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Abstract

In the M -renaming task n + 1 processes start with unique input names taken from a large
space 1, . . . , N , and must choose unique output names taken from a smaller name space 1, . . . ,M ,
n < M < N . To rule out trivial solutions, a renaming protocol must be anonymous: The value
chosen by a process can depend on its input name and on the execution, but not on its specific
process id. In the weak symmetry breaking (WSB) task n + 1 processes start with unique input
names taken from a large space 1, . . . , N , and must choose binary output values, 0 or 1. It is
required that not all processes decide either 0 or 1. As for renaming, a WSB protocol must be
anonymous. Prior research has proved that WSB and 2n-renaming are equivalent tasks.

Various protocols that solve M -renaming for M ≥ 2n + 1 in the asynchronous wait-free
read/write shared memory model have been presented, where wait-free means that in every ex-
ecution, each non-faulty process decides an output value, regardless of delays and failures. Also,
several proofs of a lower bound stating that no such protocol exists when M < 2n + 1 have been
published. All these proofs use the topological approach to distributed computing; some of them are
based on algebraic topology and the others use a mixture of combinatorial and algebraic topology
techniques.

This thesis is a detailed study of the solvability of the WSB task in a wait-free setting, explaining
the relation between WSB and renaming. The study is done both from a combinatorial and
algebraic topology perspective. The more concrete combinatorial perspective allows readers with
no background in topology to understand the results, while the more abstract algebraic topology
perspective shows that this very powerful and mature mathematical branch, is a natural framework
to study WSB. Some of the results it contains are known, but this is the first time they are presented
in detail.

The first result of this thesis is that for some values of n, WSB is not solvable in the asynchronous
wait-free read/write shared memory model. The proof is fully combinatorial. Since WSB and 2n-
renaming are equivalent, this impossibility result gives the first, fully combinatorial renaming lower
bound proof stating that M -renaming is not wait-free solvable if M < 2n + 1. Also, the thesis
shows that, for the other values of n, WSB is indeed solvable, i.e., there exists a protocol that
solves WSB in the asynchronous wait-free read/write shared memory model. This result and the
equivalence between WSB and 2n-renaming imply that the previous renaming lower bound proofs
are incorrect.

More precisely, the main result in this thesis states that there exists a wait-free WSB protocol
for n+ 1 processes if and only if the integers in the set {

(
n+1
i+1

)
|0 ≤ i ≤ bn−1

2 c} are relatively prime.
For example, such a protocol exists for n = 5, 9, 11, 13, 14, and does not exist for the other values
smaller than 14.
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Chapter 1

Introduction

A distributed system consists of autonomous computational devices, called processes, that commu-
nicate with each other using a medium, usually by sending messages throughout a fully connected
network or by writing in and reading from a shared memory. The processes can be synchronous or
asynchronous. In the former, the processes execute in lock-step manner all steps of computation,
while in the latter there is no restriction on the relatively speed of processes. Moreover, the pro-
cesses are prone to fail. The failures range from simple crashes, where a faulty process does not
execute any more steps of computation, to Byzantine failures, where a faulty processes can exhibit
any behavior.

A distributed task, or simply task, is an input/output relation between collections of processes’
inputs and outputs. Roughly speaking, given an input configuration for the processes, the task
defines all valid output values. For example, in the consensus task each process proposes a value
and it is required that all non-faulty processes decide a unique value among all proposed values.
Therefore, if all processes propose the same value v then v must be elected as a decision by each
non-faulty process.

A breakthrough result in distributed computing was proved in 1983 (journal version [39]) by
Fischer, Lynch and Paterson. They showed that it is impossible to deterministically achieve con-
sensus in a completely asynchronous system in which just one process can fail, and even if the
failure is of the mildest form of just crashing. As mentioned by Attiya et al. [7] in 1987, due to
this, and stronger versions of this result [35], it became a widely held folk assumption that it is
impossible to solve any non-trivial task that requires coordination by processes, in an asynchronous
environment with failures. Today we know that there are infinitely many such tasks [18], but the
renaming task was hence proposed [7] and became the first example of a non-trivial task that could
be solved the presence of asynchrony and crash failures.

1.1 The Renaming Task

Let us suppose we want to design a protocol for autonomous airplane control (this example was
used by Nir Shavit in his Godel Prize presentation in 2004). There is a large number of airplanes
identified by their flight numbers, of which n + 1 are heading to pick distinct altitudes once they
are close to each other, as in Figure 1.1. How many altitudes are needed to solve this problem?
Obviously at least n+1, one for each airplane. In presence of reliable communication and synchrony,
n+ 1 altitudes are enough: the airplanes exchange their flight numbers, sort them locally, and the
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i-th altitude is assigned to the i-th flight number. However, in presence of failures and asynchrony,
an airplane cannot wait indefinitely to hear from the other airplanes. For this environment, consider
the following protocol for two airplanes, A and B. After A and B send to each other their flight
numbers, there are essentially three possible scenarios:

1. A does not hear about B (maybe because of delays) but B hears about A.

2. B does not hear about A but A hears about B.

3. A and B hear about each other.

The difficulty comes from the fact that in scenario 1, B does not know if A heard him or not;
namely, for B, the situation could be either 1 or 3. A symmetric situation occurs for A with
scenarios 2 and 3. The graph in Figure 1.2 represents these uncertainties.

Figure 1.1: Autonomous airplane control.

For the protocol, let us assume that whenever an airplane fails to hear about any other airplane
(either because of failures or because no other plane is approaching), it picks altitude 1. This
assumption can be made without loss of generality because the space of flight numbers is big, hence
for every protocol there exist two airplanes such that each one of them picks the same altitude when
it does not hear about the other. Thus, A and B pick altitude 1 in scenarios 1 and 2 respectively.
In scenario 3, B is aware that A may not have heard its flight number, and to avoid conflicts,
picks say, altitude 2. Then A has no choice but to pick altitude 3 in scenario 2, whenever it gets
B’s flight number. The previous protocol solves the airplane control problem using three distinct
altitudes for two airplanes, in an environment where it is possible to avoid a 4-th scenario: both A
and B participate but they don’t hear from each other. Such an environment is a shared memory
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where processes (instead of airplanes) communicate via read/write registers. In Figure 1.2, that
4-th scenario would be represented as an edge closing a cycle.

Can we solve the problem with two altitudes? The previous arguments show that the answer
is no, if the protocol consists of just one communication exchange. It is possible to show that the
answer is still no, no matter how many communication rounds are tried, because it is known since
1988 [17] (the conference version of [18]) that the uncertainty graph is always connected between
the two endpoints representing the situation where A and B do not hear from each other. In those
extremes, A and B still need to pick altitude 1, and again it would be impossible for them to pick
only altitudes 1 or 2 in the internal nodes, because an edge with equal decisions in its endpoints
would be unavoidable.

Considering the airplane control example, how many altitudes are needed in general for n + 1
airplanes? More formally, in the M -renaming task [8] n + 1 processes, p0, p1, . . . , pn, start with
unique input names taken from a large space 1, . . . , N , and must choose unique output names taken
from a smaller name space 1, . . . ,M , n < M < N . Clearly, renaming is trivial if process pi picks
output name i+ 1. To rule out trivial solutions, a protocol must be anonymous: the value chosen
by a process can depend on its input name and on the execution, but not on its specific process id.

A hears
himself

B hears
both

A hears
both

B hears
himself

picks 1 picks 2 picks 3 picks 1

Scenario 1 Scenario 3 Scenario 2

Figure 1.2: Uncertainty graph for 2 airplanes and one communication exchange.

The renaming task has been intensively studied since Attiya et al. proposed it in 1987 [7]
(conference version of [8]). An initial motivation was to explore the border between solvable and
unsolvable tasks in an asynchronous environment. However, it turns out that renaming is important
also for practical reasons, for example, the complexity of some protocols depends on the size of
the initial name space, and thus using renaming as a preprocessing stage, the complexity of those
protocols can be reduced.

Attiya et al. [8] presented a wait-free (2n+1)-renaming protocol in the asynchronous read/write
shared memory model with crash failures, where wait-free means that in every execution any
non-faulty process produces an output value, regardless of delays or failures by other processes.
Actually, this protocol was first presented in the message passing model and uses output name
space 1, 2, . . . , n + 1 + t, where t < (n + 1)/2 denotes the number of processes that may crash.
However, it can can be extended [16] to the asynchronous wait-free read/write shared memory
mode where t = n. Attiya et al. [8] also showed that there is no wait-free M -renaming protocol
for M ≤ n + 2. However, there was neither protocol nor proof of impossibility for the range
n + 2 < M < 2n + 1. Then, Herlihy and Shavit discovered [53] (conference version of [55]) a
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connection between distributed computing and topology and used it to achieve a lower bound
stating that no wait-free M -renaming protocol exists when M < 2n+1, i.e., the minimum number
of output names needed to solve renaming is equal to double of the number of processes minus one.

1.2 Distributed Computing and Topology

In 1993 Herlihy and Shavit [53] discovered a deep connection between distributed computing and
topology, and provided a new perspective on the area; see also Saks and Zaharoglou [70], Borowsky
and Gafni [19]. They showed that the executions of any wait-free protocol in the asynchronous
read/write shared memory model, can be represented by a complex, a topological object, that “has
no holes”. A complex is made of simplexes, and a simplex is a generalization of the notion of a line
or triangle for any dimension. In Figure 1.3 a 1-dimensional complex and a 2-dimensional complex
are depicted.

Figure 1.3: Two subdivided simplexes.

The executions of a wait-free protocol for two processes that start with a specific input con-
figuration (assignment of input values), can be represented by a 1-dimensional complex that is a
subdivided line. Each edge of the line is a simplex that corresponds to a set of executions that are
indistinguishable to the two processes (the local state of a process is the same at the end of any of
these executions). The two vertexes of the edge are labeled with the local states of the two pro-
cesses, respectively. A protocol that executes more steps, will induce a line with a finer subdivision
(more edges). The endpoints of the line correspond to executions where a process runs solo, namely,
it decides without seeing any value written in the shared memory by the other process. Therefore,
the graph in Figure 1.2 is the complex that represents the simple protocol described in Section 1.1.
Similarly, the executions of a protocol for three processes, are represented by a complex that is a
subdivided triangle, as in Figure 1.3. In general, an n-dimensional complex, which a subdivision
of an n-dimensional simplex, is used to represent the executions of a protocol for n + 1 processes
with an input configuration. Moreover, this subdivision is chromatic in a sense that the n + 1
vertexes of each of its n-simplexes, are labeled with the local states of the processes at the end of
the execution, respectively
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Herlihy and Shavit [55] presented the Asynchronous Computability Theorem and the Anony-
mous Computability Theorem that fully characterize the tasks that are wait-free solvable in the
asynchronous read/write shared memory model. Intuitively, the new insight to distributed com-
puting is that the solvability (or time complexity) of a task, has a topological nature, it depends on
whether there exists a complex (representing a protocol) that can be mapped into the task complex
(the topological representation of the task), respecting the task’s input/output specification.

1.3 The WSB Task

The renaming lower bound proof in [53] was the first of four lower bound proofs [14, 56, 53, 55],
all closely related and based on algebraic topology, stating that no wait-free M -renaming protocol
exists when M < 2n + 1. The second proof appeared in [56], where an algebraic methodology
is developed to obtain lower bounds for various tasks. The journal version [55] of [53] includes
the third one, and is based on the proof in [56]. The last proof appeared in [14]. That paper
aimed to provide a combinatorial version of the renaming lower bound that could be accessible to
a reader that is unfamiliar with algebraic topology. However, the crucial step of the proof relies on
an algebraic topology lemma in [56]. Thus, the question of a fully combinatorial renaming lower
bound proof was left open.

Intuitively, all these proofs rely on proving the following claim: any chromatic subdivision of an
n-dimensional simplex, with a binary coloring on its vertexes that is symmetric on the boundary,
have at least one monochromatic n-dimensional simplex, i.e., a simplex with the very same color at
its vertexes. For example, the reader can easily verify that, in dimension n = 1, a line subdivided
into an odd number of edges with the same binary color at its ends (its boundary), has at least one
monochromatic edge; in the subdivided line of Figure 1.3 there is exactly one monochromatic edge.
For dimension n = 2, any chromatic subdivision of a triangle with a symmetric binary coloring on
the boundary, contains at least one monochromatic triangle; the subdivided triangle in Figure 1.3
has three monochromatic triangles.

The existence of monochromatic simplexes is closely related to the renaming task. Consider a
protocol solving the M -renaming task, and the corresponding protocol complex. Each vertex of
this complex is labeled with the local state of a process at the end of an execution, hence it has an
associated output name. It was observed in [42, 55] that it is convenient to label each vertex of this
complex with the parity of its output name. The anonymity requirement for renaming implies that
these values induce a binary coloring that is symmetric on the boundary of the protocol complex.
Moreover, if M = 2n then no n-dimensional simplex can be monochromatic because there are
exactly n even and exactly n odd names within the range 1, . . . , 2n. This observation motivated to
define the weak symmetry breaking task.

In the weak symmetry breaking (WSB) task [42] (called reduced renaming in [55]), n+1 processes,
p0, p1, . . . , pn, start with unique input names taken from a large space 1, . . . , N , and must choose
binary output values, 0 or 1. It is required that not all processes decide either 0 or 1. Obviously,
WSB is trivial if process pi picks 0 if i is even, and 1 if i is odd. Thus, as for renaming, a WSB
protocol must be anonymous. The WSB task is a “weak” version of the strong symmetry breaking
(SSB) task [19] (called (n+ 1, n)-set-test-and-set in [19]), in which it is required that that in every
execution at least one process decides 0, in addition to the requirement that not all processes decide
either 0 or 1.
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Similarly as how it is showed in Section 1.1 that two processes cannot solve renaming with 2
output names, it can be showed that two processes cannot solve WSB. Consider first a protocol
in which the processes execute just one round of communication. One can assume, without loss of
generality, that if a process runs solo, it picks 0. Thus, in Figure 1.2, A and B pick 0 in scenarios 1
and 2, respectively. In scenario 3, B has no choice but to pick 1. Now A in scenario 3 cannot make
a good decision: if it decides 0, there is conflict in scenario 2, and if it decides 1, there is a conflict
in scenario 3. Therefore, A and B cannot solve WSB in one round of communication. Moreover,
no matter how many rounds of communications they do, the protocol complex always is connected,
hence a monochromatic edge is unavoidable.

WSB and M -renaming are closely related for the specific value M = 2n, namely, a 2n-renaming
protocol gives a solution for WSB: since the range 1, . . . , 2n has exactly n even names and exactly
n odd names, each process can decide the parity of the output name received from a 2n-renaming
protocol. Moreover, the other direction is true, i.e., a WSB protocol gives a solution for 2n-
renaming. Generally speaking, using a WSB protocol, the processes can be partitioned into two
disjoint groups, S0 and S1, each one of size at most n, as not all processes receive the same output
value from WSB. It turns out that these two groups can independently solve renaming into two
disjoint output name spaces of size 2|S0| − 1 and 2|S1| − 1, respectively, giving a final output name
space of size 2n, since |S0| + |S1| = n + 1. Therefore, the WSB and 2n-renaming are equivalent
tasks [42].

1.4 Contributions

This thesis is a detailed study of the solvability of the WSB task in a wait-free setting, explaining
the relation between WSB and renaming. The study is done both from a combinatorial and
algebraic topology perspective. The more concrete combinatorial perspective allows readers with
no background in topology to understand the results, while the more abstract algebraic topology
perspective shows that this very powerful and mature mathematical branch, is a natural framework
to study WSB. Some of the results it contains are known, but this is the first time they are presented
in detail. From a combinatorial topology view, the major contributions are the following two results:

1. For certain non-exceptional values of n, any chromatic subdivision of an n-dimensional sim-
plex, with a symmetric binary coloring, contains at least one monochromatic n-dimensional
simplex, where exceptional means that the integers in the set {

(
n+1
i+1

)
|0 ≤ i ≤ bn−1

2 c} are
relatively prime.

2. For the other exceptional values of n, there exists chromatic subdivisions of n-dimensional
simplexes, with a symmetric binary coloring and no monochromatic n-dimensional simplexes.

As Section 1.3 explains, if any chromatic subdivision of an n-dimensional simplex with a sym-
metric binary coloring contains at least one monochromatic n-dimensional simplex, then no protocol
can solve the WSB task. Therefore, result 1 implies that if n is non-exceptional, there is no wait-
free WSB protocol, hence there is no wait-free M -renaming protocol for M < 2n + 1, as WSB
is equivalent to 2n-renaming. This is the first, fully combinatorial renaming lower bound proof,
closing the open question left in [14] (except that the lower bound applies only to non-exceptional
values of n).

6



Result 2 states that if n is exceptional, there exist chromatic subdivided simplexes with a sym-
metric binary coloring and no monochromatic n-dimensional simplexes. The smallest exceptional
value is n = 5 (6 processes). An implication of this result is that, while the previous renaming lower
bound proofs are correct in dimensions 1 and 2 (as in Figure 1.3), dimension 3 (a subdivided tetra-
hedron), and dimension 4, they are incorrect in dimension 5. These subdivisions for exceptional n,
and the Anonymous Computability Theorem [55], or the Simplex Convergence algorithmic version
[21], imply that there exists a wait-free protocol that solves WSB, and thus there exists a wait-free
2n-renaming protocol, for exceptional n.

More precisely, the main result in this thesis states that there exists a wait-free WSB protocol
for n + 1 processes if and only if n is exceptional. For example, such a protocol exists for n =
5, 9, 11, 13, 14, and does not exist for the other values smaller than 14.

Also, this thesis studies the relation of results 1 and 2 with classic topics in algebraic topology.
More precisely, it shows the relation of these results with equivariant maps between chain complexes.
Intuitively, a chain complex is an algebraic structure associated with a complex, and an equivariant
map is a map that holds certain properties of symmetry. From an algebraic perspective, the
solvability of WSB depends on whether there exists an equivariant map from the chain complex of
an n-simplex, representing the initial state of the system, to the chain complex that represents the
valid outputs for WSB.

A preliminary version of these results was presented in the 27th Annual ACM Symposium on
Principles of Distributed Computing (PODC) 2008 [27]. That paper won the best paper student
award. The journal version of the impossibility of WSB for non-exceptional n, appears in [28], by
invitation as one of the best papers in PODC 2008. The journal version of the WSB protocol for
exceptional n, has been submitted for publication. A preliminary version is in [29].

1.5 Organization

Chapter 2 presents a detailed description of the model of computation, the definition of renaming
and WSB, and the equivalence between WSB and 2n-renaming. Chapter 3 shows how the topolog-
ical approach to distributed computing can be used to reduce the question of solvability of WSB,
to a topological question. Chapter 4 presents the main combinatorial tools used in proving two
theorems that give the impossibility and possibility results for WSB, both described in Chapters
5 and 6, respectively. Chapter 7 shows where the mistake is in previous renaming lower bounds
proofs, and presents the relation of the combinatorial topology results in Chapters 5 and 6, with
algebraic topology. There is a large amount of previous work related to renaming and WSB. Chap-
ter 8 presents a panoramic view of most of this work. The aim of this chapter is to give a more
concrete idea about the area to the reader. Conclusions and future work appear in Chapter 9.
Some proofs appear in Appendixes A and B.
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Chapter 2

Model of Computation, Renaming
and WSB

This chapter presents the model of computation used in the rest of this thesis, the usual asyn-
chronous wait-free read/write shared memory model. See textbooks [9, 59] for more details about
the model. Also it presents the formal definition of renaming and WSB, and proves that WSB
and 2n-renaming are equivalent tasks. In addition, it shows that any protocol that solves either
WSB or renaming, can be transformed into a comparison-based protocol that solves the same task.
Generally speaking, a comparison-based protocol is restricted to use only comparison operations.
Finally, the chapter shows that the comparison-based result is related with the well known Ramsey’s
Theorem.

2.1 Model of Computation

System and Executions. A system consists of n+ 1 asynchronous processes with distinct id’s
in IDn = {0, . . . , n}. A process is a deterministic state machine with a set of local states S and
two subsets of S called initial states and output states, respectively. The processes communicate
by using a shared memory with a finite number of single-writer multi-reader atomic registers. No
assumption is made regarding the size of the registers, thus we can assume that process with id
i has a single register labeled i to which it can write its entire state. The process with id i has
two atomic operations available to it: writei(v) that writes the value v into the register labeled
i, and readi(j) that returns the current value in the register labeled j. A step is performed by
a single process, which executes one of its two available operations, read or write, performs some
local computation and then changes its local state.

A configuration of the system consists of the local states of the processes and the content of the
registers. For a configuration C, let statei(C) denote the local state of process with id i in C. An
initial configuration is a configuration in which all local states are initial states and all registers
are set to ⊥, a special value that cannot be written by any process. An output configuration is a
configuration in which all local states are output states.

An execution of the system is a, possibly infinite, alternating sequence of configurations and
steps α = C0, s0, C1, s1, C2, . . ., where C0 is an initial configuration and Ck+1 is the result of applying
the step sk to Ck, for k ≥ 0. The schedule of α is the sequence of steps s0, s1, . . .. The view of a
process with id i in α, denoted α|i, is the sequence of local states statei(C0), statei(C1), . . .. The
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participating set of an execution is the set of processes that take at least one step in the execution.
Two executions are indistinguishable for a set of processes if all processes in the set have the same
view in both executions.

Protocols and Tasks. The state machine of a process p with id i, models a local protocol Pi

that determines p’s next step. All local protocols are identical, i.e., processes have identical state
machines which do not depend on a specific id. If the behavior of a local protocol has to depend
on its id, it must be encoded as part of the input. A protocol is a collection P of local protocols
P0, . . . ,Pn.

Each process has two distinguished components, input and output, that allow the system to
model decision tasks. The initial states differ only in the value of the input component, and the
input component never changes. The output component contains initially ⊥, and once a process
reaches a local state in which a non-⊥ value is written in it, the output component never changes.
When that happens, we say that the process has decided. The output states are the states with
non-⊥ output values.

A view of a process p in a finite execution α is final, if there is a configuration in α in which p
decides. Notice that the output of p is not ⊥ in any extension of α, since the output component
cannot be over-written. A final view of p in α is minimal if none of its prefixes is final. In other
words, the minimal final view of p in α is the prefix of the view of p up to the first configuration in
which p decides. A finite execution α is final (minimal final) if the view of each process is a final
(minimal final) view.

A task 4 has a domain I of input values and a domain O of output values, and 4 specifies the
outputs values that the processes can decide, for each input assignment to the processes.

A protocol solves a task 4 if any finite execution α can be extended to an execution α′ in which
all processes decide valid output values specified by 4. That is, the outputs in α can be extended
to outputs for all processes that are valid for the inputs in α.

In a given execution, a process is faulty if it performs a finite number of events and it has not
decided. A protocol is t-resilient if it tolerates t or fewer failures, i.e., in any execution in which at
most t processes fail, the non-faulty processes decide an output value. Only wait-free protocols are
considered, namely t = n. That is, in every execution, each non-faulty process decides an output
value, regardless of delays or failures.

A protocol is full-information if every process “remembers everything” and writes “everything
it knows”. Formally, it writes its entire local state each time it executes a write operation. We
say that a protocol is in standard-form if processes proceed in a sequence of rounds. In a round,
each process first executes a write operation and then reads all registers, in some fixed order.
Since efficiency is not an issue for this thesis, only full-information and standard-form protocols are
considered.

For a full-information and standard-form protocol, the local state of a process p can be rep-
resented as nested arrays: the initial state of p is its input, and later states have the form
(reg0, . . . , regn), where regi, 0 ≤ i ≤ n, is the value p reads from the register labeled i. Therefore,
for a full-information and standard-form protocol, the only interesting state transition is if a process
decides a value and what value.

Anonymous and Comparison-Based Protocols. A protocol is anonymous if the following
holds. Let E1 be any execution of the protocol and π be any permutation of IDn. Then the
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execution E2 obtained by replacing id x of each step, by π(x), is an execution of the protocol.
Therefore, if x decides z in E1 then π(x) decides z in E2. In other words, the output of a process
does not depend on its id, it only depends on its input and on the execution. The rest of this thesis
focuses on anonymous protocols.

A protocol is comparison-based if for any execution E1 with inputs i0 < . . . < ik to the partici-
pating processes, and any valid inputs j0 < . . . < jk, the execution E2 obtained by replacing each
occurrence of i` of each local state by j`, 1 ≤ ` ≤ k, is an execution of the protocol. Therefore,
processes with inputs i` and j` in E1 and E2, respectively, decide the same output. One can think
a comparison-based protocol as a protocol in which processes can only use comparison operations
(<,=, >). Observe that a comparison-based protocol is not necessarily anonymous.

Immediate Snapshot Executions. The immediate snapshot executions (ISE) is a subset of all
possible executions in the asynchronous wait-free read/write shared memory model. The executions
in ISE have a structure that makes easy to analyze them. In addition, ISE captures the power of the
model of computation. In Chapter 3 this subset of executions will be used to achieve a solvability
condition for WSB.

Formally, an immediate snapshot (IS) [19, 20, 70] execution consists of a sequence of rounds. The
i-th round is specified by a non-empty set of processes which denotes the processes active in round i.
Active processes first perform, one by one, a write operation, and then read all registers. Intuitively,
each round consists of a concurrent write by every active process, followed by a concurrent atomic
snapshot of the shared memory.

For example, Figure 2.1 shows two IS executions in which each process is active in exactly one
round. Notice that the views of p1 and p2 are the same in both execution. Moreover, p0 is the
unique process that distinguishes between α1 and α2: in α1, p0 is not aware that p2 participates in
the execution, while in α2 it reads from the memory what p1 and p2 have written.

Round : 1 2 3
p0 : wr
p1 : wr
p2 : wr

Round : 1 2 3
p0 : wr
p1 : wr
p2 : wr

α1 α2

Figure 2.1: Two IS executions.

It is clear that if a protocol that solves a task, solves the same task in the subset ISE. In [20, 22]
it is proved that ISE can be wait-free simulated in the asynchronous read/write shared memory
model, hence any protocol that solves a task in ISE, wait-free solves the same task in the whole set
of executions.

Theorem 2.1.1 There exists a wait-free protocol that solves a task ∆ if and only if there exists a
wait-free protocol that solves ∆ in ISE.
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2.2 Renaming and WSB

In the M -renaming task [8] the processes start with unique input names taken from a large input
space 1, . . . , N , N ≥ n + 1, and must choose unique output names taken from a smaller output
space 1, . . . ,M , n+ 1 ≤M < N . As only anonymous protocols are considered, the trivial solution
in which process with id i picks output name i, is not allowed.

In the weak symmetry breaking (WSB) task [42] the processes start with unique inputs taken
from a large input space 1, . . . , N , N ≥ n+ 1, and the output values are 0 or 1. It is required that
in every execution in which all processes decide, at least one process decides 1 and at least one
process decides 0. As for renaming, since only anonymous protocols are considered, trivial solutions
such as the one in which processes with even id decide 0 and processes with odd id decide 1, is not
allowed.

Attiya et al. present in [7] a comparison-based wait-free protocol, ABDPR, that solves (2n+1)-
renaming in the asynchronous read/write shared memory model. The input name space of ABDPR
is 1, . . . , N , for any N ≥ n + 1. In what follows, ABDPR is used as a building block for proving
various results, however any comparison-based (2n + 1)-renaming protocol can be used (see for
example [20, 48]).

Lemma 2.2.1 The following two sentences hold:

• There exists an anonymous wait-free WSB protocol on input space 1, . . . , 2n + 1 if and only
if there exists an anonymous wait-free WSB protocol on input space 1, . . . , N , N > 2n+ 1.

• There exists an anonymous wait-free M -renaming protocol on input space 1, . . . , 2n+1 if and
only if there exists an anonymous wait-free M -renaming protocol on input space 1, . . . , N ,
N > 2n+ 1.

Proof: Consider an anonymous wait-free WSB protocol P on input space 1, . . . , 2n + 1. Using
ABDPR, we can get an anonymous wait-free WSB protocol P ′ on input space 1, . . . , N , N > 2n+1:
each process first calls ABDPR with its input name as input, then invokes P using as input the
name it receives from ABDPR, and finally outputs the name it receives from P. The other direction
holds trivially.

The proof for M -renaming is the same.

�

Therefore, we can assume that the input name space 1, 2, . . . , 2n+ 1 is fixed for both renaming
and WSB. This assumption helps for proving the equivalence between WSB and 2n-renaming.

Intuitively, two tasks are equivalent if a solution for one of them can be used to implement
the other one, and vice versa. More formally, a task A implements a task B if there is a wait-free
protocol that solves B in the asynchronous read/write shared memory model that is enriched with
objects that solve A. An object obj that solves a task A provides a single method choose. Each
process invokes choose at most once, with an input value, and choose returns an output value.
Object obj guarantees that if the collection of input values belong to the domain of input values
of A, the collection of output values returned by choose is allowed by A. We say A and B are
equivalent If A implements B and B implements A.

Gafni et al. prove in [42] that WSB and 2n-renaming are equivalent. Figure 2.2 contains an
implementation of WSB using a 2n-renaming object. Each process calls choose of the renaming
object, R, with its input name as input, and decides the parity of the name received by R.
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Renaming R = new Renaming() %2n-renaming object%

WSBi(inNamei)
outNamei ← R.choose(inNamei)
decide outNamei mod 2

Figure 2.2: From 2n-renaming to WSB [42].

Lemma 2.2.2 2n-renaming implements WSB.

Proof: Since WSB and renaming has input space 1, . . . , 2n + 1, the inputs for R are valid. Also,
observe that the range 1, 2, . . . , 2n has exactly n even and n odd values, and hence in every execution
in which all n+1 processes participate, at least one process decides 1 and at least one process decides
0. The protocol is anonymous and wait-free because R is anonymous and wait-free.

�

Figure 2.3 presents an implementation of 2n-renaming using a WSB object. The protocol also
uses two instances, R0 and R1, of the comparison-based protocol ABDPR [7] that solves (2n+ 1)-
renaming. ABDPR also has the feature that it is size-adaptive: the output name space depends on
the number of processes that actually participate in a given execution and not on the total number
of processes of the system. The output space for ABDPR is 1, . . . , 2p − 1, where p ≤ n + 1 is
the actual number of processes that participate (Section 8.1.1 contains a more detailed description
of this protocol). In the implementation in Figure 2.3, each process first calls the WSB object to
decide a group, either 0 or 1. Then each process in group 0 chooses an output name by calling R0,
and each process in group 1 uses R1 to get an intermediate name and chooses an output name by
subtracting that intermediate name from 2(n+ 1).

WSB wsb = new WSB() %WSB object%
Renaming R0 = new Renaming() %size-adaptive (2p− 1)-renaming object [7]%
Renaming R1 = new Renaming() %size-adaptive (2p− 1)-renaming object [7]%

2n-renamingi(inNamei)
sidei ← wsb.choose(inNamei)
if sidei = 0 then

decide R0.choose(inNamei)
else

decide (2n+ 1)−R1.choose(inNamei)

Figure 2.3: From WSB to 2n-renaming [42].

Lemma 2.2.3 WSB implements 2n-renaming.

Proof: The inputs for wsb, R0 and R1 are valid because WSB and renaming has input space
1, . . . , 2n + 1, and the input space for ABDPR is 1, . . . , N , N ≥ n + 1. Now, we have that not
all processes get 0 and not all get 1 from object wsb. The p processes that get 0, 0 < p < n + 1,
choose output names in 1, . . . , 2p− 1 by calling R0. The other n+ 1− p processes use R1 to get an
intermediate name in 1, . . . , 2(n+1−p)−1 and then pick a name in (2n+1)− (2(n+1−p)−1) =
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2p, . . . , (2n + 1) − 1 = 2n. Since wsb, R1 and R2 are anonymous and wait-free, the protocol is
anonymous and wait-free.

�

Lemmas 2.2.2 and 2.2.3 imply the equivalence between WSB and 2n-renaming:

Theorem 2.2.4 WSB and 2n-renaming are equivalent.

The fact that ABDPR is comparison-based implies that any WSB (M -renaming) protocol can
be used to obtain a comparison-based WSB (M -renaming) protocol. This result will be useful in
achieving a topological solvability condition for WSB, in Chapter 3. Figure 2.4 shows a comparison-
based WSB protocol that uses ABDPR and an object that solves WSB. Each process gets an
intermediate name by calling an ABDPR implementation, using its input name as input, and then
uses that intermediate name as input for the WSB object. This transformation uses the same
idea as the one used in [54] for proving that any 2n-renaming protocol can be transformed into a
comparison-based 2n-renaming protocol.

WSB wsb = new WSB() %WSB object%
Renaming R = new Renaming() %comparison-based (2n+ 1)-renaming object [7]%

CB WSBi(inNamei)
outNamei ← R.choose(inNamei)
deci ← wsb.choose(outNamei)
decide deci

Figure 2.4: From WSB to comparison-based WSB.

Lemma 2.2.5 The following two sentences hold:

• There exists an anonymous wait-free WSB protocol if and only if there exists an anonymous
wait-free comparison-based WSB protocol.

• There exists an anonymous wait-free M -renaming protocol if and only if there exists an anony-
mous wait-free comparison-based M -renaming protocol.

Proof: Consider the protocol in Figure 2.4. The protocol is anonymous and wait-free because R
and wsb are anonymous and wait-free. Let E1 be an execution with inputs i0 < . . . < ik to the
participating processes, and j0 < . . . < jk be valid inputs. Consider the execution E2 obtained by
replacing each occurrence of i` by j`, 0 ≤ ` ≤ k. Since R is comparison-based, for each participating
process, the value of namei is the same in E1 and E2, hence deci is the same in both executions
because wsb is anonymous. The other direction holds trivially.

The proof for M -renaming is the same.

�

Theorem 2.2.4 and Lemma 2.2.5 give the following theorem that summarizes the results of this
section.
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Theorem 2.2.6 Any of the following anonymous wait-free protocols can be transformed into any
other protocol in the list:

• WSB protocol.

• comparison-based WSB protocol.

• 2n-renaming protocol.

• comparison-based 2n-renaming protocol.

As we shall see, Chapter 5 proves that, for some values of n, there is no wait-free comparison-
based protocol that solves WSB on input space 1, . . . , 2n+1. This result, Lemma 2.2.1 and Theorem
2.2.6 imply that, for that values of n, neither there is a wait-free protocol (comparison-based or
not) that solves either WSB or 2n-renaming on input space 1, . . . , N , N ≥ 2n+ 1.

2.3 Comparison-Based Protocols and Ramsey’s Theorem

Lemma 2.2.5 says that given a protocol that solves WSB (M -renaming) on the input space 1, . . . , 2n+
1, one can construct a comparison-based protocol that solves WSB (M -renaming) on the same input
space; and Lemma 2.2.1 implies that the same holds for the input space 1, . . . , N , with N > 2n+1.
This section proves that if N is large enough, any bounded wait-free WSB (M -renaming) protocol
on input space 1, . . . , N , behaves as a comparison-based protocol for an `-subset of inputs, for any
` ≥ n+ 1, where bounded wait-free means that in every execution each non-faulty process executes
a number of steps bounded some fix number before deciding. Ramsey’s theorem is used for proving
this result.

Subsequent chapters do not use this result, however, it is presented to show the relation of
comparison-based protocols with Ramsey’s theorem because these ideas have been used before
[9, 13, 38]. We will use the following version of Ramsey’s theorem [49].

Theorem 2.3.1 (Ramsey’s theorem) For all integers k, ` and t, there exists an integer f(k, `, t)
such that for every set S of size at least f(k, `, t), and every t-coloring of the k-subsets of S, some
`-subset of S has all its k-subsets with the same color.

Consider a wait-free protocol P that solves either WSB or M -renaming on input space 1, . . . , N ,
and let S be a set of inputs of size at least n+ 1. We say that P is comparison-based for S if P is
comparison-based in all executions in which the inputs are taken from S. The proof of the following
lemma uses ideas of [9, 13, 38].

Theorem 2.3.2 Let P be an anonymous bounded wait-free protocol that solves either WSB or M -
renaming on input space 1, . . . , N , for any N ≥ n+ 1. Then, for every ` ≥ n+ 1, there exists a set
of inputs of size ` such that P is comparison-based for it.

Proof: Consider an (n+ 1)-set X of N. Let xj , 0 ≤ j ≤ n, denote the element of X such that it is
greater than exactly j elements of X. Let Q be the set of all (n+ 1)-sets of N. For X,Y ∈ Q, we
say that X → Y if for any execution E1 of P in which participating processes have inputs in X,
the execution E2 obtained by replacing each occurrence of xj of each local state by yj , 0 ≤ j ≤ n,
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is an execution of P (recall that we assume P is full-information and standard-form, see Section
2.1).

We define the relation ∼ over the set Q as follows: For X,Y ∈ Q, we have that X ∼ Y if
X → Y and Y → X. In other words, P behaves as a comparison-based protocol when the inputs
are drawn from either X or Y . The relation ∼ is an equivalence relation. First, it is reflexive:
We have X ∼ X because for any execution E1 with inputs in X, we obtain E1 by replacing each
occurrence of xj by itself. Second, it is symmetric: If X ∼ Y then X → Y and Y → X, thus
Y ∼ X. And third, it is transitive: If X ∼ Y and Y ∼ Z, then X → Y and Y → Z, hence for any
execution E1 with inputs in X, the execution E2 obtained by replacing xj by zj of Z, 0 ≤ j ≤ n, is
an execution of P, thus X → Z; similarly we can see that Z → Y and Y → X imply that Z → X,
and hence X ∼ Z.

Now, since P is bounded wait-free, there exists r ∈ N such that in every execution, no matter
the inputs to the processes, each non-faulty process decides in at most r steps. Also, for each
execution there is a finite number of combinations of outputs assignments because the number of
output values is finite. Therefore, all (n+ 1)-subsets of inputs are partitioned into a finite number
of equivalence classes.

Let t be the number of equivalence classes induced by ∼, and ` be an integer greater or equal
than n+ 1. By Ramsey’s theorem, there exists an integer f(n+ 1, `, t) such that for every set S of
size f(n+1, `, t), and every t-coloring of the (n+1)-subsets of S, a `-subset of S has all its (n+1)-
subsets with the same color. Therefore, there is a `-subset S′ of the input space 1, . . . , f(n+ 1, `, t)
such that all its (n+1)-subsets are in the same equivalence class. By construction of the equivalence
classes, P is comparison-based for S′.

�

With ` = 2n+1, Theorem 2.3.2 says that for any bounded wait-free protocol P that solves WSB
on input space 1, . . . , N , for any N ≥ n+ 1, P is comparison-based for a (2n+ 1)-set S of inputs.
Using S and the function rk : {1, . . . , 2n+ 1} → S such that rk(x) < rk(y) if and only if x < y, we
can construct a wait-free comparison-based protocol that solves WSB on input space 1, . . . , 2n+1:
each process with input in invokes P with input rk(in) and outputs the value it receives from P.
This implies that P cannot exist for some values of n, since, as mentioned at the end of Section
2.2, Chapter 5 proves that, for some values of n, there is no wait-free comparison-based protocol
that solves WSB on input space 1, . . . , 2n + 1. Observe that this implication is weaker than the
one derived in Section 2.2.
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Chapter 3

A Topological Solvability Condition
for WSB

Herlihy and Shavit [55], Saks and Zaharoglou [70] and Borowsky and Gafni [19] discovered a deep
connection between distributed computing and topology, and provided a new perspective on the
area. Intuitively, the idea is that for each protocol P for n + 1 processes, its executions starting
with a given input configuration can be represented as an n-dimensional complex K with a set of
properties S, which is dependent on the model of computation and on the task T that P solves.
In the asynchronous wait-free read/write shared memory model, K always is a subdivision of an
n-dimensional simplex that represents the initial state of the processes. Surprisingly, Herlihy and
Shavit proved that the other direction is true, namely, for each n-dimensional subdivision K with
properties S, there is a wait-free protocol P for n+ 1 processes that solves T in the asynchronous
read/write shared memory model.

This chapter uses this powerful approach to achieve a necessary and sufficient topological solv-
ability condition for WSB. That is, it presents the set S of properties that must be satisfied by the
complex K associated to a WSB protocol. Subsequent chapters use this condition to prove that
WSB is not wait-free solvable for some values of n, while it is for the other values of n. The chapter
closely follows the combinatorial framework developed in [14].

3.1 Combinatorial Topology Preliminaries

This section presents some basic definitions such as simplexes and complexes, and then presents
the definition of divided image which will be useful in achieving solvability conditions for WSB.

3.1.1 Complexes, Subdivisions and Orientability

Simplexes and complexes are the main tools used here. Roughly speaking, a simplex is a general-
ization of the notion of a line or triangle for any dimensions, and a complex is made of simplexes
that are “appropriately” glued. For example, Figure 3.1 shows two complexes of dimension 2.

Geometric Simplexes and Complexes. Let v0, v1, . . . , vn be points in a Euclidean space. The
hyperplane spanned by these points consists of all linear combinations

∑n
i=0 λivi, where each λi ∈ R

and
∑k

i=0 λi = 1. The points are in general position if any subset of them span a strictly smaller
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hyperplane. Given n+1 points v0, v1, . . . , vn in general position, the smallest convex set containing
them is called an n-dimensional geometric simplex, or n-geometric simplex, i.e., all points that can
be written as a linear combination

∑n
i=0 λivi, where λi ∈ R, λi ≥ 0 and

∑n
i=0 λi = 1. The points

v0, v1, . . . , vn are the vertexes of the simplex. For example, a 0-simplex is a point, a 1-simplex is a
line segment and a 2-simplex is a triangle. Any simplex spanned by a subset of v0, v1, . . . , vn is a
face of the geometric simplex spanned by v0, v1, . . . , vn.

A geometric complex 4 is a collection of geometric simplexes in some Euclidean space such that
every face of every simplex of 4 is also a simplex of 4, and the intersection of any two simplexes
of 4 is also a simplex of 4.

Figure 3.1: Two complexes of dimension 2.

Abstract Simplexes and Complexes. An abstract simplex, or just simplex, σ is a finite set.
The elements of a simplex are its vertexes. The dimension of a simplex σ, dim(σ), is the number
of its vertexes minus 1. If the dimension of σ is n, then we say σ is an n-simplex and is denoted
by σn. If σ = ∅, we say it is the empty simplex. Sometimes a 0-simplex {v} is just denoted by v.
A simplex τ is a face, or dim(τ)-face, of σ if τ is a subset of σ. If τ is not equal to σ then τ is a
proper face of σ. Notice that the number of i-faces of an n-simplex, i ≤ n, is

(
n+1
i+1

)
.

An abstract complex, or just complex, K is a set of simplexes closed under containment. The
dimension of a complex K is the maximum dimension of its simplexes. A complex K of dimension
n is called an n-complex and is denoted by Kn. The vertexes of a complex K, denoted V(K), is
the set consisting of the union of all its 0-simplexes. A complex L is a subcomplex of a complex K
if L ⊆ K. Consider a complex K and one of its vertexes v. The star complex of v in K, denoted
st(v,K), is the complex consisting of all simplexes of K containing v. For an n-simplex σ, letM(σ)
be the complex consisting of σ and all its faces.

The i-graph of a complex has a node for each i-simplex of the complex, and an edge between
two vertexes if they share an (i− 1)-face. A complex is i-connected1 if its i-graph is connected, or
it consists of a single vertex if i = 0. An n-complex is connected if it is n-connected. An i-path of a
complex is a path in its i-graph, namely, a sequence of i-simplexes such that every two consecutive
i-simplexes share an (i − 1)-face. The length of an i-path P , denoted |P |, is the number of its
i-simplexes.

1This definition is not equivalent to the usual definition of i-connected (see for example [64]). Intuitively, the
usual definition of i-connected means that the complex does not have “holes” of dimension less or equal than i (the
homology group of dimension k ≤ i is trivial).
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An n-complex K is i-complete, i ≤ n, if each of its j-simplex, j ≤ i, is a face of at least one of
its i-simplexes. Let Kn be an n-complete complex. If an (n− 1)-simplex of Kn is a face of exactly
one of its n-simplexes, then we call such a simplex external, otherwise internal. The boundary of
Kn, bd(Kn), is the subcomplex induced by the external simplexes of Kn, and all their faces. We
say that Kn is an n-pseudomanifold if each of its (n − 1)-simplex is contained in either one or
two n-simplexes. The complex at the left in Figure 3.1 is not a pseudomanifold because one of its
1-simplexes is contained in three 2-simplexes; the complex at the right is a pseudomanifold.

Colorings and Simplicial Maps. A coloring of a complex K is a function from V(K) to a set of
colors. The set IDn = {0, . . . , n} is often used as colors. A binary coloring of K is a coloring with
colors {0, 1}. A coloring of a simplex is proper if it gives different values to different vertexes. If a
coloring of a simplex gives the same value b to every vertex, we say the simplex is b-monochromatic
or just monochromatic. An n-complex is chromatic if it has a coloring that uses n + 1 colors and
each one of its simplexes is properly colored. Subsequent sections often consider complexes with
more than one coloring at its vertexes.

Let K and L be complexes and δ be a function from V(K) to V(L). We say that δ is simplicial
if for every simplex σ = {v0, . . . , vn} of K, the set τ = {δ(v0), . . . , δ(vn)} is a simplex of L, possibly
with dim(τ) < dim(σ). Sometimes it is convenient to extend δ to simplexes: a simplex σ ∈ K is
mapped to a simplex δ(σ) ∈ L. Hence δ can also be extended to subcomplexes. A simplicial map
δ between two colored complexes is color-preserving if for every vertex v, δ(v) has the same color
as v. Frequently, for a simplicial map δ, we write δ : K → L instead of δ : V(K)→ V(L).

v0

v1v2

Figure 3.2: An oriented and properly colored simplex.

Orientability. Let σn = {v0, v1, . . . , vn} be a simplex. An orientation of σn is a set consisting of a
sequence of its vertexes and all even permutations of it. If n > 0, these sets fall into two equivalence
classes, the sequence 〈v0, v1, . . . , vn〉 and all its even permutations, and the sequence 〈v1, v0, . . . , vn〉
and all its even permutations. For example, the two possible orientations of a 2-simplex are the
clockwise and the counterclockwise directions. An orientation of σn, n > 0, induces an orientation
on all of its (n − 1)-faces: if σn is oriented 〈v0, v1, . . . , vn〉 then its face, τ , without vertex vi, gets
the orientation 〈v0, v1, . . . v̂i . . . , vn〉 if i is even, where circumflex (̂) denotes omission; otherwise
τ gets the orientation 〈v1, v0, . . . v̂i . . . , vn〉. Figure 3.2 contains an oriented 2-simplex and the
induced orientation of its 1-faces. For a simplex σn with a proper coloring id with colors IDn,
d = +1 denotes the positive orientation containing the sequence 〈0, 1, . . . , n〉, i.e., the sequence
〈v0, v1, . . . , vn〉 of σn such that id(vi) = i, 0 ≤ i ≤ n, and d = −1 denotes the negative orientation.
If σn has orientation d, its (n− 1)-face without color i gets the induced orientation (−1)id.
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A pseudomanifold Kn is orientable if it is possible to give an orientation to each of its n-simplexes
such that if σn

1 , σ
n
2 ∈ Kn share an (n− 1)-face τ then τ gets opposite induced orientations from σn

1

and σn
2 . Such an orientation is a coherent orientation of Kn. We say Kn is coherently oriented if it

has a coherent orientation.
Lemma 5.12 in [14] gives a necessary and sufficient orientability condition for chromatic pseu-

domanifolds. Lemma 3.1.1 is a restatement of that lemma using our notation.

Lemma 3.1.1 A chromatic n-pseudomanifold is orientable if and only if its n-simplexes can be
partitioned into two classes, +1 and −1, such that every two n-simplexes sharing an (n − 1)-face
belong to distinct classes. In a coherent orientation, each n-simplex in a class d, is d oriented.

Subdivisions. A geometric complex λ(4) is a subdivision of a geometric complex 4 if every
simplex of λ(4) is contained in a simplex of 4, and every simplex of 4 is the union of finitely
many simplexes of λ(4). Notice that each geometric complex 4 determines a complex K. We say
4 is a geometric realization of K. A complex λ(K) is a subdivision of a complex K if there exists
geometric realizations λ(4) and 4 of λ(K) and K, such that λ(4) is a subdivision of 4. For each
σ ∈ λ(K), the carrier of σ, denoted carr(σ,K), is the unique smallest simplex τ ∈ K such that σ
is contained in τ . A chromatic complex λ(K) is a chromatic subdivision of a chromatic complex K
if each σ ∈ λ(K) is properly colored with the colors of carr(σ,K).

(0,{0})

(1,{0,1})

(1,{0,1})

(1,{1})(2,{1,2})(1,{1,2})(2,{2})

(2,{0,1,2})

(0,{0,2})

(2,{0,2})

(0,{0,1,2})

(1,{0,1,2})

Figure 3.3: The standard chromatic subdivision of dimension 2.

For an n-simplex σ with a proper coloring id that uses colors IDn, the standard chromatic
subdivision of σ, denoted χ1(σ), consists of all simplexes of the form {(`0, σ0), . . . , (`i, σi)}, 0 ≤ i ≤
n, where σ0 ⊆ . . . ⊆ σm are faces of σ, |{`0, . . . , `m}| = m + 1 and `j ∈ id(σj), 0 ≤ j ≤ i. Figure
3.3 depicts the standard chromatic subdivision of dimension 2. The k iterated standard chromatic
subdivision of σ, χk(σ), is the chromatic subdivision obtained by applying the standard chromatic
subdivision over each n-simplex of χk−1(σ), namely, χk(σ) = ∪τn∈χk−1(σ) χ

1(τn). Similarly, for an
n-complex K, the k iterated standard chromatic subdivision of K, χk(K), is ∪τn∈K χk(τn).
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3.1.2 Divided Images

Divided images were introduced and studied in [14] to model the structure of the complex associated
to all IS executions of a wait-free protocol. This section briefly reviews the main properties of these
combinatorial topology objects.

Definition 3.1.2 ([14, Definition 4.1]) Let Kn, Ln be complexes, and ψ a function that assigns
to each simplex of Ln a finite subcomplex of Kn. The complex Kn is a divided image of Ln under
ψ if:

1. ψ(∅) = ∅

2. for every τ ∈ Kn there is a simplex σ ∈ Ln such that τ ∈ ψ(σ)

3. for every σ0 ∈ Ln, ψ(σ0) is a single vertex

4. for every σ1, σ2 ∈ Ln, ψ(σ1 ∩ σ2) = ψ(σ1) ∩ ψ(σ2)

5. for every σ ∈ Ln, ψ(σ) is a dim(σ)-pseudomanifold with bd(ψ(σ)) = ψ(bd(σ))

Kn is a divided image of Ln if for some ψ, Kn is a divided image of Ln under ψ.

In condition 5, bd(σ) is a set of simplexes, and ψ(bd(σ)) is the complex consisting of the union
of ψ(τ), over the simplexes τ ∈ bd(σ). This notation is often used.

Figure 3.4 depicts a divided image of dimension 2 where L2 is the complex consisting of a
2-simplex and all its faces, and the arrows show how ψ maps the vertexes of L2.

L2
K2

Figure 3.4: A 2-dimensional divided image.

It is worth to notice that a divided image is not necessarily a subdivision, even if it is connected.
For example, a torus L of dimension 2 with a 2-simplex τ removed from it, is a divided image of a
2-simplex σ: bd(σ) is mapped to bd(τ) and σ is mapped to L.

Let Kn be a divided image of Ln under ψ. We say that Kn is well-connected if for every i-
simplex σ ∈ Ln, if i ≥ 1 then ψ(σ) is i-connected, and if i ≥ 2 then bd(ψ(σ)) is (i− 1)-connected.
Similarly, Kn is orientable if for every σ ∈ Ln, ψ(σ) is orientable. And Kn is coherently oriented if
for every n-simplex σ ∈ Ln, the n-pseudomanifold ψ(σn) is coherently oriented. Also, we say that
Kn is a subdivision if for each simplex σ ∈ Ln, ψ(σ) is a subdivision ofM(σ).
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The carrier of a simplex τ ∈ Kn, denoted carr(τ), is the simplex σ ∈ Ln of smallest dimension
such that τ ∈ ψ(σ). Assume Ln is chromatic with colors IDn. The set colors of a simplex σ ∈ Ln is
denoted id(σ). We say that Kn is chromatic if every simplex τ ∈ Kn with dim(τ) = dim(carr(τ)),
is properly colored with id(carr(τ)). Figure 3.10 depicts a chromatic divided image of a 2-simplex.

3.2 Modeling Tasks

For a domain of inputs I, an input complex, denoted In, is the complex consisting of the n-simplexes
(subsets with n + 1 elements) of IDn × I, and all their faces, whose id coloring, the first entry of
each pair, is proper. Thus, In is chromatic with respect to id. An output complex, On, over a
domain of outputs O, is defined similarly. The meaning of a vertex (i, v) of In (On) is that process
with id i has input (output) v.

A task is defined as a triple 〈In,On,4〉, where In is an input complex, On is an output complex
and 4 is a function that maps each n-simplex of In to a non-empty set of n-simplexes of On. We
sometimes mention only 4 when In and On are understood. The simplexes of 4(σn) are the
admissible output simplexes for the input simplex σn, namely, the outputs in τn ∈ 4(σn) can be
the outputs of the processes when they start with inputs σn. Observe that 4 is only defined for
n-simplexes, however, it can be extended for simplexes of lower dimensions, since the outputs of an
execution, possibly of a proper subset of processes, can be completed to outputs for all processes
that are admissible for the inputs of the execution (see Section 2.1). Therefore, 4 maps each σm,
m < n, to all faces of the simplexes of 4(σn) with same id’s as σm, for all σn ∈ In such that σm

is a face of σn.

P, 0 Q, 0

Q, 1 P, 1

P, 0 Q, 0

Q, 1 P, 1

4

I1 O1

Figure 3.5: The binary consensus task on two processes.

For example, in the binary consensus task each process has input either 0 or 1 and it is required
that processes decide a unique output value among the inputs to the processes. Thus, I = O =
{0, 1}. Figure 3.5 depicts the binary consensus task for two processes with id’s P and Q. It only
shows how 4 maps the 1-simplexes of I1, however, 4 is extended as 4((i, v)) = (i, v) for each
vertex (i, v) ∈ I1.

As another example consider the WSB task. We have I = {1, . . . , 2n+1} (recall the input name
space for WSB was fixed, see Section 2.2) and O = {0, 1}. Input complex In

wsb contains every id
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properly colored n-simplex of IDn×{1, . . . , 2n+1} such that any pair of its vertexes have distinct
input values, as input names in WSB are unique. And On

wsb contains every id properly colored
n-simplex of IDn×{0, 1} such that it is not monochromatic, considering the output values, as not
all processes decide 0 and not all decide 1. Figure 3.6 shows the WSB output complex for three
processes. For each σm ∈ In, 1 ≤ m ≤ n, 4(σm) contains every m-simplex of On with same id
colors as σm. Thus, for every σn ∈ In, 4(σn) = On

wsb.

0

0

1

1

2

2

Figure 3.6: WSB output complex for three processes.

The rest of this chapter only considers tasks that hold the following symmetry requirement on
inputs and outputs: for every simplex τ of In (On) and every permutation π of IDn, In (On)
contains the simplex τ ′ obtained by replacing each id i in τ by π(i). Observe that the input and
output complexes for WSB and renaming hold this property.

3.3 Modeling Protocols

For any execution α, let views(α) be the set {(0, input0, α|0), . . . , (n, inputn, α|n)}, where inputi is
the input for process with id i. The protocol complex, Pn, of a protocol P is the complex containing
the n-simplex views(α), an all its faces, for each minimal final execution α of P. Notice that Pn

has three coloring: an id, an input and a view. Moreover, id coloring is chromatic. Since P is
deterministic and wait-free, each process decides in a finite number of steps, implying that Pn is
finite. It is possible that, for two distinct minimal final executions α and α′, views(α) = views(α′),
hence we can think of each n-simplex of Pn as an equivalence class of executions in which processes
“look the same”.

Given an input n-simplex σ, Pn(σ) is the subcomplex of Pn that contains all n-simplexes, and
all their faces, corresponding to all minimal final executions of P in which processes start with
inputs σ. Roughly, τ belongs to Pn(σ) if and only if there is an execution α with inputs σ such
that the views in τ are the same as the views in α. Moreover, if τ is contained in two n-simplexes
σ1 and σ2 of Pn(σ), processes in τ cannot distinguish between the corresponding executions for σ1

and σ2.
Figure 3.7 shows the protocol complex of a standard-form protocol for two processes with inputs

i0 and i1. Each process is active in exactly one round. The vertexes of the complex are only colored
with id’s and views (below each vertex), represented by the content of the memory. Above each
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1-simplex it is the schedule of one the executions associated to that simplex. The reader can verify
that every execution of the protocol is represented by a simplex of the complex. For example, the
execution with schedule w0, r0(0), w1, r1(0), r0(1), r1(1) is represented by the simplex at the center.

0
w0, r0(0), r0(1), w1, r1(0), r1(1)

01 1
w0, w1, r0(0), r0(1), r1(0), r1(1) w1, r1(0), r1(1), w0, r0(0), r0(1)

(i0,⊥) (i0, i1) (i0, i1) (⊥, i1)

Figure 3.7: Protocol complex of a protocol for two processes.

For some task 〈In,On,4〉, P induces a decision map δP : Pn → On that specifies the output
value for every final view of a process. If P solves 4 then δP is simplicial, since for each τ ∈ Pn,
δP(τ) is an output simplex. Moreover, δP preserves the id coloring and δP(Pn(σ)) is a complex,
for each n-simplex σ ∈ In. Using this notation, the operational definition of a protocol solving a
task presented in Section 2.1, can be interpreted as Proposition 3.3.1 states. Figure 3.8 shows a
graphic description this interpretation.

Proposition 3.3.1 ([14, Proposition 4.5]) P solves 〈In,On,4〉 if and only if δP(Pn(σ)) ⊆
4(M(σ)), for every n-simplex σ ∈ In. In this case we say that δP agrees with 4.

σ

τ

In On

Pn

∆(σ)

δP(τ )Pn(σ)

Figure 3.8: A protocol solving a task.

Since only anonymous protocols are considered, which intuitively means that the decision of a
process does not depend on its id, if two n-simplexes σ, σ′ ∈ In have the same input, i.e., they
differ only by a permutation of IDn, then Pn(σ) can be obtained from Pn(σ′). This implies that
δP must be “anonymous” in a sense that δP(Pn(σ)) can be obtained from δP(Pn(σ′)). These ideas
are formalized as follows.

Consider an n-complex K with a chromatic coloring id that uses IDn. We say that K is
symmetric if for any permutation π of IDn, there is a simplicial bijection π′ : K → K that respects
π: for each u ∈ K, π(id(v)) = id(µ(v)). Sometimes π denotes both the map π′ and permutation π,
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relying on the context. It is not hard to verify that the input and output complexes of the tasks
considered here (see end of Section 3.2), are symmetric.

Consider two symmetric n-complexes K and L. Let ξ be a color-preserving simplicial map
from K to L. We say that ξ is anonymous if for any permutation π of IDn, there exist simplicial
bijections π1 : K → K and π2 : L → L that respect π, such that ξ ◦ π1 = π2 ◦ ξ.

Therefore, if input simplexes σ, σ′ ∈ In differ by a permutation π : IDn → IDn, then there
exist simplicial bijections π1 : Pn(σ) → Pn(σ′) and π2 : δP(Pn(σ)) → δP(Pn(σ′)) that respect π,
such that δP ◦ π1 = π2 ◦ δP .

3.4 An Anonymous Condition for Wait-Free Solvability

For a protocol P with protocol complex Pn, its immediate snapshot complex (IS complex), denoted
En, is the subcomplex of Pn containing all ISE execution of P.

Attiya and Rajsbaum prove in [14] that En is a divided image of In, where each input simplex
σ is mapped to the subcomplex of En that contains all dim(σ)-simplexes corresponding to the IS
execution of P, in which processes in id(σ) start with inputs σ. Clearly, due to the id coloring
of En and In, En is a chromatic divided image of In. Figure 3.9 shows an example of this for
a 2-dimensional input simplex σ. The inputs of σ and the views and output values of ψ(σ) do
not appear. Each process is active in exactly one round in every execution. The corners of ψ(σ)
correspond to solo executions: a process is active alone in the first round and hence does not see the
other two processes. The 1-simplexes on the boundary correspond to all executions in which two
processors do not see the third process. And the 2-simplexes represent the executions in which at
least one processor sees all processes. In particular, the 2-simplex at the center of ψ(σ) corresponds
to the execution in which the three processes are active in the same round and thus see each other.

It is also proved in [14] that En is a chromatic, well-connected and orientable divided image of
In. These properties of En and Proposition 3.3.1 give the following necessary solvability condition
of a task.
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Figure 3.9: IS-complex for three processes.
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Notation. From now on, we write ccodi as a shorthand for chromatic, well-connected and ori-
entable divided image, and ccosdi for ccodi that is also a subdivision.

Theorem 3.4.1 ([14, Theorem 5.14]) Let 〈In,On,4〉 be a task. If there is an anonymous wait-
free protocol which solves this task, then there is a ccodi of In and there is a color-preserving (on
ids), anonymous simplicial map form it to On that agrees with 4.

The Anonymous Computability Theorem by Herlihy and Shavit in [55], fully characterizes
the tasks that are anonymous wait-free solvable in the asynchronous read/write shared memory
model. The following theorem is a restatement in our notation of one direction of the Anonymous
Computability Theorem, which gives the opposite direction of Theorem 3.4.1.

Theorem 3.4.2 For a task 〈In,On,4〉, if there exists an integer k and a color-preserving (on ids)
anonymous simplicial map µ : χk(In) → On that agrees with 4, then there exists an anonymous
wait-free protocol which solves 〈In,On,4〉.

Notice that Theorem 3.4.2 only considers a specific class of chromatic subdivisions, namely,
iterated standard chromatic subdivisions. However, it is explained in [55] that any chromatic
subdivision λ(In) and color-preserving anonymous simplicial map µ : λ(In) → On that agrees
with 4, imply the existence of a protocol for 〈In,On,4〉. Very roughly, the idea is that for any
chromatic subdivision λ(In), there exists an integer k and a simplicial map δ : χk(In) → λ(In)
such that the composition of δ and µ is the simplicial map required in Theorem 3.4.2. Borowsky
and Gafni give an algorithmic proof of that result in [21]. Therefore, we get the following result.

Theorem 3.4.3 Let 〈In,On,4〉 be a task. If there is a ccosdi of In and there is a color-preserving
(on ids), anonymous simplicial map from it to On that agrees with 4, then there exists an anony-
mous wait-free protocol which solves 〈In,On,4〉.

3.5 Necessary and Sufficient Solvability Conditions for WSB

Necessity. Let P be a WSB protocol. By Theorem 3.4.1, there is a ccodi ξn of In
wsb and there

is a color-preserving anonymous simplicial map δP : ξn → On
wsb that agrees with WSB, where In

wsb

and On
wsb are the input and output complexes for WSB and δP is the decision map induced by P.

Let us add the output binary coloring b to ξn defined as b(v) = δP(v), for each vertex v ∈ ξn. Let
ϕ be the function such that ξn is a ccodi of In

wsb under ϕ. As explained in Section 3.4, for every
σ ∈ In

wsb, ϕ(σ) contains all IS execution in which processes start with inputs σ. Therefore, for
each n-simplex σ ∈ ξn, ϕ(σ) cannot contain monochromatic n-simplexes because these simplexes
correspond to executions in which all processes decide the same output value, contradicting the
specification of WSB. Now, by Lemma 2.2.5, we can assume that P is comparison-based. Since P
is anonymous, the output coloring b is a function of the rank of input names in a given execution.
As we shall see, this induces a symmetry on b on the boundary of ϕ(σ), for each n-simplex σ of
In

wsb. The following definitions are used to formalize this intuition.
In what follows, for a simplex σn, let σn denote the complex M(σn). Consider a chromatic

divided image Kn of σn under ψ. Let σ and σ′ be i-faces of σn. A simplicial bijection µ : ψ(σ)→
ψ(σ′) is id-preserving if for every vertexes u, v ∈ ψ(σ), if id(u) = id(v) then id(µ(u)) = id(µ(v)).
If in addition, for every u ∈ ψ(σ), rk(id(u)) = id(µ(u)), where rk : id(σ) → id(σ′) is the bijection
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such that if x < y then rk(x) < rk(y), then µ is id-rank-preserving. Notice that there can be only
one id-rank-preserving bijection. We say that Kn has structural-symmetry if for every two i-faces
σ and σ′ of σn, there is an id-preserving simplicial bijection between ψ(σ) and ψ(σ′). Similarly, Kn

has structural-rank-symmetry if for every two i-faces σ and σ′ of σn, there is an id-rank-preserving
simplicial bijection between ψ(σ) and ψ(σ′). Clearly, if Kn has structural-rank-symmetry, it has
structural-symmetry.

Assume Kn has structural-symmetry. For every i-faces σ and σ′ of σn, fix an id-preserving
simplicial bijection µσσ′ : ψ(σ) → ψ(σ′) such that µ−1

σσ′ = µσ′σ. Let F be the family of simplicial
bijections µσσ′ . Then Kn has structural-symmetry with respect to F . For each µσσ′ , vertexes
u ∈ ψ(σ) and v ∈ ψ(σ′) are isomorphic with respect to µ if µ(u) = v. Isomorphic simplexes with
respect to µ are defined similarly. Observe that isomorphic simplexes between ψ(σ) and ψ(σ′) are
well defined since µ−1

σσ′ = µσ′σ.
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Figure 3.10: A chromatic divided image with a symmetric binary coloring.

Let Kn be a chromatic divided image of σn under ψ, with structural-symmetry with respect to
a family F , and with a binary coloring b. The coloring b is symmetric with respect to F if every
µσσ′ ∈ F is color-preserving, i.e., for every vertex v ∈ ψ(σ), b(v) = b(µ(v)). If there is a family
of simplicial bijections such that b is symmetric with respect to it, then b is symmetric. Also,
b is rank-symmetric if it is symmetric with respect to the family of id-rank-preserving simplicial
bijections. Therefore a divided image with a (rank-)symmetric binary coloring, has structural-
(rank-)symmetry. Figure 3.10 presents a chromatic divided image with a rank-symmetric binary
coloring (white and black circles represent binary colors 0 and 1).

Consider an n-simplex σn ∈ In
wsb with inputs j0 < . . . < jn such that process with id i has input

ji. We have that Kn = ϕ(σn) is a ccodi of σn under ψ = ϕ|M(σn). Consider two i-faces σ and σ′

of σn. Complex ψ(σ) contains all IS executions with participating set id(σ) and inputs σ. Since P
is comparison-based, hence anonymous, coloring b of ψ(σ) is completely on function on σ’s input
relatively order, captured by the id colors. That is, for each i-simplex τ ∈ ψ(σ), corresponding to
an IS execution, there is an i-simplex τ ′ ∈ ψ(σ′) associated to the execution obtained by replacing
the smallest id in id(σ) with the smallest id in id(σ′), etc. Therefore, there must be an id-rank-
preserving simplicial bijection µ : ψ(σ)→ ψ(σ′). Moreover, for every vertex v ∈ τ , b(v) = b(µ(v)),
i.e., µ is color-preserving. Thus, b is rank-symmetric. This gives a necessary solvability condition
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for WSB, Theorem 3.5.1, recalling that Kn does not have monochromatic n-simplexes. Although b
is rank-symmetric, Theorem 3.5.1 only considers that b is symmetric because that property of b is
enough for proving the impossibility of WSB.

Theorem 3.5.1 If there exists an anonymous wait-free WSB protocol then there exists a ccodi of
an n-simplex with a symmetric binary coloring and no monochromatic n-simplexes.

Sufficiency. By Theorem 3.4.3, if there is a ccosdi Ln of In
wsb and there is a color-preserving

anonymous simplicial map δ : Ln → On
wsb that agrees with WSB, then there is a WSB protocol. In

what follows it is proved that using a ccosdi of an n-simplex with a rank-symmetric binary coloring
and no monochromatic n-simplexes, one can construct Ln and δ.

First, we verify that In
wsb and On

wsb are symmetric complexes. Recall that In
wsb contains every

id properly colored n-simplex of IDn×{1, . . . , 2n+ 1} such that any pair of vertexes have distinct
input values, and On

wsb contains every id properly colored n-simplex of IDn×{0, 1} such that it is
not monochromatic, considering the output values. Consider a permutation π of IDn. Notice that
for every simplex {(i0, name0), . . . , (ij , namej)} ∈ In

wsb, 0 ≤ j ≤ n, input complex In
wsb contains

the simplex {(π(i0), name0), . . . , (π(ij), namej)}. Thus, the simplicial map πI : In
wsb → In

wsb that
maps each vertex (i, name) ∈ In

wsb to (π(i), name), is a bijection that respects π. Hence, In
wsb is

symmetric. Observe that πI preserves the input coloring. Similarly, we can see that, for On
wsb,

there is a simplicial bijection πO : On
wsb → On

wsb that respects π and preserves the output coloring.
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Figure 3.11: Obtaining λ(In
wsb) and δ.
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Let Kn be a ccosdi of σn under ψ, with a rank-symmetric binary coloring b and no monochro-
matic n-simplexes. In what follows, let σ|i0, . . . , ij , 0 ≤ j ≤ n, denote the face of σn with colors
i0, . . . , ij . Let λ(In

wsb) be the chromatic subdivision of In
wsb obtained by subdividing each simplex of

In
wsb with a subcomplex of Kn in the following way. Each simplex τ = {(i0, name0), . . . , (ij , namej)}

of In
wsb, 0 ≤ j ≤ n, with name0 < . . . < namej , is subdivided with ψ(σ|0, . . . , j) in such a way

that each vertex (ik, namek) ∈ τ is replaced with ψ(σ|k). In other words, τ is subdivided with
ψ(σ|0, . . . , j), preserving the rank of the ids of σ|0, . . . , j and the input names of τ . The resulting
subdivision is denoted λ(τ). Every vertex u ∈ ψ(σ|0, . . . , j) induces a vertex v ∈ λ(τ) with two
colorings: id(v) = iid(u) and b(v) = b(u). Thus, λ(τ) is a chromatic subdivision of τ .

Figure 3.11 shows the subdivisions λ(τ) and λ(τ ′) for two simplexes of dimension 2. These
subdivisions were obtained using the ccosdi K2 in Figure 3.10, which has a rank-symmetric binary
coloring and a monochromatic 2-simplex. For the example it is not important that last property
of K2. (in Chapter 5 it will be proved that any ccosdi of a 2-simplex with a rank-symmetric binary
coloring, has at least one monochromatic 2-simplex)

Since each j-simplex τ ∈ In
wsb is subdivided with ψ(σ|0, . . . , j) preserving the rank of the ids

of σ0,...,j and the input names of τ , then using the simplicial map πI : In
wsb → In

wsb, defined above,
we can get a simplicial bijection πλ(I) : λ(In

wsb)→ λ(In
wsb) that respects π and preserves b. Figure

3.11 depicts a 2-dimensional example. Also, because Kn does not have monochromatic n-simplexes,
λ(In

wsb) does not have monochromatic n-simplexes, thus its colorings id and b specify a simplicial
map δ : λ(In

wsb) → On
wsb defined as δ(v) = (id(v), b(v)), for each v ∈ λ(In

wsb). Thus, δ agrees with
WSB. Moreover, δ preserves b. Therefore, δ is anonymous, since πλ(I) and πO also preserve b.
Finally, it is not hard to see that λ(In

wsb) is a ccosdi of In
wsb under ϕ such that ϕ(τ) = λ(τ), for

every τ ∈ In
wsb. The following result follows:

Theorem 3.5.2 If there exists a ccosdi of an n-simplex with a rank-symmetric binary coloring and
no monochromatic n-simplexes, then there exits an anonymous wait-free WSB protocol.
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Chapter 4

Combinatorial Topology Tools

This chapter presents the combinatorial topology tools that will be used to obtain two topological
results, which will imply that WSB is not wait-free solvable for certain values of n, while it is
solvable for the other values of n.

The first tool is Index Lemma. Intuitively, this lemma relates the number of properly colored n-
simplexes of a colored n-pseudomanifold, with the number of properly colored (n− 1)-simplexes on
its boundary. Using Index Lemma, the chapter shows that the boundary of a chromatic and binary
colored n-pseudomanifold, induces the number of monochromatic n-simplexes inside it. The second
tool is the cone construction, which is a generalization of the standard chromatic subdivision. This
operation is useful for constructing divided images recursively.

4.1 Index Lemma and Counting Monochromatic Simplexes

Index Lemma counts the properly colored n-simplexes inside a (not necessarily properly) colored
and coherently oriented pseudomanifold, “the content”, by counting the properly colored (n− 1)-
simplexes on the boundary, “the index”.

Consider an oriented simplex σ with a proper coloring c. Let 〈c0, . . . , cdim(σ)〉 be the sequence
of the c colors of σ in ascending order. Simplex σ is counted by orientation with respect to c in
the following way. It is counted as +1 if the sequence 〈c0, . . . , cdim(σ)〉 belongs to its orientation,
i.e., the sequence of vertexes 〈v0, v1, . . . , vn〉 such that c(vi) = ci, 0 ≤ i ≤ dim(n), belongs to
the orientation of σ. Otherwise it is counted as −1. For example, the 2-simplex in Figure 4.1 is
counterclockwise oriented and it is counted as −1 because colors 0, 1 and 2, in this order, follow
the clockwise direction. In what follows, for i ∈ IDn, let IDn

i be the set of colors IDn − {i}.

0

12

Figure 4.1: Counting by orientation.
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Definition 4.1.1 (Index and Content) Consider a coherently oriented pseudomanifold Kn with
the induced orientation on its boundary. Let c be a coloring, not necessarily proper, of Kn with
IDn.

1. The content of Kn, C(Kn), is the number of the properly colored n-simplexes of Kn counted
by orientation.

2. The index i of Kn, Ii(Kn), is the number of properly colored (n−1)-simplexes of bd(Kn) with
IDn

i counted by orientation.

If there is no ambiguity, we just write C or Ii. Lemma 4.1.2 below is the restatement of Corollary
2 in [36] using our notation. This lemma is a generalization of the 2-dimensional Index Lemma in
[50, pp. 46-47]. For completeness, a proof is presented.

Lemma 4.1.2 (Index Lemma) Let Kn be a coherently oriented, connected and colored pseudo-
manifold with IDn. Then C = (−1)iIi.

Proof: First, we prove that the lemma holds when Kn = M(σ), for an n-simplex σ. There are
two cases. In the first case, σ is properly colored and hence C = ±1. Suppose, w.l.o.g., that σ
is positively oriented, i.e., the sequence 〈0, 1, . . . n〉 belong to its orientation. Thus, C = +1. Let
σi be the (n − 1)-face of σ without the vertex colored i under c. Notice that if i is even, σi has
the induced positive orientation and hence 〈0, 1, . . . î . . . n〉 belongs to its orientation. Therefore,
Ii = +1. Similarly, if i is odd, σi has the induced negative orientation and thus Ii = −1. Therefore,
C = (−1)iIi.

In the second case, σ is not properly colored, and then C = 0. Clearly Ii = 0 if σ has no
properly colored (n − 1)-faces with IDn

i . Thus, suppose that at least one (n − 1)-face of σ is
properly colored with IDn

i . Observe that exactly two (n− 1)-faces of σ are properly colored with
IDn

i . Let v0, v1 . . . vn denote the vertexes of σ such that c(v0) = 0, c(v1) = 1, . . . c(vi) = i, c(vi+1) =
i, c(vi+2) = i + 1, . . . c(vn) = n − 1. Suppose, w.l.o.g., that σ is oriented 〈v0, v1 . . . vn〉. Let σi and
σi+1 be the (n − 1)-faces of σ without vertexes vi and vi+1, respectively. If i is even then σi is
oriented 〈v0, v1, . . . v̂i . . . vn〉 and σi+1 is oriented 〈v1, v0, . . . v̂i+1 . . . vn〉. Notice that σi and σi+1 are
counted as +1 and −1, respectively, by Ii, hence Ii = 0. Something similar happens when i is odd.
Thus, C = (−1)iIi = 0.

We now prove that the lemma holds for an arbitrary pseudomanifold Kn. Let Si be the number
of properly colored (n− 1)-simplexes of Kn with IDn

i , counting by orientation. Thus, each internal
properly colored (n − 1)-simplex is counted twice, as it has two induced orientations (it is shared
by two n-simplexes), and each external properly colored (n− 1)-simplex is counted one time, as it
has just one induced orientation. Observe that every internal properly colored (n − 1)-simplex of
Kn with IDn

i , adds 0 to Si, since it has opposite induced orientations. Hence, Ii(Kn) = Si(Kn).
Consider now an n-simplex σ ∈ Kn. It was proved above that C(M(σ)) = (−1)iIi(M(σ)). And
also Ii(M(σ)) = Si(M(σ)). Thus, C(M(σ)) = (−1)iSi(M(σ)). From the definitions of C and Si,
it is not hard to see that C(Kn) = (−1)iSi(Kn) and hence C(Kn) = (−1)iIi(Kn).

�

Figure 4.2 shows a pseudomanifold with its 2-simplexes counterclockwise oriented. Notice that
colors 0, 1 and 2, in this order, of the unique properly colored 2-simplex, denoted by the circular
arrow, follow the counterclockwise direction, and thus C = +1. An edge in the boundary with colors
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0 and 1, is counted +1 or −1 according to its induced orientation and the direction followed by 0
and 1, in this order. Hence I2 = +1. It can be easily verified that (−1)2I2 = (−1)1I1 = (−1)0I0.
The reader familiar with topology may notice that the coloring c induces a simplicial map from Kn

to a properly colored simplex σn. Thus we can think of the index of Kn as the number of times
that bd(Kn) is “wrapped around” bd(σn), i.e., a combinatorial version of the notion of degree.
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Figure 4.2: The Index Lemma.

Index Lemma says that the boundary induces the content, the number of properly colored
simplexes inside the pseudomanifold (counting by orientation). Therefore, two orientable pseudo-
manifolds with the same boundary have the same content.

Lemma 4.1.3 Consider two orientable, connected and colored pseudomanifolds Kn and Ln. If
bd(Kn) = bd(Ln) then C(Kn) = C(Ln).

Subsequent chapters are interested in the number of monochromatic simplexes of a chromatic
pseudomanifold with a binary coloring. In what follows it is showed that Index Lemma, which is
about colorings that uses n+ 1 colors, can be adapted to count such simplexes.

For a chromatic pseudomanifold with a binary coloring, it is defined the coloring c, Definition
4.1.4, that uses colors IDn.

Definition 4.1.4 Let Kn be a chromatic pseudomanifold with a binary coloring. For every v ∈ Kn,
the coloring c is defined as c(v) = (id(v) + b(v)) mod (n + 1), where id and b are the chromatic
and binary coloring of Kn, respectively.

Figure 4.3 presents a 2-pseudomanifold with the three colorings, id, b and c, associated to each
vertex. The binary coloring b is represented by white and black circles, and the id and c colorings,
in this order, are the numbers near the vertexes.

Lemma 4.1.5 proves that the number of monochromatic n-simplexes under b and the properly
colored n-simplexes under c are related. Thus the boundary induces the number of monochromatic
n-simplexes, by Index Lemma.

Lemma 4.1.5 Let Kn be chromatic pseudomanifold with a binary coloring b and a coloring c as in
Definition 4.1.4. An n-simplex of Kn is monochromatic under b if and only if it is properly colored
under c.
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Proof: Let id the chromatic coloring of Kn. From the definition of c, Definition 4.1.4, it is easy
to see that every monochromatic n-simplex under b is properly colored under c. For the other
direction, assume, for sake of contradiction, that a properly colored n-simplex τ under c, is not
monochromatic under b. Let τi be the maximal face of τ such that for every v ∈ τi, b(v) = i,
i.e., the maximal i-monochromatic face of τ . By definition of c, Definition 4.1.4, for every v ∈ τ0,
c(v) = id(v), and for every v ∈ τ1, c(v) = (id(v) + 1) mod (n + 1). Since τ is properly colored
under c, for every v ∈ τ1, τ1 contains the unique vertex u ∈ τ such that c(v) = id(u). Therefore, τ1
contains all vertexes of τ and then τ is monochromatic.

�

1,2

2,22,0

0,1

Figure 4.3: A pseudomanifold with the three colorings

Lemma 4.1.61 below shows that C can be easily computed by counting the monochromatic n-
simplexes according to their orientation. Recall that an oriented and properly colored n-simplex has
orientation +1 if the sequence 〈0, 1, . . . , n〉 belongs to its orientation, otherwise it has orientation
−1. This lemma says that a 0-monochromatic n-simplex with orientation d is counted as d, but a
1-monochromatic n-simplex with orientation d is counted as d if n is even and as −d if n is odd.

For example, assume the 2-simplexes in Figure 4.3 are counterclockwise oriented. The id colors
1, 0 and 2, in this order, of the unique monochromatic simplex, follow the counterclockwise direction
and therefore the simplex has orientation −1. Also observe that the c colors 0, 1 and 2 follow the
clockwise direction, as it is indicated by the arrow. Because the simplex has the opposite orientation,
it is counted as −1 by C, exactly as Lemma 4.1.6 states.

Lemma 4.1.6 Let Kn be a chromatic, coherently oriented and connected pseudomanifold with a
binary coloring b and a coloring c as in Definition 4.1.4. Let τ be a b-monochromatic n-simplex of
Kn with orientation d. The simplex τ is counted as (−1)b∗nd by C.

Proof: Let id be the chromatic coloring of Kn. Consider the sequence S = 〈v0, v1, . . . , vn〉 of τ
such that id(vi) = i, i.e., considering the coloring id, the sequence S is 〈0, 1, . . . , n〉. By definition
of orientability, if S belongs to the orientation of τ then τ has orientation d = +1, otherwise it has
orientation d = −1.

Suppose first τ is 0-monochromatic. By definition of the coloring c, Definition 4.1.4, c(vi) =
id(vi) = i. Thus, considering the coloring c, the sequence S is 〈0, 1, . . . , n〉. Therefore, if S belongs
to the orientation of τ then C counts τ as +1, otherwise as −1. That is, τ is counted as d.

1Actually, Lemmas 4.1.5 and 4.1.6 hold for any coloring c in which c(v) = id(v) if b(v) = 0, and c(v) = f(v) if
b(v) = 1, where f : IDn → IDn is a permutation such that the restriction f |I to any proper subset I ⊂ IDn is not
a permutation of I.
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Suppose now τ is 1-monochromatic. By definition of the coloring c, Definition 4.1.4, c(vi) =
(i + 1) mod (n + 1), i.e., considering the coloring c, the sequence S is 〈1, . . . , n, 0〉. Observe that
applying n permutations over S, we can get the sequence S′ = 〈vn, v0, . . . , vn−1〉. Considering the
coloring c, the sequence S′ is 〈0, 1, . . . , n〉. Notice that if n is even then S′ belongs to the orientation
of τ if and only if S belongs to the orientation of τ . Thus C counts τ as d. Similarly, if n is odd
then S′ belongs to the orientation of τ if and only if S does not belong to the orientation of τ .
Thus C counts τ as −d.

�

4.2 The Cone Construction

This section introduces the cone construction operation, which is a generalization of the standard
chromatic subdivision. First, some definitions are presented.

Let σ and τ be two simplexes. The join of σ and τ , denoted σ ∗τ , is the simplex σ∪τ . Consider
two complexes K and L. The join of K and L, K ∗ L, is the complex {σ ∗ τ |σ ∈ K and τ ∈ L}.
Since K and L contain the empty simplex, K,L ⊆ K ∗ L. If K only contains one simplex σ, we
just write σ ∗ L. The following is a “chromatic” version of the join operator for properly colored
simplexes and complexes. Let σ and τ be properly colored simplexes under id. Simplexes σ
and τ are compatible if id(σ) ∩ id(τ) = ∅. From now on, we only consider the join operator for
compatible simplexes. Therefore, if K and L are chromatic complexes then K ∗ L = {σ ∗ τ |σ ∈
K, τ ∈ L and σ and τ are compatible}.

Consider a ccodi ϕ(bd(σn)) of bd(σn) and a properly colored simplex τn with IDn. Intuitively,
the cone over ϕ(bd(σn)) for τn, is obtained by putting τn at the center of ϕ(bd(σn)) and joining
every face of τn with the j-simplexes of ϕ(bd(σn)) with compatible carriers of dimension j. Figure
4.4 contains an example of the cone of dimension 2 in which ϕ(bd(σn)) is the boundary of the
complex and τn is the simplex at the center.
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Figure 4.4: The cone construction.
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Definition 4.2.1 Let ϕ(bd(σn)) be a ccodi of bd(σn) and τn be a properly colored simplex with
IDn. The cone over ϕ(bd(σn)) for τn, denoted τn ~ϕ(bd(σn)), is the complex consisting of the
union of complexes τ ∗ ϕ(σ), for every compatible simplexes τ ∈M(τn) and σ ∈ bd(σn).

Notice that M(τn), ϕ(bd(σn)) ⊂ τn ~ ϕ(bd(σn)). The following lemma that directly follows
from Definition 4.2.1 and characterizes the n-simplexes of an n-dimensional cone.

Lemma 4.2.2 For each γ ∈ ϕ(bd(σn)) with dim(γ) = dim(carr(γ)), there is a unique non-empty
face of τn such that τ ∗γ is an n-simplex of τn ~ ϕ(bd(σn)). Simplex τ ∗γ is the n-simplex generated
by γ. Moreover, each n-simplexes in τn ~ ϕ(bd(σn)) is generated in this way.

Lemma 4.2.3 presents the main property of the cone construction.2

Lemma 4.2.3 Let ϕ(bd(σn)) be a ccodi of bd(σn) and τn be a properly colored simplex with IDn.
The cone τn ~ ϕ(bd(σn)) is a ccodi of σn under the extension ψ of ϕ in which ψ(σn) = τn ~
ϕ(bd(σn)). Moreover, if ϕ(bd(σn)) ccosdi of bd(σn), then τn ~ ϕ(bd(σn)) is a ccosdi of σn.

Generally speaking, the proof of Lemma 4.2.3 consists on the following. We first prove that
M(τn) ∗ bd(σn) is a ccodi of σn under ξ that maps bd(σn) to bd(σn), and σn to M(τn) ∗ bd(σn),
Lemmas 4.2.4 and 4.2.5. Then we show that τn ~ ϕ(bd(σn)) is a ccodi ofM(τn) ∗ bd(σn) under φ
that maps bd(M(τn) ∗ bd(σn)) to the boundary of the cone, and M(τn) ∗ bd(σn) to all the cone,
Lemmas 4.2.6 and 4.2.7. As we shall see, the composition φ◦ξ is exactly the extension ψ in Lemma
4.2.3. Figure 4.5 depicts examples of Lemmas 4.2.4 and 4.2.6.
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Figure 4.5: Examples of Lemmas 4.2.4 and 4.2.6.

Since any complex contains the empty simplex, for complexes K and L, any simplex of K ∗ L
can be represented as the join of two simplexes of K and L, respectively. Therefore, in what follows,
τ ∗ γ ∈ K ∗ L denotes a simplex of K ∗ L such that τ ∈ K and γ ∈ L.

Lemma 4.2.4 The complex M(τn) ∗ bd(σn) is a chromatic, connected and orientable n-pseudo-
manifold with bd(M(τn) ∗ bd(σn)) = bd(σn). Moreover, M(τn) ∗ bd(σn) is a subdivision of an
n-simplex.

2Lemma 4.2.3 is still true in a extended definition of the cone in which τn is replaced by a ccodi or ccosdi of it.
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Proof: It is clear thatM(τn)∗bd(σn) is a chromatic complex, and also it is complete for dimension
n. In order to prove that it is an n-pseudomanifold, consider an (n− 1)-simplex τ i ∗ σj ∈M(τn) ∗
bd(σn). Observe that σj and τ i can be ∅, but not both at the same time. Consider k ∈ id(τn)
such that k /∈ id(τ i ∗ σj). Suppose first τ i 6= ∅. Notice that τ i ∗ σj only belongs to the n-simplexes
τ i+1∗σj and τ i∗σj+1, where τ i+1 ⊆ τn and σj+1 ⊂ σn such that τ i ⊂ τ i+1, σj ⊂ σj+1, k ∈ id(τ i+1)
and k ∈ id(σj+1). Suppose now τ i = ∅. In this case, τ i ∗ σj = σj only belongs to the n-simplex
v ∗σj , where v ∈ τn and id(v) = k. Moreover, observe that σj ∈ bd(σn). Therefore,M(τn)∗bd(σn)
is an n-pseudomanifold with bd(M(τn) ∗ bd(σn)) = bd(σn).

We now prove thatM(τn)∗ bd(σn) is orientable. Consider an n-simplex τ i ∗σj . In the previous
paragraph we can see that an n-simplex of M(τn) ∗ bd(σn) sharing an (n − 1)-face with τ i ∗ σj ,
has the form either τ i+1 ∗ σj−1 or τ i−1 ∗ σj+1. Assume that an n-simplex τ ∗ σ has orientation +1
if dim(σ) is odd, otherwise it has orientation −1. Observe that any two n-simplexes sharing an
(n− 1)-face, have opposite orientations. Thus, by Lemma 3.1.1,M(τn) ∗ bd(σn) is orientable.

For an n-simplex τ i ∗ σj , we have seen that if σj 6= ∅ then there exists an n-simplex τ i+1 ∗ σj−1

that shares an (n− 1)-face with it. Therefore, there exists an n-path from any n-simplex to τn and
hence there exists an n-path between any two n-simplexes. That is, M(τn) ∗ bd(σn) is connected.
Finally, it is easy to see that M(τn) ∗ bd(σn) is a subdivision of an n-simplex.

�

Lemma 4.2.5 The complex M(τn) ∗ bd(σn) is a ccosdi of σn under ξ, where for each σ ⊂ σn,
ξ(σ) = σ, and for σn, ξ(σn) =M(τn) ∗ bd(σn).

Proof: Notice that ξ(bd(σn)) = bd(σn) and hence ξ(bd(σn)) is a ccosdi of bd(σn) under ξ|bd(σn).
Also, by Lemma 4.2.4, ξ(σn) = M(τn) ∗ bd(σn) is a chromatic, connected and orientable n-
pseudomanifold with bd(ξ(σn)) = bd(σn) = ξ(bd(σn)). Moreover, ξ(σn) is also a subdivision of
an n-simplex. Therefore,M(τn) ∗ bd(σn) is a ccosdi of σn under ξ.

�

Lemma 4.2.6 Consider a simplex τ ∗ σ ∈ M(τn) ∗ bd(σn). The complex τ ∗ ϕ(σ) is a chromatic,
connected and orientable dim(τ ∗ σ)-pseudomanifold with bd(τ ∗ ϕ(σ)) = ∪τ ′∗σ′∈bd(τ∗σ)τ

′ ∗ ϕ(σ′).
Moreover, if ϕ(σ) is a subdivision of σ, τ ∗ ϕ(σ) is a subdivision of τ ∗ σ.

Proof: It is clear that τ ∗ ϕ(σ) is a chromatic complex, and also it is complete for dimension
dim(τ ∗σ). In order to prove it is a dim(τ ∗σ)-pseudomanifold, consider a (dim(τ ∗σ)−1)-simplex
ρ ∗ γ ∈ τ ∗ ϕ(σ). Notice that either (a) dim(ρ) = dim(τ) − 1 and dim(γ) = dim(σ), or (b)
dim(ρ) = dim(τ) and dim(γ) = dim(σ) − 1. By Definition 3.1.2 of a divided image, ϕ(σ) is a
dim(σ)-pseudomanifold with bd(ϕ(σ)) = ϕ(bd(σ)). For case (a), observe that τ ∗ γ is the unique
dim(τ ∗ σ)-simplex containing ρ ∗ γ. For case (b), we have two subcases: If γ ∈ bd(ϕ(σ)) then
ρ ∗ γ only belongs to the dim(τ ∗ σ)-simplex ρ ∗ λ, where λ is the unique dim(σ)-simplex of ϕ(σ)
containing γ. And If γ /∈ bd(ϕ(σ)) then ρ ∗ γ only belongs to the dim(τ ∗ σ)-simplexes ρ ∗ λ1 and
ρ ∗ λ2, where λ1 and λ2 are the unique distinct dim(σ)-simplexes of ϕ(σ) containing γ. Therefore,
τ ∗ ϕ(σ) is a dim(τ ∗ σ)-pseudomanifold. Moreover, because bd(ϕ(σ)) = ϕ(bd(σ)), we conclude

bd(τ ∗ ϕ(σ)) = (∪τ ′∈bd(τ)τ
′ ∗ ϕ(σ)) ∪ (∪σ′∈bd(σ)τ ∗ ϕ(σ′))

= ∪τ ′∗σ′∈bd(τ∗σ)τ
′ ∗ ϕ(σ′)

37



We now prove that τ ∗ϕ(σ) is orientable. Assume ϕ(σ) has a coherent orientation. By Lemma
3.1.1, every two dim(σ)-simplexes of ϕ(σ) that share a (dim(σ)−1)-face, have opposite orientations.
Consider a dim(τ ∗ σ)-simplex ρ ∗ γ ∈ τ ∗ ϕ(σ). Assume ρ ∗ γ has the same orientation as γ in
ϕ(σ). As it is explained in the last paragraph (case (b) second subcase), a dim(τ ∗ σ)-simplex
% ∗λ ∈ τ ∗ϕ(σ) contains a (dim(τ ∗σ)− 1)-face of ρ ∗ γ if and only if γ and λ share a (dim(σ)− 1)-
face. Therefore, ρ ∗ γ and % ∗ λ have opposite orientations, and hence, by Lemma 3.1.1, τ ∗ ϕ(σ) is
orientable.

For proving that τ ∗ ϕ(σ) is dim(τ ∗ σ)-connected, just notice that, for any two dim(τ ∗ σ)-
simplexes ρ ∗ γ and % ∗ λ, there is a dim(τ ∗ σ)-path in τ ∗ ϕ(σ) because there is a dim(σ)-path
in ϕ(σ) between γ and λ (by assumption ϕ(σ) is dim(σ)-connected). Finally, it is not hard to see
that if ϕ(σ) is a subdivision of σ then τ ∗ ϕ(σ) is a subdivision of τ ∗ σ.

�

Lemma 4.2.7 The cone τn ~ ϕ(bd(σn)) is a ccodi ofM(τn)∗bd(σn) under φ defined as φ(τ ∗σ) =
τ ∗ϕ(σ) for every τ ∗σ ∈M(τn) ∗ bd(σn). Also, if ϕ(bd(σn)) ccosdi of bd(σn) then τn ~ ϕ(bd(σn))
is a ccosdi of M(τn) ∗ bd(σn).

Proof: It is not hard to see that φ holds conditions 1, 2 and 3 in Definition 3.1.2 of a divided
image. For condition 4, consider τ1 ∗ σ1, τ2 ∗ σ2 ∈ M(τn) ∗ bd(σn). By definitions of φ and join
operator,

φ(τ1 ∗ σ1) ∩ φ(τ2 ∗ σ2) = (τ1 ∗ ϕ(σ1)) ∩ (τ2 ∗ ϕ(σ2))
= {τ1 ∗ γ|γ ∈ ϕ(σ1)} ∩ {τ2 ∗ γ|γ ∈ ϕ(σ2)}
= {(τ1 ∩ τ2) ∗ γ|γ ∈ ϕ(σ1) ∩ ϕ(σ2)}
= (τ1 ∩ τ2) ∗ (ϕ(σ1) ∩ ϕ(σ2))

and by condition 4 in Definition 3.1.2,

(τ1 ∩ τ2) ∗ (ϕ(σ1) ∩ ϕ(σ2)) = (τ1 ∩ τ2) ∗ ϕ(σ1 ∩ σ2)
= φ((τ1 ∩ τ2) ∗ (σ1 ∩ σ2))

Also, observe that (τ1 ∗ σ1)∩ (τ2 ∗ σ2) = (τ1 ∩ τ2) ∗ (σ1 ∩ σ2), and thus φ holds condition 4. For
condition 5, consider a simplex τ ∗ σ ∈ M(τn) ∗ bd(σn). By Lemma 4.2.6, φ(τ ∗ σ) = τ ∗ ϕ(σ) is a
dim(τ ∗σ)-pseudomanifold with bd(φ(τ ∗σ)) = bd(τ ∗ϕ(σ)) = ∪τ ′∗σ′∈bd(τ∗σ)τ

′ ∗ϕ(σ′) = φ(bd(τ ∗σ)).
Therefore, τn ~ ϕ(bd(σn)) is a divided image ofM(τn)∗bd(σn) under φ. Also, by Lemma 4.2.6, for
each τ ∗σ ∈M(τn) ∗ bd(σn), φ(τ ∗σ) = τ ∗ϕ(σ) is chromatic, connected and orientable. Moreover,
for every τ ′ ∗σ′ ∈ bd(τ ∗σ), φ(τ ′ ∗σ′) = τ ′ ∗ϕ(σ′) is connected and hence φ(bd(τ ∗σ)) is connected,
if dim(τ ∗ σ) ≥ 2. Therefore τn ~ ϕ(bd(σn)) is a ccodi of M(τn) ∗ bd(σn).

Now, if ϕ(bd(σn)) ccosdi of bd(σn) then for each τ ∗ σ ∈M(τn) ∗ bd(σn), φ(τ ∗ σ) = τ ∗ ϕ(σ) a
subdivision of τ ∗ σ, because ϕ(σ) is a subdivision and by Lemma 4.2.6. Thus, τn ~ ϕ(bd(σn)) is
a ccosdi of M(τn) ∗ bd(σn).

�

Proof of Lemma 4.2.3: Consider maps ξ and φ as defined in Lemmas 4.2.5 and 4.2.7. We have
that φ ◦ ξ(σn) = τn ~ ϕ(bd(σn)). And by Lemma 4.2.4, bd(M(τn) ∗ bd(σn)) = bd(σn), and so
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φ ◦ ξ(bd(σn)) = ϕ(bd(σn)). Therefore, ψ = φ ◦ ξ. Also, we have that ξ(σn) = M(τn) ∗ bd(σn).
And by Lemma 4.2.6, for each simplex τ ∗ σ ∈M(τn) ∗ bd(σn), φ(τ ∗ σ) is a chromatic, connected
and orientable dim(τ ∗ σ)-pseudomanifold. In addition, by Definition 3.1.2 of a divided image,
bd(φ(τ ∗ σ)) = φ(bd(τ ∗ σ)). In other words, every simplex of M(τn) ∗ bd(σn) is replaced in
τn ~ϕ(bd(σn)) by a chromatic, connected and orientable pseudomanifold that respects its boundary.
Therefore, τn ~ ϕ(bd(σn)) is also a ccodi of σn under φ ◦ ξ. Finally, if ϕ(bd(σn)) ccosdi of bd(σn),
M(τn) ∗ bd(σn) is a ccosdi of σn and τn ~ ϕ(bd(σn)) is a ccosdi of M(τn) ∗ bd(σn), by Lemmas
4.2.5 and 4.2.7, hence τn ~ ϕ(bd(σn)) is a ccosdi of σn.

�
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Chapter 5

WSB Impossibility for
Non-Exceptional Values of n

This chapter presents a characterization of the number of monochromatic n-simplexes of a ccodi
Kn of an n-simplex, with a symmetric binary coloring. This characterization, together with a well-
known result in number theory, implies that, for certain non-exceptional values of n, Kn has at
least one monochromatic n-simplex, thus WSB is not solvable, as explained in Chapter 3.

Two purely combinatorial proofs of the characterization are presented. The first step in both
proofs is that bd(Kn) determines the number of monochromatic n-simplexes of Kn. In the first
proof, the interior of Kn is replaced by another “convenient” pseudomanifold, to get another ccodi
Ln with bd(Kn) = bd(Ln), hence with the same number of monochromatic n-simplexes. A simple
counting argument using the symmetry of the binary coloring gives the characterization.

The second proof consists of an inductive process that characterizes the number of monochro-
matic n-simplexes of Kn by directly counting simplexes on bd(Kn). Roughly, the inductive process
starts with a binary coloring on bd(Kn) such that each vertex has binary color 0, and then gradually
changes the coloring of the vertexes until bd(Kn) gets its original coloring. The characterization
comes from computing how each one of these changes affects the number of monochromatic n-
simplexes, considering that each time the binary coloring of a vertex is changed, the coloring of the
corresponding isomorphic vertexes on the boundary also has to change, to preserve the symmetry
of the binary coloring.

5.1 A Combinatorial Characterization

Consider a ccodi Kn of an n-simplex with a symmetric binary coloring. Let id and b be the chromatic
and binary colorings of Kn. Assume Kn has the coloring c defined in Definition 4.1.4, i.e., for each
vertex v ∈ Kn, c(v) = (id(v) + b(v)) mod (n+ 1). Lemma 4.1.5 states that each n-simplex of Kn is
monochromatic under b if and only if it is properly colored under c. Therefore, the content C of Kn,
Definition 4.1.1, counts the monochromatic n-simplexes of Kn. The characterization is presented
in terms of C.

Theorem 5.1.1 Let Kn be a ccodi of σn with a symmetric binary coloring. Then, for some ki ∈ Z

C = 1 +
n−1∑
i=0

(
n+ 1
i+ 1

)
ki
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5.2 A Cone Based Proof

In Section 4.1 it is observed that Index Lemma implies that the content of two pseudomanifolds with
the same boundary, are the same, Lemma 4.1.3. Therefore, to characterize C(Kn), it can be used a
particular convenient divided image Ln such that bd(Kn) = bd(Ln). Intuitively, the proof consists of
putting a 0-monochromatic n-simplex τ at the center of bd(Kn) and constructing the cone of bd(Kn)
and τ , to obtain Ln. As proved in Section 4.2, every n-simplex of Ln contains at least one vertex of
τ , hence its monochromatic n-simplexes are 0-monochromatic because τ is 0-monochromatic. This
will simplify characterizing C(Ln). The key of the proof is that monochromatic n-simplexes of Ln

that contain monochromatic and isomorphic simplexes of bd(Kn), are counted in the same way by
C(Ln).

5.2.1 An Example

Figure 5.1 presents an example of the proof. The divided image L2 is obtained by taking the
boundary of K2 and constructing the cone with a 0-monochromatic 2-simplex, τ . Since K2 and
L2 have the same boundary, they have the same number of monochromatic 2-simplexes, counting
as Lemma 4.1.6 states, namely, each b-monochromatic n-simplex with orientation d is counted as
(−1)b∗nd. The reader can easily verify that C(K2) = C(L2) by giving a coherent orientation to K2

and L2 and counting each monochromatic 2-simplex with orientation d as d (if C(K2) = −C(L2)
then we get C(K2) = C(L2) by giving the opposite orientation to the simplexes of either K2 or L2).
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Figure 5.1: An example of the proof.

Now, observe that vertex u1 together with two vertexes of τ generates a 0-monochromatic 2-
simplex ρ1 in L2. Similarly, vertexes u2 and u3 generate ρ2 and ρ3, respectively. So, in total we
have three 2-simplexes, ρ1, ρ2 and ρ3, that share a 1-face with τ . Moreover, these three 2-simplexes
are 0-monochromatic because the binary coloring is symmetric on the boundary, and also have
the same orientation −1, since u1, u2 and u3 are isomorphic. Something similar happens with the
isomorphic 0-monochromatic 1-simplexes on the boundary, see for example γ1, γ2 and γ3. Thus,
C(L2) = +1, because the 2-simplex at the center τ gives +1, the 2-simplexes ρ1, ρ2 and ρ3 generated
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by the vertexes u1, u2 and u3, give 3 · (−1), and the 2-simplexes γ1, γ2 and γ3 generated by the
0-monochromatic 1-simplexes on the boundary give 3 · (+1).

5.2.2 The Proof

Let ϕ be a map such that Kn is a divided image of σn under ϕ. It is not hard to see that ϕ(bd(σn)) is
a ccodi of bd(σn) under ϕ|bd(σn). Consider a 0-monochromatic and properly colored n-simplex τn.
By Lemma 4.2.3, the cone Ln = τn ~ϕ(bd(σn)) is a ccodi of σn under the extension ψ of ϕ|bd(σn)
such that ψ(σn) = Ln. Also, notice that bd(Ln) = bd(ψ(σn)) = ψ(bd(σn)) = ϕ(bd(σn)) = bd(Kn).

By Lemma 4.2.2, every n-simplex of Ln has the form τ ∗ γ, where τ is a non-empty face of
τn, γ ∈ ϕ(bd(σn)) and dim(γ) = dim(carr(γ)). In addition, τ is the unique face of τn such that
τ ∗ γ is an n-simplex of Ln. Recall that simplex τ ∗ γ is the n-simplex generated by γ. Observe
that τ ∗ γ has at least one vertex in τn. Moreover, τ ∗ γ is 0-monochromatic if and only if γ is
0-monochromatic. Since τn is 0-monochromatic and each n-simplex contains at least one vertex of
τn, Ln does not contain 1-monochromatic n-simplexes.

Let us add the coloring c, Definition 4.1.4, to Ln and Kn. By Lemma 4.1.3, C(Kn) = C(Ln), both
with respect to c. By Lemmas 4.1.5 and 4.1.6, the proof of Theorem 5.1.1 consists of computing
C(Ln) by counting each 0-monochromatic n-simplex with orientation d as d.

Intuitively, the j-corners of a divided image are its j-simplexes that have an i-face in the
boundary, for every i ≤ j. These simplexes help in proving Lemma 5.2.2 below, which is key in the
proof of Theorem 5.1.1. Figure 5.2 shows a 2-dimensional divided image and its 2-corners marked
with a small cross.

Figure 5.2: The 2-corners of a divided image.

Definition 5.2.1 Let Kn be a divided image of σn under ψ, and σj be a j-face of σn. The set of
j-corners of ψ(σj) is:

j-corners(ψ(σj)) = { τ j ∈ ψ(σj)|∀ 0 ≤ k ≤ j,∃σk, ρk, such that
σk ⊆ σj , ρk ∈ ψ(σk) and ρ0 ⊂ ρ1 ⊂ . . . ⊂ ρj = τ j}

It follows from Definition 3.1.2 of a divided image and because σi ∈ bd(σi+1), that j-corners(ψ(σj))
is not empty: for any two faces σi ⊂ σi+1 of σn, for every τ i ∈ ψ(σi) there exists a simplex
τ i+1 ∈ ψ(σi+1) such that τ i ⊂ τ i+1.
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Consider again the divided image Ln of σn under ψ. Recall that the binary coloring b of Ln

is symmetric. Let F be a family of simplicial bijections such that b is symmetric with respect to
F . Consider i-faces σ1 and σ2 of σn, and fσ1σ2 ∈ F . Let γ1 and γ2 be isomorphic i-simplexes with
respect to fσ1σ2 , i.e., fσ1σ2(γ1) = γ2.

Lemma 5.2.2 The n-simplexes generated by γ1 and γ2, respectively, have the same orientation in
a coherent orientation of Ln.

Proof: Let ρ1 be an i-corner of ψ(σ1). Since ψ(σ1) is connected, there is an i-path, P1, from γ1 to
ρ1 in ψ(σ1). Notice that the i-simplexes of ψ(σ2), which are isomorphic to the i-simplexes of P1,
form an i-path, P2, from γ2 to ρ2, the isomorphic simplex to ρ1. One can easily prove by induction
on i, that f maps i-corners to i-corners. Then ρ2 is an i-corner of ψ(σ2). We have that the i-
simplexes of P1 generate n-simplexes in Ln. Moreover, consecutive i-simplexes in P1 (sharing an
(i−1)-face) generate n-simplexes that share an (n−1)-face. In other words, P1 generates an n-path
in Ln. Something similar happens with P2. By Lemma 3.1.1, we conclude that the n-simplexes
generated by γ1 and γ2 have the same orientation if and only if the n-simplexes generated by ρ1 and
ρ2 have the same orientation. Therefore, if the latter is proved then the lemma follows. Moreover,
by Lemma 3.1.1, it is enough to prove that, for any i-face of σn, for each i-corner λ of its divided
image, there is an n-path of length i+2 from the n-simplex generated by λ to the n-simplex at the
center of the cone, τn.

Consider an i-face σ of σn. Let ρ be an i-corner of ψ(σ). By Definition 5.2.1 of i-corners, for
some faces σ0, σ1, . . . , σi = σ, there exist simplexes ρ0 ∈ ψ(σ0), ρ1 ∈ ψ(σ1), . . . , ρ = ρi ∈ ψ(σi) such
that ρ0 ⊂ ρ1 ⊂ . . . ⊂ ρi. We have that simplexes ρ0, ρ1, . . . , ρi generate n-simplexes in Ln. Let
τj ∗ ρj be the n-simplex generated by ρj . Notice that τj ∗ ρj and τj+1 ∗ ρj+1 share an (n− 1)-face.
Also τ0 ∗ ρ0 and τn share an (n− 1)-face. Therefore, simplexes τn, τ0 ∗ ρ0, τ1 ∗ ρ1, . . . , τi ∗ ρi are a
n-path of length i+ 2.

�

Suppose Ln has a coherent orientation such that τn is positively oriented. Then C is equal
to the number of the 0-monochromatic n-simplexes generated by the i-simplexes of bd(Ln) with
carriers of dimension i, plus 1, counting τn itself. Consider i-faces σ1 and σ2 of σn. As explained
before, a 0-monochromatic i-simplex of ψ(σ1) or ψ(σ2), generates a 0-monochromatic n-simplex of
Ln. Let ki and `i be the number of 0-monochromatic n-simplexes counted by C, and generated
by the i-simplexes of ψ(σ1) and ψ(σ2), respectively. By Lemma 5.2.2, n-simplexes generated by
isomorphic i-simplexes of ψ(σ1) and ψ(σ2), with respect to fσ1σ2 , have the same orientation, and
thus ki = `i (recall that b is a symmetric binary coloring of Ln). As σn has

(
n+1
i+1

)
i-faces, the

number of the 0-monochromatic n-simplexes generated by the divided images of all i-faces of σn,
is

(
n+1
i+1

)
ki. Therefore C = 1 +

∑n−1
i=0

(
n+1
i+1

)
ki, for some ki ∈ Z.

5.3 An Inductive Based Proof

This section presents an inductive based proof of Theorem 5.1.1. Actually, the section proves a
slightly weaker result, contained in Theorem 5.3.3. Roughly, Theorem 5.3.3 assumes that the binary
coloring is rank-symmetric, and the divided image of each face of σn contains at least one vertex
that does not belong to its boundary. These two additional assumptions make the proof easier by
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reducing the number of cases to consider, and they do not restrict the applicability of the result,
because every WSB protocol indeed induces a rank-symmetric binary coloring (see Section 3.5) and
the other assumption is satisfied by the model of computation. The formal statement of Theorem
5.3.3 is postponed a bit, first an example of the proof and some extra definitions and lemmas are
presented.
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Figure 5.3: An example of the inductive process.

5.3.1 An Example

Recall that the index and content are computed with respect to the coloring c defined as c(v) =
(id(v) + b(v)) mod (n + 1) for each vertex v ∈ Kn, where id and b are the chromatic and binary
colorings of Kn. The strategy is to start with a binary coloring equal to 0 on the boundary,
∀v ∈ bd(Kn), b(v) = 0, and then process groups of isomorphic vertexes (change their binary color
to 1) with `-dimensional carriers, until bd(Kn) gets its original binary coloring. This action is
called `-step and it may be done more than once in each dimension `. A step guarantees that after
executing it, the coloring b of Kn remains rank-symmetric. Moreover, steps are done by dimension:
a vertex with (`+1)-dimensional carrier is processed if and only if every vertex with `-dimensional
carrier has its correct binary color. For example, for dimension 3, first, if necessary, the corners are
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processed, then the vertexes inside the divided images of the edges, and finally the vertexes inside
the divided images of the triangles. The vertexes inside the divided image of the tetrahedron are
not modified and actually their coloring does not matter. The main part of the proof is to analyze
how all these steps affect the index of Kn. It will be proved that all changes in a step affect the
index in the same way. The main difference between this proof and the proof in Section 5.2, is that
this one characterizes the way the content varies as the coloring is gradually modified.

Figure 5.3 presents an example of the inductive process. The vertexes have colorings b and c.
Assume the 2-simplexes are counterclockwise oriented. For a properly colored 1-simplex on the
boundary, the arrow shows the direction followed by c colors 1 and 2, and −1 or +1 denotes how
this simplex is counted by I0. The process begins with a binary coloring equal to 0 on the boundary,
Figure 5.3 (a). The index at the beginning of the process always is equal to ±1, according to the
orientation. The process has a 0-step, Figure 5.3 (b), that adds a multiple of three to the index
because a 2-simplex has three 0-faces. Figure 5.3 (c) shows a 1-step which adds a multiple of three
to the index because a 2-simplex has three 1-faces. The process ends with the 1-step in Figure 5.3
(d).

5.3.2 Additional Definitions and Lemmas

Let Kn be a divided image of σn under ψ. A cross edge of Kn is a 1-simplex {u, v} ∈ bd(Kn)
such that there exist distinct i-faces σ, σ′ of σn, 0 ≤ i ≤ n − 2, such that u ∈ ψ(σ), u /∈ ψ(σ′),
v /∈ ψ(σ) and v ∈ ψ(σ′). This implies that if Kn has no cross edges then for every σ ⊂ σn, there
exists v ∈ ψ(σ) such that carr(v) = σ. Figure 5.4 depicts two divided images of a 2-simplex and a
3-simplex, respectively, in which the bold edges are examples of cross edges. It is not hard to see
that the IS complex of a protocol in which all processes are active in at least one round, has no
cross edges.

Figure 5.4: Divided images with cross edges.

The following two lemmas concerning the orientability of isomorphic simplexes on the boundary
of a divided image, will be useful in the proof of Theorem 5.3.3. For clarity of presentation, these
lemmas are proved in Section 5.3.4. For the rest of the chapter, for a properly colored simplex σn

with IDn, let σn−1
i denote the (n− 1)-face of σn without color i ∈ IDn.

Lemma 5.3.1 Let Kn be a ccodi of σn under ψ. In any coherent orientation of Kn, ψ(σn−1
i ) has

a coherent induced orientation.

46



Lemma 5.3.2 Let Kn be a ccodi of σn with structural symmetry with respect to to F . In any
coherent orientation of Kn, the n-simplexes of Kn that contain isomorphic (n− 1)-simplexes, with
respect to F , of bd(Kn), have the same orientation.

5.3.3 The Inductive Process

This section presents the proof of Theorem 5.3.3 via the inductive process described in Section
5.3.1.

Theorem 5.3.3 Let Kn be a ccodi of σn with a rank-symmetric binary coloring and no cross edges.
Then, for some ki ∈ Z

C = 1 +
n−1∑
i=0

(
n+ 1
i+ 1

)
ki

The index and content of Kn are computed with respect to the coloring c defined in Definition
4.1.4. The following lemma computes the value of the index at the beginning of the process.

Lemma 5.3.4 If for every v ∈ bd(Kn), b(v) = 0, then Ii = ±1, according to the orientation of
Kn.

Proof: Consider the faces σ0, σ1, . . . , σn−1 of σn such that id(σi) = IDi. Let Ki denote ψ(σi). It
is clear that Ki is a ccodi of σi under ψ|σi. Assume Ki has the the induced orientation by Ki+1.
By Lemma 5.3.1, Ki has a coherent induced orientation. By the definition of c, Definition 4.1.4,
for every v ∈ bd(Kn), c(v) = id(v). Notice that Kn−1 contains all the properly colored (n − 1)-
simplexes of bd(Kn) with IDn−1. Actually, every (n− 1)-simplex of Kn−1 is properly colored with
IDn−1. Therefore, we can recursively use Index Lemma 4.1.2. That is, In(Kn) = C(Kn−1) and,
by Index Lemma, In(Kn) = (−1)n−1In−1(Kn−1). We can do the same with Kn−1 and Kn−2, i.e.,
In−1(Kn−1) = (−1)n−2In−2(Kn−2), and so on. Thus, In(Kn) = (−1)1+2+...+n−1I1(K1). Observe
that I1(K1) = ±1, according to the orientation. And by Index Lemma, Ii(Kn) = ±1.

�

In what follows, the binary color of a vertex on the boundary is modified. Consider v ∈ bd(Kn)
such that b(v) = 0. The vertex v is processed when its binary color is changed from 0 to 1.
Colorings, simplexes and values after processing v, are marked with a dot (˙). Thus, Ii and İi
denote the index of Kn before and after processing v, and c(v) and ċ(v) are its coloring c before
and after processing it.

Let k denote
(
n+1
`+1

)
. Let σ1, σ2 . . . σk be the `-faces of σn. For 1 ≤ j ≤ k, consider the id-rank-

preserving bijection fj : ψ(σ1) → ψ(σj). Let us assume that theres exists v ∈ ψ(σ1) such that
carr(v) = σ1 and b(v) = 0. For 1 ≤ j ≤ k, let vj denote fj(v), the isomorphic vertex of v in
ψ(σj). Thus v = v1. Also b(vj) = 0 and carr(vj) = σj . An `-step consists of processing one by
one the vertexes v1, v2 . . . vk. The vertexes of bd(Kn) are processed by dimension, i.e., the process
applies an `-step if and only if all necessary (` − 1)-steps have been done. Therefore, when an
`-step is the next step in the process, each vertex with carrier of dimension smaller than `, has its
correct binary color, and each vertex with carrier of dimension greater than `, has binary color 0.
Colorings, simplexes and values after a step are denoted with a circumflex (̂ ). For the rest of
the proof, fix the `-step associated with the vertexes in the set V = {v1 . . . vk}, and assume that
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none of the vertexes of V has been processed. The assumption that the binary coloring b of Kn is
rank-symmetric helps in proving that b remains rank-symmetric after an `-step. Also, it is clear
that b is rank-symmetric at the beginning of the process. However, b is not symmetric in the middle
of a step.

The core of the proof is computing how the index of Kn changes when a vertex of V is processed.
For doing that, the definition of content is extended for colored pseudomanifolds with an arbitrary
number of colors. For a colored and oriented pseudomanifold Ln (it can be colored with more
that n + 1 colors) and a set of n + 1 colors H, C(Ln,H) denotes the number of properly colored
n-simplexes in Ln with H, counted by orientation. We say that C(Ln,H) is the content of Ln

with H. Recall that, for a vertex v ∈ Ln, st(v,Ln) is the complex consisting of those simplexes
of Ln that contain the vertex v. For st(v,Ln), we write C(v,Ln,H) instead of C(st(v,Ln),H).
Figure 5.5 presents a colored pseudomanifold L2 in which st(u,L2) and st(v,L2) are the regions
bounded by bold lines. The reader can check that C(u,L2, {3, 4, 5}) = −1, C(v,L2, {1, 2, 3}) = 1
and C(u, v,L2, {0, 2, 3}) = −1, assuming each 2-simplex is counterclockwise oriented.

v
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0

1

0

2

1

3

0

u

-1

+1

-1

Figure 5.5: The extended definition of content.

Lemma 5.3.5 below describes how the index Ii changes when a vertex in bd(Kn) is processed.
For the rest of the section, assume bd(Kn) has the induced orientation by Kn. Observe that
C(v, bd(Kn), IDn

i ) is the number of (n − 1)-simplexes in st(v, bd(Kn)) that are properly colored
under c with IDn

i .

Lemma 5.3.5 Consider a vertex v ∈ bd(Kn) such that b(v) = 0. If v is processed then İi =
Ii + Ċ(v, bd(Kn), IDn

i )− C(v, bd(Kn), IDn
i ).

Proof: First, observe c(v) 6= ċ(v). Consider an (n − 1)-simplex τ ∈ st(v, bd(Kn)). We have two
cases. If c(τ) 6= IDn

i then it is possible ċ(τ) = IDn
i . In the other case, if c(τ) = IDn

i then
ċ(τ) 6= IDn

i . Thus, İi is Ii plus all those (n− 1)-simplexes of bd(Kn) that will be properly colored
with IDn

i after v is processed, minus all those properly colored (n−1)-simplexes of bd(Kn) with IDn
i

before v is processed. Also, notice that st(v, bd(Kn)) contains all those (n−1)-simplexes that change
their coloring c when v is processed. Therefore, İi = Ii + Ċ(v, bd(Kn), IDn

i )− C(v, bd(Kn), IDn
i ).

�

The following two lemmas and corollary intuitively say that when a vertex of V is processed, İi
can be computed by counting in a specific “region” of bd(Kn).
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Lemma 5.3.6 Consider an (n−1)-simplex τ ∈ st(v, bd(Kn)). If c(τ) = IDn
i then τ ∈ st(v, ψ(σn−1

i )).

Proof: First, by Definition 3.1.2 of a divided image and because σn−1
i ∈ bd(σn), we have that

ψ(σn−1
i ) ⊂ bd(Kn). We have two cases. If ` = n − 1, V is an n − 1 step, then v has a carrier of

dimension n−1 and hence v /∈ bd(ψ(σn−1
i )) (notice if v ∈ bd(ψ(σn−1

i )) then it cannot have a carrier
of dimension n− 1). Thus st(v, bd(Kn)) = st(v, ψ(σn−1

i )).
The second case is ` < n − 1. Let σ be the carrier of v. Consider a face σn−1

j of σn such
that σ ⊂ σn−1

j and σn−1
i 6= σn−1

j . We have v ∈ ψ(σn−1
j ) and i ∈ id(σn−1

j ). Consider an `-simplex
ρ ∈ st(v, ψ(σ)). Let γ be a simplex of st(v, ψ(σn−1

j )) such that ρ ⊂ γ. Let u be the vertex of γ
such that id(u) = i. Observe that u /∈ ρ and hence u /∈ ψ(σ). Since Kn does not have cross edges,
u has a carrier of dimension greater than `. Thus b(w) = 0, hence c(w) = i and c(γ) 6= IDn

i . This
implies st(v, ψ(σn−1

i )) contains every properly colored (n− 1)-simplexes of st(v, bd(Kn)) with IDn
i .

�

Corollary 5.3.7 Let v be a vertex of V such that v ∈ ψ(σn−1
i ). Then C(v, bd(Kn), IDn

i ) =
C(v, ψ(σn−1

i ), IDn
i ).

Lemma 5.3.8 Let v be a vertex of V such that v ∈ ψ(σn−1
i ). If v is processed then İi = Ii −

C(v, ψ(σn−1
i ), IDn

i ).

Proof: By Lemma 5.3.5, if v is processed, İi = Ii + Ċ(v, bd(Kn), IDn
i ) − C(v, bd(Kn), IDn

i ).
And by Lemma 5.3.7, C(v, bd(Kn), IDn

i ) = C(v, ψ(σn−1
i ), IDn

i ). Consider an (n − 1)-simplex
τ ∈ st(vi, ψ(σn−1

i )). Recall that id(τ) = IDn
i . By the definition of coloring c, Definition 4.1.4, one

can conclude c(τ) = IDn
i if and only if τ is 0-monochromatic. Also observe τ̇ is not 0-monochromatic

and hence ċ(τ) 6= IDn
i . Thus, Ċ(vi, bd(Kn), IDn

i ) = 0 and so İi = Ii−C(v, bd(Kn), IDn
i ). By Corol-

lary 5.3.7, the lemma follows.

�

Lemma 5.3.9 shows that the content of vertexes u, v ∈ V in ψ(σn−1
i ), are essentially the same,

assuming none of them have been processed. This property will imply that all the modifications in
a step affect the index in the same way.

Lemma 5.3.9 Consider vertexes u, v ∈ V that belong to ψ(σn−1
i ) and ψ(σn−1

j ), respectively. Then
(−1)iC(u, ψ(σn−1

i ), IDn
i ) = (−1)jC(v, ψ(σn−1

j ), IDn
j ).

Proof: Consider the faces σ`+1, . . . , σn−1, σn such that id(σm) = IDm, ` < m ≤ n. For m < n,
assume ψ(σm) has the induced orientation by ψ(σm+1). By Lemma 5.3.1, ψ(σm) has a coherent
induced orientation. It is clear that ψ(σm) is a ccodi of σm under ψ|σm with a rank symmetric
binary coloring and no cross edges. By induction on m, we prove that the lemma holds for the
vertexes of V that belong to ψ(σm).

For the base of the induction, ` + 1, consider faces σ`
i and σ`

j of σ`+1, without id color i and
j. Let L`

i and L`
j denote ψ(σ`

i ) and ψ(σ`
j). Notice that L`

i and L`
j only contain one vertex of

V, respectively. Consider u, v ∈ V such that u ∈ L`
i and v ∈ L`

j . By the definition of coloring
c, Definition 4.1.4, one can conclude that, for τ ∈ st(u,L`

i), c(τ) = id(τ) if and only if τ is 0-
monochromatic. Consider an `-simplex τ ∈ st(u,L`

i). Recall that id(τ) = ID`+1
i . Suppose τ is
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0-monochromatic. Thus, for each w ∈ τ , c(w) = id(w). Notice that if τ has induced orientation
d then C(u,L`

i , ID
`+1
i ) counts τ as d. Something similar happens with `-simplexes in st(v,L`

j).
Consider the isomorphic `-simplex ρ of τ in st(v,L`

j). Notice that ρ is 0-monochromatic. By
Lemma 5.3.2, τ and ρ have the same orientation, multiplied by (−1)i and (−1)j , respectively.
Therefore, (−1)iC(u,L`

i , ID
`+1
i ) = (−1)jC(v,L`

j , ID
`+1
j ).

Suppose the lemma is true for m − 1. We prove it is true for m. Consider the faces σm−1

and σm−1
k of σm. Thus, id(σm−1) = IDm−1 and id(σm−1

k ) = IDm
k . Let Lm−1 and Lm−1

k denote
ψ(σm−1) and ψ(σm−1

k ). We have that Lm−1 and Lm−1
k contain more than one vertex of V. Consider

u, v ∈ V such that u ∈ Lm−1, v ∈ Lm−1
k and they are isomorphic. As in the base of the induc-

tion, it can be easily proved that (−1)mC(u,Lm−1, IDm−1) = (−1)kC(v,Lm−1
k , IDm

k ). Consider a
vertex w ∈ V such that w 6= u and w ∈ Lm−1. Observe that if we prove C(u,Lm−1, IDm−1) =
C(w,Lm−1, IDm−1), the lemma follows.

1,2

0,0

1,1

2,2

2,2

1,1

u

0

0

1

2

2

1

Figure 5.6: Example of coloring c′.

Let σm−2
i and σm−2

j be faces of σm−1 such that u ∈ ψ(σm−2
i ) and w ∈ ψ(σm−2

j ). Assume, w.l.o.g.,
faces σm−2

i and σm−2
j do not have colors i and j. Let Lm−2

i and Lm−2
j denote ψ(σm−2

i ) and ψ(σm−2
j ).

The idea is to prove that C(u,Lm−1, IDm−1) = (−i)iC(u,Lm−2
i , IDm−1

i ) and C(w,Lm−1, IDm−1) =
(−i)jC(w,Lm−2

j , IDm−1
j ), by using Index Lemma on complexes st(u,Lm−1) and st(w,Lm−1). Then,

C(u,Lm−1, IDm−1) = C(w,Lm−1, IDm−1), by induction hypothesis. However, it is possible c colors
st(u,Lm−1) and st(w,Lm−1) with more than m colors, and thus Index Lemma cannot be used on
them. So it is defined an extra coloring c′ for these two complexes that uses m colors.

Consider st(u,Lm−1). The coloring c′ is defined as follows. For each vertex x ∈ st(u,Lm−1),
if b(x) = 0 then c′(x) = c(x), otherwise c′(x) = c(u). Figure 5.6 contains an example of coloring
c′ where the vertexes inside the triangle have colorings id, b and c, and the stars complex of u, at
the right, has the coloring c′. Since b(u) = 0 and for every x ∈ st(u,Lm−1), id(x) ∈ IDm−1, we
have that c′ uses colors IDm−1. Therefore, Index Lemma can be applied on st(u,Lm−1). Also, as
noticed above, for each τ ∈ st(u,Lm−1), c(τ) = id(τ) if and only if τ is 0-monochromatic, and thus
c′(τ) = id(τ) if and only if c(τ) = id(τ). Thus, C(st(u,Lm−1)) and C(st(u,Lm−2

i )) with respect to
c′, are equal to C(u,Lm−1, IDm−1) and C(u,Lm−2

i , IDm−1
i ) with respect to c, respectively. Now,

for an (m−2)-simplex τ ∈ bd(st(u,Lm−1)), if c′(τ) = IDm−1
i then τ ∈ st(u,Lm−2

i ). In other words,
Lm−2

i is the only “region” of bd(st(u,Lm−1)) containing properly colored simplexes with IDm−1
i .

First observe that σm−2
i ∈ bd(σm−1) and hence Lm−2

i ⊂ Lm−1. Also if τ /∈ Lm−2
i then there must
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exists x ∈ τ such that id(x) = i. Since x ∈ st(u,Lm−1), there exists a 1-simplex connecting x and
u. Because there are no cross edges, x has a carrier of dimension greater than ` and hence b(x) = 0.
Therefore c′(x) = i and so c′(τ) 6= IDm−1

i .
By Index Lemma 4.1.2, C(st(u,Lm−1)) = (−i)iIi(st(u,Lm−1)). Also, we get Ii(st(u,Lm−1)) =

C(st(u,Lm−2
i )) because for every τm−2 ∈ bd(st(u,Lm−1)) such that c′(τm−2) = IDm−1

i , we have
that τm−2 ∈ Lm−2

i . Therefore, C(st(u,Lm−1)) = (−i)iC(st(u,Lm−2
i )). Similarly, by adding the

appropriate c′ coloring to st(w,Lm−1), we get C(st(w,Lm−1)) = (−i)jC(st(w,Lm−2
j )). Finally,

by induction hypothesis, (−i)iC(st(u,Lm−2
i )) = (−i)jC(st(w,Lm−2

j )) and thus C(st(u,Lm−1)) =
C(st(w,Lm−1)).

�

Lemma 5.3.10 shows how the `-step associated to V affects the index. Recall that a dot ( ˙ )
denotes a value after a vertex is processed and a circumflex (̂) denotes a value after a step is done.

Lemma 5.3.10 After the `-step associated to V is done, we have that Îi = Ii +
(
n+1
i+1

)
k, for some

k ∈ Z.

Proof: Consider vertexes vi, vj ∈ V such that vi ∈ ψ(σn−1
i ) and vj ∈ ψ(σn−1

j ). By Index Lemma
4.1.2, (−1)i−jIi = Ij and (−1)i−j İi = İj . And by Lemma 5.3.8, İj = Ij − C(vj , ψ(σn−1

j ), IDn
j ),

when vj is processed. Combining these three equations, we get İi = Ii−(−1)j−iC(vj , ψ(σn−1
j ), IDn

j ).
Using Lemma 5.3.9, we get C(vi, ψ(σn−1

i ), IDn
i ) = (−1)j−iC(vj , ψ(σn−1

j ), IDn
j ), and hence İi =

Ii − C(vi, ψ(σn−1
i ), IDn

i ). In other words, when vj is processed, the index Ii changes as if vi is
processed. Since Kn does not have cross edges, there is not a 1-simplex connecting vi and vj ,
and so vj /∈ st(vi, bd(Kn)). Therefore, the c coloring of the (n− 1)-simplexes in st(vi, ψ(σn−1

i )) do
not change when vj is processed, hence C(vi, ψ(σn−1

i ), IDn
i ) = Ċ(vi, ψ(σn−1

i ), IDn
i ). Thus, we have

Îi = Ii − C(vi, ψ(σn−1
i ), IDn

i )
(
n+1
i+1

)
at the end of the step, because V contains

(
n+1
i+1

)
vertexes.

�

Lemma 5.3.10 directly implies the following lemma.

Lemma 5.3.11 Let Ii and Îi be the indexes of Kn before and after all the `-steps in the process
are done. Then Îi = Ii −

(
n+1
i+1

)
k, for some k ∈ Z.

By Lemma 5.3.4, Ii = ±1 at the beginning of the process, according to the orientation. And
by Lemma 5.3.11, after all `-steps in the process, Îi = Ii −

(
n+1
i+1

)
k, Therefore, at the end of the

process, Ii = 1 +
∑n−1

i=0

(
n+1
i+1

)
k`, for some k` ∈ Z. By Index Lemma 4.1.2, Theorem 5.3.3 follows.

5.3.4 Concluding the Proof

This section completes the proof of Theorem 5.3.3 by proving Lemmas 5.3.1 and 5.3.2. First, some
lemmas concerning the orientability of the simplexes of a divided image are presented. In what
follows, for {i1, . . . , ik} ⊂ IDn, let IDn

{i1,...,ik} denote the set IDn − {i1, . . . , ik}.
Let Kn be a chromatic and coherently oriented divided image of σn under ψ. Suppose ψ(σn−1

i )
contains two distinct simplexes τn−1 and ρn−1 such that they share an face γn−2. By condition
5 in Definition 3.1.2 of divided image, and since σn−1

i ∈ bd(σn), there exist distinct simplexes τn
1 ,

ρn
1 ∈ Kn such that τn−1 ⊂ τn

1 and ρn−1 ⊂ ρn
1 .
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Lemma 5.3.12 Simplexes τn
1 and ρn

1 have opposite orientations.

Proof: By condition 5 in Definition 3.1.2 of divided image, there exist simplexes τn
1 = λn

1 , λ
n
2 . . . λ

n
t−1,

λn
t = ρn

1 of Kn such that all of them contain the simplex γn−2, and λn
k and λn

k+1 share a face %n−1
k ,

where γn−2 ⊂ %n−1
k (see Figure 5.7 for an example). In other words, these simplexes form an n-path

in which adjacent simplexes share an (n−1)-face containing γn−2. Observe that if this path does not
exist then bd(ψ(σn)) 6= ψ(bd(σn)). Since Kn is a chromatic, then id(ρn−1) = id(τn−1) = IDn

i and
id(γn−2) = IDn

{i,j} for some j ∈ IDn
i . Also, notice that either id(%n−1

k ) = IDn
i or id(%n−1

k ) = IDn
j

(recall γn−2 ⊂ %n−1
k ). We have that id(%n−1

1 ) = IDn
j because τn−1 ⊂ τn

1 = λn
1 and id(τn−1) = IDn

i .
And id(%n−1

2 ) = IDn
i because %n−1

1 ⊂ λn
2 and id(%n−1

1 ) = IDn
j , and so on. Therefore, if k is even

then id(%n−1
k ) = IDn

i , and if it is odd then id(%n−1
k ) = IDn

j . We can conclude that t must be even
and hence the path contains an even number of n-simplexes. By Lemma 3.1.1, τn

1 and ρn
1 have

opposite orientations.

�

Consider now faces σn−1
i and σn−1

j of σn with i 6= j. By conditions 4 and 5 in Definition 3.1.2
of divided image, there exist simplexes τn−1 ∈ ψ(σn−1

i ) and ρn−1 ∈ ψ(σn−1
j ) such that they share

a face γn−2, where γn−2 ∈ ψ(σn−1
i ∩ σn−1

j ). Moreover, there exist the simplexes τn
2 , ρn

2 ∈ Kn such
that τn−1 ⊂ τn

2 and ρn−1 ⊂ ρn
2 . Observe that ρn

2 and τn
2 can be the same simplex.

Lemma 5.3.13 Simplexes τn
2 and ρn

2 have the same orientation.

Proof: As in the proof of Lemma 5.3.12, there exist simplexes τn
2 = λn

1 , λ
n
2 . . . λ

n
t−1, λ

n
t = ρn

2 of Kn

such that all of them contain the simplex γn−2, and λn
k and λn

k+1 share a face %n−1
k , where γn−2 ⊂

%n−1
k (see Figure 5.7 for an example). Because Kn is chromatic, id(τn−1) = IDn

i , id(ρn−1) = IDn
j

and id(γn−2) = IDn
{i,j}. Following a reasoning that the one used in the proof of Lemma 5.3.12,

we can see that if k is even then id(%n−1
k ) = IDn

i , and if it is odd then id(%n−1
k ) = IDn

j , thus we
conclude that the path contains an odd number of n-simplexes. By Lemma 3.1.1, τn

2 and ρn
2 have

the same orientation.

�

Lemma 5.3.1 (Restated) Let Kn be a ccodi of σn under ψ. In any coherent orientation of Kn,
ψ(σn−1

i ) has a coherent induced orientation.

Proof: By definition of orientability, the orientation of an (n − 1)-simplex of ψ(σn−1
i ) is the

orientation of the unique n-simplex of Kn that contains it, multiplied by (−1)i. Consider distinct
simplexes τn−1, ρn−1 ∈ ψ(σn−1

i ) such that they share a face γn−2. Let τn and ρn be the simplexes of
Kn such that τn−1 ⊂ τn and ρn−1 ⊂ ρn. By Lemma 5.3.12, τn and ρn has opposite orientations and
hence τn−1 and ρn−1 has opposite induced orientations. By Lemma 3.1.1, ψ(σn−1

i ) has a coherent
orientation.

�
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Figure 5.7: Two paths of simplexes.

Lemma 5.3.14 Let Kn be a ccodi of σn under ψ. In any coherent orientation of Kn, all simplexes
of n-corners(Kn) have the same orientation.

Proof: Consider faces σ1, σ2, . . . , σn−1 of σn such that σ1 ⊂ σ2 ⊂ . . . ⊂ σn−1. For 1 ≤ i ≤ n− 1,
let Ki denote the complex ψ(σi). Assume Ki has the induced orientation by Ki+1. By Lemma
5.3.1, Ki is coherently oriented. We proceed by induction on n. The base of the induction is for K1.
Since K1 is chromatic and connected, K1 has an odd number of 1-simplexes. Also, the 1-simplexes
containing the two vertexes in boundary, are the 1-corners. By Lemma 3.1.1, the simplexes of
1-corners(K1) have the same orientation. Suppose the lemma holds for i − 1. We prove that it
holds for i.

By Definition 5.2.1 of n-corners, every simplex of (i − 1)-corners(Ki−1) is contained in some
simplex of i-corners(Ki). However, it is not necessary true that every simplex of i-corners(Ki)
contains a simplex of (i − 1)-corners(Ki−1). We first prove that the i-corners of Ki containing
an (i − 1)-corner of Ki−1, have the same orientation. Let τ i−1 and ρi−1 be simplexes of (i − 1)-
corners(Ki−1) and τ i and ρi be the simplexes of i-corners(Ki) such that ρi−1 ⊂ ρi and τ i−1 ⊂ τ i.
By definition of orientability, τ i induces its orientation multiplied by (−1)k to τ i−1, and ρi induces
its orientation multiplied by (−1)k to ρi−1, for some k. Also, by induction hypothesis, the simplexes
of (i− 1)-corners(Ki−1) have the same orientation, and thus τ i and ρi have the same orientation.

Consider now a face λi−1 of σi such that λi−1 6= σi−1. Let Li−1 denote the complex ψ(λi−1) and
Li−2 denote the complex ψ(σi−1 ∩λi−1). We now prove that simplexes of i-corners(Ki) containing
a simplex of (i− 1)-corners(Ki−1) or (i− 1)-corners(Li−1), have the same orientation. Consider a
simplex γi−2 of (i−2)-corners(Li−2). Let τ i−1 ∈ (i−1)-corners(Ki−1), ρi−1 ∈ (i−1)-corners(Li−1)
and τ i, ρi ∈ i-corners(Ki) be the simplexes such that γi−2 ⊂ τ i−1 ⊂ τ i and γi−2 ⊂ ρi−1 ⊂ ρi. By
Lemma 5.3.13, τ i and ρi have the same orientation. By the previous case, this one holds. This
complete the proof.

�

Lemma 5.3.2 (Restated) Let Kn be a ccodi of σn with structural symmetry with respect to F . In
any coherent orientation of Kn, the n-simplexes of Kn that contain isomorphic (n − 1)-simplexes,
with respect to F , of bd(Kn), have the same orientation.
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Proof: Let Kn−1
i and Kn−1

j denote ψ(σn−1
i ) and ψ(σn−1

j ). Consider isomorphic simplexes ρn−1 ∈
Kn−1

i and τn−1 ∈ Kn−1
j , i.e., for fσn−1

i σn−1
j
∈ F , fσn−1

i σn−1
j

(ρn−1) = τn−1. Let ρn and τn be the

unique simplexes of Kn such that ρn−1 ⊂ ρn and τn−1 ⊂ τn. The induced orientation of ρn−1 is
the orientation of ρn multiplied by (−1)i and the induced orientation of τn−1 is the orientation of
τn multiplied by (−1)j . Thus, it is sufficient to prove that ρn−1 and τn−1 have the same induced
orientation, multiplied by (−1)i and (−1)j , respectively.

By Definition 5.2.1, every simplex of (n− 1)-corners(Kn−1
i ) or (n− 1)-corners(Kn−1

j ) is face of
a simplex in n-corners(Kn). Consider simplexes γn−1 ∈(n− 1)-corners(Kn−1

i ) and λn−1 ∈(n− 1)-
corners(Kn−1

j ). By Lemma 5.3.14, γn−1 and λn−1 have the same induced orientation, multiplied by
(−1)i and (−1)j . By Lemma 3.1.1 and since Kn−1

i is connected, Kn−1
i has only two possible coherent

orientations. Therefore, an orientation of an (n− 1)-simplex of Kn−1
i induces the orientation of the

other (n − 1)-simplexes in a coherent orientation. Something similar happens with Kn−1
j . It can

be easily proved by induction on n, that any ids-preserving simplicial bijection f : Kn−1
i → Kn−1

j ,
maps (n− 1)-corners to (n− 1)-corners. Therefore, an (n− 1)-simplex of Kn−1

i is isomorphic to an
(n− 1)-simplex of Kn−1

j with the same orientation, multiplied by (−1)i and (−1)j .

�

5.4 WSB Impossibility

Theorem 3.5.1 states that if there is a wait-free WSB protocol, there is a ccodi Kn of an n-simplex
with a symmetric binary coloring and no monochromatic n-simplexes. That is, if Kn has the
coloring c defined in Definition 4.1.4, C with respect to c must be zero, since each monochromatic
n-simplex is monochromatic under b if and only if it is properly colored under c, by Lemma 4.1.5.
Also, by Theorem 5.1.1

C = 1 +
n−1∑
i=0

(
n+ 1
i+ 1

)
ki

Therefore, if there is a wait-free WSB protocol, the linear Diophantine equation(
n+ 1

1

)
k0 +

(
n+ 1

2

)
k1 + . . .+

(
n+ 1
n

)
kn−1 = 1 (5.1)

has an integer solution. A well-known result in number theory states that for non-zero integers
a1, . . . , aj and an integer c, if there exist integers x1, . . . , xj such that a1x1 + . . . + ajxj = c then
the greatest common divisor of a1, . . . , aj , denoted (a1, . . . , aj), divides c (see for example [68, pp.
301]). Therefore, if (

(
n+1

1

)
, . . .,

(
n+1

n

)
) 6= 1, namely, they are not relatively prime, then there are

not integers k0, . . . , kn−1 which satisfy equation (5.1). Since
(
n+1
i+1

)
=

(
n+1
n−i

)
, Theorem 5.4.1 focuses

{
(
n+1
i+1

)
|0 ≤ i ≤ bn−1

2 c}.

Theorem 5.4.1 (WSB Impossibility) If {
(
n+1
i+1

)
|0 ≤ i ≤ bn−1

2 c} are not relatively prime then
there does not exist an anonymous wait-free protocol that solves WSB.

For example, it is easy to check that if n+ 1 is prime then C ≡ 1 mod (n+ 1). Therefore, there
exist infinitely many cases in which WSB is not wait-free solvable. Also, it can be easily proved
that C ≡ 1 mod 2, if n+ 1 = 4.
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Corollary 5.4.2 If n+ 1 is prime or 4 then there does not exist an anonymous wait-free protocol
that solves WSB.

Theorem 5.4.1 implies the following result, which is a special case of Theorem 6.2 in [56] and
Theorem 6.3 in [55], recalling that WSB is equivalent to 2n-renaming (see Section 2.2).

Corollary 5.4.3 (Renaming lower bound) If {
(
n+1
i+1

)
|0 ≤ i ≤ bn−1

2 c} are not relatively prime
then there does not exist an anonymous wait-free protocol that solves M -renaming with M < 2n+1.
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Chapter 6

A WSB Protocol for Exceptional
Values of n

Chapter 5 proved that, for some non-exceptional values of n, WSB is not wait-free solvable. This
chapter shows that WSB is indeed wait-free solvable for the other exceptional values of n. More
precisely, it presents a construction that produces a ccosdi of an n-simplex with a rank-symmetric
binary coloring and without monochromatic n-simplexes, for any exceptional value of n, which
implies the existence of a wait-free WSB protocol, by Theorem 3.5.2.

6.1 The Construction

The impossibility proof of WSB in Chapter 5 is based on a characterization of the number of
monochromatic n-simplexes, C, of a ccodi of an n-simplex with a symmetric binary coloring; some
monochromatic n-simplexes are counted as +1 and the other as −1. That characterization states
that C = 1 +

∑n−1
i=0

(
n+1
i+1

)
ki, for some integers k0, . . . , kn−1. Analyzing this expression one can see

that C 6= 0, if n is non-exceptional, which implies the impossibility of WSB.
The construction presented in this chapter consists on the following two steps. The first step,

described in Section 6.2, shows that, given integers k0, . . . , kn−1 with k0 ∈ {0,−1}, it is possible
to construct a ccosdi Kn of an n-simplex with a rank-symmetric binary coloring and C = 1 +∑n−1

i=0

(
n+1
i+1

)
ki. The second part of the construction, in Section 6.3, subdivides the interior of Kn

to remove some monochromatic n-simplexes. Intuitively, it repeatedly takes a path of n-simplexes
connecting two monochromatic n-simplexes counted as +1 and −1, and subdivides it to remove
the monochromatic simplexes at its ends. The resulting ccosdi has exactly |C| monochromatic
n-simplexes. Therefore, the construction gives the following result.

Theorem 6.1.1 Let k0, k1 . . . kn−1 be integers such that k0 ∈ {0,−1}. There exists a ccosdi of an
n-simplex with a rank-symmetric binary coloring,

C = 1 +
n−1∑
i=0

(
n+ 1
i+ 1

)
ki

and with exactly |C| monochromatic n-simplexes.

It turns out that if n is exceptional, there exists integers k0, . . . , kn−1 such that C = 1 +∑n−1
i=0

(
n+1
i+1

)
ki = 0, hence WSB is wait-free solvable, by Theorem 3.5.2.
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6.2 Constructing Divided Images

Theorem 5.1.1 says that the number of monochromatic n-simplexes, the content C, of a ccodi of an
n-simplex with a symmetric binary coloring, is C = 1+

∑n−1
i=0

(
n+1
i+1

)
ki, for some integers k0, . . . , kn−1.

This section presents the opposite direction, namely, it shows a construction that, given integers
k0, . . . , kn−1 with k0 ∈ {0,−1}, produces a ccodi Kn of an n-simplex with a symmetric binary
coloring and C = 1 +

∑n−1
i=0

(
n+1
i+1

)
ki. Moreover, Kn is a ccosdi and its binary coloring is rank-

symmetric. This construction implies the following theorem.

Theorem 6.2.1 Let k0, k1 . . . kn−1 be integers such that k0 ∈ {0,−1}. There exists a ccosdi of an
n-simplex with a rank-symmetric binary coloring and

C = 1 +
n−1∑
i=0

(
n+ 1
i+ 1

)
ki

Recall that C can be easily computed by counting each b-monochromatic n-simple with orien-
tation d, d ∈ {+1,−1}, as (−1)b∗nd, by Lemma 4.1.6.

Section 6.2.1 first presents a small example of the construction with C = 0 and n = 5, the first
exceptional value of n.

6.2.1 An 5-dimensional example

This section describes how to construct a ccosdi K5 of σ5 under ψ, with a rank-symmetric binary
coloring and C = 0. Dimension 5 is the smallest dimension in which it is possible to construct
such a divided image, because n = 5 is the smallest exceptional value, i.e., the integers in the set
{
(
n+1
i+1

)
: 0 ≤ i ≤ bn−1

2 c} are relatively prime. For the example, let k0 = −1, k1 = −1, k2 = 1, k3 =
0, k4 = 0, as 1 +

(
6
1

)
k0 +

(
6
2

)
k1 +

(
6
3

)
k2 +

(
6
4

)
k3 +

(
6
5

)
k4 = 0.

The strategy is essentially the same as the one used in the cone based proof of Theorem 5.1.1,
but inverting the process. The idea is to construct ψ(bd(σ5)) such that the divided image of any
proper i-face of σ5 has exactly |ki| 0-monochromatic i-simplexes. Once ψ(bd(σ5)) is constructed, K5

is the cone over ψ(bd(σ5)) for a 0-monochromatic 5-simplex. As we shall see, the divided image of
any proper i-face generates |ki| 0-monochromatic 5-simplexes, each one of them counted as sign(ki).

First, for each face σ0 of σ5, ψ(σ0) is a vertex v with b(v) = 0 (because k0 = −1). For
i = 1, 2, 3, 4, assume it has been constructed ψ(bd(σj)), for every σj ∈ bd(σ5), 0 ≤ j < i. Then, take
a face σi of σ5, and construct the cone over ψ(bd(σi)) with some new 1-monochromatic i-simplex.
Once this is done, ψ(σi) is chromatically subdivided until it has exactly |ki| 0-monochromatic i-
simplexes. In the next section we will see that these i-simplexes must have orientation sign(ki) in a
coherent orientation of ψ(σi) such that at least on of its i-corners has orientation (−1)i+1. The goal
is that the 0-monochromatic i-simplexes of ψ(σi) will generate |ki| 0-monochromatic 5-simplexes in
K5, each one of them counted as sign(ki). This construction is repeated for each i-face, preserving
the rank of id colors, to make sure K5 will be rank-symmetric.

The case of i = 1 is illustrated in Figure 6.1. The goal is to create exactly one 0-monochromatic
1-simplex in the interior of ψ(σ1) (because |k1| = 1) that has orientation sign(k1) in a coherent
orientation of ψ(σ1) in which at least one of its 1-corners is positively oriented (because i is odd).
Figure 6.1 (a) contains the cone over ψ(bd(σ1)) for a new 1-simplex, and Figures 6.1 (b) and (c)
shows how ψ(σ1) is subdivided until it has the desired 0-monochromatic 1-simplex. The reader
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can verify that in Figures 6.1 (a) and (b) it is not possible to produce such a simplex by changing
the binary color of the interior vertexes. Recall that in any coherent orientation of a chromatic
n-pseudomanifold, every pair of n-simplexes that share an (n− 1)-face, have opposite orientations,
by Lemma 3.1.1 The construction is the same, preserving id ranking, for every 1-face of σ5.

(a)

(b)

(c)

Figure 6.1: The construction for k1.

For a 2-face σ2 of σ5, ψ(σ2) is the cone over ψ(bd(σ2)) for a new 1-monochromatic 2-simplex. It
is now needed exactly one 0-monochromatic 2-simplex in the interior of ψ(σ2) (because |k2| = 1),
and also that simplex must have orientation sign(k2) in a coherent orientation of ψ(σ2) in which at
least one of its 2-corners is negatively oriented (because i is even). In this case it is enough to color
with 0 only one vertex of the 2-simplex at the center. Figure 6.2 presents an example of ψ(σ2).

Figure 6.2: The construction for k2.

Since k3 = k4 = 0, for 3 ≤ i ≤ 5, ψ(σi) is cone constructed with a 1-monochromatic i-simplex
at the center and without further subdivisions.

Finally, K5 is the cone of ψ(bd(σ5)) for a 0-monochromatic simplex τ5. Then K5 is coherently
oriented such that τ5 is positively oriented. Therefore, C is 1, counting τ5, plus 6k0 +15k1 +20k2 =
−6 − 15 + 20, counting the 0-monochromatic 5-simplexes generated by the divided images of the
i-faces of σ5, 0 ≤ i ≤ 2.
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6.2.2 The construction for dimension n

This section presents the general construction that proves Theorem 6.2.1. Figure 6.3 contains the
construction ConstructCcosdi that takes integers k0, . . . , kn−1 with k0 ∈ {0,−1}, and produces
a ccosdi of an n-simplex with a rank-symmetric binary coloring and C = 1 +

∑n−1
i=0

(
n+1
i+1

)
ki.

ConstructCcosdi(k0, k1, . . . , kn−1)
(01) init: for every 0-face σ0 of σn, ψ(σ0) is a vertex v with id(v) = id(σ0) and b(v) = 1
(02) if k0 = −1 then b(v)← 0
(03) for i← 1 to n− 1 do
(04) let σi a face of σn

(05) do the cone over ψ(bd(σi)) for a new 1-monochromatic τ i with id(τ i) = id(σi)
(06) give a coherent orientation to ψ(σi) such that at least one of its i-corners has orientation (−1)i+1

(07) for j ← 1 to |ki| do
(08) do basic chromatic subdivisions over ψ(σi) using new 1-monochromatic i-simplexes

and without modifying its 0-monochromatic i-simplexes, until it has a sign(ki) oriented non
0-monochromatic i-simplex γ such that ∀ρi ∈ st(γ) \ γ, ∃v ∈ ρi such that v /∈ γ and b(v) = 1

(09) do b(γi)← 0
(10) copy ψ(σi) to the divided image of every i-face, preserving the rank of id colors
(11) do the cone over bd(ψ(σn)) for a new 0-monochromatic τn

(12) give a coherent orientation to ψ(σn) such that τn is positively oriented

Figure 6.3: The general construction.

The following two definitions are used in ConstructCcosdi. Consider two chromatic n-
simplexes σn and τn. For bd(σn) and τn, the basic chromatic subdivision over bd(σn) for τn,
denoted τn ~ bd(σn), is the cone over ϕ(bd(σn)) for τn, where ϕ(σ) = σ for each σ ∈ bd(σn).
Figure 6.4 depicts a basic chromatic subdivision of dimension 2. Consider a complex L and one
of its vertexes v. If L is understood, the star complex st(v,L) is denoted st(v). For each simplex
ρ = {v0 . . . vn} of L, let st(ρ) denote st(v0) ∪ . . . ∪ st(vn).

0

1

0

1 2

2

Figure 6.4: The basic chromatic subdivision of dimension 2.

ConstructCcosdi only uses the cone construction and the basic chromatic subdivision to
construct Kn, thus Kn is a ccosdi σn under ψ, at the end of line 12, by Lemma 4.2.3. Also, Kn

is coherently oriented. By Lemma 4.2.2, Kn does not have 1-monochromatic n-simplexes because
the simplex at the center τn is 0-monochromatic. In addition, line 10 guarantees that Kn has
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a rank-symmetric binary coloring. Thus, if we prove that, for any proper i-face σ of σn, the 0-
monochromatic i-simplexes of ψ(σ) generate |ki| 0-monochromatic n-simplexes oriented sign(ki),
then C = 1+

∑n−1
i=0

(
n+1
i+1

)
ki, as each d oriented 0-monochromatic n-simplex is counted as d by C, by

Lemma 4.1.6. Recall that, by Lemma 4.2.2, for each i-simplex γ ∈ ψ(σi), the n-simplex generated
by γ is the simplex τ ∗ γ, where τ is the unique face of τn such that dim(τ ∗ γ) = n.

Line 1 guarantees that ψ(σ0) only contains one vertex, v. Also, v generates an n-simplexes,
τn−1 ∗ v, in Kn such that τn−1 ⊂ τn, hence τn and τn−1 ∗ v share an (n − 1)-face. By Lemma
3.1.1 and since τn is positively oriented, τn−1 ∗ v is negatively oriented. Moreover, τn−1 ∗ v is
0-monochromatic if and only if b(v) = 0, and b(v) = 0 if and only if k0 = −1.

Consider the i-th iteration of the for loop in line 3. Line 6 gives a coherent orientation to ψ(σi)
in which at least one of its i-corners has orientation (−1)i+1 (in fact, in any coherent orientation
of ψ(σi), all its i-corners have the same orientation, by Lemma 5.3.14). Line 8 subdivides ψ(σi)
until it has a non 0-monochromatic i-simplex with orientation sign(ki), which is “surrounded” by
i-simplexes that will not be 0-monochromatic after line 9. Therefore, after the for loop in line 7,
ψ(σi) has exactly |ki| 0-monochromatic i-simplexes, all of them sign(ki) oriented. The proof that
line 8 always finishes is postponed a little bit. Now, notice that the 0-monochromatic i-simplexes
of ψ(σi) generate |ki| 0-monochromatic n-simplexes in Kn. In what follows it is proved that each
one of these n-simplexes has orientation sign(ki). The argument is similar to the one used in the
proof of Lemma 5.2.2.

τ

γ
λ

Figure 6.5: Obtaining an isolated simplex.

Consider an i-corner ρi of ψ(σi) with orientation (−1)i+1. Let γn be the n-simplexes generated
by ρi. By Definition 5.2.1 of i-corners, for some faces σ0, σ1, . . . , σi, there exist simplexes λ0 ∈
ψ(σ0), λ1 ∈ ψ(σ1), . . . , λi = ρi ∈ ψ(σi) such that λ0 ⊂ λ1 ⊂ . . . ⊂ λi. Let τj ∗ λj be the n-simplex
generated by λj . Hence τi ∗ λi = γn. Notice that τj ∗ λj and τj+1 ∗ λj+1, 0 ≤ j ≤ i − 1, share
an (n − 1)-face and τ0 ∗ λ0 and τn share τ0, which is (n − 1)-dimensional. Therefore, simplexes
τn, τ0 ∗ λ0, τ1 ∗ λ1, . . . , τi ∗ λi = γn are an n-path of length i+ 2. By Lemma 3.1.1 and since Kn is
coherently oriented such that τn is positively oriented, γn has orientation (−1)i+1. In other words,
ρi and γn have the same orientation in ψ(σi) and Kn, respectively.

Consider now a 0-monochromatic i-simplex %i ∈ ψ(σi). Let λn be the n-simplexes generated by
%i. Since ψ(σi) is connected, there is an i-path from the i-corner ρi to %i. Let P such a path. The
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i-simplexes of P generate n-simplexes in Kn. Moreover, consecutive i-simplexes in P (sharing an
(i − 1)-face) generate n-simplexes that share an (n − 1)-face, i.e., P generates an n-path from γn

to λn. Thus, %i and λn have the same orientation in ψ(σi) and Kn, respectively, by Lemma 3.1.1
and because ρi and γn have the same orientation in ψ(σi) and Kn.

We now prove that line 8 always finishes. Consider a non 0-monochromatic i-simplex τ of ψ(σi),
and let L be the complex st(τ) without τ . Observe that if we do a basic chromatic subdivision
over τ for γ and then a basic chromatic subdivision over γ for λ, we get λ /∈ L (see Figure 6.5 for
an example of dimension 2). Therefore, if we color λ with 0 then exactly one 0-monochromatic
i-simplex in ψ(σi) is created. Theorem 6.2.1 follows.

6.3 Eliminating monochromatic simplexes

Consider an orientable, connected and chromatic pseudomanifold Kn with a binary coloring, and
let C be its content. This section presents the algorithm Eliminate, which takes Kn as input
and produces a subdivision of Kn with the same boundary and with exactly |C| monochromatic
n-simplexes. Algorithm Eliminate implies the following theorem, which together with 6.2.1 prove
Theorem 6.1.1.

Theorem 6.3.1 Let Kn be a chromatic, connected and orientable pseudomanifold with a binary
coloring and content C. There is a chromatic and orientable pseudomanifold χ(Kn) with a binary
coloring such that it has exactly |C| monochromatic n-simplexes, bd(Kn) = bd(χ(Kn)) and χ(Kn) is
a subdivision of Kn

An overview of algorithm Eliminate and its main part, function EliminatePath, is pre-
sented in Section 6.3.1. Some definitions and lemmas that are used for proving the correctness of
EliminatePath, appear in Sections 6.3.2 and 6.3.3. The correctness proof of EliminatePath is
contained in Section 6.3.4.

0

12

0

0

2

1

1

1

1

0

0

0

2 2

2

Figure 6.6: Paths in standard and non-standard form.
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6.3.1 An Overview of Algorithm Eliminate

Recall that an n-path is a sequence of distinct n-simplexes, and all its faces, such that every two
consecutive n-simplexes share an (n − 1)-face. An n-path Q with simplexes σ0, σ1, . . . is denoted
Q : σ0−σ1−· · · . Thus, σi and σi+1 share an (n− 1)-face, denoted σi,i+1. The segment of the path
from σi to σj , i ≤ j, is denoted Qi,j . For a simplex σ, let x(σ) be the maximal x-monochromatic
face of σ, considering its binary coloring, and let #x(σ) be |x(σ)|.

Consider an n-path P : σ0−σ1−· · ·−σq, q ≥ 1, with a binary coloring at its vertexes such that
the n-simplexes at its ends, σ0 and σq, are 0-monochromatic and it has no other monochromatic
n-simplex. We say that P is in standard form if and only if σ0 and σq have opposite orientations in
a coherent orientation of P, i.e., |P| is even, by Lemma 3.1.1. Therefore, σ0 and σq are counted in
an opposite way by C. Figure 6.6 depicts two paths of dimension 2, one of them in standard form
and the other in non-standard form.

Let P be a path in standard form. A good subdivision of P is a chromatic subdivision χ(P) of P
that contains two disjoint paths P1 and P2 in standard form (in the sense that they do not share n-
simplexes), has no other monochromatic n-simplex and bd(P) = bd(χ(P)). A complete subdivision
of P is a chromatic subdivision χ(P) of P with no monochromatic n-simplex and bd(P) = bd(χ(P)).

Eliminate(Kn)
(1) while Kn has more than |C| monochromatic n-simplexes then
(2) P ←FindPathStandardForm(Kn)

(3) EliminatePath(P)

Figure 6.7: Algorithm Eliminate.

The algorithm Eliminate, Figure 6.7, repeatedly looks for pairs of 0-monochromatic n-simplexes
that are counted as +1 and −1 by C. Then it considers a path P in standard form connecting
such a pair of n-simplexes. The main work of the algorithm is done by function EliminatePath,
Figure 6.8, which produces a complete subdivision of P. This function works as fallows. If the
input is the empty path, there is nothing to do. If the length of the input is two, that is, it consists
only of two monochromatic n-simplexes, it just subdivides their shared (n− 1)-face. The function
SubdivideComp does this subdivision. Figure 6.9 presents an example of dimension 2.

EliminatePath(P)
(1) if P 6= ∅ then
(2) if |P| = 2 then
(3) SubdivideComp(P)
(4) else
(5) m← FindSubdividingPoint(P)
(6) P1, P2← SubdivideGood(P,m)
(7) EliminatePath(P1)
(8) EliminatePath(P2)

Figure 6.8: Algorithm EliminatePath.

If the input is longer than two, EliminatePath invokes function FindSubdividingPoint,
Figure 6.10, to get a subdividing point m where the algorithm will subdivide a shared (n− 1)-face
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of P, either σm−1,m or σm,m+1. Then EliminatePath subdivides that face using SubdivideGood,
which creates a good subdivision of P such that P1 and P2 are not longer than P. Intuitively, this
subdivision creates two monochromatic n-simplexes with opposite orientation inside P (adding
zero to the content), and then obtains two new paths in standard form. Now, if |Pi| < |P|, for
all i ∈ {1, 2}, we say that the subdividing point was progressive. And if |Pi| = |P|, for some
i ∈ {1, 2}, we will prove that Pi always has a progressive subdividing point. This guarantees that
EliminatePath makes progress in each invocation. Finally, EliminatePath recursively calls itself
on the two paths P1 and P2.

2 2

0

1

2 2

0

1
(a) (b)

0

1

Figure 6.9: A path of length two.

Figure 6.11 (a) presents a 2-dimensional path of length four that has a subdividing point
on m = 1. SubdivideGood subdivides the shared face σ1,2, Figure 6.11 (b), to create two 0-
monochromatic n-simplexes and then obtain a good subdivision with two paths of length two. The
resulting paths will be subdivided as in the case presented in Figure 6.9 on the next recursive call
of EliminatePath on them, Figure 6.11 (c).

FindSubdividingPoint(P : σ0 − σ1 − · · · − σ2q+1)
(1) m← 1
(2) while true do
(3) if #0(σm+1,m+2) ≥ n+ 1−m then
(4) return m

(5) m← m+ 1

Figure 6.10: Algorithm FindSubdividingPoint.

The discussion has been focused on 0-monochromatic n-simplexes because a 1-monochromatic
n-simplex can be easily transformed into a 0-monochromatic one using the basic chromatic subdi-
vision, Figure 6.12.

Finally, to prove the correctness of Eliminate, it is enough to prove the correctness of Elimi-
natePath, i.e., it produces a complete subdivision of paths in standard form.

6.3.2 Subdividing Points

This section presents the definition of subdividing point and its properties. Roughly speaking, the
subdividing point of an n-path in standard form is a “place” where it is possible to subdivide a
shared (n − 1)-face, and produce a good subdivision with resulting paths of lengths at most the
length of the original path. The proofs of the lemmas presented here are simple and appear in
Appendix A.
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Figure 6.11: A path of length four.
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Figure 6.12: Obtaining a 0-monochromatic simplex.

Consider a path P : σ0 − σ1 − · · · − σ2q+1 in standard form. For the rest of the section fix P
and its subdividing point m defined as follows.

Definition 6.3.2 The subdividing point of P is the smallest value m for which #0(σm+1,m+2) ≥
n+ 1−m.

#0(σ2,3) ≥ n + 1−m = 1

σ0

σ1 σ2

σ3

σ4
σ5

σ6

σ7

Figure 6.13: A path of dimension n = 2 with subdividing point m = 1.

Figure 6.13 shows a path in standard form of dimension 2 with subdividing point 1. The
following lemmas give bounds for the subdividing point m and relate the length of P with m.
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Lemma 6.3.3 Let m be the subdividing point of P. Then 1 ≤ m ≤ min(q, n+ 1).

Lemma 6.3.4 Let m be the subdividing point of P. Then |P| ≥ 2(m+ 1).

Lemma 6.3.5 below shows the “configuration” of 0’s of the n-simplexes and shared (n−1)-faces
“around” the subdividing point m. It represents such configurations as a segment of P and the
possible number of 0’s that an n-simplex or shared (n − 1)-face can have. The following example
considers the number of 0’s of the segment from σm and σm+1, including the faces σm−1,m and
σm+1,m+2.

x + 1 x + 1 x

x x x x x− 1

————————- σm ———————— σm+1 ————————-

The example shows that #0(σm−1,m) ∈ {x, x + 1}, #0(σm) ∈ {x, x + 1}, #0(σm,m+1) = x,
#0(σm+1) = x and #0(σm+1,m+2) = x ∈ {x, x− 1}. The possible configurations are all those valid
assignments of values. The reader can verify that the invalid assignments are those assignments in
which #0(σm) = x and #0(σm−1,m) = x + 1, since σm−1,m is an (n − 1)-face of σm and hence it
can have at most the same number of vertexes with binary color 0 as σm. In general, the rule is
that if σ′ is an (n− 1)-face of σ then #0(σ′) ∈ {#0(σ)− 1,#0(σ)}.

Lemma 6.3.5 For the subdividing point m of P:

n + 2−m n + 2−m n + 1−m n + 2−m n + 2−m

n + 1−m n + 1−m n−m n + 1−m n + 1−m

————————- σm ————————- σm+1 ————————-

According to the possible configurations described in Lemma 6.3.5, the following cases in Lemma
6.3.6 are identified. Later on, in Section 6.3.4, it is proved that algorithm EliminatePath appro-
priately handles each one of these cases.

Lemma 6.3.6 For the subdividing point m of P, one of the following cases holds:

n + 1−m n + 1−m n−m n + 1−m n + 1−m

A) ————————- σm ———————— σm+1 ————————-

n + 1−m n + 1−m n + 1−m n + 1−m n + 1−m

B) ————————- σm ———————— σm+1 ————————-

n + 2−m

n + 1−m n + 2−m n + 1−m n + 1−m n + 1−m

C) ————————- σm ———————— σm+1 ————————-
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n + 2−m

n + 1−m n + 1−m n + 1−m n + 2−m n + 1−m

D) ————————- σm ———————— σm+1 ————————-

n + 2−m n + 2−m

n + 1−m n + 2−m n + 1−m n + 2−m n + 1−m

E) ————————- σm ———————— σm+1 ————————-

Definition 6.3.7 The subdividing point m of P is progressive if it holds case A, C or D or case
E with m < n+ 1, otherwise it is non-progressive.

By Lemma 6.3.3, 1 ≤ m ≤ min(q, n + 1), and by Lemma 6.3.4, |P| ≥ 2(m + 1). And since
n + 1 − m = 0 only if m = n + 1, then for cases A, B, C and D of Lemma 6.3.6, it must be
m ≤ min(q, n) because σm and σm+1 are not monochromatic. Similarly, since n + 2 −m = n + 1
only if m = 1, then for cases C, D and E it must be 2 ≤ m. Also, for case B we have that 2 ≤ m,
because if m = 1 then #0(σm) = n + 1 −m = n, and hence σ0,1 is the unique 0-monochromatic
(n− 1)-face of σm = σ1, and it cannot be σ0,1 = σ1,2 because P is a pseudomanifold.

Lemma 6.3.8 If the subdividing point m of P holds case E then 2 ≤ m ≤ min(q, n+1), if m holds
case A then 1 ≤ m ≤ min(q, n), otherwise 2 ≤ m ≤ min(q, n).

6.3.3 Crossing and Non-Crossing Paths

As explained in Section 6.3.1, algorithm EliminatePath produces a good subdivision of a path in
standard form P by subdividing one of its shared (n− 1)-faces. This section introduces the classes
of paths that appear in the subdivisions done by SubdivideGood. First, some definitions are
presented.

For the rest of this chapter, let id and b denote the chromatic and binary coloring of simplexes,
paths and subdivisions. For properly colored n-simplexes σ and σ′, let σ id: k σ′ denote the n-path
of length 2 in which σ and σ′ share their (n − 1)-face without id k. This is a step that changes
the vertex with id color k. Let σ id: A σ′ denote an n-path of length |A|+ 1 from σ to σ′, which
contains exactly one step for every element of A. If there is no ambiguity we just write σ k σ′ or
σ A σ′.

Consider a path σ1
k σ2 and an (n− 1)-simplex τ that is properly colored with IDn

k . Let σ1,2

be the shared (n − 1)-face between σ1 and σ2 and vi, i ∈ {1, 2}, be the unique vertex in σi \ σ1,2.
The double chromatic cone of σ1

k σ2 and τ is the complex v1 ∗ (τ ~ bd(σ1,2))∪v2 ∗ (τ ~ bd(σ1,2))
(recall that τ ~ bd(σ1,2) is the basic chromatic subdivision over bd(σ1,2) for τ). Since the join
operator has been restricted to its chromatic version, v1 ∗ (τ ~ bd(σ1,2)) ∪ v2 ∗ (τ ~ bd(σ1,2)) =
v1 ∗ v2 ∗ (τ ~ bd(σ1,2)). By Lemma 4.2.3, τ ~ bd(σ1,2) is a chromatic subdivision of σ1,2 with
bd(σ1,2) = bd(τ ~ bd(σ1,2)). Using a similar argument to the one used in the proof of Lemma
4.2.6, it can be proved that v1 ∗ v2 ∗ (τ ~ bd(σ1,2)) is a chromatic subdivision of σ1

k σ2 with
bd(σ1

k σ2) = bd(v1 ∗ v2 ∗ (τ ~ bd(σ1,2))).
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Consider a simplex σ′ ∈ bd(σ1,2) (possibly empty). Let τ ′ ∗ σ′ be the (n − 1)-simplex of
τ ~ bd(σ1,2) generated by σ′. Notice that τ ′ ∗σ′ is the unique (n− 1)-simplex of τ ~ bd(σn−1) that
contains τ ′ 6= ∅ as maximal face of τ . Thus, τ ′ ∗σ′ can be denoted without ambiguity by [τ ′]. Also,
observe that [τ ′] belongs to exactly two n-simplexes of v1 ∗ v2 ∗ (τ ~ bd(σ1,2)): v1 ∗ [τ ′] and v2 ∗ [τ ′].

v1(0) v2(0)

v3(1)

u1(2)

v4(2)

u2(1)

v2 ∗ [{u1, u2}]

v1 ∗ [{u2}]

Figure 6.14: A 2-dimensional double chromatic cone.

Figure 6.14 shows an example of a 2-dimensional double chromatic cone. The id of every
vertex is listed in parentheses, and σ1 = {v1, v3, v4}, σ2 = {v2, v3, v4} and τ = {u1, u2}. Observe
that {u2} is the maximal face of τ that is contained in the simplex γ = {v4, u2} of the basic
chromatic subdivision τ ~ σ1,2. Hence γ is denoted [{u2}]. Therefore, the simplex {v1, v4, u2} of
v1 ∗ v2 ∗ (τ ~ bd(σ1,2)) is denoted v1 ∗ [{u2}]. Something similar is done with {v1, u1, u2}. Notice
that once v1 ∗ v2 ∗ (τ ~ bd(σ1,2)) is constructed, σ1,2 is no longer a simplex, but sometimes we refer
to σ1,2 as a set of vertexes, for ease of notation.

For the rest of the chapter, for a properly colored simplex σ and S = {i1, i2 . . . ij} ⊆ id(σ), let
σ+S denote the face of σ with id’s S and σ−S denote the face of σ without id’s S. If S = {i} then we
just write σ+i and σ−i. For example, (σ1,2)−id(τ ′) denotes the face of σ1,2 without id colors id(τ ′),
and (σ1,2)+id(τ ′)\{k} is the face of σ1,2 with id colors id(τ ′) but k. Similarly, 0(τ)−S represents the
simplex containing all the 0 binary colored vertexes of τ minus the vertexes with id colors S.

Lemma 6.3.9 Let σ1
k σ2 be an n-path, τ be a properly colored (n− 1)-simplex with IDn

k , and
for i ∈ {1, 2}, let vi be the unique vertex of σi \ σ1,2. Also, assume that σ1, σ2 and τ have a binary
coloring. Consider a non-empty face τ ′ of τ . The simplex [τ ′] of τ ~ σ1,2 is j-monochromatic if
and only if τ ′ is j-monochromatic and (σ1,2)−id(τ ′) is j-monochromatic. Moreover, for i ∈ {1, 2},
the n-simplex vi ∗ [τ ′] ∈ v1 ∗v2 ∗(τ ~ σ1,2) is j-monochromatic if and only if [τ ′] is j-monochromatic
and b(vi) = j.

Proof: Let σ′ be the simplex of bd(σ1,2) such that [τ ′] = τ ′ ∗ σ′. Notice that (σ1,2)−id(τ ′) = σ′.
Therefore if [τ ′] is j-monochromatic then τ ′ and σ′ are j-monochromatic and vice versa. Now, if
[τ ′] is j-monochromatic and b(vi) = j then vi ∗ [τ ′] = vi ∗ τ ′ ∗ σ′ is j-monochromatic and vice versa.

�
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Lemma 6.3.10 Let σ0
k0 σ1

k1 σ2 be an n-path, τ be a properly colored (n − 1)-simplex with
IDn

k1
, and for i ∈ {1, 2}, let vi be the unique vertex of σi \ σ1,2. Consider a face τ ′ of τ such that

k0 ∈ id(τ ′). Then v1 ∗ [τ ′] id(τ ′)\{k} ρ k σ is a path in v1 ∗ v2 ∗ (τ ~ σ1,2) whose last n-simplex
is σ = σ0 if and only if k = k0, i.e., ρ = v1 ∗ [τ ′+k0

].

Proof: First notice that v1 ∗ v2 ∗ (τ ~ σ1,2) does not change the boundary of σ1 − σ2. Therefore,
if σ = σ0 then σ0 must share σ0,1 with ρ. Notice that k0 /∈ id(σ0,1). Now, let uk0 be the vertex of τ
with id color k0. By assumption, uk0 ∈ τ ′. Observe that each step of v1 ∗ [τ ′] id(τ ′)\{k0} ρ, changes
a vertex of τ ′ \ {uk0} for the vertex of σ0,1 with the same id color. Therefore σ0,1 ⊂ ρ = v1 ∗ [uk0 ].
Then the last step ρ k0 σ changes uk0 and hence σ = σ0. For the other direction we have that if
σ = σ0 then σ0,1 ⊂ ρ = v1 ∗ [τ ′′] for some face τ ′′ of τ . Observe that τ ′′ only can be uk0 .

�

They are now presented the classes of paths used in EliminatePath. Let P : σ0 − · · · −
σj−2

kj−2 σj−1
kj−1 σj

kj=kj+1 σj+1
kj+2 σj+2

kj+3 σj+3 − · · · − σ2q+1 be an n-path in
standard form, and τ be a properly colored (n − 1)-simplex with IDn

kj
. Also assume that τ has a

binary coloring. Consider the unique vertexes vj and vj+1 in σj \ σj,j+1 and σj+1 \ σj,j+1, and the
subdivision vj ∗ vj+1 ∗ (τ ~ σj,j+1). Let χ(σj) and χ(σj+1) denote the subdivision of the simplexes
σj and σj+1, respectively, produced by vj ∗ vj+1 ∗ (τ ~ σj,j+1).

A path in the non-crossing class starts either in an n-simplex of χ(σj) and ends at σ0, or starts
in an n-simplex of χ(σj+1) and ends at σ2q+1. Intuitively, these paths are non-crossing because
they “do not cross” τ ~ σm,m+1 of vj ∗ vj+1 ∗ (τ ~ σj,j+1), hence only contain n-simplexes of either
χ(σj) or χ(σj+1). Figure 6.15 (a) presents an example of two paths in this class. A path in the
crossing class starts either in an n-simplex of χ(σj) followed by an n-simplex of χ(σj+1), and ends
at σ2q+1, or starts in an n-simplex of χ(σj+1) followed by an n-simplex of χ(σj), and ends at σ0.
The path P2 in Figure 6.15 (b) is an example of a path in this class. A path in any of these two
classes is left if it ends at σ0, or is right if it ends at σ2q+1. Formally, these classes are defined as
follows.

Definition 6.3.11 The non-crossing path for a face τ ′ of τ such that kx+ξ ∈ id(τ ′) is

Pnc : vx ∗ [τ ′]
id(τ ′)

σx+ξ
kx+2ξ

σx+2ξ
kx+3ξ

σx+3ξ − · · ·

where either (i) x = j and ξ = −1, or (ii) x = j + 1 and ξ = +1.
The crossing path for a face τ ′ of τ such that kx+2ξ ∈ id(τ ′) is

Pc : vx ∗ [τ ′]
kx+ξ

vx+ξ ∗ [τ ′]
id(τ ′)

σx+2ξ
kx+3ξ

σx+3ξ − · · ·

where either (i) x = j and ξ = +1, or (ii) x = j + 1 and ξ = −1.

Notice that if Pnc satisfies (i) then it is left, otherwise Pnc is right. Similarly, if Pc satisfies (i)
then it is right, otherwise Pc is left. Lemma 6.3.10 implies that path Pnc : vx ∗ [τ ′]

id(τ ′)\{kx+ξ} λnc
kx+ξ σx+ξ

kx+2ξ σx+2ξ · · · and Pc : vx ∗ [τ ′] kx+ξ vx+ξ ∗ [τ ′] id(τ)\{kx+2ξ} λc
kx+2ξ σx+2ξ · · · ,

where λc and λnc are n-simplexes of vj ∗ vj+1 ∗ (τ ~ σj,j+1) with an (n − 1)-face belonging to
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bd(vj ∗ vj+1 ∗ (τ ~ σj,j+1)) = bd(σj − σj+1). This is the reason why Definition 6.3.11 assumes that
kx+ξ ∈ id(τ ′) for Pnc and kx+2ξ ∈ id(τ ′) for Pc.

Lemma 6.3.12 below will be the basis for the correctness proof of EliminatePath in Section
6.3.4. This lemma uses the following definition. Consider a path P : σ0−σ1−· · ·−σ2q+1 in standard
form. If in addition σ1 is 0-monochromatic, or σq−1 but no both, and P has no other monochromatic
n-simplex, we say that P is in quasistandard form. Notice that in this case C(P) = ±1. The non-
standard formed path in Figure 6.6, is in quasistandard form. The proof of Lemma 6.3.12 is
postponed a bit.

Lemma 6.3.12 Consider paths Pc and Pnc as defined above.

1. For Pnc, assume vx ∗ [τ ′] is 0-monochromatic and |τ ′| = j + 2r for some r ∈ Z.

(a) If (σj,j+1)+id(τ ′)\{kx+ξ} is 1-monochromatic then Pnc is in standard form.

(b) If (σj,j+1)+id(τ ′)\{kx+ξ} is not 1-monochromatic but (σj,j+1)+id(τ ′)\{k,kx+ξ} is 1-monochro-
matic for some k ∈ id(τ ′) then Pnc is in standard or quasistandard form. Moreover, if
Pnc is in quasistandard form then vj ∗ [τ ′−k] is the 0-monochromatic n-simplex of Pnc

that is not at the ends of Pnc.

In both cases, if Pnc is left then |Pnc| = 2(j+r) and if Pnc is right then |Pnc| = |P|+2(r−1).

2. For Pc, assume vx ∗ [τ ′] is 0-monochromatic, b(vx+ξ) = 1 and |τ ′| = j+2r+1 for some r ∈ Z.
Then Pc is in standard form. And if Pc is right then |Pc| = |P| + 2r and if Pc is left then
|Pc| = 2(j + r + 1).

vj(2) vj+1(2)

v1(0)

v2(1)

(a) (b)

σj−1

σj+2

σj−1 σj+2P1 P2
P1

u2(0)

u1(1)

vj(2) vj+1(2)

v1(0)

v2(1)

u2(0)

u1(1)

vj ∗ [τ ′]

vj+1 ∗ [τ ′]

vj ∗ [τ ′]

vj ∗ [τ ′′]

P2

Figure 6.15: Two examples of paths in Lemma 6.3.12.

Figure 6.15 presents an example of the paths mentioned in Lemma 6.3.12. The id of ev-
ery vertex is listed in parentheses. Let us assume j = 4. Figure 6.15 (a) contains a left non-
crossing path P1 and a right non-crossing path P2, both for τ ′ = {u1, u2}. For P1 observe
that kx+ξ = kj−1 = 1 and hence id(τ ′) \ {kj−1} = {0}. Also (σj,j+1)+id(τ ′)\{kj−1} = {v1} and
it is 1-monochromatic. And for r = −1, |τ ′| = j + 2r = 4 − 2 = 2. Thus, P1 holds case
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1.a of Lemma 6.3.12, hence it is in standard form and |P1| = 2(j + r) = 6. The idea behind
the requirement that (σj,j+1)+id(τ ′)\{kj−1} is 1-monochromatic, is the following. As explained

above, P1 : vj ∗ [τ ′] id(τ ′)\{kj−1} λnc
kj−1 σj−1

kj−2 σj−2
kj−3 σj−3 − · · · − σ0, by Lemma

6.3.10. Each step of the subpath vj ∗ [τ ′] id(τ ′)\{kj−1} λnc changes a vertex of τ ′ for a vertex of
(σj,j+1)+id(τ ′)\{kj−1}. Since (σj,j+1)+id(τ ′)\{kj−1} is 1-monochromatic, each n-simplex of that sub-
path cannot be 0-monochromatic. Moreover, all these n-simplexes contain at least one vertex of
τ ′, which is 0-monochromatic, and thus they are not 1-monochromatic. Therefore, vj ∗ [τ ′] is the
unique monochromatic n-simplex of vj ∗ [τ ′] id(τ ′)\{kj−1} λnc.

Figure 6.15 (b) presents a left non-crossing path P1 for τ ′ = {u1, u2} and kx+ξ = kj−1 = 1. We
have |τ ′| = j+2r for r = −1. Observe that (σj,j+1)+id(τ ′)\{kj−1} = {v1} is not 1-monochromatic, but
(σj,j+1)+id(τ ′)\{k,kj−1} = ∅ is 1-monochromatic, for k = 0. Therefore, P1 holds case 1.b of Lemma
6.3.12 and hence it is in standard or quasistandard form with |P1| = 2(j + r) = 6. In this case
P1 is in quasistandard form because its first step changes vertex u2 for vertex v1, which is binary
colored 0. Figure 6.15 (b) contains a right crossing path P2 for τ ′′ = {u1} and kx+2ξ = kj+2 = 1.
Observe that |τ ′′| = j + 2r + 1 for r = −2. Path P2 holds case 2 of Lemma 6.3.12 and thus it is in
standard form with |P2| = |P|+ 2r = |P| − 4.

Lemma 6.3.12 directly follows from Lemmas 6.3.13 and 6.3.14, which consider the classes of
paths Pnc and Pc introduced in Definition 6.3.11

Lemma 6.3.13 For Pnc, assume |τ ′| = j + 2r for some r ∈ Z. If Pnc is left then |Pnc| = 2(j + r),
and if Pnc is right then |Pnc| = |P|+ 2(r− 1). For Pc, assume |τ ′| = j + 2r+ 1 for some r ∈ Z. If
Pc is left then |Pc| = 2(j + r + 1), and if Pc is right then |Pc| = |P|+ 2r.

Proof: Consider the path Pnc. The length of the subpath vx ∗ [τ ′] id(τ ′) σx+ξ is j+2r+1 because
|τ ′| = j + 2r. If Pnc is left (x = j and ξ = −1) then the length of σx+2ξ = σj−2 − σj−3 − · · · − σ0

is j − 1 and thus |Pnc| = 2(j + r). And if Pnc is right (x = j + 1 and ξ = 1) then the length of
σx+2ξ = σj+3 − σj+4 − · · · − σ2q+1 is |P| − (j + 3) and hence |Pnc| = |P|+ 2(r − 1).

For path Pc, the length of the subpath vx+ξ∗[τ ′] id(τ ′) σx+2ξ is j+2r+2 because |τ ′| = j+2r+1.
Therefore, the length of vx ∗ [τ ′] kx+ξ vx+ξ ∗ [τ ′] id(τ ′) σx+2ξ is j + 2r+ 3. If Pc is left (x = j + 1
and ξ = −1) then the length of σx+3ξ = σj−2−σj−3−· · ·−σ0 is j−1 and hence |Pc| = 2(j+r+1).
And if Pc is right (x = j and ξ = 1) then the length of σx+3ξ = σj+3 − σj+4 − · · · − σ2q+1 is
|P| − (j + 3) and therefore |Pc| = |P|+ 2r.

�

A path Q is in almost standard or almost quasistandard form if it satisfies the conditions of a
path in standard or quasistandard form, but |Q| can be inappropriate. For example, Q is in almost
standard for if the simplexes at its ends are both 0-monochromatic, it does not have any other
monochromatic n-simplex and |Q| is odd. Lemma 6.3.14 below presents necessary conditions for
Pc and Pnc to be in almost standard or almost quasistandard form.

Lemma 6.3.14

1. For Pnc, assume vx ∗ [τ ′] is 0-monochromatic.

(a) If (σj,j+1)+id(τ ′)\{kx+ξ} is 1-monochromatic then Pnc is in almost standard form.
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(b) If (σj,j+1)+id(τ ′)\{kx+ξ} is not 1-monochromatic but (σj,j+1)+id(τ ′)\{k,kx+ξ} is 1-monochro-
matic for some k ∈ id(τ ′) then Pnc is in almost standard or almost quasistandard form.
Moreover, if Pnc is in almost quasistandard form then vj ∗ [τ ′−k] is the 0-monochromatic
n-simplex of Pnc that is not at the ends of Pnc.

2. For Pc, assume vx ∗ [τ ′] is 0-monochromatic and b(vx+ξ) = 1. Then Pc is in almost standard
form.

Proof: Consider case 1. By Lemma 6.3.10, Pnc : vx∗[τ ′]
id(τ ′)\{kx+ξ} λnc

kx+ξ σx+ξ
kx+2ξ σx+2ξ

−· · · . Notice that every n-simplex of the subpath P ′ : vx ∗ [τ ′]
id(τ ′)\{kx+ξ} λnc contains the vertex

of τ ′ with id kx+ξ. This vertex is binary colored 0 because vx∗[τ ′] is 0-monochromatic. Thus P ′ does
not contain 1-monochromatic n-simplexes. Also observe that every step in P ′ changes a vertex of
τ ′ for a vertex of (σj,j+1)+id(τ ′)\{kx+ξ}. In subcase (a), each vertex of (σj,j+1)+id(τ ′)\{kx+ξ} is binary
colored 1, hence P ′ does not contain 0-monochromatic n-simplexes but vx∗ [τ ′]. Therefore, Pnc is in
almost standard form because the subpath σx+ξ

kx+2ξ σx+2ξ−· · · does not contain monochromatic
n-simplexes but the last one, which is 0-monochromatic. In subcase (b), (σj,j+1)+id(τ ′)\{kx+ξ} is not
1-monochromatic and for some k ∈ id(τ ′), (σj,j+1)+id(τ ′)\{k,kx+ξ} is 1-monochromatic. This implies
that there is a unique v ∈ (σj,j+1)+id(τ ′)\{kx+ξ} with binary color 0. Observe that if the first step in
P ′ changes color id(v) then v belong to the second n-simplex vx∗ [τ ′−k] of P ′. Moreover, this simplex
is 0-monochromatic and the other n-simplexes of P ′ are not 0-monochromatic but vx ∗ [τ ′]. Also if
the first step in P ′ does not change id(v) then P ′ does not contain 0-monochromatic n-simplexes
but vx ∗ [τ ′]. Therefore, Pnc is in almost standard or almost quasistandard form.

Consider case 2. Lemma 6.3.10 implies Pc : vx ∗ [τ ′] kx+ξ vx+ξ ∗ [τ ′] id(τ)\{kx+2ξ} λc
kx+2ξ

σx+2ξ
kx+3ξ σx+3ξ − · · · . Every n-simplex of the subpath P ′ : vx+ξ ∗ [τ ′] id(τ)\{kx+2ξ} λc contains

the vertex of τ ′ with id kx+2ξ, which is binary colored 0, because vx ∗ [τ ′] is 0-monochromatic.
Thus P ′ does not contain 1-monochromatic n-simplexes. Also each n-simplex of P ′ contains vertex
vx+ξ because kx+ξ /∈ id(τ). Since b(vx+ξ) = 1, P ′ does not contain 0-monochromatic n-simplexes.
Therefore vx ∗ [τ ′] is the unique monochromatic n-simplex in the subpath vx ∗ [τ ′] kx+ξ vx+ξ ∗
[τ ′] id(τ)\{kx+2ξ} λc. Since σx+2ξ

kx+3ξ σx+3ξ − · · · does not contain monochromatic n-simplexes
but the last one, which is 0-monochromatic, Pc is in almost standard form.

�

6.3.4 Correctness of EliminatePath

This section shows that algorithm EliminatePath, Figure 6.8, produces a complete subdivision
of a path in standard form P. EliminatePath works as follows. If P = ∅ then there is nothing to
do. If |P| = 2, then function SubdivideComp, Figure 6.16, produces a complete subdivision of
P. If |P| > 2, EliminatePath finds the subdividing point m of P and function SubdivideGood,
Figures 6.17 and 6.18, uses m to produce a good subdivision of P with paths Pi such that |Pi| ≤ |P|,
i ∈ {1, 2}. If the subdividing point m of P is progressive (see Definition 6.3.7) then for i ∈ {1, 2},
|Pi| < |P|, otherwise it is possible that for some i ∈ {1, 2}, |Pi| = |P|. However, it will be
proved that if |Pi| = |P| then Pi has a progressive subdividing point, hence the next recursive
call of EliminatePath over Pi will produce a good subdivision with paths of length smaller than
|Pi| = |P|.
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Lemma 6.3.15 implies the correctness of SubdivideComp and Lemmas 6.3.16 and 6.3.17 give
the correctness of SubdivideGood. These three lemmas prove the correctness of EliminatePath,
contained in Lemma 6.3.18. The proofs of Lemmas 6.3.15, 6.3.16 and 6.3.17 are postponed a little
bit.

Lemma 6.3.15 If SubdivideComp is invoked with a path P in standard form then it produces a
complete subdivision of P.

Lemma 6.3.16 If SubdivideGood is invoked with a path P in standard form and the subdividing
point m of P is progressive then it produces a good subdivision of P with |Pi| < |P|, i ∈ {1, 2}.

Lemma 6.3.17 If SubdivideGood is invoked with a path P in standard form and the subdividing
point m of P is non-progressive then it produces a good subdivision of P with |Pi| ≤ |P|, i ∈ {1, 2}.
And if for some i ∈ {1, 2}, |Pi| = |P| then the subdividing point of Pi is progressive.

Lemma 6.3.18 If EliminatePath is invoked with a path P in standard form then it produces a
complete subdivision of P.

Proof: The proof is by induction on the length of P. If P = ∅, clearly the lemma holds. If |P| = 2
then, by Lemma 6.3.15, EliminatePath produces a complete subdivision of P. Suppose that the
lemma holds for |P| ≤ 2`. It is proved that it holds for |P| = 2(`+ 1).

Line 6 calls SubdivideGood with P and its subdividing point m. If m is progressive, Sub-
divideGood produces a good chromatic of P with |Pi| < |P|, i ∈ {1, 2}, by Lemma 6.3.16. By
induction hypothesis, lines 7 and 8 produce a complete subdivision of P1 and P2 respectively.
Now, if m is non-progressive, SubdivideGood produces a good subdivision of P with |Pi| ≤ |P|,
i ∈ {1, 2}, by Lemma 6.3.17. If Pi < P, line 7 or 8 produces a complete subdivision of Pi, by
induction hypothesis. And if |Pi| = |P| then the subdividing point of Pi is progressive, by Lemma
6.3.17. As explained before, SubdivideGood produces a complete subdivision of any path of
length 2(` + 1) with subdividing point that is progressive. Hence, line 7 or 8 produce a complete
subdivision of Pi.

�

SubdivideComp(P : σ0 − σ1)
(1) let v0 ← unique vertex of σ0 \ σ0,1

(2) let v1 ← unique vertex of σ1 \ σ0,1

(3) let τ ← id properly colored (n− 1)-simplex with id(σ0,1)
(4) b(τ)← 1
(5) do v0 ∗ v1 ∗ (τ ~ bd(σ0,1)) % double chromatic cone %

Figure 6.16: Function SubdivideComp.

Correctness of SubdivideComp

Lemma 6.3.15 (Restated) If SubdivideComp is invoked with a path P in standard form then
it produces a complete subdivision of P.
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Proof: Each n-simplex of v0 ∗ v1 ∗ (τ ~ bd(σ0,1)) contains contains either v0 or v1. Thus there are
no 1-monochromatic n-simplexes in v0 ∗v1 ∗ (τ ~ bd(σ0,1)). Also there are neither 0-monochromatic
n-simplexes because each n-simplex contains at least one vertex of τ , which is 1-monochromatic.
The boundary is the same because v0 ∗ v1 ∗ (τ ~ bd(σ0,1)) only subdivides the shared (n− 1)-face
σ0,1.

�

SubdivideGood(P,m)
(01) x, ξ ← ConfigVars(P,m)
(02) let vx ← unique vertex of σx \ σx,x+ξ

(03) let vx+ξ ← unique vertex of σx+ξ \ σx,x+ξ

(04) let τ ← id proper colored (n− 1)-simplex with id(σx,x+ξ)
(06) b(τ+id(0(σx,x+ξ)))← 1
(07) b(τ+id(1(σx,x+ξ)))← 0
(08) do vx ∗ vx+ξ ∗ (τ ~ bd(σx,x+ξ)) % double chromatic cone %
(09) if case A or B then
(10) τ1 ← 0(τ)
(11) P1 ← vx ∗ [τ1]

id(τ1) σx−ξ
kx−2ξ σx−2ξ − · · ·

(12) if case A then
(13) τ2 ← τ1

(14) P2 ← vx+ξ ∗ [τ2]
id(τ2) σx+2ξ

kx+3ξ σx+3ξ − · · ·
(15) else % case B %
(16) u2 ← any vertex of 1(τ)
(17) b(u2)← 0
(18) τ2 ← τ1 ∪ {u2}
(19) P2 ← vx ∗ [τ2] kx+ξ vx+ξ ∗ [τ2]

id(τ2) σx+2ξ
kx+3ξ σx+3ξ − · · ·

(20) else if case C, D or case E with m < n+ 1 then
(21) for each y ∈ {x− ξ, x+ 2ξ} do if ky /∈ id(0(τ)) then
(22) uy ← vertex of 1(τ) with id ky

(23) else
(24) uy ← any vertex of 1(τ)
(25) b(ux−ξ)← 0
(26) τ1 ← 0(τ)
(27) P1 ← vx ∗ [τ1]

id(τ1) σx−ξ
kx−2ξ σx−2ξ − · · ·

(28) if case C or D then
(29) τ2 ← τ1 \ {ux−ξ}
(30) P2 ← vx ∗ [τ2] kx+ξ vx+ξ ∗ [τ2]

id(τ2) σx+2ξ
kx+3ξ σx+3ξ − · · ·

(31) if P1 and P2 share n-simplexes then
(32) P1,P2 ← Disconnect(P1,P2)

Figure 6.17: Function SubdivideGood (part 1).
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(33) else % case E with m < n+ 1 %
(34) b(ux+2ξ)← 0
(33) τ0 ← τ1 \ {ux−ξ}
(36) τ2 ← (τ1 \ {ux−ξ}) ∪ {ux+2ξ}
(33) P0 ← vx ∗ [τ0] kx+ξ vx+ξ ∗ [τ0]
(38) P2 ← vx+ξ ∗ [τ2]

id(τ2) σx+2ξ
kx+3ξ σx+3ξ − · · ·

(39) if P0 ∩ P1 6= ∅ then
(40) P0,P1 ← Disconnect(P0,P1)
(41) if P0 ∩ P2 6= ∅ then
(42) P0,P2 ← Disconnect(P0,P2)
(43) SubdivideComp(P0)
(44) if ux−ξ 6= ux+2ξ then
(45) τ3 ← τ1 ∪ {ux+2ξ}
(46) Q1 : vx ∗ [τ2]

id(ux+2ξ) vx ∗ [τ3]
(47) Q2 : vx+ξ ∗ [τ1]

id(ux−ξ) vx+ξ ∗ [τ3]
(48) SubdivideComp(Q1)
(49) SubdivideComp(Q2)
(50) else % case E with m = n+ 1 %
(51) if kx−ξ 6= kx+2ξ then
(52) λ1 ← τ−kx−ξ

(52) λ2 ← τ−kx+2ξ

(54) P1 ← vx+ξ ∗ [τ ] id(λ1) vx+ξ ∗ [τ+kx−ξ] kx vx ∗ [τ+kx−ξ] kx−ξ σx−ξ
kx−2ξ σx−2ξ − · · ·

(55) P2 ← vx ∗ [τ ] id(λ2) vx ∗ [τ+kx+2ξ] kx+ξ vx+ξ ∗ [τ+kx+2ξ] kx+2ξ σx+2ξ
kx+3ξ σx+3ξ − · · ·

(56) else
(57) P1 ← · · · − σx−ξ

kx−ξ vx ∗ [τ+kx−ξ] kx+ξ vx+ξ ∗ [τ+kx−ξ] kx+2ξ σx+2ξ
kx+3ξ σx+3ξ − · · ·

(58) P2 ← ∅
(59) return P1,P2

Figure 6.18: Function SubdivideGood (part 2).

Correctness of SubdivideGood

Considering m, SubdivideGood denotes P as σ0− · · · − σm−2
km−2 σm−1

km−1 σm
km=km+1

σm+1
km+2 σm+2

km+3 σm+3 − · · · − σ2q+1. Also, it uses function ConfigVars, line 1, specified
as follows, according to the cases defined in Lemma 6.3.6.

Definition 6.3.19 Function ConfigVars outputs m−1 for x only if m holds case B, m+1 only if
m holds case D, otherwise it outputs m. And for ξ, it outputs −1 only if m holds case D, otherwise
it outputs +1.

First, two examples of how SubdivideGood works are presented.

Two Examples. Figure 6.19 shows the subdivision produced by SubdivideGood for a 2-
dimensional path P with subdividing point m = 1 holding case A. By specification of ConfigVars,
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x = m = 1 and ξ = 1. Therefore σx = σ1 and σx+ξ = σ2, see Figure 6.19 (a). Lines 6 and 7 give
a binary coloring to τ such that for each pair u ∈ τ and v ∈ σx,x+ξ = σ1,2 with id(v) = id(u), u
has binary coloring 0 if and only if v has binary color 1. Figure 6.19 (b) shows P after the double
chromatic cone in line 8. Observe that path P1 in line 11 is a left non-crossing path starting on
vx ∗ [τ1], and P2 in line 14 is a right non-crossing path starting on vx+ξ ∗ [τ2]. The subdividing point
m is progressive because it holds case A, hence we have that |P1|, |P2| < |P|.

2
0

1

1

1
0

(a)

vx ∗ [τ1]

vx+ξ ∗ [τ2]

σx

σx+ξ

2
0

1

1

1
0

(b)

P1

P2

2

1
vx

vx+ξ

Figure 6.19: SubdivideGood working on a 2-dimensional path with subdividing point holding
case A.

Figure 6.20 contains an example of SubdivideGood working on a 2-dimensional path P with
subdividing point m = 2 holding case D. ConfigVars outputs x = m + 1 = 3 and ξ = −1.
Therefore σx = σ3 and σx+ξ = σ2, see Figure 6.20 (a). Also observe that kx−ξ = 2 (recall that kx−ξ

is the id color changed in the step σx − σx−ξ). As in the previous example, lines 6 and 7 gives a
binary coloring to τ such that for each pair u ∈ τ and v ∈ σx,x+ξ = σ2,3 with id(v) = id(u), u has
binary coloring 0 if and only if v has binary color 1. Therefore, 0(τ) in line 21 contains the vertex
u0 of τ with id 2, and 1(τ) contains the vertex u1 of τ with id 1. Now, since kx−ξ = 2, line 21 is
false for y = x− ξ, thus line 22 picks any vertex of 1(τ). In this case it must be ux−ξ = u1. After
line 25, 0(τ) contains u1 in addition to u0. Thus τ1 = {u0, u1} and τ2 = {u0}, lines 26 and 29.
Path P1 in line 27 is a right non-crossing path starting on vx ∗ [τ1], and path P2 in line 30 is a left
crossing path starting on vx ∗ [τ2]. Since m is progressive, |P1|, |P2| < |P|. However, P1 and P2 are
not disjoint in the sense that they share an n-simplex, the first n-simplex of P2. This problem is
handled by Function Disconnect, Figure 6.23. It applies a second subdivision in order to produce
two disjoint paths. Figure 6.21 shows how Disconnect solves this problem on dimension 2. This
situation is formalized as follows.

Consider distinct paths P : σ0 − σ1 − σ2 − · · · and P ′ : σ′0 − σ′1 − σ′2 − · · · in standard and
quasistandard form, respectively, with σ0 = σ′1. A good subdivision of P ∪ P ′ is a chromatic
subdivision χ(P ∪ P ′) such that it contains two disjoint paths Q and Q′ in standard form, it has
no other monochromatic n-simplex and bd(P ∪ P ′) = bd(χ(P ∪ P ′)). For clarity of presentation,
the proof of Lemma 6.3.20 is presented later.

Lemma 6.3.20 If Disconnect is invoked with distinct paths P : σ0 − σ1 · · · and P ′ : σ′0 − σ′1 · · ·
in quasistandard and standard form, respectively, with σ1 = σ′0, then it produces a good subdivision
of P ∪ P ′ with paths Q and Q′ such that |Q| = |P| and |Q′| = |P ′|.
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Figure 6.20: SubdivideGood working on a 2-dimensional path with subdividing point holding
case D.
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Figure 6.21: An example of function Disconnect.

Proof of Lemmas 6.3.16 and 6.3.17. Essentially, the proof of Lemma 6.3.16 consists of using
Lemma 6.3.12 to prove that P1 and P2 are disjoint and in standard form, and also they are of
length smaller than |P| or 2(m + 1), as |P| ≥ 2(m + 1) by Lemma 6.3.4. In addition, it proves
that, at the end of the execution, the subdivisions done by SubdivideGood only produce two
0-monochromatic n-simplexes, the n-simplexes at one of the ends of P1 and P2, respectively. By
Definition 6.3.7, m holds case A, C or D, or case E with m < n+1. The proof proceeds case by case.
Although the proof of Lemma 6.3.16 is simple, it is long and technical; for clarity of presentation,
it is contained in Appendix B. Below it is presented an sketch of the proof for cases A and D.

Lemma 6.3.16 (Restated) If SubdivideGood is invoked with a path P in standard form and
the subdividing point m of P is progressive then it produces a good subdivision of P with |Pi| < |P|,
i ∈ {1, 2}.

Sketch of the proof: Let DCCn denote vx ∗ vx+ξ ∗ (τ ~ bd(σx,x+ξ)) in line 8.

Case A. By the specification of function ConfigVars, Definition 6.3.19, x = m and ξ = +1. And
since m holds case A, #0(σx=m) = #0(σx+ξ=m+1) = n+ 1−m and #0(σx=m,x+ξ=m+1) = n−m,
and hence b(vm) = b(vm+1) = 0 and #1(σm,m+1) = m. After line 7, a vertex of τ with id
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i is binary colored 0 (1) if and only if the vertex of σm,m+1 with id i is binary colored 1 (0).
Since τ1 = 0(τ), line 10, id(τ1) = id(0(τ)) = id(1(σm,m+1)), and thus |τ1| = m. Moreover,
(σm,m+1)−id(τ1) is 0-monochromatic. Therefore, vm ∗ [τ1] of DCCn is 0-monochromatic, by Lemma
6.3.9. Since m holds case A, #0(σm−1,m) = n + 1 − m. Thus, km−1 ∈ id(1(σm,m+1)) = id(τ1),
because #0(σm) = n + 1 − m. Moreover, since id(τ1) = id(1(σm,m+1)), then (σm,m+1)+id(τ1) is
1-monochromatic and hence (σm,m+1)+id(τ1)\km−1

is 1-monochromatic. Also, P1 in line 11 is a left
non-crossing path. Therefore, by case 1.a of Lemma 6.3.12, P1 is in standard form and |P1| = 2m.

For P2, line 14, |τ2| = m because τ2 = τ1 after line 13. As for P1, one can see that vm+1 ∗ [τ2]
is 0-monochromatic, km+2 ∈ id(1(σm,m+1)) and (σm,m+1)+id(τ2)\km+2

is 1-monochromatic. P2 is a
right non-crossing path. By case 1.a Lemma 6.3.12, P2 is in standard form with |P2| = |P| − 2.
Observe that P1 and P2 do not share n-simplexes. Also, it is not hard to check that vm ∗ [τ1] and
vm+1 ∗ [τ2] are the unique monochromatic n-simplexes of DCCn. Finally, since σm,m+1 /∈ bd(P),
DCCn does not affect bd(P).

Case D. By Definition 6.3.19, x = m+ 1 and ξ = −1. Also, since m holds case D, #0(σm+1) =
n + 2 − m and #0(σm) = #0(σm,m+1) = n + 1 − m, and hence b(vm+1) = 0, b(vm) = 1 and
#1(σm,m+1) = m− 1. For i ∈ {0, 1}, let λi = i(τ) in line 8. Observe that id(λ0) = id(1(σm,m+1))
and id(λ1) = id(0(σm,m+1)). Therefore, |λ0| = m − 1. Also, λ1 6= ∅ because 2 ≤ m ≤ n for
case D, by Lemma 6.3.8. Since m holds case D, #0(σm+1,m+2) ∈ {n + 2 − m,n + 1 − m}. It
is not hard to check that, since id(λ0) = id(1(σm,m+1)) and #0(σm+1) = n + 2 − m, we have
that if #0(σm+1,m+2) = n + 2 −m then km+2 ∈ id(λ0), otherwise km+2 /∈ id(λ0). After line 26,
τ1 = λ0 ∪ {um+2} and km+2 ∈ id(τ1) (for case D we are not interested in um−1). Also |τ1| = m
and τ1 is 0-monochromatic. Thus, vm+1 ∗ [τ1] of DCCn is 0-monochromatic, by Lemma 6.3.9 and
because (σm,m+1)−id(τ1) is 0-monochromatic. P1 in line 27 is a right non-crossing path starting on
vm+1 ∗ [τ1]. It can be easily proved that if line 21 is true for ky = km+2, i.e., km+2 /∈ id(λ0), then
(σm,m+1)+id(τ1)\km+2

is 1-monochromatic, and hence it can be applied case 1.a of Lemma 6.3.12 on
P1. Thus, P1 is in standard form and |P1| = |P|−2. Also, it can be proved that if line 21 is false for
ky = km+2 then (σm,m+1)+id(τ1)\km+2

is not 1-monochromatic but (σm,m+1)+id(τ1)\{km+2,id(um+2)} is
1-monochromatic. By case 1.b of Lemma 6.3.12, P1 is in standard or quasistandard form and |P1| =
|P|−2. Also, if P1 is in quasistandard form then vm+1∗[τ1−id(um+2)] is the monochromatic n-simplex
of P1 that is not at its ends. Notice that τ1−id(um+2) = λ0. As we shall see, vm+1 ∗ [τ1−id(um+2)] is
one of the monochromatic n-simplexes at the ends of P2, line 30.

For P2 we have that τ2 = λ0, line 29, hence |τ2| = m − 1, because id(λ0) = id(1(σm,m+1)).
Moreover, τ2 and (σm,m+1)−id(τ2) are 0-monochromatic. By Lemma 6.3.9, vm+1 ∗ [τ2] of DCCn is
0-monochromatic. Also, since m holds case D, #0(σm−1,m) = n+ 1−m, and thus km−1 ∈ id(τ2),
because #0(σm) = n+ 1−m. By case 2 of Lemma 6.3.12, P2 is in standard form and |P2| = 2m.
Now, notice that vm+1 ∗ [τ2] = vm+1 ∗ [τ1−id(um+2)]. Therefore, if P1 is in quasistandard form then
P1 and P2 share vm+1 ∗ [τ2]. In this case, by Lemma 6.3.20, function Disconnect, line 32, produces
a good subdivision of P1 ∪ P2 with boundary bd(P1 ∪ P2) and paths of the same length as P1 and
P2. Finally, function Disconnect and DCCn do not affect bd(P).

�

The strategy of the proof of Lemma 6.3.17 is essentially the same as the one used for proving
Lemma 6.3.16. However, it also proves that if for some i ∈ {1, 2}, |Pi| = |P| then the subdividing
point of Pi is progressive. By Definition 6.3.7, m holds case B or case E with m = n+ 1. Below it
is presented an sketch of the proof for case B. The whole proof appears in Appendix B.
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Lemma 6.3.17 (Restated) If SubdivideGood is invoked with a path P in standard form and the
subdividing point m of P is non-progressive then it produces a good subdivision of P with |Pi| ≤ |P|,
i ∈ {1, 2}. And if for some i ∈ {1, 2}, |Pi| = |P| then the subdividing point of Pi is progressive.

Sketch of the proof: Let DCCn denote vx ∗ vx+ξ ∗ (τ ~ bd(σx,x+ξ)) in line 8.

Case B. Sincem holds case B, we have that #0(σm−1,m) = #0(σm) = #0(σm,m+1) = #0(σm+1) =
#0(σm+1,m+2) = n + 1 −m, and hence b(vm) = b(vm+1) = 1, where vm and vm+1 are the unique
vertexes of σm \ σm,m+1 and σm+1 \ σm,m+1, respectively. Therefore, it is not possible to produce
0-monochromatic n-simplexes by subdividing on σm,m+1. Figure 6.22 (a) depicts an example of
a 2-dimensional path with subdividing point m = 2 holding case B. SubdivideGood handles
this problem by subdividing on σm,m−1. By the specification of ConfigVars, Definition 6.3.19,
x = m − 1 and ξ = +1. Therefore, #0(σx=m−1,x+ξ=m) = n + 1 −m, #0(σx+ξ=m) = n + 1 −m
and #0(σx+ξ=m,x+2ξ=m+1) = n + 1 −m. It is no hard to prove that #0(σm−1) = n + 2 −m and
#0(σm−2,m−1) = n+2−m. Thus, #0(σx−ξ=m−2,x=m−1) = n+2−m and #0(σx=m−1) = n+2−m.
Notice that b(vm−1) = 0 and b(vm) = 1.

2
0

1

11
0

1

0
2

0

1

11
0

1

0

(a) (b)

1

2

σx

σx+ξ vx ∗ [τ2]

vx ∗ [τ1]
P1

P2

Figure 6.22: SubdivideGood working on a 2-dimensional path with subdividing point holding
case B.

For i ∈ {0, 1}, let λi = i(τ) in line 8. Observe that id(λ0) = id(1(σm,m+1)) and id(λ1) =
id(0(σm,m+1)). Therefore, |λ0| = m− 1. Also, λ1 6= ∅ because 2 ≤ m ≤ n, by Lemma 6.3.8. In line
10 we have that τ1 = λ0. Using a similar argument to the one used in case A in the sketch of the
proof of Lemma 6.3.16, it can be proved that (σx,x+ξ)−id(τ1) is 0-monochromatic, km−2 ∈ id(τ1) and
(σm−1,m)+id(τ1)\km−2

is 1-monochromatic. By Lemma 6.3.9, vm−1∗[τ1] of DCCn is 0-monochromatic.
P1 in line 11 is a left non-crossing path. By case 1.a of Lemma 6.3.12, P1 is in standard form and
|P1| = 2(m− 1).

For P2 in line 19, |τ2| = m because τ2 = τ1 ∪ {u2} = λ0 ∪ {u2}, line 18. Observe that
(σm−1,m)−id(τ2) is 0-monochromatic because τ2 = λ0 ∪ {u2} and id(λ0) = id(1(σm,m+1)). Thus,
by Lemma 6.3.9, vm−1 ∗ [τ1] is 0-monochromatic. Also, since #0(σm,m+1) = n + 1 − m and
#0(σm) = n + 1 −m, km+1 ∈ id(1(σm−1,m)) and then km+1 ∈ id(τ2). P2 is a right crossing path.
Thus, P2 is in standard form with |P2| = |P|, by case 2 of Lemma 6.3.12. Observe that P1 and
P2 do not share n-simplexes. Also, it is not hard to check that vm−1 ∗ [τ1] and vm−1 ∗ [τ2] are the
unique monochromatic n-simplexes of DCCn, and DCCn does not affect bd(P).
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For proving that the subdividing point of P2 is progressive, let ρ0 − ρ1 − · · · − ρm − ρm+1 − · · ·
denote P2, where ρ0 = vm−1 ∗ [τ2], ρ1 = vm ∗ [τ2] and for j ≥ m+1, ρj is σj of P. Roughly speaking,
the proof consists of showing that there is no m′ < m such that #0(σm′+1,m′+2) ≥ n + 1 − m′,
hence m is the subdividing point of P2, because m is the subdividing point of P, by hypothesis.
Observe that the step from ρm to ρm+1 changes the id color km+1 (see Lemma 6.3.10). Also, as
explained above, km+1 ∈ id(τ2), and hence the vertex of ρm with id km+1 has binary color 0. In
addition, at the beginning of the proof it was noticed that the vertex of ρm+1 with id km+1 has
binary color 1. Therefore, #0(ρm) > #0(ρm+1). Thus, m can only hold case either A or C, and
then it is progressive (see Figure 6.22 (b)).

�

For completing the correctness proof of SubdivideGood, we now prove Lemma 6.3.20 con-
cerning function Disconnect, Figure 6.23. For Disconnect, let ki and k′i be the id’s changed
in the i-th step of P and P ′, respectively, i.e., P : σ0

k0 σ1
k1 σ2

k2 σ3 · · · and P ′ :

σ′0
k′0 σ′1

k′1 σ′2
k′2 σ′3 · · · .

Disconnect(P : σ0 − σ1 · · · ,P ′ : σ′0 − σ′1 . . . )
(01) let v1 ← unique vertex of σ1 \ σ1,2

(02) let v2 ← unique vertex of σ2 \ σ1,2

(03) let τ ← id properly colored (n− 1)-simplex with id(σ1,2)

(04) u0 ← vertex of τ with id k0

(05) u2 ← vertex of τ with id k2

(06) u′0 ← vertex of τ with id k′0
(07) b(τ)← 1

(08) b(u0)← 0

(09) b(u′0)← 0

(10) do v1 ∗ v2 ∗ (τ ~ bd(σ1,2)) % double chromatic cone %

(11) Q′ ← v1 ∗ [{u′0}]
k′
0 σ′1

k′
1 σ′2 − · · ·

(12) R1 ← σ0
k0 v1 ∗ [{u0}]

(13) SubdivideComp(R1)

(14) if k0 = k2 or k′0 = k2 then

(15) Q ← v1 ∗ [{u0, u
′
0}] k1 v2 ∗ [{u0, u

′
0}]

{k0,k′
0}−{k2} ρ k2 σ3 − · · ·

(16) else

(17) b(u2)← 0

(18) Q ← v1 ∗ [{u0, u2}] k1 v2 ∗ [{u0, u2}] k0 v2 ∗ [{u2}] k2 σ3 − · · ·
(19) R2 ← v1 ∗ [{u0, u

′
0, u2}] k2 v1 ∗ [{u0, u

′
0}]

(20) R3 ← v1 ∗ v1 ∗ [{u2, u
′
0}]

k′
0 [{u2}]

(21) SubdivideComp(R2)

(22) SubdivideComp(R3)

(23) return Q,Q′

Figure 6.23: Function Disconnect.
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Lemma 6.3.20 (Restated) If Disconnect is invoked with distinct paths P : σ0 − σ1 · · · and
P ′ : σ′0 − σ′1 · · · in quasistandard and standard form, respectively, with σ1 = σ′0, then it produces a
good subdivision of P ∪ P ′ with paths Q and Q′ such that |Q| = |P| and |Q′| = |P ′|.

Proof: First, since P ∪ P ′ is a pseudomanifold, k′0 6= k0 and k′0 6= k1, but it is possible k2 = k0

or k2 = k′0. Observe that b(v1) = 0, b(v2) = 1 and σ1,2 is 0-monochromatic. Let DCCn be the
double chromatic cone in line 10. Consider the execution at line 11. Since σ1,2 is 0-monochromatic,
for each face τ ′ of τ , (σ1,2)−id(τ ′) is 0-monochromatic. Thus n-simplex v2 ∗ [τ ′] of DCCn is not
1-monochromatic, by Lemma 6.3.9. Also, {u0}, {u′0} and {u0, u

′
0} are the unique 0-monochromatic

faces of τ . By Lemma 6.3.9, the n-simplexes v1 ∗ [{u0}], v1 ∗ [{u′0}] and v1 ∗ [{u0, u
′
0}] of DCCn

are 0-monochromatic. Moreover, for any face τ ′ of τ distinct to {u0}, {u′0} and {u0, u
′
0}, v1 ∗ [τ ′]

is not 0-monochromatic because τ ′ in not 0-monochromatic. Notice that v1 ∗ [{u′0}] = σ′0,1 ∪ {u′0}
and hence v1 ∗ [{u′0}] and σ′1 share σ′0,1. Therefore Q′ in line 11 is a path in standard form with
|Q′| = |P ′|. Similarly, v1 ∗ [{u0}] = σ0,1 ∪ {u0} and hence v1 ∗ [{u0}] and σ0 share σ0,1. Then R1 in
line 12 is a path in standard form. By Lemma 6.3.15, line 13 produces a complete subdivision of
R1.

For Q there are two cases. If k2 = k0 or k2 = k′0 then for Q in line 15 ρ = v2 ∗ [{u0}], supposing
w.l.o.g. that k2 = k0. Observe that v2 ∗ [{u0}] = σ2,3∪{u0} and hence v2 ∗ [{u0}] and σ3 share σ2,3.
Thus, Q is in standard form and |Q| = |P|. In the other case, v1∗[{u2}], v1∗[{u0, u2}], v1∗[{u2, u

′
0}]

and v1 ∗ [{u0, u2, u
′
0}] are 0-monochromatic, after line 17. Notice that v1 ∗ [{u2}] = σ2,3 ∪ {u2} and

hence v2 ∗ [{u2}] and σ3 share σ2,3. Therefore, Q in line 18 is in standard form and |Q| = |P|. It
is not hard to see that paths R2 and R3 in lines 19 and 20 are in standard form, and lines 21 and
22 produce complete subdivisions of them, by Lemma 6.3.15.

�

6.4 A WSB Protocol

Theorem 3.5.2 says that if there exists a ccosdi of an n-simplex with a rank-symmetric binary
coloring and no monochromatic n-simplexes, i.e., it content C is zero, then there exists a wait-free
protocol that solves WSB. Also, by Theorem 6.1.1, for every integers k0, k1 . . . kn−1 with k0 ∈
{0,−1}, there exists a ccosdi of an n-simplex with a rank-symmetric binary coloring,

C = 1 +
n−1∑
i=0

(
n+ 1
i+ 1

)
ki

and with exactly |C| monochromatic n-simplexes. Thus, if C = 0 then(
n+ 1

1

)
k0 +

(
n+ 1

2

)
k1 + . . .+

(
n+ 1
n

)
kn−1 = 1 (6.1)

has an integer solution. It is well-known that for non-zero integers a1, . . . , aj and an integer c, if
(a1, . . . , aj) divides c then there exist integers x1, . . . , xj such that a1x1 + . . . + ajxj = c (see for
example [68, pp. 301]). Therefore, if (

(
n+1

1

)
, . . .,

(
n+1

n

)
) = 1, namely, they are relatively prime,

equation (6.1) has a solution on integers and hence C = 0. Notice that the restriction k0 ∈ {0,−1}
is not a problem since

(
n+1
i+1

)
=

(
n+1
n−i

)
.
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Theorem 6.4.1 (WSB Protocol) If {
(
n+1
i+1

)
|0 ≤ i ≤ bn−1

2 c} are relatively prime then there exists
an anonymous wait-free protocol that solves WSB.

For example, consider a prime p ≥ 3. If n+ 1 = 2p then {
(
n+1
i+1

)
: 0 ≤ i ≤ bn−1

2 c} are relatively
prime. Just notice that

(
2p
1

)
= 2p and 2 is not factor of

(
2p
2

)
= p(2p − 1). Also, it is well-known

that
(
2p
p

)
= 2p(1∗3∗5...(2p−1))

p! = 2p(1∗3∗5...(p−2)∗(p+2)...(2p−1))
(p−1)! , hence p is not factor of

(
2p
p

)
. Thus, there

are an infinite number of cases for which WSB is wait-free solvable.

Corollary 6.4.2 If n + 1 = 2p where p ≥ 3 is prime then there exists an anonymous wait-free
protocol that solves WSB.

Since WSB is equivalent to 2n-renaming (see Section 2.2), Theorem 6.4.1 implies the following
renaming upper bound.

Corollary 6.4.3 (Renaming Upper Bound) If {
(
n+1
i+1

)
|0 ≤ i ≤ bn−1

2 c} are relatively prime
then there exists an anonymous wait-free protocol that solves 2n-renaming.
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Chapter 7

An Algebraic Perspective

This chapter presents the meaning of Theorems 5.1.1 and 6.1.1 in the abstract language of algebraic
topology. More precisely, it shows the relation of these theorems with equivariant maps between
chain complexes. Generally speaking, a chain complex is an algebraic structure associated with a
complex, and an equivariant map is a map between chain complexes that holds certain symmetry
properties. The chapter also explains where is the flaw in previous renaming lower bound proofs.

7.1 Algebraic Topology Preliminaries

This section presents a review of some basic notions of algebraic topology that can be found in any
textbook such as [64, 33].

Chains. Consider a complexK. A q-chain ofK is a formal sum of oriented q-simplexes:
∑

j=0 λjσ
q
j ,

where λj is an integer. For a q-chain, usually simplexes with zero coefficients are omitted, unless
they are all zero, and hence the q-chain is denoted 0. We write 1 · σq as σq and −1 · σq as −σq.
For q > 1, −σq is identified with σq having the opposite orientation. The q-chains of K form a
free Abelian group under the component-wise addition, called the q-th chain group of K, denoted
Cq(K). For dimension −1, we adjoin the infinite cyclic group Z, C−1(K) = Z.

Boundary Operator. A boundary operator ∂q : Cq(K) → Cq−1(K) is a homomorphisms that
satisfies

∂q−1∂qα = 0

and an augmentation ∂0 : C0(K)→ C−1(K) which is an epimorphism. For an oriented simplex σ =
〈v0, v1, . . . , vq〉, let σj be the (q−1)-face of σ without vertex vj , i.e., σj = 〈v0, . . . , v̂j , . . . , vq〉, where
circumflex (̂) denotes omission. For q > 0, the usual boundary operator ∂q : Cq(K)→ Cq−1(K) is
defined on simplexes:

∂qσ =
q∑

j=0

(−1)jσj

Boundary ∂q extends additively to chains: ∂q(α+β) = ∂qα+∂qβ. For q = 0, ∂0(v) = 1 and extend
linearly. We sometimes omit subscripts from boundary operators.

A q-chain α is a boundary if α = ∂β for some (q+ 1)-chain β, and it is a cycle if ∂α = 0. Since
∂∂α = 0, every boundary is a cycle.
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Homology Groups. Considering the subgroups ker(∂q) and im(∂q+1) of Cq(K), the q-th homol-
ogy group of K, denoted Hq(K), is the quotient group

Hq(K) = ker(∂q)/im(∂q+1)

If Hq(K) = 0 for q ≤ `, we say that K is `-acyclic, and if Hq(K) = 0 for every q, we say that K is
acyclic. Two q-cycles α, α′ of Cq(K) are homologous, denoted α ∼ α′, if they belong to the same
equivalence class in Hq(K). Equivalently, α ∼ α′ if and only if α− α′ is a q-boundary.

Chain Maps and Chain Homotopies. The chain complex C(K) of K, is the sequence of
groups and homomorphisms {Cq(K), ∂q}. Let {Cq(K), ∂q} and {Cq(L), ∂′q} be chain complexes for
complexes K and L. An augmentation-preserving chain map, or just chain map, φ is a family of
homomorphisms φq : Cq(K)→ Cq(L), that satisfies ∂′q◦φq = φq−1◦∂q. Therefore, φq preserves cycles
and boundaries. That is, if α is a q-cycle (q-boundary) of Cq(K), φq(α) is a q-cycle (q-boundary)
of Cq(L). Any simplicial map µ : K → L induces a chain map µ# : C(K) → C(L). For brevity, µ
denotes both the simplicial map and µ#. Similarly, any subdivision induces a chain map.

Let K and L be properly colored complexes. A chain map φ : C(K)→ C(L) is color-preserving
if each τ ∈ a(σ) is properly colored with the colors of σ.

Let ψ and φ be chain maps from C(K) to C(L). A chain homotopy from ψ to φ is a family of
homomorphisms Dq : Cq(K)→ Cq+1(L), such that ∂′q+1Dq +Dq−1∂q = ψq − φq.

Equivariant Chain Maps. Let G be a finite group and C(K) be a chain complex. An action of
G on C(K) is a set Φ = {φg|g ∈ G} of chain maps φg : C(K)→ C(K) such that:

1. For the unit element e ∈ G, φe is the identity

2. For all g, h ∈ G, φg ◦ φh = φgh.

For clarity, we write g(σ) instead of ψg(σ). The pair (C(K),Φ) is a G-chain complex. When Φ
is understood, we just say that C(K) is a G-chain complex.

Consider two G-chain complexes (C(K),Φ) and (C(L),Ψ). Suppose we have a family of homo-
morphisms

µq : Cq(K)→ Cp(L)

possibly q 6= p. We say that µ = {µq} is G-equivariant, or just equivariant when G is understood,
if

µ ◦ φg = ψg ◦ µ

for every g ∈ G. This definition can be extended for the case in which we have a family of
homomorphisms for each dimension q, i.e, µ is a family of families of homomorphisms. More
formally, for each q suppose we have a family of homomorphisms

µ1
q , . . . , µ

iq
q : Cq(K)→ Cp(L)

We say that µ = {µiq
q } is G-equivariant if for every g ∈ G and for every µi ∈ µ,

µj ◦ φg = ψg ◦ µi

for some µj ∈ µ.
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7.2 An Equivariance Theorem

This section presents a purely algebraic topology theorem, Theorem 7.2.1, that is strongly related
with Theorems 5.1.1 and 6.1.1. This theorem is about a chain map a from the chain complex of
a properly colored n-simplex, to the chain complex of the WSB output complex WSB. Theorem
7.2.1 states that if a is equivariant with respect to the symmetric group, it exists if and only if n is
exceptional.

Let Sn be the symmetric group consisting all of permutations of IDn under the composition
operation. For 0 ≤ i ≤ q ≤ n, let πq

i denote the permutation

πq
i =

(
0 . . . i− 1 i . . . q − 1 q q + 1 . . . n
0 . . . i− 1 i+ 1 . . . q i q + 1 . . . n

)
Consider a simplex σn with a coloring id that is proper with IDn. For brevity, let σn denote

M(σn), the complex consisting all faces of simplex σn. Let 〈i0i1 . . . ij〉 denote the oriented face of
σn with colors i0, i1, . . . , ij and with the orientation that contains the sequence 〈i0i1 . . . ij〉. Clearly,
C(σn) is a Sn-chain complex: for each π ∈ Sn, π(〈i0i1 . . . ij〉) = 〈π(i0)π(i1) . . . π(ij)〉.

Consider the output complex On for WSB (see Section 3.2). Each vertex of On has the
form (i, b), where i ∈ IDn and b ∈ {0, 1}. C(On) is a Sn-chain complex: for each π ∈ Sn,
π(〈(i0, b0)(i1, b1) . . . (ij , bj)〉) = 〈(π(i0), b0)(π(i1), b1) . . . (π(ij), bj)〉.

Theorem 7.2.1 There is a color-preserving Sn-equivariant chain map a : C(σn) → C(On) if and
only if {

(
n+1
i+1

)
|0 ≤ i ≤ bn−1

2 c} are relatively prime.

The proof of Theorem 7.2.1 appears in Sections 7.3 and 7.4. First it is presented a result derived
from it.

Let Zn be the finite cyclic group consisting of IDn under the addition modulo n+ 1 operation.
For each x ∈ IDn, let ρx : IDn → IDn be the permutation defined as ρx(y) = (y+x) mod (n+1).
C(σn) is a Zn-chain complex: for each x ∈ Zn, x(〈i0i1 . . . iq〉) = 〈ρx(i0)ρx(i1) . . . ρx(iq)〉.

Corollary 7.2.2 If {
(
n+1
i+1

)
|0 ≤ i ≤ bn−1

2 c} are relatively prime then there is a Zn-equivariant chain
map b : C(σn)→ C(σn) such that b(∂σn) = 0.

Proof: First, C(On) is a Zn-chain complex: for each x ∈ Zn, x(〈(i0, b0)(i1, b1) . . . (iq, bq)〉) =
〈(ρx(i0), b0)(ρx(i1), b1) . . . (ρx(iq), bq)〉. By Theorem 7.2.1, there is a color-preserving Sn-equivariant
chain map a : C(σn) → C(On). It is well known that Zn is a subgroup of Sn. Thus, a is Zn-
equivariant. Consider the simplicial map µ : On → σn defined as µ((i, b)) = (i+ b) mod (n+1) for
each vertex (i, b) ∈ On, and consider the chain map induced by µ, denoted also µ. It is not hard
to verify that, for every x ∈ Zn and τ = 〈(i0, b0)(i1, b1) . . . (iq, bq)〉 ∈ C(On), µ ◦ x(τ) = x ◦ µ(τ) =
〈ρx(i0 + b0)ρx(i1 + b1) . . . ρx(iq + bq)〉, hence µ is Zn-equivariant. Therefore, µ ◦ a : C(σn)→ C(σn)
is Zn-equivariant. One can prove that µ maps an n-simplex of C(On) to σn if and only if it is
monochromatic (the argument is the same that the one used in Lemma 4.1.5). Since On has no
monochromatic n-simplexes, µ ◦ a(σn) = 0, hence µ ◦ a(∂σn) = 0 because µ ◦ a(∂σn) = ∂µ ◦ a(σn).

�
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7.3 Necessity

This section presents a proof of the “only if” direction of Theorem 7.2.1, i.e., if n is non-exceptional
then there is no color-preserving equivariant chain map a : C(σn) → C(On). The proof consists
of proving that a must map the boundary ∂σn to a cycle of C(On) that is not a boundary, which
is not possible since chain maps preserve cycles and boundaries. More formally, it proves that
a(∂σn) ∼ kα, where α is cycle of C(On) that is not a boundary and k is a non-zero integer. The
proof uses ideas of [55, 56].

In what follows, for distinct i0, i1, . . . , iq ∈ IDn, q ≤ n − 1, let Sq
i0i1...iq

denote the subcomplex
of On that contains all q-simplexes, and all its faces, that are properly colored with i0, i1, . . . , iq. It
is not hard to see that Sq

i0i1...iq
is a sphere of dimension q. A sphere of dimension q is a complex

that has a geometric realization that corresponds to a geometric realization of the boundary of a
q+1-simplex. Figure 7.1 shows the spheres S0

2 and S1
01 of the 2-dimensional WSB output complex.

0

0

1

1

2

2
S1

01S0
2

Figure 7.1: The spheres S0
2 and S1

01 of O2.

The following lemmas will be useful for proving Lemma 7.3.4 and Theorem 7.3.5 below. Lemma
7.3.1 is a standard result (see textbook [64]). For the rest of the section, let ∂0n be the (n−1)-cycle
of C(On) defined as

n∑
i=0

(−1)i〈(0, 0) . . . (̂i, 0) . . . (n, 0)〉

Observe that ∂0n is not a boundary.

Lemma 7.3.1 Let S be a sphere of dimension n. Then every `-cycle is a boundary, ` ≤ n− 1.

Lemma 7.3.2 ([55]) Let Si be the cycle obtained by orienting each (n − 1)-simplex of Sn−1

0...bi...n
.

Then every (n− 1)-cycle of C(On) is homologous to k Si for some integer k.

Lemma 7.3.3 ([55]) Let Si be the cycle obtained by orienting the (n−1)-simplexes of Sn−1

0...bi...n
such

that its 0-monochromatic (n− 1)-simplex is oriented in increasing id order. Then Si ∼ (−1)i∂0n.

Consider the chain map z : C(bd(σn)) → C(On) that maps each simplex 〈i0 . . . ij〉 of C(bd(σn))
to 〈(i0, 0) . . . (ij , 0)〉. Clearly z is color-preserving and Sn-equivariant. The following lemma is the
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basis for proving Theorem 7.3.5, which will give the the impossibility of the existence of a. For
the rest of the chapter, let skq(σn) denote the complex consisting of all faces of σn of dimension at
most q.

Lemma 7.3.4 For each subset s of IDn there are families of homomorphisms

ds
q : Cq(σn)→ Cq+1(On)

fs
p : Cp(σn)→ Cp(On)

−1 ≤ q ≤ n− 2 and 0 ≤ p ≤ n− 1, such that d = {ds
q} and f = {fs

p} are Sn-equivariant: For every
π ∈ Sn

π ◦ ds = dπ(s) ◦ π

π ◦ fs = fπ(s) ◦ π

Moreover, for any proper q-face σ of σn, the chain

a(σ)− z(σ)− did(σ)(∂σ)−
∑

σ′∈skq−2(σ)

f id(σ′)(σ)

is a q-cycle.

Proof: We proceed by induction on the dimension of the faces of σn. Unless stated otherwise,
ds = 0 and fs = 0. For the rest of the proof let σi0i1...ij denote the oriented face 〈i0i1 . . . ij〉 of σn.

For dimension 0 it is easy to see that, for each 0-face σ of σn, a(σ) − z(σ) is a 0-cycle. For
dimension 1, consider the face σ0 and the set {0, 1}. We have that a(σ0)− z(σ0) is a 0-cycle. Since
a is color-preserving and by the definition of z, a(σ0), z(σ0) ∈ C(S0

0 ). By Lemma 7.3.1 and since
S0

0 ⊂ S1
01, there is a 1-chain d01(σ0) ∈ C(S1

01) such that ∂d01(σ0) = a(σ0) − z(σ0). Now, using
d01(σ0), we “symmetrically” define the value of d for each pair of 0-face σ and set s of size 2 such
that id(σ) ⊂ s, namely, dπ(01)(π(σ0)) = ds(σ) = π(d01(σ0)), where π is a permutation of Sn such
that σ = π(σ0) and s = π(01). In this way

∂ds(σ) = ∂π(d01(σ0)) = π(∂d01(σ0))
= π(a(σ0)− z(σ0)) = a(π(σ0))− z(π(σ0)) = a(σ)− z(σ)

Observe that ds(σ) ∈ C(S1
s ), and for any π′ ∈ Sn, π′(ds(σ)) = π′(dπ(01)(π(σ0))) = π′ ◦ π(d01(σ0)) =

dπ′◦π(01)(π′ ◦ π(σ0)).
For example, for the 0-face σ1 and the set {0, 1}, dπ1

0(01)(π1
0(σ0)) = d01(σ1) = π1

0(d
01(σ0)).

Observe that the election of d01(σ0) allows to achieve an equivariant d. Thus, we have that
∂d01(σ0) = a(σ0)− z(σ0) and ∂d01(σ1) = a(σ1)− z(σ1), hence

∂d01(σ1)− ∂d01(σ0) = a(σ1)− z(σ1)− (a(σ0)− z(σ0))
∂d01(∂σ01) = a(∂σ01)− z(∂σ01)

0 = ∂(a(σ01)− z(σ01)− d01(∂σ01))

Thus, a(σ01) − z(σ01) − d01(∂σ01) is a 1-cycle. This complete the basis of the induction, however
we present the case for dimension 2 to illustrate the idea.
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Consider the face σ01 and the set {0, 1, 2}. We have proved that a(σ01) − z(σ01) − d01(∂σ01)
is a 1-cycle. Moreover, since a and z are color-preserving, and by the previous step, we have
that a(σ01), z(σ01), d01(∂σ01) ∈ C(S1

01). By Lemma 7.3.1 and since S1
01 ⊂ S2

012, there exists a 2-
chain d012(σ01) ∈ C(S2

012) such that ∂d012(σ01) = a(σ01)− z(σ01)− d01(∂σ01). Using d012(σ01), we
“symmetrically” define the value of d for all pair of 1-face σ and set s of size 3 such that id(σ) ⊂ s.
For example, dπ2

0(012)(π2
0(σ01)) = d012(σ12) = π2

0(d
012(σ01)) and dπ2

1(012)(π2
1(σ01)) = d012(σ02) =

π2
1(d

012(σ01)). So we have

∂d012(σ01) = a(σ01)− z(σ01)− d01(∂σ01)
∂d012(σ12) = a(σ12)− z(σ12)− d12(∂σ12)
∂d012(σ02) = a(σ02)− z(σ02)− d02(∂σ02)

Taking the alternating sign sum over σ01, σ12, σ02,

∂d012(σ01)− d012(σ02) + d012(σ12) = +(a(σ01)− z(σ01)− d01(∂σ01))
−(a(σ02)− z(σ02)− d02(∂σ02))
+(a(σ12)− z(σ12)− d12(∂σ12))

∂d012(∂σ012) = a(∂σ012)− z(∂σ012)− γ

where γ = d12(∂σ12)− d02(∂σ02) + d01(∂σ01). Thus

∂(a(σ012)− z(σ012)− d012(∂σ012))− γ = 0 (7.1)

Now, we have that

γ = d12(∂σ12)− d02(∂σ02) + d01(∂σ01))
= (d12(σ2)− d12(σ1))− (d02(σ2)− d02(σ0)) + (d01(σ1)− d01(σ0))

Considering the result of the boundary operator over the terms where σ0 appears, we get

∂(d02(σ0)− d01(σ0)) = ∂d02(σ0)− ∂d01(σ0)
= a(σ0)− z(σ0)− (a(σ0)− z(σ0))
= 0

Thus, d02(σ0) − d01(σ0) is a 1-cycle. The same happens with the terms where σ1 and σ2 appear,
respectively. Now, by Lemma 7.3.1 and since d01(σ0) ∈ C(S1

01) and d02(σ0) ∈ C(S1
02), there is a

2-chain f0(σ012) ∈ C(S2
012) such that ∂f0(σ012) = d02(σ0) − d01(σ0). The value f0(σ012) induces

the value of f for all pair of 2-face σ and set s of size 1 such that s ⊂ id(σ). For example,
fπ2

0(0)(π2
0(σ012)) = f1(σ120) = f1(σ012) = π2

0(f
0(σ012)). Observe that f1(σ012), f2(σ012) ∈ C(S2

012).
Therefore,

γ = ∂f0(σ012) + ∂f1(σ012) + ∂f2(σ012) = ∂
∑

σ∈sk0(σ012)

f id(σ)(σ012) (7.2)

Combining equations (7.1) and (7.2) we get

0 = ∂

a(σ012)− z(σ012)− d012(∂σ012)−
∑

σ∈sk0(σ012)

f id(σ)(σ012)
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hence the lemma holds for n = 2. Roughly speaking, f i(σ012), i ∈ {0, 1, 2}, is what the 0-
dimensional face σi of σ012 adds in obtaining the 2-cycle for σ012.

Assume the lemma holds for faces of dimension at most q − 1, 0 ≤ q ≤ n − 1. We prove the
lemma holds for faces of dimension q. Also, for each (q− 1)-dimensional face σ = σc0...cq−1 , assume
the following.

1. For every (q − 2)-dimensional face σ′ of σ, did(σ)(σ′) ∈ C(Sq−1
id(σ)), and for each `-dimensional

face σ′ of σ, ` ≤ q − 3, f id(σ′)(σ) ∈ C(Sq−1
id(σ)).

2. For every (q − 2)-dimensional face σ′ of σ,

∂did(σ)(σ′) = a(σ′)− z(σ′)− did(σ′)(∂σ′)−
∑

σ′′∈skq−4(σ′)

f id(σ′′)(σ′)

3. For every (q − 3)-dimensional face σ′ = σc0...bci... bcj ...cq−1
of σ,

∂f id(σ′)(σ) = (−1)i+jdid(σj)(σ′) + (−1)i+j−1did(σi)(σ′)

where σi = σc0...bci...cq−1
and σj = σc0... bcj ...cq−1

.

4. For every k-dimensional face σ′ of σ, k ≤ q − 4,

∂f id(σ′)(σ) =
∑

ci∈id(σ),ci /∈id(σ′)

(−i)if id(σ′)(σi)

where σi = σc0...bci...cq−1
.

Consider the q-simplex σ = σ0...q. Let σi be the (q − 1)-dimensional face σ0...bi...q of σ. By
induction hypothesis,

a(σi)− z(σi)− did(σi)(∂σi)−
∑

σ′∈skq−3(σi)

f id(σ′)(σi)

is a (q − 1)-cycle. Consider the (q − 1)-dimensional face σq. By induction hypothesis, for each
(q − 2)-dimensional face σ′ of σq, d0...q−1(σ′) ∈ C(Sq−1

0...q−1), and for each `-dimensional face σ′ of
σq, ` ≤ q − 3, f id(σ′)(σq) ∈ C(Sq−1

0...q−1). Also, a(σq), z(σq) ∈ C(Sq−1
0...q−1), because a and z are color-

preserving. By Lemma 7.3.1 and since Sq−1
0...q−1 ⊂ S

q
0...q, there is a q-chain d0...q(σq) ∈ C(Sq

0...q) such
that

∂d0...q(σq) = a(σq)− z(σq)− did(σq)(∂σq)−
∑

σ′∈skq−3(σq)

f id(σ′)(σq)

Using d0...q(σq), we “symmetrically” define the value of ds(σ′) = π(d0...q(σq)), where dim(σ′) = q−1,
|s| = q + 1, id(σ′) ⊂ s, and π is a permutation of Sn such that π(σq) = σ′ and π({0, . . . , q}) = s.
Notice that for every π′ ∈ Sn, π′(ds(σ′)) = π′ ◦ π(d0...q(σq)) = dπ′◦π(0...q)(π′ ◦ π(σq)). Therefore, for
each face σi of σ

∂d0...q(σi) = a(σi)− z(σi)− did(σi)(∂σi)−
∑

σ′∈skq−3(σi)

f id(σ′)(σi)
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and d0...q(σi) ∈ C(Sq
0...q).

Taking the alternating sign sum over all (q − 1)-faces of σ, we get
q∑

i=0

(−1)i∂d0...q(σi) =
q∑

i=0

(−1)i(a(σi)− z(σi)− did(σi)(∂σi)−
∑

σ′∈skq−3(σi)

f id(σ′)(σi))

∂d0...q(∂σ) = a(∂σ)− z(∂σ)− γ − λ
0 = ∂(a(σ)− z(σ)− d0...q(∂σ))− γ − λ

where

γ =
q∑

i=0

(−1)idid(σi)(∂σi)

λ =
q∑

i=0

(−1)i
∑

σ′∈skq−3(σi)

f id(σ′)(σi)

We now extend d and f such that

∂(a(σ)− z(σ)− did(σ)(∂σ))− γ − λ (7.3)

is a q-cycle. Intuitively, we will see that γ and λ are made of (q−1)-cycles, hence there are q-chains
γ′ and λ′ such that ∂γ′ = γ and ∂λ′ = λ. Combining ∂γ′ and ∂λ′ with Equation (7.3), we get
a(σ)−z(σ)−did(σ)(∂σ)−γ′−λ′ is a q-cycle, since we know that ∂(a(σ)−z(σ)−did(σ)(∂σ))−γ−λ = 0.
As we shall see, γ′ and λ′ are the q-chains the lemma requires.

First, let us consider γ. Let σij denote the (q − 2)-dimensional face σ0...bi...bj...q of σ. Observe
that

∂γ = ∂

q∑
i=0

(−1)idid(σi)(∂σi) = ∂

q∑
i=0

(−1)i

 i−1∑
j=0

(−1)jdid(σi)(σji) +
q∑

j=i+1

(−1)j−1did(σi)(σij)


=

q∑
i=0

q∑
j=i+1

(−1)i+j∂
(
did(σj)(σij)− did(σi)(σij)

)
By induction hypothesis, ∂did(σj)(σij) = ∂did(σi)(σij), thus the (q−1)-chain did(σj)(σij)−did(σi)(σij)
is a cycle. In addition, did(σi)(σij) ∈ C(Sq−1

id(σi)
) and did(σj)(σij) ∈ C(Sq−1

id(σj)
), by induction hypothesis.

By Lemma 7.3.1 and since Sq−1
id(σi)

,Sq−1
id(σj)

⊂ Sq
0...q, there exists a q-chain f id(σij)(σ) ∈ C(Sq

0...q) such
that

∂f id(σij)(σ) = (−1)i+j
(
did(σj)(σij)− did(σi)(σij)

)
We use f id(σij)(σ) to “symmetrically” define the value of fs(σ′) for dim(σ′) = q, |s| = q − 1 and
s ⊂ id(σ′). So we have

γ = ∂
∑

σ′∈skq−2(σ),dim(σ′)=q−2

f id(σ′)(σ) (7.4)

Consider now λ. It is not hard to see that

λ =
q∑

i=0

(−1)i
∑

σ′∈skq−3(σi)

f id(σ′)(σi) =
∑

σ′∈skq−3(σ)

∑
i∈[q]−id(σ′)

(−1)if id(σ′)(σi)
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We prove that
∑

i∈[q]−id(σ′)(−1)if id(σ′)(σi) is a (q − 1)-cycle. Observe that σ′ is a face of σi. Fix
some σ′ ∈ skq−3(σ). We consider two cases, dim(σ′) = q − 3 and dim(σ′) ≤ q − 4.

Case dim(σ′) = q − 3. Assume, without loss of generality, [q]− id(σ′) = {a, b, c} with a < b < c.
We have that

∂
∑

i∈[q]−id(σ′)

(−1)if id(σ′)(σi) = (−1)c∂f id(σ′)(σc) + (−1)b∂f id(σ′)(σb) + (−1)a∂f id(σ′)(σa)

Let σijk denote the face σ
0...bi...bj...bk...q

of σ. By induction hypothesis,

∂f id(σ′)(σc) = (−1)a+bf id(σbc)(σabc) + (−1)a+b−1f id(σac)(σabc)
∂f id(σ′)(σb) = (−1)a+c−1f id(σbc)(σabc) + (−1)a+c−2f id(σab)(σabc)
∂f id(σ′)(σa) = (−1)b+c−2f id(σac)(σabc) + (−1)b+c−3f id(σab)(σabc)

and thus

∂
∑

i∈[q]−id(σ′)

(−1)if id(σ′)(σi) = (−1)a+b+cf id(σbc)(σabc) + (−1)a+b+c−1f id(σac)(σabc)

+(−1)a+b+c−1f id(σbc)(σabc) + (−1)a+b+c−2f id(σab)(σabc)
+(−1)a+b+c−2f id(σac)(σabc) + (−1)a+b+c−3f id(σab)(σabc)

= 0

Therefore,
∑

i∈[q]−id(σ′)(−1)if id(σ′)(σi) is a (q− 1)-cycle. By induction hypothesis, f id(σ′)(σi) ∈
C(Sq−1

id(σi)
). By Lemma 7.3.1 and since Sq−1

id(σi)
⊂ Sq

0...q, there exists a q-chain f id(σ′)(σ) ∈ C(Sq
0...q)

such that ∂f id(σ′)(σ) =
∑

i∈[q]−id(σ′)(−1)if id(σ′)(σi). We use f id(σ′)(σ) to “symmetrically” define
the value of fs(σ′′) for dim(σ′′) = q, |s| = q − 2 and s ⊂ id(σ′). Therefore,∑

σ′∈skq−3(σ),dim(σ′)=q−3

∑
i∈[q]−id(σ′)

(−1)if id(σ′)(σi) = ∂
∑

σ′∈skq−3(σ),dim(σ′)=q−3

f id(σ′)(σ) (7.5)

Case dim(σ′) ≤ q − 4. By induction hypothesis, for every i ∈ [q]− id(σ′),

∂f id(σ′)(σi) =
i−1∑

j=0,j /∈id(σ′)

(−1)jf id(σ′)(σji) +
q∑

j=i+1,j /∈id(σ′)

(−1)j−1f id(σ′)(σij)

Thus

∂
∑

i∈[q]−id(σ′)

(−1)if id(σ′)(σi) =
∑

i∈[q]−id(σ′)

i−1∑
j=0,j /∈id(σ′)

(−1)i+jf id(σ′)(σji)

+
∑

i∈[q]−id(σ′)

q∑
j=i+1,j /∈id(σ′)

(−1)i+j−1f id(σ′)(σij)

= 0
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Therefore,
∑

i∈[q]−id(σ′)(−1)if id(σ′)(σi) is a (q − 1)-cycle. By induction hypothesis, f id(σ′)(σi) ∈
C(Sq−1

id(σi)
). By Lemma 7.3.1 and since Sq−1

id(σi)
⊂ Sq

0...q, there exists a q-chain f id(σ′)(σ) ∈ C(Sq
0...q)

such that ∂f id(σ′)(σ) =
∑

i∈[q]−id(σ′)(−1)if id(σ′)(σi). We use f id(σ′)(σ) to “symmetrically” define
the value of fs(σ′′) for dim(σ′′) = q, |s| ≤ q − 3 and s ⊂ id(σ′′). Thus, we get∑

σ′∈skq−4(σ)

∑
i∈[q]−id(σ′)

(−1)if id(σ′)(σi) = ∂
∑

σ′∈skq−4(σ)

f id(σ′)(σ) (7.6)

Combining Equations (7.5) and (7.6)

λ = ∂
∑

σ′∈skq−3(σ)

f id(σ′)(σ) (7.7)

Finally, from Equations (7.3), (7.4) and (7.7), we conclude

a(σ)− z(σ)− did(σ)(∂σ)−
∑

σ′∈skq−2(σ)

f id(σ′)(σ)

is a q-cycle, hence the lemma holds for faces of dimension q.

�

Theorem 7.3.5 is the algebraic counterpart of Theorem 5.1.1, which characterizes the number
of monochromatic n-simplexes of a ccodi of an n-simplex with a symmetric binary coloring.

Theorem 7.3.5 Let a : C(σn) → C(On) be a color-preserving equivariant chain map. For some
integers k0, . . . , kn−1,

a(∂σn) ∼

1 +
n−1∑
q=0

kq

(
n+ 1
q + 1

) ∂0n.

Proof: Consider the chain map z : C(bd(σn)) → C(On) that maps each simplex 〈c0 . . . ci〉 to
〈(c0, 0) . . . (ci, 0)〉. Observe that z(σn) = ∂0n. Let σi denote the oriented face 〈0 . . . î . . . n〉 of
σn. Let Si be the cycle obtained by orienting the (n − 1)-simplexes of Sn−1

0...bi...n
such that its 0-

monochromatic (n− 1)-simplex is oriented in increasing id order. By Lemma 7.3.4,

αi = a(σi)− z(σi)− did(σi)(∂σi)−
∑

σ∈skn−3(σi)

f id(σ)(σi)

is an (n− 1)-cycle. Consider the cycle αn. By Lemma 7.3.2,

αn ∼ kn−1Sn

for some integer kn−1. It is not hard to see that πn
i (σn) = σi and πn

i (Sn) = Si. Thus, πn
i (αn) = αi,

because a, z, d and f are equivariant. Moreover,

πn
i (αn) = αi ∼ kn−1π

n
i (Sn) = kn−1Si

and by Lemma 7.3.3
αi ∼ (−1)ikn−1∂0n
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Considering the alternating sign sum over all (n− 1)-faces of σn, we get

n∑
i=0

(−1)i

a(σi)− z(σi)− did(σi)(∂σi)−
∑

σ∈skn−3(σi)

f id(σ)(σi)

 ∼
n∑

i=0

(−1)i(−1)ikn−1∂0n

hence

a(∂σn)− z(∂σn)−
n∑

i=0

(−1)idid(σi)(∂σi)−
n∑

i=0

(−1)i
∑

σ∈skn−3(σi)

f id(σ)(σi) ∼ kn−1(n+ 1)∂0n

And since z(∂σn) = ∂0n

a(∂σn) ∼ (1 + kn−1(n+ 1)) ∂0n +
n∑

i=0

(−1)idid(σi)(∂σi) +
n∑

i=0

(−1)i
∑

σ∈skn−3(σi)

f id(σ)(σi)

Notice that if we prove
n∑

i=0

(−1)idid(σi)(∂σi) ∼ kn−2

(
n+ 1
n− 1

)
∂0n (7.8)

and
n∑

i=0

(−1)i
∑

σ∈skn−3(σi)

f id(σ)(σi) ∼
n−3∑
q=0

kq

(
n+ 1
q + 1

)
∂0n (7.9)

then

a(∂σn) ∼

1 +
n−1∑
q=0

kq

(
n+ 1
q + 1

) ∂0n

Proof of equation (7.8). For i, j ∈ IDn such that i < j, let αij be (−1)i+j(did(σj)(σij) −
did(σi)(σij)), where σij is the (n− 2)-face 〈0 . . . î . . . ĵ . . . n〉 of σn. The proof of Lemma 7.3.4 shows
that

n∑
i=0

(−1)idid(σi)(∂σi) =
n∑

i=0

n∑
j+1

αij

and αij is an (n− 1)-cycle.
Consider i, j ∈ IDn such that i < j < n. We have that

αij = (−1)i+j(did(σj)(σij)− did(σi)(σij))

αij+1 = (−1)i+j+1(did(σj+1)(σij+1)− did(σi)(σij+1))

It is easy to see that πj+1
j (σij) = σij+1, π

j+1
j (σj) = σj+1 and πj+1

j (σi) = −σi. Thus, πj+1
j (αij) =

αij+1, because d is equivariant. By Lemma 7.3.2, for some integer kij ,

αij ∼ (−1)ikijSi (7.10)

It can be easily proved that πj+1
j (Si) = −Si. Applying πj+1

j on both sides of Equation (7.10) and
then multiplying by −1, we get

αij+1 ∼ (−1)ikij+1Si (7.11)
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By Lemma 7.3.3 and Equations (7.10) and (7.11), αij ∼ kij∂0n and αij+1 ∼ kij∂0n. A similar
analysis gives that, for every i, j ∈ IDn such that i < j − 1, αij ∼ kij∂0n and αi+1j ∼ kij∂0n.

We can repeatedly use these two arguments to prove that αij ∼ kij∂0n and αi′j′ ∼ kij∂0n, for
every i, i′, j, j′ ∈ IDn, i < j and i′ < j′. Therefore,

n∑
i=0

n∑
j+1

αij ∼
(
n+ 1
n− 1

)
kn−2∂0n

for some integer kn−2.

Proof of equation (7.9). The argument is very similar to the one used for Equation (7.8). The
proof of Lemma 7.3.4 shows that

n∑
i=0

(−1)i
∑

σ∈skn−3(σi)

f id(σ)(σi) =
∑

σ∈skn−3(σn)

∑
i∈IDn−id(σ)

(−1)if id(σ)(σi)

Also it shows that
∑

i∈IDn−id(σ)(−1)if id(σ)(σi) is an (n− 1)-cycle. For each σ ∈ skn−3(σn), let ασ

be the cycle
∑

i∈IDn−id(σ)(−1)if id(σ)(σi).
Consider σ, σ′ ∈ skn−3(σn) of same dimension such that for some P ⊂ IDn and j ∈ IDn,

id(σ) = P ∪ {j}, id(σ′) = P ∪ {j + 1} and j, j + 1 /∈ P . Note

ασ =
∑

i∈IDn−id(σ)

(−1)if id(σ)(σi) = (−1)j+1f id(σ)(σj+1) +
∑

i∈IDn−P

(−1)if id(σ)(σi)

ασ′ =
∑

i∈IDn−id(σ′)

(−1)if id(σ′)(σi) = (−1)jf id(σ′)(σj) +
∑

i∈IDn−P

(−1)if id(σ′)(σi)

It is easy to see that πj+1
j (σ) = σ′, πj+1

j (σj+1) = σj and πj+1
j (σi) = −σi for each i ∈ IDn − P .

Then, πj+1
j (ασ) = −ασ′ , since f is equivariant.

Fix an i ∈ IDn − id(σ). By Lemma 7.3.2, for some integer kσ

ασ ∼ (−1)ikσSi (7.12)

It can be easily proved that πj+1
j (Si) = −Si. Applying πj+1

j on both sides of Equation (7.13) and
then multiplying by −1, we get

ασ′ ∼ (−1)ikσSi (7.13)

By Lemma 7.3.3 and Equations (7.12) and (7.13), ασ ∼ kσ∂0n and ασ′ ∼ kσ∂0n. We can repeatedly
use this argument to prove that ασ ∼ kσ∂0n and ασ′ ∼ kσ∂0n, for every σ, σ′ ∈ skn−3(σn) of same
dimension. Therefore,

∑
σ∈skn−3(σn)

∑
i∈IDn−id(σ)

(−1)if id(σ)(σi) ∼
n−3∑
q=0

kq

(
n+ 1
q + 1

)
∂0n

�
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As explained in Section 5.4, if {
(
n+1
i+1

)
|0 ≤ i ≤ bn−1

2 c} are not relatively prime, then there are
not integers k0, . . . , kn−1 such that 1 +

∑n−1
q=0 kq

(
n+1
q+1

)
= 0, hence, by Theorem 7.3.5, the boundary

a(∂σn) is homologous to k ∂0n, where k is a non-zero integer. Since the cycle ∂0n is not a boundary,
a cannot exist. The following lemma follows.

Lemma 7.3.6 If {
(
n+1
i+1

)
|0 ≤ i ≤ bn−1

2 c} are not relatively prime, then there is no color-preserving
equivariant chain map a : C(σn)→ C(On).

7.4 Sufficiency

This section proves the “if” direction of Theorem 7.2.1, namely, if n is exceptional then there is a
color-preserving equivariant chain map a : C(σn) → C(On). It proves that, for exceptional n, the
ccosdi’s without monochromatic n-simplexes produced by the construction presented in Chapter 6,
induce chain maps like a.

Lemma 7.4.1 If {
(
n+1
i+1

)
|0 ≤ i ≤ bn−1

2 c} are relatively prime, then there is a color-preserving
equivariant chain map a : C(σn)→ C(On).

Proof: As explained in Section 6.4, Theorem 6.1.1 implies that if n is exceptional, then there is a
ccosdi Kn of an n-simplex with a rank-symmetric binary coloring and without monochromatic n-
simplexes. Subdivisions induce chain maps, hence Kn induce a chain map µ1 : C(σn)→ C(χ(σn)).
Let id and b the chromatic and binary coloring of Kn. Since Kn does not have monochromatic
n-simplexes, id and b induces a simplicial map Kn → On, which induces a chain map µ2 : C(Kn)→
C(On), because simplicial maps induce chain maps. Let a be the composition of µ1 and µ2. Clearly,
µ1 and µ2 are color-preserving, thus a is color-preserving. In what follows, we prove a is equivariant.

Let Ȯn be the complex containing On and the monochromatic n-simplexes {(0, 1), . . . , (n, 0)}
and {(0, 1), . . . , (n, 1)}. Observe that a is also a chain map C(σn)→ C(Ȯn). For technical reasons
we think of a in this way. By induction on q, we prove the following proposition.

Proposition 7.4.2 The restriction a|C(skq(σn)), 0 ≤ q ≤ n, is equivariant.

By symmetry of the binary coloring of Kn, Proposition 7.4.2 clearly holds for q = 0. Suppose
Proposition 7.4.2 holds for dimension q − 1. We prove it holds for dimension q.

Consider two q-simplexes σ, σ′ ∈ C(skq(σn)) that are oriented in increasing id order.Because
the binary coloring of Kn is rank symmetric, we have that a ◦ π′(σ) = a(σ′) = π′ ◦ a(σ), where
π′ is any permutation of Sn such that σ′ = π′(σ), i.e., it maps the colors of id(σ) to the colors of
id(σ′) preserving the order. Notice that if we prove that π ◦ a(σ) = a ◦ π(σ) for every π ∈ Sn, then
π ◦ a(σ′) = π ◦ π′ ◦ a(σ) = a ◦ π ◦ π′(σ) = a ◦ π(σ′).

Suppose, without loss of generality, that σ = 〈0 . . . q〉. Let Lq be {τ |τ ∈ skq(Ȯn) and id(τ) =
IDq}. For τ ∈ Lq, let #1(τ) be the number of its vertexes with binary color 1, and let inv(τ, i),
0 ≤ i ≤ q, denote the simplex of Lq with the same vertexes as τ but with the vertex with id i having
the opposite binary coloring to the binary coloring of the vertex with id i of τ . For 0 ≤ k ≤ q + 1,
let Lq,k denote the set {τ |τ ∈ Lq and #1(τ) = k}. Thus |Lq,k| =

(
q+1
k

)
. Since a is color-preserving,

we can write
a(σ) =

∑
τ∈Lq

kττ
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where kτ ∈ Z. Obviously if q = n then k{(0,0),...,(n,0)} = k{(0,1),...,(n,1)} = 0, since On does not have
monochromatic n-simplexes. We prove the following proposition.

Proposition 7.4.3 For every τ, τ ′ ∈ Lq,k, kτ = kτ ′, 0 ≤ k ≤ q + 1.

For example, for σ = 〈012〉 and k = 2, Proposition 7.4.3 says that if 〈(0, 0)(1, 1)(2, 1)〉 appears in
a(σ) with coefficient `, then 〈(0, 1)(1, 1)(2, 0)〉 and 〈(0, 1)(1, 0)(2, 1)〉 appear in a(σ) with coefficient
` too. It is not hard to see that this proves a ◦ π(σ) = π ◦ a(σ) for every π ∈ Sn, hence Proposition
7.4.2 holds for q.

We proceed by induction on k. For k = 0 we have that |Lq,k| = 1, thus Proposition 7.4.3
trivially holds. Suppose Proposition 7.4.3 holds for k − 1. We prove it holds for k.

Notice that

∂a(σ) =
∑
τ∈Lq

kτ∂τ =
∑
τ∈Lq

kτ

q∑
i=0

(−1)iτi = a(∂σ) =
q∑

i=0

(−1)ia(σi)

where τi = 〈(0, b0) . . . (̂i, bi) . . . (q, bq)〉 for τ = 〈(0, b0) . . . (i, bi) . . . (q, bq)〉. Consider a simplex τ ∈ Lq

and i ∈ {0, . . . , q}. Observe that the (q−1)-simplex τi appears in ∂a(σ) with coefficient (−1)i(kτ +
kinv(τ,i)), since τi is face of τ and inv(τ, i). Moreover, τi appears in a(σi) with coefficient kτ +kinv(τ,i),
because ∂a(σ) = a(∂σ) and a is color-preserving. Also notice that either #1(τ) = #1(τi) and
#1(inv(τ, i)) = #1(τi) + 1, or #1(τ) = #1(τi) + 1 and #1(inv(τ, i)) = #1(τi).

Consider the set N = {τ |τ ∈ Lq,k and #1(τq) = k − 1}. Note |N | =
(

q
k−1

)
. For each τ ∈ N ,

observe that #1(inv(τ, q)) = k−1, hence inv(τ, q) ∈ Lq,k−1. Consider a simplex τ ∈ N . As noticed
above, τq appears in a(σq) with coefficient kτ + kinv(τ,q). Consider i ∈ {0, . . . , q}. Let ρi and ρ be
the simplexes πq

i (τq) and πq
i (τ). Observe that ρi is a face of ρ, #1(ρi) = k − 1 and #1(ρ) = k.

As for τq, we have that ρi appears in a(σi) with coefficient kρ + kinv(ρ,i), where σi = πq
i (σq). By

induction hypothesis, a|C(skq−1(σn)) is equivariant, hence a ◦πq
i (σq) = a(σi) = πq

i ◦ a(σq). Therefore,
kτ + kinv(τ,q) = kρ + kinv(ρ,i). Moreover, kinv(τ,q) = kinv(ρ,i) because #1(inv(τ, q)) = #1(inv(ρ, i)) =
k − 1 and, by the induction hypothesis, Proposition 7.4.3 holds for k − 1. Thus, we get kτ = kρ.

For each τ ∈ N , let Mτ be {πq
i (τ)|0 ≤ i ≤ q}. The previous paragraph proved that for every

ρ, ρ′ ∈ Mτ , kρ = kρ′ . It is not hard to see that |Mτ | = (q + 1) − (k − 1) for every τ ∈ N , and
Lq,k = ∪τ∈NMτ . Moreover, we have that the sets Mτ ’s are not a partition of Lq,k because(

q+1
k

)
((q + 1)− (k − 1))

(
q

k−1

) =
q + 1

k((q + 1)− (k − 1))
< 1

Thus, these sets intersect each other, hence τ, τ ′ ∈ Lq,k, kτ = kτ ′ . This completes the proof.

�

7.5 Previous Renaming Lower Bound Proofs

Two algebraic renaming lower bound proof stating that M -renaming is not wait-free solvable if
M < 2n+ 1, are presented in [55, 56]. This section explains where the flaw is in these proofs.

In [55] it is proved that a wait-free WSB protocol (called reduced renaming in that paper)
implies the existence of a color-preserving Sn-equivariant chain map a : C(σn) → C(On). Then it
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is proved that a cannot exist for any value of n. Therefore, WSB is not wait-free solvable, hence
neither 2n-renaming.

The proof of impossibility of a in [55], is based on Lemma 6.12 in that paper, which says that
that there are homomorphisms dq : Cq(σn) → Cq+1(On), −1 ≤ q ≤ n − 2, such that d = {dq} is
Sn-equivariant and for any proper face σ of σn, the chain a(σ) − z(σ) − d(∂σ) is a dim(σ)-cycle.
Essentially, d is a equivariant chain homotopy from the restriction a|C(bd(σn)) to the restriction
z|C(bd(σn)). Then, using d, it is proved that a(∂σn) ∼ (1 + (n+ 1)k)∂0n, for some integer k. Since
there is no integer k such that (1 + (n+ 1)k) is zero, a(∂σn) is not a boundary, for any value of n.

The problem with Lemma 6.12 in [55] is that it is not true that always there is such equivariant
d. Consider a permutation π ∈ Sn. Chain map π partitions the simplexes of C(σn) and C(On) into
orbits: the orbit of a simplex σ of C(σn) or C(On) is the set containing the simplexes πj(σ) for
j ≥ 0, where πj denotes the j-fold composition of π. Consider a proper face σ of σn. We have that
d(σ) has the form

∑
λiτi. The problem comes when the orbits of σ and some τi are of distinct

size. Consider the value of j such that πj(σ) = σ. In this case we must have πj(τi) = τi, since d is
equivariant. However, it is not true that the orbits of σ and τi are of same size of for any π ∈ Sn,
as σ and τi are simplexes of distinct dimension. This precludes to obtain an equivariant d.

The renaming lower bound proof of [55] is based on the one in [56], hence the the proof in [56]
essentially has the same flaw. Generally speaking, first it is proved that a wait-free 2n-renaming
algorithm implies the existence of a Zn-equivariant chain map b : C(σn)→ C(σn) such that b(∂σn) =
0. Then it is claimed that there is a Zn-equivariant chain homotopy D from b to the identity chain
map i : C(σn)→ C(σn). Using D, it is proved that b(∂σn) = (1 + (n+ 1)k)∂σn, Lemma 6.1 in [56],
hence b(∂σn) cannot be zero. As in [55], the problem is that it is not true that always there is such
equivariant chain homotopy D.
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Chapter 8

A Panoramic View of Renaming

Since Attiya et al. [7] proposed renaming, variants of it have been introduced, concerning the size
of the output name or time complexity. For example, a protocol for renaming is size-adaptive if the
size of the output name space depends on the number of processes that actually participate in a
given execution, and not on the total number of processes of the system. Time-adaptive protocols
for renaming are defined similarly. These two properties of a renaming protocol are important
because a desirable characteristic of a real distributed system is that the size of the output name
space, or time complexity, gradually grows as the number of participating processes grows.

Another variant of renaming interesting in its own, is the long-lived renaming [60]. In this
version of renaming every process of the system can repeatedly acquire and release output names
in an execution. Long-lived renaming can be useful in a system in which processes are obtaining
and releasing identical resources; the output names are the resources and the long-lived renaming
protocol controls access to them.

Moreover, renaming has been generalized for groups of processes. In the group renaming task
[40], the processes are partitioned into groups, and each process knows the input name of its group.
It is required that each processor decides an output name for its group such that every two processes
belonging to distinct groups decide distinct output names.

There are upper and lower bounds for all these renaming tasks in different timing models: syn-
chronous, semi-synchronous and asynchronous. And there are results about the relations between
renaming and other tasks such as set agreement [31]. This chapter presents a panoramic view
of most of these results in an abridged form. It also describes some protocols, lower bounds and
equivalences

8.1 Upper Bounds

Table 8.1 presents some of the existing protocols for renaming and its variants. The protocols are
presented in three groups, renaming, long-lived renaming and group renaming. The second and
fourth columns indicate if the corresponding protocol is size-adaptive or time-adaptive, respectively.
The third and fifth columns show the output name space and time complexity. Variables p and N
denote the number of processes that actually participate in a given execution and the size of the
input name space, respectively, and c denotes a constant. The last column contains the year the
protocols were proposed.
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Size-adap Output space Time-adap Time complex Year
Renaming

Attiya et al. [8] Yes 2p− 1 No O(cn) 1990
Borowsky and Gafni [20] Yes 2p− 1 No O(n3) 1993
Moir and Anderson [60] Yes p(p+ 1)/2 Yes Θ(p) 1995
Moir and Anderson [60] Yes 2p− 1 Yes Θ(p4) 1995
Afek and Merrit [2] Yes 2p− 1 Yes O(p2) 1999
Attiya and Fouren [12] Yes 2p− 1 No O(N) 2001
Attiya and Fouren [12] Yes 6p− 1 Yes O(p log p) 2001
Attiya et al. [15] Yes 2p− 1 Yes O(p3) 2002
Afek et al. [4] Yes 4p2 Yes O(p2) 2002
Castañeda and Rajsbaum [27] No 2n− 2 —- —- 2008
Gafni and Rajsbaum [48] Yes 2p− 1 No O(n2) 2009

Long-Lived Renaming
Burns and Peterson [26] Yes 2p− 1 No O(cn) 1989
Buhrman et al. [25] Yes 3p Yes Θ(p) 1995
Buhrman et al. [25] Yes 72p2 Yes Θ(p log p) 1995
Buhrman et al. [25] Yes p(p+ 1)/2 Yes Θ(p3) 1995
Moir and Anderson [60] Yes p(p+ 1)/2 No Θ(pN) 1995
Moir [61] Yes p(p+ 1)/2 Yes Θ(p2) 1998
Moir [61] Yes 2p− 1 Yes Θ(p4) 1998
Afek et al. [3] Yes O(p2) Yes O(p2) 1999
Afek et al. [3] Yes O(p2) Yes O(p2 log p) 1999
Attiya and Fouren [11] Yes 2p− 1 Yes O(p4) 2000
Inoue et al. [58] Yes O(p2) Yes O(p2) 2001

Group Renaming
Gafni [40] Yes p(p+ 1)/2 No O(n log n) 2004

Table 8.1: Upper bounds for renaming and its variants.
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8.1.1 First Protocol

Attiya et al. in 1990 [8] (the journal version of [7]) presented the first wait-free protocol that
solves (2n + 1)-renaming. In fact, this protocol, ABDPR, was first presented in the message
passing model and uses output name space 1, 2, . . . , (n + 1) + t, where t < (n + 1)/2 denotes the
number of processes that may crash. In [16] it is proved that ABDPR can be extended to the
asynchronous wait-free read/write shared memory model, hence the resulting output name space is
1, 2, . . . , 2n+ 1 since t = n for the wait-free case. Moreover, ABDPR has a nice property, namely,
it is size-adaptive. Recall that a protocol for renaming is size-adaptive if the output name space
depends on the number of processes that actually participate in a given execution, and not on the
total number of processes of the system. Specifically, ABDPR uses 2p−1 output names if p ≤ n+1
processes participate. This is a desirable property because it is reasonable to ask for protocols that
use few output names when few processes participate. Unfortunately, ABDPR has exponential
time complexity [37].

Code for process pi with input name inNamei

propi ← 1
while true do

writei(< inNamei, propi >)
(< x1, s1 >,< x2, s2 >, . . . , < xn, sn >)← snapshoti()
if propi = sj for some j 6= i then %each register initially contains <⊥,⊥>%

ri ← rank of inNamei in {xj 6=⊥ |1 ≤ i ≤ n}
propi ← ri-th integer not in {sj 6=⊥ |1 ≤ i 6= j ≤ n}

else

decide propi

Figure 8.1: Attiya et al. wait-free protocol for (2p− 1)-renaming [9, pp 391-394].

Figure 8.1 contains the protocol for (2p−1)-renaming in [9, pp 391-394], which is an adaptation
of the protocol in [8] to the asynchronous wait-free read/write shared memory model. The idea is
simple, each process proposes an output name for itself, and if it sees no conflict then it picks its
proposal, otherwise it proposes a distinct name among the not suggested names, and repeats until
it does not see a conflict. Specifically, each process, pi, writes in its own register a pair consisting
of its initial input name, inNamei, and an output name it proposes for itself, propi, and then it
takes an atomic snapshot of the whole memory. If no process proposed propi then pi decides its
proposal. Otherwise pi computes the rank, r, of inNamei among the input names that appear in
its snapshot, and proposes the r-th name that is not in its snapshot. Atomic snapshots can be
wait-free implemented in O(n log n) steps [10].

Since the snapshot operation is atomic, the snapshots of any two processes occur one before the
other, hence if there is a conflict between the proposals of the two processes, at least one of the
processes is aware of it. Therefore, distinct processes pick distinct output names. Moreover, in an
execution in which only p ≤ n+ 1 processes participate, the rank of a processes is at most p, and
any snapshot contains at most p− 1 distinct proposal by other processes. Thus, the output name
space is {1, . . . , 2p− 1}, i.e., the protocol is size-adaptive.

It is not hard to see that there cannot be an execution such that some non-faulty processes
never decide, i.e., the protocol is wait-free. Suppose, for the sake of contradiction, that there is
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an execution such that some non-faulty processes never decide. Thus, there is a moment in which
all non-faulty processes, and some of the faulty processes, have written in the memory. After this
moment each process that never decides, gets a distinct rank, and thus it eventually will propose a
name that does not conflict with any other proposal. A contradiction.

In [37] it is proved that ABDPR has exponential time complexity O(cn). Very roughly, the
idea is the following. Suppose there is an execution α such that each process pi has input name i,
and for some j, pj and pj+1 have written in the memory the same proposition u. Therefore, when
pj and pj+1 get a snapshot (not necessarily concurrently), they will see a conflict. Consider the
following extension of α: (1) pj+1 takes a snapshot, hence it will propose a value vj+1, which in
not in the memory, (2) a process pi, with i < j, writes in the memory, and (3) pj takes a snapshot,
hence it will propose a value vj . It is not hard to see that vj = vj+1, and thus pj and pj+1 will
see a conflict again. In [37] it is used this execution as a building block to produce an execution in
which a pair of processes see a conflict an exponential number of times.

8.1.2 Polynomial Time Protocols

This section presents two size-adaptive protocols for (2p− 1)-renaming with polynomial time com-
plexity. Both protocols are recursive. The first protocol is simple and elegant, and is presented as
an introduction to the second one, which was the first protocol for renaming with polynomial time
complexity.

A Simple protocol

Gafni and Rajsbaum recently proposed [48] a simple, recursive and size-adaptive protocol for (2p−
1)-renaming with time complexity O(n2). This protocol, GR, uses ideas from the protocol in [20],
presented in the next section. In paper [48], Gafni and Rajsbaum promote the use of recursion in
distributed computing by presenting simple protocols for various tasks that illustrate the advantages
of thinking recursively.

Figure 8.2 presents the GR protocol. Each process pi starts with input name inNamei. The
specification of renamen is that if at most n processes invoke renamen(first, direction), where
first is an integer and direction ∈ {+1,−1}, each process decides an output name in the range
firsti, . . . , firsti + (2n + 2), when directioni = +1, and decides and output name in the range
firsti − (2n− 2), . . . , firsti, when directioni = −1.

The first invocation of each process is with firsti = 1 and directioni = 1, hence it receives an
output name in the range 1, . . . , 2n + 1. In GR each process pi first writes its input name in a
shared array M (each recursive invocation uses a distinct and clean shared array) and gets a view,
Si, of M by calling the scan function, which reads one by one the entries of M . Then, pi updates
lasti containing the last name of the range of names it can choose. An idea used in the protocol is
that a range of names, say 1, . . . ,m, can be filled “going-up” or “going-down”. The latter means
that name m is considered as the first name, while the former considers 1 as the first name. In GR
when directioni = 1 the range of pi is firsti, . . . , lasti = firsti + (2n+ 2), thus the range is filled
going-up, and when directioni = −1 the range is lasti = firsti − (2n − 2), . . . , firsti, hence the
range is filled going-down.

Now, if |Si| < n then pi invokes an instance of the protocol for n − 1 processes and solves the
problem with the processes that get a view of size less than n. And if |Si| = n then pi verifies if its
input name is the largest input name in Si. If so, pi decides the last name in the range, otherwise
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it calls a distinct instance of the protocol for n − 1 processes and solves the problem with the
processes that get a view of size n. Observe that lasti is reserved for the process with largest input
name, however, it is possible that no process picks lasti (the process with largest input name does
not necessarily get a view of size n). Although it is possible no process decides in an invocation of
the protocol, the key is that the processes are partitioned into two non-empty sets, and then solve
renaming recursively in ranges of names that do not overlap.

Code for process pi with input name inNamei

Initially:
firsti ← 1
directioni ← 1

rename(n, firsti, directioni)
M [i]← inNamei

Si ← scan(M)
lasti ← firsti + directioni ∗ (2n− 2)
if |Si| = n then

if inNamei = max(Si) then decide lasti
rename(n− 1, lasti − directioni,−directioni) % view of size n %

else
rename(n− 1, firsti, directioni) % distinct invocation for view of size less than n%

Figure 8.2: GR protocol for (2p− 1)-renaming [48].

If n = 1 then a processes invoking rename(n, first, direction) decides first = last. For
induction hypothesis, assume that if k ≤ n − 1 processes call rename(n − 1, first, direction),
they get names in the range first, . . . , first+ (2k − 2) if direction = 1 (going-up), and get names
in the range first − (2k − 2), . . . , first if direction = −1 (going-down). Now, assume ` ≤ n
processes call rename(n, first, direction) going-up, i.e., direction = 1 (the going-down case is
very similar). If ` < n then no process gets a view of size n, hence all process go to the same
invocation rename(n− 1, first, direction). By induction hypothesis, the process get names in the
range first, . . . , first+ (2`− 2). Note this shows GR is size-adaptive.

Consider now the case ` = n. Let Xpartial and Xfull be set of processes that call rename(n−
1, first, direction) and rename(n − 1, last − 1,−direction), respectively. We need to prove that
processes in Xpartial and Xfull get names in ranges that do not overlap. Let `partial and `full be
|Xpartial| and |Xfull|. Notice `full + `partial = n. By induction hypothesis, processes in Xpartial get
names in Rpartial = [first, . . . , first + (2`partial − 2)] and processes in Xfull get names in Rfull =
[(last−1)−(2`full−2), . . . , (last−1)]. Since last = first+(2n−2), Rfull = [first+(2n−3)−(2`full−
2), . . . , first+(2n−3)]. It must be that first+(2`partial−2) < first+(2n−3)−(2`full−2), because
if first+(2`partial−2) ≥ first+(2n−3)−(2`full−2) then it can be proved 2(`partial+`full) ≥ 2n+1,
which is not possible since `full + `partial = n. Therefore, Rpartial and Rfull are disjoint.

Finally, GR has time complexity O(n2): a process executes at most n recursive calls, and in
each recursive call it executes a scan operation, which has time complexity Θ(n).
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First Polynomial Time Protocol

Borowsky and Gafni presented the first solution for renaming with polynomial time complexity
in [20]. This protocol, BG, is size-adaptive and solves (2p − 1)-renaming in O(n3) steps. They
presented BG in the immediate snapshot (IS) model [19, 20, 70], which includes only a subset of all
possible executions.1 Roughly speaking, in this model each process has just one atomic operation
that writes on its register and takes a snapshot of the whole memory. See Section 2.1 for more
details.

Figure 8.3 presents the BG protocol. It proceeds in independent asynchronous rounds that
use one-shot IS objects (objects that allow to execute just one immediate snapshot per process).
Processes access these objects using the function writeSnapshot. In every round, each process
updates the first name of the range of names it can choose, using function newRange, according
with the snapshot S it gets from writeSnapshot. The size of this range is 2|S| − 1. The idea is
that the processes with snapshot S solve the problem using this range of names. The first name of
that range, firstName, is reserved for the process with the highest input name among the input
names in the snapshot. If such process gets the same snapshot (it does not necessarily get it) then
it chooses firstName. The other processes execute an independent round for solving the problem
recursively in a range of names without firstName. Recall that for a range of names 1, . . . ,m,
going-up means that name 1 is considered as the first name, while going-down considers m as the
first name. In BG, processes fill their respective ranges going-down in the first round, going-up in
the second round, going-down in the third one and so on.

Code for process pi with input name inNamei

Initially:
firstNamei ← 0
directioni ← true

roundi ← 0

renamei(roundi, firstNamei, directioni)
snapshoti ←writeSnapshot(inNamei, roundi)
firstNamei ←newRange(firstNamei, directioni, |snapshoti|)
if inNamei = max(inNamej ∈ snapshoti) then

decide firstNamei

else
roundi ← append(roundi, |snapshoti|)
renamei(roundi, firstNamei,¬directioni)

newRange(name, direction, snapSize)
if direction then

return name+ (2snapSize− 1)
else

return name− (2snapSize− 1)

Figure 8.3: BG protocol for (2p− 1)-renaming [20].

As an example, consider the execution in Figure 8.4 with three processes with input names A, B
and C. In the first round C executes an IS operation alone and then A and B concurrently. Thus,

1The IS model is presented in [20] via the participating set task introduced in the same paper.
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the snapshot of C only contains C and the snapshots of A and B contain all processes. Hence C
decides 1 and A and B reserve 5 for C (they fill going-down their range). Since A and B got the
same snapshot, they execute together an independent round. In that round A and B execute an
IS operation concurrently, hence they get the same snapshot again. Process B decides 2 (A and B
now fill going-up). Finally, A decides 3 in the last round.

Round 0: {C}{A,B}
snapshotA = {A,B,C}
snapshotB = {A,B, C}
snapshotC = {C}

1 2 3 4 5

Round 0 2: {A,B}
snapshotA = {A,B}
snapshotB = {A,B}

1 2 3 4 5

Round 0 2 2: { A }
snapshotA = {A}

1 2 3 4 5

firstNameC firstNameA

firstNameB

reserved for C

C

reserved for C

reserved for C

C

C

firstNameA

firstNameB

B

B

firstNameA

A

Figure 8.4: Execution with processes with names A, B and C.

In Section 2.1 it is explained that processes that call writeSnapshot are partitioned in a series
of non-empty sets, A1, A2, . . . , Am. All processes in each set Ai get the same snapshot; they write
concurrently first and then read the whole memory. We can think of the snapshots obtained by
processes as sets containing the id’s that appear in them. Thus, writeSnapshot outputs a series
of sets ordered by containment, i.e., T1 ⊂ T2 ⊂ . . . ⊂ Tm, where Ti is the set of id’s corresponding
to the snapshot obtained by processes in Ai. Note that Ai = Ti−Ti−1 (for i = 1, T0 = ∅). In other
words, the processes that obtain snapshot Ti are the processes in Ti−Ti−1. This is the property of
IS executions that allow processes decide distinct output names. When processes are going-down
(the going-up case is similar), the first name of the range of processes with snapshot Ti is 2|Ti| − 1,
and the last one is (2|Ti|−1)− (2|Ti−Ti−1|−1) = 2|Ti−1|, because the processes that get Ti are the
processes in Ti − Ti−1. Moreover, the first name of the processes with snapshot Ti−1 is 2|Ti−1| − 1.
Therefore, the range of name of processes with snapshots Ti and Ti−1, respectively, do not overlap,
hence processes decide distinct output names. Also, observe that the range of names of a process
depends on the size of the snapshot it gets, hence BG is size-adaptive.

Notice that at least the process with the highest input name decides in each round, and thus
BG requires at most n independent rounds. Since function writeSnapshot can be implemented
in O(n2) steps [20], the time complexity of BG is O(n3). However, Gafni and Rajsbaum observed
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[48] that the time complexity of BG is actually O(n2). They give a recursive implementation of
writeSnapshot with time complexity Θ(n(n− s+1)), where s is the size of the snapshot received
by writeSnapshot. Also they modify BG such that each process executes a writeSnapshot
function for x processes, where x is the size of the snapshot it gets in the previous round, minus one
(in the first round writeSnapshot is for n+ 1 processes). Therefore, the steps a process executes
in a given round is Θ((sp− 1)((sp− 1)− sc +1)), where sp and sc are the size of the snapshots that
the process gets in the previous and current rounds, respectively. The worst execution is the one in
which a process executes n rounds, hence in the i-th round it gets a snapshot of size n− i+1. (this
is possible if all processes run lock-step, and thus they obtain the same snapshot in each round)
Therefore, the process executes n− i+ 1 steps in the i-th round, giving a time complexity O(n2).

8.1.3 Time-Adaptive Renaming

The time complexity of ABDPR, GR and BG in Sections 8.1.1 and 8.1.2, depend on the total
number of processes of the system. However, in real distributed systems it is desirable that the
time complexity of a protocol only depends on the number p, p ≤ n+ 1, of processes that actually
participate, i.e., its time complexity adjust to the number of active processes. More precisely, the
time complexity is constant if just one process participates and it gradually grows as the number
of participating processes grows. Such a protocol is called time-adaptive.2

Moir and Anderson [60] presented a size- and time-adaptive protocol, MA, for (p(p + 1)/2)-
renaming with time complexity O(p), using wait-free building blocks. Intuitively, each one of these
blocks is capable of “splitting” a group of processes into smaller subsets. Formally, a splitter3 is
a shared object that outputs stop, down or right such that if m processes execute it, at most one
process obtains stop, at most m− 1 processes obtain down and at most m− 1 obtain right. Also,
when a single process executes the splitter, it obtains stop.

(p(p+ 1)/2)-renamingi(inNamei)
movei ← ⊥ % local %
i, j ← 0 % local %
while move 6= stop

move← splitteri,j(inNamei)
if move = down then i+ +
if move = right then j + +

decide number of splitter Splitteri,j

splitteri,j(name)
Xi,j ← name % Xi,j and Yi,j are multi read/write %
if Yi,j then return right % shared variables. Yi,j is iniatially false %
else Yi,j ← true

if Xi,j = name then return stop

else return down

Figure 8.5: Splitter based protocol for (p(p+ 1)/2)-renaming in [60].
2Some authors use the term fast.
3The term “splitter” was introduced in [12].
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Figure 8.5 contains the protocol MA and a wait-free implementation of a splitter building
blocks. Each splitter is implemented using two multi-reader/multi-writer shared variables X and
Y . Initially, Y contains false. When a process q executes a splitter, first it writes its input name
in X and then checks the value of Y . If Y contains true then q gets right, otherwise q sets Y to
true. Now q checks if X still contains its name. If so, then q gets stop, otherwise it gets down.
Observe that if some processes get right then at least one process has to set Y to true. Thus,
not all processes can get right. Similarly, not all processes can get down because the last process
writing its name in X, will see X still contains its name. Finally, a processes, q, obtaining stop has
to read its name from X, hence no process executed the splitter from the moment when q wrote
its name in X to the moment when q reads from it, i.e., q is the first process accessing the splitter.
Therefore, q is the only process that gets stop.

Protocol MA uses a grid of (n+1)× (n+1) splitters numbered from 1 to (n+1)2, as in Figure
8.6. Each process starts to execute the splitter 1 at the upper left corner. If a process receives stop
from splitter i then it picks name i, otherwise it moves right or down through the grid, according
to the output received from the splitter. The protocol appears in Figure 8.5. In an execution with
p processes, each process executes at most p splitters, thus it picks a name in the p-th diagonal, in
the worst case. Therefore, MA solves p(p+ 1)/2-renaming in time complexity O(p).

1 3 6 10

2

4

7

5 9

8

Figure 8.6: Grid of splitters for the O(p2)-renaming protocol with time complexity O(p) in [60].

Attiya and Fouren present in [12] a size-adaptive protocol, AF(2p−1)O(N), for (2p− 1)-renaming
with time complexity O(N), where N is the size of the input name space, and a time-adaptive
protocol, AFas, for one-shot atomic snapshot with time complexity O(p log p). Attiya and Fouren
combined [12] protocols MA, AF(2p−1)O(N) and AFas to produce a size- and time-adaptive protocol
for (6p−1)-renaming, AF6p−1, with time complexity O(p log p). Very roughly, they first use MA to
reduce the input name space, namely N = O(p2), and then, using various instances of AF(2p−1)O(N),
they achieve a size-adaptive (2p − 1)-renaming protocol, AF(2p−1)O(n log n), with time complexity
O(n log n). Finally, in AF6p−1, the processes that obtain the same snapshot from AFas, execute an
independent instance of AF(2p−1)O(n log n) designed for that specific snapshot.

In [2] Afek and Merrit present a size- and time-adaptive protocol for (2p − 1)-renaming with
time complexity O(p2). To the best of our knowledge, this is the best protocol for size-adaptive
renaming, considering time complexity and output space. First, Afek and Merrit achieve a size-
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and time-adaptive (2p− 1)-renaming protocol, AM , with time complexity O(f(p)2), where f(p) is
an upper bound for the size of the input name space when p processes participate. Then they use
AF6p−1 in [12] to reduce the name space to f(p) = 6p−1 in time O(p log p), and then AM achieves
the output name space 2p− 1 in time O(p2).

8.1.4 Long-Lived Renaming

Moir and Anderson introduced [60] the long-lived version of renaming in which each process can
repeatedly acquire and release output names. Similarly to one-shot renaming, a protocol for long-
lived renaming can be time- or size-adaptive. In this case, size-adaptive means that the output
space is on function of the number of processes p, p ≤ n + 1, that are “simultaneously” obtaining
output names or have output names in their possession. And time-adaptive means that the step
complexity of acquiring or releasing a name is on function of p. Value p is usually called the point
contention.

This problem is interesting on its own. Long-lived renaming can be useful in a system in which
processes are obtaining and releasing identical resources; the output names are the resources and
the protocol controls access to them. Moreover, a protocol for long-lived renaming can be useful in
improving the performance of a shared object [1]. Intuitively, the idea is that a protocol for long-
lived renaming can be used to produce a protocol that bounds the maximum number of processes
that can concurrently access a shared object, hence the performance of the object is improved.

The first protocol for long-lived renaming was developed by Burns and Peterson [26], which is
size-adaptive, uses output space 2p− 1, and has exponential time complexity [37].

Moir and Anderson showed [60] that their splitter-based protocol for renaming (see Section
8.1.3) can be modified to produce a long-lived renaming protocol. Each splitter replaces its single
boolean variable Y with a boolean array Y ′ of lengthN , one entry per input name. The idea is to use
Y ′ to make the splitter “resettable”. A splitter now proceeds in the following way. Each process, q,
executing the splitter first writes its name inX and then inspects all Y ′. If there is at least one entry
containing true then q receives right. Otherwise q writes true in Y ′[q′s in name] and verifies if X
still contains its input name. if so then q gets stop, otherwise q writes false in Y ′[q′s in name] and
receives down. When q releases a splitter, it simply does Y ′[q′s in name] = false. The resulting
protocol is size adaptive and uses output name space p(p+ 1)/2, and has time complexity O(Np).
Moir [61] improve the time complexity of this protocol to O(p2) by reducing the size of Y ′ in each
splitter.

The best solution we know for long-lived renaming is presented by Attiya and Fouren in [11].
This protocol is size- and time- adaptive, it solves (2p−1)-long-lived renaming on O(p4) steps. See
[3, 4, 25, 58] for various protocols for long-lived renaming. Also papers [1] contain solutions for
long-lived renaming using red-modify-write operations.

8.1.5 Group Renaming

Gafni proposed [40] the group renaming task, a generalization of renaming in which the processes
are partitioned into groups and each group has a unique input name. Each process must decide
an output name for its group such that two processes belonging to distinct groups choose distinct
output names. For group renaming, size-adaptive means that the number of output names is on
function of the number of groups that participate.
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In [40] Gafni presents a size-adaptive protocol for p(p+ 1)/2-group renaming, Ggroup, where p
denotes the number of groups that actually participate. Each group has a multi-reader/multi-writer
register initialized to ⊥. Every process, q, of group i, writes i on the register dedicated to its group,
and then takes a snapshot S of the memory. Process q picks output name |S|(|S|−1)/2+r, where r is
the rank of i in S. Observe that processes with snapshots of same size have the same snapshot, hence
processes with snapshots of same size and in distinct groups, cannot decide the same output name.
Also, processes with snapshots of different size use ranges of output names that do not overlap.
Moreover, if p groups participate, the output name space is 1, 2, . . . , p(p − 1)/2 + p = p(p + 1)/2.
Finally, since snapshots can be implemented on O(n log n) steps [10], the time complexity of Ggroup

is O(n log n).
Afek et al. [6] present a protocol for a strong version of group renaming, in which processes of the

same group decide the same output name. The protocol in [6] solves 2(p− 1)-group renaming and
uses g-consensus objects and read/write registers, where p is the number of groups that participate,
g is the maximum number of processes in a group and a g-consensus object solves consensus on
g processes. Generally speaking, this algorithm is a modification of ABDPR in [6] for groups of
processes. Using g-consensus objects, processes of a group agree on a snapshot of some process in
the group, and use it to propose an output name to their group. Therefore, processes of the same
group decide the same output name. In [6] it is also proved that 2(p − 1)-group renaming is not
solvable with (g − 1)-consensus objects and read/write registers.

8.2 Relations of Renaming with Other Tasks

An interesting topic in distributed computing is the relative power of different tasks. That is,
given two tasks, the question is if one of them can be used to implement the other or if they are
incomparable. Recall that a task A implements a task B if there is a wait-free protocol that solves
B from objects that solve A and read/write registers. And A and B are equivalent if A implements
B and B implements A.

One way to measure the power of tasks is the consensus number [52] introduced by Herlihy.
The consensus number of an object is a number that denotes the maximum number of processes for
which the object can solve consensus in a wait-free manner. For example, the consensus number
of read/write registers is 1, because it is not possible to achieve consensus on two processes, or
more, by using only read/write memory [39]. On the other hand, test&set, queue and stack objects
have consensus number 2 [52], since they can solve consensus on two process but not on three. In
general, an object with consensus number n can be used to solve consensus on n processes but not
on n+ 1 processes. Moreover, an object with consensus number n is universal in a system with n
processes in the sense that it can be used to construct a protocol that solves any task.

However, tasks as renaming, WSB and set agreement (explained below) represent a problem
in this consensus hierarchy. It has been proved that they are not wait-free solvable (for certain
parameters) [14, 19, 27, 55, 56, 70], but they are too weak to solve consensus on two processes.
Thus, it is important to study the relative power of the tasks in this class. These tasks are called
subconsensus tasks.
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8.2.1 Renaming, Set Agreement, WSB and SSB

The k-set agreement task, proposed by Chaudhuri in [31], is a generalization of the classic consensus
task. In this task each process starts with a private input value and must choose a private output
value. It is required that the value chosen by a process is the input of some process, and at most k
distinct values may be chosen. Clearly, for k = 1, k-set agreement task is consensus. For brevity, we
use set agreement instead of n-set agreement. There are several proofs [14, 19, 55, 56, 70] showing
that set agreement is not wait-free solvable in the asynchronous wait-free read/write shared memory
model, thus neither is k-set agreement for k < n.

The k-test&set task [19] (called (n + 1, k)-set-test-and-set in [19]) is a generalization of the
well-known test&set. The output values are 0 (winner) or 1 (loser). In every execution, at least
one and at most k processes get winner. The n-test&set task is called strong symmetry breaking
(SSB). Observe that SSB is a stronger version of WSB, which requires that that in every execution
at least one process decides 0, in addition to the requirement for WSB that not all decide either 0
or 1.

Set agreement
Size-adaptive

(2p-d p
ne)-renaming

Non-size-adaptive
2n-renaming

Weak symmetry
breaking

Strong Symmetry
Breaking

Figure 8.7: Hierarchy of subconsensus tasks.

Figure 8.7 presents some of the known relations between set agreement, renaming, WSB and
SSB. An arrow from a task A to a task B means that A implements B. Thus, size-adaptive
(2p−d p

ne)-renaming (p is the number of participating processes) and set agreement are equivalent,
while set agreement and non-size-adaptive 2n-renaming are not. Observe that, for size-adaptive
(2p−d p

ne)-renaming, if not all processes participate (p < n+1), the output name space is 1, . . . , 2p−
1, and if all processes participate, the output name space is 1, . . . , 2p−2 = 2n. Since set agreement
is not wait-free solvable, size-adaptive (2p−d p

ne)-renaming is not wait-free solvable. The equivalence
between WSB and non-size-adaptive 2n-renaming is explained in detail in Section 2.2.

8.2.2 Set Agreement Implements 2n-Renaming

Gafni et al. prove in [42] that set agreement implements 2n-renaming by showing that set agreement
implements WSB. The implementation appears in Figure 8.8. It uses two shared arrays M1 and
M2 of integers, two set agreement objects SA1 and SA2 and a (2n + 1)-renaming object R. It is
not important if R is size-adaptive or not, thus R can be any of the size-adaptive protocols for
(2p−1)-renaming in Section 8.1. The processes first call R to choose an id in the range 1, . . . , 2n+1.
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Since R is anonymous, this step guarantees that the protocol is anonymous. The processes with id
in the range 1, . . . , n+1 call SA1 using their id as input. Then they write into M1 what they receive
from SA1. A process decides 0 if it reads its id from M1, otherwise it decides 1. The processes with
id in the range n + 2, . . . , 2n + 1 do the same with SA2 and M2, except that they decide inverted
values.

Consider an execution in which all processes decide. Let s be the number of processes with id
in the range 1, . . . , n + 1. Notice that s ≥ 1, and obviously, s ≤ n + 1. Among those s processes,
the one whose id is first to be written in M1, decides 0. If s = n + 1 then all processes call SA1

and, by the specification of set agreement, it is not possible that all decide 0. If s < n + 1 then
n+ 1− s processes call SA2 and the process whose id is first to be written in M2 decides 1. Thus,
the protocol in Figure 8.8 solves WSB.

int[n+1] M1 %(n+1)-element array, initally 0%
int[n+1] M2 %(n+1)-element array, initally 0%
Renaming R = new Renaming() %(2n+ 1)-renaming object%
Set agreement SA1 = new Set Agreement() %set agreement object%
Set agreement SA2 = new Set Agreement() %set agreement object%

WSBi(intNamei)
namei ← R.choose(inNamei) %anonymous id%
if namei ≤ n+ 1 then

M1[idi] = SA1.decide(idi)
for each j ∈ M1 do

if j = idi then decide 0
decide 1

else
M2[idi] = SA2.decide(idi)
for each j ∈ M2 do

if j = idi then decide 1
decide 0

Figure 8.8: From set agreement to WSB [42].

In [42] it is also proved that 2n-renaming is strictly weaker than set agreement, namely, there
is no implementation of set agreement from 2n-renaming. However, they only prove that such
implementation does not exist for n even. It remains an open question what is the relationship
between these two tasks for n odd.

8.2.3 Equivalence between Set Agreement, (2p− d p
n
e)-Renaming and SSB

Borowsky and Gafni prove in [19] that k-set agreement is equivalent to k-test&set for any value
of k, hence set agreement is equivalent to SSB. Also, Gafni shows [41] that SSB and size-adaptive
(2p − d p

ne)-renaming are equivalent. Mostéfaoui et al. [62] and Gafni et al. [43] generalize that
result proving that k-test&set and (2p− d p

ke)-renaming are equivalent for any value of k. Gafni et
al. [46] present a t-resilient protocol for k-set agreement that uses size-adaptive (p+k−1)-renaming
objects, with t = k. They also show that there is no such protocol if k < t and k < (n+1)/2. Also,
Gafni shows [47] that k-set agreement implements size-adaptive (p+ k − 1)-renaming.
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The implementation of SSB from (2p − d p
ne)-renaming is simple. Processes call a (2p − d p

ne)-
renaming object with their ids as inputs. If a process gets a name less than n + 1, it decides 0,
otherwise decides 1. Observe that if p < n + 1 processes participate then they get names in the
range 1, . . . , 2p− 1 = p+ (p− 1). Thus at least one process gets a name in the range 1, . . . , p and
decides 0. And if all processes participate, p = n+ 1, then they get names in the range 1, . . . , 2n,
hence at least one process decides 0 and at least one process decides 1.

Since set agreement and SSB are equivalent and (2p − d p
ne)-renaming implements SSB, then

(2p − d p
ne)-renaming is not wait-free solvable (recall that set agreement is not wait-free solvable).

Moreover, observe that in the proof of that (2p − d p
ne)-renaming implements SSB, it is irrelevant

if a protocol for (2p − d p
ne)-renaming is anonymous or not. Therefore, (2p − d p

ne)-renaming is
impossible even if we drop the anonymity requirement for renaming. In other words, what makes
(2p− d p

ne)-renaming impossible is the requirement that the output name space gradually grows as
the number of participating processes grows.

Figure 8.9 contains a (2p−d p
ne)-renaming implementation from an n-immediate snapshot object,

ISn, and an array, R, with n+1 size-adaptive (2p−1)-renaming objects. This protocol is the protocol
in [62] for k = n. Recall that in the IS model each process has just one operation that atomically
writes on its register and then takes a snapshot of the whole memory (see Section 8.1.2). An n-IS
object guarantees at most n processes get the same snapshot.4 Such object can be implemented
from SSB [62], thus SSB implements (2p− d p

ne)-renaming.

Renaming[n] R %(n+1)-element array with (2n+ 1)-renaming objects%
ImmediateSnapshot ISn %n-immediate snapshot set object%

(2p− d p
ne)-renamingi(intNamei)

Si ← ISn.snapshot(idi) %at most n processes get the same snapshot%
basei ← 2|Si| − d |Si|

n e
offset i ← R[|Si|].rename(inNamei)
decide basei − offset i + 1

Figure 8.9: From n-immediate snapshot to size-adaptive (2p− d p
ne)-renaming [62].

The protocol in Figure 8.9 works as follows. Each process, q, first gets a snapshot, S, from
object ISn. Then, q computes a base name according with the size of S, and calls the (2p − 1)-
renaming object associated with snapshots of size |S|. Therefore, processes with snapshots of same
size call the same renaming object (actually snapshots of same size are equal). Finally, q decides a
name according with its base name and the name it gets from the renaming object.

Clearly, processes that receive the same snapshot from object ISn, do not decide the same
output name. For processes with different snapshots, the structure of IS executions allow them do
not decide the same name. The argument is essentially the same as for BG protocol in Section
8.1.2. Object ISn outputs a series of snapshots ordered by containment, T1 ⊂ T2 ⊂ . . . ⊂ Tm, and
the processes that obtain snapshot Ti are the processes in Ti − Ti−1 (for i = 1, T0 = ∅). Consider
a snapshot Ti. First suppose that |Ti| < n+ 1. Since the objects in R solve size-adaptive (2p− 1)-
renaming, the processes with snapshot Ti pick names in the range (2|Ti|−1)−(2|Ti−Ti−1|−1)+1 =
2|Ti−1|+1, . . . , 2|Ti|−1. Also, observe that the processes with snapshot Ti−1 do not decide a name
greater than 2|Ti−1| − 1. Now suppose that |Ti| = n+ 1. ISn guarantees that at most n processes

4In [62], this object is called n-participating set since the IS model is presented in [20] via the participating set
task.
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get Ti as snapshot. Therefore, Ti−1 must contain at least one element. The processes with snapshot
Ti decide names in the range (2|Ti| − 2) − (2|Ti − Ti−1| − 1) + 1 = 2|Ti−1|, . . . , 2|Ti| − 2, and the
processes with snapshot Ti−1 do not pick a name greater than 2|Ti−1| − 1.

8.2.4 Renaming and Failure Detectors

Chandra and Toueg introduced the concept of failure detector [30] in order to evade the impossibility
of consensus in an asynchronous environment. They propose to augment the system with a failure
detector mechanism that gives some information about faulty processes. This mechanism may
give distinct information to distinct processes. Moreover, it can be unreliable, but it eventually
guarantees some properties about the information it gives to the processes. Failure detectors allow
to design protocol in a more modular way: a protocol does not have to take care about the model,
it just has to deal with the specification of the failure detector.

The relation between renaming and failure detectors has been studied. Mostéfaoui et al. [62]
show that a failure detector of the class Ωk can implement (2p−d p

ke)-renaming. The class Ωk [65],
1 ≤ k ≤ n + 1, of failure detectors was introduced by Neiger. Each time a failure detector in this
class is invoked, it outputs a set of id’s of size at most k. The failure detector guarantees that there
is a moment after it always outputs the same set, which contains at least one correct process. Also,
in [63] it is presented an implementation of min(2p− 1, p+ k− 1)-renaming from a failure detector
in the class Ωk

∗. The class Ωk
∗ is introduced by Raynal and Travers in [69], and is a variation of the

class Ωk. The implementation in [63] is a modification of protocol ABDPR in Section 8.1.1.
Afek and Nir [5] investigate failure detectors in loosely named systems . In a tightly named

system the ids are drawn from a space of size n+1 and in a loosely named system the ids are drawn
from a space of size greater than n + 1. That paper introduces a failure detector class capable of
solving WSB but that cannot solve set agreement.

8.3 Lower Bounds

This section presents a brief overview of some of the known lower bounds for renaming. For
size-adaptive and non-size-adaptive renaming there are lower bounds concerning the output name
space. Also there are lower bounds for the smallest number of rounds needed for achieve strong
renaming in synchronous and semy-synchronous message passing models. In the strong version of
renaming the size of the output name space is equal to the number of processes of the system. To
our knowledge, there are no lower bounds for group renaming.

8.3.1 Size-Adaptive Renaming

Section 8.2.3 explains that size-adaptive (2p− d p
ne)-renaming is equivalent to set agreement. Also,

it has been proved [14, 19, 55, 56, 70] that set agreement is not wait-free solvable, hence, size-
adaptive (2p − d p

ne)-renaming is not wait-free solvable. Therefore, the size-adaptive protocols for
(2p−1)-renaming presented in Section 8.1, are optimal. In other words, this lower bound says that
if we ask (2p−1)-renaming to save one name only when all processes participate, the task becomes
unsolvable. As explained in Section 8.2.3, (2p − d p

ne)-renaming is impossible even if we drop the
anonymity requirement for renaming. This lower bound also holds for size-adaptive long-lived
renaming.
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8.3.2 Non-Size-Adaptive Renaming

As explained in Chapter 1, Attiya et al. [8] proved that there is no wait-free protocol for M -
renaming for M ≤ n + 2. Then, Herlihy and Shavit presented [55] a lower bound stating that no
wait-free M -renaming protocol exists when M < 2n+1. There are various proofs of the same result
[14, 56, 53], all closely related and based on algebraic topology. However, Chapters 5 and 6 prove
that, for some values of n, this lower bound is incorrect, namely, there is a wait-free 2n-renaming
protocol, while for the other values of n, the lower bound holds.

8.3.3 Strong Renaming

Attiya et al. [8] showed that there is no renaming protocol if the output name space is 1, . . . , n+2,
implying that strong renaming is not wait-free solvable. Recall that the output name space is
1, . . . , n+1 for strong renaming. However, there are protocols for strong renaming that use powerful
primitives, read-modify-write objects, and in synchronous and semi-synchronous models. Moreover,
there are lower bounds for the smallest number of rounds needed for solving strong renaming.

Raynal presents in [67] a wait-free protocol for strong renaming in the asynchronous read/write
shared memory that is enriched with compare&swap objects. Chaudhuri et al. show [32] a size-
and time-adaptive protocol for strong p-renaming in O(log p) rounds in the synchronous message
passing model. This protocol is comparison-based. In this case time-adaptive means that the
number of rounds adapts to the number p, p ≤ n + 1, of participating processes. In [32] it is also
proved that any comparison-based protocol for strong renaming needs Ω(log p) rounds. Okun et
al. [66] go beyond and consider the synchronous message passing model with Byzantine failures.
They achieve two comparison-based protocols for strong renaming in O(log n) and O(n log2dN0/ne)
rounds, respectively, where N0 is the largest input name among all correct processes. The first
protocol considers that an arbitrary number of processes can fail, while the second one assumes
that less than (n+ 1)/3 processes can fail.

Djerassi-Shintel presents in [34] a protocol for strong renaming in a semi-synchronous message
passing model, in which there is inexact information about time. The amount of real time between
two consecutive steps of a non-faulty process is at least c1 and at most c2, and a message sent by
a non-faulty process is delivered within time at most d. A faulty processes do not necessarily obey
the timing requirements. In this model, Djerassi-Shintel achieves a comparison-based protocol in
O( log n

log log n(c2 log n+ c2
c1
d)) rounds. This protocol is optimal, since Attiya and Djerassi-Shintel show

[13] that any comparison-based protocol for strong renaming needs Ω(log p c2
c1
d) rounds in presence

of p− 1 timing faults, where p ≤ n+ 1 is the number of processes that participate.
The strong version of long-lived renaming has also been studied. Moir and Anderson [60],

Brodsky et al. [24] and Herlihy et al. [57] present various size- and time-adaptive protocols for
strong long-lived p-renaming in the asynchronous wait-free read/write shared memory model that
is enriched with read-modify-write operations.
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Chapter 9

Conclusions and Further Research

This chapter presents the conclusions obtained from all previous chapters, and explains that the
results about the wait-free solvability of WSB in Chapters 5 and 6, have implications for the
t-resilient case. Also, it presents some directions for future research.

9.1 Conclusions

This thesis is a study of WSB and its relation with renaming, in the asynchronous wait-free
read/write shared memory model with n + 1 processes. First, it presents a detailed proof of
the equivalence between WSB and 2n-renaming, and then, using the topology approach to dis-
tributed computing, it achieves a necessary and sufficient condition for wait-free WSB solvability.
Essentially, this condition states that WSB is wait-free solvable if and only if there is a chromatic
subdivision of an n-dimensional simplex with a binary coloring which is symmetric on the bound-
ary, and without monochromatic n-dimensional simplexes. Then, the thesis proves the following
two combinatorial topology results:

1. Any chromatic subdivision of an n-dimensional simplex with a symmetric binary coloring has

1 +
n−1∑
i=0

(
n+ 1
i+ 1

)
ki

monochromatic n-dimensional simplexes, for some integers k0, . . . , kn; some monochromatic
simplexes are counted as +1 and the other as −1.

2. For any integers k0, k1 . . . kn−1 with k0 ∈ {0,−1}, there exists a chromatic subdivision of an
n-dimensional simplex with a symmetric binary coloring and with exactly

1 +
n−1∑
i=0

(
n+ 1
i+ 1

)
ki

monochromatic n-dimensional simplexes.

Therefore, the solvability of WSB completely depends on whether the equation(
n+ 1

1

)
k0 +

(
n+ 1

2

)
k2 + . . .+

(
n+ 1
n

)
kn−1 = 1
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has an integer solution. A well known result in number theory implies that this happens if and
only if n is such that the integers in the set {

(
n+1
i+1

)
|0 ≤ i ≤ bn−1

2 c} are relatively prime. Such a
value of n is called exceptional.

Thus, if n is non-exceptional, any chromatic subdivision of an n-dimensional simplex with a
symmetric binary coloring, contains at least one monochromatic n-dimensional simplex. Therefore,
for these values of n, there is no wait-free protocol that solves WSB. Since WSB is equivalent to
2n-renaming, this result implies that M -renaming with M < 2n+1, is not wait-free solvable. This
gives the first, fully combinatorial renaming lower bound proof, for non-exceptional values of n.

Now, if n is exceptional, there exists a chromatic subdivision of an n-dimensional simplex with a
symmetric binary coloring and without monochromatic n-dimensional simplexes. This implies that
there exists a wait-free protocol that solves WSB, hence there is a wait-free protocol that solves
2n-renaming. Therefore, all previous renaming lower bound proofs stating that M -renaming is not
wait-free solvable if M < 2n+ 1, are flawed.

More precisely, the main result states that there exists a wait-free WSB protocol if and only
if n is exceptional. For example, such a protocol exists for n = 5, 9, 11, 13, 14, and does not exist
for the other values smaller than 14. Moreover, there are infinitely many cases for which WSB is
wait-free solvable.

Also, the thesis studied the relation of the combinatorial topology results 1 and 2 with classic
topic of algebraic topology, more precisely, with equivariant chain maps. In addition, it explained
where the mistake is in previous renaming lower bound proofs and showed how it can be fixed.

Finally, it presented a survey of most of the known results concerning renaming and WSB.

9.2 The t-Resilient Case

Although this thesis focused on the wait-free case, the results it contains have implications for the
t-resilient case.

The BG simulation [19, 23] shows that a set of t+ 1 processes can wait-free simulate a system
with n processes that tolerates at most t faults. Using this simulation, t + 1 processes can use
a t-resilient protocol P that solves 4 on n processes, to wait-free solve 4. Intuitively, the t + 1
processes simulate the n codes of P, and as soon as a process “sees” that one of the n simulated
codes have decided, it adopts that decision as its output value. Therefore, if 4 is not wait-free
solvable on t + 1 processes, then it is not t-resilient solvable on n processes. Moreover, the other
direction is true. That is, given a wait-free protocol P that solves 4 on t+1 processes, n processes
can t-resilient solve 4: t + 1 processes of n execute P, and the rest wait for a decision of the
processes executing P; since P is wait-free, at least one processes decides.

However, these ideas does not work for a task in which a process cannot adopt the output (or
input) of another process as its decision, such as renaming or WSB. The extended version of the
BG simulation (EBG) [44] works for any task. Roughly speaking, for a task 4 on n processes, EBG
creates a task 4′ on t+ 1 processes such that 4 is t-resilient solvable on n processes if and only if
4′ is wait-free solvable on t + 1 processes. In [44] it is claimed that if 4 is (n − t − 1)-renaming,
then 4′ is WSB, considering the 2t-resilient case. More precisely, (n+ t−1)-renaming is 2t-resilient
solvable on n processes if and only if WSB is wait-free solvable on t+ 1 processes1. Therefore, the

1Paper [44] uses definitions of WSB and renaming that are different to the definitions used in this thesis. That
paper claims without a proof that the definitions are equivalent.
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results of [44] imply that (n+ t− 1)-renaming is 2t-resilient solvable on n processes if and only if t
is exceptional.

9.3 Further Research

There are three main open questions:

1. For exceptional n, exhibit an explicit code for a protocol that solves WSB. In some sense,
such code does exists. In [21] it is presented a wait-free protocol that solves simplex agreement
on a chromatic subdivision of an input complex. If the subdivision agrees with 4, then the
protocol solves4. Generally speaking, in any execution with participating set I, the processes
agree on a simplex of the subdivision that is properly colored with I, and then each process
decides the output value of the vertex with its id. Section 3.5 explained that the subdivisions
constructed for exceptional values of n, give a chromatic subdivision χ(I) of the WSB input
complex that agrees with WSB. Thus, the protocol in [21] and χ(I) provide a protocol that
solves WSB. However, it would be good to have an explicit code that does not depend on any
subdivision at all.

2. Renaming lower bound for exceptional n. Is the 2n-renaming protocol for exceptional n
optimal with respect to the size of output space? One direction for achieving a partial answer
to this question is the following. Suppose n is exceptional. Notice that a 2(n− 1)-renaming
protocol P for n+1 processes gives 2(n−1)-renaming protocol P ′ for n processes. If we prove
that n− 1 is non-exceptional, this thesis shows that P ′ cannot exist. Therefore, M -renaming
is not wait-free solvable when M ≤ 2(n− 1) provided that if n is exceptional then (n− 1) is
non-exceptional.

3. Extend the results for the t-resilient case. As explained above, if t is exceptional then (n+t−1)-
renaming is 2t-resilient solvable on n processes. What is the minimum t′ such that (n+ t−1)-
renaming is t′-resilient solvable?
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Appendix A

Subdividing Points

This section contains the proofs of the lemmas presented in Section 6.3.2. These lemmas consider
a path P : σ0 − σ1 − · · · − σ2q+1 in standard form and its subdividing point m.

Lemma 6.3.3 (Restated) Let m be the subdividing point of P. Then 1 ≤ m ≤ min(q, n+ 1).

Proof: First, for m = 0 it is not possible #0(σm+1,m+2) ≥ n + 1 − m = n + 1 because
dim(σm+1,m+2) = n. If n + 1 ≤ q then m is at most n + 1 because if m = n + 1 then
#0(σm+1,m+2) ≥ n + 1 − m = 0. Now, if q < n + 1 then σq+2 has at most q − 1 vertexes
with binary coloring 1 because there are q−1 simplexes in Pq+3,2q+1 and #0(σ2q+1) = n+1. Thus,
#0(σq+2) ≥ n + 2 − q and hence #0(σq+1,q+2) ≥ n + 2 − q (any (n − 1)-face of σq+2 has all the
vertexes of σq+2 with binary color 0 or all of them but one). Therefore, m is at most q.

�

Lemma 6.3.4 (Restated) Let m be the subdividing point of P. Then |P| ≥ 2(m+ 1).

Proof: By the definition of subdividing point, Definition 6.3.2, #0(σm+1,m+2) ≥ n + 1 −m. We
are interested in the case which σm+2 has as many as possible vertexes with binary color 0. (if
σm+2 has fewer vertexes with binary color 0, the segment Pm+2,2q+1 is longer because σ2q+1 is
0-monochromatic) Notice that if #0(σm+1,m+2) = n + 3 − m then #0(σm+1) ≥ n + 3 − m and
hence #0(σm,m+1) ≥ n + 2 − m = n + 1 − (m − 1), contradicting that m is the subdividing
point of P, Definition 6.3.2. Therefore, in the best case #0(σm+1,m+2) = n + 2 − m, and thus
#0(σm+2) = n+ 3−m, i.e., σm+2 has m− 2 vertexes with binary color 1. The latter implies that
|Pm+3,2q+1| = m− 2. Also, we have that |P0,m+2| = m+ 3. Thus |P| = 2m+ 1, however, |P| must
be even. Therefore, we have that |P| = 2(m+ 1).

�
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Lemma 6.3.5 (Restated) For the subdividing point m of P:

n + 2−m n + 2−m n + 1−m n + 2−m n + 2−m

n + 1−m n + 1−m n−m n + 1−m n + 1−m

————————- σm ———————— σm+1 ————————-

Proof: By the definition of subdividing point, Definition 6.3.2, m is the smallest value such that
#0(σm+1,m+2) ≥ n+1−m, thus we have #0(σm,m+1) < n+1− (m−1) = n+2−m. Observe that
if #0(σm+1,m+2) ≥ n + 3 −m then #0(σm+1) ≥ n + 3 −m, and hence #0(σm,m+1) ≥ n + 2 −m.
Therefore, #0(σm+1,m+2) ∈ {n+1−m,n+2−m} and #0(σm+1) ∈ {n+1−m,n+2−m}. Moreover,
since #0(σm+1) ∈ {n + 1 − m,n + 2 − m} and #0(σm,m+1) < n + 2 − m, then #0(σm,m+1) ∈
{n − m,n + 1 − m}. Now, for an n-simplex σx of P, we have #0(σx) ≥ n + 1 − x because σ0

is 0-monochromatic. Therefore, #0(σm−1) ≥ n + 2 − m and #0(σm) ≥ n + 1 − m, and hence
#0(σm−1,m) ≥ n+ 1−m. Since #0(σm,m+1) ∈ {n−m,n+ 1−m} and #0(σm−1,m) ≥ n+ 1−m,
then #0(σm) ∈ {n+ 1−m,n+ 2−m}, thus #0(σm−1,m) ∈ {n+ 1−m,n+ 2−m}.

�
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Appendix B

Correctness Proof of SubdivideGood

First we present two simple lemmas about Function SubdivideGood that are useful for proving
Lemmas 6.3.16 and 6.3.17.

Lemma B.1 Consider any execution of SubdivideGood with a path in standard form P and the
subdividing point m of P. Consider some i ∈ {0, 1} and let ī be (i + 1) mod 2. If #i(σx) =
#i(σx,x−ξ) then kx−ξ ∈ id(̄i(σx,x+ξ)), otherwise kx−ξ ∈ id(i(σx,x+ξ)). Similarly, if #i(σx+ξ) =
#i(σx+ξ,x+2ξ) then kx+2ξ ∈ id(̄i(σx,x+ξ)), otherwise kx+2ξ ∈ id(i(σx,x+ξ)).

Proof: First, by the specification of ConfigVars, Definition 6.3.19, and since P and m are valid
inputs to SubdivideGood, σx−ξ,x, σx, σx,x+ξ, σx+ξ and σx+ξ,x+2ξ are simplexes of P. Consider the
unique vertex v of σx \ σx,x−ξ. Notice that kx−ξ = id(v) (recall that kx−ξ is the id color changed in
the step σx−ξ−σx). if #i(σx) = #i(σx,x−ξ) then b(v) = ī and thus id(v) ∈ id(̄i(σx,x+ξ)). Otherwise
b(v) = i and hence id(v) ∈ id(i(σx,x+ξ)). The proof for σx+ξ, σx+ξ,x+2ξ and kx+2ξ is identical.

�

Lemma B.2 Consider any execution of SubdivideGood with a path in standard form P and the
subdividing point m of P. Consider some i ∈ {0, 1} and let ī be (i+ 1) mod 2. At line 9 we have
the following:

1. id(i(τ)) = id(̄i(σx,x+ξ))

2. (σx,x+ξ)−id(i(τ)) is i-monochromatic

3. for any face τ ′ of ī(τ), (σx,x+ξ)−id(i(τ)∪τ ′) is i-monochromatic

4. for any proper face τ ′ of i(τ), (σx,x+ξ)−id(τ ′) is not i-monochromatic

Proof: By the specification of ConfigVars, Definition 6.3.19, and since P and m are valid inputs
to SubdivideGood, σx, σx,x+ξ and σx+ξ are simplexes of P. Now, observe that after line 7 we
have id(0(τ)) = id(1(σx,x+ξ)) and id(1(τ)) = id(0(σx,x+ξ)), i.e., id(i(τ)) = id(̄i(σx,x+ξ)). Therefore
(σx,x+ξ)−id(i(τ)) = i(σx,x+ξ) and so (σx,x+ξ)−id(i(τ)) is i-monochromatic. Consider now a face τ ′

of ī(τ). Notice that (σx,x+ξ)−id(i(τ)∪τ ′) is a face of (σx,x+ξ)−id(i(τ)) and hence (σx,x+ξ)−id(i(τ)∪τ ′) is
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i-monochromatic. Finally, let τ ′ be a proper face of i(τ). Consider an element k ∈ id(i(τ)\ τ ′). Let
v be the vertex of σx,x+ξ such that id(v) = k. Notice that v ∈ (σx,x+ξ)−id(τ ′). Also we have that
b(v) = ī because id(i(τ)) = id(̄i(σx,x+ξ)). Thus (σx,x+ξ)−id(τ ′) is not i-monochromatic.

�

Lemma 6.3.16 (Restated) If SubdivideGood is invoked with a path P in standard form and
the subdividing point m of P is progressive then it produces a good subdivision of P with |Pi| < |P|,
i ∈ {1, 2}.

Proof: Let DCCn denote vx ∗ vx+ξ ∗ (τ ~ bd(σx,x+ξ)) in line 8. Observe that neither of DCCn,
SubdivideComp and Disconnect, affects bd(P). Also, by Lemma 6.3.4, |P| ≥ 2(m+ 1).

Case A. By the specification of ConfigVars, Definition 6.3.19, x = m and ξ = +1. Also by
Lemma 6.3.6, #0(σx) = #0(σx+ξ) = n + 1 − m and #0(σx,x+ξ) = n − m, and hence b(vx) =
b(vx+ξ) = 0 and #1(σx,x+ξ) = m. In line 10 we have that τ1 = 0(τ). By case 1 of Lemma B.2,
|τ1| = m because id(τ1) = id(0(τ)) = id(1(σx,x+ξ)). By case 2 of Lemma B.2, (σx,x+ξ)−id(τ1) is
0-monochromatic and thus vx ∗ [τ1] of DCCn is 0-monochromatic, by Lemma 6.3.9. By Lemma
6.3.6, #0(σx−1,x) = n + 1 −m and thus kx−ξ ∈ id(1(σx,x+ξ)) = id(τ1), by Lemma B.1. Moreover,
since id(τ1) = id(1(σx,x+ξ)), (σx,x+ξ)+id(τ1) is 1-monochromatic and hence (σx,x+ξ)+id(τ1)\kx−ξ

is
1-monochromatic. Also notice that path P1 in line 11 is a left non-crossing path. By case 1.a of
Lemma 6.3.12, P1 is in standard form and |P1| = 2m.

For P2, line 14, we have that |τ2| = m because τ2 = τ1 after line 13. And by Lemma 6.3.9,
vx+ξ ∗ [τ2] is 0-monochromatic. By Lemma 6.3.6, #0(σx+ξ,x+2ξ) = n + 1 − m and thus kx+2ξ ∈
id(1(σx,x+ξ)) = id(τ2), by Lemma B.1. Moreover, (σx,x+ξ)+id(τ2) is 1-monochromatic and hence
(σx,x+ξ)+id(τ2)\kx+2ξ

is 1-monochromatic. Notice that P2 is a right non-crossing path and it also is
in standard form with |P2| = |P| − 2 by case 1.a of Lemma 6.3.12. Observe that P1 and P2 do not
share n-simplexes.

We now prove that vx ∗ [τ1] and vx+ξ ∗ [τ2] are the unique monochromatic n-simplexes of
DCCn. First, by Lemma 6.3.9, DCCn does not have 1-monochromatic n-simplexes because b(vx) =
b(vx+ξ) = 0. Second, for every face τ ′ of τ such that 0(τ) ⊂ τ ′, there is a vertex of v ∈ τ ′ with
b(v) = 1. Thus [τ ′] of DCCn is not 0-monochromatic and hence any n-simplex of DCCn containing
[τ ′] is not 0-monochromatic, by Lemma 6.3.9. And third, by case 4 of Lemma B.2, for each proper
face τ ′ of 0(τ), (σx,x+ξ) is not 0-monochromatic and thus any n-simplex of DCCn containing [τ ′] is
not 0-monochromatic, by Lemma 6.3.9. This complete the proof for case A.

Case C. First, Figure B.1 depicts an example of how SubdivideGood works on a 2-dimensional
path with subdividing point holding case C. Now, by the specification of ConfigVars, Definition
6.3.19, x = m and ξ = +1. Also by Lemma 6.3.6, #0(σx) = n+2−m and #0(σx+ξ) = #0(σx,x+ξ) =
n + 1 − m, and hence b(vx) = 0, b(vx+ξ) = 1 and #1(σx,x+ξ) = m − 1. For both i ∈ {0, 1}, let
λi = i(τ) in line 8. By case 1 of Lemma B.2, id(λi) = id(̄i(σx,x+ξ)), where ī = (i + 1) mod 2.
Therefore, |λ0| = m− 1. Also, by Lemma 6.3.8, we have that 2 ≤ m ≤ n and thus λ1 6= ∅. Now, by
Lemma 6.3.6, #0(σx−ξ,x) ∈ {n+2−m,n+1−m}. By Lemma B.2 and since id(λ0) = id(1(σx,x+ξ)),
if #0(σx−ξ,x) = n+ 2−m then kx−ξ ∈ id(λ0), otherwise kx−ξ /∈ id(λ0). After line 26 we have that
τ1 = λ0 ∪ {ux−ξ} and kx−ξ ∈ id(τ1) (for case C we are not interested in ux+2ξ). Also |τ1| = m and
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τ1 is 0-monochromatic. By case 3 of Lemma B.2, (σx,x+ξ)−id(τ1) is 0-monochromatic. By Lemma
6.3.9, vx ∗ [τ1] of DCCn is 0-monochromatic. Notice that path P1 at line 27 is a left non-crossing
path starting from vx ∗ [τ1]. We now check which case of Lemma 6.3.12 can be applied on P1.
Let v be the vertex of σx,x+ξ with id color id(ux−ξ). Since id(λ1) = id(0(σx,x+ξ)), we have that
b(v) = 0. For kx−ξ, if line 21 was true then id(v) = kx−ξ. Therefore v /∈ (σx,x+ξ)+id(τ1)\kx−ξ

and so
(σx,x+ξ)+id(τ1)\kx−ξ

is 1-monochromatic. Thus, by case 1.a of Lemma 6.3.12, P1 is in standard form
and |P1| = 2m. Now if line 21 was false then id(v) 6= kx−ξ. Therefore v ∈ (σx,x+ξ)+id(τ1)\kx−ξ

and
so (σx,x+ξ)+id(τ1)\kx−ξ

is not 1-monochromatic. However, observe that (σx,x+ξ)+id(τ1)\{kx−ξ,id(ux−ξ)}
is 1-monochromatic. By case 1.b of Lemma 6.3.12, P1 is in standard or quasistandard form and
|P1| = 2m. Also, if P1 is in quasistandard form then vx∗[τ1−id(ux−ξ)] is the monochromatic n-simplex
of P1 that is not at its ends. Notice that τ1−id(ux−ξ) = λ0. We shall prove that vx ∗ [τ1−id(ux−ξ)] is
one the monochromatic n-simplexes at the ends of P2, line 30.

2
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1

1
0

(a)

2

2

2
0

1

1

1
0
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2
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vx ∗ [τ1]

vx ∗ [τ2]
σx

σx+ξ

P1

P2

10

Figure B.1: SubdivideGood working on a 2-dimensional path with subdividing point holding
case C.

For path P2 we have the following. Observe that τ2 = λ0, line 29, and also |τ2| = m − 1
because id(λ0) = id(1(σx,x+ξ)). Moreover, τ2 and (σx,x+ξ)−id(τ2) are 0-monochromatic. By Lemma
6.3.9, vx ∗ [τ2] of DCCn is 0-monochromatic. Also by Lemma 6.3.6, #0(σx+ξ,x+2ξ) = n + 1 − m
and hence kx+2ξ ∈ id(τ2), by Lemma B.1. By case 2 of Lemma 6.3.12, P2 is in standard form and
|P2| = |P|−2. Now, notice that vx∗[τ2] = vx∗[τ1−id(ux−ξ)]. Therefore if P1 is in quasistandard form,
P1 and P2 share vx ∗ [τ2]. However, by Lemma 6.3.20, function Disconnect in line 32 produces a
good subdivision of P1 ∪P2 with boundary bd(P1 ∪P2) and paths of the same length as inputs P1

and P2.
We now prove that the subdivisions SubdivideGood did on P (lines 8 and 32), only produced

the monochromatic n-simplexes for P1 and P2. For all i ∈ {0, 1}, let λi = i(τ) at line 8. Consider
the execution in line 31. We have that τ1 = λ0∪{uk−ξ} and τ2 = λ0. Let τ ′ be a face of τ such that
λ0 ⊂ τ ′ and τ ′ 6= τ1. Notice that there exists u, v ∈ τ ′ such that b(v) = 0 and b(u) = 1. Therefore
[τ ′] is not monochromatic and hence neither vx ∗ [τ ′] nor vx+ξ ∗ [τ ′] of DCCn are monochromatic,
by Lemma 6.3.9. By case 4 of Lemma B.2, for each non-empty proper face τ ′ of λ0, (σx,x+ξ) is not
0-monochromatic. Moreover, observe that τ ′ is not 1-monochromatic. By Lemma 6.3.9, neither
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vx ∗ [τ ′] nor vx+ξ ∗ [τ ′] of DCCn are monochromatic. That is, vx ∗ [τ1] and vx ∗ [τ2] are the unique
monochromatic n-simplexes of DCCn at line 31. If line 32 is executed, Lemma 6.3.20 guarantees
that Disconnect only produces the two monochromatic n-simplexes for resulting paths P1 and
P2. This complete the proof for case C.

Case D. This case is symmetric to case C and hence its proof is almost identical. The difference
is that in the end of the analysis, |P1| = |P| − 2 and |P2| = 2m.

Case E with m < n+1. First, Figure B.2 shows an example of how SubdivideGood works on
2-dimensional path with subdividing point holding case E with m < n+ 1. By the specification of
ConfigVars, Definition 6.3.19, x = m and ξ = +1. Also by Lemma 6.3.6, #0(σx) = #0(σx+ξ) =
n + 2 −m and #0(σx,x+ξ) = n + 1 −m, and hence b(vx) = b(vx+ξ) = 0 and #1(σx,x+ξ) = m − 1.
For all i ∈ {0, 1}, let λi = i(τ) at line 8. By case 1 of Lemma B.2, id(λi) = id(̄i(σx,x+ξ)), where
ī = (i + 1) mod 2. Therefore, |λ0| = m − 1. Since m ≤ n, λ1 6= ∅. Now, by Lemma 6.3.6,
#0(σx−ξ,x) ∈ {n + 2 −m,n + 1 −m}. Doing the same analysis than the one used in case C, we
can prove that P1 in line 27 is in standard or quasistandard form and |P1| = 2m. Also, if P1 is in
quasistandard form then vx ∗ [τ1−id(ux−ξ)] is the monochromatic n-simplex of P1 that is not at its
ends. And τ1 = λ0 ∪ {ux−ξ}.
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Figure B.2: EliminatePath working on a 2-dimensional path with subdividing point m holding
case E and m < n+ 1.

We now see what happens with path P2 in line 38. The analysis is very similar to the one used
for P1. By Lemma 6.3.6, #0(σx+ξ,x+2ξ) ∈ {n+2−m,n+1−m}. By Lemma B.2 and since id(λ0) =
id(1(σx,x+ξ)), if #0(σx−ξ,x) = n+ 2−m then kx+2ξ ∈ id(λ0), otherwise kx+2ξ /∈ id(λ0). After line
36 we have that τ2 = λ0 ∪ {ux+2ξ} and kx+2ξ ∈ id(τ2). Also |τ2| = m and τ2 is 0-monochromatic.
By case 3 of Lemma B.2, (σx,x+ξ)−id(τ2) is 0-monochromatic. By Lemma 6.3.9, vx+ξ ∗ [τ2] of DCCn

is 0-monochromatic. Notice that path P2 is a right non-crossing path starting from vx+ξ ∗ [τ2].
Let v be the vertex of σx,x+ξ with id color id(ux+2ξ). Since id(λ1) = id(0(σx,x+ξ)), we have that
b(v) = 0. For kx+2ξ, if line 21 was true then id(v) = kx+2ξ. Therefore v /∈ (σx,x+ξ)+id(τ2)\kx+2ξ

and so
(σx,x+ξ)+id(τ2)\kx+2ξ

is 1-monochromatic. Thus, by case 1.a of Lemma 6.3.12, P2 is in standard form
and |P2| = |P| − 2. Now if line 21 was false then id(v) 6= kx+2ξ. Therefore v ∈ (σx,x+ξ)+id(τ2)\kx+2ξ

and so (σx,x+ξ)+id(τ2)\kx+2ξ
is not 1-monochromatic. However, (σx,x+ξ)+id(τ2)\{kx+2ξ,id(ux+2ξ)} is
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1-monochromatic. By case 1.b of Lemma 6.3.12, P2 is in standard or quasistandard form and
|P2| = |P| − 2. Also, if P2 is in quasistandard form then vx+ξ ∗ [τ2−id(ux+2ξ)] is the monochromatic
n-simplex of P2 that is not at its ends.

We now prove that the subdivisions SubdivideGood did on P (lines 8, 40, 42, 43, 48 and
49), only produced the monochromatic n-simplexes vx ∗ [τ1] and vx+ξ ∗ [τ2] for P1 and P2 re-
spectively. Consider the state of the execution at line 38. Let γ1 = {ux−ξ}, γ2 = {ux+2ξ}
and γ3 = {ux−ξ, ux+2ξ}. Notice that τ0 = λ0, τ1 = λ0 ∪ γ1 and τ2 = λ0 ∪ γ2. Therefore
vx ∗ [τ1] = vx ∗ [λ0 ∪ γ1] and vx+ξ ∗ [τ2] = vx+ξ ∗ [λ0 ∪ γ2]. We proved above that vx ∗ [λ0 ∪ γ1]
is 0-monochromatic and thus vx+ξ ∗ [λ0 ∪ γ1] is 0-monochromatic. Similarly, vx ∗ [λ0 ∪ γ2] is
0-monochromatic because we proved that vx+ξ ∗ [λ0 ∪ γ2] is 0-monochromatic. Now, we have
that λ0 is 0-monochromatic and so (σx,x+ξ)−id(λ0) is 0-monochromatic. Also (σx,x+ξ)−id(λ0) and
(σx,x+ξ)−id(λ0∪γ3) are 0-monochromatic because id(λ0) = id(1(σx,x+ξ)). Since b(vx) = b(vx+ξ) = 0
and by Lemma 6.3.9, the n-simplexes vx ∗ [λ0], vx+ξ ∗ [λ0], vx ∗ [λ0 ∪ γ3] and vx+ξ ∗ [λ0 ∪ γ3]
are 0-monochromatic. We now prove that these 8 n-simplexes are all the monochromatic n-
simplexes of DCCn. By Lemma 6.3.9, DCCn does not have 1-monochromatic n-simplexes because
b(vx) = b(vx+ξ) = 0. Also for every face τ ′ of τ such that λ0 ⊂ τ ′ and γj∩τ ′ = ∅ for all j ∈ {1, 2, 3},
there is a vertex of v ∈ τ ′ with b(v) = 1. Thus [τ ′] of DCCn is not 0-monochromatic and hence
any n-simplex of DCCn containing [τ ′] is not 0-monochromatic, by Lemma 6.3.9. And by case 4 of
Lemma B.2, for each proper face τ ′ of λ0, (σx,x+ξ) is not 0-monochromatic and thus any n-simplex
of DCCn containing [τ ′] is not 0-monochromatic, by Lemma 6.3.9.

Now, consider the path P0 : vx ∗ [λ0] − vx+ξ ∗ [λ0] in line 37. If P1 is in quasistandard form
then vx ∗ [τ1−id(ux−ξ)] is the monochromatic n-simplex of P1 that is not at its ends. Observe that
τ1−id(ux−ξ) = λ0 and hence P1 and P0 share vx ∗ [λ0]. Similarly, if P2 is in quasistandard form then
vx+ξ ∗ [τ2−id(ux+2ξ)] is the monochromatic n-simplex of P2 that is not at its ends. We have that
τ2−id(ux+2ξ) = λ0 and so P2 and P0 share vx+ξ∗[λ0]. Anyway, P1, P2 and P0 do not share n-simplexes
in line 43, by Lemma 6.3.20. And SubdivideComp in line 43 produces a complete subdivision of
P0, by Lemma 6.3.15. Consider now the line 44. if ux−ξ = ux+2ξ then γ1 = γ2 = γ3 and thus there
is nothing more to do. Consider now the case ux−ξ 6= ux+2ξ. Observe that τ3 = λ0 ∪ γ3, line 46.
Moreover, we have that Q1 : vx ∗ [λ0 ∪ γ2]− vx ∗ [λ0 ∪ γ3] and Q2 : vx+ξ ∗ [λ0 ∪ γ1]− vx+ξ ∗ [λ0 ∪ γ3],
lines 47 and 48. By Lemma 6.3.15, lines 48 and 49 produce a complete chromatic subdivision of
Q1 and Q2. This complete the proof for case E.

�

Lemma 6.3.17 (Restated) If SubdivideGood is invoked with a path P in standard form and the
subdividing point m of P is non-progressive then it produces a good subdivision of P with |Pi| ≤ |P|,
i ∈ {1, 2}. And if for some i ∈ {1, 2}, |Pi| = |P| then the subdividing point of Pi is progressive.

Proof: Let DCCn denote vx ∗ vx+ξ ∗ (τ ~ bd(σx,x+ξ)) in line 8. Observe that neither of DCCn,
SubdivideComp and Disconnect, affects bd(P). Also, by Lemma 6.3.4, |P| ≥ 2(m+ 1).

Case B. By Lemma 6.3.6, #0(σm) = #0(σm+1) = #0(σx,x+ξ) = n + 1 −m and hence b(vm) =
b(vm+1) = 1, where vm and vm+1 are the unique vertexes of σm \ σm,m+1 and σm+1 \ σm,m+1

respectively. Therefore it is not possible to produce 1-monochromatic n-simplexes by subdividing
on σm,m+1. SubdivideGood handles this problem by subdividing on σm,m−1. By Lemma 6.3.8,
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m ≥ 2 and hence σm−1 and σm−2 are simplexes of P. Notice that for each n-simplex σy of P,
#0(σy) ≥ n + 1 − y. Thus, #0(σm−2) ≥ n + 3 − m and #0(σm−1) ≥ n + 2 − m. Therefore,
#0(σm−2) = n+ 3−m and #0(σm−1) = n+ 2−m, because #0(σm−1,m) = n+ 1−m by Lemma
6.3.6. Moreover, #0(σm−2,m−1) = n+ 2−m.

By the specification of ConfigVars, Definition 6.3.19, x = m − 1 and ξ = +1. Therefore
#0(σx) = n + 2 −m and #0(σx+ξ) = #0(σx,x+ξ) = n + 1 −m, and hence b(vx) = 0, b(vx+ξ) = 1
and #1(σx,x+ξ) = m − 1. For i ∈ {0, 1}, let λi = i(τ) in line 8. By case 1 of Lemma B.2,
id(λi) = id(̄i(σx,x+ξ)), where ī = (i+1) mod 2. Therefore, |λ0| = m−1. Since m ≤ n, then λ1 6= ∅.
In line 10 we have that τ1 = λ0. By case 1 of Lemma B.2 and since id(τ1) = id(λ0) = id(1(σx,x+ξ)),
|τ1| = m − 1. By case 2 of Lemma B.2, (σx,x+ξ)−id(τ1) is 0-monochromatic, and thus vx ∗ [τ1] of
DCCn is 0-monochromatic, by Lemma 6.3.9. Also, since #0(σx−1,x) = n+2−m and by Lemma B.1,
we have that kx−ξ ∈ id(1(σx,x+ξ)) = id(τ1). Moreover, since id(τ1) = id(1(σx,x+ξ)), (σx,x+ξ)+id(τ1)

is 1-monochromatic and hence (σx,x+ξ)+id(τ1)\kx−ξ
is 1-monochromatic. P1 in line 11 is a left non-

crossing path. By case 1.a of Lemma 6.3.12, P1 is in standard form and |P1| = 2(m− 1).
For P2, line 19, we have that |τ2| = m because τ2 = τ1∪{u2} = λ0∪{u2}, line 18. Notice that τ2

is 0-monochromatic. And by Lemma 6.3.9, vx+ξ ∗ [τ2] is 0-monochromatic. By case 3 of Lemma B.2,
(σx,x+ξ)−id(τ2) is 0-monochromatic. By Lemma 6.3.9, vx ∗ [τ1] of DCCn is 0-monochromatic. Also,
since #0(σx+1,x+2) = n + 1 −m and by Lemma B.1, kx+2ξ ∈ id(1(σx,x+ξ)) and so kx+2ξ ∈ id(τ2).
P2 is a right crossing path, and hence it is in standard form with |P2| = |P|, by case 2 of Lemma
6.3.12. Observe that P1 and P2 do not share n-simplexes.

We now prove that vx∗ [τ1] and vx∗ [τ2] are the unique monochromatic n-simplexes of DCCn. We
have that τ1 = λ0 and τ2 = λ0 ∪ {u2}. Let τ ′ be a face of τ such that λ0 ⊂ τ ′ and τ ′ 6= τ2. Notice
that there exists u, v ∈ τ ′ such that b(v) = 0 and b(u) = 1. Therefore [τ ′] is not monochromatic
and hence neither vx ∗ [τ ′] nor vx+ξ ∗ [τ ′] of DCCn are monochromatic, by Lemma 6.3.9. By case 4 of
Lemma B.2, for each non-empty proper face τ ′ of λ0, (σx,x+ξ) is not 0-monochromatic. Moreover,
observe that τ ′ is not 1-monochromatic. By Lemma 6.3.9, neither vx ∗ [τ ′] nor vx+ξ ∗ [τ ′] of DCCn

are monochromatic. Therefore vx ∗ [τ1] and vx ∗ [τ2] are the unique monochromatic n-simplexes of
DCCn.

For proving that the subdividing point of P2 is progressive, let γ be the very previous n-simplex
to σx+2ξ. Therefore P2 : vx ∗ [τ2]− vx+ξ ∗ [τ2]− · · · − γ − σx+2ξ − σx+3ξ − · · · . Since |P2| = |P|, the
length of the subpath Q : vx ∗ [τ2]− vx+ξ ∗ [τ2]− · · · − γ is m+ 1, and hence there are m steps in
Q. The step from γ to σx+2ξ changes the id color kx+2ξ and thus id(u2) is changed in some step of
vx+ξ ∗ [τ2]−· · ·−γ. Moreover, notice that id(u2) ∈ id(λ1) = id(0(σx,x+ξ)), b(u2) = 0, τ2 = λ0∪{u2}
and id(λ0) = id(1(σx,x+ξ)). Therefore, the step of Q that changes id(u2), changes u2 for a vertex of
σx,x+ξ with binary color 0, and all the other steps change vertexes with binary color 0 for vertexes
of σx,x+ξ with binary color 1. Since there are m steps in Q and vx ∗ [τ2] is 0-monochromatic,
#0(γ) = n+1− (m− 1) = n+2−m. Let us rewrite P2 as ρ0− ρ1− · · ·− ρm− ρm+1− ρm+2− · · · .
Thus ρm = γ and ρm+1 = σx+2ξ. It was noticed above that #0(ρm+1) = #0(ρm+1,m+2) = n+1−m.
By Lemma 6.3.6 and Definition 6.3.7, if it is proved that m is the subdividing point of P2, then it
is progressive, it can only hold case either A or C.

By contradiction, suppose that k is the subdividing point of P2 and k = m− c for some c > 0.
By definition of subdividing point, Definition 6.3.2, #0(ρk+1,k+2) ≥ n+1−k and thus #0(ρk+2) ≥
n+1−k. Notice that the length of the subpath ρk+3−· · ·−ρm is m−(k+3)+1 = m−k−2 = c−2.
Therefore, #0(ρm) ≥ n+ 1− k− (c− 2) = n+ 3− (k+ c). However, it was proved in the previous
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paragraph that #0(ρm) = n+2−m = n+2− (k+ c). A contradiction. Thus m is the subdividing
point of P2. This complete the proof for case B.
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Figure B.3: SubdivideGood working on a 2-dimensional path with subdividing point m holding
case E, m = n+ 1 and kx−ξ 6= kx+2ξ.

Case E with m = n + 1. By the specification of ConfigVars, Definition 6.3.19, x = m and
ξ = +1. By Lemma 6.3.6, #0(σx) = #0(σx+ξ) = n+2−m = 1 and #0(σx,x+ξ) = n+1−m = 0, and
hence b(vx) = b(vx+ξ) = 0 and #1(σx,x+ξ) = n. Notice that τ = 0(τ) in line 54. Also (σx,x+ξ)−id(τ)

is 0-monochromatic by vacuity. By Lemma 6.3.9, vx ∗ [τ ] and vx+ξ ∗ [τ ] are 0-monochromatic.
Consider first the case kx−ξ 6= kx+2ξ. See Figure B.3 for an example of dimension 2. Let Q1

and Q2 be the left and right crossing paths starting on vx+ξ ∗ [τ ] and vx ∗ [τ ] respectively. That is,

Q1 : vx+ξ ∗ [τ ] kx vx ∗ [τ ]
id(τ−kx−ξ)

vx ∗ [τ+kx−ξ
] kx−ξ σx−ξ − · · · and Q2 : vx ∗ [τ ] kx+ξ vx+ξ ∗

[τ ]
id(τ−kx+2ξ)

vx+ξ ∗ [τ+kx+2ξ
] kx+2ξ σx+2ξ−· · · . Observe that Q1 is not in standard form because

vx ∗ [τ ] is 0-monochromatic. If vx ∗ [τ ] would be non-monochromatic then Q1 would be in standard
form and |Q1| = 2m = 2(n+ 1), by case 2 of Lemma 6.3.12. Moreover, it does not matter vx ∗ [τ ]
is 0-monochromatic, we have that |Q1| = 2(n + 1). Similarly, Q2 is not in standard form because
vx+ξ ∗ [τ ] is monochromatic but if vx+ξ ∗ [τ ] would be non-monochromatic then Q2 would be in
standard form and |Q2| = |P − 2, by case 2 of Lemma 6.3.12. What SubdivideGood does is
the following. For path P1 in line 54, the subpath from vx+ξ ∗ [τ ] to vx+ξ ∗ [τ+kx−ξ

] looks like a
non-crossing path, then P1 “crosses” the subdivision from vx+ξ ∗ [τ+kx−ξ

] to vx ∗ [τ+kx−ξ
] and finally

it goes from vx ∗ [τ+kx−ξ
] to σ0, as a left crossing path. It is clear that P1 is in standard form and

also |P1| = |Q1| = 2(n+ 1). Something similar happens with P2. Therefore P2 is in standard form
and |P2| = |P| − 2. Finally, notice that P1 and P2 do not share n-simplexes because kx−ξ 6= kx+2ξ.
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Figure B.4: SubdivideGood working on 2-dimensional path with subdividing point m holding
case E, m = n+ 1 and kx−ξ = kx+2ξ.

Consider now the case kx−ξ = kx+2ξ. See Figure B.4 for an example of dimension 2. Sub-
divideGood cannot do the same trick as in the previous case. Since kx−ξ = kx+2ξ, it is not
possible to get paths that do not share n-simplexes. Therefore SubdivideGood outputs a path
in standard form P1 with |P1| = |P| and progressive subdividing point, and an empty path P2,
lines 57 and 58. Consider the n-simplexes vx ∗ [τ+kx−ξ

] and vx+ξ ∗ [τ+kx−ξ
]. By Lemma 6.3.9

and because each face of (σx,x+ξ) is 1-monochromatic, vx ∗ [τ+kx−ξ
] and vx+ξ ∗ [τ+kx−ξ

] are not
0-monochromatic. Therefore P1 is in standard form and |P1| = |P|. Notice that τ+kx−ξ

contains
just one vertex of τ , which is binary colored 0. Also, vx and vx+ξ are binary colored 0. Therefore,
#0(vx ∗ [τ+kx−ξ

]) = #0(vx+ξ ∗ [τ+kx−ξ
]) = 2 and #0([τ+kx−ξ

]) = 1. Observe that vx ∗ [τ+kx−ξ
] and

vx+ξ ∗ [τ+kx−ξ
] share [τ+kx−ξ

]. Let us rewrite P1 as ρ0 − · · · − ρn − ρn+1 − ρn+2 − ρn+3 − · · · . That
is ρn = σx−ξ = σn and ρn+1 = vx ∗ [τ+kx−ξ

]. Therefore, #0(ρn+1) = 2 and #0(ρn+1,n+2) = 1. Let
k be the subdividing point of P1. It is proved that k is progressive and k = n. Observe that it
cannot be k < n because the subdividing point of P was n + 1, and for 0 ≤ y ≤ n, σy = ρy and
σy,y+1 = ρy,y+1. And also for k = n, #0(ρn+1,n+2) ≥ n + 1 − k = 1. Thus, n is the subdividing
point of P1. Moreover, #0(ρk+1) = #0(ρn+1) = n+ 2− k = 2 and thus k holds case either D or E
with k < n+ 1, by Lemma 6.3.6. By Definition 6.3.7, k is progressive. This complete the proof of
case E.

�
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[62] A. Mostéfaoui, M. Raynal & C. Travers, Exploring Gafni’s Reduction Land: From Ωk to Wait-
Free Adaptive (2p− [p/k])-Renaming Via k-Set Agreement, in Proc. of the 20th International
Symposium on Distributed Computing, pp. 1–15, 2006.
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