25	253.405	5	269.100	1345.502
30	224.831	5	239.118	1195.589
35	179.376	5	202.104	1010.518
40	151.637	5	165.507	827.534
45	103.208	5	127.422	637.111
50	57.209	5	80.208	401.041
55	28.876	5	43.042	215.211
60	10.996	5	19.936	99.679
			ABC ⁶⁰ ₀	12507.185

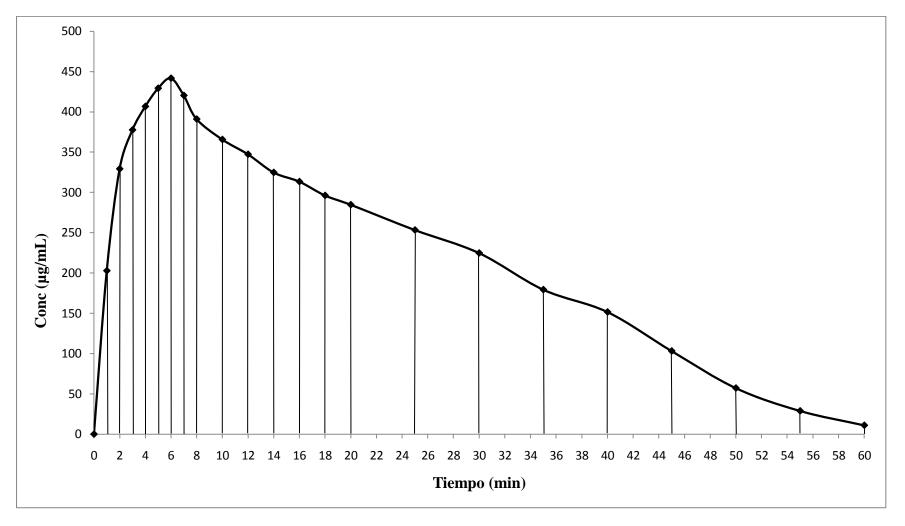


Gráfico 37. Trapezoides delimitados por las concentraciones de Metoprolol obtenidas en cada intervalo de muestreo para el producto Proken M.

Tabla 79. Datos de porcentaje de Tartrato de Metoprolol disuelto obtenidos en cada uno de los tiempos de muestreo con el Aparato USP IV.

							Prokei	ı M							
						L	ote OJ	S957							
Tiempo (min)							Porce	ntaje Di	suelto (%	6)					
Tiempo (mm)	V1	V2	V3	V4	V5	V6	V7	V8	V9	V10	V11	V12	$\overline{\mathbf{X}}$	Desv. Est.	C.V.
1	1.786	2.021	1.430	1.896	1.900	1.312	1.461	1.266	1.643	1.802	1.575	1.870	1.664	0.252	15.170
2	4.472	4.903	4.275	4.861	4.343	4.004	4.316	4.030	4.193	4.413	3.973	4.449	4.353	0.300	6.899
3	7.774	8.208	7.458	8.079	7.125	6.976	7.418	7.017	7.260	7.370	7.005	7.625	7.443	0.412	5.531
4	11.411	11.634	10.761	11.464	10.327	10.240	10.264	10.271	10.661	10.504	10.359	10.959	10.738	0.513	4.779
5	15.107	15.091	14.195	15.033	13.822	13.519	13.764	13.741	14.445	13.804	13.964	14.529	14.251	0.577	4.052
6	18.853	18.576	17.849	18.723	17.375	16.919	17.362	17.389	18.241	17.291	17.668	18.148	17.866	0.634	3.549
7	22.406	21.605	21.326	22.159	20.846	20.173	20.813	20.870	21.961	20.649	21.254	21.613	21.306	0.668	3.137
8	25.622	24.343	24.588	25.295	24.245	23.114	24.031	23.992	25.358	23.809	24.791	24.891	24.506	0.729	2.973
10	31.344	29.446	30.675	30.759	30.147	28.722	30.349	29.244	31.652	29.488	31.606	30.343	30.315	0.953	3.144
12	36.949	34.533	36.244	36.069	35.818	34.174	36.114	34.327	37.837	34.740	38.030	35.634	35.873	1.290	3.597
14	42.238	38.858	41.496	40.971	41.208	39.195	41.366	39.003	43.998	39.643	43.835	40.561	41.031	1.728	4.211
16	47.568	43.252	46.509	45.773	46.491	44.130	46.199	43.526	49.834	44.527	49.408	45.347	46.047	2.113	4.588
18	52.542	47.399	51.111	50.124	51.457	48.641	50.886	47.955	55.431	49.066	54.378	50.027	50.751	2.453	4.833
20	57.571	51.549	55.418	54.565	56.337	53.055	55.535	51.981	60.863	53.479	58.952	54.393	55.308	2.786	5.038
25	68.556	59.546	65.962	64.051	66.939	62.187	65.001	61.848	73.376	64.228	68.457	65.182	65.444	3.646	5.570
30	77.875	67.180	75.467	72.282	76.885	70.752	73.056	70.746	83.949	73.410	76.806	74.844	74.438	4.292	5.765
35	85.923	74.540	82.972	79.898	84.062	76.800	79.554	78.349	90.388	81.022	83.689	82.157	81.613	4.258	5.217
40	93.315	80.791	88.856	86.362	88.989	81.769	84.256	85.536	95.020	88.522	90.148	88.574	87.678	4.230	4.824
45	99.742	86.297	93.211	90.205	91.998	85.854	87.336	88.851	98.093	93.457	94.206	92.428	91.807	4.374	4.764
50	103.285	89.101	94.693	91.293	93.861	89.509	90.198	91.776	99.316	96.462	95.845	93.800	94.095	4.213	4.478
55	104.587	91.753	95.304	91.959	95.302	91.401	91.450	92.839	100.199	97.401	96.492	94.312	95.250	4.010	4.210
60	104.892	92.462	95.506	92.245	95.805	91.979	91.840	93.543	100.675	98.037	96.754	94.540	95.690	3.966	4.145

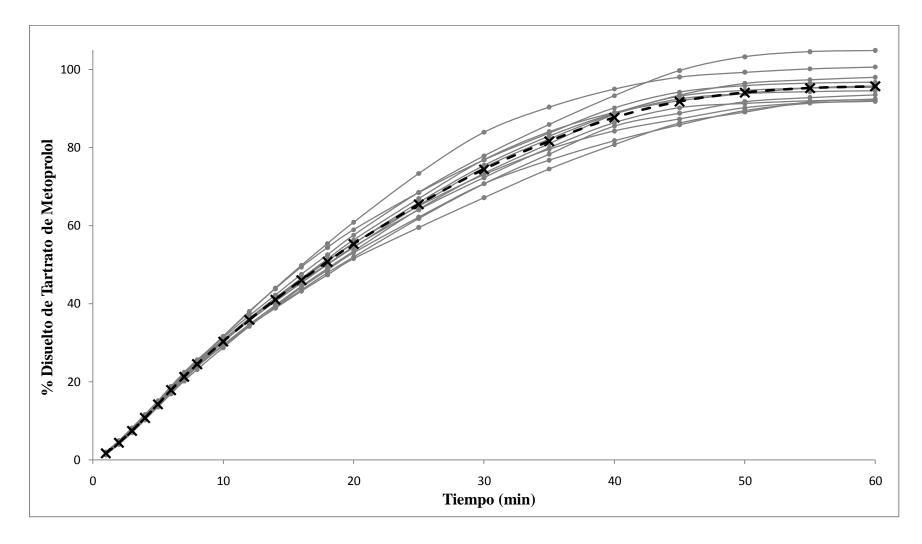


Gráfico 38. Perfiles Acumulativos de Disolución del Producto Proken M obtenidos en el Aparato USP IV. La línea punteada representa el promedio de los perfiles de disolución.

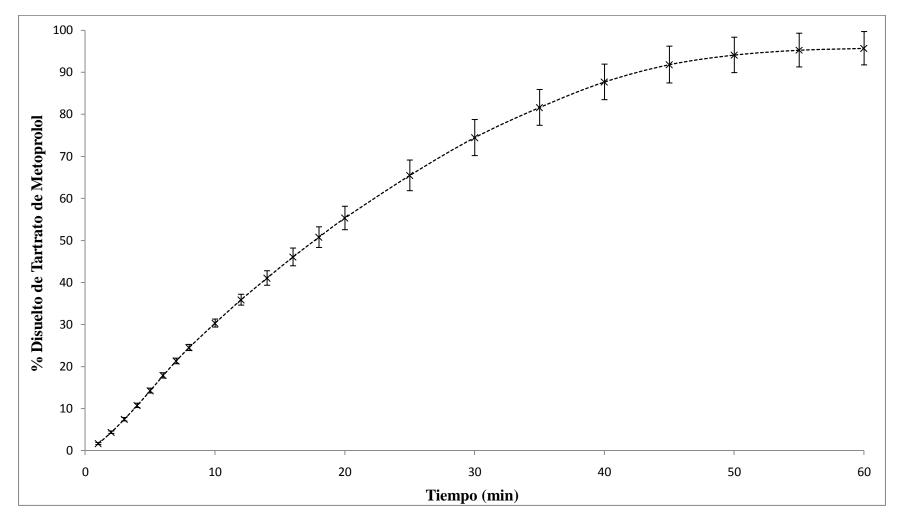


Gráfico 39. Perfil Acumulativo de Disolución Promedio del Producto Proken M obtenido en el Aparato USP IV. Las barras horizontales representan las desviaciones estándar obtenidas en cada punto de muestreo.

Nipresol Lote 01052

Tabla 80. Datos de absorbancia de Metoprolol disuelto y volumen de muestra obtenidos en cada uno de los tiempos de muestreo con el Aparato USP IV.

	Nipresol													
			Lote 0	1052										
Tiomno (min)	Dibusión (Vol. Mtns. / Vol. ofons)			Abs a 2	273 nm			Vo	lume	n de 1	nuest	ra (m	L)	
Tiempo (min)	Dilución (Vol. Mtra. / Vol. aforo)	V1	V2	V3	V4	V5	V6	V1	V2	V3	V4	V5	V 6	
1	1 mL/10 mL	0.0922	0.0988	0.0869	0.0948	0.0838	0.0973	8.2	8.2	8.2	8.2	8.2	8.2	
2	1 mL/10 mL	0.1367	0.1357	0.1325	0.1391	0.1336	0.1394	8.2	8.2	8.2	8.2	8.2	8.2	
3	1 mL/10 mL	0.1672	0.1553	0.1554	0.1576	0.1621	0.1591	8.2	8.2	8.2	8.2	8.2	8.2	
4	1 mL/10 mL	0.1803	0.1587	0.1606	0.1629	0.1671	0.1625	8.2	8.2	8.2	8.2	8.2	8.2	
5	1 mL/10 mL	0.1864	0.1656	0.1795	0.1632	0.1758	0.1703	8.2	8.2	8.2	8.2	8.2	8.2	
6	1 mL/10 mL	0.1876	0.1768	0.1973	0.1662	0.18	0.1791	8.2	8.2	8.2	8.2	8.2	8.2	
7	1 mL/10 mL	0.1923	0.1797	0.2	0.1701	0.1896	0.1825	8.2	8.2	8.2	8.2	8.2	8.2	
8	1 mL/10 mL	0.1935	0.1876	0.2061	0.1831	0.1925	0.1975	8.2	8.2	8.2	8.2	8.2	8.2	
10	1 mL/10 mL	0.1862	0.1739	0.1997	0.1636	0.1795	0.1869	16	16	16	16	16	16	
12	1 mL/10 mL	0.1818	0.1715	0.1977	0.1593	0.1698	0.1775	16	16	16	16	16	16	
14	1 mL/10 mL	0.1806	0.1698	0.1731	0.1562	0.1643	0.1711	16	16	16	16	16	16	
16	1 mL/10 mL	0.1793	0.1531	0.153	0.147	0.1431	0.1645	16	16	16	16	16	16	
18	1 mL/10 mL	0.1526	0.14	0.1437	0.1434	0.1294	0.1602	16	16	16	16	16	16	
20	1 mL/10 mL	0.1274	0.1265	0.1421	0.1353	0.1219	0.1524	16	16	16	16	16	16	
25	1 mL/10 mL	0.0969	0.0959	0.1184	0.1288	0.1072	0.1228	40	40	40	40	40	40	
30	1 mL/10 mL	0.0835	0.0829	0.1023	0.1211	0.1041	0.1031	40	40	40	40	40	40	
35	-	0.6743	0.6556	0.6422	0.7313	0.4714	0.5597	40	40	40	40	40	40	
40	-	0.2966	0.2419	0.3588	0.5045	0.1417	0.1758	40	40	40	40	40	40	
45	-	0.0878	0.1006	0.0944	0.196	0.0449	0.0573	40	40	40	40	40	40	
50	-	0.0236	0.035	0.0402	0.0529	0.0105	0.0112	40	40	40	40	40	40	

Tabla 80. Datos de absorbancia de Metoprolol disuelto y volumen de muestra obtenidos en cada uno de los tiempos de muestreo con el Aparato USP IV (continuación).

	Nipresol														
	Lote 01052														
Tiomno (min)	Dilución (Vol. Mtus. / Vol. ofous)			Abs a 2	273 nm			1	olum	ien de	e mues	tra (m	L)		
Tiempo (min)	Dilución (Vol. Mtra. / Vol. aforo)	V7	V8	V9	V10	V11	V12	V7	V8	V9	V10	V11	V12		
1	1 mL/10 mL	0.0817	0.0724	0.0832	0.0796	0.0795	0.0976	8.4	8.2	8.2	8.2	8.2	8.2		
2	1 mL/10 mL	0.1327	0.1256	0.1321	0.1309	0.1267	0.1381	8.2	8.2	8	8.2	8.2	8.2		
3	1 mL/10 mL	0.1632	0.1643	0.1674	0.1547	0.1641	0.1521	8.2	8.2	8.2	8.2	8.2	8.2		
4	1 mL/10 mL	0.1699	0.1783	0.1679	0.1577	0.1739	0.1596	8.2	8.2	7.8	8.2	8	8.2		
5	1 mL/10 mL	0.172	0.18	0.1763	0.163	0.1756	0.1685	8.2	8.2	8.2	8.2	8.2	8.2		
6	1 mL/10 mL	0.1848	0.181	0.1798	0.1679	0.1779	0.1722	8.2	8.2	8.2	8.2	8	8.2		
7	1 mL/10 mL	0.1955	0.1862	0.1814	0.172	0.18	0.1821	8.2	8.2	8.2	8.2	8	8.2		
8	1 mL/10 mL	0.2053	0.1985	0.1834	0.1811	0.1819	0.2038	8.2	8.2	8.2	8.2	8	8.2		
10	1 mL/10 mL	0.1837	0.1892	0.1787	0.1752	0.1767	0.1874	16	16	16	16	16	16		
12	1 mL/10 mL	0.1815	0.1876	0.1702	0.1609	0.1762	0.1739	16	16	16	16	16	16		
14	1 mL/10 mL	0.1652	0.1835	0.1545	0.158	0.1652	0.1508	16	16	16	16	16	16		
16	1 mL/10 mL	0.152	0.1797	0.1417	0.142	0.1523	0.1353	16	16	16	16	16	16		
18	1 mL/10 mL	0.1385	0.1631	0.134	0.1359	0.1302	0.1216	16	16	16	16	16	16		
20	1 mL/10 mL	0.1332	0.1324	0.1201	0.129	0.1249	0.1175	16	16	16	16	16	16		
25	1 mL/10 mL	0.1173	0.1046	0.0981	0.1212	0.1124	0.1094	40	40	40	38	40	40		
30	1 mL/10 mL	0.1085	0.0764	0.0851	0.1047	0.0841	0.1073	40	40	39	38	39	38		
35	-	0.7521	0.5532	0.6151	0.713	0.6971	0.6462	40	38	39	38	38	38		
40	-	0.55	0.3121	0.2749	0.5548	0.2811	0.2054	40	39	39	38	38	38		
45	-	0.1571	0.0747	0.097	0.126	0.0894	0.0547	40	40	39	38	38	38		
50	-	0.04	0.0233	0.0352	0.0127	0.0238	0.0156	40	40	39	38	38	38		

Tabla 81. Datos de concentración de Tartrato de Metoprolol disuelto obtenidos en cada uno de los tiempos de muestreo con el Aparato USP IV.

							Nipre	sol							
							Lote 01	.052							
Tiempo							Concen	tración (μg/mL)						
(min)	V1	V2	V3	V4	V5	V6	V7	V8	V9	V10	V11	V12	$\overline{\mathbf{X}}$	Desv. Est.	C.V.
1	222.198	238.363	209.217	228.566	201.624	234.689	196.481	173.703	200.155	191.337	191.093	235.424	210.237	21.16	10.066
2	331.188	328.739	320.902	337.066	323.596	337.801	321.391	304.002	319.922	316.983	306.696	334.617	323.575	10.99	3.395
3	405.890	376.744	376.989	382.377	393.399	386.051	396.093	398.787	406.380	375.274	398.297	368.906	388.766	12.71	3.270
4	437.975	385.071	389.725	395.358	405.645	394.378	412.503	433.076	407.604	382.622	422.300	387.276	404.461	18.80	4.647
5	452.915	401.971	436.015	396.093	426.953	413.482	417.646	437.240	428.178	395.603	426.463	409.074	420.136	17.72	4.217
6	455.854	429.402	479.611	403.441	437.240	435.036	448.996	439.689	436.750	407.604	432.096	418.136	435.321	20.72	4.759
7	467.365	436.505	486.224	412.992	460.752	443.363	475.203	452.425	440.669	417.646	437.240	442.383	447.731	21.87	4.884
8	470.304	455.854	501.165	444.832	467.855	480.101	499.205	482.551	445.567	439.934	441.893	495.531	468.733	23.05	4.918
10	452.425	422.300	485.490	397.073	436.015	454.140	446.302	459.773	434.056	425.484	429.157	455.364	441.465	22.56	5.111
12	441.648	416.421	480.591	386.541	412.258	431.117	440.914	455.854	413.237	390.460	427.933	422.300	426.606	26.36	6.178
14	438.709	412.258	420.340	378.948	398.787	415.442	400.991	445.812	374.785	383.357	400.991	365.722	403.012	24.91	6.181
16	435.525	371.356	371.111	356.415	346.863	399.277	368.661	436.505	343.434	344.169	369.396	327.759	372.539	34.87	9.361
18	370.131	339.271	348.333	347.598	313.309	388.745	335.597	395.848	324.575	329.229	315.268	294.205	341.842	30.58	8.945
20	308.410	306.206	344.414	327.759	294.940	369.641	322.616	320.657	290.531	312.329	302.287	284.163	315.330	24.01	7.616
25	233.709	231.260	286.367	311.839	258.936	297.144	283.673	252.568	236.648	293.225	271.672	264.324	268.447	26.70	9.948
30	200.889	199.420	246.935	292.980	251.343	248.894	262.120	183.500	204.808	252.813	202.359	259.181	233.770	33.90	14.502
35	164.789	160.209	156.927	178.750	115.094	136.721	183.844	135.129	150.290	174.268	170.374	157.907	157.025	20.08	12.785
40	72.282	58.885	87.516	123.201	34.343	42.695	134.345	76.078	66.967	135.521	68.486	49.945	79.189	34.58	43.668
45	21.142	24.277	22.759	47.643	10.635	13.672	38.115	17.934	23.395	30.498	21.534	13.035	23.720	10.69	45.086
50	5.418	8.210	9.484	12.594	2.210	2.381	9.435	5.345	8.259	2.748	5.467	3.459	6.251	3.33	53.322

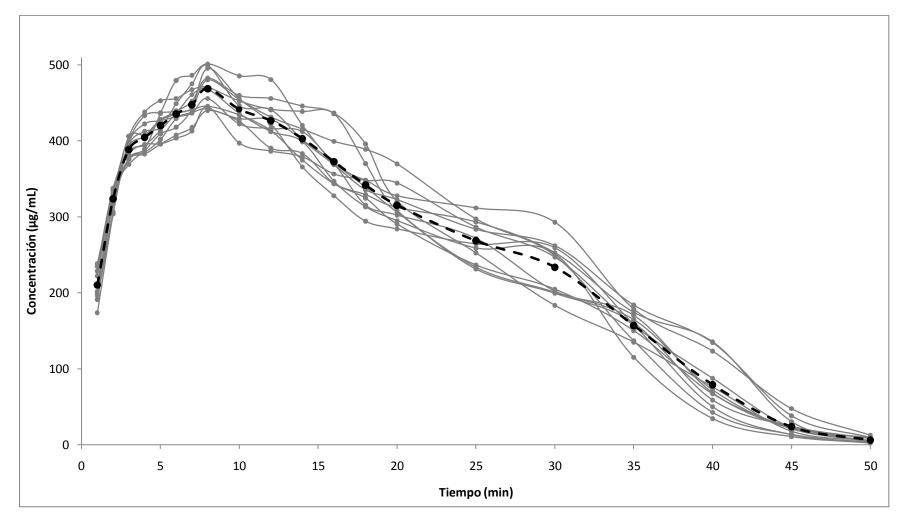


Gráfico 40. Perfiles de concentración (µg/mL) de Metoprolol disuelto del Producto Nipresol obtenidos en el Aparato USP IV. La línea punteada representa el promedio de los perfiles de disolución.

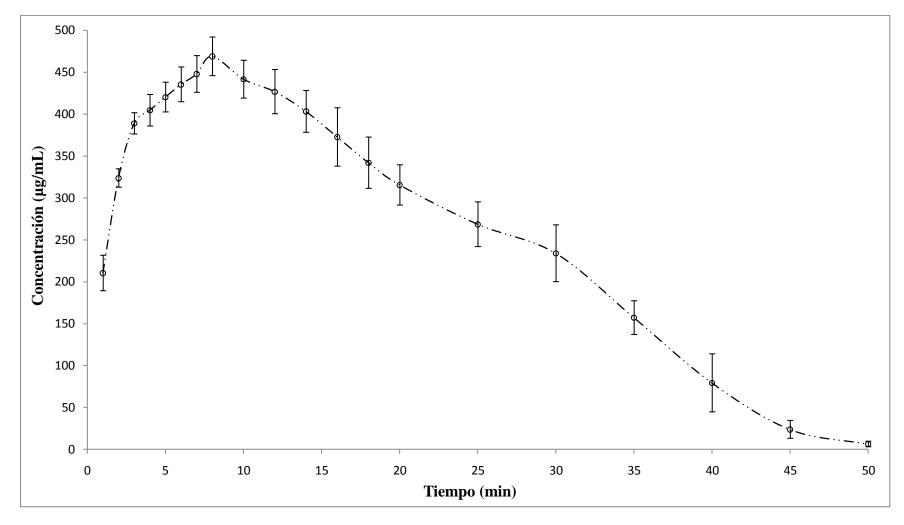


Gráfico 41. Perfiles de concentración (µg/mL) de Metoprolol disuelto del Producto Nipresol obtenido en el Aparato USP IV. Las barras horizontales representan las desviaciones estándar obtenidas en cada punto de muestreo.

Tabla 82. Cálculo del Área Bajo la Curva de cero a tiempo t de Tartrato de Metoprolol disuelto por el método de los trapezoides para el producto Nipresol.

		Nipresol		
		Lote 0105	2	
Tiempo (min)	Concentración (µg/mL)	t ₂ -t ₁	$(C_2+C_1)/2$	$ABC_{t1}^{t2} = (C_2 + C_1)/2)*(t_2 - t_1)$
0	0	0	0	0
1	210.237	1	105.119	105.119
2	323.575	1	266.906	266.906
3	388.766	1	356.170	356.170
4	404.461	1	396.613	396.613
5	420.136	1	412.299	412.299
6	435.321	1	427.729	427.729
7	447.731	1	441.526	441.526
8	468.733	1	458.232	458.232
10	441.465	2	455.099	910.198
12	426.606	2	434.035	868.071
14	403.012	2	414.809	829.618
16	372.539	2	387.776	775.551
18	341.842	2	357.191	714.382
20	315.330	2	328.586	657.172
25	268.447	5	291.888	1459.442
30	233.770	5	251.109	1255.544
35	157.025	5	195.398	976.989
40	79.189	5	118.107	590.535
45	23.720	5	51.454	257.272
50	6.251	5	14.985	74.927
			ABC ⁵⁰ ₀	12234.294

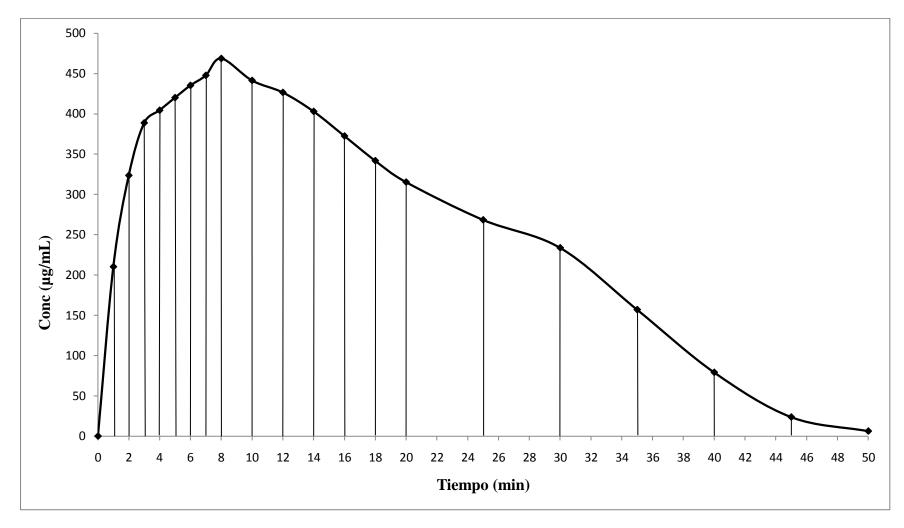


Gráfico 42. Trapezoides delimitados por las concentraciones de Metoprolol obtenidas en cada intervalo de muestreo para el producto Nipresol.

Tabla 83. Datos de porcentaje de Tartrato de Metoprolol disuelto obtenidos en cada uno de los tiempos de muestreo con el Aparato USP IV.

	Nipresol														
]	Lote 01 ()52							
Tiempo							Porcent	aje Disue	elto (%)						
(min)	V1	V2	V3	V4	V5	V6	V7	V8	V9	V10	V11	V12	$\overline{\mathbf{X}}$	Desv. Est.	C.V.
1	1.8220	1.9546	1.7156	1.8742	1.6533	1.9245	1.6504	1.4244	1.6413	1.5690	1.5670	1.9305	1.727	0.172	9.934
2	4.5378	4.6503	4.3470	4.6382	4.3068	4.6944	4.2859	3.9172	4.2007	4.1682	4.0819	4.6744	4.375	0.260	5.949
3	7.8661	7.7396	7.4383	7.7737	7.5327	7.8601	7.5339	7.1873	7.5330	7.2455	7.3479	7.6994	7.563	0.230	3.038
4	11.4575	10.8972	10.6341	11.0157	10.8590	11.0940	10.9164	10.7385	10.7123	10.3830	10.7264	10.8751	10.859	0.265	2.442
5	15.1714	14.1934	14.2094	14.2636	14.3601	14.4846	14.3411	14.3239	14.2234	13.6270	14.2234	14.2295	14.304	0.342	2.394
6	18.9095	17.7145	18.1423	17.5719	17.9454	18.0519	18.0229	17.9294	17.8048	16.9694	17.6802	17.6582	17.867	0.450	2.520
7	22.7419	21.2938	22.1293	20.9584	21.7236	21.6875	21.9196	21.6393	21.4183	20.3941	21.1781	21.2858	21.531	0.597	2.773
8	26.5984	25.0319	26.2389	24.6061	25.5601	25.6243	26.0131	25.5962	25.0719	24.0016	24.7133	25.3492	25.367	0.734	2.892
10	33.8372	31.7887	34.0068	30.9593	32.5363	32.8906	33.1540	32.9526	32.0169	30.8093	31.5798	32.6350	32.431	1.028	3.170
12	40.9036	38.4515	41.6963	37.1440	39.1325	39.7885	40.2086	40.2463	38.6287	37.0567	38.4268	39.3919	39.256	1.411	3.594
14	47.9230	45.0476	48.4217	43.2072	45.5131	46.4356	46.6245	47.3793	44.6253	43.1905	44.8427	45.2435	45.705	1.696	3.711
16	54.8915	50.9893	54.3595	48.9098	51.0630	52.8241	52.5231	54.3635	50.1203	48.6972	50.7530	50.4876	51.665	2.107	4.079
18	60.8136	56.4177	59.9329	54.4714	56.0759	59.0440	57.8927	60.6971	55.3135	53.9649	55.7974	55.1949	57.135	2.448	4.285
20	65.7482	61.3170	65.4436	59.7156	60.7950	64.9583	63.0546	65.8276	59.9620	58.9622	60.6340	59.7416	62.180	2.655	4.269
25	75.0966	70.5675	76.8983	72.1893	71.1525	76.8441	74.4016	75.9304	69.4280	70.1048	71.5009	70.3146	72.869	2.785	3.822
30	83.1322	78.5443	86.7758	83.9085	81.2063	86.8000	84.8864	83.2704	77.4156	79.7118	79.3930	80.1635	82.101	3.156	3.845
35	89.7238	84.9527	93.0529	91.0586	85.8101	92.2688	92.2402	88.4054	83.2769	86.3340	85.8672	86.1640	88.263	3.309	3.750
40	92.6151	87.3081	96.5536	95.9867	87.1838	93.9767	97.6141	91.3724	85.8886	91.4838	88.4697	88.0620	91.376	4.033	4.414
45	93.4608	88.2792	97.4639	97.8924	87.6092	94.5235	99.1387	92.0898	86.8011	92.6427	89.2880	88.5573	92.312	4.292	4.650
50	93.6775	88.6076	97.8433	98.3962	87.6976	94.6188	99.5161	92.3036	87.1232	92.7472	89.4957	88.6887	92.560	4.360	4.711

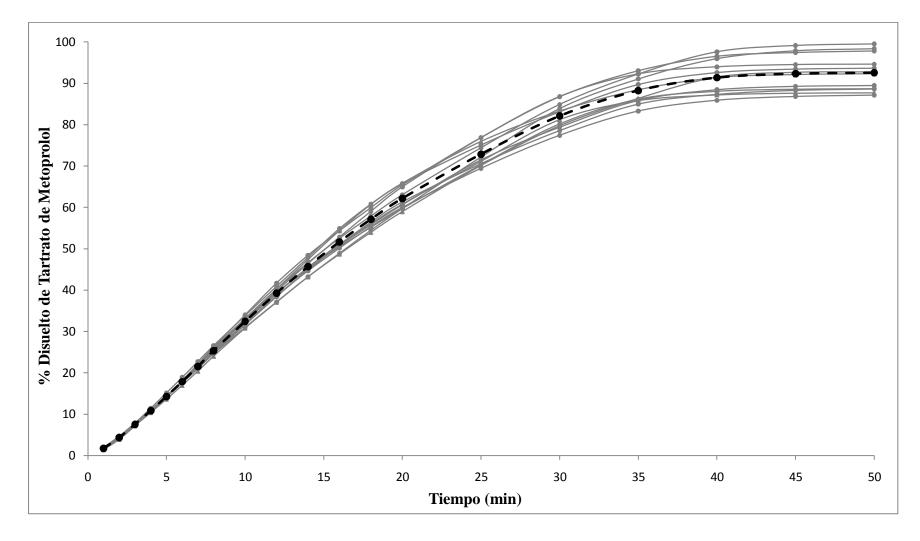


Gráfico 43. Perfiles Acumulativos de Disolución del Producto Nipresol obtenidos en el Aparato USP IV. La línea punteada representa el promedio de los perfiles de disolución.

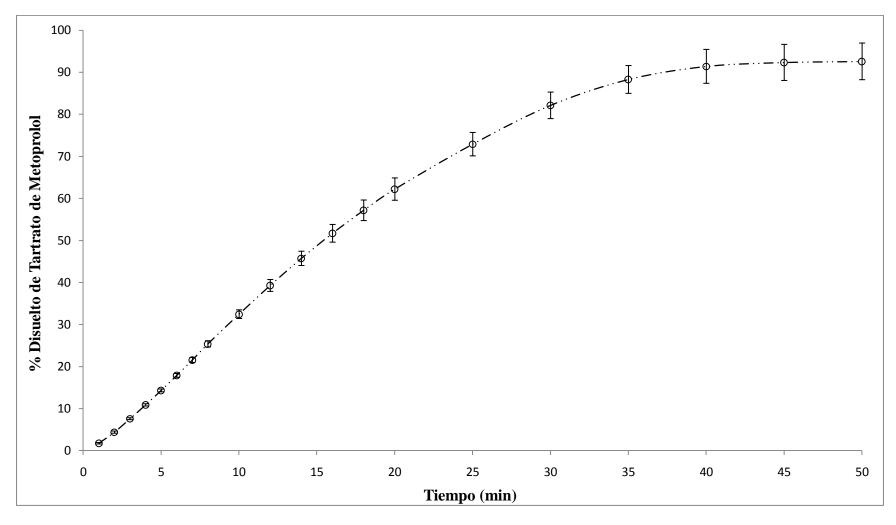


Gráfico 44. Perfil Acumulativo de Disolución Promedio del Producto Nipresol obtenido en el Aparato USP IV. Las barras horizontales representan las desviaciones estándar obtenidas en cada punto de muestreo.

Metobest Lote 1009042

Tabla 84. Datos de absorbancia de Metoprolol disuelto y volumen de muestra obtenidos en cada uno de los tiempos de muestreo con el Aparato USP IV.

	Metobest														
	Lote 1009042														
Tiempo	Dilución (Vol. Mtra. / Vol.			Abs a 2	273 nm			,	Volum	en de 1	nuestr	a (mL))		
(min)	aforo)	V1	V2	V3	V4	V5	V6	V1	V2	V3	V4	V5	V 6		
1	1 mL/10 mL	0.0758	0.07	0.0821	0.0782	0.0605	0.0656	7.4	8.2	8.2	8.2	8.4	8		
2	1 mL/10 mL	0.1007	0.0889	0.0977	0.0923	0.0737	0.0923	7.4	8.2	8.2	8.2	8	8		
3	1 mL/10 mL	0.1134	0.0983	0.1185	0.1067	0.0945	0.1117	7.4	8.2	8.2	8.2	8	8		
4	1 mL/10 mL	0.1315	0.1039	0.1298	0.1189	0.1201	0.1389	7.8	8.2	8.2	8.2	8	8		
5	1 mL/10 mL	0.1435	0.1113	0.1333	0.1383	0.137	0.1469	8	8.2	8.2	8.2	8	8		
6	1 mL/10 mL	0.145	0.1126	0.1346	0.1575	0.1436	0.1472	8	8.2	8.2	8.2	8	8		
7	1 mL/10 mL	0.1496	0.1151	0.1361	0.1712	0.149	0.1595	8	8.2	8.2	8.2	8	8		
8	1 mL/10 mL	0.1555	0.1171	0.142	0.1772	0.1577	0.1676	8	8.2	8.2	8.2	8	8		
10	1 mL/10 mL	0.1576	0.1229	0.1426	0.1659	0.1637	0.1538	16	15.5	15.5	15.5	15.5	15.5		
12	1 mL/10 mL	0.1476	0.1398	0.1568	0.1551	0.16	0.1532	15.5	16	15.5	16	15.5	16		
14	1 mL/10 mL	0.1465	0.131	0.166	0.1528	0.1536	0.1323	16	15.5	15	16	15.5	15.5		
16	1 mL/10 mL	0.1438	0.1259	0.1622	0.1391	0.1475	0.1154	15.5	16	15.5	15.5	15	16		
18	1 mL/10 mL	0.1382	0.1256	0.1479	0.1385	0.1421	0.1146	16	15.5	15.5	16	15	15.5		
20	1 mL/10 mL	0.1364	0.1193	0.1375	0.1381	0.1356	0.1119	15	16	15.5	16	15	16		
25	1 mL/10 mL	0.1209	0.1161	0.131	0.1315	0.1209	0.1054	40	40	40	40	40	40		
30	1 mL/10 mL	0.1047	0.1131	0.1075	0.1284	0.1137	0.1041	40	40	40	40	39	40		
35	1 mL/10 mL	0.0971	0.1017	0.0913	0.1196	0.1014	0.0925	40	40	40	40	39	40		
40	-	0.5676	0.7108	0.7354	0.4327	0.7625	0.7042	40	40	40	40	39	40		
45	-	0.1676	0.4357	0.2558	0.1351	0.3445	0.426	40	40	40	40	40	40		
50	-	0.0565	0.1996	0.1017	0.0172	0.0897	0.2115	40	40	40	40	40	40		
55	-	0.0184	0.086	0.038	0	0.0249	0.172	40	40	40	40	40	40		

Tabla 84. Datos de absorbancia de Metoprolol disuelto y volumen de muestra obtenidos en cada uno de los tiempos de muestreo con el Aparato USP IV (continuación).

	Metobest													
			Lote	e 100904	12									
Tiempo	Dilución (Vol. Mtra. / Vol.			Abs a 2	273 nm			,	Volum	en de 1	nuestr	a (mL))	
(min)	aforo)	V7	V8	V9	V10	V11	V12	V7	V8	V9	V10	V11	V12	
1	1 mL/10 mL	0.0716	0.0531	0.0705	0.0721	0.0563	0.0543	8.2	8.2	8.2	8.2	8.2	8	
2	1 mL/10 mL	0.0943	0.0755	0.0853	0.0852	0.0736	0.0765	8.2	8.2	8.2	8.2	8.2	8.2	
3	1 mL/10 mL	0.1122	0.0869	0.0993	0.0938	0.0896	0.1003	8.2	8.2	8.2	8.2	8.2	8.2	
4	1 mL/10 mL	0.1364	0.108	0.1124	0.1098	0.1031	0.1183	8.2	8.2	8.2	8.2	8.2	8.2	
5	1 mL/10 mL	0.1489	0.1207	0.1173	0.1156	0.1226	0.13	8.2	8.2	8.2	8.2	8.2	8.2	
6	1 mL/10 mL	0.1511	0.1239	0.1183	0.1189	0.1242	0.1322	8.2	8.2	8.2	8.2	8.2	8.2	
7	1 mL/10 mL	0.1571	0.1252	0.1191	0.1314	0.1402	0.1435	8.2	8.2	8.2	8.2	8.2	8.2	
8	1 mL/10 mL	0.1592	0.1399	0.1204	0.1321	0.1459	0.1485	8.2	8.2	8.2	8.2	8.2	8.2	
10	1 mL/10 mL	0.163	0.1529	0.1427	0.148	0.1428	0.1496	15.5	15.5	15.5	15.5	15.5	15.5	
12	1 mL/10 mL	0.1606	0.145	0.17	0.1468	0.1401	0.1501	15	16	15.5	16	16	16	
14	1 mL/10 mL	0.1521	0.1323	0.1555	0.145	0.1382	0.1352	15.5	15.5	15.5	15.5	15.5	15.5	
16	1 mL/10 mL	0.1328	0.1312	0.1496	0.14	0.1371	0.1252	15.5	16	15.5	16	16	16	
18	1 mL/10 mL	0.1259	0.1208	0.1486	0.1321	0.1305	0.1238	15.5	15.5	15.5	15.5	15.5	15.5	
20	1 mL/10 mL	0.1147	0.12	0.1321	0.1227	0.1237	0.1152	15.5	16	15.5	16	15.5	16	
25	1 mL/10 mL	0.1142	0.1164	0.1235	0.1197	0.1148	0.1013	40	40	40	40	40	40	
30	1 mL/10 mL	0.1072	0.1046	0.1149	0.118	0.1083	0.0973	40	40	40	40	40	40	
35	1 mL/10 mL	0.0975	0.1025	0.1036	0.1023	0.1041	0.0854	40	40	40	40	40	40	
40	-	0.5245	0.7165	0.7105	0.7552	0.7757	0.7065	40	40	40	40	40	40	
45	-	0.1692	0.4816	0.4523	0.2352	0.5901	0.4422	40	40	40	40	40	40	
50	-	0.0655	0.1697	0.1214	0.0837	0.2286	0.1322	40	40	40	40	40	40	
55	-	0.0473	0.0522	0.0264	0.056	0.0506	0.0426	40	40	40	40	40	40	

Tabla 85. Datos de concentración de Tartrato de Metoprolol disuelto obtenidos en cada uno de los tiempos de muestreo con el Aparato USP IV.

	Metobest														
]	Lote 100	9042							
Tiomno							Concen	tración (μg/mL)						
Tiempo (min)	V1	V2	V3	V4	V5	V6	V7	V8	V9	V10	V11	V12	$\overline{\mathbf{X}}$	Desv. Est.	C.V.
1	182.030	167.825	197.460	187.909	144.557	157.048	171.744	126.433	169.049	172.968	134.270	129.372	161.722	23.46	14.508
2	243.016	214.115	235.668	222.443	176.887	222.443	227.341	181.296	205.298	205.053	176.642	183.745	207.829	23.53	11.320
3	274.121	237.138	286.612	257.711	227.831	269.958	271.182	209.217	239.587	226.116	215.830	242.036	246.445	25.06	10.168
4	318.452	250.854	314.289	287.592	290.531	336.577	330.454	260.895	271.672	265.304	248.894	286.123	288.470	30.47	10.563
5	347.843	268.978	322.861	335.107	331.923	356.170	361.069	292.001	283.673	279.510	296.654	314.778	315.881	31.43	9.949
6	351.517	272.162	326.045	382.132	348.088	356.905	366.457	299.838	286.123	287.592	300.573	320.167	324.800	35.92	11.059
7	362.783	278.285	329.719	415.687	361.314	387.031	381.153	303.022	288.082	318.207	339.761	347.843	342.740	41.59	12.136
8	377.234	283.183	344.169	430.382	382.622	406.869	386.296	339.026	291.266	319.922	353.721	360.089	356.232	44.15	12.394
10	382.377	297.389	345.639	402.706	397.317	373.070	395.603	370.866	345.884	358.865	346.129	362.783	364.886	29.41	8.060
12	357.885	338.781	380.418	376.254	388.255	371.601	389.725	351.517	412.748	355.925	339.516	364.008	368.886	21.97	5.957
14	355.191	317.228	402.951	370.621	372.580	320.412	368.906	320.412	377.234	351.517	334.862	327.514	351.619	27.63	7.857
16	348.578	304.737	393.644	337.066	357.640	279.020	321.636	317.718	362.783	339.271	332.168	303.022	333.107	30.81	9.251
18	334.862	304.002	358.620	335.597	344.414	277.060	304.737	292.246	360.334	319.922	316.003	299.593	320.616	26.47	8.257
20	330.454	288.572	333.148	334.617	328.494	270.447	277.305	290.286	319.922	296.899	299.348	278.530	304.002	23.98	7.888
25	292.491	280.734	317.228	318.452	292.491	254.527	276.081	281.469	298.859	289.551	277.550	244.486	285.327	21.78	7.633
30	252.813	273.387	259.671	310.860	274.856	251.343	258.936	252.568	277.795	285.388	261.630	234.689	266.161	19.81	7.444
35	234.199	245.465	219.993	289.307	244.731	222.932	235.179	247.425	250.119	246.935	251.343	205.543	241.098	20.76	8.609
40	138.656	173.729	179.754	105.616	186.391	172.112	128.100	175.125	173.655	184.604	189.624	172.676	165.004	26.30	15.942
45	40.687	106.351	62.289	32.727	84.014	103.975	41.079	117.593	110.416	57.244	144.167	107.943	84.040	36.25	43.131
50	13.476	48.524	24.547	3.851	21.607	51.439	15.680	41.201	29.372	20.138	55.627	32.017	29.790	16.37	54.956
55	4.144	20.701	8.945	0.000	5.736	41.765	11.223	12.423	6.104	13.354	12.031	10.072	12.208	10.69	87.546

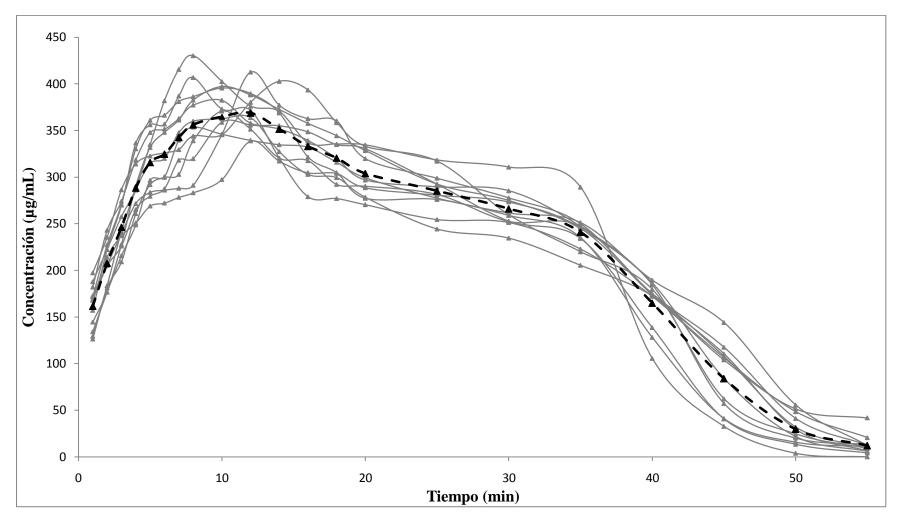


Gráfico 45. Perfiles de concentración (µg/mL) de Metoprolol disuelto del Producto Metobest obtenidos en el Aparato USP IV. La línea punteada representa el promedio de los perfiles de disolución.

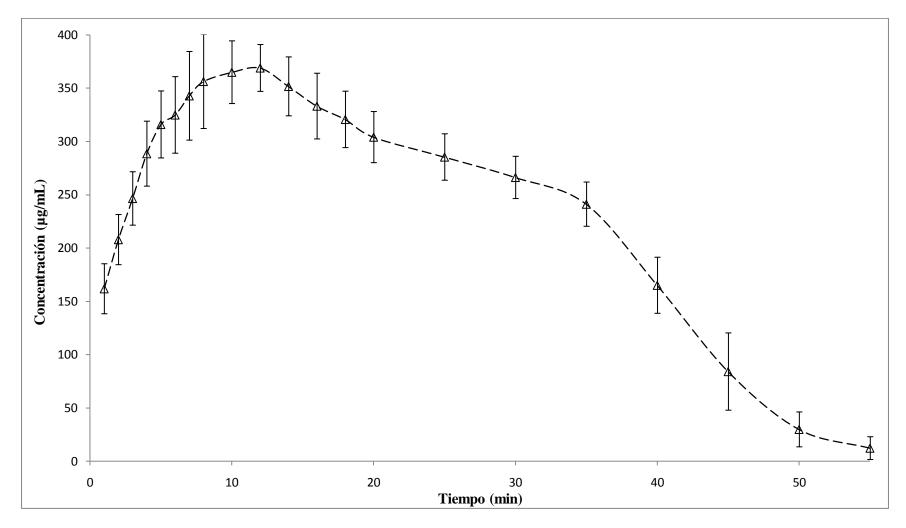


Gráfico 46. Perfiles de concentración (µg/mL) de Metoprolol disuelto del Producto Metobest obtenido en el Aparato USP IV. Las barras horizontales representan las desviaciones estándar obtenidas en cada punto de muestreo.

Tabla 86. Cálculo del Área Bajo la Curva de cero a tiempo t de Tartrato de Metoprolol disuelto por el método de los trapezoides para el producto Metobest.

	Metobest Lote 1009042													
	I	Lote 10090	142											
Tiempo (min)	Concentración (µg/mL)	t_2-t_1	$(C_2+C_1)/2$	$ABC_{t1}^{t2} = (C_2 + C_1)/2)*(t_2 - t_1)$										
0	0	0	0	0										
1	161.722	1	80.861	80.861										
2	207.829	1	184.776	184.776										
3	246.445	1	227.137	227.137										
4	288.470	1	267.457	267.457										
5	315.881	1	302.175	302.175										
6	324.800	1	320.340	320.340										
7	342.740	1	333.770	333.770										
8	356.232	1	349.486	349.486										
10	364.886	2	360.559	721.117										
12	368.886	2	366.886	733.772										
14	351.619	2	360.252	720.505										
16	333.107	2	342.363	684.726										
18	320.616	2	326.861	653.723										
20	304.002	2	312.309	624.618										
25	285.327	5	294.664	1473.321										
30	266.161	5	275.744	1378.720										
35	241.098	5	253.629	1268.147										
40	165.004	5	203.051	1015.253										
45	84.040	5	124.522	622.610										
50	29.790	5	56.915	284.576										
55	12.208	5	20.999	104.995										
			ABC ⁵⁵ ₀	12352.084										

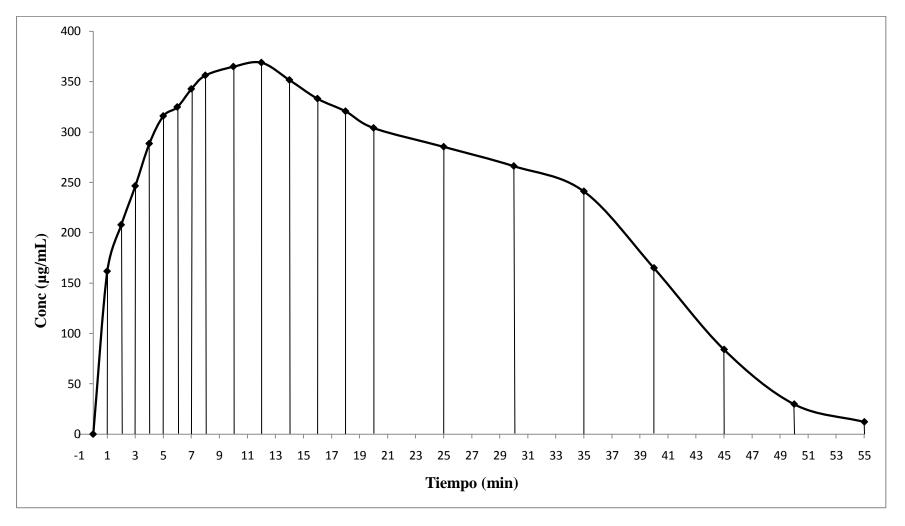


Gráfico 47. Trapezoides delimitados por las concentraciones de Metoprolol obtenidas en cada intervalo de muestreo para el producto Metobest.

Tabla 87. Datos de porcentaje de Tartrato de Metoprolol disuelto obtenidos en cada uno de los tiempos de muestreo con el Aparato USP IV.

	Metobest														
						I	ote 100	9042							
Tiempo							Porcent	aje Disuc	elto (%)						
(min)	V1	V2	V3	V4	V5	V6	V 7	V8	V9	V10	V11	V12	$\overline{\mathbf{X}}$	Desv. Est.	C.V.
1	1.3470	1.3762	1.6192	1.5409	1.2143	1.2564	1.4083	1.0368	1.3862	1.4183	1.1010	1.0350	1.312	0.188	14.316
2	3.1454	3.1319	3.5517	3.3649	2.6294	3.0359	3.2725	2.5234	3.0697	3.0998	2.5495	2.5417	2.993	0.349	11.676
3	5.1739	5.0765	5.9019	5.4781	4.4520	5.1956	5.4962	4.2390	5.0343	4.9540	4.3193	4.5264	4.987	0.516	10.350
4	7.6578	7.1335	8.4791	7.8364	6.7763	7.8882	8.2060	6.3783	7.2620	7.1295	6.3603	6.8726	7.332	0.688	9.386
5	10.4406	9.3391	11.1266	10.5843	9.4317	10.7376	11.1667	8.7727	9.5881	9.4215	8.7928	9.4538	9.905	0.860	8.678
6	13.2527	11.5709	13.8001	13.7178	12.2164	13.5929	14.1717	11.2314	11.9344	11.7797	11.2575	12.0792	12.550	1.079	8.599
7	16.1550	13.8528	16.5039	17.1265	15.1070	16.6891	17.2972	13.7162	14.2967	14.3890	14.0436	14.9315	15.342	1.335	8.701
8	19.1729	16.1749	19.3261	20.6556	18.1679	19.9441	20.4648	16.4963	16.6850	17.0124	16.9441	17.8843	18.244	1.618	8.866
10	25.2910	20.7845	24.6835	26.8976	24.3264	25.7267	26.5967	22.2447	22.0463	22.5748	22.3091	23.5075	23.916	1.969	8.233
12	30.8382	26.2050	30.5800	32.9177	30.3444	31.6724	32.4426	27.8690	28.4439	28.2697	27.7414	29.3316	29.721	2.076	6.985
14	36.5213	31.1221	36.6243	38.8476	36.1194	36.6388	38.1607	32.8354	34.2910	33.7182	32.9318	34.4081	35.185	2.331	6.625
16	41.9243	35.9979	42.7258	44.0722	41.4840	41.1031	43.1461	37.9189	39.9142	39.1466	38.2465	39.2565	40.411	2.407	5.955
18	47.2821	40.7099	48.2844	49.4418	46.6503	45.3976	47.8695	42.4488	45.4994	44.1054	43.1446	43.9002	45.394	2.621	5.775
20	52.2389	45.3271	53.4482	54.7957	51.5777	49.7248	52.1678	47.0934	50.4582	48.8558	47.7845	48.3567	50.152	2.801	5.585
25	63.9386	56.5565	66.1374	67.5338	63.2774	59.9059	63.2110	58.3522	62.4126	60.4379	58.8866	58.1362	61.566	3.396	5.517
30	74.0512	67.4920	76.5243	79.9683	73.9968	69.9597	73.5685	68.4550	73.5245	71.8535	69.3519	67.5238	72.189	3.821	5.294
35	83.4192	77.3107	85.3241	91.5406	83.5414	78.8771	82.9757	78.3520	83.5293	81.7310	79.4057	75.7456	81.813	4.267	5.216
40	88.9655	84.2599	92.5143	95.7653	90.8107	85.7616	88.0998	85.3570	90.4756	89.1151	86.9907	82.6526	88.397	3.700	4.186
45	90.5929	88.5140	95.0059	97.0744	94.1713	89.9206	89.7429	90.0608	94.8923	91.4049	92.7574	86.9704	91.759	3.026	3.297
50	91.1320	90.4549	95.9877	97.2284	95.0356	91.9782	90.3701	91.7088	96.0671	92.2104	94.9825	88.2510	92.951	2.813	3.026
55	91.2978	91.2830	96.3455	97.2139	95.2650	93.6488	90.8191	92.2058	96.3113	92.7446	95.4637	88.6539	93.438	2.687	2.876

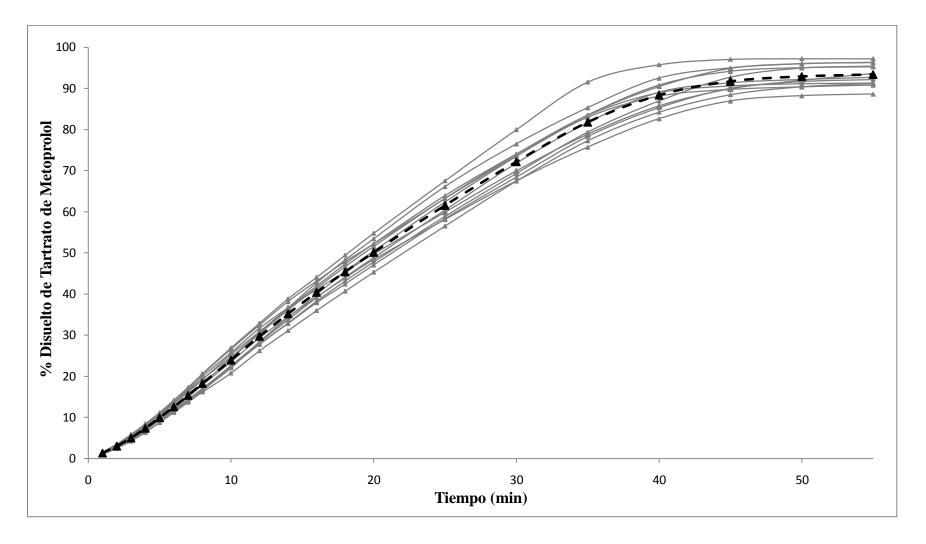


Gráfico 48. Perfiles Acumulativos de Disolución del Producto Metobest obtenidos en el Aparato USP IV. La línea punteada representa el promedio de los perfiles de disolución.

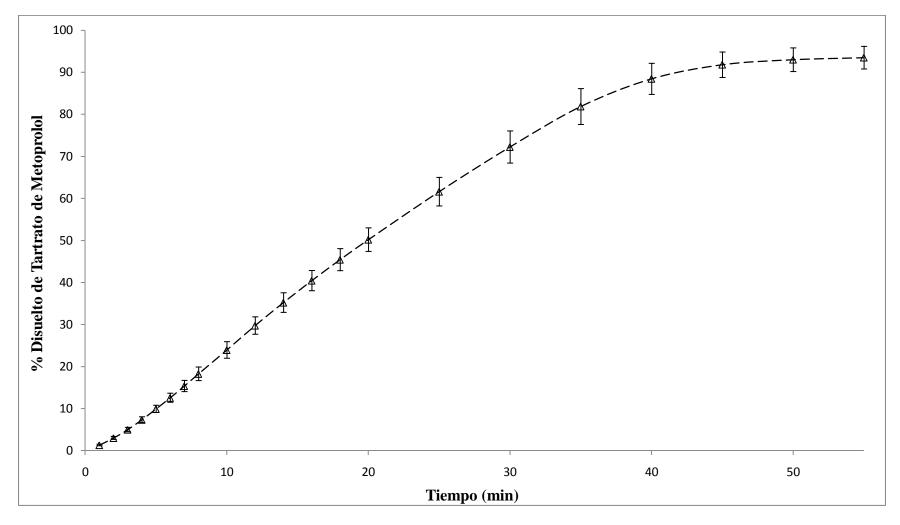


Gráfico 49. Perfil Acumulativo de Disolución Promedio del Producto Metobest obtenido en el Aparato USP IV. Las barras horizontales representan las desviaciones estándar obtenidas en cada punto de muestreo.