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Study of the properties of bubble

flows in non-Newtonian fluids

T E S I S

que para obtener el grado de

Doctor en Ciencia e Ingenieŕıa de

Materiales

presenta

Juan Rodrigo Vélez Cordero
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semana, a mi Padre por todos los ratos de retiro en los valles de Morelos, a Magda
por sus palabras espirituales, a Franky por ser un gran “Tejano” y compartir su
vida con nosotros

a mi hermano Eluar y a su novia Nancy por hacer interesantes y placenteros los
fines de semana, sea en casa o en la eterna Coyoacán

al pastor Gustavo Mej́ıa y a la Iglesia Reencuentro, porque si el alma no esta bien,
nada lo esta

a mis amigos del alma: Barbara Betancourt, Cristina Krap y Diego Sámano, por
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laborador en la UBC), Diego Sámano (estudio de la interacción de dos burbujas),
Mariana Ramı́rez Gilly, Fausto Calderas y Luis Medina (mediciones reológicas),
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Resumen

El presente trabajo trata sobre las propiedades hidrodinámicas de ensambles de burbu-
jas en soluciones poliméricas (no Newtonianas). Se obtuvieron mediciones cualitativas o
cuantitativas del tamaño medio de burbuja, velocidad media de burbuja, dispersión de
las burbujas, varianza de la velocidad de burbuja y niveles de agitación en el ĺıquido.
Este trabajo difiere de los muchos otros que se han hecho en el campo por dos principales
razones: En primer lugar, ofrece un estudio de tales propiedades teniendo una mono-
dispersión del tamaño de burbuja; esto nos permite asilar los efectos causados sólo por
la interacción hidrodinámica entre burbujas. En segundo lugar, analiza por separado los
efectos que tienen los gradientes de viscosidad y la elasticidad en el flujo. Los resultados
obtenidos en la columna de burbujeo fueron complementados con el estudio experimen-
tal y numérico de la interacción entre dos burbujas. Para los experimentos se empleo
una cámara de alta velocidad y la técnica de imagen de velocimetŕıa de part́ıculas para
caracterizar el campo de flujo. Las simulaciones numéricas se realizaron con la técnica
Arbitraria Lagrangiana-Euleriana. Los fluidos adelgazantes (0.3 < n < 0.8) fueron hechos
con soluciones de xantana mientras que los fluidos tipo Boger (ĺıquidos con elasticidad y
viscosidad casi constante) fueron hechos con soluciones de poliacrilamida (semidiluidas)
y un poĺımero asociativo (concentradas).

En los fluidos adelgazantes se encontró que la velocidad media de ascenso de las bur-
bujas resultó mayor que aquellas medidas en las burbujas individuales, en conformidad
con estudios anteriores. Se encontró que la magnitud de la velocidad del ensamble de
burbujas es determinada grandemente por al aparición de cúmulos de burbujas. Dichos
cúmulos, los cuales aparecen para determinados valores del ı́ndice de flujo y diámetro
de burbuja, presentaron una estructura muy diferente a aquellos observados en fluidos
Newtonianos. Además, se encontró que la aparición de cúmulos produce un incremento
dramático en la varianza de la velocidad de burbuja dentro de la columna. Se identifi-
caron una serie de condiciones para la aparición de cúmulos de burbujas en estos fluidos.
En relación con esta capacidad de formación de cúmulos hallada en columnas burbu-
jeantes con ĺıquidos adelgazantes inelásticos, se encontró además que un par de burbujas
ascendiendo en los mismos fluidos mostraron un comportamiento diferente al t́ıpicamente
mostrado por un fluido Newtoniano. La diferencia más notable se presentó en el proceso
denominado “drafting-kissing-tumbling” o DKT, por sus siglas en inglés: para el caso
del par de burbujas ascendiendo en los fluidos adelgazantes, la fase de “tumbling” o “de
voltereta” (las burbujas se separan después de juntarse) no ocurre y las burbujas forman
un par estable. El proceso DKT es igualmente influenciado por la cantidad de inercia
y deformabilidad de las burbujas individuales y por el ángulo inicial entre ellas. Los
resultados experimentales y numéricos sugieren que la estela adelgazante formada detrás
de las burbujas juega un papel importante en la velocidad del par y en la formación de
cúmulos en los fluidos adelgazantes.

En el caso del fluido Boger semidiluido, se encontró que la dispersión de las burbujas y
los niveles de agitación en el ĺıquido están relacionados con el valor del volumen cŕıtico en
el cual aparece la discontinuidad del salto de velocidad en las burbujas individuales. Para
las burbujas con un volumen menor al cŕıtico se formaron grandes cúmulos verticales.
Cuando las burbujas tuvieron, por otro lado, un volumen mayor al cŕıtico, la dispersión



de las burbujas se mejoró notoriamente. El análisis de los resultados sugiere que este com-
portamiento es debido a cambios en las condiciones de frontera en la interfase gas-ĺıquido,
espećıficamente, de una condición ŕıgida a una de “resbalamiento” o libre de esfuerzos.
Esta hipótesis fue igualmente apoyada por las curvas de volumen-velocidad obtenidas con
la solución Boger concentrada para las burbujas individuales y para grupos de burbujas.
Finalmente, vale la pena decir que la formación de cúmulos en fluidos elásticos también
depende de la cantidad de esfuerzo elástico acumulado durante el paso consecutivo de
burbujas.
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Abstract

The present work considers the hydrodynamic properties of bubble swarms rising in poly-
meric (non-Newtonian) solutions. Qualitative or quantitative measurement of the mean
bubble size, mean bubble velocity, bubble dispersion, bubble velocity variance and agita-
tion levels in the liquid were obtained. This work differs from the many others that have
been done in the field for two main reasons: First, it offers a study of such properties
having a nearly mono-dispersed bubble size; this allows us to isolate the effects caused
solely by the hydrodynamic interaction among bubbles. Second, it analyzes separately
the effects that the viscosity gradients and elasticity have on the flow. The results ob-
tained in the bubble column were complemented with the experimental and numerical
study of the interaction of two bubbles. For the experiments, a high speed camera and
the Particle Image Velocimetry technique were used to characterize the flow field. The
numerical simulations were conducted with the Arbitrary Lagrangian-Eulerian technique.
The thinning fluids (0.3 < n < 0.8) were made with xanthan gum solutions while the
Boger-type fluids (liquids with elasticity and nearly constant viscosity) were made with
solution of polyacrylamide (semidiluted) and an associative polymer (concentrated).

For the thinning fluids it was found that the mean rise velocity of the bubbles was
larger than that of an individual bubble, in accordance with previous studies. The magni-
tude of the swarm velocity was found to be greatly influenced by the appearance of bubble
clusters. These bubble clusters, which appeared for certain values of the flow index and
bubble diameter, were found to have a very different structure from those observed in
Newtonian liquids. Furthermore, it was found that the appearance of clusters produced a
dramatic increase of the bubble velocity variance within the column. A set of conditions
was also identified for the appearance of bubble clusters in this fluids.
In relation with this clustering capacity found in shear-thinning inelastic bubbly columns,
it was found that a pair of bubbles rising in the same fluids showed a different behavior
from the typical Newtonian one. The most noticeable difference is the so-called drafting-
kissing-tumbling (DKT) process: for the case of bubbles rising in thinning fluids, the
tumbling phase does not occur and the pair tends to form a stable doublet. The DKT
process is also influenced by the amount of inertia and deformability of the individual
bubbles and the initial angle between them. The experimental and numerical results
suggest that the thinning wake formed behind the bubbles plays an important role in the
speed of the pair and the formation of clusters in thinning fluids.

In the case of the semidiluted Boger fluid, it was found that the bubble dispersion
and agitation values within the liquid were highly related with the value of the critical
volume at which the velocity discontinuity occurs in the single bubble case. For bubbles
having a volume below the critical one, large vertical clusters were formed. When the
bubbles had, on the other hand, a volume above the critical one, the bubble dispersion
was significantly improved. The analysis of the results suggest that this behavior is due
to changes of the boundary conditions at the gas-liquid interface, specifically, from a rigid
to a stress-free or slip boundary condition. This hypothesis was also supported by the
volume-velocity curves obtained for the concentrated Boger solution with single bubbles
and bubble groups. Finally, it is worth mentioning that the formation of clusters in elas-
tic fluids also depend on the amount of elastic stress accumulated during the consecutive
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passage of bubbles.
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Chapter 1

Introduction

1.1 The birth of a new discipline

It was the beginnings of the forties of the last century and the world was heading to
the second biggest war in history. As many others American citizens, Elmer L. Gaden
was sent abroad to serve the U.S. Navy (Humphrey 1991). Perhaps, Elmer heard the
news about the healing capacity of the penicillin used in infected battle wounds (Katzen
& Tsao 2000). After the war ended, people working in the pharmaceutical business
turned their attention to the mass-production of penicillin and other antibiotics such as
streptomycin and tetracycline (Humphrey 1991). The engineers that were in charge of the
project realized that the most efficient way to produce large quantities of penicillin was
by aerobic submerged culture of the strains penicillin-producing fungi; however, in those
days no one knew how to this, in other words, no one knew how to design a bioreactor
capable to supply the oxygen demand of the biochemical reaction. The Merck Chemical
Company made an important contribution in the subject and Elmer was in the center
of the research (Humphrey 1991): he explained how to estimate the amount of oxygen
needed to run an effective fermentation. Elmer L. Gaden was a pioneer of a new branch
of the chemical engineering that we now know as “biochemical engineering” and which
deals specifically with chemical reactions that employ living organisms as catalysts.

1.2 Biochemical engineers learning rheology

After the introduction of an efficient submerged culture process, the production of antibi-
otics became a very profitable business: in the last years the production of antibiotics has
been about 35,000 tons per year with sales of about $30 billion USD (Gavrilescu & Chisti
2005; now a days some may be produced by organic synthesis). Other products of interest
began to be produced by a similar process: food-processing enzymes, biomass, xanthan
gum and other food aditives and bioetanol, to mention a few (Gavrilescu & Chisti 2005,
Kantarci et al. 2005). The treatment of wastewater using activated sludges also shares
the same unit process (Yang et al. 2009, Kantarci et al. 2005): a liquid mixture of or-
ganic material being aerated by bubbles generated in a gas sparger and agitated by the
same bubble flow or by the movement of an impeller. The biochemical engineers soon
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realized that such mixture of organic materials did not follow the ordinary behavior of
those which we call “Newtonian fluids”, that is, fluids in which the momentum per unit
area and time (or stress τ) needed to maintain the fluid in movement is a linear function
of the velocity gradient (or shear rate γ̇):

τ = −µγ̇ (1.1)

where µ is the viscosity of the fluid (the formal deduction of eq. 1.1 comes from considering
a pure shear flow, see Bird et al. 1998). For instance, water, whose molecule size is
0.278nm, follow this linear relation. We can sustain then that the viscosity of water comes
form the internal friction between its molecules, picturing them as “rounded” objects. The
fluids obtained in a submerged culture, typically a mix of high molecular weight products
and living cells, have a very different behavior. To illustrate such difference, consider
for example a fungal mycelium (such as the ones used in the production of penicillin)
“floating” in the submerged culture. Using a microscope, the mycelium will look like a
white mass made by many spaghetti threads (hyphae); this is the typical morphology
of a fungus (Metz et al. 1981). Therefore, the characteristic shapes of a fungal culture
are neither small not rounded. Much smaller bodies than the hyphae, like proteins and
carbohydrates, secreted by the fungus into the medium, will also have a very different
structure than that appointed to the molecule of water. When proteins, carbohydrates,
fungal hyphae and many other tiny bodies encounter in the organic liquid are submitted
to an external shear deformation, they will come aligned in the direction of the velocity
field (provided that the bodies acquire an anisotropic shape); if the shear rate increases,
more bodies will get the chance to attain the orientation of the velocity field. This will
cause a macroscopic phenomenon known as “shear-thinning”, which means the decrease
of the liquid viscosity with the increase of the rate of shear deformation. One way to
express such progressive decrease of the viscosity with the shear rate is by using the
following empirical expression:

η = kγ̇n−1 (1.2)

where k is known as the consistency index and n the flow index, which is an indicator of
the thinning behavior of the fluid. When the viscosity has a nonlinear dependence with
the shear rate, the η symbol is used instead of µ. Note that for n values lower than one,
the exponent becomes negative, thus the thinning behavior is obtained. When the flow
index acquires a value higher than one, the exponent is positive and the viscosity will
increase with the shear rate. This behavior contrast with the thinning one and its called
“shear-thickening”. The detailed discussion of the origin of this behavior, which can be
due to the formation of structure in the microscopic level or by macroscopic interactions
in particulated media, is out of the scope of the present work. More discussion on this
issue can be found in Choplin & Sabatié (1986), Indei (2007), Feys et al. (2009). Is worth
mentioning that the consistency and flow indexes do not have a transcendental physical
meaning and their only purpose is to display a practical relation of the viscosity with the
shear rate.

It is common to find the rheological characterization of the working fluids in biotech-
nological reports (Nienow 1990, Rodŕıguez-Monroy & Galindo 1999, Peña et al. 2002).
For example, the culture media having the fungus Streptomyces avermitilis can reach a

8



consistency index of 500mPa·s (water is around 1mPa·s) and a n value of 0.3 (Nienow
1990). The culture having Xanthomonas campestris, used to produce xanthan gum, can
reach a k value up to 1500mPa·s (Peña et al. 2002). The k and n values of another cul-
ture media and the viscosity values reached by activated sludges used in the wastewater
treatment are shown in figure 1.1. We have used the case of the fermentation broths to
give examples of some non-Newtonian fluids because they have a close relation with the
topic of this thesis. However, the non-Newtonian fluids represent a big family of liquids
which includes other polymer solutions and melts, liquid crystals, gels, suspensions, emul-
sions, micellar solutions, slurries and foams (Larson 1999, Kishore et al. 2008, see figure
1.2 for some additional examples).

Having all this range of viscosity values as a function of the shear rate and time,
biochemical engineers understood that it was essential to know the rheology of the fluid
in order to get a good estimation of the momentum, mass and heat transfer occurring
in the bioreactor. A lot of new challenges appeared when the handing of non-Newtonian
fluids became an issue. To begin with, the non-Newtonian fluids are usually more viscous
than the Newtonian ones; this causes the decrease of the mass transfer coefficients and
requires an improvement of the bioreactor design in order to increase the availability of
gas. Other problems that appeared were the short residence time of the gas due to bubble
coalescence, heterogeneous bubble distribution along the bioreactor, producer cells (like
fungus or bacteria) being covered by the secreted polymer and therefore reducing the
absorption rate of oxygen, cell adsorption on the air bubble surface (Lawford & Rousseau
1991, Galaction et al. 2004, Kilonzo & Margaritis 2004), to mention some of them. There
were two ways to tackle all these problems: one was the study of the impeller design,
which include the choose of the number of impellers needed along the bioreactor and the
spacing between them; the other way was to study the agitation produced solely by the
bubble flow. Both strategies are important in the development of gas-liquid contactors
and both require a specialized knowledge in the subject. This work only focuses in the
latter: the bubble columns.

1.3 Basic concepts on bubble columns

There are some good reasons for choosing bubble columns instead of the agitated vessels
as gas-liquid contactors: using less mechanical parts, the bubble columns can yield the
same mass transfer coefficients as the agitated vessels using similar power input values
(Heijnen & Van’t Riet 1984). Additionally, we can have a better control of the bubble
size in non-coalescence conditions because there will be no mechanical stresses exerted on
the bubble surface. However, bubble columns are highly inefficient when the viscosity of
the liquid is too high (above one hundred times that of water). In those cases the use of
impellers becomes indispensable.

Bubble columns have been used for many decades in several branches of the chemical
and metallurgical industries. Some references concerning their applications can be found
in the works of Shah et al. (1982), Deckwer (1992) and Kantarci et al. (2005). Bubble
columns are not only used as central operation units but also for several product recovery
processes such as separation by adsorption in bubble flows (Zlokarnik 1990). In spite of
the mechanical simplicity that characterizes bubble columns which grant them with oper-
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Figure 1.1: (a) Evolution of the flow index n (•) and consistency index k (�) of B. vulgaris cultures
(plant cells used to produce food dyes) grown in shaken flasks and stirred tanks (Rodŕıguez-
Mondory & Galindo 1999); (b) viscosity of activated sludges containing 2.7 (◦) and 16 (•) g/L of
suspended solids (Yang et al. 2009).
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(a) (b)

(c) (d)

Figure 1.2: (a-c) Molecular structure of some polymers: (a) molecular backbone of a polyethylene
chain, a molecule of water is put as reference; (b) molecular structure of PET (polyethylene
terephthalate), PBT (polybutylene terephthalate) and a polymer developed by DuPont c©, which
has an intermediate structure in comparison with the other two; (c) molecular structure of collagen,
the most abundant protein in mammals and which composes the connective tissue. (d) Structure
of a myosin filament, an important component of the muscular tissue. The collagen and myosin
structures can be found in www.3dchem.com and www.pdbj.org/emnavi/ respectively.
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ative and cost benefits (Kilonzo & Margaritis 2004), their basic engineering design is not
a simple task. Given a certain chemical process and liquid phase properties, an engineer
has to implement the optimum column geometry, sparger configuration and power input
(superficial gas velocity Ug) to satisfy the uptake rate of the ongoing chemical reaction, in
addition to achieving the optimum mixing and heat transfer properties between phases.
Such estimations require the knowledge of functional relations among the central oper-
ational variables such as the mean bubble diameter db, mean bubble velocity USW and
gas fraction Φg. Some authors have also studied the development of the liquid velocity
and its variance as a measure of the amount of agitation or pseudo-turbulence conferred
by the dispersed phase (Van Wijngaarden 1998, Mart́ınez-Mercado 2007). An example
of the intricate relation among the variables of a bubble column can be seen in figure
1.3. Consider, for example, the variables involved in the value of the volumetric oxygen
transfer coefficient, kLa. This coefficient is directly related with the rheology of the fluid
because this affects the diffusive transport of oxygen or other gases through the bubble
surface. kLa depends also on the available gas-liquid interfacial area found in the total
volume of the liquid, which in turn depends on the size of the bubble and the gas fraction
Φg. While the bubble size depends directly in the sparger type and gas velocity Ug, the
gas fraction depends also on the superficial gas velocity, the bubble velocity (which again
depends on the bubble size) and in the liquid circulation patterns, which are related with
the flow regimes. To finish, the flow regimes depend on the gas velocity (see figure 1.4),
the bubble size, the column diameter (see figure 1.5) and in the rheology of the fluid.

Due to this complex relation among the operational variables of the bubble columns,
a large literature concerning bubble flows in Newtonian and non-Newtonian fluids exist
seeking for a better understanding of the bubble columns performance. The reference to
some of this works are included in the background section. Some general guidelines about
the bubble columns are here mentioned:

• In the homogeneous regime the gas fraction Φg depends linearly on the gas velocity
Ug for the cases when the mean velocity of the liquid is zero or there is no liquid
circulation patterns; in such conditions the gas fraction can be estimated as Φg =
Ug/USW .

• The heterogeneous regime is usually found when the gas velocity becomes higher
than 2cm/s.

• The gas-liquid interfacial area per unit volume is calculated as a = 6Φg/db. There-
fore, engineers usually prefer to produce small bubbles and inject large quantities
of gas into the column in order to obtain large values of a.

• The usual way to control the circulation patterns of the liquid is by changing the
inner geometry of the column. A simple way to do this is by introducing an inner
tube into the column (figure 1.6a) or divide the column in different stages (figure
1.6b). The internal geometry of the columns also depends on the specific process.
For example, packed columns (figure 1.6c) are frequently employed in the biotech-
nology industry because they offer a mechanical support to living cells (Kantarci
et al. 2005).
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Figure 1.4: Flow regimes found in a bubble column filled with caboxymethyl celullose (CMC)
solutions: (◦) 0.0% CMC, (�) 1.0% CMC, (△) 1.8% CMC. The different regimes are separated
by segmented lines. The homogeneous or bubbly flow regime is characterized by a nearly mono-
dispersed bubble size; note that in this regime the gas fraction increase linearly with the gas
velocity. The heterogeneous or transition regime is characterized by a multi-dispersed bubble
size; in this case the gas fraction decreases due to bubble coalescence (the increase of the bubble
size will reduce the retention time of the gas). When the gas velocity is large enough, the slug
or churn turbulent regimes appear, depending on the column size. Note that for the 1.0% CMC
solution the gas fraction in the homogeneous flow is larger than that in water. Data taken from
the work of Schumpe & Deckwer (1982).
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Figure 1.5: Map of the flow regimes as a function of the gas velocity and column diameter. After
the transition region, the bubble flow can produce two regimes depending on the bubble size: if the
column diameter is small, the bubbles will acquire a bullet shape and will occupy almost all the
column diameter, this regime is called slug flow. In the churn-turbulent regime the distribution
of the bubble size becomes very irregular in space and time, so the flow becomes oscillatory and
the liquid near the tube wall is continually being pulsed up and down. Figure reproduced from
the work of Shah et al. (1982).

• Processes run in batch or semibatch operations are more likely to experience an
increase of viscosity, as is the case of an aerobic submerged culture.

As this work deals with the properties of bubble flows in non-Newtonian fluids from a
standpoint of basic science, all the results presented here were obtained using the simplest
bubble column geometry. The details are presented in the experimental setup.

1.4 Polymeric solutions

The bubble column geometry is not the only thing that was simplified in this study.
Instead of using very complex fluids as the ones obtained in a fermentation process,
the researchers usually employ model fluids for which the rheological behavior can be
modeled and predicted and which can facilitate the interpretation of the results. These
model liquids are usually composed by just one type of polymer dissolved in a good
solvent. The term “good solvent” refers to a solvent that has a strong attractive energy
with the functional groups of the polymer (Doi & Edwards 1986), allowing the stretching
of the polymer chains. A Θ solvent, on the contrary, is a term used to refer to a solvent
that has a poor interaction with the functional groups of the polymer. In this case the
polymer chains form a compact body in which the interaction with the solvent are reduced
to a minimum. From a pure mechanical standpoint (without getting into details of the
molecular structure of the polymer), a polymeric solution can be represented by a special
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(a) (b)

(c)

Figure 1.6: Different bubble columns geometries: (a) airlift column, (b) a multistage column, (c)
a packed column; this geometry has immobilized beds employed as a structured support for the
catalyst (see Götze et al. 2001).
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arrange of dashpots, which represent the viscosity of the fluid (τ = ηγ̇, as in eq. 1.1), and
springs, which represent the elastic properties of the fluid. This elastic behavior comes
from the fact that certain polymer chains are flexible and tend to an equilibrium shape
after stop exerting a small amount of deformation, as it happens with a rubber band.
The restored force per unit area is thus equal to the force needed to deform the elastic
part of the the polymer:

τ = Eγ (1.3)

where γ is the deformation and E the elastic modulus. In the case of diluted and semidi-
luted polymer solutions, the elastic and viscous properties can be represented by a three-
parameter viscous model (Mase 1970, Bird et al. 1987), shown in figure 1.7. A diluted

E





E





(a) (b)

ηsηs

ηp

ηp

Figure 1.7: Three-parameter viscous model. E is the elastic modulus, ηs is the solvent contribution
to the total viscosity, ηp is the polymer contribution to the total viscosity.

polymer solution is characterized by having few polymer-polymer interactions, each poly-
mer chain being separated from the other ones and occupying a volume with radius Rg. In
a semidiluted polymer solution some polymer chains became closer and start overlapping
with each other. The polymer concentration c∗ in which the transition from the diluted
to the semidiluted condition occurs can be approximated as (Doi & Edwards 1986):

c∗NA

Mw
≃ 1

(4/3)πR3
g

(1.4)

where the left hand-side of the equation represents the number of molecules per unit
volume and the right hand-side the inverse of the volume occupied by a single polymer
chain; NA is the Avogadro’s number and Mw is the molecular weight of the polymer.
Lets consider, for example, the case of a polyacrylamide having a molecular weight of
5× 106 g/mol (like the one used in this study); the critical concentration c∗ in water will
be 6.6% (using Rg = 310nm, see Mark 1999). In a 0.1M NaCl solution this number will
be greatly reduced (0.013%, Rg = 2477nm) due to the interactions with the salt.

The spring and dashpot arrangements shown in figure 1.7 represent an elastic response
of the liquid being delayed by the solvent viscosity ηs. Let us analyze first the figure on
the left. This arrange is composed by a dashpot ηp put in series with a Kelvin-Voigt unit
in which the total stress is given by the sum of the stress applied in the spring and in the
dashpot ηs:

τ = EγK−V + ηsγ̇K−V (1.5)

As the total deformation is given by the sum of the deformation in the K-V unit and the
deformation in the dashpot ηp, i.e. γ = γK−V + γdashpot, equation 1.5 can be written in
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terms of the total deformation and its time derivatives:

dτ

dt
= Eγ̇ − E

ηp
τ + ηs

dγ̇

dt
− ηs

ηp

dτ

dt
(1.6)

multiplying by ηp/E and grouping the different terms, we get the following expression:

τ + λ1
dτ

dt
= ηp

(
γ̇ + λ2

dγ̇

dt

)
(1.7)

where λ1 = (ηp + ηs)/E and λ2 = ηs/E. In the case of the figure placed on the right, we
can see that the total stress is the sum of the stress in the dashpot ηs and the stress in
the Maxwell unit:

τ = ηsγ̇ + τMaxwell (1.8)

The stress in the Maxwell unit can be known using the fact that the total deformation is
equal to the sum of the deformation in the spring and in the dashpot ηp, i.e. γ = γs + γd
(which is equal to the deformation experienced by the dashpot ηs). Using the basic
equations of the spring and the dashpot and the time derivatives of the deformation, it
turns out that the Maxwell stress is equal to:

τp + λ1
dτp
dt

= ηpγ̇ (1.9)

where λ1 = ηp/E. Hence, the Maxwell stress is related to the polymer stress τp. The
arrangement shown in figure 1.7b allows us to calculate the total stress using two distinct
stresses, one related to the solvent, τs = ηsγ̇, and the other related to the stress τp (eq.
1.9). Considering that τ = τs+ τp or τp = τ − ηsγ̇, and that η = ηs+ ηp, equation 1.9 can
be expressed in terms of the total stress:

τ + λ1
dτ

dt
= η

(
γ̇ + λ2

dγ̇

dt

)
(1.10)

where λ2 is now equal to λ1(ηs/η). We can see that the two arrangements shown in
figure 1.7 lead to the same mathematical expression. On the other hand, with the second
arrangement we have the advantage that the total stress can be decouple into the solvent
and polymer stresses. Equation 1.10 is known as the Jeffrey’s model and it was originally
proposed to study the propagation of waves in the earth’s mantle (Bird et al. 1987).
The rheologist noted that the Jeffrey’s model is not independent from the particular
coordinate choice. One way to make it invariant frame is by introducing the upper
convected derivative defined as:

∇
A

=
∂A

∂t
+ v · ∇A−A · (∇v)− (∇v)TA (1.11)

Equation 1.10 can be thus expressed as:

τ + λ1
∇
τ
= η

(
γ̇ + λ2

∇
γ̇

)
(1.12)
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and is known as the Olroyd-B model, which, unlike the Jeffrey’s model, is a nonlinear dif-
ferential equation due to the appearance of the velocity and its gradients in the convected
derivative. This equation can also be deduced using the kinetic theory, in particular,
employing the so called “elastic dumbbell model” (Bird et al. 1987). The double line
format A depicts a tensor of second order.
Note that the Olroyd-B model only takes into account the elastic property of the fluid
(contained in the relaxation time λ1) and a constant viscosity. Therefore, it cannot pre-
dict any thinning behavior. The variation of the viscosity with the shear rate is some
how easy to explain and modeled (using, for example, the empirical equation 1.2), but
requires certain structural information of the material or other sort of mathematical con-
siderations (besides picturing a collection of springs and dashpots) in order to be included
in a constitutive equation based not only on empirical reasons. One could be tempted
to introduce equation 1.2, for example, into equation 1.12, and get both behaves using
a single model. This cannot be done, however, because we have split the total viscos-
ity into ηs and ηp and we ignore how they vary with the shear rate. This can be done
only if λ2 = 0 (returning to the Maxwell model); the resulting equation is called the
“White-Metzner” model. Other models, which take into account some particularities of
the structure of the material, can predict the thinning and elastic behavior; for example,
the FENE (finitely extensible nonlinear elastic connector) model (Bird et al. 1987), the
Phan-Thien-Tanner model, based on network theory (Phan-Thien & Tanner 1977) and
the Bautista-Manero-Puig model (BMP-Model, Bautista et al. 1999), which includes a
kinetic equation of the material structure. Other mathematical expressions such as the
Oldroyd-8-constant model or the third-order fluid equation can also predict a viscoelastic
behavior with variable viscosity in some limited conditions (Bird et al. 1987). The use
and test of these models in the present study would require time and it would distract us
from the main theme of this work. Therefore, the power law (eq. 1.2) and the Oldroyd-B
(eq. 1.12) models were the only ones considered in this work, specially when the numerical
results were compared with experiments.

1.4.1 How polymeric solutions are studied: shear versus extensional

flows

Many studies have considered flows submitted to simple shear deformation (the shear
rate γ̇ tensor only has non-zero values in the off-diagonal positions). The notion that we

have about the viscosity arises from considering a pure shear flow. This shear viscosity
is easy to measure if a sample of the test fluid is placed between two parallel disks (or
using a cone-plate geometry) and one of them is rotated. The amount of stress necessary
to keep the disk moving at a certain steady shear rate value is measured by a device call
rheometer. The resulting viscosity value is a very important datum even for the case of
a spherical body (like a bubble) moving through a liquid. However, the flow around a
spherical body is far from pure shear; it is close to pure shear near the equator but will
be lower as we move to the poles. In the case of a bubble rising in a liquid, the flow
formed behind the south pole is extensional. Frederick T. Trouton was the first one to
note that the ratio of the extensional viscosity with the shear viscosity for Newtonian
fluids is three, which is a necessary consequence of an incompressible material submitted
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to extensional flow (strong stretch in one direction and two equal contractions in the other
two directions, see Morrison 2001 or Petrie 2006). This ratio is higher than three in the
case of polymeric solutions due to the stretching capacity of the polymer chains in the
flow direction and will thus affect the fluid flow that will appear behind the bubble or
other spherical bodies. Note also that the extensional flow needs its own relaxation time
since the time λ1 defined in eq. 1.12 uses the shear viscosity contribution of the polymer.
In general, the measurements of the extensional properties of a material, such as the
extensional viscosity and the extensional relaxation time, are more difficult to carry out
than the measurements of the shear properties because, unlike the latter ones, where the
geometry of the sample do not change, in an extensional flow the geometry of the sample
do change with time (like the decrease of the diameter of a liquid thread placed between
two plates moving away from each other). Therefore, the extensional rate in this kind
of devices (for more information see Macosko 1994 or Stelter et al. 2000) is not steady,
unlike the one achieved in a conventional rheometer. Due to the relevance of extensional
deformation in the flow of polymeric solutions around rounded objects, in the discussion
of the semidiluted Boger fluid (see section 7.1.1) some extensional data taken from other
work (Stelter et al. 2000) has been included.

In addition to the common shear test that is done to measure the viscosity of a fluid
at a steady shear rate (the value of the deformation γ is large), there is another test that
is often used to know which of the behaviors, elastic or viscous, is dominant. This test is
done at small deformations such that the stress can be described as a linear function of
the strain; the deformation is thus exerted in an oscillatory way. The resulting stress will
also oscillate at the same frequency w but will be shifted by a phase angle δ with respect
to the strain wave (Macosko 1994, Morrison 2001):

τ = τ0 sin(wt+ δ) (1.13)

(the strain is equal to γ = γ0 sin(wt), where the subscript ‘0’ refers to the maximum
deformation applied by the rheometer). After using a trigonometric identity we obtain:

τ = G′γ0 sin(wt) +G”γ0 cos(wt) (1.14)

where G′ = (τ0 cos δ/γ0) is the parameter which is in phase with the strain (storage
modulus, related with the elastic behavior) and G′′ = (τ0 sin δ/γ0) is the parameter which
is in phase with the strain rate (loss modulus, related with the viscous behavior). When
0 < δ < π/2 the stress τ will not be in phase with either the strain or the strain rate. The
G′ and G′′ moduli, when plotted in terms of the frequency w, give us an idea of which
behavior is dominant for a certain frequency range (see section 5.2).

1.5 Some useful dimensionless numbers

Much of the discussion appearing in this study employs several dimensionless numbers
that group some relevant parameters of the bubble flows. Leaving apart the bubble-
bubble and bubble-wall interactions, the resistance force exerted on a deformable bubble
rising through a fluid by means of the buoyancy force can be expressed as:

F = φ(ρ, η, U, db, σ, g) (1.15)
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where the force F is a function of the liquid density ρ, the liquid viscosity η, the bubble
velocity U , the bubble diameter db, the surface tension σ and the gravity g. The Π-
Buckingham theorem state that an equation containing n dimensional variables can be
expressed by an equivalent equation containing n−k dimensionless numbers, where k is the
number of dimensionally independent physical quantities. In our case, n = 7 (including
the force F ) and k = 3 (units of weight, distance and time); hence, the dimensionless
equation will have 4 dimensionless numbers (including that for the force). If we choose
ρ, U and db as the fluid, kinematic and geometric fixed variables, we will obtain:

F

ρU2d2b
= f (Re,We, Fr) (1.16)

where the Reynolds, Weber and Froude numbers are defined as:

Re =
ρUdb
η

= inertia forces/viscous forces (1.17)

We =
ρU2db

σ
= inertia forces/superficial forces (1.18)

Fr =
U2

gdb
= inertia forces/gravity forces (1.19)

Choosing now ρ, g and db as the fixed variables we obtain:

F

ρgd3b
= f

(
Eo,

1√
Fr

,
ρ
√
gd

3/2
b

η

)
(1.20)

where:

Eo =
ρgd2b
σ

= buoyancy forces/superficial forces (1.21)

Eo is called the Eötvös number (or Bond number if the radius of the bubble is chosen
instead of its diameter). If we choose the following combination: η, g and σ, we now
obtain:

η2Fg

σ3
= f

(
Mo,

1

Ca
,

σ2

η2dbg

)
(1.22)

where:

Mo =
η4g

ρσ3
(1.23)

Ca =
ηU

σ
= viscous forces/superficial forces (1.24)

The Morton number, Mo, can be understood as a collection of the physical properties of
the fluids. This number, as well as the Capillary number, Ca, can be obtained combining
other dimensionless numbers, for example, Mo = We3/(FrRe4), Ca = We/Re. If
a function of the rise velocity U in terms of the bubble diameter is given, like U =√
gdb (Smolianski et al. 2008), the Morton number becomes a function of the Eötvös

and Reynolds numbers: Mo = Eo3/Re4. Other dimensionless numbers can appear if
additional variables are included. For instance, if we consider the relaxation time λ1 due
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to the elastic properties of the fluid, the common dimensionless number use in regard
is De = 2λ1U/db, called the Deborah number1. If surface tension gradients appear
in the bubble surface due to the presence of some molecules with surface activity, the
Marangoni number Ma = 2∆σ/dbτ (τ is the shear stress) is commonly used (Rodrigue
& DeKee 2002).

1.6 Forces acting on a bubble

This work studies bubble swarms rising in non-Newtonian fluids. However, one can realize
(and need) that much of the comprehension regarding the behavior of bubble swarms can
be obtained by analyzing a small group of bubbles. Actually, one may deduce the behavior
of many-bodies interactions by analyzing the interaction of just two bodies (Manga &
Stone 1995). This is the reason why in this work the study of the interaction of two
bubbles was also done. Therefore, before studying bubble swarms, one needs to have a
good understanding of the forces acting on a single body.

In the case of a bubble formed by injecting gas through a needle with diameter dcap,
the buoyancy and surface forces can be equated to estimate the diameter of the bubble:

db = 2

(
3

4

dcapσ

ρg

)1/3

(1.25)

When the bubble rises freely through the liquid, the forces acting on the bubble can be
sketched as in figure 1.8 (Dijkhuizen et al. 2010). In the steady state

−→
FB −−→

FD −−→
FL = 0 (1.26)

where
−→
FB ,

−→
FD and

−→
FL are the buoyancy, drag and lift forces.



x

y

FB

FL

FD

U(u,v)
θ

Figure 1.8: Forces acting on a single bubble rising with velocity U.

As the drag and lift forces have a direction perpendicular to each other, they can be easily
separated. For the case of the drag force we have that:

4

3
πρg(db/2)

3 cos θ =
1

2
Cdπρ(db/2)

2|U |2 (1.27)

1The reason of calling the 2λU/db relation the “Deborah” number has an interesting relation with a
tale that appears in the Bible, see Macosko (1994) or read Judges 5:4-5.
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where the left hand-side of the equation denotes the buoyancy force and the right hand-
side the drag force, Cd is the drag coefficient. From this equation we can obtain the value
of Cd:

Cd =
4dbg

3|U |2
cos θ =

4dbgUy

3|U |3
(1.28)

Note that if the lateral velocity is zero (Ux = 0), then Cd is:

Cd =
4

3

dbg

U2
(1.29)

For the lift force we have:

4

3
πρg(db/2)

3(− sin θ) =
4

3
CLπ(db/2)

3 ∂Uy

∂x
|U | (1.30)

where the left hand-side of the equation is the buoyancy force and the right hand-side
the lift force (CL is the lift coefficient). Note that the lift force arises when there is
an horizontal gradient of the vertical velocity, the same which can be produced by the
movement of the surrounding liquid or by the passage of other bubbles. From eq. 1.30
we can obtain the lift coefficient:

CL = − g sin θ
∂Uy

∂x |U |
= − gUx

∂Uy

∂x |U |2
(1.31)

Other forces can also act on the bubble when an accelerated motion occurs such as the
added mass and the Basset forces (Zhang & Fan 2003). In this study such forces were
not considered for the sake of simplicity (and are not needed when direct numerical
simulations are used) and actually become practically untractable (in the mathematical
sense) in bubble swarms.

1.6.1 Which additional forces can appear in non-Newtonian flows?

In the case of the thinning fluids with no elasticity, we may think that this property
will not introduce additional forces in the flow field since such fluids can be considered
generalized Newtonian fluids. However, we will see that the viscosity gradients generated
in the thinning fluids can change the general behavior seen in Newtonian flows (see section
6.2.3). In contrast with the thinning fluids case, liquids having elastic properties (with
or without thinning behavior) will generate additional forces that will actually oppose
the inertial ones. The inclusion of such force can be seen by setting a simple experiment
consisting in a container filled with the fluid and in which a rod is placed and rotated in
the center (see figure 1.9, Bird et al. 1987). We can obtain an equation to identify the
pressure profile in a particular direction by using the equation of motion in steady state
and using cylindrical coordinates. The profile of the normal pressure (τzz + p) exerted on
the liquid surface can thus be expressed as:

d(τzz + p)

dlnr
= 2τrθ

d

dτrθ
(τrr − τzz) + (τθθ − τrr) + ρU2

θ (1.32)

where τab indicates the stress value placed in the a-plane having a b-direction and p is
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Figure 1.9: A rod rotating inside a cylinder

the hydrostatic pressure. In Newtonian fluids, which are characterized by an isotropic
microstructure regardless the value of the shear rate, all the normal stress differences, such
as τθθ− τrr (N1) or τrr− τzz (N2) will be zero. Therefore, the normal pressure τzz+p will
increase with the radius, as ρU2

θ has a positive value. In this case the normal pressure will
produce a slight rise of the fluid near the cylinder wall, as is commonly observed. In the
case of a polymer solution, the flow field will cause the stretching of the polymer chains
in the direction of the flow which ultimately leads to the appearance of an anisotropic
microstructure. As the polymer chains will tend to return to its original shape, they will
generate restoring forces that are anisotropic in nature (Barnes et al. 1989). This is the
origin of the normal stress differences. In general, the first normal stress difference τθθ−τrr
(τ11 − τ22) is negative and much larger than the second difference τrr − τzz (τ22 − τ33);
hence, in this case the normal pressure will increase as the radius decreases depending on
the magnitude of N1. This effect will produce a rise of the fluid in the rod, contrary of
what is seen in the Newtonian fluids2. There are other interesting effects produced by the
normal forces reported in the literature. For instance, Joseph & Feng (1996) noted that
the normal forces acting on a solid body in plane flows are compressive in nature and will
tend to join two separated bodies in the perpendicular direction of the flow. The first
normal stress difference N1 can be measured in a rheometer using a cone-plate geometry
(Morrison 2001).

1.7 A note on flows at low Reynolds numbers

The average value of the Reynolds number obtained in this work for all the experimental
cases was about seven, with a maximum of 40 and a minimum of 0.0001. For Re of O(10)
the inertial forces are larger than the viscous ones but the latter still play an important
role in the fluid flow. In the limit of Re→ 0, the flow around a rising bubble is caused
solely by viscous stresses. The streamlines representing the motion of the fluid in this
limit can be described by the stream function Ψ (Batchelor 1991):

2This phenomenon is called the rod-climbing effect or Weissenberg effect, after Karl Weissenberg, who
originally studied this phenomenon (Bird et al. 1987).
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Ψ = Ur2 sin2 θ

(
3

4

a

r
− 1

4

a3

r3

)
(1.33)

where a is the bubble radius and r is the radial distance from the bubble center (spherical
coordinates are considered and symmetry in the φ − direction). In the creeping flow
regime (Re→ 0), the drag coefficient is Cd = 24/Re if the bubble has a no-slip condition
at the surface (Stokes prediction), and Cd = 16/Re if the bubble has a free surface
condition (Hadamard prediction). On the other hand, in the limit of Re→ ∞, there is no
transmission of the motion by molecular contacts; the flow will be cause solely by body
forces (as gravity) or pressure gradients. It can be shown that Cd = 0 for a potential flow
around a sphere (D’Alambert’s paradox). The streamlines representing the motion of the
fluid around a spherical body will be now described by the stream function (Currie 1974,
Batchelor 1991):

Ψ =
1

2
Ua3

sin2 θ

r
(1.34)

It is instructive to calculate how the velocity decays with the distance r in both, creeping
and potential flows. For this, we can use two equations for the r and θ velocities which
automatically satisfy the continuity equation:

Ur =
1

r2 sin θ

∂Ψ

∂θ
, Uθ = − 1

r sin θ

∂Ψ

∂r
(1.35)

For the creeping flow case we obtain that Ur, Uθ ∝ r−1 for r >> a (3). In the case of
the potential flow we obtain that Ur, Uθ ∝ r−3. Hence, we observe that the decay of the
liquid velocity is much smaller for low Re flows than in the high Re ones. We can expect
then that the movement of a single bubble at low Re numbers will be “felt” by another
bubble some diameters apart from it. In the following, the term “long range interactions”
will be used to refer to this effect, in contrast with the “short range interactions” that
are seen in high Re flows.

3If the Oseen’s equation is used instead we will obtain that Ur ∝ r−2 outside the Oseen wake and Ur,
Uθ ∝ r−1 within the Oseen wake.
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Chapter 2

Background

In this chapter some of the studies that have been conducted on single, pair and bubble
swarms in non-Newtonian flows will be presented. Although the text is mainly focused
on viscoelastic fluids, some of the works that have been done in Newtonian fluids will be
discussed in order to understand the similarities and differences between these flows and
the non-Newtonian ones. The text also includes some references about sedimentation
of particles. This is done for two reasons: there is a lot of literature concerning this
issue, and secondly, its phenomenological behavior is similar to that observed in rising
bubbles, the main differences being, of course, the density differences between the disperse
and continuous phases and the degree of surface deformation. The reader will note that
although there are some important studies about bubble swarms rising in non-Newtonian
fluids, the information is still scarce and a clear explanation of the separate contributions
of the thinning and elastic parts of the fluid is not yet available.

2.1 Single bubbles

The study of single bubbles rising in viscoelastic fluids constitute, together with the study
of sedimentation of spheres, an important area of research in polymeric flows and are the
first step towards the understanding of multiphase flow systems in non-Newtonian fluids
(Chhabra 1993). Perhaps the most fascinating effects seen in single bubbles rising in
viscoelastic fluids are the formation of a negative wake (the liquid moves contrary to the
bubble direction) at some distance from the bubble’s back and the discontinuity seen in
the volume-velocity relation of the bubble. Several studies, beginning with the seminal
work of Astarita & Apuzzo (1965), were devoted to the investigation of the origin of these
two phenomena (Acharya et al. 1977, Liu et al. 1995, Rodrigue & De Kee 2002, Herrera-
Velarde et al. 2003, Dou & Phan-Thien 2004, Kemiha et al. 2006, Soto et al. 2006, Pilz
& Brenn 2007, Pillapakkam et al. 2007, Lind & Phillips 2010).

There has been two main hypotheses regarding the origin of the velocity jump. The
first one, which we can call the surface-active agents mechanism, claims that the jump is
triggered by a sudden liberation of polymer molecules (or other molecules with surface
activity) from the bubble surface (Rodrigue et al. 1998, Rodrigue & DeKee 2002). There-
fore, this mechanism propose a change on the bubbles surface: from a rigid to a stress-free
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(a) (b)

Figure 2.1: A bubble rising in a concentrated polymer solution (HASE); (a) picture of a bubble
in which a long tail is formed behind (taken from Soto et al. 2006); (b) velocity map of the flow
left by a bubble rising in the same fluid, the capture of the liquid motion was done using the
particle image velocimetry technique. In this picture the negative wake is constituted by a fluid
field (more precisely, a vector map) having an inverted cone shape whose direction is downwards
and which is located in the center behind the bubble.

or slip condition. The fact that solid particles do not present a velocity jump (Acharya
et al. 1977, although they present a negative wake) supports this hypothesis. The sec-
ond explanation for the velocity jump, the hydrodynamic mechanism, proposes that the
jump is produced by the formation of the negative wake (Herrera-Velarde et al. 2003,
Pillapakkam et al. 2007, Lind & Phillips 2010) which in turn causes an action-reaction
effect on the bubble velocity. This explanation took importance since it was observed
that the velocity jump occurs at the same bubble volume in which the negative wake
appears (Herrera-Velarde et al. 2003). The thinning properties of the fluid additionally
contribute to the magnitude of the velocity jump H = Uafter/Ubefore, where U is the
terminal velocity of the bubble before and after the velocity jump, respectively (Rodrigue
& De Kee 2002). The velocity jump discontinuity and negative wake seen in viscoelastic
fluids have also been related with the formation of a sharp cusped end on the bubble
surface since the three phenomena appear at the same value of the bubble volume (or
critical volume Vcrit, Liu et al. 1995, Herrera-Velarde et al. 2003, Soto et al. 2006, see
figure 2.1).

The origin of the negative wake has been attributed to the extensional properties of
the fluid (Dou & Phan-Thien 2004, Mendoza-Fuentes et al. 2009). In this regard, fluids
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that have a fast elastic response (low values of the ratio of the extensional and shear
viscosity) are more prone to form a negative wake. We can get a mental picture of this
process by imagining stretching a rubber band. If the rubber is somewhat stiff, we will
need to apply a high force to deform it; as soon as we stop applying the extensional force,
the rubber band will return to its original shape very fast (in the polymer solution this
will originate an inversion point in the flow where the fluid will tend to return to its
original position). On the contrary, if the rubber is soft, we will need less force to deform
it; when we stop applying the force, the rubber band will slowly return to its original
shape (the appearance of a negative wake in the polymer solution may not occur). Dou
& Phan-Thien (2004) proposed the following condition to the appearance of a negative
wake:

∂ηext
∂ǫ̇

/ηext −
1

ǫ̇
∽ small values (2.1)

where ηext is the extensional viscosity and ǫ̇ the rate of extensional deformation. Mendoza-
Fuentes et al. (2009) reported that this condition applies for settling particles in associa-
tive polymers (the value of the above relation actually acquires values below zero when
the negative wake appears). There has been a discussion, as mentioned above, whether
the negative wake formation is a necessary condition or not for the velocity jump to occur.

Regarding the thinning behavior, the study of single bubbles has mainly been done
in order to compare experimental results with theoretical or numerical simulations or to
test numerical algorithms (Hirose & Moo-Young 1969, Bhavaraju et al. 1978a, Rodrigue
et al. 1999a, Dhole et al. 2007, Radl et al. 2007, Zhang et al. 2010). However, as far as
we now, only Zhang et al. (2010) have compared a dynamic parameter (Reynolds number)
between their experimental and numerical results. The agreement that they found is
reasonable although the deviation between the experimental and numerical results tend
to increase with the thinning behavior (decreasing the flow index n). In general, one
may think that a bubble rising in a thinning fluid will reach a higher velocity than that
attained in a Newtonian fluid at the same conditions. However, this can be intuitively
wrong and the comparison depends on which physical parameters are kept equal in both,
the thinning and its Newtonian counterpart. In chapter 4 this issue will be discussed.

Another interesting fluids, which were not treated in this work, are the Bingham
fluids. These fluids are characterized for presenting an initial resistance to move when an
external force is applied. When this initial resistance, or yield stress, is surpassed, the
fluid starts moving as a Newtonian fluid. This particular feature offers some experimental
and numerical challenges. For example, when dealing with the mathematical expression
of a Bingham fluid, which is not a continuous function due to the presence of a critical
point that separates the unyielded and yielded behavior, or when exploring the conditions
when the bubble is trapped (immobilized) by the fluid (Singh & Denn 2008, Tsamopoulos
et al. 2008). The shape of a bubble rising in this type of fluids can also acquired a
prolate shape and other particular shapes due to the relative movement of the unyielded
and yielded regions surrounding the bubble (Singh & Denn 2008). In Newtonian and
thinning fluids the bubble shape is generally spherical (for small bubbles) or ellipsoidal
(oblate, for large bubbles).
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2.2 Bubble pairs

2.2.1 Newtonian fluids

The study of the interaction of two bubbles was initially motivated by the coalescence
phenomena due to its impact in the bubble columns efficiency. That was how researchers
took two different paths concerning this issue: one was the study of the coalescence
mechanism itself, which is highly dependent on the liquid composition (Lessard & Ziemiski
1971, Tse et al. 2003, Liao & Lucas 2010); the other was the study of the trajectories
that two bubbles take before coalescence (Crabtree & Bridgwater 1971, Katz & Meneveau
1996, Sanada et al. 2009), which is the main subject of the present work.

For the case of creeping flow, Stimson & Jeffery (1926) analytically predicted the
velocity of two spheres moving in-line in terms of the separation distance between them.
As widely described by Happel & Brenner (1991), two bodies moving in this way in the
creeping flow regime acquire a higher velocity than that attained by a single body; the
velocity increases as the separation distance decreases. As the flow field does not have
inertia, the bodies keep their distance without approaching each other. This trend is
in agreement with experimental data (Happel & Pfeffer 1960) and with other analytical
expressions (Happel & Brenner 1991) and applies to both, settling particles and rising
bubbles.

When the inertia is small but finite (Re ∼ 0.25) the vorticity around a spherical body
looses its fore-aft symmetry and the trailing body acquires a higher velocity than the
leading one, reaching the latter after some time. Crabtree and Bridgwater (1971) were the
first ones to approximate the trailing bubble velocity as the sum of the terminal velocity of
the single bubble plus its wake velocity at the distance where the trailing bubble is found.
This hypothesis was referred to as a ‘superposition principle’ by Bhaga and Weber (1980).
In later works (Narayanan et al. 1974, Bhaga & Weber 1980, Zhang & Fan 2003) this
hypothesis was tested and confirmed for two in-line bubbles rising with Reynolds numbers
up to O(100). Crabtree and Bridgwater also reported the curious phenomenon (not fully
explained yet) in which the trailing bubble experiences a significant deformation (from
oblate to prolate form) moments before touching the leading one. Such deformation was
also reported and photographed by Narayanan et al. (1974). These last authors worked
with different bubble sizes producing basically two different wake structures: one forming
a thin trailing wake and the other forming a wake with a stable toroidal vortex. For
the former it was observed that the Stimson and Jeffery’s equation described well the
rise velocities of the trailing bubbles even though it was formulated for creeping flows
and spherical bodies. For the second case, a superposition principle similar to the one
proposed by Crabtree & Bridgwater was used. Bhaga and Weber also worked with bubbles
forming a wake with a toroidal vortex (Reynolds≈ 80, Eötvös≈ 70). The experimental
measurements of the wake velocity were in agreement with the velocity calculated using
the superposition principle. Manga and Stone (1993, 1995) studied the effects of bubble
deformability in the interactions among them. They found that bubble alignment and
coalescence is enhanced when the buoyancy forces are much larger than the restoring
forces produced by the interfacial tension on the bubble surface.

The interaction of two bubbles rising in potential flow was the subject of the the-
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oretical work of van Wijngaarden and coworkers (vanWijngaarden 1976, Biesheuvel &
vanWijngaarden 1982, Kok 1993a). In these papers it was found that two bubbles rising
in potential flow experience an attractive force if their angle of approach lies within ±54◦

from the horizontal, but feel a repulsion otherwise. The attractive force is due to the low
pressure zone formed between the bubbles since the liquid velocity in this zone is larger.
On the other hand, the repulsive force felt by the bubbles when they are aligned close to
the vertical arrangement is due to the dynamic pressure that one bubble exerts on the
other.

The behavior predicted in potential flows contrasts greatly with that observed in vis-
cous dominated flows (Vasseur & Cox 1977, Happel & Pfeffer 1960, Legendre et al. 2003).
In such flows the behavior is actually the opposite: bubbles will experience a repulsive
force if they lie near the horizontal alignment and an attraction if they lie close the vertical
one. Such behavior can be explained in terms of the vorticity distribution: the vortices
around each bubble will interact and repel each other if they are aligned horizontally.
This applies as well if a bubble rises near a vertical wall (Vasseur & Cox 1977). In the
vertical alignment a net “suction” of the trailing bubble by the leading one occurs due
to the vorticity asymmetry of the two bubble hemispheres. Now, it could happen that
the two bubbles rising in this way will find an equilibrium distance between them when
the viscous (attractive) and inertia (repulsive) forces cancel each other. That is to say,
when the trailing bubble experiences the same amount of suction by the leading bubble
wake and repulsion caused by its own upper wake when the two bubbles interact at short
separation distances. This issue was in fact numerically analyzed by Yuan and Pros-
peretti (1994). They found such an equilibrium position between two in-line spherical
bubbles rising in different hydrodynamic conditions (20 < Re < 200). Experimentally,
an unstable equilibrium distance can indeed be found for clean bubbles which preserve
its spherical shape as increasing the Re number (i.e. rising in silicone oils, Watanabe &
Sanada 2006). Such equilibrium distance, which has been numerically found to be depen-
dent on the Re number (Yuan & Prosperetti 1994, Hallez & Legendre 2011), is unstable
in the sense that bubbles often escape from the vertical line.

Several experimental and numerical studies of the interaction of two bubbles at inter-
mediate Re numbers have been devoted to the construction of the bridge that joins the
creeping and potential flows (Bhaga & Weber 1980, Kim et al. 1993, Kok 1993b, Katz
& Meneveau 1996, Hallez & Legendre 2010, Sanada et al. 2009). These studies have re-
vealed that two bubbles rising in-line follow the viscous dominated flow behavior at least
up to a Reynolds number of O(100), i.e., the trailing bubble approximating the leading
one. The question if an equilibrium distance appears or not during this process, i.e. the
trailing bubble being ejected from the vertical line or reaching and making contact with
the leading bubble, seems to depend on the shape and the surface properties of the bub-
bles. In particular, Kok (1993b) observed in contaminated water (water with surfactant,
Re ≈ 200) that a trailing bubble reaches, touches, then turns its orientation angle to 0◦

with respect to the leading one and finally separates from it; a mechanism commonly
referred to as the drafting-kissing-tumbling process (Brennen 2005). This process is com-
monly observed in rigid bodies at low Re numbers (Happel & Pfeffer 1960, Jayaweera
et al. 1964). In the case of two bubbles released side-by-side it has been found that they
always repel each other for Re < 30 and attract each other for Re > 0(200), being the
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transition behavior 30 < Re < O(200) dependent on the separation distance (Legendre
et al. 2003).

Regarding the drag force experienced by a pair of bubbles, in the vertical alignment
the mean drag experienced by each bubble is less than the single bubble case. This is
because the conjunction of the two bubbles will “form a body” aligned in the direction of
the flow (Yuan & Prosperetti 1994, Ruzicka 2000). The prediction of the drag coefficients
of two bubbles rising side-by-side is more complicated. With the help of the experimental
measurements of the drag coefficients in fixed rigid particles (Liang et al. 1996), together
with the numerical works of Kim et al. (1993) and Legendre et al. (2003), it has been
found that two horizontal bubbles will experience less drag than the single one for low
Reynolds flows (Re < 50). In this case the drag value increases with the separation
distance approaching the single bubble value at high values of it. In small Re flows
the long range interactions between bubbles gain importance; hence, two bodies moving
side-by-side separated by a small distance, typically less than a bubble radius, will be
surrounded by a unique vortex (Liang et al. 1996); therefore, the two bubbles will find
less resistance to motion. The opposite effect is found for high Re flows where wake
instabilities can occur. This explanation is at least consistent with the behavior that has
been observed in Newtonian bubbly flows at low Re, that is, the formation of clusters
formed by little more than five bubbles (Cartellier et al. 1997). In such flow conditions,
however, the bubble clusters are highly unstable as the gas fraction is increased.

2.2.2 Non-Newtonian fluids

Important advances concerning the interaction of two bubbles rising in non-Newtonian
flows have been given by the experimental and numerical studies of Li et al. (1997 &
1998), Radl et al. (2007), Sousa et al. (2007) and Wenyuan et al. (2009). Using fluids
with shear-thinning and elastic behavior, Li et al. (1998) and Radl et al. (2007) eluci-
dated that the viscosity gradients together with the amount of elasticity (memory effects)
enhance bubble interactions (the term “viscosity gradients” is explained in section 6.2.3).
The idea of “corridors” of reduced viscosity is commonly brought to mind when one
imagines a trailing bubble following a leading bubble in a viscoelastic fluid. The corre-
sponding decrease of the drag force was further related to the accumulation of residual
stress via rheological simulations, a term coined by Li et al. (1997). In that work, the
passage of bubbles was simulated by exerting consecutive deformations to a fluid sample
in a rheometer. The viscosity reduction in the bubble wake and the time lag needed for
the zero-shear viscosity reestablishment extends the influence that a leading bubble has
on other bubbles. This effect is not expected to occur in Newtonian fluids. The most
outstanding behavior that has been observed regarding non-Newtonian effects was the
repulsive effect that the formation of a negative wake produces between a leading Taylor
bubble and a trailing one (Sousa et al. 2007). This effect has, nevertheless, been observed
only in slug flow regimes where the bubbles fill completely the column diameter. As far
as we know, only Wenyuan et al. (2009) have experimentally studied the interaction of
two bubbles rising in thinning fluids (carboxymethyl cellulose, CMC, solutions). Their
results, however, are very similar to those seen in Newtonian flows and this can be at-
tributed to the fact that they worked with fluids having a flow index very close to one
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(0.9 < n < 0.94). As previously mentioned, Singh and Denn (2008) and Tsamopoulos
et al. (2008) have numerically studied the movement of bubbles and droplets in Bingham
fluids. As these fluids have a yield stress value, the flow around the bubble is divided in
three zones: an unyielded zone localized in the equatorial plane of the bubble, a yielded
zone surrounding this one and which in turn is surrounded by a second external unyielded
region. When the fluid properties and bubble size are such that the external and internal
unyielded regions merge, the bubble will not move. Singh and Denn also studied the
interaction of two and three bubbles rising in a Bingham fluid. During the collision, the
shape evolution of the bubbles is similar to that seen in Newtonian fluids. The authors
also noted that given a collection of fluid properties and bubble size that will result in
the immobilization of one bubble, the addition of a second or a third bubble vertically
aligned with the first one will produce enough stress to the fluid that the bubble group
will start to move through the liquid.

From this brief review we can perceive that there is a good understanding of the non-
Newtonian behavior: the memory that a fluid has about the reduced viscosity path left
by a previous bubble will enhance the bubble interactions. However, we can note that
there are some points that need clarification; for instance, it is important to explore the
interaction of a bubble pair in a wider range of the flow index values and see how different
is the behavior with respect to the Newtonian case; moreover, the role of elasticity, in one
hand, and the thinning behavior, in the other, on the bubble interaction need to be fully
elucidated. These particular issues are treated in this thesis.

2.3 Bubble swarms

Several theoretical, numerical and experimental studies, carried out in two phase flows
(including sedimentation and bubble flows), have shown that a group of bodies moving
through a non-Newtonian fluid form aggregates or clusters (Joseph et al. 1994, Gheissary
& van den Brule 1996, Hu et al. 2001, Radl et al. 2007, Phillips & Talini 2007). Such
aggregates are more dense in terms of the number of bodies embedded in the cluster than
the ones seen in Newtonian flows at high Reynolds numbers (Zenit et al. 2001, Figueroa-
Espinoza & Zenit 2005). Bubble clustering cause bubble coalescence and a premature
transition to the heterogeneous or churn-turbulent flows in non-Newtonian fluids (Buch-
holz et al. 1978, Schumpe & Deckwer 1982). Although there has been a number of studies
of particle clustering and orientation of lengthened bodies in sedimentation (Joseph & Liu
1993, Joseph et al. 1994, Gheissary & van den Brule 1996), little has been reported for
the case of bubbly or homogeneous bubble flows. Most of the published papers on non-
Newtonian bubble columns have focused their attention on the development of the gas
fraction, Φg, in terms of the superficial gas velocity, Ug. Many authors have used CMC
solutions (flow index n > 0.5, Buchholz et al. 1978, Schumpe & Deckwer 1982, Deckwer
et al. 1982, Godbole et al. 1984, Haque et al. 1987 & 1988) in coalescence conditions and
worked with relatively large values of the superficial gas velocity (Ug > 2cm/s, Godbole
et al. 1984, Haque et al. 1987 & 1988) such that the churn-turbulent flow was generally
achieved.

Buchholz et al. (1978) reported that the mean bubble rise velocity USW measured
in a single stage column was higher than the single bubble velocity USI . Additionally,
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Figure 2.2: Happel cell model. This model is actually a special boundary condition which con-
sists in simplify the bubble-bubble interactions by postulating that each bubble is surrounded by
a hypothetical spherical envelope with a slip boundary condition and who’s radius is equal to

(db/2)Φ
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g . The governing equations are then solved in the space between the bubble surface

and this envelope.

this difference increased with the thinning behavior of the fluid. However, the changes
of the USW/USI ratio with the gas fraction were not reported explicitly. Schumpe and
Deckwer (1982) found that the homogeneous bubble regime in CMC solutions could only
be achieved having Ug values below a critical one (∼ 0.5cm/s), this value being a function
of the effective viscosity. Haque et al. (1987, 1988) reported an estimation of the mean
bubble diameter and velocity of bubble swarms rising in viscoelastic fluids. One of the
key assumptions in this estimation is that the mean bubble velocity values are equal
to the single bubble velocity, which is not always true. As far as we know, there are
no previous studies of mono-dispersed bubble swarms in shear-thinning fluids at low
superficial gas velocities (Ug < 1cm/s) where the bubbly flow regime can be observed.
Having a monodispersed bubble distribution allows us to isolate the effects caused solely
by the hydrodynamic interaction among bubbles.

Many relevant contributions to the subject have arisen from numerical and analytical
studies. Several methods such as variational principles (Gummalam & Chhabra 1987),
perturbation methods (Bhavaraju et al. 1978b) and approximations to the Newtonian
behavior (Hirose & Moo-Young 1969) have been used to solve numerically the rising of
bubble swarms through shear-thinning fluids. Bubble interactions were simplified using
the Happel cell model (Happel 1958) depicted in figure 2.2; hence no direct bubble in-
teractions have been studied previously. Only Radl et al. (2007) have fully resolved the
flow field around a group of bubbles. These authors directly simulated the interactions
of bubbles (up to 9) rising in shear-thinning conditions. They showed that the bub-
ble interactions are significantly enhanced when viscosity gradients are present. They
also identified “mini-bubble” clusters that travel faster than the single bubble cases.
Bhavaraju et al. (1978b) reported that for creeping flow conditions the drag coefficient
Cd decreased with the increase of the thinning behavior for bubble swarms, which is the
opposite of what happens for single bubbles. Ascending isolated bubbles have a larger
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Figure 2.3: Velocities ratios USW /USI as a function of the gas fraction. (−) theoretical values for
creeping flow (Gummalam & Chhabra 1987), (−−) theoretical values for high Re flows (100 <
Re < 300, Chhabra 1998); (+) experimental data taken from Zenit et al. (2001), n = 1.0 and
Re ≈ 300; n is the flow index.

Cd as the thinning condition increases in creeping flows (Hirose & Moo-Young 1969,
Acharya et al. 1977, Haque et al. 1988, Rodrigue et al. 1999a). In more recent studies,
which took into account the inertial forces in the momentum equation (Zhu et al. 2003,
Kishore et al. 2008), the increase in the drag force for the single bubble case occurred
only below a critical Reynolds number (approximately from 3 to 10). Gummalam and
Chhabra (Gummalam & Chhabra 1987, Chhabra 1998)4 reported that for the creeping
and high Re numbers (100 < Re < 300) flows, the USW /USI ratio increases for gas frac-
tions around 0.2-0.5 and flow index values below 0.5. Above these gas fraction values
the velocity ratio decreases; therefore, a maximum in the velocity ratio was observed, as
shown in figure 2.3. These authors explained that such behavior was due to the constrain
of the flow lines (as the effective volume for each bubble is decreased as the gas fraction
increases) resulting in an increase of the shear rate which in turn results in lower ap-
parent viscosities. A positive slope of the velocities ratio curve means that the viscosity
gradients effects surpass the hydrodynamic hindrance effects. The slope of the USW/USI

curve is commonly negative in Newtonian bubbly liquids with large Reynolds and small
Weber numbers (Spelt & Sangani 1998, Zenit 2001). It is important to point out that
the theoretical results of Bhavaraju et al. (1978b), Gummalam & Chhabra (1987) and
Chhabra (1998) have not been compared with experiments yet. The comparison between
the theoretical results of Gummalam and Chhabra with experimental results together
with the study of bubble clusters seen in numerical and experimental studies conform
two of the main objectives of the present investigation.

4In Gummalam & Chhabra (1987), the authors warn us that the values having 0.1 < n < 0.3 have to
be treated with reserve due to the inaccuracy of the method that they used.
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Chapter 3

Objectives

Through all the background, some of the aspects in multiphase flows in non-Newtonian
liquids that still need additional research have been identified. The main objectives of
the present work are:

• Measure the mean bubble size and velocity as a function of the gas fraction in
thinning inelastic bubbly flows and compare the results with the available theoretical
data.

• From the measurements of the diameter and velocity of the bubbles, determine
the variance of the gas phase velocity and relate it with the appearance of bubble
clusters in the thinning inelastic fluids.

• Determine the hydrodynamic conditions in which the bubble clusters are formed in
the thinning inelastic fluids.

• Measure the mean cluster size at different values of the gas fraction and determine
the effect that the bubble diameter has on its size.

• Obtain the mean and standard deviation of the liquid velocity in elastic fluid flows
with low thinning behavior. Explain the relation of possible changes in the bubble
dispersion (clustering) with the flow changes seen in the single bubble case (i.e.
velocity jump discontinuity). These first objectives needed the following specific
tasks:

1. Design and assembly of the capillary banks needed for the production of mono-
dispersed bubble flows.

2. Design of the working fluids. An effort was made in designing thinning fluids
with negligible elasticity and elastic fluids with low thinning behavior. The
reason in doing this was to identify the separate contributions of both behav-
iors.

3. Measurement of the bubble velocities and diameters and the cluster size using
a high speed camera and a homemade algorithm run in Matlabr.
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When these objectives were achieved, the advisory committee and I realized that fur-
ther research was needed in order to explain the experimental results, that was how the
following objective was proposed:

• Explain the behavior seen in the bubble flows in terms of the interaction of two
bubbles rising in the different non-Newtonian fluids. Analyze the effects of the
initial distance and angle between bubbles in the subsequent interaction among
them. This second objective needed the following specific tasks:

1. Design and assembly of an equipment capable to produce two in-line bubbles
and two bubbles placed in an horizontal (off-line) arrange.

2. Measurement of the bubble velocities and center-to-center distance between
bubbles using a movable high speed camera. This particular task was done by
an undergraduate student (see Sámano 2011).

3. Study the interaction of two bubbles placed in an arbitrary initial arrangement
(with an initial contact angle θo) using finite element methods for deformable
bodies, in particular, the Arbitrary Lagrangian-Eulerian technique.

It is well known that the initial ideas that one proposes in a scientific work before doing
any experiment are frequently changed or even forgotten. Curiously, there is a part of the
original research protocol (which does not mention anything about bubble clustering and
their growth) that is worth mentioning. The statement in question said something like
“... the change of the bubble shape seen in viscoelastic fluids, which has been associated
with the velocity jump discontinuity in single bubbles, will have a significant influence
in the development of the pseudo-turbulence5. At the end of the research a couple of
measurements of the agitation levels were done in the elastic fluids and it was found that
indeed, the change of the bubble shape seen in viscoelastic fluids has a significant effect
on the mixing and bubble dispersion. This effect is nevertheless not a direct consequence
of the change of the bubble shape but of the change of the boundary condition at the
bubble surface (see section 7.3).

5During my candidacy exam I actually had a very intense debate about the meaning of “pseudo-
turbulence”, a word that refers to the liquid agitation provoked by the passage of bubbles and not by the
movement of the liquid. This term is used by serious researchers (see vanWijngaarden 1998). Another
word can also be used, “burbulence”, but is better not to use this term because it can be confused with
the medical meaning, which says that burbulence is a group of intestinal symptoms including fullness,
bloating or distention, borborygmus and flatulence.
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Chapter 4

Computational technique

In the background chapter we noted that a good part of the comprehension of the multi-
phase flow dynamics has resulted from the analysis of numerical simulations using different
computational algorithms. This is because the numerical simulations allow us to see if
the assumptions that we have assigned to a specific problem are actually true. The Ar-
bitrary Lagrangian-Eulerian (ALE) technique is part of a family of algorithms grouped
in what is called “direct numerical simulations”; that is, the governing equations (mass,
momentum and constitutive equations) are solved in all space and time scales (the com-
putational time and space is smaller than the characteristic time and size of the flow).
This technique was developed by Hu et al. (2001) to solve the motion of particles in two-
and three-dimensional flows and modified by Yue et al. (2007) to study bubble and foam
problems in 2D and axisymmetric geometries. A detailed description of this technique
and its algorithm can be found in Yue et al. (2007) and Prosperetti & Tryggvason (2009).
The general features of the code will be described briefly.

The technique combines an Eulerian and Lagrangian descriptions of the flow and
bubble motion using an unstructured finite element mesh. This means that the boundary
nodes of the mesh follow the motion of the bubbles and the walls with possible slip.
In the interior of the domain, however, the mesh motion does not follow the fluid flow
but is computed from an elliptic partial differential equation which guarantees a smooth
variation. The code includes a remeshing tool that generates a new mesh upon detecting
elements with unacceptable distortion. When this happens, a projection scheme is also
invoked to project the flow field obtained on the old mesh onto the new one. An example
of a mesh generated around two bubbles is shown in figure 4.1. The flow equations include
the continuity equation:

∇ · u = 0 (4.1)

and the momentum equation:

ρ

[
∂u

∂t
+ (u− um) · ∇u

]
= −∇p+∇ · τ + ρg (4.2)

where, in the case of the thinning fluids, the stress τ = η
[
∇u+ (∇u)T

]
is computed using
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the power-law model for the viscosity:

η = k

[√
1

2
(γ̇ : γ̇)

]n−1

(4.3)

For the elastic fluids, the viscosity was held constant and the stress was split into the
solvent and polymer stresses (as mentioned in section 1.4) according to the Oldroyd-B
model:

τ = τs + τp = ηs
[
∇u+ (∇u)T

]
+ τp (4.4)

τp + λ1

[
∂τp

∂t
+ (u− um) · ∇τp − τp · ∇u− (∇u)T · τp

]
= ηp

[
∇u+ (∇u)T

]
(4.5)

In these equations u is the liquid velocity, ρ the density, p the pressure, η the viscosity,
g the gravity, k the consistency index, n the flow index, λ1 the relaxation time, γ̇ =[
∇u+ (∇u)T

]
the shear rate tensor and um the mesh velocity, which was obtained from

the displacement of the mesh nodes according to the fixed computational coordinates.
The referential time derivative ∂

∂t =
δ
δt |fixX is made using the coordinate X affixed to the

moving mesh.

Figure 4.1: Mesh generation around two bubbles (2D). Note that the mesh generated next to the
bubble surface is finer than the mesh generated in more distant regions. After the code generates
an appropriate grid on the bubble and domain surfaces, the segmentation of the interior of the
domain in triangular shaped elements is done by the Delaunay-Voronoi algorithm.
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As we have introduced another variable to the constitutive and momentum equations,
namely, the mesh velocity um; we need an extra equation to solve the system. As it
was mentioned above, the equation that rules the mesh velocity inside the domain is an
elliptic partial differential equation:

∇ · (ke∇um) = 0 (4.6)

This equation gives a smooth variation of the mesh velocity because the Laplace operator
guarantees that there will be no preferential directions in the mesh motion. ke is the
inverse of the local element volume and serves to direct most of the mesh deformation in
regions far from the bubbles.

The governing equations were temporarily discretized using an implicit scheme to
enhance stability implementing a Crank-Nicolson scheme in the time derivative:

(
δA

δt

)n+1

=
2An+1 −An

tn+1 − tn
−
(
δA

δt

)n

(4.7)

where the superscripts n and n + 1 indicate the time step. The spatial discretization
of the equations was done using the standard finite element Galerkin formalism. The
methodology of this technique may be harder to understand than the usual finite difference
schemes where the concept of normal flux is related to the structure of the mesh. However,
the finite element method has the advantage of adapting complex structures that will be
mathematically complex to implement in the finite difference schemes. The finite element
method is based on the general method of weighted residuals (to learn more about the
subject see the books of Kwon & Bang 1997 and Chung 2002). The idea of this method
is to solve differential equations like 4.1-4.5, which have the form:

D(u, um, τ, p) = 0 (4.8)

by using the trial functions ũ, ũm, τ̃ and p̃ (usually polynomial equations of first or second
order) which fulfills the Dirichlet boundary conditions. We expect that this approximate
solution will vary from the exact solution over the whole domain. In order to minimize
such variations, we can introduce a weighting function w and state that the weighted
average of the residual over the whole domain (D) is zero. In mathematical terms:

∫

D
wRdx = 0 (4.9)

whereR is the residual, that is, the differential equations put in terms of the trial functions
instead of the common variables. Different types of weighted functions can be chosen
leading to different methods (collocation method, least squares, Galerkin method, see
Kwon & Bang 1997). In the case of the Galerkin method the weighted functions are
defined in terms of the trial functions. Since the position of the nodes (vertices) of
each triangle that compose the whole domain depends on the shape of the triangle itself
(which may have sides with different lengths), the weighted functions are known as shape
functions.

The boundary conditions that were applied to the problem of one or two bubbles
rising in the different fluids were the following: at the bottom wall the no slip condition
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was applied; at the right and left walls the slip condition in the y− direction was applied
and the horizontal velocity component was set to zero; stress condition was applied at
the liquid surface, both on the normal component (τyy = p− po = 0) and the tangential
component (τxy = 0); on the bubble surface the boundary condition was obtained from
the Young-Laplace equation:

n · (−pI + τ) = (−pb +Kσ)n (4.10)

with the tangential components also set to zero (no surfactants). Here, n is the normal
vector to the bubble surface, K the surface curvature, σ the surface tension and pb
the pressure inside the bubble. The initial pressure of the bubble is given by pb =
po + ρgy(H − h) + 2σ/r where H is the height of the domain, h the height in which
the bubble was released, r the half of the bubble diameter defined by equation 5.1 and
po the reference pressure (1.01 × 105Pa). In the simulations, pb is updated according to
pbVb = constant, where Vb is the bubble volume. The domain size was 16r × 50r. This
size was the same for the 2D and axisymmetric calculations; hence, 16r is the width for
the 2D domain and also the diameter of the cylinder of the axisymmetric geometry; 50r
is the height in both geometries. Non-dimensionalized variables were introduced to the
code considering the following scales: ρ for the density (ρ∗ = 1), r for the length, r/USI

for the time, USI for the velocity and ρU2
SI for the pressure and stress, USI being the

terminal velocity of the single bubble measured in the experiments. The viscosity, surface
tension and gravity were non-dimensionalized using the experimental values of the Re
(= ρUSIr/η), We (=ρU2

SIr/σ) and Eo numbers, respectively, and the scales mentioned
above. The nonlinear set of equations are solved using the Newton-Raphson method
together with Krylov subspace iterative solvers such as the preconditioned generalized
minimum residual (GMRES)6. The simulations were conducted in a computational grid
located in Canada (glacier.westgrid or driftwood.iam.ubc). A typical job consisting of
25,000 elements takes less than a day to complete a run with 10,000 time steps. An
upper limit for the time step is given by ∆t = 0.0005t∗, where t∗ = r/USI . For the
single and in-line bubbles (sections 6.1 and 6.2.1) the axisymmetric geometry was used
while for the bubbles rising side-by-side or with other angles (sections 6.2.2 and 6.2.3) the
2D solver was used. The data resulted form the simulations were further analyzed and
plotted using Tecplotr.

4.1 Comparison between Newtonian and non-Newtonian

flows

This work compares the behavior of the bubble flow in Newtonian and non-Newtonian
fluids keeping certain properties ‘equal’. Although this comparison is much more easy to

6The Newton-Raphson algorithm is used to find the roots of the nonlinear set of equations using an
initial guess value. The resulting linear system within each Newton iteration and the linear system of eq.
4.6 are solved using the GMRES algorithm. This GMRES algorithm is a kind of an orthogonalization
procedure; by orthogonalization we may think in the geometric principle that the shortest distance from
a point (the final values that solve the equations) to a plane (the equations themselves) is the length of
the perpendicular joining them, see Gill et al. 1991.
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Figure 4.2: Scheme indicating the relation of a Newtonian fluid with its thinning counterpart.
The ovoids, representing a bubble and a bubble pair, indicates the characteristic shear rate value
of the flow: if the viscosity value is fixed at the characteristic shear rate of a single bubble, a
bubble pair will rise faster due to the lower viscosity profile, see section 6.2.1.

do with computational simulations than with real experiments, there are some guidelines
that we must observe. Having a Newtonian fluid with viscosity η, we can make an
hypothetical thinning fluid with an index flow n by rotating the constant viscosity curve
using ηo (zero-shear viscosity) as a pivot or using a viscosity defined at the characteristic
shear rate of the flow γ̇ = 2U/db (see figure 4.2). If the first option is chosen (as in
Zhang et al. 2010), we can expect then that all the simulations run in the thinning fluid,
whatever the size of the bubble is chosen, will have a higher terminal bubble velocity than
that obtained in the Newtonian fluid since the viscosity will be always lower. Interestingly,
if the second option is chosen, it happens that the bubble rising in the thinning fluid will
reach a lower velocity than the bubble (having the same size) rising in the Newtonian one.
This is due to the higher viscosity profile appearing in the regions far from the bubble
(see section 6.1). In view of these differences, one is forced to clarify which variables
between the Newtonian and its thinning counterpart are being changed and which are
fixed in a numerical simulation. One can further compare the numerical results using the
Reynolds number as the fixed variable (see Dhole et al. 2007, Kishore et al. 2008), but
in this case the size of the bubble, or the liquid density are not fixed. What was done
in this study was to leave all the physical variables equal between the Newtonian and its
thinning counterpart (or viceversa), including the apparent viscosity at the characteristic
shear rate (pivot at 2U/db). Hence, the only variables that were changed were the flow
index n and the consistency index k.
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Chapter 5

Experimental setup

5.1 Column and bubble generation

A rectangular channel with 5 × 10 × 160 cm3 equipped with a gas chamber (7.5% of
the channel height) was used, similar to that used by Mart́ınez-Mercado et al. (2007).
Pure nitrogen was introduced to the bubble column using a needle valve (Cole-Palmer
1682ml/min MAX, stainless steel ball). The superficial gas velocity Ug range was between
0.09 and 0.6 cm/s. The gas volume fraction, Φg, was obtained using the relation Φg =
∆H/H, where H is the liquid height without gas (140cm) and ∆H the height difference
produced by the introduction of the gas in the column. The experimental setup can be
seen in figure 5.1

Three capillary banks were constructed in order to produce different bubble sizes (db).
The internal diameter of the capillaries (Dcap) was selected considering the equilibrium
condition between buoyancy and surface tension forces (eq. 1.25). In order to avoid the
generation of gas jets, the hydraulic resistance through the capillaries should be large such
that the bubble volume depends mainly on the buoyancy and surface forces and lesser in
the gas flow rate (Oĝuz & Prosperetti 1993). The equivalent capillary lengths necessary
to achieve such hydraulic resistance are sometimes of the order of meters; instead of
installing long capillaries, a second capillary with a smaller inner diameter was inserted
to the main capillary but the bubble formed on the larger diameter end. This arrangement
provides the sufficient hydraulic resistance to produce individual bubbles. As we can see
in figure 5.2, identical capillaries were placed in an acrylic perforated plate ordered in an
hexagonal arrange. The design parameters of the three capillary banks are summarized
in Table 5.1.

Dcap(mm) N db(mm) λ/db λwall/db L(cm)

1 0.2 63 2.15 2.8 6.7 4.3
2 0.6 27 3.15 2.7 4.9 8.0
3 1.6 16 4.20 2.7 3.7 8.0

Table 5.1: Design parameters of the capillary banks. Dcap, internal diameter of the capillaries;
N, number of capillaries; db, experimental mean bubble diameter; λ, spacing between capillaries;
λwall, spacing between capillaries and the wall; L, capillary length.
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Figure 5.1: Experimental Setup

Figure 5.2: Scheme of a capillary bank
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Capillary I.D. Bubble diameter

small 0.2 mm 2.1 mm
medium 0.6 mm 2.8 mm
large 1.2 mm 3.6 mm

Table 5.2: Bubble diameters obtained by the capillaries (I.D.: inner diameter of the capillaries)
shown in figure 5.3.

feedthrough

lateral capillary
central capillary

Figure 5.3: Device for the generation of two in-line bubbles or two bubbles rising side-by-side.

A special device was constructed for the generation of the bubble pairs (figure 5.3).
This device can be attached to the column and replace the capillary bank and the gas
chamber when the bubble pair experiments were carried out. To generate in-line bubble
pairs (vertical alignment), one capillary was inserted through the bottom of the column,
using a sealed feedthrough (Spectite Series PF ), at the center of the base plate. To
generate bubble pairs aligned horizontally, a second capillary was inserted through the
side wall, using an elbow and another feedthrough connector. In this manner the initial
horizontal separation could be varied. Table 5.2 shows the bubble size that were obtained
with the different capillaries using the experimental setup for the bubble pair generation.
Air was injected through the capillaries with a syringe pump (KDScientific 100L). To
ensure that the polymer solution was completely at rest, a time interval of approximately
5 minutes was left in between experiments. Regarding this point, a notable difference in
the terminal velocities of two bubbles released one after the other was not seen for periods
above one minute. The whole column was disassembled and cleaned at the end of the
day.

5.2 Fluids

The thinning fluids used in this study fulfilled two conditions: (1) show a shear-thinning
power-law behavior with negligible elastic properties and (2) allow the formation of mono-
dispersed bubbly flows, that is, with a narrow dispersion of db. For the case of the
elastic fluids, the liquids were formulated such that they had a nearly constant viscosity.
Although we can be certain that the total separation of the elastic and thinning properties
of a polymer solution is rather impossible, we can make solutions with low elasticity
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by using rigid polymer molecules. It was found that xanthan gum (rigid-like polymer)
solutions in water/glycerin mixtures fulfilled the above conditions for the thinning fluids.
These solutions are more stable in the presence of MgSO4 (which was added to delay
coalescence, Lessard & Ziemiski 1971) than carbopol, CMC or guar gum solutions. The
preparation of the thinning solutions was as follows: first the xanthan gum (Keltrol E
415, KELCO, USA) was dissolved in water (at 55◦C), then the salt (0.04M of MgSO4,
2500-01 J.T. Baker) was added and finally the glycerin.

The elastic fluids with nearly constant viscosity (Boger-type fluids) can be made ei-
ther by dissolving a small amount of flexible polymer in a highly viscous solvent, such
as the “classical” Boger fluids (James 2009), or by hindering the orientation of the poly-
mer chains with the flow by forming a transient network (Tan et al. 2000). Although
historically, Boger fluids are usually diluted polymer solutions, we will use this term
to denote a fluid with elasticity and nearly constant viscosity regardless its composi-
tion or polymer concentration. One of the elastic fluids (semidilute solution, Boger-1)
was made by dissolving 400ppm (0.04%) of ionic polyacrylamide (Paam, Aldrich 181277,
Mw = 5× 106g/mol) in a 80/20 (v/v) glycerin-water mixture having 9.8g/L of MgSO4.

The rheological measurements were done in a rheometer (TA Instruments AR1000N )
with a cone-plate geometry (60mm, 2◦, a gap of 65 µm). The surface tension measure-
ments were performed with a DuNouy ring (diameter of 19.4mm, KSV Sigma 70 ). All
the solutions were stirred before the surface tension measurement. The temperature of
the room was 23◦C. The physical properties of the solutions are summarized in Table
5.3; the flow curves of the thinning solutions and the curve of the Boger-1 fluid are shown
in figure 5.4 and 5.5 respectively. Three additional curves are included in figure 5.5. The
first and second curves are the viscosity and normal stress of a Boger fluid used by Pel-
letier et al. (2003), similar to the one employed in this work. The reason of including
this fluid is to support the argument, used in section 7.1.1, that although our Boger-1
fluid was made with a ionic polymer, the addition of the salt made it behave like a flex-
ible polymer, as it shows a behavior similar to that used by Pelletier et al. , which used
nonionic polyacrylamide. The third curve is the viscosity of the Boger-1 fluid used in
this study two weeks after the experiments. The curve shows a thickening behavior at
γ̇ > 100. This kind of behavior was already described by Choplin and Sabatié (1986)
and is due to conformational changes of the macromolecules and possible formation of
intermolecular bonds induced by high shear rates (which are well above the value where
the velocity jump occurs, γ̇ ≈ 40, see section 7.1.1). The polymer concentration param-
eter c for this fluid, defined as the ratio of the polymer and solvent contribution to the
zero-shear viscosity, c = ηp/ηs, is 0.85. The solutions were left in repose for a minimum
of 24 hours before experiments.

At a shear rate of 10s−1 all the thinning fluids (fig.5.4) have a viscosity of around
one hundred times that of water. The shear-thinning fluids have a power-law behavior in
almost all the shear rate interval; a mild plateau can be observed for shear rates below
0.1s−1. This indicates that the polymer chains are gently stretched by a flow field, having
a short range of linear viscoelasticity. Within this short linear range, the elastic modulus
G’ becomes bigger than the loss modulus G” only at high frequencies (> 100s−1) as can
be seen in figure 5.6. Both G’ and G” were obtained by a Fourier Transform (FT) of the
stress relaxation curves measured with an ARG2 rheometer of controlled stress (Calderas
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Fluids ρ σ η or k n
kg/m3 mN/m mPa·sn

Newtonian: 83% glycerin/water 1214.6 61.9 104.2 1.0
0.02% xanthan gum in 75% glycerin/water 1193.1 63.0 118.7 0.85
0.035% xanthan gum in 70% glycerin/water 1179.5 62.0 143.4 0.76
0.1% xanthan gum in 60% glycerin/water 1152.1 65.0 360.0 0.55
0.23% xanthan gum in water 997.5 66.5 574.9 0.32
Boger-1: 0.04% polyacrylamide in 80 % glycerin/water 1206.7 55.6 108.4 0.96

Table 5.3: Physical properties of the fluids: ρ, density; σ, surface tension; η, viscosity; k, con-
sistency index; n, flow index. The percentages of liquid mixtures are given in volume terms, the
percentages of the polymers solutions in weight terms. All the solutions had 9.86g/L of MgSO4.
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Figure 5.4: Flow curves of the thinning fluids. η: apparent viscosity, (−−) Newtonian fluid, (◦)
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Figure 5.5: Flow curve of the Boger-1 fluid: (◦) viscosity, (�) normal stress; (−−) viscosity of
the Newtonian fluid; (•) viscosity of a Boger fluid reported by Pelletier et al. (2003): 830ppm of
polyacrylamide (Mw = 3.18 × 106g/mol) in a 80/20 (w/w) glycerin-water mixture, (�) normal
stress of the Boger fluid of Pelletier et al. ; (♦) viscosity of the Boger fluid used in this work
measured two weeks after the experiments. Vertical line: shear rate at which the velocity jump
occurs, see section 7.1.1. The exponent in the viscosity equation (1-0.966) indicates the value of
the flow index, n = 0.966.

et al. 2009). The normal forces (the absolute value of the first normal stress difference)
of the thinning fluids, measured with the cone-plate geometry, reach a maximum value of
7 Pa at 100s−1 but decreased as the shear rate increased (data not shown). This behavior
contrasts with the one shown by a viscoelastic fluid (a 0.2% polyacrylamide solution can
reach a normal stress value of 100 Pa for the same range of shear rates) or an upper-
convected Maxwell fluid where the normal stress grows as a function of γ̇2; clearly the
behavior of our thinning fluids is very different. Note that the frequency value (inverse of
the relaxation time) at which the dynamic moduli curves intersect in the shear thinning
(xanthan) solutions is about two orders of magnitude higher than the corresponding value
of the Boger-1 fluid. With these fluids (and with their rheological characterization) we
were able to isolate, as much as possible, the thinning effects from the elastic ones over
a wide range of characteristic flow times. The fluids were discarded after one week of
experimental work.

A concentrated polymer solution, Boger-2 fluid, was also used in section 7.1.2. This
solution was made with an associative polymer, HASE (hydrophobically modified alkali-
soluble emulsion), dissolved in water (1.5%) adjusting the pH to 9.0 with a 0.1M solution
of 2-amino-2-methyl-1-propanol (Soto et al. 2006, Mendoza-Fuentes et al. 2009). At this
pH the polymer chains become expanded allowing the hydrophobic groups of the chain
to associate intra- and intermolecularly. The flow curve can be seen in figure 5.7. This
concentrated polymer solution presents a Newtonian behavior over a wide range of shear
rates. Note that for the same shear rate values, the normal forces are higher in the Boger-
2 fluid than in the Boger-1 fluid. As the viscosity of this fluid is highly increased by the
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Figure 5.6: Dynamic moduli of three shear thinning solutions and the Boger-1 fluid. Filled
symbols: elastic modulus G’; empty symbols: loss modulus G”; (◦) n=0.85, (♦) n=0.55, (△)
n=0.32; (�) dynamic moduli of the Boger-1 fluid. For the estimation of G’ and G” the procedure
followed by Calderas et al. (2009) was used.

hydrophobic associations among polymer chains, the value of the parameter c is very high
(c > 2000).
.

5.3 Bubble size and velocities measurements

For the measurements of the mean bubble diameters, db, and the mean bubble velocities,
USW , a high speed camera (MotionScope PCI 8000s) was employed. A recording rate of
500 frames/s and a shutter speed of 1/1000 was used. The camera was positioned 20cm
below the liquid surface facing the larger side of the bubble column. Two different videos
were obtained per experiment: one for the db measurements, where the camera was placed
120cm from the bubble column (using a 105mm objective lens) and another for the bubble
velocity measurements, where the camera was placed a little bit farther, 180cm from the
bubble column (using a 60mm objective lens, see fig. 5.1). Diffuse back light was used,
with a light source placed at 90◦ from the camera direction and reflected by a panel. The
video frames were analyzed using a conventional image processor software (Matlab c©, see
figure 5.8). For bubbles having ellipsoidal shape, the equivalent mean bubble diameter
db was calculated using the measurement of the short and long diameters of the elliptic
bubble projections:

db = (d
2
MAXdMIN )1/3 (5.1)

where dMAX is the larger bubble diameter and dMIN the shorter bubble diameter. In some
bubbly flows an equivalent mean cluster diameter was also measured. Although clusters
shapes are highly irregular, an estimation of its size was made using equation 5.1, now
taking the longer and shorter diameters of the cluster. The reported USW values were the
average of the vertical component of the velocity vector. About 100 measurements were
done for each experimental condition. When bubble aggregates appeared, the velocity
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Figure 5.7: Flow curve of the 1.5 % HASE (Boger-2) fluid. Empty symbols: viscosity η; filled
symbols: normal stress N1, vertical line: shear rate at which the velocity jump occurs, see section
7.1.2.

of individual bubbles located at the periphery of the clusters was measured; these were
more easy to recognize than the bubbles located in the interior of the cluster. In the case
of the elastic fluids, bubbles can acquire an inverted teardrop shape. In those cases, the
Pappu’s theorem was used to compute the volume V :

V = 2Aπrcentroid (5.2)

where A is the half of the projected area of the bubble, considering its axis of symmetry,
and rcentroid is the length between the axis of symmetry and the centroid of A.

For the case of the bubble pair experiments, the bubbles were followed by the camera
mounted on a vertical rail activated by a DC motor (Sámano 2011). The velocity of
the motor was regulated with a DC power supply. A recording rate of 60 frames/s was
used. The image sequence obtained with the camera was binarized using a threshold
value computed according to the Otsu’s method provided by Matlab c©. As the pictures
were taken by a moving reference frame, we used a pattern of circles, glued on the side
of the column, to calculate the displacement of the camera in between frames; once the
displacement of the camera was known is was possible to compute the absolute displace-
ment of the bubbles. This procedure consisted of two parts: first a pair of consecutive
images (j and j−1) are selected from the sequence. Then the same circle of the reference
pattern is identified in each image and the position of its centroid is calculated. After
doing this, the reference position is taken from the first image; hence the location of the
bubbles is determined and their evolution from one frame to the next one. This procedure
is repeated for the entire image sequence. In this manner, the uncertainty in locating the
bubble position is minimized eliminating problems due to vibration of the camera and
changes in lighting. The velocity of the bubbles at the image j was calculated using a
central difference scheme. The distance between bubbles was directly computed from the
images.

The velocity and size of isolated bubbles were also measured covering a bubble volume
range from 0.1 to 100mm3. Such measurements were done in a cylindrical column with
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Figure 5.8: Image of the bubbles being recognized by a semi-manual algorithm. Four points over
the bubble surface are selected and used for the computation of the equivalent diameter. For the
estimation of the vertical velocity, the linear distance marked by a bubble through all the image
window (an average velocity) was measured.

an inner diameter of 9cm equipped with a bubble dispenser similar to the one used by
Soto et al. (2006).

In some flow conditions, the liquid velocity field was also obtained. This was done
with the Particle Image Velocimetry (PIV) technique. The PIV technique in 2D is ex-
plained in detail elsewhere7. It consist in projecting a laser sheet (NEW WAVE Research)
on the flow perpendicular to the direction of the camera (Megaplus Camera, Model ES
1.0 ). The liquid is seeded with tracer particles (10µm of rhodamine colored particles) so
the movement of the liquid can be reconstructed computing (FlowManager v4.6, Dantec
Dynamics) the displacement of the particles between two light pulses.

7www.dantecdynamics.com
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Chapter 6

Results: Shear thinning inelastic

fluids

The results are presented in two parts: one for the thinning fluids and the other for the
elastic ones. Also, for each case there are three sections: single bubbles, bubble pairs
and bubble swarms. Although this scheme presents the results in an orderly way, it does
not necessary represent the time evolution of the project. The results presented in this
chapter have been published in two papers (Vélez et al. 2011a and Vélez et al. 2011b).

6.1 Single bubbles in thinning fluids

The values of the drag coefficient, Cd, of the individual bubbles as a function of the
Reynolds number, Re, are shown in figure 6.1. The Reynolds number and drag coefficient
were calculated using equations 1.17 and 1.29 and using the power law model for the
viscosity:

η = k

(
2USI

db

)n−1

(6.1)

In addition to the common functional dependence of the drag coefficient in the Reynolds
number within the laminar flow regime, we can also observe that the experimental Cd

values found for the thinning fluids are higher than those found for the Newtonian fluid.
This increase of the drag coefficient with the thinning behavior has been already reported
by theoretical (Hirose & Moo-Young 1969, Bhavaraju et al. 1978a) and experimental
(Bhavaraju et al. 1978a, Haque et al. 1988) studies for the creeping and small but finite
Reynolds regimes. Note that for the Newtonian fluid the Oseen wake is already seen at
Re ∼ 7. Although our fluids are not totally free from elastic effects (see section 5.2), the
fact that a velocity jump discontinuity was not observed supports the statement that the
elastic effects were very small indeed.

Figure 6.1 also includes some numerical results for single bubbles. Noticeable dif-
ferences between the experimental and numerical results for the Newtonian fluid were
seen below a Reynolds number of one, where the numerical drag values approach the
Hadamard prediction (due to the prescribed slip condition at the bubble surface). Note
that the agreement between the experimental and numerical values for the Newtonian
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Figure 6.1: Drag coefficient as a function of the Reynolds number for the single bubbles. Experi-
mental values: (·) Newtonian fluid, (◦) n=0.85, (�) n=0.76, (♦) n=0.55, (△) n=0.32; Numerical
values: (⋆) Newtonian fluid, (•) n=0.85, (�) n=0.55; (−) Stokes prediction, (−−) Hadamard
prediction, (...) Oseen correction for a fluid sphere Cd = 16/Re+ 2.
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fluid is good (points and stars in figure 6.1, maximum error around 3%), indicating that
the spatial resolution and the computational domain size were adequate. For the thinning
fluids, it was found that the numerical terminal velocities were in all the cases higher (25%
in the n = 0.85 fluid up to two times the experimental velocity in the n = 0.55 fluid) than
those obtained in the experiments. The use of the Carreau model8 gave the same results.
It is not clear if this difference is due to the choice of a definition of the apparent viscosity
(eq. 6.1), or due to other effects such as the time that molecules take to attain a ran-
dom orientation (zero-shear viscosity) after deformation or because there is an adsorption
of the polymer molecules on the bubble surface thus changing the boundary conditions.
Zhang et al. (2010) found better agreement between their numerical and experimental
values (using the same constitutive equations as in this work but with other test liquid
and without addition of salt), although it seems that their error increases as the thinning
behavior increases and the Reynolds number was close to zero. In the following we will
see that in spite of this inaccuracy of the numerical results, the essence of bubble pairing
is still captured by the simulations.
In figure 6.2 the drag coefficient of the single bubbles rising in different shear-thinning liq-
uids is presented in a different manner. The experimental and numerical drag coefficients
were normalized by their Newtonian counterparts (n = 1) to form the ratio Y (n):

Y (n) =
Cdthinning
CdNewtonian

(6.2)

The ratio Y (n) has been used by several authors (Hirose & Moo-Young 1969, Bhavaraju
et al. 1978a, Rodrigue et al. 1999a) to investigate the drag force in shear-thinning fluids.
The theoretical values obtained by Rodrigue et al. (1999a) and Bhavaraju et al. (1978a)
are shown in this figure as well as the experimental results obtained by other authors. The
assumption of clean spherical bubbles was used in both theoretical studies for creeping
flow; also both studies used a perturbation method. The only difference between them was
the way of expanding the second invariant of the rate of deformation tensor γ̇. Following
the standard notation for the drag coefficient used by these authors, the experimental and
numerical Y (n) values for very low Re flows (Re < 1) were calculated using the Stokes
and Hadamard solutions respectively:

Y (n)exp =
Cdthinning
CdNewtonian

=

4dbg

3U2
SI

24/Re
=

dbgRe

18U2
SI

(6.3)

and

Y (n)num =

4dbg

3U2
SI

16/Re
=

dbgRe

12U2
SI

(6.4)

Theoretical, numerical and experimental results show the same trend: as the thinning
behavior is increased (decreasing n) the bubbles experience more drag than their Newto-
nian counterparts. These observations can be interpreted as follows: the maximum shear

8The Carreau model is η = η∞+(ηo−η∞)(1 + [λγ̇]2)
(n−1)/2

, where ηo is the zero-shear viscosity value,
η∞ the viscosity at high shear rates, λ a time constant and n the flow index.
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Figure 6.2: Drag coefficient ratio Y(n) as a function of the flow index. Numerical results: (�)
0.6 < Re < 1, (�) 7 < Re < 9. Theoretical predictions: (−) Bhavaraju et al. (1978a), (−−)
Rodrigue et al. (1999a). Experimental values: (◦) this work 0.4 < Re < 1.2, (×) 0.1 and 0.15%
carbopol solutions from Bhavaraju et al. (1978a), (∗) 0.1-2.0% CMC solutions, Re < 6 from
Haque et al. (1988), (+) 0.1-1.0% carbopol solutions with trietanolamyde, Re=3 from Chehata
(2004).

rate experienced by the liquid is about USI/r, therefore the minimum viscosity value is
approximately k(USI/r)

n−1 (note that for the drag estimation the equilibrium equation
between buoyancy and drag forces was used and this expression do not need a viscosity
value). For the single bubble case and at low Re numbers the shear rate decreases with
the distance from the bubble, which in shear-thinning fluids result in higher viscosity
values. The total effect is the increase of the resistance of the bubble motion, which can
be seen by an increase of the pressure drag coefficient (see the CDp values in Table 4 of
Dhole et al. 2007, Re < 50) which lessen the effect of the reduction of the friction drag
term that occurs as n decrease (this component of the total drag is actually negligible for
bubbles without surface active agents).

Other simulations with higher Reynolds numbers (Re∼8) were also conducted; the
corresponding Y (n) values are also shown in figure 6.2. In this case, since the Re number is
not small the Hadamard prediction cannot be used and a direct comparison with the theo-
retical values (Hirose & Moo-Young 1969, Bhavaraju et al. 1978a, Rodrigue et al. 1999a)
cannot be made. Therefore, to calculate the value of Y (n) the drag of the thinning fluid
was divided by the value attained by its Newtonian counterpart using the same physical
parameters but changing the flow index value to one, leaving the same viscosity value at
the characteristic shear rate USI/r. The Y (n) values were thus calculated as:

Y (n) =
Cdthinning
CdNewtonian

=

(
USINewtonian

USIthinning

)2

(6.5)
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The results have the same trend as in the low Re case, that is, the drag increases with
the thinning behavior. Zhang et al. (2010) made a similar comparison of their numerical
terminal bubble velocities obtained with thinning and Newtonian fluids. In order to
make the comparison they changed the value of the flow index (similar to what was done
here) but considering a constant zero-shear viscosity value. These authors found that the
terminal velocity of bubbles rising in thinning fluids was higher than the corresponding
Newtonian case.

6.1.1 Wall effects

It is clear that the velocity of the bubbles will be reduced by the arrest of the fluid motion
at the walls of the container: if the distance between the bubble and the wall is reduced,
the decrease of the rise velocity will be higher. The correction of the rise velocity due to
the proximity of the wall can be known using the method of reflections (the zero-velocity
of the wall is reflected in the bubble velocity, and viceversa, see Happel & Brenner 1991).
For creeping flows, there is an equation (Faxen equation) used to estimate such velocity
correction:

U

U∞
= 1− r

R

[
2.1044 − 2.088

( r

R

)2
+ ...

]
(6.6)

where U∞ is the rise velocity without wall effects, r the bubble radius and R the radius
of the container. We may wonder now how much is the rise velocity reduced due to the
proximity of the wall in the experiments and calculations shown here. To answer this,
several simulations were run in the ALE code varying the ratio of the bubble and column
radius r/R . The results for the Newtonian fluid (Re ≈ 1) are shown in figure 6.3. We
can see that the walls of the bubble column, even the ones forming the shortest width,
produce a small effect on the bubble velocity (rising in the center of the column) for
Re > 1. The wall effects will be more pronounced in the cases were Re < 1; however, the
Faxen’s correction will only be around 7% since the single bubbles were released in the
column having R/r ≈ 30. Even more, we can expect that the wall effects will be reduced
when the thinning behavior is increased, according to Mena et al. (1987). The notion of
the velocity correction due to wall effects is important in the study of single bubbles but
irrelevant (or difficult to address) for the case of bubble swarms. In that case, the general
trend is that the bubbles rising close to the walls will move more slowly than the bubbles
rising in the center of the column.

6.2 Bubble pairs in thinning fluids

6.2.1 Two-bubble interaction: vertical alignment

Let us first consider the numerical results. Two identical spherical bubbles were placed one
above another, with a center-to-center separation of 4r using the same physical properties
as the ones used in the single bubble simulation with Re∼8. Upon start of the simulation,
both rise and in time the lower bubble catches up with the leading one. When the bubbles
reached a certain gap separation distance, two Y (n) values (equation 6.5) were calculated,
one for the trailing bubble (comparing the bubble velocities of the Newtonian and thinning
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Figure 6.3: Wall effects on the bubble velocity ratio U/U∞. (◦) numerical results for the Newtonian
fluid, Re ≈ 1; (− − −) Faxen’s equation for creeping flows; the vertical lines refer to the half
of the distance between the largest and shortest widths of the bubble column (the largest half
width almost coincides with the radius of the column used to released single bubbles, see Soto
et al. 2006), and the half of the computational width.

fluids) and another for the leading one. The results for two separation distances, 0.1r and
0.5r, are shown in figure 6.4. In this figure we can see that as the bubbles become closer to
each other, the trend seen for single bubbles changes: the Y (n) values fall slightly below
one. This means that two bubbles rising one after the other in a thinning fluid experience
less resistance than their Newtonian counterparts. This behavior is inherent to the way
the thinning fluid simulations were conducted. As previously said, the apparent viscosity
corresponding to a characteristic shear rate USI/r of the single bubbles was fixed for
both, the thinning and Newtonian cases. When for both a second bubble is added, the
shear rate is increased in both fluids, the difference being that in the thinning case a zone
with a lower viscosity near the bubbles will appear (see figure 4.2). The comparison made
between the single bubble and bubble pair is similar to that made by Singh & Denn (2008),
in the sense that the comparison depends on how the fluid properties are initially defined
and serve as input information. For example, in this study single bubble and bubble
pair simulations were done using the apparent viscosity calculated at the characteristic
time of the single bubble. However, this is an arbitrary numerical procedure since one
can also define the reference viscosity for two bubbles (considered as a single one with
the equivalent volume). The important point here is that, when the apparent viscosity
between the Newtonian and its Newtonian counterpart is held constant (this might be
very difficult to do experimentally), two bubbles rising in a thinning fluid will rise faster
than in the Newtonian fluid, unlike the single bubble case.

The shear rate formed around a bubble or a pair of bubbles can be visualized using
the numerical code. In figure 6.5 the shear rate fields are shown for the thinning fluid
with n = 0.5 (10 < Re < 16). The shear rate attained around the bubble pair is clearly
higher (up to four times) than that appearing in the single bubble case. As can be
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Figure 6.4: Drag coefficient ratio Y(n) as a function of the flow index for the in-line bubble pair;
filled symbols: trailing bubble, empty symbols: leading bubble; (�) gap separation distance of
0.1r, (◦) gap separation distance of 0.5r. As the bubble velocity was obtained from the average
between the velocities at the top and bottom nodes of the bubble boundary, the minimum seen
in the leading bubble for 0.1r could be due to bubble surface deformation.

expected, the zone with the higher shear rate surrounds the bubble pair, forming a single
“jacket”, when the bubbles become very close each other. Note that the numerical code
is also capable to reproduce the axial elongation of the trailing bubble prior to contact.
The so called “equilibrium position” between two in-line bubbles, reported by Yuan &
Prosperetti (1994), was not observed for either the experimental and numerical tests.

The center-to-center separation distance between the bubbles as a function of the
time is shown in figure 6.6 for the three bubble sizes used in this work. The experimental
and numerical results are both shown using the dimensionless distance d∗ = δ/r and
the dimensionless time t∗ = t(USI/r), δ being the separation distance between bubble
centers. In the following d∗s is also used on several occasions and refers to an edge-to-edge
or gap separation between bubbles. Three stages can be observed similar to the drafting-
kissing-tumbling scenario reported for settling solid particles (Happel & Pfeffer 1960).
The first one (drafting) corresponds to the approaching of the trailing bubble towards
the leading one. This stage is characterized by an almost constant negative slope of the
t∗ − d∗ curve, meaning that a constant approach velocity occurs. Note that when the Re
number is increased (viscosity gradients become less important) the initial slope has the
same value regardless of the value of the flow index (figures 6.6b and 6.6c). The numerical
simulations for these early times t∗ are in good agreement with the experimental results.
The second stage (kissing) can be easily identified by the change of the initial slope. The
contact of the bubbles is accompanied by an elongation of the trailing bubble followed by
a slight contraction of both bubbles due to the collision. The third stage (tumbling or not-
tumbling) is the one that marks the difference between Newtonian and non-Newtonian
liquids. Concerning shear-thinning fluids, small and medium size bubbles (db = 2.1mm
and 2.8mm) rising in the n = 0.5 fluid, and small bubbles rising in the n = 0.85 fluid,
remained together after contact. The bubble pairs in these cases either maintained a
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Figure 6.5: Shear rate contours obtained for a single bubble and an in-line pair rising in the
n = 0.5 fluid. The values were taken at the same time (t*=5) for both the single and bubble pair.
The initial separation of the bubbles was 4r. The shear rate was estimated using the formula
inside the square brackets of equation 4.3 and normalized by the characteristic time r/USI .

vertical orientation (not-tumbling) or an orientation with a certain angle, switching their
relative position as they ascended (figure 6.7b). In the rest of the cases the bubbles turned
to the horizontal position after contact and separated (tumbling), as shown in figure 6.7a.

The dimensional analysis of this section will be discussed in section 6.3.6 to link
it with the results obtained in bubble swarms. The condition for bubble pairing (or
clustering, in the case of bubble swarms) needs to fulfill certain conditions of inertia and
bubble deformability. For practical purposes, one can draw a line of a constant Morton
number in a Eo-Re plot to delimit the conditions of bubble pairing (clustering) and free
bubbles. This “critical” Morton number seems to be of the order of 10−3 (see section
6.3.6). Concerning the Newtonian fluid, it was found that two bubbles rising in tandem
at low Re (0.4 < Re < 1.3) also form a stable doublet (figure 6.6a). This contrast with
the results obtained below (section 6.3) where for the same fluid and bubble size bubble
pairing was not seen in bubbly flows. This indicates that bubble clustering in Newtonian
fluids at low Re is greatly influenced by the amount of gas fraction (Cartellier et al. 1997).
The fact that two bubbles rising in a Newtonian fluid can form a stable doublet supports
the hypothesis that two deformable bodies moving in a fluid at low Re will prefer to move
as a single body being surrounded by a common flow field. The deformability condition is
emphasized since for rigid particles the pairing described here was not observed, even at
low Re numbers (Happel & Pfeffer 1960). This apparent contradiction supports, in fact,
the general tendency found in section 6.3.6: for a given Eötvös number, bubbles tend to
form clusters if the Re number is low; on the other hand, for a given Re, bubbles tend to
form clusters if the Eo number is high (more deformable bubbles). This argument is not
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Figure 6.6: Center-to-center dimensionless distance as a function of the dimensionless time of
two bubbles released in tandem. The initial separation distance was approximately 6r. (a) db =
2.1mm, 0.45 < Re < 4.5, (b) db = 2.8mm, 2 < Re < 6.4, (c) db = 3.6mm, 4.8 < Re < 13.1.
Experimental results: (+) Newtonian fluid; (•) n = 0.85 fluid; (△) n = 0.55 fluid. Numerical
results: (red line, −−−) Newtonian fluid; (green line, −) n = 0.85 fluid; (blue line, .−) n = 0.55
fluid (numerical results for this fluid using the smaller and medium bubble sizes are not shown
due to the large computational time needed to complete the simulations). The computational
domain size used for the Newtonian fluid with the smaller bubble (Re ∼ 1) was 16r × 70r.
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(a) Newtonian, Eo=0.9, Re=1.3 (b) n=0.55, Eo=0.7, Re=4.5

Figure 6.7: Non consecutive snapshots of the bubbles position taken with the movable camera.
The bubble size is 2.8mm. The size of the image is approximately 7 × 17cm2. The ∆t between
shots is 0.5s. (L) leading and (T) trailing bubbles. The indicated Re number corresponds to the
maximum value reached by the bubbles.
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new: it was already reported by Manga & Stone (1993, 1995) for Newtonian fluids.
Figure 6.6 suggests that the thinning effect during the drafting process can only be

observed at low Re numbers, that is to say, when the rate of approach of the trailing
bubble is dependent on the flow index (figure 6.6a). Using the experimental velocity of
the bubbles, we can compute the ratio of the drag coefficient of the trailing bubble CdT
to the leading one CdL as:

CdT
CdL

=

(
UL

UT

)2

(6.7)

where U is the instantaneous velocity of the bubbles. The drag ratio at a separation
distance of δ = 4r for different values of the flow index n is shown in figure 6.8. The data
with 0.4 < Re < 4.5 (small bubbles) confirms the observation that the mean drag of a
bubble pair is less than its Newtonian counterpart, unlike the single bubble case. Such
effect is nevertheless seen only at low Re values. As inertia is increased, the decrease of
the drag with the flow index is more subtle.

In the case when the tumbling stage appears, the value of the drag ratio CdT /CdL
becomes almost one (the separated bubbles attain the velocity of a single one). This
can be seen in figure 6.9 with the Newtonian and n = 0.8 fluids. In this figure the
experimental drag ratio CdT /CdL for the medium bubble size was plotted as a function
of the dimensionless time. The values of the Newtonian fluid correspond to the case
shown in figure 6.7a. For the case when the bubbles continued traveling as a pair (figure
6.7b, n = 0.55 fluid), the evolution of the drag ratio is very different (filled circles in
figure 6.9). In this case, the movement of the bubbles forming the pair produces an
oscillatory behavior of the drag ratio CdT/CdL: when the trailing bubble catches the
leading one, the pair turns towards the horizontal alignment due to the pressure directed
against the bubble motion. This horizontal arrange is nevertheless not stable because
it leads to the separation of the bubbles (Legendre et al. 2003), which in turn causes a
passage form low to high viscosity zones as the characteristic shear rate will decrease.
A possible configuration is then a diagonal alignment. The bubble located at the front
will cause a reduced viscosity path, hence the bubble in the back will be accelerated,
reaching the bubble at the front and passing it. The process is repeated again. A
similar periodic movement has been observed for the case of groups of settling particles
formed by three (experimental results, Re < 0.2) or four bodies in Newtonian flows
(numerical results, Re ≪ 1), see the works of Jayaweera et al. (1964), Hocking (1964),
Manga & Stone (1995). However, the periodic movement observed here for the case
of two bodies has not been observed in Newtonian fluids, neither for settling particles
(Happel & Pfeffer 1960, Jayaweera et al. 1964) nor for ascending bubbles (this work).
A periodic transverse movement between a pair of bubbles rising side-by-side has been
observed in Newtonian flows (Sanada et al. 2009), but this occurs at Re ∼ 300, which
has very different hydrodynamics than those obtained at low Re. Hence, we believe that
the oscillatory behavior seen in figure 6.9 is due to non-Newtonian effects.

Apart from the differences found during the tumbling stage, the drafting process ob-
served in the different fluids is very similar, the most significant differences being those at
low Re numbers. Figure 6.10 shows the bubble velocity ratio UL/UT as a function of the
separation d∗ for all the fluids and bubble sizes. The plot includes all the data prior to
bubble contact (δ > 2r). In spite of the data scatter, the trend is close to the analytical
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fluid, (♦) db = 2.8mm, n = 0.85 fluid, (△) db = 3.6mm, n = 0.85 fluid, (�) db = 2.1mm, n = 0.55
fluid, (�) db = 2.8mm, n = 0.55 fluid, (N) db = 3.6mm, n = 0.55 fluid. (−−) theoretical solution
for rigid spheres (Stimson & Jeffery 1926), (−) theoretical solution for gas bubbles (Rushton &
Davies 1973).

solution of Rushton and Davies (1973) for gas bubbles rising in a Newtonian fluid. This
analytical solution was based on the theoretical study made by Morrison (1973), which
took into account the velocity of the leading wake. The agreement of the experimental
data with the theoretical prediction suggest that the principle of superposition is also
valid for shear-thinning fluids. The deviation of the experimental values from the the-
oretical prediction at short separation distances (δ < 7r) could be due to the fact that
the analytical solution does not take into account higher order terms that captures the
proximity of the two bubble boundaries.

6.2.2 Two-bubble interaction: horizontal alignment

As mentioned by other authors (Happel & Pfeffer 1960, Legendre et al. 2003), two bub-
bles rising side-by-side with Re < 30 will experience repulsion due to the high pressure
between the bubbles due to converging streamlines. Here it was found, as in Wenyuan
et al. (2009), that two abreast bubbles rising in shear-thinning fluids also follow this rule;
however, the thinning condition can considerably decrease the rate of separation between
bubbles. In figure 6.11 the separation distance d∗ is shown as a function of time t∗ for the
small (0.4 < Re < 1.3) and large (4 < Re < 7.5) bubbles and for several initial separation
distances d∗o. The experimental values are included as well as the numerical results. In
this figure we can observe that the separation distance between bubbles increases with
time for most of the cases; nevertheless, it was found that the rate of separation decreases
when the thinning behavior increases (there is hardly any separation in the n = 0.55
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fluid). This behavior reveals that the low viscosity zone produced by the bubble pair
weakens the repulsive force between the bubbles aligned horizontally and decreases the
rate at which the two bubbles separate. Additionally, it can be seen that the slope of the
curves slightly decrease as the initial separation is increased, revealing that the interaction
is weaker for larger separations. The 2D numerical results showed the same general trend
found in the experiments; however, the rate of separation was considerably higher. Other
authors (Ekambara et al. 2005) have already reported important differences between 2D
simulations and the experimental results. In this case, it seems that the disc-shaped bub-
bles overestimate the lift forces acting on each of their boundaries. A full 3D simulation
would be needed to obtain a closer agreement with the experimental results.

Figure 6.12 illustrates simulations of the lateral separation in Newtonian as well as
in a shear-thinning fluid. Note that the bubbles separate from each other in both cases.
In a general way, the experimental and numerical results obtained in this section suggest
that the thinning behavior is not capable to attract two bubbles rising parallel in a fluid,
unlike what has been observed in viscoelastic fluids (Joseph et al. 1994, Hu et al. 2001).
Gheissary and van den Brule (1996) observed an attractive behavior of two settling par-
ticles moving in a thinning fluid made with Carbopol. Nevertheless, it has to be pointed
out that the fluids used by these authors had a viscosity above one thousand times that of
water and presented a gel-like behavior. In this kind of fluids the shear-thinning behavior
can be originated from the structure breakdown of the gel, as mentioned by the authors,
giving place to a different behavior during the interaction of two bodies.

The instantaneous drag of the two bubbles rising side-by-side was calculated and
compared with the single bubble value for the case of the n = 0.85 fluid. The drag value
of each bubble was calculated using eq. 1.28:

Cd

Cdsingle
=

Vz|v|single3

Vzsingle|v|3
=

VzVzsingle
2

|v|3
(6.8)

The drag ratios for the left (the one formed at the central capillary) and right bubbles as a
function of the horizontal distance d∗ between bubble centers are shown in figure 6.13. The
analytical expression found by Legendre et al. (2003) for two spherical bubbles rising side-
by-side in Newtonian fluids for the limiting case of d∗ ≫ 1 and d∗Re ≪ 1 is also shown.
It can be seen that the drag ratio decreases as the bubbles became closer. This agrees
with the general trend found in viscous dominated flows, where the liquid encounters
less resistance in moving around the two bodies rather than passing in the gap between
them. The pair will then move as a single body. As the separation distance is increased,
the drag value tends to the single bubble one. The differences in the values between the
left and right bubbles are due to the proximity of the wall and the appearance of a slight
differences in the vertical position between bubbles. The fact that the experimental values
for the n = 0.85 fluid are close to the analytical expression of Legendre and coauthors
indicates that in the limit of d∗ ≫ 1 the effect of the thinning behavior is irrelevant
and only contributes to the value of the Re number at which the bubbles move. The
results presented here are also in qualitative agreement with the behavior found by Liang
et al. (1996) for the case of rigid particles fixed in the space in an horizontal alignment.

It should be pointed out that the role of the lateral movement experienced by two
abreast bubbles, described in this section, on the formation of clusters in bubbly flows is
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Figure 6.11: Dimensionless distance in terms of the dimensionless time of two bubbles released
side-by-side. (a) db = 2.1, 0.4 < Re < 1.3; (b) db = 3.6, 4.0 < Re < 7.5. Experimental results:
(+) Newtonian fluid, (•) n = 0.85 fluid, (♦) n = 0.55 fluid. Numerical results: (−) Newtonian
fluid, (−−) n = 0.85 fluid, (···) n = 0.55 fluid.
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not as clear as the in-line alignment where, as we saw in section 6.2.1, two bubbles may
or may not cluster depending on the inertia and deformability of the bubbles. Intuitively
speaking, although a lateral repulsion between bubbles at low Re will give place to a
higher homogeneity in the bubble spatial distribution on the horizontal plane, this effects
will be secondary due to bubble attraction and pairing in the vertical plane and with
angles > 40◦. This issue will be discussed further in the next section.

6.2.3 Two-bubble interaction: varying the angle of approach

In this section the ALE code was used to gain some insight of the hydrodynamic interac-
tion of a bubble pair which is not aligned horizontally nor vertically. For the experiments,
although the production of bubbles to be aligned at an arbitrary angle (and preserving
the same separation distance) is doable (consider, for example, a staggered initial ar-
rangement), the necessary work to manipulate and change one arrangement for another
could be rather arduous; hence, the use of simulations to predict the different behaviors
is well justified. The case of the thinning fluid with n=0.55 and its Newtonian counter-
part is shown in figure 6.14a, where the initial separation between bubbles centers was
4r and the initial angle (with respect to the horizontal) was 42◦. The variation of the
dimensionless distance between bubbles is plotted against the dimensionless time in figure
6.14b. The Newtonian case, now having an initial angle of 76◦, is shown in figure 6.15.
In figures 6.14a and b we can see that the bubbles rising in the Newtonian fluid approach
each other but they do not make contact and eventually separate. This tumbling process
happens even though the bubbles touch each other, as in figure 6.15. However, in the
thinning fluid the trailing bubble catches up with the leading one and makes contact
with it. After this drafting and kissing process the bubbles do not separate, the so-called
tumbling motion is not observed. This behavior indicates that the bubbles are “forced”
to stay in a low viscosity region, produced by a high shear rate zone, rather than separate
from each other (the same trend was seen experimentally with the in-line bubbles during
the non-tumbling stage). When the two interfaces come too close to each other (about
0.03r), the local resolution becomes insufficient and the code eventually fails to converge.
That was where the simulations in the thinning fluid ended.

To explore the effect of the degree of shear-thinning, other simulations were also
carried out with the n = 0.85 and 0.76 fluids. The results are shown in figure 6.16 for
three initial angles θo: 42◦, 61◦ and 76◦ and for the same initial distance of 4r. The Eo
and Re numbers indicated in this figure were selected from the single bubble experiments
in order to compare the simulations at a fixed value of Eo or Re.

First, it was observed that for the Newtonian counterpart cases, the bubbles separate
after contact (as in figure 6.15). For these cases initial angles up to 88◦ were tested. In
the shear-thinning fluids, the behavior at initial angle θo ≥ 61◦ (figure 6.16c-f) is more or
less the same as for bubbles in tandem (figure 6.7), that is; the two bubbles will form a
doublet if Mo & 10−3 and will separate otherwise. For θo = 42◦, the greater horizontal
separation weakens the interaction between the bubbles such that doublet formation is
achieved only for the most shear-thinning fluid in figure 6.16b. The n = 0.55 fluid in
figure 6.16a has a Mo = 2 × 10−3 but nevertheless experience separation. For the other
cases in figure 6.16a and b, there is initial attraction between the two bubbles but they
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Figure 6.14: Bubbles position and dimensionless separation distance for the n=0.55 fluid and its
Newtonian counterpart. The initial separation distance between bubble centers was δ = 4r, the
initial angle was 42◦, Re∼10.
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Figure 6.15: Bubbles position for the Newtonian counterpart of the n = 0.55 fluid having an initial
separation distance of δ = 4r and an initial angle of 76◦; (L) leading and (T) trailing bubbles.

eventually drift apart. The decrease of d∗ in the n = 0.55 fluid (figure 6.16a) at t∗ = 20
is due to the proximity of the wall.

In order to explain more in detail the results observed in figure 6.16, the viscosity
profile around a single bubble was computed for the n = 0.55 and 0.85 fluids having
the same Eötvös number (Eo=3). The results shown in figure 6.17 are similar to the
ones obtained by (Zhang et al. 2010) for similar Re numbers (Re ∼ 10). The maximum
viscosity values agree well with the values given by the rheological data fitted with the
Carreau model. These viscosity profiles were analyzed in two different ways: first, a
definition of the viscosity gradient was introduced by computing the difference between
the viscosity value on the bubble surface (ηmin) and the viscosity value (η) located at
two bubble diameters form the bubble surface. The curves of such viscosity gradient as
a function of the angle formed with the horizontal plane is shown in figure 6.18a. Then,
the η/ηmin ratio for different distances from the bubble surface was obtained at a fixed
angle. The results for an angle of 20◦ are shown in figure 6.18b. In figure 6.18a we can
see that the viscosity gradient is not homogeneous around the bubble due to the presence
of the bubble wake, which extends the region of non-zero shear rate and hence increase
the region of viscosity recovery. On the other hand, near the horizontal plane, the decay
of the shear rate occurs in a smaller region; therefore, the values of the viscosity gradient
are larger.

For the cases shown in figure 6.18a the maximum viscosity gradient occurs at an angle
of 20◦ in both fluids; however, the viscosity gradient found in the n = 0.55 at this angle
is 5 times larger than the one found in the n = 0.85 fluid. The fact that the higher values
of the viscosity gradient lie near the horizontal plane could explain why the fluids with
higher thinning behavior can promote bubble clustering at lower angles, as we saw in
figure 6.16. In this sense we think that the viscosity gradients produce a different stress
distribution around the bubble than the one formed in a Newtonian fluid; such stress
gradients will not work as a net driving force but will reduce the repulsive force created
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Figure 6.16: Dimensionless distances d∗s between bubble boundaries as a function of the time t∗ for
several thinning conditions and initial angles. (•)n=0.85, (�)n=0.76, (�)n=0.55; initial distance,
δ = 4r. The Eo and Re numbers were selected from the experimental results for single bubbles.
The experimental Mo number for the n = 0.55 fluid is 2× 10−3 and for the other fluids is around
7× 10−4.
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(a) single bubble n = 0.55 (b) single bubble n = 0.85

Figure 6.17: Viscosity contours around a single bubble immersed in the n=0.55 and 0.85 fluids.
The viscosity was estimated when the bubbles achieved a steady velocity, t∗ = 7.6, Eo=3. To
avoid high viscosity values at low shear rates, an upper limit to the viscosity was introduced fitting
the rheological data with the Carreau model.

by the bubble vortices, giving more chances to a bubble to be trapped by a leading wake.
In figure 6.18b we can see how the viscosity ratio η/ηmin increases with the distance from
the bubble surface. The difference between the n = 0.55 (clustering condition) and 0.85
(free bubble condition) fluids is clear: in the case of the most thinning fluid the viscosity
ratio reaches a value of 27, while in the other fluid reaches only a value of 3 at the same
d∗s. The viscosity ratio of the n = 0.55 fluid depicted in figure 6.18b acts as a viscosity
“hole” which prevents another bubble to escape from the low viscosity region.

To compare the viscosity profile obtained for a single bubble with the one obtained
for a bubble pair, the viscosity of two bubbles in contact rising in the n = 0.55 fluid
was computed. The results are shown in figure 6.19. In this case we can see that the
region of the lowest viscosity value (∼ 0.05Pa·s) comprises a larger area than the one
occupied in the single bubble case. We may think then that the increase of the cluster
size will increase the region of the lowest viscosity value but at the same time decrease
the viscosity gradient. Note also that in the rear part of the bubble pair a region of high
viscosity start to form due to the appearance of a toroidal vortex, in agreement with the
work of Zhang et al. (2010).

From all these observations three mechanisms for cluster formation in shear-thinning
fluids can be proposed: (i) The viscosity gradients that appear in the wake of a bubble
ascending in a thinning fluid can reduce the repulsive force produce by the bubble vortices.
This makes possible for a bubble to be caught in the wake of another bubble; if the
thinning behavior increases, the critical angle of inversion of the lift force (from repulsion
to attraction) is decreased, leading to a more effective clustering; (ii) if the Morton
number is higher than 10−3, the bubbles do not tumble after contact, a doublet is then
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Figure 6.18: (a) Values of the viscosity gradient as a function of the angle made with the horizontal
plane for the bubbles presented in figure 6.17, d∗ = 5r. (b) Viscosity ratio as a function of the
dimensionless distance at a fixed angle of 20◦.

Figure 6.19: Viscosity contours around a bubble pair immersed in the n=0.55 fluid. The viscosity
was estimated when the bubbles achieved a gap separation distance of 0.06r, Eo=3. The initial
angle was 76◦. The Carreau model was again used as in figure 6.17.

72



formed; (iii) once two bubbles form a pair, they create a wake with lower viscosity which
attracts more bubbles, leading to the formation of bubble clusters; however, the increase
of the cluster size will decrease the viscosity gradients and the growth of the clusters will
then stop. In this sense, we understand the formation of bubble clusters in thinning fluids
as a mechanism that promotes the development of a Newtonian-like behavior; this is done
by increasing the characteristic size of the flow and so decreasing the effective viscosity.
The effect that the thinning property has on the interaction of two bubbles (reducing the
repulsive force produced by the converging streamlines) has an interesting relation with
the amount of the momentum transported in a thinning fluid. Let us consider first shear
stress in a Newtonian fluid: τ = −µγ̇. This relation can be interpreted as the momentum
transfer from high to low regions of shear, that is, the momentum per unit area and time
is proportional to the negative of the velocity gradient (Bird et al. 1998). Hence, the
momentum flux per unit time and volume, P , can be calculated as the gradient of the
shear stress. Considering now the power law model τ = −kγ̇n we can calculate P as:

P = − ∂

∂y
(ηγ̇) (6.9)

where η = kγ̇n−1. Therefore,

P = −η(n− 1)γ̇′ − ηγ̇′ (6.10)

where γ̇′ = ∂γ̇/∂y. Comparing this expression with the Newtonian one, we have:

P

PN
=

η

µ
+ (n− 1)

η

µ
(6.11)

In the case of a Newtonian fluid (n = 1), P/PN = 1, as expected. However, if the
fluid is shear-thinning, the ratio P/PN decreases with n, that is, the momentum transport
decreases as the fluid becomes more shear thinning. Hence, the viscosity gradients that
appear around the leading bubble will reduce momentum transfer which, in turn, will
tend to keep the trailing bubble trapped behind the leading one. We must make clear
that the term “viscosity gradient” that has been used here actually refers to an additional
function, in terms of a power of γ̇, that has been included in the shear stress equation.
This function is the one that deflects the stress transport from a linear function (the
steady velocity profile in a thinning fluid submitted to shear flow will be similar to an
unsteady velocity profile developed in a Newtonian fluid).

Regarding the formation of clusters, we need to point out that the cluster deformability
(imagining the cluster as one big bubble) must also play an important role in the increment
of the cluster size. As mentioned by Manga and Stone (1993, 1995), the increase of the
deformability of the bubble surface leads to the formation of streamlines that propitiates
the alignment and contact of two separate bubbles. The velocity field formed around a
cluster can also trap additional bubbles that could contribute to its growth.

We have seen that for all the fluids studied here, including the Newtonian one, the
trailing bubbles located within an angle of 40◦ with respect to the horizontal are not
attracted by the leading one. On the contrary, bubbles located outside this region, that is,
closer to the vertical axis, experience an attractive force that leads to the contact between

73



0 5 10 15 20
0

1

2

3

4

5

6

7

t*

d s*

1d
b
 

1.5d
b
 

2d
b
 

2.5d
b
 

θ
o
=42º 

Figure 6.20: Dimensionless distance between bubble boundaries as a function of the dimensionless
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bubbles. This behavior is the opposite to that observed for high Re flows where, according
to Biesheuvel & van Wijngaarden (1982), Kok (1993a) and Spelt & Sangani (1998), two
bubbles positioned with angles between 35 − 54◦ experience attraction, while with an
angle above 35−54◦, near the vertical axis, experience repulsion. The general description
of the bubble motion in terms of the angle of approach in this work is in agreement with
other experimental work (Wenyuan et al. 2009) for the case of the thinning fluids.

Finally, aside from the shear-thinning behavior and angle of alignment, we can expect
the bubble-bubble interaction to be also dependent on the separation distance between
bubbles. This effect is shown in figure 6.20 for a fixed flow index value and initial angle
(n=0.55 and 42◦). We can see that when the distance between bubbles surpasses two
bubble diameters, the trailing bubble is no longer attracted by the leading one; in fact,
they become nearly horizontally aligned and start increasing their separation distance.
The same trend was seen with the other thinning fluids. These results suggest that in
dilute bubbly flows, bubble clusters will not be formed due to the distance between them.
Nevertheless, this condition is difficult to achieve experimentally, as we will see in the
next section.

6.3 Bubble swarms in thinning fluids

Up to this point, we have learned that two bubbles rising in a thinning fluid can miss
the tumbling stage under some flow conditions. It must be emphasized that the viscosity
gradients are not capable by themselves to produce an attractive force (like the normal
forces in an elastic fluid will do) between bubbles. What is happening is that once
the bubbles are together due to collision or by means of a leading wake (which can be a
“thinning wake”), the viscosity gradients can decrease the repulsive flow between bubbles,
leading to the formation of a stable doublet. The numerical simulations suggest that the
doublet will catch additional bubbles until the group produces a “Newtonian-like” flow in
the surrounding liquid. In this section, we will see the formation of such bubble clusters.
Also, the bubble velocity variance produced and the flow conditions necessary for they
appearance are described. Before doing this, however, we need to revise some general
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issues on bubbly flows.

6.3.1 Bubbly flow regime and cluster formation

As pointed out by other authors (Buchholz et al. 1978, Schumpe & Deckwer 1982) the
transition from bubbly to the heterogeneous regime, which is characterized by the presence
of multi-dispersed bubble swarm (see the introduction), can be identified by a change in
the slope of the gas volume fraction as a function of the superficial gas velocity. The slope
of the curve changes (decreases) as a consequence of the change of the bubble volume.
In figure 6.21 the gas fraction value is shown as a function of the superficial gas velocity
for the Newtonian and a thinning fluid (n=0.85) for several bubble diameters. For both
cases the mean bubble size produced by each capillary bank was practically the same.
For the Newtonian case (filled symbols) the bubbles with the smaller db produce higher
gas fraction values, as expected. The transition to the heterogeneous flow can be seen by
the change of the linear slope of the curves for the three different bubble diameters. All
the measurements reported hereafter in this paper were taken before the transition to the
heterogeneous regime. The Φg values obtained for the thinning fluid are similar to the
Newtonian case for 3.1 and 4.2mm bubble diameters; for the smaller bubbles (2.1mm) the
gas fraction values are clearly below the Newtonian ones; this is due to the presence of
bubble clusters, as we will see below. Additionally, note that the Φg = Ug/USW relation
for homogeneous bubbly flows produces a curve generally above the experimental values.
This could be due to the fact that the liquid velocity was neglected from the Φg calculation.
Other authors (Ulbrecht & Baykara 1981) have shown that the value of the liquid velocity
UL developed in the central plume of the flow (produced by the viscous bubble flow and
not by the movement of the whole continuous phase) is also an important parameter for

the estimation of the gas fraction. The relation Φg = ULUg/U
2
slip was proposed by these

authors, where U slip = USW − UL. According to this formula (and using an iterative
procedure, such as fzero in Matlabr), the estimated values of the liquid velocity in the
central plume9 is 0.8-2cm/s for the Newtonian fluid and 2.7-4.7cm/s in the n=0.85 fluid.
These liquid velocity values have been experimentally measured, in fact, in Newtonian
flows (10 < Re < 40, Palacios-Morales 2005).

Figure 6.22 shows images of the bubbly flows produced in the column. The images
correspond to the Newtonian fluid and the shear-thinning fluid with n=0.55 for the small-
est bubble size. The formation of large bubble aggregates in the thinning fluid is largely
evident (figures 6.22c, 6.22d). The difference with the Newtonian case (figures 6.22a and
6.22b) is striking. While the orientation of such clusters is mainly horizontal, spheroidal
clusters and small bubble chaining can also be seen. It is worthwhile to mention that
the clusters are not static while rising through the fluid; on the contrary, they have a
dynamic structure. A careful observation reveals that the bubbles move in toroidal tra-
jectories, rising in the center and descending on the exterior part of the cluster. As the
gas fraction increases, just before the regime transition, the bubbles embedded in such
clusters inevitably coalesce and form large cap bubbles. A similar toroidal or periodic

9Although in this case the flow cannot be referred as a “central plume” since the bubbles were released
from several capillaries and not just one, this term refers to the liquid motion in the central part of the
column, discarding the liquid motion near the column walls.
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Figure 6.21: Gas fraction values as a function of the superficial gas velocity. Filled symbols: New-
tonian fluid, empty symbols: n=0.85 fluid, (◦) db=2.1mm, (△) db=3.1mm, (�) db=4.2mm. The
lines and the crosses refers to the values calculated according to Φg = Ug/USW : (×) Newtonian
fluid with db=2.1mm; (−−) linear regression (R2 > 0.95) for the Newtonian fluid with db=3.1mm
and 4.2mm; (...) linear regression (R2 > 0.95) for the n=0.85 fluid with db=3.1mm and 4.2mm.

movement has also been observed in the case of settling particles forming clusters at low
Re (Jayaweera et al. 1964, Hocking 1964). Nevertheless, besides the difference between
the degree of deformation, such periodic movement seen in Newtonian fluids disappear
as soon as inertia (Re > 0.2) or the number of particles (> 7) are increased. Figure 6.22
clearly shows that clustering in thinning fluids appears above these limiting factors.

6.3.2 Bubble size distribution

Figure 6.23 shows the histogram of the bubble diameter for the Newtonian fluid and the
n=0.76 fluid; the plot shows data taken for each capillary bank. In both cases the curves
show a narrow distribution of the bubbles diameters produced by the capillary banks
indicating that the formation of nearly mono-dispersed bubbly flows was accomplished. In
addition, it can be seen that the bubble diameter distributions are similar for both cases,
indicating that the different fluids used in this work allowed the formation of bubbles with
similar mean bubble diameters. The same behavior was observed in the other thinning
fluids; the only exception was the n = 0.32 fluid with the smallest capillary diameter for
which the mean bubble diameter was 36% higher than all the other cases.

6.3.3 Mean bubble velocity and drag coefficient

Figure 6.24 shows the ratio of the mean bubble velocity with the single bubble one as
a function of the gas fraction; the three bubble sizes produced in the bubble column
are included. The theoretical values reported by Gummalam and Chhabra (1987) and
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(a) Newtonian fluid, Φg=0.65%, Re=0.9,
Eo=0.9

(b) Newtonian fluid, Φg=1.5%, Re=0.7,
Eo=0.8

(c) n=0.55, Φg ∼ 0.05%, Re=3.6, Eo=0.8 (d) n=0.55, Φg=0.65%, Re=3.0, Eo=0.7

Figure 6.22: Bubbly flow pictures taken at different gas fraction values for the Newtonian fluid
and the n=0.55 thinning fluid. The magnification of the images are approximately the same.
The image size is about 5x3cm. The bubble size (2.1mm) correspond to the one produced by the
smallest capillary diameter. The Reynolds number was computed using the mean bubble diameter
and velocity of the bubbly flow.
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Figure 6.23: Histograms of the equivalent mean bubble diameters db for the Newtonian (−) and
n=0.76 (−−) fluids produced by the three capillary banks; 15 classes were used to sort the bubble
diameters. The frequency refers to the number of values found in each class.
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Chhabra (1998) for creeping and high Re flows (100 < Re < 300) are also shown for their
lowest flow index values and for their Newtonian results. The experimental and theoretical
(see figure 2.3) results agree in the sense that the USW/USI curve has a positive slope
for small gas fractions. This means that, unlike the Newtonian flows, the hydrodynamic
hindrance produced by bubbles interactions does not produce a reduction of the bubble
velocity with Φg; in the shear-thinning cases this effect is compensated by the reduction
of the apparent viscosity produced by the local shear rate values. Hence, the Happel
cell model used by Gummalam & Chhabra captures the basic nature of these flow types.
This fact also agrees with the early results of Buchholz et al. (1978). The values of the
gas fraction at which the maximum USW/USI value was observed in the experiments
was, nevertheless, much smaller than the theoretical ones. In fact for Φg ≥ 1% the
heterogeneous regime is observed, that is why measurements at higher volumetric flow
rates or gas fractions (where the maximum theoretical values were found) are practically
impossible to attain in a bubbly flow regime. Additionally, the experimental values of the
velocities ratios were found to be much larger than the theoretical ones. As the bubble
size decreases, the difference between the theoretical and experimental values increases
(up to nine times for the case of the n=0.57 fluid, see figure 6.24c). Hence, the Happel
cell model is not sufficient to explain the whole phenomenon. The effect which is not
accounted for in this model is the appearance of bubble clusters (like those shown in
figure 6.22c and 6.22d). These clusters are responsible for the high USW/USI values
found in the experiments. The shape of the curves in figure 6.24 indicates that the
clusters grow up to a certain size just before the transition to the heterogeneous regime.
The last important difference between both results is that while in the theoretical data
the velocity ratio increases monotonically with the thinning behavior (decreasing the flow
index value), the experimental results do not necessarily follow this trend. For instance,
in figures 6.24a and 6.24b the curves of the fluids with n=0.85 and 0.32 are closed to
the theoretical ones while the fluids with n=0.55 and 0.76 are far from them due to the
formation of clusters.

The values of the drag coefficient (in terms of a drag correction factor X = CdRe/24)
were also reported in the theoretical work of Gummalam and Chhabra (1987). Their
results showed that the Cd increases with the gas volume fraction for n > 0.4, as is
commonly observed, but decrease for index flow values below 0.4. In Chhabra (1998) the
Cd values for Re = 50 were also reported. This author mentioned that the Cd increases
with the gas volume fraction, obtaining again the common trend found in Gummalam
& Chhabra (1987). In a recent numerical work of the same group (Kishore et al. 2008),
where the Happel cell model was also used, the Cd values were found to increase with
the gas fraction at the same n value although such increase was found to be negligible for
Φg < 0.001. In the present work an estimation of the Cd values of the bubbly flows were
also obtained for low gas fractions. The Cd values were computed using equation 1.29
and the values of the mean bubble diameter and velocity of the flow. For comparison,
the constitutive equation for Dd proposed by Ishii & Zuber (1979) was also used:

Cd = Cd(ReSI)

(
USI

USW

)2

(1−Φg) (6.12)

where the functional dependance of Cd(ReSI) was obtained using the single bubble data
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Figure 6.24: USW /USI ratio as a function of the gas hold up Φg for the three mean bubble
diameters. (•) n=0.85, (�) n=0.76, (�) n=0.55, (△) n=0.32, theoretical values (Gummalam &
Chhabra 1987, Chhabra 1998): (−) creeping flow n=1.0, (· · · ) creeping flow n=0.3, (-·-) 100 <
Re < 300 n=1.0, (−−) 100 < Re < 300 n=0.2. The dotted horizontal line at 1.5 divides the free
bubble and cluster formation regimes.
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n Φg Re Cd Cd eq.6.12 Cd ref. Kishore et al.

0.32 0.001 10.3 3.9 4.2
0.002 10.9 3.6 3.9
0.003 10.9 2.8 3.6

0.55 0.001 5.2 2.6 6.0 4.0
0.003 5.8 2.3 5.3

0.76 0.001 3.6 4.2 8.0 5.5
0.002 4.2 3.3 6.5
0.007 4.3 2.8 6.0

Table 6.1: Drag coefficient values for different thinning fluids and gas volume fractions. In order
to calculate Cd(ReSI) of equation 6.12 the respective bubble diameter obtained in the bubble
column was used. The data of Kishore et al. (2008) correspond to the Cd values found for n = 0.6
and 0.8 and a gas fraction of 0.001.

for each fluid (figure 6.1). This equation was proposed considering a multiparticle system
moving in one dimension in an infinite medium (absence of walls). The results are shown
in Table 6.1.

It can be observed that the drag coefficients actually decreases as the gas volume
fraction increases for the same fluid and Re number, unlike the general trend found by
Kishore et al. (2008). Such decrease of the Cd is directly related to cluster formation and
growth. Unlike the Newtonian fluids, where the Cd increases with the gas fraction, in
bubbly shear-thinning fluids it decreases. It can be seen also that equation 6.12 and the
numerical results of Kishore et al. both overestimate the values of the Cd because they
do not consider interactions or associations among bubbles.

6.3.4 Cluster size

The equivalent cluster diameter dc for one of the thinning fluids (n=0.76) is presented in
figure 6.25 as a function of the gas volume fraction. In this plot the dc values produced by
the smallest and largest capillaries are shown both in dimensional and dimensionless form
(scaled by the bubble diameter db). The ratio (dc/db)

3 was used because it is directly
proportional to the number of bubbles in a cluster. In this particular fluid clusters
were observed for the three bubble sizes tested, that is, bubble clusters are formed no
matter what the value of the db is. Also in this fluid we obtained more data of the cluster
diameters before the heterogeneous regime occurred. For the n = 0.55 fluid the transition
to this regime occurs at lower gas fractions. On the one hand we can observe in figure 6.25a
that the cluster size and growth rate is the same for the two bubble diameters, suggesting
that the size of the clusters is mainly determined by the fluid properties, channel width
and the amount of available gas but not on the bubble size. On the other hand, it was
verified (figure 6.25b) that the number of bubbles embedded in the cluster is larger for
the case of the small bubbles than the larger ones. Additionally, it was found that the
normalized standard deviation of the cluster size (σ/db) is larger for the ones made with
small bubbles (up to 123) in comparison to the ones made with the larger ones (up to 5),
indicating that the clusters made with the small bubbles interchange bubbles more often
with their surroundings.
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6.3.5 Bubble velocity variance

We can expect that bubble cluster formation will affect the agitation levels in the gas;
hence, a larger bubble velocity variance will be present in comparison with flows where no
clusters are found. To verify this argument the bubble velocity variance was measured.

The normalized values of the variance (Tb/U
2
SW ) for the thinning fluid with n=0.85 were

determined for the three bubble diameters; these results are shown in figure 6.26. For
this fluid no cluster formation was observed for the medium and large bubbles; clusters
appeared only with the smaller bubble size (see figure 6.24). As can be observed, the
normalized bubble velocity variances for the medium and large bubbles (4 < Re < 14) are
in agreement with the values obtained by Mart́ınez-Mercado et al. (2007) for a Newtonian
fluid with similar Re values (10 < Re < 30). In the case of the smaller bubbles (2.1mm,

with 1.7 < Re < 3.4), where clusters are formed, the Tb/U
2
SW values surpass by nearly one

order of magnitude the values achieved by the unclustered cases. This cluster-fluctuation
relation seen at low Re numbers is very different from that expected in potential flows
(Spelt & Sangani 1998). A common feature in high Re flows is that clustering is suppressed
by bubble velocity fluctuations (Figueroa-Espinoza & Zenit 2005). In the present study,
fluctuations are actually enhanced by the clusters. Such difference adds to the already
large list of the contrasting behavior between inertial and viscous dominated flows. Similar

Tb/U
2
SW values and behavior were obtained for the other thinning fluids.

It is interesting to note that the values of the bubble velocity variance found here
for a range of 1.7 < Re < 3.4 and thinning conditions are of the same magnitude as
the liquid velocity variance found by Cartellier & Rivière (2001) for similar Re values
(0.66 < Re < 1.48) and gas fractions in Newtonian fluids, although in their experiments
the liquid phase was forced to flow in a co-current manner with the gas phase. Cartellier
et al. (1997) observed that in these low Re flows the dispersion was composed by free
bubbles, bubble pairs, some triplets and clusters composed by more than five bubbles; they
also reported a gas concentration increase at the center of the column. As the volumetric
gas flow rate was further increased, the gas fraction profile gained the classical saddle
shape, that is, with wall peaked distributions, and bubble aggregates were dissociated.
Although in the present work the types of bubble associations mentioned by Cartellier
et al. (1997) in a Newtonian fluid was not observed, the USW/USI ratios obtained with
this fluid with the smallest and medium bubble diameters were higher than one (up to 1.3)
in the limit of zero gas fraction, contrary to that observed by Zenit et al. (2001), reveling
a kind of long distance interaction between bubbles. In addition to this, the bubble
velocity variance measured for the Newtonian fluid at low Re numbers (0.6 < Re < 1.1)
also surpassed by nearly one order of magnitude the values of more inertia dominated
flows (Martinez-Mercado et al. 2007, see figure 6.26).

From all this evidence one can argue that in viscous dominated bubbly flows (in
both Newtonian and thinning fluids) the long range interactions promote the increase
of the rise velocity of the bubbles comparing with the single bubble case. This kind of
behavior is similar to the one seen with settling particles (Jayaweera et al. 1964, Hocking
1964). Other effects of these viscous flows could be the increase of bubble fluctuations,
precisely due to the long range bubble interactions, and a net repulsion force between the
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Figure 6.25: Mean equivalent cluster diameter dc as a function of Φg for the n=0.76 fluid. In
figure 6.25b the values are divided by the mean equivalent bubble diameter db and elevated to the
third power. (•) db=2.1mm, (�) db=4.2mm. The lines are only visual aids.
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Figure 6.26: Bubble velocity variance Tb divided by U
2

SW as a function of Φg. Experimental values
of this work: (•) db=2.1mm, n = 0.85; (�) db=3.1mm, n = 0.85; (�) db=4.2mm, n = 0.85; (⋆)
db=2.1mm, Newtonian fluid. Other experimental values: (×) data taken from Mart́ınez-Mercado
et al. (2007) with Newtonian fluids, (−−) data taken from Zenit et al. (2001).

bubbles and the column walls (Vasseur & Cox 1977), which could explain the abnormal
gas fraction profiles obtained by Cartellier et al. (1997). Clustering in thinning fluids
has, however, important differences with the one observed in Newtonian fluids, as we
have observed through all this section and explained in section 6.2.3.

6.3.6 Conditions for cluster formation

As proposed earlier, bubble clustering seen in thinning fluids is a mechanism that these
fluids have in order to decrease the viscosity gradients in the surrounding liquid. An
expression capable to predict the size of a cluster for certain values of Φg and η (as a
function of 2U(SWorSI)/db) can be proposed. This could be done in future works (perhaps,
the clusters grow until the viscosity η∞ in the surrounding liquid is achieved; this is just,
however, an innocent proposition). What was done in this work was to recognize the
conditions in which bubble clusters will appear. As we saw in section 6.3.3, the increase
of the velocity ratio USW/USI , due to bubble clustering, does not depend directly on the
value of the flow index n. This means that a more thinning fluid does not necessarily
induces bubble clustering. It was found that a combination of the values of the Reynolds
and Eötvös numbers give the conditions for cluster formation. The value of the flow
index is taken into account in the apparent viscosity included in the Re number. This
kind of dependence of the forces acting on the bubbles with the flow index is in agreement
with the results of Zhu et al. (2003), who worked with thinning fluids that were forced
to pass through a fixed arrangement of rigid spheres. They found that the drag force
experimented on a test particle does not depend on the values of the flow index but on
the Reynolds number and the spacing between particles.

To identify the hydrodynamic conditions for which bubble clusters are formed, we can
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use an Eötvös-Reynolds plot for the single bubble cases (using figure 6.1). For the case of
isolated bubbles the Eo-Re plot is often used to identify the shapes of the bubbles (Clift
et al. 1978). Cluster formation can be identified by direct observation of the bubbly flow
and also by evaluating the change of USW/USI with the gas volume fraction. When the
velocity ratio was larger than 1.5, cluster formation was observed. In figure 6.24a, for
example, bubble clusters are formed in the n = 0.5 and 0.7 fluids; in figure 6.24c all
the thinning fluids formed bubble clusters since db was small. The relation USW/USI =
1.5 only serves as a distinction between the condition where the velocity of the bubble
swarms was higher than the single velocity but without the formation of clusters, as in
the Newtonian fluid. Cluster identification was made mainly by simple observation. In
the case of the n = 0.32 fluid with the smaller bubbles (2.9mm), cluster identification was
not easy at gas fractions around 0.4%. At this value the clusters become progressively
diluted by the whole flow. Nevertheless, we recognized these flows as part of the clustering
condition since the values of USW/USI were above 1.5. Another parameter that can be
used to recognize bubble clustering is the bubble velocity variance. As shown in section
6.3.5, bubble clustering increases considerably the velocity variance of the bubbles. In the

bubbly flows presented in this work the normalized standard deviation

√
Tb/USW

2
was

about ±0.4 in unclustered flows while it reached up to ±5.0 when clusters were formed.

The result of this mapping is shown in figure 6.27; it includes the five fluids used in
this work and considers clustering condition in bubble flows and the not-tumbling stage
seen in the experiments of bubble pairs. We can describe this plot as follows: the data is
separated according to the clustering (or not-tumbling) behavior, filled and empty symbols
show flow conditions where clustering was or was not detected, respectively. For instance,
a filled symbol was assigned to a Eo-Re point if for the same bubble diameter and liquid
properties the bubbles clustered for a particular gas volume fraction. This mapping is easy
to do because the gradual increase of the gas fraction produce only a slight increase of db.
A separation of the two regimes can be observed. Clearly, the clustering is observed when
the viscous effects are more important than the inertial ones (small Re). Hence, as inertia
increases it is possible to break the clustering behavior. Additionally, the deformability
of the bubbles is also important. For a given value of Re, a flow with more deformable
bubbles will tend to cluster more easily (as the Eo increases). The separation between the
two regimes is given approximately by the iso-Morton line of 10−3. Previously, a Morton
value of 4 × 10−4 was proposed (Stewart 1995, Smolianski et al. 2008) as a transition
indicator from non-coalescing flows to coalescing flows in Newtonian fluids. This suggest
that the transition of non-interacting to interacting bubbles is a general condition for
inelastic fluids, including the Newtonian and shear-thinning fluids.

The Mo number increases from top to bottom in a Eo-Re plot. The tendency to form
bubble clusters increases with the Morton number. That is why the n=0.55 fluid, with
the highest Mo number, has the biggest USW/USI values (see figure 6.24) followed by
the n=0.76 fluid and finally by the n=0.85 and 0.32 fluids. We could infer from figure
6.27 that at very low Re numbers, in the creeping flow regime, the curves displayed in
figure 6.24 will have the same trend as the theoretical ones, that is to say, the n=0.32
fluid will have the highest USW/USI values, as it will have the highest Morton number,
followed by the n=0.55 and so on. Another way to interpret figure 6.27 is by stating
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Figure 6.27: Cluster condition (not-tumbling stage) mapped in a Eo-Re curve of the single bub-
bles. (•) hydrodynamic conditions for bubble clustering, (◦) hydrodynamic conditions for free
bubbles, (N, +) hydrodynamic conditions where the tumbling stage was not seen in the bubble
pair experiments in the thinning and Newtonian fluids, respectively; (△, ∗) hydrodynamic con-
ditions where the tumbling stage was seen in the bubble pair experiments in the thinning and
Newtonian fluids, respectively; (−) Mo = 10−3 and 10−4, (−−) Morton line (3.6× 10−3) for the
Newtonian fluid (in the Newtonian bubbly flow experiments no cluster formation was seen). The
iso-Morton lines were taken from Clift et al. (1978).
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that liquids having a high Mo number (high viscosity) are condemned to provoke bubble
clustering. Fortunately, a thinning fluid can have the opportunity (depending on the
bubble size) to scape from this regime since it does not follow a iso-Morton curve (see
the n = 0.3 fluid). As discussed by other authors (Stewart 1995, Legendre et al. 2003),
bubble interaction strongly depends on the bubbles wake and vortices structure, which
in turn evolve as the Re number is increased or the bubble shape is changed. The degree
of deformation of a bubble, measured with the Eötvös (or Bond) number is another
important factor that enhances bubble alignment and coalescence, as explained by Manga
& Stone (1993, 1995). In this work a maximum Eo number of 10 was reached. It would be
interesting to investigate if bubbles with Eo >40 and Mo > 10−3, in which according to
Clift et al. (1978) the skirted and dimpled ellipsoidal-cap bubbles are formed, also form
clusters in thinning fluids.
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Chapter 7

Results: elastic fluids

In the previous chapter we learned that shear-thinning fluids (with negligible elasticity)
are capable to produce larger bubble clusters much stronger than those observed in New-
tonian flows. We additionally gained some insights of the mechanism involved in bubble
pairing by using computational algorithms. Now is time to leave the thinning fluids aside
and focus our attention in the elastic Boger-type fluids used in this work. Free bubbles
and clustering conditions were also observed in these Boger fluids; however, we will see
that the mechanism involved in the regime change is quite different from that proposed
previously. Actually, the hydrodynamic conditions that resulted from the bubbly flow in
the Boger fluids were below the Mo ≈ 10−3 correlation (so we could expect that these
fluids will show bubble clustering for any Eo-Re combination). The condition change in
these fluids is more drastic than that found in the thinning fluids (and so a little more
easy to identify) and is related to the elastic effects on the bubble surface. Unlike the
thinning fluids, the comparison of the experimental results with numerical simulations is
limited. A few numerical results will be shown and the main limitations that the numer-
ical codes have in simulating fluids with memory or elastic effects will be discussed. The
results presented in this chapter also appear in two papers (Vélez et al. 2011c and Vélez
et al. 2011d).

7.1 Single bubbles in Boger fluids

In section 5.2 the rheological characterization (based on rheometric shear flows) of two
Boger-type fluids were presented: the first one (Boger-1) was a semidiluted solution of
polyacrylamide that has an almost constant viscosity value and normal forces that grow
exponentially with the shear rate; the second one (Boger-2) was an associative polymer
(Soto et al. 2006, Mendoza-Fuentes et al. 2009) which also has a constant viscosity value
(up to γ̇ ≈ 6) and normal forces (higher than the first fluid). We will see that in spite of
the similar behavior of these fluids, they can act differently under the same conditions (a
rising bubble) due to their different response to extensional flow.
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7.1.1 Boger-1 fluid

The terminal velocity of single bubbles as a function of the volume for the Boger-1 fluid
and a Newtonian reference fluid (with the same viscosity but without elasticity) are shown
in figure 7.1. The presence of a velocity jump discontinuity is evident (H = 1.3, Vcrit =
19.3mm3). The velocity jump is also accompanied by the formation of a cusp (a change
in the curvature of the surface) in the rear part of the bubble. As the Boger-1 fluid
constitute a semidilute polymer solution, the explanation of the origin of the velocity
jump must be closer to the surface-active agents hypothesis (see section 2.1). First of
all, the velocity discontinuity is not a ‘jump’ in the sense of increase but in the sense of
a velocity recovery. In figure 7.1 it can be seen that after the jump occurs, the velocity
values become closer to the Newtonian ones. Secondly, this fluid has a value of a surface
tension gradient ∆σ = σs − σ = 64.8− 55.6 = 9.2mN/m, where σs and σ are the solvent
and solution surface tension values respectively, revealing that the polymer used has
surface activity. The Vcrit could not be predicted with the Bond and Capillary criteria
according to Rodrigue & DeKee (2002); the scaling parameter β proposed by Rodrigue &
DeKee (1999b), which take into account the surface tension gradient, proved to predict
the critical volume correctly. The parameter β proposed by these authors was defined as:

β =
( σ

∆σ

)0.1(τr
σ

)3( σ

N1r

)
(7.1)

where τ and N1 are the shear stress and first normal stress difference produced by a shear
rate of γ̇ = U/r, r being the radius of the bubble. The authors noted that the velocity
jump occurs when Bo/β ≈ 1300, the Bond number being defined as Bo = ρgr2/σ. The
Bo/β relation in terms of the bubble volume for the Boger-1 fluid is shown in figure 7.2.
The last term of equation 7.1 has also been used (in the form of N1db/σ) as a critical
parameter for the velocity jump in viscoelastic fluids (Soto et al. 2006). In this case,
however, it is not capable to predict the correct Vcrit.

The third feature of the Boger-1 fluid is that a negative wake was not seen (corrobo-
rated with PIV measurements) in any of the bubbles produced (0.35 < V [mm3] < 180).
The velocity field found in the wake left by a bubble rising in the Boger-1 fluid having
a volume above the critical one is shown in figure 7.3a. For this fluid a trace of flow re-
versal is not seen in the downstream direction; actually, the flow structure is very similar
to that seen in Newtonian flows. The normalized vertical velocity along the symmetry
axis as a function of the normalized distance from the bubble center is shown in figure
7.4. We can see that this fluid does not give place to a change of the flow configuration
as described by Herrera-Velarde et al. (2003) during the velocity jump, demonstrating
that the two phenomena are not always related. The change of the flow configuration can
increment the velocity jump magnitude (compare, for example, the value of H obtained
in this work [1.3] and the values obtained by Herrera-Velarde and coauthors [H ≈ 2.1]);
however, in view of the present results, such change is not necessary for the velocity jump
to occur. The absence of the negative wake in this fluid is in agreement with the negative
wake criteria provided by Dou & Phan-Thien (2004), which predicted that no negative
wake will form in an Oldroyd-B fluid (or a diluted Boger fluid). Other authors have
seen the formation of a negative wake in an Oldroyd-B fluid in numerical simulations
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Figure 7.1: Single bubble velocity as a function of the bubble volume; (+) Newtonian fluid,
(�) values before and after (◦) the velocity jump in the Boger-1 fluid. The maximum Reynolds
number reached was around 10. The vertical dashed lines indicate the mean volume of the bubbles
produced with the capillary banks (section 7.3): the left one is for the bubbles having a db of 2.1mm
and the right one for bubbles having a db of 4.2mm. The images on the left and right show typical
bubbles before and after the jump.
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Figure 7.2: Bo/β criterion for the velocity jump in the Boger-1 fluid; filled symbols: values before
the velocity jump, empty symbols: values after the velocity jump; horizontal line: Bo/β = 1300.
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(see Pillapakkam et al. 2007); however, we have to note that these authors worked in the
Maxwelliam limit, i.e. c > 1.

The Dou-Phan-Thien criteria is directly related with the extensional properties of the
fluids, which in turn can provide a notorious difference between semidiluted and a con-
centrated polymer solutions (Barnes et al. 1989). Figure 7.5 shows the Trouton ratio as
a function of the elongational rate for the HASE 1.5% fluid and one of the Boger fluids
reported by Pelletier et al. (2003), similar to the Boger-1 fluid used in this work. The
Trouton ratio is defined as ηE(ǫ̇)/η(

√
3ǫ̇), where ηE is the extensional viscosity evaluated

at a certain elongational rate ǫ̇ and η the viscosity evaluated at a shear rate γ̇ =
√
3ǫ̇ (Jones

et al. 1987). In the semidiluted polymer fluid the extensional viscosity is higher than the
shear viscosity and this relation increases with the elongational rate. In the HASE fluid,
on the other hand, the increase of the Trouton ratio is followed by an extensional thin-
ning region. This behavior is due to the construction and rupture of structures due to the
extensional flow (Mendoza-Fuentes et al. 2009). The strain-thickening behavior seen in
this fluid has been associated with the formation of a negative wake (in terms of the slope
made by the extensional viscosity with the elongational rate, see the background section).
A lesser strain-thickening fluid (as the HASE fluid) is more prone to form a negative wake.

Zana & Leal (1978) argued that changes in the flow is the reason for the changes in the
interfacial conditions during the velocity jump: prior to jump, the flow is shear dominated
and the bubble surface behaves rigidly due to the polymer molecules adsorbed on it; after
the jump, the bubble surface behaves as a free interface as the polymer molecules are
desorbed from it resulting from the extensional flow, which now dominates the fluid flow.
We explored if this argument can fit the results shown in this study. First, a natural
shear time was computed using the expression:

λshear =
Ψ1(γ̇)

2η(γ̇)
=

N1(γ̇)

2η(γ̇)γ̇2
(7.2)

where Ψ1 is the first normal stress coefficient. The shear rate is taken as USI/r. This
expression results when solving the convected Maxwell model in simple shear flow. In the
case of the Oldroyd-B model the natural shear time is λ1 − λ2, where λ1 and λ2 are the
relaxation and retardation time respectively (Bird et al. 1987). The relaxation time for a
fluid submitted to extensional flow was taken from the work of Stelter et al. (2002). They
reported the relaxation times and steady extensional viscosities for several polymeric so-
lutions using an elongational device. In that work, the relaxation time was measured from
the diameter decrease of a liquid thread during the elongational flow caused by capillary
forces (the elongational flow is self-sustaining and establishes a rate of strain in accordance
with the particular fluid, see Stelter et al. 2000). The relaxation time was chosen for one
of their fluids made with 400ppm of nonionic polyacrylamide (Mw = 8− 10× 106g/mol)
dissolved in a 80/20 (w/w) glycerin-water mixture (λext = 0.55s). The natural shear time
and the extensional relaxation time are both shown in figure 7.6. The velocity jump can
be seen again in this figure. What it is interesting here is that the values found before
and after the velocity jump are approximately separated by the characteristic extensional
time of the fluid. This fits the argument of Zana & Leal, that is to say, when λshear

is the limiting time the polymer molecules are forced to stay in touch with the bubble
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(a)

(b)

Figure 7.3: Velocity field obtained by PIV of the wake left by the passage of a single bubble
(having a volume above the critical one) in the (a) Boger-1 (semidiluted solution, db = 5.13mm)
and (b) Boger-2 (associative polymer, db = 7.18mm) fluids. The black lines denote some of
the streamlines appearing in the flow. The center of the bubbles is located at (0,0). The grid
coordinates were normalized by the bubble radius.
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Figure 7.4: Vertical liquid velocity U normalized by the velocity of the bubble USI as a function
of the dimensionless distance y/r, y being the vertical distance and r the bubble or cluster radius.
Single bubble case for the semidiluted Boger-1 fluid (◦); single bubble case for the concentrated
Boger-2 fluid (•) and cluster (♦) from figure 7.9.
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Figure 7.5: Trouton ratio for a semidiluted and concentrated polymer fluids. The values of the
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Figure 7.6: Natural times of the bubbles rising in the Boger-1 fluid in terms of its volume. (◦)
Natural time for shear flow λshear before (filled symbols) and after (empty symbols) the velocity
jump. (−−) extensional relaxation time λext of the fluid.

surface; on the other hand, when λext becomes the limiting time (the λshear becomes
faster), the polymers are pulled out from the bubble surface. It is worth mentioning that
the extensional flow developed in the rear part of a bubble do not necessarily implies
that a reverse flow (negative wake) will be produced. The location of an inversion point
separating the upward and downward flows will rather depend on the properties of the
extensional viscosity (see figure 7.5).

7.1.2 Boger-2 fluid

The volume-velocity plot for single bubbles rising in the HASE fluid (Boger-2) is shown
in figure 7.7 (circular symbols). A velocity jump can be seen at Vcrit ≈ 40mm3 (H = 1.5).
As mentioned by Soto et al. (2006), the velocity jump experienced by bubbles rising in
this fluid is accompanied by the formation of a cusped end shape on the bubbles and
a negative wake; the HASE fluid is also capable to produce long tails that originate in
the bubble cusp (Soto et al. 2008). We can see in figures 7.3b and 7.4 that the negative
wake appears after a certain distance from the bubble surface, as found by other authors
(Herrera-Velarde et al. 2003, Frank & Li 2005, Kemiha et al. 2006, Soto et al. 2006,
Pillapakkam et al. 2007); also note that the flow configuration is completely different
from the one formed in non-elastic flows and in semidiluted polymer solutions (c < 1),
such as the Boger-1 fluid. Unlike the latter one, in which the shear rate at which the
velocity jump occurs coincide with the change of the slope of the normal force (see figure
5.5); for the case of the Boger-2 fluid the jump occurs at a shear rate in which normal
forces are not yet measurable (see figure 5.7). Hence, the hydrodynamic criteria in this
fluid can only be applied if the rheological data is extrapolated to lower shear rates (Soto
et al. 2006, Mendoza-Fuentes et al. 2009). For example, Soto et al. (2006) employed the
Bautista-Manero model (Bautista et al. 1999) to estimate the value of the normal stress
difference N1 at which the velocity jump occurs. Using the dimensionless number N1db/σ
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Figure 7.7: Terminal velocity as a function of the volume for the Boger-2 fluid. (•) single bubble
velocities before the jump, (◦) single bubble velocities after the jump. (�) velocity of the bubble
clusters. The numbers in the plot indicate the number of bubbles forming the cluster. The
horizontal lines in the squares indicate the uncertainty of the volume. The maximum Reynolds
number reached was around 0.1.

proposed by these authors, we found good agreement with the critical value reported by
them (Π ≈ 0.25).

To complete our understanding of the nature of the velocity jump, we conducted a
series of experiments to determine the terminal velocity and flow field around groups of
bubbles (clusters) in the concentrated Boger-2 fluid. For this highly viscous fluid, it is
easy to release several bubbles at once (of a known volume) without coalescence. By
considering small bubbles (having a volume below the critical one), clusters consisting of
several bubbles could be produced to have an equivalent volume equal to those bubbles
which experience the velocity jump. The bubble clusters were made by collecting different
numbers of bubbles produced by a syringe with a similar volume (V ≈ 22mm3). Figure
7.7 shows the terminal velocity of the bubble clusters with different number of bubbles.
The numbers in the figure correspond to the number of bubbles (N) forming the cluster,
which correspond to the images shown in figure 7.8. Relative motion between the bubbles
was not observed within the cluster; however, some internal motion can be seen in similar
fluids with lower viscosity (not shown here). Note that bubble groups having N < 7
form regular polyhedrons; a similar behavior was observed in the case of settling particles
moving at low Reynolds numbers, see Jayaweera et al. (1964) and Hocking (1964). Also
note that the groups having 3 or 4 bubbles, which have an equivalent volume V > Vcrit

(for single bubbles), do not show a cusped end shape. Surprisingly, the bubble groups
do not experience the velocity jump observed for the case of single bubbles. In fact, the
velocity of clusters closely follow the volume-velocity trend for single bubbles before the
critical volume.

In figure 7.9 the velocity field behind a bubble cluster (N=11, V ≈ 240mm3) is shown.
The flow field was compared with that produced by a single bubble with a similar volume
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(V ≈ 200mm3). Immediately after the passage of the bubble or the bubble cluster
(|y/r| < 12), the flow field between these two cases is different: while in the single bubble
case an inversion point of the flow appears at y/r ≈ 7 (see figure 7.3), in the case of the
bubble cluster the appearance of a negative wake is not readily observed. However, if the
flow is analyzed at farther regions from the bubble cluster (y/d = 21, figure 7.9b), a weak
flow reversal can be observed. Clearly, the flow structure left by the bubble cluster is more
asymmetric than that produced by a single bubble; also, the maximum velocity achieved
in the negative wake of the cluster is 92% less than the value found in the single bubble
case. However, it is clear that an inversion point of the flow is also seen in the case of
the clusters, which did not present a velocity discontinuity (see also figure 7.4). We may
argue then that the absence of the velocity jump in the bubble clusters is mainly due to
the restriction of the surface mobility: the clusters behave like a single bubble but having
a segmented interface; hence, the surface mobility is significantly reduced (specially for
bubbles located at the top of the cluster), giving place to a partial obstruction of the
“cleaning” mechanism at the bubble surface and thus avoiding the velocity jump. In
view of these results, we are more inclined to think that the appearance and magnitude
of the negative wake is a result of the extensional rate exerted by the bubble (which
depends on the bubble size and velocity), rather than the cause of the terminal velocity
value. However, both phenomena could be related in a more complex way. The terminal
velocity of the bubble (or cluster), together with the flow structure around it, could be
the result of both mechanisms interacting at the same time.

7.1.3 Numerical simulations

As mentioned above, the use of numerical solutions to study the flow of viscoelastic
fluids is rather limited. The lack of success of the algorithms is due, in general, to the
poor interpolation schemes for the stress tensor values among the elements or control
volumes. The stress in a viscoelastic fluid experiences a combination of deformation and
convection during the fluid flow, this can give place to the appearance of very steep
exponential profiles (Fattal & Kupferman 2005) even for moderate Deborah numbers
(De ∼ 1, the permissible values of the characteristic time covers only those flows with very
low Re numbers). Because of this, several authors (Singh & Leal 1993, Frank & Li 2005,
Fattal & Kupferman 2005, Radl et al. 2007, Pillapakam et al. 2007) have concentrated
their efforts in proposing strategies to deal with this problem10. Only Frank & Li
(2005) have successfully simulate (using a free-energy-based lattice Boltzmann scheme)
the flow around a bubble, including the negative wake, using “realistic” rheological data.
Nevertheless, the comparison between their experimental and numerical results was only
qualitative and they used the generalized Maxwell model (no frame invariant) to account
for the memory effects.

10The general failure of the numerical codes to solve the flow in viscoelastic fluids is known as the “High-

Weissenberg Number Problem”, or HWNP. Among the strategies that have been proposed to manage this
problem are the use of exponential basis functions of the stress variable (Fattal & Kupferman 2005),
artificial diffusion in the constitutive equation (Radl et al. 2007), application of special algorithms to
preserve the positiveness and boundedness of the stress tensor (Singh & Leal 1993, Pillapakam et al. 2007,
Radl et al. 2007), and implementation of upwinding schemes in the discretization of the constitutive
equations (Singh & Leal 1993, Pillapakam et al. 2007).
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Figure 7.8: Pictures of the bubble groups. The numbers indicate the number of bubbles forming
the group (see figure 7.7). Note that the bubbles form regular, but not uniform, polyhedrons
with N < 7. For instance, the cluster with four bubbles form a tetrahedron, the one with five an
hexahedron and the one with six an octahedron.
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(a) (b)

Figure 7.9: Velocity field obtained by PIV in the Boger-2 fluid of the wake left by the passage of
a single bubble or a bubble cluster having both a volume above the critical one; (a) single bubble
(V = 194mm3); (b) bubble cluster (N=11, V ≈ 240mm3). The black lines show some of the flow
streamlines. The center of the bubble or the cluster is located at (0,0). The grid coordinates
were normalized by the bubble radius or the equivalent cluster radius. The Reynolds and Weber
number for the single bubble is around 0.12 and 0.23 respectively.

Since the ALE code used in this study is not appropriate to deal with the HWN
problem, the few results that are shown in this section represent the transient or unsteady
behavior of the bubbles. Figure 7.10 shows the velocity field and some streamlines of the
flow produced by an Oldroyd-B fluid having a concentration parameter value of c = 12.6
(concentrated solution). The physical data used by Pillapakam et al. (2007) were used
here to generate the negative wake. In agreement with these authors and others (Herrera-
Velarde et al. 2003), the flow field shows two vortex rings: the first one corresponds to the
usual convection of the fluid that is displaced by the bubble; the second one is generated
by the reverse flow in the rear part of the bubble (a similar flow structure has been found
by Radl et al. 2007 using the Giesekus and Phan-Thien models). Note also that the
bubble is highly deformed in the rear. This characteristic “teardrop” shape acquired by
the bubbles rising in highly viscous, elastic fluids, is created by the restoring forces that
appear when the polymer chains experience a deformation in the radial and θ directions:
when the equator of the bubble has past from a reference point, the polymer chains will
tend to return to some previous configuration; this will cause inwards bending of the
surface of the bubble. As we move to the lower side, the curvature of the surface will
increase gradually. At the very tip the curvature of the bubble, offset by the superficial
forces, will be very high; the normal stresses will be also high due to the converging
streamlines and the extensional flow concentrated around this region. The profile of the
normal stresses around the bubble showed in figure 7.10 can be seen in figure 7.11. In
addition, the numerical resolution at the tip or trailing end of the bubble constitutes a
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mayor computational issue. This issue is discussed below.

Now, two important points must be emphasized: the negative wake appearance (and
velocity jump discontinuity seen in numerical simulations of an Oldroyd-B fluid) and the
geometrical resolution at the bubble tip. In figure 7.10 we can observe that a negative wake
can be formed behind a bubble rising in an Oldroyd-B fluid. This flow is a reproduction of
the results of Pillapakam et al. (2007). Figure 7.12 shows the values of the bubble velocity
in terms of the volume obtained by these authors for different values of c; the segmented
line in the figure corresponds to the values of the velocities obtained in a Newtonian fluid
having the same physical data but without elasticity (these results were obtained in this
work using the ALE code and the original data of Pillapakam and coauthors). We can see
that a clear velocity jump is observed for several values of c (above 5.8); additionally, the
velocity values obtained after the velocity jump are higher than the ones obtained in the
Newtonian fluid. All these numerical results seem to contradict the arguments exposed
in the previous section supported by the discussion of Dou & Phan-Thien (2004) and on
the results shown above (for the Boger-1 fluid): an Oldroyd-B model cannot generate a
negative wake. Secondly, in the volume-velocity plot corresponding to the Boger-1 fluid
(figure 7.1), we observed that the velocity discontinuity did not lead the bubble to a large
increase of the velocity but to a recovery from the elastic stress acting upon its surface.
How can we conciliate these two apparently contradictory results?.

The answer seems to be in the value of the concentration parameter c. In a diluted
Boger or Oldroyd-B fluid (c < 1), the elastic response of the polymer is retarded by the
solvent viscosity. In this case the behavior will be very similar to the one obtained for
the Boger-1 fluid. For the cases when c > 1, the Oldroyd-B fluid will behave more like a
Maxwell fluid, that is; the elastic (springs) behavior will be more free to act depending
on the degree of deformation since the retardation time will be comparatively small. This
will give place to the results obtained for the Boger-2 fluid. The question of whether a
concentrated Boger-type fluid can give place to a real velocity jump (above the values
achieved by its Newtonian counterpart) remains as an open question. We cannot, how-
ever, be totally confident with the numerical results obtained so far. Note, for example,
that is unlikely that a real concentrated polymer solution will behave like an Oldroyd-B
fluid; is more probable that such fluid will behave as the Boger-2 fluid does and which
have to be modeled, in turn, by special models which consider the polymer structure (see
Bautista et al. 1999, Mendoza-Fuentes et al. 2009). Moreover (and this is where the ex-
perimentalist can throw the “first stone” to the people working in numerical simulations),
the physical data chosen by Pillapakam et al. (2007) is quiet unrealistic. As far as we
know, there is no polymer solution having a surface tension value as low as 10mN/m
(which was the value employed in this simulations in order to produce a notable surface
deformation)11. A deeper understanding of the matter will require a comparison between
experiments done in a concentrated polymer solution and in a Newtonian counterpart
fluid, or; run simulations with realistic physical data.

Concerning the shape of the tail acquired by bubbles ascending in viscoelastic fluids,
there have been some studies (Liu et al. 1995, Soto et al. 2008) which have mentioned
the variety of the shapes that can be observed for different values of the bubble volumes:

11The surface tension value of pure eter ethylic is, for instance, 17 mN/m.
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Figure 7.10: Velocity field and some streamlines formed in the transient flow around a bubble
rising in an Oldroyd-B fluid. The physical parameters were taken form Pillapakam et al. (2007):
ρ = 1000kg/m3, η = 1.02Pa·s, σ = 10mN/m, λ1 = 0.1s, c = 12.6, db = 3mm. The instantaneous
flow field was taken at t∗ = 5.3. This particular run was made using the 2D geometry, the
axysimmetric configuration is more prone to code blow-ups. The numbers in the figure indicates
the number of vortex rings generated around the bubbles.
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Figure 7.11: Dimensionless values of the normal stresses (trace of the stress tensor) formed around
a bubble rising in an Oldroyd-B fluid. The physical data is shown in figure 7.10, t∗ = 4.7. The
inset shows the stress profile at the bubble tip.

10
−3

10
−2

10
−1

10
0

10
−1

10
0

10
1

10
2

volume (cm3)

ve
lo

ci
ty

 (
cm

/s
)

Figure 7.12: Terminal velocity of the bubbles rising in an Oldroyd-B fluid in terms of its volume for
different values of c: (•) 4.1, (△) 5.8, (�) 9.2, (♦) 12.6 (data taken from Pillapakam et al. 2007).
The (×) marks correspond to the velocity values obtained in a Newtonian fluid counterpart having
the same physical values but without elasticity; these results were obtained in this work using the
ALE code.
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from the usual axisymmetric cusp, passing through a “knife” or “chisel-edge” shape, up
to different patterns (“fish backbone”) generated during the breakup of the tail (Soto
et al. 2008). Interestingly, Liu et al. (1995) even found that the chisel-edge shape is
oriented in a particular manner with the walls of the container. Due to the spatial dis-
cretization done by the numerical procedures, the finite elements (or volumes) techniques
have the inherent problem in defining the correct geometrical configuration at the bubble
tail (Pillapakam et al. 2007). As a curious observation, the mesh structure formed by the
elastic forces computed in the simulations done here cause the overlapping of the spatial
mesh at the trailing edge of the bubble (like a formation of a back cavity). Regardless of
whether this cavity is correct or not, is worth mentioning that none of the numerical algo-
rithms currently available have been able to reproduce the formation of a long tail and its
subsequent breakage or collapse for the case of a bubble rising in a non-Newtonian fluid12.
Both behaviors have been observed in experiments (Soto et al. 2008) and have a close
relation with the fracture of the network structure in concentrated polymer solutions.

7.2 Bubble pairs and chains in Boger fluids

In the previous section we saw that the effects of the elasticity on the bubble motion have
a close relation with the surface properties of the bubbles (although a direct evidence of
this is not presented, the experimental results and the analysis suggests that this indeed
happens). Other experimental essays have also revealed this kind of relation between
these two properties (Sullivan et al. 2008). In this section, and specially in the next one,
we will see the influence of these coupled effects in the motion of more than two bubbles.
Unlike the previous chapter, in which four different shear-thinning fluids were presented
and their behavior characterized; here the results for the Boger-1 (semidiluted) fluid will
be shown. Therefore, the discussion will be shorter (but interesting) than that presented
before.

To begin with, a detailed description of the interaction of two bubbles rising in a Boger
fluid will be omitted since the general behavior resulted to be qualitatively similar to the
one shown in the last chapter: If the bubbles are small (low inertia), the bubbles will
have the chance to travel as a doublet (vertically aligned) after the drafting and kissing
stages. If the bubbles are large, the inertia will tend to separate them after contact.
Sometimes, the bubbles having V > Vcrit performed a series of rebounds between them
during their ascension through the column. Interestingly, the formation of the cusp in the
rear part of the bubbles (for this case a negative wake is not observed) does not prevent the
trailing bubble to catch up with the leading one. Li and coauthors (Li et al. 2001) have
shown, additionally, that two in-line bubbles rising in a viscoelastic fluid (presumably, a
semidiluted solution) follow the usual drafting process even in the presence of a negative
wake13.

12There is, by the way, some advances in the numerical solution of the breakage of weakly viscoelastic
filaments, see Ardekani et al. (2010).

13The question of whether a negative wake can or cannot prevent the collision of two bodies moving in
tandem cannot be answered yet. For instance, Riddle et al. (1977) observed that two particles released
in tandem in a highly viscous elastic fluid can, depending on their initial separation, converge or diverge
during its travel through the liquid. Although they did not verify the presence of a negative wake, we
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In the case of the bubbles released side-by-side (small bubbles db = 2.4mm) it was
observed that they almost conserved their initial separation distance. We14 started from
this result and performed a series of experiments to see if the rate of bubble release
(the inverse of the injection period T ) had some influence in the interaction of bubbles
displaying a horizontal arrange. This was also done because we were expecting to see
some kind of attraction between the bubbles, similar to the behavior seen by Joseph
et al. (1994) for the case of settling particles. Figure 7.13 shows images of bubble chains
produced 1cm away from each other. Figures 7.13a and b present images, the second one
taken 2.8s after the first one, of two bubble chains produced with a flow rate of 60ml/h
(T = 0.17s). Figures 7.13c and d present the same setup but now having a flow rate of
130ml/h (T=0.08s). In the first row of the figure we can observe that the bubbles (see
the bubble pair marked with arrows) located in different chains do not came in contact.
In the second row, however, the bubbles do come in contact with the bubbles rising in
the other chain; after some time, some bubble pairing is seen. The discovery of these
results made us to think that the increase of the injection rate (increase of the rate of
consecutive deformations to the fluid) will lead to the accumulation of elastic stresses.

In the background chapter we mentioned that Li and coauthors (1997) proposed and
performed a series of experiments in order to simulate the consecutive passage of bubbles
through a fluid and measure the stresses forming on it (a methodology known as “rheo-
logical simulations”, see Li et al. 1997 & 1998). In this work the same methodology was
employed to see if the Boger-1 fluid was also capable, as the fluids employed by these
authors, to generate residual stresses. It turned out that the viscosity of the Boger-1 fluid
was not sufficiently high to generate residual shear stresses that allow us to distinguish
differences between this fluid and its Newtonian counterpart. We decided then to conduct
unsteady measurements of the first normal stress difference, N1. A controlled-deformation
rheometer (ARES-RFS III, TA Instruments USA) was programmed to apply a steady
shear rate to a fluid sample, starting from rest. The shear rate corresponded to that
of a bubble ascending freely (γ̇ = U/r = 72.3s−1, U being the vertical bubble velocity
for the case presented in figure 7.13c). The evolution of N1 was determined throughout
the process until a steady state was reached. After a certain time, the deformation was
stopped to also determine the relaxation of N1 with time. Figure 7.14 shows the N1

values normalized by the steady state value as a function of time.

The transient values ofN1 in the increase phase can be fitted to an empirical saturation
equation of the form:

N1 =
Nmax(t− to)

λgrowth + t− to
(7.3)

where Nmax is the maximum hypothetical steady N1 value reached by the initial slope
before the overshoot, λgrowth is the time for which the Nmax/2 value is reached and to is
the reference time (when N1 has a zero value). On the other hand, the relaxation curve

can argue that the behavior observed could be in close relation with the flow structure formed behind the
leading particle.

14The idea to do this actually came from an undergraduate student, Diego Sámano (see Sámano 2011).
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(a) 60 ml/h, initial condition (b) 60 ml/h, t=2.8s

(c) 130 ml/h, initial condition (d) 130 ml/h, t=2.8s

Figure 7.13: Bubble chains produced at different gas flow rates with bubbles having a V < Vcrit.
Separation between bubbles chains: 1cm; db = 2.4mm, Re ≈ 2.3.
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Figure 7.14: Normal stress values of the Boger-1 fluid taken at a steady shear rate of 72.3s−1.
The deformation rate was stopped at a time of 20s. The original curve was filtered in order to
eliminate mechanical oscillations of the rheometer motor. The parameters depicted in the figure
corresponds to eq. 7.3 and 7.4: Nsteady=32Pa, Nmax=65.9Pa, λgrowth = 0.79s, a1 = 0.866,
λ1 = 0.208s, a2 = 0.133, λ2 = 2.303s.

can be modeled using the exponential decay equation:

N1 = Nin

[
2∑

i=1

aie
−(t−tin)/λi

]
(7.4)

where Nin is the initial value at the time tin at which the shear deformation is stopped,
λi are the relaxation times and ai are constants related with λi. The accumulation of
normal stress due to the consecutive passage of the bubbles can therefore be approximated
using these two equations alternately and considering the values of the injection period
T and the characteristic bubble time tb = 1/γ̇. For instance, eq. 7.3 is used until the
time tb is reached, then we continue computing the stress with eq. 7.4 making tin = tb
until the time tb + T is reached. After this, we use eq. 7.3 again (updating the to value)
up to a time 2tb + T and so on. Figure 7.15 shows the rheometric values of the normal
stress in the form N1/Nsteady as a function of the normalized time t/tb together with two
curves obtained from eqs. 7.3 and 7.4. The value of the repulsive stress produced by
the converging streamlines in between two spherical bodies is also shown in figure 7.15,
according to the equation proposed by Vasseur & Cox (1977):

SL = −9

2
ηU (δδ∗)−1

[
2− (δ∗ + 2)e−

1
2
δ∗
]

(7.5)

where δ is the separation distance between centers and δ∗ = ρδU/η, ρ and η being the
liquid density and viscosity respectively. This value represents the stress necessary for
two bubbles to attract each other when rising side-by-side.

The dotted curve in figure 7.15 represents the experimental case showed in figure 7.13c
(T ≈ 6tb). In this case the normal stress reached a value above that produced by the
passage of a single bubble but is slightly below the value of the repulsive stress (eq. 7.5).
The continuous line represents the case when T = tb, which can be reached in continuous
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Figure 7.15: Normalized normal stress, N1/Nsteady, as a function of the normalized time t/tb
(tb = 0.01382s); (◦) experimental values; dotted and continuous lines: estimated values of the
normal stress using eq. 7.3 and 7.4 for T ≈ 6tb and T = tb respectively; (�) normal stress
value produced by the passage of a single bubble. The dashed horizontal line corresponds to the
normalized repulsive stress generated by two abreast spherical bodies from eq. 7.5. The maximum
value of the abscissa is less than λgrowth/tb = 57.

bubbly flows like those shown in the next section. This curve rapidly surpasses the value
of the repulsive stress; hence, in this case the normal stress can be expected to induce the
pairing of the bubbles and therefore clustering. Note that in neither case, the rheometric
steady value of N1 is reached. This is an important observation since such value is often
used in the analysis of flows.

The results presented in this section suggest that the accumulation of normal stresses
due to the consecutive passage of bubbles is a determining parameter in the formation
of clusters in elastic fluids, in accordance with Li and coauthors (1998). It is worth
mentioning, however, that the accumulation of elastic stress is not a necessary condition
for all the fluids to produce clustering. For example, Joseph and coauthors (1994) observed
the attraction of two particles falling in viscoelastic fluids without any previous passage
of other particles. Again, the key point can rely on how concentrated is the polymer
solution; i.e., how large are the normal stresses comparing with the viscous ones. What
we can speculate in these cases is the fact that the passage of several bubbles (with no-slip
condition) or particles could change the critical distance necessary to attract two bodies
by elastic forces: two bubbles rising in different chains and having an initial horizontal
separation distance δo will feel an attractive forces and converge while a bubble pair will
keep constant their separation distance with time.

7.3 Bubble swarms in Boger fluids

Figure 7.16 shows images of bubble swarms rising in the Boger-1 fluid for two bubble
sizes: one having a diameter (2.1mm) corresponding to a volume below the critical one
(see fig. 7.1), and the other having a diameter (4.2mm) above the critical value. We can
see that the difference in bubble dispersion between one case and the other is striking.
For the case when the bubbles have a volume below the critical one, large vertical clusters
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are formed in the fluid flow. When the bubbles have, on the other hand, a volume above
the critical one, there is no clustering and the bubble dispersion is greatly improved (in
figure 7.16e we can see that the bubbles attain the characteristic teardrop shape).

For the case of bubbly flows, the accumulation of elastic stress should increase as the
gas fraction (or the number of bubble chains) is increased. Therefore, we can expect that
at low gas fractions the elastic effects will not be large enough to cause cluster formation.
Such gas fraction value can be estimated if we consider that the mean separation distance
δ between bubbles is proportional to 1/N1/3, N being the bubble number density and

equal to 6Φg/πd
3
b ; hence, the gas fraction will be proportional to π

6 (db/δ)
3
. Using the ex-

perimental value of the bubble diameter (db = 2.1mm) and the mean separation distance
for the case where no clustering where observed between the two chains (figure 7.13a and
b, δ = 1.36cm), the gas fraction below which we could expect that no clustering occurs is
0.002. With our setup, however, it is not possible to conduct experiments for such small
values of Φg.

Based on the results obtained in this section and in the previous one, we can conclude
that when the accumulated elastic stress is larger than the viscous repulsive stress, ag-
gregation occurs. Also, we can argue that the elastic accumulation increases with γ̇, i.e.,
with the bubble size. However, this argument contradicts the observation of dispersion
for large bubbles (V > Vcrit). Therefore, the effect that large bubbles have on the fluid
must be different. Poor elastic accumulation could occur if the bubbles are not imposing
deformation on the fluid; that is to say, that such bubbles are “slipping” through the
liquid. This can only occur if the surface of bubbles has become mobile (surface active
agents have been liberated from the interface). This fact supports the argument that the
bubble velocity discontinuity is a result of a self-cleaning mechanism of the interface, as
suggested by Rodrigue & De Kee (2002).

The accumulation of restoring forces are not the unique promoters of bubble cluster-
ing in elastic fluids. These forces are indeed the ones that carry out the attraction of the
bubbles in vertical arrangements among the bubble chains; but the generation of a long
(and unique) vertical clusters, like the ones seen in figures 7.16a and c, is a macroscopic
flow event. What is happening here is that, as soon as the bubbles form separate vertical
clusters, the disperse phase is segregated to one large column of gas due to the appearance
of a long recirculation loop of the continuous phase. In most cases, this column of gas
actually tend to ascend near a column wall while the liquid descends in the opposite one.
In these cases, the amount of gas retained in the liquid almost falls to zero. In the case
of the bubbles having a volume above the critical one, the appearance of a recirculation
loop also occurs but the bubbles rise in a free manner within the main plume. The fluctu-
ating velocity field of the liquid within the ascending flow can be obtained with the PIV
system. The flow containing a good dispersion of the gas phase must present a better
spatial distribution of the average agitation value. The probability density function of
the liquid agitation obtained in the unclustered and clustered fully developed flows are
shown in figure 7.17. The vertical velocity variance TL was normalized with the mean
bubble velocity USW (Tnorm = TL/U

2
SW ). The values shown in the figure correspond to

the liquid agitation found in the ascending flow of the bubbles, i.e., without considering
the liquid circulation loop. The results are presented in terms of Tnorm− < Tnorm >,
< Tnorm > being the average agitation value. The curves show that the probability of
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finding a homogeneous agitation is larger in the unclustered flow than in the flow where
large bubble clusters are formed, in accordance to the visual observation shown in figure
7.16. The lines in figure 7.17 denote a normal pdf fitting of the experimental values15.

15The normal density function (or gaussian) have the form: f(y) = 1

σ
√
2π

e−(y−µ)2/2σ2

, −∞ < y < ∞;
where µ is the mean and σ the standard deviation. For more information or consultation of normal area
curves see Mendenhall and Sincich (1997).
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(a) db = 2.1mm, V < Vcrit,Φ = 0.4% (b) zoom of (a)

(c) db = 2.1mm,Φ = 0.5%

(d) db = 4.2mm, V > Vcrit,Φ = 0.4% (e) zoom of (d)

Figure 7.16: Images of the bubbly flows rising in the Boger-1 fluid. The gas fraction values reported
for the bubbles having a diameter of 2.1mm was measured at the beginning of the experiment
(when the valve was opened). In these cases, the evolution of the gas fraction with time becomes
very unstable and in many cases falls to zero due to phase segregation.
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Figure 7.17: Probability density function of the vertical agitation values of the liquid obtained for
the Boger-1 fluid; (◦) unclustered flow: db = 4.2mm, < vL >=10.95 cm/s, < TL >= 9.7cm2/s2;
(�) clustered flow: db = 2.1mm, < vL >=12.58 cm/s, < TL >= 28cm2/s2. < vL > is the mean
vertical liquid velocity. In both cases Φg = 0.3%. The lines denote a normal pdf fitting of the
experimental values.
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Chapter 8

Some additional comments on

aggregation in viscoelastic fluids

The phenomenon of particle aggregation (either with rigid or movable interfaces) is a
general trend found in viscoelastic flows. This behavior was already seen in the early
works of Nighgate et al. (1966, 1969) and Michele et al. (1977). These authors noted
that rigid spheres as small as 60-70µm embedded in a viscoelastic matrix tend to form
chaining structures when submitted to a rheometric flow. In this work we have seen that
both, the thinning and the elastic behavior, are capable to cause clustering in bubbly
flows. Before moving to the conclusions, I would like to say a few comments on two issues
of my interest.

The first one is about the future of multiphase flow simulations in viscoelastic fluids.
On the one hand, we have seen that there still a lot of work to be done with the so-called
high-Weissenberg number problem. Although there has been a good progress in this
regard, none of the computational schemes developed so far have shown to reproduce the
experimental data (such as the terminal velocity of the bubbles). As shown by Frank &
Li (2005), perhaps the easiest way to deal with this problem (without imposing additional
constrains to the governing equations) is by using alternative schemes such as the Lattice
Boltzmann models. On the other hand, one of the issues that have not been treated in
depth is about the performance of the algorithms when two or more deformable bodies
form a cluster. In this work we saw, for example, that the ALE code is capable to solve
the flow of two bubbles (or even more, see figure 8.1b for a set of six bubbles rising in a
Newtonian fluid) even though in some cases the gap between the two surfaces becomes
very small (see figure 6.15). However, when this small space between the surfaces persist
(when a stable doublet is formed), the numerical code becomes unstable and eventually
fails to converge (figure 8.1a). In order to obtain satisfactory results in the future, this
issue will also require special treatment. One of the strategies that can be proposed in this
regard is the implementation of a collision model among deformable interfaces (something
similar to what was proposed by Hu et al. 2001) or the use of the equations of motion but
without the inertia terms (lubrication equations) only for the “difficult” regions. Another
solution could be (simply) not to solve the equations of motion in the elements located
in this narrow space. In any case, before thinking about a new strategy to solve the flow
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between the space left by two colliding bubbles, we need to see if other numerical schemes
have the same problem. For instance, one may use the immersed boundary methods16,
and in particular, the diffuse-interface method (Yue et al. 2006), to see if the bubble
clustering problem disappears.

The other subject that I want to consider are the implications that could have the
clustering phenomenon in low Re flows and viscoelastic fluids in the aggregation of living
cells. Before considering the influence of fluid dynamics in cell clustering, I must give
a brief (non-specialized) summary of the subject from the traditional viewpoint. The
development of multicellular organisms started about 1500 million years ago with the
appearance of the first bacterial colonies (the appearance of the first individual cells was
about 3500 million years ago). Plant cells like algae and animal cells (metazoa) also
proved afterwards to be capable of establishing interactions and work division among the
individual cells forming a cluster (Bonner 1998, Herron et al. 2009). The green algae
(with a size of 10-20µm) was able, for example, to form aggregates composed of four cells
up to 50,000 individual cells. Among the different theories that have been proposed to
explain the origin of multicellularity, in the following just two of them will be described.
The first one, the colonial theory, says that multicellularity arose from the cooperation of
individual cells of the same specie that were in the beginning produced by other cells but
then rejoined or that arose as a result of a partial failure of the cell division mechanism
(the daughter cell will be attached to the mother cell and so on). The other one, the
symbiotic theory, proposes that multicellularity was a result of the cooperation (again)
of individual cells but that came form different species, i.e., having different roles since
the beginning. Now, all the theories proposed so far by the traditional evolutionary
biology assume that the mechanisms of multicellularity are mostly ruled by the genetic
circuitry and the molecular pathways found in the living cells. For instance, no cell-
to-cell communication or cell-cell adhesion had happened in the absence of a regulated
production of organic molecules that will carry out these mechanism and others. Actually,
cell differentiation resulted from the mutation (change) of the genetic information or from
the different ways in “reading” this information among the different cells. Besides these
genetic factors, several “physical” factors have been proposed that could explain the
origin of multicellularity in ancient organisms that had more plasticity (change capacity)
and a less controlled or integrated metabolism-genetic system (Furusawa & Kaneko 1993,
Müller & Newman 2003, Newman et al. 2006). Among the physical factors that have been
proposed we can find the ones that take into account the differences in surface tension
among the cells, differential adhesion, gradients set up by diffusion or sedimentation,
reaction-diffusion couplings. We can see that such factors do not rely directly on the
genetic capacities of the organisms but simply on physical mechanisms17.

16These methods consider the continuous and disperse phases as a single fluid, that is to say, the
governing equations are solved through the entire domain (in our case, for example, the flow inside the
bubbles is not solved). In order to do this, one needs to consider additional equations that takes into
account the steep, but continuous, change of the material properties of the fluids in the interface (see
Prosperetti & Tryggvason 2009).

17During the last year of my Ph.D. studies I realized that there is an increasing tendency of the engineers
and physicist to address issues that were treated in the past exclusively by people form other disciplines,
like biology. This has lead to a better understanding of the underlying physics governing the motion of
living systems. See, for example, one of the papers written by E. Lauga entitled “Life at high Deborah
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(a) n = 0.7, left image t∗ = 0.59, right image t∗ = 12.59

(b) Newtonian, left image t∗ = 12.59, right image t∗ = 24.19

Figure 8.1: Bubble positions and horizontal velocity map u (normalized with the terminal velocity
of the single bubble) of a set of six bubbles released in the thinning fluid with n = 0.76 (a) and
in its Newtonian counterpart (b). The image taken at the normalized time of t∗ = 0.59 for the
n = 0.76 fluid is identical to the one obtained with the Newtonian fluid at the same time. The
code stopped at a t∗ = 12.59 in the thinning case due to the formation of a bubble pair. Note
that the bubble dispersion is different between one fluid and the other at time t∗ = 12.59.

112



In view of these arguments, one might postulate that the clustering phenomenon
seen in low Re viscoelastic fluids can be a suitable mechanism that could explain the
aggregation of living cells. First of all, living cells are good candidates for clustering
due to the low Re numbers (the size of the cells are in the order of microns) achieved if
were submitted to some kind of flow (like sedimentation, shear inside a narrow channel,
movement across the liquid surface). Secondly, the cells that had had a “soft” surface,
like the animal cells, could have been more prone to form clusters due to the deformability
character of their lipidic bilayer membrane. In the case where the primitive cells had also
been submerged in a complex polymer solution (formed by a mix of proteins and nucleic
acids), cell clustering could have been the rule rather than the exception; only the cells
having a rigid membrane could have escaped from clustering in viscous thinning fluids.
Although all the ideas described here are pure speculative, it is very intuitive to think that
fluid dynamics at low Re and in viscoelastic fluids may explain by itself the aggregation
phenomenon seen in living cells, i.e., the apparition of multicellular organisms. In this
sense, the physical factors (or generic mechanisms, as named by Müller & Newmann
2003) could have left some bases on the organization of multicellularity; the morphology
and dynamics of such mechanism was further resumed by the sophisticated genetic and
biochemical systems, developed and established many years later.

number” (Lauga 2009), which is the non-Newtonian version of the classical paper of Purcell (Purcell 1977)
entitled “Life at low Reynolds number”.
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Chapter 9

Conclusions

More than fifty years have passed since the study of flows in polymeric solutions became a
formal discipline. The state of the art and several important experiments and models on
the subject can be found in the classic books of Bird et al. (1987), Barnes et al. (1989)
and Chhabra (1993), among others. In this work we presented, in a systematic way,
some of the main theoretical and experimental results that have been done in the field of
bubble flows in non-Newtonian fluids. Advances and problems that still need to be solved
were exposed. Also some contributions in the subject, which are summarized below, were
offered.

The experimental setup consisted in producing a mono-dispersed bubbly flow in fluids
with shear-thinning behavior (0.3 < n < 1.0) and negligible elasticity, on the one hand;
and in fluids with high elasticity but nearly constant viscosity on the other. The bubble
swarms experiments were complemented with the experimental and numerical study of the
interaction of bubble pairs having different initial arrangements. For the experiments, a
high speed camera and the Particle Image Velocimetry technique were used to characterize
the flow field. The numerical simulations were conducted with the Arbitrary Lagrangian-
Eulerian technique. The main message of this work can be summarized as follows: Bubble
clustering in non-Newtonian fluids can be produced by the passive effect of the viscosity
gradients or the active effect of the elastic restoring forces. In the case of the viscosity
gradients effects, they do not act as a net force but rather decrease the momentum transfer
between two neighboring bubbles due to the low viscosity zone produced by the bubble
doublet. Since the thinning behavior is a generalization of the Newtonian liquids, its
effects in bubble flows are decreased if the inertia of the system is increased (the viscosity
gradients become less important) or if the surface forces become higher than the buoyancy
forces (the coefficient of restitution is higher in the collision of two rigid bodies than in
the collision of two deformable bodies). In the case of the elastic fluids, the restoring
forces effect is active in the sense that they generate a perpendicular compressive force
on the bubble flow making it form large vertical clusters. The elastic effects are, however,
dependent on the boundary condition of the bubbles.
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The main results obtained in the present work were the following:

Bubble pairs rising in thinning fluids

• Before contact, the bubble trajectories followed the general behavior found in New-
tonian flows for Re < 30: a divergent path or repulsion is found between bubbles if
the angle of approach lay within 40◦ from the horizontal, and a convergent path or
attraction is observed otherwise.

• The wake formed behind a leading bubble attracts the trailing bubble. This attrac-
tive motion increased with the shear-thinning behavior (decreasing the flow index).
Two bubbles in contact rising in a thinning fluid experience less drag than the bub-
bles rising in the Newtonian fluid counterpart, contrary to what is seen in the case
of single bubbles. This effect is nevertheless hindered by the inertial effects.

• The numerical simulations suggested that the angle of inversion of the direction of
the lift force between two rising bubbles can decrease due to the viscosity gradient
formed near the horizontal plane of the bubbles when rising in a thinning fluid.
This can lead to a more effective clustering if more than two bubbles are presented.

• After the drafting and kissing processes, bubbles rising in thinning fluids tend to
stay together (not-tumbling) depending on the inertia and deformability of the
single bubble. This proved to be an important difference between Newtonian and
non-Newtonian flows. Furthermore, the bubbles forming pairs showed an oscillatory
motion due to the reduced viscosity being formed by the leading bubble and the
subsequent acceleration of the trailing one. In Newtonian flows, only the bubbles
rising at Re < 1 formed pairs but did not showed such oscillatory behavior.

Bubble swarms rising in thinning fluids

• The visual observation of the flow revealed the formation of dense bubble clusters
which grow with the gas fraction and increase the mean bubble velocity with re-
spect to that achieved by single bubbles. Such clusters, which actually lead to
contact between bubbles, have larger dimensions and lifetime than those observed
in Newtonian potential flows.

• Qualitative agreement of the velocities ratio USW/USI as a function of the gas
volume fraction was found with the theoretical studies of Gummalam and Chhabra
(1987), and Chhabra (1998). Therefore, the Happel cell model can predict the effects
of the reduction of the local viscosity together with the hydrodynamic hindrance
provoked by bubble interactions.

• Quantitative agreement with the velocity ratio was not found between the experi-
ments of this work and the theoretical predictions since the maximum of the velocity
ratio USW/USI was found at lower gas fractions than those predicted by the theory.
In fact, the permissible experimental gas fraction values are much lower than the
theoretical ones for the cases of mono-dispersed bubbly flows. The heterogeneous
or churn-turbulent regime has interesting issues by itself but cannot be used to
compare experimental results with the available theoretical data.
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• The magnitude of the velocity ratio USW/USI was higher than the theoretical one
even at low values of the gas fraction. The difference is attributed to the formation
of clusters which the Happel cell model does not account for.

• The ratio of the mean bubble velocity and the single bubble velocity did not follow
an orderly correspondence with the flow index values, as seen in the theoretical
works. Instead of this, the USW/USI values could be related to the values of the
Reynolds and Eötvös numbers of the single bubbles. Moreover, the bubble clustering
condition (and also the condition to form bubble pairs) was mapped in a Eo-Re
plot. Two regimes were identified: a free bubble regime and a cluster formation
regime. The limit between one and the other is close to a critical Morton number
(Mo = 4 × 10−4) which has been identified as a transition indicator from non-
coalescing to coalescing flows in Newtonian fluids.

• Measurements were also conducted to obtain the equivalent diameter of the bubble
cluster and bubble velocity variance. These results suggest that the cluster growth
is not related to the size of individual bubbles and that the dimensionless bubble
velocity variance Tb/U

2
SW increases significantly when bubble clusters are formed.

Single bubbles and bubble pairs rising in Boger fluids

• For the first time it was shown that the velocity jump discontinuity, seen in the
volume-velocity plot of single bubbles, can appear without the formation of a neg-
ative wake. The magnitude of the velocity jump and the formation of the negative
wake are rather determined by the extensional properties of the fluid. The results
obtained for single bubbles in the Boger-1 fluid and bubble groups in the Boger-2
fluid suggest that the change of the boundary conditions at the bubble surface is
an important mechanism that triggers the velocity jump.

• Bubbles having a volume below the critical one tend to form clusters when rising
as a pair of chains just when a certain value of the injection rate is exceeded. The
results suggest that the accumulation of the restoring forces in the flow due to
the consecutive passage of bubbles plays an important role in clustering formation.
This feature was investigated by analyzing the unsteady behavior of the first normal
stress difference.

Bubble swarms rising in Boger fluids

• The bubble dispersion and distribution of the velocity fluctuations (variance of
the vertical velocity) in the liquid proved to be highly dependent on the bubble
size: below the critical volume, the bubbles tended to form a large vertical cluster
and hence segregation of the dispersed phase was observed; on the other hand,
when the bubble size was above the critical one, the bubble dispersion and spatial
distribution of the mean agitation levels were notably improved. Additionally, it was
also observed that a recirculation loop of the liquid often appears in fully developed
viscous elastic flows.
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In addition to all these points, there are some practical applications that could emerge
form this work. For instance, it is commonly accepted that bubble flows produced by
small bubbles will render high values of the mass transfer coefficients. However, we have
seen that bubble clusters are easily form with small bubble sizes and the dispersion of the
gas decreased as a consequence. Hence, we may consider a bubble column equipped with
two sets of capillary banks: one for the production of small bubbles and the other for
the production of large bubbles (see Serrano-Garcia et al. ). The proportion in volume
of one size with the other could be operated according to the rheological properties of the
working fluid.

The present work also constitutes one of the initial steps towards the understanding
of bubbly flows in shear-thinning elastic fluids. We have seen that bubble clouds are
formed in thinning fluids specially when the bubble surface is highly deformable; on the
other hand, vertical clusters are formed in elastic fluids when the bubble surface presents
a no-slip condition. Hence, we can expect a high variety of clustering structures in fluids
having both behaviors. A key variable that could be use to interpret the results obtained
in viscoelastic fluids is the parameter c, defined as the ratio of the polymer and solvent
contribution to the zero-shear viscosity.

It is my hope that this work will contribute to the understanding of the formation of
bubble clusters in non-Newtonian fluids, which is an important issue in multiphase flows
as well as a precursor to bubble coalescence and change of regime in bubble flows.
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