

... -----------------

<~A p·_·\R..:\LLEL BIOINSPIRED ·wATERMI..UKINC
_\LCOR.nlnl ON _o\ CPU"

THESIS

AS A FULF:U..~1ENT OF THE R.EJQl.JIR.EMENT
FOR THE DECREE OF:

!\fASTER IN SCIENCES
(CO:\\IPUTER)

BY:

EDG.~ EDUARDO ·GARCi.'\. C..I\..'NO C!\.STR.LO

ADVISOR;

UNAM – Dirección General de Bibliotecas

Tesis Digitales

Restricciones de uso

DERECHOS RESERVADOS ©

PROHIBIDA SU REPRODUCCIÓN TOTAL O PARCIAL

Todo el material contenido en esta tesis esta protegido por la Ley Federal
del Derecho de Autor (LFDA) de los Estados Unidos Mexicanos (México).

El uso de imágenes, fragmentos de videos, y demás material que sea
objeto de protección de los derechos de autor, será exclusivamente para
fines educativos e informativos y deberá citar la fuente donde la obtuvo
mencionando el autor o autores. Cualquier uso distinto como el lucro,
reproducción, edición o modificación, será perseguido y sancionado por el
respectivo titular de los Derechos de Autor.

UNIV ERSIDA D NACIONAL AUTONOMA DE
MExi CO

VJtJY'QUIAD ~[..
A~ DE

·"\JXtc::p

~i\LCORJTh10 DE l\•LUCA DE ACUA BIOINSPIRADA
EN P.·\RALELO EN UJ'\il. CPU"

p

T E S I S

i\1.-\ESTRO E N CIEN CIAS
(COMPUT ACIOl'<)

R E s E N T A:

EDG.'\R EDU.'\RDO G.'\RciA CA.""O CASTILLO

DIRECTORDE TESIS:

DRA. KATYARODRiCt iEZ\'AZQt iEZ

1\Jfxico~ D .F. 2012 .

Este trabajo fue realizado gracias a los apoyos recibidos por parte del Consejo Nacional de

Ciencia y Tecnolog ı́a (CONACYT), con la beca de posgrado nacional númer

ABSTRACT

Abstract

In this thesis, I'm presenting a research about the usability, advantages and disadvantages of using

CUDA architecture to implement algorithms based on populations, specifically Parti- cle Swarm

Optimization (PSO). Nowadays it is not necessary to invest in clusters, since it is enough to have

a video card -as the ones from NVIDIA- that has a lot of cores in just one GPU, and takes

advantage of this parallelism.

In order to test the performance of the algorithm, a hide watermark image application is

implemented, and the PSO is used to optimize the positions where the watermark has to be

inserted. This application uses the insertion/extraction algorithm proposed by Shieh et al. The

whole algorithm was implemented for both sequential and CUDA architectures. The CUDA

version of the watermarking-PSO algorithm takes advantage of the parallelism, where the fitness

function is the union of two objectives: fidelity and robustness. The measurement of fidelity and

robustness is computed by using Mean Squared Error (MSE) and Normalized Correlation (NC)

respectively; these functions are evaluated using Pareto dominance.

The first chapter introduces watermarks, what they are and explains the two types of wa-

termarks: visible and invisible. It also includes a perspective about what CUDA architecture is,

how it was born and what it is used for nowadays. Later it gives an introduction about what

Evolutionary and Bioinspired Algorithms are.

The second chapter gives an overview of Discrete Cosine Transform (DCT) applied to insert

the watermark images. In addition to this method, are explained two watermarking metrics:

watermarking fidelity and watermarking robustness. The fidelity represents the sim- ilarity of the

watermarked image with the original image and the robustness represents the resistance of the

watermark against manipulations applied on the watermarked image. The third chapter -related

with the second one- explains the different types or watermark attacks. The attacks are applied to

test the robustness of the watermarked image.

The fourth chapter explains the main CUDA features such as the architecture, how to or-

ganize the data in the GPU, how to do the thread assignment to take advantage of parallelism,

beside the different memory types such as: global, constant, registers and shared.

The fifth chapter gives in detail the steps that are involved in the Shieh algorithm, which

is used to insert and extract the watermark image. In few words, this algorithm makes use of the

DCT domain by splitting the original image in blocks of 8x8, then a ratio matrix between DC and

AC coefficients is calculated. The next step is to compute the relation between the image content

and the frequency bands where the watermark will be inserted; finally Inverse Discrete Cosine

Transform (IDCT) is performed to get the watermarked image.

The sixth chapter introduces the theory about Particle Swarm Optimization (PSO), which is

based on particles that fly through the problem space trying to find a solution each time step. To

do this the particle moves are based in velocity and position vectors that change with time. To

know if a particle is near to a solution, a fitness value must be calculated. In the case of this

work, the fitness value is composed of two objectives: fidelity and robustness. These aims are

evaluated using Pareto dominance whose theory is explained in chapter seven.

The chapter eighth finally links the whole theory seen in previous chapters to give life to the

optimization algorithm applied in the watermark insertion. The algorithm is based on the Shieh

and the PSO algorithms.

Finally, test, results and conclusions are exposed in chapters nine and ten.

DERIVED WORKS

Derived works

• A research paper submitted to the 3erd International Supercomputing Conference in
Mexico (ISUM) to be hold in March 2012.

Contents

1 Introduction 1

1.1 Motivation .

 3

1.2 Contributions .

 3

1.3 Outline . 3

2 Transform Methods for Watermarking 5

2.1 DCT Theory

 62.2 Watermarking Metrics

 . 7

2.2.1 Watermark Fidelity

 72.2.2 Watermark Robustness

 72.2.3

Watermark Capacity 8

2.3 Functions used in this thesis 8

3 Watermarking Attacks 9

3.1 Examples of Attacks 10

3.1.1 JPEG Compression . 10

3.1.2 Low Pass Filtering . 10

3.1.3 Median Filtering . . 10

3.2 Attack used in this thesis . . 11

4 CUDA Architecture 13

4.1 Thread Assigment 15

4.2 Thread Scheduling and Latency Tolerance 16

4.3 CUDA Device Memories 17

4.3.1 Global Memory 17

4.3.2 Constant Memory 17

4.3.3 Registers 18

4.3.4 Shared Memory 18

4.4 CUDA Events 18

4.5 CUDA Best Practices 18

5 Shieh algorithm 21

5.1 The extraction algorithm . 28
CONTENTS

6 Particle Swarm Optimization (PSO) 29

6.1 Basic PSO . 30 6.2 Parallel

PSO . 31

7 Multiobjetive optimization 33

7.1 Pareto Theory 33

7.1.1 Pareto dominance 33

7.1.2 Pareto optimal 33

7.1.3 Pareto optimal set 34

7.1.4 Pareto frontier 34

7.1.5 Pareto Dominance used in this thesis 34

8 The optimization algorithm 39

9 Tests and Results 43

9.1 Server Features 43

9.2 Input data 44

9.3 Outcomes 45

9.3.1 Shieh implementation . 45

9.3.2 PSO implementation . . 48

10 Conclusions and future work 51

10.1 Conclusions . 51 10.2 Future

work . 54

Appendices 55

A Analysis, Design and Implementation of Shieh Algorithm 57

A.1 Shieh Operations 58

A.1.1 Ratio Operation 58

A.1.2 Polarities Operation 60

A.1.3 Watermark Embedding Operation 61

A.1.4 Quantization 62

A.1.5 Watermark Extraction Operation 63

B Analysis, Design and Implementation of PSO Algorithm 65

B.0.6 Random number generation 66

B.0.7 PSO operations 67

B.0.7.1 Velocity 67

B.0.7.2 Position 68

B.0.7.3 MSE 69

B.0.7.4 NC 70

ii

CONTENTS

C Utilities 73

C.1 Timer.h 73

C.2 ShiehUtilities.h 75

C.3 ImageParamLoader.h . 79

C.4 BmpUtil.h 80

Bibliography 81

iii

List of Figures

2.1 Original Lena image (left) and transform coefficients of Lena image obtained

by DCT. 5

4.1 A multidimensional example of CUDA grid organizations [13]. 14

4.2 Thread block assigment to streaming multiprocessors (SMs) [13]. 15

4.3 Blocks partitioned into warps for threading scheduling. 16

4.4 CUDA device memory model [13]. 17

5.1

5.2

5.3

5.4

5.5

The matrix of the zigzag ordered DCT coefficients. Each Y(m,n

)
(k) is a fre-

quency band where the watermark bits could be inserted.

The image shows the zig-zag order of four 8x8 blocks of the original image.

The R(1) value is the sum of the division of the element (0) between element (1)

on each block of the whole image.

Embedding the watermark bits within the image. Each bit is inserted using

the equation 5.6.

Generic Block Diagram for Watermarking. The

block diagram for watermark extraction.

. 22

. 23

. 25 .

27 .

28

6.1

7.1

7.2

7.3

8.1

8.2

9.1

9.2

PSO UML Class diagram. 32

The boxed points represent feasible choices, and smaller values are preferred to

larger ones. Point C is not on the Pareto Frontier because it is dominated by both

point A and point B. Points A and B are not strictly dominated by

any other, and hence do lie on the frontier. 34

Image blocks organization. 36 Pareto

dominance chart. 37

This figure shows how the solutions are generated taking from particles P1 and

P2 -from the different swarms- the frequency bands B1, B2, B3 and B4,

generating the corresponding solution. 40

The optimization algorithm. 41

Input data . 44

Runtime for functions involved in the insertion/extraction algorithm running

on the Geogpus server. 45

v

LIST OF FIGURES

9.3 Runtime for functions involved in the insertion/extraction algorithm running

9.4

9.5

9.6

9.7

on the Uxdea server. Runtime of

the insertion and the MSE, and the extraction and the NC opera- tions on

Geogpus. Runtime of the

insertion and the MSE, and the extraction and the NC opera- tions on Uxdea.

. Runtime for PSO on

Geogpus. Runtime for PSO on Uxdea. .

.

. 46

. 46

. 47 .

48 .

49

A.1 Flow Diagram of Shieh Algorithm. 57 A.2 Flow

Diagram for Watermarking Extraction. 58

B.1 Flow Diagram of watermarking algorithm (Shieh + PSO). 65 B.2

Threads management for the reduction operation. 69

C.1 Timer struct. 73 C.2

ShiehUtilities struct. 75 C.3

ImageParamLoader class. 79

vi

List of Tables

7.1 Exclusive or. 35 7.2 Pareto

dominance. 37

9.1 CPUs Server features. 43 9.2 GPUs

Server features. 43

vii

Chapter 1

Introduction

The goal of the present work is to research and analyze bioinspired algorithms applied to a

watermarking insertion algorithm, using the parallel paradigm on Graphics Processing Units

(GPUs), specifically based on Compute Unified Device Architecture (CUDA). The first part

concerns with the implementation of the watermarking algorithm; this was carried out in a

research stay at the Ecole de Technologie Sup ́
´ erieure (ETS), Universit́ du Qu ́

e ebec in Canada,

under Professor Robert Sabourin's and PhD student Bassem Guendy's supervision. The sec- ond part

considers the bioinspired algorithm implementation and the integration with the wa- termarking

algorithm. The second part was under the supervision of Dra. Katya Rodŕ ıguez

V́ azquez.

Digital watermarking came to be in great demand when sharing information on the In-

ternet became a usual practice. When sharing files online, you never know if someone uses them

without your consent.

A digital watermark is a pattern of bits inserted into a digital file such as an image, an audio

or a video. Such patterns usually carry copyright information of the file. Digital water- marking

takes its name from the faintly visible watermarks imprinted on paper to identify a manufacturer,

an enterprise, a school, etc. In digital watermarking the objective is to provide copyright protection

in digital files.

When speaking of digital image watermarking, we can divide watermarks into two main

groups: visible and invisible watermarks.

A visible watermark is a visible semi-transparent text or image overlaid on the original

image. It allows the original image to be viewed, but it still provides copyright protection by

marking the image as its property. Visible watermarks are more robust against image trans-

formation (especially if you use a semi-transparent watermark placed over the whole image). Thus

they are preferable for strong copyright protection of intellectual property in digital for- mat.

1

CHAPTER 1. INTRODUCTION

An invisible watermark is an embedded image which cannot be perceived with human

eyes. Only electronic devices (or specialized software) can extract the hidden information to

identify the copyright owner. Invisible watermarks are used to mark a specialized digital content

(text, images or even audio content) to prove its authenticity [2].

A GPU is a processor dedicated to graphics processing, to lighten the workload of the

central processor in applications such as video games and interactive 3D applications. On this

way, while much of the load related to the graphics processing is executed on the GPU, the CPU

can focus on other calculations.

Using GPUs is possible to perform tasks more efficiently, which are optimized for floating point

calculations. Therefore, a good strategy is to use brute force on the GPUs to complete more

calculations at the same time.

In order to program the GPU, several languages can be used, among them C using

CUDA extension, OpenCL, Fortran, Java, etc. CUDA is a parallel computing architecture of

NVIDIA that allows a significant increase in performance of the calculations thanks to the power of

the GPU.

With thousands of GPUs, software developers, scientists and researchers are finding op-

portunities to use CUDA, for example in image and video processing, biology and compu-

tational chemistry, simulation of fluid dynamics , the reconstruction of tomographic images,

seismic analysis, evolutionary computation and more.

Currently, evolutionary computation makes use of models based on the natural evolution

process, designing and implementing algorithms for solving problems. There are a large

variety of proposals and studies on these models, which are called with the generic name of

Evolutionary Algorithms. These have common features such as the inspiration in the

simulation of the evolution of populations of individuals through processes of selection and

reproduction.

Another set of proposals inspired by biological models, such as optimization algorithms

based on Ant Colony and Swarm-based algorithms are classified into what has been called

bioinspired algorithms, a new way to solve problems based on the behavior of animals or

systems that take centuries to evolution.

2

1.1. MOTIVATION

1.1 Motivation

Due to the impossibility to control the information that goes through Internet, there is a need to

protect our information from unauthorized copying or to legitimate our ownership over it, and the

invisible watermarking comes out as an option that -combined with an optimization mechanism

such as the bioinspired algorithm PSO-, provides a highly suitable tool for this purpose.

In recent years, new and cheaper technologies such as CUDA architecture have emerged with

the concept of massive parallelism. Due to this new paradigm, it is not necessary to in- vest in

expensive clusters, since it is enough to have a video card -like the ones from Nvidia- that have a

lot of cores in just one GPU, and take advantage of its massive parallelism.

The combination of the bioinspired and the watermarking algorithms using the new mas- sive

parallelism paradigm on GPUs to accelerate the process came out as a curiosity for me and

became the motivation of the research in this work.

1.2 Contributions

The contributions of this thesis are:

• A proposal on how to implement a watermark optimization using Particle Swarm Op-
timization (PSO) on GPUs. In this proposal each block generated in Discrete Cosine

Transform (DCT) is taken as a swarm. For each swarm, N particles are created, and

these particles have part of the total solution. The particles fitness is measured by using mean

squared error (MSE) and normalized correlation (NC); these are the two objetives that are

evaluated using Pareto dominance.

• Two implementations of the optimization algorithm, one sequential and other that uses
CUDA architecture. Those implementations help to compare the efficiency and speed up of

the two different architectures, and to know which of them is more convenient to be used in

algorithms based in populations.

1.3 Outline

The main theory for watermarking using the Shieh algorithm combined with PSO and the

CUDA architecture is presented in the following chapters of this thesis.

• Chapter 2 presents the DCT theory as one of the main elements to embed a watermark,
besides the metrics used to evaluate it.

3

CHAPTER 1. INTRODUCTION

• Chapter 3 decribes the watermarking attacks and the one used in the optimization
algorithm.

• Chapter 4 explains the main features of the CUDA architecture, thread assigment,
thread scheduling, device memory and some of the best practices to develop software with

CUDA.

• Chapter 5 presents the details for the implementation of the algorithm proposed by
Shieh et al [6].

• Chapter 6 describes the foundations of the PSO algorithm.

• Chapter 7 explains the foundations of the multiobjetive optimization.

• Chapter 8 explains how the whole algorithm (watermarking + PSO) was implemented.

• Chapter 9 presents the tests and results of the thesis.

• Chapter 10 draws the conclusions of this research work.

4

Chapter 2

Transform Methods for Watermarking

There are different types of transformations used in image watermarking such as Discrete

Cosine Transform (DCT), Discrete Wavelet Transform (DW T), and Discrete Multiwavelet

Transform (DM T).

DCT is commonly used in MPEG and JPEG as an orthogonal transform. In the DCT

domain, the energy could be concentrated in the low frequency regions around the upper-left

corner (see figure 2.1), but depending of the convention the energy could be concentrated in the

center or in the other corners.

Figure 2.1: Original Lena image (left) and transform coefficients of Lena image obtained by DCT.

DWT decomposes the image into different frequency bands and still retains its spatial

information. In wavelet watermarking techniques, since the DWT of an image gives mul-

tiresolution sampling, the watermark ends up being robust to downsampling operations.

DMT is relatively a new type of signal transform that is commonly used in image com-

pression. The main motivation of using multiwavelet is that it is possible to construct mul-

tiwavelets that simultaneously possess desirable properties such as orthogonality, symmetry and

compact support with a given approximation order [16].

At the EST -where I made a research stay-, Professor Robert Sabourin and his collabora- tors

were working on a project to apply the watermark process in financial banking document

5

CHAPTER 2. TRANSFORM METHODS FOR WATERMARKING

like checks, invoices and bills. The process to digitized the physical document is made using as

equipment a scanner. The digital files are acquired by the scanner in grey scale, that is why the work

focuses in the use of grey scale images. The client, Banctec needs to have digitized and

watermarked tens of millions of documents per day, and that is why they need a rapid method to

watermark a huge quantity of documents.

In addition, Professor Sabourin's team decided to apply DCT because small changes in some

frequency bands are visually imperceptible. Moreover, JPEG and MPEG compression are based

on DCT and with such method the watermark ends up being resistant against com- pression.

2.1 DCT Theory

The Discrete Cosine Transform is a Fourier-like transform, which was first proposed by

Ahmed et al. (1974). While the Fourier Transform represents a signal as the mixture of

sines and cosines, the Cosine Transform performs only the cosine-series expansion. The pur- pose

of DCT is to perform the decorrelation of the input signal and to present the output in the frequency

domain. The DCT is known for its high "energy compaction" property, meaning

that the transformed signal can be easily analyzed using few low-frequency components.

This fact made it widely used in digital signal processing.The most popular DCT is the two-

dimensional symmetric variation of the transform that operates on 8x8 blocks and its in- verse.

The two-dimensional input signal is divided into the set of nonoverlapping 8x8 blocks and each

block is independently processed. This makes it possible to perform the block-wise transform in

parallel.

The formal definition for DCT of two-dimensional for a sample of size N ⋅ N is defined

as follows:

N −1 N −1

f (x, y) cos π(2x N 1)u cos π(2y N 1)v
C(u, v) = α(u)α(v) x=0 y=0 2 + 2 + (2.1)

The inverse of two-dimensional DCT for a sample of size N ⋅ N is:

N −1 N −1

f (u, v) =
α(u)α(v)C(u, v) cos π(2x N 1)u cos π(2y N 1)v

u=0 v=0 2 + 2 + (2.2)

where u, v = 0, 1, ..., N − 1, also x, y = 0, 1, ..., N − 1, and

6

�
�

α(u) =
 �

1
N
2

N

2.2. WATERMARKING METRICS

if u = 0;
(2.3)

if u = 0.

As it can be seen from 2.3, if u = 0 then C(0) = N N=0
1 f (x). By convention,

1 −
x

this value is called the DC coefficient of the transform and the other are referred to as AC

coefficients[11].

2.2 Watermarking Metrics

In the digital framework, watermarking algorithms that make use of information hiding tech-

niques have been developed and hiding capacity has naturally been used as a metric in eval-

uating their power to hide information (the maximal amount of information that a certain

algorithm can "hide" keeping the data within allowable distortion bounds).

2.2.1 Watermark Fidelity

The fidelity represents the similarity of the watermarked image with the original image. Peak

Signal to Noise Ratio (P SN R) is commonly used to evaluate image degradation or recon-

struction fidelity. It is defined for two images I and K of size M ⋅ N as:

2552
P SN R(I, K) = 10 log10 (2.4)

M SE(I, K)

Where I is the original image, K is a reconstructed or noisy approximation, 2552 is the

maximum pixel value in image I and M SE is a mean square error between I and K.

M −1 N −1

11

M S E (I , K) = M N

i=0 j=0

I(i, j) − K(i, j) 2 (2.5)

PSNR is expressed in decibel scale. In image reconstruction typical values for PSNR

vary within the range [30, 50]. A PSNR value of 50 and higher calculated from two images that

were processed on diverse devices with the same algorithm indicates that the results are

practically identical.

2.2.2 Watermark Robustness

The robustness represents the resistance of the watermark against attacks -compression, ro-

tation, scaling, etc. (detailed attacks are described in chapter 3)- done on the watermarked

7

CHAPTER 2. TRANSFORM METHODS FOR WATERMARKING

image. The Normalized Correlation (N C) is used to measure the robustness between the

original watermark and the extracted watermark. When different attacks have been applied to a

watermarked image, the N C is calculated between the embedded watermark W (i, j) and the

extracted watermark from the attacked image W (i, j) , where both watermarks have the

same dimensions Mw ⋅ Nw.

NC =

MW
i=1

MW

NW
j=1

[W (i, j)W (i, j)]
NW

(2.6)

2.2.3

Watermark Capacity

i=1 j=1
[W (i, j)]2

Determining the capacity of a watermark in an image is to find how much information can be

hidden in a digital image without perceptible distortion while maintaining its robustness [20].

Image watermarking capacity is a complex problem that may be influenced by many

factors. The content of the image has as much influence in the capacity as the watermark

strength. But higher strength in a watermark not always means higher watermark capacity. For

example if we add ten units instead of one unit to the gray level value for each pixel in order

to insert one bit of watermark, the strength becomes much higher, but the capacity remains the

same [17].

2.3 Functions used in this thesis

Generally, the watermark is measured and characterized using three aspects, i.e. fidelity,

robustness and capacity. There is a need to fix the capacity and to maximize both fidelity and

robustness to reach a better watermarking characteristics system. Professor Sabourin's team

decided to start working with fidelity and robustness as a first version of the application.

8

Chapter 3

Watermarking Attacks

Digital image watermarking has become a popular technique for authentication and copyright

protection. In order to verify the security and robustness of watermarking algorithms, spe- cific

attacks have to be applied to test them. A list of most common attacks is given as follows.

I. JPEG Compression - JPEG is currently one of the most widely used compression

algorithms for images.

II. Geometric transformations

1) Flip - The image looks, as if it has been reflected along the central horizontal or

vertical axis of the layer.

2) Rotation - It is used to move in some angle the image, it is used to straighten an

image once it was scanned.

3) Cropping - It refers to an unwanted part of the image that is removed, to focus in

a particular object.

4) Scaling -When a image is resized, sometimes the image is enlarged or reduced to

fit in an specific place. The scaling could be applied in horizontal, vertical or both

directions.

III. Enhancement techniques

1) Low pass filtering - The simplest operation to calculate it, is the average of a

pixel and all of its eight immediate neighbors. The result replaces the original

value of the pixel. Every pixel repeat the same process. This effect is also called

blurring or smoothing.

2) Histogram modifications - This includes histogram stretching or equalisation

which are sometimes used to compensate poor lightening conditions.[15]

3) Sharpening - It is used to increase the contrast between each pixel and its neigh-

bors. The image must be blurring as first step, then the original and the blurred

9

CHAPTER 3. WATERMARKING ATTACKS

version image are compare pixel by pixel. If a pixel is brighter than the blurred

version it is lightened further; if a pixel is darker than the blurred version, it is

darkened.

4) Gamma correction - Gamma correction is used to control the overall brightness

of an image. This effect is used when the image is too dark.

5) Restoration - Sometimes it is necessary to reduce an specific degradation process

(blur, noise, camera misfocus, etc.) in the image, this technique is used to reduce

("compensate for" or "undo") the effects of that degradation.

3.1 Examples of Attacks

This section explains some attacks considered by the Shieh algorithm for robustness [6].

3.1.1 JPEG Compression

The name "JPEG" stands for Joint Photographic Experts Group, the name of the committee

that created the JPEG standard and also other standards. The JPEG compression algorithm is

used with photographs and paintings of realistic scenes with smooth variations of tone and color.

For web usage, where the amount of data used for an image is important, JPEG is very popular.

JPEG is based on a lossy compression method, which somewhat reduces the image fi- delity.

This method discards (loses) some data in order to achieve its goal, with the result that

decompressing the data yields content that is different from the original, though similar enough to

be useful in some way.

3.1.2 Low Pass Filtering

Applying a low pass filter on 2D image in the frequency domain means zeroing all frequency

components above a cutoff frequency. The result is transformed back into the spatial domain.

3.1.3 Median Filtering

The median filter is a nonlinear digital filtering technique, often used to remove noise. The

main idea of the median filter is to run through the signal entry by entry, replacing each entry with

the median of neighboring entries. The pattern of neighbors is called the "window", which slides,

one entry at a time, over the entire signal.

10

3.2. ATTACK USED IN THIS THESIS

3.2 Attack used in this thesis

In the present work, "quantization" is used as a watermarking attack. This attack was applied

because, since it is already part of the CUDA libraries, it was not necessary to program it, and

also because of its ease of use. Quantization is a method that can be added to the inser-

tion/extraction algorithm although it is not intrinsic to it.

Just one attack was used to test the optimization algorithm (see chapter 8) considering that

only one type of attack was sufficient to determine its performance. Nevertheless, other attacks

might be implemented to test the algorithm further, which is a proposal for future updates of

this application.

Quantization is applied to reduce the number of colors utilized in images; this technique is

implemented on devices that support a limited number of colors and for efficient compres- sion, it

makes possible to reduce the file size.

In quantization, the compression rate depends on the number of coefficients that are non- zero

after quantization has been performed. If a compression rate of 75 percent (of the initial size) is

required, 25 percent of least valuable coefficients should be zero after the quantization step.

11

Chapter 4

CUDA Architecture

In november 2006, NVIDIA introduced CUDA, a new general purpose parallel computing

architecture with a new programming model and an instruction set architecture, a tool to de-

velop scientific programs oriented to massively parallel computation. It is actually sufficient to

install a compatible GPU and the CUDA SDK, even in a low end computer to develop a parallel

program using a high level language as C.

CUDA's programming model requires that the programmer splits the problem under con-

sideration into many independent subtasks which can be solved in parallel. Each subproblem may

be further divided into many tasks, which can be solved cooperatively in parallel too. In CUDA

terms, each subproblem becomes a thread block, each thread block being com- posed of a

certain number of threads which cooperate to solve the subproblems in parallel. The software

element that describes the instructions to be executed by each thread is called kernel. When a

program running on the CPU invokes a kernel, the number of corresponding thread blocks and

the number of threads per thread block must be specified. The abstraction on which CUDA is

based allows a programmer to define a two dimensional grid of thread blocks; each block is

assigned a unique pair of indixes that act as its coordinates within the grid. The same

mechanism is available within each block: the threads that compose a block can be organized as

a two or three dimensional grid. Again, a unique set of indixes is pro- vided to assign each

thread a 'position' within the block. This indexing mechanism allows each thread to personalize its

access to data structures and, in the end, achieve effective prob- lem decomposition [7].

13

CHAPTER 4. CUDA ARCHITECTURE

Figure 4.1: A multidimensional example of CUDA grid organizations [13].

A Graphics Processing Unit (GPU) is a processor dedicated to graphics processing in or- der to

lighten the workload of the central processor in applications such as video games and interactive

3D applications. On this way, while much of the related to the graphics processing is executed on

the GPU, the CPU can focus on other calculations.

The expertise of GPUs can perform tasks more efficiently, which are optimized for float- ing

point calculations. Therefore, a good strategy is to use brute force on the GPUs to com- plete

more calculations at the same time. To program the GPU we can use several languages, such as C

using CUDA extension, OpenCL, Fortran, Java, etc.

With thousands of GPUs, software developers, scientists and researchers are finding op-

portunities to use CUDA. For example in image and video processing, biology and compu-

tational chemistry, simulation of fluid dynamics, the reconstruction of tomographic images,

sismic analysis, evolutionary computation and more.

14

4.1. THREAD ASSIGMENT

4.1 Thread Assigment

The GPU is made up of a scalable array of multithreaded Streaming Multiprocessors (SMs), each

of which is able to execute several thread blocks at the same time. When the CPU orders the GPU

to run a kernel, thread blocks are distributed to free SMs and all the threads of a scheduled

block are executed concurrently.

One key aspect about SMs is their ability to manage hundreds of threads running different code

segments: in order to do so they employ an architecture called SIMT (Single Instruc- tion,

Multiple Thread) which creates, manages, schedules, and executes groups (warps) of 32 parallel

threads [7].

The runtime system maintains a list of blocks that needs to be executed and assigns new

blocks to SMs as they complete the execution of blocks previously assigned to them.

Figure 4.2 shows an example in which three thread blocks are assigned to each SM. One of the

SM resource limitations is the number of threads that can be simultaneously tracked and

scheduled. Hardware resources are required for SMs to maintain the thread, block IDs, and track

their execution status [13].

Figure 4.2: Thread block assigment to streaming multiprocessors (SMs) [13].

15

CHAPTER 4. CUDA ARCHITECTURE

4.2 Thread Scheduling and Latency Tolerance

Once a block is assigned to a streaming multiprocessor, it is further divided into 32-thread units

called warps. The size of the warps is implementation specific. In fact, warps are not part of

the CUDA specification; however, knowledge of warps can be helpful in under- standing and

optimizing the performance of CUDA applications on particular generations of CUDA devices.

The warp is the unit of thread scheduling in SMs.

Each warp consists of 32 threads of consecutive threadIdx values: Threads 0 through 31 form

the first warp, threads 32 through 63 the second warp, and so on. When an instruction executed

by the threads in a warp must wait for the result of a previously initiated long- latency

operation, the warp is not selected for execution. Another resident warp that is no longer

waiting for results is selected for execution. If more than one warp is ready for execu- tion, a

priority mechanism is used to select one for execution. This mechanism of filling the latency of

expensive operations with work from other threads is often referred to as latency hiding.

Figure 4.3: Blocks partitioned into warps for threading scheduling.

With enough warps around, the hardware will likely find a warp to execute at any point in

16

4.3. CUDA DEVICE MEMORIES

time, thus making full use of the execution hardware in spite of these long-latency operations [13].

The figure 4.3 shows the division of blocks into warps.

4.3 CUDA Device Memories

CUDA supports several types of memory that can be used by programmers. These types of

memories can be written (W) and read (R) by the host by calling application programming

interface (API) functions. In figure 4.4 we can see the memory model used by CUDA.

Figure 4.4: CUDA device memory model [13].

4.3.1 Global Memory

The global memory is implemented with dynamic access memory (DRAM), it has long ac- cess

latencies and finite access bandwidth.

4.3.2 Constant Memory

The constant memory supports short latency, high bandwidth, and read only access -by the

device- when all threads simultaneosly access the same location.

17

CHAPTER 4. CUDA ARCHITECTURE

4.3.3 Registers

These are located on the chip memories. Variables that resides these type of memory can be

accessed at very high speed in a highly parallel manner. Registers are allocated to individual

threads; each thread can only access its own registers.

A kernel function uses registers to hold frequently accessed variables that are private to each

thread.

4.3.4 Shared Memory

It is allocated to threads blocks; all the threads in blocks can access variables in the shared

memory locations allocated by the block.

Shared memory is an efficient means for threads to cooperate by sharing their input data and

the intermediate results of their work.

4.4 CUDA Events

An event in CUDA is essentially a GPU time stamp that is recorded at a user specified point in

time. Since the GPU itself is recording the time stamp, it eliminates a lot of problems we might

encounter when trying to time GPU executions with CPU timers. A time stamp con- sists of just

two steps: creating an event and subsequentialy recording an event. The trickiest part of using

events arises as a consequence of the fact that some of the calls we make in CUDA are actually

asynchronous [9].

4.5 CUDA Best Practices

In order to obtain the best performance from this architecture, a number of specific program-

ming guidelines should be followed, the most important of which are:

I. Minimize data transfers between the host and the graphics card

II. Minimize the use of global memory: shared memory should be preferred

III. Avoid different execution paths within the same warp

Moreover, each kernel should reflect the following structure:

I. Load data from global/texture memory

II. Process data

18

4.5. CUDA BEST PRACTICES

III. Store results back to global memory

All the recomendations about best practices are in [4] and [3].

19

Chapter 5

Shieh algorithm

Shieh et al [6] have proposed a DCT based watermarking embedding algorithm, where an

image is transformed to the DCT domain after splitting to 8x8 blocks, and then a ratio ma- trix is

calculated between the DC and AC coefficients. In the next step a Polarities matrix is

computed. It represents the relation between image content and the embedding frequency bands,

to embed the permuted watermark into the DCT domain using the Polarities matrix and, finally,

IDCT is performed to get the watermarked image.

Shieh proposed the use of an evolutionary algorithm to optimize the position (frequency

bands) where the watermark bits ought to be inserted within the original image. Through the

different iterations, the algorithm tries to find out which are the best outcomes using PSNR and

NC to evaluate the watermarked image.

I decided to use this watermarking algorithm because Professor Sabourin's team has an

implementation of it in Matlab and it was easy for me to see how they implemented the func- tions

involved in the algorithm, particularly the ones related with images, since I had not worked

with images before.

They decided to use Shieh method because it is a blind method which means that it does not

need the original cover image to extract the watermark. For the applications dealing with huge

number of images, it would be very expensive to store all cover images for watermark extraction.

The steps of the algorithm are described below and shown in figure 5.4. Part of the

implementation of the algorithm is described in the Appendix A. This appendix shows the

configurations used for the GPU to implement the equations described in the next steps.

I. Initially, the image X of size M ⋅ N to be watermarked is splitted into 8 ⋅ 8 blocks to

perform Discrete Cosine Transform on these blocks.

21

CHAPTER 5. SHIEH ALGORITHM

II. The individual 8 ⋅ 8 blocks are DCT transformed using the equation 2.1. The resultant

matrix Y(m,n
)
(k) has the upper left corner as DC coefficient and the rest of the matrix

are the AC coefficients, where the DCT coefficients are zigzag ordered as in figure 5.1.

III. The watermark image to be embedded W is assumed to be a binary image, of size

MW ⋅ NW . This binary image is permuted using a pre-determined key k0 resulting

Wp, see equation 5.1.

Wp = permute(W, k0) (5.1)

Wp is used for embedding the watermark bits into the selected DCT frecuency bands.

Figure 5.1: The matrix of the zigzag ordered DCT coefficients. Each Y(m,n
)
(k) is a frequency band

where the watermark bits could be inserted.

IV. Initially frequency bands to embed the watermark are selected from 1th iteration of the

optimization problem using Evolutionary Computation (EC), e.g. choose Y(m,n
)
(6),

Y(m,n
)
(9), Y(m,n

)
(12) and Y(m,n

)
(29). Along the iterations for optimization, these fre-

quency bands are chosen for optimal embedding until the optimal frequency bands are

reached using the EC algorithm. The transformed matrix Y(m,n
)
(k) is then used to get

the ratio matrix between the DC and the AC coefficients R(i) using the equation 5.2.

22

R(i) =

M/8 N/8

m=1 n=1

Ym,n(0) , i ∈ [1, 63]
Ym,n(i)

(5.2)

In figure 5.2 just four blocks of the total grid of the whole image are shown. To get the value

of R(1) it is necessary to divide the element (0) and element (1) of each block, and then to

add up all of them.

R(1) = B(0,
0)
(0) + B(1,

0)
(0) + B(0,

1)
(0) + B(1,

1)
(0) + . . . (5.3)

B(0,
0)
(1) B(1,

0)
(1) B(0,

1)
(1) B(1,

1)
(1)

Same for R(2) :

R(2) = B(0,
0)
(0) + B(1,

0)
(0) + B(0,

1)
(0) + B(1,

1)
(0) + . . . (5.4)

B(0,
0)
(2) B(1,

0)
(2) B(0,

1)
(2) B(1,

1)
(2)

Figure 5.2: The image shows the zig-zag order of four 8x8 blocks of the original image. The R(1)

value is the sum of the division of the element (0) between element (1) on each block of the whole

image.

V. Then the polarities matrix P is calculated using the equation 5.5.

23

CHAPTER 5. SHIEH ALGORITHM

1 if (Y(m,n
)
(i) • R(i)) ≥ Y(m,n

)
(0), i ∈ F ;

P(m,n
)
(i) = 0 otherwise. (5.5)

24

VI. Next, the watermarked DCT coefficient Y is obtained using the equation 5.6.

�
�
� Y(m,n

)
(i) if P(m,n

)
(i) = Wp(m,n

)
(i) = 0, i ∈ F ;

�
�

Y(m,n
)
(i) =

 �

(Y(m,n
)
(0)/R(i)) + 1 if P(m,n

)
(i) = 0, Wp(m,n

)
(i) = 1, i ∈ F ;

�
� Y(m,n

)
(i) if P(m,n

)
(i) = Wp(m,n

)
(i) = 1, i ∈ F ;

� (Y(m,n
)
(0)/R(i)) − 1 otherwise.

(5.6)

The next figure shows an example of how to embed the watermark within the image. If

the image size is 512⋅512 there are 4096 blocks (512/8∗512/8), and if the watermark size is

128 ⋅ 128 there are 16384 bits. Then, to embbed the watermark bits whitin the image, it is

necessary to divide the number of watermark bits and the number of blocks of the image

16384/4096 = 4. Number 4 represents the watermark bits that will be inserted in each

block of the image.

Now, there will be chosen four frequency bands for each block where the watermark bits

will be inserted applying equation 5.6 (where the polarities and ratio matrices are involved

in the process), the frequency bands could be different from one block to another. Figure

5.3 shows an example.

Figure 5.3: Embedding the watermark bits within the image. Each bit is inserted using the

equation 5.6.

25

CHAPTER 5. SHIEH ALGORITHM

VII. After that, the watermarked image Xc is obtained by using the inverse DCT equation

2.2 for Y .

VIII. Now the PSNR is calculated as shown in equation 2.4 between the original image X

and the watermarked image Xc using the MSE as seen in equation 2.5.

IX. Next, different attacks are applied to Xc and the attacked images are denoted by Xc,p,
where p is the number of attacking schemes. Then the NC is calculated between em-

bedded watermark W(i,j)
 and the extracted watermark from the attacked image W(i,j)

using equation 2.6

X. Finally the fitness function for the optimization problem is formalized using the aggre-

gation of quality objective PSNR and the robustness objective NC, this can be formu- lated

for the cth iteration in the EC algorithm as 5.7.

p

fc = P SN Rc + (N Cc,h • λc,h) (5.7)
h=1

where λc,h is the magnifying factor for the NC because the PSNR is dozen times larger. The

process starts again in the step IV until obtaining the required optimization in the

watermarked image.

26

Figure 5.4: Generic Block Diagram for Watermarking.

27

CHAPTER 5. SHIEH ALGORITHM

5.1 The extraction algorithm

When extracting the watermarks, the original image X is not required in our algorithm. How- ever,

the optimized watermarked image might be subjected to some intentional or uninten- tional

attack, and the resulting image after the attack is represented by X . We calculate the DCT of the

watermarked image after attacking Y , in the attacked X , with the secret key

corresponding to the frequency set F , k1. We then reproduce the estimated reference table R

from the attacked X by following the operations in Eq. 5.8, and we are able to extract the

permuted watermark,

1 if (Y(m,n

)
(i) • R (i)) ≥ Y(m,n

)
(0), ∀i;

WP ,(m,n
)
 (i) = 0 otherwise. (5.8)

Wp = ∪M/M
w−
1 ∪N=1 w−1 /N

m=0 n

Ym,n(0) , i ∈ F
Ym,n(i)

(5.9)

Finally, we use k0 in Eq. 5.10 to acquire the extracted watermark W from W p ,

Wp = permute(W , k0) (5.10)

Figure 5.5: The block diagram for watermark extraction.

28

Chapter 6

Particle Swarm Optimization (PSO)

Nowadays, evolutionary computation makes use of models based on the natural evolution

process, designing and implementing algorithms for solving problems.

There is a large variety of proposals and studies on these models, which are called with the

generic name of Evolutionary Algorithms. These have as a common feature the inspi- ration on

the simulation of the evolution of populations through processes of selection and reproduction.

Another set of proposals inspired by biological models, such as Ant Colony and Swarm-

optimization algorithms are classified into what has been called bioinspired algorithms; a new

way to solve problems based on the behavior of animals or systems that took centuries to evolve.

These systems, Artificial Intelligence (AI) paradigms, are able to minimize the computation

time of certain complex mathematical problems such as the traveling salesman problem.

Particle Swarm Optimization (PSO) is a population based stochastic optimization tech-

nique developed by Dr. Eberhart and Dr. Kennedy in 1995, inspired by the social behavior of

bird flocking or fish schooling [10].

PSO shares many similarities with evolutionary computation techniques such as Ge- netic

Algorithms (GA). The system is initialized with a population of random solutions and searches

for the optimal using an iterative algorithm. However, unlike GA, PSO has no evolution

operators such as crossover and mutation. In PSO, the potential solutions, called particles, fly

through the problem space by following the current optimum particles. It has been successfully

applied to many problems in several fields such as Biomedicine (S. Selvan 2006 [18] and Energy

Conversion (J. Heo 2006 [8]), image analysis being one of the most frequent applications, like

Biomedical images (Mark P. Wachowiak 2004 [19]), Microwave imaging (M. Donelli 2005 [12]

and T. Huang 2007 [14]).

29

CHAPTER 6. PARTICLE SWARM OPTIMIZATION (PSO)

The proposal of using CUDA to implement these optimization algorithms is derived from the

need of Banctec to have a tool to satisfy robustness and fidelity requirements for water- marking

in huge quantities of gray scale images, which is why minimizing the time of the procedure

was of great importance.

PSO is an algorithm based in populations, meaning that it has a lot of possible solutions that

need to be evaluated, and finding the best one -depending on the problem- and the eval- uation

itself consume a lot of processing time.

This is the main reason why CUDA comes as a viable option to accelerate the process due

to the fact that operations involved in the algorithms could be parallelized (see appendix B),

resulting on a minimization of the runtime of the operations.

The idea of using PSO as the optimization algorithm comes owing to the fact that it has few

parameters to adjust. Since I was novice in programming with CUDA, it seemed like a suitable

option to start working with.

6.1 Basic PSO

Each particle keeps track of its coordinates in the problem space which is associated with the

best solution (fitness) achieved so far (this fitness value is stored). This value is called pbest.

Another"best" value that is tracked by the particle swarm optimizer is the best value, obtained so

far by any particle among the neighbors of the particle. This location is called lbest. When a

particle takes all the population as its topological neighbors, the best value is a global best and

is called gbest.

The PSO concept consists of, at each time step, changing the velocity (accelerating) of

each particle toward its lbest and gbest locations. Acceleration is weighted by a random term

with separate random numbers being generated for acceleration toward lbest and gbest locations.

After finding the two best values (lbest and gbest), the particle i updates its velocity and

position with next equations 6.1 and 6.2, where i = 1, 2, 3...NS.

Vi(t + 1) = Vi(t) + φ1r1(Bi(t) − Xi(t)) + φ2r2(Bg(t) − Xi(t)) i

Xi(t + 1) = Xi(t) + Vi(t + 1)

(6.1)

(6.2)

φ1 and φ2 are positive constants called acceleration coefficients, Ns is the total number of

particles in the "swarm", r1 and r2 are random values, each component is generated between

30

6.2. PARALLEL PSO

[0, 1], and g represents the index of the best particle in the neighborhood. The other vectors Xi =

[x1, x2, ..., xiD] ≡ position of the ith particle; Vi = [v1, v2, ...viD] ≡ velocity of the ith

particle; Bi ≡ best historical value of the ith particle found, Bg ≡ best value found of the ith i
particle in the neighborhood [1].

Algorithm 1 Basic PSO

1: Initialize particles population

2: while do not get the max number of iterations or the optimal do

3: Calculate the fitness for each particle i

4: Update Bi if pbest is better than last one
5:

6:

7:

8:

9:

10:

Calculate Bg of the neighbors i
for each particle i do

Calculate Vi (eq.6.1)

Update Xi (eq. 6.2)

Update best global solution (gbest)

end for

11: end while

Another important feature that affects the search performance of the PSO is the strat-

egy according to which Bg is updated. In synchronous PSO, positions and velocities of all i

particles are updated one after another. The value of Bg is only updated at the end of each i
generation, when the fitness values of all particles in the swarm are known.

The asynchronous PSO, instead, allows Bg to be updated immediately after the evalua- i

tion of each particle fitness. In asynchronous PSO, the iterative sequential structure of the

update is lost, and the velocity and position update equations can be applied to any particle at

any time, in no specific order [7].

6.2 Parallel PSO

The PSO was implemented in CUDA architecture to take advantage of the power offered by the

massively parallel architectures available nowadays. The parallel programming model of CUDA

allows programers to partition the main problem in many subproblems that can be solved

independiently in parallel.

To exploit this feature of the CUDA architecture, in this thesis, the following implemen-

tation of the PSO algorithm was proposed. Figure 6.1 shows the UML diagram class of the PSO

algorithm; it has been modeled with structs. Each particle has its position and velocity, besides

the current fitness, best local fitness and best local position through the different iter- ations. The

swarm has all the particles, the best global particle included.

31

CHAPTER 6. PARTICLE SWARM OPTIMIZATION (PSO)

Figure 6.1: PSO UML Class diagram.

In the PSO algorithm, there will be as many swarms as the number of 8x8 blocks gener- ated

after the DCT. If the image size is 512x512, then the number of blocks -as result of the DCT- will

be 64x64 (4096 blocks). With the data separated into different blocks it is possible to compute

them apart from each other, which means that they can be processed in parallel (the swarm 0

corresponds with the block 0 of the image). The implementation of the PSO in CUDA is

described in the appendix B.

Each particle in the swarm has a possible solution where the watermark image could be

inserted. The form to evaluate if the particle is a satisfactory solution is through the fitness value.

In this work, Pareto dominance is used to evaluate the fitness function (see chapter 7).

32

Chapter 7

Multiobjetive optimization

When k objetive functions are simultaneously optimized in a problem, it is called multiob-

jective problem (MOP). In these problems maximization and/or minimization of k functions

are required. In MOP, it is necessary to seek for the vector x∗ = [x1
∗, x2

∗, ..., xn
∗]T to sat-

isfy the inequality constraint set gi(x) ≥ 0 ∀ i = 1, 2, ..., n and the equality constraint set

hi(x) = 0 ∀ i = 1, 2, ..., m to optimize the functions vector f (x) = [f1(x), f2(x), ..., fk(x)]

that represents the objetive function; where x = [x1, x2, ..., xn]T is the decision variables

vector. The solution ought to have acceptable values in the whole objetive set.

7.1 Pareto Theory

The notion of "optimum" was originally proposed by Francis Ysidro Edgeworth in 1881. This

notion was later generalized by Vilfredo Pareto (in 1896). Although some authors call

Edgeworth-Pareto optimum to this notion, we will use the most commonly accepted term:

Pareto optimum.

7.1.1 Pareto dominance

A vector u = (u1, u2..., uk) dominates v = (v1, v2, ..., vk) if and only if u is partially less than

v (u v).

7.1.2 Pareto optimal

A solution x∗ ∈ Ω is Pareto optimal if and only if there is no x ∈ Ω and I = 1, 2, ..., k where

∀i ∈ If (x) = f (x∗) and there is at least one i ∈ If (x) > f (x∗).

The Pareto curve is the set of x∗ where there are no other solutions for which simultaneous

improvement in all objectives can occur. Generally a solution set known as non-dominated

solutions is produced.

33

CHAPTER 7. MULTIOBJETIVE OPTIMIZATION

7.1.3 Pareto optimal set

For a MOP denoted by f (x), the Pareto optimal set (P ∗) is defined as:

P ∗ = x ∈ Ω | ←∃x ∈ Ω f (x) f (x).

7.1.4 Pareto frontier

For a MOP denoted by f (x) and a Pareto optimal set (P ∗); the Pareto frontier (P F ∗) is de-

fined as:

P F ∗ = u = f = (f1(x), f2(x), ..., fk(x)) | x ∈ P ∗.

Figure 7.1: The boxed points represent feasible choices, and smaller values are preferred to

larger ones. Point C is not on the Pareto Frontier because it is dominated by both point A and

point B. Points A and B are not strictly dominated by any other, and hence do lie on the frontier.

7.1.5 Pareto Dominance used in this thesis

Choosing a good representation and constructing a good fitness function depend on the

essence of the problem and it might be difficult. For this work, fidelity and robustness are

considered as two objectives in conflict. By applying Pareto dominance it is relatively easy to

evaluate the fitness function (consisting on the addition of fidelity and robustness) and

moreover, add more objectives to the optimization process. In this process the objective is to

minimize the disturbance of the original image after the insertion and the attacks.

In order to propose a simpler way to measure the fitness and the robustness spending the

shortest time possible in the fitness calculation, the MSE was taken from the PSNR and the NC

was changed. When measuring the MSE in each block just 64 comparisons are needed and they

are executed at the "same time" in the other blocks. In the sequential process there

34

7.1. PARETO THEORY

are needed 512x512 evaluations one after another for a 512x512 image size. The same case was

applied for the NC, instead of being calculated for the whole image -as in the sequential form- it

was just computed for each block.

The NC and the MSE are computed for each 8x8 block as showed in the figure 7.2. This was

done with the purpose of dividing -as much as possible- the data in the GPU. In order to

calculate the fidelity, it is necessary just to compare block by block how much the original image

changes in contrast with the watermarked one. If the MSE value is zero, then it means that the

block has not changed at all. As you can see, it is not necessary to calculate the PSNR if it is possible

to obtain the same calculation -image fidelity- by just using MSE.

In the case of NC (for robustness), a variation of it was calculated. The bitwise operations are

faster than a multiplication, which is why applying one of it reduces the runtime. In order to reduce

the runtime in the evaluation of the NC, the logical operation "exclusive disjunc- tion", also called

"exclusive or" (see formula 7.1) was used. The NC value must be close to zero between the

original watermark (W) and the extracted watermark (W), to prevent the loss of the watermark

image information.

MW
i=1

NW
j=1

[W (i, j) ⊕ W (i, j)]

NC = Bands per block (7.1)

The exclusive or calculation is shown in table 7.1.

W W Output
0 0 0
0 1 1
1 0 1
1 1 0

Table 7.1: Exclusive or.

The next image 7.2 shows -in big scale- how the blocks of the image -after the DCT- are

organized. For each 8x8 block, the MSE and the NC are calculated. If the MSE and the NC

values are close to zero, it is an indication that there is a good frequency bands set (see chapter

5) to insert the watermark image into the corresponding 8x8 blocks.

35

CHAPTER 7. MULTIOBJETIVE OPTIMIZATION

Figure 7.2: Image blocks organization.

The PSO algorithm spends a lot of time in the evaluation of the fitness function and in the

calculation of the position and velocity vectors used for the particles to move, looking for other

possible solution. Simplifying the functions -as much as possible- to calculate the fitness function

helps to reduce the PSO's runtime.

Table 7.2 shows an example of the fitness (dominance) calculus (consider minimization in

both objetives). The MSE and the NC must be close to cero; in the swarm, the particle with

both values closest to zero is chosen to be the global best. In the example, there are six particles,

particles 1, 3 and 4 are nondominated solutions, whereas 2, 5 and 6 are dominated by 3, 4 and 1

(see figure 7.3).

36

7.1. PARETO THEORY

MSE NC Fitness
1 0.5 0 0
2 0.8 0.1 2
3 0.3 0.2 0
4 0.2 0.7 0
5 0.9 0.3 4
6 0.7 0.1 1

Table 7.2: Pareto dominance.

To calculate the fitness, all the particles are compared. Using particle 5 as example, the MSE

of particle 5 always is higher for all the other particles, and the NC of particle 5 is always

higher for all, except for particle 4, from the 5 comparisons made, in 4 of them parti- cle 5 is

always higher in both values -MSE and NC-, that is why its fitness is 4. In the case of particle 6, it

is just higher -in both values- to particle 1, that is why it has a fitness value of 1.

Figure 7.3: Pareto dominance chart.

Therefore, in the swarm there are three particles that could be used to insert the water-

mark, but just one of them is taken as the best global particle in the swarm. To make this

choice, the particle with the MSE closest to zero is chosen, if there is a tie -from the parti- cles

with the same MSE-, the one with the NC closest to zero is chosen. If there are only

dominated particles to choose, the particle with the MSE and the NC closest to zero is taken -

under the same procedure already explained for nondominated particles-.

37

Chapter 8

The optimization algorithm

This chapter is dedicated to explain the complete procedure implemented to make the water-

marking optimization algorithm combining the Shieh and the PSO algoritms. The objective of the

optimization is to find the best frequency bands set to insert the watermark within the image.

Different frequency bands are tested through the iterations of the algorithm findig out the best

solution. At the end of the execution the application has as results the watermarked image and a

matrix with the whole best positions (frequency bands) to insert the complete watermark.

The implementations in CUDA for the Shieh algorithm functions is detailed in the ap-

pendix A. The implementation of the PSO algorithm functions is detailed in appendix B.

These appendices show the configuration of the threads for the functions involved in both

algorithms.

This process is detailed as follows.

I. Using the DCT idea to split the image in 8x8 blocks, each block is used as a swarm.

An image of 512x512 has 4096 blocks; hence each block will be a swarm. At the

same time, each swarm is mapped in the GPU as a block where the configuration of the

threads depends of the function to be executed. The number of particles per swarm is

specified as a configuration parameter of the algorithm. It is necessary to take into account

that each particle in a swarm is a possible solution (frequency bands set).

II. Each particle has a position vector. The vector size depends on the number of wa-

termark bits used to be inserted in each block of the image. If the watermark size is

128x128 and if it is divided uniformly in the 4096 blocks of the image, then 4 bits are

inserted in each block. Each position corresponds to a frequency band in the 8x8 block,

where the watermark bits are inserted.

39

CHAPTER 8. THE OPTIMIZATION ALGORITHM

At the beginning, all the swarms are initialized randomly (each swarm must have the

same particles number). If 4 bits will be inserted, 4 bands are required, then 4 random

numbers must be created between 1 and 63. This means that each particle will consist of 4

frequency bands (positions).

If each swarm has 5 particles, every particle has a set of 4 frequency bands used to

originate 5 different solutions. To generate solution 1, all the particles with index 1 are taken

and joined from every swarm; to generate solution 2, all the particles with index 2 are taken

and joined from every swarm and so on. This procedure is shown in figure 8.1.

Figure 8.1: This figure shows how the solutions are generated taking from particles P1 and P2 -

from the different swarms- the frequency bands B1, B2, B3 and B4, generating the cor-

responding solution.

40

III. After the insertion and the extraction operations (see chapter 5), the MSE (equation

2.5) and the NC (equation 7.1) are calculated. The addition of the MSE and the NC

values is used as fitness function and its value is estimated -according with the theory in

chapter 7- using Pareto dominance.

IV. One of the particles must be selected as the best global. Among the best options gen-

erated, one of them is chosen to be the best global. To choose the local best particle is

considered to add up the MSE and the NC. If the new value is closest to zero than the old

one, the new particle replaces the old one; otherwise the old one continues in the process

(see chapter 7).

V. In the last step, the velocity and the new position of the particles are calculated, accord-

ing to the formulas 6.1 and 6.2 . This generates the new bands and new the iteration

begins. The next figure 8.2 shows the whole algorithm.

Figure 8.2: The optimization algorithm.

41

Chapter 9

Tests and Results

This chapter explains the servers features where the algorithm writen in C++ and CUDA C runs,

the input necessary to execute the code, and the results of different tests.

9.1 Server Features

All tests were executed on two different servers with the following features. As you can see in

the tables 9.1 and 9.2 the servers have the same GPU version, the same number of cores, but

with different velocity.

Server name Cores CPU type

Uxdea 8 Intel Xeon E5620 @ 2.4GHz

Geogpus 8 Intel Xeon E5677 @ 3.47GHz

Table 9.1: CPUs Server features.

Server name GPU Cores

Uxdea Tesla C1060 240

Geogpus Tesla C1060 240

Table 9.2: GPUs Server features.

43

CHAPTER 9. TESTS AND RESULTS

9.2 Input data

In order to test the implementations, figure 9.1 shows the original image (a) used in the algo- rithm

to insert the watermark (b). The size of the original image is 512 ⋅ 512 in 24-bits BMP format.

(a) Original image (b) Watermark

Figure 9.1: Input data

44

9.3. OUTCOMES

9.3 Outcomes

9.3.1 Shieh implementation

The figures 9.2 and 9.3 show the outcomes of executing sequential and CUDA implementa- tions

in both servers Geogpus and Uxdea. The first tables show the results of executing five

experiments, and taking the runtime for each function involved in the insertion and extraction

algorithm.

These experiments were executed with the aim of comparing the runtimes between the

implementation in C++ and the one in CUDA C based on the idea that the operations exe- cuted

in the GPU must be faster than the ones computed in the CPU. The experiments shown in the tables

were executed in both servers Geogpus and Uxdea.

The results obtained from the GPUs in both servers are faster than the ones collected from the

CPU. At this point, the results seem to fit in the idea that the GPU is faster than the CPU. It should

be noted that the functions are not considering the load and download of the data to and from the

GPU.

Figure 9.2: Runtime for functions involved in the insertion/extraction algorithm running on the

Geogpus server.

45

CHAPTER 9. TESTS AND RESULTS

Figure 9.3: Runtime for functions involved in the insertion/extraction algorithm running on the

Uxdea server.

The figures 9.4 and 9.5 show the runtime of the complete procedure to insert and extract a

watermark involved in Shieh algorithm. In these experiments —where the upload and

download of the date are considered— the GPU does not seem such superior considering the

results of the last figures. The MSE and the NC functions (see MSE and NC in the figures)

executed on the GPU without considering the data transfer seems to be fast, but considering the

data transfer are more expensive than the ones executed in the CPU (see MSE Total and NC Total

in the figures).

Figure 9.4: Runtime of the insertion and the MSE, and the extraction and the NC operations on

Geogpus.

46

9.3. OUTCOMES

Figure 9.5: Runtime of the insertion and the MSE, and the extraction and the NC operations on

Uxdea.

In accordance with the features of the server, the GPU of Geogpus is faster than the one of

Uxdea. Seeing the results in the figures 9.2 and 9.3, practically there is no difference in the

runtimes, but seeing the results in figures 9.4 and 9.5 it could be established that the GPU of

Geogpus has a better transfer velocity that helps it to be almost two times faster than Uxdea.

47

CHAPTER 9. TESTS AND RESULTS

9.3.2 PSO implementation

The figures 9.6 and 9.7 show tables with the runtimes of the implementation of the optimiza-

tion algorithm —PSO—. These figures present five experiments with a different number of

iterations for the execution in the CPU and in the GPU. The outcomes are compared in exper-

iments with the same iteration number. These experiments were made to compare the amount of

time used for the algorithm and the quality of the results.

As in the experiments made for the Shieh algorithm, the operations on the GPU must be

faster. The first point to evaluate in the PSO algorithm is the random number generation. Using

the random numbers in the sequential version it is remarkable the difference in time. The use of

those numbers consumes a big quantity of time due to its necessity to spend time in the CPU to

generate different numbers. For the sequential version, the random numbers are generated using

the C function "drand48" that returns a pseudo-random number in the range [0.0,1.0). On the

GPU, the random numbers are generated using a library called curand [5].

Figure 9.6: Runtime for PSO on Geogpus.

48

9.3. OUTCOMES

Figure 9.7: Runtime for PSO on Uxdea.

Reviewing the values (figures 9.6 and 9.7) of the initial fitness and the final fitness it is

noteworthy that the sequential version gives better results than the ones obtained from the GPU.

For all the cases, the runtimes indicate that GPU is faster than CPU, even when all data have been

loaded or when using static numbers in the CPU version. With this, it is possible to set up that —

at least for this version of the application—, if the user wants a good opti- mization for the

watermarking, the sequential version must be used. By contrast, if the user needs a quick

approximation, the GPU version ought to be applied.

49

Chapter 10

Conclusions and future work

10.1 Conclusions

With the vast volume of information flowing on the Internet, watermarking is widely used to

protect this information authenticity. The need for copyright a huge quantity of digital files,

spending the less possible amount of time and avoiding the loss information were the reasons to

propose the use of an algorithm for watermarking —Shieh algorithm—, Particle Swarm

Optimization as an optimizer, and finally a GPU -based in CUDA architecture- to accelerate the

process.

The use of a GPU for accelerating the operations involved in the algorithms of insertion and

extraction of the watermark and in the optimization algorithm was a challenge, since it is a

parallelism paradigm. There is not a standard configuration for the blocks, threads or the

memory treatment in the GPU. That is why the analysis and design of the procedures are a

requirement to take advantage of the parallelism. In order to use parallel programing in a GPU, it

is necessary to shift from a sequential to a parallel thinking, strictly to learn how to divide a huge

problem into small ones —divide and conquer—, attempting to have the best performance.

Using an image of size 512x512 as an input, it is possible to divide it in 64x64 blocks —

such as in the DCT—. The 64x64 matrix is easily mapped to the same number of blocks in the

GPU, and the configuration of the threads will depend on the type of operation to be executed.

For example, in the calculation of the NC there were required just 4 threads to do the

comparisons, but in the case of the MSE 64 threads working at the "same time" were required

(see appendix B). Therefore, the configuration of the blocks and threads for an ap- plication on a

GPU must be carefully analyzed.

Other point of consideration in the use of the GPUs is the memory treatment. In this

application the global memory was used to put up the image and the watermark data, the ratio

and polarities matrices, without forgetting the random numbers. This memory is used to carry

the data from the host (RAM memory) to the device (GPU memory) and vice versa.

51

CHAPTER 10. CONCLUSIONS AND FUTURE WORK

The problem of using it is the long time it spends in the transfer —that depends of the amount of

data—. As you can see in the experiments, the runtime of the functions are quickest in the

GPU without considering the data transfer. Considering the data transfer, sometimes the function

spends more time than the sequential execution (see chapter 9). Other type of mem- ory used in

this application was the shared memory. This memory is used just inside the blocks and it is

not visible between others —unlike the global memory that is visible for all the blocks—. The

shared memory is faster than the global memory, the problem with it is the handling and the

overall synchronization with the threads (the MSE operation uses shared memory to execute a

reduction operation, this is shown in the appendix B).

The design of the PSO algorithm was made applying object oriented analysis (see chap- ter

6) and it was implemented using C++ in order to have two implementations —C++ and CUDA

C— to compare outcomes. At the moment of trying to map the classes from C++ to CUDA C

there was a big problem: in the classes I used dynamic memory to store the results from the

operations. At the moment when I tried to map it to the GPU memory it was not possible to

keep the references, so it was necessary to make some changes for the CUDA C version. The use

of structs instead of classes was the first change due to fact that the classes used in C++ are not

equivalent in CUDA C. The second change consisted on the use of static memory instead of

dynamic memory.

I analyzed the different options to implement the PSO, but I decided to use as much

swarms as number of blocks used to divide the image in the DCT (see chapter 6). This was in profit

of dividing a big problem in small ones, which suited with this parallel paradigm. As it was

established, there is not a standard configuration in CUDA architecture, so I made the configuration

in accordance with the need of the function. The PSO needs to evaluate two vectors: velocity

and position. Position depends of the velocity that is why velocity needs to be computed first. If

there are 4096 swarms —4096 blocks— and each swarm has five particles, then each of them

need to update the velocity vector. The number of operation to be calculated in a CPU is: 4096

(swarms) * 5 (particles) * 1 (operation) = 20480 operations one after another. In the case of the

same operation on the GPU, there are executed the same 20480 operations, but the difference is

that there are 4096 swarms with 5 threads working in parallel computing one operation, hence

there are 20480 threads working at the same time. If one thread in the CPU spends 1 second by

operation the runtime will be 20480 s, but in the case of the GPU there are 20480 threads working

at the same time, and they spend 1 second to finish the calculus. In the last example I am not

considering the speed of the processor —neither CPU nor GPU— nor the upload/download of

the data to/from the GPU.

The velocity vector needs random numbers to be calculated (see equation 6.1). In order to

generate random numbers I used a library called curand (see [5]). This library is useful

because it is easy to generate a lot of numbers in a short time; the problem comes with the

memory. If there is a big quantity of this numbers generated and held in global memory, there might

be a shortage of space to store other data. For one iteration of the PSO there are used two random

numbers to calculate the velocity value. If there are 4096 blocks with 5 particles

52

10.1. CONCLUSIONS

each, 40960 random numbers for iteration are needed. There is another type of memory on the

GPU, the constant memory. This memory is loaded in the GPU but it cannot be changed. This

memory was considered to store the random numbers because they do not modify its value on

the execution of the calculation of the velocity value.

There are a lot of GPUs on the market to be used, some of them for servers, others for PCs

or laptops. I decided to use the ones from Nvidia since I already have a laptop with one of its

cards. I started to program on it, but there was a problem, when I tried to execute the same

code in a server with a better GPU, I realized that the float and the double numbers

representation changed. This is not represents a big obstacle because in small GPUs the dou- ble

number is changed to float automatically. Another feature that needs to be considered is —from

GPU to GPU— the velocity of the processor. This is evident in the experiments because the

Geogpus server is faster than the Uxdea server (see chapter 9).

In the case of the Shieh algorithm, the equations required to be parallelized were analyzed to get

the best performance on the GPU. For the calculation of the MSE and NC there was not an

improvement of the performance compared with the sequential version. The execu- tion of the

functions is fast, but the transfer of the data to the GPU and back slows down the performance.

For this reason it is necessary to seek for another solution for the transaction of the data.

To program an application oriented to be executed on a GPU it is necessary to have knowl- edge

of how the CUDA architecture works. At the beginning it is not easy to start thinking in parallel and

change a big problem in small ones. The important thing to make a good design of an application

for a GPU is to consider the management of the different sorts of memories and their capacity to

store data, as well as to bear in mind that the velocity of the processor changes with the versions

of the GPU, such as the number precision representation, thus take out some portability.

To program on a GPU there is another language called OpenCL (Open Computing Lan-

guage). It is made for running in any GPU independent manufacturer. At the moment of

starting this work there was more information about CUDA than OpenCL, besides the option of

program in the GPU of my own laptop. These were the reasons to start working with CUDA.

After this analysis of the present work, I can say that the use of CUDA helps to improve the

performance of the application and that an algorithm based in population could be im-

plemented on it, as long as the developer is aware of the features of this technology. This

application is the cornerstone and it provides the opportunity to keep working on it to make it

more robust.

53

CHAPTER 10. CONCLUSIONS AND FUTURE WORK

10.2 Future work

In this thesis, quantization was used as an attack to the watermarked image, but it was applied

before the IDC Transform in the insertion routine, and it could be implemented as an extern

routine to apply after the insertion.

Other attacks can be implemented in order to be applied to the watermarked image; each new

attack should be added as a new objective in the PSO evaluation. If there are more attacks,

the application could have a switch used to adjust the attacks to be optimized in ac- cordance with

the user requirements.

There is a library called Thrust that provides a flexible high-level interface for GPU pro-

gramming and offers the possibility of doing operations without the requirement of configure the

blocks and threads on the GPU —removing weight off the programmer's shoulders—. This

library could help to improve the performance of the application.

A different implementation to calculate random numbers in the CPU could be done in order

to improve the time needed to be generated.

Additionally, the PSO could be adjusted in order to look for best outcomes.

54

Appendices

55

Appendix A

Analysis, Design and Implementation of

Shieh Algorithm

This appendix shows part of how the Shieh algorithm was implemented using CUDA C.

Figure A.1 shows the flow diagram of Shieh algorithm, and the operations already imple-

mented in C++ and CUDA.

Figure A.1: Flow Diagram of Shieh Algorithm.

57

APPENDIX A. ANALYSIS, DESIGN AND IMPLEMENTATION OF SHIEH

ALGORITHM

Figure A.2 shows the flow diagram for watermarking extraction, and the operations al-

ready implemented in C++ and CUDA.

Figure A.2: Flow Diagram for Watermarking Extraction.

A.1 Shieh Operations

As an example -for all the set of operations on the Shieh algorithm- a 128x128 binary wa-

termark is considered to be inserted into a 512x512 gray scale image. In agreement with the steps

of the algorithm described in Chapter 6, it is necessary to load the image into the GPU memory

and to apply the DCT. In order to take advantage of the parallelism, a library with this function

provided by CUDA was used. After applying the DCT to the 512x512 image, a matrix of 64x64

blocks -that represents the image- is obtained. Each block is divided at the same time into 8x8

frequency bands where the watermark will be inserted. The configuration of 32x32 blocks is

maintained in the GPU for all the operations, each block in the GPU rep- resents one block of the

image after the DCT; what differs in the GPU is the configuration of the threads that depends on the

need of the operation to be executed.

A.1.1 Ratio Operation

Once the image in DCT is already loaded in GPU memory, the next step is to get the ratio

between the DC and the AC coefficients R(i) using the equation 5.2. This operation was

divided in two parts. First division between Y
m,n
(0) is performed and runs on the GPU. The Ym,n(i)

second part is the sum, that runs on the CPU.

The block configuration on the GPU is:

dim3 ThreadsRatioBlocks(BLOCK_SIZE, BLOCK_SIZE);

58

A.1. SHIEH OPERATIONS

dim3 GridRatioBlocks(Size.width/BLOCK_SIZE,

Size.width/BLOCK_SIZE);

With this block configuration, a 64x64 grid of blocks is generated and each block has 8x8

threads. Each thread makes just one operation between the DC and the AC values. The AC

corresponds with the thread position on the block (current coefficient). The results are stored in the

vector raux, this vector is used to do the sum.

__global__ void CUDAKernelRatio(float *src, float *raux,
int stride, int blockSize){

// Block index

int bx = blockIdx.x; int by

= blockIdx.y;

// Thread index (current coefficient)

int tx = threadIdx.x; int ty =

threadIdx.y;

//copy current coefficient to the local variable

float dividend = src[(by * blockSize + 0) * stride +

(bx * blockSize + 0)]; //DC value

float divisor = src[(by * blockSize + ty) * stride +

(bx * blockSize + tx)]; //AC value

//operation

if(divisor != 0){

raux[(by * blockSize + ty) *

(bx * blockSize +
}else{

raux[(by * blockSize

stride +

tx)] = dividend / divisor;

+ ty) * stride +

(bx * blockSize + tx)] = 0; //Default value
}

__syncthreads();

}

59

APPENDIX A. ANALYSIS, DESIGN AND IMPLEMENTATION OF SHIEH

ALGORITHM

A.1.2 Polarities Operation

To make this operation based in equation 5.5, it is necessary to load from the host memory to

the GPU global memory the ratio and the bands vector. Bands vector keeps the places where the

watermark will be embedded in each block. Next example shows how to load the bands vector

from host memory to the GPU global memory. The size of the bands vector must be equal to the

size of the watermark image.

int *dev_bands;

HANDLE_ERROR(cudaMalloc((void**)&dev_bands,

bandSize * sizeof(int))); //allocate memory
//on GPU

HANDLE_ERROR(cudaMemcpy(dev_bands, bands,

bandSize * sizeof(int),
cudaMemcpyHostToDevice)); //copy memory from

//host to GPU

The block configuration on the GPU for this operation depends on the number of bands by

block. The block number in the grid is 64x64, and the total thread number is equal to the bands by

block. This is due to it is just necessary to compute the frequency bands where the watermark will

be inserted.

dim3 ThreadsPolaritiesBlocks(bandsByBlock);

dim3 GridPolaritiesBlocks(Size.width/BLOCK_SIZE,

Size.height/BLOCK_SIZE);

The results are stored in the vector p, this vector has the same size as the number of bands.

__global__ void CUDAKernelPolarities(float *image, float *p,

float *r, int *bands, int height,
int width, int stride, int blockSize,

int bandsByBlock){

// Block index

int bx = blockIdx.x;

int by = blockIdx.y;

// Thread index (current coefficient)

60

A.1. SHIEH OPERATIONS

int tx = threadIdx.x;

int ib = bands[(by * ((width/8)*bandsByBlock)) +

(bx * bandsByBlock + tx)];

float c = image[(by * blockSize + 0) * stride +

(bx * blockSize + 0)];

float a = image[(by * blockSize + iY[ib]) * stride +

(bx * blockSize + iX[ib])];
float b = r[ib];

if (a * b >= c){

p[(by * ((width/8)*bandsByBlock)) +

(bx * bandsByBlock + tx)] = 1;
}else{

p[(by * ((width/8)*bandsByBlock)) +

(bx * bandsByBlock + tx)] = 0;
}

__syncthreads();

}

A.1.3 Watermark Embedding Operation

This operation is bassed on equation 5.6, and it requires to load the watermark from the host

memory to the GPU global memory. The watermark size is the same as the number of bands.

dim3 ThreadsExtractBlocks(bandsByBlock);

dim3 GridExtractBlocks(Size.width/BLOCK_SIZE,

Size.height/BLOCK_SIZE);

As it was seen in the code above, the grid configuration is the same as the one used in po- larities

operation. The next code shows the watermark embedding operation into the image. The

watermarked image quality is evaluated with the MSE as seen in equation 2.5.

61

APPENDIX A. ANALYSIS, DESIGN AND IMPLEMENTATION OF SHIEH

ALGORITHM

__global__ void CUDAKernelWatermarkInsertion(int *bands,

float *image, float *newImage, int *water, float *p,

float *r, int height, int width, int stride,
int blockSize, int bandsByBlock){

// Block index

int bx = blockIdx.x;

int by = blockIdx.y;

// Thread index (current coefficient)

int tx = threadIdx.x;

int ib = bands[(by * ((width/8)*bandsByBlock)) +

(bx * bandsByBlock + tx)];

int a = p[(by * ((width/8)*bandsByBlock)) +

(bx * bandsByBlock + tx)];
float b = r[ib];

int idx = (by * blockSize + iY[ib]) * stride +

(bx * blockSize + iX[ib]);

if(a == 0 && b == 0){

newImage[idx] = (image[idx] / b) + 1;

}else if(a == 1 && b == 1){

newImage[idx] = (image[idx] / b) - 1;

}

__syncthreads();

}

A.1.4 Quantization

This function was applied using a library of CUDA. Due to the facility of use of this library,

it was not necessary to program it.

62

A.1. SHIEH OPERATIONS

A.1.5 Watermark Extraction Operation

This operation is based on equation 5.8, and it needs to load the watermarked image from the

host memory to the GPU global memory to extract the watermark. As a result, it generates the

watermark that was embedded in the last steps.

dim3 ThreadsWaterBlocks2(bandsByBlock);

dim3 GridWaterBlocks2(Size.width/BLOCK_SIZE,

Size.height/BLOCK_SIZE);

The result is stored in wm and it will be compared with the original watermark using the

Normalized Correlation (NC) shown in equation 7.1.

__global__ void CUDAKernelWaterExtraction(float *image, int *wm,

float *r, int *bands, int height, int width, int stride,
int blockSize, int bandsByBlock){

// Block index

int bx = blockIdx.x;

int by = blockIdx.y;

// Thread index (current coefficient)

int tx = threadIdx.x;

//int ty = threadIdx.y;

int ib = bands[(by * ((width/8)*bandsByBlock)) +

(bx * bandsByBlock + tx)];

float c = image[(by * blockSize + 0) * stride +

(bx * blockSize + 0)];

float a = image[(by * blockSize + iY[ib]) * stride +

(bx * blockSize + iX[ib])];

float b = r[ib];

if (a * b >= c){

wm[(by * ((width/8)*bandsByBlock)) +

(bx * bandsByBlock + tx)] = 1;

63

APPENDIX A. ANALYSIS, DESIGN AND IMPLEMENTATION OF SHIEH

ALGORITHM

}else{

wm[(by * ((width/8)*bandsByBlock)) +

(bx * bandsByBlock + tx)] = 0;
}

__syncthreads();

}

64

Appendix B

Analysis, Design and Implementation of

PSO Algorithm

This appendix shows how the PSO algorithm was implemented using CUDA C.

Figure B.1: Flow Diagram of watermarking algorithm (Shieh + PSO).

The PSO algorithm has the next set of steps:

I. The swarm initialization generates one swarm for each block of 8x 8 and it has N

particles, each particle has the position or bands to insert the watermark image.

II. The insertion and extraction operations are executed to calculate the MSE and NC used

to estimate the Pareto dominance (objetive function).

III. Pareto dominance is applied to get the best particles in each swarm.

65

APPENDIX B. ANALYSIS, DESIGN AND IMPLEMENTATION OF PSO ALGORITHM

IV. Before executing PSO operations, a random numbers array is calculated in the GPU and

stored there, it is necessary at the moment of the particle velocity calculus. The PSO

operations are executed to generate the next positions or bands to insert the watermark

image.

V. Steps II, III and IV are in a loop of M iterations.

B.0.6 Random number generation

To generate the random numbers, the CURAND library was used. It provides facilities that

focus on the simple and efficient generation of high-quality pseudorandom numbers on the GPU.

size_t n = 20 ;

curandGenerator_t gen;

float *devData;

/* Allocate n floats on device */

HANDLE_ERROR(cudaMalloc((void **)&devData,

n * sizeof(float)));

/* Create pseudo-random number generator */
CURAND_CALL(curandCreateGenerator(&gen,

CURAND_RNG_PSEUDO_DEFAULT));

/* Set seed */
srand48(time(NULL));

CURAND_CALL(curandSetPseudoRandomGeneratorSeed(gen,

lrand48()));

/* Generate n floats on device */
CURAND_CALL(curandGenerateUniform(gen, devData, n));

66

B.0.7 PSO operations

These operations are based on 6.1 and 6.2 equations. The operations need as parameter the

particles of each swarm. Each particle is loaded in shared memory, and at the end of the

operations the outcomes are returned to the global memory. The results are used to generate new

positions to insert the watermark image.

To take advantage of the parallelism in CUDA, each block executes its own evaluations of

the functions. If the image size is 512x512, there are generated 4096 blocks (see chapter 8). For

example, in the case of the evaluation of the velocity value, if there are five particles in each block,

then five operation are executed in parallel in the 4096 blocks, for each particle it is assigned one

thread. 20480 threads are working in parallel -4096 (blocks) * 5 (threads)- compared with the

20480 operations that would have been in the sequential mode.

In the case of velocity and position vectors, are assigned threads as number of particles by

block.

B.0.7.1 Velocity

__device__ void updateVelocitiesGPU(Particle * particles,

Particle * gBest, float *radomNum, int swarmSize, float C1,
float C2){

int tid = blockIdx.x;

int tx = threadIdx.x;

int tid2 = (blockIdx.x * 4)+threadIdx.x;

__shared__ float a[4], b[4], c[4];

while(tid < swarmSize){

a[tx] = particles[tid].vel.vel[tx];

b[tx] = C1 * radomNum[tid2] * (particles[tid].lbest.pos[tx]
- particles[tid].pos.pos[tx]) ;

c[tx] = C2 * radomNum[tid2] * (gBest->pos.pos[tx]
- particles[tid].pos.pos[tx]) ;

particles[tid].vel.vel[tx] = a[tx]+b[tx]+c[tx];

tid += blockDim.x * gridDim.x;

tid2 += blockDim.x * gridDim.x;
}

}

67

APPENDIX B. ANALYSIS, DESIGN AND IMPLEMENTATION OF PSO ALGORITHM

B.0.7.2 Position

__device__ void updatePositionGPU(Particle * particles,

int swarmSize){

int tid = blockIdx.x; int tx =

threadIdx.x;

__shared__ float a[4];

__shared__ int c[4];

while(tid < swarmSize){

a[tx] = (particles[tid].vel.vel[tx]*100) +

(particles[tid].pos.pos[tx]*100);
c[tx] = fabs(a[tx]);

c[tx] = (c[tx] % 63) + 1;

particles[tid].pos.pos[tx] = c[tx];

tid += blockDim.x * gridDim.x;
}

}

68

The calculus of the MSE and the NC are based in the equations 2.5 and 2.6 respectively. To

calculate the MSE value there are needed 64 threads for each block, where each thread executes

a comparison (if there are 4096 blocks, then 262164 operations -4096 (blocks) * 64 (threads)-

would be executed in parallel). The reduction is done by using in every iteration the half of the

threads. If there are 64 threads, then the iterations start with 32 threads. The threads with indices

lesser than this value do the job.

The figure B.2 shows the assignation threads for the reduction operation. Fer each itera- tion,

the threads are divided by the half. At the end of the operation just one thread stores the result.

Figure B.2: Threads management for the reduction operation.

To calculate NC just 4 threads are required, each thread executes one bitwise operation. If 4

bits of the watermark were inserted by block, just 4 threads would be needed to make the

comparisons (if there are 4096 blocks, then 16384 operations -4096 (blocks) * 4 (threads)-

would be executed in parallel).

B.0.7.3 MSE

__global__ void MSEKernel(byte *Img1, byte *Img2,

float * answer, int Stride, ROI Size){

__shared__ float cache[64];

// Block index

int bx = blockIdx.x;

69

APPENDIX B. ANALYSIS, DESIGN AND IMPLEMENTATION OF PSO ALGORITHM

int by = blockIdx.y;

// Thread index (current coefficient)

int tx = threadIdx.x; int ty =

threadIdx.y;

// Indices

int idx = (by * 8 + ty) * Stride + (bx * 8 + tx);

int ith = ty * 8 +tx;

cache[ith] = POW((Img1[idx] - Img2[idx]));

__syncthreads();

int i = 32; // total block / 2

while (i != 0) {

if (ith < i)

cache[ith] += cache[ith + i];

__syncthreads();

i /= 2;

}

int bidx = by * Stride + bx;
if (ith == 0)

answer[bidx] = cache[0]/64;

}

B.0.7.4 NC

__global__ void ncKernel(int *waterO, int *waterE,

float *answer, int Stride){

__shared__ float cache[4];

// Block index

int bx = blockIdx.x; int by

= blockIdx.y;

70

int tx = threadIdx.x;

// Indices

int idx = (by * 4)* 64 + (bx * 4 + tx);

cache[tx] = waterO[idx] ˆ waterE[idx];

__syncthreads();

int i = 2;

while (i != 0) {

if (tx < i)

cache[tx] += cache[tx + i];

__syncthreads();

i /= 2;

}

int bidx = by * 64 + bx;

if (tx == 0)

answer[bidx] = cache[0]/4;

}

71

Appendix C

Utilities

Utilities are the stuctures that help in the algorithm, but they are not involved in the algorithm.

C.1 Timer.h

This structure is used to meassure the time when a code is running on the CPU or the GPU. The

structure has two methods: startT imer(), to initialize the timer, and stopT imer() to stop the

timer.

Figure C.1: Timer struct.

To meassure the time, the sys/time.h library is used.

struct timeval start, stop;

void startTimer(){

gettimeofday(&start, 0);

}

73

APPENDIX C. UTILITIES

float stopTimer(){

gettimeofday(&stop, 0);

float elapsedTime = (stop.tv_sec+stop.tv_usec*1e-6)-

(start.tv_sec+start.tv_usec*1e-6);

return elapsedTime;

}

74

C.2. SHIEHUTILITIES.H

C.2 ShiehUtilities.h

ShiehUtilities is used to load one image and one watermark in memory, it has two methods:

loadImage() and loadW atermark(). The path, and the image and the watermark names are

stored in a file. Due to this, it is not necessary to re-compile the code to use a new image or

watermark.

Figure C.2: ShiehUtilities struct.

struct ShiehUtilities{

//IMAGE

char *SampleImageFname;

char *SampleImageFnameResCUDA2;

char *pSampleImageFpath;
ROI ImgSize;

int ImgStride; //Step between two sequential rows

byte *ImgSrc;

byte *ImgDstCUDA2;

//WATERMARK

char *WatermarkPath;
ROI WaterMImgSize;

int WaterMStride;

byte *WaterMSrc;
ROI WaterMSize;

int *WaterMSrcInt;

//BANDS

int *bands;
int bandsstart;

int bandsend;

75

APPENDIX C. UTILITIES

int bandSize;

int bandsbyblock;

ShiehUtilities(){

ImageParamLoader ipl;

ipl.loadProperties();

SampleImageFname = ipl.getOrigin();

SampleImageFnameResCUDA2 = ipl.getDestination();

pSampleImageFpath = ipl.getHome();

WatermarkPath = ipl.getWatermark();

bandsstart = ipl.getBandsStart();

bandsend = ipl.getBandsEnd();

}

/**

**

* This function generates the initial bands in a row

*

* \param totalElements

[IN] - Is equivalen to the

number or blocks

times number of bands

* \return Array with all the bands for whole image

*/

void makeDiagonalBands(int totalElements){...}

/**

* This function load the initial bands from a file

*

* \param totalElements [IN] - Is equivalen to the

*

*

*

number ob blocks times

number of bands

* \return Array with all the bands for whole image

*/

76

C.2. SHIEHUTILITIES.H

void loadDiagonalBands(int totalElements){...}

/**

* This function generates the initial bands in a row

*

* \param totalElements [IN] - Is equivalen to the

*

*

number ob blocks times

number of bands

* \param baux [IN] - The bans choosen by the user

* \param bandsByBlock [IN] - Number of band for each block

*

* \return Array with all the bands for whole image

*/

void makeDiagonalBands2(int totalElements,

int *baux, int bandsByBlock){...}

/**

**

* Load the original image to be used for watermarking

**

* \param op [IN] - Is the option to load de

*

*

*

original image

or the watermarked image

* \return integer, 0 = Successful, 1 = Error

*/

int loadImage(int op){...}

/**

**

* Load the watermark image

**

*

* \return integer, 0 = Successful, 1 = Error

77

APPENDIX C. UTILITIES

*/

int loadWatermarkInt(){...}

78

C.3. IMAGEPARAMLOADER.H

C.3 ImageParamLoader.h

ImageParamLoader is used to load the path where the auxiliar files are stored. Image and

watermark names are extracted from a file called image.properties which contains the fol-

lowing information:

ORIGIN = barbara.bmp

DESTINATION = data/barbara_cuda.bmp

IMAGE_HOME = data/barbara.bmp

WATERMARK = data/logo128x128.bmp

BANDSSTART = 28

BANDSEND = 31

BANDSBYBLOCK = 4

In the class, the method loadP roperties() loads the parameters and they can be called by their

getter function.

Figure C.3: ImageParamLoader class.

class ImageParamLoader{

79

private:

char *origin;

char *destination;

char *home;

char *watermark;
int bandsstart;

int bandsend;

public:

ImageParamLoader();

˜ImageParamLoader();

char* getOrigin();

char* getDestination();

char* getHome();

char* getWatermark();
int getBandsEnd();

int getBandsStart();

void loadProperties();

protected:

APPENDIX C. UTILITIES

};

C.4 BmpUtil.h

BmpUtil is a library provided by NVIDIA. It contains basic image operations which are used by

ShiehUtilities.h to load the image and the watermark into the memory.

80

Bibliography

[1] Mark Johnston & Mengjie Zhang Ammar Mohemmed. Particle swarm optimization

based multi-prototype ensembles. GECCO, pages 57-63, July 2009.

[2] ByteScout. Digital watermark types, 2011. http://bytescout.com/.

[3] NVIDIA Corporation. Nvidia cuda c programming, 2009.

[4] NVIDIA Corporation. Nvidia cuda c programming - best practices guide, 2009.

[5] NVIDIA Corporation. Cuda curand library, 2010.

[6] Chin-Shiuh Shieh et al. Genetic watermarking based on transfrom-domain techniques.

Pattern Recognition, 2004.

[7] Luca Mussi et al. Evaluation of parallel pso algorithms within the cuda architecture.

Elsevier, 2010.

[8] & R. Garduno-Ramirez J. Heo, K. Lee. Multiobjective control of power plants using

particle swarm optimization techniques. IEEE Transactions on Energy Conversion, vol. 21,

no. 2, 2006.

[9] Jason Sanders & Eduard Kandrot. Cuda by Example: An introduction to general pur-

pose GPU programming. Addison-Wesley, USA, first edition, 2010.

[10] R. C. Kennedy, J. & Eberhart. Particle swarm optimization. Proceedings of IEEE

International Conference on Neural Networks, pages 1942-1948, 1995.

[11] Anton Obukhov & Alexander Kharlamov. Discrete cosine transform for 8x8 blocks

with cuda, 2008. by NVIDIA.

[12] M. Donelli & A. Massa. Computational approach based on a particle swarm optimizer

for microwave imaging of twodimensional dielectric scatterers. IEEE Transactions on

Microwave Theory and Techniques, vol. 53, no. 5, 2005.

[13] David B. Kirk & Wen mei W. Hwu. Programming Massively Parallel Processors: A

Hands-on Approach. Morgan Kaufmann, USA, first edition, 2010.

81

BIBLIOGRAPHY

[14] T. Huang & A. S. Mohan. A microparticle swarm optimizer for the reconstruction of

microwave images. IEEE Transactions on Antennas and Propagation, vol. 55, no. 3,

2007.

[15] M. Kutter & F.A.P. Petitcolas. A fair benchmark for image watermarking systems.

Security and Watermarking of Multimedia Contents, 1999.

[16] Kitti Attakitmongcol & Arthit Srikaew Prayoth Kumsawat. The effects of transforma-

tion methods in image watermarking. -, 2010.

[17] F. Zhang & H. Zhang Radu Sion. Digital watermarking capacity and reliability. Inter-

national Conference on E- commerce Technology, 2004.

[18] C. Xavier & N. Karssemeijer S. Selvan. Parameter estimation in stochastic mammo-

gram model by heuristic optimization technique. IEEE Transactions on Information

Technology in Biomedicine, vol. 10, no. 4, 2006.

[19] Mark P. Wachowiak & Renata Smolikova. An approach to multimodal biomedical im-

age registration utilizing particle swarm optimization. IEEE Transactions on Evolution- ary

Computation vol. 8 no. 3, 2004.

[20] F. Zhang & H. Zhang. Digital watermarking capacity research. International Confer-

ence on Communica- tions, Circuits and Systems, ICCCAS, 2004.

82

	Portada
	Contents
	Chapter 1. Introduction
	Chapter 2. Transform Methods for Watermarking
	Chapter 3. Watermarking Attacks
	Chapter 4. CUDA Architecture
	Chapter 5. Shieh Algorithm
	Chapter 6. Particle Swarm Optimization (PSO)
	Chapter 7. Multiobjetive Optimization
	Chapter 8. The Optimization Algorithm
	Chapter 9. Tests and Results
	Chapter 10.Conclusions and Future work
	Bibliography

