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Abstract

The simulation of the problem of damage undergone by a solid, by means of numerical and
computational models, is a topic of interest in different areas of science whose complexity
has led to the development of numerical methods to simulate the material degradation
under various load conditions, which may eventually lead to the failure of the solid.

In this context, different numerical models which consider the damage as a degradation
of the material properties, without redefining the kinematics of the continuum, have been
developed. The smeared cracking and continuum damage formulations belong to this type
of models. Other formulations like the Extended Finite Element Method, XFEM, and
the Partition of Unity model simulate the damage by modifying the materials properties,
and the kinematics of the continuum by introducing an enhancement in the relevant field
variables, which bear the required discontinuity only where it appears.

Strictly speaking the above formulations smear the damage into the entire element, using
a finite element approximation; however this type of models do not properly simulate
the damage process where a localized crack occurs, characteristic of damage in quasi–
brittle materials, leading to an unloading of the bulk. This type of problems can only be
correctly modeled by means of formulations which introduce the damage as a geometrical
discontinuity, using cohesive material models. Formulations as the embedded discontinuity
model belong to this type which use an enhancement of the kinematics at elemental level.

In this work, the damage problem in solids is carried out by means of the embedded
discontinuity formulation, in its discrete approach, introducing a cohesive crack inside the
element domain. Two constitutive laws are used, one linear elastic for the bulk, and the
other a cohesive, traction–jump, for the discontinuity boundary. Rigid body motion of the
parts in which the element is divided is assumed.

Since the embedded discontinuity formulation, presented in this work, is consistently de-
rived from the general canonical variational formulation of De Veubeke–Hu–Washizu, valid
for a continuum solid; it satisfies all the field equations of the associated boundary value
problem, complemented by equations which state the traction equilibrium across the crack,
also derived in a natural way from the variational formulation.

Following a finite element discretization of the domain, two different formulations are
developed: a displacement where the only independent field is the displacement and a
mixed formulation with the displacement and strain fields as independent. Unlike the
standard finite element formulation where the displacement field is continuous; in these
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finite element formulations, commonly known as finite elements with discontinuities, the
interpolated fields may be discontinuous to allow that the crack crosses the element. In
this work only linear constant strain triangular elements are used.

Although the variational formulation satisfies all the field equations and the equilibrium of
tractions across the crack, in natural form, the use of a numerical method to approximate
the solution of the problem leads to an imposition of these conditions in weak form. In this
research a new variable is introduced to enforce the traction equilibrium in strong form at
elemental level. It is shown that the response is dependent on the crack geometry; unlike
the non–symmetric formulation, when the crack continuity is not enforce across elements,
which is invariant with respect to this. Therefore, enforcement of the traction equilibrium
in strong form is directly related with the crack localization inside the element, which
defines its geometry.

For the numerical implementations of the developed formulations, the Finite Element
Analysis Program (FEAP), is used. Since the enhancement of the relevant fields are
introduced only at elemental level, an static condensation is performed to eliminate the
additional degrees of freedom, related with enhanced deformation modes; preserving only
those used in the standard formulation of the finite element method, displacements.

To validate the numerical and theoretical consistency of the presented embedded discon-
tinuity formulations, two numerical examples are presented at the end of the work. In
these problems the damage is simulated by considering only the Mode–I of failure, for
quasi–brittle materials, since no shear stresses are allowed along the crack. The numeri-
cal simulation results are compared with those reported from experimental tests. Special
emphasis in given to the global response of the solid in the process of energy dissipation
across the crack.
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Resumen

El problema de la simulación numérica y computacional del daño experimentado por un
sólido, es un tema de interés en diversas áreas de la ciencia cuya complejidad ha dado lugar
al desarrollo de nuevos modelos numéricos que permiten simular el proceso de degradación
de los materiales ante diversas condiciones de carga, que eventualmente llevan al sólido al
colapso.

En este contexto, se tienen modelos numéricos que consideran el problema de daño como
una degradación de las propiedades mecánicas del material sin la necesidad de redefinir la
cinemática del continuo; este tipo de modelos incluyen el de agrietamiento distribuido y
el de daño continuo. En esta misma dirección se encuentran los modelos donde, además
de modificar la ley constitutiva del material de acuerdo al daño que éste experimenta,
modifican la cinemática del continuo al enriquecer los campos en los que se requiere un
comportamiento discontinuo; modelos como el del elemento finito extendido, XFEM por
sus siglas en ingles, y el de partición de la unidad pertenecen a este tipo de modelos
numéricos.

Estrictamente hablando los modelos anteriormente mencionados, en su aproximación me-
diante el método de los elementos finitos, distribuyen el daño en todo el elemento; sin
embargo ésto no permite modelar correctamente grietas localizadas o procesos de daño en
materiales donde claramente existe una discontinuidad que provoca una descarga de las
partes en las que el sólido se divide. Para simular este tipo de problemas de daño, se han
desarrollado modelos, como el de discontinuidades interiores que situan el daño, en con-
sistencia con el problema f́ısico, mediante una discontinuidad f́ısica dentro del elemento;
ésto se logra al enriquecer el campo de desplazamientos y/o de deformaciones.

En esta tesis se estudia el problema del daño en sólidos mediante la formulación de discon-
tinuidades interiores en su aproximación discreta; donde el daño se introduce como una
grieta cohesiva dentro del elemento y su comportamiento constitutivo está caracterizado
por modelos cohesivos tracción–salto. El efecto del salto sobre el comportamiento del con-
tinuo se refleja por un mevimiento de cuerpo ŕıgido de las parte en que el sólido se divide;
experimentando una descarga elástica lineal.

La formulación de discontinuidades interiores, presentada en este trabajo, es consistente
desde el punto de vista energético. Su formulación variacional se deriva a partir de la
formulación canónica de De Veubeke–Hu–Washizu para un sólido continuo, dentro de la
teoŕıa de la elasticidad. El funcional para un sólido con discontinuidades considera la
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enerǵıa disipada en las grietas, durante el proceso de daño. Se demuestra que la formu-
lación variacional satisface todas las ecuaciones de campo que gobiernan el problema de
valores en la frontera; complementadas por las ecuaciones que establecen la continuidad
de tracciones a través de la grieta, derivadas de forma natural.

Para la aproximación de los campos se utiliza el método del elemento finito en sus formu-
laciones de: desplazamientos y mixta de desplazamientos–deformaciones. La cinamática
de desplazamientos y de deformaciones utilizada, permiten que la grieta cruce el elemento
al utilizar funciones de interpolación discontinuas en aquellos campos donde se require un
comportamiento discontinuo de éstos. Ésto da lugar a elementos finitos no estándares que
se les conoce como elementos finitos con discontinuidades. Los elementos desarrollados en
este trabajo son elementos triangulares lineales de deformación constante.

A pesar de que la formulación variacional satisface el equilibrio de tracciones de manera
natural, al aproximar su solución mediante el método del elemento finito se presenta el
problema de que esta condición no se impone apropiadamente. Para satisfacer el equi-
librio, en este trabajo se introduce una nueva variable en la formulación con la que se
logra imponer de manera fuerte el equilibrio de tracciones a través de la grieta, a nivel
elemental. Se demuestra que la ubicación de la grieta dentro del elemento influye en el
resultado numérico; sin embargo, solamente existe una ubicación en la que el aquilibrio se
impone correctamente. Ésto muestra que la localización de la grieta es una variable en la
formulación de discontinuidades interiores presentada en este trabajo.

Las formulaciones desarrolladas se implementan numéricamente en el programa de ele-
mentos finitos FEAP (acrónimo de su nombre en idioma Inglés, Finite Element Analysis
Program); utilizando la condensación estática para eliminar los grados de libertad elemen-
tales y únicamente preservando los grados de libertad de desplazamiento asociados a la
formulación estándar del método del elemento finito.

Para validar la consistencia numérica y teórica de las fomulaciones desarrolladas, al final
del trabajo se presentan dos ejemplos de aplicación en los que se simula el proceso del daño
que experimenta el sólido hasta alcanzar la falla total, considerando el Modo–I de falla
para materiales cuasi–frágiles. Los resultados obtenidos se comparan con los reportados de
los ensayes de laboratorio; particularmente la respuesta global del continuo en el proceso
de disipación de la enerǵıa a través de la grieta.
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Chapter 1

Introduction

The numerical simulation of the growth of cracks in damaged solids has posed a scientific
challenge for decades. Two main paths can be distinguished: the modeling of fracture in
a smeared sense, within a continuum theory, and the modeling of fracture in a discrete
sense, [92, 110].

The basic mathematical theory, for the study of fracture in a solid, was given in the
classical paper of Inglis in 1913, [52], who obtained the elastic solution for stresses at
the vertex of an ellipsoidal cavity in an infinite solid and observed that, as the ellipse
approached a line crack, the stresses at the vertex of the ellipse become unbounded, figure
1.1. This basic result became the foundation of the Linear Elastic Fracture Mechanics
(LEFM), [6, 14, 24, 82].

Today LEFM is a basic tool for the analysis of many structural problems dealing with crack
growth. However, it is applicable only when the material is brittle, which means that the
material remains elastic up to the initiation of fracture, i.e., the fracture process zone has
to be small compared with the relevant dimensions of the specimen. Furthermore, LEFM
lacks a detailed description of what is happening in the fracture process zone because it
lumps all the inelastic effects into the crack tip.

x

y

x

a

n

s

s

Figure 1.1: Variation of stresses at the crack tip as the ellipse tends to a line.
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Figure 1.2: Stress versus displacement curve and the cohesive process zone.

The way in which the fracture process is modeled in the LEFM, within a finite element
approximation, leads to consider that cracks occur on the boundaries of the elements
since, standard finite elements are employed. This implies that a crack should exists and
the mesh has to be modified continuously to accommodate its orientation parallel to the
elements boundaries.

The need of remeshing, associated with the propagation of the crack in the LEFM, involves
an excessive computational cost because at each loading step, the mesh has to be modified.
Moreover, the use of standard finite elements (displacement formulation), leads to the use
of a method to smooth the stress field like the proposed by Zienkiewicz and Zhu [119].

An alternative, to study the problem of fracture in solids, emerges from classical continuum
mechanics. These models appeared in 1960’s decade when, with the support of numerical
methods such as the Finite Element Method (FEM) [16, 51, 85, 117] , a more effective
description of the fracture phenomenon was given. Within the FEM context, two different
types of models may be distinguished: one in which the inelastic deformations of the
fracture process zone is smeared over a band of a certain width and the other in which
the entire fracture process is lumped into a crack line which behavior is characterized by
a stress–displacement law known as cohesive zone models [14, 49, 106, 110].

1.1 Discrete modeling of fracture

An important issue when considering failure is the observation that most engineering
materials are not perfectly brittle in the Griffith sense. In fact there exists a small zone in
front of a crack tip, in which micro–cracking and void initiation, growth and coalescence
take place. If this fracture process zone is sufficiently small compared with the smallest
structural dimension, LEFM concepts can be applied, however, if this is not the case,
the cohesive forces that exist in this zone must be taken into account. The natural way,
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to consider cohesive forces across a crack, is to use cohesive zone models, introduced by
Barenblatt [15] and Dugdale [36] for elastic–plastic fracture in ductile metals, and for
quasi–brittle materials by Hillerborg et al., [49] in his so–called fictitious crack model.

For the fictitious crack model, the degrading mechanisms are lumped into a discrete line or
plane, figure 1.2, and a stress–displacement relationship across this line is used to simulate
the progressive degradation of the material in this zone [67]. In figure 1.2 it may be seen
that this degradation phenomenon begins once the maximum principal stress reaches the
tensile strength σto of the material.

For brittle materials, considering a Ranking failure criterion, the most important param-
eters of the cohesive zone model appear to be the tensile strength, σto, and the work
involved in the separation of the crack or fracture energy, Gf , [21] which is the work
needed to create a fully developed crack of unit area [6, 14],

GF =

∫ u

0

σ du (1.1)

where σ is a characteristic stress defined on the surface and u is the displacement, both
defined in figure 1.2.

The other form in which the cohesive forces across the discontinuity can be taken into
account in the constitutive model, is by smearing the degradation of the material properties
in a band of width different from zero where inelastic effects are developed.

1.2 Continuum modeling of fracture

Development of damage in a material is mainly the process of the initiation and growth
of micro–cracks and cavities, figure 1.3. Kachanov was the first in 1958, to introduce a
continuum variable related to the density of such defects, [14, 61, 65, 66, 112]. Since this
pioneer work, there has been a great development in the continuum damage mechanics
models.

Generally, the failure process in a material is an irreversible phenomenon, during which
the entropy increases. Kachanov proposed to consider the variable damage d as a surface
density of intersections of cracks and cavities in the material.

However, even some results obtained using these finite element models, are very promising;
the numerical results of this kind of models with strain softening are strongly dependent
on the size of the elements of the mesh [14, 93]. To overcome this difficulty, some authors
have implemented models where one additional material parameter, absent in the classical
theory, is required [13, 44, 45, 57]. All these models employ a length scale which controls
the width of the process zone in which strains localize.

3
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Figure 1.3: One dimensional damaged element.

1.3 The embedded discontinuity approach

Recently, a different approach in which a crack crosses the element, figure 1.4, has been
developed. This approach emerged as a mean to deal with general strain localization
phenomena (such as shear bands in metals) of which the cohesive crack is a particular
case (Belytschko et al., [18], Simo and Rifai [102], Dvorkin [37], Simo et al., [101], Lotfi
and Shing [69], Oliver [78], Larsson and Runesson [64], Alfaiate et al., [4], Júarez and
Ayala [60]).

All embedded discontinuities approaches have a common basic underlying, the process
zone is incorporated into the variational formulation of a finite element model by an
enhancement in the interpolation of the relevant fields [86, 90], which bears the required
discontinuity only where it appears, so that the model of the main field is not affected by
the enhancement. This form of considering discontinuous fields, eliminates the continuous
remeshing process inherent in the classic LEFM model.

In the framework of the embedded discontinuity formulation, three different approaches
may be identified attending to their constitutive models employed and the kinematics of
displacement and strain fields used [41, 59].

crack node

element

Figure 1.4: Solid with an internal crack discretized by the FEM.
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Figure 1.5: Embedded discontinuity models.

1.3.1 Continuum approach

This approach considers the solid as a continuum in all its domain and the behavior of
the material is modeled by standard strain–stress constitutive laws. The weak and strong
embedded discontinuity formulations belong to this kind of models.

1. Weak discontinuity. In this formulation the displacement field is continuous and the
strain field is discontinuous. The process zone is located into a bandwidth different
from zero, figure 1.5a.

2. Strong discontinuity. This formulation is obtained from the weak discontinuity ap-
proach when the strain localization zone tends to zero, leading to a discontinuous
displacement field and an unbounded strain field across the discontinuity, figure 1.5b.

1.3.2 Discrete approach

The main difference of this approach with the strong approach is that in here two consti-
tutive laws are used; one strain–stress relationship for the bulk and other a traction–jump
relationship for the discontinuity boundary. Strictly speaking, in these models the solid
becomes a discrete body where tractions are applied on the discontinuity boundary, figure
1.5c.

In the present work the discrete embedded discontinuity approach will be employed ac-
cording to the variational formulation developed by Júarez and Ayala [59, 60] and that
presented by Alfaiate in [1].
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1.4 Outline of the thesis

In what follows, a general description of the thesis contents is given.

• Chapter 2. The kinematics involving the displacement and strain fields, of the
discrete discontinuity approach, is developed in consistency with the finite element
method. The kinematics of displacements and strains, for a one dimensional problem,
is established; similar to the Assumed Enhanced Strain method. The generalization
of these equations to the three dimensional case, is straightforward.

• Chapter 3. To simulate the crack growth a traction–jump constitutive law is em-
ployed. The damage is introduced considering cohesive forces across the crack faces;
whereas the bulk, materials in the neighborhood of the crack surfaces, unloads elas-
tically. The material model considered is based on an isotropic formulation where
the evolution of the crack is modeled according to the Mode–I of fracture.

• Chapter 4. In this chapter the most general variational formulation for a solid with-
out discontinuities is reviewed. It is shown that this variational formulation satisfies
all the field equations of the associated Boundary Value Problem together with the
essential and natural boundary conditions. A hierarchy of variational formulations
is recovered when it is assumed that some equations are a priori satisfied.

• Chapter 5. The energy dissipation in a discontinuity surface is taken into account,
in the development of the variational formulation for a solid with discontinuities. It
is shown that, in addition to the Boundary Value Problem equations, the continuity
of tractions across the crack surface is obtained in a natural form. In section 5.2,
an approximation of the field equations by the FEM is used together with the kine-
matics equations derived in chapter 2. A general description of the non–symmetric
embedded discontinuity formulation is given at the of this chapter.

• Chapter 6. Despite the fact that in the variational formulation the traction continuity
is correctly satisfied; when a numerical method is used to approximate the solution of
the differential equations system, it is shown that the equilibrium at the discontinuity
is satisfied in strong form only on a particular surface; introducing a new variable in
the formulation.

• Chapter 7. Since in the presented formulation the additional enhanced deformation
modes are considered as elemental ones, in its numerical implementation it is possible
to eliminated these additional degrees of freedom to preserve only those as for the
standard FEM. The numerical implementation is carried out in the Finite Element
Analysis Program (FEAP).

• Chapter 8. To validate the mathematical consistency of the developed embedded
discontinuity formulation, two different numerical examples are presented. The first
example is an uniaxial tension test, and the second example is the classical four
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points beam with a single notched; originally used to study the influence of a mixed
failure mode, tension and shear, in the global behavior of quasi–brittle materials. For
both examples only the Mode–I of failure is considered together with two softening
laws, linear and exponential.

• Capter 9. General comments and conclusions, relative to the presented symmetric
embedded discontinuity formulation, are given in chapter 9.
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Chapter 2

Kinematics of the discontinuity

In this chapter the kinematics of the displacement and strain fields of a solid crossed by a
discontinuity is analyzed.

Consider a body with domain Ω and boundary Γ, figure 2.1, where essential boundary
conditions, ū, exist on Γu and natural boundary conditions, t̄, are applied on Γt, such
that Γ = Γu ∪ Γt and ∅ = Γu ∩ Γt. Additionally, the body is crossed by a discontinuity
Γd which divides the domain Ω into two subdomains Ω+ and Ω−, Ω = Ω− ∪ Ω+. On the
discontinuity boundary, the normal n is defined pointing towards Ω+.

Within the framework of the embedded discontinuity formulation, three different ap-
proaches are used. The weak and strong discontinuity correspond to a continuum ap-
proach where strain–stress constitutive laws are used in all the domain Ω, while in the
discrete two constitutive laws are employed; one strain–stress constitutive law, for the
bulk, and one traction–jump relationship, on the discontinuity Γd. A weak discontinuity
is characterized by a jump on the strain field across a band of finite width bd, figure 2.1,
where the strain field becomes discontinuous but bounded, whereas the displacement field
remains continuous everywhere, [88]. A strong discontinuity is characterized by a jump
on the displacement field across a surface Γd, where strains are unbounded, see figure 2.1.
The strong discontinuity approach can be regarded as a limit case of the weak discontinu-
ity when the width of the localization band, bd, tends to zero, collapsing into a localized

Figure 2.1: Body Ω crossed by a discontinuity Γd.

9



surface Γd.

In this work the discrete embedded discontinuity approach is adopted. For this approach,
when the strength of the material is reached, the deformation due to micro–cracking or
other inelastic phenomena suddenly localizes at a discontinuous surface Γd.

2.1 Displacement jump

The displacement field u for a body, crossed by a discontinuity, figure 2.1 can be decom-
posed into a continuous and discontinuous part [4, 78, 116],

u(x, t) = û(x, t) +HΓd
(x) JuK(x, t) (2.1)

where û and JuK are smooth, continuous functions on Ω and HΓd
is the Heaviside function

centered at the discontinuity and defined as,

HΓd
=

{
αd ∀ x ∈ Ω+

1− αd ∀ x ∈ Ω−
(2.2)

where αd is a constant which defines how the jump is transmitted, 0 ≤ αd ≤ 1; if αd = 0
the jump is totally transmitted to Ω− and if αd = 1 the jump is transmitted to Ω+.

The corresponding infinitesimal strain field, for a body crossed by a discontinuity, can be
found by taking the symmetric gradient of equation (2.1)

ε = ∇sû +HΓd
(∇sJuK) + (∇HΓd

⊗ JuK)s = ε̂︸︷︷︸
bounded

+ δΓd
(JuK⊗ n)s︸ ︷︷ ︸
unbounded

(2.3)

where δΓd
is the Dirac–delta distribution centered at the discontinuity Γd, satisfying,

∫
Ω

δΓd
φdΩ =

∫
Γd

φ dΓ (2.4)

The strain field, given by equation (2.3), can be decomposed into a bounded part ε̂ plus
an unbounded, irregular part, given by δΓd

(JuK ⊗ n)s. The unbounded part of the strain
field can be taken into account in two different ways: i) regularizing the Dirac–delta by
means of a bandwidth parameter close to zero bd ≈ 0, [64, 78, 79], or ii) no regularization
is considered, taking advantage of the properties of the Dirac–delta function, equation
(2.4), [8, 114, 116].
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Figure 2.2: One dimensional finite element with a discontinuity.

2.2 Finite element approximation

In section 2.1 a general form of the discontinuity kinematic has been given; now a con-
sistent interpolation functions will be derived. The displacement and strain fields will be
constructed only from kinematic considerations like in [37, 69].

Consider a one dimensional finite element crossed by the discontinuity Γd, as it is shown in
figure 2.2. It is assumed that Ω+ undergoes a rigid body incremental displacement ũ with
respect to Ω−. In order to obtain the same incremental displacement derivatives on both
subdomains, the interpolations represented in figure 2.2 by lines 1 and 2 may be adopted
for Ω− and Ω+ respectively. Their mathematical expressions are:

u1 = N

[
u−

(
0
1

)
ũ

]
(2.5)

for the left subdomain Ω− and

u2 = N

[
u−

(
0
1

)
ũ

]
+ ũ (2.6)

for the right subdomain Ω+. The purpose of matrix HΓd
= (0 1)T in equations (2.5) and

(2.6) can be understood from the analysis of figure 2.2. As expected, for every point either
in Ω− or Ω+ the infinitesimal strain is

ε = ∇su = B

[
u−

(
0
1

)
ũ

]
= B(u−HΓd

ũ) (2.7)

where B is the usual strain–displacement transformation matrix, [16, 85, 117], and matrix
HΓd

is given by equation (2.2).

For a two–dimensional case, these concepts can be properly generalized by introducing
the vector JuK containing the components of the displacement jumps associated with the
discontinuity Γd,
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JuK =

[
ũ
ṽ

]
(2.8)

Matrix HΓd
, given by equation (2.2), follows from a straightforward generalization of its

counterpart in equations (2.5) and (2.6). For a two–dimensional problem, HΓd
can be

rewritten in the general form

HΓd
=

 H
1
Γd
...
Hn

Γd

 (2.9)

where n is the number of nodes in the finite element, and each of the submatrices Hi
Γd

depends of the position of node i relative to the discontinuity; hence each of these subma-
trices may be written as,

Hi
Γd

=

{
αd I ∀ x ∈ Ω+

(1− αd) I ∀ x ∈ Ω−
(2.10)

where I is the identity matrix of dimension (nst × nst); and nst is the space dimension of
the problem.

From equations (2.5) and (2.6) a displacement function for the whole domain Ω is defined
by

u = Nû + (HΓd
−NHΓd

)JuK (2.11)

Taking Nc as

Nc = HΓd
−NuHΓd

(2.12)

Equation (2.11) is written in the following final form,

u = Nû + NcJuK (2.13)

By means of this definition of the displacement field, (2.13), the strain kinematics is derived
in a consistent form as
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ε = Bû + BcJuK (2.14)

where matrix Bc, is derived by applying the strain–displacement operator to equation
(2.12),

Bc = ∇sNc (2.15)

Equations (2.13) and (2.14), define the displacement and strain fields corresponding to
the discrete approach of the embedded discontinuity formulation, [1, 59, 69].

For a constant strain triangle and considering a uniform deformation field along the inter-
nal interface, figure 2.3, equation (2.15) in rewritten in the following form,

Bc = −∇sϕ(x) (2.16)

where ϕ(x) contains the shape functions corresponding to nodes in Ω+, [1, 79, 114], defined
as,

ϕ(x) =
n+∑
i=1

N+
i (2.17)

where n+ denotes the number of nodes belonging to the subdomain Ω+.

Figure 2.3: Constant strain triangle with a displacement jump.
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Chapter 3

Discrete damage models

For modeling the evolution of material damage where mode–I type failure is dominant, a
cohesive crack type model is used [14, 29, 38, 49, 106]. Micro–cracking and plastic flow
around a macroscopic crack tip are modeled as an equivalent traction force on crack faces,
figure 3.2. This cohesive crack model was introduced by Barenblatt [15] and Dugdale [36]
to represent different nonlinear processes taking place at the tip of a preexisting crack.
Since then, cohesive cracks have been extensively used to model crack growth in concrete,
ceramics, polymers, and metals, as well as interfaces between different material regions.
Specifically Hillerborg [49] extended the work of Barenblatt and Dugdale to simulate cracks
growth in concrete by means of finite elements. Since the pioneering work of Hillerborg,
many authors have used the concept of fictitious crack and fracture energy GF leading to
the introduction of true discontinuities [2, 93].

The cohesive approach of Hillerborg, leads to the softening curve shown in figure 3.2
where, f(w) is a function, characteristic of the material, that must be determined from
experiments. The function called the softening curve, has the property that the limit
stress for a zero crack opening is the tensile strength [14, 49], as indicated in the figure.

In this model the inelastic response is governed by two key material parameters: the
tensile strength σt0 and the fracture energy GF . A discontinuity is introduced when the
maximum principal stress exceeds the tensile strength of the material. The normal vector
to a discontinuity is aligned in the direction of the maximum principal stress. This mode–I

Figure 3.1: Capturing a micro–cracked zone into a cohesive surface.
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Figure 3.2: Softening curve for a cohesive crack model.

criterion is commonly used for quasi–brittle materials [4, 114, 116].

Since the material around the discontinuity remains elastic, two constitutive models are
used to simulate the behavior of the solid. One for the bulk by means of a linear elastic
constitutive law, strain–stress relationship, whereas for the fracture zone, where inelastic
effects are localized, two different types of discrete damage models may be considered: i)
an isotropic damage model and ii) an anisotropic damage model.

A cohesive surface relates the traction t, transmitted over the boundary Γd, to the displace-
ments jump JuK between the surfaces, see figure 3.1. In contrast to the continuum damage
models in which damage affects the stiffness of a material volume, damage evolution in the
cohesive surface model affects the ability to transmit tractions over the cohesive surface.
While the bulk of the material remains elastic, the model thus captures anisotropic dam-
age evolution in a natural way since damage develops only on specific surfaces. Fracture
of the material now progresses solely based on the strength degradation in the cohesive
surfaces and the interaction with the undamaged, elastic, regions of the material.

3.1 Damage model with isotropic softening

A common framework within which many authors deal with damage [4, 42, 65, 70, 106]
is, from a thermodynamic point of view, the Helmholtz free energy density Ψ which, in a
continuum isotropic model is defined as

Ψ(ε, ω(r)) = [1− ω(r)]Ψ0(ε) (3.1)

where Ψ0 is the elastic free energy density dependent on the strain tensor ε, ω is an internal
damage variable and r is an internal scalar variable which considers the strain state in the
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element and is a function of the fracture energy GF . Since in equation (3.1) only isotropic
and adiabatic process are considered; ω becomes an scalar parameter representing the
state of damage that the continuum experiments. Its value varies from 0, corresponding
to an undamaged state, to 1 which represents a fully damaged state. The introduction of
this parameter, in the constitutive law, allows the representations of damage evolution.

Similar considerations, as those for continuum damage models, can be made for the for-
mulation of a discrete damage model where a traction–jump relationship is introduced to
simulate degradation of the material on the discontinuity boundary and ψ(JuK, ω) repre-
sents the free energy per unit area [4, 116],

ψ (JuK, ω(κ)) = [1− ω(κ)]ψ0(JuK) (3.2)

where JuK is the displacement jump vector on the discontinuity boundary Γd, κ is an
internal scalar variable which can be considered as an equivalent jump (κ = JuKeq), and
ψ0 is the linear elastic free energy given by

ψ0(JuK) =
1

2
JuKTTelJuK (3.3)

where, Tel is the elastic constitutive tensor defined only on the discontinuity boundary
Γd. Equation (3.3) is valid for a discontinuity with a linear elastic behavior.

For thermal stable problems, the Helmholtz free energy given by equation (3.2) has to
satisfy the following inequality of Clausius–Duhem, [46, 65, 100],

D = tT ˙JuK− ψ̇ ≥ 0 (3.4)

Equation (3.4) is known as a dissipative potential where, D is the rate of dissipation energy
and t is the traction vector acting across the discontinuity. A variable with a dot above
means its derivative with respect to the time, this is,

˙(•) =
∂

∂t
(•) (3.5)

Expanding the dissipative potential equation (3.4) according to equation (3.5) and group-
ing similar terms

D =

(
t− ∂ψ

∂JuK

)T
˙JuK + ψ0 ω̇ ≥ 0 (3.6)

Use of standard thermodynamic arguments, in equation (3.4), leads to the following
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1. Constitutive equation,

t =
∂ψ

∂JuK
= (1− ω) TelJuK (3.7)

2. and the dissipation equation is reduced to

D = ψ0 ω̇ ≥ 0 (3.8)

Since the elastic free energy per unit area is positive, ψ0 ≥ 0, it can be seen from equation
(3.8) that the rate of change of the damage parameter ω cannot be negative, i.e., this
parameter can only grow.

3.1.1 Tangent constitutive tensor

Transformation of equation (3.7) into its incremental form by its differentiation with re-
spect to time, leads to the derivation of a tangent constitutive tensor as follows

ṫ = (1− ω)Tel ˙JuK− ω̇ TelJuK = (1− ω)Tel ˙JuK− ω̇ tel (3.9)

where tel is the elastic traction vector and

ω̇ =
dω

dκ

∂κ

∂JuK
˙JuK =

dω

dκ

[
∂κ

∂JuKn
˙JuKn +

∂κ

∂JuKs
˙JuKs

]
(3.10)

Substitution of equation (3.10) into equation (3.9) leads to

ṫ =

[
(1− ω)Tel − dω

dκ
tel ⊗ ∂κ

∂JuK

]
· ˙JuK (3.11)

If unloading takes place, the rate of damage is zero, ω̇ = 0, and both equations (3.10) and
(3.11) reduce to

ṫ = (1− ω)Tel ˙JuK (3.12)
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3.1.2 Yield function

The development of a discrete damage–type model requires first the definition of a yield
function which describes the loading state at a discontinuity surface (loading or unloading/re–
loading). The loading function f is given by

f = 〈JuKeq〉 − κ ≤ 0 (3.13)

where JuKeq is an equivalent jump obtained from the displacement jump JuK. The symbols
〈·〉 are the McAuley brackets denoting that only the positive part of JuKeq is considered in
κ.

In equation (3.13), the internal scalar variable κ is a history parameter, equal to the
highest value of 〈JuKeq〉 defined as

κ = κ(JuK) = max〈JuKeq〉 (3.14)

To complete the description of the model at hand, it is required to determine the slip
rate ω̇ ≥ 0. This involves the following essential conditions that embody the notion of
irreversibility inherent in the response of the model.

3.1.3 Loading/unloading conditions

If f < 0, the deformation process is reversible and the dissipation rate must be zero, which
implies that ω̇ = 0. If f = 0, the damage can grow such that, in a subsequent state, f
remains zero (ω̇ > 0 ⇒ ḟ = 0); both cases can be conveniently expressed by the usual
Kuhn–Tucker conditions, [100],

ω̇ ≥ 0, f ≤ 0, ω̇ f = 0, (3.15)

together with the consistency condition

ω̇ ḟ = 0 (3.16)
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Chapter 4

Variational formulations

Before to the presentation of the functional corresponding to the adopted embedded dis-
continuity formulation, the energy functional for a solid without discontinuities is estab-
lished. Consider a continuum body, figure 4.1, with domain Ω, boundary Γ and body forces
bv applied in Ω. Essential boundary conditions ū are defined on Γu whereas tractions t̄,
corresponding to natural boundary conditions, are applied on Γt; such that Γ = Γu ∪ Γt
and ∅ = Γu ∩ Γt. The outward normal vector ν is defined on Γt.

It is possible to show that the energy functional of the general variational principle of
De Veubeke–Hu–Washizu (VHW) [30, 31, 76, 113], is a generalization of the Potential
Energy functional for an elastic body. To begin with, the steps by which this functional is
derived from the Principle of Virtual Work are summarized. It is assumed that: i) it is
possible to derive a positive definite state function Ψ(εx, εy, ..., εxy), more briefly denoted
by Ψ(ε), hereafter the strain energy density; ii) the strain field satisfies the conditions of
compatibility, iii) the displacement field satisfies the essential boundary conditions defined
on Γu, and iv) body forces and surface tractions can be derived from the potential functions
Φ(u) and φ(u), functions of the displacement field. The existence of the function Ψ(ε),
gives rise to the total strain energy calculated from the integrable field ε,

Figure 4.1: Continuous solid with domain Ω and boundary Γ.
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U =

∫
Ω

Ψ(ε) dΩ (4.1)

Regarding the conditions involved in ii) and iii), this are introduced through a dislocation
potential as

D =

∫
Ω

σT (Du− ε) dΩ +

∫
Γu

tT (ū− u) dΓ (4.2)

where σ and t are the stress and traction fields respectively, and D is the symmetric
gradient operator, defined in appendix B.

The stress and tractions fields may be seen, consistently with mathematical theory, as
Lagrangean multipliers [31, 40, 113], removing the compatibility conditions ii) and iii),
that must be satisfied a priori in the simpler principle of minimum potential energy.

The potential energy of prescribed loads is given as

P = −
∫

Ω

Φ(u) dΩ−
∫

Γt

φ(u) dΓ (4.3)

where

Φ(u) = uTbv (4.4)

φ(u) = uT t̄ (4.5)

Equations (4.4) and (4.5) are the respective body forces and prescribed tractions, which
may be functions of the displacements field u. Hereafter conservative loads are considered,
i.e., independent of the loading path in the solid, therefore Φ(u) = Φ and φ(u) = φ.

Setting equations (4.1) to (4.5) into a variational formulation, the following generalization
of the Principle of Minimum Potential Energy is recovered

δΠ(u, ε,σ, t) = δ(U + P +D) = 0 (4.6)

where the energy functional Π is written as
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Π =

∫
Ω

[σT (Du− ε) + Ψ(ε)− uTbv] dΩ−
∫

Γt

uT t̄ dΓ +

∫
Γu

tT (ū− u) dΓ (4.7)

The functional stated in equation (4.7) considers four independent fields subjected to
variations: displacements u, strains ε, stresses σ and tractions t; and three dependent
fields: strains which depend on the displacement field u, Du, stresses σ(ε) dependent on
the strain field ε and stresses σ(u) derived from the displacements u.

The strain energy density function Ψ(ε), for a body with elastic behavior, is given as

Ψ(ε) =

∫ ε

0

(σε)T dε (4.8)

where σε = σ(ε) are the stresses derived from the independent strain field ε through a
constitutive relationship as Cε. If in equation (4.8) a constitutive tensor C for a linear
elastic medium is considered, this equation is modified to obtain,

Ψ(ε) =
1

2
εTCε (4.9)

Taking the first variation of functional (4.7) with respect to each independent field and
applying the stationarity conditions (4.6)

δΠ =

∫
Ω

[
σT (Dη)− bTv η

]
dΩ−

∫
Γt

t̄Tη dΓ−
∫

Γu

tTη dΓ +∫
Ω

[
∂Ψ

∂ε
− σ

]T
γ dΩ +

∫
Ω

[Du− ε]T τ dΩ +

∫
Γu

[ū− u]T τ̄ dΓ = 0

(4.10)

where (η,γ, τ , τ̄ ) are the variations of displacements, strains, stresses and tractions fields
respectively. The integral

∫
Ω
σT (Dη) dΩ can be rewritten by means of the divergence

theorem, appendix B, as

∫
Ω

σT (Dη) dΩ = −
∫

Ω

(
σTD

)
η dΩ +

∫
Γt

(
σTPν

)
η dΓ +

∫
Γu

(
σTPν

)
η dΓ (4.11)

and Pν is the normal–projection matrix, defined as in appendix B, containing the com-
ponents of the normal vector ν. Substitution of equation (4.11) into (4.10) and grouping
similar terms into integrals,
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δΠ = −
∫

Ω

[
DTσ + bv

]T
η dΩ +

∫
Ω

[
∂Ψ

∂ε
− σ

]T
γ dΩ +

∫
Ω

[Du− ε]T τ dΩ

+

∫
Γt

[
σTPν − t̄

]T
η dΓ +

∫
Γu

[
σTPν − t

]T
η dΓ +

∫
Γu

[ū− u]T τ̄ dΓ = 0

(4.12)

Since equation (4.12) has to be satisfied for any variations η, γ, τ and η̄; the Euler–
Lagrange equations, associated to the functional (4.7), are

DTσ + bv = 0 in Ω internal equilibrium

ε−Du = 0 in Ω strain compatibility

σ − ∂Ψ
∂ε

= 0 in Ω constitutive law

σTPν − t = 0 on Γu external equilibrium

ū− u = 0 on Γu essential boundary conditions

σTPν − t̄ = 0 on Γt natural boundary conditions

(4.13)

Equations (4.13) are the governing equations of the boundary value problem for a con-
tinuous solid, figure 4.1. It may be shown that these equations satisfy the stationarity
condition (4.6) of functional (4.7); but when a numerical method is used to obtain an
approximate solution of them, they are satisfied only in an average sense, also referred as
weak form, and not point to point, strong form.

It is important to point out that the functional (4.7) can give rise to a continuous field, in
the entire domain of the solid, of each independent variable. This implies that the number
of degrees of freedom (dof) of the problem is increased according to the total number of
independent fields. In this case, for a three dimensional problem, each point considers
three dof of displacements, six dof of strains, six dof of stresses and, if this point is
on a boundary, three dof of tractions; in total 18 dof. In theory any solution by using
the general De Veubeke–Hu–Washizu formulation can obtain continuous fields; but there
exist an inconsistency when this occurs and was analyzed by De Veubeke as a limitation
condition of mixed formulations [31].

Continuity requirements

Inspection of the functional (4.7) shows that it contains only first derivatives of the dis-
placement field, because first order derivatives appear in the dependent field ε = Du.
Whenever referring to the other three independent fields, the order of their derivatives is
zero since the functional does not considers continuity of the their derivatives.

From this characterization, it follows that when the VHW principle in the form (4.7)
is used to derive finite elements, the assumed displacements should be C0 interelement
continuous, whereas assumed strains and stresses can be discontinuous between elements.
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4.1 A hierarchy of variational formulations

Starting from functional (4.7), it is possible to derive a hierarchy of variational formulations
through considering fields which make that some equations defined in (4.13) are a priori
satisfied, [87, 89, 91].

4.2 Three field formulation

If the tractions t, are removed from the functional (4.7) by considering that essential
boundary conditions are a priori satisfied, ū− u = 0, the following three field variational
principle is obtained

δΠ(u, ε,σ) = δ(U + P +D) = 0 (4.14)

where Π is the three field functional given by

Π =

∫
Ω

[
σT (Du− ε) + Ψ(ε)− uTbv

]
dΩ−

∫
Γt

uT t̄ dΓ (4.15)

where only three independent fields are subject to variations: displacements u, strains
ε and stresses σ. From this point, taking the variations of each independent field and
applying the stationarity conditions (4.14), the corresponding Euler–Lagrange equations
are defined by (4.13); but equations (4.13)4 and (4.13)5 do not appear any more. According
to the aforementioned, in this formulation there are 15 dof per node for a three dimensional
problem; named three displacements, six strains and six stresses.

4.3 Hellinger–Reissner Formulation

Other kind of variational formulation may be derived from the general VHW formulation
by considering that the essential boundary conditions, equations (4.13)4 and (4.13)5, and
the strain compatibility, equation (4.13)2, are a priori satisfied. From these considerations
the well known Hellinger–Reissner (HR) principle is recovered.

δΠ(u,σ) = 0 (4.16)

where Π is the Hellinger–Reissner functional
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Π =

∫
Ω

[
σT (Du)− Ψ̂(σ)− uTbv

]
dΩ−

∫
Γt

uT t̄ dΓ (4.17)

where Ψ̂(σx, σy, ..., σxy), briefly denotes as Ψ̂(σ), is a state function, complementary energy
density, defined by the Legendre transformation, [31, 76, 77, 113]

∫
Ω

Ψ(ε) dΩ =

∫
Ω

σT (Du) dΩ−
∫

Ω

Ψ̂(σ) dΩ (4.18)

which introduces the condition that ε = Du. For this formulation two independent fields
are introduced; the displacement field and the stress field. This implies than in a finite
element formulation, it is possible to have stresses as dof at the nodes of an element.

4.4 Strain–displacement Reissner Principle

To derive the energy functional corresponding to the Strain–Displacement Reissner Prin-
ciple (SDR), equation (4.17) is modified by introducing Ψ(ε) in place of Ψ̂(σ) to obtain

δΠ(u, ε) = 0 (4.19)

and the functional Π is redefined as

Π =

∫
Ω

[
σT (Du)−Ψ(ε)− uTbv

]
dΩ−

∫
Γt

uT t̄ dΓ (4.20)

4.5 Principle of minimum potential energy

From the stationarity conditions (4.13) which are satisfied by the functional (4.7), in this
section a principle, which considers only the displacement field subject to variation, is
derived. Equations (4.13)2, (4.13)4, (4.13)5 and (4.13)6 are a priori satisfied and equation
(4.13)3 is not considered explicitly in the derivation of the functions but it may be taken
into account by

σ =
∂Ψ

∂ε
(4.21)
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Equation (4.21) assures the existence of the strain energy density function Ψ(ε) from
which stresses are derived. This point introduces a limitation to this principle since it is
now restricted to elastic bodies because displacements are related to stresses by means of a
constitutive law whereas the principle of virtual displacements is valid for any constitutive
law.

δΠ(u) = 0 (4.22)

The corresponding functional is given by

Π =

∫
Ω

[
Ψ(ε)− uTbv

]
dΩ−

∫
Γt

uT t̄ dΓ (4.23)

The principle defined in (4.24) states that: Among all admissible displacements u which
satisfy the prescribed essential boundary conditions ū, defined on Γu, the actual displace-
ments make the total potential energy minimum.

4.6 Principle of minimum complementary energy

Now it will be shown that another variational principle can be derived from the Principle
of Complementary Virtual Work when equilibrium conditions for the stresses σ and the
prescribed tractions t̄ along the element boundary are satisfied, functional (4.17) is reduced
to the principle of minimum complementary energy with stresses σ as the only field variable

δΠ(σ) = 0 (4.24)

where the energy functional Π is

Π =

∫
Ω

Ψ̂(σ) dΩ−
∫

Γu

tT ū dΓ (4.25)

This principle states that: Among all the sets of admissible stresses σ which satisfy the
equations of equilibrium and the prescribed natural boundary conditions t̄, defined on Γt,
the set of actual stress components makes the total complementary energy, defined by
equation (4.25), an absolute minimum.
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Chapter 5

Embedded discontinuity formulation

In the context of the approximation of the embedded discontinuity formulation, different
approaches have been developed regarding the interpolation of displacement and strain
fields. Some approaches, like that developed by Belytschko et al., [18] departing from the
Assumed Enhanced Strain method (EAS) [99], have been proved to be statically optimal,
i.e., traction continuity across the discontinuity, but do not reproduce properly the kine-
matics of the discontinuity, rigid body motions of the two parts in which the element is
split by the discontinuity; this kind of approaches has been classified as Statically Optimal
Symmetric (SOS) in a comprehensive study made by Jirásek [55].

Another kind of approaches where the kinematics of strain is derived in a consistent form
from the displacement field, corresponds to those developed by Lotfi and Shing [69] and
Juárez and Ayala [59, 60]. In these formulations, the kinematics allows to capture the
rigid body motions of the two parts in which the element is divided by the discontinuity;
furthermore the traction continuity is not enforced at elemental level, in a strong form,
since this condition emerges in a natural way from the variational formulation. Strictly
speaking, when the width of the localization zone collapses into a line, the traction con-
tinuity is not imposed properly and is satisfied only in weak form. Jirásek [55] classifies
these approaches as Kinematically Optimal Symmetric (KOS).

Alternately to the formulations previously described, there exists other kind of approaches
where both the kinematics of the discontinuity and the traction continuity across the
discontinuity are satisfied. These approaches are developed from the (EAS) method [102]
considering a Petrov–Galerkin type formulation leading to a nonsymmetric formulation
of the problem. Examples of these approaches are those developed by Simo et al. [101],
Oliver [78, 79], Armero and Garikipati [8] and Wells and Sluys [116]. These approaches
are named Kinematically and Statically Nonsymmetric (KSON) formulations by Jirásek
[55].
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Figure 5.1: Continuum divided in Ω− and Ω+ by a discontinuity Γd.

5.1 Kinematically optimal symmetric formulation

As stated before, there are three different formulations of the embedded discontinuity
model. In this work only the KOS formulation is addressed; regarding its discrete ap-
proach. For a comparative study of the results, derived from the numerical tests, addi-
tionally the KSON formulation has been implemented. Both formulations are developed
for two dimensional analyses with the constant strain triangle (CST) element under quasi-
static load conditions for the mode I of failure.

5.1.1 Three field formulation

Once the energy functional for a continuum solid is established, it is possible to take into
account the dissipation energy on the discontinuity boundary Γd, [87, 89]. For this, con-
sider a solid divided by Γd in Ω− and Ω+, figure 5.1, where the normal to the discontinuity
is given by n and the relative displacement between both subdomains is defined by the
jump JuK in the displacements field u. The energy functional for this solid is written from
equation (4.15) as,

Π(u, ε,σ, JuK) =

∫
Ω

[
σT (Du− ε) + Ψ(ε)− uTbv

]
dΩ−

∫
Γt

uT t̄ dΓ+∫
Γd

ψ(JuK) dΓ

(5.1)

where ψ(JuK) is an additional term which considers the elastic free energy density defined
on the discontinuity Γd, derived from the field JuK. For a discontinuity with an elastic
behavior, this function is given by

ψ(JuK) =

∫ JuK

0

tT dJuK (5.2)
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where t are the tractions on the discontinuity derived from a cohesive constitutive law
traction–jump, t = TJuK; furthermore, for a discontinuity with a linear elastic behavior,
this function is rewritten as

ψ(JuK) =
1

2
JuKTTJuK (5.3)

Hence the functional involves four independent fields. Now the first variation of the
functional considering each of the four independent field is obtained as

δΠ =

∫
Ω

[
(Du− ε)T τ +

(
∂Ψ

∂ε
− σ

)T
γ + σT (Dη)− bTv η

]
dΩ−∫

Γt

t̄Tη dΓ +

∫
Γd

(
∂ψ

∂JuK

)T
η̃ dΓ = 0

(5.4)

for all variations (η,γ, τ ), already defined in chapter 4, and η̃ is the variation of the
displacement jump JuK. Applying the divergence theorem, see appendix B, to the term∫

Ω
σT (Dη) dΩ and dividing the domain Ω into Ω− and Ω+,

∫
Ω

σT (Dη) dΩ =−
∫

Ω−

(
σTD

)
η− dΩ−

∫
Ω+

(
σTD

)
η+ dΩ +

∫
Γ−t

(
σTPν

)
η− dΓ

+

∫
Γ+

t

(
σTPν

)
η+ dΓ +

∫
Γ−d

(
σTPn

)
η− dΓ−

∫
Γ+

d

(
σTPn

)
η+ dΓ

(5.5)

where Pn is the normal–projection matrix, defined in the same form as the matrix Pn,
which contains the components of the normal vector n. The substitution of equation (5.5)
into (5.4) leads to conclude that the functional stated by equation (5.1) satisfies in weak
form:

DTσ + bv = 0 in Ω internal equilibrium

ε−Du = 0 in Ω strain compatibility

σ − ∂Ψ
∂ε

= 0 in Ω constitutive law

σTPν − t̄ = 0 on Γt natural boundary conditions

(5.6)

The above field equations and boundary conditions are supplemented by the following
equilibrium conditions across the discontinuity:

t = − (σ+)
T

P+
n on Γd

t = (σ−)
T

P−
n on Γd

(5.7)
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5.1.2 Strain–displacement formulation

If the constitutive law, equation (5.6) 3, is imposed in strong form the functional corre-
sponding to the strain–displacement formulation is recovered,

Π(u, ε, JuK) =

∫
Ω

[
σT (Du)−Ψ(ε)− uTbv

]
dΩ−

∫
Γt

uT t̄ dΓ +

∫
Γd

ψ(JuK) dΓ (5.8)

5.1.3 Displacement formulation

In the same way as for the strain–displacement formulation here in equation (4.13) it is
assumed that strain compatibility, equation (5.6) 2, and constitutive law, equation (5.6) 3,
are satisfied in strong form,

Π(u, JuK) =

∫
Ω

[
Ψ(ε)− uTbv

]
dΩ−

∫
Γt

uT t̄ dΓ +

∫
Γd

ψ(JuK) dΓ (5.9)

5.2 Finite element approximation

Once the functional of the embedded discontinuity formulation for its discrete approach
is defined; the discretization of the domain by the finite element method is carried out,
using the displacement and strain kinematics developed in chapter 2, this is,

u = Nû + Ncũ (5.10)

Du = Bû + Bcũ (5.11)

where û and ũ are the respective regular and not regular displacements, related with the
jump JuK. The matrix N contains the standard shape functions, and the shape functions
associated to the nodes which belong to the subdomain Ω+ are contained in the matrix
Nc, chapter 2. As for the standard finite element method, here the matrices B and Bc

contain the derivatives of the corresponding shape functions N and Nc

5.2.1 Three field approximation

For this approximation, in addition to the interpolated fields of equations (5.10) and (5.11),
the strain and stress independent fields are interpolated as follow
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ε = Ne e (5.12)

σ = Ns s (5.13)

where Ne and Ns are to the interpolation functions of strains and stresses respectively, e is
the vector of nodal strains, and s is the vector of nodal stresses. Substitution of equations
(5.10) to (5.13) into (5.1) and its posterior minimization leads to:


Kee Kes 0 0

KT
es 0 Ksû Ksũ

0 KT
sû 0 0

0 KT
sũ 0 Kũũ





e

s

û

ũ


=



0

0

f ext

0


(5.14)

where

Kee =

∫
Ω

NT
e CNe dΩ (5.15)

Kes = −
∫

Ω

NT
e Ns dΩ (5.16)

Ksû =

∫
Ω

NT
s B dΩ (5.17)

Ksũ =

∫
Ω

NT
s Bc dΩ (5.18)

Kũũ =

∫
Γd

NT
c TNc dΓ (5.19)

f ext =

∫
Ω

NTbv dΩ +

∫
Γt

NT t̄ dΓ (5.20)
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From the algebraic equations system (5.14) it may be shown than the KOS formulation
leads to a symmetric matrix and that the nonlinear behavior only appears in the submatrix
Kũũ since the rest of the submatrices are considered to remain elastic. Other important
issue to point out, for this kind of mixed formulations, is that the matrix has zeros along its
leading diagonal. The handling of this particular configuration requires the use of special
solvers like those by Linear Algebra Package (LAPACK) [5, 35, 47].

To obtain stable mixed formulation, there are two important points to take into consid-
eration, solvability and stability, both directly related with the Babuška–Brezzi condition
[12, 23, 117, 118]. In appendix C these conditions are addressed to guarantee the conver-
gence and the stability of these formulations.

5.2.2 Strain–displacement approximation

For this approach, the displacement and the independent strain fields are interpolated
by means of equations (5.10) and (5.12), respectively; and the strain field, ε(u) = εu,
dependent of the displacement field u, is derived according to equation (5.11). Substituting
these three equations into the functional (5.8) and following the same step as for the last
formulation,


−Kee Keû Keũ

KT
eû 0 0

KT
eũ 0 Kũũ




e

û

ũ

 =


0

f ext

0

 (5.21)

where

Keû =

∫
Ω

NT
e CB dΩ (5.22)

Keũ =

∫
Ω

NT
e CBc dΩ (5.23)

The other submatrices have been already defined. Considerations done to the Three fields
formulation apply here since the particular configuration of the coefficient matrix, equation
(5.21), is the same.

5.2.3 Displacement approximation

The substitution of equations (5.10) and (5.11) into the functional given by equation (5.9)
and its corresponding minimization, leads to the next algebraic system of equations
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[
Kûû Kûũ

KT
ûũ Kũũ

]{
û

ũ

}
=

{
f ext

0

}
(5.24)

where

Kûû =

∫
Ω

BTCB dΩ (5.25)

Kûũ =

∫
Ω

BTCBc dΩ (5.26)

Kũũ =

∫
Ω

BT
c CBc dΩ +

∫
Γd

NT
c TNc dΓ (5.27)

and the vector of external forces is given by equation (5.20). Here as for the mixed formu-
lation, the coefficient matrix is symmetric and unlike the others there are no zeros along
its leading diagonal and hence no special considerations have to be taken for choosing the
solver used. The inelastic response is related to the term

∫
Γd

NT
c TNc dΓ of the submatrix

Kũũ.

5.3 Statically and kinematically optimal nonsymmet-

ric formulation

In what follows an additional embedded discontinuity formulation like that presented in
[1, 4] is introduced. For this, consider the principle of virtual work, for an elastic body,
which states

∫
Ω

σT (Dη) dΩ =

∫
Ω

(
∂Ψ

∂ε

)T
Dη dΩ =

∫
Ω

bTv η dΩ +

∫
Γt

t̄Tη dΓ (5.28)

where σ = ∂Ψ
∂ε

denotes the stresses derived from the constitutive law.

It can be shown that, integrating equation (5.28) by parts, equations (4.13) 1 and (4.13) 4

are obtained [79]. Thus, apart from the enforcement of the essential boundary conditions,
the traction continuity of equation (5.7) still has to be imposed locally.
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In previous works [8, 64, 101, 116] a mixed variational formulation is adopted in the
framework of the Assumed Enhanced Strain (AES) method [102], from which the equilib-
rium as well as the traction continuity conditions are also derived. Wells [114] develops a
formulation in the framework of the (AES) method in a detailed form.

Due to the bounded nature of the stress field, the stress vector is obtained from the
continuum constitutive relation due to the regular part of the strain given by equation
(2.15); hence:

σ = C (Bû + Bcũ) (5.29)

where C is the continuum constitutive tensor.

The discretized set of equations corresponding to the finite element approximation of
(5.28) is,

∫
Ω

BTσ dΩ = f ext (5.30)

As mentioned before, to complete the set of equations (5.30) the traction continuity condi-
tion (5.7) still has to be enforced locally. In a weak form, the traction continuity condition
can be written as:

∫
Ω

GTσ dΩ +

∫
Γd

t dΓ = 0 (5.31)

where t is the traction vector obtained at the discontinuity Γd, matrix G is given by

G = − ld
Ω

Pn = − ld
Ω

 n1 0
0 n2

n2 n1

 (5.32)

and ld is the length of the discontinuity Γd. The traction vector t has to be derived from a
discrete constitutive relation for the crack Γd according to the material model introduced
in chapter 3 as:

t = TJuK (5.33)

From the substitution of equation (5.32) into (5.31) it is possible to write
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1

ld

∫
Γd

t dΓ− 1

Ω

∫
Ω

σTPn dΩ = 0 (5.34)

which shows that the traction boundary condition is enforced in average. In the ap-
proximation considered, where constant strain triangles are adopted, equations (5.31) and
(5.34) enforce traction continuity locally since, within each element, the functions in the
integrals are constant. Moreover, in this particular case it can also be seen from equation
(5.34) that the formulation does not depend upon the length ld of the discontinuity Γd,
[1, 4, 8, 79, 116].

Substituting the interpolated fields given by equation (5.29) into (5.30) and imposing at
elemental level traction continuity given by (5.31) gives,

[
Kûû Kûũ

Kũû Kũũ

]{
û
ũ

}
=

{
f ext

0

}
(5.35)

where

Kũû =

∫
Ω

GTCB dΩ (5.36)

Kũũ =

∫
Ω

GTCBc dΩ +

∫
Γd

T dΓ (5.37)

and the other submatrices have been already defined.
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Chapter 6

Equilibrium on the discontinuity
boundary

The interpolation of the displacement jump field by the finite element method of the
(KOS) formulation, developed in section 5.2, takes into account the shape function Nc

given by equation (2.12). This kind of interpolation is a proper way to consider that the
localization band width bd is different from zero; but when this band collapses into a line,
i.e., a discrete discontinuity, the Nc functions have the meaning of the identity matrix
which leads to consider only tractions at the discontinuity in the local framework.

The particular case, bd = 0, may lead to a non proper imposition of the traction continuity
which only satisfies equilibrium for some particular cases. To check this, the element shown
in figure 6.1 is considered; here the discontinuity Γd crosses the element parallel to the
side 1 − 2, additionally l12 is the length of this side, n is the normal to the discontinuity
and h is the height of the triangle. The angle β is measured from the x axis and the side
1− 2, and finally α is the angle between the x axis and the normal to the referred side.

The area of the element is A = l12 h
2

, hence 2A = l12 h, and from the geometry of the
element and the angle β the following relations are obtained,

cos β =
x2 − x1

l12

(6.1)

sin β =
y2 − y1

l12

(6.2)

Furthermore, for the element shown in figure 6.1, the matrix Bc is defined as:

Bc = − 1

2A

 y1 − y2 0
0 x2 − x1

x2 − x1 y1 − y2

 (6.3)
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Figure 6.1: Discontinuity projected parallel to the opposite side to the solitary node.

rewriting the matrix Bc according to relations obtained from the geometry of the element
and using the angle α instead of β,

Bc = −1

h

 cosα 0
0 sinα

sinα cosα

 (6.4)

The form of the matrix Bc, equation (6.4), is similar to that for the normal–projection
matrix, defined in appendix B, which contains the components of the vector n, normal to
the surface Γd,

Pn =

 cosα 0
0 sinα

sinα cosα

 (6.5)

The principal difference between equations (6.4) and (6.5) is the term 1
h

which makes that
the traction continuity can not be imposed correctly. Once a discontinuity appears the
following equality has to be satisfied,

∫
Ω

BT
c

(
σũ + σû︸︷︷︸

≈0

)
dΩ +

∫
Γd

t dΓ = 0 (6.6)

hence the equilibrium at the discontinuity depends only on the stresses coming from the
regular displacement field σũ and the tractions from the discontinuity. After some alge-
braic operations it may be shown than the tractions are expressed as
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tn =
1

2 ld
[y1 − y2]σxx (6.7)

ts =
1

2 ld
[x2 − x1]σyy (6.8)

These results show that traction continuity is not satisfied since, the correct tractions
are tn = σxx and ts = σyy. Traction continuity is only recovered for special cases when
2 ld = (y1−y2) and 2 ld = (x2−x1). These conditions may lead to a stress locking problem
in the element.

6.1 A correct definition of the discontinuity length

In what follows, a consistent way for a correct enforcement of equilibrium on the discon-
tinuity surface is shown by means of some geometrical relationships. The formulation
is developed for a constant strain triangle with the discrete approach of the symmetric
embedded discontinuity model.

The system to solve is:

[
Kûû Kûũ

KT
ûũ Kũũ

]{
û

ũ

}
=

{
f ext

0

}
(6.9)

where

Kûû =

∫
Ω

BTCB dΩ (6.10)

Kûũ =

∫
Ω

BTCBcR dΩ (6.11)

Kũũ =

∫
Ω

RTBT
c CBcR dΩ +

∫
Γd

NT
c TNc dΓ (6.12)

and R is the rotation matrix from local coordinates to global coordinates defined as
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R =

[
cos θ − sin θ
sin θ cos θ

]
(6.13)

The solution of the system of equations (6.9) leads to the equilibrium of the element in
two parts. The first equation, (6.9)a, gives the equilibrium in nodes of the element and the
second, (6.9)b, states the equilibrium of tractions on the internal discontinuity boundary
as:

∫
Ω

RTBT
c (σũ + σû) dΩ +

∫
Γd

t dΓ = 0 (6.14)

From equation (6.14) it is possible to see that the equilibrium is imposed between the
tractions t defined on the discontinuity Γd and the internal forces of the solitary node i,
figure 6.4.
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Figure 6.3: Geometrical relationships for the construction of the matrix Bc.
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Figure 6.4: Tractions equilibrium on the discontinuity boundary Γd.

According to the construction of the matrix Bc, which is derived from the geometry of
the element, the correct imposition of the equilibrium on the discontinuity occurs only in
a particular surface which defines the geometry of the discontinuity.

This point makes the formulation directly dependent on the location of the discontinuity
in the element; unlike the nonsymmetric formulation [1, 54, 78, 114], where the solution
is invariant with respect to the geometry of the discontinuity. From this condition, the
localization of the discontinuity is a variable in the problem for the symmetric embedded
discontinuity formulation, figure 6.3.

The aim of this analysis is to find the surface Γd where evaluation of equation (6.14)
guarantees the equilibrium of tractions across the discontinuity. The initial conditions, in
the moment in which, σI > σt0, are:

tn = σt0 = σI
ts = 0
JuK ≈ 0

(6.15)

with σI being the principal stress I and σt0 the strength of the material. These initial
conditions lead to the following form of equation (6.14):

tn ld =
A

h

[
cos θ(cosα σx + sinα σxy) + sin θ(sinα σy + cosα σxy)

]
(6.16)

Equation (6.16) contains sine and cosine functions which can be transformed by means
of some trigonometric identities; additionally the shear stress is

σxy =
1

2
tan 2θ(σx − σy) (6.17)
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Substitution of equation (6.17) into equation (6.16) leads to

tn
ld h

A
=

1

2

[
cos (θ + α)(σx−σy)+cos (θ − α)(σx+σy)+tan 2θ sin (θ + α)(σx−σy)

]
(6.18)

grouping similar terms in this last equation,

tn
ld h

A
=

1

2

[
(σx− σy)

(
cos (θ + α) + tan 2θ sin (θ + α)

)
+ (σx + σy) cos (θ − α)

]
(6.19)

now dividing both sides of equation (6.19) by cos (θ − α),

tn
ld h

A

1

cos (θ − α)
=

1

2

[
(σx − σy)

cos (θ − α)
(cos (θ + α) + tan 2θ sin (θ + α)) + (σx + σy)

]
(6.20)

And the initial condition tn = σI implies that the right hand side of equation (6.20) has
to be equal to σI . This is true if and only if the first term is equal to:

cos (θ + α) + tan 2θ sin (θ + α) =
√

1 + tan2 2θ cos (θ − α) (6.21)

To prove this equality, both sides of equation (6.21) are squared to obtain

cos2 (θ + α) + 2 cos (θ + α) tan 2θ sin (θ + α) + tan2 2θ sin2 (θ + α) =

(1 + tan2 2θ) cos2 (θ − α)
(6.22)

After some algebraic work considering trigonometric identities, the following equation is
derived

sin 2θ sin 2α = sin 2θ sin 2α (6.23)

proving the equality (6.21). Once the equality (6.21) has been proved, the next step is
to replace the right hand side of equation (6.20) by the principal stress σI and tn = σI ;
according to this,

ld =
A

h
cos (θ − α) (6.24)

Equation (6.24) defines the surface, inside the element, where imposition of tractions
continuity, equation (6.14), guarantees the equilibrium along the discontinuity boundary
Γd.
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6.2 Alternative enforcement of equilibrium

From the observations made, to the transformation matrix Bc, at the beginning of this
chapter, there exists another form to the correct imposition of the equilibrium across
the discontinuity boundary. According to the construction of this matrix, stresses are
transmitted to a surface parallel to the side opposite to the solitary node i, figure 6.3;
hence is it possible to obtain equilibrium at this surface if the length of the discontinuity
is equal to

ld =
A

h
(6.25)

Imposition of traction continuity on the surface defined by equation (6.25), makes the
formulation strongly dependent of the mesh configuration since the discontinuity has to
be introduced parallel to one side of the element.
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Chapter 7

Numerical implementation

The embedded discontinuity formulation consists essentially of adding, to the standard
continuum finite elements, enhanced deformation modes controlled by additional degrees
of freedom. Depending on the support of those additional deformation modes, the formu-
lation may be split up into two types of implementation.

The first one considers an elemental enrichment (see for instance [4, 8, 9, 37, 68, 75, 80, 90]),
i.e., only elemental degrees of freedom are used to introduced the jump in the displacement
field; in consequence, by taking advantage of the configuration of the system of algebraic
equations, it is possible to perform an static condensation to eliminate the additional
degrees of freedom, related with the displacement jump, preserving only the standard
as for the classical FEM which is treated in the same way as inelastic strains are [74].
The resulting displacement jump field is piecewise continuous since there is not continuity
across the elements boundaries.

In the second type of implementation, the support of the additional enhanced deformation
modes are the standard FE nodes, i.e., the number of degrees of freedom per node is
increased by some additional, related with the displacement jump (two per node in 2D
problems and three for 3D problems), see for instance [34, 73, 81, 103, 104, 115]. The
final displacement jump field is continuous since the additional degrees of freedom are
shared between elements and the static condensation is not possible because the resulting
formulation is irreducible. This type of formulations, where the discontinuity is distributed
in all the domain of the element, is commonly known as Extended Finite Element Method
(XFEM) and is similar to the Smeared Crack formulation.

Unlike the first type of embedded discontinuity implementation, mentioned above, here
the computational implementation is highly complicated since, the number of degrees of
freedom of the elements which undergo localization has to be modified as soon as one of the
candidate elements, ahead the discontinuity, violates the yield condition. This drawback
makes these formulations not attractive for implementation because different types of
elements have to be introduced in the mesh, standard elements or modified elements
which consider the influence of the additional deformation modes. The computational
cost associated with the enhancement of the element approximation, may be higher than
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that involved in the solution of the problem of damage; similar to when interface elements
are used to model a discrete crack propagation.

An alternative to the introduction of additional deformation modes in a global framework,
is to introduce global nodes along the crack path to simulate continuous displacement
jumps; therefore, these additional degrees of freedom are common between adjacent ele-
ments [3, 27, 28]. Both the crack path and the displacement jumps are continuous across
element boundaries.

In this chapter, different points related with the numerical implementation of embed-
ded discontinuity formulation, are addressed with special emphasis on those used for the
adopted formulation. One of the main points in the numerical implementation, for re-
ducible formulations, is the static condensation

In order to get insight the static condensation procedure, applied in the formulation de-
veloped in this work, in the following section two different forms to perform the static
condensation are presented.

7.1 Static condensation

The first form to do the static condensation is in the classical way, which can be ap-
plied in the total form or incremental form of the resulting system of algebraic equations,
where a common Gauss’s elimination procedure is performed [72]. To do this, consider
the incremental form of the system of algebraic equations, derived in chapter 5, for the
displacement formulation

[
Kûû Kûũ

KT
ûũ Kũũ

]{
dû

dũ

}
=

{
f ext

0

}
−

{
f intû

f intũ

}
(7.1)

with the internal forces defined as

f intû =

∫
Ω

BT
(
σû + σũ

)
dΩ (7.2)

f intũ =

∫
Ω

BT
c

(
σû + σũ

)
dΩ +

∫
Γd

t dΓ (7.3)

where σû and σũ are the stresses derived from the displacement û and displacement jump
ũ fields, respectively. The incremental forms of these fields are denoted by dû and dũ.
The other matrices were defined in chapter 5.
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As can be observed from the system of equations (7.1), the problem is nonlinear in the
variables û and ũ, which implies that an iterative solution strategy has to employed.
A popular scheme is Newton’s method [32, 53, 58, 62, 105, 109], where the solution is
computed as a sequence of linear approximations, which may be summarized as:

1. Given the set of equations

f(x) = 0

where x are the dependent variables.

2. Construct the linear part of f about a current point x(i) as

f (i+1) ≈ f (i) + ∂f
∂x

∣∣
x=x(i) dx

(i+1) = 0

where dx(i+1) is an increment of x.

3. Solve the linear problem

dx(i+1) = −
(
F(i)
)−1

f (i); F(i) = ∂f
∂x

∣∣
x=x(i)

and update the solution as

x(i+1) = x(i) + dx(i+1)

In the above F(i) is the Jacobian or tangent matrix for the equations.

4. Repeat steps 2 and 3 until the solution converges within a given tolerance.

Now the Newton’s method is applied to the set of equations (7.1) as follows

 R
(i+1)
û

R
(i+1)
ũ

 ≈
 R

(i)
û

R
(i)
ũ

−
 K

(i)
ûû K

(i)
ûũ

K
T (i)
ûũ K

(i)
ũũ

[ dû(i+1)

dũ(i+1)

]

=

[
R̂

(i+1)
û

0

] (7.4)

where

R
(i)
û = f ext,(i+1) − f

int,(i)
û (7.5)

R
(i)
ũ = −f

int,(i)
ũ (7.6)
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In chapter 5 it was pointed out that the nonlinear behavior of the system is due to the
submatrix Kũũ. This implies that

K
(i)
ûû = Kûû; K

(i)
ûũ = Kûũ ∀ i = 1, 2, 3, . . . (7.7)

and the tangent stiffness matrix is defined as

K
(i)
ũũ = − ∂Rũ

∂ũ

∣∣∣∣(i) (7.8)

which expands to

K
(i)
ũũ =

∫
Ω

BT
c

∂σũ

∂ε

∣∣∣∣(i) ∂ε∂ũ
dΩ +

∫
Γd

∂t

∂ũ

∣∣∣∣(i) dΓ

=

∫
Ω

BT
c C

(i)
t Bc dΩ +

∫
Γ

T
(i)
t dΓ

(7.9)

where

T
(i)
t =

∂t

∂ũ

∣∣∣∣(i) (7.10)

and, C
(i)
t = C ∀ i = 1, 2, 3, . . ., derived from the consideration that the bulk, material

outside of the discontinuity, remains elastic. Since the second equation in the system
(7.4) is complete at elemental level, a partial solution by a static condensation may be
performed as

dũ(i+1) =
(
K

(i)
ũũ

)−1 [
R

(i)
ũ −KT

ûũdû
(i+1)

]
(7.11)

which may be substituted into the first equation to obtain

R̂
(i+1)
û = R

(i)
cond −K

(i)
conddû

(i+1) (7.12)

where
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R
(i)
cond = R

(i)
û −Kûũ

(
K

(i)
ũũ

)−1

R
(i)
ũ (7.13)

K
(i)
cond = Kûû −Kûũ

(
K

(i)
ũũ

)−1

KT
ûũ (7.14)

The condensed stiffness matrix and internal force vectors of the element are used in the
assemblage of the global system of equations. After solving the global system of equations
for the incremental displacement dû(i+1), the new nodal displacements are updated

û(i+1) = û(i) + dû(i+1) (7.15)

To compute the updated displacement jump ũ(i+1), at elemental level, the incremental
displacement dû(i+1) has to be substituted back into equation (7.11) to obtain

ũ(i+1) = ũ(i) + dũ(i+1) (7.16)

The advantage of using incompatible modes is that the extra degrees of freedom represent-
ing enhanced modes are never considered in the global system of equations. For fracture
and strain localization problems where discontinuities are added to relatively few elements
compared to the total number of elements, the computational cost involved in solving the
extra degrees of freedom is minimal. Also, since the extra degrees of freedom are solved
at elemental level, the method can be easily implemented in existing finite element pro-
grams. In this work, the numerical implementation of the discrete approach of the adopted
embedded discontinuity formulation, has been carried out in the Finite Element Analysis
Program (FEAP), developed at the University of California at Berkeley by Prof. R. L.
Taylor, [108].

7.2 Alternative static condensation

It should be noted that the last steps to compute the incremental displacement jump
dũ(i+1), equation (7.11), may not be performed until after the elements matrices are as-
sembled and the resulting global system of equations is solved for the incremental dis-
placement dû(i+1). Consequently, for this algorithm, it is necessary to store the element
matrices, for each element with a discontinuity, used in equation (7.11) for the later update
of the enhanced modes. This formulation requires additional storage for with respect to
that needed for a standard displacement formulation.
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It is possible to modify the above algorithm such that only the current values of the
enhanced modes parameters are stored. The alternative algorithm is given by linearizing
the residual Rũ only with respect to ũ. Accordingly, with û(i) known, the next step is
for each element with a discontinuity to compute the displacement jump values ũ(i−1) and
perform the following steps.

1. For k = 0 set

ũ(i,k) = ũ(i−1)

where a single superscript i denotes the value of ũ(i) computed in the last global
iteration.

2. Compute the linear part of Rũ as

Rũ

(
û(i), ũ(i,k)

)
−K

(i,k)
ũũ dũ(i,k+1) = 0

where now

K
(i,k)
ũũ =

∫
Ω

BT
c CBc dΩ +

∫
Γd

T
(i,k)
t dΓ

with

T
(i,k)
t = ∂t

∂ũ

∣∣
ũ(i,k)

3. Solve for the increment

dũ(i,k+1) =
(
K

(i,k)
ũũ

)−1

R
(i,k)
ũ

4. Update the solution

ũ(i,k+1) = ũ(i,k) + dũ(i,k+1)

5. Set k ← k + 1 and repeat steps 2 to 4 until convergence is achieved, or a predefined
maximum number of iterations is reached.

6. Set

ũ(i) = ũ(i,k+1)

and store for the next global iteration.

The only information to be stored is ũ(i). The algorithm requires repeated computation
of R

(i,k)
ũ and K

(i,k)
ũũ . Once the k−iteration is completed, linearization with respect to

both û and ũ is performed, leading to equations (7.12) to (7.14) for the global steps. If

convergence is reached at iteration k, the residue R
(i)
ũ in equations (7.12) to (7.14) is zero,

thus simplifying slightly the steps involved.
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Chapter 8

Numerical examples

This chapter illustrates the numerical simulation of the damage process by means of the
embedded discontinuity model through two examples. The aim of these examples is to show
the numerical and theoretical consistency of the formulation using the small deformation
theory, and an state of quasi–static loading. In these examples the damage is simulated by
considering only the Mode–I of failure, for quasi–brittle materials, since no shear stresses
are allowed along the crack.

There are some aspects to consider, in the analysis procedure, common to both examples.
Regarding the solution of the non linear problem, the Standard Newton–Raphson scheme
is used together with a displacement control to overcome the peak point of the curve,
displacement versus load. Furthermore, the discontinuity is introduced perpendicular
to the direction of the maximum principal stress, as the Rankine criterion in classical
plasticity theory; as soon as this reaches the tensile strength of the material.

8.1 Uniaxial tension test

In this numerical example, the mechanical response of an specimen subjected only to a
tension state is analyzed. This problem has been widely studied, with laboratory exper-
iments and numerical models, at the Technical University of Delft, by Van Vliet [111] to
get insight into the physical mechanisms underlying the size effect problem in quasi–brittle
materials such as concrete and rock.

The dimensions of the specimen and the material parameters, employed in this work,
correspond to the final specimen geometry used by Van Vliet, since at the beginning of his
research he tried different geometries before obtaining an specimen which guaranteed the
desired pure tension state in the the entire solid. In this work only the concrete test (I), of
the DRY series, specimens were stored directly in the laboratory without any special care,
is studied. The geometry, corresponding to specimen denominated “type C”, is shown in
figure 8.1; where the characteristic dimension D was taken as 200mm, radius r = 145mm,
and depth = 100mm. As for the geometry dimensions, the material properties were taken
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Figure 8.1: Plate subjected to a load P applied with an eccentricity e.

as an average of those reported in the laboratory experiments, for the type of specimen
used (05C04N30). Elastic modulus E = 39.8GPa, Poisson ratio ν = 0.2, tensile strength
σt0 = 2.57MPa and fracture energy GF = 0.1219 N

mm
.

To assure an uniform transference of the load on the top and bottom parts of the specimen,
two steel plates were introduced in the laboratory experiments; allowing a free rotation.
In the numerical simulation, this condition was reproduced through two layers of elements
with material properties corresponding to the steel employed in the test; avoiding the
effect of load concentration when this is applied at a discrete point, characteristic of the
FEM. Regarding the application of loading, to guarantee a tensile state of stress in the
entire cross section, a load eccentricity was introduced according to the theory of linear
elasticity [111], e = D

50
(mm); allowing a free rotation of the layers, shown in figure 8.1.

In the laboratory experiments the specimen was fully instrumented, by means of LVDTs
(Linear Variable Displacement Transducer), to obtain the deformation over the middle
cross section of the specimen. In the present numerical simulation, only the deformation
along the vertical axis is considered for the comparison of results. Figure 8.1 shows the ref-
erence points, chosen to obtain the deformation, which initially were separated a distance
Ls = 0.6D.

Regarding the discretization of the domain, by the finite element method, an structured
mesh with constant strain triangles and a plane stress state is employed; where the crack
pattern was prescribed, taking into account the symmetry of the geometry and boundary
conditions used in the laboratory tests, figure 8.2. The aim of using this mesh, with
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prescribed crack

node

element

Figure 8.2: Mesh using triangular elements, structured mesh.

a prescribed crack pattern, is to validate the application of the embedded discontinuity
formulation to problems where the propagation of the crack is already known. However,
this does not invalidate the application of the formulation to problems where the crack
patter is unknown. This is due to the fact that the main application of this numerical
model is in the simulation of crack growth starting from a state without cracks in the
solid; eliminating the remeshing process necessary when interface elements are used to
propagate the crack.

In figure 8.3 the curve deformation versus load is shown. The deformation is computed as
the relative displacement between the points originally separated a distance Ls, measured
in micrometers µm (1µm = 10−6m). Two numerical responses are plotted attending to the
used softening law; the continuous thin line corresponds to the linear softening whereas
the continuous thick line is for the exponential. The experimental results are plotted as
a dotted line. In this figure it is observed that the elastic branch is correctly reproduced
by the numerical simulation, for both softening laws, until the peak load. The differece
between the maximum experimental load and that obtained by the numerical simulation
is, as an average, 1% lower for the numerical results. This fact is due to the cohesive zone
model used, developed in chapter 3, which considers that the Mode–II occurs together
with the Mode–I in brittle form, without energy dissipation [87]. The used stiffness for
this mode is taken equal to zero.

In general, the simulation response is correctly reproduced by the numerical model. How-
ever, from the experimental unloading branch which shows a response partially ductile,
the best approximation of the global behavior is obtained with the exponential softening
law because this gives a better energy dissipation; fact reflected in a better ductility in the
model. This may be explained as follows. In the first part of this branch the exponential
softening law dissipates energy faster than the linear softening, while in the final part the
opposite happens.

With respect to the assumption made in the formulation above, the rigid body motion
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Figure 8.3: Global response of the specimen.

Time = 2.50Time = 2.50

(a) Deformed mesh

 6.13E+01

 1.23E+02

 1.84E+02

 2.45E+02

 3.07E+02

 3.68E+02

 4.29E+02

 4.91E+02

 5.52E+02

 6.13E+02

 6.75E+02

 7.36E+02

 5.51E-05

_________________ Prin. Stress  1 

Time = 2.50E-01Time = 2.50E-01

(b) Principal stresses

Figure 8.4: Deformed mesh showing a rigid body motion of the solid divided by Γd.
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of the two parts in which the solid is divided; this can be observed in figure 8.4. The
deformed mesh is shown in figure 8.4a where the elements located at the middle part
are completly crossed by the crack; whereas the others which belong to the bulk do not
undergo any distortion in their geometry. Similarly in figure 8.4b, the maximum principal
stresses σI are plotted. Here, it is clear that the two parts in which the solid is divided by
the crack unload elastically without energy dissipation and that only the elements located
in the middle part of the solid dissipate energy in accordance to the cohesive model, see
chapter 3; assuring a rigid body motion.

From this example it may be concluded that:

• The employed material parameters were properly taken from the experimental report
[111]. This is reflected in the shape of the numerical simulation curve where the
peak load is almost equal to that obtained in the laboratory tests. Furthermore,
the ductile behavior of the numerical curve for the exponential softening law, is very
similar to the obtained experimentally.

• The elastic branch of curve in figure 8.3 is equal to the experimental. It is important
to point out that this result is only possible when the boundary conditions are the
same, in the numerical simulation and in the experimental tests.

• In general, the embedded discontinuity formulation, developed in this work, is able
to simulate numerically problems where the crack pattern is known in advance, with
a consistent energy dissipation.

8.2 Single notched four points beam

The four–point–shear tests simulated by many authors using: continuum models [56, 83,
93], the embedded discontinuity method [26, 41, 94, 95], and meshless methods [48, 84],
is addressed in this section. Since the pioneer experimental work of Arrea and Ingraffea
[10], this type of experiments have been widely used to study the damage process under
a mixed mode of failure. Similar laboratory tests have been carried out by Schlangen
[97, 98] and others.

For quasi–brittle materials such as concrete, the fracture is still locally driven by the maxi-
mum tensile stress [56]. This four–points–shear problem undergoes a tension–compression
state which gives rise to a curved propagation of the crack, starting from the notch tip in
an inclined direction.

Figure 8.5 illustrates the loading system applied to the beam which is antisymmetric and
leads to a cracking failure dominated by Mode–I of fracture. The material properties and
the geometry of the problem were taken from the work of Schlangen [98].

The geometry of the beam is shown in figure 8.5 with its dimensions in millimeters; the
depth is of 100mm. The beam has at the top of the symmetry axis a 5mm wide, a
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Figure 8.5: Single–notched four points beam

Figure 8.6: Discretization of the single notched four points beam by the FEM

20mm deep notch. All relevant dimensions of the beam and its supports at the top and
bottom are shown in the figure. As for the uniaxial tension test example, the material
properties were taken only for one series of the laboratory experiments, beam type SEN.
The material data are as follows: Young’s modulus E = 30GPa, Poisson ratio ν = 0.20,
two tensile strengths are considered, σt0 = 2.8MPa and σt0 = 3.0MPa, and fracture
energy of GF = 0.10 N

mm
.

To reproduce the experimental results reported by Schlangen, in the numerical simulation
the sliding displacement of the crack mouth (CMSD) was measured; which is the relative
vertical displacement between the tow sides of the notch, see figure 8.6. The support on
the left side has its vertical displacement restricted whereas the other, located at the right
side, has fixed both directions.

For the simulation of damage, the discrete damage model presented in chapter 3 is used.
In this model, shear effects are neglected and the crack grows according to the Rankine
criterion, i.e., when the maximum principal stress reaches the tensile strength of the
material.

Constant strain triangles are used in the discretization with finite elements. The non–
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Figure 8.7: Load P versus CMSD of the single notched four point beam

structured mesh is shown in figure 8.6. The analyses are carried out using a plane stress
formulation. At the points of load application, additional elements were included to obtain
a better distribution of loading at these points, similar to the laboratory experiments where
steel plates were placed.

Unlike the first example, where the crack pattern was prescribed, in this problem the
crack propagation is not a priori enforced, and its path is determined by the direction
of the maximum principal stress, i.e., the crack is introduced perpendicular to the σI
direction. This way of introducing the crack pattern, without knowing in advance the crack
trajectory, makes the embedded discontinuity formulation very promising in problems
where the crack propagation across the continuum is needed. Furthermore the mesh
modification used when discrete elements are employed is eliminated, since the crack can
cross the elements in the embedded discontinuity formulation.

The numerical response, load versus CMSD, is shown in figure 8.7. The curve corre-
sponding to the experimental test is plotted in continuous thick line and for the numerical
simulations, using an exponential softening law, two curves are presented: the first one
with a strength of σt0 = 2.8MPa is plotted in continuous thin line whereas the dotted
line corresponds to a strength of σt0 = 3.0MPa. In this figure it may be observed that
the loading branches for both numerical simulations are almost the same with the only
difference in the peak load; the higher corresponding to the strength σt0 = 3.0MPa, as it
was expected.

With respect to the experimental results, in the same branch, it is observed that the numer-
ical response coincides only until about P = 10kN , likely when the linear elastic behavior
ends, and from this point the response is different. This situation may be attributed to: in
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Figure 8.8: Deformed mesh obtained for the single notched four points beam

lower grade to the employed material properties in the numerical simulation, and second
to the important influence of the modeling of the supports used in the experiments. In
the simulation different support systems were considered. In each case the response was
strongly influenced by the support system.

Regarding the unloading branch, it is observed that the numerical and experimental curves
are almost equal until a CMSD of 0.1mm where there is a rapid descend in the numerical
response attributable to the lack in the computed crack propagation, maximum principal
stress criterion, when an isotropic damage model is used. This problem rises when the
crack reaches the last elements located in the bottom part of the beam, leading to an
hydrostatic stress state. Despite of this it is important to point out that the numerical
simulation reproduces with a good accuracy the global response of the solid, especially the
ductile behavior of the material.

In figure 8.8 the deformed mesh is shown. In this figure it may be observed that the
crack pattern is curved where the inelastic response is located; while the bulk unloads
elastically. A zoom to the center of the beam where the crack propagates is shown in
figure 8.9. The crack pattern which is not a priori enforced is plotted with continuous
thick line. Since all the intra–element cracks are forced to pass through the centroid of the
elements, the experimental crack pattern can not be accurately reproduced. To improve
this, it is necessary to enforce the crack path continuity across the elements together with
a finer mesh.

Figure 8.9: Crack pattern across the elements
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Figure 8.10: Maximum principal stresses showing unloading of the bulk

Finally, in figure 8.10 the maximum principal stresses σI are plotted. In this figure it is
observed that the maximum values of the stresses occurs in the elements located in the
crack pattern while those in the bulk undergo a linear elastic unloading process; giving a
rigid body motion of the two parts in which the continuum is divided by the macro crack.

Some important issues from this example, related with the support system used and the
material properties employed, are summarized in what follows:

• As it was mentioned above, the support system is highly important since if it does
not represent satisfactory the system used in the laboratory tests, even the branch
corresponding to the elastic response of the problem is not correctly reproduced in
numerical simulation.

• A possible explanation to the difference between the numerical and experimental
curves may be due to the uncertainty in the measured material properties in the
experimental tests.

• An other possible reason is that, in the best knowledge of the author, is related
with the employed cohesive model. To improve the numerical response it may be
necessary to use a material model which considers the mixed Mode of failure, I–II,
and a model with non–isotropic damage behavior.
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Chapter 9

Conclusions

In this thesis the symmetric embedded discontinuity model, used to numerically simulate
the damage process in quasi–brittle materials, is formulated within a consistent variational
framework starting from the general variational formulation of VHW, valid for a continuum
solid, and after a generalization of it for a solid with discontinuities. In the variational
formulation the effect of the discontinuity is introduced in the energy functional as an
additional term, which considers the energy dissipated in the discontinuity boundary. From
the variational formulation it is shown that all the field equations, stationary conditions
of the functional, which govern the associated Boundary Value Problem are obtained in
a natural way. It is shown that the traction equilibrium across the discontinuity Γd is
derived naturally; unlike the non–symmetric formulation which introduces this condition
by modifying the governing equations of the problem. However, when the FEM is used to
approximate the system of differential equations, the traction continuity is not imposed
properly when the crack band collapses into a line, discrete approach. To eliminate the
drawback of this approach, the traction continuity is enforced by introducing an additional
variable in the discrete form of the problem.

In chapter 6, it is demonstrated that the geometry of the discontinuity influences the
numerical response. This geometric condition leads to a specific surface where the equi-
librium, across the discontinuity, has to be evaluated.

Regarding the numerical implementation of the embedded discontinuity formulation, when
an elemental enhancement without path continuity is used, a tracking algorithm has to
be consider to obtain a satisfactory response. Otherwise a chaotic crack growth may be
produced in the entire continuum since cracks are allowed to develop in any element with
not path continuity. In this work only one crack located at the centroid of the element
is allowed to develop. Furthermore, the only possible element to undergo damage is that
located in front of the crack tip. This may seem a restrictive procedure but as it is shown
to give good results. In this way only one crack dissipates energy.

The cohesive zone model, is used as material model to simulate the damage process in a
discontinuity surface which considers that the global behavior is governed by two material
properties; the tensile strength σt0 and the fracture energy GF . In this model, the energy
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dissipation due to the Mode–II of failure is neglected since it is assumed that the response is
dominated by the Mode–I of material failure. Strictly speaking this considerations lead to
a scalar damage model. The discontinuity is introduced, at elemental level, perpendicular
to the direction of the maximum principal stress σI when this reaches the tensile strength
of the material, similar to the Rankine criterion in classical plasticity theory.

The validity of the adopted embedded discontinuity formulation, discrete approach, is
evaluated by means of two numerical examples presented in chapter 8. The first example
is a simple tension specimen which has been studied in experimental tests. Particularly in
the numerical simulation of this problem, the crack pattern is a priori prescribed, taking
advantage of the geometry and boundary conditions of the experimental test, and the
numerical results are compared with those reported by the laboratory tests. It is found
that the experimental response of the specimen is satisfactorily modeled by means of the
embedded discontinuity formulation. The best softening law, for this problem, is the
exponential since it is able to dissipate energy with a relative degree of ductility, as it
happens in the laboratory experiments.

The second example is a four–point–beam with a single notched at its upper part. In this
problem only the Mode–I of failure is considered. This may be a poor numerical simulation
of the experimental tests since the aim of this problem is to study the influence of the
mixed Mode, I–II. However the objective in the modeling of the problem, in this work,
is to evaluate the numerical consistency of the presented embedded discontinuity model
leaving the solution of actual practical problem for a later future. Despite that only the
Mode–I has been considered, it is shown that the numerical simulation reproduce, with a
good accuracy, the results of laboratory experiments.

In general it is shown that the symmetric embedded discontinuity formulation is able to
give robust results when the traction equilibrium, across the discontinuity, is evaluated in
a specific surface. This gives rise to a strong traction continuity.

In order to improve the numerical results, it may be important to consider constitutive
models where the effect of the Mode–II is taken into account, in a coupled or uncoupled
form, together with the Mode–I. Additionally, the crack path continuity should be enforced
across element to guarantee a best energy dissipation.
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Appendix A

Tensors and notations

The analysis of an engineering system requires its idealization into a form that can be
solved numerically. The use of tensors in engineering analysis is of fundamental importance
because it is by using these quantities that the complete solution process can be expressed
in a compact and elegant manner.

The main objective of this appendix is to present, in a compact form, the fundamentals
of tensor algebra and the different notations commonly employed in engineering: matrix,
indicial, tensorial and voigt notations; with emphasis on those aspects that are important
for the formulation of finite element analysis and its numerical implementation, [19, 25,
43, 50, 63, 71, 96, 118].

A.1 Indicial notation

This notation, which is also called component notation, uses indexed components along
with abbreviation rules such as commas for partial derivatives and Einstein’s summation
convention. It is a powerful notation, and as such is preferred in journals and mono-
graphs. It has the advantage of readily handling arbitrary tensors of any order, arbitrary
coordinate systems and nonlinear relations. It sharply distinguishes between covariant
and contravariant quantities, which is necessary in non–Cartesian coordinates. However,
it tends to conceal or mask intrinsic properties, and as such it is not suitable for basic
instruction.

Consider a point P (x1, x2, x3) in Cartesian coordinate system, figure A.1, which may be
represented by the compact notation

P (xi) i = 1, 2, 3 (A.1)

where xi means x1, x2, x3.
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Figure A.1: Point P in a rectangular Cartesian coordinate system.

A linear algebraic set of equations involving the Cartesian coordinates (x1, x2, x3) is ordi-
narily written using the summation operator as

3∑
j=1

aijxj = bi i = 1, 2, 3 (A.2)

where aij and bi are constants. This expands to three equations:

i = 1 :
3∑
j=1

a1jxj = b1, or a11x1 + a12x2 + a13x3 = b1,

i = 2 :
3∑
j=1

a2jxj = b2, or a21x1 + a22x2 + a23x3 = b2, (A.3)

i = 3 :
3∑
j=1

a3jxj = b3, or a31x1 + a32x2 + a33x3 = b3,

and in an even shorter notation as

aijxj = bi (A.4)

in which the summation symbol has been suppressed. This is the summation convention,
i.e., an index repeated in an expression is understood to be summed over the implied
range. In three–dimensional continuum mechanics, the range is from 1 to 3.

In an expression such as

aijxj (A.5)
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i is said to be the free index which can take any of the values 1, 2 or 3, whereas j is said to
be the dummy index which must take the values 1, 2 and 3. In other words, the dummy
index is the one that must be summed over its entire range.

A.2 Cartesian tensors

In engineering, the concept of tensors and their matrix representations is an important
point to consider. Here the presentation will be limited to tensors in a three–dimensional
Euclidean space with the representation of tensors in rectangular Cartesian coordinates.

Variables used in engineering mechanics usually have the character of tensors. In general
we denote zero–dimensional tensors (scalars) by Latin letters or Greek symbols first–order
tensors (vectors) by lowercase Latin letters, second–order tensors by lowercase Greek or
Latin letters, and fourth–order tensors by capital Latin letters.

Boldface letters represent the entire the tensors (compact notation). When referring to
the Cartesian components of tensors (indicial notation) we use lowercase Latin subscripts
i, j, k, l, . . ., which can take values 1, 2 and 3 corresponding to the Cartesian coordinate
axes x1, x2, and x3. For example:

ui :

 u1

u2

u3

 , bi :

 b1

b2

b3

 , ti :

 t1
t2
t3

 for i = 1, 2, 3 (A.6)

identify the vectors of displacements, body forces and surface tractions, respectively. All
these quantities are first–order tensors. Others tensors, widely used in elasticity are the,
second–order, strain and stress tensors stated as

εij :

 ε11 ε12 ε13

ε21 ε22 ε23

ε31 ε32 ε33

 , σij :

 σ11 σ12 σ13

σ21 σ22 σ23

σ31 σ32 σ33

 for

{
i = 1, 2, 3
j = 1, 2, 3

(A.7)

To define the constitutive tensor, operator relating strains with stresses, a fourth–order
tensor is employed as

Dijkl :




D1111 D1112 D1113

D1121 D1122 D1123

D1131 D1132 D1133

 D12kl D13kl

D21kl D22kl D23kl

D31kl D32kl D33kl

 for


i = 1, 2, 3
j = 1, 2, 3
k = 1, 2, 3
l = 1, 2, 3

(A.8)

In equation (A.8), for simplicity, only the submatrix D11kl has been expanded; the rest of
the terms can be expanded in same form. This fourth–order tensor has 34 = 81 terms.
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A.3 Tensorial notation

In this type of notation, the indices are not shown. While indicial notation only apply to
Cartesian coordinates, expressions in tensor notation are independent of the coordinate
system and apply to other coordinate such as cylindrical, curvilinear, etc. Furthermore,
equations in tensor notation are easier to memorize. A large part of continuum mechanics
and finite element literature employs tensor notation.

Tensors of order one or greater are indicated in boldface. Lower case boldface letters
are almost used for first–order tensors, while upper case boldface letters are used for
higher–order tensors. For example, the velocity vector is v in tensor notation, while a
second–order tensor, such as E, is written in upper case. The major exception is the
Cauchy stress tensor σ, which is denoted by a lower case symbol.

For example equation (A.2) is written in tensor notation as

A · x = b (A.9)

where a dot denotes contraction of the inner indices; in this case, the first tensor is of
second order the second term is of first order; hence the resultant tensor is of first order
since there is a contraction of one index.

Tensor expressions are distinguished from matrix notation by using dots and colons be-
tween terms, as in A · x. The symbol ‘:’ denotes the contraction of a pair of repeated
indices which appear in the same order, so A : B = AijBij. As another example, a linear
constitutive equation is given below in tensor notation and indicial notation

σij = Cijklεkl σ = C : ε (A.10)

A.4 Matrix notation

The matrix notation was invented primarily to express linear algebra relations in compact
form. Compactness enhances visualization and understanding of essentials. The matrix
notation is similar to the previous one, but entities are rearranged as appropriate so that
only matrix operations are used. The main advantages of matrix notation are historical
compatibility with finite element formulations, and ready computer implementation in
symbolic or numeric form. Examples of column matrices are

x :


x
y
z

 , v :


v1

v2

v3

 (A.11)
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Usually rectangular matrices will be denoted by upper case boldface, such as A, The
transpose of a matrix is denoted by a superscript T , and the first index always refers to a
row number, the second to a column number. Thus a 2× 2 matrix A and a 2× 3 matrix
B are written as follows

A :

[
A11 A12

A21 A22

]
, B :

[
B11 B12 B13

B21 B22 B23

]
(A.12)

The representation of scalars, which may be viewed as 1 × 1 matrices, does not change,
the same as the representation of vectors because vectors are column (or row) matrices.

A.5 Voigt notation

In finite element implementations, symmetric second–order tensors are often written as
column matrices. This and any other conversion of higher–order tensors to column matri-
ces use the Voigt notation. The procedure to convert symmetric second–order tensors to
column matrices is called the Voigt rule. For a detailed description of this notation, the
reader is referred to the book of Belytschko et al. [19].

Two–dimensional symmetric tensors are converted to one–dimensional arrays that list
only the independent components (six in three dimensions, three in two dimensions).
Component order is a matter of convention, but usually the diagonal components are
listed first, followed by the off–diagonal components.

For the strain and stress tensors this vectorization process produces the vectors

{ε} :


ε11

ε22

ε33

ε23

ε13

ε12

 , {σ} :


σ11

σ22

σ33

σ23

σ13

σ12

 (A.13)

In view of equations (A.13), the fourth–order constitutive tensor Cijkl has to be mapped
into a second–order tensor Cij to agree with, this index changing may be developed ac-
cording to table A.1.

The transformation indices are: C1111 → C11; C2233 → C23; C1231 → C46; etc. The final
mapping of the fourth–order tensor to one of second–order is shown in equation (A.14)
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Form Index number
Matrix 1 2 3 4 5 6
Tensor 11 22 33 12 & 21 23 & 32 31 & 13

Table A.1: Mapping between matrix and tensor indices

Cij : [C] :


C11 C12 C13 C14 C15 C16

C22 C23 C24 C25 C26

C33 C34 C35 C36

C44 C45 C46

sym. C55 C56

C66

 (A.14)

For example, the linear elastic law in indicial notation involves the four–order tensor Cijkl

σij = Cijklεkl or in tensor notation σ = C : ε (A.15)

The Voigt matrix form of the above is

{σ} = [C] {ε} (A.16)

A.6 Full notation

In the full form notation every term is spelled out. No ambiguities of interpretation can
arise; consequently this works well as a notation of last resort, and also as a comparison
template against one can check out the meaning of more compact expressions. It is also
useful for programming in low–order languages.

As an example, consider the well known dot product between two physical vectors in 3D
space, a : (a1, a2, a3) and b : (b1, b2, b3) done in the four different notations:

aibi︸︷︷︸
indicial

: a · b︸︷︷︸
tensorial

: aTb︸︷︷︸
matrix

: a1b1 + a2b2 + a3b3︸ ︷︷ ︸
full

(A.17)

A.7 Basic operations in tensor algebra

In this section, some basic operations between tensor of equal or different orders are
reviewed. In what follows, by agreement, scalars will be called a zero–order tensors and
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vectors, first–order tensors. Commonly in engineering a second–order tensors is referred
as a matrix; these names are used on the understanding that they are tensors.

The dot product or scalar product of two vectors, which produces a scalar, is defined as:

uivi︸︷︷︸
indicial

: u · v︸︷︷︸
tensorial

: uTv︸︷︷︸
matrix

(A.18)

The double–dot product of two second–order tensors, which also produces an scalar,

σijεij︸ ︷︷ ︸
indicial

: σ : ε︸ ︷︷ ︸
tensorial

: σε︸︷︷︸
matrix

(A.19)

The dot product of two second–order tensors, which produces a second–order tensor,

σijεjk︸ ︷︷ ︸
indicial

: σ · ε︸︷︷︸
tensorial

: σε︸︷︷︸
matrix

(A.20)
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Appendix B

The divergence theorem

The way to transform one integral defined over a volume to other on the boundary is by
means of the divergence theorem, more commonly known, especially in older literature, as
Gauss’s theorem [7], and also known as the Gauss–Ostrogradsky theorem. In this appendix,
unlike the rest of the thesis, the tensor notation is employed which objective is to show
the application of this notation.

The theorem of the divergence is a theorem in vector calculus that can be stated as follows.
Let the vector a and its first derivatives be continuous over the simply connected region
of interest. Then the divergence theorem states that

∫
Ω

∇ · a dΩ =

∫
Γ

a · ν dΓ (B.1)

In words, the surface integral of a vector a over a closed surface Γ equals the volume
integral of the divergence of that vector integrated over the volume Ω enclosed by the
surface Γ.

For the special case of elasticity problems [40], the divergence theorem is applied as follows.
Take a = σ · u, where σ is a symmetric stress tensor and u a displacement vector

∫
Ω

∇ · (σ · u) dΩ =

∫
Γ

(σ · u) · ν dΓ (B.2)

where ∇ is the nabla operator, vector, defined as

∇ =


∂
∂x1

∂
∂x2

∂
∂x3

 (B.3)
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Applying nabla to a vector via the dot product yields the divergence of the vector, which
is an scalar

∇ · u = div u = ui,i =
3∑
i=1

∂ui
∂xi

=
∂u1

∂x1

+
∂u2

∂x2

+
∂u3

∂x3

(B.4)

As for the above case, the application of nabla to a second order tensor yields the divergence
of the tensor, the result is a vector

∇ · σ = div σ = σij,j =
3∑
j=1

∂σij
∂xj

=


∂σ11

∂x1
+ ∂σ12

∂x2
+ ∂σ13

∂x3

∂σ21

∂x1
+ ∂σ22

∂x2
+ ∂σ23

∂x3

∂σ31

∂x1
+ ∂σ32

∂x2
+ ∂σ33

∂x3

 (B.5)

Now the term in the left hand side integral of equation (B.2) may be expanded, considering
equations (B.4) and (B.5), as

∇ · (σ · u) =
∂

∂x1

(σ11u1 + σ12u2 + σ13u3) +
∂

∂x2

(σ21u1 + σ22u2 + σ23u3) +

∂

∂x3

(σ31u1 + σ32u2 + σ33u3)

∇ · (σ · u) =
∂σ11

∂x1

u1 + σ11
∂u1

∂x1

+
∂σ12

∂x1

u2 + σ12
∂u2

∂x1

+
∂σ13

∂x1

u3 + σ13
∂u3

∂x1

+

∂σ21

∂x2

u1 + σ21
∂u1

∂x2

+
∂σ22

∂x2

u2 + σ22
∂u2

∂x2

+
∂σ23

∂x2

u3 + σ23
∂u3

∂x2

+

∂σ31

∂x3

u1 + σ31
∂u1

∂x3

+
∂σ32

∂x3

u2 + σ32
∂u2

∂x3

+
∂σ33

∂x3

u3 + σ33
∂u3

∂x3

using tensor notation in the last equation

∇ · (σ · u) = σ : (∇⊗ u) + (∇ · σ) · u (B.6)

which is just what it would be expected for the divergence of a product. Notice that ∇,
as a differential operator, differentiates both σ and u. The substitution of equation (B.6)
into (B.2), leads to the final form of the divergence theorem,
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∫
Ω

[σ : (∇⊗ u) + (∇ · σ) · u] dΩ =

∫
Γ

(σ · u) · ν dΓ (B.7)

Here ∇⊗ u = (∂ui/∂xj) is an unsymmetric tensor called the deformation gradient. Con-
sidering only its symmetric part ∇ ⊗ u = ∇s ⊗ u = 1

2
(∇⊗ u + u⊗∇), and taking

advantage of the symmetry of the stress tensor which implies that (σ ·u) · ν = (σ · ν) ·u,
the following equation is obtained

∫
Ω

σ : (∇s ⊗ u) dΩ = −
∫

Ω

(∇ · σ) · u dΩ +

∫
Γ

(σ · ν) · u dΓ (B.8)

where the outward normal vector ν to the surface Γ is defined as

ν =

 n1

n2

n3

 (B.9)

Taking the variation of equation B.8 with respect to the displacement field u while keeping
the stress tensor σ fixed yields the Principle of Virtual Work,

∫
Ω

σ : (∇s ⊗ η) dΩ = −
∫

Ω

(∇ · σ) · η dΩ +

∫
Γ

(σ · ν) · η dΓ (B.10)

where η = δu is the variation of the displacement field and ∇s ⊗ η = δεu is the variation
of the strains εu derived from the displacements.

According to the assumptions made in the formulations developed in chapters 4 and 5
where essential boundary conditions are a priori satisfied, i.e., u = ū, the surface integral
of equation B.10 may be simplified, since the variation η vanishes on Γu, as follows

∫
Ω

σ : (∇s ⊗ η) dΩ = −
∫

Ω

(∇ · σ) · η dΩ +

∫
Γu

(σ · ν) · η dΓ︸ ︷︷ ︸
=0

+

∫
Γt

(σ · ν) · η dΓ

= −
∫

Ω

(∇ · σ) · η dΩ +

∫
Γt

(σ · ν) · η dΓ

(B.11)

Note that δ and ∇ are interchangeable: ∇δu = δ∇u, i.e., the derivative of the variation is
equal to the variation of the derivative [39], a fact used in equation (B.11). This relation
is used for the development of the variational formulations of chapters 4 and 5.
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To follow a mathematical consistency in the notation employed with the formulations
development in this thesis, it is shown that equations B.8 and B.11 may be written in
matrix form, and using the Voigt notation for the stress tensor σ, respectively as

∫
Ω

σT (Du) dΩ = −
∫

Ω

(
σTD

)
u dΩ +

∫
Γt

(
σTPν

)
u dΓ (B.12)

∫
Ω

σT (Dη) dΩ = −
∫

Ω

(
σTD

)
η dΩ +

∫
Γt

(
σTPν

)
η dΓ (B.13)

where the operator D is called the symmetric gradient in the continuum mechanics liter-
ature, which in matrix notation is defined as

D =



∂
∂x1

0 0

0 ∂
∂x2

0

0 0 ∂
∂x3

0 ∂
∂x3

∂
∂x2

∂
∂x3

0 ∂
∂x1

∂
∂x2

∂
∂x1

0


(B.14)

and Pν is the 3 × 6 normal–projection matrix, which contains the components of the
outward normal vector n, given by

Pν =



n1 0 0

0 0 n2

0 n3 n2

n3 0 n1

n2 n1 0


(B.15)
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Appendix C

Solvability and stability conditions

The use of mixed formulations by means of the finite element method has increased con-
siderably in the last years in almost all fields of science and engineering. This increase
in use emerges as a way to obtain reliable and accurate solutions in a wide variety of
problems. Mixed finite elements are used in the solution of incompressible fluids flows,
irrotational flow of ideal fluids, heat conduction, distribution of electrical or magnetic
potentials, torsion or bending of cylindrical beams [22, 23].

The reason why these formulations are not used widely in engineering practice is that
their behavior is much more difficult to assess that for the conventional and commonly
used displacement formulations. Whereas displacement–based elements, once formulated
and shown to work well in certain sets of examples, including the patch test [16, 51, 85,
117, 118], can be generally employed, mixed finite elements cannot be recommended for
general use unless a deeper analysis and understanding of the method occurs. A mixed
finite element formulation may work properly in the solution of certain problems but
perform very poorly on other problems.

Therefore, a mathematical analysis for the solvability and stability of a proposed formu-
lation is an important requirement. Such mathematical analysis should give sufficient
insight as to the general applicability of the formulations under consideration and is, in
general, not an easy task [16, 20, 22, 23, 107].

This mathematical theory is commonly referred in literature as the Babuška–Brezzi con-
dition [12, 23, 117, 118], LBB condition [11, 12, 33], or inf–sup condition [12, 16, 17, 22,
23, 107]. In this work, this condition is referred as the Babuška–Brezzi condition (BB).

The BB condition uniform is accepted as a necessary condition for a robust finite element
formulation. In this section a simple way in the presentation of the BB is developed for its
implementation in a practical algorithm; for a more detailed study of the BB condition,
the reader is referred to [11, 12, 16, 17, 20, 22, 23, 33]

Implementation of mixed variational formulations, developed in chapter 4, with the finite
element method leads to linear algebraic systems of the general form
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[
A BT

B 0

]{
x
y

}
=

{
f
g

}
(C.1)

where A and B are matrices of dimensions n×n and m×n respectively, while x and y are
vectors of n×1 and m×1 dimensions respectively, as well as f and g. In the next section a
simple algebraic version, of the abstract theory of the the solvability and stability related
with mixed finite element formulations is presented.

C.1 Solvability condition

Within the context of solution of systems of equations, solvability means that for every
right–hand side f and g, the system (C.1) has a unique solution [107]. It is well known
that this property holds, if and only if, the (n+m)× (n+m) matrix

[
A BT

B 0

]
(C.2)

is nonsingular, that is, if and only if, its determinant is different from zero. Another way
to express solvability of the system (C.1) is that the homogeneous system

[
A BT

B 0

]{
x
y

}
=

{
0
0

}
(C.3)

has only for solution the trivial:

{
x
y

}
=

{
0
0

}
(C.4)

This is another way to say that the homogeneous system (C.3) has only the trivial solution
(C.4), which implies that the determinant of the matrix (C.1) is different from zero, and
hence the system is solvable.

C.2 Stability condition

The other important condition necessary to have an stable method, is to guarantee the
convergence in its numerical implementation. Systems like (C.1) have to satisfy some
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conditions; specifically matrices A and B, defined in equation C.2. For the purpose of this
thesis, the discussion will focus only in the BB condition which is directly related with
matrix B; while conditions for matrix A are out of the scope of this study since, they are
verified in practice only for the Stokes problem [107].

The BB condition requires the existence of a positive constant β, independent of the mesh
size h, such that:

xTBTy ≥ β ‖x‖X ‖y‖Y (C.5)

Condition (C.5) has to be hold for all y ∈ Y such that a suitable x ∈ X, different from 0
can be found.

Stability of the mixed method is hold if matrix B is injective [107]; this implies that the
number of equations n has to be at least equal or greater than the number of equations
m:

n ≥ m (C.6)

For the strain–displacement formulation, developed in section 5.2.2; the BB condition
requires that the number of strain degrees of freedom has to be at least equal or greater
than the number of displacement degrees of freedom.
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[58] M. Jirázek and Z. P. Bažant. Inelastic Analysis of Structures. John Wiley, Chich-
ester, 2002.
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