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Chapter 1

Introduction

A distributed system is a collection of independent processors or processes, running at the
same time and able to communicate among themselves in order to solve either a common
task or a collection of independent tasks [9]. When processes collaborate for solving a com-
mon task they have to coordinate their actions. The rise of multi-core machines and the
increasing use of computer networks during the last two decades has contributed to the in-
creasing importance of distributed systems. Nowadays distributed systems are everywhere:
in academia, bussines, government and home [9]. Many applications require distributed pro-
cessing. However, there are inherent difficulties introduced by distributed systems. Since
each independent processor has just local information, it is impossible to know precisely the
absolute or relative time when events happen, also processors may fail unexpectedly which
may cause the whole system to malfunction. Also concurrency in these systems gives rise
to several difficulties such as inconsistent data, deadlocks, etc. “The explosive growth of
distributed systems makes it imperative to understand how to overcome these difficulties”
[9]. Timestamps mechanisms have been used to solve many of these problems.

Alan Turing and Alonzo Church established the foundations of sequential computing.
Church did it through lambda calculus while Turing did it through what we now call Turing
Machines [22]. These models are considered universal models of sequential computing. They
allow us to identify fundamental problems, describe algorithms and identify what kind of
problems can be solved and how to measure the efficiency of an algorithm in such systems.
In distributed computing there is no one universally accepted model of computation [9].
This is because distributed systems tend to be so different from one another. The main dif-
ferences among distributed systems are: how processes communicate (through messages or
through shared memory), whether processes are synchronous or asynchronous and the kind
of failures tolerated. As in the sequential world, some measures to evaluate the efficiency of
distributed algorithms are needed. The main complexity measures of interest in distributed
systems are: time and space. We define and discuss more about these measures in Chapter 2.

In order to study timestamps, we first state the model we are going to consider. This
is important because in distributed computing a small change in the model can radically
alter the class of problems that can be solved and their solutions [15]. Through this goal in
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Chapter 2, we briefly talk about some distributed system models and discuss some differ-
ences among them. Our main goal in that chapter is to describe the model of computation
we are going to consider for subsequent chapters.

We study the space complexity of timestamp systems in the typical shared memory model
in which n asynchronous processes communicate throughm read/write atomic registers. This
means processes run at different speeds and communicate by calling the methods read and
write of the shared registers [15]. Also we assume that each process owns a unique identifier.
In such systems, processes have no information about the real time order of events that are
incurred by other processes [19]. This causes uncertainty about the order in which opera-
tions take place. Reliable information about the relative order in which events take place
in such systems is crucial to solve many problems effectively [28]. Timestamps provide such
information to processes.

The behavior of a timestamp system is specified by its definition and by progress and
correctness conditions. Chapter 2 explains the progress and correctness conditions for time-
stamp mechanisms that we will consider throughout this thesis. At this point, we just
mention that all results we present in this work hold for timestamp implementations that
satisfy the non-deterministic solo termination property. In other words, our results hold for
those implementations in which the progress of a process in the absence of synchronization
conflicts is guaranteed.

In a timestamp mechanism, processes get labels or timestamps; this labels can be com-
pared to provide the necessary partial information about the order in which events occur
in a system [28]. Timestamps have been used to solve some fundamental problems in dis-
tributed computing, for example: consensus[1], registers constructions [20, 27, 34], snapshot
algorithms [2], adaptive renaming algorithms [8] and k-exclusion algorithms [3, 17, 26, 33].

According to the size of timestamps provided to processes, timestamps mechanisms may
be either bounded or unbounded. In a bounded timestamp mechanism, processes are able to
get timestamps whose size is bounded by a function of the total number of processes in the
system while in an unbounded one the size of a timestamp is not bounded. In many theoreti-
cal and practical works, bounded solutions are preferred over the unbounded ones. However,
there are examples where unbounded timestamps are used [26, 34]. In this thesis we are
concerned principally with the necessary number of registers to implement an unbounded
timestamp mechanism. In the first part of this work, we assume a timestamp mechanism
that allows processes to get a timestamp more than once. Such kind of mechanisms are
known as long-lived. Later on, we give a formal definition of a long-lived timestamp system.

Sometimes in distributed computing if a problem can not be solved under certain con-
straints we can change or vary those constraints and consider a slightly different version of
the problem. For instance, we can restrict the number of times a process is allowed to use
an object to one. An object is long-lived if processes can repeatedly use it, and it is one-shot
if it is available only once. In some cases one-shot object implementations are simpler than
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long-lived ones. Such is the case for renaming, mutual exclusion, splitters and snapshot
objects. On the other hand, some problems are inherently one-shot, such as consensus or
non-resettable test and set objects. In Chapter 4, we study the space complexity of one-shot
unbounded timestamp implementations.

The main results are presented in Chapter 3 and Chapter 4. These results were ob-
tained during my research stay at the University of Calgary under the supervision of Dr.
Lisa Higham and Dr. Philipp Woelfel. Our results are: a wait-free implementation of an
unbounded one-shot timestamp mechanism and lower bounds on the necessary number of
read/write atomic registers for implementing any unbounded long-lived and one-shot time-
stamp system. Regarding the lower bounds, we obtained two new results. First, in Chapter
3, we present a linear lower bound on the number of registers needed to implement a long-
lived and unbounded timestamping system. This lower bound is an improvement to the
one presented in [14] by Faith Ellen, Panagiota Fatourou and Eric Ruppert who proved an
Ω(
√
n) lower bound. Our second result concerns the space complexity of one-shot timestamp

implementations. In Chapter 4, we prove an Ω(
√
n) lower bound for any one-shot unbounded

timestamp implementation. As far we are aware, there are no previous results regarding one-
shot unbounded timestamp systems. The wait-free implementation of a one-shot timestamp
scheme uses only n/2 multi-writer registers. All these results appeared first in [28], so the
content of this work is an extension of that paper.

Chapter 5 describes some open questions and some discussion for future research. Some
of those questions are related to the implementation of timestamp schemes using strong
objects such as CAS registers. Other open questions concern the relationship between the
timestamp problem and the Lattice Agreement problem.

We hope you have some fun as you read the rest of this work.
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Chapter 2

Preliminaries

In this chapter, we describe and compare some models of distributed systems in order to give
a general view of distributed computing and to highlight the importance of stating precisely
the model of a distributed system. Then, we present the model in which our results hold
and some preliminaries before stating the timestamp problem.

Based on communication medium and degree of synchrony, three models of distributed
systems are mainly studied in the literature: asynchronous and synchronous message-passing
and asynchronous shared memory. A system is synchronous if all processes take steps at ex-
actly the same speed, otherwise it is asynchronous. Asynchrony can be modeled by an adver-
sary that chooses the order in which processes take steps [4, 14]. Processes can communicate
among themselves by sending messages to one another or through performing operations on
shared data structures or objects. Commonly, it is assumed systems are eponymous. In a
eponymous system each process has a unique name or identifier. A system, where processes
do not have unique identifiers is said to be anonymous. An algorithm for a process consists
of a local sequential program that determines its state. Then, processes can be modeled as
state machines [29, 32]. In distributed systems faulty processes may be specified. We say a
process fails, if it stops at some point without any warning.

2.1 Distributed System Models

In a message-passing system, without failures, processes communicate with each other by
sending messages over communication channels, where each channel provides a bidirectional
connection between two specific processes. Connections that link processes with one another
define the topology of the system. The topology may be represented by an undirected graph
in which each node represents a process and there exists an edge between two nodes if and
only if there is a channel between the corresponding processes. Unidirectional channels are
represented by directed edges. A correct channel behaves as a FIFO queue. The sender
enqueues messages in the channel and the receiver dequeues them. A formal definition of
a message-passing system can be found in [9]. This description of message-passing systems
gives us an idea about the necessary things to look at when we design algorithms for such
systems. Not less important is to know how to measure the efficiency of an algorithm in a
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message-passing system.

The message complexity of an algorithm for either a synchronous or an asynchronous
message-passing system is the total number of messages sent [15] by the algorithm. The step
complexity of a synchronous message-passing algorithm is the maximum number of rounds
in any possible execution of the algorithm, until the algorithm has terminated where a round
is any sequence of steps such that every process in the system participates at least once. In
an asyncrononous system we assume that the maximum message delay in any execution is
one unit of time and therefore the time complexity is the maximum time until termination
among all possible executions.

Asynchronous and synchronous message-passing systems differ in their set of solvable
problems. For example, the consensus problem, a fundamental problem in distributed com-
puting [22], can be solved in the presence of failures in synchronous message-passing systems
but not in asynchronous ones, even if only one process fails. An alternative to the deter-
ministic model is one in which processes have access to some source of random information
such as that provided by flipping a coin or rolling dice [9]. Randomization is a powerful
tool used to design distributed algorithms and it allows us to solve problems in situations
where they can not be solved deterministically and often makes possible simpler solutions
even when deterministic ones exist. In randomized algorithms a process may have many
choices for its next step, but the choice is made according to some probability distribution.
Termination of randomized algorithms is generally required only with high probability and
one considers worst-case expected time rather than worst-case time. Some problems, where
randomization helps to overcome impossibility results and lower bounds are: leader-election,
mutual exclusion and consensus [4, 21].

There are many other models we can consider, for instance, the semi-synchronous model,
where processes may run at different speeds but there are bounds on the relative speeds
of processes and the parallel random-access machine commonly used to study synchronous
shared memory systems [15]. However, for the rest of this work we will only consider the
asynchronous shared memory model that we explain more carefully in the next section.

2.2 The Asynchronous Shared Memory Model

An asynchronous distributed system in the shared memory model is a collection of n pro-
cesses, P = {p1, . . . , pn}, that run concurrently. Each process executes an algorithm and can
communicate with other processes. Processes communicate with one another by performing
operations on shared data structures or objects. These objects can be of various types. The
type of an object specifies the operations that can be performed on the object, the values
returned by the operations and the set of possible states for an object of that type. At any
time, an object has a state and when a processor performs an operation on it, the object can
change to a new state and return a response to the process. An object type is deterministic
if the outcome of each operation with specified input parameters is uniquely determined by
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D1 D2

σ

Figure 2.1: Execution

the object’s current state and it is non-deterministic if more than one outcome is possible
for an operation in some states.

An object of type register is able to store a value. Its set of atomic operations (or meth-
ods) is {read, write}, such that, each write invocation updates the current value stored
into the register and each read invocation returns the value of the last recently write to
the register. For the purposes of this thesis, we assume processes communicate only through
a set of m objects of type register denoted R = {r1, . . . , rm}.

There are restricted types of register. According to their access pattern they can
be: SWSR register (single-writer single-reader), SWMR register (single-writer multiple-
reader) or MRMW register (multiple-writer multiple-reader). All of them provide the same
set of atomic operations. Examples of types that support more powerful operations are:
read-modify-write register, test&set register and compare&swap register. In Chap-
ter 5, we talk more about these objects. The type of the shared objects used for communi-
cation determines the class of problems that can be solved and their complexity.

The state of the system is described through configurations. A configuration C is a tuple
of (s1, . . . , sn, v1, . . . , vm), denoting that process pi, 1 ≤ i ≤ n, is in state si, and register rj,
1 ≤ j ≤ m, has value vj. In an initial configuration, denoted C∗, all processes are in their ini-
tial states and all registers contain initial values. A schedule σ is a (possibly infinite) sequence
of processes indices. We denote the empty schedule by ε. A step is an atomic action which
consists of simultaneous changes to the state of some process and the value of some shared
register. An execution (C;σ) is a sequence of steps beginning in configuration C and moving
through successive configurations one at a time. At each step, the next process pi indicated
in the schedule σ, takes the next step in its program. If σ is finite, the final configuration of
the execution (C;σ) is denoted σ(C). A configuration C is reachable from a configuration D
if there exists a finite schedule, σ, such that σ(D) = C, and it is just reachable if σ(C∗) = C.
If σ and π are finite schedules then σπ denotes the concatenation of σ and π. Let P be a set
of processes, and σ a schedule, we say σ is P -only if only indices of processes in P appear in σ.

We will use directed graphs to depict configurations and executions. A node represents
a configuration and directed edges will be labeled with schedules. A directed graph as in
Figure 2.1 represents the execution (D1;σ), where D2 = σ(D1).

Any execution (C;σ) defines a partial happens before order “→” on the method calls that
occur during (C;σ). A method call m1 happens before m2, denoted m1 → m2, if the response
of m1 occurs before the invocation of m2. Two configurations C1 = (s1, . . . , sn, r1, . . . , rm)
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and C2 = (s′1, . . . , s
′
n, r
′
1, . . . , r

′
m) are indistinguishable to process pi denoted C1 ∼pi C2 if

si = s′i and rj = r′j for 1 ≤ j ≤ n. If S is a set of processes, and for every process p ∈ S, C1

and C2 are indistinguishable to p, then we say C1 and C2 are indistinguishable for S denoted
C1 ∼S C2. Note that if C1 ∼S C2 then for any S-only schedule σ, σ(C1) and σ(C2) are
indistinguishable to S. Let P = {p1, . . . , pn} be the set of processes in the system. Then,
for 1 ≤ k ≤ n, we define Pk = {p1, . . . , pk} ⊆ P , this notation will be very useful for proofs
in Chapter 3.

Proofs in Chapter 3 and Chapter 4 use covering arguments. We say process pi covers
register rj in a configuration C, if the one step execution

(
C; i
)

is a write to register rj. A
set of processes P covers a set of registers R if for every register r ∈ R there is a process
p ∈ P such that p covers r. A block-write by P to R is an execution (C; π), where π is a
permutation of P . For a process set P , we denote by πP an arbitrary (but fixed) permutation
of P (for example the one that orders processes by their ID). Thus, if C is a configuration
in which P covers a set of registers R, then (C; πP ) is a block-write by P to R.

The amount of shared memory used to solve a problem by a distributed algorithm A is
what we call the space complexity of A. We can state the space complexity of a distributed
algorithm A algorithm according to the number of different shared registers required by it,
or by the amount of shared space that it used in bits. A different way to assess the efficiency
of an algorithm to solve a problem P can be made by counting the number of steps taken by
the processes in the system to P in the worst case: the step complexity of the algorithm. The
results presented in Chapter 3 and Chapter 4 concern the space complexity for implement-
ing timestamping mechanisms. Before stating the timestamp problem we discuss the safety
and progress conditions that allows us to specify the adequate behavior of timestamp objects.

2.3 Safety and Progress Properties

We are concerned about correct implementations of concurrent timestamping objects in
shared memory systems. But what does it mean for a concurrent object implementation
to be correct? Informally, an object implementation is correct if it behaves adequately.
Safety and liveness properties specify how concurrent objects or systems should behave.
These properties specifies what guarantees are provided by the system through stating the
behavior of the objects that compose it. A safety property states that something bad in
the system never happens, while a liveness property states that eventually something good
happens. One example of a safety property is linearizability [23]. Linearizability provides
the illusion that each operation applied on a concurrent object takes effect instantaneously
at some point between its invocation and its response. Other safety properties, also known
as correctness conditions, are sequential consistency and quiescent consistency. For a formal
definition of these properties see [22].

Examples of liveness properties (also known as progress conditions) are: wait-free and
lock-free, both of these properties guarantee that the delay of a process operating on an
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object does not prevent others from taking steps. A concurrent object is wait-free if it guar-
antees every non-faulty process will complete its operation within a finite number of its own
steps and it is lock-free if at least one non-faulty process will complete its operation in a
finite number of its own steps. These two progress conditions can be extended to random-
ized wait-freedom and randomized lock-free by considering the expected number of steps.
In this thesis we consider a strictly weaker progress condition for timestamp implementa-
tions: non-deterministic solo-termination. An implementation has the non-deterministic
solo-termination property if, for every configuration C and every process pi, there exists
a {pi}-only execution, starting at configuration C, in which pi finishes executing its opera-
tions. In other words, if pi runs long enough without encountering a synchronization conflict,
it will make progress. The last property is equivalent to obstruction-free for deterministic
algorithms [14].

2.4 Timestamps

In an asynchronous distributed system is impossible for processes to determine the exact
temporal ordering of all events [14], where events correspond to method invocations and
responses. Having partial information about this ordering is crucial to solve many problems
effectively. A Timestamp mechanism helps processes achieve this. It allows processes to
label events and compare those labels to obtain information about the real time order in
which the corresponding events took place. Timestamps mechanisms result in an extremely
powerful tool for concurrency control. Timestamps are used in many areas of computer
science and in many practical applications. Some examples, as we mentioned in Chapter
1, are consensus [1], registers constructions [20, 27, 34], snapshot algorithms [2], adaptive
renaming algorithms [8] and k-exclusion algorithms [3, 17, 26, 33].

The history of timestamps began with Leslie Lamport in 1978. He was the first one to
devise a timestamp mechanism [26]. To do so, he defined a happens before relation on events
occurring in message-passing systems to reflect the causal relationship of events. This hap-
pens before relation is a partial order, where, informally, an event e1 happens before event
e2, if e1 can cause or influence e2. Then, Lamport devised a logical clock that assigns an
integer value C(e), called a timestamp, to each event e such that if event e1 happens before
event e2 then C(e1) < C(e2). The Lamport’s logical clock system based on integers was
later extended to clocks based on vectors by Collin Fidge [16] and Friedemann Mattern [30].
Lamport also devised a very simple shared memory timestamp mechanism [26] that uses n
SWMR registers, where n is the number of processes in the system. When a process gets
a timestamp, it collects all the values in all the n registers and writes one plus the maxi-
mum value it read into its corresponding register. Such a value is returned as timestamp.
Cinthya Dwork and Orli Waarts [13] devised a different implementation, where timestamps
are vectors and they are compared lexicographically. Hagit Attiya and Arie Fouren proposed
a more complicated implementation in [8]. Rachid Guerraoui and Eric Ruppert [19] consid-
ered timestamps in anonymous systems (recall that in an anonymous system processes do
not have unique identifiers). They devised a wait-free timestamp implementation for such
systems. The construction of Hagit Attiya and Arien Fouren uses an unbounded number of
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MWMR registers, while Rachid Guerraoui and Eric Ruppert assume n MWMR registers.

In all implementations mentioned above the size of timestamps is not bounded by a
function of n, the total number of processes, and they assume processes are allowed to
get a timestamp many times. Finding such an implementation is known as the unbounded
timestamp problem. On the other hand, finding a timestamp implementation, where the size
of timestamps is bounded by a function of n is called the bounded timestamp problem. We
describe these two versions of the problem in more detail in the next two subsections.

2.4.1 Bounded Timestamps

Amos Israeli and Ming Li were the first to isolate the notion of bounded timestamping as an
independent concept. They developed in [24] a theory of bounded sequential timestamping
systems. Danny Dolev and Nir Shavit were the first to present a bounded construction of
a concurrent timestamping system [11]. They achieved so by transforming an unbounded
solution into a bounded one. Cynthia Dwork and Orli Waarts [12], Rainer Gawlick et.al.
[18], Amos Israeli and Ming Li [24], Amos Israeli and Meir Pinhasov [25] followed the same
strategy. In this chapter, we introduce formally the bounded timestamp problem. We do
not describe any particular implementation since they are quite complex and it is out of the
scope of this work.

We follow the presentation of the bounded timestamp problem that appears in [13]. We
assume an asynchronous system of n concurrent processes that communicate among them-
selves through n read/write atomic SWMR registers of bounded size. A bounded timestamping
system must support two wait-free operations: label and scan. The first operation assigns
an element(label) from a finite timestamp universe T to the process that performs it. Every
process is allowed to perform any number of label operations. For 1 ≤ i ≤ n, let Lki denote
the kth label operation performed by process i (the superscript k is not visible to process
i, this is simply a notational device for describing long-lived runs of the timestamp system).
Analogously lki denotes the label obtained by process i during Lki . A scan operation returns
a pair (l̄,≺) where l̄ is an indexed set of labels (one per process) {l1, . . . , ln} and ≺ is an
irreflexive total order among the elements of l̄. We denote the kth scan operation performed
by process i by Ski . In order to handle initial conditions, we assume that each process i has
an initial timestamp ⊥ ∈ T denoted l0i . To avoid making any distinction between initial
timestamps and the timestamps assigned by label operations, we say that timestamp l0i
was returned to process i by a fictitious initial timestamping operation L0

i that took place
just before the beginning of the execution and we assume all of them are concurrent.

Each process’ program consists of a sequence of label and scan operations which are
totally ordered by the precedence order→ (recall that if A and B are two different operations
then A→ B if B starts after A has terminated). This means the operations of any process
are not concurrent. Furthermore, three properties are required:

1. Ordering. There exists an irreflexive total order =⇒ on the set of all label operations,
such that:

10
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• Precedence: For any pair of label operations Lai and Lbj (where possibly i = j)
if Lai → Lbj, then Lai =⇒ Lbj.

• Consistency: For any scan operation Ski returning (l̄,≺), for all lai and lbj in l̄,
lai ≺ lbj if and only if Lai =⇒ Lbj.

2. Regularity. For any timestamp lai in l̄ returned by Skp , Lai begins before Skp terminates,
and there is no Lbj such that Lai → Lbj → Skp .

3. Monotonicity. Let Ski and Sk
′
j (where i and j may be equal) be a pair of scan oper-

ations returning the indexed sets l̄ and l̄′ respectively which contain labels lap and lbp
respectively. If Ski → Sk

′
j then a ≤ b.

Intuitively, the ordering property says that there exists a total order of the label opera-
tions which is consistent with the actual order of events. This order is not necessarily known
by the processes. The regularity condition establishes that the timestamps returned by an
scan operation are not obsolete. Monotonicity says that if an scan operation preeceeds
another one and the first one returns a new timestamp for some process p, then the second
can not return an older timestamp for p.

Implementations of bounded timestamps systems are tricky because of the need to recycle
labels. Hence the core of the known implementations is to construct a mechanism that helps
to reuse labels. Some implementations may be found in [12, 18, 25].

2.4.2 Unbounded Timestamps

An unbounded timestamp system provides two algorithms for each process: getTS and
compare. The first one takes no arguments and returns a value from an infinite timestamp
universe T . The compare algorithm takes two arguments from T and outputs a boolean
value. The happens before relation orders time intervals associated with method calls (re-
call that method call m1 happens before method call m2, if the response of m1 precedes
the invocation of m2). If a getTS method g1 that returns t1 happens before another getTS

method g2 that returns t2 then any later compare(t1, t2) must return true and any later
compare(t2, t1) must return false. Two concurrent instances of getTS are allowed to output
the same timestamp while non-concurrent instances are not. There are stronger versions
of bounded timestamps systems, for instance those that are static. In a static timestamp
implementation, for every pair t and t′, the compare(t,t′) always outputs the same result in
all executions. Thus, in such implementations a compare method does not require access to
shared memory.

In a linearizable timestamp implementation each invocation of getTS and compare must
appear to take effect atomically and in some order consistent with real-time order. If one
such operation instance ends before another begins, then the former must be linearized be-
fore the latter. If g1 and g2 are concurrent instances of getTS, then one of them must be
linearized before the other, so they can not receive the same or incomparable timestamps.
We do not consider linearizable timestamps implementations. Therefore, concurrent getTS
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method calls can output incomparable timestamps. However, that is not a big constraint
since in eponymous systems there is a way to get a linearizable timestamping system from
those that are not. If we attach processes id’s to granted timestamps [14], the order of the
id’s establishes the corresponding linearization points and concurrent method calls of getTS
would return different labels since all processes own a different id. Notice that in anonymous
systems this can not be achieved.

We say a timestamp system is long-lived if processes are allowed to call the method getTS

many times, while it is said to be one-shot if processes are allowed to invoke the method
getTS only once. The compare method in both versions can be invoked any number of times.

Often, T is a partially ordered set and all timestamps returned by getTS method calls
during an execution are comparable and preserve the happens before relation of these method
calls. Non-static timestamp objects can lead to different partial orders of the set T .

As far we are aware, the only paper that studies the space complexity of unbounded time-
stamp implementations is due to Faith Ellen, Paniagota Fatourou, and Eric Ruppert [14].
They studied the number of atomic registers needed to implement any long-lived unbounded
timestamp mechanism. Faith Ellen et.al. showed that any implementation of a long-lived
unbounded timestamp mechanism that satisfies non-deterministic solo termination requires
at least 1

2

√
n− 1 MWMR registers, where n is the number of processes in the system. This

lower bound holds for non-static implementations and even for those that are static. In the
same paper they proved that if only SWMR registers are available then n − 1 is optimal.
They proved the upper bound by showing an algorithm that uses such a number of registers.

Furthermore, they proved Ω(n) registers are required by any timestamp implementa-
tion that satisfies non-deterministic solo termination, where T is a nowhere dense partially
ordered universe, exactly matching known implementations. A partially ordered set U is
called nowhere dense if, for every two elements x, y ∈ U , there are only a finite number of
elements z ∈ U such that x < z < y. They also prove matching upper and lower bounds
for anonymous systems. They show a wait-free timestamp mechanism that uses O(n) MWMR

registers for anonymous systems. In such implementation O(n3) steps are necessary for a
process to get a timestamp.

The most general lower bound proved in [14] shows that there is a big gap between lower
and upper bounds for the space complexity of timestamp implementations. In the next
chapter, we prove a new lower bound that substantially reduces such a gap. In Chapter 3,
we prove that any non-deterministic solo termination and long-lived unbounded timestamp
implementation uses at least n/6−O(1) MWMR registers.

12



Chapter 3

Space Lower Bound For Long-Lived
Timestamps

In this chapter we prove a new lower bound for any long-lived timestamp implementation that
satisfies non-deterministic solo termination. We prove that a linear number of read/write
atomic registers is needed to implement such systems. Recall that a timestamp object is
long-lived if each process is allowed to invoke the getTS method many times (the compare

method can be invoked many times even in the one-shot version of the problem). To prove
our lower bound we strongly rely on a previous result due to Ellen, Fatourou and Ruppert
[14] which we restate here using a convenient notation for this work.

The proofs we present in this chapter form part of the first result that we obtained in
a research project regarding bounded timestamps at the University of Calgary under the
supervision of Dr. Lisa Higham and Dr. Philipp Woelfel. Therefore, original proofs can be
found in [28].

Lemma 1. Consider any timestamp implementation from registers that satisfies non-deter-
ministic solo termination and let C be a reachable configuration. Let B0, B1, B2, A0, A1

be disjoint sets of processes, where in C each of B0, B1, and B2 cover a non-empty set R
of registers. Then, there exists i ∈ {0, 1} such that every Ai-only execution starting from
Ci = πBi

(C) that contains a complete getTS() operation writes to some register not in R.

Proof. Let B0, B1, B2, A0 and A1 be disjoint sets of processes as in the statement of Lemma
1 and σi be any Ai-only schedule, i ∈ {0, 1}, such that the execution (Ci;σi) contains a
complete getTS instance. Recall that Ci denotes the resulting configuration after Bi per-
formed a block write to R in C and πBi

denotes an arbitrary but fixed permutation of Bi.
Let ti be the timestamp granted in (Ci;σi). Assume that there is no write outside of R that
occurred in either execution (C0;σ0) or in (C1;σ1). Then configurations πB0σ0πB1σ1πB2(C)
and πB1σ1πB0σ0πB2(C) are indistinguishable to all processes. This is because all informa-
tion written by processes in Ai to R was obliterated by the last block write performed by
B2. Also note πBi

(C) and πB1−i
σ1−iπBi

(C) are indistinguishable to Ai. Hence, the value
of ti in πBi

σi(C) and in πB1−i
σ1−iπBi

σi(C) coincide. Furthermore, in (C; πB0σ0πB1σ1) we
determine that t0 < t1 but in (C; πB1σ1πB0σ0) we have t1 < t0; notice that an invocation

13
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Figure 3.1: Illustration of Lemma 1

to compare(t0, t1) after the block write by B2 returns either true or false. This results in a
contradiction and therefore either in computation (C;σ0) or in computation (C;σ1) a write
to the registers outside of R is performed.

Lemma 1 and its illustration are taken from [14]. However, the version of the lemma
that we presented here is a particular case of the one presented in [14]. Ellen et.al. used the
general case of Lemma 1 to reach a configuration in which all registers are covered by three
processes each. Starting from a configuration where each register in R, a set of registers, is
covered by many processes, they invoke Lemma 1 to reach a configuration where a register
r /∈ R gets covered. Then, they get a new set of registers R := R ∪ {r} where each register
is covered by many processes. This strategy can be repeated if each register in R is covered
by at least three processes. In the repeated use of Lemma 1, processes have to be able to
invoke the getTS method more than once. This is important since such a property implies
that their proof holds only for long-lived timestamp implementations.

For our lower bound we proceed in a different way. We increase the number of processes
covering some register but prevent registers from being covered by more than three pro-
cesses. A (3, k)-configuration is a configuration where k processes are covering registers, but
each register is covered by at most three processes. We argue that if from any quiescent
configuration there exists a schedule that leads to some (3, k)-configuration, we can find an
execution (possibly very long), in which at least two (3, k)-configurations, let us say C0 and
C1, are encountered such that in both of them, each register is covered by the same num-
ber of processes. We then argue that these configurations can be linked together through a
schedule σ. The execution (C0;σ) that leads from C0 to C1 starts with three block-writes
to the registers that are covered by three processes each. We then apply Lemma 1 to see
that we can insert a solo-execution of some unused process p into the schedule σ after one

14
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πB0,j

πB1,j

πB2,j δj πB0
, k

πB1
, k

πB2
, k δk
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Figure 3.2: Illustration of Lemma 2

of the block-writes, such that at the end of this new execution (C0;σ
′) process p is about to

write outside of the registers that are 3-covered in C0. Since the other two block-writes are
overwriting p’s trace in σ′, no process (other than p) can distinguish between (C0;σ

′) and
(C0;σ) = C1. It follows that in σ′(C0) process p covers a register that was covered by at
most 2 other processes. Hence, we have obtained a (3, k + 1)-configuration. We can do this
for k ≤ d(n− 1)/2e, so at the end we obtain a (3, d(n− 1)/2e)-configuration.

Before presenting our first result we need some definitions. The signature of a con-
figuration C, denoted sig(C), is a tuple (c1, c2, . . . , cm) where every ci is the number of
processes covering the i-th register in C. The set of registers whose corresponding entry
in sig(C) is equal to 3 is denoted R3(C). A configuration C is a (3, k)-configuration if
sig(C) = (c1, c2, . . . , cm) satisfies

∑m
i=1 ci = k and ci ≤ 3 for every 1 ≤ i ≤ m. Notice that in

any (3, k)-configuration there are at least dk/3e registers covered.

Lemma 2. Let P be an arbitrary set of processes. Suppose for every quiescent configura-
tion C there exists a P -only schedule σ such that σ(C) is a (3, k)-configuration. Then for
any quiescent configuration D, there are two (3, k)-configurations C0 and C1, and P -only
schedules γ1, γ2, and η such that:

(a) γ1(D) = C0,

(b) γ2(C0) = C1,

(c) sig(C0) = sig(C1), and

(d) γ2 = πB0πB1πB2η, where B0, B1 and B2 are disjoint sets of processes each covering
R3(C0).

Proof. We inductively define an infinite sequence of schedules τ0, δ0, τ1, δ1, . . . , τi+1, δi+1, . . .
and reachable configurations D0 = D,D1, D2, . . . , where Di+1 = τiδi(Di), as follows: τi+1 is
the concatenation of a sequence of permutations πB0,i+1

πB1,i+1
πB2,i+1

and some P -only sche-
dule ri+1 in which every process in P finishes any pending operation; B0,i+1, B1,i+1 and B2,i+1

are disjoint sets of processes each covering R3(Di+1). Execution (Di+1; πB0,i+1
πB1,i+1

πB2,i+1
)

consists of three consecutive block-writes to R3(Di+1) by the processes in B0,i+1, B1,i+1, and
B2,i+1, respectively.

Thus, configuration πB0,i+1
πB1,i+1

πB2,i+1
ri+1(Di+1) is quiescent. Schedule δi+1 is chosen

such that τi+1δi+1(Di+1) is a (3, k)-configuration. By the inductive construction, τi+1(Di+1)
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is quiescent and by the hypothesis δi+1 exists.

Since the set of signatures is finite, there are two indices j < k, such that sig(Dj) =
sig(Dk). Fix two such indices j and k. Let γ1 = τ0δ0τ1δ1τ2δ2 . . . τj−1δj−1 and γ2 = τjδ
where δ = δjτj+1δj+1 . . . τk−1δk−1. Furthermore, C0 = γ1(D) and C1 = γ2(C0). By definition,
the configurations C0 and C1 satisfy (a) and (b). Moreover, by construction C0 = Dj and
C1 = Dk and since sig(Dj) = sig(Dk), (c) is satisfied. Finally, Let η = rjδ. Then, γ2 =
πB0,j

πB1,j
πB2,j

η, where B0,j, B1,j, B2,j are disjoint sets of processes each covering R3(Dj) =
R3(C0). This proves (d). Figure 3.2 illustrates this lemma.

Recall that if P = {p1, . . . , pn} then Pk = {p1, . . . , pk} ⊆ P and P0 = Ø.

Lemma 3. For every 0 ≤ k ≤ d(n − 1)/2e and for every quiescent configuration D, there
exists a P2k-only schedule σk such that σk(D) is a (3, k)-configuration.

Proof. The proof is by induction on k. For k = 0 the claim is obvious.
Let k ≥ 1, and let D be an arbitrary quiescent configuration. By the induction hy-

pothesis, for every quiescent configuration C, there exists a P2k−2-only schedule σk−1, such
that σk−1(C) is a (3, k − 1)-configuration. Lemma 2 holds for any P , in particular when
P = P2k−2. Hence, by Lemma 2 and the induction hypothesis there are two reachable
configurations C0 and C1, and P2k−2-only schedules γ1, γ2, and η, such that γ1(D) = C0,
γ2(C0) = C1, sig(C0) = sig(C1), and γ2 = πB0πB1πB2η, where B0, B1 and B2 are disjoint sets
of processes, each covering R3(C0).

Consider the processes p2k−1, p2k ∈ P2k − P2k−2. For i ∈ {0, 1}, let αi be a {p2k−i}-only
schedule starting in πBi

(C0), in which p2k−i performs a complete getTS() instance. Accord-
ing to Lemma 1, there exists i ∈ {0, 1}, such that p2k−i writes to some register not in R3(C0)
during its solo-execution (πBi

(C0);αi). (Note that whether i = 0 or i = 1 depends on C0.)
Let r be the first register not in R3(C0) in which p2k−i writes to in (πBi

(C0);αi). Since
sig(C0) = sig(C1), we have r /∈ R3(C1), and r is covered by at most two processes in C0 as
well as in C1.

Let τ be the shortest prefix of αi such that p2k−i is about to write to r in πBi
τ(C0).

Since p2k−i does not participate in schedule πB1−i
πB2η, it is also covering r in the configu-

ration πBi
τπB1−i

πB2η(C0). Note that configurations πBi
πB1−i

πB2(C0) and πB1−i
πBi

πB2(C0)
are indistinguishable to all processes. Therefore, πBi

πB1−i
πB2η(C0) = C1. Moreover, since

C1 = πB0πB1πB2η(C0) is indistinguishable from πBi
τπB1−i

πB2η(C0) to every process except
p2k−i, all processes other than p2k−i cover the same registers in C1 as in πBi

τπB1−i
πB2η(C0).

Since p2k−i covers r in this configuration, and r is covered by at most 2 other processes,
πBi

τπB1−i
πBj

η(C0) is a (3, k)-configuration.

Finally we state the main theorem of this chapter.

Theorem 1. Any long-lived unbounded timestamp implementation that satisfies non-deter-
ministic solo termination uses at least n/6−O(1) registers.
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Figure 3.3: Illustration of Lemma 3

Proof. Lemma 3 shows that in any long-lived unbounded timestamp implementation that
satisfies non-deterministic solo termination there exists a reachable (3, d(n − 1)/2e)-confi-
guration. Clearly, in this configuration at least d(n − 1)/6e = n/6 − O(1) registers are
covered.

Our first result closes a big gap between the lower and upper lower bounds of bounded
timestamp implementations, stating that linear register space is necessary to implement
a long-lived bounded timestamp system that satisfies non-deterministic solo termination
(bounded timestamps system that uses O(n) registers are well known). The next chapter
presents a lower bound on the necessary number of registers for any one-shot timestamp
implementation.
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Chapter 4

Space Bounds For One-shot
Timestamps

4.1 The One-Shot Timestamp Problem

The proofs we present in this chapter are part of the second principal result we obtained
in a research project regarding bounded timestamps at the University of Calgary under the
supervision of Dr. Lisa Higham and Dr. Philipp Woelfel. Original proofs and algorithms
can be found in [28].

In Chapter 1, we mentioned that several objects have simpler implementations if we con-
sider their one-shot versions. One example is renaming objects [5]. Mark Moir and James
Anderson proved that in order to implement a long-lived renaming object, complex resettable
building blocks are necessary [31], while a one-shot renaming object requires simpler auxiliary
objects. They also proved that only using reads and writes, a one-shot k(k+ 1)/2-renaming
object can be implemented with time complexity O(k) while the resulting time complexity to
implement the long-lived counterpart is O(nk), where k is the number of processes actually
requiring a name. They also prove that the one-shot solution can be combined with other
previous results to obtain a (2k − 1)-renaming solution. It remains as an open question
whether or not there exists a (2k − 1)-renaming solution for the long-lived version of the
problem.

During the last decade, there have been an increasing use of algebraic topology to study
distributed systems. Lower bounds for one-shot object implementations have been obtained
using this tool [15]. Also there are other problems in distributed computing that are inher-
ently one-shot as consensus or non-resettable test and set objects [28]. Hence, we consider
that studying one-shot objects is of great interest. Specially, one-shot timestamp objects
which as far we are aware have never been studied before.
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Function getTS

// In pme me is the id of p, where me ∈ {1, . . . , n}
// R[1 . . . dn/2e] is a shared array of multi-reader/2-writer registers each with a value

in {0, 1, 2} and initialized to 0. Register R[i] is written by processes p2i−1 and p2i.
// sum is a local variable
sum := 0
for i = 1 . . . dn/2e do

if i = dme/2e then R[i] := R[i] + 1
sum := sum +R[i]

end
return sum

Function compare(t1, t2)

return t1 < t2

Figure 4.1: The One-Shot Timestamp Algorithm.

4.2 A One-Shot Timestamp Algorithm

Results in Chapter 3 establish that linear space is needed to implement any long-lived time-
stamp mechanism. So it seems natural to imagine that n registers would be always required
to construct a timestamp mechanism for a system of n processes. However, this is not the
case if we consider a slightly different version of the problem. In this chapter we study the
space complexity of one-shot unbounded timestamp implementations. Recall that a time-
stamp implementation is one-shot if processes are allowed to get a timestamp only once
through invoking the getTS method. Processes can invoke the compare method many times.
In this chapter, we present a wait-free algorithm that beats the best known algorithm for
a long-lived implementation. The algorithm we present requires only dn/2e atomic MWMR

registers. See Figure 4.1.

Each register is written to by only one pair of processes. Every process writes to only
one register but it is allowed to read any of the n/2 shared registers. When a process p
gets a timestamp, it first reads all the registers one by one adding up their values. When it
encounters its register, before adding its value to the sum it first writes the read value plus
one into it, then it keeps going until it reads all the registers. Then, it returns the sum as
its timestamp. The compare(t1, t2) method simply uses the usual total order for integers <
to return the corresponding boolean value.

Lemma 4. The Algorithm in Figure 4.1 is wait-free and implements a one-shot timestamp
mechanism for an asynchronous system of n processes.

Proof. Clearly both methods getTS() and compare are wait-free. Let p and q be two proces-
sors that perform a getTS() method call and let tp and tq be their corresponding timestamps.
Assume that p’s method call to getTS() happens before q’s method call to getTS(). Each
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process writes either 1 or 2 to its register and only writes 2 if it observed that its register
already held 1. Because it is one-shot, any such observed 1 must have been written by the
observing process’ partner, and thus the value in each register never decreases. Consequently,
the value of sum also never decreases so tp ≤ tq. Since p.getTS() happens before q.getTS(),
q’s sum will also account for the additional 1 that q writes to its own register and that is not
observed by p. Therefore tp < tq.

4.3 Space Lower Bound For One-Shot Timestamps

In this section we present a lower bound for one-shot timestamp implementations. We use
a covering argument again but we use it in a different manner. In a one-shot timestamping
system, processes are not allowed to perform more than one getTS, so the repetition of
signatures through the repeatedly invocation of the getTS method is no longer possible. In
the next subsection we give a geometric representation of covering structures that inspired
the proof in section 4.3.2.

4.3.1 Geometric Intuition

In a one-shot timestamp system, processes are allowed to get a timestamp only once. To
do so, most of them write to some register. Given a one-shot timestamp configuration C,
we may give a picture of C in which we describe the writes to registers that have been
performed and the writes that are about to be performed. Assume there are exactly

√
n

MWMR registers (assume that
√
n is integer), where n is the total number of processes in

the system. We represent some configurations a one-shot timestamping mechanism passes
through by using a grid of

√
n · √n cells, see Figure 4.2. We assign to each register in the

system one column of such a grid, such that each register is the owner of exactly
√
n cells.

The cells of the grid can be filled with tokens of different colors. If a process is covering some
register r in C (a write to r is about to take place) we assign a green token to that process
and we set it into the lowest empty cell on r’s column. When that process writes to register
r we replace its green token with a black one. In any cell there is always only one token.
Therefore, writes that are about to be performed are represented by green tokens and writes
that already happened are represented by black ones. As soon as a token is assigned to some
process, that process is considered unavailable, then in any one-shot timestamp configura-
tion C there are as many available processes as the number of empty cells in the picture of
C. Figure 4.2 depicts some configuration C of a one-shot timestamp system in which one
write has been performed on registers r1 and r2. This picture also tells us that registers r1,
r2 and r3 are covered by three processes, two processes and one process respectively. The
number of available processes in C is n− 8. It is allowed to rearrange tokens on a column.
For example, in Figure 4.2 we can move A to B’s place and vice versa. For convenience, we
assume that there are not empty cells between filled cells of a column.

Given a configuration C, we define the cover size of r as the number of processes cover-
ing r (the number of green tokens on r’s column in the picture of C). In the picture of any
configuration C, registers always appear arranged in order of decreasing cover size. To do
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so, we rename the register whose green column is the highest as r1 and so on, such that the
cover size of ri is bigger than or equal to the cover size of rk for all k ≥ i, see Figure 4.3.

√
n

r1 r2 . . . r√nri

A

B

r3

Figure 4.2: Picture of C.

Consider the initial configuration C∗ in which all processes of the system are available.
Let p be a process whose {p}-only execution (C∗, σ1) contains a complete getTS() instance
and writes to some register r. Let us consider the execution (C∗, σ̂1) in which p is about
to write to r. Then, in the picture of σ̂1(C

∗) there is only one green token on r’s column.
We repeat this but now starting from σ̂1(C

∗). We keep doing this until the cover size of
some ri is equal to

√
n − i + 1. In other words, we set a green token on the registers’

columns while they are not high enough to touch the diagonal FJ , see Figure 4.3. It is
obvious that eventually the cover size of some register will touch FJ . This is because the
number of possible green tokens that can be set on some column of the grid is as many as
the empty cells in C∗. So we have plenty of green tokens to fill with them the white area
below FJ . See Figure 4.3. Hence, we can assume that the procedure described above leads
us to some configuration Cj in which there exists some register rj whose cover size is equal
to
√
n− j + 1 (recall that we rename registers according to their cover size), see Figure 4.3.

Let Rj = {r1, . . . , rj}. Note that in Cj each register in Rj is covered by at least
√
n− j + 1

processes. If
√
n− j + 1 ≥ 3, then there are three disjoint sets of processes covering Rj, so

we can apply Lemma 1 to find an execution in which after a block write on Rj, up to half
of the available processes write outside of Rj. Assume that N contains those processes that
write outside of Rj and let π be a schedule such that (Cj, π) is a block write on Rj. Then
starting in π(Cj) we can proceed as above to find an schedule σ, in which only processes
in N participate, such that in πσ(Cj) there exists a register rm whose cover size is equal to√
n−m+1. Let πσ(Ck) = Cm. Using the token terminology, in the picture of Cm the column

corresponding to rm touches the diagonal. The argument is a geometric one and it goes as
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follows: Let W be the white space in the picture of Cj. Hence, W represents the number of
available process in Cj. Also let S be the white space below the line TJ . Note that S ≤ W

2
.

Therefore, after the block write (Cj, π) the number of processes that write outside of Rj

suffices to fill the white area below the line TJ with green tokens. So using at most |N |
processes in σ we reach the desired configuration Cm. Figure 4.4 depicts configuration Cm.
Black tokens represent those processes that participated in π, the block write on Rj, the
light-green tokens represent processes that participated in σ. Finally note that in Cm each
register in Rm = {r1, . . . , rj . . . rm} is covered by at least

√
n−m+ 1 processes and m > j.

√
n

J

r1 r2 r√n

F

rj

√
n− j + 1

rm

Rk

A

B C

D

T

Figure 4.3: Picture of Cj.

4.3.2 A Lower Bound For One-Shot Timestamps

We now prove that any one-shot timestamp implementation that satisfies non-deterministic
solo termination requires at least

√
n− 1 registers. The proof proceeds by inductively con-

structing a sequence of configurations Cη0 , Cη1 , . . . , Cη` where the indices denoting these con-
figurations are strictly increasing non-negative integers and each configuration is reachable
from its predecessor. We will show that for each m ∈ {η1, . . . η`}, in configuration Cm there
is a set of m registers, Rm, such that each register in Rm is covered by at least

√
n−m+ 1

processes. We call each of these configurations a full configuration and its corresponding
set of registers the full-covered set of registers of that configuration. We will establish that
η` ∈ {

√
n − 1,

√
n}, thus implying that at least this many registers are covered in the last

full configuration. To move from configuration Cηi to Cηi+1
, we invoke Lemma 1. Let ηi = j.

Lemma 1 guarantees that if the cover size of each register in Rj is at least three, there is
a block-write to Rj, such that up to half of the available processes can be made to begin
executing overlapping getTS() methods and manipulated to cover new registers outside of
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Figure 4.4: Picture of Cm.

Rj. We say a process p is available in some configuration C if it has not invoked the getTS()
method. The core idea is to take one process of N and make it start a getTS() method but
before it writes to some register outside of Rj we stop it, then we repeat the same procedure
until we reach a new full configuration Ck whose set of full-covered registers Rk contains
k registers, each of them covered by at least

√
n − k + 1 processes and k > j. Therefore

Ck = Cηi+1
. We show that it is always possible to reach such a configuration while there are

enough available processes, the cover size of the full-covered registers is at least three, and
we have not covered all the registers yet. This implies that in the last full configuration at
least

√
n− 1 registers are covered.

Algorithm 1 specifies the construction of a schedule ω that produces an execution pass-
ing through the full configurations described above. To achieve this, we define two auxiliary
functions: blockWrite(C,R, U) and reachNewFull(C,R, π,N).

Suppose that R is the full-covered set of registers of some full configuration C, also as-
sume that each register in R is covered by at least three processes. Let U denote the set
of available processes in C. By Lemma 1, there exists a set of processes N ⊂ U of size
b|U |/2c and a block-write (C; π) to R such that starting from π(C), any N -only execution
that contains a complete getTS() must write to some register outside of R. We define
blockWrite(C,R, U) as the function that returns such schedule π and set of processes N (If
R is empty then π is the empty schedule ε).

Let m = b|U |/2c and N = {p1, p2, . . . , pm} (recall that Nk = {p1, . . . , pk} for 1 ≤ i ≤ k
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and N0 = Ø). We inductively construct schedule δi such that in πδi(C) all processes in Ni

are about to write to some register not in R. Suppose δi−1 is a Ni−1-only schedule such that
in πδi−1(C) each process in Ni−1 is about to write outside of R, 1 ≤ i ≤ m. Let σi be a
{pi}-only schedule that contains a complete getTS() and pi ∈ Ni \ Ni−1. Since execution
(C; πδi−1σi) contains a complete getTS() instance, pi writes to some register not in R. Let
σ̂i be the shortest prefix of σi such that in πδi−1σ̂i(C) process pi is about to write outside of
R. Therefore, in πδi−1σ̂i(C) every process inNi is about to write outside ofR. Let δi = δi−1σ̂i.

We define reachNewFull(C,R, π,N) as the function that returns the pair (γ,NewR)
where γ = δi such that i is the smallest value in {1 . . . ,m} such that πδi(C) is a full
configuration whose set of full-covered registers newR satisfies: ∀r ∈ newR, |cover(r)| ≥√
n− |newR|+ 1 and |newR| > |R|. If i does not exist , then γ = δi and newR = R.

In Algorithm 1, for any register r, cover(r) denotes the cover size of r, participate(θ)
denotes the set of processes whose indices appear in the schedule θ.

Algorithm 1: Constructing an execution using many registers

Output: A schedule ω.
// ε denotes the empty schedule.
// Initialization:
U := P ; R := ∅; coverSize := 3; D := C∗; ω := ε
alg construct()

while |U | ≥ 2 ∧ coverSize ≥ 3 ∧ |R| < m do

// Step 1: find π and N to cover registers not in R:

(π,N) := blockWrite(D,R,U)

// Step 2: find γ to reach a new full configuration:

(γ, newR) := reachNewFull(D,R, π,N)

// Step 3: update

D := πγ(D)
R := newR
ω := ωπγ
U := U \ participate(γ)
coverSize :=

√
n− |newR|+ 1

end

return ω
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Lemma 5. In the execution constructed by Algorithm 1, no process initiates more than one
getTS() method call.

Proof. Let C∗ be the initial configuration and let (C∗;ω) be the execution constructed by
Algorithm 1. Every process that participates in ω after starting a getTS() method call
either participates in a block write or covers some register. As long as a process is covering
a register, it is paused during its first execution of getTS(). Any process that participated
in a block-write at Step 1, takes no further steps. Thus, no process initiates getTS() more
than once in (C∗;ω).

Lemma 6. Consider any implementation of timestamp objects that has a set of m ≤ √n
registers, R, available. The execution constructed by Algorithm 1 for this implementation
satisfies the following: There exists a sequence of integers η0 < η1 < . . . < η`, where η` ≥ m−
1, and reachable full configurations Cη0 , Cη1 , . . . , Cη`, such that each of these configurations
is reachable from its predecessor.

Proof. The proof proceeds inductively on the number of iterations of the while loop in Al-
gorithm 1. Before entering to the loop, we have η0 = 0, ω0 = ε. So Cη0 is the initial
configuration C∗ in which no registers are covered, and all processes are in U , so the lemma
holds for η0.

Let ωi be the schedule obtained at the end of iteration i. Assume that ωi(C
∗) = Cηi is a

reachable full configuration whose set of full-covered registers is Rηi , and suppose we enter
to the loop one more time. Let j = ηi. Then in π(D) (Step 1 of the i+ 1-th iteration).

1. j · (√n− j) processes cover registers in Rj, and

2. the number of processes that have participated in any block-write at Step 1 is at most
(j(j + 1)/2).

Since |Rj| = j, the total number of processes either already covering a register in R\Rj

or still in the set U in configuration π(D) is at least n− (2j·
√
n−j2+j
2

). If at Step 2 of the i+ 1
iteration reachNewFull(D,R, π,N) returns a γ such that πγ(D) is a full configuration,
clearly we are done. Suppose for the purpose of contradiction that πγ(D) is not a full
configuration satisfying the desired properties. Recalling the geometric intuition, this implies
that after setting all processes in N to cover registers outside of Rj there is no a register
whose cover size touches the line FJ , this assumption should lead us to a contradiction. In
πγ(D), each process in particpate(γ) covers a register in R \ Rj. Let rj+1, . . . , rm registers
in R \Rj arranged in order of decreasing cover size. Hence:

1. since |N | = b|U |/2c then |participate(γ)| = b|U |/2c.

2. there are at least bn−j·
√
n

2
+ j2−j

4
c processes covering registers in R \Rj.

3. for every z, j + 1 ≤ z ≤ m, |cover(rz)| ≤
√
n− z.
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Thus the covering set on R \ Rj has size S =
∑m

z=j+1 |cover(rz)|. Using 1 ≤ j ≤ √n − 1,

2 ≤ √n and |Rj| = j, we obtain

S ≤
√
n∑

z=j+1

(
√
n− z) =

√
n−j−1∑
z=0

z

=
(
√
n− j − 1)(

√
n− j)

2

<
(
√
n− j − 1)

√
n

2

=
n− j · √n−√n

2

≤
⌊
n− j · √n

2

⌋
This contradicts that at least bn−j·

√
n

2
+ j2−j

4
c processes cover registers in R \ Rj in πγ(D).

Such a contradiction comes from assuming πγ(D) is not a full configuration that holds the
required properties.

Theorem 2. Any implementation of a one-shot timestamp system that satisfies non-deter-
ministic solo termination uses at least

√
n−O(1) registers.

Proof. It follows from the two previous lemmas.
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Chapter 5

Future Research and Conclusions

The consensus number of an object of type O is the largest m for which that object to-
gether with atomic read/write registers solves the m-process consensus problem. See [9]
for further information about the consensus problem. Then we say an object A is stronger
than object B if A′s consensus number is bigger than B′s. The type of registers we consid-
ered throughout this work were only read/write atomic registers whose consensus number
is one [22]. On the other hand, recall that we mentioned in Chapter 2 that there were
other types of register that support more powerful operations such as CAS, TEST&SET or
Read-Write-Modify functions. These registers have higher consensus number. Thus, a
natural question emerges: can a timestamp object be implemented with some strong ob-
jects more efficiently in time or space than implementations that use only read/write atomic
registers?. Studying the relationship between timestamping objects and other distributed
objects can be of interest to understand how difficult the timestamping problem is.

In this last chapter we discuss all these issues and we propose some questions we consider
interesting for future research.

5.1 Strong Objects

The CAS operation takes two arguments old and new such that if x is a register that sup-
ports CAS operations, then x.CAS(old,new) returns a boolean value. If the value of x is
equal to old, it is atomically replaced by new and true is returned, otherwise the value of
x is unchanged and false is returned. Notice that the consensus number of a CAS register
is infinite. It is easy to see that wait-free timestamping systems are constructible from CAS

registers. Figure 5.1 shows the construction of an unbounded long-lived timestamping sys-
tem using only one CAS register.

However, sometimes the cost of including a CAS register in a system may be too high, so it
is important to investigate if timestamp systems are constructible from weaker and cheaper
objects. Giving lower bounds on the number of stronger objects needed to implement a
timestamp system and to show a timestamp system implementation from such objects is an
interesting direction for future research.
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Function getTS

last := x.read()
x.CAS(last, last+ 1)
return last

Function compare(t1, t2)

return t1 < t2

Figure 5.1: CAS timestamping

5.2 Lattice Agreement

The lattice agreement problem for eponymous systems is a decision problem introduced by
Hagit Attiya, Maurice Herlihy and Ophir Rachman [6]. In the shared memory model a
process is said to be active in some execution (C;α) if its index appears in α. Assume that
there exists a bound on the number of active process in any execution and this bound is
known in advance. The lattice agreement problem is defined as follows: A process pi starts
with Vin(pi) = {pi} and is required to decide on a subset of the active processes, called a view,
Vout(pi), such that the following conditions hold:

• Comparability: for any i and j, either Vout(pi) ⊆ Vout(pj) or Vout(pj) ⊆ Vout(pi).

• Self-containment: for any i, Vin(pi) ⊆ Vout(pi).

It seems that there exists a relationship between the lattice agreement problem and the
one-shot timestamp problem. In order to implement the getTS method from the outcome of
a lattice agreement object, we have to ensure that if the getTS method of process pi happens
before the getTS method of process pj, then the timestamp constructed from Vout(pi) must
be smaller than the one granted to pj (constructed from Vout(pj)). If such construction exists
we could solve the timestamp problem through lattice agreement objects.

There are many other questions that remain open regarding timestamps. For instance,
regarding the timestamp universe, we can study the necessary number of registers to imple-
ment a one-shot timestamp if the timestamp universe is nowhere dense. Also it remains a big
gap between the lower bound and the upper bound for one-shot timestamping implementa-
tions that it seems possible to shrink. Also it remains open to find an interesting application
where one-shot timestamps may be used.

5.3 Conclusions

Throughout this thesis we studied the space complexity of timestamp implementations. We
considered an asynchronous system with n processes that communicate among themselves
through performing operations on m read/write atomic shared registers. We first described
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two types of long-lived timestamp systems: those that provide timestamps whose size is
not bounded and those that provide timestamps whose size is bounded. Timestamps in a
bounded timestamp mechanism are elements of a finite timestamp universe, T , while in a
unbounded one, they are elements of an infinite timestamp universe. We shortly described
a bounded timestamp implementations due to Cinthya Dwork and Orli Waarts [13], but our
results hold for unbounded timestamp systems only. Faith Ellen, Panagiota Fatourou and
Eric Ruppert [14] proved that Ω(

√
n) MWMR registers are needed to implement a long-lived

unbounded timestamp system that satisfies non-deterministic solo termination. As far we
are aware, such lower bound is the only known result regarding the space complexity of un-
bounded timestamp implementations. We presented an improvement to that lower bound in
Chapter 3. We did so, stating that n/6−O(1) MWMR registers are required for implement-
ing a timestamp mechanism that satisfies non-deterministic solo termination. This result
closes the large gap between the upper bound of O(n) also proved in [14] and the Ω(

√
n)

lower bound. Our proof use a covering argument, which is a technique introduced some years
ago by James Burns and Nancy Lynch [10]. We show how to use that technique together
with the idea that in a timestamp system we can repeat certain configurations many times
without using many processes. After setting up the appropriate induction hypothesis prov-
ing the new lower bound is straightforward. A one-shot timestamp mechanism that satisfies
wait-freedom is presented in Chapter 4. Such an algorithm uses only n/2 MWMR registers

while the best long-lived implementation of a timestamp system uses n − 1 SWMR registers.
Furthermore, we prove a lower bound for one-shot timestamp implementations. We proved
that

√
n − O(1) MRMW registers are necessary to implement any one-shot timestamp sys-

tem that satisfies non-deterministic solo termination. Lower bound proof in Chapter 4 was
inspired by a geometric interpretation of the covering structure of configurations. Chapter
4 results leave a large gap between the upper bound and lower bound of one-shot time-
stamp implementations. Our intuition is that we can improve such a lower bound although
it remains as an open question. We presented some open questions regarding the space
complexity of timestamp implementations using stronger objects. We gave an implemen-
tation that uses only one CAS register, although it remains open to state lower bounds
and algorithms using other objects. The last section discussed the possible relationship of
timestamping to the lattice agreement problem. Timestamp systems are a quiet useful tool
in distributed computing and provides many interesting research problems.

We hope you had fun while you read this work. All results presented were obtained
during my research stay at the University of Calgary under the supervision of Dr. Lisa
Higham and Dr. Philipp Woelfel.
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