

UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO

FACULTAD DE INGENIERÍA

PROGRAMA ÚNICO DE ESPECIALIZACIONES DE INGENIERÍA

INGENIERÍA CIVIL

COMPARACIÓN ENTRE ESPECTROS DE SITIO Y ESPECTROS DE DISEÑO PARA LAS ZONAS SÍSMICAS IIIb, IIIC Y IIId DEL DISTRITO FEDERAL

TESINA

PARA OBTENER EL GRADO DE ESPECIALISTA EN INGENIERÍA CIVIL (GEOTECNIA)

PRESENTA:

JOSÉ CARLOS GARCÍA TORRES

TUTOR:

DR. HÉCTOR RAÚL AGUILAR BECERRIL

CIUDAD UNIVERSITARIA, MÉXICO, SEPTIEMBRE 2011

Universidad Nacional Autónoma de México

UNAM – Dirección General de Bibliotecas Tesis Digitales Restricciones de uso

DERECHOS RESERVADOS © PROHIBIDA SU REPRODUCCIÓN TOTAL O PARCIAL

Todo el material contenido en esta tesis esta protegido por la Ley Federal del Derecho de Autor (LFDA) de los Estados Unidos Mexicanos (México).

El uso de imágenes, fragmentos de videos, y demás material que sea objeto de protección de los derechos de autor, será exclusivamente para fines educativos e informativos y deberá citar la fuente donde la obtuvo mencionando el autor o autores. Cualquier uso distinto como el lucro, reproducción, edición o modificación, será perseguido y sancionado por el respectivo titular de los Derechos de Autor.

UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO PROGRAMA ÚNICO DE ESPECIALIZACIONES DE INGENIERÍA

Vniversdad Nacional AvFnºma de Mexico

Recibí notificación para formar parte del jurado para el examen del alumno: JOSÉ CARLOS GARCÍA TORRES.

ESPECIALIZACIÓN EN GEOTECNIA PLAN 11-3156.

JURADO

PRESIDENTE: M. EN I. AGUSTIN DEMENEGHI COLINA

VOCAL: DR. HÉCTOR RAÚL AGUILAR BECERRIL

SECRETARIO: M. EN I. FERNANDO MONROY MIRANDA

SUPLENTE: DR. RIGOBERTO RIVERA CONSTANTINO

SUPLENTE: ING. GERMAN LÓPEZ RINCÓN

FECHA FIRMA 2011 eu

BJSntteris

A mi madre

Por tu constante apoyo y por ser mi principal motivación para poder lograr este objetivo. Gracias por todo lo que has hecho por mí.

José Carlos García Torres

AGRADECIMIENTOS

A la Universidad Nacional Autónoma de México, en especial a la Facultad de Ingeniería por la oportunidad de pertenecer a esta comunidad universitaria, de la cual me siento orgulloso.

A mi tutor Dr. Héctor Raúl Aguilar Becerril por el tiempo y apoyo proporcionados para la elaboración de este trabajo.

Al M. en I. Marco Antonio Macías Castillo por las enseñanzas y consejos brindados durante mi estancia en el Instituto de Ingeniería.

A mis profesores de la Facultad de Ingeniería por su vocación, dedicación y por todo lo que aportaron a mi formación. Un agradecimiento especial al M. en I. Agustín Deméneghi Colina por sus valiosos conocimientos y comentarios aportados durante mis estudios.

A mi familia por su incondicional apoyo, constante motivación y estar conmigo en todo momento.

A todos mis amigos y compañeros que hicieron más agradable la realización de mis estudios.

ÍNDICE

ΡΆΟ	SINA
INTRODUCCIÓN	1
I. ZONIFICACIÓN DEL DISTRITO FEDERAL PARA FINES DE DISEÑO POR SISMO Y UBICACIÓN ESTACIONES ACELEROMÉTRICAS	I DE 6
I.1 Zonificación del Distrito Federal para fines de Diseño por Sismo	7
I.2 La Red Acelerográfica de la Ciudad de México RACM	9
II. ESTACIONES ACELEROMÉTRICAS SELECCIONADAS EN LAS ZONAS SÍSMICAS IIIb, IIIc y IIId	14
II.1 Estaciones acelerométricas seleccionadas en las zonas sísmicas IIIb, IIIc y IIId	15
III. MÉTODO β DE NEWMARK PARA EL CÁLCULO DE ESPECTROS DE RESPUESTA	19
III.1 Ecuación de Equilibrio Dinámico	20
III.2 Espectro de Respuesta	23
III.3 Método β de Newmark para el cálculo de Espectros de Respuesta	27
IV. CÁLCULO DE ESPECTROS DE RESPUESTA EN LAS ZONAS SÍSMICAS IIIb, IIIc Y IIId	29
IV.1 Programa de computadora	30
IV.2 Cálculo de Espectros de Respuesta en las zonas sísmicas IIIb, IIIc y IIId	32
V. DETERMINACIÓN DE ESPECTROS DE DISEÑO CONFORME A LA NORMATIVIDAD SÍSMICA DISTRITO FEDERAL	DEL 38
V.1 Normas Técnicas Complementarias para Diseño por Sismo	39
V.2 Apéndice A de las Normas Técnicas Complementarias para Diseño por Sismo	41
VI. COMPARACIÓN DE LOS ESPECTROS DE RESPUESTA Y ESPECTROS DE DISEÑO	47
VI.1 Comparación de los Espectros de Respuesta calculados y los Espectros de Diseño de las Normas Diseño por Sismo	para 48
VI.2 Comparación de los Espectros de Respuesta calculados y los Espectros de Diseño del Apéndice las Normas para Diseño por Sismo	A de 52

VII. CONCLUSIONES

ANEXOS	65
ANEXO 1. FORMATO DEL ARCHIVO ESTÁNDAR DE ACELERACIÓN	66
ANEXO 2. EJEMPLO DE APLICACIÓN DEL PROGRAMA <i>Espectror</i> para un registro acelerométric UN FORMATO ESTÁNDAR DE ACELERACIÓN	CO EN 70
ANEXO 3. ADAPTACIÓN DEL PROGRAMA <i>Espectror</i> y EJEMPLO DE APLICACIÓN DEL PROGF <i>EspectroRF</i> PARA UN REGISTRO ACELEROMÉTRICO EN UN FORMATO ESTÁNDAR DE ACELERACIÓN	RAMA 73
REFERENCIAS	77

63

INTRODUCCIÓN

INTRODUCCIÓN

El riesgo sísmico en la ciudad de México fue analizado desde una perspectiva geotécnica por el Dr. Emilio Rosenblueth en la década de los años 90's (Rosenblueth y Ovando, 1990, 1991). Rosenblueth estableció que la sismicidad en el valle de México queda controlada por las siguientes principales fuentes (Hartmut, *et al*, 1991, Fig. 1).

Temblores locales. Se originan dentro de la cuenca o en sus inmediaciones. En el siglo XX se registraron sismos no destructivos de este tipo con magnitudes intermedias o bajas, pero posiblemente en el pasado hayan ocurrido otros más grandes. En años recientes han ocurrido varios sismos pequeños en las lomas del poniente de la ciudad de México.

Temblores originados en la placa Norteamericana. El gran temblor de 1912, originado en el graben de Acambay a unos 70 [km] al noroeste de la capital es uno de estos. Este graben sigue amenazando a la ciudad, aunque se ha estimado que el periodo de retorno de los macrosismos que origina es del orden de un milenio.

Temblores de subducción de la placa de Cocos bajo la de Norteamérica. Son los que mayores estragos han causado en la capital. Los temblores de Guerrero de 1909, 1957 y 1979 se originaron ahí, así como los de Michoacán de 1911 y los tristemente célebres de septiembre de 1985. Cerca de la placa de Rivera (Fig. 1) tuvieron lugar los temblores de Colima de 1932 y 2002, así como el de Manzanillo de 1995. El temblor de Manzanillo en 1932 es el de mayor magnitud que se haya registrado en nuestro país con M=8.5.

Temblores de la placa de Cocos. Se originan a profundidades intermedias, entre 50 y 100 [km] con magnitudes que disminuyen conforme se alejan del litoral. Han alcanzado magnitudes en la escala de Richter de 8.0 cerca de la costa y alrededor de 6.5 bajo la cuenca de México. Estos temblores ocurren por fallamiento normal en la placa de Cocos subducida bajo la placa continental. Los temblores del Golfo de México como los de Orizaba (o Cd. Serdán) de 1973 y el de Tehuacán de 1999 tienen este origen.

Los sismos que se originan en cada una de estas fuentes son diferentes y sus efectos se manifiestan de diferente manera a las zonas de lomas, transición y lacustres de la ciudad.

Los temblores de subducción son ricos en frecuencias bajas (periodos largos) mientras que los otros concentran su energía en frecuencias más altas (periodos cortos). Esto explica por qué los temblores de subducción son los que más afectan a la zona de las arcillas lacustres. Por otro lado, si se presentara otro en la falla de Acambay, por ejemplo, las zonas de terrenos firmes o las de transición podrían ser las más dañadas.

Figura 1 Sismo tectónica de la República Mexicana (ref 1)

Es bien sabido que hay una relación estrecha entre la intensidad sísmica en un sitio, las condiciones locales del subsuelo, la magnitud, la distancia epicentral y la naturaleza de las fuentes sísmicas. Todos estos aspectos han sido objeto de investigaciones cuya importancia volvió a evidenciarse después de los sismos de 1985. Algunas de las implicaciones prácticas de estas pesquisas se han reflejado en las Normas Técnicas Complementarias para el diseño Sísmico de Edificios. En particular, la zonificación sísmica del Reglamento de Construcciones del Distrito Federal (Fig. 2) ejemplifica cómo algunas de las investigaciones geotécnicas llevadas a cabo desde 1986 han incidido en la práctica de la ingeniería sísmica de nuestra ciudad. Los espectros de diseño para cada una de estas zonas toman en cuenta todas las fuentes que contribuyen al peligro sísmico y, asimismo, las condiciones geotécnicas particulares de cada una de ellas. Una importante aportación a la práctica ha sido la inclusión en estas normas de los mapas de iso-períodos naturales del terreno, obtenidos a partir del

registro de vibraciones ambientales (ruido ambiental), los cuales permiten conocer puntualmente las características dinámicas promedio del subsuelo del valle (Kobayashi *et al*, 1986 y Lermo *et al*, 1988).

Figura 2 Propuesta de zonificación del D. F. para fines de diseño por sismo, propuesta del año 2001 (ref 1)

Sin duda, el factor que más influye en la intensidad sísmica local es el subsuelo. De ahí que los estudios sobre las características y propiedades dinámicas de las arcillas del valle de México sean tan importantes. Como en muchas otras áreas de la geotecnia, destacan en este campo los trabajos pioneros de Marsal y Mazari (1959) y de Zeevaert (1971). Posteriormente muchos otros investigadores han aportado su trabajo para avanzar en este tema. Una parte importante de este esfuerzo se refiere a estudios experimentales de campo y de laboratorio,

pero también se han afinado modelos analíticos para calcular la respuesta sísmica de los depósitos arcillosos de la cuenca.

El objetivo de este trabajo es calcular espectros de respuesta obtenidos de registros acelerométricos históricos, capturados en sitios ubicados en las zonas sísmicas IIIb, IIIc y IIId del Distrito Federal, y compararlos con los espectros de diseño establecidos en las vigentes Normas Técnicas Complementarias para Diseño por Sismo del Reglamento de Construcciones del Distrito Federal.

Se calcularán espectros de respuesta aplicando el método β de Newmark a partir del uso de registros acelerométricos históricos capturados en estaciones de la Red Acelerométrica del Valle de México. Los espectros se compararán con los espectros de diseño establecidos en las Normas para Diseño por Sismo. Adicionalmente, para cada sitio se comparará su espectro de respuesta con el espectro de diseño obtenido al aplicar el criterio fijado en el Apéndice A de la misma norma, a partir del conocimiento del periodo dominante de vibración del suelo.

En el capítulo I de este documento se describe la zonificación del Distrito Federal para fines de Diseño por Sismo, así como también la distribución de las estaciones acelerométricas con registros capturados durante el sismo del 25 de abril de 1989. La distribución de las estaciones e información más detallada de éstas correspondientes a las zonas sísmicas IIIb, IIIc y IIId se presentan en el capítulo II. Posteriormente en el capítulo III se proporciona información elemental del Método β de Newmark para el cálculo de Espectros de respuesta partiendo del concepto de la ecuación de equilibrio dinámico. Se describe el programa utilizado para determinar los espectros de respuesta, así como los valores obtenidos en el capítulo IV. En el capítulo V se aborda la construcción de los espectros de diseño sísmico de acuerdo al criterio del cuerpo de las normas y con el Apéndice A. La comparación de los espectros de sitio y espectros de diseño se presenta en el capítulo VI, donde también se integran las observaciones para cada condición en estudio. Finalmente se incluyen las conclusiones derivadas de los resultados obtenidos.

CAPÍTULO I.

ZONIFICACIÓN DEL DISTRITO FEDERAL PARA FINES DE DISEÑO POR SISMO Y UBICACIÓN DE ESTACIONES ACELEROMÉTRICAS

I. ZONIFICACIÓN DEL DISTRITO FEDERAL PARA FINES DE DISEÑO POR SISMO Y UBICACIÓN DE ESTACIONES ACELEROMÉTRICAS

I.1 Zonificación del Distrito Federal para fines de Diseño por Sismo

Los Profesores Raúl J. Marsal y Marcos Mazari presentaron en su libro El subsuelo de la Ciudad de México (1959) la primera zonificación de los suelos del Valle. Una década después, en la Quinta Reunión Nacional de Mecánica de Suelos, Reséndiz *et al* (1970) actualizaron la información del subsuelo, incorporando los sondeo realizados en la práctica profesional por varias empresas geotécnicas. Posteriormente, en un simposio sobre El Subsuelo y la Ingeniería de Cimentaciones en el Área Urbana del Valle de México, se volvió a actualizar esa información (Del Castillo, 1978). El plano de Marsal y Mazari se incorporó a las Normas Técnicas para el Diseño de Cimentaciones del Reglamento de Construcciones del Distrito Federal desde hace varias décadas y los nuevos conocimientos sobre el subsuelo se han tomado en cuenta en las versiones posteriores. Los planos de zonificación han evolucionado abarcando áreas que en un principio no se incluían en el plano de Marsal y Mazari, en respuesta al crecimiento de la ciudad. La última versión del plano de zonas geotécnicas se incorporó a las Normas Técnicas durante el transcurso del año 2004 y entró en vigor en octubre de ese año (ref 1).

Como lo define el artículo 170 del Capítulo VIII del Título Sexto del vigente Reglamento de Construcciones para el Distrito Federal, para fines de Diseño y Construcción de Cimentaciones, el Distrito Federal se divide en tres zonas con las siguientes características generales:

a) Zona I. Lomas, formada por rocas o suelos generalmente firmes que fueron depositados fuera del ambiente lacustre, pero en los que pueden existir, superficialmente o intercalados, depósitos arenosos en estado suelto o cohesivos relativamente blandos. En esta zona, es frecuente la presencia de oquedades en rocas, de cavernas y túneles excavados en suelos para explotar minas de arena y de rellenos no controlados;

b) Zona II. Transición, en la que los depósitos profundos se encuentran a 20 [m] de profundidad, o menos, y que está constituida predominantemente por estratos arenosos y limo arenosos intercalados con capas de arcilla lacustre; el espesor de éstas es variable entre decenas de centímetros y pocos metros; y

c) Zona III. Lacustre, integrada por potentes depósitos de arcilla altamente compresibles, separados por capas arenosas con contenido diverso de limo o arcilla. Estas capas arenosas son generalmente medianamente compactas a muy compactas y de espesor variable de centímetros a varios metros. Los depósitos lacustres suelen estar cubiertos superficialmente

por suelos aluviales, materiales desecados y rellenos artificiales; el espesor de este conjunto puede ser superior a 50 [m].

Para los efectos de Diseño por Sismo se consideran las zonas del Distrito Federal que fija el artículo 170 del Capítulo VIII del Título Sexto del vigente Reglamento de Construcciones para el Distrito Federal. Adicionalmente, la zona III se ha dividido en cuatro subzonas (IIIa, IIIb, IIIc y IIId), según se indica en la Fig. I.1 (ref 3):

Figura I.1 Zonificación del D. F. para fines de Diseño por Sismo

I.2 La Red Acelerográfica de la Ciudad de México RACM

En enero de 1986, después de evaluar la magnitud del desastre que causaron los sismos de septiembre de 1985 en la ciudad de México, expertos en ingeniería sísmica y geofísica propusieron, ante el CONACyT, ejecutar diversas investigaciones básicas y desarrollos tecnológicos útiles para mitigar la vulnerabilidad de la zona urbana del valle de México, ante este peligro natural.

En 1987 el CIRES inició el desarrollo de la Red Acelerográfica de la ciudad de México, RACM, que cuenta con 78 aparatos: 29 equipos SSA-1 Kinemetrics, instalados originalmente por la Fundación ICA (FICA), más 35 equipos DCA-333 Terratech y 7 sensores subterráneos. En 1997, el 100% de los equipos Terra Technology fueron renovados con el sistema de registro digital RAD-851; desarrollado en el CIRES para asegurar la función de este recurso tecnológico y dar continuidad a su servicio de medición acelerométrica.

Con el sistema RAD-851, en 1997, el CIRES logró renovar la totalidad de los acelerógrafos DCA333, después de que en 1995 fueron descontinuados por el fabricante, dando de ésta forma continuidad al registro de los sismos que eventualmente afectan al valle de México.

Los acelerógrafos de la RACM, renovados con el sistema RAD-851, registran la información en una tarjeta tipo PCMCIA con capacidad para almacenar hasta 34 minutos de datos. Cuentan con memoria de pre-evento ajustable para registrar hasta 58 segundos antes del sismo y post-evento de hasta 100 segundos posteriores al momento en que la aceleración del sismo sea menor que el nivel de disparo seleccionado.

Para recuperar en el sitio los acelerogramas registrados, se utiliza una computadora portátil, misma que permite revisar y/o cambiar los parámetros de operación y verificar la calibración de los sensores; algunas de estas estaciones cuentan con línea telefónica y son interrogadas vía módem.

Los acelerogramas sísmicos, se difunden para promover actividades de investigación sobre factores de diseño y riesgo sísmico en el DF; mediante la publicación de boletines, presentaciones en congresos y seminarios, así como en el grupo de instituciones que contribuyen en la conservación y actualización de la Base Mexicana de Datos de Sismos Fuertes y que a la fecha ha editado, con el apoyo de la Sociedad Mexicana de Ingeniería Sísmica (SMIS), los volúmenes 1 y 2 en formato CD-ROM. Estos discos reúnen los resultados de las diferentes instituciones mexicanas dedicadas al registro de la información sísmica y presentan un total de 13,545 acelerogramas obtenidos en el período 1960 a 1999.

Adicionalmente, el CIRES difunde un boletín en menos de 24 horas a la Secretaría de Obras y Servicios (SOS) del Gobierno del Distrito Federal (GDF), después de haberse sentido un sismo en el valle de México. Asimismo, entrega bimestralmente un reporte de las actividades de servicio, operación y conservación realizadas en cada estación de la RACM, así como la información acelerométrica que haya sido obtenida durante ese período. Uno de los objetivos principales del CIRES, es tener los resultados a disposición de los investigadores y especialistas en ingeniería sísmica de México y del extranjero (ref 4). En la Fig. I.2 se indica la distribución actual de las estaciones de la RACM.

Figura I.2 Distribución de las estaciones de la RACM (ref 5)

Para efectos de este trabajo se eligió el sismo del 25 de abril de 1989 (M=6.9) originado en la zona de subducción de la costa del Estado de Guerrero. Se escogió este sismo por ser el más intenso desde 1985 y porque fue ampliamente registrado por la RACM (ref 6).

Los registros acelerométricos, en un formato estándar de aceleración (ver Anexo 1), se obtuvieron de la Base Mexicana de Datos de Sismos Fuertes CD-ROM vol. 2 (ref 7) y en la tabla 1.1 se indica información de cada una de las estaciones que tienen registro acelerométrico del sismo del 25 de abril de 1989. La distribución de estas estaciones de la RACM para este sismo se indica en la Fig. I.3.

				COORD	ENADAS	
INSTITUCIÓN	ESTACIÓN	NOMBRE DE ESTACIÓN	UBICACIÓN	LATITUD N	LONGITUD	REGISTRO
FICA	AL01	ALAMEDA	Alameda Central	19.4356	99.1453	AL018904.251
CIRES	AP68	APATLACO	Apatlaco y San Lorenzo	19.3809	99.1068	AP688904.251
FICA	AU11	AUTODROMO	Autódromo Hermanos Rodríguez	19.3919	99.0869	AU118904.251
CIRES	AU46	ANGEL URRAZA	Ángel Urraza y Coyoacán	19.3832	99.1681	AU468904.251
FICA	BA49	BUENOS AIRES	Esc. Sec. No. 102	19.4097	99.1450	BA498904.251
FICA	BL45	BALDERAS	Esc. Prim. "Centro Revolución"	19.4253	99.1481	BL458904.251
FICA	BO39	BONDOJITO	Esc. Prim. "Miguel Lanz Duret"	19.4653	99.1047	BO398904.251
FICA	CA59	CANDELARIA	Deportivo Venustiano Carranza	19.4258	99.1183	CA598904.251
I de I-UNAM	CDAO	CENTRAL DE ABASTOS OFICINAS	Rio Churubusco y Apatlaco	19.3720	99.0960	CDAO8904.251
CIRES	CE18	CERRO DE LA ESTRELLA	Calle 3 y Carril	19.3398	99.0847	CE188904.251
FICA	CE23	CETIS	CETIS No. 54	19.4619	99.0642	CE238904.251
CIRES	CE32	CETIS 57	Av. Tepalcates y Verduzco	19.3858	99.0537	CE328904.251
CIRES	CH84	CULHUACAN	Ejido de Culhuacán y Ejido de Santa Úrsula	19.3300	99.1254	CH848904.251
FICA	CI05	CIBELES	Esc. Prim. "Alberto Correa"	19.4186	99.1653	CI058904.251
FICA	CJ03	C.U. JUAREZ	Antonio M. Anza y Orizaba, Col. Roma	19.4097	99.1567	CJ038904.251
FICA	CO47	COYOACAN	Esc. Prim. "Centro Escolar Alemán"	19.3714	99.1703	CO478904.251
CIRES	CO56	CORDOBA	Córdoba No. 68, Col. Roma	19.4215	99.1590	CO568904.251
CIRES	CP28	CERRO DEL PEÑON	Peñon de los Baños	19.4385	99.0839	CP288904.251
CIRES	CS78	COLINAS DEL SUR	Calzada de los Corceles s/n, Colinas del Sur	19.3656	99.2262	CS788904.251
l de I-UNAM	CU01	IDEI LABORATORIO INSTRUMENTACION SISMICA	Instituto de Ingeniería, UNAM	19.3300	99.1830	CU018904.251
CIRES	CU80	CUEMANCO	Periférico Sur, Cuemanco	19.2938	99.1037	CU808904.251
I de I-UNAM	DFRO	ROMA	Manzanillo y Quintana Roo	19.4050	99.1660	DFRO8904.251
I de I-UNAM	DFVG	PREPARATORIA #7 (LA VIGA)	Calzada de la Viga, entre Adolfo Gurrión y San Pablo	19.4190	99.1260	DFVG8904.251
CIRES	DM12	DEPORTIVO MOCTEZUMA	Oriente 168 y Norte 25	19.4312	99.0963	DM128904.251
CIRES	DR16	DEPORTIVO REYNOSA	Eje 5 Norte y San Pablo	19.5005	99.1829	DR168904.251
FICA	DX37	XOTEPINGO	DGCOH	19.3322	99.1439	DX378904.251
CIRES	EO30	ESPARZA OTEO	Pensylvania y Georgia	19.3885	99.1772	EO308904.251

Tabla I.1 Estaciones acelerométricas con registro del sismo del 25 de abril de 1989

	0.015.55			COORD	ENADAS	
INSTITUCIÓN	ESTACIÓN	NOMBRE DE ESTACIÓN	UBICACIÓN		LONGITUD	REGISTRO
FICA	ES57	ESCANDON	Esc. Prim. "Miguel F. Martínez"	19.4017	99.1775	ES578904.251
CIRES	FJ74	FUNDACION JAVIER BARROS SIERRA	Carretera al Ajusco, No. 203	19.2990	99.2100	FJ748904.251
CIRES	GA62	GARIBALDI	Eje Central No. 10, Centro	19.4385	99.1401	GA628904.251
FICA	GR27	GRANJAS	Esc. Sec. No. 55	19.4747	99.1797	GR278904.251
CIRES	HJ72	HOSPITAL JUAREZ	Jesús María, Centro	19.4251	99.1301	HJ728904.251
CIRES	IB22	IBERO	Cerro Crestón y Cerro Mezontepec	19.3450	99.1297	IB228904.251
FICA	JA43	JAMAICA	Centro Cultural "José Ma. Pino Suárez"	19.4053	99.1250	JA438904.251
CIRES	JC54	JARDINES DE COYOACAN	Dalias e Iris	19.3130	99.1272	JC548904.251
FICA	LI33	LICONSA	Planta LICONSA Tláhuac	19.3064	98.9631	LI338904.251
CIRES	LI58	LIVERPOOL	Liverpool No. 40, Col. Juárez	19.4263	99.1569	LI588904.251
FICA	LV17	LINDAVISTA	Parque Deportivo Miguel Alemán, Av. Lindavista	19.4931	99.1275	LV178904.251
CIRES	ME52	MARIANO ESCOBEDO	Mariano Escobedo y Lago Alberto	19.4383	99.1820	ME528904.251
FICA	MI15	MIRAMONTES	Glorieta Miramontes	19.2834	99.1253	MI158904.251
CIRES	MT50	MARISCAL TITO	Reforma y Gandhi	19.4253	99.1900	MT508904.251
FICA	MY19	MEYEHUALCO	Deportivo Santa Cruz Meyehualco	19.3461	99.0433	MY198904.251
CIRES	NZ20	NEZAHUALCOYOTL	Carmelo Pérez y La Escondida	19.4027	99.0000	NZ208904.251
FICA	NZ31	NEZAHUALCOYOTL	Esc. Normal ENEM No. 52	19.4167	99.0247	NZ318904.251
CIRES	PA34	SAN PEDRO ATOCPAN	Esc. Prim. "Álvaro Obregón"	19.2016	99.0491	PA348904.251
CIRES	PD42	PALACIO DE LOS DEPORTES	Río Churubusco y Añil	19.4055	99.0997	PD428904.251
CIRES	PE10	PLUTARCO ELIAS CALLES	Plutarco Elías Calles y Santiago	19.3809	99.1318	PE108904.251
CIRES	RM48	RODOLFO MENENDEZ	Loreto y San Ildefonso	19.4359	99.1280	RM488904.251
l de I-UNAM	SCT2	SCT B-2	Estacionamiento en el Edificio de SCT	19.3930	99.1470	SCT28904.251
FICA	SI53	SAN SIMON	Esc. Prim. "Pedro Ascencio"	19.3753	99.1483	SI538904.251
FICA	SP51	SECTOR POPULAR	Esc. Prim. "Alberto Mazferrer"	19.3656	99.1189	SP518904.251
I de I-UNAM	SXVI	SISMEX VIVEROS	Viveros de Coyoacan	19.3580	99.1710	SXVI8904.251
l de I-UNAM	TACY	TACUBAYA	Observatorio de Tacubaya	19.4030	99.1940	TACY8904.251
FICA	TE07	TECAMACHALCO	Laboratorios SARH	19.4269	99.2217	TE078904.251
CIRES	TL08	TLATELOLCO	Unidad Nonoalco - Tlatelolco	19.4500	99.1336	TL088904.251
FICA	TL55	TLATELOLCO	Deportivo 5 de Mayo	19.4536	99.1425	TL558904.251
l de I-UNAM	TLHB	TLAHUAC BOMBAS	Caseta DDF, Tláhuac	19.2790	99.0080	TLHB8904.251
FICA	TP13	TLALPAN	Esc. Prim. "1ro. de Mayo"	19.2922	99.1708	TP138904.251
CIRES	UC44	UNIDAD COLONIA IMSS	Villalongin No. 117	19.4337	99.1654	UC448904.251
FICA	VG09	VALLE GOMEZ	Esc. Sec. No. 104	19.4539	99.1225	VG098904.251
FICA	VM29	VILLA DEL MAR	Jardín de Niños "Valentín Z. Orozco"	19.3811	99.1253	VM298904.251
CIRES	XP06	XOCHIPILLI	5 de Febrero y Lucas Alamán, Centro	19.4198	99.1353	XP068904.251

Tabla I.1 (continuación)

Figura I.3 Zonificación del DF para fines de diseño por sismo y ubicación de estaciones de la RACM con registro del sismo del 25 de abril de 1989

CAPÍTULO II. ESTACIONES ACELEROMÉTRICAS SELECCIONADAS EN LAS ZONAS SÍSMICAS IIIb, IIIc y IIId

II. ESTACIONES ACELEROMÉTRICAS SELECCIONADAS EN LAS ZONAS SÍSMICAS IIIb, IIIc y IIId

II.1 Estaciones acelerométricas seleccionadas en las zonas sísmicas IIIb, IIIc y IIId

Para fines de este trabajo se eligieron las estaciones acelerométricas que registraron el sismo del 25 de abril de 1989 (M=6.9) y que están ubicadas en las zonas sísmicas IIIb, IIIc y IIId del Distrito Federal. En las tablas II.1 a II.6 se incluye información relevante relacionada con la estación y del registro acelerométrico, de igual manera, una visión general de la ubicación de las estaciones acelerométricas se presenta en la figura II.1. Se destaca que el periodo dominante de vibración del suelo correspondiente a cada estación acelerométrica se obtuvo de la referencia 9.

Tabla II.1 Estaciones acelerométricas con registro del sismo del 25 de abril de 1989 para la zona sísmica IIIb

				DATUM ITRF92	ZONA 14	
		COORDENAD	AS GEOGRÁFICAS	COORDEN	IADAS UTM	PERIODO
CLAVE DE ESTACIÓN	NOWIDRE DE ESTACIÓN	LATITUD N	LONGITUD W	x	У	(s)
AL01	ALAMEDA	19.4356 99.1453		484747.411557	2149033.206759	2.0
BL45	BALDERAS	19.4253	99.1481	484452.506398	2147893.728436	2.3
CI05	CIBELES	19.4186	99.1653	482646.140598	2147153.994092	1.9
CJ03	C.U. JUAREZ	19.4097	99.1567	483548.109760	2146168.337914	1.9
CO56	CORDOBA	19.4215	99.1590	483307.837402	2147474.266039	2.4
GA62	GARIBALDI	19.4385	99.1401	485293.533549	2149353.649028	2.1
LI58	LIVERPOOL	19.4263	99.1569	483528.784055	2148005.199459	2.3
PE10	PLUTARCO ELIAS CALLES	19.3809	99.1318	486159.923501	2142979.350377	2.3
RM48	RODOLFO MENENDEZ	19.4359	99.1280	486563.473036	2149064.961531	2.4
SCT2	SCT B-2	19.3930	99.1470	484564.937024	2144319.537241	2.0
SP51	SECTOR POPULAR	19.3656	99.1189	487513.365047	2141285.384024	2.2
TL08	TLATELOLCO	19.4500	99.1336	485976.835154	2150625.620652	2.0
TL55	TLATELOLCO	19.4536	99.1425	485042.985725	2151024.722796	1.9
VG09	VALLE GOMEZ	19.4539	99.1225	487142.242147	2151056.302040	2.6

Tabla II.2 Información adicional de las estaciones acelerométricas con registro del sismodel 25 de abril de 1989 para la zona sísmica IIIb

CLAVE DE ESTACIÓN	REGISTRO	INTERVALO DE MUESTREO		ORIENTACIÓN	N	MÁXIMA ACELERACIÓN (cm/s²)		
		(s)	CANAL 1	CANAL 2	CANAL 3	CANAL 1	CANAL 2	CANAL 3
AL01	AL018904.251	0.005	(N00E)	(+V)	(N90E)	45.95	9.74	37.52
BL45	BL458904.251	0.005	(N00E)	(+V)	(N90E)	42.73	19.12	52.51
CI05	CI058904.251	0.005	(N00E)	(+V)	(N90E)	54.34	14.52	45.82
CJ03	CJ038904.251	0.005	(N00E)	(+V)	(N90E)	40.72	10.14	37.68
CO56	CO568904.251	0.010	(N00E)	(+V)	(N90W)	73.00	30.63	39.10
GA62	GA628904.251	0.010	(N00E)	(+V)	(N90W)	52.60	13.87	45.43

15

CLAVE DE ESTACIÓN	REGISTRO	INTERVALO DE MUESTREO	ORIENTACIÓN			MÁXIMA ACELERACIÓN (cm/s²)		
		(s)	CANAL 1	CANAL 2	CANAL 3	CANAL 1	CANAL 2	CANAL 3
LI58	LI588904.251	0.010	(N00E)	(+V)	(N90W)	40.94	23.44	40.34
PE10	PE108904.251	0.010	(N00E)	(+V)	(N90W)	53.04	10.19	43.57
RM48	RM488904.251	0.010	(N00E)	(+V)	(N90W)	27.95	8.38	47.96
SCT2	SCT28904.251	0.010	(V)	(N90E)	(N00E)	19.27	39.98	37.51
SP51	SP518904.251	0.005	(N00E)	(+V)	(N90E)	47.31	8.50	39.06
TL08	TL088904.251	0.010	(N00E)	(+V)	(N90W)	32.35	8.81	47.55
TL55	TL558904.251	0.005	(N00E)	(+V)	(N90E)	45.18	10.78	31.11
VG09	VG098904.251	0.005	(N00E)	(+V)	(N90E)	38.21	8.88	47.41

Tabla II.2 (continuación)

Tabla II.3 Estaciones acelerométricas con registro del sismo del 25 de abril de 1989 para la zona sísmica IIIc

				DATUM ITRF92	ZONA 14	
		COORDENAD	AS GEOGRÁFICAS	COORDEN	IADAS UTM	PERIODO
CLAVE DE ESTACIÓN	NOWBRE DE ESTACIÓN	LATITUD N	LONGITUD W	x	У	(s)
AP68	APATLACO	19.3809	99.1068	488785.130359	2142977.536451	3.2
BA49	BUENOS AIRES	19.4097	99.1450	484776.491707	2146167.263146	2.9
BO39	BONDOJITO	19.4653	99.1047	489011.322786	2152316.518065	2.7
CA59	CANDELARIA	19.4258	99.1183	487580.943381	2147946.636205	3.1
CDAO	CENTRAL DE ABASTOS OFICINAS	19.3720	99.0960	489918.671734	2141992.063598	3.3
CU80	CUEMANCO	19.2938	99.1037	489104.879822	2133339.549081	3.0
DFVG	PREPARATORIA #7 (LA VIGA)	19.4190	99.1260	486772.051188	2147194.768295	3.0
HJ72	HOSPITAL JUAREZ	19.4251	99.1301	486342.127012	2147870.072080	2.8
JA43	JAMAICA	19.4053	99.1250	486875.935827	2145678.746159	3.1
MY19	MEYEHUALCO	19.3461	99.0433	495452.184282	2139123.941585	2.8
VM29	VILLA DEL MAR	19.3811	99.1253	486842.493528	2143000.972707	2.9
XP06	XOCHIPILLI	19.4198	99.1353	485795.770712	2147284.030972	2.9

Tabla II.4 Información adicional de las estaciones acelerométricas con registro del sismodel 25 de abril de 1989 para la zona sísmica IIIc

CLAVE DE ESTACIÓN	REGISTRO	INTERVALO DE MUESTREO	ORIENTACIÓN			MÁXIMA ACELERACIÓN (cm/s²)		
		(s)	CANAL 1	CANAL 2	CANAL 3	CANAL 1	CANAL 2	CANAL 3
AP68	AP688904.251	0.010	(N00E)	(+V)	(N90W)	32.96	9.12	33.30
BA49	BA498904.251	0.005	(N00E)	(+V)	(N90E)	54.52	14.66	58.97
BO39	BO398904.251	0.005	(N00E)	(+V)	(N90E)	33.52	12.02	37.46
CA59	CA598904.251	0.005	(N00E)	(+V)	(N90E)	29.14	9.88	46.93
CDAO	CDAO8904.251	0.010	(V)	(N90E)	(N00E)	9.66	34.38	28.15
CU80	CU808904.251	0.010	(N00E)	(+V)	(N90W)	50.37	9.76	53.65

CLAVE DE ESTACIÓN	REGISTRO	INTERVALO DE MUESTREO	ORIENTACIÓN			DE ORIENTACIÓN MÁXIMA ACELERACIÓN (cm/s ²			N (cm/s²)
		(s)	CANAL 1	CANAL 2	CANAL 3	CANAL 1	CANAL 2	CANAL 3	
DFVG	DFVG8904.251	0.010	(V)	(N90E)	(N00E)	7.32	32.62	33.71	
HJ72	HJ728904.251	0.010	(N00E)	(+V)	(N90W)	44.54	12.49	48.44	
JA43	JA438904.251	0.005	(N00E)	(+V)	(N90E)	35.10	8.56	31.21	
MY19	MY198904.251	0.005	(N00E)	(+V)	(N90E)	54.55	19.68	29.78	
VM29	VM298904.251	0.005	(N00E)	(+V)	(N90E)	49.14	12.71	52.02	
XP06	XP068904.251	0.005	(N00E)	(+V)	(N90W)	43.55	11.04	57.24	

Tabla II.4 (continuación)

Tabla II.5 Estaciones acelerométricas con registro del sismo del 25 de abril de 1989 para la zona sísmica IIId

				DATUM ITRF92	ZONA 14	
	NOMBRE DE ESTACIÓN	COORDENAD	AS GEOGRÁFICAS	COORDEN	PERIODO	
CLAVE DE ESTACIÓN		LATITUD N	LONGITUD W	х	У	(s)
AU11	AUTODROMO	19.3919	99.0869	490875.406585	2144193.542326	4.6
CE23	CETIS	19.4619	99.0642	493261.818605	2151938.208584	4.8
CE32	CETIS 57	19.3858	99.0537	494361.233307	2143517.141801	4.3
DM12	DEPORTIVO MOCTEZUMA	19.4312	99.0963	489890.824950	2148542.724367	4.0
NZ20	NEZAHUALCOYOTL	19.4027	99.0000	500000.000000	2145386.292716	4.7
NZ31	NEZAHUALCOYOTL	19.4167	99.0247	497406.867199	2146935.616793	5.2
PD42	PALACIO DE LOS DEPORTES	19.4055	99.0997	489532.261580	2145699.146136	4.3
TLHB	TLAHUAC BOMBAS	19.2790	99.0080	499159.414118	2131698.672420	5.2

Tabla II.6 Información adicional de las estaciones acelerométricas con registro del sismodel 25 de abril de 1989 para la zona sísmica IIId

CLAVE DE ESTACIÓN	REGISTRO	INTERVALO DE MUESTREO	ORIENTACIÓN MÁXIMA ACELERACIÓN (cm/s			N (cm/s²)		
		(s)	CANAL 1	CANAL 2	CANAL 3	CANAL 1	CANAL 2	CANAL 3
AU11	AU118904.251	0.005	(N00E)	(+V)	(N90E)	19.51	6.35	20.29
CE23	CE238904.251	0.005	(N00E)	(+V)	(N90E)	25.71	7.55	17.50
CE32	CE328904.251	0.010	(N00E)	(+V)	(N90W)	20.52	7.66	19.70
DM12	DM128904.251	0.010	(N00E)	(+V)	(N90W)	25.33	7.29	23.00
NZ20	NZ208904.251	0.005	(N00E)	(+V)	(N90E)	54.55	19.68	29.78
NZ31	NZ318904.251	0.005	(N00E)	(+V)	(N90E)	54.55	19.68	29.78
PD42	PD428904.251	0.010	(N00E)	(+V)	(N90W)	21.69	12.28	25.86
TLHB	TLHB8904.251	0.010	(V)	(N90E)	(N00E)	17.10	48.33	34.11

Figura II.1 Zonificación del DF para fines de diseño por sismo y ubicación de estaciones de la RACM con registro del sismo del 25 de abril de 1989 para las zonas sísmicas IIIb, IIIc y IIId

CAPÍTULO III.

MÉTODO β DE NEWMARK PARA EL CÁLCULO DE ESPECTROS DE RESPUESTA

III. MÉTODO β DE NEWMARK PARA EL CÁLCULO DE ESPECTROS DE RESPUESTA

El cálculo de los espectros de respuesta en los sitios de estudio se realizó aplicando el método β de Newmark, que a continuación se describe.

III.1 Ecuación de Equilibrio Dinámico

Sistemas de un grado de libertad. Considérese la figura III.1, la cual está integrada por una masa concentrada (m), un marco que proporciona rigidez (k) al sistema y un amortiguador viscoso (c) que disipa la energía vibratoria del sistema.

Figura III.1 Sistema de un grado de libertad: a) Fuerza aplicada p(t) y b) Movimiento sísmico inducido

El número de desplazamientos independientes requeridos para definir la posición desplazada de la masa con respecto a su posición original, es denominado el *número de grados de libertad* para un análisis dinámico. Si se considera la figura III.1, que solo tiene libertad de movimiento en la dirección de la excitación, un análisis estático del problema despreciando la deformación axial deberá ser formulado con tres grados de libertad (desplazamiento lateral y dos giros), para determinar la rigidez lateral del marco. Por el contrario, para el análisis dinámico solo tiene un grado de libertad, por lo que es denominado así. En este caso se consideran dos tipos de excitación: 1) fuerza externa en la dirección lateral p(t) y 2) el movimiento sísmico inducido $u_q(t)$ (ref 10).

Según el sistema planteado los desplazamientos en cada instante están relacionados por:

$$u^{t}(t) = u(t) + u_{g}(t)$$
 (3.1)

Donde:

- $u^{t}(t)$ = desplazamiento total del sistema en función del tiempo
- u(t) = desplazamiento relativo a la base generado por la deformación del marco en función del tiempo
- $u_g(t)$ = desplazamiento de la base originado por el movimiento sísmico en función del tiempo

Considerando el equilibrio dinámico del sistema de la figura III.1b se tiene el diagrama de cuerpo libre mostrado en la figura III.2:

Figura III.2 Diagrama de cuerpo libre del sistema

Con base a lo anterior se tiene:

$$f_I + f_D + f_S = 0 (3.2)$$

Donde:

$$f_I = m\ddot{u}^t \tag{3.2}$$

$$f_D = c\dot{u} \tag{3.3}$$

$$f_S = ku \tag{3.4}$$

m = masa del sistema

- \ddot{u}^t = aceleración total del sistema
- c = coeficiente de amortiguamiento viscoso
- \dot{u} = velocidad
- k = rigidez lateral
- u = desplazamiento

Sustituyendo (3.2), (3.3) y (3.4) en (3.2)

$$m\ddot{u}^t + c\dot{u} + ku = 0 \tag{3.5}$$

Considerando la ecuación 3.1

$$u^t(t) = u(t) + u_a(t)$$

derivando

$$\dot{u}^{t} = \dot{u} + \dot{u}_{g}$$
$$\ddot{u}^{t} = \ddot{u} + \ddot{u}_{g}$$
$$\vdots$$
$$m(\ddot{u} + \ddot{u}_{g}) + c\dot{u} + ku = 0$$

finalmente

$$m\ddot{u} + c\dot{u} + ku = -m\ddot{u}_g(t) \tag{3.6}$$

A la expresión 3.6 se le conoce como *ecuación diferencial de movimiento* para un sistema de un grado de libertad o *ecuación de equilibrio dinámico*. Dividiendo esta ecuación por *m* se tiene:

$$\frac{m\ddot{u}}{m} + \frac{c\dot{u}}{m} + \frac{ku}{m} = -\frac{m\ddot{u}_g(t)}{m}$$
$$\ddot{u} + \frac{c\dot{u}}{m} + \frac{ku}{m} = -\ddot{u}_g(t)$$
(3.7)

Considerando las siguientes definiciones:

$$\Omega = \omega_n = \sqrt{\frac{k}{m}}$$
$$\Omega = \frac{2\pi}{T_n}$$
$$\zeta = \frac{c}{c_r} = \frac{c}{2m\Omega}$$

 Ω = frecuencia circular natural de vibración

k = rigidez lateral del sistema

m = masa del sistema

 T_n = periodo natural de vibración

 ζ = relación de amortiguamiento o fracción de amortiguamiento crítico

c = coeficiente de amortiguamiento viscoso

 c_r = coeficiente crítico de amortiguamiento, es denominado de esta forma porque es el valor mínimo de c que impide que el sistema oscile al regresar a su posición original después de haber sufrido un desplazamiento.

Sustituyendo en la ecuación 3.7:

$$\ddot{u} + 2\zeta\Omega\dot{u} + \Omega^2 u = -\ddot{u}_g(t) \tag{3.8}$$

De la ecuación 3.8 se deduce que el desplazamiento u(t) del sistema es función de la frecuencia natural Ω y de la relación de amortiguamiento ζ . Por lo que dos sistemas que tengan los mismos valores de T_n y ζ tendrán la misma respuesta al desplazamiento u(t), aún cuando uno de ellos tenga mayor masa o posea mayor rigidez que el otro. La solución de la ecuación (3.8) será establecida más adelante.

La figura III.3 presenta la respuesta del desplazamiento de 3 sistemas, sometidos a un movimiento del terreno $\ddot{u}_g(t)$, con distintos periodos naturales de vibración T_n y un valor de $\zeta = 2\%$. Es evidente la diferencia en la respuesta, entre más grande es el periodo de vibración mayor es la aceleración pico, también en la misma figura, y para el mismo movimiento se ha fijado el periodo de vibración $T_n = 2$ segundos y se ha variado la relación de amortiguamiento ζ , de tal forma que las diferencias en la respuesta de los 3 sistemas están asociadas únicamente a un parámetro. Se observa que entre mayor sea el amortiguamiento la respuesta de los sistemas es menor.

Figura III.3 Respuesta al desplazamiento de sistemas de un grado de libertad (ref 10)

III.2 Espectro de Respuesta

El concepto de Espectro de Respuesta surge como una necesidad para caracterizar los movimientos del terreno bajo la acción sísmica y su efecto en las estructuras, de hecho, es un medio para representar la respuesta máxima de todos los posibles sistemas de un grado de libertad para un movimiento particular del terreno. Por lo que puede ser definido como una gráfica que integra los valores pico de la respuesta a una excitación y que están en función

del período natural de vibración del sistema para una relación de amortiguamiento determinada. Dependiendo de la respuesta deseada se pueden definir diferentes tipos:

$$u_0(T_n,\zeta) = \max u, (t,T_n,\zeta);$$
 u_0 = espectro de respuesta de desplazamiento
 $\dot{u}_0(T_n,\zeta) = \max \dot{u}, (t,T_n,\zeta);$ \dot{u}_0 = espectro de respuesta de velocidad
 $\ddot{u}_0^t(T_n,\zeta) = \max \ddot{u}_0^t, (t,T_n,\zeta);$ \ddot{u}_0^t = espectro de respuesta de aceleración

Una forma de explicar el concepto de espectro de respuesta es la consideración de una serie de estructuras de un grado de libertad u osciladores simples, cada uno con diferente periodo de vibración T_n , y con igual relación de amortiguamiento ζ . Estos osciladores son sometidos a un mismo sismo, con el uso de un registro de aceleraciones $\ddot{u}_g(t)$, es de esperarse que cada uno tenga una respuesta diferente la cual puede representarse por medio de la historia de desplazamientos u(t) o de aceleraciones $\ddot{u}(t)$. Una vez realizado el cálculo de la respuesta en los osciladores es posible determinar el máximo en cada uno de ellos y expresarlos en un gráfico en función del periodo de vibración, obteniendo así un espectro de respuesta, es decir, que la respuesta máxima de cada oscilador con periodo T_n representa un punto del espectro como se ilustra en la figura III.4.

Figura III.4 a) Registro de aceleración del terreno, b) Respuestas de desplazamiento u(t)para diferentes periodos T_n y un valor dado de amortiguamiento ζ y c) Espectro de respuesta de desplazamiento para $\zeta = 2\%$

Básicamente el espectro de respuesta de desplazamiento u(t) es el único necesario para calcular las fuerzas internas y por consiguiente los valores máximos $D = u_0$. Existen diversos tipos de espectros de respuesta, siendo algunos de ellos los llamados pseudo-espectros tanto de velocidad como de aceleración, los cuales son útiles para el estudio de la respuesta misma, la construcción de espectros de diseño, etc.

El espectro de respuesta de pseudo-velocidad V para un sistema de un grado de libertad con frecuencia natural Ω y con un desplazamiento $D = u_0$ producido por un movimiento sísmico del terreno está dado por:

$$V = \Omega D = \frac{2\pi}{T_n} D \tag{3.9}$$

Donde V tiene unidades de velocidad y está relacionado con el valor máximo de la energía de deformación E_{s0} almacenada en el sistema durante un temblor mediante:

$$E_{S0} = \frac{mV^2}{2}$$
(3.10)

De lo anterior se puede definir al espectro de respuesta de pseudo-velocidad como una gráfica que relaciona el producto ΩD como una función del período natural del sistema T_n .

El espectro de respuesta de pseudo-aceleración se puede considerar como una cantidad A para un sistema de un grado de libertad con frecuencia natural Ω relacionada a su desplazamiento máximo $D = u_0$ debido a un movimiento sísmico del terreno.

$$A = \Omega^2 D = \left(\frac{2\pi}{T_n}\right)^2 D \tag{3.11}$$

Donde A tiene unidades de aceleración y se relaciona con el valor cortante máximo en la base V_{b0} .

$$V_{b0} = f_{S0} = mA$$

ó

$$V_{b0} = \frac{A}{g}W = CW$$

W = peso de la estructura g = aceleración de la gravedad $C = \frac{A}{g}$ = Coeficiente de fuerza cortante

Según lo mencionado se puede considerar al espectro de respuesta de pseudo-aceleración como $\Omega^2 D$, en función del período natural del sistema T_n . La figura III.5 presenta los tres tipos de espectros antes descritos.

Figura III.5 Espectro de respuesta de: a) desplazamiento, b) pseudo-velocidad y c) pseudo-aceleración

III.3 Método β de Newmark para el cálculo de Espectros de Respuesta

Considerando un sistema de un grado de libertad como el mostrado anteriormente en la figura III.1b y cuya ecuación de movimiento es la ecuación 3.8:

$$\ddot{u} + 2\zeta\Omega\dot{u} + \Omega^2 u = -\ddot{u}_q(t)$$

La cual se puede escribir como:

$$\ddot{x} + 2\zeta\Omega\dot{x} + \Omega^2 x = -\ddot{y} \tag{3.12}$$

Donde \ddot{x} , \dot{x} y x son aceleración, velocidad y desplazamiento, respectivamente. Así como \ddot{y} es la aceleración para un tiempo t del registro acelerométrico.

Suponiendo que estas tres primeras cantidades se conocen en el instante t y si se utiliza el subíndice i + 1 para denotar sus valores en $t + \Delta t$. Se tiene también que cumplir que:

$$\ddot{x}_{i+1} + 2\zeta\Omega\dot{x}_{i+1} + \Omega^2 x_{i+1} = -\ddot{y}_{i+1}$$
(3.13)

Newmark (1959) propuso emplear las siguientes ecuaciones para calcular \dot{x}_{i+1} y x_{i+1} :

$$\dot{x}_{i+1} = \dot{x}_i + [(1 - \gamma)\Delta t]\ddot{x}_i + (\gamma\Delta t)\ddot{x}_{i+1}$$
(3.14)

$$x_{i+1} = x_i + \Delta t \dot{x}_i + \left[\left(\frac{1}{2} - \beta \right) (\Delta t)^2 \right] \ddot{x}_i + \left[\beta (\Delta t)^2 \right] \ddot{x}_{i+1}$$
(3.15)

Los parámetros β y γ definen la variación de la aceleración en un incremento de tiempo y determinan tanto la estabilidad como la precisión del método. Los valores típicos de estos parámetros son: $\gamma = 1/2$ y $1/6 \le \beta \le 1/4$; donde $\beta = 1/4$ corresponde a una aceleración constante en dicho lapso igual al promedio de \ddot{y}_i y \ddot{y}_{i+1} , mientras una variación lineal de aceleraciones entre \ddot{y}_i y \ddot{y}_{i+1} conduce a $\beta = 1/6$.

Considerando la condición de una aceleración constante ($\gamma = 1/2$ y $\beta = 1/4$) para las ecuaciones 3.14 y 3.15, se tiene lo siguiente:

$$\dot{x}_{i+1} = \dot{x}_i + \left[\left(1 - \frac{1}{2} \right) \Delta t \right] \ddot{x}_i + \left(\frac{1}{2} \Delta t \right) \ddot{x}_{i+1}$$
$$\dot{x}_{i+1} = \dot{x}_i + \frac{1}{2} \Delta t \ \ddot{x}_i + \frac{1}{2} \Delta t \ \ddot{x}_{i+1}$$
(3.16)

$$x_{i+1} = x_i + \Delta t \, \dot{x}_i + \left[\left(\frac{1}{2} - \frac{1}{4} \right) (\Delta t)^2 \right] \ddot{x}_i + \left[\frac{1}{4} (\Delta t)^2 \right] \ddot{x}_{i+1}$$

$$x_{i+1} = x_i + \Delta t \, \dot{x}_i + \frac{1}{4} (\Delta t)^2 \ddot{x}_i + \frac{1}{4} (\Delta t)^2 \ddot{x}_{i+1}$$
(3.17)

Sustituyendo las ecuaciones 3.16 y 3.17 en 3.13:

$$\begin{split} \ddot{x}_{i+1} + 2\zeta\Omega \left[\dot{x}_i + \frac{1}{2}\Delta t \, \ddot{x}_i + \frac{1}{2}\Delta t \, \ddot{x}_{i+1} \right] + \Omega^2 \left[x_i + \Delta t \, \dot{x}_i + \frac{1}{4}(\Delta t)^2 \ddot{x}_i + \frac{1}{4}(\Delta t)^2 \ddot{x}_{i+1} \right] &= -\ddot{y}_{i+1} \\ \ddot{x}_{i+1} \left[1 + 2\zeta\Omega \left(\frac{1}{2}\Delta t \right) + \Omega^2 \left(\frac{1}{4} \right) (\Delta t)^2 \right] \\ &= -\ddot{y}_{i+1} - 2\zeta\Omega \left[\dot{x}_i + \frac{1}{2}\Delta t \, \ddot{x}_i \right] - \Omega^2 \left[x_i + \Delta t \, \dot{x}_i + \frac{1}{4}(\Delta t)^2 \ddot{x}_i \right] \end{split}$$

Despejando \ddot{x}_{i+1} :

$$\ddot{x}_{i+1} = -\frac{\ddot{y}_{i+1} + 2\zeta\Omega[\dot{x}_i + \frac{1}{2}\Delta t \ddot{x}_i] + \Omega^2[x_i + \Delta t \dot{x}_i + \frac{1}{4}(\Delta t)^2 \ddot{x}_i]}{\left[1 + 2\zeta\Omega(\frac{1}{2}\Delta t) + \Omega^2(\frac{1}{4})(\Delta t)^2\right]}$$
(3.18)

La ecuación 3.18 nos permite calcular la aceleración relativa del sistema en un instante i + 1, conocidos los valores de \ddot{x} , \dot{x} y x para el instante i. Es considerada aceleración relativa debido a que se trata de la aceleración de la estructura con respecto a su base.

La aceleración absoluta se puede determinar a partir de la ecuación 3.12 de la manera que sigue:

$$\ddot{x} + 2\zeta\Omega\dot{x} + \Omega^{2}x = -\ddot{y}$$

$$\ddot{x} + \ddot{y} = -2\zeta\Omega\dot{x} - \Omega^{2}x$$
(3.19)

Donde el primer miembro de la ecuación representa la aceleración absoluta del sistema. La pseudo-aceleración coincide exactamente con la aceleración máxima absoluta de la estructura sólo cuando ésta carece de amortiguamiento; de lo contrario difiere de ella, pero la diferencia no adquiere valores importantes.

De manera similar se puede obtener la pseudo-aceleración:

$$\ddot{x} + 2\zeta\Omega\dot{x} + \Omega^2 x = -\ddot{y} \qquad \zeta = 0$$

$$\ddot{x} + \ddot{y} = -\Omega^2 x \qquad (3.20)$$

El primer miembro de la ecuación 3.20 representa la pseudo-aceleración del sistema. El valor típico de ζ es de 0.05 en estructuras.

Varios programas de computadora emplean el método de Newmark con $\beta = 1/4$ debido a su sencillez y precisión y a que se aplica fácilmente a estructuras de múltiples grados de libertad, debido a que su autor demostró que con ese valor el método es incondicionalmente estable, es decir que no lleva a resultados espuriamente altos como consecuencia de las aproximaciones numéricas, independientemente del valor de Δt .

CAPÍTULO IV.

CÁLCULO DE ESPECTROS DE RESPUESTA EN LAS ZONAS SÍSMICAS IIIb, IIIc Y IIId
IV. CÁLCULO DE ESPECTROS DE RESPUESTA EN LAS ZONAS SÍSMICAS IIIb, IIIC Y IIId

IV.1 Programa de computadora

Para calcular los espectros de respuesta a partir de los registros acelerométricos en un formato estándar de aceleración (ver Anexo 1), se creó un programa en lenguaje FORTRAN llamado *EspectroR*, el cual utiliza el Método β de Newmark explicado en el Capítulo III, cuyas ecuaciones utilizadas fueron:

$$x_{i+1} = x_i + \Delta t \, \dot{x}_i + \frac{1}{4} (\Delta t)^2 \ddot{x}_i + \frac{1}{4} (\Delta t)^2 \ddot{x}_{i+1} \tag{4.1}$$

$$\dot{x}_{i+1} = \dot{x}_i + \frac{1}{2}\Delta t \ \ddot{x}_i + \frac{1}{2}\Delta t \ \ddot{x}_{i+1}$$
(4.2)

$$\ddot{x}_{i+1} = -\frac{\ddot{y}_{i+1} + 2\zeta\Omega[\dot{x}_i + \frac{1}{2}\Delta t \,\ddot{x}_i] + \Omega^2[x_i + \Delta t \,\dot{x}_i + \frac{1}{4}(\Delta t)^2\ddot{x}_i]}{\left[1 + 2\zeta\Omega(\frac{1}{2}\Delta t) + \Omega^2(\frac{1}{4})(\Delta t)^2\right]}$$
(4.3)

A continuación se presenta el código fuente del programa EspectroR:

```
С
С
      PROGRAMA PARA CALCULAR UN ESPECTRO DE RESPUESTA CON METODO BETA DE NEWMARK
С
     PROGRAMA PARA TESINA DE JOSE CARLOS GARCIA TORRES
С
      PROGRAM ESPECTROR
      DIMENSION Y(100000,20)
      REAL*8 DI, VI, AI, V, D, A, PI, M, DDT, TMAX, TMAXC, TI
      CHARACTER *30, NDATOS, NRESULTADOS
      CHARACTER *150, Z(109)
  100 FORMAT(4F13.6)
  101 FORMAT(F13.6)
  102 FORMAT (A150)
  103 FORMAT(" PROGRAMA PARA CALCULAR EL ESPECTRO DE RESPUESTA"/
         1
                 DE UN ARCHIVO ESTANDAR DE ACELERACION 2.0"//)
      WRITE(*,103)
      WRITE (*, *) "DAME EL NOMBRE DEL ARCHIVO DE DATOS CON EXTENSION"
      READ(*,*)NDATOS
      OPEN(1,FILE=NDATOS,STATUS='OLD')
      WRITE(*,*)"DAME EL NUMERO DE CANALES DEL REGISTRO"
      READ(*,*)NREG
      WRITE(*,*)"DAME EL NUMERO DE CANAL A ANALIZAR"
      READ(*,*)NANA
      WRITE (*, *) "DAME EL DELTA T DEL REGISTRO, EN SEGUNDOS"
      READ(*,101)DDT
      WRITE (*, *) "DAME LA FRACCION DE AMORTIGUAMIENTO CRITICO, EN DECIMAL"
      READ(*,101)X
      WRITE(*,*)"DAME EL PERIODO MAXIMO, EN SEGUNDOS"
      READ(*,*)TMAX
      WRITE (*,*) "DAME EL NOMBRE DEL ARCHIVO DE RESULTADOS CON EXTENSION"
      READ(*,*)NRESULTADOS
```

```
OPEN (2, FILE=NRESULTADOS, STATUS='UNKNOWN')
С
     SE LEEN LAS 109 LINEAS DEL ENCABEZADO DEL REGISTRO Y SE IMPRIMEN EN PANTALLA
     DO N=1,109
     READ(1,102,END=20) Z(N)
     WRITE(*,102)Z(N)
   20 END DO
С
     SE LEEN LOS DATOS DE ACELERACION
      DO K=1,100000
      READ(1, *, END=10) (Y(K,Q), Q=1, NREG)
     NCONT = (K-1) + 1
     IF (ABS (Y (K, NANA)).GT.YMAX) YMAX= ABS (Y (K, NANA))
   10 END DO
      TI=0.0
     WRITE(2,*)"EL ARCHIVO DE RESULTADOS ES:"
     WRITE (*, *) "EL ARCHIVO DE RESULTADOS ES:"
     WRITE (2, *) NRESULTADOS
      WRITE (*, *) NRESULTADOS
      WRITE(2,*)"
                   PERIODO PSEUDOACEL ACEL.ABSOL ACEL.RELAT"
      WRITE(*,*)"
                    PERIODO PSEUDOACEL ACEL.ABSOL ACEL.RELAT"
      WRITE(2,*)"
                       [s]
                                  [Gal]
                                               [Gal]
                                                             [Gal]"
      WRITE(*,*)"
                                                [Gal]
                                                             [Gal]"
                       [s]
                                   [Gal]
      WRITE (2,100) TI, YMAX, YMAX, YMAX-YMAX
     WRITE(*,100)TI,YMAX,YMAX,YMAX-YMAX
     NPTOS=NCONT*1.3
     DO L=NCONT, NPTOS
     Y(L, NANA) = 0.0
     END DO
С
     TMAXC, ES EL NUMERO DE PERIODOS PARA ANALIZAR
     TMAXC=TMAX*100+1
     DO I=2, TMAXC
С
     T, ES EL PERIODO ESTRUCTURAL
С
     M, ES OMEGA (FRECUENCIA CIRCULAR)
С
     DI, ES EL DESPLAZAMIENTO i
С
     VI, ES LA VELOCIDAD i
С
     AI, ES LA ACELERACION i
С
     D, ES EL DESPLAZAMIENTO i+1
С
     V, ES LA VELOCIDAD i+1
С
     A, ES LA ACELERACION i+1
     T = (I - 1) * 0.01
      PI=4.*ATAN(1.)
     M=2*PI/T
     DI=0.0
     VI=0.0
     AI=0.0
      DMAX=0.0
     VMAX=0.0
      AMAX=0.0
      AABSMAX=0.0
      DO J=1,NPTOS
      VI=V+A*DDT*0.5
     DI=D+V*DDT+A*DDT*DDT*0.25
     A=-(Y(J,NANA)+2*X*M*VI+M*M*DI)/(1+2*X*M*DDT*0.5+M*M*DDT*0.25)
     V=VI+A*DDT*0.5
      D=DI+A*DDT*DDT*0.25
      AABS=A+Y(J,NANA)
```

```
IF (ABS(A).GT.AMAX) AMAX=ABS(A)
IF (ABS(AABS).GT.AABSMAX) AABSMAX=ABS(AABS)
IF (ABS(D).GT.DMAX) DMAX=ABS(D)
END DO
C PERIODO, PSEUDOACELERACION, ACELERACION ABSOLUTA, ACELERACION RELATIVA
WRITE (2,100) T, DMAX*M*M, AABSMAX, AMAX
WRITE (*,100) T, DMAX*M*M, AABSMAX, AMAX
END DO
CLOSE(1)
CLOSE(2)
END PROGRAM ESPECTROR
```

En el Anexo 2 se presenta un ejemplo de aplicación del programa *EspectroR* para un registro acelerométrico en un formato estándar de aceleración.

IV.2 Cálculo de Espectros de Respuesta en las zonas sísmicas IIIb, IIIc y IIId

Utilizando el programa *EspectroR* para los registros del sismo del 25 de abril de 1989 se obtuvieron los resultados siguientes, para las estaciones acelerométricas correspondientes a las zona sísmicas IIIb, IIIc y IIId como se indica en las figuras IV.1, IV.2 y IV.3, respectivamente. Cabe señalar que se utilizaron los valores de aceleración absoluta y una fracción de amortiguamiento crítico ζ = 5% para la construcción de los espectros de respuesta.

Figura IV.1 Espectros de respuesta calculados para la zona sísmica IIIb

Figura IV.2 Espectros de respuesta calculados para la zona sísmica IIIc

Figura IV.3 Espectros de respuesta calculados para la zona sísmica IIId

La nomenclatura utilizada en las figuras consistió de cuatro caracteres que corresponden a la clave de la estación acelerométrica con registro del sismo del 25 de abril de 1989 y dos caracteres que indican la orientación del canal del registro utilizado: "NS" (norte-sur) o "EW" (este-oeste). La unidad utilizada para la aceleración es el [Gal], 1 [Gal] equivale a 1 [cm/s²], es decir que *g* = 981 [Gal].

Por otra parte, también se utilizaron los registros acelerométricos del sismo del 19 de septiembre de 1985 (M=8.1) y que coincidieron con las estaciones que registraron el sismo del 25 de abril de 1989 (M=6.9), con el propósito de obtener un factor de amplificación para escalar los registros del sismo de 1989. La información fue obtenida nuevamente de la Base Mexicana de Datos de Sismos Fuertes CD-ROM vol. 2 (ref 7). En las tablas IV.1 y IV.2 se indica la información de las únicas tres estaciones que cumplieron estas condiciones.

				DATUM ITRF92	ZONA 14			
CLAVE DE	NOMBRE DE	COORDENADAS GEOGRÁFICAS		COORDEN	PERIODO	ZONA		
ESTACIÓN	ESTACIÓN	LATITUD N	LONGITUD W	x	У	(s)	SÍSMICA	
CDAO	CENTRAL DE ABASTOS OFICINAS	19.3720	99.0960	489918.671734	2141992.063598	3.3	IIIc	
SCT1	SCT B-1	19.3930	99.1470	484564.937024	2144319.537241	2.0	IIIb	
TLHB	TLAHUAC BOMBAS	19.2790	99.0080	499159.414118	2131698.672420	5.2	IIId	

Tabla IV.1 Estaciones acelerométricas con registro del sismo del 19 de septiembre de 1985

Tabla IV.2 Información adicional de las estaciones acelerométricas con registro del sismo del 19 de septiembre de 1985

CLAVE DE ESTACIÓN	REGISTRO	INTERVALO DE MUESTREO	ORIENTACIÓN			MÁXIMA ACELERACIÓN (cm/s²)		
		(s)	CANAL 1	CANAL 2	CANAL 3	CANAL 1	CANAL 2	CANAL 3
CDAO	CDAO8509.191	0.010	(∨)	(N90E)	(N00E)	34.340	84.610	65.320
SCT1	SCT18509.191	0.010	(V)	(N90E)	(N00E)	35.810	161.630	93.780
TLHB	TLHB8509.191	0.030	(S00E)	(+V)	(N90E)	135.880	23.975	106.669

El procedimiento para obtener el factor de amplificación fue el calcular el cociente de la máxima aceleración absoluta del registro del sismo del 19 de septiembre de 1985 y la máxima aceleración absoluta del registro del sismo del 25 de abril de 1989, esto realizado por canal y estación correspondiente. Lo anterior indica que se obtuvieron dos factores para cada estación: CDAO, SCT2 y TLHB, correspondientes a las componentes norte-sur y este-oeste de cada registro, dando un total de seis factores o cocientes para ser multiplicados por los valores del registro acelerográfico del canal, estación y zona sísmica correspondiente. Lo anterior quiere decir que los factores obtenidos, por ejemplo, para la estación con clave CDAO se aplicaron a los datos de los registros acelerométricos de todas las estaciones con

registro del sismo de 1989 y que están ubicadas en la zona sísmica correspondiente a la estación CDAO, es decir zona IIIc. Esto se aplicó de manera similar para las estaciones con clave SCT2 y TLHB. Es necesario aclarar que las estaciones SCT B-1 y SCT B-2 corresponden al mismo sitio.

Los datos utilizados para las tres estaciones del sismo de 1989 se indican en la tabla IV.3. Así mismo, en la tabla IV.4 se muestran los factores obtenidos con este procedimiento.

CLAVE DE ESTACIÓN	NOMBRE DE ESTACIÓN	ZONA SÍSMICA	REGISTRO	(ORIENTACIÓN		MÁXIMA ACELERACIÓN (cm/s²)		
				CANAL 1	CANAL 2	CANAL 3	CANAL 1	CANAL 2	CANAL 3
CDAO	CENTRAL DE ABASTOS OFICINAS	IIIc	CDAO8904.251	(V)	(N90E)	(N00E)	9.660	34.380	28.150
SCT2	SCT B-2	IIIb	SCT28904.251	(V)	(N90E)	(N00E)	19.270	39.980	37.510
TLHB	TLAHUAC BOMBAS	IIId	TLHB8904.251	(V)	(N90E)	(N00E)	17.100	48.330	34.110

Tabla IV.3 Estaciones acelerométricas con registro del sismo del 25 de abril de 1989

Tabla IV.4 Factores calculados

Εςταριών	FACTOR SISMO 1	ZONA SÍSMICA	
ESTACIÓN	NS EW		
CDAO	2.3204	2.4610	IIIc
SCT2	2.5001	4.0428	IIIb
TLHB	3.9836	2.2071	IIId

Para el cálculo de los espectros de respuesta de los registros acelerométricos del sismo del 25 de abril de 1989 multiplicados por el factor de amplificación correspondiente se hizo una adaptación del programa *EspectroR* para tomar en cuenta este nuevo parámetro y de esta manera se creó el programa *EspectroRF* el cual nos permite aplicar el factor en los cálculos del espectro de respuesta. La modificación del código fuente para este programa se indica en el Anexo 3, así como un ejemplo de aplicación del programa.

Nuevamente se utilizaron los valores de aceleración absoluta y una fracción de amortiguamiento crítico ζ = 5% para la construcción de los nuevos espectros de respuesta.

Los espectros de respuesta obtenidos con el programa *EspectroR* para los registros del sismo del 25 de abril de 1989 tomando en cuenta el factor para las estaciones acelerométricas correspondientes a las zonas sísmicas IIIb, IIIc y IIId se indican en las figuras IV.4, IV.5 y IV.6, respectivamente.

La nomenclatura utilizada en las figuras consistió nuevamente de cuatro caracteres que corresponden a la clave de la estación acelerométrica con registro del sismo del 25 de abril de 1989, dos caracteres que indican la orientación del canal del registro utilizado: "NS" (norte-sur) o "EW" (este-oeste) y un carácter "F" que indica que a los datos del registro se les aplicó el factor de amplificación. Para el caso de los espectros de respuesta correspondientes a los registros del sismo del 19 de septiembre de 1985 se utilizaron los caracteres "85" después de los caracteres que indican la orientación del canal.

Figura IV.4 Espectros de respuesta calculados para la zona sísmica IIIb, aplicado el factor

Figura IV.5 Espectros de respuesta calculados para la zona sísmica IIIc, aplicado el factor

Figura IV.6 Espectros de respuesta calculados para la zona sísmica IIId, aplicado el factor

CAPÍTULO V.

DETERMINACIÓN DE ESPECTROS DE DISEÑO CONFORME A LA NORMATIVIDAD SÍSMICA DEL DISTRITO FEDERAL

V. DETERMINACIÓN DE ESPECTROS DE DISEÑO CONFORME A LA NORMATIVIDAD SÍSMICA DEL DISTRITO FEDERAL

V.1 Normas Técnicas Complementarias para Diseño por Sismo

De acuerdo con el cuerpo de las Normas para Diseño por Sismo (ref 3), el espectro de aceleraciones para diseño por sismo se obtiene a partir de las expresiones siguientes:

$$a = a_0 + (c - a_0) \frac{T}{T_a}$$
; si $T < T_a$ (5.1)

$$a = c \quad ; \quad si \ T_a \le T \le T_b$$

$$(5.2)$$

$$a = qc \quad ; \quad si \ T > T_b \tag{5.3}$$

donde
$$q = \left(\frac{T_b}{T}\right)^r$$
 (5.4)

Los parámetros que intervienen en estas expresiones para fines de este trabajo se obtienen de la tabla V.1.

Zona	<i>c</i> *	<i>a</i> ₀ *	<i>Ta</i> **	<i>T</i> ^{<i>b</i>} **	r
IIIb	0.45	0.11	0.85	3.0	2.0
IIIc	0.40	0.10	1.25	4.2	2.0
IIId	0.30	0.10	0.85	4.2	2.0

Tabla V.1 Valores de los parámetros para calcular los espectros de aceleraciones

* Fracción de la aceleración de la gravedad

** Periodos en segundos

Los espectros de aceleraciones para diseño sísmico determinados con las ecuaciones 5.1 a 5.4 para las zonas sísmicas IIIb, IIIc y IIId se muestran en las figuras V.1, V.2 y V.3 respectivamente.

Figura V.1 Espectro de Diseño por Sismo para la zona sísmica IIIb

Figura V.2 Espectro de Diseño por Sismo para la zona sísmica IIIc

Figura V.3 Espectro de Diseño por Sismo para la zona sísmica IIId

V.2 Apéndice A de las Normas Técnicas Complementarias para Diseño por Sismo

De acuerdo al Apéndice A de las Normas para Diseño por Sismo (ref 3) el espectro de aceleraciones para diseño por sismo se obtiene a partir de las expresiones siguientes:

$$a = \begin{cases} a_0 + (\beta c - a_0) \frac{T}{T_a} ; & si T < T_a \\ \beta c ; & si T_a \le T \le T_b \\ \beta c p \left(\frac{T_b}{T}\right)^2 ; & si T \ge T_b \end{cases}$$

$$(5.5)$$

donde
$$p = k + (1-k)\left(\frac{T_b}{T}\right)^2$$
 (5.6)

El coeficiente de aceleración del terreno, a_0 , el coeficiente sísmico c, el coeficiente k y los periodos característicos T_a y T_b del espectro de aceleraciones se obtienen en función del periodo dominante del sitio, usando las siguientes expresiones:

$$a_0 = \begin{cases} 0.1 + 0.15(T_s - 0.5) ; & si \ 0.5 \le T_s \le 1.5 \ [s] \\ 0.25 ; & si \ T_s > 1.5 \ [s] \end{cases}$$
(5.7)

$$c = \begin{cases} 0.28 + 0.92(T_s - 0.5) ; & si \ 0.5 < T_s \le 1.5 \ [s] \\ 1.2 ; & si \ 1.5 < T_s \le 2.5 \ [s] \\ 1.2 - 0.5(T_s - 2.5) ; & si \ 2.5 < T_s \le 3.5 \ [s] \\ 0.7 ; & si \ T_s > 3.5 \ [s] \end{cases}$$
(5.8)

$$T_{a} = \begin{cases} 0.2 + 0.65(T_{s} - 0.5) ; & si \ 0.5 < T_{s} \le 2.5 \ [s] \\ 1.5 ; & si \ 2.5 < T_{s} \le 3.25 \ [s] \\ 4.75 - T_{s} ; & si \ 3.25 < T_{s} \le 3.9 \ [s] \\ 0.85 ; & si \ T_{s} > 3.9 \ [s] \end{cases}$$
(5.9)

$$T_{b} = \begin{cases} 1.35 \; ; \; si \, T_{s} \leq 1.125 \; [s] \\ 1.2T_{s} \; ; \; si \; 1.125 < T_{s} \leq 3.5 \; [s] \\ 4.2 \; ; \; si \; T_{s} > 3.5 \; [s] \end{cases}$$
(5.10)

$$k = \begin{cases} 2 - T_s \; ; \; si \; 0.5 < T_s \le 1.65 \; [s] \\ 0.35 \; ; \; si \; T_s > 1.65 \; [s] \end{cases}$$
(5.11)

Donde T_s es el periodo dominante más largo del terreno, a está expresada como fracción de la aceleración de la gravedad y β es un factor de reducción por amortiguamiento suplementario, que es igual a uno cuando se ignora la interacción suelo-estructura.

La reducción por sobrerresistencia está dada por el factor:

$$R = \begin{cases} \frac{10}{4 + \sqrt{\frac{T}{T_a}}} ; & si \ T \le T_a \\ 2 ; & si \ T > T_a \end{cases}$$
(5.12)

Los espectros de aceleraciones para diseño sísmico determinados con las ecuaciones 5.5 a 5.12, considerando un factor R = 1.0. A partir del conocimiento del periodo dominante de vibración del suelo (ref 9) de las estaciones acelerométricas correspondientes a las zonas sísmicas IIIb, IIIc y IIId, los espectros de diseño construidos se muestran en las figuras V.4 a V.6.

Figura V.4 Espectros de diseño obtenidos del Apéndice A para sitios en la zona sísmica IIIb

Figura V.5 Espectros de diseño obtenidos del Apéndice A para sitios en la zona sísmica IIIc

Figura V.5 (continuación)

Figura V.6 Espectros de diseño obtenidos del Apéndice A para sitios en la zona sísmica IIId

CAPÍTULO VI. COMPARACIÓN DE LOS ESPECTROS DE

RESPUESTA Y ESPECTROS DE DISEÑO

VI. COMPARACIÓN DE LOS ESPECTROS DE RESPUESTA Y ESPECTROS DE DISEÑO

VI.1 Comparación entre los Espectros de Respuesta calculados y los Espectros de Diseño de las Normas para Diseño por Sismo

Los espectros de respuesta calculados de los registros capturados durante el sismo del 25 de abril de 1989 se compararon con los espectros de diseño establecidos en el cuerpo de las Normas para Diseño por Sismo. En las figuras VI.1, VI.2 y VI.3 se muestra tal comparación para las zonas sísmicas IIIb, IIIc y IIId, respectivamente.

Como se puede observar en estas figuras, para las tres zonas los espectros de respuesta calculados están cubiertos por su correspondiente espectro de diseño.

Figura VI.1 Comparación entre espectros de respuesta y espectro de diseño reglamentario para la zona IIIb

Figura VI.2 Comparación entre espectros de respuesta y espectro de diseño reglamentario para la zona IIIc

Figura VI.3 Comparación entre espectros de respuesta y espectro de diseño reglamentario para la zona IIId

Los espectros de respuesta calculados para el sismo del 25 de abril de 1989 multiplicados por su correspondiente factor para simular un movimiento similar al del sismo del 19 de septiembre de 1985, se compararon con los espectros de diseño establecidos en el cuerpo de las Normas para Diseño por Sismo, con una diferencia al caso anterior: los resultados obtenidos para los espectros calculados se dividieron entre dos debido a que los espectros de diseño llevan aplicados implícitamente un factor de sobrerresistencia igual a 2. En el caso anterior, no se aplicó este factor adicional pues los valores de los espectros de respuesta calculados al 100%, no exceden de los valores de los espectros de diseño. Adicionalmente, se incluyeron los espectros de los registros del sismo de 1985. En las figuras VI.4, VI.5 y VI.6 se muestra tal comparación para las zonas sísmicas IIIb, IIIc y IIId, respectivamente.

Como puede observarse en la figura VI.4 se presentaron espectros que exceden el valor de la meseta del espectro de diseño, inclusive el espectro de SCT1-EW para el sismo del 85 no está cubierto. Para la zona IIIc, los espectros de respuesta están dentro del espectro de diseño. Y en la figura VI.6 que corresponde a la zona IIId, se observa que tienen una importante participación el segundo y tercer modo de vibrar del suelo de tal manera que su respuesta sísmica es mayor incluso que el primer modo de vibrar del sitio. Así mismo, en esta zona sísmica se presentan espectros calculados que no están cubiertos en la rama ascendente, meseta, ni el la rama descendente del espectro de diseño.

Figura VI.4 Comparación de espectros de respuesta escalados y espectro de diseño reglamentario para la zona IIIb

Figura VI.5 Comparación de espectros de respuesta escalados y espectro de diseño reglamentario para la zona IIIc

Figura VI.6 Comparación de espectros de respuesta escalados y espectro de diseño reglamentario para la zona IIId

VI.2 Comparación de los Espectros de Respuesta calculados y los Espectros de Diseño del Apéndice A de las Normas para Diseño por Sismo

Para la comparación de los espectros de respuesta de sitio y los espectros de diseño sísmico se tomaron en cuenta los espectros al 100% calculados para los registros del sismo de 1989, los espectros al 100% calculados para los registros del sismo de 1989 afectados por su correspondiente factor de 1985 y los espectros al 100% calculados para los registros del sismo de 1985.

La comparación se realizó con su respectivo espectro de diseño construido a partir del periodo dominante más largo del terreno y se consideró un factor de sobrerresistencia igual a 1.0 debido a que los espectros calculados se dejaron al 100%.

En las figuras VI.7 a VI.13 se presenta la comparación correspondiente a las estaciones que se encuentran en la zona sísmicas IIIb; en esta condición todos los espectros calculados quedaron contenidos en el espectro de diseño. Únicamente para el caso del espectro de diseño sísmico construido con un T_s = 2.40 [s] se observa que uno de los espectros calculados llega a la línea de la rama ascendente.

En las figuras VI.14 a VI.20 se muestra la comparación que corresponde a las estaciones que se encuentran en la zona IIIc; en esta condición todos los espectros de respuesta calculados quedaron cubiertos por el espectro de diseño.

Finalmente, las figuras VI.21 a VI.26 corresponden a la comparación de las estaciones que se encuentran en la zona sísmica IIId; en este caso los espectros construidos para un periodo dominante del terreno de 4.70 y 5.20 [s] excedieron los valores del espectro de diseño sísmico.

Figura VI.7 Comparación de espectros de respuesta y espectro de diseño obtenidos del Apéndice A para un sitio con $T_s = 1.90 [s]$

Figura VI.8 Comparación de espectros de respuesta y espectro de diseño obtenidos del Apéndice A para un sitio con $T_s = 2.00$ [s]

Figura VI.9 Comparación de espectros de respuesta y espectro de diseño obtenidos del Apéndice A para un sitio con $T_s = 2.10$ [s]

Figura VI.10 Comparación de espectros de respuesta y espectro de diseño obtenidos del Apéndice A para un sitio con $T_s = 2.20$ [s]

Figura VI.11 Comparación de espectros de respuesta y espectro de diseño obtenidos del Apéndice A para un sitio con $T_s = 2.30$ [s]

Figura VI.12 Comparación de espectros de respuesta y espectro de diseño obtenidos del Apéndice A para un sitio con $T_s = 2.40$ [s]

Figura VI.13 Comparación de espectros de respuesta y espectro de diseño obtenidos del Apéndice A para un sitio con $T_s = 2.60$ [s]

Figura VI.14 Comparación de espectros de respuesta y espectro de diseño obtenidos del Apéndice A para un sitio con $T_s = 2.70$ [s]

Figura VI.15 Comparación de espectros de respuesta y espectro de diseño obtenidos del Apéndice A para un sitio con $T_s = 2.80$ [s]

Figura VI.16 Comparación de espectros de respuesta y espectro de diseño obtenidos del Apéndice A para un sitio con $T_s = 2.90 [s]$

Figura VI.17 Comparación de espectros de respuesta y espectro de diseño obtenidos del Apéndice A para un sitio con $T_s = 3.00 [s]$

Figura VI.18 Comparación de espectros de respuesta y espectro de diseño obtenidos del Apéndice A para un sitio con $T_s = 3.10$ [s]

Figura VI.19 Comparación de espectros de respuesta y espectro de diseño obtenidos del Apéndice A para un sitio con $T_s = 3.20$ [s]

Figura VI.20 Comparación de espectros de respuesta y espectro de diseño obtenidos del Apéndice A para un sitio con $T_s = 3.30$ [s]

Figura VI.21 Comparación de espectros de respuesta y espectro de diseño obtenidos del Apéndice A para un sitio con $T_s = 4.00 [s]$

Figura VI.22 Comparación de espectros de respuesta y espectro de diseño obtenidos del Apéndice A para un sitio con $T_s = 4.30$ [s]

Figura VI.23 Comparación de espectros de respuesta y espectro de diseño obtenidos del Apéndice A para un sitio con $T_s = 4.60$ [s]

Figura VI.24 Comparación de espectros de respuesta y espectro de diseño obtenidos del Apéndice A para un sitio con $T_s = 4.70$ [s]

Figura VI.25 Comparación de espectros de respuesta y espectro de diseño obtenidos del Apéndice A para un sitio con $T_s = 4.80$ [s]

Figura VI.26 Comparación de espectros de respuesta y espectro de diseño obtenidos del Apéndice A para un sitio con $T_s = 5.20$ [s]

CAPÍTULO VII. CONCLUSIONES

VII. CONCLUSIONES

En el presente trabajo se ha desarrollado un programa en lenguaje de programación FORTRAN que aplica el Método β de Newmark para calcular espectros de respuesta de sistemas de un grado de libertad a partir del uso de registros acelerométricos históricos.

Con el conocimiento del periodo dominante de vibración del suelo, se determinaron los espectros de diseño sísmico conforme al criterio fijado en el Apéndice A de las Normas para Diseño por Sismo del Distrito Federal, así como también a lo establecido en el cuerpo de la misma norma en función de la localización de los sitios de interés, coincidentes con la ubicación de estaciones acelerométricas dentro de las zonas sísmicas IIIb, IIIc y IIId.

Los resultados obtenidos al comparar los espectros de sitio y los espectros de diseño obtenidos al aplicar el Apéndice A, muestran que la mayoría de ellos están cubiertos por los espectros de diseño.

Al comparar los espectros de sitio con los espectros de diseño establecidos en el cuerpo de la misma norma, se observó que varios de ellos exceden a los de diseño tanto en su rama ascendente, como en la meseta y en la rama descendente.

Se destaca que incluso los espectros de sitio obtenidos de los registros del sismo del 19 de septiembre de 1985 no fueron cubiertos por los espectros de diseño. Tal es el caso de los registros de las estaciones con clave SCT1-EW y TLHB-NS, y el registro de la estación con clave TLHB-NS para el caso del Apéndice A de las normas.

Con los resultados obtenidos se puede concluir que al construir el espectro de diseño utilizando el criterio fijado en el Apéndice A de las Normas para Diseño por Sismo, se obtiene mayor certidumbre sobre el comportamiento dinámico del suelo. Esta condición es mejor que aplicar los espectros que se presentan en el cuerpo de la Norma. Esta condición obliga a determinar un apropiado periodo dominante del terreno a partir de ensayes y análisis de dinámica de suelos que tomen en cuenta la estratigrafía y las propiedades del suelo en el sitio de interés.

La estimación de espectros de respuesta es una herramienta fundamental en la ingeniería sísmica, ya que permiten conocer la respuesta elástica máxima para sistemas de un grado de libertad que simulan la respuesta sísmica de estructuras. El estudio del comportamiento dinámico de estructuras observado a través de los espectros de respuesta contribuye a aumentar la seguridad de las estructuras y de los seres humanos que se encuentran en su interior ante un evento sísmico.

ANEXOS
ANEXO 1. FORMATO DEL ARCHIVO ESTÁNDAR DE ACELERACIÓN

El Archivo Estándar de Aceleración es una parte fundamental de la Base Mexicana de Datos de Sismos Fuertes. Ha sido formalmente adoptada por la mayoría de las instituciones que operan redes de acelerógrafos en México y también por algunos fabricantes de instrumentos (ref 8).

Este es un archivo de texto con caracteres ASCII estándar. Como tal puede desplegarse fácilmente y modificarse con cualquier editor del texto. Asimismo puede comprimirse eficientemente, preservando espacio en disco y facilitando su transportación a otros equipos de cómputo. Se ha demostrado que en la mayoría de los casos, los archivos ASCII comprimidos son solo un poco más grandes que los archivos binarios nativos.

Este formato estándar se escogió básicamente por su universalidad y fácil manejo. Como se verá a continuación, el archivo es auto-explicativo y no requiere por parte del usuario ninguna información adicional para su interpretación y el manejo de los datos. La estructura general del Archivo Estándar de Aceleración se muestra en la figura A.1. Se divide básicamente en dos bloques de datos: un encabezado y bloque para los datos numéricos de aceleración. A continuación se presenta una breve descripción de cada bloque.

Figura A1.1 Estructura del Archivo Estándar de Aceleración

Título: Datos de identificación de la institución responsable, su nombre, dirección, teléfonos, etc.

Nombre del archivo: Nombre del archivo, versión del formato, fecha y hora de su creación y referencia al catálogo general de acelerogramas (número del registro y página).

Estación e instrumento: Incluye una breve descripción de la estación, su nombre, código asignado, dirección y localización (coordenadas), altitud, tipo de suelo e institución a cargo de su operación. Con respecto al instrumento se especifican los siguientes datos: modelo, número de serie, número de canales, orientación, tasa de muestra, rango de escala completa, frecuencia natural, amortiguamiento, intervalo de muestreo, umbral de disparo para cada canal, memoria del pre-evento y tiempo de pos-evento.

Datos sobre el sismo: Este bloque incluye la fecha y tiempo de origen (GMT) del evento, magnitud, localización del epicentro, profundidad focal y la fuente que proporcionó esta información.

Datos sobre el acelerograma: Se especifican el tiempo (GMT) de la primera muestra y su exactitud, duración del registro, número total de muestras, valor máximo de aceleración (en gal) para cada canal junto con la muestra en que ocurrió, el factor de decimación utilizado y por último la especificación del formato tipo FORTRAN utilizado para los valores numéricos.

Comentarios: Esta parte del encabezado puede utilizarse para comentarios sobre los datos del acelerograma como por ejemplo la calidad del registro, método de procesamiento, filtrado o alguna información adicional pertinente al registro o al sismo.

Datos de la aceleración: Ésta es la parte principal del archivo. Contiene los valores numéricos de aceleración de hasta 12 canales. Cada línea corresponde a una muestra. Las series de datos están organizadas por columnas, cada una con un campo fijo de 10 caracteres y con un formato como el especificado en el encabezado (por ejemplo 3F10.2, que especifica tres números reales de 10 caracteres, 7 para la parte entera y 2 decimales).

EJEMPLO DE UN ARCHIVO ESTÁNDAR DE ACELERACIÓN

Para ilustrar la forma y contenido de este archivo, a continuación se presenta en la figura A.2 un archivo de ejemplo. Los datos no corresponden a un registro real, se escogieron sólo para ilustrar el formato. Cada línea del archivo comienza en la columna 1. Los números de línea sólo se muestran como referencia.

columna 1 columna 40 columna 80 INSTITUTO DE INGENIERIA, UNAM Coordinacion de Instrumentacion Sismica 2. 3. 4. Ciudad Universitaria, Apartado Postal 70-472, Mexico, D.F. 5. 7. ARCHIVO ESTANDAR DE ACELERACION: 8. VERSION DEL FORMATO : 2.0 * 9. NOMBRE DEL ARCHIVO : COPL9509.141 * 10. FECHA Y HORA DE CREACION : 18 de Sept. 1995/14:38:13 9. NOMBRE DEL ARCHIVO : COPL9509.141 11. REF. CATALOGO ACELEROGRAMAS, SMIS 1995 : NUM. REG. 1355/PAG. 146 12. 13. 14. ______ 15. DATOS DE LA ESTACION: 16. NOMBRE DE LA ESTACION : COPALA 17. CLAVE DE LA ESTACION : COPL : Escuela Primaria Federal 18. LOCALIZACION DE LA ESTACION 19. : "Otilio Monta&o" : Copala, Guerrero 20. 21. 22. : 16.605 LAT. N 23. COORDENADAS DE LA ESTACION : 98.974 LONG. W 24. : 40 25. ALTITUD (msnm) 26. TIPO DE SUELO : Granito gneiss intemperizado 27. 28. 29. INSTITUCION RESPONSABLE : Instituto de Ingenieria, UNAM 30. : Coordinacion de Instrumentacion 31. 32. _____ 33. DATOS DEL ACELEROGRAFO: * 34. MODELO DEL ACELEROGRAFO : DCA-333 * 35. NUMERO DE SERIE DEL ACELEROGRAFO : 201 36. NUMERO DE CANALES : 3
37. ORIENTACION C1-C6 (rumbo;orientacion) : /V/N90E/N00E * 36. NUMERO DE CANALES 38. ORIENTACION C7-C12 (rumbo; orientacion) : * 39. VEL. DE MUESTREO, C1-C6 (muestras/s) : /100/100/100 * 40. VEL. DE MUESTREO, C7-C12 (muestras/s) : * 41. ESC. COMPLETA DE SENSORES, C1-C6, (g) : /2.00/2.00/2.00 * 42. ESC. COMPLETA DE SENSORES, C7-C12, (g) : : /30.0/30.0/30.0 * 43. FREC. NAT. DE SENSORES, C1-C6, (Hz) * 44. FREC. NAT. DE SENSORES, C7-C12, (Hz) : * 45. AMORTIGUAMIENTO DE SENSORES, C1-C6 : /0.71/0.72/0.78 * 46. AMORTIGUAMIENTO DE SENSORES, C7-C12 : /0.01/0.01/0.01 * 47. INTERVALO DE MUESTREO, C1-C6, (s) * 48. INTERVALO DE MUESTREO, C7-C12, (s) * 49. UMBRAL DE DISPARO, C1-C6, (Gal) : /3/3/3 * 50. UMBRAL DE DISPARO, C7-C12, (Gal) : : 3.62 * 51. MEMORIA DE PREEVENTO (s) * 52. TIEMPO DE POSEVENTO (s) : 15 53. 54. 55. _____ 56. DATOS DEL SISMO: : 14 de septiembre 1995 57. FECHA DEL SISMO (GMT) 58. HORA EPICENTRO (GMT) : 14:04:31 59. MAGNITUD(ES) : /Mb=6.5/Ms=7.2/Mw=7.4 60. COORDENADAS DEL EPICENTRO : 16.830 LAT. N : 98.647 LONG. W : 21 61. 62. PROFUNDIDAD FOCAL (km) 63. FUENTE DE LOS DATOS EPICENTRALES : Instituto de Geofisica, UNAM 64. : Servicio Sismologico Nacional 65. 67. DATOS DE ESTE REGISTRO: * 68. HORA DE LA PRIMERA MUESTRA (GMT) : 14:04:32.25 * 69. EXACTITUD DEL TIEMPO (s) : 0.01

Figura A1.2 Ejemplo de un archivo con el formato estándar, versión 2.0

* 70. DURACION DEL REGISTRO (s), C1-C6 : /63.15/63.15/63.15 * 71. DURACION DEL REGISTRO (s), C7-C12 * 72. NUM. TOTAL DE MUESTRAS, C1-C6 : /6315/6315/6315 * 73. NUM. TOTAL DE MUESTRAS, C7-C12 : * 74. ACEL. MAX.(Gal), C1-C6 : /46.42/68.91/77.04 * 75. ACEL. MAX., C1-C6, EN LA MUESTRA : /1246/1326/1223 * 76. ACEL. MAX.(Gal), C7-C12 * 77. ACEL. MAX., C7-C12, EN LA MUESTRA : * 78. UNIDADES DE LOS DATOS : Gal (cm/s/s) * 79. FACTOR DE DECIMACION : 1 * 80. FORMATO DATOS (FORTRAN,10 campos/dato) : 3F10.2 81. 82. 83. _____ 84. CALIDAD DEL ACELEROGRAMA: 85. Registro digital completo. Tiempo absoluto correcto 86. 87. 88. _____ 89. COMENTARIOS: 90. El sismo que genero este acelerograma produjo da&os significativos en los pobla-91. dos de San Luis Acatlan, Axoyu, Igualapa y Ometepec en la Costa Chica. Cerca de 50 92. personas resultaron lesionadas. El sismo fue sentido fuertemente en la ciudad de 93. Mexico en donde solo provoco da&os menores. 94. 95. 96. 97. 98. 99. 100. 101. 102. 103 104. _____ 105. DATOS DE ACELERACION: 107. CANAL-1 CANAL-2 CANAL-3 CANAL-4 CANAL-5 CANAL-6 CANAL-7 CANAL-8 108. V N90E N00E

 *110.
 0.06
 0.04
 0.03

 *111.
 0.06
 0.04
 0.03

 *112.
 -0.42
 -0.44
 0.03

 Figura A1.2 (continuación)

NOTA: La información de las líneas marcadas con un (*) puede ser obtenida directamente durante el proceso de conversión del archivo binario original al ASCII estándar.

ANEXO 2. EJEMPLO DE APLICACIÓN DEL PROGRAMA *Espectror* PARA UN REGISTRO ACELEROMÉTRICO EN UN FORMATO ESTÁNDAR DE ACELERACIÓN

Tomando a manera de ejemplo el registro SCT28904.251, el cual corresponde a la estación SCT-B2, se tiene la siguiente información obtenida del propio registro acelerométrico, como se muestra en las figuras A2.1 y A2.2:

Figura A2.1

teques > fore Carles (b) + MAM + ESPECIAIDAD > 201-2 + TESMA + EMPROI Arthue Edición Ver Herminista Ayuda Organizar - Incluir en bablices - Compartir on Gabar News cargeta Foreine Foreine Compartir on Gabar News cargeta Foreine Compartir on Gabar News Foreine Compartir News Cargeta Foreine Compartir on Gabar New					
Archio Edicin Ve Henemientz Ayuda Organiza Induiren Bilietzes Compartir con Grabar Nueva carpeta Protections Forentiss Georetics Georeti	🕒 🗢 📕 🕨 Equipo 🕨	Jose Carlos (D:) > UNAM > ESPECIALIDAD > 2011-2 > TESINA > EJEMPLO1	- 4+ Buscar EJEMPLOI		P
Organizar Induir en bibliotes Comparizon Gabar Number Tipe Timesho Provintes EspectroR Aplicación 213 RB Sorta Sort	Archivo Edición Ver	Herramientas Ayuda			
Francisco Francisco Francisco Francisco Francisco Francisco Scotarrico Scotarr	Organizar - Incluir en	biblioteca 🔻 Compartir con 👻 Grabar Nueva carpeta		81 • F1	0
Precents Type Trainer Decarges Epschells Achive 231 23 F03 Storr for form Storr for form Storr for form Storr for form Mainer The first form The first form The first form Mainer The first form The first form The first form Mainer The first form The first form The first form The first form Mainer The first form Mainer The first form Mainer The first form Mainer The first form The first form The first form The first form The first form The first form The first form The first form The first form The first form The first form The first form The first form The first form The first form The first form		Nombre Ting Tamaño		La	
Beckerses Escreteine Aplicación 213 PG Escreteine Stars recientes Stars recientes Belasteras Decumentos Stars recientes Belasteras Decumentos Stars recientes Maice Decumentos Stars recientes Belasteras Decumentos Escreteinos Belasteras Decumentos Escreteinos Belasteras Escreteinos Escreteinos Belasteras Escreteinos Escreteinos Belasteras Decumentos Escreteinos Escret	Y Favoritos	про папало			
Storeterie Image: Storeterie Biblictes: Decomentas: Disconcentas: Image: Storeterie Maine: Image: Storeterie Openendas: Image: Storeterie	🎉 Descargas	EspectroR Aplicación 213 KB			
Stor scienter Biblictess Doumentss Imagenes Mulcic all Winder Openentss Imagenes Openentss Imagenes Openentss Imagenes Openentss Imagenes Openentss Imagenes Openentss Imagenes Openent Bloger Imagenes	Escritorio	SCT28904 Archivo 251 507 KB			
Biolicters: Classifier (DullAMALESPECIALIDAD/OUTLATEMAN ETMAN CONSCR29/2013) Biolicters: Countentiss: Imagines: Mixing: Mixing: Discountentiss: Grapping: Discountentiss: Origo: Discountentiss: Biolicites: Discountentiss: Discountentiss: Discountentiss: Discountentiss: Discountentiss: Biolicites: Discountentiss: Origo: Discountentiss: Discountentiss: Discountentiss: Discountententisse: Discountentisse: <td>Sitios recientes</td> <td></td> <td></td> <td></td> <td></td>	Sitios recientes				
Relaters Imagenes Outments Imagenes Maingenes Maingenes Maingenes Imagenes Maingenes Imagenes		TeditPlus - [D:UNAM\ESPECIALIDAD\2011-2\TESINA\EJEMPLO1\SCT28904.251]			
Imagenes	词 Bibliotecas	File Edit View Search Document Project Tools Window Help			
Imagenes Musico Musico Musico Musico Musico Characterization Concorted Concorted Concorted Conted Conted	Documentos				
Winkick Image: Constraints Image: Constraints Image: Constraints Winkick Image: Constraints Image: Constraints Image: Constraints Constraints Image: Constraints Image: Constraints Imag	듵 Imágenes				
Wides ILI IDITITUTO DE ESENDESABLE : IDITITUTO DE INCENTERIA UNAM Cupe en el hoger IDITITUTO DE ESENDESATO: : IDITITUTO DE INCENTERIA UNAM Repipo IDITITUTO DE INCENTERIA UNAM : IDITITUTO DE INCENTERIA UNAM IDITITUTO DE INCENTERIA UNAM : IDITITUTO DE INCENTERIA UNAM IDITITUTO DE INCENTERIA UNAM : IDITITUTO DE INCENTERIA UNAM IDITITUTO DE INCENTERIA UNAM : IDITITUTO DE INCENTERIA UNAM IDITITUTO DE INCENTERIA UNAM : IDITITUTO DE INCENTERIA UNAM IDITITUTO DE INCENTERIA UNAM : IDITITUTO DE INCENTERIA UNAM IDITITUTO DE INCENTERIA UNAM : IDITITUTO DE INCENTERIA UNAM IDITITUTO DE INCENTERIA UNAM : IDITITUTO DE INCENTERIA UNAM IDITITUTO DE INCENTERIA UNAM : IDITITUTO DE INCENTERIA UNAM IDITITUTO DE INCENTERIA UNAM : IDITITUTO DE INCENTERIA UNAM IDITITUTO DE INCENTERIA UNAM : IDITITUTO DE INCENTERIA UNAM IDITITUTO DE INCENTERIA UNAM : IDITITUTO DE INCENTERIA UNAM IDITITUTO DE INCENTERIA UNAM : IDITITUTO DE INCENTERIA UNAM IDITITUTO DE INCENTERIA UNAM : IDITITUTO DE INCENTERIA UNAM IDITITUTO DE INCENTERIA UNAM : IDITITUTO DE INCENTERIA UNAM IDITITUTO DE INCENTERIA UNAM : IDITITUTO DE INCENTERIA UNAM </td <td>Música</td> <td>28 :</td> <td></td> <td></td> <td></td>	Música	28 :			
Image: Source of the logar Image: Source of the logar Image: Source of the logar Image: Source of the logar Image: Source of the logar Image: Source of the logar Image: Source of the logar Image: Source of the logar Image: Source of the logar Image: Source of the logar Image: Source of the logar Image: Source of the logar Image: Source of the logar Image: Source of the logar Image: Source of the logar Image: Source of the logar Image: Source of the logar Image: Source of the logar Image: Source of the logar Image: Source of the logar Image: Source of the logar Image: Source of the logar Image: Source of the logar Image: Source of the logar Image: Source of the logar Image: Source of the logar Image: Source of the logar Image: Source of the logar Image: Source of the logar Image: Source of the logar Image: Source of the logar Image: Source of the logar Image: Source of the logar Image: Source of the logar Image: Source of the logar Image: Source of the logar Image: Source of the logar Image: Source of the logar Image: Source of the logar Image: Source of	Vídeos	29 INSTITUCION RESPONSABLE : INSTITUTO DE INGENIERIA UNAM			
Image: Section of the seccoon of the section of the section of the section of th					
Red Interest (c) When (c) Interest (c) Interes	🤣 Grupo en el hogar				
# Expise *** Directo Col (C) *** Directo Col (C) *** Directo Col (C) *** Uncer Schlor (D) ************************************		Desktop 33 DATOS DEL ACELEROGRAFO:			
Image: Construction 36 STREAD DE CAULES 35 Index Catelor (D) 36 STREAD DE CAULES 36 Index Catelor (D) 36 STREAD DE CAULES 37	👰 Equipo	35 NUMERO DE SERIE DEL ACELEROGRAFO : 169			
Image: Control (D) Table agrice docs Witce (F) Witce (F) Witce (F) CELEMACTOR (C-1-6) (Interstruct) / (C-2) (Interstru	🏜 Disco local (C:)	36 NUMERO DE CANALES : 3			
Wiese (E) Osthop in toto way tot. D E MISTED, C1-C6 (mastrar/a) : 1/J0/10/100 Wiese (E) Weeker Access decolark, Spee Fighth, Wiedow Lie Mistergarie Wiedow Lie Wiedow Wiedow	👝 Jose Carlos (D:)	"Stabile quinica dock 37 ORLENTACION CI-C6 (rumbororientacion) : /V/N90E/N00E			
W Red Usersen Anceso devolues	📖 Ulices (E:)	desktopini 39 VEL. DE MOESTREO, CI-C6 (muestras/s) : /100/100/100			
Que Red Tunkt do 3 4: ESC: COMPLETA IN: ENERGING 2 1: DSC: COMPLETA IN: ENERGING 2 4: ESC: COMPLETA IN: ENERGING 2 4: ESC: COMPLETA IN: ENERGING 2 1: DSC: COMPLETA IN: ENERGING 2 4: ESC: COMPLETA IN: ENERGING 2 4: ESC: COMPLETA IN: ENERGING 2 1: DSC: COMPLETA IN: ENERGING 2 4: ESC: COMPLETA IN: ENERGING 2 4: ESC: COMPLETA IN: ENERGING 2 1: DSC: COMPLETA IN: ENERGING 2 4: ESC: COMPLETA IN: ENERGING 2 4: ESC: COMPLETA IN: ENERGING 2 1: DSC: COMPLETA IN: ENERGING 2 4: ESC: COMPLETA IN: ENERGING 2 4: ESC: COMPLETA IN: ENERGING 2 1: DSC: COMPLETA IN: ENERGING 2 4: ESC: COMPLETA IN: ENERGING 2 4: ESC: COMPLETA IN: ENERGING 2 1: DSC: COMPLETA IN: ENERGING 2 4: ESC: COMPLETA IN: ENERGING 2 4: ESC: COMPLETA IN: ESC: COMPLETA IN: ENERGING 2 1: DSC: COMPLETA IN: ENERGING 2 4: ESC: COMPLETA IN: ENERGING 2 1: DSC: COMPLETA IN: ENERGING 2 1: DSC: COMPLETA IN: ENERGING 2 4: ESC: COMPLETA IN: ENERGING 2 1: DSC: COMPLETA IN: ENERGING 2 1: DSC: COMPLETA IN: ENERGING 2 4: ESC: COMPLETA IN: ENERGING 2 1: DSC: COMPLETA IN: ENERGING 2 1: DSC: COMPLETA IN: ENERGING 2 4: ESC: COMPLETA IN: ENERGING 2 1: DSC: COMPLETA IN: ENERGING 2 1: DSC: COMPLETA IN: ENERGING 2 </td <td></td> <td>Livewife-Acceso directo.hk 40 VEL. DE MUESTREO, C7-C12 (muestras/s) :</td> <td></td> <td></td> <td></td>		Livewife-Acceso directo.hk 40 VEL. DE MUESTREO, C7-C12 (muestras/s) :			
Window Live Malifx, with Weak with Weak with Weak Weak Live Displays, Cl-C6, (B3) 1 / 27/37/30/30 Window Live Model Mark with Weak with Weak Weak Live Displays, Cl-C6, (B3) 1 / 27/37/30/30 Window Live Model Mark with Weak Weak Live Displays, Cl-C6, (B3) 1 / 27/37/30/30 Window Live Model Mark with Weak Live Displays, Cl-C6, (B3) 1 / 27/37/30/30/30/30/30/30/30/30/30/30/30/30/30/	📬 Red	Thurbed 41 ESC COMPLETA DE SENSORES, C1-C6, (g) : /1/1/1			
Window Live More Malar 4 FREC. NAT. DE SUBJORES, CT-C12 (B2) : Window Live More Malar 4 FREC. NAT. DE SUBJORES, CT-C12 (B2) : Window Live More Malar 4 ARETIGUATIENTO DE SUBJORES, CT-C12 (B2) : 4 ARETIGUATIENTO DE SUBJORES, CT-C12 (B2) : : 4 ARETIGUATIENTO DE SUBJORES, CT-C12 (B2) : : 4 ARETIGUATIENTO DE SUBJORES, CT-C12 (B1) : : : 4 DERRAD, DE DISTRAD, CT-C12 (B1) : : : : 4 DERRAD, DE DISTRAD, CT-C12 (B1) : : : : 4 DERRAD, DE DISTRAD, CT-C12 (B1) : : : : 5 TIMEO DE POSITIOTO (s) : : : : : 5 TIMEO DE POSITIOTO (s) : : : : : : 4 STIMEO DE POSITIOTO (s) : : : : : : 5 MENCRIA DE POSITIOTO (s) : : : : : : 6 STIMEO DE POSITIOTO (s)		Windows Live Mailhk			
Webcov. Labery. A Metri cloudination or a Bibliotical, c1-c5, if //o.170,0-10 You Universalities A Metri cloudination or a Bibliotical, c1-c5, if //o.170,0-10 ••••••••••••••••••••••••••••••••••••		Windows Live Movie Maker. 44 FREC. NAT. DE SENSORES, C7-C12 (Hz) :			
of INTERVALO DE MUERTADO, C1-C6 (a) : 2/0.01/0.01/0.01 de UITERVALO DE MUERTADO, C7-C12 (b) : de UITERAL DE DISTADO, C1-C6 (a) : 2/3/3/3 de UIERAL DE DISTADO, C1-C6 (a) : 2/3/3/3 de UIERAL DE DISTADO, C1-C6 (a) : 1/3/3/3 de UIERAL DE DISTADO, C1-C6 (a) : 1/3/3/3 de UIERAL DE DISTADO, C1-C6 (a) : 1/3/3/3 de SCT2894251		Your Universided that a submitted and the sense of the se			
46 INTERVALO E RESTRO, CP-C12 (a) : 40 UBERAL E DISTRO, CP-C12 (a) : 40 UBERAL E DISTRO, CP-C12 (b1) : 41 UBERAL E DISTRO, CP-C12 (b1) : 42 UBERAL E DISTRO, CP-C12 (b1) : 43 DISTRO, CP-C12 (b1) : 44 DISTRO, CP-C12 (b1) : 45 TIDHO DE POSPUZATO (a) : 46 DISTRO, CP-C12 (b1) : 47 DISTRO, CP-C12 (b1) : 48 Fint (*) * 48 Fint (*) * 49 For Help, pres FI 101 col1 102 ZA		47 INTERVALO DE MUESTREO, C1-C6 (s) : /0.01/0.01/0.01			
49 0058A.0 PE 1058A06, C1-C6 (061) : 1/3/3/3 90 0058A.0 PE 1058A06, C1-C6 (061) : 1/3/3/3 90 0058A0, PE 1058A06, C1-C6 (061) : 1 100 0058A0, PE 1058A06, C1-C6 (061) : 1 4 TENDED DE FORVENTO (a) : 4 54		48 INTERVALO DE MUESTREO, C7-C12 (8) :			
Al PEDCREA DE PREZVENTO (s) : 4 3 TEDRO DE POSEVENTO (s) : 15 4 4 5 4 5 4 5 5 5 5 5 5 5 5 5 5 5 5 5		49 UMERAL DE DISPARO, C1-C6 (Gal) : /3/3/3			
AIFier('') (1) : 15 		51 MEMBER DE DEPENDO, (a) : 4			
All Flats (*) (*) (*) (*) (*) (*) (*) (*) (*) (*)		52 TIEMPO DE POSEVENTO (#) : 15			
Al Fiet (") S 5 Al Fiet (") S 5 S 7 S 7 S 7 S 7 S 7 S 7 S 7 S 7		53			
AFEnt(*) * • \$572894.231 In1 For Help, press In1		55			
◆ SCT2894 251 For Help, press F1 In 1 col 1 16173 2A PC REC [NS READ]					
For Help, pres F1 In1 col1 16173 ZA PC REC INS READ		• SCT28904.251			
		For Help, press F1 In1 col 1 16173 2A PC REC INS READ			

Figura A2.2

 Δt del registro = 0.01 [s]

Número de canales del registro = 3

Canal 1 (V), Canal 2 (N90E), Canal 3 (N00E)

Ahora considerando el canal 2 para el análisis, una fracción de amortiguamiento crítico del 5%, un periodo máximo de 6 [s] y el nombre de SCT2-EW.RES para el archivo resultados, se ingresa toda esta información al programa, como se indica en la figura A2.3. Cabe señalar que tanto el archivo de datos como el archivo ejecutable deben estar en el mismo directorio.

El archivo de salida es como el mostrado en la figura A2.4, el cual contiene cuatro columnas: la primera columna corresponde al valor del periodo, la segunda a la pseudo-aceleración, la tercera a la aceleración absoluta y la cuarta a la aceleración relativa.

Finalmente este archivo de resultados se puede importar a una hoja de cálculo y manipular la información, por ejemplo graficar los valores de aceleración absoluta tal y como se muestra en la figura A2.5.

Figura A2.3

Figura A2.4

Figura A2.5

ANEXO 3. ADAPTACIÓN DEL PROGRAMA *EspectroR* Y EJEMPLO DE APLICACIÓN DEL PROGRAMA *EspectroRF* PARA UN REGISTRO ACELEROMÉTRICO EN UN FORMATO ESTÁNDAR DE ACELERACIÓN

A continuación se presenta el código fuente del programa EspectroRF:

```
С
С
      PROGRAMA PARA CALCULAR UN ESPECTRO DE RESPUESTA CON METODO BETA DE NEWMARK
С
     APLICANDO UN FACTOR A LOS DATOS DEL REGISTRO
С
     PROGRAMA PARA TESINA DE JOSE CARLOS GARCIA TORRES
С
      PROGRAM ESPECTRORF
      DIMENSION Y(100000,20)
      REAL*8 DI, VI, AI, V, D, A, PI, M, DDT, TMAX, TMAXC, TI
      CHARACTER *30, NDATOS, NRESULTADOS
      CHARACTER *150, Z(109)
  100 FORMAT(4F13.6)
  101 FORMAT(F13.6)
  102 FORMAT (A150)
  103 FORMAT (" PROGRAMA PARA CALCULAR EL ESPECTRO DE RESPUESTA"/
         DE UN ARCHIVO ESTANDAR DE ACELERACION 2.0"//)
     1
      WRITE(*,103)
      WRITE (*, *) "DAME EL NOMBRE DEL ARCHIVO DE DATOS CON EXTENSION"
      READ(*,*)NDATOS
      OPEN(1,FILE=NDATOS,STATUS='OLD')
      WRITE(*,*) "DAME EL NUMERO DE CANALES DEL REGISTRO"
      READ(*,*)NREG
      WRITE (*, *) "DAME EL NUMERO DE CANAL A ANALIZAR"
      READ(*,*)NANA
      WRITE (*, *) "DAME EL DELTA T DEL REGISTRO, EN SEGUNDOS"
      READ(*,101)DDT
      WRITE (*,*) "DAME LA FRACCION DE AMORTIGUAMIENTO CRITICO, EN DECIMAL"
      READ(*,101)X
      WRITE (*, *) "DAME EL PERIODO MAXIMO, EN SEGUNDOS"
      READ(*,*)TMAX
      WRITE (*, *) "DAME EL FACTOR PARA LOS DATOS DEL REGISTRO, EN DECIMAL"
      READ(*,*)F
      WRITE (*,*) "DAME EL NOMBRE DEL ARCHIVO DE RESULTADOS CON EXTENSION"
      READ(*, *)NRESULTADOS
      OPEN(2, FILE=NRESULTADOS, STATUS='UNKNOWN')
С
      SE LEEN LAS 109 LINEAS DEL ENCABEZADO DEL REGISTRO
      DO N=1,109
      READ(1,102,END=20) Z(N)
      WRITE (*, 102) Z (N)
   20 END DO
      SE LEEN LOS DATOS DE ACELERACION
С
      DO K=1,100000
      READ(1, *, END=10) (Y(K,Q), Q=1, NREG)
      NCONT = (K-1) + 1
      IF (ABS (Y (K, NANA)).GT.YMAX) YMAX= ABS (Y (K, NANA))
   10 END DO
      TI=0.0
      WRITE(2,*)"EL ARCHIVO DE RESULTADOS ES:"
      WRITE(*,*)"EL ARCHIVO DE RESULTADOS ES:"
```

```
WRITE (2, *) NRESULTADOS
      WRITE (*, *) NRESULTADOS
                    PERIODO PSEUDOACEL ACEL.ABSOL ACEL.RELAT"
      WRITE(2,*)"
                                PSEUDOACEL ACEL.ABSOL ACEL.RELAT"
      WRITE(*,*)"
                      PERIODO
      WRITE(2,*)"
                       [s]
                                   [Gal]
                                               [Gal]
                                                             [Gal]"
      WRITE(*,*)"
                        [s]
                                    [Gal]
                                                [Gal]
                                                              [Gal]"
      WRITE(2,100)TI, F*YMAX, F*YMAX, F*(YMAX-YMAX)
      WRITE(*,100)TI, F*YMAX, F*YMAX, F*(YMAX-YMAX)
      NPTOS=NCONT*1.3
      DO L=NCONT, NPTOS
      Y(L, NANA) = 0.0
      END DO
С
      TMAXC, ES EL NUMERO DE PERIODOS PARA ANALIZAR
      TMAXC=TMAX*100+1
      DO I=2, TMAXC
С
      T, ES EL PERIODO ESTRUCTURAL
С
      M, ES OMEGA (FRECUENCIA CIRCULAR)
С
     DI, ES EL DESPLAZAMIENTO i
С
     VI, ES LA VELOCIDAD i
С
     AI, ES LA ACELERACION i
С
     D, ES EL DESPLAZAMIENTO i+1
С
      V, ES LA VELOCIDAD i+1
С
     A, ES LA ACELERACION i+1
      T = (I - 1) * 0.01
      PI=4.*ATAN(1.)
      M=2*PI/T
      DI=0.0
      VI=0.0
      AI=0.0
      DMAX=0.0
      VMAX=0.0
      AMAX=0.0
      AABSMAX=0.0
      DO J=1,NPTOS
      VI=V+A*DDT*0.5
      DI=D+V*DDT+A*DDT*DDT*0.25
      A=-(F*Y(J,NANA)+2*X*M*VI+M*M*DI)/(1+2*X*M*DDT*0.5+
     2M*M*DDT*DDT*0.25)
      V=VI+A*DDT*0.5
      D=DI+A*DDT*DDT*0.25
      AABS=A+F*Y(J,NANA)
      IF (ABS (A).GT.AMAX) AMAX=ABS (A)
      (ABS (AABS).GT.AABSMAX) AABSMAX=ABS (AABS)
      IF (ABS (D).GT.DMAX) DMAX=ABS (D)
      END DO
С
      PERIODO, PSEUDOACELERACION, ACELERACION ABSOLUTA, ACELERACION RELATIVA
      WRITE (2,100) T, DMAX*M*M, AABSMAX, AMAX
      WRITE (*,100) T, DMAX*M*M, AABSMAX, AMAX
      END DO
      CLOSE(1)
      CLOSE(2)
      END PROGRAM ESPECTRORF
```

Tomando a manera de ejemplo el mismo registro SCT28904.251 del Anexo 2, el cual corresponde a la estación SCT-B2, se tiene la siguiente información obtenida del propio registro acelerométrico:

Δt del registro = 0.01 [s]

Número de canales del registro = 3

Canal 1 (V), Canal 2 (N90E), Canal 3 (N00E)

Ahora considerando el canal 2 para el análisis, una fracción de amortiguamiento crítico del 5%, un periodo máximo de 6 [s] y el nombre de SCT2-EWF.RES para el archivo resultados, se ingresa toda esta información al programa, como se indica en la figura A3.1. Adicionalmente, se ingresa el factor correspondiente de acuerdo a la tabla IV.4, el cual es 4.0428, pues se trata del canal este-oeste para la zona sísmica IIIb. Es necesario recordar que tanto el archivo de datos como el archivo ejecutable deben estar en el mismo directorio.

El archivo de salida es como el mostrado en la figura A3.2, el cual contiene cuatro columnas: la primera columna corresponde al valor del periodo, la segunda a la pseudo-aceleración, la tercera a la aceleración absoluta y la cuarta a la aceleración relativa.

Finalmente este archivo de resultados se puede importar a una hoja de cálculo y manipular la información, por ejemplo graficar los valores de aceleración absoluta tal y como se muestra en la figura A3.3.

Figura A3.1

Figura A3.2

Figura A3.3

REFERENCIAS

REFERENCIAS

- 1. Santoyo E, et al, (2005), "Síntesis geotécnica de la Cuenca del Valle de México", TGC, México
- 2. RCDF (2004), *"Reglamento de Construcciones del Distrito Federal"*, Gaceta Oficial del Distrito Federal, octubre 2004.
- 3. NTC-RCDF (2004), "*Normas Técnicas Complementarias para Diseño por Sismo*", Gaceta Oficial del Distrito Federal, octubre 2004.
- 4. <http://www.cires.org.mx/racm_es.php>
- 5. <http://www.cires.org.mx/racm_reporte_df_com_zoom_es.php>
- 6. Huerta B y Reinoso E, (2002), *"Espectros de energía de movimientos fuertes registrados en México"*, Revista de Ingeniería Sísmica No. 66 45-72, México.
- Alcántara L, Quaas R, Pérez C, Ayala M, Macías M A, Sandoval H (II-UNAM); Javier C, Mena E, Andrade E, González F, Rodríguez E (CFE); Vidal A, Munguía O, Luna M (CICESE); Espinosa J M, Cuellar A, Camarillo L, Ramos S, Sánchez M (CIRES); Quaas R, Guevara E, Flores J A, López B, Ruiz R (CENAPRED); Guevara O, Pacheco J F (SSN); Ramírez M, Aguilar J, Juárez J, Vera R, Gama A, Cruz R, Hurtado F, Martín del Campo R, Vera F (RIIS); Alcántara L (SMIS), (2000), *"Base Mexicana de Datos de Sismos Fuertes CD-ROM vol. 2"*, México.
- 8. <http://www.unam.mx/db/spanish/conten.html>
- Aguilar R, Arciniega A, Flores F, Ordaz M, Padilla G, Pérez-Rocha L E, Reinoso E, Sánchez-Sesma F, (1992), Respuesta Sísmica del Valle de México: Aplicaciones y Teoría, Informe Final de Actividades del Centro de Investigación Sísmica AC a la Secretaría de Obras del Departamento del Distrito Federal.
- 10. Chopra A K, (1995), "Dynamics of structures: Theory and Applications to Earthquake Engineering", Prentice Hall, EUA.