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Preface

The study of digraphs still represent a small part of Graph Theory. Nonethe-
less, it has grown a lot in the past twenty years. It suffices to consider Graph
Theory texts, past and present. When those texts started to appear, di-
graphs were developed in a single chapter, sometimes only lightly related
with the rest of the material. Nowadays, some of the most popular Graph
Theory books consider digraphs as an interwoven subject through all the
text. And, as in every fast growing subject inside Mathematics, there are a
lot of simple but clever things that can be proved within. The dissertation
you hold in your hand is an exploration of a subject within digraphs that has
not received a lot of attention due to its difficulty: (k, l)-kernels in digraphs.

Five years ago, Professor Hortensia Galeana-Sánchez imparted two courses
on kernels in digraphs in the Mathematics Graduate Program at the Au-
tonomous National University of México. During those courses we studied
not only kernels in digraphs, but some of its generalizations, mainly kernels
by monochromatic paths and (k, l)-kernels. At that time, I was surprised to
notice that, although (k, l)-kernels seem to be a more “natural” generaliza-
tion of the concept of kernel than kernels by monochromatic paths, only a
few very general results related to this concept were known, in contrast with
the number of results known, involving large families of digraphs, for kernels
and kernels by monochromatic paths.

As a matter of fact, after completing the courses, I felt that finding general
sufficient conditions for a digraph to have a (k, l)-kernel was a very difficult
problem, so I began working on kernels by monochromatic paths under the
supervision of Professor Galeana-Sánchez. Luckily, I did not get any results
working with kernels by monochromatic paths. But more than that, I man-
aged to prove a result, if not about (k, l)-kernels, resembling a classic result
about k-kernels. Shortly afterwards, I obtained my first result about (k, l)-
kernels, proving the existence of (k, l)-kernels in quasi-transitive digraphs.
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The aforementioned results, together with all the work that I developed un-
der the supervision of Professor Galeana-Sánchez during the following four
years, is now contained in the present work.

Of course, the material in the present dissertation has received a logical
order, different from the chronological order in which it was obtained. At
its early stages, this work grew erratically, guided more by chance than by
a deep understanding of the subject. Chronologically, our first result is the
main theorem of Section 7.2, followed by the main theorem of Section 3.3,
and followed by the main results of Sections 2.3, 4.3, 3.2, 6.2 and 5.5, in that
order. Once these results were obtained (as well as a deeper understanding
of the subject), we began to organize the material in articles that were sub-
mitted to specialized journals for their publication. Most of the results of
this work were obtained during this stage. Since the mathematical context
for every result was included in the respective article, those articles were the
base for the chapters of the present thesis. In fact, to the present day articles
corresponding to Chapters 2, 3 and 7 are published. Also, and I am very
thankful for that, Professor Galeana-Sánchez encouraged me to include Sec-
tion 5.6, which is based in an accepted paper that I developed independently.
Except for Chapter 7, the rest of the chapters are in the chronological order
of the articles.

Except from some very powerful results due to A. W loch and I. W loch,
most of the results about (k, l)-kernels were obtained without the aid of pre-
vious results. In fact, when we started this work, most of the existing results
about (k, l)-kernels in digraphs were related to operations in digraphs and
how the (k, l)-kernels are preserved, but we focused on finding large families
of digraphs with (k, l)-kernel. Also, we managed to generalize some results
valid for kernels to (k, l)-kernels. In some cases, more than a result, we
obtained proof techniques that may be (and were) used to obtain further
results. Also, the structure of some families of digraphs were studied and de-
scribed, e.g, unilateral cyclically k-partite digraphs or 3-transitive digraphs.
Also, an infinite family of families of digraphs is introduced here and some
of its basic properties studied, k-transitive digraphs and k-quasi-transitive
digraphs, with k ≥ 2 an integer.

In Chapter 1, a brief introduction to the basic concepts of Digraph Theory
is given, along with the definition and classic results about kernels and (k, l)-
kernels in digraphs. In Chapters 2 to 6, different families of digraphs are
studied. In some cases the whole family is proven to have (k, l)-kernel for
some pairs of integers k and l, and in other cases sufficient conditions are
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given for the family to have a (k, l)-kernel. In Chapter 7, the notion of (k, l)-
kernel is generalized for weighted digraphs. In Chapter 8 (k, l)-kernels in
infinite digraphs are considered, obviously, a summary of the results of the
whole dissertation is made for the infinite case. Many open problems and
conjectures are proposed.

We expect the present work to begin to fill the gap that has formed
through the past twenty years, since the introduction of the concept of (k, l)-
kernel in 1991, between the study of kernels and (k, l)-kernels. Principally,
we tried to contribute in the study of general sufficient conditions for the
existence of (k, l)-kernels in digraphs, and the possible analogies between
kernels and (k, l)-kernels.
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Abstract

Despite the fact that the contents of this work are specialized, we have man-
aged to present them in a self contained fashion, starting from almost nothing
but the definition of digraph and building and defining every necessary no-
tion. Obviously, by doing this it was intended that anyone with basic math-
ematical skills could read and understand the whole material. Nonetheless,
it is clear that also specialists of the field will read it and, since they know
by heart all the basics, we understand that they would like to get to the
point. This brief section is a quick guide through the material presented
here, indicating the highlights of the work.

Let us recall that our principal aim is to find large families of digraphs
with (k, l)-kernel, for different integers of k and l. So the structure of each
chapter (except Chapter 1) is simple. Every chapter has a short introductory
section where a class of digraphs is defined and the principal properties and
known results are mentioned. Afterwards, a section is devoted to prove some
results that will be used in the final section to prove sufficient conditions
for the existence of (k, l)-kernels in the family of digraphs considered. In
Chapter 1, basic notions of (Di)Graph Theory can be found in the first
sections. Later, in Section 1.7, the concept of kernel is introduced, alongside
with a brief overview of the the role of kernels in Graph Theory and some of
the main results related to the existence of kernels in digraphs. In Section
1.8 the notion of (k, l)-kernel is defined. It is easy to give an overview of the
existing results about (k, l)-kernels, since the concept was introduced in 1991
and the number of articles devoted to the subject is limited.

The original results of the work begin in Chapter 2, where cyclically k-
partite digraphs are considered. A digraph D = (V,A) is cyclically k-partite
if a partition {V0, V1, . . . , Vk−1} of V exists, such that every arc of D is a
ViVi+1-arc (mod k). In Section 2.2, a structural characterization is given for
unilateral cyclically k-partite digraphs. In Section 2.3 the characterization is
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used to prove that every unilateral digraph such that every directed cycle has
length ≡ 0 (mod k) and every directed cycle with precisely one obstruction
has length ≡ 2 (mod k) has a k-kernel.

A digraph D = (V,A) is right-(left-)pretransitive if the existence of the
directed path (u, v, w) in D impliest that (u,w) ∈ A(D) or (w, v) ∈ A(D)
((v, u) ∈ A(D)). A digraph D = (V,A) is quasi-transitive if the existence
of the directed path (u, v, w) in D implies that (u,w) ∈ A or (w, u) ∈ A.
In Chapter 3 both generalizations of transitive digraphs are studied. A
new definition of (k, l)-semikernel (an original contribution of this work) is
given in section 3.1. Also it is proved that if every vertex of D is a (k, l)-
semikernel, then D has a (k, l)-kernel. In Section 3.2 it is proved that every
right-pretransitive digraph such that every directed triangle is symmetrical
has a k-kernel for every integer k ≥ 2. An analogous result is proved for
left-pretransitive digraphs. In Section 3.3 it is proved that if D is a quasi-
transitive digraph, then D has a (k, l)-kernel for every pair of integers k, l
such that k ≥ 4 and 3 ≤ l ≤ k − 1 or k = 3 and l = 2.

Semicomplete multipartite digraphs are studied in Chapter 4. In section
4.2, the k-transitive closure Ck(D) of a digraph D = (V,A) is considered.
The vertex set of Ck(D) is V , and (u, v) ∈ A(D) if and only if dD(u, v) ≤ k.
It is direct to observe that D has a k-kernel if and only if Ck−1(D) has a
kernel. In section 4.3 the k-transitive closure is used to prove that every
semicomplete multipartite digraph T has a k-kernel for every m ≥ 2, k ≥ 4.
If every directed cycle of length 4 in T intersects 4 different classes of T , then
T has a 3-kernel for every m ≥ 2. Also, two distinct characterizations for
semicomplete multipartite digraphs with a 3-kernel are given.

In Chapter 5 we introduce three new families of digraphs (also an original
contribution of this work), two of them generalizing transitive and quasi-
transitive digraphs respectively; a digraph D is k-transitive if whenever
(x0, x1, . . . , xk) is a directed path of length k in D, then (x0, xk) ∈ A(D);
k-quasi-transitive digraphs are analogously defined. In Section 5.3 some
structural results about k-kernels are proved and used to prove that a k-
transitive digraph has an n-kernel for every n ≥ k. Also, we prove that a
k-transitive digraph has a k-king if and only if it has a unique initial strong
component. The study of k-quasi-transitive digraphs is divided between Sec-
tion 5.4, where some basic structural results are proved; and Section 5.5,
where it is proved that for even k ≥ 2, every k-quasi-transitive digraph has
an n-kernel for every n ≥ k+2; and that every 3-quasi-transitive digraph has
k-kernel for every k ≥ 4. The fact that, for even k ∈ Z, a k-quasi-transitive
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digraph has a (k+ 1)-king if and only if it has a unique initial strong compo-
nent is also proved. Similar results are proved for k-quasi-transitive digraphs
where k ∈ Z+ is odd, but it was not possible to get results as good as the
obtained for the even case.

The following conjecture is proposed in Chapter 6: If D is a digraph
with circumference l, then D has a l-kernel. This conjecture is proved for
two families of digraphs and a partial result is obtained for a third family.
In Section 6.2 it is proved that if D is a σ-strong digraph with circumfer-
ence l, then D has a (k, (l − 1) + (l − σ)

⌊
k−2
σ

⌋
)-kernel for every k ≥ 2. A

digraph D is locally in(out)-semicomplete if whenever (v, u), (w, u) ∈ A(D)
((u, v), (u,w) ∈ A(D)) and v 6= w, then (v, w) ∈ A(D) or (w, v) ∈ A(D). In
Section 6.3 it is proved that if D is a locally in/out-semicomplete digraph
such that, for a fixed integer l ≥ 1, (u, v) ∈ A(D) implies d(v, u) ≤ l, then
D has a (k, l)-kernel for every k ≥ 2. As a consequence of this theorems we
have that every (l− 1)-strong digraph with circumference l and every locally
out-semicomplete digraph with circumference l have an l-kernel, and every
locally in-semicomplete digraph with circumference l has an l-solution. Also,
in Section 6.4 we prove that every k-quasi-transitive digraph with circumfer-
ence l ≤ k has a n-kernel for every n ≥ k.

Chapter 7 is different from the rest. We propose an extension of the
definition of (k, l)-kernel to (arc-)weighted digraphs, verifying which of the
existing results for k-kernels are valid in this extension. If D is a digraph
and w : A(D) → Z is a weight function for the arcs of D, we can restate
the problem of finding a k-kernel in the following way. If C is a walk in D,
the weight of C is defined as w(C ) :=

∑
f∈A(C ) w(f). A subset S ⊆ V (D) is

(k,w)-independent if, for every u, v ∈ S there does not exist an uv-directed
path of weight less than k. A subset S ⊆ V (D) will be (l,w)-absorbent if, for
every u ∈ V (D) \ S, there exists an uS-directed path of weight less than or
equal to l. A subset N ⊆ V (D) is a (k, l,w)-kernel if it is (k,w)-independent
and (l,w)-absorbent. In Section 7.1 it is proved, among other results, that
every transitive digraph has a (k, k − 1,w)-kernel for every k, that if T is a
tournament and w(a) ≤ k−1

2
for every a ∈ A(T ), then T has a (k,w)-kernel

and that if every directed cycle in a quasi-transitive digraph D has weight
≤ k−1

2
+1, then D has a (k,w)-kernel. In Section 7.2 weighted digraphs where

the weight function w : A(D) → G has an arbitrary group as codomain is
considered.

In Chapter 8, Infinite digraphs are studied. In Section 8.1, a brief survey
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about (k, l)-kernels in infinite digraphs is given. The rest of the chapter is
devoted to consider the results of previous chapters and to see which of them
can be stated for infinite digraphs. The main tool for generalizing those
results is a lemma, stating that if D is an infinite digraph such that every
vertex of D is a (k, l)-semikernel, then D has a (k, l)-kernel.
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Chapter 1

Introduction

1.1 Digraphs and Subdigraphs

Our most basic objects are digraphs (or directed graphs). A digraph consists
of a non-empty set V (D) of elements called vertices, together with a finite
set A = A(D) of ordered pairs of distinct vertices of V called arcs. We
call V (D) the vertex set and A(D) the arc set of D. We will often write
D = (V,A), which means that V and A are the vertex set and arc set of D,
respectively. The order (size) of D is the cardinality of V (D) (A(D)). In
the present work all digraphs will be considered to have finite order and size,
unless stated otherwise.

For an arc (u, v) the first vertex u is its tail and the second vertex v is its
head. We also say that the arc (u, v) leaves u and enters v. The head and
tail of an arc are its end-vertices; we say that the end-vertices are adjacent,
i.e. u is adjacent to v and v is adjacent to u. If (u, v) is an arc, we also say
that v absorbs u (or u is absorbed by v) and denote it by u→ v. As a dual
notion, if (u, v) is an arc, we say that u dominates v. We say that a vertex
u is incident to an arc a if u is the head or tail of a. For subsets X and Y of
V (D), an XY -arc is an arc with tail in X and head in Y . For disjoint subsets
X and Y of V (D), X → Y means that every vertex of X dominates every
vertex of Y , and X 7→ Y means that X → Y and there are no Y X-arcs. In
the digraph D of Figure 1.1, {v4, v5} 7→ {v8, v9}.

The above definition of a digraph implies that we allow a digraph to have
arcs with the same end-vertices, that is to say (u, v) and (v, u), but we do
not allow it to have parallel (also called multiple) arcs, that is, pairs of
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arcs with the same tail and the same head, or loops (i.e. arcs whose head
and tail coincide). When parallel arcs and loops are admissible we speak of
pseudodigraphs; directed pseudographs without loops are multidigraphs.
Nonetheless, in the present work we will always consider digraphs, that is,
digraphs without loops and without parallel arcs, unless stated otherwise.
We will give, in most of the cases, terminology and notation for digraphs
only, but their extension to pseudodigraphs can be given in the natural way.
Figure 1.1 depicts a digraph D and a pseudodigraph D′.

v1

v2

v3 v4

v5

v6

v7

v8

v9

D

u1u2

u3 u4

u5

u6

D′

Figure 1.1: A digraph D with symmetrical arcs (v3, v4), (v8, v9) and
a pseudodigraph D′ with loops at (u5, u5), (u6, u6) and parallel arcs at
(u1, u2), (u5, u1).

If v is a vertex of the digraph D, the sets N+
D (v), N−D (v) and N(v) =

N+
D (v) ∪ N−D (v) are called the out-neighborhood, in-neighborhood and

neighborhood of v respectively. We call the vertices in N+
D (v), N−D (v) and

N(v) = N+
D (v) ∪N−D (v) the out-neighbors, in-neighbors and neighbors

of v, respectively. In Figure 1.1, N+
D (v5) = {v1, v7, v8, v9} and N−D (v5) = {v4}.

For a vertex v, the out-degree of v, denoted d+(v), is the number of arcs
with tail v. Let us remark that if D is a digraph (i.e., without loops or parallel
arcs), then the out-degree of a vertex equals the number of out-neighbors of
this vertex. This is not the case for pseudodigraphs, we may observe that, for
example in Figure 1.1, N+

D′(u1) = {u2, u4}, but d+
D′(u1) = 4. The in-degree

and degree of a vertex v are analogously defined and denoted d−(v) and
d(v), respectively.

A digraph H is a subdigraph of a digraph D if V (H) ⊆ V (D), A(H) ⊆
A(D) and every arc in A(H) has both end vertices in V (H). If V (H) = V (D),
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we say that H is a spanning subdigraph of D. If every arc of A(D) with
both end-vertices in V (H) is in A(H), we say that H is induced by X = V (D)
(we write H = D[X]) and call H an induced of D. If H is a subdigraph of
D, then we say that D is a superdigraph of H.

v1

v2

v3 v4

v5

v6

v7

v8

v9

H1

v1

v3 v4

v5
v8

H2

Figure 1.2: Both digraphs H1 and H2 are subdigraphs of the digraph D of
Figure 1.1. The digraph H1 is a spanning non-induced subdigraph of D and
H2 is the subdigraph of D induced by the set {v1, v3, v4, v5, v8}.

1.2 Isomorphism and Basic Operations on Di-

graphs

Suppose D = (V,A) is a digraph and let xy be an arc of D. By reversing
the arc (x, y), we mean that we replace the arc (x, y) by the arc (y, x).

A pair of directed digraphs D and H are isomorphic (denoted by D ∼=
H) if there exists a bijection ϕ : V (D) → V (H) such that (x, y) ∈ A(D)
if and only if (ϕ(x), ϕ(y)) ∈ A(H) for every ordered pair x, y of vertices in
D. The function ϕ is an isomorphism. As is usual in mathematics, we will
often not distinguish between isomorphic digraphs. For example, we may say
that there is only one digraph on a single vertex and there are exactly three
digraphs with two vertices. For a set of digraphs Ψ we say that a digraph
D belongs to Ψ or is a member of Ψ (denoted D ∈ Ψ) if D is isomorphic
to a digraph in Ψ. Since we usually do not distinguish between isomorphic
digraphs, we will often write D = H instead of D ∼= H for isomorphic D and
H.
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The converse or dual of a digraph D is the digraph H which one obtains
from D by reversing all arcs. It is easy to verify, using only the definitions of
isomorphism and converse, that a pair of digraphs are isomorphic if and only
if their converses are isomorphic. To obtain subdigraphs we use the following
operations of deletion. For a digraph D and a set B ⊆ A(D), the digraph
D−B is the spanning subdigraph of D with arc set A(D)\B. If X ⊆ V (D),
the digraph D − X is the digraph induced by V (D) \ X, i.e. D − X =
D[V (D) \ X]. For a subdigraph H of D, we define D − H = D − V (H).
Since we do not distinguish between a singleton {x} and the element x itself,
we will often write D − x rather than D − {x}. If H is a non-induced
subdigraph of D, then there is an arc a = (x, y) such that x, y ∈ V (H) and
(x, y) ∈ A(D) \ A(H). We can construct another subdigraph H ′ of D by
adding a of H; H ′ = H + a.

Let G be a subdigraph of a digraph D. The contraction of G in D is
a digraph D/G with V (D/G) = {g} ∪ (V (D) \ V (G)), where g is a ‘new’
vertex not inD andA(D/G) = A(D−G)∪

{
(v, g)

∣∣(v, y) ∈ A(D), y ∈ V (G)
}
∪{

(g, v)
∣∣(x, v) ∈ A(D), x ∈ V (G)

}
. Note that D has no parallel arcs and, if D

is loopless, then D/G is also loopless. Let G1, G2, . . . , Gt be vertex-disjoint
subdigraphs of D. Then

D/{G1, G2, . . . , Gt} = (. . . ((D/G1)/G2) . . . )/Gt.

Clearly, the resulting digraph D/{G1, G2, . . . , Gt} does not depend on the
order of G1, G2, . . . , Gt. Contraction can be defined for sets of vertices, rather
than subdigraphs. It suffices to view a set of vertices X as a subdigraph with
vertex set X and no arcs.

To construct ‘bigger’ digraphs from ‘smaller’ ones, we will often use the
following operation called composition. Let D be a digraph with vertex set
{v1, v2, . . . , vn}, and let G1, G2, . . . , Gn be digraphs which are pairwise vertex-
disjoint. The composition D[G1, G2, . . . , Gn] is the digraph L with vertex set⋃n
i=1 V (Gi) and arc set (

⋃n
i=1A(Gi))∪

{
gigj

∣∣gi ∈ V (Gi), gj ∈ V (Gj), (vi, vj) ∈
A(D)

}
.

The Cartesian product of a family of digraphs D1, D2, . . . Dn, denoted
by D12D22 . . .2Dn or

∏n
i=1Di, where n ≥ 2, is the digraph D having

V (D) = V (D1) × V (D2) × · · · × V (Dn) (the Cartesian product) and a ver-
tex (u1, u2, . . . , un) dominates a vertex (v1, v2, . . . , vn) of D if and only if
there exists an r ∈ {1, 2, . . . , n} such that (ur, vr) ∈ A(Dr) and ui = vi for all
i ∈ {1, 2, . . . , n}\{r}. It is easy to observe that if xj is a fixed vertex in V (Gj)
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D1

←−
D1

D2

←−
D2

Figure 1.3: Two digraphs D1 and D2 and their duals. Also, D1 is isomorphic
to its dual but but D2 is not.

for j 6= i, then the subdigraph induced by
{

(x1, . . . , yi, . . . , xn)
∣∣yi ∈ V (Gi)

}
is isomorphic to Gi. Examples of contraction, composition and cartesian
product are shown in Figure 1.3, but first we will introduce some new con-
cepts.

1.3 Walks, Trails, Paths and Cycles

Let D be a multidigraph. A (directed) walk in D is an alternating sequence
C = x1a1x2a2x3 . . . xk−1ak−1xk of vertices xi and arcs aj from D such that
the tail of ai is xi and the head of ai is xi+1 for every i ∈ {1, 2, . . . , k − 1}.
The length of the walk C is k − 1. A walk is even (odd) if it has even
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(odd) length. A walk C is closed if x1 = xk, and open otherwise. The set of
vertices {x1, x2, . . . xk} is denoted by V (C ); the set of arcs {a1, a2, . . . , ak−1}
is denoted by A(C ). We say that C is a walk from x1 to xk or an x1xk-walk.
If C is open, then we say that the vertex x1 is the initial vertex of C , the
vertex xk is the terminal vertex of C and x1 and xk are the end-vertices of
C . When the arcs of C are defined from the context or simply unimportant
(as in digraphs without parallel arcs), we will denote C by (x1, x2, . . . , xk).

A trail is a walk in which all arcs are distinct. Sometimes, we identify
a trail C with the digraph (V (C ), A(C )) which is a subdigraph of D. If
the vertices of C are distinct, C is a path. If the vertices x1, x2, . . . , xk−1

are distinct, k ≥ 3 and x1 = xk, C is a cycle. Since paths and cycles are
special cases of walks, the length of a path and a cycle is already defined.
The same remark is valid for other parameters and notions, e.g. an xy-path.
A longest path (cycle) in D is a path (cycle) of maximal length in D.

v1v2

v3 v4

v5

v6v7

v8

v9 v10

Figure 1.4: Examples of directed walks, trails, paths and cycles:
(v3, v9, v10, v4, v5, v1, v6, v7, v2, v3, v4, v5, v6, v7, v2, v3) is a closed walk but not
a trail, (v2, v8, v3, v9, v10, v5, v1, v6, v7, v2, v3, v4, v5, v6) is a trail but not a
path, C = (v1, v6, v7, v2, v8, v3, v9, v10, v4, v5, v1) is an spanning cycle and
(v5, v1, v6, v7, v2, v8) is a subpath of C .

When C is a cycle and x is a vertex of C , we say that C is a cycle
through x. In a digraph D, a loop is also considered a cycle (of length
one). A k-cycle is a cycle of length k and it is ussually denoted by Ck. An
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|V |-cycle (spanning cycle) is called Hamiltonian. The minimum integer k for
which d has a k-cycle is the girth of D; denoted by g(D). If D does not have
a cycle, we define g(D) =∞. If g(D) is finite then we call a cycle of length
g(D) a shortest cycle in D. The digraph in Figure 1.4 has girth 3, since
(v1, v4, v5, v1) is a 3-cycle and it has no 2-cycles since it is asymmetrical.

H1 C3�C3 C3[C3, C2, K1]

Figure 1.5: Examples of contraction, cartesian product and composition.
The digraph H1 is obtained from D1 (or D2) of Figure 1.2 contracting the
inner 5-cycle.

For subsets X, Y of V (D), an xy-path C is an XY -path if x ∈ X and
y ∈ Y . Note that if X ∩ Y 6= ∅ then a vertex x ∈ X ∩ Y forms an XY -path
by itself. Sometimes we will talk about an HH ′-path when H and H ′ are
subdigraphs of D. By this we mean a V (H)V (H ′)-path in D.

Let C = (x1, x2, . . . , xk), D = (y1, y2, . . . , yt) be a pair of walks in
a digraph D. The walks C and D are disjoint if V (C ) ∩ V (D) = ∅
and arc-disjoint if A(C ) ∩ A(D) = ∅. If C and D are open walks,
they are called internally disjoint if {x2, x3, . . . , xk−1} ∩ V (D) = ∅ and
V (C ) ∩ {y2, y3, . . . , yt−1} = ∅. In the digraph of Figure 1.4, the v7v4-paths
(v7, v8, v3, v4) and (v7, v2, v1, v4) are internally disjoint.

We will use the following notation for a path or a cycle C = (x1, x2, . . . , xk)
(recall that x1 = xk if C is a cycle):

xiC xj = (xi, xi+1, . . . , xj).

It is easy to see that xiC xj is a path; we call it the subpath of C from xi
to xj. If 1 < i ≤ k then the predecessor of xi on C is the vertex xi−1. If
1 ≤ i < k then the successor of xi on C is the vertex xi+1.
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Now, we present a very basic and very important result about walks,
paths and cycles in digraphs.

Proposition 1.3.1. Let D be a digraph and let x, y be a pair of distinct
vertices in D. If D has an xy-walk C , then D contains an xy-path D such
that A(D) ⊆ A(C ). If D has a closed xx-walk C , then D contains a cycle
D through x such that A(D) ⊆ A(C ).

A digraph D is acyclic if it has no cycle. Acyclic digraphs form a well-
studied family of digraphs, in particular, due to the following important
properties.

Proposition 1.3.2. Every acyclic digraph has a vertex of in-degree zero as
well as a vertex of out-degree zero.

If D is a digraph, a vertex v in V (D) will be called an initial vertex
if d−(v) = 0 and terminal vertex if d+(v) = 0. Thus, Proposition 1.3.2
affirms that every acyclic digraph has at least one initial and one terminal
vertex.

Let D be a digraph and let x1, x2, . . . , xn be an ordering of its vertices.
We call this ordering an acyclic ordering if, for every arc xixj in D, we
have i < j. Clearly an acyclic ordering of D induces an acyclic ordering of
every subdigraph H of D. Since no cycle has an acyclic ordering, no digraph
with a cycle has an acyclic ordering. On the other hand, the following holds.

Proposition 1.3.3. Every acyclic digraph has an acyclic ordering of its
vertices.

The following proposition, although rather obvious, is very useful for our
purposes.

Proposition 1.3.4. Let D be an acyclic digraph and v ∈ V (D) a non-initial,
non-terminal vertex. Then, there are an initial vertex x and a terminal vertex
y such that an xv-path and a vy-path exist.

1.4 Strong and Unilateral Connectivity

In a digraph D a vertex v is reachable from a vertex u if D has a uv-
walk. In particular, a vertex is reachable from itself. By Proposition 1.3.1,
v is reachable from u if and only if D contains a uv-path. A digraph D
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is strongly connected (or just strong) if, for every pair u, v of distinct
vertices in D, there exists a uv-walk and a vu-walk. In other words, D is
strong if every vertex of D is reachable from every other vertex of D. We
define a digraph with one vertex to be strongly connected.

A digraph D is complete if, for every pair u, v of distinct vertices of D,
both (u, v) and (v, u) are arcs of D. For a strong digraph D = (V,A), a
set S ⊂ V is a separator (or a separating set) if D − S is not strong. A
digraph D is k-strongly connected (or k-strong) if |V | ≥ k+1 and D has
no separator with less than k vertices. It follows from the definition of strong
connectivity that a complete digraph with n vertices is (n − 1)-strong, but
is not n-strong. The largest integer k such that D is k-strongly connected is
the vertex-strong connectivity of D (denoted by κ(D)). If a digraph D
is not strong, we set κ(D) = 0.

A strong component of a digraph D is a maximal induced subdigraph
of D which is strong. If D1, . . . , Dt are the strong components of D, then
clearly

⋃t
i=1 V (Di) = V (D) (recall that a digraph with only one vertex is

strong). Moreover, we must have V (Di) ∩ V (Dj) = ∅ for every i 6= j;
thus, {V (Di)}ni=1 is a partition of V (D). Let D be a digraph with strong
components {V (Di)}ni=1, then the condensation D? of D, is a digraph such
that V (D?) = {Di}ni=1 and (Di, Dj) ∈ A(D?) if and only if there is a DiDj-arc
in D. The subdigraph of D induced by the vertices of a cycle in D is strong,
i.e., is contained in a strong component of D. Thus, D? is acyclic. The
strong components of D which are vertices of D? of in-degree (out-degree)
zero are the initial (terminal) strong components of D. The remaining
strong components of D are called intermediate strong components of
D.

A digraph D is unilateral if, for every pair u, v of vertices of D, either u
is reachable from v or v is reachable from u. Clearly, every strong digraph is
unilateral. Figure 1.6 depicts an unilateral digraph D and its condensation
D?.

The following are characterizations of strong and unilateral digraphs.

Proposition 1.4.1. A digraph D is strong if and only if there exists a span-
ning closed walk in D. A digraph D is unilateral if and only if there exists a
spanning walk in D.
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v1
v2

v3
v4

v5
v6

v7

v8

v9v10

v11 v12

D

D[{v1, v2}]

D[{v3, v4}]

D[{v7}] D[{v9, . . . v12}]

D[{v5, v6, v8}]

D?

Figure 1.6: An unilateral digraph D with spanning directed walk
(v3, v4, v1, v2, v6, v5, v8, v7, v10, v9, v12, v11) and its condensation D?.

1.5 Undirected Graphs, Biorientations and Ori-

entations

An undirected graph (or a graph) G = (V,E) consists of a non-empty
finite set V = V (G) of elements called vertices and a finite set E = E(G) of
unordered pairs of vertices called edges. We call V (G) the vertex set and
E(G) the edge set of G. In other words, an edge {x, y} is a 2-element subset
of V (G). We will often denote {x, y} just by xy. If xy ∈ E(G), we say that
the vertices x and y are adjacent. Notice that, in the above definition of
a graph, we do not allow loops or parallel edges. The complement G of a
graph G is the graph with vertex set V (G) in which two vertices are adjacent
if and only if they are not adjacent in G.

When parallel edges and loops are admissible we speak of pseudographs;
pseudographs with no loops are multigraphs. For a pseudograph G, a
pseudodigraph D is called a biorientation of G if D is obtained from G by
replacing each edge {x, y} of G by either (x, y) or (y, x) or the pair (x, y) and
(y, x) (except for a loop (x, x) which is replaced by a (directed) loop at x).
Note that different copies of the edge xy in G may be replaced by different
arcs in D. An orientation of a graph G is a biorientation of G having no
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2-cycle and no loops. An orientation of a graph is often called an oriented
graph. Clearly, every digraph is a biorientation and every oriented graph an
orientation of some undirected graph. The underlying graph UG(D) of a
digraph D is the unique graph G such that D is a biorientation of G. For a

graph G, the complete biorientation of G (Denoted by
←→
G ) is a biorientation

D of G such that (x, y) ∈ A(D) implies (y, x) ∈ A(D). An arc (x, y) in
a digraph D = (V,A) is symmetrical if (y, x) ∈ A and asymmetrical if
(y, x) /∈ A(D). A digraph D is symmetrical (asymmetrical) if every arc
of D is symmetrical (asymmetrical). Clearly, D is symmetrical if and only if
D is the complete biorientation of some graph. An oriented path (cycle)
is an orientation of a path (cycle).

Under the previous notions, an oriented graph is just an asymmetrical
digraph. A tournament is a loopless oriented graph where every pair of
distinct vertices are adjacent. In other words, a digraph T with vertex set
{v1, v2, . . . , vn} is a tournament if exactly one of the arcs (vi, vj) and (vj, vi)
is in T for every i 6= j ∈ {1, 2, . . . , n}.

A graph G is connected if its complete biorientation
←→
G is strongly

connected. Similarly, G is k-connected if
←→
G is k-strong. Strong components

in
←→
G are connected components, or just components in G. A bridge in

a connected graph G is an edge whose deletion from G makes G disconnected.
A graph G is k-edge-connected if the graph obtained from G after deletion
of at most k − 1 edges is connected. Clearly, a connected pseudograph is
bridgeless if and only if it is 2-edge-connected. The neighborhood NG(x)
of a vertex x in G is the set of vertices adjacent to x. The degree d(x) of a
vertex x is the number of edges, except loops, having x as an end-vertex. A

pair of graphs G and H are isomorphic if
←→
G and

←→
H are isomorphic.

A digraph is connected if its underlying graph is connected. The notions
of walks, trails, paths and cycles in undirected pseudographs are analogous to
those for pseudodigraphs (we merely disregard orientations). An xy-path in
an undirected pseudograph is a path whose end-vertices are x and y. When
we consider a digraph and its underlying graph UG(D), we will often call
walks of D directed (to distinguish between them and those in UG(D)). In
particular, we will speak of directed paths, cycles and trails. An undirected
graph is a forest if it has no cycle. A connected forest is a tree. It is easy
to see that every connected undirected graph has a spanning tree, i.e. a
spaning subgraph, which is a tree. A digraph D is an oriented forest (tree)
if D is an orientation of a forest (tree).
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The following well-known theorem is due to Robbins.

Theorem 1.5.1. A connected graph G has a strongly connected orientation
if and only if G has no bridge.

A set Q of vertices in a graph or a digraph H is independent if the
graph (digraph) H[Q] has no edges (arcs). A (proper) colouring of a
digraph or graph H is a partition of V (H) into (disjoint) independent sets.
The minimum number χ(H), of independent sets in a proper colouring of H
is the chromatic number of H.

A graph G is called perfect if χ(H) = ω(H) for every induced subgraph
H of G. A graph G is called Berge if it does not contain an induced odd hole
(induced odd cycle of length ≥ 5) nor odd-antihole (complement of an odd
hole). Claude Berge conjectured [13, 14] that a graph is perfect if and only
if it is Berge, this result, known as The Strong Perfect Graph Theorem, was
proved by Chudnovsky, et al. [26].

1.6 Classes of Digraphs and Graphs

In this section, we define certain families of digraphs and graphs which will
be used in various chapters of this work.

A graph G is complete if every pair of distinct vertices in G are adjacent.
We will denote the complete graph on n vertices (which is unique up to
isomorphism) by Kn. Its complement Kn has no edge. Clearly, a tournament
of order n is an orientation of Kn.

A graph G is p-partite if there exists a partition V1, V2, . . . , Vp of V (G)
into p independent sets. The special case of a p-partite graph when p = 2 is
called a bipartite graph. We often denote a p-partite graph G with parti-
tion V1, V2, . . . , Vp by G = (V1, V2, . . . , Vp). A p-partite graph G is complete
p-partite if, for every pair x ∈ Vi, y ∈ Vj (i 6= j), the edge xy is in G. A
complete graph on n vertices is clearly a complete n-partite graph for which
every partite set is a singleton. We denote the complete p-partite graph with
partite sets of cardinalities n1, n2, . . . , np by Kn1,n2,...,np . Complete p-partite
graphs for p ≥ 2 are also called complete multipartite graphs.

A p-partite digraph is a biorientation of a p-partite graph. Bipartite
digraphs are of special interest. It is well-known that an undirected graph is
bipartite if and only if it has no cycle of odd length. The obvious extension
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of this statement to cycles in digraphs is not valid. However, the obvious
extension does hold for strong bipartite digraphs.

Theorem 1.6.1. A strongly connected digraph is bipartite if and only if it
has no cycle of odd length.

An extension of this result to digraphs whose cycles are all of length ≡ 0
modulo k ≥ 2 will be given in section 2.

Recall that tournaments are orientations of complete graphs. A semi-
complete digraph is a biorientation of a complete graph. The complete

biorientation of a complete graph is a complete digraph (denoted by
←→
K n).

The notion of semicomplete digraphs and their special subclass, tourna-
ments, can be extended in various ways. A biorientation of a complete p-
partite (multipartite) graph is a semicomplete p-partite (multipartite)
digraph. A multipartite tournament is an orientation of a complete
multipartite graph. A semicomplete 2-partite digraph is also called a semi-
complete bipartite digraph. A bipartite tournament is a semicomplete
bipartite digraph with no 2-cycles.

Recall that a digraph D is acyclic if D has no (directed) cycle. Obvi-
ously, every acyclic digraph is an oriented graph. A digraph D is transitive
if, for every pair of arcs (x, y), (y, z) ∈ A(D), such that x 6= z, the arc
(x, z) is also in D. It is easy to show that a tournament is transitive if
and only if it is acyclic. Sometimes, we will deal with transitive oriented
graphs, i.e. transitive digraphs with no cycle of length two. A digraph D is
quasi-transitive if, for every triple x, y, z of distinct vertices of D such that
(x, y), (y, z) ∈ A(D), there is at least one arc between x and z. Clearly, a
semicomplete digraph is quasi-transitive. Note that, if there is only one arc
between x and z, it can have any direction; hence quasi-transitive digraphs
are generally not transitive.

1.7 Kernels and Semikernels

Given a digraph D = (V,A), a set N ⊆ V is a kernel of D if it is independent
and absorbent. Morgenstern and von Neumann introduced the concept of
a kernel in a digraph when describing winning positions in 2-person games.
Since their introduction in [92] in 1953, kernels have found various appli-
cations in many mathematical fields. For instance in Game Theory, where
a kernel represents a set of winning positions [23, 34, 92]; in the study of
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combinatorial games, where the existence of a kernel is closely related to the
existence of a winning strategy [15, 16, 34]; in Mathematical Logic, where
kernels in graphical representations of finite theories represent minimal sets
of counterexamples [19]; in list edge-colourings of graphs (see for example
[21]). But also, kernels have been related to very important conjectures in
Graph Theory, like Berge’s Strong Perfect Graph Conjecture or the Laborde-
Payan-Xuong Conjecture.

Also, kernels have an obvious interest by themselves as they are “optimal”
sets in a relation. Let us consider a simple example: Imagine that you want
to assemble a team of experts for intergalactic exploration and colonization.
Obviously, the spacecraft has only limited space and resources, thus, the
team of experts must be as small as possible, but it must cover all branches
of human knowledge. To choose the team, you can model the problem by
considering one vertex for each candidate and if u and v are candidates, the
arc (u, v) will represent that candidate v is better than candidate u (i.e.,
candidate v can effectively replace candidate u in the spacecraft). If two
candidates are incomparable, then no arc should be placed between them.
A kernel in the resulting digraph will represent an optimal solution: Since
the kernel is absorbent, for every person not chosen, there will be someone
in the kernel that is a better choice for the mission. Also, since the kernel
is independent, for every couple u, v chosen, u and v will be incomparable
(and thus, no one better than the other). Although this example is fictional
and simplistic, surely the reader can think of a lot of real life problems where
a kernel can model an optimal solution. So, one may ask, why kernels are
not widely used to solve all this problems? The answer is simple. First of
all, not every digraph has a kernel, consider for instance a directed triangle.
Also, in [27], Chvátal proved that the problem of determining if a digraph
has a kernel is NP -complete. Thus, there are not efficient algorithms to
determine if an arbitrary digraph has a kernel. In [33], Fraenkel proved that
the problem remains NP -complete even for planar digraphs D with degree
constraints d+(x) ≤ 2, d−(x) ≤ 2 and d(x) ≤ 3 for all vertices x.

Since we cannot decide effectively whether an arbitrary digraph has a
kernel or not, one of our best possible strategies is to find sufficient conditions
to guarantee the existence of a kernel in a digraph. Obviously, we would like
to find sufficient conditions that are polynomial time verifiable, for the sake
of applications, but this is not always possible. So, we are also interested in
sufficient conditions that imply that large families of digraphs have a kernel.
The first result of this kind is due to Morgenstern and von Neumann. In [92]
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it is proved the following theorem.

Theorem 1.7.1. Every acyclic digraph has a unique kernel.

A lot of work has been done around this theorem, one of the first gener-
alizations is due to Richardson, [83].

Theorem 1.7.2 (Richardson). Every digraph without directed odd cycles has
a kernel.

The original proof of Richardson’s Theorem was very extense and com-
plicated. In the search of a shorter proof, Vı́ctor Neumann-Lara introduced
two concepts. If D is a digraph, a set S ⊆ V (D) is a semikernel (local
kernel) of D if S is independent and for every vertex v ∈ N+(S) there exists
a vertex u ∈ S such that (v, u) ∈ A(D). A digraph D is kernel-perfect if
every induced subdigraph of D has a kernel. In [80], Neumann-Lara proved
the following sufficient condition for a digraph to be kernel-perfect (and thus,
to have a kernel).

Theorem 1.7.3. Let D be a (possibly infinite) digraph. If every induced
subdigraph of D has a semikernel, then D is kernel-perfect.

In [52], Galeana-Sánchez and Neumann-Lara, using the notion of semik-
ernel, gave sufficient conditions for a digraph to be a kernel-perfect digraph.
If C is a cycle in a digraph D, a pseudodiagonal of C is an arc with both
end-vertices in V (C ) but not in E(C ).

Theorem 1.7.4. If every directed cycle of odd length in D has two pseudo-
diagonals with consecutive terminal end-vertices, then D is kernel-perfect.

Another classical sufficient condition for a digraph to be kernel-perfect is
due to Berge and Duchet, [17].

Theorem 1.7.5. If every directed cycle of D has at least one symmetrical
arc, then D is kernel-perfect.

Two classical results describing large families of digraphs with a kernel
can be found in the book of Claude Berge [11]. First, that every maximal
independent set in a symmetrical digraph is a kernel. Also, that in a transitive
digraph D, a set N ⊆ V (D) is a kernel if and only if N is a minimal absorbant
set. Moreover, in a transitive digraph D, a kernel is obtained by choosing
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one vertex in each terminal component of D, thus all the kernels have the
same cardinality.

The list is extense. We could go on listing sufficient conditions for a
digraph to have a kernel or to be kernel-perfect, or families of digraphs that
have a kernel, but hopefully, this few examples will give the reader an idea of
the work done in this direction. To emphasize the importance of kernels, we
would like to go deeper in the relation between kernels and two important
problems in Graph Theory.

The first problem is a solved one: The Strong Perfect Graph Conjecture
(now the Strong Perfect Graph Theorem). Before stating the theorem, we
need some definitions and terminology. A clique in a graph G is a subset
C ⊆ V (G) such that G[C] is a complete graph. A maximum clique is a
clique of the largest possible size in G. The clique number of G, ω(G) is
the number of vertices in a maximum clique in G. A graph G is perfect if
χ(H) = ω(H) for every induced subgraph H of G. An odd hole in a graph is
an induced odd cycle, and an odd anti-hole in a graph is an induced subgraph
isomporphic to the complement of an odd cycle. The following theorem was
conjectured by Berge in 1963 and finally proved in 2006 by Chudnovsky,
Robertson, Seymour and Thomas in [26].

Theorem 1.7.6 (Strong Perfect Graph Theorem). A graph D is perfect if
and only if it has no odd holes nor odd anti-holes of length greater than or
equal to 5.

During the time that Theorem 1.7.6 was still a conjecture, a lot of new
theory was developed in the attempts to solve it. An alternative characteriza-
tion of perfect graph was conjectured by Berge and Duchet. A biorientation
of a graph G is called clique-acyclic if every clique has a kernel. An undi-
rected graph G is called kernel-solvable if every clique-acyclic orientation
of it has a kernel. Kernel-solvable graphs were introduced by Berge and
Duchet [18], who conjectured that they are the same as perfect graphs. The
fact that kernel-solvable graphs are perfect follows from Theorem 1.7.6. This
alternative characterization of perfect graphs is completed by the following
theorem of Boros and Gurvich, [22].

Theorem 1.7.7. Every perfect graph G is kernel-solvable.

An excellent survey on kernels, perfect graphs and cores of cooperative
games is due to Boros and Gurvich, [23].
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The second problem where kernels are related remains open. A longest
path in a digraph D is a directed path of maximum length in D. In [78],
Laborde, Payan and Xuong conjectured that every digraph has an indepen-
dent set intersecting every longest path. This conjecture has been open since
1982. As a special case, they proved that their conjecture is true for every
digraph with a kernel.

1.8 (k, l)-kernels

We have already mentioned that not every digraph has a kernel. An obvious
alternative was outlined in the previus section, to find sufficient conditions
for the existence of kernels in digraphs. Another usual way to proceed in
Mathematics is to consider a weakening of the concept that preserves some
of the central properties of the original concept, without being as restrictive
as the original. One weakening of the concept of kernel has been already
introduced in the previous section, a semikernel. Nonetheless, the basic ex-
ample of a digraph that does not have a kernel, the directed triangle, neither
has a semikernel. Chvátal and Lovász introduced in [28] the concept of quasi-
kernel of a digraph (although they originally called it a semi-kernel). A set
S ⊆ V (D) is a quasi-kernel of the digraph D if it is independent and for
every vertex u /∈ S there exists v ∈ S such that d(u, v) ≤ 2. This notion gen-
eralizes the notion of kernel, as it is clear that every kernel is a quasi-kernel.
Besides, a quasi-kernel is also an independent and ‘absorbing’ structure, but
instead of the usual notion of absorbence, it ‘absorbs’ every vertex outside
the quasi-kernel at distance 2. Quasi-kernels were introduced to generalize
the famous result due to Landau, [79], asserting that in every tournament T
there exists a vertex u ∈ V (T ) such that d(u, v) ≤ 2 for every v ∈ V (T ). This
simple weakening, i.e, letting a quasi-kernel absorb the remaining vertices of
the digraph at distance 2, gives place to the following surprising result.

Theorem 1.8.1 (Chvátal, Lovász). Every digraph has a quasi-kernel.

With this excellent result and the idea of changing the (distance 1) ab-
sorbence of a kernel for the ‘distance 2 absorbence’ in a quasi-kernel, it
immediately comes to mind a further generalization of the notion of kernel.
It is true that a quasi-kernel can be thought as a ‘not so good’ kernel, and
it turned out that it was easier to determine if a digraph has a quasi-kernel
than determining if a digraph has a kernel. But, although mathematicians
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like short and elegant solutions, we do not like very easy problems. Then,
it comes to mind, if we let a quasi-kernel absorb the remaining vertices of
the digraph at distance 2 and the problem became very easy, we can put
an aditional restriction on our absorbing set of vertices to get an interesting
problem once again. One obvious restriction is to ask the vertices in our set
to be at a greater distance. With this, we do not only get an interesting (and
more general) problem again, we also get the possibility to retrieve more in-
formation when we use this structure to model a situation. For example, if
we want to bring a new service to the population of a city, and this service
will accesible to the population through a set of service centers that will be
located across the city, we can optimize the number and location of service
centers using the following reasoning. We want that, from every point of the
city, a service center can be reached in at most distance l ∈ Z+, so all the
population have an easy acces to the service we are offering. But building
and mantaining a lot of service centers is expensive, so we do not want to
have redudant centers, that is two center covering almost the same area, so,
service centers should be away enough from each other, let us say, at distance
k ∈ Z+. A digraph can easily model the map of the city, and a solution to
our problem would be a set N of vertices such that, the distance between
vertices of N is at least k and the distance from a vertex not in N to a vertex
in N is at most l.

In [74], Kwaśnik and Borowiecki introduced the concept of (k, l)-kernel,
generalizing both, kernels and quasi-kernels. If D is a digraph and S ⊆ V (D),
we say that S is k-independent if d(u, v) ≥ k for every pair of distinct
vertices u, v ∈ S; and we call S l-absorbent if for every u ∈ V \ S, there
exists v ∈ S such that d(u, v) ≤ l. A (k,l)-kernel in a digraph D is a
set N ⊆ V (D) that is k-independent and l-absorbent. Thus, a kernel is a
(2, 1)-kernel and a quasi-kernel is a (2, 2)-kernel. A dual to the notion of
(k, l)-kernel can be defined in the following way. We call a set S ⊆ V l-
dominating if for every u ∈ V \ S, there exists v ∈ S such that d(v, u) ≤ l.
A (k,l)-solution in a digraph D is a set N ⊆ V (D) that is k-independent
and l-dominating. Many results concerning (k, l)-kernels can be dualized to

(k, l)-solutions using the dual digraph
←−
D .

A structure related to (k, l)-solutions has received a lot of attention in
the last couple of decades. An l-king is an l-dominating set consisting of
a single vertex. Thus, clearly an l-king is a (k, l)-solution for every integer
k ≥ 2. An l-serf is an l-absorbing set consisting in a single vertex. The
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notion of l-serf dualizes that of l-king, hence, an l-serf is a (k, l)-kernel for
every integer k ≥ 2.

Now, once again, we have that for an arbitrary choice of a pair of pos-
itive integers k, l, it does not necessarily exists a (k, l)-kernel. One would
expect that most (or at least some) of the existing sufficient conditions for
the existence of kernels in digraphs could be generalized to (k, l)-kernels.
Nonetheless, for some choices of k and l, the most general sufficient con-
dition for the existence of kernels in digraphs fails for (k, l)-kernels. There
are acyclic digraphs without a (k, k − 2) for every integer k ≥ 3, moreover,
it can be observed that the directed path of length k − 1 fails to have a
(k, k − 2)-kernel.

Clearly, a (k, l)-kernel is also an (n,m)-kernel for every 2 ≤ n ≤ k and
every m ≥ l. So, for a (k, l)-kernel, an (n,m)-kernel with 2 ≤ n ≤ k and
m ≥ l can be think as a relaxation of the (k, l)-kernel, and an (n,m)-kernel
with n ≥ k and m ≤ l a strengthening of the (k, l)-kernel. For l ≤ k − 2
it can be easily observed that there exist acyclic digraphs (not only acyclic
digraphs, but directed paths) that does not have a (k, l)-kernel. Also, we
will prove in Chapter 2 that every acyclic digraph has a unique (k, k − 1)-
kernel for every integer k ≥ 2. So, every acyclic digraph has a (k, l)-kernel
for every pair of integers k, l such that l ≥ k − 1. From this observations we
can conclude that (k, k − 1)-kernels are of particular interest since they are
good candidates to generalize properties of kernels. We define a k-kernel to
be a (k, k − 1)-kernel. Under this definition a kernel in the usual sense is a
2-kernel.

Despite the fact that (k, l)-kernels and, in particular, k-kernels seem to
be a good generalization of the notion of kernel, the study of both concepts
have been very limited, in comparison to the vast aumont of articles and
applications that exist related to kernels. When the development of this work
began, there were only a few articles devoted to prove the existence of general
sufficient conditions for the existence of (k, l)-kernels in digraphs or to show
that large families of digraphs have a (k, l)-kernel. One of the cornerstones
in the study of sufficient conditions for the existence of k-kernels in digraphs,
and therefore of the present work, is the following result due to Kwaśnik [74].

Theorem 1.8.2. Let D be a strong digraph. If every directed cycle of D has
length ≡ 0 (mod k), then D has a k-kernel.

Theorem 1.8.2 is very important because it is a generalization of Richard-
son’s Theorem (Theorem 1.7.2). It is also the first generalization of a major
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theorem about kernels to k-kernels. Later, Galeana-Sánchez gave a slight
generalization of this result in [35]. Other papers devoted to finding sufficient
conditions for the existence of (k, l)-kernels in digraphs, generalizing known
sufficient conditions for the existence of kernels, include those of Galeana-
Sánchez [36], Galeana Sánchez with Rincón-Mej́ıa [60], of Bród, W loch and
W loch [24] and the work of Kwaśnik, W loch and W loch. In [77], Kwaśnik,
W loch and W loch prove that the problem of finding a k-kernel in a digraph
D is equivalent to the problem of finding a kernel in a digraph Dk−1 obtained
from D.

The work dealing with the existence of (k, l)-kernels in some families of
digraphs include the article Kucharska and Kwaśnik [73], where the existence
of (k, l)-kernels in special superdigraphs of a directed path and a directed
cycle are considered; and also the articles of Galeana-Sánchez and Pastrana-
Ramı́rez [57, 58], where sufficient conditions for the existence of k-kernels in
the orientation of the line graph and path graph are given. In [97], W loch
and W loch construct families of digraphs having (k, l)-kernels for distinct
values of k and l.

A subject that has received a lot of attention is the relation between
(k, l)-kernels and some operations on digraphs. The existence and structure
of (k, l)-kernels in distinct products of digraphs have been largely studied by
many authors, e.g., by Kwaśnik in [74, 76], by Kwaśnik, W loch and W loch in
[77], by W loch and W loch in [95, 96, 98] and by Szumny, W loch and W loch
in [86, 87]. In some cases, results characterizing the structure of (k, l)-kernels
in a product of digraphs is given in terms of the (k, l)-kernels in the factors of
the product. Also, the number of (k, l)-kernels, the number of k-independent
sets and the number of l-absorbing sets in products of digraphs are studied.

Other operations have been also considered. Galeana-Sánchez and Gómez
give in [42] sufficient conditions for a state splitting to preserve kernels, a
(k, l)-kernels and (k, l)-semikernels. In [55], Galeana-Sánchez and Pastrana-
Ramı́rez construct, for any given digraph D, a digraph s(S) such that D has
a k-kernel if and only if s(S) has a k-kernel. In [59] they also prove that the
number of k-kernels in s(S) is the same as in D. New operations are also
defined and considered in [56] by Galeana-Sánchez and Pastrana-Ramı́rez.

The aforementioned articles, along with the articles derived from the
present work [45, 46, 47, 48, 49, 50, 51, 67], seem to be the only existing
publications on the subject of (k, l)-kernels in digraphs.



Chapter 2

Cyclically k-partite digraphs

2.1 Introduction

Several classes of k-partite graphs and digraphs have been extensively studied
as they are a natural generalization of bipartite graphs and digraphs; k-
partite tournaments (e.g. [4]), which have been studied for hamiltonicity and
pancyclism, and cyclically k-partite digraphs stand out for their multiple
properties.

In this section we introduce another well known class of k-partite di-
graphs. A digraph D is cyclically k-partite if there exists a k-partition of
V (D), V0, V1, . . . Vk−1 such Vi that every arc of D is a ViVi+1-arc (mod k).
It is clear from the definition that cyclically k-partite digraphs are k-partite
digraphs, since Vi is independent for every i ∈ {1, 2, . . . , k}. Cyclically k-
partite digraphs have received attention for their connection with matrix
theory (e.g [25]) in the study of the properties of cyclic matrices and some
special cases of diagonal matrices since the digraph associated with an ir-
reducible matrix with imprimitivity index k is exactly a k-partite digraph.
The aim of this chapter is to find structural properties of cyclically k-partite
graphs and digraphs which are of general interest and that we can use to
state sufficient conditions for the existence of k-kernels in some families of
digraphs.

As we have already mentioned in Chapter 1, M. Kwasnik stated the
following generalization of Richardson’s Theorem for k-kernels. If D is a
strongly connected digraph such that every directed cycle in D has length
≡ 0 (mod k) then D has a k-kernel. It has been noticed that the hypothesis
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of being strongly connected cannot be dropped, and, altough diverse coun-
terexamples have been considered for the non strongly conected case (e.g.
[85]), all of these examples are non unilateral, so the question arises. Can
the strong connectedness be substituted for unilaterality? The answer is no,
and the following digraph is a counterexample, showing that the hypothesis
in Theorem 1.8.2 is sharp.

If the digraph in Figure 2.1 had a 3-kernel, since vertex 10 has outdegree
0 (and thus can not be absorbed by any other vertex) it should be in the
3-kernel, hence vertices 2, 7, 4, 8, 6 and 9 would be 2-absorbed. The only
vertices that could 2-absorb vertex 1 are 2, 3 and 7, but the distance from
vertex 7 to vertex 10 is one, and distance from vertex 2 to vertex 10 is two, so
they can not be in the 3-kernel and the only remaining possibilities are that
vertex 1 is in the 3-kernel or vertex 3 is in the 3-kernel. We will show that
vertex 3 can not be in the 3-kernel and by symmetry vertex 1 neither can be
in the 3-kernel. Let us assume that 3 is in the 3-kernel. Now, vertex 5 can be
2-absorbed by vertices 1, 6 or 9 but d(1, 3) = 2, d(6, 10) = 2 and d(9, 10) = 1
and hence none of them can be added to the 3-kernel but neither can vertex
5, since vertex 3 is at distance two from vertex 5. Consequently, digraph in
Figure 2.1 does not have a 3-kernel, its only directed cycle, (1, 2, 3, 4, 5, 6, 1)
has length ≡ 0 (mod 3), and is unilaterally connected.

From the previous example it is clear that Theorem 1.8.2 is as best as pos-
sible with respect to connectedness. But, strong connectedness is not the only
hypothesis of the theorem. The connection between cyclically k-partite di-
graphs and k-kernels was first noticed in [35], where Galeana-Sánchez proves
Theorem 1.8.2 showing that any strongly connected digraph D such that ev-
ery directed cycle has length ≡ 0 (mod k) is cyclically k-partite. Thanks to
the strong connectedness, it is easy to observe that, if D = (V1, V2, . . . , Vk),
then Vi is a k-absorbent set for every i ∈ {0, 1, . . . , k− 1}, i.e., that for every
vertex u ∈ V (D) \ Vi, there is a vertex v ∈ Vi such that d(u, v) ≤ k. So, our
strategy in this chapter is to propose new sufficient conditions for a digraph
D to be cyclically k-partite and to find a k-absorbing set in this partition,
without asking D to be strong.

2.2 Cyclically k-partite digraphs.

As we mentioned in the previous section, a strong digraph D such that every
directed cycle has length ≡ 0 (mod k) is cyclically k-partite. But it is easy
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Figure 2.1: Counterexample to a version of Theorem 1.8.2 with weaker hy-
pothesis.

to observe that the converse is also true, so a characterization of strong cycli-
cally k-partite digraphs is obtained. We would like to characterize unilateral
cyclically k-partite digraphs. Obviously, if we replace strong by unilateral
connectedness, we need to ask for an additional restriction on the structure
of a digraph D if we wish that D results cyclically k-partite. The cycles of the
digraph are the obvious starting point to look for this additional restriction.

Definition 2.2.1. A closed walk C = (x0, x1, . . . xn, xn+1 = x0) is directed
with an obstruction at vertex xn if there exists a directed walk C ′ = (x0, x1,
. . . , xn) and an arc (x0, xn) ∈ A(D) \ A(C ′) such that C = C ′ ∪ (x0, xn).

Figure 2.2 shows a cycle C = (0, 1, 2, 3, 4, 5, 6, 7, 0) with an obstruction
at vertex 7, where C ′ = (0, 1, 2, 3, 4, 5, 6, 7) and C = C ′∪ (0, 7). If we reverse
the arc (0, 7), the sequence C will denote a directed cycle.

In Definition 2.2.1 it is important to notice that (x0, xn) /∈ A(C ′) so its
reversal turns C into a closed directed walk. Figure 2.3 digraph (i) shows a
digraph with a closed walk C = (0, 1, 2, 0, 3, 4, 2, 3, 0) such that there exist a
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Figure 2.2: A cycle with an obstruction at vertex 7.

directed walk C ′ = (0, 1, 2, 0, 3, 4, 2, 3) and an arc (0, 3) ∈ A(C ′) such that
C = C ′ ∪ (0, 3), but as it can be observed in digraph (ii), the reversal of
(x0, xn) does not turn C into a directed walk.

With this definition we state some lemmas leading to a characterization
of unilateral cyclically k-partite digraphs.

Lemma 2.2.2. If C is a directed closed walk with one obstruction then C
contains a cycle with at most one obstruction.

Proof. Since C is a directed closed walk with an obstruction, then C =
(x0, x1, . . . , xn, xn+1 = x0) where C ′ = (x0, . . . , xn) is a directed walk and
(x0, xn) is an arc not in A(C ′). If D is the directed closed walk obtained
from C by reversing the arc (x0, xn), then it is a well known result1 that D
contains a directed cycle D1. If D1 contains the arc (xn, x0), then C contains
the directed cycle with one obstruction at vertex xn C1, obtained by the
reversing of the arc (xn, x0) in D1; if D1 does not contain the arc (xn, x0),
then C contains the directed cycle D1. �

Lemma 2.2.3. If D is a digraph such that every directed cycle in D has
length ≡ 0 (mod k), then every directed closed walk has length ≡ 0 (mod k).

1This result can be found in [11].
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Figure 2.3: Digraph (ii) is obtained from digraph (i) by the reversal of the
arc (0, 3). The closed walk (0, 1, 2, 0, 3, 4, 2, 3, 0) is not directed in digraph (i)
nor in digraph (ii).

Proof. By induction on ` (C ) = n, where C = (x0, x1, . . . , xn = x0) is the
directed closed walk. If n ≤ k, since every directed closed walk contains a
directed cycle and every directed cycle in D has length ≡ 0 (mod k), then
n = k. If n > k, then C contains a directed cycle C1 = xiC (xj = xi),
where j > i. It is clear that if C2 = x0C xi ∪ xjC xn, then C = C1 ∪ C2 and
` (C ) = ` (C1) + ` (C2). By induction hypothesis ` (C2) ≡ 0 (mod k) and
` (C1) ≡ 0 (mod k) because C1 is a directed cycle. Hence, ` (C ) ≡ 0 (mod
k). �

Lemma 2.2.4. Let D be a digraph. If every directed cycle has length ≡ 0
(mod k) and every directed cycle with one obstruction has length ≡ r (mod k)
then every directed closed walk C with one obstruction fulfills that ` (C ) ≡ r
(mod k).

Proof. By induction on ` (C ). If ` (C ) ≤ k then C cannot repeat interior
vertices, because it wolud contain a directed closed walk and then a directed
cycle, but every directed cycle has length ≡ 0 (mod k), thus, C is a directed
cycle with one obstruction and by hypothesis has length ≡ r (mod k). If
` (C ) > k and C does not repeat interior vertices, then again C is a directed
cycle with one obstruction. Otherwise, there exist an interior vertex xi such
that xiC (xj = xi) = C1 is a directed closed walk and as in the proof of
Lemma 2.2.3, C2 = x0C xi ∪ xjC xn is such that C = C1 ∪ C2 and ` (C ) =
` (C1) + ` (C2). But, in virtue of Lemma 2.2.3, ` (C1) ≡ 0 (mod k) and by
induction hypothesis ` (C2) ≡ r (mod k). Thence, ` (C ) ≡ r (mod k). �
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The desired sufficient condition for an unilateral digraph to be cyclically
k-partite can be proved now.

Lemma 2.2.5. If D is an unilateral digraph such that every directed cycle
has length ≡ 0 (mod k) and every directed cycle with one obstruction has
length ≡ 2 (mod k), then D is cyclically k-partite.

Proof. First observe that to have a k-partition of D we need at least k
vertices, so we will suppose that

∣∣V (D)
∣∣ ≥ k. Since D is unilateral, there

exists a spanning directed walk C = (v0, v1, . . . , vn) and we can consider the
subsets Vi =

{
vr
∣∣r ≡ i (modk)

}
, 0 ≤ i ≤ k − 1 of V (D). The set {Vi}k−1

i=0

is a partition of V (D). To prove that
⋃k−1
i=0 Vi = V (D) and Vi 6= ∅ for

0 ≤ i ≤ k − 1 it suffices to observe that C is a spanning directed walk
and thus has length greater than or equal to k, it follows that vi ∈ Vi for
0 ≤ i ≤ k−1, then Vi 6= ∅. Also, if v ∈ V (D) then v = vr for some 0 ≤ r ≤ n,
but {0, 1, . . . , k− 1} is a complete system of distinct representatives (mod k)
hence r ≡ i (mod k) for some 0 ≤ i ≤ k − 1 and v ∈ Vi. Finally, to prove
that Vj ∩ Vk = ∅, let vr be a vertex in V (D), if vr appears only once in C
then r ≡ i (mod k) for a unique i ∈ {0, 1, . . . , k − 1} and consequently vr
belongs to Vi for a unique i ∈ {0, 1, . . . , k− 1}; if vr appears more than once
in C we can suppose without loss of generality that vr = vs with r < s and
then vrC vs is a directed closed walk which, in virtue of Lemma 2.2.3, has
length ≡ 0 (mod k) so r ≡ s (mod k) and vr ∈ Vi for a unique i.

Let (x, y) ∈ A(D), then x = vr, y = vs for some r, s ∈ {0, 1, . . . n}. If
s < r, then yC x∪ (x, y) is a directed closed walk and it follows from Lemma
2.2.3 that ` (yC x ∪ (x, y)) ≡ 0 (mod k) and since `(yC x) = r − s, then
r − s + 1 ≡ 0 and hence s ≡ r + 1 (mod k) therefore (x, y) is a ViVi+1-arc
for some i ∈ {0, 1, . . . , k − 1}. If r < s, then s = r + 1 when (x, y) ∈ A(D)
or xC y ∪ (x, y) is a directed closed walk with one obstruction in y and in
virtue of Lemma 2.2.4 ` (xC y ∪ (x, y)) ≡ 2 (mod k), but `(xC y) = s − r,
thus s − r + 1 ≡ 2 (mod k) and s ≡ r + 1 (mod k); in either case (x, y) is
a ViVi+1-arc for some i ∈ {0, 1, . . . , k − 1} and we can conclude that D is a
cyclically k-partite digraph. �

Well, we have half of the job done, we found sufficient conditions for an
unilateral digraph to be cyclically k-partite, so the natural question arises.
Are these sufficient condition also necessary? The answer to this question is
yes, not only for unilateral digraphs, but for every cyclically k-partite digraph
as well.
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Lemma 2.2.6. If D is a cyclically k-partite digraph, then every directed
cycle has length ≡ 0 (mod k) and every directed cycle with one obstruction
has length ≡ 2 (mod k).

Proof. Let D be a cyclically k-partite digraph. Is clear that every directed
cycle has length ≡ 0 (mod k), so let C = (x0, x1, . . . , xn, xn+1 = x0) be
a directed cycle with one obstruction at vertex xn (and hence (x0, xn) ∈
A(D)). Without loss of generality let us assume that {Vi}k−1

i=0 is the cyclical
k-partition and that x0 ∈ V0, then xn ∈ V1. Since x1 ∈ V1, ` (x1 . . . xn) ≡ 0
(mod k), but C = (x0, x1) ∪ x1C xn ∪ (x0, xn), so ` (C ) ≡ 2 (mod k). �

xn−1x1

x2

x3

x0xn

Figure 2.4: An illustration for the proof of Lemma 2.2.6, a directed cycle
with one obstruction in a cyclically k-partite digraph.

The characterization is then obtained.

Theorem 2.2.7. If D is an unilateral digraph then D is cyclically k-partite
if and only if every directed cycle has length ≡ 0 (mod k) and every directed
cycle with one obstruction has length ≡ 2 (mod k).



28 Cyclically k-partite digraphs

Proof. It follows from Lemma 2.2.5 and Lemma 2.2.6. �

And as an immediate consequence of these theorem, we have the following
corollary that generalizes a classical characterization of bipartite digraphs.
It is known that a strongly connected digraph is bipartite if and only if every
directed cycle has even length. We have the following characterization for
unilateral digraphs.

Corollary 2.2.8. Let D be an unilateral digraph, then D is bipartite if and
only if every directed cycle with at most one obstruction has even length.

Proof. The sufficiency is trivial as every cycle (directed or not) of the di-
graph is of even length. For the necessity set k = 2, then 2 ≡ 0 (mod k) and
the hypothesis of Theorem 2.2.7 are fullfiled, so D is cyclically 2-partite and
then bipartite. �

Thus, we have characterizations for strongly connected and unilateral
cyclically k-partite digraphs. Thus, in terms of connectedness the following
step would be connected digraphs. Unfortunately, the method used in the
proof of the existing characterizations makes extensive use of the existence
of a directed spanning walk, which we do not have in merely connected
digraphs. The following theorem gives a sufficient condition for a graph to
have a cyclically k-partite orientation. This theorem is of great interest on
its own because it generalizes a classic result in Graph Theory, and also, its
contrapositive form gives some information on the structural properties of
non cyclically k-partite digraphs (and graphs).

Besides, we introduce the bridge graph of a given graph, a new tool that
we found very useful in the proof of the theorem. If G is a graph, the bridge
graph of G is the graph Br(G) with vertex set {H ⊆ G

∣∣H is a maximal
bridgeless subgraph of G} and such that H1H2 ∈ E (Br(G)) if and only if
there is a bridge between H1 and H2 in G. It is clear from the definition that
every edge of Br(G) is a bridge, and thus, Br(G) is a tree. Moreover, there
is a bijection between edges in Br(G) and bridges in G.

Theorem 2.2.9. Let G be a graph such that every cycle has length ≡ 0 (mod
k), then G admits a cyclically k-partite orientation.

Proof. By induction on n = |V (Br(G)) |. If n = 1, then G is a bridgeless
graph, so it admits a strongly connected orientation O(G). Since every cycle
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of G has length ≡ 0 (mod k), then O(G) is strongly connected and every
directed cycle has length ≡ 0 (mod k), thus O(G) is cyclically k-partite. As-
sume the result valid for every graph G with |V (Br(G)) | < n and let G be
a graph such that |V (Br(G)) | = n. If H is a leaf in Br(G), then G−H is a
connected graph with |V (Br(G)) | = n−1, and by induction hypothesis it is
cyclically k-partite with k-partition P = {V0, V1, . . . , Vk−1}. Since H is bridg-
less, it is also cyclically k-partite with k-partition Q = {W0,W1, . . .Wk−1}and
there is only one edge e ∈ E(G) between H and G−H. If we orient e so it
has tail in H and head in G−H, and we rename the elements of Q to obtain
Q′ such that the arc obtained by the orientation of e has tail in Wi and head
in Vi+1 (mod k), as this is the only arc between the orientations of H and
G−H, R = {V0 ∪W0, V1 ∪W1, . . . , Vk−1 ∪Wk−1} is a cyclical k-partition of
G. �

This condition is suficient, but not necessary as the example in Figure
2.5 shows.

Figure 2.5: A graph with cycles of length 3, 4 and 5 and a cyclically 3-partite
orientation of the same graph.

However Theorem 2.2.9 has interesting consequences.

Theorem 2.2.10. If G is a graph such that every cycle has length ≡ 0 (mod
k), then G is cyclically k-partite.

Proof. It suffices to consider a cyclically k-partite orientation of G, it result
obvious that G is itself cyclically k-partite. �
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For k = 2 this is a classical Graph Theory theorem, asserting that if
every cycle of G is even, then G is bipartite. For the k = 2 (bipartite) case
the necessity is also true, but Figure 2.5 demonstrates that it is not true for
every k, as a matter of fact, for every other k we can find a cyclically k-partite
graph with a 4-cycle as Figure 2.6 shows. The idea of this construction can be
extended to find cyclically k-partite graphs with cycles of every even length.

Figure 2.6: Example of a cyclically k-partite digraph with a 4-cycle.

As a final consequence of Theorem 2.2.9 in this section, we give the fol-
lowing corollary.

Corollary 2.2.11. Let G be graph such that every cycle has length ≡ 0 (mod
k) with k = 2n− 1, n ∈ N, then χ(G) ≤ 3.

Proof. Let us recall that for any graph G, χ(G) < 3 if and only if G has no
cycles of odd length, so if we assume that G has at least one cycle, since k is
odd the equality χ(G) = 3 must hold. It follows from Theorem 2.2.10 that
G is cyclically k-partite with partition {V1, V2, . . . , Vk} and the elements of
the partition form an odd cycle. As every element of the partition is an inde-
pendent set, it suffices to give a 3-colouring for the k-cycle (V1, V2, . . . Vk, V0)
and assign the same color as Vi to each vertex in Vi for every i ∈ {1, 2, . . . k}.
�
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2.3 Cyclically k-partite digraphs and k-kernels.

From the proof of definition of a cyclically k-partite digraph we can observe
the following.

Proposition 2.3.1. If D is a cyclically k-partite digraph with partition
{Vi}k−1

i=0 , then Vi is k-independent in D for every i ∈ {0, 1, . . . , k − 1}.

Proof. Since every arc ofD is a ViVi+1-arc (mod k) for some i ∈ {0, 1, . . . , k−
1} then for each i ∈ {0, 1, . . . , k− 1}, every ViVi-walk must pass throug each
Vj, j 6= i before getting back to Vi. �

Before proving the main theorem of this section, we need to state a simple
result that generalizes Theorem 1.7.1. A very elegant proof of the following
theorem can be found in [24].

Theorem 2.3.2. Every acyclic digraph has a unique k-kernel for every k ≥
2.

Theorem 2.3.3. If D is a unilateral digraph such that every directed cycle
has length ≡ 0 (mod k) and every directed cycle with one obstruction has
length ≡ 2 (mod k), then D has a k-kernel.

Proof. If D has less than k vertices, then D cannot contain directed cycles
(since every directed cycle has at least k vertices), using Theorem 2.3.2 we
can conclude that D has a k-kernel. So, we can suppose without loss of
generality that |V (D)| ≥ k.

In virtue of Theorem 2.2.5, D is a cyclically k-partite digraph with parti-
tion {Vi}k−1

i=0 and as a consequence of the unilaterality, there exists a directed
spanning walk C = (v0, v1, . . . , vn) in D. Let be Vj such that vn ∈ Vj. It is
a direct observation that Vj is (k − 1)-absorbent; for every u ∈ V (D) \ Vj,
u = xr, r ≡ i (mod k) for some 0 ≤ i ≤ k − 1, i 6= j and r 6= n, as u /∈ Vj.
We have two cases:

Case 1. If j < i it suffices to consider the directed walk (xr, xr+1, . . . ,
xr+(k−i+j)). In the virtue that xr ∈ Vi, it is the case that xr+(k−i+j) ∈
Vi+(k−i+j) (mod k), but i+ (k− i+ j) ≡ k+ j ≡ j (mod k), and as j − i < 0
it follows that k − i + j ≤ k − 1 therefore `(xr, xr+1 . . . , xr+(k−i+j)) ≤ k − 1
and xr results to be (k − 1)-absorbed by Vj.

Case 2. If i < j, then 0 ≤ i < j ≤ k − 1 and thence j − i ≤ k − 1.
Considering the directed walk (xr, xr+1, . . . , xr+(j−i)), analogously to Case
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1, xr+(j−i) ∈ Vi+(j−i) (mod k), but i + (j − i) = j so xr+(j−i) ∈ Vj and
`
(
xr, xr+1, . . . , xr+(j−i)

)
= j − i ≤ k − 1, finally xr results (k − 1)-absorbed

by Vj.
Besides, it follows from Proposition 2.3.1 that Vj is a k-independent set.
Vj is then k-independent and (k−1)-absorbent and is therefore the desired

k-kernel. �

Also from the observation of the proof of Theorem 2.3.3, we have good
prospects for k-kernels in cyclically k-partite digraphs, we just have to find an
absorbing element of the k-partition. It is also clear that unilateral cyclically
k-partite “like” structures have k-kernel.

Let us make further observations of the proof of Theorem 2.3.3. The ab-
sorbence in the proposed k-kernel, V0 (without loss of generality), is granted
due to the existence of the spanning directed walk, for any vertex it suffices
to “follow” this walk to get eventually k-absorbed. The independence follows
from the disposition of the arcs between the elements of the k-partition, but
this disposition guarantee independence for every element of the partition,
not only the one we did choose as our k-kernel, therefore we can reverse any
number of arcs as long as we do not reverse arcs in the directed spanning walk
(conserving the absorption) and as long as we do not create any V0V0-paths
of length < k. We can also add any number of ViVj-arcs as long as j < i 6= 1,
since these arcs will not affect independence.

Corollary 2.3.4. Let D be an unilateral cyclically k-partite digraph with
partition {Vi}k−1

i=0 , k-kernel V0 and spanning directed walk C . If D′ is obtained
from D by reversing any number of arcs not in A(C ) nor of the form V0V1

or Vk−1V0, or adding any number of ViVj-arcs with j < i 6= 1, then V0 is a
k-kernel for D′.

Proof. The absorption is a consequence of the existence of C in D′. For the
independence, observe that every arc with tail in V0 has head in V1, and every
arc with head in V0 has tail in Vk−1, thus, every V0V0-walk must pass through
every element of the k-partition of D′, and consequently has length greater
or equal than k. All the added arcs go “backwards” in the k-partition, so
the V0V0 distance cannot be shortened. �

But unilateral digraphs are not the only cyclically k-partite digraphs with
kernel, directed trees are also cyclically k-partite and have k-kernel since they
are acyclical. Despite this fact, cyclically k-partite digraphs with a k-kernel



2.3 Cyclically k-partite digraphs and k-kernels. 33

are not easy to find. To finalize this chapter, we will explore some sufficient
conditions for a cyclically k-partite digraph to have a k-kernel.

Our following corollary continues analyzing the relation between k-kernels
and cyclically k-partite digraphs. Let us introduce a definition before the
corollary. If D is a digraph, N ⊆ V (D) will be called independent by di-
rected paths if for every u, v ∈ N there are not uv-paths in D. Analogously
N will be called absorbent by directed paths if for every u ∈ V (D) \N
there exists v ∈ N such that d(u, v) ∈ N. If a set is independent by directed
paths and absorbent by directed paths it will be called a kernel by directed
paths.

Corollary 2.3.5. Let D = (V0, V1, . . . Vk−1) be a cyclically k-partite digraph.
If there exists N ⊂ Vi for some i ∈ {0, 1, . . . , k− 1} such that N is absorbent
by directed paths, then Vi is a k-kernel of D.

Proof. Let N ⊆ Vi be the set absorbent by directed paths in D. We affirm
that Vi is the desired k-kernel. Clearly, Vi is independent. For the absortion
we have that for every vertex u ∈ V (D) \ Vi there exists a uVi-directed path
C because N ⊆ Vi. The digraph D [V (C )] induced by the set of vertices
of C is a unilateral cyclically k-partite digraph with spanning walk C , so,
by Theorem 2.3.3, u is (k − 1)-absorbed by Vi in D [V (C )] and thence is
(k − 1)-absorbed by Vi in D. �

As an easy consequence of Corollary 2.3.5 we have the following. If
D = (V0, V1, . . . , Vk) is a cyclically k-partite digraph such that every ter-
minal vertex of D is contained in V0, then V0 is a k-kernel of D. This follows
immediatly from the observation that the set N =

{
v ∈ V (D)

∣∣d+(v) = 0
}

is
a kernel by directed paths in D. Let us observe that the case where there is
only one terminal vertex is equivalent, k-kernel-wise, to the case where every
terminal vertex is contained in the same class, say V0. The following problem
was proposed by Professor Gitler-Goldwain and it seems to be very difficult,
in contrast to the aforementioned case.

Problem 2.3.6. Let k ≥ 2 be an integer. Is it true that a cyclically k-partite
digraph with exactly 2 terminal vertices, u and v, such that u and v belong
to distinct classes of D, has a k-kernel? If the answer if affirmative, how does
that k-kernel look like?

Although Problem 2.3.6 is still open, from the observation of distinct
extamples of cyclically k-partite digraphs with and without a k-kernel, we
propose the following conjecture.
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Conjecture 2.3.7. Let k ≥ 2 be an integer. If D is a cyclically k-partite
digraph such that there are terminal vertices of D in at most k − 1 distinct
classes of D, then D has a k-kernel.

We finalize the section, and the chapter, with another consequence of
Corollary 2.3.5.

Corollary 2.3.8. Let D = {Di}ni=1 be a family of disjoint unilateral cyclically
k-partite digraphs, W = {Wi}ni=0 a family of directed walks such that Wi is
a directed spanning walk for Di and vi is the end vertex of Wi for every
i ∈ {0, 1, . . . , k − 1}. If D0 is a cyclically k-partite digraph with partition
{Vi}k−1

i=0 and k-kernel V0 such that vi ∈ V0 for every i ∈ {1, 2, . . . , n}, then⋃n
0{Di} has a kernel.

Proof. This is a direct aplication of Corollary 2.3.5. Just observe that V0 is
a kernel by directed paths for

⋃n
0{Di}. �

This last corolary was one of the first generalizations we found for non-
unilateral cyclically k-partite digraphs, it is a star shaped digraph where each
point of the star is a unilateral cyclically k-partite digraph, and all these
digraphs converge at the k-kernel of another cyclically k-partite digraph.



Chapter 3

Classic generalizations of
transitive digraphs

3.1 Introduction

As we have already mentioned, the existence of (k, l)-kernels have been
proved only for a few large families of digraphs. In our search for large
families of digraphs with (k, l)-kernel, or at least k-kernel as in the case of
acyclic digraphs, we turn our attention to some of the best existing results
about the existence of kernels in families of digraphs. Just as Chapter 2
is inspired in Theorem 1.8.2, Theorem 3.1.1 has been a motivation for the
results we present in this chapter. In [11], the following very general result
can be found:

Theorem 3.1.1. If D is a transitive digraph, then D has a kernel. Moreover,
every kernel consists in one vertex from every terminal strong component of
D, so all kernels of D have the same cardinality.

We will focus on three families of digraphs which generalize transitive
digraphs: quasi-transitive digraphs and right-/left-pretransitive digraphs.

Let us recall that a digraph D is quasi-transitive if (u, v), (v, w) ∈ A(D)
implies (u,w) ∈ A(D) or (w, u) ∈ A(D). We define a digraph D to be
right-(left-)pretransitive if (u, v), (v, w) ∈ A(D) implies (u,w) ∈ A(D) or
(w, v) ∈ A(D) ((v, u) ∈ A(D)).

It is clear from the definition that every transitive digraph is quasi-
transitive and right-/left-pretransitive. Thus, these families of digraphs ef-
fectively generalize transitive digraphs.
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Related to right- and left-pretransitive digraphs is also Theorem 3.1.2
below (proved by Galeana-Sánchez and Rojas-Monroy in [61]), which gener-
alizes a result of Duchet ([30]).

Theorem 3.1.2 (Galeana-Sánchez, Rojas-Monroy). Let D be a (possibly
infinite) digraph. Suppose that there exist two subdigraphs of D say D1 and
D2 such that D = D1 ∪ D2 (possibly A(D1) ∩ A(D2) 6= ∅), where D1 is a
right-pretransitive digraph, D2 is a left-pretransitive digraph, and Di contains
no infinite outward path for i ∈ {1, 2}. Then D is a kernel-perfect digraph.

Corollary 3.1.3 (Duchet). If D is a right (resp. left) pretransitive digraph,
then D is kernel-perfect.

So we have great motivation for studying these families of digraphs. Also,
Bang-Jensen and Huang have studied quasi-transitive digraphs. Among
other results related to our research they have relevant results concerning
3-kings in quasi-transitive digraphs [9] and a structural characterization of
quasi-transitive digraphs [8].

We conclude the present section introducing a new definition and pre-
senting a lemma ressembling Theorem 1.7.3, which will be very useful not
only in this chapter, but throughout the whole work.

We have already mentioned in the introduction that the notion of semik-
ernel of a digraph has proved to be very useful in the study of the kernel
problem, principally because of Theorem 1.7.3, due to Neumann-Lara. In
[45], Galeana-Sánchez and the author proposed a generalization of this con-
cept, the k-semikernel of a digraph, but a more general concept can be defined
and can be used to prove an analogous version of the aforementioned result
due to Neumann-Lara. Let D be a digraph. A subset S ⊆ V (D) will be a
(k,l)-semikernel of D if (i) S is k-independent; and (ii) for every vertex
v ∈ V (D) \ S, d(S, v) ≤ k − 1 implies d(v, S) ≤ l.

The condition (ii) will be often referred as “the second (k, l)-semikernel
condition”. A (k, k − 1)-semikernel will be simply called a k-semikernel.
There was a previous attempt to define a (k, l)-semikernel of a digraph due
to Kucharska and Kwaśnik in [73] which was also used by Galeana-Sánchez
and Gómez-Aiza in [42]. Despite the fact that the definition they proposed
worked well in the context they were using it, it was not possible to find
an analogous result to the one of Neumann-Lara with that definition, but
is worth observing that under either definition of (k, l)-semikernel, the k-
semikernels remain the same.
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Lemma 3.1.4. Let D be a digraph such that {v} is a (k, l)-semikernel for
every vertex v ∈ V (D), then D has a (k, l)-kernel.

Proof. Since every vertex in D is a (k, l)-semikernel, then D has at least one
non-empty (k, l)-semikernel and thus we can consider a (⊆)maximal (k, l)-
semikernel of D, namely S ⊆ V (D). If S is l-absorbent then S is a (k, l)-
kernel of D, so let us assume that S is not l-absorbent, therefore there must
exist a vertex v ∈ V (D) \ S such that d(v, S) > l. Let us observe that
d(S, v) > k−1 because, by the second condition of (k, l)-semikernel, d(S, v) ≤
k− 1 implies that d(v, S) ≤ l but v is not l-absorbed by S. We will consider
two cases.

Case 1. If k − 1 ≤ l, then k − 1 ≤ l < d(v, S), so, in view that
d(S, v) > k− 1, we have that S ′ = S ∪{v} is a k-independent set. Moreover,
if u ∈ V (D) is such that there exists an S ′u-directed path C of length less
than or equal to k − 1 then, since S is a (k, l)-semikernel, if C is a Su-
directed path, then there exists an uS-directed path of length less than or
equal to k−1, but this path is also a uS ′-directed path; and since {v} is also
a (k, l)-semikernel, then if C is a vu-directed path, this implies that there
exists a uv-directed path of length less than or equal to k − 1, which is also
a uS ′-directed path, and then S ′ is a (k, l)-semikernel properly containing S
which contradicts the election of S as a maximal (k, l)-semikernel.

Case 2. If l < k− 1, then we can assume that d(v, S) ≤ k− 1, otherwise
S ∪ {v} would be k-independent and we can proceed as in Case 1. So,
since {v} is a (k, l)-semikernel, then d(S, v) ≤ l < k − 1 which results in a
contradiction.

In both cases a contradiction arises from the assumption that S is not
l-absorbent, so S must be l-absorbent and hence the desired (k, l)-kernel. �

In section 3.2 we study some properties of right-(left-)pretransitive di-
graphs as a set up to use Lemma 3.1.4 to prove that if D is a right-(left-)
pretransitive strong digraph such that every directed triangle of D is sym-
metrical, then D has a k-kernel for every integer k ≥ 3. This result will be
used along with a brief structural analysis of non-strong right-pretransitive
digraphs to prove that the result is also valid for non-strong digraphs in the
right-pretransitive case. A conjecture and an open problem are proposed on
the matter. In section 3.3 a structural characterization of quasi-transitive
digraphs is used along with a previous result about (k, l)-kernels in the com-
position of digraphs to prove that every quasi-transitive digraph has (k, l)-
kernel for every integers k > l ≥ 3 or k = 3 and l = 2. An analysis of the
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(2-)kernels in quasi-transitive digraphs is made from the point of view of the
Strong Perfect Graph Theorem. At the end of both sections, results about
(k, l)-solutions in digraphs are obtained by means of dualization.

3.2 Pretransitive Digraphs

In the particular families of digraphs we will be studying in this work the
existence of k-solutions will be very close to the existence of k-kernels, so we
find it useful to state the following remark.

Remark 3.2.1. If N is a (k, l)-kernel of D then N is a (k, l)-solution of
←−
D .

There is a notorious duality in the definitions of right and left-pretransitive
digraphs and as there is also a duality in the definitions of k-kernels and k-
solutions. In view of both definitions the next remark will prove to be very
useful once we have the appropriate tools.

Remark 3.2.2. Let D be a digraph. D is a right-pretransitive digraph if and

only if
←−
D is a left-pretransitive digraph.

We will prove two lemmas about the structure of right-pretransitive di-
graphs; the second one will be dualized using Remark 3.2.2 to obtain an
analogous result about left-pretransitive digraphs.

Lemma 3.2.3. If D is a right-pretransitive digraph and (x0, x1, . . . , xn) is
an asymmetrical directed path in D then (x0, xi) ∈ A(D) for every i ∈
{2, 3, . . . , n}.

Proof. Straightforward, by induction on n. �

Lemma 3.2.4. If D is a right-pretransitive digraph then Asym(D) is acyclic.
Moreover, every directed triangle in D has at least two symmetrical arcs.

Proof. We will prove the second part first. Let C3 = (x, y, z, x) be a directed
triangle in D. Since D is right-pretransitive and (x, y), (y, z) ∈ A(D) we can
conclude that (x, z) ∈ A(D) or (z, y) ∈ A(D). In either case the result is a
directed triangle with a symmetrical arc, so let us suppose without loss of
generality that (x, z) ∈ A(D). Then we can consider the arcs (z, x) ∈ A(D)
and (x, y) ∈ A(D), for the right-pretransitivity of D we know that (z, y) ∈
A(D) or (y, x) ∈ A(D). In either case C3 has at least two symmetrical arcs.
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For the first part, suppose by contradiction that C = (x0, x1, . . . , xn = x0)
is a directed cycle in Asym(D), where D is a right-pretransitive digraph. If
we consider the asymmetrical directed path (x0, x1, . . . , xn−1), it follows from
Lemma 3.2.3 that (x0, xn−1) ∈ A(D); we don’t know whether (x0, xn−1) is an
asymmetrical arc or not, but together with (xn−1, xn) and as a consequence
of the right-pretransitivity of D we have that (x0, xn) ∈ A(D) or (xn, xn−1) ∈
A(D), but (xn, x0) and (xn−1, xn) are both asymmetrical arcs of D, thus we
obtain the desired contradiction. Since the contradiction arises from the
assumption that there is a directed cycle in Asym(D), then Asym(D) is
acyclic. �

Lemma 3.2.5. If D is a left-pretransitive digraph then Asym(D) is acyclic.
Moreover, every directed triangle in D has at least two symmetrical arcs.

Proof. The result follows straightforward from Remark 3.2.2 and Lemma
3.2.4. �

Our next result was part of our first attempt to implement a classic proof
method in kernel theory to k-kernels. For kernels (2-kernels), once it is proved
that digraphs in a certain family have nonempty semikernels it suffices to
consider a (⊆-)maximal semikernel S for a digraph D. If the set of vertices
not absorbed by S is not empty, then we can find a nonempty semikernel S ′

for D \ (S ∪N−(S)). From here is easy to prove that S ∪ S ′ is a semikernel
of D, contradicting the choice of S. When working with k-kernels we have
a problem: suppose that we have proved that a certain family of digraphs
have nonempty semikernel and consider a digraph D in such family. Then
we can find a maximal k-semikernel S of D and, if S is (k − 1)-absorbent,
S is the desired k-kernel. But if not, we consider a k-semikernel S ′ for the
subdigraph T of D induced by the vertices not (k − 1)-absorbed by S; it
remains clear that S ∪ S ′ is k-independent and that every vertex reached
from S must reach S ∪ S ′ in D but, suppose that there is a vertex v ∈ V (T )
such that the only S ′v-directed path of length less than or equal to k − 1 in
D is (x0, x1, x2, . . . , xn = v), where x0 ∈ S ′ ⊆ V (T ), but xi ∈ V (D \ T ) for
some 1 ≤ i ≤ n − 1, then v is not reached by S ′ in T and then v may not
reach S ′ in D, and as v is in T , v does not reach S in D, so S∪S ′ may not be
a k-semikernel in D. It is in view of this problem that we proposed Lemma
3.1.4, were we prove that if every vertex v ∈ V (D) is a (k, l)-semikernel of
D, then D has a (k, l)-kernel. Nevertheless, this result is interesting by itself
as a local property of the class of right-pretransitive digraphs is found.
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Theorem 3.2.6. If D is a right-pretransitive digraph, then D has a k-
semikernel consisting of a single vertex for every k ∈ N, k ≥ 2.

Proof. If D has no asymmetrical arcs, then D is a symmetrical digraph and
each vertex is trivially a k-semikernel of D for every k ≥ 2.

So, let us assume that Asym(D) 6= ∅. In virtue of Lemma 3.2.4 Asym(D)
is acyclic, so we can choose a vertex v with exdegree 0 in Asym(D). We claim
that {v} is a k-semikernel of D for every k ≥ 2. As {v} is k-independent for
every k ∈ N, it suffices to prove that for every k ≥ 2 if a vw-directed path of
length less than or equal to k − 1 exists, then a wv-directed path of length
less than or equal to k − 1 exists.

Since v has exdegree 0 in Asym(D), if (v, w) ∈ A(D) for some w ∈
V (D), then such arc must be symmetrical, so (w, v) ∈ A(D) and the second
condition of k-semikernel is fulfilled for k = 2. Let k be greater than 2. We
will prove by induction on n that if a vw-directed path of length n ≤ k − 1
exists, then there exists a wv-directed path of length less than or equal to
k−1. The case n = 1 has been already proved, is the same as case k = 2. Let
us assume the result valid for every vw-directed path of length m < n and let
C = (v = v0, v1, . . . , vn = w) be a vw-directed path of length n ≤ k − 1. For
the choice of v we know that (v0, v1) is a symmetrical arc of D. If every arc in
C is symmetrical, then the directed path C −1 is the one we have been looking
for. Otherwise, there must be a first asymmetrical arc in A(C ), let us say
(vi, vi+1), 1 ≤ i. So we can consider the arcs (vi−1, vi), (vi, vi+1) ∈ A(D) and,
since D is right-pretransitive and (vi+1, vi) /∈ A(D), necessarily (vi−1, vi+1) ∈
A(D), and hence v0C vi−1 ∪ (vi−1, vi+1) ∪ vi+1Cw is a vw-directed path of
length n − 1. Inductive hypothesis assures the existence of a wv-directed
path of length less than or equal to k − 1, which concludes the proof. The
desired result follows from the induction principle.

�

We have already proved that right/left-pretransitive digraphs have at
least two symmetrical arcs in every directed triangle. In view of this property,
it is not very restrictive to ask for a right/left-pretransitive digraph to have
only symmetrical directed triangles. As the next lemma shows (only after
a little technical lemma), this is a sufficient condition along with strong
connectedness to prove that every right/left-pretransitive digraph have a k-
kernel.
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Lemma 3.2.7. If D is a right-pretransitive digraph such that every directed
triangle is symmetrical and C = (x0, x1, . . . , xn) is a directed path such that
(xi, xi+1) is a symmetrical arc for every i ∈ {0, 1, . . . , n−2} and (xn−1, xn) is
an asymmetrical arc of D, then (xi, xn) ∈ A(D) for every i ∈ {0, 1, . . . , n−1}.
Moreover, every such arc is asymmetrical.

Proof. By induction on n. For n = 2, (x0, x1), (x1, x2) ∈ A(D) so, since D is
right-pretransitive then (x2, x1) ∈ A(D) or (x0, x2) ∈ A(D), but (x1, x2) is an
asymmetrical arc, hence (x0, x2) ∈ A(D). Besides, if (x2, x0) ∈ A(D), then
(x0, x1, x2, x0) would be a directed triangle and it should be symmetrical by
hypothesis, but (x1, x2) is an asymmetrical arc; it follows that (x0, x2) is also
an asymmetrical arc. So, let us assume the result valid for every path with
the required conditions and length less than n. If C = (x0, x1, . . . , xn) is a di-
rected path with the required conditions and length n, clearly (x1, x2, . . . , xn)
is a directed path with the required conditions and length n − 1 < n, and
from the inductive hypothesis we have the existence of the asymmetrical
arcs (xi, xn) for every i ∈ {1, 2, . . . , n}. To finish the inductive step we
have to prove that (x0, xn) ∈ A(D) and it is an asymmetrical arc. But
(x0, x1), (x1, xn) is a directed path of length 2 where the first arc is symmet-
rical and the second arc is asymmetrical, so it follows from the case n = 2
that (x0, xn) ∈ A(D) is an asymmetrical arc. The desired result follows from
the principle of mathematical induction. �

Lemma 3.2.8. Let k ≥ 2 be an integer. If D is a right-pretransitive strong
digraph such that every directed triangle is symmetrical, then every vertex of
D is a k-semikernel of D.

Proof. Let k ≥ 2 be an integer. Let v ∈ V (D) be any vertex, con-
sider w ∈ V (D) such that there exists a vw-directed path of length less
than or equal to k − 1 and let C = (v = v0, v1, . . . , vn = w) be a vw-
directed path of minimum length. Then n ≤ k − 1. For every pair of arcs
(vi, vi+1), (vi+1, vi+2) ∈ A(C ), the arc (vi, vi+2) can not exist in A(D), be-
cause it would contradict the choice of C as a vw-directed path of minimum
length, so, for the right pretransitve hypothesis, for every 0 ≤ i ≤ n − 2
the arc (vi+2, vi+1) ∈ A(D) must exist. If (v1, v0) ∈ A(D), the directed
path (vn, vn−1, . . . , v0) would be a wv-directed path of length n ≤ k − 1. If
(v1, v0) /∈ A(D), as D is strong, there exists a v1v-directed path in D, say
D = (v1 = z0, z1, . . . , zm = v). We can suppose without loss of generality
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that D is of minimum length and its length is greater than 1. So, we can con-
sider the arcs (zi, zi+1), (zi+1, zi+2) ∈ A(D), and since D has minimum length,
once again we have the existence of the arcs (zi+2, zi+1) ∈ A(D) for every
0 ≤ i ≤ m− 2. Also, we have the arcs (zm−1, v), (v, z0) ∈ A(D), and by hy-
pothesis we know that (v, z0 = v1) is not a symmetrical arc, thence it follows
from right pretransitivity the existence of the arc (zm−1, z0) ∈ A(D). But
(zm−1, z0) must be an asymmetrical arc of D, in other case, (z0, zm−1, zm, z0)
would be a directed triangle and all of its arcs would be symmetrical for
hypothesis, in particular the arc (zm, z0) = (v, v1) would be symmetrical,
contrary to our assumption. So the directed path (z1, z2, . . . , zm−1, z0) ful-
fills the hypothesis of Lemma 3.2.7 and as a consequence the arcs (zi, z0)
are asymmetrical arcs of D for every i ∈ {1, 2, . . .m − 1}; in particular
(z1, z0) ∈ A(D) and it should be an asymmetrical arc, but (z0, z1) ∈ A(D),
which turns out to be a contradiction. Since the contradiction arises from
the assumption (v1, v0) /∈ A(D), we can conclude that (v1, v0) ∈ A(D) and
thence there exists a wv-directed path of length less than or equal to k − 1.
�

Theorem 3.2.9. If D is a right-pretransitive strong digraph such that every
directed triangle is symmetrical, then D has k-kernel for every k ∈ N, k ≥ 2.

Proof. It follows from Lemmas 3.1.4 and 3.2.8. �

Lemma 3.2.10. If D is a left-pretransitive strong digraph such that every
directed triangle is symmetrical, then {v} is a k-semikernel of D for every
v ∈ V (D).

Proof. Let D be a left-pretransitive strong digraph such that every directed

triangle is symmetrical. In virtue of Remark 3.2.2
←−
D is a right-pretransitive

digraph such that every directed triangle is symmetrical, so it follows from

Lemma 3.2.8 that {v} is a k-semikernel of
←−
D for every v ∈ V (D) = V (

←−
D).

Let v be a vertex in V (D) and k ≥ 2 an integer. It is clear that {v} is k-
independent for every k, so let us consider a vw-directed path of length less
than or equal to k − 1 C . It is also obvious that C −1 is a wv-directed path

of length less than or equal to k− 1 in
←−
D , and since {w} is a k-semikernel of

←−
D , then there exists a vw-directed path of length less than or equal to k− 1

in
←−
D , say D . But D−1 is hence a wv-directed path of length ≤ k − 1 in D,

consequently {v} fulfills both k-semikernel conditions and the result follows.
�
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Theorem 3.2.11. If D is a left-pretransitive strong digraph such that every
directed triangle is symmetrical, then D has k-kernel for every k ∈ N, k ≥ 2.

Proof. The result follows from Lemmas 3.1.4 and 3.2.10. �

The following corollary is obtained directly by dualization.

Corollary 3.2.12. If D is a right-(left-)pretransitive strong digraph such
that every directed triangle is symmetrical, then D has a k-solution for every
k ∈ N, k ≥ 2.

For right-pretransitive digraphs we can improve our results. Let us state
a lemma about the structure of non-strong right-pretransitive digraphs, but
first we will need some notation. Let A and B be non-empty subsets of
V (D), if for every a ∈ A and every b ∈ B we have that (a, b) ∈ A(D), we
will write A 7→ B. When A = {v} for some v ∈ V (D), we will simply write
v 7→ B, and analogously if B = {v}. If S and T are subdigraphs of D (e.g.,
strong components) we may abuse of notation to write S 7→ T instead of
V (S) 7→ V (T ).

Lemma 3.2.13. Let be D a right-pretransitive digraph, S and T strong com-
ponents of D. If there exist s ∈ S and t ∈ T such that (s, t) ∈ A(D), then
S 7→ t.

Proof. Let v be a vertex in V (S) \ {s}. Since S is a strong component of
D, we have that d(v, s) ∈ N. We will prove by induction on n = d(v, s)
that (v, t) ∈ A(D). If d(v, s) = 1, then (v, s), (s, t) ∈ A(D). By the right-
pretransitivity of D we have that (v, t) ∈ A(D) or (t, s) ∈ A(D). But S and
T are distinct strong components of D and (s, t) ∈ A(D). Since D? is an
acyclic digraph, (t, s) /∈ A(D), thus (v, t) ∈ A(D).

For the inductive step it suffices to observe that, if d(v, s) = n, then
there exists a vs-directed path in S, (v = x0, x1, . . . , xn = s), realizing the
distance from v to s. It is clear that d(x1, s) = n − 1, so by induction
hypothesis, (x1, t) ∈ A(D). Together with (v, x1) ∈ A(D), we may use the
same argument that we used in the base case. �

Theorem 3.2.14. Let D be a right-pretransitive digraph such that every
directed triangle is symmetrical, then D has k-kernel for every k ∈ N, k ≥ 2.
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Proof. Let k ≥ 2 be a fixed integer. We will proceed by induction on
n = |V (D?)|. If n = 1, then D is a strong digraph and the result follows
from Theorem 3.2.9. So let us assume that n ≥ 2.

Let D be a digraph such that |V (D?)| = n and S an initial strong compo-
nent of D. Clearly (D\S)? = D?\S, so |V ((D \ S)?)| = n−1. By induction
hypothesis, D \ S has a k-kernel, say N ′. If dD(S,N ′) ≥ k, then, by Theo-
rem 3.2.9 we can choose a k-kernel N ′′ of S. We know that dD(N ′, S) = ∞
because S is an initial component of D, so N = N ′ ∪ N ′′ is k-independent.
Also it follows from the fact that N ′ is k − 1-absorbent in D \ S and N ′′ is
k− 1-absorbent in S that N is k− 1-absorbent in D. Thus, N is the desired
k-kernel.

If dD(S,N ′) ≤ k−1, then there is a vertex s ∈ S and a vertex t ∈ N ′ such
that there exist a directed path (s = x0, x1, . . . , xr = t) of length r ≤ k − 1.
We can choose s and t in such way that x1 ∈ V (D)\S. Since s and x1 are in
distinct strong components, in virtue of Lemma 3.2.13 we can conclude that
S 7→ x1, which implies that d(v, t) ≤ k− 1 for every v ∈ V (S). Thus, N ′ is a
k− 1-absorbent set in D. Also, since S is an initial component, there are no
N ′S-directed paths, so N ′ is k-independent in D. Hence, N ′ is the desired
k-kernel. �

Dualization does not work as good as we would like for Lemma 3.2.13
and Theorem 3.2.14. The next results have straightforward proofs by means
of dualization.

Lemma 3.2.15. Let be D a left-pretransitive digraph, S and T strong com-
ponents of D. If there exist s ∈ S and t ∈ T such that (s, t) ∈ A(D), then
s 7→ T .

Theorem 3.2.16. Let D be a left-pretransitive digraph such that every di-
rected triangle is symmetrical, then D has k-solution for every k ∈ N, k ≥ 2.

So, two obvious problems arise.

Problem 3.2.17. Is it true that every right-pretransitive digraph such that
every directed triangle is symmetrical has a k-solution for every integer k ≥
2?

A positive answer for the question proposed in Problem 3.2.17 would
imply that every left-pretransitive digraph such that every directed triangle
is symmetrical has a k-kernel for every integer k ≥ 2. The remaining question
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about existence of k-kernels in right/left-pretransitive digraphs would be the
following.

Problem 3.2.18. Are the hypotheses in Theorems 3.2.9 and 3.2.11 on the
directed triangles sharp?

In virtue of Lemmas 3.2.4 and 3.2.5, Problem 3.2.18 is equivalent to asking
if it is true that every right/left-pretransitive strong digraph has a k-kernel
for every integer k ≥ 3 or if there is a right/left-pretransitive strong digraph
without a k-kernel for some integer k ≥ 3.

3.3 Quasi-transitive Digraphs

Results about the existence of kernels in digraphs include the work of Galeana-
Sánchez and Rojas-Monroy [61], where they proved that if D is a quasi-
transitive digraph such that every directed triangle has at least two sym-
metrical arcs, then D has a kernel. Surprisingly, although quasi-transitive
digraphs need an additional condition to have a kernel, in the case of k-kernels
with k ≥ 3, no additional condition is required.

As we have already mentioned, in [8] Bang-Jensen and Huang prove a
structural characterization of quasi-transitive digraphs. This characteriza-
tion theorem is now stated.

Theorem 3.3.1 (Bang-Jensen and Huang [8]). Let D be a digraph which is
quasi-transitive.

1. If D is not strong, then there exists an acyclic, transitive oriented graph
T with vertices {u1, u2, . . . ut} and quasi-transitive strong digraphs H1,
H2, . . . Ht such that D = T [H1, H2, . . . Ht], where Hi is substituted ui,
i = 1, 2, . . . , t.

2. If D is strong, then there exists a strong semicomplete digraph S with
vertices {v1, v2, . . . , vs} and quasi-transitive digraphs Q1, Q2, . . . , Qs such
that each Qi is either a vertex or is non-strong and D = S[Q1, Q2, . . . , Qs],
where Qi is substituted for vi, i = 1, 2, . . . , s.

Using this characterization and a result due to Szumny, W loch and W loch
about (k, l)-kernels in digraph compositions we are able to derive easily that
every quasi-transitive digraph has a (k, l)-kernel for every k ≥ 4, k−1 ≥ l ≥ 3
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or k = 3 and l = 2, in particular, every quasi-transitive digraph has a k-kernel
for k ≥ 3 . We include this proof since is a very direct and easy consequence
of Theorems 3.3.1 and 3.3.2, but also, the authors have developed another
proof of this fact using local properties of the quasi-transitive digraphs rather
than global arguments (like those from Theorems 3.3.1 and 3.3.2) that will
not be included in this chapter. Nonetheless, the other proof can be used
when working with infinite digraph, so it will be presented eventually. For the
case k = 2 we simply mention the existing results about kernels in digraphs.

To state the next result we need some new notation. If D is a digraph
with vertex set V (D) = {v1, v2, . . . vn}, we denote by CµD(vi) the family
of all circuits in D containing the vertex vi and of length at most µ. If
D[G1, G2, . . . Gn] is a digraph composition, we denote by Gc

i the copy of Gi

as an induced subdigraph of D[G1, G2, . . . Gn].

Theorem 3.3.2 (Szumny, W loch, W loch [86]). Let k ≥ 2, 1 ≤ l ≤ k −
1 be integers. A subset J∗ ⊆ V (D[G1, G2, . . . Gn]) is a (k, l)-kernel of the
composition D[G1, G2, . . . Gn] if and only if there exists a (k, l)-kernel J ⊆
V (D) such that J∗ =

⋃
i∈I Ji, where I = {i

∣∣vi ∈ J}, Ji ⊆ V (Gc
i) and for

every i ∈ I

1. Ji is a (k, l)-kernel of Gc
i if Ck−1

D (vi) = ∅ or

2. Ji is 1-element set containing an arbitrary vertex of V (Gc
i) if ClD(vi) 6=

∅ or

3. Ji is 1-element set containing an l-absorbent vertex of Gc
i , otherwise.

To make an adequate use of this theorem we need to prove the following
lemma.

Lemma 3.3.3. If D is a strong semicomplete digraph and v ∈ V (D), then
v is contained in a directed cycle of length 2 or 3.

Proof. Let D be a semicomplete digraph and v ∈ V (D) a vertex. If any arc
incident to or from v is symmetrical, then v is contained in a directed cycle of
length 2. If every arc indicent to and from v is asymmetrical, we can consider
the in-neighbourhood and out-neighbourhood of v, N−(v) and N+(v). Since
D is a strong semicomplete digraph, there must exist a N+(v)N−(v)-arc in
D, say uw, and thus (v, u, w, v) is a directed cycle of length 3. �
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To finish the setup to prove the main theorem of this section, we need to
observe that Theorem 3.1.1 has a very nice generalization for (k, l)-kernels.
Let D be a digraph and let x1, x2, . . . , xn be an ordering of its vertices. We
call this ordering an acyclic ordering if, for every arc (xi, xj) ∈ A(D), we
have i < j. In [4], the following characterization of transitive digraphs is left
as an excersise.

Proposition 3.3.4. Let D be a digraph with an acyclic ordering D1, D2, . . . ,
Dp of its strong components. The digraph D is transitive if and only if each of
Di is complete, D? is a transitive oriented graph, and D = D?[D1, D2, . . . , Dp],
where D? is the condensation of

Using Proposition 3.3.4, Theorem 3.1.1 can be generalized as follows.

Theorem 3.3.5. If D is a transitive digraph, then D has a (k, l)-kernel for
every k ≥ 2 and every l ≥ 1. Moreover, every (k, l)-kernel consists in one
vertex from every terminal strong component of D, so all (k, l)-kernels of D
have the same cardinality.

Proof. LetD be a transitive digraph with an acyclic orderingD1, D2, . . . , Dp

of its strong components. From Proposition 3.3.4 we have that D? is a
transitive acyclic digraph and D = D?[D1, D2, . . . , Dp], so, if v is a vertex
of D that does not belong to a terminal strong component of D, then there
exists a terminal strong component of D, say S, such that d(v, s) = 1 for
every s ∈ S. Besides, Di is a complete digraph for every i ∈ {1, 2, . . . , p},
so every vertex in Di is absorbed by every other vertex in Di. From these
observations we can conclude that if we choose one vertex in every terminal
strong component, then we obtain an (1-)absorbent set, say N . Also, for
every vertex v ∈ N , since v is in a terminal strong component of D, there
are no directed paths from v to any other strong component of D, so N is
k-independent for every k ≥ 2. The set N is the desired (k, l)-kernel, we
have already observed that it is k-independent, and every for every vertex
u ∈ V (D)\N , there exists a vertex v ∈ N such that d(u, v) = 1 ≤ l, for each
l ≥ 1. �

Previous theorem can be generalized in the following way for quasi-
transitive digraphs.

Theorem 3.3.6. If D is a quasi-transitive digraph, then D has a (k, l)-kernel
for every pair of integers k, l such that k ≥ 4 and 3 ≤ l ≤ k− 1 or k = 3 and
l = 2.



48 Classic generalizations of transitive digraphs

Proof. Let k ≥ 4 and 3 ≤ l ≤ k − 1 or k = 3 and l = 2 be a fixed pair
of integers. The proof is by mathematical induction on the order of D. If
|V (D)| = 1 the result follows trivially, so let us assume the result valid for
every quasi-transitive digraph with fewer than m vertices and let D be a
digraph with exactly m vertices. We have two cases, when D is strong and
when D is non-strong.

Case 1 If D is non-strong, as a consequence of Theorem 3.3.1 there exists
an acyclic, transitive oriented graph T with vertices {u1, u2, . . . ut} and quasi-
transitive strong digraphs H1, H2, . . . Ht such that D = T [H1, H2, . . . Ht].
Theorem 3.3.5 assures the existence of a (k, l)-kernel with k ≥ 3 and 2 ≤
l ≤ k− 1 for every transitive digraph, so we can consider a (k, l)-kernel of T ,
say J , and since H1, H2, . . . Ht are quasi-transitive digraphs of order strictly
smaller than m, it follows from the inductive hypothesis that every Hi has
(k, l)-kernel Ji. Since T is acyclic, we just have to consider the first case of
Theorem 3.3.2, which asks Hi to have a (k, l)-kernel for every ui ∈ J such
that Ck−1

D (ui) = ∅. It follows from Theorem 3.3.2 that D has a (k, l)-kernel.
Case 2 If D is strong, as a consequence of Theorem 3.3.1 there exists

a strong semicomplete digraph S with vertex set {v1, v2, . . . , vs} and quasi-
transitive digraphs Q1, Q2, . . . , Qs such that Qi is a single vertex or is non-
strong, and D = S[Q1, Q2, . . . , Qs]. Since S is a semicomplete digraph, it
follows from a well known result1 that S has a 1-vertex quasi-kernel, which
without loss of generality can be chosen as {v1}. So {v1} is k-independent
for every k and 2-absorbent, which implies that is also l-absorbent for every
2 ≤ l ≤ k−1. Being S a strong semicomplete digraph, and as a consequence
of Lemma 3.3.3, for every vertex v ∈ V (S) there exists a directed cycle of
length 2 or 3 containing v. Therefore, if l ≥ 3, ClS(v1) 6= ∅ and in such
case, applying Theorem 3.3.2, it suffices to consider J = {v1} and J1 = {u},
where u ∈ V (Qc

1) is an arbitrary vertex. If k = 3, l = 2 and ClS(v1) 6= ∅,
it also suffices to consider J = {v1} and J1 = {u}, where u ∈ V (Qc

1) is an
arbitrary vertex. If k = 3, l = 2 and ClS(v1) = ∅, then, as k − 1 = 2, also
Ck−1
S (x1) = ∅, and for the first case of Theorem 3.3.2, we only need to choose
J1 as a (3, 2)-kernel for Q1 that exists for the inductive hypothesis. It follows
from Theorem 3.3.2 that J∗ = J1 is a (k, l)-kernel of D.

The result now follows from the principle of mathematical induction.
�

As mentioned above, case k = 2 is not covered by Theorem 3.3.6, but in

1Every tournament has a (2, 2)-kernel.
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this case a k-kernel is a kernel in the classical sense of Berge. For kernels
in quasi-transitive digraphs we have a powerful sufficient condition given by
the Strong Perfect Graph Theorem. Let us recall that Theorem 1.7.7 states
that A graph G is perfect if and only if it is kernel solvable. Hence, applying
Theorem 1.7.7 and remembering that underlying graphs of asymmetrical
quasi-transitive digraphs are comparability graphs2 and that comparability
graphs are perfect3, we obtain a sufficient condition for an asymmetrical
quasi-transitive digraph D to have a kernel (in fact, to be kernel perfect).

Theorem 3.3.7. If D is an asymmetrical quasi-transitive digraph such that
every maximal semicomplete subdigraph of D has a kernel, then D is kernel
perfect.

Also, Galeana-Sánchez and Rojas-Monroy proved in [61] the following
sufficient condition for a quasi-transitive digraph to have a kernel.

Theorem 3.3.8. Let D be a (possibly infinite) digraph such that D = D1∪D2

(possibly A(D1) ∩ A(D2) 6= ∅), where Di is a quasi-transitive subdigraph of
D which contains no asymmetrical (in D) infinite outward path. If every
triangle contained in D has at least two symmetrical arcs, then D is a kernel
perfect digraph.

Corollary 3.3.9. If D is a quasi-transitive digraph such that every triangle
contained in D has at least two symmetrical arcs, then D is kernel-perfect.

To finalize this section, we present a dualization of the results obtained.

Remark 3.3.10. Let D be a digraph. Then D is a quasi-transitive digraph if

and only if
←−
D is a quasi-transitive digraph.

Corollary 3.3.11. If D is a quasi-transitive digraph, then D has (k, l)-
solution for every pair of integers k, l such that k ≥ 4 and 3 ≤ l ≤ k − 1 or
k = 3 and l = 2.

2Proved by Ghouila-Houri in [63].
3Proved by Berge in [12].
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Chapter 4

Multipartite tournaments

4.1 Introduction

At this point of the work, four families of digraphs have been studied with
some detail. The main strategy in the previous chapters was to consider an
existing (very promising) result, valid for a family F of digraphs, and try
to prove analogous results for families containing F . In Chapter 2, our base
theorem was valid for strong cyclically k-partite digraphs and we prove an
analogous theorem for unilateral cyclically k-partite digraphs. In Chapter 3,
our starting point was a result for transitive digraphs and we proved results
for quasi-transitive and right-(left-)pretransitive digraphs. So, following the
same strategy once again, the turn of tournaments has come.

Let us recall that Theorem 1.8.1 states that every digraph has a (2, 2)-
kernel. When a (2, 2)-kernel N is considered for a tournament T , since an
independent set of T has size at most 1, it becomes clear that N = {v}
for some v ∈ V (T ). So, N is k-independent for every integer k ≥ 2 and
l-absorbent for every integer l ≥ 2. Thus, tournaments have (k, l)-kernel
for every pair of integers k, l ≥ 2. Generalizations of tournaments are great
candidates to have (k, l)-kernel.

Multipartite tournaments are among the most widely studied families
of digraphs, as the survey of Volkmann [91] shows. This family has been
studied in diverse contexts, such as hamiltonicity, pancyclicity, properties of
cyles and paths, etc. But a subject that has received a lot of attention is the
existence and number of 3-kings and 4-kings.

An obvious necessary condition for a digraph to have a k-king (k-serf)



52 Multipartite tournaments

is that it has at most one initial (terminal) vertex. Clearly that restric-
tion is not necessary for the case of k-solutions (k-kernels). Gutin [64] and
independently Petrovic and Thomassen [81] proved that every multipartite
tournament with at most one initial vertex has a 4-king, and there are in-
finitely many examples of multipartite tournaments without 3-kings. So,
the two directions that have been studied since then are to find the number
and distribution of 4-kings in multipartite tournaments without a 3-king and
sufficient conditions (or characterizations) for a multipartite tournament to
have 3-kings [65, 71, 82, 88].

It is clear that a k-serf (k-king) is also a k-kernel (k-solution), but the
converse is not true, so although sufficient conditions for the existence of
k-kings can be transformed in sufficient conditions for the existence of k-
serfs and thus for the existence of k-kernels, characterization theorems can
be extended in neither way. As we have seen k-kernels and k-solutions are
generalizations of kernels and solutions, but they are also generalizations of k-
serfs and k-kings, so a characterization theorem for multipartite tournaments
having 3-kernel is very valuable. In this Chapter we give a theorem with two
distinct such characterizations.

4.2 k-transitive closure

Sometimes, in Graph Theory the problem of determining if a graph G pos-
sesses a given property, can be reduced to the problem of determining if
another graph, obtained from G by means of some operation, also posses
the property. As an excellent example we can recall the famous result due
to Bondy and Chvátal stating that a graph is hamiltonian if and only if its
closure is hamiltonian.

If we apply this idea to the problem of finding a k-kernel in a digraph
we may follow the following reasoning. Let D be a digraph, we wish to
build a new digraph Ck(D) such that, (k + 1)-independence in D is related
with independence in Ck(D) as well as k-absorbency in D is related with
absorbency in Ck(D). Moreover, this relation must be given in such a way
that we can reduce the problem of finding a k-kernel in D to find a kernel
in Ck(D). If this is possible, we could use the known sufficient conditions for
the existence of kernels in digraphs to derive existence of k-kernels in families
of digraphs.

Such digraph was introduced by Kwaśnik, W loch and W loch in [77].
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If D is a digraph and k ∈ N, the k-transitive closure of D is the di-
graph Ck(D) such that V (Ck(D)) = V (D) and A(Ck(D)) = {(u, v)| there is a
uv-directed walk of length ≤ k in D}. We clearly have from the definition
that C1(D) = D. In [77], the following result is proved.

Lemma 4.2.1. If D is a digraph then Ck(D) has a kernel if and only if D
has a (k + 1)-kernel.

Lemma 4.2.1 can be combined with all the known results about sufficient
conditions for the existence of kernels in digraphs in a way that, if we can as-
severate the existence of a kernel in Ck(D), then we will have as an immediate
consequence the existence of a (k + 1)-kernel in D.

The well known result we will use within this chapter is the following
theorem due to Berge and Duchet [17].

Theorem 4.2.2. If every directed cycle of D has at least one symmetrical
arc, then D is kernel-perfect.

There are other results imposing conditions on the directed cycles of a
digraph as a sufficient condition for the existence of a kernel, so directed
cycles in the closure of a digraph are important structure to be considered.
We may ask under what conditions the closure of a digraph does not have
directed cycles of odd length, or every directed cycle has at least one sym-
metrical arc, or every directed cycle has at least two pseudo-diagonals, or
whatever fits for the closure to have a kernel. As the first example using
this technique, in the Section 4.3 we present the aforementioned result for
multipartite tournaments.

Another result that has an interesting corollary is due to Chvátal [27].

Theorem 4.2.3. It is NP -complete to recognize whether a directed graph
has a kernel, or not.

From which we can derive a corollary.

Corollary 4.2.4. For every k ≥ 2 it is NP -complete to recognize whether a
directed graph has a k-kernel, or not.

So, as anyone can imagine, finding a k-kernel in a digraph, or recognizing
if there is none, is a problem as difficult as the analogous for kernels.
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4.3 k-kernels

Although the name of the chapter is multipartite tournaments, we will work
with a larger class of digraphs, semicomplete multipartite digraphs. Another
trivial remark about duality, which be useful for the aims of this work is now
given.

Remark 4.3.1. If T is a semicomplete m-partite digraph, then
←−
T is also a

semicomplete m-partite digraph.

When we are working with multipartite tournaments, sometimes is very
important that between any two vertices in distinct classes there is one and
only one arc. For the existence of k-kernels this is not the case. It is sufficient
for us to assume that between any two vertices in distinct classes there is
at least one arc, thus, we prefer to work with semicomplete multipartite
digraphs rather than multipartite tournaments. Let us make an additional
rermark before proving the main result of the section. If we were working
with multipartite tournaments, we would be able to derive the existence of a
5-kernel in every multipartite tournament from the fact that every m-partite
tournament has a 4-king [64, 81]. Nonetheless, the existence of 4-kernels
and the sufficient condition for an m-partite tournament to have a 3-kernel
cannot be obtained in this way.

Theorem 4.3.2. Let T = (V1, V2, . . . , Vm) be a semicomplete m-partite di-
graph, then T has a k-kernel for every m ≥ 2, k ≥ 4. If every directed cycle
of length 4 in T intersects 4 different classes of T , then T has a 3-kernel for
every m ≥ 2.

Proof. Let T be a semicomplete m-partite digraph with m ≥ 2. Let k ≥ 3
be an integer and consider the (k − 1)-transitive closure of T . In virtue of
Lemma 4.2.1 to prove the result it suffices to show that Ck−1(T ) has a kernel.
With that in mind, we will prove that every directed cycle in Ck−1(T ) has
at least one symmetrical arc. This will be done by induction on the length
of the cycle. For the base case let us consider a directed cycle C of length
3 in Ck−1(T ). We have three possible cases, that the three vertices of C are
in distinct classes of T , that two vertices are in the same class and the third
one is in a different class, and that the three vertices are in the same class of
T .

Case 1. If the three vertices of the cycle are in distinct classes of T , let us
say, C = (x, y, z, x) with x ∈ X, y ∈ Y , z ∈ Z and X 6= Y , X 6= Z, Y 6= Z.



4.3 k-kernels 55

If any of the arcs in C is not an arc of T , for instance (x, y) /∈ A(T ), since T
is a semicomplete multipartite digraph and x, y are in distinct classes of T , it
must exist the arc (y, x) ∈ A(T ) and therefore also (y, x) ∈ A(Ck−1(T )), and
thus this is the symmetrical arc we want. So, we can assume without loss of
generality that the three arcs of C are arcs of T , in particular we have that
(x, y), (y, z) ∈ A(T ), such arcs conform a xz-directed walk of length 2 ≤ k−1
and thence (x, z) ∈ A(Ck−1(T )). We can conclude that the arc (z, x) ∈ A(C )
is symmetrical.

Case 2. If C = (x1, y, x2, x1) with x1, x2 ∈ X, y ∈ Y , Y 6= X, once
again we can assume without loss of generality that (x1, y), (y, x2) ∈ A(T ),
and thus (x1, x2) ∈ A(Ck−1)(T ) so the arc (x2, x1) ∈ A(C ) is a symmetrical
arc.

Case 3. If C = (x1, x2, x3, x1) with xi ∈ X i ∈ {1, 2, 3}, following from
the fact that T is a semicomplete m-partite digraph and x1, x2 are in the
same class of T , we have that (x1, x2) /∈ A(T ), but as (x1, x2) ∈ A(Ck−1(T )),
then there exists a x1x2-directed path of length less than or equal to k − 1
in T , namely D = (u0 = x1, u1, . . . , up−1, up = x2), where p ≤ k − 1 and
u1, up−1 /∈ X (the length of D can be 2, in that case u1 = up−1). Since
u1 /∈ X, then (u1, x3) ∈ A(T ) or (x3, u1) ∈ A(T ). If (u1, x3) ∈ A(T ), then
dT (x1, x3) = 2 and hence (x1, x3) ∈ A(Ck−1(T )), which turns out to be the
wanted symmetrical arc. In the latter case (x3, u1) ∪ (u1Dx2) is a x3x2-
directed path of length p ≤ k − 1 and in this way (x3, x2) ∈ A(Ck−1(T ))
resulting in the symmetrical arc we have been looking for.

Let us assume for the inductive step that every directed cycle of Ck−1(D)
of length less than or equal to n has at least one symmetrical arc and let C be
a directed cycle of length n ≥ 4 in Ck−1(T ). Let us observe three (arbitrarily
chosen) consecutive vertices of C , we have 5 cases.

Case 1. The considered segment of the directed cycle is (x, y, z) with
x ∈ X, y ∈ Y , z ∈ Z and X 6= Y , X 6= Z, Y 6= Z. Once again we
can assume without loss of generality that (x, y), (y, z) ∈ A(T ) and thence
(x, z) ∈ A(Ck−1(T )). If (x, z) /∈ A(T ), then (z, x) ∈ A(T ) and together with
the arc (x, y) we can deduce the existence of the arc (z, y) ∈ A(Ck−1(T )),
which would be a symmetrical arc of C . Thus, we can suppose that (x, z) ∈
A(T ). We have that (x, z) ∪ (zC x) is a directed cycle of length n− 1 which
has a symmetrical arc for the induction hypothesis. If the symmetrical arc
that exists for the induction hypothesis is in zC x, then it is a symmetrical
arc of C . Let us assume then that the symmetrical arc is (x, z). Since
(z, x) /∈ A(T ), but (z, x) ∈ A(Ck−1(T )), a zx-directed path of length greater
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than or equal to 2 but less than or equal to k − 1 exists in T , namely D =
(z = u0, u1, . . . , up−1, up = x) with p ≤ k − 1. If u1 /∈ Y , then (u1, y) ∈ A(T )
or (y, u1) ∈ A(T ). In the former case, together with the arc (z, u1) it follows
the existence of the arc (z, y) ∈ A(Ck−1(T )), that would be a symmetrical
arc in C . When (y, u1) ∈ A(T ), (y, u1) ∪ (u1Dx) is a yx-directed path of
length p ≤ k − 1, which implies that (y, x) ∈ A(Ck−1(T )) and this would
be the symmetrical arc of C we have been looking for. If u1 ∈ Y and
p > 2, then k ≥ 4 and necessarily u2 6= x and u2 /∈ Y , so (u2, y) ∈ A(T )
or (y, u2) ∈ A(T ). For the former case we can consider the directed path
(z, u1, u2, y) in T and, since k ≥ 4, the existence of this path implies the
existence of the arc (z, y) ∈ A(Ck−1(T )); for the latter case the directed path
(y, u2) ∪ (u2Dx) is in T and has length p− 1 < k − 1 so the existence of the
arc (y, x) ∈ A(Ck−1(T )) can be deduced. Finally, if u1 ∈ Y and p = 2, then
D = (z, u1, x) and it follows that k ≥ 4, because for k = 3 we are assuming
that every directed cycle of length 4 in T intersects 4 distinct classes of T
but (x, y, z, u1, x) is a directed cycle of length 4 in T that intersects only 3
different classes of T . So, (x, y)∪D is a zy-directed path of length 3 ≤ k− 1
and hence (z, y) ∈ A(Ck−1(T )) is the desired symmetrical arc.

Case 2. The considered segment of C is (x1, x2, x3) with x1, x2, x3 ∈
X. Since (x1, x2) /∈ A(T ), but (x1, x2) ∈ A(Ck−1(T )), there must exist a
x1x2-directed path of length 2 ≤ p ≤ k − 1 in T , namely D = (x1 =
u0, u1, . . . up−1, up = x2). Let us observe that (u0, u1) ∈ A(T ), so u1 /∈
X and hence (x3, u1) ∈ A(T ) or (u1, x3) ∈ A(T ). In the former case
(x3, u1) ∪ (u1Dx2) is a x3x2-directed path of length p ≤ k − 1 in T , and
the existence of the arc (x3, x2) ∈ A(Ck−1(T )) now follows, moreover, this
arc is a symmetrical arc of C . If (u1, x3) ∈ A(T ), together with the arc
(x1, u1) we can deduce that (x1, x3) ∈ A(Ck−1(T )) and, analogously to Case
1, (x1, x3) ∪ (x3C x1) is a directed cycle of length n − 1 in Ck−1(T ) which
has at least one symmetrical arc by the induction hypothesis; if the sym-
metrical arc is other than (x1, x3) then C would have a symmetrical arc,
so we can suppose that (x3, x1) ∈ A(Ck−1(T )) from where we can deduce
the existence of E = (x3 = v0, v1, . . . vq−1, vq = x1), a x3x1-directed path
of length 2 ≤ q ≤ k − 1 in T . Since (x3, v1) ∈ A(T ) it follows that
v1 /∈ X and thus (v1, x2) ∈ A(T ) or (x2, v1) ∈ A(T ). If (v1, x2) ∈ A(T )
then (x3, v1, x2) directed path in T and therefore (x3, x2) ∈ A(Ck−1(T )) is a
symmetrical arc in C . If (x2, v1) ∈ A(T ) we can consider the x2x1-directed
path (x2, v1)∪ (v1E x1) of length q ≤ k− 1 which implies the existence of the
arc (x2, x1) ∈ A(Ck−1(T )), a symmetrical arc of C .
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Case 3. The considered segment of the directed cycle is (x1, x2, y) with
x1, x2 ∈ X, y ∈ Y , X 6= Y . Let us assume without loss of generality that
(x2, y) ∈ A(T ), and since x1 and y are in distinct classes of T , then one of
the two possible arcs between them must exist in T . If (y, x1) ∈ A(T ), then
together with the arc (x2, y) the existence of the arc (x2, x1) ∈ A(Ck−1(T ))
can be derived, and this is the desired symmetrical arc. Let us suppose then
that (x1, y) ∈ A(T ), analogously to Case 1, (x1, y) ∪ (yC x1) is a directed
cycle of length n − 1 which has a symmetrical arc by induction hypothesis,
moreover, such arc must be (x1, y) or we would have the symmetrical arc
in C we have been looking for. Since (y, x1) ∈ Ck−1(T ) but (y, x1) /∈ A(T ),
then a yx1-directed path of length 2 ≤ p ≤ k − 1 exists in T , namely D =
(y = u0, u1, . . . , up−1, up = x1). But, as (up−1, x1) ∈ A(T ), then up−1 /∈ X
and therefore (up−1, x2) ∈ A(T ) or (x2, up−1) ∈ A(T ). In the former case
(yDup−1)∪ (up−1, x2) is a yx2-directed path of length p ≤ k−1 which implies
the existence of (y, x2) ∈ A(Ck−1(T )) resulting a symmetrical arc of C . In the
latter case, together with the arc (up−1, x1) the existence of the arc (x2, x1) ∈
A(Ck−1(T )) can be inferred, and this is the wanted symmetrical arc.

Case 4. The considered segment of C is (y, x1, x2) with x1, x2 ∈ X,
y ∈ Y , X 6= Y . Since the length of C is greater than or equal to 4, then
the cycle has at least another vertex, namely z, such that (x1, x2, z) is also
a segment of C . If z ∈ Z 6= X then we have the same situation as in Case
3. If z ∈ X then we have the same situation as in Case 2. In any case, we
know that C has at least one symmetrical arc.

Case 5. The considered segment in the directed cycle is (x1, y, x2) with
x1, x2 ∈ X, y ∈ Y , X 6= Y . We can assume once again without loss of
generality that (x1, y), (y, x2) ∈ A(T ), from where we can infer that (x1, x2) ∈
A(Ck−1(T )) and (x1, x2)∪(x2C x1) is a directed cycle of length n−1 in Ck−1(T )
which has at least one symmetrical arc by induction hypothesis. Such arc
must be (x1, x2) or the existence of a symmetrical arc in C would be already
proven. Therefore (x2, x1) ∈ A(Ck−1(T )) and a x2x1-directed path D = (x2 =
u0, u1, . . . up−1, up = x1) must exist in T with 2 ≤ p ≤ k − 1. If p = 2 then
k ≥ 4 because (x1, y, x2, u1, x1) is a directed cycle of length 4 intersecting
only 3 distinct classes of T , which can not occur for k = 3, so (x2, u1, x1, y)
is a x2y-directed path of length 3 ≤ k− 1 and then (x2, y) ∈ A(Ck−1(T )) is a
symmetrical arc of C . If p > 2 then there is at least one index 1 ≤ i ≤ p− 1
such that ui /∈ Y and hence (ui, y) ∈ A(T ) or (y, ui) ∈ A(T ). In the former
case, (x2Dui) ∪ (ui, y) is a x2y-directed path of length less than or equal
to p ≤ k − 1 and therefore (x2, y) ∈ A(Ck−1(T )) is the desired symmetrical
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arc in C . For the case when (y, ui) ∈ A(T ) we can take into account the
yx1-directed path of length less than or equal to p ≤ k − 1,(y, ui) ∪ (uiDx1)
from which the existence of the arc (y, x1) ∈ A(Ck−1(T )) can be deduced and
is, in fact, a symmetrical arc of C .

Since the cases are exhaustive, the desired result follows from the principle
of mathematical induction and an application of Theorem 4.2.2. �

Corollary 4.3.3. If T is a semicomplete m-partite digraph with m ≥ 2 and
no directed cycles of length 4, then T has a 3-kernel.

Corollary 4.3.4. If T is a semicomplete m-partite digraph with m ≥ 2, then
T has a k-solution for every k ≥ 4.

Proof. It follows from Remark 4.3.1 and Theorem 4.3.2. �

Before making a full study of the case k = 3, let us observe that for
case k = 2 we have the usual notion of kernel in Berge’s sense and we know
that every bipartite digraph has a kernel, so every semicomplete bipartite
digraph has a kernel. For semicomplete m-partite digraphs with m ≥ 3 we
can always find a m-partite tournament without a kernel, that is to say, a
tournament without vertices with exdegree equal to 0 on m vertices. As a
matter of fact, since absorbency is 1-absorbency, in this case a semicomplete
m-partite digraph T will have a kernel if and only if there is a class X of T
such that for every vertex v ∈ V (T ) \X there exists a vX-arc in T . In this
case X will be the desired kernel. If we think a tournament of order m as
an m-partite tournament this will happen if and only if there is a vertex of
exdegree equal to 0 in the tournament.

For the case k = 3 we can also construct a m-partite tournament for every
m ≥ 2 without a 3-kernel. For m = 2 it suffices to consider the directed cycle
of length 4, C4, or the strong orientation of K3,3 presented below.

In both digraphs depicted in Figure 4.1 the partition is given by the
circular white vertices and the black starred ones. In both cases, every vertex
2-absorbs every other vertex except for its ex-neighborhood, so, the vertices
in its ex-neighborhood are not 2-absorbed nor can be added to the 3-kernel.

For m ≥ 3, we can define the m-partite tournament TC4,m with vertex
set V (TC4,m) = {1, 1′, 2, 2′}∪{3, . . .m} and arc set A(TC4,m) = {(1, 2), (2, 1′),
(1′, 2′), (2′, 1)}∪

⋃m
i=3{(i, 1), (i, 1′), (i, 2), (i, 2′)}∪

⋃
i<j{(j, i)} whit vertex par-

tition given by V (TC4,m) =
⋃2
i=1{i, i′} ∪

⋃m
i=3{i}.
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Figure 4.1: Examples of bipartite tournaments without a 3-kernel
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Figure 4.2: TC4,3 and TC4,4

As an obvious consequence of Theorem 4.3.2, every example of am-partite
tournament T without a 3-kernel must have a copy of C4 as a subdigraph
and this copy of C4 must intersect 4 distinct classes of T . Unfortunately, the
sufficient condition presented in Theorem 4.3.2 for a m-partite tournament
to have a 3-kernel is not necessary. Figure 4.3.5 shows an example of a
bipartite tournament with a copy of C4 which clearly does not intersect 4
different classes of T and with a 3-kernel.

The central vertex in the bipartite tournament of Figure 4.3 is a 3-kernel
for the tournament.

But, let us observe the structure of a 3-kernel in a m-partite tournament
T . Obviously, since vertices in distinct classes are always adjacent, not only
for k = 3 but for every k, a k-kernel must be contained in a single class
of T . The next proposition explore a necessary condition for a m-partite
tournament to have a 3-kernel.

Proposition 4.3.5. If T is a semicomplete m-partite digraph with a 3-kernel
N , then for every v ∈ N , the set {v} is a 2-absorbent set of T − (X \ {v})
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Figure 4.3: An example of a bipartite tournament with a copy of C4 and a
3-kernel.

where X is the class of T which contains N .

Proof. Let T be a semicomplete m-partite digraph with 3-kernel N and X
the class of T that contains N . Let v ∈ N be an arbitrary vertex. Clearly
the in-neighborhood of v is 2-absorbed by v, so let us think of a vertex
u ∈ V (T )\(X∪N−(v)), then since T is a semicomplete multipartite digraph,
u ∈ N+(v), and since N is a 3-kernel of T , there must exist a vertex w ∈ N
such that w 2-absorbs u. If w = v we are done.

For the bipartite case, every vertex in V (T ) \X can only be 2-absorbed
at distance 1 by N , so if w 6= v, then the existence of the directed path
(v, u, w) would contradict the 3-independence of N . So for the bipartite case
it follows that u ∈ N−(v).

For m ≥ 3, let us assume that v 6= w; if u ∈ N−(w), then (v, u, w) would
be a NN -directed path of length 2 in T and N would not be 3-independent,
so u ∈ N+(w) and then there exists a vertex z /∈ X such that (u, z, w) is a
directed path in T . But, as z /∈ X, then (v, z) ∈ A(T ) or (z, v) ∈ A(T ); the
former case can not occur because the directed path (v, z, w) would contradict
the 3-independence of N . So, (z, v) ∈ A(D) and (u, z, v) is a directed path
of length 2 in T , so {v} 2-absorbs u. Since u was chosen arbitrarily in
V (T ) \ (X ∪N−(v)), then {v} is an absorbent set for T − (X \ {v}). �

Well, at this point the obvious question arise, is the converse of Proposi-
tion 4.3.5 also true? That is, if T is a semicomplete m-partite digraph with
a vertex v such that {v} is a 2-absorbent set of T − (X \ {v}) where X is
the class of T that contains v, then T has a 3-kernel? In that case we would
have a characterization of semicomplete multipartite digraphs with 3-kernel.
Not only the answer to this question is yes, we also have a third equivalence
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inspired in the observations made about the directed cycles of length 4 when
we were looking for a 3-kernel.

Theorem 4.3.6. Let T be a semicomplete m-partite digraph with m ≥ 2,
then the following assertions are equivalent.

1. T has a 3-kernel.

2. There is a vertex v ∈ V (T ) such that, if X is the class of T that contains
v, {v} is a 2-absorbent set of T − (X \ {v}).

3. There is a vertex v ∈ V (T ) such that, if X is the class of T that
contains v, {v} 2-absorbs in T every x ∈ {v} ∪ (T \X) such that x is
in a directed cycle of length 4 of T .

Proof. For (i) implies (ii) we just have to choose an arbitrary vertex in the
3-kernel, the result follows from Proposition 4.3.5.

Trivially (ii) implies (iii).
For (iii) implies (i), let v be a vertex that fulfills the property stated in

(iii). Let R = {v}∪{u ∈ V (T )
∣∣dT (u, v) ≤ 2}, that is, the set of vertices that

are 2-absorbed by v. As a consequence of the choice of v and Corollary 4.3.3,
if S := T \ R is non empty, it has a 3-kernel, namely N (if it is empty, then
{v} is a 3-kernel of T ). If N ∪ {v} is a 3-independent set in T , then since
N is 2-absorbent in S and {v} 2-absorbs every vertex in R, then N ∪ {v}
is a 2-absorbing set and thus the desired 3-kernel of T . If N ∪ {v} is not
3-independent then there are two possibilities, that N ⊆ X or that N ⊆ Y
for a class Y 6= X of T . In either case, in virtue of Claim 4.3.7, we can
assume without loss of generality that N is 3-independent in T . Our next
claim will be proved after completing the proof of the theorem.

Claim 4.3.7. If the 3-kernel N that exists for S is not 3-independent in
T , we can choose K ⊆ N such that K is 3-independent in T , every vertex
2-absorbed by N in S is also absorbed by K and every vertex in N \ K is
2-absorbed by K.

If N ⊆ X, since N is 3-independent, N ∪ {v} is not 3-independent but
v ∈ X, there must be a vx-directed path of length two or a xv-directed path
of length two in T for some x ∈ N . But the latter case can not occur, or
x would be 2-absorbed by v and it would belong to R. So, the former case
occurs and v is 2-absorbed by N in T . If we prove that N−(v) ⊆ N−(x), then
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every vertex 2-absorbed by v will be also 2-absorbed by x and then N will
be the desired 3-kernel. Let y ∈ N−(v) be chosen arbitrarily. Since T is a
semicomplete multipartite digraph, x ∈ X and y /∈ X, then (x, y) ∈ A(T ) or
(y, x) ∈ A(T ); but if (x, y) ∈ A(T ), then (x, y, v) would be a xv-directed path
of length 2, contradicting that x /∈ R, so (y, x) ∈ A(T ) and then y ∈ N−(x),
so N−(v) ⊆ N−(x).

If N ⊆ Y for a class Y 6= X of T , then for every x ∈ N , (v, x) ∈ A(T ),
so v and N−(v) are 2-absorbed by N in T . Let u be a vertex in R such that
(v, u) ∈ A(T ), then there is a vertex w ∈ N−(v) such that (u,w) ∈ A(T ). If
w /∈ Y and x ∈ N , then (w, x) ∈ A(T ) or (x,w) ∈ A(T ). If (x,w) ∈ A(T ),
since w ∈ N−(v), x would be 2-absorbed by v and thus an element of R,
which is not the case. It follows that (w, x) ∈ A(T ), then (u,w, x) is a
directed path in T and u is 2-absorbed by N in T . If w ∈ Y , then u /∈ Y ,
and then, if x ∈ N , (u, x) ∈ A(T ) or (x, u) ∈ A(T ). If (x, u) ∈ A(T ),
then (v, x, u, w, v) is a directed cycle of length 4 in T , and by the choice of
v fulfilling the conditions in (iii), x would be 2-absorbed by v and x ∈ R,
which would be a contradiction. Thus, (u, x) ∈ A(T ) and then N 2-absorbs
every vertex in R and is the desired 3-kernel. �

Proof of Claim 4.3.7 Let us recall that S := T −R. In virtue of Proposi-
tion 4.3.5, if N ⊆ Z for a class Z of T , then every vertex in N 2-absorbs every
vertex in S \Z, so we just have to find a subset K ⊆ N that is 3-independent
and 2-absorbs every vertex in Z \ (R ∪ N) and every vertex in N \K. Let
x ∈ Z \ (R∪N) an arbitrarily chosen vertex, since N is a 3-kernel for S and
x ∈ Z \ N , then dS(x, u) = 2 for some vertex u ∈ N , so there is a vertex
y ∈ V (T ) \ (Z ∪ R) such that (x, y, u) is a directed path in T . Since y /∈ Z,
then for every other vertex w ∈ N , (w, y) ∈ A(T ) or (y, w) ∈ A(T ), but if
(w, y) ∈ A(T ), then dS(w, u) = 2, contradicting the 3-independence of N in
S, so (y, w) ∈ A(T ) and then every vertex in Z \ (R ∪ N) is 2-absorbed by
every vertex in N .

Let us prove by means of mathematical induction on the cardinality of
N that we can always choose a subset K ⊆ N such that K is 3-independent
and 2-absorbs in T every vertex in N \ K. If |N | = 1, then K = N will
work. If |N | = 2 and N is 3-independent in T we are done; otherwise
N = {u,w} and it follows from the 3-dependence of N that dS(u,w) = 2
or dS(w, u) = 2, let us assume without loss of generality that dS(u,w) = 2,
then u is 2-absorbed by {w} and hence {w} = K. Suppose for the induction
hypothesis that if |N | < n we can find K ⊆ N with the desired property
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and let N be a 3-kernel for S with cardinality n. If N is 3-independent we
are done, otherwise, there exists vertices u,w ∈ N such that dS(u,w) = 2,
so u is 2-absorbed by N and N ′ := N \ {u} is a 3-kernel of S − u, so by
induction hypothesis there exists K ′ ⊆ N ′ such that K ′ is 3-independent in
T and absorbs every vertex in N ′ \K ′. If K ′ 2-absorbs u, then K = K ′ is the
desired set. If K ′ does not absorb u and K ′∪{u} is 3-independent in T , then
K = K ′∪{u} is the subset we have been looking for. If K ′ does not 2-absorb
u and K ′ ∪ {u} is not 3-independent, since N ′ 2-absorbs u, then K ′ ⊂ N ′

and thus |K ′∪{u}| ≤ |N ′| < |N |. We also have that K ′∪{u} is a 3-kernel of
S − (N \ (K ′ ∪ {u})), so it follows from the induction hypothesis that there
exists K ⊂ K ′∪{u} such that K 2-absorbs in T every vertex in (K ′∪{u})\K.
Finally, we need K to 2-absorb in T every vertex in N \ (K ′ ∪ {u}) but, if
x ∈ N \ (K ′ ∪ {u}) for the choice of K ′ there exist z ∈ K ′ and y ∈ V (T ) \Z
such that (x, y, z) is a directed path in T . If k is an arbitrary vertex in K,
then (k, y) ∈ A(T ) or (y, k) ∈ A(T ). If (k, y) ∈ A(T ), then dT (k, z) = 2,
contradicting the 3-independence of K ′ in T , so (y, k) ∈ A(T ) and thence
K 2-absorbs x in T . The result follows by the principle of mathematical
induction. �

Corollary 4.3.8. Let T be a semicomplete m-partite digraph with m ≥ 2,
then the following assertions are equivalent.

1. T has a 3-solution.

2. There is a vertex v ∈ V (T ) such that, if X is the class of T that contains
v, {v} is a 2-dominating set of T − (X \ {v}).

3. There is a vertex v ∈ V (T ) such that, if X is the class of T that contains
v, {v} 2-dominates in T every x ∈ {v} ∪ (T \ X) such that x is in a
directed cycle of length 4 of T .

Proof. It follows from Remark 4.3.1 and Theorem 4.3.6. �

Since every m-partite tournament is a semicomplete m-partite digraph,
every result stated in this section for semicomplete m-partite digraphs remain
valid for m-partite tournaments.
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Chapter 5

k-transitive and
k-quasi-transitive digraphs

5.1 Introduction

Classic generalizations of transitive digraphs have been studied in Chapter 3.
Since transitive digraphs are possibly the best behaved digraphs in the con-
text of (k, l)-kernels, in the present chapter we introduce a further generaliza-
tion of transitive digraphs. A brief structural analysis of this generalization
is made and some results concerning k-kernels are derived.

We want to emphasize two aspects about this chapter, the generalization
of transitive and quasi-transitive digraphs that we introduce and the results
obtained about k-kings in this new families of digraphs. So, we will begin
with a little expansion of our background on quasi-transitive digraphs, and
k-kings.

A graph is a comparability graph if it admits a transitive orienta-
tion, Berge proved that comparability graphs are perfect. Quasi-transitive
digraphs were introduced in [63] by Ghouila-Houri to characterize compara-
bility graphs as those graphs that admit a quasi-transitive orientation, so,
every asymmetrical quasi-transitive digraph can be reoriented into a asym-
metrical transitive digraph. Later, quasi-transitive digraphs were studied as
a generalization of semicomplete digraphs, where they were found to have
very nice properties, among them, maybe the nicest is the recursive struc-
tural characterization stated in Theorem 3.3.1, which can be used to prove
that, for instance, the longest path and cycle problems are polynomial time
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solvable in this family, or to characterize Hamiltonian and traceable quasi-
transitive digraphs. So, the family of quasi-transitive digraphs is a good one
to verify the behavior of difficult problems.

Also, a generalization of quasi-transitive in the same direction that we
propose have been studied before, that is 3-quasi-transitive digraphs, which
where introduced by Bang-Jensen in the context of arc-locally semicomplete
digraphs. Arc locally semi-complete digraphs were thought as a general-
ization of semicomplete digraphs that could also contain semicomplete bi-
partite digraphs [3]. This family is characterized by two sets of forbidden
substructures (families H1 and H2 in Figure 5.1), both of them arising from
orientations of the path of length 3, but whit this logic, another two sets
of forbidden substructures can be considered; 3-quasi-transitive digraphs are
those digraphs which do not have any subdigraph of the family H3 of Figure
5.1 as an induced subdigraph. In [3], Bang-Jensen obtained a characteriza-
tion of 3-quasi-transitive strong digraphs which turned out to be incomplete,
but Galeana-Sánchez, Goldfeder and Urrutia completed this characterization
in [43]. This class of digraphs also has a lot of structure. In [94], Wang and
Wang study the structure of non-strong 3-quasi-transitive digraphs.

H1 H2 H3 H4

Figure 5.1: Each of the 4 digraphs shown denote a class of digraphs Hi with
4 vertices containing the 3 arcs shown and having no arc between the two
vertices with a dotted edge between them. All other arcs not shown and not
with the same end vertices as the dotted edge are possible in Hi.

As we mentioned in Chapter 1, a particular case of k-kernels is considering
a k-kernel consisting in only one vertex. Being a (k − 1)-absorbing set, this
kind of k-kernel can be found in the literature under the name of (k−1)-serf,
but the most popular version of this problem is considering its dual, i.e., the
existence of k-kings. The problem of finding k-kings in digraphs have been
largely studied for some classes of digraphs, the principal are multipartite
tournaments and multipartite semicomplete digraphs [64, 65, 71, 81, 82, 88],
but also Bang-Jensen and Huang explored this problem for quasi-transitive
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digraphs in [9], proving in particular that a quasi-transitive digraph has a 3-
king if and only if it has one unique terminal strong component. In both these
families, considering necessary restrictions like the number of vertex with
out-degree equal to zero of the number of initial components, the existence
was proved for small k (4 and 3 respectively), so the problem that has been
approached since then is finding the number and configurations of k-kings in
such digraphs.

5.2 k-path-transitive digraphs

We begin the development of this chapter introducing a quite simple family
of digraphs that will be used as a tool to prove some results in the following
sections. A digraph D is called k-path-transitive if whenever there are a
uv-directed path of length less than or equal to k and a vw-directed path
of length less than or equal to k, then there exists a uw-directed path of
length less than or equal to k. Digraphs of this family have a very simple
characterization.

Lemma 5.2.1. A digraph D is k-path-transitive if and only if whenever
u, v ∈ V (D) and there exists a uv-directed path in D, then d(u, v) ≤ k.

Proof. First let D be a k-path-transitive digraph, u, v ∈ V (D) two arbitrary
distinct vertices and C = (u = x0, x1, . . . , xn = v) a uv-directed path in D.
We will prove by induction on n that d(u, v) ≤ k. If n ≤ k then we are
done. Let us assume that the result holds for every m < n and consider the
uv-directed path C of length n ≥ k + 1. Clearly (x0, x1) is a x0x1-directed
path of length ≤ k and x1 . . . xk+1 is a x1xk+1-directed path of length less
than or equal to k, then, by the k-path-transitivity of D there must exist
a x0xk+1-directed path of length ≤ k, let us say, C ′. So C ′ ∪ xk+1C xn is
a x0xn-directed path of length less than n and by induction hypothesis it
follows that d(u, v) ≤ k.

Now, let D be a digraph such that whenever u, v ∈ V (D) and there
exists a uv-directed path in D, then d(u, v) ≤ k. Let C and D be uv and
vw-directed paths of length less than or equal to k, then C ∪ D is a uw-
directed path in D so d(u,w) ≤ k and a uw-directed path of length less than
or equal to k exists. �

In Chapter 2 we defined a kernel by directed paths. Berge proved that
every digraph has a kernel by directed paths, a proof of this fact can be
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consulted in [11], and as an obvious dual result it can be derived that every
digraph has a solution by directed paths.

Theorem 5.2.2. If D is a k-path transitive digraph then D has an n-kernel
for every n ≥ k + 1.

Proof. It suffices to to choose a kernel by directed paths of D, let us say N ,
we affirm than N is also an n-kernel. It is clearly n-independent for every
n ≥ k because N is independent by directed paths. Now, let u ∈ V (D) \N
be an arbitrary vertex in the complement of N , then there is a uv-directed
path for some v ∈ N , because N is absorbent by directed paths, but in virtue
of Lemma 5.2.1, there is also a uv-directed path of length less than or equal
to k, so N is n− 1-absorbent for every n ≥ k + 1. Thence, N is an n-kernel
for D. �

The particular case of k-kings is considered in the next theorem.

Theorem 5.2.3. Let D be a k-path transitive digraph, then D has a k-king if
and only if D has a unique initial strong component. Moreover, every vertex
in the unique initial strong component of D is a k-king.

Proof. If D has a k-king v, then the component that contains v is clearly
the unique initial strong component of the digraph. If D has a unique initial
strong component, is suffices to choose any vertex in such component, this
vertex is a solution by directed paths and hence a k-king in virtue of Lemma
5.2.1. �

5.3 k-transitive digraphs

Our following definition generalizes the notion of transitive digraphs. A di-
graph D is k-transitive if whenever C = (x0, x1, . . . , xk) is a directed path
of length k in D, then (x0, xk) ∈ A(D).

As a rather simple consequence of the previous definition we have the
following lemma.

Lemma 5.3.1. Let k ≥ 2 be an integer. If D is a k-transitive digraph, then
D is (k − 1)-path-transitive.
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Proof. Let u, v ∈ V (D) be arbitrary distinct vertices and let C = (u =
x0, x1,
. . . , xn = v) be a uv-directed path. We will prove by induction on n that
d(u, v) ≤ k − 1. If n ≤ k − 1 then we are done. So let us assume that
n ≥ k, then, by the k-transitivity of D, since x0C xk is a directed path of
length k in D, (x0, xk) ∈ A(D), so (x0, xk) ∪ xkC xn is a uv-directed path
of length strictly less than n, we can derive from the induction hypothesis
that d(u, v) ≤ k − 1. The result follows from the principle of mathematical
induction and Lemma 5.2.1. �

Just like the transitive case, the k-transitive case is very simple to analyze,
at least the obvious generalization of the theorem that affirm that if D is a
(2-)transitive digraph, then D has a (2-)kernel, which can be found in [11].

Theorem 5.3.2. Let k ≥ 2 be an integer. If D is a k-transitive digraph,
then D has an n-kernel for every n ≥ k.

Proof. It follows immediately from Lemma 5.3.1 and Theorem 5.2.2. �

And once again, the particular case of k-kings.

Theorem 5.3.3. Let D be a k-transitive digraph, then D has a (k−1)-king if
and only if D has a unique initial strong component. Moreover, every vertex
in the unique initial strong component of D is a (k − 1)-king.

Proof. It is clear from Lemma 5.3.1 and Theorem 5.2.3. �

Let us make the rather obvious observation that a digraphD is k-transitive

if and only if
←−
D is k-transitive, so every result for k-kernels has a dual for

k-solutions, and the same is true for k-kings and k-serfs.
Thus, since our main interest is to find families of digraphs with k-kernel,

we only present a simple exploration of both the k-path-transitive and k-
transitive digraphs, but considering the rich structure of transitive digraphs,
a lot of questions arise concerning the structure of both strong and non-
strong k-transitive digraphs. It is clear that transitive strong digraphs are
complete digraphs, and that the condensation of a transitive digraphs is again
a transitive digraph. However, this is not true for k-transitive digraphs, k-
transitive strong digraphs are not complete digraphs and the condensation
of a k-transitive digraph is not k-transitive, but k-path-transitive. So is a
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natural question to ask if k-transitive digraphs have a nice structural char-
acterization. At least is easy to observe that for every k ≥ 2, a k-transitive
strong digraph have diameter ≤ k − 1. Also, what happens to the n-kernels
for n ≤ k in k-transitive digraphs? It is clear that a directed k-cycle is a
k-transitive digraph that does not have a (k − 1)-kernel. Can k-transitive
digraphs possesing an n-kernel for n ≤ k be characterized? We think that
these are two interesting problems. The case k = 3 will be analyzed at the
final section of this chapter.

5.4 k-quasi-transitive digraphs: Preliminar-

ies

Among the families we introduce in this work, k-quasi-transitive digraph
seem to be the most interesting one. At least for us, the most intuition-
defying results where obtained for this family. A digraph D is called k-
quasi-transitive if, whenever (x0, x1, . . . , xk) is a directed path of length k
in D, then (x0, xk) ∈ A(D) or (xk, x0) ∈ A(D).

From the definition above it is clear that a quasi-transitive digraph in the
usual sense is a 2-quasi-transitive digraph. Also, 3-quasi-transitive digraphs
have been studied in [3] and strong 3-quasi-transitive digraphs characterized
in [43].

Analogously to the previously studied families, we have a dualization
remark.

Remark 5.4.1. Let D be a digraph, then D is a k-quasi-transitive digraph if

and only if
←−
D is a k-quasi-transitive digraph.

Proceeding as Bang-Jensen in the study of quasi-transitive digraphs we
propose the following lemmas.

Lemma 5.4.2. Let k ∈ N be an even natural number, D a k-quasi-transitive
digraph and C = (x0, x1, . . . , xk+3) a directed path such that d(x0, xk+3) =
k + 3 and (xk+3, x1) ∈ A(D), then (xk+3, xk−2i) ∈ A(D) for every 0 ≤ i ≤ k

2
.

In particular (xk+3, x0) ∈ A(D).

Proof. By induction on i. For the base case, let i = 0, then (xk+3, x1) ∪
x1C xk is clearly a xk+3xk-directed path of length k. Since D is k-quasi-
transitive then (xk+3, xk) ∈ A(D) or (xk, xk+3) ∈ A(D), but d(x0, xk+3) =
k + 3, so (xk, xk+3) /∈ A(D) and therefore (xk+3, xk) ∈ A(D).
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For the inductive step, let us assume that (xk+3, xk−2i) ∈ A(D) for ev-
ery 0 ≤ i < n ≤ k

2
. Clearly C ′ = (xk+3, xk−2(n−1)) ∪ xk−2(n−1)C xk ∪

(xk, x0)∪x0C xk−2n is a directed path and `(C ′) = 1 + `(xk−2(n−1)C xk) + 1 +
`(x0C xk−2n) = 2 + 2(n− 1) + k− 2n = k and therefore (xk+3, xk−2n) ∈ A(D)
or (xk−2n, xk+3) ∈ A(D), but since d(x0, xk+3) = k + 3, then (xk−2n, xk+3) /∈
A(D) which implies that (xk+3, xk−2n) ∈ A(D).

The desired result now follows from the principle of mathematical induc-
tion.

�

Lemma 5.4.3. Let k ∈ N be an even natural number, D a k-quasi-transitive
digraph and u, v ∈ V (D) such that a uv-directed path exists. Then:

1. If d(u, v) = k, then d(v, u) = 1.

2. If d(u, v) = k + 1, then d(v, u) ≤ k + 1.

3. If d(u, v) ≥ k + 2, then d(v, u) = 1

Proof. 1. Let C = (u = x0, x1, . . . , xk = v) be a directed path in D that
realizes the distance from u to v. Since D is k-quasi-transitive, then
(u, v) ∈ A(D) or (v, u) ∈ A(D), but d(u, v) = k, so (u, v) /∈ A(D),
therefore (v, u) ∈ A(D).

2. Let C = (u = x0, x1, . . . , xk, xk+1 = v) be a directed path in D that
realizes the distance from u to v. From the k-quasi-transitivity and
the fact that d(u, v) = k + 1 it follows that (xk+1, x1), (xk, x0) ∈ A(D).
Observe that (xk+1, x1)∪x1C xk∪(xk, x0) is a vu-directed path of length
k + 1.

3. By induction on n = d(u, v). Let C = (u = x0, x1, . . . , xn = v) be a
directed path in D. If n = k + 2, then by the k-quasi-transitivity of D
we have that (x0, xk) ∈ A(D) or (xk, x0) ∈ A(D) and also (x2, xn) ∈
A(D) or (xn, x2) ∈ A(D). Since d(x0, xn) = n, in the former case
we have that (x0, xk) /∈ A(D) and in the latter case we can deduce
that (x2, xn) /∈ A(D), so (xk, x0), (xn, x2) ∈ A(D). Now, let C ′ =
(xn, x2) ∪ x2C xk ∪ (xk, x0) be a directed path in D. It is clear that
`(C ′) = 1 + `(x2C xk) + 1 = 1 + (k − 2) + 1 = k, and by the k-
quasi-transitivity of D and the fact that d(x0, xn) = n it follows that
(xn, x0) ∈ A(D). So the base case holds.
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If n = k + 3, then by the base case and Lemma 5.4.2, we have that
d(v, u) = 1. So we can assume that n > k + 3 and by the inductive
hypothesis and the fact that `(x2C xn) ≥ k + 2, we can deduce that
(xn, x2) ∈ A(D). It is clear that C ′ = (xn, x2) ∪ x2C xk ∪ (xk, x0) is a
vu-directed path of length k. From the k-quasi-transitivity of D and
the fact that d(u, v) = n we can deduce that (v, u) ∈ A(D).

The result now follows from the principle of mathematical induction. �

Lemma 5.4.4. Let k ∈ N be an odd natural number, D a k-quasi-transitive
digraph and u, v ∈ V (D) such that a uv-directed path exists. Then:

1. If d(u, v) = k, then d(v, u) = 1.

2. If d(u, v) = k + 1, then d(v, u) ≤ k + 1.

3. If d(u, v) = n ≥ k + 2 with n odd, then d(v, u) = 1

4. If d(u, v) = n ≥ k + 3 with n even, then d(v, u) ≤ 2

Proof. 1. As in Lemma 5.4.3.

2. As in Lemma 5.4.3.

3. Will be proved along with (4.).

4. By induction on n = d(u, v). For the case n = k + 2 the proof is as
in Lemma 5.4.3. So, to complete the base case let us consider the case
n = k + 3. Let C = (u = x0, x1, . . . , xn = v) be a directed path.
By the case n = k + 2 we know that (xn, x1) ∈ A(D) and, clearly
(xn, x1)∪x1C xk is a xnxk-directed path of length k, so by the k-quasi-
transitivity of D, (xn, xk) ∈ A(D) or (xk, xn) ∈ A(D), but the latter
case can not occur because d(u, v) = n, and then (xn, xk) ∈ A(D). Also
from (1.) we know that (xk, x0) ∈ A(D), so (xn, xk, x0) is a vu-directed
path of length 2 and d(v, u) ≤ 2.

For the inductive step let us assume that n > k + 3 and that C =
(u = x0, x1, . . . , xn = v) is a directed path. If n is odd, then by induc-
tion hypothesis (xn, x2) ∈ A(D), also we know that (xk, x0) ∈ A(D),
so (xn, x2) ∪ x2C xk ∪ (xk, x0) is a xnx0-directed path of length k. By
the k-quasi-transitivity and the fact that d(u, v) = n we can deduce
that (xn, x0) ∈ A(D). If n is even, then by induction hypothesis
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(xn, x1) ∈ A(D). So (xn, x1) ∪ x1C xk is a xnxk-directed path of length
k and it follows from the k-quasi-transitivity of D and d(u, v) = n that
(xn, xk) ∈ A(D), once again, (xn, xk, x0) is a directed path of length 2
and therefore d(v, u) ≤ 2. This completes the inductive step and the
result follows from the principle of mathematical induction.

�

Our next lemma also resembles a result obtained by Bang-Jensen in the
study of quasi-transitive digraphs, although we were unable to characterize
k-quasi-transitive non-strong digraphs, a nice behavior is observed in the
condensation of a k-quasi-transitive digraph. If D is a digraph, A and B are

strong components of D, we denote by A
k→ B the fact that every vertex of

A k-dominates every vertex of B. If D is a digraph, the k-condensation
of D is the digraph D?

k such that V (D?
k) is the set of strong components of

D, and if A and B are strong components of D, then (A,B) ∈ A(D?
k) if and

only if there is a AB-directed path of length less than or equal to k in D.

Lemma 5.4.5. Let D be a k-quasi-transitive digraph. If A 6= B are strong

components of D such that there exists a AB-directed path in D, then A
k−1→

B.

Proof. Since there exists an AB-directed path inD, then for every u ∈ V (A)
and v ∈ V (B) a uv-directed path exists. By Lemmas 5.4.3 and 5.4.4 it must
be the case that d(u, v) ≤ k − 1 for if not, there would exist a vu-directed
path, which can not happen because A and B are distinct strong components
of D and a AB-directed path already exists. �

Lemma 5.4.6. Let D be a k-quasi-transitive digraph, then the condensation
D? of D is k-path-transitive. Also, the (k − 1)-condensation D?

k−1 of D is
transitive.

Proof. Let D be a k-quasi-transitive digraph and A,B ∈ V (D?) be two
strong components of D such that there is a AB-directed path in D. Then,

by Lemma 5.4.5, A
k−1→ B and since dD?(A,B) ≤ dD(A,B) we have that

dD?(A,B) ≤ k−1. It follows from Lemma 5.2.1 that D? is k-path-transitive.
Now, letA,B and C be strong components ofD such that (A,B), (B,C) ∈

A(D?
k−1), then by Lemma 5.4.5, there exists an AC-directed path in D, and

again by the same lemma, A
k−1→ C, thus (A,C) ∈ A(D?

k−1). �
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Let us remark that not only the (k − 1)-condensation of D is transitive,
also we can think of D it in terms of some kind of “composition” over its
(k − 1)-condensation in the next way. In virtue of Lemmas 5.4.5 and 5.4.6,

(u, v) ∈ A(D?
k−1) if and only if u

k−1→ v in D. And clearly for k = 2, D is just
a quasi-transitive digraph in the usual sense and Lemmas 5.4.5 and 5.4.6 are
those obtained by Bang-Jensen stating that if A 6= B are strong components
of D such that there is a AB-arc then A → B, and that any non-strong
quasi-transitive digraph is a composition of strong quasi-transitive digraphs
over a non-strong transitive digraph (its condensation).

The next few lemmas are oriented to prove that every k-quasi-transitive
digraph has a (k + 2)-kernel with even k. Also a sufficient condition will be
stated for the same result to hold with odd k.

Lemma 5.4.7. Let k ≥ 2 be an integer and D be a k-quasi-transitive digraph.
For every integer n ≥ 2 there does not exist a directed cycle C of length n in
D such that, with at most one exception, for every arc (x, y) ∈ A(C ) holds
that d(y, x) ≥ k + 1.

Proof. Let us proceed by induction on n and by contradiction in both the
base case and the inductive step. If n ≤ k+ 1, let C be a directed cycle with
length n and the property stated in the hypothesis of the lemma, then we
can choose an arc (x, y) ∈ A(C ) such that d(y, x) ≥ k + 1, but the directed
path yC x has length `(yC x) = n−1 < k+1 which results in a contradiction,
so the result holds for every n ≤ k + 1.

For the inductive step let n ≥ k+2 be an integer and C = (x0, x1, . . . , xn,
x0) a directed cycle of length n with the desired property. If there is an arc
(x, y) ∈ A(C ) such that d(y, x) ≤ k we can assume without loss of generality
that it is the arc (x1, x2), if there is no such arc the argumentation is the
same. Since our only exception is the arc (x1, x2), then d(x1, x0) ≥ k + 1,
but D is k-quasi-transitive and (x0, x1, . . . , xk) is a directed path of length k;
if (xk, x0) ∈ A(D) we would have a contradiction because (x1, x2, . . . , xk, x0)
would be a x1x0-directed path of length k, so (x0, xk) ∈ A(D) and therefore
C ′ = (x0, xk) ∪ xkC x0 is a directed cycle in which every arc (x, y) ∈ A(C ′),
with the possible exception of (x0, xk), fulfills that d(y, x) ≥ k + 1. But
`(C ′) < `(C ) = n and, by induction hypothesis, there are no directed cycles
with this property of length less than n, so a contradiction arises from the
assumption of the existence of C . We conclude that no such cycle of length
n exists. �
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Lemma 5.4.8. Let k ≥ 2 be an integer and D be a k-quasi-transitive digraph,
then there exists a vertex v ∈ V (D) such that whenever (v, u) ∈ A(D), then
d(u, v) ≤ k.

Proof. We will proceed by contradiction. Let us assume that for every
vertex v ∈ V (D) there exists an arc (v, u) ∈ V (D) such that d(u, v) ≥ k+ 1.
Then, since the subdigraph H of D induced by these arcs has δ+(H) ≥ 1,
then there exist a directed cycle C in D such that for every arc (v, u) ∈ A(C ),
d(u, v) ≥ k + 1, which clearly results in a contradiction by Lemma 5.4.7. �

Lemma 5.4.9. Let k ≥ 2 be an even integer and let D be a k-quasi-transitive
digraph, then D has a (k + 2)-semikernel consisting in a single vertex.

Proof. By Lemma 5.4.8 we can choose a vertex v ∈ V (D) such that for
every arc (v, u) ∈ A(D), d(u, v) ≤ k. So let u ∈ V (D) be a vertex such that
2 ≤ d(v, u) ≤ k+1. It can not happen that d(u, v) ≥ k+2, because this would
imply by Lemma 5.4.3 that d(v, u) = 1, but 2 ≤ d(v, u), so d(u, v) ≤ k + 1
and thus {v} is a (k + 2)-semikernel of D. �

A problem arose while working with the odd case since we could not find
a good analog for Lemma 5.4.9 because, although almost the same proof can
be done, we can not assure that once we have chosen a vertex v such that for
every arc (v, u) it follows that d(u, v) ≤ k + 1, if we choose a vertex u such
that d(v, u) = 2 then it will be the case that d(u, v) ≤ k + 1 like in the even
case.

So a weaker analog of Lemma 5.4.9 will be proposed and proved.

Lemma 5.4.10. If k ≥ 3 is an odd integer and D is a k-quasi-transitive di-
graph such that at least one vertex v ∈ S = {u ∈ V (D)

∣∣(u,w) ∈ A(D) implies
that d(w, u) ≤ k + 1} is such that whenever d(v, x) = 2 then d(x, v) ≤ k + 1
then {v} is a (k + 2)-semikernel for D.

Proof. By Lemma 5.4.8 the set S is non empty and also there is a vertex
v ∈ S such that whenever d(v, x) = 2 then d(x, v) ≤ k+1. So let u ∈ V (D) be
a vertex such that 3 ≤ d(v, u) ≤ k+1. It can not happen that d(u, v) ≥ k+2,
because this would imply by Lemma 5.4.3 that d(v, u) ≤ 2, but 3 ≤ d(v, u),
so d(u, v) ≤ k + 1 and thus {v} is a (k + 2)-semikernel of D. �
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At this point we have two possible courses of action. The one we will not
follow is to prove directly that, for even k, whenever a k-quasi-transitive di-
graph has a (k+2)-semikernel then it has a (k+2)-kernel; this can be achieved
by considering a ⊆-maximal (k+2)-semikernel and proving by means of con-
tradiction that it is (k+ 1)-absorbent. But, even though it is a more efficient
way to prove this fact, this would not give any information about the struc-
ture of the (k + 2)-kernel. So, we will use a couple of lemmas (including
Lemma 5.4.6) that will help us to know how a (k + 2)-kernel look like, we
will begin proving the strong case.

Lemma 5.4.11. Let D be a k-quasi-transitive strong digraph. If D has a
non-empty (k + 2)-semikernel S, then S is a (k + 2)-kernel of D.

Proof. Let S ⊆ V (D) be a (k + 2)-semikernel for D and N−k+1(S) the set
of all vertices in D which are (k + 1)-absorbed by S. Define T := V (D) \(
S ∪N−k+1(S)

)
. If T = ∅, then S is a (k + 2)-kernel of D. If T 6= ∅,

then we can consider a vertex v ∈ T which, by the definition of T , is not
(k+1)-absorbed by S, but since D is strong, there exists a vS-directed path.
Let u ∈ S be a vertex such that d(v, u) = d(v, S), then d(v, u) ≥ k + 2
because v /∈ N−k+1(S), but from Lemmas 5.4.3 and 5.4.4 it can be derived
that d(u, v) ≤ 2. This fact, altogether with the second (k + 2)-semikernel
condition implies that v ∈ N−k+1(S) which results in a contradiction. Since
the contradiction arises from assuming that T 6= ∅, we can conclude that
T = ∅ and then S is a (k + 2)-kernel for D. �

5.5 k-quasi-transitive digraphs: Main Results

Theorem 5.5.1. Let k ≥ 2 be an even integer and let D be a k-quasi-
transitive strong digraph, then D has an n-kernel for every n ≥ k + 2.

Proof. By Lemma 5.4.9, D has a (k+2)-semikernel N consisting in a single
vertex, but by Lemma 5.4.11, N is indeed a (k + 2)-kernel of D. But since
N has only one vertex, then N is n-independent for every n ≥ k + 2, and
since it is (k+ 1)-absorbent, then it is (n− 1)-absorbent for every n ≥ k+ 2,
so N is an n-kernel for every n ≥ k + 2. �

Theorem 5.5.2. Let k ≥ 2 be an even integer and let D be a k-quasi-
transitive digraph, then D has an n-kernel for every n ≥ k + 2.



5.5 k-quasi-transitive digraphs: Main Results 77

Proof. In virtue of Lemmas 5.4.6 and 5.5.1, it suffices to choose a subset
N ⊆ V (D) consisting in an n-kernel for every terminal component of D, this
set will be n-independent for every n ∈ Z+ because every such n-kernel con-
sist in a single vertex and terminal components are path-independent. Also
N will be (k + 1)-absorbent because every n-kernel is inside its component
and every vertex of D not in a terminal component is (k − 1)-absorbed by
every vertex in some terminal component. �

Let us recall that the out(in)-radius of a digraph is defined as min{d(x, V )
∣∣

x ∈ V } (min{d(V, x)
∣∣x ∈ V }), and that a digraph D has a finite out(in)-

radius if and only if it has a unique initial (terminal) strong component.

Corollary 5.5.3. Let k ≥ 2 be an even integer and let D be a k-quasi-
transitive digraph.

1. D has finite in-radius if and only if D has a (k + 1)-serf.

2. D has finite out-radius if and only if D has a (k + 1)-king.

Proof. Let us prove the first assertion and the second one will follow imme-
diately from Remark 5.4.1.

If D has finite out-radius, then D has a unique terminal strong compo-
nent, so it suffices to pick a (k+ 2)-kernel there {v}. The result is clear from
recalling that {v} is a (k + 1)-absorbing set, so v is the (k + 1)-serf. �

At this point we want to remark that for every k ≥ 2 we can find a
k-quasi-transitive digraph that does not have a k-kernel, that is to say, the
directed cycle of length k + 1, Ck+1, which also is an example of a k-quasi-
transitive digraph with a k-king rather than a (k + 1)-king. Nevertheless we
have been unable to find a k-quasi-transitive digraph that does not have a
(k + 1)-kernel, so the question remain open, and since every quasi-transitive
digraph has a 3-kernel we are inclined to state the next conjecture.

Conjecture 5.5.4. If k ≥ 2 is an even integer and D is a k-quasi-transitive
strong digraph, then D has a (k + 1)-kernel.

It suffices to consider the strong case, in virtue of Lemma 5.4.6 this would
imply that every k-quasi-transitive strong digraph has a (k + 1)-kernel.

Next, we deal with the odd case again.
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Theorem 5.5.5. Let k ≥ 3 be an odd integer and let D be a k-quasi-transitive
strong digraph such that at least one vertex v ∈ S = {u ∈ V (D)

∣∣(u,w) ∈
A(D)
implies that d(w, u) ≤ k+1} is such that whenever d(v, x) = 2 then d(x, v) ≤
k + 1, then D has an n-kernel for every n ≥ k + 2.

Proof. It is analog to Theorem 5.5.1. �

Theorem 5.5.6. Let k ≥ 3 be an odd integer and let D be a k-quasi-
transitive digraph such that at least one vertex v ∈ S = {u ∈ V (D)

∣∣(u,w) ∈
A(D) implies
that d(w, u) ≤ k+ 1} is such that whenever d(v, x) = 2 then d(x, v) ≤ k+ 1,
then D has an n-kernel for every n ≥ k + 2.

Proof. It is analog to Theorem 5.5.2. �

Despite this fact, we were actually able to work out an odd case. As we
have mentioned before, Galeana-Sánchez and Goldfeder successfully charac-
terized the 3-quasi-transitive strong digraphs, their theorem goes as follows.

Theorem 5.5.7 (Galeana-Sánchez, Goldfeder). If D is a 3-quasi-transitive
strong digraph, then D is either a semicomplete digraph or a bipartite semi-
complete digraph or a digraph of the family depicted below.

· · ·

Figure 5.2: The third family of 3-quasi-transitive digraphs.

The dots in Figure 5.2 indicate that any number of intermediate vertices
can be added respecting the direction of the arcs.

Also, in Chapter 4, we proved Theorem 4.3.2, stating that every m-partite
semicomplete digraph has a k-kernel for every m ≥ 2, k ≥ 4. Recall that
every semicomplete digraph has a k-kernel for every k ≥ 2. In view of this
results we can deduce the following.
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Theorem 5.5.8. If D is a 3-quasi-transitive strong digraph, then D has a
k-kernel for every k ≥ 4.

Proof. In virtue of Theorem 5.5.7, D is either a semicomplete digraph, or
a bipartite semicomplete digraph, or a digraph of the third family depicted
in the theorem. If D is semicomplete, then D has a k-kernel for every k ≥ 2.
If D is a bipartite semicomplete digraph, then by Theorem 4.3.2 it has a
k-kernel for every k ≥ 4. If D is a digraph of the third family, then it suffices
to pick the filled vertex in Figure 5.2; that vertex is clearly a k-kernel for
every k ≥ 3. �

Theorem 5.5.9. If D is a 3-quasi-transitive digraph, then D has a k-kernel
for every k ≥ 4.

Proof. Let k ≥ 4 be an integer. Let {Si}ki=i be the set of terminal strong
components of D and Ni ⊆ Si a k-kernel for Si, 1 ≤ i ≤ k, which exists
by Lemma 5.5.8. It is clear from Lemma 5.4.6 that N =

⋃k
i=1Ni is a k-

kernel for D. The set N is clearly k-independent since each Ni is, and they
are contained in terminal components. Also, every vertex not in a terminal
component is 2-absorbed by every vertex in some terminal component. �

We can get again a corollary about kings and serfs.

Corollary 5.5.10. Let D be a 3-quasi-transitive digraph and let n ≥ 2 be an
integer.

• D has an n-king if and only if D has finite in-radius and the terminal
strong component of D has an n-king.

• D has an n-serf if and only if D has finite out-radius and the initial
strong component of D has an n-serf.

Proof. The proof is analog to the proof of Corollary 5.5.3. �

We would like to point out that it follows from Theorem 5.5.7 and Corol-
lary 5.5.10 that a 3-quasi-transitive digraph with finite out-radius (in-radius)
which initial (terminal) strong component is not a bipartite semicomplete
digraph always have a 2-king (2-serf). Sufficient conditions for the existence
of n-kings in the case when the digraph does not have a 2-king (2-serf) can
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be obtained from the extensive bibliography (e.g. [64, 65, 71, 81, 82, 88])
about kings in multipartite semicomplete digraphs.

Recalling that the directed cycle of length 4 has no 3-kernel, the result
of Theorem 5.5.9 is as good as it gets, resembling the case when k = 2. So,
considering that from the case k = 2 we conjectured that for even k, every
k-quasi-transitive digraph has a (k + 1)-kernel, we have two conjectures on
the matter for the odd case.

Conjecture 5.5.11. If k ≥ 3 is an odd integer and D is a k-quasi-transitive
strong digraph, then D has a (k + 2)-kernel.

Conjecture 5.5.12. If k ≥ 3 is an odd integer and D is a k-quasi-transitive
strong digraph, then D has a (k + 1)-kernel.

The former would match the results obtained for the even case in this
work, while the latter would match the results obtained for the case k = 3
for every odd integer.

Before the last section of this chapter, where the particular case of 3-
transitive digraphs is studied, we want to propose a seemingly interesting
problem relating k-transitive and k-quasi-transitive digraphs.

Problem 5.5.13. Is it true that a graph G can receive a k-transitive orien-
tation if and only if G can receive a k-quasi-transitive orientation?

5.6 3-transitive digraphs

In this section we wiil characterize strong 3-transitive digraphs and give a
thorough description of the structure of non-strong 3-transitive digraphs.
We will use these results to characterize 3-transitive digraphs with a kernel.
This characterization and Theorem 5.3.2 completes the study of k-kernels for
3-transitive digraphs for every integer k ≥ 2.

We begin this section with another very simple remark about duality.

Remark 5.6.1. A digraph D is a 3-transitive digraph if and only if
←−
D is

3-transitive.

The following is another simple, yet useful, property of k-transitive di-
graphs.

Proposition 5.6.2. If D is a k-transitive digraph, then D is k + n(k − 1)-
transitive for every n ∈ N.
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Proof. Let D be a k-transitive digraph. We will proceed by induction on n.
For n = 1, consider (v0, v1, . . . , vk+(k−1)), a directed path of length k +

(k − 1). From the k-transitivity of D we have that (v0, vk) ∈ A(D), so
(v0, vk, vk+1, . . . , vk+(k−1)) is a v0vk-directed path of length k, and by the k-
transitivity of D, we have that (v0, vk+(k−1)) ∈ A(D).

Let us assume the result valid for n − 1 and let (v0, v1, . . . , vk+n(k−1)) be
a directed path of length k + n(k − 1) in D. By the induction hypothe-
sis (v0, vk+(n−1)(k−1)) ∈ A(D), and clearly (v0, vk+(n−1)(k−1), . . . , vk+n(k−1)) is
a directed path of length k in D. It follows from the k-transitivity that
(v0, vk+n(k−1)) ∈ A(D).

The result is now obtained by the Principle of Mathematical Induction.
�

As a particular case of Proposition 5.6.2, we can observe that a 3-transitive
digraph is n-transitive for every odd integer n. We can state this observation
as the following corollary.

Corollary 5.6.3. Let D be a 3-transitive digraph and (v0, v1, . . . , vn) a di-
rected path in D. Then (v0, vi) ∈ A(D) for every odd integer 1 ≤ i ≤ n.

Proof. It is straightforward from Proposition 5.6.2. �

In [96], Wang and Wang proved some results describing the structure of
non-strong 3-quasi transitive digraphs. Since every 3-transitive digraph is
also 3-quasi-transitive, the properties stated next hold also for 3-transitive
digraphs.

Proposition 5.6.4 ([96]). Let D′ be a non-trivial strong induced subdigraph
of a 3-quasi-transitive digraph D and let s ∈ V (D) \ V (D′) with at least one
arc from D′ to s and D′ ⇒ s. Then each of the following holds:

1. If D is a bipartite digraph with bipartition (X, Y ) and there exists a
vertex of X which dominates s, then X 7→ s.

2. If D′ is a non-bipartite digraph, then D′ 7→ s.

In the case of 3-transitive digraphs, the condition D′ ⇒ s in Proposition
5.6.4 not necessary. The following proposition is some kind of analogous
of Proposition 5.6.4 for 3-transitive digraphs, emphasizing the behavior of
certain strong subdigraphs.
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Proposition 5.6.5. Let D be a 3-transitive digraph and v ∈ V (D). The
following statements hold:

1. For every C3 in D such that there is a C3v-arc in D, then C3 → v.

2. For every C3 in D such that there is a vC3-arc in D, then v → C3.

3. For every
←→
Kn in D, n ≥ 3, such that there is a

←→
Knv-arc in D, then←→

Kn → v.

4. For every
←→
Kn in D, n ≥ 3, such that there is a v

←→
Kn-arc in D, then

v →
←→
Kn.

5. For every
←−→
Kn,m = (X, Y ) in D such that there is a Xv-arc in D, then

X → v.

6. For every
←−→
Kn,m = (X, Y ) in D such that there is a vX-arc in D, then

v → X.

Proof. For 1. Let C3 = (x, y, z, x) be a cycle in D and (x, v) ∈ A(D). The
existence of the directed path (y, z, x, v) in D, implies that (y, v) ∈ A(D).
Finally, since (z, x, y, v) is a directed path of length 3 in D, (z, v) ∈ A(D).
Thus C3 → v.

For 2. It suffices to dualize 1 using Remark 5.6.1.
For 3. Let D[S], with S = {1, 2, . . . , n}, be a complete subdigraph of D

and (1, v) ∈ A(D). Let i ∈ S \ 1 be an arbitrary vertex. Remember that

n ≥ 3, so there exists a vertex j ∈ S \{1, i}. Now, since D[S] =
←→
Kn, we have

the existence of the directed path (i, j, 1, v), which implies that (i, v) ∈ A(D).
But i is an arbitrary vertex of D[S], and then we can conclude that D[S]→ v.

For 4. It suffices to dualize 3 using Remark 5.6.1.

For 5. Let
←−→
Kn,m = (X, Y ) be a complete subdigraph of D and x ∈ X. If

|X| = 1, then we are done. If not, let z ∈ X be a vertex such that z 6= x.
Since Y 6= ∅, there is a vertex y ∈ Y . Also, (z, y), (y, x) ∈ A(D), because
D[X ∪Y ] is a complete bipartite digraph. So (z, y, x, v) is a directed path of
length 3 in D and hence, (z, v) ∈ A(D). Thus, X → v.

For 6. It suffices to dualize 5 using Remark 5.6.1. �

The following proposition is also due to Wang and Wang.
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Proposition 5.6.6 ([96]). Let D′ be a non-trivial strong subdigraph of a 3-
transitive digraph D. For any s ∈ V (D) \ V (D′), if there exists a directed
path between s and D′, then s and D′ are adjacent.

In the case of 3-transitive digraphs we can be a little more specific. The
proof of the following proposition will be omitted since it is almost the same
as the one given by Wang and Wang in [96].

Proposition 5.6.7. Let D′ be a non-trivial strong subdigraph of a 3-transitive
digraph D and s ∈ V (D) \ V (D′). Then each of the following holds:

1. If there exists an sD′-directed path in D, then an sD′-arc exists.

2. If there exists a D′s-directed path in D, then a D′s-arc exists.

The following couple of propositions will be used later to characterize
strong 3-transitive digraphs.

Proposition 5.6.8. Let D be a strong 3-transitive digraph of order n ≥ 4.
If D is semicomplete, then D is complete.

Proof. For any (x, y) ∈ A(D), let P = (y0, y1, . . . , ys) be a shortest path
from y to x. If s ≥ 3, then by Corollary 5.6.3 we can find a shorter path
than P from y to x. Suppose that s = 2, then (x, y, y1, x) is a C3 in D.
Let D′ = D[{x, y, y1}]. Since the order of D is n ≥ 4, there exists v ∈
V (D)\V (D′). Also, D is strong, so a D′s-directed path and an sD′-directed
path exist in D. It follows from Propositions 5.6.5 (1 and 2 ) and 5.6.7 that
(y1, v), (v, x) ∈ A(D). So (y, y1, v, x) is a directed path of length 3 in D and
hence, (y, x) ∈ A(D). This contradicts that s = 2. Thus, (y, x) ∈ A(D). �

Proposition 5.6.9. Let D be a strong 3-transitive digraph. If D is semi-
complete bipartite, then D is complete bipartite.

Proof. Let (X, Y ) be the bipartition of D. It suffices to prove that for any
(v, u) ∈ A(D), (u, v) ∈ A(D). Since D is strong, there exists a path P from
u to v of length n. Again, since D is bipartite and u and v belong to the
different partite, n must be odd. By Corollary 5.6.3, (u, v) ∈ A(D). �

We are ready now for the characterization theorem. We just need to
define two digraphs. Let C∗3 and C∗∗3 be directed triangles with one and two
symmetrical arcs, respectively. Digraphs C3, C

∗
3 and C∗∗3 are shown in Figure

5.3
The characterization of strong 3-transitive digraphs is now proved.
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C3 C∗3 C∗∗3

Figure 5.3: The digraphs C3, C
∗
3 and C∗∗3 .

Proposition 5.6.10. A strong digraph D is 3-transitive if and only if it is
one of the following:

1. A complete digraph

2. A complete bipartite digraph

3. C3, C
∗
3 or C∗∗3 .

Proof. Since every 3-transitive digraph is 3-quasi-transitive, in virtue of
Theorem 5.5.7, a strong 3-transitive digraph must be either semicomplete,
semicomplete bipartite or isomorphic to Fn. But Fn is not 3-transitive, so
a strong 3-transitive digraph must be either semicomplete or semicomplete
bipartite. It is clear that every strong digraph of order less than or equal
to 3 is either complete, complete bipartite or one of the digraphs C3, C

∗
3 or

C∗∗3 . If D has order greater than or equal to 4, and it is a semicomplete
digraph, it follows from Proposition 5.6.8 that D is complete. Finally, if D is
semicomplete bipartite, it follows from Proposition 5.6.9 that D is complete
bipartite. �

Corollary 5.6.11. Let D be a 3-transitive digraph. Then D is Hamiltonian
if and only D is strong and it is not bipartite or it is regular.

Let us recall that Proposition 5.6.5 describes the interaction of a single
vertex with some subdigraphs of a 3-transitive digraph D. This covers the
case when a strong component of D consists of a single vertex. In [96], the
following proposition is proved.

Proposition 5.6.12. Let S1 and S2 be two distinct non-trivial strong compo-
nents of a 3-quasi-transitive digraph with at least one D1D2-arc. Then either
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D1 7→ D2 or the digraph induced by D1 ∪ D2 is a semicomplete bipartite
digraph.

As it was noted before, every 3-transitive digraph is a 3-quasi-transitive
digraph, so Proposition 5.6.12 is also valid for 3-transitive digraphs. In an
attempt to be more explicit with the interaction between non-trivial strong
components of a 3-transitive digraph, we state the following proposition.
Nonetheless, we omit the proof, since it is very similar to the proof of Propo-
sition 5.6.12.

Proposition 5.6.13. Let D be a 3-transitive digraph and S1, S2 be distinct
strong components of D such that there exists an S1S2-arc. The following
statements hold:

1. If S1 contains a subdigraph isomorphic to C3, then S1 → S2.

2. If S2 contains a subdigraph isomorphic to C3, then S1 → S2.

3. If Si is a complete bipartite digraph with bipartition (Xi, Yi) for i ∈
{1, 2} and if the S1S2-arc is an X1X2-arc, then X1 → X2.

4. If Si is a complete bipartite digraph with bipartition (Xi, Yi) for i ∈
{1, 2} and there exist an X1X2-arc and a Y1X2-arc, then S1 → S2.

5. If Si is a complete bipartite digraph with bipartition (Xi, Yi) for i ∈
{1, 2} and there exist an X1X2-arc and a X1Y2-arc, then S1 → S2.

As a direct consequence of Propositions 5.6.7 and 5.6.13, we have the
following corollary.

Corollary 5.6.14. Let D be a 3-transitive digraph D and S1 a strong com-
ponent of D which contains a subdigraph isomorphic to C3. If S1 → v for
some vertex v ∈ V , then S1 → u for every vertex u ∈ V that can be reached
from v. Dually, if v → S1 for some vertex v ∈ V , then u → S1 for every
vertex u ∈ V that reaches v.

We have already proved that the structure of 3-transitive digraphs is
very similar to the structure of transitive digraphs. The following results
are devoted to a deeper exploration of the similarities between these families
of digraphs. A structural characterization of 3-transitive digraphs that are
transitive is given.
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Theorem 5.6.15. Let D be a non-strong 3-transitive digraph with strong
components S1, S2, . . . , Sp. Then D = D?[S1, S2, . . . , Sp] if and only if, for
every pair of strong components Si, Sj of D, such that an SiSj-arc exists in
D, then:

1. If Si, Sj are complete bipartite digraphs, then D[Si∪Sj] is not bipartite.

2. If Si is a complete bipartite digraph and S2 consists of a single vertex
v, then D[S1 ∪ {v}] is not bipartite.

3. If Si consists of a single vertex v and S2 is a complete bipartite digraph,
then D[{v} ∪ S2] is not bipartite.

Proof. Clearly, if D = D?[S1, S2, . . . , Sp], then for every pair of strong com-
ponents Si, Sj of D such that there is an SiSj-arc in D, then Si → Sj. Thus,
the three conditions are fulfilled.

Now, for the ‘if’ implication, let Si, Sj be distinct strong components of D
such that there is an SiSj-arc in D. In virtue of Proposition 5.6.10, Si and Sj
are either complete, complete bipartite, C3, C

∗
3 or C∗∗3 . If Si or Sj is neither

complete bipartite nor consists of a single vertex, then by Propositions 5.6.5
and 5.6.13 we can conclude that Si → Sj.

So, let us assume that Si and Sj are complete bipartite digraphs with
bipartitions (Xi, Yi) and (Xj, Yj), respectively. Clearly, every arc between
Si and Sj is an SiSj-arc, because they are distinct strong components of
D. If every SiSj-arc were an XiXj-arc or a YiYj-arc, then D[Si ∪ Sj] would
be a bipartite digraph with bipartition (Xi ∪ Yj, Yi ∪Xj), contradiction our
hypothesis. Analogously, if every SiSj-arc were aXiYj-arc or a YiXj-arc, then
D[Si ∪ Sj] would be a bipartite digraph with bipartition (Xi ∪Xj, Yi ∪ Yj),
contradicting our hypothesis. Then an XiXj-arc and a YiXj-arc exist or
an XiYj-arc and a YiYj-arc exist. It follows from 4 and 5, respectively, of
Proposition 5.6.13, that Si → Sj.

If Si is a complete bipartite digraph with bipartition (X, Y ) and Sj con-
sists of a single vertex v, then it is not possible that every SiSj-arc is an
Xv-arc, because D[Si ∪ {v}] would be a bipartite digraph with bipartition
(X, Y ∪ {v}), contradicting hypothesis 2. Analogously, if every SiSj-arc is a
Y v-arc, then D[Si∪{v}] is a bipartite digraph with bipartition (X ∪{v}, Y ),
which results in a contradiction. So, there must exist a Xv-arc and a Y v-arc
in D. By 5 of Proposition 5.6.5, we have that Si → v.



5.6 3-transitive digraphs 87

The case in which Si consists of a single vertex v and Sj is a complete
bipartite digraph can be obtained analogously to the previous case, using 6
of Proposition 5.6.5. �

Theorem 5.6.16. Let D be a 3-transitive digraph. Then D? is a transitive
digraph if and only if for every triplet of strong components S1, S2, S3 of
D, such that: Si consists of a single vertex vi, i ∈ {1, 3}; S2 is either a
single vertex v2 or a complete bipartite digraph with bipartition (X, Y ) and
v1 → v2 → v3 or v1 → X → v3 but there are neither v1Y -arcs nor Y v3-arcs
in D, respectively, then (v1, v3) ∈ A(D).

Proof. Let D be a 3-transitive digraph. If D? is a transitive digraph, then
for every triplet of strong components S1, S2 and S3 of D, such that there is
an S1S2-arc in D and an S2S3-arc in D, then there is an S1S3-arc in D. In
particular, if S1 and S3 consist of single vertices v1 and v3 respectively, then
(v1, v3) ∈ A(D).

For the converse, let D be a 3-transitive digraph and S1, S2 and S3 strong
components of D, such that there is an S1S2-arc in D and an S2S3-arc in D.
We will prove that there is an S1S3-arc in D. If S1 contains an isomorphic
copy of C3, then, by Corollary 5.6.14, we have that S1 → S3 inD. If S3

contains an isomorphic copy of C3, again, by Corollary 5.6.14, we have that
S1 → S3. So, let us assume that neither S1 nor S3 contains an isomorphic
copy of C3.

It follows from Proposition 5.6.10 that S1 and S3 are either a single vertex
or complete bipartite digraphs. If S1 is not a single vertex, then it is a
complete bipartite digraph with bipartition (X1, Y1). Let us assume without
loss of generality that the S1S2-arc is an X1S2-arc. Let (x1, u) be the S1S2-
arc in D. Since S2 is a strong component of D, we have, by Propositions
5.6.10 and 5.6.13, two cases. The first case is that a vertex s3 ∈ V (S3) exists,
such that (u, s3) ∈ A(D). In this case is clear that, for any vertex y1 ∈ Y1

(recall that Y1 6= ∅), (y1, x1, u, s3) is a directed path of length 3 in D. By
the 3-transitivity of D, we have that (y1, s3) ∈ A(D), the desired S1S3-arc.
The second case is that vertices v ∈ V (S2) and s3 ∈ V (S3) exist, such that
(u, v), (v, s3) ∈ A(D). Again, it is clear that (x1, u, v, s3) is a directed path
of length 3 and thus, (x1, s3) ∈ A(D), the desired S1S3-arc. The case when
S3 is a complete bipartite digraph can be obtained dualizing the previous
argument using Remark 5.6.1.

So, the remaining cases are when S1 and S3 consist of single vertices. We
have again two cases. First, when S2 contains a subdigraph isomorphic to
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C3, then S2 → S3. So, there exist vertices s1 ∈ V (S1), u, v ∈ V (S2), s3 ∈
V (S3) such that (s1, u), (u, v), (v, s3) ∈ A(D). Thus, (s1, u, v, s3) is a directed
path of length 3 in D. By the 3-transitivity of D, (s1, s3) ∈ A(D) is the
desiredS1S3-arc. If S2 does not contain a subdigraph isomorphic to C3, then
S2 is a single vertex or complete bipartite. If S2 is a single vertex v2 or a
complete bipartite digraph with bipartition (X, Y ) such that v1 → v2 → v3 or
v1 → X → v3 but there are neither v1Y -arcs nor Y v3-arcs in D, respectively,
then, by hypothesis (v1, v3) ∈ A(D). Hence, we have the existence of an
S1S3-arc. The remaining case is that S2 is a complete bipartite digraph with
bipartition (X, Y ) such that v1 → X → v3, and either a v1Y -arc or a Y v3-
arc exists. In the first case we have by Proposition 5.6.13 that v1 → S2,
and thus, vertices u ∈ X, v ∈ Y exist such that (v1, v), (u, v3) ∈ A(D). So,
(v1, v, u, v3) is a directed path of length 3 in D. For the second case, again by
Proposition 5.6.13, it follows that S2 → v3. Then, vertices u ∈ X and v ∈ Y
exist such that (v1, u), (v, v3) ∈ A(D). Therefore, (v1, u, v, v3) is a directed
path of length 3 in D. In either case, it follows by the 3-transitivity of D
that (v1, v3) ∈ A(D). So an S1S3-arc exists.

Since the cases are exhaustive, we have that D? is transitive. �

Corollary 5.6.17. Let D be a 3-transitive digraph. Then D is a transitive
digraph if and only if every strong component of D is a complete digraph and,
for every triplet of strong components S1, S2, S3 of D, such that: Si consists of
a single vertex vi, i ∈ {1, 3}; S2 is either a single vertex v2 or a symmetrical
arc (v2, v

′
2) ∈ A(D) and v1 → v2 → v3 but (v1, v

′
2), (v

′
2, v3) /∈ A(D), then

(v1, v3) ∈ A(D).

Proof. It is clear from Proposition 3.3.4 and Theorems 5.6.15 and 5.6.16.
�

Corollary 5.6.18. Let D be a 3-transitive digraph. If every strong compo-
nent of D is a complete digraph of order greater than or equal to 3, then D
is transitive.

Proof. Let D be a 3-transitive digraph such that every strong component of
D is a complete digraph of order greater than or equal to 3. Then, by Theo-
rem 5.6.16, it is clear that D? is transitive. Also, in virtue of Theorem 5.6.13,
we can observe that Si → Sj for every pair of strong components Si, Sj of D
such that there exists an SiSj-arc in D. Thus, D = D?[S1, S2, . . . , Sn], where
{S1, S2, . . . , Sn} is the set of strong components of D and D? is transitive.
So, by Theorem 3.3.4, D is transitive. �
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As we have already shown, the structure of 3-transitive digraphs is very
similar to the structure of transitive digraphs. We know that the conden-
sation of a transitive digraph is again transitive. A characterization of 3-
transitive digraphs with a transitive condensation has been already given,
but a natural question arises. Is the condensation of a 3-transitive digraph
3-transitive again? Sadly, the answer is no, Figure 5.4 shows a counterexam-
ple to this fact.

Figure 5.4: A 3-transitive digraph without 3-transitive condensation.

Following similar ideas to those used to characterize the 3-transitive di-
graphs with a transitive condensation in Theorem 5.6.16, we can characterize
3-transitive digraphs with a 3-transitive condensation. The ‘bad’ configura-
tions, preventing the condensation of a 3-transitive digraph to be 3-transitive,
are pointed out in the following theorem.

Theorem 5.6.19. Let D be a 3-transitive digraph. Then D? is a 3-transitive
digraph if and only if for every 4-set, {S1, S2, S3, S4}, of strong components
of D such that: Si consists of a single vertex vi, i ∈ {1, 4} and one of the
following conditions is fulfilled:

1. S2 consists of single vertex v2 and S3 is a complete bipartite digraph
with bipartition (X, Y ), such that v1 → v2 → X and Y → v4, but there
are neither v2Y -arcs nor Xv4-arcs in D;

2. S2 is a complete bipartite digraph with bipartition (X, Y ) and S3 con-
sists of single vertex v3, such that v1 → X and Y → v3 → v4, but there
are neither v1Y -arcs nor Xv3-arcs in D;

3. Sj is a complete bipartite digraph with bipartition (Xj, Yj), j ∈ {2, 3},
such that v1 → X2 → X3 and Y3 → v4, but there are neither v1Y2-
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arcs, v1X3-arcs, Y2v4-arcs, nor X3v4-arcs, and D[V (S2) ∪ V (S3)] is a
semicomplete bipartite digraph,

then (v1, v4) ∈ A(D).

Proof. Let D be a 3-transitive digraph. If D? is a 3-transitive digraph,
then for every 4-set of strong components {S1, S2, S3, S4} of D, such that
there is an SiSi+1-arc in D, i ∈ {1, 2, 3}, then there is an S1S3-arc in D. In
particular, if S1 and S4 consist of single vertices v1 and v4 respectively, then
(v1, v4) ∈ A(D).

Conversely, let {S1, S2, S3, S4} be a 4-set of strong components of D such
that there is an SiSi+1-arc in D, i ∈ {1, 2, 3}. If S1 or S4 are non-trivial,
then by Proposition 5.6.7, there exists an S1S4-arc in D. So let us assume
without loss of generality that Si consists of a single vertex Si, i ∈ {1, 4}.
Suppose that S2 or S3 contains C3 as a subdigraph. It can be easily derived
from Corollary 5.6.14 the existence of an S1S4-arc in D. So, we have 3 cases.

Before the analysis of the cases, let us recall that, by Proposition 5.6.5, if
S = (X, Y ) is a bipartite strong component of D and v ∈ V (D) \ V (S) such
that a vX-arc exists, then v → X; and if an Xv-arc exists, then X → v.

The first case is when S2 consists of single vertex v2 and S3 is a complete
bipartite digraph with bipartition (X, Y ). Clearly, if a v2X-arc, and an Xv4-
arc exist, then v2 → X → v4. Thus, a v1v4-directed path of length 3 exists
and (v1, v4) ∈ A(D) by the 3-transitivity of D. Analogously, if a v2Y -arc and
a Y v4-arc exist in D, clearly (v1, v4) ∈ A(D). So, we can assume without
loss of generality that v2 → X, Y → v4 and there are neither v2Y -arcs nor
Xv4-arcs in D. Then, by hypothesis, (v1, v4) ∈ A(D).

The second case is when S2 is a complete bipartite digraph with bipar-
tition (X, Y ) and S3 consists of single vertex v3. But this case is just the
dual of the first case, so, using Remark 5.6.1, it can be easily shown that
(v1, v4) ∈ A(D).

The third case is when Sj is a complete bipartite digraph with bipartition
(Xj, Yj), j ∈ {2, 3}. Let us assume without loss of generality that v1 → X2

and Y3 → v4. If X2 → Y3, then v1 → X2 → Y3 → v4 and clearly (v1, v4) ∈
A(D). If Y2 → X3, it is easy to observe that X2 → Y3. So, we can suppose
that X2 → X3 (thus Y2 → Y3) and that there are neither X2Y3-arcs nor Y2X3-
arcs. Thus, D[V (S2) ∪ V (S3)] is semicomplete bipartite. If v1 → Y2, then
v1 → Y2 → Y3 → v4 and we are done. If v1 → X3, then v1 → X3 → Y3 → v4

and (v1, v4) ∈ A(D). Symmetrically, if Y2 → v4 or X3 → v4 we can conclude



5.6 3-transitive digraphs 91

that (v1, v4) ∈ A(D). Hence, we can suppose that there are neither v1Y2-arcs,
v1X3-arcs, Y2v4-arcs, nor X3v4-arcs in D. By hypothesis (v1, v4) ∈ A(D).

Since the cases are exhaustive, we have that D? is 3-transitive. �

Now 3-transitive digraphs have been studied in detail, we are ready to
talk about kernels again.

Theorem 5.6.20. Let D be a 3-transitive digraph. Then D has a kernel if
and only if it has no terminal strong component isomorphic to C3.

Proof. The ‘only if’ part will be proved by contrapositive. Let D be a 3-
transitive digraph such that a terminal strong component S is isomorphic to
C3. Let V (S) = {v0, v1, v2} and A(S) = {(vi, vi+1)}2i=0 (mod 3). Since S is
terminal, we have that d+(v) = 1 for every v ∈ V (S). Thus, the only out-
neighbor of vi is vi+1 (mod 3). It is clear that S has no kernel and vertices
in S cannot be absorbed by any other vertex in D, thus, D has no kernel.

The ‘if’ implication will be proved by induction on the number of strong
components of D. Let us assume that D is strong. It can be directly verified
that the digraphs mentioned in Proposition 5.6.10, except for C3 have a ker-
nel. So, let us assume that every 3-transitive digraph such that no terminal
strong component isomorphic to C3 and with n strong components has a ker-
nel. Let D be a 3-transitive digraph such that no terminal strong component
isomorphic to C3 and with n + 1 strong components. Let us recall that D?

is an acyclic digraph, so, we can consider an initial strong component S of
D. By induction hypothesis, D − S has a kernel N . If S is not a complete
bipartite digraph, then, either S consists of a single vertex or contains a sub-
digraph isomorphic to C3. If S consists of a single vertex v, and v is absorbed
by N , we are done. If v is not absorbed by N , since S is initial, N ∪ {v} is
independent and thus a kernel of D. If D contains a subdigraph isomorphic
to C3, we can use Corollary 5.6.14 to prove that S 7→ St for some terminal
strong component St of D. But since St is terminal, at least one vertex of St
must belong to N , and thus S is absorbed by N . So, N is a kernel of D. If S
is a complete bipartite digraph, we must consider three cases. Let (X, Y ) be
the bipartition of S. If neither X nor Y is absorbed by N , then we consider
N ∪X. Since S is an initial component, every arc between X and N must
be an XN -arc. But if such arc exists, we would have by Proposition 5.6.5.5
that X → n ∈ N , contradicting our assumption. So N∪X is an independent
set, and Y → X because S is a complete bipartite digraph. Thus, N ∪X is
a kernel for D. If some vertex of X is absorbed by N , then by Proposition
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5.6.5.5 X is absorbed by N . So let us assume that Y is not absorbed by
N . Once again, since S is an initial component, every arc between N and Y
must be a Y N -arc, but no such arc can exist. So, N ∪ Y is an independent
absorbent set of D, and hence a kernel of D. The case when Y is absorbed
but X is not is analogous. Finally, if S is absorbed by N , we have that N is
the desired kernel of D.

Since in every case D has a kernel, the result follows from the Principle
of Mathematical Induction. �

As we mentioned earlier in this section, Theorem 5.6.20 completes the
study of k-kernels in 3-transitive digraphs for k ≥ 2. This very simple char-
acterization makes us wonder if the family of k-transitive digraphs with k ≥ 4
and n-kernel for n ≤ k will have a simple characterization.



Chapter 6

Digraphs with a given
circumference

6.1 Introduction

In [83], Richardson proved that every digraph without odd cycles has a 2-
kernel, as a particular case of this result we can observe that if a digraph D
has circumference 2, then D has a 2-kernel. As a matter of fact, it is easy
to prove that if a digraph D has circumference 2, then D has a k-kernel for
every k ≥ 2. A short proof of this fact is given in the following section. From
this, we conjecture that if D is a digraph with circumference l, then D has
a l-kernel. Also, a stronger version of this conjecture is proposed, if D is a
digraph with circumference l, then D has a k-kernel for every k ≥ l. As we
noted before, the strong version of the conjecture is true for l = 2. The aim
of this chapter is to prove this conjecture true for some families of digraphs,
including σ-strong digraphs and locally in/out-semicomplete digraphs.

Maybe this chapter is somewhat technical, and also not as general as the
results in the previous chapters, but the conjecture introduced here is by
no means simple. In Section 6.2, we prove that if D is a σ-strong digraph
with circumference l then σ ≤ l− 1 and D has a (k, (l− 1) + (l− σ)

⌊
k−2
σ

⌋
)-

kernel for every integer k ≥ 2. In Section 6.3 we prove that if D is a locally
out(in)-semicomplete digraph with circumference l + 1, then D has a (k, l)-
kernel(solution) for every integer k ≥ 2. In Section 6.4, we prove that if D is
a k-quasi-transitive digraph with circumference l ≤ k, then D has a n-kernel
for every n ≥ k.
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Before starting to work with specific families of digraphs, we want to
make some general observations.

The following lemma is a very simple one, but it will help us to prove some
results to propose a conjecture about the relation between the circumference
of a digraph and the existence of certain k-kernels. It also inspired the results
of the next section.

Lemma 6.1.1. Let D be a strong digraph with circumference l. If (u, v) ∈
A(D), then d(v, u) ≤ l − 1.

Proof. Let (u, v) ∈ A(D) and C = (v = v0, v1, . . . , vn = u) a vu-directed
path (which exists because D is strong). It is clear that C ∪(u, v) is a directed
cycle in D and therefore `(C ∪ (u, v)) = n+1 ≤ l, this implies that n ≤ l−1.
�

The following theorem, as it was mentioned earlier, is the inspiration for
the conjecture proposed in this work.

Theorem 6.1.2. Let D be a digraph with circumference 2, then D has a
k-kernel for every k ≥ 2.

Proof. It can be easily observed that if D has circumference 2, then every
strong component of D is a symmetrical digraph. Otherwise, let (u, v) ∈
A(D) be an asymmetrical arc in a strong component of D. Since u and v are
in the same component, then there is a vu-directed path C of length at least
2 in D. But C ∪ (u, v) is a directed cycle of length greater than or equal to
3. It follows from this observation that the underlying graph of every strong
component of D is a tree.

The existence of a k-kernel can now be proved by induction on |V (D)|.
If |V (D)| = 1, the result is obtained trivially. If not, let v be a leaf in the
underlying graph of an initial strong component S of D. So, v has only
one (in and out) neighbor in D. By the Induction Hypothesis, D − v has
a k-kernel N . If v is (k − 1)-absorbed by N in D, then N is a kernel for
D. Otherwise, we have two cases. If N ∩ V (S) = ∅, then, since S is an
initial component, there are not NS-directed paths in D. Thus, N ∪ {v} is
a k-independent (because v is a leaf of the underlying graph of S), (k − 1)-
absorbent set in D, and thus a k-kernel. If N ∩ V (S) 6= ∅, then we affirm
that there are not Nv-directed path of length less than or equal to (k − 1)
in D. This is because, since S is an initial component, the only vertices of
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N that can reach v are also in S, but S is a symmetrical digraph. Hence,
the existence of a Nv-directed path of length less than or equal to (k− 1) in
D impies the existence of a vN -directed path of length less than or equal to
(k−1) in D, but v is not (k−1)-absorbed by N . Once again, v is a leaf in the
underlying graph of S, thus N ∪ {v} is a k-independent, (k − 1)-absorbent
set of D. In both cases the existence of a k-kernel is proved.

The result follows from the principle of mathematical induction. �

6.2 σ-strongly connected digraphs

Recall that, in Section 1.4, we define σ-strong connectivity. As a first ob-
servation, let us notice that if D is a σ-strong digraph with circumference l,
then l ≥ σ + 1. To prove this, let C be a longest cycle in D. If |V (C )| ≤ σ,
then fix an arc (x, y) in C and delete all vertices of C − {x, y} and the arc
(x, y). The resulting digraph is strongly connected (since |V (C )| ≤ σ), so
there is an xy-path of length at least 2 in D. Thus, a cycle longer than C
can be constructed in D, contradicting the choice of C .

The degree of strong connectivity of a digraph has consequences on the
distances between its vertices. The next couple of lemmas show this relation.

Lemma 6.2.1. Let D be a σ-strong digraph with circumference l, k ≥ 2 a
fixed integer and C = (x0, x1 . . . , xm) a directed path of length m. If m =
qσ + r where q and r are given by the division algorithm, then:

1. If r = 0, then d(xm, x0) ≤ (l − σ)q.

2. If r > 0, then d(xm, x0) ≤ (l − r) + (l − σ)
⌊
m−1
σ

⌋
.

Proof. For (i) we have that m = qσ and we will proceed by induction on
q. If q = 0, then C = (x0) and there is nothing to prove, so let us suppose
that q ≥ 1. Let us consider the set S = {x(q−1)σ+1, x(q−1)σ+2, . . . , xqσ−1}, it is
clear that |S| = σ−1 and hence D \S is strong, so there exists an xmx(q−1)σ-
directed path in D \ S, namely D which is clearly internally disjoint with
E = (x(q−1)σ, x(q−1)σ+1, . . . , xm), so D ∪ E is a directed cycle in D. But
recalling that D has circumference l, we have that `(D ∪E ) = `(D)+ `(E ) =
`(D) + σ ≤ l, and thence `(D) ≤ l− σ. By induction hypothesis there exists
an x(q−1)σx0-directed path D ′ of length less than or equal to (l−σ)(q−1), so
D ∪D ′ is an xmx0-directed path of length less than or equal to (l−σ)q. The
desired result now follows from the Principle of Mathematical Induction.
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For (ii) we have that m = qσ + r with 0 < r < k, so q =
⌊
m−1
σ

⌋
. If

we consider the set S = {xqσ+1, xqσ+2, . . . , xqσ+(r−1)} with cardinality |S| =
r − 1 ≤ σ − 1 we can observe that there is an xmxqσ-directed path D in
D \S because D is σ-strong. The directed path D is internally disjoint with
the directed path E = (xqσ, xqσ+1, . . . , xm), therefore D ∪ E is a directed
cycle in D and thus, `(D ∪ E ) = `(D) + `(E ) = `(D) + r ≤ l, so `(D) ≤
l − r. By (i) we know that d(xqσ, x0) ≤ (l − σ)q and we have just proved
that d(xm, xqσ) ≤ l − r, by the triangle inequality we can conclude that
d(xm, x0) ≤ (l − r) + (l − σ)q = (l − r) + (l − σ)

⌊
m−1
σ

⌋
. �

Lemma 6.2.2. Let D be a σ-strong digraph with circumference l, then for
every v ∈ V (D), {v} is a (k, (l − 1) + (l − σ)

⌊
k−2
σ

⌋
)-semikernel for every

integer k ≥ 2.

Proof. Let us recall that σ ≤ l − 1. Let k ≥ 2 and v ∈ V (D) be fixed and
let C = (v = x0, x1, . . . , xm) be a vxm-directed path of length m ≤ k− 1. In
virtue of Lemma 6.2.1, d(xm, v) ≤ (l−1)+(l−σ)

⌊
m−1
σ

⌋
≤ (l−1)+(l−σ)

⌊
k−2
σ

⌋
and then {v} fulfills the second (k, (l−1)+(l−σ)

⌊
k−2
σ

⌋
)-semikernel condition.

�

The principal theorem of the section is now proved. It explores what
kind of (k, l)-kernels exists with given values of circumference and strong
connectivity.

Theorem 6.2.3. Let D be a σ-strong digraph with circumference l. Then D
has a (k, (l − 1) + (l − σ)

⌊
k−2
σ

⌋
)-kernel for every integer k ≥ 2.

Proof. It follows immediately from Lemmas 3.1.4 and 6.2.2. �

We would like to point out a special case of Theorem 6.2.3, concerning
the conjecture proposed above.

Corollary 6.2.4. Let D be a (l − 1)-strong digraph with circumference l,
then D has an l-kernel.

Proof. In virtue of Theorem 6.2.3, D has an (l, (l− 1) + (l− (l− 1))
⌊
l−2
l−1

⌋
)-

kernel. But for every integer l ≥ 2, we have that
⌊
l−2
l−1

⌋
= 0. Thus D has an

(l, l − 1)-kernel. �
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6.3 Locally in/out-semicomplete digraphs

These families of digraphs have been largely studied by Bang-Jensen, et al.
A very surprising theorem, that is also particularly useful in the study of k-
kernels, will be stated after the formal definition of these classes of digraphs.
A digraph D is locally in-semicomplete if whenever (v, u), (w, u) ∈ A(D),
then (v, w) ∈ A(D) or (w, v) ∈ A(D). Dually, a digraph D is locally out-
semicomplete if whenever (u, v), (u,w) ∈ A(D), then (v, w) ∈ A(D) or
(w, v) ∈ A(D). Finally, D is locally semicomplete if it is both, locally
out-semicomplete and locally in-semicomplete.

The theorem due to Bang-Jensen, Huang and Prisner is now stated.

Theorem 6.3.1 ([10]). A locally in-semicomplete digraph D of order n ≥ 2
is Hamiltonian if and only if D is strong.

Let us observe that the definition of a locally in-semicomplete digraph is
equivalent to the fact that for every v ∈ V (D), D[N−(v)] is a semicomplete
digraph; analogously for the locally out-semicomplete an locally semicom-
plete digraphs. Also, we may observe that every directed cycle is a locally
in/out-semicomplete digraph. Let us recall that a directed cycle of length `
has k-kernel if and only if ` ≡ 0 (mod k), so there is an infinite subfamily of
locally in/out-semicomplete strong digraphs that does not have a k-kernel for
a fixed k, so it is not surprising that heavy restrictions have to be considered
in order to guarantee the existence of k-kernels.

The following remark will be useful to dualize some results from locally
out-semicomplete digraphs to locally in-semicomplete digraphs.

Remark 6.3.2. A digraph D is locally in-semicomplete if and only if
←−
D is

locally out-semicomplete. As a consequence, a digraph D is locally semicom-

plete if and only if
←−
D is locally semicomplete.

The previous remark extends Theorem 6.3.1 to locally out-semicomplete
digraphs, so a locally out-semicomplete digraph D of order n ≥ 2 is Hamil-
tonian if and only of D is strong. Since we are studying classes of digraphs
in which we can find a k-kernel, where k depends on the circumference of the
digraph, any condition that we find on this family of digraphs can be easily
verified thanks to Theorem 6.3.1.

Our next lemma is just a technical one that will be used to prove the one
after it.
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Lemma 6.3.3. Let l ≥ 1 be an integer, D a locally out-semicomplete digraph
and (x0, x1, . . . , xn) is a x0xn-directed path of length n ≤ l. If (x0, v0) ∈ A(D)
and (xn, v0) /∈ A(D), then d(v0, xn) ≤ l.

Proof. If v0 = xi for some 1 ≤ i ≤ n − 1, then (v0, xi+1, . . . , xn) is a v0xn-
directed path of length less than or equal to n ≤ l, so let us take for granted
that v0 6= xi for all 0 ≤ i ≤ n. For each 0 ≤ i < n, if (xi, v0) ∈ A(D)
then (xi+1, v0) ∈ A(D) or (v0, xi+1) ∈ A(D), because (xi, xi+1) ∈ A(D) and
D is locally out-semicomplete. So, since (x0, v0) ∈ A(D), let us consider
the greatest 0 ≤ i ≤ n such that (xi, v0) ∈ A(D). Clearly i 6= n, because
(xn, v0) /∈ A(D), and by the choice of i, (xi+1, v0) /∈ A(D), thus, (v0, xi+1) ∈
A(D) and (v0, xi+1, . . . , xn) is a v0xn-directed path of length less than or
equal to n ≤ l. �

The hypothesis of the following lemma may look a bit odd, but we ob-
served that, to use Lemma 3.1.4, only the vertices reached at distance one
failed to fulfill the second (k, l)-semikernel condition. It is easy to observe
that for a connected locally out-semicomplete digraph D such that, for a
fixed integer l ≥ 1, whenever (u, v) ∈ A(D) then d(u, v) ≤ l, the digraph D
results strongly connected, and thus Hamiltonian by Theorem 6.3.1, so it will
always have a one vertex |V (D)|-kernel, but a better result can be proved
with this hypothesis.

Lemma 6.3.4. Let D be a locally out-semicomplete digraph such that, for a
fixed integer l ≥ 1, whenever (u, v) ∈ A(D) then d(v, u) ≤ l. Then {v} is a
(k, l)-semikernel for every integer k ≥ 2 and every v ∈ V (D).

Proof. Let (v = v0, v1, . . . , vm) be a vvm-directed path of length m. We will
prove by induction on m that d(vm, v) ≤ l. If m = 1, then by hypothesis
d(vm, v) ≤ l. So let us consider the result valid for m − 1 and let (v =
v0, v1, . . . , vm) be a vvm-directed path of length m. By induction hypothesis
there exists a vm−1v-directed path of length less than or equal to l, besides
(vm−1, vm) ∈ A(D) and since d(v, vm) ≥ 2, (v, vm) /∈ A(D), it follows from
Lemma 6.3.3 that d(vm, v) ≤ l. �

Theorem 6.3.5. Let D be a locally out-semicomplete digraph such that, for
a fixed integer l ≥ 1, whenever (u, v) ∈ A(D), then d(v, u) ≤ l. Then D has
a (k, l)-kernel for every integer k ≥ 2.
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Proof. It follows immediately from Lemmas 3.1.4 and 6.3.4. �

In the following corollary let us point out a special case.

Corollary 6.3.6. Let D be a locally out-semicomplete digraph such that, for
a fixed integer l ≥ 1, whenever (u, v) ∈ A(D), then d(v, u) ≤ l. Then D has
a k-kernel for every integer k ≥ l + 1.

The following proposition can be derived from Lemma 6.1.1 and Theorem
6.3.5, but it is also a trivial consequence of Theorem 6.3.1.

Proposition 6.3.7. Let D be a locally out-semicompete strong digraph with
circumference l + 1, then D has a (k, l)-kernel for every integer k ≥ 2.

Proof. Since every locally out-semicomplete strong digraph is Hamiltonian,
then l + 1 = |V (D)|. Trivially, for every vertex v ∈ V (D), {v} is a k-
independent, l-absorbent set. �

Now we will obtain analogous results for locally in-semicomplete digraphs
by means of dualization.

Lemma 6.3.8. Let D be a locally in-semicomplete digraph such that, for a
fixed integer l ≥ 1, whenever (u, v) ∈ A(D), then d(v, u) ≤ l. Then {v} is a
(k, l)-semikernel for every integer k ≥ 2 and every v ∈ V (D).

Proof. By Remark 6.3.2,
←−
D is a locally out-semicomplete digraph, and is

straightforward to verify that the hypothesis of Lemma 6.3.4 hold and hence

for every vertex u ∈ V (
←−
D) = V (D), {u} is a (k, l)-semikernel for

←−
D for every

k ≥ 2. Now, let v ∈ V (D) be an arbitrary vertex and C be a vw-directed

path in D, then C −1 is a wv-directed path in
←−
D and since {w} is a (k, l)-

semikernel of
←−
D for every k ≥ 2, then there exists a vw-directed path of

length less than or equal to l in
←−
D , namely D . Thus D−1 is a wv-directed

path of length less than or equal to l in D. Thence, {v} is a (k, l)-semikernel
of D for every k ≥ 2. �

Theorem 6.3.9. Let D be a locally out-semicomplete digraph such that, for
a fixed integer l ≥ 1, whenever (u, v) ∈ A(D), then d(v, u) ≤ l. Then D has
a (k, l)-kernel for every integer k ≥ 2.

Proof. It follows immediately from Lemmas 3.1.4 and 6.3.8. �
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Corollaries analogous to those of the locally out-semicomplete case can
be also obtained.

Corollary 6.3.10. Let D be a locally out-semicomplete digraph such that,
for a fixed integer l ≥ 1, whenever (u, v) ∈ A(D), then d(v, u) ≤ l. Then D
has a k-kernel for every integer k ≥ l + 1.

Proposition 6.3.11. Let D be a locally out-semicompete strong digraph with
circumference l + 1, then D has a (k, l)-kernel for every integer k ≥ 2.

It is our desire to find families of digraphs such that circumference k
implies the existence of a k-kernel, Propositions 6.3.7 and 6.3.11 tell us that
locally out/in-semicomplete strong digraphs have this property. But these
results follow easily from Theorem 6.3.1, so we will prove that the result
can be improved at least in the locally out-semicomplete case for non-strong
digraphs, however, the dualization method in this case is not enough to prove
the corresponding locally in-semicomplete case, but a dual result about (k, l)-
solutions can be obtained.

The next theorems are due to Bang Jensen and Gutin [5].

Theorem 6.3.12. Let D be a locally out-semicomplete digraph and S, T
distinct strong components of D. If a vertex b ∈ T absorbs some vertex in S,
then S 7→ b.

Theorem 6.3.13. Let D be a locally in-semicomplete digraph and S, T dis-
tinct strong components of D. If a vertex a ∈ S dominates some vertex in
T , then a 7→ T .

And can be easily generalized as follows.

Lemma 6.3.14. Let D be a locally out-semicomplete digraph and S, T dis-
tinct strong components of D. If some vertex of S is l-absorbed by a vertex

b ∈ T , then S
l7→ b.

Proof. By induction on l. Case l = 1 is Theorem 6.3.12, so let us consider
S and T distinct strong components of D such that a vertex b ∈ T l-absorbs
some vertex in a ∈ S, then there must exist an ab-directed path C = (a =
v0, v1, . . . , vn = b) of length n ≤ l. If n < l by induction hypothesis we are
done, so let us consider that n = l. Let vj be the first vertex of C not in
A, then for every i < j, vi ∈ S and vj absorbs vj−1, and by Theorem 6.3.12,
A 7→ vj; thus, for every v ∈ S, (v, vj, . . . , vn = b) is a vb-directed path of

length less than or equal to l, therefore S
l7→ b. �
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Lemma 6.3.15. Let D be a locally in-semicomplete digraph and S, T distinct
strong components of D. If some vertex in T is l-dominated by a vertex a ∈ S,

then a
l7→ T .

Proof. The proof is analogous to the one of the previous Lemma. �

Lemma 6.3.16. Let D be a locally out-semicomplete digraph, (y0, y1, . . . , ys)
a y0ys-directed path in D and x ∈ V (D) a vertex such that (y0, x) ∈ V (D) but
(x, yj) /∈ A(D) for every 1 ≤ j ≤ s, then (yj, x) ∈ A(D) for every 0 ≤ j ≤ s.

Proof. By induction on j. For j = 0, (y0, x) ∈ A(D) by hypothesis. If
(yj, x) ∈ A(D), since (yj, yj+1) ∈ A(D) also, by the locally out-semicomplete
hypothesis (x, yj+1) ∈ A(D) or (yj+1, x) ∈ A(D), but by hypothesis (x, yj+1) /∈
A(D), so (yj+1, x) ∈ A(D). �

Theorem 6.3.17. Let D be a locally out-semicomplete digraph with circum-
ference l + 1, then D has a (k, l)-kernel for every integer k ≥ 2.

Proof. By induction on |V (D)|. If |V (D)| = 1 the result is obvious, so let
us consider the result valid for every digraph with |V (D)| < n and let D be a
digraph with |V (D)| = n. By Proposition 6.3.7 we may choose a (k, l)-kernel
for every terminal strong component of D; let N1 be the union of all such
(k, l)-kernels. If M is the set of all vertices l-absorbed by N1, and for some
strong component S of D, a vertex u ∈ S is also in M , then in virtue of
Lemma 6.3.14 S ⊆ M , so every strong component of D is either contained
in M or in V (D) \M . By induction hypothesis there exists a (k, l)-kernel
for D \M , namely N2. If N2 is k-independent in D then clearly N1 ∪N2 is
a k-independent set in D.

Let us assume that N2 is not k-independent in D to reach a contradiction.
We know that N2 is k-independent in D \M , so if u, v ∈ N2 are such that
dD(u, v) ≤ k − 1, then every uv-directed path in D must have at least one
vertex in M . Let C = (u = x0, x1, . . . , xr = v) be a uv-directed path in D
and let w be the last vertex of C that is in M ; it is clear that u 6= w 6= v, so
w = xi for some 1 ≤ i ≤ n − 1 and xi+1 ∈ V (D) \M . But w ∈ M implies
that w is l-absorbed by N1, thus there exists a wN1-directed path D = (w =
y0, y1, . . . , ys) of length s ≤ l. Let us observe that (w, y1), (w, xi+1) ∈ A(D),
and that (xi+1, yj) /∈ A(D) for every 1 ≤ j ≤ s, for this would imply that
(xi+1, yj, yj+1, . . . , ys) is a directed path of length less than or equal to l and
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hence xi+1 would be in M which can not occur; therefore by Lemma 6.3.16 we
have that (ys, xi+1) ∈ A(D), which results in a contradiction because ys ∈ N1

is a vertex in a terminal component of D. Thence, N2 is k-independent in
D.

As we observed earlier, N1∪N2 = N is a k-independent set of D, also N1

is l-absorbent in M and N2 is l-absorbent in D \M , so N is l-absorbent in
D, and then is the desired (k, l)-kernel. �

Corollary 6.3.18. Let D be a locally out-semicompete digraph with circum-
ference l, then D has a k-kernel for every integer k ≥ l.

Although we can not prove analogous results to those of Theorem 6.3.17
and Corollary 6.3.18 for locally in-semicomplete digraphs, we can dualize
these results by means of Remark 6.3.2 to (k, l)-solutions and k-solutions.

Theorem 6.3.19. Let D be a locally in-semicomplete digraph with circum-
ference l + 1, then D has a (k, l)-solution for every integer k ≥ 2.

Proof. Let D be a locally in-semicomplete digraph with circumference l+1.

In virtue of Remark 6.3.2
←−
D is a locally out-semicomplete digraphs with

circumference l+1, and by Theorem 6.3.18,
←−
D has a (k, l)-kernel, namely N .

Clearly N is k-independent and l-absorbent in D and thus a (k, l)-solution.
�

Corollary 6.3.20. Let D be a locally in-semicompete digraph with circum-
ference l, then D has a k-solution for every integer k ≥ l.

Let us recall that the problem of determining if a digraph has a k-kernel or
not is NP -complete, also the problem of finding a longest cycle in a digraph is
NP -complete, so Theorems 6.3.17 and 6.3.19 become more valuable if stated
in the next way.

Corollary 6.3.21. Let D be a locally out-semicompete digraph with set of
strong components C and l+ 1 = maxH∈C

∣∣V (H)
∣∣ , then D has a (k, l)-kernel

for every integer k ≥ 2.

Proof. In virtue of Theorem 6.3.1 and the fact that every directed cycle is
contained in a single strong component of D, the circumference of D is equal
to the greatest of the orders of the strong components of D, so this is merely
a different statement for Theorem 6.3.17. �
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Corollary 6.3.22. Let D be a locally in-semicompete digraph with set of
strong components C and l + 1 = maxH∈C

∣∣V (H)
∣∣ , then D has a (k, l)-

solution for every integer k ≥ 2.

In view of the theorems that we have proved, these results are not as best
as possible, because if D is a locally out-semicomplete digraph we may have
as an hypothesis that whenever (u, v) ∈ A(H) then dH(v, u) ≤ l for every
strong component H of D and we would get a strengthening of Theorems
6.3.17 and 6.3.19, but in the form of the two previous corollaries we may
decide the existence of a (k, l)-kernel in polynomial time, this is because the
only thing we have to do is to find the condensation and calculate the order
of the strong components of D, which can be done in polynomial time.

To finish this section, let us observe that some of this results can be
extended to k-kings and k-serfs. Considering Lemma 6.3.4, we may conclude
that, for k ≥ l, any (k, l)-kernel in a locally out-semicomplete digraph such
that, whenever (u, v) ∈ A(D) we have that d(u, v) ≤ l, consists in a single
vertex. Assume the contrary, and for a fixed integer k ≥ 2, let N be a (k, l)-
kernel with more than one vertex in a locally out-semicomplete digraph that
fulfills the aforementioned hypothesis, and let u, v ∈ N . It also follows from
Lemma 6.3.4 that {u} is a (d(u, v)+1, l)-semikernel, and then d(v, u) ≤ l ≤ k,
contradicting the k-independence of k. Thus, the next result is obtained.

Theorem 6.3.23. Let D be a locally in/out-semicomplete digraph such that,
for a fixed integer l ≥ 1, whenever (u, v) ∈ A(D), then d(v, u) ≤ l, then D
has a (l + 1)-serf and a (l + 1)-king.

6.4 k-quasi-transitive digraphs

Let us recall from Chapter 5 that a digraph D is k-quasi-transitive if the
existence of a directed path (v0, v1, . . . , vk) of length k in D implies that
(v0, vk) ∈ A(D) or (vk, v0) ∈ A(D). In this section we will prove a very
simple proposition concerning k-quasi-transitive digraphs with an additional
circumference restriction.

Proposition 6.4.1. Let D be a k-quasi-transitive digraph. If D does not
contain directed cycles of length k + 1, then D is k-transitive.

Proof. Let (v0, v1, . . . , vk) be a directed path in D. If (vk, v0) ∈ A(D), then
(v0, v1, . . . , vk, v0) is a directed path of lenght k+1 in D, which cannot occur.
Thus, (v0, vk) ∈ A(D) and D is k-transitive. �
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Corollary 6.4.2. Let D be a k-quasi-transitive digraph. If D does not con-
tain directed cycles of length k + 1, then D has an n-kernel for every n ≥ k.

As a particular case of this result, we have that if D is a k-quasi-transitive
digraph with circumference l ≤ k, then D has an n-kernel for every n ≥ k.



Chapter 7

Weighted digraphs

As it was mentioned in Chapter 1, we think that (k, l)-kernels have potential
to be used in real life models, e.g., if a digraph represents the map of a city,
a (k, l)-kernel is an optimum distribution of a service or good someone may
offer to the population, according to the parameters k and l this distribution
could be done choosing an appropiate distance between the service centers
(k-independence) to avoid saturation in one zone and also an appropiate
distance so all the population in the city have an easy access to the service
(l-absorbence). In addition to this point of view, we want to add further
information, not only the distance matters, but transportation use to have
aditional costs, it may be time, or some toll, this information may be added
by means of a weight function for the arcs of the digraph, so every arc would
represent a distance unit and its weight the cost to cross it. So, our next
aim is to generalize the concept of k-kernel adding weights to the arcs of
the digraph and study the possible generalization for well known results on
k-kernels.

In Chapter 2, we explored variants of Theorem 1.8.2, relaxing the strong
connectedness to unilaterality but restricting the length of certain cycles
besides the directed ones to have a specific congruence modulo k. The idea
came from the observation that the congruence to 0 (mod k) together with
the strong connectedness is a very strong combination, yielding a cyclically
k-partite structure. The work developed in the current chapter arises from
the attempt to obtain further resemblings of Theorem 1.8.2. Our first try,
reflected in Section 7.1, did not worked so well in the direction of Theorem
1.8.2, but we won some insight of the weighted case. In the development of
Section 7.2 we emphasized the ≡ 0 (mod k) condition and realized that given
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a normal subgroup H of a group G it makes sense to think in the congruence
modulo H, so an analog of Theorem 1.8.2 can be positively obtained.

7.1 Weighted digraphs

If D is a digraph and w : A(D)→ Z is a weight function for the arcs of D, we
can restate the problem of finding a k-kernel in the next way. If C is a walk in
D, the weight of C is defined as w(C ) :=

∑
w(f)f∈A(C ). A subset S ⊆ V (D)

is (k,w)-independent if, for every u, v ∈ S it does not exist an uv-directed
path of weight less than k. A subset S ⊆ V (D) will be (l,w)-absorbent if,
for every u ∈ V (D) − S exists an uS-directed path of weight less or equal
than l. A subset N ⊆ V (D) is a (k, l,w)-kernel if it is (k,w)-independent
and (l,w)-absorbent.

Let us observe that if we want to find a (k,w)-kernel, an arc with weight
greater or equal than k will not contribute in any walk between vertices for
independence nor absorbence; to avoid the case when there is an arc between
two vertices and they remain (k,w)-independent or when a vertex can not
(k − 1,w)-absorb some of its in-neighbours, we will consider only weights
between 1 and k − 1 for the arcs. When w is the constant function equal
to 1, a (k, l,w)-kernel is a (k, l)-kernel in Kwasnik’s sense, and as usual,
a (k, k − 1,w)-kernel will be simply called (k,w)-kernel. Despite the fact
that this definition generalizes efectively the notion of (k, l)-kernel, and thus
the notion of k-kernel, many results does not remain true when w is not
identically the consant 1.

For convenience we will say that the weighted distance from vertex u to
vertex v respect to the weight function w is the minimum weight of all the
uv-directed paths, no matter the length. We will denote this as dw(u, v), as
d(u, v) will denote the usual distance.

Proposition 7.1.1. Theorem 1.8.2 is false for (k,w)-kernels.

Proof. In the digraph at the right of Figure 7.1 there is only one cycle of
length 6 ≡ 0 (mod 3), nonetheless has no 3-kernel. For every two vertices
in this digraph one of the two weighted distances between them is two, then
every maximal 3-independent set consist of exactly one vertex. But for every
two vertices one of the two weighted distances between them is four, so
for each maximal 3-independent set there exists a vertex that can not be
2-absorbed. �
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1 1
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2 2
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Figure 7.1: Figure of the left is C3 which have a 3-kernel (filled vertex) in
the usual sense. On the right, a counterexample to the weighted version of
Theorem 1.8.2.

The following theorem, a generalization of a result due to Berge [11],
about symmetrical digraphs is another example of a result that does not
remain valid if a weight funcion is considered.

Theorem 7.1.2. If D is a symmetrical digraph and k ≥ 2 then every maxi-
mal k-independent susbset of vertices is a k-kernel.

Proposition 7.1.3. Theorem 7.1.2 is false for (k,w)-kernels.

Proof. The digraph on Figure 7.2 is a counterexample.

a

b

c d

e1

1
2

2

1

2

1
2

2

1

Figure 7.2: Counterexample to the weighted version of Theorem 7.1.2.

The set {a} is a maximal 3-independent subset of vertices since vertices b
and c are at weighted distance one and two, respectively, from a and vertices
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e and d are at weighted distance one and two, respectively, to a. However,
vertex a is at weighted distance three from vertex c, thus c can not be (2,w)-
absorbed by a.

�

Note that the digraph in Figure 7.2 does not have a 3-kernel, so we
go beyond the statement of Theorem 7.1.2, it is not only that maximal k-
independent sets in symmetrical digraphs are not k-kernels, there are sym-
metrical digraphs without a k-kernel. However, there is a simple case when a
symmetrical digraph has a kernel for every k ∈ N. Also, and just as a curious
observation, the weight assignment for the arcs of the digraph in Figure 7.2
conform a nowhere-zero 3-flow for the given digraph.

Theorem 7.1.4. If D is a symmetrical digraph and w : A(D) → Z is
a constant weight function for the arcs of D, then every maximal (k,w)-
independent subset of V (D) is a (k,w)-kernel for every k ≥ 2.

Proof. First, let us observe that for k = 2, since every arc have weight
≤ k − 1, the result is the classical result for kernels in symmetrical non
weighted digraphs. The proof is analogous to the proof of the original result.
Let N be a maximal (k,w)-independent subset of V (D). If N is (k − 1,w)-
absorbent, then N is the desired (k,w)-kernel. So, let us assume that there
exists a vertex v ∈ V (D) such that it is not (k − 1,w)-absorbed by N .
Then dw(v,N) ≥ k, but D is symmetrical and w is a constant function, so
dw(N, v) ≥ k and N ∪ {v} is (k,w)-independent, contradicting the choice of
N as a maximal (k,w)-independent set. �

Figure 7.1 shows that result of Theorem 7.1.4 is not as obvious as it may
seem, there are other theorems that become invalid even in the constant
weights case. Also, the hypothesis of Theorem 7.1.4 are not tight, there are
symmetrical digraphs with non constant weight functions and k-kernel as
the example in Figure 7.3 shows; sets {b} and {c} are both 3-kernels for the
digraph.

Theorem 7.1.5. If D is an acyclic digraph and w : A(D) → Z is a weight
function for the arcs of D, then D has a unique (k,w)-kernel for each k ≥ 2.

Proof. Let us proceed by induction on |V (D)| with fixed k ≥ 2. If |V (D)| =
1, the only vertex of D is the desired (k,w)-kernel. Assuming the result valid
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a
b

c

1 1

22

Figure 7.3: Symmetrical digraph with 3-kernel and non constant weight func-
tion.

for every acyclic digraph D such that |V (D)| < n, let D be an acyclic digraph
with |V (D)| = n. Since D is an acyclic digraph, there exists v ∈ V (D) such
that d−(v) = 0. Now, D − v is an acyclic digraph on n − 1 vertices and by
induction hypothesis has a unique (k,w)-kernel N ′. There are two cases:

Case 1. If v is (k − 1,w)-absorbed by N ′ in D, then N ′ is the (k − 1,w)-
kernel we have been looking for.

Case 2. If v is not (k − 1,w)-absorbed by N ′ in D, then there are not
vN ′-directed paths of weight less or equal than k − 1 and, as v has indegree
0 there are not N ′v-directed paths in D, in particular there are not N ′v-
directed paths of weight less or equal than k − 1 and hence N = N ′ ∪ {v} is
(k,w)-independent and (k − 1,w)-absorbent in D. We have found in N the
desired (k,w)-kernel.

Finally, observe that in either case N ′ is unique by inductive hypothesis.
If M is a (k,w)-kernel for D, M \ {v} is (k,w)-independent in D− v and, as
d−D(v) = 0, v can not (k − 1,w) absorb any other vertex, therefore M \ {v}
is (k− 1,w)-absorbent in D− v and a (k,w)-kernel of D− v. It follows than
M \ {v} = N \ {v} and hence M = N , the unique (k,w)-kernel of D. �

If we extend the notion of diammeter to match with our new weighted
distance, we can derive some results, altough rather simple, we have seen
that other results become invalid in the weighted versions.

Lemma 7.1.6. If D is a digraph, w : A(D)→ Z a weight function for A(D)
and under this function D has weighted diammeter less or equal than k − 1,
then every vertex of D is a (h,w)-kernel for each k ≤ h.

Proof. Let v ∈ V (D), h ≥ k and w : A(D) → Z a weight function for the
arcs of D. Clearly, as {v} has only one vertex, is a (h,w)-independent set.
Since D has diammeter less or equal than k − 1 then, for every u ∈ V (D)
if C is a uv-directed path,

∑
w(f)f∈A(C ) ≤ k − 1 ≤ h − 1, thus {v} is a

(h− 1,w)-absorbent set and consequently a (h,w)-kernel. �
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We will introduce a definition that has proved to be very useful in kernel
theory, the weighted case is no exception and we will use it in many proofs
in the rest of this work.

Definition 7.1.7. If D is a digraph, the condensation digraph of D or sim-
ply the condensation of D is the digraph D? which vertices are the strong
components of D, {D1, D2, . . . , Dp} and (Di, Dj) ∈ A(D?) if and only if there
exist a DiDj-arc in D.

It is direct to observe that D? has no directed cycles, and so, for every
digraph D, the condensation D? has at least one vertex of indegree 0 and one
vertex of exdegree 0, these will be called initial and terminal components of
D (or vertices of D?) respectively.

Theorem 7.1.8. If D is a digraph, w : A(D) → Z is a weight function for
the arcs of D and every strong component of D has diameter less or equal
than k − 1 under the weight function, then D has a (k,w)-kernel.

Proof. By induction on the number of strong components of D. If D has
a unique strong component, then D is strongly conected and has diammeter
less or equal than k − 1. In virtue of Lemma 7.1.6 any vertex of D is a
(k,w)-kernel for D.

Let D be a digraph with ϕ strong components of diammeter less or equal
than k − 1 and suppose for inductive hypothesis the theorem valid for every
digraph with less than ϕ strong components. Since the condensation digraph
D? of D has not directed cycles we can consider an initial strong component
of D, say C0. The digraph D − C0 has ϕ − 1 strong components and all of
its components have diammeter less or equal than k − 1. As a consequence
of the inductive hypothesis D−C0 has (k,w)-kernel N ′. It is easy to observe
that N ′ is (k,w)-independent not only in D−C0 but in all D because C0 is an
initial component and there are no (D−C0)C0-paths in D and therefore there
are no new N ′N ′-paths in D, so if N ′ is (k − 1,w)-absorbent in D, then N ′

is a (k,w)-kernel of D, if not, there exists a vertex v ∈ V (C0) not (k− 1,w)-
absorbed by N ′ and hence, there are not vN ′-directed paths with weight less
or equal than k − 1 in D. Being C0 an initial component there exist neither
N ′v-directed paths in D, so N = N ′ ∪ {v} is a (k,w)-independent set in D.
Is easy to observe that N is (k − 1,w)-absorbent set for D, this is because
N ′ (k− 1,w)-absorbs all vertices in D−C0 and, as a result of Lemma 7.1.6,
{v} (k − 1,w)-absorbs all vertices in C0. Consequently, N is a (k,w)-kernel
for D and the desired result follows from the induction principle. �
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The following Lemma and its consequences take advantage of the existing
results for (k, l)-kernels, in some cases those results can be adapted with
hypothesis which are not very restrictive to fit in the weighted case.

Lemma 7.1.9. Let D is a digraph and w : A(D)→ Z a weight function for
the arcs of D. If N is a (k, l)-kernel for D, and for every directed path C ,
of length less or equal than l, the condition w(C ) ≤ k − 1 holds, then N is a
(k,w)-kernel for D.

Proof. Since N is k-independent, the weighted distance between vertices
of N is greater or equal than k, and thus N is (k,w)-independent. Also,
N is l-absorbent, so for a vertex v ∈ V (D) \ N there exists a vN -directed
path C of length ≤ l, but for hypothesis, w(C ) ≤ k − 1, therefore v is
(k − 1,w)-absorbed by N . �

We have two direct applications of Lemma 7.1.9 for cases l = 1 and l = 2.

Theorem 7.1.10. If D is a transitive digraph and w : A(D)→ Z is a weight
function for the arcs of D, then D has a (k,w)-kernel.

Proof. We just have to observe the structure of a k-kernel in a transitive di-
graph. Since every transitive digraph is the composition of an acyclic transi-
tive digraphD? (the condensation ofD) and complete digraphsD1, D2, . . . , Dp,
a k-kernel in a transitive digraph can be constructed choosing one vertex in
every terminal strong component of D. In virtue of Proposition 3.3.4, such
k-kernel will be not only k-independent but independent by directed paths,
and not only (k − 1)-absorbent, but 1-absorbent. So if N is a k-kernel for
a transitive digraph D, then N is a (k, 1)-kernel in D and the result follows
from Lemma 7.1.9. �

Let us recall that as a direct consequence of Theorem 1.8.1, we can obtain
that every tournament has a 2-absorbent vertex. Also, as we already men-
tioned in Chapter 4, an immediate consequence of this observation is that
every tournament has a (k, 2)-kernel for every k ≥ 2, the set containing the
2-absorbent vertex will work.

Theorem 7.1.11. If T is a tournament and w : A(T ) → Z is a weight
function for the arcs of T such that every directed path of length 2 has weight
less or equal than k−1, then T has a vertex v such that {v} is a (k,w)-kernel.
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Proof. It follows directly from the previous observation and Lemma 7.1.9.
�

Corollary 7.1.12. If T is a tournament and w : A(T ) → Z is a weight
function for the arcs of T such that w(a) ≤ k−1

2
for all a ∈ A(T ), then T has

a (k,w)-kernel.

Proof. Let (x, y, z) be a directed path, then w(x, y, z) = w(x, y) + w(y, z) ≤
k−1
2

+ k−1
2

= k − 1. The result now follows from theorem 7.1.11. �

To prove our next result, we will need an structural result for quasi-
transitive digraphs. The following proposition, due to Bang-Jensen and
Huang, can be consulted in [8].

Proposition 7.1.13. Let D be a quasi-transitive digraph. Suppose that P =
(x1, x2, . . . , xk) is a minimal x1xk-path. Then the subdigraph induced by V (P )
is a semicomplete digraph and (xj, xi) ∈ A(D) for every 2 ≤ i + 1 < j ≤ k,
unless k = 4, in which case the arc between x1 and xk may be absent.

In the proof of the following theorem the technique is, again, to choose a
k-kernel for each of the terminal strong components of the given digraph.

Theorem 7.1.14. If k ≥ 3, D is a quasi-transitive digraph and w : A(D)→
Z is a weight function for the arcs of D such that every directed cycle has
weight less or equal than

⌊
k−1
2

⌋
+ 1, then D has a k-kernel.

Proof. We know that every quasi-transitive digraph has a k-kernel for every
k ≥ 3. Let N be a k-kernel for D, we will prove that N is the (k,w)-kernel
we are looking for. It is clear that N is (k,w)-independent in D because is k-
independent and the weighted distance is greater or equal than the distance.
For the (k − 1,w)-absorbence let v ∈ V (D) \ N be a vertex not in N . If
v is not in a terminal strong component of D, then, by Theorem 3.3.1 and
the observation to Theorem 3.3.6, v is absorbed at distance 1 by N , so it is
(k − 1,w)-absorbed by N . If v is in a terminal strong component S of D,
then there is at least one vertex u ∈ V (S) such that u ∈ N and u (k − 1)-
absorbs v, so we have three posibilities, that d(u, v) = 1, d(u, v) /∈ {1, 3} and
d(u, v) = 3.

Case 1 If the non weighted distance from u to v is 1, then, as S is strong,
there must be a vu-directed path C and together with the arc (u, v) it forms
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a directed cycle, wich by hypothesis must have total weight ≤
⌊
k−1
2

⌋
+ 1, so

w(C ) ≤ k−1
2

, and thence v is (k − 1,w)-absorbed by N .

Case 2 If the non weighted distance from u to v is not 1 nor 3, then in
virtue of Proposition 7.1.13, v is 1-absorbed by N , and then, since the arc
weights are bounded by k − 1, v is (k − 1,w)-absorbed by N .

Case 3 If the non weighted distance from u to v is 3, then there exists a
uv-directed path C = (u, x, y, v) and we have several subcases. Observe that
d(v, u) ∈ {1, 3}, otherwise, as D is quasi-transitive, Proposition 7.1.13 would
imply that d(u, v) = 1 which contradicts the assumption for this case.

Case 3.1 If (v, u) ∈ A(D), then v is (k − 1,w)-absorbed by N because
w(v, u) ≤ k − 1.

Case 3.2 If d(v, u) = 3 then one of the subcases depicted in Figure 7.5
occurs.

Case 3.2.a Because of the weight restriction for the directed cycles, the
two cycles C1 = (u, x, y, u) and C2 = (x, y, v, x) fulfill w(C1),w(C2) ≤

⌊
k−1
2

⌋
+

1, but w(C1) = p1 +p2 + q2 and w(C2) = p2 +p3 + q1, adding this inequalities
we have.

u
x

y
v

p1 p2

p3

q1

q2

Figure 7.4: Case 3.2.a.
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p1 + 2p2 + p3 + q1 + q2 ≤ 2

⌊
k − 1

2

⌋
+ 2

q1 + p2 + q2 ≤ 2

⌊
k − 1

2

⌋
+ 2− (p1 + p2 + p3)

≤ 2

⌊
k − 1

2

⌋
+ 2− 3

= 2

⌊
k − 1

2

⌋
− 1

< k − 1

So, w(v, x, y, u) = q1 + p2 + q2 < k − 1 and thus, v is (k − 1,w)-absorbed
by N .

Case 3.2.b Since d(u, v) = 3, the quasi-transitivity and the existence of
the arcs (u, x), (x, y), (y, v) implies that (y, u), (v, x) ∈ A(D), which reduces
this case to case 3.2.a.

Case 3.2.c This case can not occur, since (u, x), (x, y) ∈ A(D), by
the quasi-transitive hypothesis, then (u, y) or (y, u) must be in A(D), but
d(u, v) = d(v, u) = 3, and (u, y) together with (y, v) would imply that
d(u, v) = 2, also (y, u) together with (v, y) would imlpy that d(v, u) = 2,
as a contradiction arise in both cases, this case is impossible.

Case 3.2.d The same argument used in Case 3.2.c shows that this case
can not happen.

Case 3.2.e Since (x, y), (y, v) ∈ A(D), by the quasi-transitive hypothesis,
then (x, v) or (v, x) must be in A(D), but analogous to Case 3.2.c, (u, x)
together with (x, v) would imply that d(u, v) = 2, also (v, x) together with
(x, u) would imlpy that d(v, u) = 2, as a contradiction arise in both cases,
this case is impossible.

Case 3.2.f This configuration can be reduced to the one in Case 3.2.a,
observe that (u, x), (x, y) ∈ A(D) and, as d(u, v) = 3, (y, u) ∈ A(D), there-
fore we have the same configuration as in the mentioned case.

Case 3.2.g This case can also be reduced to Case 3.2.a, we just need
the existence of the arc (v, x), which is justified by the existence of the arcs
(x, y), (y, v), the quasi-transitive hypothesis and the fact that d(u, v) = 3,
and thence (x, v) /∈ A(D).

Since the cases are exhaustive, we can conclude that every vertex in V (D)



7.1 Weighted digraphs 115

u
x

y
v(a)

u

x y

v

x′y′

(b)

u
x y

v(c)

u

x′

y
v

x

(d)

u
x

y

v

y′

(e)

u
x y

v

z

(f)

u
x

y
v

z

(g)

Figure 7.5: Subcases for Case 3.2 in the proof of Theorem 7.1.14.

is (k−1,w)-absorbed by N . Thus, as N is (k,w)-independent, it is the (k,w)-
kernel we have been looking for. �

The hypothesis of Theorem 7.1.14 are sufficient but not necessary. Figure
7.6 shows a digraph with directed cycles of weight greater than

⌊
5−1
3

⌋
+1 = 2

and a 5-kernel. Cycle (a, d, b, c, a) has weight 8 and cycle (a, b, c, a) has weight
6; however, sets {b}, {c} and {d} are 5-kernels for the digraph. Also, we do
not know if the bound for the weight of the cycles is tight, we were unable to
find an example in which the equality is necessary, fact that make us think
that the bound could be improved.
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a
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Figure 7.6: A digraph with directed cycles of weight greater than
⌊

5−1
3

⌋
+1 =

2 and a 5-kernel.

Finally, let us observe that Figure 7.6 is also a counterexample for the
assertion that every quasi-transitive digraph has a (k,w)-kernel for every
integer k ≥ 3 because it does not have a (4,w)-kernel.

7.2 Digraphs with group weights

As many results that are valid in the non weighted case does not remain
valid in the weighted case, we have that the problem of finding a (k,w)-
kernel in a given digraph is vastly more complicated that the non weighted
one, so inspired in Theorem 1.8.2 and in view of the great difficulty that
the integer (or even natural)-valued functions represent, we considered the
weight function to have an arbitrary group for codomain since a group is the
simplest algebraic structure where a definition of congruence exists and we
think that the key to theorem 1.8.2 is the congruence modulo 0 condition.
Let us recall that if G is a group and H is a subgroup of G, then if g, h ∈ G,
g ≡ h (mod H) if and only if gh−1 ∈ H. Nonetheless, as an arbitrary group
has no order, we can not state a direct analogy between a walk’s weight
and its length, thus, former results cannot be formally generalized, but an
interesting result can be stated ressembling Theorem 1.8.2.

Let D be a digraph, G a group and w : A(D) → G a weight function
for the arcs of D. If H is a subgroup of G we will say that a walk P =
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(v0, v1, . . . vn) has weight in H, if
∑n−1

i=0 w(vivi+1) = w(P) ∈ H. Let H be a
subgroup of G, a subset S ⊆ V (D), is H -independent if for all u, v ∈ S
does not exists an uv-path of weight in H nor a vu-path of weight in H. We
will say that S is H -absorbent if for each u ∈ V (D)− S exists a uS-path
of weight in H. A H-independent, H-absorbent set will be a H -kernel.

Example 7.2.1. If D is a digraph, and we let G = Z, H = nZ and w ≡ 1,
then a (nZ)-kernel will be a subset N ⊆ V (D) such that between every pair
of vertices of N there are no walks of length a multiple of n and from every
vertex in V (D) \N there is a walk in D of length a multiple of n.

Lemma 7.2.2. If D is a digraph, G a group, H a normal subgroup of G and
w : A(D) → G a weight function for A(D) such that every directed cycle C
fulfills w(C ) ∈ H, then every uv-directed walk with weight in H contains a
uv-directed path with weight in H.

Proof. Before beginning the proof we want to point out that, being H a
normal subgroup of G it does not matter in which vertex we begin summing
the weight of a cycle (or, in other words, where we begin crossing the cy-
cle), for if the arcs of the cycle are a1, a2, . . . , ak with weights b1, b2, . . . bk
respectively then, for the normality of H, if b1 + b2 + · · · + gk ∈ H also
−g1 + g1 + g2 + · · · + gk + g1 ∈ H, hence for every cyclic permutation
of the indexes the sum of the weights of the cycle is in H. We proceed
with the proof by induction on the length of the uv-directed walk. If the
length is 1, then the walk is a path and the base case of the induction fol-
lows. Let’s assume the result valid for every uv-directed walk of length
strictly less than n and let R = (u = x0, x1, . . . , xn−1, xn = v) an uv-
directed walk of length n. If xi 6= xj for each i 6= j then R is a path.
If not, then exists a cycle C = (xi, xi+1, . . . , xk−1, xk = xi) contained as
a subsequence of R. Let R ′ = (x0, . . . , xi) and R ′′(xk+1, . . . , xn), then
R = R ′C R ′′ therefore w(R) = w(R ′) + w(C ) + w(R ′′). For the theo-
rem hypothesis w(C ) ∈ H and w(R) ∈ H, since H is normal in G, it follows
that −w(R ′) + w(R) + w(R ′) = w(C ) + w(R ′′) + w(R) ∈ H and after a
few simple calculations w(R ′′) + w(R ′) ∈ H; using the normality of H once
again we obtain −w(R ′′) + w(R ′′) + w(R ′) + w(R ′′) = w(R ′) + w(R ′′) ∈ H.
Therefore R ′R ′′ is a uv-directed walk with weight in H of length strictly less
than n, the desired result follows from the induction hypothesis. �

Our next theorem is inspired in Theorem 1.8.2.
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Theorem 7.2.3. If D is a digraph, G a group, H a normal subgroup of G
and w : A(D) → G is a weight function for the arcs of D such that every
directed cycle of D has weight in H, then D has H-kernel.

Proof. Let N0 be a maximal H-independent subset of V (D) such that if
Abs(N0) is the set of vertices H-absorbed by N0 then |Abs(N0) ∪N0| is
maximum. If V (D) − (N0 ∪ Abs(N0)) = ∅, then N0 is a H-kernel for D.
If V (D) − (N0 ∪ Abs(N0)) 6= ∅, then exists a vertex v0 that is not in N0

nor H-absorbed by it. Since N0 is maximal H-independent and v0 is not H-
absorbed by N0, it must exist in D a N0v0-directed path of weight in H. Let
A ⊆ N0 be the set of vertices in N0 that are the initial vertex of a directed
path with final vertex v0 and weight in H and let N1 = (N0 − A) ∪ {v0}.
Clearly N1 is H-independent because N0 was, and as we added v0 we removed
from N0 all the vertices that reached v0 with a directed path with weight
in H, besides it does not exist any v0N0-directed path with weight in H
in D. Also, AbsN0 ⊆ AbsN1; for the election of A N1 H-absorbs every
vertex in A and, if x is a vertex in en Abs(N0) absorbed by A, then an
xa-directed path of weight in H existed for some a ∈ A, but we have the
existence of an av0-directed path of weight in H so, there exists a xv0-directed
walk with weight in H and, for Lemma 7.2.2, there is a xv0-directed path
with weight H in D, which finally results in the H-absortion of x by N1.
Now, |Abs(N0) ∪N0| < |Abs(N1) ∪N1|, since N1 H-absorbs at least one
more vertex than N0, that is to say v0, and Abs(N0)⊆Abs(N1). Nonetheless
this results in a contradiction to the election of N0 as a set that maximizes
|Abs(N0) ∪N0|. So, N0 is the H-kernel we have been looking for. �



Chapter 8

Infinite digraphs

8.1 Introduction

Theorem 3.3.5 in Chapter 3 asserts that every transitive digraph has a (k, l)-
kernel for every pair of integers k, l such that k ≥ 2, l ≥ 1. Also, Theorem
2.3.2 in Chapter 2 states that acyclic digraphs have a unique k-kernel for
every integer k ≥ 2. It has been also mentioned that every semicomplete
digraph has a k-kernel for every integer k ≥ 3. In view of this results, it
comes as a surprise the existence of a semicomplete transitive acyclic infinite
digraph without k-kernel for every integer k ≥ 2. The digraph D] is the
digraph with V (D]) = N and such that (n,m) ∈ A(D]) if and only if n < m.
Clearly, D] is a tournament and thus, a maximal independent set of D]

consists in a single vertex. It is also clear that D] is transitive and acyclic.
But it is also clear that for every vertex n ∈ V (D]) and for every m > n,
m is not k-absorbed by n for every integer k ≥ 2. In particular, for every
n ∈ V (D]), n + 1 is not k-absorbed by n, and thus, {n} is not a k-kernel of
D for every n ∈ V (D]). The digraph D] was introduced and first studied by
Rojas-Monroy and Villarreal-Valdés in [84], where they also give sufficient
conditions for distinct families of infinite digraphs to have a kernel.

It is clear that the behavior of infinite digraphs respect to (k, l)-kernels
is different from the finite case. But, how different it is? In this chapter
we will explore similarities and differences between the finite and the infinite
cases of certain families of digraphs. Surprisingly (again) some results are
generalizable straightforward from the finite case, and in some other cases,
adding a few new hypothesis will get the work done. Some results are not
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generalizable, but in some cases a weak analog of some results were obtained.
In previous years, some work has been done in the direction of find-

ing sufficient condition for the existence of kernels in infinite digraphs, let
us mention the most remarkable results in this direction. The first results
about the existence of kernels in an infinite digraph can be found in [80],
where Neumann-Lara proved that every semikernel is contained in a maxi-
mal semikernel. Also he proved a very powerful result stating that if every
induced subdigraph of D has a nonempty semikernel, then D is a kernel-
perfect digraph (a digraph such that every induced subdigraph has a kernel).
A digraph such that for every vertex v ∈ V (D) we have that N+(v) is a
finite set is called outwardly finite. In [31], Duchet and Meyniel proved that
an outwardly finite digraph D is kernel-perfect if and only if every finite
induced subdigraph of D has a kernel. As a corollary of this result, they
proved that if D is an outwardly finite digraph such that every odd directed
cycle C has the following property: if all arcs of C are incident to a subset
T of vertices of C , then some chord of C has its head in T . Then D is
kernel-perfect. Let us recall that an arc of D is a chord of a directed cycle
C if it has its endpoints in C but is not an arc of C .

In [84] Rojas-Monroy and Villarreal Valdés proved that if every cycle
and every infinite outward path of D has a symmetrical arc, then D is a
kernel-perfect digraph. An immediate consequence of this result is that ev-
ery symmetrical digraph is kernel-perfect. A digraph is right (left) pretran-
sitive if (u, v), (v, w) ∈ A(D) implies that (u,w) ∈ A(D) or (w, v) ∈ A(D)
((v, u) ∈ A(D)). In the same paper is also proved that if D is an infinite
right/left pretransitive digraph, such that every infinite outward path has a
symmetrical arc, then D is a kernel-perfect digraph. As an easy consequence
it is proved that every infinite transitive digraph such that every infinite out-
ward path has a symmetrical arc is kernel-perfect. A very general theorem
generalizing the very first result of Kernel Theory proved by von Neumann
and Morgenstern states that every acyclic digraph without infinite outward
paths is a kernel-perfect digraph. Another generalization of a classical result,
this time due to Richardson, states that if D is an infinite digraph such that
D contains no infinite outward path and contains no odd cycle, then D is a
kernel-perfect digraph. Also, the aforementioned digraph D] is introduced
in this paper and its following properties proved: D] contains no terminal
strong component, no absorbing set distinct from V (D]), no vertex with null
out-degree and no kernel.

In [44] Galeana-Sánchez and Guevara work with semikernels modulo F ,
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where F ⊆ A(D). A set S ⊆ V (D) is a semikernel modulo F of D if S is
an independent set of vertices such that, for every z ∈ V (D) \ S for which
there exists an (S, z)-arc of D−F , there also exists a (z, S)-arc. We will also
need the notion of asymmetrically transitive. A digraph D is asymmetrically
transitive if whenever (u, v), (v, w) ∈ Asym(D), then (u,w) ∈ Asym(D). The
following result is proved: Let D be a digraph and D1 an asymmetrically sub-
digraph of D. If D has no infinite outward path contained in Asym(D1), D
is ΓD1 free and every induced subdigraph of D has a nonempty semikernel
modulo A(D1), then D is a kernel perfect digraph. In the previous state-
ment, ΓD1 is a set of 16 digraphs, that are forbidden to appear as induced
subdigraphs of D. As a consequence of this result, they proved that every
infinite quasi-transitive digraph such that every directed triangle contained
in D is symmetrical and D has no asymmetrical infinite outward path is a
kernel-perfect digraph. Another consequence is that every infinite bipartite
digraph has a kernel.

Not exactly about sufficient conditions for the existence of (k, l)-kernels
in digraphs, but also related, there is a paper by Erdös and Soukup. It is a
well known result of Chvátal and Lovász [28] that every finite digraph has a
(2, 2)-kernel. Once again, the digraph D] is a counterexample for the infinite
version of this result. In [32], Erdös and Soukup work in a very interesting
conjecture stating that for any digraph D, there exist a partition (V0, V1) of
V (D) such that D[V0] has a (2, 2)-kernel and D[V1] a (2, 2)-solution. They
focus on infinite tournaments. Again, not exactly about sufficient conditions
for the existence of (k, l)-kernels in digraphs, but related, we can mention
the work of Fraenkel [34], where he uses Game Theory tools to analyze the
structure of the kernels of a digraph, and some of his results are valid in
infinite digraphs.

The rest of the chapter is structured as follows. In Section 8.2 we prove
a very important (and general) sufficient condition for a digraph to have
(k, l)-kernel, that will be used later on. In Section 8.3 we prove that every
symmetrical digraph has a k-kernel for every integer k ≥ 2 and propose a
sufficient condition for acyclic infinite digraphs to have a k-kernel for every
integer k ≥ 2. In Section 8.4 we find a sufficient condition for infinite tran-
sitive digraphs to have (k, l)-kernel for every pair of integers k, l such that
k ≥ 2 and l ≥ 1; the condition is that every infinite outward path (xi)i∈N
has an arc of the form (xj, xi) with i < j. In Section 8.5 we prove that every
infinite cyclically k-partite strong digraph has at least k different k-kernels;
also, we prove that if D is a digraph with a (possibly bi-infinite) spanning di-
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rected walk such that every directed cycle has length ≡ 0 mod k, and every
directed cycle with exactly one obstruction has length ≡ 2 mod k, then D
is cyclically k-partite and thus has a k-kernel. The main result of Section 8.6
is that every infinite quasi-transitive digraph without infinite outward paths
has a (k, l)-kernel for every pair of integers k, l such that k ≥ 4 and l ≥ 3 or
k = 3 and l = 2. Section 8.7 is about pretransitive digraphs, we prove that
if D is an infinite right/left pretransitive strong digraph such that every di-
rected triangle is symmetrical, then D has a k-kernel for every k ∈ N, k ≥ 2.
The results of Sections 8.8 and 8.9 are straightforward generalizations from
the finite case, we give sufficient conditions for the existence of (k, l)-kernels
in terms of the circumference of a digraph in κ-strong digraphs and in lo-
cally in/out-semicomplete digraphs. Section 8.10 is the final section of the
article, we work with k-transitive and k-quasi-transitive digraphs, the main
results are: If k ≥ 2 be an even integer and D is an infinite k-quasi-transitive
digraph such that for every infinite outward path (xi)i∈N there exists an arc
(xj, xi) with i < j, then D has an (n,m)-kernel for every pair of integers n,m
such that n ≥ 2, m ≥ k+1. And, if D is an infinite k-transitive digraph such
that every infinite outward path (xi)i∈N has an arc of the form (xj, xi) with
i < j, then D has a (n,m)-kernel for every pair of integers n,m such that
n ≥ 2, m ≥ k − 1. Moreover, every (n,m)-kernel of D consists in choosing
one vertex from every terminal component of D.

8.2 Two useful lemmas in infinite digraphs

We begin with a very simple result which is vastly used in its finite form in
Kernel Theory. Nonetheless, in the infinite case we depend on the Axiom of
Choice to prove it.

Lemma 8.2.1. Let D be a digraph. If D has a non-empty (k, l)-semikernel,
then D has a maximal (k, l)-semikernel.

Proof. Since D has at least one non-empty (k, l)-semikernel and thus, the
set S of all (k, l)-semikernels of D is non-empty. Clearly (S,⊆) is a POSET.
Let {Ci}i∈I = C ⊆ S be a chain in (S,⊆). We will prove that C has an
upper bound, and by Zorn’s Lemma we will have the existence of a maximal
(k, l)-semikernel in D.

If C =
⋃
i∈I Ci, then it is easy to observe that C ∈ S. To prove that

C is independent, let u, v ∈ C, then u ∈ Ci and v ∈ Cj for some i, j ∈ I.
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Since C is a chain, we can assume without loss of generality that Ci ⊆ Cj,
and then u, v ∈ Cj, but Cj is a (k, l)-semikernel and hence is k-independent,
so d(u, v), d(v, u) ≥ k, and then C is k-independent. To prove the second
(k, l)-semikernel condition, let v ∈ C and u ∈ V (D) such that d(v, u) ≤ k−1.
Recall that v ∈ C implies that v ∈ Ci for some i ∈ I. But Ci is a (k, l)-
semikernel, thus d(v, u) ≤ k− 1 implies d(u, v) ≤ l. Then, C ∈ S and clearly
Ci ⊆ C for every i ∈ I. �

The following lemma is the infinite version of Lemma 3.1.4

Lemma 8.2.2. Let D be a digraph. If {v} is a (k, l)-semikernel of D for
every v ∈ V (D), then D has a (k, l)-kernel.

Proof. By Lemma 8.2.1, we can consider a (⊆)maximal (k, l)-semikernel of
D, namely S ⊆ V (D). If S is l-absorbent then S is a (k, l)-kernel of D, so
let us assume that S is not l-absorbent, therefore there must exist a vertex
v ∈ V (D) \ S such that d(v, S) > l. Let us observe that d(S, v) > k − 1
because, by the second condition of (k, l)-semikernel, d(S, v) ≤ k− 1 implies
that d(v, S) ≤ l but v is not l-absorbed by S. We will consider two cases.

Case 1. If k − 1 ≤ l, then k − 1 ≤ l < d(v, S), so, in view that
d(S, v) > k− 1, we have that S ′ = S ∪{v} is a k-independent set. Moreover,
if u ∈ V (D) is such that there exists an S ′u-directed path C of length less
than or equal to k − 1 then, since S is a (k, l)-semikernel, if C is a Su-
directed path, then there exists an uS-directed path of length less than or
equal to k−1, but this path is also a uS ′-directed path; and since {v} is also
a (k, l)-semikernel, then if C is a vu-directed path, this implies that there
exists a uv-directed path of length less than or equal to k − 1, which is also
a uS ′-directed path, and then S ′ is a (k, l)-semikernel properly containing S
which contradicts the choice of S as a maximal (k, l)-semikernel.

Case 2. If l < k− 1, then we can assume that d(v, S) ≤ k− 1, otherwise
S ∪ {v} would be k-independent and we can proceed as in Case 1. So,
since {v} is a (k, l)-semikernel, then d(S, v) ≤ l < k − 1 which results in a
contradiction.

In both cases a contradiction arises from the assumption that S is not
l-absorbent, so S must be l-absorbent and hence the desired (k, l)-kernel. �
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8.3 Two simple families of infinite digraphs

with k-kernel

Let us recall that Theorem 2.3.2 affirms that every acyclic digraph has a
unique k-kernel for every integer k ≥ 2. As we have seen with the digraph
D], the direct generalization for infinite digraphs is not valid, so we propose
a sufficient condition for an infinite acyclic digraph to have k-kernel for every
integer k ≥ 2. To simplify the proof we will use the k-transitive closure
defined in Section 4.2. As we mentioned before, the finite case of the following
lemma was first stated by Bród, W loch and W loch in [24]. We omit the proof
of the infinite case since it is basically the same as the finite case.

Lemma 8.3.1. If D is a (possibly infinite) digraph then Ck(D) has a kernel
if and only if D has a (k + 1)-kernel.

Now we use Lemma 8.3.1 to prove the following theorem.

Theorem 8.3.2. If D is an infinite acyclic digraph without infinite outward
paths, then D has a k-kernel for every integer k ≥ 2.

Proof. Since D acyclic implies that Ck(D) is acyclic for every k ∈ N. In
virtue of Lemma 8.3.1 it suffices to prove that if D is acyclic and does not
have infinite outward paths, then D has a kernel.

Let us observe that if D is an acyclic digraph without infinite outward
paths, then for every vertex v ∈ V (D), there exists a vertex w ∈ V (D) such
that d(v, w) ∈ N and d+(w) = 0. It suffices to consider the terminal vertex in
a directed path of maximum length with initial vertex v. So, let us consider
the following recursive sequence of subsets of V (D).

• S0 =
{
v ∈ V (D)

∣∣d+
D(v) = 0

}
.

• Sn+1 =
{
v ∈ V (D)

∣∣d+
Dn+1

(v) = 0
}

.

Where {Dn} is a sequence of subdigraphs of D defined recursively.

• D0 = D.

• Dn+1 = Dn \ (N−(Sn) ∪ Sn).
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By the previous observation, there exists an n0 ∈ N such that Sn = Dn =
∅ for every n > n0. Let n0 be the least natural number with such property.
We affirm that N =

⋃n0

i=0 Si is a kernel for D. First, let us observe that N
is absorbent. Let v ∈ V (D) \N be arbitrarily chosen. Let i be the greatest
integer such that v ∈ V (Di), clearly 0 ≤ i ≤ n0. Since v /∈ V (Di+1), by
the definition of Di+1, v ∈ N−(Sn) ∪ Sn. But v /∈ N , so v /∈ Sn. This
implies that v ∈ N−(Sn) ⊆ N , and thus v is absorbed by N . To observe
that N is independent, let u, v ∈ N and i, j ∈ N such that u ∈ Si and
v ∈ Sj. Let us assume without loss of generality that i ≤ j. If i = j, then
u, v ∈ Si and by the definition of Si, d

+
Di

(u) = d+
Di

(v) = 0. Since Di is
an induced subdigraph of D and u, v ∈ V (Di), then (u, v), (v, u) /∈ A(D).
If i < j, then (v, u) /∈ A(D); otherwise v ∈ N−(Si) which would imply
that v /∈ V (Di+1) contrary to our assumption. Also (u, v) /∈ A(D) since
u, v ∈ V (Di), d

+
Di

(u) = 0 and Di is an induced subdigraph of D. So, N is a
kernel for D and the result follows. �

Although asking for a digraph not to have infinite outward paths is not
very restrictive in the cardinality sense, because a digraph without infinite
outward paths can has a vertex set of arbitrary cardinality, we think that is
somewhat restrictive in a structural sense. In the development of this result
we worked with another hypotheses, but we were unable to get the desired
result nor a counterexample for our conjectures. So we propose the following
conjectures.

Conjecture 8.3.3. If D is an infinite acyclic digraph such that every vertex
has a finite out-neighborhood, then D has a k-kernel for every integer k ≥ 2.

Conjecture 8.3.4. If D is an infinite digraph without cycles (directed or
undirected), then D has a k-kernel for every k ≥ 2.

The second conjecture has been proved true for k = 2 in [44], since a
digraph without directed and undirected cycles is a bipartite digraph and
thus has a kernel.

Another of the first sufficient conditions that were found for a digraph
to have a kernel is to ask for symmetry. Berge proved the finite version of
the following theorem for k = 2, a proof can be found in [11]. We want to
emphasize that, although simple, we could not find a proof without using the
Axiom of Choice.
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Theorem 8.3.5. If D is a symmetrical digraph, then D has a k-kernel for
every integer k ≥ 2. Moreover, every maximal k-independent subset of D is
a k-kernel.

Proof. By Zorn’s Lemma we can choose a maximal k-independent subset
of V (D), say N . We affirm that N is the desired k-kernel. By our choice
N is k-independent. Let v ∈ V (D) \ N be an arbitrary vertex. Since N
is a maximal k-independent subset, then N ∪ {v} is not k-independent. If
d(v,N) ≤ k − 1, then v is (k − 1)-absorbed by N . So d(N, v) ≤ k − 1,
and then, there exists u ∈ N such that there exists an uv-directed path of
length less than or equal to k − 1, but since D is symmetrical there also
exists a vu-directed path of length less than or equal to k− 1, and thus, v is
(k − 1)-absorbed by N . �

8.4 Transitive digraphs

As we have already mentioned in previous sections of this chapter, there
are infinite transitive digraphs (even transitive tournaments) that do not
have k-kernel for any k ≥ 2. In [84] and independently in [44] it is proved
that if D is a transitive digraph such that every infinite outward path has
at least one symmetrical arc, then D has a kernel. We will generalize this
result, weakening the condition of the existence of a symmetrical arc in every
infinite outward path and proving the existence of (k, l)-kernels with k ≥ 2,
l ≥ 1 (and thus, the aforementioned result is the case k = 2 and l = 1). But
before stating and proving our generalization we need to define a relation.

Let D be a digraph with set of strong components C. We define the
relation 4 on C in the next way. For every C1,C2 ∈ C we have that C1 4 C2

if and only if there exists a C1C2-directed path in D. In [84] it is observed
that 〈C,4〉 is a reflexive partial order whose maximal elements (in the case
that there exist) are the terminal strong components of D.

Remark 8.4.1. It is direct to observe that if D is a transitive digraph, C1,C2 ∈
C and C1 4 C2, then for every u ∈ V (C1) and every v ∈ V (C2), we have that
(u, v) ∈ F (D).

Theorem 8.4.2. Let D be an infinite transitive digraph such that every
infinite outward path (xi)i∈N has an arc of the form (xj, xi) with i < j, then
D has a (k, l)-kernel for every pair of integers k, l such that k ≥ 2, l ≥ 1.
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Moreover, every (k, l)-kernel of D consists in choosing one vertex from every
terminal component of D.

Proof. It suffices to prove that if C0 is a strong component of D then there
exists a terminal component T of D such that C0 4 T. This is because, since
D is a transitive digraph, by Remark 8.4.1 every vertex in C0 will be absorbed
by every vertex in T. Also, if we choose one vertex in every terminal strong
component of D, the set of the chosen vertices will be k-independent for every
integer k ≥ 2, because every vertex is in a distinct terminal component. So,
every set consisting of one vertex from every terminal component of D will
be k-independent and absorbent, and thus, l-absorbent, for every pair of
integers k, l such that k ≥ 2, l ≥ 1.

We will proceed by contradiction. Assume that for every C ∈ C such that
C0 4 C there exists C′ ∈ C such that C′ 6= C and C 4 C′. In virtue of the
Axiom of Choice we can build a sequence (Ci)i∈N satisfying C0 4 C1 and, for
every i < j, Ci 6= Ci+1 and Ci 4 Cj. Appealing again to the Axiom of Choice,
let us choose a vertex vi ∈ V (Ci) for every i ∈ N. Since D is transitive, by
Remark 8.4.1, (vi)i∈N is an infinite outward path in D. Moreover, if i < j,
(xj, xi) /∈ F (D). In the contrary case we would have that (xj, xi) is a CjCi-
arc and thus a CjCi directed path, which by the definition of 4 implies that
Cj 4 Ci. Since Ci 4 Cj by the construction of (Cn)n∈N it would follow
from the antisymmetry of 4 that Ci = Cj. Again, by the construction of
(Cn)n∈N, we know that j 6= i+ 1, but this implies the existence of a directed
cycle (Ci,Ci+1, . . . ,Cj,Ci) in D?, which results in a contradiction because
D? is acyclic. Therefore (xi)i∈N is an infinite outward path in D such that
(xj, xi) /∈ F (D) for each i < j, which results in a contradiction. Since the
contradiction arises from assuming that for every C ∈ C such that C0 4 C
there exists C′ ∈ C such that C′ 6= C and C 4 C′, there must exists a strong
component T, such that C0 4 T and for every C′ ∈ C, C′ = T or T 64 C′.
Thence, T is a 4-maximal element of C, and thus a terminal component of
D.

As noted before, if N ⊆ V (D) has one vertex from every terminal com-
ponent of D, then N is a (k, l)-kernel for every pair of integers k, l such that
k ≥ 2, l ≥ 1. �

Theorem 8.4.2 gives us a sufficient structural condition for an infinite
transitive digraph to have a (k, l)-kernel. It is easy to observe that this con-
dition is not necessary. As an example take the digraph D] and add one new
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vertex v along with the arc (n, v) for every n ∈ N. This digraph clearly has
the (k, l)-kernel {v} for every pair of integers k, l such that k ≥ 2 and l ≥ 1,
but does not fulfill the condition given in Theorem 8.4.2. Nonetheless, if we
take a closer look at the proof of Theorem 8.4.2, we can observe that the
required condition implies that every strong component of the digraph is ab-
sorbed by some terminal component. This is the condition that characterize
the transitive (infinite) digraphs that have a kernel.

Theorem 8.4.3. Let D be a possibly infinite transitive digraph. Then D has
a (k, l)-kernel for every pair of integers k, l such that k ≥ 2 and l ≥ 1 if and
only if for every strong component S of D, there exists a terminal component
T of D such that S 7→ T.

Proof. The theorem is obviously valid for finite digraphs, let us prove the
infinite case.

The “if” implication follows directly from the proof of Theorem 8.4.2.
For the “only if” part, let D be a transitive digraph that has a (k, l)-kernel
for every pair of integers such that k ≥ 2 and l ≥ 1, and N be a (2, 1)-
kernel of D. Let us assume that there exists a strong component S of D such
that no terminal component of D can be reached from S by a directed path.
Since N is a kernel of D, and by the transitivity of D it follows that there
must exists a vertex v ∈ N such that S 7→ v. Moreover, if R is the strong
component of D containing v, then S 7→ R. By our assumption, R is not a
terminal component. If R′ is a strong component reached by R, then R 7→ R′,
in particular v 7→ R′. Now, R and R′ are different strong components, thus,
vertices in R′ cannot be absorbed by v. But N is a kernel of D, and then,
there must exist another vertex u ∈ N contained in a strong component
R1 such that R′ 7→ u. But D is transitive, which implies that R 7→ R1, in
particular, (v, u) ∈ A(D), contradicting the independence of N . Thus, for
every strong component S of D, there exists a terminal component T of D
such that S 7→ T. �

Although Theorem 8.4.3 characterize transitive digraphs with (k, l)-kernel
for every pair of integers k, l such that k ≥ 2 and l ≥ 1, we do not have
a characterization in terms of structural properties of the digraphs like in
Theorem 8.4.2. So, we propose the following problem.

Problem 8.4.4. Find a structural characterization of transitive digraphs
with (k, l)-kernel for every pair of integers k, l such that k ≥ 2, l ≥ 1.
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8.5 Cyclically k-partite digraphs

One of the most general results relating cyclically k-partite digraphs and
k-kernels remains valid for infinite digraphs.

Theorem 8.5.1. Let D be a (possibly infinite) cyclically k-partite digraph.
If, with at most one exception, for every v ∈ V (D) we have that d+(v) ≥ 1,
then D has a k-kernel.

Proof. Let D be a cyclically k-partite digraph with vertex partition {V0, V1,
. . . , Vk−1}. We may assume without loss of generality that there is a vertex
v ∈ V (D) such that d+(v) = 0, and v ∈ V0. Since every arc of D is a ViVi+1-
arc (mod k), it is clear that Vi is k-independent for each i ∈ {0, 1, . . . , k−1}.
If u ∈ V (D) \ V0, then u ∈ Vi for some i ∈ {1, 2, . . . , k − 1}, and since D
is cyclically k-partite and every w ∈ D − v has d+(w) ≥ 1, there exists a
uV0-directed path of length less than or equal to k−1. Hence, V0 is a k-kernel
for D. �

In Chapter 2, unilateral cyclically k-partite digraphs are characterized1

as those digraphs such that every directed cycle has length ≡ 0 (mod k)
and every directed cycle with one obstruction2 has length ≡ 2 (mod k).
This characterization was obtained while trying to generalize Theorem 1.8.2,
which asserts that a strong digraph such that every directed cycle has length
≡ 0 (mod k) has a k-kernel. As we mentioned earlier, the best way to prove
Theorem 1.8.2 is to prove that, under such hypotheses, a digraph is cyclically
k-partite. The generalization of Theorem 1.8.2 to the inifinte case worked
just fine. Nonetheless the unilateral case presented some complications that
will be mentioned shortly. The following lemma will be stated without proof
since the proof is exactly the same as for finite digraphs.

Lemma 8.5.2. Let D be an infinite digraph. If every directed cycle of D
has length ≡ 0 (mod k), then every directed closed walk of D has length ≡ 0
(mod k).

Theorem 8.5.3. Let D be an infinite strong digraph. If every directed cycle
in D has length ≡ 0 (mod k), then D is cyclically k-partite.

1Theorem 2.2.7.
2Definition 2.2.1.



130 Infinite digraphs

Proof. Since D is strong, for every u, v ∈ V (D), d(u, v) ∈ N. Let v ∈
V (D) be a fixed vertex and Vi =

{
u ∈ V (D)

∣∣d(v, u) ≡ i (mod k)
}

for each

0 ≤ i ≤ k − 1. We affirm that {Vi}k−1
i=0 is a cyclic partition of V (D). First

we will prove that {Vi}k−1
i=0 is a partition. Clearly Vi ∩ Vj = ∅ if and only

if i 6= j, because d(v, u) is uniquely determined for every u ∈ V (D). Also,
it follows from the first observation of the proof that

⋃k−1
i=1 Vi = V (D). It

remains to prove that Vi 6= ∅ for every 0 ≤ i ≤ k − 1. So, it follows from
the fact that D is strong that d−(v) ≥ 1. Thus, let u ∈ N−(v) be an in-
neighbor of v. Again by the strength of D, there exists a vu-directed path,
say C = (v = x0, x1, . . . , xn = u), and then C ′ = C ∪(u, v) is a directed cycle
in D. Without loss of generality can choose C to realize the distance from v
to u. It follows by the main hypothesis of the theorem that n ≡ 0 (mod k).
Since C is a uv-directed path of minimum length, we have that d(v, xi) ≡ i
(mod k) for 0 ≤ i ≤ k − 1. Thus Vi 6= ∅ for every 0 ≤ i ≤ k − 1. We have
already seen that {Vi}k−1

i=0 is a partition, let us prove that it is cyclic.
Let (u,w) ∈ A(D) be an arbitrary arc and let us assume that u ∈ Vi,

w ∈ Vj for some 0 ≤ i, j ≤ k − 1. We will prove that j ≡ i + 1 (mod k).
Let C and D be vu and vw-directed paths of minimum length, respectively.
By the strength of D it also exists a wv-directed path, say D ′. Clearly
D ∪ D ′ and C ∪ (u,w) ∪ D ′ are closed directed walks in D. Hence, by
Lemma 8.5.2, we have that `(D ∪ D ′) ≡ `(C ∪ (u,w) ∪ D ′) ≡ 0 (mod k).
But `(D ∪ D ′) = `(D) + `(D ′) and `(C ∪ (u,w) ∪ D ′) = `(C ) + 1 + `(D ′).
Therefore `(D) ≡ `(C ) + 1. Since C and D realize the distances from v
to u and from v to w respectively, we have that d(u, v) ≡ i (mod k) and
d(w, v) ≡ j ≡ i+ 1.

Thus, every arc of D is a ViVi+1-arc (mod k) and hence {Vi}k−1
i=0 is a

cyclical partition. �

Corollary 8.5.4. Let D be an infinite strong digraph, then D is bipartite if
and only if every directed cycle has even length.

Theorem 8.5.5. Let D be an infinite strong digraph. If every directed cycle
of D has length ≡ 0 (mod k), then D has at least k distinct k-kernels.

Proof. By Theorem 8.5.3, D is cyclically k-partite with partition {Vi}k−1
i=0 .

By Theorem 8.5.1, every Vi is a k-kernel for D. �

As we have already seen in Theorem 8.5.5, the generalization of Richard-
son’s Theorem remain valid in the infinite case. However, we were not able
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Figure 8.1: A flower with an infinite number of petals, example of an infinite
strong digraph without a closed directed spanning walk.

to prove the infinite version of Theorem 2.2.7. The reason is that the widely
known characterization of unilateral digraphs does not work for infinite di-
graphs. There are infinite unilateral digraphs without directed spanning
walk. Less important to our concern, but also worth of mention, the char-
acterization of strong digraphs neither works in the infinite case. There are
infinite strong digraphs without a closed directed spanning walk. An exam-
ples of this fact is shown in Figure 8.1.

So, we state the following conjecture.

Conjecture 8.5.6. Let D be an infinite unilateral digraph. If every directed
cycle of D has length ≡ 0 (mod k) and every directed cycle of D with one
obstruction has length ≡ 2 (mod k), then D is cyclically k-partite.

Since the proof of this result for the finite case relies heavily in the fact
that every unilateral digraph has a directed spanning walk, we may consider
this condition as a hypothesis to prove a similar result. Nevertheless, this
hypothesis is very restrictive in the cardinality sense. The existence of a
spanning directed walk implies that |V (D)| ≤ ℵ0. The digraphs considered
for Conjecture 8.5.6 can have an arbitrarily large set of vertices.

The the following theorem ressembles Theorem 2.2.7. Since the proof is
very similar we will omit some details. A bi-infinite directed walk in a
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digraph D is an integer-indexed sequence of vertices of D, {vi}i∈Z such that
vivi+1 ∈ A(D) for every i ∈ Z.

Theorem 8.5.7. Let D be an infinite digraph with a (possibly bi-infinite)
directed spanning walk. If every directed cycle in D has length ≡ 0 (mod k)
and every directed cycle with one obstruction has length ≡ 2 (mod k) then D
is cyclically k-partite and thus has a k-kernel.

Sketch of Proof By hypothesis there exists a spanning directed walk in-
dexed with the set of integers C = (. . . , v−2, v−1, v0, v1, v2, . . . ) and we can
consider the subsets Vi =

{
vr
∣∣r ≡ i (modk)

}
, 0 ≤ i ≤ k−1 of V (D). The set

{Vi}k−1
i=0 is a partition of V (D). To prove that

⋃k−1
i=0 Vi = V (D) and Vi 6= ∅

for 0 ≤ i ≤ k−1 it suffices to observe that C is a spanning directed walk. To
prove that Vj ∩ Vk = ∅, let vr be a vertex in V (D), if vr appears only once
in C then r ≡ i (mod k) for a unique i ∈ {0, 1, . . . , k − 1} and consequently
vr belongs to Vi for a unique i ∈ {0, 1, . . . , k − 1}; if vr appears more than
once in C we can assume without loss of generality that vr = vs with r < s
and then vrC vs is a directed closed walk of finite length which, in virtue of
Lemma 8.5.2, has length ≡ 0 (mod k) so r ≡ s (mod k) and vr ∈ Vi for a
unique i. We have to observe that this partition is cyclic.

Let (x, y) ∈ A(D), then x = vr, y = vs for some r, s ∈ Z. If s < r, then
yC x∪ (x, y) is a directed closed walk of finite length and the same argument
used in the proof of Theorem 2.2.7 can be used to prove that s ≡ r+ 1 (mod
k). If r < s, then s = r+ 1 when (x, y) ∈ A(D) or xC y ∪ (x, y) is a directed
closed walk of finite length with one obstruction and the same argument of
the proof of Theorem 2.2.7 can be used to prove that s ≡ r + 1 (mod k).

Therefore D is cyclically k-partite and by Theorem 8.5.1 it has a k-kernel.
�

8.6 Quasi-transitive digraphs

Let us recall that a recursive structural characterization of the family of
quasi-transitive digraphs was given by Bang-Jensen and Huang3. This struc-
tural characterization was a central part of the proof given in Chapter 3
for the finite version of the principal result of this section. Nonetheless, the
aforementioned characterization only works for finite digraphs, and since a

3Theorem 3.3.1.
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fundamental part of the proof is done by induction, we were unable to find
an analogous characterization theorem for infinite digraphs. In the present
section, a different approach is considered. We will prove that every quasi-
transitive strong digraph has a (k, l)-semikernel and use local properties of
quasi-transitive digraphs to prove that this (k, l)-semikernel is also a (k, l)-
kernel.

We begin with some technical results.

Lemma 8.6.1. Let D be an infinite quasi-transitive digraph and u, v ∈ V (D).
If d(v, u) = 2 or 4 ≤ d(v, u) ∈ N, then d(u, v) = 1. If d(v, u) = 3, then
d(u, v) ≤ 3.

Proof. The proof of the finite case remains valid since it is proved by in-
duction on d(v, u) ∈ N. �

Lemma 8.6.2. Let D be an infinite quasi-transitive digraph. If A and B are
strong components of D such that there is an AB-arc in D, then A 7→ B.
Hence, the condensation of D, D?, is transitive.

Proof. Since there is an AB-arc in D, for every a ∈ V (A) and every b ∈
V (B), there is an ab-directed path in D. The proof of the finite case of
the first part of the lemma remains valid since it is proved by induction on
d(a, b) ∈ N that (a, b) ∈ A(D). To prove that D? is transitive, let (A,B) and
(B,C) be arcs of D?. Then, by the first part of the lemma, there are vertices
a ∈ V (A), b ∈ V (B) and c ∈ V (C), such that (a, b), (b, c) ∈ A(D). Since D
is quasi-transitive, (a, c) ∈ A(D) or (c, a) ∈ A(D). But since D? is acyclic,
(c, a) /∈ A(D). Thus, (a, c) ∈ A(D) and this implies that (A,C) ∈ A(D?).
�

The following lemma is “one half” of Bang-Jensen and Huang’s charac-
terization theorem. The strong case is the one that could not be obtained
for infinite digraphs.

Lemma 8.6.3. Let D be an infinite non-strong digraph. Then D is quasi-
transitive if and only if there exist an acyclic transitive digraph T with vertex
set V (T ) = {vi}i∈I and a family of strong quasi-transitive digraphs {Qi}i∈I
such that D = T [Qi]i∈I .
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Proof. The sufficiency is straightforward to verify. For the necessity, let D
be a quasi-transitive digraph. Let T be the condensation of D, i.e., T =
D?. Hence, T is acyclic. Recall that V (T ) = {Ci}i∈I is the set of strong
components of D. Since D is quasi-transitive, Ci is a quasi-transitive strong
digraph for every i ∈ I. So, let Qi = Ci for every i ∈ I. It follows from the
definition of D? and Lemma 8.6.2 that D = T [Qi]i∈I and T is transitive. �

From this point on, our results aim to prove that every quasi-transitive
digraph has a (k, l)-semikernel. Maybe some lemmas like the following one
may look a bit odd.

Lemma 8.6.4. Let D be an infinite quasi-transitive digraph. Then, for every
directed cycle C of D, there are at least two arcs of C , say (u1, v1), (u2, v2) ∈
A(C ) such that d(vi, ui) ≤ 2, i ∈ {1, 2}.

Proof. By induction on `(C ). If `(C ) = 2 or `(C ) = 3, the result is clear.
Let C = (x0, x1, . . . , xn = x0) be a directed cycle of length n ≥ 4 in D. Since
D is quasi-transitive and (x0, x1), (x1, x2) ∈ A(D), then (x0, x2) ∈ A(D) or
(x2, x0) ∈ A(D). In the latter case it is clear that d(x1, x0), d(x2, x1) ≤ 2 and
we are done. In the former case, let us apply the induction hypothesis to the
cycle C ′ = (x0, x2)∪(x2C x0), which has length n−1, to obtain two arcs with
the desired condition in A(C ′). Since A

(
C ′ − (x0, x2)

)
⊂ A(C ), if the two

arcs obtained from the induction hypothesis are different from (x0, x2) we are
done. Let us assume that one of the arcs is (x0, x2). Hence, d(x2, x0) ≤ 2.
If d(x2, x0) = 1, it is the case we have already analyzed. So d(x2, x0) = 2.
Let v ∈ V (D) be a vertex such that (x2, v), (v, x0) ∈ A(D). If v = x1,
then the arcs (x0, x1), (x1, x2) ∈ A(D) are symmetrical and we are done.
If not, we have that (x1, x2), (x2, v) ∈ A(D). Since D is quasi-transitive,
(x1, v) ∈ A(D), which implies that d(x1, x0) ≤ 2; or (v, x1) ∈ A(D), which
implies that d(x2, x1) ≤ 2. In either case we reach de desired conclusion. �

Lemma 8.6.5. If D is an infinite quasi-transitive digraph without infinite
outward paths, then for every S ⊆ V (D) there exists a vertex v ∈ S such
that, if u ∈ S and (v, u) ∈ A(D), then dD(u, v) ≤ 2.

Proof. Let S be a subset of V (D) and suppose that there is no vertex in S
with the desired property. Then for every x ∈ S there exists a vertex y ∈ S
such that (x, y) ∈ A(D) and dD(y, x) > 2. Since every vertex in S has at
least one neighbor in S with this property and there are not infinite outward
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paths in D, then there must exist a directed cycle C = (x0, x1, . . . , xn = x0)
such that V (C ) ⊆ S and dD(xi, xi−1) > 2 with 1 ≤ i ≤ n. This contradicts
Lemma 8.6.4. Since the contradiction arose from the assumption that there
is no vertex in S with the desired property, then there must exist at least
one such vertex. �

Lemma 8.6.6. Let D be an infinite quasi-transitive digraph without infinite
outward paths. If D has non-empty 3-semikernel, then D has 3-kernel.

Proof. Since D has a non-empty 3-semikernel, by Lemma 8.2.1 we can con-
sider S be a maximal 3-semikernel of D. If S is 2-absorbent, then S is the
desired 3-kernel. If S is not 2-absorbent, we can consider T ⊆ V (D), the set
of vertices not 2-absorbed by S. It follows from Lemma 8.6.5 the existence
of a vertex v ∈ T such that if u ∈ T and (v, u) ∈ A(D) then d(u, v) ≤ 2.
As a consequence of Lemma 8.6.1, whenever u ∈ T and d(v, u) = 2 it fol-
lows that (u, v) ∈ A(D). Besides, d(v, S) ≥ 3 and d(S, v) ≥ 3, as a matter
of fact, in virtue of Lemma 8.6.1 we have that d(v, S) = 3 = d(S, v). So
S ∪ {v} is a 3-independent subset of V (D). By the choice of v and since S
is a 3-semikernel, S ∪ {v} fulfills the second property of 3-semikernel, so it
is a 3-semikernel properly containing S, contradicting the maximality of S.
Therefore, S is 2-absorbent and thus a 3-kernel. �

Lemma 8.6.7. Let D be an infinite quasi-transitive strong digraph and k, l be
a pair of integers such that k ≥ 4, 3 ≤ l ≤ k−1. If D has a (k, l)-semikernel,
then D has a (k, l)-kernel.

Proof. Since D has a non-empty (k, l)-semikernel, by Lemma 8.2.1 we can
consider S to be a maximal (k, l)-semikernel of D. If S is l-absorbent, then
S is the (k, l)-kernel we have been looking for. If it is not l-absorbent, let
v ∈ V (D) be a vertex not l-absorbed by S. Since D is strong, there must
exist a vS-directed path of length greater than or equal to l+1 ≥ 4. Let s ∈ S
be the final vertex in such directed path. In virtue of Lemma 8.6.1 we have
that (s, v) ∈ A(D), and since S is a (k, l)-semikernel of D, a vS-directed
path of length less than or equal to l must exist in D, which results in a
contradiction because we choose v as a vertex not l-absorbed by S. Hence S
is l-absorbent and it turns out to be the desired (k, l)-kernel. �

Lemma 8.6.8. Let D be an infinite quasi-transitive digraph without infinite
outward paths and k, l be a pair of integers such that k ≥ 4 and 3 ≤ l ≤ k−1
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or k = 3 and l = 2. Then there is a vertex v ∈ V (D) such that {v} is a
(k, l)-semikernel of D.

Proof. It suffices to consider S = V (D) and an application of Lemma 8.6.5
to find a vertex v ∈ V (D) such that whenever u ∈ V (D) and (v, u) ∈ A(D)
then d(u, v) ≤ 2. It follows from Lemma 8.6.1 that the set {v} is a (k, l)-
semikernel. �

We finish this section with our two principal results.

Theorem 8.6.9. If D is an infinite quasi-transitive strong digraph without
infinite outward paths, then D has a k-kernel for every k ∈ N, k ≥ 3.

Proof. It is an immediate consequence of Lemmas 8.6.6, 8.6.7 and 8.6.8. �

Theorem 8.6.10. If D is an infinite quasi-transitive digraph without infinite
outward paths, then D has a (k.l)-kernel for every pair of integers k, l such
that k ≥ 4 and 3 ≤ l ≤ k − 1 or k = 3 and l = 2.

Proof. In virtue of Theorem 8.6.9 every terminal strong component of D has
a (k, l)-kernel. If D has {Di}i∈I as set of strong terminal components (where
I can be an infinite set), it suffices to choose a (k, l)-kernel Ni for every Di.
The union N =

⋃
i∈I Ni is a (k, l)-kernel of D. Since Ni ⊆ Di and Di is

a terminal component for every i ∈ I it is clear that N is k-independent.
In addition, for each i ∈ I, if v ∈ V (Di), then v is l-absorbed by Ni. So
it suffices to prove that if v is in a non-terminal strong component then it
is l-absorbed by some vertex in N . But by Lemma 8.6.2 D? is an acyclic
transitive digraph. Since D does not have infinite outward paths, D? does
not have infinite outward paths. Thus, by Lemma 8.6.3 every non-terminal
strong component of D is 1-absorbed by a terminal strong component of D
in D?. Therefore, by Lemma 8.6.2 every vertex in a non-terminal strong
component is 1-absorbed by every vertex in at least one terminal strong
component of D, and then is l-absorbed by N . So N is a k-independent,
l-absorbent set, and thus the desired (k, l)-kernel. �

8.7 Pretransitive digraphs

The main result of this section is proved with the aid of Lemma 8.2.2 in a
very similar way that the finite version4 is proved.

4Lemma 3.2.8.
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Lemma 8.7.1. Let k ≥ 2 be an integer. If D is a right pretransitive infinite
strong digraph such that every directed triangle is symmetrical, then every
vertex of D is a k-semikernel of D.

Idea of Proof Let k ≥ 2 be an integer. Let v ∈ V (D) be any vertex,
consider w ∈ V (D) such that there exists a vw-directed path of length less
than or equal to k− 1 and let C = (v = v0, v1, . . . , vn = w) be a vw-directed
path of minimum length. For every such w, C is a directed path of finite
length. Also, since D is strong, d(w, v) ∈ N. So, the same argument used in
the finite version of this theorem can be used to prove that d(w, v) ≤ k − 1.
�

Theorem 8.7.2. If D is an infinite right pretransitive strong digraph such
that every directed triangle is symmetrical, then D has a k-kernel for every
k ∈ N, k ≥ 2.

Proof. It follows from Lemmas 8.2.2 and 8.7.1. �

The analogous results for left pretransitive digraphs can be easily obtained
like in finite digraphs by means of dualization.

Lemma 8.7.3. If D is an infinite left pretransitive strong digraph such that
every directed triangle is symmetrical, then {v} is a k-semikernel of D for
every v ∈ V (D).

Proof. Exactly like the finite case5. �

Theorem 8.7.4. If D is an infinite left pretransitive strong digraph such
that every directed triangle is symmetrical, then D has a k-kernel for every
k ∈ N, k ≥ 2.

Proof. The result follows from Lemmas 8.2.2 and 8.7.3. �

In Section 3.2, it is also proved that if D is a right pretransitive digraph
such that every directed triangle is symmetrical, then D has a k-kernel for
every k ∈ N, k ≥ 2. However, the proof of this fact was done by induction on
|V (D?)|, which can be uncountable if D is infinite. So, since we were unable
to find a proof for infinite digraphs, we state the following conjecture.

5Lemma 3.2.10.
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Conjecture 8.7.5. If D is a right pretransitive infinite digraph such that
every directed triangle is symmetrical and does not contain infinite outward
paths, then D has a k-kernel for every k ∈ N, k ≥ 2.

Obviously D must have a restriction on its infinite outward paths be-
cause, since the digraph D] is transitive, is both right/left pretransitive and
every directed triangle is symmetrical (provided that it has none) but we
already have observed that it does not have k-kernel for any k ∈ N. One
remarkable observation is that, in Theorems 8.7.2 and 8.7.4 this condition
is not necessary, the digraphs may contain infinite outward paths and the
results remain valid.

8.8 κ-strongly connected digraphs

The results of this section have somewhat technical proofs and are direct
generalizations of the respective finite versions. Once again, the main tool
to change from finite to infinite digraphs is Lemma 8.2.2.

The proofs of some results will be omitted for the sake of brevity since,
as many of them are local properties, the proof is just like in finite digraphs
and can be consulted in Section 6.2.

Lemma 8.8.1. Let D be a σ-strong digraph with circumference l, k ≥ 2 a
fixed integer and C = (x0, x1 . . . , xm) a directed path of length m. If m =
qσ + r where q and r are given by the division algorithm, then:

1. If r = 0, then d(xm, x0) ≤ (l − σ)q.

2. If r > 0, then d(xm, x0) ≤ (l − r) + (l − σ)
⌊
m−1
σ

⌋
.

Proof. The proof is by induction on q, which is finite. So the proof for the
finite case remains valid. �

The proof of the following theorem is also like the one of the finite version,
we will reproduce it to emphasize that it is also valid for infinite digraphs.

Lemma 8.8.2. Let D be a σ-strong digraph with circumference l, then for
every v ∈ V (D), {v} is a (k, (l − 1) + (l − σ)

⌊
k−2
σ

⌋
)-semikernel for every

integer k ≥ 2.
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Proof. Let k ≥ 2 and v ∈ V (D) be fixed and let C = (v = x0, x1, . . . , xm)
be a vxm-directed path of length m ≤ k − 1. In virtue of Lemma 8.8.1
d(xm, v) ≤ (l−1)+(l−κ)bm−1

κ
c ≤ (l−1)+(l−κ)bk−2

κ
c and then {v} fulfills

the second (k, (l − 1) + (l − κ)bk−2
κ
c)-semikernel condition. �

Just as in the finite case, we are ready to prove the main theorem of the
section.

Theorem 8.8.3. Let D be a σ-strong digraph with circumference l. Then D
has a (k, (l − 1) + (l − σ)

⌊
k−2
σ

⌋
)-kernel for every integer k ≥ 2.

Proof. It follows immediately from Lemmas 8.2.2 and 8.8.2. �

At this point, it comes as no surprise that the same consequences of
Theorem 6.2.3 can be derived from Theorem 8.8.3.

8.9 Locally in/out-semicomplete digraphs

This section is very brief. We only remark which of the existing results for
locally in/out-semicomplete digraphs remain valid in the infinite case. Once
again in this section, Lemma 8.2.2 makes the proofs for the infinite case
possible.

The following couple of lemmas remain valid from the finite case.

Lemma 8.9.1. Let l ≥ 1 be an integer, D a locally out-semicomplete infinite
digraph and (x0, x1, . . . , xn) is a x0xn-directed path of length n ≤ l. If v0 ∈
V (D) is such that (x0, v0) ∈ A(D) and (xn, v0) /∈ A(D), then d(v0, xn) ≤ l.

Proof. The proof of the finite case remains valid since we only work with
the vertices of the x0xn-directed path. �

Lemma 8.9.2. Let D be a locally out-semicomplete infinite digraph such
that, for a fixed integer l ≥ 1, whenever (u, v) ∈ A(D) then d(v, u) ≤ l.
Then {u} is a (k, l)-semikernel for every integer k ≥ 2 and every u ∈ V (D).

Proof. Consider a vertex w ∈ V (D) such that a vw-directed path exists in
D. It is proved by induction on d(v, w) that d(w, v) ≤ l. The proof of the
finite case remains valid. �
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And have the following theorem as a direct consequence.

Theorem 8.9.3. Let D be a locally out-semicomplete infinite digraph such
that, for a fixed integer l ≥ 1, whenever (u, v) ∈ A(D), then d(v, u) ≤ l.
Then D has a (k, l)-kernel for every integer k ≥ 2.

Proof. Is a direct consequence of Lemmas 8.2.2 and 8.9.2. �

The two following corollaries are straightforward derived from Theorem
8.9.3.

Corollary 8.9.4. Let D be a locally out-semicomplete infinite digraph such
that, for a fixed integer l ≥ 1, whenever (u, v) ∈ A(D), then d(v, u) ≤ l.
Then D has a k-kernel for every integer k ≥ l + 1.

Corollary 8.9.5. Let D be a locally out-semicompete infinite strong digraph
with circumference l + 1, then D has a (k, l)-kernel for every integer k ≥ 2.

The results of Lemma 8.9.2 and Theorem 8.9.3 can also be dualized by
means of Remark 6.3.2. The principal result obtained by means of dualization
is now stated.

Theorem 8.9.6. Let D be an infinite locally out-semicomplete digraph such
that, for a fixed integer l ≥ 1, whenever (u, v) ∈ A(D), then d(v, u) ≤ l.
Then D has a (k, l)-kernel for every integer k ≥ 2.

One of the main results obtained in Section 6.3 states that every locally
out-semicomplete digraph with circumference l+1 has a (k, l)-kernel for every
k ≥ 2. This is, in the finite case the condition of strong connectivity can be
dropped in Corollary 8.9.5. Nonetheless, the proof of the finite case was done
by induction on |V (D)|, and we were unable to find a proof that works for
the infinite case. In the same section, we conjectured that if D is a digraph
with circumference l, then D has a k-kernel for every k ≤ l. For the infinite
case it seems that there should also be a condition on the infinite outward
paths. Proving the result for some families such as locally out-semicomplete
digraphs would be a good start point.
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8.10 k-transitive and k-quasi-transitive digraphs

Since we are less interested in the structure of infinite k-transitive and k-
quasi-transitive digraphs than in the results that can be generalized from
Chapter 5, we will omit the family of k-path-transitive digraphs. Thus, we
begin our results with a simple technical lemma used to work directly with
k-transitive digraphs.

Lemma 8.10.1. Let k ≥ 2 be an integer, D a k-transitive infinite digraph
and u, v ∈ V (D). If there exists a uv-directed path in D, then d(u, v) ≤ k−1.

Proof. Let u, v ∈ V (D) be arbitrary distinct vertices and let C = (u =
x0, x1, . . . , xn = v) be a uv-directed path. We will prove by induction on n
that d(u, v) ≤ k − 1. If n ≤ k − 1 then we are done. So let us assume that
n ≥ k, then, by the k-transitivity of D, since x0C xk is a directed path of
length k in D, (x0, xk) ∈ A(D), so (x0, xk) ∪ xkC xn is a uv-directed path
of length strictly less than n, we can derive from the induction hypothesis
that d(u, v) ≤ k − 1. The result follows from the principle of mathematical
induction. �

The following theorem generalize the result of Theorem 8.4.2.

Theorem 8.10.2. Let D be an infinite k-transitive digraph such that every
infinite outward path (xi)i∈N has an arc of the form (xj, xi) with i < j,
then D has a (n,m)-kernel for every pair of integers n,m such that n ≥ 2,
m ≥ k − 1. Moreover, every (n,m)-kernel of D consists in choosing one
vertex from every terminal component of D.

Proof. This proof is very similar to the proof of Theorem 8.4.2, so we will
use the same notation for the relation 4. It suffices to prove that if C0 is a
strong component of D then there exists a terminal component T of D such
that C0 4 T. This is because, since D is a k-transitive digraph, by Lemma
8.10.1 every vertex in C0 will be (k−1)-absorbed by every vertex in T. Also,
if we choose one vertex in every terminal strong component of D, the set of
the chosen vertices will be k-independent for every integer k ≥ 2, because
every vertex is in a distinct terminal component. So, every set consisting of
one vertex from every terminal component of D will be n-independent and
(k−1)-absorbent, and thus, m-absorbent, for every pair of integers n,m such
that n ≥ 2, m ≥ k − 1.
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We will proceed by contradiction. Assume that for every C ∈ C such that
C0 4 C there exists C′ ∈ C such that C′ 6= C and C 4 C′. In virtue of the
Axiom of Choice we can build a sequence (Ci)i∈N satisfying C0 4 C1 and, for
every i < j, Ci 6= Ci+1 and Ci 4 Cj. As in the proof of Theorem 8.4.2, we
want to obtain an infinite outward in D from this sequence. Let us choose a
vertex x1 ∈ V (C1). Since D is k-transitive, using the Axiom of Choice we can
recursively construct an infinite outward path in D in the following way: The
first vertex is x1; If xn has been chosen in V (Ci) for some i ∈ N, choose xn+1

as any vertex such that (xn, xn+1) ∈ A(D) and xn+1 ∈ V (Cj) with i < j. We
affirm that such vertex exists because D is a k-transitive digraph and (Ci)i∈N
is an infinite chain in the partial order 4. Clearly, xn can reach (at a finite
distance) Ci+r for every r ∈ N, so we can choose a vertex xn+1 ∈ V (Cj) for
i < j such that a xnxn+1-directed path of length ≡ 0 mod k2 exists. Thus,
the k-transitivity of D implies that (xn, xn+1) ∈ A(D).

Now, we have an infinite outward path {xi}i∈N. Moreover, if i < j,
(xj, xi) /∈ F (D). This is because, by the construction of (xi)i∈N, if i < j,
then xi ∈ V (Cr) and xj ∈ V (Cs) for some r < s. Then we would have
that Cs 4 Cr for some r < s and it would follow from the antisymmetry of
4 that Cr = Cs. By the construction of (Ci)i∈N, we know that s 6= r + 1,
but this implies the existence of a directed cycle (Cr,Cr+1, . . . ,Cs,Cr) in D?,
which results in a contradiction because D? is acyclic. Therefore (xi)i∈N is
an infinite outward path in D such that (xj, xi) /∈ F (D) for each i < j, which
results in a contradiction. From this point we can conclude as in the proof
of Theorem 8.4.2. �

To work with k-quasi-transitive digraphs, we will use a very similar tech-
nique that the one we used to work with quasi-transitive digraphs, using
local properties to prove the existence of (n,m)-semikernels in strong k-quasi-
transitive digraphs. Then we prove that such (n,m)-semikernels are indeed
(n,m)-kernels. The three following lemmas originally stated in Section 5.4
for finite digraphs, trivially remain valid for the infinite case. Although they
are only a tool for our immediate concern of finding (n,m)-kernels, we think
that they are very interesting on their own.

Lemma 8.10.3. Let k ∈ N be an even natural number, D a k-quasi-transitive
infinite digraph and u, v ∈ V (D) such that a uv-directed path exists. Then:

1. If d(u, v) = k, then d(v, u) = 1.
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2. If d(u, v) = k + 1, then d(v, u) ≤ k + 1.

3. If d(u, v) ≥ k + 2, then d(v, u) = 1

Lemma 8.10.4. Let k ∈ N be an odd natural number, D a k-quasi-transitive
infinite digraph and u, v ∈ V (D) such that a uv-directed path exists. Then:

1. If d(u, v) = k, then d(v, u) = 1.

2. If d(u, v) = k + 1, then d(v, u) ≤ k + 1.

3. If d(u, v) = n ≥ k + 2 with n odd, then d(v, u) = 1

4. If d(u, v) = n ≥ k + 3 with n even, then d(v, u) ≤ 2

It can be observed that k-quasi-transitive digraphs have a “better” be-
havior when k is an even integer. This fact will have important consequences
to our concern.

Lemma 8.10.5. Let D be a k-quasi-transitive digraph. If A 6= B are strong

components of D such that there exists an AB-directed path in D, then A
k−1→

B.

The following lemma resembles Lemma 8.6.4.

Lemma 8.10.6. Let D be a (possibly infinite) k-quasi-transitive digraph.
Then, for every directed cycle C of D, there are at least r arcs of C , say
(ui, vi) ∈ A(C ) such that d(vi, ui) ≤ k, i ∈ {1, 2, . . . , r}, r = min{k, `(C )}.

Proof. By induction on `(C ). If `(C ) ≤ k + 1, the result is clear. Let
C = (x0, x1, . . . , xn = x0) be a directed cycle of length n ≥ k+ 2 in D. Since
D is k-quasi-transitive and (x0, x1, . . . , xk) ∈ A(D), then (x0, xk) ∈ A(D) or
(xk, x0) ∈ A(D). In the latter case it is clear that d(xi, xi−1) ≤ k for 1 ≤ i ≤ k
and we are done. In the former case, let us apply the induction hypothesis
to the cycle C ′ = (x0, xk) ∪ (xkC x0), which has length n − k + 1 < n, to
obtain k arcs with the desired condition in A(C ′). Since A

(
C ′ − (x0, xk)

)
⊂

A(C ), if the k arcs obtained from the induction hypothesis are different from
(x0, xk) we are done. Let us assume that one of the arcs is (x0, xk). Hence,
d(xk, x0) ≤ k. If d(xk, x0) = 1, it is the case we have already analyzed. So
d(xk, x0) > 1. Let D = (xk = y0, y1, . . . , ys = x0) be a xkx0-directed path
with s ≤ k. If y1 = x1, then d(xk, xk−1) ≤ k and we are done. Let us assume
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that y1 6= x1. Since D is k-quasi-transitive and x1C xk ∪ (xk, y1) is a x1y1-
directed path of length k, it follows that (y1, x1) ∈ A(D), which implies that
d(xk, xk−1) ≤ k because (xk, y1, x1) ∪ (x1C xk−1) is a xkxk−1 directed path
of length k; or (x1, y1) ∈ A(D), which implies that d(x1, x0) ≤ k because
(x1, y1)∪ (y1Dx0) is a xkxk−1 directed path of length less than or equal to k.
In either case we reach de desired conclusion. �

Lemma 8.10.7. Let k ≥ 2 be an integer and D be an infinite k-quasi-
transitive digraph such that for every infinite outward path (xi)i∈N there exists
an arc (xj, xi) with i < j. Then there exists a vertex v ∈ V (D) such that
whenever (v, u) ∈ A(D), then d(u, v) ≤ k.

Proof. We will proceed by contradiction. Let us assume that for every
vertex v ∈ V (D) there exists an arc (v, u) ∈ V (D) such that d(u, v) ≥ k+ 1.
Then, since the subdigraph H of D induced by these arcs has δ+(H) ≥ 1,
then we have two possibilities. There exist a directed cycle C in D such
that for every arc (v, u) ∈ A(C ), d(u, v) ≥ k + 1, which clearly results in
a contradiction by Lemma 8.10.6. Or there exists an infinite outward path
C = (xi)i∈N such that for every arc (xi, xi+1) ∈ A(C ), d(xi+1, xi) ≥ k+1. But
by hypothesis there is an arc (xj, xi) ∈ A(D) with i < j. So, (xiC xj)∪(xj, xi)
is a directed cycle in D. By Lemma 8.10.6, at least one arc (xi, xi+1) ∈ A(C )
is such that d(xi+1, xi) ≤ k, which results in a contradiction. �

Lemma 8.10.8. Let k ≥ 2 be an even integer and let D be an infinite k-
quasi-transitive digraph such that for every infinite outward path (xi)i∈N there
exists an arc (xj, xi) with i < j. Then D has a (k+ 2)-semikernel consisting
in a single vertex.

Proof. By Lemma 8.10.7 we can choose a vertex v ∈ V (D) such that for
every arc (v, u) ∈ A(D), d(u, v) ≤ k. So let u ∈ V (D) be a vertex such
that 2 ≤ d(v, u) ≤ k + 1. It can not happen that d(u, v) ≥ k + 2, because
this would imply by Lemma 8.10.3 that d(v, u) = 1, but 2 ≤ d(v, u), so
d(u, v) ≤ k + 1 and thus {v} is a (k + 2)-semikernel of D. �

Lemma 8.10.9. Let k ≥ 3 be an odd integer and D be an infinite k-quasi-
transitive digraph such that for every infinite outward path (xi)i∈N there exists
an arc (xj, xi) with i < j and such that at least one vertex v ∈ S = {u ∈
V (D)

∣∣(u,w) ∈ A(D) implies that d(w, u) ≤ k + 1} is such that whenever
d(v, x) = 2 then d(x, v) ≤ k + 1. Then {v} is a (k + 2)-semikernel for D.
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Proof. By Lemma 8.10.7 the set S is non empty and also there is a vertex
v ∈ S such that whenever d(v, x) = 2 then d(x, v) ≤ k+1. So let u ∈ V (D) be
a vertex such that 3 ≤ d(v, u) ≤ k+1. It can not happen that d(u, v) ≥ k+2,
because this would imply, by Lemma 8.10.3, that d(v, u) ≤ 2, but 3 ≤ d(v, u),
so d(u, v) ≤ k + 1 and thus {v} is a (k + 2)-semikernel of D. �

Lemma 8.10.10. Let D be an infinite k-quasi-transitive strong digraph. If
D has a non-empty (k + 2)-semikernel S, then S is a (k + 2)-kernel of D.

Proof. Let S ⊆ V (D) be a (k + 2)-semikernel for D and N−k+1(S) the set
of all vertices in D which are (k + 1)-absorbed by S. Define T := V (D) \(
S ∪N−k+1(S)

)
. If T = ∅, then S is a (k + 2)-kernel of D. If T 6= ∅,

then we can consider a vertex v ∈ T which, by the definition of T , is not
(k+1)-absorbed by S, but since D is strong, there exists a vS-directed path.
Let u ∈ S be a vertex such that d(v, u) = d(v, S), then d(v, u) ≥ k + 2
because v /∈ N−k+1(S), but from Lemmas 8.10.3 and 8.10.4 it can be derived
that d(u, v) ≤ 2. This fact, altogether with the second (k + 2)-semikernel
condition implies that v ∈ N−k+1(S) which results in a contradiction. Since
the contradiction arises from assuming that T 6= ∅, we can conclude that
T = ∅ and then S is a (k + 2)-kernel for D. �

Theorem 8.10.11. Let k ≥ 2 be an even integer and let D be a k-quasi-
transitive strong digraph such that for every infinite outward path (xi)i∈N
there exists an arc (xj, xi) with i < j. Then D has an (n,m)-kernel for every
pair of integers n,m such that n ≥ 2, m ≥ k + 1.

Proof. By Lemma 8.10.8, D has a (k+2)-semikernel N consisting in a single
vertex, but by Lemma 8.10.10, N is indeed a (k + 2)-kernel of D. But since
N has only one vertex, then N is n-independent for every n ≥ 2, and since
it is (k + 1)-absorbent, then it is m-absorbent for every m ≥ k + 1, so N is
an (n,m)-kernel for every pair of integers n,m such that n ≥ 2, �

Theorem 8.10.12. Let k ≥ 2 be an even integer and let D be an infinite
k-quasi-transitive digraph such that for every infinite outward path (xi)i∈N
there exists an arc (xj, xi) with i < j. Then D has an (n,m)-kernel for every
pair of integers n,m such that n ≥ 2, m ≥ k + 1.

Proof. Once again it suffices to prove that if C0 is a strong component of
D then there exists a terminal component T of D such that C0 4 T. This is



146 Infinite digraphs

because, in virtue of Lemmas 8.10.5 and 8.10.11, if we choose a subset N ⊆
V (D) consisting in an (n,m)-kernel for every terminal component of D, this
set will be n-independent for every n ∈ Z+ because every such (n,m)-kernel
consist in a single vertex and terminal components are path-independent.
Also N will be (k + 1)-absorbent because every (n,m)-kernel is inside its
component and every vertex of D not in a terminal component is (k − 1)-
absorbed by every vertex in some terminal component.

Let us observe that the same proof of Theorem 8.10.2 works for k-quasi-
transitive digraphs. The only part of the proof where the hypothesis of being
k-transitive is used is when we recursively construct an infinite outward path
in D (using the Axiom of Choice). When xn ∈ V (Ci) has been chosen and
we choose xn+1 as any vertex such that (xn, xn+1) ∈ A(D) and xn+1 ∈ V (Cj)
with i < j.

Using k-quasi-transitivity instead of k-transitivity, we affirm that such
vertex exists because (Ci)i∈N is an infinite chain in the partial order 4.
Clearly, xn can reach (at a finite distance) Ci+r for every r ∈ N. Moreover,
for every Cj such that i < j and x ∈ V (Cj) we have that d(xn, x) ≤ k − 1.
Otherwise, by Lemmas 8.10.3 and 8.10.4 we would have the existence of a
xxn-directed path, but there are not CjCi-directed paths for i < j because
we would have a cycle in D?. Now, let l be an integer greater than i and
y ∈ V (Cl) an arbitrary vertex. Then d(xn, y) ≤ k − 1. If d(xn, y) = 1,
then y = xn+1. If not, let C be an xny-directed path of minimum length
and consider an arbitrary vertex z ∈ V (Cj) for some j ≥ l such that a yz-
directed path D , internally disjoint with C and of length k− d(xn, y), exists
(such vertex always exists since (Cn)n∈N is an infinite sequence). Clearly
C ∪ D is a xnz-directed path of length k. By the k-quasi-transitivity of D,
(xn, z) ∈ A(D) or (z, xn) ∈ A(D), but since z ∈ V (Cj) with i < j, it follows
that (xn, z) ∈ A(D), and thus we can choose xn+1 = z. So, the infinite
outward path can be constructed and the rest of the proof is just like the
aforementioned proof. �

Theorem 8.10.13. Let k ≥ 3 be an odd integer and let D be an infinite
k-quasi-transitive strong digraph such that for every infinite outward path
(xi)i∈N there exists an arc (xj, xi) with i < j and such that at least one vertex
v ∈ S = {u ∈ V (D)

∣∣(u,w) ∈ A(D) implies that d(w, u) ≤ k+1} is such that
whenever d(v, x) = 2 then d(x, v) ≤ k + 1. Then D has an (n,m)-kernel for
every pair of integers n,m such that n ≥ 2, m ≥ k + 1.

Proof. It is analogous to Theorem 8.10.11. �
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Theorem 8.10.14. Let k ≥ 3 be an odd integer and let D be an infinite
k-quasi-transitive digraph such that for every infinite outward path (xi)i∈N
there exists an arc (xj, xi) with i < j and such that at least one vertex
v ∈ S = {u ∈ V (D)

∣∣(u,w) ∈ A(D) implies that d(w, u) ≤ k + 1} is such
that whenever d(v, x) = 2 then d(x, v) ≤ k + 1. Then D has an n-kernel for
every n ≥ k + 2.

Proof. It is analogous to Theorem 8.10.12. �

As a final comment, we would like to point out again that, in virtue of
Lemma 8.10.7, the set S = {u ∈ V (D)

∣∣(u,w) ∈ A(D) implies that d(w, u) ≤
k+1} in Lemma 8.10.9 is always non-empty. So, it would suffice to prove that
there is a vertex v ∈ S such that whenever d(v, x) = 2 then d(x, v) ≤ k + 1
for every x ∈ V (D) to have as a consequence that, for every integer k ≥ 2,
every k-quasi-transitive digraph has a (n,m)-kernel for every pair of integers
n,m such that n ≥ 2, m ≥ k + 1.

From the various properties that k-quasi-transitive digraphs have proved
to have, we state the following conjecture.

Conjecture 8.10.15. If k ≥ 3 is an odd integer and D is a k-quasi-transitive
strong digraph such that for every infinite outward path (xi)i∈N there exists
an arc (xj, xi) with i < j, then D has a non-empty (k + 2)-kernel.

Recall that in the finite case in Section 5.5 we proved, by means of
a structural characterization of 3-quasi-transitive digraphs, that every 3-
quasitransitive digraph has a 4-kernel. Since the structural characterization
works only for finite digraphs, an analogous for infinite digraphs could not
be obtained. Nonetheless, we believe that the existence of a (k + 2)-kernel
can be replaced by the existence of a (k + 1)-kernel in Conjecture 8.10.15.
Once again, a good starting point would be to prove the result for infinite
3-quasi-transitive digraphs.
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Summary

When the development of the present work began, few general families of di-
graphs where known to possess a (k, l)-kernel. Acyclic digraphs, strong cycli-
cally k-partite digraphs, symmetrical digraphs, transitive digraphs, semicom-
plete digraphs and some superdigraphs of the directed cycle and the directed
path were almost all of those families.

In the present work, eight new familes where studied. Maybe it is not
the case that all the digraphs in the eight families have a (k, l)-kernel for
arbitrary values of k and l. But sufficient conditions were given for all these
families to have a (k, l)-kernel for many values of k and l. Moreover, new
proof techniques that may be used to obtain further results were introduced.
Also, various open problems and conjectures were proposed thrhough the
text. Most of them concerning (k, l)-kernels, but also some of them are about
the structure of new families of digraphs. In fact, new families of digraphs
were defined and studied and some new definitions were given.

In the Preface, we mentioned that this work was intended to fill the gap
between kernels and (k, l)-kernels, since there were many results about kernels
that seemed generalizable to (k, l)-kernels but no such generalizations were
known. Sadly, the gap has not been filled. Nonetheless, a narrow bridge has
been built, based on the few results that we were able to obtain and the open
problems and conjectures that we proposed. Hopefully, this narrow bridge
will be solid enough to be widened by future research on the field, and maybe
one day our knowledge on (k, l)-kernels will be as broad as our knowledge on
kernels.

As a final thought, (k, l)-kernels seem to have a lot of potential for real-
life applications. The main reasons that prevent us from using them is the
difficulty to determine if a given digraph has a (k, l)-kernel and to find the
(k, l)-kernel. Maybe this work can be inscribed within Pure Mathematics,
but the intention of most of the results were to find an easy to verify suffi-



150 Summary

cient condition for a digraph to have a (k, l)-kernel and to describe as much
as possible the structure of such (k, l)-kernel. Maybe, hopefully sooner than
later, some of the results presented in this work will be helpful to imple-
ment optimal solutions to some of the many problems that humankind faces
everyday.
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absorbent set
by directed paths, 33

acyclic ordering, 8
arc, 1

asymmetrical, 11
symmetrical, 11

bridge, 11
bridge graph Br(G), 28

chromatic number, 12
clique, 16
clique number, 16
complement of a graph, 10
complete graph, 12
component of a graph, 11
composition, 4
condensation, 9
connected component of a graph, 11
connected digraph, 11
connected graph, 11
contraction, 4
converse digraph, 4
cycle, 6

degree, 2
digraph, 1

acyclic, 8
asymmetrical, 11
complete, 9, 13
cyclically k -partite, 21

k-path-transitive, 67
k-quasi-transitive, 70
k-transitive, 68
left-pretransitive, 35
locally in-semicomplete, 97
locally out-semicomplete, 97
locally semicomplete, 97
p-partite, 12
quasi-transitive, 13
right-pretransitive, 35
semicomplete, 13
semicomplete bipartite, 13
semicomplete multipartite, 13
symmetrical, 11
transitive, 13

directed walk
bi-infinite, 131

dual digraph, 4

forest, 11
oriented, 11

graph, 10
bipartite, 12
comparability, 65
complete p-partite, 12
complete multipartite, 12
kernel-solvable, 16
p-partite, 12

H-kernel, 117
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in-degree, 2
in-neighborhood, 2
independent set, 12

by directed paths, 33
initial strong component, 9
intermediate strong components, 9
isomorphism, 3

(k, l)-kernel, 18
(k, l)-semikernel, 36
(k, l)-solution, 18
k-condensation, 73
k-independent, 18
k-kernel, 19
k-strong, 9
k-strongly connected, 9
k-transitive closure, 53
kernel, 13

by directed paths, 33
kernel-perfect, 15

l-absorbent, 18
l-dominating, 18
l-king, 18
l-serf, 18
length (of a walk), 5

multidigraph, 2
multigraph, 10

neighbor, 2
neighborhood, 2

order of a digraph, 1
orientation, 10

clique-acyclic, 16
oriented graph, 11
out-degree, 2
out-neighbor, 2

out-neighborhood, 2

path, 6
arc-disjoint, 7
disjoint, 7
internally disjoint, 7
subpath, 7

product (Cartesian), 4
pseudodigraph, 2
pseudograph, 10

quasi-kernel, 17

semikernel, 15
separating set, 9
separator, 9
set

H-absorbent, 117
H-independent, 117

size of a digraph, 1
spanning tree, 11
strong, 9
strong component, 9
strong connectivity, 9
subdigraph, 2

induced subdigraph, 3
spanning subdigraph, 3

superdigraph, 3

terminal strong component, 9
tournament, 11

bipartite, 13
multipartite, 13

trail, 6
tree, 11

oriented, 11

undirected graph, 10
unilateral, 9
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vertex, 1
initial, 8
terminal, 8

vertex-strong connectivity, 9

walk, 5
closed, 6
directed, 11
even, 5
odd, 5
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