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Abstract

The main goals of this dissertation corresponded to define discrete models analogous
to the ones defined and studied for the continuous case by Højsgaard and Lauritzen
(2008) and to relate these discrete models to different concepts of symmetry. Some of
these concepts have been already studied in the discrete case in models with only a
certain number of variables, and in a few ones considering any number of variables,
and others have been studied in the continuous case. As a consequence, new symmetry
concepts and generalizations of other known symmetry definitions are obtained. These
goals were achieved and they are discussed throughout this dissertation.

Log-linear models are used to determine the way in which a set of categorical vari-
ables are associated in a contingency table. A subset of them are graphical log-linear
models in which conditional and marginal independences between variables are ex-
pressed in the model, additionally they use mathematical concepts from Graph theory.
They can be represented through graphs formed by dots called vertices corresponding
to variables and lines called edges, which depend on which parameters are contained in
the model. Given the hierarchical nature of graphical log-linear models, if there is an
interaction, there must be all interactions of lower order, so that the edges in the model
are determined by the first-order interactions and consequently the edges are identified
with those interactions.

We introduce new types of hierarchical log-linear models, restricted graphical log-
linear (RGLL), in which certain main effects and first-order interactions are restricted to
be equal. This equality restrictions depend on which elements are contained in classes
obtained once the vertex and edge sets are partitioned. Additionally, RGLL models are
defined according to mathematical concepts obtained from Graph theory. They can be
represented by graphs with multiple edges between vertices, corresponding to all differ-
ent permutations among the categories of each pair of associated variables, including
both vertex and edge colourings. Having vertices with the same colour means that
the main effects for their corresponding variables are the same in all their categories.
Having multiple edges with the same colour means that the first-order interactions iden-
tified with such edges are equal. RGLL are more parsimonious than graphical log-linear
models and they can be used to identify relationships between the expected frequen-
cies in some cells of the table, and they also reflect independences between variables.



Additionally, they can be used to analyze variations of the concept of symmetry.

We study properties of RGLL models, obtain the associated likelihood equations,
and derive an algorithm to solve the likelihood equations based on the iterative propor-
tional fitting algorithm used on log-linear models. This is implemented on routines we
use to fit or to search RGLL models that fit as good as possible to some data.

The classic concept of symmetry for two-way contingency tables corresponds to
having that the expected frequency for any cell m(i, j) above the diagonal is equal
to the expected frequency for the corresponding cell m(j, i) below the diagonal. This
concept has been generalized for higher dimensions; however, there is not a unique
way to do this, but in general these generalizations correspond to models in which the
expected frequencies for certain cells are equal. These generalizations do not include
the possibility of combining symmetry with the independences derived from a graphi-
cal log-linear model. Another classic model defined for two-way contingency tables is
quasi-symmetry. Both the symmetry and quasi-symmetry models can be expressed as
RGLL models, so that the latter can be considered as a generalization of the former.

Graphical Gaussian models are analogous to graphical log-linear models. Its defini-
tion is determined by which elements in its concentration matrix are zero. Højsgaard
and Lauritzen (2008) define a particular type of graphical Gaussian models in which
elements in the concentration matrix are restricted to be equal and whose graphical
representation is based on coloured graphs. In this sense, these are similar to RGLL
models. A second type of symmetry used in the case of continuous variables with
Gaussian distribution corresponds to models in which the concentration or covariance
matrix is preserved in spite of applying a transformation in the matrix, which implies
that if the mean is zero, then the distribution is preserved. A particular instance of the
models defined by Højsgard and Lauritzen are called RCOP, they use this second type
of symmetry by permuting certain vertices in graphical Gaussian models. The kind of
permutation is related to the concept of symmetry group as defined in Algebra.

Additionally, we define two particular cases of RGLL models, label and level invari-
ant models, which are graphical log-linear and whose associated graphs are triangle-
free. Label invariant models preserve the model, and consequently the distribution,
after permuting certain vertices according to a set of permutations that preserve the
graph. Additionally, they are scale invariant and preserve the independences obtained
from the graph. Then, they are analogous to RCOP models since they combine the
type of symmetry that preserves the distribution after applying vertex permutations
with graphical log-linear models. Level invariant models preserve certain expected fre-
quencies in the table after permuting the values taken by some variables, so that they
combine the type of symmetry that equates the expected frequencies for certain cells
with the independences derived from a graphical log-linear model.



We present illustrative examples and applications of label and level invariant and
RGLL models in general. RGLL models are selected and fitted to three data sets, in
these data the fit is improved when they are used. By examples of label and level
invariant models we understand that we define particular models and symmetry condi-
tions that can be represented using them. In this way we illustrate for label and level
invariant models the following aspects: theoretical concepts, in which cases they can be
used, their possible meaning, the parameter restrictions that should be satisfied, and
how to represent them as RGLL models. Applications are concerned with data sets in
which some of the models defined in the examples section can be fitted because there
is symmetry, which can be confirmed through them.



Resumen

Los objetivos principales de esta tesis son definir modelos discretos análogos a aquellos
estudiados en el caso continuo por Hojsgaard y Lauritzen (2008) y relacionar estos con
diferentes conceptos de simetŕıa. Algunos de estos conceptos ya han sido estudiados en
el caso discreto en modelos definidos solo para un cierto número de variables, y en unos
cuantos modelos que incluso consideran cualquier número de variables, y otros han sido
estudiados en el caso continuo. Como consecuencia, nuevos conceptos de simetŕıa y
generalizaciones de otras definiciones de simetŕıa conocidas son obtenidos. Estos obje-
tivos fueron satisfechos y son discutidos a los largo de esta tesis.

Los modelos loglineales son usados para determinar la forma en que se asocian
un conjunto de variables categóricas en una tabla de contingencia. Un subconjunto
de ellos son los modelos gráficos loglineales en los cuales se expresan independencias
condicionales y marginales entre variables, además estos usan conceptos matemáticos de
teoŕıa de Gráficas. Estos modelos pueden representarse mediante gráficas compuestas
por puntos llamados vértices que corresponden a las variables y ĺıneas llamadas aris-
tas las cuales dependen de los parámetros contenidos en el modelo. Estos parámetros
corresponden a efectos principales e interacciones entre las variables de distinto orden.
Dada la naturaleza jerárquica de los modelos gráficos loglineales cuando hay una inter-
acción deben existir todas las interacciones de orden inferior, aśı que las aristas en el
modelo están determinadas por las interacciones de primer orden, por lo cual se iden-
tifican las aristas con estas interacciones.

Introducimos nuevos tipos de modelos loglineales jerárquicos, los modelos gráficos
loglineales restringidos (RGLL), para los cuales ciertos efectos principales e interac-
ciones de primer orden están restringidos a ser iguales. Estas igualdades dependen
de cuales elementos están presentes en clases obtenidas mediante particiones del con-
junto de vértices y del conjunto de aristas. Adicionalmente, los modelos RGLL están
definidos de acuerdo a conceptos matemáticos de teoŕıa de Gráficas. Estos mode-
los pueden representarse mediante gráficas con aristas múltiples entre los vértices, las
cuales corresponden a todas las permutaciones posibles entre las categoŕıas de cada par
de variables asociadas, incluyendo además coloraciones por vértices y por aristas. El
tener un conjunto de vértices con un mismo color significa que los efectos principales de
las variables en esa clase son iguales en todos sus niveles. El tener aristas múltiples con



un mismo color significa que las interacciones de primer orden que se identifican con
tales aristas son las mismas. Los modelos RGLL son más parsimoniosos que los mod-
elos gráficos loglineales y pueden utilizarse para identificar relaciones existentes entre
los valores esperados de algunas celdas de la tabla, además de reflejar independencias
entre variables. Adicionalmente, pueden usarse para analizar variaciones del concepto
de simetŕıa.

Se estudian propiedades de los modelos RGLL, se obtienen las ecuaciones de ve-
rosimilitud asociadas y se deriva un algoritmo para resolverlas basado en el método
de ajuste iterativo (iterative proportional fitting) usado en modelos loglineales. Este
es implementado en rutinas creadas para ajustar o para buscar modelos RGLL que se
ajusten bien a unos datos.

El concepto clásico de simetŕıa en tablas de contingencia de dos dimensiones se re-
fiere a que el valor esperado en cualquier celda m(i, j) arriba de la diagonal es igual
al valor esperado para la correspondiente celda m(j, i) abajo de la diagonal. Este con-
cepto de simetŕıa se ha generalizado para dimensiones mayores; sin embargo, no hay
una única manera de hacerlo aunque en general corresponde a modelos en los cuales
los valores esperados de ciertas celdas se igualan. Estas generalizaciones no incluyen
la posibilidad de combinar simetŕıa con las independencias derivadas de un modelo
gráfico loglineal. Otro modelo clásico definido para tablas de dos dimensiones es el de
cuasisimetŕıa. Tanto el modelo de simetŕıa como el de cuasisimetŕıa en dos dimensiones
pueden ser expresados como modelos RGLL, aśı que estos últimos pueden considerarse
como una generalización de los primeros.

Los modelos gráficos Gaussianos son análogos a los modelos gráficos loglineales. Su
definición depende de cuales elementos de su matriz de concentración son cero. Højsgard
y Lauritzen (2008) definen una clase particular de modelos gráficos Gaussianos en los
cuales elementos en la matriz de concentración son iguales entre si y cuya representación
está basada en gráficas coloreadas. En este sentido estos modelos son similares a los
modelos RGLL. Un segundo tipo de simetŕıa usado cuando se tienen variables aleatorias
continuas con distribución Gaussiana se refiere a modelos en los cuales la matriz de con-
centración o covarianza se preserva a pesar de aplicar una transformación en la matriz,
lo cual implica que si la media es cero entonces la distribución se conserva. Un caso
particular de los modelos definidos por Højsgard y Lauritzen son los llamados RCOP,
los cuales implementan este segundo tipo de simetŕıa al permutar ciertos vértices en
modelos gráficos Gaussianos. El tipo de permutación utilizada está relacionado con el
concepto de grupos de simetŕıa tal como se define en Álgebra.

En este trabajo además se definen dos casos particulares de modelos RGLL, label
invariant y level invariant, que son modelos gráficos loglineales cuyas gráficas asociadas
están libres de triángulos. Aquellos denominados label invariant preservan el modelo



y como consecuencia la distribución a pesar de permutar los vértices de acuerdo a un
conjunto de permutaciones que conservan la gráfica. Adicionalmente, son invariantes
a la escala y preservan las independencias dadas por el modelo gráfico loglineal. Esto
quiere decir que son análogos a los RCOP ya que combinan el tipo de simetŕıa que
preserva distribuciones después de aplicar permutaciones de los vértices con modelos
gráficos loglineales. Aquellos denominados level invariant conservan ciertos valores es-
perados en la tabla después de permutar los valores que toman ciertas variables. Aśı
que combinan el tipo de simetŕıa en la cual los valores esperados para ciertas celdas son
iguales con las independencias derivadas de los modelos gráficos loglineales.

Se presentan ejemplos ilustrativos y aplicaciones de los modelos label y level in-
variant, aśı como de los RGLL en general. Varios modelos RGLL son seleccionados y
ajustados en tres conjuntos de datos en los cuales el ajuste mejora cuando estos son
usados. Por ejemplos de modelos label y level invariant nos referimos a definir modelos
particulares y condiciones especiales de simetŕıa que pueden representarse usándolos.
Con estos ejemplos se ilustran para los modelos label y level invariant los siguientes
aspectos: conceptos teóricos, algunos casos en los cuales pueden usarse, su posible sig-
nificado, las restricciones en los parámetros que deben ser satisfechas y la manera como
estos se representan como modelos RGLL. Por aplicaciones se entiende el ajustar al-
gunos de los modelos definidos en la sección de ejemplos en bases de datos espećıficas
en las cuales hay simetŕıa, la cual se confirma a través de ellos.



Chapter 1

Introduction

On many problems we model the association between variables. Such variables can
be continuous or discrete, or even a mix of both kinds. In this work we study models
for discrete variables whose levels or categories are unordered. Techniques to model
association have been developed for the continuous case and in general they can not
be applied to the discrete case. In particular, the models we present here have been
deeper studied in the continuous case.

To model association between variables we use log-linear models in the discrete
case. Using them for any contingency table, we try to explain the underlying associ-
ation between variables based on the expected frequencies for each cell in the table.
These expected frequencies could be considered as response variables on ANOVA-type
models in which the explanatory variables are given by parameters corresponding to
the effects of different variables at different levels, or main effects, and the parameters
corresponding to different-order interactions between those variables, for example first-
order interactions are interactions formed by only two variables.

A particular kind of log-linear models are hierarchical log-linear models, in which,
given any interaction in the model, we should have all corresponding lower-order inter-
actions; i.e. all interactions whose variables are a subset of the set of variables forming
the interaction we are interested in. These models contain graphical log-linear models,
which are models in which association between variables is represented through graphs
that could be easy to see and interpret and allow us to identify conditional and marginal
independences between variables in the model. One additional advantage of graphical
models is that many concepts given in probabilistic terms can be expressed through
basic graph theory concepts, which can be used to interpret a model. For example,
we can determine marginal and conditional independences between variables using the
separator set concept defined in graph theory. They are even more useful as we increase
the number of variables because in these cases the interpretation of log-linear models
in terms of marginal or conditional independences could get too complex. We give a
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formal definition of graphical log-linear models in Chapter 2.

Graphical log-linear models have associated graphs in which variables are repre-
sented here as circles called vertices and the presence of associations between variables
with lines, called edges, which join the associated vertices. This association is deter-
mined according to which first-order interaction terms are in the model. When there is
not an edge between two vertices, these variables are conditionally independent given
the other variables.

For example, suppose that we have three variables, labeled as A, B, and C, and a
model containing a constant term, main effects, and the first-order interactions formed
by A and B and by B and C, which means that A is associated with B and at the
same time B is associated with C. These associations can be graphically represented
with the graph shown in figure 1.1. We see that A and C are conditionally independent
given B, because there are no edges joining A and C.

e e

e

A
A
A
A
A
AA B

C

Figure 1.1: Graphical log-linear model formed by three variables labeled as A, B, and C.

In the continuous case similar graphical models are called graphical Gaussian mod-
els (Whittaker, 1990, ch. 6) or covariance selection models (Dempster, 1972) and they
are also used to represent association between continuous variables. These models are
defined by setting to zero some elements in the concentration matrix, inverse of the co-
variance matrix, on multivariate Gaussian observations in such a way that we connect
two vertices with an edge on a graph if the entries corresponding to those variables
are not zero. We observe then that the entries on the matrix have a role similar to
that of first-order interactions on graphical log-linear models; however, discrete and
continuous graphical models are not completely analogous because on the discrete case
we consider interactions of higher order and the levels taken by the variables as part
of the parameters, which does not apply in the continuous case. As before, if there is
no edge between two variables, those variables are independent given the other variables.

When we model association between variables, our main goal is to get models that
fit as good as possible to some data, but at the same time we seek simple models
according to the parsimony principle; i.e. models with as few parameters as possible.
Obviously, we also want models that reflect as much as possible the true association be-
tween variables. To get a better fit, we sometimes need models with a specific structure,
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for example, models whose parameters are constrained in some way. The restrictions
could be for example certain equalities between some parameters. Such are the kind
of restrictions we will impose in this work to some parameters in certain hierarchical
log-linear models with a graphical structure.

For example, consider the study presented by Agresti (2002a, p. 446) to determine
the relation between purchase choice of different instant decaffeinated coffee brands at
two different times (table 1.1).

First purchase
Second purchase

High Point Taster’s Choice Sanka Nescafe Brim
High Point 93 17 44 7 10

Taster’s Coice 9 46 11 0 9
Sanka 17 11 155 9 12

Nescafe 6 4 9 15 2
Brim 10 4 12 2 27

Table 1.1: Table corresponding to subjects’ purchase choice of instant decaffeinated coffee at
two times to show the meaning of possible log-linear models with two variables that may be
fitted to these data.

A first log-linear model we could try to fit to those data is one model indicating
independence between both variables. This model represents that the first purchase is
not related with the second one. The graphical representation for this model is shown in
figure 1.2(a). This representation is used because the vertices associated to each variable
are not joined through an edge, which means that we have marginal independence. If it
fitted well, it would mean that the first purchase is independent to the second purchase.

If the independence model did not fit well, it would mean that there is some kind
of association between both variables. It would be important to figure out how this
association is given. To determine this, we could try to use a graphical log-linear model
different to the independence one. As we only have two variables, the only other possi-
ble graphical log-linear model is the one that allows association between both variables
(figure 1.2(b)).
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e e

P S

(a) Independence model

e e

P S

(b) Saturated model

Figure 1.2: Graphical log-linear models for first purchase P and second purchase S of different
coffee brands: (a) independence between purchases; (b) association between purchases.

This is a model that contains all possible parameters between both variables known
as a saturated model. This model has a perfect fit to the table; i.e., the estimated
expected frequencies under the model are equal to the observed counts. Because of this
fact, it would seem as a good model; however, it is not since it does not tell anything
about existence of marginal independence or about the cells structure. Additionally, it
is an over parametrized model, in the sense that we could possibly get a good fit using
fewer parameters, consequently getting more precise estimators.

This means that in contingency tables besides determining marginal or conditional
independences, it is also important to determine the cells structure, in the sense that
we would like to know if there is certain relation among certain cells, if association
between some vertices is similar, or if for any level some variables have similar effects.
Additionally, it could be of interest to determine if under certain vertex interchange the
distribution is preserved.

For the example given above, table 1.1, considering that there is association between
both variables, we could have the following interests. Firstly, we could be interested
in knowing if the number of people choosing any brand, for example Nescafe, at their
first purchase is the same number of people who choose the same brand at their second
purchase. This is known as marginal homogeneity. Secondly, we could be interested in
knowing if there is symmetric association, i.e. if the association between purchasing
brand i at the first purchase and brand j at the second purchase is similar to the one
between purchasing brand j at the first purchase and brand i at the second purchase.

A model in which both conditions, marginal homogeneity and symmetric associa-
tion, are jointly satisfied is a symmetry model, and it is interpreted as a model under
which the expected frequencies for any cell (i, j) are equal to the expected frequencies
for a cell (j, i). In this case, it means that the number of people who changed from a
first brand at their first purchase to a second brand at their second purchase is the same
as the number of people who changed from that second brand at their initial purchase
to the first brand at the second purchase. So that, for a specific brand, we have that
the number of consumers were not lost against a rival brand because the number that
chose the rival brand is the same number that changed from that rival brand to the
interest brand. A model in which marginal homogeneity is not satisfied but there is
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symmetric association corresponds to a table that is not completely symmetric because
of lack of marginal homogeneity. This model is known as a quasi-symmetry model. For
this example, it means that even though the number of people who at the first purchase
chose a brand is different to the number of people who chose the same brand at the
second purchase, the association between pairs of brands is similar, so that if there were
marginal homogeneity, we would have a symmetric table.

The research topic presented in this dissertation corresponds to propose and analyze
a new kind of hierarchical log-linear models, which are similar to graphical log-linear
models. These models are one of many ways of generalizing symmetry and quasi-
symmetry models as defined for two-way contingency tables, and we call them restricted
graphical log-linear models. They satisfy all conditions that characterize graphical log-
linear models, but unlike graphical models, some parameters can be restricted to be
equal. A group of parameters corresponding to first-order interactions could be equal
for any permutation of the values taken simultaneously by both variables forming those
interactions, indicating that associations between certain pairs of variables for certain
levels are equal. Parameters corresponding to main effects could also be restricted.
These restrictions correspond to equate main effects on all levels for all variables in the
same subset of variables. Unlike the coffee brand example, in this work we could have
tables with any number of variables.

Restricted graphical log-linear models have not been previously analyzed, except
of course when they coincide with symmetry and quasi-symmetry models for two-way
contingency tables. We notice that there is the possibility of all parameters being dis-
tinct, which means that graphical log-linear models are a particular case of restricted
graphical log-linear models. We notice also that restricted graphical log-linear models
could be more parsimonious because some parameters are restricted to be equal. Ad-
ditionally, they could help us to get a better understanding of the cells structure in the
table.

Graphs representing restricted graphical log-linear models need to include all dif-
ferent level permutations for any pair of variables. Because of this, instead of joining
variables with one line only, we join them with multiple lines representing those per-
mutations. All restrictions mentioned above can be represented on these graphs using
vertex and edges colourings. For the main effects restrictions, we use vertex colourings
and for the first-order interactions restrictions, we use edge colourings. For example, the
quasi-symmetry model for the coffee brand selection data is represented as the graph
given in figure 1.3.

This graph contains 25 edges, corresponding to 52 permutations, which are all pos-
sible ways of ordering 5 levels for the 2 variables. The 20 edges corresponding to
first-order interactions of the form (i, j), i 6= j, are coloured in such a way that every
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SP

Figure 1.3: Colourings for the quasi-symmetry model for the coffee brand selection data. Edge
colourings correspond to pairs of edges representing first-order interactions with level values
(i, j) and (j, i), i 6= j and other colourings correspond to edges of the form (i, i). Nodes S and
P have a different colour to represent that main effects are not equal for all levels.

pair of edges (i, j) and (j, i), i 6= j, have the same colour because the association is
the same on those level permutations. Then, we have 10 groups of pairs of edges of
this kind, every group with the same colour, these colours are: blue, red, green, brown,
orange, gray, yellow, violet, light blue, and dark green. All 5 edges of the form (i, i)
should have a different colour; however, because to each edge corresponds a different
colour all 5 edges are coloured in black to avoid using too many colours. The 2 vertices
have different colours: red and blue, because the main effects of both variables are not
the same for all levels of those variables.

By using restricted graphical log-linear models, we sometimes could get better ap-
proximations to the observed counts in the table when the data have a structure in
which certain effects of some variables in all their levels are equal or when the associa-
tion between some variables is similar. In some cases, we also simplify and get a better
understanding of the relation between variables and their levels. We also get more par-
simonious models because the number of parameters decreases. Additionally, there are
particular cases of these models with interesting interpretations, for example models in
which the distribution is preserved once interchanging some vertices or models in which
the expected frequencies for certain cells are the same after restricting parameters.

Similar restrictions for the continuous case have been already applied by Højsgaard
and Lauritzen (2005, 2007, 2008). They introduce new types of graphical Gaussian
models by placing symmetry restrictions on the concentration or correlation matrices.
They represent such restrictions with both vertex and edge colourings in the corre-
sponding graphs. The diagonal elements of the matrices are equal if they are in the
same vertex colouring and the elements outside of the diagonal are equal when they are
in the same edge colouring. This means that they get matrices in which some parame-
ters are restricted to be equal. Edge restrictions are similar to those in the discrete case
because they indicate that the association between certain variables is similar; however,
in the discrete case we also need to consider which levels are taken by those variables.
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On the other hand, main effects take the place of the diagonal elements, which are the
inverse of the variances in the concentration matrix.

Once defined restricted graphical log-linear models, we can determine and solve the
corresponding likelihood equations. As a consequence we get the expected frequencies
and deviance, the statistic used to determine how well the model fits, under any re-
stricted model. Those likelihood equations can be solved using a numerical algorithm
we specifically created for these models that converges to the solution. We also created
comparison and selection methods to see if it is convenient to join colour classes and to
choose a restricted model that fits as good as possible to some data. Finally, we define
particular cases of restricted graphical log-linear models called label and level invariant
models, which are models with a symmetry interpretation in terms of Graph theory
and Statistics. These models extent in some way some similar models defined for the
continuous case.

This work is divided into five chapters, including this Introduction as Chapter 1 and
a chapter corresponding to related work, discussion, and conclusions as Chapter 5, and
two Appendices.

In Appendix A we present basic Graph theory concepts based on Bondy and Murty
(1976). We use these concepts throughout the dissertation.

In Appendix B we prove convergence to the maximum likelihood estimators of the
values obtained with a numerical procedure defined in Chapter 3 similar to iterative
proportional fitting that solves the likelihood equations associated to any restricted
graphical log-linear model.

Chapter 2 corresponds to the theory on log-linear models already presented by other
authors. We present log-linear models and we define the notation which will be also
used in graphical log-linear models. We also present hierarchical log-linear models. Ad-
ditionally, we determine likelihood equations and maximum likelihood estimators for
log-linear models. We also explain how log-linear models can be expressed as general-
ized linear models. We show some particular log-linear models for two-way contingency
tables, symmetry and quasi-symmetry models, and some generalizations for them. Af-
ter that, we present the deviance concept, which is a statistic useful to evaluate how
well a model fits some data and to generate model selection processes. We also de-
scribe graphical log-linear models in this chapter. We define them and we analyze the
independence properties between variables, which can be inferred from their associated
graphs. Finally, we present the deviance concept on the graphical model context, as
well as some model selection methods that have been used to choose a graphical log-
linear model.



8 CHAPTER 1. INTRODUCTION

In Chapter 3 we introduce new type of models corresponding to the main research
topic in this project and they are what we innovated here. These are restricted graphical
log-linear models, which can be represented through colourings on the corresponding
associated graphs. In this chapter we define them in general and for different kinds of
colourings: vertex, edge, and vertex and edge colourings. We also present examples for
each case, in particular we present symmetry and quasi-symmetry models as special
cases. Additionally, we derive the likelihood equations for each case corresponding to
the model represented as log-linear models and as generalized log-linear models. In
this last case, we can sometimes easily get reparametrized models with analogous re-
strictions on the reparametrized parameters or with restrictions on the reparametrized
parameters that represent exactly the same model. We show here the restricted models
which are of this kind.

We also introduce a numerical method we use to approximately solve the likelihood
equations. This is a modified version of the iterative proportional fitting method used
in log-linear models. We present a program in Fortran, based on some subroutines
provided by Haberman (1972, 1976), in which we apply the method mentioned above
to fit those models, join colour classes, and select models. We explain how it works
and we give examples of some restricted graphical log-linear models fitted with it. It
is important to note that model selection in this context refers only to select a colour-
ing for a model, if we want to select the generating class that determines this model
we can use other available software used for graphical models, in particular we use MIM.

Finally, in Chapter 4 we introduce two particular kinds of restricted graphical log-
linear models, label and level invariant models. The first ones are models with a specific
graph structure defined in such a way that the model is preserved in spite of interchang-
ing some vertices on the graph and the level order. This means that they are scale
invariant models whose distribution is preserved after such interchange. These mod-
els generalize symmetry from a graphical point of view. They are analogous to some
models called RCOP defined on the Gaussian case that also preserve the distribution
once applied certain symmetry groups to the vertex set. Level invariant models also
have a specific graph structure and preserve expected frequencies after interchanging
the values or levels taken by some groups of variables. Both models preserve the inde-
pendences implied by the graphical model. We present various theoretical examples of
those models as well as possible applications. We also fit some of them to specific data.
Lastly, we outline how these models can be generalized to cover any graphical model
and present one example to show how this generalization can be done.



Chapter 2

Log-linear and graphical log-linear
models

2.1 Notation

The following notation is based on the one presented in section 4.2.1 by Lauritzen
(1996) and used in both log-linear and graphical log-linear models.

|Z| number of elements in a set Z.
∆=V set of vertices or set of variable names or labels.
E set of edges corresponding to the associated graph.
I = (Iδ)δ∈∆ discrete random variables associated to the set of vertices.
Iδ categories or level set for Iδ.
|Iδ| total number of categories for the variable Iδ.
I: I = ×δ∈∆Iδ variable value combinations.
i cell or particular variable value combination, i ∈ I. If we had a

two-way contingency table, a particular cell could be denoted as
(i1, i2). Similarly for q-way contingency tables, i = (i1, i2, ..., iq).

p(i) probability than an object belongs to a cell i, i ∈ I.
m(i) expected frequency in cell i, i ∈ I. In a two-way contingency table,

the expected frequency for a specific cell is denoted as m(i1, i2).
m expected frequency vector, m′ = (m(i))i∈I.
m̂(i) estimated expected frequency in cell i, i ∈ I.
n(i) observed count in cell i, i ∈ I. In a two-way contingency table,

the observed count for a specific cell is denoted as n(i1, i2).
n observed count vector, n′ = (n(i))i∈I.
Ia for a ⊆ ∆, marginal subvector of I with marginal cells ia,

9
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ia ∈ Ia = ×δ∈aIδ.
|Ia| marginal cells total.
A generating class= cliques set for the associated graph.
K set of all subsets of the elements in the generating class A.
ua(ia) parameters for a log-linear model depending only on the

values of the variables in subset a, ia, for a ⊆ ∆. ua(ia) = constant,
when a = ∅; ua(ia) = main effect, when |a| = 1; ua(ia) = interaction,
when |a| > 1.

na(ia) na(ia) =
∑

j:ja=ia
n(j), marginal count for ia.

ma(ia) ma(ia) =
∑

j:ja=ia
m(j), marginal expected frequency for ia.

m̂a(ia) m̂a(ia) =
∑

j:ja=ia
m̂(j), marginal estimated expected frequency for ia.

|n| Total observed count,
∑

i∈I
n(i).

⊥ Symbol representing independence. For example IX⊥IY |IZ or its short
notation X⊥Y |Z means that IX is conditionally independent of IY given IZ .

Observations: ∆ is the set of variable names or labels assigned to the vertices
of the graph representing the model. When these names or labels are not specified
we use Greek letters, i.e. when we are analyzing theoretical aspects, but in particular
examples we could use numerical values or capital letters. For each δ ∈ ∆ we have a
random variable, Iδ, so that I is the set of random variables associated to the vertex
set. We use Iδ, instead of only δ because once we have an specific cell i, the value iδ
taken by Iδ identifies that the entry for δ we are interested in is for i. If we did not do
that, we would not know which cell we are trying to identify. Observe that the level set
is denoted as Iδ,where I is not a slanted letter. Observe that a cell, i, is an ordered set
whose elements are represented with lower-case letters, for example (j, k, l). In some
cases the first subscript a in ua(ia), na(ia), ma(ia), and m̂a(ia) can be suppressed when
it is obvious to which elements in ∆ we are referring to.

To illustrate some of the concepts discussed so far, consider the following contin-
gency table, table 2.1, taken from Agresti (2002a, p. 322) based on a survey by the
Wright University School of Medicine and the United Health Services in Dayton, Ohio.

Alcohol Cigarette Marijuana
Yes No

Yes
Yes 911 538
No 44 456

No
Yes 3 43
No 2 279

Table 2.1: Alcohol, cigarette, and marijuana use for a sample of 2276 high school seniors in
a non-urban area near Dayton, Ohio in a 1992 survey.
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In this example

∆ = {A,C,M} ,

with A = Alcohol, C = Cigarette, and M = Marijuana.

The random variable corresponding to A is IA and similarly for the other variables.
Then

I = {IA, IC , IM} .

All variables have two levels, Yes and No, then

IA = IC = IM = {Yes , No} ,

and

|IA| = |IC | = |IM | = 2.

Term I is formed by all cells in the table, it has 8 elements corresponding to all or-
dered triads. For instance, a cell i = (IA = Yes , IC = Yes , IM = No) where n(i) = 538.
Similarly, we get n(i) for the other cells, in consequence n′ = (911, 538, 44, 456, 3, 43, 2, 279)
and the total observed count |n|= 2276. Observe that table 2.1 can also be represented
as a list in which the cells together with their associated observed counts n(i) are rep-
resented as rows as shown in table 2.2.

Alcohol Cigarette Marijuana n(i)
Yes Yes Yes 911
Yes Yes No 538
Yes No Yes 44
Yes No No 456
No Yes Yes 3
No Yes No 43
No No Yes 2
No No No 279

Table 2.2: Alternative representation of the alcohol, cigarette, and marijuana data presented
in contingency table 2.1.

If we take a = {A,C}, then

Ia = {(Yes , No), (Yes ,Yes), (No,Yes), (No,No)} ,

where the first entry in each ordered pair corresponds to values for IA and the second
to values for IC . Each entry in Ia is one of the elements ia mentioned above.
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Suppose that we take ia = (Yes ,Yes), then na(ia) = 911 + 538 = 1449, because
according to the notation we sum the observed values only for those cells in which both
variables, alcohol and cigarette, take the value Yes. Finally, p(i) and m(i), and as a
consequence m, are theoretical values depending on a model.

2.2 Log-linear models

Generally data for contingency tables are collected under three different sampling
schemes, see for instance Lauritzen (1996, p. 69-70).

1. Poisson. Under the Poisson sampling scheme the cell counts are realizations of in-
dependent Poisson distributed random variables {N(i)}i∈I. Therefore E(N(i)) =
m(i) and the joint distribution of the counts becomes

P (N(i) = n(i), i ∈ I) =
∏

i∈I

m(i)n(i)

n(i)!
exp(−m(i)), (2.1)

where the sampling scheme restriction is that m(i) ≥ 0.

2. Multinomial. If the total observed count |n| is fixed, but the counts in each cell
are random, and each of these observations is supposed independently to belong
to a given cell i with probability p(i), i ∈ I, with p(i) ≥ 0 and

∑
i∈I
p(i) = 1, then

the counts follow a multinomial distribution

P (N(i) = n(i), i ∈ I) =
|n|!∏

i∈I
n(i)!

∏

i∈I

p(i)n(i), (2.2)

where m(i) = |n| p(i). Then the sampling scheme restrictions are m(i) ≥ 0 and∑
i∈I
m(i) = |n|.

3. Restricted multinomial distribution with fixed margins. In the case where marginal
counts n(ib) are fixed for each slice ib, b ⊂ ∆, we assume the counts in the slices to
be independent and multinomially distributed with cell probabilities for cells ia,
obtained using the variables a not contained in b, given a slice ib equal to p(ia|ib),
with p(ia|ib) ≥ 0 and

∑
ia
p(ia|ib) = 1. Thus the joint distribution of the table

becomes

P (N(i) = n(i), i ∈ I) =
∏

ib∈Ib

{
n(ib)!∏

ia∈Ia
n(i)!

∏

ia∈Ia

p(ia|ib)
n(i)

}
, (2.3)
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where m(i) = n(ib)p(ia|ib). Then the sampling scheme restrictions are m(i) ≥ 0
and m(ib) = n(ib), for all ib ∈ Ib.

To measure the association between variables in an |I1| × |I2| contingency table we
could use cross-product ratios, e.g., Plackett (1981, p. 28)

ψab = (p(a, b)p(|I1| , |I2|)) / (p(a, |I2|)p(|I1| , b)) , a = 1, 2, ..., |I1| − 1; b = 1, 2, ..., |I2| − 1;

or its logarithm

u12(ab) = logψab.

Other useful association measures are the odds:

p(a, |I2|)/p(|I1| , |I2|), p(|I1| , b)/p(|I1| , |I2|),

or their logarithms.

To analyze the association between variables it is useful to have a transformation of
the probabilities p(i, j) as a function of other parameters besides u12(ab) as presented
by Plackett (1981, p. 30). These parameters are functions of the odds

u = log p(|I1| , |I2|),

u1(a) = log [p(a, |I2|)/p(|I1| , |I2|)] ,

u2(b) = log [p(|I1| , b)/p(|I1| , |I2|)] .

Therefore, we have the following relations between probabilities and parameters

log p(|I1| , |I2|) = u,

log p(a, |I2|) = u+ u1(a),

log p(|I1| , b) = u+ u2(b),

log p(a, b) = u+ u1(a) + u2(b) + u12(ab),

with a=1,2,...,|I1| − 1; b=1,2,...,|I2| − 1.

These equations correspond to a linear model for the logarithm of the probabilities
and it is called a log-linear model. We can see that there is an analogy with ANOVA
models, in which the main effects and interactions are defined according to the proba-
bilities in each cell and these probabilities are expressed as linear combinations of these
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effects. This can be generalized to any number of variables as we see next, but be-
fore note that log-linear models are multiplicative because the linear expansion is with
respect to the logarithm of the probabilities. There are other type of models called
additive in which the linear expansion is for the probabilities, e.g., Darroch and Speed
(1983).

The log-linear expansion of a multinomial distribution is

log p(i) =
∑

a⊆∆

ua(ia).

This is a saturated model and it can also be expressed as a function of the expected
frequencies, m(i),

logm(i) =
∑

a⊆∆

ua(ia). (2.4)

This way of writing log-linear models can be applied to any of the three sampling
schemes.

Example 2.1. Suppose that we have three variables 1, 2, and 3, the associated satu-
rated log-linear model is

logm(i, j, k) = u+ u1(i) + u2(j) + u3(k) + u12(ij) + u13(ik) + u23(jk) + u123(ijk),

where i is a level of variable 1, j of variable 2, and k of variable 3, so that i = 1, 2, ..., |I1|,
j = 1, 2, ..., |I2|, and k = 1, 2, ..., |I3|.

We can assign the value zero to any parameter ua, a ⊆ ∆ in (2.4) obtaining different
models, which could represent different types of independence, conditional or marginal,
between variables according to these assignations. We could also impose additional re-
strictions on the parameters, for instance letting some of them equal or setting specific
parameters to zero to allow a graphical representation of the model.

As in ANOVA models, in log-linear models we have redundant parameters. This
means we could use identifiability conditions applied to the parameters by adding pa-
rameter constraints. Usually we use the following two parameter constraints.

1. Dummy variables. We choose a reference category for each variable and if these
categories are found in ia for ua(ia), then ua(ia) takes the value zero.
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2. Effect coding. These are ANOVA type restrictions and correspond to restrict
the parameters sum over all levels to be zero. For example, in a three variables
saturated model, e.g., Fienberg (1980, p. 29), we have

∑

i

u1(i) =
∑

j

u2(j) =
∑

k

u3(k) = 0,

∑

i

u12(ij) =
∑

j

u12(ij) =
∑

i

u13(ik) =
∑

k

u13(ik) =
∑

j

u23(jk) =
∑

k

u23(jk) = 0,

∑

i

u123(ijk) =
∑

j

u123(ijk) =
∑

k

u123(ijk) = 0,

for all i, j, and k.

2.2.1 Hierarchical log-linear models

Given any parameter in a log-linear model, we define lower-order parameters as terms
whose set of associated variables is a subset of the set of variables contained in the
first parameter. A log-linear model is hierarchical if the model includes all lower-order
parameters for each parameter in the model. This is equivalent to say that a log-linear
model is hierarchical if ua = 0, then ut = 0, for all a ⊆ t.

We can deduce that there is a set A of subsets of ∆ used to get all parameters in
the model; i.e., the parameters in the model are those formed by variables in b, with b
a subset of a for some a ∈ A. The set A is known as the generating class of a model.
Denoting as K the set formed by all subsets obtained from A, the hierarchical log-linear
model can be written as

logm(i) =
∑

a∈K

ua(ia). (2.5)

Graphical log-linear models are particular cases of these models.

2.3 Maximum likelihood estimators in log-linear mod-

els

The likelihood function, L(m), under Poisson sampling scheme, expression 2.1, is

L(m) =
∏

i∈I

m(i)n(i)

n(i)!
exp(−m(i)).

Using that m(i) = |n| p(i), the likelihood function, L(m), under multinomial sam-
pling scheme, expression 2.2, is
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L(m) =
|n|!∏

i∈I
n(i)!

∏

i∈I

(
m(i)

|n|

)n(i)

.

Finally, under the restricted multinomial sampling scheme, expression 2.3, once
fixing the observed count for each configuration ib of values in b ⊂ ∆, we have

L(m) =
∏

ib∈Ib

{
n(ib)!∏

ia∈Ia
n(i)!

∏

ia∈Ia

(
m(i)

n(ib)

)n(i)
}
.

Observe that the restriction
∑

i∈I
m(i) = |n| for a multinomial sampling scheme,

means that

exp(−
∑

i∈I

m(i)) = exp(− |n|),

so that this value is a constant for any function of m. Something similar happens for
the restricted multinomial with fixed margins sampling scheme.

Then, in any of the three sampling schemes once including the different constraints
for the expected frequencies, we have (see for instance Lauritzen, 1996, p. 71)

L(m) ∝
∏

i∈I

m(i)n(i) exp(−m(i)). (2.6)

To get the likelihood equations, we maximize function (2.6) or its logarithm

∑

i∈I

n(i) logm(i) −
∑

i∈I

m(i). (2.7)

Under any log-linear model, we replace (2.4) in (2.7) getting an expression that
depends on the parameters

∑

a⊆∆

∑

ia

na(ia)ua(ia) −
∑

i∈I

exp(
∑

a⊆∆

ua(ia)), (2.8)

in which some u-parameters could be set to zero corresponding to specific models. For
example, for a hierarchical model, equation (2.5), expression (2.7) becomes

∑

a∈K

∑

ia

na(ia)ua(ia) −
∑

i∈I

exp(
∑

a∈K

ua(ia)). (2.9)

Deriving (2.9) with respect to each parameter and equating to zero, we get the
likelihood equations

na(ia) = ma(ia), for all a ∈ K; (2.10)
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where ia ∈ Ia. To reduce the number of equations, we may eliminate the redundant
ones which could or could not exist depending on the model. To obtain this reduction,
we only use the equations corresponding to a ∈ A; for instance, Lauritzen (1996, p. 82)
presents in equation (4.22) of theorem 4.11 the equation system

na(ia) = ma(ia), for all a ∈ A. (2.11)

He also states and proves in the same theorem uniqueness of the corresponding max-
imum likelihood estimates and in Corollary 4.9 he proves existence of such estimates
on models without structural zeros, which are entries in a contingency table that are
certain to be zero because they correspond to an impossible outcome. He works with
an enlarged parameter space under mean value parametrization in which the maximum
likelihood estimators are always defined, at least in an extended way, to avoid the ex-
istence problems that sampling zeros can create. Using the ordinary parameter space,
Haberman (1973) proved that the maximum likelihood estimators always exist when
all observed counts are greater than zero and provided some theoretical sufficient and
necessary conditions for the existence of the maximum likelihood estimators. For the
cases in which there are sampling zeros, existence of maximum likelihood estimates in-
cluding algorithms for computing extended maximum likelihood estimates, is discussed
by Rinaldo (2006a,b) where he determines polyhedral conditions for existence of ex-
tended estimates in log-linear models not necessarily hierarchical as well as numerical
procedures to calculate such estimates.

For a non-hierarchical model, the a’s and K in (2.10) depend on the model and can
be obtained by deriving expression (2.8) considering that some u-parameters are zero.

Example 2.2. The model

logm(i, j, k) = u+ uX(i) + uY (j) + uZ(k) + uXY (ij) + uXZ(ik)

is an example of a hierarchical log-linear model with generating class {{X,Y }, {X,Z}}.

Using concepts given for graphical models, we will see in section 2.10 that this model
implies that Y is conditionally independent to Z given X, Y⊥Z|X. Using conditional
independence properties and the classic notation in which a dot in an entry represents
a sum over all possible values of the variable whose values are replaced with a dot, we
have

p(i, j, k) =
p(i, ., k)p(i, j, .)

p(i, ., .)

or that

m(i, j, k) =
m(i, ., k)m(i, j, .)

m(i, ., .)
.
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The likelihood equations for the elements in the generating class are

m̂(i, ., k) = n(i, ., k), m̂(i, j, .) = n(i, j, .).

From any of these equations we get that

m̂(i, ., .) = n(i, ., .).

Then, the estimated expected frequencies for any cell (i, j, k) are

m̂(i, j, k) =
n(i, ., k)n(i, j, .)

n(i, ., .)
.

Eight different hierarchical log-linear models with interesting interpretations for
three-way contingency tables including their estimators are presented by Goodman
(1970). He also presents 27 interpretable hierarchical log-linear models for four-way
contingency tables and one example of a hierarchical log-linear model fitted for a 5-way
contingency table.

2.4 Log-linear models expressed as GLM

Log-linear models can be expressed as generalized linear models (GLM), e.g., Agresti
(2002a, ch. 4 and ch. 8) or McCullagh and Nelder (1989, ch. 6). Readers not familiar
with linear models may refer for instance to Graybill (1961). For log-linear models the
GLM takes the form

log(m) = Xβ, (2.12)

where:

N(i) random variable corresponding to the observed cell counts for every
cell i. N(i) ∼ Poisson(m(i)).

m expectation of N , the random vector with entries N(i).
Xβ systematic component.
X design matrix. Every row corresponds to a cell and it has as many

columns as parameters included in the model. The entries are 0 or 1
depending on the presence or not of a parameter effect in the model.

β parameter vector (β1, ..., βq).
log() link function connecting the random and systematic components.

The kernel of the likelihood function, the part of the likelihood depending on the
parameter m we are interested in, (2.6), written in matrix form and in a way that we
identify the exponential family with its elements is



2.4. LOG-LINEAR MODELS EXPRESSED AS GLM 19

L(m) ∝ exp(
∑

i∈I

n(i)
∑

j

xijβj −
∑

i∈I

exp(
∑

j

xijβj))

= exp(

〈
(β1, ..., βp), (

∑

i∈I

n(i)xi1, ...,
∑

i∈I

n(i)xip)

〉
−

∑

i∈I

exp(
∑

j

xijβj))

= exp(〈β, t(n)〉 − ψ(β)), (2.13)

where

β = (β1, ..., βp) canonical parameter
t(n) = (

∑
i∈I
n(i)xi1, ...,

∑
i∈I
n(i)xip) canonical statistics vector.

ψ(β) =
∑

i∈I
exp(

∑
j xijβj) cumulant function.

Using some exponential family properties presented by Lauritzen (1996, Apendix
D), who summarizes and presents exact results available for regular exponential models
and asymptotic theory of curved exponential families, the maximum likelihood statistic
is obtained by equating the canonical statistics with their expectation. The expectation
is the gradient vector for the cumulant function. In this case it is formed by the entries∑

i∈I
m(i)xik, for k = 1, 2, ..., p. Then, the likelihood equations are

∑

i∈I

n(i)xik =
∑

i∈I

m(i)xik, k = 1, 2, ...p

or

X ′n = X ′m.

Example 2.3. Suppose that we have a saturated model with two tricotomic variables

logm(i, j) = u+ u1(i) + u2(j) + u12(ij), i, j = 1, 2, 3

The associated design matrix is

X =





1 1 0 0 1 0 0 1 0 0 0 0 0 0 0 0
1 1 0 0 0 1 0 0 1 0 0 0 0 0 0 0
1 1 0 0 0 0 1 0 0 1 0 0 0 0 0 0
1 0 1 0 1 0 0 0 0 0 1 0 0 0 0 0
1 0 1 0 0 1 0 0 0 0 0 1 0 0 0 0
1 0 1 0 0 0 1 0 0 0 0 0 1 0 0 0
1 0 0 1 1 0 0 0 0 0 0 0 0 1 0 0
1 0 0 1 0 1 0 0 0 0 0 0 0 0 1 0
1 0 0 1 0 0 1 0 0 0 0 0 0 0 0 1
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The parameter vector β is

β′ = (u, u1(1), u1(2), u1(3), u2(1), u2(2), u2(3), u3(1), u3(2), u3(3), u12(11), u12(12), u12(13),

u12(21), u12(22), u12(23), u12(31), u12(32), u12(33)).

The expected frequencies vector, m is

m′ = (m(1, 1), m(1, 2), m(1, 3), m(2, 1), m(2, 2), m(2, 3), m(3, 1), m(3, 2), m(3, 3)).

The canonical statistics vector, t(n), is given by

t(n)′ = (n(., .), n(1, .), n(2, .), n(3, .), n(., 1), n(., 2), n(., 3), n(1, 1), n(1, 2), n(1, 3), n(2, 1),

n(2, 2), n(2, 3), n(3, 1), n(3, 2), n(3, 3)).

The cumulant function, ψ(β), is

ψ(β) =
∑

i,j=1,2,3

m(i, j).

This equality is because
∑

j xijβj, for i = 1, ...9, corresponds to each row of logm using
log(m) = Xβ.

Then, the likelihood equation system for this model is

n(., .) = m(., .), n(1, .) = m(1, .), n(2, .) = m(2, .), n(3, .) = m(3, .), n(., 1) = m(., 1),

n(., 2) = m(., 2), n(., 3) = m(., 3), n(1, 1) = m(1, 1), n(1, 2) = m(1, 2), n(1, 3) = m(1, 3),

n(2, 1) = m(2, 1), n(2, 2) = m(2, 2), n(2, 3) = m(2, 3), n(3, 1) = m(3, 1), n(3, 2) = m(3, 2),

n(3, 3) = m(3, 3).

The matrix X is not invertible. However, it is always possible to get an adequate
parametrization of the model whose associated design matrix is invertible. According to
the parameter constraints defined in section 2.2, there are at least two ways of getting
invertible matrices:
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• Using dummy variables. We create dummy variables for all columns in X corre-
sponding to non-zero parameters. For each column, we assign the value one to all
cells (rows) which take the value or values taken by the parameter associated to
that column and zero otherwise.

• Effect coding. If we had a variable with k levels, we would get x1, x2, ..., xk−1

columns corresponding to the main effects, one for each of the first k − 1 levels.
We assign 1 to the level i in xi, -1 to the reference category, for example the last
category k, and zero to the other categories, e.g., Vermunt (2005). We do not
need a column for the reference category because its effect is given through the
other effects. The process is done for each variable. Interactions are the product
of each entry of some xi´s according to the interaction we are interested in.

For example, using the saturated model presented in example 2.3, the design
matriz for the parametrized model using dummy variables is

11
12
13
21
22
23
31
32
33





u u1(1) u1(2) u2(1) u2(2) u12(11) u12(12) u12(21) u12(22)
1 1 0 1 0 1 0 0 0
1 1 0 0 1 0 1 0 0
1 1 0 0 0 0 0 0 0
1 0 1 1 0 0 0 1 0
1 0 1 0 1 0 0 0 1
1 0 1 0 0 0 0 0 0
1 0 0 1 0 0 0 0 0
1 0 0 0 1 0 0 0 0
1 0 0 0 0 0 0 0 0





,

and under effect coding the design matrix is

11
12
13
21
22
23
31
32
33





u u1(1) u1(2) u2(1) u2(2) u12(11) u12(12) u12(21) u12(22)
1 1 0 1 0 1 0 0 0
1 1 0 0 1 0 1 0 0
1 1 0 −1 −1 −1 −1 0 0
1 0 1 1 0 0 0 1 0
1 0 1 0 1 0 0 0 1
1 0 1 −1 −1 0 0 −1 −1
1 −1 −1 1 0 −1 0 −1 0
1 −1 −1 0 1 0 −1 0 −1
1 −1 −1 −1 −1 1 1 1 1





.
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We note that the u-terms can be estimated, for example using the Newton-Raphson
method; however, the interpretation of such parameters for assessing the magnitud of
effects is fraught with difficulties and confusion because it depends on the parametriza-
tion used. To avoid this problem functions which do not vary with different constraints
should be used as discussed by Long (1984), these functions are called estimable, among
those estimable functions we find the expected frequencies, odds ratios and their func-
tions, and the deviance. Some authors, e.g., Agresti (2002a, p.321-324), pretend to
interpret parameters by writing them in terms of odds ratios and functions of the odds
ratios. Such odds and their functions can be obtained using the estimated expected
frequencies; however, these expected frequencies may be estimated without using the
u-terms estimates, which means that parameters estimators are not really useful and
that they can only be interpreted only in terms of the estimable functions they are
estimating. While it is possible to determine what estimable function the parameters
are estimating, this task can be extremely difficult in complex models. For all these
reasons, interpreting parameters can be misleading and that is why log-linear models
are mostly used for testing specific statistical hypothesis related with association, in-
dependence, or even symmetry. We emphasize that such statistical hypothesis analysis
depend on functions that are estimable: the deviance and the expected frequencies,
so that the parametrization used is irrelevant. In graphical log-linear models interpre-
tation of u-terms is not even considered and in all the new models we define in this
dissertation the same happens.

2.5 Some useful cases of log-linear models

We present five useful models for two-way contingency tables. We consider tables
with entries (i, j) whose counts have one of the distributions: Poisson, multinomial, or
restricted multinomial. In the first three subsections we additionally suppose that we
have square contingency tables, i.e. |I| × |I| tables, and we present three well known
models: 1) marginal homogeneity, 2) symmetry, and 3) quasi-symmetry. Finally, in
the last subsection we consider |I| × |J| tables and present two additional models: 4)
independence and 5) quasi-independence.

2.5.1 Marginal homogeneity model

An |I| × |I| table satisfies a marginal homogeneity model (MH) if

m(i, .) = m(., i), i = 1, 2, ...., |I| .

For a 2 × 2 table it is equivalent to

m(1, 2) = m(2, 1).
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This model is not a log-linear model. However, we will see in subsection 2.5.3 that
we can test an hypothesis to see if a marginal homogeneity model fits some data. It is
important to note that, even though this model is not log-linear, we can get a design
matrix representing it as Lipsitz et al. (1990) have discussed for this case and for the
general case in which they have more than two variables.

2.5.2 Symmetry model

Bowker (1948) was the first to propose a test for two-way contingency tables with the
same number of categories to see if a table was symmetric. A two-way table satisfies
symmetry if

m(i, j) = m(j, i), for all i 6= j.

This equality means the expected frequency in a cell (i, j) above the diagonal is equal
to the expected frequency in the cell (j, i) under the diagonal. Clearly, this implies
marginal homogeneity. This condition can also be represented using a log-linear model
in the following way

logm(i, j) = u+ u1(i) + u2(j) + u12(ij),

with restrictions

u1(i) = u2(i), i = 1, 2, ..., |I| ;

u12(ij) = u12(ji), i, j = 1, 2, ..., |I| .

Identifiability restrictions are added to the previous restrictions. For example, under
effect coding

∑

i

u1(i) =
∑

i

u12(ij) = 0.

Using the log-linear representation, it is obvious that

logm(i, j) = logm(j, i).

The likelihood equations, which are also obtained in section 3.8, are

m̂(i, j) + m̂(j, i) = n(i, j) + n(j, i), for all i < j;

m̂(i, i) = n(i, i), i = 1, 2, ..., |I| .

Then, the expected frequency estimators can be obtained using the exact formula

m̂(i, j) =
n(i, j) + n(j, i)

2
, i, j = 1, 2, ..., |I| .
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One statistic used to test goodness of fit of a log-linear model is the deviance (section
2.7). If we denote as HS to the symmetry model, then in this case the loglikelihood
ratio test or deviance d(HS) has the closed form

d(HS) = 2
∑

i,j

n(i, j) log
2n(i, j)

n(i, j) + n(j, i)
.

The Pearson chi-squared statistic (X2), which is another goodness of fit statistic, for
the symmetry model, e.g., Bowker (1948), is

X2(HS) =
∑

i>j

(n(i, j) − n(j, i))2

n(i, j) + n(j, i)
.

Asymptotically, both statistics tend to a χ2 distribution with degrees of freedom

gl(HS) =
(|I|)(|I| − 1)

2
.

2.5.3 Quasi-symmetry model

Quasi-symmetry was first introduced by Caussinus (1965) and it is used to explain cases
where there is no symmetry due to marginal heterogeneity, which means that the main
effects in the symmetry model differ. A quasi-symmetry model is the log-linear model

logm(i, j) = u+ u1(i) + u2(j) + u12(ij);

with restrictions

u12(ij) = u12(ji), i, j = 1, 2, ..., |I| .

Under identifiability conditions there are additional restrictions. For example, under
effect coding these restrictions are

∑

i

u1(i) =
∑

j

u2(j) =
∑

i

u12(ij) = 0.

Observe that the symmetry model is a particular case in which we add the restriction

u1(i) = u2(i), i = 1, 2, ..., |I| .

Bishop et al. (1975, p. 286-287) and Agresti (2002a, p. 428) show that quasi-
symmetry and marginal homogeneity together imply symmetry. Denoting as HS the
symmetry model, as HQS the quasi-symmetry model, and as HMH the marginal homo-
geneity model, the following relation holds

HS = HQS ∩HMH .
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Observe that a quasi-symmetry model can be interpreted as a model in which if
there was marginal homogeneity, then we would have a symmetric table. However,
without this assumption we are not able to say anything about the presence of equali-
ties between certain expected frequencies for any cells as in the symmetry model.

The corresponding likelihood equations for the quasi-symmetry model are

m̂(i, .) = n(i, .), i = 1, 2, ..., |I| ;

m̂(., j) = n(., j), j = 1, 2, ..., |I| ;

m̂(i, j) + m̂(j, i) = n(i, j) + n(j, i), for all i ≤ j.

Observe that

m̂(i, i) = n(i, i), i = 1, 2, ..., |I| .

Then, we have a perfect fit for the diagonal cells. For the other cells there is no exact
solution so that to solve the equations involving them we use iterative methods. For
instance, Haberman (1979, p. 491-493) proposed an iterative method for these models.

The deviance, d(HQS), and Pearson statistic, X2(HQS), do not have a closed form
in terms of n(i, j) for this model, and they are obtained using the general formula for
the deviance (equation (2.14)), using the estimated frequencies, m̂(i, j). The number
of degrees of freedom associated to both statistics is

gl(HQS) =
(|I| − 1)(|I| − 2)

2
.

As a symmetry model is equivalent to simultaneously having quasi-symmetry and
marginal homogeneity, we have that when a quasi-symmetry model fits well then
marginal homogeneity is equivalent to symmetry. Then, conditioned to having quasi-
symmetry, testing marginal homogeneity is equivalent to testing symmetry. This means
that the statistic for testing marginal homogeneity, d(HMH), e.g., Bishop et al. (1975,
p. 293-294), is

d(HMH) = d(HS|HQS) = d(HS) − d(HQS),

with degrees of freedom

gl(HMH) = gl(HS) − gl(HQS) =
|I| (|I| − 1)

2
−

(|I| − 1)(|I| − 2)

2
= |I| − 1.

Quasi-symmetry models have been linked with Rasch models. Tjur (1982) showed
that for binary variables estimates of main effects parameters in the quasi-symmetry
model are also conditional maximum likelihood estimates of item parameters when
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fixed effects corresponding to the subjects in the Rasch item response model are used,
conditioning on the item parameters sufficient statistics. More general Rasch mod-
els and their association with quasi-symmetry models have been studied by Agresti
(2002b). Bradley-Terry model for paired preferences, e.g., Agresti (2002a, p. 436-
439) and Fienberg and Larntz (1976), can also be fitted using quasi-symmetry models.
Quasi-symmetry applications to particular matched pairs models and connexions with
reversibility of Markov chains are discussed by McCullagh (1982). Finally, we observe
that the quasi-symmetry model shown here is based on the concept defined by Caussinus
(1965); however, Goodman (2002) proposes an alternative Pearson’s quasi-symmetry,
but at the end he shows it is less acceptable than Caussinus’ concept.

2.5.4 Independence and quasi-independence models

For an |I|×|J| table and for any of the three distributions, under statistical independence
the expected frequencies m(i, j) can be written as

m(i, j) = µαiβj, i = 1, 2, ..., |I| , j = 1, 2, ..., |J| ,

with αi, βj, and µ positive constants satisfying
∑

i αi =
∑

j βj = 1. Writing the
expected frequencies as a log-linear model, the following holds

logm(i, j) = u+ u1(i) + u2(j), i = 1, 2, ..., |I| , j = 1, 2, ..., |J| .

The likelihood equations for this model are

m̂(i, .) = n(i, .), i = 1, 2, ..., |I| ;

m̂(., j) = n(., j), j = 1, 2, ..., |J| .

As in example 2.2, using the definition of independence we have

m̂(i, j) =
n(i, .)n(., j)

|n|
.

The deviance can be obtained by replacing the values m̂(i, j) in the general formula
given in equation (2.14). The degrees of freedom for this model are (|I| − 1)(|J| − 1).

In |I| × |I| square tables, we sometimes have certain dependence expressed by the
fact that the observed counts in the diagonal cells are greater than the values predicted
by the independence model. This means that the relation between variables for ordered
pairs outside the diagonal can be expressed using an independence simple structure.
This is called a quasi-independence model, denoted as HQI , and can be written as the
log-linear model

logm(i, j) = u+ u1(i) + u2(j) + δiI(i = j),
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with I(i = j) = 1 if i = j, and 0 if i 6= j.

Then, we are adding a parameter to the independence model for each cell in the main
diagonal. If δi > 0, then m(i, i) is greater than under the independence model.

The likelihood equations for this model, e.g., Agresti (2002a, p. 426), are

m̂(i, .) = n(i, .), i = 1, 2, ..., |I| ,

m̂(., j) = n(., j), j = 1, 2, ..., |I| ,

m̂(i, i) = n(i, i), i = 1, 2, ..., |I| .

Observe that there is a perfect fit for the diagonal cells and independence for the
other cells. This model has |I| more parameters than the independence model and, as we
will see in section 2.7, the degrees of freedom are the number of non-zero independent
parameters. Then to get the degrees of freedom, we subtract to the independence model
degrees of freedom, |I| parameters that are not zero

gl(HQI) = (|I| − 1)2 − |I| .

Example 2.4. To illustrate the fit of all five models given in this section to some data,
we use a table corresponding to region of residence change between 1980 and 1985 of
U.S. residents (table 2.3) presented and studied by Agresti (2002a, p. 423) and based
on data presented by the U.S. Bureau of the Census.

Residence in 1980
Residence in 1985

Northeast Midwest South West
Northeast 11607 100 366 124
Midwest 87 13677 515 302
South 172 225 17819 270
West 63 176 286 10192

Table 2.3: Region of residence, 1980 and 1985, for a sample of 55,981 U.S. residents.

We fitted the independence, quasi-independence, marginal homogeneity, quasi-sym-
metry, and symmetry models for this table using S-Plus 6.1. The estimated fitted
expected frequencies are shown in table 2.4.

The quality of the fit is measured using the deviance (table 2.5). This statistic is
compared with a χ2 quantile whose degrees of freedom depend on the model and using
a given significance level α (for example, α= 0.05). If the deviance is greater than this



28 CHAPTER 2. LOG-LINEAR AND GRAPHICAL LOG-LINEAR MODELS

Residence in 1980
Residence in 1985

Northeast Midwest South West

Northeast

2599.091 3089.07 4136.62 2372.25
11607.002 126.56 312.91 150.53
11607.003 98.08 265.69 93.97
11607.004 93.50 269.00 93.50
11607.005 95.79 370.44 123.77

Midwest

3107.10 3692.85 4945.15 2835.92
117.39 13677.00 531.11 255.50
88.73 13677.00 379.07 232.35
93.50 13677.00 370.00 239.00
91.21 13677.00 501.68 311.11

South

3939.23 4681.86 6269.55 3595.43
133.23 243.80 17819.00 289.97
276.47 350.80 17819.00 287.26
269.00 370.00 17819.00 278.00
167.56 238.32 17819.00 261.12

West

2283.72 2714.25 3634.69 2084.41
71.39 130.64 322.98 10192.00
92.53 251.27 269.77 10192.00
93.50 239.00 278.00 10192.00
63.23 166.89 294.88 10192.00

Table 2.4: Fitted expected frequencies under independence, quasi-independence, marginal ho-
mogeneity, symmetry, and quasi-symmetry for the data corresponding to U.S. migration be-
tween 1980 and 1985. From top to bottom we have the fitted values under 1independence,
2quasi- independence, 3marginal homogeneity, 4symmetry, and 5quasi-symmetry.

quantile, we reject the null hypothesis that the model fits the data.

If we label the variable corresponding to region of residence in 1980 as R1 and the
one corresponding to 1985 as R2, then the independence model is

logm(i, j) = u+ uR1(i) + uR2(j), i, j = 1, ..., 4.

According to the deviance, we see that the independence model fits bad because
we reject the null hypothesis stating that the independence model fits the data. This
means that there is not independence between region of residence in 1980 and 1985, so
that the variables are in some way associated.

The quasi-independence model is
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Model Deviance Degrees of freedom Quantile (α=0.05)
Independence 125923.30 9 16.92
Quasi-independence 69.51 5 11.07
Marginal homogeneity 240.75 3 7.81
Symmetry 243.55 6 12.59
Quasi-symmetry 2.99 3 7.81

Table 2.5: Deviance, degrees of freedom, and quantiles for different models fitted in table 2.3.

logm(i, j) = u+ uR1(i) + uR2(j) + δiI(i = j),

with I(i = j) = 1 if i = j, and 0 if i 6= j, i,j=1,...,4.

This model indicates that the variables are independent, except for the diagonal
cells of the table, and means that for the people that moved out, the region of residence
in 1985 is independent of the region of residence in 1980. This model has a better fit to
the data; however, we still reject the null hypothesis stating that the model fits the data.

The marginal homogeneity model is given by the conditions

m(i, .) = m(., i), i = 1, 2, ...., 4,

and indicates that the proportions or expected frequencies in each category for both
variables are equal. In this case, it means that the expected number of residents in each
region is the same for both years. We also reject this model.

The symmetry model is as follows:

logm(i, j) = u+ uR1(i) + uR2(j) + uR1R2(ij), i, j = 1, ..., 4;

with restrictions

uR1(i) = uR2(i), i = 1, ..., 4,

uR1R2(ij) = uR1R2(ji) i, j = 1, ..., 4.

It means that the expected frequency in a cell (i, j) is equal to the one in cell (j, i).
In this case, it would mean that the number of people emigrating from i in 1980 to j
in 1985 is the same number of people who emigrate from j in 1980 to i in 1985. This
means that between regions we have a closed population, so that the number of people
moving in is the same number of people moving out. However, this model does not fit
the data.
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Finally, the quasi-symmetry model is

logm(i, j) = u+ uR1(i) + uR2(j) + uR1R2(ij), i, j = 1, ..., 4;

with additional restriction

uR1R2(ij) = uR1R2(ji), i, j = 1, ..., 4.

This model fits well the data. It means that the lack of symmetry in the table is caused
by some marginal heterogeneity, i.e. that the number of people emigrating from region
i in 1980 to region j in 1985 would be similar to the one entering to i in 1985 from j in
1980 if the number of people in each region for 1980 were the same that the number of
people in the same region in 1985.

We have said that a way of proving the convenience of using marginal homogeneity
given that a quasi-symmetry model fits some data is by getting the difference in the
deviances between the symmetry and quasi-symmetry models, and comparing it with a
χ2 quantile with degrees of freedom given by the difference between the corresponding
degrees of freedom. In this case, we have that this statistic is 243.55 − 2.99 = 240.56
with 6 − 3 = 3 degrees of freedom and the corresponding χ2 quantile using α = 0.05 is
7.81. Then we confirm that the marginal homogeneity model does not fit well.

2.6 Some symmetry, quasi-symmetry, and marginal

homogeneity generalizations

There are several ways of generalizing the models given in the previous section for con-
tingency tables with more than two dimensions. We discuss some of them based on the
work presented by Andersen (1991, p. 328-329), Bishop et al. (1975, p. 299-309), and
Haberman (1979, p. 503-509)).

In a d-dimensional table we can examine the c-dimensional (c = 1, ..., d−1) marginal
values to get different kinds of marginal homogeneity. For example, for a four-dimensional
table with |I| levels on each variable, Bishop et al. (1975, p. 299) based on the work pre-
sented by Kullback (1971) consider the following three types of marginal homogeneity
models:

1. m(i, ., ., .)=m(., i, ., .)=m(., ., i, .)=m(., ., ., i); i = 1, ..., |I|.

2. m(i, j, ., .)=m(i, ., j, .)=m(i, ., ., j)=m(., i, j, .)=m(., i, ., j)=m(., ., i, j); i, j = 1, ..., |I|.

3. m(i, j, k, .)=m(i, j, ., k)=m(i, ., j, k)=m(., i, j, k); i, j, k = 1, ..., |I|.
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Model 3) implies model 2) and model 2) implies model 1).

In three-dimensional tables Bishop et al. (1975, p. 299-309) and Andersen (1991,
p. 328-329) studied different marginal homogeneity, symmetry, and quasi-symmetry
generalizations.

Suppose that we have a three dimensional table |I| × |I| × |K|, Andersen (1991, p.
328) and Bishop et al. (1975, p. 299-300) define a symmetry model conditional to the
levels of variable 3 as a model in which

m(i, j, k) = m(j, i, k), i, j = 1, ..., |I| ; k = 1, ..., |K| .

This means that for each k we have a bi-dimensional symmetry model. Then, the
analysis of this model can be done by partitioning the model in |K| symmetry models.
However, the model can also be written as

logm(i, j, k) = u+ u1(i) + u2(j) + u3(k) + u12(ij) + u13(ik) + u23(jk) + u123(ijk)

with restrictions

u123(ijk) = u123(jik), u13(ik) = u23(jk), u12(ij) = u12(ji), u1(i) = u2(i);

i, j = 1, ..., |I| ; k = 1, ..., |K| .

A conditional marginal homogeneity model is defined by Bishop et al. (1975, p. 300)
as a model satisfying

m(i, ., k) = m(., i, k) i = 1, ..., I; k = 1, ..., |K| .

This model can be fitted using |K| marginal homogeneity models, but does not have
an expression in terms of a log-linear model.

Other models proposed by Andersen (1991, p. 329) are those which constrain
marginal values. The complete marginal symmetry model between variables 1 and
2 assumes that

m(i, j, .) = m(j, i, .), i, j = 1, ..., |I| .

On the other hand, the marginal quasi-symmetry model between variables 1 and 2
supposes that

logm(i, j, k) = u+ u1(i) + u2(j) + u3(k) + u12(ij) + u13(ik) + u23(jk),

adding the restrictions
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u12(ij) = u12(ji), i, j = 1, ..., |I| .

For three dimensional tables |I| × |I| × |I| other types of general models were pro-
posed and studied by Bishop et al. (1975, p. 299-306) and they are presented in the
rest of the section.

Complete symmetry models

Bishop et al. (1975, p. 299-309) defined complete symmetry based on an inter-
changeability concept provided by Madansky (1963). Complete symmetry models are
those in which the expected frequencies are invariant to any permutation of the indices
characterizing the levels taken by the variables, as follows:

m(i, j, k) = m(i, k, j) = m(j, i, k) = m(j, k, i) = m(k, j, i) = m(k, i, j), i, j, k = 1, ..., |I| .

Written as a log-linear model

logm(i, j, k) = u+ u1(i) + u2(j) + u3(k) + u12(ij) + u13(ik) + u23(jk) + u123(ijk),

with restrictions

u1(i) = u2(i) = u3(i), i = 1, ..., |I| ;

u12(ij) = u12(ji) = u13(ij) = u23(ij), i, j = 1, ..., |I| ;

u123(ijk) = u123(ikj) = u123(jik) = u123(jki) = u123(kji) = u123(kij), i, j, k = 1, ..., |I| .

Marginal homogeneity models

A complete symmetry model implies the following types of marginal homogeneity
models, see Bishop et al. (1975, p-303):

1. m(i, ., .) = m(., i, .) = m(., ., i); i = 1, ..., |I|.

2. m(i, j, .) = m(j, i, .) = m(i, ., j) = m(., i, j); i, j = 1, ..., |I|.

Observe that model 2) implies model 1).
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Quasi-symmetry models

To get general quasi-symmetry models similar to the one defined in section 2.5.3,
we could use models analogous to complete symmetry, but without satisfying some of
the marginal homogeneity conditions derived from this model. Bishop et al. (1975,
p. 303) proposed two types of quasi-symmetry models for |I| × |I| × |I| tables. The
first type, called complete quasi-symmetry, is a model in which neither the marginal
homogeneity condition 1) nor the condition 2) are satisfied. In the second kind, the
marginal homogeneity condition 1) does not hold.

1. Complete quasi-symmetry. This model preserves the two-dimensional margins
and as a consequence the one-dimensional margins too. This means that there is
symmetry only for the u123(ijk) parameters. Then, we have the model

logm(i, j, k) = u+ u1(i) + u2(j) + u3(k) + u12(ij) + u13(ik) + u23(jk) + u123(ijk),

with restrictions

u123(ijk) = u123(ikj) = u123(jik) = u123(jki)

= u123(kji) = u123(kij) i, j, k =1, ..., |I| .

2. Quasi-symmetry preserving only one-dimensional margins. In these models there
is symmetry in both u12(ij) and u123(ijk) parameters. Then, we have the model

logm(i, j, k) = u+ u1(i) + u2(j) + u3(k) + u12(ij) + u13(ik) + u23(jk) + u123(ijk),

adding the restrictions

u123(ijk) = u123(ikj) = u123(jik) = u123(jki)

= u123(kji) = u123(kij) i, j, k =1, ..., |I| ;

and

u12(ij) = u12(ji) = u13(ij) = u23(ij), i, j = 1, ..., |I| .
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For tables with more than three dimensions Darroch and Bhapkar (1990) extended
complete symmetry by defining models in which m(i) = m(ρi), where i is a cell in a
specific order, for example (i1, ..., is) if we have s variables, and ρi denotes all possible
permutations of i. They also extended quasi-symmetry models by defining a gener-
alized interaction operation from where they get log-linear generalized A-interactions,
defining models Qs

k, where k < s in which they equate all interactions of order greater
or equal than k accordingly to a set of permutations ρ, so that they are restricting
interactions in a saturated model. Complete quasi-symmetry and quasi-symmetry pre-
serving one dimensional margins can be recovered as the modelsQ3

2 andQ3
1, respectively.

There are other extensions of symmetry models, for instance Haberman (1979, p.
503-509) presents an extension for a specific problem with four variables in which it
is convenient to fit a hierarchical model equating some specific first-order interactions.
This kind of model could be a way of extending the symmetry concept to more dimen-
sions. Goodman (1985) suggests other symmetry and independence generalizations for
two-dimensional tables. These are for example models in which we would have sym-
metry except for the fact that the elements above the diagonal contain one additional
parameter and the same happens for the elements below the diagonal.

2.7 Some goodness of fit statistics

Suppose that we have a hierarchical log-linear model M1 contained or nested in another
hierarchical log-linear model M0. The deviance between these models is the likelihood
ratio test statistic between model M1 and M0. Denoting the maximum likelihood
estimators for the expected frequencies as m̂1 and m̂0, respectively, and the saturated
model estimator as m̂, the estimated deviance is given by

d01 = −2 log
L(m̂1)

L(m̂0)
.

In particular, the deviance between model k, with k = 0, 1, and the saturated model
is called residual deviance and it is denoted as dk

dk = −2 log
L(m̂k)

L(m̂)
.

We saw in section 2.3, expression (2.7), that the logarithm of the kernel of the likeli-
hood, which is a function of the expected frequencies m such that L(m) is proportional
to it, is

∑

i∈I

n(i) logm(i) −
∑

i∈I

m(i),
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and we also saw that the maximum likelihood estimators satisfy n(ia) = m̂(ia), where
ia ∈ Ia, for all a ∈ A, the generating class (equation (2.11)). In particular, for a
saturated model n(i) = m̂(i). Using these results the residual deviance is

dk = −2 log
L(m̂k)

L(m̂)
= 2

∑

{i|n(i)>0}

n(i) log
n(i)

m̂k(i)
+ 2

∑

{i|n(i)>0}

{m̂k(i) − n(i)}

= 2
∑

{i|n(i)>0}

n(i) log
n(i)

m̂k(i)
. (2.14)

For the last equality we use that
∑

i m̂k(i) =
∑

i n(i), which is a consequence of
the fact that

∑
i m̂k(i) =

∑
ia
m̂k(ia), n(ia) = m̂k(ia), and

∑
i n(i) =

∑
ia
n(ia). In

all previous results i takes its values over the set {i|n(i) > 0}, because in this way all
logarithms are feasible.

The deviance between two models is

d01 = d1 − d0 = 2
∑

i

n(i) log
m̂0(i)

m̂1(i)
.

The residual deviance can be approximated using the Pearson X2 statistic. To prove
this fact we use the Taylor expansion of the function

f(x) = x log(x/a)

around a

f(x) = x− a+ (x− a)2/(2a) + o((x− a)2).

We get the Taylor expansion of

n(i) log
n(i)

m̂k(i)

around m̂k(i) to approximate dk

dk ≈ 2
∑

i

{n(i) − m̂k(i)} + 2
∑

i

(n(i) − m̂k(i))
2

2m̂k(i)
,

and using that
∑

i m̂k(i) =
∑

i n(i), we have that

dk ≈
∑

i

(n(i) − m̂k(i))
2

m̂k(i)
= X2.

Using the deviance, we test hypothesis for the models Mk, k = 0, 1, in which the
null hypothesis H0 indicates that the parameters not present in the hierarchical model
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Mk but found in the saturated one are zero; i.e., the model fits the data, against the
alternative hypothesis (H1) indicating that the parameters not found in the hierarchical
model Mk but present in the saturated one are not zero.

Under the null hypothesis that the modelMk, with k = 0, 1 fits the data, the residual
deviance has an asymptotic χ2 distribution with degrees of freedom (df) given by the
number of independent parameters equal to zero with respect to the saturated model,
see e.g. Bishop et al. (1975, sec. 3.8) or specifically for graphical models see Whittaker
(1990, p. 216).

Example 2.5. Consider a log-linear model with generating class {{1, 3}, {2, 3}}

logm(i, j, k) = u+ u1(i) + u2(j) + u3(k) + u13(ik) + u23(jk),

i = 1, ..., |I1| ; j = 1, ..., |I2| ; k = 1, ..., |I3| .

In this example u12 = u123 = 0, with (|I1| − 1)(|I2| − 1) independent parameters for u12

and (|I1| − 1)(|I2| − 1)(|I3| − 1) independent parameters for u123. As a consequence the
total number of degrees of freedom is (|I1| − 1)(|I2| − 1)(|I3|).

Another way of getting the number of degrees of freedom is by subtracting the num-
ber of cells minus the number of independent parameters in the model; for example, the
number of parameters that under a parametrization using dummy variables are not set
to zero. This is discussed by Agresti (2002a, p. 338) for three dimensional tables and
by Bishop et al. (1975, p. 114-115, p. 119-122) for tables with even more dimensions.

Considering the log-linear model as a generalized linear model with design matrix
X, the degrees of freedom can also be calculated as the total number of cells in the
contingency table minus the rank of X. This is because the number of linearly inde-
pendent columns in X is equal to the number of independent parameters in the model.
Then

df = |I| −Rank(X).

Observe that the rank of X is the same regardless of the parametrization used.
Then, even though we do not parametrize a model using effect coding or dummy vari-
ables, we still calculate the number of degrees of freedom using the rank of the design
matrix.

To get an adequate approximation to the χ2 distribution some regularity conditions
are required. For multinomial distributions, we need the parameters to be outside the
boundary of the parametral space (Whittaker, 1990, p. 216), which means that we
ideally require the expected frequencies m(i) to be greater than zero, that is, we do
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not want structural zeros. This condition does not always happens, but we will assume
throughout this dissertation that we do not have structural zeros. When we have them,
the contingency table needs to satisfy additional conditions to guarantee the existence
of maximum likelihood estimates and we have to do changes in the iterative procedures
used to fit the models and in the calculation of number of degrees of freedom as pre-
sented by Bishop et al. (1975, ch. 5) and recently discussed by Fienberg and Rinaldo
(2007).

However, not even having structural zeros we might have sampling zeros, that is
n(i) = 0 for some i. In this case it may or may not exist a maximum likelihood es-
timator, Haberman (1973) gave necessary and sufficient conditions for the existence;
however, he did not give numerical procedures to know when the estimator exists. He
proved that the estimators exist when n(i) > 0 for all i and also justified in some
extent that in practice people tend to add small positive quantities to zero cells to
obtain estimators. Bishop et al. (1975, p. 69) and Glonek et al. (1988) also discussed
conditions ensuring the existence of maximum likelihood estimators, in general terms
they correspond to say that positivity of the margins defining the likelihood equations
is a necessary and sufficient condition for existence of maximum likelihood estimators
if and only if the model is decomposable, decomposable models are defined in section
2.10. Bishop et al. (1975, p. 115) and Christensen (1997, p. 286-293) suggest that even
having zero margins we could fit a model by dropping all cells causing zero margins,
then some kind of extended estimators are fitted for the other cells but we have to ad-
just the degrees of freedom. By adjusting the degrees of freedom, the approximation to
the χ2 distribution is improved. In Chapter 5 we discuss further existence of estimators.

To adjust the degrees of freedom, we get the number of cells with zero estimates ze

and the number of parameters zp that can not be estimated. The adjusted degrees of
freedom df ′ as presented by Bishop et al. (1975, p. 115) are

df ′ = df − ze + zp.

For example, suppose that we have a 2× 3 × 2 table with n(1, 1, 1) = n(1, 1, 2) = 0
and n(i, j, k) > 0 for all other i, j, and k. If we have a model in which {1, 2} is part of
the generating class, then using the likelihood equations

m̂{1,2}(1, 1) =
∑

j:(j1,j2)=(1,1)

m̂(j) = m̂(1, 1, ·) = n(1, 1, ·) = 0,

so that m̂(1, 1, 1) = m̂(1, 1, 2) = 0, which means we have two cells with zero esti-
mates, i.e. ze = 2. On the other hand, there is one u12 parameter corresponding to
the categories (1, 1) which can not be estimated because this configuration for the first
two variables is an empty cell in the corresponding marginal table, then zp = 1 and
df ′ = df − 2 + 1.
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The deviance between M0 and M1, d01, has asymptotically a χ2 sampling distribu-
tion whose degrees of freedom are given by the difference in number of free parameters
between M0 and M1 (Edwards, 2000, p. 21).

In conclusion, the residual deviance is used to prove the null hypothesis that the
parameters not contained in a model are zero, so that if we do not reject the null hy-
pothesis, then the model fits the data. To test it, we compare the residual deviance with
a quantile from a χ2 distribution using a significance level α. If the residual deviance
is small with respect to this quantile, then we have that the saturated and proposed
model are not too different in terms of what they explain or that the parameters which
are not in the model are zero, not rejecting the null hypothesis that the model fits the
data. This means that we reject the null hypothesis if

dk ≥ χ
2 (1−α)
df .

Where k = 0, 1, α is a significance level, χ
2 (1−α)
df is a 1 − α quantile from the χ2

distribution with degrees of freedom df .

Example 2.6. To illustrate how we calculate the number of degrees of freedom, con-
sider a symmetry model for two variables

logm(i, j) = u+ u1(i) + u2(j) + u12(ij), i, j = 1, 2, ..., |I| ,

with restrictions

u1(i) = u2(i), i = 1, 2, ..., |I| ,

u12(ij) = u12(ji), i, j = 1, 2, ..., |I| .

Consider a parametrization of the model with dummy variables in such a way that
every time category 1 appears on a u parameter the parameter is zero. The parameters
in the model are: A constant u, |I| − 1 parameters corresponding to the main effects,
they are obtained by taking on account the parametrization and that u1(i) = u2(i), i =
1, 2, ..., |I|,

(
|I|−1

2

)
u12(ij) parameters, with i 6= j, which are obtained using u12(ij) =

u12(ji) and u12(1j) = u12(j1) = 0. Finally, we have |I| − 1 u12(ii) parameters. Then,
the total number of parameters is

1 + |I| − 1 +

(
|I| − 1

2

)
+ |I| − 1 = 2 |I| − 1 + (|I| − 1)(|I| − 2)/2.

From where the number of degrees of freedom for the χ2 distribution is the number of
cells, |I|2, minus the number of independent parameters in the model

df = |I|2 − (2 |I| − 1 + (|I| − 1)(|I| − 2)/2) = (|I|)(|I| − 1)/2.
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2.8 Graphical log-linear models

2.8.1 Definition and representation

The use of graphs to represent complex models is a useful tool whose origin can be
traced back to many scientific areas like genetics with the so-called path analysis or
physics. However, graphical models were formally introduced and studied by Darroch
et al. (1980) and by Lauritzen and Wermuth (1989). These models are characterized
by simultaneously using concepts from both graph theory and statistics. On the graphs
corresponding to these models, we represent variables with vertices or nodes and the
association between them with different variations of edges, which are lines joining the
vertices, according to the model. One variation could be for example using directed
edges or arcs. Here we are interested in graphical models with non-directed graphs
and they are used to identify and represent conditional and marginal independences
and associations between the variables involved in a problem. Graphical models with
directed graphs are called Bayesian networks and are further discussed for instance in
Cowell et al. (1999) and we studied them, including one application in medical research,
in Ramı́rez-Aldana (2005).

There are three kinds of graphical models for non-directed graphs according to the
data type: a) graphical log-linear models, they are used for discrete data and are the
models we are interested in and study in the rest of this chapter, b) graphical Gaussian
models, they are used for continuous data, and c) mixed models, they are a family
of models that combine and generalize the two previous cases and were introduced by
Lauritzen and Wermuth (1989) and extended to a broader class, the hierarchical inter-
action models by Edwards (2000, ch. 4).

We give a brief introduction to graphical Gaussian models (Whittaker, 1990, ch. 6)
or covariance selection models (Dempster, 1972) because we will see in this document
that there are similar aspects between the discrete and continuous case. These are mod-
els based on multivariate Gaussian observations defined by setting specified elements
of the concentration matrix, the inverse of the covariance matrix, to zero. We join two
nodes of the graph with an edge if the entries corresponding to those two variables in
the concentration matrix are not set to zero. This means that when there is not an edge
between two variables, the variables are independent given the others, see for instance
Edwards (2000, p. 36).

Graphical log-linear models have been further studied and discussed by Christensen
(1997, ch. 5.2), Edwards (2000, ch. 2), Lauritzen (1996, section 4.3), and recently by
Agresti and Gottard (2007), as part of hierarchical log-linear models. The associated
contingency tables for these models have a multinomial or Poisson distribution, and,
in a similar way than in the continuous case, when there is not an edge between two
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variables they are independent given the other variables. Interaction graphs are defined
here as a way to represent hierarchical log-linear models with generating class A, this
definition is based on the ones given by Lauritzen (1996, p. 88) and Whittaker (1990, p.
209). However, we have that many hierarchical log-linear models could have the same
graph so that the graph is not unique and it does not give a complete picture of the
structure of the model. To solve these problems, a subclass of hierarchical log-linear
models called graphical is defined. These are models defined solely in terms of condi-
tional independence relationships depending on which two-factor interaction terms are
set to zero.

Consider a hierarchical log-linear model

logm(i) =
∑

a∈K

ua(ia)

Definition 2.1. Given a set of labels contained in a set ∆, such that for every label
δ ∈ ∆ there is an associated random variable Iδ, an interaction graph is a graph in
which we assign to each variable Iδ a vertex δ. Additionally, two variables Ii and Ij are
joined with an edge {i, j} if there is an interaction term ua in the log-linear model in
which the set a contains both i and j.

In terms of graph theory, we have a graph G(V,E), where the set of vertices V
is equal to the set of labels ∆, V = ∆, and the set of edges E is determined by the
interactions in the model.

For example, we show in figure 2.1 the interaction graph for the hierarchical log-
linear model generated by {{A,B}, {B,D}, {A,C,D}},

log m(i, j, k, l) = u + uA(i) + uB(j) + uC(k) + uD(l) + uAB(ij) + uBD(jl) + uAC(ik)

+uAD(il) + uCD(kl) + uACD(ikl).

The set of vertices for this model is V = ∆ = {A,B,C,D} and the set of edges is
E= {{A,C}, {C,D}, {A,D}, {A,B}, {B,D}}.

An independence graph as defined by Whittaker (1990, p. 207) is as follows.

Definition 2.2. An independence graph is a graph in which each vertex represents a
variable and the set of edges E = {er}r∈N is formed by elements {i, j}, such that when
{i, j} is not contained in E, the variables Ii and Ij are conditionally independent given
the other variables.
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Figure 2.1: Interaction graph for the log-linear model with generating class {{A, B},
{B, D}, {A, C, D}}, log m(i, j, k, l)=u+ uA(i)+ uB(j)+ uC(k)+ uD(l)+ uAB(ij)+ uBD(jl)+
uAC(ik)+ uAD(il)+ uCD(kl)+ uACD(ikl).

Whittaker (1990, p. 209) shows that every interaction graph is an independence
graph and viceversa. This means that we can use any of the two terms without distinc-
tion.

According to Lauritzen (1996, p. 89), graphical log-linear models can be defined in
the following way:

Definition 2.3. A log-linear model is graphical with associated graph G = (V,E) if
its generating class A = C where C is the cliques set of the interaction graph.

Observe that, even though all hierarchical models can be represented with an inter-
action graph, not all of them are graphical because we need the generating class to be
formed by all cliques of the graph. As we previously noticed, what these models have
in common with graphical Gaussian models is that the lack of edges between variables
represents conditional independence of two variables given the others and that these
are models represented with graphs which provide the complete structure of the model.

Example 2.7. The log-linear model with generating class {{A,B}, {B,D}, {ACD}}
shown in figure 2.1 is not graphical because the clique {A,B,D} contained in the
corresponding cliques set {{A,B,D}, {A,C,D}} is not contained in the generating
class. However, the model with generating class {{A,B,D}, {A,C,D}},

log m(i, j, k, l) = u + uA(i) + uB(j) + uC(k) + uD(l) + uAB(ij) + uBD(jl) + uAC(ik)

+uAD(il) + uCD(kl) + uABD(ijl) + uACD(ikl),

whose graph is the same, is graphical because the cliques set of the graph is equal to
the generating class.
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2.9 Marginal and conditional independence in log-

linear expansions and their relation with graph-

ical log-linear models

To introduce and analyze the relation between independence and graphical log-linear
models, we will use an alternative definition of graphical log-linear models given by
Whittaker (1990, p. 207). To do this, we need the following proposition also given
by Whittaker (1990, p. 207), which applies for multinomial distributions; however, all
results work whichever distribution, Poisson or restricted multinomial, is used.

Proposition 2.1. If (Ia, Ib, Ic) is a partitioned multinomial random vector, then Ib⊥Ic|Ia
if and only if all u-terms in the log-linear expansion with one or more coordinate in b
and with one or more coordinate in c, are zero.

If a were empty, we would simply have marginal independence.

When b is formed by one variable Ij, c is formed also by one variable Ik, and a
corresponds to the remaining variables, proposition 2.1 means that in order to have
Ij⊥Ik|I∆/{j,k} we need u{j,k}∪t = 0 for t ⊆ a. From this fact, we derive that in graphical
(as well as in hierarchical) log-linear models when there is not an edge between two
vertices it is because these variables are independent given the other variables. The
reason for this independence is as follows, when we do not have an edge in the graph
is because all u-terms containing both variables in the edge are zero and, according
to what we just said at the beginning of this paragraph, it means that both variables
are independent given the other variables. For example, in the graphical model with
generating class {{A,B,D},{A,C,D}}, whose graph is the same given in figure 2.1,
there is not an edge between B and C which means that B⊥C|A,D.

An alternative way of defining graphical log-linear models (Whittaker, 1990, p.
207), which will be useful to clarify the relation between conditional independence and
graphical log-linear models, is:

Definition 2.4. Given an independence graph, the distribution of vector I = (Iδ)δ∈∆

is a graphical model, or the log-linear model is graphical, if the distribution of I is
arbitrary, apart from constraints in the log-linear representation log p(i) =

∑
a⊆∆ ua(ia)

of the form ua = 0 if {i, j} ⊆ a and {i, j} is not in the edge set E.

Example 2.8. Suppose that we have the independence graph given in figure 2.2. We
have that X⊥Z|Y because the graph is an independence graph. This independence
implies, according to proposition 2.1, that uXZ = uXY Z = 0, obtaining a model with
generating class {{X,Y } , {Y, Z}},

logm(i, j, k) = u+ uX(i) + uY (j) + uZ(k) + uXY (ij) + uY Z(jk).
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This is a graphical model, according to definition 2.4, because {X,Z} is the only
edge not contained in E and ua = 0 if {X,Z} ⊆ a using that uXZ = 0 and uXY Z = 0.

e e

e
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A
A
A
A
AX Y

Z

Figure 2.2: Independence graph for the graphical model with generating class {{X, Y },
{Y, Z}}, log m(i, j, k) = u+ uX(i)+ uY (j)+ uZ(k)+ uXY (ij)+ uY Z(jk).

Observe from definition 2.4, using proposition 2.1, that the restrictions given to the
graphical model parameters correspond to having conditional independence between
variables not having edges joining them given the other variables and that these are
the only zero restrictions that the parameters should have. Observe also that graphical
models are hierarchical models, because according to what we saw in section 2.2.1,
hierarchical are models in which if ua = 0 then ut = 0, for all a ⊆ t, which is what
graphical models satisfy in this alternative definition.

Example 2.9. An example of a non-graphical log-linear model is

logm(i, j, k) = u+ u1(i) + u2(j) + u3(k) + u12(ij) + u13(ik) + u23(jk);

i.e., a model with generating class

A = {{1, 2} , {1, 3} , {2, 3}} ,

whose interaction graph is shown in figure 2.3.

There is no conditional independence between any pair of variables given the other
variables because all parameters, u12, u13, and u23 are not set to zero and according to
proposition 2.1 in order to have that kind of independence any of them should be zero.
Using this and definition 2.4 we deduce that in order to have a graphical model we
should not have restrictions for the parameters in the log-linear representation; how-
ever, we have the restriction u123 = 0 and as a consequence the model is not graphical.
Another way of seeing this fact is by examining the corresponding interaction graph
(figure 2.3) in which all edges between all variables are contained in the graph, and from
this we see again that if the model were graphical it should not happen that u123 = 0.

In terms of definition 2.3, the graph given in figure 2.3 contains only one clique, the
set {1, 2, 3}, which is not in the generating class A of the model, hence the model is not
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Figure 2.3: Graph for the non-graphical log-linear model with generating class {{1, 2}, {1, 3},
{2, 3}}, log m(i, j, k) = u+ u1(i)+ u2(j)+ u3(k)+ u12(ij)+ u13(ik)+ u23(jk).

graphical.

Both definitions of graphical models, 2.3 and 2.4, are equivalent. This equivalence
is because Whittaker (1990, p. 209) proved that a model is graphical according to
definition 2.4 if and only if its generating class, the maximal u-terms, corresponds to
the cliques of the associated graph. What is important to understand is that graphical
models were built to represent conditional independences between two variables given
the other variables, and at first these are the kinds of independences we can deduce
from the corresponding graphs.

We notice that there is a one-to-one correspondence between graphs and graphical
log-linear models, e.g., Christensen (1997, p. 184). If we have any graph, we can get
its cliques and from them build the generating class for a graphical log-linear model.
On the other hand, if we have a hierarchical log-linear model, we can build the corre-
sponding interaction graph, in particular if the model is graphical.

It is also important to notice that the two mentioned approaches to characterize
graphical log-linear models are not the only ones. Darroch et al. (1980) get the same
results using the so-called Markov fields theory, getting that models with the properties
for their generating class given above also satisfy other group of conditional indepen-
dences (Markov properties), among them conditional independence of two not adjacent
variables given the other variables.

2.10 Graphical log-linear models interpretation

We present the Markov properties for a probability measure P in X, the probability
space for the random variables (Xv)v∈V associated to the vertices on a graphG = (V,E),
where V = ∆, the set of labels given to the variables, based on the work by both Darroch
et al. (1980, p. 525) and Lauritzen (1996, p. 32).

• Pairwise Markov property. The probability measure obeys this property if for any
non-adjacent vertices α and β, Xα⊥Xβ|X∆\{α,β}.
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• Local Markov property: Let a be a set of vertices, we define bd(a) as the set of
vertices in ∆ \ a adjacent to some vertex in a and cl(a) as the set a ∪ bd(a). The
probability measure obeys the local Markov property if for any vertex, α ∈ V
Xα⊥X∆\cl(α)|Xbd(α).

• Global Markov property. The probability measure obeys this property if for any
(A,B, S) of disjoint subsets of V such that S separates A from B; i.e., any path
from A to B goes through some vertex in S, XA⊥XB|XS.

According to what we mentioned in section 2.9, graphical log-linear models are
built following the pairwise Markov property. Additionally, in proposition 3.4 Lau-
ritzen (1996, p. 33) proved that for any graph G and for any distribution, the global
Markov property implies the local one and this last one implies the pairwise property.

For some particular distributions, for example for distributions in contingency tables
with p(i) > 0, Lauritzen (1989, p. 18-19) proved that in graphical log-linear models the
three properties are equivalent. He also outlines a proof (Lauritzen, 1996, p. 35) of the
fact that in models whose distribution is factorized according to the set of cliques, like
in graphical models, and if the probability density is positive and continuous, then all
Markov properties are equivalent, this result is based on the one attributed to Hammer-
sley and Clifford (1971) in the discrete case. In fact, having a positive density is enough
to have equivalence between the three properties as discussed by both Edwards (2000,
p. 8) and Whittaker (1990, p. 57). This can be obtained using the separation theo-
rem presented and proved by Whittaker (1990, p. 67) and the implications between the
three Markov properties. The separation theorem says that if we have random variables
with positive density function, then the pairwise Markov property implies the global
Markov property.

The previous statement implies that for any graphical model, we can get condi-
tional independences between different sets of variables using Markov properties, not
only getting conditional independences between pairs of variables given the rest, but
also conditional independences involving other sets; for example, if we have a separator
set of vertices S separating the vertices in A from the ones in B, where all sets are
disjoint, then, using the global Markov property, we have that the variables in A are
independent from the ones in B given the variables in S. As a particular case, if we have
a set of vertices A in a connected component and another set of vertices B in another
component, then the variables associated to A are independent to the ones associated
to B, i.e. A⊥B. Conditional independences involving others sets of variables can be
obtained using the local Markov property; in fact, this property is a particular case of
the global Markov property because bd(α) separates α from ∆ \ cl(α).

Heckerman et al. (2004) proposed a property called conditionally specified distribu-
tion that the probability space should satisfy given an undirected graph G(V,E) and
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they tried to relate it with all properties defining graphical models, including Markov
properties, to give another definition of graphical model or to obtain additional in-
formation from the graph associated to the model; however, there is not equivalence
between all properties.

Example 2.10. Consider a log-linear model with generating class {{A,B,D}, {A,C,D}},

log m(i, j, k, l) = u + uA(i) + uB(j) + uC(k) + uD(l) + uAB(ij) + uBD(jl) + uAC(ik)

+uAD(il) + uCD(kl) + uABD(ijl) + uACD(ikl),

whose graph corresponds to the one in figure 2.1. Observe that {A, D} separates B
from C, which means that B⊥C| {A,D}.

Example 2.11. Consider a log-linear model generated by {{A,B,C} , {C,D,E}},

log m(i, j, k, l, o) = u+uA(i)+uB(j)+uC(k)+uD(l)+uE(o)+uAB(ij)+uBC(jk)+uAC(ik)

+uCD(kl) + uCE(ko) + uDE(lo) + uABC(ijk) + uCDE(klo),

whose graph, figure 2.4, has cliques {A,B,C} and {C,D,E}. The only way to go from
one clique to the other is through C, which is the intersection between the elements in
the generating class, then the vertex partition is ({A,B},{D,E},{C}), with {C} the
separating set. This means that A,B⊥D,E|C.
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Figure 2.4: Graphical log-linear model with generating class {{A, B, C}, {C, D, E}} with
cliques {A, B, C} and {C, D, E} and separating set {C}.

We list all kinds of graphical and non-graphical models for three-way contingency ta-
bles, see for instance Haberman (1978, p. 197-207). The graphical models are as follows:

a) Saturated model. It is the model generated by A = {{X,Y, Z}},

log m(i, j, k) = u + uX(i) + uY (j) + uZ(k) + uXY (ij) + uXZ(ik) + uY Z(jk) + uXY Z(ijk).
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We observe from figure 2.5(a) that there are no separator sets between sets of variables,
then there is not any kind of independence between variables.
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(c) X⊥Z|Y

e e

e

A
A
A
A
A
AX Y

Z

(d) X⊥(Y,Z)

Figure 2.5: Graphical log-linear models with different generating class: a) {{X, Y, Z}},
log m(i, j, k) = u+ uX(i)+ uY (j)+ uZ(k)+ uXY (ij)+ uXZ(ik)+ uY Z(jk)+ uXY Z(ijk);
b) {{X} , {Y } , {Z}}, log m(i, j, k) = u+ uX(i)+ uY (j)+ uZ(k); c) {{X, Y }, {Y, Z}},
log m(i, j, k) = u+ uX(i)+ uY (j)+ uZ(k)+ uXY (ij)+ uY Z(jk); d) {{X}, {Y, Z}},
log m(i, j, k) = u+ uX(i)+ uY (j)+ uZ(k)+ uY Z(jk).

b) Model without first and second-order interactions. This is a model with gener-
ating class A = {{X} , {Y } , {Z}},

log m(i, j, k) = u + uX(i) + uY (j) + uZ(k).

It is represented as three isolated points, figure 2.5(b), so that there is no path joining
the variables and the variables are mutually independent.

c) Models without second-order interaction and without one of the three first-
order interaction terms. These are the models generated by sets of the form A =
{{X,Y } , {Y, Z}},

log m(i, j, k) = u + uX(i) + uY (j) + uZ(k) + uXY (ij) + uY Z(jk).



48 CHAPTER 2. LOG-LINEAR AND GRAPHICAL LOG-LINEAR MODELS

The corresponding graph, figure 2.5(c), is a path of length two, implying that X⊥Z|Y .
This independence relation can be also easily seen from proposition 2.1 using that all
parameters containing X and Z at the same time are zero, uXZ = uXY Z = 0.

d) Models without second-order interaction and without two first-order interaction
terms. They are generated by sets of the form A = {{X} , {Y, Z}},

log m(i, j, k) = u + uX(i) + uY (j) + uZ(k) + uY Z(jk).

The graph, figure 2.5(d), consists on an isolated vertex and an edge between the re-
maining vertices, so that X⊥(Y, Z), i.e. X is jointly independent of Y and Z.

The non-graphical log-linear models when there are three variables are the following:

a) The model not including second-order interaction, i.e. the model generated by
A = {{X,Y } , {Y, Z} , {X,Z}},

logm(i, j, k) = u+ uX(i) + uY (j) + uZ(k) + uXY (ij) + uXZ(ik) + uY Z(jk).

As we saw before, example 2.9, this is a non-graphical model and does not have an
interpretation in terms of marginal or conditional independence; however, it has been
studied by Birch (1963) as a model for partial association between each pair of variables.

b) Non-hierarchical models. These are obviously non-graphical models because all
graphical models are hierarchical. One example of this kind of model is

logm(i, j, k) = u+ uX(i) + uY (j) + uZ(k) + uXY Z(ijk).

c) Non-comprehensive models. These were defined by Bishop et al. (1975, p. 38) as
models depending on one or two variables in spite of having three variables on the con-
tingency table. For example, the hierarchical model logm(i, j, k) = u+ uX(i) + uY (j),
which indicates independence between X and Y without considering Z. This model
can not be graphically represented with three vertices; however, if we considered the
model without taking into account the dimension corresponding to Z, we would have
a graph with only two vertices indicating independence between X and Y . These are
models with generating classes of the form A = {{X} , {Y }}. We also have models
generated by sets of the form A = {{X,Y }}, which according to Whittaker (1990,
p. 212) indicate conditional equi-probability, i.e. the same probability without taking
into account Z, models with generating classes of the form A = {{X}} that do not
indicate any dependence and that indicate that given one variable, all combinations of
categories of the other two variables are equally probable, or models with only constant
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term indicating that all combinations of the three variables are equally probable.

Darroch et al. (1980, p. 537) calculated the number of log-linear models as 22k−1,
where k is the number of variables, and the number of graphical log-linear models as∑k

i=0

(
k
i

)
2(i

2). For the last formula they consider the order of the labeling in all vari-
ables, the number of graphical log-linear models obtained by taking subsets of the k
variables ignoring the other variables, i.e. non-comprehensive models, and the empty
graph. For example, with 3 variables, there are 128 log-linear and 18 graphical mod-
els; with 4 variables, there are 32,768 log-linear and 113 graphical models; and with 5
variables, there are 2,147,483,648 log-linear and 1,450 graphical models.

As the dimension increases, it could be more difficult to interpret a non-graphical
model in terms of independences by only considering the linear expansion or basic asso-
ciation measures as odds ratios. This difficulty motivated the development of graphical
log-linear models, because they are defined, for instance by Christensen (1997, p. 182),
as models with interpretations in terms of conditional independence. One property of
any hierarchical log-linear model is that it can be nested into a graphical one, at least
in the saturated model, which is the largest graphical model. Then, to interpret a non-
graphical hierarchical log-linear model, it could be useful to get the smallest graphical
log-linear model containing it.

Example 2.12. The model with generating class

{{1, 2} , {1, 3} , {1, 4} , {2, 3}} ,

log m(i, j, k, l) = u + u1(i) + u2(j) + u3(k) + u4(l) + u12(ij) + u23(jk) + u13(ik) + u14(il),

with graph given in figure 2.6, is not graphical; however, it is contained in the graphical
log-linear model generated by {{1, 2, 3} , {1, 4}},

log m(i, j, k, l) = u + u1(i) + u2(j) + u3(k) + u4(l) + u12(ij) + u23(jk) + u13(ik)

+u14(il) + u123(ijk),

whose graph is also given in figure 2.6. This means that the non-graphical model keeps
the independence (2, 3)⊥4|1 that can be deduced from the graphical one.

The smallest graphical model containing a hierarchical non-graphical model is ob-
tained by getting the interaction graph associated to the non-graphical model. From
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Figure 2.6: Interaction graph for two models: a) non-graphical hierarchical log-linear model
with generating class {{1, 2}, {1, 3}, {1, 4}, {2, 3}}, log m(i, j, k, l) = u+ u1(i)+ u2(j)+
u3(k)+ u4(l)+ u12(ij)+ u23(jk)+ u13(ik) +u14(il); b) graphical log-linear model with gen-
erating class {{1, 2, 3}, {1, 4}}, log m(i, j, k, l) = u+ u1(i)+ u2(j)+ u3(k)+ u4(l)+ u12(ij)+
u23(jk)+ u13(ik)+ u14(il)+ u123(ijk).

this graph, we get the set of cliques C, which corresponds to the generating class
for the smallest graphical model containing the non-graphical hierarchical model, e.g.,
Lauritzen (1996, p. 89). This implies that from non-graphical hierarchical log-linear
models, we could get some interpretations in terms of conditional independence; how-
ever, from certain conditional independences, we do not necessarily get the same model.
On the other hand, for graphical log-linear models, we have a one-to-one relation be-
tween conditional independences and the model. Then, to interpret a non-graphical
hierarchical log-linear model, we use the smallest graphical log-linear model containing
it or we could also interpret it by using proposition 2.1. For example, the model with
generating class {{1, 2, 3} , {1, 4} , {2, 4}} satisfies that all interaction terms containing
3 and 4 at the same time are zero, which implies that 3⊥4|1, 2. We get the same result
by using the smallest graphical model containing the model.

A particular kind of graphical log-linear models are decomposable models, see for
instance Darroch et al. (1980, p. 22), Lauritzen (1989, p. 35), or Eriksen (2005) who
also proposes a new model class, decomposable log-linear models, covering a wider
range of models even some non-hierarchical which obviously are also not graphical.
Decomposable models can be defined in terms of graph theory using the definition of
decomposable graphs applied to the corresponding interaction graph, as discussed by
Lauritzen (1996, p. 8, 90), but this definition is equivalent to say that the associ-
ated graphs are chordal or triangulated whose definition can be found on Appendix
A. Decomposable models are characterized by having exact analytic formulas for their
maximum likelihood estimators, e.g., Edwards (2000, p. 22), such explicit formulas are
presented for instance by Lauritzen (1996, p. 91) in proposition 4.18.

We have the following relations between different kinds of log-linear models: Given
a group of variables, decomposable models are a subset of those graphical, which are
a subset of hierarchical log-linear models, which at the same time are a subset of all
possible log-linear models for that group of variables; i.e.
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Log-linear models ⊇ Hierarchical log-linear models ⊇ Graphical log-linear models
⊇ Decomposable models.

As mentioned above decomposable models have exact formulas for their maximum
likelihood estimators, and, because they are graphical, they also have interpretations
in terms of conditional independences. Hierarchical models are the log-linear models
generally analyzed, because when we have a non-hierarchical model the statistical sig-
nificance and the parameters interpretation depends on how variables are coded. This
is what happens when in a model we include a term without including some terms of
inferior order as discussed by Agresti (2002a, p. 316). Even so, some methods have
been proposed to interpret non-hierarchical models, which are part of the so-called non-
standard log-linear models discussed by Rindskopf (1990) and Mair (2007).

To illustrate decomposable models and to continue with the interpretation of graph-
ical models presented so far, consider log-linear models having four variables. We
consider as many hierarchical models as generating classes can be obtained using four
variables because if the model does not contain all the variables, each one in at least one
element in the generating class, we fall in the case of having non-comprehensive models
which we are not considering. Without loss of generality, suppose that we label the
variables as 1, 2, 3, 4. Given that order for the variables, all possible graphical models
are generated by the sets presented in the first column of table 2.6. We present in the
same table the corresponding graphs and interpretations based on table 5.1 presented
by Christensen (1997, p. 181). Observe also from table 2.6 that the total number of
graphical models considering different labellings of the variables is 64 corresponding to(

k
i

)
2(i

2), with k = 4 and i = 4, which is the part of the formula seen above used to
calculate the number of graphical log-linear models that provides us with the number
of graphical models with exactly four variables.

Observe that for example, the model with generating class {{1, 2, 3} , {1, 2, 4}} is
decomposable because there is only one cycle of length four for the corresponding graph
and it contains the chord {1, 2}. In fact, there is only one non-decomposable model,
the model generated by

{{1, 2} , {2, 3} , {3, 4} , {4, 1}} .

The corresponding interaction graph is a cycle of length four, so that there are not
chords and this is why the model is not decomposable. There are not chords because
there are not edges in the cycle joining non-consecutive vertices, neither the edge {1, 3},
nor the edge {2, 4} are contained in the graph.
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Generating class Associated graph Interpretation # models
with different

labellings

{{1, 2, 3, 4}} b b

b b

�
�

�@
@

@1 4

23

without restrictions 1

{{1, 2, 3} , {1, 2, 4}} b b

b b

�
�

�

1 4

23

3⊥4|1, 2 6

{{1, 2, 3} , {1, 4}} b b

b b

�
�

�

1 4

23

2, 3⊥4|1 12

{{1, 2, 3} , {4}} b b

b b

�
�

�

1 4

23

1, 2, 3⊥4 4

{{1, 2} , {2, 3} , {3, 4} , {4, 1}} b b

b b

1 2

34

[2⊥4|1, 3] ∩ [1⊥3|2, 4] 3

{{1, 2} , {1, 3} , {1, 4}} b b

b b

�
�

�

1 4

23

2⊥3⊥4|1 4

{{1, 2} , {1, 3} , {2, 4}} b b

b b

�
�

�

1 4

23

[3⊥2, 4|1] ∩ [1, 3⊥4|2] 12

{{1, 2} , {3, 4}} b b

b b

1 4

23

2, 3⊥1, 4 3

{{1, 2} , {1, 3} , {4}} b b

b b

�
�

�

1 4

23

[1, 2, 3⊥4] ∩ [2⊥3|1] 12

{{1, 2} , {3} , {4}} b b

b b

�
�

�

1 4

23

1, 2⊥3⊥4 6

{{1} , {2} , {3} , {4}} b b

b b

1 4

23

1⊥2⊥3⊥4 1

Table 2.6: Graphical log-linear models with four variables for an specific labelling. The only
non-decomposable model is generated by {{1, 2}, {2, 3}, {3, 4}, {4, 1}}.
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Darroch et al. (1980) present tables with graphs and their interpretation for decom-
posable models of dimension fewer or equal to 5 whose graph is connected similar to
table 2.6 presented here. Unlike the tables presented by them, we do not assume that
the graphs are connected or that the model is decomposable.

2.11 Deviance in graphical log-linear models

The goodness of fit statistic for graphical models that we discuss in this section is the
deviance. The reason for this discussion is that the deviance has some qualities that
in general, as we will see at the end of this section, make it an adequate goodness of
fit statistic and a statistic useful in model selection. In fact, most of the software uses
this statistic in their analysis, in particular MIM, the free software for graphical models
that we use throughout this work, and Splus use it.

Let Ia be a random sub-vector of I and denote as pa to pIa
(ia), i.e. the marginal

probability for the sub-vector Ia evaluated in ia. We have the following theorem based
on proposition 7.1.1 presented by Whittaker (1990, p.203) without formal proof.

Theorem 2.1. A multinomial vector, and in fact a vector with any distribution for the
cells, Poisson or restricted multinomial with fixed margins, partitioned into (Ia, Ib, Ic)
satisfies

Ib⊥Ic|Ia ⇔ pabc = pacpab/pa

Proof : Observe that pabc = p(i), this is only a notational change. If Ib⊥Ic|Ia,
then, using the definition of conditional independence, we have that pIb,Ic|Ia

(ib, ic|ia) =
pIb|Ia

(ib|ia)pIc|Ia
(ic|ia), from this expression we get the desired result. Conversely, us-

ing the factorization criterion that in this case indicates that Ib⊥Ic|Ia if and only if
pabc = f(ia, ib)g(ia, ic), where the function f can be replaced by pab and the function g
by pac/pa, we get that pabc = pacpab/pa implies Ib⊥Ic|Ia.

Using that |n| =
∑

i n(i) is the total observed count and that under a multino-
mial distribution m(i) = |n| p(i), and supposing that we have multinomial variables
with Ib⊥Ic|Ia, we have by theorem 2.1 that p(i) = pabpac/pa. Then m̂(i) = |n| p̂(i) =
n(iab)n(iac)/n(ia), using that p̂ab = n(iab)/ |n|.

By using this result, the residual deviance formula, and that the number of cells in
marginal distributions for Ia, Ib, and Ic are |Ia|, |Ib|, and |Ic|, respectively, we have the
following result given by Whittaker (1990, p. 223).

Proposition 2.2. Under a multinomial distribution, the residual deviance for a con-
ditional independence model Ib⊥Ic|Ia is
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d(Ib⊥Ic|Ia) = 2
∑

i∈I

n(iabc) log
n(iabc)n(ia)

n(iab)n(iac)
.

The number of degrees of freedom for the deviance is |Ia| (|Ib| − 1)(|Ic| − 1).

The number of degrees of freedom given in proposition 2.2 can be derived like in
example 2.6 or can be obtained by using the following method: If we have an indepen-
dence model between Ib and Ic, we can easily see that the associated number of degrees
of freedom is (|Ib| − 1)(|Ic| − 1). This value corresponds to the number of cells minus
the number of independent parameters |Ib| |Ic| − (1 + (|Ib| − 1) + (|Ic| − 1)). The model
Ib⊥Ic|Ia can be seen as an independence model of Ib and Ic at each value of Ia. Using
this fact and the number of degrees of freedom in an independence model we get the
desired number of degrees of freedom.

Obviously, the independence model, Ib⊥Ic, can be seen as a particular case of the
model Ib⊥Ic|Ia, with a = ∅, where we define n(i∅) = |n|. The number of degrees of
freedom in this case is (|Ib| − 1)(|Ic| − 1).

Using proposition 2.2, we can get the residual deviance for a model without a specific
edge {j, k}, i.e. for the model Ij⊥Ik|I∆/{j,k}

d(Ij⊥Ik|I∆/{j,k}) = 2
∑

i∈I

n(i) log
n(i)n(i∆/{j,k})

n(i∆/{j})n(i∆/{k})
, (2.15)

whose asymptotic distribution is χ2 with
∣∣I∆/{j,k}

∣∣ (|Ij|−1)(|Ik|−1) degrees of freedom.

Through the residual deviance given in equation (2.15), we can test which edges
are non-significant to exclude them from a graphical model. In terms of graph theory,
we are eliminating from the complete graph an edge each time. When the deviance is
small with respect to a χ2 distribution with its corresponding degrees of freedom we
have that the model without the edge explains the data as well as when the edge is
included in the complete graph, which implies that the edge should not be included.
Formally, it means that we are not rejecting the null hypothesis that the parameters
in the saturated model not forming part of the model without the edge are zero. By
eliminating non-significant edges we can define a method that can be used to get a
graphical model that fits some data.

The deviance is a useful statistic in graphical models because of its following prop-
erties:

• It is invariant to different parametrizations, i.e. it is an estimable function as
discussed by Long (1984).
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• It can be used to get selection criteria to choose graphical models that fit some
data. It can be used not only for log-linear models, but also for Gaussian and
mixed models.

• It can be interpreted as a divergence measure.

• It has a known asymptotic distribution. This property is inherited from the fact
that it is a likelihood ratio test. For two nested models, under the null hypothesis
that the parameters not contained in the smaller model are zero, the difference
between the deviances has an asymptotic χ2 distribution.

We note that if the sample size is relatively small or the number of variables in
the model increases the asymptotic distributions could not be adequate. In this case
we would need to get the exact distribution; however, this is in general intractable as
discussed by Lauritzen (1996, p. 80). Another possibility is to correct the asymptotic
distribution, for example using the so-called Bartlett corrections (Bartlett, 1937), al-
though research developed by Frydenberg and Jensen (1989) indicate that there is no
real improvement in the discrete case, or using another test statistics like the power
diverge statistics discussed by Read and Cressie (1988).

2.12 Graphical log-linear models selection

Selection methods for log-linear models have been developed and further studied for
instance by Goodman (1971). For graphical models there are three selection methods,
the first one being similar to those methods available in log-linear models,

1. Stepwise methods: We start from an initial model and we add or remove edges
until some criterion is fulfilled.

2. More global search techniques: We seek simple models consistent with the data.

3. Selection of a model that optimizes some information criterion; for example the
AIC or BIC criteria.

All these methods should be used carefully because even though the methods iden-
tify models consistent with the data, this does not mean that they are reflecting reality.
There are some problems: i) It might happen that we are not using all variables neces-
sary to represent the phenomenon we want to describe. ii) The model selection is based
on significance tests, for example, to know if we have to add or remove an edge, and
we control the error levels for each of these tests, but we are not controlling the overall
error. iii) All inferences are made under a theoretical fixed model; by fitting a model
using some data an infering something from it, we have estimators biased according to
the data.
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The forward and backward methods are included in the stepwise methods class. In
the backward method, edges are successively removed from an initial or current model,
i.e. we have as possible contenders to all models in which an edge is removed, and
we get the deviance, called exclusion deviance, between the models without an edge
and the initial or current model. This process is similar to the one seen at the end of
section 2.11 in which we removed edges from the saturated model. The deviance has a
χ2 sampling distribution under the null hypothesis, and we remove the least significant
edge or edges, so that we delete the edges whose deviance between the models with and
without the edges is small with respect to the quantiles for a χ2 distribution with its
corresponding degrees of freedom for a given significance level. This means that we do
not reject the null hypothesis that the parameters in the model with the edge and not
included in the model without the edge are zero. A usual stopping rule is to continue
excluding edges until there are no p-values greater than 5% or the desired significance
level.

One way to implement this method suggested by Whittaker (1990, p. 252) uses two
steps, even though we could only use the first one, is:

• Obtain an independence graph. To do this, we exclude from the saturated model
one edge each time, i.e. we get the exclusion deviances with respect to the sat-
urated model with their corresponding p-values. We remove all non-significant
edges, which are those edges in which the corresponding p-value is greater than
the significance level, and we get the model G1. Under this method we could
remove more than one edge.

• We get the so-called inclusion deviances for all edges removed from the saturated
model to get G1; i.e., we get the deviances for the model obtained from G1 adding
each time a missing edge. We include all significant edges, that is we add all edges
whose deviances are greater than their corresponding quantiles, rejecting the null
hypothesis that the model without the edge fits the data as well as when the edge
is included. That is, we add all edges whose associated p-value is less than the
significance level.

Edwards (2000, p. 158-160), proposes a slightly different backward method in which
in each step we can only delete one edge. We take all models in which one edge is re-
moved from a current model and compare them with the original model by using the
deviance. We delete the least significant edge for that model; i.e, the edge with the
largest p-value provided it were greater than the significance level α. We get a new
graphical model in which we apply again the same method, and so on until all p-values
p < α.

In model selection, in general, we would like to satisfy the coherence principle de-
fined by Gabriel (1989) and explained in particular for graphical models by Edwards
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(2000, p. 165) and Whittaker (1990, p. 253), which says that if for two nested models
M0 ⊂M1, M1 is rejected, i.e. M1 is inconsistent with the data, then M0 is also rejected.
On the other hand, if M0 is accepted, i.e. M0 is consistent with the data, then M1 is
also accepted. In the previous algorithm, this principle translates to the following: if
we reject removing an edge in one step, then that edge can not be chosen to be removed
in any following step.

Another restriction that can be added for model selection is considering at each step
only decomposable models. That is, if in one step once removing an edge we have a
non-decomposable model, then in that step we can not delete such edge.

In forward methods, we add the most significant edges instead of removing the least
significant edges. Then, the previous algorithm is modified. Now, we add in each step
the edge with least p-value provided that it were less than the significance level α.

There are some variations in the way these methods are applied; for example, by
examining which edges to add or remove in a random order so that the edge added or
removed is the first edge satisfying the required condition. For the backward method
we remove the first non-significant edge and for the forward method we add the first
significant edge. This method is faster than the standard method and has been imple-
mented in the computer software MIM. In this software the described algorithms for
forward and backward methods have been also implemented.

The second kind of selection methods are global search techniques which examine
the simplest models consistent with the data. To do this, we need to obtain the so-called
adequate models, defined for instance by Whittaker (1990, p. 253), which are models
whose residual deviance is small enough so that the model fits as well to the data as
the saturated model. Minimally adequate models also defined by Whittaker (1990, p.
253) are required, they are adequate models, M , such that there is no other model N
contained in M which is also adequate. To get them, algorithms as the EH-Procedure
are used, these algorithms are presented by Edwards and Havránek (1985, 1987) and
also discussed in Edwards (2000, p. 167).

The last kind of selection methods are the ones using information criteria as the
Akaike (AIC) or Bayesian information criteria (BIC). These methods are computation-
ally more challenging. In MIM, all submodels for an specified class of models are fitted
and the corresponding information criterion is calculated. Edwards (2000, p. 172)
emphasizes that this strategy of model search is feasible only for models with a small
to moderate dimension, he illustrates this fact by presenting an example with only 5
variables and a specific model, for this case there are 1024 possible submodels to exam-
ine. He concludes saying that this number increases greatly as the number of variables
increases. Recently, Edwards et al. (2010) developed a method to select a graphical
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model whose associated graph is a tree or forest, a disconnected graph whose connected
components are trees, that optimizes a penalized likelihood criterion, for example AIC
or BIC, for high-dimensional data typical of genomic studies in which model selection
methods that perform well for moderate dimensions may be intractable. Even though
these model classes can be too simple to represent complex biological systems, they
still can give a preliminary understanding of the dependence structure, can be used
as a start model in a search algorithm based on richer model classes, or may allow
dimension reduction.

Selection methods are a useful tool to explore data because even though we could
not get a simple or satisfying model, the results could be the basis to get better mod-
els that we had not considered before. For example, we could think of using latent
variables, or according to the selected models, we could try to fit models with a more
specific structure, for example, models in which some parameters are restricted to be
equal between them. In this work, these are precisely the kind of restrictions we impose
to hierarchical log-linear models with a graphical representation.

That implies that first we use model selection with the purpose of discovering the
structures in a data set finding conditional independences and after that we formulate
a model with additional restrictions based on the model previously found. We chose
in general to use stepwise methods, both forward and backward, because these meth-
ods are available on MIM and, as we discussed above, they are quicker; however, as
we analyzed several data besides the ones that finally were included in this work to
see if the models defined in the following chapters were adequate, we actually used, in
some cases, the other methods available in MIM to see if there were graphical models
that some methods did not identified but others did. After selecting a model, we also
checked its fit using the deviance.



Chapter 3

Restricted or coloured graphical
log-linear models

3.1 Generalities

In this chapter we define and study new type of hierarchical log-linear models corre-
sponding to the original work for this dissertation. They are named restricted graphical
log-linear models and as we will analyze later they have many features in common with
graphical log-linear models. Firstly, we introduce in section 3.2 the notation that we
will be using throughout this and the following chapters, many of the terms defined are
just introduced, but others were introduced in section 2.1; however, we chose to list all
of them so that the reader could consult them in a single section. Secondly, we define
the models, state their properties, give some examples, get the corresponding likelihood
equations, and discuss how these models can be expressed as GLM models. Thirdly,
we present a numerical method to approximately solve the likelihood equations, and fi-
nally, we provide examples of how these models can be fitted for particular contingency
tables. We have already reported parts of this material in Eslava and Ramı́rez (2008).

3.2 Notation and terminology

|Z| number of elements in a set Z.
∆=V set of vertices or set of variable names or labels.
E set of multiple edges corresponding to the associated graph.
(V1, V2, ..., VT ) vertex partition of V into T classes.
(E1, E2, ..., ES) edge partition of E into S classes.
vi

k k th vertex in the colour class Vi, i=1,...,T ; k=1,...,kver(i); kver is
the vector of dimension T of number of vertices in each vertex class.

59
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I = (Iδ)δ∈∆ discrete random variables associated to the set of vertices.
Iδ categories or level set for Iδ.
|Iδ| total number of categories for the variable Iδ.
I: I = ×δ∈∆Iδ variable value combinations.
i cell or particular variable value combination, i ∈ I. If we had a

two-way contingency table, a particular cell could be denoted as
(i1, i2). Similarly for q-way contingency tables, i = (i1, i2, ..., iq).

IVi
= (Iδ)δ∈Vi

discrete random variables associated to Vi, i=1,...,T .
IVi Categories or level set for all variables in Vi, i=1,...,T .
p(i) probability than an object belongs to a cell i, i ∈ I.
m(i) expected frequency in cell i, i ∈ I. In a two-way contingency table,

the expected frequency for a specific cell is denoted as m(i1, i2).
m expected frequency vector, m′ = (m(i))i∈I.
m̂(i) estimated expected frequency in cell i, i ∈ I.
n(i) observed count in cell i, i ∈ I. In a two-way contingency table,

the observed count for a specific cell is denoted as n(i1, i2).
n observed count vector, n′ = (n(i))i∈I.
Ia for a ⊆ ∆, marginal subvector of I with marginal cells ia,

ia ∈ Ia = ×δ∈aIδ.
|Ia| marginal cells total.
A generating class= cliques set for the associated graph.
K set of all subsets of the elements in the generating class A.
ua(ia) parameters for a log-linear model depending only on the

values of the variables in subset a, ia, for a ⊆ ∆. ua(ia) = constant,
when a = ∅; ua(ia) = main effect, when |a| = 1; ua(ia) = interaction,
when |a| > 1.

ultrmt
r
(itrj

t
r) r = 1, 2, ..., ked(t); t=1,2,...,S. First-order interaction. It can be

identified with the edge et
r joining variable ltr to variable mt

r

at the value combination (itr, j
t
r), where et

r is the r-th
element in the colour class Et. ked is the vector of dimension
S of number of edges in each edge class.

na(ia) na(ia) =
∑

j:ja=ia
n(j), marginal count for ia.

ma(ia) ma(ia) =
∑

j:ja=ia
m(j), marginal expected frequency for ia.

m̂a(ia) m̂a(ia) =
∑

j:ja=ia
m̂(j), marginal estimated expected frequency for ia.

|n| Total observed count,
∑

i∈I
n(i).

3.3 Introduction and definition

In graphical models for discrete variables it could be useful to restrict some of their
parameters, for example by equating a subset of parameters, to get a better fit or un-
derstanding of some data. For instance, both symmetry and quasi-symmetry models
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for two-way contingency tables defined in section 2.5 are graphical models in which
some of their parameters are equated. Those restrictions are generally imposed by the
characteristics of the problem from which the information came from. Once the models
are restricted, more parsimonious models are obtained and as a consequence we get
more precise estimators. This is because the overall variability of the estimators in a
model with fewer parameters about the true values for the cells is less than the overall
variability for the model containing more parameters, as discussed by Altham (1984)
in general, by Altham (1994) for generalized linear models, and by Bishop et al. (1975,
p. 313) for models for counted data.

In this chapter we define new types of graphical log-linear models, restricted or
coloured graphical log-linear models, which are particular cases of hierarchical log-
linear models, and for simplicity we will call them RGLL models. RGLL models can
be represented graphically including equalities between some parameters. We consider
two kinds of restrictions: restrictions generated by classes in which the main effects in
the same restriction class are identical in all their categories and restrictions generated
by classes in which the first-order interactions in the same class are identical. Such re-
strictions and the corresponding models can be represented by colouring the associated
graph.

RGLL models are analogous to graphical Gaussian models with edge and vertex sym-
metries introduced by Højsgaard and Lauritzen (2005, 2007, 2008). In the continuous
case due to the characteristics of the Gaussian distribution, the symmetry restrictions
or vertex and edge colourings are placed on the concentration matrix (inverse covari-
ance matrix) which is formed by the parameters that determine the graphical models,
whereas in the discrete case using vertex and edge colourings imposes restrictions only
on parameters associated to main effects and first-order interactions, but does not imply
restrictions on parameters associated to interactions of second or higher order, in this
sense RGLL models can be still further generalized by restricting parameters associated
to interactions of two or higher order.

Symmetry and quasi-symmetry models, which were presented in section 2.5 based
on the work developed by Caussinus (1965) and later discussed for instance by Agresti
(2002a, p. 423-431) or Bishop et al. (1975, p. 282-293), can be seen as particular cases
of RGLL models with two variables. In this sense, RGLL models could be considered
as a generalization of these models as suggested by Højsgaard and Lauritzen (2008,
p. 1025). Other generalizations of symmetry and quasi-symmetry were discussed in
section 2.6. Graphical log-linear models may be seen as a particular case of RGLL
models because we are able to define a RGLL model with no restrictions imposed on
the parameters and this corresponds to a graphical log-linear model.

The following relations are observed between RGLL models and other log-linear
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models:

Log-linear models⊇ Hierarchical log-linear models ⊇ Restricted graphical log-linear
models ⊇ Graphical log-linear models.

Because we define RGLL models as hierarchical log-linear models whose generating
class is equal to the cliques set of the corresponding graph, only adding some equalities
between some parameters without setting to zero additional parameters, then we have
models that inherit all properties that we originally had on graphical log-linear mod-
els. That is, we can obtain all conditional and marginal independences that the model
represents by analyzing the corresponding graphs.

Advantages of RGLL models: a) they can give a better fit to the data when they
reflect better the underlying structure, b) they can help to get a better understand-
ing of the relations among cells on the table, c) they can be used to identify marginal
and conditional independences among variables using the graphical concept of sepa-
rator sets as in graphical log-linear models, d) they can be more parsimonious than
the corresponding models without restrictions and as a consequence the estimators are
more precise, e) they can present the information in a visual, intuitive, and accessible
way, mainly when the number of variables is not so large, for example fewer than 10
variables, and finally, f) some models that generalize symmetry in discrete models in
terms of both graph theory and tables of contingency can be seen as RGLL models, as
we will see in Chapter 4.

RGLL models assume that we do not have structural zeros, i.e. p(i) > 0 or m(i) > 0
if the cells counts are realizations of multinomial or Poisson distributed random vari-
ables, respectively, although we could have sampling zeros, in this case the estimators
might not exist as discussed in section 2.7. When there are sampling zeros the model
could provide zero and nonzero estimates, zero estimates are obtained when cells are ar-
ranged so that some of the configuration cells are empty. In this case we could adjust the
corresponding degrees of freedom associated to the deviance as discussed in section 2.7.

In this chapter we define restricted graphical log-linear models. We also present
the necessary theory to understand and estimate them, as well as their relation with
symmetry and quasi-symmetry models for two-way contingency tables.

Definition 3.1. A hierarchical log-linear model

logm(i) =
∑

a∈K

ua(ia),

where K is the set of all subsets of the elements in the generating class, is a restricted
graphical log-linear model (RGLL model) with associated graph G = (V,E) if it satis-
fies two properties: a) its generating class is C, the cliques set in the associated graph,
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and b) the set of variables V and the set of first-order interactions E are partitioned
as follows. The set V is partitioned into V1, ..., VT , with Vj 6= ∅, for j=1,...,T , with
T ∈ {1, 2, ..., |V |}, such that the main effects of the variables in Vj are equal in all their
levels in IVj . The set E is partitioned into E1, ..., ES, with Ej 6= ∅, for j=1,...,S, with
S ∈ {1, 2, ..., |E|}, such that the interactions in every Ej are equal.

Example 3.1. An example of a RGLL model is the model with associated graph
G(V,E) generated by {{W,X}, {X,Y }, {Y, Z}} in which V = {W,X, Y, Z}, where
all variables are binary, and V = (V1, V2), with V1 = {W,X} and V2 = {Y, Z}, and
set of first-order interactions E = (E1, E2), where E1 = {uWX(01), uWX(10), uXY (01),
uXY (10), uY Z(01), uY Z(10)} andE2 = {uWX(00), uWX(11), uXY (00), uXY (11), uY Z(00),
uY Z(11)}. The vertex partition by definition is equivalent to having

uW (i) = uX(i); i = 0, 1;

uY (i) = uZ(i); i = 0, 1;

and the edge partition is equivalent to having

uWX(01) = uWX(10) = uXY (01) = uXY (10) = uY Z(01) = uY Z(10);

uWX(00) = uWX(11) = uXY (00) = uXY (11) = uY Z(00) = uY Z(11).

We have some observations about the definition:

a) The graphs associated to RGLL models are similar to the independence or inter-
action graphs defined for graphical log-linear models (section 2.8.1), in the sense that
the underlying simple graph, which we denote as Gu(V u, Eu), associated to the RGLL
model is an independence graph associated to a graphical log-linear model. This means
that every variable is represented with a circle or dot and that two variables are joined
with edges if the first-order interaction that contains both variables is included in the
model. There are as many edges between two variables as different permutations among
the categories of both variables. On the other hand, in graphical log-linear models there
is only one edge between two variables included in a first-order interaction. It can be
noted that the first-order interactions are parameters that determine the graph and
they are also some kind of measure of the association between two variables in a model.

b) The clique concept defined in graph theory, Appendix A, is the same concept
used in graphical models. In RGLL models we must consider that there are multiple
edges between variables, so that if there is a clique between certain variables then it is
not important which edges are used to obtain it, the important thing is knowing that
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there is a clique.

c) When |Vi| = 1 or |Ej| = 1 for some i or j, i = 1, ..., T , j = 1, ..., S we have vertex
or edge atomic classes, respectively, otherwise we have composite classes, as defined
for the continuous case in Højsgaard and Lauritzen, 2008, p. 1009. Atomic classes are
those in which all the corresponding parameters are not restricted. A RGLL model
with only atomic classes is a graphical log-linear model.

d) It is assumed that all variables have the same categories, i.e. Iδ is the same for
all δ ∈ V or IVi is the same for all Vi, i = 1, ..., T , which implies that |Iδ|= J , for all
δ ∈ V . This condition could be relaxed assuming that only those variables in the same
composite vertex classes should have the same categories. However, we observe that in
order to select a model we need to join vertex colour classes, which makes necessary that
all variables have the same categories, we will also define in the following chapters some
models called label invariant that only make sense if we have the same categories for
all variables, additionally, the programming is simplified and symmetry interpretations
are possible under this assumption. Because of these reasons, we will assume that we
have the same categories for all variables and when we do not we will let the reader know.

From the definition of RGLL model, we see that the number of vertex classes T
and the number of edge classes S satisfy 1 ≤ T ≤ |V | and 1 ≤ S ≤ |E|. There are
particular cases according to which values take S and T :

1. If S = |E| and T = |V |, we have a graphical log-linear model because all param-
eters are unrestricted.

2. If 1 ≤ T ≤ |V | and S = |E|, we have a RGLL model with restrictions only on
main effects.

3. If 1 ≤ S ≤ |E| and T = |V |, we have a RGLL model with restrictions only on
first-order interactions.

RGLL models are represented using colourings, understanding colourings as in graph
theory (Appendix A). This means that we can represent the model using coloured
graphs with multiple edges without loops, also known as multigraphs for instance by
Diestel (2005, p.28) who also discusses that when we usually work with multigraphs
we could call them just graphs, and given a coloured multigraph we can determine the
restrictions on the parameters for its corresponding induced RGLL model. We have
three particular cases of colourings: vertex, edges, and, vertex and edges colourings.

In the following sections we give different instances of RGLL models and some
examples. Firstly, in section 3.4 we discuss the case in which 1 ≤ T ≤ |V | and
S = |E| called vertex colouring. Secondly, in section 3.5 we discuss the case in which
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1 ≤ S ≤ |E| and T = |V | called edge colouring. Finally, in section 3.6 we present the
general case in which 1 ≤ T ≤ |V | and 1 ≤ S ≤ |E| called vertex and edge colouring.
We present the models in this order so that we can gradually introduce new notation
and concepts.

3.4 Vertex colouring

Consider a RGLL model with restrictions only on the main effects, i.e. we have the
RGLL model with graph G = (V,E), where V is partitioned into V1, ..., VT , with Vi 6= ∅,
for i=1,...,T , where T ∈ {1, 2, ..., |V |} and the set of first-order interactions E is parti-
tioned into E1, ..., ES, with S = |E|, so that the main effects for the variables in every set
Vi are equal in all their levels in IVi and the first-order interaction terms are unrestricted.

Definition 3.2. Two vertices, X and Y , are in the same vertex colour class if and only
if uX(i) = uY (i), for every i = 1, ..., |IX | = |IY |, where

uX , uY are main effects; and
|IX | = |IY | are the number of categories for the variables X and Y .

Suppose that we have a partition of V into V1, V2, ..., VT vertex colour classes; i.e.

V = (V1, ..., VT ), in which every variable has J levels, and where Vi =
{
vi

1, ..., v
i
kver(i)

}
,

i = 1, ..., T , remember that vi
k is the kth vertex in the colour class Vi, i=1,...,T ;

k=1,...,kver(i); and kver is the vector of dimension T of number of vertices in each
vertex class. We define

uvi
k
(j): main effect for the variable vi

k in the category j, for i=1,...,T ; k=1,...,kver(i),
and j=1, 2,..., J .

Then, we have the following equality restrictions

uvi
1
(j) = uvi

2
(j) = ... = uvi

kver(i)
(j) = ui(j), j = 1, ..., J ; i = 1, ..., T,

where ui(j) represents all parameters that are restricted to be equal.

Similarly, if we have a partition of the variables set in such a way that the main
effects of the variables in some class are equal in all their levels, then we can assign the
same colour to all the vertices in the class. This means that there is a correspondence
between the restrictions in a RGLL model restricting the main effects only with a vertex
colouring.
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A final observation is that for simplicity we colour in black all edges because in
these models all edges are in atomic classes, and if we did not make this assumption,
we would need a different colour for each edge, which could make difficult the graphical
representation.

Example 3.2. Suppose that we have four variables, X, Y , Z, W , and suppose that
every variable has the same number of categories, |IX | = |IY | = |IZ | = |IW |. A RGLL
model restricted only on its main effects is the model with graph G(V,E), with generat-
ing class A = {{X,Y }, {Y, Z}, {Y,W}}, with V= {X, Y , Z, W} in which V = (V1, V2),
with V1 = {X,Y } and V2 = {Z,W} and E = (E1, ..., ES), with S = |E|.

We show next the log-linear expansion corresponding to the generating class to
identify which are the parameters of the model without restrictions

log m(i, j, k, l) = u + uX(i) + uY (j) + uZ(k) + uW (l) + uXY (ij) + uY Z(jk) + uY W (jl).

In the given notation, kver(1) = 2, v1
1 = X, v1

2 = Y and kver(2) = 2, v2
1 = Z,

v2
2 = W . This colouring is represented by the following equalities

uv1
1
(i) = uX(i) = uY (i) = uv1

2
(i) = u1(i), i = 1, ..., |IX | ;

uv2
1
(i) = uZ(i) = uW (i) = uv2

2
(i) = u2(i) i = 1, ..., |IZ | .

Then, we have the parameter u1(i) instead of the parameters uX(i) and uY (i),
i = 1, ..., |IX |, and the parameter u2(i) instead of the parameters uZ(i) and uW (i),
i = 1, ..., |IZ |. The model is

log m(i, j, k, l) = u + u1(i) + u1(j) + u2(k) + u2(l) + uXY (ij) + uY Z(jk) + uY W (jl).

And if for example |IX | = 2, the model has the associated graph shown in figure 3.1,
the graphical log-linear model or unrestricted model has 21 parameters while the RGLL
model has 17.
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(0, 1)

(1, 0)

(0, 0)

(1, 1)

(0, 1)

(1, 0)

(0, 0) (1, 1)

(0, 1)
(1, 0)
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(1, 1)

Z

XY

W

Figure 3.1: Vertex colouring for the RGLL model with generating class {{X, Y }, {Y, Z},
{Y, W}}, where all variables are binary, with vertices V = (V1, V2), V1 = {X, Y } and V2 =
{Z, W}, and with first-order interactions set E = (E1, ..., ES), with S = |E| = 16.

3.5 Edge colouring

Suppose that we have a RGLL model with restrictions only on first-order interactions,
i.e. we have a RGLL model with graph G = (V,E), where the first-order interaction
set E is partitioned into E1, ..., ES, Ei 6= ∅, for i=1,...,S, with S ∈ {1, 2, ..., |E|} and
the set of variables V is partitioned into V1, ..., VT , with T = |V |, so that the first-order
interactions in every set Ei are identical and the main effects are unrestricted.

Definition 3.3. Two edges, one joining X with Y at the variable values (i1, j1) and
other joining Z with W at the variable values (k1, l1), are in the same edge colour class
if and only if uXY (i1, j1) = uZW (k1, l1), where
X,Y, Z,W ∈ V , the set of variables;
|IX |, |IY |, |IZ |, |IW | are the number of categories for the variables X, Y , Z, and W ,
respectively;
i1 ∈ IX = {1, ..., |IX |}, j1 ∈ IY = {1, ..., |IY |}, k1 ∈ IZ = {1, ..., |IZ |}, and l1 ∈ IW =
{1, ..., |IW |}; and
uXY (i1, j1), uZW (k1, l1) are first-order interactions.

Suppose that we have a partition of the edge set E into E1, E2, ..., ES edge colour

classes or E = (E1, E2, ..., ES), with Et =
{
et
1, ..., e

t
ked(t)

}
, t=1,2,...,S, where the follow-

ing notation is used.
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et
r: r-th element in the colour class Et.
ultrmt

r
(itrj

t
r), r = 1, 2, ..., ked(t); t=1,2,...,S : first-order interaction between ltr and mt

r at
the values (itr, j

t
r). It can be identified with the edge et

r joining variable ltr to variable
mt

r for the value combination (itr, j
t
r).

ltr: r-th variable for the t class in the first entry of the first-order interaction ultrmt
r
(itrj

t
r).

mt
r: r-th variable for the t class in the second entry of the first-order interaction

ultrmt
r
(itrj

t
r).

itr: category of ltr.
jt
r: category of mt

r.

Observe that partitioning the edge set or the first-order interactions set is equivalent
because there is a one-to-one correspondence between the ultrmt

r
(itrj

t
r) parameters and

the corresponding edges.

Then, under an edge colouring we have the restrictions

ult1mt
1
(it1j

t
1) = ... = ult

ked(t)
mt

ked(t)
(itked(t)j

t
ked(t)) = uEt

,

where uEt
is the parameter that represents all parameters in the same colour class Et,

t=1,2,...,S.

Similarly, if we have a partition of the set of first-order interactions in which all
interactions in the same class are identical, then we can assign to every class a different
colour. This means that there is a correspondence between all restrictions in a RGLL
model with restrictions only on first-order interactions with an edge colouring.

As in vertex colouring, for simplicity we colour in black all vertices because all
vertices are in atomic classes, and if we did not make this assumption, we would need a
different colour for each vertex, which could make difficult the graphical representation.

Example 3.3. Suppose that we have four binary variables, X, Y , Z, and W , a RGLL
model with restrictions only on first-order interactions is the model with graph G(V,E),
with generating class {{X,Y }, {W,Y }, {W,Z}, {X,Z}}, where V = {W,X, Y, Z} and
V = (V1, ..., VT ), T = |V | = 4, and where the partition of the set of first-order interac-
tions E, and as a consequence of the set of edges obtained by identifying each parameter
with an edge, is E = (E1, E2, E3, E4). We give explicitly each class below.

Firstly, we show the log-linear expansion corresponding to the generating class to
identify which are the parameters of the model without restrictions

log m(i, j, k, l) = u+uW (i)+uX(j)+uY (k)+uZ(l)+uXY (jk)+uWY (ik)+uWZ(il)+uXZ(jl),
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with i, j, k, l=0, 1. Then, the first-order interaction set or edge set, E, is

E = {uXY (00), uXY (01), uXY (10), uXY (11), uWY (00), uWY (01), uWY (10), uWY (11)

uWZ(00), uWZ(01), uWZ(10), uWZ(11), uXZ(00), uXZ(01), uXZ(10), uXZ(11)}.

We define the four classes E1, E2, E3, E4 as follows:

E1 = {uXY (00), uXY (11), uWZ(00), uWZ(11)},

E2 = {uXY (01), uXY (10), uWZ(01), uWZ(10)},

E3 = {uWY (00), uWY (11), uXZ(00), uXZ(11)},

E4 = {uWY (01), uWY (10), uXZ(01), uXZ(10)}.

In this case, ked(i) = 4, i=1,...,4. Although an edge is an element that can not be
equated to a parameter, for simplicity we will use the sign ≈ to establish correspondence
between edges and parameters. Then, we have

e11 ≈ ul11m1
1
(i11j

1
1) = uXY (00), e12 ≈ ul12m1

2
(i12j

1
2) = uXY (11),

e13 ≈ ul13m1
3
(i13j

1
3) = uWZ(00), e14 ≈ ul14m1

4
(i14j

1
4) = uWZ(11).

e21 ≈ ul21m2
1
(i21j

2
1) = uXY (01), e22 ≈ ul22m2

2
(i22j

2
2) = uXY (10),

e23 ≈ ul23m2
3
(i23j

2
3) = uWZ(01), e24 ≈ ul24m2

4
(i24j

2
4) = uWZ(10).

e31 ≈ ul31m3
1
(i31j

3
1) = uWY (00), e32 ≈ ul32m3

2
(i32j

3
2) = uWY (11),

e33 ≈ ul33m3
3
(i33j

3
3) = uXZ(00), e34 ≈ ul34m3

4
(i34j

3
4) = uXZ(11).

e41 ≈ ul41m4
1
(i41j

4
1) = uWY (01), e42 ≈ ul42m4

2
(i42j

4
2) = uWY (10),

e43 ≈ ul43m4
3
(i43j

4
3) = uXZ(01), e44 ≈ ul44m4

4
(i44j

4
4) = uXZ(10).

lji = X, mj
i = Y ; i = 1, 2, j = 1, 2.

lji = W, mj
i = Z; i = 3, 4, j = 1, 2.

lji = W, mj
i = Y ; i = 1, 2, j = 3, 4.

lji = X, mj
i = Z; i = 3, 4, j = 3, 4.

itr = 0, jt
r = 0; r = 1, 3, t = 1, 3.

itr = 1, jt
r = 1; r = 2, 4, t = 1, 3.

itr = 0, jt
r = 1; r = 1, 3, t = 2, 4.

itr = 1, jt
r = 0; r = 2, 4, t = 2, 4.

Given this colouring, we have the following restrictions
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uXY (00) = uXY (11) = uWZ(00) = uWZ(11) = uE1 ,

uXY (01) = uXY (10) = uWZ(01) = uWZ(10) = uE2 ,

uWY (00) = uWY (11) = uXZ(00) = uXZ(11) = uE3 ,

uWY (01) = uWY (10) = uXZ(01) = uXZ(10) = uE4 .

Under this model there are only four parameters uE1 , uE2 , uE3 , and uE4 , instead of
the 16 parameters contained in E1, E2, E3, and E4.

The corresponding coloured graph is shown in figure 3.2.
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(0, 0)

(1, 1)

(0, 1)

(1, 0)

(0, 0) (1, 1)
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(0, 0)

(1, 1)

(0, 1)

(1, 0)

(0, 0) (1, 1)

W

XY
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Figure 3.2: Edge colouring for the RGLL model with generating class {{X, Y }, {W, Y },
{W, Z}, {X, Z}} where all variables are binary, with first-order interactions set E=
(E1, E2, E3, E4), E1= {uXY (00), uXY (11), uWZ(00), uWZ(11)}, E2= {uXY (01), uXY (10),
uWZ(01), uWZ(10)}, E3= {uWY (00), uWY (11), uXZ(00), uXZ(11)}, E4= {uWY (01),
uWY (10), uXZ(01), uXZ(10)} and V = (V1, ..., VT ), T = |V | = 4.

3.6 Vertex and Edge colouring

In this case we use the definitions of vertex and edge colourings given in 3.2 and 3.3.

Consider a RGLL model with associated graph G = (V,E), with (V1, V2, ..., VT ) a
partition of V , Vi 6= ∅, for i=1,...,T , with T ∈ {1, 2, ..., |V |}, and (E1, E2,...,ES) a par-
tition of E, Ei 6= ∅, for i=1,...,S, with S ∈ {1, 2, ..., |E|}. Suppose that every variable
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belonging to a non-atomic class has J levels. We have:

Vi =
{
vi

1, ..., v
i
kver(i)

}
⇔ uvi

1
(j) = uvi

2
(j) = ... = uvi

kver(i)
(j) = ui(j), j = 1, ..., J ; i = 1, ..., T.

Et =
{
et
1, ..., e

t
ked(t)

}
⇔ ult1mt

1
(it1j

t
1) = ... = ult

ked(t)
mt

ked(t)
(itked(t)j

t
ked(t)) = uEt

; t = 1, ..., S.

Then, given a colouring, we get a number of restrictions on the parameters and vice
versa. This means that there is a correspondence between the restrictions that define
a RGLL model with vertex and edge colourings.

As we have discussed at the end of section 3.3 vertex colouring could be seen as a
particular case of these models if we let every edge in an atomic class, i.e. if S = |E|,
and similarly, edge colouring could be seen as a particular case of these models if every
vertex conforms an atomic class, i.e. if T = |V |.

Example 3.4. Suppose that we have three binary variables A, C, and M , correspond-
ing to alcohol, cigarette, and marijuana consumption, respectively. Every variable has
two categories, Yes and No, represented with 0 and 1, respectively. We present a graph-
ical log-linear model with these variables, and give an example of a RGLL model.

Suppose that we have the graphical log-linear model with generating class {{A,C},
{A,M}} with associated graph Gu(V u, Eu) shown in figure 3.3(a). This model can be
expressed as follows,

logm(i, j, k) = u+ uA(i) + uC(j) + uM(k) + uAC(ij) + uAM(ik), i, j, k = 0, 1. (3.1)

Now, consider we add some restriction to the graphical log-linear model (3.1) as
follows,

uA(0) = uM(0);

uA(1) = uM(1);

uAM(01) = uAM(10);

uAC(01) = uAC(10).

We get the graph given in figure 3.3(b). We observe that V = {A,C,M}, V = (V1, V2),
with V1 = {A,M} and V2 = {C}. On the other hand, the set of first-order interactions
or their corresponding edge set E = (E1, E2, E3, E4, E5, E6), where
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M
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(a) Graphical model
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(1, 0)

(0, 0) (1, 1)

M
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(b) RGLL model

Figure 3.3: Log-linear models with generating class {{A, C} , {A, M}}, log m(i, j, k) = u+
uA(i)+ uC(j)+ uM (k)+ uAC(ij)+ uAM (ik): (a) graphical model; (b) RGLL model with ver-
tex set V = (V1, V2), V1 = {A, M} and V2 = {C}, and first-order interactions set parti-
tioned into E = (E1, E2, E3, E4, E5, E6), E1={uAM (01), uAM (10)}, E2={uAC(01), uAC(10)},
E3={uAM (00)}, E4= {uAM (11)}, E5={uAC(00)}, E6={uAC(11)}.

E = {uAM(00), uAM(01), uAM (10), uAM(11), uAC(00), uAC(01), uAC(10), uAC(11)} ,

and E1 = {uAM(01), uAM (10)}, E2 = {uAC(01), uAC(10)}, E3 = {uAM(00)}, E4 =
{uAM(11)}, E5 = {uAC(00)}, and E6 = {uAC(11)}.

Observe that the underlying simple graph Gu is the one given in figure 3.3(a). Us-
ing any of the graphs in figure 3.3 we see that the generating class is identical to the
corresponding cliques set, which together with the restrictions applied to parameters of
the model, means that we have a RGLL model.

Observe that both the restricted and non-restricted graphical models have the same
generating class; however, the restrictions given to the graphical model, model (3.1),
appearing in the RGLL model reduce the number of parameters from 15 in the graphical
model to 11 in the RGLL model. It is also important to notice that from the coloured
graph 3.3(b), we could identify the associated RGLL model.

The graphical log-linear model (3.1) expressed as a particular case of a RGLL model
is shown in figure 3.4, in this case each vertex and each edge are in atomic classes; i.e.
S = |E| and T = |V |. In figure 3.4 we show two available ways of representing colouring
for atomic classes, the first one, figure 3.4(a), uses black to represent every atomic class,
and the second one, figure 3.4(b), is a representation in which each vertex and edge
atomic class has a different colour. Both conventions are useful, but it is not difficult
to see that the representation in figure 3.4(b) becomes unfeasible when there are a lot
of variables or high-dimensional problems.
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Figure 3.4: Two colourings for the graphical log-linear model with generating class {{A, C},
{A, M}}, log m(i, j, k) = u+ uA(i)+ uC(j)+ uM (k)+ uAC(ij)+ uAM (ik), expressed as a
particular case of a RGLL model. In this model V = (V1, V2, V3), V1 = {A}, V2 = {C},
and V3 = {M}. The first-order interactions set E = (E1, E2, E3, E4, E5, E6, E7, E8),
E1={uAM (10)}, E2= {uAM (01)}, E3 = {uAM (00)}, E4 = {uAM (11)}, E5 = {uAC(10)}, E6

= {uAC(01)}, E7 = {uAC(00)}, E8={uAC(11)}: a) atomic classes in black; b) each atomic
class with a different colour.

3.7 Symmetry and quasi-symmetry models as RGLL

models

Quasi-symmetry and symmetry models, already discussed in section 2.5, can be ex-
pressed as special cases of RGLL models, in particular as edge colourings, and ver-
tex and edge colourings, respectively. Every vertex in the quasi-symmetry model
belongs to a different atomic class and there are |I| atomic edge colour classes for
every uXY (ii) interaction and

(
|I|
2

)
different edge colour classes for the interactions

uXY (ij) = uXY (ji), i 6= j.

In symmetry models we have the same edge colour classes, but there is only one
vertex colour class formed by both vertices.

Then, RGLL models can be considered as one way of extending the definition of
symmetry and quasi-symmetry models as given by for example Agresti (2002a, p. 423-
426) for two dimensions to the case of dimension higher than two.

Example 3.5. Consider two binary variables labeled as C and A. The variable C
corresponds to cigarette consumption, with categories: 0, for fewer than two packets
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of cigarettes, and 1, for two or more packets of cigarettes. The variable A corresponds
to alcohol consumption with categories: 0, for fewer than one drink, and 1, for two or
more drinks. The data are presented in a contingency table (table 3.1).

Cigarette Alcohol
0 1

0 540 53
1 28 386

Table 3.1: Hypothetical square contingency table corresponding to alcohol and cigarette con-
sumption for a sample of 1007 students.

Consider the saturated log-linear model,

logm(i, j) = u+ uC(i) + uA(j) + uCA(ij), i, j = 0, 1,

which is also a graphical log-linear model with generating class {{C, A}} and graph
Gu(V u, Eu), V u = {C,A} and edge set Eu = {{C,A}}. Now consider the RGLL
model shown in the graph G = (V,E) given in figure 3.5(a) where V={C,A} and E
is the set of first-order interactions E = {uCA(01), uCA(10), uCA(00), uCA(11)}. Ob-
serve that this is a RGLL model because the generating class {{C, A}} coincides
with the corresponding cliques. From G = (V,E), we observe that the set of first-
order interactions E = (E1, E2, E3), where E1 = {uCA(00)}, E2 = {uCA(11)}, and
E3 = {uCA(01), uCA(10)}. The edges in E3 belong to the same colour class indicating
that the corresponding interactions are identical. The remaining edges belong to dif-
ferent atomic colour classes. As we discussed before, if we do not want to use different
colours for different atomic classes, we could agree to represent all atomic classes with
black lines (figure 3.5(b)). Additionally, V = (V1, V2), with V1 = {C} and V2 = {A},
indicating that the main effects are not restricted.

Then, the model associated to the graph shown in figure 3.5(a) can be expressed as

logm(i, j) = u+ uC(i) + uA(j) + uCA(ij), i, j = 0, 1;

in which

uCA(ij) = uCA(ji), i, j = 0, 1.

Then, the quasi-symmetry model for V={C,A} is the RGLL model generated
by {C,A} with vertex colour classes V = (V1, V2), with V1 = {C} and V2 = {A},
and first-order interaction terms or their corresponding edges E = (E1, E2, E3) with
E1 = {uCA(00)}, E2 = {uCA(11)}, and E3 = {uCA(01), uCA(10)}, whose associated
graph G(V,E) is given in figure 3.5(a) or figure 3.5(b).
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(0, 1)

(1, 0)

(1, 1)

(b) Graph colouring 2

Figure 3.5: Two alternative graph colourings for a quasi-symmetry model with two binary
variables. V = {C, A} is partitioned into V1 and V2, with V1 = {C} and V2 = {A}. The
first-order interactions set E is partitioned into E1 = {uCA(00)}, E2 = {uCA(11)}, and
E3 = {uCA(01), uCA(10)}: a) atomic classes in different colour; b) atomic classes in black.

Now, suppose that we have the RGLL model shown in the graph G(V,E) given in
figure 3.6(a), where V={C,A} and E = {uCA(01), uCA(10), uCA(00), uCA(11)}. From
G = (V,E), we observe that we have the same edge or first-order interactions partition
as in the previous model, E = (E1, E2, E3), where E1 = {uCA(00)}, E2 = {uCA(11)},
and E3 = {uCA(01), uCA(10)}. The vertex set, V = {C,A}, is partitioned into a single
element, V indicating that the main effects are the same for all categories. Once again
we could represent all atomic classes with black lines (figure 3.6(b))

u u

C A

(0, 0)

(0, 1)

(1, 0)

(1, 1)

(a) Graph colouring 1

u u

C A

(0, 0)

(0, 1)

(1, 0)

(1, 1)

(b) Graph colouring 2

Figure 3.6: Two alternative graph colourings for a symmetry model with two binary variables.
The first-order interactions set E is partitioned into E1 = {uCA(00)}, E2 = {uCA(11)}, and
E3 = {uCA(01), uCA(10)} and V = {C, A}: a) atomic classes in different colour; b) atomic
classes in black.

The model in figure 3.6(a) can be expressed as
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logm(i, j) = u+ uC(i) + uA(j) + uCA(ij), i, j = 0, 1;

in which

uCA(ij) = uCA(ji), i, j = 0, 1;

uA(i) = uC(i), i = 0, 1.

Then, the symmetry model for V={C,A} is the RGLL model generated by {C,A}
with vertex colour class V and first-order interaction set or their corresponding edge set
E = (E1, E2, E3) withE1 = {uCA(00)}, E2 = {uCA(11)}, andE3 = {uCA(01), uCA(10)},
whose associated graph G(V,E) is given in figure 3.6(a) or figure 3.6(b).

Notice that, as there are explicit expressions for symmetry and quasi-symmetry
models, the previous example could have been given in the other direction, i.e. we
could draw the graph for the model according to the models restrictions by assigning
the same colour to equal main effects and first-order interactions, obtaining a model
whose cliques coincide with the generating class, which is a RGLL model.

We now discuss which of the symmetry generalizations already given in section 2.6
are RGLL models.

i) The conditional symmetry model,

m123(i, j, k) = m123(j, i, k), i, j = 1, ..., |I| ; k = 1, ..., |K| ,

can be represented as a group of k RGLL models by considering that it can be seen as
a symmetry model between two variables for each level k of a third variable. For every
k, there is a RGLL model with generating class {{1, 2}}, where the vertex and edge
set are similar to the ones in the symmetry model. The vertex set V = {1, 2} is not
partitioned and the edge set E is partitioned as follows. It is partitioned into |I| atomic
edge colour classes for every u12(ii) interaction and into

(
|I|
2

)
different edge colour classes

for the interactions u12(ij) = u12(ji), i 6= j. For instance, if 1 and 2 are binary, then
E = (E1, E2, E3), where E1 = {u12(00)}, E2 = {u12(11)}, and E3 = {u12(01), u12(10)}.

ii) Marginal homogeneity models and their generalizations can not be seen as RGLL
models because they do not have a log-linear representation.

iii) The complete marginal symmetry model,

m123(i, j, .) = m123(j, i, .), i, j = 1, ..., |I| ,
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can be represented as a RGLL model if we work with the corresponding marginal table.
That is, we use a RGLL model for the table formed by the marginal counts n123(i, j, .)
in which the vertex set V = {1, 2} is not partitioned and the edge set E is partitioned as
follows. It is partitioned into |I| atomic edge colour classes for every u12(ii) interaction
and

(
|I|
2

)
different edge colour classes for the interactions u12(ij) = u12(ji), i 6= j. As

before, if the variables 1 and 2 are binary, then E = (E1, E2, E3), where E1 = {u12(00)},
E2 = {u12(11)}, and E3 = {u12(01), u12(10)}.

iv) The marginal quasi-symmetry model,

logm(i, j, k) = u+ u1(i) + u2(j) + u3(k) + u12(ij) + u13(ik) + u23(jk)

with restrictions

u12(ij) = u12(ji), i, j, k = 1, ..., |I| ,

is not a RGLL model because its generating class is {{1, 2}, {1, 3}, {2, 3}} and the
cliques set associated to the corresponding graph is the set {{1, 2, 3}}. Therefore, the
cliques set is not the same as the generating class (something analogous was already
discussed in example 2.9), and as a consequence, the model is not RGLL, even though it
has parameter restrictions like the ones used in RGLL models. However, we can define
a similar model, a marginal quasi-symmetry model together with the independence
1⊥3|2, which is a model

logm(i, j, k) = u+ u1(i) + u2(j) + u3(k) + u12(ij) + u23(jk)

adding the restrictions

u12(ij) = u12(ji), i, j, k = 1, ..., |I| .

From the generating class {{1, 2}, {2, 3}} and its corresponding graph, one can see
that variable 1 is conditionally independent of variable 3 given variable 2. Additionally,
for a fixed k, there is quasi-symmetry, similar to what happened in the marginal quasi-
symmetry model, because the log-linear expansions for logm(i, j, k) and logm(j, i, k)

logm(i, j, k) = u+u1(i)+u2(j)+u3(k)+u12(ij)+u23(jk) = u+u3(k)+u1(i)+f1(j)+u12(ij),

logm(j, i, k) = u+u1(j)+u2(i)+u3(k)+u12(ji)+u23(ik) = u+u3(k)+f2(i)+u1(j)+u12(ij),

where f1(j) = u2(j) + u23(jk) and f2(i) = u2(i) + u23(ik), only differ on the marginal
effects. In other words, m(i, j, k) and m(j, i, k) are not equal because the marginal
effects are different. The corresponding RGLL model is the one with generating class
{{1, 2}, {2, 3}}, vertex set V = (V1, V2, V3), where V1 = {1}, V2 = {2} and V3 = {3},
and edge set E partitioned into |I| atomic edge colour classes for every u12(ii) interac-
tion,

(
|I|
2

)
different edge colour classes for the interactions u12(ij) = u12(ji), i 6= j, and
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the remaining interactions u23(jk) are in different atomic classes.

We can even define a similar model in which additionally for every fixed k, one has
u23(ik) = u12(jk), i, j = 1, ..., |I|. Under this models we have the same properties than
before, but the log-linear expansions are

log m(i, j, k) = u+u1(i)+u2(j)+u3(k)+u12(ij)+u23(jk) = u+u3(k)+u23(jk)+u1(i)+u2(j)+u12(ij),

log m(j, i, k) = u+u1(j)+u2(i)+u3(k)+u12(ji)+u23(ik) = u+u3(k)+u23(jk)+u2(i)+u1(j)+u12(ij),

so that the marginal effects are given by the parameters u1 and u2. The model is RGLL
with generating class {{1, 2}, {2, 3}}, vertex set V = (V1, V2, V3), where V1 = {1},
V2 = {2} and V3 = {3}, and edge set E partitioned into |I| atomic edge colour
classes for every u12(ii) interaction,

(
|I|
2

)
different edge colour classes for the interac-

tions u12(ij) = u12(ji), i 6= j, and into the classes {u23(1k), u23(2k),...., u23(|I| k)}, for
k = 1, ..., |I|.

v) Complete symmetry models and quasi-symmetry generalizations, complete and
preserving one-dimensional margins, are not RGLL models because, even though they
are graphical, they have restrictions for the interactions of order higher than one.

In Chapter 4 we will define specific classes of RGLL models that can be seen as
symmetry generalizations in terms of graph theory and statistics, similar to the work
done by Højsgaard and Lauritzen (2007, 2008) in the continuous case, mainly to what
they call RCOP models.

We emphasize that the fact of restricting first-order interactions only is because we
wanted to define models analogous to the ones defined by Højsgaard and Lauritzen
(2007, 2008) for continuous data that could be represented graphically using colourings
and it is not possible to represent in such a simple way restrictions for interactions of
higher order. Generalization of RGLL models restricting additional parameters besides
main effects and first-order interactions is possible; however, this generalization requires
a lot of additional work, starting from a new definition, new associated likelihood equa-
tions, another algorithm to solve them together with the corresponding proof that the
values obtained with it converge to the maximum likelihood estimators, etc. This work
may correspond to future research.

3.8 Maximum likelihood estimators

Before proceeding to derive the likelihood equations for RGLL models in sections 3.8.1,
3.8.2, and 3.8.3, we define the following notation that will be used to express the
likelihood equations in a simple way.
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Definition 3.4. Let {vi
k}k=1,...,kver(i),i=1,...,T be a vertex or variable labels set, each

variable with J categories, partitioned into V1, V2, ..., VT , in such a way that Vi ={
vi

1, ..., v
i
kver(i)

}
, i=1,..., T . The marginal total n(vi

k = l) and marginal expected fre-

quency m(vi
k = l) for the k-th variable in the colour class i for the category l are defined

as

n(vi
k = l) =

∑

j:j
vi
k
=l

n(j), l = 1, 2, ..., J ; k = 1, ..., kver(i); i = 1, 2, ..., T. (3.2)

m(vi
k = l) =

∑

j:j
vi
k
=l

m(j), l = 1, 2, ..., J ; k = 1, ..., kver(i); i = 1, 2, ..., T. (3.3)

Example 3.6. Consider the data given in table 3.1, and suppose that A and C are in
the same colour class V1, i.e. V1={v1

1, v
1
2}, with v1

1=C and v1
2=A, then

n(v1
1 = 0) = n(C = 0) =

∑

j:jC=0

n(j) = n(0, 0) + n(0, 1) = n(0, .) = 593.

n(v1
1 = 1) = n(C = 1) =

∑

j:jC=1

n(j) = n(1, 0) + n(1, 1) = n(1, .) = 414.

n(v1
2 = 0) = n(A = 0) =

∑

j:jA=0

n(j) = n(0, 0) + n(1, 0) = n(., 0) = 568.

n(v1
2 = 1) = n(A = 1) =

∑

j:jA=1

n(j) = n(0, 1) + n(1, 1) = n(., 1) = 439.

The dot in these expressions, for example n(1, .), indicates that we are summing the
observed counts associated to the cells over all possible values of the entry where the
dot appears. The process is similar for the expected frequencies, simply replacing n(, )
with m(, ).

Definition 3.5. Let {et
k}k=1,...,ked(t),t=1,...,S be an edge set, with et

k identified with the
parameter ult

k
mt

k
(itk, j

t
k), the first-order interaction between variable ltk andmt

k at variable

values (itk, j
t
k), partitioned into E1, E2, ...ES colour classes, with Et =

{
et
1, ..., e

t
ked(t)

}
,

t=1,..., S. The marginal total n(ltk = itk,m
t
k = jt

k) and the marginal expected frequency
m(ltk = itk,m

t
k = jt

k) for the k-th pair of variables, with their corresponding levels, in
the colour class t are defined as

n(ltk = itk,m
t
k = jt

k) =
∑

s:(s
lt
k
,s

mt
k
)=(it

k
,jt

k
)

n(s), k = 1, ..., ked(t); t = 1, ..., S.
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m(ltk = itk,m
t
k = jt

k) =
∑

s:(s
lt
k
,s

mt
k
)=(it

k
,jt

k
)

m(s), k = 1, ..., ked(t); t = 1, ..., S.

Example 3.7. Using the data given in table 3.1, suppose that the first-order in-
teraction set or its corresponding associated edge set E, is partitioned into E1 =
{uCA(00),uCA(11)} and E2 = {uCA(01),uCA(10)}, which means that ked(1) = ked(2) =
2; ltk = C, k, t= 1,2; mt

k = A, k, t= 1,2; itk = 0, t = 1, 2, k = 1; itk = 1, t = 1, 2, k = 2;
jt
k = 0, t = k = 1, 2; jt

k = 1, k 6= t, then

n(l11 = i11,m
1
1 = j1

1) = n(0, 0) = 540.

n(l12 = i12,m
1
2 = j1

2) = n(1, 1) = 386.

n(l21 = i21,m
2
1 = j2

1) = n(0, 1) = 53.

n(l22 = i22,m
2
2 = j2

2) = n(1, 0) = 28.

Using expression (2.7), including the model with the different kinds of restrictions
according to the colourings, and the notation given above, we obtain the corresponding
likelihood equations.

3.8.1 Vertex colouring

Consider a RGLL model with graph G = (V,E), where V is partitioned into V1, ..., VT ,
with Vi 6= ∅, for i=1,...,T , with T ∈ {1, 2, ..., |V |} and the set of first-order interactions
E is partitioned into E1, ..., ES, with S = |E|. In this case, the logarithm of the kernel of
the likelihood function, the part of the likelihood function depending on the expected
frequencies m considering any sampling scheme: Poisson, multinomial, or restricted
multinomial (expression (2.7)), including the restrictions takes the form

T∑

i=1

J∑

l=1

kver(i)∑

k=1

n(vi
k = l)ui(l) +

∑

a∈K,|a|6=1

∑

ia

na(ia)ua(ia) −
∑

i∈I

exp(
∑

a∈K

ua(ia)), (3.4)

where K is the set of subsets of the elements in the generating class A, formed by all
the cliques of the corresponding associated graph G(V,E).

Deriving (3.4) with respect to each parameter, including the ui(l) parameters corre-
sponding to Vi, i=1,2,...,T for a category l, l=1,2,...,J , and equating to zero, we obtain
the following likelihood equations:
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kver(i)∑

j=1

n(vi
j = 1) =

kver(i)∑

j=1

m(vi
j = 1), i = 1, ..., T ;

kver(i)∑

j=1

n(vi
j = 2) =

kver(i)∑

j=1

m(vi
j = 2), i = 1, ..., T ;

... (3.5)

kver(i)∑

j=1

n(vi
j = J) =

kver(i)∑

j=1

m(vi
j = J), i = 1, ..., T ;

na(ia) = ma(ia), for all a ∈ K, |a| 6= 1.

As we have discussed in section 2.3, there could be redundant equations for hier-
archical log-linear models if we consider all elements in K for the last row in equation
system (3.5). Then, to eliminate redundant equations and as a consequence to decrease
the number of equations, we substitute the last row in equation system (3.5) with

na(ia) = ma(ia), for all a ∈ A, |a| 6= 1

Remember that A = generating class, whereas K = set of all subsets of the elements
in the generating class A, |A| ≤ |K|.

All the previous discussion about likelihood equations for a vertex colouring can be
summarized in the following theorem.

Theorem 3.1. The likelihood equations for a RGLL model under a vertex colouring,
which is a RGLL model with generating class A and associated graph G = (V,E), where
V is partitioned into V1, ..., VT , with Vi 6= ∅, where i=1,...,T , for any T ∈ {1, 2, ..., |V |}
and the set of first-order interactions E is partitioned into E1, ..., ES, with S = |E|, are
as follows.

kver(i)∑

j=1

n(vi
j = 1) =

kver(i)∑

j=1

m(vi
j = 1), i = 1, ..., T ;

kver(i)∑

j=1

n(vi
j = 2) =

kver(i)∑

j=1

m(vi
j = 2), i = 1, ..., T ;

...



82 CHAPTER 3. RESTRICTED OR COLOURED GRAPHICAL LOG-LINEAR MODELS

kver(i)∑

j=1

n(vi
j = J) =

kver(i)∑

j=1

m(vi
j = J), i = 1, ..., T ;

na(ia) = ma(ia), for all a ∈ A, |a| 6= 1.

Example 3.8. Suppose that V= {W , X, Y , Z}, where all variables have the same
number of levels J , and consider the model given in example 3.2, which is the RGLL
model with graph G(V,E), with V= {W , X, Y , Z} and first-order interaction set E,
with generating class {{X,Y }, {Y, Z}, {Y,W}}, with colour classes V1 = {X,Y } and
V2 = {Z,W} and E = (E1, ..., ES); S = |E|, and that we have a contingency table
whose observed values are given by n(w, x, y, z), where w, x, y, and z are levels of W ,
X, Y , and Z, respectively, then equations (3.2) become

n(v1
1 = k) = n(X = k) =

∑

j:jX=k

n(j) =
J∑

w,y,z=1

n(w, k, y, z) = n(., k, ., .), k = 1, 2, ..., J ;

n(v1
2 = k) = n(Y = k) =

∑

j:jY =k

n(j) =
J∑

w,x,z=1

n(w, x, k, z) = n(., ., k, .), k = 1, 2, ..., J ;

n(v2
1 = k) = n(Z = k) =

∑

j:jZ=k

n(j) =
J∑

w,x,y=1

n(w, x, y, k) = n(., ., ., k), k = 1, 2, ..., J ;

n(v2
2 = k) = n(W = k) =

∑

j:jW =k

n(j) =
J∑

x,y,z=1

n(k, x, y, z) = n(k, ., ., .), k = 1, 2, ..., J.

The likelihood equations corresponding to the main effects are

n(., k, ., .) + n(., ., k, .) = m(., k, ., .) +m(., ., k, .), k = 1, 2, ..., J ;

n(., ., ., k) + n(k, ., ., .) = m(., ., ., k) +m(k, ., ., .), k = 1, 2, ..., J.

We add to these the equations

na(ia) = ma(ia), a = {X,Y } , {Y, Z} , {Y,W} .

If i = (w, x, y, z), these equations are

n(., x, y, .) = m(., x, y, .), x, y = 1, ..., J ;

n(., ., y, z) = m(., ., y, z), y, z = 1, ..., J ;

n(w, ., y, .) = m(w, ., y, .), w, y = 1, ..., J.
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Therefore, the simultaneous equation system is

n(., k, ., .) + n(., ., k, .) = m(., k, ., .) +m(., ., k, .), k = 1, 2, ..., J ;

n(., ., ., k) + n(k, ., ., .) = m(., ., ., k) +m(k, ., ., .), k = 1, 2, ..., J ;

n(., x, y, .) = m(., x, y, .), x, y = 1, ..., J ;

n(., ., y, z) = m(., ., y, z), y, z = 1, ..., J ;

n(w, ., y, .) = m(w, ., y, .), w, y = 1, ..., J.

The maximum likelihood estimators correspond to a vector of estimated expected
frequencies m̂ satisfying the previous system of equations.

3.8.2 Edge colouring

Consider a RGLL model with graph G = (V,E), where the first-order interaction set E
is partitioned into E1, ..., ES, Ei 6= ∅, for i=1,...,S, with S ∈ {1, 2, ..., |E|} and the set
of variables V is partitioned into V1, ..., VT , with T = |V |. In this case, the logarithm
of the kernel of the likelihood function considering any sampling scheme: Poisson,
multinomial, or restricted multinomial, expression (2.7), including the restrictions takes
the form

S∑

t=1

ked(t)∑

k=1

n(ltk = itk,m
t
k = jt

k)uEt
+

∑

a∈K,|a|6=2

∑

ia

na(ia)ua(ia) −
∑

i∈I

exp(
∑

a∈K

ua(ia)). (3.6)

Deriving (3.6) with respect to each parameter and equating to zero, we get the
following equation system

ked(t)∑

k=1

n(ltk = itk,m
t
k = jt

k) =

ked(t)∑

k=1

m(ltk = itk,m
t
k = jt

k), t = 1, 2, ...., S;

na(ia) = ma(ia), for all a ∈ K, |a| 6= 2.

(3.7)

Similarly to the vertex colouring, we can eliminate some redundant equations cor-
responding to the elements in K no contained in the generating class and formed by
a number of variables different to two. To accomplish this reduction, we eliminate the
last part of the equation system and instead we use the equations for the main effects
and the equations corresponding to the generating class, i.e., we substitute the last part
in equation system (3.7) with

na(ia) = ma(ia), for all a ∈ A, |a| 6= 2,

na(ia) = ma(ia), |a| = 1.
(3.8)
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All the previous discussion about likelihood equations for an edge colouring can be
summarized in the following theorem.

Theorem 3.2. The likelihood equations for a RGLL model under an edge colouring,
which is a RGLL model with generating class A and associated graph G = (V,E),
where the first-order interaction set E is partitioned into E1, ..., ES, with Ei 6= ∅,
where i=1,...,S, for any S ∈ {1, 2, ..., |E|} and the set of variables V is partitioned
into V1, ..., VT , with T = |V |, are as follows.

ked(t)∑

k=1

n(ltk = itk,m
t
k = jt

k) =

ked(t)∑

k=1

m(ltk = itk,m
t
k = jt

k), t = 1, 2, ...., S;

na(ia) = ma(ia), for all a ∈ A, |a| 6= 2;

na(ia) = ma(ia), |a| = 1.

Example 3.9. Suppose that we have a set V= {W , X, Y , Z} of binary variables
included in the same model given in example 3.3. This is a RGLL model with graph
G(V,E), generating class {{X,Y }, {W,Y }, {W,Z}, {X,Z}}, and edge set E= (E1, E2,
E3, E4); where E1 ={uXY (00), uXY (11), uWZ(00), uWZ(11)}; E2 ={uXY (01), uXY (10),
uWZ(01), uWZ(10)}; E3 = {uWY (00), uWY (11), uXZ(00), uXZ(11)}; E4 ={uWY (01),
uWY (10), uXZ(01), uXZ(10)}, with V = (V1, ..., VT ), T = |V | = 4, and suppose that
we have a contingency table whose observed values are given by n(w, x, y, z), where w,
x, y, and z are levels of W , X, Y , and Z, respectively; w, x, y, z= 0, 1. We have the
following equalities for the E1 elements.

n(l11 = i11,m
1
1 = j1

1) = n(X = 0, Y = 0) =
∑

s:(sX ,sY )=(0,0)

n(s) =
∑

w,z

n(w, 0, 0, z) = n(., 0, 0, .),

n(l12 = i12,m
1
2 = j1

2) = n(X = 1, Y = 1) =
∑

s:(sX ,sY )=(1,1)

n(s) =
∑

w,z

n(w, 1, 1, z) = n(., 1, 1, .),

n(l13 = i13,m
1
3 = j1

3) = n(W = 0, Z = 0) =
∑

s:(sW ,sZ)=(0,0)

n(s) =
∑

x,y

n(0, x, y, 0) = n(0, ., ., 0),

n(l14 = i14,m
1
4 = j1

4) = n(W = 1, Z = 1) =
∑

s:(sW ,sZ)=(1,1)

n(s) =
∑

x,y

n(1, x, y, 1) = n(1, ., ., 1).

For E2 we have

n(l21 = i21,m
2
1 = j2

1) = n(., 0, 1, .),

n(l22 = i22,m
2
2 = j2

2) = n(., 1, 0, .),

n(l23 = i23,m
2
3 = j2

3) = n(0, ., ., 1),
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n(l24 = i24,m
2
4 = j2

4) = n(1, ., ., 0);

for E3

n(l31 = i31,m
3
1 = j3

1) = n(0, ., 0, .),

n(l32 = i32,m
3
2 = j3

2) = n(1, ., 1, .),

n(l33 = i33,m
3
3 = j3

3) = n(., 0, ., 0),

n(l34 = i34,m
3
4 = j3

4) = n(., 1, ., 1);

and finally for E4

n(l41 = i41,m
4
1 = j4

1) = n(0, ., 1, .),

n(l42 = i42,m
4
2 = j4

2) = n(1, ., 0, .),

n(l43 = i43,m
4
3 = j4

3) = n(., 0, ., 1),

n(l44 = i44,m
4
4 = j4

4) = n(., 1, ., 0).

We have something similar for the expected frequencies m. The resulting likelihood
equations for the first-order interactions, first part of equations (3.7), are

n(., 0, 0, .) + n(., 1, 1, .) + n(0, ., ., 0) + n(1, ., ., 1) =

m(., 0, 0, .) +m(., 1, 1, .) +m(0, ., ., 0) +m(1, ., ., 1),

n(., 0, 1, .) + n(., 1, 0, .) + n(0, ., ., 1) + n(1, ., ., 0) =

m(., 0, 1, .) +m(., 1, 0, .) +m(0, ., ., 1) +m(1, ., ., 0),

n(0, ., 0, .) + n(1, ., 1, .) + n(., 0, ., 0) + n(., 1, ., 1) = (3.9)

m(0, ., 0, .) +m(1, ., 1, .) +m(., 0, ., 0) +m(., 1, ., 1),

n(0, ., 1, .) + n(1, ., 0, .) + n(., 0, ., 1) + n(., 1, ., 0) =

m(0, ., 1, .) +m(1, ., 0, .) +m(., 0, ., 1) +m(., 1, ., 0).

We should add to this equations system the equations (3.8); however, in this model
the generating class A is formed by {X,Y }, {W,Y }, {W,Z}, {X,Z}, for which |a| = 2,
but (3.8) does not consider the corresponding likelihood equations, in fact the likelihood
equations for first-order interactions are already contained in (3.9), so that the only
missing equations are the corresponding to main effects

na(ia) = ma(ia), a = {X} , {Y } , {Z} , {W} .

Explicitly, they are
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n(i, ., ., .) = m(i, ., ., .), i = 0, 1;

n(., i, ., .) = m(., i, ., .), i = 0, 1;

n(., ., i, .) = m(., ., i, .), i = 0, 1; (3.10)

n(., ., ., i) = m(., ., ., i), i = 0, 1.

Then, the system of equations to be solved is the one conformed by equations (3.9)
and (3.10).

Notice that the main effects are not being forced to satisfy any equalities between
them, so that we could think in a partition of the vertex set into four subsets, each
formed by one variable, W , X, Y , and Z, which is a vertex colouring. In fact, the
equations we obtain here for the main effects are the same equations we would get
using equations (3.5).

3.8.3 Vertex and edge colouring

Consider a RGLL model with graph G = (V,E), where V is partitioned into V1, ..., VT ,
with Vi 6= ∅, for i=1,...,T , with T ∈ {1, 2, ..., |V |} and the set of first-order interactions
E is partitioned into E1, ..., ES, Ei 6= ∅, for i=1,...,S, with S ∈ {1, 2, ..., |E|}. In this
case, the logarithm of the kernel of the likelihood function considering any of the three
sampling schemes: Poisson, multinomial, or restricted multinomial, expression (2.7),
including both types of parameter restrictions takes the form

T∑

i=1

J∑

l=1

kver(i)∑

k=1

n(vi
k = l)ui(l)+

S∑

t=1

ked(t)∑

k=1

n(ltk = itk,m
t
k = jt

k)uEt
+

∑

a∈K,|a|6=1,2

∑

ia

na(ia)ua(ia)−
∑

i∈I

exp(
∑

a∈K

ua(ia)). (3.11)

Deriving this expression with respect to each parameter and equating to zero we
obtain the equation systems (3.5) and (3.7) simultaneously. The equation system is
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kver(i)∑

j=1

n(vi
j = 1) =

kver(i)∑

j=1

m(vi
j = 1), i = 1, ..., T ;

kver(i)∑

j=1

n(vi
j = 2) =

kver(i)∑

j=1

m(vi
j = 2), i = 1, ..., T ;

... (3.12)

kver(i)∑

j=1

n(vi
j = J) =

kver(i)∑

j=1

m(vi
j = J), i = 1, ..., T ;

ked(t)∑

k=1

n(ltk = itk,m
t
k = jt

k) =

ked(t)∑

k=1

m(ltk = itk,m
t
k = jt

k), t = 1, 2, ...., S;

na(ia) = ma(ia), for all a ∈ K, |a| 6= 1, 2.

As before, the last set of equations in the equation system could be replaced by

na(ia) = ma(ia), for all a ∈ A, |a| 6= 1, 2.

All the previous discussion about likelihood equations for a vertex and edge colouring
can be summarized in the following theorem.

Theorem 3.3. The likelihood equations for a RGLL model, which is a model including
both vertex and edge colourings where the generating class is A and the associated graph
is G = (V,E), in which V is partitioned into V1, ..., VT , with Vi 6= ∅, where i=1,...,T ,
for any T ∈ {1, 2, ..., |V |} and the set of first-order interactions E is partitioned into
E1, ..., ES, with Ei 6= ∅, where i=1,...,S, for any S ∈ {1, 2, ..., |E|}, are as follows.

kver(i)∑

j=1

n(vi
j = 1) =

kver(i)∑

j=1

m(vi
j = 1), i = 1, ..., T ;

kver(i)∑

j=1

n(vi
j = 2) =

kver(i)∑

j=1

m(vi
j = 2), i = 1, ..., T ;

...
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kver(i)∑

j=1

n(vi
j = J) =

kver(i)∑

j=1

m(vi
j = J), i = 1, ..., T ;

ked(t)∑

k=1

n(ltk = itk,m
t
k = jt

k) =

ked(t)∑

k=1

m(ltk = itk,m
t
k = jt

k), t = 1, 2, ...., S;

na(ia) = ma(ia), for all a ∈ A, |a| 6= 1, 2.

Example 3.10. To illustrate the derivation of the likelihood equations, consider the
i) quasi-symmetry and ii) symmetry models given in example 3.5. As we saw before,
these are RGLL models with generating class {{C,A}} and associated graphs G(V,E),
V = {C,A} and E = {uCA(01), uCA(10), uCA(00), uCA(11)}.

i) The quasi-symmetry model additionally has three edge colour classes or partitions
of the first-order interactions set: E1 = {uCA(00)}, E2= {uCA(01), uCA(10)}, and
E3 = {uCA(11)}. There is one equation associated to each edge class as follows,

E1 : n(0, 0) = m(0, 0),

E2 : n(0, 1) + n(1, 0) = m(0, 1) +m(1, 0),

E3 : n(1, 1) = m(1, 1),

which can be rewritten as

m(i, j) +m(j, i) = n(i, j) + n(j, i), for all i ≤ j, i = j = 0, 1. (3.13)

We also have two vertex colour classes V = (V1, V2), with V1 = {C} = {v1
1} and

V2 = {A} = {v2
1}. Then we have

n(v1
1 = 0) = n(0, .),

n(v1
1 = 1) = n(1, .),

n(v2
1 = 0) = n(., 0),

n(v2
1 = 1) = n(., 1).

The equations corresponding to class V1 are

n(1, .) = m(1, .),

n(0, .) = m(0, .);

and to V2
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n(., 1) = m(., 1),

n(., 0) = m(., 0).

These equations can be rewritten as

m(i, .) = n(i, .), i = 0, 1; m(., j) = n(., j), j = 0, 1. (3.14)

Equations systems (3.13) and (3.14) have to be solved simultaneously.

ii) In the symmetry model, there are also three edge colour classes or partitions
of the first-order interactions set: E1 = {uCA(00)}, E2= {uCA(01), uCA(10)}, and
E3 = {uCA(11)}. There is one equation associated to each edge class as follows,

E1 : n(0, 0) = m(0, 0),

E2 : n(0, 1) + n(1, 0) = m(0, 1) +m(1, 0),

E3 : n(1, 1) = m(1, 1),

which can be rewritten as

m(i, j) +m(j, i) = n(i, j) + n(j, i), for all i ≤ j, i = j = 0, 1. (3.15)

Additionally, both variables are in the same colour class, V = {C,A}, the likelihood
equations corresponding to this class are

n(0, .) + n(., 0) =m(0, .) +m(., 0), (3.16)

n(1, .) + n(., 1) =m(1, .) +m(., 1). (3.17)

Then, (3.15), (3.16), and (3.17) have to be solved simultaneously; however, we notice
that equations in (3.15), imply equations (3.16) and (3.17), so that it is only necessary
to solve (3.15).

3.9 RGLL models expressed as GLM

Log-linear models can be expressed as generalized linear models as shown in section 2.4.
There is no much literature discussing design matrices for log-linear models in which
parameters are equated in some way, there are some examples and brief discussion in
Rindskopf (1984) and Vermunt (1996, 2005). All RGLL models can be represented as
a generalized linear model (GLM) with design matrix X, usually X is a non-invertible
matrix, but sometimes it is possible to give an adequate parametrization of the model
so that its associated design matrix is invertible. However, the design matrix X can
always be used to obtain the degrees of freedom associated to the asymptotic distribu-
tion of the deviance, the statistic used to evaluate the goodness of fit of a model.
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3.9.1 Vertex colouring

In order to get the design matrix X including the vertex colouring, we need the follow-
ing notation.

β β=(β1, ..., βp), vector of parameters, it includes all parameters
obtained due to vertex colouring.

X design matrix for the RGLL model.

Xvi
l
(j) matrix in which for every row corresponding to the parameter ui(j),

it takes value one when the variable vi
l takes the value j and

zero otherwise; l = 1, 2, ..., kver(i); i = 1, ..., T , and j a fixed level,
j = 1,2,...,J . The matrix has as many rows as cells in the contingency
table and it has p columns; i.e. its dimension is |I| × p.

Xvi
l
(j) indicates the variable vi

l effect over the ui(j) parameter
for a specific colouring i and a category j.

Let

XVi(j) =

kver(i)∑

l=1

Xvi
l
(j),

for i = 1, 2, ...T and j = 1,2,...,J . The matrix XVi(j) indicates the effect of the colouring
Vi for a category j.

We denote xVi(j) the column vector in XVi(j) associated to ui(j), i = 1, 2, ...T , j =
1,2,...,J .

Then, we have that

T∑

i=1

∑

j

XVi(j)

is the matrix for the main effects considering the vertex colouring.

Additionally, taking into account

Xu,int. matrix including the values corresponding to the constant term,
the interactions of any order, and assigning zero to the remaining
terms, these remaining terms are the vertex colouring parameters.

We observe that



3.9. RGLL MODELS EXPRESSED AS GLM 91

X = Xu,int. +
T∑

i=1

∑

j

XVi(j) = Xu,int. +
T∑

i=1

∑

j

kver(i)∑

l=1

Xvi
l
(j). (3.18)

Example 3.11. To illustrate how we obtain a design matrix in a RGLL model re-
stricted only in its main effects or vertex colouring, consider the RGLL model with
associated graph G(V,E), with vertex set V= {X, Y , Z, W}, where all variables are
binary, and generating class {{X}, {Z}, {Y,W}}. Suppose also that V is partitioned
into V1= {X,Y }= {v1

1, v
1
2} and V2= {Z,W}= {v2

1, v
2
2}, so that v1

1 = X, v1
2 = Y , v2

1 = Z,
and v2

2 = W , and that the first-order interactions set E = (E1, ..., ES), with S = |E|,
figure 3.7.

To identify which parameters correspond to the generating class, we give the model
associated to that generating class without considering restrictions.

logm(i, j, k, l) = u+ uW (i) + uX(j) + uY (k) + uZ(l) + uWY (ik), i, j, k, l = 0, 1.

(0, 1)
(1, 0)

(0, 0)

(1, 1)

Z

XY

W

Figure 3.7: Vertex colouring for the RGLL model with generating class {{X}, {Z}, {Y, W}},
V = (V1, V2), with V1= {X, Y } and V2= {Z, W} and E = (E1, ..., ES), with S = |E|=4.

Denoting (w, x, y, z) as a cell, where w, x, y, and z are levels for W , X, Y , and Z,
respectively, the cells can be ordered as folllows.

((0, 0, 0, 0), (0, 0, 0, 1), (0, 0, 1, 0), (0, 0, 1, 1), (0, 1, 0, 0), (0, 1, 0, 1), (0, 1, 1, 0), (0, 1, 1, 1),

(1, 0, 0, 0), (1, 0, 0, 1), (1, 0, 1, 0), (1, 0, 1, 1), (1, 1, 0, 0), (1, 1, 0, 1), (1, 1, 1, 0), (1, 1, 1, 1))′
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The vector of parameters is

β′ = (u, u1(0), u1(1), u2(0), u2(1), uWY (00), uWY (01), uWY (10), uWY (11)).

Then, we obtain the following matrices for the vertex colour class V1= {X,Y }=
{v1

1, v
1
2}:

X
v1

1
(0) =

0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111





u u1(0) u1(1) u2(0) u2(1) uWY (00) uWY (01) uWY (10) uWY (11)
0 1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0





.

The first column corresponds to u, the second one to u1(0), etc., using the same order
given in β′. The first row corresponds to cell (0, 0, 0, 0), the second one to cell (0, 0, 0, 1),
etc., using the order given for the cells vector. In all the following matrices the columns
and rows represent exactly the same parameters and same cells, respectively, as in
Xv1

1(0) shown above. Then, we have

X
v1

1
(1) =

0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111





u u1(0) u1(1) u2(0) u2(1) uWY (00) uWY (01) uWY (10) uWY (11)
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0





,
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X
v1

2
(0) =

0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111





u u1(0) u1(1) u2(0) u2(1) uWY (00) uWY (01) uWY (10) uWY (11)
0 1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0





,

X
v1

2
(1) =

0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111





u u1(0) u1(1) u2(0) u2(1) uWY (00) uWY (01) uWY (10) uWY (11)
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0





.

Then

X
V1(0) = X

v1

1
(0)+X

v1

2
(0) =

0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111





u u1(0) u1(1) u2(0) u2(1) uWY (00) uWY (01) uWY (10) uWY (11)
0 2 0 0 0 0 0 0 0
0 2 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 2 0 0 0 0 0 0 0
0 2 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0





,
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X
V1(1) = X

v1

1
(1)+X

v1

2
(1) =

0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111





u u1(0) u1(1) u2(0) u2(1) uWY (00) uWY (01) uWY (10) uWY (11)
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0
0 0 2 0 0 0 0 0 0
0 0 2 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0
0 0 2 0 0 0 0 0 0
0 0 2 0 0 0 0 0 0





.

The same is done for V2= {Z,W}= {v2
1, v

2
2}

X
V2(0) =

0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111





u u1(0) u1(1) u2(0) u2(1) uWY (00) uWY (01) uWY (10) uWY (11)
0 0 0 2 0 0 0 0 0
0 0 0 1 0 0 0 0 0
0 0 0 2 0 0 0 0 0
0 0 0 1 0 0 0 0 0
0 0 0 2 0 0 0 0 0
0 0 0 1 0 0 0 0 0
0 0 0 2 0 0 0 0 0
0 0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0





,

X
V2(1) =

0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111





u u1(0) u1(1) u2(0) u2(1) uWY (00) uWY (01) uWY (10) uWY (11)
0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0 0
0 0 0 0 2 0 0 0 0
0 0 0 0 1 0 0 0 0
0 0 0 0 2 0 0 0 0
0 0 0 0 1 0 0 0 0
0 0 0 0 2 0 0 0 0
0 0 0 0 1 0 0 0 0
0 0 0 0 2 0 0 0 0





.
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Finally

X
u,int =

0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111





u u1(0) u1(1) u2(0) u2(1) uWY (00) uWY (01) uWY (10) uWY (11)
1 0 0 0 0 1 0 0 0
1 0 0 0 0 1 0 0 0
1 0 0 0 0 0 1 0 0
1 0 0 0 0 0 1 0 0
1 0 0 0 0 1 0 0 0
1 0 0 0 0 1 0 0 0
1 0 0 0 0 0 1 0 0
1 0 0 0 0 0 1 0 0
1 0 0 0 0 0 0 1 0
1 0 0 0 0 0 0 1 0
1 0 0 0 0 0 0 0 1
1 0 0 0 0 0 0 0 1
1 0 0 0 0 0 0 1 0
1 0 0 0 0 0 0 1 0
1 0 0 0 0 0 0 0 1
1 0 0 0 0 0 0 0 1





.

Then, X, the matrix including the colouring is

X = X
u,int. +

2∑

i=1

1∑

j=0

X
Vi(j) =

0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111





u u1(0) u1(1) u2(0) u2(1) uWY (00) uWY (01) uWY (10) uWY (11)
1 2 0 2 0 1 0 0 0
1 2 0 1 1 1 0 0 0
1 1 1 2 0 0 1 0 0
1 1 1 1 1 0 1 0 0
1 1 1 2 0 1 0 0 0
1 1 1 1 1 1 0 0 0
1 0 2 2 0 0 1 0 0
1 0 2 1 1 0 1 0 0
1 2 0 1 1 0 0 1 0
1 2 0 0 2 0 0 1 0
1 1 1 1 1 0 0 0 1
1 1 1 0 2 0 0 0 1
1 1 1 1 1 0 0 1 0
1 1 1 0 2 0 0 1 0
1 0 2 1 1 0 0 0 1
1 0 2 0 2 0 0 0 1





.

The logarithm of the kernel of the likelihood function, expression (2.7), for a model
expressed as a GLM under the vertex colouring, which is obtained by replacing equation
(2.12) in expression (2.7) considering that X is a matrix including the colouring, is

log(kernel(L(m))) =
∑

i∈I

n(i)
T∑

l=1

∑

k

x
Vl(k)
i ul(k) +

∑

i∈I

n(i)
∑

j

xijβj

−
∑

i∈I

exp(
T∑

l=1

∑

k

x
Vl(k)
i ul(k) +

∑

j

xijβj), (3.19)

where xij are entries of Xu,int..
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Based on expression (3.19), we obtain the corresponding likelihood equations anal-
ogously of what we did to get the likelihood equations for a GLM model in section
2.4 where we equated in (2.13) the canonical statistics to their expectation. These
equations are

∑

i∈I

n(i)x
Vl(k)
i =

∑

i∈I

m(i)x
Vl(k)
i , l = 1, 2, ..., T ; k = 1, ..., J. (3.20)

(Xu,int.)′n = (Xu,int.)′m. (3.21)

These equation systems, (3.20) and (3.21), can be expressed also as

X ′n = X ′m.

These results can be summarized in the following theorem.

Theorem 3.4. The likelihood equations for a RGLL model expressed as a GLM under
a vertex colouring are

X ′n = X ′m,

where X is the matrix X = Xu,int.+
∑T

i=1

∑
j XVi(j) = Xu,int.+

∑T
i=1

∑
j

∑kver(i)
l=1 Xvi

l
(j),

which includes the vertex colouring.

3.9.2 Edge colouring

Similar to the case of vertex colouring, we have to add some notation.

β β=(β1, ..., βp), vector of parameters. This includes all parameters
obtained due to edge colouring.

X design matrix for the RGLL model.

X
u

ltrmt
r
(itr,jt

r) r = 1, 2, ..., ked(t), t = 1, 2, ...S. Matrix in which for every row
of the column corresponding to uEt

, an entry takes value one
when the first-order interaction ultrmt

r
(itr, j

t
r) is present and

zero otherwise. The presence of an interaction term ultrmt
r
(itr, j

t
r)

means that ltr takes the value itr and mt
r takes the value jt

r.

We define the following matrix

XEt =
∑ked(t)

r=1 X
u

ltrmt
r
(itr,jt

r), t = 1, 2, ..., S, matrix corresponding to the uEt
param-

eters.

Additionally, we denote
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xEt column vector of XEt containing the coefficients associated to uEt
.

Xu,main ef.,int. matrix including the coefficients corresponding to the constant,
main effects, and interactions of two or higher order. Additionally,
this matrix includes zeros in the columns associated to the
edge colouring parameters.

Using this notation, we have that

X = Xu,main ef.,int. +
S∑

t=1

XEt = Xu,main ef.,int. +
S∑

t=1

ked(t)∑

r=1

X
u

ltrmt
r
(itr,jt

r). (3.22)

Example 3.12. Suppose that we have the same model given in example 3.3. Denoting
(w, x, y, z) as a cell, where w, x, y, and z are levels for W , X, Y , and Z, respectively,
the cells can be ordered in the following way.

((0, 0, 0, 0), (0, 0, 0, 1), (0, 0, 1, 0), (0, 0, 1, 1), (0, 1, 0, 0), (0, 1, 0, 1), (0, 1, 1, 0), (0, 1, 1, 1),

(1, 0, 0, 0), (1, 0, 0, 1), (1, 0, 1, 0), (1, 0, 1, 1), (1, 1, 0, 0), (1, 1, 0, 1), (1, 1, 1, 0), (1, 1, 1, 1))′

The vector of parameters is

β′ = (u, uW (0), uW (1), uX(0), uX(1), uY (0), uY (1), uZ(0), uZ(1), uE1 , uE2 , uE3 , uE4).

For E1, we obtain the matrices shown below. In all matrices of this example the
first column corresponds to u, the second one to uW (0), etc., using the same order
given for β′. Additionally, the first row corresponds to cell (0, 0, 0, 0), the second one
to (0, 0, 0, 1), etc., using the same order given for the cells vector.

X
u

l1
1

m1
1

(i1
1
,j1

1
)

=

0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111





u uW (0) uW (1) uX(0) uX(1) uY (0) uY (1) uZ(0) uZ(1) uE1
uE2

uE3
uE4

0 0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0





,
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X
u

l1
2

m1
2

(i1
2
,j1

2
)

=

0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111





u uW (0) uW (1) uX(0) uX(1) uY (0) uY (1) uZ(0) uZ(1) uE1
uE2

uE3
uE4

0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0 0





,

X
u

l1
3

m1
3

(i1
3
,j1

3
)

=

0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111





u uW (0) uW (1) uX(0) uX(1) uY (0) uY (1) uZ(0) uZ(1) uE1
uE2

uE3
uE4

0 0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0





,

X
u

l1
4

m1
4

(i1
4
,j1

4
)

=

0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111





u uW (0) uW (1) uX(0) uX(1) uY (0) uY (1) uZ(0) uZ(1) uE1
uE2

uE3
uE4

0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0 0





.

Then
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X
E1 =

4∑

r=1

X
u

l1
r

m1
r

(i1
r

,j1
r
)

=

0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111





u uW (0) uW (1) uX(0) uX(1) uY (0) uY (1) uZ(0) uZ(1) uE1
uE2

uE3
uE4

0 0 0 0 0 0 0 0 0 2 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 2 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 2 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 2 0 0 0





.

The same is done for E2, E3, and E4

X
E2 =

0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111





u uW (0) uW (1) uX(0) uX(1) uY (0) uY (1) uZ(0) uZ(1) uE1
uE2

uE3
uE4

0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 2 0 0
0 0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 2 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 2 0 0
0 0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 2 0 0
0 0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0





,

X
E3 =

0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111





u uW (0) uW (1) uX(0) uX(1) uY (0) uY (1) uZ(0) uZ(1) uE1
uE2

uE3
uE4

0 0 0 0 0 0 0 0 0 0 0 2 0
0 0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 2 0
0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 2 0
0 0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 2 0





,
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X
E4 =

0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111





u uW (0) uW (1) uX(0) uX(1) uY (0) uY (1) uZ(0) uZ(1) uE1
uE2

uE3
uE4

0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0 0 0 2
0 0 0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 2
0 0 0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0 0 0 2
0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0 0 0 2
0 0 0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0 0 0 0





.

On the other hand,

X
u,main ef.,int. =

0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111





u uW (0) uW (1) uX(0) uX(1) uY (0) uY (1) uZ(0) uZ(1) uE1
uE2

uE3
uE4

1 1 0 1 0 1 0 1 0 0 0 0 0
1 1 0 1 0 1 0 0 1 0 0 0 0
1 1 0 1 0 0 1 1 0 0 0 0 0
1 1 0 1 0 0 1 0 1 0 0 0 0
1 1 0 0 1 1 0 1 0 0 0 0 0
1 1 0 0 1 1 0 0 1 0 0 0 0
1 1 0 0 1 0 1 1 0 0 0 0 0
1 1 0 0 1 0 1 0 1 0 0 0 0
1 0 1 1 0 1 0 1 0 0 0 0 0
1 0 1 1 0 1 0 0 1 0 0 0 0
1 0 1 1 0 0 1 1 0 0 0 0 0
1 0 1 1 0 0 1 0 1 0 0 0 0
1 0 1 0 1 1 0 1 0 0 0 0 0
1 0 1 0 1 1 0 0 1 0 0 0 0
1 0 1 0 1 0 1 1 0 0 0 0 0
1 0 1 0 1 0 1 0 1 0 0 0 0





.

Then, the matrix X, including the edge colouring is

X = X
u,main ef.,int. +

4∑

l=1

X
El =

0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111





u uW (0) uW (1) uX(0) uX(1) uY (0) uY (1) uZ(0) uZ(1) uE1
uE2

uE3
uE4

1 1 0 1 0 1 0 1 0 2 0 2 0
1 1 0 1 0 1 0 0 1 1 1 1 1
1 1 0 1 0 0 1 1 0 1 1 1 1
1 1 0 1 0 0 1 0 1 0 2 0 2
1 1 0 0 1 1 0 1 0 1 1 1 1
1 1 0 0 1 1 0 0 1 0 2 2 0
1 1 0 0 1 0 1 1 0 2 0 0 2
1 1 0 0 1 0 1 0 1 1 1 1 1
1 0 1 1 0 1 0 1 0 1 1 1 1
1 0 1 1 0 1 0 0 1 2 0 0 2
1 0 1 1 0 0 1 1 0 0 2 2 0
1 0 1 1 0 0 1 0 1 1 1 1 1
1 0 1 0 1 1 0 1 0 0 2 0 2
1 0 1 0 1 1 0 0 1 1 1 1 1
1 0 1 0 1 0 1 1 0 1 1 1 1
1 0 1 0 1 0 1 0 1 2 0 2 0





.
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The logarithm of the kernel of the likelihood function considering the edge colouring
is

log(kernel(L(m))) =
∑

i∈I

n(i)
S∑

l=1

xEl

i uEl
+

∑

i∈I

n(i)
∑

j

xijβj

−
∑

i∈I

exp(
S∑

l=1

xEl

i uEl
+

∑

j

xijβj), (3.23)

where xij are entries of Xu,main ef.,int..

The likelihood equations obtained from (3.23) are

∑

i∈I

n(i)xEl

i =
∑

i∈I

m(i)xEl

i , l = 1, 2, ..., S; (3.24)

(Xu,main ef.,int.)′n = (Xu,main ef.,int.)′m. (3.25)

These equations, (3.24) and (3.25), can be expressed as

X ′n = X ′m.

These results can be summarized in the following theorem.

Theorem 3.5. The likelihood equations for a RGLL model expressed as a GLM under
an edge colouring are

X ′n = X ′m,

where X is the following matrix, X= Xu,main ef.,int.+
∑S

t=1 XEt= Xu,main ef.,int.+∑S
t=1

∑ked(t)
r=1 X

u
ltrmt

r
(itr,jt

r), which includes the edge colouring.

3.9.3 Vertex and edge colouring

We use the same notation defined before for vertex and for edge colourings. However,
we have to consider that β contains parameters for both kinds of colourings, and that
the design matrix X corresponds to a model whose vertices and edges are simultane-
ously coloured. We add also the following notation.

Xu,int≥2 matrix including the coefficients corresponding to the constant,
and the interactions of two or higher order. The matrix includes zeros
in the remaining columns.
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We have that

X = Xu,int.≥2 +
S∑

l=1

XEl +
T∑

i=1

∑

j

XVi(j). (3.26)

Example 3.13. Consider a model similar to the one in example 3.3, the RGLL model
with graph G(V,E), V= {W , X, Y , Z} a set of binary variables such that V =
(V1, V2), V1 = {X,Y } and V2 = {Z,W}, with generating class {{X,Y }, {W,Y },
{W,Z}, {X,Z}}, and edge set E = (E1, E2, E3, E4); E1 ={uXY (00), uXY (11), uWZ(00),
uWZ(11)}; E2 ={uXY (01), uXY (10), uWZ(01), uWZ(10)}; E3 = {uWY (00), uWY (11),
uXZ(00), uXZ(11)}; E4 ={uWY (01), uWY (10), uXZ(01), uXZ(10)}.

The cells are ordered in the following way:

((0, 0, 0, 0), (0, 0, 0, 1), (0, 0, 1, 0), (0, 0, 1, 1), (0, 1, 0, 0), (0, 1, 0, 1), (0, 1, 1, 0), (0, 1, 1, 1),

(1, 0, 0, 0), (1, 0, 0, 1), (1, 0, 1, 0), (1, 0, 1, 1), (1, 1, 0, 0), (1, 1, 0, 1), (1, 1, 1, 0), (1, 1, 1, 1))′

The vector of parameters is

β′ = (u, u1(0), u1(1), u2(0), u2(1), uE1 , uE2 , uE3 , uE4).

We obtain
∑2

i=1

∑1
j=0 XVi(j) in the same way done in example 3.11.

2∑

i=1

1∑

j=0

X
Vi(j) =

0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111





u u1(0) u1(1) u2(0) u2(1) uE1
uE2

uE3
uE4

0 2 0 2 0 0 0 0 0
0 2 0 1 1 0 0 0 0
0 1 1 2 0 0 0 0 0
0 1 1 1 1 0 0 0 0
0 1 1 2 0 0 0 0 0
0 1 1 1 1 0 0 0 0
0 0 2 2 0 0 0 0 0
0 0 2 1 1 0 0 0 0
0 2 0 1 1 0 0 0 0
0 2 0 0 2 0 0 0 0
0 1 1 1 1 0 0 0 0
0 1 1 0 2 0 0 0 0
0 1 1 1 1 0 0 0 0
0 1 1 0 2 0 0 0 0
0 0 2 1 1 0 0 0 0
0 0 2 0 2 0 0 0 0





.

The matrices XE1 , XE2 , XE3 , and XE4 have the same columns for parameters uE1 ,
uE2 , uE3 , uE4 , respectively, as in example 3.12, we only add zero columns corresponding
to the other parameters u, u1(0), u1(1), u2(0), and u2(1). The matrix Xu,int.≥2 takes
value one in the column corresponding to u and zeros in the remaining columns. Then,
X is
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X = X
u,int.≥2+

4∑

l=1

X
El+

2∑

i=1

1∑

j=0

X
Vi(j) =

0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111





u u1(0) u1(1) u2(0) u2(1) uE1
uE2

uE3
uE4

1 2 0 2 0 2 0 2 0
1 2 0 1 1 1 1 1 1
1 1 1 2 0 1 1 1 1
1 1 1 1 1 0 2 0 2
1 1 1 2 0 1 1 1 1
1 1 1 1 1 0 2 2 0
1 0 2 2 0 2 0 0 2
1 0 2 1 1 1 1 1 1
1 2 0 1 1 1 1 1 1
1 2 0 0 2 2 0 0 2
1 1 1 1 1 0 2 2 0
1 1 1 0 2 1 1 1 1
1 1 1 1 1 0 0 0 2
1 1 1 0 2 1 1 1 1
1 0 2 1 1 1 1 1 1
1 0 2 0 2 2 2 2 0





.

The resulting likelihood equations in vertex and edge colouring models are

∑

i∈I

n(i)x
Vl(k)
i =

∑

i∈I

m(i)x
Vl(k)
i , l = 1, 2, ..., T, k = 1, 2, ..., J ; (3.27)

∑

i∈I

n(i)xEl

i =
∑

i∈I

m(i)xEl

i , l = 1, 2, ...S; (3.28)

(Xu,int≥2)′n = (Xu,int≥2)′m. (3.29)

These systems of equations, (3.27), (3.28), and (3.29), can be expressed as

X ′n = X ′m.

These results can be summarized in the following theorem.

Theorem 3.6. The likelihood equations for a RGLL model, which includes both vertex
and edge colourings, expressed as a GLM are

X ′n = X ′m,

where X is the matrix X = Xu,int.≥2+
∑S

l=1 XEl+
∑T

i=1

∑
j XVi(j) including the vertex

and edge colourings.

In section 3.9.5 we give an example of this way of writing the likelihood equations
for symmetry and quasi-symmetry models.

3.9.4 Reparametrized RGLL models

The matrices X obtained for vertex, edge, and vertex and edge colourings, expressions
3.18, 3.22, and 3.26, respectively, do not have full rank. It would be interesting to get
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models keeping the same restrictions we have but with reparametrized parameters in
such a way that their design matrices Y had full rank for all possible models. Full-rank
matrices would allow to easily apply methods based on linear algebra and numeri-
cal analysis, like Newton-Raphson method, to approximately solve the corresponding
likelihood equations. However, to keep the same restrictions and to get full-rank ma-
trices is not always possible for all models. For vertex colouring we can always get
these reparametrized models; but, for edge colouring we can only get them in some
particular models. Then, for vertex and edge colouring models we can only get these
reparametrized models in some cases.

Vertex colouring

If we have a vertex colouring, then we use the same procedure used for non-reparame-
trized models, understanding these as the models where the parametrization is the one
we have used throughout this dissertation, but we define Y vi

l
(j), l=1,2,..., kver(i), i=1,

2,..., T , for a category j = 1, ..., J − 1, using some reparametrization; i.e., we have to
assign to the column corresponding to ui(j) in Y vi

l
(j) the column associated to the cor-

responding reparametrized parameter uvi
l
(j), instead of using ones and zeros as before.

Similarly, the Y u,int. matrix depends on the reparametrization. The reparametrizations
to be used are any of the commonly seen in most literature, for example, effect coding,
which is an ANOVA type reparametrization, or those using dummy variables.

The reason behind this procedure is that equating the reparametrized parameters
is equivalent to equating the original parameters, as we will see next. Suppose that
we have a variable labeled as X and that we use an effect coding reparametrization
with last category, J , as reference category. Suppose also that uX(i) is the main effect
of X for the parametrized model in a level i, i = 1, ..., J − 1, and that λX(i) is the
main effect for the non-parametrized model in a level i, i = 1, , ..., J . The effect coding
parametrization implies that

λX(i) = uX(i), i = 1, ..., J − 1; (3.30)

λX(J) = −uX(1) − uX(2) − ....− uX(J − 1). (3.31)

If we additionally suppose that we have two variables labeled as X and Y that are in
the same colour class, then by definition λX(i)=λY (i) for all i, in particular λX(i)=λY (i)
for i = 1, , ..., J − 1 and this means according to equation (3.30), that uX(i)=uY (i) for
i = 1, , ..., J − 1. Similarly, if uX(i)=uY (i) for i = 1, , ..., J − 1, then λX(i)=λY (i) for
i = 1, , ..., J − 1. Using (3.31) and uX(i)=uY (i), i = 1, ..., J − 1, it is immediate that
λX(J)=λY (J). Then, the equalities over the J − 1 parameters for the reparametrized
model, uX(i)=uY (i); i = 1, , ..., J − 1, are equivalent to the corresponding equalities for
the J original parameters, λX(i)=λY (i); i = 1, , ..., J .
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As a consequence, it can be seen that the resulting matrix Y associated to a
reparametrized restricted model is obtained by summing the reparametrized main ef-
fects of the variables in the same vertex colour class for every category obtained using
the reparametrization.

These results can be summarized as follows.

Theorem 3.7. Under a RGLL model including a vertex colouring only, we can indis-
tinctly use the parameters obtained under effect coding uX(i), i = 1, ..., J − 1, or the
terms λX(i), i = 1, , ..., J , the terms using the parametrization we have used through-
out all this dissertation, to obtain the equality restrictions for the corresponding main
effects associated to the colouring. As a consequence, the process to obtain the design
matrix associated to the model is the same independently of the parametrization used.

Example 3.14. To ilustrate how we get the design matrix for a reparametrized RGLL
model corresponding to a vertex colouring, suppose that we have two tricotomic vari-
ables labeled as X and Y and the RGLL model with graph G(V,E), generating class
A = {{X,Y }}, in which both vertices are in the same vertex colour class V = V1 =
{v1

1, v
1
2} with v1

1 = X and v1
2 = Y (figure 3.8), and E = (E1, ..., ES), with S = |E|.

(1, 1)

(1, 2)

(1, 3)

(2, 1)

(2, 2)

(2, 3)

(3, 1)

(3, 2)

(3, 3)

YX

Figure 3.8: RGLL model generated by {X, Y }, with colour class V = V1 = {X, Y } and
E = (E1, ..., ES), with S = |E| = 9.

The design matrix Z associated to the model reparametrized under effect coding
without including the colouring was shown in section 2.4 and it is
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Z =

11
12
13
21
22
23
31
32
33





u uX(1) uX(2) uY (1) uY (2) uXY (11) uXY (12) uXY (21) uXY (22)
1 1 0 1 0 1 0 0 0
1 1 0 0 1 0 1 0 0
1 1 0 −1 −1 −1 −1 0 0
1 0 1 1 0 0 0 1 0
1 0 1 0 1 0 0 0 1
1 0 1 −1 −1 0 0 −1 −1
1 −1 −1 1 0 −1 0 −1 0
1 −1 −1 0 1 0 −1 0 −1
1 −1 −1 −1 −1 1 1 1 1





.

The first column corresponds to the constant u, the next four to main effects uX(i),
uY (i), i = 1, 2, and the last four correspond to uXY (ij), i, j = 1, 2. The rows correspond
to cells, from top to bottom (1, 1), (1, 2), (1, 3), (2, 1), (2, 2), (2, 3), (3, 1), (3, 2), (3, 3).

Under the vertex colouring, we have two parameters u1(1) and u1(2) not depending

on the variables but on the colouring. Therefore, Y v1
1(1) has two fewer columns than

the previous matrix Z and zeros in all entries except for the ones in the column cor-
responding to u1(1) in which we have the values corresponding to uX(1). The matrix
is

Y v1
1(1) =

11
12
13
21
22
23
31
32
33





u u1(1) u1(2) uXY (11) uXY (12) uXY (21) uXY (22)
0 1 0 0 0 0 0
0 1 0 0 0 0 0
0 1 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 −1 0 0 0 0 0
0 −1 0 0 0 0 0
0 −1 0 0 0 0 0





.

Similarly, for Y v2
1(1) and considering that in all matrices for this example the same

labeling for the rows and columns is used because the rows and columns represent the
same cells and parameters in each case, we have
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Y v2
1(1) =

11
12
13
21
22
23
31
32
33





u u1(1) u1(2) uXY (11) uXY (12) uXY (21) uXY (22)
0 1 0 0 0 0 0
0 0 0 0 0 0 0
0 −1 0 0 0 0 0
0 1 0 0 0 0 0
0 0 0 0 0 0 0
0 −1 0 0 0 0 0
0 1 0 0 0 0 0
0 0 0 0 0 0 0
0 −1 0 0 0 0 0





.

The matrix Y V1(1) is the sum of Y v1
1(1) and Y v2

1(1),

Y V1(1) =

11
12
13
21
22
23
31
32
33





u u1(1) u1(2) uXY (11) uXY (12) uXY (21) uXY (22)
0 2 0 0 0 0 0
0 1 0 0 0 0 0
0 0 0 0 0 0 0
0 1 0 0 0 0 0
0 0 0 0 0 0 0
0 −1 0 0 0 0 0
0 0 0 0 0 0 0
0 −1 0 0 0 0 0
0 −2 0 0 0 0 0





.

Similarly, we get Y V1(2),

Y V1(2) =

11
12
13
21
22
23
31
32
33





u u1(1) u1(2) uXY (11) uXY (12) uXY (21) uXY (22)
0 0 0 0 0 0 0
0 0 1 0 0 0 0
0 0 −1 0 0 0 0
0 0 1 0 0 0 0
0 0 2 0 0 0 0
0 0 0 0 0 0 0
0 0 −1 0 0 0 0
0 0 0 0 0 0 0
0 0 −2 0 0 0 0





.

Finally, Y is the sum of the previous two matrices with Y u,int., which includes
the constant term and the interactions. The matrix Y has full rank and includes the
colouring, and it is
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Y = Y u,int. +
1∑

i=1

2∑

j=1

Y Vi(j) =

11
12
13
21
22
23
31
32
33





u u1(1) u1(2) uXY (11) uXY (12) uXY (21) uXY (22)
1 2 0 1 0 0 0
1 1 1 0 1 0 0
1 0 −1 −1 −1 0 0
1 1 1 0 0 1 0
1 0 2 0 0 0 1
1 −1 0 0 0 −1 −1
1 0 −1 −1 0 −1 0
1 −1 0 0 −1 0 −1
1 2 −2 1 1 1 1





.

Edge colouring

If we have an edge colouring, then the procedure given for vertex colouring can not be in
general applied. This is because the restrictions given to the reparametrized first-order
interaction parameters do not always coincide with the equivalent restrictions for the
original parameters. In fact, we have fewer reparametrized parameters than original
parameters, which means that there could be restrictions on the original parameters
that can not be directly seen in the reparametrized parameters. However, there are
some particular cases where we can obtain reparametrized models with the same mean-
ing that the original model has, for example, quasi-symmetry models.

Another example of an edge colouring model where we can get a reparametrized
model keeping the same restrictions that the original model has is a model with restric-
tions of the kind

λXY (ij) = λZR(ij), i, j = 1, ..., J ;

where λ represents non-reparametrized parameters. Every restriction of this kind for
each permutation (i, j) is a different colour class. Additionally, if we had other pa-
rameters, λRS, then we would have the same kind of restrictions or we would have
λRS(ij) parameters not restricted. In this case the colour classes are of the kind Et =
{et

1,...,e
t
ked(t)}, t = 1, 2, ..., S, where

et
k = λlt

k
mt

k
(i, j), t = 1, 2, ..., S; k = 1, ..., ked(t),

for a permutation (i, j). The number of colour classes of this kind for the same group
of ltk’s and mt

k’s is J2. The total number of colour classes S is determined by the groups
of variables whose first-order interactions we are equating.
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In this specific edge colouring it is always possible to equate the reparametrized
parameters to get the same restrictions given for the original parameters. As in vertex
colouring, we can get the design matrix by summing the columns corresponding to
the reparametrized parameters in the same class. Then, we obtain Y ultrmt

r(itr,jt
r) substi-

tuting the column corresponding to the reparametrized parameter ultrmt
r
(itr, j

t
r) in the

column corresponding to uEt
, and then we proceed the same as when we did not use

any reparametrization.

The reason why in this case is the same equating the reparametrized parameters
than equating the other parameters is the following. Suppose that we have two variables
X and Y with J levels each one. Under effect coding where the last category, J , is the
reference category, we have J −1 main effects and J −1×J −1 first-order interactions.
Naming as λXY (ij), i, j ≤ J to the original parameters whose values are over all possible
permutation of the levels, we have

λXY (ij) = uXY (ij), i, j ≤ J − 1, (3.32)

λXY (iJ) = −
J−1∑

j=1

uXY (ij), i ≤ J − 1, (3.33)

λXY (Jj) = −
J−1∑

i=1

uXY (ij), j ≤ J − 1, (3.34)

λXY (JJ) =
J−1∑

i,j=1

uXY (ij). (3.35)

Considering two other variables, R and S, with the same characteristics of X and
Y and using (3.32), we have

uXY (ij) = uRS(ij), i, j < J ⇔ λXY (ij) = λRS(ij), i, j < J.

If uXY (ij) = uRS(ij), i, j < J then λXY (iJ) = λRS(iJ), i < J , because according to
(3.33), λXY (iJ) = −

∑J−1
j=1 uXY (ij), i ≤ J−1 and λRS(iJ) = −

∑J−1
i=1 uRS(ij), i ≤ J−1.

Similarly, if uXY (ij) = uRS(ij), i, j < J , using (3.34) and (3.35), we have λXY (Jj) =
λRS(Jj), j ≤ J − 1, and λXY (JJ) = λRS(JJ).

This means that by equating the reparametrized parameters uXY (ij) to the repa-
rametrized parameters uRS(ij), for i, j < J , we get the restrictions λXY (ij) = λRS(ij),
for any i y j, and then we can work with any of the two kinds of parameters.
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We can also use indistinctly reparametrized or non-reparametrized terms in RGLL
models with restrictions of the following type:

a) λXY (ij) = λXY (ji), i < j. This is because as in the previous case we can see
from (3.32), (3.33), (3.34), and (3.35) that uXY (ij) = uXY (ji), i < j, i, j = 1, ..., J − 1
⇔ λXY (ij) = λXY (ji), i < j, i, j = 1, ..., J .

b) λXY (ij) = λZR(ji), i ≤ j. This is because we can see from (3.32), (3.33), (3.34),
and (3.35) that uXY (ij) = uZR(ji), i ≤ j, i, j = 1, ..., J − 1 ⇔ λXY (ij) = λZR(ji),
i ≤ j, i, j = 1, ..., J .

All these results can be summarized as follows.

Theorem 3.8. Under a RGLL model including an edge colouring only, we can in-
distinctly use the parameters obtained under effect coding uXY (ij), i, j < J , or the
terms λXY (ij), i, j ≤ J , the terms using the parametrization we have used throughout
all this dissertation, to obtain the equality restrictions for the corresponding first-order
interactions associated to the colourings in which we have restrictions of the following
type:

a) λXY (ij) = λZR(ij), i, j = 1, ..., J ;

b) λXY (ij) = λXY (ji), i < j, i, j = 1, ..., J ; and

c) λXY (ij) = λZR(ji), i ≤ j, i, j = 1, ..., J .

As a consequence, the process to obtain the design matrix associated to the model is
the same independently of the parametrization used.

Vertex and edge colouring

Vertex and edge colouring models can not always be represented with a reparametrized
model in which once restricting in some way its parameters we obtain the restrictions we
had with the original parameters. However, for particular cases like symmetry models,
reparametrized models can be obtained. Other examples are models with restrictions
for the first-order interactions of the form λXY (ij) = λZR(ij), λXY (ij) = λXY (ji), i < j,
or λXY (ij) = λZR(ji), i ≤ j adding whichever colouring to the vertices. One particular
example of this type of model is obviously the edge colouring model described above;
however, in those models all vertices were in different atomic classes, and in a more
general example, they could be in different vertex classes.
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3.9.5 Example of a RGLL model expressed as a GLM: sym-
metry and quasi-symmetry

Symmetry and quasi-symmetry models are simple examples in which it can be shown
reparametrized and non-reparametrized RGLL models and their associated design ma-
trices. These are particular models where we can get the reparametrized models, al-
though we have vertex and edge colourings. We show these models with their corre-
sponding likelihood equations for binary variables as follows:

i) Quasi-symmetry

Consider two binary variables labeled as C and A, as in example 3.5. A quasi-
symmetry model is the RGLL model with graph G(V,E) generated by {{C,A}} with
vertex colour classes V = (V1, V2), with V1 = {C} and V2 = {A}, and first-order
interaction set E = (E1, E2, E3) with E1 = {λCA(00)}, E2 = {λCA(11)}, and E3 =
{λCA(01), λCA(10)}. The design matrix for this model is

X =
00
01
10
11





λ λC(0) λC(1) λA(0) λA(1) λE1
λE2

λE3

1 1 0 1 0 1 0 0
1 1 0 0 1 0 1 0
1 0 1 1 0 0 1 0
1 0 1 0 1 0 0 1




.

The first column corresponds to the constant term λ, the next two columns to λC(i),
i = 0, 1, the following two to λA(i), i = 0, 1, and the last three columns to the three
edge classes: one including λCA(00), another including the equality λCA(01) = λCA(10),
and the last one including λCA(11). The rows represent, from top to bottom, the
four cells (0, 0), (0, 1), (1, 0) and (1, 1), where the first entry corresponds to C and
the second corresponds to A. Observe that the column corresponding to the equality
λCA(01) = λCA(10) is obtained by summing the λCA(01) and λCA(10) effects. Formally,

X is obtained using the Xvi
l
(j) and the other matrices defined above.

The associated reparametrized model has design matrix

Y =
00
01
10
11





u uC(0) uA(0) uCA

1 1 1 0
1 1 −1 1
1 −1 1 1
1 −1 −1 0




.

As before, the first column corresponds to the constant term, the following two columns
correspond to the reparametrized parameters uC(0) and uA(0). The last column corre-
spond to a reparametrized parameter uCA representing the equality λCA(01) = λCA(10)
associated to the edge colouring. This reparametrization is obtained by eliminating the
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columns corresponding to the λCA(ii) parameters and leaving the columns correspond-
ing to the λCA(ij) = λCA(ji), i 6= j restrictions.

Using either matrix, X or Y , with corresponding equation systems X ′n = X ′m or
Y ′n = Y ′m, respectively, and eliminating redundant equations, we obtain the set of
likelihood equations

m̂(i, .) = n(i, .), i = 0, 1;

m̂(., i) = n(., i), i = 0, 1;

m̂(i, j) + m̂(j, i) = n(i, j) + n(j, i), i ≤ j, i, j = 0, 1;

which are the likelihood equations corresponding to a quasi-symmetry model, e.g.,
Agresti (2002a, p. 425).

ii) Symmetry

The symmetry model for V={C,A} is the RGLL model with graph G(V,E) gen-
erated by {{C,A}} with vertex colour class V and first-order interaction set E =
(E1, E2, E3) with E1 = {λCA(00)}, E2 = {λCA(11)}, and E3 = {λCA(01), λCA(10)}.
The design matrix X for this model is as follows:

X =
00
01
10
11





λ λ1(0) λ1(1) λE1
λE2

λE3

1 2 0 1 0 0
1 1 1 0 1 0
1 1 1 0 1 0
1 0 2 0 0 1




.

As before, the first column corresponds to λ. The second column represents the λ1(0)
parameter, that is, the common effect of both variables, which are in the same vertex
colour class, in the first category. The third column corresponds to the λ1(1) pa-
rameter, the common effect of both variables in the second category. The last three
columns correspond to the edge colour classes formed by λCA(00), the class in which
λCA(01) = λCA(10), and the class formed by λCA(11), respectively.

The corresponding reparametrized model has design matrix

Y =
00
01
10
11





u u1(0) uCA

1 2 0
1 0 1
1 0 1
1 −2 0




.

The first column corresponds to u. The second column represents u1(0), which is
the reparametrization for the unique vertex colour class, and it is obtained summing
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the corresponding reparametrized main effects. The last column corresponds to a
reparametrized parameter representing the equality λCA(01) = λCA(10), i.e. the edge
colour class E3, and it is obtained in the same way as in the quasi-symmetry model.

Using either matrix, X or Y , and eliminating redundant equations we obtain the
following likelihood equations

m̂(i, i) = n(i, i), i = 0, 1;

m̂(i, j) + m̂(j, i) = n(i, j) + n(j, i), i < j, i, j = 0, 1;

which are the likelihood equations obtained for a symmetry model, e.g., Agresti (2002a,
p. 424).

The reparametrizations for symmetry and quasi-symmetry models already explained
can be used for variables with any number of levels. For example, if we had two trico-
tomic variables, X and Y , the matrix associated to the corresponding reparametrized
quasi-symmetry model is

Y =

11
12
13
21
22
23
31
32
33





u uX(1) uX(2) uY (1) uY (2) uXY (12) uXY (13) uXY (23)
1 1 0 1 0 0 0 0
1 1 0 0 1 1 0 0
1 1 0 −1 −1 0 1 0
1 0 1 1 0 1 0 0
1 0 1 0 1 0 0 0
1 0 1 −1 −1 0 0 1
1 −1 −1 1 0 0 1 0
1 −1 −1 0 1 0 0 1
1 −1 −1 −1 −1 0 0 0





.

The rows correspond, from top to bottom, to cells (1, 1), (1, 2), (1, 3), (2, 1), (2, 2),
(2, 3), (3, 1), (3, 2), and (3, 3). The first column corresponds to the constant term u,
the following two to uX(1) and uX(2), the main effects of X for the first two levels of
the reparametrized model, the next two to uY (1) and uY (2), the main effects of Y for
the first two levels of the reparametrized model. The three last columns correspond to
the restrictions λXY (12) = λXY (21), λXY (13) = λXY (31), λXY (23) = λXY (32), respec-
tively, corresponding to the edge colouring.

And for the symmetry model we have
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Y =

11
12
13
21
22
23
31
32
33





u u1(1) u1(2) uXY (12) uXY (13) uXY (23)
1 2 0 0 0 0
1 1 1 1 0 0
1 0 −1 0 1 0
1 1 1 1 0 0
1 0 2 0 0 0
1 −1 0 0 0 1
1 0 −1 0 1 0
1 −1 0 0 0 1
1 −2 −2 0 0 0





.

The rows represent the same cells as before. The second column corresponds to u1(1),
a parameter for the reparametrized model representing the effect of the only vertex
colour class at level one and it is obtained by summing in the previous matrix the
columns corresponding to the main effects of both variables at level one, the second
column corresponds to u1(2), a parameter for the reparametrized model representing
the effect of the only vertex colour class at level two and it is obtained by summing in
the previous matrix the columns corresponding to the main effects of both variables at
level two. The remaining columns represent the same restrictions discussed above for
the symmetry model.

There are alternative ways of reparametrizing symmetry models. Meiser et al. (1997)
based on the work developed by Rindskopf (1990) and von Eye and Spiel (1996) write
the model as

logm(i, j) = β + βij, βij = βji.

where βii is a parameter representing at the same time the main effects and interactions
when the levels are equal for both variables. βij is similar, but it is used when the levels
differ. They also use the constraint

∑

i

βii = 0,

which is an ANOVA type constraint. This constraint makes necessary to use a permuta-
tion of the categories of the kind (i, i) as a reference category. Under this parametriza-
tion, the symmetry model for two tricotomic variables is
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X =

11
12
13
21
22
23
31
32
33





β β11 β22 β12 β13 β23

1 1 0 0 0 0
1 0 0 1 0 0
1 0 0 0 1 0
1 0 0 1 0 0
1 0 1 0 0 0
1 0 0 0 0 1
1 0 0 0 1 0
1 0 0 0 0 1
1 −1 −1 0 0 0





The first column corresponds to the constant term β, the second to the reparame-
trized parameter β11 considering β33 as a reference category, so that we assign 1 to the
entry corresponding to cell (1, 1), -1 to (3, 3) and zero to the other cells. In a similar
way we get the column for β22. The last columns are the same as in the previous
reparametrization and belong to βij for i < j with βij = βji.

We notice that all these reparametrized models can be classified as non-standard
log-linear models as defined by Rindskopf (1990) and discussed by Mair (2007), which
are models whose design matrix has a coding system different to the usual systems,
effect coding and using dummy variables.

3.10 Solution of the likelihood equations

The system of likelihood equations for RGLL models can sometimes be solved using
a closed expression, for example, for a symmetry model (section 2.5.2); however, in
general, numerical methods are used to get an approximated solution. There are two
commonly used methods to fit log-linear models: a) iterative proportional fitting or
IPF. This method was introduced by Deming and Stephan (1940), discussed for in-
stance by Bishop et al. (1975, p. 83-102), Christensen (1997, p. 87-89), Fienberg
(1970), and Lauritzen (1996, p. 82-84), and generalized by expanding the list of proba-
bility distributions in product form that is possible to estimate by maximum likelihood
by Darroch and Ratcliff (1972); and b) Newton-Raphson method or Fisher scoring
method, discussed for instance by Agresti (2002a, p. 143-146 and p. 342-343) and
Christensen (1997, p. 346-347).

We adapt these methods to solve the likelihood equations corresponding to RGLL
models. The Newton-Raphson method is only used when we have a reparametrized
model representing the RGLL model, which means that a full-rank matrix is associated
to the model. The Newton-Raphson method used to fit RGLL models is the same
method presented in categorical data analysis books, for instance in Agresti (2002a,
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p. 342-343), but using the matrix Y associated to the reparametrized model including
the colouring, instead of the commonly used design matrix associated to a model. This
means that if we have the matrix Y , then we can fit the model using any available
software that fits log-linear models using the Newton-Raphson method, for example
SPlus, SPSS, SAS, R, etc.

A method that can always be used is a modification of the IPF method. The com-
monly used IPF method described for example by Lauritzen (1996, p. 82-84) consists
of the following steps applied to every cell i, i ∈ I:

1. Assign a value to m0(i), i ∈ I. For instance, m0(i) = 1.

2. Take all the elements in the generating classA, and order them in a set (b1, b2, ..., bk).
Define Tv = Tbv

, v = 1, 2, ..., k, as

(Tbv
m)(i) = m(i)

n(ibv
)

m(ibv
)
, i ∈ I.

Define recursively

mr+1(i) = (T1T2...Tk)mr(i), r = 0, 1, 2, ....

In every step, we make adjustments for all the elements in the generating class,
which means that we have k sub-steps for every step and every sub-step implies
adjustments in such a way that the marginal count is equal to the marginal
adjusted expected frequency for every bk, which is exactly what the corresponding
likelihood equations say (na(ia) = ma(ia), for all a ∈ A). For example, for the
first step, we have the following sub-steps:

m1
1(i) = m0(i)

n(ibk
)

m0(ibk
)
.

ml+1
1 (i) = ml

1(i)
n(ibk−l

)

ml
1(ibk−l

)
, l = 1, 2, ..., k − 1.

3. The process continues until the maximal difference between the marginal counts
and the marginal adjusted expected frequencies reaches a predetermined error δ.

For RGLL models, there are likelihood equations that have to be solved additional
to the equations obtained for the elements in the generating class A, equations (3.5)
and (3.7), corresponding to first-order interactions and main effects. Therefore, we have
to add other transformations. Supposing that all variables have the same number of
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categories J , we define for every vertex colour class Vk, k = 1, 2, ..., T , the following
transformations

(TVk(1)m)(i) = m(i)

∑
vk

j ∈Vk
n(vk

j = 1)
∑

vk
j ∈Vk

m(vk
j = 1)

, i ∈ {(i1, i2, ..., i∆) ∈ I|ivk
j

= 1, for some vk
j ∈ Vk}

(TVk(2)m)(i) = m(i)

∑
vk

j ∈Vk
n(vk

j = 2)
∑

vk
j ∈Vk

m(vk
j = 2)

, i ∈ {(i1, i2, ..., i∆) ∈ I|ivk
j

= 2, for some vk
j ∈ Vk}

...

(TVk(J)m)(i) = m(i)

∑
vk

j ∈Vk
n(vk

j = J)
∑

vk
j ∈Vk

m(vk
j = J)

, i ∈ {(i1, i2, ..., i∆) ∈ I|ivk
j

= J, for some vk
j ∈ Vk}.

For the edge colour class, El, with l = 1, 2, ..., S, we define the following transfor-
mations for i ∈ {(s1, s2, ..., s∆) ∈ I|slv = iv, srv

= jv, for some {lv = iv, rv = jv} ∈ El}

(TEl
m)(i) = m(i)

∑
{lv=iv ,rv=jv}∈El

n(lv = iv, rv = jv)∑
{lv=iv ,rv=jv}∈El

m(lv = iv, rv = jv)
.

In all cases we define 0/0 = 0. The set {lv = iv, rv = jv} denotes the edge in El

joining variable lv to rv for the value combination (iv, jv), v = 1, ..., ked(l), l = 1, ..., S.

The algorithm to solve RGLL models is similar to the one explained above; however,
we have to add on step 2 these last transformations. That is, we have to get for
r = 0, 1, 2, ...

mr+1(i) = (T1T2...TkTV1(1)TV1(2)...TV1(J)...TVT (1)TVT (2)...TVT (J)TE1TE2 ....TES
)mr(i)

We have to consider that the transformation Tbi
= Ti is applied for |bi| 6= 1, 2 and

that not all transformations associated to the colourings are applied to every cell, it de-
pends on the class and cell. For example, if we have a cell whose entries corresponding
to all the variables in a colouring r are all different to j, then there is no sense to apply
to this cell the transformation corresponding to TVr(j).

The proof of the convergence of this method to the maximum likelihood estimators
is shown in Appendix B.

We have written a Fortran program to fit RGLL models included in the group of
programs called REGRAPH. It fits models using the modified IPF method. It is writ-
ten in Fortran 6.5, using some subroutines from Haberman (1972, 1976) to fit log-linear
models, but most of the subroutines were specifically created for these models. For a
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RGLL model, REGRAPH calculates the fitted expected frequencies, deviance, associ-
ated design matrix for the non-reparametrized model, and degrees of freedom for the
asymptotic chi square distribution associated to the deviance using the design matrix.
Notice that in quasi-symmetry models, exact p-value calculations have been obtained
by numerical computation (Booth et al., 2005).

Numerical results obtained with REGRAPH have been compared with those ob-
tained by using other software like MIM 3.2.0.6 or Splus 6.1 for models in which the
comparison is possible: log-linear models without restrictions, including graphical mod-
els, and symmetry and quasi-symmetry models (section 3.11). In particular, we made
that comparison for the data we present in section 3.11.5 corresponding to risk factors
for coronary heart disease, observing that under the graphical log-linear model pre-
sented there we obtained the same fitted expected frequencies, deviance, and degrees
of freedom using REGRAPH or Splus. We also made comparisons for the symmetry
and quasi-symmetry models applied to the change of residence data introduced in table
2.3 and discussed in section 2.5, and we observed that under the symmetry model the
fitted expected frequencies, deviance, and degrees of freedom were exactly the same
using REGRAPH or Splus and under the quasi-symmetry model the deviance and de-
grees of freedom were the same and the few cells whose expected frequencies differed
corresponded to differences of only one hundredth. We do not present all these tables
here because they are tables in which the same values are constantly repeated; however,
the quasi-symmetry model and RGLL models obtained from it are further discussed in
section 3.11.5 so that the fitted expected frequencies under the quasi-symmetry model
can be found in table 3.3 using REGRAPH and table 2.4 using S-Plus.

In REGRAPH, the user provides the data, including the number of variables and
number of categories for each variable, as well as the generating class, and the vertex
and edges colour classes of the model. In the following section we show in detail how
this process is done.

The generating class has to be known, if we do not know it, we could use a model
search procedure to look for a graphical log-linear model that fits the data. This process
can be done in any available software for graphical models, for example, MIM.

3.11 Fit and selection of RGLL models with RE-

GRAPH

In this section we describe the set of six independent programs that conform REGRAPH
that allow to fit, join colour classes, and select RGLL models for some data.
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REGRAPH was written in Fortran 6.5. This language was chosen because of its
speed, specially for algorithms that involve a lot of nested cycles, which is what happens
in this problem. In Fortran each of the independent programs in REGRAPH forms a
Workspace which is composed of different subroutines found in different independent
files and a main program that calls all these subroutines, all of these files are opened
once we open the Workspace. All programs and their corresponding subroutines are
commented and explained in their corresponding files, so that the user is able to un-
derstand each step and if he wants to, he can modify any subroutine or process.

The different processes that can be done with the different Workspaces in RE-
GRAPH are:

1. Fit a RGLL model. The user provides the data, the generating class, and the
vertex and edge colour classes. The name of this Workspace is ajustemodlogli-
nealrestingles8102008.dsw.

2. Join two vertex colour classes. In this case the user has a RGLL model and what he
needs to know is if joining two vertex colour classes, he gets a model with a better
fit to the data. This Workspace is called unirclasesporvertingles10102008.dsw.

3. Join two edge colour classes. In this case the user has a RGLL model and what he
needs to know is if joining two edge colour classes, he gets a model with a better
fit to the data. This Workspace is called unirclasesporaringles10102008.dsw.

4. Selection of a RGLL model restricted only in its main effects or vertex colouring.
This Workspace, called aprenderclasesverting10102008.dsw, allows us to get a
RGLL model restricted in its main effects only that fits the data.

5. Selection of a RGLL model restricted only in its first-order interactions or edge
colouring. This Workspace, called aprenderclasesaring10102008.dsw, allows us to
get a RGLL model restricted in its first-order interactions only that fits the data.

6. Selection of a RGLL model restricted in both its main effects and first-order inter-
actions. This Workspace, called aprenderclasveryaring10102008.dsw, allows us to
get a RGLL model restricted in both its main effects and first-order interactions
that fits as good as possible to some data.

3.11.1 Reading data and other information

There are three input files that the user provides: the data, the generating class, and a
file with the edge colour classes.
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Data should be given as a table in a file with extension .dat. We consider that
the variables are labeled as variable 1, variable 2, etc. This input file must include:
a) the number of variables |V | as an integer with maximum length 5, b) the number
of categories or levels of each variable (|Iδ|)δ∈V , and c) a table with all possible values
that can be taken by all variables or cells i followed by the observed count n(i) and by
the algorithm initial values for each cell m0(i), it has to be a positive number and by
convention m0(i) = 1 is generally used. In both, levels and cells, we consider the same
order previously given for the labeling; i.e. the first column corresponds to variable 1,
the second one to variable 2, and so on. For simplicity, all values except the number of
variables, are introduced as real values with two decimal digits and a maximum length
of 8 including the decimal point. This eliminates the need of having to distinguish
which values are real and which are not.

The generating class should be provided in a file with extension .dat. This file
includes: a) the number of elements in the generating class |A| and b) in different
rows the variables forming each of these elements. All these values are introduced
as integers with a maximum extension of 5 digits. This restriction can be modified
in the main program. We suppose that the generating class is provided by the user,
that is, the program does not select generating classes for RGLL models. If the user
does not know which generating class fits the data, then he can get it using any avail-
able software that allows model selection for graphical models, we chose to use MIM
which is freely available in http://www.hypergraph.dk, and with a manual describing
implementation-specific aspects of MIM in Edwards (2000, Appendix B).

REGRAPH provides different options with the goal that, according to the user de-
sires, the process could become more automatized or that we could have more control
over some parts. One of these options is the possibility of fitting models in which
each vertex and edge are in different atomic classes, i.e. unrestricted models, which
we call default models. In this case, the program obtains all simple edges as if the
model were graphical using the generating class, these edges are of the form {i, j}, with
i < j, where i and j are labels for the variables, and from them it obtains the multiple
edges considering all the level permutations. Additionally, the program gets from the
generating class all subsets containing three or more elements eliminating all repeated
subsets, these subsets are important because we use them to get the degrees of freedom
associated to the model. Other options available in REGRAPH are changing the names
for the output files or for the labeling in the graph.

When the user provides colour classes, i.e. when not all classes are atomic, we
observed that everything was simplified if the user provided a file with the elements
forming each edge colour class. Then, for the edge classes, the program requires the
number of colour classes S and the number of elements ked(t) in each class t, t = 1, ..., S.
The user provides a .dat file containing E1, E2, ...., ES in the following way: the first
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ked(1) rows are the edges in the class 1, E1, the following ked(2) represent the edges in
class 2, E2, and so on. The edges are given using four columns, the first two correspond
to the variables that are joined by an edge, ltr and mt

r, r = 1, 2, ..., ked(t); t=1,2,...,S,
and the last two columns correspond to a particular permutation of the levels of the
two variables that are joined, (itr, j

t
r), r = 1, 2, ..., ked(t); t=1,2,...,S. The file is formed

by integer values with a length of maximum 5 digits. For the vertex colouring is quite
simple for the user to provide the classes V1, ...., VT that the program needs without
providing an additional file.

A final observation is that we have fitted and analyzed RGLL models with at most 6
variables and 4 levels; however, all algorithms were built considering that we could have
greater number of variables and levels. Of course, if the number of variables and levels
increases too much, then we could start having problems with REGRAPH because the
input files become longer and more difficult to write, for instance providing the data
containing the edge colour classes could be difficult considering that the number of
first-order interactions also increases. On the other hand, obtaining the design matrix
X requires a lot of nested cycles and if the number of variables or levels increased
too much, these processes would get too slow, in this case the routines used to obtain
the rank of X would also start to fail. As we increase the number of variables or
levels we probably would start having some problems with the routines used to obtain
marginal counts and to get proportional adjustment because the number of cells in the
corresponding marginal tables also increases, then a lot of margins should be obtained
and consequently the routines for proportional adjustment will require longer processes
because they depend on different margins and sum of these margins updated in each
step of the iterations and even though not all margins are stored in new vectors in each
step, they still are obtained using many nested cycles. There are even more cycles when
we consider all steps required to obtain convergence. Finally, increasing the number
of variables may produce graphs with too many edges and colours with no simple
interpretation.

3.11.2 Fitting a RGLL model

Once the user provides the data, generating class, and colouring, the likelihood equa-
tions can be approximately solved using the modified IPF algorithm defined in section
3.10. Firstly, the program provides the estimated parameters for a graphical log-linear
model without considering colour classes according to the generating class. These es-
timates are obtained using a Newton-Raphson algorithm available in one library in
Fortran. These values could be useful if the user wanted to identify if some parameters
are similar to see if there are some colour classes he could use for his data; however, if
he does not have any idea of which classes to use, it is advisable to use a model selection
method as we describe below in section 3.11.4.
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The most important routines used in REGRAPH to fit a RGLL model are the
following:

1. collapver and collapar. Haberman (1972, 1976) proposed three subroutines used
to fit log-linear models. One of these routines is called COLLAP and allows us
to get the marginal counts from a contingency table according to a generating
class. In log-linear models these margins are used in the original table and in the
different tables generated when we fit the expected frequencies in each iteration.
We modified this routine in subroutines that allow us to get the sum of margins
required both for the vertex and edge colourings; i.e., we get values of the type
n(vi

k = l)=
∑

j:j
vi
k
=l n(j), l = 1, 2, ..., J ; k = 1, ..., kver(i); i = 1, 2, ..., T and

n(ltk = itk,m
t
k = jt

k)=
∑

s:(s
lt
k
,s

mt
k
)=(it

k
,jt

k
) n(s), k = 1, ..., ked(t); t = 1, ..., S. We

called these subroutines collapver and collapar, respectively.

2. sumver and sumaris. These subroutines allow us to sum some margins according
to the elements conforming the classes; i.e., they are used to obtain values of the
kind

∑
vk

j ∈Vk
m(vk

j = l), l = 1, 2, ..., J ; k = 1, 2, ..., T or
∑

{lv=iv ,rv=jv}∈Et
m(lv =

iv, rv = jv), t = 1, ..., S; respectively.

3. LOGLINREST. Haberman (1972, 1976) proposes a routine called ADJUST that
allows to get a proportional adjustment for each cell in a table according to the
elements in the generating class. This routine was used to fit the elements in
the generating class with a cardinality greater than three and parts of it were the
basis to create processes that allow the fit of vertex and edge colour classes. These
processes were included in a bigger routine, subroutine LOGLINREST, which is
used to iteratively solve the likelihood equations corresponding to a RGLL model
according to the modified IPF method. Here and in general, we considered posi-
ble errors we could have because the data provided by the user were wrong, for
example when a set in the generating class has the same variable repeated twice
or more times, with something missing, or if there were a problem in the fitting
process. These errors are reported to the user. Some of these possibilities made
necessary to create new subroutines or modify the existing ones, for example the
lack of edge colour classes, like when we do not have edges, which happens in
an independence model, made necessary to create a new routine called LOGLIN-
RESTScero which is a modification of subroutine LOGLINREST.

4. Xinterac, efprinc, and Xaris. We created algorithms and their corresponding
associated subroutines, that allow us to obtain for any RGLL model the parts
of the design matrix X for interactions of order greater than one X int.≥2, for
vertex colourings

∑T
i=1

∑
j XVi(j), and for edge colourings

∑S
l=1 XEl ; subroutines

Xinterac, efprinc, and Xaris, respectively, as described in sections 3.9.1, 3.9.2,
and 3.9.3. Parts of these algorithms were inspired on the method presented by
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Murray and Speed (1978). The different parts conforming the design matrix X,
i.e., the matrices for the vertex colouring, edge colouring, and interactions of order
greater than one are saved with the names matrizefprinc.dat, matrizaristas.dat,
and matrizinteracciones.dat, repectively.

5. gradoslibcol and gradoslibScero. We get the design matrix X, which is available
for the user with the name matrizdiseno.dat. We also get the rank of the design
matrix and as a consequence the number of degrees of freedom associated to the
model. In the main program the number of degrees of freedom are corrected when
there are estimated zeros or if some of the margins for the elements we want to
fit are zero.

6. pvalue. Using the number of degrees of freedom and the deviance value we get
the corresponding p-value for testing the hypothesis that a RGLL model fits the
data.

7. graficascoloreadas and graficascoloreadasdef. These subroutines generate a file
that can be used to get the corresponding associated graph according to the
options selected by the user, these can be default options or the user could provide
the width, height, direction, and labels used on the graph and the name of the
file.

All these subroutines are joined in a main program. This program reads the data
and orders them according to the order used in Fortran to write matrices. In fact, most
of the information, like the generating class, the elements conforming the vertex colour
classes, and each of the elements conforming the edge colour classes (labels and levels)
are rewritten in a matricial form or in some cases in a vectorial form, for example the
observed counts and fitted values. After this process, we call all the different subrou-
tines including the ones described above to finally fit the model.

We have as output the deviance, number of degrees of freedom, and the p-value
associated to the model. Additionally, the fitted expected frequencies m̂(i) are saved in
a file with extension .dat containing the fitted values in the same order as in the table
provided by the user. We also get as output a file with extension .dot containing instruc-
tions that can be easily run in the free software Graphviz (http://www.grapviz.org)
by simply opening it and pressing the run button. By doing this, we get an image file
containing the coloured graph associated to the model.

By default, the output files for the fitted values are named by concatenating the
word fit with the name of the data and the number of vertex and edge colour classes.
For the graph output, the word graph is concatenated instead of the word fit. In addi-
tion, by default the maximum number of iterations for the modified IPF algorithm is
5000 and the maximum allowed difference between the estimated margins or the sum of
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estimated margins that solve the different likelihood equations and the corresponding
observed values is 0.05.

A final observation is that in this Workspace, as well as in all others, all input and
output files are contained in the same folder in which the Workspace is located.

3.11.3 Joining colour classes

In this case the user has a RGLL model and he provides two colour classes he wants
to join, such classes are chosen using information that the user somehow knows or
suspects. What the user wants to know is if joining those colour classes, he gets a
model with a better fit to the data. When he does not know which classes to join, then
a selection method may be used instead as discussed in section 3.11.4, the selection
methods automatically join colour classes according to a computational procedure that
iteratively joins colour classes.

Vertex colour classes

The subroutines used in the corresponding Workspace are the same already seen in
section 3.11.2 plus two additional subroutines:

unirvert and maxkverprima. These subroutines generate matrices used internally
in REGRAPH to represent vertex colour classes updated according to the new vertex
colour classes obtained once joining two classes. Such matrices will be used in the sub-
routine that fits the new model and to get a new design matrix in which we represent
the new colour classes.

The main program is basically the same as before, as well as the required input files,
but we add a part for the class joint. The user provides the classes he wants to join and
a significance level. This significance level is used to test the null hypothesis that both
models explain in a similar way the data, which happens when the deviance difference
is small. If we do not reject the null hypothesis, we keep the model joining the classes
because it is a more parsimonious model.

The process followed in the main program is the following. We fit the new model
obtained by joining colour classes and take the degrees of freedom and deviance dif-
ferences between the new and original models. If the degrees of freedom difference is
zero, we choose the model with the largest p-value. If the degrees of freedom difference
is positive, we have two cases: when the deviance difference is negative, we prefer the
new reduced model because it has a smaller deviance and more degrees of freedom
than the larger model. When the deviance difference is non-negative, we need to do an
hypothesis test to test that both models explain in a similar way the data using the
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deviance and degrees of freedom differences. If the p-value for this test is greater than
the significance level, we do not reject the null hypothesis and we keep the reduced
model.

REGRAPH provides the user for both, the original and reduced model, with the
deviances, degrees of freedom, p-values, and the fitted values under the original model
and under the reduced model when it is convenient to join the colour classes. By default
the fitted values are saved in files named by concatenating the word fit1, for the original
model, or fit2, for the new model, with the name of the file containing the data, and
the number of vertex and edge colour classes in the model. The program also produces
as output the necessary files to create the graph of the model we chose as discussed in
section 3.11.2. The name of these files are composed by default by the concatenation
of the word graph with the name of the data and the corresponding vertex and edge
colour classes.

Edge colour classes

The subroutines, processes, hypothesis tests, and outputs are similar to the ones ex-
plained in the previous case only that using edge colour classes instead of vertex colour
classes. In this case, the corresponding Workspace requires two additional subroutines:

unirar and maxkarprima. These subroutines generate matrices used internally in
REGRAPH to represent edge colour classes updated according to the new colour classes
obtained once joining two edge colour classes. Such matrices will be used in the sub-
routine that fits the new model and to get a new design matrix in which we represent
the new colour classes.

3.11.4 Model selection

In this section we discuss selection methods that can be used to obtain from an initial
RGLL model, or even a graphical log-linear model or default model when the user
does not have a RGLL model, a RGLL model that fits, according to tests based on
the deviance, as good as possible to the data. This process is obtained by iteratively
joining colour classes.

Selection of a RGLL model restricted only in its main effects

The subroutines contained in the corresponding Workspace, aprenderclasesverting1010
2008.dsw, are the same used in unirclasesporvertingles10102008.dsw, the Workspace
that joins vertex colour classes, but now we iteratively apply the joint of distinct classes.

We start with an initial RGLL model provided by the user, the input files are the
same explained in section 3.11.1. If we do not have an initial RGLL model, i.e. we
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know the generating class but not the colouring, we could tell the program that we are
using a default model, i.e. the model in which each vertex and edge is in a different
atomic class. Using the initial model and a significance level provided by the user, for
example α = 0.05, the program iteratively joins, when it is convenient, different vertex
colour classes.

In general terms, the iterative process consists in testing if it is convenient to join
the first and last class according to the criteria seen above in 3.11.3, if it is so, we get
a new class and we update all matrices and vectors representing this new colouring.
Otherwise, we test if it is convenient to join the second and last class, if it is not the
case, we continue the process in a similar way until we test if it is convenient to join
the the last but one and last class, if this joint were not convenient, then we would
start the same comparison but using the last but one class instead of the last class.
The process continues by trying to join different colour classes until we cover all pos-
sible joints. When two any classes are joined, the new class is considered as a new
class, so that we apply the same process but considering the new class. The process
ends when it is not convenient to join more classes or when all classes are joined into one.

REGRAPH allows the user to modify options along the process, including those
in which default values are defined, for example the name of the output files, graph
labels, maximum number of iterations, etc. We get for both, the original and selected
model, the same statistics as before: deviance, degrees of freedom, and p-values. We
also get the matrix for the elements forming each colour class. This matrix has as many
columns as classes and each column represents the vertices forming each class; i.e. col-
umn i contains the elements vi

k, k=1,...,kver(i). This information is also represented in
the graph that REGRAPH generates.

Finally, we get for the initial and selected model as output the fitted expected
frequencies and a file that allows to obtain the graph for the selected model as described
in 3.11.2. The fitted values are saved by default in a file whose name is formed by
concatenating the word fit1, for the original model, or fit2, for the chosen model, with
the name of the data and the vertex and edge colour classes that each model contains.
The graph is named by default by concatenating the word graph with the name of the
data and the vertex and edge colour classes.

Selection of a RGLL model restricted only in its first-order interactions

The process to select a model is the same used in selection of a RGLL model restricted
only in its main effects, the only difference is that we use edge colour classes instead of
vertex colour classes.

As before, from an initial RGLL model provided by the user or a default model, a
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RGLL model that fits as good as possible to the data according to the goodness of fit
statistic corresponding to the deviance is obtained with the corresponding value of its
deviance and fitted cell counts. These values are obtained for both, the original and
selected model.

We also get four matrices that indicate which edges form each colour class. These
matrices have as many columns as colour classes. A first matrix has columns whose
rows for the t column represent the variables that conform the first element of which
will become the edges in the colour class t, i.e. ltr, r = 1, 2, ..., ked(t). For the second
matrix and the same column t, the rows represent the variables conforming the second
element for the edges in the colour class t, i.e. mt

r, r = 1, 2, ..., ked(t). The last two
matrices are similar but correspond to the levels conforming the edges, i.e. itr and jt

r,
r = 1, 2, ..., ked(t). So that if we take the row r and the column t in each of these
matrices, then we get the edge r in the colour class t or ultrmt

r
(itrj

t
r) because we have

the variables and levels forming it. This information is also represented in the graph
REGRAPH generates. The default names for the output files are similar to the ones
described above for RGLL models restricted only in their main effects.

Selection of a RGLL model restricted in its main effects and first-order
interactions

This Workspace first performs the process described for selection of a RGLL model
restricted only in its main effects and after that the process described for selection
of a RGLL model restricted only in its first-order interactions. Then, from a given
RGLL model, possibly a default model, and a given significance level, we get a RGLL
model colouring both the vertices and edges that fits as good as possible to the data.
As before, the program displays goodness of fit statistics as well as the fitted expected
frequencies for both the original and selected models. Additionally, we obtain a coloured
graph corresponding to the selected model and matrices that show which elements are
in which colour class. This information is also contained in the graph generated by
REGRAPH. The default names for the output files are similar to the ones described
for the two other cases.

3.11.5 Examples

The first example corresponds to a data set analyzed by Edwards (2000, p. 22-26) and
Edwards and Havránek (1985) corresponding to risk factors for coronary heart disease
for a sample of 1,841 car-workers in Czechoslovakia to whom the following questions
were asked: if they had family with history of coronary heart disease (F), if the ratio of
beta to alpha lipoproteins was less than three (E), if their systolic blood pressure was
less than 140 mm. (D), if their work was strenuous physically (C), if their work was
strenuous mentally (B), and if they smoked (A).
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All variables have the same two categories labeled as 1 and 2 for Yes and No, re-
spectively. Edwards presents the data in the format used in MIM and according to the
way in which Edwards (2000, p. 255) explains how the format is defined, we organized
the data in a table (table 3.2). Observe that we present all values as real numbers with
two decimals because as we explained in section 3.11.1 this is the way the data are
read in REGRAPH.

Edwards (2000, p. 24-26) selected an adequate graphical log-linear model for these
data by using in MIM a backward selection method starting with the saturated model
as initial model. We recreated the same process using MIM 3.2.0.6 and got the same
graphical log-linear model he obtained, see Edwards (2000, p. 24-25), such model has
generating class {{A,D,E}, {A,C,E}, {B,F}, {A,B,C}}, Model 1.

F E D C B A Obs.
count

Initial
val.

Exp.
freq.
mod. 1

Exp.
freq.
mod. 2

Dev.
cont.
mod. 1

Dev.
cont.
mod. 2

1.00 1.00 1.00 1.00 1.00 1.00 44.00 1.00 41.05 49.16 6.11 -9.76
1.00 1.00 1.00 1.00 1.00 2.00 40.00 1.00 33.23 37.42 14.83 5.33
1.00 1.00 1.00 1.00 2.00 1.00 112.00 1.00 106.24 109.05 11.83 5.98
1.00 1.00 1.00 1.00 2.00 2.00 67.00 1.00 69.22 63.34 -4.37 7.53
1.00 1.00 1.00 2.00 1.00 1.00 129.00 1.00 124.31 125.95 9.55 6.17
1.00 1.00 1.00 2.00 1.00 2.00 145.00 1.00 142.15 146.66 5.76 -3.30
1.00 1.00 1.00 2.00 2.00 1.00 12.00 1.00 14.27 10.60 -4.16 2.98
1.00 1.00 1.00 2.00 2.00 2.00 23.00 1.00 24.07 20.64 -2.09 4.98
1.00 1.00 2.00 1.00 1.00 1.00 35.00 1.00 32.67 34.57 4.82 0.87
1.00 1.00 2.00 1.00 1.00 2.00 12.00 1.00 16.08 16.33 -7.02 -7.39
1.00 1.00 2.00 1.00 2.00 1.00 80.00 1.00 84.54 76.70 -8.83 6.74
1.00 1.00 2.00 1.00 2.00 2.00 33.00 1.00 33.50 34.98 -0.99 -3.85
1.00 1.00 2.00 2.00 1.00 1.00 109.00 1.00 98.92 112.45 21.15 -6.79
1.00 1.00 2.00 2.00 1.00 2.00 67.00 1.00 68.80 64.02 -3.55 6.10
1.00 1.00 2.00 2.00 2.00 1.00 7.00 1.00 11.35 9.43 -6.77 -4.17
1.00 1.00 2.00 2.00 2.00 2.00 9.00 1.00 11.65 11.40 -4.65 -4.25
1.00 2.00 1.00 1.00 1.00 1.00 23.00 1.00 27.01 22.42 -7.39 1.17
1.00 2.00 1.00 1.00 1.00 2.00 32.00 1.00 31.19 29.01 1.64 6.28
1.00 2.00 1.00 1.00 2.00 1.00 70.00 1.00 69.90 74.01 0.20 -7.80
1.00 2.00 1.00 1.00 2.00 2.00 66.00 1.00 64.98 63.56 2.06 4.97
1.00 2.00 1.00 2.00 1.00 1.00 50.00 1.00 52.83 50.10 -5.51 -0.20
1.00 2.00 1.00 2.00 1.00 2.00 80.00 1.00 84.51 84.72 -8.77 -9.17
1.00 2.00 1.00 2.00 2.00 1.00 7.00 1.00 6.06 7.70 2.02 -1.33
1.00 2.00 1.00 2.00 2.00 2.00 13.00 1.00 14.31 15.43 -2.50 -4.46
1.00 2.00 2.00 1.00 1.00 1.00 24.00 1.00 26.86 22.30 -5.40 3.53
1.00 2.00 2.00 1.00 1.00 2.00 25.00 1.00 26.11 21.45 -2.17 7.66
1.00 2.00 2.00 1.00 2.00 1.00 73.00 1.00 69.51 73.61 7.15 -1.21

Continues in the following page
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Continues from the previous page
F E D C B A Obs.

count
Initial
val.

Exp.
freq.
mod. 1

Exp.
freq.
mod. 2

Dev.
cont.
mod. 1

Dev.
cont.
mod. 2

1.00 2.00 2.00 1.00 2.00 2.00 57.00 1.00 54.39 59.44 5.34 -4.78
1.00 2.00 2.00 2.00 1.00 1.00 51.00 1.00 52.54 49.82 -3.03 2.39
1.00 2.00 2.00 2.00 1.00 2.00 63.00 1.00 70.73 62.62 -14.58 0.76
1.00 2.00 2.00 2.00 2.00 1.00 7.00 1.00 6.03 7.65 2.09 -1.24
1.00 2.00 2.00 2.00 2.00 2.00 16.00 1.00 11.98 14.43 9.26 3.30
2.00 1.00 1.00 1.00 1.00 1.00 5.00 1.00 5.92 5.13 -1.69 -0.26
2.00 1.00 1.00 1.00 1.00 2.00 7.00 1.00 4.79 5.83 5.31 2.56
2.00 1.00 1.00 1.00 2.00 1.00 21.00 1.00 20.53 19.84 0.95 2.39
2.00 1.00 1.00 1.00 2.00 2.00 9.00 1.00 13.38 11.52 -7.14 -4.44
2.00 1.00 1.00 2.00 1.00 1.00 9.00 1.00 17.93 10.38 -12.41 -2.57
2.00 1.00 1.00 2.00 1.00 2.00 17.00 1.00 20.50 22.84 -6.37 -10.04
2.00 1.00 1.00 2.00 2.00 1.00 1.00 1.00 2.76 2.88 -2.03 -2.12
2.00 1.00 1.00 2.00 2.00 2.00 4.00 1.00 4.65 3.76 -1.20 0.50
2.00 1.00 2.00 1.00 1.00 1.00 4.00 1.00 4.71 3.61 -1.31 0.82
2.00 1.00 2.00 1.00 1.00 2.00 3.00 1.00 2.32 3.22 1.54 -0.42
2.00 1.00 2.00 1.00 2.00 1.00 11.00 1.00 16.34 13.95 -8.71 -5.23
2.00 1.00 2.00 1.00 2.00 2.00 8.00 1.00 6.47 6.36 3.40 3.67
2.00 1.00 2.00 2.00 1.00 1.00 14.00 1.00 14.27 11.73 -0.53 4.95
2.00 1.00 2.00 2.00 1.00 2.00 17.00 1.00 9.92 12.61 18.31 10.16
2.00 1.00 2.00 2.00 2.00 1.00 5.00 1.00 2.19 2.56 8.26 6.69
2.00 1.00 2.00 2.00 2.00 2.00 2.00 1.00 2.25 2.07 -0.47 -0.14
2.00 2.00 1.00 1.00 1.00 1.00 7.00 1.00 3.90 4.42 8.19 6.44
2.00 2.00 1.00 1.00 1.00 2.00 3.00 1.00 4.50 4.52 -2.43 -2.46
2.00 2.00 1.00 1.00 2.00 1.00 14.00 1.00 13.51 13.46 1.00 1.10
2.00 2.00 1.00 1.00 2.00 2.00 14.00 1.00 12.56 13.33 3.04 1.37
2.00 2.00 1.00 2.00 1.00 1.00 9.00 1.00 7.62 7.80 3.00 2.58
2.00 2.00 1.00 2.00 1.00 2.00 16.00 1.00 12.19 13.19 8.70 6.18
2.00 2.00 1.00 2.00 2.00 1.00 2.00 1.00 1.17 2.09 2.14 -0.18
2.00 2.00 1.00 2.00 2.00 2.00 3.00 1.00 2.77 3.24 0.48 -0.46
2.00 2.00 2.00 1.00 1.00 1.00 4.00 1.00 3.87 4.39 0.26 -0.74
2.00 2.00 2.00 1.00 1.00 2.00 0.00 1.00 3.77 4.23 0.00 0.00
2.00 2.00 2.00 1.00 2.00 1.00 13.00 1.00 13.43 13.39 -0.85 -0.77
2.00 2.00 2.00 1.00 2.00 2.00 11.00 1.00 10.51 12.46 1.00 -2.74
2.00 2.00 2.00 2.00 1.00 1.00 5.00 1.00 7.58 7.76 -4.16 -4.40
2.00 2.00 2.00 2.00 1.00 2.00 14.00 1.00 10.20 12.34 8.87 3.53
2.00 2.00 2.00 2.00 2.00 1.00 4.00 1.00 1.17 2.08 9.83 5.23
2.00 2.00 2.00 2.00 2.00 2.00 4.00 1.00 2.31 3.03 4.39 2.22

Table 3.2: Observed counts, fitted values, and deviance contribution for a study of coronary
heart disease in a sample of 1,841 car-workers under two models: a) Model 1, graphical log-
linear model with generating class {{A, D, E}, {A, C, E}, {B, F}, {A, B, C}} and 2) Model
2, a RGLL model with the same generating class.

In terms of REGRAPH, we should include in one input file: a) the number of vari-
ables, |V | = 6, b) the total number of categories for each variable as real values with
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two decimals, (|Iδ|)δ∈∆= (2.00, 2.00, 2.00, 2.00, 2.00, 2.00, 2.00), and c) all columns
in the data presented in table 3.2 before the column (including it) corresponding to
the initial values for the algorithm, m0(i). Additionally, as all these programs work
with numeric labels instead of with characters, we have that the variable associated to
the first column, F , corresponds to variable 1, so that we label it as 1, the variable
associated to the next column corresponds to variable 2, so that we assign to it the
label 2, and so on. As a consequence, the generating class for this model is {{6, 3, 2},
{6, 4, 2}, {5, 1}, {6, 5, 4}}. The input file for the generating class should include: a) the
number of elements in the generating class, |A| = 4, and b) in different rows we should
add each element conforming the generating class written according to the labeling.

The estimated expected frequencies under Model 1 using the program in REGRAPH
that fits RGLL models, considering that each vertex and edge colour class is atomic,
that is a graphical log-linear model, is presented in the ninth column of table 3.2. The
deviance for this model is 51.36 with 46 degrees of freedom and a p-value of 0.27, so that
in general, for example for a significance level of 0.05, we do not reject the null hypothe-
sis that this model fits the data well. The Pearson X2 statistic is 51.10. If we use Splus
to fit the model, we get exactly the same expected estimated frequencies, deviance, and
degrees of freedom as the corresponding ones computed by using REGRAPH. If we do
all calculations using MIM, we get also a deviance of 51.36 with the same degrees of
freedom. MIM gets the estimated frequencies using a methodology based on the fact
that this is a decomposable model so that it gets the estimators by using closed formulas.

If we use the program in REGRAPH that selects a model, for both vertex and edge
classes, that fits as good as possible to some data in the sense that the deviance and
tests based on it are used in the selection process to see if it is convenient to join classes
to obtain a new RGLL model, considering besides that the initial model is the one
in which all vertices and edges are in different atomic classes, that we use the default
convergence options, a significance level of 0.05, and the same generating class as in
Model 1, then we get a new model, Model 2, with a deviance of 30.40 with 46 degrees of
freedom, a p-value of 0.96, and Pearson X2 statistic of 26.55. This means that Model 2
has a much better fit to the data than Model 1. The estimated expected frequencies are
shown in the tenth column of table 3.2. The eleventh and twelfth columns of this table
correspond to the deviance contribution of each cell for both models, i.e. twice the ob-
served count multiplied by the logarithm of the observed count divided by the expected
frequencies under each model, 2n(i) log(n(i)/m̂k(i)). Obviously, the smaller these terms
are, the better fit to the data. In this case, 39 cells fitted under Model 2 have a less de-
viance contribution than the corresponding cells under Model 1, in 16 cells we have the
opposite, and with the remaining 9 the contribution is almost the same for both models.

Model 2 has three vertex colour classes and 13 edge colour classes as follows:
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V1 = {1, 2, 5, 6}, V2 = {3}, V3 = {4}.

E1 = {u36(11)}, E2 = {u36(12)}, E3 = {u36(21)}, E4 = {u24(21)}, E5 = {u46(12)},

E6 = {u15(12)}, E7 = {u15(21)}, E8 = {u26(22), u46(21), u24(22), u15(22)},

E9 = {u36(22), u23(12), u46(11), u15(11)}, E10 = {u26(21), u26(11), u23(22), u23(21), u56(22)},

E11 = {u24(11), u26(12), u23(11), u56(21)}, E12 = {u45(12), u56(11), u45(11), u45(21), u56(12)},

E13 = {u46(22), u24(12), u45(22)}.

The graph for this model obtained using Graphviz is shown in figure 3.9, this graph
was organized and reordered in such a way that it matches up with the one shown by
Edwards (2000, p. 26) when he fits a usual graphical log-linear model.
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Figure 3.9: Vertex and edge colouring for a RGLL model generated by {{2, 3, 6}, {2, 4, 6},
{1, 5}, {4, 5, 6}}, with vertex set V = (V1, V2, V3), V1= {1, 2, 5, 6}, V2 = {3}, and
V3 = {4}, and first-order interactions set E= (E1, E2, ..., E13), E1 = {u36(11)}, E2=
{u36(12)}, E3= {u36(21)}, E4= {u24(21)}, E5= {u46(12)}, E6= {u15(12)}, E7= {u15(21)},
E8= {u26(22), u46(21), u24(22), u15(22)}, E9= {u36(22), u23(12), u46(11), u15(11)}, E10 =
{u26(21), u26(11), u23(22), u23(21), u56(22)}, E11 = {u24(11), u26(12), u23(11), u56(21)}, E12

= {u45(12), u56(11), u45(11), u45(21), u56(12)}, E13 = {u46(22), u24(12), u45(22)}.

The second example corresponds to RGLL models for the data on change of region
of residence, table 2.3, presented in Chapter 2, section 2.5. In this case, the best fit
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was achieved by using a quasi-symmetry model. As we saw before in section 3.7, these
models are a particular case of RGLL models. In terms of REGRAPH, we label the
vertex associated to region of residence in 1980 as 1 and the one associated to region
of residence in 1985 as 2. Similarly, the levels corresponding to regions Northeast,
Midwest, South, and West are labeled 1, 2, 3, and 4, respectively. As in 3.7, the quasi-
symmetry model is associated to a graph with two vertex colour classes and ten edge
colour classes as follows:

V = (V1, V2); V1 = {1}, V2 = {2}.

E = (E1, ...., E10); Ei = {u12(ii)}, i = 1, .., 4,

E5 = {u12(12), u12(21)}, E6 = {u12(13), u12(31)}, E7 = {u12(14), u12(41)}

E8 = {u12(23), u12(32)}, E9 = {u12(24), u12(42)}, E10 = {u12(34), u12(43)}.

The graph corresponding to this model is presented in figure 3.10.
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Figure 3.10: Quasi-symmetry model presented as a RGLL model with generating class
{1,2}, vertex set V = (V1, V2), V1={1} and V2={2}, and with first-order interaction set
E=(E1,E2,...,E10), Ei={u12(ii)}, i = 1, .., 4, E5={u12(12), u12(21)}, E6={u12(13), u12(31)},
E7= {u12(14), u12(41)}, E8={u12(23), u12(32)}, E9={u12(24), u12(42)}, E10={u12(34),
u12(43)}.

The estimated expected frequencies under this model using the program in RE-
GRAPH that fits RGLL models (table 3.3) are almost the same obtained in table 2.4
shown in Chapter 2, section 2.5, where SPlus was used to fit the model. The few cell
counts that change, differ only by a hundredth. The deviance is the same value got
before, 2.99, with 3 degrees of freedom with a p-value of 0.39 and Pearson statistic
value of 2.98. This means that in general we do not reject the null hypothesis that the
model fits the data.

The input files to fit the previous model are two, a file containing: a) the number
of variables, |V | = 2, b) the number of levels for each variable as real values with two
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Residence in 1980
Residence in 1985

Northeast Midwest South West

Northeast
11607.00 95.78 370.42 123.77
(11607) (100) (366) (124)

Midwest
91.22 13677.00 501.69 311.11
(87) (13677) (515) (302)

South
167.57 238.31 17819.00 261.12
(172) (225) (17819) (270)

West
63.23 166.89 294.88 10192.00
(63) (176) (286) (10192)

Table 3.3: Estimated expected frequencies under the RGLL model with generating class {1,
2}, with vertex set V = (V1, V2), V1={1} and V2={2}, and with first-order interaction set
E=(E1,E2,...,E10), Ei={u12(ii)}, i = 1, .., 4, E5={u12(12), u12(21)}, E6={u12(13), u12(31)},
E7= {u12(14), u12(41)}, E8={u12(23), u12(32)}, E9={u12(24), u12(42)}, E10={u12(34),
u12(43)}, and observed values in parenthesis.

decimals, (|Iδ|)δ∈∆= (4.00, 4.00, 4.00, 4.00), and c) the contingency table as real values
with two decimals, in this case we introduce all cells i, first the values related to the
variable associated with vertex 1 and then those related to the variable associated to
vertex 2, followed by the observed count n(i) and initial values m0(i) = 1. We also
need an input file for the generating class, this file contains: a) the number of elements
in the generating class, |A| = 1, which represents in this case that the generating class
has only one element and b) the elements of this class, 1 and 2 or {1, 2}.

Starting from the quasi-symmetry model, we want to select a RGLL model using
the selection by only edges method that fits the data. Using the corresponding program
in REGRAPH, the convergence default options, and a significance level of 0.05 for all
tests that allow joining colour classes, we get a model whose fit is shown in table 3.4.
This model has a deviance of 2.98 with 3 degrees of freedom and a p-value of 0.39,
which indicates that we do not reject the null hypothesis that the model fits the data.
The value of the X2 statistic is 2.98.

Obviously, this model has two vertex colour classes, because these were the ones
included in the initial model, and we got through the selection process seven edge
colour classes. Of these classes, there are only two that differ with respect to the initial
model. The class that contained u12(34) and u12(43) now also contains the elements
u12(11) and u12(33), and the class that contained u12(24) and u12(42) now also contains
u12(44) (figure 3.11); i.e. E1 ∪E3 ∪E10 in the quasi-symmetry model is equal to E6 in
the RGLL model and E4∪E9 in the quasi-symmetry model is equal to E7 in the RGLL
model.
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Residence in 1980
Residence in 1985

Northeast Midwest South West

Northeast
11606.99 95.79 370.44 123.77
(11607) (100) (366) (124)

Midwest
91.21 13677.00 501.67 311.14
(87) (13677) (515) (302)

South
167.56 238.33 17818.94 261.16
(172) (225) (17819) (270)

West
63.23 166.92 294.92 10191.93
(63) (176) (286) (10192)

Table 3.4: Estimated expected frequencies under the RGLL model generated by {1, 2}, with
edge set E=(E1,E2,...,E7), E1= {u12(22)}, E2= {u12(12), u12(21)}, E3={u12(13), u12(31)},
E4= {u12(14), u12(41)}, E5= {u12(23), u12(32)}, E6= {u12(33), u12(11), u12(34), u12(43)},
E7= {u12(44), u12(24), u12(42)} and vertex set V = (V1, V2), V1={1}, V2={2} compared with
the observed values, in parenthesis.

(1, 2)

(2, 1)

(1, 3)

(3, 1)

(1, 4)

(4, 1)

(2, 3)

(3, 2)

(2, 4)
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(1, 1)
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Figure 3.11: RGLL model generated by {1, 2}, with first interaction order set E = (E1,
E2, ..., E7), E1= {u12(22)}, E2={u12(12), u12(21)}, E3={u12(13), u12(31)}, E4={u12(14),
u12(41)}, E5={u12(23), u12(32)}, E6= {u12(33), u12(11), u12(34), u12(43)}, E7= {u12(44),
u12(24), u12(42)} and vertex set V = (V1, V2), V1={1}, V2={2}.
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A third and last example corresponds to data similar to the one given in the first ex-
ample, but where the data have not been published before. We analyzed it in Ramı́rez-
Aldana (2005) using Bayesian networks. The data correspond to approximately 50
variables measured for each of 861 patients who were admitted to an Intensive Care
Unit (ICU) in two main hospitals in Mexico City: The “Siglo XXI” National Medical
Center and the “La Raza” Medical Center between 2002 and 2004. In Ramı́rez-Aldana
(2005), the quality of life was analyzed by using models that according to medical
experience and selection methods based on logistic regressions were adequate for the
data. The models included the following variables: initial and posterior quality of life
(iql and pql, respectively), both with categories coded as 1 and 2 for good and bad,
respectively; emergency surgery (qxurgent) with categories coded as 1 and 2 for No and
Yes, respectively; and age (age) with categories coded as 1 and 2 for less or equal than
60 years and 61 and more, respectively. We also considered three failures: respiratory
(resf ), neurological (neuf ), and cardiac (cardf ), with categories coded as 1 and 2 for
No and Yes, respectively.

In this work, we consider three possible sets of models that include the previous
variables, but where not all failures are included at the same time: 1) A first set of
models including only cardf, 2) A second set of models including only resf, 3) A third
set of models including only neuf. We present a summary of the statistics and infor-
mation about the three sets of models in table 3.5. We present below with more detail
one of the RGLL models that includes resf because it fitted better than the others
according to the deviance; however, for the other models the process is analogous.

Observe that in this example we consider variables with the same number of cat-
egories, but the categories are not the same, which was an assumption considered for
RGLL models. However, if we do not consider symmetry interpretations, we still can
fit the models as RGLL, and what we get is a more parsimonious log-linear model than
the unrestricted graphical log-linear model.

For 1), models containing iql, pql, cardf, qxurgent, and age, using the forward, back-
ward, and bidirectional selection methods available in MIM, we obtain the graphical
log-linear model with generating class {{qxurgent, pql}, {age, pql, iql}, {age, cardf}}
and a p-value of 0.11. Considering the same generating class, we selected using RE-
GRAPH a RGLL model with one vertex class and eight edge classes and a p-value of
0.66.

For 2), models containing iql, pql, resf, qxurgent, and age, using all selection methods
in MIM, we obtained the generating class: {{qxurgent, resf , pql}, {age, pql, iql}}.
All interactions in the generating class are of order higher than one, which implies that
many colourings can fit the data in the same way because the likelihood equations corre-
sponding to the interactions of order higher than two automatically imply the likelihood
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Models deviance p-value X2 d.f. Vertex Edge
classes classes

1)

Graphical log-linear
28.06 0.11 25.62 20 5 20model generated by

{{4,2}, {5, 2, 1}, {5, 6}}
RGLL model generated by

16.92 0.66 15.64 20 1 8
{{4,2}, {5, 2, 1}, {5, 6}}

2)

Graphical log-linear
18.41 0.43 18.54 18 5 24model generated by

{{4, 3, 2}, {5, 2, 1}}
RGLL model generated by

18.41 0.43 18.54 18 1 7
{{4, 3, 2}, {5, 2, 1}}
Graphical log-linear

29.29 0.08 27.96 20 5 20model generated by
{{4, 3}, {3, 2}, {5, 2, 1}}
RGLL model generated by

11.81 0.92 9.30 20 2 4
{{4, 3}, {3, 2}, {5, 2, 1}}

3)

Graphical log-linear
19.70 0.48 17.27 20 5 20model generated by

{{4, 2}, {5, 2, 1}, {7, 2}}
RGLL model generated by

12.42 0.90 9.58 20 2 5
{{4, 2}, {5, 2, 1}, {7, 2}}

Table 3.5: Values for the deviance and X2 statistics, p-values, degrees of freedom, and number
of vertex and edge colour classes associated to three possible sets of RGLL models for the
Intensive Care Unit data: 1) models including cardf , 2) models including resf , and 3) models
including neuf , where 1 = iql, 2 = pql, 3 = resf , 4 = qxurgent, 5 = age, 6 = cardf , and
7 = neuf .

equations for various colourings. As a consequence, the deviance, degrees of freedom,
and fitted expected frequencies for the RGLL model obtained using REGRAPH and
the graphical log-linear model generated by {{qxurgent, resf , pql}, {age, pql, iql}}
are the same, which means that there are no real benefits from fitting a RGLL model.

Using the generating class {{qxurgent, resf , pql}, {age, pql, iql}} in 2), we ana-
lyzed with MIM if an edge could be removed and still obtain a good graphical log-linear
model. We deleted the edge with largest p-value, {qxurgent, pql}, obtaining the model
generated by {{qxurgent, resf}, {resf , pql}, {age, pql, iql}} with a p-value of 0.08.
Considering this generating class, we obtained using REGRAPH a RGLL model with a
much better fit to the data. This RGLL model contains two vertex and four edge colour
classes and a p-value of 0.92. We discuss further this model in the following paragraphs.
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In terms of REGRAPH there is one input file including: a) the number of variables,
|V | = 5, b) the total number of categories for each variable, (|Iδ|)δ∈∆= (2, 2, 2, 2, 2)
as real values with two decimals, and c) all columns in the data presented in table 3.6
before the column (including it) corresponding to the initial values for the algorithm,
m0(i), considering all values as real numbers with two decimals. Additionally, the vari-
able associated to the first column, iql, is labeled as 1, the variable associated to the
next column, pql is labeled as 2, and so on. As a consequence, the generating class for
this model is {{4, 3}, {3, 2}, {5, 2, 1}}. The input file for the generating class should
include: a) the number of elements in the generating class, |A| = 3, and b) in different
rows we add each element conforming the generating class written according to the
labeling.

The estimated expected frequencies under the graphical log-linear model generated
by {{qxurgent, resf}, {resf , pql}, {age, pql, iql}}, Model A, obtained using RE-
GRAPH considering that each vertex and edge colour class is atomic, is presented in
the eighth column of table 3.6. The deviance for this model is 29.29 with 20 degrees
of freedom and a p-value of 0.08 as mentioned before, so that for a significance level of
0.05, we do not reject the null hypothesis that this model fits the data. The value of
X2 is 27.96.

If we use the program in REGRAPH that selects a model, for both vertex and edge
colour classes, considering as initial model the one in which all vertices and edges are in
different atomic classes and using the default convergence options, a significance level
of 0.05, and the same generating class {{qxurgent, resf}, {resf , pql}, {age, pql, iql}},
then we get a new RGLL model, Model B. This model has a deviance of 11.81 with 20
degrees of freedom, a p-value of 0.92, and Pearson X2 statistic of 9.30. Model B has a
much better fit to the data than Model A. The estimated expected frequencies are shown
in the ninth column of table 3.6. The tenth and eleventh columns of this table corre-
spond to the deviance contribution of each cell for both models, 2n(i) log(n(i)/m̂k(i)).
In this case, 25 cells fitted under Model B have a less deviance contribution than the
corresponding cells under Model A, in 5 cells it is the opposite, and with the remaining
2 the contribution is the same for both models.

Model B has two vertex colour classes and 4 edge colour classes as follows:

V1 = {3}, V2 = {1, 2, 4, 5}.

E1 = {u34(12)}, E2 = {u23(11)},

E3 = {u25(11), u12(21), u12(12), u23(21), u34(21), u34(11), u25(22)},

E4 = {u15(21), u25(12), u15(22), u12(11), u34(22), u15(12), u15(11),

u12(22), u23(22), u23(12), u25(21)}.
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iql pql resf qxurgent age Obs. Initial Exp. Exp. Dev. Dev.
count val. freq. freq. cont. cont.

mod. A mod. B mod. A mod. B
1 1 1 1 1 52.00 1.00 48.77 53.08 6.67 -2.14
1 1 1 1 2 15.00 1.00 12.96 13.43 4.39 3.32
1 1 1 2 1 6.00 1.00 8.29 4.95 -3.88 2.31
1 1 1 2 2 0.00 1.00 2.20 1.64 0.00 0.00
1 1 2 1 1 66.00 1.00 55.27 66.61 23.42 -1.21
1 1 2 1 2 14.00 1.00 14.69 16.85 -1.35 -5.19
1 1 2 2 1 19.00 1.00 30.67 18.36 -18.20 1.30
1 1 2 2 2 9.00 1.00 8.15 6.08 1.79 7.06
1 2 1 1 1 10.00 1.00 11.57 9.42 -2.92 1.20
1 2 1 1 2 7.00 1.00 8.64 7.03 -2.95 -0.06
1 2 1 2 1 4.00 1.00 1.97 3.18 5.67 1.84
1 2 1 2 2 1.00 1.00 1.47 2.38 -0.77 -1.73
1 2 2 1 1 29.00 1.00 34.38 27.20 -9.87 3.72
1 2 2 1 2 21.00 1.00 25.66 20.30 -8.42 1.42
1 2 2 2 1 24.00 1.00 19.08 27.20 11.01 -6.01
1 2 2 2 2 21.00 1.00 14.24 20.30 16.32 1.42
2 1 1 1 1 1.00 1.00 1.36 1.04 -0.61 -0.08
2 1 1 1 2 3.00 1.00 4.43 3.38 -2.34 -0.72
2 1 1 2 1 1.00 1.00 0.23 0.35 2.94 2.10
2 1 1 2 2 1.00 1.00 0.75 1.14 0.58 -0.26
2 1 2 1 1 2.00 1.00 1.55 1.30 1.02 1.72
2 1 2 1 2 5.00 1.00 5.02 4.24 -0.04 1.65
2 1 2 2 1 0.00 1.00 0.86 1.30 0.00 0.00
2 1 2 2 2 4.00 1.00 2.79 4.24 2.88 -0.47
2 2 1 1 1 6.00 1.00 5.01 5.50 2.16 1.04
2 2 1 1 2 6.00 1.00 7.26 7.13 -2.29 -2.07
2 2 1 2 1 2.00 1.00 0.85 1.86 3.42 0.29
2 2 1 2 2 2.00 1.00 1.23 1.50 1.94 1.15
2 2 2 1 1 16.00 1.00 14.88 15.89 2.32 0.22
2 2 2 1 2 20.00 1.00 21.55 20.58 -2.99 -1.14
2 2 2 2 1 5.00 1.00 8.26 5.74 -5.02 -1.38
2 2 2 2 2 14.00 1.00 11.96 12.79 4.41 2.53

Table 3.6: Observed counts, fitted values, and deviance contribution for a study of 861 patients
admitted to an Intensive Care Unit under two models: a) Model A, graphical log-linear model
with generating class {{qxurgent, resf}, {resf , pql}, {age, pql, iql}} and 2) Model B, a
RGLL model with the same generating class.



3.11. FIT AND SELECTION OF RGLL MODELS WITH REGRAPH 139

The corresponding graph is shown in figure 3.12.
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Figure 3.12: RGLL model generated by {{4, 3}, {3, 2}, {5, 2, 1}}, with vertex set V = (V1, V2),
V1= {3} and V2={1, 2, 4, 5}, and first-order interactions set E= (E1, E2, E3, E4),
E1 = {u34(12)}, E2= {u23(11)}, E3= {u25(11), u12(21), u12(12), u23(21), u34(21), u34(11),
u25(22)}, E4= {u15(21), u25(12), u15(22), u12(11), u34(22), u15(12), u15(11), u12(22), u23(22),
u23(12), u25(21)}.

For 3), models containing iql, pql, neuf, qxurgent, and age, we obtained using any of
the selection methods available in MIM a graphical log-linear model with generating
class {{qxurgent, pql}, {age, pql, iql}, {age, neuf , pql}}. In this case, the model is
decomposable, there are 6 sampling zeros in the corresponding table and REGRAPH
warns us that some marginal counts defining the likelihood equations are zero, which
implies that the maximum likelihood estimators do not exist as we discuss in chapter
5. Then, we should not use this model. We deleted the edge with largest p-value, {age,
neuf}, obtaining the model generated by {{qxurgent, pql}, {age, pql, iql}, {neuf ,
pql}} with a p-value of 0.48. From this model, we selected using REGRAPH a RGLL
model with two vertex and five edge classes and a p-value of 0.90.

There is a connection between log-linear and logit models, e.g., Bishop et al. (1975,
section 8.5), in the following paragraphs we identify the logit model corresponding to
a RGLL model and we identify how the equality restrictions in the latter translate to
new restrictions in the former.

In these data, the posterior quality of life, pql, can be considered as a dependent
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or response variable and the other variables can be seen as explanatory variables. The
RGLL model denoted as B, the model with generating class {{qxurgent, resf}, {resf ,
pql}, {age, pql, iql}}, was the RGLL model involving the dependent variable with bet-
ter fit to the data according to the deviance and using the selection method given in
this work. However, any RGLL model (in fact, any log-linear model) treats all variables
symmetrically, focusing on association between variables instead of describing how a
single response variable depends on the other variables.

Define the probability that the posterior quality of life is bad given particular values
for the other variables, p, as

p = P (pql = 2|iql = x, age = y, resf = z, qxurgent = v),

where x,y,z,v= 1, 2, and write the corresponding expected frequencies when pql = 1 and
when pql = 2 asmpql iql age resf qxurgent(1, x, y, z, v) andmpql iql age resf qxurgent(2, x, y, z, v),
respectively. One can obtain the associated logit model as follows

log

(
mpql iql age resf qxurgent(2, x, y, z, v)

mpql iql age resf qxurgent(1, x, y, z, v)

)
= log

(
p

1 − p

)
=

β + βresf (z) + βage(y) + βiql(x) + βage iql(yx),

where, using the same labeling we have used throughout this example, we have

β = u2(2) − u2(1), βresf (z) = u23(2z) − u23(1z), βage(y) = u25(2y) − u25(1y),

βiql(x) = u12(x2) − u12(x1), βage iql(yx) = u521(y2x) − u521(y1x).

The log-linear model treats the 32 cells as independent Poisson random variables.
The logit model treats the corresponding counts, those without considering the response
variable, as 16 independent binomial random variables.

For a general case, the method to obtain the associated logit model from a RGLL
model corresponds to: 1) eliminate any interactions not involving the response vari-
able, 2) transform all first-order interactions that include a certain variable Z and the
dependent variable, in this example pql, into main effects for Z, and 3) transform all
interactions of order t, t > 2, including a set of variables and the response variable into
interactions of order t− 1 formed by that set of variables.

The constant term and all main effects in the RGLL models are transformed into
the constant term in the logistic regression. Then, a vertex colouring in a RGLL model
does not become a parameter constraint in the logistic regression, in fact it disappears.
The only equality restrictions in the RGLL model that remain are those corresponding
to first-order interactions, i.e. edge colourings, which become restrictions for the main
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effects in the logistic regression. In this example, the parameter restrictions given by the
edge colouring (E1, E2, E3, E4) seen above for the RGLL model B imply the following
parameter constraints in the corresponding logistic regression:

βresf (1) = uE3 − uE2 , βresf (2) = 0;

βiql(1) = uE3 − uE4 , βiql(2) = uE4 − uE3 ;

βage(1) = uE4 − uE3 , βage(2) = uE3 − uE4 .

One of these parameter restrictions that can be interpreted is βresf (2) = 0. It means
that when there is respiratory failure, the corresponding logit or the odd, depends only
on the age, initial quality of life, and their interaction. Observe that the restriction
u23(12) = u23(22) (where remember that pql is labeled as 2 and resf as 3) obtained
from the RGLL model states something similar: when there is respiratory failure the
association with posterior quality of life is the same for any value of the posterior quality
of life, so that any differences in the expected frequencies are determined by the other
variables and their associations.

Clearly, the fitted RGLL models are more parsimonious than the unrestricted mod-
els and also provide a better fit to the data according to goodness of fit tests based on
the deviance, in Model 1 for example 1, a usual graphical log-linear model, we have 68
parameters: 12 for the main effects, 32 for the first-order interactions, and 24 for the
second-order interactions; whereas in Model 2, a RGLL model, we have 43 parameters
in total: 6 for the vertex colouring, 13 for the edge colouring, and 24 for the second-
order interactions. On the other hand, under a saturated model for two variables with
4 levels each one as in example 2 we have 24 parameters: 8 for the main effects and
16 for the first-order interactions; whereas in the corresponding quasi-symmetry model,
which is also a RGLL model, we have 18 parameters: 8 corresponding to the main
effects and 10 to the first-order interactions; and in the RGLL model obtained from the
quasi-symmetry model, we have 15 parameters: 8 for the vertex colouring and 7 for the
edge colouring. Finally, in Model A for example 3, we have 38 parameters: 10 for the
main effects, 20 for the first-order interactions, and 8 for the second-order interactions;
whereas in the corresponding RGLL model, Model B, there are 16 parameters: 4 for
the vertex colouring, 4 for the edge colouring, and 8 for the second-order interactions.
The number of parameters for all models in this section discussed in this paragraph are
shown in table 3.7

Additionally, we observe that using RGLL models we can say something about
which association between pairs of variables is similar according to the colourings, and
sometimes we can say something about the data, for example, the model in figure 3.11
indicates, according to the edge colour classes, which values for the cells would be the
same considering only the interactions even though in reality the values differ because
of the difference in the marginal values between levels as in quasi-symmetry models. In
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Model Main effects 1st order int. 2nd order int. Total
Graphical log-linear model

12 32 24 68
heart disease data (Model 1)
RGLL model heart disease

6 13 24 43
data (Model 2)

Saturated model change of
8 16 0 24

residence data
Quasi-symmetry (RGLL model)

8 10 0 18
change of residence data
RGLL model change of

8 7 0 15
residence data

Graphical log-linear model
10 20 8 38

Intensive Care data (Model A)
RGLL model Intensive Care

4 4 8 16
data (Model B)

Table 3.7: Number of parameters for all the models discussed in section 3.11.5.

this case we have also presence of certain symmetry inherited from the quasi-symmetry
model, which is that the cells above the diagonal are similar to the ones under the
diagonal, again they are not equal because of the difference between the marginal val-
ues. However, the interpretation of a RGLL models in terms of some kind of symmetry
between the cells of the table or the variables is not always clear, it depends on the
parameters restrictions we choose and if according to those restrictions the expected
frequencies for some cells are equal or the model is preserved, such interpretation is
even less clear when we introduce interactions of order greater than one.

In the following chapter, we introduce particular classes of RGLL models with in-
terpretation in terms of symmetry in two senses: first in the sense that we can change
some levels associated to some variables according to a permutation set and after that
we ask that the estimated frequencies are preserved, and second in the sense that we
can interchange vertices in the graph according to sets of permutations and also per-
mute the levels for the variables and still preserve the same model. These last kind
of models are equivalent to the RCOP models introduced by Højsgaard and Lauritzen
(2008) for the continuous case, and in fact concepts like vertex and edge orbits, graph
automorphisms, permutation symmetry, and scale invariance used for these models are
also used in the discrete case.



Chapter 4

Label and level invariant models

In this chapter, we consider two particular cases of RGLL models: label and level invari-
ant models, whose importance is given by their symmetry interpretation. These models
can be considered as a type of a symmetry model generalization for discrete data in
the following sense. Symmetry for two-way contingency tables, which is a model where
m(i, j) = m(j, i), for all i 6= j (see section 2.5.2), is a particular case of these mod-
els, additionally they can be used for any number of variables so that there is not a
constraint of only having two variables as in symmetry for two-way contingency tables
or in the two-dimensional generalized symmetry models defined by Goodman (1985);
however, label and level invariant models are only defined for graphical models with a
triangle-free structure where there are no interaction effects of order higher than one.

To motivate label and level invariant models, we present one instance which we
further discuss in example 4.13. We use the data presented and analyzed by Drton and
Richardson (2008) based on a study from Kendler et al. (1992). The data, presented
in table 4.1, correspond to 597 observations for female monozygotic twins, indicating
whether or not each twin is alcohol dependent, variables Ai, for i=1, 2; and whether or
not the twins suffer from major depression, variables Di, for i=1, 2. The values taken
by each variable are 0 and 1, corresponding to no and yes, respectively.

Symmetry between twins corresponds to a model unaltered in spite of permuting
the variables for each twin, A1 with A2 and D1 with D2, and the category order. In
particular, the distribution is preserved after such permutation. A model with these
properties is the one with generating class {{A1, A2}, {A2, D2}, {D2, D1}, {D1, A1}}
and graph given in figure 4.1. In this model A1 and D2 are conditionally independent
given D1 and A2, A1⊥D2|D1, A2, and A2⊥D1|A1, D2. As we shall see later, it is a label
invariant model and is a particular case of a RGLL model.

After interchanging vertices according to a set of permutations of the vertices, label
invariant models are defined to preserve their associated graph, so that we can say that
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A1 D1

A2

0 1
D2

0 1 0 1

0
0 288 80 15 9
1 92 51 7 10

1
0 8 4 3 2
1 8 9 4 7

Table 4.1: Alcohol dependence and major depression for 597 pairs of female twins.

there is symmetry in a graphical sense, and they also preserve the distribution so that
the expected frequencies after such permutations remain the same, which can as well
be considered as some kind of symmetry. Additionally, they preserve the conditional
and marginal independences in the graph and are scale invariant as discussed below.

(0, 1)

(1, 0)

(0, 0)

(1, 1)

(0, 1)

(1, 0)

(0, 0) (1, 1)
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(1, 0)

(0, 0)

(1, 1)

(0, 1)

(1, 0)

(0, 0) (1, 1)

A1

D2D1
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Figure 4.1: A RGLL model with generating class {{A1, A2}, {A2, D2}, {D2, D1}, {D1, A1}},
vertex set V = (V1, V2), where V1 = {A1, A2} and V2 = {D2, D1}, and first-order interactions
set E= (E1, E2, E3, E4, E5, E6), where E1= {uA1D1(00), uA1D1(11), uA2D2(00), uA2D2(11)},
E2= {uA1D1(01), uA1D1(10), uA2D2(01), uA2D2(10)}, E3 = {uA1A2(00), uA1A2(11)}, E4 =
{uA1A2(01), uA1A2(10)}, E5= {uD2D1(00), uD2D1(11)}, and E6={uD2D1(01), uD2D1(10)}.

On the other hand, level invariant models equate the expected frequencies for certain
cells according to a set of permutations, preserving at the same time the marginal and
conditional independences obtained from the graph associated to the model. Other
symmetry generalizations for three-way contingency tables, e.g., Andersen (1991, p.
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328-329) and Bishop et al. (1975, p. 299-309), and even the generalizations defined by
Darroch and Bhapkar (1990) for any number of variables, consider equalities between
expected frequencies of some cells but they do not consider the simultaneous inclusion
of marginal independences and conditional independences because they are based on
using a saturated model, which is equivalent to say that these generalizations consider
only graphical models whose graph is complete. As a consequence, they might be con-
sidered as less general. Level and label invariant models consider such independences
and even though they are defined only for a subclass of graphical models, those with
triangle-free graphs, they could be considered as one small step in another direction
to continue the study of the symmetry, a concept which as we can see is difficult to
define in a general sense. Later on in section 4.3 we discuss how these models can be
generalized to include all graphical models.

We consider graphical models whose highest-order interaction is one, that is mod-
els with only main effects and first-order interactions, under this consideration all the
models defined in this chapter are RGLL models. Graphically, this means that we are
restricting to consider triangle-free graphs. This is equivalent to graphs with clique
number, the number of vertices in the largest clique of a graph, less or equal than two,
or graphs with no induced 3-cycles. Some of the graphs included in this kind of graphs
are: a) Trees, which obviously include graphs forming lines, which are similar to the
graphs for Markov chains, b) Cycles with four or more vertices, and c) Bipartite graphs.
The definition of trees, cycles, and bipartite graphs as well as figures illustrating them
(figure A.2) can be found in Appendix A.

We consider also that all variables have the same categories, i.e. Iδ is the same for
all δ ∈ V .

For label invariant models we use the concept of automorphism of a graph defined
for instance by Bondy and Murty (1976, p. 6-7) or Rotman (1995, p. 174) which is as
follows.

Definition 4.1. An automorphism of a graph G is a bijection mapping the vertices of
G back to vertices of G, i.e. a permutation on the vertices, such that adjacent vertices
remain being adjacent.

Definition 4.1 is equivalent to say that an automorphism of a graph G is a graph
isomorphism with itself, where an isomorphism between two graphs G and H is a bi-
jection between the vertices of G and H, θ : V (G) → V (H), such that two vertices u
and v are adjacent in G if and only if θ(u) and θ(v) are adjacent in H.

The group of all automorphisms of G is denoted as Aut(G) and it can be seen as a
permutation group formed by all permutations that preserve the graph. Then, Aut(G)
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is a subset of the symmetric group formed by all permutations of V , S(V ).

In this dissertation, we denote permutations in cycle notation as defined by for in-
stance Rotman (1995, p. 3), meaning that (i1i2...ir) denotes a permutation in which ij
is mapped to ij+1, 1 ≤ j ≤ r − 1 and ir is mapped to i1. For r = 2, the permutation
(i1i2) is equivalent to interchanging i1 with i2. By definition, under this notation it is
understood that all variables not included in (i1i2...ir) do not change after the permu-
tation, for example if we have three variables, W , X, and Y , we write (WY ) to denote
a permutation that interchanges W with Y and where X is fixed. The trivial permu-
tation or identity which is the mapping that fixes each element is denoted as Id. Using
cycle notation, multiplication or composition defines a new permutation, for example
if we have a set of variables {W , X, Y , Z} and γ = α ◦ β or γ = αβ where α = (WX)
and β = (Y Z), then γW = (α ◦ β)W = α(βW ) = αW = X and similarly γX = W ,
γY = Z, and γZ = Y ; i.e. γ is a permutation where W and X are interchanged and
simultaneously Y and Z are also interchanged.

Example 4.1. Consider a graph G corresponding to a cycle of length four with vertex
set V = {A,B,C,D} and edge set E= {{A,B}, {B,C}, {C,D}, {D,A}}, figure 4.2.
In terms of a graphical log-linear model, it corresponds to a model with generating class
{{A,B}, {B,C}, {C,D}, {D,A}}.

A

CD

B

Figure 4.2: Graphical log-linear model with generating class {{A, B}, {B, C}, {C, D}, {D, A}}
and associated graph G, log m(i, j, k, l) = u+ uA(i)+ uB(j)+ uC(k)+ uD(l)+ uAB(ij)+
uBC(jk)+ uCD(kl)+ uDA(li).

The permutation group formed by all automorphisms of G is

Aut(G) = {Id, (AC), (BD), (AC)(BD), (AB)(CD), (AD)(BC), (ABCD), (ADCB)}.

Here, for example (AC)(BD) represents a permutation in which we simultaneously
interchange A with C and B with D. In table 4.2 we present each element in Aut(G)
and the graph obtained from each of its elements, for example the graph in the second
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row corresponds to the graph obtained from interchanging A with C in G. Observe
that to each element in Aut(G) corresponds a new graph isomorphic to G, where all
vertices that where adjacent in G are still adjacent after the mapping and there are not
adjacent vertices after the mapping that were not adjacent before applying it.

Permutation Graph after the mapping

Id b b

b b

D C

BA

(AC) b b

b b

D A

BC

(BD) b b

b b

B C

DA

(AC)(BD) b b

b b

B A

DC

(AB)(CD) b b

b b

C D

AB

(AD)(BC) b b

b b

A B

CD

(ABCD) b b

b b

C B

AD

(ADCB) b b

b b

A D

CB

Table 4.2: Group of all automorphisms of G, Aut(G), and graphs associated after each map-
ping, where G is the graph corresponding to a graphical log-linear model with generating class
{{A, B}, {B, C}, {C, D}, {D, A}}.

Before giving the formal definition of the two kind of models we study in this chap-
ter: label and level invariant models, we discuss further our motivation to define them
as well as their general properties.
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In the continuous case Perlman (1987) discusses the so-called group symmetry co-
variance models based on the models introduced by Eaton (1983, Sec. 9.4) and An-
dersson (1975). Let Y be a multivariate observation from a normal population and Γ
a finite group of orthogonal matrices. The symmetry model is the family of covariance
matrices S+

Γ = {Σ|Σ is definite positive, gΣg′ = Σ for all g ∈ Γ}, which is equivalent
to say that if Cov(Y ) ∈ S+

Γ then Cov(Y )= Cov(gY ) for all g ∈ Γ, that is the distri-
bution is preserved assuming that the mean of Y is zero, hence the term symmetry
model. Many covariance structures for instance sphericity, that is Σ = σ2I, σ2 > 0,
may be considered as particular cases of those models. There is no one method or
approach to explicitly describe S+

Γ for all closed groups Γ; however, Andersson (1975)
presented a general structure theory that tell us what S+

Γ should look like but does not
tell us how to derive the particular form of S+

Γ . Group symmetry covariance models are
Gaussian models that do not consider graphical structure and consequently marginal
and conditional independences derived from them; however, Andersson and Madsen
(1998) introduced and Andersson et al. (1999) discussed group symmetry conditional
lattice independence (GS-LCI) models, which allow both group symmetry restrictions
and a specific class of conditional independences given by a distributive lattice, allowing
for example covariance models where certain blocks satisfy conditional independence
restrictions across blocks and group symmetry restrictions within blocks, or viceversa.

Højsgaard and Lauritzen (2008) consider more specific symmetry covariance models
called RCOP in which the Gaussian model is graphical with associated graph G, addi-
tionally: a) Γ is a particular group Γ ⊆ Aut(G), the set of all automorphisms of G, b)
the concentration matrix K is used instead of Σ, and c) K ∈ S+

G , where S+
G is the set of

positive definite matrices with specific elements set to zero according to the graphical
model. Then K ∈ S+

G ∩ S+
Γ . These are graphical Gaussian models in which the joint

distribution is unaltered after permuting some elements of the vertex set V according
to a permutation group that preserves the zero elements of the concentration matrix,
i.e. it maps edges to edges.

The first kind of model we define, label invariant, is analogous to the RCOP models
but defined for the discrete case. We consider a model in which a) we can change the
labels (vertices or variable names) according to a set of permutations Γ that preserve
the graph, i.e. neighbour vertices remain being neighbours, so that these permutations
are automorphisms of the graph, and b) that we can change the scale of the variables
according to the symmetry group of all permutations applied to the level set, i.e. the
model is scale invariant. The graphical model is preserved after applying these per-
mutations, so that we can change the level order (or rename them) and the labels
according to Γ and we obtain the same model. In terms of contingency tables, what
is done by permuting labels according to Γ is replacing some variables with others
in the table and, after these changes, we should have the same expected frequencies,
i.e. the distribution should remain. For example, for a two-way contingency table,
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the only available automorphism besides Id consists in interchanging both labels, and
in terms of the contingency table the corresponding label invariant model equates the
expected frequencies for the elements below the diagonal with those above the diagonal
m(i, j) = m(j, i), i 6= j; but additionally, there is scale invariance, something that the
usual symmetry model does not take into account.

The second kind of model, level invariant, allows us to permute some of the levels
taken by some variables, so that the levels taken by some variables replace the levels of
others according to a set formed by label permutations. Then, we equate the expected
frequencies corresponding to the different permutations. These models are a gener-
alization of the symmetry defined in two-way contingency tables (section 2.5.2) and
also, as said at the beginning of this chapter, are a different way of study generalized
symmetry compared to what Bishop et al. (1975, p. 300-303) or Darroch and Bhapkar
(1990) did, mainly because instead of using a saturated model to equate some of the
corresponding expected frequencies we use a graphical model whose associated graph is
triangle-free (saturated models are graphical models with a complete graph), by doing
this, we are preserving the different conditional independences implied by the model.
In level invariant models, we are not really replacing some variables with others, only
the levels taken by those variables, so that it is not necessary that the permutations
preserve the graph, i.e. we do not necessarily require the set of permutations to be a
subset of the group of graph automorphisms.

We observe that the sets of permutations defined for both label and level invariant
models are subsets of groups, but they are not necessarily groups themselves.

Both label and level invariant models, can be expressed as instances of a RGLL
model. We observe that RGLL models in particular contain those RGLL models whose
associated graphs are triangle-free and these triangle-free graph models contain both
label and level invariant models.

For any label invariant model, we can get its corresponding RGLL model repre-
senting it in a general way. For level invariant models, the RGLL model representing
it is obtained according to each particular model; in fact, there could be more than
one RGLL model representing it. This means that, for level invariant models, having
a RGLL model that fits well the data gives a necessary but not sufficient condition
to have the expected frequencies equalities or symmetry we are looking for, i.e. if the
RGLL model fits the data, then we have the equalities we were looking for, but the
equalities do not imply a unique model, so that if the model does not fit the data, we
can not say that there are not the equalities or symmetry we defined.

Consider M the vector of expected frequencies (m(i))i∈I, I = ×δ∈∆Iδ, including
only the constraints corresponding to the sampling scheme: Poisson, multinomial, or
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restricted multinomial and S(Iδ), the symmetry group including all the permutations
of the level set. Additionally, we understand that a graphical log-linear model M is a
set of expected frequencies written as log-linear expansions depending on the model.

Definition 4.2. A graphical log-linear model M , M ⊆ M is scale invariant under
S(Iδ) if when M ∈ M then σ∗(M) ∈ M , for all σ∗ ∈ S(Iδ).

The transformation σ∗(M) corresponds to a new model using the new order for Iδ for
each σ∗. This means that the models are preserved in spite of changing the level set. For
example, in a binary case with values 0 and 1, we could interchange both values, 0 ↔ 1,
and the model should be preserved or in the case of variables with three categories where
Iδ= {0, 1, 2}, we have six permutations which map Iδ to {0, 1, 2}, {1, 0, 2}, {0, 2,
1}, {1, 2, 0}, {2, 0, 1}, and {2, 1, 0}, and for all of them the model should be preserved.

Suppose that there are two binary variables X and Y with an interaction be-
tween them, scale invariance means that the interactions uXY (01) = uXY (10) and
uXY (00) = uXY (11). In the case of variables with three categories, scale invari-
ance means that uXY (01)= uXY (10)= uXY (02)= uXY (20)= uXY (12)= uXY (21) and
uXY (00)= uXY (11)= uXY (22). Observe that by doing this, we are preserving the model
and that we get one parameter for the case in which the levels are the same and another
for the case when the levels differ. To illustrate the reason for using such restrictions,
we present the following example.

Example 4.2. Consider a graph of a line representing three binary variables, IW , IX ,
and IY , with corresponding labels or vertex set V={W , X, Y }. The corresponding
graphical log-linear model M has generating class A= {{W,X}, {X,Y }}, figure 4.3.
In this example Iδ = {0, 1} and S(Iδ) = {Id, (01)}, δ = W,X, Y , where Id indicates
that the first level is coded as 0 and the other as 1 and (01) indicates that the first
level is coded as 1 and the second as 0. In terms of definition 4.2, σ∗ is Id or (01).
Considering the coding given by Id, the set M is the vector of expected frequencies

(mWXY (0, 0, 0),mWXY (0, 0, 1),mWXY (0, 1, 0),mWXY (0, 1, 1),

mWXY (1, 0, 0),mWXY (1, 0, 1),mWXY (1, 1, 0),mWXY (1, 1, 1)),

adding the constraints corresponding to a sampling scheme: Poisson, multinomial, or
restricted multinomial.

Coding the first level as 0 and the other as 1, i.e. using σ∗ = Id, which is considered
as the coding for the level set in the original model M , we get the following log-linear
expansion for each expected frequency M, M ∈ M , in each cell

logmWXY (0, 0, 0) = u+ uW (0) + uX(0) + uY (0) + uWX(00) + uY X(00),
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W X Y

Figure 4.3: Graphical model with generating class {{W, X}, {X, Y }}, log m(i, j, k) = u+
uW (i)+ uX(j)+ uY (k)+ uWX(ij)+ uY X(kj), i, j, k= 0, 1.

logmWXY (0, 0, 1) = u+ uW (0) + uX(0) + uY (1) + uWX(00) + uY X(10),

logmWXY (0, 1, 0) = u+ uW (0) + uX(1) + uY (0) + uWX(01) + uY X(01),

logmWXY (0, 1, 1) = u+ uW (0) + uX(1) + uY (1) + uWX(01) + uY X(11),

logmWXY (1, 0, 0) = u+ uW (1) + uX(0) + uY (0) + uWX(10) + uY X(00),

logmWXY (1, 0, 1) = u+ uW (1) + uX(0) + uY (1) + uWX(10) + uY X(10),

logmWXY (1, 1, 0) = u+ uW (1) + uX(1) + uY (0) + uWX(11) + uY X(01),

logmWXY (1, 1, 1) = u+ uW (1) + uX(1) + uY (1) + uWX(11) + uY X(11).

Now, recoding the first level as 1 and the other as 0 by using σ∗ = (01), and using
the same cell order as before, the model has the following log-linear expansion for each
expected frequency σ∗(M) in each cell

logmWXY (1, 1, 1) = u+ uW (1) + uX(1) + uY (1) + uWX(11) + uY X(11),

logmWXY (1, 1, 0) = u+ uW (1) + uX(1) + uY (0) + uWX(11) + uY X(01),

logmWXY (1, 0, 1) = u+ uW (1) + uX(0) + uY (1) + uWX(10) + uY X(10),

logmWXY (1, 0, 0) = u+ uW (1) + uX(0) + uY (0) + uWX(10) + uY X(00),

logmWXY (0, 1, 1) = u+ uW (0) + uX(1) + uY (1) + uWX(01) + uY X(11),

logmWXY (0, 1, 0) = u+ uW (0) + uX(1) + uY (0) + uWX(01) + uY X(01),

logmWXY (0, 0, 1) = u+ uW (0) + uX(0) + uY (1) + uWX(00) + uY X(10),

logmWXY (0, 0, 0) = u+ uW (0) + uX(0) + uY (0) + uWX(00) + uY X(00).

A scale invariant model is one satisfying the following equalities:
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uWX(00) = uWX(11), uY X(00) = uY X(11); (4.1)

uWX(01) = uWX(10), uY X(01) = uY X(10). (4.2)

Observe that under these equalities and using any of the two codings for the levels,
we get the same interaction terms for any log-linear expansion of the expected frequency
associated to a cell. For example, for the fourth cell we have the expansion

u+ uW (0) + uX(1) + uY (1) + uWX(01) + uY X(11),

using the first coding or original model M , and

u+ uW (1) + uX(0) + uY (0) + uWX(10) + uY X(00),

using the second coding; however, since uWX(01) =uWX(10) and uY X(00)= uY X(11),
we have that the interaction terms in the log-linear expansion are the same indepen-
dently of the coding, that once interchanging levels all terms become part of the same
group of terms, main effects for a variable become main effects for the same variable
and first-order interactions become part of the same group of terms representing inter-
actions of the same kind, and also that the model defined according to the generating
class is preserved.

If we had J categories in each variable instead of two, in order to get a scale invariant
model, we would get two sets of interactions that should be equal. One for the first-
order interactions in which the levels of the corresponding variables differ and another
for the first-order interactions whose levels are the same. That is, for two variables
X and Y with an interaction between them, we get the following sets whose elements
should be equal.

{uXY (ij), i 6= j; i, j = 1, ..., J},

{uXY (ii), i = 1, ..., J};

that is uXY (12)= uXY (13)= ...= uXY (1J)= uXY (21)= uXY (23)= uXY (2J)= ... =uXY (J−
1J) for the first set and uXY (11)= uXY (22)= ...= uXY (JJ) for the second set.

We observe that having a scale invariant model does not imply that the expected
frequencies are the same after permuting the levels. For example, if we have three
binary variables associated to W , X, and Y , in general it is not true that mWXY (001)
is equal to mWXY (110), the expected frequency after permuting 0 ↔ 1, this inequal-
ity can be seen in example 4.2 where logmWXY (0, 0, 1)= u+ uW (0)+ uX(0)+ uY (1)+
uWX(00)+ uY X(10) and logmWXY (1, 1, 0)= u+ uW (1)+ uX(1)+ uY (0)+ uWX(11)+
uY X(01) so that even considering equalities (4.1) and (4.2) the expected frequencies are
not the same; however; all terms related to the association between the variables are
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the same after permuting levels, this means that the scale is irrelevant in measuring
the association between variables and that after any permutation in the level order all
terms belong to the same group of terms, preserving the model.

Notice that the expected frequencies not being the same is caused by the fact that
the main effects for the same vertex class differ after permuting levels; however, each
main effect belongs to the same group of terms and as they do not involve associations
between variables the model is preserved in this sense.

If we wanted the expected frequencies to be the same because we needed to define
that a model is preserved like this, then we would need to equate the main effects in
all their levels. If we had J levels, for each variable Q we would need to have uQ(1)=
uQ(2)= ...=uQ(J), but this would mean that the main effects are always the same, so
that we would have constant terms instead of main effects and we would be changing
the model by eliminating main effects, getting a different model that is not even hier-
archichal, much less graphical. So that we should not talk about preserving the model
in this sense.

This way of defining scale invariance is analogous to the one given by Højsgaard
and Lauritzen (2008) in the Gaussian case, where the concentration matrix K can be
seen as K = ACA, with A a diagonal matrix with entries equal to the inverse partial
standard deviations, terms that depend on only one variable, and C a matrix in which
all diagonal entries are equal to one and all off-diagonal entries are the negative partial
correlations, which are terms that depend on the association between variables. Scale
invariance in Gaussian models means that lineal transformations for the scale in the
same vertex class affect only the matrix A and not C. In the discrete case it is analo-
gous, changes in the scale affect the main effects in the same vertex class, but not the
first-order interactions, which are the terms related with the association between pairs
of variables.

Consider a graphical log-linear model with generating class C(G), the set of cliques
of G, and associated graph G = (V,E ′), where G is a triangle-free graph. Consider also
Aut(G) a subset of the symmetric group formed by all permutations of the vertex set V ,
S(V ), consisting on permutations that preserve the graph, S(Iδ) the symmetry group
including all the permutations of the level set, and M the expected frequency vector
(m(i))i∈I, I = ×δ∈∆Iδ, including only the constraints corresponding to the sampling
scheme: Poisson, multinomial, or restricted multinomial.

Definition 4.3. A label invariant model M (G,Γ) determined by a triangle-free graph
G and by Γ ⊆ Aut(G), is given by assuming that: i) we have a graphical log-linear model
M with generating class C(G) and M ⊆ M, and ii) if M ∈ M then σ(σ∗(M)) ∈ M ,
for all σ∗ ∈ S(Iδ) and for all σ ∈ Γ.
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As before, σ∗(M) changes the level set order according to all possible permutations
of Iδ. That is, we are asking to have a scale invariant model. As Γ is contained in
Aut(G), then Γ is a set of permutations preserving neighbours in the graph, which
means that the labels can be changed without getting a new graph. Additionally, to
get that σ(M ′) ∈ M for σ ∈ Γ, we need the main effects and first-order interactions
to be restricted in such a way that after permuting the labels the model remains, this
implies that the expected frequencies, and as a consequence the distribution are the
same after the permutations. The restrictions correspond to equate main effects for
some variables in each level and to equate first-order interactions for different pairs of
variables. Then, we have restrictions like the ones defined for RGLL models.

These models are analogous to the RCOP models defined by Højsgaard and Lau-
ritzen (2008) in the Gaussian case. RCOP models satisfy the following properties: a)
they preserve the distribution after applying permutation groups which permute the
labels on the graph, b) they are scale invariant, and c) they generate symmetric graphs
according to the permutation group in the sense that the graph is preserved after per-
muting labels. The only difference with respect to label invariant models is that the
condition to get scale invariance is not added because it is automatically obtained using
that RCOP models are a particular case of RCOR models (Højsgaard and Lauritzen,
2008), and RCOR models are scale invariant models in which some of their concentra-
tion matrix elements and some partial correlations are restricted to be equal.

In that sense, RGLL models could be considered analogous to the RCON models
defined in the Gaussian case (Højsgaard and Lauritzen, 2008) because they are models
not necessarily scale invariant in which some of their concentration matrix elements are
equal.

Example 4.3. Consider as in example 4.2 the graphical log-linear model M with
generating class A= {{W,X}, {X,Y }} and graph G. The graph G is triangle-free.
Additionally, suppose that Γ = {(WY )}, (WY ) is an automorphism of G because the
graph associated to that mapping, figure 4.4(b), is isomorphic to G, figure 4.4(a), as
a consequence Γ ⊆ Aut(G). For these G and Γ, we define a label invariant model
M (G,Γ).

Restrictions for scale invariance were already obtained in example 4.2, equations
(4.1) and (4.2). We additionally require restrictions implying that if M’ ∈ M then
σ(M’) ∈ M , for all σ ∈ Γ, i.e. that after permuting labels according to Γ the expected
frequencies follow the same model. To get them, observe that the expected frequencies
expanded as a log-linear model for each cell before applying the permutation set Γ to
the vertex set V are

logmWXY (0, 0, 0) = u+ uW (0) + uX(0) + uY (0) + uWX(00) + uY X(00),
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W X Y

(a) Graphical model

Y X W

(b) Model under (WY )

Figure 4.4: Graphical log-linear model with generating class {{W, X}, {X, Y }}: (a) model
representation without using any mapping, (b) model representation under the mapping (WY ).

logmWXY (0, 0, 1) = u+ uW (0) + uX(0) + uY (1) + uWX(00) + uY X(10),

logmWXY (0, 1, 0) = u+ uW (0) + uX(1) + uY (0) + uWX(01) + uY X(01),

logmWXY (0, 1, 1) = u+ uW (0) + uX(1) + uY (1) + uWX(01) + uY X(11),

logmWXY (1, 0, 0) = u+ uW (1) + uX(0) + uY (0) + uWX(10) + uY X(00),

logmWXY (1, 0, 1) = u+ uW (1) + uX(0) + uY (1) + uWX(10) + uY X(10),

logmWXY (1, 1, 0) = u+ uW (1) + uX(1) + uY (0) + uWX(11) + uY X(01),

logmWXY (1, 1, 1) = u+ uW (1) + uX(1) + uY (1) + uWX(11) + uY X(11).

After applying the permutation set Γ to the vertex set V , which in this case corre-
sponds to permuting labels W and Y , the expected frequencies expanded as a log-linear
model for each cell are

logmY XW (0, 0, 0) = u+ uY (0) + uX(0) + uW (0) + uY X(00) + uWX(00),

logmY XW (0, 0, 1) = u+ uY (0) + uX(0) + uW (1) + uY X(00) + uWX(10),

logmY XW (0, 1, 0) = u+ uY (0) + uX(1) + uW (0) + uY X(01) + uWX(01),

logmY XW (0, 1, 1) = u+ uY (0) + uX(1) + uW (1) + uY X(01) + uWX(11),

logmY XW (1, 0, 0) = u+ uY (1) + uX(0) + uW (0) + uY X(10) + uWX(00),

logmY XW (1, 0, 1) = u+ uY (1) + uX(0) + uW (1) + uY X(10) + uWX(10),

logmY XW (1, 1, 0) = u+ uY (1) + uX(1) + uW (0) + uY X(11) + uWX(01),

logmY XW (1, 1, 1) = u+ uY (1) + uX(1) + uW (1) + uY X(11) + uWX(11).

The log-linear expansion for the expected frequency of the second cell, logmWXY (0, 0, 1),
represents the same model after interchanging labels, that is logmY XW (0, 0, 1) defines
the same model than logmWXY (0, 0, 1) if we set the following equalities
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uW (0) = uY (0), uW (1) = uY (1);

uWX(00) = uY X(00); uWX(10) = uY X(10).

Observe that a consequence of these equalities is that

logmWXY (0, 0, 1) = logmY XW (0, 0, 1).

Considering all cells, the equalities that preserve the model after interchanging labels
according to Γ = {(WY )} are

uW (0) = uY (0), uW (1) = uY (1); (4.3)

uWX(00) = uY X(00); uWX(10) = uY X(10);

uWX(01) = uY X(01); uWX(11) = uY X(11).
(4.4)

Observe that a consequence of these restrictions, equations (4.3) and (4.4), is that the
expected frequencies for a cell before and after the permutation are equal, for example
mWXY (0, 0, 1)= mY XW (0, 0, 1). Restrictions (4.3) and (4.4) together with the scale
invariance restrictions, equations (4.1) and (4.2), imply the following equalities

uW (0) = uY (0), uW (1) = uY (1); (4.5)

uWX(00) = uY X(00) = uWX(11) = uY X(11);

uWX(01) = uY X(01) = uWX(10) = uY X(10).
(4.6)

The label invariant model M (G,Γ) is the graphical log-linear model with graph G
satisfying (4.5) and (4.6).

We present the algebraic concept of orbits as defined in terms of permutation sets
and graphs by Højsgaard and Lauritzen (2008), a general definition is provided for in-
stance by Rotman (1995, p.56). This is a useful concept to get the restrictions needed
in label invariant models so that we do not have to obtain for each case the log-linear
expansions to know which terms to equate.

The vertex orbits of Γ are the classes of the relation

α ≡Γ β ⇔ β = σα, for some σ ∈ Γ,

where α and β are vertices contained in the set of vertices of G, V .
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The edge orbits of Γ are the classes of the relation

{α, γ} ≡Γ {β, δ} ⇔ {β, δ} = {σα, σγ}, for some σ ∈ Γ.

where {α, γ} and {β, δ} are edges contained in the set of edges of G, E ′.

Label invariant models can be represented with a simple graph, G∗, corresponding
to G coloured according to the vertex and edge orbits, in which all vertices in the same
orbit have the same colour and the same for the edges. The graph G∗ represents the
different parameters equalities that have to be satisfied in order to be able to change the
labels according to Γ preserving the model; however, this colouring does not represent
the conditions required to have scale invariance; although it helps us to determine the
coloured multi-graph G∗∗, the graph with multiple edges, representing the RGLL model
that has to be fitted in order to fit the label invariant model, obviously including scale
invariance.

A one-to-one correspondence holds between the vertex orbits V1, V2, ...., VT and the
vertex colour classes V1, V2, ...., VT in a RGLL model. This is because if under a permu-
tation σ, β = σα, i.e. α and β are in the same vertex orbit, then we have that α takes
the place of β once permuting them, so that in order to have the same model and as a
consequence the same distribution after permuting variables, we should have that the
main effects uα(r) = uβ(r) for all r in the level set. Obviously, if we had more than two
elements in a vertex orbit the corresponding equalities are applied to all the elements
in the same orbit. To sum it up, vertex orbits are vertex classes.

For the edge orbits ξ1, ..., ξl the association with edge colour classes in a RGLL model
and its associated coloured graph G∗∗ is not a one-to-one correspondence. Suppose that
we take the edge orbit ξ1 and that {α, γ} and {β, δ} are edges in this orbit. To keep
the same model, we should have that uβδ(rs) = uαγ(rs) for all r and s in the level set.
If all variables had J levels, this fact would mean that there are J2 restrictions,

uβδ(11) = uαγ(11), ..., uβδ(1J) = uαγ(1J), ..., uβδ(J − 11) = uαγ(J − 11),

...., uβδ(J − 1J) = uαγ(J − 1J), uβδ(JJ) = uαγ(JJ).

As we also need scale invariance, we only have two restriction groups,

uβδ(12) = uαγ(12) = ... = uβδ(rs) = uαγ(rs) = ... = uβδ(J − 1J) = uαγ(J − 1J), r 6= s,

and uβδ(11) = uαγ(11) = ... = uβδ(JJ) = uαγ(JJ).

This means that the edges {α, γ} and {β, δ} belonging to the same orbit ξ1 in the
simple graph G∗ induce a division of the edges in the graph G∗∗ of a RGLL model into
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two colour classes E1 and E2. The edges corresponding to different categories, i.e. the
edges uβδ(rs), uαγ(rs), r 6= s are in the same class E1 and the edges corresponding to
the same categories uβδ(rr) and uαγ(rr) are in other class E2. Then, all elements having
the same colour in G∗ are divided into two, so that in G∗∗ we have two colours instead
of one, but it is in such a way that if we took the edges in E1 (or E2) and considered
the corresponding underlying simple graph, i.e. taking only one edge instead of all, we
would have the same colouring as in G∗.

We illustrate in the following example how we obtain the parameters restrictions
using vertex and edge orbits. The example corresponds to the label invariant model
M (G,Γ) studied in example 4.3, which is based on the graphical log-linear model
presented in example 4.2.

Example 4.4. Consider the graphical log-linear model M with generating class A=
{{W,X}, {X,Y }} and associated graph G and the label invariant model M (G,Γ) with
Γ = {(WY )}. We got in equations (4.5) and (4.6) the restrictions that main effects and
first-order interactions should satisfy to have a label invariant model. These restric-
tions can be obtained using the vertex and edge orbits concepts defined above as follows.

We have that W = σY for σ = (WY ), this equality implies that W and Y are in
the same class. As there are no other σ, X is in a class containing only X. Then, the
vertex orbits are

V1 = {W,Y },

V2 = {X}.

On the other hand, {W,X} = {σY, σX} for σ = (WY ), which implies that both
edges are in the same edge orbit as follows,

ξ1 = {{W,X}, {Y,X}}.

As a consequence, the orbits graph G∗, as defined above, is obtained colouring W and
Y with the same colour and X with other colour and both edges are coloured the same,
figure 4.5. This graph provides the restrictions that allow to preserve the model after
permuting variable labels according to Γ, such restrictions are that the main effects for
vertices in the same vertex orbit are equal in each level and that each pair of different
interactions uY X(ij) and uWX(ij) is equated for all i and j according to the unique
edge orbit, {{W,X}, {Y,X}}, see equations (4.3) and (4.4).

Seen as a RGLL model, the vertex orbits are equivalent to vertex classes and we
use the restrictions obtained from the edge orbits together with the scale invariance
restrictions, equations (4.1) and (4.2), to obtain the edge colour classes

E1 = {uWX(00), uY X(00), uWX(11), uY X(11)},
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W X Y

Figure 4.5: Orbits graph, G∗, for the label invariant model M(G,Γ) with generating class
{{W, X}, {X, Y }}}, graph G, permutation set Γ = {(WY )}, and vertex orbits {W, Y } and
{X} and edge orbit {{W, X}, {Y, X}}.

E2 = {uWX(01), uY X(01), uWX(10), uY X(10)}.

As a consequence, we obtain a RGLL model with generating class {{W,X}, {X,Y }}
with vertices V = (V1, V2), V1 = {W,Y } and V2 = {X}, and edges E = (E1, E2),
E1= {uWX(00), uY X(00), uWX(11), uY X(11)}, E2= {uWX(01), uY X(01), uWX(10),
uY X(10)}. The coloured graph G∗∗ (figure 4.6) for this RGLL model has the same
vertex colouring than G∗, but as it is a multi-graph, the edge colouring is applied in 8
edges according to the edge classes.

(0, 1)

(1, 0)

(0, 0)

(1, 1)

(0, 1)

(1, 0)

(0, 0)

(1, 1)
W X Y

Figure 4.6: RGLL model with generating class {{W, X}, {X, Y }} and associated graph
G∗∗(V, E), where all variables are binary, with vertex set V = (V1, V2), V1 = {W, Y } and
V2 = {X}, and edge set E = (E1, E2), E1= {uWX(00), uY X(00), uWX(11), uY X(11)}, E2=
{uWX(01), uY X(01), uWX(10), uY X(10)}.

We observe that using parameters reparametrized under effect coding, i.e. param-
eters in which the sum of the main effects or interactions over any index is zero, the
restrictions that allow to preserve the model after interchanging labels (the restrictions
obtained directly from the orbits) using reparametrized parameters are equivalent to
the restrictions using the parameters defined for RGLL models because the kind of
restrictions needed do not depend on the reparametrization used. The reason for this
is that the restrictions that equate the main effects over all levels for some variables are
the same using either type of parameter, as we saw in section 3.9.4. Additionally, as we
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also explained in section 3.9.4, there are three kind of restrictions over the first-order
interactions that are equivalent using either effect coding reparametrized parameters or
the parameters used for RGLL models. Denoting as u′ the reparametrized parameters
and as u the others, the three type of parameter restrictions that are the same for
first-order interactions independently of the parametrization used (see theorem 3.8) are

1. Restrictions of the kind uXY (ij) = uZR(ij). These restrictions are the same in
the reparametrized parameters, i.e. uXY (ij) = uZR(ij) ⇔ u′XY (ij) = u′ZR(ij).

2. Restrictions of the kind uXY (ij) = uXY (ji), i < j. These restrictions are the same
in the reparametrized parameters, i.e. uXY (ij) = uXY (ji) i < j ⇔ u′XY (ij) =
u′XY (ji), i < j.

3. Restrictions of the kind uXY (ij) = uZR(ji), i ≤ j. These restrictions are the same
in the reparametrized parameters, i.e. uXY (ij) = uZR(ji), i ≤ j ⇔ u′XY (ij) =
u′ZR(ji), i ≤ j.

These are the kind of first-order interaction restrictions we have when we permute
labels. In the binary case it means that instead of having four parameters representing
all the interactions between a pair of variables we only have one reparametrized parame-
ter and because in this case conditions to preserve the model after permuting labels can
be obtained using either kind of parameter and scale invariance is also directly implied
by the reparametrized parameter, the only parameter u′XY implies uXY (01) = uXY (10)
and uXY (00) = uXY (11), then we could use reparametrized parameters to obtain a
label invariant model. As a consequence, in this case the vertex orbit graph G∗ is the
same as the RGLL model graph considering reparametrized parameters representing a
label invariant model.

The graphs G∗ obtained for label invariant models to represent vertex and edge
orbits can always be used to get the graphs G∗∗ corresponding to RGLL models, but
in general both graphs are not the same. In the Gaussian case, the graphs obtained for
RCOP models are the same that the ones obtained for the associated RCON or RCOR
models because in this case vertex orbits are the model vertex classes and edge orbits
are edge classes. This fact was used to determine that RCOP models could be solved
using the same results and procedures obtained for RCOR or RCON models although
there are simpler formulas that can be derived to be used only in RCOP models. Here
we propose something similar, we have a label invariant model, we write it as a RGLL
model, and we use the graph G∗ obtained for the label invariant model to get the graph
G∗∗ for the RGLL model, and then we are able to use the theory obtained for RGLL
models to fit it.

If we have a triangle-free coloured graph, we can obtain in some cases a label in-
variant model with the corresponding parameter restrictions that define it according to
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the colouring. Then, given any coloured triangle-free graph, we could ask ourselves if
this graph and the corresponding multi-graph represent a label invariant model. This
affirmation is not always true as we discuss at the end of example 4.8. It is related with
other research work corresponding to a Ph.D. research project still in process developed
by Neufeld (2009) where the same question is formulated for Gaussian models.

Consider a graphical log-linear model with generating class C(G), the set of cliques
of G, S(V ) the symmetric group formed by all permutations of V , and M the expected
frequency vector (m(i))i∈I, I = ×δ∈∆Iδ, including only the constraints corresponding to
the sampling scheme: Poisson, multinomial, or restricted multinomial.

Definition 4.4. A level invariant model M’ (G,Γ′) determined by a triangle-free graph
G and by Γ′ ⊆ S(V ) is given by assuming that: i) we have a graphical log-linear model
M’ with generating class C(G) and M’ ⊆ M and ii) if M ∈ M’ , then M(i) = M(σ′i)
for all σ′ ∈ Γ′ and i ∈ I.

Observe that when Γ′ = S(V ), i.e. Γ′ corresponds to the set of all possible permu-
tations of the labels, then we will be equating m(i) = m(per(i)), where per(i) denotes
all possible permutations of the elements forming the cells. This is the concept of
symmetry as defined for instance by Bishop et al. (1975, p. 300-303) where the gener-
ating class they use corresponds to a saturated model; however, under level invariant
models we use a generating class different to the one for saturated models, as long as
the corresponding graphical log-linear model has an associated triangle-free graph, so
that we are preserving the dependences implied by the model. In this sense, it can
be considered as a different concept of symmetry. For example, if we have a graphical
log-linear model generated by A= {{W,X}, {X,Y }} with associated graph G and we
define a model M’ (G,Γ′) with Γ′ = S(V ), then we have a model in which simultane-
ously m(i) = m(per(i)) and W⊥Y |Z, where as usual this conditional independence can
be derived from the graphical log-linear model.

We have that the restrictions obtained for a label invariant model can be used to
get a particular level invariant model, the model in which we change the levels of the
vertices according to the label permutation set Γ, i.e. we use Γ′ = Γ; however, by using
the same model, we will be adding scale invariant restrictions that are not necessary in
level invariant models. In fact, if we have a set Γ′ that can be used for a label invariant
model, i.e. Γ′ is a subset of the group of automorphisms of G Aut(G), we could use the
vertex and edge orbits of Γ′ to get restrictions that could be used in the level invariant
model. This is done by using the vertex orbits as vertex classes and by equating the
first-order interactions in the same edge orbit for all possible permutation of the levels.

Then, a graph representing a label invariant model is also one representation of a
particular case of level invariant model, the model in which Γ′ = Γ. In this sense, we
have that the graphs for label invariant models are contained in the graphs for level
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invariant models, level invariant model graphs are contained in triangle-free coloured
graphs, and finally, these are contained in graphs for RGLL models.

Finally, we observe that there are permutations of the vertices or labels that can not
be applied in label invariant models because they are not automorphisms of the graph;
however, permuting the levels taken by those labels could make sense. For example, if
we have a cycle of length four, a label invariant model only interchanging two neighbour
vertices does not make sense because we would have new interactions, or edges, that
did not exist before; however, it is possible to have a level invariant model in which we
change the values taken by two neighbour variables for this cycle, we will discuss this
model in example 4.8.

Example 4.5. Consider once again the graphical log-linear model with generating
class A= {{W,X}, {X,Y }} and associated graph G as in example 4.2 and additionally
suppose that the model satisfies

mWXY (w, x, y) = mWXY (y, x, w), w ∈ IW , x ∈ IX , y ∈ IY ,

IW = IX = IY = {0, 1}. This means that the values or levels taken by the variables
are modified in such a way that the value of the last variable becomes the value of
the first, the value of the second variable remains equal, and the value of the first one
becomes the value of the last and the expected frequency after such change should be
the same. This is a level invariant model M’ (G,Γ′) with Γ′ = {(WY )} since G is a
triangle-free graph and since for a cell (w, x, y), σ′(w, x, y) = (y, x, w) for σ′ = (WY ),
and the corresponding expected frequencies are equated.

To obtain restrictions that may be used to get such equalities between the expected
frequencies, we write them as log-linear expansions according to the generating class

logmWXY (w, x, y) = u+uW (w)+uX(x)+uY (y)+uWX(wx)+uY X(yx), w, x, y = 0, 1;

logmWXY (y, x, w) = u+uW (y)+uX(x)+uY (w)+uWX(yx)+uY X(wx), w, x, y = 0, 1.

To equate both expressions we use the restrictions uWX(ij) = uY X(ij) and uW (i) =
uY (i), for all i, j. Then we have the equalities uWX(00) = uY X(00), uWX(01) =
uY X(01), uWX(10) = uY X(10), uWX(11) = uY X(11), uW (0) = uY (0), and uW (1) =
uY (1).

This is a RGLL model with generating class A= {{W,X}, {X,Y }}, vertices V =
(V1, V2) with

V1 = {W,Y };

V2 = {X};
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and edges E = (E1, E2, E3, E4), where

E1 = {uWX(00), uY X(00)};

E2 = {uWX(01), uY X(01)};

E3 = {uWX(10), uY X(10)};

E4 = {uWX(11), uY X(11)};

whose graph is shown in figure 4.7.
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Figure 4.7: RGLL model with generating class {{W, X}, {X, Y }}, where all variables are
binary, with vertices V = (V1, V2), V1 = {W, Y } and V2 = {X}, and E = (E1, E2, E3, E4),
E1 = {uWX(00), uY X(00)}, E2 = {uWX(01), uY X(01)}, E3 = {uWX(10), uY X(10)}, and
E4 = {uWX(11), uY X(11)}.

Because Γ′ ⊆ Aut(G), which can be seen in the same way as in example 4.3, then
we can get all restrictions from the vertex and edge orbits. As in example 4.4 the vertex
orbits are V1 = {W,Y } and V2 = {X} and the edge orbit is ξ1 = {{W,X}, {Y,X}},
which implies that the main effects for the the vertices in the same vertex orbit are
equal in each level and that each pair of different interactions uY X(ij) and uWX(ij) is
equated, equations (4.3) and (4.4). These are exactly the same equalities defining a
RGLL model that we obtained before using the log-linear expansions.

Observe that the parameter restrictions and RGLL model used for the label in-
variant model M (G,Γ) with Γ = {(WY )} presented in examples 4.3 and 4.4 preserve
the expected frequency equalities as required for the level invariant model M’ (G,Γ′),
although the parameters are even more restricted. This means that the coloured graph
in figure 4.6 also represents the level invariant model M’ (G,Γ′) and that there are at
least two RGLL models representing the same level invariant model.

4.1 Examples

In this section we present six examples of label and level invariant models for different
graphical models to illustrate the concepts seen so far in this chapter. Remembering



164 CHAPTER 4. LABEL AND LEVEL INVARIANT MODELS

that all label and level invariant models can be represented as RGLL models, we present
in the examples involving label invariant models the associated RGLL model and for
level invariant model we present at least one RGLL model associated to it.

Example 4.6. For a graphical log-linear model whose associated graph G is a line
exists a general way to express a level invariant model in which we permute the order of
the levels taken for the variables from front to back, i.e. the value of the last variable is
interchanged with the value of the first one, the value of the previous to last variable is
interchanged with the value of the second one, the value of the third from last variable
is interchanged with the value of the third one, and so on. We want the expected fre-
quencies to be the same after this change. This is equivalent to a level invariant model
in which the first and last variable levels are interchanged, the previous to last and the
second are interchanged, the third from last and the third are interchanged, and so on.
Example 4.5 is a particular case of these models where the number of vertices |V | is 3.

Supposing that the vertex set is V= {a1, a2, ..., a|V |}, the generating class asso-
ciated to G is A= {{a1, a2}, ...., {a|V −1|, a|V |}}. The restrictions and colour classes
needed to obtain a RGLL model with generating class A representing such level invari-
ant model M’ (G,Γ′), with Γ′={(a1a|V |) (a2a|V |−1) .... (a |V |−1

2

a |V |+3
2

)} if |V | is odd and

Γ′={(a1a|V |) (a2a|V |−1) .... (a |V |
2

a |V |
2

+1
)} if |V | is even, are given by

If |V | is odd we use V=(V1, V2,...., V |V |−1
2

, V |V |−1
2

+1
) with V1 = {a1, a|V |}, V2 =

{a2, a|V |−1},...., V |V |−1
2

= {a |V |−1
2

, a |V |+3
2

}, V |V |−1
2

+1
= {a |V |−1

2
+1
}. We have |V |−1

2
groups

of restrictions for each (i, j) permutation of the levels for the first-order interactions,
ua1a2(ij) = ua|V |a|V |−1

(ij), ..., ua |V |−1
2

a |V |−1
2 +1

(ij) = ua |V |+3
2

a |V |−1
2 +1

(ij). Then the edge

colour classes are {ua1a2(ij), ua|V |a|V |−1
(ij)}, ...., {ua |V |−1

2

a |V |−1
2 +1

(ij), ua |V |+3
2

a |V |−1
2 +1

(ij)},

for all i, j.

If |V | is even we use V= (V1, V2,...., V |V |
2

) with V1 = {a1, a|V |}, V2 = {a2, a|V |−1},....,

V |V |
2

= {a |V |
2

, a |V |
2

+1
}. We have |V |

2
groups of restrictions for each (i, j) permutation of

the levels for the first-order interactions, ua1a2(ij) = ua|V |a|V |−1
(ij), ..., ua |V |

2 −1
a |V |

2

(ij) =

ua |V |
2 +2

a |V |
2 +1

(ij), and ua |V |
2

a |V |
2 +1

(ij) = ua |V |
2

a |V |
2 +1

(ji). Then the edge colour classes are

{ua1a2(ij), ua|V |a|V |−1
(ij)}, ..., {ua |V |

2 −1
a |V |

2

(ij), ua |V |
2 +2

a |V |
2 +1

(ij)}, and {ua |V |
2

a |V |
2 +1

(ij),

ua |V |
2

a |V |
2 +1

(ji)} for all i, j.

For instance if |V | = 5, V= {a1, a2, a3, a4, a5}, the level invariant model M’ (G,Γ′)
with Γ′={(a1a5) (a2a4)} and whose generating class associated to G is A= {{a1, a2},
{a2, a3}, {a3, a4}, {a4, a5}} is represented as a RGLL model with generating class A,
vertices V=(V1, V2, V3) with V1 = {a1, a5}, V2 = {a2, a4}, and V3 = {a3}, and edge
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colour classes {ua1a2(ij), ua5a4(ij)}, {ua2a3(ij), ua4a3(ij)} for all i, j.

We can also get a RGLL model for label invariant models in which a1 is permuted
with a|V |, a2 with a|V |−1, etc, i.e. the model M (G,Γ) with Γ= Γ′. Example 4.3 is
a particular case of these models where the number of vertices |V | = 3. The vertex
colouring for the associated RGLL model whose generating class is A is the same as in
the level invariant case. The edge colouring is the following.

If |V | is odd we have the following sets whose interactions should be the same or edge
colour classes: {ua1a2(ij), ua|V |a|V |−1

(ij), i 6= j}, {ua1a2(ii), ua|V |a|V |−1
(ii); i = 1, ..., J}, ...,

{ua |V |−1
2

a |V |−1
2 +1

(ij), ua |V |+3
2

a |V |−1
2 +1

(ij), i 6= j}, {ua |V |−1
2

a |V |−1
2 +1

(ii), ua |V |+3
2

a |V |−1
2 +1

(ii); i =

1, ..., J}.

If |V | is even we have the following sets whose interactions should be the same or edge
colour classes: {ua1a2(ij), ua|V |a|V |−1

(ij), i 6= j}, {ua1a2(ii), ua|V |a|V |−1
(ii); i = 1, ..., J}, ...,

{ua |V |
2 −1

a |V |
2

(ij), ua |V |
2 +2

a |V |
2 +1

(ij), i 6= j}, {ua |V |
2 −1

a |V |
2

(ii), ua |V |
2 +2

a |V |
2 +1

(ii); i = 1, ..., J},

{ua |V |
2

a |V |
2 +1

(ij), i 6= j}, and {ua |V |
2

a |V |
2 +1

(ii)}.

For instance if |V | = 5, V= {a1, a2, a3, a4, a5}, the label invariant model M (G,Γ)
with Γ={(a1a5) (a2a4)} and whose generating class associated toG is A= {{a1, a2}, {a2,
a3}, {a3, a4}, {a4, a5}} is represented as a RGLL model with generating class A, vertices
V=(V1, V2, V3) with V1 = {a1, a5}, V2 = {a2, a4}, and V3 = {a3}, and edge colour classes
{ua1a2(ij), ua5a4(ij), i 6= j}, {ua1a2(ii), ua5a4(ii); i = 1, ..., J}, {ua2a3(ij), ua4a3(ij), i 6=
j}, and {ua2a3(ii), ua4a3(ii); i = 1, ..., J}.

Example 4.7. (Cyclic permutation). Suppose that we have a graphical log-linear
model corresponding to a cycle of length four or more and that we change the levels
of the variables in a cyclic way, i.e. the value of one first variable becomes the value
of the second, the value of the second variable becomes the value of the third, and so
on until the value of the last variable takes the place of the first one forming a new
configuration. We proceed in a similar way with this new configuration, and so on until
we get the original configuration. We want the expected frequencies or probabilities to
be the same for all configurations. This is called a cyclic permutation and it is a level
invariant model.

For example, suppose that we have a model whose graph G is given by a four-cycle
(figure 4.2) with vertices labeled as A, B, C, D and edges {A,B}, {B,C}, {C,D},
{D,A}. To get a cyclic permutation, we use a level invariant model M’ (G,Γ′), with
Γ′= {(ADCB), (AC)(DB), (ABCD)}, because the graphG is triangle-free and because
under the permutation set Γ′ the following equality holds
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mABCD(a, b, c, d) = mABCD(b, c, d, a) = mABCD(c, d, a, b) = mABCD(d, a, b, c),

which is the equality required for cyclic permutation. To obtain parameter restrictions
that could be used to get such equalities, we write the expected frequencies as log-linear
expansions according to the generating class. Once doing this process the equalities can
be obtained if we let uA(i)= uB(i)= uC(i)= uD(i), for all i, and if uAB(ij)= uBC(ij)=
uCD(ij)= uDA(ij), for all i and j, i.e. we obtain a RGLL model with vertex colour class
V= {A, B, C, D} and edge colour classes {uAB(ij), uBC(ij), uCD(ij), uDA(ij)}, i, j=
1, ..., J . The corresponding graph when all variables are binary is presented in figure
4.8. Note that in level invariant models we are not actually permuting variables and
that the permutation set is not always used as in label invariant models to directly get
the restrictions. These restrictions can be obtained once we write the model according
to the parameters in such a way that we get the desired equalities.
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Figure 4.8: RGLL model with generating class {{A, B}, {B, C}, {C, D}, {D, A}}, where
all variables are binary, with vertices V = {A, B, C, D} and first-order interactions set E=
(E1, E2, E3, E4), E1 = {uAB(01), uBC(01), uCD(01), uDA(01)}, E2= {uAB(00), uBC(00),
uCD(00), uDA(00)}, E3= {uAB(10), uBC(10), uCD(10), uDA(10)}, and E4= {uAB(11),
uBC(11), uCD(11), uDA(11)}.

For a cycle with |V | vertices, |V | ≥ 4, with the vertices representing variables with J
levels each one, the cyclic permutation model can be represented as a RGLL model with
generating class A= {{a1, a2}, {a2, a3},...,{a|V |−1, a|V |}, {a|V |, a1}} in which all vertices
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are in the same vertex colour class V and we have J2 edge colour classes {ua1a2(ij),
ua2a3(ij), ...., ua|V |−1a|V |

(ij), ua|V |a1(ij)}, i, j= 1, ..., J .

Example 4.8. Consider a graphical log-linear model with generating class {{A,B},
{B,C}, {C,D}, {D,A}} and corresponding graph G, figure 4.2. We analyze 8 different
interesting label and level invariant models whose associated graph G is the same.

1) If we interchange at the same time two pair of neighbour vertices, for example A
with B and C with D, i.e. using the label invariant model M (G,Γ) with Γ= {(AB)
(CD)}, we get that the graph of the orbits, G∗, corresponds to a graph in which the
vertices in the first vertex orbit, A and B, have one colour and the vertices in the other
orbit, C and D, have another colour. The edges not joining the neighbours we inter-
change, {A,D} and {B,C}, which are in the same edge orbit, have the same colouring
and the rest of the edges have different colours (figure 4.9). Observe that this graph
is similar to the one presented in example 1.3 by Højsgaard and Lauritzen (2008, p.
1009) for some continuous data on a study of heredity of heads dimensions made by
Frets (1921).

A

CD

B

Figure 4.9: Vertex and edge orbits graph, G∗, for the label invariant model M(G, Γ) with
generating class {{A, B}, {B, C}, {C, D}, {D, A}}, associated graph G, and permutation set
Γ= {(AB), (CD)}.

We represent the label invariant model with a RGLL model in which the main effects
are equal for all levels of the vertices in the same orbit and the interactions of the same
orbit are equal, first when the levels are equal, and then when they differ. So that the
RGLL model has generating class {{A,B}, {B,C}, {C,D}, {D,A}}, vertex set V =
(V1, V2), with V1 = {A,B} and V2 = {C,D}, and edge set E= (E1, E2, E3, E4, E5, E6),
with E1= {uAD(ii), uBC(ii), i = 1, ..., J}, E2= {uAD(ij), uBC(ij), i 6= j, i, j = 1, ..., J},
E3={uAB(ii), i = 1, ..., J}, E4={uAB(ij), i 6= j, i, j = 1, ..., J}, E5={uCD(ii), i =
1, ..., J }, E6={uCD(ij), i 6= j, i, j = 1, ..., J}. This RGLL model is given in figure 4.10
for the binary case.
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The interpretation of this model is similar to the one in the continuous case. Here
we can permute the variables A with B and C with D and the model is preserved,
in the sense that it is scale invariant and that the distribution after the change is the
same we had before the change was made. In the case of the Frets’ heads data, which
are continuous, A and D represent the measures for a first son and B and C the same
measures for the other son, and the model presented by Højsgaard and Lauritzen (2008,
p. 1008) means that there is symmetry between the two sons. If Frets’ heads data were
discrete, the label invariant model M (G,Γ) with Γ= {(AB) (CD)} would have the
same interpretation, symmetry between the sons.
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Figure 4.10: RGLL model with generating class {{A, B}, {B, C}, {C, D}, {D, A}}, where all
variables are binary, with vertices V = (V1, V2), V1 = {A, B} and V2 = {C, D}, and first-order
interactions set E= (E1, E2, E3, E4, E5, E6), E1= {uAD(00), uAD(11), uBC(00), uBC(11)},
E2= {uAD(01), uAD(10), uBC(01), uBC(10)}, E3= {uAB(00), uAB(11)}, E4= {uAB(01),
uAB(10)}, E5= {uCD(00), uCD(11)}, E6= {uCD(01), uCD(10)}.

2) Assuming a level invariant model M’ (G,Γ′) with the same permutation set Γ′=
{(AB) (CD)}, which is the model whose restrictions for the expected frequencies are

mABCD(a, b, c, d) = mABCD(b, a, d, c),

we may use the same RGLL or a less restricted model. In this case, we could use a
RGLL model with the same vertex classes as in the model given in 1), V = (V1, V2),
with V1 = {A,B} and V2 = {C,D}, but with fewer edge colour classes because we do
not need to join the edges with the same levels in one class and the edges with different
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levels in another. According to the model, we may use the following restrictions for
the first-order interactions uAB(ij) = uAB(ji), i < j, uCD(ij) = uCD(ji), i < j, and
uBC(ij) = uAD(ij) or their corresponding edge colour classes {uAB(ij), uAB(ji)}, i < j;
{uAB(ii)}; {uCD(ij), uCD(ji)}, i < j; {uCD(ii)}, and {uBC(ij), uAD(ij)}. Observe
that the restrictions for {A,B} and for {C,D} are similar to the ones in symmetric
models for two variables (Agresti, 2002a, p. 424). For example, in the binary case we
get ten edge classes instead of six, which are: E1= {uAD(00), uBC(00)}, E2= {uAD(01),
uBC(01)}, E3= {uAD(10), uBC(10)}, E4= {uAD(11), uBC(11)}, E5={uAB(00)}, E6=
{uAB(11)}, E7= {uAB(01), uAB(10)}, E8= {uCD(00)}, E9= {uCD(11)}, and E10=
{uCD(01), uCD(10)}.

Observe that in these particular cases in which we have a label invariant model
M (G,Γ) and we get the corresponding level invariant model M’ (G,Γ′) using Γ = Γ′,
that is when Γ′ is an automorphism, it can still be helpful to use the orbits because it
can help to know which parameters to equate to obtain a RGLL model. The vertex
orbits are the vertex classes and in this case once we get the edge orbits we observe
that the edge {A,D} was transformed into {B,C}, {A,B} into {B,A}, and {C,D}
into {D,C}, and the corresponding parameters are equated for all level permutation
(i, j), for example uBC(ij) is equated with uAD(ij), getting the RGLL model shown in
the previous paragraph. It is important to remark that we always need to be careful in
the order in which the vertices forming edges are transformed, which may (even though
it should not) cause confusion because usually the order of the vertices is irrelevant
when defining edges, for example in this case the edge {B,C} turns into {A,D} and
not into {D,A} because under the permutation (AB)(CD) B is replaced with A and
C with D. This order is important to get the right restrictions for the interactions.

3) Another example is a level invariant model for two neighbour vertices. Suppose
that there are two neighbour vertices α and β, i.e. there is an edge {α, β}, and that
there are edges {δ, α} and {β, γ}. We define a level invariant model M’ (G,Γ′) with
Γ′= {(αβ)}. For example, if α = A, β = B, γ = C, and δ = D the model satisfies

mABCD(a, b, c, d) = mABCD(b, a, c, d).

To obtain these equalities we could use a RGLL model with V = (V1, V2, V3) where
V1= {α, β}, V2= {γ}, and V3= {δ}, and the following first-order interactions restrictions

uαβ(ij) = uαβ(ji), i < j; uβγ(1c) = uβγ(2c) = ... = uβγ(Jc), c = 1, ..., J ; and

uδα(d1) = uδα(d2) = ... = uδα(dJ), d = 1, ..., J ;

or their corresponding edge classes {uαβ(ij), uαβ(ji)}, i < j; {uαβ(ii)}, i = 1, ...J ;
{uβγ(1c), uβγ(2c), ..., uβγ(Jc)}, c = 1, ..., J ; {uδα(d1), uδα(d2), ..., uδα(dJ)}, d = 1, ..., J ;
and the remaining first-order interactions in different atomic classes. The corresponding
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graph when all variables are binary with categories 0 and 1; with α = A, β = B, γ = C,
and δ = D; and where all atomic classes are coloured in black is presented in figure 4.11.
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Figure 4.11: RGLL model with generating class {{A, B}, {B, C}, {C, D}, {D, A}}, where
all variables are binary, with vertices V = (V1, V2, V3), V1 = {A, B}, V2 = {C}, and V3 =
{D}, and first-order interactions set E= (E1, E2, E3, E4, E5, E6, E7, E8, E9, E10, E11),
E1= {uAB(01), uAB(10)}, E2= {uAB(00)}, E3= {uAB(11)}, E4= {uBC(00), uBC(10)}, E5=
{uBC(01), uBC(11)}, E6= {uDA(00), uDA(01)}, E7= {uDA(10), uDA(11)}, E8= {uCD(00)},
E9= {uCD(11)}, E10= {uCD(01)}, and E8= {uCD(10)}. All atomic classes in black.

Observe that a model permuting neighbour vertices does not make sense for a label
invariant case because when we change two neighbour vertices we do not get an auto-
morphism of the graph, for example after the permutation (αβ)= (AB) we obtain a
new edge {α, γ}= {A,C} we did not have before (figure 4.12).

Observe also that this kind of model can be generalized to any cycle of length four or
more. Given a n-cycle, n ≥ 4, including the edges {α, β}, {β, γ}, and {δ, α}, the level
invariant model M’ (G,Γ′) with Γ′= {(αβ)} can be represented as the RGLL model
with the same restrictions given before for the four-cycle.
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B

CD

A

Figure 4.12: Graph obtained after applying the permutation (αβ)= (AB). This graph is not
isomorphic to G, the four-cycle shown in figure 4.2.

4) A fourth example corresponds to a label invariant model M (G,Γ) with Γ=
{(AC) (BD)}, which is a model interchanging opposite vertices in the graph at the
same time. For this case the vertex orbits are {A,C} and {B,D}. In consequence we
obtain a RGLL model in which V is partitioned into V1 = {A,C} and V2 = {B,D}.
The edges classes in the RGLL model, which can be obtained from the edges orbits,
{{A,B}, {C,D}} and {{B,C}, {D,A}}, are E1= {uAB(ii), uCD(ii), i = 1, ..., J},
E2= {uAB(ij), uCD(ij), i 6= j, i, j = 1, ..., J} , E3={uBC(ii), uDA(ii), i = 1, ..., J},
E4={uBC(ij), uDA(ij), i 6= j, i, j = 1, ..., J}. The graph for the binary case is given in
figure 4.13.

5) A level invariant model M’ (G,Γ′) with the same permutation set Γ′ = Γ can be
obtained using a less restricted RGLL model. As stated before, we could use the orbits
to get the classes. The vertex classes are the same as before. Additionally, we need
the following restrictions uAB(ij) = uCD(ij) and uBC(ij) = uDA(ij), i, j = 1, ..., J with
their corresponding edge colour classes {uAB(ij), uCD(ij)} and {uBC(ij), uDA(ij)},
i, j = 1, ..., J .
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Figure 4.13: RGLL model with generating class {{A, B}, {B, C}, {C, D}, {D, A}}, where all
variables are binary, with vertices V = (V1, V2), V1 = {A, C} and V2 = {B, D}, and first-
order interactions set E= (E1, E2, E3, E4), E1= {uAB(00), uCD(00), uAB(11), uCD(11)},
E2= {uAB(01), uCD(01), uAB(10), uCD(10)} , E3={uBC(00), uDA(00), uBC(11), uDA(11)},
E4= {uBC(01), uDA(01), uBC(10), uDA(10)}.

6) A sixth example corresponds to a label invariant model in which we only per-
mute two opposite vertices, for example the label invariant model M (G,Γ) using the
permutation set Γ= {(AC)}. In this case the corresponding associated RGLL model
has three vertex classes V1 = {A,C}, V2 = {B}, and V3 = {D}, and four edge classes
E1= {uAB(ii), uCB(ii), i = 1, ..., J}, E2= {uAB(ij), uCB(ij), i 6= j, i, j = 1, ..., J},
E3={uCD(ii), uAD(ii), i = 1, ..., J}, E4={uCD(ij), uAD(ij), i 6= j, i, j = 1, ..., J}. The
graph for the binary case is given in figure 4.14.
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Figure 4.14: RGLL model with generating class {{A, B}, {B, C}, {C, D}, {D, A}}, where all
variables are binary, with vertices V = (V1, V2, V3), V1 = {A, C}, V2 = {B}, and V3 = {D}
and first-order interactions set E= (E1, E2, E3, E4), E1= {uAB(00), uCB(00), uAB(11),
uCB(11)}, E2 = {uAB(01), uAB(10), uCB(01), uCB(10)}, E3= {uCD(00), uAD(00), uCD(11),
uAD(11)}, E4= {uCD(01), uCD(10), uAD(01), uAD(10)}.

7) A level invariant model M’ (G,Γ′) with the same permutation set Γ′ = Γ can be
obtained using a less restricted RGLL model. The vertex classes are the same. Addi-
tionally, we need the following restrictions uAB(ij) = uCB(ij) and uCD(ij) = uAD(ij),
i, j = 1, ..., J with their corresponding edge colour classes {uAB(ij), uCB(ij)} and
{uCD(ij), uAD(ij)}, i, j = 1, ..., J .

8) Finally, suppose that for the same graphical model with graph G we have a vertex
and edge orbits graph, G∗, coloured as in figure 4.15. We want to know if it represents
a label invariant model M (G,Γ) determined by Γ, Γ ⊆ Aut(G)= {Id, (AC), (BD),
(AC)(BD), (AB)(CD), (AD)(BC), (ABCD), (ADCB)}. Without considering the
empty set, there are 28 − 1 = 255 subsets of Aut(G), each of these subsets generates an
orbits graph G∗. Different subsets can generate the same graph G∗. After analyzing all
subsets Γ of Aut(G) by getting the orbits and coloured graph G∗ associated to these
orbits, we derived 8 different colourings which are shown in table 4.3. On the other
hand, the number of different vertex and edge colourings of G is 81, this means that
there are colourings of G, colourings that possibly could be identified with vertex and
edge orbits, that do not represent a label invariant model. In particular the graph
shown in figure 4.15 corresponds to a vertex and edge colouring of G not contained in
the set of different orbits graphs G∗ that can be obtained from any Γ ⊆ Aut(G), table
4.3, and in consequence the graph does not belong to a label invariant model.
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A

CD

B

Figure 4.15: Vertex and edge orbits graph, G∗, for the model with generating class {{A, B},
{B, C}, {C, D}, {D, A}}, log m(i, j, k, l) = u+ uA(i)+ uB(j)+ uC(k)+ uD(l)+ uAB(ij)+
uBC(jk)+ uCD(kl)+ uDA(li) for which there is not an associated label invariant model, illus-
trating that not any coloured graph represents a label invariant model.

This example shows that there are coloured graphs, which can be seen as represen-
tations of vertex and edge orbits, that can not be used to derive a label invariant model.
In the continuous case, a similar colouring for this graph is presented by Højsgaard and
Lauritzen (2008) to show a graph whose associated model is not a RCOP model. Then
in both cases, continuous and discrete, not all colourings represent invariant models,
label invariant for the discrete case and RCOP for the continuous case. Properties that
coloured graphs should satisfy to represent RCOP models are currently being studied
and identified by Neufeld (2009).
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Permutation set Γ Orbits graphs G∗

{(AC)}

A

CD

B

{(BD)}

A

CD

B

{(AC)(BD)}

A

CD

B

{(AB)(CD)}

A

CD

B

{(AD)(BC)}

A

CD

B

Γ1 = {(AC), (BD)}, Γ2 = {(AC), (AC)(BD)},

A

CD

B

Γ3 = {(BD), (AC)(BD)} and all Γ, |Γ| = 3,
with Γ1, Γ2, or Γ3 and Id ⊂ Γ

Γ4 = {(AC)(BD), (AB)(CD)}, Γ5 = {(AC)(BD), (AD)(BC)},

A

CD

B

Γ6 = {(AB)(CD), (AD)(BC)} and all Γ, |Γ| = 4,
with Γ4, Γ5, or Γ6 and Id ⊂ Γ

Any other Γ

A

CD

B

Table 4.3: Subsets Γ of Aut(G) and their associated orbits graphs G∗ for the graphical log-
linear model with generating class {{A, B}, {B, C}, {C, D}, {D, A}} and associated graph
G.
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Example 4.9. Consider a model with generating class {{A,D}, {B,D}, {C,D}} (fig-
ure 4.16). We can define a level invariant model M’ (G,Γ′) with Γ′ = {(ABC), (ACB)}.

This is a model in which

mABCD(a, b, c, d) = mABCD(c, a, b, d) = mABCD(b, c, a, d).

To get these equalities, we can use a RGLL model in which the vertex set is partitioned
into the vertex classes V1 = {A,B,C} and V2 = {D} and the edge set into J2 edge
classes given by {uAD(ij), uBD(ij), uCD(ij)}, i, j= 1, ..., J . This model is similar to
cyclic permutation presented in example 4.7 for A, B, and C.

For the same graph, we define a label invariant model M (G,Γ) with Γ= {per(ABC)},
where per(ABC) denotes all possible permutations of A, B, and C. In this case, the
vertex orbits and vertex classes are given by V1= {A,B,C} and V2 = {D}, and the
unique edge orbit is {{A,D}, {B,D}, {C,D}}, as a consequence the edge classes are
E1= {uAD(ij), uBD(ij), uCD(ij), i 6= j, i, j = 1, ..., J} and E2= {uAD(ii), uBD(ii),
uCD(ii), i = 1, ..., J}, obtaining again a RGLL model.

D

A B

C

Figure 4.16: Graphical log-linear model with generating class {{A, D}, {B, D}, {C, D}},
log m(i, j, k, l) = u+ uA(i)+ uB(j)+ uC(k)+ uD(l)+ uAD(il)+ uBD(jl)+ uCD(kl).

Example 4.10. Consider a model with generating class {{A,B}, {A,C}, {B,D},
{B,E}, {C,F}, {C,G}} (figure 4.17), and associated graph G′ which is a tree. We
define a level invariant model M’ (G′,Γ′) with Γ′ = {(DF )(EG)}.

This model allows to permute the values of D with the ones in F and the values of
E with the ones in G. Under this model the following equality is satisfied

mABCDEFG(a, b, c, d, e, f, g) = mABCDEFG(a, b, c, f, g, d, e). (4.7)

Writing the expected frequencies according to the model parameters

logmABCDEFG(a, b, c, d, e, f, g) = u+ uA(a) + uB(b) + uC(c) + uD(d) + uE(e) + uF (f)+



4.1. EXAMPLES 177

uG(g) + uAB(ab) + uAC(ac) + uBD(bd) + uBE(be) + uCF (cf) + uCG(cg);

and taking into account the permutation set Γ′, the expected frequencies can be ex-
pressed as

logmABCDEFG(a, b, c, f, g, d, e) = u+ uA(a) + uB(b) + uC(c) + uD(f) + uE(g) + uF (d)+

uG(e) + uAB(ab) + uAC(ac) + uBD(bf) + uBE(bg) + uCF (cd) + uCG(ce);

we observe that one way to restrict the parameters to satisfy equality (4.7) is by par-
titioning the vertex set into the vertex classes V1 = {D,F}, V2 = {E,G}, V3 = {A},
V4 = {B}, and V5 = {C}. Additionally, in order to satisfy (4.7) the first-order interac-
tions should satisfy the following restrictions

uBD(b1) = .... = uBD(bJ), b = 1, ..., J ;

uBE(b1) = .... = uBE(bJ), b = 1, ..., J ;

uCF (c1) = .... = uCF (cJ), c = 1, ..., J ;

uCG(c1) = .... = uCG(cJ), c = 1, ..., J.

This means that the parameters uAB(ij) and uAC(ij) are unrestricted since the variables
corresponding to these interactions for this model are not permuted in any way, so that
each parameter for all possible permutation of their levels must be in a different atomic
class, and that we have J edge classes for each parameter uBD, uBE, uCF , and uCG. For
example, for uBD we get the classes {uBD(11), uBD(12) ...., uBD(1J)},...., {uBD(J1),
uBD(J2) ...., uBD(JJ)}. Then we have a RGLL model with V= (V1, V2, V3, V4, V5)
and first-order interaction set partitioned into the edge classes {uBD(b1),...., uBD(bJ)},
b = 1, ..., J ; {uBE(b1),...., uBE(bJ)}, b = 1, ..., J ; {uCF (c1),...., uCF (cJ)}, c = 1, ..., J ;
{uCG(c1),...., uCG(cJ)}, c = 1, ..., J ; {uAB(ij)}, for all i, j; and {uAC(ij)} for all i, j.

A

CB

D E F G

Figure 4.17: Graphical log-linear model with generating class {{A, B}, {A, C}, {B, D},
{B, E}, {C, F}, {C, G}}, log m(a, b, c, d, e, f, g) = u+ uA(a)+ uB(b)+ uC(c)+ uD(d)+
uE(e)+ uF (f)+ uG(g)+ uAB(ab)+ uAC(ac) + uBD(bd)+ uBE(be)+ uCF (cf)+ uCG(cg).
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This model is interesting because it may be interpreted in different ways, we show
here three interpretations. a) If the variable associated to A corresponds to a cate-
gorical variable measured to someone one year, B and C correspond to measures for
the same person of the same variable in the following year, which was divided into
two semesters, so that B corresponds to the first semester and C corresponds to the
second, and variables D, E, F , and G correspond to the same variable measured to
the same person again in a third year divided accordingly into four trimesters, then we
have a panel data, i.e. a time series unequally spaced for each person. The correspond-
ing contingency table has in each cell the number of people with the same response
patterns through time. The level invariant model means that the measures in one
semester depend on the measures in the previous year, that the same happens with
the trimester information which depends on the semesters of the previous year, the two
first trimesters depend on the first semester and the two last trimesters depend on the
second semester, and that we can interchange the values of the last two trimesters with
the ones of the two first trimesters getting the same expected frequencies, so that the
semester in which the trimester measures belong is not relevant.

b) A second interpretation could be if we had information concerning family mem-
bers or any other kind of cluster. For example, A represents the value of a categorical
variable measured for a grandfather, for example social class, B represents the same
value for a first descendant and C for a second descendant. Finally, D and E are the
values corresponding to the first descendant sons and F and G correspond to the val-
ues for the second descendant sons. Each cell in the corresponding contingency table
represents the number of families with a particular response pattern. The meaning of
this model is that the variables are associated with those of the ascendants and that
the values taken by the corresponding variables for the first grandsons and the second
grandsons can be interchanged, so that for a determined response pattern it does not
matter which parents the second generation have.

c) Finally, we could think that the data correspond to an item-response data, in
which each variable corresponds to a different item represented by the variables A, B,
C, D, E, F , and G, all of them having the same options, for example true and false.
Additionally, we suppose that all subjects respond all items. The corresponding con-
tingency table has cells representing the number of subjects with an special response
pattern. The meaning of the level invariant model is that even though the items as-
sociated to D and E and the items associated to F and G depend on different items,
their values can be interchanged, respectively, so that the response pattern for this pair
of items is similar.

Observe that we can not get a label invariant model M (G′,Γ) using Γ = Γ′, because
the only element contained in Γ′ is not an automorphism of the graph. However, we
could get a label invariant model M (G′,Γ) by interchanging at the same time the labels
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B with C, D with F , and E with G, i. e. interchanging the two different branches of
the tree, so that we have Γ = {(BC)(DF )(EG)}. In this case, the vertex orbits and in
consequence vertex classes are V1 = {D,F}, V2 = {E,G}, V3 = {B,C}, and V4 = {A}.
The edge orbits are {{A,B}, {A,C}}, {{B,D}, {C,F}}, and {{B,E}, {C,G}}, so
that the corresponding edge classes are E1= {uAB(ij), uAC(ij), i 6= j, i, j = 1, ..., J},
E2= {uAB(ii), uAC(ii), i = 1, ..., J}, E3= {uBD(ij), uCF (ij), i 6= j, i, j = 1, ..., J}, E4=
{uBD(ii), uCF (ii), i = 1, ..., J}, E5= {uBE(ij), uCG(ij), i 6= j, i, j = 1, ..., J}, and E6=
{uBE(ii), uCG(ii), i = 1, ..., J} and we obtain a RGLL model with those vertex and
edge classes.

Example 4.11. Consider a level invariant model M ’(G,Γ′) with generating class
{{A,B}, {A,C}, {B,D}, {C,D}, {C,E}, {D,F}, {E,F}} and associated graph G
(figure 4.18), with Γ′= {(AE)(BF )}. That is, we have a model in which

mABCDEF (a, b, c, d, e, f) = mABCDEF (e, f, c, d, a, b). (4.8)

Writing the expected frequencies according to the model parameters

logm(a, b, c, d, e, f) = u+ uA(a) + uB(b) + uC(c) + uD(d) + uE(e) + uF (f) + uAB(ab)+

uBD(bd) + uCD(cd) + uAC(ac) + uDF (df) + uEF (ef) + uEC(ec);

and taking into account the permutation set Γ′, the expected frequencies can be ex-
pressed as

logm(e, f, c, d, a, b) = u+ uA(e) + uB(f) + uC(c) + uD(d) + uE(a) + uF (b) + uAB(ef)+

uBD(fd) + uCD(cd) + uAC(ec) + uDF (db) + uEF (ab) + uEC(ac).

In order to satisfy equality (4.8), we have to equate the corresponding parameters and
we may use a RGLL model with vertex classes V1 = {A,E}, V2 = {B,F}, V3 = {C},
V4 = {D} and edge classes given by {uAC(ij), uEC(ij)}, i, j = 1, ..., J , {uBD(ij),
uFD(ij)}, i, j = 1, ..., J , {uAB(ij), uEF (ij)}, i, j = 1, ..., J , and {uCD(ij)}, i, j = 1, ..., J .
Observe that if we considered the permutation set Γ′ as a set interchanging labels, we
would get a set formed by an automorphism of the graph, so that in this particular
case, even though we are not talking about a label invariant model, we could use if
we wanted, the vertex and edge orbits to obtain the restrictions necessary to get the
required expected frequencies equalities for the RGLL model. In this case, the vertex
orbits {A,E}, {B,F}, {C}, and {D} correspond to the vertex classes V1, V2, V3, and
V4, respectively, and the edge orbits {{A,C}, {E,C}}, {{B,D}, {F,D}}, {{A,B},
{E,F}}, and {{C,D}} are used to get the edge classes. These are formed by the
first-order interactions corresponding to the edges in the same orbit for all possible
permutation of the levels. At the end we obtain the edge classes already presented.
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Figure 4.18: Graphical log-linear model with generating class {{A, B}, {A, C}, {B, D},
{C, D}, {C, E}, {D, F}, {E, F}}, log m(a, b, c, d, e, f) = u+ uA(a)+ uB(b)+ uC(c)+ uD(d)+
uE(e)+ uF (f)+ uAB(ab)+ uBD(bd)+ uCD(cd)+ uAC(ac)+ uDF (df)+ uEF (ef)+ uEC(ec).

It is evident, using the orbits already obtained and scale invariance restrictions, that
the label invariant model using the same symmetry group, Γ= {(AE)(BF )}, is the
RGLL model with vertex classes V1 = {A,E}, V2 = {B,F}, V3 = {C}, and V4 = {D},
and edge classes E1= {uAC(ij), uEC(ij), i 6= j, i, j = 1, ..., J}, E2= {uAC(ii), uEC(ii),
i = 1, ..., J}, E3= {uBD(ij), uFD(ij), i 6= j, i, j = 1, ..., J}, E4= {uBD(ii), uFD(ii),
i = 1, ..., J}, E5= {uAB(ij), uEF (ij), i 6= j, i, j = 1, ..., J}, E6= {uAB(ii), uEF (ii),
i = 1, ..., J}, E7= {uCD(ij), i 6= j, i, j = 1, ..., J}, and E8= {uCD(ii), i = 1, ..., J}.

Suppose that the variables represent a categorical variable measured at different
times, A and B representing measures in a first year, for example in two different
semesters, C and D in a second year, and E and F in a third year, the label invari-
ant model would mean that a) the first and third years are conditionally independent
given the second one, this is due to the conditional independences of the graphical
model alone, and b) that we could interchange the first and third years, permute the
level set associated to the variables, or both and still preserve the model, which im-
plies that mABCDEF (a, b, c, d, e, f) = mABCDEF (e, f, c, d, a, b) and consequently that the
distribution is preserved after the permutation.

4.2 Applications of label and level invariant models

In this section we analyze two different contingency tables by using label and level
invariant models to illustrate how these models can be fitted as well as their interpre-
tation for data in which such models make sense. The first example corresponds to
a discretization of the data analyzed in the continuous case by Højsgaard and Lau-
ritzen (2008) using RCOP models and the second example was analyzed by Drton and
Richardson (2008) using what they call binary models for marginal independence.
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Example 4.12. Frets’ heads data (Frets, 1921) correspond to continuous observations
containing the length and breadth of the heads of 25 pairs of first and second sons. We
have L∗

1, L
∗
2, B

∗
1 , and B∗

2 , corresponding to the head length of the first and second son,
and head breadth of the first and second son, respectively. These data were reported
in Mardia et al. (1979, p. 121) and can be also found in Whittaker (1990, p. 255,
265). We derived discrete variables from the continuous variables, deriving a binary
variable L1, L2, B1, and B2 from each continuous variable L∗

1, L
∗
2, B

∗
1 , and B∗

2 . These
variables take the value 0 if the value taken by the corresponding continuous variable
is less than the mean obtained from the corresponding variable values and 1 otherwise,
we emphasize that the cut value used is somehow arbitrary.

Once the variables are split, we get the contingency table summarizing the values
taken for each observation shown in table 4.4.

L1 B1

L2

0 1
B2

0 1 0 1

0
0 7 0 1 1
1 0 0 2 0

1
0 0 0 1 3
1 2 1 0 7

Table 4.4: Length and breadth of heads binary variables associated to first and second sons
measures, L1, L2, B1, and B2, in Frets’ heads data.

We used the selection methods available in MIM to find a generating class corre-
sponding to a graphical log-linear model that fitted the data and that simultaneously
had an associated triangle-free graph. Some selection methods obtained models whose
graphs were not triangle-free; however, one of the models that fitted better according
to the deviance corresponded to a graphical log-linear model with associated triangle-
free graph. The selected model was obtained using an unrestricted Backward selection
method. The term unrestricted included in the name of the selection method means
that both decomposable and non-decomposable models are allowed in the selection pro-
cess. Starting from the saturated model, we obtained a graphical log-linear model with
generating class {{L1, B2}, {B2, L2}, {L2, B1}, {L1, B1}}, whose deviance is 11.17
with 7 degrees of freedom and a p-value of 0.13. So that, in general, for example for
a significance level of 0.05, we do not reject the null hypothesis that the model fits
the data. This model has the advantage that their associated label and level invariant
models have logical interpretations.
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The graphical Gaussian model that fitted well in the continuous case, the model
with generating class {{L1, L2}, {B2, L2}, {B1, B2}, {L1, B1}}(Whittaker, 1990, p.
254-259 and Højsgaard and Lauritzen, 2008), does not fit the data in the discrete case
with this arbitrary discretization, which is not surprising given that we are using a spe-
cific discretization. Its deviance is 18.55 with 7 degrees of freedom and a p-value of 0.01.

We selected the model generated by {{L1, B2}, {B2, L2}, {L2, B1}, {L1, B1}},
because it fits well the data and it serves as a way to illustrate both label and level
invariant models. The graph associated to this model, G, is the four-cycle presented in
figure 4.19.

L1

L2B1

B2

Figure 4.19: Graphical log-linear model with generating class {{L1, B2}, {B2, L2}, {L2, B1},
{L1, B1}} and associated graph G.

We examine four label and one level invariant models chosen because of their inter-
esting interpretation or because, like cyclic permutation, have been previously defined
in section 4.1.

i) A first label invariant model with an interesting interpretation we examine is one
in which we interchange L1 and L2, i.e. a label invariant model M(G,Γ) in which Γ=
{(L1L2)} and G is the graph associated to the model generated by A= {{L1, B2}, {B2,
L2}, {L2, B1}, {L1, B1}}, with A= C(G), the set of cliques of G. In this case, we get a
RGLL model whose graph is the one given in figure 4.20. This is a RGLL model with
vertex classes

V1 = {L1, L2}, V2 = {B1}, V3 = {B2};

and edge classes

E1 = {uL1B2(01), uL1B2(10), uL2B2(01), uL2B2(10)},

E2 = {uL1B2(00), uL1B2(11), uL2B2(00), uL2B2(11)},

E3 = {uL1B1(01), uL1B1(10), uL2B1(01), uL2B1(10)},

E4 = {uL1B1(00), uL1B1(11), uL2B1(00), uL2B1(11)}.
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L2B1

B2

Figure 4.20: RGLL model with generating class {{L1, B2}, {B2, L2}, {L2, B1}, {B1, L1}},
where all variables are binary, with vertices V = (V1, V2, V3), V1 = {L1, L2}, V2 = {B1}, and
V3 = {B2} and first-order interactions set E= (E1, E2, E3, E4), E1= {uL1B2(01), uL1B2(10),
uL2B2(01), uL2B2(10)}, E2= {uL1B2(00), uL1B2(11), uL2B2(00), uL2B2(11)}, E3= {uL1B1(01),
uL1B1(10), uL2B1(01), uL2B1(10)}, E4= {uL1B1(00), uL1B1(11), uL2B1(00), uL2B1(11)}.

Using REGRAPH, we get a deviance of 13.54 with 10 degrees of freedom, and a
p-value of 0.195. The value of X2 is 10.81 with a p-value of 0.37. This means that
this model fits the data well, even better than the graphical log-linear model with gen-
erating class {{L1, B2}, {B2, L2}, {L2, B1}, {L1, B1}}. Additionally, the model is
preserved when we interchange the measures corresponding to the length of head for
both brothers. This implies not only that the expected frequencies for the contingency
table are preserved after permuting both variables, but also that there is scale invari-
ance, so that which category is called zero and which category is called one is irrelevant.

ii) A similar label invariant model, interchanging B1 with B2 instead of L1 with L2

was also fitted; i.e., a label invariant model M(G,Γ) with Γ= {(B1B2)}. Its associated
RGLL model has the graph given in figure 4.21. The vertex colour classes associated
to this RGLL model are

V1 = {B1, B2}, V2 = {L1}, V3 = {L2};

and the edge classes are

E1 = {uB2L2(01), uB2L2(10), uB1L2(01), uB1L2(10)},

E2 = {uB2L2(00), uB2L2(11), uB1L2(00), uB1L2(11)},
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E3 = {uB2L1(01), uB2L1(10), uB1L1(01), uB1L1(10)},

E4 = {uB2L1(00), uB2L1(11), uB1L1(00), uB1L1(11)}.
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B2

Figure 4.21: RGLL model with generating class {{L1, B2}, {B2, L2}, {L2, B1}, {B1, L1}},
where all variables are binary, with vertices V = (V1, V2, V3), V1 = {B1, B2}, V2 = {L1}, and
V3 = {L2} and first-order interactions set E= (E1, E2, E3, E4), E1= {uB2L2(01), uB2L2(10),
uB1L2(01), uB1L2(10)}, E2= {uB2L2(00), uB2L2(11), uB1L2(00), uB1L2(11)}, E3= {uB2L1(01),
uB2L1(10), uB1L1(01), uB1L1(10)}, E4= {uB2L1(00), uB2L1(11), uB1L1(00), uB1L1(11)}.

This model has an associated deviance of 15.73 with 10 degrees of freedom, a p-value
of 0.107, and the value of X2 is 14.00 with a p-value of 0.17. So that the model fits
well, but not as well as the previous model nor even as well as the original graphical
log-linear model with generating class {{L1, B2}, {B2, L2}, {L2, B1}, {L1, B1}}.

iii) Another label invariant model is one in which we interchange neighbour vertices
for different brothers. That is, we permute L1 with B2 and B1 with L2, getting the
label invariant model M(G,Γ), where Γ= {(L1B2)(L2B1)}. We obtain a RGLL model
associated to the label invariant model whose graph is the one given in figure 4.22. This
RGLL model has vertex classes

V1 = {L1, B2}, V2 = {B1, L2};

and edge classes

E1 = {uL1B1(01), uL1B1(10), uB2L2(01), uB2L2(10)},
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E2 = {uL1B1(00), uL1B1(11), uB2L2(00), uB2L2(11)},

E3 = {uL1B2(11), uL1B2(00)},

E4 = {uL1B2(01), uL1B2(10)},

E5 = {uL2B1(11), uL2B1(00)},

E6 = {uL2B1(01), uL2B1(10)}.
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Figure 4.22: RGLL model with generating class {{L1, B2}, {B2, L2}, {L2, B1}, {B1,
L1}}, where all variables are binary, with vertices V = (V1, V2), V1= {L1, B2}, V2=
{B1, L2}, and first-order interactions set E= (E1, E2, E3, E4, E5, E6), E1= {uL1B1(01),
uL1B1(10), uB2L2(01), uB2L2(10)}, E2 = {uL1B1(00), uL1B1(11), uB2L2(00), uB2L2(11)}, E3

= {uL1B2(11), uL1B2(00)}, E4 = {uL1B2(01), uL1B2(10)}, E5= {uL2B1(11), uL2B1(00)}, E6=
{uL2B1(01), uL2B1(10)}.

The deviance associated to this model is 13.61 with 10 degrees of freedom, a p-value
of 0.191, and the value of X2 is 14.70 with a p-value of 0.14, so that the model fits the
data well. The meaning of this model is that we can interchange the measures that are
directly associated for the two different brothers and still get the same model and that
there is scale invariance.

iv) The last label invariant model we present is M(G,Γ) with Γ= {(L1L2) (B1B2)},
which is a label invariant model in which we permute the measures corresponding to
both brothers. In this sense, even though the graph is not the same as in the continu-
ous case, this model has a similar meaning than the model presented by Højsgaard and
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Lauritzen (2008) for the Gaussian case.

The resulting associated graph is given in figure 4.13, but with vertices L1, B2, L2,
B1 instead of A, B, C, and D, respectively. Figure 4.23 shows the corresponding graph
with its new labeling. The corresponding RGLL model has vertex classes

V1 = {L1, L2}, V2 = {B1, B2};

and edge classes

E1 = {uL1B2(01), uL1B2(10), uL2B1(01), uL2B1(10)},

E2 = {uL1B2(00), uL1B2(11), uL2B1(00), uL2B1(11)},

E3 = {uB2L2(01), uB2L2(10), uB1L1(01), uB1L1(10)},

E4 = {uB2L2(00), uB2L2(11), uB1L1(00), uB1L1(11)}.
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Figure 4.23: RGLL model with generating class {{L1, B2}, {B2, L2}, {L2, B1}, {B1, L1}},
where all variables are binary, with vertices V = (V1, V2), V1 = {L1, L2} and V2 = {B1, B2},
and first-order interactions set E= (E1, E2, E3, E4), E1= {uL1B2(01), uL1B2(10), uL2B1(01),
uL2B1(10)}, E2= {uL1B2(00), uL1B2(11), uL2B1(00), uL2B1(11)} , E3={uB2L2(01), uB2L2(10),
uB1L1(01), uB1L1(10)}, E4={uB2L2(00), uB2L2(11), uB1L1(00), uB1L1(11)}.

We get a deviance of 14.40 with 11 degrees of freedom, and a p-value of 0.21, which
means that this model fits well according to the deviance, even better than any of
the other models presented. Its meaning is that there is symmetry in both measures
between the two sons, so that the model is preserved after the change, implying that
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the expected frequencies for the contingency table are preserved after permuting the
variables, and that there is scale invariance, so that the name or order given to the
levels is irrelevant. The value of the statistic X2 is 11.66 with a p-value of 0.39.

The fitted values are presented in table 4.5. Observe that the fitted values obtained
are such that if we interchanged L1 with L2 and B1 with B2, we would get exactly the
same table, in which instead of having L1, we would have L2, and instead of B1 we
would have B2. In fact, in this case, the model is such that the fitted values for the cells
under the diagonal are equal to the values for the cells above the diagonal. We observe
then that the concept of label invariant models implies symmetry, not only in terms of
the graph, but also in terms of the contingency table, so that we are generalizing in
some way the concept of symmetry.

L1 B1

L2

0 1
B2

0 1 0 1

0 0
6.091 0.38 1.42 1.11
72 0 1 1

1
0.38 0.05 0.61 0.47
0 0 2 0

1 0
1.42 0.61 0.54 1.42
0 0 1 3

1
1.11 0.47 1.42 7.50
2 1 0 7

Table 4.5: 1Fitted expected frequencies for the discretized Frets’ heads data under the label
invariant model M(G,Γ), with permutation set Γ= {(L1L2) (B1B2)} and graph G with gen-
erating class A= {{L1, B2}, {B2, L2}, {L2, B1}, {L1, B1}, compared with the 2observed
counts.

v) A final model we present is the level invariant model known as cyclic permutation
defined in example 4.7. This is a level invariant modelM ′(G,Γ′) with Γ′= {(L1B1L2B2),
(L1L2)(B1B2), (L1B2L2B1)}. For the corresponding RGLL model whose graph is shown
in figure 4.24, we get only one vertex class

V1 = V = {L1, B1, L2, B2};

and four edge classes given by

E1 = {uL1B1(00), uB1L2(00), uL2B2(00), uB2L1(00)},

E2 = {uL1B1(01), uB1L2(01), uL2B2(01), uB2L1(01)},
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E3 = {uL1B1(10), uB1L2(10), uL2B2(10), uB2L1(10)},

E4 = {uL1B1(11), uB1L2(11), uL2B2(11), uB2L1(11)}.
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Figure 4.24: RGLL model with generating class {{L1, B2}, {B2, L2}, {L2, B1}, {B1, L1}},
where all variables are binary, with vertices V = {L1, B1, L2, B2} and first-order inter-
actions set E= (E1, E2, E3, E4), E1= {uL1B1(00), uB1L2(00), uL2B2(00), uB2L1(00)}, E2=
{uL1B1(01), uB1L2(01), uL2B2(01), uB2L1(01)}, E3 = {uL1B1(10), uB1L2(10), uL2B2(10),
uB2L1(10)}, E4 = {uL1B1(11), uB1L2(11), uL2B2(11), uB2L1(11)}.

This model does not fit the data well. The deviance is 37.27 with 12 degrees of
freedom and a p-value of 0.0001. The value of X2 is 135.78 with a p-value less than
0.0001. If this model had fitted the data, it would have meant that the levels of the
variables could have been changed in a cyclic way and the expected frequencies would
have been the same.

In table 4.6 we present the values of the deviance and X2 statistics and the number
of degrees of freedom for the five RGLL models discussed here. The X2 statistic is
shown in this case because the number of observations is small, |n|= 25. Using any of
the two statistics the same conclusions are obtained for all models, in the sense that
when a model is not rejected using a statistic is also not rejected using the other, and for
the cyclic permutation model we observe that with both statistics the model is rejected,
these conclusions can be obtained by comparing p-values for both statistics. Observe
also that using either the deviance or X2 the model with greater p-value corresponds to
the label invariant model M(G,Γ) with Γ= {(L1L2) (B1B2)}. The estimated expected
frequencies under each model are shown in table 4.7.
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Model deviance p-value X2 p-value d.f.
Unrestricted graphical model 11.17 0.13 9.61 0.21 7
i)M(G,Γ), Γ= {(L1L2)} 13.54 0.20 10.81 0.37 10
ii)M(G,Γ), Γ= {(B1B2)} 15.73 0.11 14.00 0.17 10
iii)M(G,Γ), Γ= {(L1B2)(L2B1)} 13.61 0.19 14.70 0.14 10
iv)M(G,Γ), Γ= {(L1L2)(B1B2)} 14.40 0.21 11.66 0.39 11
v) Cyclic permutation 37.27 >0.01 137.78 >0.01 12

Table 4.6: Values for the deviance and X2 statistics, p-values, and degrees of freedom associ-
ated to all RGLL models for the discretized Frets’ heads data analyzed in example 4.12.

L1 B1 L2 B2 n(i) Model i) Model ii) Model iii) Model iv) Model v)
0 0 0 0 7 6.26 5.87 5.86 6.09 6.06
0 0 0 1 0 0.17 0.36 0.30 0.38 0.47
0 0 1 0 1 1.12 2.59 1.67 1.42 0.07
0 0 1 1 1 0.47 0.67 1.17 1.11 2.91
0 1 0 0 0 1.33 0.36 1.67 0.38 0.07
0 1 0 1 0 0.04 0.05 0.12 0.05 0.02
0 1 1 0 2 0.80 0.67 0.80 0.61 0.46
0 1 1 1 0 0.34 0.42 0.41 0.47 0.90
1 0 0 0 0 1.12 1.11 0.30 1.42 0.70
1 0 0 1 0 0.47 0.66 0.54 0.61 0.46
1 0 1 0 1 0.46 0.49 0.12 0.54 0.02
1 0 1 1 3 2.96 1.24 1.54 1.42 0.14
1 1 0 0 2 0.80 0.66 1.17 1.11 4.27
1 1 0 1 1 0.34 0.94 1.54 0.47 0.14
1 1 1 0 0 1.12 1.24 0.41 1.42 1.32
1 1 1 1 7 7.23 7.67 7.38 7.50 6.98

Table 4.7: Estimated expected frequencies under the five label and level invariant mod-
els fitted for the discretized Frets’ heads data analyzed in example 4.12: i) M(G,Γ), Γ=
{(L1L2)}, ii) M(G,Γ), Γ= {(B1B2)}, iii) M(G,Γ), Γ= {(L1B2)(L2B1)}, iv) M(G,Γ), Γ=
{(L1L2)(B1B2)}, and v) cyclic permutation.
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Example 4.13. As a second example, we fit a label invariant model for the data corre-
sponding to alcohol dependence and depression in female monozygotic twins presented
in table 4.1 at the beginning of this chapter. This table is similar to the one presented
by Drton and Richardson (2008) with an ordering in the variables such that the vari-
ables corresponding to each twin are in the same side of the table.

We used the selection methods available in MIM to find a generating class corre-
sponding to a graphical log-linear model that fits the data and that simultaneously
has an associated triangle-free graph. We chose the model obtained using the unre-
stricted selection method available in MIM starting with the saturated model because
this method provided a model that fitted better, according to the deviance, than any
other graphical log-linear model whose associated graph was triangle-free selected using
another selection method and the model even fitted better or equally as good as other
selected models whose associated graphs were not triangle-free. We obtain a model that
fits the data, satisfying at the same time the requirements needed for label invariant
models. This model has generating class {{A1, A2}, {A1, D1}, {A2, D2}, {D1, D2}}.
Its corresponding deviance is 4.75 with 7 degrees of freedom and a p-value of 0.69. This
means that, in general, for example for a significance level of 0.05, we do not reject the
null hypothesis that the model fits the data.

The graph associated to this model, G, corresponds to a four-cycle as the one pre-
sented in figure 4.2, with A1, A2, D2, and D1 instead of A, B, C, and D, respectively,
and it is also shown in figure 4.25(a).

An interesting label invariant model that according to the data may fit well and
that is also meaningful is one in which we interchange A1 with A2 and D1 with D2 at
the same time. This is the label invariant model M(G,Γ), where Γ= {(D1D2) (A1A2)}
and G is the graph associated to the model generated by A= {{A1, A2}, {A1, D1}, {A2,
D2}, {D1, D2}}, with A= C(G), the set of cliques of G. The graph of the associated
RGLL model is the same given in figure 4.10, but with A1, A2, D2, and D1 instead of
A, B, C, and D, respectively. The corresponding graph is also shown in figure 4.25(b).
This is a RGLL model, with vertex classes

V1 = {A1, A2}, V2 = {D1, D2};

and six edge classes given by

E1 = {uA1D1(00), uA1D1(11), uA2D2(00), uA2D2(11)},

E2 = {uA1D1(01), uA1D1(10), uA2D2(01), uA2D2(10)},

E3 = {uA1A2(00), uA1A2(11)},

E4 = {uA1A2(01), uA1A2(10)},
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E5 = {uD1D2(00), uD1D2(11)},

E6 = {uD1D2(01), uD1D2(10)}.

A1

D2D1

A2

(a) Graphical model

(0, 1)

(1, 0)

(0, 0)

(1, 1)

(0, 1)

(1, 0)

(0, 0) (1, 1)

(0, 1)

(1, 0)

(0, 0)

(1, 1)

(0, 1)

(1, 0)

(0, 0) (1, 1)

A1

D2D1

A2

(b) RGLL model

Figure 4.25: Log-linear models with generating class {{A1, A2}, {A1, D1}, {A2, D2}, {D1,
D2}} where all variables are binary: (a) graphical model; (b) RGLL model with ver-
tices V = (V1, V2), V1 = {A1, A2} and V2 = {D1, D2}, and first-order interactions
set E= (E1, E2, E3, E4, E5, E6), E1= {uA1D1(00), uA1D1(11), uA2D2(00), uA2D2(11)},
E2= {uA1D1(01), uA1D1(10), uA2D2(01), uA2D2(10)}, E3 = {uA1A2(00), uA1A2(11)}, E4 =
{uA1A2(01), uA1A2(10)}, E5= {uD1D2(00), uD1D2(11)}, E6= {uD1D2(01), uD1D2(10)}.

Using REGRAPH, we get a deviance of 13.06 with 10 degrees of freedom and a
p-value of 0.22. These values indicate that this model fits the data well according to
the deviance because, in general, we do not reject the corresponding null hypothesis.
The value of the Pearson X2 statistic is 13.27 with a p-value of 0.21.

Additionally, the model has various interpretations. It corresponds to irrelevance of
the labels given to the two twins and of the level names, so that we can interchange
the measures corresponding to alcohol dependency and depression for both twins and
preserve the model and besides, which category is coded zero and which category is
coded one is irrelevant. In other words, the expected frequencies for the contingency
table are preserved after permuting both variables and there is scale invariance.

The fitted values for this model are presented in table 4.8. Observe that if we inter-
change the variables corresponding to the first twin, A1 and D1, with the ones of the
second twin, A2 and D2, we get a new table which is exactly the same table we had
before. In this case, this symmetry is also reflected in the symmetry of the table where
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the values above the diagonal are equal to the ones below the diagonal.

A1 D1

A2

0 1
D2

0 1 0 1

0

0
287.601 (0.80) 82.35 (-4.63) 11.22 (8.71) 12.83 (-6.38)

2882 80 15 9
275.343 (25.90) 88.71 (-16.54) 14.87 (0.27) 12.18 (-5.44)

1
82.35 (20.39) 58.71 (-14.63) 4.75 (5.43) 6.19 (9.59)

92 51 7 10
88.71 (6.69) 57.13 (-11.58) 3.40 (10.10) 6.21 (9.53)

1

0
11.22 (-5.41) 4.75 (-1.37) 3.97 (-1.68) 3.07 (-1.71)

8 4 3 2
14.87 (-9.91) 3.40 (1.29) 5.97 (-4.13) 2.27 (-0.50)

1
12.83 (-7.56) 6.19 (6.74) 3.07 (2.12) 5.90 (2.39)

8 9 4 7
12.18 (-6.72) 6.21 (6.68) 2.27 (4.54) 3.22 (10.85)

Table 4.8: 1Fitted expected frequencies for the female twins data under the label invariant
model M(G,Γ), with permutation set Γ= {(A1A2) (D1D2)} and graph G with generating
class A= {{A1, A2}, {A1, D1}, {A2, D2}, {D1, D2}} representing A1⊥D2|D1, A2 and
A2⊥D1|A1, D2, compared with the 2observed values and the 3expected frequencies under a
model proposed by Drton and Richardson that assumes that A1⊥D2 and A2⊥D1 with the
same symmetry given by Γ. In parenthesis, the deviance contribution of each cell.

Using the separator sets associated to the graph and the global Markov property
(section 2.10), we have that A1⊥D2|D1, A2 and A2⊥D1|A1, D2. So that, we have a
combined model that consists of these conditional independences together with the
symmetry and scale invariance.

A similar model for the same data, but considering marginal instead of conditional
independences, was proposed and fitted by Drton and Richardson (2008). They define
binary models for marginal independence as an alternative to graphical models, these
models consist on probability distributions for binary random vectors X = (Xv)v∈V

associated to bi-directed graphs, graphs with arrows in both ends of an edge, in which
a Markov property, analogous to the global Markov property used in graphical mod-
els, called the connected set Markov property should be satisfied. A random vector
X = (Xv)v∈V satisfies the connected set Markov property if C is independent to
V \ Sp(C), where Sp(C) is the set of all vertices adjacent to C, whenever ∅ 6= C ⊆ V
is a connected set. This property implies that the lack of an edge between two vari-
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ables indicates marginal independence between them, which is analogous to the pairwise
Markov property for graphical models. For example, the marginal independence model
indicating A1⊥D2 and A2⊥D1 is presented in figure 4.26.

A1

D2D1

A2

Figure 4.26: Marginal independence model indicating A1⊥D2 and A2⊥D1 whose graph corre-
sponds to a bi-directed four-cycle.

To illustrate the use of marginal independence models together with symmetry, Dr-
ton and Richardson (2008) use the same symmetry given by the permutation set Γ=
{(D1D2) (A1A2)} for the twins data. A minor observation is that they included Id in
Γ in their model to form a group; however, its inclusion in label and level invariant
models is optional because it is a transformation that does not modify the models.
Applying only this symmetry group without considering additional conditions for the
distribution, i.e. considering only irrelevance of the labels given to the twins, they got
a model with a deviance of 4.62 with 6 degrees of freedom and a p-value of 0.59. When
they also considered the marginal independence A1⊥D2 and A2⊥D1, i.e. the marginal
independence model together with the symmetry group, they got a deviance of 16.15
with 2 degrees of freedom, taking the model with only the symmetry group as the al-
ternative, with a p-value of 0.0003, indicating a poor fit. On the other hand, taking
the saturated model as alternative and using the probabilities provided by the authors,
we got a residual deviance of 21.02 with 8 degrees of freedom and a p-value of 0.0071,
which still indicates a poor fit.

The expected frequencies under the model combining marginal independence and
symmetry are also presented in table 4.8. We also present there for both models the
deviance contribution of each cell. When these values are small, we have a better fit
for that cell. There are seven cells in which the label invariant model proposed here
improves over the other model, six in which it is the opposite, and three in which both
models fit in a similar way.

All this means that although a marginal independence model together with the
corresponding symmetry group does not have a good fit according to the deviance and
the tests obtained from it, there is a similar model, the one proposed here considering
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conditional independence for the same variables instead of marginal independence, that
fits the data well.

4.3 General label and level invariant models

In this section we generalize the concept of label and level invariant models, so that
it includes any graphical log-linear model even those whose graph is not necessarily
triangle-free. In this way, we define models that preserve the conditional indepen-
dences derived from any graphical model together with symmetry, understanding this
concept for the label invariant case as scale invariant models that preserve both the
graph and model, and consequently the distribution, and for level invariant models as
models that preserve certain equalities between expected frequencies. Both models are
defined exactly in the same way as the non-general models, the only difference is that
the associated graph G could be any graph. When G is not triangle-free, the resulting
model is not a RGLL model because we are restricting interactions of order higher than
one, in this case there is not a software implementation that fits such models. We con-
sider also that all variables have the same categories, i.e. Iδ is the same for all δ ∈ V ,
so that we have J levels for each variable.

Consider a graphical log-linear model with generating class C(G), the set of cliques
of G, and associated graph G = (V,E). Consider also Aut(G) a subset of the sym-
metric group formed by all permutations of V , S(V ), consisting on permutations that
preserve the graph and M the expected frequency vector (m(i))i∈I, I = (Iδ)δ∈V , includ-
ing only the constraints corresponding to the sampling scheme: Poisson, multinomial,
or restricted multinomial.

Definition 4.5. A general label invariant model M (G,Γ) determined by a graph G
and by a permutation set Γ ⊆ Aut(G) is given by assuming that: i) we have a graphical
log-linear model M with generating class C(G) and M ⊆ M, and ii) if M ∈ M then
σ(σ∗(M)) ∈ M , for all σ∗ ∈ S(Iδ) and for all σ ∈ Γ.

Consider a graphical log-linear model with generating class C(G), the set of cliques
of G, S(V ) the symmetric group formed by all permutations of V , and M the expected
frequency vector (m(i))i∈I, I = (Iδ)δ∈V , including only the constraints corresponding to
the sampling scheme: Poisson, multinomial, or restricted multinomial.

Definition 4.6. A general level invariant model M’ (G,Γ′) determined by a graph G
and by a permutation set Γ′ ⊆ S(V ) is given by assuming that: i) we have a graphical
log-linear model M’ with generating class C(G) and M’ ⊆ M, and ii) if M ∈ M’ then
M(i) = M(σ′i), for all σ′ ∈ Γ′ and i ∈ I.

The concept of scale invariance satisfied by a general label invariant model is similar
to the one corresponding to label invariant models for triangle-free graphs studied in
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the previous sections. Namely, models that are preserved after permuting the level set.
As a consequence we have that under scale invariance, after permuting the level set,
the parameters should belong to the same group of parameters. Then, the association
between variables reflected in the interactions of any order is going to be the same for
any level permutation. However, this property does not imply that after permuting the
levels the expected frequencies are necessarily the same.

As in label invariant models for triangle-free graphs, we observe that in general label
invariant models once permuting labels the expected frequencies are the same, which
means that the distribution is preserved.

In the Gaussian case there are no similar general models, because in that case the
only existing concern is the association between two variables given by the concentration
matrix or partial correlation matrix whereas in graphical log-linear models associations
between three or more variables are represented by interactions of two or higher order.

To obtain a graphical log-linear model restricted in some of its parameters associ-
ated to these general models, we need to generalize some of the concepts used before
for triangle-free label and level invariant models.

The n-term orbits of Γ, n = 1, 2, ..., are the classes of the relation

{α1, ..., αn} ≡Γ {β1, ..., βn} ⇔ {β1, ..., βn} = {σα1, ..., σαn}, for some σ ∈ Γ.

If n = 1, we have vertex orbits; if n = 2, we have edge orbits as for triangle-free
graphs.

To identify the restrictions on the parameters that allow us to permute the labels
preserving the same model, we do something similar to what we did in the non-general
case where we had associated triangle-free graphs. First, we get the n-term orbits as-
sociated to the model. When n = 1, the vertex orbits determine the restrictions on
the main effects, which are that all main effects for the vertices in the same orbit are
equal for all their levels, so that the vertex orbits are vertex classes as in RGLL models.
When n = 2, the edge orbits determine the set of first-order interactions that need to be
equal; however, as in the non-general case, we need to add scale invariance conditions
to obtain the final edge classes used on the restricted model. Then, the 3-term orbits
provide the partitions of the two-order interactions whose elements should be equal to
be able to permute labels. To obtain the 3-term classes, we have to add restrictions to
satisfy scale invariance. The process is the same for all n-terms orbits, with n taking
values from 1 to the number of vertices of the element in the generating class with the
largest cardinality, i.e. the number of elements in the largest clique on the graph.
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Setting restrictions on the parameters that represent scale invariance for models
with non triangular-free graphs is what differs the most with respect to the non-general
case with triangle-free graphs. This is because in the general case we may have several
restrictions for the interactions of two or higher order that allow having this property, so
that there could be many different ways of restricting the parameters in the model and
still getting scale invariance, consequently there is no uniqueness in the set of restric-
tions on the parameters. This is not a theoretical problem but a practical one, because
we could fit different restricted models to some data and maybe we could choose one
that does not fit as well as others making us think that the label invariant model does
not fit, when it does for other ways of representing scale invariance. We did not have
this problem in triangle-free graphs because to obtain scale invariance in those models
we only had two type of restrictions for the one type of available interactions, first-order
interactions, either the levels were the same for both variables and the corresponding
interactions were equal or the levels were different and the corresponding interactions
were equal.

For any possible way of representing scale invariance, we have that after permuting
the level set the parameter is kept in the same group of parameters, preserving the
model and implying that the association is the same in spite of the scale used.

For example, suppose that we have a model containing second-order interactions
formed by the vertices X, Y , and Z. Three ways to get scale invariance are:

a) Using the classes {uXY Z(iii), i = 1, ..., J}, {uXY Z(ijk), i = j, j 6= k; i, j, k =
1, ..., J}, {uXY Z(ijk), i 6= j, j = k; i, j, k = 1, ..., J}, {uXY Z(ijk), j 6= i, i = k;
i, j, k = 1, ..., J}, and {uXY Z(ijk), i 6= j, i 6= k, j 6= k; i, j, k = 1, ..., J}.

b) Using the classes {uXY Z(iii), i = 1, ..., J}, {uXY Z(ijk), i = j, j 6= k; i 6= j, j = k;
or j 6= i, i = k; i, j, k = 1, ..., J}, and {uXY Z(ijk), i 6= j, i 6= k, j 6= k; i, j, k = 1, ..., J}.

c) Using the classes {uXY Z(iii), i = 1, ..., J}, {uXY Z(ijk), with not all levels equal;
i, j, k = 1, ..., J}.

For instance, if J = 2 the classes given in a) are {uXY Z(111), uXY Z(222)}, {uXY Z(112),
uXY Z(221)}, {uXY Z(122), uXY Z(211)}, and {uXY Z(121), uXY Z(212)}; and the classes
given in b) and c) are {uXY Z(111), uXY Z(222)} and {uXY Z(112), uXY Z(221), uXY Z(122),
uXY Z(211), uXY Z(121), uXY Z(212)}. Observe that in this case b) and c) are formed by
the same sets because {uXY Z(ijk), i 6= j, i 6= k, j 6= k; i, j, k = 1, ..., J} is an empty
set.

As before, each class indicates that the terms in each set should be equal. The first
case is the one that lets the parameters less restricted still conserving scale invariance,
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as a consequence there are more classes. In the second case the parameters are more
restricted. Finally, the last case is the most restrictive. In any case, a), b), or c), once
we apply these restrictions and the restrictions for the first-order interactions that al-
low having scale invariance, we obtain the same model after permuting levels. It is the
same model in the sense that each parameter after permuting levels belongs to the same
group of parameters that the original parameter belonged to and that the association
between variables is not depending on the scale, i.e. all terms related to interactions
are the same without taking into account the scale.

As in the non-general case, the classes used to represent the the general label invari-
ant model are the result of combining the classes that allow to permute labels preserving
the model, i.e. the classes obtained from the orbits, and the ones that allow having
scale invariance.

As the interaction order increases, getting all possible scale invariance conditions
that work gets more and more complex. They could be any possible partition of the
interactions that once equated make possible preserving the model. We could always
use classes as the ones seen in c), this is a class formed by interactions whose levels are
equal and another class formed by interactions in which not all of the levels are equal,
but this could be a very restrictive way of expressing scale invariance. In general, for a
(r−1)-order interaction, r ≥ 2, i.e. an interaction formed by r elements, and supposing
we have vertices A1, A2,..., Ar, a less restricted and more general way to express the
classes or sets whose elements should be equal is given by

{uA1A2...Ar
(i1i2...ir), i1 = i2 = ... = ir; i1, ..., ir = 1, ..., J} (4.9)

{uA1A2...Ar
(i1i2...ir), ij 6= ik, j 6= k; i1, ..., ir = 1, ..., J} (4.10)

For r ≥ 3 and q = 2, ..., r − 1






{uA1A2...Ar
(i1i2...ir), one q − group of levels are equal; i1, ..., ir = 1, ..., J}

{uA1A2...Ar
(i1i2...ir), two q − groups of levels are equal and different

between them; i1, ..., ir = 1, ..., J}
...

{uA1A2...Ar
(i1i2...ir),

[
r
q

]
q − groups of levels are equal and different

between them; i1, ..., ir = 1, ..., J}, 1 ≤
[

r
q

]
≤ J

(4.11)

For example, for second-order interactions we obtain the classes seen in b). For
first-order interaction we obtain the classes we already know, one for the case in which
the levels are equal and another for the case in which the levels are not equal.
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Then, for a graph G and a permutation set Γ ⊆ Aut(G) we have a group of models,
log-linear expansions in terms of parameters which some are restricted to be equal, that
have the properties needed to represent a general label invariant model M (G,Γ). The
process to obtain such restrictions that lead to that general label invariant model is the
following.

1) Consider that the number of variables forming each possible parameter according
to the generating class is n, with 1 ≤ n ≤ Ω, where Ω is the number of elements in the
largest clique on the graph. Get all n-orbits, 1 ≤ n ≤ Ω. These orbits will generate
sets of parameters that should be equated to preserve the model after permuting labels.
For n = 1, we have vertex classes and the main effects for the vertices in the same class
are equal in each level.

2) Use the sets defined above, equations (4.9), (4.10), and (4.11), for all interactions,
n ≥ 2, to obtain restrictions that allow having scale invariance. We could use any other
sets indicating which parameters have to be equated as long as they generate scale
invariant parameters.

3) Combine the sets got in step 1) and 2) for n ≥ 2, i.e. join the elements
uA1A2...An

(i1i2...in), n ≥ 2 in the same class for each set in the scale invariance con-
dition sets according to the orbits.

After this process, we obtain a graphical log-linear model whose parameters are
restricted to be equal according to a general label invariant model M (G,Γ).

If we have a general level invariant model M’ (G,Γ′) whose associated permutation
set Γ′ is formed by automorphisms of the graph G, then we can get the restrictions that
make possible the expected frequencies to be equal after permuting levels according to
Γ′ using the n-terms orbits. The definition of vertex classes is similar to the one used
in a label invariant model and the rest of n-terms orbits imply that the interactions in
the same orbit are equal for all possible permutations of the levels that all vertices can
take in each interaction. In fact, a general label invariant model could also be used to
represent this model.

Observe that these general label and level invariant models are not particular cases
of RGLL models. This is because even though in RGLL models we allow interactions
of any order, we only restrict the main effects and first-order interactions; however, in
these general invariant models we can restrict any parameter including interactions of
any order.

Observe also that getting the graphical representation of these models as a colouring
is not straightforward. This is because there is no way to colour the vertex or edges on
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the graph indicating all restrictions, even in the graph with multiple edges, much less
when we consider the levels taken by the variables forming the interactions.

One possibility could be using the concept of hypergraphs to obtain graphs rep-
resenting the orbits or even some graphs associated to a model. An hypergraph
H = (V,E) is formed by a set of vertices, V , and a set of hyperedges, E, which
are subsets of the vertex set, E ⊆ P (V ) \ ∅, where P (V ) is the power set of V . In
particular, when all hyperedges have the same cardinality k, we have a k-uniform hy-
pergraph. For example, a 3-uniform hypergraph is formed by a collection of triples.
We observe then that n-term orbits, n ≥ 2 are sets of hyperedges in the associated
n-uniform hypergraph. We could get a hypergraph, G∗, for each n, n ≥ 3 and colour
the hyperedges in the same orbit with the same colour. This means that we could
use a graph to represent 1 and 2-term orbits, as in label and level invariant models,
and for each of the remaining orbits we could use a coloured hypergraph indicating
which parameters are in the same orbit. However; this seems unpractical, in the sense
that the representation of the orbits is more complicated than explicitly giving the sets
without graphs. In fact, this will get even more complex if we also want to represent
scale invariance conditions.

Example 4.14. Suppose that we have five vertices, A, B, C, D, and E in a graphi-
cal log-linear model generated by {{A,B,E}, {A,D,E}, {C,B,E}, {C,D,E}}, figure
4.27. Suppose also that we have Γ = {(AC), (BD)}, where σ1 = (AC) and σ2 = (BD).
This is a permutation set that permutes A with C on one side and B and D on the
other. Both elements in Γ belong to the automorphism set Aut(G) because they pre-
serve the graph, G.

A

CD

B

E

Figure 4.27: Graphical log-linear model with generating class {{A, B, E}, {A, D, E},
{C, B, E}, {C, D, E}}, log m(a, b, c, d, e) = u+ uA(a)+ uB(b)+ uC(c)+ uD(d)+ uE(e)+
uAB(ab)+ uCB(cb)+ uCD(cd)+ uAD(ad)+ uAE(ae) + uBE(be)+ uCE(ce)+ uDE(de)+
uABE(abe)+ uCBE(cbe)+ uCDE(cde) + uADE(ade).
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We want a label invariant model M (G,Γ) associated to this graphical log-linear
model. To do this, first we get all n-term orbits, n= 1, 2, 3. The 1-term orbits or
vertex orbits are

{A,C}, {B,D}, and {E}.

The 2-term orbits or edge orbits are determined using that

{A,E} = {σ1C, σ1E}, {A,D} = {σ1C, σ1D}, {A,B} = {σ1C, σ1B},

{A,B} = {σ2A, σ2D}, {C,B} = {σ2C, σ2D}, {B,E} = {σ2D, σ2E},

so that the classes or edge orbits are

{{A,E}, {C,E}}, {{B,E}, {D,E}}, {{A,B}, {A,D}, {C,B}, {C,D}}.

The 3-term orbits are determined using that

{A,B,E} = {σ1C, σ1B, σ1E}, {A,D,E} = {σ1C, σ1D, σ1E},

{A,D,E} = {σ2A, σ2B, σ2E}, {C,D,E} = {σ2C, σ2B, σ2E},

so that the class or 3-term orbit is

{{A,B,E}, {C,B,E}, {C,D,E}, {A,D,E}}.

These orbits allow us to obtain restrictions for the parameters in the same orbit
such that if they are equated for all possible values that jointly can take all variables
the model obtained is the same after permuting labels. This means that under these
restrictions the expected frequencies after permuting A and C remain and also that the
expected frequencies do not change after permuting B and D.

The only missing part is obtaining the conditions that allow having scale invariance.
Then we can get the classes whose parameters should be equated to get a label invariant
model. Using the classes suggested in a) above for second-order interactions, we have
the following classes for the associated restricted model. The vertex or main effects
classes are

V1 = {A,C}, V2 = {B,D}, and V3 = {E}.

The edge or first-order interaction classes are
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E1 = {uAB(ii), uAD(ii), uCB(ii), uCD(ii); i = 1, ..., J},

E2 = {uAB(ij), uAD(ij), uCB(ij), uCD(ij), i 6= j; i = 1, ..., J},

E3 = {uAE(ii), uCE(ii); i = 1, ..., J},

E4 = {uAE(ij), uCE(ij), i 6= j; i = 1, ..., J},

E5 = {uBE(ii), uDE(ii); i = 1, ..., J},

E6 = {uBE(ij), uDE(ij), i 6= j; i = 1, ..., J}.

The second-order interaction classes are

A1 = {uABE(iii), uCBE(iii), uCDE(iii), uADE(iii); i = 1, ..., J},

A2 = {uABE(ijk), uCBE(ijk), uCDE(ijk), uADE(ijk), i = j, j 6= k; i, j, k = 1, ..., J},

A3 = {uABE(ijk), uCBE(ijk), uCDE(ijk), uADE(ijk), i 6= j, j = k; i, j, k = 1, ..., J},

A4 = {uABE(ijk), uCBE(ijk), uCDE(ijk), uADE(ijk), j 6= i, i = k; i, j, k = 1, ..., J},

A5 = {uABE(ijk), uCBE(ijk), uCDE(ijk), uADE(ijk), i 6= j, i 6= k, j 6= k; i, j, k = 1, ..., J}.

If we used the process explained before in equations (4.9), (4.10), and (4.11), the
second interactions classes are

A′
1 ={uABE(iii), uCBE(iii), uCDE(iii), uADE(iii); i = 1, ..., J},

A′
2 ={uABE(ijk), uCBE(ijk), uCDE(ijk), uADE(ijk), i = j, j 6= k; i 6= j, j = k; or j 6= i, i = k;

i, j, k = 1, ..., J},

A′
3 ={uABE(ijk), uCBE(ijk), uCDE(ijk), uADE(ijk), i 6= j, i 6= k, j 6= k; i, j, k = 1, ..., J}.

Observe that A2 ∩ A3 ∩ A4 is equal to the set A′
2 and that A1 = A′

1 and A5 = A′
3. We

could use even more restricted classes

A′′
1 ={uABE(iii), uCBE(iii), uCDE(iii), uADE(iii); i = 1, ..., J},

A′′
2 ={uABE(ijk), uCBE(ijk), uCDE(ijk), uADE(ijk); with not all levels equal;

i, j, k = 1, ..., J}.

Observe that A′
2 ∩ A

′
3 is equal to the set A′′

2 and that A′
1 = A′′

1.

Supposing we were interested in a level invariant model M’ (G,Γ′) using the same
graph G and permutation set, i.e. Γ = Γ′, then we still could use the orbits to get the
corresponding restrictions. In fact, we could use the same representation used for the
label invariant model, but as we do not need scale invariance, we could also use a less
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restricted model with the following classes.

The vertex classes are the same, so that we equate the main effects for the elements
in the same class for each level.

The edge classes are

J2 classes {uAB(ij), uAD(ij), uCB(ij), uCD(ij)}, i, j = 1, ..., J.
J2 classes {uAE(ij), uCE(ij)}, i, j = 1, ..., J.
J2 classes {uBE(ij), uDE(ij)}, i, j = 1, ..., J.

The second-order interaction classes are

J3 classes {uABE(ijk), uCBE(ijk), uCDE(ijk), uADE(ijk)}, i, j, k = 1, ..., J.

These classes determine the restrictions, which correspond to equate the elements
in the same class.

We observe then that the necessary theory to obtain the restrictions that determine
general label invariant models and general level invariant models is similar to the one
seen before for the non-general label and level invariant models; however, if we wanted
to fit these models for specific data, we would need to write programs to fit models of
this kind because general label and level invariant models are no longer RGLL models.



Chapter 5

Related work, discussion, and
conclusions

5.1 Related work

Symmetry for discrete data has a long history, it was first studied by McNemar (1947)
who tested that p(1, .) = p(., 1) for matched pairs with binary outcomes, this test
corresponds to marginal homogeneity but it is also equivalent to test symmetry in
two-dimensional contingency tables with binary variables. Bowker (1948) developed
a test for two-way contingency tables with the same number of categories to see if a
table was symmetric. Quasi-symmetry models were defined and studied by Caussi-
nus (1965). For two-dimensional tables Goodman (1985) defined generalized symmetry
models: triangle asymmetry, RC asymmetry, and diagonal asymmetry, which are mod-
els with additional parameters modifying the distribution. The diagonal asymmetry
model satisfies p(i, j) = ρijδk; k = i − j, i, j = 1, ..., J where ρij and δk are the pa-
rameters of the model, the RC asymmetry model corresponds to quasi-symmetry, and
the triangle asymmetry model is equivalent to conditional symmetry as defined by
McCullagh (1978). Conditional symmetry or triangle asymmetry are models with an
additional parameter for the elements above the diagonal and another parameter for
elements below the diagonal, even though the association between those elements is
the same. McCullagh (1978) also studied symmetry models for ordinal variables using
what he defined as palindromic symmetry.

Symmetry generalizations for three-dimensional tables were presented by Bishop
et al. (1975, p. 299-309) who defined complete symmetry based on an interchangeabil-
ity concept given by Madansky (1963), even though Madansky’s work was more related
to marginal homogeneity generalizations. Bishop et al. (1975, p. 303) also presented
quasi-symmetry generalizations for three-way contingency tables. Symmetry and quasi-
symmetry generalizations for higher dimension were discussed by Darroch and Bhapkar
(1990). Other symmetry generalizations, for example marginal quasi-symmetry, were

203
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presented by Andersen (1991, p. 328-329) and Bishop et al. (1975, p. 299-309) and we
discussed them in section 2.6, where in fact most of the generalizations mentioned in
the last two paragraphs were presented and discussed.

Symmetry generalizations for more than two dimensions not only include general-
izing symmetry as defined for two-way contingency tables, other generalizations corre-
spond to marginal homogeneity extensions for any number of variables or restricting
marginal distributions as studied by Bergsma and Rudas (2002), which can be applied
according to Madansky (1963) to panel data in which a variable is followed through
time and the researcher wants to know if the marginal distribution does not change.

Wermuth and Marchetti (2009) generalize symmetry for binary variables in the sense
that the levels are equally probable and at the same time they assume the existence of
something called a triangular system, which is a recursive process in terms of the main
effects. Under these triangular systems for symmetric binary variables, the symmetry
in all margins is carried over the joint probabilities, for example for three variables
with levels 1 and −1, p123(1,−1, 1) = p123(−1, 1,−1), i.e. the distribution is preserved
after interchanging levels, which does not happen with RGLL models, even with label
invariant models because in these models scale invariant conditions mean that what
is preserved after that interchange is the model, not the distribution. Wermuth and
Marchetti (2009) also discuss how certain graphical Markov models can be expressed
using those symmetric models for triangular systems, which is interesting because they
can be easily expressed in terms of simple correlation and concentration matrices de-
fined for discrete data.

Equating parameters in log-linear models has been presented for instance by Haber-
man (1979, p. 503-509) in one specific example and also discussed by Vermunt (2005)
and Rindskopf (1984). Models that combines symmetry by equating certain parame-
ters and graphical log-linear models are presented by Gottard (2009) and Gottard et al.
(2008, 2010), we will discuss more about this model below.

Graphical models for discrete data and undirected graphs or graphs representing
only independences have been extended in different ways. For instance, Drton and
Richardson (2008) defined a model class called binary models for marginal indepen-
dence providing a framework for modeling marginal independence instead of condi-
tional independence as in traditional graphical log-linear models. Also, van Horebeek
and Teugels (1998) defined models in which the presence or absence of an edge between
two variables depends on the values taken by the remaining variables so that there is
conditional independence for particular values taken by the variables in the conditional
part and for other values there is no such independence. RGLL models are another way
of generalizing graphical log-linear models combining graphical log-linear models and
restrictions on certain parameters of the model.



5.1. RELATED WORK 205

We have defined RGLL models as a way of getting something analogous to what
was done by Højsgaard and Lauritzen (2005, 2007, 2008) in the Gaussian case with the
so-called graphical Gaussian models with edge and vertex symmetries, which include
RCON and RCOP models. RGLL models were also defined as a way of generalizing
symmetry in graphical log-linear models. The analogy with graphical Gaussian models
with edge and vertex symmetries is obtained once we impose constraints on the main
effects and first-order interaction parameters of a graphical log-linear model. In RCON
models restrictions are imposed on the concentration matrix, which determines associ-
ation between variables and consequently the edges in the graph. The diagonal terms
equated in that matrix determine vertex colourings and the non-diagonal terms equated
determine edge colourings. The equivalent terms in the discrete case are main effects
and first-order interactions, respectively, so that we chose to define models in which
we equate these terms. RCOP models are models that preserve the distribution after
permuting some vertices according to a permutation group that preserves the graph.
We have defined label invariant models for the discrete case as models equivalent to
RCOP.

Currently, Neufeld (2009) continues the study of graphical Gaussian models with
edge and vertex symmetries, in particular her research is devoted to the identification of
RCOP models, where her primary goal is to identify when a coloured graph represents
a RCOP model and if not how to modify it so that it does.

Gottard (2009) and Gottard et al. (2008, 2010) defined models called quasi-symmetric
(QS) graphical models and their general form Symmetric and quasi-symmetric (SQS)
graphical models that, like RGLL models, preserve the independences given by a graph.
SQS graphical models use a vertex colouring definition similar to the one presented
here, but for edge colourings, QS and SQS graphical models use restrictions of the kind

λXY (ij) = λRS(ij), for all i, j = 1, ..., J

for elements in the same colour class, including restrictions

λXY (ij) = λXY (ji), for all i, j = 1, ..., J and λRS(ij) = λRS(ji), for all i, j = 1, ..., J ;

and with restrictions for the second-order interactions of the type

λV (ijk) = λV (jik), for all i, j = 1, ..., J ;

where V is a set formed by three variables, or similar for different positions of k ac-
cording to which first-order interactions are in the model. For example if we had
the parameters λXY (ij) and λXY R(ijk) in the model, we would have the restrictions:
λXY R(ijk) = λXY R(jik) for all i, j, k = 1, ..., J . SQS graphical models are defined for
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at most three-way contingency tables; however, Gottard (2009) says that it can be
naturally extended to higher dimensions, she does not show how, but refers to Gottard
et al. (2010) where only QS graphical models are defined for tables with any dimension
by restricting all interactions as with second-order interactions.

Complete symmetry and quasi-symmetry preserving only one-dimensional margins
defined in section 2.6 are particular cases of SQS graphical models. Observe that the
first-order restrictions in these models are a particular case of the kind of restrictions
defined for those terms in RGLL models, and as a consequence for triangle-free graphs
QS and SQS graphical models are a particular case of RGLL models. On the other
hand, label invariant models could not be seen as QS or SQS graphical models and
viceversa. When we have interactions of second or higher order the models differ be-
cause of the definition used for second-order interactions restrictions in QS and SQS
graphical models. Additionally, the kind of restrictions included in QS and SQS graph-
ical models have some computational advantages because the restrictions are preserved
in spite of the parametrization used, so that we can easily find the restrictions for the
parameters in a parametrized model whose design matrix has full rank, sum the appro-
priate columns in the design matrix, and solve the model by using Newton-Raphson,
which implies we could use any available statistical software that fits log-linear models
without the necessity of programing a software as REGRAPH, like SPSS, SAS, R, or
SPlus.

In Gottard et al. (2010), the authors fit QS graphical models for a data set cor-
responding to attitudes about legalized abortion and about death penalty. The data
consist of four binary variables with the same scale, yes and no, which can be coded
as 1 and 2, respectively. The first three variables response to whether abortion should
be legal: a) when there is a strong chance of a serious defect in the baby, variable D,
b) when the mother’s health is endangered, variable H, and c) when the pregnancy is
the result of a rape, variable R. The last variable is whether a subject favors death
penalty, variable P . Variables D, H, P , and R are labeled as 1, 2, 3, and 4, respectively.
The QS graphical model that fitted the data according to the deviance has generating
class {{1, 2, 4}, {3, 4}} and two edge colour classes (E0, E1), where E0= {{3, 4}} and
E1= {{1, 2}, {1, 4}, {2, 4}}, which according to their definition of colouring implies the
following parameter restrictions:

u12(12) = u14(12) = u24(12) = u12(21) = u14(21) = u24(21),

u12(11) = u14(11) = u24(11),

u12(22) = u14(22) = u24(22),

u124(ijk) = u124(jik); u124(ijk) = u124(kji); u124(ijk) = u124(ikj), for i, j, k = 1, 2.

The last equalities are equivalent to u124(ijk) = u124(per(ijk)), where per(ijk)
denotes any permutation of the elements in the argument. The deviance has a value
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of 8.80 with eight degrees of freedom and a p-value of 0.36, indicating a good fit. Note
that this is not a RGLL model because there are equality restrictions for second-order
interactions. However, we can search for a RGLL model with the same generating class
that fits the data by using the selection method included in REGRAPH. The RGLL
model obtained has three vertex and seven edge colour classes as follows.

V1 = {2}, V2 = {3}, V3 = {1, 4};

E1 = {u12(22)}, E2 = {u14(12)}, E3 = {u14(22)}, E4 = {u24(21)}, E5 = {u12(12), u34(21)},

E6 = {u24(11), u34(12), u14(11), u34(11), u24(12), u12(21), u12(11), u34(22)},

E7 = {u14(21), u24(22)}.

This model has an associated deviance of 3.49 with six degrees of freedom and a p-
value of 0.75, so that it fits even better than the QS graphical model. The QS graphical
model has an interpretation that the RGLL does not have, which is that there is a
quasi-symmetric structure preserving one-dimensional margins for variables 1, 2 and 4
as seen in section 2.6. The RGLL model that may be considered similar to the QS
graphical log-linear model is one where the same first-order interaction restrictions are
used; however, note that the second-order interactions are not restricted. That is, we
have a RGLL model with the same generating class as before and four vertex and seven
edge colour classes as follows.

V1 = {1}, V2 = {2}, V3 = {3}, V4 = {4};

E1 = {u12(12), u14(12), u24(12), u12(21), u14(21), u24(21)},

E2 = {u12(11), u14(11), u24(11)}, E3 = {u12(22), u14(22), u24(22)},

E4 = {u34(11)}, E5 = {u34(12)}, E6 = {u34(21)}, E7 = {u34(22)}.

Using REGRAPH, we obtained a deviance of 6.65 with six degrees of freedom and
a p-value of 0.35, which is similar to the p-value corresponding to the QS graphical
model; in fact, using the deviance and degrees of freedom differences between the two
models, 2.15 and 2, respectively, we obtained a p-value of 0.34. Then, we do not
reject, for instance using α = 0.05, that both models explain in a similar way the data;
however, as stated before, the QS graphical model fitted to these data can be somewhat
interpreted.

5.2 Discussion

Regardless of having analogies between graphical Gaussian models with edge and vertex
symmetries in the continuous case and RGLL models in the discrete case, as discussed
above in section 5.1, there are some differences. The most important differences are
that in the discrete case we have terms indicating association between three or more
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variables, the interactions of two or higher order, and that we take into account all
level or category permutations between two variables to determine edges and param-
eter restrictions, whereas in the continuous case we only consider pairs of variables
to determine edges, which depend on the concentration matrix or partial correlation
terms. Another difference is that in the discrete case we could have different parame-
ters according to the parametrization used. Additionally, observe that there are scale
invariant conditions added to label invariant models not required for RCOP models
because they are automatically obtained.

Symmetry generalizations that are particular cases of RGLL models not only corre-
spond to quasi-symmetry models, but also to other models like conditional symmetry as
discussed in section 2.6. We have chosen to use both the parametrization and the kind
of restrictions used by Agresti (2002a, p. 423-426) for symmetry and quasi-symmetry
models, but we could have used and identify restrictions through any other kind of pa-
rameter available, for example parameters under effect coding. In fact, we saw in section
3.9.4 that for any vertex colouring and in three particular cases of edge colourings, the
restrictions with any kind of parametrization are exactly the same. The disadvantage
of restricting parameters under other parametrizations instead of the parameters of the
kind ua(ia) (the ones used for this dissertation) is that using parameters different to
ua(ia) we can not restrict any possible permutation of the levels taken by a pair of
variables because, once we parametrize the model in other way, there are permutations
not represented by any parameter.

We can obtain design matrices for RGLL models; however, they do not have asso-
ciated full-rank matrices unless we get a parametrization of the model satisfying this
property that represents the model with all its restrictions. There are cases in which
we can easily get this parametrized model, for example symmetry and quasi-symmetry
models or the cases we analyzed in section 3.9.4, but in general it is not straightfor-
ward. This is the reason why we chose to fit the models using a modified iterative
proportional fitting algorithm, which provides us with a numerical method that solves
the likelihood equations converging to the maximum likelihood estimators and that
does not use the design matrices. If we had such parametrized model, we would get
full-rank matrices and we could use the Newton-Raphson or Fisher scoring method to
solve the likelihood equations by numerical approximation. This means that we could
use any available software that solves log-linear models, for example SPlus, SPSS, SAS,
or R, to fit a RGLL model with such parametrization. Even if the design matrices for
RGLL models are not full-rank matrices, they are important because they are used to
obtain the number of degrees of freedom associated to a model.

It might be interesting to consider only parameter restrictions that not depend on
the parametrization used, which as it was said above always happens for vertex colour-
ing and for the particular edge colourings presented in section 3.9.4 and consequently
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only for certain vertex and edge colourings; however, by only considering models of
this kind we are restricting even more the number of models and not considering many
interesting models, which is inconvenient.

We have chosen the likelihood ratio test statistic defined for log-linear models, the
deviance, as a goodness of fit statistic to see if a model fits well and we also used it
to verify the convenience of joining classes and to select a model. This statistic has an
asymptotic chi square distribution. There are no general rules to determine if this is
an adequate approximation, but in general Lauritzen (1996, p. 81) suggests that the
approximation requires m(i) rather large for all i ∈ I∗k = {i|mk(i) > 0}. The exact
distribution is in general intractable as discussed by Lauritzen (1996, p. 80), and this is
why we have to rely on asymptotic results. However, there are some particular cases, for
example quasi-symmetry models which are also RGLL models, in which exact p-values
were numerically calculated by Booth et al. (2005) and there are also other methods,
e.g., Whittaker (1990, p. 285-296), that pretend to obtain p-values that are closer to
the exact values by conditioning the cell counts on the minimal sufficient statistics, and
there is even a software developed by Caffo (2008) that implements them for log-linear
models.

Another goodness of fit statistic we have used is the Pearson X2 statistic, in fact,
we saw in section 2.7 that a Taylor expansion can be used to approximate the deviance
with X2. Some properties of the deviance are the following: a) it can be used to com-
pare models because the deviance can be decomposed into the sum of other deviances,
which is useful in model selection, b) it can be seen as a divergence measure and it is
minimized when we get the maximum likelihood estimators, c) it has an interpretation
in terms of hypothesis testing, d) in general, for higher dimension but not sparse tables
it is always advisable to use it because it provides a better approximation. The Pear-
son X2 statistic has a better chi squared approximation for smaller sample sizes and
more sparse tables than the deviance, in fact the distribution of the deviance is usually
poorly approximated when the sample size divided by the number of cells is less than
5 as it is the case in one of the applications. We used the deviance throughout the
work; however, we presented the statistic X2 in all examples in Chapters 3 and 4, the
chapters where RGLL models were fitted, specially for the example 4.12 where there
are sampling zeros and a sparse table.

In order to fit RGLL models, we needed a specific computer program, and we wrote
REGRAPH in Fortran 90. We wrote subprograms in it that: fit RGLL models, join
colour classes, and select RGLL models for some data. As discussed at the end of
section 3.10, for log-linear models without restrictions including graphical log-linear
models and symmetry and quasi-symmetry models, numerical results were compared
with those obtained using other available software like MIM or Splus. These models
were chosen because in all these cases we know adequate parametrizations with asso-
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ciated full-rank matrices that represent them. In REGRAPH, the user has to provide
among other things the generating class, so that it has to be known. In practical appli-
cations, the generating class of the model is not known, so that we could use a model
search procedure to look for a graphical log-linear model that fits the data. This search
can be done through available software that fits graphical models, like CoCo or MIM.
We have used the last one in this work.

We have developed methods that join colour classes, where we have used the de-
viance as a measure to decide whether a joint is convenient. We used these methods to
get a model search procedure using any initial vertex and edge colour class or even a
default model in which every vertex and every edge is in an atomic class. We generated
a method that joins iteratively classes whose joint is statistically significant until we get
a RGLL model that, with the information provided, better fits the data according to
the deviance. That significance is given in the sense that using deviance differences we
do not reject the null hypothesis that the parameters corresponding to the same colour
class once joining classes are equal in the model without joining classes. This method
could be considered as some kind of Forward algorithm, because we begin from an ini-
tial model and we iteratively join colour classes until we get a final model. It could be
interesting to try to implement a similar Backward algorithm, in which starting from a
model in which all edges and vertices are in the same class, we iteratively separate the
classes until we get one model that fits as good as possible to the data.

As any automatized selection method, ours is useful as a guide to select a model,
but it does not provide the best model or the model that best represents the relations
among all cells and variables. In fact, depending on the model, we could suggest that
more than one colouring is adequate even before fitting the model. This is because the
equations corresponding to the elements in the generating class sometimes automati-
cally imply the equations corresponding to various colourings. This means that given a
generating class more than one colouring could fit the data according to the deviance,
in the sense that the statistic is the same for any of the colourings. We emphasize that
it is important to identify an adequate generating class as starting point to get a RGLL
model that fits well.

We have considered models in which all variables have the same categories. The
reasons for this assumption are the following: 1) If we want to join any vertex colour
classes or vertices in the same class, we need all vertices to have the same number of
categories, like in symmetry and quasi-symmetry models, because when we join vertices
in one class we equate main effects for all levels for the variables in the same class. 2)
It allows symmetry interpretations, which makes it a necessary assumption for label
and level invariant models; for example, the former require having the same categories
because we permute vertices, and this change only make sense when we have variables
whose values are the same even though the variables differ. This difference could be for
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example that a variable is measured in different periods of time or for different mem-
bers in a family. 3) By using this assumption, computer programming is less difficult
and more efficient and we also have the possibility to include model selection. 4) This
assumption is similar to what is required in symmetry and quasi-symmetry models, in
which we consider only square tables, or even in some symmetry generalizations, for
example complete symmetry that requires all variables to have the same number of
categories.

All programs in REGRAPH run under the assumption that all variables have the
same number of levels or categories. The assumption that all variables have the same
levels could be relaxed by asuming that only the variables in the same composite class
have the same categories. We could fit RGLL models with these characteristics; how-
ever, we would not have the possibility to join any vertex classes if they have different
categories and consequently we could not apply the automatized model selection method
as before. If we wanted to include this kind of models, we would need to modify RE-
GRAPH to fit them.

We also have supposed that we do not have structural zeros, i.e that p(i) > 0 or
that the expected frequencies m(i) > 0 if the cells counts correspond to multinomial
or Poisson distributed random variables, respectively, although we could have sampling
zeros, i.e. observed counts n(i) = 0 for some i. When n(i) = 0, it might be necessary
to adjust the corresponding degrees of freedom. However, the existence of maximum
likelihood estimators even when we only have sampling zeros is a topic that has been
deeply discussed with many questions still open, because the patterns of these random
sampling zeros determine which log-linear models can be fitted.

Fienberg and Rinaldo (2007) discuss and give a historical review on the existence
of maximum likelihood estimators in the presence of sampling zeros. Haberman (1973)
was the first who gave necessary and sufficient conditions for their existence; however,
as Rinaldo (2006b) points out, he gave a non-constructive characterization in the sense
that it does not lead to numerical procedures to know when the maximum likelihood
estimators exist. One of his results corresponds to existence of maximum likelihood
estimators when the observed counts n(i) > 0 for all i and also justifies to some extent
that sometimes in practice the presence of sampling zeros is dealt with adding small
positive quantities to zero cells.

Bishop et al. (1975, p. 69) also discuss that when the cell estimates can be derived
directly, then having positive values for the sufficient statistics ensures the existence of
maximum likelihood estimators. That the cell estimates can be derived directly means
that there are exact formulas to estimate the expected frequencies and having posi-
tive values for the sufficient statistics means that all marginal counts na(ia) that define
the likelihood equations are positive. This result is equivalent, as discussed by Glonek
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et al. (1988), to say that positivity of those marginal counts is a necessary and sufficient
condition for the existence of maximum likelihood estimators if and only if the model
is decomposable. In non-decomposable log-linear models positivity of such marginal
counts is only a necessary condition for the existence of the estimators. That the con-
dition is only necessary means that there are non-decomposable log-linear models and
associated contingency tables whose marginal counts are positive and still there is no
maximum likelihood estimator. Examples of this phenomenon are shown by Glonek
et al. (1988), but it is something rare and the cases shown correspond to hypothetical
tables specially built to prove this happens.

Some authors, e.g., Bishop et al. (1975, p. 115) or Christensen (1997, p. 286-
293), suggest that even with zero marginal counts, in either decomposable or non-
decomponsable models, we still could fit a model by dropping all cells that cause such
zero marginal counts obtaining estimators for the remaining cells and after that ad-
justing the degrees of freedom as discussed in section 2.7. Those estimators would be
some kind of extended maximum likelihood estimators. Using the IPF algorithm, such
process is obtained by equating to zero all expected frequencies for those cells whose
marginal counts are zero. REGRAPH does this process, it equates to zero all cells
whose marginal counts are zero and adjusts the degrees of freedom, but warns the user
that when at least one of the marginal counts is zero, the estimators do not exist and
the estimated values do not correspond to maximum likelihood estimates.

In practice indicators which have been used to check that the estimators do not exist
are given by the lack of convergence or errors of whatever algorithm is used to compute
the estimators and by the fact that under IPF the fitted values are equal to the observed
values. This is justified by a theorem presented by Glonek et al. (1988) stating that the
maximum likelihood estimators exist if and only if there exists a table x of positive real
values with na(ia) = xa(ia), for all a ∈ A. These equalities correspond to the likelihood
equations, then the theorem is equivalent to say that the estimators exist if and only if
the expected frequencies that solve the likelihood equations m̂(i) are positive. In fact,
Andersen (1974) shows that under IPF the estimators exist if and only if the expected
frequencies to which the algorithm converges are positive. Lack of convergence means
that the likelihood equations are not solved, therefore we do not find positive values
satisfying the equations. On the other hand, if the estimated frequencies are equal to
the observed values, then the likelihood equations are solved by expected frequencies
with zero values because the original table had zeros, which implies that the estimators
do not exist.

Lauritzen (1996, p. 71-72) does not deal with the problem of the existence of esti-
mators because he works with models for which he defines an enlarged parameter space
where the maximum likelihood estimators are always defined in an extended way.
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Recent advances in the field of algebraic statistics have been used by Eriksson et al.
(2006) to determine polyhedral conditions for the non-existence of the estimator in
hierarchical log-linear models, these results were generalized by Rinaldo (2006a,b) to
include any log-linear model.

All these results on the existence of maximum likelihood estimators when some
observed counts are zero can be extrapolated to RGLL models. If 1) the graphical
log-linear model defined by the generating class associated to a RGLL model is a de-
composable model; and 2) the marginal counts associated to the elements in the gen-
erating class with cardinality greater than three as well as the sums of marginal counts
associated to the colourings are strictly positive, then there are necessary and sufficient
conditions for the estimators to exist. Condition 1), that the model is decomposable,
is obvious since the RGLL model and the associated graphical log-linear model are
both log-lineal models with the same generating class, and condition 2) is equivalent to
say that the corresponding marginal counts associated to the RGLL model should be
positive. In fact, if the marginal counts for the generating class are positive then the
marginal counts for the RGLL model are also positive because the latter are obtained
by summing the former marginal counts depending on the vertex and edge classes.
When the model is not decomposable we fall on the case in which the positivity of the
marginal counts is only a necessary condition for the existence of maximum likelihood
estimators and then, even having such positivity, we still should check if the estimated
expected frequencies are equal to the observed values in all cells, if the algorithm con-
verges, and if m̂(i) > 0 in order to see if there is an existence problem.

We observe that in example 4.12 there are 7 zeros out of 16 cell values and in
consequence the maximum likelihood estimators could not exist, additionally as we
discussed in section 2.10 all models whose associated graph is a 4-cycle are not decom-
posable so that we can not use the result seen above involving positive margins and
decomposable models; however, all margins associated to the model, nL1B2L2B1(i, j, ., .),
nL1B2L2B1(., i, j, .), nL1B2L2B1(., ., i, j), nL1B2L2B1(j, ., ., i); i, j,= 0, 1, are positive and in
consequence the necessary condition is satisfied but as it is not a sufficient condition
we could still have problems. But, we observed that the fitted values were not equal to
the observed counts for all cells, and more important there were not convergence prob-
lems, i.e. the maximum likelihood equations are solved, and all estimated expected
frequencies m̂(i) are positive so that sufficient conditions are satisfied and the maxi-
mum likelihood estimators exist.

If we considered structural zeros we would be fitting models for incomplete tables.
The theory to fit models for incomplete tables is different to the one used for complete
tables and it was presented for hierarchical log-linear models by Bishop et al. (1975, p.
177-228), who fitted models for incomplete two-way contingency tables, in particular for
quasi-independent models, and for tables with different zero structures and presented
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a general theory for incomplete multi-way tables establishing conditions for maximum
likelihood estimators existence as well as for degrees of freedom adjustment.

Additionally, we supposed that we do not have missing values, i.e. we do not have
incomplete data. If we wanted to include this kind of data, we would have to use other
methods, for example some kind of EM algorithm (expectation and maximization), to
fit the model. This method was presented by Edwards (2000, p. 103-117, 313-314) for
mixed models, graphical models with continuous and discrete variables, and also by
Lauritzen (1996, p. 233-236), who also explains how the method could be applied to
hierarchical log-linear models.

A particular kind of RGLL models are label invariant models and they correspond
to scale invariant models whose distribution is preserved after permuting some vari-
ables, so that symmetry is seen in terms of a model that is preserved after applying a
permutation set formed by automorphisms to the vertices. They can also be considered
as graphical models with certain graph symmetry, understanding this symmetry as a
graph that is preserved after a permutation of the vertices, including all conditional
independences that can be inferred from that graph. As we said before, the equiva-
lence between label invariant models and RCOP models is completed once we include
scale invariant conditions. Label invariant models can be represented as RGLL models
considering that we restricted their graph structure to be triangle-free, which produces
restrictions for the parameters as the ones defined for RGLL models. This restriction
makes also possible to have a graphical representation of the model. Such restriction is
not something rare, in fact, there are some graphs called pairwise Markov graphs where
it is supposed that there is only second-order dependence, which is equivalent to that
restriction. There are even some particular models as discussed by Hastie et al. (2009,
p. 638) called Ising models in the statistical mechanics literature or Boltzmann ma-
chines in the machine learning literature for discrete binary variables that can be seen
as first-order interaction Poisson log-linear models. All restrictions in label invariant
models can be derived using concepts equivalent to the ones defined for the Gaussian
case, basically using the concept of orbit.

Another type of RGLL models are level invariant models. They are defined as
models including restrictions corresponding to equalities of the expected frequencies for
different cells according to a permutation group, generalizing the concept of symmetry
in contingency tables in the sense that we have a model that equates the expected
frequencies in certain cells. This generalization does not only allow symmetry between
some cells, but also preserves the conditional independences given by the model, which
differs to what has been done before because in other symmetry generalizations the
saturated model is used and this model does not consider any kind of independence.

We proposed ways of generalizing label and level invariant models in the sense that
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these general models are defined for any graphical log-linear model and not only for
graphical log-linear models whose associated graphs are triangle-free. In general la-
bel invariant models, we get the necessary restrictions for interactions of any order by
defining generalized orbits. Scale invariance conditions differ because we can get not
only one set, but many sets of restrictions for the interactions of two or higher order
that could be used and we can choose any of them. We can also get general level invari-
ant models. In these, when the set of permutations defining the models is formed by
automorphisms, we can use the generalized orbits to get the corresponding restrictions.
Otherwise, the restrictions are obtained once we obtain the log-linear expansions for all
the expected frequencies that should be equal and we deduce which parameters should
be the same to get such equalities. We obtain models in which we restrict main effects
and all interactions. By restricting interactions of order higher than one we do not have
a RGLL model anymore and we have models that can not be represented by graphs.
This means that they can not be solved with any available software, nor even with
REGRAPH.

RGLL models and in particular label and level invariant models can be fitted for
different kinds of data, considering that the variables involved have the same categories.
For example, we could use them in panel data, in particular when a discrete variable is
being followed through time, in studies using clustering or matching, e.g., social mobil-
ity studies for grandfather-father-son triads or twin or brothers studies, in agreement
studies, or even in item-response studies. Under the condition that the number of units,
which are individuals, clusters, objects rated, or subjects taking a test, respectively, do
not change, we can represent these data as contingency tables as discussed by Lovinson
(2000) and it could make sense to use RGLL models. In this document we presented,
in addition to the data corresponding to a study of coronary heart disease and those
for patients admitted to an intensive care unit presented in section 3.11.5, panel data
for the change of region of residence data presented in section 3.11.5 and studies using
clustering for the brothers and twins data presented in examples 4.12 and 4.13.

5.3 Conclusions

RGLL models are more parsimonious than graphical log-linear models and they could
help to get a better fit and understanding of the data. According to a model, we could
know more about the distribution of the data, for example we can obtain all conditional
independences the model represents as in graphical log-linear models, and the relation
between the cells on a contingency table; however, we have to be careful with the inter-
pretation of a fitted model, because in some cases it could be too complex to be easily
interpreted in terms of the relation between cells, so that what we could obtain is a
parsimonious model without gaining in terms of interpretability.
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RGLL models are a way of establishing symmetry in terms of a log-linear model
and they pretend to be analogous to the RCON models presented for the Gaussian
case. They also pretend to extend classic models of symmetry for two-way contingency
tables, though this is not the only way to do that. The definition of these models was
somewhat arbitrary, in the sense that we have decided which parameters to restrict,
and obviously there could be other ways. We chose restrictions that in some way were
equivalent to the ones in the continuous case and such that we still could have a graphi-
cal representation; however, this representation might become too complex if the model
has for example six or more variables and more than three levels or categories because
there might be too many colours in the corresponding graph. In fact, problems of
graphical representation arise in any graphical model with too many variables; so that
a graphical representation for a graphical model is not strictly necessary and sometimes
the term graphical used to identify the name of these models is more related to the use
of concepts of graph theory than to the graphical representation. We could extend
RGLL models by restricting additional parameters, but it gets more complicated, or by
changing the kind of parameters we restrict as we discussed above in section 5.2.

Generalizations of RGLL models by restricting additional parameters would mean
that restrictions are not only in the main effects and first-order interactions parame-
ters, but also in higher-order interactions. The graphical representation of such models,
even with multi-graphs, is not possible, much less when we consider that the equalities
involve not only variables but also their values. We could use hyper-graphs, but even so
the representation is complex, though as we discussed in the previous paragraph such
representation might not be necessary. However, if we obtained these generalizations,
more symmetry generalizations, for example complete symmetry or quasi-symmetry
presented by Bishop et al. (1975, p. 299-306) (see section 2.6) and general label and
level invariant models, would be particular cases. This generalization requires addi-
tional work, not only in computational terms but also in theoretical terms because we
need to give a new definition, obtain the associated likelihood equations, and define a
new algorithm to fit the model and analyze its convergence. It might even be useful
to define all concepts in algebraic or even geometric terms analogously to what for in-
stance Rinaldo (2006a) did for log-linear models. Drton et al. (2009) present in their
book techniques in algebraic geometry, commutative algebra, and combinatronics, to
address problems in statistics and its applications including graphical models.

Additionally, label invariant models are analogous to RCOP models defined in the
Gaussian case. Amazingly, we found that many of the concepts used in the continuous
case could still be used with certain modifications, even though we had to restrict the
types of graphs in which the models could be applied. The symmetry generalization
we have obtained through label invariant models are in terms of graph theory and the
model. Additionally, as we saw in examples 4.12 and 4.13, we can see that we also have
a symmetry generalization in terms of the contingency table because we got multi-way
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contingency tables in which under certain arrangement of the variables in the table
the elements above the diagonal are equal to the ones below. Level invariant models
also generalize symmetry in terms of the contingency table and both, label and level
invariant models, preserve the dependence structure given by the graph.

According to all those similarities between the discrete and continuous case, future
work could consist on extending RGLL models to mixed graphical models. Other future
work could be to determine if given any coloured graph and its corresponding multi-
graph satisfying scale invariance, we can identify if we have a label invariant model. As
we stated before, additional work could consist in including the analysis of incomplete
tables or tables with missing data. Alternative types of graphical models for discrete
data were discussed above in section 5.1, for example the binary model for marginal
independence defined by Drton and Richardson (2008) in which marginal independence
is what is represented using graphs with edges having arrows in both ends instead of
using simply edges and representing conditional independence as in graphical log-linear
models. Additional work could consist on using the concepts used for RGLL models
and apply them for those alternative types of graphical models.

In conclusion, RGLL models are extensions for graphical log-linear models and dis-
crete symmetry models that could be useful for describing the structure of a contingency
table, and, even though they have limitations, they could be a starting point to un-
derstand symmetry in graphical log-linear models with more than two variables and
to understand differences and similitudes of this concept between the continuous and
discrete case. Additionally, even though we used some theory defined for graphical log-
linear models and the models defined by Højsgaard and Lauritzen (2008) as a starting
point, we mostly defined everything from scratch, so that doing this work was useful
to understand how to build models and the problems, both theoretical and practical,
when doing it.
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Basic graph theory concepts

A graph, G = (V,E), is an ordered pair consisting of a finite set V (G), or V when
there is not confusion in which graph we are referring to, of elements called vertices
or nodes, so that V = {v1, v2, ..., vk}, k ∈ N, and of a finite set E(G) or E, with
E = {e1, e2, ..., el}, l ∈ N, of elements called edges, where E is a subset of non-ordered
pairs of V × V of the form er = {vi, vj} for some i, j = 1, 2, ..., k with r = 1, 2, ..., l.

The vertices vi and vj are the ends of the edge er. Two vertices in G are adjacent
if they are the ends of some common edge; i.e., if there is an edge joining them or if
there is an edge in common. Two edges are adjacent if they have one end in common,
i.e. if the edges share one same vertex. Graphically, we represent the vertices as dots
or circles and the edges as lines joining the corresponding vertices. Edges are called
multiple when there are more than one edge in E joining a vertex vi with a vertex vj.
A loop is an edge of the form {vi, vi}. A graph G is simple if it does not have multiple
edges or loops. A graph is trivial if there are not edges between its vertices, i.e. if the
graph consists of isolated vertices.

The number of vertices in a graph, |V |, is denoted as ν and the number of edges,
|E|, is denoted as ǫ.

A subgraph G′ = (V ′, E ′) of G = (V,E), denoted as G′ ⊆ G, is a graph in which
V ′ ⊆ V and E ′ ⊆ E. A spanning subgraph of G is a subgraph H with V (H) = V (G). A
subgraph induced by a subset of vertices V ′ of V , denoted as G[V ′], is a subgraph with
vertex set V ′ an whose edge set are all edges in G between the elements in V ′; i.e., the
edge set is the set of those edges in G that have both ends in V ′. A subgraph induced by
a set of edges E ′, denoted as G[E ′], is a subgraph with edge set E ′ and whose vertex set
is the set of ends of edges in E ′. If we consider the subset V ′ = V − V ′′, with V ′′ ⊆ V ,
then the induced subgraph G[V ′] is a graph in which we delete all vertices in V ′′ and
all edges with ends in that set, we denote it as G − V ′′. In asimilar way, we can get
G − E ′′ with E ′′ ⊆ E. If V ′ = {v}, then for simplicity we write G − v for G − {v}.

219
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Similarly for the edges, if E ′ = {e}, we write G− e for G− {e}.

A simple graph is complete if all pair of distinct vertices are joined by an edge. A
complete graph with ν vertices is denoted as Kν . The graph K1 does not contain edges,
i.e. we have a trivial graph. The graph K2 is an edge. The graph K3 corresponds to a
graph in which all three vertices are joined between them. If we draw the corresponding
graph by joining the vertices with straight lines, then we have a triangle. In a similar
way we get all complete graphs.

A clique for G is an subgraph induced by a set of vertices S ⊆ V , G[S], that is
complete and maximal with respect to the contention; i.e., a subgraph G is a clique
not only if it is complete, but also if it is not contained in another complete induced
subgraph of G. Using this definition, we get all cliques in any graph. For example, the
cliques for the graph given in figure A.1 are {1, 2, 3} , {2, 4} and {4, 5, 6}.

e e e e

e e

�
�
�
�
�
�A

A
A
A
A
A �

�
�
�
�
�A

A
A
A
A
A1 2

3

4

5

6

Figure A.1: Graph to illustrate the concept of clique.

A walk of length k is a finite non-null sequence of vertices and edges in G of the form
{v0, e1, v1, e2, v2, ..., ek, vk}, where vi are elements in V not necessarily different and ei

are elements in E not necessarily distinct. In a simple graph, we could shorten the way
of writing the sequence by using only the vertices, i.e. by writing {v0, v1, v2, ..., vk}. A
trial is a walk in which an edge can not be used more than once, that is, all e1, e2, ..., ek

are distinct. A path is a walk in which we can not use the same vertex more than once,
that is, all v0, v1, ..., vk are distinct, as a consequence we can not repeat edges.

Two vertices u and v are connected if there is a path or (u, v)-path between them in
G. Connection is an equivalence relation between vertices, therefore we get a partition
of V into V1, V2, ....Vω classes, in such a way that two vertices u and v are connected if
and only if they are in the same equivalence class Vi. The subgraphs induced by each
of these classes, G[V1], G[V2], ..., G[Vω], are called the connected components of G. If G
has exactly one component, then G is connected, otherwise G is disconnected.

A walk in which v0 = vk is a closed walk of length k. A closed trial or circuit is a
closed walk in which we can not use one edge more than once. Finally, a closed path
in which we can not use a vertex more than once is a cycle, as it has length k, it is
also called a k-cycle, one example is given in figure A.2(a). A graph without cycles
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is an acyclic graph. A tree is a connected acyclic graph, one example is provided in
figure A.2(b). A bipartite graph is a graph whose vertex set can be partitioned into
two subsets X and Y so that each edge has one end in X and one end in Y , a graph
is bipartite if and only if it contains no odd cycle. One example of a bipartite graph is
given in figure A.2(c).
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(c) Bipartite graph

Figure A.2: Examples of a k-cycle, a tree, and a bipartite graph in which all edges have one
end in X= {1, 2, 3} and one end in Y ={4, 5 ,6}.

To illustrate some of the concepts defined above we use the graph G given in figure
A.3 that is shown below.

An example of a walk in G is given by the sequence

{1, a, 2, b, 1, a, 2, f, 5, g, 3}

and of a closed walk is

{1, a, 2, b, 1, a, 2, f, 5, g, 3, c, 2, b, 1} .

An example of a trial is

{1, a, 2, c, 3, d, 4, h, 3}
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Figure A.3: Graph G used to illustrate the walk concept and its variants.

and of a closed trial is

{1, a, 2, c, 3, d, 4, h, 3, g, 5, f, 2, b, 1} .

Finally, an example of a path is

{2, f, 5, e, 4, h, 3}

and of a cycle is

{2, f, 5, e, 4, h, 3, c, 2} .

An (α, β) − separator, with α, β ∈ V , in a graph is a subset C ⊆ V such that all
paths from α to β go through C. The subset C separates A from B or C is a separator
set of A from B if it is an (α, β)-separator for every α ∈ A and β ∈ B. Another way
of seeing a separator set C is as a set of vertices C such that once deleted, i.e. once
obtaining G−C, we have a graph in which there is not any path from the elements in
A to the elements in B. In the graph given in figure A.3, {3, 5} separates {1, 2} from
{4} and it also separates {4} from {6}.

Let σ be a cycle of length k, {v0, v1, ..., vk} with v0 = vk. A chord for this cycle is
an edge {vi, vj} of two non-consecutive vertices. A graph is triangulated or chordal if
every cycle of length ≥ 4 posseses a chord (Diestel, 2005, p. 127).



A.1. GRAPH COLOURINGS 223

A.1 Graph colourings

A T -vertex colouring of G is an assignment of T colours, 1, 2, ..., T , to the vertices of G.
That is, the vertex set V has a partition (V1, V2, ....VT ) in such a way that all elements
in the same colour class Vi ⊆ V have the same colour i. Considering that G does not
have loops, we have a proper colouring if two distinct adjacent vertices do not have the
same colour i. In this case, each Vi forms an independent set which is a subset S of
V in G in which no two vertices can be adjacent. G is T -vertex colourable if G has a
proper T -vertex colouring.

It is important to remark that the vertex colouring definition is not restricted by
the fact that the graph G is simple, in fact, in proper colourings we have that a graph
G without loops is T -vertex colourable if and only if its underlying simple graph is
T -vertex colourable, understanding as underlying simple graph to a simple spanning
subgraph of a graph G in which we delete all loops and join with only one edge all
vertices that were already joined in G, i.e. we considere only one edge between vertices
even though we had multiple edges between them. We observe then that to define
vertex colourings, proper or not, it does nor matter if there is only one edge or multiple
edges between vertices. In the case of proper colouring, the fact of having one edge
between two adjacent vertices means that we can not use the same colour for those
vertices and then it becomes irrelevant if there were only one edge or more than one
edge between them because in any case the vertices should have different colour.

For edge colourings, we have similar definitions. An S-edge colouring of a loop-less
graph G is an assignment of S colours, 1, 2, ...S, to the edges of G. That is, an S-edge
colouring is a partition (E1, E2, ....ES) of the edge set E, where Ei ⊆ E is the colour
class i. The S-edge colouring is proper if no two adjacent edges have the same colour.
Each Ei in the partition induced by the colouring forms a matching. A matching is a
subset M of edges in E such that its elements are not adjacent in G. It is a concept
analogous to independent sets, but applied to the edges of G. G is S-edge colourable if
it has a proper S-edge colouring. We have that for proper edge colourings it is relevant
the fact of having or no multiple edges; for example to have a proper colouring if two
vertices are joined using different edges, we need a different colour for each edge.

In the graph given in figure A.4 we show a vertex and an edge colouring. Observe
that both are proper colourings because neither adjacent vertices have the same colour
for the vertex colouring, nor adjacent edges have the same colour for the edge colouring.
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Figure A.4: Graph G to illustrate vertex and edge colourings. In this case E is partitioned
into E1= {a,g}, E2= {b,i}, E3= {f ,h}, E4= {c,e}, and E5= {d} and V is partitioned into
V1= {1,3,5} and V2= {2,4,6}.



Appendix B

Convergence of a modified IPF
method to the maximum likelihood
estimators

In this appendix we present three lemmas that are used to prove theorem B.1 pre-
sented at the end of this appendix. This theorem states that the modified iterative
proportional method presented in section 3.10 converges to the maximum likelihood
estimators.

The notation used throughout this appendix is the same defined at the beginning of
Chapters 3 and 4 as follows. A vertex colouring (V1, V2, ..., VT ) is a partition of V into T
classes, where vr

j is the j-th vertex in the colour class Vr, r=1,...,T ; j=1,...,kver(r) with
kver a vector of dimension T of number of vertices in each vertex class. The marginal
total n(vr

j = p) and marginal expected frequency m(vr
j = p) for the j-th variable in the

colour class r for the category p are defined as

n(vr
j = p) =

∑

i:ivr
j
=p

n(i), p = 1, 2, ..., J ; j = 1, ..., kver(r); r = 1, 2, ..., T.

m(vr
j = p) =

∑

i:ivr
j
=p

m(i), p = 1, 2, ..., J ; j = 1, ..., kver(r); r = 1, 2, ..., T.

An edge colouring (E1, E2, ..., ES) is a partition of the edge set or first-order inter-
action set E into S classes, where ulzvrz

v
(izvj

z
v), v = 1, 2, ..., ked(z); z=1,2,...,S, is the

first-order interaction parameter identified with the edge ez
v joining variable lzv to vari-

able rz
v at the values (izv, j

z
v) and ez

v is the v-th element in the colour class Ez with ked
the vector of dimension S of number of edges in each edge class. The marginal total
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n(lzv = izv, r
z
v = jz

v) and the marginal expected frequency m(lzv = izv, r
z
v = jz

v) for the v-th
pair of variables, with their corresponding levels, in the colour class z are defined as

n(lzv = izv, r
z
v = jz

v) =
∑

s:(slzv
,srz

v
)=(izv ,jz

v )

n(s), v = 1, ..., ked(z); z = 1, ..., S.

m(lzv = izv, r
z
v = jz

v) =
∑

s:(slzv
,srz

v
)=(izv ,jz

v )

m(s), v = 1, ..., ked(z); z = 1, ..., S.

For simplicity, {lv = iv, rv = jv} with {lv = iv, rv = jv} ∈ Ez denotes the edge
joining variable lzv to rz

v at the values (izv, j
z
v), v = 1, ..., ked(z), z = 1, ...S, and in this

case n(lv = iv, rv = jv) and m(lv = iv, rv = jv) can be used instead of n(lzv = izv, r
z
v = jz

v)
and m(lzv = izv, r

z
v = jz

v), respectively.

Additionally, we defined in section 3.10 for every vertex colour class Vr, r =
1, 2, ..., T , the following transformations

(TVr(1)m)(i) = m(i)

∑
vr

j∈Vr
n(vr

j = 1)
∑

vr
j∈Vr

m(vr
j = 1)

, i ∈ {(s1, s2, ..., s∆) ∈ I|svr
j

= 1, for some vr
j ∈ Vr};

(TVr(2)m)(i) = m(i)

∑
vr

j∈Vr
n(vr

j = 2)
∑

vr
j∈Vr

m(vr
j = 2)

, i ∈ {(s1, s2, ..., s∆) ∈ I|svr
j

= 2, for some vr
j ∈ Vr};

...

(TVr(J)m)(i) = m(i)

∑
vr

j∈Vr
n(vr

j = J)
∑

vr
j∈Vr

m(vr
j = J)

, i ∈ {(s1, s2, ..., s∆) ∈ I|svr
j

= J, for some vr
j ∈ Vr};

and for the edge colour class, Ez, with z = 1, 2, ..., S, we defined for i ∈ {(s1, s2, ..., s∆) ∈
I|slv = iv, srv

= jv, for some {lv = iv, rv = jv} ∈ Ez} the following transformations

(TEz
m)(i) = m(i)

∑
{lv=iv ,rv=jv}∈Ez

n(lv = iv, rv = jv)∑
{lv=iv ,rv=jv}∈Ez

m(lv = iv, rv = jv)
.

Lemma B.1. For a vertex colouring (V1, V2, ..., VT ) the following equality holds

∑

vr
j∈Vr

n(vr
j = p) =

∑

vr
j∈Vr

(TVr(p)m)(vr
j = p), r = 1, ..., T ; p = 1, 2, ..., J ;

where

(TVr(p)m)(vr
j = p) =

∑

i:ivr
j
=p

(TVr(p)m)(i), p = 1, 2, ..., J ; j = 1, ..., kver(r); r = 1, 2, ..., T.
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For an edge colouring (E1, E2, ..., ES), we have that for all z = 1, ..., S the following
equality holds

∑

{lv=iv ,rv=jv}∈Ez

n(lv = iv, rv = jv) =
∑

{lv=iv ,rv=jv}∈Ez

(TEz
m)(lv = iv, rv = jv);

where

(TEz
m)(lv = iv, rv = jv) =

∑

s:(slv ,srv )=(iv ,jv)

(TEz
m)(s), {lv = iv, rv = jv} ∈ Ez.

Proof. Using the definition of TVr(p), we have

∑

i:ivr
j
=p

(TVr(p)m)(i) = m(vr
j = p)

∑
vr

j∈Vr
n(vr

j = p)
∑

vr
j∈Vr

m(vr
j = p)

,

summing over all vr
j ∈ Vr we obtain

∑

vr
j∈Vr

(TVr(p)m)(vr
j = p) =

∑

vr
j∈Vr

m(vr
j = p)

∑
vr

j∈Vr
n(vr

j = p)
∑

vr
j∈Vr

m(vr
j = p)

,

the
∑

vr
j∈Vr

m(vr
j = p) terms are canceled out getting the result.

Using the definition of TEz
, we have

∑

s:(slv ,srv )=(iv ,jv)

(TEz
m)(s) = m(lv = iv, rv = jv)

∑
{lv=iv ,rv=jv}∈Ez

n(lv = iv, rv = jv)∑
{lv=iv ,rv=jv}∈Ez

m(lv = iv, rv = jv)
,

summing over all {lv = iv, rv = jv} ∈ Ez we obtain

∑

{lv=iv ,rv=jv}∈Ez

(TEz
m)(lv = iv, rv = jv) =

∑

{lv=iv ,rv=jv}∈Ez

m(lv = iv, rv = jv)

∑
{lv=iv ,rv=jv}∈Ez

n(lv = iv, rv = jv)∑
{lv=iv ,rv=jv}∈Ez

m(lv = iv, rv = jv)
,

the
∑

{lv=iv ,rv=jv}∈Ez
m(lv = iv, rv = jv) terms are canceled out getting the result.
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Similar to what Lauritzen does (Lauritzen, 1996, see p. 71-72, 81) when he defines
log-affine models and using the same notation used by him, we define the set of expected
frequencies satisfying a RGLL model as M(q,H). This is the set of expected frequencies
satisfying a sampling scheme (section 2.2) and that m = q exp(v), v ∈ H with

H =
∑

a∈A,|a|6=1,2

Fa +
T∑

r=1

J∑

p=1

FVr(p) +
S∑

z=1

FEz
,

subspace of R
I, where:

For |a| 6= 1, 2, x ∈ Fa ⇔ x(i) = x(j), for all i, j with ia = ja.

For Vr = {vr
1, v

r
2, ..., v

r
kver(r)}, r = 1, .., T ; p = 1, ..., J ; x ∈ FVr(p) ⇔ x(i) = x(j), for

all i, j with ivr
k

= p = jvr
k
, k = 1, ..., kver(r), vr

k ∈ Vr. That is, FVr(p) is the function
space that depends on the cell i through ivr

k
= p, k = 1, ..., kver(r).

For Ez = {ez
1, e

z
2, ..., e

z
ked(z)}, z = 1, .., S with ez

v = {lzv = izv, r
z
v = jz

v}, v =

1, ..., ked(z); x ∈ FEz
⇔ x(s) = x(o), for all s, o with slzv = izv = olzv , srz

v
= jz

v = orz
v
,

v = 1, ..., ked(z).

The vector q is fixed and not identically zero. If q = 1, we have that the log-affine
model is a log-linear model, the cells where q(i) = 0 are structural zeros. As in Lau-
ritzen (1996, see p. 72), we can define the corresponding extended models M̄ that
consist of all pointwise limits of vectors in the model. We emphasize that Lauritzen
defined log-affine models in this form because it makes possible the existence of maxi-
mum likelihood estimators in an extended way.

In section 3.8 we derived the maximum likelihood estimators according to different
sampling schemes and that the expected frequencies had the kinds of restrictions con-
sidered for elements in M(q,H). Then, the estimators m̂ are elements in M(q,H). As
all the three distributions belong to the exponential family, the maximum likelihood
estimators are unique. In consequence:

Lemma B.2. The maximum likelihood estimate m̂ is the unique element in M̄(q,H)
satisfying the likelihood equations (3.5), (3.7), and (3.12), corresponding to vertex, edge,
and vertex and edge colourings, respectively.

For the more general case, with vertex and edge colouring simultaneously, these
equations are
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kver(r)∑

j=1

n(vr
j = 1) =

kver(r)∑

j=1

m(vr
j = 1), r = 1, ..., T ;

kver(r)∑

j=1

n(vr
j = 2) =

kver(r)∑

j=1

m(vr
j = 2), r = 1, ..., T ;

...

kver(r)∑

j=1

n(vr
j = J) =

kver(r)∑

j=1

m(vr
j = J), r = 1, ..., T ;

ked(z)∑

v=1

n(lzv = izv,m
z
v = jz

v) =

ked(z)∑

v=1

m(lzv = izv,m
z
v = jz

v), z = 1, 2, ...., S;

na(ia) = ma(ia), for all a ∈ A, |a| 6= 1, 2.

Some important properties satisfied by the transformations are presented in the
following lemma B.3, which is analogous to lemma 4.12 presented by Lauritzen (1996,
p. 83) but modified to include the transformations corresponding to the vertex classes
TVr(p), r = 1, ..., T , p = 1, ..., J and to the edge classes TEl

, l = 1, ..., S, besides the
transformations corresponding to the elements in the generating class Tb, |b| 6= 1, 2.

Lemma B.3. The transformation functions TVr(p), r = 1, ..., T , p = 1, ..., J ; TEl
, l =

1, ..., S; and Tb, |b| 6= 1, 2 satisfy the following

(i) TVr(p), r = 1, ..., T , p = 1, ..., J ; TEl
, l = 1, ..., S; and Tb, |b| 6= 1, 2 are continuous

on M∗ = {m|if n(i) > 0 then m(i) > 0};

(ii) TVr(p)m, r = 1, ..., T , p = 1, ..., J ; TEl
m, l = 1, ..., S; and Tb, |b| 6= 1, 2 are the

uniquely determined maximum likelihood estimators in the models M̄(m,FVr(p)),
M̄(m,FEl

), and M̄(m,Fb), respectively;

(iii) L(TVr(p)m) ≥ L(m), r = 1, ..., T , p = 1, ..., J ; L(TEl
m) ≥ L(m), l = 1, ..., S;

L(Tbm) ≥ L(m), |b| 6= 1, 2, with equality if and only if
∑

vr
k
∈Vr

n(vr
k = p) =∑

vr
k
∈Vr

m(vr
k = p),

∑
{lv=iv ,rv=jv}∈El

n(lv = iv, rv = jv) =
∑

{lv=iv ,rv=jv}∈El
m(lv =

iv, rv = jv), and n(ib) = m(ib), ib ∈ Ib, respectively, which occurs if and only if
TVr(p)m = m, TEl

m = m, and Tbm = m, respectively;

(iv) TVr(p)(M
∗ ∩ M̄) ⊆ M∗ ∩ M̄ , r = 1, ..., T , p = 1, ..., J ; TEl

(M∗ ∩ M̄) ⊆ M∗ ∩ M̄ ,
l = 1, ..., T ; and Tb(M

∗ ∩ M̄) ⊆M∗ ∩ M̄ , |b| 6= 1, 2.
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Proof. For (i) first we prove that TVr(p), r = 1, ..., T , p = 1, ..., J is continuous on
M∗. We take (mq) ∈ M∗ with mq → m ∈ M∗. If

∑
vr

k
∈Vr

m(vr
k = p) 6= 0 then

TVr(p)mq → TVr(p)m. If
∑

vr
k
∈Vr

m(vr
k = p) = 0, then m(j) = 0 for all j with jvr

k
= p,

k = 1, ..., kver(r), but as m ∈M∗ then n(j) = 0 for all j with jvr
k

= p, k = 1, ..., kver(r),
which means that

∑
vr

k
∈Vr

n(vr
k = p) = 0 then (TVr(p)mq)(i) = 0 = (TVr(p)m)(i) for all q

and TVr(p)mq → TVr(p)m.

To prove that TEl
, l = 1, ..., S is continuous on M∗, we take (mq) ∈ M∗ with

mq → m ∈ M∗. If
∑

{lv=iv ,rv=jv}∈El
m(lv = iv, rv = jv) 6= 0 then TEl

mq → TEl
m. If∑

{lv=iv ,rv=jv}∈El
m(lv = iv, rv = jv) = 0 then m(s) = 0 for all s with slv = iv, srv

= jv,

{lv = iv, rv = jv} ∈ El, but then n(s) = 0 for all s with slv = iv, srv
= jv, which means

that
∑

{lv=iv ,rv=jv}∈El
n(lv = iv, rv = jv) = 0 and then (TEl

mq)(i) = 0 = (TEl
m)(i) for

all q, so that TEl
mq → TEl

m.

For Tb, |b| 6= 1, 2 the proof is the same given in Lauritzen (1996, p. 83) as fol-
lows. Let (mq) ∈ M∗ with mq → m ∈ M∗. Then, if m(ib) 6= 0 we trivially have that
Tbmq → Tbm. If m(ib) = 0, m(j) = 0 for all j with jb = ib. But then, since m ∈M∗, we
must have n(j) = 0 for all such j, whereby n(ib) = 0. Thus (Tbmq)(i) = 0 = (Tbm)(i)
for all q and Tbmq → Tbm.

To prove (ii), we use that TVr(p)m ∈ M̄(m,FVr(p)) r = 1, ..., T , p = 1, ..., J . This
is because TVr(p)m is a function of m and elements that only depend on the fact that
ivr

k
= p, k = 1, ..., kver(r), so that TVr(p)m can be expressed as m exp(v) with v ∈ FVr(p).

m exp(v) =






m(i) exp(log(

∑
vr
k
∈Vr

n(vr
k
=p)

∑
vr
k
∈Vr

m(vr
k
=p)

)), i ∈ {(i1, i2, ..., i∆) ∈ I|ivr
k

= p, for some vr
k ∈ Vr}

m(i) exp(0), otherwise.

= TVr(p)m.

Using this last result, lemma B.1 and lemma B.2, we have that TVr(p)m, r = 1, ..., T ,
p = 1, ..., J is the unique maximum likelihood estimator in M̄(m,FVr(p)). Similarly, we
have that TEl

m ∈ M̄(m,FEl
), l = 1, ..., S, because

m exp(v) =






m(i) exp(log(
∑

{lv=iv,rv=jv}∈El
n(lv = iv, rv = jv)/

∑
{lv=iv,rv=jv}∈El

m(lv = iv, rv = jv))),

i ∈ {(s1, s2, ..., s∆) ∈ I|slv = iv, srv
= jv, for some {lv = iv, rv = jv} ∈ El}

m(i) exp(0), otherwise.

= TEl
m.

Using this result, lemma B.1, and lemma B.2, we have that TEl
m is the uniquely

determined maximum likelihood estimator in M̄(m,FEl
). For Tb, |b| 6= 1, 2 the proof is
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the same given by Lauritzen (1996, p. 83).

(iii) consists of three results that have to be individually proved. In the first result
given in (iii), all the inequalities are direct consequence of (ii), because in each case we
have unique maximum likelihood estimators in different model spaces.

Fo the second result in (iii), suppose L(TVr(p)m) = L(m), r = 1, ..., T , p = 1, ..., J ,
then TVr(p)m = m because TVr(p)m is the unique maximum likelihood estimator in
M̄(m,FVr(p)) ((ii)). Then, the likelihood equations must be satisfied by m, that is∑

vr
k
∈Vr

n(vr
k = p) =

∑
vr

k
∈Vr

m(vr
k = p). If

∑
vr

k
∈Vr

n(vr
k = p) =

∑
vr

k
∈Vr

m(vr
k = p), then

m satisfies the likelihood equations, meaning that L is maximized in m, but as TVr(p)m
is the unique maximum likelihood estimator in M̄(m,FVr(p)), then L(TVr(p)m) = L(m).
Similarly, L(TEl

m) = L(m), l = 1, ..., S if and only if
∑

{lv=iv ,rv=jv}∈El
n(lv = iv, rv =

jv) =
∑

{lv=iv ,rv=jv}∈El
m(lv = iv, rv = jv) and L(Tbm) = L(m) if and only if n(ib) =

m(ib), ib ∈ Ib.

Finally, we prove the third and last result in (iii). If
∑

vr
k
∈Vr

n(vr
k = p) =∑

vr
k
∈Vr

m(vr
k = p), then m satisfies the likelihood equations so that m is a maximum

likelihood estimator, but since TVr(p)m is a unique maximum likelihood estimator then
TVr(p)m = m. If TVr(p)m = m then

∑
vr

k
∈Vr

n(vr
k = p) =

∑
vr

k
∈Vr

m(vr
k = p) because

TVr(p)m satisfies
∑

vr
j∈Vr

n(vr
j = l) =

∑
vr

j∈Vr
(TVr(p)m)(vr

j = l) (lemma B.1). The results

for the edges and for the elements b in the generating class, |b| 6= 1, 2, can be analo-
gously proved.

To prove (iv), let m ∈M∗∩M . As m ∈M∗ we have that if n(i) > 0 then m(i) > 0.
Suppose that n(i) > 0 and that for the vertex classes we take i ∈ {(i1, i2, ..., i∆) ∈

I|ivr
j

= p, for some vr
j ∈ Vr}. By definition TVr(p)m(i) = m(i)

∑
vr
j
∈Vr

n(vr
j =p)

∑
vr
j
∈Vr

m(vr
j =p)

, but if we

take
∑

vr
j∈Vr

m(vr
j = p) = 0, we have m(i) = 0, which contradicts that m(i) > 0, then

exists ǫ > 0 such that

TVr(p)m(i) = lim
ǫ→0

m(i)

∑
vr

j∈Vr
n(vr

j = p) + ǫ
∑

vr
j∈Vr

m(vr
j = p) + ǫ

.

m(i) > 0 and
∑

vr
j∈Vr

n(vr
j = p) > 0, the latter because at least n(i) > 0. This means

that if n(i) > 0 then (TVr(p)m)(i) > 0, so that (TVr(p)m)(i) ∈M∗. But (TVr(p)m)(i) ∈ M̄ ,
so that (TVr(p)m)(i) ∈M∗∩M̄ . This result is trivial for any other i, i /∈ {(i1, i2, ..., i∆) ∈
I|ivr

j
= p, for some vr

j ∈ Vr}. Then

TVr(p)(M
∗ ∩M) ⊆M∗ ∩ M̄.

The same can be done for the other two transformations. Denoting by T ∗ to any of
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the three type of transformations TVr(p), r = 1, ..., T , p = 1, ..., J ; TEl
, l = 1, ..., S; and

Tb, |b| 6= 1, 2, we have

T ∗(M∗ ∩M) ⊆M∗ ∩ M̄

As in Lauritzen (1996, p. 84), using that M∗ ∩ M̄ = {m ∈ M̄ |L(m) > 0}, that all
T ∗´s are continuous on M∗ (see (i)), and (iii) we have that

T ∗(M∗ ∩ M̄) ⊆M∗ ∩ M̄.

It is not always true that |n| =
∣∣TVr(p)m

∣∣, r = 1, ..., T , p = 1, ..., J or that |n| =
|TEl

m|, l = 1, ..., S. However, we can see from the vertex colouring equations that
|n| = |m̂|. This means that the estimators satisfy the appropriated restrictions due
to the multinomial sampling scheme (section 2.2). In graphical log-linear models it
is always true that the corresponding transformations Tb for any b in the generating
class A satisfy |n| = |Tbm| independently of the sampling scheme, which means in the
multinomial case that the transformed values satisfy the multinomial sampling scheme
restrictions.

As the proof for the convergence of the algorithm in the multinomial case requires
that the transformed values satisfy the multinomial sampling scheme restrictions, we
suppose that the sampling scheme is Poisson because in this case the corresponding
restriction, that the transformed expected frequencies are equal or more than zero, is
satisfied; however, for the multinomial case it seems that the convergence is also true
but we have still been unable to prove it.

The following theorem B.1 is analogous to theorem 4.13 given by Lauritzen (1996, p.
84); however, we additionally suppose a Poisson sampling scheme and that the starting
values m0 ∈ M∗ ∩ M̄ , and consider that the transformed expected frequencies on step
q are mq.

Theorem B.1. Under Poisson sampling scheme, for any starting value m0 ∈M∗ ∩ M̄
(for example m0 = 1) it holds that

m̂ = lim
q→∞

mq,

the maximum likelihood estimator.

Proof. As in theorem 4.13 given by Lauritzen (1996, p. 84), the proof is the direct ap-
plication of iterative proportional maximization, so that we need to satisfy the required
conditions.
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We assume that m0 ∈ M∗ ∩ M̄ similarly to what Lauritzen does (Lauritzen, 1989,
p. 24). Additionally, we define

Θ = {m ∈ M̄(q,H) | L(m) ≥ L(m0)}

Take m ∈ Θ. For simplicity, we denote all transformations, TVr(p)m, r = 1, ..., T ,
p = 1, ..., J , TEl

m, l = 1, ..., S, and Tbm, |b| 6= 1, 2, as T ∗m. All T ∗m are elements in
M̄(q,H) that maximize the likelihood ((ii) lemma B.3), then L(T ∗m) ≥ L(m) ≥ L(m0),
so that T ∗m ∈ Θ.

Take m0 ∈ M∗ ∩ M̄ , we know that M∗ ∩ M̄ = {m ∈ M̄ |L(m) > 0} (Lauritzen,
1996, p. 83), so that L(m0) > 0. If we take m ∈ Θ, then m ∈ M∗ ∩ M̄ because we
have an m ∈ M̄(q,H) such that L(m) ≥ L(m0) > 0. This means that Θ ⊆ M∗ ∩ M̄ .
Additionally, T ∗(M∗ ∩ M̄) ⊆ M∗ ∩ M̄ ((iv) in lemma B.3), then as all elements in Θ
are part of M∗ ∩ M̄ it should be satisfied that T ∗(Θ) ⊆ Θ. Then we have that all the
transformations T ∗ are continuous transformations from Θ to Θ.

According to (ii) in lemma B.3 the transformations for the vertex colouring, edge
colouring, and interactions of order different to one, maximize L over M̄(m,FVr(p)),
r = 1, ..., T , p = 1, ..., J , M̄(m,FEl

), l = 1, ..., S, and M̄(m,Fb), |b| 6= 1, 2, respectively;
in consequence they maximize L over the sections M̄(m,FVr(p))∩Θ, M̄(m,FEl

)∩Θ, and
M̄(m,Fb) ∩ Θ. Also we know by (iii) in lemma B.3 that L(T ∗m) > L(m) if m 6= T ∗m,
i.e. that T ∗m are the uniquely determined points where L is maximized over each
section.

We also know by lemma B.2 that the global maximum of L is uniquely determined in
M̄(q,H), which means that by maximizing all sections we are maximizing L in general.
Then, we can use iterative proportional maximization getting that

m̂ = lim
q→∞

mq,

where m̂ is the maximum likelihood estimator, the unique point where L attains its
maximum.
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