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Preface

Throughout Chapter 1 we give an introduction to Complex & Dynamical Systems, treating

Chaos and Complexity as relevant topics for this work. The basic concepts of Graph Theory,

showing its origins from the Eulerian theorems up to a brief explanation of Gene Regulatory

Networks which are modelled in this work. The foundations of other types of networks like

Small-World Networks and Scale-Free Networks are also exposed in this chapter.

The next chapter deals with random Boolean networks (RBNs), showing the underlying

properties of such networks. We start from the primitive and original properties of such

networks, and go onto other more specialised networks such as GARBNs or DARBNs. We

study the RBN model as preparation for modular RBNs. We then show alternate models,

pointing out the main differences in properties among such models.

The third chapter introduces an important topic for this work: Modularity. We explain

why modularity has a direct bearing with the work we present and explain the different

ways in which modularity is defined. This chapter combined with the previous one will

create the basis for modular RBNs (mRBNs). We also show the relevance and the ubiquity

of modularity in fields such as molecular biology or sociology.
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Coupled Random Boolean Networks (that is, modular RBNs) is the main topic of the fourth

chapter. We explain this new model and show the new parameters and their effect on the

network’s main properties, like criticality. Five case-studies were made with which statisti-

cal data was retrieved and analysed by simulating mRBNs. The analyses and comparison

of these cases are explained both tabularly and graphically.

Finally the results are discussed and analysed. An explanation as of why those results

were obtained is also a subject of this chapter. A brief discussion on the future work and

improvements to our model and in the last part we conclude the work.

This work was presented at the twelfth International Conference on the Synthesis and

Simulation of Living Systems (ALife XII) which was held in Odense, Denmark in August

2010 [Poblanno-Balp and Gershenson, 2010]. It has also been accepted for publication in

the Artificial Life Journal [Poblanno-Balp and Gershenson, 2011].

This work was financially supported by CONACyT CVU-268628 in the masters degree

program during the years 2009 and 2010. Special thanks.



Chapter 1

Introduction

This chapter will focus on the foundations and the background of this research work and

will establish the main subject. Once the panorama of Random Boolean Networks (RBNs)

is open, the importance of their study, and more specifically, the criticality of coupled RBNs

shall be clear.

1.1 Dynamical and Complex Systems

Complex systems play a important role in modern scientific approach to solve problems,

since such systems have proved better results when the problem landscape is too large

(complex) for a typical optimisation technique. When this happens, analytical methods

tend to find local optima, which are often distant from the global solution, making an

accurate prediction almost impossible [Gershenson, 2009].
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1.1.1 Dynamical Systems

There are the so called non-stationary systems because the equations that describe the sys-

tem change along time, thus using an analytical technique may present false positive results

or a global optimum valid only in the past. Dynamical and non-stationary systems have

been studied by physicists and mathematicians for a long time and solving them usually

requires specialised and advanced mathematical techniques. Dynamical systems are based

on rules, and the evolution of one of these rules gives notion of the state of the system in a

short period of time ahead in the future. Knowing the state of the system for all future time

steps requires the system to be iterated or solved. Once the system is solved it is possible

to determine all its possible future states: its trajectory. Numerical methods implemented

on computers have helped on determining the trajectories of dynamical systems.

A typical example of this is the motion of the planets. Ancient scientists discovered that

keeping a record of the planets’ positions helped them predict their future positions. In a

more formal sense, the state of a physical system at certain point in time can be represented

as a single point in the state space M and the evolution of any of those points is in fact

called dynamics ; the function f which specifies where the point is at time t is called

evolution rule. We will call a system deterministic if there exists a unique evolution rule f

that maps exactly one point in M to one point in the future. However, this is not always

possible to find such a function. For example, knowing the temperature of today is not

sufficient condition to know or predict the temperature of tomorrow. An approach to this

issue could be the broadening of M in order to capture many of these points that could

help us predict some (less inaccurate) future states.
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1.1.2 Chaos

A deterministic system is one whose present state can be completely determined by its ini-

tial conditions, implying that there is no randomness involved: the system is not stochastic.

In a stochastic system the initial conditions determine the future states of the system in a

partial manner; hence its future states or trajectories are described in terms of probability

distributions. This uncertainty could be due to noise or some other external aspects that

we cannot control. Therefore the present state is determined by past initial conditions and

noise added during the past evolution.

Complex dynamics inside a deterministic system can dupe us and make us mistake the

system as a stochastic one, when it is not. We will call a system chaotic if it follows

deterministic laws of evolution but whose outcome is highly sensitive to small changes in

the initial conditions [Cvitanović et al., 2010]. This is deterministic chaos, but there are

also different types of chaos, like non-deterministic chaos, and quantic, to mention a pair.

Deterministic chaos often limits a system’s predictability due to high sensitivity to initial

conditions.

1.1.3 Complexity and Complex Systems

As most complexity texts do, we will remark that there is no unified definition of “complex-

ity”, because complexity appears in many different contexts finding its roots in natural and

social sciences; thus, picking out a definition of any context somehow clashes with the other

definitions. We will take, as F. Heylighen, the etymological definition and compile a more

general definition embracing most of the contexts mentioned above [Gershenson, 2008].
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In Latin, Complexus means “entangled” or “embracing”. We could think that something

complex requires two or more distinguishable parts, in some way connected to each other

so that their separation is difficult to perform. Complexity deals with the entanglement of

these distinguishable components, making the whole, complex, and adding several prop-

erties (as we will describe shortly) to the system, many of which are emergent. This is

sometimes referred to as emergent behaviour. We will say a system becomes more complex

if the number of distinguishable elements increases and the connections between them-

selves get more entangled. Notice that some connections could be made with the outer

world (environment, feedback, noise, etc.).

As we shall later discuss, there are several levels in which complexity could be found,

obliging us to broaden our definition or specify the scale or level we are dealing with. But

what are the main differences between simple and complex systems? There are basically

three main points which discern simple systems [Érdi, 2008]:

• Single cause and single effect.

• Small changes in the cause imply small changes in the effect

• Predictability

To summarise these three points we could say a simple system does not offer big surprises

if we alter it, making the simple system (more) predictable. At the same time, complex

systems tend to have the opposite properties:

• Small changes in the cause imply big (or vast) changes in the effect

• Unpredictability
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• Emergent behaviour

Within complex systems, the effect can serve as both cause and effect, if we see this causal

loop as feedback. A question we may ask is what parts of the system do together what

they would not do on their own. There are new properties that appear with the mixing of

simple properties.

There are at least two kinds of complexities directly linked to randomness [Érdi, 2008];

the Algorithmic Complexity, also known as first-class complexity and Structural complex-

ity, consequently referred to as second-class complexity. This first-class complexity is the

Kolmogorov complexity: as randomness increases, complexity increases. It is related to

binary strings (consisting of 0’s and 1’s), in the sense that the complexity of a random

string s is defined by the number of bits of the shortest binary program that describes that

string s. In this way, the string 011011011011011011 has an evident 011 pattern inside and

an (informal) description could be “repeat 011 six times”. The description of the string s

is d(s), and its complexity is denoted by K(s). If the string s happens to be completely

random1 we will say it is maximally complex, for the shortest binary program that describes

it is —at least— as long as the string s itself, because the only pattern we can find in s, is

the whole string.

Structural complexity is often referred to as “Complexity between order and randomness”,

or second-class complexity. It can be shown that for extremely ordered or extremely random

systems, complexity is not at its maximal; the maximum complexity is reached at a middle

point between randomness and order. Figure 1.1 shows the three cases in which structural

complexity may be found.

1Assuming there is no way to compress such string.
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Figure 1.1: Cellular Automata showing purely ordered (top-left) and purely random

(top-right) patterns and class 4 behaviour (bottom) which is neither completely random

nor completely ordered.

1.1.4 Cybernetics

The term Cybernetics comes from the Greek word kybernetes, meaning “governor” or

“steersman”. This term was first used by Plato in ancient Greece and later in the nine-

teenth century by André-Marie Ampère. Both saw it as the science of effective government.

The concept was revived by mathematician Norbert Wiener (1894 – 1964) in his book “Cy-

bernetics: Or the Control and Communication in the Animal and the Machine”. Inspired

by the current mathematical advances on information theory, Wiener began to develop the

theory of organisation and communication in systems [Wiener, 1965]. This includes the

study of feedback, black-boxes, an self-organisation. [Wikipedia, 2010]

Among other contributions of Cybernetics, like the explanation of purposiveness, and the

goal-directed behaviour, the one that concerns us in this work is feedback. Complex sys-

tems are perhaps the “New Cybernetics” [Gershenson, 2008] because they also deal with
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coordination and control. But how are these systems linked with Complexity?

We know things change in time. With this property in mind, we can expect that to fully

understand a system in which many changes occur in time, we may require something

additional, as the system itself is more entangled along time. Changes within a system

can be random, and as we described earlier in the first-class complexity: as randomness

increases, complexity increases too. Nonetheless, the system can grow in complexity if we

add the feedback, mentioned above. This again refers to the fact that complex systems’

output (effect) can serve as both input (cause) and output (effect).

If we imagine a simple system like the one shown in Figure 1.2,

System
Input Output

Figure 1.2: Simple system with input and output.
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We can anticipate it not to be complex, or at least not as complex as the one in Figure 1.3.

System
Input Output

Feedback

Figure 1.3: System with feedback.

System

Environment

In�uence

In�uence

Figure 1.4: Complex and random (from the system’s point of view) feedback.

In Figure (1.4), the environment could be seen as a feedback, as the system’s output

eventually becomes the environment’s input, in the same way as the environment’s output
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is finally the system’s input again. Certainly this environment’s input could be regarded

as noise because it would be —from the perspective from within the system— random.

One of the most important studied features about Complex Systems is

robustness, which deals with the behaviour of the system in order to react favourably to

the random external signals, or noise.

1.2 Complexity in Molecular Biology

Genetics is nowadays one of biology’s most studied and important fields. Since the father

of modern genetics, Gregor Mendel (1822 – 1884), made his inheritance experiments on

certain traits of pea plants, the scientific world discovered a whole new scene, but it wasn’t

until the early twentieth century that scientists redirected their attention towards genetics.

With his two laws, Mendel defined the basic behaviour of a gene, categorising it as “par-

ticulate factor” [Lewin, 2004] that passes unchanged from parent to progeny. The central

dogma of molecular biology was originated when the gene was discovered as the functional

hereditary unit which originates a new product, either RNA or a protein. Among several

other problems that needed to be solved and that were gradually solved, the main problem

was to determine the relation between both DNA and proteins structures.

Genes are only information, as they do not take any functional part in any hereditary

process, instead genes are taken into account as instructions. But this might not be as true

as we may think. There has been controversy recently because it has been found that genes

do take a fundamental part on cells’ molecular functions [Neuman, 2008]. Complexity in
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DNA → RNA → protein

Figure 1.5: Schema of the central dogma of molecular biology. Replica-

tion copies DNA, which is later transcribed into RNA. The processing

phase takes RNA to the cytoplasm for mRNA to carry coded (translation

phase) information via ribosomes for protein synthesis.

Molecular Biology is ubiquitous for there are many elements interacting among each other.

If we recall Figure 1.4, we saw that this could already be a complex system, now imagine

not having only one “feedback” interaction, but thousands or hundreds of thousands. This

makes it quite difficult to predict a (biological) system’s current state. We have to take

into account —not only the elements of the system, as reductionism suggests, but— the

high amount of interactions the elements share.

1.3 Networks

Computer Science and Mathematics have —among many others— a special topic in com-

mon: the study of graphs. Leonhard Euler (1707 - 1783), a Swiss physicist and math-

ematician, is reckoned as the father of graph theory; his 1736 paper The Seven Bridges

of Königsberg Problem is considered the first published paper regarding graph theory

[Biggs et al., 1986]. Even though the mathematical problems treated at Euler’s time were

mainly focused on motion and measurement, he and his contemporaries managed to deviate

mathematical studies on the “intuitive” or “puzzle-like” problems of graph theory. Nowa-

days, graph theory has captured the interest of computer scientists and mathematicians

for its transcendental results on non-trivial “everyday problems”.
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The problem of the Königsberg bridges takes place in the Prussian city of Königsberg

(today Kaliningrad, Russia) through which the Pregel river flows as shown in Figure (1.6).

C

A

B

D

Figure 1.6: Königsberg bridges connecting landmasses. The city consists

of the areas marked by A, B, C and D.

The problem was to find a walk through the city crossing each bridge only once2.

Euler proved that there is no such walk for this problem and that the only relevant char-

acteristic of the walk is the order in which the bridges are traversed. This notion was put

in formal (mathematical) terms, by eliminating all features except the landmasses and the

bridges connecting them. In a more mathematical point of view, a landmass is converted to

an abstract vertex (or node) and each bridge is converted to an abstract connection named

edge as shown in Figure 1.7.

In an intuitive way, a graph is a mathematical model which creates a relation between two

2The islands could not be reached by any route other than the bridges, and every bridge must have

been crossed completely every time. That is, one could not walk half way onto the bridge and then turn

around and later cross the other half from the other side.
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C

A D

B
Figure 1.7: Königsberg bridges graph. Landmasses from Figure 1.6 are

converted into vertices and bridges into edges.

objects of a collection. In a formal way:

Graph. A Graph is an ordered triple G = (V (G),E(G),ψG), where

V (G) is a nonempty set of vertices

E(G) a set of edges and

ψG is the incidence function which associates with each edge of G,

an unordered pair of vertices of G.

Then if e is an edge, and u and v are vertices such that ψG(e) = uv then e is said to join

vertices v and u and both are ends of e.

Two ends of an edge are said to be incident with the edge, and vice versa. For any pair

of vertices u and v which are incident with the same edge, we will say they are adjacent.

A loop is an edge whose endpoints are the same vertex (node). A graph that lacks loops

is called simple graph and an edge with distinct ends is called link. The degree dG(v) of a
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vertex v is the number of edges incident to it3.

A walk in a graph G is a finite non-null sequence W = v0, e0, v1, e1 . . . ek, vk such that for

1 ≤ i ≤ k, the ends of ei are vi−1 and vi; thus W is a walk from v0 to vk
4. As walks

are specified by the sequence of vertices, in a simpler form a walk is only specified by the

vertices it traverses. Moreover, if the sequence of edges of a walk W are distinct, W is a

trail ; if, besides, the vertices v0, v1, v2, . . . , vk are distinct, W is said to be a path. Finally,

two vertices v and u are said to be connected if there exists a (v,u)-path.

u

a

v

b

wcx

d

y

g

h

f
e

Figure 1.8: Simple graph with 5 vertices and 8 edges. There is a walk uavfyfv-

gyhwbv, that is, a sequence of vertices and edges with no restriction on repeti-

tion. A trail wcxdyhwbvgy, where no edges are repeated; and a path xcwhyeuav

where neither edges nor vertices are repeated.

For this work, and for many “everyday problems” such as the routes taken by cars inside

a city, graph is not enough. If we had to find the shortest path to go from point A to

point B in a city, we must have extra information, for real streets have one-way or double

3Each loop counting twice.
4Or a (v0, vk)− walk.
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senses, consequently we shall introduce orientation to graphs. Many social, technological

and natural events are explained using the sort of graphs we are about to explain, so in

order to enter the network territory correctly, we shall give a few more definitions.

A directed graph or digraph is simply: a graph with orientation in edges. Put formally:

Digraph. A Digraph is an ordered triple D = (V (D),E(D),ψD),where

V (D) is a nonempty set of vertices

E(D) a set of edges and

ψD is the incidence function which associates with each edge of D

an ordered pair of vertices of D.

If e is an edge of a digraph D and u and v are vertices such that ψD(e) = (u, v), then e

joins u and v; u is then called the tail of e and v is called the head of e. We shall read

this as “the edge e goes from u to v”.

Although the current work is about (Random Boolean) Networks, we will not use the strict

and formal definition of a Network, which encourages not only oriented but weighed arcs; it

also implies having two disjoint sets of vertices. Given that the difference between Networks

and Digraphs will not necessary be for the purpose of this work, we will omit the formal

definitions and from now on, a network will be a digraph, and vice versa.

Euler showed us that networks have properties, hidden in their construction, that limit or

enhance our ability to do things with them [Barabási, 2002]. These properties gave birth

to graph theory.
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1.4 Small-World and Scale-Free Networks

There are many kinds of networks and all of them have been deeply studied for a over a

decade. This section will introduce Random, Small World and Scale-Free Networks to have

a full perspective of complex networks and a wider panorama of the Complex Networks

field.

1.4.1 Random Networks

Random Networks are generated randomly. They can be characterised by two values, N

and z. N refers to the number of nodes and z to the coordination number. The coordi-

nation number is the average number of links per vertex. Alternatively we could define a

probability p to find a given link as the connection probability. The connection probability

is the probability that a given edge occurs between two given nodes.

The network diameter D is the maximum degree of separation between all pairs of nodes.

For a random network with N vertices we have:

zD ≈ N , D ∝ logN

logz
(1.1)

since every node has z neighbours, and z2 next-nearest neighbours, and so on. The Path

Length between two nodes is the number of edges on the shortest path between the two

nodes. The average distance L of a network is the average of the minimal path length

between all pairs of nodes of a network. The Clustering Coefficient C is the average

fraction of pairs of neighbours of a node that are also nodes of each other; it quantifies how

much connected a node is to its neighbours. Suppose a vertex v has kv neighbours, then at
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most kv(kv−1)
2

[Watts and Strogatz, 1998] arcs can exist between them, this happens when

every neighbour of v is connected to every other neighbour of v.

1.4.2 Small-World Networks

As mentioned before in the introduction to digraphs, a good example of a “real” problem

was traffic flow in a city; some other good examples would be the Internet (which happens

to be a huge network) and an abstract network of the acquaintances in a neighbourhood,

a big enterprise, and —why not— the whole world. Surely it has happened to any of us

that we meet someone who happens to know (or know somebody who knows) a relatively

close friend. When this sort of coincidences happen, we often say “What a small world!”.

Intuitively one would think that it is easier to be connected with others in a short neigh-

bourhood, or a relatively big company; and the forward thought would be that the number

of hops required to get in touch with any other person would rise if we take it to a city or

a world-wide level.

In the 1950s, psychologist Stanley Milgram asked himself this question an decided to make

an experiment. The experiment consisted of a group of common persons attempting to

relay a letter to a distant stranger by giving the letter to an acquaintance and having the

acquaintance handing in the letter to one of his or hers acquaintances and so on, until the

target stranger received the letter at the end of the chain. In his study, Milgram discovered

that in average the number of persons involved through the chain were six.

This phenomenon nowadays is known as “six degrees of separation”, for it only takes at

most six persons for any two given strangers around the world to reach each other. In their
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1998 paper “Collective Dynamics of ’Small World’ Networks”, Duncan Watts and Steven

Strogatz [Watts and Strogatz, 1998] analyse the properties of the small world phenomenon

by creating what they called Small-World Networks, affirming that the neural network

of the Caenorhabditis elegans worm, the power grid of western United States and the

collaboration graph of film actors were shown to be Small-World networks.

They argued that ordinarily regular or random topologies were assumed, but that many

biological, technological or social networks lie between these two extremes, resulting in

what today is known as the Watts-Strogatz model. By simply rewiring a regular network,

it can be transformed into a small world network.

Figure 1.9: A regular graph (left) can be simply rewired with probability p to create a small-world

network (centre); as p increases the network becomes more random until it is a random network (right).

Literature often refers to the small world property : a network has this property if it has

relatively few long-distance connections but has a small average path length L, relative to

N . Small-world networks also show a high clustering coefficient.

Consequently, Watts and Strogatz proved that the three very different real world networks

(the actors, the power grid and the neural network) had the small world property. The

next table shows their results:
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Lactual Lrandom Cactual Crandom

Film Actors 3.65 2.99 0.79 0.00027

Power grid 18.7 12.4 0.080 0.005

C. Elegans 2.65 2.25 0.28 0.05

Table 1.1: Actual results of [Watts and Strogatz, 1998]. The table shows both

the actual values for path length L and for the clustering coefficient C and the

random results.

1.4.3 Scale-Free Networks

Vilfredo Pareto (1848 – 1923) was an Italian economist5 who wanted to introduce pure

mathematics into the economics field, in other words, he wanted economics to be a pure

science, just as the beauty of Newtonian physics influenced him. He was the first to

determine that income has an 80/20 distribution, or Pareto Distribution which is a power

law distribution. The 80/20 rules states that 20% of the population controls 80% of the

wealth. This rule is not only found in income, but in many other cases like 80 percent

of the profits are produced by 20 percent of the employees or 80 percent of Italy’s land is

owned by 20 percent of the population [Barabási, 2002].

Albert-László Barabási and Réka Albert wanted to determine what was the topology of

the WWW. They expected a randomly connected network that should follow Erdős and

Rényi theory, which treated random graphs, this because traditionally complex networks

had been described that way. What they found was that web pages follow a power law.

A wide variety of complex systems share an important feature: some nodes called hubs

5As well as engineer, sociologist, and philosopher.
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have a big number of connections —hundreds, thousands or even millions of them— while

others have just a few, at least compared with hubs. Scale-free networks are robust to

random failures, but susceptible to “coordinated” attacks. For these and other reasons

scale-free networks have been extensively studied over the past decades.

The basic idea behind Scale-Free networks argues that both theories, Erdős and Rényi’s

on random graphs and Watts and Strogatz’s on Small-World networks, assumed that

at all time the nodes in the network were fixed and that the wiring probability rules

were random and uniform. Barabási and Albert focused instead on two simple concepts

[Barabási and Albert, 1999]:

• Growth

• Preferential attachment

Growth deals with the fact the real-world networks like the WWW are constantly growing

(some nodes are even removed) and preferential attachment says that a newly connected

node would “prefer” to link with a node that has more connections, or in other words,

an older node: a hub. Nodes from networks built this way have a power law distribution;

which means that the probability P (k) of a node in the network to be connected to exactly

k neighbours decays as a power law, following P (k) ∼ k−γ. This is a very interesting

result, because these systems obey scaling laws characteristic only of highly interactive

self-organised systems and critical phenomena, a feature not found in random network

models [Albert et al., 1999, Bunde, 1995].

In order to define intuitively what Scale Free Networks are, we will proceed with an example.
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Searching the World-Wide Web a few years ago6 was a frustrating task, because results

were not yielded in an optimal way. If one were to look for “apple records”, search engines

would give results for pages that had (closely enough) these two words together. It was

likely to get the results for a historical list of prices of apples or results for The Beatles

recording label. This is why it took so long to find what one really wanted. There were

lots of irrelevant results.

We could see the WWW as a network with web pages being nodes and hyperlinks from

one page to another being edges. The WWW as many social networks has the structural

properties mentioned above: there is a high number of pages with low degree, that is,

few in-links; and there is a small number of pages with (very) high degree, that is, many

in-links. Also web “communities” tend to have many links among themselves; that is, high

clustering coefficient.

To illustrate the main difference between a random graph and a scale-free graph, the

following figure is displayed:

The same way, the next figure displays the incoming connections of a given node, versus

the frequency of occurrence of such nodes for a scale-free and normal distributions.

What Albert-László Barabási and Eric Bonabeau were trying to do, was to map the Inter-

net, find its diameter and its distribution. They confess that what they really expected was

a common Random Network with a typical Normal Distribution with the already studied

properties [Barabási and Bonabeau, 2003]. Given the nature of how people build their own

web pages, inserting references (hyperlinks) to web pages of their interests and given the

diversity of interests and the tremendous amount of web pages they can choose from, they

6At least before Google appeared.
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expected the resulting network topology to be random. What they actually found was

not at all that. There were7 ≈ 0.001 % of hubs (that is, pages with many incoming refer-

ences) and ≈ 80% of the pages were “normal” nodes (pages with few incoming references);

additionally the distribution found was not Normal, but a Power Law.

Power Laws are very different from Normal Distributions. It is also a relationship between

two quantities, but here the frequency of an object varies as a power of some attribute of

that object. When they counted how many pages had exactly k links, they found that the

probability that any node was connected to k other nodes, was proportional to 1
kn .

7The article [Barabási and Bonabeau, 2003] does not refer to the exact numbers represented by each

percentage. Nonetheless estimates of the total number of web pages as of 2008 vary from 100 million to

over 10 billion [Mitchell, 2009].

Figure 1.10: A random network on the left and a scale-free network on the

right. In the scale-free network, hubs are highlighted. The in-degree for these

nodes is higher than for the rest, their number is also lower with respect with

the others.
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Figure 1.11: Comparison of a normal distribution and a scale-free distribution.

For the normal (red and dashed line) most nodes have on average 5 incoming

nodes, while for the scale-free distribution, a few amount of them has many

connections (hubs) and the rest have few incoming connections.

1.5 Genetic Regulatory Networks

A Genetic Regulatory Network (GRN) or Gene Regulatory Network is a collection of seg-

ments of DNA which indirectly interact with each other through RNA and with other

substances in the cell regulating or controlling the rates at which genes are transcribed

into mRNA. Each RNA transcript serves as a template for synthesis of a specific protein

by the process of translation. An elementary GRN consists of input signalling pathways,

regulatory proteins that integrate the input signals, target genes and as a result RNA and

proteins produced by the target genes.

A GRN could be viewed as a cellular input-output device. A simple GRN typically consists
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of the following elements:

1. The reception of an input signal and a transduction system that mediates intra and

extracellular signals.

2. A core component complex composed of regulatory proteins and DNA sequences, and

3. Primary molecular outputs from the target genes, which often are RNA or proteins.

The net effects of this process are changes in the phenotype and function. Direct and

indirect feedback are important factors of the regulatory process. More realistic GRNs

have multiple layers of regulation with outputs of the first layers regulating the expression

of another group of genes in a different ulterior layer.

In unicellular organisms regulatory networks react to the environment altering the cell’s

functions or structures in order to survive and adapt to the environment. The process

of wine-making is a clear example of the latter, in which yeast in a sugar solution will

switch on genes that convert sugar into alcohol, gaining energy to multiply. Some genes

are regulated by a single input mechanism, but, especially in higher organisms, a gene

often responds to information from multiple signals via the activity of diverse transcription

factors.

Real GRNs are being mapped based on genome-wide expression analyses. Varying widely in

number, genomes sizes of living systems can go from as low as 464 genes, for Guillardia theta

or high as the human genome whose size estimates to be approximately 25,000 genes long.

It is worth mentioning that human genome is not one of the biggest genomes sequenced.

Nowadays the largest known genome is Trichomonas vaginalis. In later sections we will see
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the importance of the number of genes in GRNs. By now it is enough just to imagine how

complex a network of three thousand nodes could get.



Chapter 2

Random Boolean Networks

Random Boolean Networks —RBNs for short— were proposed by Stuart Kauffman as a

model for genetic regulatory networks [Kauffman, 1969] (seen in section 1.5). One of the

most important properties of an RBN is that it is generic, because few assumptions are

made about its connectivity and functionality. Nodes and edges are generated (as its name

implies) randomly, which is accurate if the modelled system is highly entangled or highly

unknown. In this way, generic properties found in these kind of models can be applied to

a particular system to untangle its intrinsic properties.

We have to clarify why this model is Boolean, and that is because in many natural systems

interactions are regulated by thresholds. Thus the Boolean model is a good and useful

approximation for representing thresholds. Firing potentials in synapses of neurons and

activation potentials of chemical reactions in metabolic networks are a pair of examples

which could be modelled by the mentioned Boolean approximation. Thus, Boolean states

(0 for “off” and 1 for “on”) are excellent candidates for modelling thresholds; 0 can be seen
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as below the threshold and 1 can be seen as above the threshold.

The Boolean simplification comes along with another important aspect already treated in

this work: complexity. As we saw at the end of the last section, some genomes can be

extremely large. To make things simpler, let us take the smallest genome known for an

eukaryote at the moment of this writing, Guillardia theta, which is only 464 genes long

[Douglas et al., 2001]. Using DNA, we have four possible states to combine with: Adenine,

Guanine, Thymine and Cytosine; therefore one gene has 41 possible values times its number

of bases. Guillardia theta with its 464 genes has 2464 number of combinations for the states

of genes, considering two corresponding possible states a gene can be at, either active (1)

or inactive (0). This number is immense. Coming back from the numerical parenthesis,

that is why having only two possible values simplifies somehow the number down to 225,000,

given that humans have ≈ 25, 000 genes and there are two possible states each gene can be

at.

Charles Darwin’s original hypothesis did take into account natural selection rules, although

the random approach was first taken because little was known about GRNs. It is said to

be random because we do not know the exact connectivity. Natural selection is in fact

a random process. Living organisms were therefore generated and improved after many

small (random) variations along time.

2.1 The Classical Model

An RBN consists of N nodes (originally called spins or state variables, σi) which can take

a Boolean value, either 0 or 1. Each node has K incoming connections from other nodes,
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and with aid of a Boolean function1, they determine the current state of the node. Both

the edges and the logic functions are generated randomly, which means that —in theory—

every realisation of the network is different2. Every node has a (random) logical function

associated with it, and during execution the node’s state at a given period of discrete

time is defined by the evaluation of the Boolean function, either 0 or 1. These evolve in

a synchronous manner according to the transition functions fi({σ}). The values taken as

input for the Boolean function are the Boolean states of the other K connected neighbours.

In the Kauffman model the functions are constrained to depend on —at most— K different

input values, chosen randomly:

σi(t) = fi(συ1
i
(t− 1), . . . ,συK

i
(t− 1)) (2.1)

for every variable (node) σi. The input connections to node σi are defined in {υ1
i , . . . , υ

K
i }.

De�nitions & Properties

In the next section (2.2) we will look at the different types of RBNs and see the updating

schemes of each. In the classical model, the updating scheme is synchronous, because the

states of nodes at time t + 1 depend entirely on the states of nodes at the previous time

step t.

Revisiting the complexity field again, let us calculate how many possible networks are there

for a given N and K. First, each node has 22K
possible logical functions, so for a “typical”

1Also called logical function.
2Almost every realisation is different.
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K = 2 RBN, each node would have 16 possible Boolean functions. Each node has N !
(N−K)!

combinations for K links; again, with K = 2 and N = 10 the links combination is 90.

Furthermore,
(

22K
N !

(N−K)!

)N
is the number of all possible networks, given K and N , in this

case 1,440. Of course many of these networks would be logically equivalent, nonetheless

there are serious computational limitations to run through all the possible networks for

statistical purposes if we were to use the smallest genome size known to date of living

organisms as the value for N .

To begin, a randomly created initial state is chosen and according to this initial state, the

dynamics of the net flow and nodes are updated using the Boolean functions. The state

space of an RBN is of size 2N , which means that there is a limited number of states; when

the net enters an already visited state, it is said that the net has arrived at an attractor.

Attractors can be measured by their length, that is, the number of states it has; if it consists

of only one state, it is called point attractor, or steady state. Whenever it comprises two

or more states, it is called cycle attractor or state cycle. A set of states that carry the net

towards an attractor is called basin of attraction.

An easy way to represent the RBN, is by using the Graph Theory traditional method of

using a matrix of adjacency. The following is an example of the adjacency matrix of an

RBN with N = 4 and K = 2. 
0 1 1 0

1 0 1 0

1 0 0 1

1 1 0 0

 (2.2)

Reading the matrix by rows, one would say “node 1 (row#1) has an in-link from node

2 (column#2) and node 3 (column#3)”. As shown in matrix 2.2, the main diagonal is
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zero-valued, that is because there are no loops, although they are allowed.

Order, Chaos And The Edge

Three regimes can be found within RBNs, as well as in many dynamical systems: ordered,

chaotic and critical. But how can we identify the regime or phase the net is in? As

in cellular automata, we could see the state of nodes along time and determine whether

they stay ordered, they change randomly or they stay ordered then go random and come

back, that is, somewhere in the edge between order and chaos. This edge is called critical

point because this is the phase transition, as in fluids dynamics. We could plot in a

square lattice all nodes of the net sequentially from initial time to to current time tn,

like tn, tn−1, . . . t1, t0. Next time step tn+1 would be drawn at the head of the lattice,

resulting in tn+1, tn, tn−1, . . . t1, t0. Designating colours would give us an even simpler way

to resolve the net’s regime. If changing states are coloured with green and fixed states are

coloured with red, seas of colours could be watched by letting the dynamics flow. Initially,

given that a random state was chosen to begin with, the lattice would show green, but as

soon as dynamics stabilised most nodes would be red (static). An ordered regime would

appear as a big red continent with small green (changing) seas. For the chaotic regime the

contrary would happen, there would be a big green sea with small red (static) islands. The

phase transition between ordered and chaos, “the edge of chaos”, occurs when a green sea

percolates through the lattice; that is, a big green sea bursts into a big red sea, and vice

versa. Figure 2.1 depicts a red sea percolating into a green sea.

Measuring the stability of a network is usually something important, as to find out how

much damage can be spread and how robust a network is. A way to do this is by randomly
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Figure 2.1: Red sea percolating through the green one.

mutating a property of the net, like flipping the state of a node or changing one value from

the look-up table. As we know, all nodes are connected by a few hops (as the average path

length is low), thus by perturbing a node we can determine how much damage spreads along

the net. The lattice mentioned above would show that if the RBN is robust enough, no red

sea should turn into green. Nonetheless we could see that just by a little perturbation, a

whole red sea could make the net either enter the chaotic regime or be at the edge of chaos.

Sometimes a very tiny event can make the dynamics of a system have great consequences

or even bring the dynamics to chaos; this is sometimes described as the butterfly effect.

Living organisms, computer systems, and in general any system that carries information
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from one point in time to a further one, also need stability along time. It has to be strong

enough to keep that information. In other words, be robust. But it also has to be flexible

enough to allow changes to occur. This thought has conducted researchers to think that

life and computation3 happen at the edge of chaos, as shown with Cellular Automata

(CAs) by Langton [Langton, 1990]. In fact there could be systems that can perform the

computations even if ordered or chaotic. The former would require much time to do it.

The latter would require to be highly redundant to do it [Gershenson, 2004]. We shall

remember that redundancy implies robustness.

Phase Transitions, Attractor Lengths And Convergence

Simulations revealed that RBNs moved through the regimes basically when changing K.

The actual control parameter is S = 2p(1−p)K, but as in this work p remains constant, the

control parameter can be seen as solely K. The order parameter is the average hamming

distance, which determines, given a control value, which realisations are ordered, chaotic

or critical. Ordered regime arises when K ≤ 2. Chaotic regime takes place when K ≥ 2.

Hamming Distance. The Hamming Distance δ between two binary strings 4 is the num-

ber of bits (or positions) in which both strings differ.

A common way to identify phase transitions in RBNs is to measure the sensitivity to initial

conditions, these phase transitions can be numerically-statistically or analytically. Bernard

Derrida and Yves Pomeau, were the first to prove analytically the existence of a dynamical

3Computation as in biological systems that manipulate information.
4The strings do not have to be binary, but Hamming Distance is commonly used in Information Theory,

where binary strings are used.
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Figure 2.2: Lattices that show the ordered (left), chaotic (right) and critical

(middle) regimes. Criticality is reached when K ≥ 2. The y-axis represents

time, with t0 at the bottom. The x-axis represents the genes.

phase transition controlled by the parameters K and p. For every value of p, there exists

a critical value of the connectivity Kc(p) = [2p(1 − p)−1], such that if K < Kc(p) all

perturbations of an initial state do not propagate (ordered phase). And for K > Kc(p)

small perturbations in initial states propagate along the entire system (chaotic phase).

Finally the critical region occurs when K = Kc(p). The critical phase of RBNs happens

when K = 2 [Derrida and Pomeau, 1986] when p is fixed to 0.5. They also presented two

variants of the classical RBN model, which will be discussed in section 2.2.

It has been observed the following:

1. For K = 1, the probability of having long attractors decreases exponentially and the

number of cycles is independent of N . The average length of cycle attractors is of
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the order
√

N
2

.

2. For K ≥ N , the average length of attractors grow exponentially. Cycle lengths grow

proportional to 2
N
2 .

3. In the phase transition, at K = 2, both the averages of attractor lengths and

the number of attractors grow geometrically with N [Bilke and Sjunnesson, 2001,

Socolar and Kauffman, 2003].

High values of N are subjected to numerical analyses but not the whole state-space, for

computational limitations; therefore, numerical studies tend to use relatively low values of

N , up to approximately 20-30, although with today’s computing power and use of computer

clusters or multiple-core computers, higher values ofN could be tested in order to get results

in a couple of weeks or so.

G-Density is one of the parameters used to measure convergence of RBNs, this counts

the density of Garden-of-Eden states (GoE). GoE states are those which do not have

any ancestors. The dynamics is always irreversible for any state in a basin of attraction.

Another measure is the in-degree frequency [Wuensch, 1998] distribution, which can be

plotted as a histogram. The in-degree of a state is the number of its immediate predecessors.

Convergence in this context refers to the updates required to get to an attractor. Therefore

there will be a faster convergence to an attractor in the state-space for states which have

a higher in-degree value. In general terms we can state that for high in-degree values it is

more likely to be in the ordered regime. There is a higher probability of moving to another

basin in chaotic networks, thus low in-degree values tend to diverge. Both G-Density and

in-degree frequency distribution reveal the following [Wuensche, 1994, Gershenson, 2004]:
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• In the ordered phase there is a very high G-Density and high in-degree frequency;

basins are short resulting in high convergence.

• In the chaotic phase there is a relatively low G-Density and a high frequency of low

values of in-degrees. Basins are very long thus average transient times are long, which

implies low convergence.

• In the critical regime the in-degree distribution resembles a power-law, that is, there

are few states with high in-degree value (hubs) and many states with low in-degree

value.

2.2 Types Of RBNs

Original RBNs were proposed by Kauffman back in 1969. In this section, we will temporar-

ily rename them to CRBN, for Classical Random Boolean Network. We will point out the

most important particularities for all kinds of xRBNs.

Derrida & Pomeau [Derrida and Pomeau, 1986] performed an annealed approximation model

based on Kauffman’s RBN model. They were the first to show analytically that there was

a critical connectivity value, KC . After analysing numerical simulations which showed

very different behaviours for K > 2 and K ≤ 2, they sought for the critical KC to be

2 ≤ KC ≤ 3. Two generalisations were also introduced: one in which K is not (necessarily)

the same for all nodes and another which assigned the probability p which governs if values

in look-up tables are either one or zero. Variation of network topologies were also studied.

Aldana studied free-scale topology for RBNs [Aldana, 2003], based on statistical complex

network analyses previously done by Barbási and Albert for the WWW [Albert et al., 1999]
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and by Newmann for social networks [Newman, 2001]. Different updating schemes were

proposed by Harvey and company [Harvey and Bossomaier, 1997], Di Paolo [Paolo, 2004]

and Gershenson [Gershenson, 2002], [Giacobini et al., 2006].

The following subsections briefly describe the most important variations of RBNs and their

properties.

DDNs

Discrete Dynamic Networks are the most general and include all the types of networks

seen in this section. They were formerly introduced by Andrew Wuensche [Wuensch, 1998]

and represent an overall view of networks, because they all have discrete timing, space and

values. Networks that, for example, obtain continuous values are studied by Dynamical

Systems Theory.

CRBNs

Classical RBNs have been fully described in section 2.1. They are a generalisation for

Boolean Cellular Automata, initially developed by John von Neumann in the end of the

1940’s decade. Whenever N = K, a CRBN is called Random Map. Finally we have seen

that for different values of (mainly) K and p [Gershenson, 2010, Luque and Solé, 1997], the

CRBN can enter any of three regimes: ordered, critical or chaotic, as already mentioned.

Given the mentioned features, CRBNs have been widely used to model deterministic sys-

tems in many areas of study, from biology and physics to sociology and economy.
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Granted that CRBNs are deterministic and that the state space is finite, it can be guaran-

teed that an attractor will be eventually reached, because once a state reaches an attractor,

it will never have states different from the ones in the attractor.

ARBNs

In 1997 Inman Harvey and Terry Bossomaier proposed the Asynchronous Random Boolean

Networks (ARBNs). They have the same characteristics of CRBNs (2.2) except that the

updating of nodes is not only asynchronous but random, that is, at every time step a

node is picked randomly to be updated. This makes ARBNs lack cycle attractors. Even so,

they have a special type of attractors called loose attractors [Harvey and Bossomaier, 1997]

which are states that also “grab” the dynamics but the order of these states will not be

repeated deterministically, because the updating order is random.

DARBNs

Deterministic Asynchronous Random Boolean Networks (DARBN) are basically the same

as ARBNs, except that they do not select at random which node to update. Instead, each

node has two values associated, p and q (q < p). p determines the period of an update,

i.e. the number of time steps that the node will wait to be updated. q regulates the

translation of the update. A node will update whenever t mod p = q. If a coincidence

occurs when two nodes need be updated at the same time, one will be updated after the

“other”, always considering the resulting network state left by the first. DARBN can be

used to model asynchronous phenomena which are not random. They have both cycle and
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point attractors.

GARBNs

If we generalise ARBNs, we obtain the Generalised Asynchronous Random Boolean Net-

works (GARBNs). As ARBNs, GARBNs are non-deterministic, which implies they have

no cycle attractors, only point and loose attractors. The generalisation is in the number

of nodes that can be updated at once. GARBNs pick up a random number of nodes to be

updated synchronously. This basically means that GARBNs in a time step can:

• Update no node at all.

• Update one node as ARBNs.

• Update some nodes synchronously.

• Update all nodes synchronously, as CRBNs.

Or in other words, m nodes out of a total of N will be updated at each time step, where

0 ≤ m ≤ N .

DGARBNs

Just as we did to convert ARBNs to DARBNs, GARBNs can be converted to DGARBNs:

Deterministic Generalised Asynchronous Random Boolean Networks. We also introduce

the parameters p and q, which serve the same as in DARBNs (period and translation).
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Opposed to DARBNs, when two (or more) DGARBNs nodes are set to update in the same

time step, they will be updated synchronously, i.e. they will be updated at time t+1 taking

into account the net’s state at previous time step t; nodes will be updated sequentially.

Cases exist in which DGARBNs and DARBNs overlap. This could happen if only one node

is updated at a given time step, e.g. N = 2 with one node updating at even time steps

(p = 2, q = 0) and the other updating at odd intervals (p = 2, q = 1).

Figure 2.3 shows a map of containment of RBNs [Gershenson, 2002].

DDN
(Wuensche,1997)

GARBN

DGARBN

Random Maps
CRBN

(Kau�man,1969)

Boolean CA
(von Neuman,1966)

ARBN
(Harvey&Bossomaier,1997)

Non-Rythmic
ARBN

(DiPaolo,2001)

Rythmic ARBN
(DiPaolo,2001)

DARBN

Figure 2.3: Classification of Random Boolean Networks.

DDNs contain all other RBNs, being GARBNs the most general. All others are particular

cases of them. Adding to GARBNs parameters p and q, we will have DGARBNs (de-

terministic). When N = K, Random maps emerge (all nodes having p = 1 and q = 0)

and they can be any CRBN with redundancy added. CRBNs are a subset of Random

maps. CA are specific cases of CRBNs, where the connectivity is limited by the spatial
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organisation of the nodes. Limiting the updating scheme of GARBNs to only one node at

each time step, we obtain ARBNs. ARBNs that are deterministic, are in fact DARBNs.

These ARBNs have two special cases: with rhythmic and non-rhythmic attractors. DiPaolo

[Di Paolo, 2001] defined the measure of rhythmic behaviour as a measure of how patterns

occurring at different instants in the history of a system relate to one another.

RBN type Synchronicity Determinism

CRBNs synchronous deterministic

ARBNs asynchronous non-deterministic

DARBNs asynchronous deterministic

GARBNs semi-synchronous non-deterministic

DGARBNs semi-synchronous deterministic

Table 2.1: Updating schemes of RBNs.

In fact, there are no synchronous & non-deterministic RBNs. The ones that have semi-

synchronous update (GARBNs & DGARBNs) are so called because they either behave

synchronously or asynchronously, in some cases; in general this means that some nodes are

updated synchronously, while the rest are update asynchronously.

Given the characteristics shown for RBNs, there is a peculiarity about point attractors:

they are the same for any type of RBN. If we change the updating scheme from an ARBN

to a CRBN and we have a point attractor, it will remain the same. This happens when

all nodes rules determine that after being updated, their values will remain the same.

Consequently, it is unimportant the order in which they update and the number of flipped

values: the net’s general state will not change.
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Chapter 3

Modularity

This chapter is a “bridge” between what random Boolean networks are (2) and what Cou-

pled Random Boolean Networks are(4). It briefly explains why modularity is so important

in today’s complex systems and the advantages of seeing a system as a group of parts that

interact among them and with themselves to accomplish a specific —and sometimes very

complex— task.

At a very general level, modularity is a property a system can have that describes to what

extent it can be separated and put back together. But it also refers to the tightness of

coupling between its components. Modularity implies “hidden” rules that permit or deny

the system’s components to be mixed [Schilling, 2000]. Studies of modularity have had an

important advance in several branches of biology and cognitive psychology [Fodor, 1983].

It has been observed that most complex systems have a hierarchical structure. That is, a

complex system has (complex) subsystems, which have complex subsystems and so forth,
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that interact with each other and execute a discernible function at that level. The (ob-

served1) frequencies associated with these interactions drop as we go up one level in the hi-

erarchy and become less evident, that is why some interactions (hence modularity) are more

easily distinguishable, like those of planets, in contrast with those of atomic particles as

quarks, which given the speeds are hard to observe. In this sense we can call these nearly de-

composable (ND) systems [Callebaut and Rasskin-Gutman, 2005, Simon and Ando, 1961].

Just as nature has “the edge of chaos” as a middle point between information loss (chaotic

regime) and time loss (ordered regime) in order to optimise evolution, nature has also

chosen modularity as means for optimising2 something. But what is that something? What

does a system win when it “becomes” modular? It should be clear that is not3 a matter of

understanding, because being able to physically (or abstractly) separate components within

a system helps us see the bigger picture. Modularity is an abstract concept that tries to

capture the various levels and kinds of heterogeneity [Wagner et al., 2007]. Heterogeneity in

this sense refers to specialisation, a refinement in a specific task that a module is expected

to execute. A module is integrated into a (biological) system with respect to a process

—useful for both, the entire system and the module— with certain autonomy of the entire

system and other modules. Evidence of modularity highly depends on the scale at which we

are observing. Modularity has been studied in protein-protein interactions, gene regulatory

networks and variational modularity [Wagner et al., 2007].

Topologically speaking, modularity has some of the already mentioned properties of Scale-

Free Networks (see 1.4): hubs. Han, Bertin and collaborators [Han et al., 2004] found

dynamically organised modularity in the yeast protein-protein interaction network, and

1Interactions do not disappear when we switch levels (modules).
2Although it is said that nature does not optimise, but rather finds sufficient solutions.
3Or is it?
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identified two types of hubs. Party hubs, which interact with most of their neighbour4

hubs simultaneously and date hubs, which bind their different hub-neighbours at different

times or locations. In-silico and in-vivo studies support the model of dynamically organised

modularity in which date hubs organise the proteome connecting modules to each other,

whilst party hubs function inside modules.

Although modularity does not directly alter the environment, nonetheless it does con-

tribute directly to the individual’s fitness. Nonetheless, evolution has preserved modular-

ity. Good examples would be gene networks involved in development [Solé et al., 2002]

and the segment polarity genes of Drosophila, where Dassow, Meir and company sug-

gest that such segment polarity genes are in fact the modules [von Dassow et al., 2000,

von Dassow and Odell, 2002]. In their conclusive results in [Solé et al., 2002], Solé et al.

conclude5:

Patterns [modules] are common. In spite of the random character of the network

wiring, a large fraction of systems displays spatial structures. This has non-

trivial consequences for the understanding of the evolution of development:

our analysis shows that spatial patterns are rather easy to be found and not

restricted to small spots in parameter space.

This is an important point, because it states the fact that the topology of the network

really affects what modularity actually is, and consequently its function or purpose; that,

without opposing to Han’s results [Han et al., 2004].

4Originally called partners, changed here to neighbour to keep Network notation.
5Italics were added to emphasise.
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Conservation of modularity is ascribable to special features of these modules which are

tightly linked to their robustness under different sources of noise [Képès, 2007]. Thus, neu-

tral models can be presented in order to justify the fact that natural selection doesn’t play

but a secondary role in the evolution of modules. This is what Solé calls Modularity “for

free” [Solé and Fernández, 2003], referring to a mutational process which creates modular

structures lacking the involvement of natural selection. The first of these such models

is Duplication-Differentiation (DD), the second Neutral Modular Restructuring. We will

briefly describe the former.

The Duplication-Differentiation model consists of networks in which nodes are proteins,

and edges protein interactions. A node is randomly picked and duplicated, the chosen

protein acquires its ’parent’ properties, i.e. its interactions. Provided that proteins have

the ability to interact with other proteins by means of their structure without change in

gene duplication, this assumption is valid. Next, either with probability δ several of the new

protein’s interactions are deleted or with probability α a new interaction is added. This

model does not specify the rates of δ and α, which means both are free parameters. The

model does not explain how protein-protein interaction networks evolve in such manner that

lead to modular topological settings. The authors suggest two options for this to happen.

First, because sparse networks are favoured by natural selection, for very dense networks can

have instabilities leading to chaotic dynamics. Thus by tuning the average degree, selection

could reach a stable and robust network with proto-modules [Solé and Fernández, 2003].

The second option is that natural selection directly favours emergent modules to support

cellular functions, as if proto-modules had been natural selection’s initial target of selecting

a sparse graph. Neither possibility fully explains modular structure. Thus, both, the

mutational process and natural selection (as a tuner) favour modular structure in the DD

process. Modularity can be seen as a solution picked and used by Nature over and over
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again. This implies that in biological systems solutions are no reinvented, but rearranged

in some way that become a new (and possibly a better) solution.

3.1 Weak Links

Péter Csermely gives a very wide perspective of how weak links influence modularity

and its relation to Small-Worldness, Scale-Freeness and Nestedness of Complex Networks

[Csermely, 2009]. Long-range contacts of small-world networks are formed by weak links.

In fact, weak links are required to form modules in proteins which are provided by wa-

ter molecules; in societies as superficial acquaintances and in cells as protein bridges

[Csermely, 2001], thus the creation of modules.

In order to have a notion of what a weak link is, we will expose Berlow’s definition

[Berlow, 1999]:

Weak Link. A link is defined as weak when its addition or removal does not change the

mean value of a target measure in a statistically discernible way.

These weak links serve as a buffer to cope with noisy inputs to the network. They also

create a resistance against cascading failures, or as we have seen it, damage spreading.

Modules have some level of isolation and identity from the rest of the network, nonetheless

modules are integrated among themselves; this can only be achieved by (inter-modular)

weak links. As the formation of modules implies modularity and modularity implies more

stability6, weak links are essential for stability in a complex network. Having a large number

6This is actually shown until the end of next chapter.
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of weak links in a complex network avoids wide damage spread and integrates the network

as a whole, making the network stable. In contrast to strong links, the removal of a weak

link does not necessarily imply a change of parameters, although the network could become

less stable [Csermely, 2009].

In the next chapter we will see that weak links are introduced to the classical RBN model

and study the implications of this action.



Chapter 4

Coupled Random Boolean Networks

This chapter will deal with the model of Coupled Random Boolean Networks (CRBNs) or

as we may also call them Modular Random Boolean Networks (mRBNs). We will show the

details for its construction and the results obtained once simulations were run.

In past chapters we’ve discussed the critical region of complex networks. This region is also

known as the edge of chaos and has peculiarities worth studying and analysing. One of the

most important singularities it has, is the possibility of preserving information, giving the

RBN —or the living system from a biological point of view— the possibility of evolving.

Criticality may be seen as a middle point between adaptability and robustness [Aldana and Cluzel, 2003].

The former must happen to integrate the outer influence into the system in order to adapt

to the possible changes occurring in the environment, and the latter to defend itself from

bogus signals which could damage the system’s integrity. Having found the phase transi-

tion, results suggest that evolvability arises precisely at this edge.
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We have seen that biological systems tend in a “natural” way to this modularity, thus the

immediate question to ask would be �Do mRBNs behave the same way as RBNs?�. In

other words, how does K influence damage spread, robustness and evolvability in mRBNs.

In this work we put several coupled networks together and show how modularity influences

evolvability, by detecting the phase transition between order and chaos: the edge of chaos.

The model of coupled networks can be viewed as a simplified model of a living system

[Villani et al., 2006]. As we know, modularity plays an important role in evolution, for

even unicellular organisms have separable functional systems [Wagner et al., 2007] which

are relatively autonomous. Coupling of RBNs can be seen as a living system interacting

with the environment or as a cell interacting with other cells. The importance of modularity

has been in play for quite a long time, for it makes (complex) systems decomposable for

analysing [Callebaut and Rasskin-Gutman, 2005].

Another of the interesting points of this work is the balance reached in the net after

evolution, showing how it could be broken, left intact or slightly modified depending on how

modular the system is. One should expect that more networks within the ordered regime

would imply an ordered meta-net, and that more networks within the chaotic regime would

force a chaotic meta-net.

For now we will not try to quantify modularity. We shall leave the results to speak by

themselves and tell us how to quantify it; which, according to the chapter focused on it

(3), is not an easy task.
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Related Work

In this section we will expose some of the work done in coupled (random) networks, show

some of the differences between our model and their basic results. Ho, Hung and Jiang

[Ho et al., 2005] studied the dynamics of two coupled random Boolean networks using

stochastic coupling techniques. The density evolution of the coupled networks was pre-

cisely described by two coupled polynomial maps. Interested mainly on the co-evolution

of the two coupled networks and their synchronisation, they showed that the density evo-

lution of the pair of networks was accurately described by the deterministic polynomial

maps, providing a way for analytical calculations of networks and also predictability for

real networks. They argue that due to simulations taking too long, the coupling had to be

restricted to only two coupled networks, although future work plans on doing this for more

coupled nets. The latter work was inspired by Andrecut’s work [Andrecut, 2005] which

also shows that the dynamics of two networks coupled stochastically can be described as

two polynomial maps. Results suggested an agreement between the map model and real

RBNs.

A slightly different model was proposed by Serra, Villani et al [Serra et al., 2008, Villani et al., 2006]

which constructs a 2D CA each cell containing an RBN. This model can be viewed as a

simplified model of tissue or a monoclonal colony. Each RBN within a CA’s cell is influ-

enced by the state of other cell’s RBN. They studied the system’s response to perturbations

and showed how the interactions (and the amount of them) affect the dynamics and the

global degree of order.

Finally Hung et al [Hung et al., 2006] coupled two RBNs not using the site-by-site or the

all-to-all typical approaches. Instead they link the cells (nodes) of an RBN with those of
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another with probability ρ; the node at each end is arbitrarily chosen. They also show

that the density evolution1 of the two RBNs can be described by polynomial maps and

they show that complete synchronisation occurs when the coupling parameter ε ≥ 0.18,

providing good predictions and analytical calculations for actual networks.

Throughout the next section the differences between the mentioned models and our model

will be pointed out. In one way all complement each other, in another way each model

supports the previous one.

4.1 Definitions & Properties

The mRBN model is a superposition of the (classical) RBN model, which had two main

parameters K and N that represented the net’s connectivity and the node count, respec-

tively. As we are coupling networks (making a modular meta-network), we will speak of

the meta-net as the set of all networks seen as one, as a big RBN.

In this model two parameters are added, M and L. M denotes the number of modules the

meta-net has (M > 0)2; L is the modular inter-connectivity (L ≥ 0), i.e. the links among

modules; these links can also be seen as weak links (as discussed in 3.1). This number is

independent of K but is in strong relation to damage spreading and dynamic behaviour,

just as K is. Opposed to Csermely’s definition, in our context, weak links will not be

undirected edges of a graph, they are directed edges instead.

1That is, measuring the evolution of density maps for Random Boolean Networks, as described in

[Andrecut and Ali, 2001].
2It could be seen as the number of RBNs the meta-net has.
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The updating scheme used in this work is the synchronous one, updating nodes in a se-

quential form. Let nmi be the i-th node of module m, then the updating sequence would

be (n1
1,n1

2, . . . n1
n︸ ︷︷ ︸

Module 1

,n2
1,n2

2, . . . n2
n︸ ︷︷ ︸

Module 2

, . . . . . . nn1 ,nn2 , . . . nnn︸ ︷︷ ︸
Module n

).

Borrowing matrix notation from RBNs3, Figure 4.1 shows the adjacency matrix for a CRBN

with N = 3, K = 2, M = 2 and L = 1.

1 2 3 1 2 3

1

2

3

1

2

3

Module 1

Module 2Interconnections
to module 1

Interconnections
to module 2

0

1

1 1 0

1 1 0

1

1 1

1 1

1

010

0

0 1

0 0

0

0

000

000

00

0

1

00

Figure 4.1: Connection matrix for CRBN N = 3, K = 2, M = 2 and L = 1. Lack of connections

shown in light face. Connections within modules (intra-modular) shown in bold face, and inter-modular

connections shown in ultra-bold face and red. The first 3 × 3 matrix (in light blue) shows connections

for module#1, to its right (in light gray), module#1’s inter-connections are shown. In this case node#2

receives an inter-modular connection from module#2’s second node. The same way, the fourth 3 × 3

matrix (in light red) shows module#2’s connections. To its left, inter-modular connections are shown

(in light gray); in this case, module#2 receives a link at node#1 from module#1’s third node.

3Which in turn borrowed it from Graph Theory.
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To simplify, Ntot will denote the total number of nodes, and is given by N ·M , while the

total number of connections is given by:

T = M · (K ·N + L) (4.1)

The average connections per node:

Ktot =
T

Ntot

(4.2)

Which can also be seen as:

Ktot = K +
L

N
(4.3)

The node-module rate µ is:

µ =
N

M
(4.4)

And finally, two probability measures to be used in the experiments. The following is the

probability a given link is intra-modular:

κ =
K

Ktot

(4.5)

And the probability a given link is inter-modular:

λ = 1− κ (4.6)

κ indicates the probability a link is within a module. That is, it should connect a pair

of nodes u and v that are part of the same module. Concerning Csemerly’s point of view

(weak vs. strong links), links in the κ probability are to be considered strong links. If we

have two nodes ui and vj which share an edge e, both nodes corresponding to module i

and j respectively, and forcing i 6= j, we shall say e is a weak link, because it also connects

two nodes, but from different modules.
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4.2 Experiments

In order to answer the questions mentioned above, we used the RBNLab, originally devel-

oped by Carlos Gershenson. It was modified to use mRBNs and the latest version is hosted

at http://rbn.sourceforge.net/.

For the two experiments that will be described in sections 4.2.1 and 4.2.2, five different sets

of parameters were used to compile statistically significant data to analyse. These are the

five sets:

1. K = L, N
M
→ 1

2. K = 1, N
M
→ 1

3. L = 1, N
M
→ 1

4. M = 1 N = 20, L = 0 and K =Ktot

5. N = 1 L = K, M = 20

Analyses were made comparing sets 1, 2 and 3 which together are also called κ-exploration

cases; and sets 4, 5 and 1 which together are also called µ-exploration cases. In the

κ-exploration cases µ is fixed and in the µ-exploration cases, κ is fixed4. For all experiments

Ntot= 20, where Ntot= N ·M . Given that for the experiments N and M were fixed to 5

and 4 respectively, for cases 1 through 3, N
M

= 5
4

= 1.25

Case 1 can be seen as a balance between intra-modular links (K dependent) and inter-

modular links (L dependent). Case 2 fixes the intra-modular links to 1 (K = 1), and

4Except for case 1, which also has µ fixed

http://rbn.sourceforge.net/
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increments the inter-modular ones. Case 3 instead explores the intra-modular link effect,

keeping L = 1. As their grouping suggests, the first three cases explore the relation between

intra- and inter-modular links, mainly κ.

Next case, case 4, is actually a “typical” RBN. The number of modules is one (M = 1).

This RBN has twenty nodes all linked with K while L = 0, i.e. there are no inter-modular

links (since there are no modules). The fifth case goes to the other end, making nets with

twenty modules of only one node; most of the intra-modular links will connect the same

node (module), causing all the modules to have many auto-links5. While analysing the

results, we will point out the consequences of having many auto-links.

4.2.1 Sensitivity to initial conditions

One way to obtain random Boolean network’s general properties is to measure damage

spreading, that is the Sensitivity To Initial Conditions (STIC). In previous sections we have

seen that one desirable property for complex networks is their robustness. By measuring

damage spreading we can find out how sensitive the network is to small changes. Initial

conditions (or initial states) are usually altered to quantify the spread of damage. All

initial states are typically generated randomly, the network is run under the conditions

established by the initial state and the randomly generated Boolean functions, then the

network evolves under those conditions, dynamics flow and eventually the RBN reaches

an attractor. As it has been mentioned in previous chapters, the RBN’s dynamics highly

depend on its topology and on how sparse connections are. The question for the first

experiment is how damage scatters when the RBN is modular, and how does modularity

5Also called loops.
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influence this spread.

Let si be a random initial state and max6 be the maximum number of time steps the

network’s dynamics will be executed; then let sf be the final state the network reaches

after max steps. We can “save” si and generate another “random” initial state s′i by

flipping the k-th bit in the initial state and letting the network run also max steps using s′i

as initial state. The RBN will eventually arrive at a final state, s′f . After both executions

are completed, we shall compare both sf and s′f and see how much difference there is

between them by applying a simple binary function called Hamming Distance which was

defined in chapter 2.

For example, suppose we have two binary strings u = 10010 and v = 11011, then the

hamming distance is δ(u, v) = 2, because u and v have two different values in positions 2

and 5 (in bold).

After having computed δ(sf , s
′
f ) we know how much damage spread along the net, for we

knew that δ(si, s
′
i) was 1, as we only flipped one bit. Thus, we could estimate how much

information or damage is spread by obtaining the difference, ∆H = δ(sf , s
′
f )− δ(si, s′i) and

then normalising it, so that ∆H ∈ [0, 1]. For networks in the ordered regime, ∆H < 0

since similar states converge, that is, the final hamming distance is less than the initial

one; whereas for networks in the chaotic regime ∆H → 0.5, that is, if ∆H went as chaotic

as possible, it would approximate Ntot-1
Ntot

, but this would imply that both trajectories are

anti-correlated, which is almost impossible if the networks were generated randomly.

Repeating this and using different parameters for the mRBNs, we are able to judge in

which way damage spread depends in ensembles of networks. We shall say that the only

6max = 10, 000 steps
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truly critical nets are those whose ∆H = 0, and for all the networks with greater values

we shall still call them chaotic, but some will be closer to the critical regime than others.

[1101.1893]

N K M L T Ktot ∆H µ κ σ

5 0.833333 4 0.833333 20 1 -0.0196 1.25 0.83333 0.0128

5 1.666666 4 1.666666 40 2 -0.0033 1.25 0.83333 0.0293

5 2.5 4 2.5 60 3 0.0284 1.25 0.83333 0.0430

5 3.333333 4 3.333333 80 4 0.0879 1.25 0.83333 0.0565

Table 4.1: STIC results for case 1: K = L,
N

M
→ 1

Results shown in table 4.1 display the case where K = L (Case 1). There is in each case

an increment in Ktot. For each experiment, values for N and K were fixed, as well as T ,

therefore making K equal to L and solving L from equation 4.1, the appropriate value for

L was obtained, and with it, K’s value too. σ is the standard deviation.

The two negative values indicate a net in which no damage spread was transferred, while

positive values, or values near to zero describe a behaviour tending to the chaotic, because

small changes in initial states were more spread. As this is a balanced case (in all ways), µ

and κ remained at fixed values. And for the first three cases —the κ-exploration cases—

µ will remained fixed.

The case in table 4.2 shows how the net became more critical in a middle point of κ, when

κ = 0.33333. That is, it became more critical when the probability of a link of being

intra-modular was (relatively) low. It is also shown how once it became too low, the net

became more chaotic.
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N K M L T Ktot ∆H µ κ σ

5 1 4 0 20 1 -0.0191 1.25 1 0.0127

5 1 4 5 40 2 -0.0040 1.25 0.5 0.0324

5 1 4 10 60 3 0.0456 1.25 0.33333 0.0550

5 1 4 15 80 4 0.1156 1.25 0.25 0.0567

Table 4.2: STIC results for case 2: K = 1,
N

M
→ 1

N K M L T Ktot ∆H µ κ σ

5 0.8 4 1 20 1 -0.0189 1.25 0.8 0.0154

5 1.8 4 1 40 2 -0.0053 1.25 0.9 0.0257

5 2.8 4 1 60 3 0.0160 1.25 0.93333 0.0343

5 3.8 4 1 80 4 0.0406 1.25 0.95 0.0444

Table 4.3: STIC results for case 3: L = 1,
N

M
→ 1

For the case of Table 4.3 the most critical net occurred when Ktot was 3. This is a

case in which most of the links are intra-modular, with some inter-modular (weak) links.

Comparing directly this case with the one on table 4.2, we see the effects of modularity, as

this case has an even lower ∆H. Modularity also made ordered nets get closer to ∆H = 0,

although the difference between regular RBNs is small and standard deviations relatively

high, we can see its effects.

As we can see for all the tables, the first two values of Ktot converge to the ordered regime,

suggesting that modularity still requires more links to transfer information.

In general, the STIC results (4.1 - 4.5)show the following:



58 Coupled Random Boolean Networks

N K M L T Ktot ∆H µ κ σ

20 1 1 0 20 1 -0.0222 20 1 0.0094

20 2 1 0 40 2 -0.0054 20 1 0.0320

20 3 1 0 60 3 0.0471 20 1 0.0557

20 4 1 0 80 4 0.1163 20 1 0.0588

Table 4.4: STIC results for case 4: M = 1 N = 20, L = 0 and K =Ktot

N K M L T Ktot ∆H µ κ σ

1 0.5 20 0.5 20 1 -0.0163 0.05 0.5 0.0151

1 1 20 1 40 2 -0.0029 0.05 0.5 0.0251

1 1.5 20 1.5 60 3 0.0118 0.05 0.5 0.0385

1 2 20 2 80 4 0.0296 0.05 0.5 0.0449

Table 4.5: STIC results for case 5: N = 1 L = K, M = 20

• Negative values indicate convergence, or ordered regime.

• Values close to zero indicate the net is in the critical region.

• Values that are above zero indicate chaos.

Although the three last statements are true in general, the cases shown in the past five

tables don’t show chaotic behaviour, as positive values are really close to zero, thus in a

critical region. This suggests that these mRBNs are somehow more robust than traditional

ones, as damage is not widely spread. In this sense, robustness means that perturbations

do not affect the module’s functions. That is why the most robust networks are the ones

that almost do not have dynamics (ordered). Chaotic networks, on the other hand are the
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least robust, being fragile to perturbations.

As we can see in table 4.4, where L = 0 (Case 4), meaning no modularity, when the number

of total links is increased to 80, the network’s dynamic was chaotic. Nonetheless, results

displayed in table 4.5 show that even for higher values of total links T , the nets stayed

at the edge, suggesting that modularity makes the network’s dynamic stay at the edge of

chaos. Results from table 4.5 were anomalous because those nets have many self-links,

i.e. actual T is smaller. The most representative case is 4.3, i.e. where modules are more

isolated.

Figure 4.2: STIC results for the κ-exploration cases 1, 2 &3 (K = L, K = 1 and L = 1, respectively).
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Figure 4.3: STIC results for the µ-exploration cases 4,5 &1 (M = 1, N = 1 and K = L, respectively).

Figure 4.27 shows the mRBN dynamics flow towards the ordered regime (maximum stabil-

ity) in those cases for which Ktot = 1, because the ∆H value goes under zero, denoting

convergence. Interestingly, ∆H is zero for all cases in Ktot = 2 and for cases 1 and 3 in

Ktot = 3 the mean value stays at zero, making the coupled nets dynamics’ flow in the

critical regime. Since modules are more heavily connected for Ktot = 2 in case 2 (K=1),

it could be expected that damage is more easily spread from module to module, giving the

coupled nets a slightly more chaotic behaviour. For Ktot = 4 for the third case (L=1), the

overall behaviour is less chaotic, as opposed to cases 1 (K=L) and 2 (K=1), in which chaotic

7A full explanation of every component of the plots is available in appendix B.3.



4.2 Experiments 61

dynamics appear: having less inter-modular links reduces the probability that damage will

spread to the other modules. Comparing cases 2 and 3 in Ktot = 4, we can also see the

consequences of inter-modular links; case 2 is the most chaotic of all.

In Figure 4.3 we can see a good comparison of the typical RBN (case 4, leftmost) and the

modular one (case 5, middle) with almost only auto-links. Although for both in Ktot = 4

there exist some notches close to 1 (too chaotic) the mean value of case 5 is zero8. This

is because case 5 contains almost only auto-links, thus having one or twenty auto-links

does not alter Boolean rules; comparing cases 4 and 5 to case 1 (balance of inter-modular

vs. intra-modular links) we see that modularity favours the balanced one, bringing the

dynamics to the critical regime.

To have a balance between statistical significance and network size, and to confirm previous

results for smaller mRBNs, a new set of experiments of sensitivity to initial conditions was

added. Now Ntot was fixed to 400 nodes. The results for cases one, three and four are

displayed in the next tables: Table 4.6 confirms the results presented in table 4.1, although

N K M L T Ktot ∆H µ κ σ

20 0.95238 20 0.9524 400 1.0 -0.0001133 1 0.95 3.32E-05

20 1.90476 20 1.9048 800 2.0 -0.0000160 1 0.95 2.28E-04

20 2.857142 20 2.8571 1200 3.0 0.0017246 1 0.95 2.17E-03

20 3.80952 20 3.8095 1600 4.0 0.0109056 1 0.95 4.69E-03

Table 4.6: STIC results for case 1: K = L,
N

M
→ 1 with Ntot = 400 nodes.

these results show smaller numbers and more reliable standard deviations. In this case, the

8For all Ktots except 1!
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balance between modules and nodes was achieved.

N K M L T Ktot ∆H µ κ σ

20 0.95 20 1 400 1.0 -0.0001054 1 0.95 9.51E-05

20 1.95 20 1 800 2.0 -0.0000173 1 0.975 1.61E-04

20 2.9500 20 1 1200 3.0 0.0004838 1 0.98333 5.59E-04

20 4.0 20 1 1600 4.0 0.0016927 1 0.9875 2.34E-03

Table 4.7: STIC results for case 3: L = 1,
N

M
→ 1 with Ntot = 400 nodes.

The results from table 4.7 are analogous to those previously shown in table 4.3. The mRBN

with Ktot = 3 is closer to the critical region, while the first two cases for Ktot = 1 and

2 the dynamics lay in the ordered regime; being more distant from zero, we can interpret

case with Ktot = 4 being chaotic.

N K M L T Ktot ∆H µ κ σ

400 1 1 0 400 1.0 -0.000122 400 1 1.73E-17

400 2 1 0 800 2.0 0.000081 400 1 5.38E-04

400 3 1 0 1200 3.0 0.007626 400 1 4.53E-03

400 4 1 0 1600 4.0 0.015411 400 1 3.97E-03

Table 4.8: STIC results for case 4: M = 1 N = 20, L = 0 and K =Ktotwith Ntot = 400 nodes.

Finally this last table shows results for a big “normal” RBN, just as table 4.4 did. These

results confirm that networks with K = 2 as analytically proved by Derrida and Pomeau,

lie on the critical regime: the value is very close to zero, compared with the other values

of Ktot. In table 4.4 the closest value to zero was indeed the one for Ktot = 2, but it

converged as ∆H was negative. Here this value diverges staying very close to zero. The
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standard deviation is low too, while with the smaller RBN (Ntot=20) it was higher than

the averaged value, which made it a very unreliable result.

The graph comparing cases 3 and 4 is displayed next: Values for Ktot = 1 and Ktot =
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Figure 4.4: Comparison of case 3 (red) and case 4 (green) of STIC results for the new cases where Ntot

= 400.

2 remain almost the same for both cases, all negative except for case 4 with Ktot = 2.

For the typical RBN (case 4) with Ktot = 4 the average hamming distance grows much

compared to the modular RBN (case 3), whose value, while actually chaotic, lies much

closer to zero. The big difference is shown for Ktot = 3, because the mRBN value is in the

critical region (very close zero), while for the normal RBN the value is one order higher.
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4.2.2 Statistics

There are several measurable properties in mRBNs additional to ∆H, which only told us

how damage was spread inside the net. As mentioned in section 2, all RBNs have at least

one attractor, thus the Number of Attractors of a net is a good thing to count. As we

will show later, there exists a relation between the attractor count and the regime in which

the dynamics of the network lie. All attractors consist of a set of states through which the

net’s dynamics run. The length of this sequence is called Attractor Length.

Of all the 2N states contained in the state-space —which is indeed a number that grows

fast— we could see how many of them are contained in attractors. We will call this the

Percentage of States In Attractors or %SIA for short.

These three properties are measured in the Statistics experiment series, and exactly as the

STIC experiment (4.2.1) required an upper bound in the number of time steps the net

would run through, the Statistics experiment requires a limit too. In this case, this limit

is variable. We will not enter in details9 as of why and when this limit is modified; but it

is mainly because as N grows, things get tougher for the computer. Statistics experiments

for nets of N ≈ 50 nodes would require weeks to finish.

The Stats experiments were applied to the same five cases used in the STIC experiments.

For the next tables, Le stands for Lengths and, A for the Number of Attractors. T values

are 20, 40, 60 and 80, respectively, and Ktot runs from 1 through 4.

In table 4.9 we can see that the number of attractors considerably gets higher when T = 60.

Suddenly when T = 40 or T = 80 the number of attractors is lower. The result for T = 80

9See appendix B for a more detailed explanation.



4.2 Experiments 65

N K=L M T Ktot A Le %SIA µ κ σA σL σ%SIA

5 0.83333 4 20 1 4.03 2 0.0009 1.25 0.83333 5.722 1.435 0.0019

5 1.66666 4 40 2 12.65 4 0.0051 1.25 0.83333 16.073 3.619 0.0083

5 2.5 4 60 3 18.06 7 0.0106 1.25 0.83333 18.618 6.140 0.0122

5 3.33333 4 80 4 14.10 13 0.0125 1.25 0.83333 14.789 13.468 0.0129

Table 4.9: Stats results for case 1: K = L,
N

M
→ 1

is expected to have a bigger average attractor length, because the number of total links is

high. But comparing %SIA for T = 60 and T = 80 we see that there is not much difference.

N K M L T Ktot A Le %SIA µ κ σA σL σ%SIA

5 1 4 0 20 1 5.38 2 0.0013 1.25 1 8.063 1.848 0.0025

5 1 4 5 40 2 4.89 3 0.0016 1.25 0.5 5.045 3.012 0.0026

5 1 4 10 60 3 4.66 7 0.0028 1.25 0.33333 3.583 7.573 0.0029

5 1 4 15 80 4 4.39 22 0.0079 1.25 0.25 2.312 26.448 0.0080

Table 4.10: Stats results for case 2: K = 1,
N

M
→ 1

Having a very low intra-module connectivity (K = 1) we can see in table 4.10 that the

number of attractors almost remains the same for any T . The number of attractors even

gets its maximum value at T = 20, although the attractor length is quite low.

There is an abrupt jump in the number of attractors in table 4.11 when T goes from 20

to 40. Although table 4.3 did not show that jump in damage spread, we can assume that

an attractor is reached very early in the execution, thus because of the considerably low

connectivity both in K and L, the mRBN remained fairly ordered. In the remaining results

for T higher than 20, even though the meta-net connectivity could induce chaos, modularity
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N K M L T Ktot A Le %SIA µ κ σA σL σ%SIA

5 0.8 4 1 20 1 3.45 2 0.0007 1.25 0.8 4.155 1.508 0.0013

5 1.8 4 1 40 2 15.77 5 0.0071 1.25 0.9 20.528 3.792 0.0123

5 2.8 4 1 60 3 29.30 10 0.0231 1.25 0.933333 28.898 10.294 0.0338

5 3.8 4 1 80 4 34.36 14 0.0376 1.25 0.95 31.973 14.615 0.0432

Table 4.11: Stats results for case 3: L = 1,
N

M
→ 1

lowers the damage, keeping the three cases closer to criticality.

N K M L T Ktot A Le %SIA µ κ σA σL σ%SIA

20 1 1 0 20 1 1.68 2 0.0003 20 1 1.667 1.997 0.0011

20 2 1 0 40 2 3.15 3 0.0010 20 1 3.371 2.762 0.0016

20 3 1 0 60 3 4.23 8 0.0026 20 1 3.563 9.586 0.0027

20 4 1 0 80 4 4.43 22 0.0081 20 1 2.407 23.662 0.0078

Table 4.12: Statistics results for case 4: M = 1 N = 20, L = 0 and K =Ktot

The cases run in table 4.12 are RBNs, rather than mRBNs, because there is only one

module and the inter-modular connectivity (L) is zero. The number of attractors remains

almost even, discarding K = 1 where the net is ordered, the remaining three cases go

chaotic.

These last results show the opposite case to the one shown in table 4.9. Here all modules

contain only one node, thus K forces the module to have only loops and intra-modular

connections, causing the net to behave as an ordered one, even when connectivity is high.

As we can see, the Attractors standard deviations for Ktot=2 and Ktot=3 are very big.

This is because when there are only auto-interactions, almost every initial condition is an
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N K M L T Ktot A Le %SIA µ κ σA σL σ%SIA

1 0.5 20 0.5 20 1 31.67 2 0.0068 0.05 0.5 51.596 0.870 0.0122

1 1 20 1 40 2 197.17 3 0.0591 0.05 0.5 182.155 1.615 0.0600

1 1.5 20 1.5 60 3 119.84 4 0.0416 0.05 0.5 124.516 2.668 0.0446

1 2 20 2 80 4 59.44 5 0.0243 0.05 0.5 69.834 4.101 0.0281

Table 4.13: Statistics results for case 5: N = 1 L = K, M = 20

attractor. This could be interpreted as having few very long attractors and many small

ones, near the phase transition.

Figure 4.5: Number of Attractors vs. Ktot for κ-exploration cases 1, 2 & 3 (K = L, K = 1 and L = 1,

respectively).
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In Figure 4.5 we can see10 that only for Ktot = 1 the inter-modular case (K=1, case 2)

there are more attractors. As the meta-net connectivity T grows, the intra-modular case

(L=1, case 3) becomes the one with more attractors, followed by the balanced case (case

1, K=L). The second case basically remains the same for all Ktot.

Figure 4.6: Number of Attractors vs. Ktot for µ-exploration cases 4, 5 & 1 (M = 1, N = 1 and K = L,

respectively).

10A detailed explanation of the way in which plots should be interpreted is available in appendix B.3.
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Figure 4.6 shows that networks from case 5 (N = 1,L = K and M = 20) tend to have

more attractors. In these nets, it is more likely to be in an attractor than in other type of

nets. As N = 1, there are few inter-modular links, therefore with low K values (as was the

case) it is highly probable that the initial state is already an attractor.

Figure 4.7: Average Length size for cases 1,2 & 3 (K = L, K = 1 and L = 1, respectively).
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The average length size for the κ-exploration cases, shown in Figure 4.7, display a regular

increment as Ktot grows. All cases have more or less the same length size until Ktot= 4,

where the inter-modular case (K=1) separates away from the two other cases. We can see

that attractor length is roughly independent of κ, although dependent on Ktot.

Figure 4.8: Average Length size for cases 4,5 & 1 (M = 1, N = 1 and K = L, respectively).
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While comparing case 1 (K = L and N
M
→ 1) on Figure 4.8 with the other two cases, we

see that the average length size is always higher or equal to the others. Here the auto-links

make the lengths fairly short, appearing to remain the same for all Ktot. For the fourth

case (typical RBN) we see that for Ktot= 4, its value is even higher than that of case 1

(rightmost). In case 5 (N = 1), lengths increase, although not as much as the other two

cases. This implies that µ does affect attractor length.

Figure 4.9: Percentage of States in Attractors for various values of Ktot in the κ-exploration cases 1,2

&3 (K = L, K = 1 and L = 1, respectively).
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For both graphics of %SIA (Figures 4.9 and 4.10) the scale is logarithmic for the y-axis.

This was chosen because of the large number of states that exist in the state-space. In

particular for the first figure, we see that %SIA for Ktot= 1 is not even 1%. For other

values of Ktot the inter-modular case (green) remains very close to 1 percent, while the

balanced case (red) and the inter-modular case (blue) rise about a hundredth of that 1%.

We could say that for all except Ktot= 1 the intra-modular cases are the most stable ones.

Figure 4.10: %SIA in the µ-exploration cases 4,5 & 1 (M = 1, N = 1 and K = L, respectively).
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Here case 5 has the obvious result, because many of the links within the networks are loops,

and loops create attractors, therefore the probability of a state being within an attractor is

higher. Ktot= 2 and Ktot= 3 show how modularity increases the stability of the network

by having more states in attractors. The other cases (typical RBN and balanced RBN)

show a good percentage of states in attractors, being the balanced the one that has more

between both. Nonetheless, the lower quartiles for all Ktots in cases 4 and 1 (red and

blue, respectively) are very low, showing that few of the nets actually had a more unstable

configuration.



74 Coupled Random Boolean Networks



Chapter 5

Discussion & Conclusions

5.1 Discussion

In the previous chapter we showed how modularity acts on random Boolean networks and

its direct effect on the net’s criticality. It was originally showed that for classical RBNs,

dynamics reach a critical level when the parameter K is equal to 2; fact that was originally

proved by Derrida & Pomeau [Derrida and Pomeau, 1986].

As has been found by experiments that reach several areas of research, modularity appears

to be ubiquitous [Han et al., 2004, Gavin et al., 2002, Uetz et al., 2000, Schilling, 2000,

Fodor, 1983]. Despite the difficulty that the precise measure of modularity might bring

to us, it is undeniable that natural systems often have it. The main interest of this work

was to determine how modularity affects the criticality of RBNs, and —in a second layer—

find out if a system is more adaptable when being modular.
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We showed that modularity influences more on the information transference than the typical

less realistic supposition of their regular topology. In order not to restrict modularity to

only some parameters, we have been varying modularity with both µ and κ, that is the

relation of N and M and the relation of K and L. Experiments on µ and κ they both

support the hypothesis that modularity —in both measures of modularity— influences

criticality.

We found that mRBNs are less sensitive to initial conditions. This was mainly seen when

modular networks (specifically cases 1: K = L and µ fixed and 3: L = 1 and µ fixed)

were compared with traditional RBNs (case 4: M = 1, N = 20, L = 0 and Ktot = K),

where the contrast of the presence of modules shows mRBNs have more stability. But

with more subtlety, the presence of weak links made mRBNs even more stable than those

that had strong links instead (cases 2 vs. 3), i.e. those with higher connectivity between

modules (refer to tables 4.1 - 4.5). Just as seen earlier in 3.1 Weak Links, there is a straight

relation between our connectivity variables’ proportion (K and L, i.e. λ), and the one

between strong and weak links; these weak links unite modules and create the meta-net.

Indeed, any damage mutation has less probability of being transferred from one module

to another, when the amount of weak links (lw, that is L×M) is less than that of strong

links (ls, that is K × µ), in other terms lw < ls. This could seem obvious, because if there

are less ways to propagate damage, the risk of “infecting” other modules is trivially less;

but the next question is, even if this probability is low, what happens when this mutation

spreads along the meta-net? A real stable system should be able to cope with (up to

certain level of) mutations that run through the net. And this is precisely what case 3

(L = 1 with µ fixed) does. This is due to a low number of inter-modular (weak) links,

with a larger number of intra-modular (strong) links, which constrain mutations within a

module. Keeping a mutation (damage) inside a module, allows the network’s dynamics to
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adapt to it and modify its function as little as possible. Once a module has coped with

damage, a mutation can be transmitted to other modules. This could be safely done after

a threshold of time, because inter-modular links do not abound, thus letting other modules

to (possibly) cope with damage.

Case 1 (K = L and N →M , balanced intra/inter modular links) shows another interesting

thing. There is a big leap between Ktot = 3 and Ktot = 4. As shown in table 4.1, in these

mRBNs we know that the critical region broadened from values K ≈ 2.5 and K ≈ 3, that

is, dynamics within the chaotic phase became less sensitive to initial conditions, bringing

them closer to the critical regime than without modularity (case 4). Two new cases were

added for table 4.1 to show the properties for both (STIC & Statistics) experiments for

case 1 (K = L, balanced intra/inter modular links). By this addition, we can observe how

the critical region expands, and it is easily compared to traditional RBNs (case 4: M = 1,

N = 20, L = 0 and Ktot = K).

Figure 5.1 depicts ∆H for case 1 (K = L) and case 4 (typical RBN). As we can see, after

K = 2, the red curve (case 1) stays below the green curve (case 4, typical RBN), then for

K = 2.5 the typical RBN has larger value than the balanced case, they finally almost join

at K = 3 and from that point on, case 4 simply goes too chaotic. This is due to modularity,

because if we recall there is a balance of inter-modular and intra-modular links for case 1.

Now we’ll compare the same typical RBN (case 4) with the mRBN which contains few

weak links and therefore avoids damage spread. As we can see in Figure 5.2 although

case 1 (K = L) was better than its balanced modular counterpart, here case 3 (L = 1

with µ fixed) is even better. We can see that for K = 2.5 the green curve is separated

enough from the red one. For next values, case 3 has less increment than case 1 which
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Figure 5.1: Comparison of the STIC ∆H values for cases 1 and 4

(K = L and M = 1, N = 20, L = 0 and Ktot = K respectively).

shows being more sensitive to damage. This fact supports the hypothesis that modularity

with low L values —that is, weak links— copes better with damage than the balanced one,

which —while being way better than typical RBNs— spreads more damage because it has

a higher connectivity.

Another comparison that supports our theory, is the number of attractors the data of the

Statistics experiment showed. We will first discuss the “obvious” case 5 (N = 1, L = K

and M = 20), because by definition it contains isolated modules which in fact could be seen

as single nodes, thus links will most surely be auto-links. Given this, damage cannot easily

spread, but so cannot information flow, therefore it would take a longer time to “deal”with

any noisy signal from the exterior (environment) and even from within the meta-net.
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Figure 5.2: Comparison of the STIC ∆H values for cases 1 and 4

(K = L and M = 1, N = 20, L = 0 and Ktot = K respectively).

The following two figures display the statistics results for both cases 1 and 4 respectively.

The number of attractors of the balanced case in Figure 5.3 shows that these kind of

networks have their maximum when Ktot=3, and there is a sudden decrease again when

Ktot=4.

Compared side-by-side as in Figure 5.5 we can see that the number of attractors for case

4 grows almost linearly and very slow. The most distant value occurs at Ktot=1, and

the average attractor count is ≈ 3.4. The other case compared is case 1 whose average

attractor count is ≈ 12.21 As we mentioned before, the critical region is stretched out by

modularity when 2.5 /Ktot/ 3.5, which is evident while compared with the typical RBN

which reacts almost equally for all cases.

Comparing cases 3 and 4 (L = 1 and µ fixed and M = 1, N = 20, L = 0 and Ktot = K,
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Figure 5.3: Statistics experiments results for case 1 (K = L).

respectively) shows the payoff of being more modular. The typical RBN (case 4) seems to

be a horizontal line with respect of the modular one (case 3 in red).

Looking into the number of attractors shown in Tables 4.13 and 4.11, and comparing any to

the rest of the tables, we can clearly see a burst. Given the nature of case 5 the high number

of attractors is normal, because many of those attractors are in fact loops. We would have

expected something similar comparing cases 1 and 3. Of course not the same amount of

attractors, but indeed higher than other cases. We can see the effects of modularity on

these two cases in Figure 5.7. The mentioned burst in the number of attractors is due to

the multiple combinations of local interactions. That is, there are some attractors local

only to the module and some others over the meta-net, thus when combining and counting

them, they appear to be much more.
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Figure 5.4: Statistics experiments results for case 4 (M = 1, N = 20,

L = 0 and Ktot = K).

The behaviour of cases 1 and 3 should be seen together too. For the first two values of

Ktot they are essentially equal, but as the critical region is reached, case 3 has substantially

more attractors than case 1 but for Ktot=4, case 3 has more than twice the attractors as

case 1 has.

Let us remember that case 1 has the restriction K = L. That is, there is an exact bal-

ance between inter-modular links (edges between modules) and intra-modular links (edges

between nodes). Some of the attractors found for case 3 possibly involve sub-attractors of

each module. These attractors use both strong and weak links, so the net’s dynamic flows

along strong links and with lower probability through weak links, giving the net various

additional attractors compared to its balanced sister from case 1.
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Figure 5.5: Comparison of the statistics results for cases 1 and 4

(K = L and M = 1, N = 20, L = 0 and Ktot = K respectively).

5.2 Future Work

At a small seminar which took place in Spring 2010 at C3 headquarters in Mexico City, my

supervisor Carlos Gershenson and I talked with Max Aldana, and the notion of parallelising

the algorithms that analyse RBNs (and mRBNs) was asked; Max wanted to do this to be

able to evolve and analyse big nets (N=1000).

This is certainly an important topic to focus on, because making the algorithms parallel

not only requires a full new (re)design of the software, but allows us to acquire more

significant statistical data for the analyses and to deepen the way properties of RBNs are

sought. It was mentioned in section 4.2.2 that one of the main limiting issues encountered

was computational power. Real GRNs have hundreds —when small—, if not thousands of

genes, therefore this work’s approach would appear rather small compared to what Nature
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Figure 5.6: Comparison of the statistics results for cases 3 and 4

(L = 1 and µ fixed and M = 1, N = 20, L = 0 and Ktot = K,

respectively).
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Figure 5.7: Comparison of the statistics results for cases 3 (in red)

and 1 (in green) (L = 1 and µ fixed and K = L, respectively).
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really exposes us to, although the results hereby usefully point towards a specific direction.

Parallelising would imply the embracement of MPI (Message Passing Interface) for a low-

level programming language like C/C++, although some libraries exist that support Java

[Carpenter et al., 2003], which imply that the RBN-Lab could be extended to be parallel.

It would require an enormous effort, and probably the assistance of a group of experts

on concurrent and parallel programming and algorithms, and of course a multi-processor

computer or a cluster.

Another approach here would be to compile statistical data focused on noise. Barbieri, Serra

and company studied the way noise influences RBNs’ dynamics [Barbieri et al., 2009] and

found out that small amounts of noise1 that alters the nets, make the dynamics jump from

one attractor to another. When neglecting infrequent noisy signals, patterns are found

that arise from initial patterns. Finally, making the net grow in the number of nodes,

increases “for free” the latter phenomenon, creating an interesting sequential specialisation

of the initial undifferentiated patterns. It would be interesting to mix the method applied

in [Barbieri et al., 2009] to mRBNs and observe how dynamics respond to the noisy fluc-

tuations and determine how the patterns change, given that modularity is present in the

RBN.

Lizier, Prokopenko & Zomaya in their 2008 paper [Lizier et al., 2008] investigated the phase

transition between order and chaos in RBNs behaviour from a distributed computation taken

place in their nodes; they characterise this computation in terms of information dynamics

taken from information theory. Three measures were made:

• Information storage

1The focus on a “small” noise fluctuation which is driven by single bit flips during execution.
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• Information transfer

• Information modification

Not deepening too much into the way in which they obtained the results, they basically

showed that entropy increases with the average connectivity K. Somewhere in the range

K = (2, 2.5) of the average connectivity, the active information reaches its maximum and

later decays to values near zero. After K = 1 and before K = 2 this value is always

above zero and growing at the same rate as entropy does. Just around the point where the

active entropy reaches its maximum value, the entropy rate begins to grow exponentially,

matching entropy near K = 3. Using these measures they conclude that the ordered

phase is dominated by information stored in the past of the node about its future state:

information storage; and the chaotic phase is dominated by information transfer, that is,

information from the input of other nodes which dictates the current node’s next state. The

critical regime shows a balance between storage and transfer. Near the transition phase

there is a large amount of trivial information modifications, leading to the implication that

GRNs have evolved to maximise the coherent computation.

Applying this framework to mRBNs would probably show interesting results, and we could

be able to determine if the critical regime loosens or tightens in the same range of Ktot;

it could also be shifted up to values of higher Ktot near to 3. Thus this too would be an

interesting perspective to research.

Max Aldana, in his 2003 paper Boolean dynamics of networks with scale-free topology

[Aldana, 2003] studied the dynamics on networks with Scale-Free topology. He showed

analytically the existence of the phase transition between ordered and chaotic behaviour,

which is in fact determined by the network’s scale-free exponent. The phase transition was
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found within the interval (2, 2.5) of the net’s scale-free exponent. A question we could

ask now is, what would happen if we made those networks modular? Perhaps the above

interval would be wider. Therefore it is also important to study how modularity behaves

in this topology.

As Bilke and Sjunnesson [Bilke and Sjunnesson, 2001] and later Socolar [Socolar and Kauffman, 2003]

suggest, there is a way in which the irrelevant nodes can be discarded. Irrelevant nodes

are those which do not alter their function no matter what input they receive, thus remov-

ing them does not alter the dynamics. The steps applied to remove irrelevant nodes are

[Socolar and Kauffman, 2003]: a)Identify “fixed” nodes whose outputs are entirely inde-

pendent of their inputs. b)With an iterative procedure frozen nodes are identified. These

frozen nodes become frozen because their outputs depend of the inputs of (already) frozen

nodes. Frozen nodes are also called clamped nodes. c) A similar procedure is used to prune

nodes with no relevant outputs, which are leafs in the tree. By removing irrelevant nodes

from the network, it is easier to determine the exact number of attractors, the attractors

average length and the number of nodes which truly participate in the attractors dynamics,

thus RBNs with many more2 nodes could be analysed, also for mRBNs. What is important

to point out, is what for Socolar found for critical networks. The average number of fluctu-

ating nodes grows like N2/3, as opposed to previous results which revealed a
√
N growth.

They found that the median number of attractors grows faster than linearly at least for N

up to 1200. The author believes this difference in the results are due to not considering

largely enough N . Therefore this procedure could be used as a pre-processing procedure

for both kinds of experiments STIC and Statistics and have simulations take less time for

mRBNs with thousands of nodes, instead. It would be interesting to see how significant

the value of N becomes and how the number of attractors varies.

2Than the number studied in this work.
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Finally, the wide range of rubrics that Carlos Gershenson exposes in Guiding the Self-

organization of Random Boolean Networks [Gershenson, 2010] to guide RBNs towards self-

organisation. He reviews eight methods to do so, and in particular guiding RBNs towards

the critical dynamical regime. As he states, we are interested in understanding how the

interaction among nodes affect the whole net’s properties and dynamics, thus this change

of scale —from the lower scale (nodes) to the higher scale (whole net)— favours the de-

scription and allows us to better guide RBNs towards self-organisation. The eight methods

are p modification, K modification, bias towards canalising functions, silencing nodes, al-

tering the topology either changing the link distribution or the link regularity, affecting

modularity, adding redundancy and applying degeneracy.

5.3 Conclusions

(M)RBNs are our model of GRNs. It is our way to explain how modularity acts on the

criticality of mRBNs which are in fact a good simple representation of GRNs. We have

shown that networks are a very good representation for “everyday problems” such as the

ones originally proposed by Euler; but they are also good ways of representing less evident

“everyday problems”, as how genes are regulated in living systems.

Defending both ideas, the idea that it is believed that life and computation take place

within the critical regime, and that modularity is an ubiquitous property of natural (and

some artificial) systems, we showed an idea of what happens when these two basic concepts

permeate in random Boolean networks. Modularity in this sense acts as a buffer between

extreme change (chaos) and extreme steadiness (order); if we saw each regime as having a

probability of occurrence po, this buffer lowers the chaotic and order’s po, thereby raising
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the critical po. This is what we showed in past chapters: the critical region widens when

the network is modular, making the net more robust. So if the same applies to GRNs, we

could argue that in natural systems modularity has happened in order to allow information

to be transferred along time, being safely transmitted and computed in the critical region.

Modularity exists basically because solutions are re-used, whether they are efficient, optimal

or safe, but in long terms it is a good component for evolution.

We also exposed how both types of RBNs, the modular and the “typical” ones react to

small changes in initial conditions. The mRBNs clearly result less affected by these changes,

making them —if not fully predictable— at least less chaotic. As some comparative re-

sults have shown, modular RBNs almost behave as robust as isolated modules themselves,

reducing the damage spread along the whole meta-net.

The importance of weak links versus strong links is a relevant topic too. This is because

they remarkably influence in both making the nets more robust and broadening the critical

region. Chiefly in the statistics experiments 4.2.2 we exhibited how their presence influenced

the net’s properties. There also needs to be a balance between weak and strong links,

otherwise the general dynamics of the system can flow towards a more ordered state (with

no or few weak links) or towards a more chaotic state (with many weak links).

Complex systems are not easily understood and often, while trying to explain them, we run

into new properties and unanswered questions. That is why scientists at a given time have

to explore few aspects of them. It turns out that sometimes answering a question about a

model, also answers (or approaches) some aspect of a “real world” system.

Timescale is one of the main issues for understanding many processes of nature. Our senses

—and thus all our nervous system— have adapted to perceive events in a meso-timescale.
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Events that take seconds, hours, days or months, a few decades at most. That is why so

many natural events cannot be explained straight forward: we need time. Evolution is a

process that takes place not only in a thousand- or million year scale, but also at a micro

or nano second scale. In a way, the effects at a micro level also take place at a macro level.

I firmly agree that life is neither the result of randomness nor of pure chance, and it would

be (almost) impossible to randomly arrange a large number of molecules and have a fern

as a result, nor would it be likely that the outcome were a rock. Physical processes or

entities could be seen as simple, because they don’t serve any (apparent) purpose. A

falling rock will fall if dropped from above two meters. It would not be arguable to say

that the rock’s purpose is to fall, because there is no (apparent) goal on falling and there

is no way the rock can avoid falling. The rock is obliged to obey the law of gravity. Things

without a purpose are usually not designed, that is, there was no “thinking” behind them.

Certainly following a rule (or physical law) does not imply a design. In no way am I

trying to say that physical entities (which actually follow those laws) are not complex, but

they are there because that’s where the laws of Nature have driven them to. In a way we

could say that these physical things have life, a simple kind of life. Of course biological

entities are not excluded from following the laws of Nature; but in a way, living organisms

are always fighting against some natural or physical law. There is also computation at

another contextual level [Hopfield, 1994]; in other words, living systems do more (than

other systems, like artificial ones). Biological things will continue to change in order to

adapt to those rules imposed by Nature. If we now drop a bird, we would see that way

before it hits the ground, it would fly. The evident purpose here could be not to die. I

would say that not to die is the bird’s purpose within our timescale, but there is a purpose

at a larger timescale not always too evident: life. Life as the result of an apparent design

which always fights back to continue to exist. It is actually a blind design, it’s adaptation
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through trial and error.

One of the most complex systems we know of is the human mind. It is an entangled

intangible system whose output can either be tangible or intangible. This complex system

called mind is the result of many trials and many errors made by Nature that provides us

with consciousness to admire what surrounds us: Life!
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Appendix A

Code

The source code for the RBNLab, executions and plots can be found at http://rbn.sourceforge.net/.

http://rbn.sourceforge.net/
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Appendix B

Miscellaneous

B.1 Two to the twenty-five-thousandth

The result of computing 225,000 in R, was Inf . Both Maple and KCalc gave the actual

result of computing 225,000.

225,000 = 5.62200981577e+ 7525

B.2 Statistics experiments limitations

In order for this experiment to be statistical significant, many combinations of initial states

should be tested. Initially the nets were not limited to 20 nodes; they were in fact as big as

eighty or one hundred nodes. Although the simulations of the Statistics experiment began

in a later period than those of the Sensitivity to initial conditions experiments, the high

amount of processor time shortened both experiments. The basic idea of this experiment
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is to try many different networks, run them 10,000 time steps and save temporarily their

properties to gather statistical information. As mentioned earlier, there are
(

22K
N !

(N−K)!

)N
pos-

sible networks for given K and N , thus, using the first parameters N = 80 and, for instance

K = 2, that yields 101, 120; multiplied by the 10, 000 time steps we have 1, 011, 200, 000

and multiplied by the number of initial states each net was tested with, which was ≈ 2N ,

we have a total of more than 1, 222 quintillions (in the large scale), number extremely large

even for powerful computers.

B.3 Box plot and its components

In the box plot, the lower and upper quartiles of the data are shown by the top and

bottom of the rectangle, and the median is displayed by a horizontal line segment within

the rectangle (the median is Q(0.5)). Dashed lines extend from the end of the boxes to

adjacent values, defined as follows. The interquartile range is first computed, IQR =

Q(0.75) − Q(0.25). The upper adjacent value is defined as the largest observation which

is less than or equal to the upper quartile plus 1.5 × IQR. The lower adjacent value is

defined to be the smallest observation that is less than or equal to the lower quartile minus

1.5 × IQR. If any value yi falls outside the range of the two adjacent values, its value is

plotted as a single point; these are called “outliers”.

Percentile. The pth percentile Q(p) of a set of n measurements arranged in order of

magnitude is that value that has at most p% of the measurements below it and at most

(100 – p)% above it [Ott, 2001].

As stated in [Chambers et al., 1983], the box plot “gives a quick impression of certain

prominent features of the distribution”, for instance.

1. The median is shows the centre of the distribution.
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2. The spread of the bulk of the data (the central 50%) is seen as the length of the box.

3. The lengths of the dashed lines relative to the box show how stretched the tails of

the distribution are.

4. The outside values give a the opportunity to consider observations that seem unusual

or implausibly large or small. Outside values are not necessarily outliers, but any

outliers will appear as outside values.

Box plots also allow assessment of symmetry. If the distribution is symmetric, then the

box plot is symmetric about the median: the median cuts the box in two exact halves, the

upper and lower dashed lines are the same length and the outside values of top and bottom

are equal in number and symmetrically placed.
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