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ABSTRACT  
 

 
 
 
 
 
 
 

Abstract  
 
 
 

In this thesis, I'm presenting a research about the usability, advantages and disadvantages of using 

CUDA architecture to implement algorithms based on populations, specifically Parti- cle Swarm 

Optimization (PSO). Nowadays it is not necessary to invest in clusters, since it is enough to have 

a video card -as the ones from NVIDIA- that has a lot of cores in just one GPU, and takes 

advantage of this parallelism.  

 
In order to test the performance of the algorithm, a hide watermark image application is 

implemented, and the PSO is used to optimize the positions where the watermark has to be 

inserted. This application uses the insertion/extraction algorithm proposed by Shieh et al. The 

whole algorithm was implemented for both sequential and CUDA architectures. The CUDA 

version of the watermarking-PSO algorithm takes advantage of the parallelism, where the fitness 

function is the union of two objectives: fidelity and robustness. The measurement of fidelity and 

robustness is computed by using Mean Squared Error (MSE) and Normalized Correlation (NC) 

respectively; these functions are evaluated using Pareto dominance.  

 
The first chapter introduces watermarks, what they are and explains the two types of wa- 

termarks: visible and invisible. It also includes a perspective about what CUDA architecture is, 

how it was born and what it is used for nowadays. Later it gives an introduction about what 

Evolutionary and Bioinspired Algorithms are.  

 
The second chapter gives an overview of Discrete Cosine Transform (DCT) applied to insert 

the watermark images. In addition to this method, are explained two watermarking metrics: 

watermarking fidelity and watermarking robustness. The fidelity represents the sim- ilarity of the 

watermarked image with the original image and the robustness represents the resistance of the 

watermark against manipulations applied on the watermarked image. The third chapter -related 

with the second one- explains the different types or watermark attacks. The attacks are applied to 

test the robustness of the watermarked image.  

 
The fourth chapter explains the main CUDA features such as the architecture, how to or- 

ganize the data in the GPU, how to do the thread assignment to take advantage of parallelism, 

beside the different memory types such as: global, constant, registers and shared.  



The fifth chapter gives in detail the steps that are involved in the Shieh algorithm, which  

is used to insert and extract the watermark image. In few words, this algorithm makes use of the 

DCT domain by splitting the original image in blocks of 8x8, then a ratio matrix between DC and 

AC coefficients is calculated. The next step is to compute the relation between the image content 

and the frequency bands where the watermark will be inserted; finally Inverse Discrete Cosine 

Transform (IDCT) is performed to get the watermarked image.  

 
The sixth chapter introduces the theory about Particle Swarm Optimization (PSO), which is 

based on particles that fly through the problem space trying to find a solution each time step. To 

do this the particle moves are based in velocity and position vectors that change with time. To 

know if a particle is near to a solution, a fitness value must be calculated. In the case of this 

work, the fitness value is composed of two objectives: fidelity and robustness. These aims are 

evaluated using Pareto dominance whose theory is explained in chapter seven.  

 
The chapter eighth finally links the whole theory seen in previous chapters to give life to the 

optimization algorithm applied in the watermark insertion. The algorithm is based on the Shieh 

and the PSO algorithms.  
 

 
Finally, test, results and conclusions are exposed in chapters nine and ten.  
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Chapter 1  
 
 

Introduction  
 
 
 

The goal of the present work is to research and analyze bioinspired algorithms applied to a 

watermarking insertion algorithm, using the parallel paradigm on Graphics Processing Units 

(GPUs), specifically based on Compute Unified Device Architecture (CUDA). The first part 

concerns with the implementation of the watermarking algorithm; this was carried out in a  

research stay at the Ecole de Technologie Sup  ́ 
´ erieure (ETS), Universit́  du Qu  ́ 

e ebec in Canada,  

under Professor Robert Sabourin's and PhD student Bassem Guendy's supervision. The sec- ond part 

considers the bioinspired algorithm implementation and the integration with the wa- termarking 

algorithm. The second part was under the supervision of Dra. Katya Rodŕ ıguez  

V́  azquez.  

 
Digital watermarking came to be in great demand when sharing information on the In- 

ternet became a usual practice. When sharing files online, you never know if someone uses them 

without your consent.  

 
A digital watermark is a pattern of bits inserted into a digital file such as an image, an audio 

or a video. Such patterns usually carry copyright information of the file. Digital water- marking 

takes its name from the faintly visible watermarks imprinted on paper to identify a manufacturer, 

an enterprise, a school, etc. In digital watermarking the objective is to provide copyright protection 

in digital files.  

 
When speaking of digital image watermarking, we can divide watermarks into two main 

groups: visible and invisible watermarks.  

 
A visible watermark is a visible semi-transparent text or image overlaid on the original 

image. It allows the original image to be viewed, but it still provides copyright protection by 

marking the image as its property. Visible watermarks are more robust against image trans- 

formation (especially if you use a semi-transparent watermark placed over the whole image). Thus 

they are preferable for strong copyright protection of intellectual property in digital for- mat.  
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An invisible watermark is an embedded image which cannot be perceived with human 

eyes. Only electronic devices (or specialized software) can extract the hidden information to 

identify the copyright owner. Invisible watermarks are used to mark a specialized digital content 

(text, images or even audio content) to prove its authenticity [2].  

 
A GPU is a processor dedicated to graphics processing, to lighten the workload of the 

central processor in applications such as video games and interactive 3D applications. On this 

way, while much of the load related to the graphics processing is executed on the GPU, the CPU 

can focus on other calculations.  

 
Using GPUs is possible to perform tasks more efficiently, which are optimized for floating point 

calculations. Therefore, a good strategy is to use brute force on the GPUs to complete more 

calculations at the same time.  

 
In order to program the GPU, several languages can be used, among them C using 

CUDA extension, OpenCL, Fortran, Java, etc. CUDA is a parallel computing architecture of 

NVIDIA that allows a significant increase in performance of the calculations thanks to the power of 

the GPU.  

 
With thousands of GPUs, software developers, scientists and researchers are finding op- 

portunities to use CUDA, for example in image and video processing, biology and compu- 

tational chemistry, simulation of fluid dynamics , the reconstruction of tomographic images, 

seismic analysis, evolutionary computation and more.  

 
Currently, evolutionary computation makes use of models based on the natural evolution 

process, designing and implementing algorithms for solving problems. There are a large 

variety of proposals and studies on these models, which are called with the generic name of 

Evolutionary Algorithms. These have common features such as the inspiration in the 

simulation of the evolution of populations of individuals through processes of selection and 

reproduction.  

 
Another set of proposals inspired by biological models, such as optimization algorithms 

based on Ant Colony and Swarm-based algorithms are classified into what has been called 

bioinspired algorithms, a new way to solve problems based on the behavior of animals or 

systems that take centuries to evolution.  
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1.1. MOTIVATION  
 

 

1.1  Motivation  
 

Due to the impossibility to control the information that goes through Internet, there is a need to 

protect our information from unauthorized copying or to legitimate our ownership over it, and the 

invisible watermarking comes out as an option that -combined with an optimization mechanism 

such as the bioinspired algorithm PSO-, provides a highly suitable tool for this purpose.  

 
In recent years, new and cheaper technologies such as CUDA architecture have emerged with 

the concept of massive parallelism. Due to this new paradigm, it is not necessary to in- vest in 

expensive clusters, since it is enough to have a video card -like the ones from Nvidia- that have a 

lot of cores in just one GPU, and take advantage of its massive parallelism.  

 
The combination of the bioinspired and the watermarking algorithms using the new mas- sive 

parallelism paradigm on GPUs to accelerate the process came out as a curiosity for me and 

became the motivation of the research in this work.  
 

 
 
 

1.2  Contributions  
 
The contributions of this thesis are:  
 

• A proposal on how to implement a watermark optimization using Particle Swarm Op-  
timization (PSO) on GPUs. In this proposal each block generated in Discrete Cosine 

Transform (DCT) is taken as a swarm. For each swarm, N particles are created, and 

these particles have part of the total solution. The particles fitness is measured by using mean 

squared error (MSE) and normalized correlation (NC); these are the two objetives that are 

evaluated using Pareto dominance.  
 

• Two implementations of the optimization algorithm, one sequential and other that uses  
CUDA architecture. Those implementations help to compare the efficiency and speed up of 

the two different architectures, and to know which of them is more convenient to be used in 

algorithms based in populations.  

 
 

1.3  Outline  
 

The main theory for watermarking using the Shieh algorithm combined with PSO and the 

CUDA architecture is presented in the following chapters of this thesis.  
 

 
 

• Chapter 2 presents the DCT theory as one of the main elements to embed a watermark,  
besides the metrics used to evaluate it.  
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• Chapter 3 decribes the watermarking attacks and the one used in the optimization  
algorithm.  
 

• Chapter 4 explains the main features of the CUDA architecture, thread assigment,  
thread scheduling, device memory and some of the best practices to develop software with 

CUDA.  
 

• Chapter 5 presents the details for the implementation of the algorithm proposed by  
Shieh et al [6].  
 
• Chapter 6 describes the foundations of the PSO algorithm.  
 
• Chapter 7 explains the foundations of the multiobjetive optimization.  
 
• Chapter 8 explains how the whole algorithm (watermarking + PSO) was implemented.  
 
• Chapter 9 presents the tests and results of the thesis.  
 
• Chapter 10 draws the conclusions of this research work.  
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Chapter 2  
 
 

Transform Methods for Watermarking  
 
 
 

There are different types of transformations used in image watermarking such as Discrete 

Cosine Transform (DCT ), Discrete Wavelet Transform (DW T ), and Discrete Multiwavelet 

Transform (DM T ).  

 
DCT is commonly used in MPEG and JPEG as an orthogonal transform. In the DCT 

domain, the energy could be concentrated in the low frequency regions around the upper-left 

corner (see figure 2.1), but depending of the convention the energy could be concentrated in the 

center or in the other corners.  
 

 
 
 
 
 
 
 
 

Figure 2.1: Original Lena image (left) and transform coefficients of Lena image obtained by DCT.  
 

 
 

DWT decomposes the image into different frequency bands and still retains its spatial 

information. In wavelet watermarking techniques, since the DWT of an image gives mul-  

tiresolution sampling, the watermark ends up being robust to downsampling operations.  

 
DMT is relatively a new type of signal transform that is commonly used in image com- 

pression. The main motivation of using multiwavelet is that it is possible to construct mul- 

tiwavelets that simultaneously possess desirable properties such as orthogonality, symmetry and 

compact support with a given approximation order [16].  

 
At the EST -where I made a research stay-, Professor Robert Sabourin and his collabora- tors 

were working on a project to apply the watermark process in financial banking document  
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like checks, invoices and bills. The process to digitized the physical document is made using as 

equipment a scanner. The digital files are acquired by the scanner in grey scale, that is why the work 

focuses in the use of grey scale images. The client, Banctec needs to have digitized and 

watermarked tens of millions of documents per day, and that is why they need a rapid method to 

watermark a huge quantity of documents.  

 
In addition, Professor Sabourin's team decided to apply DCT because small changes in some 

frequency bands are visually imperceptible. Moreover, JPEG and MPEG compression are based 

on DCT and with such method the watermark ends up being resistant against com- pression.  
 

 
 
 

2.1  DCT Theory  
 

The Discrete Cosine Transform is a Fourier-like transform, which was first proposed by 

Ahmed et al. (1974). While the Fourier Transform represents a signal as the mixture of 

sines and cosines, the Cosine Transform performs only the cosine-series expansion. The pur- pose 

of DCT is to perform the decorrelation of the input signal and to present the output in the frequency 

domain. The DCT is known for its high "energy compaction" property, meaning  

that the transformed signal can be easily analyzed using few low-frequency components.  

 
This fact made it widely used in digital signal processing.The most popular DCT is the two-

dimensional symmetric variation of the transform that operates on 8x8 blocks and its in- verse. 

The two-dimensional input signal is divided into the set of nonoverlapping 8x8 blocks and each 

block is independently processed. This makes it possible to perform the block-wise transform in 

parallel.  

 
The formal definition for DCT of two-dimensional for a sample of size N ⋅ N is defined  

as follows:  
 

 
 
 

N −1 N −1  

 

 
 
 

f (x, y) cos π(2x N 1)u cos π(2y N 1)v  
C(u, v) = α(u)α(v)  x=0 y=0  2 + 2 + (2.1)  

 
The inverse of two-dimensional DCT for a sample of size N ⋅ N is:  
 

 
 
 

N −1 N −1  

f (u, v) =  
α(u)α(v)C(u, v) cos π(2x N 1)u cos π(2y N 1)v  

u=0 v=0  2 + 2 + (2.2)  
 

where u, v = 0, 1, ..., N − 1, also x, y = 0, 1, ..., N − 1, and  
 

 
6 



 

 
 
 

� 
� 

α(u) =
 �  

 
 
 
 

1 
N 
2 

N 
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if u = 0;  
(2.3)  

if u = 0.  
 

As it can be seen from 2.3, if u = 0 then C(0) = N N=0
1 f (x). By convention,  

1 − 
x 

this value is called the DC coefficient of the transform and the other are referred to as AC  

coefficients[11].  

 
 
 

2.2  Watermarking Metrics  
 

In the digital framework, watermarking algorithms that make use of information hiding tech- 

niques have been developed and hiding capacity has naturally been used as a metric in eval- 

uating their power to hide information (the maximal amount of information that a certain 

algorithm can "hide" keeping the data within allowable distortion bounds).  
 
 
 

2.2.1  Watermark Fidelity  

The fidelity represents the similarity of the watermarked image with the original image. Peak  

Signal to Noise Ratio (P SN R) is commonly used to evaluate image degradation or recon-  

struction fidelity. It is defined for two images I and K of size M ⋅ N as:  

 
 

2552  
P SN R(I, K) = 10 log10  (2.4)  

M SE(I, K)  

Where I is the original image, K is a reconstructed or noisy approximation, 2552 is the  

maximum pixel value in image I and M SE is a mean square error between I and K.  

 
 

M −1 N −1  

11  

M S E (I , K ) = M N  

 

 
i=0 j=0  

I(i, j) − K(i, j)  2 (2.5)  

PSNR is expressed in decibel scale. In image reconstruction typical values for PSNR  

vary within the range [30, 50]. A PSNR value of 50 and higher calculated from two images that 

were processed on diverse devices with the same algorithm indicates that the results are 

practically identical.  
 
 
 

2.2.2  Watermark Robustness  

The robustness represents the resistance of the watermark against attacks -compression, ro-  

tation, scaling, etc. (detailed attacks are described in chapter 3 )- done on the watermarked  
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image. The Normalized Correlation (N C) is used to measure the robustness between the 

original watermark and the extracted watermark. When different attacks have been applied to a 

watermarked image, the N C is calculated between the embedded watermark W (i, j) and the 

extracted watermark from the attacked image W (i, j) , where both watermarks have the  

same dimensions Mw ⋅ Nw.  
 

 
NC =  

 
MW  
i=1  

 

 
 
MW  

 
NW  
j=1  

 
[W (i, j)W (i, j)]  
NW  

 
 
(2.6)  

 
 

2.2.3  

 
 

Watermark Capacity  

i=1  j=1  
[W (i, j)]2  

Determining the capacity of a watermark in an image is to find how much information can be  

hidden in a digital image without perceptible distortion while maintaining its robustness [20].  

 
Image watermarking capacity is a complex problem that may be influenced by many 

factors. The content of the image has as much influence in the capacity as the watermark 

strength. But higher strength in a watermark not always means higher watermark capacity. For 

example if we add ten units instead of one unit to the gray level value for each pixel in order 

to insert one bit of watermark, the strength becomes much higher, but the capacity remains the 

same [17].  

 
 
 

2.3  Functions used in this thesis  
 

Generally, the watermark is measured and characterized using three aspects, i.e. fidelity, 

robustness and capacity. There is a need to fix the capacity and to maximize both fidelity and 

robustness to reach a better watermarking characteristics system. Professor Sabourin's team 

decided to start working with fidelity and robustness as a first version of the application.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

8 



Chapter 3  
 
 

Watermarking Attacks  
 
 
 

Digital image watermarking has become a popular technique for authentication and copyright 

protection. In order to verify the security and robustness of watermarking algorithms, spe- cific 

attacks have to be applied to test them. A list of most common attacks is given as follows.  

 
 

I. JPEG Compression - JPEG is currently one of the most widely used compression  

algorithms for images.  
 

II. Geometric transformations  
 

1) Flip - The image looks, as if it has been reflected along the central horizontal or  

vertical axis of the layer.  

2) Rotation - It is used to move in some angle the image, it is used to straighten an  

image once it was scanned.  

3) Cropping - It refers to an unwanted part of the image that is removed, to focus in  

a particular object.  

4) Scaling -When a image is resized, sometimes the image is enlarged or reduced to  

fit in an specific place. The scaling could be applied in horizontal, vertical or both 

directions.  
 

III. Enhancement techniques  
 

1) Low pass filtering - The simplest operation to calculate it, is the average of a  

pixel and all of its eight immediate neighbors. The result replaces the original 

value of the pixel. Every pixel repeat the same process. This effect is also called 

blurring or smoothing.  

2) Histogram modifications - This includes histogram stretching or equalisation  

which are sometimes used to compensate poor lightening conditions.[15]  

3) Sharpening - It is used to increase the contrast between each pixel and its neigh-  

bors. The image must be blurring as first step, then the original and the blurred  
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version image are compare pixel by pixel. If a pixel is brighter than the blurred 

version it is lightened further; if a pixel is darker than the blurred version, it is 

darkened.  

4) Gamma correction - Gamma correction is used to control the overall brightness  

of an image. This effect is used when the image is too dark.  

5) Restoration - Sometimes it is necessary to reduce an specific degradation process  

(blur, noise, camera misfocus, etc.) in the image, this technique is used to reduce 

("compensate for" or "undo") the effects of that degradation.  

 
 

3.1  Examples of Attacks  
 
This section explains some attacks considered by the Shieh algorithm for robustness [6].  

 
 
 

3.1.1  JPEG Compression  

The name "JPEG" stands for Joint Photographic Experts Group, the name of the committee  

that created the JPEG standard and also other standards. The JPEG compression algorithm is 

used with photographs and paintings of realistic scenes with smooth variations of tone and color. 

For web usage, where the amount of data used for an image is important, JPEG is very popular.  

 
JPEG is based on a lossy compression method, which somewhat reduces the image fi- delity. 

This method discards (loses) some data in order to achieve its goal, with the result that 

decompressing the data yields content that is different from the original, though similar enough to 

be useful in some way.  

 
 
 

3.1.2  Low Pass Filtering  

Applying a low pass filter on 2D image in the frequency domain means zeroing all frequency  

components above a cutoff frequency. The result is transformed back into the spatial domain.  

 
 
 

3.1.3  Median Filtering  

The median filter is a nonlinear digital filtering technique, often used to remove noise. The  

main idea of the median filter is to run through the signal entry by entry, replacing each entry with 

the median of neighboring entries. The pattern of neighbors is called the "window", which slides, 

one entry at a time, over the entire signal.  
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3.2  Attack used in this thesis  
 

In the present work, "quantization" is used as a watermarking attack. This attack was applied 

because, since it is already part of the CUDA libraries, it was not necessary to program it, and 

also because of its ease of use. Quantization is a method that can be added to the inser- 

tion/extraction algorithm although it is not intrinsic to it.  

 
Just one attack was used to test the optimization algorithm (see chapter 8) considering that 

only one type of attack was sufficient to determine its performance. Nevertheless, other attacks 

might be implemented to test the algorithm further, which is a proposal for future updates of 

this application.  

 
Quantization is applied to reduce the number of colors utilized in images; this technique is 

implemented on devices that support a limited number of colors and for efficient compres- sion, it 

makes possible to reduce the file size.  

 
In quantization, the compression rate depends on the number of coefficients that are non- zero 

after quantization has been performed. If a compression rate of 75 percent (of the initial size) is 

required, 25 percent of least valuable coefficients should be zero after the quantization step.  
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Chapter 4  
 

 
 
 
 

CUDA Architecture  
 

 
 
 
 
 

In november 2006, NVIDIA introduced CUDA, a new general purpose parallel computing 

architecture with a new programming model and an instruction set architecture, a tool to de- 

velop scientific programs oriented to massively parallel computation. It is actually sufficient to 

install a compatible GPU and the CUDA SDK, even in a low end computer to develop a parallel 

program using a high level language as C.  
 

 
 
 

CUDA's programming model requires that the programmer splits the problem under con- 

sideration into many independent subtasks which can be solved in parallel. Each subproblem may 

be further divided into many tasks, which can be solved cooperatively in parallel too. In CUDA 

terms, each subproblem becomes a thread block, each thread block being com- posed of a 

certain number of threads which cooperate to solve the subproblems in parallel. The software 

element that describes the instructions to be executed by each thread is called kernel. When a 

program running on the CPU invokes a kernel, the number of corresponding thread blocks and 

the number of threads per thread block must be specified. The abstraction on which CUDA is 

based allows a programmer to define a two dimensional grid of thread blocks; each block is 

assigned a unique pair of indixes that act as its coordinates within the grid. The same 

mechanism is available within each block: the threads that compose a block can be organized as 

a two or three dimensional grid. Again, a unique set of indixes is pro- vided to assign each 

thread a 'position' within the block. This indexing mechanism allows each thread to personalize its 

access to data structures and, in the end, achieve effective prob- lem decomposition [7].  
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Figure 4.1: A multidimensional example of CUDA grid organizations [13].  
 

 
 

A Graphics Processing Unit (GPU) is a processor dedicated to graphics processing in or- der to 

lighten the workload of the central processor in applications such as video games and interactive 

3D applications. On this way, while much of the related to the graphics processing is executed on 

the GPU, the CPU can focus on other calculations.  

 
The expertise of GPUs can perform tasks more efficiently, which are optimized for float- ing 

point calculations. Therefore, a good strategy is to use brute force on the GPUs to com- plete 

more calculations at the same time. To program the GPU we can use several languages, such as C 

using CUDA extension, OpenCL, Fortran, Java, etc.  

 
With thousands of GPUs, software developers, scientists and researchers are finding op- 

portunities to use CUDA. For example in image and video processing, biology and compu- 

tational chemistry, simulation of fluid dynamics, the reconstruction of tomographic images, 

sismic analysis, evolutionary computation and more.  
 

 
 

14  



4.1. THREAD ASSIGMENT  
 

 

4.1  Thread Assigment  
 

 
 

The GPU is made up of a scalable array of multithreaded Streaming Multiprocessors (SMs), each 

of which is able to execute several thread blocks at the same time. When the CPU orders the GPU 

to run a kernel, thread blocks are distributed to free SMs and all the threads of a scheduled 

block are executed concurrently.  
 
 

One key aspect about SMs is their ability to manage hundreds of threads running different code 

segments: in order to do so they employ an architecture called SIMT (Single Instruc- tion, 

Multiple Thread) which creates, manages, schedules, and executes groups (warps) of 32 parallel 

threads [7].  
 
 

The runtime system maintains a list of blocks that needs to be executed and assigns new 

blocks to SMs as they complete the execution of blocks previously assigned to them.  
 
 

Figure 4.2 shows an example in which three thread blocks are assigned to each SM. One of the 

SM resource limitations is the number of threads that can be simultaneously tracked and 

scheduled. Hardware resources are required for SMs to maintain the thread, block IDs, and track 

their execution status [13].  
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4.2: Thread block assigment to streaming multiprocessors (SMs) [13].  
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4.2  Thread Scheduling and Latency Tolerance  
 

Once a block is assigned to a streaming multiprocessor, it is further divided into 32-thread units 

called warps. The size of the warps is implementation specific. In fact, warps are not part of 

the CUDA specification; however, knowledge of warps can be helpful in under- standing and 

optimizing the performance of CUDA applications on particular generations of CUDA devices. 

The warp is the unit of thread scheduling in SMs.  

 
Each warp consists of 32 threads of consecutive threadIdx values: Threads 0 through 31 form 

the first warp, threads 32 through 63 the second warp, and so on. When an instruction executed 

by the threads in a warp must wait for the result of a previously initiated long- latency 

operation, the warp is not selected for execution. Another resident warp that is no longer 

waiting for results is selected for execution. If more than one warp is ready for execu- tion, a 

priority mechanism is used to select one for execution. This mechanism of filling the latency of 

expensive operations with work from other threads is often referred to as latency hiding.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4.3: Blocks partitioned into warps for threading scheduling.  
 
 
 

With enough warps around, the hardware will likely find a warp to execute at any point in  
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4.3. CUDA DEVICE MEMORIES  
 

 

time, thus making full use of the execution hardware in spite of these long-latency operations [13]. 

The figure 4.3 shows the division of blocks into warps.  
 

 
 
 

4.3  CUDA Device Memories  
 
CUDA supports several types of memory that can be used by programmers. These types of 

memories can be written (W) and read (R) by the host by calling application programming 

interface (API) functions. In figure 4.4 we can see the memory model used by CUDA.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4.4: CUDA device memory model [13].  
 

 
 
 

4.3.1  Global Memory  
 

The global memory is implemented with dynamic access memory (DRAM), it has long ac- cess 

latencies and finite access bandwidth.  
 

 
 
 

4.3.2  Constant Memory  
 

The constant memory supports short latency, high bandwidth, and read only access -by the 

device- when all threads simultaneosly access the same location.  
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4.3.3  Registers  

These are located on the chip memories. Variables that resides these type of memory can be  

accessed at very high speed in a highly parallel manner. Registers are allocated to individual 

threads; each thread can only access its own registers.  

 
A kernel function uses registers to hold frequently accessed variables that are private to each 

thread.  
 
 
 

4.3.4  Shared Memory  

It is allocated to threads blocks; all the threads in blocks can access variables in the shared  

memory locations allocated by the block.  

 
Shared memory is an efficient means for threads to cooperate by sharing their input data and 

the intermediate results of their work.  
 
 

4.4  CUDA Events  
 

An event in CUDA is essentially a GPU time stamp that is recorded at a user specified point in 

time. Since the GPU itself is recording the time stamp, it eliminates a lot of problems we might 

encounter when trying to time GPU executions with CPU timers. A time stamp con- sists of just 

two steps: creating an event and subsequentialy recording an event. The trickiest part of using 

events arises as a consequence of the fact that some of the calls we make in CUDA are actually 

asynchronous [9].  

 
 
 

4.5  CUDA Best Practices  
 

In order to obtain the best performance from this architecture, a number of specific program-  

ming guidelines should be followed, the most important of which are:  

 
I. Minimize data transfers between the host and the graphics card  
 
II. Minimize the use of global memory: shared memory should be preferred  
 
III. Avoid different execution paths within the same warp  

 
Moreover, each kernel should reflect the following structure:  

 
I. Load data from global/texture memory  
 
II. Process data  
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III. Store results back to global memory  

 
All the recomendations about best practices are in [4] and [3].  
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Chapter 5  
 
 

Shieh algorithm  
 
 
 

Shieh et al [6] have proposed a DCT based watermarking embedding algorithm, where an 

image is transformed to the DCT domain after splitting to 8x8 blocks, and then a ratio ma- trix is 

calculated between the DC and AC coefficients. In the next step a Polarities matrix is 

computed. It represents the relation between image content and the embedding frequency bands, 

to embed the permuted watermark into the DCT domain using the Polarities matrix and, finally, 

IDCT is performed to get the watermarked image.  

 
Shieh proposed the use of an evolutionary algorithm to optimize the position (frequency 

bands) where the watermark bits ought to be inserted within the original image. Through the 

different iterations, the algorithm tries to find out which are the best outcomes using PSNR and 

NC to evaluate the watermarked image.  

 
I decided to use this watermarking algorithm because Professor Sabourin's team has an 

implementation of it in Matlab and it was easy for me to see how they implemented the func- tions 

involved in the algorithm, particularly the ones related with images, since I had not worked 

with images before.  

 
They decided to use Shieh method because it is a blind method which means that it does not 

need the original cover image to extract the watermark. For the applications dealing with huge 

number of images, it would be very expensive to store all cover images for watermark extraction.  

 
The steps of the algorithm are described below and shown in figure 5.4. Part of the 

implementation of the algorithm is described in the Appendix A. This appendix shows the 

configurations used for the GPU to implement the equations described in the next steps.  
 

 
 

I. Initially, the image X of size M ⋅ N to be watermarked is splitted into 8 ⋅ 8 blocks to  

perform Discrete Cosine Transform on these blocks.  
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II. The individual 8 ⋅ 8 blocks are DCT transformed using the equation 2.1. The resultant  

matrix Y(m,n
)
(k) has the upper left corner as DC coefficient and the rest of the matrix  

are the AC coefficients, where the DCT coefficients are zigzag ordered as in figure 5.1.  
 
 

III. The watermark image to be embedded W is assumed to be a binary image, of size  

MW ⋅ NW . This binary image is permuted using a pre-determined key k0 resulting  

Wp, see equation 5.1.  
 
 
 

Wp = permute(W, k0)  (5.1)  

 
Wp is used for embedding the watermark bits into the selected DCT frecuency bands.  
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5.1: The matrix of the zigzag ordered DCT coefficients. Each Y(m,n
)
(k) is a frequency band 

where the watermark bits could be inserted.  
 
 
 

IV. Initially frequency bands to embed the watermark are selected from 1th iteration of the  

optimization problem using Evolutionary Computation (EC), e.g. choose Y(m,n
)
(6),  

Y(m,n
)
(9), Y(m,n

)
(12) and Y(m,n

)
(29). Along the iterations for optimization, these fre-  

quency bands are chosen for optimal embedding until the optimal frequency bands are  

reached using the EC algorithm. The transformed matrix Y(m,n
)
(k) is then used to get  

the ratio matrix between the DC and the AC coefficients R(i) using the equation 5.2.  
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R(i) =  

M/8 N/8  
 

 
m=1 n=1  

 

Ym,n(0) , i ∈ [1, 63]  
Ym,n(i)  

 
(5.2)  

 
In figure 5.2 just four blocks of the total grid of the whole image are shown. To get the value 

of R(1) it is necessary to divide the element (0) and element (1) of each block, and then to 

add up all of them.  
 
 

R(1) = B(0,
0)
(0) + B(1,

0)
(0) + B(0,

1)
(0) + B(1,

1)
(0) + . . .  (5.3)  

B(0,
0)
(1) B(1,

0)
(1) B(0,

1)
(1) B(1,

1)
(1)  

 

 
Same for R(2) :  
 
 

R(2) = B(0,
0)
(0) + B(1,

0)
(0) + B(0,

1)
(0) + B(1,

1)
(0) + . . .  (5.4)  

B(0,
0)
(2) B(1,

0)
(2) B(0,

1)
(2) B(1,

1)
(2)  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5.2: The image shows the zig-zag order of four 8x8 blocks of the original image. The R(1) 

value is the sum of the division of the element (0) between element (1) on each block of the whole 

image.  
 

 
 
 

V. Then the polarities matrix P is calculated using the equation 5.5.  
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1 if (Y(m,n
)
(i) • R(i)) ≥ Y(m,n

)
(0), i ∈ F ;  

P(m,n
)
(i) =  0 otherwise.  (5.5)  
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VI. Next, the watermarked DCT coefficient Y is obtained using the equation 5.6.  

 
 

� 
� 
� Y(m,n

)
(i)  if P(m,n

)
(i) = Wp(m,n

)
(i) = 0, i ∈ F ;  

�
� 

Y(m,n
)
(i) =

 �  

(Y(m,n
)
(0)/R(i)) + 1 if P(m,n

)
(i) = 0, Wp(m,n

)
(i) = 1, i ∈ F ;  

� 
� Y(m,n

)
(i)  if P(m,n

)
(i) = Wp(m,n

)
(i) = 1, i ∈ F ;  

� (Y(m,n
)
(0)/R(i)) − 1 otherwise.  

(5.6)  

The next figure shows an example of how to embed the watermark within the image. If  

the image size is 512⋅512 there are 4096 blocks (512/8∗512/8), and if the watermark size is 

128 ⋅ 128 there are 16384 bits. Then, to embbed the watermark bits whitin the image, it is 

necessary to divide the number of watermark bits and the number of blocks of the image 

16384/4096 = 4. Number 4 represents the watermark bits that will be inserted in each 

block of the image.  
 

 

Now, there will be chosen four frequency bands for each block where the watermark bits 

will be inserted applying equation 5.6 (where the polarities and ratio matrices are involved 

in the process), the frequency bands could be different from one block to another. Figure 

5.3 shows an example.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5.3: Embedding the watermark bits within the image. Each bit is inserted using the 

equation 5.6.  
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VII. After that, the watermarked image Xc is obtained by using the inverse DCT equation  

2.2 for Y .  
 

 
 
 
 
 
 

VIII. Now the PSNR is calculated as shown in equation 2.4 between the original image X  

and the watermarked image Xc using the MSE as seen in equation 2.5.  
 

 
 
 
 
 
 

IX. Next, different attacks are applied to Xc and the attacked images are denoted by Xc,p,  
where p is the number of attacking schemes. Then the NC is calculated between em-  

bedded watermark W(i,j)
 and the extracted watermark from the attacked image W(i,j)  

using equation 2.6  
 

 
 
 
 
 
 

X. Finally the fitness function for the optimization problem is formalized using the aggre-  

gation of quality objective PSNR and the robustness objective NC, this can be formu- lated 

for the cth iteration in the EC algorithm as 5.7.  
 

 
 
 
 
 
 
 

p 

fc = P SN Rc +  (N Cc,h • λc,h)  (5.7)  
h=1  

 
 
 
 
 
 

where λc,h is the magnifying factor for the NC because the PSNR is dozen times larger. The 

process starts again in the step IV until obtaining the required optimization in the  

watermarked image.  
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Figure 5.4: Generic Block Diagram for Watermarking.  
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5.1  The extraction algorithm  
 

When extracting the watermarks, the original image X is not required in our algorithm. How- ever, 

the optimized watermarked image might be subjected to some intentional or uninten- tional 

attack, and the resulting image after the attack is represented by X . We calculate the DCT of the 

watermarked image after attacking Y , in the attacked X , with the secret key  

corresponding to the frequency set F , k1. We then reproduce the estimated reference table R  

from the attacked X by following the operations in Eq. 5.8, and we are able to extract the  

permuted watermark,  

 
1 if (Y(m,n

)
(i) • R (i)) ≥ Y(m,n

)
(0), ∀i;  

WP ,(m,n
)
 (i) =  0 otherwise.  (5.8)  

 

 

Wp = ∪M/M
w−
1 ∪N=1 w−1 /N  

m=0  n 

Ym,n(0) , i ∈ F  
Ym,n(i)  

(5.9)  

Finally, we use k0 in Eq. 5.10 to acquire the extracted watermark W from W p ,  
 

 
Wp = permute(W , k0)  (5.10)  
 
 
 
 
 
 
 
 

Figure 5.5: The block diagram for watermark extraction.  
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Chapter 6  
 
 

Particle Swarm Optimization (PSO)  
 
 
 

Nowadays, evolutionary computation makes use of models based on the natural evolution 

process, designing and implementing algorithms for solving problems.  

 
There is a large variety of proposals and studies on these models, which are called with the 

generic name of Evolutionary Algorithms. These have as a common feature the inspi- ration on 

the simulation of the evolution of populations through processes of selection and reproduction.  

 
Another set of proposals inspired by biological models, such as Ant Colony and Swarm- 

optimization algorithms are classified into what has been called bioinspired algorithms; a new 

way to solve problems based on the behavior of animals or systems that took centuries to evolve. 

These systems, Artificial Intelligence (AI) paradigms, are able to minimize the computation 

time of certain complex mathematical problems such as the traveling salesman problem.  

 
Particle Swarm Optimization (PSO) is a population based stochastic optimization tech- 

nique developed by Dr. Eberhart and Dr. Kennedy in 1995, inspired by the social behavior of 

bird flocking or fish schooling [10].  

 
PSO shares many similarities with evolutionary computation techniques such as Ge- netic 

Algorithms (GA). The system is initialized with a population of random solutions and searches 

for the optimal using an iterative algorithm. However, unlike GA, PSO has no evolution 

operators such as crossover and mutation. In PSO, the potential solutions, called particles, fly 

through the problem space by following the current optimum particles. It has been successfully 

applied to many problems in several fields such as Biomedicine (S. Selvan 2006 [18] and Energy 

Conversion (J. Heo 2006 [8]), image analysis being one of the most frequent applications, like 

Biomedical images (Mark P. Wachowiak 2004 [19]), Microwave imaging (M. Donelli 2005 [12] 

and T. Huang 2007 [14]).  
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The proposal of using CUDA to implement these optimization algorithms is derived from the 

need of Banctec to have a tool to satisfy robustness and fidelity requirements for water- marking 

in huge quantities of gray scale images, which is why minimizing the time of the procedure 

was of great importance.  

 
PSO is an algorithm based in populations, meaning that it has a lot of possible solutions that 

need to be evaluated, and finding the best one -depending on the problem- and the eval- uation 

itself consume a lot of processing time.  

 
This is the main reason why CUDA comes as a viable option to accelerate the process due 

to the fact that operations involved in the algorithms could be parallelized (see appendix B), 

resulting on a minimization of the runtime of the operations.  

 
The idea of using PSO as the optimization algorithm comes owing to the fact that it has few 

parameters to adjust. Since I was novice in programming with CUDA, it seemed like a suitable 

option to start working with.  
 

 
 
 

6.1  Basic PSO  
 

Each particle keeps track of its coordinates in the problem space which is associated with the 

best solution (fitness) achieved so far (this fitness value is stored). This value is called pbest. 

Another"best" value that is tracked by the particle swarm optimizer is the best value, obtained so 

far by any particle among the neighbors of the particle. This location is called lbest. When a 

particle takes all the population as its topological neighbors, the best value is a global best and 

is called gbest.  

 
The PSO concept consists of, at each time step, changing the velocity (accelerating) of 

each particle toward its lbest and gbest locations. Acceleration is weighted by a random term 

with separate random numbers being generated for acceleration toward lbest and gbest locations.  

 
After finding the two best values (lbest and gbest), the particle i updates its velocity and 

position with next equations 6.1 and 6.2, where i = 1, 2, 3...NS.  
 

 
 

Vi(t + 1) = Vi(t) + φ1r1(Bi(t) − Xi(t)) + φ2r2(Bg(t) − Xi(t)) i 

 
 

Xi(t + 1) = Xi(t) + Vi(t + 1)  

(6.1)  

 
 
(6.2)  

φ1 and φ2 are positive constants called acceleration coefficients, Ns is the total number of  

particles in the "swarm", r1 and r2 are random values, each component is generated between  
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[0, 1], and g represents the index of the best particle in the neighborhood. The other vectors Xi = 

[x1, x2, ..., xiD] ≡ position of the ith particle; Vi = [v1, v2, ...viD] ≡ velocity of the ith  

particle; Bi ≡ best historical value of the ith particle found, Bg ≡ best value found of the ith i 
particle in the neighborhood [1].  
 
 

Algorithm 1 Basic PSO  

1: Initialize particles population  

2: while do not get the max number of iterations or the optimal do  

3:  Calculate the fitness for each particle i  

4:  Update Bi if pbest is better than last one  
5:  

6: 

7: 

8: 

9:  

10:  

Calculate Bg of the neighbors i 
for each particle i do  

Calculate Vi (eq.6.1)  

Update Xi (eq. 6.2)  

Update best global solution (gbest)  

end for  

11: end while  
 
 

Another important feature that affects the search performance of the PSO is the strat-  

egy according to which Bg is updated. In synchronous PSO, positions and velocities of all i 

particles are updated one after another. The value of Bg is only updated at the end of each i 
generation, when the fitness values of all particles in the swarm are known.  

 
The asynchronous PSO, instead, allows Bg to be updated immediately after the evalua- i 

tion of each particle fitness. In asynchronous PSO, the iterative sequential structure of the  

update is lost, and the velocity and position update equations can be applied to any particle at 

any time, in no specific order [7].  

 
 

6.2  Parallel PSO  
 

The PSO was implemented in CUDA architecture to take advantage of the power offered by the 

massively parallel architectures available nowadays. The parallel programming model of CUDA 

allows programers to partition the main problem in many subproblems that can be solved 

independiently in parallel.  

 
To exploit this feature of the CUDA architecture, in this thesis, the following implemen- 

tation of the PSO algorithm was proposed. Figure 6.1 shows the UML diagram class of the PSO 

algorithm; it has been modeled with structs. Each particle has its position and velocity, besides 

the current fitness, best local fitness and best local position through the different iter- ations. The 

swarm has all the particles, the best global particle included.  
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Figure 6.1: PSO UML Class diagram.  
 

 
 

In the PSO algorithm, there will be as many swarms as the number of 8x8 blocks gener- ated 

after the DCT. If the image size is 512x512, then the number of blocks -as result of the DCT- will 

be 64x64 (4096 blocks). With the data separated into different blocks it is possible to compute 

them apart from each other, which means that they can be processed in parallel (the swarm 0 

corresponds with the block 0 of the image). The implementation of the PSO in CUDA is 

described in the appendix B.  

 
Each particle in the swarm has a possible solution where the watermark image could be 

inserted. The form to evaluate if the particle is a satisfactory solution is through the fitness value. 

In this work, Pareto dominance is used to evaluate the fitness function (see chapter 7).  
 
 
 
 
 
 
 

32  



Chapter 7  
 
 

Multiobjetive optimization  
 
 
 

When k objetive functions are simultaneously optimized in a problem, it is called multiob- 

jective problem (MOP). In these problems maximization and/or minimization of k functions  

are required. In MOP, it is necessary to seek for the vector x∗ = [x1
∗, x2

∗, ..., xn
∗]T to sat-  

isfy the inequality constraint set gi(x) ≥ 0 ∀ i = 1, 2, ..., n and the equality constraint set  

hi(x) = 0 ∀ i = 1, 2, ..., m to optimize the functions vector f (x) = [f1(x), f2(x), ..., fk(x)]  

that represents the objetive function; where x = [x1, x2, ..., xn]T is the decision variables  

vector. The solution ought to have acceptable values in the whole objetive set.  
 
 

7.1  Pareto Theory  
 

The notion of "optimum" was originally proposed by Francis Ysidro Edgeworth in 1881. This 

notion was later generalized by Vilfredo Pareto (in 1896). Although some authors call 

Edgeworth-Pareto optimum to this notion, we will use the most commonly accepted term: 

Pareto optimum.  
 
 
 

7.1.1  Pareto dominance  

A vector u = (u1, u2..., uk) dominates v = (v1, v2, ..., vk) if and only if u is partially less than  

v (u v).  
 

 

7.1.2  Pareto optimal  

A solution x∗ ∈ Ω is Pareto optimal if and only if there is no x ∈ Ω and I = 1, 2, ..., k where  

∀i ∈ If (x) = f (x∗) and there is at least one i ∈ If (x) > f (x∗).  

 
The Pareto curve is the set of x∗ where there are no other solutions for which simultaneous 

improvement in all objectives can occur. Generally a solution set known as non-dominated 

solutions is produced.  
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7.1.3  Pareto optimal set  

For a MOP denoted by f (x), the Pareto optimal set (P ∗) is defined as:  

 
P ∗ = x ∈ Ω | ←∃x ∈ Ω f (x )  f (x).  
 

 

7.1.4  Pareto frontier  

For a MOP denoted by f (x) and a Pareto optimal set (P ∗); the Pareto frontier (P F ∗) is de-  

fined as:  
 

 
 

P F ∗ = u = f = (f1(x), f2(x), ..., fk(x)) | x ∈ P ∗.  
 

 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 7.1: The boxed points represent feasible choices, and smaller values are preferred to 

larger ones. Point C is not on the Pareto Frontier because it is dominated by both point A and 

point B. Points A and B are not strictly dominated by any other, and hence do lie on the frontier.  

 
 
 

7.1.5  Pareto Dominance used in this thesis  

Choosing a good representation and constructing a good fitness function depend on the  

essence of the problem and it might be difficult. For this work, fidelity and robustness are 

considered as two objectives in conflict. By applying Pareto dominance it is relatively easy to 

evaluate the fitness function (consisting on the addition of fidelity and robustness) and 

moreover, add more objectives to the optimization process. In this process the objective is to 

minimize the disturbance of the original image after the insertion and the attacks.  

 
In order to propose a simpler way to measure the fitness and the robustness spending the 

shortest time possible in the fitness calculation, the MSE was taken from the PSNR and the NC 

was changed. When measuring the MSE in each block just 64 comparisons are needed and they 

are executed at the "same time" in the other blocks. In the sequential process there  
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are needed 512x512 evaluations one after another for a 512x512 image size. The same case was 

applied for the NC, instead of being calculated for the whole image -as in the sequential form- it 

was just computed for each block.  
 

 

The NC and the MSE are computed for each 8x8 block as showed in the figure 7.2. This was 

done with the purpose of dividing -as much as possible- the data in the GPU. In order to 

calculate the fidelity, it is necessary just to compare block by block how much the original image 

changes in contrast with the watermarked one. If the MSE value is zero, then it means that the 

block has not changed at all. As you can see, it is not necessary to calculate the PSNR if it is possible 

to obtain the same calculation -image fidelity- by just using MSE.  
 

 

In the case of NC (for robustness), a variation of it was calculated. The bitwise operations are 

faster than a multiplication, which is why applying one of it reduces the runtime. In order to reduce 

the runtime in the evaluation of the NC, the logical operation "exclusive disjunc- tion", also called 

"exclusive or" (see formula 7.1) was used. The NC value must be close to zero between the 

original watermark (W ) and the extracted watermark (W ), to prevent the loss of the watermark 

image information.  

 
 
 
 

MW  
i=1  

 
 
 
 

NW  
j=1  

 
 
 
 
[W (i, j) ⊕ W (i, j)]  

NC =  Bands per block  (7.1)  
 

 
 

The exclusive or calculation is shown in table 7.1.  
 

 
 

W W Output  
0 0 0 
0 1 1 
1 0 1 
1 1 0 

 
Table 7.1: Exclusive or.  
 
 
 
 

The next image 7.2 shows -in big scale- how the blocks of the image -after the DCT- are 

organized. For each 8x8 block, the MSE and the NC are calculated. If the MSE and the NC 

values are close to zero, it is an indication that there is a good frequency bands set (see chapter 

5) to insert the watermark image into the corresponding 8x8 blocks.  
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Figure 7.2: Image blocks organization.  
 
 
 
 
 
 
 

The PSO algorithm spends a lot of time in the evaluation of the fitness function and in the 

calculation of the position and velocity vectors used for the particles to move, looking for other 

possible solution. Simplifying the functions -as much as possible- to calculate the fitness function 

helps to reduce the PSO's runtime.  
 
 

Table 7.2 shows an example of the fitness (dominance) calculus (consider minimization in 

both objetives). The MSE and the NC must be close to cero; in the swarm, the particle with 

both values closest to zero is chosen to be the global best. In the example, there are six particles, 

particles 1, 3 and 4 are nondominated solutions, whereas 2, 5 and 6 are dominated by 3, 4 and 1 

(see figure 7.3).  
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# MSE  NC  Fitness  
1 0.5  0 0 
2 0.8  0.1  2 
3 0.3  0.2  0 
4 0.2  0.7  0 
5 0.9  0.3  4 
6 0.7  0.1  1 

 
Table 7.2: Pareto dominance.  
 

 

To calculate the fitness, all the particles are compared. Using particle 5 as example, the MSE 

of particle 5 always is higher for all the other particles, and the NC of particle 5 is always 

higher for all, except for particle 4, from the 5 comparisons made, in 4 of them parti- cle 5 is 

always higher in both values -MSE and NC-, that is why its fitness is 4. In the case of particle 6, it 

is just higher -in both values- to particle 1, that is why it has a fitness value of 1.  
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 7.3: Pareto dominance chart.  
 

 
 

Therefore, in the swarm there are three particles that could be used to insert the water- 

mark, but just one of them is taken as the best global particle in the swarm. To make this 

choice, the particle with the MSE closest to zero is chosen, if there is a tie -from the parti- cles 

with the same MSE-, the one with the NC closest to zero is chosen. If there are only 

dominated particles to choose, the particle with the MSE and the NC closest to zero is taken -

under the same procedure already explained for nondominated particles-.  
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The optimization algorithm  
 
 
 

This chapter is dedicated to explain the complete procedure implemented to make the water- 

marking optimization algorithm combining the Shieh and the PSO algoritms. The objective of the 

optimization is to find the best frequency bands set to insert the watermark within the image. 

Different frequency bands are tested through the iterations of the algorithm findig out the best 

solution. At the end of the execution the application has as results the watermarked image and a 

matrix with the whole best positions (frequency bands) to insert the complete watermark.  

 
The implementations in CUDA for the Shieh algorithm functions is detailed in the ap- 

pendix A. The implementation of the PSO algorithm functions is detailed in appendix B. 

These appendices show the configuration of the threads for the functions involved in both 

algorithms.  
 

 
This process is detailed as follows.  
 
I. Using the DCT idea to split the image in 8x8 blocks, each block is used as a swarm.  

An image of 512x512 has 4096 blocks; hence each block will be a swarm. At the 

same time, each swarm is mapped in the GPU as a block where the configuration of the 

threads depends of the function to be executed. The number of particles per swarm is 

specified as a configuration parameter of the algorithm. It is necessary to take into account 

that each particle in a swarm is a possible solution (frequency bands set).  
 

II. Each particle has a position vector. The vector size depends on the number of wa-  

termark bits used to be inserted in each block of the image. If the watermark size is 

128x128 and if it is divided uniformly in the 4096 blocks of the image, then 4 bits are 

inserted in each block. Each position corresponds to a frequency band in the 8x8 block, 

where the watermark bits are inserted.  
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At the beginning, all the swarms are initialized randomly (each swarm must have the 

same particles number). If 4 bits will be inserted, 4 bands are required, then 4 random 

numbers must be created between 1 and 63. This means that each particle will consist of 4 

frequency bands (positions).  
 

 

If each swarm has 5 particles, every particle has a set of 4 frequency bands used to 

originate 5 different solutions. To generate solution 1, all the particles with index 1 are taken 

and joined from every swarm; to generate solution 2, all the particles with index 2 are taken 

and joined from every swarm and so on. This procedure is shown in figure 8.1.  
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 8.1: This figure shows how the solutions are generated taking from particles P1 and P2 -

from the different swarms- the frequency bands B1, B2, B3 and B4, generating the cor- 

responding solution.  
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III. After the insertion and the extraction operations (see chapter 5), the MSE (equation  

2.5) and the NC (equation 7.1) are calculated. The addition of the MSE and the NC 

values is used as fitness function and its value is estimated -according with the theory in 

chapter 7- using Pareto dominance.  
 

IV. One of the particles must be selected as the best global. Among the best options gen-  

erated, one of them is chosen to be the best global. To choose the local best particle is 

considered to add up the MSE and the NC. If the new value is closest to zero than the old 

one, the new particle replaces the old one; otherwise the old one continues in the process 

(see chapter 7).  
 

V. In the last step, the velocity and the new position of the particles are calculated, accord-  

ing to the formulas 6.1 and 6.2 . This generates the new bands and new the iteration 

begins. The next figure 8.2 shows the whole algorithm.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 8.2: The optimization algorithm.  
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Chapter 9  
 
 

Tests and Results  
 
 
 

This chapter explains the servers features where the algorithm writen in C++ and CUDA C runs, 

the input necessary to execute the code, and the results of different tests.  
 
 

9.1  Server Features  
 

All tests were executed on two different servers with the following features. As you can see in 

the tables 9.1 and 9.2 the servers have the same GPU version, the same number of cores, but 

with different velocity.  
 
 

Server name  Cores  CPU type  

Uxdea  8 Intel Xeon E5620 @ 2.4GHz  

Geogpus  8 Intel Xeon E5677 @ 3.47GHz  
 

Table 9.1: CPUs Server features.  
 

 
 

Server name  GPU  Cores  

Uxdea  Tesla C1060  240  

Geogpus  Tesla C1060  240  
 
Table 9.2: GPUs Server features.  
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9.2  Input data  
 

In order to test the implementations, figure 9.1 shows the original image (a) used in the algo- rithm 

to insert the watermark (b). The size of the original image is 512 ⋅ 512 in 24-bits BMP format.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

(a) Original image  (b) Watermark  

 
Figure 9.1: Input data  
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9.3  Outcomes  
 

 
 
 

9.3.1  Shieh implementation  
 

 
 

The figures 9.2 and 9.3 show the outcomes of executing sequential and CUDA implementa- tions 

in both servers Geogpus and Uxdea. The first tables show the results of executing five 

experiments, and taking the runtime for each function involved in the insertion and extraction 

algorithm.  

 
 

These experiments were executed with the aim of comparing the runtimes between the 

implementation in C++ and the one in CUDA C based on the idea that the operations exe- cuted 

in the GPU must be faster than the ones computed in the CPU. The experiments shown in the tables 

were executed in both servers Geogpus and Uxdea.  

 
 

The results obtained from the GPUs in both servers are faster than the ones collected from the 

CPU. At this point, the results seem to fit in the idea that the GPU is faster than the CPU. It should 

be noted that the functions are not considering the load and download of the data to and from the 

GPU.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 9.2: Runtime for functions involved in the insertion/extraction algorithm running on the 

Geogpus server.  
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Figure 9.3: Runtime for functions involved in the insertion/extraction algorithm running on the 

Uxdea server.  
 

 
 
 

The figures 9.4 and 9.5 show the runtime of the complete procedure to insert and extract a 

watermark involved in Shieh algorithm. In these experiments —where the upload and 

download of the date are considered— the GPU does not seem such superior considering the 

results of the last figures. The MSE and the NC functions (see MSE and NC in the figures) 

executed on the GPU without considering the data transfer seems to be fast, but considering the 

data transfer are more expensive than the ones executed in the CPU (see MSE Total and NC Total 

in the figures).  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 9.4: Runtime of the insertion and the MSE, and the extraction and the NC operations on 

Geogpus.  
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Figure 9.5: Runtime of the insertion and the MSE, and the extraction and the NC operations on 

Uxdea.  
 

 
 

In accordance with the features of the server, the GPU of Geogpus is faster than the one of 

Uxdea. Seeing the results in the figures 9.2 and 9.3, practically there is no difference in the 

runtimes, but seeing the results in figures 9.4 and 9.5 it could be established that the GPU of 

Geogpus has a better transfer velocity that helps it to be almost two times faster than Uxdea.  
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9.3.2  PSO implementation  

The figures 9.6 and 9.7 show tables with the runtimes of the implementation of the optimiza-  

tion algorithm —PSO—. These figures present five experiments with a different number of 

iterations for the execution in the CPU and in the GPU. The outcomes are compared in exper- 

iments with the same iteration number. These experiments were made to compare the amount of 

time used for the algorithm and the quality of the results.  

 
As in the experiments made for the Shieh algorithm, the operations on the GPU must be 

faster. The first point to evaluate in the PSO algorithm is the random number generation. Using 

the random numbers in the sequential version it is remarkable the difference in time. The use of 

those numbers consumes a big quantity of time due to its necessity to spend time in the CPU to 

generate different numbers. For the sequential version, the random numbers are generated using 

the C function "drand48" that returns a pseudo-random number in the range [0.0,1.0). On the 

GPU, the random numbers are generated using a library called curand [5].  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 9.6: Runtime for PSO on Geogpus.  
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Figure 9.7: Runtime for PSO on Uxdea.  
 

 
 

Reviewing the values (figures 9.6 and 9.7) of the initial fitness and the final fitness it is 

noteworthy that the sequential version gives better results than the ones obtained from the GPU. 

For all the cases, the runtimes indicate that GPU is faster than CPU, even when all data have been 

loaded or when using static numbers in the CPU version. With this, it is possible to set up that —

at least for this version of the application—, if the user wants a good opti- mization for the 

watermarking, the sequential version must be used. By contrast, if the user needs a quick 

approximation, the GPU version ought to be applied.  
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Conclusions and future work  
 

 
 
 

10.1  Conclusions  
 

With the vast volume of information flowing on the Internet, watermarking is widely used to 

protect this information authenticity. The need for copyright a huge quantity of digital files, 

spending the less possible amount of time and avoiding the loss information were the reasons to 

propose the use of an algorithm for watermarking —Shieh algorithm—, Particle Swarm 

Optimization as an optimizer, and finally a GPU -based in CUDA architecture- to accelerate the 

process.  

 
The use of a GPU for accelerating the operations involved in the algorithms of insertion and 

extraction of the watermark and in the optimization algorithm was a challenge, since it is a 

parallelism paradigm. There is not a standard configuration for the blocks, threads or the 

memory treatment in the GPU. That is why the analysis and design of the procedures are a 

requirement to take advantage of the parallelism. In order to use parallel programing in a GPU, it 

is necessary to shift from a sequential to a parallel thinking, strictly to learn how to divide a huge 

problem into small ones —divide and conquer—, attempting to have the best performance.  

 
Using an image of size 512x512 as an input, it is possible to divide it in 64x64 blocks —

such as in the DCT—. The 64x64 matrix is easily mapped to the same number of blocks in the 

GPU, and the configuration of the threads will depend on the type of operation to be executed. 

For example, in the calculation of the NC there were required just 4 threads to do the 

comparisons, but in the case of the MSE 64 threads working at the "same time" were required 

(see appendix B). Therefore, the configuration of the blocks and threads for an ap- plication on a 

GPU must be carefully analyzed.  

 
Other point of consideration in the use of the GPUs is the memory treatment. In this 

application the global memory was used to put up the image and the watermark data, the ratio 

and polarities matrices, without forgetting the random numbers. This memory is used to carry 

the data from the host (RAM memory) to the device (GPU memory) and vice versa.  
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The problem of using it is the long time it spends in the transfer —that depends of the amount of 

data—. As you can see in the experiments, the runtime of the functions are quickest in the 

GPU without considering the data transfer. Considering the data transfer, sometimes the function 

spends more time than the sequential execution (see chapter 9). Other type of mem- ory used in 

this application was the shared memory. This memory is used just inside the blocks and it is 

not visible between others —unlike the global memory that is visible for all the blocks—. The 

shared memory is faster than the global memory, the problem with it is the handling and the 

overall synchronization with the threads (the MSE operation uses shared memory to execute a 

reduction operation, this is shown in the appendix B).  
 

 

The design of the PSO algorithm was made applying object oriented analysis (see chap- ter 

6) and it was implemented using C++ in order to have two implementations —C++ and CUDA 

C— to compare outcomes. At the moment of trying to map the classes from C++ to CUDA C 

there was a big problem: in the classes I used dynamic memory to store the results from the 

operations. At the moment when I tried to map it to the GPU memory it was not possible to 

keep the references, so it was necessary to make some changes for the CUDA C version. The use 

of structs instead of classes was the first change due to fact that the classes used in C++ are not 

equivalent in CUDA C. The second change consisted on the use of static memory instead of 

dynamic memory.  
 

 

I analyzed the different options to implement the PSO, but I decided to use as much 

swarms as number of blocks used to divide the image in the DCT (see chapter 6). This was in profit 

of dividing a big problem in small ones, which suited with this parallel paradigm. As it was 

established, there is not a standard configuration in CUDA architecture, so I made the configuration 

in accordance with the need of the function. The PSO needs to evaluate two vectors: velocity 

and position. Position depends of the velocity that is why velocity needs to be computed first. If 

there are 4096 swarms —4096 blocks— and each swarm has five particles, then each of them 

need to update the velocity vector. The number of operation to be calculated in a CPU is: 4096 

(swarms) * 5 (particles) * 1 (operation) = 20480 operations one after another. In the case of the 

same operation on the GPU, there are executed the same 20480 operations, but the difference is 

that there are 4096 swarms with 5 threads working in parallel computing one operation, hence 

there are 20480 threads working at the same time. If one thread in the CPU spends 1 second by 

operation the runtime will be 20480 s, but in the case of the GPU there are 20480 threads working 

at the same time, and they spend 1 second to finish the calculus. In the last example I am not 

considering the speed of the processor —neither CPU nor GPU— nor the upload/download of 

the data to/from the GPU.  
 

 

The velocity vector needs random numbers to be calculated (see equation 6.1). In order to 

generate random numbers I used a library called curand (see [5]). This library is useful 

because it is easy to generate a lot of numbers in a short time; the problem comes with the 

memory. If there is a big quantity of this numbers generated and held in global memory, there might 

be a shortage of space to store other data. For one iteration of the PSO there are used two random 

numbers to calculate the velocity value. If there are 4096 blocks with 5 particles  
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each, 40960 random numbers for iteration are needed. There is another type of memory on the 

GPU, the constant memory. This memory is loaded in the GPU but it cannot be changed. This 

memory was considered to store the random numbers because they do not modify its value on 

the execution of the calculation of the velocity value.  
 

 

There are a lot of GPUs on the market to be used, some of them for servers, others for PCs 

or laptops. I decided to use the ones from Nvidia since I already have a laptop with one of its 

cards. I started to program on it, but there was a problem, when I tried to execute the same 

code in a server with a better GPU, I realized that the float and the double numbers 

representation changed. This is not represents a big obstacle because in small GPUs the dou- ble 

number is changed to float automatically. Another feature that needs to be considered is —from 

GPU to GPU— the velocity of the processor. This is evident in the experiments because the 

Geogpus server is faster than the Uxdea server (see chapter 9).  
 

 

In the case of the Shieh algorithm, the equations required to be parallelized were analyzed to get 

the best performance on the GPU. For the calculation of the MSE and NC there was not an 

improvement of the performance compared with the sequential version. The execu- tion of the 

functions is fast, but the transfer of the data to the GPU and back slows down the performance. 

For this reason it is necessary to seek for another solution for the transaction of the data.  
 

 

To program an application oriented to be executed on a GPU it is necessary to have knowl- edge 

of how the CUDA architecture works. At the beginning it is not easy to start thinking in parallel and 

change a big problem in small ones. The important thing to make a good design of an application 

for a GPU is to consider the management of the different sorts of memories and their capacity to 

store data, as well as to bear in mind that the velocity of the processor changes with the versions 

of the GPU, such as the number precision representation, thus take out some portability.  
 

 

To program on a GPU there is another language called OpenCL (Open Computing Lan- 

guage). It is made for running in any GPU independent manufacturer. At the moment of 

starting this work there was more information about CUDA than OpenCL, besides the option of 

program in the GPU of my own laptop. These were the reasons to start working with CUDA.  
 

 

After this analysis of the present work, I can say that the use of CUDA helps to improve the 

performance of the application and that an algorithm based in population could be im- 

plemented on it, as long as the developer is aware of the features of this technology. This 

application is the cornerstone and it provides the opportunity to keep working on it to make it 

more robust.  
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CHAPTER 10. CONCLUSIONS AND FUTURE WORK  
 

 

10.2  Future work  
 

In this thesis, quantization was used as an attack to the watermarked image, but it was applied 

before the IDC Transform in the insertion routine, and it could be implemented as an extern 

routine to apply after the insertion.  

 
Other attacks can be implemented in order to be applied to the watermarked image; each new 

attack should be added as a new objective in the PSO evaluation. If there are more attacks, 

the application could have a switch used to adjust the attacks to be optimized in ac- cordance with 

the user requirements.  

 
There is a library called Thrust that provides a flexible high-level interface for GPU pro- 

gramming and offers the possibility of doing operations without the requirement of configure the 

blocks and threads on the GPU —removing weight off the programmer's shoulders—. This 

library could help to improve the performance of the application.  

 
A different implementation to calculate random numbers in the CPU could be done in order 

to improve the time needed to be generated.  
 

 
Additionally, the PSO could be adjusted in order to look for best outcomes.  
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Appendix A  
 

 

Analysis, Design and Implementation of  

Shieh Algorithm  
 
 
 
This appendix shows part of how the Shieh algorithm was implemented using CUDA C.  

 
Figure A.1 shows the flow diagram of Shieh algorithm, and the operations already imple- 

mented in C++ and CUDA.  
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure A.1: Flow Diagram of Shieh Algorithm.  
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ALGORITHM  

Figure A.2 shows the flow diagram for watermarking extraction, and the operations al-  

ready implemented in C++ and CUDA.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure A.2: Flow Diagram for Watermarking Extraction.  
 

 
 
 

A.1  Shieh Operations  
 

As an example -for all the set of operations on the Shieh algorithm- a 128x128 binary wa- 

termark is considered to be inserted into a 512x512 gray scale image. In agreement with the steps 

of the algorithm described in Chapter 6, it is necessary to load the image into the GPU memory 

and to apply the DCT. In order to take advantage of the parallelism, a library with this function 

provided by CUDA was used. After applying the DCT to the 512x512 image, a matrix of 64x64 

blocks -that represents the image- is obtained. Each block is divided at the same time into 8x8 

frequency bands where the watermark will be inserted. The configuration of 32x32 blocks is 

maintained in the GPU for all the operations, each block in the GPU rep- resents one block of the 

image after the DCT; what differs in the GPU is the configuration of the threads that depends on the 

need of the operation to be executed.  
 
 
 

A.1.1  Ratio Operation  

Once the image in DCT is already loaded in GPU memory, the next step is to get the ratio  

between the DC and the AC coefficients R(i) using the equation 5.2. This operation was  

divided in two parts. First division between Y
m,n
(0) is performed and runs on the GPU. The Ym,n(i)  

second part is the sum, that runs on the CPU.  
 

 
The block configuration on the GPU is:  
 

 
 

dim3 ThreadsRatioBlocks(BLOCK_SIZE, BLOCK_SIZE);  
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dim3 GridRatioBlocks(Size.width/BLOCK_SIZE,  

Size.width/BLOCK_SIZE);  
 

 
 

With this block configuration, a 64x64 grid of blocks is generated and each block has 8x8 

threads. Each thread makes just one operation between the DC and the AC values. The AC 

corresponds with the thread position on the block (current coefficient). The results are stored in the 

vector raux, this vector is used to do the sum.  
 

 
 

__global__ void CUDAKernelRatio(float *src, float *raux,  
int stride, int blockSize){  

 
// Block index  

int bx = blockIdx.x; int by 

= blockIdx.y;  

 
// Thread index (current coefficient)  

int tx = threadIdx.x; int ty = 

threadIdx.y;  
 

//copy current coefficient to the local variable  

float dividend = src[ (by * blockSize + 0) * stride +  

(bx * blockSize + 0) ];  //DC value  

float divisor = src[ (by * blockSize + ty) * stride +  

(bx * blockSize + tx) ];  //AC value  

 
//operation  

if( divisor != 0 ){  

raux[ (by * blockSize + ty) *  

(bx * blockSize +  
}else{  

raux[ (by * blockSize  

 
stride +  

tx) ] = dividend / divisor;  
 

 
+ ty) * stride +  

(bx * blockSize +  tx) ] = 0;  //Default value  
} 

 
__syncthreads();  

} 

 
 
 
 
 
 
 
 

59  



APPENDIX A. ANALYSIS, DESIGN AND IMPLEMENTATION OF SHIEH  

ALGORITHM  
 

 

A.1.2  Polarities Operation  

To make this operation based in equation 5.5, it is necessary to load from the host memory to  

the GPU global memory the ratio and the bands vector. Bands vector keeps the places where the 

watermark will be embedded in each block. Next example shows how to load the bands vector 

from host memory to the GPU global memory. The size of the bands vector must be equal to the 

size of the watermark image.  
 

 
 
 

int *dev_bands;  

HANDLE_ERROR( cudaMalloc( (void**)&dev_bands,  

bandSize * sizeof(int) ) ); //allocate memory  
//on GPU  
 

HANDLE_ERROR( cudaMemcpy(dev_bands, bands,  

bandSize * sizeof(int),  
cudaMemcpyHostToDevice ) ); //copy memory from  

//host to GPU  
 

 
 

The block configuration on the GPU for this operation depends on the number of bands by 

block. The block number in the grid is 64x64, and the total thread number is equal to the bands by 

block. This is due to it is just necessary to compute the frequency bands where the watermark will 

be inserted.  

 
 

dim3 ThreadsPolaritiesBlocks(bandsByBlock);  

dim3 GridPolaritiesBlocks(Size.width/BLOCK_SIZE,  

Size.height/BLOCK_SIZE);  
 

 
 

The results are stored in the vector p, this vector has the same size as the number of bands.  

 
__global__  void CUDAKernelPolarities( float *image, float *p,  

float *r, int *bands, int height,  
int width, int stride, int blockSize,  

int bandsByBlock ){  

 
// Block index  

int bx = blockIdx.x;  

int by = blockIdx.y;  
 

 
// Thread index (current coefficient)  
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int tx = threadIdx.x;  
 

 

int ib = bands[ ( by * ((width/8)*bandsByBlock) ) +  

(bx * bandsByBlock + tx) ];  

 
float c = image[ (by * blockSize + 0) * stride +  

(bx * blockSize + 0) ];  

float a = image[ (by * blockSize + iY[ib]) * stride +  

(bx * blockSize + iX[ib]) ];  
float b = r[ib];  
 

 

if ( a * b >= c){  

p[ ( by * ((width/8)*bandsByBlock) ) +  

(bx * bandsByBlock + tx) ] = 1;  
}else{  

p[ ( by * ((width/8)*bandsByBlock) ) +  

(bx * bandsByBlock + tx) ] = 0;  
} 
 

 
__syncthreads();  
 

 
} 
 
 
 

A.1.3  Watermark Embedding Operation  

This operation is bassed on equation 5.6, and it requires to load the watermark from the host  

memory to the GPU global memory. The watermark size is the same as the number of bands.  

 
 

dim3 ThreadsExtractBlocks(bandsByBlock);  

dim3 GridExtractBlocks(Size.width/BLOCK_SIZE,  

Size.height/BLOCK_SIZE);  
 

 
 

As it was seen in the code above, the grid configuration is the same as the one used in po- larities 

operation. The next code shows the watermark embedding operation into the image. The 

watermarked image quality is evaluated with the MSE as seen in equation 2.5.  
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__global__ void CUDAKernelWatermarkInsertion( int *bands,  

float *image, float *newImage, int *water, float *p,  

float *r, int height, int width, int stride,  
int blockSize, int bandsByBlock ){  

 
// Block index  

int bx = blockIdx.x;  

int by = blockIdx.y;  

 
// Thread index (current coefficient)  

int tx = threadIdx.x;  
 

 

int ib = bands[ ( by * ((width/8)*bandsByBlock) ) +  

(bx * bandsByBlock + tx) ];  

int a = p[ ( by * ((width/8)*bandsByBlock) ) +  

(bx * bandsByBlock + tx) ];  
float b = r[ib];  
 

 

int idx = (by * blockSize + iY[ib]) * stride +  

(bx * blockSize + iX[ib]);  
 

if( a == 0 && b == 0){  

newImage[idx] = ( image[ idx ] / b) + 1;  

}else if( a == 1 && b == 1){  

newImage[idx] = ( image[ idx ] / b) - 1;  

} 

__syncthreads();  

} 
 
 
 

A.1.4  Quantization  

This function was applied using a library of CUDA. Due to the facility of use of this library,  

it was not necessary to program it.  
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A.1.5  Watermark Extraction Operation  

This operation is based on equation 5.8, and it needs to load the watermarked image from the  

host memory to the GPU global memory to extract the watermark. As a result, it generates the 

watermark that was embedded in the last steps.  

 
 

dim3 ThreadsWaterBlocks2(bandsByBlock);  

dim3 GridWaterBlocks2(Size.width/BLOCK_SIZE,  

Size.height/BLOCK_SIZE);  
 

 
 
 

The result is stored in wm and it will be compared with the original watermark using the 

Normalized Correlation (NC) shown in equation 7.1.  

 
__global__ void CUDAKernelWaterExtraction( float *image, int *wm,  

float *r, int *bands, int height, int width, int stride,  
int blockSize, int bandsByBlock ){  
 

 
 

// Block index  

int bx = blockIdx.x;  

int by = blockIdx.y;  

 
// Thread index (current coefficient)  

int tx = threadIdx.x;  

//int ty = threadIdx.y;  
 

 
 

int ib = bands[ ( by * ((width/8)*bandsByBlock) ) +  

(bx * bandsByBlock + tx) ];  

 
float c = image[ (by * blockSize + 0) * stride +  

(bx * blockSize + 0) ];  

 
float a = image[ (by * blockSize + iY[ib]) * stride +  

(bx * blockSize + iX[ib]) ];  

 
float b = r[ib];  
 

 

if ( a * b >= c){  

wm[ ( by * ((width/8)*bandsByBlock) ) +  

(bx * bandsByBlock + tx) ] = 1;  
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}else{  

wm[ ( by * ((width/8)*bandsByBlock) ) +  

(bx * bandsByBlock + tx) ] = 0;  
} 
 

 
__syncthreads();  
 

 
} 
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Appendix B  
 

 

Analysis, Design and Implementation of  

PSO Algorithm  
 
 
 
This appendix shows how the PSO algorithm was implemented using CUDA C.  
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure B.1: Flow Diagram of watermarking algorithm (Shieh + PSO).  
 

 
 

The PSO algorithm has the next set of steps:  
 

I. The swarm initialization generates one swarm for each block of 8x 8 and it has N  

particles, each particle has the position or bands to insert the watermark image.  
 

II. The insertion and extraction operations are executed to calculate the MSE and NC used  

to estimate the Pareto dominance (objetive function).  
 

III. Pareto dominance is applied to get the best particles in each swarm.  
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IV. Before executing PSO operations, a random numbers array is calculated in the GPU and  

stored there, it is necessary at the moment of the particle velocity calculus. The PSO 

operations are executed to generate the next positions or bands to insert the watermark 

image.  
 

V. Steps II, III and IV are in a loop of M iterations.  
 

 

B.0.6  Random number generation  

To generate the random numbers, the CURAND library was used. It provides facilities that  

focus on the simple and efficient generation of high-quality pseudorandom numbers on the GPU.  
 

 
 
 

size_t n = 20 ;  

curandGenerator_t gen;  

float *devData;  

 
/* Allocate n floats on device */  

HANDLE_ERROR( cudaMalloc( (void **)&devData,  

n * sizeof(float) ) );  
 

 
/* Create pseudo-random number generator */  
CURAND_CALL( curandCreateGenerator( &gen,  

CURAND_RNG_PSEUDO_DEFAULT ) );  
 

 
/* Set seed */  
srand48( time(NULL) );  

CURAND_CALL( curandSetPseudoRandomGeneratorSeed( gen,  

lrand48() ) );  
 

 
/* Generate n floats on device */  
CURAND_CALL( curandGenerateUniform(gen, devData, n) );  
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B.0.7  PSO operations  

These operations are based on 6.1 and 6.2 equations. The operations need as parameter the  

particles of each swarm. Each particle is loaded in shared memory, and at the end of the 

operations the outcomes are returned to the global memory. The results are used to generate new 

positions to insert the watermark image.  

 
To take advantage of the parallelism in CUDA, each block executes its own evaluations of 

the functions. If the image size is 512x512, there are generated 4096 blocks (see chapter 8). For 

example, in the case of the evaluation of the velocity value, if there are five particles in each block, 

then five operation are executed in parallel in the 4096 blocks, for each particle it is assigned one 

thread. 20480 threads are working in parallel -4096 (blocks) * 5 (threads)- compared with the 

20480 operations that would have been in the sequential mode.  

 
In the case of velocity and position vectors, are assigned threads as number of particles by 

block.  
 

 
B.0.7.1  Velocity  

__device__ void updateVelocitiesGPU( Particle * particles,  

Particle * gBest, float *radomNum, int swarmSize, float C1,  
float C2 ){  

 
int tid = blockIdx.x;  

int tx = threadIdx.x;  

int tid2 = ( blockIdx.x * 4 )+threadIdx.x;  

 
__shared__ float a[4], b[4], c[4];  
 

 
while( tid < swarmSize ){  
 

a[tx] = particles[tid].vel.vel[tx];  

b[tx] = C1 * radomNum[tid2] * ( particles[tid].lbest.pos[tx]  
- particles[tid].pos.pos[tx] ) ;  

c[tx] = C2 * radomNum[tid2] * ( gBest->pos.pos[tx]  
- particles[tid].pos.pos[tx] ) ;  
 

 
particles[tid].vel.vel[tx] =  a[tx]+b[tx]+c[tx];  
 

 
tid += blockDim.x * gridDim.x;  

tid2 += blockDim.x * gridDim.x;  
} 

} 
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B.0.7.2  Position  
 

 
 
 
__device__ void updatePositionGPU( Particle * particles,  

int swarmSize ){  

 
int tid = blockIdx.x; int tx = 

threadIdx.x;  

__shared__ float a[4];  

__shared__ int c[4];  
 

 
while( tid < swarmSize ){  
 

 

a[tx] = (particles[tid].vel.vel[tx]*100) +  

(particles[tid].pos.pos[tx]*100);  
c[tx] = fabs( a[tx] );  

c[tx] = (c[tx] % 63) + 1;  
 

particles[tid].pos.pos[tx] = c[tx];  

tid += blockDim.x * gridDim.x;  
} 

} 
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The calculus of the MSE and the NC are based in the equations 2.5 and 2.6 respectively. To 

calculate the MSE value there are needed 64 threads for each block, where each thread executes 

a comparison (if there are 4096 blocks, then 262164 operations -4096 (blocks) * 64 (threads)- 

would be executed in parallel). The reduction is done by using in every iteration the half of the 

threads. If there are 64 threads, then the iterations start with 32 threads. The threads with indices 

lesser than this value do the job.  

 
The figure B.2 shows the assignation threads for the reduction operation. Fer each itera- tion, 

the threads are divided by the half. At the end of the operation just one thread stores the result.  
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure B.2: Threads management for the reduction operation.  
 

 
 

To calculate NC just 4 threads are required, each thread executes one bitwise operation. If 4 

bits of the watermark were inserted by block, just 4 threads would be needed to make the 

comparisons (if there are 4096 blocks, then 16384 operations -4096 (blocks) * 4 (threads)- 

would be executed in parallel).  
 
 
 

B.0.7.3  MSE  
 
 

__global__ void MSEKernel( byte *Img1, byte *Img2,  

float * answer, int Stride, ROI Size ){  

 
__shared__ float cache[64];  

 
// Block index  

int bx = blockIdx.x;  
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int by = blockIdx.y;  

 
// Thread index (current coefficient)  

int tx = threadIdx.x; int ty = 

threadIdx.y;  
 

// Indices  

int idx = (by * 8 + ty) * Stride + (bx * 8 + tx);  

int ith = ty * 8 +tx;  

 
cache[ ith ] = POW( (Img1[ idx ] - Img2[ idx ]) );  
 

 
__syncthreads();  
 

 
int i = 32;  // total block / 2  

 
while (i != 0) {  

if (ith < i)  

cache[ith] += cache[ith + i];  

__syncthreads();  

i /= 2;  

} 
 

 
int bidx = by * Stride + bx;  
if (ith == 0)  

answer[bidx] = cache[0]/64;  
 

 
} 
 

 
 
 
B.0.7.4  NC  
 
 

__global__ void ncKernel( int *waterO, int *waterE,  

float *answer, int Stride ){  

 
__shared__ float cache[4];  

 
// Block index  

int bx = blockIdx.x; int by 

= blockIdx.y;  
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int tx = threadIdx.x;  
 

 
// Indices  
 

 
int idx = (by * 4 )* 64  + (bx * 4 + tx);  
 
cache[ tx ] = waterO[ idx ] ˆ waterE[ idx ];  

__syncthreads();  

 
int i = 2;  

while (i != 0) {  

if (tx < i)  

cache[tx] += cache[tx + i];  

__syncthreads();  

i /= 2;  

} 
 

 
int bidx = by * 64 + bx;  

if (tx == 0)  

answer[bidx] = cache[0]/4;  

} 
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Utilities  
 
 
 
Utilities are the stuctures that help in the algorithm, but they are not involved in the algorithm.  

 
 
 

C.1  Timer.h  
 

This structure is used to meassure the time when a code is running on the CPU or the GPU. The 

structure has two methods: startT imer(), to initialize the timer, and stopT imer() to stop the 

timer.  
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure C.1: Timer struct.  
 
 
 

To meassure the time, the sys/time.h library is used.  
 

 
 
struct timeval start, stop;  

 
void startTimer(){  

gettimeofday(&start, 0);  

} 
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float stopTimer(){  
 

 
gettimeofday(&stop, 0);  
 

 

float elapsedTime = (stop.tv_sec+stop.tv_usec*1e-6)-  

(start.tv_sec+start.tv_usec*1e-6);  

 
return elapsedTime;  

} 
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C.2  ShiehUtilities.h  
 

ShiehUtilities is used to load one image and one watermark in memory, it has two methods: 

loadImage() and loadW atermark(). The path, and the image and the watermark names are 

stored in a file. Due to this, it is not necessary to re-compile the code to use a new image or 

watermark.  
 

 
 
 
 
 
 
 
 
 
 
 
 

Figure C.2: ShiehUtilities struct.  
 
 
 
 

struct  ShiehUtilities{  
 

 
//IMAGE  

char *SampleImageFname;  

char *SampleImageFnameResCUDA2;  

char *pSampleImageFpath;  
ROI ImgSize;  

int ImgStride; //Step between two sequential rows  

byte *ImgSrc;  

byte *ImgDstCUDA2;  
 

//WATERMARK  

char *WatermarkPath;  
ROI WaterMImgSize;  

int WaterMStride;  

byte *WaterMSrc;  
ROI WaterMSize;  

int *WaterMSrcInt;  
 

//BANDS  

int *bands;  
int bandsstart;  

int bandsend;  
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int bandSize;  

int bandsbyblock;  
 

 
ShiehUtilities(){  

 
ImageParamLoader ipl; 

ipl.loadProperties();  

 
SampleImageFname = ipl.getOrigin();  

SampleImageFnameResCUDA2 = ipl.getDestination();  

pSampleImageFpath = ipl.getHome();  

WatermarkPath = ipl.getWatermark();  

bandsstart = ipl.getBandsStart();  

bandsend = ipl.getBandsEnd();  
 

 
} 
 

 
 

/**  

**********************************************************  

* This function generates the initial bands in a row  

* 

* \param totalElements  

*** 

[IN] - Is equivalen to the  

number or blocks  

times number of bands  

* \return Array with all the bands for whole image  

*/  

 
void makeDiagonalBands(int totalElements){...}  
 

 
 
 

/**  

***************************************************************  

* This function load the initial bands from a file  

* 

* \param totalElements [IN] - Is equivalen to the  

*

*

* 

number ob blocks times  

number of bands  

* \return Array with all the bands for whole image  

*/  
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void loadDiagonalBands(int totalElements){...}  
 

 
 

/**  

*************************************************************  

* This function generates the initial bands in a row  

* 

* \param totalElements [IN] - Is equivalen to the  

*

* 

number ob blocks times  

number of bands  

* \param baux [IN] - The bans choosen by the user  

* \param bandsByBlock [IN] - Number of band for each block  

* 

* \return Array with all the bands for whole image  

*/  
 

void makeDiagonalBands2(int totalElements,  

int *baux, int bandsByBlock ){...}  
 

 
 
 
 

/**  

**********************************************************  

* Load the original image to be used for watermarking  

**  

* \param op [IN] - Is the option to load de  

*

*

* 

original image  

or the watermarked image  

* \return integer, 0 = Successful, 1 = Error  

*/  

 
int loadImage(int op){...}  
 

 
 

/**  

************************************************************  

* Load the watermark image  

**  

* 

* \return integer, 0 = Successful, 1 = Error  
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*/  

 
int loadWatermarkInt( ){...}  
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C.3  ImageParamLoader.h  
 

ImageParamLoader is used to load the path where the auxiliar files are stored. Image and 

watermark names are extracted from a file called image.properties which contains the fol-  

lowing information:  
 

 
 
 
ORIGIN  = barbara.bmp  

DESTINATION = data/barbara_cuda.bmp  

IMAGE_HOME = data/barbara.bmp  

WATERMARK  = data/logo128x128.bmp  

BANDSSTART = 28  

BANDSEND  = 31  

BANDSBYBLOCK = 4  
 

In the class, the method loadP roperties() loads the parameters and they can be called by their 

getter function.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure C.3: ImageParamLoader class.  
 
 
 
 
 

class  ImageParamLoader{  
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private:  

char *origin;  

char *destination;  

char *home;  

char *watermark;  
int bandsstart;  

int bandsend;  
 

 
public:  
 

 
 

ImageParamLoader();  

˜ImageParamLoader();  
 

 

char* getOrigin();  

char* getDestination();  

char* getHome();  

char* getWatermark();  
int getBandsEnd();  

int getBandsStart();  
 

 
void loadProperties();  
 

 
protected:  

APPENDIX C. UTILITIES  

 
 
 
 
 
};  

 
 
 

C.4  BmpUtil.h  
 

BmpUtil is a library provided by NVIDIA. It contains basic image operations which are used by 

ShiehUtilities.h to load the image and the watermark into the memory.  
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