

Vniver4dad Nacional AvFn9ma de Mexico

UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO

PROGRAMA DE MAESTRÍA Y DOCTORADO EN INGENIERÍA

INSTITUTO DE INGENIERÍA

FLUJO DE AGUA TRANSITORIO EN EXCAVACIONES EN SUELOS

TESIS

QUE PARA OPTAR POR EL GRADO DE:

MAESTRO EN INGENIERÍA

INGENIERÍA CIVIL – GEOTECNIA

P R E S E N T A :

ING. HÉCTOR SILVA HUERTA

TUTOR: DR. GABRIEL AUVINET GUICHARD

2010

Universidad Nacional Autónoma de México

UNAM – Dirección General de Bibliotecas Tesis Digitales Restricciones de uso

DERECHOS RESERVADOS © PROHIBIDA SU REPRODUCCIÓN TOTAL O PARCIAL

Todo el material contenido en esta tesis esta protegido por la Ley Federal del Derecho de Autor (LFDA) de los Estados Unidos Mexicanos (México).

El uso de imágenes, fragmentos de videos, y demás material que sea objeto de protección de los derechos de autor, será exclusivamente para fines educativos e informativos y deberá citar la fuente donde la obtuvo mencionando el autor o autores. Cualquier uso distinto como el lucro, reproducción, edición o modificación, será perseguido y sancionado por el respectivo titular de los Derechos de Autor.

JURADO ASIGNADO:

Presidente:	Dr. Efraín Ovando Shelley	
Secretario:	M.I. Jorge Efraín Castilla Camacho	
Vocal:	Dr. Gabriel Auvinet Guichard	
1 ^{er.} Suplente:	Dr. Rigoberto Rivera Constantino	
2 ^{do.} Suplente:	Dr. Venancio Trueba López	

Lugar donde se realizó la tesis:

INSTITUTO DE INGENIERÍA, UNAM.

TUTOR DE TESIS:

DR. GABRIEL AUVINET GUICHARD

Agradecimientos

A la Universidad Nacional Autónoma de México

A los sinodales por el tiempo invertido en la revisión de esta tesis

Al Dr. Gabriel Auvinet Guichard por su orientación y consejos

Cependant tout sujet est un; et quelque vaste qu'il soit, il peut être refermé dans un seul discours.

> George-Louis Leclerc Conde de Buffon Discours sur le style.

FLUJO DE AGUA TRANSITORIO EN EXCAVACIONES EN SUELOS

ÍNDICE

R	RESUMEN	i
N	NOMENCLATURA	ii
ÍN	NDICE DE TABLAS	iv
ÍN	NDICE DE FIGURAS	v
1.	. INTRODUCCIÓN	1
2.	2. ANTECEDENTES	3
	2.1 Excavación en suelos blandos	3
	2.1.1 Excavación con taludes	3
	2.1.2 Excavaciones ademadas	4
	2.1.2.1 Tipos de ademe	4
	2.1.2.2 Soporte del ademe	6
	2.2 Control del flujo de agua en excavaciones	8
	2.2.1 Pantallas impermeables	8
	2.2.2 Zanjas y cárcamos	8
	2.2.3 Tablestacado y bombeo	8
	2.2.4 Sistemas de pozos punta	9
	2.2.5 Pozos profundos	11
	2.2.6 Electro-ósmosis	12
	2.2.7 Drenaje horizontal	13
	2.3 Diseño de excavaciones	14
	2.3.1 Taludes	14
	2.3.2 Falla de fondo por subpresión	14
	2.3.3 Estabilidad de excavaciones ademadas	15
	2.3.4 Estabilidad de las cimentaciones de edificios contiguos	16
	2.3.5 Movimientos a corto y largo plazo asociados a la descarga	16
	2.3.6 Asentamientos del terreno adyacente a la excavación	17
3.	8. FLUJO DE AGUA EN MEDIOS POROSOS RÍGIDOS	18
	3.1 Ecuaciones diferenciales de flujo de agua	18
	3.2 Métodos de solución	26
	3.2.1 Redes de flujo	26
	3.2.2 Soluciones analíticas	29
	3.2.3 Soluciones numéricas	33
4.	. PRESIÓN DE PORO EN MEDIOS DEFORMABLES	38
	4.1 Análisis a corto plazo	38
	4.1.1 Condición previa a la excavación	38
	4.1.2 Excavación instantanea	39
	4.1.3 Excavacion instantanea en suelo blando con un estrato de suelo grai	iular 43
	4.1.4 Medicion del descenso del NAF	44
	4.2 Analisis a largo plazo	44

	4.3 Análisis con el método de los elementos finitos	45
	4.4 Modelo constitutivo para el suelo blando	50
5.	APLICACIÓN A EXCAVACIONES EN SUELOS	52
	5.1 Excavación prototipo	52
	5.1.1 Excavación a cielo abierto en un medio poroso rígido con permeabilidad alta	53
	5.1.2 Excavación a cielo abierto en un medio poroso rígido con permeabilidad media	56
	5.1.3 Excavación a cielo abierto en un medio deformable	59
	5.1.4 Excavación a cielo abierto en suelo heterogéneo	80
	5.2 Excavación de la estación Mexicaltzingo	88
6.	CONCLUSIONES	121
7.	REFERENCIAS	124
Aľ	NEXOS	130
A	L DISEÑO DE EXCAVACIONES	131
A	2 MÉTODO DEL ELEMENTO FINITO	133
A	3 MODELO CONSTITUTIVO	139
A4	SOLUCIONES ANALÍTICAS A LA ECUACIÓN DE FLUJO AGUA EN SUELOS	145

RESUMEN

En este trabajo se presenta el modelado de excavaciones a cielo abierto en suelos con diferentes permeabilidades, con el propósito de estudiar el problema de la generación de presión de poro y del control del agua. Los análisis se realizaron con el método del elemento finito, primeramente en una excavación prototipo y luego se modeló la excavación de la estación Mexicaltzingo del Metro. Los resultados muestran que existen diferencias drásticas en el comportamiento hidráulico, entre suelos granulares-rígidos y materiales blandos de baja permeabilidad. En los primeros, los análisis pueden llevarse a cabo con las ecuaciones de la teoría de flujo de agua en suelos, en cambio en los suelos blandos la descarga induce un decremento de presión de poro relacionado con la deformabilidad del suelo y que no es considerado por la teoría de flujo de agua. La presión de poro inducida se genera de forma i nstantánea, provoca un descenso del NAF y se di sipa mediante flujo de agua en un tiempo generalmente l argo; por l o que debe d iferenciarse entre com portamiento a corto y largo plazo. Este trabajo muestra que los métodos numéricos permiten analizar problemas complejos de control de agua y es p revisible que en el futuro complementen útilmente l os métodos a nalíticos empleados tradicionalmente en la práctica.

ABSTRACT

In this work open excavations are modeled in soils with different permeability in order to study the problem por e pr essure generation and w ater c ontrol. Analyses w ere pe rformed with the f inite element m ethod in an excavation pr ototype first, and the excavation of the subw ay st ation Mexicaltzingo before. The results show the differences of behavior between granular soils hydraulic and soft-rigid soils with low permeability. In the first case, the analysis can be performed with flow water equations, whereas in soft soil, soil unloading induces a pore pressure decrease related to soil deformability which is no t con sidered by flow w ater e quations. The i nduced pore pressure is generated instantly, causing a descent in the phreatic level and it is dissipated by water flow usually in a long time, so it is necessary to differentiate between short and long term. This paper shows that numerical methods allows to analyze complex problems of water control and in the future they will complement traditional analytical methods used in practice.

INDICE DE FIGURAS

	Pagina
Figura. 2.1.1 Muro tipo Berlín.	4
Figura. 2.1.2 Proceso constructivo de muros diafragma	5
Figura.2.1.3 Puntales inclinados	6
Figura. 2.1.4 Excavación usando el método del núcleo central	7
Figura. 2.1.5 Excavación utilizando la subestructura central como apoyo	7
Figura. 2.2.1 Zanjas y cárcamos colectoras de flujo	8
Figura. 2.2.2 Bombeo en una excavación ademada	9
Figura. 2.2.3 Vista de una excavación abierta con sistema de bombeo de pozos	
punta	9
Figura. 2.2.4 Instalación típica de un sistema de pozos punta	10
Figura. 2.2.5 Drenaje en una excavación abierta por medio de un sistema múltiple	
de pozos punta	10
Figura. 2.2.6 Abatimiento en una excavación profunda por medio de pozos	
profundos v pozos punta	11
Figura, 2.2.7 Detalles de un pozo profundo con bomba de evector	11
Figura, 2.2.8 Detalles de un pozo profundo con sistema de vacío	12
Figura 3 1 1 Esquema para la deducción de la lev de Darcy	19
Figura 3.1.2 Componentes de la velocidad de descarga en un elemento diferencial	
del suelo	22
Figura 3 1 3 Esquema para la deducción de la ecuación de Poisson	22
Figura 3.1.4 Esquema para la deducción de la ecuación de fluio transitorio	24
Figura 3.2.1 Campo formado por dos líneas equipotenciales y dos líneas de fluio	27
Figura 3.2.2 Fiemplo de red de fluio en una excavación	27
Figura 3.2.3 Clasificación de acuíferos	30
Figura 3.2.4 Fluio establecido radial en un acuífero confinado hacia un pozo que lo	50
nenetra totalmente	31
Figura 3.2.5 a) Malla de diferencias finitas con elementos cuadrados	33
Figura 3.2.5 h) Malla de elementos finitos con elementos triangulares	33
Figura 3.2.6 Interpretación geométrica de las aproximaciones central hacia delante	55
y hacia atrás en diferencias finitas	35
Figure 4.1.1 Distribución de esfuerzos geostático antes de una excavación	30
Figura 4.1.2 Distribución instantánea de esfuerzos en una excavación en suelo	57
blando	41
Figure 413 Esfuerzos principales baio una carga rectangular de longitud infinita	41
Figura. 4.1.5 Estucizos principales bajo una carga rectangular de fongitud infinita Figura. 4.1.4 Distribución instantónea de esfuerzos en una execucación en suelo	42
blanda con un estrato de suelo granular	12
Figure 4.4.1 Pologión logorítmico entre los esfuerzos principales y los	43
deformaciones valumátricas	51
Eigure 5.1.1 corte convertico del modele de evenueción en quele homogéneo con	51
rigura. 5.1.1 conte esquematico del modero de excavación en suero nomogeneo con	52
sistema de retención en las paredes	55
Figura. 5.1.2 Esquema del primer modelo de excavación	54
Figura. 5.1.2 Iviana de elementos del primer modelo de excavación	54
Figura. 5.1.5 Kesultados del MEF	55 57
Figura. 5.1.4 vectores de velocidad para la ultima etapa de excavación	56
Figura. 5.1.5 Presion de poro por etapa medida en un corte al centro de la	5.0
excavacion	56
Figura. 5.1.6 Resultados del MEF	57

Figura. 5.1.7 Vectores de flujo de agua para la última etapa de excavación Figura. 5.1.8 Presión de poro por etapa medida en un corte al centro de la	58
excavación	58
Figura. 5.1.9 Resultados del MEF con el programa PLAXFLOW	59,60
Figura. 5.1.10 Esquema del primer modelo de excavación en suelo blando	61
Figura. 5.1.10 Malla de elementos finitos del primer modelo de excavación en suelo	
blando	61
Figura. 5.1.11 a) Distribución de presión de poro inicial resultado obtenido con el MEF	62
Figura. 5.1.11 b) Distribución de presión de poro inicial resultado obtenido con el MEF. Corte al centro	62
Figura. 5.1.12 Distribución de presión de poro total después de la primera etapa de excavación	62
Figura, 5.1.13 Distribución de presión de poro inducida (decremento de presión de	
poro) después de la primera etapa de excavación	63
Figura 5114 Distribución de deformaciones volumétricas después de la primera	
etapa de excavación	63
Figura 5 1 15 a) Distribución de presiones de poro (detalle)	64
Figura 5115 h) Distribución de presiones de poro (corte A-A')	64
Figura 5 1 16 a) Distribución de presiones de poro (detalle)	65
Figura 5 1 16 a) Distribución de presiones de poro (corte B-B')	65
Figura 5.1.17 Distribución de presiones de poro bajo el fondo de la primera etana	05
de excavación (detalle)	66
Figura 5 1 18 a)Comparación de los modelos analíticos con el MEE para la primera	00
etana de excavación	66
Figura 5 1 18 h)Comparación de los modelos analíticos con el MEE nara la primera	00
etana de excavación (detalle)	66
Figura 5 1 19 Valores especiales del coeficiente A	67
Figura 5.1.20 Travectoria de esfuerzos para un nunto del suelo ubicado bajo el	07
fondo de excavación de la primera etana	68
Figura 5.1.21 Comparación de los resultados del MEE y de un modelo analítico con	00
$\Delta = 0.7$	69
Figura 5.1.22 Evolución de la presión de poro inducida en un tiempo de 30 días	70
Figura. 5.1.22 Evolución de la presión de poro inducida en un tiempo de 50 días Figura. 5.1.23 Resultados con el MEF al finalizar cada etapa de excavación	70
a) presion de poro inducida	/1
Figura. 5.1.23 Resultados con el MEF al finalizar cada etapa de excavación	71
b) presion de poro total	/1
Figura. 5.1.24 Presion de poro inducida para las 6 etapas en un corte al centro de la	70
excavacion	72
Figura. 5.1.25 Presión de porto total para las 6 etapas en un corte al centro de la	
excavación	72
Figura. 5.1.26 Posición del NAF al finalizar cada etapa de excavación	73
Figura. 5.1.27 Disipación de la presión de poro inducida una vez concluida la	
excavación	74
Figura. 5.1.28 Presión de poro al centro de una excavación con sobrecarga lateral,	
calculada por etapas	75
Figura. 5.1.29 Resultados con el MEF	76
Figura. 5.1.30 Esquema de la excavación en suelo blando con taludes en las paredes	77
Figura. 5.1.31 a) Configuración con el MEF del modelo de excavación con estrato	78
Figura. 5.1.31 b) Malla de elementos finitos del modelo de excavación con estrato	
granular	78

Figura. 5.1.32 Resultados con el MEF a) Presión de poro	79
Figura, 5.1.32 Resultados con el MEF b) Presión de poro inducida	79
Figura. 5.1.33 Posición del NAF al final de cada etapa de excavación	80
Figura, 5.1.34 Modelo de excavación en suelo blando con estrato granular a)	
Configuración con el MEF	81
Figura, 5,1,34 Modelo de excavación en suelo blando con estrato granular b) Malla	
de elementos finitos	81
Figura 5 1 35 Resultados del MEE para la primera etapa de excavación a) Presión	01
de poro inducida	82
Figura 5 1 35 Resultados del MEE para la primera etapa de excavación b)	
distribución en un corte vertical al centro de excavación	82
Figura 5.1.36 Resultados del MFF para la primera etana de excavación a) Presión	02
de noro total	82
Figura 5 1 36 Resultados del MEE nara la primera etana de excavación b)	02
distribución en un corte vertical al centro de la excavación	82
Figura 5.1.37 Resultados del MEE para la segunda etapa de excavación a) Presión	02
de poro inducido	83
Eigura 5,1,27 Desultados del MEE poro la segunda atoma de evenuención h	85
Distribución en un corte vertical el contro de la evecución	02
Distribución en un conte ventical al centro de la excavación Ejeura 5.1.28 Desultados del MEE pero la casundo atomo de execucación o) Dresión	03
rigura. 5.1.58 Resultados del MEF para la segunda etapa de excavación a) Presión	02
Circum 5,1,29 Descrite des del MEE nem la seconda stara de successión h	83
Figura. 5.1.38 Resultados del MEF para la segunda etapa de excavación b)	07
Distribucion en un corte vertical al centro de la excavación	83
Figura. 5.1.39 Resultados del MEF para la tercera etapa de excavación a) Presión de	0.4
poro inducida	84
Figura. 5.1.39 Resultados del MEF para la tercera etapa de excavación b)	0.4
Distribucion en un corte vertical al centro de la excavación	84
Figura. 5.1.40 Resultados del MEF para la tercera etapa de excavación a) Presión de	0.4
poro total	84
Figura. 5.1.40 Resultados del MEF para la tercera etapa de excavación b)	~ (
Distribución en un corte vertical al centro de la excavación	84
Figura. 5.1.41 Vectores de velocidad generados en la tercera etapa de excavación	85
Figura. 5.1.42 Vectores de velocidad generados en la cuarta etapa de excavación	85
Figura. 5.1.43 Zonas de plastificación del suelo debido a la sub-presión	86
Figura. 5.1.44 Esquema en planta de un sistema de bombeo para una excavación	87
Figura. 5.1.45 Esquema en planta del modelo para el MEF de excavación con	
bombeo	87
Figura. 5.1.46 Resultados para la últimas tres etapas de excavación a) Distribución	
de presiones de poro	88
Figura. 5.1.46 Resultados para la últimas tres etapas de excavación b) Vectores de	
velocidad	88
Figura. 5.2.1 Ubicación de la estación Mexicaltzingo	89
Figura. 5.2.2 Perfil Estratigráfico de la zona de estudio	91
Figura. 5.2.3 Planta esquemática de la estación Mexicaltzingo del Metro	92
Figura. 5.2.4 Corte A-A' en la estación Mexicaltzingo del Metro	93
Figura. 5.2.5 Corte B-B' en la estación Mexicaltzingo del Metro	94
Figura. 5.2.6 Corte B-B' en la estación Mexicaltzingo de la Línea 12	95
Figura. 5.2.7 Modelo de la excavación dibujado con el programa PLAXIS	96
Figura. 5.2.8 Malla de elementos finitos dibujada en el programa PLAXIS	97
Figura. 5.2.9 Distribución de presión de poro al final de la Fase previa	98
Figura. 5.210 Distribución de presión de poro al final de la Fase previa	98

Figura. 5.2.11 Distribución de carga hidráulica al final de la Fase previa a) detalle	99
Figura. 5.2.11 Distribución de carga hidráulica al final de la Fase previa b) corte	99
Figura. 5.2.12 Detalle de la malla deformada aumentada cinco veces al final de la	
fase previa	100
Figura. 5.2.13 Proceso constructivo de la Fase A	100
Figura. 5.2.14 Distribución de esfuerzos a) Presión de poro	101
Figura. 5.2.14 Distribución de esfuerzos b) Presión de poro inducida	101
Figura. 5.2.15 Carga hidráulica al finalizar la etapa 1 de la <i>Fase A</i> de excavación a)	
Detalle	102
Figura. 5.2.15 Carga hidráulica al finalizar la etapa 1 de la <i>Fase A</i> de excavación b)	
Cortes	102
Figura. 5.2.16 Presión de poro inducida al finalizar la Etapa 1 de la Fase A de	
excavación a) Detalle	102
Figura. 5.2.16 Presión de poro inducida al finalizar la Etapa 1 de la Fase A de	
excavación b) Corte	102
Figura, 5.2.17 Posición del NAF al finalizar la etapa 1 de la <i>Fase A</i> de excavación	103
Figura. 5.2.18 Evolución de la presión de poro por etapas medida al centro de la	
excavación de la Fase A	103
Figura, 5.2.19 Detalle de la malla deformada, aumentada 5 veces, al finalizar la	
Fase A	104
Figura, 5.2.20 Evolución de la presión de oro inducida calculada numéricamente en	
el nodo B	105
Figura 5 2 21 Evolución de la presión de poro total calculada numéricamente en el	100
nodo B	105
Figura 5.2.22 Presión de poro al colarse la estructura en la excavación de la <i>Fase A</i>	100
a) Detalle	106
Figura, 5.2.22 Presión de poro al colarse la estructura en la excavación de la <i>Fase A</i>	100
b) Corte	106
Figura 5 2 23 Procedo constructivo de la <i>Fase B</i>	106
Figura 5.2.24 Distribución de esfuerzos a) Presión de poro	107
Figura 5.2.24 Distribución de esfuerzos h) Presión de poro inducida	107
Figura 5.2.2.7 Distribución de carga hidráulica al centro de la excavación de la	107
etana 1 <i>Fase B</i> a) Detalle	107
Figura 5 2 25 Distribución de carga hidráulica al centro de la excavación de la	107
etana 1 Fase B h) Corte A-A'	107
Figura 5 2 26 Vectores de desplazamiento al finalizar la Etaopa 2 de excavación de	107
la Fase R	108
Figura 5 2 27 Distribución de presión de poro inducida al centro de la excavación	100
de la etana L $Ease R$ a) Detalle	109
Figura 5 2 27 Distribución de presión de poro inducida al centro de la excavación	107
de la etana L Ease R h) Corte	109
Figura 5 2 28 Zonas de presión de poro negativa al finalizar la etana 2 de la <i>Fasa</i> R	109
Figura 5.2.20 Zonas de presión de poro negativa al finalizar la etapa 2 de la Fase B	110
Figura 5.2.29 Zonas de presión de poro negativa al finanzar la ciapa 5 de la <i>Pase D</i>	110
evenueción de la Ease R	110
Eigura 5 2 31 Evolución de presión de poro por etapa calculada en el Nodo D poro	110
In Error P	111
Ia ruse D Figura 5.2.22 Proceedimiente constructive de la evenuesión de la France	111
Figura 5.2.35 FIOCCUMMENIO CONSULUCIVO de la excavación de la Fase C	112
Figura 5.2.34 Ficsion de poro para la primera etapa de la Fase C a)Detalle Figura 5.2.34 Preción de poro para la primera etapa de la Fase C h) Corta	113
Figura. 5.2.54 Ficsion de poro para la gamada atona de la Fase C. 0) Coffe	113
rigura. 5.2.55 Presion de poro para la segunda etapa de la <i>Fase</i> C a) Detalle	113

Figura. 5.2.35 Presión de poro para la segunda etapa de la <i>Fase C</i> b) Corte Figura. 5.2.36 Evolución de la presión de poro total por etapa al centro de la	113
excavación de la Fase C	114
Figura. 5.2.37 Posición del NAF al terminar cada etapa de e3xcavación de la <i>Fase C</i>	114,
Figura 5 2 38 Detalle de la malla deformada aumentada cinco veces al finalizar al	115
Fase C de excavación	116
Figura 5 2 39 Evolución de la presión de poro inducida calculada en el nodo A	116
Figura 5.2.09 Evolución de la presión de poro calculada en el nodo A	117
Figura 5.2.40 Evolución de la presión de poro por etana al centro de la evolución	110
Figura. 5.2.47 Evolución de la presión de poro por etapa al centro de la excavación Figura. 5.2.42 Detalle de la malla deformada al finalizar la <i>Fase D</i> de excavación	110
	110
Figura. 5.2.43 Evolucion de la presion de poro por etapa calculada en el nodo E	119
Figura. 5.2.44 Zonas que permanecen con presión de poro inducida negativa Figura. 5.2.45 Detalle de la mall deformada sin factor de escala, concluida la	119
excavación y la construcción de la estructura	120
Figura. 5.2.46 Tiempo de disipación de la presión de poro inducida, calculado en los	
nodos D y E	120
Figura. A.3.1 Comportamiento de un material perfectamente elástico ante una	
aplicación de esfuerzo	139
Figura. A.3.2 Comportamiento de un material elástico perfectamente plástico ante	
una aplicación de carga	140
Figura, A.3.3 Relación logarítmica entre los esfuerzos medios y las deformaciones	
volumétricas	141
Figura A 3 4 Superficie de fluencia del modelo Sofá soil en el plano $n' - a$	142
Figura A 3.5 Criterio de falla de Mohr-Coulomb	144
Figura, A.3.6 Representación de la superfície de fluencia completa del modelo Soft–	
soil en el espacio de los esfuerzos principales	144
Figura A 4 1 Clasificación de acuíferos	146
Figura A 4 2 Eluio establecido radial en un acuífero confinado hacia un pozo que lo	1.0
nenetra totalmente	147
Figura A 4 3 Fluio establecido en un acuífero no confinado hacia un pozo que lo	11/
nenetra narcialmente	150
Figura A 4 4 A cuífero ubicado entre estratos semi-impermeables ubicados a su vez	100
entre acu''iferos con carga constante	155
Figura A 4.5 Acuífero ubicado entre estratos semi-impermeables ubicados a su vez	100
entre estratos impermeables	156
Figura A 4.6 Acuífero ubicado entre estratos semi-impermeables subvacidos por	150
un estrato impermeable y sobrevacidos por un acuífero con carga constante	156
Figura A 17 Definición de radio a) Sistema circular	150
Figura A 4.7 Definición de radio h) Sistema rectangular	150
Figura A 4 8 Elujo hacia una zania con penetración tal en el estrato permeable	150
proveniente de una frontera lineal con agua permanente, ambos de longitud infinita	
a) Eluio artegiano	150
a) Flujo al costallo	139
rigura. A.4.8 Flujo flacta una zalija con penetracion tai en el estrato permeable	
b) Elvia a gravadad	150
0) Flujo a glaveuau Figure A 4 9 Eluio hagia una zonia con nonstragión tal en al estrate normachia	139
Figura. A.4.0 Fiujo nacia una zanja con penetracion tal en el estrato permeable	
a) Eluio mixto	150
C) Figure A 4 0 Easter de corrección por alture de descarge de superfísic libre	129
rigura. A.4.7 ractor de confección por antira de descarga de superficie fibre	100

Figura. A.4.10 Flujo artesiano hacia una zanja que penetra parcialmente al estrato	
permeable proveniente de una frontera lineal infinita con agua permanente	161
Figura. A.4.11 Flujo artesiano hacia una zanja que penetra parcialmente, paralela y	
ubicada a la mitad de las dos fronteras lineales infinitas con agua permanente a)	
Corte a través del sistema del flujo	163
Figura. A.4.11 Flujo artesiano hacia una zanja que penetra parcialmente, paralela y	
ubicada a la mitad de las dos fronteras lineales infinitas con agua permanente b)	
Factor λ contra el conciente <i>W</i> / <i>D</i>	163

DIAGRAMAS

Diagrama 4.3.1 Metodología de cálculo para analizar las condiciones de presión de	
poro en una excavación por etapas	49
Diagrama A.1.1 Secuencia de cálculo para analizar la estabilidad de una excavación	
a cielo abierto	132

INDICE DE TABLAS

	Pagina
Tabla. 2.2.1 Aplicabilidad de algunos métodos de control de flujo de agua en excavaciones en diferentes tipos de suelos en relación únicamente con su permeabilidad	13
Tabla. 3.1.1 Valores comunes de la permeabilidad de suelos	21
Tabla. 3.1.2 Métodos para la medición de la permeabilidad	21
Tabla. 4.1.1 Valores de coeficiente de presión de poro A para algunos tipos de suelo	42
Tabla. 4.1.2 Valores del coeficiente de presión de poro A para algunos tipos de suelo en rango de trabajo lejano a la falla	43
Tabla. 5.1.1 Factor de seguridad para la excavación del primer ejemplo	61
Tabla. 5.1.2 Descenso del NAF en cada etapa de excavación para el modelo original y el modelo con sobrecarga	75
Tabla. 5.2.1 Propiedades índice y mecánicas de los estratos de la zona de interés	90
Tabla. 5.2.2 propiedades mecánicas de los suelos blandos para el modelo Soft-soil	90
Tabla. 5.2.3 Coeficiente de permeabilidad de los estratos de la zona de interés	92
Tabla. A.1.1 Factores de seguridad para una excavación bidimensional en suelo blando	131

capitulo 1 introducción

A m edida que pasa e l tiempo a umenta l a ne cesidad de c onstruir ob ras c on m ayor a ltura y complejidad. E sto requiere ci mentaciones d e g randes d imensiones y por t anto excavaciones profundas, frecuentemente bajo el nivel de aguas freáticas con posibles problemas de inestabilidad. El diseño oportuno del sistema de bombeo es un elemento básico para controlar el agua y mantener la seguridad de la excavación; sin embargo, con mucha frecuencia, se observa que el problema del bombeo se resuelve sobre la marcha, en forma empírica y por iteraciones hasta llegar a una solución aceptable.

La base para diseñar un buen sistema de bombeo es conocer el caudal que se podrá extraer y la forma como se presentará el flujo de agua. Para ello, se puede recurrir a las ecuaciones de flujo de agua en suelos y sus métodos de solución, por ejemplo: analítico, numérico, analógico o gráfico (el muy utilizado método de las redes de flujo). En todas estas técnicas una condición importante para utilizarlos es que se conozcan las condiciones iniciales y de frontera del problema.

En algunas ocasiones cuando se realiza una excavación en suelo con baja permeabilidad se utiliza bombeo previo con el fin de abatir el nivel de aguas freáticas, sin embargo esta estrategia no es necesariamente la más ade cuada en la práctica, como ha sido corroborado por la experiencia de algunos i ngenieros. A mediados del si glo pa sado J uárez Badillo y R ico Rodríguez (1955) observaron que, en un a excavación e n suelo bl ando, el nivel de aguas freáticas se abate instantáneamente según avanza la misma. Esta o bservación indica que en determinados cas os la forma tradicional para diseñar el bombeo conlleva a instalar sistemas innecesarios.

El interés por aportar elementos que ayuden a explicar los fenómenos descritos es el motivo de este trabajo, en el cual se realiza el análisis de una excavación en suelos con diferente permeabilidad utilizando el método del elemento finito (MEF).

Este t rabajo está e structurado de l a s iguiente forma: e n el C apítulo 2, se revisan los asp ectos prácticos fundamentales a cerca de exc avaciones a ci elo abierto, como s on los m étodos de excavación, los si stemas de apun talamiento, métodos pa ra bom beo, a sí c omo l a nor matividad vigente correspondiente a diseño de excavaciones en l a ciudad de México; e n el C apítulo 3, se estudia la teoría de flujo de agua, las ecuaciones que la conforman y algunos métodos de solución (redes de flujo, métodos analíticos y num éricos); en el Capítulo 4, se e xpone un análisis d e excavaciones en s uelos b landos c on ba ja pe rmeabilidad desde e l pun to de v ista de esfuerzo-deformación, se plantea un método analítico para evaluar la presión de poro inducida, se describen brevemente el método de elemento finito y el modelo constitutivo para suelo blando; en el Capítulo 5, se pr esentan a lgunos e jemplos de aplicación a excavaciones en suelos con diferentes permeabilidades mediante el MEF. P or úl timo, se p resentan las conclusiones del trabajo en el Capítulo 6.

capítulo 2 antecedentes

2.1 Excavación en suelos blandos

La realización de una e xcavación en suelo bl ando de be considerar un método constructivo qu e garantice la estabilidad de las paredes y del fondo de la misma, y en determinado caso un sistema de bombeo.

La elección de un m étodo a propiado de excavación en suelo blando de be tomar en cuenta factores como la profundidad de excavación y sus dimensiones, las propiedades m ecánicas de l sue lo y l as condiciones en las que se encuentra, así como la existencia de estructuras vecinas. Todos estos factores condicionan el proceso constructivo, a esto se debe que exista una gran variedad de técnicas que han sido y continúan siendo usadas para realizar excavaciones profundas en suelos arcillosos.

Los métodos de excavación a cielo abierto se dividen en dos tipos: con o sin sistema de retención. A continuación se describen brevemente las técnicas de excavación más usadas y el uso de sistemas de retención.

2.1.1 Excavación a cielo abierto con taludes en las paredes

Este método es ideal si la profundidad de la excavación es pequeña. Las ventajas que presenta son, la rapidez con la que se realiza y el bajo costo, pues no se utilizan sistemas de retención que representen obstáculos o s obrecosto; aunque esto último es relativo, pues según aumenta la profundidad, aumenta el costo de la excavación debido a la mayor cantidad de suelo que se tendrá que remover así como el relleno que se deberá colocar.

La estabilidad de los taludes es la restricción obvia, pero también el terreno libre con el que se cuente alrededor de la excavación. En realidad son pocas las excavaciones que se realizan solo con taludes por lo que hay que utilizar elementos de soporte en las paredes.

2.1.2 Excavaciones ademadas

2.1.2.1 Tipos de ademe

Muro tipo Berlín

Consiste en hincar perfiles metálicos o de concreto en el suelo o colocarlos en perforaciones hechas previamente. A medida que la excavación avanza, el espacio entre perfiles es cubierto con tableros de madera, metal o prefabricados, la forma como se utiliza este método de retención se puede observar en la figura 2.1.1.

Figura 2.1.1 Muro tipo Berlín, a) vista frontal, b) vista en planta (Ou, 2006).

Con este método no es posible controlar las deformaciones laterales que se dan entre el momento de la descarga y el de la colocación de los tableros; tampoco las que se dan por debajo del fondo. De tal forma que en suelos muy deformables, que no puedan desarrollar suficiente resistencia pasiva, el movimiento del suelo hacia el interior de la excavación es un gran riesgo.

Tablestacas

Tablestacas de madera, acero y concreto hincadas en el suelo antes de que inicie la excavación han sido usadas como soporte de las paredes de excavaciones en sitios con suelos blandos. Las pantallas con tablestacas pue den ser an cladas o con sin anc laje; sin em bargo, en s uelos blandos, s e ut ilizan generalmente sin anclaje quedando la estabilidad de estas pantallas asegurada únicamente por la parte

hincada de la tablestaca denominada empotramiento, si éste no garantiza la estabilidad de las paredes, debe usarse un sistema de apuntalamiento. El empuje que soportan las tablestacas está en función de la longitud del empotramiento y de su flexibilidad (Rowe, 1952). Por eso mismo se utiliza un sistema de travesaños para soportar las fuerzas concentradas que transmiten los puntales.

En algunas ocasiones se encuentran dificultades para hincar las tablestacas, sobre todo en transiciones de un suelo blando a uno con mayor resistencia, entonces es necesario realizar perforaciones previas. Otros inconvenientes de este sistema son el flujo de agua o las intrusiones de suelo en las juntas de elementos adyacentes.

Muros diafragma colados en sitio

Esta técnica consiste e n u na pa ntalla c ontinua de concreto, armado o sin a rmar, c olado de sde la superficie de l suelo, sin encofrado, en trincheras e stabilizadas con lodos autofraguantes. Pueden ser parte o no de la subestructura. Este método se puede utilizar a grandes profundidades y presenta una frontera continua en el desplante sobre superficies sinuosas. Por otro lado los principales defectos se presentan en su fabricación, pues una irregularidad entre co lados o la inclusión de b entonita en el concreto puede g enerar flujo de agua y ar rastre de finos lo que pu ede provocar asentamientos e n construcciones contiguas, el proceso constructivo de los muros diafragma se presenta en la figura 2.1.2.

Figura 2.1.2 Proceso constructivo de muros diafragma (Puller, 1996).

Muros precolados y colocados en trincheras estabilizadas con lodo

Es un m étodo a lternativo a l de los muros diafragma, c uya pop ularidad v a en aumento. L os muros precolados son colocados en una trinchera es tabilizada con una mezcla de cemento-bentonita (lodo autofraguante). La principal ventaja de esta técnica es que la calidad del terminado de la superficie de los muros es mejor que la de los muros diafragma y el espesor final puede ser menor, dejando más espacio aprovechable. Las principales limitaciones de esta técnica son que los paneles que deben ser manipulados pue den presentar un p eso importante, y que el contacto en el de splante p uede no s er continuo.

2.1.2.2 Soporte del ademe

Cuando el si stema de r etención n o e s a utoestable, se t iene que h acer us o de diversos sistemas de apuntalamiento.

Anclas

Anclas pre-esforzadas no son usadas en suelo blando debido a la baja resistencia al esfuerzo cortante de este tipo de suelo.

Puntales o troqueles

La elección del sistema de apuntalamiento depende no sólo de la magnitud de la presión lateral, sino también del tiempo que se ne cesite para instalar dicho sistema, y de la obstrucción que signifique durante el proceso constructivo.

Los puntales o troqueles se fabrican, principalmente, de madera, concreto reforzado, y acero. Los de madera son susceptibles a la erosión, además de que es difícil que un elemento formado por dos piezas funcione como un troquel continuo. Por otro lado los de concreto, a pesar de tener buena resistencia al esfuerzo axial, tienen un peso que los hace difícil de instalar y de desmantelar. Los puntales de acero son los más usados, pues no presentan los inconvenientes mencionados.

Figura 2.1.3 Puntales inclinados (Ou, 2006).

Método del núcleo central

Esta técnica consiste en hincar elementos verticales de soporte como tablestacas de concreto o acero en el perímetro del área de construcción y excavar solamente la parte central de esta área, dejando una berma periférica en el sitio apuntalado, como se muestra en las figuras 2.1.4 y 2.1.5.

Figura 2.1.4 Excavación usando el método del núcleo central (Puller, 1996).

La construcción de la subestructura se inicia en la parte central del área de construcción, cuando se concluye est a parte e s u tilizada com o soporte de los puntales que s on progresivamente co locados contra l as t ablestacas m ientras que pe queñas partes de l a be rma son removidas. El r esto de l a subestructura pue de entonces ser construida. Esta técnica esta generalmente limitada a excavaciones cuya profundidad no exceda 6 m de profundidad debido a los problemas de estabilidad de las bermas. Puede ser usada en combinación con la técnica de los muros diafragma.

Figura 2.1.5 Excavación utilizando la subestructura central como apoyo (Puller, 1996).

Apoyo pared a pared

Esta técnica se utiliza cuando el espacio horizontal no es su ficiente para utilizar el método del núcleo central, o cuando la profundidad de excavación es grande. El apoyo de la estructura es generalmente hecha de con soportes tubulares. En algunos casos muros transversales colados en el sitio han sido usados como soporte de la estructura, en este último caso los muros pueden ser parcial o totalmente demolidos.

2.2 Control de flujo de agua en excavaciones

En una excavación por debajo del nivel freático se genera un gradiente hidráulico que causa un flujo de agua hacia la excavación. Este flujo puede generar subpresión en caso de que se encuentra cerca del fondo un estrato de suelo granular, y por lo tanto levantamiento de fondo, o por lo menos importantes dificultades en el pro ceso constructivo. El agua en el su elo puede ser controlada disminuyendo el gradiente hidráulico, o extrayéndola en ciertas partes del suelo, mediante uno o más tipos de sistemas de abatimiento apropiados al tamaño y profundidad de la excavación y a las condiciones geológicas y características del suelo.

2.2.1 Pantallas impermeables

En excavaciones en suelos con permeabilidad alta, como suelos granulares libres de finos, es útil este sistema pues la alta permeabilidad genera flujo de agua con caudales considerables que pue den ser catastróficos, por lo que es importante disminuir el gradiente hidráulico generado por la excavación. Las pantallas impermeables pueden ser rígidas, de concreto, o flexibles construidas con una mezcla de grava- arena- arcilla; o mediante inyecciones. Este último método puede ser utilizado, también, para impermeabilizar el fondo de la excavación.

2.2.2 Zanjas y cárcamos

En excavaciones a ci elo abierto con t aludes, d e di mensiones pequeñas y efectuadas en suelos de compacidad densa, bien graduados o suelos cementados, es posible dirigir convenientemente el flujo de agua en el cuerpo de los taludes hacia zanjas colectoras y cárcamos, desde donde se desaloja fuera de la excavación, c omo s e i lustra e n la figura 2. 2.1. Se de be t ener especial cuidado colocando material filtrante adecuado en las cunetas, pues de lo contrario se ablandará y desmoronará la parte baja de los taludes.

Figura 2.2.1 Zanjas y cárcamos colectoras de flujo (Mansur & Kaufman, 1962).

2.2.3 Tablestacado y bombeo

Este método es similar al anterior pues sólo se expulsa de la excavación el agua que se filtra. Según la excavación avanza, el agua es expulsada y como resultado de bajar el nivel freático más rápido dentro de la excavación que afuera de la misma, se genera una presión considerable en el fondo de la excavación y sobre el ademe, por lo que este último debe estar diseñado para soportar la presión extra. Cuando se utiliza este método se debe impedir que la carga hidráulica sea tan grande como para que las fuerzas de filtración generen socavación en la base de la tablestaca. Una desventaja de este método es que el suelo del fondo de la excavación se encuentra muy húmedo dificultando el proceso de

excavación. Para reducir esta dificultad se puede cubrir el fondo con un filtro apropiado de arena y grava bien graduada.

Figura 2.2.2 Bombeo en una excavación ademada (Mansur & Kaufman, 1962).

2.2.4 Sistemas de pozos punta

Los pozos punta son pequeños tubos perforados de aproximadamente 5 a 7.5 cm de diámetro y de 0.30 a 1.0 m de longitud aproximadamente conectados a un tubo sin perforar y llevado a la profundidad deseada. Se fabrican en latón o en acero inoxidable y con un extremo cerrado hincados por la punta.

Un sistema de pozos punta resulta apropiado cuando el suelo saturado no está muy profundo o también cuando el nivel freático no requiere ser abatido demasiado. Los arreglos de pozos punta son variables, un par de ejemplos se muestran en las figuras 2.2.3 y 2.2.4.

Figura 2.2.3 Vista de una excavación abierta con sistema de bombeo de pozos punta.

En los arreglos lineales o circulares de estos pozos punta se manejan separaciones de 1.0 a 4.0 m, o se disponen alrededor de una excavación incluyendo un tubo colector común en la cabeza que se conecta a un pozo punta de bombeo (una bomba combinación de vacío y centrifuga).

Figura 2.2.4 Instalación típica de un sistema de pozos punta (Mansur & Kaufman, 1962).

Los pozos punta pueden ser usados para desaguar excavaciones profundas a cielo abierto instalando filas de pozos punta a diferentes niveles por ejemplo a cada 4.50 m de profundidad, como se ilustra en la figura 2.2.5.

Figura 2.2.5 Drenaje en una excavación abierta por medio de un sistema múltiple de pozos punta (Mansur & Kaufman, 1962).

El espesor medio de la porción exterior del talud drenado por este método no debe ser mayor de 4.5 m. Debajo de es ta capa drenada, el sue lo se enc uentra sometido a l a pre sión de filtración del agua percolada. Si la profundidad del corte es mayor de 12 ó 15 m, la estabilidad del talud se debe revisar, tomando en cuenta las fuerzas de filtración debajo de la zona drenada (Mansur & Kaufman; 1962).

Los poz os pun ta son más a propiados qu e l os poz os pr ofundos cuando l a l ongitud de l c edazo e stá condicionada por el espesor del suelo permeable, de no ser así y si el gasto de bombeo es importante, los pozos profundos resultan más convenientes que los pozos punta.

2.2.5 Pozos profundos

Un sistema de pozos profundos puede llevar: bombas sumergibles, de eyector, o un sistema de vacío. Pueden ser i nstalados fuera de la zona de construcción; el drenaje se e fectúa a la profundidad de excavación requerida.

Por ser profundos, estos pozos solo funcionan para abatir el nivel freático. Si se necesita interceptar filtraciones menores, se pueden combinar con pozos punta, como se muestra en la figura 2.2.6.

Figura 2.2.6 Abatimiento en una excavación profunda por medio de pozos profundos y pozos punta (Mansur & Kaufman, 1962).

Los pozos profundos comúnmente tienen un diámetro de 15 a 50 cm, y una longitud de cedazo de 5 a 20 m de largo. La separación entre pozos va de los 5 a 50 m, dependiendo del nivel que se busque abatir, la permeabilidad en el acuífero y el espesor aprovechable para alojar el cedazo.

Sistemas de pozos profundos con bombas de eyector

En estos sistemas el eyector de la bomba crea un vacío en la coladera, mismo que se transmite a las capas permeables del suelo; por lo que para us ar este tipo de sistema, es condición la existencia de capas permeables interestratificadas. Las partes que forman un sistema de a batimiento c on bomba eyectora puede observarse en la figura 2.2.7.

Figura 2.2.7 Detalles de un pozo profundo con bomba de eyector.

Sistemas de pozos profundos con abatimiento por vacío

Los suelos finos con un coeficiente de permeabilidad bajo no pueden ser drenados satisfactoriamente por métodos de gravedad, debido a que el agua es retenida en los vacíos del suelo por fuerzas capilares. Sin embargo, tales suelos pueden ser estabilizados por medio de vacío.

El sistema de abatimiento por vacío consiste en pozos profundos con un cedazo y un tubo de succión cubierto con un filtro de arena. El resto de la perforación se sella con bentonita o suelo impermeable. Para mantener el vacío en el cedazo y en el filtro de arena se p roduce un gradiente hidráulico que aumenta el flujo ha cia el pozo o poz os punta, particularmente en suelos e stratificados. En la figura 2.2.8 se puede observar la configuración de un pozo profundo con sistema de vacío.

Los suelos en la vecindad de los pozos o pozos punta son estabilizados por la presión atmosférica que tiende a impedir la filtración que pudiera entrar en la excavación e incrementa la presión efectiva entre los granos y por ende su resistencia al esfuerzo cortante. Con el objeto de drenar adecuadamente este tipo de suelos es necesario que los pozos o pozos punta queden lo más junto posible.

Figura 2.2.8 Detalles de un pozo profundo con sistema de vacío.

El vacío neto, en el pozo y en el filtro, es el vacío en el tubo de carga menos la altura o longitud del tubo s uccionador. P or lo t anto, el vacío obtenido por un s istema de poz os punt a pu ede s er m uy reducido si la succión es mayor de 4.50 m. Si hay mucha pérdida de aire, puede ser necesario incluir bombas de vacío adicionales a las bombas de los pozos punta para garantizar un vacío adecuado. Por supuesto la capacidad de bombeo requerida es pequeña.

2.2.6 Electro-ósmosis

En la mayoría de los suelos donde se requiere abatir el nivel de agua freática, dicho abatimiento se puede lograr por una combinación de alguno de los métodos antes mencionados. Sin embargo, existen algunos suelos como limos, limos arcillosos y mezclas de arena fina con limo o arcilla que no pueden ser drenados exitosamente por los métodos ya citados, en tales suelos pueden usarse pozos profundos o

pozos punta combinados con un flujo eléctrico a través del suelo dirigido hacia los pozos. Este método de drenaje es conocido como "electroósmosis" o método de drenaje eléctrico.

Si dos electrodos son introducidos en el suelo saturado y se pasa una corriente eléctrica entre ellos, el agua contenida en el suelo migrará de sde el electrodo positivo (ánodo) ha cia el electrodo negativo (cátodo). Las partículas del sue lo tiene una carga negativa ne ta, los i ones positivos (cationes) en solución s on atraídos a las partículas del suelo y conc entrados cerca de la superficie junto con las partículas de agua. Cuando se aplica un voltaje, los iones positivos adyacentes a las partículas del suelo y las moléculas de agua son atraídos a los cátodos al mismo tiempo que son repelidas por los ánodos. Haciendo al cátodo un pozo, el agua recolectada puede ser retirada por bombeo.

De acue rdo con Casagrande el coeficiente de permeabilidad electrosmótica K_e , o la tasa de flujo electro-osmótico, es comparable al coeficiente de permeabilidad de algunas arenas, limos o arcillas. Casagrande reporta que para propósitos prácticos la mayoría de los suelos pueden tener un K_e de 0.5 x 10^{-4} cm/s para un gradiente de 1 volt/cm.

En el ca so de las ar cillas del valle de Méx ico, se ha mostrado que la electro-ósmosis no t iene la eficiencia que puede presentar en otros suelos, en particular debido al agrietamiento que provoca en el suelo (Alberro, 1970)

En la tabla 2.2.1 se presenta un resumen de los métodos de control del agua y su aplicación.

Tipo de suelo	D10 (mm)	k (cm/s)	Procedimiento aplicable
Grava con arena, con menos de 10% de finos no plásticos	>1	>1	Pantallas impermeables
Arena con menos de 10% de finos plásticos	1	1	Muros de concreto
	0.3	10 ⁻¹	Pozos profundos
	0.1	10-2	Pozos nunta nozos profundos
Arena limosa con 10 a 50 % de finos no plásticos	0.03	10 ⁻³	con eyector
Limos con arena, más de 50 % de finos no plásticos		$10^{-4} - 10^{-5}$	pozos punta combinados con vacío
Arena arcillosa, con más de 15% de finos plásticos, limo plástico , o arcillas		< 10 ⁻⁵	Pozos profundos o pozos punta, combinados con electroósmosis

Tabla. 2.2.1 Aplicabilidad de algunos métodos de control de flujo de agua en excavaciones en diferentes tipos de suelos en relación únicamente con su permeabilidad (Tamez, 2001).

2.2.7 Drenaje horizontal

Cuando no sea conveniente r ealizar ex cavaciones a cielo abierto y si la penetración de los pozos profundos es inadecuada, el nivel del agua subterránea puede ser abatido por medio de un sistema de drenaje R anney. D icho sistema consiste e n un núm ero de t ubos p erforados y colocados horizontalmente desde uno o más pozos de concreto armado. Estos tubos se pueden extender hasta 60m o más en una dirección. El agua subterránea captada en los pozos se desaloja por medio de bombas de turbina. Este t ipo de sistema no e s considerado a propiado pa ra a batir el ni vel f reático e n s uelos estratificados

2.3 Diseño de excavaciones

Según ha pasado el tiempo se ha recopilado información acerca de las diversas condiciones que ponen en riesgo de f alla una ex cavación. Esta exp eriencia ha diversificado los m étodos de exc avación, poniendo las bases para el diseño de excavaciones. En el caso de la ciudad de México, esta experiencia ha sido integrada en los requisitos incluidos en el reglamento de construcciones del Distrito F ederal (RCDF) y sus N ormas t écnicas c omplementarias p ara el diseño y cons trucción de c imentaciones (NTCDCC-2004). Según estos documentos, se debe de considerar dos tipos de estados límite, de falla y de servicio.

Para los estados límite de falla las consideraciones principales, son: el colapso de los taludes o de las paredes de la excavación o del sistema de ademado de las mismas, falla de los cimientos de las construcciones ady acentes, falla de fondo de la excavación por corte o por subpresión e n e stratos subyacentes, y colapso del techo de cavernas o galerías.

2.3.1 Taludes

En el análisis de taludes se deben considerar factores como la profundidad de excavación, las condiciones de la pre sión del ag ua, la inclinación de los t aludes, l a pr esencia d e g rietas o discontinuidades. Y se debe incluir una sobrecarga en la orilla de la excavación con un valor mínimo de 15 k Pa es ac eptable (NTCDCC, 2004). P or ot ra pa rte, l as fuerzas o l os momentos r esistentes considerados e n l os a nálisis s e de ben, g eneralmente, r educir m ultiplicándolos por un f actor d e resistencia de 0.6

Además se de ben considerar mecanismos de extrusión de estratos blandos confinados verticalmente y el factor tiempo, pues éste último es un elemento importante en la estabilidad de taludes, pues según éste avanza la cohesión tiende a disminuir incluso puede alcanzar 30% en un plazo de un mes (Alberro, 1987).

El cálculo de estabilidad de taludes mediante análisis límite, considerando que el talud se desliza sobre superficies potenciales de falla cinemáticamente admisibles, asegura la estabilidad de los taludes pues permite conocer el factor de seguridad para cada superficie de falla.

2.3.2 Falla de fondo por subpresión

Cuando una excavación se realiza en una capa de suelo blando impermeable, donde algunos estratos horizontales de material granular están intercalados, la presión en el agua puede ser capaz de levantar el fondo de la excavación. Para que esto no suceda, el espesor mínimo h_i del material impermeable que debe tenerse sobre cualquier lente para evitar la inestabilidad de fondo debe ser (NTCDCC, 2004):

$$h_i > \left(\frac{\gamma_w}{\gamma_m}\right) h_w \qquad 2.3.1$$

donde:

- h_i : espesor de la capa impermeable
- h_w : altura piezométrica en el lecho inferior de la capa permeable
- γ_w : peso volumétrico del agua
- γ_m : peso volumétrico del material impermeable entre el fondo de la excavación y el estrato permeable

Cuando la condición expresada por 2.3.1 no se cumpla con un amplio margen, se debe de reducir la carga hidráulica en el estrato permeable mediante bombeo en pozos verticales, se recomienda que el factor de seguridad sea mayor que 2, para tener en cuenta la presencia de grietas en la arcilla (Auvinet & Romo, 1998).

2.3.3 Estabilidad de excavaciones ademadas

La seguridad de excavaciones con sistema de soporte en las paredes incluye la revisión de estabilidad del sistema de soporte por deslizamiento del suelo o por falla estructural de cualquier el emento del sistema. Así como la revisión de falla de fondo por cortante.

La revisión de estabilidad general se puede llevar a cabo por un método de análisis al límite que debe evaluar el empotramiento y el momento resistente mínimo del elemento estructural. Los empujes a los que se encuentren sometidos los puntales se pueden estimar de mediciones que se hayan realizado en estructuras r eales (Alberro, 1970) o a partir de u na e nvolvente de di stribución de presiones que e desarrollada a partir de modelaciones. Los diagramas de presión similares a los propuestos, para las arcillas, por Peck (1969) son de us o general para el diseño, en este tipo de suelo la di stribución de presiones se de fine en función del tipo de arcilla, de su grado de fisuramiento y de su reducción de resistencia con el tiempo (NTCDCC, 2004). Sin embargo, para las excavaciones realizadas por debajo del nivel freático, los empujes resultantes en los apoyos deben ser, por lo menos, igual a la presión hidrostática.

Además, para el diseño de los troqueles también deberá tomarse en cuenta que durante la excavación pueden ex istir so brecargas, ya sean en la vía pú blica o en la pro pia con strucción, por lo que e s recomendable utilizar un factor de carga de 1.1 para estas sobrecargas (Auvinet & Romo, 1998).

Por otro lado la falla por cortante en arcillas es especialmente crítica para excavaciones profundas por lo que la condición siguiente debe ser comprobada (NTCRCDF, 2004):

$$p_v + \sum q F_C < c_u N_c F_R \tag{2.3.2}$$

donde:

- c_u : esfuerzo cortante del suelo debajo del nivel del fondo de la excavación, en condiciones no consolidadas no drenadas;
- N_c : coeficiente de capacidad de carga de Skempton, función de las dimensiones de la excavación.
- p_v : esfuerzo vertical total en el suelo a la profundidad de la excavación;
- qF_C : cargas laterales superficiales afectadas por un factor de carga;
- F_R : factor de resistencia igual a 0.5 cuando servicios públicos o construcciones contiguas pueden ser afectados y a 0.7 cuando dicho riesgo no existe. (Auvinet & Romo, 1998)

De la expresión 2.3.2 se puede apreciar que factores como la geometría y profundidad de la excavación son tomados en cuenta en el análisis de estabilidad mediante el coeficiente de capacidad de carga de Skempton. Debe t omarse en cuenta que e ste coeficiente puede se r afectado por el procedimiento constructivo, pero para fines prácticos se puede calcular por la expresión:

$$N_c = 5.14 \left(1 + 0.25 \frac{D}{B} + 0.25 \frac{B}{L} \right)$$
 2.3.3

para $D_B < 2$ y $B_L < 1$. Si no se cumple, se debe considerar: $D_B = 2$ y $B_L = 1$

donde:

D : profundidad de la excavación

B : ancho de la excavación

L: largo de la excavación

Los análisis por el método de las líneas características han demostrado que la seguridad contra falla de base s e pue de mejorar perceptiblemente, hasta 44%, mediante la pre carga de los punt ales (Alberro, 1987). Sin embargo se debe cons iderar que la precarga aplicada inicialmente puede variar considerablemente con el tiempo por relajación y por efecto de variaciones de temperatura. Para una evaluación exacta de este riesgo y la valoración de movimientos inducidos, se puede llevar a cabo, el modelado con el método de los elementos finitos, de la excavación paso a paso, considerando todas las etapas constructivas.

En caso de utilizarse muros diafragma se de be revisar la estabilidad de las trincheras usadas para la construcción de los muros mediante métodos de análisis al límite. Para las arcillas impermeables de la Ciudad de México, se ha demostrado que el agua llana o el agua mezclada con la arcilla local se pueden utilizar en vez de la mezcla de la bentonita para estabilizar las trincheras. Análisis formales de confiabilidad sugieren que los factores críticos de estabilidad son el nivel de la mezcla en la trinchera y la magnitud de la sobrecarga vertical lateral (Auvinet & Romo, 1998).

2.3.4 Estabilidad de las cimentaciones de edificios contiguos

Se debe poner atención al daño o a la posible falla de la cimentación de edificios contiguos a la zona excavada. De existir un riesgo alto, las es tructuras deberán reforzarse o recimentarse. El refuerzo requerido dependerá del tipo de suelo y de la magnitud de las cargas y de su localización con respecto a la excavación.

En el ca so de c imentaciones superficiales se deben considerar la eventualidad de una excavación abierta en lotes contiguos en su diseño. Por consiguiente, para las zapatas que se encuentren limitando con predios vecinos, un factor de resistencia bajo, de la orden de 0.3, se debe considerar (Auvinet & Romo, 1998).

El segundo tipo de estado límite, de servicio, pone énfasis en los movimientos debidos a la descarga y a los asentamientos en el área circundante a la excavación.

2.3.5 Movimientos a corto y largo plazo asociados a la descarga

Los movimientos verticales del suelo inducidos por descarga, a corto plazo, en el área de excavación y sus al rededores se pue den est imar con aproximación aceptable m ediante l a teoría de la el asticidad (Alberro, 1970). S on de esperarse m ovimientos v erticales de v arios decímetros e n e l f ondo de excavaciones grandes. Para reducir el impacto de tales movimientos en la subestructura, la excavación y la construcción de la cimentación se podrán realizar por partes, siguiendo una secuencia simétrica. Las pa rtes correspondientes de l a es tructura de c imentación son inmediatamente c onstruidas pa ra lastrar las áreas excavadas y reducir la descarga total y los movimientos diferenciales.

Cuando la excavación permanece a bierta dur ante un período s ignificativo, e xpansiones a sociadas a cambios v olumétricos pu eden también llegar a se r muy i mportante, especialmente si el dre naje es inadecuado y el agua puede fluir libremente hacia la excavación.

La descarga permanente del suelo debida a estructuras tales como estacionamientos subterráneos o los cortes y túneles de l tren s ubterráneo, conduce a largo plazo a movimientos v erticales, esto por la interferencia con el hund imiento regional. El sub suelo de l as á reas de scargadas se co nvierte en preconsolidado y es m enos sus ceptible a este fenómeno. Progresivamente, estas es tructuras t ienden para resaltar, a veces por varios metros, sobre el terreno circundante.

En el caso de excavaciones ademadas, se puede reducir la magnitud de los movimientos instantáneos si la altura no soportada entre troqueles se acorta.

2.3.6 Asentamientos del terreno adyacente a la excavación

En el cas o de cortes ademados en arcillas blandas o firmes, los a sentamientos a cort o plazo de los alrededores inducidos por la excavación dependen principalmente de los movimientos del sistema de soporte. La precarga de puntales cerca de su carga de diseño ha sido una práctica común y eficiente para controlar estos movimientos.

Para poder llevar a cabo una estimación de los movimientos horizontales y verticales inducidos por excavaciones ademadas sobre predios circundantes, se puede l levar a ca bo una modelación matemática, ya sea analítica o numérica que tome en cuenta el procedimiento constructivo. Es recomendable medir los movimientos en forma continua durante la construcción.

$\operatorname{capítulo} 3 \\ \text{Flujo de agua en medios porosos rígidos} \\$

La de scarga g enerada p or una exc avación cambia la di stribución y la magnitud de esfuerzos en el suelo, incluida la presión de poro, el análisis de este último esfuerzo puede llevarse a cabo mediante la teoría d e f lujo de ag ua e n suelos. E n e ste c apítulo s e e xponen las ecuaciones de f lujo de a gua establecido con o sin recargas y de flujo transitorio, así como algunos de sus métodos de solución.

3.1 Ecuaciones diferenciales de flujo de agua

Ley de Darcy

Henry Darcy encontró, en 1856, que el gasto a través de un medio poroso es proporcional a la pérdida de carga de niveles piezométricos, o gradiente hidráulico, entre dos puntos "A" y "B", y a la sección considerada del medio, esto se ilustra en la figura 3.1.1, de donde se obtiene la forma más sencilla de la ley de Darcy. La constante de proporcionalidad es la permeabilidad, que tiene unidades de velocidad. De esta forma se tiene:

$$Q = kA \frac{\varphi_A - \varphi_B}{L}$$
 3.1.1

donde:

k: permeabilidad, φ_A : nivel piezométrico en el punto A del medio poroso, *L*: es la longitud entre los puntos A y B,

Figura 3.1.1 Esquema para la deducción de la ley de Darcy.

En la ecuación 3.1.1 el nivel piezométrico o carga hidráulica es la capacidad de realizar trabajo por parte del agua en un punto de un medio poroso y está definido por:

$$\varphi_A = Z_A + \frac{P_A}{\gamma_w} \tag{3.1.2}$$

donde:

Z A: altura en un punto A con respecto a un plano de referencia,

P_A: es la presión hidráulica en el punto A,

 γ_w : es el peso volumétrico del agua,

La expresión 3.1.1 puede escribirse en forma diferencial de la siguiente forma:

$$Q = -kA\frac{d\varphi}{dx}$$
 3.1.3

donde:

$$\frac{d\varphi}{dx} = i$$
: es el gradiente hidráulico.

El gradiente hidráulico es un vector cuyo módulo es la derivada del nivel piezométrico, y su sentido es el del aumento en el valor del mismo, pero en este caso el flujo se mueve de zonas de mayor a menor nivel piezométrico, por lo que el gradiente y el flujo tienen direcciones distintas, esto explica el signo negativo en 3.1.3.

La validez de la ley de Darcy depende de la velocidad del flujo de agua, que resulta de 3.1.3 y está dada por:

$$\overline{v} = -k\frac{d\varphi}{dl}$$
 3.1.4.a

que es la velocidad de Darcy. Generalizando en tres dimensiones, el vector \overline{v} tendrá las siguientes tres componentes:

$$v_x = -k\frac{d\varphi}{dx}$$
 3.1.4.b

$$v_y = -k \frac{d\varphi}{dy}$$
 3.1.4.c

$$v_z = -k \frac{d\varphi}{dz}$$
 3.1.4.d

Todo lo hasta aquí dicho sólo es aplicable cuando el flujo es laminar. Una forma de verificar el tipo de flujo es el número de Reynolds, que es una relación, adimensional, entre las fuerzas de i nercia y viscosas en el fluido y se define de la siguiente forma:

$$R_e = \frac{\rho \, vd}{\mu} \tag{3.1.5}$$

donde:

- v. Velocidad del fluido,
- ρ : densidad del fluido,
- μ : viscosidad dinámica,
- d : tamaño medio de las partículas,

el flujo laminar está asegurado para un R_e menor que 10. Este tipo de flujo, para un suelo blando, por sus valores tan bajos de velocidad del fluido y de tamaño de partículas, está asegurado.

Por otra parte, el coeficiente de permeabilidad es la velocidad promedio en todo el medio poroso, pues la velocidad e n un s olo por o puede llegar a se r 4 veces mayor que el prom edio. Este coe ficiente depende de las características del medio poroso y del fluido:

$$k = \overline{k} \frac{\gamma_w}{\mu} \tag{3.1.6}$$

donde:

- γ_w : peso volumétrico del agua,
- μ : viscosidad del mismo, y
- \overline{k} : constante que depende únicamente de la estructura del medio y es independiente de la naturaleza del fluido.

En la tabla 3.1.1 se presentan los rangos de valores más comunes de permeabilidad para diferentes tipos de suelo.

Suelo	Permeabilidad (m/s)	
-Grava limpia	$1 - 1 \times 10^{-2}$	
-Arena limpia	$1 \times 10^{-2} - 1 \times 10^{-5}$	
-grava con arena limpias		
-Arena fina		
-limos orgánico e inorgánico	$1 \times 10^{-5} - 1 \times 10^{-9}$	
-arena limosa		
-depósitos de arcilla estratificados		
-Arcilla	Menor que 1x10 ⁻⁹	

Tabla 3 1 1	Valores comunes	de la p	ermeabilidad	de suelos	(Terzaghi & Pecl	c 1955)
1 4014 5.1.1	v alores comunes	ue iu p	omeaomaaa	ac sucios	(I OI Zugin to I coi	x, 1700j.

El coeficiente de permeabilidad puede ser determinado mediante pruebas de campo o de laboratorio. En la tabla 3.1.2 se presenta un resumen de los métodos para la medición de la permeabilidad.

Tabla 3.1.2 Métodos	para la medición de la	permeabilidad ((Preene & Powrie,	1993).
---------------------	------------------------	-----------------	-------------------	--------

Pruebas de laboratorio	Pruebas de campo
Análisis de muestras alteradas	pruebas a pequeña escala
- granulometría (método de Hazen)	 piezómetro piezocono permeámetro
Pruebas de flujo en muestras de suelo	pruebas a gran escala
 permeámetro odómetro celda Rowe triaxial 	pruebas de bombeocálculo con prototipos

Ecuación de continuidad

Ahoar bien considérese un elemento infinitesimal de suelo sujeto a filtración de agua como el que se muestra en la figura 3.1.2, considerando que está saturado, las partículas que lo forman y las del agua son incompresibles, y si el flujo es constante y sin pérdidas; el gasto de agua que entra por cualquier cara es el mismo que el que sale por la cara contraria. Entonces se tiene:

$$\left(V_x - \frac{\partial V_x}{\partial x}\frac{dx}{2}\right)d_yd_z = \left(V_x + \frac{\partial V_x}{\partial x}\frac{dx}{2}\right)d_yd_z \qquad 3.1.7$$

donde:

$$\frac{\partial V_x}{\partial x}$$
 es la razón de cambio del volumen en la dirección x

así se tiene:

$$\frac{\partial V_x}{\partial x} d_x d_y d_z \qquad \qquad 3.1.7.a$$

De igual forma para las otras dos caras:

$$\frac{\partial V_z}{\partial_z} d_x d_y d_z \qquad \qquad 3.1.7.c$$

Figura 3.1.2 Componentes de la velocidad de descarga en un elemento diferencial de suelo (Terzaghi & Peck, 1955).

Respetando la condición de equilibrio la suma de las expresiones 3.1.7.a, b, y c, debe ser nula, por lo tanto:

$$\frac{\partial V_x}{\partial x} + \frac{\partial V_y}{\partial y} + \frac{\partial V_z}{\partial z} = 0$$
3.1.8

que es la ecuación de continuidad para flujo establecido.

Ecuación de Laplace

Aceptando que la ley de Darcy de scrita por 3.1.4.b, c, y d, condiciona las entradas y salidas d el elemento mostrado en la figura 3.1.2, se puede sustituir en 3.1.8, se tiene:

$$k_{X} \frac{\partial^{2} \varphi}{\partial x^{2}} + k_{Y} \frac{\partial^{2} \varphi}{\partial y^{2}} + k_{Z} \frac{\partial^{2} \varphi}{\partial z^{2}} = 0$$
 3.1.9

En suelos isótropos $k_x = k_y = k_z$, sustituyendo esta condición en 3.1.9, ésta queda:
$$\frac{\partial^2 \varphi}{\partial x^2} + \frac{\partial^2 \varphi}{\partial y^2} + \frac{\partial^2 \varphi}{\partial z^2} = 0$$
 3.1.20

que es la ecuación de Laplace, o ecuación de flujo de agua en régimen permanente, para un medio homogéneo e isótropo, en ausencia de descargas o recargas.

Para flujo bidimensional la expresión anterior se reduce a:

$$\frac{\partial^2 \varphi}{\partial x^2} + \frac{\partial^2 \varphi}{\partial y^2} = 0 \qquad 3.1.21$$

La ecu ación 3.1.21 es una ecuación diferencial en derivadas parciales, elíptica de segundo orden, lineal, de coeficientes constantes.

Ecuación de Poisson

Cuando en un medio poroso se dan descargas o recargas, debidas por ejemplo a bombeo o filtraciones, la expresión 3.1.21 no es aplicable. Si se considera una recarga Q por unidad de tiempo y unidad de área, expresada esta recarga como:

$$R(x, y) = \frac{Q}{dx \, dy} \tag{3.1.22}$$

y se aplica esta recarga en la ecuación de continuidad aplicada para la figura 3.1.3, se tiene:

$$\frac{\partial v_x}{\partial x} dx \, dy \, b + \frac{\partial v_y}{\partial y} dx \, dy \, b = R(x, y) dx \, dy$$
3.1.23

Figura 3.1.3 Esquema para la deducción de la ecuación de Poisson.

aplicando Darcy con hipótesis de homogeneidad y se define la transmisividad como:

$$T = k \ b \tag{3.1.24}$$

Se tiene:

$$\frac{\partial^2 \varphi}{\partial x^2} + \frac{\partial^2 \varphi}{\partial y^2} = \frac{R(x, y)}{T}$$
3.1.25

La expresión anterior es la ecuación de Poisson o ecuación de flujo de agua establecido en un medio homogéneo e i sótropo con respecto a la permeabilidad, y presencia de recargas o descargas, de tal forma que:

- si R(x, y) = 0, 3.1.24 coincide con la ecuación de Laplace
- si R(x, y) es positiva, se tiene una recarga
- si R(x, y) es negativa, se tiene una descarga

Ecuación de flujo transitorio

En régimen establecido se calcula una solución para el problema de flujo cuando éste se encuentra en equilibrio. Este tipo de soluciones son en realidad inoperantes para suelos blandos, pues debido a su bajo valor de permeabilidad las cargas varían en el tiempo de acuerdo con la capacidad que tenga el suelo para almacenar y/o desalmacenar agua. Así, la ecuación de continuidad se modifica ya que la tasa de volumen de agua que sale será igual a la tasa de volumen de agua entrante más la tasa de volumen de agua liberada del almacenaje.

Si se considerando el esquema de la figura 3.1.4, en un intervalo de tiempo Δt , el nivel del agua varía Δh , y el volumen de suelo vaciado estará dado por:

$$\Delta V_s = \Delta x \cdot \Delta y \cdot \Delta h \qquad 3.1.26$$

Asimismo el agua contenida en el volumen de suelo vaciado será:

$$\Delta V_c = S \ \Delta x \ \Delta y \ \Delta h \qquad 3.1.27$$

donde:

S: coeficiente de almacenamiento

Figura 3.1.4 Esquema para la deducción de la ecuación de flujo transitorio.

y el volumen de agua desalmacenado en el tiempo Δt será:

$$\Delta V_{v} = S \ \frac{\Delta h}{\Delta t} \ \Delta x \ \Delta y \qquad 3.1.28$$

haciendo que $\Delta t \rightarrow 0$ en 3.1.28, ésta queda:

$$V_{t\to 0} = S \ \frac{\partial h}{\partial t} \ \Delta x \ \Delta y \qquad 3.1.29$$

Siendo h la car ga hi dráulica e i ntroduciendo la expresión 3.1.29 en la ecuación 3.1.23, é sta úl tima queda:

$$\frac{\partial vx}{\partial x}\Delta x(b\Delta y) + \frac{\partial v_y}{\partial y}\Delta y(b\Delta x) = R(x, y, t)\Delta x\Delta y - S\frac{\partial \varphi}{\partial t}(\Delta x\Delta y)$$
3.1.30

Aplicando Darcy en la forma de las ecu aciones 3.1.4.b, 3.1.4c, y 3.1.4d, y la exp resión 3.1.24, asumiendo homogeneidad e isotropía del suelo con respecto a la permeabilidad, se tiene la ecuación para flujo transitorio de agua en un suelo homogéneo e isotrópico con respecto a la permeabilidad:

$$\frac{\partial^2 \varphi}{\partial x^2} + \frac{\partial^2 \varphi}{\partial y^2} = \frac{S}{T} \frac{\partial \varphi}{\partial t} - \frac{R(x, y, t)}{T}$$
3.1.31

De la expresión anterior se puede observar que:

- si
$$\frac{S}{T} \frac{\partial \varphi}{\partial t} = 0$$
, 3.1.31 coincide con la ecuación de Poisson
- si $\frac{S}{T} \frac{\partial \varphi}{\partial t} = 0$ y $R(x, y) = 0$, 3.1.31 coincide con la ecuación de Laplace

El coeficiente de almacenamiento se define como el volumen de agua extraido por unidad de volumen del acuífero y por unidad de variación de la carga hidráulica y se expresa por la siguiente ecuación (Walton, 1970):

$$S = \frac{\gamma_w n}{E_w} \left(1 + \frac{m_v}{n + \frac{1}{E_w}} \right)$$
 3.1.32

donde:

 γ_w : peso volumétrico del agua *n* : porosidad

- E_w : módulo de elasticidad delagua
- m_v : módulo de compresibilidad volumétrica del suelo

Por otra parte el coeficiente de almacenamiento considera la deformabilidad de la estructura del suelo asociada a cambios de carga hidráulica, pero no las deformaciones debidas a cargas externas como una sobrecarga perimetral o las que se relacionan con la estabilidad de la excavación, mismas que so n importantes e n el comportamiento de una excavación en suelo blando; por lo tanto, se d ebe tener cuidado en el uso de las ecuaciones de flujo de agua en aplicaciones a suelos blandos y las soluciones que a continuación se presentan están orientadas a suelos rígidos.

De la ecuación 3.1.32 el coeficiente de compresibilidad volumétrica m_v es despreciable para un suelo que se pueda considerar rígido, como los granulares. En cuanto al módulo de elasticidad del agua, un valor aceptable es (Walton, 1970):

$$E_{w} = 2100 \ MPa$$

3.2 Métodos de solución

Las expresiones enunciadas en el sub-capítulo anterior describen el flujo de agua en suelos en sus diversas modalidades. Su sol ución no es sen cilla, y l a pos ibilidad de r esolverlas de pende d e l a complejidad del problema y de las condiciones de frontera. Por lo que ciertos métodos de solución de las ecuaciones de flujo, por su sencillez, son muy populares, uno de estos es el de las redes de flujo que permiten obtener una solución rápida. Para obtener la solución mediante redes de flujo se deben hacer varias consideraciones, lo que hace que la solución solo sea una aproximación.

Por otro l ado, aparte de l método g ráfico existen soluciones ana líticas y num éricas. L as p rimeras permiten da r s olución a l as ecua ciones de flujo de a gua para di versos prob lemas geotécnicos, con restricciones también; y las segundas son las más potentes pues permiten dar solución a casi cualquier problema de flujo de agua en suelos.

3.2.1 Redes de flujo

Una red de flujo es la solución gráfica a la ecuación de Laplace para flujo bidimensional. La relativa sencillez con la que puede aplicarse y la ausencia de instrumentos computacionales, que por mucho tiempo prevaleció, hicieron de esta herramienta una de las más usadas. Para que sea aplicable, el medio tiene que ser homogéneo e isótropo, y válida la ley de Darcy.

Las redes de flujo, mediante una transformación, son aplicables a medios anisotrópicos o estratificados, pero en cualquier caso, la geometría del problema debe ser sencilla y las condiciones límite deben estar bien definidas, las cuales son sus principales desventajas.

Suelos isótropos y homogéneos

La ecuación 3.1.21 que es la de Laplace, tiene como solución dos familias de funciones, una de ellas representa la familia de las líneas de flujo, la otra familia es la de líneas equipotenciales. Una línea de flujo es la trayectoria que sigue una partícula de agua a través de la masa de suelo saturado, por su parte una línea e quipotencial r epresenta el contorno de i gual carga. Las dos familias de curvas son ortogonales entre sí y dibujadas forman una red de flujo para un problema en particular que pu ede representar, en planta, el patrón de filtración o estudiar una sección de la misma.

Al ser las funciones de flujo y potencial continuas, el número de líneas, tanto equipotenciales como de flujo es infinita, por ello se debe de elegir un número de líneas equipotenciales cuya distancia entre adyacentes sea Δh y un número de líneas de flujo cuya separación sea Δb como se puede observar en la figura 3.2.1. Las distancias Δh y Δb están relacionados según la condición de ortogonalidad, Δh es una fracción de la carga total H y en un sistema de flujo a gravedad es la separación con la cual las líneas equipotenciales intersectan una línea de filtración o la superfície freática.

Figura 3.2.1 Campo formado por dos líneas equipotenciales y dos líneas de flujo. (Terzaghi & Peck, 1955).

Una exc epción de la condición de ortogonalidad se da en el ca so de una descarga ba jo presión atmosférica, pues esta no es una línea de flujo ni una línea equipotencial, y por lo tanto los cuadrados son incompletos y las líneas de flujo así como las líneas equipotenciales no tienen que intersectar a tal frontera en ángulos rectos.

Un ejemplo de red de flujo para una excavación se presenta en la figura 3.2.2. Para trazar una red aplicada a una excavación se deben de tomar las siguientes consideraciones:

- La superficie aguas arriba *c*-*d* y aguas abajo *a*-*b* (en la figura 3.2.2) del estrato permeable son líneas equipotenciales
- El estrato impermeable que subyace al permeable es una línea de flujo y lo es también la línea *e-f* que es la que corresponde a la tablestaca

Figura 3.2.2 Ejemplo de red de flujo en una excavación.

Como se puede observar el conocimiento de las fronteras de flujo es fundamental para trazar la red de flujo, por ello es común considerar, en una excavación por etapas, que el NAF coincide con el fondo de la excavación según ésta avanza.

La región que se forma entre dos líneas de flujo se conoce como canal de flujo y para cada uno de éstos se tendrá un gasto definido por:

$$\Delta q = \frac{Q}{N_f}$$
 3.2.1

donde:

Q: gasto total que pasa por la sección de suelo considerada,

 Δq : gasto que pasa por un canal de flujo, y

 N_f : número de canales de flujo.

Por otra parte, el decremento de carga hidráulica por cada cambio de canal es:

$$\Delta h = \frac{H}{N_e}$$
 3.2.2

donde:

H : carga total en el inicio de la red de flujo,

 Δh : caída de carga por cada línea equipotencial que atraviesa un canal de flujo,

 N_e : número de caídas de potencial.

Aplicando la Darcy (ec. 3.1.1) para un solo canal se tiene:

$$\Delta q = k \ \Delta b \left(\frac{\Delta h}{\Delta l}\right) \tag{3.2.3}$$

donde:

 Δl : longitud entre dos caídas de potencial.

Al ser $\Delta l = \Delta h$, y s ustituyendo 3.2.1 y 3.2.2 en 3.2.3 s e t iene l a e xpresión c on l a que s e pue de determinar el gasto entre las fronteras de la red de flujo:

$$Q = k H \frac{N_f}{N_e}$$
 3.2.4

Suelos anisótropos

Para construir una red de flujo en suelos anisótropos con respecto a la permeabilidad, la sección tiene primero que ser transformada en una donde las permeabilidades horizontal y vertical sean iguales. En estos casos se plantea un sistema cartesiano x_t , y, donde x_t es la escala transformada. Planteando la ecuación de Laplace (ec. 3.1.21) en el sistema transformado se tiene:

$$\frac{\partial^2 \varphi}{\partial x_i^2} + \frac{\partial^2 \varphi}{\partial y^2} = 0 \qquad 3.2.5$$

Analizando el primer término expresión 3.2.5:

$$\frac{\partial^2 \varphi}{\partial x_t^2} = \frac{\partial^2 \varphi}{\partial x^2} \left(\frac{\partial x}{\partial x_t} \right)^2$$
 3.2.6

Y por lo tanto, la escala de transformación $\lambda = \frac{x_t}{x}$ está dada por:

$$\lambda = \sqrt{K_x / K_y} \qquad 3.2.7$$

si se desea transformar la dimensión y. Asimismo, para transformar la dimensión x se tiene::

$$\lambda = \sqrt{K_y / K_x} \qquad 3.2.8$$

Para calcular únicamente el gasto se puede utilizar el siguiente coeficiente de permeabilidad:

$$\lambda^* = \sqrt{K_x \cdot K_y} \qquad 3.2.9$$

Suelos estratificados

Por otro lado si se está ante un suelo estratificado, la permeabilidad se puede calcular con la siguiente expresión:

$$\overline{K} = \frac{\sum K_i d_i}{\sum d_i}$$
 3.2.10

Utilizando este valor en el sentido de la estratificación y con el valor de la permeabilidad en el sentido perpendicular se puede utilizar el método de la sección transformada para darle solución al problema.

3.2.2 Soluciones analíticas

Las r edes d e f lujo únicamente r esuelven problemas r elacionados con la ecu ación de Laplace, en cambio, las soluciones analíticas abordan problemas de flujo establecido o transitorio con descargas y/o recargas. Se llevan a cabo integrando las ecuaciones de flujo de agua, por lo que la configuración geométrica del medio debe ser simple y las condiciones límite deben estar bien establecidas, lo cual es su principal desventaja.

Existen soluciones analíticas a las ecuaciones de flujo de agua para diversos problemas geotécnicos, algunas de estas expresiones son muy apreciadas pues permiten evaluar los parámetros hidrológicos del suelo, e stas úl timas s on c onocidas c omo f unciones poz o. Además en excavaciones permiten calcular el bombeo necesario para que esta se desarrolle.

Para en contrar una función de poz o es ne cesario conocer las condiciones de confinamiento que presenta el estrato de interés, dichas condiciones se dan por la interacción entre distintas formaciones geológicas, las cuales se clasifican por su capacidad para almacenar y transmitir agua. Los acuíferos, formados por suelos granulares, tienen una capacidad alta para transmitir agua, en cambio acuitardos y acuicludos t ransmiten e la gua de f orma l enta, sobre todo l os úl timos, y s u c apacidad d e almacenamiento es grande. Los acuífugos formados por roca sana, son completamente impermeables, incapaces de almacenar y transmitir agua.

Acuíferos artesianos o c onfinados s on a quellos que s e e ncuentran r odeados por m ateriales impermeables y el nivel del agua e s su perior al techo del acuífero, es ta condición provoca que s e encuentren a una pre sión piezométrica m ayor que l a al tura de l l ímite superior de l acuífero. Estos acuíferos liberan agua por descompresión. Acuíferos libera o gravedad son aquellos el agua, en estos acuíferos, se encuentra a l a presión atmosférica, se libera en el acuífero por desaturación y su límite superior es e l ni vel f reático. Las condiciones que dan lugar a es tos acuíferos se pre sentan en la figura.3.2.3.

Figura 3.2.3 Clasificación de acuíferos (Hantush, 1960).

Como se pue de observar la interacción de los estratos confinantes y el acuífero da lugar a diversos problemas de flujo de agua y para cada una de ellos existe una solución analítica, en el Anexo 4 s e reúne un conjunto de soluciones analíticas de gran utilidad. A continuación se presenta un ejemplo de solución analítica que permite calcular la permeabilidad en un acuífero.

Flujo de agua radial establecido en un acuífero confinado hacia un pozo con penetración completa

Considérese una situación como la que se muestra en la figura 3.2.4, en donde en un acuífero isótropo y ho mogéneo, se bombea un g asto Q_p en un poz o de radio r_0 , el poz o penetra completamente el acuífero y genera un c ono de abatimiento con radio genérico r y radio máximo R. Suponiendo que este cono se pr esenta d e f orma i nstantánea se p uede ap licar la e xpresión de L aplace p ara f lujo bidimensional (ec. 3.1.21).

Figura 3.2.4 Flujo establecido radial en un acuífero confinado hacia un pozo que lo penetra totalmente (Walton, 1970).

Si el flujo es r adial e s preferible t rabajar en coordenadas p olares. L a t ransformación a d ichas coordenadas se puede llevar a cabo a partir de las siguientes igualdades:

$$x = r \cos \theta \qquad \qquad 3.2.11$$

$$y = r \, sen\theta \tag{3.2.12}$$

donde:

r: es el radio de influencia,

 θ : es la coordenada angular,

sustituyendo en 3.1.21 se tiene:

$$\frac{\partial^2 \varphi}{\partial r^2} + \frac{1}{r} \cdot \frac{\partial \varphi}{\partial r} = 0 \qquad 3.2.13$$

que se puede escribir también así:

$$\frac{1}{r}\frac{d}{dr}\left(r\frac{d\varphi}{dr}\right) = 0$$
3.2.14

Por lo tanto:

$$\left(r\frac{d\varphi}{dr}\right) = cte \qquad 3.2.15$$

Se pue de con ocer el valor de la constante tomando en cuenta que el gasto que sa le del pozo es el mismo que atraviesa una superficie cilíndrica, como la que se muestra en la figura 3.2.4, de altura b y radio r, y su área es:

$$A = 2\pi r b \qquad \qquad 3.2.16$$

Y aplicando la ecuación 3.1.3 que es la ley de Darcy se tiene:

$$Q = 2\pi r b k \frac{d\varphi}{dr}$$
 3.2.17

luego:

$$cte = r\frac{d\varphi}{dr} = \frac{Q}{2\pi bk} = \frac{Q}{2\pi T}$$
3.2.18

y por lo tanto:

$$d\varphi = \frac{Q}{2\pi T} \frac{dr}{r}$$
 3.2.19

donde:

T = bk : transmisibilidad

En una prueba de bom beo, cuando la carga h de la ecuación 3.2.19 varía de sde el nivel de l NAF abatido h, hasta un punto donde el nivel del NAF no se ve afectado h_0 , el radio r varía desde un punto en el que la carga vale h hasta un punto donde r vale R y que corresponde a la carga h_0 . Con estos límites se puede integrar la ecuación 3.2.19 quedando:

$$\int_{h}^{h_0} d\varphi = \frac{Q}{2\pi T} \int_{r}^{R} \frac{dr}{r}$$
3.2.20

En este caso, como puede observarse en la figura 3.2.4 la altura h comprende el espesor del acuífero más la parte saturada del estrato que lo confina. Entonces:

$$d = h_0 - h = \frac{Q}{2\pi T} \ln \frac{R}{r}$$
 3.2.21

La expresión 3.2.21 es la solución de Thiem para el flujo de agua en un acuífero confinado o artesiano hacia un pozo que lo penetra completamente.

La utilidad de esta expresión es el cálculo de la transmisividad. En una prueba de bombeo se puede establecer un punto de observación i en el cual se tiene un abatimiento d_i , se tiene:

$$d_{i} = \frac{Q}{2\pi T} \ln \frac{R}{r_{i}} = 0.366 \frac{Q}{T} \log \frac{R}{r_{i}}$$
 3.2.22

O bien:

$$d_i = 0.366 \frac{Q}{T} \log R - 0.366 \frac{Q}{T} \log r_i$$
 3.2.23

32

Acomodándola para que tome la forma y = mx + b:

$$d_i = -0.366 \frac{Q}{T} \log r_i + 0.366 \frac{Q}{T} \log R \qquad 3.2.24$$

Si se grafica en papel semilogarítmico la expresión 3.2.24 se tendrá una recta que intersecta al eje de las ordenadas en el valor de R. Y al eje de las abscisas en el valor de d. El valor de T estará dado por:

$$T = 0.366 \frac{Q}{m} \qquad \qquad 3.2.25$$

Donde m es la pendiente de la recta.

Se puede observar que debido a la complejidad para integrar las ecuaciones de flujo de agua las soluciones analíticas están enfocadas a resolver problemas donde la interrogante principal es un caudal, si s e de sea conocer la presión de poro y su evolución en una exc avación el al cance de di chas soluciones es limitado.

3.2.3 Soluciones numéricas.

A diferencia de las soluciones anteriores, las de tipo numérico permiten analizar las ecuaciones de flujo de agua establecido o transitorio, en 2 ó 3 dimensiones y con condiciones límite diversas.

De los modelos numéricos, dos son los más socorridos, el de las diferencias finitas (MDF) y el de los elementos finitos (MEF). En cualquiera de los dos casos, un sistema de puntos nodales se superpone sobre el dominio del problema, un ejemplo de esto se ve en la figura 3.2.6.

El concepto de elemento (las sub-áreas definidas por las líneas conectadas por los puntos nodales) es fundamental en el desarrollo de ecuaciones con los métodos numéricos, en el caso del método del elemento finito los elementos pueden ser triangulares, con cuatro lados o de otras formas.

Figura 3.2.5 a) Malla de diferencias finitas con elementos cuadrados. b) Malla de elementos finitos con elementos triangulares (Wang & Anderson, 1982).

En el método de las diferencias finitas los nodos pueden estar localizados en el centro de las celdas o en las intersecciones de la malla. Independientemente de la representación gráfica, una ecuación está en términos de cada punto nodal y a que el área a lrededor del nodo no participa di rectamente en el desarrollo de las ecuaciones de diferencias finitas.

Método de las diferencias finitas

Este método t iene com o idea bá sica l a su stitución de un a ec uación en derivadas parciales por aproximaciones en diferencias finitas convirtiendo un problema de ecuaciones diferenciales en un problema algebraico al que se le puede dar solución por medios comunes (especialmente matriciales).

Discretizando el medio, se tendrá que la ecuación en derivadas parciales se convertirá en un conjunto de N ecuaciones algebraicas con N potenciales hidráulicos como incógnitas.

Una función f = f(x), puede expandirse en series de Taylor en el sentido positivo de x quedando:

$$f(x + \Delta x) = f(x) + \Delta x \frac{df}{dx}\Big|_{x} + \frac{(\Delta x)^{2}}{2} \frac{d^{2}f}{dx^{2}}\Big|_{x} + \frac{(\Delta x)^{3}}{3!} \frac{d^{3}f}{dx^{3}}\Big|_{x} + \dots$$
 3.2.26

De 32.26 se deduce que la derivada de una función se puede escribir.

$$\left. \frac{df}{dx} \right|_{x} = \frac{f(x + \Delta x) - f(x)}{\Delta x} + E$$
3.2.27

donde e l término E representa l os términos r estantes de l a serie. La precisión del método de l as diferencias finitas puede ser estimada por el orden del error de truncamiento de la expansión en series de Taylor. Para la primera derivada el truncado viene dado por:

$$\frac{\Delta x}{2} \frac{d^2 f}{dx^2}$$

Al primer término de la derecha de 3.2.27 se le conoce como aproximación en diferencias finitas hacia adelante, o explicitas, para la primera derivada de la función f, y su interpretación se puede ver en la figura 3.2.7.

Ahora, si se expande la función f = f(x) en el sentido negativo de x, se tiene:

$$f(x - \Delta x) = f(x) - \Delta x \frac{df}{dx}\Big|_{x} + \frac{(\Delta x)^{2}}{2} \frac{d^{2}f}{dx^{2}}\Big|_{x} - \frac{(\Delta x)^{3}}{3!} \frac{d^{3}f}{dx^{3}}\Big|_{x} + \cdots$$
 3.2.28

Figura 3.2.6 Interpretación geométrica de las aproximaciones central, hacia delante, y hacia atrás en diferencias finitas (Bear, 1979).

y se obtiene la expresión para la aproximación en diferencias finitas hacia atrás:

$$\frac{df}{dx}\Big|_{x} \approx \frac{f(x) - f(x + \Delta x)}{\Delta x}$$
3.2.29

Análogamente para la aproximación en diferencias centrales se obtiene:

$$\frac{df}{dx}\Big|_{x} \cong \frac{f(x + \Delta x) - f(x - \Delta x)}{2\Delta x}$$
3.2.30

Método de los elementos finitos

Como s e mencionó, e ste método of rece un a s olución a problemas de f lujo dividiendo un m edio continuo sobre el que están definidas ciertas ecuaciones integrales que caracterizan el comportamiento físico del problema, en una serie de sub-dominios no intersectantes entre sí de nominados e lementos finitos, r educiendo así un problema c on i nfinitos g rados de libertad e n u no d onde i ntervengan un número finito de variables asociadas a ciertos puntos característicos (nodos).

La técnica del elemento finito está basada en el cálculo de variaciones. Una vez que se formulan las ecuaciones diferenciales que describen el fenómeno, se busca la función para la cual el funcional se minimiza, cumpliendo con las condiciones de Euler, entonces en lugar de resolver la ecuación diferencial, se obtiene el mínimo del funcional derivado de la ecuación diferencial.

Por ejemplo, la ecuación 3.1.21, de finida en un do minio R y considerando a l suelo a nisótropo con respecto a la permeabilidad, puede plantearse en términos variacionales:

$$I = \frac{1}{2} \iint_{R} \left[k_{x} \left(\frac{\partial \varphi}{\partial x} \right)^{2} + k_{y} \left(\frac{\partial \varphi}{\partial y} \right)^{2} \right] dx dy \qquad 3.2.31$$

El siguiente paso es dividir el campo en elementos, los más usados por ser adaptables a casi cualquier geometría son los triangulares. En el método de los elementos finitos se acepta que la carga hidráulica varía linealmente sobre el elemento y se define en los nodos utilizando funciones de interpolación, lo que permite utilizar el principio variacional o de los residuos pesados, a diferencia del método de las diferencias finitas, en el cual se define la carga hidráulica s olamente en el p unto nodal. La carga hidráulica se define en cada elemento, en forma matricial, de la siguiente forma:

$$\varphi(x, y) = \left[N_i, N_j, N_m\right] \begin{cases} \varphi_i \\ \varphi_j \\ \varphi_m \end{cases} \equiv \overline{N} \ \overline{\varphi^e}$$
3.2.32

donde:

 \overline{N} : vector de funciones de interpolación.

La contribución de cada elemento está dada por:

$$E^{e} = \frac{1}{2} \iint_{\Delta} \left[k_{x} \left(\frac{\partial \varphi}{\partial x} \right)^{2} + k_{y} \left(\frac{\partial \varphi}{\partial y} \right)^{2} \right] dx dy \qquad 3.2.33$$

Un máximo o mínimo del funcional se puede encontrar cuando la derivada del mismo vale cero, por lo que se deriva 3.2.33 con respecto a, φ_i , φ_m y, como a continuación se presenta, con respecto a φ_i :

$$\frac{\partial E^{e}}{\partial \varphi_{i}} = \iint_{\Delta} \left[k_{x} \frac{\partial \varphi}{\partial x} \frac{\partial}{\varphi_{i}} \left(\frac{\partial \varphi}{\partial x} \right) + k_{y} \frac{\partial \varphi}{\partial y} \frac{\partial}{\partial \varphi_{i}} \left(\frac{\partial \varphi}{\partial y} \right) \right] dx dy \qquad 3.2.34$$

Repitiendo el proceso para φ_j , y φ_m , se obtiene un conjunto de tres ecuaciones que puede expresarse en forma matricial:

$$\left\{\frac{\partial E^{e}}{\partial \varphi_{i}}\right\} = \overline{S_{ijm}^{e}} \ \overline{\varphi^{e}}$$

$$3.2.35$$

donde:

$$\overline{S_{ijm}^{e}}$$
: matriz local de coeficientes,

El m ismo pr ocedimiento se r epite pa ra c ada elemento y t odas se c ombinan e n u n c onjunto de ecuaciones simultáneas todas igualadas a cero. En forma matricial el conjunto mencionado es:

$$\overline{S} \ \overline{\varphi} = 0$$
 3.2.36

donde:

S : matriz global de coeficientes.

La matriz global de coeficientes incorpora las propiedades del medio poroso y la geometría de los elementos de la malla. Una vez de finida la carga hidráulica en cada nodo s e pueden encontrar otras incógnitas como la velocidad de flujo o la presión de poro.

El método de los elementos finitos aplicada a la teoría de flujo de agua en suelos, es el que se adopta en este trabajo para los fines deseados, y se presenta con mayor detalle en el Anexo 2.

CAPÍTULO 4 PRESIONES DE PORO EN MEDIOS DEFORMABLES

En el capí tulo anterior se mostró que existen ciertas di ficultades para conocer la di stribución y evolución de la presión de poro en una excavación en suelo blando cuando se utilizan las ecuaciones de flujo de a gua. El objetivo en este capítulo es encontrar un m étodo para conocer la distribución de presión de poro en un suelo sujeto a excavación. Para lograr el objetivo antes descrito se parte de que es posible conocer la presión de poro si se conocen los esfuerzos totales y los efectivos.

Durante un a e xcavación en s uelo bl ando, é ste se v e som etido a un os estados d e e sfuerzos y deformaciones que evolucionan según se incrementa la profundidad excavada. Por otra parte el bajo valor del coeficiente de permeabilidad impedirá la salida del agua de los poros de forma inmediata, lo hará según transcurra el tiempo, cambiando nuevamente el estado de presiones de poro, lo anterior nos indica que se debe distinguir, en una excavación en suelo blando, entre comportamiento a corto y a largo plazo.

4.1 Análisis a corto plazo

4.1.1 Condición previa a la excavación

El estado de esfuerzos en cualquier punto de un suelo y en cualquier momento está expresado por la conocida ecuación (Terzaghi, 1955):

$$\sigma = \sigma' + u \tag{4.1.1}$$

De esta forma para un suelo en reposo el estado de esfuerzos totales es geostático, esto quiere decir, se incrementa linealmente con la profundidad, al igual que la presión de poro, pero esta última a partir del nivel freático (NAF). Esta condición puede ser expresada por la ecuación 4.1.2.

$$\sigma_0 = \sigma'_0 + u_0 \tag{4.1.2}$$

donde:

 σ_0 : esfuerzo total en cualquier punto del suelo en reposo,

 σ'_0 : esfuerzo efectivo en cualquier punto del suelo en reposo,

 u_0 : presión de poro en cualquier punto del suelo en reposo.

La figura 4.1.1 muestra el estado de esfuerzos en un punto cualquiera en el suelo según la expresión 4.1.2 en un medio donde el NAF coincide con la superficie del suelo.

Figura 4.1.1. Distribución de esfuerzos geostático antes de una excavación.

4.1.2 Excavación instantánea

Al realizarse una excavación de profundidad h se genera una disminución de los esfuerzos totales por la descarga.

Así mismo si h es mayor que la profundidad a la que se encuentra el NAF se inicia un flujo de agua hacia la excavación. Suponiendo que la descarga es instantánea, ésta puede ponerse en los términos que expresa la ecuación 4.1.3.

$$\Delta \sigma = \Delta \sigma' + \Delta u \qquad 4.1.3$$

donde:

 $\Delta\sigma$: decremento en los esfuerzos totales bajo la excavación,

 $\Delta\sigma'$: decremento en los esfuerzos efectivos bajo la excavación,

 Δu : presión de poro inducida,

y el estado final de esfuerzos está dado por el siguiente conjunto de ecuaciones:

$$\sigma_f = \sigma_0 - \Delta \sigma \qquad \qquad 4.1.4 \text{ a}$$

$$\sigma'_{f} = \sigma'_{0} - \Delta \sigma' \qquad 4.1.4 \text{ b}$$

$$u_f = u_0 - \Delta u \qquad 4.1.4 \text{ c}$$

Es importante notar que u_0 está dado por el nivel freático original. Esto se debe a que la velocidad con la que se lleva a cabo la descarga la hace prácticamente instantánea y no existe posibilidad de que en el suelo se disipe la carga hidráulica original.

Ahora bien para una excavación de extensión infinita, en suelo blando, homogéneo con la superficie del suelo horizontal y coincidente con el NAF, Juárez y Rico (1963), proponen que el decremento en los esfuerzos totales es igual a la descarga total por lo que se puede escribir:

$$\Delta \sigma = \gamma_m h \tag{4.1.5}$$

donde:

 γ_m : es el peso volumétrico del material excavado, h: es la profundidad de la excavación,

el estado final de los esfuerzos totales es:

$$\sigma_f = \sigma_0 - \gamma_m h \tag{4.1.6}$$

y el estado final de presión de poro es:

$$u_f = u_0 - \gamma_m h \tag{4.1.7}$$

donde:

 P_f : son los esfuerzos totales en cualquier punto bajo la excavación,

 u_f : es la presión de poro en cualquier punto bajo la excavación.

De las expresiones 4.1.6 y 4.1.7 se puede apreciar que la reducción en los esfuerzos totales $\Delta\sigma$ tiene el mismo valor que la presión de poro inducida Δu , pues los esfuerzos e fectivos permanecen sin cambio. En la figura 4.1.2. se representa el estado de esfuerzos representado por las expresiones 4.1.3 y 4.1.4.

Figura 4.1.2. Distribución instantánea de esfuerzos en una excavación en suelo blando (Juárez y Rico, 1963).

De la figura anterior se puede apreciar que la presión de poro presenta una región de valores negativos y e l N AF s ufre un de scenso de magnitud Z_0 , bajo l a exc avación, inmediatamente de spués de la descarga.

Ahora bien, el esfuerzo aplicado al suelo disminuye con la profundidad y su distribución depende de la geometría de la excavación, y de las características del suelo, por lo que la expresión 4.1.6 puede ser rescrita con ayuda del factor de influencia debido a la descarga (Gutiérrez, 1992), quedando:

$$\sigma_f = \sigma_0 - \sigma_{0d} \cdot I_{\sigma} \tag{4.1.8}$$

donde:

 σ_{0d} : es el esfuerzo total inicial en el fondo de la excavación igual a $\gamma_m h$, I_{σ} : factor de influencia.

Si se considera la de scarga como la aplicación de un esfuerzo desviador y si el sue lo se en cuentra completamente s aturado con la ayuda de 4.1.8 y los coeficientes de presión de por o de S kempton (1954), la expresión 4.1.4a se puede escribir como:

$$u_f = u_0 - A \cdot \sigma_{0d} \cdot I_\sigma \tag{4.1.9}$$

El segundo factor del segundo término es la presión de por o inducida Δu , conocido mediante los esfuerzos totales.

La expresión completa de Skempton para encontrar la presión de poro inducida y que funciona para cualquier punto del suelo bajo una excavación en suelo blando se expresan de la siguiente forma:

$$\Delta u = B[\Delta \sigma_3 + A(\Delta \sigma_1 - \Delta \sigma_3)]$$
4.1.10

donde:

- A : coeficiente de presión de poro relacionado con el incremento de la presión de poro debido a la aplicación de un esfuerzo desviador,
- *B* : coeficiente de presión de poro relacionado con la saturación un suelo sujeto a la aplicación de un esfuerzo isótropo,
- $\Delta \sigma_3$: incremento en el esfuerzo principal mayor,
- $\Delta \sigma_1$: incremento en el esfuerzo principal menor,

Con la expresión anterior se puede conocer la presión de poro inducida causada por una excavación. Por otro lado el valor de los esfuerzos principales se pueden obtener de la figura 4.1.3 (Lambe & Whitman, 1969).

Fig. 4.1.3 Esfuerzos principales bajo una carga rectangular de longitud infinita (Poulos, & Davis, 1974).

En las expresiones 4.1.9 y 4.1.10 un factor importante es la elección del coeficiente A. Valores de este coeficiente pueden encontrarse en varias publicaciones, en la tabla 4.1.1 se muestran algunos.

Tipo de suelo	Α
Arcilla de alta sensibilidad	³ / ₄ a 1 ¹ / ₂
Arcilla normalmente consolidada	½ a 1
Arcillas arenosas compactas	$\frac{1}{4} a \frac{3}{4}$
Arcillas ligeramente preconsolidadas	$0 a \frac{1}{2}$
Gravas arcillosas compactadas	- 1/4 a 1/4
Arcillas fuertemente preconsolidadas	- ½ a 0

Tabla 4.1.1 Valores del coeficiente de presión de poro A para algunos tipos de suelo (Juárez y Rico, 1963)

Sin embargo el coeficiente de presión de poro *A* no es un valor único para un tipo de suelo, depende de la dirección del esfuerzo principal, el estado de esfuerzos iniciales y de las deformaciones volumétricas (Lambe, 1963), por lo general los valores que se o frecen en la literatura son para una condición de

falla. Algunos autores ofrecen valores de A válidos en rangos de trabajo lejanos a la falla, en la tabla 4.1.2 se presentan algunos valores del coeficiente A para suelos en esas condiciones.

Tabla 4.1.2 Valores del coeficiente de presión de poro A para algunos tipos de suelo en rango de trabajo lejano a la falla (Skempton & Bjerrum, 1957)

Tipo de Suelo	Valor de A
Arcillas blandas muy sensibles	> 1
Arcillas normalmente consolidadas	1/2 a l
arcillas sobreconsolidadas	¹ / ₄ a 0.50
Arcillas arenosas fuertemente sobreconsolidadas	0 a ¼

Como puede observarse el rango en el que varía el valor del coeficiente A disminuye. Lo ideal es obtener el valor de pruebas de resistencia al esfuerzo cortante que reproduzcan las condiciones a l as que esté sometida el suelo.

4.1.3 Excavación instantánea en suelo blando con un estrato de suelo granular

Ahora bien, si cer ca del fondo de la excavación en suelo blando, se e ncuentra un e strato de suelo granular como se muestra en la figura 4.1.4, todo lo expuesto hasta aquí es válido excepto en el estrato de suelo granular, pues su permeabilidad, alta comparada con la del suelo blando, le permite conservar un valor positivo de presión de poro, ese cambio de signo en la presión de poro genera una subpresión que amenaza con generar un levantamiento de fondo.

Figura 4.1.4. Distribución instantánea de esfuerzos en una excavación en suelo blando con un estrato de suelo granular (Juárez y Rico, 1963).

La profundidad a la que se puede llevar la excavación sin que se genere un l evantamiento de fondo depende del valor que los esfuerzos efectivos tengan en el acuífero, el valor límite al que pueden llegar es cero, en ese momento se tendría la profundidad crítica a la que se puede llevar la excavación (Juárez y Rico, 1963):

$$h_{crit} = \frac{\gamma'_m}{\gamma_w} d \tag{4.1.11}$$

donde:

 h_{crit} : profundidad crítica de excavación,

d: profundidad a la que se localiza el acuífero,

En las orillas de la excavación cerca del fondo se genera un flujo horizontal de agua. El flujo de agua ascendente ha cia el fondo de la excavación puede generar levantamiento de fondo, para evitarlo es necesario contar con un sistema de bombeo que drene el acuífero y así conservar el flujo descendente hacia el a cuífero mismo. Una parte del levantamiento de fondo se pu ede evitar no permitiendo el encharcamiento de agua en el fondo, ya que esto provoca que desaparezcan los meniscos en el agua del suelo lo cual provocará una disminución inmediata de los esfuerzos efectivo (Correa, 1963).

4.1.4 Medición del descenso del NAF

La profundidad Z_0 a la cual desciende el NAF inmediatamente después de excavar está dada por la ecuación 4.1.10 cuando es igualada con c ero. Al an alizar di cha expresión se obs erva que los dos términos de la segunda parte de la ecuación representan fenómenos que se pue den analizar de forma independiente uno del otro, para después acoplar los resultados en la expresión mencionada. Además el coeficiente de influencia en el segundo término es independiente del valor de la descarga. Por todo lo anterior es difícil ofrecer una expresión que pueda predecir el descenso del NAF ante una excavación instantánea en suelo blando.

Si se supone un suelo en el que los esfuerzos no disminuyen según aumenta la profundidad y donde toda la descarga la toma el agua de los poros del suelo, Juárez y Rico (1963) proponen la siguiente expresión para determinar el descenso del NAF:

$$z_0 = \frac{\gamma'_m}{\gamma_w} h \tag{4.1.12}$$

donde:

 γ_m : es el peso sumergido del suelo

4.2 Análisis a largo plazo

Inmediatamente después de la excavación por debajo del NAF el gradiente hidráulico genera un flujo de a gua de tipo transitorio, iniciándose un proceso similar al de consolidación. E ste flujo de agua modifica el estado de presiones de poro bajo el fondo de la excavación, reduciendo la presión de poro inducida de la siguiente forma:

$$\Delta u_{\text{final}} = -\Delta u_{\text{desc} \arg a} + \Delta u_{\text{flujo} \ de \ agua}$$

$$4.2.1$$

Si una excavación en suelo blando, donde el NAF se encuentra a una profundidad Z_0 del fondo de la excavación, permanece abierta un tiempo suficientemente grande, la presión de poro se modificará, gradualmente en el tiempo, hasta co incidir con la correspondiente a la del flujo establecido, esta situación significaría el final del proceso de consolidación y el ascenso del NAF hasta coincidir con el fondo de la excavación.

Pero dificilmente una excavación permanece abierta por largos periodos, a menos que sea abandonada. Además existe el riesgo de las expansiones del fondo de la excavación las cuales se pueden presentar en el periodo en el que se lleva a cabo una excavación pues el coeficiente de consolidación de la teoría de la consolidación de Terzaghi, para la descarga, es por lo general 10 veces mayor que para la carga, esto indica que el tiempo en que se presentan las expansiones es la décima parta del que se necesita para que se presente la consolidación del suelo (Correa, 1963).

El tiempo entre etapas de excavación es, obviamente, mucho menor que el tiempo que se necesita para que el NAF asci enda ha sta el fondo de la excavación. Por lo anterior las condiciones iniciales de presión de poro para etapas sucesivas de excavación son las siguientes

- Primera etapa de excavación: $u_1 = u_0 \Delta u_1$
- Segunda etapa de excavación: $u_2 = u_1 \Delta u_2$
- Tercera etapa de excavación: $u_3 = u_2 \Delta u_3$, y así sucesivamente.

Otro hecho importante e n el an álisis a l argo plazo de una excavación e s l a construcción de la cimentación y l a súpe r-estructura, y a que é stas g eneran un e xceso de presión de por o positivo de magnitud mayor a la generada por la excavación y que la anula.

En caso de que se quiera conocer el tiempo en el que se disipa la presión de poro inducida negativa puede conocerse, de forma aproximada, con la conocida expresión:

$$Tv = \frac{C_v}{D^2}t = \frac{kE}{\gamma_w D^2}t$$

$$4.2.2$$

Donde:

- Tv: Factor tiempo.
- Cv: coeficiente de compresibilidad.
- D : espesor del estrato,
- t: tiempo que tarda en disiparse la presión de poro inducida
- k : coeficiente de permeabilidad.

Con la expresión a nterior también se pue de saber si el com portamiento del su elo es drenado o n o drenado. S i Tv es mayor que 0.9 s e considera como drenado el comportamiento, entonces el sue lo blando se comporta como puramente friccionante (Alberro e Hiriart, 1973). Mientras que a corto plazo el comportamiento del suelo es gobernado por los es fuerzos efectivos (Brinch-Hansen, 1949; Janbu, 1977).

4.3 Análisis con el método de los elementos finitos

Los modelos analíticos dados por las expresiones 4.1.7 y 4.1.9 permiten detectar fenómenos como el descenso del NAF, a sí c omo c onocer l a pr esión de por o final únicamente ba jo e l f ondo d e l a excavación pero no en el área circundante. Tampoco nos permiten conocer la presión de poro una vez que la excavación se ha detenido y comienza un proceso similar al de consolidación. Para poder

observar y ana lizar estos fenómenos y tratar al suelo como un medio continuo se utiliza, en este trabajo, el método del elemento finito (MEF).

El MEF es un a técnica nu mérica que permite obtener una solución aproximada al problema de los esfuerzos y deformaciones en el suelo. Se basa en discretizar un medio continuo en elementos unidos con nodos.

Mediante una formulación que puede ser directa, variacional o de residuos pesados se puede encontrar la matriz de rigidez de cada elemento. La matriz de rigideces, de todo el arreglo, se obtiene c on la simple superposición de los coeficientes de rigidez de los elementos individuales, de tal forma que la ecuación de equilibrio queda, en su forma general:

$$[D]{u} = {F}$$
 4.3.1

Donde:

 $\{u\}$: vector de desplazamientos nodales [D]: matriz de rigideces $\{F\}$: vector de fuerzas nodales

De la expresión anterior se pueden conocer los desplazamientos nodales y con ellos, mediante expresiones d e l a m ecánica es tructural y de l m odelo c onstitutivo, s e o btienen l os e sfuerzos y l as deformaciones en todo el medio.

Ahora bi en, se de be contar c on una expresión que con el método de l elemento finito nos permita conocer la presión de poro i nducida. U na expresión c on di chas c aracterísticas se pue de obt ener observando la forma como se r elacionan los esfuerzos y de formaciones, la expresión 4.3.2 es una de varias relaciones entre esfuerzos y deformaciones y se ilustra en la figura 4.3.1.

$$\sigma = K_u \varepsilon_v \tag{4.3.2}$$

Donde:

 σ : esfuerzos totales,

 \mathcal{E}_{v} : deformaciones volumétricas,

 K_u : módulo de deformabilidad volumétrica no drenado,

Figura 4.3.1. Deformabilidad volumétrica del suelo.

En términos de esfuerzos efectivos la relación es:

$$\sigma' = K' \varepsilon_{v} \qquad 4.3.3$$

Donde:

 σ' : esfuerzos efectivos,

 \mathcal{E}_{v} : deformaciones volumétricas,

K': módulo de deformabilidad volumétrica efectivo,

Ahora bien, de acuerdo con Skempton (1954), y utilizando los módulos de deformabilidad volumétrica de la teoría de la elasticidad, el cambio de volumen de un elemento de suelo sujeto a esfuerzo isótropo está dado por:

$$\Delta V_e = \frac{1}{K'} V (\Delta \sigma - \Delta u)$$

$$4.3.4$$

donde:

 ΔV_e : cambio de volumen de la estructura del suelo,

V: volumen inicial,

de la misma forma el cambio de volumen en los vacíos esta dado por:

$$\Delta V_{\nu} = \frac{1}{K_{\nu}} n V \Delta u \tag{4.3.5}$$

donde:

 ΔV_{v} : cambio de volumen de los poros

n : porosidad

 K_w : módulo de deformabilidad volumétrica del agua

Como el cambio de volumen de la estructura del suelo es igual que el de los poros, se iguala 4.3.4 y 4.3.5, y se tiene:

$$\frac{\Delta u}{\Delta \sigma} = \frac{1}{1 + \frac{n K'}{K_w}}$$
4.3.6

simplificando:

$$\Delta u = B \Delta \sigma \tag{4.3.7}$$

donde:

B : coeficiente de presión de poro de Skempton definido con los módulos de compresibilidad volumétrica del suelo y el agua.

Sustituyendo 4.3.2, 4.3.3 y 4.3.7 en 4.1.3 se tiene

$$\frac{\Delta u}{B} = K' \Delta \varepsilon_v + \Delta u \tag{4.3.8}$$

resolviendo:

$$\Delta u = \frac{K_w}{n} \Delta \mathcal{E}_v \tag{4.3.9}$$

La expresión anterior pone de manifiesto que la presión de poro inducida es proporcional al incremento en las deformaciones volumétricas para cualquier tipo de suelo con baja permeabilidad.

La expresión 4.3.9 nos permite conocer el exceso de presión poro en cualquier punto del suelo bajo una excavación y zona circundante

$$u_f = u_0 - \Delta u$$

En caso de que se quiera conocer el comportamiento a largo plazo, esto es el tiempo que tarda en disiparse la presión de poro inducida, utilizando el MEF, es posible realizarlo utilizando la teoría de Biot (1941, 1956)

La implementación del método de los elementos finitos en problemas de esfuerzos y deformaciones en suelos se presenta en el Anexo 1.

En la figura de la siguiente página se presenta un esquema con la metodología propuesta para analizar una excavación en suelo blando desde el punto de vista de la presión de poro inducida utilizando el MEF.

4.3.2. Metodología de cálculo para analizar las condiciones de presión de poro en una excavación por etapas

4.4 Modelo constitutivo para el suelo blando

La expresión 4.3.9 nos permite conocer la presión de poro mediante las deformaciones volumétricas, estas a su vez se pue den encontrar de los de splazamientos que s e obtienen con el MEF. Pero las deformaciones v olumétricas que s e o btengan de u na s imulación numérica con el MEF t endrán diferente magnitud según se utilicen diferentes modelos constitutivos.

Un modelo constitutivo es un conjunto de ecuaciones matemáticas que describen la relación entre los esfuerzos y las deformaciones para un cierto material. Entre más elaborado sea el modelo mayor será el número de parámetros necesarios para caracterizar un suelo específico, y por lo tanto se requerirán pruebas de l aboratorio más co mplejos y en mayor cant idad. Teniendo en cuenta es tas do s consideraciones, se bu scó un modelo constitutivo qu e fuera r elativamente fácil de utilizar y c uyos parámetros pudi eran encontrarse m ediante ens ayos conv encionales de l aboratorio, o referencias bibliográficas conocidas. El modelo Soft-soil, presenta estas dos características.

El modelo constitutivo Soft Soil, fue desarrollado en la universidad Técnica de Delft, Holanda. Se trata de un modelo tipo Cam-clay que puede ser utilizado para simular el comportamiento de suelos blandos como arcillas normalmente consolidadas.

En el modelo SSM, se asume que existe una relación logarítmica entre la deformación volumétrica, ε_v y el esfuerzo efectivo medio, p', la cual puede ser formulada, para carga primaria, como sigue:

$$\varepsilon_{\nu} - \varepsilon_{\nu}^{0} = -\lambda^{*} \ln \left(\frac{P'}{P^{0}} \right)$$

$$4.4.1$$

y para un proceso descarga - recarga:

$$\varepsilon_{\nu}^{e} - \varepsilon_{\nu}^{e0} = -k^* \ln\left(\frac{P'}{P^0}\right)$$

$$4.4.2$$

El modelo Soft-soil, incluidas las dos expresiones anteriores, se explica a detalle en el Anexo 3.

Parámetros del modelo para suelo blando

Los parámetros que se utilizan con el modelo Soft-Soil son los siguientes:

- λ^* índice de compresión modificado
- κ^* índice de expansión modificado
- c cohesión
- ϕ ángulo de fricción
- Ψ ángulo de dilatancia

Los í ndices de compresión modificado y de expansión modificado s e ob tienen de una prueba d e compresión i sótropa. Cuando se grafica e l esf uerzo promedio en escala logarítmica con tra las deformaciones volumétricas se obtiene la siguiente figura:

Figura 4.4.1. Relación logarítmica entre los esfuerzos principales y las deformaciones volumétricas

Se pue de ob servar que la gráfica se f orma por dos líneas rectas, la pendiente de la línea de carga primaria es el índice de compresión modificado, y la de la línea de descarga es el índice de expansión modificado. A mbos índices se l laman modificados porque los índices o riginales e stán de finidos en términos de la relación de vacíos; mientras que los modificados, como se vio, están en términos de la deformación volumétrica. La definición de los índices originales se basa en la teoría del estado crítico y el modelo Cam-Clay. La equivalencia es la siguiente:

$$\lambda^* = \frac{\lambda}{1+e}$$
$$\kappa^* = \frac{\kappa}{1+e}$$

donde:

 λ : índice de compresión (modelo Cam-Clay)

 κ : índice de expansión (modelo Cam-Clay)

e : relación de vacíos,

los índices modificados se relacionan también con los obtenidos de una prueba de consolidación de la siguiente forma:

$$\lambda^* = \frac{C_c}{2.3(1+e)}$$
$$\kappa^* = \frac{C_d}{2.3(1+e)}$$

donde:

 C_C : índice de compresión normalizado

 C_d : índice de expansión normalizado

${\rm Capítulo}\, 5$ aplicación a excavaciones en suelos

Con ob jeto d e aplicar l os aspectos teóricos expu estos en los cap ítulos ant eriores, se presenta el modelado con el MEF de dos ejemplos de aplicación.

El primero es una excavación prototipo a cielo abierto. La modelación se lleva a cabo variando la permeabilidad del suelo, de esta forma se r evisa las condiciones de flujo y presión de poro en un a excavación en suelo con alta, media y baja permeabilidad; así como en un suelo heterogéneo, donde se analiza la influencia de la presencia de un estrato de suelo granular sobre el suelo blando.

El s egundo e s la excavación que se realizará, en la Ciudad de México, para al bergar l a e stación Mexicaltzingo del Sistema de Transporte Colectivo Metro.

Para llevar a cabo las modelaciones se utilizan los programas PLAXIS V 8.6 y PLAXFLOW (Delft University of Technology, 2002)

5.1 Excavación prototipo

La excavación tiene 30 m de ancho y 6 m de profundidad, como se puede observar en la figura 5.1.1. El proceso constructivo se lleva a cabo en 6 etapas de excavación con avance de 1 $\frac{m}{dia}$.

El sistema de retención es una tablestaca de concreto reforzado, de 0.35 m de espesor. La rigidez al esfuerzo axial presenta el siguiente valor:

$$EA = 8.4 \times 10^6 \frac{kN}{m}$$

y la rigidez a la flexión:

$$EI = 8.6 x 10^4 \frac{kNm^2}{m}$$

Siendo $E = 2.4x10^7 kPa$ el espesor equivalente del elemento es:

$$d_{eq} = \sqrt{12\frac{EI}{EA}} = 0.35m$$

El si stema de apunt alamiento está co nformado por dos l íneas de t roqueles con espaciamiento horizontal de 3 m y vertical de 2 m.

Figura 5.1.1 Corte esquemático del modelo de excavación en suelo homogéneo con sistema de retención en las paredes.

La exc avación anterior s e ana lizará a con tinuación en suelos con diferentes pe rmeabilidades, con objeto de ilustrar las condiciones de flujo transitorio y de presión de poro que se pueden presentar. Se considerará que un bombeo de achique permite garantizar que el nivel del agua baja con la profundidad de la excavación.

5.1.1 Excavación a cielo abierto en un medio poroso rígido con permeabilidad alta

Para resolver este ejemplo se utilizará el programa PLAXFLOW basado en la ecuación 3.1.31, que es la de flujo de agua transitorio en suelos. Los parámetros del suelo son los siguientes:

$$k = 1x10^{-3} \frac{cm}{s}$$
$$e = 0.5$$

Considerando el suelo indeformable, el coeficiente de almacenamiento es igual a:

$$S = 2x10^{-6} \frac{1}{m}$$

Configuración del modelo

La configuración del modelo para aplicación de l programa PLA XFLOW se muestra en la figura 5.1.2a. El modelo tiene un ancho de 60 m y una altura de 40 m. Como la excavación es simétrica, únicamente se modela la mitad por lo que el sub-ancho de la excavación es de 15 m.

En la figura 5.1.2b se observa la malla de elementos finitos, la cual consta de 1,261 e lementos, así como 10,339 nodos.

Figura 5.1.2 a) Esquema del primer modelo de excavación, b) malla de elementos finitos.

Figura 5.1.2 a) Esquema del primer modelo de excavación, b) malla de elementos finitos.

Aplicación del MEF

Al aplicar e l ME F se obtienen las distribuciones de presión de poro y de car ga hi dráulica que se presentan en las figuras 5.1.3a y b, respectivamente. En dichas figuras se omiten los resultados para las dos pr imeras et apas de excavación pues al llevarse a cabo por ar riba de l NAF no se genera gradiente hidráulico ni flujo de agua.

Figura 5.1.3 Resultados del MEF, a) presión de poro, b) carga hidráulica

En la figura anterior se observa que, a medida que avanza la excavación, la línea superior de flujo afuera de la excavación se abate. La pendiente de la línea superior de flujo corresponde gradiente existente en esta zona.

La figura 5.1.3b muestra que la distribución de carga hidráulica para cada etapa de excavación es la que corresponde a un flujo e stacionario. E sto se pu ede a firmar por la configuración de la carga hidráulica, que es similar a la que presentan las líneas equipotenciales en una red de flujo establecido para una excavación. Los vectores de velocidad muestran también que el flujo que se presenta es de

tipo establecido ya que son paralelos a la línea de superficie libre en la orilla de la excavación, como se muestra en la figura 5.1.4.

Figura 5.1.4 Vectores de velocidad para la última etapa de excavación

En la figura 5.1.5 se muestra la evolución de la presión de poro en un corte al centro de la excavación.

Figura 5.1.5 Presión de poro por etapa medida en un corte al centro de la excavación

En la figura anterior se aprecia que, en todas las etapas de excavación, la presión de poro sigue una distribución prácticamente paralela a la hidrostática; esto se debe a que la carga hidráulica es constante en casi toda la profundidad del suelo.

Es de notarse que este ejemplo tiene únicamente interés académico, pues, si bien el caudal de bombeo de ach ique resulta moderado (3 l/s para una excavación de 30x30 m) los gradientes de sa lida en el fondo de la ex cavación, que están relacionados con los vectores de velocidad de la figura a nterior, crean una condición de potencial inestabilidad del fondo y de la tablestaca. Para realizar la excavación, sería necesario implementar un sistema de bombeo a base de pozos.

5.1.2 Excavación a cielo abierto en un medio poroso rígido con permeabilidad media

En este ejemplo se utiliza también el programa PLAXFLOW, la configuración del modelo es similar a la del ejemplo anterior, pero se admite ahora que el coeficiente permeabilidad presenta un valor de $5x10^{-4}$ cm/s, la relación de vacíos y el coeficiente de almacenamiento conservan los valores del ejemplo anterior.

Aplicación del MEF

Las distribuciones de presión de poro y carga hidráulica se presentan en las figuras 5.1.6a y 5.1.6b.

Figura 5.1.6 Resultados del MEF, a) presión de poro, b) carga hidráulica

La car ga hidráulica mostrada en l a figura 5.1. 6b tiene una di stribución di ferente a l a de l e jemplo anterior, que era la correspondiente a un flujo establecido, por lo que se puede afirmar que con el valor de permeabilidad propuesto en este problema el flujo de agua que se presen ta es de tipo transitorio. También se puede apreciar que a m edida que avanzan las etapas de ex cavación, la distribución de la carga hidráulica se asemeja más a la correspondiente a flujo establecido.

En la figura 5.1.6 también se ob serva que se p resenta una línea de abatimiento en la periferia de la excavación conforme aumenta la profundidad. Pero a diferencia del ejemplo anterior, los vectores de velocidad c ruzan dicha línea, c omo se obs erva en la figura 5.1.7; por lo tanto, esta línea no puede considerarse como una línea de flujo (Auvinet & López, 2009).

Figura 5.1.7 Vectores de flujo de agua para la última etapa de excavación

En la figura 5.1.8 se presenta la presión de poro en un corte vertical al centro de la excavación.

Figura 5.1.8 Presión de poro por etapa medida en un corte al centro de la excavación En la figura anterior se puede observar que los cambios en la presión de poro son mayores en la parte superior de l su elo. Inclusive, en la pri mera et apa, la pre sión de poro no s ufre c ambios en l a parte inferior. En la misma gráfica, la línea discontinua roja representa la presión de poro para un tiempo de 100 días después de la última etapa de excavación, dicha línea se acerca a la condición final , lo que nos indica que si la excavación permaneciera abierta el flujo tendería a establecerse. 5.1.3 Excavación a cielo abierto en suelo blando deformable

Se considera ahora una excavación en suelo blando. La configuración geométrica de la excavación es la misma que en los ejemplos anteriores. Utilizando el programa PLAXFLOW basado en la expresión de flujo transitorio se utilizarán las siguientes propiedades para el suelo blando:

$$k = 1x \ 10^{-6} \ cm/s$$

 $e = 8.0$

La deformabilidad del suelo se toma en cuenta mediante el coeficiente de compresibilidad volumétrica, al cu al se le asigna el valor que a continuación se muestra y que pue de considerarse típico para la formación Arcillosa superior del suelo lacustre de la Ciudad de México (Tamez, 2001):

$$m_v = 0.1 \ cm^2/kg$$
,

entonces e l co eficiente d e a lmacenamiento presenta e l s iguiente v alor: $S = 5 \times 10^{-6} m^{-1}$. Las distribuciones de presiones de poro y de carga hidráulica se muestran en la figuras 5.1.9a y 5.1.9b.

Figura 5.1.9 (continuación). Resultados del MEF con el programa PLAXFLOW, a) presión de poro, b) carga hidráulica

El comportamiento que se observa en este ejemplo es muy diferente del que se presenta para suelos con alta y mediana permeabilidad. En la figura anterior se nota que, durante la excavación, la distribución de carga hidráulica únicamente se altera en la parte inmediata bajo la excavación.

Lo anterior marca las limitaciones de un análisis de flujo transitorio basado en la ec. 3.1.31. En efecto, se sabe, como se mostró en el capítulo 4, que la descarga generada en un suelo blando induce cambios de pr esión intersticial ha sta u na profundidad que no s e limita a la z ona inmediatamente b ajo l a excavación. El programa PLAXFLOW no permite calcular estas presiones de poro inducidas por la descarga.

Por otra parte el coeficiente de almacenamiento considera la deformabilidad de la estructura del suelo asociada a cambios de carga hidráulica, pero no las deformaciones debidas a cargas externas como una sobrecarga perimetral o las que se relacionan con la estabilidad de la excavación.

Por lo anterior, este ejemplo se de sarrollará con la metodología desarrollada en el Capítulo 4 y el programa PLAXIS con el modelo constitutivo *Soft-Soil* (Delft University of Technology).

Parámetros del suelo blando

Los parámetros del suelo blando C_c y C_d fueron calculados a partir de pruebas de consolidación efectuadas con muestras de suelo blando obtenidas en la zona del aeropuerto de la Ciudad de México y corresponden a l a p rimera *Formación Arcillosa Superior* (Rodríguez, comunicación personal) y presentan los siguientes valores:

$$C_c = 7.04$$
$$C_d = 0.09$$

De esta forma el valor de los índices de compresión y expansión modificados son los siguientes:

$$\lambda^* = 0.34$$
$$\kappa^* = 0.02$$

Los valores de los parámetros de resistencia son:

$$c = 25 \ kPa$$
$$\phi = 0$$

En cuanto a la relación de vacíos, las pruebas citadas arrojaron el siguiente valor:

$$e = 8.0$$

La anterior relación de vacíos tiene un valor cercano al encontrado para las arcillas de la Cd de México por Alberro e Hiriart (1973).

La estabilidad de la excavación fue revisada de acuerdo con el Anexo 1, obteniéndose los factores de seguridad que se muestran en la siguiente tabla.

Tabla 5.1.1 Factor de seguridad para la excavación del primer ejemplo

Concepto	Factor de Seguridad
Falla general de fondo	1.83
Falla por empotramiento de la tablestaca	3.68

Se puede observar de los valores de la tabla anterior que la excavación es estable.

El coeficiente de permeabilidad tiene un valor de:

$$k = 1x10^{-6} \frac{cm}{s}$$

Configuración del modelo

La configuración del modelo en el programa PLAXIS se muestra en la figura 5.1.9a. El modelo tiene un ancho de 60 m y una altura de 40 m. Como la excavación es simétrica, únicamente se modela la mitad por lo que el sub-ancho de la excavación es de 15 m.

En la figura 5.1.9b se observa la malla de elementos finitos, la cual consta de 1,261 elementos, 10,339 nodos, así como 15,132 puntos de esfuerzos.

Figura 5.1.9 a) Esquema del primer modelo de excavación en suelo blando, b) malla de elementos finitos.

Aplicación del MEF

La presión de poro antes de la excavación corresponde a la condición hidrostática que se presenta en la figura 5.1.10.

a)	b)
----	----

Figura 5.1.10. a) Distribución de presión de poro inicial resultado obtenido con el MEF, b) corte al centro

Análisis a corto plazo

Al llevarse a cabo la primera etapa de excavación se tiene una nueva distribución de presiones de poro; los resultados obtenidos con el MEF se presentan en las figuras 5.1.11 y 5.1.12, respectivamente.

Figura 5.1.11. Distribución de presión de poro total después de la primera etapa de excavación.

La pres ión de por o obtenida al final de la primera et apa di fiere de la condición i nicial de bido al decremento de presión de poro que induce la descarga.

Figura 5.1.12. Distribución de presión de poro inducida (decremento de presión de poro) después de la primera etapa de excavación.

La figura 5.1.13, que presenta la distribución de deformaciones volumétricas después de la primera etapa de excavación, muestra que existe proporcionalidad entre el decremento de presión de poro (fig 5.1.12) y las de formaciones volumétricas, como fue expresado por la ecuación 4.1.20 en el capítulo anterior.

Figura 5.1.13 Distribución de deformaciones volumétricas después de la primera etapa de excavación

Para observar a detalle la presión de poro final al concluir la primera etapa de excavación se realizan dos cortes transversales en el esquema de la figura 5.1.11: el A-A' al centro de la excavación, y el B-B' a 1 m de distancia de la orilla, el resultado se puede observar en las figuras 5.1.14 y 5.1.15.

Figura 5.1.14 Distribución de presiones de poro a) detalle, b) corte A-A'

a) b) D)
	·/ ·		,

Figura. 5.1.15. Distribución de presiones de poro a) detalle, b) corte B-B'

De las figuras anteriores se puede observar que en los alrededores de la excavación la presión de poro permanece casi sin alteración, en cambio bajo el fondo la alteración es visible; esto se debe a que bajo el fondo de la excavación el decremento de presión de poro presenta una magnitud mayor que en los alrededores.

Asimismo es de notarse que la aparición de una presión de poro negativa inducida con una magnitud mayor que la presión de poro original tiene un efecto físico sobre la posición del NAF. Este efecto es un descenso del NAF i nmediatamente de spués de la de scarga com o lo predijeron los modelos analíticos de scritos en el capítulo cuatro. Para esta primera e tapa de ex cavación el MEF indica un descenso del NAF de una magnitud $Z_0=1 m$. En la figura 5.1.16 se muestra un detalle de la gráfica de la figura 5.1.14b. El punto donde la presión de poro tiene un valor nulo es la nueva profundidad del NAF.

Figura. 5.1.16. Distribución de presiones de poro bajo el fondo de la primera etapa de excavación (detalle)

Para fines comparativos, en esta primera et apa se muestran, en la gráfica de la figura 5. 1.17, los resultados que se obtienen con el MEF y los dados por los modelos analíticos de las expresiones 4.1.7 y 4.1.9, que corresponden al desarrollado por Juárez y Rico (1963) el primero, y el desarrollado en este trabajo, el segundo.

Figura 5.1.17 a) Comparación de los modelos analíticos con el MEF para la primera etapa de excavación, b) detalle

En la figura anterior se muestran los resultados obtenidos al centro de la excavación. Existen claras diferencias en tre l os m odelos a nalíticos y el ME F, pue s cad a uno de los m odelos pre senta un a distribución de presión de poro total diferente. El modelo dibujado con la expresión 4.1.10 (línea color azul) indica un descenso $Z_0=0.4$ m, el de Juárez y Rico (línea color rojo) $Z_0=1.4$ m, mientras que el MEF se ubica entre las líneas de los modelos analíticos

El modelo analítico expresado por la ecuación 4.1.6 (Juárez y Rico) es el que presenta el de scenso mayor de los tres modelos, pues asume que la presión de poro inducida es igual a la magnitud de la descarga t otal. Sin embargo, la apo rtación de es tem odelo es s ignificativa pue s no s permite aproximarnos al fenómeno transitorio que significa la generación de una presión de poro inducida con valor negativo, nos da una idea de cómo se genera y explica el efecto físico que significa el descenso del NAF.

Para el modelo analítico dado por la expresión 4.1.9 se utilizó un valor del coeficiente A de 1/3, que corresponde a un material que se comporta de acuerdo a la teoría de la elasticidad.

Como se mencionó en el capítulo 4, el valor del coeficiente *A* puede estimarse en la forma definida por Lambe y Whitman a partir de la pendiente de la trayectoria de esfuerzos (Fig. 5.1.18)

Figura 5.1.18 Valores especiales del coeficiente A (Lambe & Whitman, 1969)

En la f igura 5.1.19 se pr esenta la t rayectoria d e e sfuerzos e fectivos dibujada con l os esfuerzos calculados en el punto de integración d e G auss que s e localiza b ajo el fondo de e xcavación de la primera etapa (*Nodo L*).

Figura 5.1.19 Trayectoria de esfuerzos para un punto del suelo ubicado bajo el fondo de excavación de la primera etapa

Es posible estimar el valor del coeficiente *A* observando la dirección de la trayectoria de esfuerzos de la gráfica de la figura 5.1.19. Se obtiene para *A* un valor de 0.70.

El v alor e ncontrado se encuentra dentro del r ango de 1 os v alores que p roponen, pa ra una a rcilla normalmente c onsolidada, J uárez y R ico (1963), a sí c omo S kempton y B jerrum (1957) y que s e presentan en las tablas 4.1.1 y 4.1.2.

Con el valor de A=0.7 se llevó a cabo el cálculo de la presión de poro final al centro de la excavación para la primera etapa. El resultado se compara con el obtenido con el MEF y se muestra en la gráfica de la figura 5.1.20.

Figura 5.1.20 Comparación de los resultados del MEF y de un modelo analítico con A=0.7

La figura anterior muestra que las diferencias entre el MEF y el modelo analítico dado por la expresión 4.1.10 son pocas. Ambas detectan el descenso del NAF, mientras que el MEF indica un descenso de $Z_0=1.0$ m, el modelo analítico nos di ce que el de scenso es de $Z_0=0.90$ m; el valor es similar y la distribución que siguen las líneas que describen los modelos lo es también.

Sin embargo tratar de calcular la distribución de presión de poro con el modelo analítico mencionado resulta prácticamente imposible pues el coeficiente *A* cambia de punto a punto debido a la forma como se distribuyen los esfuerzos en el sue lo. A demás su valor no se ría constante pues cambiaría s egún avanzara la excavación.

Ahora bien, si la excavación permaneciera abierta después de la primera etapa de excavación, se iniciaría un flujo de agua de tipo transitorio que, conforme trascurriera el tiempo, disiparía la presión de poro inducida; generándose de esta forma un proceso si milar al de consolidación. Durante di cho proceso la di sipación de la presión de poro inducida ne gativo i nduciría a l N AF a a scender ha sta coincidir con el fondo de la excavación.

La gráfica de la figura 5.1.21 muestra la evolución de la presión de poro para un tiempo de 30 días, suponiéndose que únicamente se l levara a cabo la primera et apa de excavación. La evolución de la presión de poro inducida se calcula con el MEF en un punto de la malla bajo el fondo de la excavación cerca del centro de la misma.

Figura 5.1.21 Evolución de la presión de poro inducida en un tiempo de 30 días.

Como se puede observar en la gráfica anterior, la disipación de la presión de poro inducida es mínima en el tiempo inmediato, haría falta un tiempo largo para ver la presión de poro inducida desaparecer por completo.

Lo de scrito e n los párrafos a nteriores nos indica que la metodología propuesta en el capítulo 4 es aplicable en el MEF. En dicha metodología se establece que las condiciones iniciales de presión de poro para un a et apa c ualquiera de excavación (con excepción de la inicial) es tán dadas por la distribución de presión de poro calculada en la etapa anterior. Esto es correcto pues el tiempo que se da entre etapas de excavación es muy breve y no existe motivo para calcular la presión de poro suponiendo que el NAF coincide con el fondo de la excavación.

Analizadas las implicaciones en una etapa de excavación y verificado que el procedimiento descrito en el Capítulo 4 es correcto se calculan las distribuciones de presión de poro inducida y presión de poro total para las cinco etapas restantes de este ejemplo. Los resultados se presentan en las figuras 5.1.22a y 5.1.22b.

Figura 5.1.22 Resultados con el MEF al finalizar cada etapa de excavación a) presión de poro inducida b) presión de poro total

En las figuras 5.1.23 y 5.1.24 s e presentan la presión de poro inducida y la presión de poro total, al centro de la excavación, por etapa.

Figura 5.1.23 Presión de poro inducida para las 6 etapas en un corte al centro de la excavación

Figura 5.1.24 Presión de poro total para las 6 etapas en un corte al centro de la excavación

Las dos figuras anteriores muestran la evolución de la presión de poro inducida, en ellas se nota que a medida que av anza la ex cavación se incrementa la magnitud de la presión de por o inducida; e ste fenómeno tiene un efecto físico y es el descenso del NAF. En la figura 5.1.25 se muestra la posición del NAF al finalizar cada etapa de excavación.

Figura 5.1.25 Posición del NAF al finalizar cada etapa de excavación

De la figura anterior se observa que en la primera etapa se presenta un valor del descenso del NAF que para la segunda etapa casi se duplica, parecería que el descenso es proporcional a la descarga; pero en cuanto se excava por debajo del NAF la magnitud del descenso es constante.

En la misma figura también se aprecia que a pesar de la existencia de presión de poro negativa inducida en todo el medio como se mostró en la figura 5.1.22a, la magnitud de dicho esfuerzo no es suficiente para alterar la posición del NAF en la periferia de la excavación.

Análisis a largo plazo

A l argo pl azo, c omo y a s e m encionó, la presión d e por o inducida se di sipará. Con la Teoría de Terzaghi es pos ible calcular el tiempo que tardará este proceso. Para un grado de consolidación del 95%, un $m_v=0.1 \text{ cm}^2/kg$ valor aceptable para la *Formación Arcillosa Superior* del suelo lacustre de la Ciudad de México (Tamez, 2001); y el coeficiente de permeabilidad que ya fue mencionado, se tiene que el tiempo necesario para que se disipe la presión de poro inducida es de t=48.7 años.

En cambio, con el MEF el tiempo estimado es de 32 años. El proceso que sigue la disipación de la presión de poro inducida es el que se muestra en la gráfica de la figura 5.1.26. Dicho cálculo se llevó a cabo en el nodo G.

Figura 5.1.26 Disipación de la presión de poro inducida una vez concluida la excavación

Lo a nterior c onfirma l o e stablecido po r Juárez B adillo y R ico R odríguez (1963) de que, e n un a excavación e n s uelo bl ando hom ogéneo, no e s ne cesario recurrir al bom beo pa ra abatir e l N AF; únicamente se debe considerar la extracción de agua libre en el fondo de la excavación.

Desafortunadamente, es difícil encontrar un suelo con las características mencionadas en el párrafo anterior y por lo general en los suelos blandos se encuentran intercalados estratos de suelo granular, condición que se analiza posteriormente.

Influencia de la presencia de una sobrecarga en la orilla de la excavación

Las NTCC del RCD F especifican que pa ra r evisar la estabilidad de un a ex cavación se de be d e contemplar la presencia de una sobrecarga de 15 kPa, como mínimo, en la orilla de la excavación. Al aplicar esta condición al modelo de excavación que se está discutiendo, se tiene que la magnitud de la presión de poro inducida así como su distribución cambian. La figura 5.1.27 muestra la presión de poro total para cada etapa de excavación, calculada al centro de la excavación.

Figura 5.1.27 Presión de poro al centro de una excavación con sobrecarga lateral, calculada por etapas

La figura 5.1.27 muestra que la distribución de presiones de poro es similar a la que se dio en el modelo original. Una diferencia notable entre los modelos con y sin carga es la posición del NAF bajo el fondo de la excavación al final de cada etapa, la cual se muestra en la tabla 5.1.2.

Tabla 5.1.2 Descenso del NAF en cada etapa de excavación para el modelo original y el modelo con sobrecarga

Etapa	Descenso de NAF			
	bajo el fondo Z_0 [m]			
	Sin carga	Con carga		
1	1.00	0.70		
2	1.90	1.50		
3	2.00	1.50		
4	2.00	1.40		
5	2.00	1.40		
6	2.00	1.30		

De la tabla anterior se observa que el descenso del NAF es menor cuando existe una sobrecarga en la orilla.

El d escenso del N AF se de be a l a presión de p oro i nducida ne gativa, qu e s e g enera p or las deformaciones v olumétricas de ext ensión. Esta t endencia s e v e cont rarrestada por el d esarrollo de presiones de poro positivas en las zonas de compresión. En la figura 5.1.28 se muestra la evolución de

las zonas deformadas por compresión (en color) por etapa de excavación, para el modelo cargado y sin carga.

Figura 5.1.28 Resultados con el MEF a) deformaciones volumétricas de compresión a) modelo original b) modelo con sobrecarga (continúa).

Figura 5.1.28 (continuación). Resultados con el MEF a) deformaciones volumétricas de compresión a) modelo original b) modelo con sobrecarga

De la figura anterior se puede apreciar que la presencia de una sobrecarga incrementa las zonas que se comprimen en detrimento de las deformaciones volumétricas negativas y por lo tanto el descenso del NAF es menor.

El fenómeno anterior se aprecia aun mejor en el caso de una excavación realizada dejando taludes sin tablestacado. Para l a modelación de una ex cavación de est e t ipo se s ustituyen las t ablestacas perimetrales por t aludes, c on un á ngulo de inclinación de 35°. El N AF s e e ncuentra a 2.00 m, y similarmente a lo anterior, la excavación se lleva a cabo en 6 etapas. La configuración de este modelo se muestra en la figura 5.1.29.

Figura 5.1.29 Esquema de la excavación en suelo blando con taludes en las paredes

El modelo utilizado en el MEF se muestra en la figura 5.1.30a y la malla del modelo, que está formado por 1,200 elementos, 9,769 nodos y 14,400 puntos de esfuerzos, se muestra en la figura 5.1.30b.

Figura 5.1.30^a. Configuración con el MEF del modelo de excavación con estrato

Figura 5.1.30 Malla de elementos finitos del modelo de excavación con estrato granular

Con estas condiciones se aplica el MEF a las seis etapas de excavación y se obtienen las distribuciones de presión de poro inducida y de presión de poro total para cada etapa que se presentan en las figuras 5.1.31a y 5.1.31b.

Figura 5.1.31 Resultados con el MEF a) Presión de poro, b) presión de poro inducida

La distribución de esfuerzos mostrada en la figura anterior es similar a lo ya discutido. Por otro lado la posición del NAF al final de cada etapa de excavación, se puede apreciar en la siguiente figura.

Figura 5.1.32 Posición del NAF al final de cada etapa de excavación

Para este modelo, la posición del NAF en la primera etapa es casi igual a la del modelo original. Para la segunda etapa el descenso del NAF es casi el doble con respecto al de la primera etapa. A partir de que se excava por debajo del nivel original del NAF, el descenso del mismo no se incrementa, ni siquiera se mantiene constante como en el modelo original sino que comienza a se r menor. Parecería que el NAF comenzara a regresar a su posición original respecto al fondo de la excavación.

El fenómeno que se describe en el párrafo anterior se debe a que el suelo, a medida que se incrementa la profundidad excavada, inicia un movimiento hacia la excavación y por lo tanto las zonas del suelo

deformadas por com presión se i ncrementan para c ada et apa de exc avación en detrimento de l as deformaciones volumétricas negativas y por lo tanto de la presión de poro inducida negativa.

5.1.4 Excavación a cielo abierto en suelo heterogéneo

Los modelos analíticos que se presentaron en el Capítulo 4 indican que la existencia de un estrato de suelo granular en el suelo blando altera las distribución de presión de poro únicamente en el estrato granular mismo. Para evaluar la influencia de un estrato granular sobre la distribución de presión de poro en un s uelo blando, en el modelo del ejemplo que se analizó, se colocará un estrato de suelo granular de 2m de espesor, a 8 m de la superficie del suelo.

Los pa rámetros del suelo bl ando son l os m ismos del e jemplo a nterior. Para e l suelo granular se utilizarán los siguientes valores:

$$c = 0$$

$$\phi = 30^{\circ}$$

$$E = 40,000 \ kPa$$

$$v = 0.33$$

El coeficiente de permeabilidad tiene el valor que se utilizó en el ejemplo del sub-capítulo 5.1.1 que corresponde a un suelo con permeabilidad alta:

$$k = 1 \times 10^{-3} \text{ cm/s}$$

Configuración del modelo

En la figura 5.1.33a se puede observar el modelo modificado con el estrato granular, y en la 5.1.33b la malla de elementos finitos, la cual consta de 1,211 elementos, 9,939 nodos, así como 14,532 puntos de esfuerzos.

Figura 5.1.33 Modelo de excavación en suelo blando con estrato granular a) Configuración con el MEF, b) Malla de elementos finitos

Aplicación del MEF

La distribución de presión de poro inducida que se obtiene al aplicar el MEF para la primera etapa se muestra en la figura 5.1.34.

Figura 5.1.34 Resultados del MEF para la primera etapa de excavación a) Presión de poro inducida b) distribución en un corte vertical al centro de la excavación

La distribución de presiones de poro inducidas que s e muestra en la figura 5.1.34a e s similar a la obtenida para un suelo blando homogéneo. Asimismo los valores encontrados en el corte al centro de la excavación son cercanos a los del ejemplo con suelo homogéneo, excepto en el suelo granular en el cual la presión de poro inducida es cero.

Lo anterior se refleja en la presión de poro total, que se muestra en la siguiente figura, pues se puede observar que el suelo granular mantiene el valor inicial dado por el nivel freático original.

Figura 5.1.35 Resultados del MEF para la primera etapa de excavación a) Presión de poro total, b) distribución en un corte vertical al centro de la excavación

De la figura 5.1.35 se nota que existe un descenso del NAF, cuya magnitud es de 1.10 m, valor 10cm mayor que el detectado para la primera etapa en el modelo de suelo blando homogéneo.

Para l a s egunda e tapa l as di stribuciones de presión de por o i nducida y presión de por o t otal se presentan en las figuras 5.1.36 y 5.1.37, respectivamente.

Figura 5.1.36 Resultados del MEF para la segunda etapa de excavación a) Presión de poro inducida b) distribución en un corte vertical al centro de la excavación

Figura 5.1.37 Resultados del MEF para la segunda etapa de excavación a) Presión de poro total b) distribución en un corte vertical al centro de la excavación

Los resultados para la segunda etapa de excavación son similares a los obtenidos en la primera. Para la tercera etapa de excavación las distribuciones de presión de poro inducida y total son las que se presentan en las figuras 5.1.38 y 5.1.39, respectivamente.

Figura 5.1.38 Resultados del MEF para la tercera etapa de excavación a) presión de poro inducida, b) distribución en un corte vertical al centro de la excavación

Figura 5.1.39 Resultados del MEF para la tercera etapa de excavación a) presión de poro total, b) distribución en un corte vertical al centro de la excavación

Para es ta etapa ya se presenta un flujo de agua apreciable en el estrato permeable con velocidad significativa ($1.5 \times 10^4 \text{ m/dia}$). Los vectores de velocidad pueden observarse en la figura 5.1.40.

AND AN

Figura 5.1.40 Vectores de velocidad generados en la tercera etapa de excavación.

Para la cuarta etapa, el flujo de agua alcanza una velocidad máxima de $3.8 \times 10^{-4} m/día$, los vectores de velocidad se pueden ver en la figura 5.1.41.

Figura 5.1.41 Vectores de velocidad generados en la cuarta etapa de excavación.

Con el flujo de agua, se generan fuerzas de filtración ascendentes en el suelo blando que provocan que el fondo de la excavación falle, esto se puede observar en la figura 5.1.42. En términos de esfuerzos totales, se trata de una falla por sub-presión.

Figura 5.1.42 Zonas de plastificación del suelo debido a la sub-presión

En la figura anterior, se observan puntos del suelo que fallan por tensión de bido a la subpresión (rectángulos en negro) localizados en la frontera entre el suelo blando y el granular, bajo el fondo de la excavación. En el suelo blando, una zona alrededor y bajo el fondo de la excavación alcanza niveles de esfuerzos que graficados en el plano p-q se ubicarían sobre la superficie de fluencia del modelo Soft-Soil (zona con rectángulos en azul); en este caso, es importante anotar que la arcilla se ha modelado como normalmente consolidada. En el suelo granular, algunos puntos bajo el fondo de la excavación se encuentran con un nivel de esfuerzos que graficados en un plano p-q se localizarían sobre la envolvente de falla dibujada con el criterio Mohr–Coulomb (rectángulos en rojo).

Para que la excavación que se presentó en el ejemplo anterior pueda llevarse a cabo con seguridad se debe contar con un sistema de bombeo que garantice el abatimiento de las presiones de poro en el estrato granular.

El sistema de bombeo que se propone está compuesto por líneas de cuatro pozos punta, separados a 7.50 m.

Figura 5.1.43 Esquema en planta de un sistema de bombeo para una excavación

En el sub-ancho que se está modelando se colocan únicamente dos pozos, esto puede observarse en la figura 5.1.44. El caudal estimado que deberá extraerse es $Q=0.04 \text{ m}^3/dia/m$.

Figura 5.1.44 Esquema en planta del modelo para el MEF de excavación con bombeo

El bombeo se inicia en la cuarta etapa. La distribución de presiones de poro y los vectores de velocidad de flujo para cada etapa se muestran en la siguiente figura.

Figura 5.1.45 Resultados para las últimas tres etapas de excavación a) distribución de presiones de poro, b) vectores de velocidad

En la figura 5.1.45 se aprecia que al usar bombeo en el suelo granular de saparecen las fuerzas de filtración ascendentes y el peligro de falla por sub-presión. La excavación puede llevarse a c abo en forma segura.

El análisis de presión de poro utilizando bombeo se llevó a cabo con el programa PLAXFLOW con la ecuación de flujo de agua transitorio. Resultaría interesante revisar la distribución de presión de poro en el suelo blando bajo la combinación de la descarga por excavación y el bombeo. Para el lo sería necesario utilizar un programa tipo PLAXIS pero hasta este momento los problemas que contemplen la combinación de cond iciones mencionada, parecen rebasar l os l ímites de las posibilidades d e es te programa.

5.3.2 Aplicación a una excavación de la Línea 12

La l ínea 12 del M etro recorrerá l a C iudad de México de pon iente a su r-oriente, s iguiendo un a trayectoria cuy o trazo se ha lla, en parte, en las 3 zonas geotécnicas r econocidas por las Normas

Técnicas Complementarias para Diseño y Construcción de Cimentaciones para el Distrito Federal (GDF, 2004) denominadas *de lomas* (I), *transición* (II) y *lacustre* (III); es en esta última donde se ubica la estación Mexicaltzingo como se puede observar en la figura 5.3.35.

Figura 5.3.35 Ubicación de la estación Mexicaltzingo (Auvinet et al., 2009)

Características estratigráficas y propiedades del suelo

En el sitio en estudio se cuenta con información geotécnica actual hasta una profundidad aproximada de 70 m (Auvinet *et al.*, 2009), la cual indica la estratigrafía que se muestra en la Figura 5.3.36.

Según la información geotécnica:

- En los primeros 6 m de profundidad se encuentra un material areno-limoso con cascajo, se trata de un relleno superficial.
- En seguida se encuentra un potente estrato de arcilla de alta plasticidad con algunos lentes de arcilla arenosa y arena, por su resistencia puede dividirse en dos sub-estratos, el primero de 20 m y el segundo de 7 m, teniendo este último una resistencia mayor.
- El estrato de suelo blando yace sobre un estrato de suelo granular identificado como arena de grano grueso de 16m de espesor.
- En seguida se encuentra un estrato de 9.00 m de espesor de arena limosa y subyaciendo se encuentra nuevamente la arena de grano grueso; así lo muestran las propiedades mecánicas.
- Por último se encuentra un estrato de arena pumítica que forma parte de la formación Tarango.

Las propiedades índice y mecánicas de los materiales descritos se obtuvieron de pruebas de laboratorio (Auvinet *et al.*, 2009) y se muestran en la Tabla 5.3.5.

Profundidad			27		C	þ	E	
(m)		Descripción	$(l_{\rm L}N_{\rm I}/m^3)$	E	$(\mathbf{k}\mathbf{P}_{2})$	(\circ)	(kPa)	V
de	а		(KIN/III)		(KF a)	\mathbf{O}	(KF d)	
0.0	5.6	Relleno	14.9	1.4	39.0	10	2500	0.18
5.6	0.0	Arcilla de consistencia muy blanda a blanda			Véase tabla	ı 5.3.6		
0.0	31.0	Arcilla de consistencia media a dura	Véase tabla 5.3.6					
31.0	42.0	Arena de grano grueso	17.8	0.7	80.0	32	68000	0.33
42.0	49.0	Arena limosa poco arcillosa en estado muy compacto	18.0	0.7	100.0	32	80000	0.33
49.0	69.0	Arena de grano grueso	17.8	0.7	80.0	32	70000	0.33
69.0	75.0	Arena pumítica en estado muy compacto	17.6	0.7	60.0	32	68000	0.33

Tabla 5.3.5 Propiedades índice y mecánicas de los estratos de la zona de interés

El suelo blando será modelado con el modelo *Soft-soil*, como ya fue mencionado. Para los dos estratos de suelo blando de la estratigrafía mencionada, los parámetros se presentan en la siguiente tabla.

Tabla 5.3.6 Propiedades mecánicas de los suelos blandos para el modelo Soft-soil

Profundidad (m)		Decerinción	C	C	1*	*
de	а	Description	C _c	C_{s}	λ	K
5.6	15.0	Arcilla de consistencia muy blanda a blanda	6.5	0.58	0.27	0.05
15.0	31.0	Arcilla de consistencia media a dura	5.2	0.4	0.23	0.035

Material areno-limoso con fragmentos de concreto correspondiente al relleno superficial de la zona.

Arcilla de consistencia muy blanda a media, de alta plasticidad, con lentes de arena fina

Arena de grano grueso con fragmentos de grava

Arena limosa poco arcillosa en estado muy compacto

Arena pumítica en estado muy compacto (miembro arenoso de la

formación tarango

Por su parte, la permeabilidad es la que se muestra en la siguiente tabla.

Profund	idad (m)		
de	а	Descripcion	(cm/s)
0	5.6	Relleno	1x 10 ⁻⁴
5.6	15	Arcilla de consistencia muy blanda a blanda	1x10 ⁻⁶
15	31	Arcilla de consistencia media a dura	1x10 ⁻⁶
31	42	Arena de grano grueso	1x10- ⁴
42	49	Arena limosa poco arcillosa en estado muy compacto	1x10 ⁻⁴
49	69	Arena de grano grueso	1x10 ⁻⁴
69	75	Arena pumítica en estado muy compacto	1x10 ⁻⁴

Tabla 5.3.7 Coeficiente de permeabilidad de los estratos de la zona de interés

Características geométricas del proyecto

La geometría en planta de la excavación es la que se ilustra en la Figura5.3.37; asimismo los cortes A-A' y B-B' se presentan en las Figuras 5.3.38 y 5.3.39, respectivamente.

Figura 5.3.37 Planta esquemática de la estación Mexicaltzingo del Metro (Consorcio Línea 12, 2008)

Figura 5.3.38 Corte A-A' en la estación Mexicaltzingo del Metro (Consorcio Línea 12, 2008)

Figura 5.3.39 Corte B-B' en la estación Mexicaltzingo del Metro (Consorcio Línea 12, 2008)

Proceso constructivo

El proceso constructivo que está propuesto para realizar la ex cavación y que se seguirá en la modelación numérica es:

- Una Fase previa que consiste en excavar 1m en la costra superficial; realizado esto, se colocan los e lementos de r etención, qu e co nsisten en muros Mi lán colados *in situ* y t ablestacas hincadas; posteriormente se lleva a cabo la excavación. Debido al tránsito en la zona, el trabajo se realiza en cuatro fases formadas cada una por cierto número de etapas:
- *Fase A* Se exc avan las z onas ane xas a l a p arte ce ntral de l a e xcavación en si ete etapas simultáneas.
- *Fase B* Se excava la zona lateral izquierda en tres etapas.
- *Fase C* Se excava la zona central en siete etapas.

- Fase D Se excava la zona lateral derecha en tres etapas.

Después de cada etapa, se cuelan las losas a los correspondientes niveles. Se cuenta con 6 niveles de apuntalamiento en las excavaciones más profundas y dos en las restantes.

El pro ceso constructivo se i lustra en la Figura 5.3.40, que c orresponde a l c orte C -C' de la Figura 5.3.37, que es además el que se modelará en este estudio.

Figura 5.3.40 Corte B-B' en la estación Mexicaltzingo de la Línea 12

Características generales de la modelación numérica con el MEF

En la Figura 5.3.41 se puede apreciar el modelo de la excavación dibujado con el programa PLAXIS. Asimismo, en la Figura 5.3.42 se p resenta l a m alla de e lementos finitos que cons iste en 1455 elementos, 12475 nodos, así como 17460 puntos de esfuerzo (puntos de integración de Gauss).

Figura 5.3.41 Modelo de la excavación dibujado con el programa PLAXIS

Figura 5.3.42 Malla de elementos finitos dibujada en el programa PLAXIS

Al a plicar e l M EF c on la me todología mostrada e n e l c apítulo 4 se obt ienen las distribuciones de presión de por o y de presión de por o inducida que a continuación s e muestran. Los resultados se presentan por fase.

Fase previa

La *Fase previa* consiste en excavar 1 m etro en la cos tra sup erficial e n todo el l argo de la subestructura. Esta etapa se lleva a cabo por arriba del NAF. La distribución de presiones de poro que se dan después de esta primera etapa se muestra en la figura 5.3.43.

Figura 5.3.43 Distribución de presión de poro al final de la Fase previa

Esta nueva con figuración se d ebe a l a i nducción de un a presión d e po ro e n el suelo; la configuración de este esfuerzo se muestra en la figura 5.3.44.

Figura 5.3.44 Distribución de presión de poro inducida al final de la Fase previa

Se puede observar que se genera una presión de poro inducida a pesar de desarrollarse la etapa por arriba del NAF debido a la baja permeabilidad y alta deformabilidad del suelo. La presión de poro inducida altera la distribución de carga hidráulica y su distribución; esto se puede observar en el corte de la figura 5.3.45.

Figura 5.3.45 Distribución de carga hidráulica al final de la Fase previa, a) detalle, b) corte

Es claro que los estratos de suelo blando tienen un valor de carga hidráulica di ferente al de los suelos granulares los cuales mantienen la carga hidráulica original a pesar de la descarga. También es de notar que el efecto mayor es al centro de la zona descargada; hacia las orillas la alteración es menor.

La inducción de una presión de poro inducida generada en la *Fase previa* afecta la distribución de presión de poro y carga hidráulica original en la zona del suelo donde se llevará a cabo la Fase 1. Por lo que dichas condiciones serán las condiciones iniciales para la primera etapa de la Fase 1 de excavación.

En cuanto se concluye la excavación de esta fase, se hincan las tablestacas y se cuelan los muros Milán, todas estas actividades deforman el medio, estas deformaciones se muestran en la figura 5.3.46 la cual es la malla de el ementos finitos de formada, aumentada 5 veces. La deformación mayor es de 7 cm al centro de la excavación.

Figura 5.3.46 Detalle de la malla deformada aumentada cinco veces al final de la fase previa

Fase A

La *Fase A* consiste en excavar las dos zonas contiguas al área central de forma simultánea, como se muestra en la figura 5.3.39; el avance en estas zonas se modela en siete etapas como se indica en la figura 5.3.47.

Figura 5.3.47 Proceso constructivo de la Fase A

Las siete etapas se llevan a cabo por debajo del NAF. La primera se desarrolla en suelo granular y las r estantes seis en suelo blando. Las descargas su cesivas v an modificando l a di stribución de presión de poro pues según se incrementa la descarga aumenta la presión de poro que se induce en el su elo. La figura 5.3.48a m uestra la presión de poro total por e tapa, m ientras que l a 5.3.48b muestra la evolución de la presión de poro inducida por etapa.

Figura 5.3.48 Distribución de esfuerzos, a) presión de poro, b) presión de poro inducida

Debe notarse que la primera etapa es la única que se lleva por completo en suelo granular, el efecto que se tiene en esta etapa puede observarse en la figura 5.3.49 que muestra la distribución de carga hidráulica mediante tres cortes.

Figura 5.3.49 Carga hidráulica al finalizar la etapa 1 de la Fase A de excavación, a) detalle b) cortes

Lo que se aprecia en la figura anterior, es un f enómeno similar al observado en la *Fase previa*: existe un comportamiento diferente de los suelos blandos y de los granulares. La capa de suelo granular que sobreyace los suelos blandos tiene una carga hidráulica acorde con lo que indican las ecuaciones de flujo establecido de agua; por su parte, los que la subyacen no sufren al teración a pesar de la de scarga. Por otra parte, al centro de la excavación, en los suelos blandos, la carga hidráulica ya no tiene un valor ún ico sino que varía de acuerdo al valor de la presión de por o inducida, que puede observarse en la Figura 5.3.50.

Figura 5.3.50 Presión de poro inducida al finalizar la Etapa 1 de la Fase A de excavación, a) detalle b) corte

La siguiente etapa de esta *Fase A*, se lleva a cabo en suelo blando; en cuanto se excava en éste se puede observar claramente el efecto de la presión de poro inducida en la posición del NAF. En la zona donde es mayor la presión de poro inducida, esto es bajo el fondo de la excavación, se puede observar un descenso del NAF. Lo anterior se puede apreciar en la figura 5.3.51.

Figura 5.3.51 Posición del NAF al finalizar la etapa 1 de la Fase A de excavación

Se puede observar que el descenso del NAF es prácticamente homogéneo en todo el fondo de la excavación; en esta caso el descenso tiene una magnitud $Z_0=2.10 m$.

Las siguientes cinco etapas se llevan a cabo en suelo blando, la distribución de presiones de poro se presenta en 1 a g ráfica d e l a f igura 5.3.52; en esta s e c omparan l os r esultados obt enidos numéricamente para cada etapa de excavación al centro de la misma, con las condiciones iniciales (sin alteración) y final a largo plazo (graficadas estas últimas con líneas discontinuas).

Figura 5.3.52 Evolución de la presión de poro por etapas medida al centro de la excavación de la Fase A

En la figura anterior se observa que, cuando s e e xcava e n s uelo blando, el N AF de sciende automáticamente, también es de notar que los suelos granulares inferiores no sufren, en ninguna etapa, alteración alguna.

Al finalizar la *Fase A* de excavación, la de scarga ha provocado de formaciones en el suelo. La configuración del medio deformado s e pue de a preciar en la figura 5.3.53 que muestra la malla deformada aumentada cinco veces. La deformación mayor se da en el centro de la excavación lateral derecha y tiene una magnitud de 0.65 m.

Figura 5.3.53 Detalle de la malla deformada, aumentada 5 veces, al finalizar la Fase A

Por otra parte, en la gráfica de la figura 5.3.52 se observa que, al finalizar la *Fase A* de excavación, permanece en el suelo una presión de poro inducida negativa, misma que desaparecerá por flujo de agua o la inducción de una presión de poro inducida positiva. Esto último se da por la construcción de la estructura de la estación del metro, y se pue de observar en la gráfica de la figura 5.3.54, la cual muestra la evolución de la presión de poro inducida de acuerdo con en el modelo numérico en el nodo B, que está ubicado bajo el fondo de la etapa final de excavación de la fase que se está discutiendo.

En la gráfica 5.3.54 l a Etapa 3 corresponde a la primera e tapa de l a *Fase A*; se not a como gradualmente se incrementa la presión de poro inducida negativa hasta llegar a un valor máximo en la E tapa 9 que cor responde con la úl tima et apa d e exc avación de e sta Fase. La et apa 1 0 corresponde a la construcción de la estructura y se nota como se incrementa el valor de la presión de poro inducida hasta alcanzar un valor positivo; lo anterior también se observa en la presión de poro total cuya evolución se muestra en la gráfica de la figura 5.3.55.

Figura 5.3.54 Evolución de la presión de poro inducida calculada numéricamente en el nodo B

Figura 5.3.55 Evolución de la presión de poro total calculada numéricamente en el nodo B.

En la figura anterior se nota como disminuye el valor de la presión de poro a medida que avanza la excavación hasta tener un valor negativo en la Etapa 9; esto corresponde al fenómeno del descenso del NAF. En la Etapa 10 correspondiente a la construcción parcial de la estructura, el peso de la misma es suficiente para hacer que el NAF ascienda hasta coincidir con el fondo de la excavación e incluso permite que el agua de los poros del suelo tenga un v alor de presión de poro mayor que cero, como se observa en la figura 5.3.56.

Figura 5.3.56 Presión de poro al colarse la estructura en la excavación la Fase A, a) detalle, b) corte

Fase B

La siguiente Fase de excavación se da en la zona lateral izquierda. Esta fase se desarrolla en tres etapas, como se muestra en el esquema de la figura 5.3.57 la primera se lleva en suelo granular, y las siguientes en suelo blando.

Figura 5.3.57 Proceso constructivo de la Fase B

El comportamiento del suelo es similar al que se describió en la *Fase A*, la diferencia es que ahora al estar dicha zona contigua a una ya excavada la estabilidad de la pared izquierda es mejor que la de la derecha. La distribución de presión de poro inducida y de presión de poro total se muestra en la figura 5.3.58b respectivamente, para las tres etapas de excavación.

Figura 5.3.58 Distribución de esfuerzos, a) presión de poro, b) presión de poro inducida

El comportamiento de la carga hidráulica correspondiente a la primera etapa se muestra en el corte de la figura 5.3.59.

Figura 5.3.59. Distribución de carga hidráulica al centro de la excavación de la etapa 1 *Fase B*, a) detalle, b) corte A-A'.

Se obs erva nue vamente que l os su elos g ranulares y l os bl andos trabajan bajo diferente ca rga hidráulica. La capa de suelo granular que sobreyace se comporta de acuerdo con lo establecido por las ecuaciones de flujo de agua establecido en suelos. Por otra parte, los materiales granulares que subyacen los suelos blandos no tienen alteración en la distribución de carga hidráulica. Los estratos de suelos blandos presentan una distribución que depende de las deformaciones del suelo; cuando el suelo se comprime, la carga hidráulica es mayor que la original, y cuando se expande es menor.

Existe una tendencia de la pared derecha a inclinarse, lo que hace que la deformación del suelo bajo el fondo de la excavación no s ea homogénea. Esto se pue de observar en la figura 5.3.60 que muestra los vectores de desplazamiento para la primera etapa de excavación de la *Fase B*.

Figura 5.3.60 Vectores de desplazamiento al finalizar la Etapa 2 de excavación de la Fase B.

En la figura anterior se puede apreciar que, debido a la condición de estabilidad de esta fase, el suelo se deforma lateralmente generando zonas de suelo que se comprimen y otras que se expanden según los esfuerzos a los que están sometidas. A diferencia de los vectores en el fondo de la *Fase A* que son casi verticales, en la *Fase B* los vectores de desplazamiento son inclinados. Ciertas zonas del suelo blando se deforman por compresión y otras por tensión, lo cual genera a su vez zonas de presión de poro inducida negativa y otras de presión de poro inducida positiva, como se nota en la figura 5.3.61.

Figura 5.3.61 Distribución de presión de poro inducida al centro de la excavación de la etapa 1 *Fase B*, a) detalle, b) corte.

Con base en lo anterior, el descenso del NAF ocurre únicamente en ciertas zonas del fondo de la excavación; esto puede apreciarse en la figura 5.3.62 donde las zonas de presión de poro negativa se encuentran coloreadas con color azul oscuro.

Figura 5.3.62 Zonas de presión de poro negativa al finalizar la etapa 2 de la Fase B

El descenso del NAF no es homogéneo. Se puede apreciar que en la siguiente etapa (Etapa 3, *Fase B*) sucede algo similar.

Figura 5.3.63 Zonas de presión de poro negativa al finalizar la etapa 3 de la Fase B

La evolución de la presión de poro total para las tres etapas de esta *Fase B*, en un corte al centro de la excavación, se muestra en la gráfica de la figura 5.3.64.

Figura 5.3.64 Evolución de la presión de poro por etapas en el centro de la excavación de la Fase B

Puede observarse en la gráfica de la figura 5.3.64 que, en las Etapas 2 y 3, la presión de poro tiene, en la parte inmediatamente bajo el fondo de la excavación una magnitud menor que la indicada por la línea correspondiente a la condición hidrostática final, dibujada con línea punteada.

En la gráfica de la fi gura 5.3.65 se muestra la evolución de la presión de poro en el no do B, ubicado bajo el fondo de la excavación de la última etapa de esta fase.

Figura 5.3.65 Evolución de presión de poro por etapa calculada en el Nodo D para la Fase B

De la gráfica de la figura 5.3.65 se observa que, a diferencia de la fase anterior, en este caso la presión d e po ro inducida por la so brecarga no es suficiente para e liminar la presión de poro inducida negativa existente. Por lo tanto, bajo el fondo de la excavación permanece una zona con una presión de poro inducida negativa. Esta presión de poro inducida desaparecerá por un flujo de agua que incremente la presión de poro mediante un proceso similar al de consolidación, o hasta que haya una sobrecarga de valor significativo.

Por otra parte, al finalizar esta fase el suelo se ha deformado debido a la última serie de descargas. Los desplazamientos en el suelo se muestran en la malla deformada de la figura 5.3.66, la cual esta aumentada cinco veces, y cuyo valor máximo es de 0.55 m al centro de la excavación de la *Fase A*.

Figura 5.3.66 Detalle de la malla deformada, aumentada cinco veces, al finalizar la excavación de la Fase B.

Fase C

Después de colarse las losas de la estructura, se inicia la excavación de la *Fase C*, la cual está conformada por siete etapas de excavación como se puede observar en la figura 5.3.67.

Figura 5.3.67 Procedimiento constructivo de la excavación de la Fase C.

Las distribuciones de presión de poro y de presión de poro inducida son similares a lo descrito en las f ases ant eriores; esto se pue de ap reciar en las figuras 5.3.68 y 5.3.69 que muestran la distribución de presión de poro para las dos primeras etapas de excavación respectivamente.

Figura 5.3.68 Presión de poro para la primera etapa de la Fase C, a) detalle, b) corte

Figura 5.3.69 Presión de poro para la segunda etapa de la Fase C, a) detalle, b) corte

De las figuras anteriores se observa que existe un de scenso del NAF inmediatamente de spués de que se genera la descarga en la segunda etapa.

Por otra parte, en la figura 5.3.70 se muestra cómo evoluciona la distribución de presiones de poro para las siete etapas de la *Fase C*.

Figura 5.3.70 Evolución de la presión de poro total por etapa al centro de la excavación de la Fase C

Ahora b ien, en esta f ase l as condiciones d e es tabilidad s on s imilares e n a mbos l ados de la excavación, por lo que el suelo se deforma homogéneamente y el descenso del NAF también ocurre así. Lo anterior se pue de apreciar en la figura 5.3.71 que muestra l a posición del NAF y su descenso Z_0 bajo el fondo de la excavación para cada etapa.

Figura 5.3.71 Posición del NAF al terminar cada etapa de excavación de la Fase C (continúa)

Figura 5.3.71 (continuación) Posición del NAF al terminar cada etapa de excavación de la Fase C

Al finalizar l a *Fase C*, el sue lo se de forma con la configuración que se muestra en la malla deformada de la figura 5.3.72, ampliada cinco veces. La deformación máxima se da en la pata del muro Milán que contiene la pared derecha de la *Fase A* y tiene una magnitud de 0.75 m.

Figura 5.3.72 Detalle de la malla deformada, aumentada cinco veces, al finalizar la *Fase C* de excavación

Concluida la exc avación se construye la estructura que genera una presión de poro inducida positiva, su efecto se observa en la gráfica de la figura 5.3.73 que muestra la evolución de la presión de poro en el nodo A ubicado bajo el fondo de la última etapa de la *Fase C*.

Figura 5.3.73 Evolución de la presión de poro inducida calculada en el nodo A.

Por su parte la presión de poro total evoluciona en la forma que se muestra en la figura 5.3.74.

Figura 5.3.74 Evolución de la presión de poro calculada en el nodo A

De las figuras anteriores se observa como la presión de poro cambia a medida que avanza el proceso constructivo. Al llevarse a cabo la serie de descargas correspondientes a la *Fase C*, la presión de poro desciende hasta ser menor que cero (Etapa 21), lo que corresponde al descenso del NAF. Por último, la construcción de la estructura permite el ascenso del NAF hasta coincidir con el fondo de la excavación.

Fase D

Esta fase inicia inmediatamente de spués de colarse la estructura en la excavación de la *Fase C* y consta de tres etapas. La distribución de presión de poro se genera con una distribución similar a lo expuesto anteriormente. La figura 5.3.75 muestra la evolución de la presión de poro por etapa al centro de la excavación.

Figura 5.3.75 Evolución de la presión de poro por etapa al centro de la excavación

Al finalizar la excavación la deformación es la que se muestra en la malla deformada de la figura 5.3.76 la cual está aumentada 5 veces.

Figura 5.3.76 Detalle de la malla deformada al finalizar la Fase D de excavación aumentada 5 veces

La evolución de la presión de poro calculada e n e l nodo E que se ubica bajo e l fondo de la excavación de la *Fase D*, se muestra en la figura 5.3.77.

Figura 5.3.77 Evolución de la presión de poro por etapa calculada en el nodo E

Concluidas la excavación y colocada la subestructura, se coloca un relleno sobre la losa superior. Esta sobrecarga induce una cierta presión de poro positiva, sin embargo no es suficiente para hacer que el NAF ascienda hasta coincidir con el fondo de la excavación, por lo que en las zonas laterales permanecerá una presión de poro inducida negativa que se d isipará en un proceso similar al de consolidación. Las zonas con presión de poro total negativa están coloreadas con azul oscuro en la figura 5.3.78.

Figura 5.3.78 Zonas que permanecen con presión de poro inducida negativa

La deformación de la estructura que albergará la estación Mexicaltzingo se puede observar en la figura 5.3.79 la cual no tiene factor de escala. La deformación máxima se da en la pata del muro Milán que contiene la pared derecha de la *Fase A*, y tiene una magnitud de 0.75 m.

Figura 5.3.79 Detalle de la malla deformada sin factor de escala, concluida la excavación y la construcción de la estructura

La presión de poro inducida remanente, como se mencionó anteriormente, se disipará en un tiempo determinado. En las zonas donde existe presión de poro inducida después de concluida la estación Mexicaltzingo se encuentran los nodos D y E. En esos nodos se calculó con el MEF el tiempo que tarda en disiparse la presión de poro inducida, esto se muestra en la figura 5.3.80.

Figura 5.3.80 Tiempo de disipación de la presión de poro inducida, calculado en los nodos D y E

En la gráfica anterior puede observarse que el tiempo que tarda en disiparse la presión de poro inducida es muy corto, pero debe considerarse que la magnitud de la presión de poro inducida era también pequeña; de esta forma, en menos de dos días, en el nodo E la presión de poro inducida casi ha desaparecido, y en el nodo D la disminución es considerable.

capítulo 6 conclusiones

En este trabajo se analizó el problema del control del agua en excavaciones en suelos de distintas permeabilidades.

Se revisaron las diferentes técnicas de excavación y bombeo. Se analizó la teoría de flujo de agua en medios porosos rígidos. Se planteó un modelo analítico que permite calcular la presión de poro bajo el fondo de una excavación para medios deformables con baja permeabilidad; el análisis se realizó en términos de esfuerzos y deformaciones a corto y a largo plazo. El modelo analítico desarrollado utiliza los coeficientes de presión de poro de Skempton y de influencia y se basa en una idea de Juárez y Rico.

Se analizó una excavación prototipo a cielo abierto con tablestacas en las paredes. Los análisis se realizaron con el método del elemento finito (MEF) considerando al suelo como un medio poroso rígido o deformable. Para suelos con permeabilidad media y alta se utilizó el programa PLAXFLOW basado en la ecuación de flujo transitorio; para suelos con permeabilidad baja y heterogéneos (con un estrato de suelo granular intercalado en el suelo blando) se utilizó el programa PLAXIS que permite tomar en cuenta las presiones de poro inducidas por las deformaciones del suelo. En estos últimos análisis, se cambiaron las tablestacas por taludes y se colocó una sobrecarga perimetral. Por último se modeló la excavación de la estación Mexicaltzingo de la línea 12 de Sistema de Transporte Colectivo Metro.

De los análisis realizados se concluye lo siguiente:

 Al aplicar la expresión de flujo de agua transitorio con el MEF en una excavación por etapas en un suelo con permeabilidad alta, se observa que el flujo que se presenta en cada etapa es de tipo establecido y que se genera de forma inmediata debido a que la permeabilidad del suelo permite el libre paso del agua.

- En un suelo con permeabilidad media, el flujo que se presenta es de tipo transitorio pero, a medida que suceden las etapas de excavación, la distribución de carga hidráulica se asemeja progresivamente a la correspondiente a flujo establecido.
- Al analizar una excavación en un suelo con permeabilidad baja con la ecuación de flujo de agua transitorio (PLAXFLOW), se observa que a corto plazo, la distribución de carga hidráulica sólo se altera en la zona ubicada inmediatamente debajo del fondo de la excavación. Este tipo de análisis es poco realista puesto que no permite tomar en cuenta las presiones de poro inducidas por deformación del suelo.
- Para modelar la generación de la presión de poro en una excavación en suelo blando de baja permeabilidad, se planteó un modelo analítico que considera que los suelos blandos sufren un decremento de presión de poro (presión de poro inducida) debido a su deformabilidad.
- Un efecto previsible de la generación de presión de poro inducida es el descenso del nivel de aguas freáticas (NAF) instantáneamente al llevarse a cabo la excavación. El descenso instantáneo del NAF implica que no es necesario bombeo previo en una excavación en suelo blando, esta afirmación constituye la base de las recomendaciones incluidas en las NTCDCC acerca del uso de bombeo en excavaciones en suelos blandos, cuyos objetivos se limitan a: "
 - a) Dar una dirección favorable a las fuerzas de filtración, o
 - b) preservar el estado de esfuerzos del suelo, e
 - c) interceptar las filtraciones provenientes de lentes permeables."

Se realizaron modelaciones de excavaciones en suelos blandos utilizando el MEF (PLAXIS) que permite tratar al suelo como un medio continuo, es decir las deformaciones y esfuerzos (incluida la presión de poro) se conocen en todo el campo considerado, no únicamente bajo el fondo de la excavación. Para calcular presiones de poro el programa utiliza una ecuación que relaciona la presión de poro inducida con las deformaciones volumétricas. Esta ecución no considera que las deformaciones por cortante provocan también decremento en la presión de poro.

- El modelo constitutivo utilizado para los suelos blandos fue de tipo Soft-soil model. La cantidad de parámetros que utiliza lo hacen una herramienta accesible.
- Los análisis realizados con el programa PLAXIS muestran que la presión de poro inducida por descarga en una excavación tarda en disiparse un tiempo generalmente largo, por lo que es conveniente diferenciar en una excavación en suelo blando entre comportamiento a corto y a largo plazo.
- Estos mismos análisis muestran que, durante una excavación, la presión de poro inducida se genera en el fondo y periferia de la misma, pero el descenso del NAF se da únicamente bajo el fondo, debido a que la magnitud de la presión de poro inducida en la periferia no es suficientemente grande como para alterar la posición del NAF.
- La estabilidad de la excavación determina la magnitud del descenso del NAF, pues una condición de potencial inestabilidad genera exceso de presión de poro positivo que elimina la presión de poro inducida por la excavación, esto fue visible en los experimentos numéricos al cambiar las tablestacas por taludes en las paredes y colocar una sobrecarga perimetral.

- A largo plazo, la presión de poro inducida tiende a desaparecer por el efecto del flujo de agua transitorio, esto genera el ascenso gradual del NAF hasta coincidir con el fondo de la excavación, es decir que el flujo de agua tiende a ser de tipo establecido.
- Es importante notar que difícilmente existe en la naturaleza un suelo blando homogéneo, y que generalmente existen lentes de suelo granular intercaladas en el suelo blando. En excavaciones en suelos heterogéneos (con estrato granular permeable intercalado) los análisis realizados muestran que el suelo granular se comporta de acuerdo con la teoría de flujo de agua en suelos, mientras que en el suelo blando existen diferencias importantes determinadas por la presión de poro inducida. También se observó que el descenso del NAF tiene una magnitud similar a la que se presenta en un suelo blando homogéneo.
- El mayor riesgo en una excavación en suelo heterogéneo del tipo anterior es la falla por subpresión. Al modelar un caudal extraído con bombeo utilizando la ecuación de flujo de agua transitorio y el programa PLAXFLOW se confirmó que el bombeo reduce el riesgo por subpresión. Resultaría interesante revisar la distribución de presión de poro en el suelo blando bajo la combinación de descarga por excavación y bombeo; sin embargo, hasta este momento una combinación de las condiciones mencionadas parece rebasar la capacidad de los programas tipo PLAXIS.
- Se aplicó la metodología desarrollada en este trabajo en el análisis de una excavación de la estación del Metro Mexicaltzingo de la Línea 12 del metro. Se comprobó que existen diferencias entre el comportamiento hidráulico de los suelos finos deformables y los granulares rígidos. Además, se observó que la forma como se deforma el suelo influye en la magnitud y signo de la presión de poro final, así como en la forma cómo desciende el NAF. Otro punto interesante que se observó en este análisis es que el NAF puede ascender por una sobrecarga, ya que genera en el suelo una presión de poro inducida de signo positivo.
- En cuanto a los efectos que provoca el descenso del NAF se debe notar que dicho fenómeno genera un gradiente hidráulico mayor que el que se generaría si se considerara el nivel del agua en el fondo de la excavación. Al aumentar el gradiente, disminuye la estabilidad de la excavación.
- Hace falta realizar mediciones de campo del descenso del NAF durante una excavación en suelo blando para validar las modelaciones numéricas.
- Este trabajo muestra que los métodos numéricos permiten analizar problemas complejos de control de agua en excavaciones en suelos blandos y es previsible que en el futuro complementarán útilmente los métodos analíticos empleados tradicionalmente en la práctica.

capítulo 7 bibliografía y referencias

Alberro, J., "Investigaciones sobre el metropolitano de la ciudad de México. Mediciones efectuadas en las excavaciones", Revista Ingeniería, Julio-Septiembre, Facultad de Ingeniería, UNAM, México., 1970.

Alberro, J., "Stabilité à long term des excavations dans la ville de México", Simposio internacional de Mecánica de Suelos, Vol I., Oaxaca, 1979.

Alberro, J., *"Líneas características y estabilidad de las excavaciones en las arcillas del valle de México". Proceedings*, International Symposium on Geotechnical Engineering of Soft Soils. Sociedad Mexicana de Mecánica de Suelos, Vol. I, pp. 323-330, México, 1987.

Alberro, J. y Hiriart, G., "*Resistencia a largo plazo de las arcillas de la Ciudad de México*", Publicación Num. 317 del Instituto de Ingeniería, UNAM, 1973.

Atkinson, J., "An introduction to the Mechanics of Soil and foundations through critical state soil mechanics", Mc Graw Hill, Londos, 1993.

Auvinet, G. & López, N. P., "*Deep excavations in Mexico City soft clay*", Invited presentation, ASCE's 1998 National Convention, Boston, Massachusetts, USA., Geotechnical Special Publication N0 86, *Big Digs around the world*. pp. 211-229, 1998.

Auvinet, G. & López, N. P., "*Deep excavations in Mexico City soft clay*", Invited presentation, ASCE's 1998 National Convention, Boston, Massachusetts, USA., Geotechnical Special Publication N0 86, *Big Digs around the world*. pp. 211-229, 1998.

Auvinet, G. "*Apuntes del curso Mecánica de Suelos Aplicada*", División de estudios de Posgrado de la Facultad de Ingeniería, UNAM, México, 2006.

Auvinet, G, Bues. M., y Pineau. A. "Cours de Mecanique des milieux Continus", Ecole Nationale Supérieure de Geologie, París, 1994.

Auvinet, G. & Romo M. P., "*Deep excavations in Mexico City soft clay*", Invited presentation, ASCE's 1998 National Convention, Boston, Massachusetts, USA., Geotechnical Special Publication N0 86, *Big Digs around the world*. pp. 211-229, 1998.

Auvinet, G., Ovando, E., Mendoza, M. et al. "Informe Final. Primera Etapa", Proyecto de la Línea 12 del Metro, Mixcoac-Tláhuac (Estudios consistentes en revisar, analizar y evaluar los aspectos relacionados con la Ingeniería Geotécnica y la Ingeniería Geosísmica asociados con el análisis, diseño y construcción de la Línea 12 del Metro, Primera Etapa), Instituto de Ingeniería UNAM, 2009.

Bathe, K.J. & Wilson, E.L., "Numerical methods in finite element analysis", Prentice Hall, New Jersey, 1976.

Bear, J., "Hidraulics of groundwater", Mc Graw Hill, Haifa, 1979.

Biot, M.A., "*General solutions of the ecuations of elasticity and consolidation for a porous material*", journal of Applied Mechanics, Vol. 23,No. 02, 1956, pp. 91-96.

Biot, M.A., "General Theory of threedimensional consolidation, Journal of Applied Physics No. 12, 1941, pp. 155-164.

Bishop, A.W., "The use of pore pressure coefficients in practice", Geotechnique Vol. 4, No. 04, December, 1954, pp. 148-152.

Bjerrum, L. & Eide, O., "Stability of strutted excavations in clay", Geotechnique, Vol. 06, No. 01, 1956.

Borja, R.I., "Analysis of incremental excavation based on critical state theory ", Journal of Geotechnical engeenering Vol. 116, June, 1954.

Bowles, J. E., "Foundation analysis and design ", Mc. Graw Hill, New York, 5Th edition, 1999.

Brinkgreve, RBJ., "Hand book of the finite element code for soil and rock analysis PLAXIS 2D.V8", Balkema, Roterdam, 2002.

Brinkgreve, RBJ, Al-Khoury, R., & van Esch, J.M., "Hand book of the finite element code for groundwater flow analysis PLAXFLOW.V1.4", Delft University of Technology & Plaxis, 2006.

Cedergren, H., "Seepage, Drainage, and Flow Nets", John Wiley & Sons, New York, 1977.

Clough, W. & Mana, A., "Lessons learned in finite element analyses of temporary excavation in soft clay", Second International Conference on Numerical Methods in Geomechanics, Virginia, 1976.

Consorcio Línea 12., "*Memoria geotécnica del tramo entre los cadenamientos 20+137.7 al 20+325*", México, 2008.

Consorcio Línea 12., "Proceso constructivo de la estación Mexicaltzingo", México, 2008.

Costet & Sanglerat, "Cours pratique de mécanique des sols", Chap.VII et VIII, Dunod Editeur, 1969.

Correa, J., "*Problemas de una excavación profunda en arcilla de la ciudad de México*", Segundo Congreso Panamericano de Mecánica de Suelos e Ingeniería de Cimentaciones, Brasil, Vol. 2, pp. 189 - 223, 1963.

Chen, W.F. & Balady G.Y., "Soil plasticity", Elsevier, Amsterdam, 1985.

Duncan, J. & Chang, C.Y., "*Nonlinear analysis of stress and strain in soils*", Journal of Soil Mechanics and Foundation Division, ASCE 96-SM-5, September, 1970, pp 1629-1653.

Figueroa G.V., "*Pruebas de bombeo en pozos con flujo transitorio y sus aplicaciones*", Tesis de maestría, UNAM, México, 1968.

Fletcher, G., y Smoots, V.A., "*Estudios de suelos y cimentaciones en la industria de la construcción*", Limusa, México, 1982.

González, L.V., Ferrer. M., Ortuño. L, et al, "ingeniería Geológica ", Ed. Pearson, Madrid, 2004.

Gutiérrez, C., 1992, "*Abatimiento del nivel freático para construcción de cimentaciones*", Tesis de maestría, DEPFI, UNAM, México

G.D.F., "*Reglamento de construcciones para el Distrito Federal*", Gaceta Oficial del Departamento del Distrito Federal, México, 2004.

G.D.F., "*Normas Técnicas Complementarias para diseño y construcción de cimentaciones*", Gaceta Oficial de Departamento del Distrito Federal, México, 2004.

Hálek V. & Švec J., "Groundwater hydraulics", Elsevier scientific publishing company, Amsterdan, 1979.

Hantush, M.S., "*Hydraulics of wells*", Chapter 5 of Ven Te Chow, "*Advances in hydroscience*", pp. 281-432, Academic Press, New York, 1964.

Hantush, M.S., "Modification of the Theory of Leaky Aquifers", Journal of Geophysical Research, Volume 65, No. 11, November 1960.

Harr, M. E., "Groundwater and Seepage", McGraw-Hill book Company, New York, 1962.

Hill, R., "The mathematical theory of plasticity", Oxford University Press, London, 1950.

Holt D.A. & Griffiths, D.V., "Transient analysis of excavations in soil", Computers and Geotechnics No. 13, 1992.

Hsi, J.P., Carter, J.P., & small, J.C., "Surface subsidence and drawndown of the water table due to pumping", Geotechnique Vol. 44, No. 3, 1994.

Hsi, J.P. & small, J.C., "Analysis of excavation in an elasto-plastic soil involving drawdown of the water table", Computers and Geotechnics No. 13, 1992.

Hsi, J.P. & small, J.C., "*Simulation of excavation in a poro elastic material*", International Journal for Numerical and Analytical Methods in Geomechanics Vol. 16, 1992, pp. 25-43.

Jambu. N., "Slopes and excavations in normally and lightly overconsolidated clays", GProceedings of the 10th ICSMFE, Tokyo, 1977.eotechnique.

Juárez, E. Rico A., "Mecánica de suelos Tomo 2, Aplicaciones de la mecánica de suelos", Ed. Limusa, México, 1963.

Juárez, E. y Rico A., "Mecánica de suelos Tomo 3, Flujo de agua en suelos", Ed. Limusa, México, 1963.

Lambe, W.T., "Pore pressures in a foundation clay", Transactions of ASCE, Vol. 128, Part I, pp. 865-896, 1963.

Lambe, W.T. & Whitman, R.V., "Soil Mechanics ", John Wiley & Sons, New York, 1969.

Livsley, R.K., "Elementos finitos, introducción para ingenieros", Limusa, México, 1994.

Mana, A.I. & Clough, G.W., "Prediction of movement for braced cuts in clay", Journal of the Geotechnical Division, ASCE, Vol. 197, N° GT6, June, pp. 759-778, 1981.

Mansur, C.I. and Kaufman, I., "Dewatering", Chapter 3 of Leonards, "Foundation Engineering", pp. 241-349,

Marsal, R.J. and Mazari, M., "The subsoil of Mexico City", Facultad de Ingeniería, UNAM, Mexico., 1959.

Mase, G.E., "Mecánica del medio contínuo", Mc Graw Hill, México, 1978.

McNamee, J., "Seepage into a sheeted excavation ", Geotechnique Volume 01, No. 04, 1949, pp. 229-241.

Muir, D., "Soil behaviour and critical state soil mechanics", Cambridge University Press, 1990.

O'Rourke, T. D., "Ground movements caused by braced excavations", Journal of the Geotechnical Division, ASCE, Vol 107, No GT9, September, pp. 1159-1178, 1981.

Osaimi, A.M., & Clough, G. W. "Pore pressure dissipation during excavation", Journal of the Geotechnical Division, ASCE, Vol. 128, No GT4, April, pp. 481-498, 1979.

Ou, C.Y., "Deep excavation", Taylor & Francis Group, London, 2006

Peck, R.B., "*Deep excavations and tunneling*", State of the Art Volume, Proceedings, Seventh International Conference on Soil Mechanics and Foundation Engineering, Mexico, pp. 225-290, 1969.

Poskitt, T.J., *"The consolidation of saturated clay with variable permeability and compressibility"*, Geotechnique Volume 19, No. 2, 1969.

Poulus, H.G. & Davis, E.H., "Elastic solutions for soil and rock mechanics", John Wiley and Sons, New York, 1974.

Potts & Zdravkovic., "Finite element analysis in geotechnical engineering", Thomas Telford, London, 1999..

Powers, J.P., "*Construction Dewatering: a Guide to Theory and Practice*", John Wiley & Sons, New York, 1981.

Powrie, W. & Preene. M., "*Time drawdown behaviour of construction dewatering systems in fine soils*", Geotechnique Vol. 44, No. 01, 1994.

Preene, M. & Powrie, W., "Steady state performance of construction dewatering systems in fine soils", Geotechnique Vol. 43, No. 02, 1993.

Puller. M., "Deep excavations, a practical manual", Thomas Telford, London, 1996.

Raymond, G. P., "Prediction of undrained deformations and pore pressures in weak clay under to embakements", Geotechnique Vol. 22, No. 03, 192, pp. 381-401..

Reddi N. L., "Seepage in soils", John Wiley & Sons, New Jersey, 2003.

Reséndiz, D. and Zonana, J., "La estabilidad a corto plazo de excavaciones a cielo abierto en la arcilla del Valle de México", Volumen Nabor Carrillo, Secretaría de Hacienda y Crédito Público, Mexico, 1969.

Rodríguez, J. M., "Sistemas de bombeo para fines de excavaciones en el acuífero del valle de *México*", Memoria, Simposio sobre Construcción especializada en geotecnia, SMMS, 1989.

Rodríguez, J.M. and Flamand, C., "*Strut loads recorded in a deep excavation in clay*", Proceedings, Seventh International Conference on Soil Mechanics and Foundation Engineering, Mexico, pp. 459-467, 1969.

Schweiger, H.F., "Deep excavation in soft soil- finite element analysis and in situ measurements", Proceedings of the Third European Conference on Numerical Methods in Geotechnical Engineering, Manchester, 1994.

Schweiger, H.F., Freiseder, M. & Breymann, H., "Deep excavations in soft ground in situ measurements and numerical predictions", Proceedings of the Fourteenth International Conference on Soil Mechanics and Foundation Engineering, Hamburg, 1977.

Skempton, A.W., "*The pore pressure coefficients A and B*", Geotechnique Vol 04, No. 04, December, 1954, pp. 143-147.

Skempton, A.W., & Bjerrum, L., "A contribution to the settlement analysis of foundation on clay", Geotechnique Vol. 07, No. 04, December, 1957, pp. 168-178.

Soubra, A. H., Kastner, R., & Benmansour, A., "Passive earth pressures in the presence of hydraulics gradients", Geotechnique Volume 49 No. 3, September, 1999.

Tamez. E., Santoyo. E., et al., "Manual de diseño geotécnico", COVITUR, México, 1987.

Tamez. E., "Ingeniería de cimentaciones (conceptos básicos de la práctica)", TGC Geotécnia, México, 2001.

Terzaghi, K. & Peck, R., "Soil Mechanics in Engineering practice", John Wiley & Sons, New York, 1955.

Terzaghi, T, "Theoretical soil Mechanics", John Wiley & Sons, New York, 1943.

Vermeer, P.A., "A modified initial strain method for plasticity problems", Third International Conference on Numerical Methods in Geomechanics, Balkema, Rotterdam, 1979.

Vaughan, P.R. & Walbancke, H.J., "Pore pressure changes and delayed failure of cutting slopes in overconsolidated clay", Geotechnique Vol. 23 No. 4, 1973, pp. 531-539.

Verruijt, A., "Theory of groundwater", Mc Millan & Co. LTD., London, 1970.

Walton, C. W., "Groundwater Resource Evaluation", McGraw-Hill book Company, 1970.

Wang. H. & Anderson M., "Introduction to groundwater modelling", WH. Freeman and company, San Francisco, 1982.

Wehnert, M., "*Ein Beitrag zur drainierten und undrainierten Analyse in der Geotechnik*", Mitteilung 53 des Institus für Geotechnik, Universität Stuttgart, 2006.

Zeevaert, L., "Conceptos básicos en el diseño de cimentaciones compensadas sin y con pilotes de fricción", SMMS, México., 1990

Zeevaert, L., "Foundation Engineering for difficult subsoil conditions", Van Nostrand Reinhold.

Zeevaert, L., "Interacción suelo – estructura de cimentaciones superficiales y profundas, sujetas a cargas estáticas y sísmicas ", Ed. Limusa, México, 1980.

Zhu, B. & Liu, G., *"Elasto-plastic analysis of deep excavation in soft clay"*, Thirteenth International Conference on Soil Mechanics and Foundations, New Delhi, 1994.

Zienkiewicz, O.C., "The Finite Element Method", McGraw-Hill, London, 1977.

Zienkiewicz, O.C. & Taylor, R.L., "El método de los elementos finitos" Vol. 1, McGraw-Hill, 1995.
$_{\rm ANEXO}\,1$ diseño de excavaciones

El análisis de estabilidad de una excavación en suelo blando debe de considerar la revisión de los siguientes mecanismos de falla: general de fondo, por empotramiento del sistema de retención; y por subpresión. Valores a ceptables del factor de seguridad ante los diferentes mecanismos de falla, para una excavación bidimensional de largo infinito, se presentan en la tabla A.1.1.

El diagrama A.1.1 presenta un método de análisis para una excavación en suelo blando con sistema de retención en las paredes, y en la hoja de cálculo anexa se presenta el cálculo de los factores de seguridad para los ejemplos mostrados en el capítulo 5.

Mecanismo		Factores de seguridad mínimo
Falla general de fondo	FS≥1.7	Cuando existan edificios susceptibles de sufrir daños por asentamientos, en una distancia igual al ancho de la excavación
	FS≥1.5	En otro caso
Falla de fondo por subpresión		FS≥1.3*
Falla por empotramiento del muro de contención	FS≥1.5	
*FS>2 en caso de existir grietas en la arcilla		

Tabla A.1.1 Factores de seguridad para contra falla de una excavación bidimensional en suelo blando (COVITUR, 1987)

En caso de utilizarse t aludes en lugar de muros de retención o tablestacas apuntaladas en lugar de cálculo de empujes sobre las paredes se debe de hacer el análisis de estabilidad de taludes.

Diagrama A.1.1 Secuencia de cálculo para analizar la estabilidad de una excavación a cielo abierto

ANEXO 2 MÉTODO DEL ELEMENTO FINITO

A.2.1 Esfuerzos y deformaciones

<u>Aspectos conceptuales.</u> Las ecua ciones a resolver por e l prog rama se de rivan de la formulación del equilibrio estático:

$$[L]^{T}\{\sigma\} + \{p\} = \{0\}$$
A.2.1

donde:

 $\{\sigma\}$: vector de la derivadas espaciales de las 6 componentes de los esfuerzos,

 $\{p\}$: vector que contiene las tres componentes de las fuerzas de cuerpo,

 $[L]^T$: matriz transpuesta del operador diferencial, definido como:

$$\begin{bmatrix} L \end{bmatrix}^{T} = \begin{bmatrix} \frac{\partial}{\partial x} & 0 & 0 & \frac{\partial}{\partial y} & 0 & \frac{\partial}{\partial z} \\ 0 & \frac{\partial}{\partial y} & 0 & \frac{\partial}{\partial x} & \frac{\partial}{\partial z} & 0 \\ 0 & 0 & \frac{\partial}{\partial z} & 0 & \frac{\partial}{\partial y} & \frac{\partial}{\partial x} \end{bmatrix}$$

 $\{\sigma\}$: vector de esfuerzos,

 $\{p\}$: vector de fuerzas de cuerpo.

Por otro lado la relación cinemática se formula como:

$$\{\varepsilon\} = [L]\{u\}$$
A.2.2

donde:

 $\{\varepsilon\}$: vector de deformaciones

 $\{u\}$: vector de derivadas espaciales de las tres componentes del desplazamiento

Le r elación entre A.2.1 Y A .2.2 viene da do por l a r elación c onstitutiva que r epresenta e l comportamiento del material, que en su forma más simple está dada por:

$$\delta\{\sigma\} = [D]\delta\{\varepsilon\}$$
A.2.3

donde:

[D]: Matriz de rigideces.

La combinación de A.2.1, A.2.2, y A.2.3 da una ecuación diferencial parcial de 2° orden en términos de los desplazamientos.

La ecuación de equilibrio se puede reformular de acuerdo con el teorema de Galerkin quedando:

$$\int \delta\{u\}^T \left([L]^T \{\sigma\} + \{p\} \right) dV = 0$$
A.2.4

donde:

 δ{u} : variación cinemáticamente admisible de los desplazamientos,

Aplicando el teorema de Green para la integración parcial del primer término:

$$\int \delta\{\varepsilon\}^T \{\sigma\} dV = \int \delta\{u\}^T \{p\} dV + \int \delta\{u\}^T \{t\} dS$$
 A.2.5

El desarrollo del estado de esfuerzos $\{\sigma\}$ viene representado como un proceso incremental:

$$\{\sigma\}_i = \{\sigma\}_{i-1} + \Delta\{\sigma\}$$
A.2.6a

$$\Delta\{\sigma\} = \int \delta\{\sigma\} dt \qquad A.2.6b$$

donde:

 $\{\sigma\}_i$: estado actual, desconocido, de esfuerzos efectivos, $\{\sigma\}_{i-1}$: estado previo, conocido, de esfuerzos efectivos, $\Delta\{\sigma\}$: variación de esfuerzos integrado sobre un incremento pequeño de tiempo.

Si se considera A.2.5 para un estado actual *i*, $\{\sigma\}_i$ puede ser eliminado utilizando A.2.6a y A.2.6.b:

$$\int \delta\{\varepsilon\}^T \{\sigma\} dV = \int \delta\{u\}^T \{p\}_i dV + \int \delta\{u\}^T \{t\}_i dS - \int \delta\{\varepsilon\}^T \{\sigma\}_{i-1} dV$$
 A.2.7

Discretización. De acuerdo con el método de los elementos finitos (MEF), el sólido continuo a estudiar, se di scretiza en una malla de el ementos finitos que se con forma com o a cont inuación se muestra: los elementos que se utilizan son de forma triangular cada uno de finido por 15 nodos, que definen el elemento y es donde se calculan los desplazamientos; y los puntos de esfuerzos, también conocidos como punt os de Gauss, que s on independientes de los nodos y es donde se calculan los esfuerzos. Un elemento con 15 nodos contiene 12 puntos de Gauss, como se muestra en la figura A.2.1.

Figura A.2.1. Posición de los nodos y puntos de Gauss en un elemento triangular

Cada nodo tiene un núm ero de g rados de libertad que corresponde a l as componentes d e l os desplazamientos. En cada elemento el vector de desplazamientos $\{u\}$ se obtiene de los valores de la discretización nodal en un vector $\{v\}$ utilizando funciones de interpolación ensambladas en la matriz [N].

$$[u] = [N] \{v\}$$
A.2.8

Las f unciones de i nterpolación en la matriz [N] están de notadas c omo f unciones de f orma. Sustituyendo A.2.8 en A.2.2:

$$\{\varepsilon\} = [L][N]\{v\} = [B]\{v\}$$
A.2.9

donde:

[B]: matriz de interpolación de deformaciones.

A.2.7 puede ser ahora reformulada en forma discretizada como:

$$\int ([B]\delta\{v\})^T \Delta\{\sigma\} \, dV = \int ([N]\delta\{v\})^T \{p\}_i dV + \int ([N]\delta\{v\})^T \{t\}_i dS - \int ([B]\delta\{v\})^T \{\sigma\}_{i-1} dV \qquad A.2.10$$

Los desplazamientos discretos pueden ser puestos fuera de la integral:

$$\delta\{v\}^{T} \int [B]^{T} \Delta\{\sigma\} dV = \delta\{v\}^{T} \int [N]^{T} \{p\}_{i} dV + \delta\{v\}^{T} \int [N]^{T} \{t\}_{i} dS - \delta\{v\}^{T} \int [B]^{T} \{\sigma\}_{i-1} dV$$
 A.2.11

Si A.2.11 funciona para cualquier variación de los desplazamientos cinemáticamente admisible $\delta\{v\}^T$, la ecuación puede ser escrita:

$$\int [B]^{T} \Delta \{\sigma\} dV = \int [N]^{T} \{p\}_{i} dV + \int [N]^{T} \{t\}_{i} dS - \int [B]^{T} \{\sigma\}_{i-1} dV$$
A.2.12

La ecuación anterior es la condición de equilibrio en forma discretizada. Los dos primeros términos de la derecha representan el vector de fuerzas externas, y el último término representa la reacción interna (vector) del paso anterior.

Procedimiento iterativo global. Sustituyendo A.2.7 en A.2.12 tenemos:

$$[K]_{i}\Delta\{v\}_{i} = \{f\}_{i}^{ext} - \{f\}_{i-1}^{int}$$
A.2.13

donde:

 $[K]_i$: matriz, $\Delta \{v\}_i$: vector de desplazamientos incrementales, $\{f\}_i^{ext}$: vector de fuerzas externas, $\{f\}_{i=1}^{int}$: vector de reacciones internas, i: etapa de cálculo.

En su forma más simple, [K] representa una respuesta elástico-lineal. En este caso, la matriz de rigidez puede ser formulada como:

$$[K] = \int [B]^T [D]^e [B] dV \qquad A.2.14$$

donde:

 $[D]^{e}$: matriz elástica del material

B : matriz de interpolación de deformaciones

El uso de la matriz de rigidez elástica nos da un procedimiento iterativo global robusto, aún cuando se utilizan modelos de plasticidad no asociada. Para modelos de materiales con un contorno lineal en el dominio elástico, como por ejemplo el modelo estándar de Mohr-Coulomb, el uso de una matriz de rigidez el ástica es p articularmente favorable, ya que la matriz de rigidez sólo se ne cesita formar y descomponer mucho antes de la primera iteración de cálculo.

Pero en este caso se utiliza un modelo constitutivo en el cual la relación entre $\Delta\{\sigma\}$ y $\Delta\{\varepsilon\}$ es no lineal, la matriz de rigideces no puede ser formulada exactamente de antemano, por lo que se necesita un procedimiento i terativo pa ra s atisfacer l a c ondición de e quilibrio y l a relación c onstitutiva. E l proceso global de iteración puede ser escrito como:

$$[K]_{i}\delta\{v\}_{j} = \{f\}_{i}^{ext} - \{f\}_{j=1}^{int}$$
A.2.15

En la ecu ación anterior *j* representa e l núm ero de i teración, $\delta\{v\}$ es un vector que con tiene desplazamientos sub-incrementales, los cuales contribuyen al incremento de desplazamientos del paso *i*.

$$\Delta\{v\}_i = \sum_{j=1}^n \delta\{v\}_i$$
A.2.16

donde:

n: número total de iteraciones, incluyendo el paso i.

La matriz de rigideces [K] representa el comportamiento del material en forma aproximada. Cuanto más exa cta es l a matriz de rigideces, menor es l a cantidad de i teraciones ne cesarias para ob tener equilibrio dentro de cierta tolerancia.

A.2.1 Flujo de agua

La carga hidráulica, de finida en el Capítulo 3, para cada elemento puede expresarse en términos de valores nodales:

$$\varphi(\xi,\eta) = \{N\}\{\varphi\}^e \qquad A.2.17$$

donde:

 $\{N\}$: vector de funciones de interpolación

 ξ,η : coordenadas locales del elemento.

El gradiente hidráulico puede ser determinado mediante la matriz [B], la cual contiene las derivadas espaciales de las funciones de interpolación:

$$\begin{bmatrix} B \end{bmatrix} = \begin{bmatrix} \frac{\partial \{N\}}{\partial x} \\ \frac{\partial \{N\}}{\partial y} \end{bmatrix}$$
A.2.18

En la formulación numérica el gradiente hidráulico se escribe como:

$$\{q\} = -k_{rel} [R] B] \varphi^e \qquad A.2.19$$

donde:

$$\{q\} = \begin{bmatrix} q_x \\ q_y \end{bmatrix}^e$$
A.2.20

$$\begin{bmatrix} R \end{bmatrix} = \begin{bmatrix} k_x & 0 \\ 0 & k_y \end{bmatrix}$$
A.2.21

Las de scargas e specíficas en los puntos de integración, q, las de scargas nod ales Q^e pueden s er integradas de acuerdo con:

$$Q^e = -\int [B]^T \{q\} dV \qquad A.2.22$$

Para un nivel se puede escribir:

$$Q^e = [k]^e \varphi^e \qquad A.2.23$$

Con:

$$[k]^{e} = \int k^{r} [B]^{T} [R] [B] dV \qquad A.2.24$$

Y para la parte transitoria:

$$\delta Q^e = \left[C\right]^e \frac{d\left\{\varphi\right\}^e}{dt}$$
 A.2.25

$$[C]^{e} = \int \{N\}^{T} c\{N\} dV$$
 A.2.26

A nivel global, las contribuciones de todos los elementos se suman y las condiciones de frontera se establecen. El resultado es un sistema de n ecuaciones con n incógnitas:

$$\{Q\} = [K]\{\varphi\} + [C]\frac{d\{\varphi\}}{dt}$$
A.2.27

donde:

- [K]: matriz global de flujo en estado establecido
- [C]: matriz global de flujo en estado transitorio
- $\{Q\}$:vector de las descargas prescritas dadas por las condiciones de frontera

El sistema lineal se resuelve en forma incremental mediante un esquema de pasos de tiempo implícitos para cada iteración, los incrementos de carga hidráulica son calculados del desbalance en las descargas nodales y sumadas a la carga activa. De la nueva distribución de carga hidráulica se calculan las nuevas descargas específicas, las cuales pue den ser integradas en descargas nodales. E ste proceso c ontinúa hasta la norma del vector de desbalances, esto quiere decir el error en las descargas nodales es menor que el error tolerado.

$\underset{\text{MODELO CONSTITUTIVO}}{\text{ANEXO}} 3$

Una modelo es un conjunto de ecuaciones matemáticas que describen la relación entre los esfuerzos y las deformaciones, la relación más sencilla entre esfuerzos y deformaciones es la ley de Hook que está dada por la siguiente ecuación.

$$\{\delta\sigma'\} = [D]\{\delta\varepsilon\}$$
A.3.1

donde:

[D]: matriz de rigideces.

La expresión anterior representa el comportamiento elástico de un material, las deformaciones que describe s e r ecuperan completamente e n la configuración no deformada i nicial una v ez que se retiran las ca rgas ap licadas. Además las de formaciones el ásticas solamente dependen de l a magnitud del esfuerzo aplicado y no de la historia de esfuerzos o deformaciones previas.

Figura A.3.1. Comportamiento de un material perfectamente elástico ante una aplicación de esfuerzo.

Cualquier cambio de forma permanente como respuesta de un medio continuo a las cargas aplicadas que no obedezca a las leyes constitutivas de la elasticidad se conoce como deformación plástica. Tales deformaciones únicamente tienen lugar a intensidades de esfuerzos por encima de un cierto valor conocido como esfuerzo de fluencia, este comportamiento se muestra en la figura A.3.2 para un material elástico-perfectamente plástico

Figura A.3.2. Comportamiento de un material elástico perfectamente plástico ante una aplicación de carga.

En e l m odelo S oft-Soil s e asum e que existe una r elación logarítmica entre la deformación volumétrica, ε_v y el esfuerzo efectivo medio, p', la cua l puede ser f ormulada, pa ra c arga primaria, como sigue :

$$\varepsilon_{v} - \varepsilon_{v}^{0} = -\lambda^{*} \ln\left(\frac{P'}{P^{0}}\right)$$
 A.3.2

donde:

 \mathcal{E}_{v} : deformación volumétrica,

 ε_v^0 : deformación volumétrica inicial,

- λ^* : índice de compresión modificado,
- p': esfuerzo isótropo efectivo,
- p^0 : esfuerzo isótropo inicial,

y para descarga – recarga:

$$\varepsilon_v^e - \varepsilon_v^{e0} = -k^* \ln\left(\frac{P'}{P^0}\right) \tag{A.3.3}$$

donde:

 ε_{v}^{e} : deformación volumétrica elástica

 ε_{v}^{e0} : deformación volumétrica elástica inicial

 k^* : índice de expansión modificado

La ecuación A.3.3 describe el comportamiento del material bajo descarga y recarga isótropas, y se asume este comportamiento como elástico; así, con l a e xpresión A.3.3 y l a ley de H ooke se describe el comportamiento elástico del material. Esto implica dependencia lineal del módulo de compresibilidad volumétrica para descarga-recarga con respecto al esfuerzo como se muestra:

$$k_{ur} = \frac{E_{ur}}{3 - (1 - 2v_{ur})} = \frac{p'}{k^*}$$
A.3.4

donde:

 k_{ur} : módulo de deformabilidad volumétrica para descarga-recarga,

 E_{ur} : módulo de elasticidad para descarga-recarga,

 V_{ur} : módulo de Poisson para descarga-recarga.

Los índices $\lambda^* y \kappa^*$ son la pendiente de las rectas descritas por las ecuaciones A.3.2 y A.3.3, que se presentan en la figura A.3.3. Es importante aclarar que $\lambda^* y \kappa^*$, son diferentes de $\lambda y \kappa$, que son los índices usados en el modelo Cam-clay, la diferencia es que los índices de las ecuaciones A.3.2 y A.3.3 están en función de las deformaciones volumétricas, mientras que los usados por el modelo cam-clay están en función de la relación de vacíos. Sin embargo la relación λ^*/κ^* es i gual a l a relación λ/κ .

Figura A.3.3. Relación logarítmica entre los esfuerzos medios y las deformaciones volumétricas.

La gráfica de la figura A.3.3 representa una del infinito número de rectas de scarga-recarga que puede ha ber, cada una d e el las corresponde a u n v alor particular d e es fuerzo isótropo de preconsolidación p_p . El esfuerzo de pre-consolidación representa el nivel de esfuerzos más grande que ha experimentado un suelo en su historia.

Durante el proceso descarga-recarga, el esfuerzo de pre-consolidación, permanece constante, pero en carga primaria, aumenta, causando deformaciones volumétricas plásticas.

Las deformaciones totales están dadas por la combinación de A.3.2 y A.3.3 de la siguiente forma:

$$\varepsilon_{v} = k^{*} \ln \frac{p}{p^{0}} + (\lambda^{*} - k^{*}) \ln \frac{p}{p^{0}_{p}}$$
 A.3.5

donde:

 p_p^0 : esfuerzo isótropo de preconsolidación.

Las deformaciones plásticas aparecerán en el material cargado, cuando una combinación de esfuerzos normales y cortantes exceda un cierto umbral de nivel de esfuerzos. Este um bral e stá dado, por la superficie de fluencia que, para carga triaxial, está dada por:

$$f = f - P_p \tag{A.3.6}$$

Donde \overline{f} es función del estado de esfuerzos (p',q):

$$\overline{f} = \frac{q^2}{M^2(P' + c \,\cot\phi)} + P'$$
A.3.7

donde:

- c : cohesión,
- ϕ : ángulo de fricción,
- M: parámetro que condiciona la superficie de fluencia,

y p_p , que como se mencionó es el esfuerzo de pre-consolidación, es función de las deformaciones plásticas como se muestra:

$$P_{p} = P_{p}^{0} \exp\left(\frac{-\varepsilon_{v}^{p}}{\lambda^{*} - k^{*}}\right)$$
 A.3.8

El incremento que sufra el esfuerzo de preconsolidación estará en función del incremento de las deformaciones plásticas de la siguiente forma:

$$\delta P_p = \frac{P_p}{\lambda^* - k^*} \ \delta \varepsilon_v^p \tag{A.3.9}$$

La función de fluencia describe una elipse en el plano p' - q, como se muestra en la figura A.3.4. Durante la aplicación de un esfuerzo en el material se desarrollan infinidad de elipses, el parámetro M es la pendiente de la línea que pasa por el punto más alto de todas las elipses, para el modelo cam-clay es la línea del estado crítico. Pero para el modelo utilizado en este trabajo, el parámetro M, en la ecuación A.3.7, determina la altura de la elipse, y este se relaciona con la razón de esfuerzos horizontales y verticales en carga primaria unidimensional.

Figura A.3.4. Superficie de fluencia del modelo Soft soil en el plano p' - q.

Como puede verse el parámetro *M* está íntimamente ligado con el coeficiente de empuje de suelos en reposo y se puede calcular, en forma aproximada de la siguiente forma:

$$M \approx 3 \sqrt{\frac{\left(1 - K_0^{NC}\right)^2}{\left(1 + 2K_0^{NC}\right)^2}} + \frac{\left(1 - K_0^{NC}\right)\left(1 - 2\nu_{ur}\right)\left(\lambda_k^* - 1\right)}{\left(1 + 2K_0^{NC}\right)\left(1 - 2\nu_{ur}\right)\lambda_k^* - \left(1 - K_0^{NC}\right)\left(1 + \nu_{ur}\right)}$$
A.3.10

Con este modelo, acorde con la condición de normalidad, se puede calcular el incremento de las deformaciones plásticas con la siguiente expresión:

$$\delta \varepsilon_{\nu}^{p} = \delta \lambda \frac{\partial f}{\partial \sigma'}$$
 A.3.11

donde:

 λ : multiplicador plástico

 $\delta\lambda$ se calcula de la siguiente forma:

$$\delta\lambda = \frac{1}{d-h} \frac{f^{T}}{\partial\sigma'} D \,\delta\varepsilon \tag{A.3.12}$$

con:

$$d = \frac{f^{T}}{\partial \sigma'} D \frac{f}{\partial \sigma'}$$

y:

$$h = \frac{\Gamma_P}{\lambda^* - \kappa^*} \frac{J}{\partial P_P} \frac{cJ}{\partial \sigma'}$$

 $f \partial f$

Р

En lugar del criterio de falla del modelo del estado crítico, en el modelo soft-soil, se utiliza una función de fluencia del modelo, perfectamente plástico, de Mohr – Coulomb representada por la ecuación A.3.13. Dicha función representa una línea recta en el plano p' - q, como se muestra en la figura A.3.4, la pendiente de esta línea es menor que M.

$$\tau = c - \sigma \tan \phi \qquad \qquad \text{A.3.13}$$

El contorno de fluencia, que se muestra con línea más oscura en la figura A.3.4, es la frontera del comportamiento elástico, dentro del área definida por la línea de fluencia las deformaciones son de tipo elástico y sobre la línea las deformaciones son de tipo plástico, fuera del área definida no tiene sentido. La línea de falla es fija, pero la tapa puede incrementarse con los esfuerzos.

La expresión A.3.13 puede ser puesta en términos de los esfuerzos principales o en términos de los invariantes, si cada uno de estos se dibuja en el plano de los esfuerzos principales se tiene la figura A.3.5.

Figura A.3.5. Criterio de falla de Mohr-Coulomb.

En el espacio de esfuerzos principales tridimensional la función de falla con la función de fluencia se representan en la figura A.3.6.

Figura A.3.6. Representación de la superficie de fluencia completa del modelo Soft – soil en el espacio de los esfuerzos principales (Wehnert, 2006).

ANEXO 4 SOLUCIONES ANALÍTICAS A LAS ECUACIONES DE FLUJO DE AGUA EN SUELOS

Las soluciones analíticas al resolver un problema de flujo de agua no tienen el alcance de las de tipo numérico, pero son herramientas prácticas que permiten contar con una solución aproximada para un problema de flujo de agua en suelos; además, en el caso de las funciones de pozo, se puede estimar los parámetros hi drogeológicos de l s uelo o c onocer los e fectos de l bo mbeo e n un poz o sobre el suelo circundante. Para que las funciones de pozo sean aplicables se hacen las siguientes hipótesis: el acuífero es homogéneo e isótropo, con un coeficiente de almacenamiento constante, y las condiciones de confinamiento deben permanecer constantes en todo lugar del acuífero y en todo momento. Por su parte para el flujo es válida la ley de Darcy, el flujo es radial y horizontal y el pozo está ranurado a lo largo de toda la longitud que penetra al acuífero.

Las pruebas de bombeo se pueden llevar a cabo bajo régimen, de flujo, establecido o transitorio, las primeras consisten en bombear en un pozo y analizar los descensos en el entorno del pozo, pues los niveles piezométricos no varían. En las de flujo transitorio se analiza la evolución de los niveles de agua en el pozo de bombeo y en los de observación. En los ejemplos que se p resentan en este anexo, entre paréntesis se presenta la referencia bibliográfica al principio de cada uno, pues en algunas de estas referencias se pueden encontrar las funciones de pozo tabuladas.

Un factor importante para la aplicación de las soluciones analíticas es conocer las condiciones de confinamiento del a cuífero, las cuales s e da n por la in teracción e ntre d istintas f ormaciones geológicas. Por su cap acidad para a lmacenar y t ransmitir agua l as f ormaciones g eológicas s e clasifican en acuíferos, acuitardos, acuicludos y acu ifugos. Los ac uíferos, formados por sue los granulares, tienen una ca pacidad alta para t ransmitir agua, en cambio acuitardos y acui cludos transmiten el agua de forma lenta, sobre todo los últimos, y su capacidad de almacenamiento es grande. Los acuifugos formados por roca sana, son completamente i mpermeables, incapaces d e almacenar y transmitir agua.

Con base en lo explicado se pueden clasificar los acuíferos en artesianos o confinados y libres o gravedad. Acuíferos artesianos o confinados son aquellos que se e ncuentran r odeados p or materiales i mpermeables y el n ivel d el agua e s su perior al t echo de l acuífero, esta condición provoca que se encuentren a una presión piezométrica mayor que la altura del límite superior del

acuífero. Estos acuíferos liberan agua por descompresión. Acuíferos libres o gravedad son aquellos el agua, en estos acuíferos, se encuentra a la presión atmosférica, se libera en el acuífero por desaturación y su límite superior e s el ni vel freático. Las condiciones que da n lugar a est os acuíferos se presentan en la figura A.4.1.

Figura A.4.1 Clasificación de acuíferos (Hantush, 1964).

Existe o tra v ariedad d e a cuíferos, los semiconfinados, s u pe culiaridad radica e n qu e una de l as fronteras que los confina no es totalmente impermeable se trata de un material que permite el paso del agua a velocidades muy bajas.

A.4.1 Flujo radial hacia un pozo

Flujo de agua radial establecido en un acuífero confinado hacia un pozo con penetración completa (Mansur & Kaufman, 1962).

Considérese una situación como la que se m uestra en la figura A.4.2, en donde en un a cuífero isótropo y ho mogéneo, s e bom bea un gasto Q en un poz o de r adio r_0 , e l poz o pe netra completamente el acuífero y genera un cono de abatimiento con radio genérico r y radio máximo R. Suponiendo que es te con o se pre senta de forma i nstantánea se pu ede a plicar l a exp resión de Laplace para flujo bidimensional (Ec. 4.1.21).

Si el flujo es r adial es p referible t rabajar en coordenadas pol ares, la t ransformación a di chas coordenadas se puede llevar a cabo a partir de las siguientes igualdades:

$$x = r \cos \theta \qquad \qquad \text{A.4.1}$$

$$y = r sen \theta$$
 A.4.2

donde:

r: es el radio de influencia,

 θ : es la coordenada angular,

sustituyendo en 4.1.21 se tiene:

$$\frac{\partial^2 \varphi}{\partial r^2} + \frac{1}{r} \cdot \frac{\partial \varphi}{\partial r} = 0$$
 A.4.3

que se puede escribir también así:

$$\frac{1}{r}\frac{d}{dr}\left(r\frac{d\varphi}{dr}\right) = 0$$
 A.4.4

Por lo tanto:

$$\left(r\frac{d\varphi}{dr}\right) = cte \tag{A.4.5}$$

Se puede conocer el valor de la constante tomando en cuenta que el gasto que sale del pozo es el mismo que atraviesa una superficie cilíndrica de altura b y radio r, y su área es:

$$A = 2\pi r b \tag{A.4.6}$$

Y aplicando la ecuación 4.1.3 que es la ley de Darcy se tiene:

$$Q = 2\pi r b k \frac{d\varphi}{dr}$$
A.4.7

luego:

$$cte = r\frac{d\varphi}{dr} = \frac{Q}{2\pi bk} = \frac{Q}{2\pi T}$$
A.4.8

y por lo tanto:

$$d\varphi = \frac{Q}{2\pi T} \frac{dr}{r}$$
A.4.9

donde:

T = bk : transmisibilidad

En una prueba de bombeo, cuando la carga φ de la ecuación A.4.9 varía desde el nivel del NAF abatido h_0 , hasta un punt o donde el nivel del NAF no s e ve a fectado, el radio r varía desde un punto en el que la carga vale h hasta un punto donde r vale R y que corresponde a la carga h_0 . Con estos límites se puede integrar la ecuación A.4.9 quedando:

$$\int_{h}^{h_0} d\varphi = \frac{Q}{2\pi T} \int_{r}^{R} \frac{dr}{r}$$
A.4.10

En este c aso, como puede obs ervarse en la figura A.4.2 l a a ltura h comprende el es pesor de l acuífero más la parte saturada del estrato que lo confina. Entonces:

$$s = h_0 - H = \frac{Q}{2\pi T} \ln \frac{R}{r}$$
A.4.11

La expresión A.4.11 es la solución de Thiem para el flujo de agua en un a cuífero confinado o artesiano ha cia un poz o que lo penetra completamente. Las literales y a fueron explicadas y su significado se puede observar en la figura A.4.2.

Con la expresión anterior es posible calcular la transmisividad. En una prueba de bombeo se puede establecer un punto de observación i en el cual se tiene un abatimiento s_i , de esta forma:

$$s_i = \frac{Q}{2\pi T} \ln \frac{R}{r_i} = 0.366 \frac{Q}{T} \log \frac{R}{r_i}$$
 A.4.12

o bien:

$$s_i = 0.366 \frac{Q}{T} \log R - 0.366 \frac{Q}{T} \log r_i$$
 A.4.13

acomodándola para que tome la forma y = mx + b:

$$s_i = -0.366 \frac{Q}{T} \log r_i + 0.366 \frac{Q}{T} \log R$$
 A.4.3.14

Si se grafica en papel semilogarítmico la expresión A.4.14 se tendrá una recta que intersecta al eje de las ordenadas en el valor de R. Y al eje de las abscisas en el valor de s. El valor de T estará dado por:

 $T = 0.366 \frac{Q}{m}$ A.4.15

donde:

m: pendiente de la recta.

Cuando el pozo no se encontrara en el cen tro del círculo de influencia y/o la carga H, en el perímetro del círculo, no fuera constante, es posible calcular el abatimiento conociendo la distancia E del centro del pozo al centro de influencia y la expresión queda como se muestra a continuación:

$$Q = \frac{2\pi k b (H - h_0)}{\ln\left(\frac{(R^2 - E^2)}{Rr_0}\right)}$$
 A.4.16

Flujo establecido en un acuífero confinado hacia un pozo con penetración completa (Mansur & Kaufman, 1962).

La expresión que simula el flujo de a gua ha cia un poz o c on l as c ondiciones m encionadas fue deducida en el capítulo 4 y es la siguiente:

$$s = h_0^2 - h^2 = \frac{Q}{\pi k} \ln \frac{R}{r}$$

La expr esión anterior es l a s olución de D upuit pa ra flujo de a gua e n un a cuífero l ibre o no confinado hacia un pozo que lo penetra completamente.

Al igual que en el caso de los acuíferos artesianos, en los acuíferos libres se puede en contrar el valor de T por un método gráfico similar al anteriormente expuesto, pero para ello el abatimiento s tiene que ser corregido y es igual a:

$$s_{corregido} = s - (s^2 / 2h_0)$$
A.4.17

donde:

s: descenso observado *h*₀: espesor saturado inicial

Flujo establecido de agua en un acuífero confinado hacia un pozo con penetración parcial (Mansur & Kaufman, 1962).

La expresión es que describe el flujo de agua con estas condiciones es la siguiente:

$$Q = \frac{2\pi k b (h - h_0) G}{\ln \frac{R}{r_0}}$$
 A.4.18

donde G es un factor de corrección por penetración parcial, los valores de esta variable se obtienen de la expresión deducida por Muskat (Mansur & Kaufman), pero valores prácticos de G se obtienen de la siguiente ecuación desarrollada por Kozeny:

$$G = \frac{Q}{b} \left(l + 7 \frac{r_0}{2W} \cos \frac{\pi \frac{W}{b}}{2} \right)$$
A.4.19

donde:

W/b: longitud de penetración dentro del estrato permeable expresado en decimales.

Flujo establecido de agua en un acuífero no confinado hacia un pozo con penetración parcial. (Mansur & Kaufman, 1962).

Para el caso de penetración parcial en acuíferos libres con la configuración que se muestra en la figura A.4.3, se puede calcular el abatimiento del agua en el pozo mediante la expresión A.4.20:

$$Q = \frac{\pi k \left[(H - s)^2 - t^2 \right]}{\ln \left(\frac{R}{r_0} \right)} \left[1 + \left(0.30 + \frac{10r_0}{H} \right) seno \frac{1.8s}{H} \right]$$
A.4.20

El significado de las literales se muestra en la figura A.4.3

Figura A.4.3. Flujo establecido radial en un acuífero no confinado hacia un pozo que lo penetra parcialmente.

Flujo de agua en un acuífero mixto hacia un pozo con penetración total (Mansur & Kaufman, 1962).

Cuando el nivel del agua de un acuífero confinado será abatido hasta una profundidad mayor que el espesor de l e strato impermeable sup erior s e u tiliza el con cepto de acuífero mixto. El cau dal bombeado se calcula de la siguiente forma:

$$Q = \frac{\pi K (2bH - b^2 - h_0^2)}{\ln(\frac{R}{r_0})}$$
 A.4.21

Flujo de agua hacia un pozo proveniente de una frontera lineal infinita con agua permanente (Mansur & Kaufman, 1962).

Cuando s e ne cesita r ealizar una e xcavación c erca de un r ío, un c anal u o tro c uerpo de a gua se pueden pr esentar e stas c ondiciones. E l a batimiento para un poz o que pe netra t otalmente e n u n acuífero confinado está dado por:

$$s = H - h = \frac{Q}{2\pi kb} \ln \frac{2L}{r_w}$$
A.4.22

donde:

L: distancia del centro del pozo a la fuente lineal de agua.

Y la ecuación del gasto es:

$$Q = \frac{2\pi k b (H - h_w)}{\ln(2L/r_w)}$$
A.4.23

Comparando ésta última ecuación con la del flujo establecido radial hacia un pozo se puede notar que si 2L es igual que R el gasto es el mismo por metro lineal de abatimiento en el pozo, pero si 2L es mayor que R el efecto de la frontera infinita lineal puede ser ignorado debido a que el gasto requerido para efectuar una reducción de carga está gobernada por el radio de influencia y no por la línea de flujo de la fuente.

El gasto hacia un pozo que penetra totalmente un acuífero no confinado proveniente de una fuente lineal infinita se puede expresar de la siguiente forma:

$$Q = \frac{\pi k \left(H^2 - h_0^2\right)}{\ln(2L/r_0)}$$
A.4.25

La carga h_p en cualquier punto se calcula con la siguiente ecuación:

$$s = H^2 - h_p^2 = \frac{Q_0}{\pi k} \ln \frac{r'}{r}$$
 A.4.26

Flujo transitorio radial de agua en un acuífero no confinado hacia un pozo con penetración completa (Walton, 1970).

En este caso, al i gual que con la ecuación de flujo de agua establecido, al considerarse el flujo radial es posible plantear la ecuación 4.1.31 que describe el flujo bidimensional transitorio de agua en suelos, en coordenadas pol ares, teniendo como transformación de coordenadas las siguientes igualdades:

$$x = r \cos \alpha$$
$$y = rsen\alpha$$

Sustituyendo las expresiones anteriores en 4.1.31 se tiene la siguiente expresión:

$$\frac{\partial^2 \varphi}{\partial r^2} + \frac{1}{r} \cdot \frac{\partial \varphi}{\partial r} = \frac{S}{T} \cdot \frac{\partial \varphi}{\partial t}$$
A.4.27

La solución de A.4.27 la llevó a cabo Theis en 1935, haciendo el siguiente cambio de variable:

$$u = \frac{r^2 S}{4Tt}$$
A.4.28

Con las condiciones iniciales:

$$h(r,0) = h_0 \text{ para } r > 0$$
$$h = h_0 \text{ para } r \to \infty$$
siendo $t > 0$

donde:

t : tiempo desde el inicio del bombeo.

$$\lim_{r \to \infty} \left(r \frac{\partial \varphi}{\partial r} \right) = \frac{Q}{2\pi T}$$

La solución para esta ecuación y condiciones es:

$$s = \frac{Q}{4\pi T} w(u) \tag{A.4.29}$$

Siendo w(u) la llamada por Theis función de pozo para un acuífero confinado y que tiene el siguiente valor:

$$w(u) = \int_{u}^{\infty} \frac{e^{-u}}{u} du$$
 A.4.30

La expresión anterior no tiene solución analítica por ello se encuentra tabulada. Jacob propuso una forma de resolverla desarrollándola en términos de una serie, como se muestra:

$$w(u) = -0.577216 - \ln u + u - \frac{u^2}{2 \cdot 2!} + \frac{u^3}{3 \cdot 3!} - \frac{u^4}{4 \cdot 4!} + \dots$$
 A4.31

Despreciando los términos a partir de u < 0.01 menos los dos primeros:

$$s = \frac{Q}{4\pi T} \left(-0.577216 - \ln u \right) = \frac{Q}{4\pi T} \ln \frac{0.562}{u}$$
A.4.32

$$s = \frac{Q}{4\pi T} \ln \frac{2.25Tt}{r^2 S}$$
A.4.33

o bien:

$$s = 0.183 \frac{Q}{T} \log \frac{2.28Tt}{r^2 S}$$
 A.4.34

Existen diversas formas de aplicar las expresiones anteriores a una prueba de bombeo, una de ellas es aplicar la fórmula de Jacob dada por la expresión anterior. Si se toma:

$$\frac{r^2 S}{2.25T} = t_0$$
 A.4.35

se obtiene:

$$s = 0.183 \frac{Q}{T} \log \frac{t}{t_0}$$
A.4.36

$$s = 0.183 \frac{Q}{T} \log t - 0.183 \frac{Q}{T} \log t_0$$
 A.4.37

que representada en papel semilogarítmico es una recta con la forma y = mx + b, con:

$$y = s$$
$$m = 0.183 \frac{Q}{T}$$
$$x = \log t$$

Flujo de agua transitorio de agua en un acuífero confinado hacia un pozo con penetración completa (Walton, 1970).

La expresión que describe el abatimiento del NAF es la siguiente:

$$s = h_0 - h = \frac{Q}{4\pi T} \int_u^\infty \frac{e^{-u}}{u} du$$
 A.4.38

con:

$$w(u) = \int_{u}^{\infty} \frac{e^{-u}}{u} du$$

y:

$$u = \frac{r^2 S}{4Tt}$$

Flujo de agua transitorio hacia pozos con penetración completa en un acuífero anisótropo y confinado (Walton, 1970).

En caso de que el acuífero artesiano sea anisótropo con respecto a la permeabilidad se tendrá en el acuífero valores diferentes para la transmisitividad en las direcciones horizontal y vertical, en este caso la expresión que describe el abatimiento es la siguiente:

$$s = \frac{Q}{4\pi \sqrt{T_{xx}T_{yy} - T_{xy}^2}} \int_{u_{xy}}^{\infty} \frac{e^{-u_{xy}}}{u_{xy}} du$$
 A.4.27

con:

$$w(u_{xy}) = \int_{u_{xy}}^{\infty} \frac{e^{-u_{xy}}}{u_{xy}} du$$
 A.4.28

y:

$$u_{xy} = \frac{S}{4t} \frac{T_{xx}y^2 + T_{yy}x^2}{T_{xx}T_{yy}}$$
A.4.29

Flujo transitorio de agua en un acuífero no confinado hacia un pozo con penetración parcial (Walton, 1970).

Para esta condición la expresión es la que a continuación se muestra:

$$d = \frac{Q}{4\pi T} \left[\int_{u}^{\infty} \frac{e^{-u}}{u} du + \frac{2b^2}{\pi^2 (b - b_d)^2} \sum_{n=1}^{\infty} \frac{1}{n^2} sen\left(\frac{n\pi b_d}{b}\right) X \int_{u}^{\infty} \frac{1}{y} exp\left(-y - \frac{\left(\frac{n\pi r}{b}\right)^2}{4y}\right) dy \right]$$
 A.4.30

donde:

b: espesor del acuífero

b_d: longitud de penetración en el acuífero,

además:

$$w(u, \frac{r}{b}, \gamma) = \int_{u}^{\infty} \frac{e^{-u}}{u} du + \frac{2b^2}{\pi^2 (b - b_d)^2} \sum_{n=1}^{\infty} \frac{1}{n^2} sen\left(\frac{n\pi b_d}{b}\right) X \int_{u}^{\infty} \frac{1}{y} \exp\left(-y - \frac{\left(\frac{n\pi r}{b}\right)^2}{4y}\right) dy \qquad A.4.31$$

y:

$$u = \frac{r^2 S}{4Tt}$$
A.4.32

$$\gamma = \frac{m - m_d}{m} \tag{A.4.33}$$

Flujo de agua transitorio hacia un pozo con penetración completa en un acuífero semiconfinado debido a filtraciones (Hantush, 1964).

El abatimiento para estas condiciones está dado por la expresión A.4.34.

$$s = \frac{Q}{4\pi T} w \left(u, \frac{r}{B} \right)$$
 A.4.34

Siendo:

$$w\left(u, \frac{r}{B}\right) = \int_{u}^{\infty} \left(\frac{1}{y}\right) \exp\left(-\frac{y - \frac{r^{2}}{4B^{2}y}}{y}\right) dy \qquad A.4.35$$

donde:

$$B^2 = \frac{Tb}{k'}$$

donde:

- b': espesor del estrato semi-impermeable confinante
- k': permeabilidad del estrato semi-impermeable confinante.

Flujo en un acuífero semiconfinado por consolidación de estratos con penetración completa (Hantush, 1964).

Para analizar este caso la descarga en el pozo se sustituye por la reducción del almacenamiento en el acuífero y por las filtraciones de la o las capas semipermeables.

El flujo en l os e stratos semi-impermeables confinantes es úni camente v ertical y en el o los acuíferos es únicamente radial. Las soluciones encontradas funcionan para diferentes rangos de tiempo, como a continuación se muestra.

En el caso de un acuífero ubi cado entre es tratos sem i-impermeables ubi cados a su vez ent re acuíferos con carga hidráulica constante, como se muestra en la figura A.4.4, para tiempos grandes esto es $t \ge \frac{5b'S'}{K'}$ y $t \ge \frac{5b''S''}{K''}$ la solución es:

$$s = \frac{Q}{4\pi T} w(u\delta_1, \alpha)$$
 A.4.36

con:

y:

$$\delta_1 = 1 + (S' + S'')/3S$$
$$\alpha = r_{\sqrt{\frac{k'/b'}{T} + \frac{k''/b''}{T}}}$$

T

Figura A.4.4. Acuífero ubicado entre estratos semi-impermeables, ubicados a su vez entre acuíferos con carga constante

Para un acuífero entre estratos semi-impermeables consolidantes confinados a su vez por estratos impermeables, como se muestra en la figura A.4.5, se tiene para tiempos grandes, $t \ge \frac{10b'S'}{K'}$ y $t \ge \frac{10b'S''}{K''}$, que la solución es:

$$s = \frac{Q}{4\pi T} w(u, \delta_2)$$
 A.4.37

con:

$$\delta_2 = 1 + (S' + S'')/S$$

Figura A.4.5. Acuífero ubicado entre estratos semi-impermeables, ubicados a su vez entre estratos impermeables

En caso de que se d e una combinación de los dos casos anteriores, esto es un acuífero con la condición de scrita en la figura A .4.6, esto es acuífero semiconfinado por do s es tratos s emiimpermeables, seguido el de abajo por uno impermeable y el de la parte superior por un acuífero con carga constante, se tiene que para tiempo grandes, $t \ge \frac{5b'S'}{K'}$, y $t \ge \frac{10b''S''}{K''}$, la solución es:

$$S = \frac{Q}{4\pi T} W \left(u, \delta_3, r_\sqrt{\frac{k'/b'}{T}} \right)$$
 A.4.38

con:

$$\delta_3 = 1 + \frac{S'' + \frac{S'_3}{3}}{S}$$

Figura A.4.6. Acuífero ubicado entre estratos semi-impermeables, subyacidos por un estrato impermeable y sobreyacidos por un acuífero con carga constante

Para tiempos pequeños, esto es, t < b'S'/10K', y t < b''S''/10K'' la solución para todos los casos es:

$$s = \frac{Q}{4\pi T} H(u,\beta)$$
A.4.39

donde:

$$H(u,\beta) = \int_{u}^{\infty} \frac{e^{-y}}{y} \operatorname{erfc} \frac{\beta \sqrt{u}}{\sqrt{y(y-u)}} dy$$
A.4.40

Siendo erfc(x) la función error complementaria, con:

$$\beta = \left(\frac{1}{4}\right) r\lambda$$

$$u = \frac{r^2 S}{4Tt}$$

$$n = \frac{T\lambda^2}{S}$$

$$\lambda = \sqrt{\frac{K'/b'}{T}} \cdot \frac{S'}{S} + \sqrt{\frac{K''/b''}{T}} \cdot \frac{S''}{S}$$

A.4.2 Flujo hacia un conjunto de pozos de bombeo

Simulación de la excavación como un pozo de gran diámetro mediante un grupo de pozos (Powers, 1981).

Una forma de calcular el bombeo necesario en una excavación, es considerarla como un poz o de radio e quivalente r _s. De est a forma se pue den utilizar l as exp resiones anteriores pa ra f lujo establecido, sustituyendo el r adio de l poz o por e l de l círculo que f orman l os pozos e n la excavación. Esta hi pótesis tiene buena aproximación para una excavación donde los pozos están alineados de forma circular de que la configuración de los pozos sea rectangular, se puede calcular el radio equivalente con la siguiente expresión:

$$r_s = \sqrt{\frac{ab}{\pi}}$$
 A.4.41

Donde a y b son los lados del rectángulo que forman los pozos. Otra expresión útil para calcular el radio equivalente en excavaciones con un acomodo de pozos de forma rectangular es:

$$r_s = \frac{a+b}{\pi}$$
A.4.42

Cualquiera de las dos ecuaciones an teriores ofrecen resultados sa tisfactorios cu ando el espaciamiento entre los pozos es pe queño, cu ando R_0 es grande en relación con r_s , y cu ando la relación a/b es menor que 1.50.

Figura A.4.7 Definición de radio equivalente, a) sistema circular, b) sistema rectangular

Cuando la relación a/b es grande conviene utilizar las expresiones que a continuación se enuncian.

Grupo se pozos con penetración total en acuíferos confinados (Powers, 1981).

El abatimiento en cualquier punto es:

$$H - h = \frac{1}{2\pi kD} \left(Q_{w1} \ln \frac{R_1}{r_1} + Q_{w2} \ln \frac{R_2}{r_2} + \dots + Q_{wn} \ln \frac{R_n}{r_n} \right)$$
 A.4.43

0

$$H - h = \frac{1}{2\pi kD} \sum_{i=1}^{i=n} Q_{wi} \ln \frac{R_i}{r_i}$$
 A.4.44

donde:

 Q_{wi} = Gasto en el pozo R_i = Radio de influencia en el pozo r_i = Distancia del pozo hasta el punto de interés n = Número de pozos

Grupo se pozos con penetración total en un acuífero libre (Powers, 1981).

Para el caso de pozos gravedad la ecuación general para el abatimiento en cualquier punto queda:

$$H^{2} - h^{2} = \frac{1}{\pi k} \sum_{i=1}^{i=n} Q_{wi} \ln \frac{R_{i}}{r_{i}}$$
 A.4.45

En muy út il el c álculo del abatimiento d ebido a un conjunto de poz os a lineados y muy j untos considerándolos como una zanja. Entendiéndose que es ésta una solución aproximada la validez de

la misma depende de la separación de los pozos, cuando éstos están más juntos tienden a aproximarse a una zanja.

Si la zanja tiene una longitud finita separada una distancia L de la frontera lineal de flujo, el flujo en la zanja se rá el mismo, como si la zanja fuera de longitud infinita, excepto dentro de un a distancia de 0.5L en la terminación de la zanja. Si los pozos son de longitud infinita cerca de los extremos de la zanja el flujo será mayor y la reducción de carga será menor. Las condiciones cerca de los extremos de los pozos pueden ser evaluadas mediante una red de flujo en planta.

Flujo hacia una zanja con penetración completa en un acuífero confinado (Mansur & Kaufman, 1962).

Para este caso considérese la configuración mostrada en la figura A.4.8a, además, que el agua es bombeada continuamente de la zanja, pero que durante el bombeo el nivel del agua está en o sobre la parte superior del estrato, así mismo la carga h en cada punto en el estrato permeable estará en, o sobre, la parte superior del mismo estrato.

También se supone que no ocurre ninguna pérdida de carga hidráulica en los pozos debido al flujo del agua subterránea desde el suelo a la zanja. Todas estas condiciones pueden aproximadamente darse cuando una línea de pozos son instalados cerca y paralelamente a un río en el cual el estrato permeable está expuesto.

El abatimiento (*H-h*) a cualquier distancia " y " de la zanja está dada por la siguiente ecuación:

$$H - h = \frac{Q}{kDx}(L - y) = \frac{L - y}{L}(H - h_e)$$
 A.4.46

Figura A.4.8. Flujo hacia una zanja con penetración tal en el estrato permeable proveniente de una frontera lineal con agua permanente, ambos de longitud infinita. a) flujo artesiano, b) flujo a gravedad y c) flujo mixto.

Zanja con penetración completa en un acuífero no confinado confinado (Mansur & Kaufman, 1962).

Considerando l a configuración estratigráfica y de flujo mostrada en la figura A.4.8b, se pue de desarrollar la ecuación para el gasto Q por unidad de longitud x de forma similar al caso artesiano, además se supone que cualquier línea vertical bajo la curva de abatimiento o superficie libre de agua, esto es, el gradiente hidráulico, es constante e igual a la pendiente de la curva de abatimiento en el punto donde la línea vertical intersecta a l a curva de abatimiento. Esta última suposición comúnmente es referida como la suposición de Dupuit-Forchheimer.

$$h^{2} = \frac{y}{L}(H^{2} - h_{e}^{2}) + h_{e}^{2}$$
 A.4.47

0

$$H^{2} - h^{2} = \frac{2Q}{kx}(L - y) = \frac{(L - y)}{L}(H^{2} - h_{e}^{2})$$
A.4.48

La curva de aba timiento tendrá a u na elevación más al ta en r elación con l os v alores de h calculados con cualquiera de las expresiones A.4.47 y 48, tal como se indica en la figura A.4.9a, debido al flujo vertical en la zanja. La altura h_s de esta superficie de descarga libre y la curva de abatimiento correspondiente se puede estimar de la figura A.4.9b.

Cuando las relaciones $L/H y/o h_o/H$ son pequeñas la curva de abatimiento deberá determinarse del cálculo de la carga *h* de la siguiente expresión:

$$H^{2} - h^{2} = \frac{L - y}{L} \Big[H^{2} - (h_{o} + h_{s})^{2} \Big]$$
 A.4.49

Figura A.4.9. factor de corrección por altura de descarga de superficie libre.

Zanja con penetración completa en un acuífero mixto. (Reddi, 2003).

Algunas ocasiones es necesario excavar por debajo de la parte superior de un estrato permeable y por lo tanto abatir el nivel del agua en esa zona, situación no contemplada en los casos anteriores. Este caso es conocido como artesiano – gravedad o mixto y se ilustra en la figura A.4.8c, en dicha figura se no ta que cerca de la frontera lineal con agua permanente el flujo es artesiano, mientras

que el flujo a gravedad ocurre en la vecindad de la zanja. L_G es la distancia desde la zanja al punto donde se presenta el cambio de flujo de artesiano a gravedad, y se pue de calcular de la siguiente forma:

$$L_{G} = \frac{L(b^{2} - h_{0}^{2})}{2bH - b^{2} - h_{0}^{2}}$$
A.4.50

el caudal bombeado en el pozo es:

$$Q = \frac{k(2bH - b^2 - h_0^2)}{2L}$$
A.4.51

así mismo, la superficie piezométrica se obtiene de las dos expresiones siguientes:

para
$$y \le L_G$$
 $h = \sqrt{b^2 - \frac{L_G - x}{L_G}(b^2 - h_0^2)}$ A.4.52

para
$$y \ge L_G$$
 $h = \frac{L-x}{L-L_G}(H-b)$ A.4.53

Existe una corrección por flujo vertical en la zanja, esta se da sustituyendo h_0 en A.4.52 por h_o+h_s , donde h_s está dada por la figura A.4.9.

Zanja con penetración parcial en un acuífero confinado (Reddi, 2003).

En un sistema de aba timiento frecuentemente sucede que e l e spesor de l e strato permeable es demasiado grande para permitir e l us o d e un sistema de a batimiento económico que lo penetre completamente, y por lo tanto, es necesario considerar la influencia de una penetración parcial. El gasto Q para este caso, mostrado en la figura A.4.10, se calcula con la siguiente expresión:

$$Q = \frac{k(H - h_0)}{L + E_A} + h_e$$
 A.4.54

Donde E_A es un factor de longitud adicional que depende de la relación de penetración de la zanja W al espesor del estrato permeable b, y se determina de la figura 2.3.15.

Figura A.4.10 Flujo artesiano hacia una zanja que penetra parcialmente al estrato permeable proveniente de una frontera lineal infinita con agua permanente.

Como se ilustra en la figura 2.3.15, la máxima carga residual h_D a una cierta distancia aguas abajo de la zanja es mayor que en la zanja y se calcula con la siguiente ecuación:

$$h_D = \frac{E_A (H - h_e)}{L + E_A} + h_e$$
 A.4.55

Así cuando los pozos están separados una distancia muy pequeña se consideran equivalentes a una zanja, la carga aguas debajo de la zanja debe ser considerada dado que excederá a la de la zanja.

Zanja con penetración parcial en un acuífero no confinado (Mansur & Kaufman, 1962).

El gasto en la zanja, Q se calcula con la siguiente expresión :

$$Q = \left(0.73 + 0.27 \frac{H - h_o}{H}\right) \frac{k}{2L} (H^2 - h_o^2)$$
 A.4.56

La carga residual máxima h aguas abajo de la zanja se obtiene de la siguiente ecuación:

$$h = h_o \left(\frac{1.48}{L}(H - h_o) + 1\right)$$
 A.4.57

Como en el caso de flujo ar tesiano, la carga *h* excede a l a de la z anja y por l o tanto es d e importancia práctica. Las ecuaciones A.4.56 y 57 s on validas para valores de $L/H \ge 3$, que están cerca del rango en la mayoría de los problemas de campo.

Zanja con penetración parcial en un acuífero mixto (Mansur & Kaufman, 1962).

Para el ca so artesiano – gravedad las ecuaciones se obtienen del flujo no confinado después de determinar el punto en que s e presenta el cambio de confinamiento. E ste punto s e de termina igualando el flujo a gravedad con el flujo artesiano y resolviéndolos para la distancia L_G , como se mostró en el caso de la zanja con penetración completa.

Otras condiciones.

Con las fórmulas anteriores se pue den estudiar otras configuraciones con zanjas. Cuando la zanja está colocada paralelamente y a la mitad de las dos fronteras lineales, el flujo para un cierto abatimiento de carga será el doble de las ecuaciones 2.3.45, 2.3.50 y 2.3.57, do nde el valor de *L* usado en estas ecuaciones corresponde a l a distancia de sde la zanja ha sta cua lquiera de las dos fronteras lineales.

Si l as za nja pe netra p arcialmente y e l flujo es artesiano e l g asto se c alcula con la siguiente expresión:

$$Q = \frac{2kb(H - h_0)}{L + \lambda b}$$
A.4.58

Donde:

L= Distancia Desde la zanja a cualquiera de las dos fronteras

 λ = Un factor que depende del cociente W/b, y se indica en la figura 2.3.17b

La di stancia "y" de sde la zanja a lcanzará un valor máximo de 1.3b, la car ga h se i ncrementa linealmente conforme crece "y", y puede calcularse como sigue:

$h = h_0 + (H - h_0) \frac{y + \lambda b}{L + \lambda b}$ A.4.59

Figura 2.3.17. Flujo artesiano hacia una zanja que penetra parcialmente, paralela y ubicada a la mitad de las dos fronteras lineales infinitas con agua permanente. a) corte a través del sistema del flujo, b) factor λ contra el cociente *W/D*.

Si el acuífero no está confinado se puede calcular el gasto con la siguiente expresión:

$$Q = \left[0.73 + 027 \frac{H - h_o}{H}\right] \frac{kx}{L} \left(H^2 - h_o^2\right)$$
 A.4.60