

UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO

FACULTAD DE QUÍMICA

"Posible efecto de la presencia de percloratos en la determinación de material orgánico

en suelos análogos a Marte. Implicaciones en los

resultados de la misión Vikingo"

Tesis

QUE PARA OBTENER EL TÍTULO DE

QυίΜιCO

PRESENTA

EDGAR VARGAS FRIAS

MÉXICO, D.F. AÑO 2010

Universidad Nacional Autónoma de México

UNAM – Dirección General de Bibliotecas Tesis Digitales Restricciones de uso

DERECHOS RESERVADOS © PROHIBIDA SU REPRODUCCIÓN TOTAL O PARCIAL

Todo el material contenido en esta tesis esta protegido por la Ley Federal del Derecho de Autor (LFDA) de los Estados Unidos Mexicanos (México).

El uso de imágenes, fragmentos de videos, y demás material que sea objeto de protección de los derechos de autor, será exclusivamente para fines educativos e informativos y deberá citar la fuente donde la obtuvo mencionando el autor o autores. Cualquier uso distinto como el lucro, reproducción, edición o modificación, será perseguido y sancionado por el respectivo titular de los Derechos de Autor.

JURADO ASIGNADO:

PRESIDENTE:	Profesor: LUZ ELENA VERA ÁVILA
VOCAL:	Profesor: LUCIA HERNÁNDEZ GARCIADIEGO
SECRETARIO:	Profesor: RAFAEL NAVARRO GONZÁLEZ
1er. SUPLENTE:	Profesor: RICARDO FLORES HERNÁNDEZ
2° SUPLENTE:	Profesor: JOSÉ GPE. DE LA ROSA CANALES

SITIO DONDE SE DESARROLLÓ EL TEMA:

LABORATORIO DE QUÍMICA DE PLASMAS Y ESTUDIOS PLANETARIOS

INSTITUTO DE CIENCIAS NUCLEARES

UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO

ASESOR DEL TEMA:

RAFAEL NAVARRO GONZÁLEZ

SUSTENTANTE (S):

EDGAR VARGAS FRIAS

El presente trabajo de tesis se desarrolló en el Laboratorio de Química de Plasmas y Estudios Planetarios del Instituto de Ciencias Nucleares de la Universidad Nacional Autónoma de México, bajo la dirección del Dr. Rafael Navarro González, con el apoyo de los proyectos "DGAPA IN-107107", "IN-109110", "CONACYT 45810-F y 98466" y la beca de licenciatura otorgada a través del Sistema Nacional de Investigadores nivel III, con número de expediente 8753.

Agradecimientos Académicos

A la **Universidad Nacional Autónoma de México** por ser el transformador social más grande de este país y que afortunadamente brinda todo el apoyo físico, técnico, humano, social, deportivo y cultural para hacer mujeres y hombres críticos, útiles e indispensables para el progreso humanidad.

Al **Dr. Rafael Navarro Gonzále**z por permitir colaborar a estudiantes noveles en proyectos científicos de prioridad mundial y que bajo su asesoría y apoyo incondicional se logró realizar este pequeño trabajo.

Al **M. en C. José de la Rosa Canales** que sin su apoyo técnico, asesorías y regaños no hubiera podido realizar el trabajo experimental de esta tesis. Además de ser un excelente amigo y compañero de laboratorio.

A la **Dras. Luz Elena Vera Ávila y Lucía Hernández Garciadiego** por sus valiosas contribuciones a mejorar la presentación final de este trabajo, y a quienes les quedaré eternamente agradecido su apoyo para titularme

A los compañeros del Laboratorio de Química de Plasmas y Estudios Planetarios: **Pepe, Quique, Peruano, Omar, Cruz, Paola** y principalmente a la mejor compañerita que pude haber tenido: **Aura (LA SEÑORA)** por brindarme su amistad y ayudarme en todo... Ah! Y los nuevos: Leonel, Cesar, José Alfredo, Laura, Alejandro y Daniel... por lo que viene.

A **Facultad de Química** y su **Planta Docente** por orientar y ayudar a miles de personas en los avatares de Química.

Al Instituto de Ciencias Nucleares y su gente por ser prácticamente mi segunda casa.

A Manera de Dedicatoria

A mis **Padres y Hermanos** que nunca me abandonan, ni las buenas ni en las malas, y por quienes soy y seré, para bien y para mal.

Te lo dedico a tí que lo lees porque no sé escoger entre todos a los que se debería dedicar, de los que estuvieron, están y estarán

"Espero que cuando yo esté muerto comprendáis que conseguí tanto como pude"

"Sí vas a intentarlo, que sea a fondo. Si no, mejor que ni empieces. Puede que pierdas familia, mujer, amistad, trabajos y hasta la cabeza. Puede que no comas en días, puede que te congeles en un banco de la calle. No importa. Es una prueba de resistencia para saber que puedes hacerlo. Y lo harás. A pesar del rechazo y de la incertidumbre, será mejor que cualquier cosa que hayas imaginado. Te sentirás a solas con los díoses, y las noches arderán en llamas. Cabalgarás la vida hasta la risa perfecta. Es la única batalla que cuenta."

"Eran suficientemente mayores como para haber aprendido mucho, pero bastante jóvenes como para resistir los rigores físicos del trabajo. Y estaban suficientemente locos como para querer dejar la Tierra para siempre, aunque bastante cuerdos para ocultar esa locura fundamental, de hecho para defenderla como pura racionalidad, curiosidad científica o algo por el estilo... lo que, en suma, parecia ser la única razón aceptable para que desearan írse, y así, con toda naturalidad, ideclararon ser las personas científicamente más curiosas de la historia! Pero, por supuesto, tenía que haber algo más. De algún modo tenían que estar alienados, lo suficiente mente alienados y solos como para que no les importara dejar para siempre a toda la gente que habían conocido..."

"Solo la conquísta del Espacio justífica arríesgar la vida"

Con entusiasmo, gracias a:

A la **ENP 2** donde se encuentran amigos que nunca se pierden: orejas, arlyn, rubia, estopas, perro, chamo, bam-bam, charmín, dra karo, castor, chabelo, azul, abelardo, ñoña, pelos, jovana, chepa, equis, etc, etc, etc... por supuesto al "GEC 18 de Abril"

A los cuates de la cuadra: toro, chango, chuy, taz, manolo, trompas, furrias, chisto, juan, bambuchas, epson, trompetas y a todos los AHS.

A los amigos y compañeros de la Facultad de Química: el doc y los docs: hule, kike, lalo; los Q´s: chucho, lalo, yair, erandi, gerry, jj, Laurita, Salvador, Karina, y los de la última parte de la carrera: joel, hugo, Frank, victor, omar, mario, samuel, etc etc etc y nuevamente la señito Aura.

A quienes me faltan, pero se me olvidan sus nombres y/o apodos.

Y la gente real e irreal que me ha influenciado:

Tin tan, Piporro, el Santo, Don quijote, Logan/Wolverine, Spiderman/Peter Parker, Beakman, Fenomenoide, el santos, jim morrrison, ian curtis, keith moon, kurt kobain, dalí, pablo Neruda, marx, el che, Fidel, Wherter, evariste galois, nicolas tesla, hipatya, el avispón verde, el zorro, el pantera, memín, kalimán, dr Wagner, the bride, machete, el chico de la motocicleta, marlon brando, zapata, el sup-marcos, Maradona, pelé, George best, el mágico González, la tota, zidane, messi, peter fonda, dennis Hopper, jack nicholson, parmenides García Saldaña, vega-gil, José Agustín, gazapo, Carl Sagan, Stephen King, el pistolero, Stephen Hawking, Asimov, salvor hardin, hari seldon, el mulo, el salvaje, Arthur Clark, el guardián entre el centeno, Eusebio Ruvalcaba, el capitán pijama, Charles Bukowski/Henry Chinasky, Michael Faraday, mafalda, buba, Jodorowski, anakin skywalker, ayoria, ikki, cid de mizard Z, los gatos samurái, alf, radioactivo, pito pérez, Mauricio Garcés, Stanley Miller, kubrick, mario Benedetti, trino, juan carlos bodoque, el dr. Chunga, homero, rius, cioran, paz, Alejandro el magno, Kafka, grogor samsa, Tarantino, Linus Pauling, Albert Einstein, etc...

A la Humanidad toda.

Este trabajo nunca se hubiera realizado sin el apoyo, a veces caprichoso, de mi compañera de mil batallas, que me conoce mejor que nadie, y a quien le he dedico las mejores horas y nos procuramos cuidarnos uno al otro, me refiero a Rocinante, El ave fénix, mi pegaso, la Strategos, la estrella de la muerte, el nautilius, La Odiseus, el enterprise, la USSC Discovery One, el delorian, bucéfalo, la Planet Express, la poderosa, la pinta, el halcón milenario, la lunave, la auténtica máquina del tiempo... en ella se comprueba eso de que viajar a la velocidad de la luz hace que el tiempo se haga pequeño.

Capítulo 1 Introducción

1.1 La Astrobiología

La astrobiología estudia el origen, evolución, distribución y futuro de la vida en el Universo (*Astrobiology Primer*, Lucas *et al*, 2006) con el objeto de tratar de entender su naturaleza en la Tierra y la posibilidad de encontrarla en otro lugar del Universo. La agencia aeronáutica y espacial americana (NASA), auspicia el instituto más importante a nivel mundial de astrobiología llamado *The National Astrobiology Institute* (NAI), el cual ha publicado una guía "Astrobiology Roadmap", que en su versión 2008 plantea las siete metas de esta disciplina, las cuales se describen a continuación:

Meta 1- Entender la naturaleza y distribución de los ambientes habitables en el Universo. Descubrir posibles planetas habitables fuera de nuestro Sistema Solar y caracterizarlos. Para cumplir está meta se plantea los siguientes objetivos:

1- Investigar la formación y evolución de posibles planetas habitables.

2- Realizar estudios de planetas extrasolares potencialmente habitables, de forma directa e indirecta.

Meta 2- Establecer factibles signos de vida en ambientes habitables en el pasado, presente y futuro del Sistema Solar, así como la química prebiótica; estudiando la historia geoquímica de cualquier ambiente que pueda tener agua líquida, bioelementos (carbono (C), nitrógeno (N), hidrógeno (H), etc.) y fuentes de energía (exógenas y endógenas), requisitos necesarios para la vida. Para ello, se trata de explorar las superficies y atmósferas planetarias. Los objetivos de dicha meta son:

7

1- Explorar Marte.

2- Explorar el Sistema Solar exterior.

Meta 3- Comprender como surgió la vida en la Tierra a partir de materiales cósmicos y planetarios. Realizar observaciones, investigaciones teóricas y experimentales que nos permitan entender los principios físicos y químicos fundamentales, que dieron origen a la vida. Los objetivos que se plantea esta meta son:

1- Fuentes de materiales prebióticos y su catálisis.

2- Origen y evolución de las biomoléculas (carbohidratos, aminoácidos, lípidos, etc.).

3- Investigar el origen y evolución de la trasferencia de energía a los sistemas biológicos.

4- Averiguar el origen de los sistemas protobiológicos y la celularidad.

Meta 4- Deducir cómo la vida y el ambiente planetario, coevolucionan a través del tiempo geológico. Investigando la relación existente entre la Tierra y la biota. Las geociencias y biociencias nos permiten descifrar cómo ha evolucionado la vida, respondiendo a los cambios ambientales, así cómo se ha modificado el ambiente planetario. Los objetivos siguientes de esta meta son:

1- Dilucidar la biósfera de la Tierra primitiva.

2- Investigar las vías de producción de vida compleja.

3- Examinar posibles efectos de eventos extraterrestres sobre la biósfera.

Meta 5- Estudiar los mecanismos evolutivos y los límites ambientales para la vida. Determinar los mecanismos moleculares, genéticos y bioquímicos que controlan o limitan la evolución, la diversidad metabólica y climatización de la vida. Los objetivos son:

8

1-Constatar la evolución molecular y la dependencia ambiental de microorganismos.

2- Examinar la coevolución de comunidades microbianas.

3- Entender las adaptaciones bioquímicas de la vida en ambientes extremos.

Meta 6- Comprender los principios sobre la evolución de la vida, no solo en la Tierra, sino también fuera de ella. Explorar el potencial de la vida microbiana para sobrevivir y evolucionar en ambientes distintos a los terrestres. Elucidar los manejos y efectos de los ecosistemas microbianos como base preventiva de futuros cambios en décadas y hasta en tiempos geológicos. Para cumplir está meta se plantea los siguientes objetivos:

1- Efectos de cambios ambientales sobre ecosistemas microbianos.

2- Estudiar las adaptaciones y evolución de vida más allá de la Tierra.

Meta 7- Identificar potenciales señales de vida en la Tierra primitiva y en otros mundos. Buscar bioseñales que puedan revelar y caracterizar el pasado o presente de la vida. Estudiar muestras de la Tierra primitiva, muestras extraterrestres, que hayan caído a la Tierra, así como de manera remota atmósferas y superficies, hasta bioseñales de tecnologías distantes.

1-Bioseñales que se puedan detectar en el Sistema Solar.

2-Bioseñales que puedan descubrir vida en sistemas planetarios cercanos al nuestro, como observaciones remotas e incluso señales tecnológicas.

1.2 Marte como objeto de estudio

Los requerimientos de la vida en la Tierra son: presencia de agua líquida, fuentes de energía y bioelementos, por lo que, la búsqueda de éstos en otros mundos, representa el reto si se pretende encontrar formas de vida en lugares más allá de la Tierra. El primero de ellos, el agua líquida, es el primer componente a buscar en otro mundo. En el Planeta Tierra la vida muestra profunda variabilidad y versatilidad. Hay vida en las profundidades oceánicas y en la superficie del mar; en agua dulce y en tierra; en el subsuelo, en el desierto, en el aire y hasta en páramos helados. Ninguna forma de vida puede prescindir del agua. La vida surgió en el mar (Oparin, 1923). Como fuentes de energía disponibles en los planetas, se debe contar con: actividad volcánica, luz ultravioleta (proveniente del Sol), actividad eléctrica (relámpagos atmosféricos y volcánicos), elementos radiogénicos, rayos cósmicos y bólidos (cometas y asteroides), lo cual no representa un gran reto encontrarlos en el contexto cósmico. Lo siguiente es la búsqueda de bioelementos, de los cuales el más importante es el carbono, pero específicamente se habla de material orgánico, es decir, moléculas basadas en estructuras que contengan este elemento como: ácidos nucleícos, carbohidratos, proteínas, lípidos, etc.

Nuestro conocimiento actual de la historia climática de Marte, y de sus procesos geológicos (ver figura 1), así como la presencia de agua líquida y la existencia de una atmósfera densa compuesta de bióxido de carbono (CO₂) y nitrógeno (N₂), sugiere que entre los 4 y 3.5 mil millones de años, el ambiente de Marte pudo haber sido similar al existente en la Tierra en ese tiempo (McKay y Strocker, 1989). La figura 1 es un diagrama que compara la historia geológica y climática de Marte con eventos biológicos y climáticos del planeta Tierra. La duración de estas condiciones elementales sobre el Marte primitivo, pudieron haber sido comparables o mayores que el tiempo necesario para el surgimiento y evolución de la vida en la Tierra. Entonces, salta la pregunta acerca de la posibilidad del origen de la vida en Marte. El Planeta Rojo se considera un posible ambiente habitable en

10

nuestro Sistema Solar; ha sido explorado por diferentes misiones espaciales (orbitales, estaciones científicas y vehículos exploradores), las cuales han evidenciado la presencia de agua líquida por medio de la detección de minerales que solo se forman en medios acuosos y ácidos (jarosita), caracterizando muestras de suelo marciano dando idea de la abundancia de ciertos elementos, además de proporcionar datos acerca de la composición actual de su atmósfera, las estaciones y el clima durante el año marciano (Hecht *et al.*, 2009).

Mil millones de años

Tierra

Figura 1.1 - Historia de la Tierra y Marte. Adaptada de Mckay y Stoker, 1989.

1.3 Marte

Marte, el cuarto planeta de nuestro Sistema Solar, es aproximadamente la mitad del tamaño de la Tierra y un décimo de su masa. Un día marciano (llamado sol) dura 24:37 horas terrestres, y un año 687 días terrestres. Su eje de rotación está inclinado 25º respecto a su plano. La órbita marciana es ligeramente elíptica, lo que provoca los cambios de estaciones. La atmósfera marciana presenta una presión de aproximadamente 6 milibares. En cuanto a su composición: el 95% corresponde a CO₂, 2.7% a N2 y 1.6% a argón (Ar) con cantidades traza de metano (CH₄), oxigeno (O2), monóxido de carbono (CO) y vapor de agua (Mckay y Strocker, 1989). La temperatura superficial varía entre -87°C y -5°C provocando que el agua líquida no pueda existir en su superficie, no obstante, en forma de hielos puede existir a una cierta profundidad dentro del sedimento durante todo el año marciano. Marte tiene dos satélites: Phobos y Deimos, son pequeños y giran rápido muy cerca del planeta. Phobos tiene poco más de 13 km de diámetro por el lado más largo. Gira a 9380 km del centro del planeta, es decir, a menos de 6000 km de la superficie marciana, cada 7 horas y media. Deimos es la mitad de tamaño de Phobos y gira a 23.460 km del centro en poco más de 30 horas. En la tabla 1, se incluyen algunas características planetarias de Marte comparadas con Tierra.

	2001)	ite y la Tierra (Segu	a
Característica	Marta	Tiorro	

noverión de les Dreniededes pleneteries de Merte y la Tierre (Conurs

Característica	Marte	Tierra		
Distancia al Sol (UA)	1.52	1		
Masa (Kg)	6.4185*10 ²³	5.9737*10 ²⁴		
Radio (m)	3.39*10 ⁶	6.3781*10 ⁶		
Periodo de traslación (días terrestres)	687	365.25		
Periodo de rotación	24 hr 37 min 22 s	23 hr 56 min 4 s		
Presión atmosférica (bar)	0.06	1		
Temperatura promedio superficial (℃)	-60	15		
Inclinación respecto al plano orbital	25°	23.5°		
Principales componentes atmosféricos	CO ₂ , N ₂ , Ar	N_2,O_2,H_2O		

La superficie marciana ha sido alterada por vulcanismo, impactos de bólidos, movimientos de la corteza y efectos atmosféricos, como tormentas de polvo y arena. (Mckay y Stocker, 1989). Marte no tiene un campo magnético global, pero el orbitador *Mars Global Surveyor* de la NASA, ha encontrado que algunas áreas de la corteza en el hemisferio sur están altamente magnetizadas, evidenciando trazas de un campo magnético que se calcula tuvo Marte hace 4 mil millones de años (Carlsson, E., 2008).

Marte y la Tierra son planetas tipo terrestres que ocupan posiciones similares en la vecindad del Sistema Solar, lo que sugiere que se formaron del mismo material proveniente de la nebulosa Solar principal, por lo que sus características debieron ser muy similares en sus primeras fases. Se ha determinado que en algún momento de su existencia la superficie marciana estuvo cubierta de agua y contaba con condiciones similares a las existentes en la Tierra primitiva (Mckay y Stocker, 1989). Sin embargo sufrió procesos de evaporación de agua, cambios geoquímicos y geomorfológicos aún no establecidos, que no pudieron sostener lo que ahora conocemos como un *ambiente adecuado para la vid*a, sin embargo, se ha propuesto como un lugar en el Sistema Solar que pudo albergar vida o que inclusive la siga sosteniendo (*Astrobiology Primer*, Lucas *et al*, 2006).

1.4 Las misiones espaciales a Marte

Se han enviado un nutrido número de misiones espaciales para la exploración del Planeta Rojo como: Mariner IV (EEUU), Mariner IX (EEUU), Mars II y III (URSS), Mars Pathfinder (EEUU), Mars Express (ESA=Agencia espacial Europea), y Spirit y Opportunity (EEUU), Phoenix (EEUU). Sin embargo, no se han enfocado específicamente en la búsqueda de vida. De hecho las únicas misiones que tenían este objetivo eran las *Vikingo* por los EEUU (1976), *Marte* por la agencia espacial Rusa (1996) y la *Beagle-2* por la agencia espacial Británica (2004), de ellas sólo la primera amartizó y las otras dos fracasaron. La sonda Phoenix se envió con la finalidad de evaluar entre otras características, las condiciones del agua en el ártico marciano, ya que es una de las estrategias a seguir en la búsqueda de vida, así como determinar componentes del suelo marciano. La siguiente figura (figura 1.2) muestra los sitios de amartizaje de las misiones más representativas de la NASA.

1.5 La misión Vikingo

La misión Vikingo consistió en dos estaciones gemelas con sus respectivos orbitadores. Las primeras estaban equipadas con múltiples instrumentos científicos como: una estación meteorológica, cámaras fotográficas, un sismógrafo, espectrómetro de fluorescencia de rayos X, un brazo robótico para la toma de muestras, cromatógrafo de

gases, un espectrómetro de masas, etc., El Vikingo 1 fue lanzado el 20 de agosto de 1975 y amartizó el 19 de junio de 1976 en "Chryse Planitia" (22.7 N, 48.2 ℃). El Vikingo 2 fue lanzado el 9 de septiembre de 1975 y se posó en "Utopia Planitia" (48.3 °N, 226.0 °O) el 3 septiembre de 1976; la distancia de separación de las estaciones era de de aproximadamente 6500 kilómetros (Schuerger y Benton, 2008). El principal objetivo de esta misión era evaluar la posible existencia de organismos en otro lugar diferente del planeta Tierra. Para ello se diseñaron tres experimentos de tipo biológico y uno guímico, íntimamente relacionados. A continuación se describen dichos experimentos. Obsérvese la figura 1.33, en donde se describen los experimentos biológicos que realizó el Vikingo en el suelo de Marte. El primer experimento biológico se llamó: Liberación Pirolítica. Se diseñó con la suposición de que la vida tendría la habilidad de asimilar CO₂ y CO en presencia o ausencia de luz solar tal como ocurre en las plantas y bacterias fotosintéticas (Hubbard et al., 1970; Horowitz et al., 1972; Hubbard, 1976). El ensayo consistió en exponer el suelo marciano (0.25 g) humedecido, a óxidos de carbono marcados radioactivamente (¹⁴CO y ¹⁴CO₂) en periodos de oscuridad y luz, éstos, simulados por una lámpara de deuterio, que proporcionaba longitudes de onda mayores a los 320 nm con el objeto de fijar compuestos orgánicos por medio de fotosíntesis. Posteriormente, los gases de la cámara de reacción fueron evacuados a una temperatura de 120°C y el suelo fue calentado a 625°C en presencia de óxido de cobre, con el objeto de oxidar el carbón fijado a ¹⁴CO y ¹⁴CO₂. Asombrosamente una pequeña cantidad de ¹⁴CO y/o ¹⁴CO₂ fueron fijados en compuestos orgánicos ≤100 pmol 14 C/cm³, (Klein *et al.*, 1976; Horowitz *et al.*, 1976). La fijación del carbono disminuyó aproximadamente un orden de magnitud en la oscuridad y un 20% al someter el suelo a un tratamiento de calor (175℃). La reactividad del suelo marciano era muy baja en comparación a aquella encontrada en suelos terrestres; sin embargo,

sorprendentemente la fijación de carbono en el suelo marciano es inhibida por la humedad (Horowitz *et al.*, 1976).

El segundo experimento biológico, se llamó: Liberación de Gases Marcados y trataba de encontrar la presencia de vida heterotrófica. Los posibles microorganismos marcianos tendrían la capacidad de liberar CO₂ al incorporar material orgánico de una solución de nutrientes tal como lo hacen los terrestres (Levin, 1972; Levin y Straat, 1976). El ensayo medía la liberación de gas radioactivo (¹⁴CO₂) después de adicionar al suelo una mezcla de nutrientes radioactivos con centros de carbono aquiral y quiral, (ácido fórmico, ácido glicólico, glicina, D- y L-alanina, ácido D y L-láctico). Notablemente, los compuestos orgánicos eran consumidos como si hubiera vida presente en el suelo marciano. Los resultados mostraron una liberación rápida, y después lenta, de CO₂, proveniente de la solución radioactiva de nutrientes. Este efecto era completamente inhibido al calentar la muestra a 160°C por 3 hrs, parcialmente destruido a 40-60°C y relativamente estable por calentamientos cortos a 18°C, pero también desaparecía completamente si la muestra se almacenaba por periodos largos a 18°C (Klein *et al.*, 1976; Levin y Straat, 1976 y 1977).

El tercer experimento biológico se denominó: Intercambio de Gases, fue diseñado para determinar si la vida marciana podía metabolizar e intercambiar productos gaseosos en presencia de vapor de agua y una solución acuosa con nutrientes (Oyama, 1972; Oyama *et al.*, 1976). En este experimento se tomaban muestras periódicamente de los gases acumulados por arriba del suelo marciano el cual era incubado bajo condiciones de sequedad, humedad y completamente mojados; los gases eran analizados en un cromatógrafo de gases (Klein *et al.*, 1976). Variaciones inmediatas se registraron en la composición de los gases cuando los suelos eran expuestos a la humedad o bañados con

16

una solución acuosa de nutrientes. La detección de N₂, CO₂ y Ar fueron asociados al intercambio de gases atmosféricos absorbidos en el suelo causada por la adición de vapor de agua (H₂O). Sorprendentemente, ocurrió una rápida liberación de O₂, en niveles de 70-770 nmoles/cm³ cuando el suelo era humedecido o bañado con una solución con nutrientes (Klein *et al.*, 1976; Oyama y Berdahl, 1977). Al inyectar más solución al sistema, sólo se liberaba CO₂, y su tasa de liberación decrecía con el número de recargas. Por otro lado, si se calentaba el suelo marciano previamente a 145 °C por 3.5 hrs, había una disminución de un 50% en la liberación de oxígeno (Oyama y Berdahl, 1977).

Figura 1.3 - Experimentos Biológicos realizados en Marte por las naves Vikingos.

Adicionalmente a los experimentos biológicos, se realizaron análisis por fluorescencia de rayos X para determinar la composición elemental del suelo en los sitios de descenso de las naves espaciales (Toulmin *et al.*, 1977). Desafortunadamente desde el punto de vista biológico, el instrumento sólo podía hacer determinaciones de elementos con

número atómico superior al magnesio (Mg), por lo que no se pudieron realizar medidas directas de los bioelementos C, H, O, y N en el suelo. No obstante, se realizó un estudio químico detallado en busca de material orgánico en el suelo marciano, mediante las técnicas acopladas de pirólisis-cromatografía de gases-espectrometría de masas (Pir-CG-EM) (Simmonds et al., 1969; Biemann, 1974). Se realizaron 4 análisis del suelo marciano: 3 de ellos en la superficie (0-10 cm) en el sitio de descenso del Vikingo 1 y 2, y otro por debajo de una roca en el sitio del Vikingo 2. En estas determinaciones, el suelo era sometido a un calentamiento rápido, con el propósito de romper las moléculas orgánicas grandes en fragmentos volátiles pequeños (Pir) y los productos resultantes fueron analizados por CG-EM (Biemann et al., 1976 y 1977). Quizá la conclusión más sorprendente del análisis del suelo marciano fue la ausencia total de carbono orgánico en el suelo marciano, en ambos sitios de descenso con límites de detección de partes por billón (ppb) para moléculas de más de dos átomos de carbono y de partes por millón (ppm) para moléculas más pequeñas (Biemann et al., 1976). La liberación de dióxido de carbono y agua, pero ningún otro compuesto orgánico fue observada al calentar las muestras de suelo a temperaturas de 200, 350 y 500 °C (Biemann et al., 1977). Estos resultados contundentes, estaban en contra de la presencia de vida microbiana en Marte y de la interpretación de los experimentos biológicos; si no existía materia orgánica en el suelo, mucho menos vida (Schuerger, 2008). La respuesta positiva de los experimentos biológicos se piensa se debe a la reactividad del suelo marciano y es el resultado de la presencia de uno o más oxidantes inorgánicos, por ejemplo: superóxidos, peróxidos o peroxínitratos, en el orden de partes por millón (ppm). (Mckay et al. 1998). Los únicos compuestos orgánicos que se detectaron fueron el clorometano (CH₃CI) y el diclorometano (CH_2CI_2) (Biemann et al., 1976), que se pensó era contaminación terrestre de los

productos de limpieza y esterilización que se utilizaron en la misión. Los resultados obtenidos han sido fuertemente debatidos en los últimos años, debido a que se han identificado posibles fallas en la determinación de material orgánico en suelos de Marte, entre los que destacan: la falta de sensibilidad de los instrumentos para detectar bajos niveles de materia orgánica, la presencia de fuertes oxidantes en el suelo y la temperatura de pirólisis que al parecer no fue la adecuada para el desprendimiento de gases orgánicos en suelos altamente refractarios (Navarro-González *et al.*, 2006).

1.6 La misión Fénix (Phoenix, 2007)

La misión Fénix se diseñó para llevar a cabo un análisis *in situ* de hielos, suelo y subsuelo del Planeta Rojo. Fue lanzada el 4 de agosto de 2007 y amartizó en el polo norte el 25 de mayo de 2008, dejando de operar el 10 de noviembre del 2008. Los principales objetivos científicos eran estudiar la historia del agua en Marte en todas sus fases y la búsqueda de evidencia de posibles zonas habitables, evaluando el potencial del hielo y el subsuelo de la región ártica para sustentar la vida. A continuación se detallan dichos objetivos:

1.-Normalmente el agua en Marte se encuentra sólo en dos estados: sólido y gaseoso. En los polos, la interacción entre el agua sólida (hielo en el subsuelo) y el vapor de agua en la atmósfera, se piensa, puede ser un factor crítico para el clima y el ambiente marciano. La estación Fénix fue la primera en obtener datos necesarios para modelar el pasado, presente y futuro del clima marciano. Actualmente, el agua líquida no existe en la superficie, pero evidencias de otras misiones (*Pathfinder, Spirit, Mars Odyssey Orbiter*) han

sugerido y demostrado que en el pasado remoto, fluyó éste líquido sobre ríos o lagos de poca profundidad (Hecht *et al*, 2009).

2.- En la actualidad, los organismos que viven en ambientes extremos de la Tierra (extremófilos) son de interés astrobiológico, ya que su estudio permite imaginar posibles formas de vida en otros lugares del Sistema Solar. La misión Fénix investigó el potencial del ambiente marciano, evaluando principalmente el suelo por medio de técnicas instrumentales de análisis, para la detección de elementos químicos, involucrados en los procesos biológicos, tales como: el C, H, N y P. Además se evaluó la existencia de pares Redox y otras propiedades críticas que pueden determinar la posible habitabilidad como: la salinidad y el pH.

De los resultados relevantes de esta misión, se pueden mencionar los experimentos realizados por el *Laboratorio de Química Húmeda* (*Wet Chemical Laboratory, WCL*), que contaba con los siguientes técnicas; microscopía electrónica de barrido, electroquímica y conductividad. Las muestras de suelo se tomaron por medio de un brazo robótico (ver el esquema de la figura 1.4) a una profundidad de varios centímetros, llegando incluso, al hielo del subsuelo (ver figura 1.6). Usando electrodos de ion selectivo se midieron las concentraciones de cationes, Ca²⁺ (calcio), Mg²⁺⁽magnesio) K⁺ (potasio), NH₄⁺ (amonio), H⁺ (pH), Na⁺ (sodio) y halogenos Cl⁻ (cloro), l⁻ (iodo) y Br⁻ (bromo). La conductividad total y el potencial Redox se determinó por medio de electrodos y el hierro soluble por voltamperometría cíclica de barrido. La concentración de haluros se determinó, nuevamente, por medio de la técnica de cronoamperometría. De todas las respuestas para los distintos iones la más sorprendente fue la atribuida al ion perclorato (ClO₄⁻), ya que se esperaba que el cloro fuera más abundante en su forma de cloruros (Cl⁻), como lo es en la

20

Tierra. El pH medido fue de 7.7 (\pm 0.5) comparable a los datos obtenidos por las estaciones Vikingo, (Hetch *et al.*, 2009, Biemann *et al.*, 1976).

Figura 1.4 - Esquema del "Laboratorio de Química Humeda" (Wet Chemestry Lab, WCL) de la estación Fénix Esta es una ilustración del análisis del suelo por el "Laboratorio de Química Humeda" (*Wet Chemestry Lab, WCL*) de la estación Fénix.

La figura siguiente (figura 1.5) resume los resultados de las concentraciones de iones encontrados por el *WLC* de la estación Fénix.

Figura 1.5- Gráfica de los resultados obtenidos por la misión Fénix (Tomado de Hecth et al., 2009).

Se muestra la respuesta del sensor para el análisis de 1 cm³ de una muestra, después de llevar a 25 ml de solución en el WCL. Las respuestas de los sensores son

mostradas después de filtrar, determinar la actividad de la calibración y convertir la concentración de la solución usando la fórmula de Debye-Hückel. La primera línea vertical punteada marca la respuesta de una mezcla calibrada de iones (concentraciones conocidas); la segunda línea punteada muestra marca la adición de la muestra. Los círculos rojos marcan las medidas de cloruros usando cronopotenciometría. El eje del tiempo esta etiquetado por sol y por hora de tiempo local. Para CIO_4^- , una pequeña contribución ha sido sustraída, debido a interferencia de NO^{3-} en el filtrado y calibración de soluciones.

Figura 1.6 - Fotografías de la toma de muestra de la estación Phoenix. Lado izquierdo: Fotografía del brazo robótico con la toma de la muestra y en la parte inferior se muestran los compartimientos del *WCL*. Lado derecho: las tres muestras tomadas por el brazo robótico fueron colectadas en los lugares que se marcan en la fotografía. La primera muestra fue denominada "Rosy Red" es una muestra superficial. Las otras dos (Sorceress 1 y 2) fueron tomadas al escarbar entre el límite del suelo y el hielo.

1.7 La importancia de la molécula de perclorato en el contexto de la exploración de Marte.

Los percloratos son las sales provenientes del ácido respectivo (HCIO₄), en donde el cloro se encuentra en estado de oxidación +VII y en un entorno tetraédrico de cuatro átomos de oxígeno. La relativa estabilidad del CIO_4^- a pesar del elevado estado de oxidación del átomo central, se atribuye a la simetría que presenta. Termodinámicamente es un fuerte oxidante, ya que su potencial Redox es E°=1.20V. En la reacción 1 se observa la reducción de dicho ion (Navarro-González *et al.*, 2010). La figura 1.6 muestra la estructura del ion CIO_4^- .

$$CIO_4^{-} + 2H^+ + 2e^- \rightarrow CIO_3 + H_2O$$
 (1)

Figura 1.7- Geometría del ion perclorato.

Los percloratos a elevadas temperaturas (>500 °C) se utilizan como combustibles y generadores de oxígeno, en solución acuosa y temperatura ambiente son muy solubles. La

afinidad de estas sales por el agua, sugieren que la historia del agua líquida en Marte, podría estar relacionada con los gradientes de concentración de estas sales en el suelo. Sin embargo, la homogeneidad de las concentraciones en los sitios de excavación del Fénix está en contra de esta idea (Hecht *et al.*, 2009). Sí en el Marte primitivo hubo agua líquida, los gradientes de concentración en el suelo y subsuelo fueron eliminados debido a la aireación, crioturbación, filtración, etc. Los percloratos en el suelo marciano se encuentran entre 0.4- 0.6 %, mientras que los cloruros se encuentran entre 0.01-0.04 %. La distribución de cationes en el suelo, sugiere que los percloratos más abundantes en Marte son de magnesio (Mg(ClO₄)₂) y calcio (Ca(ClO₄)₂). Las sales de perclorato de tierras alcalinas tienen una afinidad fuertemente exotérmica con el agua, son delicuescente y tienen un punto eutéctico de congelación ~ -70°C. Este hallazgo tiene una posible relevancia respecto a la retención del agua, control de la humedad en el suelo y la atmósfera marciana, la formación de barrancas, la posible habitabilidad y recursos para la exploración humana (Hecht *et al.*, 2009).

Algunos microorganismos como *Dechloromonas aromatica* y *Dechloromarinus*, en nuestro planeta, son conocidas por reducir las moléculas de perclorato en condiciones anaerobias (J.D. Coates, y L.A. Achenbach, 2004), con lo que obtienen energía. Bajo las condiciones que imperan en Marte, los percloratos difícilmente oxidarían a las moléculas orgánicas, no obstante, la presencia de percloratos en el suelo puede indicar una química vigorosamente oxidante en la superficie. Las propiedades oxidantes del perclorato a elevadas temperaturas, pueden facilitar la combustión, en vez de la pirólisis de las moléculas orgánicas en los experimentos de Termovolatilización (TV) del Fénix, y lo cual

24

posiblemente también afectó los resultados de la búsqueda de vida en Marte por la misión Vikingo (Hecht 2009, Navarro-González *et al.*, 2010).

1.8 Análogos Marcianos

El análisis de suelos análogos a Marte es una parte crucial de las preparaciones para la exploración de este planeta, ofreciendo una oportunidad relativamente segura y barata para hacer las pruebas necesarias: técnicas, mecánicas y científicas, anteriores a una misión. Los análogos terrestres, deben reunir características tales como un ambiente árido, clima frío, poros de agua salina, abundantes cantidades de basalto y la presencia de depósitos sedimentarios eólicos y fluviales (Dinwiddie *et al.*, 2004). Existen varios tipos de análogos, los cuales se describen a continuación.

1.81 Análogos químicos

Estos incluyen suelos terrestres que son posiblemente similares al regolito marciano en términos de propiedades químicas tales como constante dieléctrica, potencial Redox, pH, composición mineralógica y elemental. Esta clase de análogos es conveniente para probar y calibrar espectrómetros así como para probar los procedimientos que tengan por objetivo interpretar la formación del suelo de Marte.

1.82 Análogos mecánicos

Estos suelos comprenden materiales que son como los del Planeta Rojo en cuanto a sus propiedades físicas, como la distribución del tamaño y forma de las partículas, densidad, porosidad, humedad y propiedades termofísicas. Estos análogos permiten evaluar el efecto físico del suelo marciano sobre los componentes mecánicos, tal como: el juego de articulaciones, bisagras, brazos robóticos y la toma de muestras. El laboratorio usa estos materiales para ayudar a clarificar la interacción entre el agua y el suelo, en el pasado y en el presente.

1.83 Análogos magnéticos

Estos son materiales que son similares a Marte en cuanto sus propiedades magnéticas incluyendo susceptibilidad magnética y saturación magnética. Estos suelos particularmente son valiosos para probar los instrumentos magnéticos.

Los análogos terrestres más apropiados para calibrar instrumentos geofísicos como radares de las sondas espaciales, o de análisis químico como espectrómetros de masas, necesitan estar lo suficiente caracterizados para proveer una exacta compresión del contexto geológico local. Durante la selección del sitio, la preferencia debe ser dada a aquellos que posean propiedades físicas, complejidad estratográfica y condiciones ambientales supuestas para Marte, además de la accesibilidad, infraestructura local y costo. Se han propuesto varios análogos, sin embargo carecen de la suficiente caracterización para realizar pruebas y calibración de los instrumentos de sondeo necesarios en la misión. En este punto se han explorado sitios análogos, incluyendo aquellos de los que ya existen datos sobre sus características geológicas, geofísicas, geoquímicas, hidrológicas y climáticas. A lo largo de los años se han caracterizado suelos como los de: Hawaii (EEUU); Salten Skov (Dinamarca), Desierto de Mojave (EEUU), Río Tinto (España) y Desierto de Atacama (Chile), los cuales pueden satisfacer los requerimientos necesarios para fungir como análogos marcianos (Marlow, 2008).

Tabla 2.- Propiedades de suelos análogos a Marte (adaptada de Marlow, 2008)

	Hawaii	Salten Skov	Atacama	Mojave	Arequipa	Rio Tinto		
Propiedades Químicas								
Constante dieléctrica								
Potencial Redox			•		•			
рН		•	•		•	•		
Conductividad eléctrica			•					
Volátiles	•			•				
Composición mineralógica	•	•	•	•	•	•		
Propiedades físicas		1						
Tamaño de particula	•	•						
Forma de partícula				•				
Densidad	•							
Densidad aparente	•							
Porosidad	•							
Contenido de agua	•		•					
Propiedades termofísicas								
Albedo								
Propiedades macroscópicas								
Morfología								
Profundidad de capa		•						
Contenidos de materia orgánica	·				·			
Carbono orgánico Total			•	•		•		
Abundancias moleculares	•	•	•		•	•		
Cultivos bacteriológicos	•	•	•			•		

1.9 El Desierto de Atacama, Chile

El desierto más árido del planeta después de la Antártica, es el Desierto de Atacama en el norte de Chile. El desierto es templado y se extiende por más de 1200 km entre las latitudes 18º a 30º Sur a lo largo de la costa de Chile y Perú con el Océano Pacifico (McGinnies et al. 1968). Han clasificado al Desierto de Atacama como "Ea23" dentro de la escala de Meigs ("E" indica que es extremadamente árido, una "a" que no hay una marcada temporada de precipitación, el "2" indica que las temperaturas promedio durante los meses más fríos oscilan entre los 10°C y 20°C, y el "3" indica que las temperaturas promedio entre los meses más cálidos oscilan entre los 20 $^{\circ}$ y 30 $^{\circ}$). Las temperaturas promedios del aire se encuentran entre los 15°C y 30°C, y son sorprendentemente estables a lo largo del año con una variación de tan solo 2ºC. El Desierto de Atacama es una zona hiperárida debido a los efectos combinados de un sistema de alta presión en el oeste del Océano Pacifico, el efecto secante del flujo frío de las corrientes oceánicas Humboldt con dirección norte, el efecto barrera para el paso de nubes por el oeste debido a la Cordillera de la Costa y por el este por la cordillera de los Andes (Börgel, 1973; Caviedes, 1973; Miller, 1976; Rundel et al., 1991) (ver figura 7). El Río Copiapó (27ºS) delimita al sur de la zona de extrema aridez del desierto. El norte del Copiapó recibe humedad por neblinas ocasionales llamadas camanchacas por la gente local o lluvias esporádicas con una frecuencia de un par por década. Al sur del Copiapó se reciben algunas precipitaciones debidas a incursiones invernales del frente polar. Los elementos principales de la dinámica del clima en la región árida a lo largo de la Costa del Pacifico y en particular en el Desierto de Atacama se han descrito con detalle (Lettau, 1976; Rutllant y Ulriksen, 1979; Abreu y Bannon, 1993; Rutllant, et al., 1998 y 2003). Algunas estimaciones climáticas sugieren que algunos

eventos de lluvia ocurrieron entre 10,000 y 16,000 años, pero la lluvia no ha penetrado el corazón del desierto (Betancourt *et al.*, 2000). Además estudios paleoclimáticos de aproximadamente 325,000 años en el Salar de Atacama, sugieren que han ocurrido algunos eventos episódicos de lluvia (Bobst *et al.*, 2001; Lowenstein *et al.*, 2003). Un estudio meteorológico reciente de la zona más árida del Desierto de Atacama demuestra que en cuatro años de estudio (1994-1998), sólo en una noche ocurrió un episodio de lluvia de 2.3 mm, el cual se cree se debió a la condensación de la fuerte neblina o camanchaca (Mckay *et al.*, 2003). La evidencia geológica y mineralógica sugiere que la zona más árida del desierto ha permanecido en estas condiciones por más de 10-15 millones de años, convirtiéndolo en el desierto más antiguo del planeta (Ericksen 1983; Berger y Cooke, 1997).

Figura 1.7- Esquema de la situación geoclimática del Desierto de Atacama.

Figura 1.8- La Fotografía de la izquierda corresponde al Desierto de Atacama; la derecha corresponde a una vista de Marte. Estas fotografías muestran el gran parecido a simple vista, no obstante, análisis reportados lo clasifican como un excelente análogo terrestre debido a la prácticamente nula existencia humedad y bajos niveles de materia orgánica.

1.10 La pirólisis-cromatografía de gasesespectrometría de masas (Pir-CG-EM).

1.11 Pirólisis

La pirólisis consiste en la descomposición físico-química de la materia orgánica bajo la acción del calor y en ausencia de un medio oxidante. Los productos de pirólisis son gases, líquidos y residuo carbonoso cuyas cantidades relativas dependen de las propiedades del material a tratar y de los parámetros de operación del equipo. La proporción en que se obtienen cada uno de los productos básicos de la pirólisis depende de: temperatura del reactor, razón de calentamiento asociada con el tamaño de la partícula, tiempo de residencia de los productos en el reactor, tecnología empleada (equipamiento) y parámetros de trabajo (Biemann, 1976).

1.12 Cromatografía de Gases

La solución de numerosos problemas que se presentan en los campos de la química pura y aplicada, está supeditada al aislamiento e identificación de ciertas especies orgánicas o inorgánicas existentes en una mezcla. Los procedimientos clásicos de separación pueden conducirnos, tras laboriosas operaciones, a productos en alto estado de pureza, pero en general, nos dan poca información acerca de la naturaleza de tales sustancias. La cromatografía de gases puede utilizarse no sólo para separar, sino también como método de identificación y determinación cuantitativa de cada componente de una mezcla, siempre que se reúnan ciertas condiciones, que a veces son difíciles de obtener. En el gráfico obtenido por cromatografía de gases, cada componente de una muestra suministra tres unidades de información: posición, altura y anchura de los picos en el cromatograma (Gascó Sanchez, 1971). La posición, expresada como dato de retención, suministra información cualitativa y los otros dos proporcionan la información cuantitativa. En la siguiente figura se representa un esquema general de la manera en cómo opera un cromatógrafo de gases.

Fig 1.9- Diagrama esquemático de un cromatógrafo de gases.

1.12 Espectrometría de Masas

La espectrometría de masas es básicamente una técnica en la que los iones obtenidos de una sustancia, en general orgánica, se separan según su relación masa a carga iónica, dando lugar, una vez registrados en forma adecuada, al espectro de masas característico de la citada sustancia (Gelpí Monteys 1971). De manera general, el vapor de la muestra que se somete a un análisis espectrométrico de masas, se ioniza baja presión (10-5 -10-7 mmHg) por bombardeo con electrones de baja energía (12-120 eV), según el proceso:

$$M + e^{-} \rightarrow M^{*} + 2e^{-}$$

Para que este proceso tenga lugar, el electrón debe poseer una energía igual o superior al potencial de ionización de la muestra. Para la mayoría de las moléculas orgánicas dicho potencial oscila entre los 7 y 15 eV. Por encima de dicho potencial todo exceso de energía del ion molecular (M⁺) dará lugar a disociaciones unimoleculares y reordenamientos intramoleculares hasta formar un cuadro característico de fragmentos iónicos positivos.

Los resultados, registrados en general por un multiplicador electrónico, se visualizan como un "espectro de masas" en el que la cantidad relativa de cada ion de masa m se representa gráficamente en función de sus valores respectivos masa/carga. Estos resultados pueden calcularse como las relaciones de la abundancia e intensidad de cada masa/carga en función del pico más alto al cual se le da el valor arbitrario de 100, o como porcentaje de la suma total de las intensidades de todos los iones a partir de un valor también arbitrario de masa carga. Del valor de masa/carga del ion molecular se puede obtener directamente el peso molecular, y a partir de la característica distribución de los fragmentos, se puede obtener información sobre la longitud de las cadenas, la posición, y naturaleza de los grupos constituyentes, así como número y clase de estructuras cíclicas (Gelpí Monteys, 1971).

Figura 1.10 - Espectrómetro de masas de cuadrupolo

1.13 El sistema acoplado CG-EM

Desde hace varios años, la combinación directa de análisis cromatografía de gasesespectrometría de masas se reconoce como uno de los sistemas más eficaces para el estudio e identificación de mezclas de diversos productos orgánicos. Conectando la salida de un cromatógrafo de gases a la cámara de ionización de un espectrómetro de masas se puede obtener información estructural (espectro de masas) para cada uno de los componentes de la mezcla original, previamente inyectada en el cromatógrafo, a medida que éstos son eluidos en serie de la columna cromatográfica. La cromatografía de gases puede separar los componentes individuales de una mezcla con un alto grado de poder resolutivo, pero no puede dar, en sentido riguroso, más que información preliminar sobre su estructura. Hay que señalar que cualquier columna cromatográfica no es un instrumento analítico, sino tan solo un medio de separación física. La utilización de los datos basados en el tiempo de retención absoluto o relativo puede resultar un método adecuado para la identificación tentativa de ciertos compuestos o mezclas relativamente simples o para los cuales se dispone de los correspondientes patrones. Sin embargo, cuando esta metodología se intenta llevar a extremos, como el análisis de mezclas de productos naturales de extrema complejidad, los resultados así obtenidos carecen, por fuerza, de la necesaria precisión cualitativa. Es por ello que la combinación con el espectrómetro de masas resulta poderosa. A propósito, una de las áreas más activas de de tal combinación, es, en conclusión, la identificación de compuestos nuevos o no sospechados previamente.

Entre las ventajas de aplicar este tipo de sistemas acoplados podemos numerar:

1.- Las muestras no necesitan ser aisladas o purificadas antes del análisis, de hecho, el tratamiento previo de las mismas es mínimo.

2.- Admite cualquier tipo de muestra mientras ésta se pueda volatilizar.

3.- Permite una confirmación precisa y/o determinación de la estructura de la sustancia que se estudia.

4.- Permite establecer con rapidez la identidad de nuevos compuestos o derivados para los que no se dispone de patrones de referencia.

5.- Es una técnica sensible y rápida en extremo. Entre la introducción de la muestra y la determinación de una sustancia previamente desconocida sólo se interponen, a veces, unos cuantos minutos.

35
6.- Permite la rápida determinación y localización de isótopos estables en trabajos biosintéticos.

7.- Muy útil para seguir el curso de reacciones a microescala.

8.- Permite adquirir información sobre la composición de cualquier sección de un pico cromatográfico no homogéneo. En el caso de que dos compuestos no hayan sido completamente separados por el cromatógrafo de gases, es en general posible determinar su naturaleza a partir del espectro de masas.

9.- La combinación Cromatografía de Gases-Espectrometría de Masas, es una doble focalización, que permite suficiente exactitud en la medición de masas para establecer composiciones empíricas.

La técnica Pir-CG-EM se eligió por las misiones Vikingo, para la búsqueda de material orgánico en Marte, ya que ha demostrado eficacia en la degradación y fragmentación térmica de la materia orgánica a compuestos volátiles y térmicamente estables de fácil separación y detección. La termovolatilización de algunas biomoléculas como las proteínas, los péptidos y los aminoácidos produce ácidos carboxílicos, hidrocarburos saturados e insaturados y nitrilos saturados e insaturados. Los carbohidratos por dicha técnica se degradan en hidrocarburos saturados, insaturados y aromáticos, aldehídos, cetonas, ácidos carboxílicos y derivados furánicos. Los ácidos grasos derivan a hidrocarburos saturados, insaturados y aromáticos, así como ácidos carboxílicos de cadena corta (Valdivia 2009).

36

Capítulo 2 Objetivos

El objetivo principal de este trabajo es estudiar el posible efecto oxidante de los percloratos en la determinación de material orgánico en suelo por la técnica de termovolatilización acoplada a cromatografía de gases – espectrometría de masas en el Desierto de Atacama, un posible análogo de Marte, tratando de reinterpretar los resultados obtenidos por la misiones Vikingo y Fénix de la NASA (*Viking y Phoenix* respectivamente), ya que hay evidencia geológica que sugiere la existencia en material orgánico en Marte, sin embargo, no se ha descubierto a pesar de que se calcula que debe haber alrededor de 10 ppm en la superficie marciana (McKay, 2003).

Capítulo 3 Método experimental

3.1 Reactivos

El ácido perclórico (HCIO₄) fue adquirido de la compañía MERCK, mientras que el hidróxido de magnesio (Mg(OH)₂) de SIGMA ALDRICH. Sus purezas son 70-72 y 95%, respectivamente. El perclorato de magnesio (Mg(CIO₄)₂) fue sintetizado a partir de una solución 3 N de HCIO₄, el cual fue neutralizado con una solución saturada de Mg(OH)₂; el exceso de este último se eliminó por medio de filtración. Finalmente el sobrenadante se liofilizó por 24 horas, obteniendo cristales de color blanco con un punto de fusión de 248-250 °C. El Mg(ClO₄)₂ sintetizado se introdujo en un frasco de vidrio, el cual se almacenó en un desecador hasta el momento de su uso.

3.2 Muestras de suelo

La muestra de suelo (24° 4' 9.6" S, 69° 51' 58.8" O, 2240m) del Desierto de Atacama fue recolectada en la parte más árida, la región de Yungay, por medio de palas de polietileno estériles, en un radio de 5 m, y almacenada en bolsas del mismo material. Dicha muestra ya ha sido previamente caracterizada; el contenido de carbono orgánico es de 32±6 ppm; la cantidad de carbono en otras formas químicas como carbonatos >1414±5 ppm (Navarro-González *et al.*, 2009). El valor de la relación isotópica de carbono (δ^{13} C/ δ^{12} C) es de -26, con un cociente de C/N de 8.2 La muestra es molida y homogeneizada en un mortero de ágata, posteriormente es mezclada con perclorato de magnesio, a una relación de 0, 0.5, 1, 5 y 10% en condiciones ambientales de presión y temperatura

(presión atmosférica de ciudad Universitaria, temperatura controlada de 20°C). De éstas, se introducen entre 10 y 40 mg en un tubo de cuarzo previamente esterilizado (lavado en baños sónicos de agua y metanol, y posterior calcinación a 500 °C por 6 horas), sellado en uno de los extremos con lana de cuarzo y pesado en una balanza analítica marca OHAUS; la masa se obtiene por diferencia. El tubo de cuarzo entonces se sella en el otro extremo con lana de cuarzo. Las muestras así preparadas son empacadas en papel aluminio comercial y almacenadas en un recipente plástico hasta el momento de experimento, no más de 2 días.

3.3 La Pirólisis-Cromatografía de Gases-Espectrometría de masas (Pir-CG-EM)

El sistema de pirólisis (ver figura 3.1) previamente es lavado 3 veces térmicamente a 1200 °C por un minuto, eliminando los residuos respectivos con helio (99.9998%) a un flujo de 20 ml/min durante 3 min. Cada uno de los tubos ya sellado es colocado dentro de un filamento de platino en forma de espiral de la probeta del pirolizador marca Pyroprobe 2000 de la compañía CDS Analytical, Inc. Ésta es entonces introducida a la interface de dicho pirolizador y se cierra herméticamente. Posteriormente se remueve el aire atmosférico por medio de corriente de helio a un flujo de 20 ml/min por 3 minutos. La siguiente figura es una representación esquematizada del proceso.

Figura 3.1 Representación esquemática de la introducción, limpieza, pirólisis e inyección de los gases desprendidos debidos a la adición de Mg(ClO₄)₂ tratamiento térmico.

La pirólisis se llevó a cabo por medio de un programa de temperatura que inicia a 30°C y se incrementa a una taza de calentamiento de 59.4°C/s, hasta llegar a una temperatura de 200, 350, 500, 750 ó 1000°C -----, la cual se mantiene por 30 s. Los compuestos volátiles y térmicamente estables que se desprenden, son inyectados manualmente al sistema acoplado de análisis por medio de una interface que está calentada a 250 °C.

Dicho sistema consta de un cromatógrafo de gases marca Hewlett Packard serie 5890 y un espectrómetro de masas marca Hewlett Packard serie 5989B. La separación de dichos compuestos se realizó con una columna Pora-BONDQ (sílica fundida con fase estacionaria vinil-estireno de 50m de longitud, con diámetro exterior de 0.45mm y 0.32mm de interior, con un grosor de película de 5 µm) mediante un programa de temperatura establecido como sigue: isoterma a 30°C por 4 min, una rampa de calentamiento de 13 °C/min hasta

240 °C y manteniendo la isoterma (a 240 °C) hasta completar un tiempo total de análisis de 30 min. El espectrómetro de masas tipo cuadrupolo se conecta al cromatógrafo de gases por medio de una interface caliente a 250 °C, es operado en modo de impacto electrónico a 70 eV, en un intervalo espectral de 10 a 150 m/z y una resolución de 1 uma.

La identificación de los compuestos se realiza en modo de barrido de masas (modo SCAN de 10 a 150 m/z) a partir de la comparación de los espectros de masas obtenidos contra los espectros contenidos en la biblioteca electrónica del National Institute of Standards and Technology (Wiley 138).

Diagrama 1- Proceso general de los experimentos

Capítulo 4 Resultados y discusión

4.1.- Separación e Identificación del dióxido de carbono.

Debido a que el dióxido de carbono es el principal compuesto generado de la pirólisis de la materia orgánica contenida en las muestras de suelo sin y con adición de perclorato de magnesio, se hace necesario realizar una curva de calibración de dicho compuesto con la misma técnica cromatografía de gases e identificarlo por la de espectrometría de masas. Debido a razones de economía monetaria, temporal y facilidad técnica, sólo medimos la respuesta de este compuesto en el equipo y se uso el mismo factor de respuesta para medir el contenido de los demás compuestos orgánicos; podría ser criticable esto debido a las diferencias químicas y estructurales con compuestos como el benceno y tolueno, pero como observamos en los cromatogramas de los experimentos sobre el Desierto de Atacama dopado con perclorato de magnesio desaparecen, lo cual haría *inútil* el trabajo de una curva de calibración que no se utilizaría en todos los análisis.

Se inyectó un estándar de este compuesto (CO₂) bajo las mismas condiciones cromatográficas descritas en el capitulo anterior para determinar su tiempo de retención, la fragmentación que le ocurre y la respuesta en el cromatógrafo. El espectro de masas obtenido para dicho compuesto fue comparado con los contenidos en la biblioteca Wiley 138, dando como resultado la confirmación de dióxido de carbono. La figura 4.1 muestra el cromatograma correspondiente a un reactor conteniendo el estándar y la figura 4.2 el

42

espectro de masas para el dióxido de carbono comparado con la biblioteca digital del equipo.

Figura 4.1.- Cromatograma correspondiente a la mezcla usada como estándar externo para cuantificación

e identificación de CO₂.

Figura 4.2 - Espectro de masas correspondiente al CO₂ contenido en la mezcla usada como estándar externo. El espectro superior corresponde al CO₂ de la mezcla y el inferior al de la biblioteca digital.

4.2 Curva de Calibración de dióxido de carbono.

La curva de calibración que se utilizó para la cuantificación de los compuestos generados por la pirólisis se construyó a partir de la respuesta que se obtiene en el sistema acoplado de análisis (CG-EM), con respecto a la concentración de estándares de concentración conocida de CO₂, ocupando para ello el método de estándar externo. Estos estándares fueron preparados a partir de una mezcla de gases, adquirida a la compañía Praxair de México S. A., y cuyo contenido es de 392 µmol/mol de CO₂, 384 µmol/mol de CH₄, diluido en He e introducidos en un matraz de bola modificado.

4.2.1 Calibración del matraz

Se hace por la diferencia de masa, al medir ésta con el matraz vacío (~ $8*10^{-3}$ mbar) y lleno de aire (99% N₂ + O₂, M=28.97 g/mol) a una presión de 1000 mbar, en una balanza marca Ohaus modelo GT400 de capacidad de 400 g y una sensibilidad de 0.1 g. Por la ecuación de los gases ideales, el volumen de aire dentro del matraz viene dado:

$$V = \frac{\left(\frac{[m2-m1]}{M}\right) * R * T}{P}$$

Donde

m₂: es la masa del matraz lleno m₁: es la masa del matraz vacío

M: (28.97 molar promedio del aire g/mol) masa $mbar^{L*}mol^{-1}K^{-1}$ (83.14 R: es la contante de la gases ideales

T: temperatura controlada en el laboratorio de 20ºC P: la presión del matraz lleno 1000 mbar.

Obteniendo un volumen promedio del matraz V= 1.06 ± 0.01 L (el resumen de los cálculos esta en el anexo 1)

También se tiene que calcular el volumen de sistema de inyección A, que se esquematiza en la siguiente figura.

Figura 4.3 - Sistema de inyección de la mezcla de gases. No es el mismo sistema ocupado cuando se hace la inyección de los gases desprendidos de la pirólisis del suelo del Desierto de Atacama.

Las siguientes figuras esquematizan el sistema de llenado.

Figura 4.4 - Sistema de llenado de los reactores.

La figura anterior muestra la disposición de los tanques en el exterior del laboratorio y el sistema de tubería que por flujo másico controla el paso de los gases hacia la línea de vacío.

Figura 4.5 Se muestra el sistema de llenado de los reactores. Con las válvulas manuales de flujo milimétrico y con ayuda de los detectores de presión se monitorea la cantidad de mezcla introducida en cada ensayo, para posteriormente inyectarla mediante el sistema de la figura 4.3.

El volumen del serpentín que inyecta la mezcla de gases que contiene CO₂ es calculado con la ley de Boyle que establece que PV=cte.

Por lo tanto al expandir el gas se obtiene una nueva presión con la cual se puede calcular el volumen (V reactor + Volumen del serpentín).

Obteniendo un volumen del serpentín (sistema de inyección) igual 0.0404⁺/₁0.003 L

Adicionalmente, se construyó una gráfica donde se representa la presión en onzas por pulgada cuadrada (*psi*, por sus siglas en inglés) como la proporciona el medidor en el sistema de inyección y su presión dada en unidades de milibar del volumen de gas, con esto se obtiene una ecuación que es utilizada cuando se quiere saber lo contrario (psi en el sistema inyección Vs. mbar inyectados). Esta presión se multiplica por la concentración de CO₂ para obtener la presión parcial de este compuesto (pCO₂) la cual es utilizada junto con el volumen sistema de inyección en la ecuación de los gases ideales para obtener el número de mol de CO₂. Con este dato se calcula la cantidad de CO₂ en gramos que se introducen en cada ensayo y se determina su respuesta en el cromatógrafo (observar diagrama de flujo). Los datos experimentales así como las ecuaciones utilizadas se encuentran en el anexo 1.

Diagrama 2.- Construcción de Curva de calibración

Los reactores son conectados y llevados a alto vacío en el sistema de vaciado (ver figura 4.3) hasta alcanzar un valor de 10^{-3} mbar, entonces se llenan con la mezcla de calibración por medio de la llave milimétrica, a una presión conocida (1000, 800, 600, 500, 400, 200 mbar). Inmediatamente después, cada uno de los reactores es colocado en el sistema de inyección de gases del cromatógrafo. Este sistema es vaciado por medio de una bomba hasta -8.5 psi. Los estándares son analizados bajo las mismas condiciones cromatográficas que se describieron en el capitulo anterior. Los datos que se obtienen son de área de pico cromatográfico (respuesta) en función de la presión parcial de CO₂ (PCO₂).

Esta última se convierte a gramos de CO₂ utilizando la ley del gas ideal (ecuación 3) y el peso molecular del compuesto en cuestión:

En Donde:

P = Presión parcial de CO₂.

V = Volumen del sistema de inyección.

R = constante universal de los gases; para facilidad en los cálculos se utilizó 83.14 (L*mbar/mol*K)

T = Temperatura a la cual se hizo la determinación.

Con los datos obtenidos de área en el sistema acoplado de análisis para cada uno de los estándares, se construyó la grafica (figura 4.4) que representa la curva de calibración. Adicionalmente los datos obtenidos se muestran en el anexo 1.

Figura 4.6 - Curva de calibración para la cuantificación de dióxido de carbono, en donde se muestra un ajuste a cero y el cinturón de confianza con un α =5%.

La linealidad de los datos obtenidos es demostrada mediante un análisis estadístico de regresión entre ambas variables; en este caso, se estableció usar un mínimo de 6 puntos considerando una α =5% y la pérdida de dos grados de libertad. En la tabla 3 se pueden observar los resultados de dicho estudio. Si bien, esta tabla muestra los datos de m y b necesarios para plantear la ecuación de la recta, fue necesario realizar una prueba de hipótesis sobre la ordenada al origen (b), con la finalidad de ajustar la recta a cero y demostrar que las posibles interferencias que causan un valor de b≠0, son significativas únicamente a un nivel de riesgo menor de 5% de error. El límite de detección calculado es de 8.6 µg de CO₂ lo cual es un criterio aceptado si tomamos en cuenta que experimentalmente se detectan niveles traza de compuestos detectados en cantidades menores. De hecho, utilizando la respuesta del CO₂ se pudieron cuantificar otros compuestos en cantidades cercanas a 1 µg.

Dato estadístico	Valor
Riesgo (α)	5.00%
No. de datos (n)	6
Ordenada (a)	-4.13*10 ⁵
Se ordenada	2272041.52
Pendiente (b)	7.86*10 ¹¹
Se pendiente	1.272*10 ¹¹
Pendiente (m) ajustada a 0	7.57*10 ¹¹
Grados de libertad (g. l.)	4
t student (tablas)	2.77
t student (a ≠ 0) (t calculada)	6.07
Coeficiente de correlación (R)	0.950
R ajustado	0.935
(R ²) ajustado	0.878

Tabla 3.- Resumen de datos estadísticos de la curva de calibración

4.3 Muestras de suelo no dopadas con perclorato

El análisis de las muestras de suelos pirolizadas a las cuales no se les adiciona perclorato revela que los principales compuestos volátiles y térmicamente estables que se deprenden después de la termovolatilización son: H₂O, CO₂, O₂, oxido nítrico (NO), y óxido nitroso (N₂O) con cantidades casi no detectables de benceno (C₆H₆) y tolueno (C₆H₅-CH₃). Se decidió monitorear los iones de relación masa/carga (m/z): 30, 32, 50, 78, 84, 91, 112 que corresponden a NO, O₂, CH₃Cl, C₆H₆, Cl₂CH₂, C₆H₅-CH₃, C₆H₅-Cl; el ion 44 se monitoreó, pero diferenciando el CO₂ de N₂O, ya que ambos tienen diferente tiempo de retención bajo las mismas condiciones cromatográficas. El H₂O es el producto principal, su abundancia aumenta con la temperatura. Este compuesto es originado a partir de procesos de deshidratación de minerales del suelo por desorción o rompimiento de enlaces de coordinación; una pequeña fracción es debida a la oxidación de materia orgánica. El CO₂ es el segundo producto más abundante: a bajas temperaturas (200ºC) el rendimiento es bajo, pero rápidamente se incrementa a mayores temperaturas; a temperaturas ≥750 °C alcanza su máximo. Existen tres posibles fuentes de CO₂: (a) absorción atmosférica (≤200°C); (b) oxidación de materia orgánica a temperaturas ≥200°C y (c) descomposición térmica de carbonatos a temperaturas ≥450 °C. El O₂ ocupa el tercer lugar en cuanto a la abundancia de los gases desprendidos con valor máximo registrado a ~750 ℃. Se produce a bajas temperaturas (≤350 °C) por la deshidroxilación de minerales en arcillas, y a altas temperaturas (\geq 500 °C) es debido a la descomposición de óxidos metálicos (Al, Fe, etc.) y no metálicos (C, N, P, S, Cl, etc.). El NO registra un máximo a 750 °C y es producto de la oxidación térmica de orgánicos nitrogenados a temperaturas menores a 500ºC, así como de la degradación de nitratos a temperaturas mayores a ésta (>500ºC). También el N₂O es originado por la oxidación térmica de orgánicos nitrogenados, pero se registró su máximo rendimiento a 350°C. El C₆H₆ y el C₆H₅-CH₃ son los principales compuestos orgánicos detectados y se forman con bajo rendimiento a 500°C, la máxima temperatura alcanzada por la misión Vikingo. Sus mayores rendimientos se obtuvieron a 750°C (Navarro-González *et al.*, 2003 y 2006).

La formación de ácido fórmico (HCO₂H) una molécula orgánica oxidada que fue reportada con anterioridad (Navarro-González *et al.*, 2003) por termovolatilización del mismo suelo de Atacama, no fue detectado como un producto final en este estudio, pero se ha encontrado que se origina en la cámara de ionización del Espectrómetro de Masas por reacciones del ion molecular debido a la ionización por impacto electrónico de CO₂, una forma más oxidada del carbono, en la presencia de una fuente de hidrógeno. El cromatograma que se muestra en la figura 4.5, muestra los compuestos obtenidos después de pirolizar una muestra de suelo del desierto de Atacama, siguiendo la técnica descrita en el capitulo anterior.

Figura 4.7 - Cromatograma de una muestra de suelo del Desierto de Atacama pirolizada a 500°C.

4.4.- Muestras de suelo dopadas con perclorato.

Los resultados obtenidos del análisis de las muestras del suelo del desierto de Atacama que fue mezclada con diferentes porcentajes de $Mg(ClO_4)_2$, muestran un pico cromatográfico cuyo tiempo de retención es de 10.85 min, el cual fue identificado mediante la biblioteca Wiley como CH₃Cl. El cromatograma de la figura 4.8 muestra la separación de compuestos clorados como el CH₃Cl y CH₂Cl₂, los cuales son identificados por su respectivo espectro de masas; la figura 4.9 corresponde a CH₃Cl y la figura 4.10 a CH₂Cl₂.

Figura 4.8- Cromatograma de experimento con 1% de perclorato y donde se realizó la pirólisis a 500°C.

Figura 4.9- Espectro de masas de clorometano CH₃Cl.

La adición de perclorato en la muestra de suelo del Desierto de Atacama y la posterior pirólisis y análisis por la técnica descrita con anterioridad (Capítulo 3), muestran que la formación de NO proveniente de material orgánico nitrogenado es completamente inhibida a temperaturas $\leq 500 \,^{\circ}$ C; por otra parte la formación de NO a partir de nitratos es reducida significativamente a temperaturas $\geq 500 \,^{\circ}$ C. De igual manera, la formación de N₂O proveniente de material orgánico nitrogenado es inhibida por el perclorato a temperaturas $\leq 500 \,^{\circ}$ C; no obstante, estos rendimientos se incrementan a más altas temperaturas, logrando su máximo rendimiento a 750 $\,^{\circ}$ C ya que son principalmente originados por la descomposición de nitratos. Sorprendentemente, no se produce C_6H_6 y C_6H_5 -CH₃ y ya que se han liberado los átomos de oxígeno producto de la descomposición de los percloratos, solo aumenta el CO₂. En cambio, se detecta CH₃Cl y CH₂Cl₂ a 350 y 500 $\,^{\circ}$ C, respectivamente, y estos compuestos alcanzan su máximo de producción a 750 $\,^{\circ}$ C y 500-750 $\,^{\circ}$ C, respectivamente. Estos compuestos clorados no son formados en el tratamiento

térmico de muestras de suelos del Desierto de Atacama sin adición de percloratos. No es sorprendente que se formen estos halogenuros por tratamientos térmicos sobre muestras ambientales (Laniewski *et al.*, 1998), pero sí es inesperado que estos compuestos sean los productos exclusivos de la pirólisis del material orgánico contenido en muestras de suelo en presencia de percloratos. Las figuras 4.11, 4.12, 4.13, y 4.14 muestran los valores promedios de los gases producidos por pirolisis en muestras de suelo del desierto de Atacama dopadas con perclorato ▲ y sin perclorato ▼, y en la tabla 4 se muestra los valores promedio de los ensayos.

Perclorato al 0.5%

Figura 4.11

Perclorato al 1%

Figura 4.12

Perclorato al 5%

Figura 4.13

Perclorato al 10%

Temperatura (°C)

Figura 4.14

blancos/0% I	Mg(CIO4)2																		
	ion	NO/28		02/32		CO2/44		C6H6/78		CH3-C6H5/91		N2O/44							
	Temperatura °C	promedio	desv	promedio	desv	promedio	desv	promedio	desv	promedio	desv	promedio	desv						
	200	0		286.98	9.25	48.21	26.68	0	0	0	0	5.2	2.6						
	350	31.02	11.07	575.83	435.95	1374.29	371.8	0	0	0	0	10.5	3.1						
	500	87.27	14.06	1550.11	189.56	690.21	229.57	18.88	5.85	8.42	2.23	3.4	0						
	750	164.45	67.26	1451.49	273.38	3804.13	966.26	206.01	83.42	34.88	11.92	2.2	0						
	1000	29.47	6.74	914.63	201.75	2922.99	506.71	19.79	10.16	5.22	2.38	0.9	0.3						
0.50%																			
	ion	NO/28		02/32		CO2/44		C6H6/78		CH3-C6H5/91		CH3CI/50		N2O/44		CH2CI2/84		CI-C6H5/112	
	Temperatura °C	promedio	desv	promedio	desv	promedio	desv	promedio	desv	promedio	desv	promedio	desv	promedio	desv	promedio	desv	promedio	desv
	200	0	0	289.63	184.02	17.92	13.01	0	0	0	0	0	0	0	0	0	0	0	0
	350	0	0	92.81	98.54	20.38	31.36	0	0	0	0	0	0	0	0	0	0	0	0
	500	0	0	82.67	90.24	28.1	27.47	0	0	0	0	0	0	0	0	0	0	0	0
	750	75.54	14.55	1734.25	310.03	3918.53	578.69	15.55	9.19	1.95	0.78	26	14.02	0	0	1.47	0.46	12.32	7.58
	1000	0	0	127.78	58.27	361.74	36.5	0.38	0.03	0	0	0	0	0.85484	0.1742	0	0	0.06	0.08
1%																			
	ion	NO/28		02/32		CO2/44		C6H6/78		CH3-C6H5/91		CH3CI/50		N2O/44		CH2Cl2/84		CI-C6H5/112	
	Temperatura °C	promedio	desv	promedio	desv	promedio	desv	promedio	desv	promedio	desv	promedio	desv	promedio	desv	promedio	desv	promedio	desv
	200	0	0	396.14719	71.89326	20.15612	3.13065	0	0	0	0	0	0	6	0.6	0.0071	0.00090		
	350	1.42199	0.48621	1369.49691	550.02972	357.55336	184.42942	0	0	0	0	1.67792	0.33631	7	5.9	0.00898	0.00346		
	500	3.64196	1.6633	1317.61422	233.82879	2093.99227	390.1076	8.91667	4.18849	0	0	4.07441	1.24127	19	5.2	0.20788	0.07994		
	750	67.03193	20.71114	2009.73013	360.31676	3251.87766	658.30922	11.58989	3.17661	0	0	11.58989	3.17661	65	21	0.18841	0.09432		
	1000	107.42842	47.98702	1620.39962	343.78379	3232.17801	513.15505	9.23069	1.07586	0	0	1.90389	0.40717	38	5.1	0.05107	0.03096		
5%																			
	ion	NO/28		02/32		CO2/44		C6H6/78		CH3-C6H5/91		CH3CI/50		N2O/44		CH2CI2/84		CI-C6H5/112	
	Temperatura °C	promedio	desv	promedio	desv	promedio	desv	promedio	desv	promedio	desv	promedio	desv	promedio	desv	promedio	desv	promedio	desv
	200			35.34	44.54	36	0.97	0	0	0	0	0	0	0	0	0	0	0	0
	350			179.32	71.02	15.98	4.77	12.86	8.51	1.25	0.34	4.28	2.22	0	0	0	0	0	0
	500	24.17	8.75	2162.73	761.31	2974.67	791.78	14.02	7.6	1.3	0.8	12.93	7.35	95.61	30.23	2.37	0.61	3.08	1.77
	750	54.91	11.7	4118.38	728.47	3956.93	959.3	21.82	8.57	1.85	0.96	8.28	5.1	59.09	48.33	1.16	0.44	3.6	1.9
	1000	74.72	17.64	3868.95	927.45	3867.02	901.79	4.87	0.88	0.33	0.07	19.08	6.29	7.37	14.74	0.83	0.66	0	0
10%																			
	ion	NO/28		02/32		CO2/44		C6H6/78		CH3-C6H5/91		CH3CI/50		N2O/44		CH2CI2/84		CI-C6H5/112	
	Temperatura °C	promedio	desv	promedio	desv	promedio	desv	promedio	desv	promedio	desv	promedio	desv	promedio	desv	promedio	desv	promedio	desv
	200	0	0	1185.66	1619.94	39.31	45.95	0	0	0	0	0	0	0	0	0	0	0	0
	350	0	0	1118.08	386.1	19.03	25.66	3.05	1.82	0	0	2.11	0.55	1.56	0.43	0	0	2.73	1.5
	500	30.22	13.49	2343.98	1520.97	2615.78	1489.69	16.83	6.78	0.43	0.22	14.5	10.45	42.08	7.65	2.57	0.52	2.11	0.78
	750	44.29	15.42	4373.35	1981.3	3962.57	801.36	15.15	9.59	0	0	39.47	13.96	90.85	24.94	2.29	0.42	16.07	5.69
	4000	F7 20	12.10	2080 61	02/112	20/18/77	2100 55	135.03	71 12	19	0.56	12 18	4 17	95.24	5335	212	1 0 1	18 69	3/1 3 1

Tabla 4.- Resumen de los promedios de producción de los gases monitoreados

63

4.5.- Implicaciones del presente estudio en los resultados obtenidos por la misión Vikingo en Marte.

Es importante mencionar que está técnica fue usada durante el viaje interplanetario (Biemann et al., 1976), una de las pruebas más importantes consistía en completar un experimento que sirviera de blanco, en el cual uno de los hornos era calentado a 500ºC (tabla 5). Los resultados mostraban la presencia de unos pocos oligómeros de óxido de fluoropropileno (tipo Freon-E), además de residuos de agua absorbida (Biemann et al., 1976). Estos compuestos fueron considerados contaminantes terrestres y los bajos niveles encontrados, aparentemente, no interfirieron en el análisis del posible material orgánico contenido en el suelo marciano. Seis Soles (días marcianos) después de amartizar, la misión Vikingo tomó una muestra de suelo y fue analizada por CG-EM después de un tratamiento térmico a 200ºC y el análisis de los resultados mostró un pico bien definido e identificado como CH₃CI (ver figura 4.15), el cual fue cuantificado en niveles de 15 ppb (Biemann et al., 1976). Esta misma muestra calentada a temperaturas más altas no registró dicho compuesto. Una segunda muestra fue tomada en el sol 30, se sometió al mismo tratamiento y no reportó la presencia de CH₃CI o contaminantes de perfluoroéter a temperaturas de 200°, 350° y 500°C (Biemann et al., 1976). El CH₃Cl es un gas a condiciones estándar de presión y temperatura (punto de ebullición -23.8 °C). Biemann et al (1977) consideraron que el CH₃Cl, o parte de él, no procedía del posible material orgánico del suelo de Marte, no obstante, esperaban encontrar otros compuestos relacionados como cloruro de etilo o bromuro de metilo que también deberían de formarse, pero ninguno de éstos fue detectado. La relación isotópica del compuesto obtenido, 3:1 para las

masas/carga 50 y 52, corresponde a los isótopos de cloro presentes en la Tierra, pero no necesariamente confirma el origen, debido a que no hay alguna razón que sostenga dicho cociente de isótopos para Marte (Biemann *et al.*, 1977). La distribución isotópica del CI en Marte es desconocida, por lo que Biemann *et al.*, concluyen que el clorometano observado en los resultados obtenidos de la pirólisis de suelo marciano procede de una fuente terrestre o que posiblemente se formó en el horno por calentamiento de solventes clorados o de trazas de metanol (CH₃OH) y ácido clorhídrico (HCI) (Biemann *et al.*, 1977).

Figura 4.15 - Cromatograma enviado por el CG-EM de la sonda Vikingo

Nosotros en este trabajo también consideramos esta última posibilidad, por lo que, planteamos un experimento en el cual sometimos a un tratamiento térmico similar al hecho por el Vikingo en Marte, una solución de ácido clorhídrico 0.4% (HCl) en metanol CH₃OH, los resultados (figuras 4.16 y 4.17) muestran que el CH₃Cl se produce a temperaturas igual o mayores a 350°C, pero también se produce CH₂Cl₂ y benceno (C₆H₆), los cuales se forman en igual o más alta concentración. Dado que ninguno de estos compuestos fueron detectados en los mismos niveles por el Vikingo 1, es improbable que hayan sido la fuente del CH₃Cl detectado en Marte. Véase la Tabla 5, en donde se muestran los compuestos clorados detectados en los análisis del suelo Marciano realizados por la misión Vikingo.

Figura 4.16 - Cromatograma de una disolición de HCl al 10% en CH₃OH.

Figura 4.17 - Extracción de los iones 50 y 84 (CH₃Cl y CH₂Cl₂). Se observa la mayor formación de CH₂Cl₂ en lugar de CH₃Cl

Los instrumentos de Pir-CG-EM que llevaba la misión espacial Vikingo 2 también fueron probados durante el vuelo espacial. El Experimento *blanco* se corrió en uno de los hornos de muestreo, calentándolo a 500°C. No se detectaron orgánicos clorados (Biemann *et al.*, 1977). Una vez que la estación científica *Vikingo 2* se posó en suelo marciano, se analizaron 2 muestras de suelo por CG-EM después del tratamiento térmico a distintas temperaturas y utilizando distintos gases para trasferir los volátiles y gases desprendidos al cromatógrafo de gases. Asombrosamente no se detectó el CH₃Cl, en lugar de ello se encontró CH₂Cl₂ en las dos muestras tomadas, a las siguientes temperaturas 350 y 500°C. La concentración varió de 6-40 ppb dependiendo de la muestra (ver tabla 3). El CH₂Cl₂ fue

detectado en la muestra 2 a 200°C en muy baja abundancia (0.04-0.08 ppb), en la muestra 1 no se detectó; tampoco fue detectado en la muestra 2 a 50°C (ver tabla 3). El CH₂Cl₂ es un disolvente muy común en los laboratorios, el cual pudo haber sido utilizado para limpiar el horno del CG y por tanto fue considerado como un contaminante terrestre, aun a pesar de que no se haya registrado en estos niveles en el experimento de ensayo (Biemann *et al.*, 1977). Fue sorprendente detectar dos distintos compuestos orgánicos clorados en cada sitio de las estaciones Vikingo: CH₃Cl en *Chryse Planitia* por la estación Vikingo 1 (Biemann et al, 1976) y CH₂Cl₂ en *Utopia Planitia* por la estación 2 (Biemann *et al.*, 1977).

El análisis químico de sustancias inorgánicas presentes en el suelo marciano, para ambos sitios de descenso, resultó notablemente similar. En los dos lugares, se detectaron altas concentraciones de hierro; moderadas de magnesio, calcio y azufre; bajas de aluminio; y aparentemente muy bajas de elementos alcalinos (Baird *et al.*, 1976). La única diferencia entre estos sitios fue la abundancia de cloro, la cual difiere en casi un orden de magnitud: 0.1 % en *Chryse Planitia* y 0.9 % en *Utopia Planitia* (Clark et al., 1976, 1982; Clark, van Hart, 1981).

El descubrimiento reciente de perclorato en el suelo marciano por la nave espacial Phoenix (Hetch, 2009) tiene importantes implicaciones en la detección de material orgánico, para futuras misiones que se envíen al planeta Rojo. Como descubrimos en este trabajo, la presencia de perclorato en el suelo oxida el material orgánico a CO₂ cuando son calentadas en los hornos de pirólisis, impidiendo así la detección por los instrumentos analíticos.

Muestra**	Т (°С)	Modo de inyección***	Compuesto	Abundancia (ppb)
VL-1 blanco	500	CO ₂	CH₃Cl	ND
VL-1 Muestra-1	200	CO2	CH₃Cl	15
	500		CH ₂ Cl ₂	ND
VL-1 Muestra-2	200	CO2	CH₃Cl	ND
	350	CO2	CH₃Cl	ND
	500	CO2	CH₃Cl	ND
VL-2 blanco	500	¹³ CO ₂	CH ₂ Cl ₂	ND
VL-2 Muestra-1	200	H ₂	CH ₂ Cl ₂	ND
	350	H ₂	CH ₂ Cl ₂	6-14
	500	H ₂	CH ₂ Cl ₂	6-14
	500	¹³ CO ₂	CH ₂ Cl ₂	2-6
VL-2 Muestra-2	50	H ₂	CH ₂ Cl ₂	ND
	200	H ₂	CH ₂ Cl ₂	0.04-0.08
	350	H ₂	CH ₂ Cl ₂	10-20
	500	H ₂	CH ₂ Cl ₂	<4
	500	¹³ CO ₂	CH ₂ Cl ₂	20-40

Tabla 5.- Detección de orgánicos clorados en suelo marciano por el equipo TV-GC-EM de la Misión Vikingo*

• * Biemann *et al.,* 1997

• ** VL-1 y VL ; estaciones Vikingo 1 y 2 respectivamente

• *** Los gases acarreadores de los gases y volátiles liberados por la TV son 13CO2 o H2

Capitulo 5 Conclusiones

El reciente descubrimiento de percloratos en el suelo de Marte por la misión Fénix, así como el estudio de la influencia de este oxidante en la determinación de material orgánico en un suelo análogo a Marte como lo es el desierto de Atacama, abre la posibilidad de reevaluar los resultados obtenidos por la técnica de PIR-CG-EM ocupada por la misión Vikingo.

La detección de clorometano (CH₃Cl) y diclorometano (CH₂Cl₂) en el suelo de Marte por la técnica de pir-CG-EM que ocuparon las misiones Vikingo 1 y 2, pudo ser resultado de la presencia de material orgánico y percloratos.

En ambos sitios de análisis, una fracción considerable de CI se encuentra en forma de percloratos; hasta igual o menos de 100% para el sitio del Vikingo 1, a 23ºN y menos del 10% en sitio del Vikingo 2, 48ºN; el contenido inferido de material orgánico en las latitudes medias de Marte es 1 ppm.

Los resultados obtenidos muestran que la termovolatilización (TV), protocolo usado por el Vikingo, pudo haber tenido limitaciones para liberar la materia orgánica del suelo marciano. Se debe pensar que la detección de orgánicos por TV se realiza en dos pasos: la pirólisis de la matriz para obtener compuestos volátiles orgánicos y el segundo es la separación y detección por la instrumentación analítica (Navarro *et al* 2009). Es evidente que cualquier de los dos pasos puede limitar la sensibilidad global del experimento. La liberación de orgánicos desde la matriz del suelo típicamente limitará la sensibilidad total.

70

Es evidente que la pirolisis de la materia orgánica contenida en suelos se inhibe por las sales de perclorato dando paso a la oxidación a CO₂, lo cual limita su detección severamente. Sin embargo, es importante enfatizar que el segundo paso, esto es, CG-EM y el análisis por EM de las estaciones Vikingo y Fénix respectivamente, operaron sin problema alguno. Futuras misiones deberán incorporar métodos analíticos alternos o adicionales, para evitar la capacidad oxidante del suelo de Marte por la técnica de TV, es decir por compuestos como óxidos de hierro o sales altamente oxidantes, como lo son los percloratos.
Capítulo 6 Bibliografía

Acheson, R. J., and P. W. M. Jacobs (1970), Thermal decomposition of magnesium perchlorate and of ammonium perchlorate and magnesium perchlorate mixtures, *J. Phys. Chem.* 74(2), 281-288,

Baird, A. K., P. Toulmin, III, B. C. Clark, H. J. Rose, Jr., K. Keil, R. P. Christian, and J. L. Gooding (1976), Mineralogic and Petrologic Implications of Viking Geochemical Results From Mars: Interim Report, *Science 194*, 1288-1293,

Braun, W., J. T. Herron, and D. K. Kahaner (1988), Acuchem: A computer program for modeling complex reaction systems, *Int. J. Chem. Kinet.* 20(1), 51-62.

Biemann, K., J. Oro, P. Toulmin, III, L. E. Orgel, A. O. Nier, D. M. Anderson, P. G. Simmonds, D. Flory, A. V. Diaz, D. R. Rushneck, and J. A. Biller (1976), Search for organic and volatile inorganic compounds in two surface samples from the Chryse Planitia region of Mars, *Science 194*, 72–76.

Bieman, K., J. Oro, P. Toulmin, III, L. E. Orgel, A. O. Nier, D. M. Anderson, P. G. Simmonds, D. Flory, A. V. Diaz, D. R. Rushneck, J. E. Biller, and A. L. Lafleur (1977), The search for organic substances and inorganic volatile Compounds in the surface of Mars, *J. Geophys. Res.* 82(28), 4641–4658.

Brückner, J., G. Dreibus, R. Rieder, and H. Wänke (2003), Refined data of Alpha Proton Xray Spectrometer analyses of soils and rocks at the Mars Pathfinder site: Implications for surface chemistry, *J. Geophys. Res 108*, 8094.

Catling, D. C., M. W. Claire, K. J. Zahnle, R. C. Quinn, B. C. Clark, M. H. Hecht, S. Kounaves (2010), Atmospheric origins of perchlorate on Mars and in the Atacama, *J. Geophys. Res.* 115.

Clark, B.E., A. K. Baird, H. J. Rose, Jr., P. Toulmin, III, K. Keil, A. J. Castro, W. C. Kelliher, C. D. Rowe, and P. H. Evans (1976), Inorganic Analyses of Martian Surface Samples at the Viking Landing Sites, *Science 194*, 1283-1288.

Clark, B.C., and D. C. van Hart (1981), The salts of Mars, *Icarus 45*(2), 370–378,

Clark, B. C., A. K. Baird, R. J. Weldon, D. M. Tsusaki, L. Schnabel, and M. P. Candelaria (1982), Chemical composition of Martian fines, *J Geophys Res 87*, 10059-10067.

Foley, C. N., T. Economou, and R. N. Clayton (2003), Final chemical results from the Mars Pathfinder alpha proton X-ray spectrometer, J. Geophys. Res. 108, 8096.

Gellert, R., R. Rieder, R. C. Anderson, J. Brückner, B. C. Clark, G. Dreibus, T. Economou, G. Klingelhöfer, G. W. Lugmair, D. W. Ming, S. W. Squyres, C. d'Uston, H. Wänke, A. Yen, and J. Zipfel (2004), Chemistry of Rocks and Soils in Gusev Crater from the Alpha Particle X-ray Spectrometer, Science 305, 829-832.

Gellert, R., R. Rieder, R. C. Anderson, J. Brückner, B. C. Clark, G. Dreibus, T. Economou, G. Klingelhöfer, G. W. Lugmair, D. W. Ming, S. W. Squyres, C. d'Uston, H. Wänke, A. Yen, and J. Zipfel (2004), Chemistry of Rocks and Soils in Gusev Crater from the Alpha Particle X-ray Spectrometer, Science 305, 829-832, doi: 10.1126/science.1099913.

Gellert, R., R. Rieder, J. Brückner, B. C. Clark, G. Dreibus, G. Klingelhöfer, G. Lugmair, D. W. Ming, H. Wänke, A. Yen, J. Zipfel, and S. W. Squyres (2006), Alpha Particle X-Ray Spectrometer (APXS): Results from Gusev crater and calibration report, J. Geophys. Res. 111.

Hecht, M. H., S. P. Kounaves, R. C. Quinn, S. J. West, S. M. M. Young, D. W. Ming, D. C. Catling, B. C. Clark, W. V. Boynton, J. Hoffman, L. P. DeFlores, K. Gospodinova, J. Kapit, and P. H. Smith (2009), Detection of Perchlorate and the Soluble Chemistry of Martian Soil at the Phoenix Lander Site, Science 32,: 64-67.

Hurowitz, J.A., N. J. Tosca, S. M. McLennan, and M. A. A. Schoonen (2007), Production of hydrogen peroxide in Martian and lunar soils, Earth. Planet. Sci. Lett. 255: 41-52

Iñiguez, E., R. Navarro-González, J. de la Rosa, F. Ureña-Núñez, P. Coll, F. Raulin, and C. P. McKay (2009), On the oxidation ability of the NASA Mars-1 soil simulant during the thermal volatilization step. Implications for the search of organics on Mars, Geophys. Res. Lett. 36.

Jackson, W.A., T. Anderson, G. Harvey, G. Orris, S. Rajagopalan, and N. Kang (2006), Occurrence and Formation of Non-Anthropogenic Perchlorate, in *Perchlorate. Environmental Occurrence, Interactions and Treatment*, edited by B. Gu, and J. D. Coates, pp. 49-69, Springer, New York.

Jones, F. E. (1994), *Toxic Organic Vapors in the Workplace*, Lewis Publishers, Boca Raton, Florida.

Keller, J. M., W. V. Boynton, S. Karunatillake, V. R. Baker, J. M. Dohm, L. G. Evans, M. J. Finch, B. C. Hahn, D. K. Hamara, D. M. Janes, K. E. Kerry, H. E. Newsom, R. C. Reedy, A. L. Sprague, S. W. Squyres, R. D. Starr, G. J. Taylor, and R. M. S. Williams (2006), Equatorial and midlatitude distribution of chlorine measured by Mars Odyssey GRS, *J. Geophys. Res.* 111.

Klenø, J. G., P.Wolkoff, P. A. Clausen, C. K. Wilkins, and P. Pedersen (2002), Degradation of the Adsorbent Tenax TA by Nitrogen Oxides, Ozone, Hydrogen Peroxide, OH Radical, and Limonene Oxidation Products, *Environ. Sci. Technol. 36*, 4121–4126.

Kotler, J. M., N. W. Hinman, C. D. Richardson, A. G. Conly, and J. R. Scott (2009), Laboratory simulations of prebiotic molecule stability in the jarosite mineral group; end member evaluation of detection and decomposition behavior related to Mars sample return, Planet. Space Sci. 57, 1381-1388.

Laniewski, K., H. Borén, A. Grimvall, and M. Ekelund (1998), Pyrolysis–gas chromatography of chloroorganic compounds in precipitation, *J. Chromat. A 826*, 201–210.

Lauer, Jr., H. V., D. W. Ming, B. Sutter, D. C. Golden, R. V. Morris, and W. V. Boynton (2009), Thermal and evolved gas analysis of magnesium perchlorate: Implications for perchlorates in soils at the Mars Phoenix Landing site, paper presented at the 40th Lunar and Planetary Science Conference, Woodlands, Texas.

Linstrom, P.J., and W. G. Mallard (2010), *NIST Chemistry WebBook*, NIST Standard Reference Database Number 69, National Institute of Standards and Technology, Gaithersburg MD, 20899, http://webbook.nist.gov, (retrieved February 3, 2010).

Manelis, G. B., G.M. Nazin, Y. I. Rubtsov, and V. A. Strunin (2003), *Thermal decomposition and combustion of explosives and propellants*, Taylor & Francis, London, England.

Manion, J. A., R. E. Huie, R. D. Levin, D. R. Burgess, Jr., V. L. Orkin, W. Tsang, W. S. McGivern, J. W. Hudgens, V. D. Knyazev, D. B. Atkinson, E. Chai, A. M. Tereza, C.-Y. Lin, T. C. Allison, W. G. Mallard, F. Westley, J. T. Herron, R. F. Hampson, and D. H. Frizzell, *NIST Chemical Kinetics Database*, NIST Standard Reference Database 17, Version 7.0 (Web Version), Release 1.4.3, Data version 2008.12, National Institute of Standards and Technology, Gaithersburg, Maryland, 20899-8320. Web address: <u>http://kinetics.nist.gov/</u>.

Marlow, JJ, et al. Mars on Earth: soil analogues for future Mars missions. A&G • April 2008 • Vol. 49

Michalski, G., J. K. Bohlke, and M. Thiemens (2004), Long term atmospheric deposition as the source of nitrate and other salts in the Atacama Desert, Chile: new evidence from mass independent oxygen isotopic compositions, *Geochim Cosmochim Acta 68*, 4023-4038.

Ming, D.W., H. V. Lauer, Jr., P. D. Archer, Jr., B. Sutter, D. C. Golden, R. V. Morris, P. B. Niles, W. V Boynton (2009), Combustion of organic molecules by the thermal decomposition of perchlorate salts: Implications for organics at the Mars Phoenix Scout Landing Site, paper presented at the 40th Lunar and Planetary Science Conference, Woodlands, Texas.

Navarro-González, R., F. A. Rainey, P. Molina, D. R. Bagaley, B. J. Hollen, J. de la Rosa, A. M. Small, R. C. Quinn, F. J. Grunthaner, L. Cáceres, B. Gomez-Silva, and C. P. McKay (2003), Mars-like soils in the Atacama Desert, Chile and the dry limit of microbial life. *Science 302*, 1018-1021,

Navarro-González, R., K. F. Navarro, J. de la Rosa, E. Iñiguez, P. Molina, L. D. Miranda, P. Morales, E. Cienfuegos, P. Coll, F. Raulin, R. Amils, and C. P. McKay (2006), The limitations on organic detection in Mars-like soils by thermal volatilization-gas chromatography-MS and their implications for the Viking results, *Proc Natl Acad Sci USA 103*, 16089-16094.

Navarro-González, R., E. Iñiguez, J. de la Rosa, and C. P. McKay (2009), Characterization of organics, microorganisms, desert soils, and mars-like soils by thermal volatilization coupled to mass spectrometry and their implications for the search for organics on mars by phoenix and future space missions, *Astrobiology 9*, 703-715.

Novotny, M., J.M. Hayes, F. Bruner, and P.G. Simmonds (1975), Gas chromatographic column for the Viking 1975 molecular analysis experiment, *Science 189*, 215-216.

Parker, D. R. (2009), Perchlorate in the environment: the emerging emphasis on natural occurrence, *Environ Chem 6*, 10–27.

Rieder, R., R. Gellert, R. C. Anderson, J. Brückner, B. C. Clark, G. Dreibus, T. Economou, G. Klingelhöfer, G. W. Lugmair, D. W. Ming, S. W. Squyres, C. d'Uston, H. Wänke, A. Yen, and J. Zipfel (2004), Chemistry of Rocks and Soils at Meridiani Planum from the Alpha Particle X-ray Spectrometer, *Science 306*, 1746-1749.

Wänke, H., J. Brückner, G. Dreibus, R. Rieder, and I. Ryabchikov (2001), Chemical composition of rocks and soils at the Pathfinder site, *Space Sci. Rev. 96*, 317-330.

Capítulo 7 Anexos

Anexo I

 Curva para calcular la correlación de presiones en el matraz (mbar) y en el sistema de inyección (psi) que es llevado a vacío.

El sistema de inyección A es llevado a un vacío de -10.3 psi y se conectan reactores conteniendo aire, al expandirse dentro del sistema la presión cambia (disminuye en el reactor aumenta en el sistema). La siguiente gráfica muestra tal correlación.

Detector (psi)	reactores llenos (mbar)
6.2	1018
4.4	905
2.8	809
1.2	713
-0.5	602
-2	513
-3.7	404
-5.4	302
-6.9	213
-8.6	106
-9.5	53
-10	26
-10.3	2

Tal relación proporciona los datos de presión para calcular el volumen del inyector. Tal volumen es el inyectado en el cromatógrafo y usando la ecuación de gases se puede estimar la cantidad de CO_2 inyectado.

Promedio de volumen del gas inyectado

	peso inicial (gr)	peso final (gr)	Volumen 1 (L)	presión medida inyector (psi)	presión (mbar)	Volumen 2 (L)	diferencia de Volumen (L)
1	320.71	321.97	1.060	5.3	961.3411	1.1027	0.0426
2	320.71	321.98	1.068	5.4	967.4845	1.1044	0.0359
3	320.71	321.97	1.060	5.3	961.3411	1.1027	0.0426
		promedios	1.063	5.333	963.3889	1.1032	0.0404

La tabla anterior muestra los datos obtenidos de calibración del volumen del matraz (V 1, 3ª columna), la presión medida en el inyector una vez expandido el gas en sistema (4ª columna), la conversión en milibares (P 2, 5ª columna), el cálculo del volumen del matraz más el del sistema de inyección (V 2, 6ª columna) y por diferencia se obtiene el correspondiente al sistema de inyección. Para obtener el V₁

$$V1 = \frac{(p2 - p1) * R * T}{M * P1}$$

Donde:

R L*mbar/(K*mol)	83.14	
T Kelvin	293.15	
n	1	
M (aire) g/mol	28.9700	
P mbar	1000	> P ₁

Para obtener P₂

$$P2=P(psi)*b+m$$

Para obtener V₂

$$V2 = \frac{P1 * V1}{P2}$$

Curva de Calibración

Presión de la mezcla en el matraz	Presión en el sistema (psi)	conversión a (mbar)				
mbars	psi	$bP+a \rightarrow mbar$	presión parcial CO2	# mol CO ₂ (n)	g CO ₂	Respuesta Cromatógrafo
1000	5.3	961.34114	0.37685	6.24E-007	2.75E-005	19510059
800	2.3	777.03974	0.30460	5.05E-007	2.22E-005	16565996
600	-0.8	586.59496	0.22995	3.81E-007	1.68E-005	14820431
500	-2.5	482.1575	0.18901	3.13E-007	1.38E-005	12811973
400	-4	390.0068	0.15288	2.53E-007	1.11E-005	8786644
200	-7.2	193.41864	0.07582	1.26E-007	5.53E-006	1240501

La curva se construyó midiendo la respuesta del cromatógrafo a distintas presiones de la mezcla que contenía CO_2 (392 µmol/mol) y otros gases.

La primera columna muestra la presión de llenado del reactor a cada presión.

Al ser expandido en el sistema se registra una presión menor dentro de éste, eso es la columna 2.

Con la ecuación obtenida anteriormente, se obtiene la presión disminuida dentro del sistema en escala de milibar.

Esta última presión en mbar es multiplicada por el factor de concentración de CO₂ en el tanque la mezcla, para así obtener la presión parcial de este compuesto dentro del sistema de inyección.

El número de mol de CO₂ se estima con la ecuación de los gases ideales:

PV=nRT

Donde P: Presión parcial de CO₂

V: Volumen del sistema de inyección (0.0404 L)

R: constante de los gases ideales (83.14 L*mbar* K^{-1} *mol⁻¹)

T: Temperatura controlada del laboratorio (293.15 K)

La penúltima columna nos muestra la cantidad estimada de CO₂ en gramos para cada ensayo a distinta presión.

La última columna es el área obtenida por integración de la respuesta (pico cromatográfico) lograda en cada ensayo.

Gráfico de la curva de Calibración

Estadísticos de la curva de calibración por patrón externo (Miller & Miller, Ed Prentice Hall, 4ª edición, 2002)

Dato estadístico	Valor		
Riesgo (α)	5.00%		
No. de datos (n)	6		
Ordenada (a)	-4.13*10 ⁵		
Se ordenada	2272041.52		
Pendiente (b)	7.86*10 ¹¹		
Se pendiente	1.272*10 ¹¹		
Pendiente (m) ajustada a 0	7.57*10 ¹¹		
Grados de libertad (g. l.)	4		
t student (tablas)	2.77		
t student (a ≠ 0) (t calculada)	6.07		
Coeficiente de correlación (R)	0.950		
R ajustado	0.935		
(R ²) ajustado	0.878		

Prueba de correlación significativa

Ho: no existe correlación significativa entre x e y

$$t = \frac{|r|\sqrt{n-2}}{\sqrt{1-r^2}}$$

Cálculo de t con 4 grados de libertad, a un nivel de significancia del 95%, utilizando un contraste de dos colas

$$t = \frac{0.9504 * \sqrt{4}}{\sqrt{1 - 0.9034}1} = 6.1161$$

El valor de t es mayor que el valor tabulado (2.77). En este caso se rechaza Ho y se concluye que hay una correlación significativa.

Cálculo de los errores en la pendiente y en la ordenada al origen de la recta de regresión.
 Primero se calculan los errores aleatorios en la dirección y

$$s_{y/x} = \sqrt{\frac{\sum\limits_{i} (y_i - \hat{y}_i)^2}{n - 2}}$$

Donde:

 \hat{y}_i son los puntos sobre la recta de regresión calculada correspondientes a los valores individuales de x.

	х	У	ŷ	Ŷi⁻y	(ŷ _i -y)²
	2.7757E-05	1.9510E+07	2.1210E+07	1.7000E+06	2.8900E+12
	2.2436E-05	1.6566E+07	1.7065E+07	4.9865E+05	2.4865E+11
	1.6937E-05	1.4820E+07	1.2781E+07	-2.0394E+06	4.1591E+12
	1.3922E-05	1.2812E+07	1.0432E+07	-2.3800E+06	5.6644E+12
	1.1261E-05	8.7866E+06	8.3593E+06	-4.2738E+05	1.8265E+11
	5.5847E-06	1.2405E+06	3.9375E+06	2.6970E+06	7.2737E+12
promedio	1.6316E-05	1.2289E+07	1.2297E+07	8.1475E+03	3.4031E+12
suma	9.7898E-05	7.3736E+07	7.3784E+07	4.8885E+04	2.0419E+13

$$S y/x = \sqrt{\frac{2.0419*10^{13}}{4}} = 2.259*10^{6}$$

Una vez obtenido S $_{y/x}$ se puede calcular S_b y S_a, las desviaciones estándar de la pendiente (*b*) y de la ordenada al origen (*a*). Éstas vienen dadas por:

Desviación estándar de la pendiente:

$$s_b = \frac{s_{y/x}}{\sqrt{\sum_i (x_i - \bar{x})^2}}$$

Desviación estándar de la ordenada en el origen:

$$s_a = s_{y/x} \sqrt{\frac{\sum_i x_i^2}{n \sum_i (x_i - \bar{x})^2}}$$

	Х	X-Xm	(X-Xm)2	X^2
	2.776E-05	1.144E-05	1.309E-10	7.705E-10
	2.244E-05	6.120E-06	3.745E-11	5.034E-10
	1.694E-05	6.208E-07	3.854E-13	2.869E-10
	1.392E-05	-2.395E-06	5.734E-12	1.938E-10
	1.126E-05	-5.055E-06	2.556E-11	1.268E-10
	5.585E-06	-1.073E-05	1.152E-10	3.119E-11
promedio	1.6316E-05	-1.9764E-21	5.2532E-11	3.1875E-10
suma	9.7898E-05	0.0000E+00	3.1519E-10	1.9125E-09

Desviación estándar de la pendiente (Sb) y ordenada al origen (Sa):

Desviación estándar de la pendiente

$$Sb = \frac{2.259 \times 10^6}{\sqrt{3.15 \times 10^{-10}}} = 1.272 \times 10^{11}$$

Desviación estándar de la ordenada al origen

$$Sa = 2.259 * 10^{6} \sqrt{\frac{1.912 * 10^{-9}}{6 * 3.1519 * 10^{-10}}} = 2.271 * 10^{6}$$

Los límites de confianza de la pendiente:

$$b \pm t_{(n-2)}s_{b}$$
 7.86 * 10¹¹ ± (2.78) * 1.27 * 10¹¹

y de la ordenada:

$$a \pm t_{(n-2)}s_a = -4.13 * 10^5 \pm (2.78)2.271 * 10^6$$

Donde:

 t_{n-2} al 95% de confianza = 2.78

Para calcular el límite de detección se usó como guía la siguiente fórmula

Límite de detección (LOD) =
$$y_B + 3s_B$$

Tomando la misma consideración que hace el autor de la bibliografía consultada (Miller & Miller, Ed Prentice Hall, 4ª edición, 2002)

$$S_B = S_{y/x}$$

 $y_B = a$

$$\mathsf{LOD} = -4.13 * 10^5 + 3 (2.259 * 10^6) = 6.337 * 10^6$$

Si convertimos con la ecuación de la recta de calibración a gramos de CO2

 $\frac{6.337*10^6 + 4.13*10^5}{7.86*10^{11}} = 8.62 * 10^{-6} \text{ gramos de CO}_2$

Anexo II

Cálculos de las cantidades de los gases desprendidos por la pirólisis

• Contribución de aire

Previo a cada ensayo de pirólisis se hace un lavado térmico de la probeta de tal instrumento, una vez realizado se introduce la probeta con la muestra a la cámara, esta operación permite el paso de aire, para tratar de evacuarlo y al momento de calentar evitar la combustión en vez de la pirólisis, se realiza una purga con He (flujo = 20 ml/min durante 3 min) sin embargo, siempre se retiene alguna pequeña cantidad. La siguiente tabla muestra los valores de respuesta de estos gases en el cromatógrafo.

	ion 28	ion 32	ion 44
	1291485.0000	344834.0000	45723.0000
	1367674.0000	327226.0000	43508.0000
	1351079.0000	370347.0000	43704.0000
	2039905.0000	476560.0000	32888.0000
	1443207.0000	377275.0000	40991.0000
promedio	1498670.0000	354920.5000	43481.5000
Desv. Estand.	274910.9489	65346.7646	1938.8245

Se realizaron dos tipos de experimentos, sin y con adición de perclorato, estos últimos en distintas cantidades de dicho compuesto.

Cálculos realizados para obtener el estimado de producción de cada compuesto

1º Del número obtenido como respuesta del cromatógrafo se resta la contribución del aire del ion en cuestión (si es que existe).

2º Este valor solo es multiplicado por el inverso del factor de respuesta obtenido con la curva de calibración "ajustada a cero", de esta manera se obtienen gramos de correspondientes de cada compuesto monitoreado.

3º En la columna de normalización, lo que se indica es el cociente de los gramos obtenidos y la cantidad de suelo de donde procedieron.

4º La columna "ppm" es la conversión hecha por el factor 1* 10⁻⁶ y son los valores reportados y graficados.

Anexo III

Journal of Geophysical Research -Planets

Reanalysis of the Viking results suggests perchlorate and organics at mid-latitudes on Mars

Rafael Navarro-González^{1*}, Edgar Vargas¹, José de la Rosa¹, Alejandro C. Raga¹ and Christopher P. McKay²

¹Laboratorio de Química de Plasmas y Estudios Planetarios, Instituto de Ciencias Nucleares, Universidad Nacional Autónoma de México, Circuito Exterior, Ciudad Universitaria, Apartado Postal 70-543, México D.F. 04510, MEXICO.
²Space Science Division, NASA Ames Research Center, Moffett Field, CA 94035, USA.

*To whom correspondence should be addressed. E-mail: <u>navarro@nucleares.unam.mx</u>

Keywords

Astrobiology, Mars, search for Martian life, detection of organics, GC-MS, planetary instrumentation, Viking Mission, Phoenix Mission

Index Terms:

.

0406 Biogeosciences: Astrobiology and Extraterrestrial Materials

0424 Biogeosciences: Biosignatures and proxies

6225 Planetary Sciences: Solar System Objects: Mars;

6297 Planetary Sciences: Solar System Objects: Instruments and techniques

1

Print Close

Mission News

Missing Piece Inspires New Look at Mars Puzzle

09.03.10

PASADENA, Calif. -- Experiments prompted by a 2008 surprise from NASA's Phoenix Mars Lander suggest that soil examined by NASA's Viking Mars landers in 1976 may have contained carbon-based chemical building blocks of life.

"This doesn't say anything about the question of whether or not life has existed on Mars, but it could make a big difference in how we look for evidence to answer that question," said Chris McKay of NASA's Ames Research Center, Moffett Field, Calif. McKay coauthored a study published online by the Journal of Geophysical Research - Planets, reanalyzing results of Viking's tests for organic chemicals in Martian soil.

The only organic chemicals identified when the Viking landers heated samples of Martian soil were chloromethane and dichloromethane -- chlorine compounds interpreted at the time as likely contaminants from cleaning fluids. But those chemicals are exactly what the new study found when a little perchlorate -- the surprise finding from Phoenix -- was added to desert soil from Chile containing organics and analyzed in the manner of the Viking tests.

"Our results suggest that not only organics, but also perchlorate, may have been present in the soil at both Viking landing sites," said the study's lead author, Rafael Navarro-González of the National Autonomous University of Mexico, Mexico City.

Organics can come from non-biological or biological sources. Many meteorites raining onto Mars and Earth for the past 5 billion years contain organics. Even if Mars has never had life, scientists before Viking anticipated that Martian soil would contain organics from meteorites.

"The lack of organics was a big surprise from the Vikings," McKay said. "But for 30 years we were looking at a jigsaw puzzle with a piece missing. Phoenix has provided the missing piece: perchlorate. The perchlorate discovery by Phoenix was one of the most important results from Mars since Viking." Perchlorate, an ion of chlorine and oxygen, becomes a strong oxidant when heated. "It could sit there in the Martian soil with organics around it for billions of years and not break them down, but when you heat the soil to check for organics, the perchlorate destroys them rapidly," McKay said.

In this artist's concept illustration, NASA's Phoenix Mars Lander begins to shut down operations as winter sets in. Image Credit: NASA/JPL-Calech/University of Arizona > Full image and caption

This is the first photograph ever taken on the surface of the planet Mars and was obtained by Viking 1 just minutes after the spacecraft landed successfully. Image Credit: NASA

This interpretation proposed by Navaro-González and his four co-authors challenges the interpretation by Viking scientists that Martian organic compounds were not present in their samples at the detection limit of the Viking experiment. Instead, the Viking scientists interpreted the chlorine compounds as contaminants. Upcoming missions to Mars and further work on meteorites from Mars are expected to help resolve this question.

The Curiosity rover that NASA's Mars Science Laboratory mission will deliver to Mars in 2012 will carry the Sample Analysis at Mars (SAM) instrument provided by NASA Goddard Space Flight Center, Greenbelt, Md. In contrast to Viking and Phoenix, Curiosity can rove and thus analyze a wider variety of rocks and samples. SAM can check for organics in Martian soil and powdered rocks by baking samples to even higher temperatures than Viking did, and also by using an alternative liquid-extraction method at much lower heat. Combining these methods on a range of samples may enable further testing of the new report's hypothesis that oxidation by heated perchlorates that might have been present in the Viking samples was destroying organics.

22/09/2010 12:46 p.m.

NASA - Missing Piece Inspires New Look at Mars Puzzle

One reason the chlorinated organics found by Viking were interpreted as contaminants from Earth was that the ratio of two isotopes of chlorine in them matched the three-to-one ratio for those isotopes on Earth. The ratio for them on Mars has not been clearly determined yet. If it is found to be much different than Earth's, that would support the 1970s interpretation.

If organic compounds can indeed persist in the surface soil of Mars, contrary to the predominant thinking for three decades, one way to search for evidence of life on Mars could be to check for types of large, complex organic molecules, such as DNA, that are indicators of biological activity. "If organics cannot persist at the surface, that approach would not be wise, but if they can, it's a different story," McKay said.

The Phoenix mission was led by Principal Investigator Peter H. Smith of the University of Arizona, Tucson, with project management at NASA's Jet Propulsion Laboratory, Pasadena, Calif. The Phoenix finding of perchlorate was reported by JPL's Michael Hecht and co-authors. JPL, a division of the California Institute of Technology, Pasadena, also manages Mars Science Laboratory for the NASA Exploration Missions Directorate, Washington.

Media contact: Guy Webster 818-354-6278 Jet Propulsion Laboratory, Pasadena, Calif. guy.webster@jpl.nasa.gov

Rachel Hoover/Ruth Marlaire 650-604-0643/650-604-4709 Ames Research Center, Moffett Field, Calif. rachel.hoover@nasa.gov/ruth.marlaire@nasa.gov

Gabriela Frias 011-52-55-5622-4684 Instituto de Ciencias Nucleares, Universidad Nacional Autonoma de Mexico, Mexico City gabriela.frias@nucleares.unam.mx

2010-286

Find this article at:

http://www.nasa.gov/mission_pages/phoenix/news/phx20100803.html

Boletín de Prensa

Boletín UNAM-DGCS-528 Ciudad Universitaria 14:45 hrs. 6 de septiembre de 2010

Rafael Navarro González

SE PRESENTA EN LA UNAM NUEVA RUTA CIENTÍFICA PARA BUSCAR VIDA EN MARTE

• Tras reinterpretar resultados del proyecto Vikingo y compararlos con estudios en el Desierto de Atacama, Rafael Navarro González, del Instituto de Ciencias Nucleares, descubrió que los compuestos percloratos podrían asociarse a materia orgánica

• El hallazgo, publicado en el "Journal of Geophysical Research-Planets", ofrece un nuevo parámetro para la búsqueda de vida en el planeta rojo

• Colaboran Christopher McKay, del Centro de Investigación Ames de la NASA, y Peter Smith, de la Universidad de Arizona, quienes con Navarro dieron la primicia en esta casa de estudios

Una investigación conjunta entre la UNAM, la NASA y la Universidad de Arizona, en torno a un compuesto muy oxidante llamado perclorato, formado por un átomo de cloro y cuatro de oxígeno, abre una nueva ruta para buscar, de forma indirecta, rastros de vida en Marte.

Hasta ahora, la presencia de agua ha sido la evidencia más prometedora para encontrar algún tipo de existencia microbiana en el planeta rojo.

En la UNAM, el astrobiólogo Rafael Navarro González, investigador del Instituto de Ciencias Nucleares (ICN), reanalizó los resultados de la misión Vikingo, lanzada a Marte por la NASA en 1975, y concluyó que los percloratos encontrados hace 35 años no provienen de contaminación terrestre, como se dijo entonces, sino de la quema y oxidación de compuestos orgánicos ocurridos en territorio marciano, que podrían ser una evidencia de vida.

El hallazgo, publicado en la revista científica Journal of Geophysical Research-Planets, modifica el pensamiento de la comunidad científica, que durante los últimos 30 años estimó que el planeta rojo era un lugar carente de moléculas orgánicas.

En conferencia de medios --transmitida en directo desde esta casa de estudios a la NASA- Carlos Arámburo de la Hoz, coordinador de la Investigación Científica, dijo que "es un orgullo para la UNAM ofrecer estos resultados conjuntos con la NASA y la Universidad de Arizona, pues demuestran la Fotos

Alejandro Frank, Christopher McKay, Carlos Arámburo, Peter Smith y Rafael Navarro en la conferencia en la que se presentó, en esta casa de estudios, una nueva ruta científica para buscar vida en Marte.

22/09/2010 12:57 p.m.

Boletín de Prensa

calidad de la indagación que se hace en México y sus alcances internacionales".

La identificación de percloratos como una nueva estrategia para la búsqueda de vida es resultado de un trabajo de colaboración largo y constante entre Rafael Navarro, del ICN; Christopher McKay, del Centro Ames de la NASA, y Peter Smith, del Laboratorio Lunar y Planetario de la Universidad de Arizona.

En el auditorio de la Coordinación de la Investigación Científica, Navarro señaló que "esta investigación no demuestra que haya vida en Marte, pero podría cambiar la concepción que se tiene de ese planeta. Ahora tendríamos que diseñar nuevas misiones para determinar la estructura de los compuestos orgánicos".

En su oportunidad, Alejandro Frank, director del ICN, destacó la importancia de apoyar la ciencia nacional y estimular la colaboración de investigadores universitarios con colegas de otros países.

Nuevas pistas en oxidantes

Para utilizar a los percloratos como indicadores de presencia de compuestos orgánicos, Navarro repitió el experimento de la misión Vikingo, con el uso de muestras en el chileno Desierto de Atacama, descubierto por el investigador mexicano como una zona análoga a la superficie marciana.

Su análisis demostró que la escasa materia orgánica en la zona, detectada antes del experimento, ya no se veía, pues los percloratos, que sí estaban presentes, la habían descompuesto.

El estudio realizado en el laboratorio, junto con un modelo computacional, demostró que no sólo podría haber materia orgánica, sino que los niveles podrían ser mil veces mayores a los considerados después de las primeras investigaciones de las misiones Vikingo, comentó Navarro.

A fines de 2012, la NASA lanzará el módulo de descenso Curioso, con ruedas resistentes que le permitirán moverse para analizar un rango más amplio de muestras. Llevará a bordo el instrumento SAM (siglas en inglés de Análisis de Muestras en Marte), y podrá buscar materia orgánica en el suelo y en algunas rocas trituradas.

Al respecto, Chistopher McKay indicó que "este resultado sobre los percloratos, logrado por Rafael Navarro, nos permitirá ampliar la investigación hacia dos tipos de análisis y desarrollar nuevos equipos más eficientes para captar estos compuestos, así como materia orgánica en el hielo marciano".

En tanto, Peter Smith, de la Universidad de Arizona, consideró que el hallazgo de Navarro es semejante a las raíces de un árbol, "pues nos permite abrir nuevas líneas de investigación en esta búsqueda de vida".

--000---

22/09/2010 12:57 p.m.

			Try Times Reader (oday Log In Register No
HOME PAGE TODAY'S PAPER VIDEO M	IOST POPULAR TIMES TOPICS		Search All NYTimes.com	ING M DIRECT
ene new york comes	Space & Cosm	nos		Ga
WORLD U.S. N.Y. / REGION BUSIN	VESS TECHNOLOGY SCIENCE HEALTH ENVIRONMENT	SPORTS OPINION SPACE & COSMOS	ARTS STYLE TRAVEL JOBS	REALESTATE AUTOS
			Advertise on NYT im	es.com
Accepted Notion of I By KENNETH CHANG Published: September 3, 2010	Mars as Lifeless Is Chall	enged	Log in to see what your friends are sharing on nytimes.com. Privacy Policy What's This?	Log In With Facebook
For all the triumph of NASA's 1	976 Viking mission, which put two	RECOMMEND	What's Popular Now 🛐	
unmanned spacecraft on <u>Mars</u> , disappointment: The landers fa that could serve as the building	there was one major iled to find carbon-based molecules blocks of life.	TWITTER SIGN IN TO E-MAIL PRINT	Too Many Hamburgers?	een Nearne, artime Spy, es at 89
The complete lack of these orga	nic molecules was a surprise, and	REPRINTS		
the notion of a desolate, lifeless	Mars persisted for years.	SHARE	Get New York Today by E- Sign up to receive the best loc	Mail al offerings from NYTimes.com,
Now, some scientists say that co perhaps even incorrect. They su known as organic molecules, alt	onclusion was premature and ggest that such building blocks — though they need not come from	BLACK SWAN DEC. 1	See Sample Privacy Policy	Sign Up
living organisms - were indeed inadvertently destroyed before t	l in the soil, but that they were hey could be detected.			Advertise on NYTimes.com
If true, that could cast the scien	tific conclusions of the Viking mission	n in a new light,		MEMED
especially since another Viking soil. Most scientists discounted	experiment claimed to have found liv that possibility — how could there be	ing microbes in the life in soil devoid	1. Vital Signs: Regimens: Massa	ge Benefits Are More
of the building blocks of life?			Than Skin Deep 2. A Perk of Our Evolution: Plea	sure in Pain of Chilies
"That gospel of the Viking resul	ts has influenced our perspective on l	ife of Mars for 35	3. Doctor's Orders: Eat Well to I	Be Well irls Live the Part
years," said Christopher McKay in California and an author of t	, a planetary scientist at NASA's <u>Ame</u> he new findings, to be published in <u>T</u>	<u>s Research Center</u> 'he Journal of	 Faul Krugman: The Angry Ri 	ch
<u>Geophysical Research – Planet</u> not really nothing."	<u>s</u> . "What do they find? Nothing. But i	t turns out it was	 Thomas L. Friedman: Too M A Good Appetite: Spiking Sur Preserve It 	any Hamburgers? nmer Fruit in Order to
The Viking 1 and Viking 2 land	ers scooped Martian soil samples and	heated them,	 8. Waiter, There's Soup in My E 9. Step Right Up for Pest Control 	ug ol at Bedbug Meeting
chloromethane and dichlorome compounds were contaminants	thane — and the scientists concluded from fluids used to clean the spacecra	that the chlorine aft.	 The Face of Private-School G but Profit-Making 	owth, Familiar-Looking
Then in 2008, NASA's Phoenix	Mars Lander unexpectedly found a c	hlorine chemical,	GUID COMPREE LISE »	
perchlorate, in the planet's arct	ic soil.			
In the new experiments, the sci the Atacama Desert in Chile, of Chemical reactions destroyed o dioxide and traces of chloromet landers had found.	entists heated a mixture of perchlora ten considered the closest thing on Ea rganic compounds in the soil, produci hane and dichloromethane, just like	te with soil from arth to Mars. ing mostly carbon what the Viking		
"Now when we look back at the bizarre chemistry."	Viking results, it makes sense," Dr. M	/icKay said. "It was	Review: The 2011 ALSO IN AUTOS » Baby, you can rent my car	Ford Fiesta
For the veteran Mars researche vindication. His Viking experim	r Gilbert V. Levin, the new paper offer nent added nutrients to the soil and n	rs a measure of neasured releases of	Follow the Wheels Blog on Twit	er AUTOS

Accepted Notion of Mars as Lifeless Is Challenged - NYTimes.com

http://www.nytimes.com/2010/09/04/science/space/04mars.html?_r=1

wlede Know Netwo

ark

ADVERTISEMENTS

Summit.

ASK AN EXPERT YOUR BUSINESS

QUESTION and you may have a chance to have your question answered via video at the NYT Small Business

Fan The New York Times on Facebook

See the news in the making. Watch

TimesCast, a daily news video

TimesReader2.0

TRY IT FREE FOR 2 WEEKS.

141.202

The new issue of T is here

Rafael Navarro-González of the National Autonomous University of Mexico City and lead author of the new study, said the claim that Viking found life was still inconclusive. "It gives a big possibility," he said, "but of course we don't know."

Dr. Levin acknowledged that nonbiological reactions could cause gas to be released, but said the Viking experiment showed that whatever was producing the gas did so at temperatures plausible for microbes but not for other explanations.

But the leader of the Viking organics experiment, Klaus Biemann, a retired professor at M.I.T., doubts the new interpretation. He noted that the experiment also detected freon, which was certainly a contaminant, and that the presence of perchlorate at the Viking sites, far from where the Phoenix landed, was speculation.

More definitive answers could come with the Mars Science Laboratory, scheduled to be launched next year and to arrive in 2012. It will carry an experiment that will be able to separate perchlorates from organic molecules and thus allow it to identify the organics without destroying them.

Get E-Mail Alerts

Get E-Mail Alerts

Get E-Mail Alerts

A version of this article appeared in print on September 4, 2010, on page A13 of the New York edition.

Get the full newspaper experience, and more, delivered to your Mac or PC. Times Reader 2.0: Try it FREE for 2 full weeks.

SIGN IN TO E-MAIL
PRINT
REPRINTS

Past Coverage Replying to Skeptics, NASA Defends Claims About Mars (August 8, 1996) Clues in Meteorite Seem to Show Signs of Life on Mars Long Ago (August 7, 1996) **Related Searches**

Mars (Planet) Microbiology National Aeronautics and Space Administration

INSIDE NYTIMES.COM

4 >

90

Not 'life,' but maybe 'organics' on Mars

http://www.washingtonpost.com/wp-dyn/content/article/2010/09/03...

Going Out Guide Jobs Cars Real Estate Rentals Classifieds Register Now Subscribe Mobile Multimedia Today's Paper Sign In 0 OPINIONS SPORTS Business Arts & Living Search The Washington Post NEWS LOCAL POLITICS » FOLLOW THE POST ON: washingtonpost.com > Print Edition > A Section Not 'life,' but maybe 'organics' on Mars Found the provider By Marc Kaufman Washington Post Staff Writer Saturday, September 4, 2010 for your year-end Thirty-four years after NASA's Viking missions to Mars sent back results interpreted to mean there was no training needs. organic material - and consequently no life - on the planet, new research has concluded that organic material This is a was found after all GREAT MOMENT. The finding does not bring scientists closer to discovering life on Mars, researchers say, but it does New research has concluded that organic ma was found on Mars, although NASA's Viking spacecraft, which took theis photograph, sent results in 1976 that were interpreted otherwise open the door to a greater likelihood that life exists, or The Graduate School once existed, on the planet. knows government like "We can now say there is organic material on Mars, and $\ \ensuremath{\mathbb{E}}$ Enlarge Photo no one else. Let us help that the Viking organics experiment that didn't find any Network News PROFILE X had most likely destroyed what was there during the you develop a plan. testing," said Rafael Navarro-Gonzalez of the National Recommend 110 Autonomous University of Mexico. Our courses and 9 "For decades NASA's mantra for Mars was 'follow the View More Activity services are water' in the search for life, and we know today that water has been all over the planet," he said. "Now the available under TOOLBOX motto is 'follow the organics' in the search for life.' Resize Print E-mail **GSA** Schedule Reprints Yahoo! Buzz The original 1976 finding of "no organics" was controversial from the start because organic matter -874. TRY EMAIL MARKETING complex carbons with oxygen and hydrogen, which are the basis of life on Earth - is known to fall on Mars, as WHO'S BLOGGING powered by sphara onto Earth and elsewhere, all the time. Certain kinds of » Links to this article meteorites are rich in organics, as is the interstellar dust that falls from deep space and blankets planets. Sponsored Links Mortgage Rates Hit 3.25% The new results, published in the Journal of If you owe less than \$729k you probably qualify for Obamas Refi Program www.SeeRefinanceRates.com Geophysical Research-Planets and highlighted Friday in a NASA news release, flow directly from a discovery made by NASA's Phoenix lander in 2008. Hot Stock Alert - EHSI Profit From Healthcare Explosion New Millionaires Created Today www.EmergingHealthcareSolutionsInc. Mary Voytek, senior scientist for astrobiology at NASA, said the findings demonstrate the ever-present risk of Buya link here reaching "false negatives" in space based on limitations of the equipment used and of the scientists' Find out how we can help your agency. understanding of conditions beyond Earth. She said the research does not fully knock down the original "no-organics" conclusion TOP JOBS The Washington Post because the new experiment was done using desert soil from Earth, which might behave differently from seemingly similar Martian dirt. But she said the research does put another "significant chink" in the no-organics position. The new research examined the effects on

organics of a compound that Phoenix unexpectedly found at its landing site on

22/09/2010 12:38 p.m.

Hallan científicos de UNAM y Share 5 NASA compuestos orgánicos en Noticias en línea 🤍 Marte

Evidencian que podría haber vida microorgánica en ese planeta, informaron

Notimex Publicado: 06/09/2010 14:02

México, DF. Científicos de la UNAM y de la NASA descubrieron compuestos orgánicos en Marte que evidencian que podría haber vida microorgánica en ese planeta, lo que abre la posibilidad de diseñar nuevas misiones espaciales.

Share 29 16

Sep 22 12:36 Revela estudio que gorilas transmitieron al hombre la malaria Sep 22 12:31 JLCA ha recuperado mil 46 mdp entre enero y agosto Sep 22 12:20 Revela libro fuerte disputa de mandos militares con Obama por Afganistán Sep 22 12:12 Se inicia en San Lázaro sesión solemne por centenario de la UNAM

Sep 22 12:09 Ribery estará inactivo tres semanas por lesión en un tobillo El doctor en Astrobiología del Instituto de Ciencias Nucleares de la UNAM, Rafael Navarro González, así como Christopher McKay y Peter Smith, de la Administración Nacional de Aeronáutica y el Espacio (NASA), destacaron que este hallazgo que tardó 35 años no tiene precedentes.

Debido a este descubrimiento, a finales de 2012 la NASA lanzará el módulo de descenso "Curioso" en una nueva misión espacial, que se moverá en la superficie marciana para analizar de manera más amplia las muestras y comprobar si son organismo biológicos.

Navarro González, quien participa en las investigaciones de la Universidad Nacional Autónoma de México (UNAM) en la NASA, explicó que lo que se encontró fueron compuestos orgánicos.

Lo que no se sabe es si estos compuestos son de origen biológico o abiótico (medio en el que no es posible la vida), para lo cual se requiere de otras misiones, pues se estima que el nivel de material orgánico en Marte es mil veces mayor de lo que se creía por lo menos hace 35 años, con las misiones Vikingo.

Es por ello que la misión Mars SAM que transportará al robot "Curioso", hará análisis adicionales para buscar compuestos orgánicos y descifrar si pudieran ser biológicos o abióticos, pero aclaró que no está diseñada para buscar vida.

Explicó que de encontrarse vida en Marte, jamás podría ser como la que hay en la Tierra, pues la evolución tardó millones de años y si hubiera existencia en Marte sólo sería microorgánica.

"Los hallazgos que hemos reportado hoy van a permitir que misiones futuras a Marte se diseñen específicamente para buscar la presencia de vida. Ahora no sabemos, pues es difícil bajo las condiciones que tiene" el llamado Planeta Rojo, expuso.

Sin embargo, la presencia de compuestos orgánicos en la superficie de este planeta sin duda abre la posibilidad de que pudiera haber vida en el pasado, hace unos cuatro mil millones de años, y por eso es importante continuar las investigaciones.

"No sabemos si hay vida, es posible que la vida haya surgido en Marte hace cuatro mil millones de años. Cuando la vida surgió aquí en el planeta (en la Tierra), Marte sufrió un cambio climático y se volvió frío y es posible que esa vida no hubiese sobrevivido", indicó.

El científico mexicano consideró que sí es posible que en la superficie de Marte estos organismos pudieran haberse adaptado en las profundidades donde se cree que hay agua líquida, pero el objetivo ahora es tratar de ver si existió la vida en el pasado y si fue capaz de adaptarse para vivir en algunas regiones del planeta.

Estos hallazgos demuestran que las misiones Vikingo tenían en el suelo compuestos orgánicos que no los vieron porque los quemaron, pero quedaron pequeñas trazas de compuestos clorados orgánicos que dan la evidencia de que sí tuvo en los análisis.

Sobre el cambio climático en la Tierra expuso que ocurre un fenómeno pero al revés: si no se actúa para reducir la liberación de gases efecto invernadero, en algunas décadas se podría tener las consecuencias drásticas como aumentar el nivel del océano.

En su oportunidad, Christopher McKay, quien se encargará de la misión espacial de 2012,

22/09/2010 12:38 p.m.

1 de 3

La Jornada en Internet

explicó que se tiene la propuesta de experimentar en Marte con sembrar una semilla de una rosa, para ver si logra desarrollarse.

"Ahora nos damos cuenta que las rocas de Marte han salido del planeta y han llegado a la Tierra, y nos imaginamos que esas rocas podrían haber traído vida y también que podría ser el sentido opuesto", expuso.

McKay añadió que la Tierra y Marte deben compartir una biológica común, lo que es una área de conexión que puede ser relevante en el futuro.

"También podemos especular sobre la posibilidad de investigar si la vida de la Tierra puede sobrevivir en Marte. Esto no es algo que ya hubiéramos hecho, es algo que quizá se haga en el futuro, diseñar una misión de crecimiento de plantas en Marte, digamos que una rosa pueda crecer en Marte", agregó.

DE LO POCO QUE PODEMOS ESTAR ORGULLOSOS LOS MEXICANOS

Enviado por daniel garcia en 06/09/2010 16:26

ES UNA NOTICIA QUE PUEDE CAMBIAR LA CONCEPCIÓN DEL MUNDO Y QUE MEJOR QUE UNO DE LOS POCOS ORGULLOS DEL PAÍS, COMO LO ES LA UNAM, ESTE ENCARGADO DE ESTAS MISION. FELICIDADES HA TODOS AQUELLOS QUE HACEN DE LA UNAM LA MEJOR CASA DE ESTUDIOS DEL PAÍS

Responder a este comentario

Marte una posibilidad para vivir en un futuro? Enviado por Luis Miguel en 06/09/2010 19:28

Con este descubrimiento del doctor astrobiologo mexicano Rafael Navarro Gonzales y de los científicos de la NASA Cristopher McKay y Peter Smith nos hace pensar en la posibilidad de que en un futuro la raza humana pueda habitar este planeta. Y aunque exista la controversia de si es posible vivir en marte o no, lo único cierto es que por hacorá solo se a podido encontrar un compuesto orgânico; y que abran de realizarse pruevas para ver si dicho planeta es habitable para los humanos.

EN HORA BUENA PARA LOS hAYASGOS FUTOROS Y UNA FELICITACIÓN ESPECIAL PARA EL DOC. ASTROBIOLOGO RAFAEL NAVARRO GONZALES MEXICANO POR CIERTO

Responder a este comentario

22/09/2010 12:38 p.m.

Anexo IV Corridas Cromatográficas

contribución

de aire

	ion 28	ion 30	ion 32	ion 44
	1291485.0000	0.0000	344834.0000	45723.0000
	1367674.0000	0.0000	327226.0000	43508.0000
	1351079.0000	0.0000	370347.0000	43704.0000
	2039905.0000	0.0000	476560.0000	32888.0000
	1443207.0000	0.0000	377275.0000	40991.0000
promedio	1.36E+006	0.00E+000	3.55E+005	4.35E+004
desv	6.25E+004	0.00E+000	2.31E+004	1.94E+003

Blancos

200°C

corrida	ion 32	menos contr_aire	masa	g CO2	g CO2/g muestra	ppm
201	5366415	5011495	0.02294	6.62E-006	2.88E-004	288.46
202	3673730	3318810	0.01170	4.38E-006	3.75E-004	374.55
203	2384014	2029094	0.01560	2.68E-006	1.72E-004	171.75
204	4370005	4015085	0.01756	5.30E-006	3.02E-004	301.91
205	4240595	3885675	0.01741	5.13E-006	2.95E-004	294.70
	promedio	3652031	0.01704	4.82E-006	2.86E-004	286.27
	desv estandar	1093103	0.00406	1.44E-006	7.29E-005	72.85
corrida	ion 44	menos contr_aire	masa	g CO2	g CO2/g muestra	ppm
201	865224	821743	0.02294	1.09E-006	4.73E-005	47.30
202	741277	697796	0.01170	9.21E-007	7.88E-005	78.75
203	966149	922668	0.01560	1.22E-006	7.81E-005	78.10
204	354177	310696	0.01756	4.10E-007	2.34E-005	23.36
205	593118	549637	0.01741	7.26E-007	4.17E-005	41.69
	promedio	660508	0.01704	8.72E-007	5.38E-005	53.84
	desv estandar	240196	0.00406	3.17E-007	2.41E-005	24.13

350°C						
corrida	ion 32	menos contr_aire	masa	g CO2	g CO2/g muestra	ppm
351	10494018	10139098	0.01934	1.34E-005	6.92E-004	692.23
352	9845694	9490774	0.01939	1.25E-005	6.46E-004	646.30
353	9451713	9096793	0.01809	1.20E-005	6.64E-004	663.99
354	8131412	7776492	0.02164	1.03E-005	4.74E-004	474.50
355	4957399	4602479	0.01444	6.08E-006	4.21E-004	420.86
	promedio	8221127	0.01858	1.09E-005	5.80E-004	579.57
	desv estandar	2199416	0.00264	2 90F-006	1 23E-004	122.00
			0.00201	2.502 000	1.231-004	122.99
			0.00201	2.502 000	1.232-004	122.99
corrida	ion 44	menos contr_aire	masa	g CO2	g CO2/g muestra	ppm
corrida 351	ion 44 2630340	menos contr_aire 2586859	masa 0.01934	g CO2 3.42E-006	g CO2/g muestra 1.77E-004	ppm 176.61
corrida 351 352	ion 44 2630340 18451141	menos contr_aire 2586859 18407660	masa 0.01934 0.01939	g CO2 3.42E-006 2.43E-005	g CO2/g muestra 1.77E-004 1.25E-003	ppm 176.61 1253.52
corrida 351 352 353	ion 44 2630340 18451141 25389821	menos contr_aire 2586859 18407660 25346340	masa 0.01934 0.01939 0.01809	g CO2 3.42E-006 2.43E-005 3.35E-005	g CO2/g muestra 1.77E-004 1.25E-003 1.85E-003	ppm 176.61 1253.52 1850.06
corrida 351 352 353 354	ion 44 2630340 18451141 25389821 2684320	menos contr_aire 2586859 18407660 25346340 2640839	masa 0.01934 0.01939 0.01809 0.02164	g CO2 3.42E-006 2.43E-005 3.35E-005 3.49E-006	g CO2/g muestra 1.77E-004 1.25E-003 1.85E-003 1.61E-004	ppm 176.61 1253.52 1850.06 161.14

corrida	ion 30	menos contr_aire	masa	g CO2	g CO2/g muestra	ppm
351	643935	643935	0.01934	8.50E-007	4.40E-005	43.96
352	155466	155466	0.01939	2.05E-007	1.06E-005	10.59
353	367440	367440	0.01809	4.85E-007	2.68E-005	26.82
354	498647	498647	0.02164	6.58E-007	3.04E-005	30.43
355	525521	525521	0.01444	6.94E-007	4.81E-005	48.05
	promedio	438202	0.01858	5.79E-007	3.20E-005	31.97
	desv estandar	186112	0.00264	2.46E-007	1.49E-005	14.91

0.01731

0.00257

2.47E-005

8.53E-006

1.41E-003

3.82E-004

1413.60 382.44

promedio

desv estandar

18730178

6460942

-	_
n	с.
Э	
-	-

500°C						
corrida	ion 30	menos contr_aire	masa	g CO2	g CO2/g muestra	Ppm
501	1663551	1663551	0.02826	2.20E-006	7.77E-005	77.73
522	1750454	1750454	0.03000	2.31E-006	7.70E-005	77.04
503	1870595	1870595	0.02453	2.47E-006	1.01E-004	100.69
504	1963600	1963600	0.02728	2.59E-006	9.50E-005	95.04
505	2244159	2244159	0.02953	2.96E-006	1.00E-004	100.35
	Promedio	1898472	0.02792	2.51E-006	9.02E-005	90.17
	Desv	224508	0.00218	2.96E-007	1.19E-005	11.89
corrida	ion 32	menos contr_aire	masa	g CO2	g CO2/g muestra	Ppm
501	30847177	30492257	0.02826	4.03E-005	1.42E-003	1424.71
522	32107752	31752832	0.03000	4.19E-005	1.40E-003	1397.56
503	29248163	28893243	0.02453	3.82E-005	1.56E-003	1555.28
504	37855873	37500953	0.02728	4.95E-005	1.82E-003	1815.13
505	40153278	39798358	0.02953	5.26E-005	1.78E-003	1779.55
	Promedio	33687528	0.02792	4.45E-005	1.59E-003	1594.45
	Desv	4712283	0.00218	6.22E-006	1.95E-004	194.98
corrida	ion 44	menos contr_aire	masa	g CO2	g CO2/g muestra	Ppm
501	9.3E+06	9250394	0.02826	1.22E-005	4.32E-004	432.21
522	1.6E+07	15902530	0.03000	2.10E-005	7.00E-004	699.93
503	1.0E+07	10007171	0.02453	1.32E-005	5.39E-004	538.67
504	2.1E+07	20948368	0.02728	2.77E-005	1.01E-003	1013.95
505	1.9E+07	19345283	0.02953	2.55E-005	8.65E-004	865.01
	Promedio	15090749	0.02792	1.99E-005	7.10E-004	709.95
	Desv	5315643	0.00218	7.02E-006	2.36E-004	236.13
corrida	ion 78	menos contr_aire	masa	g CO2	g CO2/g muestra	Ppm
501	260846	260846	0.02826	3.44E-007	1.22E-005	12.19
522	192006	332006	0.03000	4.38E-007	1.46E-005	14.61
503	316804	326804	0.02453	4.32E-007	1.76E-005	17.59
504	532147	532147	0.02728	7.03E-007	2.58E-005	25.76
505	507406	507406	0.02953	6.70E-007	2.27E-005	22.69

Promedio	391842	0.02792	5.17E-007	1.86E-005	18.57
Desv	120427	0.00218	1.59E-007	5.61E-006	5.61

corrida	ion 91	menos contr_aire	masa	g CO2	g CO2/g muestra	Ppm
501	116156	176156	0.02826	2.33E-007	8.23E-006	8.23
522	75565	125565	0.03000	1.66E-007	5.53E-006	5.53
503	160304	160304	0.02453	2.12E-007	8.63E-006	8.63
504	213094	213094	0.02728	2.81E-007	1.03E-005	10.31
505	229999	229999	0.02953	3.04E-007	1.03E-005	10.28
	Promedio	181024	0.02792	2.39E-007	8.60E-006	8.60
	Desv	41701	0.00218	5.51E-008	1.96E-006	1.96

750°C

corrida	ion 30	menos contr_aire	masa	g CO2	g CO2/g muestra	ppm
752	1811346	1811346	0.01517	2.39E-006	1.58E-004	157.66
753	3042515	3042515	0.04293	4.02E-006	9.36E-005	93.58
754	3632312	3632312	0.01876	4.80E-006	2.56E-004	255.66
755	3290389	3290389	0.03973	4.34E-006	1.09E-004	109.35
756	2843193	2843193	0.02026	3.75E-006	1.85E-004	185.30
	promedio	2923951	0.02737	3.86E-006	1.60E-004	160.31
	Desv	688208	0.01293	9.09E-007	6.48E-005	64.75
corrida	ion 32	menos contr_aire	masa	g CO2	g CO2/g muestra	ppm
752	26351582	25996661.50	0.01517	3.43E-005	2.26E-003	2262.77
753	30431598	30076677.50	0.04293	3.97E-005	9.25E-004	925.08
754	29518666	29163745.50	0.01876	3.85E-005	2.05E-003	2052.67
755	38260957	37906036.50	0.03973	5.01E-005	1.26E-003	1259.79
756	28528583	28173662.50	0.02026	3.72E-005	1.84E-003	1836.17
	promedio	30263356.70	0.02737	4.00E-005	1.67E-003	1667.30
	Desv	4533929.26	0.01293	5.99E-006	5.59E-004	558.70

corrida	ion 44	menos contr_aire	masa	g CO2	g CO2/g muestra	ppm
752	48903683	48860201.50	0.01517	6.45E-005	4.25E-003	4252.84
753	88621479	88577997.50	0.04293	1.17E-004	2.72E-003	2724.42
754	69490089	69446607.50	0.01876	9.17E-005	4.89E-003	4887.96
755	96254067	96210585.50	0.03973	1.27E-004	3.20E-003	3197.52
756	69142457	69098975.50	0.02026	9.12E-005	4.50E-003	4503.41
	promedio	74438873.50	0.02737	9.83E-005	3.91E-003	3913.23
	Desv	18585128.21	0.01293	2.45E-005	9.14E-004	913.68
			-			
corrida	ion 78	menos contr_aire	masa	g CO2	g CO2/g muestra	ppm
752	2640309	2640310.00	0.01517	3.49E-006	2.30E-004	229.82
753	4024320	4024321.00	0.04293	5.31E-006	1.24E-004	123.78
754	4423492	4423493.00	0.01876	5.84E-006	3.11E-004	311.34
755	4085765	4085766.00	0.03973	5.39E-006	1.36E-004	135.79
756	3618638	3618639.00	0.02026	4.78E-006	2.36E-004	235.84
	promedio	3758505.80	0.02737	4.96E-006	2.07E-004	207.31
	Desv	614799.07	0.01156	8.12E-007	6.96E-005	69.62
						-
corrida	ion 91	menos contr_aire	masa	g CO2	g CO2/g muestra	ppm
752	476747	496748.00	0.01517	6.56E-007	4.32E-005	43.24
753	608203	608204.00	0.04293	8.03E-007	1.87E-005	18.71
754	790026	790027.00	0.01876	1.04E-006	5.56E-005	55.61
755	621086	671087.00	0.03973	8.86E-007	2.23E-005	22.30
756	536445	536446.00	0.02026	7.08E-007	3.50E-005	34.96
	promedio	620502.40	0.02737	8.19E-007	3.50E-005	34.96
	Desv	116005.68	0.01293	1.53E-007	1.52E-005	15.16

1000°C						
corrida	ion 32	menos contr_aire	masa	g CO2	g CO2/g muestra	ppm
1004	13530119.00	13175198.50	0.02076	1.74E-005	8.38E-004	837.99
1005	18341842.00	17986921.50	0.01905	2.38E-005	1.25E-003	1246.73
1006	16903735.00	16548814.50	0.02384	2.19E-005	9.17E-004	916.58
1007	18638256.00	18283335.50	0.02386	2.41E-005	1.01E-003	1011.80
1008	17458633.00	17103712.50	0.03269	2.26E-005	6.91E-004	690.85
promedio	17835616.50	17480696.00	0.02486	2.31E-005	9.66E-004	940.79
desv	798125.74	798125.74	0.00569	1.05E-006	2.30E-004	230.26
corrida	ion 44	menos contr_aire	masa	g CO2	g CO2/g muestra	ppm
1001	80852836.00	80809354.50	0.02894	1.07E-004	3.69E-003	3686.99
1003	45818878.00	45775396.50	0.02076	6.04E-005	2.91E-003	2911.48
1004	35008800.00	34965318.50	0.01733	4.62E-005	2.66E-003	2664.08
1005	51617062.00	51573580.50	0.01905	6.81E-005	3.57E-003	3574.71
1006	42632431.00	42588949.50	0.02384	5.62E-005	2.36E-003	2358.85
1007	51424183.00	51380701.50	0.02386	6.78E-005	2.84E-003	2843.40
promedio	51225698.33	51182216.83	0.02230	6.76E-005	3.01E-003	3006.59
desv	15773557.55	15773557.55	0.00416	2.08E-005	5.21E-004	521.20
corrida	ion 78	menos contr_aire	masa	g CO2	g CO2/g muestra	ppm
1001	1106093.00	1062611.50	0.02894	1.40E-006	4.85E-005	48.48
1004	211701.00	168219.50	0.02076	2.22E-007	1.07E-005	10.70
1005	593939.00	550457.50	0.01905	7.27E-007	3.82E-005	38.15
1006	392128.00	348646.50	0.02384	4.60E-007	1.93E-005	19.31
1007	341029.00	297547.50	0.02386	3.93E-007	1.65E-005	16.47
1008	468256.00	424774.50	0.03269	5.61E-007	1.72E-005	17.16
promedio	401410.60	357929.10	0.02404	4.73E-007	2.04E-005	20.36
desv	142528.36	142528.36	0.00526	1.88E-007	1.04E-005	10.45

corrida	ion 91	menos contr_aire	masa	g CO2	g CO2/g muestra	ppm
1004	156100.00	156100.00	0.02894	2.06E-007	7.12E-006	7.12
1005	125841.00	125841.00	0.01905	1.66E-007	8.72E-006	8.72
1006	79000.00	79000.00	0.02384	1.04E-007	4.38E-006	4.38
1007	55483.00	55483.00	0.02386	7.33E-008	3.07E-006	3.07
1008	87738.00	87738.00	0.03269	1.16E-007	3.54E-006	3.54
promedio	100832.40	100832.40	0.02568	1.33E-007	5.37E-006	5.37
desv	39951.92	39951.92	0.00525	5.28E-008	2.45E-006	2.45

Perclorato al 1%

ion 32	Área	menos con aire	masa	g CO2	g CO2/g muestra	ppm
201	5935560	5894197.20	3.07E-002	7.78E-006	0.00	253.68
202	6562980	6183731.60	3.03E-002	8.17E-006	0.00	269.56
203	8780883	8401634.60	3.11E-002	1.11E-005	0.00	356.59
204	6800119	6420870.60	3.38E-002	8.48E-006	0.00	250.83
205	6432993	6053744.60	3.13E-002	7.99E-006	0.00	255.14
206	5801586	5422337.60	2.01E-002	7.16E-006	0.00	356.03
prom	6719020	6396086.03	2.96E-002	8.45E-006	0.00	290.30
des	1078843	1037806.32	4.79E-003	1.37E-006	0.00	51.54
ion 44	Área	menos con aire	masa	g CO2	g CO2/g muestra	ppm
201	593556	552193.20	3.07E-002	7.29E-007	0.00	23.77
202						
202	369019	327656.20	3.03E-002	4.33E-007	0.00	14.28
202	369019 436890	327656.20 395527.20	3.03E-002 3.11E-002	4.33E-007 5.22E-007	0.00	14.28 16.79
202 203 204	369019 436890 352066	327656.20 395527.20 310703.20	3.03E-002 3.11E-002 3.38E-002	4.33E-007 5.22E-007 4.10E-007	0.00 0.00 0.00	14.28 16.79 12.14
202 203 204 205	369019 436890 352066 382079	327656.20 395527.20 310703.20 340716.20	3.03E-002 3.11E-002 3.38E-002 3.13E-002	4.33E-007 5.22E-007 4.10E-007 4.50E-007	0.00 0.00 0.00 0.00	14.28 16.79 12.14 14.36
202 203 204 205 206	369019 436890 352066 382079 317786	327656.20 395527.20 310703.20 340716.20 276423.20	3.03E-002 3.11E-002 3.38E-002 3.13E-002 2.01E-002	4.33E-007 5.22E-007 4.10E-007 4.50E-007 3.65E-007	0.00 0.00 0.00 0.00 0.00	14.28 16.79 12.14 14.36 18.15
202 203 204 205 206 207	369019 436890 352066 382079 317786 416466	327656.20 395527.20 310703.20 340716.20 276423.20 375103.20	3.03E-002 3.11E-002 3.38E-002 3.13E-002 2.01E-002 3.43E-002	4.33E-007 5.22E-007 4.10E-007 4.50E-007 3.65E-007 4.95E-007	0.00 0.00 0.00 0.00 0.00 0.00	14.28 16.79 12.14 14.36 18.15 14.45
202 203 204 205 206 207 prom	369019 436890 352066 382079 317786 416466 409695	327656.20 395527.20 310703.20 340716.20 276423.20 375103.20 368331.77	3.03E-002 3.11E-002 3.38E-002 3.13E-002 2.01E-002 3.43E-002 3.02E-002	4.33E-007 5.22E-007 4.10E-007 4.50E-007 3.65E-007 4.95E-007 4.86E-007	0.00 0.00 0.00 0.00 0.00 0.00 0.00	14.28 16.79 12.14 14.36 18.15 14.45 16.28
202 203 204 205 206 207 prom des	369019 436890 352066 382079 317786 416466 409695 90163	327656.20 395527.20 310703.20 340716.20 276423.20 375103.20 368331.77 90162.66	3.03E-002 3.11E-002 3.38E-002 3.13E-002 2.01E-002 3.43E-002 3.02E-002 4.72E-003	4.33E-007 5.22E-007 4.10E-007 4.50E-007 3.65E-007 4.95E-007 4.86E-007 1.19E-007	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	14.28 16.79 12.14 14.36 18.15 14.45 16.28 3.83

ion 78	Área	menos con aire	masa	g CO2	g CO2/g muestra	ppm
201	41445	41445.00	3.07E-002	5.47E-008	0.00	1.78
202	36297	36297.00	3.03E-002	4.79E-008	0.00	1.58
203	28288	28288.00	3.11E-002	3.74E-008	0.00	1.20
204	33150	33150.00	3.38E-002	4.38E-008	0.00	1.30
205	26453	26453.00	3.13E-002	3.49E-008	0.00	1.11
206	29619	29619.00	2.01E-002	3.91E-008	0.00	1.94
207	69991	69991.00	3.43E-002	9.24E-008	0.00	2.70
prom	37892	18945.94	1.51E-002	8.55E-007	0.83	1.66
des	15053	15052.85	4.72E-003	1.99E-008	0.00	0.55

350°C

ion 30	Área	menos_aire	masa	g CO2	g CO2/g muestra	ppm
352	27697	27697	0.02	3.66E-008	1.49E-006	1.49
354	18201	18201	0.03	2.40E-008	9.33E-007	0.93
355	12587	12587	0.03	1.66E-008	6.39E-007	0.64
356	26503	26503	0.03	3.50E-008	1.21E-006	1.21
prom	19097	19097	0.03	2.52E-008	9.28E-007	1.07
des	7001	7001	0.00	9.24E-009	2.87E-007	0.37

ion 32	Área	menos_aire	masa	g CO2	g CO2/g muestra	ppm
351	13728306	13349058	0.03	1.76E-005	6.59E-004	659.42
352	27373257	26994009	0.02	3.56E-005	1.45E-003	1450.68
353	11410298	11031050	0.03	1.46E-005	5.18E-004	518.35
354	8454315	8075067	0.03	1.07E-005	4.14E-004	413.75
355	25918706	25539458	0.03	3.37E-005	1.30E-003	1296.52
356	27018314	26639066	0.03	3.52E-005	1.22E-003	1219.64
prom	21089776	20710528	0.03	2.73E-005	1.03E-003	1028.92
des	7839512	7839512	0.00	1.04E-005	4.13E-004	413.24

ion 44	Área	menos_aire	masa	g CO2	g CO2/g muestra	ppm
351	5530857	5489494	0.03	7.25E-006	2.71E-004	271.17
352	9477626	9436263	0.02	1.25E-005	5.07E-004	507.11
353	3891984	3850621	0.03	5.08E-006	1.81E-004	180.94
354	4090071	4048708	0.03	5.35E-006	2.07E-004	207.45
355	3518187	3476824	0.03	4.59E-006	1.77E-004	176.50
356	13805721	13764358	0.03	1.82E-005	6.30E-004	630.19
prom	6719074	6677712	0.03	8.82E-006	3.29E-004	268.63
des	4108328	4108328	0.00	5.42E-006	1.93E-004	138.56

ion 50	Área	menos_aire	masa	g CO2	g CO2/g muestra	ppm
351	33086	33086	0.03	4.37E-008	1.63E-006	1.63
352	20600	20600	0.02	2.72E-008	1.11E-006	1.11
353	25441	25441	0.03	3.36E-008	1.20E-006	1.20
354	21579	21579	0.03	2.85E-008	1.11E-006	1.11
355	8847	8847	0.03	1.17E-008	4.49E-007	0.45
356	45287	45287	0.03	5.98E-008	2.07E-006	2.07
prom	25807	25807	0.03	3.41E-008	1.26E-006	1.26
des	12371	12371	0.00	1.63E-008	5.50E-007	0.25
ion 78	Área	menos_aire	masa	g CO2	g CO2/g muestra	ppm
351	1402806	1402807	0.03	1.85E-006	6.93E-005	69.30
353	1509537	1509538	0.03	1.99E-006	7.09E-005	70.93
354	1684129	1684130	0.03	2.22E-006	8.63E-005	86.29
355	975702	975703	0.03	1.29E-006	4.95E-005	49.53
356	1015742	1015743	0.03	1.34E-006	4.65E-005	46.50
prom	1317583	1317584	0.03	1.74E-006	6.45E-005	64.51
des	310828	310828	0.00	4.10E-007	1.65E-005	16.49

500°C						
ion 30	Área	menos_aire	masa	g CO2	g CO2/g muestra	ppm
501	60724	60724	0.03216	8.02E-008	2.49E-006	2.49
502	110780	110780	0.02266	1.46E-007	6.46E-006	6.46
503	30380	30380	0.02121	4.01E-008	1.89E-006	1.89
505	81657	81657	0.02360	1.08E-007	4.57E-006	4.57
506	12957	12957	0.02927	1.71E-008	5.85E-007	0.58
508	35028	35028	0.02322	4.63E-008	1.99E-006	1.99
prom	75822	75822	0.02316	1.00E-007	4.34E-006	4.34
des	38212	38212	0.00047	5.05E-008	2.24E-006	2.24
ion 32	Área	menos_aire	masa	g CO2	g CO2/g muestra	Ppm
501	16638432	16259184	0.03216	2.15E-005	6.68E-004	667.56
502	20685252	20306004	0.02266	2.68E-005	1.18E-003	1183.24
503	17409951	17030703	0.02121	2.25E-005	1.06E-003	1060.23
504	17294390	16915142	0.02568	2.23E-005	8.70E-004	869.74
505	18548943	18169695	0.02360	2.40E-005	1.02E-003	1016.59
506	25742150	25362902	0.02927	3.35E-005	1.14E-003	1144.16
508	17754913	17375665	0.02322	2.29E-005	9.88E-004	988.07
prom	19153433	18774185	0.02540	2.48E-005	9.90E-004	989.94
des	3185905	3185905	0.00395	4.21E-006	1.76E-004	175.68
ion 44	Área	menos_aire	masa	g CO2	g CO2/g muestra	ppm
501	30074869	30033506	0.03216	3.97E-005	1.23E-003	1233.10
502	33959184	33917821	0.02266	4.48E-005	1.98E-003	1976.41
503	25757381	25716018	0.02121	3.40E-005	1.60E-003	1600.93
505	31419911	31378548	0.02360	4.14E-005	1.76E-003	1755.62
506	27456770	27415407	0.02927	3.62E-005	1.24E-003	1236.75
508	28822819	28781456	0.02322	3.80E-005	1.64E-003	1636.66
prom	30346711	30305348	0.02618	4.00E-005	1.57E-003	1567.71
des	2497480	2497480	0.00428	3.30E-006	3.27E-004	327.34
ion 50	Área	menos_aire	masa	g CO2	g CO2/g muestra	ppm
501	48284	48284	0.03216	6.38E-008	1.98E-006	1.98
502	49695	49695	0.02266	6.56E-008	2.90E-006	2.90
503	45155	45155	0.02121	5.96E-008	2.81E-006	2.81
505	79595	79595	0.02360	1.05E-007	4.45E-006	4.45
506	52167	52167	0.02927	6.89E-008	2.35E-006	2.35
508	68074	68074	0.02322	8.99E-008	3.87E-006	3.87
prom	59563	59563	0.02618	7.86E-008	3.11E-006	3.11
						1.03
des	13721	13721	0.00428	1.81E-008	1.03E-006	

ion 78	Área	menos_aire	masa	g CO2	g CO2/g muestra	ppm
501	144409	144409	0.03216	1.91E-007	5.93E-006	5.93
502	135375	135375	0.02266	1.79E-007	7.89E-006	7.89
503	49191	49191	0.02121	6.50E-008	3.06E-006	3.06
504	47784	47785	0.02568	6.31E-008	2.46E-006	2.46
505	160005	160005	0.02360	2.11E-007	8.95E-006	8.95
506	75169	75169	0.02927	9.93E-008	3.39E-006	3.39
508	192953	192953	0.02322	2.55E-007	1.10E-005	10.97
prom	114984	114984	0.02540	1.52E-007	6.09E-006	6.70
des	57471	57471	0.00395	7.59E-008	3.29E-006	3.15

7	5	Λ	0	r	۱
1	J	υ		L	,

ion 30	área	menos_aire	masa	g CO2	g CO2/g muestra	ppm
751	728176	728176	0.02415	9.61E-007	3.98E-005	39.81
752	849222	849222	0.03016	1.12E-006	3.72E-005	37.18
754	1181936	1181936	0.02193	1.56E-006	7.12E-005	71.16
755	1225311	1225311	0.03036	1.62E-006	5.33E-005	53.29
756	1667507	1667507	0.02326	2.20E-006	9.47E-005	94.66
prom	1130430	1130430	0.02597	1.49E-006	5.92E-005	59.22
des	367761	367761	0.00399	4.86E-007	2.40E-005	15.56

ion 32	área	menos_aire	masa	g CO2	g CO2/g muestra	ppm
751	25402414	25023166	0.02415	3.30E-005	1.37E-003	1368.15
752	29414287	29035039	0.03016	3.83E-005	1.27E-003	1271.16
754	29126525	28747277	0.02193	3.80E-005	1.73E-003	1730.88
755	30542233	30162985	0.03036	3.98E-005	1.31E-003	1311.84
756	33279357	32900109	0.02326	4.34E-005	1.87E-003	1867.66
prom	29552963	29173715	0.02597	3.85E-005	1.51E-003	1509.94
des	2841338	2841338	0.00399	3.75E-006	2.71E-004	270.71

ion 44	Área	menos_aire	masa	g CO2	g CO2/g muestra	ppm
751	40370507	40329144	0.02415	5.33E-005	2.21E-003	2205.01
752	44950679	44909316	0.03016	5.93E-005	1.97E-003	1966.14
754	46865033	46823670	0.02193	6.18E-005	2.82E-003	2819.27
755	51631116	51589753	0.03036	6.81E-005	2.24E-003	2243.73
756	52567162	52525799	0.02326	6.94E-005	2.98E-003	2981.76
prom	47276899	47235537	0.02597	6.24E-005	2.44E-003	2443.18
des	5005629	5005629	0.00399	6.61E-006	4.35E-004	434.62

ion 50	Área	menos_aire	masa	g CO2	g CO2/g muestra	ppm
751	40742	40742	0.02415	5.38E-008	2.23E-006	2.23
752	45580	45580	0.03016	6.02E-008	2.00E-006	2.00
754	55472	55472	0.02193	7.32E-008	3.34E-006	3.34
755	65466	65466	0.03036	8.64E-008	2.85E-006	2.85
756	70901	70901	0.02326	9.36E-008	4.02E-006	4.02
prom	55632	55632	0.02597	7.35E-008	2.89E-006	2.89
des	12773	12773	0.00399	1.69E-008	8.26E-007	0.83
ion 78	área	menos_aire	masa	g CO2	g CO2/g muestra	ppm
ion 78 751	área 212002	menos_aire 212002	masa 0.02415	g CO2 2.80E-007	g CO2/g muestra 1.16E-005	ppm 11.59
ion 78 751 752	área 212002 149924	menos_aire 212002 149924	masa 0.02415 0.03016	g CO2 2.80E-007 1.98E-007	g CO2/g muestra 1.16E-005 6.56E-006	ppm 11.59 6.56
ion 78 751 752 754	área 212002 149924 177416	menos_aire 212002 149924 177416	masa 0.02415 0.03016 0.02193	g CO2 2.80E-007 1.98E-007 2.34E-007	g CO2/g muestra 1.16E-005 6.56E-006 1.07E-005	ppm 11.59 6.56 10.68
ion 78 751 752 754 755	área 212002 149924 177416 144409	menos_aire 212002 149924 177416 144409	masa 0.02415 0.03016 0.02193 0.03036	g CO2 2.80E-007 1.98E-007 2.34E-007 1.91E-007	g CO2/g muestra 1.16E-005 6.56E-006 1.07E-005 6.28E-006	ppm 11.59 6.56 10.68 6.28
ion 78 751 752 754 755 756	área 212002 149924 177416 144409 148331	menos_aire 212002 149924 177416 144409 148331	masa 0.02415 0.03016 0.02193 0.03036 0.02326	g CO2 2.80E-007 1.98E-007 2.34E-007 1.91E-007 1.96E-007	g CO2/g muestra 1.16E-005 6.56E-006 1.07E-005 6.28E-006 8.42E-006	ppm 11.59 6.56 10.68 6.28 8.42
ion 78 751 752 754 755 756 prom	área 212002 149924 177416 144409 148331 166416	menos_aire 212002 149924 177416 144409 148331 166416	masa 0.02415 0.03016 0.02193 0.03036 0.02326 0.02597	g CO2 2.80E-007 1.98E-007 2.34E-007 1.91E-007 1.96E-007 2.20E-007	g CO2/g muestra 1.16E-005 6.56E-006 1.07E-005 6.28E-006 8.42E-006 8.71E-006	ppm 11.59 6.56 10.68 6.28 8.42 8.71

1000°C						
ion 30	área	menos_aire	masa	g CO2	g CO2/g muestra	ppm
1001	1577057	1577057	0.02951	2.08E-006	7.06E-005	70.56
1003	2528279	2528279	0.02352	3.34E-006	1.42E-004	141.94
1004	1802115	1802115	0.03060	2.38E-006	7.78E-005	77.76
1005	1743786	1743786	0.03480	2.30E-006	6.62E-005	66.16
1006	1244367	1244367	0.03486	1.64E-006	4.71E-005	47.13
prom	1779121	1779121	0.03066	2.35E-006	8.07E-005	80.71
desv	471648	471648	0.00467	6.23E-007	3.61E-005	36.05
ion 32	Área	menos_aire	masa	g CO2	g CO2/g muestra	ppm
1001	29126553	28747305	0.02951	3.80E-005	1.29E-003	1286.28
1003	29121491	28742243	0.02352	3.80E-005	1.61E-003	1613.59
1004	28439998	28060750	0.03060	3.71E-005	1.21E-003	1210.84
1005	26291833	25912585	0.03480	3.42E-005	9.83E-004	983.20
1006	26601486	26222238	0.03486	3.46E-005	9.93E-004	993.23
prome	27916272	27537024	0.03066	3.64E-005	1.22E-003	1217.43
desv	1374690	1374690	0.00467	1.82E-006	2.58E-004	258.29
ion 44	Área	menos_aire	masa	g CO2	g CO2/g muestra	ppm
1001	53085109	53043746	0.02951	7.00E-005	2.37E-003	2373.42
1003	55004306	54962943	0.02352	7.26E-005	3.09E-003	3085.62
1004	55384733	55343370	0.03060	7.31E-005	2.39E-003	2388.10
1005	56512275	56470912	0.03480	7.46E-005	2.14E-003	2142.67
1006	56858582	56817219	0.03486	7.50E-005	2.15E-003	2152.10
prome	55369001	55327638	0.03066	7.31E-005	2.43E-003	2428.38
desv	1489575	1489575	0.00467	1.97E-006	3.86E-004	385.54
ion 50	Área	menos_aire	masa	g CO2	g CO2/g muestra	ppm
1001	27939	27939	0.02951	3.69E-008	1.25E-006	1.25
1003	31988	31988	0.02352	4.22E-008	1.80E-006	1.80
1004	31613	31613	0.03060	4.17E-008	1.36E-006	1.36
1005	27865	27865	0.03480	3.68E-008	1.06E-006	1.06
1006	44479	44479	0.03486	5.87E-008	1.68E-006	1.68
prome	32777	32777	0.03066	4.33E-008	1.43E-006	1.43
desv	6827	6827	0.00467	9.01E-009	3.06E-007	0.31

ion 78	Área	menos_aire	masa	g CO2	g CO2/g muestra	ppm
1001	164307	164307	0.02951	2.17E-007	7.35E-006	7.35
1003	185804	185804	0.02352	2.45E-007	1.04E-005	10.43
1004	170459	170459	0.03060	2.25E-007	7.36E-006	7.36
1005	150834	150834	0.03480	1.99E-007	5.72E-006	5.72
1006	192997	192997	0.03486	2.55E-007	7.31E-006	7.31
prome	172880	172880	0.03066	2.28E-007	7.63E-006	6.94
desv	16861	16861	0.00467	2.23E-008	1.71E-006	0.81

Perclorato 5%

200	corrida	masa	lon 32	menos contr_aire	g CO2	g CO2/g muestra	ppm
	Z1	0.03056	1346256	9.91E+005	1.31E-006	4.28E-005	42.83
	Z2	0.02921	1236177	8.81E+005	1.16E-006	3.98E-005	39.84
	Z3	0.02215	1197277	8.42E+005	1.11E-006	5.02E-005	50.21
	Z4	0.02788	902920	5.48E+005	7.24E-007	2.60E-005	25.95
	H1	0.03169	1018213	6.63E+005	8.76E-007	2.76E-005	27.64
				promedio	9.18E-007	3.81E-005	37.29
				Desve-esta	2.75E-007	1.72E-005	17.16
200	corrida	masa	ion44	menos contr_aire	g CO2	g CO2/g muestra	Ppm
	Z1	0.03056	527502	4.84E+005	6.39E-007	2.09E-005	20.91
	Z2	0.02921	748932	7.05E+005	9.31E-007	3.19E-005	31.89
	Z3	0.02215	745912	7.02E+005	9.27E-007	4.19E-005	41.87
	Z4	0.02788	821932	7.78E+005	1.03E-006	3.69E-005	36.87
	H1	0.03169	1267842	1.22E+006	1.62E-006	5.10E-005	51.01
				promedio	9.78E-007	3.94E-005	36.51
				Desve-esta	7.10E-008	3.54E-006	11.22
350°C							
---------	---------	----------	---------------------	------------	-----------------	---------	
corrida	masa	32	menos contr_aire	g CO2	g CO2/g muestra	ppm	
n18	0.01904	1882965	1528044.5	2.02E-006	1.06E-004	105.97	
N19	0.01522	43675939	43321018.5	5.72E-005	3.76E-003	3758.31	
N20	0.02034	2033841	1678920.5	2.22E-006	1.09E-004	108.99	
N21	0.02261	2117954	1763033.5	2.33E-006	1.03E-004	102.96	
N22	0.01734	2807772	2452851.5	3.24E-006	1.87E-004	186.78	
N23	0.01726	1368280	1013359.5	1.34E-006	7.75E-005	77.52	
N24	0.02068	2096954	1742033.5	2.30E-006	1.11E-004	111.23	
N26	0.02745	5313641	4958720.5	6.55E-006	2.39E-004	238.53	
N27	0.02949	62333085	61978164.5	8.18E-005	2.78E-003	2775.06	
N28	0.02165	15196273	14841352.5	1.96E-005	9.05E-004	905.16	
N25	0.02454	3064777	2709856.5	3.58E-006	1.46E-004	145.81	
				promedio	7.74E-004	134.72	
				Desve-esta	1.27E-003	53.36	
corrida	masa	lon 44	menos contr_aire	g CO2	g CO2/g muestra	ppm	
n18	0.01904	208216	166853.2	2.20E-007	1.16E-005	11.57	
N20	0.02034	191709	150346.2	1.99E-007	9.76E-006	9.76	
N21	0.02261	228068	186705.2	2.47E-007	1.09E-005	10.90	
N22	0.01734	235086	193723.2	2.56E-007	1.48E-005	14.75	
N23	0.01726	193261	151898.2	2.01E-007	1.16E-005	11.62	
N24	0.02068	327655	286292.2	3.78E-007	1.83E-005	18.28	
N25	0.02454	174171	132808.2	1.75E-007	7.15E-006	7.15	
				promedio	1.20E-005	12.00	
				Desve-esta	3.59E-006	3.59	

corrida	masa	lon 50	menos contr_aire	g CO2	g CO2/g muestra	ppm
n18	0.01904	30463	30464	4.02E-008	2.11E-006	2.11
N19	0.01522	104510	104511	1.38E-007	9.07E-006	9.07
N20	0.02034	33073	33074	4.37E-008	2.15E-006	2.15
N21	0.02261	32611	32612	4.31E-008	1.90E-006	1.90
N22	0.01734	65312	65313	8.62E-008	4.97E-006	4.97
N23	0.01726	59909	59910	7.91E-008	4.58E-006	4.58
N24	0.02068	70700	70701	9.34E-008	4.51E-006	4.51
N26	0.02745	99217	99218	1.31E-007	4.77E-006	4.77
N27	0.02949	606839	606840	8.01E-007	2.72E-005	27.17
N28	0.02165	150909	150910	1.99E-007	9.20E-006	9.20
N25	0.02454	12803	12804	1.69E-008	6.89E-007	0.69
				promedio	4.40E-006	4.40
				Desve-esta	2.90E-006	2.90

corrida	masa	lon 78	menos contr_aire	g CO2	g CO2/g muestra	ppm
n18	0.01904	210110	210111	2.77E-007	1.46E-005	14.57
N19	0.01522	283875	283876	3.75E-007	2.46E-005	24.63
N20	0.02034	163840	163841	2.16E-007	1.06E-005	10.64
N21	0.02261	59307	59308	7.83E-008	3.46E-006	3.46
N22	0.01734	86069	86070	1.14E-007	6.55E-006	6.55
N23	0.01726	76252	76253	1.01E-007	5.83E-006	5.83
N24	0.02068	84620	84621	1.12E-007	5.40E-006	5.40
N26	0.02745	139475	139476	1.84E-007	6.71E-006	6.71
N27	0.02949	172064	172065	2.27E-007	7.70E-006	7.70
N28	0.02165	83502	83503	1.10E-007	5.09E-006	5.09
N25	0.02454	96598	96599	1.28E-007	5.20E-006	5.20
				promedio	8.71E-006	9.66
				Desve-esta	6.11E-006	6.39

corrida	masa	lon 91	menos contr_aire	g CO2	g CO2 g CO2/g mue		Ppm
n18	0.01904	16142	16143	2.13E-008	1.12E-006	6	1.12
N19	0.01522	17332	17333	2.29E-008	1.50E-006	6	1.50
N20	0.02034	15645	15646	2.07E-008	1.02E-006	6	1.02
N21	0.02261	11200	11201	1.48E-008	6.54E-007	7	0.65
N22	0.01734	9712	9713	1.28E-008	7.40E-007	7	0.74
N23	0.01726	12277	12278	1.62E-008	9.39E-007	7	0.94
N24	0.02068	12591	12592	1.66E-008	8.04E-007	7	0.80
N26	0.02745	24068	24069	3.18E-008	1.16E-006	6	1.16
N27	0.02949	13836	13837	1.83E-008	6.20E-007	7	0.62
N28	0.02165	14107	14108	1.86E-008	8.60E-007	7	0.86
N25	0.02454	16849	16850	2.22E-008	9.07E-007	7	0.91
				promedio	9.38E-007	7	0.94
				Desve-esta	2.56E-007	7	0.26
500°C			menos				
corrida	masa	lon 30	contr_aire	g CO2	g CO2/g muestra	рр	m
C1	0.02815	377490	377491	4.98E-007	1.77E-005	17.	71
c2	0.03436	289112	289113	3.82E-007	1.11E-005	11.	11
c3	0.03417	281730	281731	3.72E-007	1.09E-005	10.	89
C4	0.03618	412639	412640	5.45E-007	1.51E-005	15.	06
c6	0.02769	452989	452990	5.98E-007	2.16E-005	21.	60
c7	0.02669	592443	592444	7.82E-007	2.93E-005	29.	31
N13	0.02618	424808	424809	5.61E-007	2.14E-005	21.	43
N15505.D	0.01961	398921	398922	5.27E-007	2.69E-005	26.	86
				promedio	1.68E+001	16.	81
				Desve-esta	5.30E+000	5.3	30
corrida	masa	lon 32	menos contr_aire	g CO2	g CO2/g muestra	ррі	m
C1	0.02815	34725104	34313238.5	4.53E-005	1.61E-003	1609	0.51
c2	0.03436	33053237	32641371.5	4.31E-005	1.25E-003	1254	.37
c3	0.03417	29666793	29254927.5	3.86E-005	1.13E-003	1130	.48

0.03618

0.02769

0.02669

0.02348

0.02618

0.02145

0.01961

C4 c6

c7

N12

N13

N14

N15505.D

37039532

38788987

61165818

18617962

30430033

23562547

31790804

36627666.5

38377121.5

60753952.5

18206096.5

30018167.5

23150681.5

31378938.5

4.84E-005

5.07E-005

8.02E-005

2.40E-005

3.96E-005

3.06E-005

4.14E-005

1.34E-003

1.83E-003

3.01E-003

1.02E-003

1.51E-003

1.43E-003

2.11E-003

1336.75

1830.03

3005.63

1023.83

1513.99

1425.10

2112.86

N16506.D	0.01845	16448895	16037029.5	2.12E-005	1.15E-003	1147.72
				promedio	1.58E-003	1580.93
				Desve-esta	5.72E-004	571.97

corrida	masa	lon 44	menos contr_aire	g CO2	g CO2/g muestra	ppm
C1	0.02815	50910712	50869349.2	6.72E-005	2.39E-003	2386.09
c2	0.03436	49195589	49154226.2	6.49E-005	1.89E-003	1888.93
c3	0.03417	49349512	49308149.2	6.51E-005	1.91E-003	1905.39
C4	0.03618	55520928	55479565.2	7.33E-005	2.02E-003	2024.76
c6	0.02769	53999518	53958155.2	7.12E-005	2.57E-003	2573.02
c7	0.02669	59205999	59164636.2	7.81E-005	2.93E-003	2927.00
N13	0.02618	51997632	51956269.2	6.86E-005	2.62E-003	2620.46
N14	0.02145	23801806	23760443.2	3.14E-005	1.46E-003	1462.64
N15505.D	0.01961	46970979	46929616.2	6.20E-005	3.16E-003	3159.94
N16506.D	0.01845	19616196	19574833.2	2.58E-005	1.40E-003	1400.91
				promedio	2.23E-003	2234.91
				Desve-esta	5.95E-004	594.88
corrida	masa	lon 50	menos contr_aire	g CO2	g CO2/g muestra	ppm
C1	0.02815	147217	147217	1.94E-007	6.91E-006	6.91
c2	0.03436	170867	170867	2.26E-007	6.57E-006	6.57
c3	0.03417	135783	135783	1.79E-007	5.25E-006	5.25
C4	0.03618	195117	195117	2.58E-007	7.12E-006	7.12
c6	0.02769	127488	127488	1.68E-007	6.08E-006	6.08
c7	0.02669	133285	133285	1.76E-007	6.59E-006	6.59
N11	0.02686	152075	152075	2.01E-007	7.48E-006	7.48
N12	0.02348	292682	292682	3.86E-007	1.65E-005	16.46
N13	0.02618	310386	310386	4.10E-007	1.57E-005	15.65
N14	0.02145	371562	371562	4.91E-007	2.29E-005	22.87
N15505.D	0.01961	127607	127607	1.68E-007	8.59E-006	8.59
N16506.D	0.01845	97788	97788	1.29E-007	7.00E-006	7.00
				promedio	9.71E-006	9.71
				Desve-esta	5.52E-006	5.52

corrida	masa	ion78	menos contr_aire	g CO2	g CO2/g muestra	ppm
C1	0.02815	368109	368110	4.86E-007	1.73E-005	17.27
c2	0.03436	256021	256022	3.38E-007	9.84E-006	9.84
c3	0.03417	188137	188138	2.48E-007	7.27E-006	7.27
C4	0.03618	247912	247913	3.27E-007	9.05E-006	9.05
c6	0.02769	195212	195213	2.58E-007	9.31E-006	9.31
c7	0.02669	228628	228629	3.02E-007	1.13E-005	11.31
N11	0.02686	91239	91240	1.20E-007	4.49E-006	4.49
N12	0.02348	159591	159592	2.11E-007	8.97E-006	8.97
N13	0.02618	171655	171656	2.27E-007	8.66E-006	8.66
N14	0.02145	102743	102744	1.36E-007	6.32E-006	6.32
N15505.D	0.01961	382646	382647	5.05E-007	2.58E-005	25.76
N16506.D	0.01845	113659	113660	1.50E-007	8.13E-006	8.13
				promedio	1.11E-005	10.53
				Desve-esta	5.65E-006	5.71

corrida	masa	lon 84	menos contr_aire	g CO2	g CO2/g muestra	ppm
C1	0.02815	45625	45625	6.02E-008	2.14E-006	2.14
c2	0.03436	50386	50386	6.65E-008	1.94E-006	1.94
c3	0.03417	39275	39275	5.19E-008	1.52E-006	1.52
C4	0.03618	59725	59725	7.89E-008	2.18E-006	2.18
c6	0.02769	43031	43031	5.68E-008	2.05E-006	2.05
c7	0.02669	23046	23046	3.04E-008	1.14E-006	1.14
N12	0.02348	30164	30164	3.98E-008	1.70E-006	1.70
N13	0.02618	34305	34305	4.53E-008	1.73E-006	1.73
N14	0.02145	25366	25366	3.35E-008	1.56E-006	1.56
N15505.D	0.01961	38427	38427	5.07E-008	2.59E-006	2.59
N16506.D	0.01845	14810	14810	1.96E-008	1.06E-006	1.06
				promedio	1.78E-006	1.78
				Desve-esta	4.58E-007	0.46

corrida	masa	lon 112	menos contr_aire	g CO2	g CO2/g muestra	ppm
C1	0.02815	38137	38138	5.04E-008	1.79E-006	1.79
c2	0.03436	35134	35135	4.64E-008	1.35E-006	1.35
c3	0.03417	21471	21472	2.84E-008	8.30E-007	0.83
C4	0.03618	29839	29840	3.94E-008	1.09E-006	1.09
c6	0.02769	19919	19920	2.63E-008	9.50E-007	0.95
c7	0.02669	84022	84023	1.11E-007	4.16E-006	4.16
N11	0.02686	64780	64781	8.55E-008	3.18E-006	3.18
N12	0.02348	67432	67433	8.90E-008	3.79E-006	3.79
N13	0.02618	164001	164002	2.17E-007	8.27E-006	8.27
N14	0.02145	63557	63558	8.39E-008	3.91E-006	3.91
N15505.D	0.01961	47451	47452	6.27E-008	3.20E-006	3.20
N16506.D	0.01845	16883	16884	2.23E-008	1.21E-006	1.21
				promedio	2.31E-006	2.31
				Desve-esta	1.33E-006	1.33

corrida	masa	lon 91	menos contr_aire	g CO2	g CO2/g muestra	ppm
C1	0.02815		33115	4.37E-008	1.55E-006	1.55
c2	0.03436		51513	6.80E-008	1.98E-006	1.98
c3	0.03417		17297	2.28E-008	6.68E-007	0.67
C4	0.03618		24113	3.18E-008	8.80E-007	0.88
c6	0.02769		12974	1.71E-008	6.19E-007	0.62
c7	0.02669		6310	8.33E-009	3.12E-007	0.31
N11	0.02686		23519	3.11E-008	1.16E-006	1.16
N12	0.02348		14760	1.95E-008	8.30E-007	0.83
N13	0.02618		20455	2.70E-008	1.03E-006	1.03
N14	0.02145		7895	1.04E-008	4.86E-007	0.49
N15505.D	0.01961		28719	3.79E-008	1.93E-006	1.93
N16506.D	0.01845		5011	6.62E-009	3.59E-007	0.36
				promedio	9.80E-007	0.98
				Desve-esta	6.00E-007	0.60

Corrida	masa	lon 30	menos contr_aire	g CO2	g CO2/g muestra	ppm
c10	0.01208	441128	441128	5.82E-007	4.82E-005	48.22
C12	0.02973	943949	943949	1.25E-006	4.19E-005	41.92
C15	0.02416	956755	956755	1.26E-006	5.23E-005	52.29
C5	0.03136	802231	802231	1.06E-006	3.38E-005	33.78
C8	0.02624	569925	569925	7.53E-007	2.87E-005	28.68
C9	0.01909	616274	616274	8.14E-007	4.26E-005	42.63
				promedio	4.13E-005	41.25
				Desve-esta	8.79E-006	8.79
Corrida	masa	lon 32	menos contr_aire	g CO2	g CO2/g muestra	ppm
c10	0.01208	35986236	35574370.5	4.70E-005	3.89E-003	3888.48
C12	0.02973	56333032	55921166.5	7.38E-005	2.48E-003	2483.65
C15	0.02416	60097520	59685654.5	7.88E-005	3.26E-003	3261.99
C5	0.03136	58594190	58182324.5	7.68E-005	2.45E-003	2449.76
C8	0.02624	63541248	63129382.5	8.34E-005	3.18E-003	3176.70
C9	0.01909	48119527	47707661.5	6.30E-005	3.30E-003	3299.83
				promedio	3.09E-003	3093.40
				Desve-esta	5.47E-004	547.03
Corrida	masa	lon 44	menos contr_aire	g CO2	g CO2/g muestra	ppm
c10	0.01208	37878872	37837509.2	5.00E-005	4.14E-003	4135.85
C12	0.02973	57010383	56969020.2	7.52E-005	2.53E-003	2530.19
C15	0.02416	57905718	57864355.2	7.64E-005	3.16E-003	3162.45
C5	0.03136	46808213	46766850.2	6.18E-005	1.97E-003	1969.12
C8	0.02624	59626663	59585300.2	7.87E-005	3.00E-003	2998.36
C9	0.01909	44012615	43971252.2	5.81E-005	3.04E-003	3041.39
				promedio	2.97E-003	2972.89
				Desve-esta	7.21E-004	720.74

Corrida	ma	asa	lor	า 50	meno	os contr_aire		g CO2	g	CO2/g muestra	ppm
c10	0.01	208	70	741		70742		9.34E-008		7.73E-006	7.73
C12	0.02	2973	57	106		57107		7.54E-008		2.54E-006	2.54
C15	0.02	2416	59	557		59558		7.86E-008		3.26E-006	3.26
C5	0.03	3136	98	153		98154		1.30E-007		4.13E-006	4.13
C8	0.02	2624	255	5260	1	255261		3.37E-007		1.28E-005	12.84
C9	0.01	909	98	775		98776		1.30E-007		6.83E-006	6.83
								promedio		6.22E-006	6.22
								Desve-esta		3.83E-006	3.83
Corrida	ma	asa	ic	on78	C	menos contr_aire		g CO2	g	CO2/g muestra	ppm
c10	0.01	208	146146			146147		1.93E-007		1.60E-005	15.97
C15	0.02	2416	22	4517		224518		2.96E-007		1.23E-005	12.27
C5	0.03	3136	55	3629		553630		7.31E-007		2.33E-005	23.31
C8	0.02	2624	44	0992		440993		5.82E-007		2.22E-005	22.19
C9	0.01	909	14	8658		148659	1.96E-007			1.03E-005	10.28
								promedio		1.70E-005	17.01
								Desve-esta		6.69E-006	6.69
Corrida	ma	asa	lon 84		с	menos ontr_aire		g CO2	g	CO2/g muestra	ppm
c10	0.01	208						0.00E+000		0.00E+000	0.00
C12	0.02	2973	11	763		11764		1.55E-008		5.22E-007	0.52
C15	0.02	2416	16	6045		16046	2.12E-008			8.77E-007	0.88
C5	0.03	3136	33	8635		33636		4.44E-008		1.42E-006	1.42
C8	0.02	2624	14	793		14794		1.95E-008		7.44E-007	0.74
C9	0.01	909	11	663		11664		1.54E-008		8.07E-007	0.81
								promedio		8.73E-007	0.87
								Desve-esta		3.31E-007	0.33
corrida	a	ma	isa	lon 91		menos conti	r_aire	g CO2		g CO2/g muestra	ppm
c10		0.01	208	2248	35	22486		2.97E-0)08	2.46E-006	2.46
C12		0.02	973	4413	32	44133		5.83E-0	008	1.96E-006	1.96
C15		0.02	416	3740)5	37406		4.94E-0	008	2.04E-006	2.04
C5		0.03136 1415		1415	55	14156		1.87E-0	008	5.96E-007	0.60
C8		0.02624 1905		54	19055		2.52E-0	008	9.59E-007	0.96	
C9		0.01	909	1196	67	11968		1.58E-0)08	8.28E-007	0.83
								promedio		1.47E-006	1.47
								Desve-esta		7.72E-007	0.77

Corrida	masa	lon 112	menos contr_aire	g CO2	g CO2/g muestra	ppm
c10	0.01208	12129	12130	1.60E-008	1.33E-006	1.33
C12	0.02973	34830	34831	4.60E-008	1.55E-006	1.55
C15	0.02416	44419	44420	5.87E-008	2.43E-006	2.43
C5	0.03136	108045	108046	1.43E-007	4.55E-006	4.55
C8	0.02624	87746	87747	1.16E-007	4.42E-006	4.42
C9	0.01909	28175	28176	3.72E-008	1.95E-006	1.95
				promedio	2.70E-006	2.70
				Desve-esta	1.43E-006	1.43

corrida	masa	lon 30	menos contr_aire	g CO2	g CO2/g muestra	ppm
N29	0.02539	1154889	1154890	1.52E-006	6.01E-005	60.06
N30	0.02252	1129782	1129783	1.49E-006	6.62E-005	66.24
N31	0.02571	1199388	1199389	1.58E-006	6.16E-005	61.60
N33	0.01646	546902	546903	7.22E-007	4.39E-005	43.87
N35	0.02145	595750	595751	7.87E-007	3.67E-005	36.67
PYMGN36.D	0.02103	494820	494821	6.53E-007	3.11E-005	31.07
PYMGN37.D	0.01791	774230	774231	1.02E-006	5.71E-005	57.08
				promedio	5.79E-005	50.94
				Desve-esta	9.74E-006	9.74
corrida	masa	lon 32	menos contr_aire	g CO2	g CO2/g muestra	ppm
N29	0.02539	61376558	60964692.5	8.05E-005	3.17E-003	3170.48
N30	0.02252	59561030	59149164.5	7.81E-005	3.47E-003	3468.08
N31	0.02571	60710554	60298688.5	7.96E-005	3.10E-003	3096.81
N33	0.01646	23955668	23543802.5	3.11E-005	1.89E-003	1888.67
N35	0.02145	5830168	5418302.5	7.15E-006	3.34E-004	333.54
PYMGN36.D	0.02103	5781842	5369976.5	7.09E-006	3.37E-004	337.16
PYMGN37.D	0.01791	5235867	4824001.5	6.37E-006	3.56E-004	355.65
				promedio	2.91E-003	2906.01
				Desve-esta	6.97E-004	696.96

corrida	masa	lon 44	menos contr_aire	g CO2	g CO2/g muestra	ppm
N29	0.02539	61242926	61201563.	2 8.08E-005	3.18E-003	3182.80
N30	0.02252	58481143	3 58439780.	2 7.72E-005	3.43E-003	3426.49
N31	0.02571	60435938	60394575.	2 7.97E-005	3.10E-003	3101.74
N33	0.01646	23855631	23814268.	2 3.14E-005	1.91E-003	1910.37
N35	0.02145	4491015	4449652.2	2 5.88E-006	2.74E-004	273.91
PYMGN36	.D 0.02103	5020650	4979287.2	e 6.57E-006	3.13E-004	312.63
PYMGN37	.D 0.01791	3924980	3883617.2	2 5.13E-006	2.86E-004	286.32
				promedio	2.91E-003	2905.35
				Desve-esta	6.78E-004	677.53
corrida	masa	lon 50	menos contr_aire	g CO2	g CO2/g muestra	ppm
N29	0.02539	366973	366974	4.85E-007	1.91E-005	19.08
N30	0.02252	243605	243606	3.22E-007	1.43E-005	14.28
N31	0.02571	187687	187688	2.48E-007	9.64E-006	9.64
N33	0.01646	524235	524236	6.92E-007	4.21E-005	42.05
N35	0.02145	155766	55767	7.36E-008	3.43E-006	3.43
PYMGN36	.D 0.02103	156140	56141	7.41E-008	3.52E-006	3.52
				promedio	1.43E-005	15.34
				Desve-esta	4.72E-006	14.44
corrida	masa	ion78	menos contr_aire	g CO2	g CO2/g muestra	ppm
N29	0.02539	87777	87778	1.16E-007	4.56E-006	4.56
N30	0.02252	61116	61117	8.07E-008	3.58E-006	3.58
N31	0.02571	58003	58004	7.66E-008	2.98E-006	2.98
N33	0.01646	43781	43782	5.78E-008	3.51E-006	3.51
N35	0.02145	43678	43679	5.77E-008	2.69E-006	2.69
				promedio	3.47E-006	3.47
				Desve-esta	7.18E-007	0.72
corrida	masa	lon 91	menos contr_aire	g CO2	g CO2/g muestra	ppm
N29	0.02539	4704	4705	6.21E-009	2.45E-007	0.24
N30	0.02252	3800	3801	5.02E-009	2.23E-007	0.22
N31	0.02571	3973	3974	5.25E-009	2.04E-007	0.20
N33	0.01646	3979	3980	5.26E-009	3.19E-007	0.32
N35	0.02145			0.00E+000	0.00E+000	0.00
			promedio	5.43E-009	2.48E-007	0.25
			Desv-estandar	5.31E-010	5.05E-008	0.05

Perclorato al 10%

200°C

corrida	masa	ion 32	menos contr_aire	g CO2	g CO2/g muestra	ppm
E39	0.02147	125859	1.26E+005	1.66E-007	7.74E-006	7.74
E40	0.02221	10853297	1.09E+007	1.43E-005	6.46E-004	645.53
E45	0.02140	153602	1.54E+005	2.03E-007	9.48E-006	9.48
E43	0.02233	1645933	1.65E+006	2.17E-006	9.74E-005	97.37
E44	0.01781	125859	1.26E+005	1.66E-007	9.34E-006	9.34
O3	0.02064	151255	1.51E+005	2.00E-007	9.68E-006	9.68
O2	0.01626	1756364	1.76E+006	2.32E-006	1.43E-004	142.69
			promedio	2.87E-006	1.30E-004	129.86
			desv estandar	5.67E-006	2.55E-004	255.09
corrida	masa	ion 44	menos contr_aire	g CO2	g CO2/g muestra	ppm
E39	0.02147	104963	1.05E+005	1.39E-007	6.46E-006	6.46
E40	0.02221	907312	9.07E+005	1.20E-006	5.40E-005	53.97
E45	0.02140	234564	2.35E+005	3.10E-007	1.45E-005	14.48
E43	0.02233	86588	8.66E+004	1.14E-007	5.12E-006	5.12
E44	0.01781	104964	1.05E+005	1.39E-007	7.79E-006	7.79
			promedio	3.80E-007	1.76E-005	17.56
			desv estandar	4.64E-007	2.07E-005	20.67

corrida	masa	ion 32	menos contr_aire	g CO2	g CO2/g muestra	ppm
E30	0.01612	22974863	6.85E+006	9.04E-006	5.61E-004	560.94
E31	0.01830	30605912	1.45E+007	1.91E-005	1.04E-003	1044.97
e33	0.01873	25880258	9.75E+006	1.29E-005	6.88E-004	687.69
E34	0.01989	27328181	1.12E+007	1.48E-005	7.44E-004	743.75
E36	0.01925	27362259	1.12E+007	1.48E-005	7.71E-004	770.81
E37	0.02307	26436213	1.03E+007	1.36E-005	5.90E-004	590.15
E38	0.02170	31726590	1.56E+007	2.06E-005	9.49E-004	949.47
			promedio	1.50E-005	7.64E-004	763.97
			desv estandar	3.88E-006	1.78E-004	178.46

corrida	masa	ion 44	menos contr_aire	g CO2	g CO2/g muestra	ppm
E30	0.01612	122416	78934.5	1.04E-007	6.47E-006	6.47
E31	0.01830	197426	153944.5	2.03E-007	1.11E-005	11.11
e33	0.01873	140377	96895.5	1.28E-007	6.83E-006	6.83
E34	0.01989	126931	83449.5	1.10E-007	5.54E-006	5.54
E36	0.01925	136141	92659.5	1.22E-007	6.36E-006	6.36
E37	0.02307	148018	104536.5	1.38E-007	5.99E-006	5.99
E38	0.02170	993550	950068.5	1.26E-006	5.78E-005	57.84
			promedio	2.94E-007	1.43E-005	14.31
			desv estandar	4.25E-007	1.93E-005	19.29
corrida	masa	lon 50	menos contr aire	g CO2	g CO2/g muestra	ppm
E30	0.01612	9933	9934	1.31E-008	8.14E-007	0.81
E31	0.01830	9941	9942	1.31E-008	7.18E-007	0.72
e33	0.01873	9738	9739	1.29E-008	6.87E-007	0.69
E34	0.01989	12571	12572	1.66E-008	8.35E-007	0.83
E37	0.02307	29282	29283	3.87E-008	1.68E-006	1.68
E38	0.02170	78801	78802	1.04E-007	4.80E-006	4.80
			promedio	3.31E-008	1.59E-006	1.59
			desv estandar	3.62E-008	1.62E-006	1.62
corrida	masa	lon 78	menos contr_aire	g CO2	g CO2/g muestra	ppm
E30	0.01612	20189	20190	2.67E-008	1.65E-006	1.65
E31	0.01830	16471	16472	2.18E-008	1.19E-006	1.19
e33	0.01873	13556	13557	1.79E-008	9.56E-007	0.96
E34	0.01989	50307	50308	6.65E-008	3.34E-006	3.34
E37	0.02307	70309	70310	9.29E-008	4.03E-006	4.03
E38	0.02170	42606	42607	5.63E-008	2.59E-006	2.59
			promedio	4.70E-008	2.29E-006	2.29
			desv estandar	2.99E-008	1.23E-006	1.23

corrida	masa	lon 112	menos contr_aire	g CO2	g CO2/g muestra	ppm
E30	0.01612	7051	7052	9.32E-009	5.78E-007	0.58
E34	0.01989	37446	37447	4.95E-008	2.49E-006	2.49
E37	0.02307	56574	56575	7.47E-008	3.24E-006	3.24
E38	0.02170	31461	31462	4.16E-008	1.92E-006	1.92
			promedio	4.38E-008	2.05E-006	2.05
			desv estandar	2.70E-008	1.12E-006	1.12

corrida	masa	ion30	menos contr_aire	g CO2	g CO2/g muestra	ppm
E1	0.02740	454949	454950	6.01E-007	2.19E-005	21.93
E3	0.02701	354242	354243	4.68E-007	1.73E-005	17.33
E4	0.02979	357630	357631	4.72E-007	1.59E-005	15.86
E5	0.03129	287538	287539	3.80E-007	1.21E-005	12.14
PYMG10_1	0.02154	755172	755173	9.98E-007	4.63E-005	46.31
			promedio	5.84E-007	2.27E-005	22.71
			desv estandar	2.44E-007	1.37E-005	13.65
corrida	masa	lon 32	menos contr_aire	g CO2	g CO2/g muestra	ppm
E1	0.02740	34128940	3.38E+007	4.46E-005	1.63E-003	1628.31
E2	0.02862	5073800	4.72E+006	6.23E-006	2.18E-004	217.81
E3	0.02701	33924464	3.36E+007	4.43E-005	1.64E-003	1641.82
E4	0.02979	46542905	4.62E+007	6.10E-005	2.05E-003	2048.15
E5	0.03129	33311426	3.30E+007	4.35E-005	1.39E-003	1391.36
PYMGE25.	0.03129	7390611	7.04E+006	9.29E-006	2.97E-004	297.03
PYMG10_1	0.02154	34591041	3.42E+007	4.52E-005	2.10E-003	2099.63
			promedio	3.63E-005	1.76E-003	1761.85
			desv estandar	2.05E-005	1.14E-003	1143.24

corrida	masa	lon 44	menos contr_aire	g CO2	g CO2/g muestra	ppm
E1	0.02740	42014832	4.20E+007	5.54E-005	2.02E-003	2023.52
E2	0.02862	516144	4.73E+005	6.24E-007	2.18E-005	21.82
E3	0.02701	38701930	3.87E+007	5.11E-005	1.89E-003	1890.71
E4	0.02979	43147750	4.31E+007	5.69E-005	1.91E-003	1911.41
E5	0.03129	38569414	3.85E+007	5.09E-005	1.63E-003	1626.49
PYMGE25.	0.03129	1767422	1.72E+006	2.28E-006	7.28E-005	72.78
PYMG10_1	0.02154	38829223	3.88E+007	5.12E-005	2.38E-003	2378.65
			promedio	3.84E-005	1.97E-003	1966.15
			desv estandar	2.53E-005	1.12E-003	1119.73
corrida	masa	lon 50	menos contr_aire	g CO2	g CO2/g muestra	ppm
E1	0.02740	262264		3.46E-007	1.26E-005	12.64
E2	0.02862	100124		1.32E-007	4.62E-006	4.62
E3	0.02701	201753		2.67E-007	9.87E-006	9.87
E4	0.02979	203433		2.69E-007	9.02E-006	9.02
E5	0.03129	212539		2.81E-007	8.97E-006	8.97
PYMGE25.	0.03129	136669		1.81E-007	5.77E-006	5.77
PYMG10_1	0.02154	228048		3.01E-007	1.40E-005	13.99
			promedio	2.54E-007	1.09E-005	10.90
			desv estandar	7.31E-008	7.86E-006	7.86
corrida	masa	lon 78	menos contr_aire	g CO2	g CO2/g muestra	ppm
E1	0.02740	172085		2.27E-007	8.30E-006	8.30
E3	0.02701	153558		2.03E-007	7.51E-006	7.51
E4	0.02979	172250		2.28E-007	7.64E-006	7.64
E5	0.03129	147219		1.94E-007	6.22E-006	6.22
PYMG10_1	0.02154	347922		4.60E-007	2.13E-005	21.34
			promedio	2.62E-007	1.02E-005	10.20
			desv estandar	1.11E-007	6.27E-006	6.27

corrida	masa	lon 84	menos contr_aire	g CO2	g CO2/g muestra	ppm
E1	0.02740	47366		6.26E-008	2.28E-006	2.28
E3	0.02701	36384		4.81E-008	1.78E-006	1.78
E4	0.02979	39594		5.23E-008	1.76E-006	1.76
E5	0.03129	34369		4.54E-008	1.45E-006	1.45
PYMG10_1	0.02154	39004		5.15E-008	2.39E-006	2.39
			promedio	5.20E-008	1.93E-006	1.93
			desv estandar	6.54E-009	3.94E-007	0.39
corrida	masa	lon 112	menos contr_aire	g CO2	g CO2/g muestra	ppm
E1	0.02740	22971		3.03E-008	1.11E-006	1.11
E2	0.02862	48569		6.42E-008	2.24E-006	2.24
E3	0.02701	22090		2.92E-008	1.08E-006	1.08
E4	0.02979	50840		6.72E-008	2.25E-006	2.25
E5	0.03129	24304		3.21E-008	1.03E-006	1.03
PYMGE25.	0.03129	12539		1.66E-008	5.29E-007	0.53
PYMG10_1	0.02154	31106		4.11E-008	1.91E-006	1.91
			promedio	4.19E-008	1.59E-006	1.45
			desv estandar	1.76E-008	5.87E-007	0.59

corrida	masa	lon 30	menos contr_aire	g CO2	g CO2/g muestra	ppm
E6	0.01706	377652	377653	4.99E-007	2.92E-005	29.24
E9	0.02137	451460	451461	5.96E-007	2.79E-005	27.91
E10	0.02690	391541	391542	5.17E-007	1.92E-005	19.23
E11	0.01893	582386	582387	7.69E-007	4.06E-005	40.64
E13	0.02611	364346	364347	4.81E-007	1.84E-005	18.43
E14	0.02305	488041	488042	6.45E-007	2.80E-005	27.97
E15	0.01393	641554	641555	8.47E-007	6.08E-005	60.84
E16	0.01984	488041	488042	6.45E-007	3.25E-005	32.50
E17	0.01892	554711	554712	7.33E-007	3.87E-005	38.73
PYMGE26	0.01947	518059	518060	6.84E-007	3.51E-005	35.15
PYMGE27	0.02207	594457	594458	7.85E-007	3.56E-005	35.58
E18	0.02081	590294	590295	7.80E-007	3.75E-005	37.47
			promedio	6.65E-007	3.36E-005	33.64
			desv estandar	1.23E-007	1.16E-005	11.59

corrida	masa	lon 32	menos contr_aire	g CO2	g CO2/g muestra	ppm
E6	0.01706	56694232	5.63E+007	7.44E-005	4.36E-003	4362.51
E9	0.02137	29032376	2.87E+007	3.79E-005	1.77E-003	1772.72
E10	0.02690	60977956	6.06E+007	8.01E-005	2.98E-003	2977.07
E11	0.01893	59496002	5.91E+007	7.81E-005	4.13E-003	4127.08
E13	0.02611	28568738	2.82E+007	3.73E-005	1.43E-003	1427.44
E14	0.02305	58560848	5.82E+007	7.69E-005	3.34E-003	3335.80
E15	0.01393	66302235	6.59E+007	8.71E-005	6.25E-003	6253.89
E16	0.01984	58560848	5.82E+007	7.69E-005	3.88E-003	3875.52
E17	0.01892	62619620	6.23E+007	8.23E-005	4.35E-003	4347.35
PYMGE26	0.01947	26644784	2.63E+007	3.47E-005	1.78E-003	1783.72
PYMGE27	0.02207	32038959	3.17E+007	4.19E-005	1.90E-003	1896.45
E18	0.02081	29445420	2.91E+007	3.84E-005	1.85E-003	1846.64
			promedio	6.22E-005	3.17E-003	3167.18
			desv estandar	2.16E-005	1.48E-003	1479.58
corrida	masa	lon 44	menos contr_aire	g CO2	g CO2/g muestra	ppm
E6	0.01706	44276872	4.42E+007	5.84E-005	3.43E-003	3425.12
E9	0.02137	42280372	4.22E+007	5.58E-005	2.61E-003	2610.91
E10	0.02690	45824533	4.58E+007	6.05E-005	2.25E-003	2248.21
E11	0.01893	43838406	4.38E+007	5.79E-005	3.06E-003	3056.17
E13	0.02611	45859767	4.58E+007	6.05E-005	2.32E-003	2318.02
E14	0.02305	42455689	4.24E+007	5.60E-005	2.43E-003	2430.66
E15	0.01393	45813154	4.58E+007	6.05E-005	4.34E-003	4340.41
E16	0.01984	42455689	4.24E+007	5.60E-005	2.82E-003	2823.93
E17	0.01892	43835144	4.38E+007	5.78E-005	3.06E-003	3057.56
PYMGE26	0.01947	48651221	4.86E+007	6.42E-005	3.30E-003	3297.95
PYMGE27	0.02207	52741094	5.27E+007	6.96E-005	3.15E-003	3154.23
E18	0.02081	46853860	4.68E+007	6.18E-005	2.97E-003	2971.49
			promedio	5.99E-005	2.98E-003	2977.89
			desv estandar	3.99E-006	5.74E-004	574.32

corrida	masa	lon 50	menos contr_aire	g CO2	g CO2/g muestra	ppm
E6	0.01706	420463	4.20E+005	5.55E-007	3.26E-005	32.56
E9	0.02137	587019	5.87E+005	7.75E-007	3.63E-005	36.29
E10	0.02690	602989	6.03E+005	7.97E-007	2.96E-005	29.61
E11	0.01893	578281	5.78E+005	7.64E-007	4.04E-005	40.35
E13	0.02611	523568	5.24E+005	6.92E-007	2.65E-005	26.49
E14	0.02305	389442	3.89E+005	5.14E-007	2.23E-005	22.32
E15	0.01393	361142	3.61E+005	4.77E-007	3.42E-005	34.25
E16	0.01984	389442	3.89E+005	5.14E-007	2.59E-005	25.93
E17	0.01892	681146	6.81E+005	9.00E-007	4.76E-005	47.56
PYMGE26	0.01947	339039	3.39E+005	4.48E-007	2.30E-005	23.00
PYMGE27	0.02207	132894	1.33E+005	1.76E-007	7.95E-006	7.95
E18	0.02081	140746	1.41E+005	1.86E-007	8.93E-006	8.93
			promedio	6.01E-007	2.97E-005	29.66
			desv estandar	2.07E-007	1.05E-005	10.49
corrida	masa	lon 78	menos contr_aire	g CO2	g CO2/g muestra	ppm
E6	0.01706	100700	100700			
F9		188728	188729	2.49E-007	1.46E-005	14.61
20	0.02137	178344	188729 178345	2.49E-007 2.36E-007	1.46E-005 1.10E-005	14.61 11.02
E10	0.02137 0.02690	178344 196902	188729 178345 196903	2.49E-007 2.36E-007 2.60E-007	1.46E-005 1.10E-005 9.67E-006	14.61 11.02 9.67
E10 E11	0.02137 0.02690 0.01893	178344 196902 146861	188729 178345 196903 146862	2.49E-007 2.36E-007 2.60E-007 1.94E-007	1.46E-005 1.10E-005 9.67E-006 1.02E-005	14.61 11.02 9.67 10.25
E10 E11 E13	0.02137 0.02690 0.01893 0.02611	178344 196902 146861 220844	188729 178345 196903 146862 220845	2.49E-007 2.36E-007 2.60E-007 1.94E-007 2.92E-007	1.46E-005 1.10E-005 9.67E-006 1.02E-005 1.12E-005	14.61 11.02 9.67 10.25 11.17
E10 E11 E13 E14	0.02137 0.02690 0.01893 0.02611 0.02305	178344 196902 146861 220844 99877	188729 178345 196903 146862 220845 99878	2.49E-007 2.36E-007 2.60E-007 1.94E-007 2.92E-007 1.32E-007	1.46E-005 1.10E-005 9.67E-006 1.02E-005 1.12E-005 5.72E-006	14.61 11.02 9.67 10.25 11.17 5.72
E10 E11 E13 E14 E15	0.02137 0.02690 0.01893 0.02611 0.02305 0.01393	178344 196902 146861 220844 99877 79221	188729 178345 196903 146862 220845 99878 79222	2.49E-007 2.36E-007 2.60E-007 1.94E-007 2.92E-007 1.32E-007 1.05E-007	1.46E-005 1.10E-005 9.67E-006 1.02E-005 1.12E-005 5.72E-006 7.51E-006	14.61 11.02 9.67 10.25 11.17 5.72 7.51
E10 E11 E13 E14 E15 E16	0.02137 0.02690 0.01893 0.02611 0.02305 0.01393 0.01984	178344 196902 146861 220844 99877 79221 99877	188729 178345 196903 146862 220845 99878 79222 99878	2.49E-007 2.36E-007 2.60E-007 1.94E-007 2.92E-007 1.32E-007 1.05E-007 1.32E-007	1.46E-005 1.10E-005 9.67E-006 1.02E-005 1.12E-005 5.72E-006 7.51E-006 6.65E-006	14.61 11.02 9.67 10.25 11.17 5.72 7.51 6.65
E10 E11 E13 E14 E15 E16 E17	0.02137 0.02690 0.01893 0.02611 0.02305 0.01393 0.01984 0.01892	178344 196902 146861 220844 99877 79221 99877 130513	188729 178345 196903 146862 220845 99878 79222 99878 130514	2.49E-007 2.36E-007 2.60E-007 1.94E-007 2.92E-007 1.32E-007 1.05E-007 1.32E-007 1.72E-007	1.46E-005 1.10E-005 9.67E-006 1.02E-005 1.12E-005 5.72E-006 7.51E-006 6.65E-006 9.11E-006	14.61 11.02 9.67 10.25 11.17 5.72 7.51 6.65 9.11
E10 E11 E13 E14 E15 E16 E17 PYMGE26	0.02137 0.02690 0.01893 0.02611 0.02305 0.01393 0.01984 0.01892 0.01947	188728 178344 196902 146861 220844 99877 79221 99877 130513 113799	188729 178345 196903 146862 220845 99878 79222 99878 130514 113800	2.49E-007 2.36E-007 2.60E-007 1.94E-007 2.92E-007 1.32E-007 1.05E-007 1.32E-007 1.72E-007 1.50E-007	1.46E-005 1.10E-005 9.67E-006 1.02E-005 1.12E-005 5.72E-006 7.51E-006 6.65E-006 9.11E-006 7.72E-006	14.61 11.02 9.67 10.25 11.17 5.72 7.51 6.65 9.11 7.72
E10 E11 E13 E14 E15 E16 E17 PYMGE26 PYMGE27	0.02137 0.02690 0.01893 0.02611 0.02305 0.01393 0.01984 0.01892 0.01947 0.02207	188728 178344 196902 146861 220844 99877 79221 99877 130513 113799 531192	188729 178345 196903 146862 220845 99878 79222 99878 130514 113800 531193	2.49E-007 2.36E-007 2.60E-007 1.94E-007 2.92E-007 1.32E-007 1.32E-007 1.32E-007 1.72E-007 1.50E-007 7.02E-007	1.46E-005 1.10E-005 9.67E-006 1.02E-005 1.12E-005 5.72E-006 7.51E-006 9.11E-006 7.72E-006 3.18E-005	14.61 11.02 9.67 10.25 11.17 5.72 7.51 6.65 9.11 7.72 31.79
E10 E11 E13 E14 E15 E16 E17 PYMGE26 PYMGE27 E18	0.02137 0.02690 0.01893 0.02611 0.02305 0.01393 0.01984 0.01984 0.01947 0.02207 0.02081	188728 178344 196902 146861 220844 99877 79221 99877 130513 113799 531192 1173401	188729 178345 196903 146862 220845 99878 79222 99878 130514 113800 531193 1173402	2.49E-007 2.36E-007 2.60E-007 1.94E-007 2.92E-007 1.32E-007 1.32E-007 1.32E-007 1.72E-007 1.50E-007 7.02E-007 1.55E-006	1.46E-005 1.10E-005 9.67E-006 1.02E-005 1.12E-005 5.72E-006 7.51E-006 6.65E-006 9.11E-006 7.72E-006 3.18E-005 7.45E-005	14.61 11.02 9.67 10.25 11.17 5.72 7.51 6.65 9.11 7.72 31.79 74.49
E10 E11 E13 E14 E15 E16 E17 PYMGE26 PYMGE27 E18	0.02137 0.02690 0.01893 0.02611 0.02305 0.01393 0.01984 0.01892 0.01947 0.02207 0.02081	188728 178344 196902 146861 220844 99877 79221 99877 130513 113799 531192 1173401	188729 178345 196903 146862 220845 99878 79222 99878 130514 113800 531193 1173402 promedio	2.49E-007 2.36E-007 2.60E-007 1.94E-007 2.92E-007 1.32E-007 1.32E-007 1.32E-007 1.72E-007 1.50E-007 7.02E-007 1.55E-006 3.48E-007	1.46E-005 1.10E-005 9.67E-006 1.02E-005 1.12E-005 5.72E-006 7.51E-006 6.65E-006 9.11E-006 7.72E-006 3.18E-005 7.45E-005 1.66E-005	14.61 11.02 9.67 10.25 11.17 5.72 7.51 6.65 9.11 7.72 31.79 74.49 16.64

corrida	masa	lon 78	menos contr_aire	g CO2	g CO2/g muestra	ppm
E6	0.01706	188728	188729	2.49E-007	1.46E-005	14.61
E9	0.02137	178344	178345	2.36E-007	1.10E-005	11.02
E10	0.02690	196902	196903	2.60E-007	9.67E-006	9.67
E11	0.01893	146861	146862	1.94E-007	1.02E-005	10.25
E13	0.02611	220844	220845	2.92E-007	1.12E-005	11.17
E14	0.02305	99877	99878	1.32E-007	5.72E-006	5.72
E15	0.01393	79221	79222	1.05E-007	7.51E-006	7.51
E16	0.01984	99877	99878	1.32E-007	6.65E-006	6.65
E17	0.01892	130513	130514	1.72E-007	9.11E-006	9.11
PYMGE26	0.01947	113799	113800	1.50E-007	7.72E-006	7.72
PYMGE27	0.02207	531192	531193	7.02E-007	3.18E-005	31.79
E18	0.02081	1173401	1173402	1.55E-006	7.45E-005	74.49
			promedio	3.48E-007	1.66E-005	16.64
			desv estandar	4.10E-007	1.95E-005	19.47

corrida	masa	lon 84	menos contr_aire	g CO2	g CO2/g muestra	ppm
E6	0.01706	29489	29490	3.90E-008	2.28E-006	2.28
E9	0.02137	32419	32420	4.28E-008	2.00E-006	2.00
E10	0.02690	32936	32937	4.35E-008	1.62E-006	1.62
E11	0.01893	28841	28842	3.81E-008	2.01E-006	2.01
E13	0.02611	28311	28312	3.74E-008	1.43E-006	1.43
E14	0.02305	22869	22870	3.02E-008	1.31E-006	1.31
E15	0.01393	21049	21050	2.78E-008	2.00E-006	2.00
E16	0.01984	22869	22870	3.02E-008	1.52E-006	1.52
E17	0.01892	24860	24861	3.28E-008	1.74E-006	1.74
PYMGE26	0.01947	24396	24397	3.22E-008	1.66E-006	1.66
PYMGE27	0.02207	22964	22965	3.03E-008	1.37E-006	1.37
E18	0.02081	26323	26324	3.48E-008	1.67E-006	1.67
			promedio	3.49E-008	1.72E-006	1.72
			desv estandar	5.19E-009	2.99E-007	0.30

corrida	masa	lon 112	menos contr_aire	g CO2	g CO2/g muestra	ppm
E6	0.01706	121119	121120	1.60E-007	9.38E-006	9.38
E9	0.02137	307891	307892	4.07E-007	1.90E-005	19.03
E10	0.02690	314976	314977	4.16E-007	1.55E-005	15.47
E11	0.01893	161791	161792	2.14E-007	1.13E-005	11.29
E13	0.02611	255908	255909	3.38E-007	1.29E-005	12.95
E14	0.02305	93071	93072	1.23E-007	5.33E-006	5.33
E15	0.01393	127961	127962	1.69E-007	1.21E-005	12.13
E16	0.01984	93071	93072	1.23E-007	6.20E-006	6.20
E17	0.01892	193866	193867	2.56E-007	1.35E-005	13.54
PYMGE26	0.01947	149684	149685	1.98E-007	1.02E-005	10.16
PYMGE27	0.02207	291003	291004	3.84E-007	1.74E-005	17.42
E18	0.02081	329595	329596	4.35E-007	2.09E-005	20.92
			promedio	2.69E-007	1.28E-005	12.82
			desv estandar	1.20E-007	4.81E-006	4.81

corrida	masa	lon 30	menos contr_aire	g CO2	g CO2/g muestra	ppm
E19	0.01579	590294	590295	7.80E-007	4.94E-005	49.38
E20	0.02647	568352	568353	7.51E-007	2.84E-005	28.36
E21	0.01963	717051	717052	9.47E-007	4.83E-005	48.25
E22	0.02106	741705	741706	9.80E-007	4.65E-005	46.52
PYMGE24.D	0.02360	846329	846330	1.12E-006	4.74E-005	47.37
			promedio	8.26E-007	4.20E-005	42.00
			desv estandar	1.06E-007	1.18E-005	11.82

corrida	masa	lon 32	menos contr_aire	g CO2	g CO2/g muestra	ppm
E19	0.01579	29445420	2.91E+007	3.84E-005	2.43E-003	2433.73
E20	0.02647	34439934	3.41E+007	4.50E-005	1.70E-003	1701.04
E21	0.01963	29152677	2.88E+007	3.80E-005	1.94E-003	1937.95
E22	0.02106	29588944	2.92E+007	3.86E-005	1.83E-003	1833.73
PYMGE24.D	0.02360	18436259	1.81E+007	2.39E-005	1.01E-003	1012.10
O4	0.01457	5930753	5.58E+006	7.37E-006	5.06E-004	505.54
			promedio	3.19E-005	1.57E-003	1570.68
			desv estandar	1.39E-005	6.95E-004	694.62
corrida	masa	lon 44	menos contr_aire	g CO2	g CO2/g muestra	ppm
E19	0.01579	46853860	4.68E+007	6.18E-005	3.92E-003	3916.19
E20	0.02647	52815899	5.28E+007	6.97E-005	2.63E-003	2633.64
E21	0.01963	48898390	4.89E+007	6.45E-005	3.29E-003	3287.70
E22	0.02106	52034838	5.20E+007	6.87E-005	3.26E-003	3261.20
PYMGE24.D	0.02360	8517254	8.47E+006	1.12E-005	4.74E-004	474.32
O4	0.01457	1991516	1.95E+006	2.57E-006	1.77E-004	176.62
			promedio	4.64E-005	2.29E-003	2291.61
			desv estandar	3.09E-005	1.58E-003	1578.88
corrida	masa	lon 50	menos contr_aire	g CO2	g CO2/g muestra	ppm
E19	0.01579	140746	140747	1.86E-007	1.18E-005	11.78
E20	0.02647	211859	211860	2.80E-007	1.06E-005	10.57
E21	0.01963	154778	154779	2.04E-007	1.04E-005	10.42
E22	0.02106	147160	147161	1.94E-007	9.23E-006	9.23
PYMGE24.D	0.02360	67523	67524	8.92E-008	3.78E-006	3.78
			promedio	1.91E-007	9.15E-006	9.15
			desv estandar	6.80E-008	3.14E-006	3.14
corrida	masa	lon 78	menos contr_aire	g CO2	g CO2/g muestra	ppm
E19	0.01579	1173401	1173402	1.55E-006	9.82E-005	98.17
E20	0.02647	2987588	2987589	3.95E-006	1.49E-004	149.10
E21	0.01963	1639902	1639903	2.17E-006	1.10E-004	110.36
E22	0.02106	2181259	2181260	2.88E-006	1.37E-004	136.82
PYMGE24.D	0.02360	232600	232601	3.07E-007	1.30E-005	13.02
			promedio	2.17E-006	1.01E-004	101.49
			desv estandar	1.37E-006	5.35E-005	53.46

corrida	masa	lon 84	menos contr_aire	g CO2	g CO2/g muestra	ppm
E19	0.01579	26323	26324	3.48E-008	2.20E-006	2.20
E20	0.02647	35841	35842	4.73E-008	1.79E-006	1.79
E21	0.01963	29967	29968	3.96E-008	2.02E-006	2.02
E22	0.02106	26902	26903	3.55E-008	1.69E-006	1.69
PYMGE24.D	0.02360	5029	5030	6.64E-009	2.82E-007	0.28
			promedio	3.28E-008	1.60E-006	1.60
			desv estandar	1.54E-008	7.61E-007	0.76
corrida	masa	lon 112	menos contr_aire	g CO2	g CO2/g muestra	ppm
E19	0.01579	329595	329596	4.35E-007	2.76E-005	27.57
E20	0.02647	1425481	1425482	1.88E-006	7.11E-005	71.14
E21	0.01963	556883	556884	7.36E-007	3.75E-005	37.48
E22	0.02106	736233	736234	9.73E-007	4.62E-005	46.18
PYMGE24.D	0.02360	112368	112369	1.48E-007	6.29E-006	6.29
			promedio	8.35E-007	3.77E-005	37.73
			desv estandar	6.63E-007	2.39E-005	23.87
corrida	masa	lon 91	menos contr_aire	g CO2	g CO2/g muestra	ppm
E19	0.01579		22099	2.92E-008	1.85E-006	1.85
E20	0.02647		38534	5.09E-008	1.92E-006	1.92
E21	0.01963		16950	2.24E-008	1.14E-006	1.14
E22	0.02106		16856	2.23E-008	1.06E-006	1.06
PYMGE24.D	0.02360		21041	2.78E-008	1.18E-006	1.18
			promedio	3.05E-008	1.43E-006	1.43
			desv estandar	1.18E-008	4.20E-007	0.42