UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO

POSGRADO EN CIENCIAS MATEMÁTICAS

FACULTAD DE CIENCIAS

TOPOLOGÍA FINITA DE GRAFOS MOLECULARES Y NOMENCLATURA PARA GRUPOS FUNCIONALES **TESIS**

QUE PARA OBTENER EL GRADO ACADÉMICO DE

MAESTRO EN CIENCIAS

PRESENTA

MARÍA MAGDALENA HERNÁNDEZ GONZÁLEZ

DIRECTOR DE TESIS: DR. ROLANDO JIMÉNEZ BENITEZ

CUERNAVACA, MOR.

SEPTIEMBRE, 2011

Universidad Nacional Autónoma de México

UNAM – Dirección General de Bibliotecas Tesis Digitales Restricciones de uso

DERECHOS RESERVADOS © PROHIBIDA SU REPRODUCCIÓN TOTAL O PARCIAL

Todo el material contenido en esta tesis esta protegido por la Ley Federal del Derecho de Autor (LFDA) de los Estados Unidos Mexicanos (México).

El uso de imágenes, fragmentos de videos, y demás material que sea objeto de protección de los derechos de autor, será exclusivamente para fines educativos e informativos y deberá citar la fuente donde la obtuvo mencionando el autor o autores. Cualquier uso distinto como el lucro, reproducción, edición o modificación, será perseguido y sancionado por el respectivo titular de los Derechos de Autor.

Agradecimientos.

Le agradezco de manera muy especial a mis padres Silvia y Mario por haberme apoyado en cada momento, por su confianza, amor y soporte en tantos momentos difíciles; a mis hermanos Fátima, Juan y Ariadna por su amor y comprensión durante estos años de limitaciones y ausencia.

A mi novio Juan por todo su amor, apoyo y comprensión; por ser paciente y el mayor motivador para concluir este trabajo y continuar con mis sueños.

A mis tías Piedad y Josefina; a mis bisabuelos Antonio, María, Elena y Juan, y a mi familia en general.

A mis amigos: Maura, Jazziel, Alejandra, Talia, Yoshaira, Antonio, Pilar, Ángel, Eréndira, Ronald, Ivan, Julio, Rosalía, César, Jesús, Salvador, Roberto y Jorge.

Aprovecho para agradecerle de manera muy respetuosa a mis maestros por ser verdaderos guías en este camino, de manera particular al Dr. José Luis Cisneros por brindarme su amistad. A mis sinodales Dr. Carlos Alfonso Cabrera Ocañas, Dr. José Luis Martínez Morales, Dr. Criel Merino López, y al Dr. Jesús Rivera Islas por sus observaciones que fueron de gran utilidad para mejorar este trabajo y a mi tutor el Dr. Rolando Jiménez Benitez. Le agradezco también al Instituto de Matemáticas de la UNAM Unidad Cuernavaca por apoyarme con una beca de lugar, durante todo este tiempo.

Introducción.

¿Hasta qué punto son las propiedades de una molécula una consecuencia de la forma en que sus partes están unidas entre sí y hasta qué punto dependen de las propiedades métricas de longitudes y ángulos de enlace y en la dinámica de los electrones y los núcleos? Estos aspectos están íntimamente vinculados en una correcta descripción de la mecánica cuántica de la estructura de una molécula. En este trabajo se presenta un nuevo enfoque a esta pregunta utilizando las herramientas matemáticas de la topología, un tema diseñado específicamente para abordar los aspectos de la estructura que son intrínsecamente no métricos.

Algunos aspectos de esta pregunta se han tratado en el pasado por diversos enfoques. Muchos de estos han involucrado la elaboración de un índice empírico de las diversas ramas moleculares o la complejidad y la búsqueda de correlaciones de estos al observar las propiedades moleculares [3], [11], [20]. Los tratamientos más matemáticamente sofisticados se han basado en la teoría de grafos [2], aunque, con la excepción notable del trabajo de Hosoya [16], [17], [18], [19], la mayor parte de estos han sido esencialmente nuevas exposiciones de la teoría de orbitales moleculares de Hückel. Creemos que la topología es una herramienta particularmente apropiada para atacar este problema y han demostrado previamente en [22], [23], [24] y [25] que sí es posible extraer información estructural significativa de este enfoque.

Una estructura molecular puede ser escrita muy generalmente en términos de sus átomos constituyentes y sus relaciones entre ellos. Consideremos el objeto (X, \prod) , donde X es el conjunto finito de átomos (puntos) y \prod es una cubierta finita de X. Tal objeto tiene una semejanza formal al espacio topológico (X, \mathcal{T}) . Los elementos de \prod pueden ser interpretados como el conjunto de "características" que son suficientes para caracterizar la estructura de X. (X, \prod) describe el sistema de características de los objetos en X. Así, "el elemento x posee característica S" que es equivalente a la inclusión $x \in S$ ($S \in \prod$). Cuando x y y son adyacentes, entonces podemos decir, por ejemplo, que el conjunto S nos da la conexidad entre esos dos puntos.

¿Cómo formulamos una cubierta que refleje, por ejemplo, la estructura molecular?, ¿qué características son apropiadas para asociar con los átomos? En la descripción física de la estructura molecular, al menos dos características son necesarias: 1) La naturaleza química del átomo, y 2) la geometría de la estructura. Ambas características son naturalmente métricas y no se relacionan en una descripción topológica. El grafo asociado con tal estructura, sin embargo, usualmente ignora la característica 1), ya que todos los vértices son equivalentemente pesados y describe la característica 2) en términos del enlace covalente (arista). Tal grafo provee una descripción topológica general pero no contiene información suficiente para muchos propósitos. Así el objetivo principal del trabajo de tesis es investigar que tipos de relaciones son suficientes para describir las estructuras químicas y sus características mediante la construcción de espacios topológicos finitos, en particular se buscará encontrar una aproximación al Método Extendido de Hückel para orbitales moleculares, a partir de la teoría de espacios topológicos finitos y la teoría de gráficas; basándonos en el trabajo realizado por Richard E. Merrifield y Howard E. Simmons para el Método Simple de Hückel [22], [23], [24] y [25].

Este método fue propuesto por Erich Hückel en 1930 y es el método de aproximación más simple de la teoría de orbitales moleculares, inicialmente sólo trataba sistemas formados en su totalidad por átomos de carbono, más tarde se extendió su uso a otras moléculas en cuya composición se encuentran átomos de nitrógeno y oxígeno, entre otros, los denominados heteroátomos.

Otros cálculos que se pueden realizar al utilizar este método son: La energía total del sistema π y el orden de enlace π o también llamado orden de enlace de Hückel; este último es la aproximación principal que se realiza con el método expuesto en la tesis.

Nuestro estudió se basa en asociarle a una molécula, una gráfica dirigida [4], [12], [13], [14], [15], [28], [29] la cual siempre es disconexa si el número de átomos distintos del hidrógeno es mayor que 3. A partir de esta gráfica se le asocia a la molécula una topología, haciendo uso de los conceptos de la teoría de espacios topológicos finitos; a la cual llamaremos topología de enlace [22].

Esta topología de enlace, es la topología más pequeña en el conjunto X de átomos, en la cual cada conjunto de un par de átomos adyacentes es abierto. Es decir esta topología expresa las conexiones atómicas entre los átomos de la molécula a estudiar. A través de esta topología de enlace estudiamos las propiedades combinatorias de su gráfica que son de gran importancia a la hora de calcular el orden de enlace de Hückel. Se hace un estudio más detallado de una de estas propiedades combinatorias, nos referimos a las funciones generadoras de cada una de las componentes conexas de su gráfica, con el fin de poder hallar la función generadora adecuada para un conjunto formado por dos elementos; para lo cual se construyó una tabla en la que se refleja el comportamiento que tienen sobre la molécula los diversos elementos que intervienen este conjunto.

La estructura de nuestro trabajo es la siguiente: En el Capítulo 1, introduciremos los conceptos básicos relacionados con los espacios topológicos finitos y analizaremos sus principales propiedades que los distinguen de otros espacios topológicos, enfatizando nuestro estudio en la definición de base irreducible y cotopología de un espacio topológico finito, ya que serán de gran importancia en todo el trabajo. Además, exploraremos las relaciones entre digrafos y espacios topológicos finitos, las cuales serán cruciales para nuestro estudio de las estructuras moleculares.

En el Capítulo 2, se desarrollan las herramientas matemáticas de la topología combinatoria, que son muy importantes en las aplicaciones de los espacios topológicos finitos a las estructuras moleculares. Entre estas herramientas destacaremos: la cardinalidad de su topología, el número de conjuntos conexos y las funciones generadoras.

En el Capítulo 3, se dará una detallada explicación desde un enfoque químico de la Teoría de Orbitales Moleculares de Hückel. Se explicará paso a paso el trabajo original de Hückel para el caso de hidrocarburos insaturados y para sistemas heteroatómicos, con el fin de que el método topológico que se expondrá en los capítulos siguientes sea más claro.

En el Capítulo 4, se detallará el Método de Hückel para encontrar el orden de enlace de un par de átomos $\{i, j\}$, además se darán las definiciones y las relaciones preliminares entre un espacio topológico finito y una estructura molecular y daremos la definición de la topología de enlace, apoyándonos en las principales características de los espacios topológicos finitos estudiadas en los capítulos anteriores, para así dar nuestro método de aproximación del cálculo del orden de Hückel para un par de átomos $\{i,j\},$ en un hidrocarburo no saturado.

En el Capítulo 5, exponemos el tema central de este trabajo, mostramos nuestro método extendido de aproximación del cálculo del orden de Hückel para un par de átomos $\{i, j\}$ para los distintos grupos funcionales químicos, es decir, en estructuras moleculares donde no sólo están formados por carbonos.

Índice general

1.	Top	Topologías finitas y teoría de grafos.					
	1.1.	Cotopología	1				
	1.2.	Bases irreducibles.	2				
	1.3.	Clausura, coclausura, interior y frontera de un conjunto general	4				
	1.4.	Topologías finitas y grafos dirigidos.	5				
	1.5.	Topologías finitas y grafos	9				
	1.6.	Subbases y grafos.	10				
	1.7.	Clasificación de espacios topológicos finitos y teoría de grafos	11				
2.	Con	Combinatoria.					
	2.1.	Cardinalidad de una topología.	15				
	2.2.	Cardinalidad de un subespacio	18				
	2.3.	Conjuntos conexos: conexidad en grafos	20				
	2.4.	Funciones generadoras	26				
	2.5.	Funciones de correlación de dos puntos en espacios $T_{\frac{1}{2}}$	30				
		2.5.1. Conjuntos abiertos que contienen un par dado.	30				
		2.5.2. Conjuntos abiertos y cerrados que contienen un par dado	32				
		2.5.3. Conjuntos abiertos que contienen exactamente un miembro de un par . \ldots .	33				
3.	Método de Hückel 3						
	3.1.	Conceptos básicos	35				
		3.1.1. Enlace químico	35				
	3.2.	Teorías de enlace covalente.	36				
		3.2.1. Teoría de Enlace Valencia (EV) y la hibridación de los orbitales.	37				
		3.2.2. Tipos de enlace covalente	38				
		3.2.3. Teoría de Orbitales Moleculares (OM)	39				
	3.3.	Método de Hückel	41				
		3.3.1. Fundamentos de la Teoría de Hückel	41				
		3.3.2. El Método Orbital Molecular de Hückel (HMO).	43				
	3.4.	Estructura de la topología de enlace para sistemas heteroatómicos	54				
		3.4.1. Tratamiento de compuestos conjugados con heteroátomos	54				

4. Topología de enlace.			57			
	4.1. Construcción de la topología de enlace					
	4.2. Estructura de la topología de enlace para estructuras de carbono					
		4.2.1.	Estructura de grafo.	60		
		4.2.2.	Propiedades combinatorias de la topología de enlace	62		
5. Topología de Enlace para grupos funcionales						
	5.1.	5.1.1	Propiedades combinatorias de la topología de enlace	73 79		
Conclusiones 11						
Bibliografía						

Capítulo 1

Topologías finitas y teoría de grafos.

En este capítulo, se presentarán algunas definiciones básicas [9], [27] necesarias para una clara comprensión y familiarización con los resultados. Entre estas definiciones destacan la de cotopología y la de base irreducible de un espacio dado.

Se hablará de la conexión natural entre las topologías y los grafos finitos [4], [12], [13], [14], [15], [28] y [29]. Esta conexión da un significado exacto a la noción cualitativa de la estructura, además proporciona un cálculo gráfico-teórico de las características más importantes de los espacios topológicos finitos [10], [21], [31], [33], [34] y [35].

También revisaremos algunas definiciones y relaciones entre los elementos del espacio. Además se dará una forma de clasificar tales espacios señalando sus características gráficas que los definen. Es necesario aclarar que en este trabajo sólo se considera el caso en el que X es finito.

1.1. Cotopología.

Definición 1.1. Un espacio topológico es un conjunto X con una topología \mathcal{T} , la cual es una colección de subconjuntos de X (llamados abiertos) que tiene las siguientes propiedades:

- I. El conjunto vacío, \emptyset , y X son abiertos.
- II. La unión arbitraria de conjuntos abiertos es abierta.
- III. La intersección finita de conjuntos abiertos es abierta.

A la colección de subconjuntos cerrados (los complementos de los conjuntos cerrados) de la topología de X se le llama *cotopología* de \mathcal{T} , la cual denotaremos por \mathcal{T}^* .

Cuando \mathcal{T} es una topología sobre un conjunto finito, entonces la cotopología \mathcal{T}^* correspondiente es también una topología de X. Así (X, \mathcal{T}^*) es un espacio topológico, ya que incluyen al \emptyset y X y es cerrado bajo la unión y la intersección.

Notemos algunas relaciones entre la topología y la cotopología correspondientes a un conjunto finito X:

i) La relación de la topología-cotopología es simétrica, es decir, $\mathcal{T}^{**} = \mathcal{T}$.

ii) $\mathcal{T} \neq \mathcal{T}^*$ no son necesariamente distintos.

Para comprender mejor este concepto, damos los siguientes ejemplos:

Ejemplo 1.1. Sea $X = \{1, 2, 3, 4\}$ consideremos tres de sus 33 distintas topologías asociadas

$$\begin{split} \mathcal{T}_1 &= \{ \emptyset, \{1\}, \{3\}, \{1,3\}, \{3,4\}, \{1,2,3\}, \{1,3,4\}, X \}, \\ \mathcal{T}_2 &= \{ \emptyset, \{1\}, \{1,2\}, \{1,3\}, \{1,4\}, \{1,2,3\}, \{1,2,4\}, \{1,3,4\}, X \}, \\ \mathcal{T}_3 &= \{ \emptyset, \{1\}, \{3\}, \{1,2\}, \{1,3\}, \{3,4\}, \{1,2,3\}, \{1,3,4\}, X \}, \end{split}$$

sus cotopologías correspondientes son:

$$\begin{split} &\zeta_1 = \{ \emptyset, \{2\}, \{4\}, \{1,2\}, \{2,4\}, \{1,2,4\}, \{2,3,4\}, X \}, \\ &\zeta_2 = \{ \emptyset, \{2\}, \{3\}, \{4\}, \{2,3\}, \{2,4\}, \{3,4\}, \{2,3,4\}, X \}, \\ &\zeta_3 = \{ \emptyset, \{2\}, \{4\}, \{1,2\}, \{2,4\}, \{3,4\}, \{1,2,4\}, \{2,3,4\}, X \}. \end{split}$$

Estas se obtienen al calcular los complementos de los elementos de \mathcal{T}_i (i = 1, 2, 3).

Ejemplo 1.2. Consideremos a $X = \{1, 2, 3, 4\}$ y su topología $\mathcal{T} = \{\emptyset, \{1, 2\}, \{3, 4\}, X\}$, al calcular los complementos de los elementos de la topología tenemos que, $\mathcal{T}^* = \{\emptyset, \{1, 2\}, \{3, 4\}, X\}$ y por lo tanto $\mathcal{T} = \mathcal{T}^*$.

Es necesario enfatizar que esta dualidad topología-cotopología es solamente una característica de espacios finitos; ya que los conjuntos cerrados de un espacio infinito, generalmente no satisfacen los axiomas de una topología.

1.2. Bases irreducibles.

Cuando la cardinalidad de X es muy grande, puede haber muchos conjuntos abiertos, por esto es deseable describir un espacio topológico en términos de un número de conjuntos mucho más pequeño esto es, una "base" para la topología. Gracias a que X es finito podemos definir el concepto de base irreducible, la cual será de gran utilidad en lo que resta del trabajo.

Antes de dar la definición de una base irreducible es necesario definir base.

Definición 1.2. En un espacio topológico (X, \mathcal{T}) se dice que una colección B de elementos de \mathcal{T} , es una *base* de la topología \mathcal{T} , si todo elemento de \mathcal{T} , es decir, si todo abierto de la topología \mathcal{T} , es expresable como unión de elementos de B.

Definición 1.3. Una base irreducible \mathfrak{B} de un espacio topológico finito es una base, donde ninguno de sus elementos puede ser expresado como una unión de otros elementos de la base.

Dado un punto $p \in X$ se define;

i) Al elemento básico \mathcal{B}_p como el conjunto abierto más pequeño que contiene a p, es decir

$$\mathcal{B}_p = \bigcap \{ \mathcal{O} | p \in \mathcal{O}, \ \mathcal{O} \in \mathcal{T} \},$$
(1.1)

ii) Al elemento básico \mathcal{B}_p^* como el conjunto cerrado más pequeño que contiene a p, es decir

$$\mathcal{B}_p^* = \bigcap \{ \mathcal{O} | p \in \mathcal{O}, \ \mathcal{O} \in \mathcal{T}^* \}.$$
(1.2)

Ahora describamos la relación entre base irreducible y \mathcal{B}_p ; a través de la siguiente proposición. **Proposición 1.1.** Sea (X, \mathcal{T}) un espacio topológico finito. La colección de conjuntos

$$\mathfrak{B} = \{\mathcal{B}_p | p \in X\}$$

es una base irreducible para la topología \mathcal{T} .

Demostración. Para cualquier conjunto abierto $\mathcal{O} \in \mathcal{T}$, y para cualquier $p \in \mathcal{O}$ se tiene que $\mathcal{B}_p \subset \mathcal{O}$, ya que $\mathcal{B}_p = \bigcap \{ \mathcal{O} | p \in \mathcal{O}, \ \mathcal{O} \in \mathcal{T} \}$, y por lo tanto

$$\mathcal{O} = \bigcup \{ \mathcal{B}_p | p \in \mathcal{O} \}.$$

Ahora probemos que \mathfrak{B} es irreducible. Supóngase que $\mathcal{B}_p = \bigcup \mathcal{B}_i$ para $i = 1, 2 \dots n$, luego, $\mathcal{B}_i \subset \mathcal{B}_p$, en particular $\mathcal{B}_p \subset \mathcal{B}_r$ con $1 \leq r \leq n$; así $p \in \mathcal{B}_r$. Por otra parte, si $p \in \mathcal{B}_i$ entonces $\mathcal{B}_p \subset \mathcal{B}_i$ y por la definición de \mathcal{B}_p se tiene que esto sólo ocurrirá si $\mathcal{B}_p = \mathcal{B}_r$.

A un subconjunto $Y \subset X$ en un espacio topológico (X, \mathcal{T}) se le puede asignar una topología y ser considerado como un espacio topológico por separado. De todas las posibles topologías en Y, alguna de estas pueden ser heredas del espacio original.

Definición 1.4. Un subespacio de un espacio topológico (X, \mathcal{T}) es un subconjunto $Y \subset X$ junto con la topología

$$\mathcal{T}_Y = \{ O \cap Y | O \in \mathcal{T} \}.$$

Ahora definamos base irreducible para un subconjunto $Y \subset X$. Si $p \in Y$, entonces el conjunto abierto más pequeño en Y que contiene a p es;

$$\mathcal{B}_{Y,p} = \bigcap \{ \mathcal{O} | p \in \mathcal{O}, \ \mathcal{O} \in \mathcal{T} \} \cap Y,$$
(1.3)

asi

$$\mathcal{B}_{Y,p} = \mathcal{B}_p \cap Y, \qquad p \in Y. \tag{1.4}$$

Calculemos los elementos básicos del siguiente ejemplo:

Ejemplo 1.3. Considere el conjunto $X = \{1, 2, 3, 4\}$ con la topología

$$\mathcal{T}_1 = \{\emptyset, \{1\}, \{3\}, \{1,3\}, \{3,4\}, \{1,2,3\}, \{1,3,4\}, X\}.$$

Los elementos de la base irreducible son $\mathcal{B}_1 = \{1\}$, $\mathcal{B}_2 = \{1, 2, 3\}$, $\mathcal{B}_3 = \{3\}$, $\mathcal{B}_4 = \{3, 4\}$. Para el subconjunto $Y = \{2, 3, 4\}$, encontramos que la topología relativa de Y es

Con elementos básicos; $\mathcal{T}_Y = \{\emptyset, \{3\}, \{2,3\}, \{3,4\}, Y\}.$

$$\mathcal{B}_{Y,2} = \{1, 2, 3\} \cap Y = \{2, 3\}$$
$$\mathcal{B}_{Y,3} = \{3\} \cap Y = \{3\},$$
$$\mathcal{B}_{Y,4} = \{3, 4\} \cap Y = \{3, 4\}.$$

1.3. Clausura, coclausura, interior y frontera de un conjunto general.

Hay ciertas propiedades de los conjuntos, que se pueden relacionar con la definición de cotopología y base irreducible, las cuales serán de gran importancia más adelante.

Comencemos recordando la definición de clausura e introduzcamos la de coclausura.

Definición 1.5. Dado un subconjunto A de un espacio topológico X.

- i) La clausura de A es la intersección de todos los conjuntos cerrados que contienen a A, y se denota por \overline{A} .
- ii) La *coclausura* de A es la intersección de todos los conjuntos abiertos que contienen a A y se denota por \widehat{A} .

Se pueden concluir las siguientes relaciones entre la clausura y coclausura;

- i) $A = \overline{A}$ si y sólo si A es cerrado.
- *ii)* $A = \hat{A}$ si y sólo si A es abierto.

De la ecuación (1.1) y de la Definición 1.5, podemos concluir que:

 $i) \ \mathcal{B}_p = \widehat{\{p\}},$ $ii) \ \mathcal{B}_p^* = \overline{\{p\}}.$

Ejemplo 1.4. Dado el conjunto $X = \{1, 2, 3, 4\}$ con la topología

$$\mathcal{T} = \{ \emptyset, \{1\}, \{3\}, \{1,3\}, \{3,4\}, \{1,2,3\}, \{1,3,4\}, X \},$$

y su cotopología asociada,

$$\mathcal{T}^* = \{\emptyset, \{2\}, \{4\}, \{1, 2\}, \{2, 4\}, \{1, 2, 4\}, \{2, 3, 4\}, X\},\$$

tenemos que:

$$\overline{\{1,4\}} = \{1,2,4\}, \qquad \overline{\{1,4\}} = \{1,3,4\}, \\ \overline{\{2,3\}} = \{2,3,4\}, \qquad \overline{\{2,3\}} = \{1,2,3\}.$$

La clausura y la coclausura tienen las siguientes propiedades llamados Axiomas de Clausura y Coclausura de Kuratowski:

$$i) \ \overline{\emptyset} = \emptyset \qquad i') \ \emptyset = \emptyset$$
$$ii) \ A \subset \overline{A} \qquad iii') \ A \subset \widehat{A}$$
$$iii) \ \overline{A \cup B} = \overline{A} \cup \overline{B} \qquad iii') \ \widehat{A \cup B} = \widehat{A} \cup \widehat{B}$$
$$iv) \ \overline{\overline{A}} = \overline{A} \qquad iv') \ \widehat{\overline{A}} = \widehat{A}$$

Proposición 1.2. En virtud de iii) y iii') de los axiomas de Kuratowski, podemos escribir la clausura y coclausura de un subconjunto del espacio topológico en términos de los elementos básicos de su cotopología y topología respectivamente [31]:

i)
$$\overline{A} = \bigcup_{p \in A} \mathcal{B}_p^*$$
,
ii) $\widehat{A} = \bigcup_{p \in A} \mathcal{B}_p$.

Demostración. Basándonos en la definición de clausura y coclasura de un conjunto, de los axiomas de Kuratowski *iii)* y *iii')*, y el hecho que $\mathcal{B}_p = \widehat{\{p\}}$ y $\mathcal{B}_p^* = \overline{\{p\}}$ tenemos que:

$$i) \ \overline{A} = \overline{\bigcup_{p \in A} \{p\}} = \bigcup_{p \in A} \overline{\{p\}} = \bigcup_{p \in A} \mathcal{B}_p^*,$$
$$ii) \ \widehat{A} = \widehat{\bigcup_{p \in A} \{p\}} = \bigcup_{p \in A} \widehat{\{p\}} = \bigcup_{p \in A} \mathcal{B}_p.$$

1.4. Topologías finitas y grafos dirigidos.

En esta sección, se dará la definición de un grafo dirigido o digrafo [4], [12], [13], [14], [15], [28], [29] y la manera de como obtener el digrafo asociado a la topología y la cotopología correspondientes de un espacio topológico finito. Hablaremos de la relación entre el inverso de un digrafo y el digrafo asociado a la cotopología [10], [21], [33], [34] y [35]. También se analizará la forma de hallar la clausura y la coclausura de un subconjunto a través del digrafo asociado a un espacio topológico finito.

Definición 1.6. Un grafo dirigido (o digrafo) D consta de un conjunto de puntos V(D), los vértices de D, junto con un conjunto E(D) de pares ordenados de vértices, las aristas de D.

Una arista (p,q) es convencionalmente representada por una línea dirigida de p a q. Los vértices $p \ge q$ se dicen *adyacentes* si $(p,q) \in E(D)$ ó $(q,p) \in E(D)$.

La siguiente definición explica la manera de obtener el digrafo asociado a un espacio topológico, usando una propiedad de sus elementos básicos.

Definición 1.7. Sea (X, \mathcal{T}) un espacio topológico finito, el digrafo $D(\mathcal{T})$ asociado a (X, \mathcal{T}) es aquel digrafo cuyos vértices son los elementos de X y el par (p,q) con $p,q \in X$, está en $E(D(\mathcal{T}))$ si $\mathcal{B}_p \supset \mathcal{B}_q$.

Se denota al digrafo de una topología \mathcal{T} por $D(\mathcal{T})$.

En el siguiente ejemplo ilustramos la definición anterior;

Ejemplo 1.5. Sea $X = \{1, 2, 3\}$, con la topología $\mathcal{T} = \{\emptyset, \{1\}, \{1, 2\}, \{1, 3\}, X\}$ y la cotopología $\mathcal{T}^* = \{\emptyset, \{2\}, \{3\}, \{2, 3\}, X\}$. Los conjuntos básicos correspondientes son:

$$\mathcal{B}_1 = \{1\}, \ \mathcal{B}_2 = \{1, 2\}, \ \mathcal{B}_3 = \{1, 3\}.$$

Así, $\mathcal{B}_1 \subset \mathcal{B}_2$, $\mathcal{B}_1 \subset \mathcal{B}_3$ y \mathcal{B}_2 no es comparable con \mathcal{B}_3 . El digrafo de esta topología es:

$$\bullet_2$$
 \bullet_1 \leftarrow_3

Hasta aquí partiendo de una topología obtenemos un digrafo usando sus elementos básicos. La pregunta es si podemos revertir este proceso, es decir, partiendo de un digrafo D, ¿cómo obtener una topología \mathcal{T} , tal que $D = D(\mathcal{T})$?

Definición 1.8. Sea un espacio topológico (X, \mathcal{T}) , para cualquier punto $p \in X$, definimos a la colección de vértices adyacentes desde p en D como:

$$A_p^+ = \{q | (p,q) \in E(D)\}.$$

En el siguiente teorema se presenta la manera de obtener los elementos básicos de una topología a través de un digrafo dado.

Teorema 1.1. Dados el espacio topológico (X,T) y el conjunto A_p^+ para algún punto $p \in X$. El conjunto básico correspondiente a p, contiene al punto p junto con los puntos adyacentes desde p, es decir:

$$\mathcal{B}_p = \{p\} \cup A_p^+.$$

Demostración. Queremos ver que

$$\bigcap \{ \mathcal{O} | p \in \mathcal{O}, \ \mathcal{O} \in \mathcal{T} \} = \{ p \} \cup A_p^+.$$

Consideremos inicialmente el siguiente caso.

Sea $r \in \{p\} \cup A_p^+$, así r = p ó $r \in A_p^+$.

Si r = p, entonces $r \in \mathcal{O}$ para todo $\mathcal{O} \in \mathcal{T}$ que contiene a p, así

$$r \in \bigcap \{ \mathcal{O} | p \in \mathcal{O}, \ \mathcal{O} \in \mathcal{T} \}.$$

Si $r \in A_p^+$, entonces $(p, r) \in E(D)$, luego, por la Definición 1.7 se tiene que $\mathcal{B}_r \subset \mathcal{B}_p$, así

$$\mathcal{B}_r \subset \bigcap \{ \mathcal{O} | p \in \mathcal{O}, \ \mathcal{O} \in \mathcal{T} \}$$

y por lo tanto

$$r \in \bigcap \{ \mathcal{O} | p \in \mathcal{O}, \ \mathcal{O} \in \mathcal{T} \}.$$

Por otra parte, si $r \in \bigcap \{ \mathcal{O} | p \in \mathcal{O}, \ \mathcal{O} \in \mathcal{T} \}$; existen dos posibilidades: ya sea que r = p ó $r \neq p$.

Si
$$r = p$$
 entonces $r \in \{p\} \cup A_p^+$.

Ahora bien, si $r \neq p$ se necesita probar que $r \in A_p^+$, dado que $\mathcal{B}_p = \bigcap \{ \mathcal{O} | p \in \mathcal{O}, \mathcal{O} \in \mathcal{T} \}$, entonces $\mathcal{B}_r \subset \mathcal{B}_p$, así, por la Definición 1.7 existe $(p,r) \in E(D)$, entonces $r \in A_p^+$ y por lo tanto $r \in \{p\} \cup A_p^+$. Apliquemos el resultado anterior al siguiente ejemplo, y veamos que realmente podemos encontrar la topología asociada a un digrafo.

Ejemplo 1.6. Consideremos el siguiente digrafo;

de donde se observa que

$$A_1^+ = \emptyset, \quad A_2^+ = \{1, 3, 4\}, \quad A_3^+ = \emptyset \quad A_4^+ = \emptyset \quad A_5^+ = \{4\}$$

Así los conjuntos básicos son

$$\mathcal{B}_1 = \{1\}, \quad \mathcal{B}_2 = \{1, 2, 3, 4\}, \quad \mathcal{B}_3 = \{3\}, \quad \mathcal{B}_4 = \{4\}, \quad \mathcal{B}_5 = \{4, 5\}.$$

Y por lo tanto la topología es

 $\mathcal{T} = \{ \emptyset, \{1\}, \{3\}, \{4\}, \{1,3\}, \{1,4\}, \{3,4\}, \{4,5\}, \{1,3,4\}, \{1,4,5\}, \{3,4,5\}, \{1,2,3,4\}, \{1,3,4,5\}, X \}.$

Definición 1.9. Definimos al digrafo obtenido a partir de un digrafo arbitrario D, tal que sus aristas son de la forma (q, p) para todo $p, q \in X$ tal que $(p, q) \in D$, este digrafo es llamado el *inverso* de D y es denotado por D'.

Ya hemos asociado un digrafo a una topología, entonces también podemos hacer esto con su cotopología asociada.

Definición 1.10. Dado un espacio topológico finito (X, \mathcal{T}) , a su cotopología \mathcal{T}^* , se le asocia un digrafo $D(\mathcal{T}^*)$, cuyos vértices son los elementos de X. Dados $p, q \in X, (p, q)$ es una arista si $B_p^* \supset B_q^*$. $D(\mathcal{T}^*)$ es:

$$p \rightarrow q$$

De las Definiciones 1.9 y 1.10 se observa que $D(\mathcal{T}^*) = D'(\mathcal{T})$.

Definición 1.11. Sea (X, \mathcal{T}) un espacio topológico, para cualquier punto $p \in X$, definimos a la colección de vértices adyacentes a p en $D(\mathcal{T})$ como:

$$A_p^- = \{q | (q, p) \in E(D(\mathcal{T}))\}.$$

Los conjuntos básicos \mathcal{B}_p^* para la cotopología \mathcal{T}^* pueden ser obtenidos de $D(\mathcal{T}^*)$, de la misma forma que los conjuntos \mathcal{B}_p son obtenidos de $D(\mathcal{T})$.

Damos el resultado análogo al Teorema 1.1, para el caso de la cotopología asociada.

Teorema 1.2. Sean (X, \mathcal{T}) un espacio topológico y el conjunto A_p^- como en la Definición 1.11 para algún punto $p \in X$. Entonces

$$\mathcal{B}_p^* = \{p\} \cup A_p^-.$$

Demostración. La demostración es análoga a la del Teorema 1.1.

Luego, \mathcal{B}_p^* contiene a p junto con todos los vértices de $D(\mathcal{T})$ desde los cuales p es accesible siguiendo las aristas.

Expresemos todo lo anterior en el siguiente ejemplo:

Ejemplo 1.7. Para la topología del Ejemplo 1.5, el digrafo es

$$D(\mathcal{T}) = \underbrace{\bullet}_2 \xrightarrow{\bullet}_1 \underbrace{\bullet}_3$$

 $D'(\mathcal{T}) = D(\mathcal{T}^*) = \underbrace{\bullet}_2 < \underbrace{\bullet}_1 >$

y su inversa es

у

$$\mathcal{B}_1^* = \{1, 2, 3\}, \qquad \mathcal{B}_2^* = \{2\}, \qquad \mathcal{B}_3^* = \{3\}.$$

Recordemos que en un espacio topológico X, la coclausura de un subconjunto arbitrario $S \subset X$ está definido como el conjunto abierto más pequeño \hat{S} , para el cual $S \subset \hat{S}$ y esta dado por

$$\widehat{S} = \bigcup_{p \in S} \mathcal{B}_p.$$

De lo mencionado anteriormente, de las Definiciones 1.7 y 1.10 y los Teoremas 1.1 y 1.2 se obtiene el siguiente resultado que no se demostrará.

Teorema 1.3. Sea (X, \mathcal{T}) un espacio topológico. Entonces

$$\widehat{S} = S \cup \left(\bigcup_{p \in S} A_p^+\right),$$

donde A_p^+ es como en la Definición 1.11. En otras palabras, \widehat{S} contiene a los puntos de S junto con todos los puntos adyacentes desde cualquier punto en S. Similarmente, la clausura de S, \overline{S} , satisface:

$$\begin{split} S &= S \cup \{q \in X | existe \ p \in S, (q, p) \in E(D) \} \\ \overline{S} &= S \cup \left(\bigcup_{p \in S} A_p^- \right). \end{split}$$

Aquí podemos ver una aplicación del resultado anterior.

Ejemplo 1.8. Para los subconjuntos del espacio de los Ejemplos 1.5 y 1.7 para el cual D es

 $D(\mathcal{T}) = \underbrace{\bullet}_2 \longrightarrow \underbrace{\bullet}_1$ se obtiene que Coclausura Clausura $\widehat{\{1\}} = \{1\},\$ $\overline{\{1\}} = \{1, 2, 3\},\$ $\widehat{\{2\}} = \{1, 2\},\$ $\overline{\{2\}} = \{2\},\$ $\widehat{\{3\}} = \{1, 3\},\$ $\overline{\{3\}} = \{3\},\$ $\widehat{\{1,2\}} = \{1,2\},\$ $\overline{\{1,2\}} = \{1,2,3\},\$ $\overline{\{2,3\}} = \{1,2,3\},\$ $\widehat{\{2,3\}} = \{1,2,3\},\$ $\overline{\{1,3\}} = \{2,3\}.$ $\widehat{\{1,3\}} = \{1,3\},\$

Ahora, lo que nos interesa, es hallar una manera de identificar cuando un punto de un digrafo asociado a un espacio topológico es abierto o cerrado.

Teorema 1.4. Sea X un espacio topológico, si en el digrafo asociado a su topología \mathcal{T} , existe un punto p sin aristas salientes, entonces $\{p\}$ es un abierto. Similarmente, si p no tiene aristas entrantes, entonces $\{p\}$ es un cerrado.

Demostración. Sea (X, \mathcal{T}) un espacio topológico. Dado $p \in X$, considérese la hipótesis que p no tiene aristas salientes, lo que significa que no existe algún $q \in X$ tal que $(p,q) \in E(D)$; esto por la definición de digrafo asociado a una topología \mathcal{T} , con lo cual la relación $\mathcal{B}_q \subset \mathcal{B}_p$ no existe. Luego, por el Teorema 1.1 $A_p^+ = \emptyset$ y por tanto $\mathcal{B}_p = \{p\}$. La demostración de un cerrado es análoga.

Un teorema análogo se puede establecer para la cotopología, intercambiando las palabras abierto y cerrado.

Para el ejemplo que hemos estado analizando se tiene lo siguiente, al aplicar el teorema anterior.

Ejemplo 1.9. Para el espacio del Ejemplo 1.8, el único abierto unipuntual es el $\{1\}$, mientras que los cerrados unipuntuales son $\{2\}$ y $\{3\}$.

1.5. Topologías finitas y grafos.

En la sección anterior se dio la manera de asociar un digrafo a una topología; en esta sección nuestro interés es dar una propiedad similar entre un grafo y una topología(cotopología). Además se dará la relación entre una subbase del espacio topológico y su topología. **Definición 1.12.** Un grafo no dirigido (llamado simplemente grafo) G consta de un conjunto de puntos V(G) (el conjunto de los vértices de G), junto con un conjunto E(G) de pares de vértices no ordenados (el conjunto de las aristas de G).

Una arista $\{p, q\}$ es representada por una línea no dirigida de p a q (segmento de línea).

A un espacio topológico (X, \mathcal{T}) se le puede asociar un grafo $G(\mathcal{T})$ a partir de un digrafo asociado a \mathcal{T} , eliminando la direccionalidad de las aristas. La importancia de los grafos para las topologías yace en el hecho de que existe un único grafo asociado con cada par de topología-cotopología, esto es, el grafo fundamental de los digrafos $D(\mathcal{T}) \ge D'(\mathcal{T}) \ge D'(\mathcal{T}) \ge d(\mathcal{T})$.

En el siguiente ejemplo se observa que el grafo asociado a la topología y a la cotopología del espacio topológico es el mismo.

Ejemplo 1.10. Consideremos el espacio topológico $X = \{1, 2, 3, 4\}$. Para el par topología-cotopología

 $\mathcal{T} = \{ \emptyset, \{1\}, \{3\}, \{3,4\}, \{1,2,3\}, \{1,3,4\}, X \}, \quad \mathcal{T}^* = \{ \emptyset, \{2\}, \{4\}, \{1,2\}, \{1,2,4\}, \{2,3,4\}, X \},$

los correspondientes digrafos son:

1.6. Subbases y grafos.

Cuando tenemos una subbase S para una topología \mathcal{T} , tanto $D(\mathcal{T})$ y $G(\mathcal{T})$ pueden construirse directamente de S. Antes de explicar esta forma de construir a $D(\mathcal{T})$ y $G(\mathcal{T})$, daremos la definición de subbase para una topología \mathcal{T} .

Definición 1.13. Sea X un conjunto. Una subbase S para una topología T sobre X es una colección de subconjuntos de X cuya unión es igual a X.

Dado cualquier punto $p \in X$, el elemento básico correspondiente en términos de S es:

$$\mathcal{B}_p = \bigcap \{ S | p \in S, yS \in \mathcal{S} \}.$$

Así, una arista $\{p,q\}$ en $G(\mathcal{T})$ resulta o bien de la arista (p,q) o de la arista (q,p) en $D(\mathcal{T})$, la condición para su presencia es que cualquier $p \in S$ implique que $q \in S$ o viceversa, para todo $S \in S$.

A continuación se ejemplificará lo descrito anteriormente,

Ejemplo 1.11. Sea

$$\mathcal{S} = \{\{1, 2\}, \{2, 3, 4\}, \{4\}, \{2, 4, 5\}\}$$

una subbase para una topología sobre $X = \{1, 2, 3, 4, 5\}$. Luego los conjuntos básicos son:

$$\mathcal{B}_1 = \{1, 2\}, \ \mathcal{B}_2 = \{2\}, \ \mathcal{B}_3 = \{2, 3, 4\}, \ \mathcal{B}_4 = \{4\}, \ \mathcal{B}_5 = \{2, 4, 5\}.$$

Los valores de $p \neq q$, para los cuales $p \in S \in S$ implica que $q \in S$ están dados por

p	Ч
1	2
2	
3	2,4
4	
5	2, 4

Por lo tanto, para la topología $\mathcal{T} = \{\emptyset, \{2\}, \{4\}, \{1, 2\}, \{2, 3, 4\}, \{2, 4, 5\}, X\}$ inducida por \mathcal{S} tenemos

1.7. Clasificación de espacios topológicos finitos y teoría de grafos.

En esta sección analizaremos los principales espacios T_n descritos en [9], [27], [33], [34], [35], así como los principales resultados que los caracterizan pero a través de la teoría de grafos.

Definición 1.14. Un espacio topológico (X, \mathcal{T}) es un *espacio* T_0 si dados dos puntos distintos $x, y \in X$, al menos uno de ellos posee una vecindad que no incluye al otro.

Si un espacio no es T_0 , debe contener al menos un par de puntos tales que ambos estén presentes, o bien ausentes en cada conjunto abierto, en otras palabras, estos puntos son topológicamente indistinguibles. **Teorema 1.5.** Un espacio topológico (X, \mathcal{T}) es T_0 si y sólo si su digrafo asociado $D(\mathcal{T})$ no contiene al digrafo:

Demostración. Supongamos que el espacio topológico (X, \mathcal{T}) no es T_0 , de manera que existe un par de puntos para los cuales cada conjunto abierto que contiene a p también contiene a q, y viceversa. De esta manera $p \in \mathcal{B}_q$ y $q \in \mathcal{B}_p$, de forma que

debe ser un subdigrafo del digrafo asociado al espacio $D(\mathcal{T})$. Por otra parte, si existe por lo menos un conjunto abierto que contenga a p y no a q, entonces $q \notin \mathcal{B}_p$, y su digrafo no podrá contener al subdigrafo anterior.

Definición 1.15. Un espacio topológico (X, \mathcal{T}) es un *espacio* T_1 , si dados dos puntos distintos $x, y \in X$, cada uno posee una vecindad que no incluye al otro. Notar que las vecindades no tienen que ser disjuntas.

De lo anterior se observa que un espacio topológico T_1 es disconexo, ya que cada punto es una componente separada y es al mismo tiempo abierto y cerrado.

Proposición 1.3. Si un espacio topológico finito es T_1 , su topología es la discreta.

Demostración. Sean $p \neq q$ un par de puntos arbitrarios en el espacio T_1 , luego, $p \notin \mathcal{B}_q \neq \mathcal{B}_p$, es decir, el conjunto de aristas del grafo asociado a la topología es vacío. Como todo espacio T_1 es disconexo, luego su topología es la discreta.

Recordemos la definición de un espacio $T_{\frac{1}{2}}$.

Definición 1.16. Un espacio topológico es un *espacio* $T_{\frac{1}{2}}$ si cada punto del espacio es un abierto, o un cerrado o ambos.

Veamos las relaciones existentes entre los espacios T_1 y $T_{\frac{1}{2}}$, y entre $T_{\frac{1}{2}}$ y T_0 .

Proposición 1.4. Si un espacio topológico es

- I. T_1 entonces es $T_{\frac{1}{2}}$.
- II. $T_{\frac{1}{2}}$ entonces es T_0 .

Demostración.

- I. Que un espacio T_1 es $T_{\frac{1}{2}}$ se sigue del hecho de que en tal espacio cada punto es abierto y cerrado al mismo tiempo.
- II. Un espacio $T_{\frac{1}{2}}$ es T_0 ya que el digrafo asociado a $T_{\frac{1}{2}}$ contiene sólo vértices de los siguientes dos tipos:

no puede estar presente.

Luego, podemos concluir que un espacio T_1 es T_0 En los siguientes ejemplos analizamos las propiedades mencionadas en los teoremas y las definiciones de esta sección.

Ejemplo 1.12. El espacio que tiene como digrafo asociado

es un espacio $T_{\frac{1}{2}}$, ya que los puntos 1,3,4 son abiertos y los puntos 2,5 son cerrados. Dado que ningún punto es abierto y cerrado al mismo tiempo el espacio no es T_1 .

Ejemplo 1.13. El espacio para el cual su digrafo asociado

es T_0 ya que no contiene al subdigrafo

pero no es $T_{\frac{1}{2}}$ porque los puntos 2 y 4, no son ni abiertos ni cerrados.

Capítulo 2

Combinatoria.

En el capítulo anterior consideramos la descripción cualitativa de los espacios topológicos finitos. En contraste, en este capítulo analizaremos algunas de sus características cuantitativas. Es decir, invariantes topológicos tales como: la cardinalidad, el número de conjuntos conexos y las funciones generadoras.

2.1. Cardinalidad de una topología.

Del Capítulo 1, podemos recordar que todo conjunto abierto de un espacio topológico se puede obtener de la unión de elementos de la base irreducible \mathfrak{B} de su topología \mathcal{T} asociada. Es importante notar que no todas las uniones producen distintos conjuntos abiertos. Consideremos una unión arbitraria de elementos básicos

$$V = \mathcal{B}_1 \cup \mathcal{B}_2 \cup \dots \tag{2.1}$$

Si para una pareja de índices i, j, tenemos que $\mathcal{B}_i \subset \mathcal{B}_j$ entonces \mathcal{B}_i es redundante en la unión y podemos eliminarlo. Con esto garantizamos uniones distintas de abiertos ya que no contendrán pares de elementos básicos comparables.

Queremos encontrar un criterio simple para buscar conjuntos de elementos básicos mutuamente incomparables, así como un método para enumerarlos, que parta de considerar al grafo $G(\mathcal{T})$ de la topología \mathcal{T} . Consideremos al espacio topológico finito (X, \mathcal{T}) que es T_0 , para el cual su grafo dirigido asociado $D(\mathcal{T})$ no contiene pares de vértices conectados por más de una arista. En este caso $G(\mathcal{T})$ se obtiene reemplazando solamente cada arista dirigida por una no dirigida como se estudió en la Sección 1.5 del capítulo anterior y además los pares de elementos básicos comparables corresponden a los vértices adyacentes de $G(\mathcal{T})$. Por lo tanto, se obtendrán conjuntos abiertos distintos sólo cuando uniones de elementos básicos estén formadas por los correspondientes conjuntos de vértices de $G(\mathcal{T})$, donde no hay dos puntos que son adyacentes. Así, la cardinalidad de una topología finita es igual al número de conjuntos independientes de vértices del grafo asociado a la topología.

Definición 2.1. Considérese una grafo G = (V, E). Un conjunto I de vértices de G es *independiente* de vértices o aristas si no existen dos vértices de I que sean adyacentes, esto es, el subgrafo de G inducido por I no tiene aristas.

Denotaremos al número de conjuntos independientes de vértices del grafo $G(\mathcal{T})$ por el símbolo $\sigma(\mathcal{T})$. Podemos calcular el número de conjuntos independientes $\sigma(G)^1$ para un grafo G, de forma recursiva, es decir, podemos expresar $\sigma(G)$ en términos de los valores de σ de subgrafos de G. El grafo G - pque se obtiene de G al eliminar al vértice p y todas las aristas conectadas a p. Así, $\sigma(G - p)$ es el número de conjuntos independientes de G que no contienen al vértice p. El grafo $G - (p \cup A_p)$ se construye de G eliminando el vértice p y sus vértices adyacentes con las correspondientes aristas relacionadas, luego, $\sigma(G - (p \cup A_p))$ es el número de conjuntos independientes de G que no contienen a p y a sus vértices adyacentes.

Teorema 2.1. Sea (X, \mathcal{T}) un espacio topológico. Consideremos su grafo asociado $G(\mathcal{T}) = (V, E)$ y un vértice arbitrario $p \in V$, entonces el número total de conjuntos independientes del espacio es

$$\sigma(G) = \sigma(G - p) + \sigma(G - (p \cup A_p)).$$

Demostración. Sea (X, \mathcal{T}) espacio topológico, consideremos su grafo asociado $G(\mathcal{T}) = (V, E)$ y un vértice arbitrario $p \in V$, como se muestra en la siguiente figura:

Consideremos la relación de los conjuntos independientes de G y los conjuntos independientes de G con el vérice p eliminado. Si G - p denota al grafo derivado de eliminar a p y a todos los vértices adyacentes a p. Entonces cada conjunto independiente de G - p es también un conjunto independiente de G.

Los otros conjuntos independientes de G surgen de uniones de $\{p\}$ con conjuntos independientes de G - p que no contienen ningún vértice adyacente a p, el número de estos conjuntos independientes es $\sigma(G - (p \cup A_p))$, donde A_p es el conjunto de vértices de G adyacente a p. En la siguiente figura mostramos a los conjuntos G - p y $G - (p \cup A_p)$.

 $^1 {\rm La}$ función $\sigma(G)$ es similar al "índice topológico" de Hosoya, que es igual al número de conjuntos de aristas independientes de G

Por lo tanto el número total de conjuntos independientes del espacio es

$$\sigma(G) = \sigma(G - p) + \sigma(G - (p \cup A_p)).$$

Del teorema anterior surgen los siguientes corolarios, el primero nos habla del caso en el que G es disconexo y el segundo para el caso en el que G es una cadena lineal.

Corolario 2.1. Sea G un grafo disconexo con componentes G_i (i = 1, 2, ..., n); esto es,

$$G = \bigcup_{i=1}^{n} G_i,$$

entonces

$$\sigma(G) = \prod_{i=1}^{n} \sigma(G_i).$$

Demostración. Si G es un grafo multicomponente $\bigcup_{i=1}^{n} G_i$, los conjuntos independientes de G son uniones de cualquier selección de un conjunto independiente de cada componente.

Sea F_n el número de Fibonacci para n.

Corolario 2.2. Si $G = P_n$ es una cadena lineal de n vértices (también llamado camino)

$$1$$
 2 3 \cdots $n-1$ n P_n

entonces

$$\sigma(P_n) = F_{n+1}$$

Demostración. Recordemos que $\sigma(G) = \sigma(G - p) + \sigma(G - (p \cup A_p))$, de donde:

$$\sigma(P_n) = \sigma(P_{n-1}) + \sigma(P_{n-2})$$

la cual es idéntica a la relación de recursión de números de Fibonacci F_n :

$$F_n = F_{n-1} + F_{n-2}$$
 $(F_1 = 1, F_2 = 2).$

Con esto los valores de $\sigma(P_n)$ están en función del valor de F_n , a partir de donde se observa que P_1 tiene dos conjuntos independientes \emptyset , {1} y P_2 tiene tres \emptyset , {1}, {2}, luego, $\sigma(P_n) = F_{n+1}$.

En el siguiente ejemplo aplicaremos los resultados expuestos en el Teorema 2.1 y los Corolarios 2.1 y 2.2, para calcular el número de conjuntos independientes del espacio dado.

Ejemplo 2.1. Sea (X, \mathcal{T}) espacio topológico, tal que \mathcal{T} tiene asociado el grafo

al calcular $\sigma(G(\mathcal{T}))$ obtenemos

$$|\mathcal{T}| = \sigma\left(\bigcap_{G-p}^{p}\right)$$
$$= \sigma\left(\bigcap_{G-p}^{p}\right) + \left(\bigcup_{G-p-A_{p}}^{p}\right)$$
$$= \sigma(P_{9}) + \sigma(P_{3} \cup P_{3})$$
$$= \sigma(P_{9}) + \sigma^{2}(P_{3})$$
$$= F_{10} + F_{4}^{2}$$
$$= 114.$$

2.2. Cardinalidad de un subespacio.

Ahora el objetivo es hallar el número de conjuntos abiertos que contienen a un subconjunto $S \subset X$ como subconjunto de estos; este número de subconjuntos será denotado por n(S).

Proposición 2.1. La colección de conjuntos abiertos que contienen un subconjunto arbitrario $S \subset X$ es isomorfo al subespacio topológico $X - \hat{S}$ y por lo tanto $n(S) = |\mathcal{T}(X - \hat{S})|$.

Demostración. Sea S un subconjunto de X. Cada conjunto abierto de X que contiene a S debe contener a \hat{S} , así esta colección de conjuntos es

$$\{\widehat{S} \cup \mathcal{O}_i \mid \mathcal{O}_i \in \mathcal{T}\}.$$

Esta colección no forma la misma topología, el conjunto vacío no es un miembro pero si es isomorfo a uno. Si eliminamos todos los de \hat{S} de cada conjunto, es decir, si

$$(\widehat{S} \cup \mathcal{O}_i) - \widehat{S} = \mathcal{O}_i - \widehat{S},$$

el conjunto resultante es igual a

$$(X - \widehat{S}) \cap \mathcal{O}_i,$$

ya que ambos conjuntos consisten de los elementos de X que pertenecen a \mathcal{O}_i , pero no \widehat{S} . En la última fórmula estos conjuntos son simplemente los conjuntos abiertos del subespacio $X - \widehat{S}$, con lo que concluimos que la colección de conjuntos abiertos de un espacio topológico que contiene al conjunto $S \subset X$ es isomorfo al subespacio topológico del complemento de la coclausura de S, $X - \widehat{S}$. En particular, contienen el mismo número de conjuntos.

En el siguiente teorema se da la manera de obtener n(S) a través del número de conjuntos independientes.

Teorema 2.2. Sea (X, \mathcal{T}) un espacio topológico con su grafo asociado G y sea S un subconjunto arbitrario; entonces el número de conjuntos abiertos que contienen al subconjunto S es

$$n(S) = \sigma(G - (S \cup A^+(S))).$$

Demostración. Recordemos que $\widehat{S} = S \cup A^+(S)$, donde $A^+(S)$ es el conjunto de vértices adyacentes a algún punto de S en el digrafo $D(\mathcal{T})$; además el digrafo asociado al subespacio $X - \widehat{S}$, es el subdigrafo de $D(\mathcal{T})$ inducido por $X - \widehat{S}$.

Como
$$G - \widehat{S} = G - (S \cup A^+(S))$$
 entonces $n(S) = \sigma(G - (S \cup A^+(S))).$

Enunciemos la versión para el caso de los conjuntos cerrados.

Teorema 2.3. Sea (X, \mathcal{T}) un espacio topológico con su grafo asociado G y sea un subconjunto arbitrario $S \subset X$; entonces el número de conjuntos cerrados que contienen al subconjunto S es

$$n^*(S) = \sigma(G - (S \cup A^-(S))).$$

Demostración. La demostración es similar a la del teorema anterior.

Calculemos el número de conjuntos abiertos y cerrados que contienen a un subconjunto S de un espacio topológico finito dado X.

Ejemplo 2.2. Para el espacio topológico (X, \mathcal{T}) , con $X = \{1, 2, 3, 4\}$ y

$$\mathcal{T} = \{\emptyset, \{1\}, \{3\}, \{1,3\}, \{3,4\}, \{1,2,3\}, \{1,3,4\}, X\},\$$

su digrafo asociado es

$$\begin{array}{c|c} \bullet & \bullet & \bullet \\ 1 & 2 & 3 & \bullet \\ \end{array}$$

Si $S = \{1, 2\}$, entonces $A^+(S) = 3$ y $A^-(S) = \emptyset$, y

$$n(S) = \sigma(\bullet) = \sigma(P_1) = F_2 = 2$$
 y $n^*(S) = \sigma(\bullet - \bullet) = (P_2) = F_3 = 2$

Ejemplo 2.3. Considérese el espacio con el digrafo asociado

En el Ejemplo 2.1 se calculó la cardinalidad de este espacio a través de su grafo asociado y obtuvimos que $|\mathcal{T}| = 114$. Si se considera a $S = \{1, 2, 6\}$, entonces

$$\overline{S} = \{1, 2, 3, 5, 6, 7\}, \quad \overline{S} = \{1, 2, 6, 10\}$$

y por lo tanto

$$n(S) = \sigma(\frown)$$

= $\sigma(P_3)\sigma(P_1) = 10,$

$$n^*(S) = \sigma\left(\bigcap \bigcup \right)$$
$$= [\sigma(P_3)]^2 = 25.$$

En el siguiente Corolario abordamos el caso cuando el espacio topológico finito es $T_{\frac{1}{2}}$. **Corolario 2.3.** Sea (X, \mathcal{T}) un espacio $T_{\frac{1}{2}}$, donde sus conjuntos constan de un solo elemento, entonces el número $n_p \equiv n(\{p\})$ de conjuntos abiertos que contienen al elemento p es:

- i) Si p es abierto, entonces $n(\{p\}) = \sigma(G p) y n^*(\{p\}) = \sigma(G (p \cup A_p)).$
- ii) Si p es cerrado, entonces $n^*(\{p\}) = \sigma(G (p \cup A_p)) y n(\{p\}) = \sigma(G p)$.

Demostración. Esta conclusión es evidente del siguiente hecho: si p es abierto, entonces $\hat{p} = p$ y $\overline{p} = p \cup A_p$; además, si p es cerrado, entonces $\hat{p} = p \cup A_p$ y $\overline{p} = p$.

Cuando el espacio topológico es $T_{\frac{1}{2}}$, por el Corolario anterior y la definición de $\sigma(G)$, podemos calcular esta última usando n_p , n_p^* , lo anterior se enuncia en la siguiente proposición.

Proposición 2.2. Sea (X, \mathcal{T}) un espacio topológico $T_{\frac{1}{2}}$ es discreto, entonces $n_p + n_p^* = \sigma(G)$.

Apliquemos estos resultados a un espacio topológico finito específico.

Ejemplo 2.4. En el espacio dado en el Ejemplo 2.2.

Los n_i representan el número de conjuntos abiertos que contienen a cada subgrafo i, así obtenemos:

 $n_{1} = (\longrightarrow) = 5, \qquad n_{1}^{*} = (\longrightarrow) = 3,$ $n_{2} = (\cdot) = 2, \qquad n_{2}^{*} = (\longrightarrow) = 6,$ $n_{3} = (\longrightarrow) = 6, \qquad n_{3}^{*} = (\cdot) = 2,$ $n_{5} = (\longrightarrow) = 3, \qquad n_{4}^{*} = (\longrightarrow) = 5.$

2.3. Conjuntos conexos: conexidad en grafos.

Una de las primeras preguntas que nos hacemos es si el espacio topológico es una unidad o consiste de varias piezas. Una de las características cualitativas más importantes de los espacios topológicos es la conexidad, la cual también se puede estudiar como un aspecto cuantitativo, aun cuando el espacio no sea conexo. Cuando esto pasa sólo consideramos sus subconjuntos conexos. Los subconjuntos conexos de (X, \mathcal{T}) , son subconjuntos de X que inducen subgrafos conexos de $G(\mathcal{T})$. Así, la enumeración de los conjuntos conexos de un espacio, se convierte en un problema de contar el número de subgrafos conexos inducidos de este grafo, esta cantidad se denota por $\rho(G)$.

Iniciemos dando la definición de subgrafo conexo de un grafo dado.

Definición 2.2. Sea G = (V, E) un grafo y G' = (V', E') un subgrafo de G. El grafo G' es conexo si para cada $x, y \in V'$ existen $x = x_1, x_2, \ldots, x_n = y \in V'$ tales que $\{x_i, x_{i+1}\} \in E'$ para cada $i = 1, 2, \ldots, n-1$.

Si
$$G_i = (V_i, E_i)$$
, se define $\bigcup G_i = (V', E')$, con $V' = \bigcup V_i, E' = \bigcup E_i$.

El siguiente teorema es un resultado general para conexos, aunque aquí enunciamos la versión para grafos.

Teorema 2.4. Si
$$G_i$$
 es conexo para $i = 1, 2, ..., n$ $y \bigcap_{i=1}^n V_i \neq \emptyset$, entonces $\bigcup_{i=1}^n G_i \neq \emptyset$ es conexo

Demostración. Sea $\{G_i\}_{i=1}^n$ una colección de subgrafos conexos de un grafo G.

Dados los puntos $x, y \in \bigcup_{i=1}^{n} G_i$, con $x \in G_i$ y $y \in G_j$, utilizando el hecho de que G_i es conexo, por definición existen $w \in G_i$ y $w \in G_j$. Luego, $x = x_1, x_2, \ldots, x_n = w \in V_i$ y $w = y_1, y_2, \ldots, y_n = y \in V_j$, tomando en cuenta la hipótesis $\bigcap_{i=1}^{n} V_i \neq \emptyset$, se puede hallar una cadena

$$x = x_1, x_2, \dots, x_n = y_1 = w, y_2, \dots, y_n = y \in V_i \cup V_j,$$

como G_i y G_j fueron tomados arbitrariamente se puede concluir que $\bigcup_{i=1}^n G_i \neq \emptyset$ es conexo. \Box

En el siguiente teorema damos una de las relaciones principales de los grafos conexos.

Teorema 2.5. Sea (X, \mathcal{T}) un espacio topológico y $G(\mathcal{T})$ su grafo asociado. Sea Y un subespacio de X. Si $Y \subset X$ es disconexo, entonces $G(\mathcal{T}_Y)$ es disconexo en $G(\mathcal{T})$.

Demostración. Supóngase que Y es disconexo, luego, $Y = U \cup W$ con U y W abiertos no vacíos, tal que $U \cap W = \emptyset$. Dados $x, y \in Y$ (cabe recordar que los elementos de Y son los elementos de V) tal que $x \in U$ y $y \in W$. Ahora bien,

$$\mathcal{B}_{x,V} = \bigcap \{ \mathcal{O} | x \in \mathcal{O}, \ \mathcal{O} \in \mathcal{T} \} \cap V, \\ \mathcal{B}_{x,V} = \mathcal{B}_x \cap V$$

y de la misma forma

$$\mathcal{B}_{y,W} = \mathcal{B}_y \cap W.$$

Así, $\mathcal{B}_{x,V}$ y $\mathcal{B}_{y,W}$ no son comparables, es decir $\mathcal{B}_{x,V} \not\subset \mathcal{B}_{y,W}$ y $\mathcal{B}_{x,V} \not\supset \mathcal{B}_{y,W}$. Con lo cual no existe $\{x, y\} \in G(\mathcal{T}_Y)$, entonces $G(\mathcal{T}_Y)$ es disconexo.

El siguiente corolario es consecuencia directamente del teorema anterior y de su demostración.

Corolario 2.4. Sea (X, \mathcal{T}) un espacio topológico y $G(\mathcal{T})$ su grafo asociado. Si $Y \subset X$ es componente conexa, entonces $G(\mathcal{T}_Y)$ es componente conexa de $G(\mathcal{T})$.

Veamos que pasa con el número de componentes conexas de un espacio topológico y las componentes conexas de su grafo.

Teorema 2.6. Un espacio topológico (X, \mathcal{T}) y su grafo $G(\mathcal{T})$ tienen el mismo número de componentes.

Demostración. Supongamos que X tiene dos componentes conexas, es decir, $X = X_1 \cup X_2$. Lo que implica que si $p \in X_1$ entonces $B_p \subset X_1$, ya que X_1 es un conjunto abierto que contiene a $p \neq B_p$ es el conjunto abierto más pequeño que lo contiene. Por lo tanto, el grafo de la topología $G(\mathcal{T})$, no contiene aristas que conectan puntos de distintas componentes, en otras palabras, G, consiste por lo menos de tantas componentes conexas como las que tiene el espacio. Ahora supongamos que $G(\mathcal{T})$ consiste de dos componentes, tal que

$$G = G_1 \cup G_2 = G_1(V_1, E_1) \cup G_2(V_2, E_2),$$

para el cual los conjuntos de vértices y aristas son $V(G) = V_1 \cup V_2$ y $E(G) = E_1 \cup E_2$. Asumimos que V_1 y V_2 son disjuntos. Entonces

$$X_1 = \bigcup_{p \in V_1} \mathcal{B}_p$$
 y $X_2 = \bigcup_{p \in V_2} \mathcal{B}_p$

son conjuntos abiertos disjuntos tal que la unión es X. Por lo tanto, (X, \mathcal{T}) tiene tantas componentes como $G(\mathcal{T})$. Con lo que concluimos que un espacio topológico y su grafo tienen precisamente el mismo número de componentes conexas.

Corolario 2.5. Sea (X, \mathcal{T}) un espacio topológico y $G(\mathcal{T})$ su grafo asociado.

- I. Sea G' una componente conexa de $G(\mathcal{T})$, entonces G' induce una componente conexa de X.
- II. Un espacio conexo tiene un grafo conexo.

Demostración. Se sigue directamente del teorema anterior.

Damos el siguiente ejemplo donde calculamos los subconjuntos conexos de un espacio dado. Ejemplo 2.5. Para el espacio $X = \{1, 2, 3, 4, 5\}$ del cual su digrafo es:

Los subconjuntos conexos son:

$$\begin{split} & \emptyset, \{1\}, \{2\}, \{3\}, \{4\}, \{5\}, \\ & \{1,2\}, \{2,3\}, \{2,4\}, \{4,5\}, \\ & \{1,2,3\}, \{1,2,4\}, \{2,3,4\}, \{2,4,5\}, \\ & \{1,2,3,4\}, \{1,2,4,5\}, \{2,3,4,5\}, \\ & X. \end{split}$$

La estrategia que usaremos para calcular $\rho(G)$, es la misma que empleamos para $\sigma(G)$, es decir, encontrar una fórmula recursiva que relacione esta cantidad $\rho(G)$ con los $\rho(G')$ de grafos G' con menos número de vértices.

Consideramos un vértice p de G, los conjuntos conexos de $G(\mathcal{T})$ que no contienen a p permanecem conexos si p es eliminado de G, el número de estos conjuntos es $\rho(G-p)$. En otras palabras $\rho(G-p)$ es el número de conjuntos conexos que no contienen al vértice p y a sus aristas advacentes.

Los conjuntos conexos de G que contienen p son las uniones de p con los conjuntos de vértices de G - p que son conexos cuando se añade p. No todos estos conjuntos son conexos en G - p, pero lo son en el grafo en el que todos los vértices en A_p son unidos por aristas.

Definición 2.3. El grafo $G \bullet p$ se obtiene de G de eliminar el vértice p y conectar cada par de elementos adyacentes a p a través de una arista.

Definición 2.4. Definimos al grafo $G \bullet (p \cup A_p)$, como aquel que se obtiene de $G \bullet p$ al eliminar a todos los vértices adyacentes a p.

Ahora enunciamos el teorema en el que se da la fórmula recursiva para calcular $\rho(G)$.

Teorema 2.7. Sea (X, \mathcal{T}) un espacio topológico y $G(\mathcal{T})$ su grafo asociado, entonces el número de conjuntos conexos es

$$\rho(G) = \rho(G - p) + \rho(G \bullet p) - \rho(G - (p \cup A_p)) + 1.$$

Demostración. Es evidente que el número de conjuntos conexos que contienen a p es igual a uno más el número de conjuntos conexos que al menos contienen un elemento de A_p . Ahora bien, el número de conjuntos conexos de $G \bullet p$ que no contienen a ningún elemento de A_p es

$$\rho(G \bullet (p \cup A_p)) = \rho(G - (p \cup A_p)),$$

con esto se observa que el número de conjuntos conexos que contienen al menos un elemento de A_p está dado por $\rho(G \bullet p) - \rho(G - (p \cup A_p))$, entonces el número total de conjuntos conexos de G que contiene a p es

$$\rho(G \bullet p) - \rho(G - (p \cup A_p)) + 1.$$

Además, $\rho(G-p)$ es el número de conjuntos conexos que no contienen a p, por lo tanto

$$\rho(G) = \rho(G - p) + \rho(G \bullet p) - \rho(G - (p \cup A_p)) + 1.$$

A partir del resultado anterior podemos tratar de formular un resultado parecido para la unión de conjuntos conexos.

Corolario 2.6. Sea $\bigcup_{i=1}^{n} G_i$ la unión de grafos disjuntos, entonces su número de conjuntos conexos es

$$\rho(\bigcup_{i=1}^{n} G_i) = \sum_{i=1}^{n} \rho(G_i) - n + 1.$$

Demostración. Se sigue de la demostración del teorema anterior y de la definición de conjuntos disjuntos. $\hfill \Box$

Al igual que con $\sigma(G)$, el paso final para hallar el valor explícito de $\rho(G)$, es a través de una fórmula recursiva de ρ para el camino P_n .

Corolario 2.7. Sea P_n un camino de n vértices, entonces el número de conjuntos conexos es

$$\rho(P_n) = 2\rho(P_{n-1}) - \rho(P_{n-2}) + 1.$$

Demos ahora una fórmula explícita de la anterior fórmula recursiva para $\rho(P_n)$. Corolario 2.8. Sea P_n un camino de n vértices, entonces el número de conjuntos conexos se calcula como:

$$\rho(P_n) = \frac{1}{2}n(n+1) + 1.$$

Demostración. La prueba se realizará mediante inducción matemática, sobre n. Es fácil ver que $\rho(P_1) = 2 \text{ y } \rho(P_2) = 4$. Supóngase que se cumple para n y veamos que se cumple para n+1. Usando lo mencionado en el Corolario 2.7 se tiene:

$$\rho(P_{n+1}) = 2\rho(P_n) - \rho(P_{n-1}) + 1$$

= $2(\frac{1}{2}n(n+1)+1) - (\frac{1}{2}(n-1)n+1) + 1$
= $n(n+1) + 2 - \frac{1}{2}(n-1)n - 1 + 1$
= $\frac{2n(n+1)+2-(n-1)n}{2} + 1$
= $\frac{2n^2+2n+2-n^2+n}{2} + 1$
= $\frac{n^2+3n+2}{2} + 1$
= $\frac{1}{2}(n+1)(n+2) + 1.$

Es necesario ejemplificar todos los resultados antes expuestos, calculando $\rho(G)$ de un espacio topológico finito específico.

Ejemplo 2.6. Para la topología del espacio (X, \mathcal{T}) su grafo es:

Así, de los 32 subespacios de este espacio, 18 son conexos.

En un espacio $T_{\frac{1}{2}}$ los puntos pueden ser particionados como $X = X_o \cup X_c$, donde los elementos de X_o son puntos abiertos y los de X_c son cerrados.

Los conjuntos abiertos conexos se clasifican como:

- *i*) El conjunto vacío \emptyset ,
- *ii)* abiertos de un sólo elemento,
- *iii)* uniones de elementos básicos de puntos cerrados.

Ningún otro tipo de conjunto abierto puede ser conexo en un espacio $T_{\frac{1}{2}}$; ya que no hay un par de puntos abiertos y cerrados adyacentes en el grafo.

Por lo tanto, la adición de un punto abierto a un conjunto de tipo *iii*) o bien no genera un nuevo conjunto, si el punto es adyacente a uno de los puntos cerrados en el conjunto, o produce un conjunto disconexo si no es adyacente.

Podemos calcular el número de conjuntos abiertos conexos del tipo *iii*) de la siguiente manera. Primero construimos el grafo G_c , al que se le llama condensación cerrada de $G(\mathcal{T})$, para el cual el conjunto de vértices es $V(G_c) = X_c$ y el conjunto de aristas es:

$$E_c = \{i, j | A_i \cap Aj \neq \emptyset\},\$$

donde A_i y A_j son vecindades de los i y j respectivamente. Es decir, hay una arista (i, j) en G_c , si los vértices i y j son los cerrados más cercanos en vecindades A_i y A_j en $G(\mathcal{T})$. Con esto notamos que los conjuntos conexos del tipo *iii*) corresponden a los conjuntos conexos de G_c .
Luego, el número de conjuntos conexos abiertos de un espacio X, se calcula a través de su grafo asociado G por

$$\rho_o(G) = |X_o| + \rho(G_c).$$

Similarmente, el número de conjuntos conexos cerrados de un espacio X, se calcula a través de su grafo asociado G por

$$\rho_c(G) = |X_c| + \rho(G_o).$$

Ejemplo 2.7. Para el espacio dado en el Ejemplo 2.6, supóngase que los puntos son particionados en dos conjuntos de la siguiente manera

Con lo cual, las dos condensaciones de G son

Entonces

$$\rho_o(G) = |X_o| + \rho\left(\swarrow\right)$$
$$= 2 + 8 = 10,$$
$$\rho_c(G) = |X_c| + \rho\left(\circ - \circ\right)$$

$$p_c(G) = |X_c| + \rho(\underbrace{\circ \cdots \circ}_{= 3+4})$$
$$= 3+4=7,$$

donde $\rho(G) = 14$, así 5/7 de los conjuntos abiertos del espacio son conexos y la mitad de los conjuntos son cerrados.

2.4. Funciones generadoras.

Hasta ahora en este capítulo nos hemos ocupado simplemente de contar el número total de conjuntos de varios tipos. Para algunos propósitos de nuestro siguiente capítulo, es conveniente disponer de información más detallada acerca de los conjuntos que ya hemos analizado. Esta información adicional que requerimos, se basa en la pregunta que nos hicimos: ¿Existirá alguna forma de saber, cuántos conjuntos abiertos de una cardinalidad dada hay?

Para resolver este cuestionamiento, comencemos definiendo lo que es una función generadora de conjuntos abiertos de un espacio topológico (X, \mathcal{T}) .

Definición 2.5. En un espacio topológico (X, \mathcal{T}) , la función generadora de los conjuntos abiertos está definida por

$$F(D;z) = \sum_{k=0}^{|X|} N_k(D) z^k;$$

donde D es el digrafo de la topología y $N_k(D)$ es el número de conjuntos abiertos con cardinalidad k.

Es necesario que la función generadora se refiera a D en lugar de G, ya que, a pesar de que el número total de conjuntos abiertos $\sigma(G)$ es el mismo para D y para su inverso $D' = D(\mathcal{T})$, la distribución de estos conjuntos de mayor cardinalidad no es necesariamente la misma. Observamos que F(D;1)es simplemente el número total de conjuntos abiertos, es decir, $\sigma(G(D)) = F(D;1)$.

Al igual que en las secciones anteriores, buscamos representar de manera más sencilla cada una de las fórmulas con las que calculamos las características combinatorias de los espacios topológicos finitos. En el siguiente teorema damos esta forma para la función generadora para conjuntos abiertos.

Teorema 2.8. Sea (X, \mathcal{T}) un espacio topológico que es $T_{\frac{1}{2}}$, entonces la función generadora para sus conjuntos abiertos es

$$F(D;z) = F(D-p;z) + z^{1+|A_p^+|}F(D-(p \cup A_p^+);z),$$

donde p cerrado.

Demostración. Supóngase que X está compuesto por $X = X_o \cup X_c$ y $p \in X_c$. Al eliminar p no cambian las cardinalidades de los conjuntos básicos asociados con otros puntos, cada conjunto abierto de D-p también es un conjunto abierto de D con la misma cardinalidad. Los otros conjuntos abiertos de D surgen de las uniones de $\mathcal{B}_p = \{p\} \cup A_p^+$ con conjuntos abiertos de $D - (p \cup A_p^+)$, donde tal unión incrementa la cardinalidad de un conjunto abierto obteniendo $1 + |A_p^+|$, con lo cual

. . . . + .

$$F(D;z) = F(D-p;z) + z^{1+|A_p|} F(D-(p \cup A_p^+);z).$$

Hemos visto distintas características de los espacios topológicos finitos, entre ellos la de conexidad, ahora estudiamos lo que pasa con espacios disconexos y como calcular su función generadora. Lema 2.1. Si un espacio topológico (X, \mathcal{T}) es disconexo y $D = D_1 \cup D_2$, entonces

$$N_k(D) = \sum_{l=0}^n N_{k-l}(D_1) N_l(D_2).$$

Demostración. Dado que X es disconexo, su digrafo asociado puede ser expresado como $D = D_1 \cup D_2$, entonces un conjunto abierto de cardinalidad k resulta de la unión de un conjunto de cardinalidad l en una componente y uno de cardinalidad k - l, luego

$$N_k(D) = \sum_{l=0}^n N_{k-l}(D_1) N_l(D_2).$$

Corolario 2.9. Si un espacio topológico (X, \mathcal{T}) es disconexo, entonces $F(D_1 \cup D_2; z) = F(D_1; z)F(D_2; z)$.

Demostración. Sean (X, \mathcal{T}) un espacio topológico disconexo y su digrafo asociado D(T), supongamos que $X = X_1 \cup X_2$ y $D = D_1 \cup D_2$, con esto se observa que:

$$F(D; z) = F((D_1 \cup D_2); z)$$

= $\sum_{k=0}^{|X|} N_k(D_1 \cup D_2) z^k$
= $\sum_{k=0}^{|X|} (\sum_{l=0}^n N_{k-l}(D_1) N_l(D_2)) z^k$
= $\sum_{k=0}^{|X_1|} N_k(D_1) z^k \sum_{k=0}^{|X_2|} N_k(D_2) z^k.$

Encontremos la función generadora del espacio topológico finito $T_{\frac{1}{2}}$ dado.

Ejemplo 2.8. Para el espacio topológico $T_{\frac{1}{2}}$, con

 $\mathcal{T} = \{ \emptyset, \{1\}, \{3\}, \{4\}, \{1,3\}, \{1,4\}, \{3,4\}, \{4,5\}, \{1,3,4\}, \{1,4,5\}, \{3,4,5\}, \{1,2,3,4\}, \{1,3,4,5\}, X \};$

para el cual su digrafo es

de la fórmula de recursión se obtiene que

$$F(D;z) = F\left(\circ f(z) + z^4 F(\cdot;z) + z^4 F(\cdot;z) \right)$$
$$= (1+z)^2 (1+z+z^2) + z^4 (1+z)$$
$$= 1 + 3z + 4z^2 + 3z^3 + 2z^4 + z^5.$$

Además de determinar F(D;z) de forma recursiva para un espacio topológico finito $T_{\frac{1}{2}}$, también es posible dar una expresión explícita para esta función.

Lema 2.2. Sea (X, \mathcal{T}) un espacio topológico que es $T_{\frac{1}{2}}$ y Y un subconjunto de X_c , entonces

$$F(D;z) = (1+z)^{|X_0|} \sum_{Y \subset X_0} z^{|Y|} (\frac{z}{1+z})^{|A^+(Y)|}$$

Demostración. Si $p \in X_c$, entonces $\mathcal{B}_p = \{p\} \cup A_p^+$, ahora bien como $Y \subset X_c$, entonces \widehat{Y} es un conjunto abierto con cardinalidad $|Y| + |A^+(Y)|$ y contribuye con el término $z^{|Y| + |A^+(Y)|}$ a F(D; z). Por otra parte, los conjuntos abiertos distintos son formados por la unión con Y de algún subconjunto de elementos de X_o con cardinalidad $|X_o| - |A^+(Y)|$ que son adyacentes a algún elemento que no es miembro de Y. Por lo tanto cada $Y \subset X_c$ contribuye con un total de

 $(1+z)^{|X_0|-|A^+(Y)|} z^{|Y|+|A^+(Y)|}$

términos a F(D; z). Finalmente, sumando estos términos se tiene:

$$F(D;z) = (1+z)^{|X_0|} \sum_{Y \subset X_c} z^{|Y|} \left(\frac{z}{1+z}\right)^{|A^+(Y)|}.$$

Veamos la relación entre la función generadora de un espacio topológico finito $T_{\frac{1}{2}}$ y la función $\sigma(G)$. Corolario 2.10. Si un espacio topológico (X, \mathcal{T}) es $T_{\frac{1}{2}}$ y $Y \subset X_c$, entonces

$$\sigma(G) = \sum_{Y \subset X_c} 2^{|X_0| - |A^+(Y)|}$$

Demostración. La fórmula se obtiene al sustituir z = 1 en el resultado del teorema anterior. **Ejemplo 2.9.** Considérese el espacio dado en el Ejemplo 2.8. Los cuatro subconjuntos de $X_c = \{1, 2\}$ dados son

Y	Y	$ A^+(Y) $
Ø	0	0
{1}	1	3
$\{2\}$	1	1
$\{1, 2\}$	2	3

luego

$$F(D;z) = (1+z)^3 \left[1 + z \left(\frac{z}{1+z}\right)^3 + z \left(\frac{z}{1+z}\right) + z^2 \left(\frac{z}{1+z}\right)^3 \right]$$
$$= 1 + 3z + 4z^2 + 3z^3 + 2z^4 + z^5.$$

Además podemos ver que $F(D; 1) = \sigma(G) = 14$.

Habiendo calculado F(D; z), no es necesario repetir todo el proceso para calcular la función generadora de conjuntos cerrados F(D'; z), donde D' es el inverso de D. **Teorema 2.9.** Sea (X, \mathcal{T}) un espacio topológico que es $T_{\frac{1}{2}}$. La función generadora de sus conjuntos cerrados esta dada por:

$$F(D';z) = z^{|X|}F(D;z^{-1}).$$

Demostración. El complemento de un conjunto cerrado con cardinalidad k es un conjunto abierto de cardinalidad |X| - k Por tanto, de lo anterior tenemos

$$N_k(D') = N_{|X|-k}(D).$$

Así,

$$F(D';z) = \sum_{k=0}^{|X|} N_k(D') z^k$$

= $\sum_{k=0}^{|X|} N_{|X|-k}(D) z^k$
= $\sum_{k=0}^{|X|} N_k(D) z^{|X|-k}$
= $z^{|X|} F(D; z^{-1}).$

2.5. Funciones de correlación de dos puntos en espacios $T_{\frac{1}{2}}$.

Una de las consecuencias de asignarle una topología \mathcal{T} a un conjunto X es que produce correlaciones entre los puntos del espacio. Es decir, la probabilidad de encontrar dos puntos dados al mismo tiempo en el conjunto abierto de manera aleatoria, no se calcula simplemente a través del producto de las probabilidades individuales de encontrar cada punto por separado.

Las funciones de correlación, que describen este fenómeno cuantitativamente, están estrechamente relacionadas con las cantidades combinatorias descritas anteriormente en este capítulo. La aplicación de estas funciones resulta ser útil, para describir los efectos de las perturbaciones sobre la estructura electrónica molecular.

En esta sección se desarrolla el mecanismo de cálculo de funciones de correlación de dos puntos en los espacios topológicos finitos $T_{\frac{1}{2}}$, y comparamos algunas de las propiedades de los distintos tipos de correlaciones que nos podemos encontrar.

2.5.1. Conjuntos abiertos que contienen un par dado.

En esta parte nuestro objetivo principal es dar la función de correlación de dos puntos en un espacio dado, usando la definición de la probabilidad de que el conjunto abierto de (X, \mathcal{T}) , contenga algún subconjunto S de X. Además se dará una manera reducida de calcular dicha función de correlación de dos puntos, considerando todos los casos que sean pertinentes.

Definición 2.6. Sea (X, \mathcal{T}) un espacio topológico y un subconjunto $S \subset X$. Definimos a la probabilidad de que algún conjunto abierto de X contenga al subconjunto S como $P_o(S)$, y la calculamos por

$$P_o(S) = \sigma(G - \widehat{S}) / \sigma(G).$$

Usando la probabilidad $P_o(S)$, definimos a la función generadora de dos puntos como se muestra a continuación.

Definición 2.7. Sea (X, \mathcal{T}) un espacio topológico, la función de correlación de dos puntos en el espacio, para un par de puntos (p, q) es

$$\Gamma_o(p,q) = P_o(p,q) - P_o(p)P_o(q).$$

A partir de este momento y en lo que resta del capítulo vamos hacer uso de las siguientes abreviaciones, con el fin de tener una escritura más práctica y sencilla. Luego, redefinamos

$$\sigma = \sigma(G), \qquad \alpha_p = \sigma(G - (p \cup A_p)) \qquad \text{y} \qquad \alpha_{pq} = \sigma(G - (p \cup q \cup A_p \cup A_q)).$$

Con lo cual tendremos que:

$$\sigma(G-p) = \sigma - \alpha_p$$
 y $\sigma(G-(p \cup q)) = \sigma - \alpha_p - \alpha_q - \alpha_{pq}$

Como lo mencionamos al principio de la sección daremos los distintos casos que podemos encontrar de la función de correlación de dos puntos de un espacio dado.

Proposición 2.3. En un espacio $T_{\frac{1}{2}}$ dados dos puntos p,q abiertos o cerrados. Existen tres casos específicos que se deben considerar, para calcular su función de correlación:

I. Si p y q son ambos abiertos, entonces

$$\Gamma_o(p,q) = [\sigma(G)\sigma(G - (p \cup q)) - \sigma(G - p)\sigma(G - q)]/\sigma^2(G)$$
$$= (\sigma\alpha_{pq} - \alpha_p\alpha_q)/\sigma^2.$$

II. Si p y q son ambos cerrados, entonces

$$\Gamma_o(p,q) = [\sigma(G)\sigma(G - (p \cup A_p \cup q \cup A_q)) - \sigma(G - (p \cup A_p))\sigma(G - (q \cup A_q))]/\sigma^2(G)$$
$$= (\sigma\alpha_{pq} - \alpha_p\alpha_q)/\sigma^2.$$

III. Si es p abierto y q es cerrado, entonces

$$\Gamma_o(p,q) = [\sigma(G)\sigma(G - (p \cup q \cup A_q)) - \sigma(G - p)\sigma(G - (q \cup A_q))]/\sigma^2(G).$$

para este caso el valor de σ depende de si p y q son o no adyacentes

$$\sigma(G - (p \cup q \cup A_q)) = \begin{cases} \alpha_q, & \text{si } p \in A_q; \\ \alpha_q - \alpha_{pq}, & \text{si } p \notin A_q. \end{cases}$$

Si $p \notin A_q$, entonces

$$\Gamma_o(p,q) = (\alpha_p \alpha_q - \sigma \alpha_{pq}) / \sigma^2.$$

Por otra parte si $p \in A_q$, entonces

$$\Gamma_o(p,q) = \alpha_p \alpha_q / \sigma^2.$$

Demostración.

I.

$$\Gamma_o(p,q) = P_o(p,q) - P_o(p)P_o(q)$$

= $\frac{\sigma(G - (p \cup q))}{\sigma(G)} - \frac{\sigma(G - p)}{\sigma(G)} \frac{\sigma(G - q)}{\sigma(G)}$
= $\frac{\sigma(G)\sigma(G - (p \cup q)) - \sigma(G - p)\sigma(G - q)}{\sigma^2(G)}$.

Las demostraciones de los otros dos casos son de manera análoga.

La función de correlación del caso III para cuando el punto $p \notin A_q$ de la proposición anterior es la función de correlación negativa del caso I y II.

2.5.2. Conjuntos abiertos y cerrados que contienen un par dado.

Un segundo tipo de función de correlación es aquella en donde se considera la probabilidad de que un subconjunto dado se encuentra en cualquiera conjunto abierto o cerrado del espacio.

Definición 2.8. Sea (X, \mathcal{T}) un espacio topológico y un subconjunto $S \subset X$, definimos a la probabilidad de que S esté contenido en un conjunto abierto o en un conjunto cerrado del espacio como $P_{oc}(S)$,

$$P_{oc} = [\sigma(G - \widehat{S}) + \sigma(G - \overline{S})]/2\sigma(G).$$

Así la función de correlación $\Gamma_{oc}(p,q)$ tiene una forma similar a $\Gamma_o(p,q)$. Existen dos casos específicos:

I. Si $p \ge q$ son ambos abiertos o son ambos cerrados, entonces

$$\Gamma_{oc}(p,q) = [\sigma(G - (p \cup q \cup A_p \cup A_q)) + \sigma(G - (p \cup q)) - 1/2\sigma(G)]/2\sigma(G),$$

de donde

$$\Gamma_{oc}(p,q) = (\sigma - 2\alpha_p - 2\alpha_q + 4\alpha_{pq})/4\sigma_q$$

II. Si p es abierto y q es cerrado, entonces

$$\Gamma_{oc}(p,q) = [\sigma(G - (p \cup q \cup A_q)) + \sigma(G - (p \cup q \cup A_p)) - 1/2\sigma(G)]2\sigma(G),$$

de lo cual, si $p \notin A_q$,

$$\Gamma_{oc}(p,q) = -(\sigma - 2\alpha_p - 2\alpha_q + 4\alpha_{pq})/4\sigma,$$

que es el negativo del caso I. Si $p \in A_q$, entonces

$$\Gamma_{oc}(p,q) = (2\alpha_p + 2\alpha_q - \sigma)/4\sigma.$$

2.5.3. Conjuntos abiertos que contienen exactamente un miembro de un par.

El último tipo de función de correlación, es aquella en la que consideramos la probabilidad de que exactamente uno de los miembros de un par de puntos pertenece a un conjunto abierto.

Definición 2.9. La función de correlación que considera la probabilidad de que exactamente un miembro de un par de puntos pertenezca a un conjunto abierto es

$$\Gamma'_{o}(p,q) = P_{o}(p,\sim q) + P_{o}(\sim p,q) - P_{o}(p)P_{o}(\sim q) - P_{o}(\sim p)P_{q},$$

donde por ejemplo $P_o(p, \sim q)$ es la probabilidad que un conjunto abierto arbitrario que contenga a p y no a q.

Recordemos que $P_o(p) = \sigma(G - \hat{p}) / \sigma(G)$, de la definición anterior podemos ver que

$$P_o(\sim p) = \sigma(G - \overline{p}) / \sigma(G).$$

Así,

$$P_o(p, \sim q) + P(\sim p, q) = [\sigma(G) - \sigma(G - \widehat{pq}) - \sigma(G - \overline{pq})]/\sigma(G).$$

Para este tipo de funciones de correlación también se observan dos casos específicos:

I. Si $p \neq q$ son ambos abiertos o ambos cerrados, entonces

$$\Gamma'_o(p,q) = 2(\alpha_p \alpha_q - \sigma \alpha_{pq})/\sigma^2.$$

II. Si p es abierto y q es cerrado, entonces

$$\Gamma'_{o}(p,q) = \begin{cases} 2(\sigma\alpha_{pq} - \alpha_{p}\alpha_{q})/\sigma^{2}, & \text{si } p \notin A_{q}; \\ -2\alpha_{p}\alpha_{q}/\sigma^{2}, & \text{si } p \in A_{q}. \end{cases}$$

En ambos casos $\Gamma'_o(p,q) = -2\Gamma_o(p,q).$

Ejemplo 2.10. Para el espacio del cual su grafo es:

$$1$$
 2 $G(\mathcal{T})$ 3 4

los valores numéricos de la función de correlación para los cuatro diferentes tipos de conjuntos de dos puntos son:

p,q	$\Gamma_o(p,q)$	$\Gamma_{oc}(p,q)$	$\Gamma'_o(p,q)$
1, 2	3/32	1/16	-3/16
2, 3	1/16	0	-1/8
1, 3	1/32	1/16	-1/16
1, 4	1/64	0	-1/32

Capítulo 3

Método de Hückel

De los métodos de la Química Cuántica que se aplican al estudio de moléculas orgánicas no saturadas, el de Hückel es el más utilizado. El éxito de este método se debe a su gran simplicidad, que permite incluso hacer cálculos a mano, cuando el número de átomos es pequeño.

El Método Hückel fue propuesto por Erich Hückel en el año 1930 y es el método de aproximación mas simple de la teoría de orbitales moleculares para sistemas planos insaturados, y se basa en la separación $\sigma - \pi$.

Su aplicación está restringida al tratamiento de sistemas de hidrocarburos planos con enlaces conjugados como, por ejemplo, etano (etilo), benceno, botadero, etc. Sólo es aplicable al estudio de aquellas propiedades que estén dominadas por los orbitales moleculares. Asimismo, es la base teórica de la Regla de Hückel.

Aunque inicialmente sólo trataba sistemas formados en su totalidad por átomos de carbono, más tarde se extendió su uso a otras sustancias como la piridina, el pirrol y el furano, moléculas en cuya composición se encuentran átomos de nitrógeno y oxígeno, entre otros. Son los denominados heteroátomos.

En este capítulo se explicará el método de Hückel y la manera de desarrollar las fórmulas que lo conforman, basándonos en los textos [5], [8] y [32].

3.1. Conceptos básicos

3.1.1. Enlace químico

En prácticamente todas las sustancias naturales los átomos e iones se encuentran enlazadas entre sí, y lo hacen por una razón decisiva: la formación del enlace reduce la energía potencial entre las partículas positivas y negativas, ya sea que estas partículas sean iones de carga opuesta o núcleos atómicos y los electrones entre ellos. De la misma manera en que la configuración electrónica y la fuerza de la atracción núcleo-electrón determinan las propiedades de un átomo, el tipo y la fuerza de los enlaces químicos establecen las propiedades de una sustancia.

Como un primer paso para apreciar la importancia del enlace, clasifiquemos los tipos de enlace que resultan de las tres combinaciones de los dos tipos de átomos, metal con no-metal, no-metal con no-metal, y metal con metal:

I. Transferencia electrónica y enlace químico.

El enlace iónico se observa típicamente entre átomos con grandes diferencias en su tendencia a perder electrones. Tales diferencias se observan entre metales reactivos y no metales. El átomo metálico pierde uno o dos de sus electrones de valencia, mientras que el átomo no metálico gana electrones. Se lleva a cabo la transferencia electrónica del metal al no-metal, y cada átomo forma un ion con la configuración de un gas noble.

II. Compartición de electrones y enlace covalente.

Cuando existe una pequeña diferencia entre dos átomos con respecto a su tendencia de perder o ganar electrones, observamos una compartición de electrones y al enlace covalente. Este tipo de enlace es más importante entre átomos no métalicos (aunque un par de átomos métalicos también puede formar un enlace covalente). Cada átomo no métalico atrae fuertemente a sus electrones y tiende también a atraer a otros. La atracción de cada núcleo por los electrones de valencia del otro es lo que hace que los átomos se unan. Se considera que un par compartido de electrones está localizado entre los dos átomos por que pasa allí la mayor parte del tiempo, uniéndolos en un enlace covalente de longitud y fuerzas dadas. En la mayoría de los casos moléculas separadas cuando se forman enlaces covalentes y la formula química refleja el número real de átomos en la molécula.

III. Agrupación de electrones y enlace metálico.

En general, los átomos metálicos son relativamente grandes y pocos electrones externos están bien protegidos por los niveles internos llenos. Debido a esto, pueden perder a los electrones externos de manera relativamente fácil, pero no los ganan fácilmente. Estas propiedades da lugar a que un gran número de átomos metálicos compartan sus electrones de valencia, pero de una manera diferente a lo que sucede en el enlace covalente. En modelo más simple de enlace metálico, todos los átomos metálicos de una muestra conjuntan a sus electrones de valencia en un mar de electrones distribuidos uniformemente y que fluye entre y alrededor de los centros de los iones metálicos y los atrae entre sí. A diferencia de los electrones localizados del enlace covalente, los electrones en el enlace metálico están deslocalizados moviéndose a lo largo y ancho del metal.

3.2. Teorías de enlace covalente.

Dos teorías del enlace covalente se basan en la mecánica cuántica. La teoría de enlace valencia (EV) explica las interacciones de los orbitales atómicos que sirven para crear enlaces covalentes y muestra cómo las formas moleculares observadas se justifican con base en estas interacciones. La teoría de orbital molecular (OM) explica los niveles de energía molecular y las propiedades asociadas al proponer la existencia de orbitales que se extienden sobre toda la molécula. Cada teoría complementa a la otra y es indispensable para la total comprensión del enlace covalente.

3.2.1. Teoría de Enlace Valencia (EV) y la hibridación de los orbitales.

El principio básico de la teoría EV es que el enlace covalente se forma cuando los orbitales de dos átomos se traslapan y son ocupados por un par de electrones que tienen la más alta probabilidad de localizarse entre los núcleos. Tres temas centrales de la teoría EV que se derivan de este principio son:

I. Espines opuestos de los pares de electrones.

El espacio formado por el traslape de orbitales tiene una capacidad máxima para dos electrones que deben tener espines opuestos. Por ejemplo, cuando se forma una molécula de H_2 , los dos electrones 1s de dos átomos de H ocupan los orbitales traslapados 1s y tienen espines opuestos.

II. Máximo traslape de los orbitales enlazados.

La fuerza del enlace depende de la atracción de los núcleos por los electrones compartidos, así que mientras mayor es el traslape de orbitales, más fuerte (más estable) es el enlace. La extensión del traslape depende de la forma y dirección de los orbitales implicados. El orbital s es esférico, pero los orbitales p y d tienen mayor densidad electrónica en una dirección que en otra de tal manera que un enlace que involucre orbitales p o d tiende a orientarse en la dirección que maximice el traslape.

III. Hibridación de orbitales atómicos.

Para explicar el enlace en moléculas diatómicas simples, como HF, podemos representar el traslape directo de los orbitales $s \neq p$ de los átomos aislados.

Linus Pauling propuso que los orbitales atómicos de valencia en la molécula son diferentes de aquéllos en los átomos aislados. Ciertas combinaciones de orbitales en un átomo dan como resultado nuevos orbitales atómicos, las orientaciones espaciales de estos nuevos orbitales conducen a enlaces más estables, y son consistentes con las formas moleculares observadas. El proceso de combinación de orbitales se denomina hibridación, y a los nuevos orbitales atómicos se les conoce como orbitales híbridos. Dos puntos clave sobre el número y tipo de orbitales híbridos son:

- El número de orbitales híbridos obtenido es igual al número de orbitales atómicos combinados.
- El tipo de orbitales híbridos obtenidos varía de acuerdo con los tipos de orbitales atómicos combinados.

Tres tipos de orbitales híbridos

Hibridación sp. Cuando grupos de dos electrones rodean al átomo central, observamos una forma lineal; esto significa que los orbitales de enlace deben tener una orientación lineal. La teoría EV explica esto proponiendo que la combinación de dos orbitales no equivalentes de un átomo central, uno s y otro p, da lugar a dos orbitales híbridos sp equivalentes que se encuentran a 180° entre sí, como se muestra en la siguiente figura:

La orientación de los orbitales híbridos extiende la densidad electrónica en dirección del enlace y minimiza las repulsiones entre los electrones que los ocupan. En consecuencia, tanto la forma como la orientación maximizan el traslape con el orbital del otro átomo en el enlace.

Hibridación sp^2 . Es la hibridación de un orbital s y dos p del átomo central, para dar tres orbitales híbridos que se orientan hacia los vértices de un triágulo equilátero, con sus ejes a 120° entre sí.

Hibridación sp^3 . La teoría EV propone que el orbital s y los tres orbitales p del átomo central se combinan y forman cuatro orbitales sp^3 , los cuales apuntan hacia los vértices de un tetraedro.

3.2.2. Tipos de enlace covalente.

Utilizamos la teoría EV para centrarnos en la manera en que los orbitales se traslapan para entender los tipos de enlace covalente y la composición detallada de los enlaces múltiples.

El tratamiento de la EV para los enlaces sencillos múltiples.

Una mirada detallada a los enlaces descubre que hay dos tipos de traslape de orbitales.

I. El enlace que resulta del traslape extremo a extremo se denomina enlace sigma (σ). Este tipo de enlace tiene la mayor densidad electrónica a lo largo del eje del enlace (una línea imaginaria que une a ambos núcleos) y tiene la forma de una elipse que se ha rotado alrededor de su eje mayor. Todos los enlaces sencillos, formados por cualquier combinación de orbitales híbridos

que se traslapen, s o p, tienen su densidad electrónica concentrada a lo largo del eje del enlace y son, por tanto, enlaces σ .

II. Traslape lado a lado y enlace pi (π) . Al estar los átomos unidos por el enlace σ , cercanos entre sí, los orbitales 2p parcialmente llenos y sin hibridar están lo suficientemente cerca como para traslaparse lado a lado. Tal traslape forma otro tipo de enlace covalente denominado enlace π . Éste tiene dos regiones de densidad electrónica, una por arriba y otra por debajo del eje del enlace σ . Un enlace π contiene dos electrones que se mueven por ambas regiones del enlace.

Los pares de electrones en un enlace doble actúan como un grupo de electrones ; ya que cada par de electrones ocupa un orbital diferente, una región especifica de densidad electrónica, de tal manera que la repulsión se reduce. Un enlace triple consiste en un enlace σ y dos enlaces π .

El grado de traslape influye sobre la fuerza del enlace. Debido a que el traslape lado a lado no es tan extenso como el traslape extremo a extremo, se espera que un enlace π sea más débil que un enlace σ y, en consecuencia, la fuerza de un enlace doble debe ser menor que el doble de la fuerza de un enlace sencillo. Sin embargo, muchos factores, como repulsión ente pares de electrones solitarios, polaridades de enlace , y otras contribuciones electrostáticas nublan esta relación para los enlaces de otros elementos. Por tanto, como una aproximación, es prudente decir que un enlace doble es más o menos dos veces más fuerte que un enlace sencillo, y que un enlace triple es aproximadamente tres veces más fuerte.

3.2.3. Teoría de Orbitales Moleculares (OM)

Para contestarse preguntas concernientes a la forma, los químicos eligen el modelo RPECV¹, seguido por análisis de orbitales híbridos con la teoría EV. Pero esta teoría no explica de manera adecuada las propiedades magnéticas o espectrales de las moléculas, y subestima la importancia de la deslocalización de electrones. Para lidiar con estos fenómenos, que involucran los niveles energéticos de una molécula, los químicos utilizan la teoría de orbitales moleculares (OM).

 $^{^1\}mathrm{Teoría}$ de repulsión del par electrónico de la capa de valencia

En la teoría EV, una molécula se representa como un grupo de átomos enlazados entre sí por medio de traslape localizado de los orbitales atoómicos de la capa de valencia. En la teoría OM, una molécula se representa como una colección de núcleos con los orbitales que contienen a los electrones deslocalizados, sobre toda la molécula. El modelo OM es una tratamiento mecánico cuántico de las moléculas, análogo al utilizado para átomos individuales. De la misma manera en que los átomos tienen orbitales atómicos (OA) de una energía y forma dadas, y que están ocupados por los electrones del átomo, las moléculas tienen orbitales moleculares (OM) de una energía y forma dadas y que están ocupados por los electrones de la moléculas. A pesar de la gran utilidad de la teoría OM, tiene también una desventaja: los orbitales moleculares son más difíciles de visualizar que las representaciones sencillas de la RPECV o que los orbitales híbridos de la teoría EV.

Los temas centrales de la teoría OM.

Varias ideas clave de la teoría OM aparecen en la descripción de la molécula de hidrógeno y otras especies simples. Estas ideas incluyen la formación de OM, su energía, forma y cómo se llenan con electrones.

- Formación de orbitales moleculares. Debido a que el movimiento de los electrones es tan complejo, es necesario hacer uso de aproximaciones para resolver la ecuación de Schrödinger para cualquier átomo de más de un electrón. Surgen complicaciones similares aun con el H_2 , la molécula más simple, de tal manera que se requiere de aproximaciones para obtener las propiedades de los OM. La aproximación más común combina matemáticamente (suma o sustrae) los orbitales atómicos (funciones de onda atómicas) de los átomos cercanos, para formar orbitales moleculares (funciones de onda moleculares). Los dos modos de combinación de los OA son:
 - Sumar las funciones de onda entre sí. Esta combinación forma un OM de enlace, el cual tiene una región de alta densidad electrónica entre los núcleos. El traslape aditivo es análogo al traslape de dos ondas de luz que se refuerzan entre sí y hacen que la onda resultante sea más brillante. Para las ondas de los electrones, el traslape incrementa la probabilidad de que los electrones se encuentren entre los núcleos.
 - Sustraer las funciones de onda entre sí. Esta combinación forma un OM de antienlace, el cual tiene un nodo entre los núcleos, una región de densidad electrónica cero. El traslape sustractivo es análogo a dos ondas de luz que se cancelan entre sí, de tal manera que la luz desaparece. Con las ondas de los electrones, la probabilidad de que los electrones ocupen el espacio entre los núcleos disminuye a cero. El número de OA combinados siempre equivale al número de OM formados.
- Llenado de orbitales moleculares con electrones. Los electrones llenan los OM de la misma manera que los OA:
 - Los orbitales se llenan en orden ascendente de energía (principio de aufbau).
 - Un orbital tiene una capacidad máxima de dos electrones con espines opuestos (principio de exclusión).

• Los orbitales de la misma energía se llenan parcialmente, con espines paralelos, antes de que se llene cualquiera de ellos (Regla de Hund).

Los diagramas de orbitales moleculares muestran las energías relativas y el número de electrones de cada OM, así como los OA de los cuales se forman.

La teoría de OM redefine el orden de enlace. En una estructura de Lewis, el orden de enlace es el número de pares de electrones por enlace. El orden de enlace OM es el número de electrones en los OM de enlace, menos el número en OM de antienlace, dividido entre dos. Por ejemplo para el H_2 , el orden de enlace es $\frac{1}{2}(2-0) = 1$.

Un orden de enlace mayor que cero indica que la especie molecular es estable en comparación con lo átomos separados, mientras que un orden de enlace cero implica que no hay una estabilidad neta y, por tanto, no hay probabilidad que se forme. En general, a mayor orden de enlace, más fuerte es el enlace.

Uno de los primeros triunfos de la teoría de OM fue su habilidad para predecir la existencia del $H_{e_2}^+$, la molécula-ion de dihelio, que está compuesta de dos núcleos de helio y tres electrones.

3.3. Método de Hückel

3.3.1. Fundamentos de la Teoría de Hückel

Erich Hückel introdujo esta teoría a la Química en 1930, la cual a influenciado de manera considerable la forma en que los químicos orgánicos expresan sus conclusiones y describen su trabajo. Esta teoría se basa fundamentalmente en la distinción entre los electrones σ y los electrones π .

La idea de la Separación σ y π

En general, una molécula insaturada es un sistema planar, o casi-planar: por el momento consideraremos que es planar. En este caso los orbitales moleculares describen a la molécula como un todo que se divide fundamentalmente en dos diferentes tipos, los cuales se distinguen por su simetría, ya que pueden ser simétricos o asimétricos respecto a la reflexión en el plano molecular.

Si tuviéramos que formar un orbital molecular mediante la combinación de un número de orbitales atómicos individuales; entonces las de un tipo de simetría no se combinarían con las de otro. Con esto podemos distinguir entre las funciones que son simétricas cuando se reflejan en el plano molecular designadas por σ y las π que no son simétricas con respecto al plano molecular. Estas funciones llamadas π son las que tendrán nuestro mayor interés, aunque analizaremos más adelante a los σ -orbitales y a las interacciones entre σ y π .

Analicemos la molécula del etileno a detalle, la cual tiene la siguiente forma estructural:

Los dos átomos de carbono considerados se encuentran en un estado de hibridación sp^2 (trigonal). Utilizando flechas para representar la orientación en que los sp^2 -híbridos se dirigen, los híbridos de carbono pueden ser representados como sigue:

Estos híbridos son todos del tipo σ y entonces es natural suponer que los enlaces pueden hacerse entre ellos. En primer lugar, nosotros podemos considerar la formación de un enlace carbono-carbono emparejado dos de estos híbridos juntos, como en la siguiente figura:

Los enlaces carbono-hidrógeno pueden entonces estar formados por adjuntar hidrógenos a los carbonos híbridos sp^2 restantes, como se muestra a continuación.

Cada uno de estos cuatro híbridos se superponen de manera muy eficaz con sus hidrógenos vecinos. En consecuencia, podríamos considerar las propiedades de los enlaces C - H siendo en gran medida determinados por los híbridos de carbón sp^2 dados y los orbitales 1s del hidrógeno adyacente. Igualmente la parte σ del doble enlace es controlada por los dos híbridos de carbono involucrados y podemos hablar de ellos tanto como localizarlos, sin embargo cuando consideramos los orbitales restantes esto no va a ser verdad.

3.3.2. El Método Orbital Molecular de Hückel (HMO).

Aproximación de la Combinación Lineal de Orbitales Atómicos (LCAO) utilizando la en la Teoría de OM.

Adoptaremos la forma de la Combinación Lineal de Orbitales Atómicos (LCAO) para la Teoría Orbital Molecular, es decir, suponemos que cada uno de los π -electrones tiene una descripción que les permite moverse sobre todo el marco del sistema conjugado. Esta descripción permite expresar a un orbital molecular como:

Basándonos en estas diferencias podemos tratar separadamente OM σ y OM π y para sistemas insaturados considerar solamente estos últimos, esto representa una considerable simplificación.

$$\Psi = \sum_{r=1}^{n} c_r \phi_r, \tag{3.1}$$

en términos de coeficientes ponderados (c_r) de la combinación lineal de n orbitales atómicos ϕ_r .

Un LCAO-OM 2 se considera que tiene alguna característica apropiadamente ponderada o que la contribución de cada uno de sus orbitales atómicos que los constituyen es ponderada.

Dado el conjunto $\{\phi_r\}$, nuestro siguiente objetivo es encontrar los valores adecuados para los coeficientes ponderados $\{c_r\}$; que fue hacia donde dirigió su trabajo Hückel. Por supuesto, habrá diferentes conjuntos de *n* coeficientes $\{c_{I_r}\}$, para cada OM Ψ_I diferente.

Estrictamente, Ψ en la ecuación (3.1) debería ser Ψ_I , ya que hay más de una combinación de los orbitales atómicos dados, que forman un orbital molecular y c_r debería de ser c_{I_r} , así, (3.1) se debería escribir como:

$$\Psi_I = \sum_{r=1}^n c_{I_r} \phi_r, \qquad (3.2)$$

este LCAO es desde luego una aproximación.

El Método de Variación.

Este método a sido propuesto como un criterio apropiado y efectivo, para determinar a los coeficientes combinatorios $\{c_r\}$ de la ecuación (3.1). Este método es un principio fundamental de la teoría cuántica.

De acuerdo con este principio los $\{c_r\}$ se eligen para una cierta cantidad, llamada la razón de Rayleigh, que con respecto a la variación de los $\{c_r\}$ es fija.

Con el fin de obtener la razón de Rayleigh es necesario introducir el concepto de la ecuación de onda efectiva para cada electrón, específicamente para cada electrón π . Si hay solamente un electrón a tratar no existe ningún problema, ya que la ecuación de Schrödinger para un único electrón es bien conocida y la podemos escribir como:

$$\mathcal{H}\Psi = E\Psi_r,\tag{3.3}$$

en donde Ψ es la función de onda del electrón en cuestión, E es su energía y \mathcal{H} es el operador diferencial al que nos referimos comúnmente como Hamiltoniano, que es la suma de los operadores

²Orbital Molecular como una Combinación Lineal de Orbitales Atómicos

de la energía cinética y la energía potencial para el sistema y para el único electrón, el cual está dado por:

$$\mathcal{H} = \frac{-h^2}{8\pi m} + \mathcal{V},\tag{3.4}$$

donde $\frac{-h^2}{8\pi m}\nabla^2$ es la energía cinética, \mathcal{V} , es la energía potencial, y el ∇^2 es el operador Laplaciano.

$$\nabla^2 = \frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} + \frac{\partial^2}{\partial z^2},$$

lo anterior sólo es aplicable cuando tenemos un único electrón.

Ahora es necesario describir el Hamiltoniano para más electrones. Designamos a este Hamiltoniano como $\mathcal{H}_{efectivo}$, el cual es una aproximación del Hamiltoniano para más de dos electrones,

$$\mathcal{H}_{efectivo} = \frac{-h^2}{8\pi m} + \mathcal{V}_{efectivo}.$$
(3.5)

Otro gran mérito de la teoría de Hückel, es que en la mayoría de los casos no es necesario saber explícitamente quien es $\mathcal{H}_{efectivo}$. Los resultados de los cálculos en la teoría de Hückel se dan en términos de uno o dos parámetros empíricos α o β . Este procedimiento tiene la consecuencia que en vez de resolver la ecuación (3.3) en la cual \mathcal{H} es el Hamiltoniano para muchos electrones y con un número poco práctico de términos, lo resolveremos como:

$$\mathcal{H}_{efectivo}\Psi = E\Psi,\tag{3.6}$$

que contiene sólo un conjunto de coordenadas que tratan con cada electrón por separado. Por otro lado la relación de Rayleigh es denotada por y y definida como:

$$y = \frac{\int \Psi^* \mathcal{H} \Psi d\tau}{\int \Psi^* \Psi d\tau},\tag{3.7}$$

usando (3.3) se tiene que:

$$y = f(c_1, c_2, \dots, c_n).$$
 (3.8)

Cabe recordar que el principio de Variación pide que se elijan valores de c_r adecuados para que la relación de Rayleigh no cambie. De este modo necesitamos buscar un cambio en c_r que no afecte en y. Es decir, son necesarias n condiciones del tipo

$$\frac{\partial y}{\partial c_r} = 0; \qquad r = 1, 2, \dots n.$$
(3.9)

Hallemos la relación de Rayleigh, para esto comencemos viendo quien es $\int \Psi^* \Psi d\tau$. Recordemos que $\Psi = \sum_{r=1}^n c_r \phi_r$ y asumamos que los orbitales atómicos básicos ϕ_r están normalizados, es decir,

$$\int \phi_r^* \phi_r d\tau = 1; \qquad r = 1, 2, \dots, n.$$
 (3.10)

Siempre podemos considerar a $\{\phi_r\}$ y a Ψ reales, luego sus complejos conjugados también lo son, con lo cual $\phi_r^* = \phi_r$, así la ecuación (3.10) queda como sigue:

$$\int \phi_r^2 d\tau = 1. \tag{3.11}$$

Por otro lado, si los orbitales atómicos se encuentran en diferentes centros, estos son ortogonales, lo que quiere decir que:

$$\int \phi_r \phi_s d\tau = 0; \quad \text{con } r \neq s \ r = 1, 2, \dots, n \ y \ s = 1, 2, \dots, n.$$
(3.12)

De la ecuación (3.11) podemos reescribir el denominador de (3.7) como $\int \Psi^2 d\tau$, de donde

$$\int \Psi^2 d\tau = \int (c_1 \phi_1 + c_2 \phi_2 + \dots + c_r \phi_r + \dots + c_n \phi_n)$$

$$= \sum_r^z \int c_r^2 \phi_r^2 d\tau + 2 \sum_{r < s} \int c_r c_s \phi_r \phi_s d\tau$$

$$= \sum_r c_r^2 \int \phi_r^2 d\tau + 2 \sum_{r < s} c_r c_s \int \phi_r \phi_s d\tau,$$

(3.13)

por las ecuaciones (3.10) y (3.12) se tiene que:

$$\int \Psi^2 d\tau = \sum_r c_r^2 \cdot (1) + 2 \sum_{r < s} c_r c_s \cdot (0)$$

= $\sum_r c_r^2.$ (3.14)

Ahora analicemos el numerador de la ecuación (3.7), haciendo las pertinentes sustituciones:

$$\int \Psi \mathcal{H} \Psi d\tau = \int (c_1 \phi_1 + c_2 \phi_2 + \ldots + c_r \phi_r + \ldots + c_n \phi_n) \times \mathcal{H}$$
$$\times \int (c_1 \phi_1 + c_2 \phi_2 + \ldots + c_r \phi_r + \ldots + c_n \phi_n)$$
$$= \sum_r \int c_r^2 \phi_r \mathcal{H} \phi r d\tau + 2 \sum_{r < s} \int c_r phi_r \mathcal{H} c_s \phi_s d\tau$$
$$= \sum_r c_r^2 \int \phi_r \mathcal{H} \phi r d\tau + 2 \sum_{r < s} c_r c_s \int \phi_r \mathcal{H} \phi_s d\tau.$$
(3.15)

Es conveniente adoptar la siguiente notación matricial:

$$H_{i,i} = \int \phi_i \mathcal{H} \phi_i d\tau, \qquad (3.16)$$

en la ecuación (3.15) también contamos con términos cruzados que, en esta notación matricial, estarán designados por $H_{i,j}$, donde:

$$H_{i,j} = \int \phi_i \mathcal{H}\phi_j d\tau, \qquad i \neq j.$$
(3.17)

Con está notación la ecuación (3.15) se debería escribir como:

$$\int \Psi \mathcal{H} \Psi d\tau = \sum_{r} c_r^2 H_{rr} + 2 \sum_{r < s} c_r c_s H_{rs}, \qquad (3.18)$$

luego haciendo uso de las ecuaciones (3.14) y (3.18) podemos expresar a la relación de Rayleigh como:

$$y = \frac{\sum_{r} c_{r}^{2} H_{rr} + 2 \sum_{r < s} c_{r} c_{s} H_{rs}}{\sum_{r} c_{r}^{2}}.$$
(3.19)

Reescribamos (3.19) como sigue:

$$\left(\sum_{r} c_{r}^{2}\right) y = \sum_{r} c_{r}^{2} H_{rr} + 2 \sum_{r < s} c_{r} c_{s} H_{rs}, \qquad (3.20)$$

como ya mencionamos anteriormente, necesitamos que y permanezca fija con respecto de c_r . Comencemos viendo que pasa, cuando y permanece fija respecto a la variación de c_1 , es decir, calculemos $\frac{\partial y}{\partial c_1} = 0$, para esto reescribamos la ecuación (3.20) como sigue:

$$(c_1^2 + c_2^2 \dots c_n^2) y = (c_1^2 H_{11} + c_2^2 H_{22} \dots c_n^2 H_{nn}) + 2(c_1 c_2 H_{12} + c_1 c_3 H_{13} + \dots c_{n-1} c_n H_{n-1,n}).$$
(3.21)

Calculando la derivada parcial con respecto a c_1 tenemos:

$$2c_1y + \left(c_1^2 + c_2^2 \dots c_n^2\right)\frac{\partial y}{\partial c_1} = 2c_1H_{11} + 2(c_2H_{12} + c_1H_{13} + \dots c_rH_{1r} + \dots c_nH_{1n}), \qquad (3.22)$$

haciendo $\frac{\partial y}{\partial c_1} = 0$ se tiene:

$$\frac{\partial y}{\partial c_1} = 0 = \frac{2(c_1(H_{11} - y) + c_2H_{12} + c_1H_{13} + \dots + c_rH_{1r} + \dots + c_nH_{1n})}{(c_1^2 + c_2^2 \dots + c_n^2)}.$$
(3.23)

Por lo tanto,

$$c_1(H_{11} - y) + c_2H_{12} + c_3H_{13} + \dots + c_rH_{1r} + \dots + c_nH_{1n} = 0.$$
(3.24)

Esta es la ecuación con la cual se satisface que la relación de Rayleigh permanezca fija a las variaciones, específicamente de c_1 . En general, la derivada parcial con respecto a c_r es:

$$c_1(H_{r1} + c_2H_{r2} + \dots + c_r(H_{rr} - y) + \dots + c_nH_{rn} = 0$$
(3.25)

Así, cuando el y se ha derivado parcialmente con respecto a cada c_i con i = 1, 2, ..., n, se obtiene un sistema de n ecuaciones homogéneas llamadas sistema de ecuaciones seculares.

$$\begin{cases} c_1(H_{11} - y) + c_2H_{12} + c_3H_{13} + \dots + c_rH_{1r} + \dots + c_nH_{1n} = 0 \\ c_1H_{21} + c_2(H_{22} - y) + c_3H_{23} + \dots + c_rH_{2r} + \dots + c_nH_{2n} = 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ c_1H_{r1} + c_2H_{r2} + c_3H_{r3} + \dots + c_r(H_{rr} - y) + \dots + c_nH_{rn} = 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ c_1H_{n1} + c_2H_{n2} + c_3H_{n3} + \dots + c_rH_{nr} + \dots + c_n(H_{nn} - y) = 0. \end{cases}$$
(3.26)

Las soluciones de estas ecuaciones homogéneas nos ayudan a obtener los valores de $\{c_r\}$, y los valores de y que juntos a esto coeficientes hacen que permanezca fija. Estos valores de y que son las raíces de las ecuaciones seculares (3.26), serán tomados para representar la energía del correspondiente orbital molecular. Por esta razón reemplazamos a y por el símbolo ε para denotar a la energía. Así, podemos escribir las ecuaciones seculares de una manera más compacta, como sigue:

$$(H_{rr} - \varepsilon)c_r + \sum_{s,s \neq r} H_{rs}c_s = 0$$
 $r = 1, 2, \dots, n,$ (3.27)

una por cada orbital Ψ_r con energía ε . Este conjunto de ecuaciones tienen soluciones no triviales, y las podemos escribir como:

al cual es llamado determinante secular. Ahora renombremos a las ecuaciones (3.11) y (3.12) por:

$$S_{rr} = \int \phi_r^2 d\tau = 1, \qquad (3.29)$$

у

$$S_{rs} = \int \phi_r \phi_s d\tau = 0; \quad \text{con } r \neq s.$$
(3.30)

Luego podemos reescibir a $\int \Psi^2 d\tau$ de la ecuación (3.13) usando la ecuación (3.30) como:

$$\int \Psi^2 d\tau = \sum_r c_r^2 + 2 \sum_{r < s} c_r c_s S_{rs}, \qquad (3.31)$$

y por lo tanto la ecuación (3.19) se escribiría ahora como:

$$y = \frac{\sum_{r} c_{r}^{2} H_{rr} + 2 \sum_{r < s} c_{r} c_{s} H_{rs}}{\sum_{r} c_{r}^{2} + 2 \sum_{r < s} c_{r} c_{s} S_{rs}}.$$
(3.32)

Al calcular $\frac{\partial y}{\partial c_r}$, con r = 1, 2, ..., n de manera análoga a la representada en las ecuaciones de (3.19) y (3.27) y otra vez reemplazando y por ε , se puede obtener el siguiente conjunto de ecuaciones seculares, análoga a la ecuación (3.27):

$$(H_{rr} - \varepsilon)c_r + \sum_{s,s \neq r} (H_{rs} - \varepsilon S_{rs})c_s = 0 \qquad r = 1, 2, \dots, n, \qquad (3.33)$$

Luego el determinante secular lo podemos escribir como:

La notación α - β

Los componentes de la matriz de algún Hamiltoniano efectivo, descrito anteriormente por la ecuación (3.6), los símbolos que se usaron para representar a estos componentes de la matriz del Hamiltoniano son: H_{rr} y H_{rs} definidos en las ecuaciones (3.16) y (3.17).

Sin embargo, Hückel y otros dieron los diferentes símbolos; para H_{rr} usaremos α_r que es conocida como Integral de Coulomb, y para H_{rs} se usara β_{rs} que representa a la Integral de Resonancia para el enlace entre los átomos r y s.

La integral de Coulomb α_r (H_{rr}) , representa aproximadamente la energía de un electrón en un orbital atómico, en presencia de los otros átomos del entorno molecular. Su valor debe ser cercano al potencial de ionización del e^- en este orbital atómico en el átomo aislado.

La integral de resonancia β_{rs} (H_{rs}), representa aproximadamente la energía de un electrón interactuando con dos núcleos, e incluye la estabilización debida a esta interacción.

Con esta notación la Relación de Rayleigh (energía) correspondiente a un conjunto de coeficientes dados es:

$$\varepsilon = \frac{\sum_{r} c_r^2 \alpha_r + 2\sum_{r < s} c_r c_s \beta_{rs}}{\sum_{r} c_r^2},\tag{3.35}$$

donde, en general, la segunda suma en el numerador consiste en pares de átomos, r y s, que no están en condiciones de involucrarse, así como aquellos que si lo están. La energía de un electrón en un orbital molecular es en relación con la fuerza de atracción de electrones de los átomos individuales en la molécula $\{\alpha_r\}$ y la de los diferentes pares de átomos que comprenden $\{\beta_{rs}\}$. Recordemos que β_{rs}

es la integral del producto de los orbitales atómicos en el átomo r con el resultado del Hamiltoniano efectivo que actúa sobre la órbita atómica centrada en el átomo s, es decir,

$$\beta_{rs} = \int \phi_r \mathcal{H} \phi_s d\tau. \tag{3.36}$$

En la notación α - β , el determinante secular descrito en la ecuación (3.28) ahora sería:

y las r ecuaciones seculares que darán expresadas como:

$$(\alpha_r - \varepsilon)c_r + \sum_{s,s \neq r} \beta_{rs}c_s = 0 \qquad r = 1, 2, \dots, n.$$
(3.38)

En el caso de hidrocarburos conjugados Hückel hizo las siguientes suposiciones y aproximaciones, que ahora se conocen como las aproximaciones de Hückel:

- I. Las integrales de Coulomb α_r se igualan al valor α para todos los átomos de carbono.
- II. Todas las integrales de Resonancia β_{rs} se considerarán nulas si los átomos de r y s no son adyacentes. Sin embargo si r y s son adyacentes, sus integrales de Resonancia se igualaran a β .

Así, el determinante secular en la ecuación (3.37) quedaría expresada como:

$$\begin{vmatrix} \alpha - \varepsilon & \beta & \cdots & 0 \\ \beta & \alpha - \varepsilon & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & \alpha - \varepsilon \end{vmatrix} = 0.$$
(3.39)

Es conveniente dividir cada elemento del determinante por β para obtener:

$$\begin{vmatrix} \frac{\alpha-\varepsilon}{\beta} & 1 & \cdots & 0\\ 1 & \frac{\alpha-\varepsilon}{\beta} & \cdots & 0\\ \vdots & \vdots & \ddots & \vdots\\ 0 & 0 & \cdots & \frac{\alpha-\varepsilon}{\beta} \end{vmatrix} = 0,$$
(3.40)

después de dividir entre β y definiendo que $\gamma = \frac{\alpha - \varepsilon}{\beta}$ se tiene que

$$\begin{vmatrix} \gamma & 1 & \cdots & 0 \\ 1 & \gamma & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & \gamma \end{vmatrix} = 0$$

$$(3.41)$$

Los términos de la diagonal principal corresponden a cada uno de los átomos de carbono. El determinante es simétrico con respecto a la diagonal principal. El orden de la numeración escogida para los átomos que intervienen en el sistema conjugado es irrelevante.

Dado que

$$\gamma = \frac{\alpha - \varepsilon}{\beta},$$

los valores de energía de cada OM se expresan en función de α y β , es decir,

$$\varepsilon = \alpha - \gamma \beta.$$

Las integrales no se pueden evaluar exactamente dentro de la aproximación $HMO - \pi^3$, por lo que son tratadas como parámetros semiempíricos. Para calcular la energía total π del sistema se suman las energías de cada orbital ocupado multiplicadas por el numero de ocupación:

$$\widetilde{\varepsilon}^{\pi} = \sum_{\mu}^{oc} n_{\mu} \varepsilon_{\mu}^{\pi},$$

siendo n_{μ} el número de e^- en el $OM~\mu$ yoc el número OM ocupados

Damos a continuación un ejemplo en el cual se aplica todo lo antes mencionado.

Ejemplo 3.1. Consideremos al sistema alílico y su representación molecular

con determinante secular:

$$\begin{vmatrix} \gamma & 1 & 0 \\ 1 & \gamma & 1 \\ 0 & 1 & \gamma \end{vmatrix} = 0$$

³Método Orbital Molecular de Hückel

Resolviendo lo anterior se tiene que:

$$\gamma(\gamma^2 - 1) - \gamma = 0.$$

Entonces,

$$\begin{aligned} \gamma_1 &= 0, \\ \gamma_2 &= +\sqrt{2}, \\ \gamma_3 &= -\sqrt{2}. \end{aligned}$$

Los valores de energía que se obtienen, los representamos en el siguiente diagrama:

Energía
$$\uparrow$$
 $\stackrel{}{----} \psi_3 (\varepsilon_3 = \alpha - \gamma \beta)$
 $\stackrel{}{-----} \psi_2 (\varepsilon_3 = \alpha)$
 $\stackrel{}{----} \psi_1 (\varepsilon_1 = \alpha + \gamma \beta)$

Así para el catión, el radical y el anión alílico:

$$\widetilde{\varepsilon}^{\pi}_{(+)} = 2\varepsilon_1 = 2\alpha + 2\sqrt{2}\beta,$$

$$\widetilde{\varepsilon}^{\pi}_{(\cdot)} = 2\varepsilon_1 + 1\varepsilon_2 = 3\alpha + 2\sqrt{2}\beta,$$

$$\widetilde{\varepsilon}^{\pi}_{(-)} = 2\varepsilon_1 + 2\varepsilon_2 = 4\alpha + 2\sqrt{2}\beta.$$

La magnitud $\gamma\beta$ es proporcional a la energía de enlace, en este ejemplo HMO las predice igual para las 3 especies, lo cual no es cierto.

Cálculo de coeficientes

El método de Hückel trata los $OM \pi$ como combinación lineal de OA p,

$$\Psi_i = \sum_{i=1}^n c_{\mu i} \phi_i.$$

Para cada ${\cal OM}$

$$\psi_i = c_{i1}\phi_1 + c_{i2}\phi_2 + \cdots$$

De modo que si conocemos los coeficientes, conocemos la contribución de cada OA p al $OM \pi$, lo que es equivalente a conocer su forma. Esto permite calcular propiedades de interés químico como ordenes de enlace, cargas, etc. Para calcular los coeficientes se utiliza el determinante secular y las energías de los orbitales que ya sabemos calcular.

Continuando con el análisis del Ejemplo 3.1 se observa que:

Ejemplo 3.2. Obtengamos los coeficientes y representemos todos los $OM \pi$ del sistema alilíco. Con diagrama de energía

Energía
$$\uparrow$$
 $\underbrace{ ---- }_{\psi_{2}} \psi_{3} (\varepsilon_{3} = \alpha - \gamma \beta) \\ \psi_{2} (\varepsilon_{3} = \alpha) \\ \psi_{1} (\varepsilon_{1} = \alpha + \gamma \beta) \end{cases}$

donde,

$$\begin{aligned} \gamma_1 &= 0, \\ \gamma_2 &= +\sqrt{2}, \\ \gamma_3 &= -\sqrt{2}. \end{aligned}$$

Utilizando sus determinante secular

$$\left| \begin{array}{ccc} \gamma & 1 & 0 \\ 1 & \gamma & 0 \\ 0 & 1 & \gamma \end{array} \right| = 0,$$

notamos que:

$$\begin{aligned} \gamma c_1 + c_2 &= 0, \\ c_1 + \gamma c_2 + c_3 &= 0, \\ c_2 + \gamma c_3 &= 0, \\ c_1^2 + c_2^2 + c_1^3 &= 1. \end{aligned}$$

Luego,

$$\psi_{1} = \frac{1}{2}\phi_{1} + \frac{1}{\sqrt{2}}\phi_{2} + \frac{1}{2}\phi_{3} \qquad 0 \text{ nodos}$$

$$\psi_{2} = \frac{1}{\sqrt{2}}\phi_{1} - \frac{1}{\sqrt{2}}\phi_{3} \qquad 1 \text{ nodos}$$

$$\psi_{3} = \frac{1}{2}\phi_{1} - \frac{1}{\sqrt{2}}\phi_{2} + \frac{1}{2}\phi_{3} \qquad 2 \text{ nodos}$$

Cálculo de propiedades

A partir de los coeficientes de participación de los OA~p en los $OM~\pi$ se pueden calcular ciertas propiedades de interés:

Ordenes de enlace π :

$$P^{\pi}_{\{a,b\}} = \sum_{i=1}^{occ} n_i c_{ia} c_{ib}.$$

Donde,

 c_{ia} y c_{ib} son los coeficientes de participación de los OA correspondientes a los átomos a y b, en el OM i.

 n_i representa el número de electrones en el OM i.

La suma está definida sobre todos los OM ocupados. Para obtener el orden de enlace total se suma 1 por el enlace σ .

$$P_{\{a,b\}} = P_{\{a,b\}}^{\pi} + 1.$$

Densidad electrónica π :

$$\rho_a^{\pi} = \sum_{i=1}^{occ} n_i |c_{ia}^2|.$$

Carga π efectiva:

$$q_a^{\pi} = \eta_a - \rho_a^{\pi}.$$

Donde η_a representa el número de electrones que el átomo a aporta al sistema de conjugación.

Siguiendo con nuestro Ejemplo 3.1 podemos calcular sus propiedades como son: los ordenes de enlace π , densidad electrónica π , carga π efectiva.

Ejemplo 3.3. Obtengamos los ordenes de enlace π y total, así como la densidad electrónica π y la carga π efectiva sobre cada átomo del sistema alílico con:

$$\begin{split} \psi_1 &= \frac{1}{2}\phi_1 + \frac{1}{\sqrt{2}}\phi_2 + \frac{1}{2}\phi_3, \\ \psi_2 &= \frac{1}{\sqrt{2}}\phi_1 - \frac{1}{\sqrt{2}}\phi_3, \\ \psi_3 &= \frac{1}{2}\phi_1 - \frac{1}{\sqrt{2}}\phi_2 + \frac{1}{2}\phi_3. \end{split}$$

Con lo que concluimos:

Ordenes de enlace π	Densidad electrónica π	Carga π efectiva
$P^{\pi}_{\{a,b\}} = \sum_{i=1}^{occ} n_i c_{ia} c_{ib}$	$ ho_a^{\pi}=\sum_{i=1}^{occ}n_i c_{ia}^2 $	$q_a^{\pi}=\eta_a- ho_a^{\pi}$
$P_{\{1,2\}}^{\pi} = 2\left(\frac{1}{2} \cdot \frac{1}{\sqrt{2}}\right) + 1\left(\frac{1}{\sqrt{2}}\right)(0) = 0.71$	$\rho_1^{\pi} = 2\left(\frac{1}{2}\right)^2 + 1\left(\frac{1}{\sqrt{2}}\right)^2 = 1$	$q_1^{\pi} = \eta_1 - \rho_1^{\pi} = 0$
$P_{\{1,2\}} = 1.71$	$ \rho_2^{\pi} = 2\left(\frac{1}{\sqrt{2}}\right)^2 + 1(0) = 1 $	$q_2^{\pi} = \eta_2 - \rho_2^{\pi} = 0$
$P_{\{2,3\}}^{\pi} = 2\left(\frac{1}{\sqrt{2}} \cdot \frac{1}{2}\right) + 1(0)\left(-\frac{1}{\sqrt{2}}\right) = 0.71$	$\rho_1^{\pi} = 2\left(\frac{1}{2}\right)^2 + 1\left(-\frac{1}{\sqrt{2}}\right)^2 = 1$	$q_3^{\pi} = \eta_3 - \rho_3^{\pi} = 0$
$P_{\{2,3\}} = 1.71$		

Es necesario recordar que el objetivo de este trabajo es encontrar una aproximación del orden de Hückel para un par de átomos i, j, através de métodos topológicos finitos. Este orden de Hückel es precisamente el orden de π anteriormente definido.

El método anterior junto con el programa **Hückel** 3.1 de Oraxcel, el software libre **SHMo**2 y con la aplicación **Hückel.exe**, los utilizaremos para verificar nuestros resultados.

3.4. Estructura de la topología de enlace para sistemas heteroatómicos.

Los sistemas heteroatómicos mejor conocidos como grupos funcionales son aquellos compuestos orgánicos que no están constituidos únicamente de carbono e hidrógeno. En este tipo de sistemas podemos hallar también Bromo, Flúor, Nitrógeno, Oxígeno, Boro y Cloro.

A continuación damos una breve explicación del Método de Hückel para Sistemas Heteroatómicos.

3.4.1. Tratamiento de compuestos conjugados con heteroátomos

Teniendo en cuenta su definición, el parámetro α , o integral de Coulomb, representa la energía de un electrón en su propio átomo, mientras que el parámetro β , o integral de resonancia, representa la energía de un electrón entre dos átomos enlazados. Los elementos diagonales de la matriz de Hückel en sistemas con heteroátomos, (átomos distintos al carbono y al hidrógeno), son diferentes ya que sus electronegatividades son también diferentes. Asimismo, los elementos no-diagonales, relacionados con la integral de Resonancia, tienen que reflejar situaciones de enlace entre átomos de distinta naturaleza. En el caso de heteroátomos, las integrales de Coulomb y de Resonancia se definen en función de las del átomo de C.

Definición 3.1. Se le llama heteroátomo, a aquel átomo X diferente del carbono, que interviene en el sistema de conjugación π .

Con lo cual es necesario modificar los parámetros α y β correspondientes a las integrales de Coulomb y de Resonancia. Para este caso, las integrales de Coulomb y Resonancia quedarán representadas por α_X y β_{CX} respectivamente.

Así las integrales de Coulomb y Resonancia correspondientes al heteroátomo X y al enlace entre este y un átomo de carbono se definen en términos de las integrales α y β del carbono según:

$$\alpha_X = \alpha_c + h_X \beta_{CC}$$
$$\beta_{CX} = k_{CX} \beta_{CC}$$

Surge ahora el problema de establecer que valores de h_X y k_{CX} se deben utilizar en cada caso particular. En la literatura se encuentran reportados valores diversos para un mismo tipo de heteroátomo y tipo de enlace, dependiendo de los diferentes enfoques de la teoría de OM. Sin embargo cualquiera de estos enfoques cumple con principios generales básicos.

La magnitud de α esta estrechamente relacionada con la carga nuclear efectiva del heteroátomo. La magnitud de β esta estrechamente relacionada con la carga nuclear efectiva del heteroátomo. En uno de los enfoques posibles se plantea que α_X es proporcional a las electronegatividades del heteroátomo y h_X es proporcional a la diferencia de electronegatividades entre X y el carbono.

Hay que tener en cuenta que X puede contribuir al sistema de conjugación con diferente número de electrones, por ejemplo el oxígeno en el benzaldehído aporta 1 e^- , mientras que en el fenol aporta 2 e^- .

Por su parte los valores de k_{CX} dependen de las distancias de enlace C - X, por lo que en general se diferencian explícitamente los enlaces simples, dobles, triples y aromáticos. Los valores de h_X y k_{CX} más utilizados, los presentamos en Cuadro 3.1.

A la hora de plantear el determinante secular del Método $HMO - \pi$, se hace teniendo en cuenta las modificaciones necesarias y asumiendo el átomo 1 como el heteroátomo:

$$\begin{vmatrix} \gamma + h_X & k_{CX} & 0 & \cdots & 0 \\ k_{CX} & \gamma & 1 & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \cdots & \gamma \end{vmatrix} = 0$$
(3.42)

El procedimiento para el cálculo de coeficientes de participación de los OA en los $OM \pi$, de los ordenes de enlace π , la densidad electrónica π , la carga π efectiva; para el caso de los hidrocarburos, definido en el Capítulo 3; es también aplicable para Grupos Funcionales.

Cuadro 3.1:						
	CI	-0.68				
	S2	-0.63 -0.59				
	S1	-0.68 -0.58 -0.52				
kel	P3	-0.63 -0.65 -0.55				
e Hüc	P2	-0.63 -0.58 -0.58 -0.48 -0.35				
ılar de	$\max_{Si} oldsymbol{Y}$	-0.64 -0.62 -0.52 -0.61 -0.40 -0.34				
Iolecı	r los ató F	-1.04 -0.17 -0.21 -0.22 -0.28 -0.32 -0.51				
oital N	k_{XY} po $O2$	$\begin{array}{c} -0.95 \\ -0.94 \\ -0.24 \\ -0.31 \\ -0.33 \\ -0.43 \\ -0.54 \\ -0.70 \end{array}$				
lo Orb	01	$\begin{array}{c} -1.26\\ -1.02\\ -0.92\\ -0.65\\ -0.75\\ -0.84\\ -0.84\\ -0.85\\ -0.88\end{array}$				
Métoc	N3	$\begin{array}{c} -0.98\\ -1.13\\ -0.77\\ -0.89\\ -0.43\\ -0.64\\ -0.68\\ -0.68\\ -0.73\\ -0.73\\ -0.80\end{array}$				
ra el	N2	-1.09 -0.99 -1.14 -0.80 -0.65 -0.72 -0.72 -0.73 -0.78 -0.78 -0.78 -0.78				
CX pa	В	$\begin{array}{c} -0.87\\ -0.66\\ -0.53\\ -0.53\\ -0.60\\ -0.35\\ -0.57\\ -0.53\\ -0.54\\ -0.54\\ -0.44\\ -0.44\\ -0.41\end{array}$				
$h_X \mathbf{y} k$	O	$\begin{array}{c} -1.00\\ -0.73\\ -1.02\\ -0.89\\ -1.06\\ -0.52\\ -0.77\\ -0.77\\ -0.76\\ -0.81\\ -0.69\\ -0.69\\ -0.69\\ -0.69\end{array}$				
r alores de h	Valencia Libre F^0_X	$\begin{array}{c} 1.732\\ 1.732\\ 1.705\\ 1.393\\ 1.583\\ 0.909\\ 0.942\\ 0.942\\ 0.9179\\ 1.732\\ 1.409\\ 1.666\\ 0.962\\ 1.229\\ 0.321\\ 0.321\end{array}$				
	h_X	$\begin{array}{c} 0.00\\ 0.45\\ -0.51\\ -1.37\\ -1.37\\ -0.97\\ -2.71\\ 0.00\\ 0.00\\ -0.19\\ -0.19\\ -0.46\\ -1.11\\ -1.48\\ -1.48\end{array}$				
	Número de electrones π	0 0 1 0 1 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0				
	X	$\begin{bmatrix} C \\ B \\ M_2 \\ N_3 \\ N_3 \\ N_3 \\ N_3 \\ N_3 \\ N_3 \\ N_1 \\ N_2 \\ N_2 \\ N_2 \\ N_1 \\ N_2 \\ $				

Capítulo 4 Topología de enlace.

Comenzando con una estructura representando una molécula, buscamos construir un espacio topológico que represente esta estructura. Este problema no tiene matemáticamente una única solución, existen varias formas adecuadas de asociar un espacio topológico a una estructura dada y es en gran parte un asunto de ingenio el construir un espacio que enfatice esos aspectos de la estructura considerados como importantes. Esto es un poco diferente de la situación usual encontrada en la aplicación de matemáticas a problemas químicos.

Hasta ahora la búsqueda de métodos exitosos para la construcción de topologías moleculares se han concentrado en la adyacencia atómica como la característica clave de la estructura. Específicamente para un espacio topológico molecular (X, \mathcal{T}) el conjunto X es tomado para representar un conjunto de átomos de carbono en el caso de hidrocarburos saturados o un conjunto de orbitales de carbón p, en el caso de un conjugado, el hidrocarburo no saturado, y \mathcal{T} es derivado de los enlaces entre estos átomos u orbitales implicados en la fórmula estructural de la molécula.

Dado que los conjuntos abiertos son los bloques de construcción de un espacio topológico y los enlaces lo son para las estructuras moleculares, un paso natural es pedir que cada enlace sea un conjunto abierto; esto es si $p \neq q$ son átomos enlazados, entonces nos preguntamos si $\{p,q\} \in \mathcal{T}$. La topología más pequeña en X para la cual esto será cierto es la definida por la subbase consistente de la colección de lazos de dos conjuntos. La topología así definida sobre una molécula es llamada topología de enlace [25], [26].

Dos tipos de análisis son posibles cualitativo y cuantitativo.

Las preguntas correspondientes a un espacio topológico en el nivel cualitativo son:

¿El espacio es conexo?

Si el espacio no es conexo, ¿de qué tipos de componentes consiste?

¿Hay distintas estructuras moleculares que son homeomorfas en esta topología?

¿Hay átomos en la molécula que son topológicamente indistinguibles; es decir, es el espacio no- T_0 ?

Las propiedades combinatorias de las topologías finitas discutidas en el Capítulo 2 son la base del análisis cuantitativo de la estructura espacial. Específicamente, el número total de conjuntos abiertos, es decir, la cardinalidad de la topología molecular que es una medida de la complejidad estructural, mientras las cardinalidades de varios subespacios, tales como los relacionados con los pares de átomos adyacentes, son medidas de la estructura interna del espacio, por ejemplo, la fuerza de adhesión(fuerza de enlace).

4.1. Construcción de la topología de enlace

Los aspectos no métricos de las estructuras moleculares en el pasado ya han sido descritos en el lenguaje de la teoría de gráficas; donde los átomos y los enlaces entre ellos se representan con los vértices y las aristas, respectivamente.

En este trabajo se presenta una descripción alternativa de la teoría orbital molecular de Hückel, basada en los conceptos de la topología de conjuntos. Específicamente, asociamos una molécula a un espacio topológico finito, donde el conjunto de puntos representa los orbitales atómicos y la topología describe las relaciones de enlace entre los átomos.

Como ya vimos en el Capítulo 2, los espacios topológicos finitos tienen una estructura rica en propiedades combinatorias. El análisis de esta estructura combinatoria para estos espacios topológicos finitos será la base fundamental para alcanzar el objetivo principal del trabajo, ya que esta descripción topológica nos brinda algunos paralelismos sorprendentes con los resultados de la teoría de orbitales moleculares. Restringiremos nuestras consideraciones en este capítulo a los sistemas π de hidrocarburos conjugados, como la ilustración más sencilla de los conceptos topológicos.

Iniciamos considerando el conjunto X de los orbitales atómicos π y queremos construir una topología que refleje la estructura inducida a X por la conectividad atómica de la molécula. Esta conectividad está completamente descrita por la colección S de conjuntos con dos elementos $\{i, j\}$ los cuales expresan la adyacencia, es decir, $\{i, j\} \in S$ si y sólo si los átomos i y j son adyacentes en el grafo G asociado a la estructura molecular. En otras palabras

 $\mathcal{S} = \{\{i, j\} | i \ y \ j \text{ son advacentes en } G\}.$

S no es una topología, ni una base para a una topología, ya que la intersección de dos elementos de S no está en S. Sin embargo, S es una subbase ya que la unión de todos los elementos de S es X. A partir de este momento al escribir adyacencia atómica o simplemente adyacencia nos referimos a conectividad atómica.

En términos de la teoría de grafos, la colección S es el conjunto de aristas E del grafo G(V, E) que corresponde a la fórmula estructural. Recuerde que en la topología así como la teoría de grafos, la identidad química de los átomos en la estructura no juega ningún papel, y lo más que podemos recuperar de uno o del otro campo es el modelo de interconexiones atómicas y no la fórmula química completa. Comenzamos dando la definición de topología de enlace.

Definición 4.1. La topología de enlace para la gráfica asociada a la estructura molecular está definida como la topología más pequeña en el conjunto X de átomos en la cual cada conjunto de un par de átomos adyacentes es abierto. En otras palabras, la topología de enlace es la generada por la subbase S.

A la cotopología correspondiente a la topología de enlace le llamaremos cotopología de enlace. Observaremos al final de este capítulo que la estructura de la cotopología de enlace refleja algo muy cercano a las relaciones dentro de la molécula.

Vamos a ejemplificar la definición anterior para la molécula botadero, esta misma molécula la vamos usar para ilustrar las posteriores definiciones y características de la topología de enlace.

Ejemplo 4.1. Calculemos la topología de enlace para el botadero

$$1$$
 2 $G(\mathcal{T})$ 3 4

El conjunto de átomos es $X = \{1, 2, 3, 4\}$, donde los conjuntos adyacentes son:

 $\{1,2\}, \{2,3\}, \{3,4\}.$

Luego la subbase del espacio topológico es:

$$S = \{\{1, 2\}, \{2, 3\}, \{3, 4\}\}.$$

A partir de esta subbase construimos su base

$$\mathcal{B} = \{ \emptyset, \{2\}, \{3\}, \{1,2\}, \{2,3\}, \{3,4\} \},\$$

y su base irreducible

 $\mathfrak{B} = \{ \emptyset, \{2\}, \{3\}, \{1,2\}, \{3,4\} \}.$

Por lo tanto su topología de enlace es:

$$\mathcal{T}_{bond} = \{ \emptyset, \{2\}, \{3\}, \{1,2\}, \{2,3\}, \{3,4\}, \{1,2,3\}, \{2,3,4\}, X \},\$$

y su cotopología de enlace esta dada por:

$$\mathcal{T}^*_{bond} = \{ \emptyset, \{1\}, \{4\}, \{1,2\}, \{1,4\}, \{3,4\}, \{1,2,4\}, \{1,3,4\}, X \}.$$

Los elementos básicos en la topología de enlace están dados como en el Capítulo 1 por

$$\mathcal{B}_p = \bigcap_{q \in A_p} \{p, q\},\$$

donde A_p es el conjunto de átomos adyacentes a p. De lo anterior podemos escribir a \mathcal{B}_p de forma más simple

$$\mathcal{B}_p = \begin{cases} \{p\} \cup A_p, & \text{si } p \text{ es de grado } 1 \\ \{p\}, & \text{en otro caso.} \end{cases}$$

Así, en la topología de enlace cada átomo de grado mayor que 1 (cada átomo que no es terminal) es un abierto único.

Encontremos los elementos básicos para la gráfica asociada a la a molécula 2-metilpenteno. Ejemplo 4.2. Para la molécula 2-metilpenteno los elementos básicos son:

 $\mathcal{B}_1 = \{1, 2\}, \quad \mathcal{B}_2 = \{2\}, \quad \mathcal{B}_3 = \{3\}, \quad \mathcal{B}_4 = \{4\}, \quad \mathcal{B}_5 = \{4, 5\}, \quad \mathcal{B}_6 = \{2, 6\}.$

4.2. Estructura de la topología de enlace para estructuras de carbono.

Dada una estructura molecular y su grafo asociado, utilizando las propiedades definidas en el Capítulo 1, obtenemos el digrafo asociado a esta molécula. Se analizará el digrafo obtenido y sus componentes, para después clasificarlas y así definir la topología de enlace.

4.2.1. Estructura de grafo.

La estructura de los digrafos de la topología de enlace son una consecuencia directa de los elementos básicos dados en la sección anterior. Los conjuntos de aristas de estos digrafos son escasos, ya que los únicos elementos básicos comparables son aquellos que involucran a un átomo terminal y al átomo adyacente a este. Es decir, $\mathcal{B}_p \supset \mathcal{B}_q$ si p es un átomo terminal y q es adyacente a p; los elementos básicos de cualquier otro par de átomos son incomparables. Al construir el digrafo asociado al grafo de un hidrocarburo, a partir de sus elementos básicos \mathcal{B}_p , se observa que los únicos componentes que podemos encontrar son cuatro [10], [25]. Especifiquemos estos distintos tipos de componentes estructurales que se pueden encontrar en un hidrocarburo.

El digrafo de la topología de enlace para un hidrocarburo general será disconexo y constan sólo de los siguientes cuatro tipos de *componentes estructurales* [25], [26], a los cuales les hemos asignado un nombre para facilitar su uso:

Figura 4.1: Componentes Estructurales

Observamos de lo anterior que los espacios de la topología de enlace son espacios normales; ya que sus componentes estructurales constan solamente de un punto cerrado.

Analizando los cuatro tipos de componentes de la topología de enlace, notamos que en general una molécula tiene un máximo de siete tipos de átomos topológicamente diferentes. Estos siete tipos de átomos los mostramos en la siguiente tabla:

Componente Estructural	Dígrafo	Tipo de Átomo
r	• T	r
s	$t \rightarrow s$	$s \ t$
s'	$\bullet_{t} \rightarrow \bullet_{t} < \bullet_{t}$	$s^{'} t^{'}$
<i>s</i> ″	•t" *"•	$s^{''}t^{''}$

Cuadro 4.1: Donde r, s, s', s'' son vértices abiertos y r, t, t', t'' son vértices cerrados.

Para un espacio general se denotará a la topología de enlace por

$$r^h s^i s^{\prime j} s^{\prime \prime l},$$

donde $\mathbf{k} = \mathbf{r}, \mathbf{s}, \mathbf{s}', \mathbf{s}''$ y d = (h, i, j, l) es el número de veces que aparece cada componente estructural en la topología de enlace.

Continuando con el ejemplo de la sección anterior, calculamos su topología de enlace.

Ejemplo 4.3. Para el grafo del espacio del Ejemplo 4.2, tenemos que el digrafo asociado a su topología de enlace es:

Luego su topología de enlace la representamos por rss'

Los átomos de este tipo de espacios, son abiertos o cerrados (o ambos). Por tanto, estos espacios con topología de enlace son todos $T_{\frac{1}{2}}$.

Para una cadena lineal de N átomos, sus elementos básicos \mathcal{B}_p constan de un único elemento p, excepto los dos átomos terminales para los cuales sus elementos básicos consisten de dos elementos, esto implica la siguiente proposición.

Proposición 4.1. Una cadena lineal de N átomos (N > 3) tiene una topología de enlace

$$r^{N-4}s^2$$
.

Cuando tenemos una molécula cíclica de N átomos, todos sus elementos básicos consisten de un único elemento. Así, enunciamos el siguiente resultado.

Proposición 4.2. Una molécula cíclica de N átomos tiene asociada una topología discreta \mathbf{r}^{N} .

4.2.2. Propiedades combinatorias de la topología de enlace.

Con el fin de tener una mejor clasificación de sus componentes estructurales y sea más fácil describir las propiedades químicas de una molécula, en esta parte, se aplicaran algunas propiedades combinatorias de los espacios topológicos finitos sobre la topología de enlace, descritos en el Capítulo 2.

Funciones generadoras.

Dado que los espacios de la topología de enlace se componen de una variedad limitada de componentes pequeños, es posible reescribir de forma cerrada la mayoría de las expresiones de sus propiedades combinatorias.

Para moléculas grandes que están formadas por 4 o 5 átomos, dar una lista de todos los conjuntos abiertos y cerrados es poco práctico. Afortunadamente para el análisis de las propiedades combinatorias, no necesitamos una descripción tan detallada de su topología, es decir, es suficiente el considerar una enumeración del número de conjuntos abiertos y cerrados de una cardinalidad dada. Esta enumeración es lo más conveniente para asociar formalmente la topología y la cotopología con la función generadora de su grafo.

Comencemos con la expresión correspondiente a la función generadora para la totalidad de conjuntos abiertos o cerrados.

Definición 4.2. La función generadora para la totalidad de conjuntos abiertos o cerrados es

$$F_a(\mathbf{r}, \mathbf{s}, \mathbf{s}', \mathbf{s}''; z) = \sum_{j=0}^{|X|} N_j^a z^j,$$
(4.1)

 N_j^a es el número de conjuntos del tipo *a* con cardinalidad *j*, con *a* = *o*, *c*, donde *o* representa a los abiertos y *c* a los cerrados; |X| es el número de átomos en la molécula.

Por los resultados del Capítulo 2, Sección 2.4, sabemos que cada componente del espacio contribuye con un único factor a la función generadora, de manera que podemos reescribir la fórmula (4.1) usando el Corolario 2.9 como:

Proposición 4.3. La función generadora del espacio a través de sus componentes está dada por:

$$F_o(\mathbf{r}, \mathbf{s}, \mathbf{s}', \mathbf{s}'') = F_o(\mathbf{r}; z)^h F_o(\mathbf{s}; z)^i F_o(\mathbf{s}'; z)^j F_o(\mathbf{s}''; z)^l,$$
(4.2)

donde $F_o(\mathbf{k}; z)$ es la función generadora de conjuntos abiertos para una componente del tipo $\mathbf{k} = (\mathbf{r}, \mathbf{s}, \mathbf{s}', \mathbf{s}'')$, h es el número de átomos de tipo \mathbf{r} , i del tipo \mathbf{s} , j del tipo \mathbf{s}' y l del tipo \mathbf{s}'' .

Comencemos construyendo $F_o(\mathbf{k}; z)$. Cuando todas las intersecciones de los elementos de la subbase se consideran en la formación de la base, los únicos conjuntos nuevos que resultan son los conjuntos que están formados por un único elemento, estos conjuntos representan a todos los átomos no terminales, es decir, átomos implicados en al menos dos enlaces. Para cualquier conjunto de cardinalidad 2, donde sus dos elementos están presentes en la base como conjuntos que consisten de un elemento, pueden ser eliminados de la base sin afectar a la topología.

Los únicos conjuntos formados por dos elementos que permanecerán en la base irreducible son aquellos que consisten de un átomo terminal y del átomo con el cual tienen un enlace. Así cualquier átomo que no es terminal ni el vecino más cercano a un átomo terminal, contribuirá con un factor (1+z) a la función generadora ya que aporta 1 a la cardinalidad de la unión de los conjuntos básicos si está incluido y 0 en otro caso; a estos átomos ya los designamos anteriormente por \mathbf{r} . Si hay h de estos elementos, todos contribuyen con un factor $(1+z)^h$ a $F_o(\mathbf{k}; z)$.

De la base irreducible y como ya se mostró en la figura 4.2.1 podemos establecer que existen tres tipos de átomos terminales [25], [30]:

- *i)* Una terminación simple, en la cual un átomo terminal t tiene un enlace con un átomo s que no se encuentra unido a ningún otro átomo terminal. Para esta terminación, los conjuntos que aporta a la base irreducible son $\{s\}$ y $\{t, s\}$, que contribuyen con 0, 1 o 2 a la cardinalidad de la unión de los conjuntos básicos y con un factor $1 + z + z^2$ a $F_o(\mathbf{k}; z)$.
- *ii)* Cuando los átomos terminales $t'_1 y t'_2$ están enlazados a un mismo átomo s''. Los conjuntos de la base irreducible en los que intervienen estos átomos son $\{s'\}$, $\{s', t'_1\}$, $\{s', t'_2\} \{t'_1, s'', t'_2\} y$ por lo tanto contribuye con conjuntos de cardinalidad 0,1, dos de cardinalidad 2, o uno de cardinalidad 3, que corresponde al conjunto $\{s', t'_1\} \cap \{s', t'_2\} = \{s', t'_1, t'_2\}$. Entonces, el factor correspondiente de $F_o(\mathbf{k}; z)$ es $(1 + z + 2z^2 + z^3)$.

iii) Cuando tres átomos terminales t_1'', t_2'' y t_3'' son advacentes a un mismo átomo s''. Los conjuntos de la base irreducible $\{s''\}, \{t_1'', s''\}, \{t_2'', s''\}, \{t_3'', s''\}, \{t_1'', s'', t_2''\}, \{t_1'', s'', t_3''\}, \{t_2'', s'', t_3''\}$ y $\{t_1'', s'', t_2'', t_3''\}$, que son de cardinalidad 0,1,3,3 o 1, respectivamente por cada tipo. Aportan el factor $(1 + z + 3z + 3z^3 + z^4)$ a $F_o(\mathbf{k}; z)$.

En conclusión, después de la inspección anterior a los digrafos asociados a cada una de las componentes de la topología de enlace, se observa que $F_o(\mathbf{k}; z)$ para $\mathbf{k} = (\mathbf{r}, \mathbf{s}, \mathbf{s}', \mathbf{s}'')$ tiene la siguiente forma :

 $\begin{array}{lll} {\pmb k} & & F_o({\pmb k};z) \\ {\pmb r} & & 1+z, \\ {\pmb s} & & 1+z+z^2, \\ {\pmb s}' & & 1+z+2z^2+z^3, \\ {\pmb s}'' & & 1+z+3z^2+3z^3+z^4. \end{array}$

Así, se puede reescribir 4.2 como:

$$F_o(\mathbf{r}, \mathbf{s}, \mathbf{s}', \mathbf{s}''; z) = (1+z)^h (1+z+z^2)^i (1+z+2z^2+z^3)^j (1+z+3z^2+3z^3+z^4)^l.$$
(4.3)

Proposición 4.4. La cardinalidad de una topología de enlace en general $r^h s^i s'^j s''^l$ es

$$F_o(\mathbf{r}, \mathbf{s}, \mathbf{s}', \mathbf{s}''; 1) = 2^h 3^{i+2l} 5^j.$$

Demostración. Utilicemos la ecuación 4.2 para z=1, luego

$$F_o(\mathbf{r}, \mathbf{s}, \mathbf{s}', \mathbf{s}'', 1) = (1+1)^h (1+1+1)^i (1+1+2+1)^j (1+1+3+3+1)^l,$$
$$= 2^h 3^i 5^j 9^l = 2^h 3^{i+2l} 5^j.$$

Analicemos que pasa con la función generadora para los conjuntos cerrados.

Proposición 4.5. la función generadora de conjuntos cerrados tiene la forma

$$F_c(\boldsymbol{r},\boldsymbol{s},\boldsymbol{s}',\boldsymbol{s}'';z) = z^n F_o(\boldsymbol{r},\boldsymbol{s},\boldsymbol{s}',\boldsymbol{s}'';z^{-1}),$$

 $con \ n = h + 2i + 3j + 4l.$

Demostración. Usando el Teorema 2.9 y al observar que cada conjunto cerrado de cardinalidad k corresponde a un conjunto abierto de cardinalidad n - k, es decir, $N_k^c = N_{n-k}^o$ se obtiene que la función generadora de conjuntos cerrados tiene la forma

$$F_c(\boldsymbol{r}, \boldsymbol{s}, \boldsymbol{s'}, \boldsymbol{s''}; z) = z^n F_o(\boldsymbol{r}, \boldsymbol{s}, \boldsymbol{s'}, \boldsymbol{s''}; z^{-1})$$

 $\operatorname{con} n = h + 2i + 3j + 4l.$

Así, los factores para los conjuntos cerrados de $F_c(\mathbf{k}; z)$ para $\mathbf{k} = (\mathbf{r}, \mathbf{s}, \mathbf{s}', \mathbf{s}'')$ son:

 $\begin{array}{lll} {\pmb k} & & F_c({\pmb k};z) \\ {\pmb r} & & 1+z, \\ {\pmb s} & & 1+z+z^2, \\ {\pmb s}' & & 1+2z+z^2+z^3, \\ {\pmb s}'' & & 1+3z+3z^2+z^3+z^4. \end{array}$

Además de las funciones generadoras para la totalidad de conjuntos abiertos y cerrados, también podemos derivar fácilmente las funciones generadoras para los conjuntos abiertos o cerrados que contienen a un subconjunto dado $S \subset X$. Del Capítulo 1 se sabe que la colección de conjuntos abiertos es:

$$\{\widehat{S} \cup A | A \in \mathcal{T}(X - \widehat{S})\},\$$

de quien su función generadora esta dada por

$$z^{|\widehat{S}|}F_o(X-\widehat{S};z).$$

De la misma manera, la colección de conjuntos cerrados que contienen a S es

$$\{\overline{S} \cup A | A \in \mathcal{T}^*(X - \overline{S})\},\$$

con función generadora

$$z^{|\overline{S}|}F_c(X-\overline{S};z).$$

La función generadora de un subconjunto, es obtenida de la función generadora del espacio completo substituyendo para cada componente k = (r, s, s', s''),

$$F_o(\mathbf{k}; z) \to z^{|\mathbf{k} \cap \widehat{S}|} F_o(\mathbf{k} - \widehat{S}; z),$$

 $F_c(\mathbf{k}; z) \to z^{|\mathbf{k} \cap \overline{S}|} F_o(\mathbf{k} - \overline{S}; z).$

Para los conjuntos abiertos o cerrados, el análisis de la contribución de los 4 tipos de átomos $\{r\}, \{s,t\}, \{s',t'_1,t'_2\}, \{s'',t''_1,t''_2,t''_3\}$ a $F_a(S;z)$ (a = o, c) sigue la misma línea como la mencionada anteriormente para $F_a(\mathbf{k};z)$. Por ejemplo, para $F_a(\mathbf{r};z)$ un átomo del tipo \mathbf{r} está siempre presente en cada unión de los conjuntos básicos y por lo tanto estos átomos juntos contribuyen con un factor de $z(1+z)^{r-1}$ a la función generadora.

Luego, para un subconjunto que consiste de un solo elemento y para subconjuntos de dos elementos que corresponden posiblemente a un par de átomos adyacentes, su función generadora puede ser expresada de la forma:

$$z^{\alpha+2\beta+3\gamma+4\delta}F(\boldsymbol{r};z)^{h-\alpha}F(\boldsymbol{s};z)^{i-\beta}F(\boldsymbol{s}';z)^{j-\gamma}F(\boldsymbol{s}'';z)^{l-\delta},$$

para conjuntos abiertos o cerrados. Los valores de los exponentes α , β , γ , δ para los diversos tipos de subconjuntos que pueden existir se presentan en la siguiente tabla.

Exp	oner	ites	pa	ra l	as funcion	es		
ger	generadoras de su		ıbconjunto	DS				
	Α	bie	rto	s	(Cerrados		5
Conjunto	α	β	γ	δ	α	β	γ	δ
r	1	0	0	0	1	0	0	0
s	-1	1	0	0	0	1	0	0
t	0	1	0	0	-1	1	0	0
s'	-2	0	1	0	0	0	1	0
t'	-1	0	1	0	0	-1	1	0
s''	-3	0	0	1	0	0	0	1
t''	-2	0	0	1	0	0	-1	1
$\{r,r\}$	2	0	0	0	2	0	0	0
$\{r,s\}$	0	1	0	0	1	1	0	0
$\{r,s'\}$	-1	0	1	0	1	0	1	0
$\{r, s''\}$	-2	0	0	1	1	0	0	1
$\{s,t\}$	0	1	0	0	0	1	0	0
$\{s, s'\}$	-3	1	1	0	0	1	1	0
$\{s, s''\}$	-4	1	0	1	0	1	1	1
$\{s',t'\}$	-1	0	1	0	0	0	1	0
$\{s',s''\}$	-5	0	1	1	0	0	1	1
$\{s'',t''\}$	-2	0	0	1	0	0	0	1

Ejemplo 4.4. Considérese el enlace $\{2, 4\}$ del espacio topológico para el cual su digrafo es

del cual sus elementos básicos son:

$$\mathcal{B}_1 = \{1, 2\}, \quad \mathcal{B}_2 = \{2\}, \quad \mathcal{B}_3 = \{2, 3\}, \quad \mathcal{B}_4 = \{4\}, \quad \mathcal{B}_5 = \{5\}, \quad \mathcal{B}_6 = \{5, 6\}.$$

La topología de enlace para esta molécula es $\mathbf{rss}',$ de la que el grafo asociado es

con funciones generadoras

$$F_o(\mathbf{k}; z) = (1+z)(1+z+z^2)(1+z+2z^2+z^3)$$
(4.4)

$$F_c(\mathbf{k};z) = (1+z)(1+z+z^2)(1+2z+z^2+zz^3)$$
(4.5)

El enlace $\{2, 4\}$ es del tipo $\{r, s'\}$, entonces

$$F_o(\{2,4\}) = z^2(1+z)^2(1+z+z^2), \text{ donde } \alpha = -1, \gamma = 1.$$

Similarmente, para los conjuntos cerrados

$$F_c(\{2,4\}) = z^4(1+z+z^2), \text{ donde } \alpha = 1, \gamma = 1.$$

Enlaces topológicos de pesos en un sistema π -electrón.

Dada una molécula y habiendo construido su topología de enlace, nos preguntamos: ¿Con esta topología podemos extraer información interesante para la química? En esta sección nos concentraremos en explorar esta cuestión con respecto a los patrones de enlace, en los sistemas π -electrón. Es decir, tomamos el conjunto básico X para representar los orbitales p_z de hidrocarburos conjugados y buscamos una medida topológica para saber hasta que punto cada par de átomos adyacentes contribuye a la topología del espacio total, esta medida la queremos comparar con los órdenes de los π -enlace de la teoría de orbitales moleculares [20]. La medida más evidente de la contribución de un par de átomos adyacentes al espacio no es más que la fracción de conjuntos abiertos (o cerrados) que contienen al par de átomos. Elegimos la fracción en lugar del número total de conjuntos, ya que el orden de enlace debe ser un número entre 0 y 1.

Ahora analicemos los patrones de los enlaces en un sistema π -electrón.

Definición 4.3. El orden de un enlace topológico [6], [7], [25], [26], es la contribución de un par de átomos adyacentes dados al espacio, o bien la fracción de conjuntos abiertos (o cerrados) que contienen a este par de átomos y es por ello que su valor oscila entre 0 y 1. Así, su función esta dada por

$$\pi_a(\{i,j\}) = n_k(\{i,j\})/|\mathcal{T}| \quad con \ a = o, c$$

donde $n_a(\{i, j\})$ es el número de conjuntos del tipo a (abierto o cerrado) que contenga a $\{i, j\}$.

Con esto podemos reescribir a $\pi_a(\{i, j\})$ en términos de las funciones generadoras, el total de conjuntos son obtenidos por asignar z = 1,

$$\pi_a(\{i,j\}) = F_a(X,\{i,j\};1)/F_a(X,1).$$

Calculemos el orden de enlace para la cadena atómica lineal $C_n H_{n+2}$.

Ejemplo 4.5. Para el polieno lineal $C_n H_{n+2}$,

y su topología de enlace esta dada por el digrafo

$$\bullet$$
 s \bullet r r s

que es $r^{n-4}s^2$. El enlace $\{1,2\}$ es del tipo $\{s,t\}$, y

$$\pi_o(\{1,2\}) = \pi_c(\{1,2\}) = \frac{z^2(1+z)^{n-4}(1+z+z^2)}{(1+z)^{n-4}(1+z+z^2)^2}\Big|_{z=1},$$

el cual es independiente del valor de n.

Esto ilustra una característica general de la topología de enlace, donde la fracción de conjuntos abiertos o cerrados que contienen un enlace determinado depende sólo del tipo de los enlaces y no se ve afectada por el tamaño o la estructura del resto de la molécula. Esta medida no satisface las características de la química que deseamos calcular, como el orden de enlace de Hückel; por lo que buscaremos una más adecuada. Una medida alternativa para el enlace, surge de observar que $\pi_o(\{i, j\})$ se puede interpretar como la probabilidad de seleccionar al azar un conjunto abierto, considerando que cada conjunto abierto tiene la misma probabilidad de ser escogido, y este conjunto contendrá a $\{i, j\}$. Proponemos ahora que la probabilidad de escoger un conjunto abierto sea proporcional a su cardinalidad, esto es: $\pi_o(\{i, j\})$ puede ser interpretado como la probabilidad que un conjunto abierto, seleccionado aleatoriamente, contenga a $\{i, j\}$. Definamos a $p_o(\{i, j\})$ de manera formal.

Definición 4.4. La probabilidad de seleccionar aleatoriamente un conjunto abierto que contenga al enlace $\{i, j\}$ es

$$p_o(\{i, j\}) = \sum_{O_n \supset \{i, j\}} |O_n| / \sum_n |O_n|,$$

donde $\mathcal{T} = \{O_n | n = 1, 2, \dots, |\mathcal{T}|\}.$

Así, la probabilidad de seleccionar aleatoriamente un conjunto cerrado que contenga al enlace $\{i, j\}$ es

$$p_c(\{i, j\}) = \sum_{C_n \supset \{i, j\}} |C_n| / \sum_n |C_n|,$$

donde $\mathcal{T}^* = \{ C_n | n = 1, 2, \dots, |\mathcal{T}^*| \}.$

Estas probabilidades ponderadas de cardinalidad son calculadas con facilidad a partir de las funciones generadoras

$$F_a(S;z) = \sum_{j=0}^{|X|} N_j^a(S) z^j \quad (a = o, c),$$

donde $N_j^a(S)$ es el número de conjuntos abiertos o cerrados de cardinalidad j que contienen a $S \subset X$. Donde $F_a(S; z) = F(\emptyset; z)$. Por ejemplo,

$$\sum_{S \subset O_n} |O_n| = \left. \frac{d}{dz} F_o(S; z) \right|_{z=1} \qquad y \qquad \sum_n |O_n| = \left. \frac{d}{dz} F_o(z) \right|_{z=1}$$

Por lo anterior podemos reformular la Definición 4.4 como:

Definición 4.5. La probabilidad de seleccionar aleatoriamente un conjunto abierto o cerrado que contenga al enlace $\{i, j\}$ es

$$p_a(\{i,j\}) = F'_a(\{i,j\};1)/F'_a(1)$$

 $\operatorname{con} a = o, c.$

La probabilidad de seleccionar aleatoriamente un conjunto cerrado que contenga al enlace $\{i, j\}$, $P^{\pi}_{\{i, j\}}$, es aproximadamente el doble del valor de $p_c(\{i, j\})$, es decir,

$$P^{\pi}_{\{i,j\}} = 2p_c(\{i,j\}),$$

ya que el número de electrones que intervienen en el Orbital Molecular es 2.

Usemos la cadena atómica lineal C_nH_{n+2} , para ilustrar las observaciones anteriores. Ejemplo 4.6. Para los polienos que tienen las funciones generadoras,

$$F_o(z) = F_c(z) = (1+z)^{n-4}(1+z+z^2)^2,$$

$$F_o(\{1,2\};z) = F_c(\{1,2\};z) = z^2(1+z)^{n-4}(1+z+z^2),$$

para el cual

$$p_a(\{i,j\}) = F'(\{i,j\};1)/F'(1)$$
 $(a = o, c)$
= $(n+2)/3n$.

Por último, daremos un ejemplo, en el cual se ilustren los principales resultados de este capítulo.

Ejemplo 4.7. La molécula

tiene la topología de enlace ss':

Las funciones generadoras son: $F_o(z) = (1 + z + z^2)(1 + z + 2z^2 + z^3),$

$$\begin{split} F_o(\{1,2\};z) &= z^2(1+z)(1+z+z^2) \quad (\{s',t'\} \text{ enlace}), \\ F_o(\{2,4\};z) &= z^2(1+z)^3 \quad (\{s',s\} \text{ enlace}), \\ F_o(\{4,5\};z) &= z^2(1+z+2z^2+z^3) \quad (\{s',t'\} \text{ enlace}), \\ F_c(z) &= (1+z+z^2)(1+2z+z^2+z^3), \\ F_c(\{1,2\};z) &= z^3(1+z+z^2), \\ F_c(\{2,4\};z) &= z^5, \\ F_c(\{4,5\};z) &= z^2(1+2z+z^2+z^3), \end{split}$$

para lo cual

$$\begin{split} p_o(\{1,2\}) &= 0.538, \qquad p_o(\{2,4\}) = 0.718, \qquad p_o(\{4,5\}) = 0.462, \\ p_c(\{1,2\}) &= 0.333, \qquad p_c(\{2,4\}) = 0.139, \qquad p_c(\{4,5\}) = 0.472. \end{split}$$

El orden de enlace de Hückel para la molécula es:

$$P_{\{1,2\}}^{\pi} = 0.653, \quad P_{\{2,4\}}^{\pi} = 0.383, \quad P_{\{4,5\}}^{\pi} = 0.924$$

Recordemos que el valor de $P_{\{i,j\}}^{\pi}$ es aproximadamente el doble del valor de $p_c(i,j)$.

A continuación presentamos una tabla en la cual comparamos los valores del orden de Hückel que se obtienen con los softwares mencionados anteriormente con los que se obtienen utilizando el método aquí presentado.

Hidrocarburo	${f Enlace}\ (i,j)$	Tipo de enlace topológico	Orden de enlace Hückel topológico	Orden de enlace Hückel
	(12)	st	1.000	0.894
	(23)	ss	0.444	0.447
	(12)	st	0.889	0.871
	(23)	rs	0.500	0.483
	(34)	rr	0.667	0.785
	(12)	st	0.889	0.871
	(23)	ss	0.370	0.301
	(34)	rs	0.500	0.388
	(45)	rr	0.667	0.785

Hidrocarburo	${f Enlace}\ (i,j)$	Tipo de enlace topológico	Orden de enlace Hückel topológico	Orden de enlace Hückel
	(12)	TT	0.750	0.707
	(12)	rr	0.667	0.667
	(12)	s't'	0.857	0.707
	(12) (23)	st rs	0.933 0.533	$0.789 \\ 0.577$
	(12) (23) (34)	$s't' \\ ss' \\ st$	$0.667 \\ 0.278 \\ 0.944$	$0.653 \\ 0.383 \\ 0.924$
	(12) (23) (34) (45)	$st \\ rs \\ ss \\ st$	0.857 0.476 0.349 0.857	$0.756 \\ 0.513 \\ 0.325 \\ 0.881$
	(12) (23)	st rs	$0.857 \\ 0.476$	0.833 0.500
	(12)	s''t''	0.500	0.577
	(12) (23)	$s't' \ s's'$	$0.629 \\ 0.171$	0.667 0.333
	(12) (23) (34) (45)	s't' rs' rs st	$\begin{array}{c} 0.621 \\ 0.345 \\ 0.506 \\ 0.897 \end{array}$	$\begin{array}{c} 0.616 \\ 0.470 \\ 0.616 \\ 0.761 \end{array}$

Hidrocarburo	${f Enlace}\ (i,j)$	Tipo de enlace topológico	Orden de enlace Hückel topológico	Orden de enlace Hückel
	(12) (23)	st rs	$0.889 \\ 0.500$	$0.724 \\ 0.447$
	(12)	rr	0.833	0.770
	(12)	rr	0.700	0.681
	(12) (23) (34)	st rs rr	$1.000 \\ 0.583 \\ 0.750$	$0.758 \\ 0.453 \\ 0.818$
	(12) (23)	st ss	$0.889 \\ 0.370$	$0.832 \\ 0.385$
	(12) (23) (34)	st rs ss	$0.933 \\ 0.533 \\ 0.400$	$0.725 \\ 0.555 \\ 0.362$

Capítulo 5

Topología de Enlace para grupos funcionales

Al igual que en el Capítulo 3, basaremos nuestro análisis en el estudio de algunas propiedades combinatorias de la topología de enlace asociada a una molécula. En este capítulo mostraremos la manera de calcular el orden de Hückel para los sistemas heteroatómicos; a través de su topología de enlace. Este método será una generalización del presentado en el Capítulo 3 y es la principal aportación de esta tesis.

5.1. Construcción de la topología de enlace para grupos funcionales

Los orbitales atómicos π los representaremos a través del conjunto X, y las conectividades atómicas con la topología de enlace.

Como lo hicimos en el capítulo anterior, para asociar una topología de enlace a una molécula, necesitamos construir su digrafo. Antes de analizar el digrafo asociado, presentamos los distintos componentes químicos de los sistemas heteroatómicos que estudiaremos, así como su representación topológica que le hemos asignado.

Componente	Elemento	Creada	No. de electrones
Químico	de enlace	Grado	de enlace
r	carbono	1	1
0•	oxígeno	1	1
<i>o</i> :	oxígeno	1	2
O +	oxígeno	1	$3 \circ +$
$n \cdot$	nitrógeno	1	1
<i>n</i> :	nitrógeno	1	2
n_+	nitrógeno	1	$3 \circ +$
s	carbono	2	1
$p\cdot$	oxígeno	2	1
<i>p</i> :	oxígeno	2	2
p_+	oxígeno	2	$3 \circ +$
$u\cdot$	nitrógeno	2	1
<i>u</i> :	nitrógeno	2	2
u_+	nitrógeno	2	$3 \circ +$
s	carbono	3	1
p :	oxígeno	3	2
$p_{+}^{'}$	oxígeno	3	$3 \circ +$
<i>u</i> :	nitrógeno	3	2
u_{+}	nitrógeno	3	$3 \circ +$
s ["]	carbono	4	1
u ["] +	nitrógeno	4	$3 \circ +$

Al construir el digrafo asociado a la molécula, notamos que este es disconexo y consta de un número especifico de componentes estructurales. Al observar el digrafo obtenido de cada sistema heteroatómico a estudiar, vemos que todos los, átomos internos adyacentes a un átomo terminal generan una componente de un único elemento. Los diferentes tipos de estas componentes gráficas las presentamos en la siguiente tabla:

Componente Estructural	Digrafo	Tipo de Átomo
r	ŕ	r
0.	• •	0•
0:	• :	0:
O +	$\overset{\bullet}{O}_{+}$	O_+
$n\cdot$	$n \cdot$	$n \cdot$
<i>n</i> :	\hat{n} :	n:
n_+	n_{+}	n_+

Cuadro 5.1: Donde cada átomo r, o., o., o., n., n., n., n., son topológicamente abiertos y cerrados al mismo tiempo.

Para los átomos terminales, al igual que en el capítulo anterior encontramos tres diferentes tipos:

I. Un átomo terminal adyacente sólo a otro átomo. En la siguiente tabla presentamos detalladamente cada una de las distintas componentes gráficas de este tipo, que podemos

Componente Estructural	Digrafo	Tipo de Átomo
8	$t_0 \longrightarrow s$	${s \atop t_0}$
0 ∙ <i>S</i>	$t_1 \rightarrow 0 \cdot s$	$o \cdot s$ t_1
0:8	t_2 $o:s$	o:s t_2
0 + S	$t_3 \rightarrow 0_+ s$	o_+s t_3
$p\cdot$	$t_4 \rightarrow p$.	$p \cdot t_4$
p:	t_5 p :	p : t_5
p:	t_6 p :	p: t_6
p_+	$t_7 \rightarrow p_+$	p_+ t_7
p_+	t_8 p_+	p_+ t_8
p_+	t_9 p_+	p_+ t_9
$u\cdot$	t_{10} u .	$u \cdot t_{10}$
<i>u</i> :	t_{11} u :	u : t_{11}
<i>u</i> :	t_{12} u :	u: t_{12}
u_+	t_{13} u_+	u_+ t_{13}
u_+	t_{15} u_+	u_+ t_{14}
u_+	t_{16} u_+	u_+ t_{15}
<i>o</i> ∙ <i>u</i> +	$t_{14} \rightarrow o \cdot u_+$	$v \cdot u_+$ t_{16}

encontrar de la digráfica asociada a una molécula.

Cuadro 5.2: Donde los átomos s, o·s, o·s, o·s, p·, p·, p·, u·, u·, u·, o·u+ son topológicamente abiertos y t_0 , t_1 , t_2 , t_3 , t_4 , t_5 , t_6 , t_7 , t_8 , t_9 , t_{10} , t_{11} , t_{12} , t_{13} , t_{14} , t_{15} , t_{16} son topológicamente cerrados.

Componente Estructural	Digrafo	Tipo de Átomo
s'	t'_0 s t'_0	$s' t'_0$
$p \cdot s'$	$t_2' \qquad p \cdot s' \qquad t_1'$	$p{\cdot}s' \ t'_1 \ t'_2$
p :s'	t_4' $p:s'$ t_3'	$p{:}s' \ t'_3 \ t'_4$
p_+s'	t_6' p_+s' t_5'	$p_+s' \ t_5' \ t_6'$
$p \cdot p : s'$	t_7' $p \cdot p \cdot s'$ t_8'	$p{\cdot}p{:}s' \ t'_7 \ t'_8$
<i>p</i> :'	t'_9 p'' t'_9	p :' t_9'
p:'	t'_9 $p:'$ t'_{10}	p :' t'_{10}
p_+'	t'_{11} p_{+}' t'_{11}	${p_{+}}' \\ t_{11}'$
$p_+{}^\prime$	t'_{11} p_+' t'_{12}	$p_{+}' t_{12}'$
u:'	t'_{13} $u:'$ t'_{13}	u :' t'_{13}
u_+'	t'_{14} u_{+}' t'_{14}	${u_{+}}^{\prime} t_{14}^{\prime}$
u_+'	t'_{14} u_{+}' t'_{15}	${u_{+}}^{\prime} t_{15}^{\prime}$
$p \cdot u_+'$	t'_{16} $p \cdot u_+'$ t'_{17}	$p{\cdot}u_{+}{'}\ t_{16}'\ t_{17}'$

II. Un átomo terminal adyacente a otros dos átomos que no son adyacentes entre ellos.

Cuadro 5.3: Donde los átomos s', p·s', p:s', p+s', p·p:s', p:', p+', u:', u+', p·u+' son topológicamente abiertos y t'_0 , t'_1 , t'_2 , t'_3 , t'_4 , t'_5 , t'_6 , t'_7 , t'_8 , t'_9 , t'_{10} , t'_{11} , t'_{12} , t'_{13} , t'_{14} , t'_{15} , t'_{16} , t'_{17} son topológicamente cerrados.

III. Un átomo terminal adyacente a tres átomos que sólo son adyacentes con él. Mostramos todas las componentes estructurales que cumplen con lo anterior, dando su representación topológica y el nombre de cada uno de sus elementos.

Cuadro 5.4: Donde los átomos s'', $p \cdot s''$, $p \cdot s''$, $p \cdot s''$, $p \cdot p \cdot s''$ son topológicamente cerrados y t''_0 , t''_1 , t''_2 , t''_3 , t''_4 , t''_5 , t''_6 , t''_7 , t''_8 , t''_9 son topológicamente abiertos

Cuadro 5.5: Donde los átomos u_{+}'' , $p \cdot u_{+}''$ son topológicamente abiertos y t''_{10} , t''_{11} , t''_{12} , t''_{13} , t''_{14} son cerrados.

Conociendo todos los componentes estructurales que le podemos asociar a un sistema heteroatómico, ya podemos definir la topología de enlace para los grupos funcionales. Esta topología de enlace esta definida de la misma manera que en el Capítulo 3 y de la misma forma que en ese capítulo construiremos su representación simplificada.

Hemos visto que el número de componentes de gráficos en esta topología es mayor que la descrita en el capítulo anterior, por ello es necesario denotar de una manera simplificada la representación de esta topología de enlace.

Para esto definimos las siguientes listas ordenadas, que representan a los distintos componentes estructurales que podemos encontrar en nuestra molécula. Cabe mencionar que estos componentes han sido agrupados dependiendo el número de átomos que actúan en ellos:

Sean

$$\begin{split} & k1 = \{r, \, o \cdot, \, o :, \, o_+, \, n \cdot, \, n :, \, n_+\}, \\ & k2 = \{s, \, o \cdot s, \, o : s, \, o_+ s, \, p \cdot, \, p :, \, p_+, \, u \cdot, \, u :, \, u_+, \, o \cdot u_+\}, \\ & k3 = \{s', \, p \cdot s', \, p : s', \, p_+ s', \, p \cdot p : s', \, p :', \, p_+', \, u :', \, u_+', \, p \cdot u_+'\}, \\ & k4 = \{s'', \, p \cdot s'', \, p :'', \, p :'', \, p \cdot p : s'', \, u_+'', \, p \cdot u_+''\}. \end{split}$$

Y sus superíndices agrupados de la misma forma en listas ordenadas, es decir, el superíndice de r es exclusivamente h_1 , el de o es h_2 y así sucesivamente con los demás componentes.

 $h = \{h_1, h_2, h_3, h_4, h_5, h_6, h_7\},\$ $i = \{i_1, i_2, i_3, i_4, i_5, i_6, i_7, i_8, i_9, i_{10}, i_{11}\},\$ $j = \{j_1, j_2, j_3, j_4, j_5, j_6, j_7, j_8, j_9, j_{10}\},\$ $l = \{l_1, l_2, l_3, l_4, l_5, l_6, l_7\}.$

Luego para un espacio heteroatómico en general se denotará a la topología de enlace simplificada por: $\mathbf{k1}^{h}\mathbf{k2}^{i}\mathbf{k3}^{j}\mathbf{k4}^{l}$.

donde

k = (h, i, j, l)

es el número de componentes de k = k1, k2, k3, k4.

5.1.1. Propiedades combinatorias de la topología de enlace.

Para los sistemas heteroatómicos se tienen que considerar otros parámetros químicos, parte de su estructura gráfica; ya que en este tipo de moléculas los tipos de enlace ya no son únicamente carbono-carbono. Estos parámetros son: el parámetro h_X , o Integral de Coulomb, que representa la energía de un electrón en su propio átomo, mientras que el parámetro K_{XY} , o Integral de resonancia, representa la energía de un electrón entre dos átomos enlazados. Los elementos diagonales de la matriz de Hückel (3.42) en sistemas con heteroátomos (átomos distintos al C), son diferentes ya que sus electronegatividades son también diferentes: cuanto más electronegativo sea un átomo tanto más estable será su electrón. Asimismo, los elementos no diagonales, relacionados con la integral de resonancia, tienen que reflejar situaciones de enlace entre átomos de distinta naturaleza. En el caso de heteroátomos, las integrales de Coulomb y de resonancia se definen en función de las del átomo de C, estos valores ya han sido presentados en la tabla anexa.

Funciones generadoras.

Como ya hemos analizado en el Capítulo 3, para moléculas de más de 3 átomos es muy complicado dar una lista detallada de todos los conjuntos abiertos y cerrados del espacio topológico asociado.

Así que nuevamente recurrimos a estudiar las propiedades combinatorias de este espacio sin necesidad de dar una descripción detallada de la topología. Para ello sólo será suficiente enumerar a los conjuntos abiertos y cerrados con cierta cardinalidad, para que podamos asociar la topología y la cotopología a la función generadora de la gráfica.

Iniciamos dando la definición de función generadora para la totalidad de conjuntos abiertos o cerrados para la topología de enlace de un sistema heteroatómico

Definición 5.1. La función generadora para la totalidad de conjuntos abiertos o cerrados para un sistema heteroatómico es

$$F_a(\mathbf{k}; z) = \sum_{j=0}^{|X|} N_j^a (z - h_x)^j,$$
(5.1)

 N_j^a es el número de conjuntos abiertos o cerrados de cardinalidad j y h_x es la Integral de Coulomb para el elemento k, donde x es el punto abierto de la componente conexa; para los puntos que no son abiertos sólo se considera el factor z.

Dado que cada componente del espacio contribuye con un factor de la función generadora y haciendo uso del Corolario 2.9, podemos reescribir (5.1), con lo cual se demuestra el siguiente corolario:

Proposición 5.1. La función generadora de cada componente del espacio está dada por:

$$F_a(\boldsymbol{k};z) = \Pi F_a(\boldsymbol{k1};z)^h \Pi F_a(\boldsymbol{k2};z)^i \Pi F_a(\boldsymbol{k3};z)^j \Pi F_a(\boldsymbol{k4};z)^l$$

donde $F_a(\mathbf{k}; z)$ es la función generadora de conjuntos abiertos para una componente del tipo \mathbf{k} definida en la sección anterior.

Inspeccionando los digrafos correspondientes a las componentes de la topología de enlace de un sistema heteroatómico, se observa que $F_o(\mathbf{k}; z)$ tiene la siguiente forma:

k1	$F_o(oldsymbol{k1};z)$	$F_o(k1; z)$ desarrollada
r	1 + z,	1 + z,
0.	1 + (z + 0.97)	1.97 + z,
<i>O</i> :	1 + (z + 2.09)	3.09 + z,
o_+	1 + (z + 2.5)	3.5 + z,
$n\cdot$	1 + (z + 0.51)	1.51 + z,
n:	1 + (z + 1.37)	2.37 + z,
$oldsymbol{n}_+$	1 + (z + 2)	3 + z.

k2	$F_o(oldsymbol{k2};z)$	$F_o(oldsymbol{k2};z)$ desarrollada
$egin{array}{c} s & & \ o{\cdot}s & & \ o{\cdot}s & & \ o{\cdot}s & & \ o{\cdot}s & & \ p{\cdot} & \ p{\cdot} & & \ p{\cdot} & $	$1 + z + z^{2},$ $1 + z + z(z + 0.97)$ $1 + z + z(z + 2.09)$ $1 + z + z(z + 2.5)$ $1 + (z + 0.97) + z(z + 0.97)$ $1 + (z + 2.09) + z(z + 2.09)$ $1 + (z + 2.5) + z(z + 2.5)$	$1 + z + z^{2}, 1 + 1.97z + z^{2}, 1 + 3.09z + z^{2}, 1 + 3.5z + z^{2}, 1.97 + 1.97z + z^{2}, 3.09 + 3.09z + z^{2}, 3.5 + 3.5z + z^{2}$
$egin{array}{c} u \cdot & $	1 + (z + 0.51) + z(z + 0.51) 1 + (z + 1.37) + z(z + 1.37) 1 + (z + 1.37) + (z + 0.97)(z + 1.37) 1 + (z + 2) + z(z + 2)	$\begin{array}{l} 1.51+1.51z+z^2,\\ 2.37+2.37z+z^2,\\ 3.6989+3.34z+z^2,\\ 3+3z+z^2, \end{array}$

k3	$F_o(m{k3};z)$	$F_o(m{k3};z)$ desarrollada
$s' p.s' p.s' p.p.s' p.p.s' n.s' p.p.s' p.p.s' p.r.s' p.r.s' n.s' n.s' n.s' p.u.s' p.u.s' p.u_{+'} p.u_{+'}$	$\begin{array}{l} 1+z+z^2+z^3,\\ 1+z+z^2+z(z+0.97)+z^2(z+0.97)\\ 1+z+z^2+z(z+2.09)+z^2(z+2.09)\\ 1+z+z^2+z(z+2.09)+z^2(z+2.09)\\ 1+z+z(z+0.97)+z(z+2.09)+z(z+0.97)(z+2.09)\\ 1+(z+2.09)+2z(z+2.09)+z^2(z+2.09)\\ 1+(z+2.5)+2z(z+2.5)+z^2(z+1.37)+z^2(z+1.37)\\ 1+(z+2)+2z(z+2)+z^2(z+2)+z^2(z+2)\\ 1+(z+2)+z(z+2)+(z+0.97)(z+2)+z(z+0.97)(z+2)+z(z+0.97)(z+2)\end{array}$	$\begin{array}{c} 1+z+z^2+z^3,\\ 1+1.97z+2.97z^2+z^3,\\ 1+3.09z+4.09z^2+z^3,\\ 1+4.5z+3.5z^2+z^3,\\ 1+6.0837z+5.06z^2+z^3,\\ 3.09+5.18z+4.09z^2+z^3,\\ 3.5+6z+4.5z^2+z^3,\\ 3.5+6z+4.5z^2+z^3,\\ 3+5z+4z^2+z^3,\\ 3+5z+4z^2+z^3,\\ 3+5z+4z^2+z^3,\\ \end{array}$

$\begin{aligned} +z+2z^2+z(z+0.97)+z^3+2z^2(z+0.97)+z^3(z+0.97)\\ +z+2z^2+z(z+2.09)+z^3+2z^2(z+2.09)+z^3(z+2.09)\\ +z+2z^2+z(z+2.5)+z^3+2z^2(z+2.5)+z^3(z+2.5)\\ +z+2z^2+z(z+0.97)+z^2(z+2.09)+z^2(z+2.09)+z(z+0.97)(z+2.09)+z^2(z+0.97)(z+2.09)\\ +z+z+2z^2+z(z+0.97)+z^2(z+2.09)+z^2(z+2.09)+z^2(z+2.09)+z(z+0.97)(z+2.09)+z^2(z+0.97)(z+2.09)\\ +z+z+z^2+z(z+2.0)+z^2(z+2.0)+z^2(z+0.97)+z^2(z+2.09)+z(z+0.97)(z+2.09)+z^2(z+0.97)(z+2.09)\\ +(z+2)+3z(z+2)+3z^2(z+2)+2z(z+0.97)(z+2)+z^2(z+2)+z^2(z+0.97)(z+2.09)\\ +(z+2)+z(z+0.97)+2z(z+2)+2z(z+0.97)(z+2)+z^2(z+2)+z^2(z+0.97)(z+2.09)\\ +(z+2)+z(z+0.97)+2z(z+2)+2z(z+0.97)(z+2)+z^2(z+2)+z^2(z+0.97)(z+2.09)\\ +(z+2)+z(z+0.97)+2z(z+2)+2z(z+0.97)(z+2)+z^2(z+0.97)(z+2.09)\\ +(z+2)+z(z+0.97)+2z(z+2)+2z(z+0.97)(z+2)+z^2(z+2)+z^2(z+0.97)(z+2.09)\\ +(z+2)+z(z+0.97)+2z(z+2)+2z(z+0.97)(z+2)+z^2(z+2)+z^2(z+0.97)(z+2.09)\\ +(z+2)+z(z+0.97)+2z(z+2)+2z(z+0.97)(z+2)+z^2(z+0.97)(z+2.09)\\ +(z+2)+z(z+0.97)+z^2(z+0.97)(z+2)+z^2(z+2)+z^2(z+0.97)(z+2.09)\\ +(z+2)+z(z+0.97)+z^2(z+0.97)(z+2)+z^2(z+2)+z^2(z+0.97)(z+2.09)\\ +(z+2)+z(z+0.97)+z^2(z+0.97)(z+2)+z^2(z+2)+z^2(z+0.97)(z+2.09)\\ +(z+2)+z(z+0.97)+z^2(z+0.97)(z+2)+z^2(z+2)+z^2(z+0.97)(z+2.09)\\ +(z+2)+z(z+0.97)+z^2(z+0.97)(z+2)+z^2(z+2)+z^2(z+0.97)(z+2.09)\\ +(z+2)+z(z+0.97)+z^2(z+0.97)(z+2)+z^2(z+0.97)(z+2)\\ +(z+2)+z(z+0.97)+z^2(z+0.97)(z+2)+z^2(z+0.97)(z+2.09)\\ +(z+2)+z(z+0.97)(z+2)+z^2(z+0.97)(z+2)+z^2(z+0.97)(z+2.09)\\ +(z+2)+z(z+0.97)(z+2)+z^2(z+0.97)(z+2)+z^2(z+0.97)(z+2.09)\\ +(z+2)+z(z+0.97)(z+2)+z^2(z+0.97)(z+2)+z^2(z+0.97)(z+2.09)\\ +(z+2)+z(z+0.97)(z+2)+z^2(z+0.97)(z+2)+z^2(z+0.97)(z+2.09)\\ +(z+2)+z(z+0.97)(z+2)+z^2(z+0.97)(z+2)+z^2(z+0.97)(z+2)+z^2(z+0.97)(z+2.09)\\ +(z+2)+z(z+0.97)(z+2)+z^2(z+0.97)(z+2)+z^2(z+0.97)(z+2)+z^2(z+0.97)(z+2.09)\\ +(z+2)+z(z+0.97)(z+2)+z^2(z+0.97)(z+2)+z^2(z+0.97)(z+2)\\ +(z+2)+z^2(z+0.97)(z+2)+z^2(z+0.97)(z+2)+z^2(z+0.97)(z+2)+z^2(z+0.97)(z+2)\\ +(z+2)+z^2(z+0.97)(z+2)+z^2(z+0.97)(z+2)+z^2(z+0.97)(z+2)\\ +(z+2)+z^2(z+0.97)(z+2)+z^2(z+0.97)(z+2)+z^2(z+0.97)(z+2)\\ +(z+2)+z^2(z+0.97)(z+2)+z^2(z+0.97)(z+2)+z^2(z+0.97)(z+2)+z^2(z+0.97)(z+2)+z^2(z+0$	$F_o({m k}4;z)$ $F_o({m k}4;z)$ desarrollada		$F_{o}(\mathbf{k}4;z)$ $r_{o}(\mathbf{k}4;z)$ $r_{o}(\mathbf{k}4;z)$ $r_{o}(\mathbf{k}4;z)$ $r_{a}^{3} + 2z^{2}(z + 0.97) + z^{3}(z + 0.97)$ $r_{a}^{3} + 2z^{2}(z + 2.09) + z^{3}(z + 2.09)$ $r_{a}^{3} + 2z^{2}(z + 2.5) + z^{3}(z + 2.09)$ $r_{a}^{2} + 2z^{2}(z + 2.09) + z^{2}(z + 0.97)(z + 2.09) + z^{2}(z + 0.97)(z + 2.09)$ $r_{a}^{2} + 2z^{2}(z + 2z) + z^{3}(z + 2z) + z^{2}(z + 2z) + z^{2}(z + 0.97)(z + 2z)$ $r_{a}^{2} + 2z^{2}(z + 2z) + 2z^{2}(z + 2z) + z^{2}(z + $
--	--	--	--

Al igual que en el capítulo anterior, la función generadora de conjuntos cerrados la podemos calcular a través de la función generadora de conjuntos abiertos por:

$$F_c(\boldsymbol{k}; z) = z^n F_o(\boldsymbol{k}; z^{-1}).$$

Así los factores de conjuntos cerrados son:

k1	$F_c(oldsymbol{k1};z)$ desarrollada
r	1 + z,
<i>o</i> .	1 + 1.97z,
<i>o</i> :	1 + 3.09z,
O +	1 + 3.5z,
$n \cdot$	1 + 1.51z,
n:	1 + 2.37z,
n_+	1 + 3z.

k2	$F_c(oldsymbol{k2};z)$ desarrollada
s	$1 + z + z^2$,
$O{\cdot}S$	$1 + 1.97z + z^2$,
0:8	$1 + 3.09z + z^2$
$oldsymbol{O}_+oldsymbol{S}$	$1 + 3.5z + z^2$,
$p\cdot$	$1 + 1.97z + 1.97z^2$,
p:	$1 + 3.09z + 3.09z^2$,
$oldsymbol{p}_+$	$1 + 3.5z + 3.5z^2$,
$u\cdot$	$1 + 1.51z + 1.51z^2$,
u:	$1 + 2.37z + 2.37z^2$,
$o{\cdot}u:$	$1 + 3.34z + 3.6989z^2$.
$oldsymbol{u}_+$	$1 + 3z + 3z^2,$

k3	$F_c(oldsymbol{k3};z)$ desarrollada
s'	$1 + z + z^2 + z^3$,
$p{\cdot}s'$	$1 + 2.97z + 1.97z^2 + z^3,$
$p{:}s'$	$1 + 4.09z + 3.09z^2 + z^3,$
$\boldsymbol{p_{\scriptscriptstyle +}s'}$	$1 + 3.5z + 4.5z^2 + z^3,$
$p{\cdot}p{:}s'$	$1 + 5.06z + 6.0837z^2 + z^3,$
p:'	$1 + 4.09z + 5.18z^2 + 3.09z^3,$
$\boldsymbol{p_+'}$	$1 + 6z + 3.5z^2 + 4.5z^3,$
u:'	$1 + 3.37z + 3.74z^2 + 2.37z^3,$
$u_{\scriptscriptstyle +}{}'$	$1 + 4z + 5z^2 + 3z^3,$
$p{\cdot}{u_{\scriptscriptstyle +}}'$	$1 + 4.97z + 7.91z^2 + 4.94z^3.$

k4	$F_o(oldsymbol{k4};z)$ desarrollada
$s'' \ p \cdot s'' \ p :'' \ p :'' \ p \cdot s'' \ p \cdot p :'s'' \ p \cdot p :'s'' \ u_+'' \ p \cdot u_+'' \ p \cdot u_+''$	$\begin{array}{l} 1+z+3z^2+3z^3+z^4,\\ 1+3.97z+4.94z^2+1.97z^3+z^4,\\ 1+5.09z+7.18z^2+3.09z^3+z^4,\\ 1+5.5z+8z^2+3.5z^3+z^4,\\ 1+6.06z+11.147z^2+6.0873z^3+z^4,\\ 1+5z+9z^2+7z^3+3z^4,\\ 1+5.97z+12.88z^2+5.97z^3+3z^4. \end{array}$

Para un subconjunto que consiste de un sólo elemento y para subconjuntos de dos elementos que corresponden posiblemente a un par de átomos adyacentes, su función generadora para sistemas heteroatómicos puede ser expresada de la forma:

$$z^{\nu}F(\mathbf{k1};z)^{h-\alpha_{a}}F(\mathbf{k2};z)^{i-\beta_{b}}F(\mathbf{k3}';z)^{j-\gamma_{c}}F(\mathbf{k4}'';z)^{l-\delta_{d}},$$
(5.2)

 donde

$$\nu = \sum_{a=0}^{6} \alpha_a + 2 \sum_{b=0}^{10} \beta_b + 3 \sum_{c=0}^{9} \gamma_c + 4 \sum_{d=0}^{6} \delta_d + \mu_s$$

 con

$$\boldsymbol{\mu} = \begin{cases} 0, & \text{para el enlace } C - C; \\ \frac{K_{CX}}{h_X} (F_C^0 - F_X^0)^2, & \text{para el enlace } C - X, \text{ si C y X son adyacentes en } D(\mathcal{T}); \\ -\frac{K_{CX}}{h_X} (F_C^0 - F_X^0)^2, & \text{para el enlace } C - X, \text{ si C y X no son adyacentes en } D(\mathcal{T}); \\ \frac{K_{XY}}{(h_X - h_Y)} (F_X^0 - F_Y^0)^2, & \text{para el enlace } X - Y. \end{cases}$$

para conjuntos abiertos o cerrados. Los valores de los exponentes para los diversos tipos de subconjuntos que pueden existir se presentan en la tabla adjunta, aclaremos que esta tabla sólo presenta los valores de estos exponentes para conjuntos cerrados, ya que estos son los valores que son de vital importancia en el trabajo.

Enlaces topológicos de peso en un sistema π -electrón.

Como hemos visto en las secciones anteriores de este capítulo, las definiciones y la manera de calcular cada una de las características químicas através de la topología de enlace de un sistema heteroatómico, son las mismas que en nuestro capítulo anterior.

Luego los patrones para los enlaces en un sistema π -electrón, siguen siendo los mismos de la Subsección 4.2.2. Aquí también $\pi_k(\{i, j\})$ es expresado en términos de funciones generadoras, el total de conjuntos son obtenidos por asignar z = 1,

$$\pi_k(\{i,j\}) = F_k(X,\{i,j\};1)/F_k(X,1).$$

 $\operatorname{con} k = o, c.$

Recordemos la definición de la probabilidad de seleccionar de manera aleatoria algún conjunto abierto o cerrado que contenga al par de átomos $\{i, j\}$.

Definición 5.2. La probabilidad de seleccionar aleatoriamente un conjunto abierto o cerrado que contenga al enlace $\{i, j\}$ es

$$p_k(\{i,j\}) = F'_k(\{i,j\};1)/F'_k(1)$$

 $\operatorname{con} k = o, c.$

Para concluir este trabajo, es necesario probar cada uno de los resultados obtenidos en este trabajo y que están especialmente presentados en este capítulo.

Ejemplo 5.1. Para el éter etilico

y tiene la topología de enlace $o: s^2$. Así su función generadora para conjuntos abiertos esta dada por:

$$F_o(z) = (3.09 + z)(1 + z + z^2)^2,$$

En este ejemplo sólo calcularemos a detalle los datos que podemos obtener de la función generadora de los conjuntos cerrados, ya que de estos obtenemos la aproximación buscada.

$$F_c(z) = (1+3.09z)(1+z+z^2)^2$$

$$\begin{aligned} F_c(\{1,2\};z) &= z^2(1+3.09z)(1+z+z^2) & (\{s,t_0\} \text{ enlace}, \ \beta_0 = 1), & \text{donde} \\ F_c(\{2,3\};z) &= z^{3-\frac{0.66}{209}(1.732-0909)^2}(1+z+z^2) & (\{s,o\} \text{ enlace}, \ \alpha_2 = 1, \ \beta_0 = 1) \\ &= z^{28029}(1+z+z^2), \end{aligned}$$

$$\begin{split} F_c'(z) &= 3.09(z^2+z+1)^2+2(3.09z+1)(2z+1)(z^2+z+1),\\ F_c'(\{1,2\};z) &= 3.09z^2(z^2+z+1)+2z(3.09z+1)(z^2+z+1)+z^2(3.09z+1)(2z+1),\\ F_c'(\{2,3\};z) &= 2.8029z^{18029}(z^2+z+1)+z^{28029}(2z+1). \end{split}$$

$$\begin{split} F_c'(1) &= 101.43, \\ F_c'(\{1,2\};1) &= 46.08, \quad \text{para lo cual} \\ F_c'(\{2,3\};1) &= 11.409. \end{split}$$

$p_c(\{1,2\}) = 0.4543, \ p_c(\{2,3\}) = 0.1125$

El orden de enlace de Hückel para la molécula que se obtiene usando, el programa **Hückel** 3.1 de Oraxcel, el software libre **SHMo**2 y con la aplicación **Hückel.exe** es:

$$P^{\pi}_{(\{1,2\})} = 0.932, \ P^{\pi}_{(\{2,3\})} = 0.221$$

De la misma manera que en el capítulo anterior el valor de $P^{\pi}_{(\{i,j\})}$ es aproximadamente el doble del valor de $p_c(\{i,j\})$.

Exponences para las funciones Exponences para las funciones Continue 0 ob 0 0 0 ob 0 0 0 0 0 0 0 0 0 0 0			26	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0 0	0 0	
$ \begin{array}{l l l l l l l l l l l l l l l l l l l $			<u>3</u> 2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0 0	0 0	
Exponenties para las functiones generatorias de structoriantes Compliantes			δ_4	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0 0	0 0	
Exponentes para las functiones generators de la subonjuntos Conjunto contraste para las functiones generators de la subonjuntos Conjunto contraste para las functiones generators de la subonjuntos conjunto conjuntos conjunto con co- ro- ro- ro- ro- ro- ro- ro- ro- ro- r			03 03	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0 0	0 0	
$ B S \\ B constrained by a constrained $			δ_2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0 0	0 0	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$			\$1 9	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0 0	0 0	
Exponentes para las funciones generations de subostitutos Conjunto conjuntos Conjunto or			50	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0 0	0 0	
				_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_		
			8	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_			
			7	0	<u> </u>		_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_		_		
Exponentes para las functiones generadoras de subcojunitos Conjunto α_0 α_1 α_2 α_3 α_4 α_5 α_6 β_1 β_2 β_3 β_4 β_5 β_4 β			6.9	0	<u> </u>		_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_		_		
Exponentes para las functiones generadoras de subconjuntos Conjunto conjuntos Conjunto conjuntos Conjunto conjuntos			2	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_			
Exponentes para las functiones generalizas de subconjuntos Generadoras de subconjuntos conjunto con curados curados curados r 1 0			4	0	0	0	-	_	0	0	_	0	_	0	0	0	0	-	0	0	_	_	_	0	_	0	0	_	0	_	_	_ (
Exponentes para las funciones Generatoras de subconjuntos Conjunto corrados Conjuntos Conjuntos			3	0	0	0	-	_	0	0	_	0	_	0	0	0	0	0	0	0	_	_	_	0	_	0	0	_	0	_	_	_ (
Exponentes para las functiones Conjunto $conjuntos Conjunto conjuntos Conjunto conjuntos Conjunto conjuntos conjunto conjunto conjunto conjunto conjunto conjunto conjunto con conjunto conjunto con $			3	0	0	0	-	_	0	0	_	0	_	0	0	0	0	0	0	0	_	_	_	0	_	0	0	_	-	_	_	_ (
Exponentes para las functiones generadoras de subconjuntos Conjunto Conjunto Conjunto Centadora Centadora Centadora r 1 0			3	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	_	_ (
Exponentes para las function Conjunt Conjunt r I 0	nes		3	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0 0	0 0	
Exponentes para las function for the formation of the subtrom for the para last function of or	ncio	s	7	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0 0	0 0	
Exponentes para large para lar	s fu	radc	β_{10}	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0 0	
Exponentes para Exponentes para Generators de generators de la colspan="1">generators de la colspan="1">ependera de la colspan="1" Conjunto α_0 α_1 α_1 α_2 α_3 α_4 α_6 β_6	t las sub	Cer	β_9	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0,		
Exponentes I generators: Conjunto α_0 α_1 α_2 α_1 α_2 α_1 α_2 α_1 α_2 α_1 α_2 α_1 α_1 α_2 α_1 <th colspa="</td"><td>bara de</td><td></td><td>β_8</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td></td><td>, ·</td><td></td><td>0 0</td></th>	<td>bara de</td> <td></td> <td>β_8</td> <td>0</td> <td></td> <td>, ·</td> <td></td> <td>0 0</td>	bara de		β_8	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		, ·		0 0
Exponent generation Conjunto α_0 α_1 α_2 α_1 α_1 α_1 α_1 α_1 α_2 α_1 α_1 α_2 α_1	es J ras		β	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		Ļ	0	0	0	0 0	
Expone Conjunto contact Conjunto contact Expone Conjunto contact contact contact Conjunto Conjunto contact contact contact Conjunto contact contact Conjunto Conjunto contact Conjunto contact Conjunto Conjunto Conjunto contact Conjunto Colspa="2">Colspa="2">Colspa="2" Conjunto Colspa="2" Colspa="2" Colspa="2">Colspa="2" Colspa="2" <th colspa="</td"><td>ient ado</td><td></td><td>β_6</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td></td><td>-</td><td></td><td></td><td>0</td><td>0</td><td>0</td><td>0</td><td>0 0</td><td>0 0</td></th>	<td>ient ado</td> <td></td> <td>β_6</td> <td>0</td> <td></td> <td>-</td> <td></td> <td></td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>0 0</td> <td>0 0</td>	ient ado		β_6	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		-			0	0	0	0	0 0	0 0
All Conjinuto α_0 α_1 α_2 α_3 α_6 β_0 β_1 β_2 β_3 β_4 r r 1 0 0 1 0	pon		∂_5	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	-		-	0	0	0	0	0	0	0	0	0 0	0 0	
Conjunto α_1 α_2 α_3 α_4 α_5 α_6 β_0 β_1 β_2 β_3 r 1 0 0 1 0 <td< td=""><td>Ex ge</td><td>)</td><td>β_4</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>-</td><td>Ļ</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0 0</td><td>0 0</td></td<>	Ex ge)	β_4	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	-	Ļ	0	0	0	0	0	0	0	0	0	0	0	0 0	0 0	
Conjunto α_0 α_1 α_2 α_3 α_4 α_5 α_6 β_0 β_1 β_2 r 1 0 0 1 0 <td< td=""><td></td><td></td><td>θ3</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>-</td><td>,</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0 0</td><td>0 0</td></td<>			θ3	0	0	0	0	0	0	0	0	0	0	0	0	0	-	,	0	0	0	0	0	0	0	0	0	0	0	0	0	0 0	0 0	
R88 R 2 0			32	0	0	0	0	0	0	0	0	0	0	0			0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0 0	0 0	
R8 23 24 32 33 34 35 36 30 1 7 1 0			31	0	0	0	0	0	0	0	0	0	-		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0 0	0 0	
S88 τ 1 0			30 /	0	0	0	0	0	0	0	-	-	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0 0	0 0	
S88 Conjunto α_0 α_1 α_2 α_3 α_4 α_5 α_6 r 1 0 <																																		
88 Conjunto α_0 α_1 α_2 α_3 α_4 α_5 r 1 0<			ď	0	0	0	0	0	0		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0 0	0 0	
S88 r 1 0			α_{2}	0	0	0	0	0	-	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0 0	
88 r 1 0			α_4	0	0	0	0		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0 0	0 0	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			α_3	0	0	0	Ξ	0	0	0	0	0	0	0	0	0	0	ဂု	0	0	0	0	0	0	0	0	0	0	0	0	0	0 0	0 0	
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$			α_2	0	0		0	0	0	0	0	0	0	0	0	2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0 0	
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$			α_1	0		0	0	0	0	0	0	0	0	÷	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0 0	
$88 \\ conjunto \\ c_{11} \\ c_{12} \\ c_{12} \\ c_{12} \\ c_{13} \\ c_{12} \\ c_{12} \\ c_{13} \\ c_{12} \\ c_{13} \\ c_{$			α_0		0	0	0	0	0	0	0	4	0	0	0	0	0	0	0	-	0	Ļ	-2	0	4	-2	ς.	0	4	0	-	? ¢		
53 5,5555555555555555555555555555555555			onjunto										-		-		3																	
			ŭ	r	ġ	ö	$_{0+}$	\dot{n}	n:	u_+	s	t_0	3.0	t_1	0:5	2 82	3 8	t_3	$\cdot d$	t_4	:d	t_5	t_6	p_+	t_7	t_8	t_9	$\cdot n$	t_{10}	:n	t_{11}	t_{12}	t_{13}	

		δ_6	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0 0	0	0
		δ_5	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0 0	0	0
		δ_4	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		0	0
		δ_3	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0 0	0	0
		δ_2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		0	0
		δ_1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0 0	0	0
		δ_0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0 0	0	0
		6,	0	_	_	_	_	0	_	_	0	0	0	_	_	0	_	0	_	0	_	_	0	_	_	_	_	0	_		~ 	_
		(8	-	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_				_
		4	0	0	0	0	0	0	0	0	0	0	_	0	0	0	_	0	0	0	_	0	0	0	0	0	_	_	_			0
		,e	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	_	_	_	0	0	0		0	0
		/5 ,	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0				0	0	0	0	0	0		0	0
		(4	0	0	0	0	0	0	0	0	0	0	_	0	0	0	_	_	_	_	0	0	0	0	0	0	0	0	_			0
		/3	0	0	0	0	0	0	0	0	0	0	0	0		,		0	0	0	0	0	0	0	0	0	0	0	0		0	0
		/2 7	0	0	0	0	0	0	0	0	0	,		,	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		0	0
		С I,	0	0	0	0	0	0		_		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		0	0
tos		, 0X	0	0	0	0	,		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		0	0
ıncic njun	os		_		_									_									_		_		_		_			
s fu	rrad	β_{10}	0	0	-		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0 0	0	0
a la sul	S	β_9	-		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0 0	0	0
par s de		β_8	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0 0	0	0
tes oras		β	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0 0	0	0
nen rad		β_6	0	0	0	0	0	0	0	0	0	0	0	0	0	0	က္	0	0	0	0	0	0	0	0	0	0	0	0	0 0	0	0
ene:		β_5	0	0	0	0	0	0	0	0	0	0	0	-7	0	0	0	0	0	5-	0	0	0	0	0	0	0	0	0	0 0	0	0
සින		β_4	0	0	0	0	0	0	0	0	7	0	0	0	0	0	0	0	Ϋ	0	0	0	0	0	0	0	0	0	0	0 0	0	0
		β_3	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0 0	0	0
		β_2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0 0	0	0
		β_1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0 0	0	0
		β_0	0	0	0	0	0	Ļ	0	Ļ	0	0	Ļ	0	0	-	0	0	0	0	0	-	-2	0	-	-2	0	-	0	- c	1 0	-
		α_6	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0 0	0	0
		α_5	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0 0	0	0
		α_4	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0 0	0	0
		α_3	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0 0	0	0
		χ2 (0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		0	0
		۲ ¹ (0	0	0		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0			0
		<u>с</u>	5	3	_		_		-		_		-	_			_			_	_	_	_	_	_	_	_	_		 		
		α	-1	ŗ	J	J	J	U	J	U	J	J	U	J	U	J	J	J	J	U	J	J	J	<u> </u>	J	J	J	J	_ (<u>ں</u> ر	0
		Conjunto	t_{14}	t_{15}	$0.u_+$	t_{16}	8	t_0'	$p \cdot s'$	t_1'	t_2^t	p:s'	ts 53	t_4	$p_{+s'}$	t_5'	t_6'	$p \cdot p : s'$	ť,	t_8^t	$p_{i'}$	t_{9}^{\prime}	t_{10}'	$p_{+'}$	t'_{11}	t'_{12}	u;	t'_{13}	n_{+}'	t_{14}	$p_{\cdot u_{+}'}^{\iota_{15}}$	t_{16}'
1															8	9																

		δ_6	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0				0	0	0	0	0	0	0	0
		δ_5	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0			-		0	0	0	0	0	0	0	0	0	0	0
		δ_4	0	0	0	0	0	0	0	0	0	0	0	0	Ļ		Ļ	-	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
		δ_3	0	0	0	0	0	0	0	0	0	-		-	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
		δ_2	0	0	0	0	0	0		μ		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
		δ_1	0	0	0		-		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
		δ_0	0	-		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
		6,	Ц	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
		78	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
		3	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
		γ_6	0	0	0	0	0	0	0	0	0	0	0	က္	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
		γ_5	0	0	0	0	0	-	0	0	5-	0	0	0	0	0	Ţ	5-	0	0	0	0	0	0	4	0	0	0	0	0	0	0	0
		γ_4	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
		33	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
		γ_2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
s s		71	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
sion		%	0	0	7	0	Ļ	0	0	-	0	0	Ļ	0	0	7	0	0	0	7	-2	က္	0	7	0	0	0	0	0	0	0	0	0
func	ados	β_{10}	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
las subo	Cerr	θ ⁹	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
ara de s		θ ⁸	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
es p ras		β7	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
ento		β_6	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
pon ner		θ.	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Ex. ge		β_4	<u>.</u>	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
		β_3	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
		β_2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
		β_1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
		β_0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
		9y	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		0
		2	-	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
		4 α	0	<u> </u>	_	_	_	_	_	<u> </u>	_	<u> </u>	<u> </u>	_	<u> </u>	<u> </u>	_	_	_	_	_	_	<u> </u>	_	<u> </u>	_	<u> </u>	_	_	_	_	_	
		8 8	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	<u> </u>	_	_	_	_
		σ 5	0	0	0	0	0	0	0	0	0	0	0	0	-	0	0	0	0	0	0	0	0	0	0	0	0	0	_	0	0	0	0
		ğ	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		0	0	0	0	0
		ά	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0
		ά	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	2	1	-	1		1	1	
		Conjunto	t_{17}^{\prime}	8''	t_0''	p's''	t_1''	t2 2	$p'_{s''}$	t_{3}''	t_4''	$p_{+}'s''$	t_5'	t_6''	p''p''s''	ť'	t_{8}''	t_0''	n^+n	t_{10}''	t_{11}''	t_{12}''	$p''u_{+}''$	t_{13}''	t_{14}''	$\{r,r\}$	$\{r, o.\}$	$\{r, o:\}$	$\{r, o_+\}$	$\{r,n\cdot\}$	$\{r, n:\}$	$\{r, n_+\}$	$\{r, s\}$
															90)																	

		δ_6	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		0	0	0	0
		δ_5	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	-	0	0	0	0	0
		δ_4	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		0	0	0	0	0	0
		δ_3	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		0	0	0	0	0	0	0
		δ_2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		0	0	0	0	0	0	0	0
		δ_1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	-	0	0	0	0	0	0	0	0	0
		δ_0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		0	0	0	0	0	0	0	0	0	0
		6	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_		_	_	_	_	_	_	_	_	_	_	_
		8,	0	_	_	_	_	0	_	_	_	_	_	0	_	_	_	_	_	_	_	_	_	_	_	_	_	_	0	_	_	_	0
		ب ۲	0	_	0	0	0	0	0	0	_	_	0	0	_	0	0	_	0	_	_	0	0	0	_	_	0	0	0	0	_	0	0
		6	0	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	0
		5	0	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	
		4	0	_	0	_	0	0	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	
		ۍ ۲	0	_	0	_	0	0	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	
		2	_	_	_	_	_	_	_	_	_	_	_	_		_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
		1	_	_	_	_	_	_	_	_	_	_	_		_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	-
nes		γ	0	0	0	0	0	0	0	0	0	0	0		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
int		7	0	0	0	0	0	0	0	0	0	0		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
fun	rado	β_{10}	0	0	0	0	0	0	0	0	0	-	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
las	Cer	β_9	0	0	0	0	0	0	0	0	-	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
ara de g		β_8	0	0	0	0	0	0	0		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
es p ras		β	0	0	0	0	0	0		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
ento		β_6	0	0	0	0	0		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
pon		β_5	0	0	0	0	-	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
ExJ	o	3_{4}	0	0	0		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
		33	0	0	Ļ	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
		32	0		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
		31 /		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
		30 /	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
		α_6	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
		α_5	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
		α_4	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
		α_3	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		0
		α_2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		0	0
		αI	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	5			
		α_0	Ч	-	-	1	-			1		1				1	-	1	1		-		-	-			-			0	0	0	0
		Conjunto	$\{r, o.s\}$	$\{r, o:s\}$	$\{r, o_{+}s\}$	$\{r, p_{\cdot}\}$	$\{r, p:\}$	$\{r, p_+\}$	$\{r, u \cdot\}$	$\{r, u:\}$	$\{r, u_+\}$	$\{r, o \cdot u_+\}$	$\{r, s'\}$	$\{r, p \cdot s'\}$	$\{r, p:s'\}$	$\{r, p_{+s'}\}$	$\{r, p.p.s'\}$	$\{r, p:'\}$	$rp_{+'}$	$\{r, u:'\}$	$\{r, u_{+}'\}$	$\{r, p \cdot u_+'\}$	$\{r, s''\}$	$\{r, p's''\}$	$\{r, p; s''\}$	$\{r, p_{+}'s''\}$	$\{r, p, p' p; s''\}$	$\{r, u_{+}''\}$	$\{r, p, u_{+}''\}$	$\{o\cdot, o\cdot\}$	$\{o\cdot, o:\}$	$\{o\cdot, o_+\}$	$\{o\cdot,n\cdot\}$

		δ_6	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	$1 \\ 0$
		δ_5	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		0 0
		δ_4	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		0	0 0
		δ_3	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		0	0	0 0
		δ_2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	Ļ	0	0	0	0 0
		δ_1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	-	0	0	0	0	0 0
		δ_0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	Ļ	0	0	0	0	0	0 0
		6	0	_	_	_	_	0	_	0	_	_	_	0	0	0	0	_	_	0	_	_	0	_	_	0	_	0	_	_	_	
		ک رو	0	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	
		-	0	_	_	_		_	_	_	_	_	_	_	_	_	_	_	_	0	_	_	_	_	_	_	_	_	_	_		
		9	0	_	_	_		_	_	_	_	_	_	_	_	_	_	_	_	0	_	_	_	_	_	_	_	_	_	_		
		2	0	<u> </u>	<u> </u>	<u> </u>	<u> </u>	_	_	_	_	<u> </u>	_	_	_	_	_	<u> </u>	_	<u> </u>		_	_	_	<u> </u>	<u> </u>	_	_	_	_	_	
		4	0	<u> </u>			<u> </u>	_	_	_	_	_	_	_	_	_	_	<u> </u>	_	_	_	_	_	_	_	_	_	_	_	_	_	
		3	0	0	_		0	0	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	0	_	_		
		5	0	0	_		0	0	_	_	_	_	_	_	_	_	_	_	_	0	_	_	_	_	_	_	_	0	_	_		
		7		_	_	_	_	_	_	_	_	_	_	_	_	_		_	_	_	_	_	_	_	_	_	_	_	_	_	_	
os		2	0	0	0	0	0	_	_	_	_	0	_	_	_		_	_	0	_	0	0	_	0	0	_	0	_	_	_	_	
iunt	s	7	0	0	0	0	0	0	0	0	0	0	0	0	0	—	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	00
i fui con	rado	β_{10}	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0 0
t las sub	Cei	β_9	0	0	0	0	0	0	0	0	0	0	0		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0 0
ara de		β_8	0	0	0	0	0	0	0	0	0	0	-	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0 0
es J ras		B	0	0	0	0	0	0	0	0	0		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0 0
ient ado		β_6	0	0	0	0	0	0	0	0		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0 0
por		β_5	0	0	0	0	0	0	0		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0 0
Ex 96)	β_4	0	0	0	0	0	0	-	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0 0
		β_3	0	0	0	0	0	Ļ	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0 0
		β_2	0	0	0	0		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0 0
		β_1	0	0	0		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0 0
		β_0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0 0
		3 ⁶	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0 0
		325		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0 0
		χ4 (0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0 0
		2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
		5	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	
		a	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	<u> </u>	0.1
		σ	-1	1	1			Π	1	Π	1	-	1	1	1	1	1	1	1	-	Η	-		1	-		1	Π				10
		σ	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0 0
		Conjunto	$\{o\cdot,n:\}$	$\{o\cdot, n_+\}$	$\{o, s\}$	$\{o, o.s\}$	$\{o\cdot, o:s\}$	$\{o\cdot, o_{+}s\}$	$\{o\cdot, p\cdot\}$	$\{o\cdot, p:\}$	$\{o\cdot, p_+\}$	$\{o\cdot, u\cdot\}$	$\{o\cdot, u:\}$	$\{o\cdot, u_+\}$	Ç {o·.o·u+}	$\left\{ \left\{ o,s^{\prime}\right\} \right\}$	$\{o\cdot, p\cdot s'\}$	$\{o\cdot, p:s'\}$	$\{o\cdot, p_{+s'}\}$	$\{o\cdot, p\cdot p:s'\}$	$\{o\cdot, p:'\}$	$\{o\cdot, p_+'\}$	$\{o\cdot, u:'\}$	$\{o\cdot, u_+'\}$	$\{o\cdot, p\cdot u_+'\}$	$\{o\cdot, s''\}$	$\{o\cdot, p\cdot's''\}$	$\{o\cdot, p:'s''\}$	$\{o\cdot, p_+'s''\}$	$\{o\cdot, p\cdot' p:'s''\}$	$\{o\cdot, u_{+}''\}$	$\{o\cdot,p\cdot'u_{+''}\}$ $\{o:,o:\}$
															\mathcal{J}_{I}	<u>_</u>																

		δ_6	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
		δ_5	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
		δ_4	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	_	0
		δ_3	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		0	0
		δ_2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		0	0	0
		δ_1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	Ļ	0	0	0	0
		δ_0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		0	0	0	0	0
		6	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_		_	_	_	_	_	_
		8	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	_	_	-	0	0	0	0	_	0
		7	0	0	0	0	0	0	0	0	0	_	_	0	0	0	_	0	_	_	0	_	_	0	_	_	_	0	_	0	0	0	0
		ر ه	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	_	_	0	0	0	0	0	0	0	0
		5	0	0	0	0	_	0	0	_	0	0	0	0	0	0	0	_	_	0	_	0	_	0	_	0	0	0	0	0	0	_	0
		/4	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	_	0	0	0	0	0	0	0	0	0	0	0
		33	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		0	0	0	0	0	0	0	0	0	0	0	0
		27	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	Ţ	0	0	0	0	0	0	0	0	0	0	0	0	0
		7	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	_	0	0	0	0	0	0	0	0	0	0	0	0	0	0
tos		, S	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
ncic	os																																
s fu	errad	β_{10}	0	0	0	0	0	0	0	0	0	0	0	0	0	0	Ξ	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
a la sul	ő	β_9	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
par s de		β_8	0	0	0	0	0	0	0	0	0	0	0	0		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
tes oras		β	0	0	0	0	0	0	0	0	0	0	0		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
nen		β_6	0	0	0	0	0	0	0	0	0	0		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
kpol		β_5	0	0	0	0	0	0	0	0	0		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
සු න		β_4	0	0	0	0	0	0	0	0	Ξ	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
		β_3	0	0	0	0	0	0	0		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
		β_2	0	0	0	0	0	0		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
		β_1	0	0	0	0	0	Ξ	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
		β_0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
		0 ⁶	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
		α_5	0	0		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
		α_4	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
		α3		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
		α_2		1			-		-		-	-	-	1			-	-	-	-		-	-				-	1	-		1		
		LX	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
		x ⁰	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
			_		-		-					-		-		-		-					-				-		-				
		Conjunto	$\{o:, o_+\}$	$\{o:,n\cdot\}$	$\{o:, n:\}$	$\{o:, n_+\}$	$\{o:,s\}$	$\{o:, o.s\}$	$\{o:, o:s\}$	$\{o:, o+s\}$	$\{o:, p.\}$	$\{o,:p:\}$	$\{o,:p_+\}$	$\{o,:u\cdot\}$	0 {0:, u:}	$\sum_{i=1}^{n} \{o_i, u_i\}$	$\{o:,o{\cdot}u_+\}$	$\{o:, s'\}$	$\{o,:,p\cdot s'\}$	$\{o:, p:s'\}$	$\{o:, p_{+}s'\}$	$\{o:, p \cdot p:s'\}$	$\{o:,p:'\}$	$\{o:,p_{+'}\}$	$\{o:, u:'\}$	$\{o:, u_+'\}$	$\{o:, p \cdot u_{+'}\}$	$\{o:, s''\}$	$\{o:, p.'s''\}$	$\{o:, p:'s''\}$	$\{o:, p''s''\}$	$\{o:, p, p's''s''\}$	$\{o:, u_{+}''\}$
															\mathcal{J}																		

$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	000000000000000000000000000000000000000
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	-000000000
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0000000000000
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	00000000-00
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0000000-000
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	000000-0000
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$, o o o o o o o o o o o o
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	000000000000000000000000000000000000000
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	000000000000000000000000000000000000000
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	000000000000000000000000000000000000000
→ → → → → → → → → → → → → → → → → → →	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
-000000000000000000-	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
	- 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
	, o o o o o o o o o o o o o o o o o o o
x 3	
$\begin{array}{c c} \text{last } \mathbf{f} \\ \hline \mathbf{last} \\ \hline \\ $	
	,
	, o o o o o o o o o o o o o o o o o o o
xpo 	,
$\begin{array}{c c} \mathbf{H} & \mathbf{H} \\ \mathbf{H} & \mathbf{H} \\ $,
$\left \begin{array}{c} \left \begin{array}{c} \left \begin{array}{c} \left \end{array} \right \\ \left \end{array} \right \\ \left \begin{array}{c} \left \end{array} \right \\ \left \end{array} \right \\ \left \begin{array}{c} \left \end{array} \right \\ \left \end{array} \right \\ \left \end{array} \right \\ \left \begin{array}{c} \left \end{array} \right \\ \left \end{array} \right \\ \left \end{array} \right \\ \left \begin{array}{c} \left \end{array} \right \\ \left \end{array} \right \\ \left \end{array} \right \\ \left \begin{array}{c} \left \end{array} \right \\ \left \end{array} \right \\ \left \end{array} \right \\ \left \begin{array}{c} \left \end{array} \right \\ \left \end{array} \right \\ \left \end{array} \right \\ \left \left \end{array} \right \\ \left \end{array} \right \\ \left \left \left \end{array} \right \\ \left \end{array} \right \\ \left \left \left \left \right \right \\ \left \left \left \right \right \\ \left \left \left \left \right \right \\ \left \left \left \left \right \right \\ \left \left \left \left \left \left \right \right \right \\ \left $	
$\begin{array}{ c c c c } \hline \beta \\ \hline \beta \hline \hline \beta \\ \hline \beta \hline \hline \hline \beta \hline \hline \beta \hline \hline \beta \hline \hline \hline \hline \hline \beta \hline \hline$,
$\left \begin{array}{c} \mathcal{B} \\ \mathcal{B} \\$, o o o o o o o o o o o o o o o o o o o
$ \begin{array}{c} \beta \\ \beta \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\$	
	,
	,
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	$ \begin{array}{c} p, p, s, r \\ p, r, r, r \\ p, r, r, r \\ p, r, r \\ p, r, r \\ p, r, r \\ p, r \\ p$

		δ_6	0		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
		2	, _ ,	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
		5 4 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	_
		23	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	<u> </u>	0
		2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	_	0	0
		~ -	0	0	0	0	0	0	0	0	0	0	0	0	0	0	_	0	0	_	_	0	_	0	_	0	0	_	0	_	_		0
		0	0	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
		Ŷ	0	0	-	-	-	<u> </u>	<u> </u>	-	0	<u> </u>	-	-	<u> </u>	0	0	0	0	-	<u> </u>	<u> </u>	-	-	-	<u> </u>	0	<u> </u>		-	0	<u> </u>	0
		79	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		0	0	0	0	0
		78	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		0	0	0	0	0	0
		3	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	-	0	0	0	0	0	0	0
		%	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0
		γ_5	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	-	0	0	0	0	0	0	0	0	0
		γ_4	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		0	0	0	0	0	0	0	0	0	0
		33	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	Ξ	0	0	0	0	0	0	0	0	0	0	0
		33	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		0	0	0	0	0	0	0	0	0	0	0	0
s s		7	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		0	0	0	0	0	0	0	0	0	0	0	0	0
ione nto:		8	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		0	0	0	0	0	0	0	0	0	0	0	0	0	0
iunci onju	ados	¹¹⁰	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
las f ubce	Cerra	9	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
lra e si		8	_		_	_	_			_	_	_	_	_		_	_	_	_			_	_	_	_	_				_	_	_	_
s pa as d		4	_	_	_	_	_	_	_	_	_	_	_	_		_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
lora		β	_	0	0	0	0	0	0	0	_	_	0	0	_	_	_	_	_	0	_	0	_	0	0	_	_	_	_	0	0	_	_
onei		β	0	0	0	0	0	0	0	0	0	0	0		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
sene		ġ	0	0	0	0	0	0	0	0	0	0		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
됴		β_4	0	0	0	0	0	0	0	0	0		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
		β_3	0	0	0	0	0	0	0	0		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
		β_2	0	0	0	0	0	0	0	μ	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
		β_1	0	0	0	0	0	0		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
		β_0	0	0	0	0	0	Ч	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
		α_6	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
		α_5	0	0	0	-	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
		α_4	0	0	2	-	-	Ļ	Ц	-		1	μ	Ļ	Ч						Ч	-		-	Ļ	-		Ч					-
		α_3			0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
		α_2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
		17	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
		0,	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
			0	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	_	-	-	-	-	-	-	-
		Conjunto	$\{o_+, u_+''\}$	$\{o_+, p' u_+''\}$	$\{n\cdot,n\cdot\}$	$\{n\cdot,n:\}$	$\{n\cdot,n_+\}$	$\{n\cdot,s\}$	$\{n\cdot, o\cdot s\}$	$\{n\cdot, o:s\}$	$\{n\cdot, o_+s\}$	$\{n\cdot,p\cdot\}$	$\{n\cdot,p:\}$	$\{n\cdot,p_+\}$	$\{\overline{n\cdot},\overline{u\cdot}\}$	$\sum_{n,u:} \{n \cdot, u:\}$	$\{n{f \cdot},u_+\}$	$\{n\cdot, o\cdot u_+\}$	$\{n\cdot,s'\}$	$\{n\cdot,p\cdot s'\}$	$\{n\cdot,p{:}s'\}$	$\{n \cdot, p_{+s'}\}$	$\{n \cdot, p \cdot p : s'\}$	$\{n\cdot,p:'\}$	$\{n\cdot,p_{+'}\}$	$\{n\cdot, u:'\}$	$\{n\cdot, u_+'\}$	$\{n\cdot, p\cdot u_{+'}\}$	$\{n\cdot,s''\}$	$\{n\cdot, p\cdot' s''\}$	$\{n\cdot,p:'s''\}$	$\{n\cdot, p_+'s''\}$	$\{n\cdot,p\cdot'p''s''\}$

		δ_6	0	-	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0 0	0 0
		3 5		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0 0	1 0
		54	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0 -	- 0
		33	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0,	_ <	0 0
		52	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	,	0 0	0 0
		21	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		0		
		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		0	0		
				_		_		_					_		_		_		_							_				_		
		79	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	μ	0	0	0	0 0	0
		78	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		0	0	0	0	0 0	0
		3	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		0	0	0	0	0	0 0	0
		γ_6	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		0	0	0	0	0	0	0 0	0
		75	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		0	0	0	0	0	0	0	0 0	0 0
		γ_4	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		0	0	0	0	0	0	0	0	0 0	0 0
		3	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		0	0	0	0	0	0	0	0	0	0 0	0 0
		72	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		0	0	0	0	0	0	0	0	0	0	0 0	0 0
so .		7	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		0	0	0	0	0	0	0	0	0	0	0	0 0	0 0
one		2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		0	0	0	0	0	0	0	0	0	0	0	0	0 0	0 0
ces para las funcio pras de subconjun	los																															
	Cerrac	β_1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0 0	0 0
		β	0	0	0	0	0	0	0	0	0	0	0	0	0	μ	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0 0	0
		β_8	0	0	0	0	0	0	0	0	0	0	0	0	-	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0 0	0
		β	0	0	0	0	0	0	0	0	0	0	0		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0 0	0 0
nent adc		β_6	0	0	0	0	0	0	0	0	0	0		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0 0	0
ipol iner		β_5	0	0	0	0	0	0	0	0	0	Ξ	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0 0	0 0
Ex 30		β_4	0	0	0	0	0	0	0	0	μ	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0 0	0
		β_3	0	0	0	0	0	0	0		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0 0	0
		β_2	0	0	0	0	0	0		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0 0	0 0
		β_1	0	0	0	0	0	Ļ	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0 0	0 0
		β_0	0	0	0	0		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0 0	0 0
		9	_	_	_					_								_		_		_			_	_		_			_	
		2	0	_	0	-	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		
		ŝ	0	0	2			1			Π			1	Ξ	1	Ξ	μ	Ξ	Ξ					μ		1			, ,		
		α_{4}			0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0 0	0 0	0
		α_3	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0 0	0
		α_2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0 0	0
		σ	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0 0	0 0
		α_0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0 0	0 0
																															Ę	
		unto	<u>ج</u>	("+n';		<u> </u>		ŝ	:s}	-s	÷	<u></u>	~ _+	÷	÷	~ `+	$\{+n\}$	<u>_</u>	·s′}	: <i>s'</i>]	$\stackrel{+S'}{\rightarrow}$	$\cdot p:s'$: بې بې کې	< <u>-</u>	<u>~:.</u> `	< <u>~</u>	$\cdot n_{+'}$	<u> </u>	;'s'']	:'s']	+' <i>S'</i> '}	ä.≝+
		Conj	$n \cdot , u$	$n \cdot , p$	n:,n	n;n	n:,s	n:, o	n:, o:	$n:, o_{-}$	n:, p	n:, p.	n:, p.	n:, u	[n:, u]	n:, u	[n:,o]	[n:,s]	[n:, p]	n:, p	[n:, p]	[n:, p]	[n:,p]	n:, p	[n:, u]	[n:, u]	n:, p	[n:,s]	[n:, p]	[n:, p]	n:,p	[n:, p]
	I														90	6	~		~						~~							

Exponentes para las functiones Contractes para las functiones 0 10 10 10 10 10 10 10 10 10 10 10 10 10			δ_6	-	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		0
Exponentes para las funciones generators de subonjuntos Exponentes para las funciones 0 10 10 10 10 10 10 10 10 10 10 10 10 10			<u>.</u>	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	<u> </u>	0 0	0
Exponentice para las functones Exponentice para las functones 0 rol			54 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		0	0	0
Exponentes para las functiones Exponentes para las functiones 0				0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		0	0	_ (_
Exponentes para las functones generatorias de subrojuntos • •• •• •• •• •• •• •• •• •• •• •• •• •			2	0	_	0	0	0	0	0	_	0	_	_	0	0	0	_	0	_	0	_	0	_	_	_	_	_	_	0	0	_	_ (-
Exponentes para las funciones Exponentes para las funciones generatoria de suborniuntos			.г	0	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_		-
Exponentes para las funciones generations de subonjuntos Generations de subonjuntos Generations de subonjuntos 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0			δ		_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_		_	_	_	_	_		
Exponenties para las funciones enerational de suboradination contrational enerational de suboradination eneration eneration eneration eneration eneration eneration eneration eneration eneration eneration eneration eneration eneration eneration eneration eneration eneration eneration eneration eneration eneration eneration eneration eneration eneration eneration			8	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	-	0	0	0	0	0	0	<u>ل</u>
Exponentes para las functones generations de suborjuntos 0 01 02 03 04 03 04 03 04 03 04 04 04 04 04 05 04 04 05 04 04 05 04 04 05 04 04 05 04 04 04 04 04 04 04 04 04 04 04 04 04 04 04 04 04 04 04			79	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		0	0	0	0	0	0	0 0	0
Exponentes para las funciones generationas de sublonjuntos 0			38	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		0	0	0	0	0	0	0	0	0
Exponentes para las funciones generadoras de subconjuntos 0 01 02 01 10 01 01 01 01 01 01 01 01 01 01 01			4	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		0	0	0	0	0	0	0	0	0	0
Exponentes para las functiones generadoras de subornjuntos 0			%	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		0	0	0	0	0	0	0	0	0	0	0
Exponentes para las funciones generationes de subconjuntos. 0 01 02 02 02 01 01 01 01 01 01 01 01 01 01 01 01 01			γ_5	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		0	0	0	0	0	0	0	0	0	0	0	0
Exponentes para las funciones generadoras de subconjuntos 0 01 02 03 04 05; 04 05; 05 04 05; 05			γ_4	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		0	0	0	0	0	0	0	0	0	0	0	0	0
Exponentes para las functores sectoreras de subconjuntos carados carados 0 0 0 1 0			33	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	-	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Exponentes para las functiones or			72	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
$ \begin{array}{l l l l l l l l l l l l l l l l l l l $, ,	0	0	0	0	0	0	0	0	0	0	0	0	0	0		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Application of a subconjunt A α_2 α_3 α_4 α_5 α_6 β_0 β_1 β_5 β_6 β_7 β_8 β_1 β_6 β_7 β_8 β_1 γ_6 β_1 β_7 β_8 β_1 γ_6 β_1 β_7 β_8 β_1 γ_6 β_1 γ_6 β_1 β_7 β_8 β_1 γ_6 β_1 β_7 β_8 β_1 γ_6 β_1 γ_6 β_1 β_7 β_8 β_1 γ_6 β_1 β_7 β_8 β_1 γ_6 β_1 β_7 β_8 β_1 γ_6 β_1 γ_6 β_1 γ_6 β_1 γ_6 β_1 γ_6 β_1 β_2 β_2 β_1 γ_6 β_1 γ_6 β_1 β_2 β_2 β_1 β_1 β_2 β_2 β_1 β_1 β_2 β_2 β_1 β_1 β_2 </td <td>nes</td> <td></td> <td>, e</td> <td>0</td> <td></td> <td>0</td>	nes		, e	0	0	0	0	0	0	0	0	0	0	0	0	0		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Exponentes para las functorial or α_1 α_2 α_4 α_5 α_6 β_6 β_1 β_2 β_3 β_4 β_6 β_1 β_1 β_2 β_2 β_1 β_1 β_2 β_1 β_1 β_1 β_1 β_1 β_1 $\beta_$	funcior	s.	(
Exponentes para last generator: segmerator: de subtant 1 α_1 α_2 α_4 α_5 β_6 β_1 β_2 β_4 β_5 β_6 β_1 β_2 β_3 β_4 β_6 β_7 β_8 β_9 β_1 β_2 β_3 β_4 β_6 β_7 β_8 β_9 $\beta_$		radc	β_{10}	0	0	0	0	0	0	0	0	0	0	0	0		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
i i	las ubc	Cer	β_9	0	0	0	0	0	0	0	0	0	0	0		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Fxponentes pregenerators for 1 or 1 or 2 or 3 or 4 or 5 or 6 β_1 β_2 β_3 β_4 β_6 β_1 0 0 0 0 1 0	ara le s		β_8	0	0	0	0	0	0	0	0	0	0		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Exponente or α_2 α_3 α_5 α_6 β_0 β_1 β_3 β_4 β_6	s p; as (37	0	0	0	0	0	0	0	0	0	<u> </u>	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0 0	0
Expone I α1 α2 α3 α4 α5 α6 β1 β3 β4 β5 β 0	ante		36	0	0	0	0	0	0	0	0		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0 0	0
Exp α_1 α_2 α_3 α_4 α_5 α_6 β_0 β_1 β_3 β_4 β_4 β_4 β_1 β_2 β_3 β_4 β_4 β_1 β_2 β_3 β_4	one era			_		_			_		_			_			_	_				_	_		_	_		_	_	_		_	_	_
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	gen g		4	0	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			8	_	_	_	_	_		_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			β	0	0	0	0	0		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0 (
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			Ø	0	0	0	0		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0 0	0
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			β_1	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			β_0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0,	-
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			y6	0	2				0				-		, ,	,	<u>, –</u> ,		,					,			-	<u> </u>		<u>, –</u> ,		<u> </u>		0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			2	_	0	0	0	0	_	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	-
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			4 C	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			8	<u> </u>	_	_	_	_	_	_	_	_	_	Ŭ	_	<u> </u>	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	<u> </u>	_ 、	_
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$			g	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0 0	0
			α_2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
			α_1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
ð 000000000000000000000000000000000			α_0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
																					_									_				
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$			unto	{ _" +n,	u^+	, s,	0.s	0:5}	0+s	$\{\cdot d\}$	b:	p_+	$n \cdot \}$	n :}	n^+	$^{+n\cdot c}$	<u>`</u> <i>s</i> _	$p \cdot s'$	p:s'	$y_{+}s'$	$\cdot p:s'$	p;'	$b_{+'}$	n;	$\binom{n^+}{2}$	·}	$s''_{s''}$;' <i>s</i> ''	n:'s''}	$\left \frac{s''}{s'} \right $	$p_{i's''}$	(****) ****	(_+n;	t_0
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$			Conj	n:, p.	$\{n_{+},$	${u^+u}$	$\{n_+,$	$\{n_+,$	$\{n_+, .$	$\{n_+,$	$\{n_+,$	$\{n_+,$	$\{n_+,$	$\{n_+,$	$\{n_+,$	$\{n_{+}, c$	$\{n_+,$	$\{n_{+,i}\}$	$\{n_{+,i}\}$	$\{n_{+}, i\}$	n_{+}, p	$\{n_{+}, \dots, n_{n}\}$	$\{n_+,$	$\{n_{+}, $	$\{n_+,$	n_+, p	$\{n_+,$	$[n_+, p]$	$[n_+, p]$	n_{+}, p	ι_{+}, p	$\{n_+, j\}$	n_+, p	$\{s,$
$ \overline{} \qquad \qquad$			 	<i></i>												9'	7				~					~				~	ſ,		~	
		δ_4 δ_5 δ_6	$\begin{array}{ccc} 0 & 0 \\ \end{array}$	0 0 0 0	0 0 0 0	0 0 0 0	0 0 0	0 0 0 0	0 0 0 0	0 0 0 0	0 0 0 0	0 0 0 0	0 0 0 0	0 0 0 0	0 0 0 0	0 0 0 0	0 0 0 0	0 0 0 0	0 0 0 0	0 0 0 0	0 0 0 0	0 0 0 0	0 0 0 0	0 0 0 0	0 0 0 0	0 0 0 0	1 0 0	$0 \ 1 \ 0$	0 0 1	0 0 0	0 0 0	0 0 0	0 0 0	
---------------	-------	----------------------------------	---	--------------	---------------	------------	-------------	--------------	-------------	-------------	--------------	------------	-------------	--------------------	--------------------------------	-------------------	-----------------	-------------	-----------------------	------------	--------------	--------------------	--------------	----------------	------------	-----------------------	-------------	----------------	----------------------	--------------------	----------------	----------------	-----------	
		2.0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0) 1	0	0	0	0	0	0	0	
		$\delta_1 \delta_1$	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	-	0	0	0	0	0	0	0	0	0	
		5 ₀ č	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		0	0	0	0	0	0	0	0	0	0	
		6	_	_	_	_	_	_	0	_	_	_	_	_	_	_	_	_	_	0	_	_	_	_	_	_	_		_	_	_	_	_	
		8	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	-	0	0	0	0	0	0	0	0	0	0	0	0	
		4	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	_	0	0	0	0	0	0	0	0	0	0	0	0	0	
		ζe	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
		75	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	-	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
		γ_4	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
		73	0	0	0	0	0	0	0	0	0	0	0	0	0	-	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
		γ_2	0	0	0	0	0	0	0	0	0	0	0	0	-	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
s s		\mathcal{I}^1	0	0	0	0	0	0	0	0	0	0	0	-	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
cione into		<u>ж</u>	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
fune conji	rados	β_{10}	0	0	0	0	0	0	0	0	0		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
las	Ceri	β_9	0	0	0	0	0	0	0	0		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
ara de		β_8	0	0	0	0	0	0	0	-	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
es p ras		β7	0	0	0	0	0	0	-	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
nent ado		β_6	0	0	0	0	0	-	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
por		β_5	0	0	0	0	-	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
EX B		β_4	0	0	0		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		
		β_3	0	0	Ξ	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		0	
		β_2	0		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		0	0	
		β_1		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	7		-		
		β_0	μ	-	-	1	μ	1	-			1	-	-	1	-	1	-	1	-		-		-	-	1	-		1		0	0	0	
		α_6	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
		α_5	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
		α_4	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
		α3	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
		α_2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
		τ	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
		α_0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
		unto	~	<u> </u>	5}			~			~	{+1		{/}	{ <u>`</u>	s'}	::s'	~	~	<u> </u>	<i>_</i> ~	{ ₊₁	~	s''	s''	' <i>s'</i> '}	$p_{i's''}$	// 	n_{+}^{+}	-[-]	::s}	s_{+s}	÷	
		Conj	$\{s, 0.s\}$	$\{s, o:s\}$	$\{s, o_{+};$	$\{s, p\}$	$\{s, p:\}$	$\{s, p_+\}$	$\{s, u.\}$	$\{s, u:\}$	$\{s, u_+\}$	$\{s, o.u$	$\{s, s'\}$	$\{s, p \cdot s\}$	$\tilde{\mathfrak{O}}$ {s, p:s	$\sum_{s, p_{t}}$	$\{s, p\cdot f$	$\{s, p'\}$	$\{s, p_{+}, d_{+}\}$	$\{s, u:'$	$\{s, u_+\}$	$\{s, p \cdot t\}$	$\{s, s''\}$	$\{s, p', d\}$	$\{s, p''$	$\{s, p_{+}, d_{+}\}$	$\{s, p'_i$	$\{s, u_{+}\}$	$\{s, p^{\prime'}\}$	$\{o \cdot s, t\}$	$\{o\cdot, sc$	$\{o\cdot, sc$	$\{o, sp$	

		δ_6	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	Ч	0	0	0	0	0	0	0
		δ_5	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		0	0	0	0	0	0	0	0
		δ_4	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		0	0	0	0	0	0	0	0	0
		δ_3	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		0	0	0	0	0	0	0	0	0	0
		δ_2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		0	0	0	0	0	0	0	0	0	0	0
		δ_1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		0	0	0	0	0	0	0	0	0	0	0	0
		δ_0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		0	0	0	0	0	0	0	0	0	0	0	0	0
		6,	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0
		78	0	0	0	0	0	0	0	0	0	0	0	0	0	0	-	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
		4	0	0	0	0	0	0	0	0	0	0	0	0	0		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
		76	0	0	0	0	0	0	0	0	0	0	0	0		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
		γ_5	0	0	0	0	0	0	0	0	0	0	0	Ļ	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
		γ_4	0	0	0	0	0	0	0	0	0	0		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
		33	0	0	0	0	0	0	0	0	0		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
		γ_2	0	0	0	0	0	0	0	0	Ч	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Si to		71	0	0	0	0	0	0	0	-	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
ione ntos		λ0	0	0	0	0	0	0	-	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
funci onju	ados	β_{10}	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
las ubc	Cerr	θ 9	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
ara le si		3%	0	0	0		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
s pa as c		37	0	0	Ļ	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	-	0
ente dor		β_6	0	-	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		0	0
one iera		θ_5		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		0	0	0
Exp ger		β_4	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		0	0	0	0
		β_3	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		0	0	0	0	0
		β_2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		Ļ	Ļ				,
		β_1		П	Ļ		Ļ		Ļ	Ļ	П	Ļ	Ц	Ļ			Ļ			Ļ		1			1	0	0	0	0	0	0	0
		β_0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
		9,	_	_		0		0		_	_		_		_	_	_	_	_		_	_	_	_	_	_		_	_	_	_	_
		20	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
		4 α	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
		α	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
		α 8	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
		ö	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	4	0	0	0	0	0	0
		δ	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
		σ	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	μ	0	0	0	0	0	0
		Conjunto	$\{o\cdot, sp:\}$	$\{o\cdot, sp_+\}$	$\{o\cdot, su\cdot\}$	$\{o\cdot, su:\}$	$\{o\cdot, su_+\}$	$\{o\cdot, so\cdot u_+\}$	$\{o\cdot, ss'\}$	$\{o\cdot, sp\cdot s'\}$	$\{o\cdot, sp:s'\}$	$\{o\cdot, sp_{+}s'\}$	$\{o\cdot, sp\cdot p:s'\}$	$\sum \{o \cdot, sp:'\}$	$6\{o, sp_{+'}\}$	$\{o\cdot, su:'\}$	$\{o\cdot, su_+'\}$	$\{o\cdot, sp\cdot u_+'\}$	$\{o{\cdot}, ss''\}$	$\{o\cdot, sp\cdot's''\}$	$\{o\cdot, sp:'s''\}$	$\{o\cdot, sp_+'s''\}$	$\{o\cdot, sp\cdot'p;'s''\}$	$\{o\cdot, su_+''\}$	$\{o\cdot, sp\cdot' u_+''\}$	$\{o:, st_2\}$	$\{o:, so_{+}s\}$	$\{o:, sp.\}$	$\{o:, sp:\}$	$\{o:,sp_+\}$	$\{o:, su.\}$	$\{o:, su:\}$

		δ_6	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	Ļ	0	0	0	0	0	0	0	0	0	0	0	
		δ_5	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		0	0	0	0	0	0	0	0	0	0	0	0	
		δ_4	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		0	0	0	0	0	0	0	0	0	0	0	0	0	
		δ_3	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
		δ_2	0	0	0	0	0	0	0	0	0	0	0	0	0	0		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
		δ_1	0	0	0	0	0	0	0	0	0	0	0	0	0	-	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
		δ_0	0	0	0	0	0	0	0	0	0	0	0	0		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
		6	0	_	0	_	_	_	_	_	_	_	0	_	_	_	_	_	_	_	_	_	_	_		_	_	_	_	_	_	_	
		8	0	0	0	0	0	0	_	0	0	0	_	_	0	0	_	0	0	0	0	0	0	_	_	0	0	0	0	0	0	0	
		۲ ۲	0	0	0	0	0	0	0	0	0	_	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
		,)6	0	0	0	0	0	0	0	0	,	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
		, î	0	0	0	0	0	0	0		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
		γ4	0	0	0	0	0	0	,	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
		33	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
		72 (0	0	0	0		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		
		71	0	0	0		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		0	
nes tos		2	0	0		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		0	0	
ncio ijunt	sol																																
s fu ocor	errac	β_{10}	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	μ	0	0	0	
a la suł	Ŭ	β_9	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		0	0	0	0	
par de		β_8	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	-	0	0	0	0	0	
tes		β	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	μ	0	0	0	0	0	0	
nent rado		β_6	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	Ξ	0	0	0	0	0	0	0	
spoi		β_5	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	-	0	0	0	0	0	0	0	0	
E 20		β_4	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		0	0	0	0	0	0	0	0	0	
		β_3	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0				Π				Ξ				
		β_2	Ц					Ξ	Ξ								Ξ	μ	Ξ		Ξ	0	0	0	0	0	0	0	0	0	0	0	
		β_1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
		β_0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
		α ₆	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
		α_5	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
		α_4	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
		α3	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	က္	0	0	0	0	0	0	0	0	0	0	
		χ_2^{-1}	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
		ο Γχ	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
		x ⁰	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	-	0	0	0	0	0	0	0	0	0	0	
		0							-		-		-							-				-		-					-		
		Conjunto	$\{o:, su_+\}$	$\{o:, so.u_+\}$	$\{o:, ss'\}$	$\{o:, sp.s'\}$	$\{o:, sp:s'\}$	$\{o:, sp_{+}s'\}$	$\{o:, sp.p:s'\}$	$\{o:, sp:'\}$	$\{o:,sp_+'\}$	$\{o:, su:'\}$	$\{o:, su_+'\}$	$-\{o:, sp \cdot u_{+}'\}$	$00^{\{o:, ss''\}}$	[o:, sp's'']	$\{o:, sp:'s''\}$	$\{o:, sp_{+}'s''\}$	$\{o:, sp.'p:'s''\}$	$\{o:, su_+''\}$	$\{o:, sp.'u_+''\}$	$\{o_+, st_3\}$	$\{o_+, sp_{ullet}\}$	$\{o_+, sp:\}$	$\{o_+, sp_+\}$	$\{o_+, su_{ullet}\}$	$\{o_+, su:\}$	$\{o_+, su_+\}$	$\{o_+, so \cdot u_+\}$	$\{o_+, ss'\}$	$\{o_+, sp_{\cdot}s'\}$	$\{o_+, sp.s'\}$	

		δ_6	0	0	0	0	0	0	0	0	0	0	0	0	0		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
		δ_5	0	0	0	0	0	0	0	0	0	0	0	0		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
		δ_4	0	0	0	0	0	0	0	0	0	0	0		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
		δ_3	0	0	0	0	0	0	0	0	0	0		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
		δ_2	0	0	0	0	0	0	0	0	0		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
		δ_1	0	0	0	0	0	0	0	0		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
		δ_0	0	0	0	0	0	0	0		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
		6,	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
		82	0	0	0	0	0		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0,	-
		4	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		0
		36	0	0	0		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	, ,	0	0
		75	0	0		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		0	0	0
		γ_4	0		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		0	0	0	0
		73		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		0	0	0	0	0
		γ_2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	Ч	0	0	0	0	0	0
		71	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		0	0	0	0	0	0	0
nes tos		20	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		0	0	0	0	0	0	0	0
ncio	sop	0	_							_																					_	
us fu bcoi	erra	β	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		0	0	0	0	0	0	0	0 0	0
a la sul	C	β	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	Π	0	0	0	0	0	0	0	0	0 0	0
par s de		β	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	-	0	0	0	0	0	0	0	0	0	0	0
tes oras		β	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	Η	0	0	0	0	0	0	0	0	0	0	0	0
nen rado		β_6	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	-	0	0	0	0	0	0	0	0	0	0	0	0	0
spo:		β_5	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0
පින		β_4	0	0	0	0	0	0	0	0	0	0	0	0	0	0	-	Ξ	-	-		-				-	Ξ				,	-
		β_3		-	-		1	-		-	-	μ	-	-	-	-	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
		β_2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
		β_1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
		β_0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0 0	0
		α_6	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
		α_5	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
		α_4	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
		α3	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
		α_2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
		Γχ	0	0	0	0	0	0	0	0	0	0	0	0	0	0		0	0	0	0	0	0	0	0	0	0	0	0	0	0 0	0
		χ0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	÷	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
				-	-	-		-	-		-	-	-	-	-	-	'								-	-						
		Conjunto	$\{o_+, sp_+s'\}$	$\{o_+, sp.p.s'\}$	$\{o_+, sp:'\}$	$\{o_+, sp_+'\}$	$\{o_+, su:'\}$	$\{o_+, su_+'\}$	$\{o_+, sp \cdot u_+'\}$	$\{o_+, ss''\}$	$\{o_+, sp.'s''\}$	$\{o_+, sp:'s''\}$	$\{o_+, sp_+'s''\}$	$[o_{+}, sp.'p.'s'']$	$0[o_{+}, su_{+}]$	$\{o_+, sp_{2}u_+''\}$	$\{p\cdot,t_4\}$	$\{p\cdot, p:\}$	$\{p\cdot,p_+\}$	$\{p\cdot, u\cdot\}$	$\{p\cdot, u:\}$	$\{p{f \cdot},u_+\}$	$\{p\cdot, o\cdot u_+\}$	$\{p\cdot, s'\}$	$\{p \cdot, p \cdot s'\}$	$\{p \cdot, p : s'\}$	$\{p\cdot,p_{+}s'\}$	$\{p\cdot, p\cdot p: s'\}$	$\{p\cdot,p:'\}$	$\{p\cdot, p_+'\}$	$\{p\cdot, u:'\}$	$\{p\cdot, u_{+'}\}$

		δ_6	0	0	0	0	0	0	0		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0 0	
		δ_5	0	0	0	0	0	0	Ļ	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0 0	
		δ_4	0	0	0	0	0		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0 0	1 0	
		δ_3	0	0	0	0		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0,	1 0	
		δ_2	0	0	0		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		0 0	
		δ_1	0	0		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	,,,	0 0	0 0	
		δ_0	0		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		0	0		
		λ ⁹	Ц	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	-	0	0	0	0 0	
		ž	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	μ	0	0	0	0	0 0	
		77	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	Ξ	0	0	0	0	0	0	
		γ_6	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		0	0	0	0	0	0	0	
		γ_5	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	-	0	0	0	0	0	0	0	0 0	
		γ_4	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		0	0	0	0	0	0	0	0	0 0	
		73	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		0	0	0	0	0	0	0	0	0	0 0	
		γ_2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	-	0	0	0	0	0	0	0	0	0	0	0 0	
si si		$\boldsymbol{\gamma}_1$	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		0	0	0	0	0	0	0	0	0	0	0	0 0	
one		λ0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		0	0	0	0	0	0	0	0	0	0	0	0	0 0	
unci	dos	01	_	_	_	_	_	_	_	_	_	_	_	_	_	_		_	_	_	_	_	_	_	_	_	_	_	_	_		
as fi ıbco	erra	β_{1}	0	0	0	0	0	0	0	0	0	0	0	0	0		_	0	0	0	0	_	_	0	_	0	_	_	_	_		
ra l e sı	9	β	0	0	0	0	0	0	0	0	0	0	0	0	0		0	0	0	0	0	0	0	0	0	0	0	0	<u> </u>			
pa.		β	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		
ora		θ	0	0	0	0	0	0	0	0	0	0	0		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0 0	0 0	
ner rad		β_6	0	0	0	0	0	0	0	0	0	0	μ	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
kpo		β_5	0	0	0	0	0	0	0	0	-	μ	-		1	μ	Ξ		Ξ	-					-	-						
면 20		β_4	Ч			Ξ		μ	μ		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0 0	
		β_3	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0 0	
		β_2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0 0	
		β_1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0 0	
		β_0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0 0	
		9xe	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0 0	
		χ2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0 0		
		ί4 C	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	_	_		
		3	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_		
		σ	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0 0		
		ä	0	0	0	0	0	0	0	0	-		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0 0	
		α_1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0 0	
		α_0	0	0	0	0	0	0	0	0	-	-2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0 0	0 0	
		Conjunto	$\{p\cdot, p\cdot u_+'\}$	$\{p\cdot, s''\}$	$\{p\cdot, p\cdot's''\}$	$\{p\cdot,p:'s''\}$	$\{p\cdot, p', s''\}$	$\{p\cdot,p\cdot'p;'s''\}$	$\{p\cdot, u_+''\}$	$\{p\cdot, p\cdot' u_{+}''\}$	$\{p:,t_5\}$	$\{p:,t_6\}$	$\{p:,p_+\}$	$_ \{p:, u\cdot\}$	$\{p_{i}, u_{i}\}$	$\{p:, u_+\}$	$\{p:,o{\cdot}u_+\}$	$\{p_{:},s'\}$	$\{p:, p \cdot s'\}$	$\{p:, p:s'\}$	$\{p:, p_{+}s'\}$	$\{p:, p \cdot p: s'\}$	$\{p_i, p_i'\}$	$\{p:,p_{+}'\}$	$\{p_i, u_i'\}$	$\{p:, u_{+}'\}$	$\{p:,p{\cdot}u{+'}\}$	$\{p:, s''\}$	$\{p_{:}, p_{\cdot'}s''\}$	$\{p_{:}, p_{:}'s''\}$	$\{p:, p^+ s'\} $ $\{p:, p^- p;' s''\}$	
														1	02																	

		δ_6	0	-	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	-	0	0 0		>
		δ_5		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	-	0	0	0		>
		δ_4	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		0	0	0	0		>
		δ_3	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		0	0	0	0	0		>
		δ_2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		0	0	0	0	0	0		>
		δ_1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		0	0	0	0	0	0	0		>
		δ_0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		0	0	0	0	0	0	0	0 0		>
		،	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	-	0	0	0	0	0	0	0	0	0 0		>
		3	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	Ξ	0	0	0	0	0	0	0	0	0	0 0		>
		3	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		0	0	0	0	0	0	0	0	0	0	0	0 0	>
		<u>у</u> е	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		0	0	0	0	0	0	0	0	0	0	0	0	0 0	Þ
		35	0	0	0	0	0	0	0	0	0	0	0	0	0	0		0	0	0	0	0	0	0	0	0	0	0	0	0	0 0	
		γ_4	0	0	0	0	0	0	0	0	0	0	0	0	0	Ξ	0	0	0	0	0	0	0	0	0	0	0	0	0	0		>
		3	0	0	0	0	0	0	0	0	0	0	0	0	μ	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0 0	>
		3	0	0	0	0	0	0	0	0	0	0	0		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		>
si si		7	0	0	0	0	0	0	0	0	0	0		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		>
one		8	0	0	0	0	0	0	0	0	0		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		>
unci	gob	10	0	0	0	0	0	0	0	0	_	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		-
as f ibcc	erra	θ	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_		_
ra l e su		β	_	_	_	_	_	_	0		_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_			
pa s de		β	0	0	0	0	0	0		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	- 0		>
utes ora		Ø	0	0	0	0	0	μ	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		, ,		-
ner rad		β	0	0			1		1	-			-		-	μ	μ			1	-	1					1	1	0	0	0 0	>
kpo ene		β_5	1		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		>
년 20		β_4	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0 0	>
		β_3	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		>
		β_2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		>
		β_1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		>
		β_0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0 0	0 0	>
		α_6	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0 0	0 0	>
		α5	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		>
		χ_4	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		0 0		>
		5	0	0		_	_	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0			5
		2	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_		_
		σ	C	J	J	0	0	0	U	J	J	0	J	J	U	J	J	J	J	0	J	<u> </u>	J	J	ں ا	J	0	J	<u> </u>			-
		β	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	\cap	>
		α_0	0	0	Ļ	-2	ဂု	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	-	0 0		>
		Conjunto	$\{p:, u_+''\}$	$\{p:, p' u_{+}''\}$	$\{p_+, t_7\}$	$\{p_+, t_8\}$	$\{p_+, t_9\}$	$\{p_+, u\cdot\}$	$\{p_+, w_{\!\!\!:}\}$	$\{p_+, u_+\}$	$\{p_+, o \cdot u_+\}$	$\{p_+,s'\}$	$\{p_+, p \cdot s'\}$	$- \{p_+, p:s'\}$	$\{p_{+}, p_{+}s'\}$	$\{p_+, p \cdot p : s'\}$	$\{p_+, p_{i'}\}$	$\{p_+,p_+'\}$	$\{p_+, u:'\}$	$\{p_+,u_+'\}$	$\{p_+, p \cdot u_+'\}$	$\{p_+, s''\}$	$\{p_+, p^{,'}s''\}$	$\{p_+, p_{*}'s''\}$	$\{p_+, p_+' s''\}$	$\{p_+, p_{\cdot'} p_{\cdot'} s''\}$	$\{p_+, u_+''\}$	$\{p_+, p' u_+''\}$	$\{u\cdot,t_{10}\}$	$\{u\cdot,u:\}$	$\{u, u_+\}$ $\{u, o, u_+\}$	(<i>m</i> , <i>n</i> , <i>m</i> +)

		δ_6	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		0	0	0	0	0	0	0	0	0	0	0	0	0
		δ_5	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		0	0	0	0	0	0	0	0	0	0	0	0	0	0
		δ_4	0	0	0	0	0	0	0	0	0	0	0	0	0	0		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
		δ_3	0	0	0	0	0	0	0	0	0	0	0	0	0		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
		δ_2	0	0	0	0	0	0	0	0	0	0	0	0		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
		δ_1	0	0	0	0	0	0	0	0	0	0	0		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
		δ_0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
		<u>7</u> 9	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
		, 8,	0	0	0	0	0	0	0	0	_	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	-
		77	0	0	0	0	0	0	0	-	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		0
		76	0	0	0	0	0	0		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		0	0
		75	0	0	0	0	0	Ļ	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	-	0	0	0
		γ_4	0	0	0	0		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		0	0	0	0
		33	0	0	0		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		0	0	0	0	0
		γ_2	0	0		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		0	0	0	0	0	0
×		λ_1	0		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		0	0	0	0	0	0	0
one		у,	-	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	-	0	0	0	0	0	0	0	0
unci	sopi	10	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		0	0	0	0	0	0	0	0	0
as f ibco	Jerra	θ	_			0	_			_	_		_	_		_		_	_		_	_		_	_		_				_	_
ra l e su		8 8	0	_	_	0	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
s pa		4 4	_			_	_					_								_	_	_	_	_	_	_	_	_	_	_	_	_
ntes dora		9	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	<u> </u>	_	-
one		2°	0	<u> </u>	_	<u> </u>	_	_	<u> </u>	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	<u> </u>	_	
gen		4	0	_	_	0	_	<u> </u>	<u> </u>	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	<u> </u>	_	-
		3	0	_	_	0	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	-
		2 Β	0	0	0	0	0	0	0	0	_	0	0	0	0	_	0	0	_	0	_	0	_	_	_	0	_	0	_	0		-
		5 1	_	_	_		_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	- -
		θ	0	_	_		_	_	_	_	_	_	0	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
		9	0	0	0	0	Ū	<u> </u>	0	<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>	0	<u> </u>	0	<u> </u>	<u> </u>	<u> </u>	0	<u> </u>	Ū	<u> </u>	<u> </u>	<u> </u>	<u> </u>	0	Ū	Ŭ	0	<u> </u>
		α_6	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
		α_5	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0			0	0	0	0	0	0	0	0	0	0	0
		α_4	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
		α_3	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
		α_2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
		α_1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
		α_0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	7	-2	0	0	0	0	0	0	0	0	0	0	0
																	<u>_</u>															
		unto	~	. <i>s</i> '}	.:s'}	$\left s' \right $	$\cdot p:s'$	<u>ب</u> ک	~ <u>+</u>	<u>ب</u>	~ <u>`</u> t	$\cdot u_{+'}$	<u></u>	$\langle s'' \rangle$	$\left \left \left$	$^{+'}_{+'}s''$	s':d'	<u>_</u> +	("+n'.	E,	12}	÷	$\{+n,$	~~	, <i>s'</i> }	's'}	$\left s' \right $	$\cdot p:s'$	<u>ټ</u>	< <u>_</u>	: بې	<u>_</u>
		Conj	$\{u\cdot, s\}$	$\{u, p\}$	$\{u, p\}$	$\{u, p\}$	$\{u\cdot, p\}$	$\{u\cdot, p\}$	$\{u\cdot, p\}$	$\{u, u\}$	$\{u, u\}$	$\{u\cdot, p\}$	$\{u, s\}$	$\{u\cdot, p$	$\{u\cdot, p\}$	$\{u, p\}$	$\{u\cdot, p\}$	$\{u\cdot, u\}$	$\{u \cdot, p\}$	$\{u:, t_j$	$\{u:, t_j$	$\{u:, u\}$	$\{u:, o\}$	$\{u:,s\}$	$\{u:p\cdot,$	$\{u \cdot, p\}$	$\{u, p\}$	$\{u\cdot, p\}$	$\{u:, p$	$\{u:, p$	$\{u:, u$	$\{u:, u\}$
I	I	I												1	04	:																

		δ_6	0	0	0	0	0	0	0	-	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		0	0	0	0
		δ_5	0	0	0	0	0	0		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		0	0	0	0	0
		δ_4	0	0	0	0	0	-	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	-	0	0	0	0	0	0
		δ_3	0	0	0	0		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		0	0	0	0	0	0	0
		δ_2	0	0	0		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		0	0	0	0	0	0	0	0
		δ_1	0	0		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		0	0	0	0	0	0	0	0	0
		δ_0	0	-	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		0	0	0	0	0	0	0	0	0	0
		79		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0
		38	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		0	0	0	0	0	0	0	0	0	0	0	0
		3	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		0	0	0	0	0	0	0	0	0	0	0	0	0
		3 6	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		0	0	0	0	0	0	0	0	0	0	0	0	0	0
		75	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
		γ_4	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	-	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
		33	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
		72	0	0	0	0	0	0	0	0	0	0	0	0	0	0	Ξ	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
ŝ		7	0	0	0	0	0	0	0	0	0	0	0	0	0	П	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		0
ione ntos		8	0	0	0	0	0	0	0	0	0	0	0	0		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		0	0
iunci	ados	3_{10}	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	-	
las f ıbce	Cerr	39	0	0	0	0	0	0	0	0			<u> </u>	1		1	, _		1	1				<u> </u>		-	1	<u> </u>	1	, _		0	0	0	0
ura] le si		38		1		1			-	Ļ	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
s pa as d		37	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
dor		36	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
one lera		35	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Exp		34 /	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
		33	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
		β_2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
		β_1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
		β_0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
		κ ₆	0	0	0	0	0	0	0	0	_			0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0
		5	_	_	_	_	_	_	_	_	_		_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	-
		4 0	0	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
		3	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
		7 7		_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
		σ	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
		σ	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	Ξ.	0	0	0
		α	0	0	0	0	0	0	0	0	-	57	ς'n	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
		Conjunto	$\{u:,p{\cdot}u_{+}'\}$	$\{u:,s''\}$	$\{u: p' s''\}$	$\{u:, p:'s''\}$	$\{u:, p_{+}'s''\}$	$\{u:, p.' p!' s''\}$	$\{u:,u_+''\}$	$\{u:, p.'u_{+}''\}$	$\{u_+, t_{13}\}$	$\{u_+, t_{14}\}$	$\{u_+,t_{15}\}$	$\{u_+, o{\cdot}u_+\}$	$\{u_+, s'\}$	$0[u_{+}, p.s']$	$\overline{\mathfrak{S}}_{\{u_+,p:s'\}}$	$\{u_+, p_{+S'}\}$	$\{u_+, p \cdot p \cdot s'\}$	$\{u_+, p_{i'}\}$	$\{u_+,p_+'\}$	$\{u_+, u_{i'}\}$	$\{u_+, u_+'\}$	$\{u_+, p \cdot u_+'\}$	$\{u_+, s''\}$	$\{u_+, p's''\}$	$\{u_+, p_{*}'s''\}$	$\{u_+, p_+' s''\}$	$\{u_+, p.' p!' s''\}$	$\{u_+,u_+''\}$	$\{u_+, p^{-'}u_+''\}$	$\{o \cdot u_+, t_{16}\}$	$\{o \cdot u_+, s'\}$	$\{o \cdot u_+, p \cdot s'\}$	$\{o{\cdot}u{+},p{:}s'\}$

		δ_6	0	0	0	0	0	0	0	0	0	0	0	0	0	-	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
		δ_5	0	0	0	0	0	0	0	0	0	0	0	0	-	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
		δ_4	0	0	0	0	0	0	0	0	0	0	0	-	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		0
		δ_3	0	0	0	0	0	0	0	0	0	0		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	Ц	0	0
		δ_2	0	0	0	0	0	0	0	0	0	-	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		0	0	0
		δ_1	0	0	0	0	0	0	0	0		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		0	0	0	0
		δ_0	0	0	0	0	0	0	0	Ļ	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		0	0	0	0	0
		6)	0	0	0	0	0	0	-	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0
		8	0	0	0	0	0	<u> </u>	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	_	0	0	0	0	0	0	0
		, F	0	0	0	0		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	<u> </u>	0	0	0	0	0	0	0	0
		92	0	0	0		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		0	0	0	0	0	0	0	0	0
		32	0	0		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	, ,	0	0	0	0	0	0	0	0	0	0
		74	0		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		0	0	0	0	0	0	0	0	0	0	0
		33	-	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	, _	0	0	0	0	0	0	0	0	0	0	0	0
		72	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	Η	0	0	0	0	0	0	0	0	0	0	0	0	0
		7	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		0	0	0	0	0	0	0	0	0	0	0	0	0	0
nes tos		%	0	0	0	0	0	0	0	0	0	0	0	0	0	0	-		Ч	1					-			-	1		Ļ	
ncio	dos	0															_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	-
us fu bcoi	erra	θ.	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	0
a le sul		8		_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	-
par s de		7 β	-	-	0	0	_	-	0	-	0	_	0	_	-	_	0	_	-	-	0	_	0	_	_	_	0	0	-	_	0	-
ites ora:		θ	-	-	-	0	_	-	0	-	0	_	_	-	0	_	-	-	-	0	-	_	0	_	_	_	0	-	0	_	0	-
nen rad		β	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	-
stpo ene		$\frac{4}{\beta}$	-	-	-	0	_	-	0	-	0	_	_	-	0	_	-	-	-	0	-	_	0	_	_	_	0	-	0	_	0	-
표 ao		β	-	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	-	0	0	0	0	0	0	0	0	0	0
		β	-	-	-	0	_	-	0	-	0	_	_	-	0	_	-	-	-	0	-	_	0	_	_	_	0	-	0	_	0	-
		β	-	-	0	0	_	-	0	-	0	_	0	_	-	_	0	_	-	-	0	_	0	_	_	_	0	0	-	_	0	-
		θ	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
		β	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	U
		α_{6}	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
		α_5	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
		α_4	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
		α_3	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
		α_2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
		α ¹	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
		α_0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
		onjunto	$harrow u_+, p_{+s'}$	$\cdot u_+, p \cdot p \cdot s'$	$n \cdot u_+, p$	$p \cdot u_+, p_+'$	$nu_+, u_{i'}$	$n \cdot u_{+}, u_{+}'$	$p \cdot u_+, p \cdot u_+'$	$p, u_{+s''}$	$p \cdot u_+, p \cdot s''$	$v \cdot u_+, p :' s''$	$v \cdot u_+, p_+' s''$	$v \cdot u_+, p \cdot p \cdot p : s''$	$n \cdot u_+, u_+''$	$n \cdot u_{+}, p \cdot 'u_{+}''$	$s', t'_0\}$	$s', p \cdot s'$	$s',p:s'\}$	$', p_+s'$	$s', p \cdot p \cdot s' \}$	$^{',p;'}$	$\{', p_{+'}\}$	s', u:'	$n_{s',u+'}$	$^{\prime}, p \cdot u^{+'}$	$_{3',S''}$	', p', s''	',p:'s''	$', p_{+}'s''$	${}^{\prime}, p' p' s'' $	s',u+"}
			}	~~~	~~	, <i>–</i>	ž	Ž	÷	÷	Ť	ž	Ť	7	06	<u>چ</u>	تب	تب	4	تب	ټ	Ť	÷	ټ	ت	ٽ	Ť	<u>ټ</u>	Ť	ټ	÷	ب ت

		δ_6		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	-	0	0	0	0	0	0	0	0	0	0	0	>
		5	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	, _	0	0	0	0	0	0	0	0	0	0	0	0 0	0
) ⁴ 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		0	0	0	0	0	0	0	0	0	0	0	0	0	0
		33	0	0	0	0	0	0	0	0	0	0	0	0	0	0		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
		5	0	0	0	0	0	0	0	0	0	0	0	0	0	, _	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0 -	_
		~ F	0	0	0	0	0	0	0	0	0	0	0	0	_	0	0	_	0	0	0	_	0	_	0	_	0	0	0	_		- -
		.0	0	0	0	0	0	0	0	0	0	0	0	_	0	0	0	_	0	0	0	_	0	_	0	_	0	0	0		_	-
		Ŷ	0	<u> </u>	<u> </u>	Ŭ	<u> </u>	0	-	-	<u> </u>	<u> </u>	Ŭ		<u> </u>	-	0	-	-	<u> </u>	-	<u> </u>	-	<u> </u>	0	<u> </u>	0	0	<u> </u>			
		79	0	0	0	0	0	0	0	0	0	0	-	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		0	0	Ο
		7'8	0	0	0	0	0	0	0	0	0		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		0	0	0	Ο
		3	0	0	0	0	0	0	0	0	μ	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	Ξ	0	0	0	0	Ο
		76	0	0	0	0	0	0	0	-	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	-	0	0	0	0	0	Ο
		γ_5	0	0	0	0	0	0	-	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		0	0	0	0	0	0	0
		γ_4	0	0	0	0	0	Ţ	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	-	0	0	0	0	0	0	0	D
		3	0	0	0	0		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		0	0	0	0	0	0	0	0 0	Ο
		γ_2	0	0	0		0	0	0	0	0	0	0	0	0	0	0	0	0	0										, -		-
ø		7	0					μ		-		-	0								0	0	0	0	0	0	0	0	0	0	0	
one itos		30	Ч	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
mci	ldos	10	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	5
as fi ibco	Cerra	β β	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	5
ra] e sı	ſ	8	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	_	-
pa s d		-	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
ntes lora		6 3	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_		_
erad		β	0	_	0	0	0	0	0	0	0	_	0	0	0	0	_	0	_	0	_	0	0	_	0	_	0	_	0	_		
xpc		β	0	0		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	.1	0	0	0	0	0	0	0	0	-	_
[파] 000		β	0	0	·	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0 0	
		β	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0 0	D
		β_{i}	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0 0	
		β_1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	Ο
		β_0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0 0	D
		α ⁶	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	D
		α_5	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	D
		α_4	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
		α3	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0 0	D
		α_2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
		I _X	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0 0	D
		ν 10	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
			-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	•	
		Conjunto	$\{s',p',u_{+}''\}$	$\{p{\cdot}s',t_1'\}$	$\{p{\cdot}s',t'_2\}$	$\{p{\cdot}s',p{:}s'\}$	$\{p \cdot s', p_{+}s'\}$	$\{p \cdot s', p \cdot p \cdot s'\}$	$\{p{\cdot}s',p{:'}\}$	$\{p \cdot s', p_{+'}\}$	$\{p{\cdot}s',u{:'}\}$	$\{p \cdot s', u_+'\}$	$\{p{\cdot}s',p{\cdot}u{+}'\}$	$[p \cdot s', s'']$	$\{b,s',p',s''\}$	$\{p \cdot s', p :' s''\}$	$\{p \cdot s', p + s''\}$	$\{p \cdot s', p \cdot p \cdot p : s''\}$	$\{p \cdot s', u_+''\}$	$\{p \cdot s', p \cdot u' + u''\}$	$\{p{:}s',t'_3\}$	$\{p{:}s',t_4'\}$	$\{p{:}s',p{+}s'\}$	$\{p:s',p\cdot p:s'\}$	$\{p:s',p:'\}$	$\{p:s',p_{+'}\}$	$\{p{:}s',u{:}'\}$	$\{p:s',u_+'\}$	$\{ p:s', p\cdot u_{+'} \}$	$\{p:s',s''\}$	$\{p:s',p's''\}$	{ p:s ;p: s }

		δ_6	0	0	0	-	0	0	0	0	0	0	0	0	0	0	0	0	0	0		0	0	0	0	0	0	0	0	0	0	0	
		δ_5	0	0		0	0	0	0	0	0	0	0	0	0	0	0	0	0		0	0	0	0	0	0	0	0	0	0	0	0	
		δ_4	0		0	0	0	0	0	0	0	0	0	0	0	0	0	0		0	0	0	0	0	0	0	0	0	0	0	0	0	
		δ_3		0	0	0	0	0	0	0	0	0	0	0	0	0	0	Ч	0	0	0	0	0	0	0	0	0	0	0	0	0	-	
		δ_2	0	0	0	0	0	0	0	0	0	0	0	0	0	0		0	0	0	0	0	0	0	0	0	0	0	0	0		0	
		δ_1	0	0	0	0	0	0	0	0	0	0	0	0	0		0	0	0	0	0	0	0	0	0	0	0	0	0	Ч	0	0	
		δ_0	0	0	0	0	0	0	0	0	0	0	0	0	Ξ	0	0	0	0	0	0	0	0	0	0	0	0	0		0	0	0	
		79	0	0	0	0	0	0	0	0	0	0	0	Ц	0	0	0	0	0	0	0	0	0	0	0	0	0	-	0	0	0	0	
		38	0	0	0	0	0	0	0	0	0	0		0	0	0	0	0	0	0	0	0	0	0	0	0		0	0	0	0	0	
		4	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	-	0	0	0	0	0	0	
) (8	0	0	0	0	0	0	0	0		0	0	0	0	0	0	0	0	0	0	0	0	0		0	0	0	0	0	0	0	
		γ_5	0	0	0	0	0	0	0		0	0	0	0	0	0	0	0	0	0	0	0	0	-	0	0	0	0	0	0	0	0	
		γ_4	0	0	0	0	0	0		0	0	0	0	0	0	0	0	0	0	0	0	-				-				Ļ			
		73	0	0	0	0								Ч	-							0	0	0	0	0	0	0	0	0	0	0	
		γ_2	Н	μ		Ξ	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
s		31	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
ones itos		%	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
unci	ados	3_{10}	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
as f ibco	Cerr	39	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
lra l e su		38	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
s pa as d		37	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
ntes dora		36	0	0	0	0	0	÷	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
one		32	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	<u>ہ</u>	0	0	0	0	0	0	0	0	0	
Exp gen		θ_4	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	÷	0	0	0	0	0	0	0	0	0	0	
		д 3	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
		β_2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
		β_1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
		β_0	0	0	0	0	0		0	0	0	0	0	0	0	0	0	0	0	0	0		Ц	0	0	0	0	0	0	0	0	0	
		97	_	_	0	_	_	_	_	_		_	_	0	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_		_	_	
		2)	0	_	_	_	_	<u> </u>	_	<u> </u>	<u> </u>	<u> </u>	_	<u> </u>	_	<u> </u>	_	<u> </u>	<u> </u>	<u> </u>	_	_	_	_	_	_	<u> </u>	<u> </u>	_	<u> </u>	0	
		4 α	-	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	
		σ	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
		ä	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
		ö	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
		σ	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
		α_0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
		Conjunto	$\{p{:}s'{,}p{+}'s''\}$	$\{p:s',p',p',s''\}$	$\{p:s', u_{+}''\}$	$\{p:s',p',u_{+}''\}$	$\{p_{+}s',t'_{5}\}$	$\{p_{+}s',t'_{6}\}$	$\{p_{+}s', p_{\cdot}p_{\cdot}s'\}$	$\{p_+s',p_{1}'\}$	$\{p_+s',p_+'\}$	$\{p_{+}s',u:'\}$	$\{p_{+}s', u_{+}'\}$	$[p_+s', p_+u_+']$	$\{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0$	$\{p_{+}s', p', s''\}$	$\{p_{+}s';p_{+}s''\}$	$\{p_{+}s', p_{+}'s''\}$	$\{p_{+}s';p_{-}'p_{-}'s''\}$	$\{p_{+}s', u_{+}''\}$	$\{p_{+}s', p', u_{+}''\}$	$\{p{\cdot}p{\cdot}s',t'_7\}$	$\{p \cdot p : s', t'_8\}$	$\{p\cdot p:s',p:'\}$	$\{p\cdot p:s', p_{+'}\}$	$\{p\cdot p:s', u:'\}$	$\{p{\cdot}p{:}s',u{+}'\}$	$\{p\cdot p:s', p\cdot u_{+'}\}$	$\{p \cdot p : s', s''\}$	$\{p \cdot p : s' \cdot p \cdot s''\}$	$\{p \cdot p : s' : p : s'' : p''' \}$	$\{p\cdot p:s',p_+'s''\}$	

		δ_6	0	0	-	0	0	0	0	0	0	0	0	0	0	0	0		0	0	0	0	0	0	0	0	0	0	0			0
		δ_{2}	0		0	0	0	0	0	0	0	0	0	0	0	0		0	0	0	0	0	0	0	0	0	0	0	-	0	0 0	0
		δ_4	-	0	0	0	0	0	0	0	0	0	0	0	0		0	0	0	0	0	0	0	0	0	0	0		0	0		0
		δ_3	0	0	0	0	0	0	0	0	0	0	0	0		0	0	0	0	0	0	0	0	0	0	0	,	0	0	0		0
		δ_2	0	0	0	0	0	0	0	0	0	0	0		0	0	0	0	0	0	0	0	0	0	0		0	0	0	0		0
		δ1	0	0	0	0	0	0	0	0	0	0		0	0	0	0	0	0	0	0	0	0	0		0	0	0	0	0		0
		20	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	<u> </u>	0	0	0	0	0	0		0
		3	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0		0	0	0	0	0	0	0		
		3	0	0	0	0	0	0	0	Π	0	0	0	0	0	0	0	0	0	0	0		0	0	0	0	0	0	0	0	0 -	- 0
		3	0	0	0	0	0	0		0	0	0	0	0	0	0	0	0	0	0		0	0	0	0	0	0	0	0	0,		
		%	0	0	0	0	0	μ	0	0	0	0	0	0	0	0	0	0		-	-	-	-		-	1	1	1	-		0 0	0
		γ_5	0	0	0	-	-	-	-	Γ	μ	1	-	-	-	μ	μ	-	0	0	0	0	0	0	0	0	0	0	0	0	0 0	0
		γ_4	Ļ			0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0 0	0
		33	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0 0	0
		72	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		0
~		7	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0 0	0
tos		8	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0 0	0
mcic	ados	310	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0 0	0
ts fi bco	Cerr	6	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	_		
a la su			-	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_		
par s de		τ β	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
tes oras		β	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	00	0
ado		β	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	-	0	0	0	0	0	0	0	0	0	0		0
ipol		β_{5}	0	0	0		-	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0 0	0
Ex 96		β_4	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0 0	0
		β_3	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0 0	0
		β_2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0 0	0
		β_1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0 0	0
		β_0	0	0	0	4	-2	0	0	0	0	0	0	0	0	0	0	0	4	-2	0	0	0	0	0	0	0	0	0	0 '		0
		α_6	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0 0	0
		α_5	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0 0	0
		α_4	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0 0	0
		α3	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0 0	0
		χ_2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		0
		L L	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		0
		0,	(C	C	C	C	6	C	C	C	0	C	C	0	0	0	0	0	0	6	0	0	0	C	0	0	0	0		- 	
		a	0	_	<u> </u>	_	<u> </u>	<u> </u>	_	<u> </u>	_	_	_	<u> </u>	_	_	_	_	_	<u> </u>	_	_	_	_	_	_	_	_	<u> </u>	_ `		
		Conjunto	$\{p\cdot p:s', p', p', s''\}$	$\{p \cdot p : s', u_{+}''\}$	$\{p \cdot p : s', p \cdot 'u_{+}''\}$	$\{p{:}',t_9'\}$	$\{p:',t'_{10}\}$	$\{p;',p_{+'}\}$	$\{p:',u:'\}$	$\{p:',u_{+'}\}$	$\{p;',p\cdot u_+'\}$	$\{p:',s''\}$	$\{p', p', s''\}$	$\{p;',p;'s''\}$	$\{p_{i}',p_{+}'s''\}$	$\{p;',p',p;'s''\}$	$\{p:',u_{+}''\}$	$\{p;',p''u_{+}''\}$	$\{p_{+}',t_{11}'\}$	$\{p_+'t_{12}'\}$	$\{p_+',u'\}$	$\{p_{+}', u_{+}'\}$	$\{p_{+}', p_{\cdot} u_{+}'\}$	$\{p_+',s''\}$	$\{p_{+'}, p_{-'}, s''\}$	$\{p_{+}',p_{-}'s''\}$	$\{p', p', s''\}$	$\{p_{+'}, p_{-'}, p_{-'}, s''\}$	$\{p_+',u_+''\}$	$\{n', p', u''\}$	$\{u^{i}, t_{13}\}$	$\{u^{,,u+}, \dots^{+}\}$

		δ_6	0	0	0	0	0	0	-	0	0	0	0	0	0	0	0	0	-	0	0	0	0	0	0	0	0	-	0	0	0	0	
		δ_5	0	0	0	0	0	Ļ	0	0	0	0	0	0	0	0	0		0	0	0	0	0	0	0	0	Ч	0	0	0	0	0	
		δ_4	0	0	0	0		0	0	0	0	0	0	0	0	0	-	0	0	0	0	0	0	0	0		0	0	0	0	0	0	
		δ_3	0	0	0		0	0	0	0	0	0	0	0	0	-	0	0	0	0	0	0	0	0	-	0	0	0	0	0	0		
		δ_2	0	0		0	0	0	0	0	0	0	0	0		0	0	0	0	0	0	0	0		0	0	0	0	0	0		0	
		δ_1	0	Ļ	0	0	0	0	0	0	0	0	0		0	0	0	0	0	0	0	0	-	0	0	0	0	0	0		0	0	
		δ_0	П	0	0	0	0	0	0	0	0	0	-	0	0	0	0	0	0	0	0	-	0	0	0	0	0	0	Ч	-	-		
		79	0	0	0	0	0	0	0	0	0	-	0	0	0	0	0	0	0	1	-	-	-	1		-	-	-	0	0	0	0	
		78	0	0	0	0	0	0	0	Ļ	Ļ					-	μ		μ	0	0	0	0	0	0	0	0	0	0	0	0	0	
		3	Ц						-	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
		76	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
		γ_5	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
		γ_4	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
		73	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
		γ_2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
		$\boldsymbol{\gamma}_1$	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
ones		У	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
uncio	ados	3_{10}	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
as f	Cerr	39	0	0	0	0	0	0	0			0	0	0	0	0	0	0	0	Ļ		0	0	0	0	0	0	0	0	0	0	0	
ra l e su	-	B ₈	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
s pa		θ7	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
ntes dora		β_6	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
one		β_5	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
gen		β_4	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	Ţ	0	0	0	0	0	0	0	0	0	0	0	
		β_3	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
		β_2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
		β_1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
		β_0	0	0	0	0	0	0	0	Ţ	-2	0	0	0	0	0	0	0	0	÷	0	0	0	0	0	0	0	0	0	0	0	0	
		χ6	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
		¹⁵ C	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
		4 0	0	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	0	
		3 0	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	-	
		2 α	0 (0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		0	0	0	0	0	0	0	
		σ	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
		, α	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
		σ	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
		Conjunto	$\{u',s''\}$	$\{u', p', s''\}$	$\{u';p',s''\}$	$\{u'; p_{+}'s''\}$	$\{u', p', p''s''\}$	$\{u',u_+''\}$	$\{u', p', u_{+}''\}$	$\{u_{+}',t_{14}'\}$	$\{u_{+}',t_{15}'\}$	$\{u^{+\prime}, p \cdot u^{+\prime}\}$	$\{u',s''\}$	$\{u', p's''\}$	$\{u', p;'s''\}$	$\{u', p', s''\}$	$\{u', p' p' s''\}$	$\{u',u_{+}''\}$	$\{u', p', u''\}$	$\{p{\cdot}u{+}',t'_{16}\}$	$\{p{\cdot}u{+}',t_{17}'\}$	$\{p \cdot u_{+}', s''\}$	$\{p \cdot u', p \cdot s'''\}$	$\{p \cdot u_{+}', p :' s''\}$	$\{p\cdot u^+, p^+, s^{\prime\prime}\}$	$\{p \cdot u_{+}', p \cdot 'p; s''\}$	$\{p \cdot u_{+}', u_{+}''\}$	$\{n'+n'\cdot q, n+\eta\cdot q\}$	$\{s'', t_0''\}$	$\{s'', p''s''\}$	$\{s'', p; s''\}$	$\{s'', p'', s''\}$	

		δ_6	0	0		0	0	0	0	0	0		0	0	0	0	0		0	0	0	0		0	0	0	0		0	0	0 -		
		δ_5	0		0	0	0	0	0	0		0	0	0	0	0		0	0	0	0		0	0	0	0		0		, i		- 0	0
		δ_4		0	0	0	0	0	0		0	0	0	0	0		0	0	0	0		0	0	, ,					0	0	0 0	0 0	0
		δ_3	0	0	0	0	0	0		0	0	0	0	0		0	0	0						0	0	0	0	0	0	0	0 0	0 0	0
		δ_2	0	0	0	0	0	μ	0	0	0	0							0	0	0	0	0	0	0	0	0	0	0	0	0 0	0 0	0
		δ_1	0	0	0			μ					0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0 0	0 0	0
		δ_0				0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0 0	0 0	0
		6	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_			_
		8	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_					
		7	0	0	-	-	0	-	_	_	_	-	0	_	_	_	0	_	_	_	_	_	_	_	_	0	_	_	_	_ ,			-
		3	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	~	0	0	-	0	_	0	0	0	0	-			0
		3	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	.,,	0	0	0	0	0	0	0	0	0	0	0 0		0
		3	0	0	0	0	-	0	0	0	0	0	0	57	0	0	0	0	0	0	0	0	0	0	7	4	0	0	0	0	0 0		7
		ž	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		0	0	0	0	0 0	0 0	0
		33	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0 0	0	0
		γ_2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0 0	0	0
10		31	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0 0	0	0
one		%	0	0	0	0	μ	0	0	0	0	0	0	Ξ	0	0	0	0	0		0	0	0	0		Π	0	0	-	5 0	ے <u>ب</u>		0
iunci	rados	β_{10}	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0 0	0	0
as f lbcc	Cerr	β_9	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0 0	0 0	0
ra la e su		β_8	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0 0	0 0	0
$\frac{\mathrm{pa}}{\mathrm{s}}$ d		37	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0 0	0 0	0
ntes lora		36	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0 0	0 0	0
ner		32	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0 0		0
spo		34	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0			0
편 20			-	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_			-
		32	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0			0
		-1-	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0			0
		9	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_			0
		9	0	<u> </u>	0	<u> </u>	-	0	<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>	-	<u> </u>	<u> </u>	<u> </u>	0	<u> </u>			0
		α_{6}	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0 0	0 0	0
		α_5	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0 0	0 0	0
		α_4	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0 0	0 0	0
		α3	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0 0	0 0	0
		χ_2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0 0	0 0	0
		1,1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0			0
		0	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_				-
		σ	U	J	J	J	J	J))	J	_	J	J	J	J	J)	J	<u> </u>	J	<u> </u>	J	_		J	J	<u> </u>	J	_ (<u> </u>
		Conjunto	$\{s', p', p', s''\}$	$\{s'', u_{+}''\}$	$\{s'', p', u_{+}''\}$	$\{p's'',t_1''\}$	$\{p's'',t_2''\}$	$\{p's'', p''s''\}$	$\{p's', p', s''\}$	$\{p's', p's', p's''\}$	$\{p's'', u_{+}''\}$	$\{p's'', p'u_{+}''\}$	$\{p:'s'',t_3''\}$	$\{p{:}'s'',t_4''\}$	$\{p_{i's'',p_{+}'s''\}$	$\{p;'s',p',p;'s''\}$	$\{p:'s'',u_{+}''\}$	$\{p;'s',p,'u_+''\}$	$\{p_{+}'s'',t_{5}''\}$	$\{p_{+}'s'',t_6''\}$	$\{p_{+}'s'', p_{-}'p_{+}'s''\}$	$\{p_{+}'s'', u_{+}''\}$	$\{p_{+}'s'', p_{-}'u_{+}''\}$	$\{p.'p:'s'',t_7''\}$	$\{p\cdot'p:'s'',t_8''\}$	$\{p'p's'',t''_9\}$	$\{p\cdot'p:'s'',u_{+}''\}$	$\{n'_{+}u'_{+}u'_{+}s'_{+}s'_{+}d'_$	$\{u_{+}'',t_{10}''\}$	$\{u_{+}^{\prime\prime},t_{11}^{\prime\prime}\}$	$\{u_{+}^{\prime\prime},t_{12}^{\prime}\}$	$\{u_{+}, p \cdot u_{+} \}$ $\{p \cdot 'u_{+}'', t_{1,\circ}'\}$	$\{p'u_{+}'',t_{14}''\}$

Conclusiones.

Los conceptos de la topología general, se emplean para obtener una descripción matemática de las estructuras de moléculas. Se demuestra que un espacio topológico en un conjunto finito de puntos induce un gráfico único y que, como consecuencia hay un espacio topológico único asociado con cada molécula alternante. Este espacio se demuestra que es idéntico al cociente que resulta de la división de la región del espacio real ocupado por una molécula en las subregiones atómicas. El espacio topológico molecular es conexo si y sólo si la molécula es conexa y las moléculas tienen equivalentes espacios topológicos si son estereoisómeros. La cardinalidad de la topología de moléculas resulta ser una medida de la complejidad molecular y las cardinalidades de las topologías de subespacio asociadas a los enlaces de la molécula son las medidas exactas de la fuerza de enlace relativa. Se encuentran varias correlaciones empíricas entre las propiedades físicas de las moléculas y las medidas topológicas.

Este trabajo puede ser considerado como un método de fácil aplicación para la química cuántica, ya que sólo se necesita conocer los valores de la Integral de Resonancia y la Integral de Coulomb de cada uno de los átomos que conforman a la molécula en cuestión. Estos valores junto a la función generadora de un conjunto de dos átomos del espacio asociado a la topología de enlace y la función generadora para la topología de enlace en general, son los factores para el cálculo de la aproximación del orden de Hückel.

Al comparar con varios softwares creados para aproximar el método de Hückel como son: SHMO2 (The Simple Hückel Molecular Theory Calculator 2), HuLiS (Hückel Calculator), Orbis, Hückel Molecular Orbital Calculator 2.0, Hückel 3.1 de Oraxcel y la aplicación Hückel.exe; los valores que se obtienen del orden de Hückel para un par de átomos en una molécula se aproximan en un 99% con respecto a los valores obtenidos computacionalmente.

Bibliografía

- [1] Arvi Rauk: *The Orbital Interaction Theory of Organic Chemistry*. Second Edition, Wiley-Interscience, New York: 2001.
- [2] Balaban, A. T.: Chemical Applications of Graph Theory. New York. Academic Press London; 1976.
- [3] Bishop, D. M.: Group Theory and Chemistry. Oxford Clarendon Press; 1973.
- [4] Bollobos, B.: Random Graphs. Cambridge University; 2001.
- [5] Chang, Raymong: Química. Mac Graw Hill, 7^a ed.; 2002.
- [6] Coulson, C. A., and Longuet-Higgins, H. C.: the electronic structure of conjugated systems I. Proc. R. Soc London, A 191, 39-60; 1947.
- [7] Coulson, C. A., and Longuet-Higgins, H. C.: the electronic structure of conjugated systems II. Proc. R. Soc London, A 191, 39-60; 1947.
- [8] Coulson, C. A., O'Leary B. and Mallion R.B.: Hückel theory for organic chemists. Academic Press Inc (London) LTD 183; 1978.
- [9] Dugundji, J.: Topology. Allyn and Bacon, Boston; 1966.
- [10] Evans, J. W., and Harary F., Lynn M. S.: On the computer enumeration of finite topologies. Commun, ACM 10,295; 1973.
- [11] Flapan, E.: When Topology Meets Chemistry: A Topological Look At Molecular Chirality's. USA: Cambridge University Press; 2000.
- [12] Grimaldi, R. P.: Discrete And Combinatorial Mathematics. And Applied Introduction. USA: Addison Wesley Longman; 2000.
- [13] Gross, J. L., Jay J.: Graph Theory and its Applications. CRC Press; 1999.
- [14] Harary, F., Norman, R. Z., y Cartwright, D.: Graph Theory. Addison-Wesley, Reading, Mass; 1969.

- [15] Harary, F., Norman, R. Z., y Cartwright, D.: Structural Models: An Introduction to the Theory of Directed Graphs. Wiley, New York; 1965.
- [16] Hosoya, H.: A Newly Proposed Quantity Characterizing the Topological Nature of Structural Isomers of Saturated Hydrocarbons. Bull. Chem. Soc. Japan 44, 2332-2339; 1971.
- [17] Hosoya, H., Murukami, M.: Topological Index as Applied to π-Electronic Systems. II. Topological Bond Order. Bull. Chem. Soc. Japan 48, 3512-3517; 1975.
- [18] Hosoya, H., Hosoi, K., Gutman, I.: A topological index for the total π-electron energy. Proof of a generalised Huckel rule for an arbitrary network. Theor. Chim. Acta 38,37-47; 1975.
- [19] Hosoya, H., Hosoi, K.: Topological index as applied to π-electron systems. III. Mathematical relations among various bond orders. J. Chem. Phys. 64, 1065-1073; 1976.
- [20] Kier, L. B., Hall, L. H.: Molecular Connectivity in Chemistry and Drug Research. Academic Press; 1976.
- [21] Krishnamurthy, V.: On the number of topologies on a finite set. Amer. Math Monthly; 1966.
- [22] Merrifield R. E., Simmons H.E.: The Structures of Molecular Topological Spaces. Theor. Chim. Acta 55; 1980.
- [23] Merrifield R. E., Simmons H.E.: Enumeration of Structure-Sensitive Graphical Subsets: Theory. Proc. Natl. Acad. Sci. USA 78, 692-695; 1981.
- [24] Merrifield R. E., Simmons H.E.: Enumeration of Structure-Sensitive Graphical Subsets: Calculations. Proc. Natl. Acad. Sci. USA 78, 1329-1332; 1981.
- [25] Merrifield R. E., Simmons H.E.: Mathematical Description of Molecular Structure: Molecular Topology. Proc. Natl. Acad. Sci. USA 74, 2616-2619; 1977.
- [26] Merrifield R. E., Simmons H.E.: Topology of Bonding in π-Electron Systems. Proc. Natl. Acad. Sci. USA 82, 1-3; 1985.
- [27] Munkres, J, R.: Topología. Prentice Hall; 1975.
- [28] Ore, O.: *Theory of Graphs.* American Mathematical Society Publication 38, Providence; 1962.
- [29] Preparata, F. P., and Yeh, R. T.: Introduction to Discrete Structures. Addison-Wesley, Reading, Mass; 1973.
- [30] Ruedenberg, K.: Quantum Mechanics of Mobile Electrons in Conjugated Bond Systems. III. Topological Matrix as Generatrix of Bond Orders. J. Chem. Phys., 34, 1884-1892; 1961.
- [31] Sharp, H.: Quasi orderings and topologies on finite sets. Proc. Am. Math. Soc. 17, 1344; 1966.
- [32] Silberberg, S. Martin: Química. La naturaleza molecular del cambio y la materia Mac Graw Hill, 2^a ed.; 2002.

- [33] Stanley R. P.: On Number of Open Sets of Finite Topologies. J. Combinatorial Theory 10, 74-79; 1971.
- [34] Stephen D.: Topology on Finite Sets. Amer. Math. Mothly 75, 739-741; 1968.
- [35] Stong R. E.: Finite Topological Spaces. Amer. Math. Soc. Transl. 123, 325-340; 1966.
- [36] Van-Catledge F.A.: A Pariser-Parr-Pople-Based Set Huckel Molecular Orbital Parameters. J. Org. Chem. 45, 4801-4802; 1980.

Bibliografía Complementaria

[1] Davey B. A., Priestley H.A.: *Introduction to Lattices and Order*. Cambridge University Press; 1990.

[3] Skornjakov L. A.: *Elements of lattice theory*. British Library Cataloguing in Publication Data; 1977.

[4] Szász G.: Introduction to Lattice. Akadémiac Kiadó, Budapest; 1963.