

UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO

PROGRAMA DE POSGRADO EN CIENCIAS DE LA TIERRA

REVISIÓN DEL CATÁLOGO SÍSMICO CENTROAMERICANO EN LA REGIÓN DEL PUNTO TRIPLE COCOS-NAZCA-CARIBE

T E S I S

QUE PARA OBTENER EL GRADO DE:

MAESTRO EN CIENCIAS DE LA TIERRA (SISMOLOGÍA Y FÍSICA DEL INTERIOR DE LA TIERRA)

> P R E S E N T A NÉSTOR ANTONIO LUQUE VERGARA

JURADO EXAMINADOR: Dr. Gerardo Suárez Reynoso (Presidente) Dr. Marco Guzmán Speziale (Vocal) Dr. Carlos Mendoza (Secretario) Dr. Juan Martín Gómez González (Suplente) Dr. Vlad Manea (Suplente)

Febrero, 2011

Universidad Nacional Autónoma de México

UNAM – Dirección General de Bibliotecas Tesis Digitales Restricciones de uso

DERECHOS RESERVADOS © PROHIBIDA SU REPRODUCCIÓN TOTAL O PARCIAL

Todo el material contenido en esta tesis esta protegido por la Ley Federal del Derecho de Autor (LFDA) de los Estados Unidos Mexicanos (México).

El uso de imágenes, fragmentos de videos, y demás material que sea objeto de protección de los derechos de autor, será exclusivamente para fines educativos e informativos y deberá citar la fuente donde la obtuvo mencionando el autor o autores. Cualquier uso distinto como el lucro, reproducción, edición o modificación, será perseguido y sancionado por el respectivo titular de los Derechos de Autor.

AGRADECIMIENTOS

Expreso mi agradecimiento a la Secretaria Nacional de Ciencia y Tecnología (SENACyT) en colaboración con Instituto para la Formación y Aprovechamiento de los Recursos Humanos (IFARHU) por brindarme el financiamiento económico para realizar mis estudios de posgrado.

Al rector de la Universidad de Panamá Dr. Gustavo García de Paredes, al director del Instituto de Geociencias, MSc. Eduardo Camacho, al director del Departamento de Física, MSc. Ricardo Bolaños y al Decano de la Facultad de Ciencias Naturales, Exactas y Tecnología, Mgtr. Ricardo Paker, por sus gestiones administrativas para que tuviera el tiempo necesario para realizar los estudios.

Al Consejo Nacional de Ciencia y Tecnología (CONACyT) por la beca para culminación de estudio financiada por el proyecto 60363 bajo la responsabilidad del Dr. Juan Martín Gómez González que me proporcionó apoyo económico para finalizar mi estadía en México.

Mi más sincero agradecimiento al tutor de la tesis Dr. Carlos Mendoza por sus valiosos conocimientos, sus sugerencias, su colaboración y su guía durante la elaboración de este trabajo.

Al Dr. Juan Martín, por brindarme motivación, conocimientos y amistad desde el primer día que inicie los estudios en Juriquilla. Al Dr. Gerardo Aguire por brindarme hospedaje, muchísimas gracias.

A los sinodales: Dr. Gerardo Suárez, Dr. Marco Guzmán, Dr. Vlad Manea y Dr. Juan Martín Gómez, a todos ellos, por sus valiosos comentarios que enriquecieron y mejoraron este trabajo.

Al personal administrativo del Centro de Geociencias, en especial a Marta Pereda, al personal de la biblioteca y del departamento Jurídico quienes tan diligentemente me han apoyado en estos años de estudios.

A todos los compañeros del posgrado y en especial a mi gran amigo y compañero de estudios Angel Figueroa Soto.

RECONOCIMIENTOS

En este trabajo se emplean datos proporcionados por el Centro Sismológico de América Central (CASC) con sede en la Universidad de Costa Rica. Estos datos sísmicos colectados por el CASC a lo largo de los años son el esfuerzo y colaboración del equipo de personas de todas las agencias sismológicas de Centroamérica. Sin sus constantes contribuciones no me hubiera sido posible realizar esta investigación.

Este documento ha sido elaborado empleando software libre. El texto fue redactado empleando el programa Writer de OpenOffice 3.1.1.

Para la elaboración de los mapas y perfiles sísmicos se empleó el programa de procesamiento de datos y graficación científica *Generic Mapping Tools* -GMT versión 4.4.0 (Wessel y Smith, 1998). El mapa base de las fallas de Panamá y las de Costa Rica se construyó a partir de los mapas del Proyecto Internacional de la Litosfera (Cowan et al., 1998; Montero et al., 1998). La topografía y batimetría esta basada en los datos de Smith and Sandwell, 1997.

El procesamiento de datos se realizó empleando el lenguaje de manejo y procesamiento de patrones *awk* de UNIX. También fue empleado el programa QtiPlot versión 0.9.7 que permite la elaboración de gráficos y figuras a partir de datos en hojas de cálculo.

RESUMEN

Pese a los esfuerzos que se han hecho para mejorar el estado de conocimiento de la geometría de la subducción en la región fronteriza Costa Rica-Panamá aún hay mucho trabajo por hacer y aprender. El enfoque del trabajo es el análisis de los datos sísmicos registrados por el Centro Sismológico de América Central (CASC) de 1992 a 2006 con la intención de entender mejor el comportamiento espacio-temporal de la sismicidad relacionada en el punto triple Cocos-Nazca-Caribe. Se evaluó la confiabilidad de las localizaciones dadas por el CASC y se determinó la existencia de un "nido" de eventos sísmicos que se ubicó al suroeste de Panamá, en la península de Burica. El estudio se centró en el nido sísmico debido a la alta sismicidad que se presenta, la cual podría estar relacionada a estructuras tectónicas. Para estimar cualitativamente la geometría de la estructura que generó está actividad se analizaron las soluciones de mecanismos focales determinadas por el Global CMT Project, el análisis de los eventos ocurridos a diferentes profundidades ayudó a establecer el marco sismotectónico de la región suroeste de Panamá. Los eventos son consistentes con la sismicidad histórica regional, presentan mecanismo lateral derecho con orientación NW-SE y podrían estar relacionados con el proceso de subducción. El aporte más importante del trabajo es que establece los límites de utilidad de catálogos regionales como el del CASC para el estudio de estructuras tectónicas. Estos resultados confirman la complejidad de la zona de estudio y la necesidad de continuar y mejorar el monitoreo sísmico en esta región fronteriza Centroaméricana.

INDICE DE CONTENIDOS

	Página
AGRADECIMIENTOS	i
RECONOCIMIENTOS	ii
RESUMEN	iii
INDICE DE CONTENIDOS	iv
Lista de Figuras	v
Lista de Tablas	vii
I. INTRODUCCION	1
II. MARCO SISMOTECTONICO	
Tectónica regional	4
Estudios sismotectónicos realizados en la región de Panamá	10
III. DATOS Y PROCEDIMIENTOS	
Antecedentes del CASC	16
Estaciones de Centroamérica	17
Modelo de corteza	18
Escala de magnitud	19
Distribución espacial de la sismicidad	20
Datos fuente	22
Zonas de Estudio	27
Ejecución del programa VELEST opción JHD	29
IV. RESULTADOS Y ANÁLISIS	
Zona 1	30
Zona 2	44
Zona 3	52
V. DISCUSION	
Zona 1	55
Zona 2	56
Zona 3	57
VI. CONCLUSIONES	60
VII. TRABAJO A FUTURO	63
REFERENCIAS	65
APENDICES	
Apéndice 1. Archivo STATION0.HYP empleado por el CASC	77
Apéndice 2. Clasificación de Zoback del régimen de esfuerzos a partir del	
buzamiento de los ejes T, P y N	95

LISTA DE FIGURAS

		Página	
Figura 1.1	Ubicación del área de estudio	3	
Figura 2.1	Marco tectónico de la región Sur de América Central mostrando los mayores rasgos de interés sismotectónicos incluyendo la zona donde se interceptan las placas Cocos, Nazca y el Bloque de Panamá.		
Figura 2.2	Sismos en el Istmo de Panamá de magnitud mayor a 7 recopilados pos Selva y Marzocchi (2004), Ambrassey y Adams (2001), Camacho y Víquez (1991), Peraldo et al. (2006) y Camacho (1991).		
Figura 3.1	3.1 Ubicación geográfica de las estaciones sismológicas empleadas por el Centro Sismológico de América Central (CASC) de 1992 a 2006.		
Figura 3.2	Distribución epicentral de sismos reportados por el CASC de 1992 a 2006.	21	
Figura 3.3	Logaritmo del número de eventos acumulados en función de la magnitud Mc para cada año a partir de 1992 hasta 2006 en el área de estudio.	23	
Figura 3.4	Valores de error cuadrático medio (rms) de eventos reportados por el CASC con incertidumbre en las localizaciones ≤ 15 km para el periodo 1992—2006 en el área de estudio.	26	
Figura 3.5	Valores del gap azimutal de estaciones para los eventos reportados por el CASC dentro del periodo 1992—2006 en el área de estudio.	27	
Figura 3.6	Ubicación de las tres zonas en las que se realizó el estudio.	28	
Figura 4.1	Distribución de la sismicidad reportada en el catálogo del CASC para el periodo 1992—2006 con magnitudes coda \geq 4.0 dentro del marco del perfil SCR (A—A') en la zona 1.	31	
Figura 4.2	Perfil SCR en la zona 1 mostrando la distribución de eventos en profundidad localizados por el CASC con incertidumbres en las localizaciones ≤ 15 km.	32	
Figura 4.3	Eventos localizados por el CASC con incertidumbre en la localización ≤ 15 km.	34	
Figura 4.4	Perfil SRC (A—A') en el cual se muestran los eventos reportados por el CASC en la Zona 1, para el periodo 1992—2006, con una incertidumbre en las localizaciones ≤ 15 km.	39	
Figura 4.5a	Ubicación de los eventos dentro de la agrupación antes de la corrida del programa VELEST opción JHD.	41	
Figura 4.5b	Ubicación de los eventos que forman la agrupación después de la corrida del programa VELEST opción JHD.	42	

- Figura 4.5c Ubicación de los eventos que forman la agrupación luego de ejecutar 43 el programa VELEST opción JHD por segunda vez.
- Figura 4.6 Distribución de epicentros de los eventos en el perfil PA1 (B—B') y 45 PA2 (C—C') elaborados para el análisis de la Zona 2.
- Figura 4.7 Perfil PA1 (B—B') en el cual se muestran los eventos reportados por 47 el CASC en la Zona 2, para el periodo 1992—2006, con una incertidumbre en la localización ≤ 15 km.
- Figura 4.8 Perfil PA2 (C—C') donde se muestran los eventos reportados por el 49 CASC en la Zona 2, para el periodo 1992—2006, con una incertidumbre en la localización ≤ 15 km.
- Figura 4.9 Distribución epicentral de eventos reportados por el CASC para el 53 periodo 1992—2006, dentro del perfil PA3 (D—D') elaborado para el análisis de la Zona 3.
- Figura 4.10 Perfil PA3 (D—D') en el cual se muestran los eventos reportados por 54 el CASC en la Zona 3, para el periodo 1992—2006, con una incertidumbre en las localizaciones ≤ 15 km.

LISTA DE TABLAS

		Página
Tabla 3.1	Modelo de velocidades de corteza empleado por el CASC.	19
Tabla 3.2	Distribución temporal de la sismicidad suministrada por el CASC indicando el número de eventos con magnitud Mc en el intervalo indicado.	22
Tabla 4.0	Mecanismos focales reportados por el Global CMT Project en la zona 1 y alrededores.	35
Tabla 4.1	Mecanismos focales del Global CMT Project con magnitudes $Mw \ge 5.0$ que se ubicaron en el perfil SCR (A—A') para el periodo 1977—2009.	36
Tabla 4.2	Mecanismos focales del Global CMT Project con magnitudes $Mw \ge 5.0$ que se ubicaron en el perfil PA1 (B—B') para el periodo 1977—2009.	50
Tabla 4.3	Mecanismos focales del Global CMT Project con magnitudes $Mw \ge 5.0$ que se ubicaron en el perfil PA2 (C—C') para el periodo 1977—2009.	51
Tabla 4.4	Mecanismos focales del Global CMT Project con magnitudes $Mw \ge 5.0$ que se ubicaron en el perfil PA3 (D—D') para el periodo 1977—2009.	54

I. INTRODUCCION

En el sur de América Central, frente a las costas del Pacífico de Panamá tiene lugar el contacto de las placas Cocos, Nazca y Caribe. Esta región tectónicamente compleja es conocida como el punto triple de Panamá (Morell et al., 2008), que hasta hoy día no ha sido completamente definido en su régimen tectónico. Sin embargo, al sur del límite fronterizo entre Costa Rica y Panamá, la región está influenciada por su cercanía a éste punto triple, allí se han producido sismos históricos de magnitud moderada a alta (Wolters, 1986; Adamek et al., 1988; Camacho, 1991; Ambrassey y Adams, 2001; Selva y Marzocchi, 2004; Peraldo et al., 2006), lo cual evidencía un alto potencial sismogénico como consecuencia de la importante actividad tectónica, la cual se ha supuesto que esta controlada principalmente por la interacción de las placas Cocos, Nazca y Caribe (Morell et al., 2008). Además, esta zona también está influida por la actividad de la zona de fractura de Panamá y de la cresta de Cocos (Burbach et al., 1984; Moore et al., 1985; Wolters, 1986; Güendell, 1986; Heil and Silver, 1987; Adamek et al., 1988; Kolarsky y Mann, 1990; Corrigan et al., 1990; Protti et al., 1994; Kolarsky y Mann, 1995; La Femina et al., 2009). Varios sismos en la región se han sentido fuertemente y algunos han causado graves daños en las comunidades cercanas al epicentro (Cruz y Wiss, 1983; Camacho, 1991). Cabe mencionar que la necesidad de intensificar los estudios sísmicos y de riesgo se han incrementado ya que la densidad de la población en esta zona ha tenido un desarrollo acelerado en el último siglo. Hasta el momento, la poca instrumentación sísmica en la región (Alvarenga et al., 1998; Arroyo, 2001, Lindholm et al., 2004, Bundschuh y Alvarado, 2007) no ha permitido resolver detalles relacionados con los mecanismos generadores de las fuentes sísmicas.

Lo que se conoce de la sismotectónica de esta zona se ha logrado con base en la información de catálogos mundiales basados en información telesísmica y regional (Molnar y Sykes, 1969; Burbach et al., 1984; Güendel, 1986; Wolters, 1986), como también, en tiempos recientes, al uso de redes temporales locales para proyectos específicos (Protti, 1994; Arroyo, 2001; Husen et al., 2003; Arroyo et al., 2009). Como es

de suponer, las soluciones globales no son suficientes para definir adecuadamente las fuentes causantes de la sismicidad de magnitudes moderadas. Es por ello que la identificación y caracterización de estas fuentes sólo puede realizarse con datos regionales de suficiente calidad que permitan ubicar con precisión la sismicidad que ocurre en la región fronteriza entre ambos países. Uno de los catálogos regionales es el producido por el Centro Sismológico de América Central (CASC, por sus siglas en inglés) que forma la base de datos principal para estudios sismológicos en Centroamérica (Alvarenga et al., 1998; Lindholm et al., 2004; Bundschuh y Alvarado, 2007). Sin embargo, es necesario examinar la confiabilidad y precisión de la información que es suministrada por el CASC para los eventos ocurridos en Panamá, con el fin de evaluar su utilidad en definir rasgos tectónicos en la región.

Por ello, nos enfocamos a realizar un estudio del catálogo del CASC con la intención de conocer el nivel de incertidumbre asociado a las localizaciones hipocentrales, información de suma utilidad para posteriores investigaciones que intentan definir las estructuras sismotectónicas en la región.

La evaluación del catálogo del CASC se hace dentro del área geográfica comprendida entre los paralelos 6° y 11° de latitud norte y los meridianos 81.5° a los 83.5° de longitud oeste (Figura 1.1), que corresponde a la región del punto triple Cocos-Nazca-Caribe al suroeste de la República de Panamá, en la frontera con la República de Costa Rica.

Figura 1.1. Ubicación del área de estudio. El marco sobrepuesto indica el área de la investigación. Las líneas sobrepuestas indican las fornteras de las placas téctónicas.

Los objetivos de la investigación son:

- Examinar cualitativamente las localizaciones y magnitudes reportadas por el CASC para eventos dentro del área de estudio entre los años 1992-2006,
- Analizar de forma cualitativa los mecanismos focales reportados para sismos entre 1992 y 2006 para ver si existe alguna relación entre los parámetros focales observados y la interacción de las placas de Cocos-Nazca-Bloque de Panamá, en la región del punto triple, y
- Evaluar cualitativamente la utilidad del catálogo CASC para definir estructuras relacionadas a la interacción entre las placas tectónicas en la región del punto triple de Panamá.
- Indagar la geometría de la zona Wadati-Benioff en el lado suroeste de Panamá.

II. MARCO SISMOTECTONICO

Tectónica Regional

La zona de estudio está ubicada en la parte sur de América Central, donde interaccionan las placas Cocos, Nazca y Caribe (Figura 2.1). La placa de Cocos subduce por debajo de la placa del Caribe a lo largo de la Trinchera Mesoamericana, desde Guatemala hasta la porción sur de Costa Rica, a una tasa de convergencia relativa que varía entre 70 y 95 mm/año, respectivamente (DeMets et al., 1990; Kreemer et al., 2003; DeMets et al., 2010). Esta zona de subducción se extiende a lo largo de la costa del Pacífico y está sísmicamente definida por una compleja geometría de la zona de Wadati-Benioff (ZWB), variando tanto en el ángulo de buzamiento como en la longitud y profundidad máxima del slab sísmicamente activo (Molnar and Sykes, 1969; Bevis et al., 1984; Burbach et al., 1984; Protti et al., 1994 y García Quintero, 2007). Así pues, bajo el arco volcánico de América Central, en el sureste de Nicaragua y hacia el noroeste de Costa Rica, la ZWB buza con ángulos en el rango de 80° hasta los 60° en el extremo sureste de la península de Nicova (Protti et al., 1994). Los sismos localizados varían desde los 125 km de profundidad en el sureste de la península de Nicoya, en Costa Rica, hasta los 200 km en el sureste de Nicaragua (Protti et al., 1994). Del extremo sureste de la península de Nicoya hacia la parte central de Costa Rica, la ZWB buza con ángulos alrededor de los 60° y la sismicidad se extiende en profundidad desde los 125 km hasta cerca de los 50 km (Protti et al., 1994). Hacia el sur de Costa Rica, Protti et al. (1994) no encontraron evidencia de que la ZWB sea más profunda de los 50 km y estimaron un ángulo de buzamiento de 30°.

Figura 2.1. Marco tectónico de la región Sur de América Central mostrando los mayores rasgos de interés sismotectónico incluyendo el punto triple definido por las placas Cocos, Nazca y el Bloque de Panamá. Se muestran también las zonas de fractura de Panamá (ZFP), Balboa (ZFB), Coiba (ZFC), el cinturón deformado del norte de Panamá (CDNP), el cinturón deformado del sur de Panamá (CDSP), la zona de fallas Soná-Azuero (ZFSA), la zona de fallas del sur de Panamá (ZFSP), la zona de sutura Atrato-Urabá (ZSAU), el cinturón deformado del sur del Caribe (SCDB), y el cinturón deformado de la parte central de Costa Rica (CCRDB). También se muestran las fallas geológicas de Costa Rica, Panamá y Colombia (líneas grises) y las penínsulas de Nicoya, Osa, Burica, Soná y Azuero. Los triángulos representan los volcanes calco-alcalinos del Cuaternario (Wöner et al., 2009).

Al sureste de la frontera entre Costa Rica y Panamá se encuentra el sistema de fallas transformantes lateral derecho denominado zona de fractura de Panamá (ZFP) que representa el límite entre la placa de Cocos y la placa de Nazca (Figura 2.1). Este sistema de fallas se encuentra entre los meridianos 82° W y los 83° W y está orientado de sur a norte, comenzando al sur desde los 0° N y extendiéndose hasta el margen continental

Pacífico de Panamá. El cual, alrededor de los 6° N se bifurca en una serie de fallas transcurrentes paralelas de corrimiento lateral derecho, formando la zona de fractura de Balboa (ZFB) y la zona de fractura de Coiba (ZFC). La gran actividad sísmica en esta zona es muy superficial con mecanismos focales principalmente de tipo transcurrente lateral derecho, con una orientación N-S (Pennington, 1981; Wolters, 1986; Adamek et al., 1988, Camacho, 1991). La estructura del cinturón deformado del sur de Panamá es afectada por la subducción oblicua de los levantamientos lineales del sistema de la zona de fractura de Panamá (Moore y Sender, 1995). En el extremo norte de la ZFP, y a lo largo del eje proyectado hacia el norte por Camacho (1991) (ver Figura 2.2), han ocurrido sismos mayores a magnitud 7.0 (Camacho, 1991; Camacho y Víquez, 1993): por ejemplo en 1879 (Peraldo et al., 2006), 1904 (Camacho y Víquez, 1993; Selva y Marzocchi, 2004), 1934 (Camacho, 1991), 1941 (Ambrassey y Adams, 2001) y 1962 (Cruz y Wyss, 1983, Ambrassey y Adams, 2001) (Figura 2.2).

Figura 2.2. Sismos en el Istmo de Panamá de magnitud mayor a 7 recopilados por Selva y Marzocchi (2004), Ambrasseys y Adams (2001), Camacho y Viquez (1991), Peraldo et al. (2006) y Camacho (1991). Para los rasgos tectónicos ver la Figura 2.1.

Desde la parte central de Costa Rica hacia el sureste, junto con todo el territorio de Panamá, forman el llamado Bloque de Panamá (BP) (Figura 2.1) (Bowin, 1976; Adamek et al., 1988). El límite del BP al norte con la placa del Caribe es un margen convergente denominado cinturón deformado del norte de Panamá (CDNP). Este cinturón se extiende desde la costa del Caribe de Colombia hasta el sur de Limón en Costa Rica (Silver et al., 1990).

El límite oeste del BP lo conforma una zona de fallas recientes (Neógeno hacia el Cuaternario [0.4 Ma], Marshall et al, 2000), difusa y ancha que atraviesa el valle central de Costa Rica, extendiéndose desde el CDNP en el Mar Caribe hasta la trinchera Mesoamericana (Marshall et al., 2000). Por otro lado, en el antearco interno existe un sistema de fallas inversas que tiene rumbo predominante WNW en la región norte de Costa Rica y un sistema interno de fallas que está constituido principalmente por fallas de desplazamiento de rumbo, de tipo lateral derecho, de dirección NW y de tipo lateral izquierdo con orientación entre ENE y NE (Montero, 2001).

El límite sur del BP lo forman dos zonas de convergencia, el cinturón deformado del sur de Panamá (CDSP) y la trinchera de Colombia-Ecuador (Hardy et al., 1990; Kolarsky, 1990).

El límite al este del Bloque de Panamá no está bien definido y corresponde a una zona de deformación difusa (Vergara, 1988; Kolarsky, 1995). Este límite generalmente ha sido situado por los diferentes autores en el borde este de la cuenca del Atrato—San Juan (Pindell y Dewey, 1982; Case et al., 1971).

El CDNP es una amplia zona de deformación originada por la convergencia entre la placa del Caribe y el Bloque de Panamá que se extiende en forma de arco, paralela al margen Caribe de Panamá, desde la entrada del Golfo de Urabá, en Colombia, hasta Puerto Limón, en el Caribe de Costa Rica (Stephan et al., 1988; Silver et al., 1990). La tasa de convergencia entre la placa del Caribe y el Bloque de Panamá es de 7±2 mm/año (Trenkamp et al., 2002). Se ha sugerido, con base en datos de GPS, que el CDNP constituye el límite sur de la placa del Caribe (Freymuller et al., 1993; Camacho et al.,

2010). Datos telesísmicos que se han empleado para estudiar esta zona han permitido determinar la existencia de una ZWB en el extremo este, sugiriendo que, frente a la costa del Caribe de Panamá, la placa del Caribe se introduce bajo el BP (Camacho et al., 2010) buzando con un ángulo de 50° (Wolters, 1986; Adamek et al., 1988). Sismos históricos y recientes en esta zona (Figura 2.2), por su profundidad y localización, están asociados a esta subducción (Wolters, 1986; Adamek et al., 1988; Camacho et al., 2010). Por ejemplo, el sismo más grande histórico ocurrió el 7 de septiembre de 1882, con un rango de magnitud estimado entre $7.7 \le Ms \le 8.0$ (Mendoza y Nishenko, 1989).

El cinturón deformado del sur de Panamá (CDSP) se extiende paralelo al margen costero del Pacífico de Panamá a lo largo de la trinchera (Figura 2.1). En esta región, la placa de Nazca subduce de forma oblicua, bajo el Bloque de Panamá (McKay and Moore, 1990; Silver et al., 1990; Moore y Sender, 1995). Se han registrado sismos asociados a esta convergencia al sur del golfo de Panamá con mecanismo focal inverso (Wolters, 1986; Adamek et al., 1988; Selva y Marzocchi, 2004). Al norte de la trinchera de Panamá, se extiende desde el margen Pacífico de Colombia y paralela a la costa una falla transcurrente lateral izquierda denominada la zona de falla del sur de Panamá (ZFSP). Al sureste de la península de Azuero, la misma se bifurca y continua en tierra (Figura 2.2), atravesando las penínsulas de Azuero y Soná, como parte de una amplia zona (75 km a 100 km) de deformación lateral izquierda, con rumbo NW-SE (Hardy et al., 1990; Kolarsky y Mann, 1990). Este sistema de fallas paralelas transcurrentes y corrimiento lateral izquierdo de rumbo NW-SE también se observa en la isla de Coiba y bajo el piso oceánico de los golfos de Chiriquí y Montijo (Okaya y Ben Avraham, 1987).

Además de las placas tectónicas principales, otras estructuras también afectan la sismicidad y deformación en la región. Una de estas estructuras es la cresta de Cocos, ubicada en el margen costero del sureste de Costa Rica y al oeste de la península de Burica. Esta estructura representa una región de corteza oceánica engrosada (~ 19 km, Corrigan et al., 1990; Sallarés et al., 2003; Morell et al., 2008) y menos densa de la placa de Cocos que se subduce bajo el arco montañoso a una velocidad de 7—10 cm por año

(DeMets et al., 1990; DeMets, 2001). Como es menos densa, el ángulo de subducción de la estructura es somero, definido por la sismicidad hasta una profundidad alrededor de los 50 km (Protti et al., 1995). La longitud de la porción subducida de la cresta de Cocos y su edad es aún motivo de controversia. Por ejemplo, la fecha a la cual el eje de la cresta de Cocos arribo a la Trinchera Mesoamericana es ampliamente debatido, los rangos en la literatura se encuentran entre 8 Ma (Abratis and Worner, 2001) y 0.5 Ma (Gardner et al., 1992). El borde este de la cresta de Cocos se encuentra truncado por la zona de fractura de Panamá.

También existe un arco volcánico que se extiende desde la frontera de México-Guatemala (volcán Tacaná), atraviesa la parte central de Costa Rica (complejo volcánico Irazú-Turrialba) (Carr y Stoiber, 1990). El volcanismo en Panamá es separado del frente volcánico de América Central por límites de placas que cortan tanto la placa superior como la placa subduciendo (Carr, et al., 2003). Esta separación volcánica (*volcanic gap* en la literatura anglosajona) es de cerca de 175 km y se localiza sobre la cresta de Cocos subduciendo (Carr, et al., 2003). El Istmo de Panamá posee diferentes centros volcánicos relacionados con la activa subducción de la placa de Nazca (de Boer et al., 1991; Defant et al., 1991; Carr, et al., 2003), que se extienden desde la frontera de Panamá con Costa Rica y llega hasta la zona del canal de Panamá. Estudios sismotectónicos realizados en la región de Panamá

En la región sur de América Central varios investigadores han realizado trabajos relativos a la sismicidad y sismotectónica. Uno de estos trabajos es el de Molnar y Sykes (1969) el cual se basó en datos de estaciones regionales y telesísmicas. La importancia del estudio fue que prueba las teorías de actividad tectónica a gran escala tales como las hipótesis de esparcimiento del piso oceánico, fallamiento transformante, bajocabalgamiento de arcos de islas y movimientos de grandes placas superficiales de la litosfera. El objetivo del estudio de Molnar y Sykes (1969) fue mostrar que la tectónica de la región del Caribe y Mesoamérica resulta primariamente de la interacción de las placas del Caribe y de Cocos con las placas de los alrededores. Para ello, Molnar y Sykes (1969) realizaron una redeterminación de más de 600 hipocentros en un esfuerzo por delinear las zonas de actividad sísmica con mayor precisión que las que fueron identificadas como las fronteras de las placas del Caribe y de Cocos. Además, Molnar y Sykes (1969) analizaron las soluciones de mecanismo focal de 70 sismos para inferir el sentido del movimiento relativo entre las diferentes placas de la región. Molnar y Sykes (1969) definieron a la zona de fractura de Panamá como un sistema de fallamiento transformante lateral derecho orientado en dirección norte-sur, formando el límite entre las placas Cocos y Nazca. Hacia México, 16 mecanismos de sismos someros indicaron, según Molnar y Sykes (1969), un bajo-cabalgamiento de la placa de Cocos bajo la placa de América en el arco de Mesoamérica en una dirección aproximadamente N 35º E a N 45° E. Los mecanismos de los sismos en el arco de Mesoamérica, entre Nicaragua y la zona de fractura de Panamá, fueron menos definitivos, en ésta región, los mecanismos sugirieron, según Molnar y Sykes (1969), un bajo-cabalgamiento de la placa de Cocos por debajo de la placa del Caribe, en una dirección aproximadamente N 30° E. La consistencia total en la distribución y tasa de la actividad sísmica, las direcciones de los vectores de desplazamiento y las concordancias cualitativas de las tasas de movimiento calculadas por diferentes métodos, ofrecieron evidencia convincente para el concepto de tectónica de placas en la región (Molnar y Sykes, 1969).

Matumoto et al. (1977) realizaron un estudio sobre la estructura de la corteza, en la parte noroeste de Costa Rica. Ellos emplearon dos arreglos temporales de sismómetros, operados por el Instituto de Ciencias Marinas de la Universidad de Texas, uno a 5 km al sur de Managua, Nicaragua y el otro al norte de Costa Rica. En dicho estudio los datos sísmicos de explosiones y sismos locales se emplearon para determinar la estructura cortical somera cerca de Managua, ello permitió derivar un modelo cortical completo para el norte de Costa Rica. Ellos encontraron que el espesor total de la corteza por debajo de la provincia volcánica central del norte de Costa Rica es cerca de 43 km. Identificaron cuatro capas corticales sobre un manto superior. La característica principal de este modelo es que se asemeja estrechamente a otras zonas sísmicamente activas del margen del Pacífico como Japón, México y Sudamérica (Matumoto et al., 1977).

Güendel (1986) emplea datos locales, de una red sismográfica instalada y operada por la Universidad Nacional Costa Rica en cooperación con la Universidad de California en Santa Cruz, esta investigación tuvo como meta el entendimiento del marco sismotectónico de Costa Rica y del proceso dinámico que esta ocurriendo en el extremo sur de la Trinchera Mesoamericana. Los datos de alta resolución de la red de Nicaragua, la red sismográfica de Costa Rica y la sismicidad mundial relocalizada mostraron una bien definida zona de Wadati-Benioff que presenta un cambio gradual en la profundidad de 250 km hasta 50 km y un cambio en el ángulo de buzamiento de 80° hasta 45° cuando se aproxima al extremo sur de la trinchera Mesoamericana. También se encontró que la energía sísmica liberada se correlaciona con un decrecimiento en la profundidad y ángulo de buzamiento desde Nicaragua hasta la parte central de Costa Rica. La evidencia presentada por Güendel (1986) sugirió que los cambios observados en el modo de subducción pueden ser correlacionados con el proceso de colisión y subducción de la cresta de Cocos. Adamek et al. (1987) examinaron la ruptura sísmica asociada con la subducción de la Cresta de Cocos en un análisis de la fuente de dos grandes eventos de magnitud ~ 7.5 en Costa Rica. Adamek et al. (1987) encontraron que la geometría del slab está pobremente restringida debido a la carencia de sismicidad de profundidad intermedia (i. e. sismos a profundidades en el rango de 70 a 300 km). Además, encontraron que la cresta de Cocos, la cual tiene una gruesa y relativamente flotante corteza, afecta el proceso local de subducción. Grandes eventos someros (M > 7.0) a lo largo de esta sección de la Trinchera Mesoamérica están concentrados en el área de estudio (ver Figura 2.2).

Adamek et al. (1988) estudiaron la sismicidad del límite Caribe-Nazca enfocándose específicamente en la sismotectónica de la región de Panamá. El resultado principal del trabajo fue que la actividad sísmica dentro del cinturón deformado del norte de Panamá (CDNP) indica que la deformación sísmica en esta región ocurre en respuesta a la convergencia entre el Bloque de Panamá y la placa del Caribe. Además, no encontraron evidencia sísmica de que la litosfera penetre por debajo de los 70 km y concluyen que el CDNP corresponde al límite sur de la placa del Caribe, como había sido sugerido por Bowin (1976). También encontraron que la sismicidad es difusa en el este de Panamá y refleja compresión este—oeste, lo cual sugiere proximidad a un punto triple Caribe—Sur América—Nazca. Al sur de Panamá la actividad sísmica dispersa no permite afirmar o refutar la existencia de una falla transforme, como fue sugerido por Jordan (1975). En vez de tratar el área entera como una zona difusa de límite de placas, Adamek et al. (1988) decidieron definir la localización del Bloque de Panamá entre el CDNP y la región donde Jordan (1975) había postulado la falla transformante lateral izquierda con tendencia esteoeste, entre los meridanos 82° y 79° de longitud oeste y el paralelo 7° de latitud norte.

Wolters (1986) emplea mecanismos focales junto con los datos de sismicidad y trabajos previos para delinear la posición y naturaleza de los límites de placas en esta compleja región y alcanzar una mejor comprensión de la tectónica en la región Mesoamericana. Wolters (1986) encontró que la zona de subducción de América Central no es uniforme y que la intersección de la cresta de Cocos con el continente muestra un incremento de la actividad sísmica, esta zona se caracteriza por un buzamiento de 35°. Respecto al área alrededor de Panamá, la conclusión es que existe una zona de acoplamiento relativamente débil en la subducción justo al norte y se extiende hacia el oeste hasta la zona del Canal. Tampoco encontraron mucha evidencia de una falla de rumbo sísmicamente activa al sur de Panamá, aunque su existencia no pudo ser descartada. Además, Wolters (1986) encontró más actividad al norte de Panamá, región que propuso como una zona de subducción con eventos de falla normal.

Por su parte, Camacho (1991) relocalizó el sismo del 18 de julio de 1934 (Ms=7.6) y sus réplicas. El estudio sugiere que las zonas de fractura activas se extienden a través de la plataforma continental del suroeste de Panamá hasta conectar con fallas en tierra, en la llamada zona de falla Media en la península de Burica. Camacho (1991) propuso que las zonas de fracturas activas y la zona de falla Media en la región donde intersectan pueden tener una interacción, al menos, para eventos de gran magnitud.

Protti et al. (1995) emplean datos de una red sismográfica local para examinar la geometría de la ZWB bajo el sur de América Central. Ellos refinan resultados publicados previamente de la ZWB a lo largo del extremo sur de la trinchera Mesoamericana, donde la placa de Cocos subduce por debajo de la placa del Caribe. Ellos obtienen una nueva representación tridimensional de alta resolución del techo de la ZWB, desde Nicaragua hasta el sur de Costa Rica. Esta definición es combinada por Protti et al. (1995) con la tectónica regional para construir un modelo sismotectónico que correlaciona esta zona con los cambios abruptos en la edad de la placa de Cocos subducida. Ellos encuentran que en general el ángulo de buzamiento de la ZWB decrece desde 84° debajo de Nicaragua hasta 60° bajo la parte central de Costa Rica. Por otro lado, la máxima profundidad de los sismos interplaca en la ZWB también decrece desde el noroeste (200 km bajo Nicaragua) hacia el sureste (125 km bajo la parte central de Costa Rica). En el sur de Costa Rica, al este de los 83°55´W, no encontraron evidencia de una ZWB a

profundidad mayor de 50 km. También encontraron que la subducción de la cresta de Cocos bajo el sur de Costa Rica es parcialmente responsable de la poca profundidad de la trinchera Mesoamericana en el sur de Costa Rica y de la alta tasa de levantamiento del arco externo. Sin embargo, dada la presencia de la zona de fractura de Panamá, Protti et al. (1995) limitan la extensión subducida de la cresta de Cocos a menos de 100 km desde la trinchera y proponen que la geometría de la ZWB en general es controlada por los cambios abruptos en la edad de la placa de Cocos subducida a lo largo de la trinchera.

Como se puede observar la mayoría de los estudios solo abarcan hasta Costa Rica, queda pendiente mucho trabajo que hacer en el Istmo de Panamá para actualizar los conocimientos con respecto al de los países vecinos.

Arroyo (2001), estudia y caracteriza la sismicidad en la zona sur de Costa Rica entre las coordenadas de 8º a 9.1º latitud norte y 82.5º a 83.9º longitud oeste. En dicha investigación se emplearon datos de una red temporal compuesta de siete estaciones de periodo corto y dos estaciones permanentes de la Red Sismológica Nacional (RSN), de la Universidad de Costa Rica. Arroyo (2001) determinó que la sismicidad de la zona de subducción corresponde con una corteza oceánica que se subduce hasta una profundidad cerca de los 70 km bajo la Fila Costeña [i.e. Cordillera montañosa con elevaciones alrededor de los 1600 msnm, considerada un bloque basculado en forma de monoclinal generado por levantamiento de rocas sedimentarias, en su mayoría, marinas del Oligoceno y Mioceno, que se extiende paralela al sistema de falla Longitudinal de Costa Rica de rumbo noroeste -sureste; Vargas (2006)]. El ángulo de subducción decrece lateralmente de casi los 60° en la región noroeste del Golfo Dulce (i.e. porción de mar al suroeste de Costa Rica encerrada por las penínsulas de Osa y Burica) hasta alcanzar los aproximadamente 25° en la región sureste del mismo golfo. Además, el estudio reveló dos dominios neotectónicos principales: hacia el oeste predomina un fallamiento inverso con dirección noroeste, en tanto que hacia el este las fallas más importantes son de rumbo lateral derecho de la península de Burica y así también la zona de fractura de Panamá.

Arroyo (2001) sugiere que la placa superior está siendo desgarrada en el mismo sentido de la falla transformante, a lo largo del límite político entre Costa Rica y Panamá.

En el trabajo de La Femina et al. (2009) se integraron datos GPS con datos geofísicos y geológicos para investigar la deformación elástica y permanente en la región. Encontraron que la colisión de la Cresta de Cocos juega un papel importante en la zona de subducción de América Central, actuando como una estructura tectónica en forma de bloque rígido que está impactando la zona de subducción (*tectonic indenter* en la literatura anglosajona), generando movimiento y deformación del antearco paralelo al arco, lo cual intenta acomodar el movimiento tectónico a gran escala entre las placas de Cocos-Nazca-Bloque de Panamá (*tectonic escape* en la literatura anglosajona).

Recientemente, Arroyo et al. (2009) emplearon datos de una red temporal que registró más de 3000 eventos para caracterizar la sismicidad en la porción del margen Pacífico Central de Costa Rica. Emplearon tiempos de viaje de ondas P combinado con la información proporcionada por perfiles de sismología de fuente controlada para obtener un modelo tomográfico 3-D en el margen Central Pacífico de Costa Rica. Encontraron que el slab subduciendo es resuelto hacia abajo hasta los ~ 70 km de profundidad.

Camacho et al. (2010) investigaron el acomodo de la deformación del CDNP. Los resultados mostraron que la convergencia es acomodada por una activa subducción de la placa de Cocos por debajo del Bloque de Panamá basados en una definida ZWB.

De la revisión bibliográfica no se encontró, hasta la fecha, que se halla realizado un estudio enfocado específicamente a la zona del punto triple de Panamá.

III. DATOS Y PROCEDIMIENTOS

Los datos sísmicos empleados en este estudio fueron proporcionados por el Centro Sismológico de América Central (conocido como CASC en Centroamérica por sus siglas del inglés *Central American Seismic Center*). Este Centro ubicado en San José, Costa Rica, inició sus operaciones en mayo de 1998 (Alvarenga et al., 1998; Bundshuh y Alvarado, 2007).

Antecedentes del CASC

En 1988 un proyecto cooperativo sobre prevención de desastres entre todos los países de América Central fue iniciado y organizado a través del Centro de Prevención de Desastres Naturales en América Central (CEPREDENAC). Uno de los más importantes componentes del programa fue la sismología, en todos los seis países fue iniciado una reinstalación y/o mejoramiento de las estaciones analógicas de campo y equipo de registro centralizado. Sistemas de adquisición de datos fueron instalados, y para finales de 1992 fueron puestas en operación 95 estaciones digitales. Para 1998 el número de estaciones ya había crecido hasta 138. Al mismo tiempo un equipo conjunto de Centroamericanos se esforzó por realizar una recolección, procesado y distribución de los datos sísmicos para América Central. La idea inicial fue que el centro de datos fuera trasladándose entre los países, los cuales entonces fuesen responsables por el procesado. Esto se realizó en 1992 y 1993, pero pronto fue claro que era necesario un centro de datos permanente. En 1996 la instalación de estaciones de banda ancha fue iniciada en los países y fue decidido por CEPREDENAC que un centro de datos sísmicos permanente debía ser creado en Costa Rica (Alvarenga et al., 1998). Los objetivos primordiales del Centro son localizar en tiempo muy cercano al real los sismos registrados por las estaciones sismológicas de América Central y ser un archivo permanente de datos sísmicos para la región (Alvarenga et al., 1998).

Estaciones de Centroamérica

Una red combinada con alrededor de 180 estaciones de periodo corto y ocho estaciones de banda ancha permanentes están ahora operando en América Central, proporcionando una cobertura regional del área como se muestra en la Figura 3.1. Estas estaciones compartieron datos digitales (registros y formas de onda) con el Centro Sismológico de América Central para el periodo comprendido entre 1992 y 2006, aunque no todas las estaciones operaron de forma continua. El listado completo de las estaciones se encuentra en el Apéndice 1.

Figura 3.1 Ubicación geográfica de las estaciones sismológicas empleadas por el Centro Sismológico de América Central (CASC) de 1992 a 2006. Los triángulos invertidos representan las estaciones de periodo corto y los círculos las estaciones de banda ancha en la región. El marco rectangular entre Costa Rica y Panamá indica el área de estudio.

Todos los países operan redes de estaciones analógicas remotas cuyas señales son transmitidas a la estación de registro local por enlaces de radio o telefonía. Un sistema de adquisición de datos es empleado para el ingreso de las señales desde los sensores y acondiciona estas para la conversión a cuentas digitales. Actualmente, el Centro recibe formas de onda y las analiza para identificar tiempos de arribo de ondas P y S para localizar eventos en la región.

Físicamente la red del CASC está construida alrededor de dos sistemas de cómputo interconectados. Mientras el programa SEISLOG conecta las estaciones a las redes locales, SEISNET es un sistema de recolección de datos localizado en el CASC que se comunica con los sistemas SEISLOG en la región. El procesamiento de los datos es realizado con el programa SEISAN (Havskov y Ottemöller, 2008) para recolectar la información, localizar los eventos y almacenar los datos seleccionados. Empleando este sistema interconectado, el CASC automáticamente recolecta vía módem o Internet datos de eventos mayores a magnitud 4 registrados en las estaciones regionales para localizar y determinar magnitudes (Bundshuh y Alvarado, 2007).

Los datos son almacenados en el sistema de base de datos SEISAN. Este es un sistema jerárquico simple basado en archivos donde los parámetros de los eventos sísmicos son almacenados en formato ASCII y las formas de onda son almacenadas en formato binario. Cada base de datos para las redes locales y el catálogo regional consisten de directorios anuales y mensuales en los cuales hay un archivo ASCII con los datos de parámetros de la fuente, incluyendo hipocentros, magnitudes, lecturas de fases, etc., para cada evento.

Modelo de corteza

El modelo regional de corteza empleado por el CASC para las localizaciones se muestra en la Tabla 3.1. La relación entre la velocidad de onda P (Vp) y la velocidad de la onda S (Vs) es 1.87 y se ha fijado el límite corteza-manto a una profundidad de 35 km.

El modelo (acordado por los países que conforman el CASC) está basado parcialmente en la experiencia individual de los países y parcialmente en pruebas empleando el conjunto de eventos reportados para el periodo 1994 -1997 (Alvarenga et al., 1998).

Velocidad de onda P (km/s)	Profundidad de la interfase superior (km)
3.5	0.0
5.0	1.0
6.0	6.0
6.8	13.0
8.0	35.0
8.3	200.0
8.5	300.0

Tabla 3.1. Modelo de velocidades de corteza empleado por el CASC

Escala de magnitud

Generalmente el CASC determina *magnitudes de coda* (Mc). Las magnitudes de coda están basadas en la duración de la señal registrada en los sismogramas a partir del arribo de la onda P. En Centroamérica, la escala fue calibrada para ajustarse a las magnitudes de onda de cuerpo (mb), reportadas en los Boletines de Determinación Preliminar de Epicentro (PDE) de la sismicidad global, los cuales fueron elaborados por el Centro Nacional de Información de Sismos de los Estados Unidos, NEIC (Alvarenga et al., 1998):

$$M_c = -0.72 + 2.4 \log (coda) + 0.00046 * dist$$

Donde *coda* es la duración de la coda medida en segundos y *dist* es la distancia hipocentral en km.

En Centroamérica, la práctica de emplear solamente la magnitud de duración de coda es dominante, ya que sólo 404 eventos localizados de los 44,000 registrados en el periodo

1994-1997 fueron reportados con magnitud M_L . El centro regional CASC calcula magnitud de duración de la coda, magnitud local M_L y magnitudes de momento M_w para los eventos regionales (Alvarenga et al., 1998). En este estudio se consideran solamente las magnitudes de coda "Mc" por ser la magnitud reportada para todos los eventos examinados.

Distribución espacial de la sismicidad

Para el análisis de la tesis los datos sísmicos empleados consisten de dos archivos ASCII con los sismos localizados por el CASC. Un archivo contiene un total de 1133 eventos reportados desde 1992 hasta el 2006, los cuales han sido representados en la Figura 3.2. Estos datos consisten de parámetros de eventos sísmicos que incluyen los hipocentros, las magnitudes, los tiempos de arribo de las ondas P y S, las incertidumbres en latitud, longitud y profundidad, el error cuadrático medio (rms) de la localización, el mayor ángulo azimutal entre estaciones (gap de estaciones) y las distancias evento-estación. El otro archivo contiene la información de parámetros y condiciones de operación para la rutina de localización del paquete SEISAN, la lista de ubicaciones de estaciones empleadas y el modelo de corteza.

Figura 3.2. Distribución epicentral de sismos (círculos rojos) proporcionados por el CASC ocurridos entre 1992 y 2006. El marco rectangular representa el área del estudio.

La distribución temporal de la sismicidad proporcionada por el CASC se basa en la clasificación del número de eventos sísmicos ocurridos anualmente en intervalos de magnitud Mc presentada en la Tabla 3.2. Como se muestra en la Tabla 3.2 la sismicidad predominante en este periodo 1992-2006 es de magnitud moderada (4.1 a 4.5). La tasa promedio de sismicidad anual es de 76 eventos/año. La sismicidad de los años 1997, 2003 y 2005 es asociada a enjambres sísmicos y réplicas de eventos principales. Todos estos enjambres son de magnitud baja a moderada y de corta duración.

Años	Mc 3.1—3.5	Mc 3.6—4.0	Mc 4.1—4.5	Mc 4.6—5.0	Mc 5.1—5.5	Total
1992	0	3	33	1	1	38
1993	0	16	38	3	0	57
1994	0	22	32	9	0	63
1995	0	16	53	5	1	75
1996	0	12	23	4	2	41
1997	0	28	80	11	2	121
1998	0	18	44	3	0	65
1999	0	30	43	9	1	83
2000	1	11	26	3	0	41
2001	0	11	58	6	2	77
2002	0	8	32	17	3	60
2003	7	45	80	12	1	145
2004	0	15	40	9	0	64
2005	6	44	50	14	1	115
2006	1	34	46	7	0	88
Total	15	313	678	113	14	1133

Tabla 3.2. Distribución temporal de la sismicidad suministrada por el CASC indicando el número de eventos con magnitud Mc en el intervalo indicado.

Datos Fuente

A partir de los datos suministrados por el CASC se examinó la distribución de sismicidad en función del tiempo para verificar que tan completo es este conjunto de eventos en la región fronteriza Costa Rica-Panamá. Para ello, se graficó la relación empírica de ocurrencia de sismos (Gutenberg y Richter, 1949) para diferentes agrupaciones de tiempo de los datos. Esta relación empírica esta dada por:

$$\log N = a - b \cdot M$$
[3.1]

donde N es el número de sismos acumulados de magnitud mayor o igual a M, *b* es la pendiente de la distribución lineal y *a* es el logaritmo del número de eventos con $M \ge 0$.

Esta relación se puede utilizar para identificar el nivel de detección dado que no todos los eventos menores a una cierta magnitud, conocida como la magnitud de completitud, son completamente detectados por la red de estaciones.

La Figura 3.4 muestra la relación [3.1] para los diferentes años de los datos suministrados por el CASC. Esta gráfica muestra un cambio de pendiente en la magnitud Mc=4.0 lo cual nos indica que la magnitud de completitud en el área de estudio corresponde a dicho valor.

Figura 3.3 Logaritmo del número de eventos acumulados en función de la magnitud Mc para cada año a partir de 1992 hasta el 2006 en el área de estudio. En general, se observa que la magnitud de completitud para el conjunto de datos es de 4.0.

Puesto que, de los datos proporcionados por el CASC se tienen eventos fuera del área de estudio que se mostró en la Figura 3.2, y eventos con magnitudes inferiores a la magnitud de umbral, se elaboraron varias rutinas empleando el lenguaje de programación awk (Dougherty y Robbins, 1997) para restringir el conjunto de datos a un sub-catálogo (que fue llamado "datos fuentes"). Estas rutinas permitieron realizar las operaciones de:

- Separar los datos en registros anuales de sismicidad reportada y así facilitar la manipulación del conjunto de datos.
- 2. Identificar eventos dentro del área de estudio.
- Extraer información de interés de la sismicidad reportada (por ejemplo, latitud, longitud, profundidad, magnitud, rms, gap de estaciones y errores en la localización).

Una vez que se realizaron las operaciones 1 y 2 había que determinar cuál es el nivel de calidad aceptable de los datos para realizar un análisis sismotectónico. Para esto se filtraron los datos en función de la incertidumbre en la localización δ (latitud, longitud y profundidad). Se extraen los datos con incertidumbre en la localización $\delta \le 20$ km, $\delta \le 15$ km, $\delta \le 10$ km y por último, $\delta \le 5$ km. Se realizaron mapas y perfiles de cada uno de estos conjuntos de eventos y se compararon visualmente para determinar cuál proporcionaba un conjunto aceptable para el análisis sismotéctonico. Se observó que los eventos al sur de los 6° N son eliminados al restringirnos a eventos con incertidumbre \leq 15 km y visualmente los mapas y perfiles son muy similares a los realizados con el conjunto de eventos con incertidumbre ≤ 20 km. En el caso de los mapas y perfiles con eventos cuya incertidumbre son ≤ 10 km, se observan muy pocos eventos y casi todos en el continente. Por tanto, delimitamos el conjunto de eventos proporcionados por el CASC al subconjunto que forma los datos fuente, es decir, al conjunto de datos con los cuales se va a trabajar el análisis, en nuestro caso, los eventos que se encuentra dentro del área de estudio (es el área geográfica entre los paralelos 6° y 11° latitud norte, y los meridianos 81.5° a 83.5° longitud oeste) y cuya incertidumbre en la localización es ≤ 15 km. Este

conjunto de datos se escogió porque en comparación visual de los mapas de sismicidad con las diferentes incertidumbres se consideró que son el conjunto de eventos representativo aceptable para intentar abordar un análisis sismotectónico.

Además, para el análisis se consideraron solamente aquellos eventos con profundidad menor a 70 km. Esto se debe a que el criterio de calidad de los datos en este trabajo está en función de la incertidumbre en la localización de los eventos. Por tanto, el criterio fue seleccionar los datos que tuvieran una incertidumbre inferior a los 15 km en su localización, tanto en la latitud y longitud como en la profundidad. En el área de estudio, de los datos suministrados por el CASC, si hay unos cuantos eventos (menos de 10) con profundidad mayor a los 70 km, pero su incertidumbre es mayor a los 40 km, por lo que fueron eliminados al realizar el filtrado de datos. Como resultado de esta selección quedaron 388 eventos dentro del marco del área de estudio de los 1133 sismos reportados en la región de estudio por el CASC.

Se realizó una recopilación de los valores rms de todos los eventos en el área de estudio la cual se graficó en la Figura 3.5. Este e*rror cuadrático medio* (medido en segundos) provee una medida del ajuste de los tiempos de arribo observados con respecto a los tiempos de arribo predichos para una localización. Mientras más pequeño es este valor mejor es el ajuste del conjunto de los datos (Shearer, 1999). Este valor es dependiente del modelo de velocidades de corteza empleado para el cálculo de localizaciones de sismos, de la ponderación asignada a los datos de tiempos de arribo y del procedimiento empleado para las localizaciones.

Figura 3.4 Valores de error cuadrático medio (rms) de eventos reportados por el CASC con incertidumbres en localización ≤ 15 km para el periodo 1992-2006 en el área de estudio. El promedio durante este intervalo de tiempo es 0.9s (línea horizontal continua en negrita).

Otro parámetro que interviene en la confiabilidad de los datos es el gap de estaciones, esto es, *el mayor intervalo azimutal de espacio sin estaciones* (medido en grados). En general, mientras más pequeño es el valor del gap, más confiable es la posición horizontal calculada del sismo. Localizaciones de sismos en los cuales el gap excede de 180° generalmente tienen valores grandes de error epicentral e hipocentral (Bondár et al., 2004; Haskov y Alguacil, 2004; Ling Bai et al., 2006).

Para examinar los valores del gap de las estaciones en el área de estudio, se recopilaron los valores de gap de todos los eventos, se calculó el valor promedio del gap y se confeccionó un gráfico (Figura 3.6) de los valores de gap en función de los eventos con error hipocentral ≤ 15 km.

Figura 3.5 Valores del gap azimutal de estaciones para los eventos reportados por el CASC dentro del periodo 1992—2006 en el área de estudio. Se muestra el gap azimutal para los eventos con incertidumbres en la localización ≤ 15 km. El valor promedio del gap azimutal fue 168°.

En el gráfico de la Figura 3.6 el eje horizontal representa los 388 eventos con incertidumbre en la localización \leq 15 km ordenados en el tiempo (1992-2006) y el eje vertical representa el valor del gap azimutal del conjunto de estaciones que reportaron los eventos. La distribución de los puntos representados en el gráfico de la Figura 3.6 no muestra ningún patrón o tendencia de estos.

Zonas de Estudio

Se escogieron tres zonas de sismicidad para facilitar el análisis de los perfiles sísmicos (Figura 3.7). Estas zonas numeradas de oeste a este son:

Zona 1. En esta zona se realizó un perfil que abarcó parte del área estudiada por Protti et al. (1994) en el sur de Costa Rica y que además toma en cuenta la frontera con Panamá y el suroeste de Panamá, se le denominó Perfil SCR.
Zona 2. En esta zona se encuentra la sismicidad relacionada con la zona de fractura de Panamá y la zona de fractura de Balboa. Muestra tanto eventos del margen mar adentro como hacia la costa y los que se consideran proyecciones de estas fracturas en tierra firme. Para analizar la sismicidad en esta zona realizamos dos perfiles: PA-1, para la Zona de Fractura de Panamá y el PA-2 para la Zona de Fractura de Balboa.

Zona 3. En esta zona se estudiaron los eventos relacionados con la Zona de Fractura de Coiba y los eventos entre la trinchera hasta el margen continental. El análisis de la sismicidad se realizó por medio del perfil PA3.

Figura 3.6 Ubicación de las tres zonas en las que se realizó el estudio. Las zonas 1, 2 y 3 se muestran delimitadas por los marcos sobrepuestos al mapa. Los rasgos tectónicos son los mismos que fueron definidos en la Figura 2.1.

Ejecución del programa VELEST opción JHD

Con la intención de relocalizar el conjunto de eventos que se forman en la península de Burica (zona 1) e indagar si forman un patrón de sismicidad que sugiera alguna relación con estructuras geológicas se realizó la corrida del programa VELEST que viene como parte del conjunto de programas de SEISAN. EL programa VELEST como rutina de re-localización conjunta de hipocentros (JHD) puede operar con velocidades fijas de corteza y correcciones de estaciones. En esta opción del programa VELEST las localizaciones de hipocentros están basadas solamente en las fases de primeros arribos.

IV. RESULTADOS Y ANÁLISIS

Se muestran en este capítulo los mapas y secciones hipocentrales de sismicidad (perfiles sísmicos) con eventos cuya incertidumbre en la localización es \leq 15 km. El análisis de estos eventos sísmicos tiene como fin examinar su distribución en profundidad e indagar la geometría de la ZWB en el lado suroeste de Panamá.

Zona 1

La distribución de la sismicidad se presenta en la Figura 4.1 en la que se muestra la ubicación en planta de los sismos que se utilizaron para hacer el perfil SCR. Se observa una alta concentración de actividad sísmica en la península de Burica, en donde se considera que hace contacto la prolongación hacia el continente de la zona de fractura de Panamá (Camacho, 1991). Esta concentración de eventos (agrupación de eventos la cual será nombrada como "nido Burica" a lo largo de este trabajo) en la porción suroeste de Panamá fue reportada previamente en Arroyo (2001) quién observó un agrupamiento de epicentros en el sector donde el fallamiento de dirección norte-sur de la península Burica (falla Media) cambia rumbo hacia el noroeste. Este es el mismo sector donde se concentraron las réplicas del terremoto del 1° de julio de 1979 (Ms=6.5), el cual Adamek et al. (1987) asocian con el levantamiento de la península. Arroyo (2001) propone que el sector norte de la península Burica es la continuación sureste de la franja sísmica que se inicia en el Golfo Dulce, desde la punta Banco hasta la ciudad de Puerto Armuelles.

Se delimitó el "nido Burica" en un marco geográfico cuyas coordenadas son: latitud norte 8.35° a 8.45° y longitud oeste 82.75° a 82.95°. El "nido Burica" se encerró en un volumen con dimensiones aproximadas de 20 km de largo, 15 km de ancho y 20 km de profundidad, con centro aproximado en el paralelo 8.4° latitud norte y meridiano 82.8° (marco sobrepuesto en la Figura 4.1).

Al norte del "nido Burica" la sismicidad es algo dispersa. Esta sismicidad *grosso modo* pudiese formar una banda de sismicidad orientada hacia el norte sin sobrepasar la cordillera de Talamanca.

Figura 4.1. Distribución de la sismicidad (círculos negros) reportada en el catálogo del CASC para el periodo 1992—2006 con magnitudes de coda \geq 4.0 dentro del marco del perfil SCR (A— A') en la zona 1. El marco en negrita ubica el área del "nido Burica". Se muestran todos los eventos con incertidumbre en las localizaciones menores a 15 km. BP= Bloque Panamá, CA = Placa Caribe, CCRDB = Cinturón deformado del centro de Costa Rica, CDSP = Cinturón deformado del sur de Panamá, , CdT = Cordillera de Talamaca, CO = Placa Cocos, fGo = falla Golfito, FL = Falla Longitudinal, fOs = falla Osa, GM = Golfo de Montijo, ICo = Isla Coiba, NZ = Placa Nazca, PBu = península de Burica, POs = Península de Osa, Pt Lim = Puerto Limón, TMA = Trinchera Mesoamericana, ZFAS = Zona de Falla Azuero-Soná, ZFB = Zona de Fractura de Balboa, ZFC = Zona de Fractura de Coiba, zfCCo = zona de falla del Centro de Coiba, ZFL = Zona de Zalla Longitudinal, ZFP = Zona de Fractura de Panamá, zfRFl = zona de falla del río Flores, zfSCo = zona de falla del sur de Coiba, los triángulos representan volcanes.

El perfil SCR (A-A') de los eventos con incertidumbre en las localizaciones ≤ 15 km en la zona 1 se muestra en la Figura 4.2. Se observa una sismicidad somera, como previamente había sido señalado por Protti et al. (1994) y Arroyo (2001). La profundidad del conjunto de todos los eventos en este perfil no supera los 50 km. Estos no muestran ningún patrón específico que pueda indicar de forma directa la existencia de un proceso de subducción somera de la cresta de Cocos por debajo del Bloque de Panamá.

Figura 4.2 Perfil SCR en la zona 1 mostrando la distribución de eventos en profundidad localizados por el CASC con incertidumbres en las localizaciones ≤ 15 km. Este perfil muestra la sismicidad en el área fronteriza al sur de Costa Rica y suroeste de Panamá. La línea recta representa la inclinación del slab, según lo propuesto por Protti et al. (1994). TMA= Trinchera Mesoamericana y cluster = agrupación de eventos sísmicos.

Protti et al. (1994) propusieron que el ángulo de inclinación del slab es de ~30°, dicha inclinación se ha representado en la Figura 4.2. Como se puede observar, los hipocentros determinados por el CASC al ser graficados, no muestran un patrón de sismicidad delineando un slab. Otros investigadores (p. ej., Arroyo, 2001) han encontrado distribuciones similares de sismicidad. Arroyo (2001) encontró que la gran mayoría de los eventos no sobrepasa los 10 km de profundidad en el sector Sureste de Costa Rica, en la frontera con Panamá. Arroyo (2001) sugiere que en este sector la placa de Cocos se encuentra de 15 a 30 km de profundidad.

En el perfil SCR se observa que la mayoría de los eventos se encuentra en el rango de los 0 a 10 km de profundidad lo que es consistente con el resultado obtenido por Arroyo (2001).

Para indagar la relación sismicidad-tectónica se adicionaron los mecanismos focales tanto al mapa como al perfil de cada zona. En la Figura 4.3 se muestra un mapa con los eventos localizados por el CASC alrededor del nido Burica. A dicho mapa se han agregado las soluciones de mecanismos focales del Global CMT Project, incluyendo la componente isotrópica, esto es, se muestra el tensor de momento total.

El análisis de los mecanismos focales alrededor del nido Burica (Figura 4.3), en el área donde se presenta el nido de sismos (marco sobrepuesto), revela que los mecanismos son en parte de deslizamiento lateral derecho con una componente inversa (a9, a11 y a12) y en parte inversos (a5, a14, a18, a19 y a20). Los mecanismos a4 y a21 tienen prácticamente la misma ubicación pero el primero resultó transcurrente lateral derecho orientado norte-sur y el segundo fue inverso. Para el mecanismo a4, transcurrente lateral derecho, la orientación del plano de falla predominante es aproximadamente noroeste-sureste. Estos mecanismos son consistentes con la probable prolongación hacia el continente de la zona de fractura de Panamá.

Al norte del nido Burica, alrededor de la zona de falla Canoas (zfC) y de la Falla Longitudinal (fL) se tienen varios sismos que confirman la actividad de estas fallas. Dos mecanismos focales, uno de tipo inverso (a17) y el otro normal (a23) se ubicaron alrededor de la fL.

Figura 4.3. Eventos localizados por el CASC (círculos en gris oscuro) con incertidumbre en la localización ≤ 15 km. El recuadro en negrita indica el área del "nido Burica". Se han adicionado al mapa los mecanismos focales dados por el Global CMT Project. Mecanismos focales en gris claro representan eventos en posiciones determinadas por el Global CMT Project. Mecanismos focales en gris oscuro representan eventos reubicados a localizaciones determinadas por CASC. La numeración de estos mecanismos focales se ha tomado del listado que se presenta en la Tabla 4.0. Indicaciones son las mismas que en la Figura 4.1.

Al sur del nido Burica tenemos mecanismos focales inversos (a3, a6, a15 y a16) y mecanismos de tipo transcurrente lateral derecho orientado N-S (a7, a8, a10 y a22) que son consistentes con la orientación de la zona de fractura de Panamá.

no.	Fecha	Hora	Lon	Lat	Prof	М	PF1	Т		B	;	Р		Reg
		hhmmss.ss	(grados)	(grados)	(km)	(Mw)	st/dp/rk	Az	pl	Az	pl	Az	pl	
a1	1979 07 01	203803.00	-83.09	8.15	10.0	6.2	146/32/-106	68	14	160	9	282	74	Nor
a2	1979 07 02	061812.10	-83.11	8.53	15.0	5.5	283/32/40	101	57	328	24	228	21	Inv
a3	1983 05 09	155303.70	-82.87	8.06	11.0	6.2	332/31/142	332	56	104	24	205	22	Inv
a4	1991 12 21	220214.60	-82.75	8.36	33.0	5.1	188/61/176	147	22	285	61	50	17	Lat
a5	1998 08 04	004840.20	-82.76	8.41	28.3	5.2	325/32/94	41	77	141	2	232	13	Inv
a6	2000 02 27	161045.00	-82.88	7.96	15.0	5.4	326/27/99	37	71	139	4	230	18	Inv
a7	2002 07 31	001653.60	-82.828	7.883	10.0	6.5	260/73/-1	124	11	353	73	216	13	Lat
a8	2002 08 01	191013.30	-82.91	7.76	15.0	5.2	167/90/-180	122	0	180	90	32	0	Lat
a9	2002 08 03	023909.70	-82.897	8.358	26.8	5.8	113/77/10	337	16	165	74	67	2	Lat
a10	2002 08 07	235918.80	-82.843	7.864	20.0	5.9	351/63/-168	306	11	56	61	210	27	Lat
a11	2003 12 25	071116.90	-82.771	8.320	22.5	6.5	12/85/176	327	7	143	83	237	1	Lat
a12	2004 01 07	104239.90	-82.799	8.362	24.6	5.5	36/59/177	356	24	132	58	258	20	DD
a13	2004 02 04	115950.67	-83.027	8.309	23.7	6.1	88/72/-8	313	7	203	70	45	19	Lat
a14	2005 06 30	212639.55	-82.834	8.407	11.6	5.9	334/38/111	353	74	137	13	229	9	Inv
a15	2006 05 01	074804.93	82.844	8.147	13.0	5.9	326/39/121	329	68	121	19	215	9	Inv
a16	2006 05 01	091336.28	-82.967	7.974	10.0	5.5	317/33/80	78	76	325	5	234	12	Inv
a17	2006 05 02	025101.54	-82.967	8.651	6.1	5.2	317/28/78	75	72	328	6	236	17	Inv
a18	2008 05 26	150138.64	-82.88	8.38	12.0	5.6	302/42/82	96	84	308	5	218	3	Inv
a19	2008 05 26	153805.64	-82.89	8.47	12.0	5.1	106/31/82	220	76	113	4	22	14	Inv
a20	2008 05 30	053541.80	-82.81	8.37	12.0	5.1	114/43/70	293	76	129	14	38	4	Inv
a21	2008 08 22	110457.46	-82.75	8.36	27.5	5.0	120/44/73	300	78	132	12	42	2	Inv
a22	2008 11 19	061125.64	-82.77	8.23	42.1	6.3	16/66/-156	326	1	57	56	235	34	Lat
a23	2009 09 06	050247.84	-83.02	8.66	55.0	5.1	332/32/-127	127	2	26	80	217	10	Nor

Tabla 4.0 Mecanismos focales reportados por el Global CMT Project en la zona 1 y alrededores.

Indicaciones. **no**.: numeración asignada al evento, **fecha**: año, mes y día, **hhmmss.ss**: horas, minutos y segundos, **lon**.: longitud, **lat**.: latitud, **prof**.: profundidad (en km), **M**: magnitud de momento (Mw), **PF**: plano de falla designado con rumbo(**st**)/buzamiento o inclinación (**dp**)/deslizamiento (**rk**); **T**: eje de tensión, **B**: eje intermedio y **P**: eje de presión, respectivamente, en donde, **Az**: rumbo y **pl**: echado. **Reg**.: Régimen o tipo de fallamento: Inv = inverso, Nor = normal, Lat = lateral, DD = no determinado. Para la determinación del régimen se utilizó la clasificación de Zoback (1992). Los eventos resaltados en negrita indican que son mecanismos determinados por el Global CMT Project re-ubicados y cuya posición (longitud, latitud y profundidad) mostrada en la tabla son las asignadas por el CASC para eventos en el periodo 1992—2006. Cabe recordar que el método CMT (centroid moment tensor) invierte dos partes del sismograma: ondas de cuerpo de largo periodo (T > 40 s) y ondas de superficie de muy largo periodo (T > 135 s), llamadas ondas del manto (Stein y Wysession, 2003). Por tanto, las soluciones CMT, emplean formas de onda completas, dando por resultado el centroide, o localización promedio, en espacio y tiempo, de la energía sísmica liberada. En cambio, las localizaciones del CASC se basan en los tiempos de arribo de las ondas de cuerpo P y S, las cuales son marcadas y nos proporcionan el hipocentro o punto en el espacio donde inició la ruptura.

Se examinaron los mecanismos focales dados por el Global CMT Project, para eventos dentro del nido Burica como también para eventos en el perfil SCR (A-A'). La recopilación de estos mecanismos focales se presenta en la Tabla 4.1.

no.	Fecha	Hora	Long	Lat	Prof	М	PF1	Т		В		Р		Reg
		hhmmss.ss	(grados)	(grados)	(km)	(M w)	st/dp/rk	Az	pl	Az	pl	Az	pl	
a1	1977 08 07	070812.60	-82.88	8.845	22.4	6.0	325/33/115	352	70	123	13	217	15	Inv
a2	1979 07 01	203803.00	-83.09	8.15	10.0	6.2	146/32/-106	68	14	160	9	282	74	Nor
a3	1979 07 02	061812.10	-83.11	8.53	15.0	5.5	283/32/40	101	57	328	24	228	21	Inv
a4	1979 08 24	042700.80	-83.31	9.02	22.2	6.4	306/28/102	7	72	115	6	207	17	Inv
a5	1983 04 03	025021.40	-83.25	8.85	28.0	7.4	310/25/110	1	67	112	9	205	21	Inv
a6	1983 09 23	234430.50	-83.37	8.13	11.3	5.6	281/39/89	16	84	282	0	192	6	Inv
a7	1984 04 09	124938.30	-83.21	8.72	28.9	5.2	312/25/115	356	65	109	10	203	22	Inv
a8	1987 03 21	120905.70	-83.44	8.77	33.0	5.8	189/48/-169	147	22	263	47	41	35	DD
a9	1988 03 11	034505.90	-83.15	9.48	37.4	6.0	248/55/-9	110	18	354	54	211	30	Lat
a10	1990 04 28	012319.70	-83.48	8.95	15.0	6.3	317/30/118	347	68	113	14	207	17	Inv
a11	1991 04 22	215712.30	-82.77	10.10	15.0	7.6	103/25/58	249	63	133	13	37	23	Inv
a12	1991 05 04	034302.70	-82.34	9.88	15.0	6.1	138/21/105	203	65	304	5	37	25	Inv
a13	1991 05 27	184036.00	-82.64	9.54	15.0	5.7	151/9/108	219	53	313	3	45	36	DD
a14	1991 12 21	220214.60	-82.75	8.36	33.0	5.1	188/61/176	147	22	285	61	50	17	Lat
a15	1994 10 31	225928.90	-83.376	8.41	12.3	5.6	0/14/-39	228	35	131	11	26	53	DD
a16	1998 08 04	004840.20	-82.76	8.41	28.3	5.2	325/32/94	41	77	141	2	232	13	Inv
a17	1998 10 01	204411.00	-82.47	9.65	29.0	5.3	155/34/135	157	60	296	23	33	18	Inv
a18	2001 11 09	004803.10	-82.215	9.728	15.0	6.0	320/32/126	335	65	109	18	205	17	Inv

Tabla 4.1 Mecanismos focales del Global CMT Project con magnitudes $Mw \ge 5.0$ que se ubicaron en el perfil SCR (A—A') para el periodo 1977—2009.

a19	2002 02 03	205934.30	-82.46	9.69	15.0	5.0	313/26/94	35	71	130	2	221	19	Inv
a20	2002 07 31	001653.60	-82.828	7.883	10.0	6.5	260/73/-1	124	11	353	73	216	13	Lat
a21	2002 08 03	023909.70	-83.897	8.358	26.8	5.8	113/77/10	337	16	165	74	67	2	Lat
a22	2003 12 25	071116.90	-82.771	8.320	22.5	6.5	12/85/176	327	7	143	83	237	1	Lat
a23	2004 01 07	104239.90	-82.799	8.362	24.6	5.5	36/59/177	356	24	132	58	258	20	DD
a24	2004 02 04	115950.67	-83.027	8.309	23.7	6.1	88/72/-8	313	7	203	70	45	19	Lat
a25	2005 06 30	212639.55	-82.834	8.407	11.6	5.9	334/38/111	353	74	137	13	229	9	Inv
a26	2006 05 01	091336.28	-82.967	7.974	10.0	5.5	317/33/80	78	76	325	5	234	12	Inv
a27	2006 05 02	025101.54	-82.967	8.651	6.1	5.2	317/28/78	75	72	328	6	236	17	Inv
a28	2008 05 26	150138.64	-82.88	8.38	12.0	5.6	302/42/82	96	84	308	5	218	3	Inv
a29	2008 05 26	153805.64	-82.89	8.47	12.0	5.1	106/31/82	220	76	113	4	22	14	Inv
a30	2008 05 30	053541.80	-82.81	8.37	12.0	5.1	114/43/70	293	76	129	14	38	4	Inv
a31	2008 08 22	110457.46	-82.75	8.36	27.5	5.0	120/44/73	300	78	132	12	42	2	Inv
a32	2009 03 11	172442.92	-83.18	8.55	18.8	5.9	291/25/86	30	70	295	2	204	20	Inv
a33	2009 03 11	210403.95	-83.22	8.52	22.2	5.9	150/44/115	145	73	311	17	42	4	Inv
a34	2009 03 13	173316.00	-83.20	8.58	25.0	5.1	171/32/134	178	61	312	21	50	20	Inv
a35	2009 05 08	083356.49	-82.79	8.88	28.3	5.0	93/63/20	311	32	146	57	45	7	Lat
a36	2009 09 06	050247.84	-83.02	8.66	55.0	5.1	332/32/-127	269	18	5	19	138	64	Nor

Los encabezados de las columnas son los mismos que en la Tabla 4.0

El resultado del perfil sísmico SCR con los mecanismos focales reportados por el Global CMT Project se muestra en la Figura 4.4. Se observa que al suroeste de Panamá, la distribución de hipocentros es muy somera, la mayoría de los eventos (74%) fueron ubicados en el rango de 0 a 20 km de profundidad. En el rango de 20 a 50 km de profundidad se encuentra el 26% de los eventos y no hubo eventos en el rango de profundidades de 50 hasta los 70 km, lo cual es consistente con los resultados de Protti et al. (1994) y Arroyo (2001) al sureste de Costa Rica. Ambos autores reportaron ausencia de eventos a profundidades mayores que los 50 km.

Los mecanismos inversos (a3, a25, a28, a29, a30 y a32) mostrados en la Figura 4.4, se encuentran dentro del nido Burica y por la orientación de los cuadrantes de dilatación y compresión sugieren consistencia con ejes de compresión horizontales y de tensión casi verticales.

Los mecanismos a21, a22 y a24, mostrado en el perfil de la Figura 4.4, son de tipo lateral derecho y a7, a16, a31, a33 y a34 de tipo inversos. a8 y a23 caen en la categoría de régimen de esfuerzo desconocido, según la clasificación de Zoback, 1992 (Apéndice 2).

En la Figura 4.4, los mecanismos a11, a12, a18 y a19 son de tipo inverso, lo cual es consistente con un bajo-cabalgamiento del Bloque de Panamá sobre la placa del Caribe. La ubicación de hipocentros y los mecanismos focales sugieren que la cresta de Cocos no se extiende más allá de los 75 km al norte de la trinchera.

Figura 4.4 Perfil SCR (A—A') en el cual se muestran los eventos reportados por el CASC (círculos negros) en la Zona 1, para el periodo 1992—2006, con una incertidumbre en las localizaciones ≤ 15 km. Las estrellas blancas representan la ubicación de los eventos con $Mw \geq 5.0$ reportados en el catálogo del Global CMT Project para el periodo 1976—2009. Se han adicionado a los eventos del Global CMT Project la proyección lateral de sus mecanismos focales (mecanismos en color gris). Los números que acompañan a cada mecanismos focal representan el orden asignado en la Tabla 4.1. Los mecanismos focales en color negro representan eventos reportados en catálogo del Global CMT Project que fueron re-ubicados en este trabajo a las posiciones reportadas por el CASC.

Dado que en está zona se encontró una concentración de sismos (que fue nombrado como nido Burica), este se analizó aplicando el programa VELEST opción JHD. Para correr el programa, primero se extrajeron del sub-catálogo los eventos que se encuentran dentro del nido Burica. La Figura 4.5a muestra dicho conjunto de eventos antes de realizar la corrida de VELEST y en la Figura 4.5b el mismo conjunto de eventos después de la corrida del programa. Como resultado, se observa un desplazamiento de 8 eventos en sentido E-W y N-S, por lo que no se observa ninguna dirección particular hacia la cual se hayan desplazado o alineado los eventos. Ejecutamos por segunda vez el programa VELEST, para verificar si se formaba o no algún patrón, esta vez, restringiendo el conjunto de sismos por re-localizar a aquellos que se agrupan dentro del rectángulo que se muestra en la Figura 4.5b. El resultado de la corrida de VELEST se muestra en la Figura 4.5c en la cual no se observa ningún patrón de sismicidad que pueda asociarse con alguna de las estructuras geológicas identificadas hasta el momento en la península de Burica, esto es, no se observa una alineación de los 9 eventos que se re-ubicaron en forma dispersa al sur. Este resultado confirma lo indicado por Adamek et al. (1988), en relación a la dificultad de aplicar la técnica de JHD en esta zona, ya que se requiere de una buena distribución de estaciones para la exitosa aplicación de JHD. En esta zona la relocalización de eventos presenta el problema de la falta de estaciones en el océano Pacífico, cuadrante SW. A diferencia del trabajo de Adamek et al. (1988), en esta investigación se contó con datos de estaciones locales, lo que supondría una mejora en la incertidumbre de las localizaciones y profundidades focales de los eventos, de hecho, por ello se consideró que sería factible la aplicación de la técnica JHD, ya que ello ayudaría a mostrar alguna alineación de los eventos con las estructuras. El resultado obtenido sugiere que, entre otras cosas, la distribución azimutal de las estaciones influye de forma importante en la aplicación de la técnica JHD.

Figura 4.5a Ubicación de los eventos dentro de la agrupación antes de la corrida del programa VELEST opción JHD.

Figura 4.5b Ubicación de los eventos que forman la agrupación después de la corrida del programa VELEST opción JHD. El rectángulo menor encierra eventos que fueron considerados para correr por segunda vez el programa VELEST.

Figura 4.5c Ubicación de los eventos que forman la agrupación luego de ejecutar el programa VELEST opción JHD por segunda vez.

Zona 2

La distribución espacial de la sismicidad en la zona 2 se muestra en la Figura 4.6. Se realizaron dos perfiles PA1 (B-B') y PA2 (C-C') en esta zona los cuales son mostrados en planta en la Figura 4.6. Se observa que en la península de Burica hay una alta sismicidad y en que en el Golfo de Chiriquí, entre los meridianos 82° y 83° de longitud oeste hay una baja sismicidad.

En el perfil PA1 visto en planta (Figura 4.6), al norte de la península de Burica, se observa la concentración de eventos que se analizó al estudiar la zona 1. Más al norte del nido Burica se tienen 28 eventos que podrían estar relacionados con la Falla Longitudinal o con la Falla Canoas. Mientras que, hacia el Caribe, se tienen 7 eventos que podrían estar asociados con el CDNP o con un sistema de plegamientos al noroeste de Panamá.

En el caso del perfil PA2 visto en planta, no se observa ninguna concentración significativa de eventos. Al sur de la trinchera la red de estaciones del CASC tienen sólo dos eventos reportados para el periodo 1992-2006 con incertidumbre ≤ 15 km. Entre la trinchera y la margen continental se tiene una sismicidad dispersa. Esta sismicidad sugiere una franja que se curva a partir del punto de contacto de la ZFB con la trinchera, en dirección noroeste, hacia la península de Burica. Del margen continental en dirección al norte se tienen 11 eventos alrededor del volcán Barú, posiblemente asociadas con sistemas de fallas que lo rodean, más al norte 4 eventos cercanos al sistema de plegamientos del noroeste de Panamá y otros cercanos al CDNP, a los cuales se sugiere que están asociados.

Figura 4.6. Distribución de epicentros (círculos) de los eventos en el perfil PA1 (B—B') y PA2 (C—C') elaborados para el análisis de la Zona 2.

La representación del perfil PA1 (B-B') se muestra en la Figura 4.7 donde se tiene lo siguiente: (a) Sólo se tiene un evento con incertidumbre ≤ 15 km ubicado al sur de la trinchera. (b) La sismicidad se mantiene somera y los eventos registrados no superan los 50 km de profundidad, (c) Entre la posición de la trinchera y punta Burica la poca sismicidad reportada es dispersa y no supera los 30 km de profundidad. (d)

Aproximadamente a 30 km, a partir de punta Burica en dirección al norte, inicia una concentración de eventos que se extiende en superficie unos 25 km y hasta casi los 30 km en profundidad, la cual ya ha sido discutida (en resultados de la Zona 1) (e) Entre las distancias 280 km y 315 km con respecto al extremo B el perfil, se encuentran los eventos más profundos de este perfil, los cuales llegan hasta casi 50 km en profundidad. Más al norte de la distancia 315 km, los pocos eventos dispersos se van haciendo cada vez más someros hasta llegar al extremo del perfil.

En esta zona se encontraron 38 mecanismos focales para el perfil PA1, ordenados en la Tabla 4.1, y 39 para el perfil PA2, presentados en la Tabla 4.2, todos ellos reportados por el Global CMT Project. Los mecanismos focales (presentados en proyección lateral) que se muestran en la Figura 4.7 son tomados de la Tabla 4.2. Como se puede apreciar en la figura todos los mecanismos al sur del punto triple son del tipo transformante, con plano de falla vertical o semi-vertical, con movimiento lateral derecho, consistentes con la zona de Fractura de Panamá orientada norte-sur. A partir de la trinchera hasta la región del nido Burica los mecanismos focales son transformantes en su mayoría (b29, b13,b11, b15 y b17) y con una pequeña componente inversa el mecanismo b12. Entre Punta Burica y el nido Burica, hasta los 20 km de profundidad, los mecanismos son diversos (por ejemplo: a2 normal, a3 inverso, a14 lateral, a22 normal, a23 inverso). En este mismo sector (entre Punta Burica y el nido Burica, en dirección al norte (hacia B'), los mecanismos en general son inversos.

Figura 4.7 Perfil PA1 (B—B') en el cual se muestran los eventos reportados por el CASC (círculos negros) en la Zona 2, para el periodo 1992—2006, con una incertidumbre en la localización ≤ 15 km. Las estrellas blancas representan la ubicación de los eventos con Mw ≥ 5.0 reportados en el catálogo del Global CMT Project para el periodo 1976—2009. Se han adicionado a los eventos del Global CMT Project la proyección lateral de sus mecanismos focales (mecanismos en color gris). Los números que acompañan a cada mecanismos focal representan el orden asignado en la Tabla 4.2. Los mecanismos focales en color negro representan eventos reportados en catálogo del Global CMT Project que fueron re-ubicados en este trabajo a las posiciones reportadas por el CASC.

En el perfil PA2 (Figura 4.8) se puede ver que la sismicidad es menor en comparación con el perfil PA1 y continúa siendo somera, no superando los 40 km de profundidad. Entre la posición de la trinchera y la distancia 180 km, se tiene un cierto nivel de agrupamiento de los eventos comparado con el resto de la sismicidad observada en este perfil. Este perfil no mostró ningún patrón de sismicidad en profundidad que nos diese evidencias de un slab subduciendo. No se tiene sismicidad en el rango de 50 a 70 km de profundidad. En cuanto a los mecanismos del Global CMT Project que se determinaron en este perfil se localizaron 19 mecanismos focales al sur de la posición de la trinchera, todos ubicados en un rango de 10 a 25 km de profundidad y la mayoría de ellos fijados a 15 km de profundidad por el Global CMT Project. Estos mecanismos focales presentan soluciones de fallamiento de deslizamiento de rumbo tipo lateral derecho, con una orientación norte-sur basada en la evidencia geológica que representa la existencia de la Zona de Fractura de Panamá y la Zona de Fractura de Balboa.

Estos resultados son compatibles con el trabajo de Adamek et al. (1988) quienes proponen una división de la ZFP en dos fallas al norte de los 6° N. Dado el nivel de incertidumbre de las localizaciones regionales no es posible asociar estos eventos con una u otra de estas dos zonas de fractura. De la posición de la trinchera hasta la distancia 180 km se tienen 8 mecanismos focales, todos también de fallamiento transcurrente lateral derecho con orientaciones norte-sur en general. Hacia el extremo norte del perfil (hacia C') los mecanismos son inversos, lo cual sugiere bajo-cabalgamiento del Bloque de Panamá sobre la placa del Caribe, ello es consistente con los resultados de Camacho et al. (2010).

Heil y Silver (1987) proponen que en el Golfo de Chiriquí se presenta subducción oblicua de bajo ángulo, de forma bastante asísmica, la cual sugieren es el resultado del bajo-cabalgamiento de la cresta de Cocos por debajo del Bloque de Panamá, además, sugieren que podría ser la terminación norte de la ZFP.

Figura 4.8 Perfil PA2 (C—C') en el cual se muestran los eventos reportados por el CASC (círculos negros) en la Zona 2, para el periodo 1992—2006, con una incertidumbre en la localización ≤ 15 km. Las estrellas blancas representan la ubicación de los eventos con $Mw \geq 5.0$ reportados en el catálogo del Global CMT Project para el periodo 1976—2009. Se han adicionado a los eventos del Global CMT Project la proyección lateral de sus mecanismos focales (mecanismos en color gris). Los números que acompañan a cada mecanismos focal representan el orden asignado en la Tabla 4.3. Los mecanismos focales en color negro representan eventos reportados en catálogo del Global CMT Project que fueron re-ubicados en este trabajo a las posiciones reportadas por el CASC.

No Fecha Hora Lon Lat Prof. Mag PF1 Т B Р Reg hhmmss.ss (grados) (grados) (**km**) $(\mathbf{M}\mathbf{w})$ St/dp/rk az pl az pl az pl 13 1977 08 07 070812.60 -82.88 8.84 325/33/115 352 70 123 217 | 15 | Inv b1 22.4 6.0 b2 1979 07 01 203803.00 -83.09 8.15 10.0 6.2 146/32/-106 68 14 160 9 282 74 Nor b3 1983 05 09 155303.70 -82.87 8.06 11.0 6.2 332/31/142 332 104 24 205 22 Inv 56 1985 06 26 202832.10 -82.83 6.34 10.0 5.4 118/64/7 339 23 192 63 75 13 Lat b4 b5 1987 09 08 025859.60 -82.76 6.52 21.9 6.0 100/67/6 322 20 176 66 56 12 Lat b6 1988 12 08 125857.90 -82.68 6.37 15.0 6.1 163/90/180 118 0 180 90 28 0 Lat 15.0 b7 1990 05 08 000148.40 -82.65 6.99 6.4 265/68/8 126 21 335 67 220 10 Lat 1990 05 27 b8 030345.00 -82.66 696 15.0 5.3 175/90/-180 130 0 180 90 40 0 Lat 1991 12 21 220214.60 -82.75 8.36 33.0 5.1 188/61/176 147 22 285 61 50 17 Lat b9 1998 08 04 004840.20 -82.76 8.41 28.3 5.2 325/32/94 41 141 2 232 | 13 | Inv b10 77 b11 1998 11 17 035803.80 -82.83 7.68 15.0 5.7 355/61/-170 310 13 64 60 213 27 Lat 2000 02 27 7.871 5.4 37 139 4 230 | 18 | Inv b12 161045.00 -82.918 6.0 326/27/99 71 b13 2001 08 25 020204.50 -82.83 7.48 16.0 6.0 351/76/-179 307 9 76 76 215 11 Lat b14 2002 07 31 001653.60 -82.879 8.116 12.4 6.5 260/73/-1 124 11 353 73 216 13 Lat 2002 08 01 191013.30 3.7 5.2 167/90/-180 90 b15 -82.815 7.771 122 0 180 32 0 Lat 2002 08 03 023909.70 -83.02 8.21 15.0 5.8 113/77/10 337 165 74 67 2 Lat b16 16 2002 08 07 5.9 56 b17 235918.80 -82.843 7.864 20.0 351/63/-168 306 11 61 210 27 Lat 2003 12 25 071116.90 -82.771 8.320 22.5 6.5 12/85/176 327 7 143 83 237 1 Lat b18 $2004 \ 01 \ 07$ 104239.90 -82.799 5.5 36/59/177 DD b19 8.362 24.6 356 24 132 58 258 20 2004 02 04 115950.67 -83.027 8.309 23.7 6.1 88/72/-8 313 7 203 70 45 19 Lat b20 b21 2005 06 30 212639.55 -82.834 8.407 11.6 5.9 334/38/111 353 74 137 13 229 9 Inv 215 b22 2006 05 01 074804.93 12.0 121 19 -82.88 8.11 5.9 326/39/121 329 9 68 Inv 5 b23 2006 05 01 091336.28 -82.88 8.13 12.0 5.5 317/33/80 78 76 325 234 12 Inv 75 b24 2006 05 02 025101.54 -82.967 8.651 6.1 5.2 317/28/78 72 328 6 236 17 Inv 2006 05 02 064054.10 -82.930 8.873 5.3 314/34/71 329 10 237 13 Inv b25 16.9 97 74 2008 05 26 150138.64 -82.88 8.38 12.0 5.6 302/42/82 84 308 5 218 3 Inv b26 96 b27 2008 05 26 153805.64 -82.89 8.47 12.0 5.1 106/31/82 220 76 113 4 22 14 Inv b28 2008 05 30 053541.80 -82.81 8.37 12.0 5.1 114/43/70 293 76 129 14 38 4 Inv 2008 08 14 225552.86 -82.79 5.5 263/87/2 325 87 b29 7.26 21.6 128 3 218 1 Lat b30 2008 08 22 110457.46 -82.75 8.36 27.5 5.0 120/44/73 300 78 132 12 42 2 Lat b31 2008 11 19 061125.64 -82.77 8.23 42.1 6.3 16/66/-156 326 1 57 56 235 34 Lat 8.88 57 2009 05 08 083356.49 -82.79 28.3 5.0 93/63/20 311 32 146 45 b32 7 Lat 2009 09 06 050247.84 -83.02 55.0 5.1 332/32/-127 269 18 5 19 138 Nor b33 8.66 64 2009 09 27 111838.77 -82.66 5.0 262/81/-6 127 2 80 217 10 Lat b34 6.45 12.0 26 b35 2009 10 22 005143.42 -82.69 22.5 5.9 7 91 6.64 354/82/179 309 82 218 5 Lat

Tabla 4.2 Mecanismos focales reportados por el Global CMT Project con magnitudes $Mw \ge 5.0$ que se ubicaron en el perfil PA1 (B—B') para el periodo1977—2009.

Los encabezados de las columnas son los mismos que en la Tabla 4.0.

No	fecha	Hora	Lon	Lat	Prof.	Mag	PF1	Т		В		Р		Reg
		hhmmss.ss	(grados)	(grados)	(km)	(M w)	St/dp/rk	Az	pl	az	pl	Az	pl	
c1	1979 06 27	095010.40	-82.40	7.05	15.0	6.3	5/76/173	321	15	121	74	230	5	Lat
c2	1979 06 30	083305.00	-82.48	7.37	15.0	5.5	4/64/-173	320	14	79	63	224	23	Lat
c3	1983 02 09	210543.10	-82.61	8.42	25.0	5.4	358/52/-164	313	16	62	49	210	36	Lat
c4	1983 04 07	192916.00	-82.54	7.80	20.0	5.9	311/22/113	1	64	109	9	203	24	Inv
c5	1983 04 07	204648.00	-82.59	8.21	15.0	5.5	293/15/96	14	60	107	2	198	30	Inv
c6	1983 10 12	033942.80	-82.53	7.96	22.6	6.0	296/24/92	22	69	114	1	204	21	Inv
c7	1984 04 16	141853.70	-82.39	6.91	10.0	5.7	357/57/-173	314	18	74	57	215	27	Lat
c8	1986 08 12	040725.10	-82.47	6.00	15.0	5.8	358/70/175	316	17	102	70	223	11	Lat
c9	1987 06 19	125658.30	-82.46	7.30	15.0	5.3	0/71/176	317	16	101	70	224	11	Lat
c10	1987 06 22	192342.10	-82.44	7.44	15.0	5.7	1/74/168	318	20	128	70	227	3	Lat
c11	1989 06 15	193253.70	-82.29	6.78	15.0	5.5	0/76/171	316	16	124	73	225	3	Lat
c12	1990 08 30	183306.90	-82.53	6.42	15.0	5.5	358/78/-169	312	1	45	74	222	16	Lat
c13	1990 12 17	110033.20	-82.20	6.85	15.0	6.2	354/63/171	314	25	104	62	218	13	Lat
c14	1991 05 04	034302.70	-82.34	9.88	15.0	6.1	138/21/105	203	65	304	5	37	25	Inv
c15	1991 05 27	184036.00	-82.64	9.54	15.0	5.7	151/9/108	219	53	313	3	45	36	DD
c16	1992 05 18	231925.50	-82.30	7.39	15.0	6.3	93/79/10	317	15	141	75	47	1	Lat
c17	1992 06 26	113234.50	-82.40	6.36	15.0	5.8	61/36/-94	334	9	64	3	170	81	Nor
c18	1994 07 04	145601.80	-82.38	7.49	15.0	5.5	87/60/6	306	25	165	59	44	17	Lat
c19	1995 02 05	203716.20	-82.64	6.69	15.0	6.0	352/82/174	308	10	120	80	218	1	Lat
c20	1995 02 28	211218.10	-82.31	6.77	15.0	6.0	2/73/173	319	17	115	72	227	7	Lat
c21	1997 04 01	151153.90	-82.445	7.638	0.0	6.1	85/78/9	309	14	138	76	39	2	Lat
c22	1997 05 19	022557.10	-82.27	6.57	15.0	5.8	2/69/172	320	20	114	68	227	9	Lat
c23	1998 10 01	204411.00	-82.47	9.65	29.0	5.3	155/34/135	157	60	296	23	33	18	Inv
c24	1999 01 27	101356.90	-82.59	6.55	15.0	5.7	354/79/178	310	9	92	78	219	7	Lat
c25	1999 06 03	141736.30	-82.23	7.23	15.0	5.2	189/66/179	146	17	281	66	51	16	Lat
c26	2001 11 09	004803.10	-82.215	9.728	15.7	6.0	320/32/126	335	65	109	18	205	17	Inv
c27	2002 02 03	205934.30	-82.46	9.69	15.0	5.0	313/26/94	35	71	130	2	221	19	Inv
c28	2002 07 31	044523.80	-82.60	7.93	15.0	5.2	261/45/28	104	47	314	38	211	16	InLt
c29	2003 04 11	061259.36	-82.379	7.030	20.0	6.1	6/82/177	322	8	119	82	231	3	Lat
c30	2004 02 16	100432.36	-82.57	6.09	18.1	5.4	357/78/171	313	15	126	75	222	2	Lat
c31	2005 08 27	183824.19	-82.310	6.845	13.0	6.1	5/82/178	320	7	110	82	230	4	Lat
c32	2005 12 21	143243.27	-82.63	6.61	15.0	5.8	352/72/180	309	13	83	72	216	13	Lat
c33	2005 12 30	182649.93	-82.364	7.486	0.1	6.1	0/78/178	316	10	102	78	225	7	Lat
c34	2006 01 06	034002.37	-82.35	6.60	15.0	6.0	4/76/-179	320	9	92	76	228	10	Lat
c35	2008 01 24	041219.09	-82.35	6.93	18.2	5.9	5/80/175	321	11	124	79	230	3	Lat
c36	2008 10 22	095220.07	-82.28	6.54	23.4	5.0	4/89/-179	319	0	69	89	229	1	Lat

Tabla 4.3 Mecanismos focales reportados por el Global CMT project con magnitudes $Mw \ge 5.0$ que se ubicaron en el perfil PA2 (C—C') para el periodo 1977—2009.

Los encabezados de las columnas son los mismos que en la Tabla 4.0.

Zona 3

La distribución de la sismicidad en la zona 3 se presenta en el mapa de la Figura 4.9. Como se muestra se tienen reportados por el CASC, para el periodo 1992-2006, solamente siete eventos (círculos oscuros) con incertidumbre en las localizaciones ≤ 15 km. Dos eventos se localizan en la región retroarco al norte del Istmo de Panamá y el resto está en el Golfo de Chiriquí, al este de la isla de Coiba. De la revisión del catálogo en línea del Global CMT Project se obtuvieron los siete mecanismos focales reportados para la zona 3. Con estos mecanismos focales se elaboró la Tabla 4.4 y fueron incorporados a la Figura 4.9, en donde se observa que todos corresponden a fallamiento transforme lateral derecho, con orientación en general norte-sur.

El perfil PA3 se muestra en la Figura 4.10. En este perfil sólo se tienen siete eventos, todos someros de los cuales sólo uno está a una profundidad apenas superior a los 20 km. Ahora bien, se añadieron a este perfil siete mecanismos focales del Global CMT Project. Dos soluciones se ubican al sur de la trinchera, las cuales muestran mecanismos del tipo deslizamiento de rumbo lateral derecho, con orientación norte-sur. A partir de la trinchera hasta la distancia 190 km se encuentran cuatro eventos con profundidad fijada a 15 km y otro a los 23 km. Los mecanismos de estos cuatro eventos son mayormente de deslizamiento de rumbo lateral derecho, con orientación norte-sur y una componente inversa.

Figura 4.9. Distribución epicentral de eventos (círculos negros) reportados por el CASC para el periodo 1992-2006, dentro del perfil PA3 (D-D') elaborado para el análisis de la Zona 3. Se muestran también la ubicación (estrellas blancas) de eventos reportados por el Global CMT Project y sus respectivos mecanismos focales. En los mecanismos focales las cruces indican la posición de los ejes P y círculos de los ejes T.

Figura 4.10. Perfil PA3 (C—C') en el cual se muestran los eventos reportados por el CASC (círculos oscuros) en la Zona 3, para el periodo 1992—2006, con una incertidumbre en las localizaciones ≤ 15 km. Las estrellas blancas representan la ubicación de los eventos con $Mw \geq 5.0$ reportados en el catálogo del Global CMT Project para el periodo 1976—2009. Se han adicionado a los eventos del Global CMT Project la proyección lateral de sus mecanismos focales (mecanismos en color gris). Los números que acompañan a cada mecanismo focal son los asignados en la Tabla 4.4.

Tabla 4.4 Mecanismos focales del Global CMT Project con magnitudes $Mw \ge 5.0$ que se ubicaron en el perfil PA3 (D-D') para el periodo 1977-2009.

no.	Fecha	Hora	Lon	Lat	Prof	Mag	PF1	Т		В		Р		Reg
	aaaa mm dd	hhmmss.ss	(grados)	(grados)	(km)	(Mw)	st / dp / rk	az	pl	az	pl	az	pl	
d1	1982 08 19	155912.70	-82.15	6.62	25.3	6.8	86/53/0	304	25	176	53	47	26	DD
d2	1982 12 09	082552.70	-81.79	7.49	15.0	5.6	182/90/180	137	0	180	90	47	0	Lat
d3	1983 11 26	201827.20	-81.92	6.79	41.9	6.3	357/72/-177	313	11	79	71	220	15	Lat
d4	2002 11 19	210855.00	-82.02	7.05	15.0	5.1	107/58/8	326	27	183	58	64	17	Lat
d5	2003 02 01	134749.97	-81.76	7.45	23.5	5.5	293/78/1	157	9	19	78	248	8	Lat
d6	2003 09 04	211340.34	-82.16	7.36	15.0	5.1	110/60/6	329	25	188	60	67	17	Lat
d7	2003 09 04	234013.36	-82.16	7.61	15.0	5.7	283/75/-11	149	3	49	72	240	18	Lat

Los encabezados de las columnas son los mismos que en la Tabla 4.0.

V. DISCUSION

Se ha elaborado a partir de las localizaciones de sismos del CASC un sub-catálogo sísmico para la región fronteriza Costa Rica—Panamá que consta de 388 eventos con magnitudes de coda $M \ge 4.0$ y cuyas incertidumbres en el cálculo de las localizaciones son ≤ 15 km. El CASC estimaba que sus localizaciones tendrían incertidumbres de 10 km en esta zona y el análisis de dichas incertidumbres era un trabajo pendiente que gracias a esta tesis por primera vez ha sido realizado.

Se observa un leve aumento gradual de la profundidad de los focos de sur a norte lo que puede sugerir que los sismos se generan bajo diferentes regímenes de deformación. Sin embargo, esta idea no puede ser confirmada por el momento dado el nivel de las incertidumbres en las localizaciones de los focos.

Zona 1

El resultado del perfil realizado en este estudio muestra que la sismicidad es somera en el sureste de Costa Rica y suroeste de Panamá, lo cual es consistente con los estudios mencionados previamente (Protti et al., 1994; Arroyo, 2001).

Corrigan et al. (1990) propusieron que la compensación isostática relacionada con la subducción inicial de la corteza oceánica engrosada (~14 km) de la cresta de Cocos es principalmente la responsable del levantamiento y deformación del antearco exterior en dirección al continente desde la cresta de Cocos. Además, la compresión sub-horizontal es incrementada debida a los esfuerzos de cizalla que genera la colisión de la cresta de Cocos contra la base de la corteza del antearco interno lo cual puede jugar un papel secundario en la producción de deformación observada lo largo de la región del antearco interno.

Estos dos tipos de respuestas son posibles a causa de una discontinuidad cortical mayor, cuya expresión en la superficie, sugieren Corrigan et al. (1990), sería la zona de

Falla Longitudinal (en el sureste de Costa Rica y suroeste de Panamá), separando las regiones antearco interno y externo (Figura 4.3). Esta interpretación es consistente con los datos de sismicidad (Adamek y otros, 1987), que muestran que dos grandes sismos (Ms > 7.0) de mecanismo inverso registrados en esta región localizados cerca del límite entre el antearco interno y externo a lo largo de lo que probablemente es el contacto entre la base de corteza del antearco interno y la cresta de Cocos subduciendo (Figura 4.3).

Basados en el tamaño del área de distribución de las réplicas, y de la duración del periodo de réplicas asociadas al evento del 3 de Abril, 1983 (Ms=7.3), evento principal de tipo inverso, Adamek y colaboradores (1987) infieren que el paso de la cresta de Cocos por debajo del arco es marcado por un acoplamiento relativamente débil, heterogéneo (caracterizado por réplicas pequeñas y gran área de expansión), mientras que, por debajo de la región antearco externo, en las penínsulas de Osa y Burica, se presenta un fuerte acoplamiento, más homogéneo (rotura principal, gran relajación del momento). Corrigan et al. (1990) sugieren que un acoplamiento relativamente fuerte, entre las placas, por debajo de la región antearco, en dirección hacia los arcos de las penínsulas de Osa y Burica, representan la interacción entre la parte subducida de la cresta de Cocos y el basamento cristalino del arco. Acoplamiento débil y más heterogéneo por debajo de las penínsulas de Osa y Burica ocurre a causa de que la corteza del antearco externo es eficazmente "separada" de la corteza del arco a lo largo de una amplia discontinuidad de gran ángulo que se manifiesta hoy día en la superficie por la zona de Falla Longitudinal.

Zona 2

La sismicidad encontrada en las Figuras 4.6 y 4.7 podría corresponder con las prolongaciones del fallamiento transformante de la zona de Fractura de Panamá y de la zona de Fractura de Balboa.

Por lo tanto, la región de la trinchera para ambos perfiles vistos en planta manifiesta una sismicidad somera, la cual, posiblemente se asocia con un activo e incipiente proceso de subducción de la placa de Nazca por debajo del Bloque de Panamá, arrastrando consigo la zona de fractura de Balboa. Otra posibilidad es que parte de estos eventos estén asociados con la zona de fallas de Coiba, tanto la falla central como la falla sur. Esta sismicidad es consistente con un punto triple inestable (i.e. punto en el cual tres placas litosféricas limitan entre sí y debido al comportamiento dinámico de las mismas los vectores de velocidad relativa no se interceptan, es decir, la suma de los vectores de velocidad relativa en espacio de velocidades no es nula) migrando hacia el sureste como ha sido propuesto por Morell et al. (2008).

Los perfiles PA1 y PA2 muestran que la actividad sísmica hacia tierra firme es somera y muy concentrada en la península de Burica, mientras que, hacia el Golfo de Chiriquí es muy escasa y dispersa. Al noreste del Golfo de Chiriquí, en tierra firme no se observa sismicidad salvo alrededor del volcán Barú. Estos resultados son consistentes con los encontrados por Camacho (1991), que propone que la extensión o proyección de la zona de Fractura de Panamá se continúa en tierra firme a lo largo del eje de la península de Burica y al llegar al anticlinal Madre Vieja (AMV) se curva hacia el noroeste.

Zona 3

Los resultados del mapa (Figura 4.9) y del perfil (Figura 4.10) en la zona 3 sugieren que existe actividad sísmica y que dicha actividad puede estar relacionada con una prolongación de la ZFC proyectándose en el antearco externo. Los mecanismos focales (Figura 4.9) sugieren una prolongación de la ZFC hacia el antearco externo del Bloque de Panamá.

En esta zona se ha sugerido (Kolarsky y Mann, 1995; Moore y Sender 1995; Lonsdale y Klitgord, 1978); que la placa de Nazca presenta un movimiento de subducción activo, y que al este de la isla de Coiba se da una transición hacia un movimiento transformante lateral izquierdo de rumbo este-oeste entre el Bloque de Panamá y la placa de Nazca. En

los trabajos de Heil (1987), MacKay y Moore (1990) y Silver et al. (1990) se indica que las crestas de Panamá, Balboa y Coiba son subducidas con la placa de Nazca bajo el cinturón deformado del sur de Panamá y deforman tanto el cinturón y el área del Golfo de Chiriquí por un margen de indentación, fallamiento inverso y levantamiento.

Kolarsky y Mann (1995) encontraron que la placa de Nazca está subduciendo por debajo del cinturón deformado del sur de Panamá en dirección noreste, esta tiene un buzamiento de aproximadamente 6° y que las pendientes del gran buzamiento del antearco externo están inclinadas hacia una amplia cuña de acreción de 30 km de ancho. Se ha sugerido por de Boer et al. (1991) que la subducción, y no el deslizamiento de rumbo, domina la interacción de la placa de Nazca con el Bloque de Panamá. Sin embargo, no hay evidencia de sismicidad profunda asociada con un slab subducido del Mioceno para rocas del arco cuaternario del oeste de Panamá.

Los resultados obtenidos en la zona 3 de los pocos eventos que se tienen en el catálogo del CASC no permiten afirmar o refutar la controversia que existe y permanece aún en esta zona sobre el tipo de movimiento de placas que predomina: subducción oblicua somera de la placa de Nazca por debajo del Bloque de Panamá, escape lateral del suroeste de Panamá de la zona colisional de la cresta de Cocos o deformación del Bloque de Panamá por la colisión con el continente sudamericano.

Dado que en la región de estudio, suroeste de Panamá, se presenta una litosfera joven pudiese ser que la geometría de la subducción sea subhorizontal, como se ha sugerido para el sureste de Costa Rica por Bundschuh y Alvarado (2007).

El tipo de actividad sísmica que se presenta en el suroeste de Panamá está representada por sismos de profundidad superficial. Para los sismos que ocurren entre la trinchera y la línea de costa, a lo ancho de la zona de fractura de Panamá, los mecanismos focales presentan planos nodales verticales orientados norte-sur consistentes con prolongaciones de las zonas de fractura atravesando la trinchera. En la península de

Burica los eventos presentan mecanismos diversos lo que sugiere un nivel alto de deformación. La existencia de nucleación de eventos sugiere un proceso compresivo muy heterogéneo.

La falta de mayor cantidad de información sísmica de buena calidad no permite esclarecer la controversia sobre la geometría de la zona Wadati-Benioff en el suroeste de Panamá.

De los datos de sismicidad y mecanismos focales de los sismos analizados en el presente trabajo, se sugiere que el suroeste de Panamá se encuentra sometido a un régimen de compresión sub-horizontal bastante perpendicular al extremo sur de la trinchera Mesoamericana, justo en la región del punto triple. Dicho régimen está asociado a actividad sísmica poco profunda y se sugiere que es el resultado del proceso de convergencia entre la cresta de Cocos y el Bloque de Panamá. El despliegue de la zona de fractura de Panamá es causado posiblemente por el re-acomodo de los límites de placas al migrar el punto triple Cocos-Nazca-Bloque de Panamá.

VI. CONCLUSIONES

Zona 1. Se ha estudiado la existencia de la nucleación de eventos sísmicos (nido Burica) con mecanismos focales que sugieren un régimen de esfuerzo compresional de moderado a fuerte (Figura 4.3). El perfil sísmico muestra una sismicidad la cual no define un patrón específico de subducción de la cresta de Cocos por debajo del Bloque de Panamá. La sismicidad y mecanismos focales hacia el Caribe son consistentes con un bajo-cabalgamiento del Bloque de Panamá sobre la placa del Caribe.

Zona 2. La sismicidad es somera y el nivel de sismicidad en el Golfo de Chiriquí es mucho menor al que se presenta en la península de Burica (Figura 4.6). Los mecanismos focales (Figura 4.7) sugieren la prolongación de la Zona de Fractura de Panamá hacia el antearco del Bloque de Panamá.

Zona 3. Se observa una sismicidad somera (Figura 4.9) y el nivel de sismicidad detectado alrededor de la isla de Coiba es mucho menor que en la península de Burica. Los 7 mecanismos focales (Figura 4.9 y 4.10) son consistentes con el movimiento de la ZFC indicado por otros autores.

La región interior del borde continental en el suroeste de Panamá es una región deformada y tectónicamente activa. Esta región muestra una continua actividad sísmica que es consistente con dos tipos de movimientos: fallamiento inverso de orientación esteoeste y fallamiento transcurrente lateral derecho con una dirección noroeste-sureste.

La principal característica de la distribución espacial de la sismicidad en el borde continental es su posible alineación con los principales rasgos de la región. La sismicidad difusa que además se observa, puede deberse a características estructurales que no están incluidas en las zonas principales de fractura y/o puede ser debida a las localizaciones imprecisas de los eventos.

A pesar que la precisión de las localizaciones epicentrales al ser filtradas varían desde buenas (≤ 5 km) a deficientes (≤ 20 km) la mayoría (85%) de los eventos están localizados de forma deficiente. Estas localizaciones pueden ser deficientes más probablemente por la distribución bastante alineada de las estaciones centroamericanas.

La sismicidad en la región puede ser considerada como somera o de zona cortical (0 a 25 km) y la relacionamos, por tanto, con fallamiento cortical. Esta sismicidad es consistente con la prolongación en el suroeste de Panamá de los cinturones de fallamiento inverso de deformación de la corteza estudiados por Morell et al. (2007), en el sureste de Costa Rica y confirman la prolongación al noroeste de la península de Burica de la zona de fractura de Panamá propuesta por Camacho (1991).

La zona Wadati-Benioff corresponde a los esfuerzos compresivos interplaca y se caracteriza por generar sismos con profundidades entre 0 y 50 km en el suroeste de Panamá, al margen costero en dirección hacia el continente del extremo norte de la zona de fractura de Panamá y al extremo sureste de Costa Rica, en la frontera de Costa Rica con Panamá.

La actividad sísmica relacionada con estas fuentes constituye una amenaza sísmica significativa debido a su profundidad relativamente superficial (sismos generalmente a menos de 20 km de profundidad), a la magnitud que alcanzan los sismos mayores (entre Mw = 5.0 y Mw = 6.6) y porque sus epicentros se ubican con frecuencia muy cercanos a importantes centros de población en crecimiento. Actualmente no se puede establecer una recurrencia confiable de sismos mayores a partir de los datos sismológicos existentes en la base de datos del CASC.

Las estaciones instaladas en el sureste de Costa Rica y suroeste de Panamá en cuanto a: cobertura azimutal, distancia entre estaciones y distribución de las mismas imposibilita realizar estudios más completos si se desea llegar a un análisis sismotectónico de la región del punto triple. La principal limitación de las localizaciones instrumentales es la deficiente cobertura azimutal de las estaciones. Por distancia no hay inconveniente ya que se tienen estaciones en tierra a menos de 20 km de la región de alta sismicidad. Esta dificultad de estudiar la sismicidad en esta área se debe a que su localización se encuentra en la península de Burica, la cual es una zona extrema para ambos países y sus redes sísmicas. Dado que, el modelo de velocidades empleado por el CASC es regional consideramos que, difícilmente se podrían reducir las incertidumbres en las localizaciones de sismos.

Los resultados presentados y discutidos en este trabajo ratifican la necesidad de continuar con estudios sismotectónicos en la región fronteriza de Costa Rica con Panamá. El producto de esta investigación ha permitido aportar nueva información sobre la actividad sísmica en dicha región. Sin embargo, se requieren trabajos adicionales para alcanzar una conclusión relevante acerca del comportamiento actual de los esfuerzos principales y sus implicaciones con los sistemas de fallas existentes. Es conveniente continuar el análisis de los eventos de magnitud moderada ocurridos en el área de estudio ya que aparentan estar relacionados con sistemas de fallas secundarias corticales y son consecuentes con una prolongación de la zona de Fractura de Panamá.

VII. TRABAJO A FUTURO

Las redes sísmicas locales enfrentan dificultades en el monitoreo de la sismicidad. A causa de la geografía de América Central, la ubicación bastante alineada de las estaciones le resta precisión a las localizaciones cerca de las fronteras de los países. Los catálogos, por lo tanto, contendrán variaciones en la tasa de los reportes a causa de los cambios en las posiciones de los sismógrafos de las redes, ajustes en la ganancia, cambios en los códigos de computadoras para análisis, cargas de trabajo extra debido a secuencias de réplicas y de falta de personal capacitado para analizar los datos, resultando en una cierta heterogeneidad en los catálogos.

Un estudio para analizar la geometría de la red de estaciones sismológicas y su habilidad para determinar con la mejor precisión posible el hipocentro debe constituir una de los estudios prioritarios futuros en esta región, si se pretende conocer su sismotectónica. En este mismo sentido queremos hacer notar que, la instalación óptima de redes locales permanentes es el problema básico que determina la precisión a la cual los parámetros sísmicos pueden ser estimados. Explorar el efecto de la geometría de la red (por ejemplo, con programas que examinan las incertidumbres en localización tomando en cuenta distribuciones particulares de estaciones) nos permitiría sugerir una configuración adecuada para el estudio de la sismicidad en el suroeste de Panamá.

Para asociar la sismicidad registrada con posibles fallamientos corticales se requieren eventos cuyas localizaciones tengan incertidumbres como mínimo inferiores a los 2 km, valores rms menores que 0.5 s y residuales ≤ 1.00 s. Para ello se requiere una densidad mayor de estaciones, con sismógrafos más sensibles. Al mismo tiempo, es necesario contar con muchos más registros de sismos con la calidad mencionada anteriormente para poder relacionar la sismicidad con una falla específica.
Se debe realizar un procedimiento de relocalización con los eventos que se tiene, pero empleando un modelo de velocidades de corteza local, o determinarlo si no se tiene. Puede aplicarse el procedimiento de determinación hipocentral conjunta JHD o la técnica de doble diferencia HDD (Walhauser y Ellworth, 2000). La re-determinación nos permitirá comprobar si el conjunto de eventos se mantienen agrupados o no. En el primer caso se obtendría un ligero desplazamiento de las localizaciones que se tienen, indicándonos que las localizaciones son consistentes no importando el método empleado para determinarlas. En el segundo caso, de no conservarse las localizaciones, es posible que el conjunto de los eventos muestren algún alineamiento en alguna dirección, probablemente asociado con alguna falla o fallas de un sistema de fallas que atraviesan el sur de Costa Rica y suroeste de Panamá.

Las localizaciones y el tipo de fronteras tectónicas especialmente alrededor del área suroeste de Panamá pueden ser mejorados empleando sismogramas sintéticos para conseguir mejores mecanismos focales y profundidades más precisas, e investigando los patrones de réplicas de grandes eventos. La localización correcta de los sismos, y por ende su posterior correlación con fallas activas y la elaboración de mecanismos focales, depende en gran medida del modelo de velocidades corticales que se emplee. Para el sector sureste de Costa Rica y suroeste de Panamá no se ha establecido un modelo de corteza específico. Por tanto, un estudio para establecer este modelo de velocidades sería pertinente.

Por último es necesario reforzar el monitoreo sísmico de esta región fronteriza y hacer cumplir las normas simo-resistentes para el diseño de edificaciones a fin de garantizar parcialmente un desarrollo sostenible de ambos países.

REFERENCIAS

- Abratis, M., and Wörner, G. 2001, Ridge collision, slab-window formation, and the flux of Pacific asthenosphere into the Caribbean realm, Geology, Geological Society of America, Vol. 29, no. 2, pp. 127-130, doi: 10.1130/0091-7613(2001)029<0127: RCWFA>2.0.CO;2
- Adamek, S., Tajima, F., and Wiens, D., 1987, Seismic rupture associated with of the Cocos Ridge, Tectonics, vol. 6, no. 6, p. 757-774, doi:10.1029/TC006i006p00757.
- Adamek, S.; Frohlich, C.; Pennington, W., 1988, Seismicity of the Caribbean boundary: Constraints on microplate tectonics of the Panama region, Journal of Geophysical Research, vol. 93, no. B3, p. 2053—2075, doi: 10.1029/JB093iBo2p0253, 1988.
- Alvarenga, E., Barquero, R., Boschini, I., Escobar, J., Fernández, M., Mayol, P., Haskov, J., Galvez, N., Hernandez, Z., Ottemöller, L., Pacheco, J., Redondo, C., Rojas, W., Vega, F., Talavera, E., Taylor W., Tapia, A., Tenorio, C., and Toral, J., 1998, Central American Seismic Center (CASC), Seismological Research Letters, vol. 69, no. 5, p. 394—399, ISSN: 0895-0695.
- Ambrasey, N. N.; and Adams, R. D., 2001, The Seismicity of Central America: A descriptive Catalogue 1898—1995, Imperial College Press, World Scientific Publishing Company, London, 1st edition, 250 p, ISBN-10: 1-86094-244-X.
- Arroyo, I., 2001, Sismicidad y Neotectónica en la región de influencia del proyecto Boruca: hacia una mejor definición sismogénica del sureste de Costa Rica, [Tesis de Licenciatura], Costa Rica, Universidad de Costa Rica, 103 p.

- Arroyo, I., Husen, S., Flueh, E., Glosser, J., Kissling, E. y Alvarado, G., 2009, Threedimensional P-wave velocity structure on the shallow part of the Central Costa Rican Pacific margin from local earthquake tomography using off- and onshore networks, Geophysical Journal International, doi: 10.1111/j.1365-246X.2009.04342.X, p. 827-849.
- Bevis, M., and Isacks, B. L., 1984, Hypocentral Trend Surface Analysis: Probing the Geometry of the Benioff Zones, Journal of Geophysical Research, Vol. 89, No. B7, pp. 6153—6170, doi: 10.1029/JB089iB07p06153.
- Bondar, I., Myers, S., Engdahl, E., and Bergman, E., 2004, Epicenter accuracy based on seismic network criteria, Geophysical Journal International, Vol. 156, No. 3, pp. 483—496, doi: 10111/j.1365-246X.2004.02070.x.
- Bowin, C. O., 1976, Caribbean Gravity Field and Plate Tectonics, The Geological Society of America Special Paper 169, Geological Society of America, Boulder, CO, 79 pp., ISBN: 0-8137-2169-5.
- Bundschuh, J. and Alvarado, G. E. (eds.), 2007, Central America: Geology, Resources and Hazards, Volume 1 and 2, Taylor & Francis Group, 1436 p., ISBN: 978-0-415-41647-4.
- Burbach, V. N., Frohlich, G. C., Pennington, W., and Matumoto, T., 1984, Seismicity and Tectonics of the Subducted Cocos Plate, Journal of Geophysical Research, Vol. 89, No. B9, pp. 7791—7735, doi: 10.1029/JB089iB09p07719.
- Camacho, E., 1991, The Puerto Armuelles Earthquake (Southwestern Panama) of July 18, 1934, Costa Rica: Revista Geológica de América Central, no. 13, p. 1—14, ISSN: 0256-7024.

- Camacho, E., Hutton, W., y Pacheco, J. F., 2010, A New Look at Evidence for a Wadatti-Benioff Zone and Active Convergence at the North Panama Deformed Belt, Bulletin of the Seismological Society of America, Vol. 100, No. 1, p.343—348, doi: 10.1785/0120090204.
- Camacho, E. y Viquez, V., 1993, Historical Seismicity of the North Panama Deformed Belt, Costa Rica: Revista Geológica de América Central, no. 15, p. 49—64, ISSN: 0256-7024.
- Carr, M. J., Feigenson, M. D., Patino, L. C., and Walker, J. A., 2003, Volcanism and Geochemistry in Central America: Progress and Problems, in Elier, J. (editor), Inside the Subduction Factory, Gephysical Monograph 138, Washigton, D. C., American Geophysical Union, p. 153—175, ISBN: 0-87590-997-3.
- Carr, M. J., and Stoiber, R. E., 1990, Volcanism, en Dengo, G., and Case, J., E., eds., The Caribbean Region: Boulder, Colorado, Geological Society of America, The Geology of North America, Vol. H., p. 375—391, ISBN: 0-8137-5212-4.
- Case, J., L., Durán, L., López, A. Y Moore, W., 1971, Tectonic Investigations in Western Colombia and Eastern Panama, Geological Society of America Bulletin, v. 82, p. 2685—2712, doi: 10.1130/0016-7606(1971)82.
- Corrigan, J., Mann, P., and Ingle, J., 1990, Forearc response to subduction of the Cocos Ridge, Panama-Costa Rica, Geological Society of America Bulletin, Vol. 102, p. 628—652, doi: 10.1130/0016-7606(1990)102<0628:FRTSOT>2.3.CO;2.
- Cowan, H., Machette, M., Haller, K. y Dart, R., 1998, Mapa de Fallas y Pliegues Cuaternarios de Panamá y regiones oceánicas adyacentes, Proyecto Internacional de la Litosfera, Grupo de trabajo II-2, Principales Fallas activas del mundo, U. S.

Geological Survey, escala 1:750.000, 1 hoja + Reporte Publicado: Open-File Report 98-779, 43 p. http://pubs.usgs.gov/of/1998/ofr-98-0779/.

- Cruz, G., and Wyss, M., 1983, Large earthquakes, mean sea level, and tsunamis along the Pacific coast of Mexico and Central America, Bulletin of Seismological Society of America, Vol. 73, No. 2, pp. 553—570.
- de Boer, J. Z., Defant, M. J., Stewart, R. H., Bellon, H., 1991, Evidence for active subduction below western Panama, Geology, Vol. 19, pp. 649—652, doi: 10.1130/0091-7613(1991)019<0649:EFASBW>2.3CO.;2.
- Defant, M. J., Clark, L. F., Stewart, R. H., Drummond, M. S., de Boer, J. Z., Maury, R. C., Bellon, H., Jackson, T. E., and Restrepo, J. F., 1991, Andesite and dacite genesis via contrasting processes: the geology and geochemistry of El Valle Volcano, Panama, Contributions to mineralogy and Petrology, Springer-Verlag, Vol. 106, No. 3, pp. 309-324, doi: 10.1007/BF00324560
- DeMets, C., Gordon, R., Argus, D. y Stein, S., 1990, Current plate motions, Geophysical Journal International, Vol. 101, No. 2, p. 425–478, doi:10.1111/j.1365-246X.1990tb06579.x.
- DeMets, C., 2001, A new estimate for present-day Cocos-Caribbean plate motion: Implications for slip along the Central American Volcanic arc, Geophysical Research Letters, Vol. 28, No. 21, pp. 4043-4046, doi: 10.1029/2001GL013518
- DeMets, C.; Gordon, R. G.; and Argus, D. F., et al., 2010, Geologically current plate motion, Geophysical Journal International, Geodynamics and tectonics, 181, pp. 1-80, doi: 10.1111/j.1365-246x.2009.04491.x

- Dougherty, D. and Robbins, A., 1997, sed & awk, Second Edition, O'Reilly Media, 432 p., ISBN: 1-565992-225-5.
- Freymueller, J., Kellogg, J. and Vega, V., 1993, Plate Motions in the North Andean Region, American Geophysical Union, Journal of Geophysical Research, Vol. 98, No. B12, p. 21,853–21,863, doi: 10.1029/93JB00520, 1993.
- García Quintero, J., 2007, Geometría, sismicidad y deformación de la placa de Cocos subducida, [Tesis de Maestría], México, Universidad Nacional Autónoma de México, 42 p.
- Gardner, T. W., Verdonck, D., Pinter, N. M., Slingerland, R., Furlong, K. P., Bullard, T. F., and Wells, S. G., 1992, Quaternary uplift astride the aseismic Cocos Ridge, Pacific coast, Costa Rica, The Geological Society of America Bulletin, Vol. 104, no. 2, pp. 219-232, doi: 10.1130/0016-7606(1992)104<0219:QUATAC>2.3.CO;2
- Güendel, F., 1986, Seismotectonics of Costa Rica: An Analytical View of Soutern Terminus of the Middle America Trench, [Ph. D. Thesis], Santa Cruz, University of California, 157 p.
- Gutenberg, B., and Richter, C. F., 1949, Seismicity of the Earth and Associated Phenomena, Princeton University Press, Princeton, New Jersey, 273 p.
- Hardy, N.C., Heath, R. P. y Westbrook, G. K., 1990, A complex plate boundary south of the Gulf of Panama (abstract). EOS Transactions, American Geophysical Union, Vol. 71, No. 43, p. 1593, ISSN: 0096-3941.

- Havskov, J. and Alguacil, G., 2004, Instrumentation in Earthquake Seismology, Modern Approaches in Geophysics, Vol. 22, Springer, 365 p. ISBN-13: 978-1-4020-2969-1 (e-book).
- Havskov, J. and Ottemöller, L., 2008, SEISAN: The Earthquake Analysis Software, for Windows, Solaris, Linux and MacOSX, User Manual, ver 8.2.1, 276 p.
- Heil, D. J., and Silver, E. A., 1987, Forearc uplift south of Panama: A result of transform ridge subduction [abstract No. 135996], Geological Society of America, Abstracts with Programs, no. 19 (7), 698
- Husen, S., Quintero, R., Kissling, E. y Hacker, B., 2003, Subduction zone structure and magmatic processes beneath Costa Rica constrained by local earthquake tomography and petrological modelling. Geophysical Journal International, vol.155, p. 11-32, doi: 10.1046/j.1365-246X.2003.01984.x.
- Isacks, B., and Molnar, P., 1969, Mantle Earthquake Mechanisms and the Sinking of the Lithosphere, Nature, Vol. 223, p. 1121—1124, doi: 10.1038/22311221a0.
- Jordan, T. H., 1975, The Present-Day Motions of the Caribbean Plate, Journal of Geophysical Research, Vol. 80, No. 32, pp. 4433—4439, doi:10.1029/JB080i032 p04433,1975.
- Kremer, C.; Holt, W. E.; and Haines, J., 2003, An integrated global model of present-day plate motions and plate boundary deformation, Geophysical Journal International, Blackwell, Oxford, Vol.154, No. 1, pp. 8-34, doi: 10.1046/j.1365-246X.2003.01917.x

- Kolarsky, R. A., and Mann, P., 1990, Combined effect of active underthrusting and strikeslip faulting on forearc structure: Pacific margin of southwest Panama (abstract), EOS Transactions, American Geophysical Union, vol. 71, no. 43, p. 1593, ISSN: 0096-3941.
- Kolarsky, R. A., and Mann, P., 1995, Structure and neotectonics of an oblique-subduction margin, southwestern Panama, in Mann, P., ed., Geologic and Tectonic development of the Caribbean Plate Boundary in Southern Central America: Boulder, Colorado, Geological Society of America Special Paper 295, pp. 131-157. ISBN: 0-8137-2295-0.
- La Femina, P., T. H. Dixon, T. H., Govers, R., Norabuena, E., Turner, H., Saballos, A., Mattiolli, G., Protti, M., Strauch, W., 2009, Fore-arc motion and Cocos Ridge collision in Central America, Geochemistry Geophysics Geosystems, vol. 10, number 5, Q05S14, doi: 10.1029/2008GC002181, ISSN: 1525-2027.
- Lindholm, C. D., Redondo, C. A., and Bungham, H., 2004, Two earthquake databases for Central America, in Rose, W. I., Bommer, J. J., López, D. L., Carr, M. J., and Major, J. J., eds., Natural hazard in El Salvador, Geological Society of America Special, Paper 375, p. 357—362. ISBN: 0-8137-2375-2.
- Bai, L., Wu, Z., Zhang, T., and Kawasaki, I., 2006, The effect of distribution of stations upon location error: Statistical tests based on the double difference earthquake location algorithm and the bootstrap method, Earth, Planets and Space(electronic Journal), Japan, vol. 58, No. 12, pp. e9—e12, ISSN: 1343-8832.

- Lonsdale, P., and Klitgord, K. D., 1978, Structure and tectonic history of eastern Panama Basin, Geological Society of America Bulletin, vol. 89, pp. 981—999, doi: 10.1130/0016-7606(1978)89<981.
- Marshall, J. S.; Fisher, D. M., and Gadner, T. W., 2000, Central Costa Rica deformed belt: Kinematics of diffuse faulting across the western Panama block, Tectonics, vol. 9, no. 3, pp. 468—492, doi: 10.1029/1999TC001136, 2000.
- Matumoto, T.; Ohtake, M.; Latham, G. y Umaña, J., 1977, Crustal structure in southern Central America, Bulletin of Seismological Society of America, vol. 67, no. 1, pp. 121–134.
- McKay, M. y Moore, G., 1990, Variation in deformation of the South Panama acretionary prism: response to oblique subduction and trench sediment variation, Tectonics, vol. 9, no. 4, p. 683-698, doi: 10.29/TC009i004p00683, 1990.
- Mendoza, C., and Nishenko, S., 1989, The North Panama Earthquake of 7 September1882: Evidence of active underthrusting, Bulletin of the Seismological Society of America, 79, p. 1264-1269.
- Molnar, P. y Sykes, L., 1969, Tectonics of the Caribbean and Middle America Regions from Focal Mechanisms and Seismicity, Geological Society of America Bulletin, v. 80, p.1639-1684.
- Montero, W., Denyer, P., Barquero, Alvarado, G., y Cowan, H., 1998, Mapa de Fallas y Pliegues Cuaternarios de Costa Rica, Proyecto Internacional de la Litosfera, Grupo de trabajo II-2, Principales Fallas activas del mundo, U. S. Geological Survey, escala 1:750.000, 1 hoja. Open-File Report 98-0481, 63 p. <u>http://pubs.usgs.gov/of/1998/ofr-98-0481/</u>.

- Montero, W., 2001, Neotectónica de la región Central de Costa Rica: Frontera Oeste de la Microplaca de Panamá, Revista Geológica de América Central, no. 24, pp. 29-56, ISSN: 0256-7024.
- Moore, G., Kellogg, D., Silver, E., Tagudin, J., Heil, D., Shipley, T., and Hussong, D., 1985, Structure of the south Panama continental margin: A zone of oblique convergence [abstract], EOS Transactions, American Geophysical Union, Vol. 66, No. 46, p. 1087.
- Moore, G., F., y Sender, K. L., 1995, Fracture zone collision along the South Panama margin, in Mann, P., ed., Geologic an Tectonic Development of the Caribbean Plate Boundary in Southern Central America: Boulder Colorado, Geological Society of America, Special Paper 295, pp 201—223, ISBN: 0-8137-2295-0.
- Morell, K., Fisher, D., Gardner, T., 2008, Inner forearc response to subduction of the Panama Fracture Zone, southern Central America, Earth and Planetary Science Letter, Vol. 265, Issues1-2, p. 82—95, doi: 10.1016/j.epsl.2007.09.039.
- Okaya, D. and Ben-Avraham, Z., 1987, Structure of the continental margin of southwestern Panama, Geological Society of America Bulletin, v. 99, p. 792—802, doi: 10.1130/0016-7606(1987)99.
- Pennington, W., 1981, Subduction of the Eastern Panama Basin and the Seismotectonics of Northwestern South America, Journal of Geophysical Research, Vol. 86, No. B11, p. 10753-10770, PN: 1B1273.

- Peraldo, G., Montero, W., y Camacho, E., 2006, El terremoto del 29 de mayo de 1879: Una ruptura de magnitud Ms ≥ 7.0 en la zona limitrofe sur de Costa Rica y Panamá, Revista Geológica de América Central, no. 34-35, pp. 31—42, ISSN: 0256-7024.
- Pindell, J. y Dewey, J., 1982, Permo—Triassic reconstruction of western Pangea and the evolution of the Gulf of Mexico/Caribbean region, Tectonics, vol. 1, no. 2, p.179—211, doi: 10.1029/TC001i002179.
- Protti, M., Güendel, F., and McNally, K., 1994, The geometry of the Wadatti-Benioff zone under southern Central America and its tectonic significance: results from a high-resolution local seismographic network, Physics of the Earth and Planetary Interiors, Vol. 84, Issues 1-4, pp. 271—287, doi: 10.1016/0031-9201(94)90046-9.
- Protti, M., Güendel, F., McNally, K., 1995, Correlation between the age of the subducting Cocos plate and the geometry of the Wadati-Benioff zone under Nicaragua-Costa Rica. En P. Mann (Ed.), Geologic and Tectonic development of the Caribbean plate boundary in Southern Central America, Geological Society of America, Special Paper 295, p. 309-326.
- Sallarès, V., Dañobeitia, J. and Flueh, E., 2000, Seismic tomography with local earthquakes in Costa Rica, Tectonophysics, Vol. 329, Issues 1-4, p. 61–78, doi: 10.1016/S0040-1951(00)00188-8.
- Selva, J. and Marzocchi, W., 2004, Focal parameters, depth estimation, and plane selection of the worlwide shallows seismicity with Ms ≥ 7.0 for the period 1900-1976, Geochemistry Geophysics Geosystems (G³), an electronic journal published by American Geophysical Union and the Geochemical Society, Vol. 5, no. 5, Q05005, doi: 10.1029/2003GC000669, ISSN: 1525-2027.

- Shearer, P. M., 1999, Introduction to Seismology, New York, Cambridge University Press, 260 pp, ISBN-13: 978-0-521-66023-5.
- Silver, E., Reed, D., Tagudin, J., Heil, D., 1990, Implications of the North and South Panama Thrut Belts for the origin of the Panama Orocline, Tectonics, vol. 9, No. 2, p. 261-281, doi: 10.1029/TC009i002p00261, 1990.
- Smith, W. H. F., and Sandwell, D. T., 1997, Global seafloor topography from satellite altimetry and ship depth sounding, Science, v. 277, p. 1957—1962.
- Stefan, J. F., Blanchet R., Mercier De Lepinay, B., 1988, Northern and southern Caribbean festoons (Panama, Colombia-Venezuela and Hispaniola - Puerto Rico), interpreted as pseudo-subductions induced by the East-West shortening or the pericaribbean continental frame, en F. C. Wezel (ed.): Developments in Geotectonics 21, The origin of arcs, Elsevier, Amsterdam, 530 pp.
- Stein, S., and Wyssesion, M., 2003, An Introduction to Seismology, Earthquakes, and Earth Structure, Wiley-Blackwell Publishing Ltd., MA, USA., 512 p. ISBN: 0-86542-078-5
- Trenkamp, R., Kellog, J., Freymueller, J., Mora, H., 2002, Wide plate margin deformation, southern Central America and northwestern South America, CASA GPS observations, Journal of South American Earth Sciences, 15, p.157—171, PII: 20895-9811(02)00018-4.
- Vargas Ulate, G., 2006, Geografía de Costa Rica, Primera Edición, Editorial EUNED, Costa Rica, 288 p., ISBN: 978-9977-64-656-2

- Vergara, A., 1988, Tectonic patterns of the Panama Block deduced from seismicity, gravitational data and earthquake mechanisms: implications to the seismic hazard, Tectonophysics 154, 253-267.
- Wessel, P., and Smith, W. H. F., 1998, New, improved version of Generic Mapping Tools released, EOS Trans. American Geophysical Union, vol. 79 (44), pp. 579.
- Wörner, G. Harmon, R. S., and Wegner, W., 2009, Geochemical evolution of igneous rocks and changing magma sources during the formation and closure of the Central American land bridge of Panama, in Kay, S. M., Ramos, V. A., and Dickinson, W. R., eds., Backbone of the Americas: Shallow Subduction, Plateau Uplift, and Ridge and Terrane Collision: Geological Society of America Memoir 204, p. 183—196, doi: 10.1130/2009.1204(08).
- Wolters, B., 1986, Seismicity and Tectonics of Southern Central America and adjacent regions with special attention for the surrounding of Panama, Tectonophys, Vol. 128, Issues 1-2, p. 21—46, doi: 10.1016/0040-1951(86)90306-9.
- Zoback, M. L., 1992, First- and Second- Order of Patterns in the Lithosphere: The World Stress Map Project, Journal of Geophysical Research, Vol. 97, No. (B8), pp. 11,703-11,728, doi: 10.1029/92JB00132.

Apéndice 1. Archivo STATION0.HYP empleado por el CASC

RESET TEST(02)=500.0	Longitud de control de muestreo
RESET TEST(07)=-1.10	Coeficientes de magnitud empleados para calcular la
RESET TEST(08)=2.4	magnitud coda
RESET TEST(09)=0.00046	
RESET TEST(11)=99.0	Número máx. de iteraciones en mínimos cuadrados (rms)
RESET TEST(13)=5.0	Incremento en km para auxiliar al rms
RESET TEST(34)=1.5	Mínima extensión para normalizar los residuales
RESET TEST(35)=2.5	ancho de la ponderación bisquare
RESET TEST(36)=0.0	Límite inferior residual para el rms
RESET TEST(41)=20000.0	Distancia máxima (km) desde la estación más cercana a la
	cual la solución hipocentral será generada
RESET TEST(43)=5.0	Mínimos rms para residuales empleados en el cálculo de
	promedio de la estación residual. Nota: Esto no afecta a la
	solución final de hypocenter
RESET TEST(51)=3.6	Velocidad de la fase Lg en km/s
RESET TEST(50)=1.0	Indicador para emplear fases azimut, 0 deshabilitar.
	Deshabilitar los azimut significa que éstos no son
	empleados para iniciar una localización.
RESET TEST (56) = 1.0	El valor 1.0 indica que se permite iniciar el logaritmo de la
	localización.
RESET TEST(58)= 99990.0	Máxima velocidad aparente (km/s) para los datos de fase
DESET TEST $(40) = 0.0$	Profundidad origan dal sistema da coordanadas
PESET TEST(40) = 0.0	Sagundos para los qualos la diferencia de tiempo de arribo
KESET TEST(00)-0.0	segundos para los cuales la diferencia de tiempo de arrido
	recorride entre estes
PESET TEST $(71) = 1.0$	Salida an distancia
$\frac{1}{1} = \frac{1}{1} = \frac{1}$	Coeficientes de magnitud MI
RESET TEST $(75)=0.925$	Cocherences de magnitud Mi
PESET TEST(70)=0.00087	
PESET TEST(78) - 1.21	
RESET TEST (70) -1.0	Número mínimo de estaciones para intentar una solución
$\mathbf{RESET TEST(20)} = 1.0$	Número mínimo de fases para dar una solución
$\mathbf{RESET TEST(80) = 1.0}$	Incapacidad para localizar eventos locales si es 0.0
$\mathbf{RESET TEST(87)} = 1.0$	Incapacidad para localizar eventos regionales si es 0.0
$\mathbf{RESET TEST(82)} = 1.0$	Incapacidad para localizar eventos telesísmicos si os 0.0
1000000000000000000000000000000000000	residuales rms (segundes)
RESEI IESI(00)=1.0	residuales mis (segundos)

Listado de estaciones

Código de			
estación	latitud	longitud	altura
GUAT	Estaciones de	e Gautemala	
BVA	1440.00N	9038.24W	2262
CHL	1354.75N	8949.15W	843
CIM	1435.03N	9052.00W	2400
CM2	1439.65N	8947.20W	1710
EMG	1524.12N	9126.50W	3140
FGO	1426.74N	9050.43W	1410
FG2	1426.32N	9050.15W	1335
FG-2	1431.27N	9050.01W	1880
FG3	1426.87N	9050.52W	1505
FG-3	1426.74N	9050.43W	1410
FG3H	1426.87N	9050.52W	1410
FG3L	1426.87N	9050.52W	1410
FG6	1432.96N	9052.58W	2500
GCG	1435.17N	9031.97W	1502
HUG	1401.25N	9119.41W	0
ITG	1435.81N	9050.73W	2320
IXG	1410.45N	9027.27W	1420
JAT2	1424.47N	9132.80W	134
JAT	1419.08N	9138.20W	68
JMG	1420.32N	9016.22W	1815
KIK	1448.78N	9124.63W	3200
KJA	1544.39N	9146.96W	2280
KUK	1458.50N	9202.16W	960
LHG	1426.70N	9110.95W	600
LTG	1457.75N	9009.32W	928
MMG	1432.28N	9040.89W	2190
MOY	1402.83N	9003.85W	1325
MRL	1503.95N	8941.47W	1460
NBG	1435.25N	9020.80W	2200
ocG	1433.93N	9207.30W	8
OC2	1433.63N	9211.17W	5
OC3	1433.50N	9210.83W	7
PSG	1356.87N	9047.49W	5
PCG	1423.63N	9036.45W	2100
PSG4	1353.17N	9050.07W	6
PS2	1357.13N	9048.93W	5
PS3	1356.53N	9052.40W	9
QZG	1438.18N	8923.04W	1798
RDG	1500.45N	9028.31W	1930

REC	1426.25N	9031.36W	1500
SBG	1507.92N	9203.21W	2860
SCG	1530.35N	9025.18W	1904
SLP	1444.58N	9016.97W	1410
STG	1446.58N	9135.26W	2950
STG3	1442.66N	9134.21W	1446
ST2	1443.03N	9134.22W	1560
ST4	1442.33N	9134.33W	1410
TCG	1507.37N	9205.15W	3100
TC2G	1507.37N	9205.15W	3100
TEP	1447.27N	9058.29W	1640
TER	1418.14N	9041.02W	560
TGUH	1403.42N	8716.38W	
TP2	1447.00N	9101.28W	3075
UCHI	1330.71N	8820.94W	565
VLG	1414.43N	9100.46W	212
YUP	1412.08N	8948.09W	1430
ZIS	1402.00N	9027.30W	50
SALV	Estaciones de	El Salvador	
ACAJ	1334.49N	8950.02W	12
Ade5	1339.50N	8921.50W	1200
AHS	1355.30N	8950.75W	810
AHU	1355.30N	8950.75W	810
AIES	1326.83N	8903.05W	39
ANG3	1348.00N	8911.50W	850
BERZ	1329.85N	8831.77W	1014
BOQ6	1344.10N	8916.80W	1830
BLLM	1326.55N	8814.27W	642
BR3	1329.60N	8811.47W	147
CACH	1346.24N	8812.66W	1682
CAHU	1346.24N	8812.66W	1682
CHIN	1330.80N	8820.86W	576
CHB	1331.65N	8830.07W	692
CEUC	1350.80N	8921.51W	412
CIG	1341.88N	8910.40W	616
CIG1	1341.88N	8910.40W	616
CIG2	1341.88N	8910.40W	616
CIG3	1341.88N	8910.40W	616
CIG4	1341.88N	8910.40W	616
CIG5	1341.88N	8910.40W	616
CIG6	1341.88N	8910.40W	616
CNCH	1316.58N	8750.02W	1056

COA	1353.20N	8934.32W	1260
СТО	1331.65N	8830.09W	709
CUS	1354.55N	8956.65W	677
CUS1	1354.75N	8956.78W	662
CZOZ	1331.72N	8829.30W	999
GRD5	1345.50N	8917.50W	1500
GRDA	1345.55N	8917.19W	1387
GSAL	1339.85N	8916.73W	907
HUE2	1346.70N	8900.00W	910
HERR	1320.97N	8857.38W	22
HGZ	1331.74N	8831.02W	484
JUA	1350.56N	8944.79W	1057
LALZ	1332.36N	8832.53W	474
LEO	1225.95N	8652.87W	109
LBR3	1344.30N	8902.60W	770
LCB2	1339.30N	8858.70W	710
LCY	1325.40N	8817.67W	
LFR1	1337.40N	8903.70W	1000
LFU	1344.92N	8906.83W	732
LGUZ	1338.68N	8833.68W	220
LPAZ	1328.68N	8832.12W	1528
LPS	1417.53N	8909.72W	1000
LPS	1417.05N	8909.07W	1000
LUNA	1320.12N	8750.07W	8
LUNN	1320.12N	8750.60W	29
MAGT	1341.05N	8917.19W	975
MONT	1351.46N	8938.83W	2054
MTAZ	1331.20N	8830.72W	480
MTO	1423.38N	8924.30W	1380
MTO2	1424.00N	8921.70W	1870
MUM	1333.33N	8828.74W	410
MUMZ	1333.33N	8828.75W	410
NAN	1342.90N	8930.55W	1160
OBS	1340.80N	8911.88W	0
OJO4	1351.80N	8914.20W	645
PACA	1328.14N	8819.40W	1123
PERQ	1357.53N	8809.48W	1171
PIC4	1344.36N	8915.30W	1960
PICA	1001.53N	8347.15W	565
QZA	1331.43N	8859.82W	250
RTR	1353.83N	8938.74W	1499
RBDL	1406.78N	8940.96W	1431
SAL	1341.88N	8910.40W	616

SANZ	1333.46N	8831.37W	310
SONS	1344.17N	8942.62W	302
SBO	1331.80N	8830.66W	
SBL	1350.36N	8937.38W	1949
SBLS	1350.36N	8937.38W	1949
SMIG	1326.34N	8809.54W	114
SNL	1350.36N	8937.38W	1949
SNET	1341.21N	8913.89W	775
SNVI	1336.75N	8850.33W	1312
SNJE	1352.10N	8936.34W	1694
SDMZ	1328.43N	8829.08W	900
SJA	1340.00N	8910.00W	1100
SJA1	1340.00N	8910.00W	1100
SJUZ	1331.20N	8832.01W	1024
SMS	1329.17N	8828.23W	950
STAN	1358.17N	8934.46W	745
SSS	1340.87N	8911.88W	665
TCPZ	1329.34N	8830.42W	1594
TGRZ	1333.49N	8831.35W	318
TME	1401.02N	8921.33W	516
VSS	1344.50N	8914.50W	1250
VSM	1325.68N	8816.45W	2129
YPE	1407.30N	8940.83W	1581
AHX	1355.50N	8951.00W	749
ATX	1358.68N	8945.18W	615
BIBL	1342.00N	8910.80W	0
HCR2	1342.72N	8912.90W	0
HCRB	1342.72N	8912.90W	0
HSH1	1342.78N	8914.58W	0
IGN1	1342.84N	8910.26W	0
IGX	1342.72N	8910.20W	662
IU1	1343.26N	8912.36W	0
IVX	1343.26N	8812.36W	705
OBX	1342.00N	8910.80W	671
SDX	1329.16N	8828.26W	0
SVX	1338.76N	8847.16W	380
TCX	1354.06N	8955.92W	690
UDBS	1342.91N	8909.30W	640
UCA1	1340.98N	8914.22W	0
UESS	1343.20N	8912.03W	694
UCX	1340.62N	8914.16W	797
UNCO	1358.80N	8932.40W	669

HOND	Estaciones of	de la red de Ho	onduras	
CHU	1356.50N	8714.00W	1720	
CHUH	1356.50N	8714.00W	1720	
LHA	1403.00N	8724.50W	1650	
LHAH	1403.00N	8724.50W	1650	
SSU	1530.07N	8803.10W	200	
UNAH	1404.50N	8710.50W	1020	
UHBB	1404.50N	8710.50W	1020	
IU	Estaciones 1	IRIS/USGS Ne	twork	(USGS Alburquerque Seis. Lab.)
PAYG	40.44S	9017.15W	195	
OTAV	14.26N	7827.05W	3492	
SDV	0853.17N	7038.00W	1580	
SJG	1806.70N	6609.00W	457	
TEIG	2013.58N	8816.58W	69	
NICA	Estaciones of	de la red sísmi	ca de Ni	icaragua
ACAN	1240.00N	8650.20W		
ACON	1158.08N	8510.44W	107	
ACY	1159.86N	8513.51W	400	
ACYN	1159.86N	8513.51W	400	
AGUN	1240.00N	8650.20W	30	
AGCN	1240.00N	8650.20W	150	
APON	1155.00N	8604.00W	600	
APY	1213.66N	8621.17W	260	
APYN	1214.03N	8621.03W	300	
BRAN	1209.71N	8620.62W	83	
BOA	1228.91N	8543.07W	550	
BOAB	1228.91N	8543.07W	550	
BOA1	1228.91N	8543.07W	550	
BOA2	1229.23N	8541.68W	725	
BOAN	1228.91N	8543.07W	550	
BLU	1200.74N	8345.80W	35	
BLUN	1200.31N	8346.58W	60	
CHI	1237.52N	8708.62W	71	
CHI2	1237.52N	8708.62W	71	
CNGN	1230.00N	8641.91W	515	
CNR	1240.35N	8704.33W	240	
CONN	1133.85N	8537.54W	250	
CON2	1132.16N	8541.19W	150	
COP	1210.80N	8635.50W	150	
COPN	1210.80N	8635.50W	150	
COP*	1210.80N	8635.50W	150	

COS	1257.48N	8734.51W	500
COSN	1256.20N	8732.82W	228
COFN	1209.00N	8606.60W	50
CRIN	1242.00N	8703.00W	685
CRU	1159.00N	8618.00W	930
CRUN	1159.00N	8618.00W	930
CYN	1159.75N	8605.92W	345
DEC	1207.42N	8616.05W	83
DDD	1130.00N	8600.00W	415
ESPN	1211.70N	8418.02W	45
EST	1305.98N	8621.73W	844
ESTN	1306.10N	8622.15W	862
GRAN	1155.78N	8557.35W	86
GRA	1156.20N	8558.55W	60
INE	1208.94N	8614.89W	83
INSI	1209.00N	8616.20W	80
JIG	1312.07N	8546.03W	1249
JIN	1305.17N	8559.68W	1004
LEO	1225.95N	8652.87W	109
LEO	1224.70N	8653.57W	165
LEO2	1224.70N	8653.57W	165
LIY	1311.09N	8633.61W	460
HUEN	1220.15N	8610.20W	50
MAS	1200.17N	8608.94W	150
MAS2	1159.86N	8612.00W	150
MADN	1124.50N	8532.00W	30
MASJ	1159.24N	8609.08W	500
MAT	1255.54N	8555.10W	682
MCH	1152.48N	8631.72W	147
MGA	1208.81N	8614.83W	80
MGAN	1208.81N	8614.83W	80
MG01	1208.94N	8614.89W	80
MG02	1208.87N	8614.80W	80
MG03	1208.99N	8614.91W	80
MG04	1209.01N	8614.81W	80
MG05	1208.90N	8614.85W	80
MG06	1208.91N	8614.93W	80
MIRN	1226.40N	8642.70W	280
MMO	1153.06N	8600.09W	480
MOBN	1149.90N	8558.66W	1000
MOB1	1149.90N	8558.66W	1200
MOB2	1149.90N	8558.66W	1200
MOCN	1246.90N	8702.40W	

MOMB	1149.90N	8558.66W	1000
MOMJ	1224.50N	8632.40W	500
MOMN	1224.50N	8632.40W	500
MONJ	1224.50N	8632.40W	500
MOYN	1132.14N	8541.75W	50
OME	1132.26N	8541.02W	181
PYN	1222.93N	8701.34W	50
PYT	1232.26N	8603.46W	460
PYTN	1232.26N	8603.46W	460
QUIN	1307.50N	8625.00W	1605
REF	1208.63N	8619.18W	83
RTN	1232.00N	8646.99W	240
SOMN	1330.60N	8631.89W	1200
SSN	1117.27N	8550.97W	415
SSNN	1117.27N	8550.97W	415
TELN	1236.25N	8649.88W	850
TEL3	1234.33N	8650.69W	300
TISN	1208.55N	8616.16W	200
TICN	1202.01N	8613.90W	400
VER	1205.38N	8610.27W	140
XAVN	1208.92N	8619.58W	160
AER	1208.40N	8616.20W	0
AGUA	1207.80N	8618.00W	0
BAM	1207.80N	8616.20W	0
BA17	1207.80N	8616.20W	0
BAY	1236.60N	8707.20W	0
BCN	1209.00N	8616.20W	0
CEM	1206.60N	8607.80W	0
CHI*	1219.80N	8708.40W	0
CHON	1238.58N	8701.62W	300
COCA	1206.60N	8615.00W	0
COR	1228.80N	8710.20W	0
COR1	1228.80N	8710.20W	0
COR2	1228.80N	8710.20W	0
COX	1318.42N	8751.54W	360
CSAN	1210.60N	8625.20W	50
JIN	1151.00N	8612.00W	0
LEON	1226.40N	8654.00W	0
MAS	1158.20N	8606.00W	0
MASN	1158.20N	8606.00W	0
REF	1208.40N	8619.20W	0
RIV	1125.80N	8551.00W	0
TNAC	1209.60N	8616.20W	0

UNA	1206.60N	8616.20W	0
WILN	1209.64N	8611.25W	60
COST	Estacionas	da Casta Dias	
DSN	Estaciones o	ie Costa Nica	de Coste Dies
KSIN ADC	1026 75N	ogica Nacional	
	1020.73IN 820.22N	0434.39W	1010
ACR	039.23IN	8310.08W	4/1
ALGU	1005.42N	8330.27W	422 91 5
	947.94N	8338.49W	815 279
BAR	909.90N	8320.07W	378
BARC DAD1	909.96N	8320.07W	578
BAKI	913.92N	8318.42W	53U 2497
BUS	955.52N	8343.30W	3487
CASE	950.59N	8440.00W	242
CASE	956.59N	8440.60W	242
CASN	956.59N	8440.60W	242
CGA	1001.86N	8428.54W	1300
CGA2	1000.97N	8427.93W	1200
CKZ	1057.20N	8535.80W	325
CRZC	1057.20N	8535.80W	325
CSC	1000.96N	8357.01W	1900
FOR	1028.01N	8440.31W	392
FORC	1028.01N	8440.31W	392
FOR2	1028.12N	8440.12W	400
	0532.57N	8703.44W	10
	0532.57N	8703.44W	10
	0532.62N	8703.40W	10
ICK	958.80N	8349.8/W	3302
JCK	950.99N	8506.71W	575
JCKZ	950.99N	8506.71W	575
JCKN	950.99N	8506.71W	575
JCRE	950.99N	8506./1W	575
	941.23N	8435.05W	685
	941.23N	8439.05W	685
	941.23N	8439.05W	685
LAJE	941.23N	8439.05W	685 1690
	944.31N	8400.10W	1680
LCK2	944.53N	8400.18W	1/30
LCH0	1104.45N	8441.81W	54
	938./8N	8303.3/W	02
MIKZ	1007.38N	8455.52W	243
MONZ	1007.38N	8455.52W	243
MUNZ	953.96N	8428.89W	520

MONN	953.96N	8428.89W	520
MONE	953.96N	8428.89W	520
PRS	951.25N	8418.74W	1145
PRS2	959.03N	8418.67W	1145
PRS1	952.77N	8421.84W	1120
PTJ1	0832.14N	8318.14W	10
QCR	925.67N	8409.92W	45
QCR1	925.52N	8410.07W	45
RSN	849.1 N	8253.6 W	
SJS	956.35N	8403.25W	1196
TEST	956.35N	8403.25W	1196
SJS0	956.35N	8403.25W	1196
SJS1	956.29N	8403.13W	1200
SJSV	956.35N	8403.25W	1196
SJSN	956.35N	8403.25W	1196
SJSE	956.35N	8403.25W	1196
SRA	1004.95N	8426.89W	1160
SVT	0847.12N	8257.52W	1227
OTS1	0847.12N	8257.52W	1227
TRT	1034.52N	8342.81W	105
TRT1	1035.84N	8341.97W	63
TRTC	1034.52N	8342.81W	105
URSC	950.10N	8346.69W	1500
URS	950.10N	8346.69W	1500
VCR	1007.59N	8537.87W	960
VTR0	1001.04N	8345.61W	3300
VPS	1011.41N	8414.12W	2570
VPS2	1011.41N	8414.12W	2570
VPS3	1011.09N	8414.21W	2515
VOF	1012.29N	8413.38W	2514
LBO	1012.07N	8413.17W	2610
QCR0	925.19N	8409.92W	45
LIO0	0958.78N	8305.57W	62
ICR0	0958.80N	8349.87W	3302
PRS0	0951.03N	8418.67W	1145
VCR0	1007.59N	8537.87W	960
BUS0	0933.32N	8345.50W	3487
CGA0	1001.86N	8428.54W	1300
URS0	0950.10N	8346.69W	1500
JCR0	0950.99N	8506.71W	575
ACR0	0839.23N	8310.08W	471
ADE5	1339.50N	8921.50W	1200

COST			
CT14	0950.28N	8331.75W	1030
ICE	Instituto Cost	tarisence de El	lectricidad
AC1	1042.12N	8511.66W	615
AC2	1028.56N	8445.75W	552
AC3	1028.58N	8445.71W	520
AC4	1028.62N	8445.60W	490
AMAS	1036.64N	8459.64W	1000
ARE1	1027.66N	8443.13W	750
AR2	1033.07N	8453.06W	763
AR4	1021.05N	8459.06W	600
AR6	1026.75N	8454.59W	1010
AR8	1011.06N	8531.02W	511
BAL	1031.26N	8450.04W	793
BUEV	1047.73N	8524.31W	720
CAS	1026.10N	8444.17W	559
CHI1	1026.68N	8454.59W	1029
CHIR	1026.62N	8454.42W	1029
CMA	1042.12N	8511.66W	615
CMU	1042.92N	8509.30W	980
COL	1040.01N	8512.35W	445
CUI	1039.54N	8509.96W	528
LAPE	1046.05N	8525.97W	719
CUP	1039.80N	8509.00W	500
FITA	1049.33N	8528.64W	413
GPS1	1046.37N	8520.95W	800
GPS2	1045.26N	8521.08W	640
GPS3	1045.22N	8521.91W	580
GPS4	1045.10N	8526.11W	580
GBS1	1048.71N	8524.58W	640
GBS1	1048.74N	8524.57W	695
GB1A	1048.85N	8524.06W	740
GB1A	1049.05N	8523.92W	705
GBS2	1050.15N	8527.15W	400
GBS3	1046.84N	8527.30W	300
JOC	1055.43N	8422.24W	150
LIM	1041.97N	8515.24W	591
MAC	1030.01N	8446.16W	832
MES	1044.52N	8511.78W	631
MOG	1039.80N	8514.50W	520
NAY9	1032.00N	8522.00W	100
NYA7	1056.27N	8540.93W	100

NYA9	1032.00N	8522.00W	100
NY10	1104.40N	8533.35W	200
NY11	1029.99N	8543.52W	150
NY12	1018.12N	8547.85W	50
NY13	1006.02N	8545.40W	50
NY14	1038.69N	8532.03W	100
NY15	1026.25N	8535.89W	200
NY16	1021.66N	8542.85W	150
NY17	1050.32N	8537.08W	300
POR	1034.23N	8501.60W	655
POB3	1048.38N	8525.43W	549
2RIO	1052.84N	8523.32W	619
RCH	1040.30N	8506.07W	538
REY	1031.48N	8442.00W	600
FMA	0859.45N	8321.34W	1066
CNA	0833.90N	8250.92W	200
RIC	0844.92N	8328.05W	277
RIC1	0841.77N	8329.09W	005
SAB	0846.84N	8254.89W	1130
PRG	0901.18N	8310.48W	201
PIT	0901.16N	8259.42W	1368
TILA	1026.67N	8457.00W	561
TIR	1056.34N	8420.16W	600
UNIO	1042.89N	8511.72W	150
OVS	Estaciones de	I OVSICORI	Costa Rica
CAO	942.07N	8506.20W	263
CDM	933.31N	8345.95W	3470
CDL	1033.16N	8340.25W	10
CERB	0940.69N	8419.81W	1225
COCR	1033.16N	8340.25W	10
CTC	853.77N	8245.56W	1620
CTCR	853.77N	8245.56W	1620
EPA	959.26N	8435.79W	310
FIBO	1001.15N	8342.45W	2160
FICA	944.25N	8253.67W	204
HDC	1000.08N	8406.84W	1150
HDC2	1001.42N	8407.00W	1220
HDC3	1000.10N	8406.60W	1220
HDC4	1000.11N	8406.68W	1157
IDC	842.80N	8352.19W	10
IRZ	958.47N	8351.94W	3380
IRZ2	958.13N	8353.85W	2950
JTS	1017.45N	8457.15W	340

LARO	942.31N	8401.41W	2107
LARO	942.31N	8400.44W	2107
LAR	942.31N	8400.44W	2107
JUD	1009.72N	8532.82W	844
JUD2	1010.02N	8532.47W	680
JUD3	1010.02N	8532.47W	680
LNCR	957.95N	8304.16W	40
MTL	1032.94N	8430.90W	51
OCM	953.38N	8357.44W	1595
PALO	0947.10N	8349.22W	1440
PAL	0949.77N	8352.32W	1220
PLMA	1001.99N	8424.72W	1047
PBC	826.62N	8304.25W	140
PBNC	822.10N	8307.59W	180
POA	1009.14N	8413.02W	2093
POA2	1010.60N	8413.20W	2450
POCR	947.06N	8424.25W	1360
PTC	947.37N	8425.57W	1510
PTCR	947.37N	8425.77W	1510
PTCR	947.37N	8425.57W	1510
QPS	924.07N	8407.81W	83
QPSR	923.42N	8407.42W	83
RIN	1046.41N	8521.50W	775
RIN2	1049.11N	8520.97W	1400
RIN3	1047.45N	8522.72W	900
RMCR	947.07N	8351.43W	1420
TIG	902.20N	8317.76W	690
TIG2	901.74N	8317.82W	763
TLLA	1000.27N	8346.42W	2677
VAC	1028.38N	8440.65W	360
VACR	1028.32N	8440.53W	360
VTU	1001.26N	8345.50W	3329
XXX	Estaciones d	le Proyecto Ex	perimental
AETT	949.20N	8406.60W	0
AETG	949.20N	8406.60W	0
ALCR	944.40N	8400.60W	0
ALJ	1001.26N	8412.96W	0
APBO	857.00N	8319.80W	0
APGM	1042.00N	8511.40W	0
APGU	956.40N	8337.80W	0
APSA	928.20N	8359.40W	0
APSD	1027.60N	8506.00W	0

APSG	1028.80N	8445.60W	0
APSQ	1002.40N	8330.00W	0
APTO	1015.00N	8416.80W	0
ASP1	956.40N	8419.80W	0
ASP2	956.40N	8419.80W	0
AUR	956.22N	8404.62W	0
AU17	956.22N	8404.62W	0
AU15	956.28N	8404.68W	0
CCH	950.52N	8348.30W	0
CMA	956.22N	8403.24W	0
CNA	0833.90N	8250.92W	200
CTG	951.96N	8355.32W	0
FMA	0859.37N	8321.25W	1050
GEO	956.34N	8402.22W	0
GLF	838.70N	8310.32W	0
GTS	952.20N	8402.28W	0
HTO	954.96N	8405.94W	0
INS	956.28N	8404.50W	0
ISD	922.38N	8342.42W	0
PCL	950.88N	8418.84W	0
PRG	0901.28N	8310.43W	190
PTS	958.62N	8445.06W	0
PTS	958.56N	8445.06W	0
RCP	954.60N	8357.36W	0
RIC	0844.83N	8327.93W	310
SAB	0846.78N	8254.77W1	065
SRM	1005.28N	8428.92W	0
SRN	1005.28N	8428.92W	0
TEC	951.54N	8354.78W	0
PANA	Estaciones of	le Panamá	
AJB2	846.62N	8226.35W	1082
ACLA	921.90N	7942.39W	460
ACH	841.31N	7954.48W	725
ARE	722.23N	8051.56W	60
ARM	816.99N	8251.99W	10
ARM2	806.00N	8252.00W	10
ASI	730.83N	8007.85W	145
AZU	747.50N	8016.44W	45
AZU2	732.04N	8001.56W	66
AVB0	846.42N	8239.29W	1384
BAR2	847.64N	8241.27W	1319
BCA	925.00N	8231.01W	20

BCIP	910.20N	7950.40W	22
BIS1	004.89N	7700.35W	5030
BHP	857.65N	7933.48W	36
BQT2	847.22N	8226.18W	1190
BRU	848.41N	8233.65W	3425
BRU2	847.62N	8241.47W	1319
BRU1	825.66N	8225.26W	20
BAG2	826.97N	8231.53W	99
BYN	911.46N	7852.50W	120
BYN2	910.59N	7853.20W	57
CHIX	437.98N	7343.84W	3100
CHG	857.13N	8207.71W	5
CNI	925.00N	8231.01W	20
COL	919.31N	7941.02W	
CPN	839.81N	7955.75W	900
CSV2	847.11N	8240.45W	1495
HOW2	891.55N	7959.38W	10
DVD	826.04N	8227.34W	50
ECO	921.83N	7941.62W	468
ECO2	919.31N	7941.02W	450
ESTE	915.92N	7955.65W	
FAK2	848.17N	8240.22W	1350
FTA	840.89N	8215.88W	629
GCAL	001.21N	7700.42W	2353
HDT2	851.40N	8236.14W	1947
HOR	818.98N	8208.92W	35
IPE	858.63N	7829.60W	50
JEF	913.13N	7922.43W	977
LGT	904.47N	7954.90W	50
LJA	815.33N	8152.13W	19
LPD	739.72N	8033.80W	155
MAR	738.74N	8059.39W	50
MAD	912.73N	7936.97W	60
MDN	826.59N	8222.50W	
MDL	830.69N	8053.03W	500
MIN	747.82N	8044.92W	355
MFS	900.05N	7935.62W	6
OLG	827.46N	8225.28W	60
PEIC	451.64N	7543.40W	2093
PITA	807.99N	8057.73W	88
PINA	915.24N	8003.82W	
PNV	831.57N	8054.48W	500
POT2	839.65N	8228.69W	734
PRO	825.55N	8247.89W	

LPT1	835.99N	8027.00W	68
PRT2	816.40N	8251.66W	10
PTP	812.28N	8252.69W	10
PTP1	812.28N	8252.69W	10
ROSC	451.36N	7419.81W	3020
SCD2	824.58N	8226.63W	70
SFE	830.67N	8104.58W	430
SON	800.89N	8118.99W	20
SPIL	915.75N	7955.80W	15
SFX2	817.61N	8152.13W	
TBS2	846.96N	8238.85W	1397
TBS3	846.58N	8225.96W	1100
TON	724.33N	8026.57W	40
UPA	858.86N	7932.03W	41
UPD1	832.92N	7800.81W	74
UPA2	910.24N	7906.28W	44
TOLE	813.69N	8140.41W	100
UPIG	858.86N	7932.03W	41
USMA	827.60N	8225.91W	63
ZANG	857.36N	7952.00W	110
MEX	Estaciones (de México	
CUIG	1919.74N	9910.68W	2400
CUBA	Estaciones (de Cuba	
CCCC	2120.00N	7776.60W	100
CEN	2203.60N	8031.20W	20
CIS	2000.12N	7577.26W	90
CHIC	1997.00N	7640.00W	90
GTMO	2008.00N	7514.00W	
HLG	2089.40N	7626.48W	194
HLGC	2089.00N	7606.00W	200
LMGC	2007.50N	7700.30W	200
MASC	2018.50N	7423.86W	350
MASC	2010.50N	7413.86W	
MCG	2206.60N	7958.80W	
MCV	2206.60N	7958.80W	
MGV	2211 00N	7998.00W	350
MOAC	2211.0010		
MOAC	2066.60N	7496.54W	50
MOAC MOA	2066.60N 2039.60N	7496.54W 7457.60W	50
MOAC MOA PLAC	2066.60N 2039.60N 2019.00N	7496.54W 7457.60W 7656.00W	50 400
MOAC MOA PLAC PINC	2066.60N 2039.60N 2019.00N 2049.22N	7496.54W 7457.60W 7656.00W 7579.46W	50 400 647

RCT	1959.41N	7541.47W	100
RCC	1999.50N	7569.60W	100
RCCC	1999.50N	7569.60W	
SAB	2022.80N	7511.40W	
SABC	2038.00N	7519.00W	400
SOR	2275.00N	8300.00W	206
SORC	2275.00N	8300.00W	206
YARC	2037.00N	7636.00W	200
YAR	2012.00N	7613.20W	
JAMA	Estaciones	de Jamaica	
BBI	1822.98N	7716.02W	641
BNJ	1819.26N	7657.06W	485
CMJ	1808.15N	7622.36W	333
GWJ	1804.50N	7644.28W	1200
HOJ	1800.27N	7644.96W	179
MBJ	1824.16N	7751.76W	574
MCJ	1755.50N	7741.22W	755
PCJ	1744.48N	7709.44W	098
SPJ	1759.76N	7733.57W	751
STH	1804.60N	7648.57W	418
YHJ	1753.52N	7629.58W	600
MIDA	Estaciones (de Puerto Rico	
ANCC	330.92N	7632.00W	540
ASPA	2340.00S	13354.10E	555
BARX	638.60N	7310.58W	1860
BET	240.88N	7526.48W	540
BMG	704.30N	7304.52W	1000
BOCO	433.21N	7402.60W	3166
BOG	437.38N	7403.90W	2658
CHI2	437.98N	7343.84W	3100
CLMC	352.88N	7633.78W	1480
CRU	129.92N	7657.14W	2740
CUM	051.60N	7750.51W	3420
FLO	130.83N	7537.96W	360
GUA	232.69N	7237.64W	217
HEL	614.05N	7532.86W	2790
HOBC	421 20N	7608 13W	1180
TZENT	421.29IN	/000.15 //	
KEN	421.29N 1106.65N	7402.86W	2560
KEN MAL	421.29N 1106.65N 400.82N	7402.86W 7720.12W	2560 50
KEN MAL OCA	421.29N 1106.65N 400.82N 814.33N	7402.86W 7720.12W 7319.16W	2560 50 1264

PSO	111.52N	7719.52W	3010
ROS	451.36N	7419.81W	3020
ROSC	451.36N	7419.81W	3020
RUS	555.63N	7304.53W	3360
SOL	622.20N	7727.46W	50
TOL	435.32N	7520.39W	2520
TUM	150.13N	7843.54W	50
WB2	1956.66S	13435.15E	366
JACO	Estaciones de	e Proyecto Exp	perimental en Costa Rica
agc	0938.06N	8421.00W	364
aph	0936.10N	8435.28W	206
bij	0943.16N	8434.79W	595
cal	0939.67N	8440.25W	90
eso	0931.58N	8430.50W	47
int	0948.88N	8436.53W	123
pin	0940.24N	8423.88W	364
que	0925.59N	8409.74W	74
rse	0934.59N	8412.99W	156
sga	0941.41N	8429.25W	376
sni	0936.37N	8429.50W	160
tiv	0952.94N	8442.30W	70
tuf	0945.25N	8423.05W	903
tur	0948.70N	8428.01W	911
vma	0935.90N	8425.64W	234

Modelo de corteza regional empleado por el CASC

[a] [b] 3.500 0.000 5.000 1.000 6.000 6.000 6.800 13.000 8.000 35.000 N 8.300 200.000 8.500 300.000	[a] columna de velocidades [b] columna de profundidad de las capas
20. 150.2500. 1.78 [1] [2] [3] [4] CAM	 [1] distancia mínima donde puede ocurrir un sismo [2] distancia de separación entre las estaciones [3] distancia máxima para poder registrar un sismo [4] relacion entre las velocidades (Nombre de la Red Sísmica del STATION0.HYP)

Apéndice 2. Clasificación de Zoback del regímen de esfuerzos a partir del buzamiento de los ejes T, P y N.

Para asignar a los datos el régimen de esfuerzo apropiado, dependiendo de las orientaciones de los ejes T (tensión), P (presión) y N (nulo) empleamos la clasificación desarrollada por Zoback (1992), la cual está basada en el ángulo de echado de estos ejes $(\Theta_T, \Theta_P y \Theta_N, \text{respectivamente})$. La notación para estos movimientos es la siguiente:

Eje T	Eje N	Eje P	Régimen
$\Theta_{\rm T} < 35^{\circ}$		$\Theta_{\rm P} > 52^{\circ}$	N
$\Theta_{\rm T} < 20^{\circ}$		$40^\circ < \Theta_P < 52^\circ$	NL
$\Theta_{\rm T} < 20^\circ$	$\Theta_{\rm N} > 45^\circ$	$\Theta_{\rm P} < 40^{\circ}$	L
$\Theta_{\rm T} < 40^{\circ}$	$\Theta_{\rm N} > 45^\circ$	$\Theta_{\rm P} < 20^{\circ}$	L
$40^\circ < \Theta_{\rm T} < 52^\circ$		$\Theta_{\rm P} < 20^{\circ}$	IL
$\Theta_{\rm T} > 52^\circ$		$\Theta_{\rm P} < 35^{\circ}$	Ι

Clasificación de Zoback de los regímenes de esfuerzos dependientes de los ángulos de echado de los ejes T, P y N.

La notación para los movimiento puros es: I=inverso, N=normal, L=lateral; y para los movimientos combinados: IL= movimiento inverso con componente lateral, NL= movimiento normal con componente lateral. IL, son datos donde el máximo esfuerzo o eje P, tiene mayor ángulo de echado que el eje nulo. NL, son datos donde el mínimo esfuerzo o eje T, tiene mayor ángulo de echado que el eje nulo.

Si los datos no se ajustan a los intervalos mostrados en la tabla anterior por pocos grados, entonces con una inspección visual se pueden ajustar al régimen más apropiado. Sin embargo, existen dos grupos principales de mecanismos que se pueden distinguir:

1° Todos los ejes tienen echados moderados entre 25° y 45°.

2° Los ejes de T y P tienen ángulos de echado parecidos en el rango de 40° a 50°. A los datos que estén en una de estas dos categorías se les asigna un régimen de esfuerzo desconocido (d), indicando que el azimut del máximo esfuerzo horizontal no está definido.