

UNIVERSIDAD NACIONAL AUTONÓMA DE MÉXICO

FACULTAD DE QUÍMICA

CATALISIS ASISTIDA POR LIGANTES DERIVADOS DE LA 2,3-BIS (BROMOMETIL) QUINOXALINA Y TIOLATOS FLUORADOS

	E		S		I	S
PAR	4	OBTI	ENER	EL	TÍTUL) de
U		Í	Μ	I	С	Α
R	E	S	E	Ν	і т	А
	PAR/ U R	E PARA U R E	E PARA OBTI UÍ RES	E S PARA OBTENER U Í M R E S E	ES PARA OBTENER EL UÍMI RESEN	ESI PARA OBTENER EL TÍTULO UÍMIC RESENT

ANA ISABEL LINCOLN STRANGE CASTRO

MÉXICO DF

AÑO 2010

Universidad Nacional Autónoma de México

UNAM – Dirección General de Bibliotecas Tesis Digitales Restricciones de uso

DERECHOS RESERVADOS © PROHIBIDA SU REPRODUCCIÓN TOTAL O PARCIAL

Todo el material contenido en esta tesis esta protegido por la Ley Federal del Derecho de Autor (LFDA) de los Estados Unidos Mexicanos (México).

El uso de imágenes, fragmentos de videos, y demás material que sea objeto de protección de los derechos de autor, será exclusivamente para fines educativos e informativos y deberá citar la fuente donde la obtuvo mencionando el autor o autores. Cualquier uso distinto como el lucro, reproducción, edición o modificación, será perseguido y sancionado por el respectivo titular de los Derechos de Autor.

JURADO ASIGNADO:

PRESIDENTE:	Profesor:	Martha Eva de los Ángeles Rodríguez Pérez
VOCAL:	Profesor:	José Manuel Méndez Stivalet
SECRETARIO:	Profesor:	David Morales Morales
1er. SUPLENTE:	Profesor:	Margarita Chávez Martínez
2° SUPLENTE:	Profesor:	Rosa Isela del Villar Morales

SITIO DONDE SE DESARROLLÓ EL TEMA:

LABORATORIO 3, DEPARTAMENTO DE QUÍMICA INORGÁNICA, INSTITUTO DE QUÍMICA, UNIVERSIDAD NACIONAL AUTONÓMA DE MÉXICO

ASESOR DEL TEMA:

DR. DAVID MORALES MORALES

SUSTENTANTE:

XI Lincoln.

ANA ISABEL LINCOLN STRANGE CASTRO

El presente trabajo lo dedico: a mi abuelo Carlos Castro Mora.

Yo no estudio para escribir, ni menos para enseñar, que fuera en mí desmedida soberbia, sino sólo por ver si con estudiar ignoro menos. Sor Juana Inés de la Cruz Doy gracias ...

A Dios por haberme dado la vida, el entendimiento, mi familia.

A mi papá, por enseñarme el gusto por la cultura y las artes, por su cariño.

A mi mamá, por ella he llegado a ser lo que soy en el presente, no me puedo imaginar lo que sería de mí, sin ti, ;mi grillito de la suerte!

A mis hermanos: Guille, Carlos, Tere, Rocío y Dulce María, saben que los necesito para mantenerme cuerda, por hacerme reír, llorar... gracias simplemente por acompañarme, por ser mis amigos.

Al Q e Ing. Q Arturo Pozos, por su valiosa ayuda en la interpretación de los resultados de este trabajo, por ser mi compañero, por el tiempo que hemos compartido.

Al Dr. David Morales Morales, por darme la oportunidad de desarrollarme profesionalmente, por su asesoría y orientación, por confiar en mi.

A la M. en C. Fabiola Estudiante Negrete, por el respaldo, asesoría técnica y emocional que me brindaste a lo largo del desarrollo de este proyecto.

A todas las religiosas y al Padre Reyes Muñoz Tonix, por la educación que recibí de ellos y por demostrarme que la fe y la ciencia pueden coexistir.

A la Sra. Josefina Anaya Mireles, por ser parte activa en mi formación como persona, por la asistencia que me brindó, sin la cual no hubiera sido posible la continuidad de mis estudios.

A mis compañeras de trabajo: Alicia, Rosita, Neri, (entre otros más) por su cariño, compañerismo, complicidad, gracias a ustedes puede realizar mi trabajo y disfrutarlo mucho.

A todos mis compañeros y amigos: Ariadna, Miriam, Sandra, Jerry, Javier, Joaquín, Aracelí, Margarita y en especial a Diego y Samuel, por que todos ustedes han estado presentes, bridándome su amistad, cariño y confianza. Doy gracias al CONACYT por la beca otorgada

- A1. PORTADA
- A2. INDICE
- A3. ANTECEDENTES
- A4. INTRODUCCIÓN
- A5. CARACTERIZACIÓN. ASPECTOS GENERALES
- A6. CARACTERIZACIÓN LIGANTE L1
- A7. CARACTERIZACIÓN LIGANTE L2
- A8. CARACTERIZACIÓN LIGANTE L3
- A9. CARACTERIZACIÓN LIGANTE L4
- A10. CARACTERIZACIÓN LIGANTE L5
- A11. CARACTERIZACIÓN LIGANTE L6
- A12. CARACTERIZACIÓN LIGANTE L7
- A13. EVALUACIÓN CATALITICA
- A14. CONCLUSIONES
- A15. PROCEDIMIENTO EXPERIMENTAL
- A16. ANEXO 1
- A17. ANEXO 2

Índice de esquemas	VI
Índice de figuras	VII
Índice de tablas	IX
Símbolos y abreviaturas	х
Estructura de los ligantes propuestos	XI

Capitulo I: Antecedentes

1.1 Resumen	1
1.2 Hipótesis	1
1.3 Objetivos generales	2
1.4 Objetivos particulares	3

Capitulo II: Introducción

2.1 Las Quinoxalinas, aspectos generales	4
2.2 Ligantes con azufre y hemilabiliadad	6
2.3 Catálisis	7
2.4 Reacciones de acoplamiento cruzado	9
2.5 Reacción de acoplamiento cruzado C-C de tipo Suzuki-Miyaura	11

Capitulo III: Caracterización

3.1 Caracterización de los ligantes tioéter fluorados derivados d (bromometil) quinoxalina. Aspectos generales	e la	2,3-Bis 14
3.1.1 Espectroscopía de IR		15
3.1.2 Espectrometría de Masas en modo de IE+		15
3.1.3 Resonancia Magnética Nuclear de ¹ H		17
3.1.4 Resonancia Magnética Nuclear de ¹³ C		19
3.1.5 Resonancia Magnética Nuclear de ¹⁹ F		21
3.1.6 Difracción de Rayos X		22

3.2 Caracterización del ligante L1

3.2.1 Espectrometría de Masas en modo de IE+ para el ligante L1	24
3.2.2 Espectro de RMN de ¹ H para el ligante L1	26
3.2.3 Espectro de RMN de ¹³ C para el ligante L1	28
3.2.4 Espectro de RMN de ¹⁹ F para el ligante L1	30
3.2.5 Difracción de Rayos X, para el ligante L1	31

3.3 Caracterización del ligante L2

3.3.1 Espectrometría de Masas en modo de IE+ para el ligante L2	34
3.3.2 Espectro de RMN de ¹ H para el L2	36
3.3.3 Espectro de RMN de ¹³ C para el L2	38
3.3.4 Espectro de RMN de ¹⁹ F para el L2	40
3.3.5 Difracción de Rayos X para el ligante L2	41

3.4 Caracterización del ligante L3

3.4.1 Espectrometría de Masas en modo de IE+ para el ligante L3	44
3.4.2 Espectro de RMN de ¹ H para el L3	46
3.4.3 Espectro de RMN de ¹³ C para el L3	48
3.4.4 Espectro de RMN de ¹⁹ F para el L3	50
3.4.5 Difracción de Rayos X para el ligante L3	51

3.5 Caracterización del ligante L4

3.5.1 Espectrometría de Masas en modo de IE+ para el ligante L4	54
3.5.2 Espectro de RMN de ¹ H para el L4	56
3.5.3 Espectro de RMN de ¹³ C para el L4	58
3.5.4 Espectro de RMN de ¹⁹ F para el L4	60

3.6 Caracterización del ligante L5

3.6.1 Espectrometría de Masas en modo de IE+ para el ligante L5	62
3.6.2 Espectro de RMN de ¹ H para el ligante L5	64
3.6.3 Espectro de RMN de ¹³ C para el ligante L5	66
3.6.4 Espectro de RMN de ¹⁹ F para el ligante L5	68
3.6.5 Difracción de Rayos X para el ligante L5	70

3.7 Caracterización del ligante L6

3.7.1	Espectrometría de Masas en modo de IE+ para el ligante L6	74
3.7.2	Espectro de RMN de ¹ H para el ligante L6	75
		IV

3.7.3 Espectro de RMN de ¹³ C para el ligante L6	77
3.7.4 Espectro de RMN de ¹⁹ F para el ligante L6	79
3.7.5 Difracción de Rayos X para el ligante L6	81

3.8 Caracterización del ligante L7

3.8.1 Espectrometría de Masas en modo de IE+ para el ligante L7	85
3.8.1 Espectro de RMN de ¹ H para el ligante L7	87
3.8.2 Espectro de RMN de ¹³ C para el ligante L7	89
3.8.3 Espectro de RMN de ¹⁹ F para el ligante L7	91

Capitulo IV: Evaluación Catalítica

4.1 Reacciones de acoplamiento C-C tipo Suzuki-Miyaura	
Capitulo V: Conclusiones	
5.1 Conclusiones	98
Capitulo VI: Procedimiento experimental	
6.1 Reactivos e instrumentación	100
6.2 Reacción general de síntesis de las sales de plomo [Pb(SR _F) ₂]	101

6.3 Síntesis de los ligantes tioéter fluorados derivados de la 2,3-Bis(bromometil) quinoxalina 102

6.3.1 Síntesis del ligante L1	104
6.3.2 Síntesis del ligante L2	104
6.3.3 Síntesis del ligante L3	104
6.3.4 Síntesis del ligante L4	105
6.3.5 Síntesis del ligante L5	105
6.3.6 Síntesis del ligante L6	105
6.3.7 Síntesis del ligante L7	106

6.4 Procedimiento general para la reacción de acoplamiento C-C de tipo Suzuki-Miyaura: Selección del mejor ligante auxiliar

107

6.5 Preparación de la serie de reacciones de acoplamiento C-C de tipo Suzuki-Miyaura

108

Capitulo VII: Anexos

Anexo 1 Espectros de IR ligantes sintetizados, L1-L7	109
Anexo 2 Datos de difracción de rayos-X, para los ligantes L1, L2, L3, L5 y L6	116

Esquema 1.3 Procedimiento general de síntesis de los ligantes propuestos y estructura de los precursosres tiofenolatos (- SR_F)	2
Esquema 1.3.1 Reacción modelo de acoplamiento C-C tipo Suzuki-Miyaura, promovida por el sistema catalítico [Pd(OAc) ₂ /L]	3
Esquema 2.1.1 Método general de síntesis de quinoxalinas	5
Esquema 2.2 Formación de sitio de coordinación vacante por un ligante hemilábil	7
Esquema 2.3 Hidrogenación catalítica de olefinas, por el catalizador de Wilkinson	8
Esquema 2.3.1 Síntesis del (E)-3-acetoxi-1, 3-difenil-1-propeno y dimetil malonatos mediante catalizadores de paladio	8
Esquema 2.4 Mecanismo general de las reacciones de acoplamiento cruzado	10
Esquema 2.5 Reacción de acoplamiento cruzado C-C de tipo Suzuki-Miyaura	12
Esquema 2.5.1 Ciclo catalítico de la reacción de acoplamiento cruzado C-C de tipo Suzuki-Miyaura	13
Esquema 3.7.4 Comparación de los sistemas de acoplamiento observados para el $F_{\rm o}$ y F_{m} , del ligante $L6$	79
Esquema 4.1 Reacción de acoplamiento cruzado C-C de tipo Suzuki-Miyaura catalizada por el sistema [Pd(OAc) ₂ /L]	93
Esquema 6.2 Procedimiento general para la síntesis de los fluorotiofenalatos de plomo empleados en este trabajo	101
Esquema 6.3 Metodología general para la síntesis de los ligantes tioéter fluorados derivados de la 2,3-Bis(bromometil)quinoxalina	102
Esquema 6.3.1 Estructura de cada uno de los ligantes tioéter fluorados sintetizados y su clave correspondiente	103
Esquema 6.4 Reacción modelo de acoplamiento C-C tipo Suzuki-Miyaura, para la selección del mejor ligante auxiliar	107
Esquema 6.5 Reacción modelo de acoplamiento C-C tipo Suzuki-Miyaura, entre el ácido fenil-borónico y diferentes <i>para</i> -bromobencenos; catalizada por el sistema [Pd(OAc) ₂ / L3]	108

Figura 2.1 Estructura del anillo heterocíclico de la quinoxalina y sus isómeros	4
Figura 2.4. Algunas reacciones de acoplamiento cruzado	9
Figura 2.5 Estructura de algunos compuestos obtenidos a nivel industrial,	
mediante una reacción de acoplamiento C-C de tipo Suzuki	11
Figura 3.1.1 Espectro de IR para el ligante L5	16
Figura 3.1.3 Ampliación de los espectros de ¹ H de RMN para los ligantes L7 y L4	18
Figura 3.1.4 Espectro de RMN de ¹³ C, para el ligante L2	19
Figura 3.1.6 Interacción π - π y red cristalina del ligante L1 y L3	23
Figura 3.2.1 Espectro de masas en modo de lE⁺ para el ligante L1	24
Figura 3.2.2 Espectro de RMN de ¹ H para el ligante L1	27
Figura 3.2.3 Espectro de RMN de ¹³ C para el ligante L1	29
Figura 3.2.4. Espectro de RMN de 19F para el ligante L1	30
Figura 3.2.5 Representación ORTEP al 50 % de probabilidad para el ligante L1	31
Figura 3.2.5.1 Puentes de hidrógeno formados entre dos moléculas del ligante L1	32
Figura 3.3.1 Espectro de masas en modo de lE⁺ para el ligante L2	34
Figura 3.3.2 Espectro de RMN de ¹ H para el ligante L2	37
Figura 3.3.3 Espectro de RMN de ¹³ C para el ligante L2	39
Figura 3.3.4. Espectro de RMN de 19F para el ligante L2	40
Figura 3.3.5. Representación ORTEP al 50 % de probabilidad para el ligante L2	41
Figura 3.3.5.1 Red cristalina del ligante L2	42
Figura 3.4.1. Espectro de masas en modo de IE+ para el ligante L3	44
Figura 3.4.2. Espectro de RMN de ¹ H para el ligante L3	47
Figura 3.4.3 Espectro de RMN de ¹³ C para el ligante L3	49
Figura 3.4.4. Espectro de RMN de 19F para el ligante L3	50

Figura 3.4.5 Representación ORTEP al 50 % de probabilidad para el ligante L3	51
Figura 3.5.1 Espectro de masas en modo de IE+ para el ligante L4	54
Figura 3.5.2 Espectro de RMN de ¹ H para el ligante L4	57
Figura 3.5.3 Espectro de RMN de ¹³ C para el ligante L4	59
Figura 3.5.4 Espectro de RMN de ¹⁹ F para el ligante L4	61
Figura 3.6.1. Espectro de masas en modo de IE+ para el ligante L5	62
Figura 3.6.2 Espectro de RMN de ¹ H para el ligante L5	65
Figura 3.6.3 Espectro de RMN de ¹³ C para el ligante L5	67
Figura 3.6.4. Espectro de RMN de 19F para el ligante L5	69
Figura 3.6.5. Representación ORTEP al 50 % de probabilidad para el ligante L5	70
Figura 3.6.5.1. Red cristalina del ligante L5	72
Figura 3.7.1 Espectro de masas en modo de IE+ para el ligante L6	74
Figura 3.7.2 Espectro de RMN de ¹ H para el ligante L6	76
Figura 3.7.3 Espectro de RMN de ¹³ C para el ligante L6	78
Figura 3.7.4 Espectro de RMN de 19F para el ligante L6	80
Figura 3.7.5 Representación ORTEP al 50 % de probabilidad para el ligante L6	81
Figura 3.7.5.1. Red cristalina del ligante L6	83
Figura 3.8.1 Espectro de masas en modo de IE+ para el ligante L7	85
Figura 3.8.2 Espectro de RMN de ¹ H para el ligante L7	88
Figura 3.8.3 Espectro de RMN de ¹³ C para el ligante L7	90
Figura 3.8.4. Espectro de RMN de 19F para el ligante L7	92
Figura 4.1 Estructura de la probable especie catalítica de [Pd(II)-L]	93
Figura 4.2 Foto que ilustra las disoluciones obtenidas, en los tubos de catálisis	94

Tabla 3.1.1 Bandas características de IR para los ligantes L1-L7	15
Tabla 3.1.4 Desplazamiento químico δ en ¹³ C de los ligantes tioéter fluorados para el anillo heterocíclico sustituido de la quinoxalina	20
Tabla 3.2.1 Fragmentos observados en EM, en modo de IE+, para el ligante L1	25
Tabla 3.2.5 Principales longitudes [Å] y ángulos de enlace [°], para el ligante L1	32
Tabla 3.2.5.1 Principales datos cristalográficos, para el ligante L1	33
Tabla 3.3.1. Fragmentos observados en EM, en modo de IE+, para el ligante L2	35
Tabla 3.3.5 Principales longitudes [Å] y ángulos de enlace [°], para el ligante L2	42
Tabla 3.3.5.1 Principales datos cristalográficos, para el ligante L2	43
Tabla 3.4.1 Fragmentos observados en EM, en modo de IE ⁺ , para el ligante L3	45
Tabla 3.4.5 Principales longitudes [Å] y ángulos de enlace [°], para el ligante L3	52
Tabla 3.4.5.1 Principales datos cristalográficos, para el ligante L3	53
Tabla 3.5.1 Fragmentos observados en EM, en modo de IE ⁺ , para el ligante L4	55
Tabla 3.6.1 Fragmentos observados en EM, en modo de IE ⁺ , para el ligante L5	63
Tabla 3.6.5 Principales longitudes [Å] y ángulos de enlace [°] para el ligante L5	71
Tabla 3.6.5.1 Principales datos cristalográficos, para el ligante L5	73
Tabla 3.7.1 Fragmentos observados en EM, en modo de IE+ para el ligante L6	75
Tabla 3.7.5 Principales longitudes [Å] y ángulos de enlace [°] para el ligante L6	82
Tabla 3.7.5.1 Principales datos cristalográficos, para el ligante L6	84
Tabla 3.8.1 Fragmentos observados en EM, en modo de IE ⁺ , para el ligante L7	86
Tabla 4.1. Reacción modelo de acoplamiento C-C tipo Suzuki-Miyaura, entre el ácido fenil-borónico y el bromobenceno	95
Tabla 4.1.2Serie de reacciones catalíticas de acoplamiento C-C tipo Suzuki-Miyaura:entre el ácido fenil-boronico y un derivado del para-bromobenceno, utilizando el	97

sistema catalítico Pd(OAc)₂/L3

Å	Amstrongs
C-C	Enlace carbono-carbono
C-F	Enlace carbono-flúor
C-S	Enlace carbono-azufre
CDCI ₃	Cloroformo deuterado
CH ₂ Cl ₂	Diclorometano
δ	Desplazamiento químico
EM	Espectrometría de masas
g	Gramo
Hz	Hertz
IR	Infrarrojo
IE+	Impacto Electrónico
ⁿ J _{A-X}	Constante de acoplamiento, entre
	los átomos A y X, a <i>n</i> enlaces de distancia
L	Ligante
M⁺	lon molecular
mL	Mililitro
mmol	Milimol
m/z	Relación masa/carga
ORTEP	Del acrónimo en inglés "Oak Ridge Thermal Ellipsoid Program"
	(Programa de Elipsoides Térmicas de Oak Ridge)
ppm	Partes por millón
RMN	Resonancia Magnética Nuclear
-SR _F	Tiofenolato fluorado
H quinox	Protones pertenecientes al anillo de la Quinoxalina

Estructura de los ligantes tioéter fluorados sintetizados L1-L7.

1.1 Resumen

En la actualidad, la constante preocupación de la sociedad, sobre el cuidado del medio ambiente ha promovido (entre otros) el uso y búsqueda de nuevas rutas de síntesis, que hagan más eficientes los procesos industriales.

El uso de un catalizador, permite realizar una reacción en menos tiempo, con buenos rendimientos y en muchas ocasiones facilita la obtención del producto al reducir el número de pasos en la síntesis del mismo.

Por esta razón el diseño de nuevos catalizadores cada vez más activos y eficientes, sigue siendo un área de investigación muy dinámica en el desarrollo de la química actual. En especial los ligantes con átomos donadores de densidad electrónica como el P, N, S, O, logran estabilizar con éxito a un centro metálico dado, como el Pd ó el Pt y promover así una reacción catalítica.

En el presente trabajo, se realizó la síntesis de una serie de ligantes derivados de la 2,3-bis(bromometil)quinoxalina y tiofenolatos fluorados, los cuales fueron caracterizados por diversas técnicas espectroscópicas. Toda la información que de ellas se obtuvo se describe y discute ampliamente, en los siguientes capítulos.

Debido a las características estructurales y electrónicas que estos ligantes poseen, se emplearon en reacciones de acoplamiento cruzado C-C de tipo Suzuki-Miyaura, como ligantes auxiliares.

1.2 Hipótesis

Será posible la síntesis de tioéteres fluorados derivados de la 2,3-Bis(bromometil)quinoxalina y tiofenolatos fluorados **1-7**, a través de reacciones de metátesis, los cuales poseerán las características químicas adecuadas para su uso como ligantes auxiliares en reacciones de acomplamiento cruzado C-C tipo Suzuki-Miyaura, promovidos por especies de Pd(II).

1.3 Objetivos generales

* Sintetizar y caracterizar una serie de tioéteres fluorados, derivados de la 2,3-Bis(bromometil)quinoxalina y las sales de plomo de los tiofenolatos correspondientes, (Esquema 1.3) vía reacciones de metátesis.

Esquema 1.3 Procedimiento general de síntesis de los ligantes propuestos y estructura de los precursores tiofenolatos (-SR_F).

* Utilizar cada uno de los compuestos sintetizados como un ligante auxiliar en reacciones de acoplamiento cruzado C-C, tipo Suzuki-Miyaura, promovidas por Pd(II).

Esquema 1.3.1 Reacción modelo de acoplamiento C-C tipo Suzuki-Miyaura, promovida por el sistema catalítico [Pd(OAc)₂/L]; donde L son los ligantes propuestos, **L1-L7**.

1.4 Objetivos particulares

* Lograr la total caracterización y descripción estructural de los ligantes propuestos, mediante las técnicas de IR, EM, resonancia magnética nuclear (RMN) de ¹H, ¹³C y ¹⁹F, así como la obtención de un cristal único (cuando esto sea posible), para su estudio por difracción de rayos-X.

*Identificar el sistema [Pd(II)/L] más activo catalíticamente para efectuar una serie de reacciones de acoplamiento cruzado C-C de tipo Suzuki-Miyaura; entre un *para*-bromobencenos y el ácido fenil borónico.

2.1 Las Quinoxalinas, aspectos generales

La quinoxalina es un compuesto heterocíclico aromático, análogo al naftaleno, en el cual se encuentran sustituidos los átomos de carbono de las posiciones 1 y 4, por átomos de nitrógeno. Al igual que en la piridina ú otros anillos nitrogenados, el par de electrones libres del átomo de nitrógeno quedan fuera del sistema aromático y está disponible para participar en diversas reacciones o para coordinarse a un centro metálico.

Figura 2.1 Estructura del anillo heterocíclico de la quinoxalina y algunos de sus isómeros relacionados.

La síntesis clásica de la quinoxalinas¹, se lleva acabo por medio de una reacción de condensación de *o*-fenilendiaminas y compuestos 1,2- dicarbonílicos, con rendimientos que van del 85 al 90 %. También se pueden obtener a partir de diversos precursores y a través de reacciones catalíticas, en rendimientos superiores al 90 %², según la complejidad de la quinoxalina sustituida a sintetizar.

Una de las aplicaciones más importantes de las quinoxalinas, es como antibióticos o posibles agentes anticancerígenos,³ debido a la importancia que tienen los anillos nitrogenados, en la bioquímica de los seres vivos.

¹ L. A. Paquette, *Fundamentos de Química Heterocíclica*, Editorial Limusa, México D.F, 1990, págs. 307 y 315

² S. A. Duñach, E. Duñach, Tetrahedron Lett. 43 (2002) 3971

³ (a) K. Glund, W. Schlumbohm, M. Bapat, U. Keller, *Biochem.* 29 (1990) 3522 (b) Y. B. Kim, Y. H. Kim, J. Y. Park, S. K. Kim, *Bioorg. & Med. Chem. Lett.* 14 (2004) 54

Esquema 2.1.1 Método general de síntesis de quinoxalinas, entre un derivado de la *o*-fenilendiamina y compuesto 1,2-dicarbonílico.

Los polímeros o complejos derivados de las quinoxalinas, (en la mayoría de los casos se trata de sistemas poli-aromáticos) exhiben propiedades que las hacen atractivas en estudios de electroquímica, voltamperometría, electroluminiscencia, óptica no lineal, etc.⁴ Algunos de ellos son fotosensibles, lo cual podría permitir su uso en la construcción de celdas solares.⁵

En química de coordinación, se conocen diversos complejos entre ellas y metales de transición. En todos los casos, la coordinación de la quinoxalina hacia el centro metálico ocurre por uno de los átomos de nitrógeno y otro átomo vecino (C, N, S, etc.) que ayuda a la estabilización del complejo, formándose así anillos de cinco miembros.⁶

Sin embargo no se encuentran reportes, de complejos derivados de las quinoxalinas, donde se evalué su actividad catalítica, razón por la cual serán exploradas en este trabajo.

⁴ (a) K. Y. Zhang, S. P. Y. Li, N. Zhu, I. W. S. Or, M. S. H. Cheung, Y. W. Lam, K. K. W. Lo, *Inorg. Chem.* 49 (2010) 2530 (b) A. Durmus, G. E. Gunbas, L. Toppare, *Chem. Mater.* 19 (2007) 6247 (c) P. K. Ng, X. Wong, W. T. Wong, W.-K. Chan, *Macromol. Rapid Commun.* 18 (1997) 1009

⁵ T. Miyake, M. Suginome, R. Katakura, M. Mitsuishi, T. Miyashita, *Polym. J. 42* (2010) 406

⁶ (a) F.-Ming, Hwang, H-Y. Chen, P-S. Chen, C-S. Liu, Y. Chi, C-F. Shu, F.-I Wu, P-T. Chou, S-M. Peng, G-H. Lee, *Inorg. Chem.* 44 (2005) 1344 (b) Ayman A., Abdel-Shafi, Mostafa M. H. Khalil, Hossam H. Abdalla, R. M. Ramadan, *Trans. Met. Chem.* 27 (2002) 69

2.2 Ligantes con azufre y hemilabilidad

Es conocido que ligantes conteniendo azufre en su estructura, pueden envenenar una reacción catalítica. Sin embargo se sabe que la presencia de grupos ${}^{-}SR_{F}$ (R_{F} = fragmento aromático fluorado) en el ligante, logra estabilizar diversos metales⁷ y los compuestos así formados son activos catalíticamente, entre otras razones, esto ha promovido el estudio y síntesis de nuevos ligantes conteniendo fragmentos ${}^{-}SR_{F}$.

La sola presencia de un átomo de flúor en la estructura de ligante es determinante, ya que repercute en sus propiedades químicas al ir regulando la densidad electrónica que recibe el metal, a través de él⁸.

Otra posibilidad de generar sistemas altamente estables lo proveen ligantes bidentados, que a través del efecto quelato permiten la obtención de sistemas robustos. Adicionalmente, cuando cuentan con la presencia de átomos donadores como S, N ó P pueden exhibir propiedades de hemilabilidad. Enmascarando sitios de coordinación para la fácil inclusión de sustratos en un proceso catalítico dado⁹.

En el **Esquema 2.2**, se observa que uno de los sustituyentes del ligante esta fuertemente enlazado al centro metálico [M], mientras que el otro permite por si mismo la apertura y cierre del quelato formado, esto conduce a una variación en el número de coordinación del compuesto; afectando la distribución electrónica y estereoquímica, de la reacción. En consecuencia no sólo se promueve la reacción, sino en algunos casos la obtención de un producto con una estereoquímica en particular.

 ⁷ (a) F. Estudiante-Negrete, R. Redón, S. Hernández-Ortega, R. A. Toscano, D. Morales-Morales, J. *Organomet. Chem.* 690 (2005) 2880 (b) J. L. Davidson, B. Holz, W. Edward, N. J. Simpson, *J. Chem. Soc.*, *Dalton Trans*.(1996) 401

⁸ A. I. Olivos-Suárez, G. Ríos, S. Hernández-Ortega, R. A. Toscano, J. J. García, D. Morales-Morales, *Inorg. Chim. Acta.* 360 (2007) 1651

⁹ J. Aundrieu, P. Braunstein, J. Organomet. Chem. 43 (2000) 601

Esquema 2.2 Formación de sitio de coordinación vacante por un ligante hemilábil¹⁰.

A su vez las interacciones *inter* e *intra* moleculares que se pueden originar en este tipo de ligantes, los hacen potencialmente útiles en estudios de química supramolecular,¹¹ ingeniería de cristales ú óptica no lineal. También se han identificado en metaloenzimas subunidades en las que están involucrados anillos nitrogenados y/o azufrados¹².

2.3 Catálisis¹³

Un catalizador es una especie química que durante una reacción, favorece que esta ocurra a través de un mecanismo alternativo, que involucra un estado de transición diferente y por lo tanto de una menor energía de activación. En consecuencia la reacción se lleva acabo en un menor tiempo, el catalizador se regenera y permanece sin cambios al final de la reacción.

Los catalizadores pueden ser homogéneos o heterogéneos, los primeros se encuentran en la misma fase que los reactivos; mientras que los otros son insolubles en el medio de reacción y por lo tanto se encuentran en una fase distinta a los reactivos.

Ambos tipos de catálisis presentan ventajas y desventajas; los catalizadores homogéneos son más selectivos y funcionan a temperaturas y presiones bajas, siendo una desventaja su recuperación del medio de reacción. Por su parte, los catalizadores heterogéneos son separados con facilidad de los productos, pero en general requieren de temperaturas y presiones altas, lo que a menudo propicia que exista una mezcla de productos.

¹⁰ A. I. Olivos Suárez, *Síntesis, caracterización y estudio de la reactividad de los ligantes potencialmente quelatos tipo SCR^e con metales del grupo 10*, Tesis de licenciatura, Fac. de Química, UNAM, 2006.

¹¹ M. A. Corona, S. Hernández-Ortega, J. Valdés, D. Morales-Morales, *Supramol. Chem.* 19 (2007) 579

¹² J. Dilworth, *Adv. Inorg. Chem.*, 10 (1994) 411

¹³ J. E. Huheey, E. A. Keiter, R.L. Keiter, *Química Inorgánica, Principios de estructura y reactividad*, Ed. Alfaomega, México, 2007, pág. 749

Los compuestos organometálicos, (en especial los del grupo del platino), son profusamente usados industrialmente por que permiten la obtención de muchos productos químicos importantes, de alto valor agregado. Por ejemplo: la hidrogenación de múltiples sustratos, mediada por el catalizador de Wilkinson, [clorotris(trifenilfosfina) rodio (I)], fue una de las primeras reacciones que a nivel industrial fueron catalizadas, por un compuesto de este tipo, **Esquema 2.3**.

$$R-CH=CH_2 + H_2 \xrightarrow{[Rh(PPh_3)_3CI]} R-CH_2-CH_3$$

Esquema 2.3 Hidrogenación de olefinas promovida por el catalizador de Wilkinson.

En la actualidad se preparan un sin número de compuestos a través de reacciones catalíticas, en el **Esquema 2.3.1**, se muestra una reacción de alquilación alílica, la cual es catalizada por un complejo de Pd (II), el cual está unido a diferentes átomos donadores; así como a un fragmento orgánico, lo que le confiere estabilidad¹⁴.

Esquema2.3.1 Síntesis del (E)-3-acetoxi-1, 3-difenil-1-propeno y dimetil malonatos mediante catalizadores de paladio.

La actividad catalítica de este tipo de compuestos depende en gran medida de los ligantes presentes en la molécula, de tal manera que a través del diseño racionalizado de estas especies, factores estéricos y electrónicos, puedan ser modulados de manera fina, para la obtención de nuevos catalizadores más estables y eficientes.

¹⁴ R. Redón, H. Torrens, H. Wang, D. Morales-Morales, J. Organomet. Chem. 654 (2002) 1618

2.4 Reacciones de acoplamiento cruzado¹⁵

Las reacciones de acoplamiento cruzado son muy utilizadas en síntesis orgánica, por que permiten formar enlaces carbono-carbono ó carbonoheteroátomo (N ó S) a partir de halogenuros de arilo y/o vinilo; sustratos fácilmente preparados por métodos tradicionales. En general, todas estas reacciones (ver **Figura 2.4**), pueden ser catalizadas por complejos de Pd ó en presencia de otra especie que actúe como ligante auxiliar, por ejemplo una fosfina.

Figura 2.4 Algunas reacciones de acoplamiento cruzado, mediadas por complejos de Pd.

¹⁵ R. H. Crabtree, *The Organometallic Chemistry of the Transition Metals*, Ed. John Wiley & Sons, EUA. Pags. 249-253

En la mayoría de los casos, es necesario usar un disolvente aprótico como DMF, THF ó DME, para promover el paso inicial en la mayor parte de los mecanismos bajo los que operan estas reacciones, la adicción oxidativa; y en algunos casos se requiere trabajar bajo atmosfera inerte, con el fin de evitar la descomposición de la especie catalítica de paladio.

En el mecanismo general propuesto para las reacciones se cree que las especies de paladio son reducidas de Pd(II) a Pd(0) al formarse un intermediario R-Pd(0); producto de una adición oxidativa con el sustrato halogenado R-X donde R es un grupo aril y/o vinil; este intermediario sufre una sustitución y posterior β -eliminación, dando lugar al producto y permitiendo la regeneración del catalizador (ver **Esquema 2.4**). El paso determinante de la reacción es la adición oxidativa.

Esquema 2.4 Mecanismo general que siguen las reacciones de acoplamiento cruzado, el cual puede variar dependiendo de las condiciones de reacción. En el caso de la reacción de tipo Suzuki-Miyaura: R= aril ó vinil; Nu=aril; E= B(OH)₂.

También se ha propuesto que el mecanismo de reacción involucre a especies de Pd(IV); bajo algunas condiciones se ha observado que la descomposición de estas especies promueve la formación de nanopartículas de paladio (Pd (0) ó negro de paladio)¹⁶.

¹⁶ R.C.Jones, R.L. Madden, B.W. Skelton, A.H. Whitw, A. M. Williams, A. J. Wilson, B. F. Yates, *Eur. J. Inorg. Chem.* (2005) 1048

Lo cual se ha reportado en reacciones catalizadas por paladaciclos, y cuando son llevadas acabo a temperaturas superiores a 120 °C y por tiempos prolongados de reacción, lo que la mayoría de las veces contamina e impide la recuperación del catalizador.

2.5 La reacción de acoplamiento cruzado C-C de tipo Suzuki-Miyaura¹⁷

En 1979, fue publicada por primera vez, la reacción de acoplamiento cruzado C-C de tipo Suzuki-Miyura; la cual se ha convertido en una poderosa metodología, que permite la formación de un enlace C-C de manera regio y estereoselectiva.

Los subproductos de esta la reacción, presentan una baja toxicidad y son fácilmente removidos; lo que hace posible el uso de esta reacción no solo en la síntesis en el laboratorio sino también a nivel industrial. Por ejemplo, la síntesis del Valsartan, un fármaco utilizado para la hipertensión (laboratorio Novartis), mediante una reacción de tipo Suzuki. Igualmente el fungicida Buscalid por el grupo BASF.

Figura 2.5 Estructura de algunos compuestos obtenidos a nivel industrial, mediante una reacción de acoplamiento cruzado C-C, de tipo Suzuki-Miyaura.

¹⁷ (a) N. Miyaura, K. Yamada, H. Sugimone, A. Suzuki, *J. Am. Chem. Soc.* 107 (1985) 975 (b)
H. Wolfgang, V. Bohmn, *J. Chem. Educ.* 1 (2000) 77 (c) A. Suzuki, *J. Organomet. Chem.* 576 (1999) 147

Además es una reacción muy versátil, que se puede llevar acabo al utilizar como disolvente al agua, tolera una gran cantidad de grupos funcionales dentro de la estructura de sus reactivos. Lo anterior es de gran utilidad en la síntesis de compuestos que por métodos tradicionales, resultan poco cuantitativas ó difíciles de purificar.

A manera de ilustración en el **Esquema 2.5**, se muestra una reacción de tipo Suzuki, que ofrece la posibilidad de sintetizar compuestos poli-aromáticos con buenos rendimientos (80 al 90%).

Esquema 2.5 Reacción de acoplamiento cruzado C-C de tipo Suzuki-Miyaura, entre un derivado dibromado y un ácido fenilborico difenilo.

La reacción de Suzuki-Miyaura, ocurre entre un compuesto de organoboro, un halogenuro de arilo ó vinilo, en presencia de una base, (Na₂CO₃, K₂CO₃). Entre los reactivos borónicos más empleados están los derivados del borano BR₃, ácido R-B(OH)₂ ó ester R-B(OR)₂. Esta es catalizada por un complejo o compuesto de paladio, por ejemplo Pd(OAc)₂ ó Pd(PPh₃)₄.

El mecanismo de reacción es semejante al descrito anteriormente, en una primera etapa, ocurre la reducción del Pd (II) a Pd (0); posteriormente este adiciona oxidativamente al halogenuro de arilo. Después hay una sustitución del grupo borado por el orgánico. La regeneración del catalizador es consecuencia de una eliminación reductiva así como la formación del producto.

Esquema 2.5.1 Ciclo catalítico de la reacción de acoplamiento cruzado C-C de tipo Suzuki-Miyaura.

3.1 Caracterización de los ligantes tioéter fluorados derivados de la 2,3-Bis(bromometil)quinoxalina. Aspectos generales

Debido a lo similar de la estructura de los ligantes sintetizados, estos serán discutidos de manera comparativa así, a continuación se hará una pequeña descripción de las características espectroscópicas comunes entre los ligantes tioéter fluorados derivados de la 2,3-Bis(bromometil)quinoxalina, un análisis más detallado se presenta de manera individual para cada uno de ellos.

Los espectros de IR de los ligantes obtenidos, se muestran en el **Anexo I**, así mismo los datos cristalográficos completos de cada uno de los ligantes, (con excepción de los ligantes L4 y L7, los cuales son amorfos) se pueden encontrar en el **Anexo II**.

3.1.1 Espectroscopía de IR¹⁸

A través de la técnica de IR es posible identificar los grupos funcionales presentes en un compuesto por el modo vibracional de los enlaces que lo conforman, en la **Tabla 3.1.1** se hace un resumen de ellas para los ligantes sintetizados. Mientras que en la **Figura 3.1.1** se presenta como ejemplo representativo el espectro de IR del ligante L5.

Tabla 3.1.1 Bandas características de IR para los ligantes tioéter fluorados L1-L7 derivadosde la 2,3-Bis(bromometil)quinoxalina

Frecuencia (cm ⁻¹), tipo de vibración	Enlace
3030-3100; estiramiento	C-H aromático
Varias ~2925; estiramiento asimétrico	C-H alifático
1600-1580; torsión	C-C aromático
950-650; torsión	C-H aromático
~1480; estiramiento	C-F aromático
1350-1280; estiramiento	C-N aromático
760-660; estiramiento	C-S alifático

3.1.2 Espectrometría de masas

En general para la serie de compuestos sintetizados, la fragmentación típica consta de la pérdida consecutiva de cada uno de los grupos -SR_F, en todos los casos se observa claramente al ion molecular.

El pico base en el espectro de masas, esta dado por el fragmento debido a la pérdida de un grupo ${}^{-}SR_{F}$, mientras que en 130 m/z se observa el fragmento correspondiente al anillo de la quinoxalina.

¹⁸ E. Prestch, P. Bühlmann, C. Affolter, *Tables of Spectra Data for Structure Determination of Organic Compounds*, 3^{ra} Edición Springer-Verlag, Berlín Heidelberg, 2000, págs., 245, 260, 280

Figura 3.1.1 Espectro de IR para el ligante L5, en el se señalan las bandas más representativas y el enlace al que corresponden. Estas son observadas en todos los ligantes sintetizados.

3.1.3 Resonancia Magnética Nuclear¹⁹ de ¹H

En general en los espectros de ¹H RMN; para los ligantes sintetizados se observan varios patrones de acoplamiento spín-spín²⁰ homonucleares para los protones en los anillos aromáticos (bencénicos ó heterocíclicos) sustituidos. En la región alifática únicamente se observan singuletes correspondientes a los grupos CH₂, en δ = 4.5 ppm.

Los dos tipos de protones que tiene el anillo heterocíclico pertenecen a un sistema de acoplamiento spín-spín de tipo AA'BB'; donde se observa una señal múltiple que es acompañada por su imagen especular, esta característica permite identificarlo, ya que aunque el número de señales puede ser variable estas conservan su simetría, sin embargo no es posible calcular directamente del espectro la constante de acoplamiento.

Los protones α a la fusión del anillo por efectos del paramagnetismo están más desprotegidos y aparecen a campos más bajos que los protones β . Lo anterior es claramente observado de manera individual en cada uno de los espectros de ¹H RMN para ligantes tioéter fluorados, ver **Figura 3.1.3**.

Los protones aromáticos restantes son los pertenecientes a los anillos fluorados que exhiben un comportamiento único, como consecuencia de la perdida de simetría en el anillo y a los acoplamientos entre los núcleos de ¹H y ¹⁹F. Por lo tanto cada caso será analizado de manera individual.

¹⁹ J. Nathan, E. Díaz, Elementos de Resonancia Magnética Nuclear de Hidrógeno, Gpo. Editorial Iberoamericana, México, 1993, pág. 12

²⁰ En particular para RMN de ¹H, al describir los sistemas de acoplamiento spín-spín, se usan las letras A, B, C ó D, para nombrar protones no equivalentes entre sí con δ similar, ó X, Y para protones con δ distinto, los subíndices indican el número de protones pertenecientes al sistema.

Figura 3.1.3 Ampliación de los espectros de ¹H de RMN (Frecuencia: 300 MHz, Disolvente CDCl₃, Temp. 25 °C) para los ligantes *a*) **L7** y *b*) **L4**, para los hidrógenos H_a y H_b correspondientes al anillo heterocíclico, se observan una señal múltiple para cada uno de ellos, acompañada de otra que es imagen especular de la primera.

3.1.4 Resonancia Magnética Nuclear de ¹³C

En general, para los espectros de RMN de ¹³C, el metileno (CH₂), presente en todos los ligantes tioéter fluorados presenta una señal muy intensa alrededor de δ 38.5 ppm, únicamente en el ligante **L2** se observa un doblete en δ = 38.2 ppm, producto del acoplamiento C-F con ⁴J_{c-F}=2.18 Hz.

Figura 3.1.4. Espectro de RMN de ¹³C, para el ligante **L2**. Frecuencia 75 MHz, Disolvente CDCl₃, Temperatura: 25 °C. En el se muestra una ampliación de la señal debida al metileno, así como la información relacionada a la misma.

En el ligante L2 el átomo de flúor, puede interactuar con el carbono alifático (CH₂), por que su estructura los aproxima, en los demás ligantes, este carbono se encuentra a más de cuatro enlaces de distancia y el acoplamiento presente entre ellos, puede ser muy débil (en cuyo caso no se observa) o no existen.

En la región aromática, de los espectros de RMN de ¹³C, existen cuatro señales que pertenecen al anillo de la quinoxalina, las cuales aparecen en desplazamientos químicos similares y mantienen su intensidad, en cada uno de los

ligantes sintetizados, ver **Tabla 3.1.4.** Las señales restantes son las provenientes de los carbonos del grupo ⁻SR_F, estas tienen un comportamiento singular en cada caso, producto de su interacción con el átomo de flúor. Fue posible el cálculo de las constantes de acoplamiento C-F, existentes.

Tabla 3.1.4. Desplazamiento químico δ observado en los ligantes tioéter fluorados para el anillo heterocíclico sustituido de la quinoxalina, presente en su estructura.

Átomo (s) de Carbono	Desplazamiento químico en promedio (δ ppm)
6, 7	128.6
5, 8	130.1
9, 10	140.7
2, 3	150.5

Recordemos que la multiplicidad de una señal esta dada por el número de núcleos no equivalentes que interaccionen. La ecuación²¹ para calcular la multiplicidad de un átomo en particular es:

(2nI+1)

Donde: n es el número de núcleos equivalentes e I el espín nuclear.

Lo cual nos permite explicar los pares de señales observadas para los carbonos unidos al flúor ó los *tripletes* debidos a los C-H adyacentes ó entre átomos de flúor, en el grupo -SR_F, en todos los ligantes propuestos.

²¹ J. Nathan, E. Díaz, *Elementos de Resonancia Magnética Nuclear de Hidrógeno,* Gpo. Editorial Iberoamericana, México, 1993, pág. 13

Se sabe que las señales de los carbono unidos a heteroátomos, son las menos intensas y aparecen a campo alto, en especial las de C-F y C-S, como consecuencia de la diferencia de electronegatividades entre el carbono y el heteroátomo.

Los carbonos unidos a flúor tienen un δ ~164 ppm, producto del efecto electroatractor del flúor, sobre uno ó dos carbonos. Excepto en los ligantes **L6** y **L7**, que se encuentran en δ ~145 ppm, en estos compuestos los carbonos del anillo distribuyen mejor la carga y se encuentran menos desprotegidos, en comparación con los demás ligantes. En estos casos las señales son diminutas y sobresalen ligeramente.

3.1.5 Resonancia Magnética Nuclear de ¹⁹F

El átomo de flúor (19F), es uno de los núcleos más abundantes, activos y usados en RMN, después del ¹H, ¹³C, ³¹P y ¹¹⁴Sn. Sin embargo en la literatura hay pocos valores reportados de δ ó de constantes de acoplamiento, para ¹H ó ¹³C en compuestos fluorados²², así como los propios al ¹⁹F. Sin embargo los valores ya reportados nos sirven como guía para analizar y corroborar los obtenidos experimentalmente.

En el caso de los ligantes sintetizados este es un elemento común en ellos (19F), por lo que la interpretación de esta espectroscopía enriquece y corrobora toda la información obtenida por las otras técnicas. En el presente trabajo se pudieron calcular los valores de J_{F-H}, J_{F-C} y J_{F-F}, los valores así obtenidos presentan ligeras variaciones con los encontrados en la literatura.

²² Por ejemplo en: E. Prestch, P. Bühlmann, C. Affolter, *Tables of Spectra Data for Structure Determination of Organic Compounds*, 3ra Edición Springer-Verlag, Berlín Heidelberg, 2000, únicamente se encuentran valores de δ y J, para ¹H ó ¹³C en compuestos alifáticos sencillos ó para el fluorobenceno.

3.1.6 Difracción de Rayos X

Gracias a la difracción de rayos-X, es posible conocer, la estructura química de manera inequívoca, así como las distancias y ángulos de enlace (entre otros parámetros), siempre que la muestra sea un cristal único.

Todos los ligantes que se obtuvieron como monocristales con las características adecuadas, (con excepción del L4 y L7) pudieron ser estudiados por esta técnica, de la experiencia se presume, que los ligantes sintetizados podrían ser empleados, con éxito en estudios de química supramolecular o en óptica no lineal, sin embargo, estos estudios quedan fuera del contexto de este trabajo. En el presente texto únicamente se discutirán algunos puntos relevantes al respecto, de estos resultados.

Una de las características principales de los anillos aromáticos es que estos son planos. Los ligantes propuestos, constan de tres anillos en sus estructura, por lo que se esperaría que la molécula en si fuera plana, sin embargo la parte alifática le brinda flexibilidad. Cada anillo -SRF, puede acercarse ó alejarse del anillo de la quinoxalina o de su homólogo, (dentro de ella o de una molécula vecina) según requiera, para minimizar o maximizar las posibles interacciones entre ellos.

Una de ellas es la presencia de interacciones π - π . Esta interacción es de tipo no covalente, se da entre sistemas π , provenientes de distintos anillos aromáticos. En la **Figura 3.1.6**, se muestran los parámetros que se deben medir para considerar como tal a dicha interacción²³. Todos los ligantes propuestos presentan en mayor o menor grado esta interacción y esta puede darse entre dos anillos aromáticos iguales o distintos, de forma intra o intermolecular, véase la **Figura 3.1.6**.

²³ Janiak C., J. Chem. Soc., Dalton Trans., (2000) 3885

Figura 3.1.6 a) Interacción π - π , entre dos anillos aromáticos, donde X puede ser un C-R ó un heteroátomo, N, S, O. En ella se indican los parámetros a medir para considerar, que dicha interacción existe; los cuales no deben ser excedidos. Red cristalina de los ligantes b) L1, c) L3, (se omiten los hidrógenos por claridad). La posición del átomo de flúor en el grupo -SR_F, marca la pauta, en las interacciones que en ellos puedan existir y en consecuencia favorece la adopción de un sistema cristalino, donde estas se maximicen. En el primer caso se trata de un sistema cristalino triclínico y en el segundo de uno monoclínico, en ambos existen diversas interacciones π - π (entre otras).

3.2.1 Espectrometría de masas en modo de IE⁺ para el ligante L1

El peso molecular del ligante L1, es de 410 m/z, fue determinado por EM en modo de impacto electrónico, en la Tabla 3.2.1, se presentan otros fragmentos observados.

Figura 3.2.1. Espectro de masas en modo de IE+, para el ligante L1

El ion molecular presenta una abundancia, del 15 %. El pico base se encuentra en 283 m/z, el cual es consecuencia de la pérdida de un grupo $-SR_F$, el segundo grupo $-SR_F$ al desprenderse de la molécula, origina un fragmento que se observa en 249 m/z, con una abundancia del 39 %.

Fragmento	Fragmento	m/z
observado	perdido	(% abundancia)
[M ⁺]	e.	410 (15)
N SR _F N CH ₂	SRF	283 (100)
N S N CH ₂	3H, F, SR⊧	249 (39)
N S N CH ₂	SR _F ,	187 (23)
N	S-F-F	127 (34)

Tabla 3.2.1. Fragmentos observados en EM, modo de impacto electrónico, parael ligante L1

3.2.2 Espectro de RMN de ¹H para el ligante L1

El ligante L1, es uno que los ligantes con mayor simetría en su estructura. En δ = 4.5 ppm, se encuentra un singulete que corresponde a los dos protones pertenecientes al metileno, (CH₂). Los protones ubicados en el grupo -SR_F, nos muestran un sistema de acoplamiento spín-spín, de tipo A₂X₂. (Ver **Figura 3.2.2**)

Al no ser iguales, los dos sustituyentes del anillo, desplazan a campo más bajo, los H vecinos al grupo más electronegativo, mientras que el otro sustituyente, puede compensar este hecho y proteger a los H vecinos a él; de esta manera se observan dos grupos similares de señales múltiples separadas por su δ .

Debido a la posición del protón H_a, este puede acoplarse prácticamente con todos los átomos restantes, sin embargo es más fuerte el acoplamiento H-F, que H-H, incluso a cuatro o cinco enlaces. En consecuencia no se aprecia directamente la multiplicidad de la señal al desdoblarse, ya que habrá variaciones en la intensidad de los *picos*, producto de la diferencia entre las *J* involucradas.

Primeramente el protón H_a, se acopla a su vecino H_x, con una ${}^{3}J_{Ha-Hx} = 6.8$ Hz, esto nos genera un doble, pero a su vez el F, se acopla a este con una ${}^{4}J_{Ha-F} = 8.1$ Hz, obteniéndose así un doble de dobles, pero también lo hace con su homologo H_{a'} con ${}^{4}J_{Ha-Ha'} = 2$ Hz, en esta última genera el doble de dobles de dobles.

No se observa como tal el doble de doble de dobles, sólo se conserva el número de *picos* de la señal, mientras que las intensidades relativas de esta, se ven deformadas, en consecuencia ⁴J_{H-F}, es mayor que la ³J_{H-H}.

La señal que se encuentra a $\delta = 6.9$ ppm, es un triplete, esta se debe al protón H_x, el cual tiene como vecinos a H_a y F, cada uno de ellos a tres enlaces, las *J* para acoplamientos H-H ó H-F, a esta distancia, pueden tener la misma magnitud. Estas son ${}^{3}J_{Hx-F} = 8.7$ Hz y ${}^{3}J_{Hx-Ha} = 8.7$ Hz. Todavía se hacen notar los acoplamientos ${}^{4}J_{Hx-Hx'} = 2$ Hz, esto provoca que las señales principales se dobleten.

Figura 3.2.2 Espectro de RMN de ¹H para el ligante L1, en el se muestra una ampliación de las señales de los hidrógenos H_a y H_x, junto con un diagrama de árbol con los acoplamientos correspondientes. Frecuencia: 300 MHz, disolvente: CDCl₃ δ = 7.1 ppm, temperatura: 25 °C.

3.2.3 Espectro de RMN de ¹³C para el ligante L1

En el espectro de ¹³C de RMN del ligante L1, (ver Figura 3.2.3) para mayor claridad, solamente se señalan las señales correspondientes al anillo fluorado y a los carbonos enlazados a flúor y azufre.

El átomo de carbono²⁴ C-F, tiene un δ 164.1-160.8 ppm con J_{C-F} = 246 Hz, mientras que la señal que se encuentra en δ = 129.4 ppm corresponde al átomo de carbono *ipso* C-S.

Los átomos de carbono restantes (SR_F), también presentan acoplamientos C-F, lo valores de estos concuerdan (al igual que en los otros ligantes) con los reportados en la literatura²⁵.

El doblete que se observa en δ = 134.3 ppm, se debe al C₁-H, el cual esta en posición *orto* carbono *ipso* C-S, posee una ${}^{3}J_{C-F}$ = 8.3 Hz. El carbono restante C₂-H, presenta un doblete en 116.1 ppm, el acoplamiento existente entre los núcleos del C y el F es de ${}^{2}J_{C-F}$ = 21.9 Hz.

²⁴ Para este carbono, la multiplicidad esta dada por la ecuación: 2nI+1, sustituyendo los valores se tiene que: [2(1)(1/2)+1]= 2. Lo anterior también es observado en los demás ligantes.

 $^{^{25}}$ En el caso del fluorobenceno: (en Hz) J_{c-F} = 245, $^{2}J_{c-F}$ = 21, $^{3}J_{c-F}$ = 7.8 y $^{4}J_{c-F}$ = 3. Sin embargo estas son muy similares a las calculadas experimentalmente, lo que nos indica que la presencia del enlace C-S, no influye directamente en el acoplamiento.

Figura 3.2.3 Espectro de ¹³C de RMN, para el ligante L1. Frecuencia: 75 MHz, disolvente: CDCl₃ δ = 77 ppm, temperatura: 25 °C.

3.2.4 Espectro de RMN de ¹⁹F para el ligante L1

En el espectro de RMN de ¹⁹F se observa una señal doble de intensidad fuerte, en δ = -116.94 ppm, en la cual se alcanza a observar un acoplamiento entre el átomo de flúor y el protón enlazado al carbono vecino. Las señales restantes corresponden a mínimas cantidades de impurezas (**Figura 3.2.4**).

Figura 3.2.4 Espectro de ¹⁹F de RMN, para el ligante **L1**. Frecuencia: 282 MHz, disolvente: CDCl₃, temperatura: 25 °C.

3.2.5 Difracción de rayos X para el ligante L1

Los cristales adecuados para su analísis por difracción de rayos X, de este compuesto se obtuvieron por evaporación lenta de una mezcla de CH₂Cl₂/Hexano. En la **Figura 3.2.5**, se aprecia la estructura cristalina del ligante L1, se enlistan en la **Tabla 3.2.5** algunas distancias y ángulos de enlace representativos mientras que en la **Tabla 3.2.5.1** se mencionan algunos datos cristalograficos, la totalidad de los resultados se encuentran en el **Anexo 1**.

Figura 3.2.5. Representación ORTEP, al 50% de probabilidad, para el ligante L1

Se observa que los grupos ⁻SR_F, poseen una orientación, *anti-anti*, con respecto a la quinoxalina (si la consideramos como un plano). Por otra parte los ángulos que C-S-C, son ligeramente menores a los que corresponde una estructura tetraédrica con ángulos de109.5°.

Longitudes de	e enlace (Å)	Ángulos de enla	ice (°)
S(1)-C(13) S(1)-C(11) S(2)-C(19) S(2)-C(12) F(1)-C(16) F(2)-C(22)	1.766(3) 1.806(3) 1.768(3) 1.826(3) 1.353(3) 1.354(4)	C(13)-S(1)-C(11) C(19)-S(2)-C(12) F(1)-C(16)-C(15) F(1)-C(16)-C(17)	103.77(13) 100.56(12) 119.0(3) 118.3(3)

Tabla 3.2.5. Principales longitudes (Å) y ángulos de enlace (°) para el ligante L1.

Este ligante es el único que cristaliza en un sistema triclínico, además posee una peculiaridad, un puente de hidrogeno entre el protón del metileno y el N4 de la quinoxalina [C-H… N]; el cual se da una distancia de 2.6 Å, entre el H… N. Esto nos indica que los enlaces C-H, se encuentran polarizados por la presencia del grupo -SRF, lo cual favorece dicha interacción, que de otra manera no se daría. Recordemos que esta ocurre normalmente entre un protón que participa en un enlace covalente polar y un elemento electronegativo.

Figura 3.2.5.1. Puentes de hidrógeno formados por el enlace C-H··· N entre dos moléculas del ligante L1. Por simplicidad se omite la estructura del grupo SR_F: (C₆H₅F-4).

Fórmula Empírica	$C_{22}H_{16}F_2N_2S_2$
Peso Molecular	410.49
Temperatura	298 (2) K
Longitud de onda	0.71073 Å
Sistema cristalino	Triclínico
Grupo espacial	P-1
Constantes de celda	
A(Å)	8.2528 (8)
B(Å)	9.7623 (9)
C(Å)	13.2977 (12)
α, β, γ (°)	96.941(2)° 95.372(2)° 113.684°
A(Å)	8.2528 (8)
Volumen	961.94(16) Å ³
Z	2
Densidad calculada	1.417 Mg/m ³
F (000)	424
Tamaño (nm)	0.234 x 0.136 x 0.114
Intervalo de θ (°)	2.31 a 25.41
Índice de intervalos	-9<=h<=9, -11<=k<=11, -16<=l<=16
Reflexiones colectadas	15649
Reflexiones independientes	3610 [R(int) = 0.0736]
Índice final en R [I>2sigma(I)]	R1 = 0.0558, wR2 = 0.1272
Índice R (todos los datos)	R1 = 0.0805, wR2 = 0.1407
Pico y orificio mas largo	0.461 and -0.254 e.A ⁻³

Tabla 3.2.5.1. Principales datos cristalográficos, para el ligante L1

3.3.1 Espectrometría de masas en modo de IE+ para el ligante L2

Figura 3.3.1. Espectro de masas en modo de IE+, para el ligante L2

La similitudes en el patrón de fragmentación entre el ligante L1 y L2, son muy estrechas, en la Tabla 3.3.1., se mencionan algunos de los fragmentos observados. Al ser isómeros estructurales, el ion molecular, también se encuentra en 410 m/z, su abundancia es del 20% un poco menor que la observada en el ligante L1, que es del 22%.

Fragmento	Fragmento	m/z
observado	perdido	(% abundancia)
M+	e-	410 (20)
N SR _F	SR⊧	283 (100)
N S S	2H, F, SR _F	250 (41)
N S N CH ₂	SRF,	187 (38)

Tabla 3.3.1. Patrón de fragmentación observada, por EM, para el ligante L

3.3.2 Espectro de ¹H RMN para el ligante L2

Los cuatro protones aromáticos del anillo fluorado para este ligante, no tienen equivalencia entre si y cada uno de ellos tiene un comportamiento singular, (Figura 3.3.2).

En el espectro se observa una señal múltiple resultado de la cercanía en δ los protones H_a y H_c que va de 7.2 a 7.3 ppm. La señal múltiple que se encuentra en aproximadamente $\delta \sim 7$ ppm, puede asignarse al protón H_d, más no es posible determinar la multiplicidad de esta y en consecuencia, tampoco se pueden calcular las constantes de acoplamiento.

El triple de dobles (δ = 7.4 ppm) pertenece al protón H_b, en el cual se observa que este se acopla a sus dos vecinos, H_a y H_c, con ³J_{Hb-Ha} = ³J_{Hb-Hc} = 7.5 Hz y a H_d, con ⁴J_{Hc-Ha} = 1.8 Hz. Las constantes de acoplamiento J_{H-H}, reportadas²⁶ son de *J* = 0.6 a 2 Hz, de 2 a 6 Hz y de 6 a 12 Hz, en hidrógenos aromáticos, a cinco, cuatro y tres enlaces de distancia respectivamente.

²⁶E. Prestch, P. Bühlmann, C. Affolter, *Tables of Spectra Data for Structure Determination of Organic Compounds*, 3ra Edición Springer-Verlag, Berlín Heidelberg, 2000, págs., 196

Figura 3.3.2 Espectro de RMN de ¹H para el ligante L2. Frecuencia: 300 MHz, disolvente: $CDCI_3 \delta = 7.1 \text{ ppm}$, temperatura: 25 °C.

3.3.3 Espectro de RMN de ¹³C para el ligante L2

La señal debida al átomo de *C*-F, en el ligante L2 tiene un δ = 163.9-160.6 ppm, J_{C-F} = 244.7 Hz. En δ = 121 ppm, encontramos un doblete que pertenece al **C**-S, el cual posee una ²J_{C-F} = 18.5 Hz. Figura 3.3.3.

Todos los átomos de carbono pertenecientes a los grupos -SR_F, presentan acoplamientos C-F; la excepción es el carbono *orto* (con respecto al carbono *ipso*) que posee una señal simple en δ = 134.4 ppm. Este se encuentra a tres enlaces de distancia del átomo de flúor, sin embargo la interacción entre ellos se ve limitada por la conformación de la molécula y no se observa.

Cada uno de los átomos de carbono, que ocupan la posición *meta*, presenta un comportamiento único, debido a la cercanía relativa del átomo de flúor, esto nos permite diferenciarlos. El C_2 -H que se encuentra a cuatro enlaces de distancia del átomo de F, tiene un δ =124.5 ppm, con ${}^4J_{C-F}$ = 4.4 Hz, mientras que el C_3 -H, presenta los siguientes valores: δ =115.7 ppm, con ${}^2J_{C-F}$ = 21.8 Hz.

Por último el doblete ubicado en δ = 129.8 ppm, con ${}^{3}J_{C-F}$ = 7.7 Hz, nos indica la presencia de un átomo de carbono a cuatro enlaces de distancia del flúor, este es el carbono restante.

Figura 3.3.3. Espectro de RMN de ¹³C para el ligante L2. Frecuencia: 75 MHz, disolvente: CDCl₃ δ = 77 ppm, temperatura: 25 °C.

3.3.4 Espectro de RMN de ¹⁹F para el ligante L2

Centrada en δ = -108.84 ppm, encontramos a un doble de dobles que corresponde al átomo de flúor, presente en el ligante L2, (ver Figura 3.3.4.).

La intensidad y la distribución de los *picos* de esta señal no se observa, debido a un ensanchamiento en el centro de la misma. El protón H_d se acopla al flúor²⁷ con una ${}^{3}J_{F-Hd} = 7.3$ Hz, mientras que el H_c lo hace con ${}^{4}J_{F-Hc} = 4.8$ Hz. No es posible distinguir acoplamientos F-H_a ó F-H_b.

Figura 3.3.4 Espectro de ¹⁹F de RMN, para el ligante **L2**. Frecuencia: 282 MHz, disolvente: CDCl₃, temperatura: 25 °C.

²⁷ Tomado del: E. Prestch, P. Bühlmann, C. Affolter, *Tables of Spectra Data for Structure Determination of Organic Compound*s, 3ra Edición Springer-Verlag, Berlín Heidelberg, 2000, pág. 198. Las constantes H-F allí reportadas; para el caso del fluorobenceno son: (en Hz) ${}^{3}J_{H-F} = 8.9, {}^{4}J_{H-F} = 5.7 \text{ y} {}^{5}J_{H-F} = 0.5.$

3.3.5 Difracción de rayos-X para el ligante L2

Los cristales con las características adecuados para su análisis por difracción de rayos x, fueron obtenidos por evaporación lenta de un sistema de disolventes CH₂Cl₂/Hexano. Este ligante cristaliza en un sistema monoclínico, con un grupo espacial C2/c (**Tabla 3.3.5.1**), por su parte los grupos -SR_F, se encuentran sobre el anillo de la quinoxalina, colocando al átomo de flúor en direcciones contrarias. Sus distancias y ángulos de enlace se enlistan en la **Tabla 3.3.5**.

Figura 3.3.5 Representación ORTEP al 50% de probabilidad de la estructura cristalina del ligante L2.

Longitude	es de enlace (Å)	Ángulos de er	nlace (°)
S(1)-C(12) S(1)-C(11) S(2)-C(19) S(2)-C(18) F(1)-C(13) F(2)-C(20)	1.764(3) 1.814(3) 1.735(4) 1.827(3) 1.353(4) 1.361(4)	C(12)-S(1)-C(11) C(19)-S(2)-C(18) F(1)-C(13)-C(12) F(1)-C(13)-C(14)	100.97(15) 102.20(15) 118.2(3) 117.8(4)

Tabla 3.3.5 Principales longitudes ((Å) y	ángulos de enlace	(°),	para el ligante L2
--------------------------------------	-------	-------------------	------	--------------------

En este ligante solo se observa una interacción de tipo π - π entre los anillos de la quinoxalina de dos moléculas vecinas, sin embargo, la distancia entre planos es de 4.3 Å, lo cual es superior al rango que la define, este va de 3.6 a 3.8 Å

Figura 3.3.5.1 Red cristalina del ligante L2, se observa que el anillo aromático de la quinoxalina, interacciona a su vez con su homólogo (de una molécula vecina) a una distancia entre ellas de 4.246 Å.

Fórmula Empírica	$C_{22}H_{16}F_2N_2S_2$
Peso Molecular	410.49
Temperatura	298 (2) K
Longitud de onda	0.71073 Å
Sistema cristalino	Monoclínico
Grupo espacial	C2/c
Constantes de celda	
A(Å)	29.227 (3)
B(Å)	6.9053 (7)
C(Å)	21.905 (2)
$\alpha = \gamma$ (°)	90°
β (°)	117.325 (3)°
Volumen	3927.6(7) Å ³
Z	8
Densidad calculada	1.388 Mg/m ³
F (000)	1696
Tamaño (nm)	0.32 x 0.12 x 0.02
Intervalo de θ (°)	1.57 a 25.38
Índice de intervalos	-35<=h<=34, -8<=k<=8, -26<=l<=26
Reflexiones colectadas	15649
Reflexiones independientes	3610 [R(int) = 0.0736]
Índice final en R [I>2sigma(I)]	R1 = 0.0575, wR2 = 0.1169
Índice R (todos los datos)	R1 = 0.1036, wR2 = 0.1336
Pico y orificio mas grande	0.329 and -0.220 e.A ⁻³

Tabla 3.3.5.1. Principales datos cristalográficos, para el ligante L2

3.4.1 Espectrometría de masas en modo de IE+ para el ligante L3

Figura 3.4.1. Espectro de EM en modo de IE+ para el ligante L3.

En la **Tabla 3.4.1** encontramos información relacionada con el modo de fragmentación que presenta el ligante L3. Este es muy simple y se rompe escalonadamente por el puente C-S-C, perdiéndose así a los dos grupos -SR_F.

Al perderse el primer grupo ${}^{-}SR_{F}$, se origina el fragmento que aparece en 283 m/z, con una abundancia del 100 %, mientras que la pérdida del segundo fragmento ${}^{-}SR_{F}$, lo hace en 156 m/z.

En todos los ligantes monofluorados se observa que el ion molecular tiene prácticamente la misma abundancia (15-20 %), lo cual nos indica que la estabilidad de la molécula no difiere por la posición del átomo de flúor, en su estructura.

Fragmento	Fragmento	m/z
observado	perdido	(% abundancia)
M+	e-	410 (21)
N SR _F	SR⊧	283 (100)
N S S	H, F, H ₂ C	250 (46)
N S N CH ₂	SRF,	187 (47)
N CH ₂ N CH ₂	2 SRF	155 (15)

Tabla 3.4.1 Algunos fragmentos observados en EM en modo de impacto electrónico para el ligante $\mbox{L3}$

3.4.2 Espectro de ¹H RMN para el ligante L3

En especial para este ligante, no es posible hacer una descripción detallada de las señales observadas en el espectro, para los protones aromáticos restantes, hay una fuerte interacción entre ellos y el flúor, generando que las señales tenga una gran multiplicidad y adicionalmente el δ para cada uno de ellos es muy similar, lo que origina una superposición entre ellas.

Debido a la asimetría que genera el flúor dentro del grupo -SR_F, cada protón presentará una señal, que se desdobla de acuerdo al número de vecinos que tenga y a la constante de acoplamiento que exista entre ellos. Sin embargo como se observa en otros ligantes, este desdoblamiento se ve dominado por el acoplamiento H-F, el cual en algunos casos es más fuerte que el H-H.

Esto modifica de tal manera las características de la señal observada, que se pierde la simetría de las mismas y la oportunidad de describirlas. Por lo cual solo es posible asignar a cada protón una señal de acuerdo al desplazamiento químico esperado para el mismo, la integración es coherente con lo anterior.

El multiplete observado en δ = 6.8-6.9 ppm, corresponde al protón H_d, mientras el que se encuentra en δ = 7.1-7.3 ppm, se puede asignar a los protones restantes H_a, H_b y H_c.

Figura 3.4.2 Espectro de ¹H de RMN, para el ligante L3. Frecuencia: 300 MHz, disolvente: CDCl₃δ = 7.1 ppm, temperatura: 25 °C.

3.4.3 Espectro de RMN de ¹³C para el ligante L3

En contraste con los otros ligantes, la señal debida al carbono *C*-F tiene un δ ligeramente mayor, en δ = 165.17-160.22 ppm, con J_{C-F} = 271 Hz. Ver **Figura 3.4.3**.

Mientras que la señal correspondiente al carbono C-S, se ubica en δ = 137.3-137.1 ppm con ${}^{3}J_{C-F}$ = 7.4 Hz, el cual esta desplazado a mayores ppm, que sus homólogos monofluorados.

La señal que se observa como un doble ubicado en δ = 116.8 ppm, corresponde al C₁-H y esta tiene una ²J_{C1-F} = 22.7 Hz; el C₂-H también se encuentra a dos enlaces de distancia del átomo de flúor su δ = 113.84 ppm, es muy similar al C₁-H, esta también es un doblete, con ²J_{C2-F} = 22.7Hz.

El otro carbono en posición *meta*, presenta un doblete en 130.4 ppm con una ${}^{3}J_{C3-F} = 7.4$ Hz, finalmente el C₄-H tiene un $\delta = 125.5$ ppm, con ${}^{4}J_{C4-F} = 2.3$ Hz. Las variaciones en las constantes de acoplamiento no son significativas, si bien son mayores a los observados en los casos anteriores.

Figura 3.4.3. Espectro de ¹³C de RMN, para el ligante L3. Frecuencia: 75 MHz, disolvente: $CDCI_3 \delta = 77$ ppm, temperatura: 25 °C.

3.4.4 Espectro de RMN de ¹⁹F para el ligante L3

Para este ligante en el espectro de RMN de ¹⁹F, no se observa claramente la señal correspondiente al átomo de flúor, la razón para esto puede ser debida a la presencia de varios conformeros en disolución, lo cual provoca que la señal se vaya ensanchando y que a su vez se presenten equilibrios entre el flúor y átomos vecinos, aumentando así la cantidad de señales observadas.

Figura 3.4.4 Espectro de ¹⁹F de RMN, para el ligante L3. Frecuencia: 282 MHz, disolvente: CDCl₃, temperatura: 25 °C.

Si se hiciera un estudio de RMN, a temperatura variable, se podría observar la señal del confórmero más estable y así determinar la ubicación y multiplicidad correcta de la señal. Sin embargo dicho estudio queda más allá de los alcances del presente trabajo. Considerando que se determino la estructura por difracción de rayos X y siendo esta una prueba inequívoca de la misma, nos limitaremos a decir que alrededor de δ = -110 ppm, se encontrará la señal debida al átomo de flúor que posee el ligante.

3.4.5 Difracción de Rayos-X, del ligante L3

Los cristales con las características adecuados para su análisis por difracción de rayos x, fueron obtenidos por evaporación lenta de un sistema de disolventes CH2Cl2/Hexano. El ligante L3 es un sistema monoclínico, con parámetros de celda a \neq b \neq c y ángulos $\alpha = \gamma \neq \beta$ (Tabla 3.4.5.1). Sin embargo presenta cierto grado de desorden en un grupo SR_F, presentando ocupaciones parciales para algunos de sus átomos (ver Tabla 3.4.5.)

Figura 3.4.5. Representación ORTEP al 50 % de probabilidad, para el ligante L3.

Longitudes	de enlace (Å)	Ángulos de enl	ace (°)
S(1)-C(13)	1.767(4)	C(13)-S(1)-C(11)	103.33(17)
S(1)-C(11)	1.797(4)	F(1)-C(15)-C(14)	117.4(3)
F(1)-C(15)	1.367(4)	F(2)-C(21)-C(22)	115.4(5)
C(21)-F(2)	1.293(6)	F(2)-C(21)-C(20)	118.6(5)
S(2B)-C(19B)	1.767(18)	C(12)-S(2B)-C(19B)	101.2(15)
C(21B)-F(2B)	1.290(19)	F(2B)-C(21B)-C(22B)	104(2)

Tabla 3.4.5 Principales longitudes (Å) y ángulos de enlace (°), para el ligante L3

Recordemos que cuando una molécula cristaliza, posee una conformación que se repite periódicamente a lo largo de su red, sin embargo, puede haber mas de una configuración para dicha molécula, en cuyo caso hay una pequeña porción, que lo hará de manera distinta.

En este ligante, una porción de la estructura cristalina posee otra conformación para uno de los anillos -SRF, (únicamente en esta parte ocurre) lo cual se traduce en un desorden estadístico, ya que los resultados en difracción de rayos X, se obtienen como el promedio de los valores obtenidos para cada celda unitaria.

Entre las interacciones que presenta este ligante, se encuentran un puente de hidrógeno intramolecular, entre los protones del metileno (CH₂) y el átomo de azufre [C11-H11··· S2]; a una distancia de 2.8 Å, entre el H··· S. Existe otro puente de hidrógeno formado por los átomos de [C-H··· F1]; a una distancia de 2.5 Å, entre el H··· F.

Fórmula Empírica	$C_{22}H_{16}F_2N_2S_2$
Peso Molecular	410.49
Temperatura	298 (2) K
Longitud de onda	0.71073 Å
Sistema cristalino	Monoclínico
Grupo espacial	P 21/c
Constantes de celda	
A(Å)	15.022 (2)
B(Å)	8.1547 (13)
C(Å)	16.038 (3)
$\alpha = \gamma$ (°)	90°
β (°)	104.020 (3)°
Volumen	1906.1(5) ų
Ζ	4
Densidad calculada	1.388 Mg/m ³
F (000)	848
Tamaño (nm)	0.218 x 0.186 x 0.148
Intervalo de θ (°)	2.62 a 25.36
Índice de intervalos	-18<=h<=18, -9<=k<=9, -19<=l<=19
Reflexiones colectadas	15015
Reflexiones independientes	3484 [R(int) = 0.0556]
Índice final en R [I>2sigma(I)]	R1 = 0.0731, wR2 = 0.2096
Índice R (todos los datos)	R1 = 0.0912, wR2 = 0.2266
Pico y orificio mas largo	0.360 and -0.480 e.A ^{.3}

Tabla 3.4.5.1. Principales datos cristalográficos, para el ligante L3
3.5.1 Espectrometría de masas en modo de IE+ del ligante L4

El ligante L4: fue sintetizado y purificado, según la metodología descrita anteriormente, sin embargo tras numerosos intentos, no fue posible la obtención de un cristal único para su estudio en rayos-X. Probablemente, debido a que no existen las condiciones adecuadas, para que las atracciones y repulsiones que se dan en la molécula, se optimicen en un arreglo cristalino.

Su fórmula molecular es $C_{22}H_{14}N_2S_2F_4$; en EM en modo de impacto electrónico, se observa claramente el ion molecular en 446 m/z, al igual que en los otros ligantes, este sufre la pérdida consecutiva de cada grupo -SR_F, en la **Tabla 3.5.1**, se encuentran estos y otros fragmentos de interés.

Figura 3.5.1. Espectro de EM en modo de impacto electrónico, para el ligante L4.

Como no fue posible obtener un monocristal, con las características adecuadas para su estudio en difracción de rayos X, es importante hacer una correcta asignación de cada una de las señales obtenidas en RMN, lo cual nos permite conocer la estructura del ligante, a través de las interacciones que existen entre sus átomos y así poder corroborar la estructura que se propone.

Fragmento	Fragmento	m/z
observado	perdido	(% abundancia)
M+	e.	446 (15)
N SR _F N CH ₂	H, S-F	301 (100)
N S S	2H, F, F H ₂ C	268 (25)
N CH ₂	SF	187 (17)
N CH ₂ N CH ₂	H, 2 S-F-F	156 (26)
N N	S-F-F	129 (7)

Tabla 3.5.1. Algunos fragmentos observados en EM por modo de impactoelectrónico para el ligante L4.

3.5.2 Espectro de ¹H RMN para el ligante L4

La sustitución en el anillo ${}^{-}SR_{F}$, provoca que los protones presentes, sean química y magnéticamente, distintos, por lo que se esperan tres señales, con la multiplicidad propia, para cada uno de estos. Experimentalmente sólo se observan dos, **Figura 3.5.2**. Una de ellas puede asignarse al H_a en δ = 7.3 - 7.4 ppm, mientras que la otra δ = 6.8 - 6.7 ppm, es producto de la superposición de las señales de H_b y H_c.

Primeramente nos ocuparemos del protón H_a. Este presenta un acoplamiento con el F_m, ${}^{3}J_{Ha-Fm} = 8.4$ Hz, y a su vez un con el F_p ${}^{4}J_{Ha-Fp} = 6.4$ Hz. Es decir, hay un doble de dobles. También existe una ${}^{4}J_{Ha-Ha'} = 2$ Hz. Lo anterior nos haría pensar, que se trata de un doble de dobles de dobles, esto no ocurre, hay una superposición de las señales y solo se observan 6 de las 8 que deberían obtenerse. Las dos señales faltantes, se adicionan a las principales y provocan que las laterales disminuyan su intensidad. Adicionalmente el H_a se acopla con el H_b, ${}^{5}J_{Ha-Hb} = 0.5$ Hz, por lo cual, esta última constante se hace presente, al lograr que dos de las señales laterales se dobleten.

Sin embargo la señal del protón, Ha, nos permite ubicarlo perfectamente en el anillo fluorado y esto nos indica la forma en la que esta enlazado y corroborar la estructura propuesta.

Los protones restantes: $H_b y H_c$, tienen un δ semejante, entre sí, por lo que no se alcanzan a separar del todo, una señal de la otra. En una primera aproximación, podemos afirmar, que las 6 señales que se encuentran más desdobladas, son las pertenecientes al H_c , debido a que este puede presentar más acoplamientos que el H_b . Pero no es posible ir más lejos, debido a la complejidad de la misma.

Figura 3.5.2. Espectro de RMN de ¹H, para el ligante L4. Frecuencia: 300 MHz, disolvente: CDCl₃δ = 7.2 ppm, temperatura: 25 °C.

3.5.3 Espectro de RMN de ¹³C para el ligante L 4

En el espectro de ¹³C, de este ligante, se observan todos los acoplamientos C-F, que pueden existir en la molécula, lo cual lo hace particularmente significativo.

Este ligante, presenta dos señales para cada C-F, las cuales son perfectamente identificadas, gracias a la diferencia en su δ . En δ = 161.8-161.3 ppm, encontramos al C-F₁, mientras que el C-F₂, se localiza en δ = 165.1-165 ppm.

La multiplicidad de cada una de las señales de los C-F esta dada por la ecuación 2nI+1, pero cada átomo de flúor es química y magnéticamente distinto, por lo que hay mas de un spín que interaccione con el núcleo de carbono, entonces se tiene que:

Donde: n y n' son el numero de núcleos de spín no equivalentes que están interaccionando. Al resolver se tiene que [2(1)(1/2)+1] [2(1)(1/2)+1]=4; lo anterior coincide con los resultados experimentales. Ver **Figura 3.5.3**.

La pequeña señal debida al C-S, se ubica en δ = 116.1 ppm y se trata de un doble de dobles, este carbono presenta acoplamientos con los dos átomos de flúor, ${}^{3}J_{C-F2}$ = 9.8 y ${}^{4}J_{C-F1}$ = 3.3 Hz.

Se observan dos señales dobles de dobles. Una se encuentra en δ 111.8 ppm y corresponde al carbono adyacente al átomo de F₂. Este presenta acoplamientos con ambos átomos a tres y cuatro enlaces de distancia, las constantes de acoplamiento, C-F son; ²J_{C-F2} = 21.3 y ³J_{C-F1} = 9.8 Hz.

La otra señal doble de dobles se ubica en δ = 136.7 ppm y pertenece al carbono en posición *orto* al C-*ipso*. Igualmente presenta acoplamientos C-F, estas constantes de acoplamiento son: ${}^{3}J_{C-F2}$ = 9.8 y ${}^{4}J_{C-F1}$ = 3.3 Hz.

Por último, la señal en δ = 104.5 ppm, se debe al C₃-H, este interacciona con los dos átomos de flúor, por esta razón la señal se observa como un triplete aparente²⁸, pero recordemos que según la ecuación 2nI+1, lo que nos da un total de tres *picos* [2(2)(1/2)+1]= 3.

²⁸ Lo mismo ocurre en los otros ligantes para el átomo de carbono que sea análogo a este, como el ligante **L5** isómero del mismo.

Figura 3.5.3. Espectro de ¹³C de RMN, para el ligante L4. Frecuencia: 75 MHz, disolvente: CDCl₃δ = 77 ppm, temperatura: 25 °C.

3.5.4 Espectro de RMN de ¹⁹F para el ligante L4

El ligante L4, presenta una señal en δ = -103.3 ppm, debida al F_p y otra corresponde al F_m, cuyo δ = -108.9 ppm, ver Figura 3.5.4. En ambas señales se aprecian los acoplamientos posibles entre los dos átomos de flúor o entre este y alguno de los protones vecinos. Esta descripción de la molécula a través de sus acoplamientos en RMN de ¹⁹F, son coherentes con los resultados anteriores y nos permite afirmar que la estructura propuesta es correcta.

En primer lugar el átomo F_p , el cual tiene una señal que a simple vista parece tratarse de un triplete, este presenta cierta asimetría producto de un acoplamiento de tipo heteronuclear F-H, ya que se puede acoplar a tres enlaces de distancia con el protón o con el átomo de flúor, pero de manera distinta, las constantes son: ${}^{3}J_{Fp-Fm} = 16.9 \text{ Hz y } {}^{3}J_{Fp-H2} = 8.4 \text{ Hz}$. También es posible apreciar el acoplamiento F_{p} -H₂ y F_{p} -H₃ el cual al incorporarse al sistema deforma la señal, la constante es: ${}^{4}J_{Fp-H1} = {}^{4}J_{Fp-H3} = 6.4 \text{ Hz}$.

Para el átomo F_m, también existe una situación similar, sin embargo la señal resultante no presenta una multiplicidad definida. Al igual que en el caso anterior, este tiene acoplamientos F_m-F_p y F_m-H, a la misma distancia, las constantes calculadas son: ${}^{3}J_{Fm-Fp} = 16.9 \text{ Hz y } {}^{3}J_{Fp-H2} = 8.4 \text{ Hz}$. La última constante que se encuentra es la que pertenece al F_m-H₂, cuyo valor es: ${}^{3}J_{Fp-H2} = 6.4 \text{ Hz}$.

Figura 3.5.4. Espectro de ¹⁹F de RMN, para el ligante L4. Frecuencia: 282 MHz, disolvente: CDCl₃, temperatura: 25 °C.

3.6.1 Espectrometría de masas en modo de IE+ para el ligante L5

Como parte de la caracterización del ligante L5 se llevo a acabo, un estudio de espectrometría de masas. En la Tabla 3.6.1 se mencionan más datos relacionados con esta técnica.

Los fragmentos observados en este espectro, son prácticamente los mismos, en abundancia y relación m/z, a los que se encontraron en el ligante L4, isómero de este. Por ejemplo: en ambos casos el ion molecular aparece en 446 m/z, en el ligante L4 tiene una abundancia del 27 %, mientras que en el ligante L5, su abundancia es del 25 %.

Figura 3.6.1. Espectro de EM en modo de impacto electrónico, para el ligante L5.

Fragmento	Fragmento	m/z
observado	perdido	(% abundancia)
M+	e-	446 (18)
N SR _F N CH ₂	H, S-F-F	301 (100)
R N N	2H, F,	268 (27)
N S N CH ₂	S-F-F	187 (24)
N CH ₂ N CH ₂	F H, 2	156 (25)

Tabla 3.6.1 Fragmentos observados en EM por modo de impacto electrónico parael ligante L5.

3.6.2 Espectro de ¹H RMN para el ligante L5

El ligantes L5, es isómero estructural del ligante L4, por lo tanto, también posee tres protones no equivalentes, en el grupo ⁻SR_F, ver Figura 3.6.2. La multiplicidad de las señales y de los desplazamientos químicos, de estos protones en estos ligantes es semejante.

Los protones H_b y H_c, tienen sus señales encimadas en un rango que va de δ 6.6 a 6.8 ppm, mientras que la señal que se encuentre en $\delta \sim 7.3$ ppm, se puede asignar al protón H_a. Todas estas señales presentan una distribución en sus *picos*, muy similar a la exhibida por el protón H_a del ligante L4, ver Figura 3.6.2, la razón es la misma, los acoplamientos heteronucleares H-F, son mas fuertes que los acoplamientos H-H y determinan la forma de la señal.

El protón H_a, se encuentra a tres enlaces de distancia de cada uno de los átomos de flúor. En principio debería obtenerse una señal triple, pero el protón logra diferenciar a cada uno de los átomos de flúor, (ya que estos no son ni química, ni magnéticamente equivalentes) y la señal empieza a desdoblarse como un doble de dobles.

Posteriormente el protón H_a , se acopla con el H_b con J, pero la señal no se desdobla del todo ya que la intensidad de este acoplamiento es mucho menor a los dos primeros y solo se observa en las señales internas, lo mismo ocurre con el acoplamiento H_a - H_c con J, el cual solo logra distorsionar las señales del lado derecho.

Los protones H_b y H_c, se encuentran a tres y cuatro enlaces de distancia del átomo de flúor en posición *para* al carbono *ipso*. Es de llamar la atención la exactitud con que se reproducen las señales laterales de este grupo de protones y los análogos que se encuentran en el ligante L4, lamentablemente tampoco se pueden determinar las constantes de acoplamiento que existen, entre ellos.

Figura 3.6.2. Espectro de RMN de ¹H, para el ligante L5. Frecuencia: 300 MHz, disolvente: CDCl₃δ = 7.2 ppm, temperatura: 25 °C.

3.6.3 Espectro de ¹³C de RMN para el ligante L5

Para este ligante, los desplazamientos químicos de las señales correspondientes a los diferentes átomos de C-F, son: C-F₁, δ = 165.9-165.3 ppm, C-F₂, δ =161-160.4 ppm, ver **Figura 3.6.3**.

Al igual que en el ligante L4, la multiplicidad de cada una de las señales de los C-F esta dada por la ecuación (2nI+1)(2n'I+1)... Al resolverla se tiene que [2(1)(1/2)+1] [2(1)(1/2)+1] = 4. Nuevamente se afirma, que cada átomo de flúor es química y magnéticamente distinto.

Así mismo se observa el desplazamiento químico del C-S, en δ = 115.9 ppm, prácticamente igual al de su isómero, el cual se ubica en δ = 116.1 ppm. La multiplicidad de esta también coincide, no así las constantes de acoplamiento que son significativamente mayores: ²J_{C-F1} = 28 y ⁴J_{C-F1} = 6 Hz.

En δ = 136.6 ppm, la señal doble es asignada al C₁-H, el cual se encuentra a tres enlaces de distancia de cada uno de los átomos de flúor, no se pude decir con total certeza a cual de ellos se acopla, lo más probable es lo que haga con el F₂, ya que en este caso el C-S, no se interpone. Dicha constante es: ³J_{C-F2} = 13 Hz.

Por su parte el C₂-H adyacente al átomo de F₂, presenta los siguientes acoplamientos: ${}^{2}J_{C-F2} = 28$ y ${}^{4}J_{C-F1} = 6$ Hz. La multiplicidad que se tiene para dicha señal es un doble de dobles.

Finalmente se observa en δ = 104.4 ppm, la señal que corresponde al carbono que se ubica entre los dos átomos de flúor y en posición *meta* con respecto al C-*ipso*.

Figura 3.6.3. Espectro de RMN de ¹³C, para el ligante L5. Frecuencia: 75 MHz, disolvente: CDCl₃ δ = 77 ppm, temperatura: 25 °C.

3.6.4 Espectro de ¹⁹F de RMN para el ligante L5

En este ligante se observan dos señales para cada uno de los átomo de flúor, el que se encuentra en la posición *para* (con respecto al C-*ipso*) tiene un desplazamiento químico de δ = -136.9 ppm, mientras que la señal que aparece en δ = -139.4 ppm, corresponde al átomo de flúor en posición *orto*.

Al igual que en los ligantes anteriores se presentan acoplamientos F-F y F-H, en este caso son más intensos los acoplamientos spín-spín homonucleares que los heteronucleares.

Según la literatura se espera un doble de dobles de dobles para el F_o, sin embargo solo se observan 7 de las 8 señales esperadas. La multiplicidad de esta, se ve alterada por que la primer constante de acoplamiento ${}^{3}J_{Fo-Ha}$, es significativamente menor que la segunda ${}^{4}J_{Fo-Fp}$, lo cual altera su simetría y distribución, al ensancharse el centro de la misma. Es posible afirmar que las constantes de acoplamiento J son: ${}^{3}J_{Fo-Ha} = 8.4$ Hz, ${}^{4}J_{Fo-Fp} = 14.6$ Hz y ${}^{4}J_{Fo-Hc} = 6.4$ Hz.

Ocurre algo similar para el F_p, este tiene como vecinos (a tres enlaces de distancia), dos protones química y magnéticamente distintos, sin embargo se acopla a estos con una misma J: ${}^{3}J_{Fp-Ha}= {}^{3}J_{Fp-Hb}= 8.4$ Hz. A su vez existen acoplamientos entre este, el F_o y el protón H_c, las constantes son: ${}^{4}J_{Fp-Fm}= 14.6$ Hz, ${}^{4}J_{Fp-Hc}= 6.4$ Hz. El resultado final de estas interacciones es una señal múltiple con 7 *picos*, de los 8 correspondientes a un doble de dobles de dobles.

Figura 3.6.4. Espectro de RMN de ¹⁹F, para el ligante L5. Frecuencia: 282 MHz, disolvente: CDCl₃, temperatura: 25 °C.

3.6.5 Difracción de Rayos-X para el ligante L5

Los cristales con las características adecuados para su análisis por difracción de rayos x, fueron obtenidos por evaporación lenta de un sistema de disolventes CH₂Cl₂/Hexano. El ligante **L5** es uno de los que presenta mayor simetría en su arreglo cristalino; ya que posee (entre otros elementos) un eje de simetría que cruza el anillo de la quinoxalina transversalmente, algo que no se observa en ningún otro ligante. También se trata de un sistema monoclínico, con grupo espacial C2/c, ver **Tabla 3.6.5.1**.

Figura 3.6.5. Representación ORTEP, al 50% para el ligante L5.

Algunos de las ángulos de enlace, (**Tabla 3.6.5**) dentro del anillo ⁻SR_F y de la quinoxalina son ligeramente menores de 120°, mientras que el carbono alifático adopta una geometría tetraédrica (109.5°) ligeramente distorsionada, para así colocar a cada grupo ⁻SR_F, por encima o debajo del plano de la quinoxalina.

Longitudes	de enlace (Å)	Ángulos de e	nlace (°)
S(1)-C(7)	1.765(2)	F(1)-C(8)-C(9)	117.6(2)
S(1)-C(6)	1.830(2)	C(6)-S(1)-C(7)	106.2(11)
F(1)-C(8)	1.349(3)	C(1)-C(6)-S(1)	112.9(15)
F(2)-C(10)	1.342(3)	F(2)-C(10)-C(9)	118.0(3)

Tabla 3.6.5 Principales longitudes (Å) y ángulos de enlace (°), para el ligante L5

Un análisis rápido de la estructura cristalina del ligante L5, revela la presencia de interacciones π - π , en su red cristalina, las cuales no solo se dan entre los anillos de la quinoxalina, sino también entre cada uno de los anillos -SR_F. También posee puentes de hidrogeno intramoleculares, entre los átomos (del metileno) C-H··· F1, la distancia calculada H··· F es de 2.4 Å. Ver **Figura. 3.6.5.1**.

Figura 3.6.5.1. Red cristalina para el ligante L5. En ella también se muestra la celda unitaria. Es posible observar la interacción entre cada uno de los grupos -SRF con sus vecinos, así como el alto grado de orden que presenta a lo largo de toda la red.

Fórmula Empírica	C ₂₂ H ₁₄ F ₄ N ₂ S ₂
Peso Molecular	446.47
Temperatura	298 (2) K
Longitud de onda	0.71073 Å
Sistema cristalino	Monoclínico
Grupo espacial	C2/c
Constantes de celda	
A(Å)	14.5971 (17)
B(Å)	13.9505 (16)
C(Å)	9.6828 (11)
$\alpha = \gamma$ (°)	90°
β (°)	94.527 (3)°
Volumen	1965.6 (4) Å ³
Z	4
Densidad calculada	1.509 Mg/m ³
F (000)	912
Tamaño (nm)	0.336 x 0.292 x 0.036
Intervalo de θ (°)	2.02 to 25.37
Índice de intervalos	-17<=h<=17, -16<=k<=16, -11<=l<=11
Reflexiones colectadas	7942
Reflexiones independientes	1809 [R(int) = 0.0326]
Índice final en R [I>2sigma(I)]	R1 = 0.0458, wR2 = 0.1077
Índice R (todos los datos)	R1 = 0.0604, wR2 = 0.1151
Pico y orificio mas largo	0.416 and -0.193 e.A ⁻³

Tabla 3.6.5.1. Principales datos cristalográficos, para el ligante L5

3.7.1 Espectrometría de masas por IE⁺ para el ligante L6

El peso molecular del ligante L6 se determino por espectrometría de masas, en modo de impacto electrónico, en la Figura 3.7.1 se observa el espectro obtenido.

Figura 3.7.1. Espectro de masas en modo de impacto electrónico, para el ligante L6.

En la **Tabla 3.7.1**, se resume la información más relevante obtenida por está técnica para el ligante **L6**, este se destaca por tener un ion molecular muy abundante cercano al 30%. El pico base se encuentra en 337 m/z, el cual es resultado de la pérdida de un grupo $-SR_F$.

Fragmento	Fragmento	m/z
observado	perdido	(% abundancia)
M+	e.	518 (29)
N SR _F	SR⊧	337 (100)
N S N CH ₂	H, SR _F , F	187 (33)
N CH ₂ N CH ₂	2 SR⊧	156 (22)

 Tabla 3.7.1. Fragmentos observados en EM por impacto electrónico para el ligante L6.

3.7.2 Espectro de ¹H RMN para el ligante L6

El único protón que posee el ligante **L6** en el anillo fluorado, interactúa con átomos adyacentes de flúor, es decir se trata de un sistema de acoplamiento spín-spín heteronuclear, H-F. Ver **Figura 3.7.2**. El protón en cuestión, se encuentra en la posición *para* al C-*ipso*, y se presenta como un multiplete en δ = 7.07 a 6.96 ppm.

Este protón presenta las siguientes constantes de acoplamiento: ${}^{3}J_{H-Fp} = 7.2$ Hz, y ${}^{4}J_{H-Fo} = 2.3$ Hz, el resultado, es un triple de triples, ya que el H ve primeramente a los dos Fm, y después a los otros dos Fo.

El par de señales múltiples que observamos en δ = 7.8 y 7.7 ppm, corresponden a los protones del anillo de la quinoxalina, por su parte en δ = 4.6 ppm, se encuentran los pertenecientes al metileno puente.

Figura 3.7.2. Espectro de RMN de ¹H, para el ligante L6. Frecuencia: 300 MHz, disolvente: CDCl₃δ = 7.2 ppm, temperatura: 25 °C.

3.7.3 Espectro de RMN de ¹³C para el ligante L6

En el ligante **L6**, se esperaba que el numero de señales observadas en ¹³C, que provienen del ⁻SR_F, disminuyera considerablemente como resultado de la simetría que hay dentro de él, así mismo su intensidad ya que cinco de los seis carbonos presentes están unidos a heteroátomos (S y F). Esto no ocurre, ya que no son del todo equivalentes los carbonos y cada uno de ellos presenta una señal.

Los C-F, están en un intervalo de desplazamiento químico muy distinto al de sus homólogos, discutidos previamente. Lo cual es consecuencia directa del efecto de que ejerce el aumento en el número de F, en el anillo. Es decir, cada carbono siente menos la electronegatividad del átomo de flúor, por que esta se distribuye equitativamente entre todos.

Entonces se tiene que para el C-F_o, una señal en δ = 148.9-147.5 ppm. Mientras que para el C-F_o, una señal en δ = 148.9-147.5 ppm. El carbono restante es el correspondiente al único que posee un enlace C-H, este al igual que los otros carbonos que se encuentran entre dos átomos de flúor, presenta la misma multiplicidad con un desplazamiento similar en δ = 107 ppm.

Figura 3.7.3. Espectro de RMN de ¹³C, para el ligante L6. Frecuencia: 75 MHz, disolvente: CDCl₃δ = 77 ppm, temperatura: 25 °C.

3.7.4 Espectro de RMN de ¹⁹F para el ligante L6

Existen dos tipos de flúor en este ligante, los que se encuentran en posición orto y meta, con respecto al tioéter, **Figura 3.7.4**. Se esperan dos señales múltiples separadas entre si. La que se encuentra en δ = -133.6 ppm, se debe a los F en *orto* y mientras que otra que se ubica en δ = -138.8 ppm, es para los F en *meta*.

La señal esperada para el F_o, es un doble de dobles de dobles, la cual prácticamente se observa en su totalidad, al percibirse 7 de las 8 señales esperadas. En primer lugar el F_o, tiene una ${}^{3}J_{Fo-Fm} = 21.4$ Hz, de aquí viene un doblete, el cual se dobletea nuevamente, como respuesta a la ${}^{4}J_{Fo-Fo'} = 12.1$ Hz, la última constante que se introduce en el sistema es. ${}^{5}J_{Fo-Fm'} = 7.3$ Hz

El F_m debería tener una situación análoga, al acoplarse al F_o, F_m'y al F_{o'}, los valores de estas J son: ${}^{3}J_{Fm-Fo} = 32$ Hz, ${}^{4}J_{Fm-Fm'} = 22$ Hz y ${}^{5}J_{Fm-Fo'} = 11$ Hz. Se debería observar nuevamente un doble de dobles de dobles. En el caso anterior se observa mejor esta situación, por que los valores de J son menores que los correspondientes al F_m.

Como la ³J_{Fm-Fo}, es muy fuerte no permite que la señal se desdoble del todo, nuevamente se adicionan algunas señales, de tal manera que solo se observan 5 de las 8 señales características del doble de dobles de dobles. Ver **Esquema 3.7.4**.

 $\mbox{Esquema 3.7.4}$ Comparación de los sistemas de acoplamiento observados para el F_{o} y $F_{m},$ del ligante $\mbox{L6}$

Figura 3.7.4. Espectro de RMN de ¹⁹F, para el ligante L6. Frecuencia: 200 MHz, disolvente: CDCl₃, temperatura: 25 °C.

3.7.5 Difracción de rayos-X del ligante L6

Los cristales con las características adecuados para su análisis por difracción de rayos x, fueron obtenidos por evaporación lenta de un sistema de disolventes CH₂Cl₂/Hexano, (ver **Figura 3.7.5.**)

La estructura de este compuesto muestra características estructurales similares a sus análogos previamente descritos con distancias de enlace C-F que oscilan alrededor de 1.35 Å, mientras que las distancias de enlace C-S, son cercanos a los 1.82 Å, por otra parte los ángulos formados en el interior del anillo - SR_F, al igual que los existentes entre el F, con el carbono al que esta unido y sus adyacentes, son cercanos a 120°, ver **Tabla 3.7.5**.

Figura 3.7.5. Representación ORTEP del ligante L6, al 50% de probabilidad.

En cuanto a su arreglo cristalino, (ver **Tabla 3.7.5.1**) se puede decir que uno de los CH_2 coloca a un grupo $-SR_F$, por encima del plano de la quinoxalina y lo inclina ligeramente. Mientras que el otro metileno (CH_2) lo hace en dirección contraria, quedando así cada $-SR_F$, lo mas alejados uno del otro.

Lo anterior, coloca a los distintos anillos en la distancia y posición adecuada, para que existan interacciones de tipo π - π entre ellos. Estas interacciones son intermoleculares, ya que se dan entre moléculas distintas. Ver **Figura 3.7.5.1.** Una de estas interacciones ocurre entre un grupo -SR_F y su homologo en una molécula vecina. Mientras que la otra interacción π - π se da, entre la quinoxalina (en el anillo que contiene a los átomos de nitrógeno) y otro grupo -SR_F.

Longitudes de enlace (Å)		Ángulos de en	lace (°)
F(1)-C(13) F(2)-C(14) F(3)-C(16) F(4)-C(17) F(5)-C(20) F(6)-C(21) F(7)-C(23) F(8)-C(24)	1.344(3) 1.347(3) 1.351(3) 1.349(3) 1.335(3) 1.345(3) 1.340(3) 1.342(3)	F(1)-C(13)-C(14) F(2)-C(14)-C(15) F(3)-C(16)-C(17) F(4)-C(17)-C(16) F(5)-C(20)-C(21) F(6)-C(21)-C(22) F(7)-C(23)-C(22) F(8)-C(24)-C(19)	118.1(2) 119.7(3) 118.7(3) 118.8(2) 119.0(2) 120.7(3) 118.1(3) 120.5(3)

Tabla 3.7.5. Principales longitudes (Å) y ángulos de enlace, (°) para el ligante L6

Figura 3.7.5.1 Red cristalina del ligante L6, en ella se muestra la celda unitaria.

Fórmula Empírica	C ₂₂ H ₁₀ F ₈ N ₂ S ₂
Peso Molecular	518.44
Temperatura	298 (2) K
Longitud de onda	0.71073 Å
Sistema cristalino	Monoclínico
Grupo espacial	C2/c
Constantes de celda	
A(Å)	29.142 (3)
B(Å)	8.309 (1)
C(Å)	17.437 (2)
$\alpha = \gamma$ (°)	90°
β (°)	94.527 (3)°
Volumen	1965.6 (4) Å ³
Ζ	8
Densidad calculada	1.664 Mg/m ³
F (000)	2080
Tamaño (nm)	0.35 x 0.22 x 0.08
Intervalo de θ (°)	2.38 a 25.34
Índice de intervalos	-34<=h<=34, -9<=k<=10, -20<=l<=20
Reflexiones colectadas	16499
Reflexiones independientes	3777 [R(int) = 0.0550]
Índice final en R [I>2sigma(I)]	R1 = 0.0411, wR2 = 0.0717
Índice R (todos los datos)	R1 = 0.0732, wR2 = 0.0785
Pico y orificio mas largo	0.294 and -0.192 e.A ⁻³

Tabla 3.7.5.1. Principales datos cristalográficos, para el ligante L6

3.8.1 Espectrometría de masas en modo de IE⁺ para el ligante L7

El ligante L7, es un sólido blanco amorfo con fórmula C₂₂H₈N₂S₂F₁₀ y peso molecular de 554 g/mol. Al igual que el ligante L4, no fue posible obtener cristales adecuados para su uso en difracción de rayos-x. Lo anterior no impidió la correcta descripción de la molécula por las otras técnicas, corroborando así la estructura propuesta.

Figura 3.8.1. Espectro de masas por modo de impacto electrónico para el ligante L7.

El numero de fragmentos observados en el espectro de masas, para este ligante es muy reducido y son poco abundantes (con excepción del *pico* base), esto nos habla de la estabilidad de la molécula. Por ejemplo el ion molecular tiene una abundancia del 25 %. En la **Tabla 3.8.1**, se observan otros fragmentos detectados por esta técnica, para este ligante.

Fragmento	Fragmento	m/z
observado	perdido	(% abundancia)
M+	e.	554 (10)
N SR _F N CH ₂	SR⊧	355 (100)
N S N CH ₂	H, SR _F , F	187 (27)
N CH ₂ N CH ₂	2 SRF	156 (25)

Tabla 3.8.1 Fragmentos observados en EM, por de impacto electrónico para elligante L7.

3.8.2 Espectro de ¹H RMN para el ligante L7

El ligante L7, se destaca por que no posee más hidrógenos que los pertenecientes al anillo de la quinoxalina y los del metileno, los cuales se describieron con anterioridad, en el Cap. III, Sección 3.1.3.

En resumen se trata de un sistema AA'BB', para los dos tipos de hidrógenos del anillo heterocíclico, el cual se caracteriza por un señal múltiple y simétrica para cada protón.

El protón H_a presenta una señal múltiple en δ = 7.8-7.9 ppm, mientras que el protón H_b se encuentra en δ = 7.7-7.8 ppm. Ambas señales son la imagen especular de la otra.

Los protones del metileno (CH₂), exhiben una señal simple muy intensa en 4.5 ppm. La integración coincide exactamente con lo anterior.

En todos los ligantes propuestos, (incluso en la materia prima), los desplazamientos químicos observados en ¹H de RMN; para los protones pertenecientes a la quinoxalina y los del metileno, no difieren significativamente, entre si. Es decir, que cualquiera de los grupos $-SR_F$ (ó Br, en la materia prima) ejercen el mismo efecto electroatractor en todos los protones en cuestión.

Figura 3.8.2. Espectro de RMN de ¹H, para el ligante L7. Frecuencia: 300 MHz, disolvente: CDCl₃δ = 7.3 ppm, temperatura: 25 °C.

3.8.3 Espectro de RMN de ¹³C para el ligante L7

En el espectro de ¹³C de RMN para el ligante L7, por simplicidad solamente se indican las señales pertenecientes al anillo fluorado y al metileno, debido a que estas son únicas para cada ligante. Ver Figura 3.8.3.

Los desplazamientos químicos, de los carbonos unidos a heteroátomos (S ó F) en el ligante **L7**, son menores a los observados en los ligantes restantes, lo cual nos indica que de la distribución de carga entre todos los átomos de carbono en el grupo -SR_F, es más equitativa. En consecuencia no son desplazados a campo bajo (mayores ppm), como sus homólogos en los ligantes descritos anteriormente.

Sin embargo, no es posible abundar en la descripción de las señales, debido a que son muy pequeñas y no se distinguen fácilmente del ruido existente en el espectro.

El C-S, tiene su señal en δ = 140.7 ppm. Para el C-F*p*, se observa una señal muy pequeña, en δ = 139.3 ppm. En δ = 146.3 ppm, la señal es debida al C-F*o*, mientras que en δ =135.8 ppm, se observa lo propio para el C-F*m*.

Por otra parte, los carbonos pertenecientes al anillo de la quinoxalina y el metileno, tienen un comportamiento según lo descrito en la **Sección 3.1.4**.

Figura 3.8.3. Espectro de RMN de ¹³C, para el ligante L7. Frecuencia: 75 MHz, disolvente: CDCl₃δ = 77 ppm, temperatura: 25 °C.

3.8.4 Espectro de RMN de ¹⁹F para el ligante L7

Al igual que en RMN de ¹H; los efectos electrónicos se transmiten mejor a los átomos en posición *orto* y *para* en un anillo aromático, es decir si leemos el espectro de RMN de ¹⁹F de izquierda a derecha, el desplazamiento de cada uno de ellos se observara en el siguiente orden: *orto, para* y *meta*.

Experimentalmente se aprecian tres señales para los tres diferentes tipos de flúor, la intensidad, multiplicidad y δ de ellas, al igual que las constantes de acoplamiento entre los átomos de flúor, coinciden con lo esperado, según la teoría, **Figura 3.8.4**.

El F_o, tiene una señal doble de dobles, en δ = -134.9 ppm, debido a que se acopla al F_m, y al F_p, con ³J_{Fo-Fm} = 22 Hz y ⁴J_{Fo-Fp} = 6.2 Hz, respectivamente.

En δ = -164.2 ppm, observamos un triple de dobles que corresponde al F_m. Este tiene una ${}^{3}J_{Fm-Fo} = {}^{3}J_{Fm-Fp} = 22$ Hz, de allí proviene el triplete. El Fm, a su vez se acopla con el F_{m'}, esto da lugar al triple de dobles, la constante involucrada es: ${}^{4}J_{Fm-Fm'} = 6$ Hz.

Finalmente el F_p, solo presenta un acoplamiento con el F_m, caracterizado por la ${}^{3}J_{Fp-Fm} = 22$ Hz. El triplete se localiza en $\delta = -154.3$ ppm.

Figura 3.8.4. Espectro de RMN de ¹⁹F, para el ligante L7. Frecuencia: 282 MHz, disolvente: CDCl₃, temperatura: 25 °C.

4.1 Reacciones de acoplamiento C-C tipo Suzuki-Miyaura

Los ligantes tioéter fluorados sintetizados, fueron utilizados en una reacción modelo de acoplamiento C-C tipo Suzuki-Miyaura, **Esquema 4.1**, mostrando un % de conversión que va del 14 al 25% (ver **Tabla 4.1**); siendo el ligante **L3** el que presento una mejor actividad catalítica. Se observo que si la reacción es únicamente catalizada por Pd(II), se sedimenta negro de paladio (Pd⁰) en el seno de la reacción, **Figura 4.1**.

L = Ligante **L1-L7**

Esquema 4.1 Reacción de acoplamiento cruzado C-C de tipo Suzuki-Miyaura, catalizada por el sistema [Pd(AcO)₂]/L, donde L son los ligantes sintetizados, **L1-L7**.

Es decir, todos los ligantes sintetizados logran estabilizar mejor al centro metálico de Pd(II), al favorecer la formación *in situ* la especie catalítica [Pd(II)-L]; de tal manera que promueven satisfactoriamente la reacción e impiden la descomposición del mismo en el seno de la reacción. En cuyo caso, es muy probable que la especie catalítica [Pd(II)-L], sea resultado de la coordinación del átomo de nitrógeno con el centro metálico, o también podría existir una coordinación conjunta de los átomos de N y S (en los ligantes), al átomo de Pd(II), formándose así un anillo de cinco miembros.

Figura 4.1 Estructura de la probable especie catalítica de [Pd(II)-L] formada *in situ*. Donde SR_F son los tiofenolatos correspondientes a ligantes sintetizados, L1-L7.

No es posible establecer con certeza una tendencia de los resultados; sin embargo se puede decir que existe un aumento en el % de conversión al aumentar el número de átomos de flúor presentes en la molécula. Donde el ligante L5 (el cual tiene dos átomos de flúor), fue el que obtuvo un % de conversión menor, apenas cercano al 14 %.

La serie de reacciones de acoplamiento C-C tipo Suzuki propuestas, fueron catalizadas por el sistema Pd(II)-L3, mostrando un % de conversión aceptable según las características propias del sustrato y las condiciones de temperatura y tiempo de reacción planteadas, ver Tabla 4.1.2.

Se observa además que el % de conversión aumenta mientras más electroatractor sea el sustituyente, en la posición *para* al bromobenceno. En todas las reacciones los rendimientos fueron calculados en base al bromobenceno residual, por CG-EM.

Figura 4.2 Foto que ilustra las disoluciones obtenidas, después de purificar y filtrar cada uno de los tubos de catálisis utilizados en la **Sección 6.4** al concluir el tiempo de reacción. Nótese que el vial correspondiente al tubo testigo muestra una coloración verdosa y existe una ligera sedimentación de negro de paladio, ausente en los demás viales.

 Tabla 4.1. Reacción modelo de acoplamiento C-C tipo Suzuki, entre el ácido fenil borónico y el bromobenceno.

 Tabla 4.1. Reacción modelo de acoplamiento C-C tipo Suzuki, entre el ácido fenil borónico y el bromobenceno.

Tabla 4.1.2 Serie de reacciones catalíticas de acoplamiento C-C tipo Suzuki: entre el ácido fenil-borónico y derivados del *para*-bromobenceno, utilizando el sistema [Pd(OAc)₂]/L3

*En el cálculo no se consideraron los subproductos.

5.1 Conclusiones

- Mediante la metodología señalada, se logro la síntesis de los ligantes propuestos, tioéter fluorados derivados de la 2,3-bis (bromometil) quinoxalina.
- La fuerza directriz de la reacción es la formación del subproducto PbBr₂, el cual precipita, mientras que el producto permanece en disolución, por lo cual la reacción es muy limpia y el rendimiento promedio de estas es ≥ 80 %.
- Todos los ligantes sintetizados, pudieron ser caracterizados totalmente por diversas técnicas espectroscópicas, IR, EM, RMN y difracción de rayos X, (cuando esto fue posible).
- En RMN, se pudieron calcular y describir adecuadamente los diferentes acoplamientos existentes entre los átomos de ¹H, ¹³C y ¹⁹F.
- Con excepción de dos de los ligantes propuestos (L4 y L7), también fue posible la determinación de su estructura mediante experimentos de difracción de rayos x de cristal único. Además un estudio más detallado permite observar que estos resultados serán atractivos para posteriores estudios de química supramolecular e ingeniería de cristales.
- La sola presencia de un átomo de flúor en la estructura de los ligantes, es suficiente para polarizar el enlace C_{sp3}-H y así favorecer interacciones tipo puente de hidrogeno, en la molécula.

- En el caso de los ligantes propuestos, el factor electrónico no es determinante, para la promoción y estabilización de un centro metálico, durante una reacción de acoplamiento cruzado C-C, de tipo Suzuki-Miyuara.
- Sin embargo, experimentalmente se observo que sin la presencia de estos ligantes, la especie de Pd(II), se descompone a especies de Pd (0) negro de paladio.
- El sistema Pd(II)-L3, tiene una actividad catalítica superior al resto de los ligantes obtenidos en reacciones de acoplamiento cruzado C-C, de tipo Suzuki-Miyaura.
- Las características estructurales, así como las propiedades químicas de los ligantes sintetizados, promovieron su uso en reacciones de acoplamiento y su futuro estudio en otras transformaciones químicas.

6.1 Reactivos e Instrumentación

Los disolventes empleados: Acetona, Tolueno, Hexano, CH₂Cl₂, en la síntesis de los precursores y los ligantes: son de grado analítico, marca Baker y al igual que la 2,3-Bis(bromometil)quinoxalina, el acetato de paladio y de plomo, [Pd(OAc)₂ y Pb(OAc)₂] así como los tiofenolatos fluorados; se usaron como se recibieron de la compañía Aldrich, sin posterior purificación.

Para la caracterización de los ligantes tioéter fluorados derivados de la 2,3-Bis(bromometil)quinoxalina L1-L7, se determino sus respectivos puntos de fusión con un aparato digital MEL-TEMP, los resultados se reportan sin corrección.

Los espectros de IR se obtuvieron en estado solido como pastilla de KBr, en un espectrómetro marca **Nicolet-Magna 750 FT - IR**, en un rango de 4000 a 400 cm⁻¹. La espectrometría de masas se realizó en modo de impacto electrónico en un equipo **JEOL JMS-SX102A**.

El análisis por RMN de ¹H (300 MHz), ¹³C {¹H} (75 MHz), ¹⁹F (282 MHz), se realizó un espectrómetro **JEOL GX300m**, los desplazamiento químicos (δ) se reportan en ppm; utilizando al TMS como estándar interno, empleando como disolvente CDCl₃, δ = 7.27 ppm. Mientras para los espectros de ¹⁹F; el hexafluorobenceno (C₆F₆) es utilizado como estándar externo.

Cuando fue posible, se realizaron estudios de Difracción de Rayos X, de cristal único, para los ligantes propuestos, en un aparato **Bruker SMART APEX**.

La cuantificación de los productos de las reacciones catalíticas se llevaron a cabo en un cromatógrafo marca **Agilent 6890N**, con una columna capilar de 30.0 m, modelo DB-1MS Agilent, el cual esta acoplada a un detector selectivo de masas marca Agilent.

6.2 Reacción general de síntesis de las sales de plomo [Pb(SRF)2]

La síntesis de las sales de plomo se realizó a partir del acetato de plomo, el cual es disuelto en agua y dependiendo de las características físicas del tiofenol, éste se le adiciona a la disolución anterior (ya sea líquido, disuelto ó en suspensión); en una relación estereoquímica de **1:2**.

La sal de plomo precipita y se deja que la reacción proceda por 24 hrs, se filtra mientras que el ácido acético único subproducto de la reacción permanece en disolución. El rendimiento promedio de estas reacciones es de aproximadamente ≥96%.

Esquema 6.2 Procedimiento general para la síntesis de los precursores del fluorotiofenolatos de plomo empleados en este trabajo.

6.3 Síntesis de los ligantes tioéter fluorados derivados de la 2,3-Bis(bromometil)quinoxalina

Los ligantes tioéter fluorados propuestos fueron sintetizados vía reacciones de metátesis entre la sal de plomo del tiofenolato fluorado correspondiente y la 2,3-Bis(bromometil)quinoxalina en una relación estequiométrica 1:1.

A una disolución 40 mL de 2,3-Bis(bromometil)quinoxalina (341.2 mg, 1.07 mmol) en tolueno, se le adiciona una suspensión de la sal de plomo correspondiente, [Pb(SR_F)₂ **1-7**, (1.07mmol)], en aprox. 10 mL del mismo disolvente, la mezcla resultante se mantiene en reflujo por aproximadamente 48 hrs.

Esquema 6.3 Método general para la síntesis de los ligantes tioéter fluorados derivados de la 2,3-Bis(bromometil)quinoxalina

Concluido el tiempo de reacción, la disolución se enfría a temperatura ambiente y el solido formado (PbBr₂) se filtra a través de celita y desecha, posteriormente. La disolución resultante se evapora al vacío en un rotavapor y el producto crudo así obtenido se recristaliza de CH₂Cl₂/Hexano, obteniéndose en la mayoría de los casos sólidos microcristalinos de color amarillo ó blanquesinos, con excepción de los ligantes L4 y L7, los cuales son sólidos amorfos. En algunos casos fue necesario, la posterior purificación del producto haciendo, pasar la mezcla de reacción a través de una columna de precolado, [silica gel (AcOEt/Hexano 1:2)].

Esquema 6.3.1. Estructura de cada uno de los ligantes tioéter fluorados sintetizados y su clave correspondiente.

6.3.1 Síntesis del ligante L1

El ligante L1 (1.55g, 82%) es un sólido cristalino color amarillo (0.3901 g, 88.92%), con fórmula C₂₂H₁₆F₂N₂S₂ y peso molecular 410 g/mol. Su punto de fusión es de >95 °C (descompone). Es obtenido a partir de [0.412 g, (1.07 mmol)] de la 2,3-bis(bromometil)quinoxalina y [0.5 g (1.07 mmol)] de Pb(SC₆H₅F-4)₂. IR (cm⁻¹): 3060.5, 2979.7, 2936.4, 1486.8 (C-F), 1262.2, 1087.6, 786.6 (C-S). RMN-¹H (300 MHz, CDCl₃) [δ , ppm]: 7.89-7.93 (m, 2H, H-5,8, BB⁻), 7.70–7.66 (m, 2H, H-6,7, AA⁻), 7.34-7.29 (m, 4H, H-14,18), 6.94-6.88 (m, 4H, H-15,17), 4.5 (s, 4H, CH₂). RMN-¹³C (75 MHz, CD₂Cl₂) [δ , ppm]: 164.1-160.8 (C-F), 151.4 (C-2,3), 140.7 (C-9,10), 129.9 (C-8,5), 128.6 (C-7,6), 129.1 (C-*i*), 134.3 (C-*o*, ³J_{13C-19F} = 8.3 Hz), 116 (C-*m*, ²J_{13C-19F} = 21.9 Hz), 39.9 (CH₂). RMN-¹⁹F (282 MHz, CDCl₃) [δ , ppm]: -116.9 (d, F, ⁴J_{19F-1H} = 5.6 Hz).

6.3.2 Síntesis del ligante L2

El ligante L2 se obtuvo como un sólido cristalino color amarillo (0.3901 g, 88.92 %), con fórmula C₂₂H₁₆F₂N₂S₂, con peso molecular 410 g/mol, y p.f. de >98 °C (descompone). A partir de [0.412 g, (1.07 mmol)] de la 2,3-bis(bromometil)quinoxalina y [0.5 g (1.07 mmol)] de Pb(SC₆H₅F-2)₂. IR (cm⁻¹): 3057.5, 2974.0, 2928.7, 1469.5 (C-F), 1221.8, 819.0, 786.6 (C-S). RMN-¹H (300 MHz, CDCl₃) [δ, ppm]: 7.87-7.92 (m, 2H, H-5,8, BB⁻), 7.67–7.62 (m, 2H, H-6,7, AA⁻), 7.43-7.37 (td, 2H, H-16,23), 7.18-7.25 (m, 4H, H-14,15,21,22), 7.01-6.95 (m, 2H, H-17,24), 4.6 (s, 4H, CH₂). RMN-¹³C (75 MHz, CD₂Cl₂) [δ, ppm]: 163.9-160.6 (C-F), 151.2 (C-2,3), 140.8 (C-9,10), 129.8 (C-8,5), 128.6 (C-7,6), 121.1 (C-*i*, ²J_{13C-19F} = 18.5 Hz), 134.3 (C-*o*), 129.8 (CH₂, ⁴J_{13C-19F} = 2.2 Hz). RMN-¹⁹F (282 MHz, CDCl₃) [δ, ppm]: -108 (m, F, ³J_{19F-1H} = 7.3 Hz, ⁴J_{19F-1H} = 4.8 Hz).

6.3.3 Síntesis del ligante L3

El ligante L3 es un sólido cristalino color café (0.4067 g, 92.7 %), con fórmula C₂₂H₁₆F₂N₂S₂, con peso molecular 410 g/mol, y p.f. de >98 °C (descompone). Es obtenido partir de [0.412 g, (1.07 mmol)] de la 2,3- bis(bromometil)quinoxalina y [0.5 g (1.07 mmol)] de Pb(SC₆H₅F-3)₂. IR (cm⁻¹): 3061.5, 2889.9, 1600.0, 1574.6, 1474.4, 1421.9 (C-F), 1213.5, 1090.5, 766.9 (C-S). RMN-1H (300 MHz, CDCl₃) [δ, ppm]: 8.01-7.94 (m, 2H, H-5,8, BB⁻), 7.75–7.67 (m, 2H, H-6,7, AA⁻), 7.26-7.11 (m, 6H, H-14,16,17,20,22,23), 6.93-6.83 (m, 2H, H-18,24), 4.6 (s, 4H, CH₂). RMN-1³C (75 MHz, CD₂Cl₂) [δ, ppm]: 165.2-160.2 (C-F), 150.9 (C-2,3), 140.9 (C-9,10), 130.1 (C-8,5), 128.6 (C-7,6), 137.2 (C-*i*, ³J_{13C-19F} = 11.4 Hz), 130.4 (C-*m*, ³J_{13C-19F} = 22.7 Hz), 125.5 (C-*o*, ⁴J_{13C-19F} = 2.3 Hz), 116.8 (C-*o*, ²J_{13C-19F} = 35.3 Hz) 113.8 (C-*p*, ²J_{13C-19F} = 31.8 Hz), 38.4 (CH₂). RMN-1⁹F (282 MHz, CDCl₃) [δ, ppm]: -110 (m, F).

6.3.4 Síntesis del ligante L4

El ligante L4 es un sólido blanquesino amorfo (0.4328 g, 90.69 %), con fórmula C₂₂H₁₄F₄N₂S₂, con peso molecular 446 g/mol, y p.f. de 123 °C. Es obtenido partir de [0.3178 g, (1.0 mmol)] de la 2,3- bis(bromometil)quinoxalina y [0.5 g (1.0 mmol)] de Pb(SC₆H₅F-3,4)₂. IR (cm⁻¹): 3057.5, 2977.0, 1502.1, (C-F), 1272.3, 768.0 (C-S). RMN-1H (300 MHz, CDCI₃) [δ, ppm]: 7.88-7.82 (m, 2H, H-5,8, BB⁻), 7.69–7.63 (m, 2H, H-6,7, AA⁻), 7.37-7.29 (m, 2H, H-16,24), 6.79-6.68 (m, 4H, H-13,14,20,21), 4.5 (s, 4H, CH₂). RMN-1³C (75 MHz, CD₂Cl₂) [δ, ppm]: 165.1-165 (C-*Fp*), 161.8-161.3 (C-*Fm*), 150.9 (C-2,3), 140.7 (C-9,10), 129.9 (C-8,5), 128.5 (C-7,6), 116.1 (dd, C-*i*, ³J_{13C-19F} = 9.8 Hz, ⁴J_{13C-19F} = 3.3 Hz), 104.5 (C-*o*), 38.8 (CH₂). RMN-¹⁹F (282 MHz, CDCI₃) [δ, ppm]: -103.3 (m, 2F), -103.3 (m, 2F).

6.3.5 Síntesis del ligante L5

El ligante L5 es un sólido cristalino color amarillento (0.4159 g, 87.15 %), con fórmula C₂₂H₁₄F₄N₂S₂, con peso molecular 446 g/mol, y p.f. >115 °C (descompone). Es obtenido partir de [0.3178 g, (1.0 mmol)] de la 2,3- bis(bromometil)quinoxalina y [0.5 g (1.0 mmol)] de Pb(SC₆H₅F-2,4)₂. IR (cm⁻¹): 3057.5, 2977.0, 1502.1, (C-F), 1272.3, 768.0 (C-S). RMN-¹H (300 MHz, CDCl₃) [δ, ppm]: 7.87-7.81 (m, 2H, H-5,8, BB⁻), 7.70–7.63 (m, 2H, H-6,7, AA⁻), 7.39-7.26 (m, 2H, H-9), 6.82-6.66 (m, 4H, H-11,12,), 4.5 (s, 4H, CH₂). RMN-¹³C (75 MHz, CD₂Cl₂) [δ, ppm]: 165.9-165.3 (C-*Fp*), 161-160.4 (C-*Fo*), 150.9 (C-2,3), 140.7 (C-9,10), 129.9 (C-8,5), 128.5 (C-7,6), 115.9 (dd, C-*i*, ²J_{13C-19F} = 28 Hz, ³J_{13C-19F} = 6 Hz), 136.6 (d, C-*o*, ³J_{13C-19F} = 13 Hz), 111.8 (dd, C-*m*, ²J_{13C-19F} = 32 Hz, ⁴J_{13C-19F} = 6 Hz), 104.4 (C-*m*), 38.8 (CH₂). RMN-¹⁹F (282 MHz, CDCl₃) [δ, ppm]: -136.8 (m, 2F), -139.4 (m, 2F).

6.3.6 Síntesis del ligante L6

El ligante L6 es un sólido cristalino color café (0.4839 g, 87.32 %), con fórmula $C_{22}H_{10}F_8N_2S_2$, con peso molecular 518 g/mol, y p.f. >112 °C (descompone). obtenido de (0.868 Es partir [0.2745 g, mmol)] de la 2,3bis(bromometil)quinoxalina y [0.5 g (0.868 mmol)] de Pb(SC₆F₄H-4)₂. IR (cm⁻¹): 3072.8, 2928.4, 1488.8, (C-F), 917.2, 772.7, 711.0 (C-S). RMN-¹H (300 MHz, CDCl₃) [δ, ppm]: 7.87-7.81 (m, 2H, H-5,8, BB²), 7.70-7.65 (m, 2H, H-6,7, AA²), 7.07-6.96 (m, 2H, H-p), 4.6 (s, 4H, CH₂). RMN-¹³C (75 MHz, CD₂Cl₂) [δ, ppm]: 145.7 (C-Fo), 147.6 (C-Fm), 149.8 (C-2,3), 140.7 (C-9,10), 130.3 (C-8,5), 128.5 (C-7,6), 130.6 (C-*i*), 107.1 (C-*p*), 38 (CH₂). RMN-¹⁹F (282 MHz, CDCl₃) [δ, ppm]: -133.5 (m, 4F, F*o*), -138.8 (m, 4F, F*m*).

6.3.7 Síntesis del ligante L7

El ligante L6 es un sólido cristalino color café (0.5176 g, 85.76 %), con fórmula C₂₂H₈F₁₀N₂S₂, con peso molecular 554 g/mol, y p.f. >113 °C (descompone). Es obtenido partir de [0.2576 g, (0.81 mmol)] de la 2,3- bis(bromometil)quinoxalina y [0.5 g (0.81 mmol)] de Pb(SC₆F₅)₂. IR (cm⁻¹): 2964.0, 2905.6, 1488.4, (C-F), 1094.8, 980.7, 762.5 (C-S). RMN-¹H (300 MHz, CDCl₃) [δ , ppm]: 7.9-7.8 (m, 2H, H-5,8, BB⁻), 7.73–7.68 (m, 2H, H-6,7, AA⁻), 4.5 (s, 4H, CH₂). RMN-¹³C (75 MHz, CD₂Cl₂) [δ , ppm]: 146.3 (C-*Fo*), 135.8 (C-*Fm*), 139.3 (C-*Fp*), 149.7 (C-2,3), 140.7 (C-9,10), 130.5 (C-8,5), 128.5 (C-7,6), 140.7 (C-*i*), 38.2 (CH₂). RMN-¹⁹F (282 MHz, CDCl₃) [δ , ppm]: -134.9 (dd, 4F, F*o*, ³J_{19F-19F} = 22 Hz, ⁴J_{19F-19F} = 6.2 Hz), -164.2 (td, 4F, F*m*, ³J_{19F-19F} = 22 Hz, ⁴J_{19F-19F} = 22 Hz).

6.4 Procedimiento general para la reacción de acoplamiento C-C de tipo Suzuki-Miyaura: Selección del mejor ligante auxiliar tioéter fluorado

En la reacción modelo de acoplamiento C-C de tipo Suzuki, se utilizó ácido fenil-borónico, (89 mg, 1 mmol), bromobenceno (0.0769mL, 1 mmol) y Na₂CO₃ como base, (93 mg, 1.2-% mol). Se peso la cantidad correspondiente de cada uno de los ligantes tioéter fluorados **L1-L7** (1 mol-%) y de acetato de paladio [Pd(OAc)₂)], 2% mol, disueltos en 3 mL, de DMF.

Se preparo también un tubo testigo. El cual contenía en la misma relación que los tubos anteriores: ácido fenil-borónico, bromobenceno y Na₂CO₃ como base; como especie catalítica únicamente cuenta con acetato de paladio [Pd(OAc)₂)], 2% mol. Los cuales fueron disueltos en 3 mL, de DMF.

Esquema 6.4 Reacción modelo de acoplamiento C-C tipo Suzuki-Miyaura, para la selección del mejor ligante auxiliar. Donde **L1-L7** simboliza a los ligantes tioéter fluorados sintetizados.

Cada uno de los tubos de catálisis es colocado en un baño de aceite a 150 °C, por 12 hrs. Al concluir el tiempo establecido de reacción, la mezcla resultante se dejo enfriar a temperatura ambiente y se le adicionan 2 mL de CH₂Cl₂, se agita y filtra la disolución obtenida, de ésta última disolución se toma una alícuota de 0.5 mL, la cual es analizada por técnicas de CG-EM, para la cuantificación de los productos de reacción.

6.5 Preparación de la serie de reacciones de acoplamiento C-C de tipo Suzuki-Miyaura con el ligante auxiliar L3

La serie de reacciones de acoplamiento C-C de tipo Suzuki-Miyaura, se realizo de la siguiente manera se colocó ácido fenil-borónico (89 mg, 1 mmol), un derivado del *para*-bromobenceno, (1 mmol) y Na₂CO₃ como base (93 mg, 1.2-% mol). Se peso la cantidad correspondiente del ligante **L3** (1 mol-%) y de Pd(AcO)₂ (2% mol), los cuales son disueltos en 3 mL, de DMF.

Cada uno de los tubos de catálisis preparados, es colocado en un baño de aceite a 150 °C, por 12 hrs., al finalizar el tiempo son retirados del baño y se dejan enfriar a temperatura ambiente. Posteriormente se les adicionan 2 mL de CH₂Cl₂, se agita y se filtra la mezcla resultante, a través de celita. Finalmente se toma una alícuota de 0.5 mL, la cual es analizada por CG-EM, para determinar el rendimiento de reacción.

Esquema 6.5 Reacción general de acoplamiento C-C tipo Suzuki-Miyaura, entre el ácido fenil-borónico y diferentes *para*-bromobencenos; catalizada por el sistema [Pd(OAc)₂/L3].

Espectro de IR para el ligante L1

Espectro de IR para el ligante L2

Espectro de IR para el ligante L3

Espectro de IR para el ligante L4

Espectro de IR para el ligante L5

Espectro de IR para el ligante L6

Espectro de IR para el ligante L7

Table 1. Crystal data and structure refinement for 010mmd08. Identification code 010MMD08 C22 H16 F2 N2 S2 Empirical formula Formula weight 410.49 Temperature 298(2) K 0.71073 A Wavelength Crystal system Triclinic Space group P -1 Unit cell dimensions a = 8.2528(8) A alpha = 96.941(2) deg. b = 9.7623(9) Abeta = 95.372(2) deg.c = 13.2977(12)A gamma = 113.684(2)deg. Volume 961.94(16) A^3 Ζ 2 Density (calculated) 1.417 Mg/m^3 Absorption coefficient 0.305 mm^-1 F(000) 424 Crystal size 0.234 x 0.136 x 0.114 mm Theta range for data collection 2.31 to 25.41 deg. -9<=h<=9, -11<=k<=11, -16<=l<=16 Index ranges Reflections collected 10699 Independent reflections 3511 [R(int) = 0.0347]Absorption correction Semi-empirical from equivalents Max. and min. transmission 0.9688 and 0.8523 Refinement method Full-matrix least-squares on F² Data / restraints / parameters 3511 / 0 / 253 Goodness-of-fit on F² 1.022 Final R indices [I>2sigma(I)] R1 = 0.0558, wR2 = 0.1272 R indices (all data) R1 = 0.0805, wR2 = 0.1407

Ligante L1

Largest diff. peak and hole 0.461 and -0.254 e.A^-3 Table 2. Atomic coordinates (x 10⁴) and equivalent isotropic displacement parameters (A² x 10³) for 010mmd08. U(eq) is defined as one third of the trace of the orthogonalized Uij tensor.

	x	У	Z	U(eq)
S(1)	1055(1)	-1949(1)	7909(1)	68(1)
S(2)	2188(1)	1458(1)	5399(1)	63(1)
F(1)	-5945(2)	-4000(2)	9266(2)	88(1)
F(2)	8873(3)	5265(3)	4090(2)	122(1)
N(1)	5029(3)	1245(3)	8530(2)	49(1)
C(2)	3763(3)	650(3)	7723(2)	43(1)
C(3)	4170(3)	546(3)	6703(2)	40(1)
N(4)	5823(3)	1024(2)	6526(2)	40(1)
C(5)	8948(3)	2278(3)	7193(2)	49(1)
C(6)	10294(4)	2982(3)	8007(2)	56(1)
C(7)	9908(4)	3086(4)	8998(3)	64(1)
C(8)	8187(4)	2502(4)	9182(2)	60(1)
C(9)	6765(3)	1792(3)	8353(2)	43(1)
C(10)	7160(3)	1683(3)	7349(2)	39(1)
C(11)	1872(4)	75(3)	7946(2)	51(1)
C(12)	2747(3)	-56(3)	5776(2)	50(1)
C(13)	-1054(4)	-2455(3)	8317(2)	48(1)
C(14)	-1732(4)	-1442(3)	8692(2)	54(1)
C(15)	-3381(4)	-1962(3)	9023(2)	59(1)
C(16)	-4318(4)	-3479(4)	8961(2)	56(1)
C(17)	-3689(4)	-4507(3)	8606(2)	58(1)
C(18)	-2053(4)	-3996(3)	8279(2)	54(1)
C(19)	4211(4)	2612(3)	5006(2)	49(1)
C(20)	5568(4)	3753(3)	5705(2)	55(1)
C(21)	7152(4)	4649(4)	5405(3)	69(1)
C(22)	7328(5)	4386(4)	4397(3)	71(1)
C(23)	6008(5)	3285(4)	3686(3)	72(1)
C(24)	4436(4)	2399(3)	3994(2)	59(1)

S(1)-C(13) S(2)-C(19) S(2)-C(12) F(1)-C(16) F(2)-C(22) N(1)-C(2) N(1)-C(9) C(2)-C(1) C(2)-C(1) C(3)-N(4) C(3)-C(12) N(4)-C(10) C(5)-C(6) C(5)-C(10) C(6)-C(7) C(7)-C(8) C(8)-C(9) C(9)-C(10) C(13)-C(14) C(13)-C(14) C(13)-C(18) C(14)-C(15) C(15)-C(16) C(16)-C(17) C(17)-C(18) C(19)-C(24) C(19)-C(21) C(20)-C(21) C(21)-C(22) C(22)-C(23) C(23)-C(24)	1.766(3) $1.806(3)$ $1.768(3)$ $1.768(3)$ $1.353(3)$ $1.353(3)$ $1.354(4)$ $1.316(3)$ $1.369(3)$ $1.429(4)$ $1.504(3)$ $1.308(3)$ $1.498(4)$ $1.365(3)$ $1.364(4)$ $1.365(3)$ $1.364(4)$ $1.361(4)$ $1.361(4)$ $1.384(4)$ $1.384(4)$ $1.387(4)$ $1.387(4)$ $1.383(4)$ $1.371(4)$ $1.378(4)$ $1.377(4)$ $1.366(5)$ $1.362(5)$ $1.372(4)$
C(13)-S(1)-C(11) $C(19)-S(2)-C(12)$ $C(2)-N(1)-C(9)$ $N(1)-C(2)-C(3)$ $N(1)-C(2)-C(11)$ $C(3)-C(2)-C(11)$ $N(4)-C(3)-C(2)$ $N(4)-C(3)-C(12)$ $C(2)-C(3)-C(12)$ $C(2)-C(3)-C(12)$ $C(3)-N(4)-C(10)$ $C(6)-C(5)-C(10)$ $C(5)-C(6)-C(7)$ $C(8)-C(7)-C(6)$ $C(7)-C(8)-C(9)$ $N(1)-C(9)-C(10)$ $N(1)-C(9)-C(8)$ $C(10)-C(9)-C(8)$ $N(4)-C(10)-C(5)$ $N(4)-C(10)-C(5)$ $N(4)-C(10)-C(5)$	103.77(13) $100.56(12)$ $117.2(2)$ $121.8(2)$ $115.7(2)$ $122.5(2)$ $121.6(2)$ $126.(2)$ $122.4(2)$ $117.6(2)$ $120.2(3)$ $120.5(3)$ $121.0(3)$ $119.7(3)$ $120.8(2)$ $120.1(3)$ $119.1(3)$ $119.6(2)$ $120.9(2)$

Table 3. Bond lengths [A] and angles [deg] for 010mmd08.

_

C(5) - C(10) - C(9)	119.4(2)
C(2) - C(11) - S(1)	107.87(18)
C(3) - C(12) - S(2)	110.42(19)
C(14) - C(13) - C(18)	118.9(3)
C(14)-C(13)-S(1)	125.3(2)
C(18)-C(13)-S(1)	115.8(2)
C(15) - C(14) - C(13)	120.4(3)
C(16) - C(15) - C(14)	118.5(3)
F(1)-C(16)-C(15)	119.0(3)
F(1)-C(16)-C(17)	118.3(3)
C(15)-C(16)-C(17)	122.7(3)
C(16) - C(17) - C(18)	118.9(3)
C(17) - C(18) - C(13)	120.5(3)
C(24)-C(19)-C(20)	119.4(3)
C(24)-C(19)-S(2)	120.2(2)
C(20)-C(19)-S(2)	120.4(2)
C(21) - C(20) - C(19)	120.7(3)
C(22)-C(21)-C(20)	118.0(3)
F(2)-C(22)-C(23)	118.6(4)
F(2) - C(22) - C(21)	118.6(4)
C(23)-C(22)-C(21)	122.8(3)
C(22)-C(23)-C(24)	118.7(3)
C(23)-C(24)-C(19)	120.4(3)

Symmetry transformations used to generate equivalent atoms:

	U11	U22	U33	U23	U13	U12
S(1)	61(1)	60(1)	100(1)	34(1)	45(1)	31(1)
S(2)	39(1)	84(1)	74(1)	31(1)	10(1)	28(1)
F(1)	53(1)	90(1)	107(2)	18(1)	38(1)	9(1)
F(2)	87(2)	128(2)	176(3)	96(2)	62(2)	41(2)
N(1)	45(1)	56(1)	43(1)	9(1)	12(1)	19(1)
C(2)	40(2)	44(2)	49(2)	11(1)	12(1)	18(1)
C(3)	37(1)	40(1)	44(2)	11(1)	8(1)	16(1)
N(4)	36(1)	43(1)	40(1)	10(1)	7(1)	14(1)
C(5)	40(2)	52(2)	54(2)	11(1)	12(1)	16(1)
C(6)	36(2)	58(2)	69(2)	9(2)	5(2)	14(1)
C(7)	49(2)	73(2)	60(2)	7(2)	-8(2)	19(2)
C(8)	58(2)	73(2)	43(2)	б(2)	2(2)	25(2)
C(9)	43(2)	44(1)	43(2)	10(1)	6(1)	17(1)
C(10)	38(1)	39(1)	43(2)	10(1)	7(1)	16(1)
C(11)	45(2)	53(2)	59(2)	14(1)	19(1)	20(1)
C(12)	37(2)	57(2)	50(2)	14(1)	7(1)	11(1)
C(13)	45(2)	55(2)	44(2)	17(1)	14(1)	19(1)
C(14)	47(2)	47(2)	66(2)	15(1)	22(1)	14(1)
C(15)	52(2)	59(2)	66(2)	9(2)	21(2)	20(2)
C(16)	41(2)	65(2)	53(2)	12(2)	15(1)	9(1)
C(17)	54(2)	47(2)	56(2)	12(1)	8(2)	3(1)
C(18)	61(2)	52(2)	51(2)	15(1)	13(1)	21(2)
C(19)	47(2)	57(2)	51(2)	17(1)	4(1)	28(1)
C(20)	57(2)	59(2)	54(2)	17(2)	7(2)	28(2)
C(21)	61(2)	60(2)	84(3)	24(2)	-1(2)	22(2)
C(22)	59(2)	69(2)	102(3)	48(2)	32(2)	30(2)
C(23)	94(3)	82(2)	71(2)	39(2)	39(2)	57(2)
C(24)	73(2)	58(2)	54(2)	13(2)	9(2)	34(2)

Table 4. Anisotropic displacement parameters (A^2 x 10^3) for 010mmd08. The anisotropic displacement factor exponent takes the form: -2 pi^2 [h^2 a*^2 U11 + \dots + 2 h k a* b* U12]

	x	У	Z	U(eq)
H(5)	9220	2194	6531	59
Н(б)	11479	3395	7897	68
H(7)	10841	3563	9546	77
H(8)	7948	2570	9852	72
H(11A)	1125	290	7438	61
H(11B)	1844	573	8617	61
H(12A)	1685	-859	5925	60
H(12B)	3168	-483	5214	60
H(14)	-1075	-406	8722	65
H(15)	-3837	-1285	9281	71
H(17)	-4357	-5539	8585	69
H(18)	-1611	-4687	8031	65
H(20)	5410	3917	6386	66
H(21)	8074	5410	5874	83
H(23)	6170	3138	3005	86
H(24)	3517	1650	3516	71

Table 5. Hydrogen coordinates (x 10^4) and isotropic displacement parameters (A^2 x 10^3) for 010mmd08.

Ligante L2

Table 1. Crystal data and structure refinement for 013mmd08.

Identification code	013mmd08 F
Empirical formula	C22 H16 F2 N2 S2
Formula weight	410.49
Temperature	298(2) K
Wavelength	0.71073 A
Crystal system	Monoclinic
Space group	C2/c
Unit cell dimensions	a = 29.227(3) A alpha = 90 deg. b = 6.9053(7) A beta = 117.325(2) deg. c = 21.905(2) A gamma = 90 deg.
Volume Z	3927.6(7) A^3 8
Density (calculated)	1.388 Mg/m^3
Absorption coefficient F(000)	0.299 mm^-1 1696
Crystal size	0.32 x 0.12 x 0.02 mm
Theta range for data collection	1.57 to 25.38 deg.
Index ranges	-35<=h<=34, -8<=k<=8, -26<=l<=26
Reflections collected	15649
Independent reflections	3610 [R(int) = 0.0736]
Absorption correction	Semi-empirical from equivalents
Max. and min. transmission	0.9940 and 0.9103
Refinement method	Full-matrix least-squares on F^2
Data / restraints / parameters	3610 / 0 / 253
Goodness-of-fit on F^2	1.031
Final R indices [I>2sigma(I)]	R1 = 0.0575, wR2 = 0.1169
R indices (all data)	R1 = 0.1036, wR2 = 0.1336
Largest diff. peak and hole	0.329 and -0.220 e.A^-3

Table 2. Atomic coordinates ($x \ 10^{4}$) and equivalent isotropic displacement parameters (A² $x \ 10^{3}$) for 013mmd08. U(eq) is defined as one third of the trace of the orthogonalized Uij tensor.

	x	У	Z	U(eq)
C(1)	2402(1)	6282(1)	100E(1)	EQ(1)
S(1)	2402(1) 1002(1)	0202(1)	1005(1) 654(1)	50(1) FF(1)
S(Z) E(1)	1003(1) 1550(1)	$Z \perp 0 / (\perp)$	-054(1) 1460(2)	55(⊥) 112(1)
F(工) F(2)	1050(1)	5904(4)	1459(2) 1610(1)	113(1)
F(Z) N(1)	1205(1)	3274(3)	-1019(1)	100(1)
N(1)	1139(1)	(171(4))	-210(1)	43(1)
C(2)	1450(1)	$0 \perp / \perp (4)$	-89(2)	37(1)
C(3)	1204(1) 770(1)	4213(4)	-198(2)	39(1) 42(1)
N(4) Q(F)	7/2(1)	3819(4)	-440(1)	43(1) F2(1)
C(5)	-86(1) 414(1)	5010(5)	-814(2)	52(1)
C(6)	-414(1)	0524(0)	-931(2)	59(1) (1)
C(7)	-229(1)	8425(6)	-808(2)	61(1) 55(1)
C(8)	279(1)	8798(5)	-572(2)	55(1)
C(9)	624(1)	7261(5)	-449(2)	44(1)
C(10)	443(1)	5351(4)	-570(2)	39(1)
C(11)	2009(1)	6641(5)	170(2)	47(1)
C(12)	2148(1)	8072(5)	1420(2)	46(1)
C(13)	1761(1)	7695(6)	1589(2)	64(1)
C(14)	1577(2)	9013(8)	1890(2)	83(1)
C(15)	1784(2)	10825(7)	2013(2)	83(1)
C(16)	2174(2)	11285(6)	1856(2)	75(1)
C(17)	2358(1)	9914(5)	1565(2)	59(1)
C(18)	1619(1)	2521(4)	-50(2)	46(1)
C(19)	1331(1)	1911(5)	-1430(2)	50(1)
C(20)	1074(2)	3456(5)	-1840(2)	63(1)
C(21)	651(2)	3296(7)	-2461(2)	79(1)
C(22)	463(2)	1493(8)	-2704(2)	80(1)
C(23)	703(2)	-108(7)	-2318(2)	76(1)
C(24)	1134(2)	85(5)	-1687(2)	64(1)

S(1)-C(12) S(1)-C(11) S(2)-C(19) S(2)-C(18) F(1)-C(13) F(2)-C(20) N(1)-C(2) N(1)-C(9) C(2)-C(3) C(2)-C(11) C(3)-N(4) C(3)-C(18) N(4)-C(10) C(5)-C(6) C(5)-C(6) C(5)-C(10) C(6)-C(7) C(7)-C(8) C(8)-C(9) C(9)-C(10) C(12)-C(13) C(12)-C(17) C(13)-C(14) C(14)-C(15) C(15)-C(16) C(15)-C(16) C(16)-C(17) C(19)-C(20) C(19)-C(21) C(21)-C(22)	1.764(3) $1.814(3)$ $1.735(4)$ $1.827(3)$ $1.353(4)$ $1.361(4)$ $1.313(4)$ $1.375(4)$ $1.436(4)$ $1.498(4)$ $1.313(4)$ $1.496(4)$ $1.370(4)$ $1.361(5)$ $1.403(4)$ $1.398(5)$ $1.356(4)$ $1.402(4)$ $1.401(4)$ $1.366(5)$ $1.366(5)$ $1.384(5)$ $1.371(5)$ $1.362(6)$ $1.374(5)$ $1.360(5)$ $1.360(5)$ $1.366(6)$	
C(23)-C(24) $C(12)-S(1)-C(11)$ $C(19)-S(2)-C(18)$ $C(2)-N(1)-C(9)$ $N(1)-C(2)-C(3)$ $N(1)-C(2)-C(11)$ $C(3)-C(2)-C(11)$ $N(4)-C(3)-C(2)$ $N(4)-C(3)-C(18)$ $C(2)-C(3)-C(18)$ $C(2)-C(3)-C(18)$ $C(3)-N(4)-C(10)$ $C(6)-C(5)-C(10)$ $C(6)-C(5)-C(10)$ $C(5)-C(6)-C(7)$ $C(8)-C(7)-C(6)$ $C(7)-C(8)-C(9)$ $N(1)-C(9)-C(10)$ $N(1)-C(9)-C(8)$ $C(10)-C(9)-C(8)$ $N(4)-C(10)-C(9)$ $N(4)-C(10)-C(9)$	1.383(5) $100.97(15)$ $102.20(15)$ $117.2(3)$ $121.8(3)$ $116.1(3)$ $122.1(3)$ $121.6(3)$ $116.5(3)$ $121.9(3)$ $121.9(3)$ $120.0(3)$ $120.6(3)$ $120.6(3)$ $120.7(3)$ $119.7(3)$ $120.8(3)$ $119.2(3)$ $120.0(3)$ $121.3(3)$ $119.7(3)$	

_

C(9) - C(10) - C(5)	119.0(3)
C(2) - C(11) - S(1)	114.6(2)
C(13) - C(12) - C(17)	116.6(3)
C(13) - C(12) - S(1)	122.4(3)
C(17) - C(12) - S(1)	120.8(3)
F(1)-C(13)-C(12)	118.2(3)
F(1) - C(13) - C(14)	117.8(4)
C(12) - C(13) - C(14)	124.1(4)
C(15) - C(14) - C(13)	117.9(4)
C(14) - C(15) - C(16)	120.5(4)
C(15) - C(16) - C(17)	120.2(4)
C(16) - C(17) - C(12)	120.6(4)
C(3)-C(18)-S(2)	115.0(2)
C(20)-C(19)-C(24)	115.9(3)
C(20) - C(19) - S(2)	122.5(3)
C(24) - C(19) - S(2)	121.5(3)
C(21)-C(20)-F(2)	117.1(4)
C(21)-C(20)-C(19)	124.3(4)
F(2) - C(20) - C(19)	118.6(4)
C(20)-C(21)-C(22)	118.8(4)
C(21)-C(22)-C(23)	119.6(4)
C(22)-C(23)-C(24)	120.7(4)
C(23)-C(24)-C(19)	120.6(4)

Symmetry transformations used to generate equivalent atoms:
	U11	U22	U33	U23	U13	U12
S(1)	45(1)	57(1)	63(1)	-8(1)	15(1)	8(1)
S(2)	51(1)	54(1)	63(1)	-9(1)	29(1)	6(1)
F(1)	99(2)	93(2)	171(3)	-19(2)	82(2)	-39(2)
F(2)	144(2)	45(1)	90(2)	0(1)	35(2)	5(1)
N(1)	46(2)	32(2)	50(2)	-2(1)	22(1)	-4(1)
C(2)	42(2)	33(2)	39(2)	-4(1)	22(2)	-2(2)
C(3)	43(2)	36(2)	40(2)	0(1)	22(2)	2(2)
N(4)	45(2)	38(2)	45(2)	-2(1)	20(1)	-1(1)
C(5)	45(2)	56(2)	49(2)	-9(2)	17(2)	-11(2)
C(6)	40(2)	77(3)	57(2)	1(2)	19(2)	0(2)
C(7)	48(2)	65(3)	64(2)	5(2)	22(2)	12(2)
C(8)	46(2)	44(2)	69(2)	1(2)	22(2)	7(2)
C(9)	43(2)	46(2)	42(2)	0(2)	18(2)	-2(2)
C(10)	38(2)	42(2)	36(2)	-2(1)	17(2)	-2(2)
C(11)	46(2)	40(2)	62(2)	-7(2)	29(2)	-7(2)
C(12)	40(2)	47(2)	45(2)	-2(2)	14(2)	-1(2)
C(13)	52(2)	59(3)	80(3)	-7(2)	29(2)	-13(2)
C(14)	69(3)	107(4)	88(3)	-2(3)	49(3)	13(3)
C(15)	93(4)	76(3)	71(3)	-1(2)	31(3)	32(3)
C(16)	104(4)	50(2)	59(3)	-6(2)	27(3)	-6(2)
C(17)	69(2)	49(2)	51(2)	-4(2)	21(2)	-6(2)
C(18)	53(2)	35(2)	49(2)	2(2)	23(2)	0(2)
C(19)	60(2)	41(2)	60(2)	-1(2)	37(2)	7(2)
C(20)	81(3)	48(2)	62(3)	-8(2)	35(2)	1(2)
C(21)	83(3)	85(3)	61(3)	5(2)	26(3)	21(3)
C(22)	65(3)	111(4)	55(3)	-6(3)	22(2)	-7(3)
C(23)	80(3)	73(3)	79(3)	-17(3)	41(3)	-22(3)
C(24)	75(3)	52(2)	65(3)	-7(2)	32(2)	-9(2)

Table 4. Anisotropic displacement parameters (A^2 x 10^3) for 013mmd08. The anisotropic displacement factor exponent takes the form: -2 pi^2 [h^2 a*^2 U11 + \dots + 2 h k a* b* U12]

	x	У	Z	U(eq)
H(5)	-212	3750	-896	62
Н(б)	-764	6291	-1094	71
H(7)	-458	9445	-888	73
H(8)	399	10067	-493	65
H(11A)	2038	7982	61	57
H(11B)	2144	5843	-74	57
H(14)	1318	8680	2006	99
H(15)	1660	11758	2205	99
H(16)	2315	12523	1946	90
H(17)	2626	10231	1465	70
H(18A)	1434	1355	-49	55
H(18B)	1902	2674	408	55
H(21)	492	4395	-2716	95
H(22)	174	1351	-3127	95
Н(23)	576	-1335	-2483	91
H(24)	1293	-1014	-1433	77

Table 5. Hydrogen coordinates (x 10^4) and isotropic displacement parameters (A^2 x 10^3) for 013mmd08.

Ligante L3

Table 1. Crystal data and structure refinement for 016mmd08.

Identification code	016MMD08 F
Empirical formula	C22 H16 F2 N2 S2
Formula weight	410.49
Temperature	298(2) K
Wavelength	0.71073 A F
Crystal system	Monoclinic
Space group	P 21/c
Unit cell dimensions	a = 15.022(2) A $alpha = 90$ $deg.$ $b = 8.1547(13)$ A $beta = 104.020(3)$ $deg.$ $c = 16.038(3)$ A $gamma = 90$ $deg.$
Volume Z	1906.1(5) A^3 4
Density (calculated)	1.430 Mg/m ³
Absorption coefficient F(000)	0.308 mm ⁻¹ 848
Crystal size	0.218 x 0.186 x 0.148 mm
Theta range for data collection	2.62 to 25.36 deg.
Index ranges	-18<=h<=18, -9<=k<=9, -19<=l<=19
Reflections collected	15015
Independent reflections	3484 [R(int) = 0.0556]
Absorption correction	Semi-empirical from equivalents
Max. and min. transmission	0.9576 and 0.9329
Refinement method	Full-matrix least-squares on F^2
Data / restraints / parameters	3484 / 287 / 326
Goodness-of-fit on F ²	1.060
Final R indices [I>2sigma(I)]	R1 = 0.0731, wR2 = 0.2096
R indices (all data)	R1 = 0.0912, wR2 = 0.2266
Largest diff. peak and hole	0.360 and -0.480 e.A^-3

Table 2. Atomic coordinates ($x \ 10^{4}$) and equivalent isotropic displacement parameters (A² $x \ 10^{3}$) for 016mmd08. U(eq) is defined as one third of the trace of the orthogonalized Uij tensor.

	x	У	Z	U(eq)
S(1)	6790(1)	4311(1)	2396(1)	57(1)
F(1)	6812(2)	9495(3)	4049(2)	83(1)
N(1)	6192(2)	1447(4)	1561(2)	47(1)
C(2)	6772(2)	2085(4)	1161(2)	43(1)
C(3)	7033(3)	1229(4)	467(2)	45(1)
N(4)	6675(2)	-194(4)	198(2)	49(1)
C(5)	5648(3)	-2383(5)	329(3)	56(1)
C(6)	5049(3)	-3055(5)	743(3)	61(1)
C(7)	4821(3)	-2267(5)	1447(3)	57(1)
C(8)	5197(3)	-787(5)	1711(2)	50(1)
C(9)	5825(2)	-45(4)	1292(2)	44(1)
C(10)	6056(2)	-867(4)	601(2)	45(1)
C(11)	7153(3)	3764(4)	1444(2)	49(1)
C(12)	7708(3)	1935(5)	15(3)	60(1)
C(13)	7213(2)	6327(4)	2614(2)	43(1)
C(14)	6880(3)	7129(4)	3236(2)	49(1)
C(15)	7167(3)	8712(5)	3448(2)	52(1)
C(16)	7757(2)	8522(5)	2082(2)	56(1)
C(10) C(17) C(18) S(2)	8085(3) 7821(3)	8720(6) 7136(5)	2471(3) 2232(3)	62(1) 57(1) 58(1)
C(19)	9244(3)	-72(6)	792(3)	57(1)
C(20)	8788(3)	-1369(6)	330(3)	61(1)
C(21)	9171(4)	-2921(6)	535(4)	68(1)
C(22) C(22) C(23)	9939(4) 10372(5)	-3248(8) -1968(9) -358(8)	1122(4) 1578(5) 1420(4)	80(1) 95(2) 80(1)
F(2) S(2B)	8731(3) 8863(15)	-4185(5) 2380(30)	1420(4) 159(4) 510(30) 820(20)	132(2) 72(4) 69(3)
C(20B)	9300(20)	-1050(40)	600(30)	65(3)
C(21B)	8830(30)	-2510(40)	880(30)	74(3)
C(22B)	9300(30)	-2590(50)	1380(40)	81(3)
C(23B) C(24B) F(2B)	10130(30) 10570(30) 10170(30) 9000(30)	-1170(60) 360(50) -3990(40)	1600(40) 1360(30) 860(40)	84(3) 75(3) 97(5)

1.767(4) 1.797(4) 1.367(4) 1.310(5) 1.362(5) 1.445(5) 1.510(5) 1.308(5) 1.497(5) 1.369(5) 1.357(6) 1.401(5) 1.411(6) 1.357(5) 1.420(5) 1.420(5) 1.408(5) 1.763(19) 1.828(5) 1.383(5) 1.384(5) 1.377(5) 1.354(6) 1.369(6) 1.379(6) 1.396(6) 1.396(6) 1.327(7) 1.348(8) 1.403(8) 1.767(18) 1.377(16) 1.398(16) 1.290(19) 1.37(17)	
1.398(16) 1.290(19) 1.337(17) 1.330(17)	
1.396(17) 103.33(17) 117.8(3) 121.4(3) 117.5(3) 121.1(3) 121.1(3) 117.0(3) 121.9(3) 118.2(3) 119.7(4)	
	1.767(4) $1.797(4)$ $1.367(4)$ $1.367(4)$ $1.310(5)$ $1.362(5)$ $1.445(5)$ $1.510(5)$ $1.308(5)$ $1.497(5)$ $1.369(5)$ $1.357(6)$ $1.401(5)$ $1.401(5)$ $1.411(6)$ $1.357(5)$ $1.420(5)$ $1.420(5)$ $1.408(5)$ $1.763(19)$ $1.828(5)$ $1.384(5)$ $1.384(5)$ $1.369(6)$ $1.379(6)$ $1.375(6)$ $1.396(6)$ $1.396(6)$ $1.396(6)$ $1.398(16)$ $1.398(16)$ $1.398(16)$ $1.398(16)$ $1.398(16)$ $1.398(16)$ $1.398(16)$ $1.398(16)$ $1.398(16)$ $1.398(17)$ $103.33(17)$ $117.8(3)$ $121.4(3)$ $117.5(3)$ $121.1(3)$ $121.9(3)$ $119.7(4)$

_

C(5) - C(6) - C(7)	121.7(4)
C(8) - C(7) - C(6)	119.4(4)
C(7)-C(8)-C(9)	120.4(3)
N(1) - C(9) - C(10)	121.1(3)
N(1) - C(9) - C(8)	119.7(3)
C(10) - C(9) - C(8)	119.2(3)
N(4) - C(10) - C(5)	120.1(3)
N(4)-C(10)-C(9)	120.4(3)
C(5)-C(10)-C(9)	119.5(4)
C(2)-C(11)-S(1)	108.1(2)
C(3)-C(12)-S(2B)	124.8(14)
C(3) - C(12) - S(2)	114.7(3)
C(14) - C(13) - C(18)	119.1(3)
C(14)-C(13)-S(1)	114.0(3)
C(18)-C(13)-S(1)	126.9(3)
C(15)-C(14)-C(13)	118.4(3)
C(16)-C(15)-F(1)	118.9(3)
C(16) - C(15) - C(14)	123.7(4)
F(1)-C(15)-C(14)	117.4(3)
C(15)-C(16)-C(17)	117.2(4)
C(16) - C(17) - C(18)	121.6(4)
C(17) - C(18) - C(13)	120.0(4)
C(19) - S(2) - C(12)	105.6(2)
C(20) - C(19) - C(24)	119.5(5)
C(20) - C(19) - S(2)	125.0(4)
C(24) - C(19) - S(2)	115.5(4)
C(19) - C(20) - C(21)	116.6(5)
F(2) - C(21) - C(22)	115.4(5)
F(2) - C(21) - C(20)	118.6(5)
C(22) - C(21) - C(20)	126.0(5)
C(21) - C(22) - C(23)	116.8(5)
C(22) - C(23) - C(24)	121.6(6)
C(19) - C(24) - C(23)	119.5(5)
C(12) - S(2B) - C(19B)	101.2(15)
C(20B) - C(19B) - C(24B)	119(2)
C(20B) - C(19B) - S(2B)	125.7(19)
C(24B) - C(19B) - S(2B)	115.5(18)
C(19B) - C(20B) - C(21B)	118(2)
F(2B) - C(21B) - C(22B)	104(2)
F(2B) - C(21B) - C(20B)	130(3)
C(22B) = C(21B) = C(20B)	116(2)
C(23B) = C(22B) = C(21B)	10(2)
C(22B) - C(23B) - C(24B) C(10B) - C(24B) - C(22B)	110(2)
C(13R) - C(24R) - C(23R)	119(2)

Symmetry transformations used to generate equivalent atoms:

Table 4.	Anisotropic	displacement	parameters	(A^2 x	10^3) for	016mmd08.
The anisot	ropic displac	cement factor	exponent t	akes the	e form:	
-2 pi^2 []	h^2 a*^2 U11	+ + 2 h	k a* b* U12]		

	U11	U22	U33	U23	U13	U12
S(1)	82(1)	39(1)	61(1)	-9(1)	37(1)	-8(1)
F(1)	106(2)	60(2)	98(2)	-36(1)	55(2)	-20(1)
N(1)	52(2)	44(2)	47(2)	-5(1)	12(1)	4(1)
C(2)	52(2)	38(2)	40(2)	1(1)	13(2)	8(2)
C(3)	59(2)	38(2)	39(2)	3(1)	10(2)	10(2)
N(4)	65(2)	40(2)	42(2)	2(1)	14(2)	10(1)
C(5)	66(2)	46(2)	57(2)	-12(2)	18(2)	1(2)
C(6)	63(2)	46(2)	71(3)	-13(2)	12(2)	-3(2)
C(7)	56(2)	50(2)	64(2)	0(2)	16(2)	0(2)
C(8)	50(2)	49(2)	51(2)	-6(2)	14(2)	1(2)
C(9)	48(2)	38(2)	43(2)	-1(2)	б(2)	7(2)
C(10)	47(2)	42(2)	44(2)	0(2)	8(2)	10(2)
C(11)	61(2)	40(2)	49(2)	-4(2)	20(2)	1(2)
C(12)	92(3)	42(2)	53(2)	8(2)	36(2)	9(2)
C(13)	49(2)	37(2)	41(2)	-1(1)	8(2)	1(2)
C(14)	56(2)	42(2)	53(2)	-2(2)	21(2)	-5(2)
C(15)	58(2)	46(2)	53(2)	-9(2)	19(2)	-4(2)
C(16)	61(2)	46(2)	59(2)	-2(2)	11(2)	-11(2)
C(17)	63(3)	66(3)	62(3)	3(2)	21(2)	-18(2)
C(18)	65(2)	55(2)	57(2)	-6(2)	27(2)	-6(2)
S(2)	74(1)	45(1)	96(2)	-7(1)	41(1)	-14(1)
C(19)	58(2)	53(2)	71(2)	-5(2)	38(2)	-5(2)
C(20)	62(2)	53(2)	71(3)	0(2)	25(2)	4(2)
C(21)	76(3)	54(2)	82(3)	1(2)	30(2)	5(2)
C(22)	77(3)	73(3)	93(3)	5(2)	25(2)	23(2)
C(23)	86(3)	92(4)	102(4)	-6(3)	13(3)	20(3)
C(24)	71(3)	80(3)	88(3)	-19(3)	20(2)	-1(2)
F(2)	133(3)	71(2)	166(5)	-12(2)	-12(3)	6(2)
S(2B)	86(8)	56(5)	90(9)	2(8)	52(6)	-14(6)
C(19B)	68(5)	63(4)	83(5)	-9(5)	33(5)	-4(4)
C(20B)	66(5)	58(4)	78(5)	-4(5)	29(5)	2(4)
C(21B)	74(5)	65(4)	86(5)	-1(5)	24(5)	9(4)
C(22B)	78(5)	74(5)	92(6)	-4(6)	20(5)	14(5)
C(23B)	79(5)	82(5)	91(6)	-10(6)	21(5)	4(4)
C(24B)	72(5)	73(5)	84(6)	-11(6)	30(5)	-8(5)
F(2B)	100(9)	63(5)	119(10)	-4(9)	7(9)	8(7)

	x	У	Z	U(eq)
(-)	5500	0005	1.2.2	
H(5)	5788	-2925	-133	67
H(6)	4781	-4061	558	73
H(7)	4416	-2759	1727	68
H(8)	5042	-254	2169	60
H(11A)	6926	4560	994	58
H(11B)	7817	3747	1565	58
H(12A)	7520	3044	-164	71
H(12B)	7687	1296	-499	71
H(12C)	7460	2962	-228	71
H(12D)	7718	1217	-456	71
H(14)	6472	6611	3503	59
H(16)	7933	10605	3239	67
H(17)	8496	9250	2212	75
H(18)	8051	6611	1814	68
H(20)	8252	-1220	-96	73
H(22)	10167	-4310	1214	96
H(23)	10901	-2157	2008	114
H(24)	10362	511	1733	96
H(20B)	8229	-1057	281	78
H(22B)	10429	-3588	1568	98
H(23B)	11173	-1190	1936	101
H(24B)	10484	1323	1557	89

Table 5. Hydrogen coordinates (x 10^4) and isotropic displacement parameters (A^2 x 10^3) for 016mmd08.

Ligante L5

Table 1. Crystal data and structure refinement for 062mmd08.

Identification code	06	2MMD08	F, , F
Empirical formula	C2	2 H14 F4 N2 S2	N.
Formula weight	44	6.47	S S
Temperature	29	8(2) K	
Wavelength	0.	71073 A	· · ·
Crystal system	Мо	noclinic	
Space group	C2	/c	
Unit cell dimensions	a = b = c =	14.5971(17) A 13.9505(16) A 9.6828(11) A	alpha = 90 deg. beta = 94.527(2) deg. gamma = 90 deg.
Volume Z	19 4	65.6(4) A^3	
Density (calculated)	1.	509 Mg/m^3	
Absorption coefficient F(000)	0. 91	320 mm^-1 2	
Crystal size	0.	336 x 0.292 x 0	.036 mm
Theta range for data collection	2.	02 to 25.37 deg	
Index ranges	-1	7<=h<=17, -16<=	k<=16, -11<=1<=11
Reflections collected	79	42	
Independent reflections	18	09 [R(int) = 0.	0326]
Absorption correction	Se	mi-empirical fr	om equivalents
Max. and min. transmission	0.	9885 and 0.9112	
Refinement method	Fu	ll-matrix least	-squares on F^2
Data / restraints / parameters	18	09 / 0 / 136	
Goodness-of-fit on F^2	1.	036	
Final R indices [I>2sigma(I)]	R1	= 0.0458, wR2	= 0.1077
R indices (all data)	R1	= 0.0604, wR2	= 0.1151
Largest diff. peak and hole	Ο.	416 and -0.193	e.A^-3

Table 2. Atomic coordinates ($x \ 10^{4}$) and equivalent isotropic displacement parameters (A² $x \ 10^{3}$) for 062mmd08. U(eq) is defined as one third of the trace of the orthogonalized Uij tensor.

	x	У	Z	U(eq)
S(1)	1644(1)	-2(1)	2616(1)	51(1)
F(1)	2525(1)	1236(1)	512(1)	69(1)
F(2)	4350(1)	3068(1)	3670(2)	91(1)
C(1)	338(1)	1416(2)	2000(2)	39(1)
N(2)	667(1)	2217(1)	1528(2)	44(1)
C(3)	334(1)	3058(2)	2016(2)	42(1)
C(4)	665(2)	3935(2)	1549(3)	58(1)
C(5)	332(2)	4774(2)	2017(3)	66(1)
C(6)	721(2)	509(2)	1453(2)	46(1)
C(7)	2421(2)	961(2)	2887(2)	45(1)
C(8)	2793(2)	1464(2)	1836(2)	49(1)
C(9)	3434(2)	2179(2)	2060(3)	59(1)
C(10)	3722(2)	2375(2)	3418(3)	62(1)
C(11)	3395(2)	1893(2)	4506(3)	65(1)
C(12)	2734(2)	1195(2)	4236(3)	57(1)

S(1)-C(7) S(1)-C(6) F(1)-C(8) F(2)-C(10) C(1)-N(2) C(1)-C(1)#1 C(1)-C(6) N(2)-C(3) C(3)-C(4) C(3)-C(3)#1 C(4)-C(5) C(5)-C(5)#1 C(7)-C(8) C(7)-C(12) C(8)-C(9) C(9)-C(10) C(11)-C(12)	1.765(2) $1.830(2)$ $1.349(3)$ $1.342(3)$ $1.312(3)$ $1.435(4)$ $1.498(3)$ $1.368(3)$ $1.404(3)$ $1.406(4)$ $1.358(4)$ $1.400(6)$ $1.381(3)$ $1.374(4)$ $1.376(4)$ $1.366(4)$ $1.382(4)$
C(7) - S(1) - C(6) $N(2) - C(1) - C(1) # 1$ $N(2) - C(1) - C(6)$ $C(1) # 1 - C(1) - C(6)$ $C(1) - N(2) - C(3)$ $N(2) - C(3) - C(4)$ $N(2) - C(3) - C(3) # 1$ $C(4) - C(3) - C(3) # 1$ $C(4) - C(5) - C(5) # 1$ $C(1) - C(6) - S(1)$ $C(4) - C(5) - C(5) # 1$ $C(1) - C(6) - S(1)$ $C(8) - C(7) - C(12)$ $C(8) - C(7) - S(1)$ $F(1) - C(8) - C(9)$ $F(1) - C(8) - C(7)$ $C(9) - C(10) - C(11)$ $F(2) - C(10) - C(12)$ $C(11) - C(12) - C(7)$	$103.22(11) \\121.70(12) \\115.97(19) \\122.32(12) \\117.33(18) \\119.7(2) \\120.97(12) \\119.29(14) \\120.2(2) \\120.51(16) \\112.87(15) \\117.1(2) \\124.19(18) \\118.59(19) \\117.6(2) \\118.7(2) \\123.7(2) \\123.7(2) \\116.6(3) \\119.3(3) \\118.0(3) \\122.7(3) \\118.8(3) \\121.1(3) \\ \end {added} \\$

Symmetry transformations used to generate equivalent atoms: $\#1\ -x\,,y\,,-z+1/2$

	U11	U22	U33	U23	U13	U12
S(1)	44(1)	42(1)	66(1)	1(1)	6(1)	4(1)
F(1)	70(1)	89(1)	49(1)	-7(1)	12(1)	-18(1)
F(2)	73(1)	67(1)	129(2)	-12(1)	-28(1)	-14(1)
C(1)	32(1)	46(1)	39(1)	-3(1)	-2(1)	-2(1)
N(2)	38(1)	48(1)	46(1)	-3(1)	7(1)	-3(1)
C(3)	34(1)	46(1)	47(1)	1(1)	3(1)	-2(1)
C(4)	51(2)	53(2)	71(2)	3(1)	18(1)	-4(1)
C(5)	57(2)	47(2)	94(2)	6(1)	14(2)	-5(1)
C(6)	40(1)	51(1)	48(1)	-10(1)	5(1)	-2(1)
C(7)	39(1)	47(1)	49(1)	-3(1)	7(1)	6(1)
C(8)	44(1)	57(2)	46(1)	-7(1)	2(1)	1(1)
C(9)	52(2)	53(2)	72(2)	4(1)	2(1)	1(1)
C(10)	50(2)	45(1)	88(2)	-14(1)	-9(2)	4(1)
C(11)	60(2)	70(2)	63(2)	-18(2)	-14(1)	12(1)
C(12)	55(2)	65(2)	52(2)	-4(1)	3(1)	13(1)

Table 4. Anisotropic displacement parameters (A^2 x 10^3) for 062mmd08. The anisotropic displacement factor exponent takes the form: -2 pi^2 [h^2 a*^2 U11 + \dots + 2 h k a* b* U12]

	x	У	Z	U(eq)
H(4)	1114	3942 5352	919 1693	69 79
H(6A) H(6B)	956 231	639 42	562 1309	56 56
H(9) H(11)	3662 3614	2515 2033	1331 5411	71 78
H(12)	2494	876	4971	69

Table 5. Hydrogen coordinates (x 10^4) and isotropic displacement parameters (A^2 x 10^3) for 062mmd08.

Ligante L6

Table 1. Crystal data and structure refinement for 063mmd08.

Identification code	063mmd08 F
Empirical formula	C22 H10 F8 N2 S2
Formula weight	518.44
Temperature	298(2) K
Wavelength	0.71073 A
Crystal system	Monoclinic F Y
Space group	C2/c
Unit cell dimensions	a = 29.142(3) A alpha = 90 deg. b = 8.309(1) A beta = 101.425(2) deg. c = 17.437(2) A gamma = 90 deg.
Volume Z	4138.5(8) A ³
Density (calculated)	1.664 Mg/m^3
Absorption coefficient F(000)	0.343 mm ⁻¹ 2080
Crystal size	0.35 x 0.22 x 0.08 mm
Theta range for data collection	2.38 to 25.34 deg.
Index ranges	-34<=h<=34, -9<=k<=10, -20<=l<=20
Reflections collected	16499
Independent reflections	3777 [R(int) = 0.0550]
Absorption correction	None
Refinement method	Full-matrix least-squares on F^2
Data / restraints / parameters	3777 / 0 / 307
Goodness-of-fit on F^2	0.868
Final R indices [I>2sigma(I)]	R1 = 0.0411, $wR2 = 0.0717$
R indices (all data)	R1 = 0.0732, wR2 = 0.0785
Largest diff. peak and hole	0.294 and -0.192 e.A^-3

Table 2. Atomic coordinates ($x \ 10^{4}$) and equivalent isotropic displacement parameters (A² x 10³) for 063mmd08. U(eq) is defined as one third of the trace of the orthogonalized Uij tensor.

	x	У	Z	U(eq)
S(1)	2323(1)	2313(1)	2457(1)	62(1)
S(2) F(1)	4089(1) 1484(1)	3675(1) 4279(2)	1882(1)	63(1) 78(1)
F(2)	986(1)	4527(2)	442(1)	90(1)
F(3)	2029(1)	1037(2)	-470(1)	83(1)
F(4)	2533(1)	777(2)	976(1)	69(1)
F(5)	4817(1)	4819(2)	3514(1)	70(1)
F(6)	5345(1)	3021(2)	4599(1)	95(1)
F(7)	4716(1)	-1638(2)	3280(1)	122(1)
F(8)	4165(1)	162(2)	2219(1)	89(1)
N(1)	3028(1)	2448(2)	3762(1)	50(1)
C(2)	3188(1)	3165(3)	3196(1)	44(1)
C(3)	3612(1)	4075(3)	3346(1)	42(1)
N(4)	3873(1)	4180(2)	4047(1)	48(1)
C(5)	3998(1)	3412(3)	5399(1)	58(1)
C(6)	3845(1)	2654(3)	5988(2)	66(1)
C(7)	3411(1)	1867(3)	5855(2)	65(1)
C(8)	3137(1)	1820(3)	5131(1)	59(1)
C(9)	3292(1)	2559(3)	4499(1)	46(1)
C(10)	3722(1)	3387(3)	4642(1)	46(1)
C(11)	2905(1)	2955(3)	2385(1)	56(1)
C(12)	2028(1)	2531(3)	1478(1)	47(1)
C(13)	1629(1)	3464(3)	1307(2)	54(1)
C(14)	1369(1)	3578(3)	568(2)	60(1)
C(15)	1494(1)	2791(3)	-44(2)	64(1)
C(16)	1891(1)	1860(3)	113(2)	57(1)
C(17)	2150(1)	1727(3)	854(2)	50(1)
C(18)	3791(1)	4967(3)	2719(1)	53(1)
C(19)	4459(1)	2549(3)	2847(1)	47(1)
C(20)	4776(1)	3221(3)	3459(2)	49(1)
C(21)	5052(1)	2282(4)	4011(2) 2050(0)	6U(1)
C(22)	5039(1)	654(4)	3959(2)	74(1)
C(23)	4739(1)	-33(4)	3355(2)	73(1)
C(24)	4453(1)	900(4)	28TT(2)	59(I)

S(1)-C(12) S(1)-C(11) S(2)-C(19) S(2)-C(18) F(1)-C(13) F(2)-C(14) F(3)-C(16) F(4)-C(17) F(5)-C(20) F(6)-C(21) F(7)-C(23) F(8)-C(24) N(1)-C(9) C(2)-C(3) C(2)-C(11) C(3)-N(4) C(3)-C(18) N(4)-C(10) C(5)-C(6) C(5)-C(6) C(5)-C(10) C(6)-C(7) C(7)-C(8) C(8)-C(9) C(9)-C(10) C(12)-C(13) C(12)-C(17) C(13)-C(14) C(14)-C(15) C(15)-C(16) C(16)-C(17) C(19)-C(24) C(19)-C(20) C(20)-C(21) C(21)-C(22) C(22)-C(23) C(23)-C(24)	1.762(2) $1.805(2)$ $1.754(2)$ $1.821(2)$ $1.344(3)$ $1.347(3)$ $1.349(3)$ $1.349(3)$ $1.345(3)$ $1.345(3)$ $1.342(3)$ $1.342(3)$ $1.342(3)$ $1.364(3)$ $1.427(3)$ $1.499(3)$ $1.310(3)$ $1.499(3)$ $1.354(3)$ $1.499(3)$ $1.354(3)$ $1.402(3)$ $1.355(3)$ $1.412(3)$ $1.381(3)$ $1.364(3)$ $1.364(3)$ $1.364(3)$ $1.361(3)$ $1.365(3)$ $1.372(3)$ $1.355(4)$ $1.373(4)$
C(12)-S(1)-C(11) $C(19)-S(2)-C(18)$ $C(2)-N(1)-C(9)$ $N(1)-C(2)-C(3)$ $N(1)-C(2)-C(11)$ $C(3)-C(2)-C(11)$ $N(4)-C(3)-C(18)$ $C(2)-C(3)-C(18)$ $C(2)-C(3)-C(18)$ $C(3)-N(4)-C(10)$ $C(6)-C(5)-C(10)$ $C(5)-C(6)-C(7)$	100.72(10) $101.85(11)$ $117.3(2)$ $121.6(2)$ $116.4(2)$ $122.0(2)$ $122.0(2)$ $122.8(2)$ $117.2(2)$ $119.6(3)$ $120.9(3)$

_

C(7) - C(8) - C(9)	119.6(3)
N(1) - C(9) - C(10)	121.1(2)
N(1) - C(9) - C(8)	119.8(2)
C(10) - C(9) - C(8)	119.1(2)
N(4) - C(10) - C(5)	119.5(2)
N(4) - C(10) - C(9)	120.6(2)
C(5) - C(10) - C(9)	119.9(2)
C(2) - C(11) - S(1)	108.56(16)
C(13) - C(12) - C(17)	116.0(2)
C(13) - C(12) - S(1)	119.61(19)
C(17) - C(12) - S(1)	124.2(2)
F(1)-C(13)-C(14)	118.1(2)
F(1)-C(13)-C(12)	119.9(2)
C(14) - C(13) - C(12)	122.0(2)
F(2)-C(14)-C(15)	119.7(3)
F(2)-C(14)-C(13)	118.8(3)
C(15)-C(14)-C(13)	121.4(3)
C(14) - C(15) - C(16)	117.5(3)
F(3)-C(16)-C(17)	118.7(3)
F(3)-C(16)-C(15)	120.0(3)
C(17) - C(16) - C(15)	121.3(2)
F(4) - C(17) - C(16)	118.8(2)
F(4) - C(17) - C(12)	119.5(2)
C(16) - C(17) - C(12)	121.7(2)
C(3) - C(18) - S(2)	113.26(16)
C(24) - C(19) - C(20)	116.1(2)
C(24) - C(19) - S(2)	119.9(2)
C(20) - C(19) - S(2)	123.9(2)
F(5)-C(20)-C(21)	119.0(2)
F(5)-C(20)-C(19)	119.6(2)
C(21) - C(20) - C(19)	121.4(3)
F(6)-C(21)-C(22)	120.7(3)
F(6)-C(21)-C(20)	118.1(3)
C(22)-C(21)-C(20)	121.2(3)
C(23)-C(22)-C(21)	118.5(3)
F(7) - C(23) - C(22)	120.5(3)
F(7) - C(23) - C(24)	118.8(3)
C(22) - C(23) - C(24)	120.7(3)
F(8) - C(24) - C(19)	119.6(3)
F(8) - C(24) - C(23)	118.4(3)
C(19) - C(24) - C(23)	122.1(3)

Symmetry transformations used to generate equivalent atoms:

	U11	U22	U33	U23	U13	U12
S(1)	48(1)	90(1)	49(1)	2(1)	13(1)	-12(1)
S(2)	51(1)	97(1)	42(1)	5(1)	13(1)	8(1)
F(1)	62(1)	93(1)	82(1)	-21(1)	22(1)	8(1)
F(2)	63(1)	89(1)	109(1)	4(1)	-5(1)	12(1)
F(3)	96(1)	95(1)	61(1)	-19(1)	25(1)	-17(1)
F(4)	63(1)	75(1)	73(1)	-9(1)	19(1)	10(1)
F(5)	59(1)	60(1)	88(1)	-7(1)	7(1)	-9(1)
F(6)	72(1)	116(1)	83(1)	-1(1)	-21(1)	-2(1)
F(7)	147(2)	57(1)	168(2)	0(1)	44(2)	3(1)
F(8)	91(1)	90(1)	89(1)	-37(1)	27(1)	-28(1)
N(1)	49(1)	58(1)	43(1)	4(1)	13(1)	-1(1)
C(2)	40(1)	52(2)	42(1)	2(1)	12(1)	6(1)
C(3)	37(1)	46(2)	45(2)	4(1)	14(1)	8(1)
N(4)	50(1)	50(1)	46(1)	1(1)	11(1)	4(1)
C(5)	69(2)	55(2)	48(2)	-2(1)	5(1)	1(1)
C(6)	96(2)	57(2)	42(2)	-3(1)	7(2)	8(2)
C(7)	90(2)	63(2)	49(2)	9(1)	27(2)	4(2)
C(8)	67(2)	63(2)	52(2)	9(1)	20(1)	1(1)
C(9)	50(2)	47(2)	43(1)	3(1)	15(1)	7(1)
C(10)	55(2)	43(2)	40(2)	0(1)	13(1)	9(1)
C(11)	46(1)	76(2)	49(2)	2(1)	12(1)	-8(1)
C(12)	40(1)	53(2)	50(2)	-2(1)	13(1)	-9(1)
C(13)	47(2)	57(2)	58(2)	-8(1)	14(1)	-7(1)
C(14)	46(2)	55(2)	76(2)	1(2)	3(2)	-2(1)
C(15)	62(2)	67(2)	57(2)	5(2)	0(2)	-18(2)
C(16)	65(2)	59(2)	50(2)	-13(1)	19(2)	-18(2)
C(17)	44(2)	51(2)	57(2)	0(1)	15(1)	-5(1)
C(18)	42(1)	62(2)	57(2)	12(1)	13(1)	6(1)
C(19)	37(1)	57(2)	49(2)	-3(1)	18(1)	-3(1)
C(20)	42(1)	48(2)	61(2)	-3(1)	17(1)	-3(1)
C(21)	44(2)	75(2)	59(2)	1(2)	4(1)	0(2)
C(22)	68(2)	72(2)	81(2)	18(2)	19(2)	13(2)
C(23)	82(2)	47(2)	96(3)	1(2)	35(2)	-1(2)
C(24)	53(2)	67(2)	59(2)	-17(2)	21(1)	-13(2)

Table 4. Anisotropic displacement parameters (A^2 x 10^3) for 063mmd08. The anisotropic displacement factor exponent takes the form: -2 pi^2 [h^2 a*^2 U11 + \dots + 2 h k a* b* U12]

	x	У	Z	U(eq)
H(5)	4284	3946	5495	70
Н(б)	4030	2655	6488	79
H(7)	3309	1372	6270	78
Н(8)	2848	1303	5050	71
H(11A)	3050	2156	2104	68
H(11B)	2889	3964	2101	68
H(15)	1318	2880	-548	76
H(18A)	4006	5797	2960	64
H(18B)	3530	5494	2379	64
H(22)	5232	24	4330	88

Table 5. Hydrogen coordinates (x 10^4) and isotropic displacement parameters (A^2 x 10^3) for 063mmd08.