

Vniver4dad Nacional AvFn9ma de Mexico UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO

PROGRAMA DE MAESTRÍA Y DOCTORADO EN INGENIERÍA

FACULTAD DE INGENIERÍA CAMPUS MORELOS

TRATAMIENTO DE AGUAS RESIDUALES CON NITRÓGENO AMONIACAL EN UN REACTOR DISCONTINUO AEROBIO/ANÓXICO

TESIS

QUE PARA OPTAR POR EL GRADO DE: **MAESTRO EN INGENIERÍA** INGENIERÍA AMBIENTAL - CAMPO DISCIPLINARIO AGUA

PRESENTA: I.Q. MARCO ANTONIO GARCÍA MÁXIMO

TUTOR: M.I. MERCEDES ESPERANZA RAMÍREZ CAMPEROS

2011

Universidad Nacional Autónoma de México

UNAM – Dirección General de Bibliotecas Tesis Digitales Restricciones de uso

DERECHOS RESERVADOS © PROHIBIDA SU REPRODUCCIÓN TOTAL O PARCIAL

Todo el material contenido en esta tesis esta protegido por la Ley Federal del Derecho de Autor (LFDA) de los Estados Unidos Mexicanos (México).

El uso de imágenes, fragmentos de videos, y demás material que sea objeto de protección de los derechos de autor, será exclusivamente para fines educativos e informativos y deberá citar la fuente donde la obtuvo mencionando el autor o autores. Cualquier uso distinto como el lucro, reproducción, edición o modificación, será perseguido y sancionado por el respectivo titular de los Derechos de Autor.

JURADO ASIGNADO:

Presidente: Dr. Martínez Pereda Pedro
Secretario: Dr. González Barceló Oscar
Vocal: M.I. Ramírez Campero Mercedes Esperanza
1er. Suplente: Dr. Luna Pabello Víctor Manuel
2do. Suplente: Dr. Garzón Zúñiga Marco Antonio

Lugar o lugares donde se realizó la tesis:

Instituto Mexicano de Tecnología del Agua (IMTA) Paseo Cuauhnáuac No.8532 Col. Progreso Jiutepec, Morelos, México CP. 62550

TUTOR DE TESIS:

M.I. Mercedes Esperanza Ramírez Camperos

ÍNDICE GENERAL _____

ÍNDICE GENERAL

ÍNDICE GENERAL	i
ÍNDICE DE TABLAS	<i>v</i>
ÍNDICE DE FIGURAS	viii
NOMENCLATURA	ix
AGRADECIMIENTOS	ix
RESUMEN	ix
ABSTRACT	ix
INTRODUCCIÓN	ix

CAPÍTULO 1. JUSTIFICACIÓN, OBJETIVOS E HIPÓTESIS	
1.1 JUSTIFICACIÓN	1
1.2 OBJETIVO GENERAL	1
1.3 OBJETIVOS ESPECÍFICOS	1
1.4 HIPÓTESIS	1

CAPÍTULO 2. ANTECEDENTES	2
2.1 LA CONTAMINACIÓN DEL NITRÓGENO AMONIACAL EN LAS A	GUAS
RESIDUALES	3
2.2 REMOCIÓN DE N-NH₄ ⁺	5
2.2.1 Nitrificación y desnitrificación biológica del N-NH4 ⁺ .	6
2.2.1.1 Nitrificación	8
2.2.1.1.1 Bacterias nitrificantes y estequiometría del proceso de	
nitrificación	8
2.2.1.1.2 Factores que influyen en la nitrificación	11

ÍNDICE GENERAL —————

2.2.1.1.3 Cinética de nitrificación	13
2.2.1.2 Desnitrificación	18
2.2.1.2.1 Bacterias desnitrificantes y estequiometría del proceso de	
desnitrificación	18
2.2.1.2.2 Factores que influyen en la desnitrificación	20
2.2.1.2.3 Cinética de la desnitrificación	22
2.3 Tecnologías biológicas convencionales para la remoción del N-NH₄ ⁺	25
2.3.1 Procesos de biomasa suspendida	25
2.3.2 Nitrificación y desnitrificación mediante reactores secuenciales por lote	es
(SBR)	28
2.4 Tecnologías biológicas novedosas para la remoción de N-NH₄ ⁺	29
2.4.1 Nitrificación y desnitrificación simultánea	30
2.4.2 Nitrificación y desnitrificación vía nitritos (nitrificación parcial)	31
2.4.3 Desnitrificación autótrofa por microorganismos desnitrificantes anóxico	S
(anammox)	32
2.5 Trabaios realizados sobre la nitrificación v desnitrificación del N-NH₄	+
	33
2.6 Reactores discontinuos secuenciales, en el tratamiento de aquas	
residuales	37
	01
CAPÍTULO 3. METODOLOGÍA	41
3.1 Sistema experimental	41
3.1.1 Descripción del SBR aerobio/anóxico.	41
3.1.2 Medio de soporte.	45
3.1.3 Inóculo	45
3.1.4 Agua Residual sintética.	46
3.1.4.1 Nitrógeno amoniacal	46

3.1.4.2 Medio mineral nutriente463.1.4.3 Fuente de alcalinidad47

_

ÍNDICE GENERAL _____

3.1.4.4 Fuente de carbono	47
3.2 Métodos analíticos	48
3.3 Estrategia de arranque y operación del SBR	50
3.4 Comparación de valores obtenidos analíticamente con valores recomendados	52
3.5 Cálculos de variables de operación	53
3.5.1 Porcentaje de remoción	53
3.5.2 Tasa específica de degradación	53
3.5.3 Tasa volumétrica de degradación	54
3.5.4 Métodos de cuantificación de la biopelícula	54
3.5.5 Determinación del orden de reacción	55
3.5.6 Análisis estadísticos	56

CAPÍTULO 4. RESULTADOS Y DISCUSIÓN ______ 57 4.1 Desempeño del SBR aerobio/anóxico 57 4.1.1 Etapa 1 (ciclo 1 al 104), 100 mg L⁻¹ de N-NH₄⁺_____ 58 4.1.2 Etapa 2 (ciclo 105 al 162), 150 mg L⁻¹ de N-NH₄⁺. _____ 63 4.1.3 Etapa 3 (ciclo 163 al 222), 200 mg L⁻¹ de NH₄⁺ _____ 67 4.1.4 Etapa 4 (ciclo 223 al 278), 250 mg L⁻¹ de N-NH₄⁺_____ 70 4.1.5 Etapa 5 (ciclo 279 al 329), 300 mg L⁻¹ de N-NH₄⁺_____ 74 4.1.6 Evolución de la biomasa _____ _____ 77 4.1.7 Evaluación y discusión del SBR aerobio/anóxico, durante todas las etapas de operación _____ 79 4.2 Cinética de remoción_____ 86 4.2.1 Etapa 1, 100 mg L⁻¹_____ 86 4.2.2 Etapa 2, 150 mg L⁻¹_____ 90 4.2.3 Etapa 3, 200 mg L⁻¹_____ 94 4.2.4 Etapa 4, 250 mg L⁻¹_____ 98 4.2.5 Etapa 5, 300 mg L⁻¹_____ 102

ÍNDICE GENERAL _____

4.2.6 Prueba de tinción de Greiss para las cinéticas de remoción	106
4.2.7 Discusión de las cinéticas de remoción	106
CAPITULO 5. CONCLUSIONES	111
CAPITULO 6. REFERENCIAS BIBLIOGRAFICAS	114
ANEXO 1 - Resultados analíticos	110
Anexo 1.1 Resultados analíticos de la operación del SBR aerobio/anc	oxico
en la nitrificación y desnitrificación con concentraciones de N-NH $_4^+$.	120
Anexo 1.2 Resultados analíticos de las cinéticas de remoción en el	SBR
aerobio/anóxico	131
ANEXO 2 - Resultados analíticos	136
Anexo 2.1 Análisis estadísticos y matemáticos de los resultados o	le la
operación del SBR aerobio/anóxico.	137

ANEXO 3 – Publicaciones (memorias de trabajo)_____141

ÍNDICE DE TABLAS

CAPÍTULO 2. ANTECEDENTES	2
Tabla 2. 1 Valores Ecotoxicológicos LC_{50} del N-NH ₄ ⁺ en especies acuáticas	4
Tabla 2. 2 Concentraciones de N-NH ₄ $^+$ en aguas residuales industriales	4
Tabla 2. 3 Constantes de ionización	7
Tabla 2. 4 Relación del OD y la nitrificación 7	13
Tabla 2. 5 Rendimiento de la nitrificación de procesos de biomasa suspendido)S,
tratando efluentes ricos de nitrógeno. (Fuente: Bernet y Spérandio, 2006) 2	27
Tabla 2.6 Sistemas, valores y resultados de estudios realizados sobre la remoció	ón
de nitrógeno amoniacal con altas concentraciones	36

CAPÍTULO 3. METODOLOGÍA______41

Tabla 3. 1 C	aracterís	ticas del AC4	50 en el	SBR				45
Tabla 3. 2 Composición del medio mineral nutriente						47		
Tabla 3.3 M	Vétodos	para el seg	guimiento	de de	los parám	etros	analizados	s y la
frecuencia	de análi	sis en la ope	eración d	el SE	3R			
								490
Tabla 3. 4. E	tapas de	e operación y	evaluacio	ón de	I SBR			10
Tabla 3. 5 C	Operació	n del SBR						1
Tabla 3.6	Valores	recomendad	os para	los	parámetros	de	operación	en la
nitrificación		У	en		la		desnitrifi	cación
				52	1			

CAPÍTULO 4. RESULTADOS Y DISCUSIÓN	57
Tabla 4. 1 Parámetros de operación del SBR	57
Tabla 4. 2 Desempeño del SBR durante la etapa 1 (N-NH4 ⁺)	58
Tabla 4. 3 Desempeño del SBR durante la etapa 1 – N-NO ₃ ⁻ y N-NO ₂ ⁻	59

ÍNDICE TABLAS

Tabla 4. 4 Datos promedios de operación durante la etapa 1	63
Tabla 4. 5 Desempeño del SBR etapa 2 – N-NH4 ⁺	63
Tabla 4. 6 Desempeño del SBR durante la etapa 2 – N-NO3 ⁻ y N-NO2 ⁻	64
Tabla 4. 7 Datos promedios de operación durante la etapa 2.	67
Tabla 4. 8 Desempeño del SBR etapa 3 – N-NH4 ⁺	67
Tabla 4. 9 Desempeño del SBR durante la etapa 3 – N-NO3 ⁻ y N-NO2 ⁻	67
Tabla 4. 10 Datos promedios de operación durante la etapa 3	70
Tabla 4. 11 Desempeño del SBR etapa 4 – N-NH4 ⁺	71
Tabla 4. 12 Desempeño del SBR durante la etapa 4 – N-NO ₃ ⁻ y N-NO ₂ ⁻	71
Tabla 4. 13 Datos promedios de operación durante la etapa 4	74
Tabla 4. 14 Desempeño del SBR etapa 5 – N-NH4 ⁺	74
Tabla 4. 15 Desempeño del SBR durante la etapa 5 – $N-NO_3^{-1}$ y $N-NO_2^{-1}$	74
Tabla 4. 16 Datos promedios de operación durante la etapa 5	77
Tabla 4. 17 ST y SV durante la operación del SBR.	78
Tabla 4.18 Desempeño del reactor SBR aerobio/anóxico, durante todas las e	etapas
de operación del SBR	80
Tabla 4. 19 Comparación entre valores recomendados y de operación, obte	enidos
durante el monitoreo del SBR.	82
Tabla 4. 20 Comparación del SBR aerobio/anóxico en este estudio con	otros
trabajos realizados	85
Tabla 4. 21 Cinética de remoción, N-NH4 ⁺ - Etapa 1	86
Tabla 4. 22 Cinética de remoción, N-NO ₃ ⁻ - Etapa 1	87
Tabla 4. 23 Cinética de remoción, N-NO2 ⁻ - Etapa 1	87
Tabla 4. 24 Cinética de remoción, N-NH4 ⁺ - Etapa 2	90
Tabla 4. 25 Cinética de remoción, N-NO ₃ ⁻ - Etapa 2	91
Tabla 4. 26 Cinética de remoción, N-NO2 ⁻ - Etapa 2.	91
Tabla 4. 27 Cinética de remoción, N-NH4 ⁺ - Etapa 3	94
Tabla 4. 28 Cinética de remoción, N-NO3 ⁻ - Etapa 3.	95
Tabla 4. 29 Cinética de remoción, N-NO2 ⁻ - Etapa 3	95
Tabla 4. 30 Cinética de remoción, N-NH4 ⁺ - Etapa 4	98
Tabla 4. 31 Cinética de remoción, N-NO3 ⁻ - Etapa 4.	99

ÍNDICE TABLAS

Tabla 4. 32 Cinética de remoción, N-NO2 ⁻ - Etapa 4.	99
Tabla 4. 33 Cinética de remoción, N-NH ₄ ⁺ - Etapa 5	102
Tabla 4. 34 Cinética de remoción, N-NO ₃ ⁻ - Etapa 5.	103
Tabla 4. 35 Cinética de remoción, N-NO2 ⁻ - Etapa 5.	103
Tabla 4. 36 Ecuaciones de remoción de N-NH4 ⁺	107
Tabla 4. 37 Ecuaciones de producción de N-NO ₂ .	108
Tabla 4. 38 Ecuaciones de producción de N-NO ₃ ⁻ .	108
Tabla 4. 39 Ecuaciones de remoción de N-NO2 ⁻ .	109
Tabla 4. 40 Ecuaciones de remoción de N-NO3 ⁻ .	110

_

ÍNDICE TABLAS

_

ÍNDICE DE FIGURAS

CAPÍTULO 2. ANTECEDENTES	_2
Figura 2. 1 Ciclo del nitrógeno	_ 2
Figura 2. 2 Transformación biológica del N	_ 6
Figura 2. 3 Distribución de amoniaco y del ion amonio con respecto al pH	_ 2
Figura 2. 4 Efecto de la T en la nitrificación	12
Figura 2. 5 Efecto del pH en la nitrificación	12
Figura 2. 6 Influencia del la temperatura y el pH sobre el valor del equilibrio	de
disociación del NH ₃ y HNO ₂	16
Figura 2.7 Proceso de nitrificación/desnitrificación - Sistema MLE	26
Figura 2. 8 Pre y post-desnitrificación	26
Figura 2. 9 Sistema separado de lodos	28
Figura 2.10 Ejemplos de operación de SBR	29
Figura 2.11 Esquema del perfil de concentración del oxigeno dentro de un floc	ulo
microbiano	30
Figura 2.12 Efecto de la temperatura en la velocidad de crecimiento de	las
bacterias oxidantes de N-NH ₄ ⁺ y de N-NO ₂ ⁻ (Zhu et al, 2008).	32
Figura 2.13 Comparación entre el proceso clásico de nitrificación – desnitrificac	ión
y el proceso anammox	33
Figura 2. 14 Operación esquemática de un SBR durante un ciclo	38

CAPÍTULO 3. METODOLOGÍA_____41

Figura 3. 1 Sistema experimental SBR aerobio/anóxico	_ 422
Figura 3. 2 Configuración del sistema experimental SBR aerobio/anóxico _	_ 433
Figura 3. 3 Diseño del sistema experimental SBR aerobio/anóxico	_ 444
Figura 3. 4 Material de medio de soporte	15
Figura 3. 5 Diagrama de flujo del proceso de operación del reactor SBR ae	robio/
anóxico	_ 511

CAPÍTULO 4. RESULTADOS Y DISCUSIÓN 57 Figura 4.1 Desempeño del reactor SBR en la etapa 1 – 100 mg L^{-1} N-NH₄⁺ 611 Figura 4. 2 Desempeño del reactor SBR en la etapa 1 – N-NO₃⁻ 61 Figura 4. 3. Desempeño del reactor SBR en la etapa 1 – N-NO₂ 622 Figura 4. 4. Desempeño del reactor SBR en la etapa 1 - TRH _____ 62 Figura 4. 5 Desempeño del reactor SBR en la etapa $2 - N-NH_4^+$ ______ 655 Figura 4. 6 Desempeño del reactor SBR en la etapa 2 – N-NO₃ _____ 655 Figura 4. 7 Desempeño del reactor SBR en la etapa 1 – N-NO₂ 666 Figura 4. 8 Desempeño del reactor SBR en la etapa 1 - TRH 666 Figura 4. 9 Desempeño del reactor SBR en la etapa 3 – N-NH₄⁺ _____ 68 Figura 4. 10 Desempeño del reactor SBR en la etapa 3 – N-NO₃⁻ _____ 69 Figura 4. 11 Desempeño del reactor SBR en la etapa 1 – N-NO2 _____ 69 Figura 4. 12 Desempeño del reactor SBR en la etapa 1 – TRH _____ 70 Figura 4. 13 Desempeño del reactor SBR en la etapa $4 - N-NH_4^+$ 72 Figura 4. 14 Desempeño del reactor SBR en la etapa 4 – N-NO₃ 72 Figura 4. 15 Desempeño del reactor SBR en la etapa 4 – N-NO₂ 73 Figura 4. 16 Desempeño del reactor SBR en la etapa 4 - TRH _____ 73 Figura 4. 17 Desempeño del reactor SBR en la etapa 5 – N-NH₄⁺ _____ 75 Figura 4. 18 Desempeño del reactor SBR en la etapa 5 – N-NO₃⁻ _____ 75 Figura 4. 19 Desempeño del reactor SBR en la etapa 5 – N-NO₂⁻ _____ 76 Figura 4. 20 Desempeño del reactor SBR en la etapa 5 - TRH _____ 76 Figura 4. 21. ST y SV en la parte superior, media e inferior del SBR _____ 78 Figura 4. 22. ST y SV promedios durante la operación del SBR _____ 78 Figura 4.23 Desempeño del reactor durante todas las etapas del proceso de nitrificación y desnitrificación 81 Figura 4. 24 Estudio cinético de remoción, ciclo 79 - etapa 1 _____ 88 Figura 4. 25 Estudio cinético de remoción, ciclo 85 - etapa 1 _____ 89 Figura 4. 26. Estudio cinético de remoción, ciclo 141 - etapa 2 _____ 92 Figura 4. 27. Estudio cinético de remoción, ciclo 151 - etapa 2_____ 93

ÍNDICE FIGURAS ————

Figura 4. 28 Estudio cinético de remoción, ciclo 207 - etapa 3	_ 966
Figura 4. 29. Estudio cinético de remoción, ciclo 219 - etapa 3	97
Figura 4. 30. Estudio cinético de remoción, ciclo 273 - etapa 4	_ 100
Figura 4. 31. Estudio cinético de remoción, ciclo 277 - etapa 4	_ 101
Figura 4. 32. Estudio cinético de remoción, ciclo 323 - etapa 5	1044
Figura 4. 33. Estudio cinético de remoción, ciclo 329 - etapa 5	_ 105
Figura 4. 34. Prueba de tinción de Greiss, ciclo 329.	_ 106
Figura 4. 35. Cinética de primer orden, remoción de N-NH4+ del ciclo 329.	_ 107
Figura 4. 36. Cinética de orden cero, producción de N-NO2 ⁻ del ciclo 329.	1
Figura 4. 37. Cinética de orden cero, producción de N-NO ₃ ⁻ del ciclo 329.	1
Figura 4. 38 Cinética de primer orden, remoción de N-NO2 ⁻ del ciclo 329.	1
Figura 4. 39 Cinética de primer orden, remoción de N-NO ₃ ⁻ del ciclo 329.	1

NOMENCLATURA

AOB	Bacterias oxidativas de nitrógeno amoniacal
CaCO ₃	Carbonato de calcio
DQO	Demanda química de oxígeno, (mg L ⁻¹)
H ₂ O	Agua
mg L ⁻¹	Miligramos por litro
Ν	Nitrógeno
N _T	Nitrógeno total
N-NH ₄	Nitrógeno amoniacal
N-NO ₃	Nitrógeno de nitratos
N-NO ₂ ⁻	Nitrógeno de nitritos
NOB	Bacterias oxidativas de nitritos
рН	Potencial de hidrógeno
SBR	Reactor discontinuo secuencial
SST	Sólidos suspendidos totales
SSV	Sólidos suspendidos volátiles
ST	Sólidos totales
SV	Sólidos volátiles

AGRADECIMIENTOS -

AGRADECIMIENTOS

A Dios, por permitirme llegar a la culminación de esta etapa de mi vida.

A la Maestra Esperanza Ramírez Camperos. Gracias por su confianza, apoyo, tiempo y consejos para poder realizar este proyecto, pero sobretodo muchas gracias por su amistad.

Al Dr. Oscar Gonzalez Barcelo y Dr. Víctor Luna Pabello. Gracias por su apoyo y consejos para la realización de este proyecto.

Á ma petite amie Ere, gracias por tu apoyo durante esta etapa de mi vida, gracias por alentarme, por tu apoyo en todo momento y por estar siempre a mi lado. Je t'aime beaucoup.

A mi Madre, Padre, Abuelita y mis Hermanos. Como siempre les agradezco por su apoyo y aliento en todas las decisiones que he tomado en mi vida, y ahora que culmino una mas les quiero decir gracias una vez más.

A Bety, Yuri, Pia, Poncho, Eloy, Triny, Mr. Villegas, Fabricio, Pancho y Pepe. Gracias por su amistad, por las bromas y por hacer que la maestría fuera muy placentera.

Gracias a CONACYT por la beca otorgada para poder realizar este proyecto.

Gracias al Instituto Mexicano de Tecnología del Agua por facilitar el uso de sus instalaciones y equipos para poder desarrollar este proyecto.

RESUMEN

Grandes cantidades de nitrógeno amoniacal (N-NH₄⁺) se liberan a través de los efluentes procedentes de aguas residuales domesticas e industriales, tales como de refinerías de petróleo, de producción de amoniaco y de fertilizantes, de pulpa y papel, de coque y del acero (Carrera et al., 2003). Estas descargas tienen efectos negativos en el medio ambiente y en la salud pública (Lee et al., 2006). Debido a los efectos negativos del N-NH4⁺ en el agua, es de gran importancia lograr la remoción completa tanto del N-NH4⁺ como de los nitritos (N-NO₂) y nitratos (N-NO₃) de las aguas residuales. Una opción muy interesante para solucionar este problema, es el uso de tratamientos biológicos combinados aerobios/anóxicos para la degradación del N-NH4⁺ (Bernet y Spérandio, 2006). El presente trabajo tiene como objetivo evaluar la biodegradación del N-NH₄⁺ con diferentes concentraciones, utilizando un reactor discontinuo secuenciado empacado, combinando fases de reacciones aerobias y anóxicas. Se utilizó agua residual sintética como influente del reactor SBR a diferentes concentraciones de N-NH₄⁺ (100 a 300 mg L ¹ de N-NH₄⁺). El reactor fue inoculado con 2200 mg L⁻¹ SSV provenientes de una planta de tratamiento de agua residual. El SBR fue operado y evaluado durante 329 ciclos en un tiempo total de 280 d. La duración de cada ciclo fue variable en las fases de reacción, ya que dependió de la aclimatación de la biomasa a los cambios de concentración del N-NH4⁺ en el influente y a los cambios de ambiente aerobio/anóxico. Se midieron los parámetros de control (T, pH, alcalinidad total, O₂ disuelto y ORP) para que la nitrificación y la desnitrificación se llevaran a cabo correctamente. Durante cada etapa de concentración de N-NH4⁺ se realizaron estudios cinéticos de remoción, con el fin de observar el comportamiento del SBR en un ciclo de operación. Los resultados obtenidos mostraron un buen desempeño del SBR frente a la nitrificación y desnitrificación a diferentes concentraciones de N-NH₄⁺ (100 a 300 mg L⁻¹ de N-NH₄⁺), logrando porcentajes de remoción mayores al 97% para el N-NH₄⁺ y mayores al 98% para los N-NO₃⁻ y N-NO₂⁻, en un TRH promedio de 0.5 d. Al final de la fase de nitrificación (con un influente con 100 a 200 mg L⁻¹ de N-NH₄⁺) se observó una mayor presencia de N-NO₂⁻ que de N-NO₃⁻, sugiriendo que la mayor parte de la desnitrificación fue vía N-NO2. Se monitoreó la formación de la biopelícula en el SBR, obteniendo una concentración final de SV = 20676 $mg m^{-2}$.

ABSTRACT

High quantities of ammonium are released from different kinds of industries, like petrochemical, ammonium, fertilizer, pulp, paper, coke and steel industry (Carrera et al., 2003). These discharges have negative effects in the environment and public health (Lee et al., 2006). Because of those negative effects, the ammonium as well as nitrate (N-NO₃) and nitrite (N-NO₂⁻), should be complete removed from the wastewaters. One interesting way to solve this problem is by using combinated biological treatments (oxic and anoxic). in order to remove the N-NH₄⁺ (Bernet y Spérandio, 2006). The main objective of this work was to evaluate the biodegradation of $N-NH_4^+$ with different concentrations, using a sequential batch reactor (SBR) alternating oxic and anoxic conditions. A synthetic wastewater was used with different concentrations of $N-NH_4^+$ (100 to 300 mg L⁻¹ de N-NH4⁺). The SBR was inoculated with 2200 mg L⁻¹ SSV from a wastewater plant. The SBR was operated and evaluated during 329 cycles with a total time of 280 d. The hydraulic retention time (HRT) for each cycle was variable, because it was dependent of each change of N-NH₄⁺ concentration as well as the changes of oxic/anoxic environments. Parameters of control (T, pH, total alkalinity, dissolved O₂ and ORP) were measured in order to have a good nitrification / denitrification process. Removal kinetics of N-NH₄⁺ were made in order to observe the SBR performance in one cycle of operation. The outcome water showed a good performance of the SBR towards nitrification/denitrification with different $N-NH_4^+$ concentrations (100 to 300 mg L^{-1} $N-NH_4^+$), obtaining removal percentages superior than 97% for the N-NH₄⁺ and higher than 98% for N-NO₃ y N-NO₂, in a total HRT of 0.5 d. More concentration of N-NO₂⁻ than N-NO₃⁻ were observed at the end of nitrification phase (by using concentrations of 100 to 200 mg L⁻¹ N-NH₄⁺) suggesting a shortcut nitrification. The biofilm measured in the SBR showed a final concentration of 20676 mg m⁻² of volatile solids.

INTRODUCCIÓN

Grandes cantidades de nitrógeno amoniacal (N-NH₄⁺) se liberan a través de los efluentes procedentes de las industrias de refinerías de petróleo, de producción de amoniaco, de fertilizantes, de pulpa y papel, de coque y del acero, así como también de numerosas descargas de las agro industrias tales como la industria de la leche, la porcícola, la industria del curtido, la destilería, la producción de azúcar y algunas aguas residuales de origen doméstico como los servicios sanitarios en carreteras y centros comerciales (Carrera *et al.*, 2003). Estas descargas tienen efectos negativos en el medio ambiente y en la salud pública (Lee *et al.*, 2006).

Debido a los efectos negativos del N-NH₄⁺ en el agua, es de gran importancia lograr la remoción completa tanto del N-NH₄⁺ como de los nitritos (N-NO₂⁻) y nitratos (N-NO₃⁻) de las aguas residuales. Existen varios sistemas que pueden remover el N-NH₄⁺ presente en las aguas residuales. Los sistemas biológicos de nitrificación y desnitrificación son muy utilizados para solucionar este problema, en donde generalmente la remoción biológica del N-NH₄⁺ comprende dos etapas. La primera etapa involucra la oxidación del N-NH₄⁺, dando como resultado la formación de N-NO₂⁻ y N-NO₃⁻. La segunda etapa involucra la degradación de los N-NO₂⁻ y N-NO₃⁻ bajo condiciones anóxicas, dando como producto final N₂ gaseoso. Una opción muy interesante para solucionar este problema, es el uso de tratamientos biológicos combinados aerobios/anóxicos para la degradación del N-NH₄⁺; sin embargo, el principal problema de los tratamientos biologicos es que las altas concentraciones de N-NH₄⁺, tales como los efluentes de las tanerias, los cuales presentan concentraciones desde 200 mg L⁻¹, pueden inhibir la nitrificación (Carrera *et al.*, 2003).

El presente trabajo tiene como objetivo el evaluar el desempeño de un reactor empacado discontinuo secuenciado aerobio/anóxico, en la remoción de diferentes concentraciones de N-NH₄⁺, entre 100 a 300 mg L⁻¹ N-NH₄⁺, concentraciones consideradas como inhibitorias del proceso de nitrificación.

CAPÍTULO 1. JUSTIFICACIÓN, OBJETIVOS E HIPÓTESIS

1.1 JUSTIFICACIÓN

Un problema importante en los tratamientos biologicos aerobios/anóxicos puede ocurrir al tratar aguas residuales con altas concentraciones de N-NH₄⁺ (a partir de 200 mg L⁻¹), las cuales pueden inhibir la nitrificación (Carrera *et al.*, 2003).

1.2 OBJETIVO GENERAL

Evaluar el desempeño de un reactor empacado discontinuo secuenciado aerobio/ anóxico, en la remoción de diferentes concentraciones de $N-NH_4^+$, entre 100 y 300 mg L⁻¹.

1.3 OBJETIVOS ESPECÍFICOS

1) Evaluar la operación del reactor en cada incremento de concentración del N-NH₄⁺, fijando el tiempo de residencia hidráulica en cada fase.

2) Determinar diferentes concentraciones de N-NH₄⁺ que el sistema puede tratar, con porcentajes de remoción mayores al 70%.

3) Dar seguimiento a las diferentes formas de nitrógeno originados en la etapa aerobia y anóxica.

4) Determinar los perfiles de velocidad de remoción del N-NH4⁺ en las fases aerobia y anóxica.

5) Determinar los perfiles de velocidad de formación de $N-NO_3^-$ y $N-NO_2^-$ en la etapa aerobia y sus perfiles de velocidad de remoción en la etapa anóxica.

1.4 HIPÓTESIS

En un reactor empacado discontinuo secuenciado (aerobio/anóxico) se puede obtener una remoción de nitrógeno amoniacal de por lo menos 70% por medio de una etapa aerobia/anóxica sin inhibición de las transformaciones de nitrógeno, aún operando con concentraciones reportadas como inhibitorias del proceso de nitrificación.

CAPÍTULO 2. ANTECEDENTES

El nitrógeno (N) existe en muchos compuestos, debido a que puede tener altos números de oxidación, esto se puede observar en los compuestos orgánicos o en el nitrógeno amoniacal (N-NH₄⁺), en donde el estado de oxidación del nitrógeno es de -3, así mismo se encuentran estados de oxidación en el otro extremo, tal es el caso de los nitratos (N-NO₃⁻), los cuales presentan un estado de oxidación de +5. En el medio ambiente estos cambios de oxidación los llevan acabo microorganismos vivos. La relación entre varios de los compuestos y las transformaciones que pueden ocurrir a menudo, se muestran esquemáticamente en la figura 2.1, conocido como el ciclo del N (EPA, 1975).

Figura 2. 1 Ciclo del nitrógeno (EPA, 1975)

Desafortunadamente, el rápido desarrollo de las actividades industriales humanas han causado un incremento de N en ríos, lagos y zonas costeras (Lin *et al.*, 2008), lo cual constituye un grave problema, ya que varias de las formas en que se puede encontrar el N, generan problemas importantes de contaminación ambiental, tal es el caso del N-NH₄⁺.

2.1 LA CONTAMINACIÓN DEL NITRÓGENO AMONIACAL EN LAS AGUAS RESIDUALES

Son muchas las fuentes que generan aguas residuales con diferentes compuestos de N, por ejemplo: la urea y la materia fecal, la fijación biológica del $N_{(gas)}$ atmosférico hacia el agua residual; respecto a las fuentes de N creadas por el hombre, las más importantes son las de los fertilizantes químicos y las descargas industriales. Las industrias que producen las mayores descargas con concentraciones altas de compuestos de N son, la industria de refinería, la industria de la leche, de procesador de tabaco, manufactureras de colorantes, industrias de carne, algunas plantas de fibra sintética e industrias que limpian con componentes de amonio (Reddy *et al.*, 1998).

Una forma tóxica en que se encuentra el N en la descarga de aguas residuales es el N-NH₄⁺, el cual al estar en exceso es uno de los contaminantes más tóxicos para la vida animal acuática. Además, el N-NH₄⁺ en condiciones aerobias genera como productos N-NO₂⁻ y N-NO₃⁻, ocasionando otro problema, ya que los N-NO₂⁻ pueden causar la metahemoglobinemia (enfermedad del niño azul), especialmente en niños menores de seis meses (Lee *et al.*, 2006; Metcal & Eddy, 2003). Otro efecto que ocasionan las diferentes formas de los compuestos del N presentes en las aguas residuales es la eutrofización (Lin *et al.*, 2008).

CAPITULO 2. ANTECEDENTES -

Un ejemplo del gran problema de la alta toxicidad que representa el N-NH₄⁺ para la vida acuática, se puede observar al analizar los valores toxicológicos presentados en la tabla 2.1, los cuales están muy por debajo de las concentraciones de los efluentes que generan algunas industrias (tabla 2.2).

Tabla 2. 1 Valores Ecotoxicológicos LC_{50} del N-NH₄⁺ en especies acuáticas

. Especie acuática	Valores Ecotoxicologicos, LC ₅₀
Salmón Coho	0.45 mg L ⁻¹ / 96 h
Pez de oro	2-2.5 mg L ⁻¹ / 24-96 h
Trucha adulta Arcoiris	0.097 mg L⁻¹/ 24 h
Pez gato caminador	0.28 mg L ⁻¹ / 48 h
Salmón aguabonita	0.76 mg L ⁻¹ / 96 h

(Fuente: TOXNET-Toxicology Data Network).

Tabla 2. 2 Concentraciones de $N-NH_4^+$ en aguas residuales industriales.

Agua Residual	N-NH₄ ⁺ , mgL ⁻¹	Referencia
Industria del curtido	200 a 500	
Lodos drenaje	600 a 700	Carrera <i>et al</i> ., 2003
Lixiviados	1200	
Producción de amoniaco	350 a 1000	Visvanathan, 2007
Destilería- Vinazas	878	Medina y Mijavlova,2004
Granjas porcícolas	1101 a 1776	Montaolvo <i>et al.</i> , 2004
Refinería	135 a 6550	Ford <i>et al</i> ., 1991

2.2 REMOCIÓN DE N-NH4⁺

.

Debido a los problemas ambientales y de salud que ocasiona el N-NH₄⁺ en el agua (capitulo 2.1), se han realizado numeroso trabajos para remover éste contaminante, los cuales proponen diversos métodos, tales como la nitrificación y desnitrificación biológica, stripping (desorción), precipitación química y conversión electroquímica.

Dentro de los métodos físicos, el método de stripping es ampliamente utilizado para la remoción de N-NH₄⁺, donde el N-NH₄⁺ es transferido de una fase líquida a una fase gaseosa, por medio de una columna empacada (Quan *et al.*, 2009). Sin embargo, tiene la desventaja de utilizar una gran cantidad de energía. Los métodos químicos necesitan reactivos adicionales, los cuales pueden constituir una nueva fuente de contaminación al cuerpo de agua. Los métodos electroquímicos utilizan electrodos de metales u óxidos de metales costosos, además de que requieren de un gran consumo de energía (Lin *et al.*, 2008). Los procesos físico-químicos son menos favorables que los procesos biológicos ya que producen lodos químicos en el pretratamiento, lo que constituye una importante desventaja para estos procesos de remoción de N-NH₄⁺ (Van Loosdrecht y Salem, 2006).

La nitrificación-desnitrificación biológica es el proceso más utilizado para la remoción de N-NH₄⁺ de las aguas residuales, especialmente para aguas residuales municipales (Ruiz *et al.*, 2003). Sin embargo, su principal desventaja se debe a que tanto las altas concentraciones de N-NH₄⁺ como de N-NO₂⁻ y N-NO₃⁻ inhiben la nitrificación, concentraciones reportadas desde 200 mg L⁻¹ de N-NH₄⁺ (Carrera *et al.*, 2003).

CAPITULO 2. ANTECEDENTES

Una ventaja económica, de los procesos biológicos sobre los procesos físicoquímicos para remover el N-NH₄⁺, es el costo de implementación y operación. El costo de utilizar procesos físicos-químicos es significativamente más alto que uno biológico, se ha encontrado que un proceso Sharon[®] utilizando metanol, presenta un costo de 0.9-1.4 euros/kg N removido, mientras que un procesos físico químico puede ser 10 veces más costoso, debido principalmente a las diferencias entre la inversión y el consumo de energía (Van Loosdrecht y Salem, 2006). Las desventajas de los procesos biológicos de nitrificación y desnitrificación se presentan a concentraciones mayores a 80 mg L⁻¹ de N, donde los costos de inversión y de operación (alta demanda de O₂) se incrementan. Además, el proceso de nitrificación es muy sensible a la presencia de compuestos tóxicos, como metales pesados y compuestos orgánicos (Bernet y Spérandio, 2006).

2.2.1 Nitrificación y desnitrificación biológica del N-NH4⁺.

En el proceso biológico de nitrificación – desnitrificación ocurren transformaciones de los diferentes compuestos del N de la siguiente manera (figura 2.2) (Reddy *et al.*, 1998).

Figura 2. 2 Transformación biológica del N (Reddy et al., 1998)

CAPITULO 2. ANTECEDENTES :

El N-NH₄⁺ en solución acuosa puede existir en dos formas: NH₃ (amoniaco) y NH₄⁺ (amonio), la proporción relativa de éstas depende de factores como la temperatura, el pH y la salinidad (Chen *et al.*, 2006). A pH \leq 8, la proporción del NH₄⁺ típicamente llega a exceder en un 99%. El equilibrio cambia hacia un 50% cuando se tiene un pH≈9.5. A un pH=11, el NH₃ predomina. El equilibrio entre el NH₄⁺ y el NH₃ se describe mediante la siguiente expresión (Reddy et al., 1998) (ecuación 2.1). Así mismo la distribución del NH₄⁺ y el NH₃ con respecto al pH se puede observar en la figura 2.3 (Metcalf y Eddy, 2003):

$$K_a = [NH_3][H^+]/[NH_4^+]$$
 (Ec. 2.1)

Donde:

[NH₃] = Concentración del amoniaco, mol L⁻¹

[H⁺] = Concentración ion hidrógeno, mol L⁻¹

 $[NH_4^+]$ = Concentración del ion amonio, mol L⁻¹

K_a = Constante de ionización con los siguientes valores (tabla 2.3):

	Tabla 2.3	Constantes de	e ionizaciór
--	-----------	---------------	--------------

(Reddy et al., 1998)

Temperatura, °C	Ka
0	8.26 x 10 ⁻¹¹
10	1.86 x 10 ⁻¹⁰
15	2.73 x 10 ⁻¹⁰
20	3.98 x 10 ⁻¹⁰
25	5.68 x 10 ⁻¹⁰

Distribución de amoniaco y del ion amonio con respecto al pH (Metcalf y Eddy, 2003)

2.2.1.1 Nitrificación

El término nitrificación usualmente se da a la oxidación biológica del N-NH₄⁺ y posteriormente a los N-NO₂⁻. La nitrificación se lleva a cabo en dos pasos, en el primer paso el N-NH₄⁺ es convertido a N-NO₂⁻ por medio de bacterias autótrofas oxidativas de N-NH₄⁺, en el segundo paso, los N-NO₂⁻ son convertidos a N-NO₃⁻ por medio de bacterias autótrofas oxidantes de N-NO₂⁻ (Ruiz *et al.*, 2003; Garzón-Zuñiga, 2005).

2.2.1.1.1 Bacterias nitrificantes y estequiometría del proceso de nitrificación

Las bacterias autótrofas oxidan componentes de N orgánicos para obtener energía para su crecimiento y alimentación, mientras que obtienen el carbono para su crecimiento celular por la reducción de CO₂. Las principales bacterias implicadas en la nitrificación son las bacterias *Nitrosomonas* y *Nitrobacter*, las cuales son responsables de la oxidación del N-NH₄⁺ a N-NO₂⁻ (nitritación) y de N-NO₂⁻ a N-NO₃⁻ (nitratación), respectivamente. La estequiometría para el catabolismo de la oxidación del N-NH₄⁺ y N-NO₂⁻ es la siguiente (Weismann *et al.*, 2007):

Paso 1. Nitritación:

 $NH_4^+ + 1.5 O_2 \rightarrow NO_2^- + 2H^+ + H_2O + \Delta G^\circ$ Bacterias oxidativas del N- NH_4^+

NITROSOMONAS (
$$\Delta G^\circ = -240 \text{ a } -350 \text{ kj mol}^{-1}$$
)

Paso 2. Nitratación:

 $NO_2^- + 0.5 O_2 \rightarrow NO_3^- + \Delta G^0$ Bacterias oxidativas de nitritos

NITROBACTER ($\Delta G^{\circ} = -65 \text{ a } -90 \text{ kj mol}^{-1}$)

Reacción de oxidación general:

 $NH_4^+ + 1.5 O_2 \rightarrow NO_3^- + 2H^+ + H_2O$

Se observa que para 1 mol de N-NH₄⁺, las bacterias *Nitrosomonas* utilizan 1.5 moles de O₂ y las bacterias *Nitrobacter* utilizan 0.5 moles de O₂. Siendo un total de 2 moles de O₂ el requerimiento necesario para que se lleve a cabo la nitrificación. Así mismo existen estudios en donde se realiza una nitrificación parcial a N-NO₂⁻, requiriendo un 25% menos de demanda de O₂, comparada con una nitrificación completa. Esto se logra reduciendo la actividad de las bacterias oxidativas de N-NO₂⁻, pero no la de las bacterias oxidativas de N-NH₄⁺. Existen varios estudios para realizar esto con concentraciones bajas de N-NH₄⁺, pero casi no hay estudios que utilicen altas concentraciones de N-NH₄⁺ (Ruiz *et al.*, 2003).

La estequiometría para las reacciones correspondientes al anabolismo de la oxidación de $N-NH_4^+$ y de $N-NO_2^-$, se presentan a continuación, asumiendo que la formulación empírica de las células bacteriológicas es $C_5H_7O_2N$ (Weismann *et al.*, 2007):

Paso 1. Nitritación:

13 NH₄⁺ + 15 CO₂ → 10 NO₂⁻ + 3 C₅H₇O₂N + 23H⁺ + 4H₂O

Paso 2. Nitratación:

 $10 \text{ NO}_2^- + 5 \text{ CO}_2 + \text{ NH}_4^+ + 2\text{H}_2\text{O} \rightarrow 10 \text{ NO}_3^- + \text{ C}_5\text{H}_7\text{O}_2\text{N} + \text{H}^+$

Sin embargo, se debe de considerar: $CO_2 + H_2O \rightarrow HCO_3^- + H^+$

Así bien, la estequiometría para las reacciones de oxidación de N-NH₄⁺ y de N-NO₂⁻ para el catabolismo y anabolismo para 1 mol de N-NH₄⁺ y 1 mol de N-NO₂⁻ se dan de la siguiente manera (Weismann *et al.*, 2007):

Paso 1. Nitritación

 NH_4^+ + 1.98 HCO_3^- + 1.3 O_2 + → 0.0182 $C_5H_7O_2N$ + 0.98 NO_2^- + 1.04 H_2O + 1.89 H_2CO_3

Paso 2. Nitratación

 $NO_2^- + 0.02H_2CO_3 + 0.48O_2 + 0.005NH_4^+ + 0.005HCO_3^- → 0.005C_5H_7O_2N + NO_3^- + 0.015H_2O$

El N-NH₄⁺ es utilizado como fuente de energía y el CO₂ como fuente de carbono por las bacterias nitrificantes (Weismann *et al.*, 2007). La reacción anterior puede ser utilizada para estimar el requerimiento de O₂ y de alcalinidad, así como la biomasa producida. Para 1 g de N-NH₄⁺ oxidado a N-NO₃⁻ se consumen aproximadamente 4.18 g O₂ y 7.07 g de alcalinidad (como CaCO₃), y se producen aproximadamente 0.17 g de biomasa (Chen *et al.*, 2006).

El primer paso del mecanismo de oxidación del N-NH₄⁺ a N-NO₂⁻ es debido a una oxidación por bacterias oxidativas de amonio (AOB) vía hidroxilamina (NH₂OH) (reacciones 1 y 2). Las enzimas amonio monooxigenasa (AMO) e hidroxilamina oxidoreductasa (HAO) están envueltas en estas dos reacciones. En el segundo paso, las bacterias oxidativas de N-NO₂⁻ oxidan el N-NO₂⁻ a N-NO₃⁻ con la participación de la enzima nitrito oxidoreductasa (NOR) (reacción 3) (Zhu*et al,* 2008).

 $NH_{3} + O_{2} + 2[H] \longrightarrow NH_{2}OH + H_{2}O \qquad \text{reacción} \quad (1)$ HAO $HN_{2}OH + 0.5 O_{2} \longrightarrow NHO_{2} + 2H^{+} + 2e^{-} \qquad \text{reacción} \quad (2)$ NOR $NO_{2}^{-} + 0.5 O_{2} \longrightarrow NHO_{2} + 2H^{+} + 2e^{-} \qquad \text{reacción} \quad (3)$

2.2.1.1.2 Factores que influyen en la nitrificación

Los factores mas importantes que influyen considerablemente en la nitrificación son la temperatura (T), el pH, toxicidad, la carga orgánica y el OD (Reddy *et al.*, 1998).

Temperatura

La T óptima para la nitrificación es de 30 a 36 °C, con un posible crecimiento entre 4°C y 50°C. Se ha encontrado que los coeficientes m edios de saturación aumentan con la T; una relación entre K_{NS} y T para las bacterias *Nitrosomonas* en agua de río se puede escribir de acuerdo a la ecuación 2.2 (Reddy *et al.*, 1998):

$$K_{NS} = 0.4 \Theta^{0.118 (T-15)}$$
, donde T en C (Ec. 2.2)

La expresión para la velocidad máxima de crecimiento de nitrificación respecto a su T se puede escribir de acuerdo a la ecuación 2.3 y 2.4 (Weismann *et al.*, 2007):

$$\mu_{\text{max, NS}} = 0.042 \text{exp}^{(0.0351\text{T}-2.174)}, \text{ donde T en } \mathfrak{C} \quad (\text{Ec. 2.3})$$

$$\mu_{\text{max, NB}} = 0.042 \text{exp}^{(0.0587\text{T}-1.13)}, \text{ donde T en } \mathfrak{C} \quad (\text{Ec. 2.4})$$

Se han realizado estudios de cultivos de bacterias aisladas *Nitrobacter* y *Nitrosomonas*, en donde se estudió el efecto de la T en la actividad de éstas bacterias. En la figura 2.4 se observa un crecimiento exponencial hasta aproximadamente 40°C, posteriormente a temperaturas mayores la actividad de las bacterias decae. Se observa que la mayor actividad se presenta a 35°C para las bacterias *Nitrosomonas* y 38°C para las bacterias *Nitrobacter* (Grunditz y Dalhammar, 2001).

Figura 2. 4 Efecto de la T en la nitrificación. (a) Efecto de la T en la actividad de Nitrosomonas, (b) Efecto de la T en la actividad de Nitrobacter (Grunditz y Dalhammar, 2001)

Potencial de hidrógeno

En la nitrificación, el efecto de la concentración del ion de hidrógeno (pH) tiene un gran efecto en la velocidad de la nitrificación, conforme el pH se mueve hacia el rango ácido, la velocidad de oxidación del N-NH₄⁺ disminuye (EPA, 1975). Grunditz y Dalhammar, 2001, evaluaron en efecto del pH respecto a la actividad de bacterias aisladas *Nitrosomonas* y *Nitrobacter* (figura 2.5), donde observaron que el pH optimo de crecimiento fue de 7.5 a 8.5.

Figura 2. 5 Efecto del pH en la nitrificación. (a) Efecto del pH en la actividad de *Nitrosomonas*, (b) Efecto del pH en la actividad de *Nitrobacter* (Grunditz y Dalhammar, 2001)

CAPITULO 2. ANTECEDENTES =

Oxígeno disuelto

En el proceso de la nitrificación se considera al oxígeno disuelto (OD) como un sustrato limitante (Reddy *et al.*, 1998). Para efectos de cálculo de ingeniería para la aireación, el requerimiento necesario es de 4.6 mg O_2 mg L⁻¹ NH₄⁺ (EPA, 1975). Gerardi, 2006 menciona la siguiente relación entre el OD y la nitrificación (Tabla 2.4).

OD, mg L ⁻¹	Efecto en la nitrificación
<0.5	La nitrificación inicia pero es insignificante.
0.5-0.9	La velocidad de nitrificación empieza a acelerarse.
1.0-2.0	La velocidad de nitrificación es significante.
2.1-2.9	Se presenta una nitrificación sostenible.
3.0	Máxima velocidad de nitrificación.
>3.0	La nitrificación puede ser mejorada, si las bacterias organotróficas remueven la DBO más rápidamente.

Tabla 2.	4 Relación	del OD	v la	nitrificación	
	11101000011		yiu	manifoldorom	

2.2.1.1.3 Cinética de nitrificación

Estudios cinéticos han demostrado que la velocidad de crecimiento de las bacterias *Nitrosomonas* es menor que para las bacterias *Nitrobacter* (Chen *et al.*, 2006). Esto se basa en observaciones en donde las concentraciones de N-NO₂⁻ en procesos de tratamientos biológicos pueden ser menores a 0.1mg L⁻¹ (Reddy *et al.*, 1998).

CAPITULO 2. ANTECEDENTES =

Tomando en consideración las reacciones catabólicas, para las Nitrosomonas y Nitrobacter, los coeficientes de rendimiento respecto al requerimiento del O_2 se presentan en las ecuaciones 2.5 y 2.6 (Weismann et al., 2007):

$$Y^{\circ}_{O2/NH4-N} = 1.5 (MO_2/M_N) \quad (Ecuación 2.5)$$

= 1.5 (32 g mol⁻¹/ 14 g mol⁻¹) = 3.43 g O_2/ g N
$$Y^{\circ}_{O2/NO2-N} = O.5 (MO_2/M_N) \quad (Ecuación 2.6)$$

= 0.5 (32 g mol⁻¹/ 14 g mol⁻¹) = 1.14 g O_2/ g N

De tal manera que la suma de ambos coeficientes da como resultado $Y^{\circ}_{O2/N} = 4.57$ g O_2 g⁻¹N, es decir que 4.57 g O_2 se requieren para producir 1 g N-NO₃. Si se considera el catabolismo y el anabolismo, entonces los coeficientes son los siguientes (Weismann *et al.*, 2007) (ecuación 2.7 y 2.8):

$$Y^{\circ}_{XA/NH4-N} = (1.5 M_{C5H7O2N}/M_{N-NH4})$$
 (Ecuación 2.7)

Ν

 $Y^{\circ}_{XA/NO2-N} = (0.005 M_{C5H7NO2}/M_{N-NO2})$ (Ec. 2.8)

= $(0.005 \cdot 113 \text{ g mol}^{-1} \text{ C}_5\text{H}_7\text{O}_2\text{N}/14 \text{ g mol}^{-1}\text{N}-\text{NO}_2)$ = 0.04 g MLVSS/g N

1) Licor mezclado de sólidos suspendidos volátiles- comprende solamente la masa de Nitrosomonas y Nitrobacter, respectivamente.

Así bien, el valor total del coeficiente, sin la acumulación de N-NO₂⁻ para el crecimiento de *Nitrosomonas* y *Nitrobacter* es de 0.187 g MLVSS por 1 g N-NH₄.

El valor promedio de Y°_{XA / NH4-N} y de Y°_{XA / NO2-N} calculados por varios autores es de Y°_{XA / NH4-N} = 0.142 g MLVSS g⁻¹ N-NH₄ y de Y°_{XA / NO2-N} = 0.048 g MLVSS g⁻¹ N-NH₄. La influencia de la velocidad de decaimiento (muerte y respiración endógena) no fue considerada. Los coeficientes de rendimiento para el crecimiento de las bacterias nitrificantes, respecto al consumo de O₂ son los siguientes (Weismann *et al.*, 2007) (ecuación 2.9 y 2.10):

 $Y^{\circ}_{XA/O2} = Y^{\circ}_{XA/N-NH4} / Y^{\circ}_{O2/N-NH4}$ (Ecuación 2.9)

= 0.147/3.43 = 0.043 g MLVSS/ g O₂

 $Y^{\circ}_{XA/O2} = Y^{\circ}_{XA/N-NO2} / Y^{\circ}_{O2/N-NO2}$ (Ecuación 2.10)

= 0.04/1.14 = 0.035 g MLVSS/ g O_2

Éstos últimos coeficientes de rendimiento, muestran que la nitrificación esta caracterizada por un alto consumo de O_2 y una baja producción de biomasa.

Se cree que el ácido nítrico y el amoniaco son los donadores reales de electrones (sustrato) de las *Nitrosomonas* y *Nitrobacter* respectivamente, debido a que requieren menos energía para su transporte en la célula comparado con el transporte de una molécula ionizada como el NH_4^+ o NO_2^- . El NH_3 y HNO_2 son formados por la disociación basada en el equilibrio de disociación dependiente del pH y la T (Weismann *et al.*, 2007):

$$NH_4^+ \xrightarrow{k_1} NH_3 + H^+ y NO_2^- + H^+ \xrightarrow{k_3} HNO_2$$

La concentración de NH₃ y NH₄⁺ puede ser expresada por medio de la constante de disociación $k_{D, NH3} = k_2/k_1$ y la concentración de NO₂⁻ y HNO₂ con $k_{D, HNO2} = k_4/k_2$, al utilizar métodos de cálculo se obtiene lo siguiente (ecuación 2.11 y 2.12):

```
S_{NH3-N} = S_{NH4+-N} / 1 + k_{D, NH3} \cdot 10^{-pH} con k_{D, NH3} = exp (6344/273 + T) (Ec. 2.11)
```

```
S_{HNO2-N} = S_{NO2-N} / 1 + k_{D, HNO2} \cdot 10^{-pH} \text{ con } k_{D, HNO2} = \exp(2300/273 + T) \text{ (Ec. 2.12)}
```

Donde:

S_{NH3-N} = Concentración de NH₃-N, mol L⁻¹

 S_{NH4+-N} = Concentración de NH₄⁺-N, mol L⁻¹

S_{HNO2-N} = Concentración de HNO₂-N, mol L⁻¹

 S_{NO2-N} = Concentración de NO₂-N, mol L⁻¹

k_{D, NH3} = Constante de disociación de NH₃

k_{D, HNO2} = Constante de disociación de HNO₂

El equilibrio de disociación $NH_3/NH_4^+ + S_{NH4+} + S_{NH4+} + S_{NH4+} + S_{NH02} - S_{HN02} -$

Figura 2. 6 Influencia del la temperatura y el pH sobre el valor del equilibrio de disociación del NH₃ y HNO₂ (Weismann *et al.*, 2007).

CAPITULO 2. ANTECEDENTES =

Una descripción cinética de la nitrificación se basa en la cinética de Haldane, ecuaciones que son válidas para aguas residuales con $N-NH_4^+$ y ricas en $N-NO_2^-$, donde ambas oxidaciones son inhibidas por un excedente de sustrato (Weismann *et al.*, 2007) (ecuación 2.13 y 2.14).

$$\mu_{\text{NS}} = \mu_{\text{MAX}, \text{ NS}} \cdot (S_{\text{NH3-N}}/(K_{\text{S},\text{NH3}} + S_{\text{NH3-N}} + (S^2_{\text{NH3-N}}/K_{\text{iH},\text{NS}}))) \cdot (c'/K'_{\text{NS}} + c') \quad (\text{Ec. 2.13})$$

 $\mu_{\text{NB}} = \mu_{\text{MAX, NB}} \cdot (S_{\text{HNO2-N}} / (K_{\text{S,HNO2}} + S_{\text{HNO2-N}} + (S^2_{\text{HNO2-N}} / K_{\text{iH,NB}}))) \cdot (c'/K'_{\text{NB}} + c')(\text{Ec. 2.14})$ Donde:

 μ_{NS} =Velocidad específica de crecimiento - Nitrosomonas, h⁻¹

 μ_{NB} = Velocidad específica de crecimiento - *Nitrobacter*, h⁻¹

µ_{MAX, NS} = Velocidad máxima específica de crecimiento - Nitrosomonas, h⁻¹

 $\mu_{MAX, NB}$ = Velocidad máxima específica de crecimiento - *Nitrobacter*, h⁻¹

c' = Concentración de oxigeno disuelto, mg $L^{-1} O_2$

K_{S,NH3} = Coeficiente de saturación para el sustrato NH₃, mg L⁻¹

K_{S, HNO2} = Coeficiente de saturación para el sustrato HNO₂, mg L⁻¹

K_{iH,NS} =Coeficiente para la inhibición por exceso de sustrato-Nitrosomonas, mgL⁻¹

K_{iH,NB} = Coeficiente para la inhibición por exceso de sustrato – Nitrobacter, mg L⁻¹

Para altos valores de S_{NH3-N} (pH alto) o S_{HNO2-N} (pH bajo) las reacciones anteriores son inhibidas. Para valores bajos de S_{NH3-N} (pH alto) o S_{HNO2-N} , la inhibición de acuerdo con Haldane puede ser eliminada. La limitación del O_2 puede ser eliminada para c'>>K'. Así bien, la descripción de la cinética para bajas concentraciones de NH₃ y NO₂⁻ queda de la siguiente manera (Weismann *et al.*, 2007) (ecuación 2.15 y 2.16):

$$\mu_{NS} = \mu_{MAX, NS} \cdot (S_{NH3-N}/(K_{S,NS} + S_{NH3-N}))$$
(Ecuación 2.15)
$$\mu_{NB} = \mu_{MAX, NB} \cdot (S_{HNO2-N}/(K_{S,NB} + S_{HNO2-N}))$$
(Ecuación 2.16)
2.2.1.2 Desnitrificación

La eliminación del N en forma de N-NO₃⁻ por conversión hasta N₂ gas se puede conseguir biológicamente bajo condiciones "anóxicas" (sin oxígeno disuelto). El proceso se conoce con el nombre de desnitrificación. La desnitrificación se lleva acabo por microorganismos heterotróficos, los cuales utilizan los N-NO₃⁻ y N-NO₂⁻ como aceptores de electrones en lugar del O₂ (Bernat y Wojnowska-Baryla, 2007; Garzón-Zuñiga, 2005).

2.2.1.2.1 Bacterias desnitrificantes y estequiometría del proceso de desnitrificación

Las bacterias desnitrificantes son capaces de remover NO_X de las aguas residuales, convirtiéndolos hasta nitrógeno gas N₂, el cual escapa a la atmósfera. Muchos organismos desnitrificantes son bacterias facultativas quimioorgánicasheterotróficas, las cuales forman aproximadamente el 80 % de las bacterias presentes en el ambiente de los lodos activados. Bajo condiciones anóxicas el N-NO₂⁻ y N-NO₃⁻ sirven como aceptores de electrones en lugar del O₂ y los sustratos orgánicos como donadores de electrones para la producción de ATP, a muy bajas concentraciones de O₂. Además de la desnitrificación heterótrofa, ésta se puede llevar también por bacterias quimiolitotrofas con H₂ o con compuestos de sulfato reducidos como aceptores de electrones (Weismann *et al.*, 2007).

La conversión del N, en forma de N-NO₃, a formas más rápidamente eliminables se puede llevar a cabo gracias a la acción de diversos géneros de bacterias, destacando las siguientes: Achromobacter, Aerobacter, Alcaligenes, Bacillus, Brevibacterium, Flavobacterium, Lactobacillus, Micrococcus, Proteus, Pseudomonas y Spirillum. La mayoría de las bacterias en el proceso de desnitrificación son heterótrofas, las cuales obtienen el carbono de la síntesis

celular de compuestos orgánicos. El uso de compuestos orgánicos de carbono, como el metanol, involucra a dos tipos de bacterias. La bacterias metilotróficas, que convierten una fracción larga o asimilada de carbono a metabolitos solubles (ejemplo citrato o isocitrato), los cuales sirven posteriormente como donadores de electrones para las bacterias desnitrificantes (Reddy *et al.*, 1998).

El primer paso de la desnitrificación consiste en la conversión de $N-NO_3^-$ en NO_2^- , posteriormente los $N-NO_2^-$ son convertidos a NO, N_2O y N_2 . Las reacciones de reducción del N, en el proceso de desnitrificación se presentan en la siguiente reacción (Metcalf y Eddy, 2003):

$$NO_3^{-} \rightarrow NO_2^{-} \rightarrow NO \rightarrow N_2O \rightarrow N_2$$

Cada paso de la reacción anterior presenta una enzima reductasa particular, la cual cataliza la transferencia de electrones hacia el N (Reddy *et al.*, 1998). En la desnitrificación anóxica, los $N-NO_3^-$ y $N-NO_2^-$ son reducidos a N_2 (gas) con una variedad de donadores de electrones, como el metanol, acetato y sustancias orgánicas en el agua residual, como se observa a continuación:

$$2NO_3^- + 10H^+ + 10e^- \rightarrow N_2 + 20H^- + 4H_2O$$

 $2NO_3^- + 6H^+ + 6e^- \rightarrow N_2 + 20H^- + 2H_2O$

El proceso completo de la desnitrificación utilizando como agente reductor el etanol se describe en dos pasos (Kotlar *et al.*, 1996):

$$6NO_3^{-} + C_2H_5OH \rightarrow 2CO_2 + 3H_2O + 6NO_2$$

 $4NO_2 + C_2H_5OH \rightarrow 2CO_2 + 2N_2 + H_2O + 4OH$

Cuando la fuente de carbono es metanol (Reddy et al., 1998):

 $6NO_3^{-}$ + 5CH₃OH → 5CO₂ + 3N₂ + 7H₂O + 6OH⁻ con ΔG° = -783 Kj mol⁻¹ (Weismann *et al.*, 2007) Cuando la fuente de carbono es el ácido acético (Constantin y Fick, 1997):

$$5CH_3COOH + 8NO_3^- + 8H^+ \rightarrow 10CO_2 + 14H_2O + 4N_2$$

$$4NO_2 + C_2H_5OH \rightarrow 2CO_2 + 2N_2 + H_2O + 4OH$$

Se ha demostrado que tanto el etanol como el ácido acético constituyen una fuente de carbono que proporcionan una alta velocidad y eficiencia de desnitrificación. Cuando se utiliza etanol la proporción C:N es de 1.38 y cuando se utiliza ácido acético la proporción C:N es de 1.46. Estos valores son un poco más altos que los teóricos, debido a que una parte del carbono es utilizado para la formación de nueva biomasa (Constantin y Fick, 1997).

2.2.1.2.2 Factores que influyen en la desnitrificación

Existen varios factores que tienen influencia en el consumo del sustrato dentro de la desnitrificación biológica (Reddy *et al.*, 1998):

El primer factor es la concentración presente del aceptor de electrones. Esto incluye a los N-NO₃⁻, N-NO₂⁻, OD y sulfatos. Para esto se debe de reducir el OD para poder realizar la desnitrificación. Los N-NO₃⁻ compiten prácticamente igual por los electrones provenientes del sustrato. El sulfato varía de acuerdo al agua residual a tratar; sin embargo, este puede ser reducido biológicamente, pero solo después de haber consumido al OD, N-NO₃⁻ y N-NO₂⁻.

El segundo factor es la naturaleza de la molécula donante. Los compuestos orgánicos son utilizados por las bacterias como fuente de energía metabólica, así como fuente para la biosíntesis celular.

El tercer factor es la extensión de la reacción de desnitrificación. La escasez del electrodonador puede causar que la desnitrificación se detenga antes de que se produzca N₂ gas. El requerimiento del electrodonador expresado en términos de masa de sustrato consumido por unidad de masa de N-NO₃⁻ removido, varía directamente con el porcentaje de remoción del N-NO₃⁻ arriba del punto de conversión.

El cuarto factor se refiere a la velocidad específica de crecimiento de las bacterias desnitrificantes. El rendimiento neto de la célula es mayor a velocidades de crecimiento altas, disminuye conforme la velocidad específica de crecimiento disminuye debido al decaimiento.

La concentración total del sustrato requerido para reducir el NO_3^- , NO_2^- y OD presente sin biosíntesis (C_s), es dado por la ecuación 2.17 (Reddy *et al.*, 1998):

$$(C_s) = 0.357 W_e (1.0 NO_3 + 0.60 NO_2 + 0.35 O_2)$$
 (Ecuación 2.17)

Donde:

 W_e = equivalente de electrón del sustrato, en gramos y la concentración en gramos por metros cúbicos.

La alcalinidad se produce durante la conversión del $N-NO_3^-$ en N_2 gas, lo cual provoca un aumento del pH. El pH óptimo se sitúa entre 7 y 8, con diferentes valores óptimos que dependen de las diferentes posibles poblaciones bacterianas (Metcalf y Eddy, 2003).

La cantidad de alcalinidad producida durante la desnitrificación puede ser calculada de acuerdo a la siguiente reacción (Reddy *et al.*, 1998):

 NO_3^{-} + 1.08 CH₃OH \rightarrow 0.065 C₅H₇O₂N + 0.47 N₂ + 0.76 CO₂ + 1.44 H₂0 + OH⁻

De tal manera que las bacterias desnitrificantes producen 3.57 mg L⁻¹ de alcalinidad (vía N-NO₃⁻) para la síntesis celular.

2.2.1.2.3 Cinética de la desnitrificación

Se ha encontrado que la velocidad de la desnitrificación varia de acuerdo al tipo y la concentración del compuesto utilizado como sustrato, así también esta fuertemente afectada por la concentración de OD, pH, T, y la configuración del reactor. En general la velocidad de desnitrificación es de orden cero con respecto a la concentración de N-NO₃⁻ y de primer orden respecto a la concentración de la biomasa (Reddy *et al.*, 1998).

Casi todos los compuestos orgánicos pueden ser usados como sustrato. La estequiometría para el catabolismo y el anabolismo, tomando como fuente de carbono un átomo de carbono (C) es la siguiente (Weismann *et al.*, 2007):

 $0.926NO_3^{-} + CH_3OH + 0.22H_2CO_3 \rightarrow 0.051C_5H_7O_2N + 0.435N_2 + 0.926HCO3^{-} + 1.56H_2O$

 $1.49NO_2^{-}$ + CH₃OH + 0.79H₂CO₃ → 0.059C₅H₇O₂N + 0.72N₂ + 1.49HCO3⁻ + 1.84H₂O

Asumiendo un estado estacionario (ecuación 2.18):

$$Q_o (S_{NO3-N,O} - S_{NO3-N}) - r_{NO3-N} V = 0 \quad (Ecuación 2.18)$$

Donde:

 $Q_o = Gasto del influente, m^3 h^{-1}$

r = velocidad de reacción, mg m⁻³ h⁻¹

De acuerdo con la ecuación 2.18, la utilización del sustrato y las velocidades de desnitrificación se calculan de la siguiente manera (ecuación 2.19 y 2.20):

 $r_{NO3-N} = (\mu X) / (Y^{\circ}_{XC/NO3-N})$ (Ecuación 2.19) y $r_{SD} = (\mu X) / (Y^{\circ}_{XC/SC})$ (Ecuación 2.20)

Siguiendo el mismo razonamiento para los N-NO2⁻ (ecuación 2.21):

 $r_{NO2-N} = (\mu X) / (Y^{\circ}_{XC/NO2-N})$ (Ecuación 2.21)

Así bien, los coeficientes de rendimiento son los siguientes:

$$Y^{\circ}_{XC/SC}$$
 = (0.051 M_{XC})/ M_{SC} (Ecuación 2.22)
= (0.051·12·5 g mol⁻¹ C₅H₇O₂N-C) / (1.0·12 g mol⁻¹ CH₃OH-C)
= 0.255 g XC/g SC ≈ 0.51 g MLVSS¹⁾ / g DQO
1)MLVSS consisten en un 50% de carbono

 $Y^{\circ}_{SC/NO3-N} = (M_{SC})/(0.926 M_{NO3-N})$ (Ecuación 2.23)

= $(1.0.12 \text{ g mol}^{-1} \text{ CH}_3\text{OH-C}) / (0.96.14 \text{ g mol}^{-1} \text{ NO}_3\text{-N})$

= 0.89 g SC / g NO₃-N

 $Y^{\circ}_{SC/NO2-N} = (M_{SC})/(0.926 M_{NO2-N})$ (Ecuación 2.24)

= $(1.0.12 \text{ g mol}^{-1} \text{ CH}_3\text{OH-C}) / (1.49.14 \text{ g mol}^{-1} \text{ NO}_3\text{-N})$

= 0.57 g SC / g NO₂-N

 $Y^{\circ}_{XC/NO3-N} = Y^{\circ}_{XC/SC} \cdot Y^{\circ}_{SC/NO3-N}$ (Ecuación 2.25)

= gXC/ g NO₃-N \approx 0.454 g MLVSS/g NO₃-N

 $Y^{\circ}_{XC/NO2-N} = Y^{\circ}_{XC/SC} \cdot Y^{\circ}_{SC/NO2-N}$ (Ecuación 2.26)

= gXC/ g NO₂-N \approx 0.34 g MLVSS/g NO₂-N

Sin embargo, la producción de la biomasa depende del sustrato utilizado, resultando en un diferente Y°_{X/N}. Las bacterias desnitrificantes pueden usar la mayoría de los compuestos orgánicos comúnmente encontrados en las aguas residuales domesticas. Varios sustratos orgánicos pueden utilizarse, como el metanol, ácido acético, etanol, glucosa, molazas o una parte del influente de aguas residuales. La velocidad específica de crecimiento puede ser influenciada por la concentración de los sustratos orgánicos y por la concentración de N-NO₂⁻ y N-NO₃⁻. La cinética de desnitrificación puede ser descrita con un doble modelo cinético de Monod y un término adicional para incluir el efecto de la inhibición de la concentración del OD en la desnitrificación por N-NO₃⁻, donde cada coeficiente de saturación puede diferir, dependiendo de los sustratos utilizados (Weismann *et al.*, 2007):

 $\mu_{\text{NO3-N}} = \mu_{\text{MAX, NO3-N}} (S/K_{\text{S}} + S) (SNO_3 / KNO_3 + SNO_3)(KiO_2 / KiO_2 + c') (Ec. 2.27)$ $\mu_{\text{NO2-N}} = \mu_{\text{MAX, NO2-N}} (S/K_{\text{S}} + S) (SNO_2 / KNO_2 + SNO_2)(KiO_2 / KiO_2 + c') (Ec. 2.28)$

2.3 Tecnologías biológicas convencionales para la remoción del N-NH4⁺

Basados en el ciclo del N microbiano y el metabolismo en compuestos de N inorgánicos, se han desarrollado e implementado tecnologías y procesos biológicos para remover el N de aguas residuales, tales como sistemas de biomasa suspendida con diferentes configuraciones, así como sistemas de tratamiento con un reactor discontinuo secuencial (Zhu *et al,* 2008)

2.3.1 Procesos de biomasa suspendida

El proceso de lodos activados, como proceso de nitrificación –desnitrificación, puede ser diseñado en un solo sistema de lodos o bien en dos sistemas separados. Si se utiliza un sistema de lodos, se necesitan alternar condiciones aerobias y anóxicas; si se usan dos sistemas de lodos, se pueden combinar los sistemas anóxicos y aerobios. La selección de la configuración del proceso biológico de remoción de nutrientes depende de las características del agua residual, como la forma del N en el influente, la biodegradabilidad de la materia orgánica, la relación DQO/N del agua residual, el requerimiento del efluente y las restricciones del volumen (Bernet y Spérandio, 2006).

El principio de pre-desnitrificación puede utilizarse cuando la materia orgánica del influente es favorable para ser desnitrificada y se tiene una relación (DQO/N) alta o cercana de las necesidades del carbono para su desnitrificación, 3.7 gDQO/ gN-NO₃⁻ para la desnitrificación de N-NO₃⁻ y 2.3 gDQO / gN-NO₂ para la desnitrificación de N-NO₂⁻. En el modelo MLE (Modified Ludzach-Ettinger, por sus siglas en ingles), los N-NO₃⁻ producido en el tanque aerobio se recircula a través de un circuito interno hacia la zona anóxica (Figura 2.7). La configuración de la pre-desnitrificación puede ser elegida cuando la mayor fuente de N del agua residual esta constituida por N-NO₃⁻ y N-NO₂⁻. Una limitante del sistema MLE es

que una fracción de N-NO₃⁻ producido en el tanque de aeración, no es desnitrificado y puede quedar presente en el agua tratada (Bernet y Spérandio, 2006).

*DN: Etapa de desnitrificación, *N: Etapa de nitrificación

Figura 2. 7 Proceso de nitrificación/desnitrificación - Sistema MLE (Bernet y Spérandio, 2006).

La remoción de N-NO₃⁻ y N-NO₂⁻ también puede alcanzarse con una zona de post-desnitrificación (Figura 2.8). En este proceso, generalmente se agrega una fuente de carbono fácil de biodegradar. Si no se agrega una fuente de carbono en la zona post-anóxica, la desnitrificación es muy lenta, esto debido a la respiración anóxica endógena de las bacterias heterotróficas.

*DN: Etapa de desnitrificación, *N: Etapa de nitrificación

Figura 2. 8 Pre y post-desnitrificación (Bernet y Spérandio, 2006).

En un tratamiento de lodos activados para tratar aguas industriales con altas concentraciones de N, se puede presentar una alta concentración de bacterias autotróficas. La velocidad de nitrificación depende principalmente de la proporción

DQO/N, la edad del lodo y la temperatura. Asi bien, para agua residual con baja proporción de DQO/N, la posible carga de nitrógeno aplicada y la velocidad de nitrificación máxima específica pueden alcanzar valores muy altos, Tabla 2.5.

Tabla 2. 5 Rendimiento de la nitrificación de procesos de biomasa suspendidos, tratando efluentes ricos de nitrógeno. (Fuente: Bernet y Spérandio, 2006)

Referencia	Proceso	Relación DQON ¹	Carga aplicada (kg N m ⁻³ d ⁻¹)	Veocidad de nitrificación gN gSS ⁻¹ d ¹	т (С)
Pedersen <i>et</i> <i>al</i> .,2003	Lodos activados → Aer/Anox	5.4	0.32	0.1-0.3	39
Lai <i>et al</i> ., 2004	SBR → Aer/Anox	1.5-1.9	1.05-1.2	-	20
Pambrun <i>et</i> <i>a</i> l., 2004	SBR →Aer /Anox	0.5-1	1.5-2.0	0.5	30
Arnold <i>et al.</i> , 2000	SBR \rightarrow Aer	1.5-2	0.6-0.8	0.11-0.14	32
Fux <i>et al.</i> , 2003	SBR → Aer/ Anox	0.9	1.4	0.16	35
Hellinga <i>et al.</i> , 1998	Quimiostatico → Aer/Anox	1.1	1	1	35

SS= Sólidos suspendidos, Aer = Condiciones aerobias, Anox= Condiciones anòxicas

Si la materia orgánica en el influente es desfavorable para la desnitrificación (baja proporción DQON⁻¹ o baja biodegradabilidad), se puede proponer el uso de un sistema de lodos activados separado por dos etapas sucesivas (Figura 2.9). En la primera etapa ocurre la nitrificación (y remoción de carbono si es necesario), en la segunda etapa se realiza la desnitrificación (y remoción de sustancias poco biodegradables). La principal ventajas de este sistema es que en el primer proceso se tiene una biomasa rica autótrofa, y hace posible de manera separada la optimización de las etapas de nitrificación y desnitrificación; sin embargo, su principal desventaja es el gran número de procesos unitarios requeridos y la adición de una fuente externa de carbono.

*DN: Etapa de desnitrificación, *N: Etapa de nitrificación

Figura 2. 9 Sistema separado de lodos (Bernet N. y Spérandio M., 2006).

2.3.2 Nitrificación y desnitrificación mediante reactores secuenciales por lotes (SBR)

En la ultima década este tipo de reactor ha sido muy estudiado (Lai *et al.*, 2004). El SBR pude ser utilizado para la nitrificación, la nitrificación/desnitrificación, y la desnitrificación. Dentro de sus ventajas se tiene la simplicidad de su diseño (menor espacio y menor costo de diseño). Este proceso permite alcanzar efluentes con baja concentración de N-NH₄⁺, logrando altas velocidades de nitrificación y desnitrificación y una producción de lodos con buenas propiedades de sedimentación (Lai *et al.*, 2004).

Cuando se usa un SBR para tratar efluentes ricos en N, un aspecto importante de diseño es considerar la posibilidad de una inhibición, debido al modo de alimentación por lotes y a que las altas concentraciones del contaminante se mantienen en el reactor durante un determinado tiempo, después de la alimentación. La mayoría de los SBR son operados con varias etapas de alimentación, seguidas por periodos anóxicos y aerobios y finalmente por una etapa de sedimentación y vaciado (Figura 2.10). El tiempo de ciclo es variable, comúnmente entre 5-10h, dependiendo del TRH, la concentración del influente y las velocidad de sedimentación (Bernet y Spérandio, 2006).

Figura 2. 10 Ejemplos de operación de SBR. (A) Agua residual con materia orgánica, (B) agua residual con N y fuente externa de carbono (Bernet y Spérandio, 2006).

2.4 Tecnologías biológicas novedosas para la remoción de N-NH4⁺

Recientemente se han propuesto y desarrollado nuevas alternativas efectivas respecto a su costo – beneficio para la remoción del N-NH₄⁺, tales como los procesos de remoción de N-NH₄⁺ vía N-NO₂⁻, oxidación anaerobia de N-NH₄⁺ y nitrificación-desnitrificación simultánea. Estos sistemas se han diseñado tanto con biomasa suspendida (procesos de lodos activados, incluyendo SBR, quimioestáticos) como con biopelicula (cama-fija, cama-móvil), donde los organismos autótrofos están fuertemente envueltos en la remoción biológica del N. Los procesos con biopelícula se benefician cuando se utilizan gradientes, especialmente gradientes de O_2 . (Bernet y Spérandio, 2006).

2.4.1 Nitrificación y desnitrificación simultánea

En este proceso la nitrificación y desnitrificación ocurren en un mismo tanque. Existen dos mecanismos en los que se puede llevar acabo este proceso, uno físico y otro biológico. El proceso físico de nitrificación – desnitrificación simultánea (SDN) ocurre como consecuencia de concentraciones de gradientes de OD, tanto en flóculos de un sistema de biomasa como en biopelículas, debido a las limitaciones de difusión del O₂ (figura 2.11) (Garzón-Zúñiga, 2005). El proceso biologico ocurre debido a que las bacterias nitrificantes se encuentran en la región aerobia (OD>1-2 mg L^{-1}), mientras que las desnitrificantes en la zona anóxica (OD<0.5 mg L⁻¹). La presencia de un gradiente de concentracion de O₂ en flóculos de lodos y en biopelículas ha sido verificada por mediciones con micro electrodos y técnicas con trazadores de N. Una de las explicaciones biológicas se basa en que muchas bacterias desnitrificantes presentan actividad nitrificante en condiciones aerobias y algunas bacterias nitrificantes pueden desnitrificar a bajas concentraciones de OD. De esta manera, la nitrificación y desnitrificación simultánea es la consecuencia de la oxidación del N-NH₄⁺ por nitrificantes heterótrofos y los N-NO₃ y N-NO₂ son reducidos por desnitrificantes aerobios. El proceso SDN en reactores SBR puede ocurrir con valores de ORP de -60 a -198 mV. Otros parámetros que influyen en este proceso son el pH, el TRH y el tiempo de retención celular (Zhu et al, 2008).

Figura 2. 11 Esquema del perfil de concentración del oxigeno dentro de un floculo microbiano (Zhu *et al,* 2008).

2.4.2 Nitrificación y desnitrificación vía nitritos (nitrificación parcial)

Una opción de optimización en la nitrificación - desnitrificación puede ser llevada acabo por medio de una nitrificación parcial, donde la oxidación del N-NH₄⁺ se detiene en la etapa de N-NO₂⁻, y luego se convierte a N₂ (g) por la desnitrificación. De esta manera, se ahorra el 25% del O₂ consumido (Ruiz *et al.*, 2003;), así como un 40% del carbono requerido para la desnitrificación (cerca de 2g DQO g⁻¹ N_{removido} con metanol). Ésta opción es de particular interés cuando se remueve N de un agua residual con una baja proporción de DQO/N, éste proceso se puede llevar acabo en los sistemas SBR y quimiostáticos (Bernet y Spérandio, 2006). Otra ventaja de este proceso es que la velocidad de desnitrificación vía N-NO₂⁻ es de 1.5 a 2 veces mayor que una desnitrificación vía N-NO₃⁻. El primer proceso a escala real que se llevó a cabo en un solo reactor con altas concentraciones de N-NH₄⁺ se le conoce como " proceso SHARON" (Zhu *et al,* 2008;Garzón-Zuñiga, 2005).

La inhibición de la bacteria oxidativa de los $N-NO_2^-$ es fundamental para que se lleve a cabo el proceso de nitrificación desnitrificación vía $N-NO_2^-$, ya que esta bacteria oxida los $N-NO_2^-$ a $N-NO_3^-$, convirtiendo una nitrificación parcial en una nitrificación completa. Los parámetros que se han encontrado que son inhibidores de las bacterias que oxidan a los $N-NO_2^-$ son: la concentración de OD, la T, el tiempo de retención celular y la concentración del sustrato (Zhu *et al*, 2008).

Comparado con las bacterias oxidativas del N-NH₄⁺, las bacterias oxidativas de N-NO₂⁻ requieren una mayor concentración de OD. El valor medio de saturación del oxigeno K_SO representa la afinidad del O₂, donde las bacterias oxidativas de los N-NO₂⁻ requieren de 62 μ M y las bacterias oxidativas de N-NH₄⁺ de 16 μ M. Se han reportado diferentes concentraciones de OD para hacer una nitrificación parcial, en un rango de 0.3 a 2.5 mg L⁻¹. El crecimiento de las bacterias oxidativas

de N-NH₄⁺ (AOB) y bacterias oxidativas de NO₂⁻ (NOB) varían con la temperatura (figura 2.12). A 20°C las bacterias AOB presentan u na velocidad específica de crecimiento (0.801 d⁻¹) mayor que la de las bacterias NOB (0.788 d⁻¹), mientras que a 15°C la velocidad específica de crecimiento d e AOB (0.523 d⁻¹) es menor que la de las bacterias NOB (0.642 d⁻¹). A temperaturas mayores de 20°C no solo se expande las diferencias de crecimiento de AOB Y NOB (Zhu *et al,* 2008).

Figura 2. 12 Efecto de la temperatura en la velocidad de crecimiento de las bacterias oxidantes de N-NH₄⁺ y de N-NO₂⁻ (Zhu *et al*, 2008).

Los oxidantes de N-NO₂⁻ se pueden eliminar combinando la nitrificacióndesnitrificación en dos compartimientos, en un mismo reactor o en un SBR. Esto se debe a que los N-NO₂⁻ son removidos con una alta velocidad en la desnitrificación, eliminando la participación de los oxidantes de los N-NO₂⁻.

2.4.3 Desnitrificación autótrofa por microorganismos desnitrificantes anóxicos (anammox)

Garzón-Zuñiga 2005 describe el proceso anammox como una desnitrificación autótrofa por microorganismos desnitrificantes anóxicos. El proceso anammox consiste en la oxidación del N-NH₄⁺, con el N-NO₂⁻ como aceptor de electrones. Este proceso necesita ser precedido por una unidad parcial desnitrificadora, no

necesita materia orgánica biodegradable, debido a que las bacterias implicadas son quimiolitotróficas (Jetten *et a*l., 1999). Fux y Siegrist (2004), compararon el proceso clásico de nitrificación/desnitrificación con el proceso nitrificación/anammox, desde el punto de vista ambiental y económico (figura 2.13), obteniendo rendimientos similares (85-90% remoción de N), concluyendo que la segunda opción es más sustentable, debido a que no produce gases de efecto invernadero (CO₂ y N₂O), así como el tener la ventaja de no necesitar una fuente de carbono y una baja producción de lodos (Fux y Siegrist, 2004).

Figura 2. 13 Comparación entre el proceso clásico de nitrificación – desnitrificación y el proceso anammox (Fux y Siegrist, 2004)

2.5 Trabajos realizados sobre la nitrificación y desnitrificación del N-NH4⁺

A continuación se presenta un resumen de varios trabajos relevantes que han tratado efluentes con concentraciones de $N-NH_4^+$. En la tabla 2.6 se muestran los sistemas, valores y resultados obtenidos en estos trabajos.

Carrera *et al.* (2003) trataron una agua residual industrial (4000 a 6000 mg L^{-1} de N-NH₄⁺), utilizaron un proceso biológico de dos etapas, una etapa nitrificadora con lodos activados y una etapa desnitrificadora, cada etapa conformada por un reactor y un sedimentador, lograron remover concentraciones mayores de 5000 mg L^{-1} de N-NH₄, utilizando como fuente de carbono una mezcla de alcoholes.

Pedersen P. et al. (2003). Realizaron un estudio sobre una planta de tratamiento de aguas residuales (PTAR-CPKelco) de lodos activados, la cual contiene influentes con altas concentraciones de N-NH₄⁺. El estudio se basó en optimizar la remoción del N-NH4⁺, verificando si la remoción podría realizarse vía N-NO2⁻, con el fin de reducir el consumo de O2. Después de realizar un estudio de varios parámetros, encontraron que existían microorganismos filamentosos, por lo que decidieron cambiar su fuente de carbono basada en azúcar a una de alcohol, logrando la eliminación de tres microorganismos filamentosos que se presentaban de manera dominante. Después de realizar un estudio sobre las bases de nitrificación vía N-NO2, encontraron que las condiciones de la planta de tratamiento eran las adecuadas para llevar a cabo este proceso, pH= 7.6-8, T alta y una alcalinidad alta. Mencionan que los microorganismos facultativos en condiciones anóxicas pueden realizar una desnitrificación. Concluyeron que la PTAR-CPKelco puede realizar una nitrificación-desnitrificación vía N-NO2⁻ controlando el tanque de aeración. Posteriormente encontraron que cuando se tiene una concentración promedio de 70 mg L⁻¹ N-NO₂⁻ en el tanque de aeración, se pueden presentar ocasionalmente problemas de pérdida de lodos, debido a una mala sedimentación. Este último problema lo solucionaron agregando dosis de polímeros orgánicos. Finalmente mencionan que al operar el proceso de nitritación -desnitrificación de manera controlada, se logró un mejor rendimiento, reduciendo el consumo de O₂.

Lai *et al.* (2004) utilizaron dos sistemas SBR con concentraciones de 1200 mg L⁻¹ de N-NH₄⁺ provenientes de aguas residuales de la lixiviación de lodos. El primer SBR se utilizó solamente hasta la etapa de nitrificación, con el fin de obtener lodos que detuvieran la reacción hasta los N-NO₂⁻, para posteriormente inocular el segundo SBR con los lodos del primer SBR. En el primer SBR, al inicio la nitrificación dio como producto principal N-NO₃⁻; sin embargo, después de un periodo de 9 d la concentración de N-NO₃⁻ comenzó a disminuir, después de 25 d los NO₂⁻ se produjeron en altas concentraciones, posteriormente el SBR quedó

vacío durante 60 días debido a problemas de alimentación, posteriormente éste fue reactivado, logrando detener la nitrificación en N-NO₂⁻ y poca concentración de N-NO₃⁻. Concluyen que en el segundo SBR realizó una nitrificación-desnitrificación vía N-NO₂⁻ durante una serie de tres fases, logrando un porcentaje de remoción del 96 al 98%, utilizando etanol como fuente de carbono.

Pambrum *et al.* (2004), realizaron estudios sobre la nitrificación, tratando un agua residual con altas concentraciones de N y fósforo, utilizaron procesos SBR y SBBR (sequencing batch biofilm bioreactor), a una T de 30°C, la cual consideran benéfica para la acumulación de los N-NO₂⁻, así mismo utilizaron un pH = 7.5 y 2-3 mg L⁻¹ de OD. Realizaron variaciones de pH y de OD para ver el comportamiento de la nitrificación. Para monitorear la nitritación realizaron pruebas de N-NO₂⁻, N-NO₃⁻, OD y de respirometría. Encontraron que al reducir el pH de 7.5 a 6.5 durante 24 h, la producción de N-NO₂⁻ aumentó de 130 a 300 mg L⁻¹. Ademas cuando incrementaron el pH a 12 durante 6 horas, disminuyeron los N-NO₂⁻. Respecto al OD, el SBR fue más afectado que el SBBR, presentando un menor rendimiento en la nitrificación,

Walter, *et al.*, (2005), investigaron el proceso de nitrificación/ desnitrificación en un reactor con membranas. Utilizaron como influente agua sintética y posteriormente agua residual proveniente de una planta recicladora de carcasa de animal y de una planta de coque. Mencionan que hay bacterias desnitrificadoras que cambian su metabolismo de anóxico a aerobio, así como que con una alta relación de C:N la velocidad de nitrificación disminuye. Concluyen que en su sistema la formación de una biopelicula ayudó a lograr la remoción de N-NH₄, comprobando esto por medio de métodos de medición de biopelícula. Finalmente mencionan que los factores que tuvieron más influencia en el sistema fueron el pH, la concentración del sustrato y la edad de la biopelícula.

Tabla 2.6 Sistemas, valores y resultados de estudios realizados sobre la remoción de nitrógeno amoniacal con altas concentraciones

Referencia	Sistema	Tipo de agua residual	DQO	N-NH4	Fuente de Carbono	Volumen	% Remoción	OD g/m ³	TRH	Velocidad de nitrificación (g N/ (gSSV) d)	Ph	T (℃)
Carrera <i>et al</i> ., 2003	Lodos activados N- DN,	Sintética e industrial	1300-1500 mgL ⁻¹	4000-6000 mgL ⁻¹	Mezcla de etanol	27L cada reactor	90-100			0.11-0.18	7.5- N 8-9-DN	20
Pedersen <i>et</i> <i>al</i> .,2003	Lodos activados N/DN	Industrial	7000 kgd ⁻¹	1300 kgd ⁻¹	Alcohol	4050 m ³ – tanque- aer 1750 m ³ tanque- anóx				0.1-0.3	7.6-8	38- 40℃
Lai <i>et al</i> ., 2004	SBR Tres fases N/DN	Lixiviado de lodos	1500-1900 mgL ⁻¹	1223 mgL ⁻¹	Etanol	6L	96-98	3- 1.1	1.7- 0.5 d		9.0-8.2	30°C
Pambrun <i>et</i> al., 2004	SBR (1) y SBBR (2)N	Sobrenadante de un digestor anaerobio	480 mgL ⁻¹	400-600 mgL ⁻¹	Acetato – propionato	10L (1) 16L (2)	69	2-3	2.8d (1) 1.5 d (2)	0.5	7.5-7.60	30°C
Walter <i>et al.</i> , 2005	Reactor con membranas	Agua sintética e industrial		1400 mgL ⁻¹		20 L	100		4.6 h		7-8	27 °C

N= Fase aerobia, DN= fase anóxica

2.6 Reactores discontinuos secuenciales en el tratamiento de aguas residuales

Los reactores discontinuos secuenciales (SBR) son sistemas de tratamiento de aguas residuales, operados de manera secuencial en ciclos de llenado y vaciado. Funcionan con biomasa suspendida o fija. Son equivalentes a los sistemas convencionales de lodos activados, con la diferencia de que en los sistemas convencionales de lodos activados los procesos se llevan acabo en dos tanques diferentes, mientras que en los sistemas SBR ocurren en el mismo tanque. Otra característica de los SBR es que se encuentran orientados al tiempo, donde el flujo, el mezclado, la aeración, y el volumen del reactor varían de acuerdo a una estrategia de operación periódica previamente determinada (Buitrón *et al.*,2006).

El SBR puede ser operado como un reactor empacado o bien de lecho fluidizado, en el que el medio de empaque es expandido por el movimiento hacia arriba de un fluido, que puede ser aire o agua a través del lecho (Metcalf y Eddy, 2003). El medio de soporte provee una gran área superficial específica para la adherencia del crecimiento biológico y permitir concentraciones de biomasa en el rango de 10 a 40 kg m⁻³. Las condiciones operacionales típicas son las siguientes; velocidad de líquido: de 10-30 m h⁻¹, carga orgánica: 10 kg DQO m⁻³ d⁻¹, relación de alturadiámetro: de 2 a 5 (Buitrón *et al.*, 2006).

Usualmente un SBR opera bajo cinco fases bien definidas: llenado, reacción, sedimentación, vaciado y tiempo muerto (Figura 2.14). La duración de cada una de estas fases es determinada usualmente por un operador experto, el cual se basa en su experiencia y sus experimentos de laboratorio realizados en una planta piloto (Buitrón *et al.*, 2006).

Figura 2. 14 Operación esquemática de un SBR durante un ciclo (Buitrón *et al.*, 2006).

A continuación se describen cada una de las fases de operación de un SBR (Metcalf y Eddy, 2003):

Llenado: Durante la operación de llenado, el sustrato (agua residual) es alimentado de manera distribuida con el fin de promover reacciones biológicas. El nivel de llenado del reactor normalmente va de 75 % a 100 %.

Reacción: Durante el periodo de reacción, la biomasa consume el sustrato bajo condiciones ambientales controladas.

Sedimentación: Una vez que el sustrato ha sido consumido, los sólidos son separados del líquido bajo condiciones de reposo, dando como resultado un sobrenadante clarificado que puede ser descargado como efluente.

Vaciado: Durante este periodo el efluente clarificado, proveniente del periodo de sedimentación es descargado.

Tiempo muerto: Este paso es utilizado cuando se trabaja con un sistema de reactores en serie, consiste en dar el tiempo necesario al reactor para completar su ciclo de llenado antes de cambiar a otra unidad.

La fase de tiempo muerto puede ser eliminada cuando se tiene algún método de manejo del exceso del influente (Wilderer *et al.*, 2001).

Ventajas (Buitrón et al.,2006):

- Este tipo de sistemas son relativamente pequeños, por lo que pueden ser usados en áreas en donde no se disponga de espacios muy grandes.
- Los ciclos pueden ser modificados fácilmente, lo que da la oportunidad de modificarlos para las remociones de nutrientes futuras, si es necesario.
- Son muy rentables, si solamente se requiere de un tratamiento biológico.
- Tiene la habilidad de hacer presión a un consorcio de bacterias, esto se efectúa controlando el tiempo de ciclo, velocidad de flujo, los nutrimentos, así como la disponibilidad del O₂
- Se puede hacer un control sobre las bacterias filamentosas y remoción de compuestos orgánicos específicos.
- A través del uso de medios ambientes alternados se pueden tratar compuestos recalcitrantes.
- Tiene la versatilidad de utilizar varios tipos de soportes tales como el carbono activado, zeolitas, o rocas volcánicas.

Desventajas (Buitrón et al.,2006):

- Comparado con sistemas convencionales se requiere de un nivel más alto de mantenimiento, asociado al tipo de controles, interruptores automáticos y válvulas automáticas.
- En algunas configuraciones de SBR, dentro de la fase de descarga o decantación del reactor, pueden existir descargas potenciales de lodos flotantes o sedimentados.
- El sistema de aeración puede llegar a taparse, esto llega a presentarse dependiendo del sistema utilizado por el fabricante.

El presente trabajo se desarrolló en la planta piloto de aguas residuales, ubicada en las instalaciones del Instituto Mexicano de Tecnología del Agua (IMTA), en Jiutepec Morelos.

3.1 Sistema experimental

El sistema experimental consistió en la instalación de un SBR empacado aerobio/anóxico, para lograr la nitrificación y la desnitrificación del N-NH₄⁺, incrementando las concentraciones de N-NH₄⁺ de 100 mg L⁻¹ a 300 mg L⁻¹, utilizando una estrategia de remociones fijas.

La operación del SBR se realizó a través de 4 relojes programables (Steren, modelo 905-300), conectando cada uno a cuatro bombas peristálticas (Master Flex L/S, Cole-Parmer, Modelo 77200-62), las cuales se utilizaron para la carga del influente, la recirculación del SBR, la alimentación de la fuente de carbono y la descarga del agua residual ya tratada, así mismo se conectó una bomba de aireación (Elite modelo Optima) para la fase aerobia (Figura 3.1 y Figura 3.2).

3.1.1 Descripción del SBR aerobio/anóxico.

Para la construcción del SBR, se utilizó una columna de acrílico de 60 cm de altura, 10 cm de diámetro interno, con un volumen total de 4.3 L, y un volumen útil de 3.8 L, el reactor se empacó con un material de soporte de polietileno. El reactor operó a temperatura ambiente, la cual de acuerdo a datos del INEGI, la Temperatura ambiente media anual en Jiutepec, Morelos es de 22-24°C (INEGI-1). En la parte superior se conectaron electrodos para medir el pH (HACH, modelo 51935-00), ORP (Hanna instruments, modelo HI98201) y OD (HACH, modelo sension 6). En el fondo del SBR se conectó un difusor poroso (Bubble-Disk, Deluxe) para proporcionar aire en la fase aerobia (figura 3.3).

Figura 3. 1 Sistema experimental SBR aerobio/anóxico

Figura 3. 2 Configuración del sistema experimental SBR aerobio/anóxico

Figura 3. 3 Diseño del sistema experimental SBR aerobio/anóxico

3.1.2 Medio de soporte.

Como medio de soporte para las bacterias se utilizó un empaque de polietileno modelo AC450 (figura 3.4), fabricado por la compañía HeadWorks BIO[™]. Este medio de soporte fue elegido debido a las características proporcionadas por el fabricante, dentro de las cuales se menciona que éste material provee un área superficial activa para sostener tanto a las bacterias heterótrofas como a las bacterias autótrofas (tabla 3.1).

(AC450 HeadWorks BIO [™])

Tabla 3. 1 Características del
AC450 en el SBR

Masa por pieza.	0.983 g	
Área superficial	0.00972 m^2	
por pieza	0.00072111	
Numero de piezas	400	
Utilizadas	400	
Área superficial		
total del AC450	3.229 m ²	
en el SBR		

3.1.3 Inóculo

El SBR fue inoculado con lodos procedentes de una PTAR de una caseta de la autopista México-Acapulco. Ésta fue elegida debido a que su influente presenta N-NH₄⁺ (proveniente principalmente de la orina).

Se caracterizaron los lodos de la PTAR que sirvieron de inóculo, obteniendo una concentración de SST de 2200 mg L⁻¹ y de SSV de 1600 mg L⁻¹. Se analizó el agua residual presente en los lodos, obteniendo una concentración de 102 mg L⁻¹ N-NH₄⁺, ésta concentración se utilizó como referencia para iniciar el proceso de la aclimatación de la biomasa en el SBR.

3.1.4 Agua Residual sintética.

Se utilizó agua residual sintética como influente para el SBR. El agua residual sintética estuvo compuesta por una fuente de N-NH₄⁺, un medio mineral nutriente, una fuente de alcalinidad para las bacterias nitrificantes y una fuente de carbono para las bacterias desnitrificantes.

3.1.4.1 Nitrógeno amoniacal

Como fuente de N-NH₄⁺ se utilizó NH₄Cl (cloruro de amonio), el cual presenta la siguiente formula química de disociación:

$$NH_4CI \rightarrow NH_4^+ + CI^-$$

Se realizó un análisis estequiométrico, encontrando que para obtener una concentración de N-NH₄⁺ de 1 mg L⁻¹ se requieren 3.20 mg L⁻¹ NH₄Cl, este valor fue importante, ya que sirvió para relacionar la cantidad de NH₄Cl necesario para obtener las diferentes concentraciones a utilizar de N-NH₄⁺ (100 a 300 mg L⁻¹ de N-NH₄⁺).

3.1.4.2 Medio mineral nutriente

Se adicionó un medio mineral nutriente con el objetivo de proporcionar a los microorganismos nutrientes y sales minerales.

Para la mayoría de las bacterias, los elementos mayores (macro elementos) en la composición de las células de las bacterias incluyen C, H, N, O, P y S, estos elementos se requieren en grandes cantidades. Los elementos menores (micro elementos) tales como Ca, Fe, K, Mg y Na y los elementos traza Co, Mn, Mo, Ni y Zn se requieren en cantidades relativamente pequeñas (Gerardi, 2006). Se hizo un revisión bibliografía de varios trabajos realizados de nitrificdesnitrificación, utilizando agua sintética, enfocando la atención en la composición de su medio

mineral, finalmente el medio mineral que se eligió se basó en los estudios realizados por Walter *et al.*, 2005 (tabla 3.2).

Compuesto	Peso Molecular (g mol ⁻¹)	Cantidad a utilizar para una concentración de NH4 ⁺ =1 mg L ⁻¹ . (mg L ⁻¹)
K ₂ HPO ₄	174.17	0.39345
MgSO ₄ ·7H ₂ O	120.39	0.47214
Na ₂ MoO ₄	205.94	0.00072
H ₃ BO ₃	61.81	0.00525
MnCl ₂	125.84	0.00332
ZnSO ₄	161.45	0.00040
CuSO ₄	159.62	0.00015
CoCl ₂ .6H ₂ 0	237.84	0.00012

Tabla 3. 2 Composición del medio mineral nutriente

3.1.4.3 Fuente de alcalinidad

La etapa de nitrificación requiere de una fuente de alcalinidad para eliminar el HNO_2 producido por la combinación de NO_2^- y H⁺ provenientes de la nitritación del N-NH₄ (Gerardi, 2006). La alcalinidad requerida por las bacterias nitrificantes para oxidar 1 g de N-NH₄⁺ a N-NO₃⁻ es de 7.07 g de alcalinidad (como CaCO₃) (Chen *et al.*, 2006). Se utilizó NaHCO₃ como fuente de alcalinidad, debido a que es completamente soluble en agua y a su fácil manejo en el laboratorio. Se realizó un análisis estequiométrico de la cantidad requerida de NaHCO₃ para oxidar 1 mg de N-NH₄⁺, obteniendo 0.012 g L⁻¹ de NaHCO₃, este valor se utilizó como base para obtener las cantidades de NaHCO₃ requerido para oxidar las diferentes concentraciones de N-NH₄⁺ (100 a 300 mg L⁻¹ de N-NH₄⁺).

3.1.4.4 Fuente de carbono

Las bacterias desnitrificantes pueden usar una gran variedad de compuestos orgánicos solubles como fuentes de carbono, tal es caso de la glucosa, el metanol,

el etanol y el ácido acético. El metanol es usualmente el compuesto orgánico de elección, debido a que es absorbido rápidamente por las células de las bacterias y degradado fácilmente (Gerardi, 2006); sin embargo, las bacterias nitrificantes, como autótrofos obligados, presentan una inhibición en su habilidad enzimática para llevar acabo la nitrificación, en presencia de algunos compuestos, tal es el caso del metanol y de alcoholes de cadena corta (de 1-4 unidades de carbono) así como en presencia de algunas aminas (Gerardi, 2006). De tal manera que se eliminó la opción de utilizar el metanol y se decidió utilizar glucosa como fuente de carbono.

La cantidad requerida de glucosa ($C_6H_{12}O_6$) en la etapa de desnitrificación fue calculada mediante un análisis estequiométrico, el cual se baso en la siguiente reacción (Reddy *et al.*, 1998):

 $6NO_3^- + 5CH_3OH \rightarrow 5CO_2 + 3N_2 + 7H_2O + 6OH^-$ Se sustituyó el CH₃OH por la C₆H₁₂O₆, obteniendo: $4NO_3^- + C_6H_{12}O_6 \rightarrow 6CO_2 + 2N_2 + 6H_2O$

Al realizar las operaciones correspondientes se encontró que por 1 mg L⁻¹ N-NH₄ nitrificado, se requieren 2.64 mg L⁻¹ de C₆H₁₂O₆, tomando en cuenta que el SBR tiene un volumen útil de 3.8 L, se obtuvo que para cada ciclo de reacción (lote) se requirió de 1.0032 g de C₆H₁₂O₆.

3.2 Métodos analíticos

Para efectuar el análisis de las muestras, se utilizaron las metodologías de análisis estandarizadas recomendadas por los Métodos Estándar (APHA, 2005), HACH y potenciométricos. En la Tabla 3.3 se enlistan los parámetros analizados, los métodos que se utilizaron para su seguimiento y la frecuencia con la que se realizaron los análisis.

Tabla 3. 3 Métodos para el seguimiento de los parámetros analizados y l	а
frecuencia de análisis en la operación del SBR.	

Parámetros	Método de análisis		Frecuencia
Т	Termométrico		
рН	Potenciométrico		
OD	Potenciométrico		
Alcalinidad total	Titulación		
como CaCO ₃	(Métodos estandar)		
Nitrógeno amoniacal	Método		Inicio fase aerobia, fin fase aerobia y fin fase anóxica de
(N-NH4 ⁺)	8038	Espectrofotómetro	cada ciclo. Así como durante
Nitrógeno de nitratos (N-NO ₃)	Método 8039	(HACH DR/2400)	cada cinética de remoción.
Nitrógeno de nitritos (N-NO2 ⁻)	Método 8153		
Nitrógeno total (N _T)	geno total (N _T) Espectrofotómetro (HACH DR/2400) Método 10072		
Tinción de Greiss	Métodos estándar		
Demanda química	Espectrofotométrico		
de oxígeno (DQO)	(Métodos Estándar)		Durante cada cinética de
Sólidos totales (SST y ST)	Gravimétrico		remoción
Sólidos volátiles (SSV y SV)	(Mé	todos estándar)	
Conductividad ORP	Po	otenciométrico	

3.3 Estrategia de arranque y operación del SBR

El reactor operó como un reactor discontinuo secuencial SBR, bajo una operación definida (tabla 3.4). El tiempo de reacción para la fase aerobia y la fase anóxica fue variable de acuerdo a la concentración de N-NH₄⁺ utilizada. En la figura 3.5 se presenta el diagrama de flujo que describe el proceso de operación del SBR.

El inicio de la operación del SBR, consistió en una etapa de aclimatación del inóculo a la biodegradación del N-NH₄⁺, de acuerdo a una estrategia de remociones fijas, que consiste en permitir la aclimatación de la biomasa al tóxico y a los cambios de ambientes aerobios y anóxicos, dando el tiempo necesario para alcanzar una remoción de al menos un 70% en cada una de las etapas (Melgoza *et al.*, 2000). Una vez aclimatada la biomasa al influente, se procedió a incrementar la concentración del N-NH₄⁺. La tabla 3.5 muestra las etapas de operación y evaluación del reactor.

1 abia 5.5. Operation del 5DIV	Tabla 3	. 5. C	peración	del	SBR
--------------------------------	---------	--------	----------	-----	-----

Tiempo de Operación	Tiempo (t)
Llenado	8 min
Fase aerobia	Variable
Fase anóxica	
Sedimentación	1 min
Descarga	8 min
Tiempo Muerto	1 min

Tabla 3.4	Etapas de operación y
evaluación	del SBR

Operación y evaluación	mg L ⁻¹ N-NH₄ ⁺
Etapa 1	100
Etapa 2	150
Etapa 3	200
Etapa 4	250
Etapa 5	300

Se tomó como indicador la repetición de 5 ciclos de operación con remoción constante de al menos 70 %, así como la determinación del TRH a su menor tiempo posible. Antes de realizar un cambio de concentración de N-NH₄, se realizó un estudio de velocidad de remoción durante todo un ciclo, el cual se hizo por duplicado.

Figura 3. 5 Diagrama de flujo del proceso de operación del reactor SBR aerobio/ anóxico

3.4 Comparación de valores obtenidos analíticamente con valores recomendados

Los resultados obtenidos por los métodos analíticos (presentados en la sección 3.2.1), fueron comparados con los valores recomendados (revisión bibliográfica), el objetivo de esta comparación fue el de verificar que los procesos de nitrificación y de desnitrificación se estaban llevando de acuerdo a las recomendaciones. En la tabla 3.6 se hace una descripción de los valores recomendados para los parámetros que tienen mayor efecto en la nitrificación y en la desnitrificación.

Proceso	Parámetros	Valores recomendados	
	те	15 – 38	
Nitrificación	1, 0	(Reddy <i>et al.</i> , 1998)	
	Dh	7.5 – 8.5 (Grunditz y Dalhammar, 2001)	
	FII		
Nitimodolon	Alcalinidad total,	>50	
	mg L ⁻¹ CaCO₃	(Gerardi, 2006)	
Despitrificación	$OD mal^{-1}$	≥ 2.1	
	OD, IIIg L	(Gerardi, 2006)	
	τŶ	5 - 25	
	1, 0	(Reddy <i>et al</i> ., 1998)	
	ъЦ	7.0- 8	
	рп	(Metcalf y Eddy, 2003)	
Doominioaoion		-100 a 100	
		(Gerardi, 2006)	
	$OD mal^{-1}$	<1	
	OD, IIIg L	(Gerardi, 2006)	

Tabla 3. 6 Valores recomendados para los parámetros de operación en la nitrificación y en la desnitrificación.

3.5 Cálculos de variables de operación

Durante la operación del SBR se realizaron cálculos para obtener información sobre las remociones en la nitrificación como la desnitrificación, SST, SSV,

3.5.1 Porcentaje de remoción

El porcentaje de remoción para $N-NH_4^+$, $N-NO_3^-$ y $N-NO_2^-$ se determinó por medio de la ecuación 3.1 (Metcalf & Eddy, 2003):

$$\eta = \left[\frac{s_{inf} - s_{ef}}{s_{inf}}\right] \times 100$$
 (Ecuación 3.1)

Donde:

η: Porcentaje de remoción

Sinf: Concentración de sustrato en el influente, mg/L

S_{efl}: Concentración de sustrato en el efluente, mg/L

3.5.2 Tasa específica de degradación

La actividad que presenta la biomasa para consumir el sustrato se evaluó por medio de la tasa específica de degradación, calculada por medio de la ecuación 3.2 (Metcalf & Eddy, 2003).

$$q_x = \left[\frac{s_{inf} - s_{ef}}{r_d x}\right] \frac{v_{int}}{v}$$
(Ecuación 3.2)

Donde:

q_x: Tasa específica de degradación, mg g⁻¹ SV h⁻¹

Sinf: Concentración de sustrato en el influente, mg L⁻¹

Sef: Concentración de sustrato en el efluente, mg L⁻¹

X: Biomasa, g L⁻¹ de SV

T_d: Tiempo de degradación, h

Vint: Volumen de intercambio, L

V: Volumen de operación del reactor, L
CAPITULO 3. METODOLOGÍA =

3.5.3 Tasa volumétrica de degradación

La tasa volumétrica fue el parámetro que indicó la eliminación del sustrato en el reactor, el cual se calculó por medio de la ecuación 3.3 (Metcalf & Eddy, 2003).

$$q_v = \left[\frac{s_{inf} - s_{ef}}{r_d}\right] \frac{v_{int}}{v}$$

(Ecuación 3.3)

Donde:

 q_v : Tasa volumétrica de degradación, mg L⁻¹ h⁻¹

S_{inf}: Concentración de sustrato en el influente, mg L⁻¹

Sef: Concentración de sustrato en el efluente, mg L⁻¹

Td: Tiempo de degradación, h

Vint: Volumen de intercambio, L

V: Volumen de operación del reactor, L

3.5.4 Métodos de cuantificación de la biopelícula

Se analizó cualitativamente la biopelícula adherida al material de soporte (análisis por triplicado), tomando una muestra del empaque AC450 del SBR. Para tomar las muestras se vació el SBR, para evitar el exceso de humedad de las muestras. Las muestras se tomaron en la parte superior, media e inferior del SBR. Después las muestras se colocaron en vasos de precipitado de 150 mL con 100 mL de agua desionizada. La muestras inmersas en agua desionizada fueron sometidas a una limpieza ultrasónica en periodos de 30 min con frecuencia de 60 kHz hasta que el agua se encontrara cristalina. El agua que se separó en cada uno de los ciclos de limpieza ultrasónico fue acumulada, finalmente se determinaron gravimétricamente los ST y SV presentes en el agua desionizada acumulada. Los resultados de ST y SV en el SBR fueron calculados de la siguiente manera:

$ST_{empaque} = (ST)/A_{empaque}$	(Ecuación 3.4)
$SV_{empaque} = (SV)/A_{empaque}$	(Ecuación 3.5)
ST _{SBR} = ((ST _{empaque})(A _{total}))/ V	(Ecuación 3.6)
SV _{SBR} = ((SV _{empaque})(A _{total}))/ V	(Ecuación 3.6)

Donde:

 $ST_{empaque}$: Sólidos totales contenidos en AC450, mg m⁻² $SV_{empaque}$: Sólidos volátiles contenidos en AC450, mg m⁻² ST: Sólidos totales determinados en el agua desionizada utilizada, mg SV: Sólidos volátiles determinados en el agua desionizada utilizada, mg $A_{empaque}$: Area de una pieza AC450. A_{total} : Area total de las 400 piezas de AC450. ST_{SBR} = Sólidos totales en el SBR, mg L⁻¹ SV_{SBR} = Sólidos volatiles en el SBR, mg L⁻¹ V: Volumen de operación del reactor, L

3.5.5 Determinación del orden de reacción

Se determinó el orden de reacción con los datos obtenidos de los estudios cinéticos de remoción, graficando los datos de acuerdo a los diferentes órdenes de reacción propuestos. Se tomó el orden de reacción que diera el mejor valor de regresión lineal (Levenspiel, 1996).

Reacción de orden cero:

Reacción de segundo orden: $(1/C_{A}-1/C_{A0}) = kt$ Reacción de primer orden:

Reacción de n orden: log (-dC_A/dt) =log k + n log C_A

3.5.6 Análisis estadísticos

1.-Se utilizó el software STATGRAPHICS Centurión XV versión 15.2.06, para realizar el análisis de la distribución de ajuste a los datos obtenidos en la operación del SBR.

2.- Utilizando el software Microsoft [®] Office Excel 2003 se realizó el análisis correspondiente a la distribución de los datos, con el fin de probar que al menos se logró una remoción de 70% de N-NH₄⁺ en la fase aerobia y al menos 70% de N-NO₃⁻ y N-NO₂⁻ en la fase anóxica.

CAPÍTULO 4. RESULTADOS Y DISCUSIÓN

4.1 Desempeño del SBR aerobio/anóxico

El SBR fue operado y evaluado durante 329 ciclos en un tiempo total de 280 d. La duración de cada ciclo fue variable en las fases de reacción, ya que dependió de la aclimatación de la biomasa a los cambios de concentración del N-NH₄⁺ en el influente y a los cambios de ambiente aerobio/anóxico. La decisión para realizar un cambio de concentración se efectuó al momento de observar un comportamiento estable en el SBR, tomando en consideración la repetición de 5 ciclos de operación con porcentajes de remoción mayores a un 70 %, mejorando el tiempo de residencia hidráulica. La tabla 4.1 muestra los parámetros de control de la operación del SBR, desde su arranque hasta el final de su operación.

Parámetro	Valor
Medio de soporte AC450	400 piezas, m _{total} = 393.2 g
Volumen total del reactor	4.3 L
Volumen útil del reactor	3.8 L
Volumen de intercambio	88.4 %
Biopelícula (como SV)	0 – 16676 mg m ⁻²
Concentración N-NH4 ⁺	100 – 300 mgL ⁻¹
Temperatura dentro del reactor	16.2°C – 28 °C
Tiempo de llenado	8 min
Tiempo de reacción fase aerobia	6h – 72h
Tiempo de reacción fase anóxica	4h – 120h
Tiempo de sedimentación	1 min
Tiempo de descarga	8 min
Tiempo muerto	1 min

Tabla 4. 1 Parámetros	de operación del SBR
-----------------------	----------------------

4.1.1 Etapa 1 (ciclo 1 al 104), 100 mg L^{-1} de N-NH₄⁺

En las gráficas 4.1, 4.2, 4.3 y 4.4 se presenta el desempeño del SBR en la etapa 1, comprendiendo la evaluación del ciclo 1 al ciclo 104.

En la etapa 1 el SBR fue inoculado con lodos activados provenientes de una planta de tratamiento de agua residual de una caseta de la carretera México-Acapulco (SST = 2200 mg L⁻¹ y SSV = 1600 mg L⁻¹). El primer paso de la etapa 1 consistió en lograr la aclimatación de la biomasa a la remoción de 100 N-NH₄⁺, los resultados se presentan en la tabla 4.2 y tabla 4.3.

Ciele	TRH, d	N-NF	$N-NH_4^+$ promedio, mg L ⁻¹						
CICIO	Faer	I	Faer	Fanox	% r				
1 - 5	3	104.4	33.6	30.4	71.9				
	Reinc	culació	n — cicl	06	-				
6 – 9	2	105.5	29.8	19.8	81.5				
10 – 11	1	100.5	27.0	4.0	96.0				
12 – 17	1	101.5	6.0	2.7	97.4				
18 – 22	1	102.4	1.6	0.4	99.6				
23 – 44	0.33	100.8	15.2	12.2	87.9				
45 – 66	0.25	100.6	19.1	9.2	90.9				
67 – 78	0.25	100.4	19.0	0.6	99.4				
79 – 104	0.25	101.6	19.8	0.4	99.6				

Tabla 4. 2 Desempeño del SBR durante la etapa 1 (N-NH₄⁺)

I= Influente, Faer = Final fase de nitrificación, Fanox= Final fase de desnitrificación,

%r = Porcentaje de remoción.

Ciolo	TRH, d	N-N(O ₃ ⁻ pron	nedio, m	g L ⁻¹	$N-NO_2^-$ promedio, mg L ⁻¹				
CICIO	Fanox		Faer	Fanox	%r		Faer	Fanox	% r	
1 – 5	4	23.2	111.6	30.4	72.8	18.3	38.9	11.3	70.6	
			- ciclo 6	6						
6 – 9	5	10.0	77.8	10.5	87.3	3.4	11.3	2.8	74.4	
10 – 11	3	1.2	66.0	1.1	98.4	1.0	8.2	0.3	96.9	
12 – 17	2	1.8	50.8	2.8	94.2	1.7	24.7	2.1	91.2	
18 – 22	1	1.2	32.0	1.4	95.8	1.1	27.4	1.4	93.8	
23 – 44	0.67	10.6	41.0	13.2	72.2	6.3	48.8	8.1	85.8	
45 – 66	0.75	6.5	22.2	5.4	77.7	8.8	51.4	9.4	81.6	
67 – 78	0.75	2.1	22.3	1.2	94.7	0.8	47.7	0.6	98.7	
79 – 104	0.25	2.0	27.1	0.2	99.3	0.0	47.1	0.2	99.6	

Tabla 4. 3 Desempeño del SBR durante la etapa 1 – N-NO3⁻ y N-NO2⁻

I= Influente, Faer = Final fase de nitrificación, Fanox= Final fase de desnitrificación,

%r = Porcentaje de remoción.

Del ciclo 1 al ciclo 5, el TRH fue mayor (7 d) y la remoción de N-NH₄⁺ menor comparados con otros trabajos de nitrificación/desnitrificación (tabla 2.6), debido a éste comportamiento se realizó una reinoculación (1 L con 1859 mgL⁻¹ de SSV) en el ciclo 6, con lodos procedentes un sistema de lodos activados de tratamiento de agua residual de rastro, con el fin de mejorar el proceso de nitrificación/desnitrificación del SBR.

A partir del ciclo 6 y hasta el ciclo 9, el TRH fue de 7 d; sin embargo, a diferencia de los ciclos anteriores, disminuyó el TRH de la fase aerobia (de 3 d a 2 d) así como el porcentaje de remoción de los $N-NO_3^-$ y $N-NO_2^-$ (aumentando el TRH de la fase anòxica de 4 d a 5 d).

En el ciclo 10 y 11 se logró disminuir el TRH tanto para la fase aerobia (de 2 d a 1d) como para la fase anóxica (de 5 d a 3 d). Durante estos ciclos se incrementaron los porcentajes de remoción de $N-NH_4^+$, de $N-NO_3^-$ y $N-NO_2^-$.

Del ciclo 12 al 17, el TRH de la fase aerobia no cambió (1 d); sin embargo, el TRH de la fase anóxica disminuyó (de 3 d a 2 d). Durante estos ciclos se observó un comportamiento diferente respecto a los ciclos anteriores, al final de la fase aerobia se presentó una disminución de N-NO₃⁻ y un incremento de N-NO₂⁻.

Del ciclo 18 al ciclo 22, el TRH en la fase aerobia permaneció en 1 d; sin embargo, el TRH en la fase anóxica disminuyó (de 2 d a 1 d) así como el porcentaje de remoción del $N-NH_4^+$. Durante estos ciclos se observó por primera vez una menor concentración de $N-NO_3^-$ que de $N-NO_2^-$.

En el ciclo 23 y hasta el ciclo 44 el TRH de la fase aerobia disminuyó (24 h a 8 h) y la fase anóxica (24 h a 16 h). Al transcurrir los ciclos se observó un incremento en la remoción del N-NH₄⁺; sin embargo, al mismo tiempo se observó una acumulación de N-NO₃⁻ y N-NO₂⁻ obteniendo porcentajes de remoción por debajo del 70 %, se verificaron si los parámetros de T, alcalinidad, OD y pH afectaban esta disminución de remoción de N-NO₃⁻ y de N-NO₂⁻, verificando que éstos se encontraban dentro de las recomendaciones (tabla 3.3). Se optó por mejorar la remoción de los N-NO₃⁻ y N-NO₂⁻ modificando los TRH en los ciclos posteriores.

Con el fin de mantener un TRH total de 1d y al mismo tiempo aumentar el porcentaje de remoción de N-NO₃⁻ y N-NO₂⁻, se incrementó el TRH de la fase anóxica (de 16 h a 18 h) ya que desde el ciclo 31 al 44 el porcentaje de remoción del N-NH₄⁺ era >90%, se cambió el TRH para la fase aerobia de 8 h a 6 h, logrando mantener el TRH global en 1 d. Con estos cambios se aumentó la remoción de los N-NO₃⁻ y los N-NO₂⁻.

Del ciclo 67 al ciclo 77 el SBR se estabilizó, permaneciendo constante su TRH (1d) y logrando una remoción mayor al 90% para el $N-NH_4^+$, $N-NO_3^-$ y $N-NO_2^-$, debido a éste comportamiento se realizó un estudio de cinética de remoción en el ciclo 78 y en el ciclo 85 (ver sección 4.2). En el ciclo 78 se observó que el TRH de la fase aerobia fue de 6 h; sin embargo, en la fase anóxica el TRH disminuyó

CAPITULO 4. RESULTADOS Y DISCUSIÓN

considerablemente (de 18 h a 6 h), debido a este cambio no esperado del ciclo 78, para el ciclo 79 y hasta el ciclo 85 se disminuyó el TRH, obteniendo el mismo TRH que el ciclo 78. Del ciclo 85 al ciclo 100 se monitoreó el SBR, dejando el TRH en 6 h para la fase aerobia y en 6 h para la fase anóxica, observando un comportamiento estable. Del ciclo 78 al ciclo 104, al final de la fase aerobia, se confirmó el comportamiento de una mayor producción N-NO₂⁻ que de N-NO₃⁻.

Figura 4. 1 Desempeño del reactor SBR en la etapa 1 – 100 mg L⁻¹ N-NH₄⁺. (\diamond) N-NH₄⁺ inicio ciclo, mg L⁻¹, (\blacksquare) N-NH₄⁺ final fase aerobia, mg L⁻¹, (\blacktriangle) N-NH₄⁺ final fase anóxica, mg L⁻¹, (\bullet) N-NH₄⁺ % de remoción.

Figura 4. 2 Desempeño del reactor SBR en la etapa $1 - N-NO_3^-$. (•) $N-NO_3^-$ inicio ciclo, mg L⁻¹, (•) $N-NO_3^-$ final fase aerobia, mg L⁻¹, (•) $N-NO_3^-$ final fase anóxica, mg L⁻¹, (•) $N-NO_3^-$ % de remoción.

Figura 4. 3. Desempeño del reactor SBR en la etapa $1 - N-NO_2^-$. (•) $N-NO_2^-$ inicio ciclo, mg L⁻¹, (•) $N-NO_2^-$ final fase aerobia, mg L⁻¹, (•) $N-NO_2^-$ final fase anóxica, mg L⁻¹, (•) $N-NO_2^-$ % de remoción.

Figura 4. 4. Desempeño del reactor SBR en la etapa 1 - TRH. (■) TRH fase aerobia, d, (▲) TRH fase anóxica, d, (●) TRH total, d.

Durante la etapa 1 se evaluaron los parámetros de control, observando que todos los valores se mantuvieron dentro de los recomendados (ver tabla 4.18). Los resultados promedio obtenidos durantes los diferentes ciclos de la etapa 1 se presentan en la tabla 4.4.

	Alcalin	idad pr	omedio	Т	T promedio			рН			OD		
Ciclo	mg	L ⁻¹ Ca(CO3	د ع			mg L⁻¹						
	I	Faer	Fanox	I	Faer	Fanox	I	Faer	Fanox	I	Faer	Fanox	
1- 5	600	438	383	25.9	25.4	24.8	7.7	7.8	7.5	5.3	5.1	0.3	
6-9	637.5	378.8	423.8	21.8	21.6	21.5	7.6	7.7	7.7	3.7	3.7	0.2	
10-11	650.0	377.5	422.5	21.5	22.0	21.5	7.7	7.8	7.8	3.6	3.6	0.3	
10-17	642.5	379.2	426.7	23.7	24.1	24.3	7.8	7.8	7.9	4.6	4.7	0.3	
18-22	627.0	352.0	407.0	22.2	22.2	22.2	7.9	7.9	7.9	4.6	4.8	0.3	
23-44	623.2	363.5	408.9	23.4	24.9	23.3	7.8	7.7	7.8	3.3	3.3	0.3	
45-66	617.8	417.2	454.3	22.3	24.8	22.3	7.7	7.6	7.6	3.2	3.1	0.3	
67-78	635.6	425.0	484.4	21.9	24.8	21.7	7.7	7.5	7.5	3.3	3.1	0.3	
79- 104	630.0	402.8	454.4	22.3	24.7	21.7	7.7	7.5	7.5	3.2	3.0	0.3	

Tabla 4. 4. Datos promedios de operación durante la etapa 1.

A* = Etapa de aclimatación, I= Influente, Faer = Final fase de nitrificación, Fanox= Final fase de desnitrificación.

4.1.2 Etapa 2 (ciclo 105 al 162), 150 mg L⁻¹ de N-NH₄⁺.

La etapa 2 dio inicio con un incremento en la concentración del N-NH₄⁺ de 100 mg L⁻¹ a 150 mg L⁻¹. La tabla 4.5 y tabla 4.6 muestran las concentraciones y los porcentajes de remoción obtenidos durante la etapa 2. En las figuras 4.5, 4.6, 4.7 y 4.8 se presentan el desempeño del SBR durante la etapa 2 (ciclo 105 al 162).

Ciclo	TRH, d	N-NH	$N-NH_4^+$ promedio, mg L ⁻¹						
CICIO	Faer		Faer	Fanox	% r				
105 -118	0.33	150.0	44.3	36.2	75.9				
119 – 120	0.29	151.0	10.0	3.0	98.0				
121 – 162	0.25	150.4	10.2	4.3	97.1				

Tabla 4. 5 Desempeño del SBR etapa 2 - N-NH₄⁺

I= Influente, Faer = Final fase de nitrificación, Fanox= Final fase de desnitrificación,

%r = Porcentaje de remoción.

Ciclo	TRH, d	N-N	O ₃ ⁻ pron	nedio, m	g L⁻¹	$N-NO_2^-$ promedio, mg L ⁻¹			
	Fanox	I	Faer	Fanox	%r	I	Faer	Fanox	% r
105 -118	0.17	1.8	16.3	3.3	79.7	3.7	60.8	8.2	86.5
119 - 120	0.21	4.4	4.8	1.9	60.4	11.2	77.0	13.3	82.8
121 - 162	0.25	2.2	29.3	0.7	96.1	4.4	79.4	2.7	96.6

Tabla 4. 6 Desempeño del SBR durante la etapa 2 – N-NO₃⁻ y N-NO₂⁻

I= Influente, Faer = Final fase de nitrificación, Fanox= Final fase de desnitrificación, %r = Porcentaje de remoción.

Del ciclo 105 al ciclo 118, el TRH para la nitrificación fue mayor que la etapa 1 (figura 4.8). Para mantener el TRH global en 0.5 d, pero al mismo tiempo darle mayor tiempo a la fase aerobia, se dio un menor TRH a la fase anóxica (6h a 4h) y uno mayor a la fase aerobia (6h a 8h), mejorando el porcentaje de remoción de N- NH_4^+ . Al final de la fase aerobia, se observó el mismo comportamiento de la etapa 1, obteniendo una mayor concentración de N- NO_2^- que N- NO_3^- , figuras 4.6 y 4.7.

En los ciclos 119 y 120 el TRH de la fase aerobia disminuyó, permitiendo aumentar 1 h a la fase anóxica, con el fin mejorar el porcentaje de remoción de los $N-NO_3^{-}$ y $N-NO_2^{-}$ y mantener el TRH global en 0.5 d. Se mejoró el porcentaje de remoción del $N-NH_4^{+}$ (figura 4.5). Sin embargo, la remoción de los $N-NO_2^{-}$ bajó, debido a una producción mayor de $N-NO_2^{-}$ que los ciclos anteriores. El porcentaje de remoción de los $N-NO_3^{-}$ pajó, debido a una producción mayor de $N-NO_2^{-}$ que los ciclos anteriores. El porcentaje de remoción de los $N-NO_3^{-}$ bajó, debido a una producción menor de $N-NO_3^{-}$ que los ciclos anteriores, figura 4.6.

Del ciclo 121 al ciclo 162, el TRH para la fase aerobia disminuyó, dando 1 h más a la etapa de desnitrificación e igualando el TRH de la etapa 2 con la etapa 1. Con ésto se logró mejorar el porcentaje de remoción de los $N-NO_3^-$ y los $N-NO_2^-$, figuras 4.6 y 4.7. El SBR se estabilizó a partir del ciclo 133, por lo que se realizó

un estudio de perfil de velocidad de remoción en el ciclo 141 y en el ciclo 151 (Ver sección 4.2).

Figura 4. 5 Desempeño del reactor SBR en la etapa 2 – N-NH₄⁺. (\diamond) N-NH₄⁺ inicio ciclo, mg L⁻¹, (\blacksquare) N-NH₄⁺ final fase aerobia, mg L⁻¹, (\blacktriangle) N-NH₄⁺ final fase anóxica, mg L⁻¹, (\diamond) N-NH₄⁺ % de remoción.

Figura 4. 6 Desempeño del reactor SBR en la etapa $2 - N-NO_3^-$. (•) $N-NO_3^-$ inicio ciclo, mg L⁻¹, (•) $N-NO_3^-$ final fase aerobia, mg L⁻¹, (•) $N-NO_3^-$ final fase anóxica, mg L⁻¹, (•) $N-NO_3^-$ % de remoción.

Figura 4. 7 Desempeño del reactor SBR en la etapa $1 - N-NO_2^-$. (•) $N-NO_2^-$ inicio ciclo, mg L⁻¹, (•) $N-NO_2^-$ final fase aerobia, mg L⁻¹, (•) $N-NO_2^-$ final fase anóxica, mg L⁻¹, (•) $N-NO_2^-$ % de remoción.

Figura 4. 8 Desempeño del reactor SBR en la etapa 1 - TRH. (■) TRH fase aerobia, d, (▲) TRH fase anóxica, d, (●) TRH total, d.

Para verificar una correcta nitrificación/ desnitrificación, se analizaron parámetros de control, comparándolos con valores recomendados (Tabla 4.18). Se observó que las condiciones presentadas en el SBR se situaron dentro de las recomendadas. Los datos promedios durante los diferentes ciclos de la etapa 2, se muestran en la tabla 4.7.

	Alcalinidad promedio			T promedio			рН			OD		
Ciclo	mg L ⁻¹ CaCO ₃			Ĵ						mg L ⁻¹		
	I	Faer	Fanox	I	Faer	Fanox	I	Faer	Fanox	1	Faer	Fanox
105- 118	754.2	289.6	385.4	19.1	23.3	19.1	8.1	7.6	7.7	3.3	3.0	0.4
119- 120	740.0	270.0	387.5	20.8	23.5	20.6	8.0	7.7	7.7	3.3	2.8	0.4
121- 162	727.3	226.4	345.0	20.3	24.4	20.9	8.0	7.6	7.6	3.3	2.9	0.3

Tabla 4. 7 Datos promedios de operación durante la etapa 2.

A* = Etapa de aclimatación, I= Influente, Faer = Final fase de nitrificación, Fanox= Final fase de desnitrificación.

4.1.3 Etapa 3 (ciclo 163 al 222), 200 mg L^{-1} de NH_4^+

La etapa 3 inició en el ciclo 163, incrementando la concentración de $N-NH_4^+$ de 150 mg L⁻¹ a 200 mg L⁻¹ (figura 4.9). La tabla 4.8 y 4.9 muestran las concentraciones y porcentajes de remoción obtenidos. En las figuras 4.9, 4.10, 4.11 y 4.12 se muestra el desempeño del SBR.

Tabla 4. 8 Desempeño del SBR etapa 3 - N-NH4+

Ciolo	TRH, d	N-NF	$N-NH_4^+$ promedio, mg L ⁻¹						
Cicio	Faer		Faer	Faer Fanox					
163 – 222	0.25	202.2	21.6	11.2	94.5				

I= Influente, Faer = Final fase de nitrificación, Fanox= Final fase de desnitrificación,

%r = Porcentaje de remoción.

Tabla 4. 9 Desempeño del SBR durante la etapa 3 – N-NO3⁻ y N-NO2⁻

Ciclo	TRH, d	N-N(O ₃ ⁻ prom	nedio, m	g L ⁻¹	N-NO2 ⁻ promedio, mg L ⁻¹			
	Fanox		Faer	Fanox	%r	<u> </u>	Faer	Fanox	% r
163 -222	0.25	2.8	53.3	1.8	96.6	3.8	90.3	2.0	97.8

I= Influente, Faer = Final fase de nitrificación, Fanox= Final fase de desnitrificación,

%r = Porcentaje de remoción.

Del ciclo 163 al 222, el TRH permaneció sin cambio respecto a la etapa 2, figura 4.12. Sin embargo, al inicio de la etapa 3 (ciclo 163), el porcentaje de remoción del N-NH₄⁺ disminuyó, posteriormente éste fue mejorando al transcurrir los ciclos, figura 4.9. A partir del ciclo 189, se obtuvieron porcentajes de remoción >90%, permaneciendo hasta el final de la etapa 3 (ciclo 222). Al final de la fase aerobia, los N-NO₃⁻ y N-NO₂⁻ aumentaron respecto a la etapa 2, obteniendo, una mayor producción de N-NO₂⁻ que de N-NO₃⁻, figuras 4.10 y 4.11. Sin embargo, a diferencia de la etapa 1 y la etapa 2, se observó una menor diferencia entre la concentración obtenida de N-NO₂⁻ y N-NO₃⁻.

Desde el ciclo 163 y hasta el ciclo 222, el porcentaje de remoción de $N-NO_2^-$ y NO_3^- fue > 90%, figuras 4.10 y 4.11. El SBR mostró un comportamiento estable del ciclo 189 al 205, por lo que se realizó un estudio del perfil de velocidad de remoción en el ciclo 207 y en el ciclo 219 (ver sección 4.2).

Figura 4. 9 Desempeño del reactor SBR en la etapa 3 – N-NH₄⁺. (\diamond) N-NH₄⁺ inicio ciclo, mg L⁻¹, (\bullet) N-NH₄⁺ final fase aerobia, mg L⁻¹, (\bullet) N-NH₄⁺ final fase anóxica, mg L⁻¹, (\bullet) N-NH₄⁺ % de remoción.

Figura 4. 10 Desempeño del reactor SBR en la etapa $3 - N-NO_3^-$. (•) $N-NO_3^-$ inicio ciclo, mg L⁻¹, (•) $N-NO_3^-$ final fase aerobia, mg L⁻¹, (•) $N-NO_3^-$ final fase anóxica, mg L⁻¹, (•) $N-NO_3^-$ % de remoción.

Figura 4. 11 Desempeño del reactor SBR en la etapa $1 - N-NO_2^-$. (•) $N-NO_2^-$ inicio ciclo, mg L⁻¹, (•) $N-NO_2^-$ final fase aerobia, mg L⁻¹, (•) $N-NO_2^-$ final fase anóxica, mg L⁻¹, (•) $N-NO_2^-$ % de remoción.

Figura 4. 12 Desempeño del reactor SBR en la etapa 1 - TRH.
(■) TRH fase aerobia, d , (▲) TRH fase anóxica, d, (●) TRH total, d.

Se analizaron los parámetros de control obtenidos en la etapa 3, comparándolos con los recomendados, manteniéndose dentro de los valores recomendados (tabla 4.10).

Tabla 4. 10. Datos promedios de operación durante la etapa 3.

Ciclo	Alcalinidad promedio mg L ⁻¹ CaCO ₃			T promedio ℃			рН			OD mg L ⁻¹		
	I	Faer	Fanox	I	Faer	Fanox	I	Faer	Fanox	I	Faer	Fanox
163- 222	839.2	271.4	315	18.4	23.1	20.8	8.4	7.4	7.8	3.7	3.2	0.4

A* = Etapa de aclimatación, I= Influente, Faer = Final fase de nitrificación, Fanox= Final fase de desnitrificación.

4.1.4 Etapa 4 (ciclo 223 al 278), 250 mg L⁻¹ de N-NH₄⁺

La etapa 4 inició con el ciclo 223 y terminó con el ciclo 278, incrementando la concentración del N-NH₄⁺, de 200 mg L⁻¹ a 250 mg L⁻¹. La tabla 4.11 y tabla 4.12 muestra las concentraciones y los porcentajes de remoción obtenidos. Los resultado obtenidos para los N-NO₃ y N-NO₂⁻ durante toda la etapa 4 se muestran en las figuras 4.13, 4.14, 4.15, 4.16.

Ciele	TRH, d	N-NF	l₄⁺ pro	medio, n	ng L ⁻¹
CICIO	Faer	I	Faer	Fanox	% r
223 – 278	0.25	251.4	35.4	24.4	90.3

Tabla 4. 11 Desempeño del SBR etapa 4 – N-NH4⁺

I= Influente, Faer = Final fase de nitrificación, Fanox= Final fase de desnitrificación, %r = Porcentaje de remoción.

Tabla 4. 12 Desempeño del SBR durante la etapa 4 – N-NO₃⁻ y N-NO₂⁻

Ciclo	TRH, d	N-N	O ₃ ⁻ pron	nedio, m	g L ⁻¹	N-N	O_2^- pror	nedio, m	ig L⁻¹
	Fanox	I	Faer	Fanox	%r		Faer	Fanox	% r
223 -278	0.25	3.7	66.7	1.2	98.1	1.8	59.5	1.2	98

I= Influente, Faer = Final fase de nitrificación, Fanox= Final fase de desnitrificación,

%r = Porcentaje de remoción.

En la etapa 4 el TRH fue el mismo que la etapa 3, figura 4.16. El porcentaje de remoción del N-NH₄⁺ fue aumentando al transcurrir los ciclos hasta ser mayor al 90% (ciclo 259). Al final de la fase aerobia se observó por primera vez, después de la etapa de aclimatación, una producción mayor de N-NO₃⁻ que de N-NO₂⁻, figura 4.14 y 4.15. Se observó que desde el primer ciclo de operación de la etapa 4 (ciclo 223) el porcentaje de remoción tanto para los N-NO₃⁻ como para los N-NO₂⁻ fue mayor al 95%. El SBR se estabilizó a partir del ciclo 259, por lo que se realizó un estudio de perfil de velocidad en el ciclo 273 y en el ciclo 277.

Figura 4. 13 Desempeño del reactor SBR en la etapa 4 – N-NH₄⁺. (\diamond) N-NH₄⁺ inicio ciclo, mg L⁻¹, (\blacksquare) N-NH₄⁺ final fase aerobia, mg L⁻¹, (\blacktriangle) N-NH₄⁺ final fase anóxica, mg L⁻¹, (\bullet) N-NH₄⁺ % de remoción.

Figura 4. 14 Desempeño del reactor SBR en la etapa 4 – N-NO₃⁻. (\bullet) N-NO₃⁻ inicio ciclo, mg L⁻¹, (\bullet) N-NO₃⁻ final fase aerobia, mg L⁻¹, (\bullet)N-NO₃⁻ final fase anóxica, mg L⁻¹, (\bullet)N-NO₃⁻ % de remoción.

Figura 4. 15 Desempeño del reactor SBR en la etapa $4 - N-NO_2^-$. (•) $N-NO_2^-$ inicio ciclo, mg L⁻¹, (•) $N-NO_2^-$ final fase aerobia, mg L⁻¹, (•) $N-NO_2^-$ final fase anóxica, mg L⁻¹, (•) $N-NO_2^-$ % de remoción.

Figura 4. 16 Desempeño del reactor SBR en la etapa 4 - TRH. (■) TRH fase aerobia, d, (▲) TRH fase anóxica, d, (●) TRH total, d.

Se monitorearon los parámetros básicos de control, comparándolos ciclo a ciclo con los parámetros recomendados (tabla 4.18), observando que se mantuvieron dentro de los recomendados. En la tabla 4.13 se muestran los datos promedios de los parámetros de control.

Ciala	Alcalin	idad pr	omedio	Т	prome	edio		pН			OD) -1	
CICIO	mg	L Cat	\mathcal{O}_3		U					ing L			
	I	I Faer Fanox			Faer	Fanox	I	Faer	Fanox	I	Faer	Fanox	
223- 278	1315 374 476.6		18 23.2 21.2		21.2	8.2 7.5 7		7.7	4.1	3.1	0.4		

Tabla 4. 13 Datos promedios de operación durante la etapa 4

A* = Etapa de aclimatación, I= Influente, Faer = Final fase de nitrificación, Fanox= Final fase de desnitrificación.

4.1.5 Etapa 5 (ciclo 279 al 329), 300 mg L⁻¹ de N-NH₄⁺

La etapa 5 de operación del SBR fue la última en ser evaluada, aumentando la concentración del influente de 250 mg L⁻¹ a 300 mg L⁻¹, iniciando en el ciclo 279 y finalizando en el ciclo 329. La tabla 4.14 y 4.15 muestran las concentraciones y porcentajes de remoción obtenidos. Los resultados obtenidos se presentan en las figuras 4.17, 4.18, 4.19 y 4.20.

Tabla 4. 14 Desempeño del SBR etapa 5 - N-NH4⁺

Ciele	TRH, d	N-NF	l ₄ + pro	medio, n	ng L ⁻¹
	Faer	aer I Faer		Fanox	% r
279 – 333	0.25	301.4	21.1	15.9	94.7

I= Influente, Faer = Final fase de nitrificación, Fanox= Final fase de desnitrificación, %r = Porcentaje de remoción.

Tabla 4. 15 Desempeño del SBR durante la etapa 5 - N-NO3⁻ y N-NO2⁻

Ciclo	TRH, d	N-N(O ₃ - prom	nedio, m	g L⁻¹	N-N	O_2^- pron	nedio, m	ng L ⁻¹
	Fanox		Faer	Fanox	%r		Faer	Fanox	% r
279 – 333	0.25	5.5	102	2.2	97.8	2.2	89.8	1.5	98.4

I= Influente, Faer = Final fase de nitrificación, Fanox= Final fase de desnitrificación,

%r = Porcentaje de remoción.

CAPITULO 4. RESULTADOS Y DISCUSIÓN

Al inicio de la etapa 5 (ciclo 279) disminuyó el porcentaje de remoción del N-NH₄⁺ respecto al último ciclo de la etapa 4, éste fue aumentando al transcurrir los ciclos, llegando a ser mayor al 95% a partir del ciclo 301, figura 4.17. El TRH fue igual al de la etapa etapa 4. La concentración de los N-NO₃⁻ fue mayor que los N-NO₂⁻, donde la diferencia fue mayor a la etapa 4, figura 4.18 y 4.19. El SBR se estabilizó a partir del ciclo 315, realizando un estudio de perfil de velocidad de remoción en el ciclo 323 y su réplica en el ciclo 329.

Figura 4. 17 Desempeño del reactor SBR en la etapa 5 – N-NH₄⁺. (•) N-NH₄⁺ inicio ciclo, mg L⁻¹, (•) N-NH₄⁺ final fase aerobia, mg L⁻¹, (•) N-NH₄⁺ (•) N-NH₄⁺ % de remoción.

Figura 4. 18 Desempeño del reactor SBR en la etapa 5 – N-NO₃⁻. (\diamond) N-NO₃⁻ inicio ciclo, mg L⁻¹, (\blacksquare) N-NO₃⁻ final fase aerobia, mg L⁻¹, (\blacktriangle)N-NO₃⁻ final fase anóxica, mg L⁻¹, (\bullet)N-NO₃⁻ % de remoción.

Figura 4. 19 Desempeño del reactor SBR en la etapa 5 – N-NO₂⁻. (\diamond) N-NO₂⁻ inicio ciclo, mg L⁻¹, (\blacksquare)N-NO₂⁻ final fase aerobia, mg L⁻¹, (\blacktriangle)N-NO₂⁻ final fase anóxica, mg L⁻¹, (\bullet) N-NO₂⁻ % de remoción.

Figura 4. 20 Desempeño del reactor SBR en la etapa 5 - TRH.(■) TRH fase aerobia, d, (▲) TRH fase anóxica, d, (●) TRH total, d.

Durante la etapa 5 se analizaron los parámetros de control, comparándolos con los recomendados, obteniendo que se encontraron dentro de los limites (tabla 4.18). Los datos promedios de la etapa 5, se muestran en la tabla 4.16.

Ciclo	Alcalin mg	idad pro L ⁻¹ Ca(omedio CO ₃	Т	prome °C	edio		рH		OD mg L ⁻¹			
J	I	Faer	Fanox	Ι	Faer	Fanox	I	Faer	Fanox	1	Faer	Fanox	
279- 333	1636	1636 515 626		21 25.4		23.5	8.3	7.4	7.6	4.4	3.3	0.4	

Tabla 4. 16 Datos	promedios (de o	peración	durante	la eta	pa 5.

A* = Etapa de aclimatación, I= Influente, Faer = Final fase de nitrificación, Fanox= Final fase de desnitrificación.

4.1.6 Evolución de la biomasa

El SBR fue inoculado con lodos activados (2200 mg L⁻¹ SST y 1600 mg L⁻¹ SSV); sin embargo, la biomasa no logró aclimatarse a la remoción de 100 mg L⁻¹ N-NH₄⁺, por lo que se reinoculó el SBR con una mezcla de lodos activados (1760 mg L⁻¹ SST y 1520 mg L⁻¹ SSV), provenientes de un sistema a escala laboratorio que trata agua de rastro y de la PTAR-IMTA, logrando que la biomasa se aclimatara a la remoción de 100 mg L⁻¹ N-NH₄⁺.

Se cuantificó la biopelícula del material de soporte, la figura 4.21 y la tabla 4.17 muestran el comportamiento de ST y SV en la parte superior, media e inferior del SBR. En el ciclo 1 se obtuvo una concentración de 0 mg L⁻¹ de ST y SV, debido a que el medio de soporte se encontraba limpio. La concentración de la biopelícula aumentó de manera proporcional al cambio de concentración de N-NH₄⁺; sin embargo, se presentó una mayor cantidad de biopelicula en la parte inferior, posteriormente en la parte media y una menor cantidad en la parte superior del SBR, figura 4.21. A pesar de las diferencias de la cantidad de biopelícula, estas no fueron mayores al 7.7%, por lo que se consideró tomar los valores promedios de las concentraciones de la biopelícula (figura 4.22).

Figura 4. 21. ST y SV en la parte superior, media e inferior del SBR.(\blacksquare)ST-superior , mg m⁻², (\blacksquare)SV-superior , mg m⁻², (\blacktriangle)ST-media , mg m⁻², (\blacktriangle)SV- media , mg m⁻², (\bullet)SV-inferior , mg m⁻², (\bullet)SV-inferior, mg m⁻²

N-NH/ ⁺	SBR - Part	e superior	SBR - Pa	arte media	SBR – Parte inferior			
mal^{-1}	ST mal ⁻¹	$SV mal^{-1}$	$ST mal^{-1}$	$SV mal^{-1}$	ST mal ⁻¹	$SV mal^{-1}$		
IIIg L	ST, IIIY L	SV, My L	ST, IIIY L	SV, IIIY L	ST, IIIY L	Sv, my L		
0	0	0	0	0	0	0		
100	6753	5037	7253	5105	7405	5174		
150	7137	5521	7416	5258	9390	5779		
200	9258	8911	9026	7274	14785	11600		
250	11863	9890	15569	12806	14942	12527		
300	17321	13574	17606	14232	17779 14706			

Tabla 4. 17. ST y SV durante la operación del SBR.

Figura 4. 22. ST y SV promedios durante la operación del SBR.

CAPITULO 4. RESULTADOS Y DISCUSIÓN =

De la etapa I a la II se observó un incremento de 10.5 % para ST y 7.5 % para SV. De la etapa II a la III, el incremento fue de 27.6% ST y 40.4%. De la etapa III a la IV, los ST y SV incrementaron en un 22% y 21.1%, respectivamente. Finalmente de la etapa IV a la V el incremento fue de 19.6% ST y 17.1% SV. En la etapa II fue donde se formó menos biopelícula, en las etapas III y IV fue donde se formó más biopelícula y en la etapa V la formación de la biopelicula disminuyó.

4.1.7 Evaluación y discusión del SBR aerobio/anóxico, durante todas las etapas de operación

La tabla 4.18 resume los valores promedios obtenidos durante toda la operación del SBR. Los resultados analíticos completos se encuentran en el anexo 1. La figura 4.23 muestra el desempeño del SBR durante toda su operación.

La hipótesis de éste proyecto fue el evaluar el SBR aerobio/anóxico, donde se puede obtener una remoción de N-NH₄⁺ de por lo menos 70% por medio de una etapa aerobia/anóxica sin inhibición de las transformaciones de nitrógeno, aún operando con concentraciones reportadas como inhibitorias del proceso de nitrificación. Los resultados de la tabla 4.18 y la figura 4.21 muestran que los porcentajes de remoción fueron mayores al 70%, para confirmar estas condiciones se realizó un análisis estadístico de Weibull (con 95% de confiabilidad), obteniendo que $R_{N-NH4+total}(70\%) = 0.991$ (solamente el 0.8% de los ciclos no presentan el 70% de remoción), $R_{N-NO3-}(70\%) = 0.968$ (solamente el 3.1% de los ciclos no presentan el 70% de remoción), $R_{N-NO2-}(70\%) = 0.985$ (solamente el 1.5% de los ciclos no presentan el 70% de remoción). Así bien la hipótesis de obtener fue aceptada (para mas detalles ver anexo A.1.2)

En la tabla 4.18 y la figura 4.23 se observa que con una concentración de 100 a 200 mg L⁻¹ N-NH₄⁺ se obtuvo una mayor producción de N-NO₂⁻ que de N-NO₃⁻; sin embargo, con concentraciones 250 a 300 mg L⁻¹ N-NH₄⁺ la producción de N-NO₃⁻ fue mayor que la de N-NO₂⁻. Con el fin de explicar este fenómeno se realizó una revisión bibliografía de los procesos de nitrificación y desnitrificación.

Etapa	Ciclo	TR	H, d	N-NH	H₄ ⁺ proi	medio (m	g L⁻¹)	N-NO ₃ ⁻ promedio (mg L ⁻¹)				N-N	O ₂ ⁻ pror	nedio (mo	g L⁻¹) ∣	T promedio, ℃			OD promedio, °C		
		Aer	Anox	I	Faer	Fanox	I	- I -	Faer	Fanox	%r		Faer	Fanox	%r	I	Faer	Fanox	1	Faer	Fanox
A	1 al 5	3	4	104.4	33.6	30.4	70.9	23.2	111.6	30.4	72.8	18.3	38.9	11.3	70.6	25.9	25.4	24.8	5.3	5.1	0.3
*	6 al 66	2 - 0.25	5- 0.75- 0.25	101.4	15.6	9.2	91.0	6.9	39.2	7.6	81.2	5.6	40.0	6.4	85.4	22.5	23.3	22.5	3.8	3.9	0.3
1	67 al 104	0.25	0.75– 0.25	101.0	19.4	0.5	99.5	2.0	24.8	0.6	97.1	0.4	47.4	0.4	99.2	22.1	24.8	21.7	3.3	3.0	0.3
2	105 al 162	0.33 - 0.25	0.17- 0.25	150.3	20.5	13.8	90.8	2.2	24.2	1.5	89.4	4.5	73.7	4.9	92.8	22	24.2	22	3.3	2.9	0.3
3	163 al 222	0.25	0.25	202.2	21.6	11.2	94.5	2.8	52.8	1.8	96.6	3.8	90.3	2.0	97.8	18.4	23.1	20.8	3.7	3.2	0.4
4	223 al 278	0.25	0.25	251.4	35.4	24.4	90.3	3.7	66.7	1.2	98.1	1.8	59.5	1.2	98.0	18	23.2	21.2	4.1	3.1	0.4
5	279 al 333	0.25	0.25	301.4	21.1	15.9	94.7	5.5	102.0	2.2	97.8	2.2	89.8	1.5	98.4	20.8	25.4	23.5	4.4	3.3	0.4

Table 110 Decembraño			o o robio /oro ávio o	duranta tadaa	las stans		اماما	000
Tabla 4. To Desempend	del reactor	SDK	aeropio/arroxico,	uurante touas	ias elapa	is de operación	i uei	SDK

I= Influente, Faer = Final fase de nitrificación, Fanox= Final fase de desnitrificación, Aer= Fase aerobia, Anox= Fase anóxica, %r = porcentaje de remoción.

Figura 4. 23 Desempeño del reactor durante todas las etapas del proceso de nitrificación y desnitrificación. (\blacktriangle) N-NH₄⁺ inicio ciclo, mg L⁻¹, (\blacktriangle) N-NH₄⁺ final fase aerobia, mg L⁻¹, (\bigtriangleup) N-NH₄⁺ final fase aerobia, mg L⁻¹, (\blacksquare) NO₃⁻ final fase aerobia, mg L⁻¹, (\square) NO₃⁻ final fase anóxica, mg L⁻¹, (\bullet) NO₂⁻ final fase aerobia, mg L⁻¹, (\bigcirc) NO₂⁻ final fase anóxica, mg L⁻¹.

			Eta	pa 1	Et	apa 2	Etap	ba 3	Eta	pa 4	Etap	ba 5
			(100	mg L ⁻¹	(150 r	ng L ⁻¹ N-	(200 r	ng L ⁻¹	(250 ו	mg L ⁻¹	(300 mg	g L ⁻¹ N-
F aaa	Derámetres	Valores	N-N	$ H_4^+)$	Ν	$ H_4^+)$	N-N	$H_4^+)$	N-N	H ₄ ⁺)	NH	4 ⁺)
Fase	Parametros	recomendados	Valoi	es de	Valo	ores de	Valor	es de	Valor	es de	Valore	es de
			oper	ación	ope	ración	opera	ación	oper	ación	opera	ación
			Min	Max	Min	Max	Min	Max	Min	Max	Min	Max
	Temperatura	15 0 28	10.0		10.5	25.2	10.0	0E 4	10.0	25.60	10.2	26.6
	C	15 8 36	19.0	28	10.5	25.2	10.0	25.4	10.2	25.60	19.3	20.0
ión	рН	7.5 a 8.5	7.5	8.10	7.51	8.12	7.22	8.49	7.28	8.33	7.26	8.37
licac	Alcalinidad total	> 50	300	675	200	762 5	200	870	320	1360	440	1700
Nitri	Micalinidad total mg L ⁻¹ CaCO ₃ OD,	2 30	300	075	200	102.5	200	070	520	1500	440	1700
_		> 2.1		5 5	2 66	2 40	2.01	4 22	2.01	1 26	2 11	1 5 1
	mg L ⁻¹	2.1	2.91	5.5	2.00	5.49	5.01	4.22	2.91	4.20	5.11	4.51
	Temperatura,	5 a 25	19.7	26	18 7	22.7	18.3	23.1	17 70	23.7	22.2	24.6
ç	C	0 4 20	10.7	20	10.7	22.1	10.0	20.1	11.10	20.7	22.2	24.0
ació	pН	7.0 a 8	7.18	8.0	7.59	7.74	7.69	7.85	7.41	8.01	7.51	7.78
trific	ORP,	-100 a 100	-98	44	-81	72	-58	92	-98	16	-60	97
esni	mv		50		01	12	00	52	50	10	00	57
Ō	OD	<1	0.18	0 42	0.28	0.43	0 29	0 42	0.31	0 41	0.27	0.41
	mg L ⁻¹		0.10	0.72	0.20	0.40	0.20	0.72	0.01	0.71	0.21	0.71

Tabla 4. 19. Comparación entre valores recomendados y de operación, obtenidos durante el monitoreo del SBR.

CAPITULO 4. RESULTADOS Y DISCUSIÓN =

Uno de los procesos revisados fue la nitrificación y desnitrificación vía N-NO₂⁻, ya que este proceso concordó con este sistema experimental. Se realizó una revisión de artículos (tabla 4.20), encontrando que los factores importantes que influyen para tener una nitrificación parcial son la concentración baja de OD, T alta, concentraciones altas de sustrato entre otros (Guo *et al.*, 2010; Vázquez-Padín et al, 2010; Garzón-Zúñiga, 2005).

Se revisaron los datos de T del sistema experimental (tabla 4.18), encontrando que se mantuvieron dentro de los recomendados (tabla 4.19). Zhu *et al*, 2008 mencionan que a 20°C el crecimiento de las bacteria s oxidativas de N-NH₄⁺ presentan una mayor velocidad específica de crecimiento que la de las bacterias oxidativas de N-NO₂⁻, mientras que a 15°C la velocidad específica de cr ecimiento de bacterias oxidativas de N-NH₄⁺ es menor que la de las bacterias oxidativas de N-NO₂⁻ (figura 2.11). Sin embargo, Guo *et al.*, 2010 utilizaron un SBR aerobio donde estudiaron el efecto de la T respecto a la nitrificación parcial, utilizaron un rango de T de 18 a 25°C y de 12 a 17°C, concluyendo que si la temperatura decrece gradualmente, se puede llevar acabo una nitrificación a bajas temperaturas. Con base a lo anterior, se observa que el rango de T utilizada para el SBR fue de 16.2°C – 28°C, por lo que la T fue I a apropiada para llevar acabo una nitrificación parcial a N-NO₂⁻.

Al realizar la búsqueda bibliográfica se encontraron artículos que relacionan los SBR con el pH y ORP, encontrando que se utilizan como una estrategia de operación del SBR y que no tienen que ver con el llevar acabo una nitrificación parcial. Shu-ying et al., 2004, realizaron un estudio en un SBR utilizando una estrategia de operación monitoreando en línea el pH y el ORP para controlar la nitrificación vía N-NO₂⁻. Al comparar el comportamiento del pH y ORP en su sistema con el sistema, se encontró que el comportamiento entre sus valores y los aquí obtenidos fueron similares, con la diferencia de que a pesar de que su sistema experimental presentó un menor TRH (7.6 h), aquí se trató una mayor concentración de N-NH₄⁺ utilizando una menor cantidad de fuente de carbono.

CAPITULO 4. RESULTADOS Y DISCUSIÓN =

El OD es un parametro importante para realizar una nitrificación parcial. Se han reportado diferentes concentraciones de OD para una nitrificación parcial (0.3 a 2.5 mg L⁻¹), esto es importante ya que las NOB requieren una mayor concentración de OD que las AOB (Zhu et al, 2008). Rodriguez et al., 2011, monitorearon un SBR a escala piloto con dos tipos de influentes procedentes de una procesadora de carne. El SBR fue monitoreado y evaluado bajo diferentes cargas orgánicas y concentraciones de $N-NH_4^+$. Utilizaron diferentes concentraciones de OD (1.10 mg L^{-1} a 3.90 mg L^{-1}), obteniendo el mejor resultado de remoción de N-NH₄⁺ con 3.9 mg L⁻¹ OD, produciéndose 115 mg L⁻¹ N-NO₃⁻ y 35 mg L^{-1} N-NO₂⁻¹, así también encontraron que al utilizar 1.1mg L^{-1} y 1.3 mg L^{-1} OD la concentración de N-NO₂⁻ fue mayor que la de N-NO₃. Vázquez-Padín et al. (2010), utilizaron un SBR aerobio variando el OD (de 2 a 30 mg L⁻¹), mencionan que es importante maximizar el área superficial de la biopelicula para maximizar la capacidad del reactor, pero que para lograr una nitrificación parcial el OD es el factor más importante. Al utilizar una concentración de 2.6 a 3.0 mg L⁻¹ de OD lograron una remoción del 50% de N-NH4⁺ y una producción de 50% de N-NO2⁻ y 0 % de N-NO3⁻, al utilizar una mayor concentración de OD los N-NO2⁻ comenzaron a disminuir y los N-NO₃⁻ a incrementarse.

En este estudio el OD promedio (al inicio de la fase aerobia) de las etapas I a la III fue < 4 mg L⁻¹ donde se obtuvo una mayor concentración de N-NO₂⁻ que de N-NO₃⁻, posteriormente para las etapas IV y V el OD promedio (al inicio de la fase aerobia) fue >4 mg L⁻¹, obteniendo una mayor concentración de N-NO₃⁻ que de N-NO₂⁻ (tabla 4.18). El incremento de OD (etapas IV y V) fue proporcional al incremento de N-NH₄⁺, requiriendo estequiométricamente una mayor concentración de OD para remover al menos el 70% de N-NH₄⁺. Con lo anterior y en concordancia con los estudios realizados por Vázquez-Padín *et al*, 2010, se puede decir que en éste experimento el OD fue un factor importante que influyó de manera directa en la nitrificación vía N-NO₂⁻.

Autor	Siste ma	TR	₹H, h	N⊦ _(mg	l₄ ⁺ L⁻¹)	NC (mg) ₃ - L ⁻¹)	N((mg	O₂ ⁻ L ⁻¹)		pН		(m	DD g L ⁻¹)	Т,	°C	DQO (mg L ⁻¹)	SSV	0 n	RP าV
		Aer	Anox	Ι	%r	Faer	%r	Faer	%r		Aer	Anox	Aer	Anox	Aer	Anox			Aer	Anox
Presente trabajo	SBR aer- anóx	6	6	100 - 300	>90	24.2 - 102	93. 4	40 - 90.3	95.3	8	7.5	7.7	3.7	0.33	22.9	22.4	201.2 - 401	16676 mg m ⁻²	207	-98
Shiu-yin <i>et al.,</i> 2004	SBR aer- anòx aer- anòx	5.5	1.5	55 - 57	>90	10 y 10	>90	13 y 18	>90	6.3*	6.3* 7.2*				28±	1°C	300 - 350		70	-180
Vazquez -Padín	SBR	2		100	93	22%		71%		7	0 E		8		10	24		6000		
<i>et al</i> , 2010.	Aer	3		100	50	0		50%		/-	0.0		2.6- 3		10	-24		mg L ⁻¹		
Rodrigu	SBR aer-	0.1 3	0.25	580	74	445*		05*		7.4		7 75			00	400	1381 ±	1000		
ez D. et al., 2011	anòx aer- anòx	Tota	al= 8 h	*	/1	115*	>99	35*	>99	7.4	7.4 6.3		3.9 0.3		28±1℃		484	mg L ⁻¹		

Tabla 4. 20. Comparación del SBR aerobio/anóxico en este estudio con otros trabajos realizados.

I= Influente, Faer = Final fase de nitrificación, Fanox= Final fase de desnitrificación, Aer= Fase aerobia, Anox= Fase anóxica, %r = porcentaje de remoción, *= valor tomado de graficas.

4.2 Cinética de remoción

Se realizaron perfiles cinéticos de remoción en cada una de las etapas de operación del SBR (una vez que el reactor se estabilizó a la concentración de N-NH₄⁺). Los parámetros analizados fueron: N-NH₄⁺, N-NO₃⁻ y N-NO₂⁻, así como T, pH, OD, ORP, conductividad y alcalinidad. Los datos completos se pueden ver en el anexo I.

4.2.1 Etapa 1, 100 mg L⁻¹

En la etapa 1 se realizaron perfiles cinéticos de remoción en el ciclo 78 y 85. Los porcentajes de remoción y sus etapas en las que se llevó acabo la nitrificación y la desnitrificación se muestran en las tablas 4.21, 4.22 y 4.23. La cinética de remoción del ciclo 78 se muestra en la figura 4.24-a y la del ciclo 85 en la figura 4.25-a.

Se observó que el comportamiento del ciclo 78 y el ciclo 85 fue igual respecto al número de etapas requeridas para la nitrificación y para la desnitrificación. Se obtuvo una remoción de N-NH₄⁺ en tres etapas (figura 4.24–b y 4.25-b), con una mayor producción de N-NO₂⁻ que de N-NO₃⁻ (figura 4.24–c y 4.25-c). La formación de N-NO₂⁻ ocurrió en una etapa y para los N-NO₃⁻ en dos etapas. La remoción de N-NO₂⁻ y N-NO₃⁻ se presentó en tres etapas.

Tabla 4. 21. Cinética de remoción, N-NH₄⁺ - Etapa 1.

TRH,	Etapa	Ciclo 78, N-NH ₄ ⁺		Ciclo 85, N-NH ₄ ⁺	
h	remoción	mg L ⁻¹	% r	mg L⁻¹	%r
Inicio	0	103	0	104	0
0 – 1	1	53	48.54	60	42.31
1 – 6	2	20	80.58	20	80.77
6-12	3	10	90.29	6	94.23

[%]r = porcentaje de remoción

TRH,	Etapa	Ciclo 78, N-NO ₃		Ciclo 85, N-NO ₃	
h	formación	mg L ⁻¹	% f	mg L^{-1}	%f
Inicio	0	2.2	0	2	0
0-3	1	3.2	3.88	3.7	5.67
3-6	2	28	100	32	100
	Etapa remoción	mg L⁻¹	%r	mg L ⁻¹	%f
6-7	1	5.6	80	11.7	63.44
7-12	2	1	96.43	1	96.88

Tabla 4. 22 Cinética de remoción, N-NO3⁻ - Etapa 1.

%r = porcentaje de remoción, %f = porcentaje de formación.

Tabla 4. 2	23 Cinética	de remoción,	$N-NO_2^{-1}$	- Etapa 1.
------------	-------------	--------------	---------------	------------

TRH,	Etapa	Ciclo 78, N-NO ₂ ⁻		Ciclo 85, N-NO ₂ ⁻	
h	formación	mg L ⁻¹	% f	mg L^{-1}	%f
Inicio	0	0	0	0	0
0-6	1	46.41	100	49.47	100
	Etapa remoción	mg L⁻¹	%r	mg L⁻¹	%r
6-7	1	4.59	90.11	5.10	89.69
7-12	2	1.53	96.7	0.01	97.98

%r = porcentaje de remoción, %f = porcentaje de formación.

Figura 4. 24. Estudio cinético de remoción, ciclo 79 - etapa 1. (\blacksquare) N-NH₄⁺, mg L⁻¹, (\blacktriangle) N-NO₃⁻, mg L⁻¹, (\bullet) N-NO₂⁻, mgL⁻¹.

Figura 4. 25 Estudio cinético de remoción, ciclo 85 - etapa 1. (\blacksquare) N-NH₄⁺, mg L⁻¹, (\blacktriangle) N-NO₃⁻, mg L⁻¹, (\bullet) N-NO₂⁻, mgL⁻¹.

89
4.2.2 Etapa 2, 150 mg L⁻¹

En la etapa 2 se realizaron los perfiles cinéticos de remoción en los ciclos 141 y 151, con el fin de comprobar el comportamiento del SBR con 150 mg L⁻¹ N-NH₄⁺. Los porcentajes de remoción y las etapas en las que se llevó acabo la nitrificación y la desnitrificación se muestran en las tablas 4.24, 4.25 y 4.26. Las figuras 4.26-a y 4.27-a muestran los resultados de N-NH₄⁺, N-NO₃⁻ y N-NO₂⁻ para el ciclo 141 y 151.

Como resultado se observó un comportamiento similar entre el ciclo 141 y 151. La remoción de $N-NH_4^+$ se presentó en cuatro etapas (figura 4.26-b y 4.27-b). La formación de $N-NO_3^-$ y $N-NO_2^-$ se llevó acabo en dos etapas, y su remoción en dos etapas para los $N-NO_3^-$ y tres etapas para los $N-NO_2^-$ (figuras 4.26-c y 4.27-c).

TRH,	Etapa remoción	Ciclo 141, N- NH4 ⁺		Ciclo 151, N-NH ₄ ⁺	
		mg L^{-1}	% r	$mg L^{-1}$	%r
Inicio	0	151	0	153	0
0-1	1	93	38.41	94	38.56
2-5	2	18	88.08	12	92.16
5-6	3	11	92.72	9	94.12
6-12	4	1	99.34	0.3	99.8

Tabla 4. 24 Cinética de remoción, $N-NH_4^+$ - Etapa 2.

%r = porcentaje de remoción

TRH,	Etapa	Ciclo141 N-NO ₃ ⁻		Ciclo 151, N-NO ₃ ⁻	
h	formación	mg L ⁻¹	% f	$mg L^{-1}$	%f
Inicio	0	1.7	0	4.1	0
0-2	1	2.5	1.99	6.2	4.94
2-6	2	42	100	46.6	100
	Etapa remoción	mg L⁻¹	%r	mg L ⁻¹	%f
6-7	1	0.6	98.57	6	87.12
7-12	2	0.1	99.76	0.1	100

Tabla 4. 25 Cinética de remoción, N-NO3⁻ - Etapa 2.

%r = porcentaje de remoción, %f = porcentaje de formación.

Tabla 4. 26 Cinética de remoción, N-NO2⁻ - Etapa 2.

TRH,	Etapa	Ciclo 14	1, N-NO ₂	Ciclo 151,	N-NO ₂ ⁻
h	formación	mg L ⁻¹	% f	mg L⁻¹	%f
Inicio	0	2.7	0	4.8	0
0-5	1	72.3	94.31	78	95.47
5-6	2	76.5	100	82.2	100
	Etapa remoción	mg L⁻¹	%r	mg L⁻¹	%r
6-7	1	12.1	84.1	9.3	88.69
7-8	2	1.2	98.43	1.8	97.81
8-12	3	0.03	99.96	0.03	99.96

%r = porcentaje de remoción, %f = porcentaje de formación.

Figura 4. 26. Estudio cinético de remoción, ciclo 141 - etapa 2. (**a**) N-NH₄⁺, mg L⁻¹, (**a**) N-NO₃⁻, mg L⁻¹, (**•**) N-NO₂⁻, mgL⁻¹.

Figura 4. 27. Estudio cinético de remoción, ciclo 151 - etapa 2. (\blacksquare) N-NH₄⁺, mg L⁻¹, (\blacktriangle) N-NO₃⁻, mg L⁻¹, (\bullet) N-NO₂⁻, mgL⁻¹.

4.2.3 Etapa 3, 200 mg L⁻¹

En la etapa 3, se realizaron cinéticas de remoción al ciclo 207 y 219, para evaluar el comportamiento del SBR con una concentración de 200 mg L⁻¹ N-NH₄⁺. Los porcentajes de remoción y sus etapas en las que se llevó acabo la nitrificación y la desnitrificación se muestran en las tablas 4.27, 4.28 y 4.29. Las figuras 4.28-a y 4.29-a, muestran los resultados obtenidos para N-NH₄⁺, N-NO₃⁻ y N-NO₂⁻.

La remoción del N-NH₄⁺ se llevó a cabo en tres etapas (figura 4.28-b y 4.29-b). Los N-NO₃⁻ se formaron en cinco etapas y fueron removidos en cuatro etapas, los N-NO₂⁻ se formaron en seis etapas y fueron removidos en dos etapas (figura 4.28-c y 4.29-c).

TRH,	Etapa	Ciclo 207, N-NH ₄ ⁺		Ciclo 219,	N-NH ₄ ⁺
h	remoción	mg L ⁻¹	% r	mg L ⁻¹	%r
Inicio	0	204	0	204	0
0-1	1	115	43.63	107	47.55
2-6	2	7	96.57	10	95.10
6-12	3	1.2	99.41	1.1	99.46

Tabla 4. 27 Cinética de remoción, N-NH₄⁺ - Etapa 3.

%r = porcentaje de remoción

TRH,	Etapa	Ciclo 20 [°]	7 N-NO3 ⁻	Ciclo 219, N-NO ₃	
h	formación	mg L ⁻¹	% f	mg L ⁻¹	%f
Inicio	0	3.5	0	4.2	0
0-1	1	4.1	1.1	5.3	2.04
1-2	2	26	41.74	26.1	40.71
2-3	3	31.4	51.76	31.2	50.19
3-4	4	53.4	92.58	50.3	85.69
4-6	5	57.4	100	58	100
	Etapa remoción	mg L⁻¹	%r	mg L ⁻¹	%r
6-7	1	42	26.83	38.6	33.45
7-8	2	8.6	85.02	12.6	78.28
8-9	3	1	98.26	2.4	95.86
9-12	4	0.7	98.78	0.7	98.79

Tabla 4. 28 Cinética de remoción, N-NO3⁻ - Etapa 3.

%r = porcentaje de remoción, %f = porcentaje de formación.

TRH,	Etapa	Ciclo 20	7, N-NO ₂ -	Ciclo 219, N-NO ₂	
h	formación	mg L ⁻¹	% f	mg L ⁻¹	%f
Inicio	0	3.3	0	2.7	0
0-1	1	14.4	13.39	19.8	20
1-2	2	36.5	40.05	46.6	51.35
2-3	3	49.2	55.37	59	65.85
3-4	4	72	82.87	79.2	89.47
4-5	5	86.2	100	88.2	100
5-6	6	86.2	100	88.2	100
	Etapa remoción	mg L⁻¹	%r	mg L ⁻¹	%r
6-8	1	4.8	94.43	5.7	93.54
8-12	2	0.6	99.3	0.3	99.66

Tabla 4. 29 Cinética de remoción, N-NO2⁻ - Etapa 3.

%r = porcentaje de remoción, %f = porcentaje de formación.

Figura 4. 28 Estudio cinético de remoción, ciclo 207 - etapa 3. (\blacksquare) N-NH₄⁺, mg L⁻¹, (\blacktriangle) N-NO₃⁻, mg L⁻¹, (\bullet) N-NO₂⁻, mgL⁻¹.

Figura 4. 29. Estudio cinético de remoción, ciclo 219 - etapa 3. (\blacksquare) N-NH₄⁺, mg L⁻¹, (\blacktriangle) N-NO₃⁻, mg L⁻¹, (\bullet) N-NO₂⁻, mgL⁻¹.

4.2.4 Etapa 4, 250 mg L⁻¹

En la etapa 4 se realizaron perfiles cinéticos de remoción para los ciclos 273 y 277, con el propósito de evaluar el comportamiento del SBR en un ciclo tratando una concentración de 250 mg L⁻¹ N-NH₄⁺. Los porcentajes de remoción y las etapas en las que se llevó acabo la nitrificación y la desnitrificación se muestran en las tablas 4.30, 4.31 y 4.32. Las figuras 4.30-a y 4.31-a, muestran los resultados obtenidos para N-NH₄⁺, N-NO₃⁻ y N-NO₂⁻.

Se observó una remoción del N-NH₄⁺ en siete etapas (Figura 4.30-b y 4.31-b). La formación de los N-NO₃⁻ y N-NO₂⁻ se presentaron en cinco y cuatro etapas, respectivamente. Los N-NO₃⁻ y N-NO₂⁻ fueron removidos en dos etapas cada uno.

TRH,	Etapa	Ciclo 273, N-NH ₄ ⁺		Ciclo 277,	$N-NH_4^+$
h	remoción	mg L ⁻¹	% r	mg L ⁻¹	%r
Inicio	0	255	0	253	0
0-1	1	112	58.08	116	54.15
1-2	2	91	64.31	92	63.64
2-3	3	76	70.2	77	69.57
3-4	4	52	79.61	48	81.03
4-5	5	37	85.49	35	86.17
5-6	6	16	93.73	16	93.68
6-12	7	5	98.04	7	97.23

Tabla 4. 30. Cinética de remoción, N-NH₄⁺ - Etapa 4.

%r = porcentaje de remoción

TRH,	Etapa	Ciclo 273 N-NO3 ⁻		Ciclo 277, N-NO ₃ ⁻	
h	formación	mg L ⁻¹	% f	mg L⁻¹	%f
Inicio	0	3.3	0	3.9	0
0-1	1	27.3	33.38	27.8	32.69
1-2	2	42	53.82	40.4	49.93
2-3	3	62.1	81.78	64.6	83.04
3-5	4	63.2	83.31	66.2	85.23
5-6	5	75.2	100	77	100
	Etapa	mg L ⁻¹	%r	mg L ⁻¹	%r
	Temoción				
6-7	1	4	94.68	5.8	92.47
7-12	2	0.8	98.94	0.9	98.83

Tabla 4. 31. Cinética de remoción, N-NO3⁻ - Etapa 4.

%r = porcentaje de remoción, %f = porcentaje de formación.

Tabla 4. 32. Cinética de remoción, N-NO2⁻ - Etapa 4.

TRH,	Etapa	Ciclo 27	3, N-NO ₂	Ciclo 277,	N-NO ₂
h	formación	mg L ⁻¹	% f	mg L ⁻¹	%f
Inicio	0	1.8	0	1.5	0
0-1	1	20.4	28.62	16.5	22.83
1-3	2	33.2	48.31	30.8	44.6
3-4	3	58	86.46	56.4	83.56
4-6	4	66.8	100	67.2	100
	Etapa remoción	Mg L⁻¹	%r	mg L ⁻¹	%f
6-7	1	3	95.51	2.4	96.2
7-12	2	0.6	99.1	0.6	99.11

%r = porcentaje de remoción, %f = porcentaje de formación.

Figura 4. 30. Estudio cinético de remoción, ciclo 273 - etapa 4. (\blacksquare) N-NH₄⁺, mg L⁻¹, (\blacktriangle) N-NO₃⁻, mg L⁻¹, (\bullet) N-NO₂⁻, mgL⁻¹.

b)

Figura 4. 31. Estudio cinético de remoción, ciclo 277 - etapa 4. (\blacksquare) N-NH₄⁺, mg L⁻¹, (\blacktriangle) N-NO₃⁻, mg L⁻¹, (\bullet) N-NO₂⁻, mgL⁻¹.

4.2.5 Etapa 5, 300 mg L⁻¹

Se realizaron estudios cinéticos de remoción en los ciclos 323 y 329, con una concentración de 300 mg L⁻¹, con el objetivo de evaluar el comportamiento del SBR en la etapa de operación 5. Los porcentajes de remoción y sus etapas en las que se efectuaron la nitrificación y la desnitrificación se muestran en las tablas 4.33, 4.34 y 4.35. Las figuras 4.32-a y 4.33-a, presentan los resultados obtenidos para N-NH₄⁺, N-NO₃⁻ y N-NO₂⁻.

La remoción del N-NH₄⁺ se presentó en cinco etapas. La formación de los N-NO₃⁻ y N-NO₂⁻ se presentaron en tres y cuatro etapas, respectivamente. Los N-NO₃⁻ y N-NO₂⁻ se removieron en tres etapas cada uno.

TRH,	Etapa	Ciclo 323, N-NH ₄ ⁺		Ciclo 329,	$N-NH_4^+$
h	remoción	mg L⁻¹	% r	mg L ⁻¹	%r
Inicio	0	302	0	302	0
0-1	1	265	12.25	256	15.23
1-2	2	103	65.89	95	68.54
2-3	3	96	68.21	87	71.19
3-6	4	13	95.7	11	96.36
6-12	5	0.8	99.74	1	99.67

Tabla 4. 33. Cinética de remoción, N-NH₄⁺ - Etapa 5.

%r = porcentaje de remoción

TRH,	Etapa	Ciclo 32	3 N-NO ₃ -	Ciclo 329, N-NO3 ⁻	
h	formación	mg L⁻¹	% f	mg L⁻¹	%f
Inicio	0	4.6	0	5.5	0
0-2	1	49.3	43.23	55.4	47.39
2-5	2	82	74.85	79.4	70.18
5-6	3	108	100	110.8	100
	Etapa remoción	mg L ⁻¹	%r	mg L⁻¹	%r
6-7	1	31.8	70.56	32.8	70.4
7-8	2	5.6	94.81	3.1	97.2
8-12	3	0.2	99.81	0.3	99.73

Tabla 4. 34. Cinética de remoción, N-NO3⁻ - Etapa 5.

%r = porcentaje de remoción, %f = porcentaje de formación.

Tabla 4. 35.	Cinética	de remoción,	$N-NO_2^{-}$ -	Etapa 5.
--------------	----------	--------------	----------------	----------

TRH,	Etapa	Ciclo 32	3, N-NO ₂	Ciclo 329,	N-NO ₂ ⁻				
h	formación	mg L ⁻¹	% f	mg L⁻¹	%f				
Inicio	0	1.8	0	1.3	0				
0-1	1	28.9	34.01	28.1	30.15				
1-3	2	47.6	57.25	53	58.16				
3-4	3	69.2	84.09	73.4	81.1				
4-6	4	82	100	90.2	100				
	Etapa remoción	mg L⁻¹	%r	mg L ⁻¹	%r				
6-7	1	30.8	62.44	32.4	64.08				
7-8	2	6.4	92.2	2.9	96.78				
8-12	3	0.3	99.63	0.3	99.67				

%r = porcentaje de remoción, %f = porcentaje de formación.

Figura 4. 32. Estudio cinético de remoción, ciclo 323 - etapa 5. (\blacksquare) N-NH₄⁺, mg L⁻¹, (\blacktriangle) N-NO₃⁻, mg L⁻¹, (\bullet) N-NO₂⁻, mgL⁻¹.

Figura 4. 33. Estudio cinético de remoción, ciclo 329 - etapa 5. (**•**) N-NH₄⁺, mg L⁻¹, (**•**) N-NO₃⁻, mg L⁻¹, (**•**) N-NO₂⁻, mgL⁻¹.

4.2.6 Prueba de tinción de Greiss para las cinéticas de remoción

Durante cada uno de los estudios cinéticos de remoción se realizaron pruebas cuantitativas para observar si se lograba una producción de N-NO₂⁻ y N-NO₃⁻ y su posterior remoción. Además, para confirmar esos comportamientos se realizaron pruebas cualitativas colorimétricas utilizando pruebas de tinción de Greiss. Como resultado se logró confirmar que durante la fase aerobia se llevó acabo una producción de N-NO₂⁻ y N-NO₃⁻ (1 h a 6 h), posteriormente en la fase anóxica estos fueron removidos (6h a 12 h), esto se puede observar en la figura 4.34.

Figura 4. 34. Prueba de tinción de Greiss, ciclo 329.

4.2.7 Discusión de las cinéticas de remoción

Estudios realizados sobre los procesos de nitrificación pueden presentar reacciones de primer orden, para concentraciones de 100 a 1200 mg L⁻¹ de N-NH₄⁺ (Wong-Chong et al., 1975), así mismo varios investigadores han reportado que en sistemas con biopelícula los modelos cinéticos de nitrificación siguen una reacción de orden cero; sin embargo, también se ha encontrado que a bajas concentraciones de N-NH₄⁺, se puede presentar un comportamiento de primer orden (Hamoda et al., 1996).

CAPITULO 4. RESULTADOS Y DISCUSIÓN

En éste estudio, todos las cinéticas de remoción de N-NH₄⁺ presentaron un comportamiento de primer orden (Fig. 4.35 y tabla 4.36). Este comportamiento de primer orden concuerda con estudios realizados en biofiltros, con concentraciones de N-NH₄⁺ < 1 mg L⁻¹ (Chen et al., 2006), discrepando con estudios realizados en SBR donde el orden de reacción fue de cero con concentraciones de N-NH₄⁺ de 58 a 215 mg L⁻¹ (Guo et al., 2010).

Figura 4. 35. Cinética de primer orden, remoción de N-NH4+ del ciclo 329.

Tabla 4. 36. Ecuaciones de remoción de N	J-NH4
--	-------

N-NH4 ⁺ mg L ⁻¹	1°Estudio cinético	2°Estudio cinético	Ecuación con k _{promedio}
100	C _{N-NH4+} = e(-0.2399t) + 103	C _{N-NH4+} = e(-0.2557t) + 104	C _{N-NH4+} = e(-0.2478t)+C _{0 N-NH4+}
150	C _{N-NH4+} = e(-0.4222t) + 151	C _{N-NH4+} = e(-0.4795t) + 153	C _{N-NH4+} = e(-45085t) + C _{0 N-NH4+}
200	C _{N-NH4+} = e(-0.4953t) + 204	C _{N-NH4+} = e(-0.4982t) + 204	C _{N-NH4+} = e(-49675t) + C _{0 N-NH4+}
250	C _{N-NH4+} = e(-0.3957t) + 255	C _{N-NH4+} = e(-0.4046t) + 253	C _{N-NH4+} = e(-0.40015t) + C _{0 N-NH4+}
300	C _{N-NH4+} = e(-0.4786t) + 302	C _{N-NH4+} = e(-0.496t) + 302	C _{N-NH4+} = e(-0.4873t) + C _{0 N-NH4+}

Los N-NO₂⁻ y N-NO₃⁻ producidos de la remoción de N-NH₄⁺, presentaron diferentes ordenes de reacción. Los N-NO₂⁻ presentaron un comportamiento de orden de reacción cero durante todas las cinéticas de remoción, mientras que los N-NO₃- con concentraciones de 100 mg L⁻¹ de N-NH₄⁺ presentaron un comportamiento de segundo orden, para 150 mg L⁻¹ de N-NH₄⁺ de primer orden y finalmente de 200

a 300 mg L^{-1} N-NH₄⁺ de orden cero (gráficas 4.36 y 4.37). Las ecuaciones obtenidas se presentan en la tabla 4.37 y 4.38.

Figura 4. 36. Cinética de orden cero, producción de $N-NO_2^-$ del ciclo 329.

Figura 4. 37. Cinética de orden cero, producción de $N-NO_3^-$ del ciclo 329.

N-NH₄ ⁺ mg L ⁻¹	1°Estudio cinético	2°Estudio cinético	Ecuación con k _{promedio}
100	C _{N-NO2-} = 0 + 8.0689 t	C _{N-NO2-} = 0 + 8.5243 t	$C_{N-NO2-} = C_{0 N-NO2-} + 8.2966t$
150	C _{N-NO2-} = 2.7 + 12.889t	C _{N-NO2-} = 4.8 + 13.746 t	C _{N-NO2} -= C _{0 N-NO2} - + 13.3175t
200	C _{N-NO2-} = 3.3 + 15.279t	C _{N-NO2-} = 2.7 + 15.211t	$C_{N-NO2-} = C_{0 N-NO2-} + 15.245t$
250	C _{N-NO2-} = 1.8 + 11.157t	C _{N-NO2-} = 1.5 + 11.539t	$C_{N-NO2-} = C_{0 N-NO2-} + 11.348t$
300	C _{N-NO2-} = 1.53 +13.133t	C _{N-NO2} -= 1.3 +14.446t	$C_{N-NO2-} = C_{0 N-NO2-} + 13.7895t$

Tabla 4. 38. Ecuaciones de producción de N-NO3⁻.

N-NH₄ ⁺ mg L ⁻¹	1°Estudio cinético	2°Estudio cinético	Ecuación con k _{promedio}
100	$(1/C_{N-NO3})=-0.0795t + (1/2.2)$	(1/ C _{N-NO3-})=-0.0842t +(1/2.0)	(1/C C _{N-NO3-})=0.08185t +(1/ C _{0N-NO3-})
150	$C_{N-NO3-} = e(0.6102t) + 1.7$	$C_{N-NO3} = e(0.4396t) + 4.1$	$C_{N-NO3} = e(0.5249t) + C_{0N-NO3}$
200	C _{N-NO3-} = 3.5 + 10.404t	C _{N-NO3-} = 4.2 + 10.107t	C _{N-NO3-} = C _{0N-NO3-} + 10.2555t
250	C _{N-NO3-} = 3.3 + 10.996t	C _{N-NO3-} = 3.9 + 11.461t	C _{N-NO3-} = C _{0N-NO3-} + 11.2285t
300	C _{N-NO3-} = 4.6 + 15.939t	C _{N-NO3-} = 4.6 + 15.532t	$C_{N-NO3-} = C_{0N-NO3-} + 15.7355t$

CAPITULO 4. RESULTADOS Y DISCUSIÓN :

Todos los estudios cinéticos de remoción de N-NO2⁻ presentaron un comportamiento de reacción de primer orden (gráfica 4.38), respecto a los N-NO₃⁻ el comportamiento de reaccion fue de primer orden (gráfica 4.39), excepto cuando se evaluó una concentración de 250 mg L⁻¹ N-NH₄⁺, donde el comportamiento de reacción fue de segundo orden. Las ecuaciones obtenidas se presentan en la tabla 4.39 y 4.40.

remoción de N-NO2⁻ del ciclo 329.

Figura 4. 39 Cinética de primer orden, Figura 4. 38 Cinética de primer orden, remoción de N-NO₃⁻ del ciclo 329.

N-NH₄ ⁺ mg L ⁻¹	1°Estudio cinético	2°Estudio cinético	Ecuación con k _{promedio}
100	C _{N-NO2} .= 46.41 - e(1.7173t)	C _{N-NO2} = 49.47 - e(3.0229t)	$C_{N-NO2} = C_{0 N-NO2} - e(2.3701t)$
150	C _{N-NO2} .= 76.5 - e(1.4967t)	C _{N-NO2} -= 82.2 - e(1.815t)	C _{N-NO2} .= C _{0 N-NO2} e(1.65585t)
200	C _{N-NO2} -= 86.2 - e(1.6128t)	C _{N-NO2} .= 88.2 - e(1.5627t)	C _{N-NO2} .= C _{0 N-NO2} e(1.58775t)
250	C _{N-NO2} -= 66.8 - e(1.8609t)	C _{N-NO2} .= 67.2 - e(1.6088t)	C _{N-NO2} .= C _{0 N-NO2} e(1.7349t)
300	C _{N-NO2-} = 82 - e(1.8303t)	C _{N-NO2} .= 90.20 - e(1.4048t)	C _{N-NO2} .= C _{0 N-NO2} e(1.61755t)

Tabla 4. 39. Ecuaciones de remoción de N-NO2⁻.

N-NH₄ ⁺ mg L ⁻¹	1°Estudio cinético	2°Estudio cinético	Ecuación con k _{promedio}
100	C _{N-NO2} -= - e(1.7846t) + 28	C _{N-NO2} .= - e(1.2561t) + 32	C_{N-NO2} - e(1.52035t) + $C_{0 N-NO2}$
150	C _{N-NO2} -= - e(1.7162t) + 42	C _{N-NO2} -= - e(1.297t) + 46.6	$C_{N-NO2} = -e(1.5066t) + C_{0 N-NO2}$
200	C _{N-NO2} -= - e(1.2035t) + 57.4	C _{N-NO2} .= - e(1.0617t) + 58	C_{N-NO2} - e(1.1326t) + $C_{0 N-NO2}$
250	(1/ C _{N-NO2-})=0.1886t -(1/75.2)	(1/ C _{N-NO2} -)=0.1282t -(1/77)	(1/ C _{N-NO2} .)=0.1282t -(1/ C _{0 N-NO2} .)
300	C _{N-NO2} .= 108 - e(1.4154t)	C _{N-NO2} -= 110.8 - e(1.4419t)	C _{N-NO2} -= C _{0 N-NO2} e(1.42865t)

Tabla 4. 40. Ecuaciones de remoción de N-NO₃⁻.

Tanto los ordenes de reacción de N-NO₂⁻ y N-NO₃⁻ obtenidos en este estudio discrepan con estudios de nitrificación realizados por otros autores, donde desmuestran que la desnitrificación de los N-NO₃⁻ siguen un comportamiento de reacción de orden cero (Flogar *et al.*, 2003; Carucci *et al.*, 1996). Se propone que esta discrepancia es debida a que el SBR aerobio/anóxico presentó una combinación de remoción combinada vía N-NO₂⁻ y N-NO₃⁻, por lo cual no es parecida a los procesos en donde solamente se tiene una remoción vía N-NO₃⁻ o bien solamente vía N-NO₂⁻.

CAPÍTULO 5. CONCLUSIONES

Durante la etapa de arranque, el sistema tuvo que ser operado con altos TRH (7d) para permitir la adaptación de las poblaciones de microorganismos. Sin embargo, una vez estabilizado, el sistema presentó buenos porcentajes de remoción operando con TRH mucho más cortos (12h), incluso al incrementar las concentraciones de 100 hasta 300 mg L⁻¹.

Una vez aclimatado el SBR (aerobio/anóxico), se pueden tratar concentraciones de 100 a 300 mg L⁻¹ de N-NH₄⁺, obteniéndose porcentajes de remoción globales mayores al 90%, sin presentar en ningún momento alguna inhibición en el proceso aerobio/anóxico.

El sistema SBR (aerobio/anóxico) logró la nitrificación del N-NH₄⁺ en la etapa anóxica, generando N-NO₂- y N-NO₃⁻, los cuales fueron removidos en una etapa anóxica con porcentajes mayores al 90%, ocurriendo esto para concentraciones de 100 a 300 mg L⁻¹.

Para concentraciones de 100 a 200 mg L⁻¹ de N-NH₄⁺ en conjunto con concentraciones < 4 mg L⁻¹ de OD al inicio de la fase aerobia, se produce una mayor concentración de N-NO₂⁻ que de N-NO₃⁻, sugiriendo que en la fase anóxica la remoción ocurre principalmente vía N-NO₂⁻. Así también, para concentraciones de 250 y 300 mg L⁻¹ N-NH₄⁺ en conjunto con concentraciones > 4 mg L⁻¹ de OD al inicio de la fase aerobia, se produce una mayor concentración de N-NO₃⁻, sugiriendo que en la fase anóxica la remoción ocurre principalmente vía N-NO₂⁻. Así también, para concentraciones $> 4 mg L^{-1}$ de OD al inicio de la fase aerobia, se produce una mayor concentración de N-NO₃⁻ que de N-NO₂⁻, sugiriendo que en la fase anóxica la remoción ocurre principalmente vía N-NO₃⁻. Así bien, se demostró que la concentración de OD es un factor importante para la nitrificación por N-NO₂⁻.

Los perfiles de velocidad de remoción del N-NH₄⁺ permitieron determinar que el SBR (aerobio/anóxico) presentó un modelo de remoción de primer orden, para concentraciones de 100 a 300 mg L⁻¹ de N-NH₄⁺, es decir que la remoción del N-NH₄⁺ se realizó a una velocidad directamente proporcional a la concentración del N-NH₄⁺.

En la fase aerobia, los perfiles de velocidad de formación de N-NO₂⁻ fueron de orden de reacción cero, siendo la velocidad de formación de N-NO₂⁻ independientemente de la concentración de N-NH₄⁺. En la fase anóxica, los perfiles de velocidad de remoción de N-NO₂⁻ fueron de orden de reacción uno, siendo la velocidad de remoción de N-NO₂⁻ directamente proporcional a la concentración de N-NO₂⁻. Estos comportamientos se presentan a concentraciones de 100 a 300 mg L⁻¹ N-NH₄⁺.

En la fase aerobia, los perfiles de velocidad de formación de N-NO₃⁻ con 100 mg L⁻¹ fueron de segundo orden de reacción, para 150 mg L⁻¹ de N-NH₄⁺ de primer orden de reacción y de 200 a 300 mg L⁻¹ N-NH₄⁺ de orden de reacción cero, siendo la velocidad de formación de N-NO₃⁻ cada vez menos dependiente de la concentración del N-NH₄⁺. En la fase anóxica, los perfiles de velocidad de remoción de N-NO₃⁻ fueron de primer orden de reacción, siendo directamente proporcional a la concentración de N-NO₃⁻, excepto con la concentración de 250 mg L⁻¹, donde fueron de segundo orden de reacción, siendo dependientemente al cuadrado de la concentración de los N-NO₃⁻.

Se acepta la hipótesis de que el SBR empacado discontinuo secuenciado (aerobio/anóxico) puede obtener una remoción de N-NH₄⁺ de por lo menos 70% por medio de una etapa aerobia/anóxica sin inhibición de las transformaciones del

nitrógeno, aún operando con concentraciones reportadas como inhibitorias del proceso de nitrificación.

Como mejora del proyecto se propone utilizar micro sensores de OD en el material de soporte de polietileno, con el fin de obtener el OD presente en el interior de la biopelícula. Como perspectivas del proyecto, se propone continuar con la evaluación del SBR utilizando agua residual real atípica con altas concentraciones de N-NH₄⁺, tal como la de las casetas de las autopistas, aguas residuales de plantas de producción de amoniaco, entre otras.

CAPITULO 6. REFERENCIAS BIBLIOGRÁFICAS

APHA, 2005. Standard Methods for Examination of Water and Wastewater. 21th ed. American Public Health Association/American Water Works Association/ Water Environment Federation, Washington D.C. U.S.A.

Bernat K. y Wojnowska-Baryla I. (2007). Carbon source in aerobic denitrification. Biochem. J. 36, 116-122.

Bernet N. y Spérandio M. (2006). Biological wastewater treatment systems, en: Cervantes, F.J., Pavlosttathis, S.G., Van Andel A.C. (Eds), Adv. Biol. Treat. for industrial Wastewater. IWA Publishing, United Kingdom, pp. 186-212.

Buitrón, G., Razo-Flores, E., Meraz, M., Alatriste-Mondragon, F. (2006). Biological wastewater treatment systems, en: Cervantes, F.J., Pavlosttathis, S.G., Van Andel A.C. (Eds), Adv. Biol. Treat. for industrial Wastewater. IWA Publishing, United Kingdom, pp. 141-185.

Carrera J.,Baeza J.A., Vicent T., Lafuente J. (2003). Biological nitrogen removal of high-strength ammonium industrial wastewater with two-sludge system. Water Res. 37, 4211-4221.

Chen S., Ling J., Blancheton J. (2006). Nitrification kinetics on biofilms as affected by water quality factorss. Aquac. Eng. 34, 179-197.

Constantine H., Fick M. (1997). Influence of C-sources on the denitrification rate of high-nitrate concentrated industrial wastewater. Water Res. 31, 583-589.

Eilersen, A.M., Arvin E. y Henze M. (2004). Monitoring toxicity of industrial wastewater and specific chemicals to a green alga, nitrifying bacteria and an aquatic bacterium. Wat. Sci. Technol. 50 (6), 277-283.

CAPITULO 6. REFERENCIAS BIBLIOGRÁFICAS =

Ford D., Gloyna E., Malina J. (1991). Collection treatment and disposal of liquid wastes for presentation at Mexico city, Mexico. Curso UNAM, Vol. 1.

Fux C., Siegrist H. (2004). Nitrogen removal from sludge digestor liquids by nitrification – denitrification or partial nitritation – anammox : Environmental and economical considerations. Wat. Sci. Technol. 50 (10), 19-26.

Gerardi Michael H., Wastewater Bacteria. Wiley interscience, 2006. New Jersey

Guo J., Peng Y., Huang H., Wang S., Ge S., Zhang J., Wang Z. (2010). Short – and long-term effects of temperature on partial nitrification in a sequencing batch reactor treating domestic wastewater. J. Hazard. Mater. 179 (2010), 471-479.

Grunditz C., Dalhammar G. (2001). Development of nitrification inhibition assays using pure cultures of Nitrosomonas and Nitrobacter. Wat. Sci. Technol. 35 (2), 433-440.

Head HeadWorks BIO[™]. http://www.headworksusa.com/products/mbbr.cfm

INEGI-1.

http://mapserver.inegi.gob.mx/geografia/espanol/estados/mor/temperat.cfm

Jetten M., Strous M., Van de Pas-Schoonen K., Schalk J., Van Dongen L., Van de Graaf A., Logemann S., Muyzer G., Van Loosdrecht M., Kuenen J. (1999). The anaerobic oxidation of ammonia. FEMS Microbiol. Reviews 22 (5), 421-437.

Juliastuti, S.R., Baeyens, J. y Creemers, C. (2003). Inhibition of nitrification by heavy metals and organic compounds: the ISO 9509 test. Environ. Eng. Sci. 20(2), 79-90.

CAPITULO 6. REFERENCIAS BIBLIOGRÁFICAS —

Kotlar E., Tartakovsky B., Argaman Y., SheintuchM. (1996). The nature of interaction between immobilized nitrification and denitrification bacteria. J. Biotechnol. 51, 251-258.

Lai E., Senkpiel S., Solley D. y Keller J. (2004). Nitrogen removal of high strength wastewater via nitritation/ denitration using a seqquencing batch reactor. Wat. Sci. Technol. 50 (10), 27-33.

Lee S., Maken S., Jang J., Park K., Park J. (2006). Development of physicochemical nitrogen removal process for high strength industrial wastewater. Water Res. 40, 975-980.

Levenspiel O. (1996). "Ingeniería de las reacciones químicas" Editorial Reverté, S.A. México

Lin L., Yuan S., Chen J., Xu Z., Lu X. (2008). Removal of ammonia nitrogen in wasterwater by microwave radiation. J. Hazard. Mater.. 161(2009)1063-1068.

Medina C. y Mijavlova P. (2004). Arranque y estabilización del proceso en un reactor anaerobio de lecho expandido con CAG para el tratamiento de vinazas. XIV Congreso Nacional FEMISCA. Mazatlán, Sinaloa.

Melgoza R. M., Chew M., Buitrón G. (2000). Start-up of a sequential anaerobic/aerobic batch reactor for the mineralization of p-nitrophenol. Wat. Sci. Technol.. 42, 289-292.

Metcalf y Eddy. (2003). Wastewater Engineering Treatment and Reuse , 4^{td} ed. Mc Graw Hill International Edition, New York.

CAPITULO 6. REFERENCIAS BIBLIOGRÁFICAS =

Montaolvo C., López F., Luna S. (2004). Caracterización del agua residual de una granja porcícola en el municipio de Palmar Bravo Puebla. XIV Congreso Nacional FEMISCA. Mazatlán, Sinaloa

Pambrun V., Paul E., Spérandio M. (2004). Treatment of nitrogen and phosphorous in highly concentrated effluent in SBR and SBBR processes. Wat. Sci. Technol. 50(6), 269-276.

Pedersen P., Jensen K., Lyngsie P., Johansen N. (2003). Nitrogen removal in industrial wastewater by nitration and denitration- 3 years of experience. Wat. Sci. Technol.. 47 (11), 181-188.

Quan X., Wang F., Zhao Q., Zhao T., Xiang J. (2009). Air stripping of ammonia in a water-sparged aerocyclone reactor. Wat. Sci. Technol.170, 983-988.

Ren, S.J. (2004). Assessing wastewater toxicity to activates sludge; recent research and development. Environ. Int. 30 (8), 1151-1164.

Rodríguez D., Pino N., Peñuela G. (2011). Monitoring the removal of nitrogen by applying a nitrification-denitrification process in a Sequencing Batch Reactor (SBR). Biosource Technology. 102 (2011), 2316 -2321.

Ruiz G., Jeison D., Chamy R. (2003). Nitrification with high nitrite accumulation for the treatment of wastewater with high ammonia concentration. Water res. 37 (2003) 1371-1377.

Shu-ying W., Da-wen G., Yong-zhen P., Peng W., Qing Y. (2004). Alternating shortcut nitrification-denitrification for nitrogen removal from soybean wastewater by SBR with real-time control. J. Environ Sci., 16 (3), 380-383.

CAPITULO 6. REFERENCIAS BIBLIOGRÁFICAS =

Van Loosdrecht M.C., Salem S. (2006). Biological treatment of sludge digester liquids. Wat. Sci. Technol., 53(12), 11-20.

Vázquez-Padín J.R., Figueroa M., Campos J.L., Mosquera-Corral A., Méndez R. (2010). Nitrifying granular systems: A suitable technology to obtain stable partial nitrification at room temperature. Sep Purif Technol, 74 (2010), 178.186.

Visvanathan C. (2007). Nitrogenous Fertilizer Industry and Environmental Issue 2007, disponible en World Wide Web: http://albuw.ait.ac.th/Groups/Assignment/II/Group-04pp.pdf

Walter B., Haase C., Rabiger N. (2005). Combined nitrification/denitrification in a membrane reactor. (39), 2781-2788. Water res.

Wiesmann U., Su Chou I., Dombrowski E. (2007). Fundamentals of biological wasterwater treatment. Ed. Wiley-VCH. Germany.

Wilderer, P.A., Irvine, R.L., Goronszy, M.C. (2001). Sequencing bacth reactor technology, ed. IWA Publishing, London.

Zhu G., Peng Y., Li B., Guo J., Yang Q, Wang S. (2008). Biological Removal of nitrogen watewater (192), 159-195. Environ. Contam. Toxicol.

ANEXO 1 - Resultados analíticos

Anexo 1.1 Resultados analíticos de la operación del SBR aerobio/anóxico en la nitrificación y desnitrificación con concentraciones de N-NH₄⁺.

Anexo 1.2 Resultados analíticos de las cinéticas de remoción para la nitrificación y desnitrificación en el SBR aerobio/anóxico.

Anexo 1.1 Resultados analíticos de la operación del SBR aerobio/anóxico en la nitrificación y	/ desnitrificación con
concentraciones de N-NH ₄ ⁺ .	

w	ŝ		RH d	N-NH₄* mg L ⁻¹							N-NO₃ mg L ⁻¹					N-NO ₂ ⁻ mg L ⁻¹				Alcalinidad, mg L ⁻¹ CaCO₃				pH U pH			OD mg L ⁻¹			
Ciclo	Días eraci		-				% r	% r	% r			5-																		
	do	Aer	Anox	1	Faer	Fanox	Faer	Fanox	global	1	Faer	Fanox	% r	I	Faer	Fanox	% r		Faer	Fanox	1	Faer	Fanox	1	Faer	Fanox		Faer	Fanox	
1	7.0	3.0	4.0	107.0	33.0	31.0	69.2	6.1	71.0	33.0	108.0	20.0	81.5	30.6	50.5	13.3	73.7	575	455	100	24.8	25.0	25.0	7.7	7.9	7.3	5.1	5.1	0.2	
2	14.0	3.0	4.0	106.0	36.0	33.0	66.0	8.3	68.9	20.0	110.0	34.0	69.1	14.8	33.7	11.2	66.7	550	430	440	28.0	26.8	24.2	7.8	7.9	7.5	5.5	5.3	0.2	
3	21.0	3.0	4.0	101.0	29.0	27.0	71.3	6.9	73.3	10.0	130.0	36.0	72.3	15.3	37.2	10.2	72.6	650	460	490	24.5	25.0	25.0	7.6	7.8	7.4	5.5	4.6	0.3	
4	28.0	3.0	4.0	103.0	31.0	30.0	69.9	3.2	70.9	25.0	100.0	30.0	70.0	16.3	35.2	10.7	69.6	610	430	445	26.0	26.0	26.0	7.7	7.6	7.7	5.2	5.2	0.3	
5	35.0	3.0	4.0	105.0	39.0	31.0	62.9	20.5	70.5	28.0	110.0	32.0	70.9	14.3	37.7	11.2	70.3	615	415	440	26.0	24.0	24.0	7.7	7.6	7.7	5.2	5.2	0.3	
6	42.0	2.0	5.0	108.0	32.0	32.0	70.4	0.0	70.4	20.0	96.0	15.0	84.4	8.7	19.9	4.6	76.9	635	345	405	21.0	22.0	23.0	7.6	7.5	7.6	3.8	3.8	0.2	
7	49.0	2.0	5.0	107.0	31.0	29.0	71.0	6.5	72.9	10.0	80.0	16.0	80.0	3.1	8.2	2.0	75.0	640	400	440	22.0	21.5	20.0	7.6	7.7	7.8	3.6	3.6	0.2	
8	56.0	2.0	5.0	106.0	29.0	12.0	72.6	58.6	88.7	7.0	80.0	8.0	90.0	1.0	9.2	2.0	77.8	635	390	430	22.0	22.0	22.0	7.5	7.6	7.7	3.8	3.8	0.2	
9	63.0	2.0	5.0	101.0	27.0	6.0	73.3	77.8	94.1	3.0	55.0	2.8	94.9	1.0	7.9	2.6	67.7	640	380	420	22.0	21.0	21.0	7.7	7.8	7.8	3.6	3.6	0.3	
10	67.0	1.0	3.0	101.0	26.0	5.0	74.3	80.8	95.0	2.4	70.0	1.1	98.4	2.0	8.2	0.0	100.0	640	390	415	21.0	22.0	20.0	7.6	7.8	7.8	3.6	3.6	0.3	
11	71.0	1.0	3.0	100.0	28.0	3.0	72.0	89.3	97.0	0.0	62.0	1.0	98.4	0.0	8.2	0.5	93.8	660	365	430	22.0	22.0	23.0	7.7	7.8	7.7	3.6	3.6	0.3	
12	74.0	1.0	2.0	102.0	23.0	10.0	77.5	56.5	90.2	0.0	80.0	1.2	98.5	0.5	10.7	1.0	90.5	660	400	500	22.0	24.7	25.0	7.6	7.8	7.8	3.7	3.7	0.3	
13	77.0	1.0	2.0	102.0	5.0	4.0	95.1	20.0	96.1	1.0	50.0	8.0	84.0	1.0	25.5	3.6	86.0	660	395	430	24.0	24.0	23.0	7.5	7.6	7.7	4.8	4.8	0.3	
14	80.0	1.0	2.0	101.0	1.0	1.0	99.0	0.0	99.0	5.0	47.0	2.6	94.5	3.1	31.6	1.0	96.8	660	350	400	24.0	24.0	24.0	7.8	7.7	7.9	4.7	5.0	0.2	
15	83.0	1.0	2.0	101.0	2.0	1.0	98.0	50.0	99.0	2.0	44.0	2.0	95.5	0.5	29.6	3.1	89.7	625	355	425	24.0	24.0	25.0	7.8	7.8	7.8	4.8	5.2	0.2	
16	86.0	1.0	2.0	101.0	5.0	0.0	95.0	100.0	100.0	1.0	42.0	2.0	95.2	3.1	29.1	2.6	91.2	625	380	400	25.4	25.0	25.0	8.0	8.0	8.0	4.9	4.9	0.2	
17	89.0	1.0	2.0	102.0	0.0	0.0	100.0	0.0	100.0	2.0	42.0	1.0	97.6	2.0	21.4	1.5	92.9	625	395	405	23.0	23.0	24.0	7.9	7.9	8.0	4.8	4.8	0.3	
18	91.0	1.0	1.0	102.0	2.0	1.0	98.0	0.0	99.0	1.0	51.0	1.0	98.0	1.0	21.9	3.6	83.7	635	340	400	23.0	22.0	22.0	8.0	7.9	8.0	4.7	4.9	0.3	
19	93.0	1.0	1.0	104.0	0.0	0.0	100.0	0.0	100.0	1.0	57.0	2.0	96.5	3.1	23.0	2.0	91.1	635	335	390	22.0	22.0	22.0	8.0	8.0	8.0	4.7	4.9	0.3	
20	95.0	1.0	1.0	102.0	3.0	0.0	97.1	100.0	100.0	2.0	26.0	4.0	84.6	1.0	27.0	1.5	94.3	635	380	410	22.0	23.0	23.0	8.0	8.1	7.9	4.7	5.0	0.2	
21	97.0	1.0	1.0	102.0	3.0	1.0	97.1	0.0	99.0	2.0	16.0	0.0	100.0	0.5	32.1	0.0	100.0	615	350	400	22.0	22.0	22.0	7.7	7.6	7.6	4.6	4.8	0.3	
22	99.0	1.0	1.0	102.0	0.0	0.0	100.0	0.0	100.0	0.0	10.0	0.0	100.0	0.0	33.2	0.0	100.0	615	355	435	22.0	22.0	22.0	7.8	7.8	7.8	4.3	4.3	0.3	
23	100.0	0.3	0.7	102.0	21.0	19.0	79.4	9.5	81.4	0.0	8.0	2.0	75.0	0.0	33.7	1.0	97.0	615	330	380	24.0	24.0	24.0	7.9	7.8	7.8	3.8	3.8	0.3	
24	101.0	0.3	0.7	102.0	19.0	17.0	81.4	10.5	83.3	4.0	8.0	1.0	87.5	0.5	36.2	3.6	90.1	625	365	440	24.0	24.0	25.0	7.9	7.9	7.9	3.4	3.4	0.3	
25	102.0	0.3	0.7	101.0	19.0	17.0	81.2	10.5	83.2	2.0	6.0	1.0	83.3	3.6	43.9	6.1	86.0	625	335	400	25.0	24.0	24.0	7.8	7.8	7.8	3.6	3.8	0.3	
26	103.0	0.3	0.7	101.0	21.0	19.0	79.2	9.5	81.2	1.0	10.5	3.0	71.4	5.1	39.8	5.6	85.9	625	365	390	24.0	25.0	24.0	7.7	7.6	7.7	3.0	3.0	0.3	
27	104.0	0.3	0.7	101.0	20.0	19.0	80.2	5.0	81.2	2.0	8.0	1.0	87.5	4.1	41.8	3.6	91.5	600	425	450	23.0	28.0	22.0	8.0	7.6	7.6	3.1	3.1	0.3	
28	105.0	0.3	0.7	101.0	20.0	20.0	80.2	0.0	80.2	1.0	14.0	4.0	71.4	2.6	41.3	2.6	93.8	600	425	450	22.0	26.0	25.0	7.8	7.5	7.6	3.2	3.2	0.3	
29	106.0	0.3	0.7	101.0	17.0	17.0	83.2	0.0	83.2	4.0	32.0	9.0	71.9	1.5	44.9	1.0	97.7	625	350	400	25.0	25.0	25.0	7.8	7.8	7.8	3.4	3.4	0.3	
30	107.0	0.3	0.7	101.0	14.0	12.0	86.1	14.3	88.1	10.0	29.0	10.0	65.5	0.0	45.9	2.0	95.6	640	300	340	25.0	25.0	24.0	7.7	7.6	7.7	3.3	3.3	0.3	

I= Influente, Faer= Final fase de nitrificación, Fanox= Final fase de desnitrificación, %r Faer= Porcentaje de remoción fase aerobia, %r Fanox= Porcentaje de remoción fase anóxica, %r global= Porcentaje de remoción global (un ciclo), %r= Porcentaje de remoción.

s	s ción	Т	RH d			N-1 mg	NH₄* 1 L ⁻¹		N-NO ₃ mg L ⁻¹					N-	NO2 ⁻ g L ⁻¹		A mg	lcalinic L ⁻¹ Ca	lad, aCO₃	T ℃				pH U pi	Н	OD mg L ⁻¹			
Cicle	Día operac	Aer	Anox	Т	Faer	Fanox	% r Faer	% r Fanox	% r global	I	Faer	Fanox	% r	I	Faer	Fanox	% r	Т	Faer	Fanox	I	Faer	Fanox	I	Faer	Fanox	I	Faer	Fanox
31	108.0	0.3	0.7	100.0	14.0	9.0	86.0	35.7	91.0	10.0	31.0	10.0	67.7	3.1	41.8	5.1	87.8	640	300	315	24.0	25.0	25.0	7.9	7.8	7.8	3.2	3.2	0.3
32	109.0	0.3	0.7	100.0	16.0	8.0	84.0	50.0	92.0	10.0	52.0	15.0	71.2	4.1	41.8	5.6	86.6	640	335	432	25.0	26.0	24.0	7.9	7.8	7.8	3.3	3.3	0.3
33	110.0	0.3	0.7	100.0	14.0	8.0	86.0	42.9	92.0	15.0	48.0	12.0	75.0	3.1	46.4	5.1	89.0	625	340	365	24.0	24.0	22.0	7.8	7.8	7.8	3.0	3.1	0.3
34	111.0	0.3	0.7	100.0	12.0	6.0	88.0	50.0	94.0	10.0	39.0	15.0	61.5	2.6	49.0	7.7	84.4	640	450	475	22.0	24.0	21.0	7.8	7.7	7.7	3.2	3.1	0.4
35	112.0	0.3	0.7	100.0	10.0	10.0	90.0	0.0	90.0	10.0	55.0	17.0	69.1	4.1	50.5	9.7	80.8	600	425	450	21.0	25.0	22.0	7.8	7.6	7.7	3.4	3.2	0.3
36	113.0	0.3	0.7	100.0	10.0	8.0	90.0	20.0	92.0	16.0	58.0	16.0	72.4	5.6	56.1	11.2	80.0	630	300	315	22.0	23.0	21.0	7.9	7.8	7.8	3.3	3.3	0.4
37	114.0	0.3	0.7	102.0	12.0	6.0	88.2	50.0	94.1	18.0	67.0	17.0	74.6	9.2	55.1	7.7	86.1	620	410	415	21.0	25.0	23.0	7.9	7.9	7.9	3.5	3.5	0.3
38	115.0	0.3	0.7																										
39	116.0	0.3	0.7																										
40	117.0	0.3	0.7																										
41	118.0	0.3	0.7																										
42	119.0	0.3	0.7																										
43	120.0	0.3	0.7	101.0	10.0	6.0	90.1	40.0	94.1	30.0	111.0	44.0	60.4	29.6	81.6	28.1	65.6	600	350	460	24.0	25.0	23.0	7.8	7.7	7.8	3.0	3.0	0.2
44	121.0	0.3	0.7	101.0	10.0	6.0	90.1	40.0	94.1	37.0	121.0	47.0	61.2	28.1	80.1	31.6	60.5	645	375	475	23.0	25.0	22.0	7.9	7.7	7.8	3.2	3.2	0.2
45	122.0	0.3	0.8	101.0	22.0	16.0	78.2	27.3	84.2	26.0	83.0	22.0	73.5	28.6	75.5	18.4	75.7	650	345	480	22.0	24.0	22.0	7.6	7.5	7.6	3.6	3.4	0.2
46	123.0	0.3	0.8	101.0	18.0	14.0	82.2	22.2	86.1	22.0	68.0	19.0	72.1	11.7	61.7	14.3	76.9	640	395	424	22.0	25.0	24.0	7.9	7.7	7.8	3.2	3.2	0.3
47	124.0	0.3	0.8	101.0	19.0	14.0	81.2	26.3	86.1	15.0	37.0	10.0	73.0	9.2	57.6	9.7	83.2	605	365	404	24.0	25.0	25.0	7.7	7.6	7.7	3.4	3.4	0.2
48	125.0	0.3	0.8	104.0	16.0	10.0	84.6	37.5	90.4	10.0	32.0	8.0	75.0	9.7	50.0	13.3	73.5	590	350	400	25.0	26.0	22.0	7.8	7.6	7.7	3.2	3.1	0.3
49	126.0	0.3	0.8	102.0	18.0	13.0	82.4	27.8	87.3	5.0	26.0	5.3	79.6	11.2	46.4	11.2	75.8	600	450	475	22.0	25.0	24.0	7.8	7.6	7.7	3.1	3.0	0.3
50	127.0	0.3	0.8	104.0	14.0	14.0	86.5	0.0	86.5	4.0	10.0	3.0	70.0	6.1	44.4	7.1	83.9	600	385	460	24.0	24.0	21.0	7.7	7.6	7.6	3.0	3.0	0.2
51	128.0	0.3	0.8	102.0	12.0	10.0	88.2	16.7	90.2	2.0	3.0	0.5	83.3	4.1	43.9	5.6	87.2	675	450	500	21.0	26.0	22.0	7.7	7.6	7.6	3.1	3.0	0.3
52	129.0	0.3	0.8	102.0	18.0	12.0	82.4	33.3	88.2	1.0	6.0	2.0	66.7	3.6	48.5	7.7	84.2	600	425	450	22.0	25.0	23.0	7.7	7.6	7.6	3.2	3.0	0.4
53	130.0	0.3	0.8	101.0	16.0	12.0	84.2	25.0	88.1	2.0	6.0	1.7	71.7	5.6	46.4	6.6	85.7	600	425	450	23.0	26.0	24.0	7.8	7.6	7.6	3.3	3.1	0.3
54	131.0	0.3	0.8																										
55	132.0	0.3	0.8																										
56	133.0	0.3	0.8																										
57	134.0	0.3	0.8	96.0	32.3	11.5	66.4	64.3	88.0	6.0	13.0	4.0	69.2	11.1	39.8	18.5	53.4	600	375	375	21.5	24.5	21.0	7.7	7.6	7.6	3.2	3.0	0.3
58	135.0	0.3	0.8	101.3	26.8	4.3	73.6	84.1	95.8	2.3	11.4	0.9	91.9	15.0	51.5	8.7	83.2	600	475	500	21.0	23.0	21.0	7.8	7.6	7.7	3.2	3.0	0.4
59	136.0	0.3	0.8	98.3	19.0	1.5	80.7	92.1	98.5	2.5	8.0	1.1	86.3	6.6	51.5	9.2	82.2	625	450	475	21.0	25.2	21.5	7.6	7.5	7.5	3.2	3.1	0.4
60	137.0	0.3	0.8	100.0	22.0	4.0	78.0	81.8	96.0	1.0	15.0	3.0	80.0	6.6	53.6	10.7	80.0	600	435	475	22.0	24.0	23.0	7.8	7.5	7.6	3.1	3.1	0.3

I= Influente, Faer= Final fase de nitrificación, Fanox= Final fase de desnitrificación, %r Faer= Porcentaje de remoción fase aerobia, %r Fanox= Porcentaje de remoción fase anóxica, %r global= Porcentaje de remoción global (un ciclo), %r= Porcentaje de remoción, ■= Ciclo no monitoreado.

los	as Ición	П	RH d			N-N mg	NH₄* I L ⁻¹				N- m	·NO₃ g L ⁻¹			N- m	NO2 g L ⁻¹		A mg	Icalinid L ⁻¹ Ca	ad, aCO ₃		T ℃		pH V pH		4	m)D -1 -
Cic	Díi	Aer	Anox	I	Faer	Fanox	% r Faer	% r Fanox	% r global	I	Faer	Fanox	% r	Ι	Faer	Fanox	% r	Т	Faer	Fanox	I	Faer	Fanox	I	Faer	Fanox	Ι	Faer	Fanox
61	138.0	0.3	0.8																										
62	139.0	0.3	0.8																										
63	140.0	0.3	0.8																										
64	141.0	0.3	0.8	98.0	21.0	4.0	78.6	81.0	95.9	3.5	10.9	1.5	86.2	7.7	52.5	5.4	89.8	650	425	450	22.6	26.0	22.0	7.7	7.6	7.6	3.1	3.0	0.4
65	142.0	0.3	0.8	98.0	14.0	6.0	85.7	57.1	93.9	1.0	12.0	2.0	83.3	2.6	52.0	3.6	93.1	650	450	450	22.0	25.0	21.0	7.6	7.5	7.6	3.3	3.0	0.3
66	143.0	0.3	0.8	100.0	18.0	1.0	82.0	94.4	99.0	1.0	14.0	2.7	80.7	1.9	47.9	1.0	97.9	600	475	500	21.0	23.0	20.7	7.6	7.5	7.2	3.2	3.2	0.3
67	144.0	0.3	0.8	101.0	19.0	1.1	81.2	94.0	98.9	1.0	13.0	0.6	95.4	0.5	49.5	0.5	99.0	600	475	500	21.2	25.0	19.7	7.7	7.5	7.6	3.5	3.6	0.3
68	145.0	0.3	0.8	103.0	14.0	0.8	86.4	94.3	99.2	2.1	18.0	1.4	92.2	0.5	51.5	1.0	98.0	650	450	500	19.6	24.0	21.8	7.6	7.6	7.5	3.2	3.4	0.3
69	146.0	0.3	0.8																										
70	147.0	0.3	0.8																										
71	148.0	0.3	0.8	97.0	15.0	0.6	84.5	95.8	99.4	3.3	21.0	1.0	95.2	2.0	47.9	0.5	98.9	635	415	475	22.2	26.0	22.0	7.7	7.6	7.5	3.4	3.0	0.4
72	149.0	0.3	0.8	98.0	19.0	0.6	80.6	96.9	99.4	2.0	24.0	2.0	91.7	0.5	46.9	1.5	96.7	650	435	500	22.0	25.0	23.0	1.1	7.6	7.6	3.2	3.0	0.3
73	150.0	0.3	0.8	104.0	25.0	0.1	76.0	99.6	99.9	4.0	22.0	1.0	95.5	1.0	44.9	0.5	98.9	600	425	500	22.5	26.0	22.2	7.9	7.6	7.5	3.5	3.2	0.4
/4	151.0	0.3	0.8	98.0	18.0	0.9	81.6	95.2	99.1	1.0	26.0	2.1	91.9	1.5	46.9	1.0	97.8	650	450	4/5	22.1	22.1	21.0	7.6	7.5	7.5	3.2	3.0	0.4
75	152.0	0.3	0.8	99.0	22.0	0.2	11.8	99.1	99.8	1.0	26.0	1.0	96.2	0.5	47.4	0.0	100.0	650	400	4/5	21.0	24.0	22.0	1.1	7.5	7.6	3.2	2.9	0.3
/6	153.0	0.3	0.8																										
70	154.0	0.3	0.8	402.0	20.0	0.4	00.0	00.5	00.0	2.2	20.0	0.4	00.0	0.0	40.4		400.0	050	250	450	24.2	202.2	24.0	77	7.0	7.5	2.4	2.0	0.2
70	100.0	0.3	0.0	103.0	20.0	U. I	00.0	99.5	99.9	2.2	20.0	0.1	99.0	0.0	40.4	0.0	100.0	050	350	400	24.5	20.3	21.9	1.1	1.0	1.5	J. I	3.0	0.5
20	100.0	0.3	0.3																										
81	156.5	0.3	0.3	104.0	18.0	0.3	82.7	08.3	00.7	2.0	26.0	0.2	00.2	0.0	44.9	0.0	100.0	650	350	425	24.0	25.0	22.0	77	75	7.6	3.2	3.0	0.4
82	157.0	0.3	0.3	104.0	10.0	0.5	02.1	30.5	33.1	2.0	20.0	0.2	33.2	0.0	44.5	0.0	100.0	0.00	330	720	24.0	20.0	22.0	1.1	1.5	1.0	5.2	5.0	0.4
83	157.5	0.3	0.3	103.0	21.0	0.2	79.6	99.0	99.8	2.0	29.0	0.1	99.7	0.0	49.0	0.0	100.0	625	410	450	23.0	25.0	22.0	77	7.6	7.5	32	29	03
84	158.0	0.3	0.3	100.0	21.0	0.2	10.0	00.0	55.5	2.0	20.0	0.1	00.1	0.0	40.0	0.0	100.0	020	410	400	20.0	20.0	22.0	1.1	1.0	1.0	0.2	2.0	0.0
85	158.5	0.3	0.3	104.0	20.0	0.1	80.8	99.5	99.9	2.0	32.0	0.2	99.4	0.0	49.5	0.0	100.0	625	375	425	23.0	26.4	22.9	7.8	7.5	7.5	3.2	3.2	0.3
86	159.0	0.3	0.3																										
87	159.5	0.3	0.3																										
88	160.0	0.3	0.3																										
89	160.5	0.3	0.3																										
90	161.0	0.3	0.3																										

I= Influente, Faer= Final fase de nitrificación, Fanox= Final fase de desnitrificación, %r Faer= Porcentaje de remoción fase aerobia, %r Fanox= Porcentaje de remoción fase anóxica, %r global= Porcentaje de remoción global (un ciclo), %r= Porcentaje de remoción, ■= Ciclo no monitoreado.

sol	as Ición	Т	RH d	N-NH₄* mg L ⁻¹							N-NO ₃ mg L ⁻¹				N-NO ₂ ⁻ mg L ⁻¹				Icalinid L ⁻¹ Ca	lad, aCO₃		T ℃		pH U pH			OD mg L ⁻¹			
Cic	Dí	Aer	Anox	I	Faer	Fanox	% r Faer	% r Fanox	% r global	Т	Faer	Fanox	% r	T	Faer	Fanox	% r	I	Faer	Fanox		Faer	Fanox	I	Faer	Fanox	T	Faer	Fanox	
91	161.5	0.3	0.3	101.0	17.0	0.0	83.2	100.0	100.0	1.6	24.0	0.4	98.3	0.0	46.9	0.0	100.0	615	425	465	24.0	25.0	23.0	7.7	7.6	7.6	3.2	3.0	0.3	
92	162.0	0.3	0.3																											
93	162.5	0.3	0.3	100.0	22.0	1.0	78.0	95.5	99.0	2.2	17.0	0.1	99.4	0.0	45.4	0.0	100.0	615	425	475	22.0	24.0	22.0	7.7	7.5	7.5	3.2	3.0	0.3	
94	163.0	0.3	0.3																											
95	163.5	0.3	0.3	102.0	21.0	0.0	79.4	100.0	100.0	2.0	29.0	0.1	99.7	0.0	48.5	0.5	98.9	615	425	475	22.0	25.0	21.0	7.8	7.6	7.6	3.2	2.9	0.3	
96	164.0	0.3	0.3																											
97	164.5	0.3	0.3	99.0	20.0	1.0	79.8	95.0	99.0	2.4	23.0	0.3	98.7	0.0	44.9	0.0	100.0	650	400	450	21.0	24.0	21.2	7.7	7.5	7.5	3.3	3.0	0.3	
98	165.0	0.3	0.3																											
99	165.5	0.3	0.3	101.0	19.0	0.0	81.2	100.0	100.0	1.9	31.0	0.2	99.4	0.0	46.4	1.0	97.8	650	400	450	21.2	24.3	20.4	7.7	7.6	7.6	3.2	3.0	0.3	
100	166.0	0.3	0.3																											
101	166.5	0.3	0.3	100.0	20.0	1.0	80.0	95.0	99.0	2.1	33.0	0.1	99.7	0.0	49.0	0.0	100.0	625	415	4/5	20.5	23.8	21.0	1.1	7.5	7.6	3.3	3.0	0.3	
102	167.0	0.3	0.3																											
103	167.5	0.3	0.3																											
104	168.0	0.3	0.3	454.0	40.0	(2.0	07.5	44.2	70.0	4.0	20.0	4.0	00.0	2.0	50.4	5.0	00.4	750	200	200	40.7	22.0	40.0	0.4	7.0	77	2.2	2.0	0.4	
105	100.0	0.3	0.2	151.0	49.0	42.0	67.5	14.5	12.2	1.0	20.0	4.0	00.0	2.0	30.1	5.0	90.4	750	300	300	19.7	20.0	10.0	0.1	1.0	1.1	3.3	3.0	0.4	
100	169.0	0.3	0.2	142.0	51.0	26.0	65.5	20.4	75.7	2.0	19.0	2.2	97.2	46	54.1	8.2	24.0	750	200	275	19.7	24.4	19.7	20	77	77	24	22	0.4	
107	109.5	0.3	0.2	140.0	51.0	30.0	05.5	23.4	15.1	3.0	10.0	2.3	01.2	4.0	04.1	0.2	04.5	750	300	515	10.7	24.1	10.7	0.0	1.1	1.1	0.4	J.2	0.4	
100	170.5	0.3	0.2	152.0	53.0	42.0	65.1	20.8	72.4	10	15.0	14	90.7	2.6	57.6	87	85.0	750	300	400	18.8	22.4	19.3	81	7.6	77	32	29	0.4	
110	171.0	0.3	0.2	102.0	00.0	72.0	00.1	20.0	14.7	1.0	10.0	1.4	50.1	2.0	51.0	0.1	00.0	100	300	400	10.0	22.7	10.0	0.1	1.0	1.1	0.2	2.0	V.4	
111	171.5	0.3	0.2	147.0	53.0	44.0	63.9	17.0	70.1	10	15.0	20	86.7	15	63.2	71	88.7	763	300	400	19.4	24.0	18.8	80	77	77	3.5	29	04	
112	172.0	0.3	0.2									2.0															0.0			
113	172.5	0.3	0.2	151.0	32.0	27.0	78.8	15.6	82.1	2.0	13.0	4.0	69.2	4.1	66.8	11.2	83.2	763	275	375	18.7	22.6	19.4	8.1	7.6	7.7	3.2	2.8	0.3	
114	173.0	0.3	0.2																											
115	173.5	0.3	0.2	151.0	28.0	26.0	81.5	7.1	82.8	3.0	17.0	6.0	64.7	7.1	64.8	8.7	86.6	750	263	375	19.4	23.2	19.8	8.1	7.7	7.6	3.1	2.9	0.4	
116	174.0	0.3	0.2																											
117	174.5	0.3	0.2																											
118	175.0	0.3	0.2																											
119	175.5	0.3	0.2	151.0	10.0	3.0	93.4	70.0	98.0	4.4	4.8	1.9	60.4	11.2	77.0	13.3	82.8	740	270	388	20.8	23.5	20.6	8.0	7.7	7.7	3.3	2.8	0.4	
120	176.0	0.3	0.2																											

I= Influente, Faer= Final fase de nitrificación, Fanox= Final fase de desnitrificación, %r Faer= Porcentaje de remoción fase aerobia, %r Fanox= Porcentaje de remoción fase anóxica, %r global= Porcentaje de remoción global (un ciclo), %r= Porcentaje de remoción, == Ciclo no monitoreado.

sol	as ación	Т	'RH d			N-I mg	NH₄* g L ⁻¹			N-NO ₃ mg L ⁻¹					N- m	NO2 ⁻ g L ⁻¹		A mg	licalinio L ⁻¹ Ca	dad, aCO₃	T ℃			pH U pH			OD mg L ⁻¹		
Cio	Dí	Aer	Anox	Т	Faer	Fanox	% r Faer	% r Fanox	% r global	Т	Faer	Fanox	% r	Т	Faer	Fanox	% r	Т	Faer	Fanox	Т	Faer	Fanox	I	Faer	Fanox	I	Faer	Fanox
121	176.5	0.3	0.3	149.0	8.0	6.0	94.6	25.0	96.0	6.1	5.2	0.6	88.5	3.6	84.2	11.7	86.1	740	250	350	20.6	24.6	22.3	8.0	7.7	7.7	3.4	2.7	0.3
122	177.0	0.3	0.3																										
123	177.5	0.3	0.3	153.0	17.0	15.0	88.9	11.8	90.2	1.9	7.1	0.5	93.0	7.7	75.0	6.6	91.2	740	260	350	22.1	23.9	20.6	8.1	7.6	7.7	3.5	2.7	0.4
124	178.0	0.3	0.3																										
125	178.5	0.3	0.3	153.0	16.0	12.0	89.5	25.0	92.2	0.4	11.1	0.5	95.5	5.6	80.6	8.7	89.2	740	230	330	20.8	24.7	18.7	8.0	7.6	7.6	3.3	2.8	0.4
126	179.0	0.3	0.3																										
127	179.5	0.3	0.3	147.0	8.0	4.0	94.6	50.0	97.3	2.8	6.0	0.3	95.0	6.1	79.1	1.0	98.7	700	240	350	18.5	24.3	19.9	8.0	7.5	7.7	3.2	2.7	0.3
128	180.0	0.3	0.3																										
129	180.5	0.3	0.3	147.0	5.0	3.0	96.6	40.0	98.0	0.0	8.2	0.6	92.7	0.0	77.0	2.6	96.7	700	233	325	19.6	25.1	18.8	8.0	7.6	7.7	3.1	2.7	0.3
130	181.0	0.3	0.3																										
131	181.5	0.3	0.3																										
132	182.0	0.3	0.3																										
133	182.5	0.3	0.3	150.0	11.0	2.0	92.7	81.8	98.7	0.0	41.0	1.0	97.6	5.4	78.3	1.2	98.5	730	240	350	21.4	25.2	20.1	7.9	7.5	7.6	3.2	3.0	0.3
134	183.0	0.3	0.3																										
135	183.5	0.3	0.3	150.0	8.0	1.0	94.7	87.5	99.3	1.0	44.0	1.0	97.7	5.7	79.8	0.6	99.2	730	240	350	19.6	24.2	20.8	7.9	7.6	7.6	3.2	3.1	0.3
136	184.0	0.3	0.3																										
137	184.5	0.3	0.3	152.0	13.0	5.0	91.4	61.5	96.7	1.0	37.0	2.0	94.6	3.3	77.4	2.4	96.9	720	200	320	20.1	23.9	22.1	8.0	7.5	7.7	3.3	3.2	0.3
138	185.0	0.3	0.3																										
139	185.5	0.3	0.3	150.0	8.0	4.0	94.7	50.0	97.3	3.0	46.0	1.0	97.8	4.5	80.7	0.6	99.3	730	220	360	21.4	24.5	20.8	8.0	7.6	7.6	3.2	3.0	0.3
140	186.0	0.3	0.3																										
141	186.5	0.3	0.3	151.0	11.0	1.0	92.7	90.9	99.3	1.7	42.0	0.1	99.8	2.7	76.5	0.0	100.0	725	200	325	20.1	24.2	22.7	7.8	7.6	7.7	3.2	3.1	0.3
142	187.0	0.3	0.3																										
143	187.5	0.3	0.3																										
144	188.0	0.3	0.3																										
145	188.5	0.3	0.3																										
146	189.0	0.3	0.3																										
147	189.5	0.3	0.3	150.0	8.0	2.0	94.7	75.0	98.7	4.0	43.0	0.1	99.8	3.9	81.3	0.1	99.9	730	220	360	19.8	24.8	22.1	8.0	7.5	7.6	3.3	3.0	0.3
148	190.0	0.3	0.3																										
149	190.5	0.3	0.3	150.0	11.0	1.0	92.7	90.9	99.3	3.0	44.0	1.0	97.7	3.3	80.4	0.2	99.8	730	210	340	20.1	24.4	21.4	8.1	7.5	7.7	3.3	3.2	0.3
150	191.0	0.3	0.3																										

I= Influente, Faer= Final fase de nitrificación, Fanox= Final fase de desnitrificación, %r Faer= Porcentaje de remoción fase aerobia, %r Fanox= Porcentaje de remoción fase anóxica, %r global= Porcentaje de remoción global (un ciclo), %r= Porcentaje de remoción, ■= Ciclo no monitoreado.

sol	as ición	Т	RH d			N-I mg	NH₄* 3 L ⁻¹			N-NO ₃ mg L ⁻¹				N-NO ₂ ⁻ mg L ⁻¹				A mg	lcalinid L ⁻¹ Ca	lad, aCO₃	T ℃			pH U pH			OD mg L ⁻¹		
Cio	Dí	Aer	Anox	Т	Faer	Fanox	% r Faer	% r Fanox	% r global		Faer	Fanox	% r	Т	Faer	Fanox	% r	Т	Faer	Fanox	Т	Faer	Fanox	I	Faer	Fanox	T	Faer	Fanox
151	191.5	0.3	0.3	153.0	9.0	0.3	94.1	96.7	99.8	4.1	46.6	0.1	99.8	4.8	82.2	0.0	100.0	740	200	375	20.4	23.2	21.9	8.1	7.5	7.6	3.3	3.0	0.3
152	192.0	0.3	0.3																										
153	192.5	0.3	0.3																										
154	193.0	0.3	0.3																										
155	193.5	0.3	0.3																										
156	194.0	0.3	0.3																										
157	194.5	0.3	0.3																										
158	195.0	0.3	0.3																										
159	195.5	0.3	0.3																										
160	196.0	0.3	0.3										<u> </u>																
161	196.5	0.3	0.3															<u> </u>											
162	197.0	0.3	0.3	004.0	44.0	00.0	70.0	40.0	00.4	2.4	40.0	0.0	04.0		04.5		05.5	000	000	440	00.0	05.4	04.0		7.0	77	2.4		
163	197.5	0.3	0.3	201.0	41.0	36.0	79.6	12.2	82.1	2.1	48.0	2.6	94.6	4.1	91.5	4.1	95.5	820	360	410	20.2	25.4	21.6	8.4	7.6	1.1	3.4	3.0	0.3
164	198.0	0.3	0.3	204.0	20.0	24.0	04.4	40.4	04.0	2.4	40.0	2.4	02.2	0.0	00.7	2.5	07.0	040	200	400	20.0	25.4	24.2	0.4	7.0	77	2.5	2.4	0.0
100	190.5	0.3	0.3	201.0	30.0	31.0	01.1	10.4	04.0	2.1	46.0	3.1	93.3	0.0	02.1	2.5	97.0	010	300	400	20.0	25.1	21.2	0.4	1.0	1.1	3.5	3.1	0.3
167	100.5	0.3	0.3										<u> </u>					<u> </u>											
168	200.0	0.3	0.3										<u> </u>					<u> </u>											
169	200.5	0.3	0.3										<u> </u>																
170	201.0	0.3	0.3										<u> </u>					<u> </u>											
171	201.5	0.3	0.3	205.0	32.0	22.0	84.4	31.3	89.3	1.3	54.3	1.4	97.4	3.6	97.3	4.1	95.8	830	380	400	20.1	23.8	21.9	8.5	7.6	7.8	3.7	3.3	0.4
172	202.0	0.3	0.3																										
173	202.5	0.3	0.3																										
174	203.0	0.3	0.3																										
175	203.5	0.3	0.3	203.0	39.0	38.0	80.8	2.6	81.3	2.5	56.2	3.1	94.5	2.8	88.4	2.8	96.8	850	390	420	19.7	22.8	21.2	8.4	7.6	7.8	3.7	3.2	0.3
176	204.0	0.3	0.3																										
177	204.5	0.3	0.3	203.0	30.0	29.0	85.2	3.3	85.7	3.0	51.0	1.3	97.5	4.8	96.0	3.4	96.5	850	340	360	19.4	23.4	20.5	8.3	7.6	7.8	3.6	3.2	0.3
178	205.0	0.3	0.3																										
179	205.5	0.3	0.3	201.0	22.0	11.0	89.1	50.0	94.5	2.1	51.4	3.6	93.0	3.3	81.7	3.3	96.0	850	280	310	18.6	22.4	19.9	8.4	7.5	7.8	3.6	3.1	0.4
180	206.0	0.3	0.3																										

I= Influente, Faer= Final fase de nitrificación, Fanox= Final fase de desnitrificación, %r Faer= Porcentaje de remoción fase aerobia, %r Fanox= Porcentaje de remoción fase anóxica, %r global= Porcentaje de remoción global (un ciclo), %r= Porcentaje de remoción, == Ciclo no monitoreado.
los	as ición	Т	RH d			N-l mg	NH₄* 3 L ⁻¹				N- m	-NO₃ g L ⁻¹			N- m	NO2 [°] g L ^{°1}		A mg	licalinic L ⁻¹ Ci	lad, aCO₃		T ℃			pH U pl	H		(mg L	DD -1
Cic	Dí opera	Aer	Anox	Т	Faer	Fanox	% r Faer	% r Fanox	% r global	Т	Faer	Fanox	% r	Т	Faer	Fanox	% r	Т	Faer	Fanox	Т	Faer	Fanox	I	Faer	Fanox	T	Faer	Fanox
181	206.5	0.3	0.3	201.0	21.0	9.0	89.6	57.1	95.5	2.9	57.1	3.2	94.4	4.6	91.0	1.8	98.0	840	250	290	17.6	21.6	19.4	8.4	7.5	7.8	3.8	3.2	0.3
182	207.0	0.3	0.3																										
183	207.5	0.3	0.3	198.0	20.0	4.0	89.9	80.0	98.0	3.1	52.4	2.5	95.2	4.7	91.4	3.8	95.8	830	220	280	18.1	22.6	19.9	8.4	7.5	7.8	3.7	3.2	0.4
184	208.0	0.3	0.3																										
185	208.5	0.3	0.3																										
186	209.0	0.3	0.3																										L
187	209.5	0.3	0.3																										
188	210.0	0.3	0.3																										
189	210.5	0.3	0.3	203.0	20.0	4.0	90.1	80.0	98.0	2.1	53.6	2.1	96.1	2.7	95.0	1.5	98.4	850	220	260	18.4	23.4	20.4	8.4	1.4	7.8	3.7	3.1	0.4
190	211.0	0.3	0.3	000.0	40.0	4.0	00.0	04.7	00.5	0.5	50.0	0.0	00.0	2.4	04.0	2.4	07.4	050	0.40	000	47.0	04.0	40.0		7.0	7.0			0.0
191	211.5	0.3	0.3	202.0	19.0	1.0	90.6	94.7	99.5	2.5	50.0	0.6	96.9	3.1	94.0	2.4	97.4	050	240	300	17.2	21.0	10.3	0.4	1.5	1.0	3.0	3.Z	0.3
192	212.0	0.3	0.3	201.0	12.0	5.0	94.0	50.2	07.5	2.2	48.0	16	06.7	24	00.2	0.0	00.1	940	220	280	47.7	22.6	10.4	0 4	72	77	26	2.2	0.2
104	212.0	0.3	0.3	201.0	12.0	5.0	34.0	30.5	51.5	3.3	40.0	1.0	30.7	3.4	33.2	0.5	33.1	040	220	200	11.1	22.0	13.4	0.4	1.5	1.1	5.0	3.3	0.5
195	213.5	0.3	0.3	204.0	11.0	2.0	94.6	81.8	99.0	21	55.3	14	97.5	26	93.1	11	98.8	840	230	270	17.4	21.9	20.1	84	73	77	37	32	0.4
196	214.0	0.3	0.3	204.0	11.0	2.0	34.0	01.0	00.0	2.1	00.0	1.4	01.0	2.0	00.1	1.1	50.0	040	200	210	11.4	21.0	20.1	0.4	1.0	1.4	9.1	0.2	0.4
197	214.5	0.3	0.3																										
198	215.0	0.3	0.3																										
199	215.5	0.3	0.3																										
200	216.0	0.3	0.3																										
201	216.5	0.3	0.3																										
202	217.0	0.3	0.3																										
203	217.5	0.3	0.3	199.0	16.0	1.0	92.0	93.8	99.5	3.2	51.3	0.6	98.8	4.1	83.2	1.4	98.3	830	210	250	17.7	22.6	20.2	8.3	7.4	7.7	3.7	3.0	0.3
204	218.0	0.3	0.3																										
205	218.5	0.3	0.3	198.0	18.0	1.0	90.9	94.4	99.5	3.9	56.1	1.2	97.9	4.6	87.3	0.4	99.5	830	250	300	16.9	22.8	20.8	8.5	7.4	7.8	3.8	3.2	0.4
206	219.0	0.3	0.3																										
207	219.5	0.3	0.3	207.0	14.0	1.2	93.2	91.4	99.4	3.5	57.4	0.7	98.8	3.3	86.0	0.6	99.3	825	200	250	16.6	22.2	21.8	8.4	7.3	7.7	3.7	3.2	0.4
208	220.0	0.3	0.3																										
209	220.5	0.3	0.3	205.0	11.0	2.0	94.6	81.8	99.0	3.3	54.3	0.8	98.5	3.7	88.8	0.5	99.4	840	240	280	17.1	22.6	21.3	8.4	7.3	7.8	3.7	3.1	0.4
210	221.0	0.3	0.3																										

sol	as ación	Т	'RH d			N-I mg	NH₄* 3 L ⁻¹				N- m	-NO₃ ng L ⁻¹			N- m	NO2 ⁻ Ig L ⁻¹		A mg	licalinic I L ⁻¹ Ca	lad, aCO₃		T ℃			pH U pi	H		(mg L	DD -1 -
Cio	Dí	Aer	Anox	Т	Faer	Fanox	% r Faer	% r Fanox	% r global	Т	Faer	Fanox	% r	Т	Faer	Fanox	% r	Т	Faer	Fanox	Т	Faer	Fanox	I	Faer	Fanox	I	Faer	Fanox
211	221.5	0.3	0.3																										
212	222.0	0.3	0.3																										
213	222.5	0.3	0.3																										
214	223.0	0.3	0.3																										
215	223.5	0.3	0.3																										
216	224.0	0.3	0.3																										
217	224.5	0.3	0.3	204.0	12.0	3.0	94.1	75.0	98.5	2.6	53.0	1.1	97.9	3.5	90.0	0.7	99.2	870	250	310	18.8	25.1	22.9	8.4	7.4	7.8	3.6	3.3	0.4
218	225.0	0.3	0.3																										
219	225.5	0.3	0.3	204.0	12.0	1.1	94.1	90.8	99.5	4.4	58.0	0.7	98.8	2.7	88.2	0.3	99.7	850	225	300	19.0	24.7	23.1	8.5	7.2	7.9	3.7	3.2	0.4
220	226.0	0.3	0.3																										
221	226.5	0.3	0.3																										
222	227.0	0.3	0.3																										
223	227.5	0.3	0.3	251.0	56.0	52.0	77.7	7.1	79.3	3.7	57.0	1.3	97.7	1.4	57.6	0.9	98.4	1310	430	500	18.3	23.1	21.4	8.2	7.6	7.9	4.2	3.3	0.4
224	228.0	0.3	0.3																										
225	228.5	0.3	0.3	250.0	53.0	45.0	78.8	15.1	82.0	3.9	63.0	1.7	97.3	1.1	57.6	1.3	97.7	1300	410	520	17.7	22.7	21.6	8.2	7.6	7.9	4.0	3.2	0.4
226	229.0	0.3	0.3																										
227	229.5	0.3	0.3	255.0	55.0	44.0	78.4	20.0	82.7	3.3	61.0	2.2	96.4	1.7	56.3	1.1	98.0	1300	410	520	17.9	23.1	21.2	8.2	7.6	8.0	4.1	3.2	0.4
228	230.0	0.3	0.3																		<u> </u>								
229	230.5	0.3	0.3																										
230	231.0	0.3	0.3	0.40.0	54.0	10.0	70.0	47.0	00.0	0.0			07.7		50.0		07.0	10.10	400	500	10.4	00.0	00.0		7.0	7.0			
231	231.5	0.3	0.3	246.0	51.0	42.0	79.3	17.6	82.9	3.6	60.0	1.4	97.7	2.9	58.8	1.4	97.6	1340	430	530	18.1	23.8	20.3	8.2	7.6	7.9	4.1	3.2	0.3
232	232.0	0.3	0.3										<u> </u>																
233	232.5	0.3	0.3		<u> </u>															<u> </u>	<u> </u>					<u> </u>			
234	233.0	0.3	0.3	256.0	59.0	22.0	77.0	44.0	07.5	2.2	62.0	4.4	08.2	2.6	64.2	4.5	07.4	4200	400	500	40.0	24.0	40.4	0.0	7.0		4.0	2.0	0.4
205	233.5	0.3	0.3	200.0	0.00	32.0	11.3	44.0	01.5	3.2	02.0	1.1	90.2	2.0	51.5	1.5	97.1	1300	400	500	10.2	21.9	19.1	0.2	1.0	0.0	4.0	2.9	0.4
230	234.0	0.3	0.3	246.0	49.0	25.0	90.5	27.4	05.0	24	64.0	4.0	07.4	2.0	66 A	4.0	06.9	4200	440	E40	40.0	22.4	40.4	0.4	7.5	7.0	4.4	2.4	0.4
237	234.5	0.3	0.3	240.0	40.0	33.0	00.5	21.1	03.0	3.4	01.0	1.0	37.4	3.0	00.4	1.0	50.0	1290	410	510	10.5	22.1	13.4	0.1	1.5	1.9	4.1	J.	0.4
230	235.0	0.3	0.3																										
239	233.5	0.3	0.3																										
240	200.0	0.0	0.5																										

sols	as ación	Т	'RH d			N-I mg	NH₄* g L ⁻¹				N- m	-NO3 Ig L ⁻¹			N- m	-NO2 ⁻ Ig L ⁻¹		A mg	lcalinid L ⁻¹ Ca	lad, aCO₃		T ℃			pH U pi	Н		(mg L	DD -1
Cic	Di	Aer	Anox	Т	Faer	Fanox	% r Faer	% r Fanox	% r global	Т	Faer	Fanox	% r	Т	Faer	Fanox	% r	Т	Faer	Fanox	Т	Faer	Fanox	I	Faer	Fanox	I	Faer	Fanox
241	236.5	0.3	0.3																										
242	237.0	0.3	0.3																										
243	237.5	0.3	0.3																										
244	238.0	0.3	0.3																										
245	238.5	0.3	0.3	251.0	63.0	35.0	74.9	44.4	86.1	3.9	61.0	1.4	97.7	1.3	51.0	2.0	96.1	1290	380	510	17.4	21.4	18.8	8.2	7.5	7.6	4.2	3.2	0.4
246	239.0	0.3	0.3																										L
247	239.5	0.3	0.3	251.0	46.0	41.0	81.7	10.9	83.7	4.2	60.0	2.1	96.5	2.1	58.0	2.4	95.9	1280	410	500	16.2	23.2	17.7	8.2	7.4	7.4	4.3	3.1	0.4
248	240.0	0.3	0.3	054.0	00.0	00.0	00.0	04.0	00.0			4.0	00.0	0.4	50.0		00.0	4000	000	500	40.5	00.0	40.0	0.0	7.5	7.0	4.0	0.4	0.0
249	240.5	0.3	0.3	251.0	33.0	26.0	00.9	21.2	69.6	4.1	64.0	1.3	98.0	2.1	52.0	0.6	90.0	1360	390	530	16.5	22.9	19.3	0.Z	1.5	7.0	4.Z	3.1	0.3
250	241.0	0.3	0.3	250.0	25.0	28.0	96.0	20.0	00.0	4.2	69.0	10	07.4	25	62.0	17	06.9	1250	400	620	47.7	22.4	10.5	0.2	7.4	77	4.2	2.4	0.4
252	241.5	0.3	0.3	230.0	35.0	20.0	00.0	20.0	00.0	4.0	00.0	1.0	37.4	2.5	55.0	1.7	30.0	1330	400	520	11.1	22.4	19.5	0.5	1.4	1.1	4.2	0.1	0.4
253	242.5	0.3	0.3	250.0	33.0	29.0	86.8	12.1	88.4	34	64.0	0.8	98.8	18	57.9	0.8	98.6	1350	380	500	17.9	22.1	19.8	82	75	77	41	32	0.4
254	243.0	0.3	0.3	200.0	00.0	20.0	00.0		00.1	0.1	01.0	0.0	00.0	1.0	01.0	0.0	00.0						10.0	0.2	1.0	1.1		0.2	
255	243.5	0.3	0.3																										<u> </u>
256	244.0	0.3	0.3																										
257	244.5	0.3	0.3																										<u> </u>
258	245.0	0.3	0.3																										
259	245.5	0.3	0.3	250.0	17.0	9.0	93.2	47.1	96.4	4.2	72.0	1.4	98.1	1.2	61.0	1.2	98.0	1320	340	410	17.9	23.6	22.4	8.2	7.4	7.6	4.0	3.1	0.3
260	246.0	0.3	0.3																										
261	246.5	0.3	0.3	250.0	19.0	5.0	92.4	73.7	98.0	3.4	73.0	0.6	99.2	1.8	66.5	0.9	98.6	1320	340	400	18.3	23.8	22.8	8.2	7.3	7.6	4.1	3.0	0.4
262	247.0	0.3	0.3																										
263	247.5	0.3	0.3	253.0	21.0	7.0	91.7	66.7	97.2	3.6	72.0	0.7	99.0	0.9	65.2	0.7	98.9	1300	320	400	18.1	23.6	23.6	8.1	7.4	7.6	4.2	3.0	0.4
264	248.0	0.3	0.3																										
265	248.5	0.3	0.3	251.0	18.0	8.0	92.8	55.6	96.8	4.1	74.0	1.1	98.5	1.2	63.8	1.2	98.1	1300	340	440	18.3	23.8	23.7	8.2	7.4	7.5	4.1	3.2	0.4
266	249.0	0.3	0.3																										
267	249.5	0.3	0.3	253.0	19.0	6.0	92.5	68.4	97.6	3.1	72.0	0.7	99.0	1.1	66.1	0.9	98.6	1310	320	440	18.2	24.2	23.4	8.2	7.4	7.6	4.1	3.1	0.3
268	250.0	0.3	0.3																										
269	250.5	0.3	0.3																										
270	251.0	0.3	0.3																										

sol	as ición	Т	RH d			N-I mg	NH₄* 3 L ⁻¹				N- m	-NO ₃ g L ⁻¹			N- m	NO2 ⁻ g L ⁻¹		A mg	lcalinid L ⁻¹ Ca	lad, aCO₃		T ℃			pH U pl	Н		(mg L)D -1
Cic	Dí	Aer	Anox	Т	Faer	Fanox	% r Faer	% r Fanox	% r global	I	Faer	Fanox	% r	Ι	Faer	Fanox	% r	Т	Faer	Fanox	Ι	Faer	Fanox	I	Faer	Fanox	I	Faer	Fanox
271	251.5	0.3	0.3																										
272	252.0	0.3	0.3																										
273	252.5	0.3	0.3	255.0	16.0	5.0	93.7	68.8	98.0	3.3	75.2	0.8	98.9	1.8	66.8	0.6	99.1	1360	325	450	17.8	25.6	23.3	8.2	7.4	7.5	4.0	3.3	0.3
274	253.0	0.3	0.3																										
275	253.5	0.3	0.3	255.0	15.0	8.0	94.1	46.7	96.9	3.6	76.0	0.6	99.2	1.5	65.1	0.7	98.9	1300	340	450	18.4	24.1	22.8	8.2	7.3	7.6	4.1	3.2	0.3
276	254.0	0.3	0.3																										
277	254.5	0.3	0.3	253.0	16.0	7.0	93.7	56.3	97.2	3.9	72.0	0.9	98.8	1.5	67.2	0.6	99.1	1311	325	425	18.4	23.8	22.7	8.2	7.3	7.6	4.0	3.1	0.3
278	255.0	0.3	0.3																										
279	255.5	0.3	0.3	301.0	49.0	39.0	83.7	20.4	87.0	5.3	91.0	4.6	94.9	1.8	82.6	1.7	97.9	1650	610	680	19.3	24.2	22.3	8.3	7.5	7.8	4.5	3.4	0.4
280	256.0	0.3	0.3																										
281	256.5	0.3	0.3	301.0	41.0	44.0	86.4	-7.3	85.4	5.2	83.0	3.2	96.1	2.1	81.3	0.9	98.9	1650	560	660	20.1	24.6	23.1	8.3	7.5	7.8	4.5	3.6	0.4
282	257.0	0.3	0.3																										
283	257.5	0.3	0.3																										
284	258.0	0.3	0.3																										
285	258.5	0.3	0.3																										
286	259.0	0.3	0.3																										
287	259.5	0.3	0.3	300.0	33.0	28.0	89.0	15.2	90.7	5.9	106.1	4.1	96.1	3.1	91.1	3.1	96.6	1580	500	620	21.5	24.4	23.6	8.3	7.5	7.6	4.4	3.5	0.4
288	260.0	0.3	0.3															1000											
289	260.5	0.3	0.3	300.0	35.0	31.0	88.3	11.4	89.7	6.4	96.3	1.8	98.1	3.1	93.6	1.4	98.5	1600	500	620	21.3	24.9	23.3	8.2	7.5	7.6	4.5	3.4	0.4
290	261.0	0.3	0.3	000.0	00.0	05.0	00.0	40.7	04.0	4.0	00.4	4.0	00.0		00.0	4.7	00.4	4000	470	500	00.5	05.0	00.0		7.5	7.0			0.4
291	261.5	0.3	0.3	298.0	28.0	25.0	90.6	10.7	91.6	4.6	99.1	1.Z	98.8	2.9	88.3	1.7	98.1	1600	470	590	20.5	25.3	23.8	8.3	7.5	7.6	4.4	3.3	0.4
292	262.0	0.3	0.3	000.0	20.0	00.0	07.0	40.0	00.0		104.4	0.0	07.0		07.0	2.4	07.5	4500	440	550		24.0	00.0		7.5	7.7			0.4
293	262.5	0.3	0.3	296.0	38.0	33.0	87.2	13.Z	88.9	4.9	104.4	2.8	97.3	2.8	97.2	2.4	97.5	1590	440	550	20.4	24.6	23.Z	8.3	7.5	1.1	4.5	3.3	0.4
294	263.0	0.3	0.3	205.0	22.0	24.0	00.5	2.4	00.0		402.0	2.4	07.0	47	00.5	2.2	07.7	4000	620	050	20.7	25.4	24.0	0.0	7.5	7.0	4.2	2.4	0.4
295	203.5	0.3	0.3	305.0	32.0	31.0	09.5	3.1	09.6	5.5	103.6	3.1	97.0	1.7	39.5	2.3	91.1	1000	530	000	20.7	25.1	24.0	0.3	1.5	1.0	4.3	3.4	0.4
290	204.0	0.0	0.3																										
297	204.0	0.0	0.3																										
290	200.0	0.3	0.3																										
299	200.0	0.0	0.3																										
300	266.0	0.3	0.3																										

sol	as Ición	Т	RH d			N-1 mg	\H₄* L ⁻¹				N- m	·NO₃ g L ⁻¹			N- m	NO2 g L ⁻¹		A mg	lcalinid L ⁻¹ Ca	lad, aCO₃		T ℃			pH V pl	1		C mg L)D -1
Cio	Dí	Aer	Anox	Т	Faer	Fanox	% r Faer	% r Fanox	% r global	Т	Faer	Fanox	% r	Т	Faer	Fanox	% r	Т	Faer	Fanox	I	Faer	Fanox	T	Faer	Fanox	Ι	Faer	Fanox
301	266.5	0.3	0.3	301.0	16.0	14.0	94.7	12.5	95.3	6.4	104.0	1.9	98.2	2.9	92.8	1.4	98.5	1640	510	630	21.4	25.7	23.1	8.2	7.4	7.6	4.4	3.1	0.3
302	267.0	0.3	0.3																										
303	267.5	0.3	0.3	298.0	13.0	11.0	95.6	15.4	96.3	5.8	112.0	3.3	97.1	1.4	89.1	0.9	99.0	1630	490	610	22.1	26.3	22.4	8.3	7.4	7.6	4.4	3.2	0.3
304	268.0	0.3	0.3																										
305	268.5	0.3	0.3	306.0	18.0	14.0	94.1	22.2	95.4	4.8	117.0	2.1	98.2	1.8	97.2	2.1	97.8	1630	500	600	19.6	26.4	22.2	8.3	7.4	7.5	4.4	3.2	0.4
306	269.0	0.3	0.3																										
307	269.5	0.3	0.3	302.0	7.0	2.0	97.7	71.4	99.3	5.1	110.4	3.8	96.6	1.7	100.4	2.7	97.3	1700	530	650	21.1	25.6	23.2	8.4	7.4	7.6	4.3	3.2	0.3
308	270.0	0.3	0.3																										
309	270.5	0.3	0.3	300.0	14.2	4.1	95.3	71.1	98.6	5.4	97.0	2.1	97.8	2.5	92.7	1.1	98.8	1700	500	640	21.3	25.2	23.6	8.4	7.4	7.5	4.5	3.1	0.3
310	271.0	0.3	0.3																										
311	271.5	0.3	0.3																										
312	272.0	0.3	0.3																										
313	272.5	0.3	0.3																										
314	273.0	0.3	0.3																										
315	273.5	0.3	0.3	304.0	8.0	2.0	97.4	75.0	99.3	6.4	112.0	2.3	97.9	1.4	91.0	2.1	97.7	1680	500	610	21.7	25.5	24.2	8.3	7.3	7.6	4.3	3.1	0.3
316	274.0	0.3	0.3																										
317	274.5	0.3	0.3	304.0	6.0	2.0	98.0	66.7	99.3	6.2	98.8	1.8	98.2	1.6	77.6	1.1	98.6	1680	520	610	19.9	25.3	24.4	8.3	7.4	7.6	4.5	3.2	0.3
318	275.0	0.3	0.3																										
319	275.5	0.3	0.3	302.0	7.0	1.6	97.7	77.1	99.5	5.7	92.0	0.1	99.9	2.5	84.0	0.1	99.9	1640	570	660	21.9	25.8	24.2	8.3	7.5	7.7	4.5	3.5	0.3
320	276.0	0.3	0.3																										
321	276.5	0.3	0.3	304.0	10.0	2.5	96.7	75.0	99.2	5.5	101.0	0.9	99.1	3.9	86.0	0.7	99.2	1670	570	660	20.5	26.6	24.6	8.2	7.4	7.7	4.4	3.4	0.4
322	277.0	0.3	0.3																										
323	277.5	0.3	0.3	302.0	13.0	0.8	95.7	93.8	99.7	4.6	98.0	0.2	99.8	1.5	82.0	0.3	99.6	1590	517	600	20.6	26.2	24.3	8.3	7.4	7.6	4.3	3.3	0.3
324	278.0	0.3	0.3																										
325	278.5	0.3	0.3																										
326	279.0	0.3	0.3																										
327	279.5	0.3	0.3																										
328	280.0	0.3	0.3																										
329	280.5	0.3	0.3	302.0	11.0	1.0	96.4	90.9	99.7	5.5	110.8	0.3	99.7	1.3	90.2	0.3	99.7	1610	450	620	20.4	25.3	24.3	8.4	7.3	7.6	4.3	3.2	0.4
330	281.0	0.3	0.3																										

			N-NF	la'		N-NO ₃			N-NO;	i i	DQO	Т	ρН	OD	ORP	Conductividad	Alcalinidad
Fase	TRH h	mg L ^{.1}	×r	iqf нанна mg L ^{id} h ^{id}	mg L'1	≈ f	qfн.nos. mg L ⁻¹ h ⁻¹	mg L' ¹	% f	qfн.ног. mg L ⁻¹ h ⁻¹	mg L ^{.1}	:0	UPh	mg L' ¹	m٧	µ.s/cm	mg L ⁻¹ C₀CO₃
	0.0	103	0.00	0.00	2.2	0.00	0.00	0.0	0.00	0.00		24.3	7.7	3.13	155	2200	647.5
	1.0	53	48.54	50.00	2.6	1.55	0.40	11.7	25.27	11.73		24.9	7.76	2.12	108	2100	600
<u>ھ:</u> ا	2.0	48	53,40	5.00	2.9	2.71	0.30	25.5	54.95	13.77		25.1	7.77	1.98	103	2060	500
13	3.0	41	60.19	7.00	3.2	3.88	0.30	36.7	79.12	11.22		25.4	7.48	1.86	162	1971	450
ļ₹	4.0	- 33	67.96	8.00	17.4	58.91	14.20	43.9	94.51	7.14		26	7.52	1.8	131	1901	400
1	5.0	26	74.76	7.00	23.0	80.62	5.60	45.9	98.90	2.04		26.1	7.54	2.45	132	1821	350
	6.0	20	80.58	6.00	28.0	100	5.00	46.4	100.00	0.51	206.00	26.3	7.46	2.96	133	1730	350
						≵r	qгн.ноз. mg L ⁻¹ h ⁻¹		81	qгн.ног. mg L ⁻¹ h ⁻¹							
	6.3	19	81.55		22.2	20.71		34.7	25.27			26.5	7.18	1.12	112	1666	350
1	6.7	18	82.52	2.00	17.6	37.14	22.40	20.3	54.95	41.82		27	7.2	0.43	103	1621	400
1	7.0	18	82.52		5.6	80.00		4.6	30.11			27.1	7.23	0.34	- 36	1595	450
1 8	7.3	17	83.50		1.8	93.57		2.6	94.51			27.1	7.24	0.31	54	1573	450
] iğ	7.7	14	86.41	4.00	1.5	94.64	4.20	2.6	94.51	2.04		26.7	7.29	0.29	-5	1571	450
Įž	8.0	14	86.41		1.4	95.00		2.6	94.51			26.6	7.3	0.28	-23	1565	450
1	9.0	12	88.35	2.00	1.1	96.07	0.30	2.0	95.60	0.51		26.3	7.28	0.28	-63	1522	450
	10.0	11	89.32	1.00	1.0	96.43	0.10	2.0	95.60	0.00		24.6	7.29	0.28	-98	1465	450
	11.0	10	30.23	1.00	1.0	36.43	0.00	1.5	36.70	0.51		24.6	7.31	0.29	-92	1573	450
	12.0	10	90.29	0.00	1.0	96.43	0.00	1.5	96.70	0.00	35.37	23.1	7.37	0.23	-85	1456	450

Anexo 1.2 Resultados analíticos de las cinéticas de remoción en el SBR aerobio/anóxico.

Estudio cinético de remoción, etapa I (100 mg L⁻¹), ciclo 78.

Estudio cinético de remoción, etapa I (100 mg L⁻¹), ciclo 85.

			N-NH	4		N-NO ₂	•		N-NO:		DQO	T	рΗ	OD	ORP	Conductividad	Alcalinidad
Fase	TRH h	mg L' ¹	× r	91 н.нни. mg L ^{.1} h ^{.1}	mg L' ¹	% f	qfн.nos. mg L ^{.1} h ^{.1}	mg L' ¹	86	qfн.ног. mg L ⁻¹ h ⁻¹	mg L ^{.1}	ĉ	UPh	mg L' ¹	m۷	µs/cm	mg L ⁻¹ CsCO3
	0.0	104	0.00		2.00	0.00		0.00	0.00		///////	23	7.78	3.2	134	2160	625
	1.0	60	42.31	44.00	2.70	2.33	0.70	13.26	26.80	13.26		23.2	7.67	2.31	119	2080	550
2.	2.0	55	47.12	5.00	2.90	3.00	0.20	23.97	48.45	10.71		23.7	7.4	2.04	130	2020	525
2	3.0	43	58.65	12.00	3.70	5.67	0.80	33.15	67.01	9,18		24.6	7.65	1.92	123	1957	416
×,	4.0	32	69.23	11.00	16.90	49.67	13.20	42.84	86.60	9.69		26.3	7.64	1.89	125	1891	425
	5.0	26	75.00	6.00	26.20	80.67	9.30	48.96	98.97	6.12		26.3	7.61	1.96	127	1831	400
	6.0	20	80.77	6.00	32.00	100.00	5.80	49.47	100.00	0.51	201.50	26.4	7.41	3.16	129	1794	375
						%r	qгн.ноз. mg L ^{.1} h ^{.1}		% r	qгн.ног. mg L ^{.1} h ^{.1}							
	6.3	19	81.73		27.40	14.38		43.86	11.34			26.4	7.14	1.4	135	1616	350
	6.7	16	84.62	4.00	23.70	25.94	20.30	33.15	32.99	44.37		26.1	7.16	0.6	124	1604	353
	7.0	16	84.62		11.70	63.44		5.10	89.69			25.6	7.21	0.4	63	1557	389
	7.3	13	87.50		7.00	78.13		2.04	95.88			25.6	7.26	0.36	-8	1529	425
÷.	7.7	8	92.31	8.00	5.00	84.38	8.70	0.36	33.28	4.85		24.5	7.24	0.27	-38	1515	425
ě	8.0	8	92.31		3.00	90.63		0.26	99.48			24.5	7.26	0.31	-91	1522	425
<u> </u>	9.0	8	92.31	0.00	3.00	90.63	0.00	0.15	99.69	0.10		25	7.28	0.3	-87	1520	425
	10.0	7	93.27	1.00	1.00	96.88	2.00	0.10	99.80	0.05		24.1	7.3	0.32	-36	1413	425
	11.0	7	93.27	0.00	1.00	96.88	0.00	0.10	99.80	0.00		23.6	7.33	0.34	-92	1456	425
	12.0	6	94.23	1.00	1.00	36.88	0.00	0.10	33.80	0.00	36.13	23.2	7.41	0.33	-77	1431	425

											000	-		00	000	A 1 4 1 1	
			N-NF	14		N-NO ₃			N-NO;		DQO		рп	UU	URP	Conductividad	Alcalinidad
Fase	TRH h	mg L' ¹	×r	91 н.нни. mg L ^{.1} h ^{.1}	mg L'1	% f	qfн.ноs. mg L ⁻¹ h ⁻¹	mg L'1	% f	qfн.ног. mg L ⁻¹ h ⁻¹	mg L'1	۴C	UPh	mg L' ¹	m∨	µs/cm	mg L ^{∙1} CoCO₃
	0.0	151	0.00	0.00	1.70	0.00	0.00	2.70	0.00	0.00		20.1	7.83	3.2	72	2.87	725
1	1.0	93	38.41	58.00	2.20	1.24	0.50	15.90	17.89	13.20	//////	20.8	7.79	2.65	60	2.74	550
۾ ا	2.0	75	50.33	18.00	2.50	1.99	0.30	33.70	42.01	17.80		22.9	7.76	2.57	54	2.57	500
13	3.0	57	62.25	18.00	9.50	19.35	7.00	46.50	59.35	12.80		22.3	7.67	2.61	46	2.61	425
]₹.	4.0	38	74.83	19.00	22.00	50.37	12.50	60.40	78.18	13.90		23.3	7.64	2.67	48	2.24	250
1	5.0	18	88.08	20.00	31.00	72.70	9.00	72.30	94.31	11.90	//////	23.7	7.61	2.82	60	2.08	200
	6.0	11	92.72	7.00	42.00	100.00	11.00	76.50	100.00	4.20	205.91	24.2	7.56	3.13	65	2.01	200
						%r	qгн.ноз. mg L ^{.1} h ^{.1}		% r	qгн.ног. mg L ⁻¹ h ⁻¹							
	6.5	8	94.70	5.00	12.60	70.00	41.40	16.50	78.43	64.40		24.3	7.47	0.55	-33	1836	288
1	7.0	6	36.03	5.00	0.60	98.57	41.40	12.10	84.18	04.40		24.3	7.45	0.31	-76	1828	300
<u>]</u> .g	8.0	3	98.01	3.00	0.50	98.81	0.10	1.20	98.43	10.30	X//////	24.2	7.49	0.24	-20	1826	325
ļğ	9.0	2	38.68	1.00	0.20	33.52	0.30	0.90	98.82	0.30	///////	23.5	7.54	0.34	-10	1812	325
₹	10.0	1	33.34	1.00	0.10	39.76	0.10	0.24	33.63	0.66		23.3	7.57	0.33	-6	1809	325
	11.0	1	33,34	0.00	0.10	33.76	0.00	0.03	33,36	0.21		23.1	7.58	0.35	5	1802	325
	12.0	1	33,34	0.00	0.10	99.76	0.00	0.03	33,36	0.00	5.76	22.7	7.66	0.33	11	1801	325

Estudio cinético de remoción, etapa II (150 mg L⁻¹), ciclo 141.

Estudio cinético de remoción, etapa II (150 mg L⁻¹), ciclo 151.

See.	TRH		N-NH	k'		N-NO ₃			N-NO ₂		DQO	Т	pН	OD	ORP	Conductividad	Alcalinidad
ų metionaliai ir statistas na statistas na statistas na statistas na statista	h	mg L ⁻¹	≈ r	qг н.ннч.	mg L ^{.1}	2 f	qfн.ноs.	mg L ⁻¹	2 f	qfн.нoz.	mg L ⁻¹	:C	UPh	mg L ⁻¹	mΥ	µ <i>sl</i> cm	mg L ⁻¹ CoCO ₃
	0.0	153	0.00	0.00	4.10	0.00	0.00	4.80	0.00	0.00		20.4	8.11	3.32	67	2.96	740
	1.0	- 94	38.56	59.00	5.80	4.00	1.70	17.40	16.28	12.60		20.6	7.72	2.67	55	2.72	525
<u>۾</u> ا	2.0	81	47.06	13.00	6.20	4.94	0.40	29.70	32.17	12.30		20.9	7.68	2.63	51	2.55	500
13	3.0	57	62.75	24.00	14.00	23.23	7.80	48.60	56.59	18.90	///////	21.5	7.63	2.61	49	2.38	375
₹	4.0	36	76.47	21.00	23.60	45.88	9.60	61.20	72.87	12.60		21.5	7.56	2.53	54	2.27	275
	5.0	12	32.16	24.00	36.50	76.24	12.90	78.00	94.57	16.80		22.5	7.56	2.79	-59	2.2	225
	6.0	9	94.12	3.00	46.60	100.00	10.10	82.20	100.00	4.20	202.00	23.2	7.51	2.96	60	2.16	200
						%r	qгн.ноз. mg L ⁻¹ h ⁻¹		X r	qгн.ног. mg L ⁻¹ h ⁻¹							
	6.5	6	96.08	5.00	22.10	52.58	40.60	22.50	72.63	72.90		23.5	7.38	0.43	-38	1914	300
	7.0	4	97.39	5.00	6.00	87.12	40.00	9.30	88.69	12.00		23.6	7.46	0.41	-81	1801	350
<u>] S</u>	8.0	3	98.04	1.00	2.00	95.71	4.00	1.80	97.81	7.50		23.8	7.51	0.38	-45	1773	375
ļğ	9.0	2	98.69	1.00	1.00	97.85	1.00	0.30	99.64	1.50		23.7	7.54	0.38	-20	1761	375
₹	10.0	1	39.35	1.00	0.50	98.93	0.50	0.24	99.71	0.06		23	7.58	0.36	-11	1755	375
	11.0	0.6	33.61	0.40	0.10	99.79	0.40	0.03	99.96	0.21		22.7	7.6	0.33	2	1752	375
	12.0	0.3	99.80	0.30	0.10	99.79	0.00	0.03	33.36	0.00	4.75	21.9	7.61	0.31	7	1751	375

			N-NH	la"		N-NO ₃			N-NO;	i.	DQO	Т	pН	OD	ORP	Conductividad	Alcalinidad
Fase	TRH h	mg L ^{.1}	× r	91 н.нне. mg L ^{.1} h ^{.1}	mg L' ¹	2 f	qfн.ноз. mg L ⁻¹ h ⁻¹	mg L¹¹	21	qfн.ног. mg L ⁻¹ h ⁻¹	mg L ^{.1}	۰C	UPh	mg L¹¹	mΥ	µs/cm	mg L ⁻¹ CaCO ₃
	0.0	204	0.00		3.50	0.00		3.30	0.00			16.6	8.68	3.68	88		825
1	1.0	115	43.63	89.00	4.10	1.11	0.60	14.40	13.39	11.10		17.1	8.33	3.64	- 91		650
B:	2.0	96	52.94	19.00	26.00	41.74	21.90	36.50	40.05	22.10		17.5	8.32	3.04	- 97		600
<u>ا</u> ۾ ا	3.0	67	67.16	29.00	31.40	51.76	5.40	49.20	55.37	12.70	V//////	19.8	8.26	2.37	111		400
₹.	4.0	38	81.37	23.00	53.40	92.58	22.00	72.00	82.87	22.80		20.1	8.06	2.87	103		350
	5.0	28	86.27	10.00	55.20	95.92	1.80	86.20	100.00	14.20	Y//////	21	7.65	3.08	115		200
	6.0	7	36.57	21.00	57.40	100.00	2.20	86.20	100.00	0.00	294.00	22.2	7.32	3.17	120		200
						%r	qгн.ноз. mg L ⁻¹ h ⁻¹		% r	qгн.ног. mg L ⁻¹ h ⁻¹							
	6.5	4	38.04	4.00	52.00	9.41	15.40	64.20	25.52	40.00		22.8	7.47	0.66	- 92		200
	7.0	3	98.53	4.00	42.00	26.83	10.40	46.20	46.40	40.00	///////	22.8	7.53	0.74	-58		200
<u>8</u> .	8.0	3	98.53	0.00	8.60	85.02	33.40	4.80	94.43	41.40		23.4	7.61	0.32	-16		200
١ĕ.	9.0	2.7	38.68	0.30	1.00	98.26	7.60	0.90	98.96	3.90		23.3	7.61	0.23	19		200
₹.	10.0	1.7	99.17	1.00	1.00	98.26	0.00	0.90	98.96	0.00		23	7.68	0.36	41		250
	11.0	1.6	33,22	0.10	0.70	98.78	0.30	0.60	33.30	0.30	//////	22.6	7.71	0.37	- 39		250
1	12.0	1.2	99.41	0.40	0.70	98.78	0.00	0.60	33.30	0.00	15.88	21.8	7.73	0.38	41		250

Estudio cinético de remoción, etapa III (200 mg L⁻¹), ciclo 207.

Estudio cinético de remoción, etapa III (200 mg L⁻¹), ciclo 219.

			N-NH	ki 👘		N-NO ₃	•		N-NO ₂		DQO	Т	pН	OD	ORP	Conductividad	Alcalinidad
Fase	TRH h	mg L' ¹	× r	9 ^г н.нно mg L ^{.4} h ^{.4}	mg L' ¹	21	qfн.nos. mg L ⁻¹ h ⁻¹	mg L' ¹	8f	qfн.ног. mg L ⁻¹ h ⁻¹	mg L ^{.1}	ů	U Ph	mg L' ¹	m∨	µs/cm	mg L ⁻¹ CoCO ₃
	0.0	204	0.00		4.20	0.00		2.70	0.00			19	8.45	3.72	- 91	3201	850
	1.0	107	47.55	97.00	5.30	2.04	1.10	19.80	20.00	17.10		19.2	8.34	3.68	- 98	3050	700
ا ۾ ا	2.0	86	57.84	21.00	26.10	40.71	20.80	46.60	51.35	26.80		21	8.25	3.57	100	2930	650
2	3.0	64	68.63	22.00	31.20	50.19	5.10	59.00	65.85	12.40		22.6	8.2	2.57	102	2830	450
ĺ₹	4.0	45	77.94	19.00	50.30	85.69	19.10	79.20	89.47	20.20		23.7	7.95	2.42	101	2700	350
	5.0	28	86.27	17.00	54.00	92.57	3.70	88.20	100.00	9.00		24.3	7.47	2.97	86	2540	275
	6.0	10	95.10	18.00	58.00	100.00	4.00	88.20	100.00	0.00	280.33	24.7	7.22	3.2	88	2450	225
						%r	qгнаноза mg L ⁻¹ h ⁻¹		% r	qгн.ног. mg L ^{.1} h ^{.1}							
	6.5	9	35.53	7.00	50.40	13.10	19.40	78.00	11.56	44.90		25	7.5	0.74	78	2240	250
	7.0	3	98.53	1.00	38.60	33.45	10.40	44.00	50.11	44.20		25.1	7.55	0.71	21	2370	250
<u>2</u> .	8.0	2	33.02	1.00	12.60	78.28	26.00	5.70	93.54	38.30		25.2	7.59	0.56	18	2380	250
ğ	9.0	1.5	33.26	0.50	2.40	95.86	10.20	1.10	98.75	4.60		25.3	7.59	0.44	-11	2260	250
₹	10.0	1.3	99.36	0.20	1.20	97.93	1.20	0.80	99.09	0.30		24.8	7.66	0.38	-43	2150	300
	11.0	1.1	33.46	0.20	0.80	98.62	0.40	0.80	99.09	0.00		23.9	7.83	0.42	21	2140	300
	12.0	1.1	33,46	0.00	0.70	98.79	0.10	0.30	99.66	0.50	11.13	23.1	7.85	0.42	36	2110	300

			N-NF	la"		N-NO ₃			N-NO;	ź	DQO	Т	ρН	OD	ORP	Conductividad	Alcalinidad
Fase	TRH h	mg L ^{.1}	× r	91 н.нни. mg L ^{.1} h ^{.1}	mg L'¹	% f	qfн.ноз. mg L ⁻¹ h ⁻¹	mg L ^{.1}	21	qfн.ног. mg L ^{.1} h ^{.1}	mg L ^{−1}	°C	UPh	mg L ^{.1}	mV	µs/cm	mg L ⁻¹ CoCO3
	0.0	255	0.00		3.30	0.00		1.80	0.00			17.8	8.16	4.04	39	4330	1360
1	1.0	112	56.08	143.00	27.30	33.38	24.00	20.40	28.62	18.60	V//////	18	8.1	3.74	10	3200	775
<u>ڪ [</u>	2.0	- 91	64.31	21.00	42.00	53.82	14.70	27.80	40.00	7.40	///////	20.1	8.11	3.03	28	3270	550
18	3.0	76	70.20	15.00	62.10	81.78	20.10	33.20	48.31	5.40	///////	22.9	8	2.81	23	3160	600
]≮.	4.0	52	79.61	24.00	62.40	82.20	0.30	58.00	86.46	24.80	Y//////	23.2	7.9	2.71	26	2990	450
	5.0	37	85.49	15.00	63.20	83.31	0.80	64.00	95.69	6.00	V//////	23.6	7.7	2.68	25	2830	400
	6.0	16	93.73	21.00	75.20	100.00	12.00	66.80	100.00	2.80	386	25.6	7.35	3.33	40	2630	325
						%r	qгн.ноз. mg L ⁻¹ h ⁻¹		×r	qгн.ног. mg L ^{.1} h ^{.1}							
	6.5	15	94.12	5.00	7.40	30.16	71.20	16.30	74.70	62.80	///////	25.7	7.37	0.35	-28	2390	350
1	7.0	11	35.63	5.00	4.00	94.68	11.20	3.00	95.51	00.00		26	7.44	0.28	-81	2420	425
<u>] S</u>	8.0	7	97.25	4.00	2.90	96.14	1.10	1.60	97.60	1.40	Y//////	25.9	7.47	0.24	-42	2550	425
١ğ.	9.0	5	38.04	2.00	1.30	97.47	1.00	0.30	38.65	0.70	///////	25.8	7.5	0.23	-42	2410	450
₹.	10.0	5	98.04	0.00	1.20	98.40	0.70	0.80	98.80	0.10		24.5	7.5	0.28	-38	2470	450
	11.0	5	38.04	0.00	0.9	98.80	0.30	0.60	33.10	0.20	///////	24.1	7.5	0.3	-10		450
1	12.0	5	98.04	0.00	0.80	38.34	0.10	0.60	33.10	0.00	54.00	23.3	7.5	0.31	16		450

Estudio cinético de remoción, etapa IV (250 mg L⁻¹), ciclo 273.

Estudio cinético de remoción, etapa IV (250 mg L⁻¹), ciclo 277.

		N-NH ₄ 1			N-NO ₅ 1			N-NO ₂ '		DQO	Т	pН	OD	ORP	Conductividad	Alcalinidad	
Fase	TRH h	mg L' ¹	× r	qг нанна mg L ⁻¹ h ⁻¹	mg L' ¹	% f	qfн.nos. mg L ⁻¹ h ⁻¹	mg L ^{.1}	% f	qfн.ног. mg L ⁻¹ h ⁻¹	mg L' ¹	÷C	U Ph	mg L' ¹	m∨	µs/cm	mg L ⁻¹ CoCO ₃
	0.0	253	0.00		3.90	0.00		1.50	0.00			18.4	8.23	3.97	10	4360	1311
	1.0	116	54.15	137.00	27.80	32.69	23.90	16.50	22.83	15.00		17.5	8.18	3.51	5	3750	875
<u>اع</u>	2.0	92	63.64	24.00	40.40	49.93	12.60	23.80	33.94	7.30		20.3	8.18	2.97	18	3630	750
8	3.0	77	69.57	15.00	64.60	83.04	24.20	30.80	44.60	7.00		20.8	8	2.79	21	3520	550
∢	4.0	48	81.03	29.00	65.20	83.86	0.60	56.40	83.56	25.60		21.5	7.9	3.25	- 19	3310	450
	5.0	35	86.17	13.00	66.20	85.23	1.00	63.20	93.91	6.80		22.4	7.59	3.52	12	3150	400
	6.0	16	93.68	19.00	77.00	100.00	10.80	67.20	100.00	4.00	396	23.8	7.31	3.09	17	2890	325
						%r	qгнаноза mg L ⁻¹ h ⁻¹		% r	qгн.ног. mg L ⁻¹ h ⁻¹							
	6.5	15	94.07	3.00	12.80	83.38	71.20	12.00	82.14	64.80	///////	23.1	7.48	0.35	15	2750	350
	7.0	13	94.86	0.00	5.80	92.47	11.20	2.40	96.20	04.00		23.9	7.49	0.28	-41	2780	400
<u>2</u> .	8.0	8	96.84	5.00	3.70	95.19	2.10	2.40	96.43	0.00		24	7.52	0.33	-98	2720	425
ğ	9.0	7	97.23	1.00	2.40	96.88	1.30	1.90	96.43	0.50		24.4	7.53	0.28	-78	2710	425
₹	10.0	7	97.23	0.00	1.90	97.53	0.50	1.80	97.17	0.10		23.8	7.55	0.32	-53	2750	425
	11.0	7	97.23	0.00	1	98.70	0.90	1.4	96.43	0.40		23.6	7.57	0.34	-23		425
	12.0	7	97.23	0.00	0.90	98.83	0.10	0.60	99.11	0.80	47.21	22.7	7.61	0.33	-5		425

2	TBH	N-NH ₄ 1				N-NO ₂ N-NO ₂			DQO	Т	ρН	OD	ORP	Conductividad	Alcalinidad		
Fac	h	mg L' ¹	≈ r	ЧГ нанна 1 - 1 - 1	mg L ⁻¹	% f	qfн.ноз. ⊷11	mg L' ¹	% f	qfн.нoz.	mg L ⁻¹	÷	UPh	mg L' ¹	m۷	µs/cm	$mgL^{11}CaCO_8$
	0.0	302	0.00	0.00	4.60	0.00	0.00	1.53	0.00	0.00		20.6	8.3	4.34	183	4950	1590
1	1.0	265	12.25	37.00	24.70	19.44	20.10	28.90	34.01	27.37	V//////	20	8.18	4.14	179	4190	1050
<u>۾</u> ا	2.0	103	65.89	162.00	49.30	43.23	24.60	37.10	44.20	8.20		22	8.14	3.74	168	4060	1080
13	3.0	96	68.21	7.00	60.40	53.97	11.10	47.60	57.25	10.50		22.2	7.98	3.64	170	3790	850
ļ₹	4.0	71	76.49	25.00	70.80	64.02	10.40	69.20	84.03	21.60	<i>\///////</i>	24.8	7.77	3.53	182	3730	650
1	5.0	44	85.43	27.00	82.00	74.85	11.20	76.00	92.54	6.80	V//////	25.3	7.59	3.41	176	3450	550
	6.0	13	95.70	31.00	108.00	100.00	26.00	82.00	100.00	6.00	401	26.2	7.37	3.27	207	3290	517
						×r.	qгн.ноз. mg L ⁻¹ h ⁻¹		87	qгн.ног. mg L ⁻¹ h ⁻¹							
	6.5	12	96.03	4.00	50.70	53.06	76.00 51.30	37.44	\$1.00		26.6	7.45	0.34	- 95	2860	475	
1	7.0	9	97.02	4.00	31.80	70.56	10.20	30.80	62.44	44		26.9	7.46	0.31	64	2830	517
1 @	7.5	8	97.35	2.00	3.60	91.11	06.00	10.50	87.20	24.40		26.8	7.5	0.32	-48	2800	560
] ·š	8.0	7	97.68	2.00	5.60	94.81	20.20	6.40	92.20	24.40	///////	25.9	7.53	0.31	-43	2770	560
]∦.	9.0	2	33.34	5.00	2.40	97.78	3.20	0.30	99.63	6.10	///////	25.9	7.55	0.33	-51	2740	580
1~	10.0	1	99.67	1.00	0.3	99.72	2.10	0.30	99.63	0.00		25.1	7.56	0.31	-49	2690	600
1	11.0	1	99.67	0.00	0.3	99.72	0.00	0.30	99.63	0.00	///////	24.8	7.56	0.31	-46	2660	600
	12.0	0.8	99.74	0.20	0.20	99.81	0.10	0.30	99.63	0.00	5.76	24.3	7.56	0.32	-41	2650	600

Estudio cinético de remoción, etapa V (300 mg L⁻¹), ciclo 323.

Estudio cinético de remoción, etapa V (300 mg L⁻¹), ciclo 329.

	-	N-NH ₄ 1				N-NO ₃	•		N-NO ₂ '		DQO	Т	ρН	OD	ORP	Conductividad	Alcalinidad
Fast	твн ь	mg L'1	× r	91 н.нни. mg L ⁻¹ h ⁻¹	mg L ^{.1}	2 f	qfн.ноз. mg L ⁻¹ h ⁻¹	mg L ^{.1}	8 f	qfн. _{Hoz} . mg L ⁻¹ h ⁻¹	mg L' ¹	÷C	UPh	mg L ^{.1}	m۷	µs/cm	mg L ^{∙1} CoCOs
	0.0	302	0.00	0.00	5.50	0.00	0.00	1.30	0.00	0.00		20.4	8.35	4.28	181	4920	1610
1	1.0	256	15.23	46.00	28.30	21.65	22.80	28.10	30.15	26.80	///////	20	8.08	4.08	164	4050	1000
∄:[2.0	95	68.54	161.00	55.40	47.39	27.10	39.80	43.31	11.70		21.1	7.9	3.65	163	3910	817
13	3.0	87	71.19	8.00	66.20	57.64	10.80	53.00	58.16	13.20		22.5	7.89	3.63	173	3760	717
₹.	4.0	68	77.48	19.00	72.20	63.34	6.00	73.40	81.10	20.40		24.2	7.81	3.42	171	3510	517
1	5.0	42	86.09	26.00	79.40	70.18	7.20	80.20	88.75	6.80		25.1	7.52	3.11	179	3340	467
	6.0	11	96.36	31.00	110.80	100.00	31.40	90.20	100.00	10.00	391	25.3	7.26	3.23	207	3160	450
						%r	qгн.ноз. mg L ⁻¹ h ⁻¹		81	qrн.ног. mg L ⁻¹ h ⁻¹							
	6.5	10	36.63	4.00	60.80	45.13	78.00	54.60	54.60 33.47 32.40 64.08	57.00		26.6	7.33	0.31	97	2900	400
1	7.0	7	97.68	4.00	32.80	70.40	10.00	32.40		51.00		26.6	7.47	0.35	55	2850	417
] e.	7.5	3	33.01	5.00	8.10	92.69	29.70	11.70	87.03	29.50		26.8	7.57	0.31	-48	2790	540
]·∦.	8.0	2	99.34	5.00	3.10	97.20	20.10	2.90	96.78	20.00		27.5	7.57	0.31	-42	2760	600
ļş	9.0	1	33.67	1.00	2.60	97.65	0.50	2.70	97.01	0.20	///////	26.8	7.59	0.36	-60	2750	600
L.	10.0	1	39.67	0.00	0.3	39.73	2.30	0.30	33.67	2.40		26.2	7.6	0.38	-34	2680	620
	11.0	1	39.67	0.00	0.3	99.73	0.00	0.30	99.67	0.00		25.8	7.6	0.37	-38	2670	620
1	12.0	1	39.67	0.00	0.30	99.73	0.00	0.30	99.67	0.00	5	24.3	7.6	0.41	-34	2670	620

ANEXO 2 - Resultados analíticos

Anexo 2.1 Análisis estadísticos y matemáticos de los resultados de la operación del SBR aerobio/anóxico.

Anexo 2.1 Análisis estadísticos y matemáticos de los resultados de la operación del SBR aerobio/anóxico.

Se graficaron todos los datos (excepto la etapa de aclimatación) de porcentaje de remoción de N-NH4+ al final de la fase aerobia, asi como de N-NO3, N-NO2- y N-NH4+ al final de la fase anóxica. Se observó que no presentaban una distribución normal, por lo que se realizó con ayuda del software statgraphics Centurion XV – versión 15.2.06 un analisis de ajuste de distribución. En la figura A.1 y Tabla A.1 se presentan cinco mejores distribuciones que se ajustan a los datos experimentales.

	$N-NH_4^+$	N-NH4 ⁺ total	N-NO ₃ ⁻	N-NO ₂ ⁻	
Distribución	Log. Verosimilitud	Log. Verosimilitud	Log. Verosimilitud	Log. Verosimilitud	
Weibull	-370.537	-350.933	-365.297	-338.481	
Laplace	-386.827	-368.444	-368.297	-340.302	
Logística	-377.668	-366.19	-383.453	-357.877	
Normal	-375.956	-366.429	-393.243	-371.702	
Gamma	-378.338	-369.865	-400.543	-380.33	

Tabla A.1. Comparación de distribuciones alternas a la distribución normal.

Figura A.1. Ajuste de distribuciones de los datos de operación del SBR

(Statgraphics Centurion XV -versión 15.2.06)

La tabla A.1 y la figura A.1 muestran que la distribución de mayor ajuste a los datos es la distribución Weibull. Así bien los datos fueron analizados de acuerdo al método de análisis Weibull, el cual se utiliza para modelar datos que contienen valores mayores a cero.

La hipótesis de este proyecto fue el evaluar el SBR aerobio/anòxico, donde en la fase aerobia se remueve el N-NH₄⁺ y se generan N-NO₃⁻ y N-NO₂⁻, posteriormente estos productos son removidos en una etapa anóxica, logrando así la nitrificación y la desnitrificación de al menos un 70 %, a diferentes concentraciones de N-NH₄⁺. Con el fin de confirmar estadísticamente esta hipótesis, se realizó una prueba de analisis de Weibull, con un factor de confianza del 90%, asi bien esto puede ser expresado como R(70) \geq 0.90, esto tanto para los N-NH₄⁺, N-NO₃⁻ y N-NO₂⁻. El analisis Weibull se realizó en el software Microsoft [®] Office Excel 2003.

Para realizar el analisis Weibull se ajustaron los datos de N-NH₄⁺, N-NO₃⁻ y N-NO₂⁻, se ordenaron los valores de menor a mayor, posteriormente se estimó la proporción de la población que presentó una remoción menor del 70%, calculando el rango medio de cada valor:

Rango medio = (orden - 0.3) / (# datos + 0.4)

Finalmente se realizó una grafica entre ln (cada dato) y ln(ln(1/(1-rango medio))), con el fin de obtener los parámetros estimados que permitieron hacer inferencias acerca de tratamiento (en este caso del N-NH4⁺, N-NO₃⁻ y N-NO₂⁻). Posteriormente se utiizó la ecuación correspondiente a la distribución de Weibull:

$$F(x) = 1 - (e (-(x/\alpha)^{\beta}))$$
 Ec. A.1

Donde:

β se obtuvo gráficamente

$$\alpha = e^{(-(b/\beta))}$$

x= porcentaje de remoción

Se sustituyeron los valores de β , α y x (de 0 a 100), obteniendo lo siguiente (tabla A.2):

$N-NH_4^+$ al final de la fase aerobia		N-NH ₄ ⁺	al final de la fa	ise anóxica	N-NO ₃ ⁻ a	l final de la fase	e anóxica	N-NO2 ⁻ al final de la fase anóxica			
%	Probabilidad		%	Probabilidad		%	Probabilidad		%	Probabilidad	
remoción	de	fiabilidad	remoción	de	fiabilidad	remoción	de	fiabilidad	remoción	de	Fiabilidad
$N-NH_4^+$	sobrevivencia		$N-NH_4^+$	sobrevivencia	_	$N-NH_4^+$	sobrevivencia	-	$N-NH_4^+$	sobrevivencia	
0	0	1	0	0	1	0	0	1	0	0	1
10	5.72764E-13	1	10	2.88658E-15	1	10	6.69E-11	1	10	7.6E-13	1
20	4.22237E-09	1	20	8.07205E-11	1	20	8.3E-08	1	20	3.51E-09	1
30	7.72626E-07	0.999999	30	3.18836E-08	0.999999968	30	5.35E-06	0.999995	30	4.88E-07	1
40	3.11294E-05	0.999969	40	2.21754E-06	0.999997782	40	0.000103	0.999897	40	1.62E-05	0.999984
50	0.000547211	0.999453	50	5.95473E-05	0.999940453	50	0.001018	0.998982	50	0.000245	0.999755
60	0.00568008	0.99432	60	0.000875519	0.999124481	60	0.006611	0.993389	60	0.002251	0.997749
70	0.040437833	0.959562	70	0.008468087	0.991531913	70	0.031816	0.968184	70	0.014611	0.985389
80	0.205075756	0.794924	80	0.059101588	0.940898412	80	0.119723	0.880277	80	0.072052	0.927948
90	0.647367081	0.352633	90	0.292466448	0.707533552	90	0.348042	0.651958	90	0.269224	0.730776
100	0.982322719	0.017677	100	0.805227941	0.194772059	100	0.717206	0.282794	100	0.677262	0.322738

Los datos de la Tabla A.2 muestran que $R_{N-NH4+}(70\%) = 0.959$ (solamente el 4% de los ciclos no presentan el 70% de remoción), $R_{N-NH4+total}(70\%) = 0.991$ (solamente el 0.8% de los ciclos no presentan el 70% de remoción), $R_{N-NO3-}(70\%) = 0.968$ (solamente el 3.1% de los ciclos no presentan el 70% de remoción), $R_{N-NO2-}(70\%) = 0.985$ (solamente el 1.5% de los ciclos no presentan el 70% de remoción). Por lo tanto al utilizar un grado de confiabilidad del 95% en nuestra hipótesis de remoción del 70% en la fase aerobia y anoxica, podemos decir que se cumplió satisfactoriamente.

ANEXO 3

Publicaciones

(Memorias de trabajo)

IX CONGRESO REGIONAL PARA NORTEAMERICA Y EL CARIBE SOBRE INGENIERIASANITARIA Y AMBIENTAL – REGION I AIDIS. 16-18 de Noviembre del 2011, San Juan Puerto Rico

05-García-Mexico-2

TRATAMIENTO DE AGUAS RESIDUALES CON NITRÓGENO AMONIACAL EN UN REACTOR DISCONTINUO AEROBIO/ANÓXICO.

Wastewater treatment with ammonium concentrations in an aerobic/anoxic sequential reactor

Marco Antonio García Máximo¹

Mercedes Esperanza Ramírez Camperos²

Oscar González Barceló³

Víctor Manuel Luna Pabello⁴

¹ Facultad de Ingeniería – Universidad Nacional Autónoma de México. Ingeniero Químico de la Universidad Autónoma del Estado de Morelos, México. Maestría en Ingeniería Ambiental de la Universidad Nacional Autónoma de México, México.

² Instituto Mexicano de Tecnología del Agua

³ Instituto de Ingeniería de la Universidad Nacional Autónoma de México

⁴ Facultad de Química de la Universidad Nacional Autónoma de México