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INTRODUCTION

The purpose of this work is to study open-book fibrations on the sphere S5 as-

sociated to real analytic mappings with an isolated singularity, and show that in

many cases these open-books are new in singularity theory, in the sense that they

cannot come from holomorphic singularities.

An open-book decomposition of a manifold M consists of a submanifold L

of codimension 2 embedded in M with trivial normal bundle, together with a

locally trivial fibration of its complement, φ : M \ L → S1, which restricted to a

neighbourhood L ×D2 of L is of the form φ(x, t ) = t/‖t‖ with (x, t ) ∈ L × (D2 \ {0}).

The manifold L is called the binding of the open book and each fibre is called a

page. The concept of open-book was introduced by H. E. Winkelnkemper in [68]

and it has proved to be a very interesting concept in geometry and topology (see

for instance Winkelnkemper’s survey article [54]).

In the case of a holomorphic function with an isolated singularity, its Milnor

fibration gives an open-book decomposition of every small sphere around the

critical point. The binding is the link of the singularity and the pages are the

Milnor fibres.

If we let f : (Rn ,0) → (Rk ,0) be a real analytic germ with an isolated critical

point (or singularity) at the origin, andSn−1
ε is a sufficiently small sphere centred

at the origin, then the intersection L f = f −1(0)∩Sn−1
ε is an (n−k−1)-submanifold

of the sphere, called the link of the singularity. The link determines the topology

of the corresponding singular variety V = f −1(0) in the sense that given ε > 0

small enough, there is a homeomorphism between the pair
(
Bε,V ∩Bε

)
and the

pair
(
cone(Sε),cone(L f )

)
. In fact, up to diffeomorphism, the link is independent

xiii
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of the radius of the sphere and of the embedding of V inRn (see [17]). This invari-

ant, the link, was introduced by Brauner in [6] and later Kähler took it up in [24],

replacing the sphere by a polydisc. In fact, this innovation of using a “square

sphere” is now a standard technique in Singularity Theory and it is used in this

work in Chapter 3.

The Milnor Fibration Theorem is one of the main results in the study of the

topology of singularities. This theorem associates a locally trivial fibration to ev-

ery complex singularity:

Milnor Fibration Theorem ( [33, Th. 4.8]). Let f : (Cn ,0) → (C,0) be a complex

analytic germ with an isolated singularity at the origin, and let L f = f −1(0)∩S2n−1
ε

be its link, where S2n−1
ε is a (2n − 1)-sphere, centred at the origin, of radius ε

sufficiently small. Then

φ f =
f

| f | : S2n−1
ε \ L f →S1

is a C∞ locally trivial fibration.

As we mentioned above, the pair (S2n−1
ε ,φ f ) is an open-book; i.e., the sphere

S2n−1
ε can be seen as an open book where the binding is the link L f and the pages

are the fibres of φ f .

On the other hand, J. Milnor shows in [33] that some real analytic germs also

give rise to fibrations: Given a real analytic germ f : (U ⊂ Rn+k ,0) → (Rk ,0) such

that it is a submersion on a punctured neighbourhood U \{0} of the origin inRn+k ,

there exists a C∞ locally trivial fibration

ϕ : Sn+k−1
ε \ N (L f ) →Sk−1 ,

where N (L f ) is a small tubular neighbourhood of the link in the sphere Sn+k−1
ε .

The hypothesis of asking the origin to be an isolated critical point of f is now

called the Milnor condition. J. Milnor pointed out in [33, p. 100] that “the ma-

jor weakness [of the theorem] is that the hypothesis is so strong that examples

are very difficult to find” and asked “For which dimensions n +k ≥ k ≥ 2 do non-

trivial examples exist?”. A classification of the pairs (n,k) for which such examples

exists is given by E. Looijenga in [29] and by P. T. Church and K. Lamotke in [11].

In particular they proved that when k = 2, such examples exist for all n > 0. Fur-

ther examples were given later by N. A’Campo [1], B. Perron [47] and others (e.g.

E. Rees in [55]).
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Let us remark that even when the Milnor condition is satisfied, in general it

is not true that the projection ϕ can be given by f
‖ f ‖ as in the complex case; for

example, in [33, p. 99], Milnor presents a real polynomial function f with isolated

critical point at the origin, such that f
‖ f ‖ cannot be the projection of a smooth

locally trivial fibration.

The problem of giving conditions to ensure that the map f
‖ f ‖ is the projec-

tion of the Milnor fibration of a function f was first studied by A. Jacquemard

in [22], and then by J. Seade in [60] and [61]; M. Ruas, J. Seade and A. Verjovsky

in [57]; M. Ruas and R. N. A. dos Santos in [56]; J. L. Cisneros-Molina in [13];

R. N. A. dos Santos in [2], and others (e. g. [3, 12, 53]). In fact the results of [53]

and [12] are specially relevant for this work. In [53], A. Pichon and J. Seade prove

that given two holomorphic functions f , g : C2 →C such that f ḡ has isolated crit-

ical point, one has an associated Milnor fibration with projection map given by
f ḡ
| f ḡ | . And J. L. Cisneros-Molina, J. Seade and J. Snoussi in [12] define the concept

of d-regularity and prove that given a real analytic function f : Rn → Rk with an

isolated critical point is d-regular if and only if its Milnor fibration has projection
f

‖ f ‖ . Actually, the results in [53] and [12] hold in a more general setting that we do

not need for this thesis.

Now, one of the main challenges is to find examples which are sufficiently

controlled to give rise to a beautiful geometry; i.e., open-book decompositions,

but which, at the same time, do not come from the holomorphic context. For

example, consider the family of real analytic germs f : (C2 ∼= R4,0) → (C ∼= R2,0)

defined by f (x, y) = xp ȳ + x̄ y q with p, q ≥ 2. By [61], f has a Milnor fibration

with projection φ f = f
| f | . In [52] A. Pichon and J. Seade prove that the link L f is

isotopic to the link of the holomorphic germ g (x, y) = x y(xp+1 + y q+1), but the

open-book decomposition given by the Milnor fibration of f is not equivalent to

the one given by the Milnor fibration of g .

In this work we consider real analytic germs of the form:

F (x, y, z) = f (x, y)g (x, y)+ zr : (C3,0) → (C,0) ,

where f : (C2,0) → (C,0) and g : (C2,0) → (C,0) are holomorphic germs such that

f ḡ has isolated critical point at the origin. The study of this type of singularities is

inspired by [48–50], where A. Pichon studies Milnor fibrations associated to map-

germs of the form f + zr with f a holomorphic germ from (C2,0) to (C,0). In fact,
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in a way, this work can be regarded as an extension of A. Pichon’s method to the

case when the singularities are no longer holomorphic but of the form f ḡ + zr .

The main result of this work is that every germ F as above has a Milnor open-

book fibration on S5 and, although we show that LF is always homeomorphic

to the link of a normal complex surface singularity, these open-books are new in

Singularity Theory, i.e., we prove that in many cases (at least), these open-books

cannot be given by the Milnor fibration of a holomorphic germ G from (C3,0) to

(C,0).

We first give an explicit description of the link LF as a graph manifold. This is

done by means of the link L f ḡ and of the Milnor fibre associated to f ḡ . In fact,

we show that LF is always homeomorphic to the link of a normal complex surface

singularity.

Graph manifolds are a very important class of 3-manifolds, which were intro-

duced and classified by F. Waldhausen in [67]. A graph manifold is a 3-manifold

that can be decomposed as a union of Seifert manifolds, glued together along tori

S1 ×S1. The name comes from the fact that there is a very convenient combina-

torial description of a manifold of this type in terms of a graph, whose vertices

are the fundamental parts (Seifert manifolds) and (decorated) edges stand for

the description of the gluing of these pieces.

Given the aforementioned germ F , we also describe the homotopy type of its

associated Milnor fibre F in terms of the Milnor fibre F f ḡ associated to f ḡ .

We use two methods for showing that these open-books do not come from

complex singularities:

Different Binding: For some examples it is proved that there does not exist a

complex analytic germ G : (C3,0) → (C,0) with an isolated singularity at the

origin, such that the link LG is homeomorphic to the link LF , this is, LF

cannot be realised as the link of a singularity in C3 (although LF is the link

of a normal complex surface singularity). For this we use that the canoni-

cal class of a resolution of a hypersurface singularity must be integral, i.e.,

complex hypersurface singularities are numerically Gorenstein. We exhibit

germs F as above for which no complex singularity having LF as its link can

be numerically Gorenstein.

Different Pages: For some examples it is proved that if (X , p) is a normal Goren-



xvii

stein complex surface singularity whose link is homeomorphic to LF , then

this singularity cannot be smoothable, and therefore it cannot be realised

in C3. For this we use Laufer’s formula, which establishes a relationship

amongst numerical invariants that every smoothing of a hypersurface sin-

gularity must satisfy. We compute the corresponding invariants for the

singularities we envisage in this work, and show that (for certain families)

these do not satisfy the conditions imposed by Laufer’s theorem.

The thesis is organised as follows:

Chapter 1 presents well-known concepts and techniques used in the follow-

ing chapters. The first of them is the Milnor Fibration Theorem in the real case,

followed by a generalisation for real analytic d-regular functions with isolated

critical point given by J. L. Cisneros-Molina, J. Seade and J. Snoussi in [12]. In

this case the Milnor fibration gives an open-book on a sphere (with binding the

link of the singularity) as in the holomorphic case. Then, we recall the notions of

open-book and mapping torus, and give a way to construct an open-book from

the mapping torus of a diffeomorphism of a surface. We present the Seifert man-

ifolds and the Seifert invariants which determine a manifold of this type. Next we

define plumbing of disc-bundles and show how a Seifert manifold can be repre-

sented as the boundary of a plumbing graph. Then, we describe the monodromy

of the Milnor fibration of a holomorphic function f : C2 → C as a quasi-periodic

diffeomorphism beginning with a resolution graph of f , regarded as a plumbing

tree of the link L f , following the results of F. Michel and P. Du Bois (see for ex-

ample [15] and [14]). Finally we present classical results about the resolution of

complex surface singularities and the topology of their links.

Chapter 2 is devoted to the study of a special class of singularities whose

link is a Seifert manifold: Let p, q ∈ Z be coprime, let f : C2 → C be defined by

f (x, y) = xp + y q and let g : C2 → C be defined by g (x, y) = x y . We prove that the

function F = f ḡ + zr , where r ≥ 2, has an isolated critical point at the origin and

that both functions f ḡ and F have Milnor fibrations with projections f ḡ
| f ḡ | and F

|F |
respectively. It is shown that the link LF is a Seifert manifold and the Seifert in-

variants of LF are determined explicitly. We give two families of examples of this

type of singularities whose corresponding open-books cannot come from com-

plex singularities. In each case we use one of the two reasons aforementioned:

either the corresponding link LF cannot be realised in C3, or else, even if it does,
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the corresponding Milnor fibre cannot be homeomorphic to any smoothing of a

normal Gorenstein complex surface singularity.

The main objective in Chapter 3 is the explicit description of the link LF in

the general case; that is, F = f ḡ + zr , where f , g : (C2,0) → (C,0) are holomorphic

germs such that f ḡ has isolated critical point at the origin. Firstly it is proved that

there is an open-book fibration on LF and that the corresponding monodromy is

a quasi-periodic diffeomorphism. For this we use a complete invariant of the

conjugation class in the mapping-class group of the diffeomorphisms of a sur-

face: the Nielsen graph. Generalising A. Pichon’s results (see for example [50]

and [49]), it is established the relation between the resolution graph of a function

and the Nielsen graph of a quasi-periodic diffeomorphism, weighted by the asso-

ciated Nielsen invariants. Next, it is recalled the notion of graph manifold and it

is presented the Waldhausen graph of a plumbing link (M ,L) where M is a graph

manifold and L ⊂ M is a disjoint union of Seifert fibres. Finally, given a quasi-

periodic diffeomorphism h of a surface, which is the identity at the boundary of

the surface, it is described an isomorphism between the Nielsen graph of h and

the Waldhausen graph of the pair (M ,L), where M is the open-book constructed

from the mapping torus of h and L is the corresponding binding. These results

enable us to describe the monodromy of the Milnor fibration of the function f ḡ

as a quasi-periodic diffeomorphism and then we give explicitly the correspond-

ing Nielsen graph. In this way one gets a description of the monodromy of the

open-book LF in terms of the monodromy of the Milnor fibration of f ḡ , and a

description of the link LF by its Waldhausen graph. A basic references for this

chapter are W. Neumann [39] and A. Pichon [48].

In Chapter 4, following L. H. Kauffman and W. Neumann [25] and W. Neu-

mann [38], it is given a description of the link LF as a cyclic suspension of the link

L f ḡ , using the notion of fibred knot and the associated open-book: a fibred knot

(Sn ,L) gives an structure of open-book for Sn and vice versa. Then it is proved

that the function F has Milnor fibration with projection F
|F | and the homotopy

type of the Milnor fibre F of F is described as the join of the associated Milnor

fibre to f ḡ and r points. Moreover, the monodromy of the Milnor fibration of F

is the join of the monodromies of the Milnor fibrations of f ḡ and zr . To end the

chapter we show some examples which give new open-books. We do so using the

same two types of reasons as for the families in Chapter 2.



CHAPTER 1

PRELIMINARIES

In this chapter we introduce the basic definitions and results used in the follow-

ing chapters. We start with the definition of link of a singularity, which is a key

concept in this work, later we present one of the main theorems in the study

of the topology of a singularity: the Milnor fibration theorem for real functions

(polynomials and analytic) which says that under some conditions the comple-

ment of the link of a singularity fibres over S1.

Moreover, the Milnor fibration theorem gives an open-book fibration of the

corresponding sphere with the link of the singularity as binding; such concepts

are given together with the concept of mapping torus of a diffeomorphism, which

allows us to construct open-books.

In order to give a description of the link of some singularities presented in

Chapter 2, we present briefly an important class of 3-manifolds: the Seifert mani-

folds. They also appear as the boundary of some 4-manifolds obtained by plumb-

ing 2-disc bundles over the sphere S2. In fact, such a 4-manifold can be repre-

sented via a plumbing graph.

Later, we will see that the resolution graph corresponding to a resolution of

a singularity can be seen as a plumbing graph and it gives a very useful way to

describe the monodromy of the Milnor fibration associated to the singularity.

1
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2 CHAPTER 1. PRELIMINARIES

1.1 Link of a singularity

In this section we present a useful tool to study the topology of a singularity: the

link and its conic structure. All the results presented here are due to Milnor in [33]

for the case of real and complex polynomial functions with isolated singularity

and we also give the corresponding versions for real analytic functions in more

generality (see for example [8]).

1.1 Proposition. Let f : (Rn ,0) → (Rk ,0) be a real analytic germ such that the ori-

gin is an isolated critical point of f . Then there exists ε> 0 small enough such that

f −1(0) intersects transversely S
ε′ for all 0 < ε′ ≤ ε, where S

ε′ is a sphere centred at

the origin with radius ε′.

In the previos result, “small enough” means that, in the closed ball Bε, the

origin is the unique critical point of f and of the distance function to the origin.

This result can be proved using the Curve Selection Lemma for real analytic

functions (see [8, Prop. 2.2]). The polynomial case of Proposition 1.1 appears in

the proof of [33, Cor. 2.9], which is the polynomial version of the following result.

1.2 Corollary. Let ε > 0 and S
ε′ be as above. The intersection f −1(0)∩S

ε′ is a

manifold (possibly empty) of codimension k +1, for all 0 < ε′ ≤ ε.

1.3 Definition. Let f and ε> 0 be as in Proposition 1.1. LetSε be a sphere centred

at the origin with radius ε. Let Lε be defined by

Lε = f −1(0)∩Sε .

The manifold Lε is called the link of the singularity.

1.4 Definition. Let X be a topological space. The cone C (X ) over X is the quo-

tient

C (X ) = I ×X /({0}×X ) .

The following result appears as [33, Th. 2.10] for V defined by real or complex

polynomial functions with isolated singularity.

1.5 Theorem ( [8, Lemma 3.2]). Let f and ε> 0 be as in Proposition 1.1. Then the

intersection f −1(0)∩Bε is homeomorphic to the cone over Lε. Moreover, the pair

(Bε,Bε∩ f −1(0)) is homeomorphic to the pair (C (Sε),C (Lε)).
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1.6 Corollary. Given ε> 0 as in Theorem 1.5, the diffeomorphism type of the link

Lεis independent of ε.

1.7 Definition. Let ε> 0 be as in Theorem 1.5, the ball Bε centred at the origin is

called a Milnor ball for f .

In the sequel we will denote the link of a singularity by L or L f .

Moreover, the link L is independent of the embedding of f −1(0). This is a fact

well known in the folklore of Singularity Theory and usually the reference is [17].

However, in this work, Durfee proves the result for algebraic and semialgebraic

sets and it is only mentioned for analytic sets. For completeness, here we repro-

duce the proof in the case of analytic sets, which is basically the same but using

the Curve Selection Lemma for analytic sets (see [8, Prop. 2.2]).

1.8 Definition. Let M be an analytic set inRn and let X ⊂ M be a compact analytic

set with M \ X nonsingular. An (algebraic) rug function for X in M is a proper

polynomial function α : M →R such that α(x) ≥ 0 for x ∈ M and α−1(0) = X .

By [17, Cor. 1.3], any set X as above has a rug function and a rug function has

a finite number of critical values (see [17, Lemma 1.4]).

1.9 Definition. Let M and X be as in Definition 1.8. A subset X ⊂ T ⊂ M is an

algebraic neighbourhood of X in M if T = α−1([0,δ]) for some rug function α

and some 0 < δ such that δ is smaller than nay critical value of α.

1.10 Example. Let f : Rn → Rk an analytic function with isolated singularity at

the origin. Let M = f −1(0) and let X = {0}. Take the rug function α : M → R de-

fined by

α(x) = |x|2 ,

then the link L f is the boundary of the algebraic neighbourhood

Bε = Tε =α−1([0,ε]) .

1.11 Proposition (Uniqueness of algebraic neighbourhoods). Let T1 and T2 be

algebraic neighbourhoods of X in M. Then there is a continuous family of homeo-

morphisms ht : M → M for 0 ≤ t ≤ 1 such that

a) h0 is the identity on M;
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b) for all t , ht |X is the identity on X ;

c) h1(T1) = T2, and h1 is a smooth diffeomorphism of T1 \ X onto T2 \ X .

In the proof it is used the following result, which can be found in the polyno-

mial case as [33, Cor. 3.4].

1.12 Lemma. There is a neighbourhood U of X in M such that gradα1 and gradα2

are nonzero and do not point in opposite directions on U \ X .

Proof. Let Y be the semianalytic set defined by

Y = {x ∈ M \ X | gradα1(x) 6= 0,gradα2(x) 6= 0 and they point in opposite directions}

= {x ∈ M \ X | 〈gradα1(x),gradα2(x)〉 < 0}

∩ {x ∈ M \ X | gradα1(x) = γgradα2(x),γ> 0} .

It is sufficient to show X is not in the closure of Y , so let us assume it is. Then, by

the Curve Selection Lemma (see [8, Prop. 2.2] or [33, Lemma 3.1] for the algebraic

case), there is a real analytic curve β : [0,ε) → M with β(0) ∈ X and β(t ) ∈ Y for all

t > 0. Notice αi (β(0)) = 0 and αi (β(t )) > 0 for all t > 0, then near t = 0, αi (β(t )) is

an increasing function of t , so

dαi (β(t ))

d t
=

〈
gradαi ,

dβ(t )

d t

〉
> 0 .

However, gradα1 = γgradα2(x) with γ> 0, which is a contradiction.

Proof of Proposition 1.11. Letα−1
1 ([0,δ1]) andα−1

2 ([0,δ2]) be two algebraic neigh-

bourhoods of X in M for some rug functions α1 and α2 and without loss of gen-

erality let us assume δ1 < δ2. If α1 =α2, one can “push” α−1
2 ([0,δ2]) to α−1

1 ([0,δ1])

by a standard technique in Morse Theory (see [31, Th. 3.1]).

Let α1 6= α2. Let U be the neighbourhood of X in M given by Lemma 1.12.

Let δ′2 > 0 be such that α−1
2 ([0,δ′2]) ⊂U and let δ′1 > 0 be such that α−1

1 ([0,δ′1]) ⊂
α−1

2 ([0,δ′2)).

By the first part of the proof, α−1
i ([0,δi ]) and α−1

i ([0,δ′i ])) are isotopic for i =
1,2. Hence it is sufficient to prove that α−1

1 ([0,δ′1]) and α−1
2 ([0,δ′2]) are isotopic.

Let S ⊂ M be the set defined by

S =α−1
2 ([0,δ′2]) \α−1

1 ([0,δ′1))
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and let f : S → [0,1] be defined by

f (x) = α1(x)−δ′1(
α1(x)−δ′1

)+ (
δ′2 −α2(x)

) .

Note that f −1(0) = α−1
1 (δ′1), f −1(1) = α−1

2 (δ′2), the denominator of f is never zero

in S and f is proper. The gradient of f is given by

grad f =

gradα2
(
α1(x)−δ′1

)+gradα1
(
δ′2 −α2(x)

)
[(
α1(x)−δ′1

)+ (
δ′2 −α2(x)

)]2

 ,

then f has no critical value since gradα1 and gradα2 are nonzero and never point

in opposite directions on U \ X by Lemma 1.12. Let v be a vector field on S, which

is projected under the derivative of f to the vector field ∂
∂t on [0,1]. Integrating v

gives the required isotopy ht .

1.13 Corollary. The algebraic neighbourhood of X in M is independent of the em-

bedding of M in Rn .

Then, the link L f is independent of the embedding of f −1(0) in Rn .

1.2 Milnor fibration

In this section we will present a main result and starting point of Singularity The-

ory: Milnor fibration theorem. As we mentioned before, this result states that the

complement of a tubular neighbourhood of the link of a singularity fibres over

S1. We restrict our attention to the real case, which was presented by Milnor

in [32] and [33] for real polynomials with isolated critical point. Later we present

a generalisation by Cisneros-Molina, Seade and Snoussi in [12]for real analytic

functions under some conditions.

Let f : Rn → Rk be a polynomial function such that f (0) = 0 and which satis-

fies

1.14 Hypothesis (Milnor Condition). There exists a neighbourhood U of the ori-

gin in Rn such that the matrix (∂ fi /∂x j ) has rank k for all x ∈U with x 6= 0.

1.15 Theorem ( [33, Th. 11.2]). Set k ≥ 2. The complement of a tubular neigh-

bourhood of L f inSn−1
ε is the total space of a smooth fibred bundle over the sphere
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Sk−1, where each fibre is a compact (n −k)-manifold F such that the boundary

∂F is diffeomorphic to L.

In the proof of this theorem, Milnor uses the following concept and results.

1.16 Definition. Let ε> 0 be as in Theorem 1.5 and let 0 < δ¿ ε be small enough.

Let N (ε,δ) be the intersection

f −1(∂Dδ)∩Bε ,

where Bε is the closed ball centred at the origin of radius ε. The manifold N (ε,δ)

is called the Milnor tube of f in Bε.

1.17 Definition. Let ε> 0 and 0 < δ¿ ε as in the previous definition. Let N̂ (ε,δ)

be the intersection

f −1(Dδ)∩Bε .

The setp N̂ (ε,δ) is called the solid Milnor tube of f .

1.18 Lemma ( [33, Proof of Lemma 11.2]). The restriction of f to N̂ (ε,δ)\ f −1(0) is

the projection map of a locally trivial fibration over Dδ \ {0}.

The main idea is to take the restriction to the Milnor tube N (ε,δ) of this locally

trivial fibration and “to inflate” it on the sphere Sε using the next result.

1.19 Theorem ( [32, Th. 1]). Let ε> 0 as in Theorem 1.5 and let N̂ (ε,δ) be the solid

Milnor tube of f in Bε. Then N̂ (ε,δ) is homeomorphic to Bε under a homeomor-

phism which leaves the intersection

f −1(0)∩Bε = f −1(0)∩ N̂ (ε,δ)

pointwise fixed.

In his book ( [33, p. 100]), Milnor comments that the major weakness of The-

orem 1.15 is that Hypothesis 1.14 is so strong that it is very difficult to find exam-

ples, except those that come from holomorphic maps. This raises the problem of

finding dimensions 2 ≤ k ≤ n for which such examples exist (see for example [11]

and [29]).

The proof of Theorem 1.15 only ensures the existence of a projection map giv-

ing a fibration, but unlike the complex case, it gives no explicit construction. In
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other words, in the real setting, there is no a priori reason to expect the projection

to be the canonical map f /‖ f ‖ as in the complex case (see [57]).

Let us now present a generalisation of Theorem 1.15 for real analytic func-

tions with isolated critical point and satisfying the condition to be d-regular (see

Definition 1.21). For a function f of this type, the Milnor fibration will be indeed

f /‖ f ‖.

Let U be an open neighbourhood of 0 ∈ Rn with n > 1, Let k ≤ n and let

f : (U ,0) → (Rk ,0) be an analytic map defined on U with isolated critical point

at 0.

Let Bε be a closed ball in Rn , centred at 0, of sufficiently small radius ε, so that

every sphere in this ball, centred at 0, meets transversely f −1(0), if f −1(0) is not

an isolated point at the origin. Such a ball exists by Theorem 1.5.

One can define a family of real analytic spaces as follows.

For each ` ∈ RPk−1, consider the line L` ⊂ Rk passing through the origin

corresponding to `, let f |Bε be the restriction of f to the ball Bε and set X` =
f |−1
Bε

(L`).

Let L ⊥
`

be the hyperplane orthogonal to L` and let π` : Rk → L ⊥
`

be the or-

thogonal projection. Set h` =π`◦ f |Bε , then X` is the vanishing set of h`, which is

real analytic. Hence {X`} is a family of real analytic hypersurfaces parametrised

by RPk−1.

The set of critical points of h` is contained in the set of critical points of f |Bε
(see [12, Lemma 2.1]). As f has isolated critical point at the origin, h` has the

origin as its only critical point.

1.20 Definition. The family {X` | ` ∈RPk−1} is called the canonical pencil of f .

The following condition implies that the projection of the Milnor fibration of

f is the canonical map f /| f |.

1.21 Definition. The map f is said to be d-regular at 0 if there exists a metric µ

induced by some positive definite quadratic form and there exists ε′ > 0 such that

every sphere (for the metric µ) of radius ε≤ ε′ centred at 0 meets every X`\ f −1(0)

transversely whenever the intersection is not empty.

1.22 Example. Let f : (Cn ,0) → (C,0) be a complex analytic germ. By [33, Lemma 4.2]

and [8, Th. 2.1], f is d-regular for the usual metric.
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1.23 Example. Let f : (C2,0) → (C,0) and g : (C2,0) → (C,0) be two complex an-

alytic germs such that the real analytic germ f ḡ : (C2,0) → (C,0) has an isolated

critical value at 0 ∈ C. The map f ḡ is d-regular at 0 for the usual metric (see [53,

Th. 5.3 and Th. 5.8]).

The following result follows from [12, Th. 5.3], [12, Cor. 5.4] and the proof of

[33, Th. 11.2].

1.24 Theorem (Fibration Theorem). Let f : (Rn ,0) → (Rk ,0) be a real analytic

germ with isolated critical point. Let εÀ δ > 0 be such that there exists a locally

trivial fibration

f : N (ε,δ) → ∂Dδ

from the Milnor tube to ∂Dδ. Then f is d-regular if and only if the map

φ f =
f

| f | : Sn−1
ε →S1

is a locally trivial fibration, which is equivalent to the fibration on the Milnor tube.

1.25 Remark. In fact, Theorem 1.24 appears in [12] in more generality than here.

It also holds for d-regular real analytic functions with isolated critical value, which

satisfy the Thom a f -condition. Then, Hypothesis 1.14 is a sufficient condition in

order to have Milnor fibration but no a necessary condition.

1.3 Mapping torus and open-book fibrations

The fibration seen in the past section is, in fact, an open-book fibration; concept

presented in this section. The formal definition was introduced by Winkelnkem-

per in [68] and has become an important concept (see for example [54, Appendix]).

Open books allow to describe an arbitrary closed manifold in terms of lower di-

mensional ones.

As a way to construct an open-book, it is presented also the concept of map-

ping torus of a diffeomorphism.

1.26 Definition ( [62, Def. 5.1]). Let M be a smooth closed n-manifold and let N

be a codimension 2 submanifold of M with trivial normal bundle. Let

π : M \ N →S1

be a map such that
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- π is a locally trivial fibration and

- given a tubular neighbourhood of N diffeomorphic to N ×D2, the restriction of

π to N × (D2\{0}) is the map (x, y) 7→ y/||y ||.

The map π is called an open-book fibration of M , N is called the binding and

the fibres of π are called the pages. The pair (M ,π) is called an open-book.

It follows that the pages are all diffeomorphic and each page F can be com-

pactified by attaching the binding N as its boundary, thus getting a compact

manifold without boundary.

Also, since the base of the fibration is the circle S1, one can lift a non-zero

vector field on S1 to an integrable vector field v on M \ N which is transverse to

the fibres. Following the flow lines of the vector field v , one can define a “first

return map” as follows:

Let Fλ be the fibre π−1(e iλ). Given p ∈F0, let αp be the flow line of v passing

through p and let pλ ∈Fλ be the point such that (αp )(t ) = pλ for some t ∈R+. We

define a diffeomorphism hλ : F0 →Fλ by hλ(p) = pλ.

1.27 Definition. The map h = h2π is called the monodromy of the open-book

fibration π and it is well defined up to isotopy.

One can think of the monodromy of an open-book fibration as the isotopy

class [h] of the first return map h. Since all the pages have N as boundary, it

follows that h extends as the identity on N .

One can obtain open-book fibrations in the following way:

Let V be a compact (n −1)-manifold with ∂V 6= ; and let h : V → V be a dif-

feomorphism such that h|∂V = i d .

1.28 Definition. The mapping torus T (h) of h is the quotient of the product V ×
[0,1] by the equivalence relation (x,1) ∼ (h(x),0).

In the case V is oriented, then T (h) is oriented by the orientation of V fol-

lowed by the usual orientation of [0,1] (the order is unimportant).

Then, the mapping torus T (h) has boundary ∂V ×S1. Letλ ∈S1, then ∂V ×{λ}

is the boundary of a (n − 1)-manifold Vλ ⊂ T (h) diffeomorphic to V (See Fig-

ure 1.1).
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V
T (h)

Vλ

Figure 1.1: The manifold V = [0,1] and the mapping torus T (h) with h = i dV .

Now let us “fill” the boundary of T (h): Let

O (h) = T (h)
⋃

∂V ×S1

(∂V ×D2)

be the union of T (h) and (∂V ×D2) identified with the identity on (∂V ×S1). Let

N = (∂V ×{0}) ⊂ (∂V ×D2). The manifold O (h) is of dimension n and the manifold

N ⊂ M is of codimension two in M (see Figure 1.2).

T (h)

V Vλ

⋃ =

Vλ

O (h)

Figure 1.2: The mapping torus T (h) and the manifold O (h) for h = i dV with V =
[0,1].

Let λ ∈S1 and let [0,λ] ⊂D2 be the ray going from the origin to λ. Let

Fλ =
(
∂V × (0,λ]

) ⋃
{∂V ×λ}

Vλ

and let

π : (O (h) \ N ) →S1
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be such that π(Fλ) =λ (see Figure 1.3).

Fλ′Fλ

O (h)

N

Figure 1.3: The manifolds O (h), N and Fλ.

The map π is an open-book fibration of O (h) with binding N and pages Fλ

with λ ∈S1.

1.4 Seifert manifolds

In this section we present a class of 3-manifolds constructed by Seifert in [64]

which are very important for this work. In Chapter 2, we describe the links of

some singularities as Seifert manifolds and in Chapter 3, we present a type of 3-

manifolds which can be decomposed as union of Seifert manifolds. There are

many references in this subject, for example, [23], [45], [36] and [65].

In this work only oriented 3-manifolds will arise. Thus from now on all Seifert

manifolds are oriented.

1.29 Definition. A Seifert fibration is a triplet (M ,B ,π) where M is an oriented

compact 3-manifold, B is an orientable surface and π : M → B is “almost” a lo-

cally trivial fibration with fibre S1; more precisely, for every x ∈ B , there exists a

neighbourhood D2
x of x and an orientation preserving diffeomorphism h : D2

x ×
S1 →π−1(D2

x) such that the composition

π◦h : D2
x ×S1 →D2

x
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is defined by

π◦h(sλ1,λ2) = sλα1λ
β∗
2

where a point in D2 is given in its polar coordinates s ∈ [0,1] and λ1 ∈S1; λ2 ∈S1,

α ∈Z+, β∗ ∈Z and gcd(α,β∗) = 1. Also M is called a Seifert manifold.

Thanks to a theorem of Epstein (see [19]), a 3-manifold M is a Seifert manifold

if and only if M admits a foliation in circles and one can obtain a fixed-point free

action ofS1 such that the orbits of the action coincide with the fibres of π; i.e., for

all x ∈ M , there exist λ ∈S1 such that

λ · x 6= x

and the orbit of x is the fibre π−1(y) for some point y ∈ B ; i.e., the surface B can

be regarded as the orbit space of the S1-action.

The S1-action on M induces an orientation on each orbit. Together with the

orientation of M , this induces an orientation of B and of each local section of π,

in such a way that the orientation of a local section followed by the orientation of

the orbits gives the orientation of M .

Given anS1-action, regarded as a homeomorphismS1 → Aut (M), the kernel

can only be either the trivial group, a cyclic group Zσ with σ ≥ 2 or S1 itself. In

our case, the kernel cannot beS1 since the action is fixed-point free. If the kernel

is the trivial group, then the action is effective and in this case we say that an orbit

(i.e., a fibre) is exceptional if its isotropy subgroup is non-trivial, which is a finite

cyclic subgroup of order σ≥ 2.

Now, if the kernel is a cyclic group Zσ with σ ≥ 2, the induced action of the

quotient S1�Zσ (which is homomorphic to S1) is effective, then we define an

exceptional orbit in the same way as above.

As M is compact, the surface B is itself compact and by [23, Prop. 1.3] there

are a finite number of exceptional orbits.

Let p ∈ B such that O =π−1(p) is an exceptional orbit, one can choose a small

disc D around p such that π−1(D), which is an union of orbits, is a tubular neigh-

bourhood of O. Let us take the orientation preserving diffeomorphism h from

π−1(D) to the mapping torus

D2 × [0,1]/(ρ(x),0) ∼ (x,1)

of a rotation ρ of order α on the oriented 2-disc D2 = {z ∈ C | |z| ≤ 1}, sending

orbits to orbits and preserving their orientations.
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1.30 Definition. A disc h−1(D2 × {t }) is called a slice of O, with t ∈ [0,1] fixed.

As h−1(D2 × {t }) is a local section of π, the previous choices of orientation in-

duce an orientation of D2. Then the angle of the rotation ρ is well defined.

An exceptional fibre is determined by some invariants in the following way:

Suppose that the rotation angle on the 2-disc is equal to 2πβ∗/α with

gcd(α,β∗) = 1. Let β be any integer such that ββ∗ ≡ 1 (mod α). The pair (α,β) is

an invariant of the exceptional orbit. See [36, pages 135-140] for more details.

Let now p1, . . . , ps ∈ B be the points corresponding to the exceptional orbits

O1, . . . ,Os ∈ M respectively and let D1 . . . ,Ds be disjoint open discs in B , such that

Di is a neighbourhood of the point pi . Let Ti = π−1(Di ). The choice of βi in its

residue class (mod αi ) is related to the choice of a section near the exceptional

orbit Oi as follows: we can find oriented curves Hi and Qi in the boundary ∂Ti

such that Hi is a fibre in M , Qi ·Hi = 1 on ∂Ti and Ri ∼αQi +βHi on H1(∂Ti ,Z),

where Ri is a suitably oriented meridian of Ti .

Now let M̂ = M\
(∪ T̊i

)
where T̊i is the interior of Ti . Let Vi be a fibred solid

torus with Qi as meridian (see [36, Ex. 4.2.1]) and let

M ′ = M̂ ∪Vi

where each Vi is attached to ∂Ti ⊂ M̂ . Then M ′ has no exceptional fibres because

the meridian of Vi is Qi which is homologous to Qi +0 ·Hi on H1(∂Vi ,Z).

Thus M ′ is a locally trivial S1-fibration with Euler class e where the curves Qi

determine a local section for each disc Di and e can be seen as the obstruction

to extend these local sections to a global section S on M ′. Thus the integers e

and β1, . . . ,βs depend on the choice of the section S , but the rational number

e0 = e −∑
βi /αi , called the rational Euler class of the Seifert fibration, does not.

1.31 Definition. The pair (α,β) is called normalised if a section is chosen in such

a way that 0 <β<α.

1.32 Definition. The (normalised) Seifert invariants of M consists of the data :(
g ; e0; (α1,β1), . . . , (αs ,βs)

)
where g ≥ 0 is the genus of the surface B , e0 is the rational Euler class and 0 <
βi <αi .
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The rational Euler number has the property of functoriality (see [23, Th. 3.3]

or [40, Th. 1.2]):

1.33 Proposition. Let π1 : M1 → B1 and π2 : M2 → B2 be Seifert fibrations. Assume

there exists a map f such that the diagram

M1

π1

��

f // M2

π2

��
B1

f̃ // B2

commutes, deg( f̃ ) = m and deg( f | f i br e ) = n. Then

e0(M1
π1−→ B1) = m

n
e0(M2

π2−→ B2) . (1.34)

1.5 Plumbing

In this section we describe a method to construct manifolds “gluing” disc bun-

dles; in particular we are interested in the construction of 4-manifolds gluing 2-

disc bundles over 2-manifolds. We present a result describing a Seifert manifold

as the boundary of some manifolds obtained in this way and the use of this con-

cept allows us in Section 1.6 to describe the monodromy of the Milnor fibration

of a singularity.

As Bredon in [7, Ch. VI, Sect. 18] and Hirzebruch and Neumann in [21, § 8], we

will first describe plumbing in arbitrary dimensions before going into more detail

in the case of our interest, namely plumbing of 2-disc bundles over 2-manifolds.

Let ξ= (E , p, M) andκ= (E ′, p ′, N ) be two smooth n-disc bundles over smooth

n-manifolds M and N . Around any given point of M there is a neighbourhood

A ∼=Dn and a trivialisation

ζ : E A → (Dn ×Dn)

where E A is the total space of the bundle ξ restricted to A, such that the following

diagram commutes:

E A
∼= //

p
��

Dn ×Dn

p2

��
A

∼= // Dn

where p2(x, y) = x is the projection on the second coordinate.
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Similarly, let B ∼=Dn a neighbourhood of a point in N and take a trivialisation

η : E ′
B → (Dn ×Dn).

Let χ : (Dn×Dn) → (Dn×Dn) be defined by the change of factors χ(x, y) = (y, x)

and let ϑ : E ′
B → E A be the composition given by

ϑ : E ′
B

η // (Dn ×Dn)
χ // (Dn ×Dn)

ζ−1
// E A

1.35 Definition. The plumbing of E and E ′ is defined as the identification

P 2n : E
⋃
ϑ

E ′ .

Note that the identification ϑ matches the base of one bundle with the fibre of

the other (see Figure 1.4).

P 2n
E

E ′

Figure 1.4: Plumbing P 2n of E and E ′.

The space P 2n is a topological 2n-manifold with boundary and is close to be-

ing a smooth manifold, but it has “corners”. There is a canonical way to smooth

these corners and so to produce P 2n as a smooth manifold (see [34, p.86-87]

and [21, § 8]).
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We will describe how to plumb several bundles together according to a finite

tree (more generally a connected graph)

Let T be a connected graph. For each vertex in T one takes a n-disc bundle

overSn , a plumbing of two bundles is made if and only if there is an edge joining

the corresponding vertices.

If several edges of T meet in one vertex v , one chooses the corresponding

neighbourhoods in Sn to be disjoint. A theorem of Thom (see [35, Th. 1.1]) as-

sures that the plumbing is independent of the choice of these neighbourhoods.

1.36 Example. Given the graph T in Figure 1.5, let us take a trivial 1-disc bundle

overS1 for each vertex in T and make the plumbing of two of them when there is

an edge in T joining the corresponding vertices.

Figure 1.5: Graph T , where each vertex represents a trivial 1-disc bundle of S1.

Let P 2(T ) be the result of the plumbing (see Figure 1.6).

Figure 1.6: Plumbing P 2(T ) according to the graph T .
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We will now restrict to the case in which the bundles are 2-disc bundles over

2-manifolds.

Let T be a connected graph weighted in each vertex v by two integers: ev and

gv ≥ 0. Let ξv be a 2-disc bundle with Euler class ev over the surface of genus

gv and let P 4(T ) be the 4-manifold with boundary obtained by the plumbing ac-

cording to T ; i.e., to plumb two bundles ξv and ξv ′ when there is an edge in T

joining the corresponding vertices v and v ′.

1.37 Example. Let E8 be the graph in Figure 1.7 weighted at each vertex with −2

(see [21, p. 61,62]). The other weight is not written because it is equal to zero,

then we consider −2 as the Euler class of the 2-disc bundles taken for each vertex

in T ; i.e., we take a 2-disc bundle over the sphere S2 for each vertex in T .

−2 −2
−2

−2 −2 −2 −2

−2

Figure 1.7: Graph E8.

Figure 1.8 presents schematically the plumbing according the graph E8.

Figure 1.8: Plumbing P 4(E8) according to the graph E8.

In fact, the boundary of the manifold P 4(E8) is the Poincaré sphere (see [26,

Desc. 1, p.114]).
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A plumbing graph Γ is a connected graph representing a plumbing. In order

to be more precise talking about graphs, it is important to have the following

concepts:

1.38 Definition. Let Γ be a plumbing graph and let v be a vertex of Γ. The valence

of v is the number of edges ending at v .

1.39 Definition. Let Γ be a plumbing graph. A rupture vertex in Γ is a vertex with

valence n ≥ 3.

1.40 Definition. Let Γ be a plumbing graph. A bamboo ended by a vertex of

valence 1 in Γ is a chain of vertices joined by edges such that all the vertices have

valence 2 except the first one, which is a rupture vertex, and the last one, which

has valence 1 (Figure 1.9).

Figure 1.9: A bamboo ended by a vertex of valence 1.

1.41 Definition. Let Γ be a plumbing graph. A bamboo joining two rupture ver-

tices in Γ is a chain of vertices joined by edges such that all the vertices have va-

lence 2 except the first and the last one, which are rupture vertices (Figure 1.10).

Figure 1.10: A bamboo joining two rupture vertices.

As in [40, Th. 5.1], given b1, . . . ,bk ∈Z, we use the following notation:

[b1, . . . ,bk ] = b1 −
1

b2 −
1

. . .

−
1

bk

(1.42)
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1.43 Theorem ( [40, Th. 5.1]). Let P (Γ) be the 4-manifold obtained by plumbing

according to the following plumbing graph Γ:

−e

−e1,1 −e1,2 −e1,s1

−e2,1 −e2,2 −e2,s2

−em,1 −em,2 −em,sm

Γ=
[g ]

where one takes a 2-disc bundle over a surface of genus g with Euler class −e for

the rupture vertex of Γ and a 2-disc bundle over S2 with Euler class −ei , j for the

other vertices of Γ (with 1 ≤ i ≤ m, 1 ≤ j ≤ si ).

Then M(Γ) = ∂P (Γ) is a Seifert manifold. Moreover, if M(Γ) admits a Seifert

structure with orientable base, the Seifert invariants of M(Γ) are given by(
g ;−e −

m∑
i=1

βi

αi
; (α1,β1), . . . , (αm ,βm)

)
where αi

αi−βi
= [ei ,1, . . . ,ei ,si ] and ei , j < 2 for all i , j .

1.6 Resolution of curves and monodromy

In this section we will see the monodromy of the Milnor fibration of a complex

analytic function with isolated singularity as a quasi-periodic diffeomorphism

using a resolution of the singularity as is made in [15, 1.2 to 1.11]. For this, we will

describe the sphere S3 as the boundary of a plumbing.

Let f : C2 →C be a holomorphic reduced germ with isolated singularity at the

origin and let V = f −1(0). Let U be a neighbourhood of the origin in C2 and let

π : W →U be a resolution of V at the origin, given by a finite number of blow-ups

in points.

1.44 Definition. Let Ê = π−1(0) ⊂ π−1(U ), it is called the exceptional divisor of

π. Let Ẽ0 ⊂π−1(U ) be the adherence of the complement of Ê in π−1
(

f −1(0)∩U
)
,

Ẽ0 is called the strict transform of f −1(0). Let us denote by Ei the irreducible

components of Ê , with i = 1, . . . ,k.
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Let 0 < i ≤ k, at each point p ∈ Ei of Ê there exists some local coordinates

(u, v) centred at p such that u = 0 is a local equation of Ei and, locally,

( f ◦π)(u, v) = umi ι(u, v) (1.45)

where ι is an unity in the ring of convergent power seriesC{{u, v}}. After perform-

ing a change of coordinates, one can assume that ι= 1.

Each irreducible component Ei of Ê is non-singular and Ê has normal cross-

ings; i.e., if i 6= j , Ei intersects E j in at most one point where they meet trans-

versely and no three components of Ê intersect. Also Ê ∩ Ẽ0 is a normal crossing

(see Figure 1.11).

1.46 Definition. Let pi , j be the intersection Ei ∩E j when this intersection is not

empty. A point p ∈ Ei is called smooth if p ∉ E j for any j 6= i .

1.47 Definition. Let 0 < i ≤ k, the order mi of f ◦π in a small neighbourhood of

a smooth point of Ei is called the multiplicity at Ei .

Let b the number of branches of f . If the neighbourhood U is small enough,

Ẽ0 consists of b curves transverses to Ê . Let bi the number of branches of f inter-

secting Ei . As f is reduced, the multiplicity m0 at each component of Ẽ0 is equal

to one.

We choose an open neighbourhood of Ei such that it is a fibration of discs

with base Ei The fibres of this fibration are called the fibres of Ei .

Ẽ0

ÊEi

(mi )

Ei+1

(mi+1)

Ei+2

(mi+2)

(1)
(1)

Figure 1.11: The preimage π−1(U ).

By Lemma 1.18, there exists 0 < ε small enough and 0 < η¿ ε also small such

that f restricted to the Minor tube N (ε,δ) defines a locally trivial fibration over

S1
η (see Figure 1.12).
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N (ε,δ)

B4
ε

S3
ε∩

(
f −1(S1

η)
)

S1
η

f −1(0)

Figure 1.12: Milnor fibration on the Milnor tube.

Let us choose η small enough such that if z ∈Cwith |z| = η, then the manifold

Fz =π−1
(

f −1(z)∩B4
ε

)
is transverse to the fibres of the irreducible components of

Ê around a small neighbourhood of Ẽ0.

Let

F =Fz , X =π−1( f −1(B2
η)∩B4

ε

)
,

F0 =π−1
(
S3
ε∩

⋃
0≤t≤1

f −1(t z)
)

, E0 = Ẽ0 ∩X .

The manifold X is a closed neighbourhood of Ê in W and the boundary ∂X is

diffeomorphic to the sphereS3
ε (see Figure 1.13). Let z ∈C be fixed, the boundary

∂F is equal to F ∩F0 and there is an isotopy between the identity in S3
ε and the

diffeomorphism on the sphere which takes ∂F to the boundary L = ∂(F ∪F0).

Let U0 be an union of fibres of Ei (with Ei ∩E0 6= ;) such that

π
(
U0 ∩∂X

)⊂S3
ε∩ f −1(B2

η) .
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E0

X

U0

F0
F

L

Figure 1.13: Milnor fibration in the resolution of f .

Now we construct a manifold X in the following way: For all 0 < i ≤ k, let X i

be the total space of a fibration of real discs with base Ei , X i is isomorphic to a

closed neighbourhood of Ei in X .

Then X will be the manifold obtained after doing plumbing in a neighbour-

hood of the intersection points pi , j , let Bi , j be the corresponding plumbing poly-

disc and let Ti , j be the plumbing torus defined as the intersection Bi , j ∩∂X .

1.48 Proposition ( [15, Prop 1.4]). There exists a diffeomorphism with corners

ρ : X → X such that:

- ρ is the identity on Ê ,

- ρ−1(E0) is an union of fibres of the X i ; these fibres are outside of the plumb-

ing polydiscs Bi , j for any i , j ,

- If ∆ is a fibre of Ei outside of U0, ρ−1(∆) is a fibre of X i .

Let Xi = ρ(X i ), Bi , j = ρ(Bi , j ) and Ti , j = ρ(Ti , j ) (see Figure 1.14), where Ti , j

is the image under ρ of the plumbing torus Ti , j with 0 < j < i ≤ k and Ti ,0 will

denote the union of tori in the boundary ∂Xi such that

⋃
i>0

Ti ,0 =π−1(S3
ε∩ f −1(S2

η)
)

.
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Ei

E j

X i

X j
Bi , j

Ti , j

E0

T j ,0

ρ

Ei

E j

Xi

X j
Bi , j

Ti , j

E0 L

T j ,0F0F

Figure 1.14: The plumbing of the fibred Xi ’s is diffeomorphic to X .

Then we obtain Figure1.15.

E0

X

U0

F0 F

Ei

E j

Xi

X j
Bi , j

Ti , j

L

T j ,0

Figure 1.15: The manifold X as plumbing.

1.49 Definition. An orientation preserving diffeomorphism h : F → F is called

quasi-periodic if there is a family C of disjoint simple closed curves in F and a

small neighbourhood U (C ) ⊂F of C such that

- for each curve c ∈C , U (c) is a small annulus, neighbourhood of c in F ,

- for any pair of curves ci ,c j ∈C , we have that U (ci )∩U (c j ) =;,

- h(C ) =C

- h(U (c)) =U (c),
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- the restriction of h to the complement of

U (C ) = ⋃
c∈C

Ů (c)

is periodic, where Ů (c) is the interior of U (c).

The family C is called a reduction system of curves for the diffeomorphism h.

Let Fi =F ∩∂Xi , F =∪i>0Fi .

The intersection of the fibres of Ei with the boundary ∂Xi endows ∂Xi with

a fibration in circles. Let hi : Fi → Fi be the first return diffeomorphism on Fi

along the fibres of ∂Xi .

By equation (1.45), in the local coordinates (u, v), a fibre of Ei over a smooth

point is given by the equation v = c, where c is a constant. Then the intersection

of this fibre with Fi consists of mi points (u,c), where c is solution of

umi = c .

The diffeomorphism hi permutes these mi points and hmi
i is the identity, then

the order of hi is mi (see Figure1.16).

∂Xi

F

Ei

fibre of Ei

hi

Figure 1.16: The diffeomorphism hi in a fibre of Ei .

Let h0 : F0 →F0 be the identity on F0.

Now we take the following family of curves: Let C =∪0≤ j<i Fi ∩F j .

Let i , j be such that Ei ∩ E j 6= ;, then let m̂i , j = gcd(mi ,m j ). If 0 < j < i ,

Ci , j =Fi ∩F j is a collection of m̂i , j simple closed curves of F .

Now we will construct the neighbourhood U (C ): For each point pi , j (with 0 ≤
j < i ≤ k), we choose closed discs I (Bi , j ) and J (Bi , j ), neighbourhoods of (Bi , j∩Ei )

in Ei and (Bi , j ∩E j ) in E j respectively.

Let E = Ê ∪E0. There exists a deformation retract R : X → E (see Figure1.17)

such that
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- the plumbing torus Ti , j goes to the point pi , j ,

- if x ∈ (
Ei \

⋃
I (Bi , j )

)
, R−1(x) is the fibre of Ei in the point x,

- if x ∈ I (Bi , j ) \ {pi , j }.

Let

V = ⋃
0≤ j<i

(
R−1(I (Bi , j )

)∪R−1(J (Bi , j )
))

and U (C ) =V ∩F .

Xi

X j

Bi , j

Ti , j

R
R−1

(
I (Bi , j )

)

R−1
(

J (Bi , j )
)

T j ,0

R−1
(

J (Bi ,0)
)

Ei

E j

E0

I (Bi , j )

J (Bi , j )

Figure 1.17: The deformation retract R from X to E .

The next step is “to glue” the diffeomorphisms hi :

On the m̂i , j curves in Ci , j , hi is a permutation of these curves and h
m̂i , j

i is the

identity. On the boundary of the annuli U (Ci , j )∩Fi , the diffeomorphism h
m̂i , j

i

is a rotation and hi = h. Then, we extend h from the boundary ∂
(
U (Ci , j )∩Fi

)
to

the boundary ∂Fi by an isotopy; this is possible because U (Ci , j )∩Fi is a disjoint

union of annuli.

1.50 Definition ( [9, p.2]). Let F be a closed, orientable surface, let c be a simple

closed curve in F and let U (c) ⊂F be a small regular neighbourhood of c. Then

U (c) is an annulus; i.e., it is homeomorphic to the Cartesian product [0,1]×S1.

Then a point in U (c) is of the form (s,e iθ) with s ∈ [0,1] and θ ∈ [0,2π] .

Let f : F →F be a map which is the identity outside U (c) and inside of U (c)

it is defined by

f (s,e iθ) = (s,e iθe i 2πs) .

Then f is a Dehn twist about the curve c (see Figure 1.18).
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Figure 1.18: Dehn twist

Then we have the following result.

1.51 Proposition ( [14, Prop. 1.5]). Let h be the monodromy of the Milnor fibration

of f . Its restriction h|Fi is the diffeomorphism hi .

1.52 Remark. The representative of the monodromy found in this way depends

on the resolution; in order to obtain a canonical quasi-periodic monodromy, we

take the minimal resolution and we proceed in the same way.

Let us finish this section with two results about the topology of F .

For all 0 < i ≤ k, let ri = gcd(m̂i , j )Ei∩E j 6=;, let F̊i be the interior of Fi and let E̊i

be the set of smooth points of Ei . Let v be the restriction to F of the deformation

retract R and let vi : F̊i → E̊i be the restriction to F̊i .

1.53 Proposition ( [14, Prop. 1.6]). The restriction vi is the finite cyclic covering of

order mi , defined by the homomorphism

ρi : H1(E̊i ,Z) −→Zmi

([Ci , j ]) 7−→ω j

where ω j ≡−m j (mod mi ).

1.54 Proposition ( [15, Prop 1.11]). i) The number of connected components of

Fi is ri ,

ii) F0 is the disjoint union of b annuli,

iii) if ki = 1, Fi is an union of discs and if ki = 2, Fi is an union of annuli,

where ki is the number of connected components E j which intersect Ei .
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1.7 Resolution of normal surface singularities

We finish this chapter recalling some results and definitions concerning the res-

olution of normal surface singularities and we will present a result of Neumann

saying when a Seifert manifold can be the link of a singularity. The theory pre-

sented here will be used in Chapters 2 and 4.

1.55 Definition. An isolated surface singularity germ (V ,0) is (analytically) nor-

mal if every bounded holomorphic function on V ∗ = V \ {0} extends to a holo-

morphic function at 0 (see [37, Rmk., p. 114]).

1.56 Theorem ( [5, Th. 6.2]). Let (V ,0) be a normal complex surface singularity

such that V ∗ = V \ {0} is non-singular. Then, there exists a non-singular complex

surface Ṽ and a proper analytic map π : Ṽ →V such that

- the inverse image of 0, Ê = π−1(0), is a connected, reduced divisor in Ṽ , i.e.,

a union of 1-dimensional compact curves in Ṽ , and

- the restriction of π to Ṽ \ Ê is a biholomorphic map between Ṽ \ Ê and V ∗.

1.57 Definition. The surface Ṽ is called a resolution of the singularity of V and

π is the resolution map.

1.58 Definition. Let (V ,0) be a normal complex surface singularity and let Ṽ be a

resolution with resolution map π : Ṽ →V . The resolution is called good if

- each irreducible component Ei of Ê is non-singular, and

- Ê has normal crossings; i.e., if i 6= j , Ei intersects E j in at most one point

where they met transversely and no three components of Ê intersect,

- Ê ∩ Ẽ0 is a normal crossing, where Ẽ0 is the strict transform of V (see Defi-

nition 1.44).

1.59 Definition. Let (V ,0) be a normal complex surface singularity and let Ṽ a

good resolution with resolution mapπ : Ṽ →V . The resolution graph Aπ is given

in the following way:

- Aπ has a vertex for each irreducible component Ei of the exceptional divi-

sor E ,
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- two vertices of Aπ are connected by an edge if and only if the corresponding

irreducible components intersect,

- Aπ has an arrow for each irreducible component of π−1(V ), attached to the

corresponding vertex.

- each vertex i of Aπ is weighted by the multiplicity mi at the irreducible

component Ei and the Euler class (self-intersection number) ei .

- each arrow is weighted by +1 if the functions defining V are reduced.

In the resolution graph Aπ it is possible to define the concepts of rupture ver-

tex, bamboo ended by a vertex of valence 1 and bamboo joining two rupture ver-

tices as in the plumbing graph Γ in Section 1.5. There is also a new concept:

1.60 Definition. A bamboo ended by an arrow is a chain of vertices joined by

edges such that all the vertices have valence 2 except the first one, which is a

rupture vertex and where the last vertex has an arrow (Figure 1.19).

Figure 1.19: A bamboo ended by an arrow.

The following result is well known, see for instance [62, Th. 5.11].

1.61 Theorem. Let π : Ṽ → V be a good resolution of (V ,0), a normal surface sin-

gularity. Then the irreducible components Ei of the exceptional divisor Ê deter-

mine a plumbing graph Γ(Ṽ ), called the dual graph of the resolution. By plumb-

ing according to this graph one obtains a 4-manifold homeomorphic to π−1(V ∩
Bε) ⊂ Ṽ , whose boundary is the link of the singularity.

When the link is a Seifert manifold, one has:

1.62 Theorem ( [46, Th. 2.6.1]). Let M be a Seifert manifold. If M is the link of a

complex surface singularity, then its resolution graph is star-shaped.
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Finally, the next result gives the condition under which a Seifert manifold is

the link of a singularity.

1.63 Corollary ( [39, Cor. 6]). The Seifert manifold M is the link of a complex sur-

face singularity if and only if it has a Seifert fibration with orientable base such

that the Euler number of this fibration is negative.



30 CHAPTER 1. PRELIMINARIES



CHAPTER 2

THE SEIFERT CASE

As we mentioned in Chapter 1, the Milnor condition (Hypothesis 1.14) is very

stringent; for example, when k = 2, the set of critical points of f is, in general, a

curve. Therefore it is not easy to find examples of real analytic germs satisfying

such condition. Also, even when a function f satisfies this condition, in general

it is not true that the projection of the Milnor fibration is given by f
| f | as in the

complex case.

For example, consider the family of real analytic germs f : (C2 ∼=R4,0) → (C∼=
R2,0) defined by f (x, y) = xp ȳ + x̄ y q with p, q ≥ 2. By [61, Th. 4.8], f has a Milnor

fibration with projection φ f = f
| f | . In [52, Th. 3.1] Pichon and Seade prove that

the link L f is isotopic to the link of the holomorphic germ g (x, y) = x y(xp+1 +
y q+1), but the open-book decomposition given by the Milnor fibration of f is not

equivalent to the one given by the Milnor fibration of g .

In this chapter we study the family of real germs F : (C3,0) → (C,0) given by

F (x, y, z) = x y(xp + y q )+ zr

with p, q,r ∈N, p, q,r ≥ 2 and gcd(p, q) = 1.

We show that F has an isolated singularity at the origin and the projection of

the Milnor fibration is given by φF = F
|F | , therefore it gives rise to an open-book

decomposition of S5.

We explicitly describe LF as a Seifert manifold and show that LF is homeo-

morphic to the link of a normal complex surface. Finally, our main results exhibit

31
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two families of examples among these germs F whose open-book decomposi-

tions of S5 cannot appear as Milnor fibrations of holomorphic germs from C3 to

C.

2.1 Isolated critical point

In this section we show that our family of real germs has isolated critical point at

the origin; in order to prove this we use the following result.

2.1 Proposition. Let h : (Rn ,0) → (R2,0) be a real analytic germ and let r ∈Z+. The

analytic germ H : (Rn ×C,0) ∼= (Rn+2,0) → (R2,0) defined for (x1, . . . , xn) ∈ Rn and

z ∈C by

H(x1, . . . , xn , z) = h(x1, . . . , xn)+ zr

has an isolated singularity at the origin if and only if h has an isolated singularity

at the origin.

Proof. The jacobian matrix M of h(x1, . . . , xn)+zr with respect to the coordinates

x1, . . . , xn , z, z̄ is given byDh(x1, . . . , xn)

∣∣∣∣∣∣
1
2 r zr−1 1

2 r z̄r−1

1
2i r zr−1 − 1

2i r z̄r−1


where Dh(x1, . . . , xn) is the jacobian matrix of h with respect to the coordinates

x1, . . . , xn .

Let P : Rn ×C→Rn be the projection defined by P (x1, . . . , xn , z) = (x1, . . . , xn).

If h has an isolated singularity at the origin, then Dh(x1, . . . , xn) has rank 2 in a

neighbourhood W of the origin except at the origin. Let (x1, . . . , xn , z) ∈P −1(W ).

If (x1, . . . , xn) 6= 0, then Dh(x1, . . . , xn) has rank two. Otherwise z 6= 0 and the matrix 1
2 r zr−1 1

2 r z̄r−1

1
2i r zr−1 −1

2i r z̄r−1
n+1


has rank two. Then h(x1, . . . , xn)+ zr has rank two at each point of P −1(W ) \ {0}.

If h + zr has isolated singularity at the origin, then M has rank 2 in a neigh-

bourhood U of the origin except at the origin itself; in particular M has rank 2 at

the points (x1, . . . , xn ,0) ∈U \{0}; then the matrix Dh(x1, . . . , xn , z) has rank 2 in the

neighbourhood P (U ) of the origin except at the origin.
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2.2 Corollary. Let F : (C3,0) ∼= (R6,0) → (C,0) ∼= (R2,0) be the real analytic function

defined by

F (x, y, z) = x y(xp + y q )+ zr ,

with p, q,r ∈N and p, q,r ≥ 2. The function F has isolated singularity at the origin

if and only if (p, q) 6= (2,2)

Proof. Set f (x, y) = x y and g (x, y) = xp + y q . According to Proposition 2.1, to

prove the corollary is equivalent to proving that h(x, y) = f (x, y)g (x, y) has an

isolated singularity at 0 if and only if (p, q) = (2,2). Let us give two proofs of this

fact.

First we decompose f in its real and imaginary parts and the corresponding

jacobian matrix is:px y xp−1+y(x̄p+ȳ q )
2

ȳ(xp+y q )+px y x̄p−1

2
qx y y q−1+x(x̄p+ȳ q )

2
x̄(xp+y q )+qx y ȳ q−1

2
px y xp−1−y(x̄p+ȳ q )

2i
ȳ(xp+y q )−px y x̄p−1

2i
qx y y q−1−x(x̄p+ȳ q )

2i
x̄(xp+y q )−qx y ȳ q−1

2i

 .

Then this matrix has rank less than two in a point (x, y) if and only if the following

equations, that are the result of calculating the minors of order 2, are satisfied:

p2|x y |2|x|2(p−1) = |y |2|xp + y q |2 (2.2)

q2|x y |2|y |2(q−1) = |x|2|xp + y q |2 (2.2)

x ȳ |xp + y q |2 = pq |x y |2x̄p−1 y q−1 . (2.2)

From these equations we get that the origin (0,0) is always a critical point, and

we also get that if x = 0 then y = 0 and vice versa.

Therefore, in order to look for another critical points we can suppose x 6= 0 6=
y . Simplifying equations (2.2) and (2.2), we get:

p2|x|2p = q2|y |2q = |xp + y q |2 .

A direct computation shows that this equation together with (2.2) have non trivial

solutions if and only if p = q = 2.

An alternative proof consists of using ( [51, Th 5.1]), which states that f ḡ has

an isolated singularity at 0 if and only if the link L f ḡ = L f −Lg is fibred, where L f

is the link of f and −Lg denotes the link Lg of g with opossite orientation.
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Let π : X →C2 be the minimal resolution of the germ f g . Then ( [51, Cor 2.1])

states that L f −Lg is fibred if and only if m f −mg 6= 0, where m f and mg denote

the multiplicities of f ◦π and g ◦π in the (unique in our case) rupture vertex of the

resolution graph Aπ( f g ). As m f = pq and mg = p+q , the corollary is proved.

2.3 Remark. • Notice that the arguments we used above to show that f has

an isolated critical point are, in this particular case, equivalent to showing

that the system given in [51, page 8] has non-trivial solutions if and only if

p = q = 2.

• We notice as well that Cor 2.2 is consistent with [53, Example 1.1.c] where

it is shown that the function

z1z2 · · ·zn(za1
1 +·· ·+ zan

n ) , ai ≥ 2 ,

has 0 as an isolated critical value if and only if the sum of the 1
ai

is not 1.

2.2 Polar weighted homogeneous polynomials

In this section we recall the definition of a polar weighted homogeneous polyno-

mial and some properties that we will use later. These polynomials were intro-

duced by Cisneros-Molina in [13] following ideas from Ruas, Seade and Verjovsky

in [57] and studied by Oka in [43] and [44].

Let (p1, . . . , pn) and (u1, . . . ,un) in (Z+)n be such that gcd(p1, . . . , pn) = 1 and

gcd(u1, . . . ,un) = 1, we consider the action of R+×S1 on Cn defined by:

(t ,λ) · (z) = (t p1λu1 z1, . . . , t pnλun zn) ,

where t ∈R+ and λ ∈S1.

2.4 Definition. Let f : Cn → C be a function defined as a polynomial function in

the variables zi , z̄i :

f (z1, . . . , zn) =∑
µ,ν

cµ,νzµz̄ν ,

where µ = (µ1, . . . ,µn), ν = (ν1, . . . ,νn), with µi ,νi not negative integers and zµ =
zµ1

1 · · ·zµn
n (same for z̄).
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The function f is called a polar weighted homogeneous polynomial if there

exists (p1, . . . , pn) and (u1, . . . ,un) in (Z+)n and a,c ∈ Z+ such that the following

functional equality is satisfied:

f ((t ,λ) · (z)) = t aλc ( f (z)) ,

where z = (z1, . . . , zn).

It is known that any polar weighted homogeneous polynomial has an isolated

critical value at the origin (see [13, Prop. 3.2] and [43, Prop. 2]). In the case it has

isolated critical point, there is the following result.

2.5 Proposition. Let f : Cn → C be a polar weighted homogeneous polynomial

with isolated critical point at the origin. Then there exist a fixed-point free action

of S1 on the link L f := f −1(0)∩S2n−1 induced by the action of R+×S1 described

above. Hence, if n = 3, L f is a Seifert manifold.

Proof. Given a polar weighted homogeneous polynomial f , the action · ofR+×S1

on Cn induces an action of S1 on Cn by setting

λ? z := (1,λ) · z = (λu1 z1, . . . ,λun zn) ,

where λ ∈S1.

Notice that f −1(0) is invariant under the action? as well as any sphereS2n−1
ε .

Therefore, the link L f is invariant under this action.

Moreover, this action is a fixed-point free and effective action. Indeed, let

z ∈Cn and suppose z is a fixed point of the action ?; i.e., for all λ ∈S1 we have

λ? z = z ,

then

f (z) = f (λ? z) =λc f (z) with c ∈Z+ ,

which is a contradiction. When L f is a 3-manifold, it is a Seifert manifold by a

theorem of Epstein in [19] (see also Section 1.4).

Also a polar weighted homogeneous polynomial has Milnor fibration:

2.6 Theorem ( [13, Prop 3.4]). Let f : Cn → C be a polar weighted homogeneous

polynomial, then the map φ defined by

φ= f

| f | : (S2n−1
ε \L f ) →S1

is a locally trivial fibration for any ε> 0.
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2.7 Corollary. Let f : Cn → C be a polar weighted homogeneous polynomial with

isolated singular point at the origin. Then the Milnor fibration of f is an open-

book fibration of S2n−1 with the link L f as binding and the Milnor fibres as pages.

Let us return to the case of our interest in this chapter.

2.8 Proposition. Let p, q,r ∈Z+ such that gcd(p, q) = 1. Then the polynomials

i) x y(xp + y q ) and

ii) x y(xp + y q )+ zr

are polar weighted homogeneous polynomials.

Proof. Let us consider the following action of R+×S1 on C2:

(t ,λ) · (x, y) = (t qλq x, t pλp y) .

let (x, y) ∈C2, for all (t ,λ) ∈R+×S1 we have that

f ((t ,λ) · (x, y)) = t q+p+pqλpq−q−p f (x, y) ,

Thence the polynomial in (i) is polar weighted homogeneous.

Now, by [13, Exa. 2.6], the sum of two polar weighted homogeneous polyno-

mials in independent variables is again a polynomial of this type. Then, using

that zr is a polar weighted homogeneous polynomial, we have that x y(xp + y q )+
zr is also a polar weighted homogeneous polynomial.

2.9 Corollary. Let F : C3 →C be the function defined by

F (x, y, z) = x y(xp + y q )+ zr

where p, q,r ∈ N with p, q,r ≥ 2 and gcd(p, q) = 1. The link LF = F−1(0) ∩S5

is a Seifert manifold and the Milnor fibration of F , φF = F /|F | is an open-book

fibration of S5.

This result follows from Proposition 2.5, Corollary 2.7 and Proposition 2.8.
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2.3 The link as a Seifert manifold

In this section we will describe the link LF as a Seifert manifold giving its Seifert

invariants.

2.10 Theorem. Let (p, q) be coprime integers and r ∈Nwith p, q,r ≥ 2. Let F : C3 →
C be the function defined by F (x, y, z) = x y(xp + y q )+zr . Set δ= gcd(r, pq−p−q).

The Seifert invariants of the link LF are(δ−1

2
; − δ2

pqr
; (qr /δ,β1), (pr /δ,β2), (r /δ,β3)

)
,

where

pq −p −q

δ
β1 ≡−1 (mod qr /δ) ,

pq −p −q

δ
β2 ≡−1 (mod pr /δ) ,

pq −p −q

δ
β3 ≡ 1 (mod r /δ) .

2.11 Corollary. There exists a normal complex surface singularity (X , p) whose

link is homeomorphic to the link LF .

Proof. By Theorem 2.10, the rational Euler class of LF (seen as a Seifert manifold)

is negative. By Corollary 1.63, one has that a Seifert manifold M has rational Eu-

ler class e0 < 0 if and only if it is the link of an isolated normal singularity of a

complex surface.

We can conclude the existence of a normal complex surface singularity (X , p)

whose link is homeomorphic to LF .

Proof of Theorem 2.10. By Corollary 2.9, the link LF is a Seifert manifold. In order

to compute the Seifert invariants of LF , we will consider the intersection of the

boundary of a polydisc with F−1(0), we will see that this intersection is diffeomor-

phic to LF and then we will compute the corresponding Seifert invariants.

Let f : (C2,0) → (C,0) be defined by

f (x, y) = x y(xp + y q )

with (p, q) = 1 and p, q ≥ 2, and let F = f (x, y)+ zr with r ∈N and r ≥ 2.

Let ε be such that the sphere S5
ε is a Milnor ball (see Definition 1.7) for F and

let ε′ be such that for all (x, y, z) ∈ F−1(0) with (x, y) ∈D4
ε′ we have | f (x, y)|1/r < ε.
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We consider the polydisc

D6 = {(x, y, z)|(x, y) ∈D4
ε′ , |z| ≤ ε} .

For technical reasons we replace the sphere S5 by the boundary ∂D6 of the poly-

disc D6.

According to [17, Th 3.5], there is a diffeomorphism between the link LF and

the intersection F−1(0)∩∂D6, then in the sequel we will denote this intersection

by LF .

First we see that LF is a Seifert manifold: Let ∗ be the action ofS1 on C3 given

by

λ∗ (x, y, z) = (λ
r q
δ x,λ

r p
δ y,λ

pq−p−q
δ z) .

Notice that ∂D6 and F−1(0) are invariant under the action ∗, then so it is the link

LF , i.e., by Epstein ( [19]) it is a Seifert manifold (see Section 1.4). From now on

we denote by ∗ the restriction of the action to LF .

Let • be the action of S1 on C2 given by

λ• (x, y) = (λ
r q
δ x,λ

r p
δ y) .

As S3 is invariant under this action, we denote the restriction of the action to S3

with the same notation. Notice that L f is invariant by the action • and it consists

of three orbits of this action.

Let P : LF →S3 be the projection given by

P (x, y, z) = (x, y) .

One can see that the projection P is a cyclic branched r -covering with rami-

fication locus L f = f −1(0)∩S3, and it is equivariant with respect to the actions ∗
and •; i.e.,

P (λ∗ (x, y, z)) =λ•P (x, y) . (2.12)

A consequence of the equivariance of P is that the preimage of an orbit of the

action • is the disjoint union of orbits of the action ∗.

We orient LF consistently with the orientation of S3 via the projection P . Let

B the orbit space under the action ∗. Let π∗ and π• the projections of the Seifert

fibrations π∗ : LF → B and π• : S3 →S2 respectively.
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In order to compute the genus of B and the rational Euler class of the Seifert

fibrationπ∗ : LF → B we define the induced map R : B →S2 in the following way:

Let O ∈ LF be an orbit of the action ∗, let b =π∗(O ) and let s =π•(P (O )), then

R(b) : = s .

2.13 Lemma. The map R is a cyclic branched δ-covering with ramification locus

π•(L f ).

Proof. Let s ∈S2 \π•(L f ) and let (x, y) ∈ π−1• (s). Then P −1(x, y) consists of the r

points

(x0, y0, w 1/r e
2πki

r ) , k = 0, . . . ,r −1 ,

where w = f (x0, y0). An easy computation shows that these r points are dis-

tributed in δ orbits.

Now, let s ∈ L f and let (x, y) ∈ π−1• (s). Then P −1(x, y) consists of the single

point (x, y,0).

It follows that we have a commutative diagram:

LF

π∗
��

P // S3

π•
��

B
R // S2

which allows us to compute the rational Euler class e0(LF → B) and the genus

g (B). To compute the genus g (B), we apply the Riemann-Hurwitz formula to the

branched covering R. The ramification locus consists of 3 points. Therefore,

2g (B)−2 = δ[2g (S2)−2]+3(δ−1) ,

then g (B) = δ−1
2 .

Now we compute the rational Euler class e0(L f → B): by Lemma 2.13, the

degree of the restriction of P to a regular fibre is r /δ and the degree of R is δ;

since e0(S3 →S2) =−1/pq , it follows from (1.34) that

e0(LF → B) =− δ2

pqr
.

Let us now describe the exceptional orbits. Let (x0, y0, z0) ∈ LF such that x0 6= 0,

y0 6= 0 and z0 6= 0, then the isotropy subgroup of (x0, y0, z0) by the action∗ consists

of the λ ∈S1 such that

λr q/δ =λr p/δ =λ(pq−p−q)/δ = 1 .
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As gcd(r q/δ,r p/δ, (pq −p −q)/δ) = 1, the orbit of (x0, y0, z0) is not exceptional.

If y0 = 0, then z0 = 0 and the isotropy subgroup of the corresponding orbit

consists of the λ ∈S1 such that λqr /δ = 1; i.e., it is Zqr /δ.

If x = 0, then z0 = 0 and the isotropy subgroup of the corresponding orbit

consists of the λ ∈S1 such that λpr /δ = 1; i.e., it is Zpr /δ.

If x0 6= 0, y0 6= 0 and z0 = 0, the corresponding isotropy subgroup is Zr /δ since

it consists of the λ ∈S1 such that λr /δ = 1.

Then we have three exceptional orbits:

O1 = {(x, y, z) ∈ LF |y = 0, z = 0} ,

O2 = {(x, y, z) ∈ LF |x = 0, z = 0} ,

O3 = {(x, y, z) ∈ LF |x 6= 0, y 6= 0, z = 0} .

with α1 = qr /δ, α2 = pr /δ and α3 = r /δ.

Let us now compute each βi , following the method that uses the slice repre-

sentation given by Orlik in [45, pages 57 and 58].

In order to obtain β1, one has to compute the angle of the rotation performed

by the first return of the orbits of the S1-action on a slice D ∈ LF of O1, say at

(ε′,0,0); i.e., the angle of the rotation performed on D by the action of e2iπ/α1 .

Instead of dealing with a slice in LF , let us consider a small disk D ′ close to D

in the intersection of F−1(0)∩ {x = ε′}, i.e.,

D ′ = {ε′p ȳ + ȳ y q + zr = 0} .

Very close from (ε′,0,0), D ′ can be approximated by the disk parametrised by z :

D ′′ = {(ε′,−z̄r , z), z ∈C, |z|¿ 1)} ,

and the action of e
2iπ
α1 on D ′′ can be approximated by :

e
2πiδ

qr · (1,−z̄r , z) = (
1,−(

(e
2πiδ

qr )
pq−p−q

δ z
)r

, (e
2πiδ

qr )
pq−p−q

δ z
)

,

where the disk D ′′ is invariant under the action. Therefore, β∗
1 equals

pq −p −q

δ

(mod
qr

δ
) up to sign.

In order to get the right sign, the disk D ′′ has to be oriented as a complex slice

of P (O1) via P . But

P (D ′′) = {(ε′,−z̄r ), z ∈C} ,
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which is a slice of the orbit P (O1) endowed with the opposite orientation as the

complex one. Therefore, we consider D ′′ oriented by z̄ (and not by z).

We then obtain β∗
1 =−pq −p −q

δ
(mod

qr

δ
), and then β1 is defined by

−pq −p −q

δ
β1 ≡ 1 (mod

qr

δ
) .

A similar computation leads to

−pq −p −q

δ
β2 ≡ 1 (mod

pr

δ
) .

And for the third orbit O3, we consider the z-plane as the slice, i.e., we parame-

trise our slice with the coordinate z, then we consider the action of e
2πiδ

r given

by

e
2πiδ

r · (x, y, z) = (x, y,e
2πiδ

r · pq−p−q
r z) ;

this action is the standard action of type [r /δ, (pq −p −q)/δ], then β3 is defined

by the congruence
pq −p −q

δ
β3 ≡ 1 (mod r /δ) .

Let ΓF be the plumbing graph such that LF
∼= ∂P (ΓF ), where P (ΓF ) is the four-

manifold obtained by plumbing 2-discs bundles according to ΓF .

Then ΓF is given by Figure 2.1, where

−e = e0 +
3∑

i=1

βi

αi
−3 ,

αi

αi −βi
= [ei ,1, . . . ,ei ,si ], for i = 1,2,3 .

−e

−e1,1 −e1,2 −e1,s1

−e2,1 −e2,2 −e2,s2

−e3,1 −e3,2 −e3,s3

Γ=
[g ]

Figure 2.1: Plumbing graph of the Seifert manifold LF .



42 CHAPTER 2. THE SEIFERT CASE

Now we present some interesting examples of links of real singularities, de-

scribing them as Seifert manifolds and showing the associated plumbing graphs;

in the next section we will see more of these examples.

Recall the notation [ei ,1, . . . ,ei ,si ] given in equation (1.42).

2.14 Example. Let F be the real polynomial defined by

F (x, y, z) = x y(x2 + y3)+ zr with r > 2 .

By Theorem 2.10, the Seifert invariants of LF are given by(
0; − 1

6r
; (3r,3r −1), (2r,2r −1), (r,1)

)
.

To compute the weights in the plumbing graph, we have:

3r

3r − (3r −1)
= [3r ] ,

2r

2r − (2r −1)
= [2r ] ,

r

r −1
= [2,2, . . . ,2︸ ︷︷ ︸

(r−1)

] ;

i.e., the plumbing graph ΓF is given by Figure 2.2.

−3r

−1

−2r

−2 −2 −2 −2︸ ︷︷ ︸
(r−1) vertices

Figure 2.2: Plumbing graph for LF with F (x, y, z) = x y(x2 + y3)+ zr , r > 2.

2.15 Example. Let F be the polynomial defined by

F (x, y, z) = x y(x2 + y q )+ z2 with q > 2 .

We will study two cases.

Case 1. Let q = 4a+1 with a ∈Z+, then by Theorem 2.10, the Seifert invariants of

LF are given by (
0; − 1

4(4a +1)
;
(
2(4a +1),2a +1

)
, (4,1), (2,1)

)
.
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Now, the development in continuous fractions for α1/(α1 −β1) is the following:

8a +2

6a −1
= [2,2,4] when a = 1 ,

8a +2

6a −1
= [2,2,3,2, . . . ,2︸ ︷︷ ︸

(a−2)

,3] when a ≥ 2 ;

When a = 1, the corresponding plumbing graph is presented in Figure 2.3.

−2

−2 −2 −4

−2 −2 −2

−2

Figure 2.3: Plumbing graph for LF with F (x, y, z) = x y(x2 + y5)+ z2.

In Figure 2.4, there is the corresponding plumbing graph when a ≥ 2.

−2

−2 −2 −3 −2 −2 −3

−2 −2 −2

−2

(a−2) vertices︷ ︸︸ ︷

Figure 2.4: Plumbing graph for LF with F (x, y, z) = x y(x2 + y4a+1)+ z2 and a ≥ 2.

Case 2. Let q = 4a−1 with a ∈Z+; then by Theorem 2.10, the Seifert invariants of

LF are given by (
0; − 1

4(4a −1)
;
(
2(4a −1),6a −1

)
, (4,3), (2,1)

)
.

The development in continuous fractions for α1/(α1 −β1) is the following:

8a −2

2a −1
= [6] when a = 1 ,

8a −2

2a −1
= [5,3,2, . . . ,2︸ ︷︷ ︸

(a−2)

,3] when a ≥ 2 .
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When a = 1, the corresponding plumbing graph is presented in Figure 2.5.

−6

−1 −2

−4

Figure 2.5: Plumbing graph for LF with F (x, y, z) = x y(x2 + y3)+ z2.

In Figure 2.6, there is the corresponding plumbing graph when a ≥ 2.

−2

−5 −2 −2 −3

−4

−2

(a−2) vertices︷ ︸︸ ︷

Figure 2.6: Plumbing graph for LF with F (x, y, z) = x y(x2 + y4a−1)+ z2 and a ≥ 2.

2.4 New open-book fibrations

In the previous section we gave, for the singularities we envisage in this chap-

ter, the plumbing graphs corresponding to the Seifert invariants given by the S1-

action; we know that this graph has negative definite intersection matrix.

Let us consider now, for a moment, the general setting of an arbitrary plumb-

ing graph Γ, where each vertex ei has been assigned a genus gi ≥ 0 and a weight

wi < 0, so that the corresponding intersection matrix AΓ is negative definite.

The graph determines a 4-dimensional compact manifold ṼΓ with boundary

LΓ which can be assumed to be an almost-complex manifold and its interior is a

complex manifold.

The manifold ṼΓ contains in its interior the exceptional divisor E , given by

the plumbing description, and ṼΓ has E as a strong deformation retract (See Sec-

tion 1.6). In this setting, the intersection matrix corresponds to the intersection

product in H2(ṼΓ,Q) ∼= Qn , where n is the number of vertices in the graph. The
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generators are the irreducible components Ei of the divisor E ; each of these is a

compact (non-singular) Riemann surface embedded in ṼΓ.

The fact that the matrix AΓ is negative definite implies, by Grauert’s con-

tractibility criterion (see for instance [5]), that the divisor E can be blown down to

a point, and we get a complex surface VΓ with a normal singularity at 0, the image

of the divisor E . Since VΓ is homeomorphic to the cone over LΓ, its topology does

not depend on the various choices and it is determined by the topology of LΓ.

However, in general, its complex structure does depend on the various choices.

In the sequel, we will only consider good resolutions (see Definition 1.58).

Since any good resolution has associated a plumbing graph, in order to simplify

the notation, we omit the subindex Γ and we just write A, Ṽ , V and L.

The manifold Ṽ has an associated canonical class K :

2.16 Definition. Given a normal surface singularity (V , p) and a good resolution

Ṽ of V , the canonical class K of Ṽ is the unique class in H2(Ṽ ,Q) ∼=Qn that satis-

fies the Adjunction Formula

2gi −2 = E 2
i +K ·Ei

for each irreducible component Ei of the exceptional divisor.

Note that the canonical class K of a good resolution Ṽ only depends on the

topology of the resolution. The existence and uniqueness of this class comes

from the fact that the matrix A is non-singular.

Since the canonical class K is by definition a homology class in H2(Ṽ ,Q), it is

a rational linear combination of the generators:

K =
n∑

i=1
ki Ei ,with ki ∈Q .

2.17 Definition. (see for instance [16, Def. 1.2]) A normal surface singularity germ

(V ,0) is Gorenstein if there is a nowhere-zero holomorphic two-form on the reg-

ular points of V . In other words, its canonical bundle K := ∧2
(
T ∗(V \ {0})

)
is

holomorphically trivial in a punctured neighbourhood of 0.

For instance, if V can be defined by a holomorphic map-germ f in C3, then

the gradient ∇ f is never vanishing away from 0 and we can contract the holo-

morphic 3-form d z1∧d z2∧d z3 with respect to ∇ f to get a never vanishing holo-

morphic 2-form on a neighbourhood of 0 in V . So every isolated hypersurface
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singularity is Gorenstein. More generally, A. Durfee in [16, Def. 1.2, Lemma 1.3]

introduced the following concept.

2.18 Definition. The singularity germ (V ,0) is numerically Gorenstein if the ca-

nonical class K of some good resolution Ṽ is integral.

2.19 Remark. It is easy to show (see [16, Lemma 1.3] or [27, Def. 1.2]) that the con-

dition of K being an integral class is satisfied if and only if the canonical bundle

K is topologically trivial. Therefore numerically-Gorenstein is a condition inde-

pendent of the choice of resolution (whose dual graph is Γ) on the germ (V ,0) and

every Gorenstein germ is numerically Gorenstein.

Notice that the canonical class K is determined by the intersection matrix A,

and therefore it is independent of the complex structure we put on Ṽ . However

by definition the class K is associated to the graph that defines the surface V ,

and so does its self-intersection number K 2, which is defined in the obvious way.

There are many different graphs producing the same singularity germ, and each

has a different canonical class, with a different self-intersection number.

Similarly, one has another number, an integer, associated to Ṽ : its Euler-

Poincaré characteristic χ(Ṽ ). Of course this number also depends on the graph Γ

and not only on the topology of the link L of V . Yet one has the following result,

which extends [62, Remark 7.6.i, p. 125], where this is discussed for Gorenstein

singularities.

2.20 Proposition. Assume the germ (V ,0) is numerically Gorenstein and let Ṽ be

a good resolution. Let L be the link of (V ,0). Then the integer

χ(Ṽ )+K 2

is independent of the choice of resolution of (V ,0). Moreover, if the link L∗ of an-

other isolated surface singularity germ is orientation preserving homeomorphic to

L, then one has:

χ(Ṽ )+K 2 =χ(Ṽ∗)+K 2
∗ .

This theorem is essentially well-known (see for example [30, 4.2]) and it can

be proved in several ways. The first statement can be proved by direct compu-

tation, showing that each time we blow up a smooth point of the exceptional

divisor, the Euler-Poincaré characteristic of the resolution increases by 1, while
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the self-intersection of the canonical class diminishes by one. This computation

is straight-forward but not easy.

Alternatively, the same statement can be proved by noticing that for a com-

pact complex surface M , the invariant χ(M)+K (M)2 is 12 times the Todd genus

T d(M), which is a birational invariant, by Hirzebruch-Riemann-Roch’s Theorem

for compact complex surfaces. One can then compactify the surface Ṽ by adding

a divisor at infinity, whose singularities can be resolved, thus getting a smooth

compactification V̂ of Ṽ . The fact that the singularity is numerically Gorenstein

ensures that the Todd genus T d(V̂ ) splits in two parts: one of these is χ(Ṽ )+K 2.

The result then follows from the fact that T d(V̂ ) remains constant under blowing

ups.

We finally remark that for singularities that are Gorenstein and smoothable,

the fact that χ(Ṽ )+K 2 does not depend on the choice of resolution is also a direct

consequence of the Laufer-Steenbrink formula that we explain below, and the

fact that the geometric genus is independent of the choice of resolution.

The second statement in this theorem is now an immediate consequence of

the previous statement, together with Neumann’s Theorem [39, Th. 2], that if two

normal surface singularities have orientation preserving homeomorphic links,

then their minimal resolutions are homeomorphic.

So, we denote this invariant just by χL +KL , since it depends only on the link

L.

2.21 Definition. A normal surface singularity germ (V ,0) of dimension n ≥ 1 is

smoothable if there exists a complex analytic space (W,0) of dimension n+1 and

a proper analytic map:

F : W →D⊂C
where D is an open disc with centre at 0, such that:

i) it is not a zero divisor in the local ring of W at 0, i.e., it is not flat;

ii) F−1(0) is isomorphic to V ; and

iii) F−1(t ) is non-singular for t 6= 0.

Following [16], [66] and [28], we call the manifold F−1(t ) a smoothing of V .

Notice that if (V ,0) is a hypersurface germ, then it is always smoothable and the

smoothing F−1(t ) is the Milnor fibre.
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Now suppose we have a normal Gorenstein surface singularity germ (V ,0) and

suppose it is smoothable. Let Ṽ be a resolution of (V ,0) and let V # be a smooth-

ing. Then the Laufer-Steenbrink formula (see [28] and [66]) states:

χ(V #) =χ(Ṽ )+K 2 +12ρg (V ,0) ,

where K is the canonical class of the resolution and ρg (V ,0) is the geometric

genus, which is an integer, independent of the choice of resolution (see [4]). Then

we have the following result.

2.22 Theorem ( [59, § 4, Cor 1]). Let (V ,0) be a normal Gorenstein complex surface

singularity with link L. If (V ,0) is smoothable, then one has

χL +KL ≡χ(V ′) (mod 12)

where V ′ is a smoothing of V and χL +KL is the invariant of L previously defined.

The following results give new open-book fibrations for S5 from the point of

view of Singularity Theory.

2.23 Theorem. Let F : (C3,0) ∼= (R6,0) → (C,0) ∼= (R2,0) be the real polynomial

function defined by

F (x, y, z) = x y(x2 + y3)+ zr with r > 2 .

Let (V , p) a complex analytic germ such that LV
∼= LF ; then (V , p) is not numerically

Gorenstein.

2.24 Corollary. There is not a complex analytic germ G : (C3,0) → (C,0) with iso-

lated singularity at the origin such that the link LG is isomorphic to the link LF .

Proof of Theorem 2.23. The linear system we need to solve in order to compute
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the canonical class K of the resolution ṼF is of the form:

k −k1,1 −k2,1 −k3,1 = 1 ,

−k +3r k1,1 = 2−3r ,

−k+2r k2,1 = 2−2r ,

−k +2k3,1 −k3,2 = 0 ,

−k3,1 +2k3,2 −k3,3 = 0 ,

· · ·
−k3,r−3 +2k3,r−2 −k3,r−1 = 0 ,

−k3,r−2 +2k3,r−1 = 0 .

We solve the system and we obtain:

k= 10−6r , k1,1= 4
r −3 , k2,1= 6

r −4 , k3,1=−10
r −6r +16 ,

· · ·
k3,r−2= 20

r −12 ,

k3,r−1= 10
r −6 .

Then k1,1 is an integer only if r = 4 (since r 6= 2), but then k2,1 is not an integer.

We can conclude that the canonical class K has not integer coefficients.

2.25 Theorem. Let F : (C3,0) ∼= (R6,0) → (C,0) ∼= (R2,0) be the real polynomial

function defined by

F (x, y, z) = x y(x2 + y q )+ z2 with q > 2 .

Then the Milnor fibre F of F is not the smoothing of a normal Gorenstein complex

surface singularity (X , p).

2.26 Corollary. The open-book fibration of the sphere S5 given by the Milnor fi-

bration of F is not given by the Milnor fibration of a normal Gorenstein complex

surface singularity (X , p).

Proof of Theorem 2.25. We will consider two cases:
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Case 1. Let q = 4a+1, then we solve the linear system in order to get the canonical

class K and we obtain:

k =−4a , k1,1 =−3a , k2,1 =−3a , k3,1 =−2a .

k1,2 =−2a , k2,2 =−2a ,

k1, j =−a + ( j −3) , 3 ≤ j ≤ a +2 k2,3 =−a ,

Since the canonical class K has integer coefficients, there could exists a com-

plex analytic germ G : (C3,0) → (C,0) with isolated singularity with link LG home-

omorphic to the link LF .

Now we proceed to see if the open-book fibrations given by F and G are equiv-

alent.

In order to see if the Milnor fibre F is diffeomorphic to a smoothing of a nor-

mal Gorenstein complex surface singularity we compute the Euler characteristic

of F and the Euler characteristic of the resolution ṼF and we apply Theorem 2.22.

We compute the Euler characteristic of F using the Join Theorem for polar

weighted homogeneous polynomials, which is a generalisation of Oka’s result

(see [42, Th. 1]). Let us recall the definition of a join and then the mentioned

Join Theorem.

2.27 Definition. Let X and Y be topological spaces. The join X ∗Y is defined as

the quotient space

X × [0,1]×Y �∼
where∼ is the equivalence relation defined by: Given two points (x, t , y), (x ′, t ′, y ′) ∈
X × [0,1]×Y , they are equivalent if and only if

i) (x, t , y) = (x ′, t ′, y ′),

ii) t = t ′ = 0 and y = y ′,

iii) t = t ′ = 1 and x = x ′.

2.28 Theorem ( [13, Th. 4.1]). Let g : Cn → C and h : Cm → C be polar weighted

homogeneous polynomials. Consider the polynomial on Cn ×Cm defined by

f (z; w) = g (z)+h(w) ,

which is also a polar weighted homogeneous polynomial. Let X = f −1(1), Y =
g−1(1) and Z = h−1(1). Then there is a homotopy equivalenceα : X → Y ∗Z , which

is compatible with the monodromy maps and their join.
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Also we have

χ(Ṽ ) =
n∑

i=1
χ(Ei )− ∑

i< j
Ei ·E j ,

where Ei is one of the irreducible components of Ṽ and

K 2 = K T AK ,

where A is the intersection matrix of the plumbing graph Γ.

In our case, the plumbing graph has a +7 vertices and a +6 edges, then

χ(ṼF ) =χ(E)+
3,a+2∑

i=1, j=1
χ(Ei , j )− ](E ∩Ei ,1)i=1,2,3 − ](Ei , j ∩Ei , j ′)i=1,2,3, j 6= j ′

= (a +7)(2)− (a +6) = a +8 .

Also

K 2 = K T AK

= (0,0,0,1,0, . . . ,0︸ ︷︷ ︸
(a−2)

,1,0,0,0)

= k1,3 +k1,a+2 =−a+(−a + (a +2−3)
)

=−(a +1) .

i.e., we have

χ(ṼF )+K 2 = (a +8)− (a +1) = 7 .

When a = 1, a decorated plumbing graph for f (x, y) = x y(x2 + y5) is given by

the graph shown in Figure 2.7.

−2(1)

−1

(3)

−3

(1)

−2

(0)

(−1)

(1) (−1)

Figure 2.7: A decorated plumbing graph for f (x, y) = x y(x2 + y5).

When a ≥ 2, a decorated plumbing graph for f (x, y) = x y(x2 + y4a+1) is given

by the graph in Figure 2.8.
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Figure 2.8: A decorated plumbing graph for f (x, y) = x y(x2 + y4a+1).

Let F f =∨k
i=1S

1
i be the Milnor fibre of f (x, y) = x y(xp + y q ) and let Fg be the

Milnor fibre of the function g (z) = zr with z ∈C; then we have

χ(F ) =χ(F f ∗Fg ) =χ
((r−1)k∨

j=1
S2

j

)
.

Then, for both cases we have

χ(F ) = (2−1)χ(V f ) = (2−1)(4a −1) = 1−4a ,

and when

a ≡ 1 (mod 3) , 1−4a ≡ 9 (mod 12) ,

a ≡ 2 (mod 3) , 1−4a ≡ 5 (mod 12) ,

a ≡ 0 (mod 3) , 1−4a ≡ 1 (mod 12) .

Thus, the Milnor fibre F is not diffeomorphic to a smoothing of a normal Goren-

stein complex surface singularity.

Case 2. Let q = 4a −1 with a ∈Z+, then the solutions to the linear system which

gives the canonical class K are:

k =−2(2a −1) , k1,1 =−a , k2,1 =−a , k3,1 =−2a +1 .

k1, j =−a + ( j −1) , 2 ≤ j ≤ a

Since the canonical class K is integral, there could be a complex analytic germ

G : (C3,0) → (C,0) with isolated singularity with link KG homeomorphic to the

link LF .
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Now we proceed to see if the open-book fibrations given by F and G are equiv-

alent as before. Firstly, the plumbing graph has a+3 vertices and a+2 edges, then

χ(ṼF ) =χ(E)+
3,a∑

i=1, j=1
χ(Ei , j )− ](E ∩Ei ,1)i=1,2,3 − ](Ei , j ∩Ei , j ′)i=1,2,3, j 6= j ′

= (a +3)(2)− (a +2) = a +4 .

Also

K 2 = K T AK

= (−1,3,0, . . . ,0︸ ︷︷ ︸
(a−2)

,1,2,0)

=−k +3k1,1 +k1,a +2k2,1 = 2(2a −1)+3(−a)+ (−1)+2(−a)

=−(a +3) .

i.e., we have

χ(ṼF )+K 2 = (a +4)− (a +3) = 1 .

When a = 1, a decorated plumbig graph for f (x, y) = x y(x2 + y3) is given by

the graph in Figure 2.9.
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Figure 2.9: A decorated plumbing graph for f (x, y) = x y(x2 + y3).

In Figure 2.10 there is a decorated plumbing graph for f (x, y) = x y(x2+y4a−1),

when a ≥ 2.
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Figure 2.10: A resolution graph for f (x, y) = x y(x2 + y4a−1).

In general we have

χ(F ) = (2−1)χ(V f ) = (2−1)(4a −3) = 3−4a ,

and when

a ≡ 1 (mod 3) , 3−4a ≡ 11 (mod 12) ,

a ≡ 2 (mod 3) , 3−4a ≡ 7 (mod 12) ,

a ≡ 0 (mod 3) , 3−4a ≡ 3 (mod 12) .

Thus, the Milnor fibre F is not diffeomorphic to a smoothing of a normal Goren-

stein complex surface singularity.



CHAPTER 3

COMPUTATION OF THE LINK IN THE GENERAL CASE

In this chapter the main idea is to describe the link LF of the function F (x, y, z) =
f (x, y)g (x, y)+ zr with r ∈N. In order to achieve this, in the first section it is de-

scribed as an open-book. Then we recall the theory of periodic diffeomorphisms

given by Nielsen in [41], which gives a way to represent a periodic diffeomor-

phism of a surface by a graph. In the third and fourth section this construction is

extended to a quasi-periodic diffeomorphism which is the identity in the bound-

ary of the surface.

In Section 3.5, the concepts of plumbing manifold and plumbing link are

presented and in the following section they are related with the open-book of a

quasi-periodic diffeomorphism; the last concept is an extension of the construc-

tion presented in Section 1.3. It is shown that the link LF is a plumbing manifold

and, moreover, (LF ,L′) is a plumbing link, where L′ is the preimage of L f ḡ under

the projection of C3 on C2 by projecting on the first two coordinates.

Then, it is shown that the monodromy of a function f ḡ , with f , g two holo-

morphic germs from (C2,0) to (C,0), is a quasi-periodic diffeomorphism of the

associated Milnor fibre. Using the theory of the previous sections, it is given the

correspondent Nielsen graph its relation with the graph representing the open-

book of a quasi-periodic diffeomorphism.

In Section 3.8 it is described the monodromy of LF in terms of the mon-

odromy of the Milnor fibration of f ḡ . In the last section some examples are given

an it is presented the algorithm to describe LF from the information on L f ḡ .

55
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3.1 Description of the link LF as an open-book

In this section we give an open-book fibration of the link LF , related to the Mil-

nor fibration of the germ f g , with great importance in the following sections and

which allow us to describe the corresponding monodromy in terms of the mon-

odromy of the Milnor fibration of f ḡ .

Let f : (C2,0) → (C,0) and g : (C2,0) → (C,0) be two complex analytic germs

such that the real analytic germ f ḡ : (C2,0) → (C,0) has an isolated singularity at

the origin.

For ε > 0 sufficiently small, let L f ḡ = ( f ḡ )−1(0)∩S3
ε be the link of f ḡ ; recall

that L f ḡ is the oriented link L f −Lg . By Theorem 1.24, the Milnor fibration of f ḡ

has projection Φ f ḡ = f ḡ
| f ḡ | . It is an open-book fibration of S3

ε with binding L f ḡ .

Let F : (C3,0) → (C,0) be the germ defined by

F (x, y, z) = f (x, y)g (x, y)+ zr

with r ∈Z+. Let ε be such thatD6
ε is a Milnor ball for F (see Definition 1.7) and let

LF = F−1(0)∩S5
ε be the link of F . By Proposition 2.1, F has an isolated singularity

at the origin.

Let ε′ be such that for all (x, y, z) ∈ F−1(0) with (x, y) ∈D4
ε′ we have

| f (x, y)g (x, y)|1/r < ε .

As in the previous chapter, we consider the polydisc

D6 = {(x, y, z)|(x, y) ∈D4
ε′ , |z| ≤ ε} .

By Proposition 1.11 and [17, App. 3.8], LF is homeomorphic to the intersection

F−1(0)∩∂D6. In the sequel we will denote again this intersection by LF .

The following proposition is an adaptation of Proposition 1.5 of [49], which

deals with the case f (x, y)+ zk where f is holomorphic and reduced.

3.1 Proposition. Let P : LF →S3
ε′ be the projection defined by

P (x, y, z) = (x, y)

and let L′ = P −1(L f ḡ ). Define ρr : C→ C by ρr (z) = zr and let Φ′ : LF \ L′ →S1 be

the map given by Φ′ = z
|z| . Then
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1) the following diagram commutes:

LF \ L′

Φ′
��

P // S3 \ L f ḡ

Φ f ḡ

��
S1

−ρr // S1

(3.2)

2) P is a cyclic branched r -covering with ramification locus L f ḡ and the restric-

tion

P : L′ → L f ḡ

is a homeomorphism,

3) the projection Φ′ is an open-book fibration with binding L′,

4) the fibres ofΦ′ andΦ f ḡ are diffeomorphic and the monodromy h′ ofΦ′ is equal

to hr up to conjugacy in the mapping class group of the fibre.

Proof. Let us prove (1). Let (x, y) ∈S3 \ L f ḡ , then

P −1(x, y) = {(x, y, z) ∈ LF | f (x, y)g (x, y) 6= 0, zr =− f (x, y)g (x, y)}

Moreover, P −1(x, y) ⊂ LF \ L′. Then P is surjective on S3 \ L f ḡ .

Let (x, y, z) ∈ LF \ L′, as zr =− f (x, y)g (x, y), then

(−ρr ◦Φ′)(x, y, z) =−ρr

(
z

|z|
)
=−

(
z

|z|
)r

= f (x, y)g (x, y)

| f (x, y)g (x, y)|
=Φ f ḡ (x, y)

= (Φ f ḡ ◦P )(x, y, z) .

Now, in order to prove (2), first we prove that the diagram (3.2) is a pull-back

diagram.

Let Q be the pull-back of S3 \ L f ḡ by −ρr defined by

Q = {(x, y,λ) ∈ (S3 \ L f ḡ )×S1 |Φ f ḡ (x, y) =−ρr (λ)}

= {(x, y,λ) ∈ (S3 \ L f ḡ )×S1 | f (x, y)g (x, y)

| f (x, y)g (x, y)|
= −λr }
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Then, by the universal property of the pull-back, we have the following dia-

gram:

LF \ L′

Φ′

��

p

""EEEEEEEEE P

((
Q

π3

��

π1,2 // S3 \ L f ḡ

Φ f ḡ

��
S1

−ρr // S1

where π3 is the projection on the third coordinate, π1,2 is the projection on the

first two coordinates and p : (LF \ L′) →Q is defined by

p(x, y, z) = (
x, y,

z

|z|
)

.

Let us define q : Q → (LF \ L′) by q(x, y,λ) = (x, y,λ| f (x, y)g (x, y)|1/r ). Then q is

the inverse map of p and LF \ L′ is diffeomorphic to Q

Thus, as P is the pull-back of the cyclic covering −ρr , then P is itself a cyclic

covering of r leaves.

Now, let (x, y) ∈ L f ḡ , then P −1(x, y) = {(x, y,0) ∈ LF }, i.e., P −1(x, y) consists

of only one point. Then P from LF to S3 is a branched cyclic r -covering with

ramification locus L f ḡ .

Statement (3) can be proved in the following way: Let K be a connected com-

ponent of L f ḡ , since Φ f ḡ is an open-book fibration of S3, thre exists a small

closed tubular neighbourhood U of K and a trivialization δ : U → (S1 ×D2) such

that δ(K ) =S1 × {0} and the following diagram commutes:

U \ K

Φ f ḡ ""EE
EE

EE
EE

E
δ // S1 × (

D2 \ {0}
)

g
yyrrrrrrrrrrr

S1

(3.3)

where g (λ, w) = w
|w | with λ ∈S1 and w ∈D2.

Let K ′ =P −1(K ) and V =P −1(U ). Let ρ′
r : (S1 ×D2) → (S1 ×D2) by

ρ′
r (λ, w) = (−λ, w r ) ,

with λ ∈S1 and w ∈D2.
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The composition δ ◦P gives a cyclic branched r -covering of S1 ×D2 and in

the other hand −ρ′
r gives also a cyclic branched r -covering of S1 ×D2, both with

the same ramification locus; then there exists an unique diffeomorphism δ′ : V →
S1 ×D2 such that δ◦P =−ρ′

r ◦δ′.
Then the following diagram commutes:

V \ K

Φ′
""EE

EE
EE

EE
E

δ′ // S1 × (D2 \ {0})

g
xxrrrrrrrrrrr

S1

(3.4)

and Φ′ is an open-book fibration of LF .

Now let us prove (4). Let F f ḡ be one Milnor fibre ofΦ f ḡ and let F ′ ⊂P −1(F f ḡ )

one fibre of Φ′. Since the diagram (3.2) is a pull-back diagram, the restriction

P |F ′ : F ′ →F f ḡ

is a diffeomorphism. Moreover, the preimage P −1(F f ḡ ) is the disjoint union of r

fibres of Φ′.
Let

γ : (S3 \ L f ḡ )×R→ (S3 \ L f ḡ )

be the flow of a vector field which is a lifting by Φ f ḡ of the canonical tangent

vector field on S1. Then γ is transverse to the fibres of Φ f ḡ and a representative

h of the monodromy of Φ f ḡ is defined as the diffeomorphism of first return of γ

over the fibre F f ḡ . Let

γ′ : (LF \ L′)×R→ (LF \ L′)

be a flow such that for all
(
(x, y, z), t

) ∈ (LF \ L′)×R,

P (γ′
(
(x, y, z), t

)
) = γ(

P (x, y, z), t
)

,

and let h′ be the representative of the monodromy ofΦ′ defined as the diffeomor-

phism of first return of the flow γ′ on F ′. By construction and since the covering

is cyclic, one has the following commutative diagram

F ′

h′
��

P // F f ḡ

hr

��
F ′ P // F f ḡ
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3.2 Nielsen graph of a periodic diffeomorphism

This section is based in the work of J. Nielsen [41] and is also presented in [50,

page 347]. It gives a way to represent a periodic diffeomorphism of a surface by

a graph. As an example it is showed the relation with the resolution graph of a

complex curve with an only rupture vertex.

Let F be an oriented, compact, connected surface and let h : F → F be an

orientation preserving periodic diffeomorphism of order m ≥ 2. Then h gener-

ates an action of the group Zm on F .

Let O be the orbit space of this action, i.e., O is the quotient of F under the

following equivalence relation: given x, y ∈ F , x ∼ y if and only if exists k ∈ Z
such that hk (x) = y . Thus O is an orbifold of dimension 2 homeomorphic to an

orientable, compact, connected surface.

Let$ : F →O be the projection onto the orbit space of h. There exists a finite

number of points whose orbits under h are of cardinality n < m. Let p ∈ F be

one of them, the orbit $(p) is called an exceptional orbit of h. Then $ is a cyclic

branched m-covering whose ramification locus is the set of these exceptional or-

bits in O .

Let λ ∈Z be defined as

λ= m

n
≥ 2 .

We first treat the case when F has empty boundary. Let p ∈O be a point rep-

resenting an exceptional orbit O ∈ F of cardinality n and let D be a small 2-disc

with centre p, i.e., such that each x ∈D \ {p} represents an orbit of cardinality m.

Then $−1(D) consist of n disjoint discs D1, . . . ,Dn , which are ciclically exchanged

by h. Let Di be one of them, the disc Di being oriented as F , let us endow its

boundary ∂Di by the induced orientation. Then h|nDi
: Di → Di is conjugate to a

rotation of angle ω/λ with 0 < ω < λ and ω prime relative to λ. The orientation

convention for Di and its boundary is essential to obtain a well-defined angle.

Let σ be the integer such that 0 <σ<λ and ωσ≡ 1 (mod λ).

3.5 Definition. The pair (λ,σ) is the valency of h at p (or the valency of h for the

orbit π(p)).

If F has a non-empty boundary, ∂O 6= ;. Let Ô be the closed oriented surface

obtained by attaching a 2-disc D ′
i on each boundary component of O and let F̂

be the surface obtained by attaching a 2-disc on each boundary component of
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F . Let ĥ be the conical extension of h to F̂ . It may be that ĥ is not differentiable

at the centre of the new discs but this is unimportant.

Then Ô is the orbit space of ĥ, given by the action of the group Zm on the

surface F̂ .

Let p ′ be the centre of one of the discs D ′
i . We define the valency for the orbit

of a boundary component of O as the valency of h at p ′ in the same way as for the

exceptional orbits.

It is important to notice that the boundary components of F are oriented as

the boundary of the attached discs and not as the boundary of F .

From these valencies, one can construct a graph representing the diffeomor-

phism h:

3.6 Definition. Let G (h) be the graph constructed in the following way:

• The graph G (h) has one unique vertex representing the surface O . This

vertex is weighted by the pair [m, g ] where m is the order of h and g is the

genus of O ,

• we attach to the vertex of G (h) one stalk ( ) for each exceptional orbit

and we weight it by the valency for the corresponding exceptional orbit,

• we attach to the vertex of G (h) one boundary-stalk ( ) for each bound-

ary component of O and we weight it by the valency for the corresponding

boundary component.

We call G (h) the Nielsen graph of the periodic diffeomorphism h.

Figure 3.1 shows the Nielsen graph G (h) of a diffeomorphism h : F → F of

order m with s exceptional orbits, where O has genus g and s′− s boundary com-

ponents.
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(λ1,σ1)

(λs ,σs)

(λs+1,σs+1)

(λs′ ,σs′)

[m, g ]

Figure 3.1: A Nielsen graph with s stalks and s′− s boundary stalks.

3.7 Example. Let f : (C2,0) → (C,0) be a reduced germ of analytic function and

let V = f −1(0) . Let Ṽ be a resolution of V with resolution map π : Ṽ → V . Let

us assume that the corresponding resolution graph Aπ( f ) has an unique rupture

vertex and let h be the monodromy of the Milnor fibration of f .

We consider the graph Aπ( f ) weighted by the multiplicities at the compo-

nents Ei of the exceptional divisor E . By Section 1.6 (see also [15, 1.2 to 1.11]), can

be found a periodic representative of the monodromy h and the Nielsen graph

G (h) can be obtained in terms of the multiplicities of Aπ( f ):

- G (h) has a vertex corresponding to the rupture vertex of Aπ( f ),

- G (h) has a stalk corresponding to each bamboo of Aπ( f ) ended by a vertex

of valence 1 (see Definition 1.40),

- G (h) has a boundary-stalk corresponding to each bamboo of Aπ( f ) ended

by an arrow (see Definition 1.60).

Furthermore, by Proposition 1.53, the numerical information of G (h) is com-

puted as follows: Let m be the multiplicity of the rupture vertex in Aπ( f ). Let i

be a neighbour vertex with multiplicity mi and set m̂i = gcd(m,mi ). The vertex

of G (h) is weighted by the pair [m,0] and the i -th stalk (i -th boundary-stalk) by(
m

m̂i
,−mi

m̂i

)
.

Let us give an explicit example: Given the function f : C2 → C defined by

f (x, y) = x2 + y3, we obtain the graph in Figure 3.2 as resolution graph Aπ( f ).
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(6) (3)

(2)

(1)

−1 −2

−3

Figure 3.2: Resolution graph of f (x, y) = x2 + y3.

Then the Nielsen graph G (h) is the graph in Figure 3.3.

(6,−1)

(3,−1)

(2,−1)

[6,0]

Figure 3.3: Nielsen graph of the monodromy h of the Milnor fibration of f (x, y) =
x2 + y3.

3.3 Nielsen graph of a quasi-periodic diffeomorphism

In this section the notion of Nielsen graph is extended for a quasi-periodic dif-

feomorphism (see [50, page 348]).

Let F be a compact, connected and oriented surface with Euler characteristic

strictly negative.

Let us recall that a quasi-periodic diffeomorphism h : F →F (Definition 1.49)

is an orientation preserving diffeomorphism with a family C of disjoint sim-

ple closed curves in F such that for each connected component c ∈ C one can
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choose a small annulus U (c) ⊂F , tubular neighbourhood of c with the following

properties:

- for any pair of curves ci ,c j ∈C , we have that U (ci )∩U (c j ) =;,

-
⋃

c∈C =U (C ) = h(U (C )),

- the restriction of h to the complement of

U (C ) = ⋃
c∈C

Ů (c)

is periodic, where Ů (c) is the interior of U (c).

Then the family C is called a reduction system of curves for the diffeomorphism

h.

Let h : F → F be a quasi-periodic diffeomorphism and let C be a reduction

system for h. Let c ∈ C be a simple closed curve in F an let U (c) ⊂ F be as

before, then there exists an orientation preserving diffeomorphism µ : [−1,1]×
S1 →U (c) such that µ({0}×S1) = c.

Let N be the smallest integer such that

hN |F\U (C ) = i dF\U (C ) ,

then the restriction h|U (c) is a Dehn twist characterised by a rational number t in

the following way:

Consider the path γ in U (c) defined by γ(s) = µ(s,e iθ) where θ is fixed and

s ∈ [−1,1]. We orient γ by [−1,1] and then, we orient c in such a way that γ·c =+1

in H1(U (c),Z). Then there exists K ∈Z such that the cycles K c and hN (γ)−γ are

homologous in U (c) (see Figure 3.4).
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−γ c

hN (γ)

hN (γ)−γ

Figure 3.4: The cycles K c and hN (γ)−γ are homologous.

3.8 Definition. The rational number t = K
N is called the twist number of h along

c.

3.9 Definition. A reduction system C for the diffeomorphism h is called Wu-

minimal if given any curve c ∈C , we have

- c is not null-homotopic in F ,

- c is not homotopic to a boundary component of F ,

- c is not homotopic to any other curve c ′ of C , and

- the twist of h along c is non zero.

3.10 Theorem (Wu, [69]). Let C , C ′ be two Wu-minimal reduction systems for a

quasi-periodic diffeomorphism h, then there exists a diffeomorphism τ : F → F

isotopic to the identity, such that τ(C ) =C ′.

3.11 Definition. Let h : F →F be a quasi-periodic diffeomorphism. A curve c of

a reduction system C for h is called amphidrome if there exists k ∈Z such that

hk
(−→c )

=−−→c ,

where −→c is the curve c endowed with an orientation.
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Note that for an amphidrome curve c, hk interchanges the boundary compo-

nents of U (c).

Let h : F → F be a quasi-periodic diffeomorphism and let C be a Wu-mini-

mal reduction system for h such that h has order m in F \ U (C ). We are in-

terested to have a reduction system without amphidromes curves, for technical

reasons. Then, if there is an amphidrome curve c ∈C , there exists k ∈Z such that

hk reverses the orientation of c.

Let us prove that k is odd: Suppose k = 2q , then if hq interchanges the bound-

ary components of U (c), hk leaves them fixed. If hq fixes the boundary compo-

nents of U (c), hk fixes them as well. Then, as hk interchanges the boundary

components of U (c), k is odd.

Let µ : [−1,1]×S1 → U (c) be a preserving orientation diffeomorphism such

that µ({0}×S1) = c. Let us consider the following diagram:

U (c)
h // h(U (c))

[−1,1]×S1

µ

OO

µ′−1◦h◦µ
// [−1,1]×S1

µ′
OO

where µ′ is an orientation preserving diffeomorphism defined in such a way that

µ′−1 ◦h ◦µ({±1}×S1) = {∓1}×S1 .

Then we obtain a diffeomorphism µ′−1 ◦h ◦µ which interchanges the boundary

components of [−1,1]×S1 and preserves orientation. Hence it is isotopic to the

diffeomorphism η defined by

η : [−1,1]×S1 −→ [−1,1]×S1

(s,λ) 7−→ (−s,λ)

We modify h with this isotopy in order to obtain

U (c)
h // h(U (c))

[−1,1]×S1

µ

OO

η
// [−1,1]×S1

µ′
OO
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Let us notice that h|k
U (c) =µ′ ◦ηk ◦µ−1 =µ′ ◦η◦µ−1 since k is odd and η has order

2.

This operation allow us to replace the curve c ∈C by the two boundary com-

ponents of U (c), eliminating in this way the amphidrome curves in C .

3.12 Definition. Let C ′ be a Wu-minimal reduction system for h, let C be a re-

duction system for h without amphidrome curves obtained from C ′ by replacing

each amphidrome curve by two parallel curves as described above. We call C the

minimal reduction system of h.

Let h : F → F be a quasi-periodic diffeomorphism and let C be a minimal

reduction system for h. We construct a Nielsen graph for h, which extends the

definition of Nielsen graph of a periodic diffeomorphism in Section 3.2, in the

following way:

Let Gh be the following graph:

• Gh has one vertex for each connected component of F \C ,

• let Fi and F j be connected components of F \C such that there is a curve

c ∈ C with c ⊂ Fi ∩F j , where Fi and F j are the closures of Fi and F j

respectively. Then Gh has an edge between the corresponding vertices ui

and u j .

Now, let Gh be the quotient graph of the induced action of h on the graph Gh .

Let i be a vertex of Gh , then i represents ri connected components of F \ U (C )

and the diffeomorphism h permutes cyclically these ri components. Let Fi be

one of them.

Let hi be the diffeomorphism defined by h|ri
Fi

: Fi →Fi , then hi is a periodic

diffeomorphism with order mi . Let gi be the genus of the orbit space Oi of Fi by

hi .

For each vertex i of Gh we construct the Nielsen graph G (hi ) and we complete

the numerical information by weighting each vertex with the number ri (see Fig-

ure 3.5).
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(λi ,σi )

ri

[mi , gi ]
(λ j ,σ j )

r j
[m j , g j ]

G (hi ) G (h j )

Figure 3.5: Nielsen graphs G (hi ) and G (h j ).

We take the disjoint union of the Nielsen graphs G (hi ). Let A be an edge of

the graph Gh connecting the vertices i and j , i.e., it represents a curve c ∈C such

that c ⊂ Fi ∩F j . Let t be the twist of h along c. The two boundary components

of U (c) are represented by two boundary-stalks in the Nielsen graphs G (hi ) and

G (h j ) respectively.

We replace these two boundary-stalks by a single edge joining the vertices i

and j . We weight this edge in the middle with the twist t and the valencies of the

eliminated boundary-stalks at its extremes (see Figure 3.6).

(λi ,σi )

ri

[mi , gi ]
(λ j ,σ j )

r j
[m j , g j ]

t

Figure 3.6: Joining the Nielsen graphs G (hi ) and G (h j ).

We repeat this process for all the edges in the graph Gh and we obtain a new

graph G (h).

3.13 Definition. The graph G (h) is the Nielsen graph of the quasi-periodic dif-

feomorphism h.

3.14 Example. Let f : (C2,0) → (C,0) be a reduced germ of analytic function and

let V = f −1(0). Let Ṽ be a resolution of V with resolution map π : Ṽ → V . Let

Aπ( f ) be the corresponding resolution graph weighted by the multiplicities mi

of f ◦π along the components Ei of the exceptional divisor E . Let h be the mon-

odromy of the Milnor fibration of f .
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As before, according to Section 1.6, it is possible to see h as a quasi-periodic

diffeomorphism and the Nielsen graph G (h) can be obtained in terms of the mul-

tiplicities mi .

From Aπ( f ) one can construct the Nielsen graph G (hi ) corresponding to the

periodic diffeomorphism hi at each rupture vertex i as in the previous section

with the following additional condition (see also Section 1.6):

Let N (i ) the set of the neighbour vertices of the vertex i and let k ∈ N (i ) such

that k is in a bamboo joining i and other rupture vertex (see Definition 1.41), we

attach a boundary-stalk to the vertex of the Nielsen graph G (hi ) weighted by(
mi

m̂i k
,− mk

m̂i k

)
,

where mi and mk are the multiplicities of i and k respectively and

m̂i k = gcd(mi ,mk ) .

For each bamboo of A( f ) joining two rupture vertices i and j we replace the

boundary-stalks in the Nielsen graphs G (hi ) and G (h j ) by a single edge joining

the vertices i and j . We weight this edge with the valencies of the eliminated

boundary-stalks at its extremes and in the middle with the twist t , which is com-

puted in the following way:

Given a bamboo joining two rupture vertices, as in Figure 3.7, let l and l +1

be two adjacent vertices on it (including the rupture vertices). Let ml and ml+1

be the multiplicities of f ◦π along the irreducible component El and El+1 re-

spectively. By Section 1.6, hml = i d in the component Fl and hml+1 = i d in the

component Fl+1. Letc be a simple closed curve in the intersection Fl ∩Fl+1 and

let U (c) be the small neighbourhood given in Section 1.6. The smallest integer k

such that h|k
U (c) = i d is k = lcm(ml ,ml+1).

m1 m2 mn−1 mn

Figure 3.7: Bamboo joining two rupture vertices with twist t given by the multi-

plicities ml .
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According to [18, Paragraph 13], the twist number of h along c can be ob-

tained as

tl =−1

k
=−gcd(ml ,ml+1)

ml ·ml+1

and the twist number t along the edge joining the vertices i and j in the graph

G (h) is obtained as the sum

t =
n−1∑
l=1

tl .

3.4 Identity on the boundary

In this section it is given an extra numerical information in order to “complete”

the Nilsen graph of a quasi-periodic difeomorphism of a surface with the condi-

tion of being the identity on the boundary of the surface.

Let M be a 3-manifold with an open-book fibration π : M \ L →S1 with bind-

ing L. We want to describe the monodromy of this open-book fibration with the

invariants we have given for periodic and quasi-periodic diffeomorphisms. In the

sequel, we only consider diffeomorphisms whose restriction to the boundary ∂F

of F is the identity map. Given a diffeomorphism h, we consider it up to isotopy

in this class of diffeomorphisms.

Let h : F →F be such a quasi-periodic diffeomorphism and let C be a mini-

mal reduction system of h. For each boundary component ζ of ∂F , we consider

a small tubular neighbourhood U (ζ) of ζ in F bounded on one side by ζ and on

the other side by a parallel curve to ζ in the interior of F .

Then we have a collection of curves in bijection with the boundary compo-

nents of F in addition to C . The restriction of h to U (ζ) is a Dehn twist (possibly

with t = 0) such that

h|ζ = i d .

In the sequel we will complete the Nielsen graph G (h) of h by weighting the ex-

tremity of each boundary-stalk with the corresponding twist t .

3.15 Example. Let f : C2 →C be the function defined by f (x, y) = x2 + y3 and let

h the monodromy of the Milnor fibration of f .

A boundary stalk in the graph G (h) is associated to a bamboo ended by an

arrow in the resolution graph Aπ( f ) for a resolution π of f and the corresponding
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twist can be computed as sum of partial twists, as was done for a bamboo joining

two rupture vertices (see Example 3.14).

The Nielsen graph of h is given in Figure 3.3 and the twist in the boundary-

stalk is given by

t = −1

6
.

Then we obtain the Nielsen graph G (h) (see Figure 3.8).

(6,−1)

(3,−1)

(2,−1)

[6,0]

−1
6

Figure 3.8: Completed Nielsen graph of the monodromy h of the Milnor fibration

of f (x, y) = x2 + y3.

3.16 Example. Let f : C2 →C be the function defined by

f (x, y) = x(x2 + y3) .

Let V = f −1(0) and let Ṽ be a good resolution of V with resolution map π : Ṽ →V

and resolution graph Aπ( f ) (see Figure 3.9).

(9) (5)

(3)

(1)

−1 −2

−3

(1)

Figure 3.9: Resolution graph Aπ( f ) for f (x, y) = x(x2 + y3).
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In this case, the twist on the right boundary-stalk can be obtained as it was

indicated above, t is the sum of two partial twists:

t =−gcd(5,9)

5 ·9
− gcd(1,5)

1 ·5
= 2

9
.

and the Nielsen graph G (h) of the monodromy h of the Milnor fibration of f is

given in Figure 3.10.

(9,−1)

(9,4)

(3,2)

[9,0]

−1
9

−2
9

Figure 3.10: Completed Nielsen graph of the monodromy h of the Milnor fibra-

tion of f (x, y) = x(x2 + y3).

3.5 Plumbing manifolds and fibred plumbing links

This section presents some results from [10], [14], [50] and [53] on fibred plumb-

ing links and their monodromy, which generalise those presented in Section 1.6.

For this, we present the concept of graph manifolds, the graph links and their

representation by a graph (see for example [49, § 4]).

3.17 Definition. Let M be a 3-manifold. A Waldhausen decomposition of M is a

decomposition of M as an union of a finite number of 3-manifolds Mi , M =⋃
Mi

such that

1. each Mi is a Seifert manifold,

2. if i 6= j , the intersection Mi ∩ M j is either empty or it is the union of the

common boundary components, i.e., a union of tori.



3.5. PLUMBING MANIFOLDS AND FIBRED PLUMBING LINKS 73

3.18 Definition. Let M be a 3-manifold. We call M a plumbing manifold if it

admits a Waldhausen decomposition.

3.19 Definition. A plumbing link is a pair (M ,L) where M is a plumbing mani-

fold, boundary of a 4-manifold P (Γ) obtained by plumbing according to a plumb-

ing graph Γ, and L = K1 ∪ . . .∪Kn is an oriented link in M which is an union (pos-

sibly empty) of S1-fibres of the plumbed D2-bundles. Notice that each Ki has a

natural orientation as the boundary of a D2-fibre. We denote by −Ki the knot Ki

endowed with the opposite orientation. Then the oriented link L will be denoted

by L = ε1K1 ∪ . . .∪εnKn where εi ∈ {−1,+1}.

The homeomorphism class of the pair (M ,L) is given by the plumbing graphΓ

decorated with arrows in the following way : for each component Ki of the link L,

we attach an arrow weighted by the multiplicity (εi ) to the vertex corresponding

to the D2-bundle of which Ki is a S1-fibre.

3.20 Definition. A fibred link (M ,L) is a plumbing link (M ,L) such that there

exists an open-book fibration π : M \ L with binding L.

The following theorem is a generalisation of a result of Eisenbud and Neu-

mann ( [18, Th 11.2, see also p. 136]), reformulated in terms of plumbing links.

In [18], this result is proved for multilinks inZ-homology spheres and formulated

in terms of splicing diagrams. In terms of graph decompositions it is proved by

Chaves ( [10, Th 2.2.10]). For a short survey and proof, see [53, Th. 2.11].

3.21 Theorem. Let L = ε1K1 ∪ . . .∪εnKn be a plumbing link with plumbing graph

Γ and intersection matrix MΓ. Let v1, . . . , vs be the vertices of Γ. Let

b(L) = (b1, . . . ,bs) ∈Zs ,

where bi is the sum of the multiplicities ε j carried by the arrows attached to the

vertex vi . Then L is fibred if and only if there exist (m1, . . . ,ms) ∈ Zs such that the

following two conditions hold:

1) MΓ
t (m1, . . . ,ms)+ t b(L) = 0, where t (·) means transposition,

2) for each rupture vertex v j of Γ, the integer m j is 6= 0.

3.22 Definition. The system of equations (1) is called the monodromical system

of L (see [50, Def 4.2]).
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For each vertex vi of the plumbing graph Γ, let Vi be the intersection of M and

the D2-fibre bundle corresponding to vi . Then Vi is a S1-bundle.

If both conditions (1) and (2) hold, then, generalising the arguments of the

proof of [18, Th. 4.2], one obtains that any fibrationφ : M \L →S1 can be modified

by an isotopy in such a way that each fibre of φ is transverse to all the plumbing

tori of M and to all the S1-fibres of any Vi such that mi 6= 0.

3.23 Remark. Let F be a fibre of φ, then the monodromy of the fibration φ ad-

mits a quasi-periodic representant h : F → F whose restriction to Fi = F ∩Vi

coincides with the first return map on Fi of the fibres of Vi endowed with the

orientation εi K , where K is oriented as the boundary of a D2-fibre of a plumbed

bundle, and where εi = mi
|mi | .

In particular, one has:

3.24 Proposition. The order of h on Fi equals |mi |.

3.25 Example. Let f : (C2,0) → (C,0) be a holomorphic germ. By Milnor fibration

theorem, the link L f is fibred. Let U be a neighbourhood of the origin in C2 and

let π : W → U be a resolution of f at the origin, such that the total transform

( f ◦π)−1(0) has normal crossings, and let Γ be its dual graph.

Let v1, . . . , vs be the vertices of Γ. For each i = 1, . . . , s, let m f
i be the multiplic-

ity of f ◦π along the corresponding irreducible component Ei of the exceptional

divisor. Let MΓ be the intersection matrix associated with the plumbing graph Γ.

The resolution theory asserts that

MΓ

t
(m f

1 , · · · ,m f
s )+ t b(L f ) = 0 .

Therefore, the solution of the monodromical system of L f is (m f
1 , · · · ,m f

s ),

and the restriction of the monodromy of the Milnor fibration has order m f
i on

the intersection Fi = Vi ∩F . Then is recovered the description given in Section

1.6.

The following is a particular case of [53, Cor. 2.14], which deals with two germs

f and g defined on a complex normal surface singularity (X , p). Here we present

the case when (X , p) = (C2,0).

3.26 Example. Let f , g : (C2,0) → (C,0) be two holomorphic germs. Let U be

a neighbourhood of the origin in C2 and let π : W → U be a resolution of the
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holomorphic germ f g and let Γ be its dual graph. Using again the notation of

Example 3.25, one has

MΓ

t
(m f

1 , · · · ,m f
s )+ t b(L f ) = 0

and

MΓ
t
(mg

1 , · · · ,mg
s )+ t b(Lg ) = 0 .

Now let us consider the link L = L f −Lg , where −Lg denotes Lg endowed with

the opposite orientation. Then

(MΓ)−1t b(L f ∪−Lg ) = (MΓ)−1t (b(L f )−b(Lg )) .

Therefore

(MΓ)−1t b(L f ∪−Lg ) =−t
(m f

1 −mg
1 , . . . ,m f

s −mg
s ) .

Hence (m f
1 −mg

1 , . . . ,m f
s −mg

s ) is the solution of the monodromical system of L f ∪
−Lg .

Applying Theorem 3.21, one obtains:

3.27 Theorem ( [51, Cor. 2.2]). The link L f ḡ = L f ∪−Lg is fibred if and only if for

each rupture vertex v j of Γ one has m f
j 6= mg

j . Moreover, if this condition holds,

then the quasi-periodic representant of the monodromy of L f −Lg has order |m f
j −

mg
j | on F j =V j ∩F .

Let (M ,L) be a plumbing link. Another way to represent (M ,L) according to

the Waldhausen decomposition of M is the following: Let W (M ,L) be a graph

constructed in the following way:

• the graph W (M ,L) has a vertex i for each Seifert component Mi in the

Waldhausen decomposition of M . For each exceptional fibre in Mi \ L we

attach to i a stalk weighted by the corresponding normalised Seifert invari-

ant (α,β), i.e., 1 ≤ β < α. For each Seifert fibre in Mi ∩L we attach an ar-

row weighted by the corresponding normalised Seifert invariant (α,β), i.e.,

0 ≤ β < α. The vertex is weighted by the genus gi of the orbit space of Mi

and the Euler class e(Mi ).

• Let Mi and M j be two Seifert components in the Waldhausen decompo-

sition of M and let i and j be the corresponding vertices; there is an edge

between i and j if and only if the intersection Mi ∩M j is not empty.
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Each edge is oriented by the triplet (ε,α,β) (defined as in [39, § 1]) in the

following way: Let T be a separation torus between two Seifert components

Mi and M j (represented by vertices i and j respectively). Let U (T ) be a

thickened torus, small neighbourhood of T and let Ti ⊂ Mi and T j ⊂ M j be

its boundary components. Let us orient Ti and T j as the boundary of U (T ).

Let bi ⊂ Ti be a Seifert fibre of Mi and ai ⊂ Ti a curve such that ai ·bi = 1

in H1(Ti ,Z). In the same way, we choose a j ,b j ⊂ T j such that a j · b j =
1 in H1(T j ,Z). Let g : Ti → T j an orientation reversing diffeomorphism,

induced by the product structure of U (T ). There exists some integers ε ∈
{−1,1}, α> 0 and β,β′ ∈Z such that

εh−1(b j ) =αai +βbi in H1(Ti ,Z)

and

εh−1(bi ) =αa j +β′b j in H1(T j ,Z).

Moreover, it is possible to choose the curves a and a′ in such a way that the

integers β and β′ are normalised, i.e.,, 0 ≤ β < α and 0 ≤ β′ < α. If α > 1, β

and β′ satisfy the following relation:

ββ′ ≡ 1 (mod α) .

If α= 1, then β=β′ = 0.

Thus, if the edge is oriented from i to j , the corresponding triplet is (ε,α,β);

if the orientation is from j to i , we write the triplet (ε,α,β′).

In Figure 3.11 it is shown the graph W (M ,L) of a graph link (M ,L) with s ex-

ceptional fibres in Mi \ L, s′− s Seifert fibres in Mi ∩L and Euler class ei = e(Mi ).
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(ε,α,β)

(αs′ ,βs′)

[ei , gi ]

(αs+1,βs+1)

(αs ,βs)

(α1,β1)

[e j , g j ]

Figure 3.11: Graph W (M ,L) of the graph link (M ,L).

3.6 Open-book of a quasi-periodic diffeomorphism

Given a quasi-periodic diffeomorphism of a surface, one can construct the as-

sociated mapping torus and, using the construction given in Section 1.3, obtain

an associated open book; this open book with the corresponding binding is a fi-

bred link. In this section is given a correspondence between the Nielsen graph

of the quasi-periodic diffeomorphism and the graph representing the fibred link

presented in Section 3.5.

The following result is proved in [36, Section 4.4].

3.28 Lemma. Let F be a surface without boundary and let h : F → F be a peri-

odic diffeomorphism with s exceptional orbits. Let (λi ,σi ) be their valencies with

i = 1, . . . , s .

Then the mapping torus T (h) is a Seifert manifold whose orbit space is the orbit

space of h and whose Seifert invariants are given as follows :

• There are s exceptional fibres whose Seifert invariants are (αi ,βi ) = (λi ,σi )

with i = 1. . . , s,

• the Euler class e is given by :

e =
s∑

i=1

σi

λi
.
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By Section 1.3, one can construct the open-book (O (h),πh). The following

result gives information on this open-book and it is an adaptation of [50, Lemma

4.4].

3.29 Theorem. Let h : F → F be a quasi-periodic diffeomorphism with Nielsen

graph G (h). Then the pair (O (h),L(h)) is a plumbing link (moreover, it is a fibred

link) whose corresponding graph W (O (h),L(h)) is obtained as follows. There exists

an isomorphism from G (h) to W (O (h),L(h)) sending:

- the vertices of G (h) to the vertices of W (O (h),L(h)),

- the edges of G (h) to the edges of W (O (h),L(h)),

- the stalks of G (h) to the stalks of W (O (h),L(h)),

- the boundary-stalks of G (h) to the arrows of W (O (h),L(h)).

Moreover,

• Consider a vertex of G (h) with genus g , order m and with neighbour valen-

cies (λi ,σi ), i = 1, . . . , s′ (taking into account all the incident edges, including

those corresponding to stalks and boundary-stalks). Then the corresponding

vertex of W (O (h),L(h)) is weighted by [g ,e] where the Euler class e is given

by :

e =
s′∑

i=1

σi

λi
, (3.30)

• for each stalk of G (h) with valency (λ,σ), the corresponding exceptional fibre

has Seifert invariant

(α,β) = (λ,σ) , (3.31)

• for each boundary-stalk of G (h) with valency (λ,σ), twist t and order m in

the adjacent vertex, the corresponding Seifert invariant is

(α,β) =
(
|tλ| , − t

|t | ·
1−mtσ

m

)
, (3.32)

• for each edge of G (h), the triplet of the corresponding edge oriented from left

to right is:

(ε,α,β) =
(
− t

|t | , |m j tλ| , − t

|t | ·
m j −mi m j tσ

mi

)
. (3.33)
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Notice that for each of the three previous equalities, there exists a choice ofσ

in its class modulo λ such that the corresponding pair (α,β) is normalised,

i.e., 0 ≤β<α. Let us fix such integers σ.

(λ,σ)

(λs′ ,σs′)

[mi , gi ]
ri

(λs+1,σs+1)

t1

tm

(λs ,σs)

(λ1,σ1)

(λ′,σ′)

r j

[m j , g j ]
t

(ε,α,β)

(αs′ ,βs′)

[ei , gi ]

(αs+1,βs+1)

(αs ,βs)

(α1,β1)

[e j , g j ]

Figure 3.12: Isomorphism between the graphs G (h) and W (O (h),L(h)).

The formulae (3.30) and (3.31) are consequences of the Lemma 3.28 and (3.33)

is proved in [50, Lemma 4.4] as consequence of the following lemma. This lemma,

which is an adaptation of a part of [50, Lemma 4.4], will enable us to prove (3.32).

3.34 Lemma. Let A = [−1,1]×S1 be an annulus with boundary components c =
{−1}×S1 and c ′ = {1}×S1 and let h : A → A be an orientation preserving diffeo-

morphism such that
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• h(c) = c and h|c is periodic of order m,

• h(c ′) = D ′ and h|c ′ is periodic of order m′.

Let T (h) be the mapping torus of h and let T = c ×S1 and T ′ = c ′ ×S1 be the

boundary components of T (h). Let b ⊂ T be the curve which is the image in T (h)

of the union of segments
m⋃

i=1
(−1,hi (λ))× [0,1] ,

where ((−1,hi (λ))× [0,1]) ⊂ (A × [0,1]) and let b′ ⊂ T ′ be the curve which is the

image in T (h) of the union of segments

m′⋃
i=1

(1,hi (λ))× [0,1] .

Then the following equation holds

mb′ =−mm′tλa + (m′−mm′tσ)b , (3.35)

where a is a curve on T such that a ·b = 1 in H1(T,Z) and a′ is a curve on T ′ such

that a′ ·b′ = 1 in H1(T,Z).

Proof. Let d = {0}×S1 ⊂ A, we orient d in such a way that d and c are homolo-

gous in H1(A,Z), where c is oriented as boundary of A. Let γ= [0,1]× {0} ⊂ A be

oriented as [0,1]. Then γ is transverse to d and we have

hmm′
(γ)−γ= mm′td = mm′tc (3.36)

in H1(A,Z) as in Definition 3.8.

On the other hand, the cycle m′b −mb′ +γ−hmm′
(γ) is the boundary of a

2-chain in T (h). Then, from (3.36), we obtain

mb′ = m′b −mm′td in H1(T (h),Z) . (3.37)

For a and b, we have the following relation:

c =λa +σb in H1(T,Z) . (3.38)

Combining (3.36), (3.37) and (3.38) we obtain

mb′ =−mm′tλa + (m′−mm′tσ)b

in H1(T (h),Z).
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Proof of equation (3.32). Let us take a boundary-stalk of G (h) with valency (λ,σ),

twist t and order m in the adjacent vertex. As we know, the diffeomorphism h is

the identity on the boundary of F , then, applying Lemma 3.34, we obtain

b =−tλa′+ (1−mtσ)b′ in H1(T (h),Z)

and on the other hand we have the following equality:

εb =αa′+βb′ in H1(T ′,Z) .

From these last two equations we get

α= |tλ| and β=− t

|t | ·
1−mtσ

m
,

where ε=− t
|t | .

3.7 Applications: Explicit computations of monodro-

mies

In this section are presented some applications of Theorem 3.29.

Application 1: Monodromy of the Milnor fibration of f

Let f : (C2,0) → (C,0) be a holomorphic germ. Let us take again the notation used

in Example 3.25, writing mi instead of m f
i . According to Example 3.25, the order

of h at the vertex vi of the Nielsen graph equals mi .

The plumbing representation of the pair (S3,L f ) described by the resolution

graph Γ is a particular Waldhausen decomposition of the pair (S3,L f ) (in general

non minimal). The formulae of Theorem 3.29 apply to this Waldhausen decom-

position.

In particular, if vi and v j are two adjacent vertices in the resolution graph,

then the plumbing edge between them corresponds to the Waldhausen invari-

ants (α,β) = (1,0) with ε= 1.
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(mi ) (m j )

(mi )

(λ,σ)

t

Figure 3.13: Correspondence given by the formulae of Theorem 3.29.

Therefore, the adjacent valency (λ,σ) in the Nielsen graph (see Figure 3.13)

and the “partial” twist t corresponding to this edge is computed using the for-

mula (3.33) with (ε,α,β) = (1,1,0) as follows. According to Proposition 3.24, the

orders of h on F ∩Vi and F ∩V j equal mi and m j respectively. Then t < 0, α= 1

implies

t =− 1

m jλ
,

and β= 0 implies

σ= 1

mi t
=−m jλ

mi t
.

As gcd(λ,σ) = 1, one obtains:

λ= mi

gcd(mi ,m j )
and σ=− m j

gcd(mi ,m j )

Then the result of Du-Bois-Michel stated in Proposition 1.53 is recovered.

Moreover, one obtains the formula for the partial twist given in [18, § III.13]:

t =−gcd(mi ,m j )

mi m j
.

If j is the extremity of an arrow, then the equation (3.32) applied with (α,β) =
(1,0) leads to the same expressions.

3.39 Example. Let f : C2 →C be the function defined by

f (x, y) = (x2 + y3)(x3 + y2) .

Figure 3.14 shows the resolution graph Aπ( f ) for a resolution π of f .
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−2
(5)

−1

(10)

(1)

−5

(4) −1

(10)

(1)

−2
(5)

Figure 3.14: Resolution graph for f (x, y) = (x2 + y3)(x3 + y2).

From Aπ( f ) is obtained the Nielsen graph G (h) of the monodromy h of the

Milnor fibration of f . First it is constructed the Nielsen graph corresponding to

the periodic diffeomorphism at each rupture vertex (see Figure 3.15).

(5,−2)

2
[10,0]

(5,−2)

2
[10,0]

(10,−1)

− 1
10

(2,−1)

(10,−1)

− 1
10

(2,−1)

G (h1) G (h2)

Figure 3.15: Nielsen graph of the diffeomorphisms h1 and h2.

and attaching these graphs one obtains the Nielsen graph G (h) (see Figure

3.16).
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(5,−2)

2
[10,0]

(5,−2)

2
[10,0]

(10,−1)

− 1
10

(2,−1)

(10,−1)

− 1
10

(2,−1)

− 1
10

Figure 3.16: Nielsen graph G (h) of the monodromy h of the Milnor fibration of

f (x, y) = (x2 + y3)(x3 + y2).

In this case the twist t is given by

t =− 1

10
=−gcd(4,10)

4 ·10
− gcd(4,10)

4 ·10
.

Then, O (h) =S3 and L(h) = L f g . By Theorem 3.29, the graph W (S3,L f g ) is the

graph of Figure 3.17.

−1 −1

(1,0)

(2,1)

(1,0)

(2,1)

(5,4)

Figure 3.17: Graph W (S3,L f g ) of f (x, y)g (x, y) = (x2 + y3)(x3 + y2).

In this case we did not weight the vertices with the genera of the orbits spaces

of the corresponding Seifert manifolds because they are zero.

Then the plumbing graph which describes (S3,L f g ) is the resolution graph

Aπ( f ) given in Figure 3.14.

Application 2 : Monodromy of the Milnor fibration of f ḡ

Let f , g : (C2,0) → (C,0) be two holomorphic germs such that f ḡ has an isolated

singularity at the origin, then the link L f −Lg is fibred (see [51, Th 5.1]).
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By Remark 3.23, when m f
i −mg

i < 0, the natural orientation of theS1-fibres of

Vi is opposite to the one obtained by lifting the orientation of the circle S1 with

the Milnor fibration. In order to get the right orientation, one must change the

orientation of the fibres on each Vi such that m f
i −mg

i < 0. It implies that the

edges joining two vertices vi and v j such that m f
i −mg

i < 0 and m f
j −mg

j ≥ 0 is

now weighted by ε=−1.

Also, by Theorem 3.27, the order of the monodromy h of the Milnor fibration

of f ḡ on Vi ∩F equals mi = |m f
i −mg

i |. We then apply the same process as the

one describe in Application 1 to describe the Nielsen graph of the monodromy of

the Milnor fibration of f ḡ , taking into account the ε on the edges:

• If vi and v j are two adjacent vertices in the resolution graph such that mi 6=
0 and m j 6= 0, then the plumbing edge between them corresponds to the

Waldhausen invariants (α,β) = (1,0) with ε ∈ {−1,+1}.

Therefore, the adjacent valency (λ,σ) in the Nielsen graph (see Figure 3.13)

and the “partial” twist t corresponding to this edge are computed using the

formula (3.33) with (α,β) = (1,0) as in Application 1. Then,

t =−εgcd(mi ,m j )

mi m j

and

λ= mi

gcd(mi ,m j )
and σ=− m j

gcd(mi ,m j )
.

Notice also that perhaps after performing additional blowing-ups, one can

assume that any neighbour vertex v j of a rupture vertex is such that m j 6= 0.

Then the above formula enables one to compute all the valencies in the

Nielsen graph.

• if vi is a vertex such that mi = 0, then by Theorem 3.27, it is a vertex on a

string which is not at one of the extremities (i.e., it is a vertex with valence 2

in Γ). Let v j and vk be the two neighbour vertices, say with m j =−mk > 0.

Let ei be the Euler class weighting vi in the resolution graph. Then the

Waldhausen invariant (α,β) corresponding to the string consisting of the

vertex vi and the two adjacent edges equals :

(α,β) = (|ei |, |ei |−1)
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and one obtains the partial twist corresponding to this edge by equation

(3.33):

t =+|ei |
mi

Notice that the t is positive, which never happens for the monodromy of a

holomorphic germ (see [50, Th. 5.4]).

3.40 Example. Let f , g be as in the Example 3.39. The plumbing tree Γ f ḡ is given

in Figure 3.18.

(1)

−2
(2)

−1

(1)

(0)

−5 (−2)

−1

(−1)

(−1)

−2

Figure 3.18: Plumbing tree Γ f ḡ for f (x, y)g (x, y) = (x2 + y3)(x3 + y2).

After the change of orientation of the Seifert fibres as we made above, we ob-

tain the graph in Figure 3.19.

(1)

−2
(2)

−1

(1)

(0)

−5
−1

(2)

−1

(1)

(1)

−2

Figure 3.19: After the change of orientation in the plumbing tree Γ f ḡ for

f (x, y)g (x, y) = (x2 + y3)(x3 + y2).

By Theorem 3.29, it is possible to compute directly the Nielsen graph G (h) of

the monodromy h of the Milnor fibration of f ḡ (see Figure 3.20).
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(1,1)

2
[2,0]

(1,1)

2
[2,0]

(2,1)

(2,−1)

(2,1)

(2,−1)

5
2

- 1
2 - 1

2

Figure 3.20: Nielsen graph G (h) for f (x, y)g (x, y) = (x2 + y3)(x3 + y2).

Note that, as we said, the twist is positive as a consequence of the change of

sign of ε in the formula (3.33).

3.8 The monodromy hr

The following results are Lemma 2.2 and Lemma 2.3 of [49] and their proofs ap-

pear there. Given a quasi-periodic diffeomorphism h, these lemmas enable us to

compute the Nielsen graph G (hr ) of the quasi-periodic diffeomorphism hr from

the Nielsen graph G (h).

3.41 Lemma. Let h : F →F be a periodic diffeomorphism of order m which pre-

serves the orientation of the surface F and let r ≥ 2 be an integer. Let π : F →O be

the projection onto the orbit space O of π.

Let πr : F →O (r ) be the projection onto the orbit space O (r ) of πr and let

ρ : O (r ) →O

be the map defined by ρ ◦πr =π. Then ρ is a cyclic branched covering of gcd(m,r )

leaves, whose ramification locus is included in the set of exceptional orbits of O .

Moreover each exceptional orbit of O with valency (λ,σ) is a possible branching

point of ρ with order gcd(m,r )
gcd(m/λ,r ) .

The Nielsen invariants of hr can be computed from the Nielsen graph G (h) as

follows:

Let G (h) be the Nielsen graph of a diffeomorphism h : F →F of order m with

s exceptional orbits, where O has genus g and s′ − s boundary components (see

Figure 3.21).
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(λ1,σ1)

(λs ,σs)

(λs+1,σs+1)

(λs′ ,σs′)

[r, g ]

Figure 3.21: A Nielsen graph with s stalks and s′− s boundary stalks.

- The order of hr is n(r ) = m
gcd(m,r ) .

- The genus of O (r ) is

g (r ) = (g −1)gcd(m,r )+1+ 1

2

s′∑
i=1

(gcd(m,r )−gcd(m/λi ,r )) .

- The orbit space O (r ) has a maximum of
∑s

i=1 gcd(m/λi ,r ) exceptional orbits

and
∑s′

i=s+1 gcd(m/λi ,r ) boundary curves.

- To the i − th exceptional orbit of O correspond gcd(m/λi ,r ) orbits of O (r ). To

the i − th boundary curve of O correspond gcd(m/λi ,r ) boundary curves of

O (r ). In any case, the valency (λ(r )
i ,σ(r )

i ) is given by:

λ(r )
i = m

λi gcd(m/λi ,r )
and σ(r ) × r

gcd(m,r )
≡σi (mod λ(r )) . (3.42)

Whenλ(r ) = 1 the corresponding orbit is regular, in any other case it is a exceptional

orbit of O (r ).

3.43 Lemma. Let h : F →F be a quasi-periodic diffeomorphism and let C be the

minimal reduction system for h. Then the family C is a reduction system of hr

and if t and t (r ) are the twists of h and hr respectively near to a curve c ∈ C , then

t (r ) = r t .

3.44 Example. Let f : C2 →C be the function defined by

f (x, y) = (x2 + y3)(x3 + y2) .
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The Nielsen graph G (h) of the monodromy h of the Milnor fibration of f is given

in Figure 3.22.

(5,−2)

1
[10,0]

(5,−2)

1
[10,0]

(10,−1)

− 1
10

(2,−1)

(10,−1)

− 1
10

(2,−1)

− 1
10

Figure 3.22: Nielsen graph G (h) of the monodromy h of the Milnor fibration of

f (x, y) = (x2 + y3)(x3 + y2).

Now, let r = 2. The Nielsen graph G (h2) is given in Figure 3.23.

(5,−2) (5,−2)

−1
5

(5,−2) (5,−2)

−1
5

(5,−1) (5,−1)

[5,0] [5,0]

−1
5 −1

5

1 1

Figure 3.23: Nielsen graph G (h2) of the monodromy h2 of the Milnor fibration of

f (x, y) = (x2 + y3)(x3 + y2).

3.45 Example. Let f : (C2,0) → (C,0) be the complex analytic germ defined by

f (x, y) = (x2+ y3) and let g : (C2,0) → (C,0) be the complex analytic germ defined

by g (x, y) = (x3 + y2). The real analytic germ f ḡ is given by

f (x, y)g (x, y) = (x2 + y3)(x3 + y2) .

By Section 3.7, the Nielsen graph G (h) of the monodromy h of the Milnor fibra-

tion of f ḡ is as in Figure 3.24.
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(1,1)

2
[2,0]

(1,1)

2
[2,0]

(2,1)

(2,−1)

(2,1)

(2,−1)

5
2

- 1
10 - 1

10

Figure 3.24: Nielsen graph G (h) for f (x, y)g (x, y) = (x2 + y3)(x3 + y2).

Now, let r = 2. The Nielsen graph G (h2) is given in Figure 3.25.

(1,1) (1,1)
5

(1,1) (1,1)
5

(1,−1) (1,−1)

[1,0] [1,0]

−1 −1

1 1

Figure 3.25: Nielsen graph G (h2) of the monodromy h2 of the Milnor fibration of

f (x, y)g (x, y) = (x2 + y3)(x3 + y2).

3.9 Computation of the link of f ḡ + zr

Let f : (C2,0) → (C,0) and g : (C2,0) → (C,0) be two complex analytic germs such

that the real analytic germ f ḡ : (C2,0) → (C,0) has an isolated singularity at the

origin. Let F : (C3,0) → (C,0) be the germ defined by

F (x, y, z) = f (x, y)g (x, y)+ zr

with r ∈Z+.

As we saw in Section 3.1, the following diagram commutes:

LF \ L′

Φ′
��

P // S3 \ L f ḡ

Φ f ḡ

��
S1

ρr // S1
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where L f ḡ is the link of f ḡ , LF is the link of F , P is the projection onto the first

two coordinates, L′ = P −1(L f ḡ ), Φ f ḡ is the Milnor fibration of f ḡ , Φ′ = z
|z| and

ρr (z) = zr .

With the tools given in the previous sections of this chapter, we are able to

give a description of the link LF in terms of the link L f ḡ and the monodromy h of

the Milnor fibration Φ f ḡ as follows:

First step: To compute the plumbing tree Γ f ḡ where each vertex i is weighted

by mi = m f
i −mg

i and change the negative multiplicities into positive ones

(Section 3.7).

Second step: To compute the Nielsen graph G (h) of the monodromy h (Section

3.7).

Third step: To compute the Nielsen graph G (hr ) of the diffeomorphism hr (Sec-

tion 3.8).

Fourth step: Applying Theorem 3.29, to compute the graph W (O (hr ),L(hr )), where

O (hr ) = LF and L(hr )) = L′ (Section 3.6).

Fifth step: To compute the plumbing graph corresponding to LF applying the

plumbing calculus given in Section 3.5.

3.46 Example. Let f : (C2,0) → (C,0) be the complex analytic germ defined by

f (x, y) = x2 + y7 and let g : (C2,0) → (C,0) be the complex analytic germ defined

by g (x, y) = x5 + y2.

First step:

The resolution graph A( f g ), where the multiplicity mi = m f
i +mg

i at the vertex i

appears as
(m

f
i

m
g
i

)
is given by
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−2

−1

−3 −2 −3 −3

−1

−2(7
2

)
(14

4

)
(6

2

) (4
2

) (2
2

) (2
4

)
( 4

10

)
(2

5

)

(1) (1)

Then, the plumbing tree Γ f ḡ is given by

−2

−1

−3 −2 −3 −3

−1

−2

(5)

(10)

(4) (2) (0) (−2)

(−6)

(−3)

(1) (−1)

After the change of orientation in the Seifert fibres indicated in Section 3.7, we

obtain the following graph:

−2

−1

−3 −2 −3 −3

−1

−2

(5)

(10)

(4) (2) (0) −1 (2)

(6)

(3)

(1) (1)

Second step:

From the last graph, we compute the Nielsen graph G (h) of the monodromy h of

the Milnor fibration Φ f ḡ .
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(5,−2)

1
[10,0]

(3,2)

1
[6,0]

(10,−1)

(2,1)

(6,−1)

(2,1)

31
30

− 1
10 −1

6

Here the twist 31
30 can be computed in two ways: First one is to consider the

partial twists between the rupture vertices and get the twist as the sum of them

and the other is to compute the α corresponding to the edge joining the rupture

vertices. By Theorem 1.43, we have that

α

α−β = 3−
1

2−
1

3−
1

3

then α= 31. Applying the equation (3.33), one obtains that

t = α

m jλ
= 31

(6)(5)
= 31

30
.

Third step:

Let F : (C3,0) → (C,0) be the germ defined by

F (x, y, z) = (x2 + y7)(x5 + y2)+ z3 .

The link LF has an open-book fibration with binding L′ and monodromy h3.

This monodromy is a quasi-periodic diffeomorphism, then we can compute the

Nielsen graph G (h3) from the graph G (h) (as in Section 3.8):



94 CHAPTER 3. THE LINK IN THE GENERAL CASE

(5,1)

1
[10,0]

(1,1) 1 [2,0]

(10,3)

(2,1)

(2,−1)

(2,1)

(2,1) (2,1)

31
10

− 3
10

−1
2

Fourth step:

Applying Theorem 3.29, we compute the graph W (LF ,L′) from the Nielsen graph

G (h3):

(−1,31,6)

1

2

(3,1)

(2,1)

(1,0)

(2,1)

(2,1) (2,1)

Fifth step:

From the graph W (LF ,L′) we can compute the corresponding plumbing graph.

First, we have the following equations:

3

3−1
= 2− 1

2
= [2,2]

2

2−1
= 2 = [2]

31

31−6
= [2,2,2,2,7] ,
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then the plumbing graph Γ is given by

−2

−2

−2

−2

−2 −2 −2 −2 −7 −2

−2

−2

−2

where LF
∼= ∂P (Γ) and P (Γ) is the four-manifold obtained by plumbing 2-discs

bundles according to Γ.

3.47 Example. Let f : (C2,0) → (C,0) be the complex analytic germ defined by

f (x, y) = x3 + y5 and let g : (C2,0) → (C,0) be the complex analytic germ defined

by g (x, y) = x7 + y2.

First step:

The resolution graph A( f g ), where the multiplicity mi = m f
i +mg

i at the vertex i

appears as
(m

f
i

m
g
i

)
is given by

−3

−1

−2 −4 −2 −3

−1

−2(5
2

)
(15

6

)
(9

4

) (3
2

) (3
4

) (3
6

)
( 6

14

)
(3

7

)

(1) (1)

Then, the plumbing tree Γ f ḡ is given by
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−3

−1

−2 −4 −2 −3

−1

−2

(3)

(9)

(5) (1) (−1) (−3)

(−8)

(−4)

(1) (−1)

After the change of orientation in the Seifert fibres indicated in Section 3.7, we

obtain the following graph:

−3

−1

−2 −4 −2 −3

−1

−2

(3)

(9)

(5) (1) −1 (1) (3)

(8)

(4)

(1) (1)

Second step:

From the last graph, we compute the Nielsen graph G (h) of the monodromy h of

the Milnor fibration Φ f ḡ .

(9,−5)

1
[9,0]

(8,−3)

1
[8,0]

(9,−1)

(3,−1)

(8,−1)

(2,−1)

29
72

−1
9 −1

8

where the twist 29
72 is computed by applying the equation (3.33):

t = α

m jλ
= 29

(8)(9)
= 29

72
.
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Third step:

Let F : (C3,0) → (C,0) be the germ defined by

F (x, y, z) = (x3 + y5)(x7 + y2)+ z5 .

The link LF has an open-book fibration with binding L′ and monodromy h5.

This monodromy is a quasi-periodic diffeomorphism, then we can compute the

Nielsen graph G (h5) from the graph G (h) (as in Section 3.8):

(9,8)

1
[9,0]

(8,1)

1
[8,0]

(9,7)

(3,1)

(8,3)

(2,1)

145
72

−5
9 −5

8

Fourth step:

Applying Theorem 3.29, we compute the graph W (LF ,L′) from the Nielsen graph

G (h5):

(−1,145,128)

2 1

(5,4)

(3,1)

(5,2)

(2,1)



98 CHAPTER 3. THE LINK IN THE GENERAL CASE

Fifth step:

From the graph W (LF ,L′) we can compute the corresponding plumbing graph.

First, we have the following equations:

5

5−4
= 5 = [5]

3

3−1
= 2− 1

2
= [2,2]

5

5−2
= 2− 1

3
= [2,3]

2

2−1
= 2 = [2]

145

128
= [9,3,2,2,2,2,2,2,2] ,

then the plumbing graph Γ is given by

−5

−1

−2

−2

−9 −3 −2 −2 −2 −2 −2 −2 −2 −2

−2

−3

−2

where LF
∼= ∂P (Γ) with P (Γ) the four-manifold obtained by plumbing 2-discs

bundles according to Γ.



CHAPTER 4

CYCLIC SUSPENSIONS AND MILNOR FIBRATIONS

The theory in this chapter is based in [25]. We first show that if f and g are

holomorphic functions from C2 to C and r ≥ 2 is an integer, then the function

F = f ḡ + zr has a Milnor fibration with projection map F /‖F‖. Then we use [25]

to study the topology of this fibration.

For this, in the first section it is given the concept of fibred knot and its relation

with open-books. In the second section it is defined the r -suspension of a knot

and it is shown that the above function F is d-regular (see Definition 1.21). This

implies that F has Milnor fibration.

In Section 4.3 we apply a join theorem given in [25] to the Milnor fibre of the

function F and we obtain the homotopy type of the Milnor fibre of F in terms of

the homotopy type of the Milnor fibre of f . This join theorem is a generalisation

of results as the one proved by Sebastiani and Thom in [63] and Sakamoto’s result

(see [58, Th. 1]). The last section is devoted to examples.

4.1 Open-books and fibred knots

In this section we give concepts related to fibred knots and open-books.

4.1 Definition. A knot K = (Sk ,K ) is an oriented k-sphere with an oriented codi-

mension 2 compact closed submanifold K ⊂Sk .

4.2 Definition. A knot L = (Sn ,L) is fibred if there is a fibration

b : Sn \ L →S1

99
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such that the closure Ft = b−1(t ) of any fibre of b is a closed submanifold of Sn

with boundary ∂Ft = L.

In Section 1.3 we give a definition of an open-book fibration; in this section

we use an equivalent definition, given in [25], which is more convenient for this

work.

4.3 Definition. Let M be a closed compact manifold. An open-book structure

for M is a map b : M →D2 such that zero is a regular value and

φb = b

‖b‖ : M \ b−1(0) →S1

is a smooth fibration.

This definition is equivalent to Definition 1.26 : Given b : M → D2 as above,

then N = b−1(0) is the binding and the open-book fibration is given by φb .

4.4 Definition. Given two manifolds M and M ′ with open-book structures b and

b′ respectively, we say the open-books (M ,φb) (M ′,φb′) are equivalent if there

exists a diffeomorphism α : M → M ′ such that b′ ◦h agrees with b on a neigh-

bourhood of b−1(0) and
b′ ◦h

‖b′ ◦h‖ = b

‖b‖
on M \ b−1(0) = M \ (b′ ◦h)−1(0).

Note that a fibred knot L = (Sn ,L) has an open-book structure b : Sn → D2

such that b−1(0) = L.

4.5 Definition. Given a fibred knot L = (Sn ,L) with open-book structure b : Sn →
D2, b will also be called the fibred structure of L .

4.6 Definition. Let (Sn ,L) and (Sn ,L′) be two fibred knots with corresponding

fibred structures b : Sn → D2 and b′ : Sn → D2; the knots are isotopic if b and b′

are equivalent in the sense of Definition 4.4 by a diffeomorphism α : Sn → Sn

which is isotopic to the identity.
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4.2 Cyclic suspensions

In this section we define the concept of a cyclic suspension of a knot. For that we

need some results first. The theory is based in [20], [38] and [25].

Let (Sm ,K ) be a fibred knot where m ≥ 3. Then there exists a fibred structure

b : Sm → D2. Let ρr : D2 → D2 be the r -branched cyclic covering of D2 given by

ρr (z) = zr with 0 ∈ D2 as ramification locus.

4.7 Lemma. The pull-back [r ](Sm ,K ) of ρr : D2 → D2 by the map b:

[r ](Sm ,K )

πr

��

// D2

ρr

��
Sm b // D2

is an r -branched cyclic covering of Sm , branched along K .

Proof. Consider the pull-back of ρr : D2 → D2 by the map b:

[r ](Sm ,K )

πr

��

// D2

ρr

��
Sm b // D2

then

[r ](Sm ,K ) = {(x, y) ∈Sm ×D2 | b(x) = ρr (y) = y r } .

Let x ∈ K , then ρ−1
r (b(x)) = 0 since b(x) = 0. Thus π−1

r (x) = {(x,0)} and π−1
r (K ) =

K × {0} ∼= K .

Now consider the restriction of ρr to D2 \ {0}, which is an r -covering. We take

the pull-back of it by b:

[r ](Sm ,K ) \π−1
r (K )

πr

��

// D2 \ {0}

ρr

��
Sm \ K // D2 \ {0}

and, since an r -covering is a fibration with discrete fibre, the pull-back is again

a fibration with the same fibre, then πr |[r ](Sm ,K )\π−1
r (K ) is an r -covering. Thus we

have obtained that [r ](Sm ,K ) is the branched r -covering ofSm with ramification

locus K .



102 CHAPTER 4. CYCLIC SUSPENSIONS AND MILNOR FIBRATIONS

4.8 Example. Let (Sm ,Sm−2) be a knot, with m ≥ 2 . Let p : Sm ⊂ Rm+1 → D2

defined by p(x1, . . . , xm , xm+1) = (xm , xm+1). Then (Sm ,Sm−2) is a fibred knot with

fibred structure p.

Given the branched cyclic r -covering ρr and applying Lemma 4.7, we ob-

tain that [r ](Sm ,Sm−2) is the branched r -covering of Sm with ramification locus

Sm−2.

Notice that [r ](Sm ,Sm−2) is diffeomorphic to the sphere Sm since it is the

(m −2)-suspension over the branched cyclic r -covering ρr from Ĉ to Ĉ, where Ĉ

is the Riemann’s sphere.

4.9 Definition. Let M be a smooth m-manifold and let V ⊂ M be a submanifold

of M of codimension 2. A proper embedding of V in M means that V is closed in

M and V is transversal to ∂M with ∂V ⊂ ∂M .

4.10 Lemma ( [25, Lem. 2.4]). Let V1 ⊂ V2 ⊂ M be proper embeddings of smooth

manifolds of dimension m −2, m and m +2 respectively. Assume that M and V2

are 2-connected. Let i : V2 → M be the standard inclusion. Then there exists an

embedding of pairs j : (V2,V1) → (M ,V2) such that

a) the image j (V2) ⊂ M is transverse to V2 with j (V2)∩ i (V2) =V1,

b) the map j is isotopic to i through maps satisfying condition (a),

c) the map j is unique up to isotopy through maps which satisfy conditions (a)

and (b).

The proof of this result can be found in [25] in all detail.

4.11 Corollary. Let (Sm ,K ) and (Sm+2,Sm) be knots. Then the following diagram

commutes:

[r ](Sm ,K )

πr

��

ĵ // [r ](Sm+2,Sm)

π′
r

��
Sm

j // Sm+2

where j is the embedding of Lemma 4.10.

Proof. Let p ′ : Sm+2 →D2 be the map defined by

p ′(x1, . . . , xm+2, xm+3) = (xm+2, xm+3) .
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Take the pull-back of ρr by the composition p ′ ◦ j :

N

πr

��

ĵ // [r ](Sm+2,Sm)

π′
r

��

// D2

ρr

��
Sm

j // Sm+2
p ′

// D2

where N = {(x, y) ∈Sm ×D2 | (p ′ ◦ j )(x) = ρr (y)}. Let Sm ,→Sm+2 be the standard

embedding. By Example 4.8, p ′ is the fibred structure of the knot (Sm+2,Sm).

Then by Lemma 4.10,

(p ′ ◦ j )−1(0) = j−1(Sm) = K .

Then, given x ∈ K one has that π−1
r (x) = {(x,0)}. Thus π−1

r (K ) = K × {0} ∼= K .

Analogously to the proof of Lemma 4.7, we obtain that N is the an r -branched

cyclic covering of Sm , branched along K . Then N = [r ](Sm ,K ).

4.12 Definition. Let K ⊗ [r ] be the image ĵ ([r ](Sm ,K )) ⊂ Sm+2. Then we obtain

a new knot (Sm+2,K ⊗ [r ]). This knot is called the r -fold cyclic suspension or

briefly r -cyclic suspension of the knot (Sm ,K ).

4.13 Theorem. Let f : (Rn ,0) → (R2,0) be a d-regular real analytic germ with iso-

lated critical point at the origin. Let ε > 0 be small enough and let L f = f −1(0)∩
Sn−1 be the link of the singularity at the origin. Let F : (Rn ×C,0) ∼= (Rn+2,0) →
(R2,0) be the map defined by

F (x1, . . . , xn , z) = f (x1, . . . , xn)+ zr ,

and denote by LF = F−1(0)∩Sn+1 its link at the origin. Then the pair (Sn+1,LF ) is

the r -fold cyclic suspension of the knot (Sn−1,L f ).

In the proof of this theorem we need the two following results. The first one

gives a characterisation of a d-regular function. The second one is a generalisa-

tion of [25, Lemma 4.1] and the proof presented here is basically the same pre-

sented there.

For more clarity, form now on we denote a point (x1, . . . , xn) ∈ Rn by x and a

tangent vector by −→x .

4.14 Lemma ( [12, Lemma 5.2]). Let U be an open neighbourhood of 0 ∈ Rn with

n > 1, Let k ≤ n and let f : (U ,0) → (Rk ,0) be an analytic map defined on U with

isolated critical point at 0. The map f is d-regular, if and only if there exists a

smooth vector field ṽ on Bε \ f −1(0) which has the following properties:
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i) It is radial: i.e., it is transverse to all spheres in Bε centred at 0 pointing out-

wards;

ii) it is tangent to each X` \ f −1(0), whenever it is not empty;

iii) it is transverse to all the tubes f −1(∂Dδ).

4.15 Remark. Notice that in Lemma 4.14, the first condition is equivalent to ask

that

〈ṽ(x),−→x 〉Rn > 0 for all x ∈Bε \ f −1(0) . (4.16)

Also, the vector field ṽ can be adjusted, multiplying it by a positive real function

and then, the second and third conditions can be interpreted as

Dx f (ṽ(x)) =−−→
f (x) . (4.17)

4.18 Lemma. Let f : (Rn ,0) → (R2,0) be a d-regular real analytic germ with iso-

lated critical point at the origin. For sufficiently small ε> 0, there exists a smooth

vector field v on Bε \ {0} which satisfies:

I) v lies over the radial vector field w(x) =−→x on C∼=R2,

II) ‖x‖ increases along trajectories of v.

Proof. We will construct v locally and it can be pasted together by a smooth par-

tition of unity. Let v1 be the vector field on Bε \ f −1(0) given by Lemma 4.14. By

Remark 4.15, we can adjust the length of v1 by a positive real function in order to

have condition (4.17).

Let x0 ∈ f −1(0)∩ (Bε \ {0}) and let ϕ : Rn →R2 ×R∼=R3 be the map defined by

ϕ(x) = ( f (x),‖x‖−‖x0‖) .

Let x ∈ (Bε\{0}) such that x 6= x0, then x is a regular point ofϕ, since f has isolated

critical point and f −1(0) is transversal with any sphere contained in Bε. Thusϕ is

a submersion in a neighbourhood U of x0 and we can think in it as the canonical

submersion; i.e., as the projection in the first three coordinates (with suitable

local coordinates):

ϕ : U ⊂Rn →R3

(a,b,c, . . .) 7→ (a,b,c)
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In these coordinates, we define v as

v1(a,b,c, . . .) =−−−−−−−−−−−−−−−−−→
(a,b,c +‖x0‖,0, . . . ,0),

then v is a suitable vector field on the neighbourhood U of x0 and this completes

the proof.

Proof of Theorem 4.13. Let

Sn+1
ε = {(x, z) ∈Rn ×C∼=Rn+2 | |(x, z)| = ε} ,

and let

Sε(t ) = {(x, z) ∈Sn+1
ε | t f (x)+ z = 0}

for 0 ≤ t ≤ 1. For ε small and any t , Sε(t ) is the intersection of the sphere Sn+1
ε

and the hyperplane t f (x)+z = 0, thenSε(t ) is a (n−1)-sphere. Then {Sε(t )}0≤t≤1

gives an isotopy between the standard sphere Sε(0) ∼=Sn+1
ε and Sε(1).

Also Sε(t ) intersects transversally Sε(1) and Sε(t )∩Sε(1) = L f for all t < 1.

Take Sε(1) ⊂Sn+1
ε as the “standard embedding” and let(

Sε(0),L f
)⊂ (

Sn+1
ε ,Sε(0)

)
be the embedding j of Lemma 4.10. Let

S
n+1
ε = {(x, z) ∈Rn ×C∼=Rn+2 | x2

1 +·· ·+x2
n +|z|2r = ε2}

and

LF =Sn+1
ε ∩F−1(0) .

Then π : S
n+1
ε →Sn+1

ε given by π(x, z) = (x, zr ) gives a branched r -covering

(S
n+1
ε ,LF ) → (Sn+1

ε ,Sε(1))

branched along (Sε(0),L f ), and hence identifies (S
n+1
ε ,LF ) as the r -fold cyclic

suspension of (Sn−1
ε ,L f ).

Thus, it just remains to show that the knot (S
n+1
ε ,LF ) is diffeomorphic to the

knot (Sn+1
ε ,LF ). This is done by pushing the pair (Sn+1

ε ,LF ) out to the other knot

along a vector field defined in a small ball (Bn+2
ε′ \ {0}) ⊂ Rn+2 \ {0}. Such a vector

field can be obtained as follows:

By Lemma 4.18, there is a vector field v on a small ball Bn
ε′ \ {0} such that v

lies over the radial vector field on R2 and 〈v(x),−→x 〉Rn has positive real part (see
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Remark 4.15). Then the vector field v1(x, z) = (v(x), z/r ) is suitable on (Rn ×C) \

({0}×C) and v2(x, z) = (0, z) is suitable in a thin neighbourhood of {0}× (C \ 0);

so pasting v1 and v2 with a partition of unity we obtain the required vector field

v .

4.3 Join Theorem

The aim in this section is to describe the homotopy type of the Milnor fibre F

of the germ F = f + zr in terms of the homotopy type of the Milnor fibre F f of

f , where f is a d-regular function. For this, we first show that given a d-regular

function f as in the previous section, the function F = f + zr is d-regular, which

assures that it has Milnor fibration with projection F
‖F‖ .

4.19 Proposition. Let f : (Rn ,0) → (R2,0) be a d-regular real analytic germ with

an isolated critical point at the origin. Let F : (Rn ×C,0) ∼= (Rn+2) → (R2,0) be the

map defined by F (x, z) = f (x)+ zr . Then F is d-regular.

Proof. Let ε1,ε2 > 0 be such that Sn+1
ε1

is a Milnor ball for F (see Definition 1.7)

and Sn−1
ε2

is a Milnor ball for f . Let

ε= min{ε1,ε2}

and let us consider Sn+1
ε and Sn−1

ε ⊂Sn+1
ε , where the latter is defined by

Sn−1
ε = {

(x,0) ∈Sn+1
ε

}
.

By Lemma 4.14, there exists a smooth vector field v1 on Bn
ε \ f −1(0) such that

i) 〈v1(x),−→x 〉Rn > 0,

ii) Dx f (v1(x)) =−−→
f (x),

for all x ∈Bn
ε \ f −1(0).

On the other hand, let ρr : C∼=R2 →C∼=R2 be the function defined by ρr (z) =
zr and let v2 be the radial vector field on C∼=R2 defined by v2(z) = −→z

r , then

i) 〈v2(z),−→z 〉R2 > 0,

ii) Dzρr (v2(z)) =−−→ρr z,
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for all z ∈C\ {0}.

In order to prove that F is d-regular, the idea is to find a vector field v on

Bn+2
ε \ F−1(0) such that

i) 〈v(x, z),
−−−→
(x, z)〉 > 0 for all (x, z) ∈Bn+2

ε \ F−1(0),

ii) D(x,z)F (v(x, z)) =−−−−→
F (x, z) for all (x, z) ∈Bn+2

ε \ F−1(0).

Let v be the vector field on Bn+2
ε \ F−1(0) defined by v(x, z) = (v1(x), v2(z)). Then

〈v(x, z),
−−−→
(x, z)〉Rn+2 = 〈v1(x),−→x 〉Rn +〈v2(z),−→z 〉R2 > 0 ,

since both terms are greater than zero. Then it follows condition (i) (see Fig-

ure 4.1). Also

Dx,zF (v(x, z)) = Dx,zF (v1(x), v2(z))

= Dx,zF (v1(x),
−→
0 )+Dx,zF (

−→
0 , v2(z))

= Dx f (v1(x))+Dzρr (v2(z))

=−−→
f (x)+−−−→

ρr (z) =−−−−→
F (x, z) .

And condition (ii) holds. By Lemma 4.14 and Remark 4.15, F is d-regular.

Bn+2
ε

Bn
ε

v2(z) v2(z)

v1(x)

v1(x)

v(x, z)

Figure 4.1: The vector field v on Bn+2
ε \ F−1(0).

By Theorem 1.24 and Proposition 4.19, one has the following result.
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4.20 Corollary. Given F as in Proposition 4.19, F has Milnor fibration with pro-

jection

φF = F

|F | : S5
ε \ LF →S1 .

4.21 Remark. Let ρr : C→ C be the function defined by ρr (z) = zr . Note that ρr

has a Milnor fibration with projection

φρr =
zr

|z|r : S1
ε→S1 ,

for any ε > 0 and the Milnor fibre Fρr consists of r points in S1
ε and the mon-

odromy hρr is given by a cyclic permutation of this r points.

The following result is an adaptation of [25, Lemma 6.1] to the particular case

of cyclic suspensions given by links of singularities and it describes the homotopy

type of the Milnor fibre of F in terms of the Milnor fibres of f and ρr .

4.22 Theorem. Let f : (Rn ,0) → (R2,0) be a d-regular real analytic germ with an

isolated critical point at the origin. Consider its Milnor fibration with projection

map φ f and let F f be its fibre and let h f be its monodromy. Let F : (Rn ×C,0) ∼=
(Rn+2) → (R2,0) be the map defined by F (x, z) = f (x)+ zr and let φF = F

|F | be the

projection map of its Milnor fibration; let F be its Milnor fibre and hF its mon-

odromy.

Then there exists a homotopy equivalence α : F f ∗Fρr →F which is compat-

ible with the monodromy maps and their join; i.e., the following diagram com-

mutes

F f ∗Fρr

α

��

h f ∗hρr // F f ∗Fρr

α

��
F

hF // F

(4.22)

where h f ∗hρr : F f ∗Fρr →F f ∗Fρr is the map defined by

h f ∗hρr ([x, t , y]) = [h f (x), t ,hρr (y)] .

By Example 1.23 and Theorem 4.22, we obtain the following result.

4.23 Corollary. Let f , g : (C2,0) → (C,0) be two holomorphic germs such that f ḡ

has isolated singularity. Let F : (C3,0) → (C,0) be the germ defined by F (x, y, z) =
f (x, y)g (x, y)+ zr , where r ∈Z and r ≥ 2. Then:
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i) The Milnor fibre F of F is homotopy equivalent to the join of the Milnor fibre

F f ḡ and r points; and

ii) the above homotopy equivalence is compatible with the monodromy maps

and their join.

4.4 Examples of open-books

This section follows what is done in Section 2.4, but here it is treated the general

case when f and g are two holomorphic germs from C2 to C.

Theorem 4.22 enables us to describe the Milnor fibre F in terms of the Milnor

fibre of f . In the previous chapter was given a way to compute the plumbing

graph which describes the link LF .

4.24 Example. Let f : (C2,0) → (C,0) be the complex analytic germ defined by

f (x, y) = x2 + y7 and let g : (C2,0) → (C,0) be the complex analytic germ defined

by g (x, y) = x5 + y2. Let F : (C3,0) → (C,0) be the germ defined by

F (x, y, z) = (x2 + y7)(x5 + y2)+ z3 .

In Example 3.46, the plumbing graph Γ such that LF
∼= ∂P (Γ) was computed (see

Figure 4.2).

−2

−2

−2

−2

−2 −2 −2 −2 −7 −2

−2

−2

−2

Figure 4.2: Plumbing graph Γ such that LF
∼= ∂P (Γ).

As it is explained in Section 2.4, the plumbing P (Γ) given by the plumbing

graph Γ contains in its interior the exceptional divisor E as a strong deformation

retract. Then the divisor E can be blown down to a point, and we get a complex
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surface VΓ with a normal singularity at 0. We compute the canonical class K of

VΓ and obtain that K has non-integer coefficients.

It follows by Definition 2.18 that the singularity (VΓ,0) is not numerically Goren-

stein and by Remark 2.19, it is not Gorenstein, then there is not a complex analytic

germ G : (C3,0) → (C,0) with isolated singularity at the origin such that the link LG

is isomorphic to the link LF .

4.25 Example. Let f : (C2,0) → (C,0) be the complex analytic germ defined by

f (x, y) = (x2+ y3) and let g : (C2,0) → (C,0) be the complex analytic germ defined

by g (x, y) = (x3 + y2). The real analytic germ f ḡ is given by

f (x, y)g (x, y) = (x2 + y3)(x3 + y2) .

Let F : (C3,0) → (C,0) be the germ defined by

F (x, y, z) = (x2 + y3)(x3 + y2)+ z2 .

In example 3.45, it is computed the Nielsen graph of the diffeomorphism h2,

where h is the monodromy of the Milnor fibration of f ḡ (see Figure 4.3).

(1,1) (1,1)
5

(1,1) (1,1)
5

(1,−1) (1,−1)

[1,0] [1,0]

−1 −1

Figure 4.3: Nielsen graph G (h2) of the diffeomorphism h2 with h the Milnor fi-

bration of f (x, y)g (x, y) = (x2 + y3)(x3 + y2).

From this graph, by Theorem 3.29, the graph W (LF ,L′) is the graph shown in

Figure 4.4.
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(−1,5,4)

(−1,5,4)

(1,0) (1,0)

1 1

Figure 4.4: Graph W (LF ,L′) for F (x, y, z) = (x2 + y3)(x3 + y2)+ z2.

From the graph W (LF ,L′), the corresponding plumbing graph Γ can be com-

puted (see Figure 4.5).

−5

−5

−1 −1

Figure 4.5: Plumbing graph Γ corresponding to graph W (LF ,L′) for F (x, y, z) =
(x2 + y3)(x3 + y2)+ z2.

As in the previous example, Γ represents the exceptional divisor in the interior

of the manifold VΓ; i.e., it is a graph resolution corresponding to a resolution Ṽ

of a normal surface singularity (V ,0). Then, blowing down the two vertices with

weights −1, one obtains the graph in Figure 4.6.



112 CHAPTER 4. CYCLIC SUSPENSIONS AND MILNOR FIBRATIONS

−3

−3

Figure 4.6: Plumbing graph Γ corresponding to graph W (LF ,L′) for F (x, y, z) =
(x2 + y3)(x3 + y2)+ z2.

This graph is also the plumbing graph for LG , where G : (C3,0) → (C,0) is the

germ

G(x, y, z) = (x2 + y3)(x3 + y2)+ z2

as is stated in [49, § 6, Examples]. Then the link LF is realisable by an holomorphic

function from C3 to C.

As in Section2.4, now we proceed to see if the open-book fibrations given by

F and G are equivalent. In order to see if the Milnor fibre F is diffeomorphic to

the Milnor fibre FG , we compute the genus of F and the genus of FG .

By the decorated plumbing graph given in Figure 3.18 and following the con-

struction in Sections 1.6 and 3.7, we obtain that the Milnor fibre (F f ḡ )i is the

mi -covering of Vi (see Proposition 3.24), then

χ((F f ḡ )i ) = miχ(Vi ) .

As Vi is a cylinder or a disc for the vertices vi with valence 2 and 1 respectively,

our principal interest are the rupture vertices; let vi a rupture vertex in the graph

in Figure 3.18, then

χ((F f ḡ )i ) = 2χ(Vi ) = 2(−1) =−2.

Then, the genus of (F f ḡ )i is 0. “Gluing” the pieces (F f ḡ )i for all i , we obtain a

surface of genus 1 with two boundary components.
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Analogously, for the Milnor fibre (F f g )i we have

χ((F f g )i ) = 10χ(Vi ) = 10(−1) = 10.

Then the genus of (F f g )i is 2. “Gluing” the pieces (F f g )i for all i , we obtain a

surface of genus 5 with two boundary components.

Thus, the join of r points with F f ḡ cannot be the same as the join with F f g

and the open-book decompositions given by the Milnor fibrations of F and G are

not equivalent.
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d-regular, 7

r -cyclic suspension, 103

r -fold cyclic suspension, 103

A

algebraic neighbourhood, 3

amphidrome, 65

B

bamboo ended by a vertex of valence 1,

18

bamboo ended by an arrow, 28

bamboo joining two rupture vertices, 18

binding, 9

boundary-stalk, 61

C

canonical class, 45

canonical pencil, 7

cone, 2

D

Dehn twist, 25

dual graph, 28

E

equivalent, 100

exceptional, 12, 19

exceptional orbit, 60

F

fibred, 99

fibred link, 73

fibred structure, 100

fibres, 20

G

good, 27

Gorenstein, 45

I

isotopic, 100

J

join, 50

K

knot, 99

L

link, 2
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M

mapping torus, 9

Milnor ball, 3

Milnor tube, 6

minimal, 67

monodromical system, 73

monodromy, 9

multiplicity, 20

N

Nielsen graph, 61, 68

normal, 27

normal crossings, 20

normalised, 13

numerically Gorenstein, 46

O

open-book, 9

open-book fibration, 9

open-book structure, 100

P

pages, 9

plumbing, 15

plumbing graph, 18

plumbing link, 73

plumbing manifold, 73

polar weighted homogeneous polyno-

mial, 35

proper embedding, 102

Q

quasi-periodic, 23

R

rational Euler class, 13

reduction system, 24

resolution, 27

resolution graph, 27

resolution map, 27

rug function, 3

rupture vertex, 18

S

Seifert fibration, 11

Seifert invariants, 13

Seifert manifold, 12

slice, 13

smooth, 20

smoothable, 47

smoothing, 47

solid Milnor tube, 6

stalk, 61

strict transform, 19

T

twist number, 65

V

valence, 18

valency, 60

W

Waldhausen decomposition, 72

Wu-minimal, 65
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