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P R E S E N T A:
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en Enerǵıa por el apoyo brindado durante mis estudios de maestŕıa.
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Agradezco especialmente al Dr. Eduardo Ramos Mora por haberme permitido trabajar
bajo su supervisión y apoyar mi desarrollo académico.



Contents

Resumen 6

Abstract 7

Introduction 8

1 Mathematical Formulation 11

1.1 The immersed boundary methods . . . . . . . . . . . . . . . . . . . . . . . 11

1.2 Conservation equations for two phase flow . . . . . . . . . . . . . . . . . . 14

1.3 Surface tension force . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2 Numerical Implementation 16

2.1 Discretization of the Navier-Stokes Equations . . . . . . . . . . . . . . . . 16

2.2 Front-tracking method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.2.1 Structure of the front, locating the front on the fixed grid . . . . . . 21

2.2.2 Remeshing the front . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.2.3 Interpolating the front properties onto the fixed grid . . . . . . . . 23

2.2.4 Computing the material properties . . . . . . . . . . . . . . . . . . 24

2.2.5 Moving the front . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3 Numerical Simulations of bubble dynamics 26

3.1 Simulations of bubbles at low and moderate
Reynolds number . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.1.1 Bubble shape results . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.1.2 Rising velocity of the bubble . . . . . . . . . . . . . . . . . . . . . . 30

3.1.3 Flow around the bubble . . . . . . . . . . . . . . . . . . . . . . . . 32

3.2 Simulations of bubbles at high
Reynolds numbers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

1



2 CONTENTS

3.2.1 Trajectory of the centroid and orientation of a
single bubble . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.2.2 Flow around the bubble . . . . . . . . . . . . . . . . . . . . . . . . 40

3.3 Comparison with a phenomenological model . . . . . . . . . . . . . . . . . 41

3.4 Comparison with Hele-Shaw experiments . . . . . . . . . . . . . . . . . . . 47

3.5 Simulations of multiple bubbles . . . . . . . . . . . . . . . . . . . . . . . . 52

3.5.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

3.5.2 Dynamical interaction of two bubbles . . . . . . . . . . . . . . . . . 53

3.5.3 Interaction of multiple bubbles . . . . . . . . . . . . . . . . . . . . 57

Conclusions 59



List of Figures

1 Leonardo’s manuscript known as Codex Leicester. The small sketch in the
right-hand side shows the spiraling motion of a rising bubble. . . . . . . . . 8

1.1 One fluid approach illustration in two dimensions. . . . . . . . . . . . . . . 12

2.1 Staggered grid array. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.2 A two-dimensional front. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.3 Adding and deleting front elements in two dimensions. . . . . . . . . . . . 23

2.4 The area weighting used to interpolate grid quantities to the front. . . . . . 24

3.1 Shape regime for bubbles through liquids. . . . . . . . . . . . . . . . . . . 28

3.2 Bubble shapes and streamlines for different flow conditions. The nondi-
mensional numbers used in each case are given in Table 3.1 . . . . . . . . . 29

3.3 Reynolds number as a function of time. . . . . . . . . . . . . . . . . . . . . 31

3.4 Effect of the Morton number on the terminal velocity of the bubble (Eo=1.6). 32

3.5 Bubble shapes and pressure fields for different flow conditions: a) Eo = 0.6,
Ar = 300, Re = 24; b) Eo = 1.2, Ar = 1659, Re = 63.6; c) Eo = 7.2,
Ar = 178, Re = 9.8; d) Eo = 64.8, Ar = 122, Re = 5.3; e) Eo = 112.4,
Ar = 24562, Re = 79.8. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.6 Bubble shapes and vorticity fields for different flow conditions: a) Eo = 0.6,
Ar = 300, Re = 24; b) Eo = 1.2, Ar = 1659, Re = 63.6; c) Eo = 7.2,
Ar = 178, Re = 9.8; d) Eo = 64.8, Ar = 122, Re = 5.3; e) Eo = 112.4,
Ar = 24562, Re = 79.8. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.7 Trajectory of the centroid of the bubble for Eo = 0.54 and M = 2.5×10−11:
Ar = 59395 (dashed red curve), Ar = 63354 (dashed black curve) and
Ar = 78401 (continuous blue curve). . . . . . . . . . . . . . . . . . . . . . 36

3.8 Power spectrum of the centroid trajectories of the bubbles for different
Archimedes numbers and Eo = 0.54 and M = 2.5 × 10−11: Ar = 59395
(dashed red curve), Ar = 63354 (dashed black curve) and Ar = 78401
(continuous blue curve). . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3



4 LIST OF FIGURES

3.9 Effect of the Archimedes number on the oscillation frequency of the trajec-
tory of the bubble (Eo = 0.54 and M = 2.5× 10−11). . . . . . . . . . . . . 38

3.10 Instantaneous horizontal (dashed line) and vertical (continuos line) non-
dimensional velocities. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.11 Inclination of the major axis of the best elliptic fit of the bubble in one
cycle. See Figure 3.7. The arrow indicates the direction of time. . . . . . . 39

3.12 Velocity, pressure and vorticity fields. The vortex shedding can be observed
in the wake of the bubble similar to the Von Kármán vortex street. In the
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Resumen

En este trabajo se presenta un análsis numérico bidimensional de la dinámica de burbujas
bajo diferentes condiciones de flujo. La tesis está enfocada a desarrollar herramientas
numéricas para estudiar el flujo de burbujas ascendiendo en un fluido viscoso. Las simu-
laciones numéricas presentadas están basadas en los métodos de fronteras inmersas, par-
ticularmente usando el método de “front-tracking” para representar una interfase entre
dos fluidos inmiscibles, encontrando las fuerzas interfaciales y calculando las propiedades
materiales de cada fluido en todo el dominio. Esto permite resolver un solo conjunto
de ecuaciones de conservación. Primeramente, se presenta la formulación matemática
de los métodos de fronteras inmersas y su acoplamiento con las ecuaciones de Navier-
Stokes. En el caṕıtulo 2, se explica a detalle la estrategia numérica para implementar
el método de “front-tracking” y la solución de las ecuaciones de Navier-Stokes. En la
primera sección del caṕıtulo 3, se reportan simulaciones numéricas del ascenso de una
burbuja en una columna de fluido, para bajos y altos números de Reynolds. Para bajos
números de Reynolds, las burbujas siguen una trayectoria lineal y su cauda es estable.
Para altos números de Reynolds se encuentra un comportamiento más interesante donde
las burbujas siguen una trayectoria en zig-zag aproximadamente periódica muy similar
a la huella de vórtices de Von Kármán. En este punto se realizan comparaciones con
un modelo fenomenológico y con observaciones experimentales realizadas en una celda
Hele-Shaw. Estas comparaciones se hacen con el propósito de verificar las simulaciones
numéricas. La última sección del caṕıtulo 3 contiene los resultados de las simulaciones
numéricas de la dinámica de varias burbujas. Uno de los fenómenos más importantes que
se presenta cuando se estudian nubes de burbujas es la interacción de dos (o más) burbu-
jas. Finalmente, diferentes arreglos de simulaciones para varias burbujas son brevemente
presentados y analizados con el fin de ejemplificar algunas de las caracteŕısticas de este
tipo de sistemas.
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Abstract

In this study, a two-dimensional numerical analysis of the dynamics of bubbles at differ-
ent flow conditions is presented. This thesis is focused in the development of numerical
tools to analyze in detail the flow of bubbles rising in a viscous fluid. The numerical
simulations done are based on the immersed boundary methods for fluid interfaces, in
particular using the front tracking method to represent an interface between two different
immiscible fluids, calculating the interfacial forces and computing the material properties
of the fluids in the entire integration domain. This is achieved by solving a single set of
conservation equations. First, the mathematical formulation of the immersed boundary
methods and the coupling with the Navier-Stokes equations are presented. In Chapter 2,
the numerical strategy to implement the front tracking method and the solution of the
Navier-Stokes equations are explained in detail. In the first sections of Chapter 3, the
numerical simulations of a single bubble rising in a column of fluid are reported, both, for
low and high Reynolds numbers. At low Reynolds numbers, the bubbles follow a straight
path and the wake is steady. A more interesting behavior is found at high Reynolds
numbers where the bubbles follow an approximately periodic zig-zag trajectory and an
unstable wake with properties similar to the Von Kármán vortex street is formed. The
comparison of the numerical results with a phenomenological model and Hele-Shaw cell
experiments is also presented in this chapter with the purpose of verifying the numerical
simulations. In the final section of Chapter 3 we present the numerical results of simula-
tions of multiple bubbles. One of the fundamental effects when bubble clouds are studied
is the interaction of two bubbles. This is explored in this thesis in an effort to understand
the complex dynamics involved on it, in particular in the zones of strong interactions.
Finally, the different arrays of multiple bubbles are briefly presented and analyzed. The
behavior of this kind of systems is intricate and the calculations presented are given as
an illustration of some aspects of the complex dynamics.
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Introduction

Multi-fluid systems are of fundamental importance in many natural processes and in a
host of industrial activities such as combustion, chemical reaction, petroleum refining and
boiling. The rising of a single bubble in a viscous liquid due to buoyancy is one of typical
multi-fluid systems. However, a comprehensive knowledge of the flow behavior and mech-
anism of such multi-fluid systems in full flow regimes is still lacking, although a number
of experimental, theoretical analysis and numerical studies have addressed this problem.
The first recorded observation of the rise of bubbles is to be found in the writings of
Leonardo da Vinci. About five centuries ago, Da Vinci summarized his observations on
the motion of air bubbles in a liquid in the following manner:

The air that submerged itself with the water which percussed upon the other water, returns
to the air, penetrating the water in sinuous movement, changing its substance into a great
number of forms. And this happens because the light thing cannot remain under the heavy;
rather it is continuously pressed by the part of the liquid which rests upon it; and because
the water that stands there perpendicular is more powerful than the other in its decent,
this water is always driven away by the part of the water that form its coverings, and
so moves more continually sideways where it is less heavy and in consequence offers less
resistance, according to the 5th [proposition] of the 2nd [book]; and because this “has to
make its movement by the shortest way”, it never spreads itself out from its path except
the extent which it avoids the water which covers it above.

of view of Aristotelian mechanics or the impetus theory, the
deviation from a straight path posed a puzzle because ‘‘Ev-
ery natural and continuous movement desires to preserve its
course on the line of its inception, that is, however its local-
ity varies, it proceeds according to its beginning’’ !ms. I, 6820
r, Ref. 59, Vol. 1, p. 76".62

Leonardo’s attempt at an explanation can be found in the
Codex Leicester !formerly Hammer; see Ref. 63"; Figure 18
shows fol. 25 r of this manuscript. The sketch in the upper
right corner, enlarged in Fig. 19, shows the spiralling motion
of a bubble and is accompanied by the following text:

‘‘The air which is submerged together with the water
... returns to the air, penetrating the water in sinuous
movement . . . . And this occurs because the light
thing cannot remain under the heavy . . . ; and be-
cause the water that stands there perpendicular is
more powerful than the other in its descent, this wa-
ter is always driven away by the part of the water
that forms its coverings, and so moves continually
sideways where it is less heavy and in consequence
offers less resistance . . . . And because this has to
make its movement by the shortest way it never
spreads itself out from its path except to the extent
to which it avoids that water which covers it above’’
!Ref. 59, Vol. 1, p. 112".64

A similar explanation is given in a passage in ms. F 37 r ,
accompanied by a sketch reproduced, among others, in Fig.
14 of Ref. 37:

‘‘Whether the air escapes from beneath the water by
its nature or through its being pressed and driven by
the water. The reply is that since a heavy substance
cannot be supported by a light one this heavy sub-
stance will proceed to fall and seek what may sup-
port it, because every natural action seeks to be at
rest; consequently that water which surrounds this
air above, on the sides and below finds itself all
spread against the air enclosed by it, and all that
which is above d e n m , #the reference is to the
sketch reproduced in Ref. 37$ pushes this air down-
wards, and would keep it below itself if it were not
that the laterals a b e f and a b c d which sur-
round this air and rest upon its sides came to be a
more preponderant weight than the water which is
above it; consequently this air escapes by the angles
n m either on one side or on the other, and goes
winding as it rises’’ !Ref. 59, Vol. 1, p. 557".
The ascending bubble was not the only phenomenon of

non-rectilinear propagation to attract Leonardo’s prodigious
observational powers. In ms. F 52 r , he writes

‘‘If every movable thing pursues its movement along
the line of its commencement, what is that causes
the movement of the arrow or thunderbolt to swerve
and bend in so many directions whilst still in the air?
What has been said may spring from two causes,
one of which . . . is as in the third #section$ of the
fifth #book$ concerning water, where it is shown
how sometimes the air issuing out of the beds of

FIG. 18. !Color" Fol. 25 r of Leonardo’s manuscript known as Codex
Leicester. The small sketch in the upper right-hand corner, enlarged in Fig.
19, shows the spiralling motion of a rising bubble. !Reproduced from Ref.
63 with the kind permission of the Armand Hammer Foundation."

FIG. 19. Detail of Fig. 18 showing Leonardo’s sketch of the spiralling
motion of a rising bubble. !Reproduced from Ref. 63 with the kind permis-
sion of the Armand Hammer Foundation."
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FIG. 1 
Sinuous motion of a gas bubble in a liquid. Drawing by Leonardo da Vinci. The original text 

containing his writings are available on CD-ROM, Leonardo da Vinci, Corbis Corporation, 1996. 

consequence offers less resistance, according to the 5th [proposition] o f  the 2nd [Book]; and because this 

"has to make its movement by the shortest way" it never spreads itself out f rom its path except to the 

extent to which it avoids the water which covers it above. '" Leonardo da Vinci's sketch of the bubble rise 

trajectory in water is reproduced in Fig. 1. Five hundred years on, we have attempted to simulate the 

motion of single gas bubbles in a liquid using the volume-of-fluid (VOF) technique developed by Hirt 

and Nichols [1]. Our objective is to see how far the VOF technique can be used for a priori simulations 

of bubble trajectories. A further objective of this paper is to examine bubble-bubble interactions in 

swarms using the VOF technique. 

VOF Simulation Method and Results 

The VOF model (Hirt and Nichols [1], Delnoij et al. [2]; Tomiyama et al. [3,4]) resolves the 

transient motion of the gas and liquid phases using the Navier-Stokes equations, and accounts for the 

topology changes of the gas-liquid interface induced by the relative motion between the dispersed gas 

bubble and the surrounding liquid. The finite-difference VOF model uses a donor-acceptor algorithm, 

originally developed by Hirt and Nichols [1], to obtain, and maintain, an accurate and sharp 

representation of the gas-liquid interface. The VOF method defines a fractional volume or "colour" 

function c(x,t) that indicates the fraction of the computational cell filled with liquid. The colour function 

varies between 0, if the cell is completely occupied by gas, and 1, if the cell consists only of the liquid 

phase. The location of the bubble interface is tracked in time by solving a balance equation for this 

function: 

Oc(x,t) + V • (uc(x, t)  = 0 (1) 
Ot 

The liquid and gas velocities are assumed to equilibrate over a very small distance and essentially Uk = u 

for k = L, G at the bubble interface. The mass and momentum conservation equations can be considered 

to be homogenous: 

Figure 1: Leonardo’s manuscript known as Codex Leicester. The small sketch in the
right-hand side shows the spiraling motion of a rising bubble.
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Introduction 9

Leonardo da Vinci’s words are beautifully expressed in the picture of Figure 1 which is
contained in the Codex Leicester. Many experimental works have reported several re-
sults about the behavior of a single rising bubble, (Bhaga & Weber 1981) and (Sanada,
Shirota & Watanabe 2007) are some examples. On the other hand, approximate the-
oretical solutions have been derived in the limit of very small bubble deformations for
either high or low Reynolds numbers, where the bubble shape is relatively stable. Bubble
shapes, trajectories and terminal velocities of the bubbles for different flow conditions
have been reported in the experimental works, a complete range of shapes of bubbles can
be found in (Clift, Grace & Weber 1978). It is commonly observed that bubbles rise in
axi-asymmetric trajectories, straight, spiral or zigzag. However, the mechanisms of these
motions of bubbles are not yet fully understood and thus remain as an open question
(Mougin & Magnaudet 2002). The understanding on bubble rise and deformation is still
limited to a few flow regimes only, due to the difficulties in experiments. It is rather
difficult to measure, without any interference, the flow pattern and pressure distribution
within a bubble and its surrounding liquid while it is rising and deforming.

Considering the difficulties in experimental and theoretical investigations, numerical sim-
ulations provide an effective alternative approach to attain a better insight into the bubble
rising behavior, the development of bubble shape evolution and the flow behavior in the
viscous liquid. In recent years, significant progress has been made in understanding and
modeling bubbles rising in a column of fluid by advanced numerical simulations, particu-
larly, using the immersed boundary methods (Hua & Lou 2007), (Ohta, Imura, Yoshida
& Sussman 2005), (Chen, Garimella, Reizes & Leonardi 1999). In contrast with the av-
erage models (e.g. two-fluids models), the immersed boundary methods provide detailed
information about the interface of the fluids; in these methods, the conservation equa-
tions are solved without any modeling assumptions. The most popular methods based on
this formulation are the volume of fluid, level set, marker particle, shock capturing and
front tracking, to name a few. The numerical simulations of bubbles using the volume
of fluid method have been widely used to try to understand the behavior of bubbles at
different flow conditions, see for instance (Krishna & van Baten 1999) and (Scardovelli &
Zaleski 1999). However, many problems are presented when this method is implemented,
the most critical problem is that artificial coalescence or rupture of bubbles can occur
(van Sint Annaland, Deen & Kuipers 2005). Another approach used to simulate multi-
phase flows is the level set method (see (Sussman, Smereka & Osher 1994) and (Sussman,
Fatemi, Smereka & Osher 1998) for details). The implementation of this method is very
simple in two and three dimensions but its accuracy is limited and artificial coalescence
and break up of the bubbles also occur. The front-tracking method is another alternative
to compute multi-fluid systems as the rising of bubbles (Unverdi & Tryggvason 1992),
(Hua & Lou 2007), (Gunsing 2004). This method is extremely accurate because the in-
terface is tracked explicitly using marker points connected to each other. Then, artificial
coalescence does not occur due to the fact that a separate mesh is used to track the in-
terface, but this method is difficult to implement since the interface of the fluids requires
a remeshing algorithm each time step.



10 Introduction

In the present thesis, a two dimensional numerical study of the rising of bubbles in a
column of fluid is presented. The implementation is based on the solution of the Navier-
Stokes equations coupled with a front-tracking method. Numerical simulations of a single
bubble are presented in two parts, the first is devoted to the analysis of the motion of
bubbles at low Reynolds number, and a detailed study of the rising of bubbles at this flow
conditions is presented. The shape of the bubbles, terminal velocities and external flows
are calculated. In the second part, the bubbles rising at high Reynolds are studied, the
features of the oscillatory motion of the bubble and the unstable wake are explored. At
these flow conditions a phenomenological model proposed by (Pesavento & Wang Jane
2004) is adapted to compute the rising of a single bubble. The simulations of the front-
tracking model are then compared with the results of the phenomenological model, and
the forces identified in the phenomenological model are analyzed separately to describe the
effect of each of them over the bubble. Also, to complete the study of a single bubble, the
results of the numerical simulations are compared with experiments in a Hele-Shaw cell.
This is an interesting physical situation that approximates the motion of bubbles in two
dimensions, i.e. this problem can be regarded as the two dimensional case of freely moving
bubbles. This phenomenon has been described by (Kelley & Wu 2005), see also (Ramos,
Sanchez, Gonzalez & Herrera 2007). The last part of the present investigation focuses
on the interaction of multiple bubbles rising in a viscous fluid. First, the interactions of
two bubbles are studied. Then effect of the vortices detached by the first bubble over the
path of the second bubble is analyzed. Further, the interaction of multiple bubbles rising
simultaneously are computed, and a brief study of this phenomenon is given. However,
the extreme complexity of the dynamical interactions between multiple bubbles prevents
us to offer a complete understanding of the physics involved in this problem.



Chapter 1

Mathematical Formulation

In this chapter, the governing equations of two immiscible fluids are presented using the
one fluid approach with local density and viscosity variation to take into account the
separate phases. We restrict the analysis to a two phase flow, for which the front tracking
method has been widely used. This method can be classified as an immersed boundary
that combines the capabilities of the level set and volume of fluid methods. The material
properties of the two different fluids are calculated using an indicator function obtained
from the position of the interface of the fluids.

1.1 The immersed boundary methods

There are several ways to simulate multiphase flows; some classical examples are averaged
models, boundary integral and Lattice Boltzmann methods. Other alternatives include
immersed boundary methods for fluid interfaces. Commonly the immersed boundary
methods are applied to simulate systems in which elastic structures interact with fluid
flows (Peskin 1977), however it is possible to extend this theory to the cases where fluid
interfaces exist. The immersed boundary methods for multiphase flows have been widely
applied in many different systems and various methods based on that formulation such
as volume of fluid, level set and the front tracking methods are available.

The mark-and-cell method can be conceived as the oldest version of the immersed bound-
ary methods in which marker particles are used to identify each phase. Specifically, this
method was used by researchers at the Los Alamos National Laboratory in the early 1960s
and permitted the first successful simulation of the finite Reynolds number motion of free
surfaces and fluid interfaces. On the other hand, in the volume of fluid method, a marker
function is used to find the interface between the two fluids (Scardovelli & Zaleski 1999).
This function is advected using the velocity field found when the momentum equations
are solved in the domain. The level set is a widely used method, where a marker func-
tion is used to identify the different fluids in the domain and no assumption is made on
the connectivity of the interface. This method allows an accurate computation of two
phase flows including topological changes in the interface, like break up or coalescence
of bubbles (Sussman et al. 1994), however, in flow fields with appreciable vorticity or in
cases where the interface is significantly deformed, level set methods suffer from loss of
mass (volume) and hence loss of accuracy (van Sint Annaland et al. 2005). The front

11
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tracking method avoids solving an equation for a marker function, but the interface be-
tween the fluids must be tagged using an unstructured mesh with connected marker points
that are advected with the flow and then the surface tension and the material proper-
ties are computed from the new location of the interface (Prosperetti & Tryggvason 2007).

In the present study, a two dimensional front tracking model that can be efficiently used
to perform numerous computational experiments was implemented. The front tracking
method was chosen because of its excellent capability to calculate the surface tension
forces, which significantly effects in the bubble shape and dynamics. Other methods, like
the classical volume of fluid, level set and mark-and-cell models, do not allow for such an
accurate and detailed representation of the surface tension forces. A disadvantage of the
front tracking method is, however, that the volume of the bubble is not intrinsically exactly
conserved. The gas volume of the bubble slowly changes in time, caused by the method
used to move the interface, the applied filters and the remeshing of the interface mesh.
The markers that span the surface elements are moved with their local velocities. These
local marker velocities are interpolated from the velocity field on the Cartesian grid. These
interpolated velocities introduce minor small-scale anisotropy (Gunsing 2004). However,
using a finer computational grid this problem can effectively be suppressed.

Figure 1.1: One fluid approach illustration in two dimensions.

In the immersed boundary methods it is possible to solve a single set of conservation
equations using the “one fluid approach”. When a multiphase system is being analyzed,
it is necessary to take into account the differences between the material properties of the
fluids and the forces concentrated in the interface as the surface tension force. These forces
can be represented as delta functions in the interface, and a Heaviside function is used in
order to identify the different fluids in the domain 1 (Prosperetti & Tryggvason 2007).

1The various fluids can be identified by a step (Heaviside) function H, which is 1 where one particular
fluid is and 0 elsewhere (Tryggvason, Bunner, Esmaeeli, Juric, Al-Rawahi, Tauber, Han, Nas & Jan 2001).
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The Heaviside function H can be expressed in terms of an integral over the product of
one-dimensional δ functions:

H =

∫
A

δ(x− x′)δ(y − y′)da′, (1.1)

where the integral is over an area A bounded by a contour S. From the integral is evident
that the Heaviside function is one if the point (x,y) is enclosed by S and zero elsewhere
(see Figure 1.1). The gradient of H is calculated for the primed variables of equation Eq.
(1.1) or for the umprimed variables as follows:

∇H =

∫
A

∇ [δ(x− x′)δ(y − y′)] da′

= −
∫
A

∇′ [δ(x− x′)δ(y − y′)] da′. (1.2)

The integral over an area, can be transformed to a line integral using the following variant
of the divergence theorem for gradients (Tryggvason et al. 2001) :

∇H = −
∮
S

[δ(x− x′)δ(y − y′)] n′ds′. (1.3)

Since we know that S is a closed contour, most of the integral is zero and we can replace
it by one over a part of the contour and drop the circle on the integral:

∇H = −
∫
S

[δ(x− x′)δ(y − y′)] n′ds′. (1.4)

If the material properties of each phase are considered constant, then a property in the
entire domain, including the jump in the interface, can be written as:

φ = φ1H(x, y) + φ0(1−H(x, y)), (1.5)

where φ1 is the property of the fluid in which H = 1 and φ0 is the property of the fluid
in which H = 0. The gradient of the property is:

∇φ = φ1∇H − φ0∇H = (φ0 − φ1)

∫
S

δ(x− x′)δ(y − y′)n′ds′ (1.6)

This mathematical formulation allows one to find the gradients of different material prop-
erties of the fluids in the whole domain. The conservation equations can then be solved
in the domain even when fluids with different physical properties are present.
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1.2 Conservation equations for two phase flow

The physical situation of interest in the present study is the motion of bubbles in a viscous
fluid, and the model described is an idealization of that phenomenon. We consider a
two dimensional complex fluid composed by a liquid and gas bubbles immersed in it.
The equations that govern the momentum balance of the fluids are the Navier-Stokes
equations:

∂ρu

∂t
+∇· ρuu = −∇p+∇·µ(∇u +∇Tu)

+
∫
σκ′n′δβ(x− x′)ds′ + (ρ− ρf )g

(1.7)

The pressure is denoted by p, µ is the viscosity, g is the gravity vector, ρf is the density
of the continuous phase, σ is surface tension and k′ is curvature. The presence of the
interface is incorporated by the term δβ(x− x′) = δ(x− x′)δ(y − y′), where x is the point
at which the equations are evaluated and x′ is a point in the interface. Formally, the
integral is over the entire front, thereby adding the delta functions together to create a
force that is concentrated at the interface, but smooth along the interface. It is important
to note that this equation is valid for the whole field even when the density ρ and viscosity
µ fields change discontinuously.

The mass conservation equation is given by:

∂ρ

∂t
+∇ · ρu = 0 (1.8)

For a single-phase flow where the density is constant, there is no need to follow the motion
of individual fluid particles. However, if the density varies from one particle to another,
but remains constant for each particle as it moves (as it must do for an incompressible
flow), it is necessary to follow the motion of each fluid particle. This can be done by
integrating the equation:

Dρ

Dt
= 0 (1.9)

For multiphase flows with well-defined interfaces where the density of each phase is a
constant, we only need to find H and then construct the density directly from H as it
was discussed in the section above. The same arguments hold for the viscosity and other
properties of the fluid. The assumption given in Eq. (1.9) reduces the mass conservation
equation to:

∇ · u = 0 (1.10)

The “one-fluid” equations are an exact rewrite of the Navier-Stokes equations for the fluid
in each phase and the interface boundary conditions. The governing equations as listed
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above assume that the only complication in multifluid flows is the presence of a moving
phase boundary with a constant surface tension.

1.3 Surface tension force

One of the most important elements in the immersed boundary methods implementation
is the surface tension force calculation. This property depends of the curvature of the
interface, and since the interface is deformed during the simulation, the curvature must
be calculated in every time step.

For interfaces identified by connected marker points as is the case of the front tracking
method, the computation of surface tension is, at least in principle, relatively straightfor-
ward. In most cases it is the total force on a small section of the front that is needed. In
two dimensions we are generally working with a line element connecting two points and
in three dimensions it is the force on a surface element connecting three points what is
needed. Thus, the challenge is to find

δFσ =

∫
∆s

σκnds (1.11)

For a two-dimensional flow, we use the definition of the curvature of a plane:

κn =
∂t

∂s
(1.12)

where t is the unit tangent vector in the element of the front. Using equation (1.12) we
can rewrite equation (1.11) as:

δFσ = σ

∫
∆s

∂t

∂s
ds = σ(t2 − t1) (1.13)

Therefore, instead of calculating the curvature, it is only required to find the tangents of
the end points of each element of the interface. The simplest approach is to fit a parabola
to the interface points and differentiate to obtain the tangent vectors. For higher accuracy,
a polynomial is fitted through more points, and differentiated to give the tangent vector.
In the present implementation, a cubic polynomial is fitted and four points are needed to
be taken into account to calculate the tangent vectors of the endpoints of the front.



Chapter 2

Numerical Implementation

In this chapter, the numerical strategies to solve the Navier-Stokes equations and to
implement the front-tracking method are explained. The finite volume method and the
decoupling algorithm of the velocity and pressure are presented in the first section. The
second part of the chapter is devoted to explain the steps to construct the front-tracking
algorithm, the structure and tracking of the front are treated, also the technique to smooth
and interpolate the front properties to the grid are presented.

2.1 Discretization of the Navier-Stokes Equations

The coupled momentum and mass conservation equations presented in Chapter 1, equa-
tions (1.7) and (1.10), must be discretized to render them in a suitable form to be numer-
ically solved. Several strategies have been devised to accomplish this task and most of
them have been described the literature. See for instance (M. Griebel & Neunhoeffer 1998)
or (Versteeg & Malalasekera 1995). Note that although the mass and momentum equa-
tions must be simultaneously solved, the mass conservation equation does not involve the
pressure. The solution algorithm must then involve some sort of decoupling. Again, many
strategies have been proposed. Here we will describe somewhat in detail two of them, the
projection scheme and the SIMPLE algorithm since they have been used in the present
analysis. As it will be apparent in the conclusion of this document, the second algorithm
gives better results.

The first-order projection method integrates the set of equations in two steps. The first
part is a prediction step where the effect of the pressure is ignored as follows:

ρn+1u∗ − ρnun

∆t
= −∇ · ρnunun +∇ · µn(∇un +∇Tun) + Fσ + Fbuoyancy. (2.1)

The second part is a correction step in which the pressure term is included,

ρn+1un+1 − ρnu∗

∆t
= −∇p. (2.2)

The pressure is then calculated in such a way that the velocity in the new time step
satisfies the mass conservation equation,

∇ · un+1 = 0. (2.3)

16
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Replacing Eq.(2.3) in Eq.(2.2) the pressure can be calculated with the expression,

∇ 1

ρn+1
· ∇p =

1

∆t
∇ · u∗ (2.4)

A special treatment is required for solving the pressure equation since the density is not
a constant in the vicinity of the interface. In the early works that introduced the front-
tracking method, a simple successive over relaxation (SOR) method was used, the results
of the projection scheme were not satisfactory in the cases where the material properties
of the fluids were very different, like for instance air and water, because the solution of
the pressure equation diverges.

In order to avoid these difficulties, Hua et al. (Hua & Lou 2007) proposed that the cou-
pling between flow velocity and pressure is solved by integrating the mass and momentum
equations using the SIMPLE scheme. These authors report that their strategy may han-
dle large density and viscosity ratios with accuracy.

Given that we are interested in comparing the results of our simulations with experimental
observations of air bubbles in water, in this work, we followed the methodology described
by (Tryggvason et al. 2001) for the front-tracking method, but the SIMPLEC method
was used to solve the Navier-Stokes equations. We found that the simulation process is
robust even in case of large density ratio because of the semi-implicit solving approach of
the SIMPLEC sheme.The SIMPLEC algorithm was originally put forward by (Patankar.
1980) and is essentially a guess-and-correct procedure for the calculation of the pressure.

The momentum equations (Eq.1.7) are discretized in a regular staggered grid (see Figure
2.1) using the finite volume method as follows:

un+1 − un

∆t
= −un · ∇un+1 +

1

ρn+1

(
∇ · µn+1(∇un+1 +∇Tun+1) + Fσ + Fbuoyancy

)
(2.5)

In this implementation a hybrid scheme is used in the advection terms and central dif-
ferences are used to discretize the pressure and diffusion terms. The discrete form of the
conservation equations can be written as:

aPuP =
∑

anbunb + SP + Se(pP − pE) (2.6)

aPvP =
∑

anbvnb + SP + Sn(pP − pN) (2.7)

In two dimensions: ∑
anbunb = aEuE + aWuW + aNuN + aSuS (2.8)
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Figure 2.1: Staggered grid array.

From the staggered grid array the coefficients are calculated for the momentum conser-
vation in the x direction as follows:

aE =
2µi+1,jSe

∆x
− ueSe

2
(2.9)

aW =
2µi,jSw

∆x
+
uwSw

2
(2.10)

aN =
1

4

(µi,j + µi+1,j + µi+1,j+1 + µi,j+1)Sn
∆y

− unSn
2

(2.11)

aS =
1

4

(µi,j + µi+1,j + µi+1,j−1 + µi,j−1)Ss
∆y

+
usSs

2
(2.12)

aP = aW + aE + aS + aN +
∆V

∆t
(2.13)

sP = uni,j
∆V

∆t
+ 2

(pi,j − pi+1,j)∆y + Fσx∆V +Dn +Ds

ρi+1,j + ρi,j
(2.14)

where

Dn =
1

4

(µi,j + µi+1,j + µi+1,j+1 + µi,j+1)Sn
∆x

(vni+1,j − vni,j) (2.15)

Ds = −1

4

(µi,j + µi+1,j + µi+1,j−1 + µi,j−1)Ss
∆x

(vni+1,j−1 − vni,j−1) (2.16)
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And the coefficients for the momentum conservation in y direction are calculated as:

aE =
1

4

(µi,j + µi+1,j + µi+1,j+1 + µi,j+1)Se
∆x

− ueSe
2

(2.17)

aW =
1

4

(µi,j + µi,j+1 + µi−1,j+1 + µi−1,j)Sw
∆x

+
uwSw

2
(2.18)

aN =
2µi,j+1Sn

∆y
− unSn

2
(2.19)

aS =
2µi,jSs

∆y
+
usSs

2
(2.20)

aP = aW + aE + aS + aN +
∆V

∆t
(2.21)

sP = vni,j
∆V

∆t
+ 2

(pi,j − pi,j+1)∆x+ Fσy∆V + (0.5(ρi,j+1 + ρi,j))− ρf )gy +De +Dw

ρi,j+1 + ρi,j
(2.22)

where

De =
1

4

(µi,j + µi+1,j + µi+1,j+1 + µi,j+1)Se
∆y

(uni,j+1 − uni,j) (2.23)

Dw = −1

4

(µi,j + µi,j+1 + µi−1,j+1 + µi−1,j)Sw
∆y

(uni−1,j+1 − uni−1,j) (2.24)

To initiate the SIMPLEC calculation process a pressure field p∗ is guessed. Discretized
momentum Eqs. (2.6) and (2.7) are solved using the guessed pressure field to yield velocity
components u∗ and v∗.

aPu
∗
P =

∑
anbu

∗
nb + SP + Se(pP − pE) (2.25)

aPv
∗
P =

∑
anbv

∗
nb + SP + Sn(pP − pN) (2.26)

Now we define the correction p′ as the difference between the correct pressure field p and
the guessed pressure field p∗, so that:

p = p∗ + p′ (2.27)
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In the same way, we define the velocity corrections u′ and v′ to relate the correct velocities
to the guessed velocities u∗ and v∗:

u = u∗ + u′ (2.28)

v = v∗ + v′ (2.29)

Subtracting the equations (2.25) and (2.26) from the equations (2.6) and (2.7), respec-
tively:

aPu
′
P =

∑
anbu

′
nb + Se(p

′
P − p′E) (2.30)

aPv
′
P =

∑
anbv

′
nb + Sn(p′P − p′N) (2.31)

In order to simplify equations (2.30) and (2.31) and following the SIMPLEC steps, it is
necessary to subtract

∑
anbu

′
P and

∑
anbv

′
P , on both sides of the equations. The equations

can then be written as:

(aP −
∑

anb)u
′
P =

∑
anb(u

′
nb − u′p) + Se(p

′
P − p′E) (2.32)

(aP −
∑

anb)v
′
P =

∑
anb(v

′
nb − v′p) + Sn(p′P − p′N) (2.33)

The term (u′nb − u′p) should approximate zero as the grid size gets smaller, the first term
on the right side of the equations (2.32) and (2.33) is neglected and the velocity correction
is written as:

u′P = du(p
′
P − p′E) (2.34)

v′P = dv(p
′
P − p′N) (2.35)

where:

du =
Se

aP −
∑
anb

(2.36)

dv =
Sn

aP −
∑
anb

(2.37)
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Finally, an equation for the pressure correction is necessary to complete the system of
equations. This is obtained by substituting equations (2.28) and (2.29) in the mass
conservation equation:

aPp
′
P =

∑
anbp

′
nb + SP (2.38)

The definition of the coefficients for equation (2.38) are calculated as follows (De la Cruz
2005):

aE = duSe, aW = duSw
aN = dvSn, aS = dvSs

(2.39)

SP = −(u∗e − u∗w)∆y − (u∗n − u∗s)∆x (2.40)

The source term in the pressure correction equation is the discrete form of the mass
conservation equation (Eq. (2.40), when this source term is equal to zero, the velocities
calculated satisfied the incompressibility condition and the SIMPLEC method converges.

2.2 Front-tracking method

2.2.1 Structure of the front, locating the front on the fixed grid

Given that the present study is restricted to two dimensions, the discussion in the present
section will also be given in two dimensions. The front tracking method implementation
requires a regular two dimensional grid and the tracked front that consists of points that
are connected by elements (Figure 2.2). For each point, the only information stored is its
coordinates. The elements are the lines that join two adjacent points and contain most
of the front information. Each element is defined by the points that it is connected to, as
well as the local structure of the front, including its neighboring elements.

The front is moved by the interpolation from the velocity field in the regular grid to each
front point, and the surface tension force is calculated in the front points and interpolated
to the regular grid to compute the conservation equations. The interpolation between the
front and the regular grid will be discussed later.

To transfer information from the front to the uniform grid, we identify the point on the
fixed grid that is closest to a given front position. In a one-dimensional case, if we denote
the total number of grid points as NX and the total length of the domain as Lx, then
the grid point to the left of a point at x is given by:

i = int(x ·NX/Lx) (2.41)
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Figure 2.2: A two-dimensional front.

In many cases we wish to simulate periodic domains where the front can move out of the
domain on one side and move in through the other side. In this case Eq. (2.41) must be
modified to:

i = int(amod(x, Lx) ·NX/Lx) (2.42)

2.2.2 Remeshing the front

In general, an interface will stretch and deform as a result of the fluid motion. When
marker points are used to track the interface, stretching results in an increased separation
of the points and eventually it is necessary to insert new points to resolve the interface
adequately. When the interface is compressed, the points are crowded together and al-
though it is, in principle, not necessary to remove points, in practice it is generally better
to do this, in order to avoid the formation of elements much smaller than the grid size.
To determine when it is necessary to add or delete an element, we define a minimum and
a maximum element length. In two dimensions, 2-4 elements per grid mesh are recom-
mended, see (Tryggvason et al. 2001).

In Figure 2.3 the addition and elimination of front elements of a two-dimensional system
is shown. On the left side of the figure, a large element is split by the addition of a
new element, and on the right side, an element is removed. In principle, the new point
can be put at the mid point between the end points of the element that is being split or
removed; but a better option is to take into account the curvature of the element and use
a polynomial interpolation to determine the position of the new point.
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Figure 2.3: Adding and deleting front elements in two dimensions.

2.2.3 Interpolating the front properties onto the fixed grid

Since the Navier-Stokes equations are solved in the fixed grid and the interface forces
like the surface tension are solved in the front, it is necessary to convert a quantity that
exists in the front to a grid value. Since the front represents a δ function, the transfer
corresponds to the construction of an approximation to this δ function on the fixed grid.
The discrete expression required for the conversion of a quantity from the front to the
fixed grid is given by:

φij =
∑

φlω
l
ij

∆L

h2
(2.43)

where φij is an approximation to the grid value, φl is an approximation to the front value,
∆L is the length of the element l and ωlij is the weight of grid point ij with respect
to element l. The weighting functions can be written as a product of one-dimensional
functions. In two dimensions the weight on the grid point (i, j) of the smoothing from
Xp = (xp, yp) is given by:

ωlij = d(xp − ih)d(yp − jh) (2.44)

A bilinear interpolation can be used to construct d(r) (Prosperetti & Tryggvason 2007):

d(r) =

{
(h− |r|)/h, |r| < h

0, |r| ≥ h
(2.45)

A geometric interpretation of Eq.(2.45) is shown in Figure 2.4. For distribution of a front
property at xp, the grid point (i, j) gets the fraction determined by A1, the grid point
(i+ 1, j) the fraction determined by A2 , and so on.

For the present purposes, it is more convenient to use the weighting function developed
by (Peskin 1977):

d(r) =

{
(1/4h)(1 + cos(πr/2h)), |r| < 2h

0, |r| ≥ 2h
(2.46)
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Figure 2.4: The area weighting used to interpolate grid quantities to the front.

While in the bilinear weighting function only four points are necessary to interpolate a
quantity from the front to the fixed grid or vice versa, using the weighting function given
by Peskin, sixteen points of the finite volume grid are affected for the quantity calculated
on the front. The computational effort is rewarded with a smooth transition of properties
between the front and the regular grid when the Peskin interpolation is used.

2.2.4 Computing the material properties

When front-tracking method is used, the boundary between the different fluids is moved
according to the previously stated steps, but the fluid properties such as the density and
viscosity, are not advected directly, and it is therefore necessary to reset these quantities
at every time step. In order to make a consistent calculation, we first define a marker
function I(x) that is a constant within a fluid, but different for each fluid and then use it
to set the physical properties. To construct the marker function we use the fact that the
front marks the jump in the density and that this jump is translated into a steep gradient
on the fixed grid. The gradient of the marker function in the one fluid formulation can
be expressed as

∇I =

∫
∆Inδ(x− xf )dL (2.47)

Or in a discrete form can be written as

∇(I)ij =
∑
l

∆Iωlijnl∆L (2.48)
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The density field has been chosen as the marker function in many implementations, and
once the grid gradient field has been constructed, the density field can be recovered.
Taking the numerical divergence of the grid density gradient results in:

∇2ρ = ∇ · ∇(ρ)ij (2.49)

The left-hand side is approximated by standard centered differences, and solving the re-
sulting Poisson equation with the appropriate boundary conditions yields the density field
everywhere. It is important to note that the resulting Poisson equation only is solved on
points close to the interface,leaving points away from the interface unchanged.The solu-
tion of the equation around the interface can be accomplished by a three-step process:
First the interface cells are marked by looping over the front points and setting a flag for
those cells through which the interface crosses. Second, a one directional linked list of the
interface cells is generated by running through all the grid cells and linking marked cells.
Finally, the marker function is found by solving the Poisson equation iteratively in the
marked cells using the linked list to move from one marked cell to the next.

The field distribution φ(x, t) of other fluid properties can be calculated with the marker
function using a linear interpolation,

φ(x, t) =
φf (ρ(x, t)− ρb)− φb(ρ(x, t)− ρf )

ρf − ρb
. (2.50)

where the subscripts b and f represent properties of the bubble and the surrounding fluid,
respectively.

2.2.5 Moving the front

The advancing of the front must be found by interpolating from the fixed grid field velocity,
using the same weighting function that was used to transfer the properties from the front
to the fixed grid. Once the velocity of each front point is known, its new position can be
found by a simple first order explicit Euler integration:

Xn+1
f = Xn

f + vnf∆t, (2.51)

where Xf is the front position, vf is the front velocity, and ∆t is the time step. It is
important to comment that the front velocity is computed using the Peskin weighting
function, i.e., the velocity of the sixteen closer points of the fixed grid to one point of the
front are used to find its velocity.



Chapter 3

Numerical Simulations of bubble
dynamics

In this chapter the numerical simulation of bubbles for various flow conditions is presented.
First, the conventional dimensionless parameters used to characterize the rising of bubbles
are defined, and a brief discussion on experimental results is given in order to have present
in mind the expected results from the numerical calculations. Then, dynamical properties
of the motion of the bubbles and the flow generated in the surrounding fluid obtained with
the simulations for different flow conditions are presented in the following sections. Finally,
a comparison of the numerical simulations with a simple theoretical model reported by
(Pesavento & Wang Jane 2004) and with quasi-two dimensional experimental observations
of bubble dynamics in a Hele-Shaw experiments obtained by (Ramos et al. 2007) is given.

3.1 Simulations of bubbles at low and moderate

Reynolds number

3.1.1 Bubble shape results

Consider a fluid in the presence of a gravity force where a bubble is injected. Since the
bubble has lower density than the surrounding fluid, the bubble ascends by buoyancy ef-
fect. In early literature, bubbles rising in a viscous fluid were grouped in three categories:
“Spherical”, in which the surface tension and viscous forces are much more important that
the inertia forces. “Ellipsoidal”, the name usually given to bubbles which are oblate with a
convex interface around the entire surface, and “Spherical cap” or “Ellipsoidal cap”, that
are large bubbles that tend to adopt flat or indented bases and that lack any semblance
of fore-and-aft symmetry. If the bubble has an indentation at the rear, it is often called
“dimpled”, large spherical- or ellipsoidal-cap may also trail thin envelopes of dispersed
fluid referred to as “skirts”. Modern qualitative classification of bubble shapes and dy-
namics are based on non dimensional numbers which reflect the dominant physical effects.

26
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The four most useful dimensionless numbers, are the Reynolds, Morton, Eotvos and
Archimedes numbers defined by:

Re =
ρfUTD

µf
, M =

gµ4
f

ρ2
fσ

3

Eo =
ρfD

2g

σ
, Ar =

gD3ρf (ρf − ρb)
µ2
f

(3.1)

where UT is the terminal velocity of the centroid of the bubble, µf is the viscosity of the
continuous phase and D is the initial diameter of the bubble. Each dimensionless number
is a relation of physical effects acting in the flow. The Reynolds number is the ratio of the
inertia forces to the viscous forces, also it can be interpreted as a dimensionless velocity.
The Eotvos number is a measure of the importance of surface tension forces compared
to gravity force, the Morton number is the ratio of the gravity and viscous forces to the
surface tension force and the Archimedes number represents the ratio of buoyancy and
inertial forces. Note that the density difference between the fluids around the bubbles
and that of the bubble itself is included in the Archimedes number. Another well known
non dimensional number that is often useful in the studies of the formation of droplets
and bubbles is the Weber number, it can be thought of as a measure of the kinetic energy
compared to the surface energy, however, this number can also be expressed by using a
combination of the other non dimensional parameters described above.

Many experiments of individual bubbles rising in a viscous fluid have been done for a
wide range of flow conditions. The results presented in (Sanada et al. 2007) and (Bhaga
& Weber 1981) are some examples of them. However, the most important reference in
the bubbles experiments is the work of (Clift et al. 1978) in which a wide range of flow
conditions were explored and reported. In Figure 3.1 the chart given by (Clift et al. 1978)
is shown. The chart has been used to describe the qualitative shape of bubbles as a func-
tion of the dimensionless numbers mentioned above, the different categories of the shape
of the bubbles are separated by a continuous line.

In this work, numerical simulations of bubbles were done for different physical condi-
tions given in the shape chart described above; in figure 3.1, the blue dots denote the
conditions simulated and described in this section. It is important to note that the nu-
merical model described in chapter 2 was developed in two dimensions and the chart was
constructed from real experimental observations and consequently, in three dimensional
systems. However, in order to make a qualitatively validation of the model, the calcu-
lated shape of the bubble will be compared with the information contained in chart. The
numerical solutions were obtained in a rectangular periodic domain with a grid of 400 x
480 in the x and y directions respectively, it is important to mention that a circular shape
of the bubble was imposed as an initial condition for all the numerical simulations.
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Figure 3.1: Shape regime for bubbles through liquids.

The bubble shapes predicted by our calculations are shown in Figure 3.2 for the flow con-
ditions marked in the chart and as can be observed, even when the numerical simulations
are in two dimensions and the chart is composed with three dimensional experimental in-
formation, the qualitative shape of the bubbles coincides in all cases. As it was described
before, the bubbles rising in a fluid are classified in three groups, the simulation in a) the
surface tension force dominates and the bubble adopts an spherical shape; in b) and c)
the bubbles are elliptical because of Eotvos number is increased and the body and viscous
forces begin to be the dominant effects. Finally, in d) and e) the elliptic-cap shape are
presented and it is clear that case d) is a dimpled shape and e) a skirt shape in which
the body and the viscous forces are much greater that the surface tension force. This is
the shape that usually appears in large bubbles. The streamlines of the flow generated by
the moving bubble are also given in Figure 3.2 for surface tension dominating flow (low
Eotvos number) and for inertial dominating flow (large Eotvos number).
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Simulation Eo M Ar Resim
a) 0.6 2.4× 10−6 300 24.0
b) 1.2 5.5× 10−7 1659 63.6
c) 7.2 1.2× 10−2 178 9.8
d) 64.8 1.8× 101 122 5.3
e) 112.4 4.0× 10−4 24652 79.8

Table 3.1: Flow conditions of the numerical simulations.
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Figure 3.2: Bubble shapes and streamlines for different flow conditions. The nondimen-
sional numbers used in each case are given in Table 3.1
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It is well known that for bubbles rising in a viscous fluid, the path of the centroid of the
bubbles is straight and the wake of the bubble is symmetric when the Reynolds number is
low (Bhaga & Weber 1981). Experiments report that as the Reynolds number increases up
to 110 the closed symmetric wake is replaced by an open, unsteady wake. This behavior
is confirmed by the results presented in Figure 3.2, where it is clear that the wakes of the
bubbles for the different conditions are symmetric and steady. This is due to the fact that
the resulting terminal Reynolds numbers obtained from the simulations are low.

3.1.2 Rising velocity of the bubble

The velocity of the centroid is an important parameter for the description of the bubble
dynamics and was computed with a similar algorithm as the one for the calculation of the
velocity of every point of the front, using the weighting function to transfer the velocity
in the fixed grid to the location that corresponds to the centroid of the bubble. The
interpolation starts by identifying the grid point that is closest to the centroid of the
bubble, then the grid value is calculated by:

uc =
∑
ij

ωcijuij, (3.2)

where uc is the velocity of the centroid of the bubble, ωcij is the weight of grid point ij
with respect to the centroid c and uij is the value of the velocity on the regular grid.
The velocity of the centroid can be used to calculate the Reynolds number, provided that
a definition for a characteristic magnitude of the bubble is available. In Figure 3.3 the
Reynolds numbers for the flow conditions presented in the Table 3.1 are plotted. As it
was mentioned the Reynolds number can be interpreted as a dimensionless velocity when
the diameter of the bubble is a constant, the definition of the Reynolds number plotted is
based on the initial diameter of the bubble. In Figure 3.3, it is clear that for low Reynolds
number the bubble is accelerated in the first seconds of the simulations and after this fast
acceleration it reaches a terminal velocity that remains constant while the bubble ascends
in the column of fluid. However, as it can be seen, when the Reynolds number is increased,
oscillations in the bubble velocity appears (see green curve of Figure 3.3). This behavior
is brought about because the inertial forces dominate the flow and nonlinear effects are
manifested. The cases in which the velocity of the bubble oscillates are reported in the
next section of this work.
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Figure 3.3: Reynolds number as a function of time.

Another parameter that can be used to complement the description of the dynamics of the
rising bubbles is the Morton number. In Figure 3.4, the effect of the Morton number on
the normalized terminal velocity is shown, keeping the Eotvos number constant Eo = 1.6,
the terminal velocity of the bubble is normalized using the gravity acceleration g and
the initial diameter of the bubble D. As it can be observed from the figure, the terminal
velocity of the bubble is a monotonous decreasing function of the logarithm of the Morton
number. Moreover, for small values of the parameter, 10−11 < Mo < 10−7, the terminal
velocity is almost a constant. For larger values of the Morton number, 10−5 < Mo < 10−2

the terminal velocity is a linear function of the log Mo with negative slope. Since the
Morton number can be interpreted as a measure of the viscosity of the surrounding fluid
(if the Eotvos number is kept constant), then with the previous results we can conclude
that the terminal velocity of the bubbles is strongly dependent of the viscosity of the
fluid only in the cases where the bubbles rising in a very viscous fluid.It is important to
emphasize that all results given in figure 3.4 were obtained for constant terminal velocity.
For Morton numbers smaller than 10−11, the velocity, and the Reynolds number, are
large enough so that the bubble displays an oscillatory motion. This phenomenon will be
discussed in the next section.
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Figure 3.4: Effect of the Morton number on the terminal velocity of the bubble (Eo=1.6).

3.1.3 Flow around the bubble

For small to moderate Reynolds numbers, the flow formed around the bubble is a dipole
vortex. For an example, see Figure 3.2 a), d) or e). The features of the dipole depend on
the dimensionless parameters mentioned above, namely, the Eotvos and Morton numbers.

The analysis of the flow around the bubble was done by plotting the pressure and vorticity
fields. To illustrate the disturbance that the transit of a bubble causes on the pressure
field of the fluid, Figure 3.5 displays the pressure field for the parameters given in Table
3.1. It is important to remark that the pressure field, as well as the rest of the flow, is time-
dependent in the frame of reference where the description is made and the figure gives a
single snapshot captured when the bubbles were at the position shown . The hydrostatic
pressure field can be identified as a gentle constant background pressure gradient. The
surface tension forces on the bubble keep the pressure inside it nearly constant and higher
than the ambient pressure. Also when the bubble is spherical (a) the center of the vor-
tices are close to the bubble surface and the wake of the bubble is hardly distinguishable.
However, when the bubble is ellipsoidal and ellipsoidal-cap (c,d,e) the center of the vor-
tices move away from the bubble and the low pressure zones intensifies behind the bubble.

The corresponding vorticity fields are shown in Figure 3.6. Positive values of the vorticity
indicate a counter-clockwise rotation of fluid elements viewed from the front while negative
values represent a clockwise rotation. As it is expected, the strong zones of vorticity are
at the centers of the dipole vortices, and since these simulations correspond to moderate
Reynolds numbers, the vorticity distribution is steady and symmetric. In the next section,
simulations where the vorticity symmetry is broken are presented.
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Figure 3.5: Bubble shapes and pressure fields for different flow conditions: a) Eo = 0.6,
Ar = 300, Re = 24; b) Eo = 1.2, Ar = 1659, Re = 63.6; c) Eo = 7.2, Ar = 178,
Re = 9.8; d) Eo = 64.8, Ar = 122, Re = 5.3; e) Eo = 112.4, Ar = 24562, Re = 79.8.
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Figure 3.6: Bubble shapes and vorticity fields for different flow conditions: a) Eo = 0.6,
Ar = 300, Re = 24; b) Eo = 1.2, Ar = 1659, Re = 63.6; c) Eo = 7.2, Ar = 178,
Re = 9.8; d) Eo = 64.8, Ar = 122, Re = 5.3; e) Eo = 112.4, Ar = 24562, Re = 79.8.
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3.2 Simulations of bubbles at high

Reynolds numbers

3.2.1 Trajectory of the centroid and orientation of a
single bubble

As it was commented in section 3.1, the trajectory of the bubble changes from a straight
to a zig-zag path when the Reynolds number of the bubble exceeded a threshold. In the
regime where bubbles exhibit approximately oblate spheroidal shapes, they rise in zigzag
path. As the Reynolds number is increased, diffusion and convection of vorticity no longer
keep pace with vorticity generation. Instead, discrete pockets of vorticity begin to be shed
from the wake.

The Reynolds number at which vortex shedding begins is often called the “lower critical
Reynolds number” (Clift et al. 1978), but the transition is much more gradual than this
label would imply. The transition from a straight path to a zig-zag path starts with small
oscillations along the trajectory of the bubble, the oscillations appear only in some inter-
vals of time (see green curve in Figure 3.3), as the Reynolds increases, the oscillations are
more pronounced and a clear periodicity in the motion of the bubble is apparent. This
kind of transition is very similar to the transition occurring for high Reynolds numbers
in the flow over a rigid cylinder. In such flow wake oscillation is apparent for Re > 30,
and wake shedding for Re > 40. Shedding from a cylinder gives a regular succession of
vortices, called the ”von Kármán vortex street”. However, the unsteady flow that appears
around the bubble is more complex because the deformation of the bubble is coupled with
the flow around it and vice versa.

The dynamics of the bubble wake at such flow conditions may have a crucial effect on
the path of the bubble, as periodic vortex shedding has been proved to have on the
path of two-dimensional bubbles rising in a Hele-Shaw cell (Kelley & Wu 2005). In this
work numerical simulations were done in order to explore the features of the bubble at
this regime. It is convenient to show the numerical results in terms of the following
dimensionless variables:

x∗ =
x

D
; y∗ =

y

D
; u∗ =

u

(Dg)
1
2

; t∗ =
t

D
1
2 g−

1
2

; p∗ =
p

ρfgD
, (3.3)

The simulation parameters must be adjusted to get physical conditions that render a mo-
tion with a high enough Reynolds number, an oscillatory bubble and a zig-zag trajectory.
In the present context, the most convenient set of dimensionless numbers must include
the Archimedes number, since this parameter contains the density difference between the
two fluids and the velocity of the bubble (and the Reynolds number) is a direct function
of the density difference.
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In Figure 3.7, the trajectories of the centroid of bubbles are drawn for Eo = 0.54 and
M = 2.5× 10−11and three different Archimedes numbers. It is important to note that for
purposes of clarity, the abscissa has been greatly enlarged with respect to the ordinate.
Analyzing the features, the trajectory in which Ar = 78401, it is observed that after an
initial transient that takes approximately 20D, the motion is oscillatory with a fast mode
that completes a cycle in 12D and a slow mode with a cycle of 40 − 50D. The zig-zag
motion is generated by the asymmetry of the pressure field in the periphery of the bubble
which in turn results from the fact that the surface of the bubble deforms in response to
the external field of stresses.
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Figure 3.7: Trajectory of the centroid of the bubble for Eo = 0.54 and M = 2.5× 10−11:
Ar = 59395 (dashed red curve), Ar = 63354 (dashed black curve) and Ar = 78401
(continuous blue curve).

As it is illustrated in Figure 3.7, the amplitude of the oscillations is strongly dependent
on the Archimedes number. Increasing this parameter the amplitude grows considerably.
In order to analyze the characteristic frequencies, a Fourier transform was applied to the
signals of the trajectories and the power spectra for them were found. In Figure 3.8 the
power spectra of the signals are plotted. It is clear that increasing the Archimedes num-
ber, the oscillation frequency of the trajectory of the bubble increases.
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Figure 3.8: Power spectrum of the centroid trajectories of the bubbles for different
Archimedes numbers and Eo = 0.54 and M = 2.5 × 10−11: Ar = 59395 (dashed red
curve), Ar = 63354 (dashed black curve) and Ar = 78401 (continuous blue curve).

In order to document and quantify the last observation in the previous paragraph, simula-
tions for different Archimedes numbers, keeping constant the other dimensionless param-
eters were done and the results are shown in Figure 3.9. For the low range of Archimedes
numbers explored (Ar < 6× 104), the frequency of the bubble motion is almost a linear
function of Ar; but the curve seem to approach the approximate asymptotic value of
0.088 for Ar > 7×104. Since the other parameters were kept constant in the simulations,
the Archimedes number can be translated as the density difference of the fluids, then the
previous results imply that the motion of the bubble is almost independent to the density
difference when the Archimedes number exceeds a threshold (Ar > 7× 104).

To further explore the dynamics, the instantaneous non-dimensional centroid velocity for
the horizontal and vertical motions are given in Figure 3.10 for Ar = 78401. The vertical
velocity oscillates around an averaged value of 1.3, while the horizontal velocity presents
an almost periodic behavior with zero average value. The oscillation frequency of the ver-
tical velocity is twice that of the horizontal velocity and its amplitude is approximately
0.75 while that of the horizontal velocity is larger than 3. Also, a crest of the horizontal
velocity always corresponds to a trough of the vertical velocity.
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Figure 3.9: Effect of the Archimedes number on the oscillation frequency of the trajectory
of the bubble (Eo = 0.54 and M = 2.5× 10−11).

The dynamical features of the motion can be interpreted in terms of the inclination of
the bubble as it ascends. Incidentally, the instantaneous position of the bubble could be
computed by using an ellipse fit to the bubble, since for the non-dimensional parameters
chosen, it can be concluded that the bubble shape always can be accurately approximated
by an an ellipse since the flow regime is surface tension dominating. In the central panel
of Figure 3.11, the inclination of the major axis of the bubble with respect to the hori-
zontal in one cycle is shown. The bubble has a positive inclination in A) and a negative
inclination in B), the pressure fields near the bubble are plotted for these conditions in the
left and right panels. The pressure difference between two contiguous isolines is constant.
The maximum angle of inclination of the bubble was about 45 ◦. This tilt motion is
consistent with a non-symmetric pressure field around the surface of the bubble and with
a periodically varying drag.
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Figure 3.11: Inclination of the major axis of the best elliptic fit of the bubble in one cycle.
See Figure 3.7. The arrow indicates the direction of time.
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3.2.2 Flow around the bubble

A snapshot of the velocity, pressure and vorticity fields in the wake of the ascending bub-
ble are shown in Figure 3.12. The most conspicuous feature observed in Figure 3.12 is
that vortices are created on the lee side of the bubble and detach periodically from either
side. This collection of vortices is similar to the Von Kármán vortex street generated by
a rigid cylinder in relative motion with respect to a fluid.
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Figure 3.12: Velocity, pressure and vorticity fields. The vortex shedding can be observed
in the wake of the bubble similar to the Von Kármán vortex street. In the vorticity field
the intensity of the vortices is also displayed.

The dynamics of the bubble rising is closely related to its wake structure. A somewhat
detailed study of the wake of a rising bubble is illustrated in Figure 3.12, which shows the
velocity field around the bubble and a pressure contour in the bubble wake. When the
bubble rising velocity is low, a bubble wake with symmetric, closed recirculation rings is
formed, and a low pressure zone is generated at the recirculation centre as shown in the
simulations of the previous section. As the rise velocity increases, the flow instability is
amplified and the bubble wake starts to detach from one side of the bubble lower half as
shown in the left panel of Figure 3.12. Due to the asymmetric wake structure, the drag
and lift forces acting on the bubble will also become unbalanced, and the bubble is tilted
(see the description of Figure 3.11). As a result, the recirculation ring of the bubble wake
is fully broken on one side, and the other end of the recirculation ring starts attaching
itself to one end of the ellipsoidal bubble. The lateral motion makes the open recirculation
rings in the bubble wake to switch from one side to the other of the bubble lower half.
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3.3 Comparison with a phenomenological model

In the previous sections, the analysis of the bubble motion was based entirely on the nu-
merical solutions of the equations that describe the phenomenon. In order to gain physical
insight and clarify which are the dominant effects, in the present sections we take advan-
tage of the phenomenological model developed by Wang and her colleagues (Pesavento &
Wang Jane 2004) to interpret our results in terms of the forces that have been traditionally
identified as relevant in describing the motion of blunt bodies through a fluid. The dis-
cussion in this section is restricted to the analysis of the trajectory of the bubble centroid
which is the only feature of the problem that is described by the phenomenological model.

The theoretical model considers the two-dimensional dynamics of an elliptic rigid body
falling in a fluid and includes contributions from added mass, lift, and drag. The geometry
and axes of coordinates are given in Fig. 3.13. The Reynolds number is based on the
semi-major axis and the average velocity of the body is assumed to be of the order of 103.
The quadratic lift and drag terms in the model are designed to describe the aerodynamics
at intermediate Reynolds numbers between 102 and 103. This range of parameters gives
us the opportunity to use this analysis to compare the results with the ones discussed in
section 3.2.

Fluttering, tumbling and steady descent of falling cards 95
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Figure 2. The velocity components vx ′ and vy ′ in the laboratory reference frame are defined
with respect to the coordinate system following the rotation of the card, whereas vx and vy

are defined with respect to the fixed coordinate system in the laboratory reference frame.

aim to identify the bifurcation between fluttering and tumbling in the ODE model
and to quantify the divergence of the period of oscillation at the transition point.

We model the two-dimensional dynamics of a rigid card falling in a fluid by ordinary
differential equations with fluid force contributions from added mass, lift, and drag.
We apply a quasi-steady approximation in which the fluid forces are expressed in
terms of the kinematic variables of the card alone. The Reynolds number based on
the semi-major axis and the average descent velocity of a paper card falling in air
is of the order of 103. The quadratic lift and drag terms in the model are designed
to describe the aerodynamics at such intermediate Reynolds numbers between 102

and 103. We assume that the card has elliptical cross-section with half-major axis,
a, and half-minor axis, b. We write the model in the coordinate system co-rotating
with the card, and we define the angle θ and the components of the centre of
mass velocity vx ′ and vy ′ as shown in figure 2. We have vx = vx ′ cos θ − vy ′ sin θ and
vy = vx ′ sin θ + vy ′ cos θ , where vx is the horizontal velocity component and vy is the
vertical velocity component.

Our model consists of the following set of coupled ordinary differential equations:

(m + m11)v̇x ′ = (m + m22)θ̇vy ′ − ρf Γ vy ′ − π(ρs − ρf )abg sin θ − F ν
x ′, (3.1)

(m + m22)v̇y ′ = −(m + m11)θ̇vx ′ + ρf Γ vx ′ − π(ρs − ρf )abg cos θ − F ν
y ′, (3.2)

(I + Ia) θ̈ = (m11 − m22)vx ′vy ′ − τ ν . (3.3)

The lift is orthogonal to the direction of motion and proportional to the circulation,
Γ = Γ (vx ′, vy ′, θ̇), the drag, Fν = Fν(vx ′, vy ′, θ̇), is opposite to the direction of motion,
and the dissipative torque, τ ν = τ ν(vx ′, vy ′, θ̇), is opposite to the direction of rotation.

We let m and I denote the mass and the moment of inertia per unit length:

m = πρsab, I = 1
4πρsab(a2 + b2). (3.4)

Figure 3.13: Physical model

Given that the interpretation demands a certain amount of detail, we give a brief descrip-
tion of the model, and stick to the nomenclature of the original authors. The phenomeno-
logical model is comprised by a set of coupled ordinary differential equations of motion
that incorporates with individual expressions the fluid force contributions of buoyancy,
added mass, lift and drag.

(m+m11)u̇x = (m+m22)θ̇uy − ρfΓuy − π(ρb − ρf )abg sin θ − Fx (3.4)

(m+m22)u̇y = (m+m11)θ̇ux + ρfΓux − π(ρb − ρf )abg cos θ − Fy (3.5)

(I + Ia)θ̈ = (m11 −m22)uxuy − τ (3.6)
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where ux, uy are the horizontal and vertical velocity of the centroid of the ellipse, θ is the
inclination angle, ρf and ρs are the density of the fluid and the elliptical body, respec-
tively, a and b are the semi-major and semi-minor axis of the ellipse, Γ is the circulation
that is proportional to the lift force and is orthogonal to the direction of the motion, F
is the drag that is opposite to the direction of the motion, and τ is the dissipative torque
and is opposite to the direction of rotation of the ellipse body.

The additional coefficients m and I in the system of equations are the mass and the
moment of inertia per unit length respectively:

m = πρsab; I =
1

4
πρsab(a

2 + b2). (3.7)

Also, the added mass coefficients m11 and m22, and the added moment of inertia, Ia, for
the elliptical object considered in the model are given by:

m11 = πρfb
2; m22 = πρfa

2; Ia =
1

8
πρf (a

2 − b2)2 (3.8)

With this model, it is found that the circulation for fluttering and tumbling in the
Reynolds number range between 102 and 103 depends on both the translational speed
and the angular velocity of the ellipse:

Γ = −2Cta
uxuy√
u2
x + u2

y

+ 2Cra
2θ̇ (3.9)

where Ct and Cr are dimensionless coefficients for the translation and rotation terms of
the circulation respectively, and those coefficients were found for different flow conditions
by (Andersen, Pesavento & Wang Jane 2005)
.

The drag and the dissipative torque depend on the Reynolds number.The drag force and
the dissipative torque are calculated with the model proposed by (Wang Jane, Birch &
Dickinson 2004):

F = ρfa

[
A−B

u2
x − u2

y

u2
x + u2

y

]√
u2
x + u2

y(ux, uy) (3.10)

where A and B are dimensionless constants. For the dissipative torque we use an expansion
to second order in the angular velocity:

τ = πρfa
4

[
U

L
µ1 + µ2|θ̇|

]
θ̇ (3.11)

where L is the characteristic length scale, equal to the semi-major axis in our case, U is
the characteristic velocity scale, and µ1 and µ2 are dimensionless constants.
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In order to validate the implementation of this model, the results obtained by (Andersen
et al. 2005) were fully reproduced by the different parameters reported by the authors.
As it was previously mentioned, the model was developed for a rigid ellipse, but it can be
used with deformable bodies as bubbles provided that the shape of the bubble is included
as a function of time. The required information of the bubble geometry can be extracted
on each time step from our numerical simulation and fitting the shape with an ellipse, the
major and minor axis (a and b) of the bubble can be identified as functions of time. In
turn, these values are fed in the system of ordinary differential equations (3.4)-(3.6) which
are solved with an explicit Runge-Kutta method to obtain the velocity of the centroid
and the angular velocity of the bubble. The ellipse fit is valid because the flow conditions
considered yield a surface tension dominated bubble that acquires an approximately el-
liptic shape.

In Figure 3.14, the trajectory of the bubble calculated in the numerical simulation is
compared with the trajectory given by the model described in this section. As it can
be observed, the general behavior shows a good qualitative agreement , with the ampli-
tude and the frequency of the oscillation displaying almost quantitative agreement. The
horizontal and vertical velocities are plotted in Figures 3.15 and 3.16, demonstrating the
consistency of the two approaches.

Since the bubble behavior is in agreement with the numerical simulations, the phenomeno-
logical model can be used to analyze the different effects caused by the forces that dom-
inate the motion of the bubbles. It must be observed that in the numerical simulations,
all effects are contained in the Navier-Stokes equations, and in order to compare with a
phenomenological model, one must single out the particular effect on the bubble.

In Figure 3.17, the individual effects of drag, buoyancy, lift and mass (for definitions,
see equations (3.4)-(3.6)), obtained with the numerical calculation are plotted. As it
can observed, the drag force (FD) has similar features than the velocity of the bubble
centroid; this behavior can be understood from the fact that the drag force is induced
by the buoyancy force that causes the rising of the bubble in the column of fluid and
is calculated through the components of the velocity given by Eq (3.10). The buoyancy
force (FB) displays a sinusoidal behavior, with the frequency of the vertical component
twice as that of the horizontal component. The sinusoidal behavior is coupled with the
oscillating angle of attack. As it was shown in the previous section (Figure 3.11), the
angle takes values from -45◦ to 45◦. The horizontal motion promoted by the buoyancy
force has a typical behavior of a sine function with variable amplitude because of the
deformation of the bubble. The vertical buoyancy force oscillates around 0.75, which is
the average value of the vertical force that is responsible for the most important motion.
However its amplitude is variable too, due to the deformation of the bubble that changes
the semi-major and semi-minor axis of the bubble in each time step. The lift force (FL)
depends of the circulation around the bubble and is strongly affected by the deformation
of the bubble; this effect is most noticeable in the vertical component. As in the drag and
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Figure 3.14: Comparison of the centroid trajectory obtained from the numerical simula-
tion with the phenomenological model (Ar = 78401 and Eo = 0.54), numerical solution
(red curve) and phenomenological model solution (blue curve).

buoyancy forces, the average value of the horizontal lift force is almost zero. The vertical
component is always negative, which leads us to conclude that the lift force acts always as
a brake on the ascendant motion of the bubble. In contrast, the effect of the mass added
force (FAM) seems to counteract that of the lift force. The vertical mass added force is
always positive and has approximately the same magnitude that the vertical lift force.
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Figure 3.15: Comparison of the horizontal centroid velocity obtained from the numerical
simulation with the phenomenological model (Ar = 78401 and Eo = 0.54), numerical
solution (red curve) and phenomenological model solution (blue curve).
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Figure 3.16: Comparison of the vertical centroid velocity obtained from the numerical
simulation with the phenomenological model (Ar = 78401 and Eo = 0.54), numerical
solution (red curve) and phenomenological model solution (blue curve).
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Figure 3.17: Computed fluid forces, the red curves are the horizontal components of the
forces and the black curves are the vertical components of the forces.
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3.4 Comparison with Hele-Shaw experiments

Since the model built in the present project is restricted to two dimensions, it is not
completely possible to compare the results of our simulations with experiments. How-
ever, if the experiments are done in a quasi-two dimensional system, the bubbles will be
necessarily constrained to move in a plane and then the results of our model could be
compared with those experimental observations.

There are experiments of quasi-two dimensional bubble motions available in the litera-
ture which can be used to compare the front tracking model (Ramos et al. 2007). The
experimental observations were done in a water filled Hele-Shaw cell 1 where bubbles
were injected. The area of the observations was 77 bubble diameters above the bubble
injector, where the influence of initial details was not relevant. Also, the width of the cell
was about 67 diameters and it was expected that the effects induced by the lateral ends
of the cell had a negligible influence on the bubble motion. A geometrical feature of the
experimental devise that is markedly different from the simulations is that the presence
of the cell plates that constrain the motion to be in two dimensions, do exert a drag
force on the bubbles. The shape of the experimental bubbles was ellipsoidal, and the flow
conditions in terms of the dimensionless parameters were Ar = 78401, Eo = 0.54 and
M = 2.5× 10−11.

In Figure 3.18, the experimental trajectory of the bubble in the Hele-Shaw cell for two and
a half cycles is shown. As can be observed, the qualitative agreement with the simulations
is satisfactory, but the model overestimates the velocity yielding an oscillation with larger
amplitude and smaller frequency.

The lack of quantitative agreement can be attributed to the wall effects of the plates on
the bubble motion. In the experiments, the bubble contained in the Hele-Shaw cell is
flattened by the two glass plates; this causes shear stresses in the gas particles of the
bubble that are in contact with the walls, exerting an extra drag. Another possible cause
that makes the simulations to overestimate the dynamics of the bubble is the fact that the
drag force on the surrounding fluid contained in the Hele-Shaw cell is larger than in free
space. The fluid displaced by the transit of the bubble must move under the constraint
of two rigid plates separated by a small gap.

A similar comparison with the experimental information available is shown in Figure 3.19,
where the centroid trajectory is shown for one cycle and a better experimental time/space
resolution. Again, the qualitative behavior is correctly modeled, but the scales are not
the same. A plot of the vertical position as a function of time gives useful information
on the major characteristics of the phenomenon as can be appreciated from Figure 3.20.

1A Hele-Shaw cell, consists of two parallel rectangular glass plates, separated by a thin gap where a
viscous fluid is placed.
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Figure 3.18: Comparison for the trajectory of the bubble with experiment in a Hele-Shaw
cell (left side numerical simulations, right side experimental observations).

In experiments as well as in the simulations, the position is a wavy line that can be ap-
proximately represented by a straight line; the slope of this line is the average vertical
velocity. The average vertical velocity in the computational simulations is about twice
the velocity reported from the experimental information. The quantitative mismatch is
again interpreted as the failure of the model to incorporate the effect of the glass plates.
The waviness of the trajectory displayed in Figure 3.20 is better described in the frame
of reference of a system that travels with the average vertical velocity. A result obtained
in this way is given in Figure 3.21 where the orbit of the centroid of the bubble in the
(x, y − yave) space is shown. The results of the simulation are in qualitative agreement
with the experimental data with quantitative differences similar to those that have been
discussed previously.

Another feature of the bubble dynamics calculated from the model that can be compared
with the experiments is the orientation of the bubble. As it was commented before, this
was computed using an ellipse fit over the bubble. In Figure 3.22, this feature is illus-
trated; and as can be seen, the orientation computed by the model is in full agreement
with the experimental observations.
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Figure 3.19: Trajectory of the centroid of the bubble in the plane (left panel, numerical
simulations; right panel, experimental observations).
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Figure 3.20: Vertical trajectory of the bubble (left side numerical simulations, right side
experimental observations).
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Figure 3.21: Trajectory of the bubble in a reference system traveling with the average
vertical velocity (left side Numerical simulations, right side Experimental observations).
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Figure 3.22: Orientation of the bubble (left side numerical simulations, right side experi-
mental observations).
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The external flow generated by the motion of the bubble can be predicted with the model
and compared with the experimental observations as is illustrated in Figure 3.23. In the
two cases, the flow displays a structure akin to the von Kármán vortex street. In the
experiments, the vortex shedding in the wake of the bubble is clearly appreciated, and
plotting the velocity field obtained from the numerical simulation, the vortex shedding
is also visualized, but an interesting difference between the experimental results and the
numerical simulation is that the vortices in the experiment dissipate faster than in the
simulation. This can be explained again by the friction of the water with the walls
causing a rapid vortex dissipation. Comparison other than qualitative is difficult at this
point since the visualization is only qualitative. It is important to highlight though, that
in the experiments the width of the Von Kármán vortex street is about 7 diameters and
in our numerical simulations the width is about 9 diameters.
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Figure 3.23: Vortex shedding in the wake of the bubble.
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3.5 Simulations of multiple bubbles

3.5.1 Overview

As it was mentioned in the opening chapters of this Thesis, the goal of the numerical
simulations of bubbles at small scales is to find the information about the behavior of
bubbles that the average and engineering models requires for the closure relationships.
When a single bubble is simulated very interesting features about the flow generated can
be studied and understood, but in real problems the bubble-bubble interaction is very
important to understand in behavior of bubbly flows; particularly, to find closures for
averaged models. Following this idea, numerical simulations were performed to explore
the interaction of multiple bubbles as they ascend. Obviously, the interaction between
bubbles is a highly complex phenomenon, and it is impossible to cover it within the
present project, Here we only present a sample calculation to demonstrate the modeling
capabilities of the numerical tool presently available.

We consider the dynamics of two and several bubbles. The initial conditions for the analy-
sis of two bubbles, are such that the bubbles are placed near the bottom of the integration
area, vertically aligned and at a small distance from each other. The initial conditions
for the simulation of four bubbles are shown in Figure 3.24. The interaction of bubbles
depends strongly on the initial position. Broadly speaking, for large initial distances,
the bubble interaction is very weak, since the low pressure patches at the center of the
vortices that the preceding bubble generates, dissipate before the trailing bubble interacts
with them. However, when the initial distance is small, the second bubble meets strong
enough low pressure zones and the interaction occurs, mostly by reducing the drag force
and accelerating the second bubble.

An important limitation of the model implemented in this work is that coalescence phe-
nomena are not considered, and then, if two bubbles are close enough to coalesce, the
model is not able to remesh completely the bubbles and the front between them disap-
pears. Even when the bubbles move like a single one, numerical errors are present in the
interface that should disappear when the coalescence of the bubbles takes place and the
merging is not faithfully modeled. For this reason, our numerical simulations are limited
to moderate initial distances where coalescence phenomena do not usually appear. The
minimum distance for our numerical simulations is about 5 bubble diameters.

The study of multiple bubbles is presented in two parts. In the first part, the motion
and interactions of two bubbles are analyzed. We consider that study as the basis for
understanding of more complex systems, bubble clouds for example. In the second part,
a sample study of the dynamics of several (four, five and six) bubbles is presented. In
this case, the dynamics involved is far from being completely understood and requires a
great effort to clarify even fundamental issues.
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Figure 3.24: Initial conditions for the simulations of multiple bubbles, the distance of the
bubbles is Lb and this can vary in order to study the dependence of the interaction of the
bubbles over Lb.

3.5.2 Dynamical interaction of two bubbles

The interactions of two bubbles are fundamental to the understanding of the collective
motion of a large number of bubbles. When a pair of bubbles are ascending in a viscous
fluid at high Reynolds numbers, they tend to interact with each other in an extremely
complex way. In this section, some aspects of this phenomenon will be analyzed. Par-
ticularly, we describe the zones of strong interaction. In previous sections, the vortex
shedding caused by the instability of the wake of a single bubble was described. However,
if another bubble moves behind, the vortices shed by the first perturb the otherwise uni-
form pressure field that second bubble meets, changing its natural trajectory.

Limited information on the interaction of bubbles is available in the literature. Analytical
predictions are restricted to very low Reynolds numbers where Stokes flow results show
that two bubbles can not change their orientation unless influenced by a third bubble and
potential flow models for high Reynolds numbers that indicate that the bubbles oriented
in tandem repel each other but bubbles oriented horizontally attract each other. Also,
two-dimensional studies have examined the interaction of two bubbles, computations of
(Krishna & van Baten 1999) and (Unverdi & Tryggvason 1992). Experimentally observed
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interactions have been reported as well, (Watanabe & Sanada 2006). It has been con-
cluded experimentally and numerically that a pair of bubbles rising always collided when
the Reynolds number is low; however, the authors experimentally observed the existence
of an equilibrium distance between a pair of bubbles rising in a vertical line at intermedi-
ate Reynolds numbers. On the other hand (Brucker 1999) studied the flow in the wake of
single and two interacting air bubbles freely rising in water in a zig-zag path, experiments
with two simultaneous released bubbles show that once the second bubble is captured in
the wake of the first bubble, it accelerates and rises having a kind of jumps until they
collide, and the bubbles coalesce or repel.

The simulations reported in this section were done using the same non dimensional pa-
rameters as those of the experiments in the Hele-Shaw cell, i.e. Ar = 78401, Eo = 0.54
and M = 2.5 × 10−11. As it was described in section 3.2, a single bubble moving at a
high Reynolds number, follows a zig-zag trajectory. Now, when two bubbles rise at a high
Reynolds number their individual motion can be mostly described in analogous terms, but
the occasional interaction of bubbles will perturb the original trajectory of the trailing
bubble.

In Figure 3.25, the trajectories of two bubbles (lines red and blue), are shown for different
initial distances (5.5, 6.5 and 8 diameters). As it can be observed, in all three cases, the
first bubble follows an approximate periodic path similar to an individual bubble (see
Figure 3.7), but the trajectory of the second bubble is clearly affected by the wake of the
first. As discussed in the previous section, the first bubble sheds alternative vortices with
low pressure zones at their centers. These structures are not fixed in space and dissipate
due to viscous effects. If the path of the second bubble passes near a strong enough high
vorticity, low pressure region, its path will be altered.

In Figure 3.26, the pressure and vorticity fields are shown at the moment when the very
strong interaction occurs and the second bubble changes its path. See marker ◦ in the
central panel of Figure 3.25. In this particular event, the interaction is complex, with
the second bubble first turning around the low pressure zone of the vortex, and then as-
cending again due to the ever present buoyancy force. This situation can be regarded as
fresh initial conditions for the rest of the ascending path. It is interesting to observe that
in the left and central panels of Figure 3.25, the trajectories of the two bubbles display
approximately the same phase, while in the last case, the two paths are dephased.

The flow generated by the first bubble affects the rising velocity of the second bubble,
and for this reason the trajectory of the second bubble changes its natural path. The
rising velocity alterations can be observed in Figure 3.27, where the bubble velocities in
horizontal and vertical directions are shown. The horizontal velocity of the second bubble
follows a quasi periodic behavior with some jumps when this bubble finds high vorticity
zones, however, around 40 seconds of simulation a large perturbation in the velocity is
presented and the behavior of this velocity changes considerably for few seconds. After
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Figure 3.25: Trajectories of the centroid of the two bubbles for initial distances of 5.5,
6.5 and 8 diameters (Eo = 0.54 and Ar = 78401) are shown in the left, central and right
panels respectively. Markers indicate position of bubbles at fixed times.

this jerk, the horizontal velocity takes the quasi periodic behavior again and the bubble
rises following a zig-zag motion like a single bubble.

The vertical velocity of the trailing bubble must be analyzed in the same way, but a
more interesting feature appears. There are four zones where the vertical velocity is
negative, meaning that the bubble descends at some time intervals. The explanation of
this phenomena in a buoyancy flow is that the force generated by the pressure of a vortex
detached by the first bubble be comparable with the buoyancy force. Then, if the second
bubble moves into the vortex region generated by the first bubble, the vortex can force the
bubble to turn around it until the vorticity dissipates and the buoyancy force pushes the
drop upwards. In some cases, a bubble can turn a complete loop around the vortex. This
situation is illustrated with the marker ◦ in the central panel of Figure 3.25; this event
corresponds to the second zone in which the vertical velocity is negative at 40 seconds of
simulation.
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Figure 3.26: Left panel, pressure field and right panel, vorticity field around the bubbles.
Initial distance 6.5 diameters. These snapshots correspond to marker ◦ in the central
panel of Figure 3.25.

0 10 20 30 40 50 60 70 80
2.5

2

1.5

1

0.5

0

0.5

1

1.5

2

t

u x

 

 

Bubble 2
Bubble 1

0 10 20 30 40 50 60 70 80
1

0.5

0

0.5

1

1.5

2

2.5

3

t

u y

 

 

Bubble 2
Bubble 1

Figure 3.27: Reynolds numbers based on the centroids of the bubbles.
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3.5.3 Interaction of multiple bubbles

The last part of this chapter is devoted to the numerical simulations of multiple bubbles.
In Figure 3.28, the trajectories of the ascending bubbles are plotted for simulations of
four, five and six bubbles, the initial position of the bubbles is shown in Figure 3.24. The
dynamics involved and the bubble interactions are very complex. The vortex shedding
caused by the instability in the wakes of the bubbles disturbed the trajectories of the
following bubbles, with some bubbles accelerating and decelerating. It would be very
laborious to interpret in a detailed way the interactions of all bubbles since most of them
are coupled.
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Figure 3.28: Trajectories of the centroid of 4,5 and 6 bubbles for the initial distance of
7 diameters (Eo = 0.54 and Ar = 78401) are shown in the left, central and right panels
respectively.

In a cursory description, it can be said that two different strong interactions can be found
in the simulations of multiple bubbles. The first is when a bubble finds a vortex gen-
erated by a preceeding bubble and its path changes completely its horizontal motion.
This results because the vortex with which the bubble interacts has an opposite motion
of the bubble, and the inertial force of such vortex is greater than the the inertial force
experienced by the bubble. The second interaction occurs when a bubble is boosted by a
vortex detached by another bubble, and it is accelerated. Its trajectory follows the same
horizontal motion but with a larger velocity. However, sometimes, the bubble is not only
accelerated but is also pulled to the center of the vortex. In this cases the bubble turns
around the vortex until the vorticity dissipates and it can follow its natural buoyancy
motion. An example of this interaction was commented in the previous section where the
motion of two bubbles was analyzed.
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Figure 3.29: Snapshots of the velocity and pressure fields for the numerical simulation of
six bubbles rising in a column array (right panel of Figure 3.28).

In Figure 3.29 the velocity and pressure fields are plotted. In the velocity field it can be
appreciated that as in the case of a single bubble at high Reynolds number, the instabil-
ity in the wake of the bubble causes a vortex shedding and a oscillatory motion of the
bubble, but in this case the vortices generated in the wake of a bubble are disturbed and
occasionally the vortices join to form a stronger vortex. In the pressure field, it is very
interesting to note that the bubbles are always linked by a low pressure region created
by the transit of the first bubble and intensified by the other bubbles following the same
trajectory. Remarkably, bubbles have been observed that do not follow the low pressure
path. This phenomenon occurs if the bubble finds a strong vortex that dramatically alters
its trajectory with a similar interaction to that described in section 3.5.2.



Conclusions

In this Thesis, the numerical study of the bubble dynamics rising in a column of fluid has
been presented. The numerical strategy followed to solve the conservation equations for
two immiscible fluids is based on the immersed boundary methods, particularly on the
front-tracking method.

The bubble dynamics was studied for a wide range of flow conditions, first the analysis
of a single bubble rising at low and moderate Reynolds number was reported. At such
flow conditions it was found that the bubbles follows a straight path when it is ascending
in the fluid, and that the shape of the bubble depends strongly on the Eotvos number.
When the Eotvos number is small, the bubbles present a quasi spherical shape, but for
large Eotvos numbers when the surface tension force is small with respect to the viscous
forces, the bubbles deform and in extreme cases even a skirted shape is found. At these
flow conditions the wake of the bubble is stable and axisymmetric, a dipole is formed
around the bubble extending as the bubble is deformed.

The numerical study of a rising single bubble with a high Reynolds number is also de-
scribed. We found that the dynamics of this phenomenon is very different from what
happens at a low Reynolds number. After an initial transient, the trajectory of the bub-
ble centroid describes an approximately periodic zig zag motion, and the bubble acquires
an ellipsoidal shape with an inclination that oscillates between ±45◦. The flow pattern
around individual bubbles is closely related to the von Kármán vortex street. The os-
cillation of the two open wake recirculation rings from one side of the bubble lower part
to the other induces the zigzag path. The vortex shedding the bubbly flows can be used
to enhance the mixing processes and also to improve the heat transfer. The comparison
of the results obtained from the numerical simulations with experiments in a Hele-Shaw
cell, indicate that the trajectory and vertical velocity are in qualitative agreement with
the experiments, as is the inclination of the bubble as a function of time.

A simplified model based in that presented by (Pesavento & Wang Jane 2004) was adapted
to predict the motion of individual bubbles. The results obtained with this phenomeno-
logical model were in agreement with the numerical simulations, and since the model is
built in such a way that the total force is split into the forces that have been traditionally
interpreted as drag, buoyancy, lift and mass added, the individual effect of those forces
could be studied. The buoyancy force pushes the bubble upwards while it was found that
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the lift force acts as a brake on the vertical motion of the bubble and the vertical mass
added force counteracts the vertical lift force.

In the numerical simulations of pairs of bubbles discussed in the section 3.5, we analyzed,
somewhat in detail the bubble-bubble interaction through the fluid in the high vorticity,
low pressure zones generated by of the wake of the first bubble. We assumed that initially
the bubbles are in a vertical arrangement with one bubble leaving at small distance above
the other. We found that their interaction is highly dependent on the initial distance.
In order to illustrate this effect, we presented the centroid trajectories for three slightly
different initial vertical distances. The simulations show that after the initial transient
the second bubble follows a similar zig-zag path of the first, but if a vortex behind the
first bubble has a high enough vorticity and has low enough pressure, it will be able to
critically modify the motion of the second bubble. The simulations of multiple bubbles
were done to understand some features of the dynamical interactions in this systems, but
the detailed study of the dynamics of the systems when multiple bubbles are involved is
a complex problem, and not surprisingly, these systems are not completely understood
at this moment. A large number of studies are required to find the precise mechanisms
that cause the different trajectories of the bubbles. For the case of the interactions it
is necessary to determine the criterium for the bubbles to approach a vortex without a
major effect on its trajectory. This kind of studies can be done with the numerical tools
from the mathematical model using implementations similar to the model described in
this thesis.

There are many unsolved problems on the dynamics of rising of bubbles. However, the
numerical tools as the one developed in this work, can be used to better understand
the phenomena. The advancement in this field requires new experimental and numerical
developments that can address the complexity of these flows and lead to deeper physical
understanding as well as to relevant applications.
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