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ABSTRACT 

 

In this work, the flow behaviour of Newtonian and non-Newtonian fluids through two 

axi-symmetric contractions (an abrupt contraction and a parabolic one) has been analysed for 

diverse volumetric flows rates. The parabolic profile was developed in previous works with 

the aim of reducing, even fully eliminating, secondary flows (recirculation and stagnation 

zones) near the contraction. 

 

PIV (particle image velocimetry) technique was used to obtain the flow fields with a 

Nd:Yag laser plane as illumination source having an energy of 120 mJ and 532 nm 

wavelength and hollow glass particles of 10 μm of diameter as tracers. The volumetric flow 

rates were measured with a test tube and a chronometer. Flow Manager Software from Dantec 

Dynamics Co. was used to acquire images and process them to obtain numerical data of flow 

maps. Numerical data was then processed with MATLAB software. 

 

For the parabolic contraction, good agreement with the literature and the theory was 

found, having large vortices for the elastic fluids. For the parabolic contraction, no secondary 

flow was observed in any experiment even with relatively high elastic fluids. In spite of that, 

separation of the streamlines from the wall was noticed for the elastic fluid which could bring 

inaccuracies in the measurement of the extensional viscosity when using the Binding’s 

Analysis (Binding, 1987). On the other hand, the parabolic contraction was found to be 

appropriate to measure the extensional viscosity of inelastic fluids. 
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1. Introduction 

1.1. Literature survey 

 

 Flow through contractions, like any other geometry change in pipes, is important to 

fluid mechanics due to the large number of applications involving these types of geometries 

in both industrial and research. Flow fields and pressure drop in contractions strongly 

depend on the geometry, flow parameters and fluid rheology. Contractions can be classified 

in three types: axi-symmetric, planar and square (Figure 1.1.). 

     

Figure 1.1. Axi-symmetric (left), planar (middle) and square (right) contraction. 

 

One application of the flow through contraction is the volumetric flow measurement 

in pipes. For that purpose, there are three basic forms with international standards for the 

Bernoulli’s obstructions (axi-symmetric); the nozzle (long-radius or short-radius), the thin-

plate orifice and the Venturi tube. As the fluid flows through a contraction, it is accelerated 

to satisfy the continuity equation or mass conservation by keeping constant the volumetric 

flow. When applying continuity and Bernoulli equations for incompressible steady 

frictionless flow, the pressure drop and mean velocity (or the volumetric flow) can be 

estimated as a function of the pressure gradient: 

2
cc

2
uu0 2

1

2

1
Vρ+p=Vρ+p=p       (1) 

cccu VAVDVD=Q  c
2

u
2

44


         (2) 



 2   
 

Eliminating Vu and from (1) and (2), we obtain 
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 where: pu – pc =p, is the pressure drop; du and Vu are the upstream pipe diameter 

and the mean velocity; dc, Ac and Vc are the diameter, the transversal area and the mean 

velocity in the contraction, respectively;  is the fluid density; and Q is the volumetric flow. 

 

 Nevertheless, the fluid can be contracted to a diameter dc’ (vena contracta) lower 

than dc but in practice they are considered to be equal, thus, some errors can be expected. A 

dimensionless correction factor, Cd, is added to compensate them and to account the 

friction; this correction factor is specific for each type of contraction and is a function of the 

Reynolds number, Red (du as the characteristic length), and the contraction ratio, RC. 

Considering RC = Ru / Rc = du / dc : 
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 The different values for the discharge coefficients can be found in most of fluids 

engineering text books the three geometries. 

 

Another quite important application is observed in the design of rheometers to 

measure the extensional viscosity. This material property is very important for many 

industrial applications and processing operations like fibber spinning, thermoforming, blow 

molding, foam production, injection, inkjet printing, fertiliser spraying and others. In 

addition, this kind of flow is able to orient polymer molecules and asymmetric particles 

which have a strong effect on the final product properties. Besides, it is the most used 
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technique to measure the elongational viscosity because it is the easiest manner to create 

extensional flow mostly with low-viscosity fluids with all the three geometry contractions 

(Mitsoulis et al, 2003; Rothstein and McKinley,1999; James and Chandler, 1991; De la 

Valle et al, 2002; Ascanio et al, 2002, Alves et al,2005; Mongruel and Cloitre, 2003; Kahn 

et al, 2007; Schuberth and Münstedt, 2008; Olson and Fuller, 2000; Sato, 1995; Baris, 2001 

and others). 

 

The method is often called Entrance Flow (Macosko, 1994). As the fluid 

experiences the area reduction, the streamlines converge and the flow dissipates certain 

quantity of extra energy through the walls because of the viscous effects that is expressed 

as an entrance excess pressure drop, ∆pen. There is large shear deformation near the walls 

and large extensional deformation near the centre, being the former the responsible for the 

excess of pressure drop, which can be used, together with the flow, rate to estimate the 

extensional viscosity by using one of the previously established relationships (Sink flow, 

Metzner and Metzner; Cogswell, 1972; Binding, 1987 and others). Tremblay (1989) 

combined the methods developed by Binding and Cogswell to determine the extensional 

viscosity of polymers. Other works reporting the through sudden and profiled contractions 

were reported by James and Chandler (1990), Feigl et al (2003) and Zatloukal et al (2002). 

James and Chandler (1990) made a mathematical analysis to obtain a geometry in which 

they could have constant elongational rate and it was achieved experimentally for 

Newtonian fluids. Feigl et al (2003) and Zatloukal et al (2002) proposed a new material 

parameter (entrance viscosity) and an ”effective entry length correction” for the Cogswell 

and Binding’s models. Another important recent analytical study is the one of Lubansky et 
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al. (2007), who gave a solution when high Trouton ratios are used and found that the vortex 

behaviour strongly depends on the fluid’s characteristic relaxation time. 

 

Astarita y Greco (1968) and Astarita et al. (1968) performed an experimental and 

numerical analysis to measure the pressure drop in both Newtonian and non-Newtonian 

fluids flowing through contractions with both fluids. They found that for Newtonian fluids, 

the dimensionless pressure drop depends only on the Reynolds number for values lower 

than 146, being independent at higher values. They found also that for fluids with elasticity, 

the pressure drop goes down when the Reynolds increases and that it is proportional to the 

concentration of the fluid. More recently, Mitsoulis y Hatzikiriakos (2003) made an 

experimental and numerical research to measure the pressure drop in conical contractions 

by varying the entrance from 10° to 150° using fused polypropylene. They found that the 

pressure drop depends more on the shear strain for small angles and that elongational strain 

domains the pressure drops for angle higher than 45°. Besides, they found that in abrupt 

contractions (180°) the elongational viscosity has the highest influence in the pressure 

drops and the vortices length.  

 

 One drawback of this kind of geometry is the appearance of secondary flows 

especially for low volumetric flows. Vortices can be found in a contraction as corner vortex 

and lip vortex (figure 1.2.). One of the first studies to visualise vortices was made by 

Nguyen and Boger (1979) with streak photography. After that, vortices have been observed 

with several techniques, like PIV (Rothstein and McKinley, 2001; Oliveira et al, 20057), 

LDV (Mitsoulis et al, 2003; Hertel et al, 2008; Schubert and Münstedt, 2008), streakline 

photography (Zitloukal et al, 2002; Alves et al, 2005), birrefrigerance (Schubert and 
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Münstedt, 2008). Also, since the last decade when Computational Fluid Dynamics (CFD) 

became a powerful tool, a lot of researchs have been made (Baloch et al 1996; Zirnsak and 

Boger, 1998; Rothstein and McKinley, 2001; Zatloukal et al, 2002; Alves et al,2003; 

Dorpinghaus and Baird, 2003; Feigl et al, 2003; Clemeur et al, 2004; Alves et al, 2005; 

Afonso and Pinho, 2006; Alves and Pool, 2007; Belblidia et al, 2007; Oliveira et al, 2007; 

Oliveira et al, 2008; etc.).  

   

Figure 1.2. Vortices in a contraction. 

  

It has been seen in all these papers that length of vortices depends on the contraction 

ratio (RC), the volumetric flow and the fluid rheology. When using an inelastic fluid, little 

corner vortices are observed in the corner of the contraction and its length decreases as the 

inertial effect increases (Reynolds number). Quite different behaviour for elastic fluids 

occur: vortices length increases when increasing the volumetric flow if the elasticity 

becomes significant as pointed out by Binding (1987). It has been found than there is an 

asymptotic behaviour of the inelastic Newtonian vortices length when decreasing the 

Reynolds number and that only corner vortices appear, besides, there is no change in the 

dimensionless size with RC in a wide range (Nguyen and Boger, 1979) and they present no 

instabilities. For a time, researches about contractions were focused on 4:1 contractions 

which are very limitating with the practical applications that can be found as it was pointed 

out by Nigen and Walters (2002) and by Alves et al (2004).  
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Also, vortex generation is different in each one of the three geometries (planar, axi-

symmetric and squared). Nigen and Walters (2002) made a study to investigate the 

differences between the planar and the axi-symmetric contractions and the influence of the 

contraction ratio, CR. They found that for CR between 2 and 40, elasticity has a lower 

influence on the flow than in the axi-symmetric case, being difficult distinguish between 

Newtonian and Boger fluids of the same shear viscosity in planar configurations. In both 

cases, vortices length increase when increasing CR. Alves et al (2004) found that for CR > 

4 on planar contractions, vortex enhancement follows a lip-vortex mechanism and found 

that corner vortex characteristics scale with the upstream length scale and with the Deborah 

number (DE = λ·Uu/Hu, where λ is the characteristic relaxation time of the fluid, Uu and Hu 

the average velocity and the half-height of the channel upstream, respectively) divided by 

CR and that lip vortex scales with the downstream length scale and De when using CR 

higher than 10. Rothstein and McKinley (2001) found that for large CR (4:1, 8:1) 

instabilities at high Deborah numbers appear and for lower CR (2:1) the flow was stable 

even at very high Deborah numbers. Also, for CR = 2, an elastic lip vortex was found and 

for 4 < CR a vortex corner appeared. Alves et al (2005) found that in the case of square 

contractions, the flow is highly three-dimensional showing vortices with Newtonian and 

viscoelastic fluids which tend to be pushed to the corner when the inertia is increased for 

the first ones and increase for the viscoelastic fluids. Instabilities in the flow at high 

volumetric flows were found also. 

 

Others numerical and experimental investigations have been made to estimate the 

flow field, the pressure drop and the vortices generation with both fluids, Newtonian and 

non-Newtonian, for abrupt contractions in the three types geometries where it has been seen 
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that the behaviour can be highly different between them when using similar fluids and 

volumetric flows. Alves et al. (2005) and in Rood et al (2007) summarised the results 

obtained with the three geometries with Newtonian and non-Newtonian fluids. However, 

little information has been found with smooth contractions to vortex genesis with another 

type of geometry like rounded and chamfer contractions. 

 

Papathanasiou y Kamal (1990) made numerical simulations on contractions-

expansions with rounded and chamfer corners and with a parabolic profile. They found that 

the vortices disappeared at small Reynolds numbers and that they were visible only at 

higher ones. Also they showed that the higher the diameter the higher the Reynolds number 

to start seeing the vortices and that in the parabolic profiles there were large vortices at the 

exit of the contraction and that the length of these zones depended on the fluid rheology. 

Baloch et al. (1994) investigated the extensional effects with both contractions, abrupt and 

rounded. They proposed a model that ignores the shear dependence and the memory effects 

and made numerical simulations with the model and using two fluids with different 

rheology and compared them with experimental results. They found that the recirculation 

zones disappear with the rounded corners at low Reynolds and that when the flow rate is 

increased, the vortices appear. 

 

In the 70s a converging channel was first proposed; Cogswell (1978) proposed a 

converging geometry to measure the extensional viscosity. However, several years passed 

until work made with converging channel were made. One of the first works to create pure 

extensional flow in a smooth contraction was made on earliest 90´s by James (1991). He 

found an analytical solution for flow in a converging channel for Reynolds numbers in the 
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range of 102 to 103 for an axisymmetric channel and obtain that the shape given by R2z = 

constant, where R is the channel radius at the axial distance z. It is a pseudosimilarity 

solution of the axial momentum equation, and its accuracy was gauged by comparison to 

other results obtaining an accuracy of about 5% in comparisons with experimental results. 

James and Chandler (A-1990) used the method of James (1991) to develop an extensional 

rheometer for copolymer solutions of PMMA in an organic solvent 

(Polymethylmethacrylate in Dowanol DPM). They achieved a purely extensional core flow 

with constant rate of extension by using high Reynolds obtaining no secondary motion 

(vortices) and made an analysis to show that the pressure drop is equal to sum of the normal 

stress difference in the core and a term involving N2. They made the study first obtaining 

the flow for an inelastic power-law fluid to obtain the pressure drop, to obtain after the 

corresponding shear-thinning fluid profile and pressure drop and with them the Cp as a 

function of REn, necessary to obtain the extensional viscosity. Their principal inaccuracy 

was the term involving N2 but they were able to measure the extensional viscosity as a 

function of the deformation. Then, James and Chandler (B-1990) used it to measure the 

extensional viscosity of the international test fluid M1. They obtained an error of ±25%. 

After, Shirakashi et al. (1997) measured the velocity profiles using laser Doppler 

Velocimetry (LDV) for water and Polyacrilamide solutions in the converging channel of 

James (1991). They found that this geometry generated a constant extensional rates (shear-

free cores in velocity profiles for Reynolds between 100 and 150 and centreline velocity at 

each flow rate increases linearly along the axis) for both fluids ad that velocity profiles 

predicted by James (1991) quasi-similarity solution agreed with the water ones but not with 

a elastic fluid like the PAA. 
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Collier (1994) made a work similar to the previous one with a converging smooth 

contraction but also with lubricated walls. Feigl et al (2003) generalized a technique to 

measure extensional viscosity (James et al, 1990; Collier, 1994). In that technique, 

extruding a material through a cylindrical, semi-hyperbolic converging die with polymer 

melts and solutions is involved with finite element technique. That shape produced a shear-

free, or nearly shear-free, flow and found that the viscosity is a sum of an effective 

elongational viscosity ηef = -ΔP/(ε ε)h, that involved the change in pressure over the die, the 

volumetric flow and the Hencky strain determined by the geometry and  a term involving a 

change in enthalpy that can be neglected. They said also that the shape of the die produces 

elongational flow only when the fluid fully slips along the wall, eliminating shear effects, 

or if the shear effects are restricted to a thin layer along the wall, achieved only with the use 

of lubricants, and in its absence, a nearly shear-free flow occurs only when there is slip 

along the wall. They concluded there were advantages when using semi-hyperbolic dies 

because they are “relatively easy and inexpensive to perform” and that “taking the pressure 

at the outlet to be atmospheric provides the pressure difference, while the volumetric flow 

rate and the geometry of the die provide the elongation rate ˙ε and the Hencky strain εh= 2 

ln(Ro/Re), ηef = -ΔP/(ε ε)h is immediately computed”. Additionally, higher elongation rates 

can be reached with these types of geometry. 

 

 Poole et al. (2005) performed a numerical and experimental research of flow of 

viscoelastic fluid through and abrupt planar expansion preceded by a gradual contraction 

(RC = 8), which consisted of a circumference arc concave followed by an convex one (the 

concave arc radius were double than the convex) by using laser anemometry (LDA) with 

shear-thinning liquids (aqueous solution of PAA, 0.05% weight). First, they found the 
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expected parabolic profile, but later in the contraction they found “unexpected velocity 

overshoot” near the wall that grows as it goes downstream. They called those high velocity 

zones founded near the wall, higher than the velocity in the centreline, “cat’s ears” and 

attributed them to “the first and second normal-stress differences produced which increase 

with increasing shear rate”. On the expansion, they found a three-dimensional flow.  

 

The first attempt to obtain, predict and explain the cat’s ears was made by Afonso 

and Pinho (2006). They identified the conditions necessary to observe the overshoots and 

found a good “qualitative” agreement. Poole et al (2007) made and experimental and 

numerical investigation on the same geometry as Poole et al. (2005) but varying the 

concentration of the aqueous solutions of PAA. On the expansion they found that when the 

concentration is increased, the length of the recirculation zones decreases “dramatically”. 

They showed that “the exact shape and magnitude of the cat’s ears are found to be 

Reynolds number and Deborah number dependent” and, by using the PTT model (Phan-

Thien and Tanner), they could obtain numerically the cat’s ears but they were not identical 

in magnitude that the experimental, founding instabilities when increasing N2 on the model, 

something necessary to obtain the overshoots.  

 

 Alves y Poole (20007) made a numerical research on divergent flow in smooth 

contractions with a geometry based on that of Poole et al. (2005) (in this case with the same 

radius, equal to the difference between the contractions ratio, rA R – r) for creeping, 

isothermal and incompressible viscoelastic flow. They used the upper-convected Maxwell 

(UCM) model and finite-volume numerical method with the QUICK scheme (Leonard, 

1979) whereas there are no singularities because it is not an abrupt contraction; CR varied 
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(16, 4 and 2). They observed that at higher contraction ratio, the effect of elasticity on the 

flow was small and divergent flow was not observed, so they demonstrated that divergent 

flow is more likely to be observed in small CR and that there is a Deborah number (that 

linearly varies with the CR) in which, above it, a purely elastic instability sets in. According 

to them, divergent flow occurs when the Trouton ratio goes to its maximum value. They 

could obtain in a more accurate way than Poole et al (2007) the cat’s ears. They concluded 

also that ‘the use of smooth contractions offer many advantages over the typical abrupt 

ones, aside from the absence of vortex enhancement’. 

 

Oliveira et al. (2007) studied numerical and experimentally the Newtonian flow 

through a microfabricated hyperbolic planar contraction with μPIV and they obtained good 

agreement between numerical and experimental results. They found that on that scale, the 

flow has important 3D effects (so, the 2D approximation is not enough), for geometries 

with very low-aspect ratio, Hele-Shaw approximation is good and 2-D viscous flow did not 

appear; pressure drop across the contraction varied approximately linearly with Re. 

However, there was no constant deformation along the centreline of the geometry and the 

wall effects were not negligible, but with higher strains these effects decrease but viscous 

shearing contribution makes difficult to obtain purely extensional flows. They concluded 

that the use of viscoelastic fluid should reduce this problem because of the development of 

additional elastic stress resulting from the elongational flow. They obtained quite similar 

behaviour between the experiment and the macroescale ones with the maximum velocity at 

the centreline and fully developed flow far upstream entering in a region where it 

accelerates as the contraction plane is reached. 
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 In this work, flow through a parabolic axi-symmetric contraction is going to be 

study to analyse its usefulness in a new orifice rheometer to measure the elongational 

viscosity. Flow pattern will be compared with an abrupt contraction. The abrupt geometry 

is the same as reported by Ascanio et al (2002), who characterised coating fluids (see 

Figure 1.3), while the parabolic contraction is the same as the one reported by Naranjo 

(2010) and it was designed primarily to eliminate the recirculation zones and obtain a wide 

range of deformation rates and shear viscosities for the design of a rheometer for measuring 

extensional viscosity by using the Binding’s analysis. It is used to validate experimentally 

the elimination of the recirculation zones and obtain the flow fields and how the rheology 

influences the experimental results.  

 

Figure 1.3. Contraction profile used by Ascanio et al (2002). 

 

 

 Hence, this work is structured in the following way: Chapter 2 describes the 

theoretical background; Chapter 3 deals with the experimental setup describing the 

visualisation technique and the fluids investigated; Chapter 4 shows and discusses the 

results and finally the conclusions and work proposed for the new future. 
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1.2. Objectives 

1.2.1. General Objective 

 

 

 Analyse the behaviour of laminar steady flow with Newtonian and non-

Newtonian fluids through abrupt and parabolic contractions. 

 

1.2.2. Specific Objectives 

 

 

 To obtain the flow fields near the contraction by using the particle 

image velocimetry technique (PIV) 

 

 To analyse the influence of fluid rheology on the hydrodynamics of 

fluids flowing through parabolic contractions. 

 

 

 



 14   
 

2. Theoretical background 

 

Figure 2.1 shows the streamlines and velocity profile for uniaxial extension and shear 

flow (Macosko, 1994). 

 

Figure 2.1Extensional and shear flow. 

 

The velocity gradient tensor and the deformation rate tensors are given, 

respectively, by 
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 In uniaxial extension, ε corresponds to the direction where extensional deformation 

occurs, 1x̂ . When calculating the vorticity tensor, W,  it can be seen that there is no vorticity 

in uniaxial extensional flow, Wij = Lij + Lji = 0.The stress tensor, T, is: 
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and it is related to the strain tensor. The stress tensor is symmetrical and can be written as 

the sum of two parts, one corresponding to the hydrostatic pressure and one called as to the 

viscous stress tensor, T = -pI + τ. All the deformation effects are found on the last term, τ, 

but it cannot be directly measured. So, to eliminate p, normal stress differences are used: 

N1 = T11 – T22 = τ11 – τ22                                                 (8) 

N2 = T22 – T33 = τ22 – τ33                                                 (9) 

 In general terms, the shear viscosity is defined as  

γ
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and the rate tensor for a general extensional deformation is: 
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Where, m is equal to -0.5, 1 or 0 for uniaxial, equibiaxial and planar extension, 

respectively. It can be seen that 
2  is defined only in equibiaxial and planar extension, 

however, measurements in this type of extensional flows are not very common. Then, the 

extensional viscosity is usually defined as 


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
2211 TT

e


                                                         (13) 
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In our case, the flow is a combination of both types of flows, so that vorticity should 

be considered. The velocity gradient tensor in cylindrical coordinates is given by 
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Assuming laminar flow, symmetry on θ, null angular velocity and symmetry on z, 
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and substituting (15)into (14), the strain tensor D becomes 
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component of vorticity. 

 

 The stress tensor is related with the deformation tensor and it depends on the type of 

fluid. The simplest one is the Newtonian fluid: 

DITDτ 2or  ,2   p                                             (17) 

 This expression is the Newton’s law in three dimensions. Substituting 2D from pure 

shear flow, Eq. (6), gives  

  1212 τT  (Newton’s law of viscosity)                                          (18) 
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 Substituting 2D for uniaxial extension, eq. (5), into the stress tensor, it gives 

 211  pT                                          (19) 

  pTT 3322  ,                                                 (20) 

neglecting surface tension effects we obtain that T22 = T33 = 0, so 

  3  11  Tp        (21) 

Recalling the definition of extensional viscosity, eq. (13), we obtain 

 3u ,                                                            (22) 

that is often called the Trouton ratio and it holds for Newtonian fluids and for some non-

Newtonian fluids, like polymer melts, at very low shear rates. 

 

 Another widely used relation is the power law model, 

)2(
2/)1(

2 ij

n

Dij DIIk
 ,                                               (23) 

where DII2 , is the second invariant of the rate tensor, D, and in simple shear it gives 

1
2112 or        nn γkηk                          (24) 

 When n = 1, then k = η and we have the Newtonian case. 

 

 Another very used non-Newtonian model is the Cross Model, a four constant model 

with a Newtonian part at low and high shear rates and a power law region in the middle; 

that is: 
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There are some other models that relate the stress tensor, T, with the rate tensor, D, 

that can also describe the viscoelastic effects (Maxwell, Second-Order Fluid,Upper-

Convected Maxwell, PTT model, etc.) which also can be pretty much elaborated. However, 

they will not be showed here. 

 

 Several analyses have been made to calculate the extensional viscosity with an 

orifice rheometer. Metzner and Metzner (1970) and Cogswell (1972) made two important 

analyses, later extended by Cogswell (1978). Metzner and Metzner (the sink flow analysis, 

analogy with a point sink) assumed a purely extensional flow. For the axisymmetric case, 

using spherical coordinates and continuity equation and considering Figure 2.2, it gives 
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Q
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 Considering now the isosceles triangle made with the angle   (half-angle of 

convergence) and using cosines’ law, the area is 
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giving the radial velocity and extension rate at the orifice 

)cos1(

sin

)cos1(2

3

3

2












c

r

r

R

Q

dr

dv

r

Q
v



 

 

 Pressure drop is assumed to be equal to the normal stress difference, p 2211   

and so, the apparent extensional viscosity, eq. (13), is given by 
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 However,   varies highly with flow rate, especially with high elastic fluids, and it 

predicts a maximum at  60  that does not have a physical meaning. Tremblay (1989) 

proposed another sink flow analysis for large convergence angles having 
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with F = Rc/Δ to be determined experimentally, Δ is a characteristic length upstream where 

it can be considered sink flow. 

 

Figure 2.2. Streamlines for sink flow analysis. 

 

 Cogswell (1972) made a force balances for shear and normal stresses on a conical 

section of length, δl, (Figure 2.3) and substituted the stresses by viscosities and integrated 

them in the whole section. He considered the pressure drop as the sum of both, 

shear, ,sp and extensional, ,ep contributions and then minimised the infinite sum of 

pressure drops along the converging region to obtain p0, having 
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where 3/4 ca RQ    is the apparent shear rate. Or, substituting (26) and (27) into (25) 

   22112211

2

22 









 awa 
  

where w  is the wall shear stress. 

 

Figure 2.3. Cogswell analysis considerations: (a) Geometrical characteristics; (b) Stresses. 

 

 Another important analysis, and the one in which the rheometer with the parabolic 

profile studied here is based, is the one made by Binding and co-workers (Binding, 1987; 

Binding and Walters, 1988; Figure 2.4). They made an energy balance assuming three 

contributions (shear-viscous dissipation, extensional-viscous dissipation and inertial 

effects) and obtained the profile that minimised the power consumption by using variational 

principles assuming that elastic effects were not as important as the viscous effects. 
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Figure 2.4. Flow idealization for Binding’s Analysis. 

 

 It was considered that the fluid flows through the surface defined by r=R(z) with the 

angle θ small and slowly varying. It was assumed also that, because axial velocity in r=R(z) 

is very much lower than the velocity on the axis (r=0), the axial velocity in a given plane is 

determined as if there were fully developed flow in a pipe of width R(z), so, considering it 

and using mass conservation equation: 
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 Meanwhile, the stress fields are written in terms of the shear and extensional 

viscosity, both having power-law behaviour, Eq. (23) and 1 t
e l  . Evaluating Eq. (16), 

neglecting terms (dR/dz)2 and d2R/dz2and with 
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it is possible to measure the rate of work,   Dw rrrzrrzz )()(   D:T , 

where the last term is neglected of the quasi-unidirectional nature of the flow. The energy 

supplied in an infinitesimal element 
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where, δk, is the increasing net rate of kinetic energy in the element (inertial component), 

,2  sw is the shear viscous dissipation and ,2  eew   is the extensional viscous 

dissipation(extensional viscosity defined by Eq. (13)) and where it can be seen that the 
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Then a energy balance is written as 

      QpEQpQpp
BvA LLLBA   ,0, ''  (30) 

where BA pp   is the pressure difference upstream and downstream the contraction where 

the flow is fully developed and  21,' zzp is the pressure that would be between two planes if 
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the flow were fully developed. If we define the entry pressure, 

   BA LLBAe ppppp   ,00, '' , as the actual pressure drop less the fully-developed 

pressure, then, substituting in (30) 
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which, for this axi-symmetric case, integrating(28) and neglecting inertia leads to 
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Then, to calculate the extensional viscosity, a plot of log(pe) against log(Q) with an 

expected slope of t(n+1)/(1+t) to obtain t and then l is obtained directly with Eq. (30). The 

analysis then can be extended to profile nozzles considering the natural convergence angle 

with the one of the nozzle at each section of the converging nozzle, Figure 2.5. If the 

natural angle of convergence, θn, is smaller than the natural angle of convergence, θ, then 

the minimisation procedure must be done and if θn> θ then the energy power consumption 

must use the equation of the nozzle to be solved. 

Figure 2.5. Converging flow in a profiled nozzle. 



 24   
 

3. Methodology  

3.1. Flow geometry 

 

Figures 3.1 shows the geometric profiles of the different contractions considered in 

this work, the abrupt contractions and the parabolic one, respectively, showing the most 

important measures of each one. 

a) 

b) 

Figure 3.1. Contraction profile:  a) abrupt;  b) parabolic. 

 

Both contractions have the same contraction ratio, RC = 8; this is done to obtain a 

better comparison between them. dU = 38 mm, is the diameter upstream and downstream 

the contraction and du = 4.75 mm, is the contraction diameter in both cases. pu, pc and pd, 

are the pressures upstream, in the contraction and downstream, respectively. pu and pd are 
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measured one diameter upstream and downstream, respectively. LZR is the length of the 

recirculation zones that goes from the wall of the contraction to the point where the flow 

separate from the pipe’s wall. In the case of the parabolic contraction, only the upstream 

part of the contraction is going to be studied. The dimensionless vortex length with the 

major diameter, du, is 

ud

L
=x ZR

ZR  

The parabola of the contraction has its focus on the wall of the pipe and opens 

toward the wall of the contraction. It joins to the pipe with a 7.5 cm radius and his equation 

on the coordinate system x-y (Fig. 3.1 b) is: 
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It is seen that the strain rate along the geometry is not constant, but due to the absence 

of vortices, an approximate estimation of the strain rate along the centreline is possible like 

in Alves and Pool (2007). It has to be to pointed out that according to the Binding’s 

analysis, the angle of the profile and the natural angle of convergence has to be compared, 

so, to avoid the separation of the streamlines from the wall, the next inequality must be 

satisfied 
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3.2. Visualization technique. Particle Image Velocimetry (PIV). 

 

PIV is a non-intrusive method which allows obtaining quantitatively and qualitatively 

the velocity vector field of a flow. PIV allows also obtain the instantaneous turbulent flow 

field with the aim of investigate the fundamental mechanisms of the turbulence end extract 

its special structure, and with that, obtain the vorticity and deformation fields (Lai, 1996). It 

is based on the particles tracing and has a very simple operation principle; it consists of 

taking two consecutive images of the flow where the displacements ΔX and ΔY are taken in 

a known time period Δt (Figure 3.2). Knowing the position in an interrogation or study area 

on each exposure and the time between them, a statistical method based on auto-correlation 

or cross-correlation is used to calculate a vector for each zone by dividing the 

displacements between the interval Δt. To get sure that it is a good approximation, the 

displacements have to be small and by choosing a small Δt compared with the Taylor 

microscale of the Lagrangian velocity field.PIV equipment consists basically of a pulsed or 

continuous high power laser used as an illumination source, an optical arrangement used for 

creating a light sheet, the region of study, which contains the working fluid and the particle 

tracers that are seeded to the study region and a camera to obtain the images that is placed 

perpendicularly with respect to the laser sheet (Figure 3.2). 
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Figure 3.2. PIV operating principle. 

 

Tracers seeded in the flow (in this case, 0.5 μm hollow particles of glass covered with 

silver) are small enough and with such a density that they follow the flow dynamics. The 

illumination source acts as a photographic flash by providing light pulses and the tracers 

scatter the light. The digital camera, which usually is synchronized with the laser, catches at 

least two exposures, which are then used for the measurement of velocity. A video camera 

can be used also to obtain the images. A computer system is used for recording such 

exposures on several frames, which are split in the interrogation areas necessaries.  

 

3.3. Experimental Setup 

 

Figure 3.3 shows the experimental setup. First, we have a twenty-litre container tank were 

the fluid to be tested is stored and is connected to the entrance pipe made of brass by using 

flanges. The entrance pipe (30-cm length and with diameter D1) is long enough to make 

sure that the flow is fully developed and is made of brass. The different contractions are 

connected to the end of the entrance pipe set by using flanges too. After that, the exit pipe, 

made of brass too, is located. Next, a plastic hose is connected to the exit pipe and there is a 
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gate valve in it that is used to regulate the flow. The hose leads the flow to a centrifugal 

pump (Finish Thompson, model AC4) driven by a 1/3 HP DC motor (Baldor CDP3420-

V12) which is managed with a DC SCR Control (Baldor BC141) to regulate the motor’s 

velocity and with it, the volumetric flow. At the exit, the fluid is led again with a plastic 

hose to the container tank to close the circuit. To measure the volumetric flow, a test tube 

and a chronometer are used by taking the time necessary to have 0.5 litres of the fluid. 

Volumetric flow was measured before, during and after each recording to ensure there was 

no change. Neoprene seals in all the flanges are used to avoid fugues. Laminar, steady, 

uncompressible and isothermic flow was considered in this work. 

 

Figure 3.3. Experimental set-up. 
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Figure 3.4 shows the contractions used in this work, they are made in acrylic to 

allow PIV visualizations. A square jacket surrounds the contraction, so that the laser light 

sheet is projected on a planar surface to avoid optical distortion due to the curvature. The 

abrupt contraction was made in one piece while the parabolic contraction was made in four 

parts, due to manufacturing complications, with CNC using MASTERCAM software.  

 

Figure 3.4. Contraction: (a) Abrupt; (b) Parabolic. 

 

3.4. Fluids 

 

Four different fluids were used in the experiment. Aqueous solution of Polyethylene 

Glycol (PG) at 25% wt (CL 20000 S from Clariant Co.) having a dynamic viscosity of 0.24 
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[Pa·s] was used as Newtonian fluid. On the other hand, the following non-Newtonian fluids 

were used: 

 PA: Aqueous solution of polyacrilamide at 1% wt 

 CMC: Aqueous solution of carboxymehtyl cellulose (Mw = 2000 g/mol) at 2 % 

wt 

 CMC-PG: Aqueous solution of polyethylene glycol at 25% wt plus 

carboxymethyl cellulose (Mw= 50,000 g/mol) at 0.5% wt 

 

Substances were characterised with an Aanton Paar Physica Rheometer MC 301 with a 

50mm-diameter cone-and-plate geometry with an angle of 1° and a 0.10 mm gap. Data of 

viscosity and normal stress versus shear rate are shown in Figure 3.5 for all the fluids used.

  

All non-Newtonian fluids exhibited shear-thinning with different rheological indices 

and elasticity. The PA solution showed elastic effects that could be negligible at shear rates 

higher than 500, therefore, it was considered as inelastic non-Newtonian fluid. The best fit 

was obtained using the Cross model. Table 3.1 shows the rheological parameters of the 

model for the fluids investigated. 

Fluid η0 [Pa∙s] C [s] m 

PA 0.2451 0.06973 0.6163 

CMC 2.141 0.05707 0.6246 

CMC-PG 19.46 1.325 0.598 

Table 3.1. Constants for the Cross model for the solutions. 
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Figure 3.5. Viscosity and first Normal Stress Difference for the solutions. 

 

3.5. Image processing 

 

Numerical data obtained with the PIV visualizations were processed with the MATLAB 

software to obtain the streamlines, vorticity maps, plots, etc. Fortran and Tecplot were first 

considered as images processing software, however, MATLAB offered the possibility of 

actualise immediately each time once a change in the code is made. Due to the relatively 

high contraction ratio, it was necessary to take (at least) two different experiments with a 

different time between photos in each one and then joined together to obtain the whole 

field. This was made because for the high velocity zones, visualization with higher time 

between photos did not allow to obtain velocity maps and in the low velocity zones, 

visualizations with lower time between photos gave velocities lower than the actual. 
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Numerical data was filtered to eliminate trash data in the parabolic contraction with a mask 

created with the MATLAB software. 
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4. Results 

4.1. Measurement validation 

 

Figure 4.1 shows the velocity profiles for fully developed Newtonian flow at a distance 

far enough of the contraction (z≈ 45 [mm]) compared with the corresponding theoretical 

velocity profile of flow through a pipe (Hagen-Poiseuille equation). At the centre, the 

primary source of inaccuracies was the presence of bubbles which were formed in the fluid 

and dragged in it, principally, at high volumetric flows; meanwhile, for the near-wall zone, 

low resolution related with the PIV technique and distortion due to the curvature of the pipe 

gave an underestimation of the axial velocity. In spite of those troubles, good agreement 

was found between the theoretical and experimental results for Newtonian fluids. This 

agreement varied depending on the volumetric flow and the axial position. 

 

Figure 4.1. Theoretical and experimental axial velocity profile for Newtonian flow for diverse volumetric flows 

rates (m3/s). Open symbols corresponding to experimental data and filled symbols corresponding to the theoretical ones. 

  



 34   
 

 An underestimation of the volumetric flow rate respect to the experimentally 

measured one was observed because of the same reasons given in the last paragraph but 

even with that, relatively good agreement was noticed (Figure 4.2) for the Newtonian flow 

through the abrupt contraction. Besides, the volumetric flow rates were manually measured 

(test tube and chronometer), thus little errors were expected. In general, differences 

between 10% and 30 % were found between the calculated and the measured volumetric 

flow rates for the abrupt contraction. Something quite similar was observed for the 

parabolic contraction as can be seen in Figure 4.3. Therefore, the results obtained can be 

taken as valid considering the relatively good agreement for the Newtonian data. 

 

Figure 4.2. Volumetric flow rate as a function of the axial position for the PG 25% solution through the abrupt 

contraction. Open symbols corresponding to the calculated with numerical integration and close symbols the measured 

constant one. 
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Figure 4.3. Volumetric flow rate as a function of the axial position for the PG 25% solution through the parabolic 

contraction. Open symbols corresponding to the calculated with numerical integration and close symbols the measured 

constant one. 

 

4.2. Newtonian flow fields 

 

Figure 4.4 and 4.5 show the vorticity (s-1) and flow maps and the streamlines for 

several volumetric flows rates through the abrupt and the parabolic contraction 

respectively. For the abrupt contraction, it is observed that the streamlines tend to be 

pushed towards the wall of the contraction as the inertia (Reynolds number) increases in 

accordance with the literature; no high vortices were observed and there were stagnation 

zones at the corner of the contraction whose length decreased while increasing the 

volumetric flow rate. High-vorticity regions were noted near the walls of the pipe and in the 

entrance to the contraction. The last ones are consequence of the acceleration that the fluid 
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experiences as it flow through the contraction. A great component of shear deformation is 

found at the same zones also. It was also noticed that the flow was symmetric and bi-

dimensional and this occurred for all the fluids and volumetric flow rates. 
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Figure 4.4. Newtonian flow fields for the abrupt contraction as a function of the volumetric flow rate: (a) Vector fields; (b) 

Streamlines; (c) Vorticity fields. 
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Figure 4.5. Newtonian flow fields for the parabolic contraction as a function of the volumetric flow rate: (a) Vector fields; (b) 

Streamlines; (c) Vorticity fields.  

 

 For the case of the parabolic contraction, a free-vorticity nucleon is observed with 

high vorticity components near the wall only at the thinnest part of the contraction. Neither 
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secondary flows nor stagnation points were observed. Thus, recalling Eq. (29), Eq. (33) and 

Eq. (34) 
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Considering Newtonian fluid (n = t = 1, 3μ = k, l = μ) and calculating Eq. 33 we obtain 

2/1
dz

dR
, 

being this result independent of the volumetric flow. Hence, for the parabolic part, after 

doing some algebra, to avoid the separation of the streamlines from the wall, the following 

has to occur, 

3/5.76656.68

46664,0/219





z

R
, 

for the parabolic contraction. This result would suggest no flow separations, as it was 

experimentally observed, at the parabolic part of the contraction. However, for the part of 

the radius where the parabola unites the wall, the algebra would suggest the opposite, which 

was not experimentally observed (Figure 4.6). 
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Figure 4.6. Streamlines for Newtonian Flow through the parabolic contraction (Streakline photography). 

 

Figure 4.7. Axial velocity at the centre of the parabolic contraction for the PG solution. 
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Figure 4.8. Elongational deformation rate at the centre of the parabolic contraction for the PG solution. 

 

Figures 4.7 and 4.8 show the axial velocity and the elongational deformation rate at the 

centreline along the contraction. Axial centre velocity was found to exponentially increase 

starting at the beginning of the contraction (z  ≈ 68 [mm]) and the elongational deformation 

exhibited a similar behaviour. Upstream, fully developed profiles were noticed (constant Vz 

and =0). Figure 4.9 shows the dimensionless axial velocity profile with the Newtonian 

fluid. A fairly good agreement is found between the experimental results and profile 

theoretically obtained for Newtonian flow for the dimensionless axial velocity as a function 

of the dimensionless radius. Nevertheless, relatively big differences are observed in the 

regions -1 < r* < -0.5 and 0.5 >  r* > 1, which are consequences of marks generated during 

the manufacturing of the contraction.  
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Figure 4.9. Experimental dimensionless axial velocity profile compared with the theoretical one. 

 

4.3. Inelastic Non-Newtonian flow fields 

 

Figure 4.10 and 4.11 show the flow fields for the abrupt contraction and the parabolic 

contraction with the PA solution. The streamlines were pushed towards the contraction and 

converge to the abrupt contraction as the volumetric flow rate increases, something similar 

to the Newtonian flow. In this case, no presence of divergent flow is noticed as a result of 

the absence of normal stresses, which is in good agreement with the findings reported by 

Alves and Poole (2007). Higher values of vorticity near the walls are found at higher 

volumetric flows as well as a nucleon with relatively low values of vorticity indicating 

zones with relative low shear deformation.  The similar behaviour between the PG and the 

PA solution confirmed that the elasticity is the principal factor to the vortices appears. 
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Figure 4.10. PA flow fields for the abrupt contraction as a function of the volumetric flow rate: (a) Vector fields; (b) Streamlines; 

(c) Vorticity fields.  
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Figure 4.11. PA flow fields for the abrupt contraction as a function of the volumetric flow rate: (a) Vector fields; (b) 

Streamlines; (c) Vorticity fields. 

 

For the parabolic contraction, there are higher vorticity zones in the contraction’s neck 

with an almost free vorticity nucleon in a quite similar way to the Newtonian case. In both, 
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secondary flow and streamlines separation were not observed. As reported in the literature, 

flow separation is commonly a consequence of elastic effects, hence, it was expected that it 

didn’t appear in the PA flow.  

 

4.4. Elastic non-Newtonian flow fields 

 

Figure 4.12 shows a snapshot of the flow for the CMC solution through the abrupt 

contraction were the vortices can be clearly observed as a consequence of the elastic 

effects. Figures 4.13 and 4.14 show the flow fields in terms of vector fields, streamlines and 

the vorticity (s-1) as a function of the volumetric flow rate for the abrupt and parabolic 

contractions, respectively, with the same CMC solution. 

 

For the abrupt contraction, the vortices length increased while increasing the 

volumetric flow rate; nonetheless, the vortices length tends to decrease if the volumetric 

flow further increased. An explanation of this behaviour could be than first, as increasing 

the volumetric flow rate (and the shear rate), the elastic forces increased and dominated, 

thus, the vortices length tended to increase in magnitude; thereafter, if the elasticity of the 

fluid is not so high, while increasing the volumetric flow rate, the inertial effects tended to 

dominate the elastic effects and the vortices length decreased. Relatively high vorticity 

zones were found near the contraction were the flow converges and interacts with the 

vortices. 
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Figure 4.12. Vortices in the flow of the CMC solution through the abrupt contraction. 
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Figure 4.13. CMC flow fields for the abrupt contraction as a function of the volumetric flow rate: (a) Vector fields; (b) 

Streamlines; (c) Vorticity fields.  
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Figure 4.14. CMC flow fields for the parabolic contraction as a function of the volumetric flow rate: (a) Vector fields; (b) 

Streamlines; (c) Vorticity fields.  

 

For the parabolic contraction, despite the streamlines obtained with the PIV numerical 

data separate from the walls, no secondary flow is noticed. High vorticity zone with high-

shear deformation were found at the thinnest part of the contraction and an almost-free 

vorticity nucleon was noticed also. Apparently, the behaviour did not largely vary respect 

to the inelastic fluids. A second snapshot was taken to observe the behaviour far beyond the 

beginning of the contraction and to prove that, effectively, there was no secondary flow. 

Results can be seen in Figure 4.15. Nevertheless, because of the surface roughness 

generated by the manufacturing process, the resolution of the PIV technique in the 

beginning of the contraction was not so good and numerical data do not allowed to obtain 

streamlines with good precision in that zone. In spite of that, it could be clearly observed 

that there was not secondary flow. 
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Figure 4.15. Second snapshot of the CMC flow fields for the abrupt contraction as a function of the volumetric flow 

rate: (a) Vector fields; (b) Streamlines; (c) Vorticity fields.  

 

 Again, it is observed a free-vorticity nucleon in almost all the region and an 

exponential behaviour in the axial velocity profile until reaching a plateau at z = 75 [mm] 

for almost all the volumetric flows and something similar occurred with the elongational 

deformation (Figure 4.16 and Figure 4.17). For the axial velocity as function of the radial 

position (Figure 4.18), the higher velocity appears in the middle of the pipe and we had no 

presence of “ears rabbit” or any indication of divergent flow. According with Alves and 

Poole (2007) and looking at Figure 4.16, divergent flow could be considered and it 

coincides with the part of the flow where the Trouton ratio goes to the maximum but it can 

be seen that the part where the axial velocity decreases, it coincides with the part of the 

contraction where the resolution was no so good. In addition, looking at the velocity 

profiles (Figure 4.18), no “rabbit ears” are observed. Also, it is important to point out that 

divergent flow is usually observed when using low contraction ratios, which is not the case 
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of the present work (RC = 8).Figure 4.18shows the dimensionless axial velocity as a 

function of the dimensionless radius for diverse volumetric flow rates and at different axial 

position in the parabolic contraction, the points for the axial velocity follow the same 

parabolic pattern. This could be helpful because with this, it would be possible to establish 

an equation to relate the volumetric flow rate to the axial centre velocity with an 

exponential trend. 

 

 

Figure 4.16. Axial velocity in the centreline for different volumetric flows for the CMC solution. 
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Figure 4.17. Elongational deformation rate in the centreline for different volumetric flows for the CMC solution. 

 

Figure 4.18. Dimensionless axial velocity at different axial positions for different volumetric flows. 

 

 Even when no vortex enhancement was observed, to be sure of that, and to see if 

there was flow separation, another snapshot was taken with another more elastic fluid 

because as we could see in the introduction, elasticity has a considerably influence in 

the vortex formation. To do that, the CMC-PG solution was used to take streakline 

photography and PIV measurements. First we show an image of the vortex for the 
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abrupt contraction (Figure 4.19); next, the PIV measurements made to the abrupt 

contraction. The highest volumetric flow was approximately 10-6 m3/s and the other 

one could not be measured. 

 

Figure 4.19. Streamlines at low volumetric flow (Q≈10-6 [m3/s]) for the CMC-PG solution. (Streakline photography). 
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Figure 4.20. CMC-PG flow fields for the abrupt contraction as a function of the volumetric flow rate (Q1<Q2): (a) Vector 

fields; (b) Streamlines; (c) Vorticity fields.  

 

It is observed that the vortex length increases when increasing the volumetric flow 

(elastic effects dominates because it is creeping flow) and again that the highest values 

of vorticity are in the zone where the vortices interact with the converging flow having 

values not so high. Now we see an image of the flow through the parabolic contraction. 

Presence of divergent flow in experiments was not observed one more time and a 

similar behaviour with the CMC solution was found. Considering low resolution near 

the zone where the streamlines could separate from the pipe, streakline photography 

was then taken. It can be seen in Figure 4.22. 
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Figure 4.21. CMC-PG flow fields for the parabolic contraction as a function of the volumetric flow rate (Q1<Q2): (a) 

Streamlines; (b) Vorticity fields.  
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Figure. 4.22. Separation of the streamlines from the pipe at low volumetric flow rate for the CMC-PG solution through 

(Streakline photography). 

 

 Vortices were not observed but flow separation was noticed even at these low 

volumetric flow rates with the streakline photography; thus, as it was earlier 

mentioned, to consider two parts are needed to be considered on the Binding’s analysis 

to calculate the extensional viscosity. That part could be computed to measure if the 

error is not so big because the flow separation is seen only in the beginning of the 

contraction; if so, then the inaccuracies could be negligible. However, flow separation 

occurs in presence of normal stresses in the flow and could be more visible at higher 

volumetric flows. Therefore, if there is separation at creeping flow, it is possible that it 

will be higher as the volumetric flow increases and the estimation of the extensional 

viscosity by using the Binding’s analysis would be more inaccurate.  
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5. Conclusions. 

 

The flow of Newtonian and non-Newtonian fluids through a parabolic and an abrupt 

contraction has been visualized. Good agreement between the theoretical and the 

experimental results for the Newtonian flow was found for both geometries. Additionally, 

in all the experiments the flow was found to be symmetric and bi-dimensional. 

 

For the abrupt contraction, the behaviour was in good agreement with the literature: for 

the inelastic fluids, little stagnations and vortex zones at the corner of the contraction were 

observed and for the elastic fluids higher recirculation zones in the corner were noticed. For 

the elastic fluids, these zones first increased in length with the volumetric flow rate and 

eventually decreased while increasing the volumetric flow rate for the elastic fluid tested. 

Such behaviour could be explained by the following assumption: for moderates volumetric 

flow rate, elastic effects predominated and the vortices grew with the volumetric flow rate, 

eventually, for a certain volumetric flow rate the inertial forces became more significant 

than the elastic forces having as consequence that the vortex length decreased. 

 

On the other hand, for the parabolic contraction the vortex enhancement was not found, 

this fact supported the idea that smooth contractions inhibits the genesis of secondary flows 

as it was observed by previous authors. Thus, the parabolic profile proposed by Naranjo 

(2010) fulfilled its primary objective of eliminating secondary flows resulting in better 

estimation of the extensional viscosity. In the case of Newtonian and Inelastic non-

Newtonian fluids, flow separation was not observed even when the Binding’s theory 
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suggested that it would happen at the beginning of the contraction for the Newtonian case 

(Eq. 29); for this reason Binding´s analysis can be consider a good approach.  

 

For the elastic fluids, even when no secondary flow was observed, separation of the 

streamlines from the wall occurred in the presence of normal stresses. Therefore, to 

calculate the extensional viscosity according to Binding’s analysis, the separation and non 

separation regions had to be considered when measuring the extensional viscosity to avoid 

high inaccuracies. 

  

There were an almost free-vorticity and shear deformation nucleon at practically the 

entire length of the parabolic contraction soft at the thinnest part of the contraction where 

their magnitude became considerable; nevertheless, it could be no so important because the 

Binding’s analysis considers the shear contributions to the measurements. Axial velocity 

and elongational rate exhibited first a fully developed behaviour and eventually it started 

growing in an exponential form at z≈ 75 mm for all the volumetric flows for the elastic 

fluids. Dimensionless axial velocity showed a parabolic behaviour with respect to the 

dimensionless radius. 

 

The experimental evidence suggested that parabolic contraction is useful for the 

measurements of the elongational viscosity of Newtonian, inelastic and elastic non-

Newtonian fluids, however, for the third case the streamline separation has to be 

considered.  
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5.1. Future work and recommendations to the rheometer. 

 

In order to be sure that the vortices don’t appear at the parabolic contraction, a wider 

range of elastic fluids and Reynolds numbers have to be tested. A careful analysis of the 

flow separation conditions and experiments to observe the influence of the Deborah’s 

number to the flow through the parabolic contraction have to be done. Besides, it would be 

useful to investigate at what point and under what conditions the inertial effects dominate 

the elastic effects as seen with the abrupt contraction.  

  

Respect to the rheometer: From an experimental standpoint, the pressure drop could be 

measured between points along the parabola, so that the extensional viscosity would be 

estimated where the flow does not separate. In such case, the pressure transducer resolution 

should be as high as possible to ensure accurate results especially when working with low 

viscosity fluids. Another possibility could be changing the parabolic profile, specifically, 

the beginning where he parabola unites the wall by making it smoother obtaining with this 

that the angle of the contraction is lower than the natural angle of convergence of the flow. 

In that way, the separation of the streamlines could be avoided. Nevertheless, the 

manufacturing process would become more difficult because of the high length of the 

contraction. Using a semi-hyperbolic converging die, that has been proven to be useful in 

obtaining free-shear flow and constant elongational rates (Muñoz, 2011; Feigl et al, 2003), 

could be considered too. However, in those studies, fully-slip condition was considered and 

this could not be true physically unless the use of lubricants is considered which would 

bring more technical difficulties. In addition, experimental work should be done to validate 

then the semi-hyperbolic converging die. 
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