
UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO

PROGRAMA DE MAESTRÍA Y DOCTORADO EN
INGENIERÍA

FACULTAD DE INGENIERÍA

DYNAMICS OF NON-NEWTONIAN

                 VORTEX RINGS 

T E S I S

QUE PARA OPTAR POR EL GRADO DE:

DOCTOR EN INGENIERÍA

MECÁNICA -  TERMOFLUIDOS

P R E S E N T A :

CARLOS ALBERTO PALACIOS MORALES

TUTOR:

DR. ROBERTO ZENIT CAMACHO

(Portada y primera hoja)MÉXICO, D.F. AGOSTO 2010



JURADO ASIGNADO:

Presidente: Dr. Jaime Cervantes de Gortari

Secretario: Dr. Francisco Javier Solorio Ordaz

Vocal: Dr. José Roberto Zenit Camacho

1er Suplente: Dr. Gabriel Ascanio Gasca

2do. Suplente Dra. Catalina Elizabeth Stern Forgach

Lugar  o lugares  donde  se  realizó  la tesis:

INSTITUTO DE INVESTIGACIONES EN MATERIALES

TUTOR  DE  TESIS:

DR. ROBERTO ZENIT CAMACHO

_________________________________
FIRMA



Universidad Nacional Autónoma de México
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Resumen

Se estudió la dinámica de formación y evolución de vórtices anulares Newto-
nianos y no Newtonianos generados en un arreglo pistón-cilindro. La razón
entre el desplazamiento del pistón Lm y el diámetro interno del cilindro D0,
aśı como la velocidad media del pistón Up determinan las propiedades y
evolución del vórtice. Se presentan experimentos con diferentes condiciones:
velocidad de traslación del pistón, razón de empuje Lm/D0 y ĺıquidos con
propiedades reológicas diferentes. Se obtuvieron mediciones del campo vec-
torial de velocidades en 2D utilizando la técnica PIV. La circulación del
vórtice Γ se calculó usando un esquema de identificación de vórtices (crite-
rio Q). El número de Reynolds se define como Re0 = D0Up/ν, donde ν es
la viscosidad cinemática del fluido. Para el caso Newtoniano, se realizaron
mediciones en el rango 150 < Re0 < 2000. Se generaron vórtices anulares
usando ĺıquidos adelgazantes en el rango 138 < Re0 < 616. El número de
Reynolds para estos vórtices se calculó en términos de los parámetros del
modelo de ‘ley de potencia’: el ı́ndice de potencia n y la consistencia m.

Los resultados experimentales indican que la circulación del vórtice au-
menta con la razón de empuje hasta llegar a un valor cŕıtico de Lm/D0

arriba del cual no se puede incrementar y permanece constante. En general,
el valor cŕıtico de Lm/D0 depende del número de Reynolds. La razón de
empuje cŕıtica es 4 para Re0 ∼ O(100), 8 para Re0 ∼ O(1000) y 10 para
Re0 = 2000. Para números de Reynolds mayores, la velocidad de propa-
gación del vórtice es mayor, pero su circulación disminuye para un mismo
Lm/D0. Encontramos que es posible generar vórtices más gruesos al dis-
minuir Re0; por tanto, la circulación en su centro aumenta. Considerando
diferentes ĺıquidos adelgazantes que se comportan de acuerdo a un modelo
de ley de potencia manteniendo Re0 constante, la circulación del vórtice
disminuye con el ı́ndice de potencia n. Mostramos que la circulación total
generada en la descarga del cilindro es menor con los ĺıquidos más adel-
gazantes; por tanto, la circulación del vórtice disminuye también. Un valor
de circulación adimensional de Γ/D0Up ≈ 2 puede indicar una condición
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de saturación arriba de la cual no es posible incrementar la circulación del
vórtice para cualquier número de Reynolds.



Abstract

The dynamics of formation and evolution of Newtonian and non-Newtonian
vortex rings generated in a piston-cylinder arrangement is studied. The ra-
tio of the piston displacement Lm to the internal cylinder diameter D0, as
well as the mean piston velocity Up determine the vortex properties and
evolution. Experiments with different conditions are presented: translation
velocity of the piston, stroke ratios Lm/D0 and liquids with different rhe-
ological properties. Measurements of the 2D velocity field were obtained
with a PIV technique. The vortex circulation Γ was computed considering
a vortex identification scheme (Q criterion). The Reynolds number (New-
tonian vortex rings), defined as Re0 = D0Up/ν, where ν is the kinematic
viscosity of the fluid, was in the range 150 < Re0 < 2000. We also generated
vortex rings using shear-thinning liquids in the range 138 < Re0 < 616. The
Reynolds number for these vortices is computed in terms of the ‘power-law’
model parameters: the power index n and the consistency m.

The experimental results indicate that the vortex circulation increases
with the stroke ratio until it reaches a critical value above which the circula-
tion inside the vortex cannot increase and remains constant. In general, the
critical Lm/D0 depends on the Reynolds number. The critical stroke ratio is
4 for Re0 ∼ O(100), 8 for Re0 ∼ O(1000) and as large as 10 for Re0 ≈ 2000.
As the Reynolds number increases the vortex propagation velocity increases
but the vortex ring circulation decreases for the same Lm/D0. We found
that it is possible to generate thick vortices as Re0 decreases; hence, the
circulation in their core also increases. Considering different power-law liq-
uids (shear-thinning) and fixed Reynolds number, the vortex circulation de-
creases with the power index n. We show that the total circulation ejected
from the cylinder is reduced for more shear-thinning liquids; thus, the cir-
culation confined inside the vortex ring, is reduced too. A value of the
non-dimensional circulation Γ/D0Up ≈ 2 may indicate a saturation condi-
tion beyond which it is not possible to increase the vortex circulation for
any Reynolds number.



Color Plates

Figure 1: The volcano, Mount Etna (Italy), blows 200m diameter steam rings.
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(a)

(b)

(c)

Figure 2: Vortex rings by LIF (Laser-induced fluorescence). Stroke ratios: (a)
Lm/D0 = 2 (b) Lm/D0 = 4 (c) Lm/D0 = 6. Palacios-Morales & Zenit (2008).



xix

Figure 3: (a) A smoke ring (b) Dolphin blowing bubble rings.

Figure 4: A series of front-view photographs showing different stages of collision of
two vortex rings at an angle. Lim (1989).



xx Color Plates

Figure 5: Head-on collision of two vortex rings (color dyes in water). Lim & Nickels
(1992).



Chapter 1

Introduction

The vortex ring is one of the most common fluid structure in nature (see
Fig. 1.1). One can observe a ring, for example, if a person breathes out
a puff of smoke through rounded lips. Vortex rings are generated in any
starting propulsion jet. It is possible to see vortex rings coming from a
car o tractor tailpipe. Many biological flows are characterized by vortex
production and vortex shedding. In animal locomotion, the production of
coherent structures such as vortex rings is common; these structures have
been found in squid jet propulsion by Anderson & Grosenbaugh (2005) as
well as Bartol et al. (2009 a,b). Dabiri et al. (2006) studied a species of
jellyfish that creates a single vortex ring. This kind of vortex can also be
seen in internal biological flows, such like the discharge of blood into the
heart left ventricle (Gharib et al. 2006). In the laboratory vortex rings can
be generated by the movement of a piston which pushes a column of fluid
inside a cylinder through an orifice or nozzle. To characterize the flow,
the Reynolds number (for Newtonian vortex rings) can be defined in two
different forms. Considering the inner diameter of the cylinder exit D0, the
piston mean velocity (during discharge) Up and the kinematic viscosity of the
liquid, we define Re0 = D0Up/ν. On the other hand, considering the vortex
ring diameter Dv (distance between centers of the upper and lower half
plane) and the vortex instantaneous propagation velocity Uv, the Reynolds
number can be defined as Rev = DvUv/ν. Some authors have defined the
Reynolds number as the relation between the vortex ring circulation (Eq.
1.7) and the fluid viscosity: Re = Γ/ν.

In the last thirty years there has been an increased interest in the study
of vortex rings. The formation and evolution of vortex rings have been the
main subjects of interest. In the literature it is possible to find theoreti-
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2 Introduction

Figure 1.1: Top left: visualization using ink (Palacios C. 1). Top right: LIF tech-
nique, (Krueger P. 2). Middle: Smoke visualization (Akhmetov 2001). Bottom:
Vortex evolution (Adhikari & Lim 3).
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cal, numerical and experimental studies. Many of the early works can be
found in the reviews of Shariff & Leonard (1992) and Lim & Nickels (1995).
Saffman (1992) presented different theoretical studies of axisymmetric vor-
tex rings; in particular he gave different relations to obtain the propagation
velocity of thin cored rings. For the case of laminar vortex rings, in partic-
ular for those generated by a piston-cylinder arrangement, there are many
experimental studies: Maxworthy (1977), Didden (1979), Glezzer (1988)
Glezer & Coles (1990), Weigand & Gharib (1997) and Gharib et al. (1998).
Maxworthy (1977) carried out experimental measurements through flow vi-
sualization and laser Doppler techniques; he observed that the formation
process is strongly Reynolds number dependent. Didden (1979) presented
flow visualizations of the formation of vortex rings and gave information of
the role of the internal and external boundary layers in the formation process
and circulation of the vortex ring. Glezeer (1988) studied vortex ring forma-
tion with different piston velocities as a function of time called the ‘velocity
program’. He analyzed the conditions under which transition from laminar
to turbulent vortex rings is produced. Weigand & Gharib (1997) studied
the vortex ring properties for different Re numbers using the particle image
velocimetry (PIV) technique. They found that the vorticity distributions in
the vortex core have self-similar Gaussian profiles.

The first numerical work is probably the simulation of a vortex ring us-
ing a spectral method by Stanaway et al. (1988). The numerical works of
Nitsche & Kransy(1994) and James & Madnia (1996) simulated the vortex
ring during formation. Using a vortex sheet model Nitsche & Krasny ob-
tained results which proved a good global agreement with Didden’s (1979)
experiments; in particular with his vortex ring visualizations. James &
Madnia (1996) used the Navier-Stokes equations to simulate the formation
and propagation of the vortex ring; they also compared their results with
those from Didden experiments and concluded that the total circulation in
the flow field of the ring is the same for different nozzle exit configurations.
Rosenfeld et al. (1998) used the Navier-Stokes equation to simulate the vor-
tex ring formation and evolution for relatively long discharge times (long
displacement of the piston) and compared their numerical results with the
Gharib et al. (1998) experiments. They presented results for different geo-
metrical configurations and piston velocity programmes. Finally, Mohseni
et al. (2001) simulated the formation of vortex rings that are generated by

1Rheology Lab., Instituto de Investigaciones en Materiales, UNAM.
2Experimental fluid dynamics Lab., Southern Methodist University.
3Fluid mechanics group, National University of Singapore.
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(a)

(b)

(c)

Figure 1.2: Visualization of vortex rings. Taken from Gharib et al. (1998) (a)
Lm/D0 = 2 (b) Lm/D0 = 3.8 (c) Lm/D0 = 14.5. Pictures are taken at Ūpt/D = 8.

applying a non-conservative force of long duration.

1.1 Formation number

The seminal paper of Gharib et al. (1998) revived the interest in the study
of vortex ring formation. Their results are of direct relevance to the present
thesis. They generated vortex rings using a piston-cylinder arrangement in
a water tank and obtained the velocity field by the PIV technique. They
found that the circulation that a vortex ring could attain was finite: there
was a maximum amount of fluid vorticity that could be contained within a
ring. The parameter that determined whether the circulation had reached a
maximum was the piston “stroke ratio” L/D0, where L = L(t) is the piston
displacement and D0 is the inner diameter of the cylinder exit. The stroke
ratio is equivalent to the non-dimensional time

t∗ =
Upt

D0
=

L

D0
(1.1)
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referred as formation time by Gharib et al. (1998). Up is the mean piston
velocity during fluid discharge and t is the discharge time. The “total stroke
ratio” is equivalent to the total non-dimensional time

T ∗ =
UpT0

D0
=
Lm

D0
(1.2)

where Lm is the total piston displacement and T0 is the total discharge time.
They found that for values smaller than Lm/D0 ≈ 4, a solitary vortex ring
was formed; for larger values of Lm/D0, a leading vortex followed by a trail-
ing jet or secondary vortices was observed (see Fig. 1.2). The circulation
contained within the leading vortex ring could not be further increased even
if Lm/D0 kept on increasing. The critical value of Lm/D0 in which the tran-
sition between these two states occurs was called the formation number.
Considering the cylinder diameter and the piston mean velocity, Gharib
et al. (1998) presented results of flows with Re0 = 1905 and Re0 = 3810.
For different experimental configurations the formation number lay in the
range of 3.6 to 4.5.

Some authors have discussed that changing the conditions of the ejected
fluid, the formation number of vortex rings can be different from the value
obtained experimentally by Gharib et al. (1998). Some of these condi-
tions are: changes in the piston velocity program (Mohseni et al. 2001),
the cylinder exit velocity profile (Rosenfeld et al. 1998) or, more recently,
the existence of an imposed bulk counter-flow (Dabiri & Gharib 2004) and
a background co-flow (Krueger et al. 2006). In particular, Linden & Turner
(2001), discussed that the maximum value of Lm/D0 above which a single
ring cannot be formed may be as large as 7.83. By temporally varying the
exit cylinder diameter during formation, Dabiri & Gharib (2005) observed
that the formation number could be delayed up to 8. Based on the study
of a jellyfish swimming kinematics, Dabiri et al. (2006) reported that the
limiting vortex formation time was delayed to at least 8. Akhmetov (2001)
studied the formation of vortex rings in air using a jet generator. The start-
ing jet was produced using compressed air; so there was not a piston nor
mechanical devices. He measured the vortex circulation using the hot wire
anemometry technique. The Reynolds number was Re0 = 3.65 · 104. The
non-dimensional jet length was defined as L∗ = U0T0/R0; where U0 is the jet
velocity, T0 is the discharge time and R0 is the nozzle radius. This jet length
is equivalent to the stroke ratio L∗ = 2UpT0/D0 = 2Lm/D0 for an impulse
velocity program. Akhmetov found that the vortex ring circulation increases
monotonically with the non dimensional jet length L∗ at least up to L∗ ≈ 20
or Lm/D0 ≈ 10. The experimental results from Gharib et al. (1998) and
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Akhmetov (2001) will be discussed further in chapter 3.

1.2 Motivation and objectives

Vortex rings are fundamentally important in fluid mechanics due to their
prevalence in a variety of flows including turbulent flow fields. The vortex
rings are present in many engineering applications and natural phenomena.
Some examples are starting jets, helicopter rotors, propulsion, volcanic erup-
tions, animal locomotion etc. A great volume of research has been published

since the end of 19th. Recently, vortex rings have been implemented as a
method to extinguish fires in oil wells (Akhmetov 2009).

One of the objectives of the present investigation is to verify the forma-
tion number under different experimental conditions; particulary we want to
verify some of the arguments described above. If there is a limiting process
above which a vortex ring is no longer able to accumulate more vorticity in
its core, where or when it occurs. Is the formation time t∗ ≈ 4 defined by
Gharib an universal time scale for vortex ring formation for any Re num-
ber?. In particular, we extend the analysis of the process of vortex formation
for Reynolds numbers as low as 150. We found that the schemes of vortex
identification previously used for smaller Re are not appropriate. Hence, we
propose an alternative method based on the so-called Q criterion (described
in section 1.5) to identify vortex structures; also, we measure the vortex
ring circulation considering this identification scheme. This method was
also used to analyze the formation process of vortex rings for a range of Re
in between 150 and 2000. To our knowledge, measurements of the formation
process of vortex rings for Re of O(100) do no exist in the literature. We
also propose a procedure to improve the location of vortex ring centers by
computing the curvature of Lagrangian trajectories in the flow (section 1.6).

It is important to highlight that all of the vortex ring studies have been
focused on Newtonian fluids; however, most of the fluids in nature and in
many industrial applications have non-Newtonian characteristics. In partic-
ular we are interested in the study of vortex ring formation using blood-like
liquids. We have mentioned that vortex rings are generated inside the hu-
man heart at the left ventricle when blood is discharged during cardiac
diastole. It has been demonstrated that the optimal ring formation might
be an indicator of cardiac health. We did experiments and obtained vortex
ring properties for different shear-thinning liquids at a fixed Re number. We
want to know how does the non-Newtonian behavior affect the circulation
in vortex rings.
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1.3 Vorticity and circulation

The vorticity ω of a flow field u, is defined by

ω = ∇× u (1.3)

In Cartesian tensor notation ω is expressed as

ωijk = ǫijk
∂uk

∂xj
=

(

∂ω

∂y
− ∂v

∂z
,
∂u

∂z
− ∂ω

∂x
,
∂v

∂x
− ∂u

∂y

)

(1.4)

The vorticity is a measure of the rate of rotation of a small fluid element
about its own axes. The motion of a fluid element with zero vorticity (∇×
u = 0) is called irrotational. Applying the divergence to 1.3, and considering
a continuous medium it follows that

∇ · ω = ∇ · (∇× u) = 0 (1.5)

i.e., the vorticity field is solenoidal. The circulation Γ is another important
concept in fluid dynamics and is defined as a linear integral of fluid velocity
u along a closed circuit C.

Γ =

∮

C
u · dl (1.6)

where dl is a differential longitude on the curve C. Applying the Stokes

theorem, a linear integral can be transformed into the surface integral:

Γ =

∮

C
u · dl =

∫

S
(∇× u) · ndS =

∫

S
ω · ndS (1.7)

where S is a small planar area perpendicular to n. The circulation is a
scalar quantity and is a measure of the integrated component of vorticity
normal to the surface surrounded by C. In a 2D flow the circulation equals
to the total vorticity (integrated vorticity) in the field flow.

1.3.1 The vorticity equation

The vorticity equation is obtained from the momentum equation:

Du

Dt
=
∂u

∂t
+ (u · ∇)u =

−∇p
ρ

+
∇ · τ
ρ

+ g (1.8)

where ρ is the fluid density, p is the pressure, τ is the viscous stress tensor
and g represents the body forces. Using the vector identity (u · ∇)u =
∇(1

2u · u) − u × ω the above expression can be rewritten as:
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∂u

∂t
+ ∇

(u · u
2

)

− u × ω =
−∇p
ρ

+
∇ · τ
ρ

+ g

Taking the curl of this equation and considering two vector identities one
can show that:

Dω

Dt
= −ω(∇ · u) + (ω · ∇)u

+
1

ρ2
∇ρ×∇p− 1

ρ2
∇ρ× (∇ · τ ) +

1

ρ
∇× (∇ · τ ) + ∇× g

(1.9)

To eliminate ∇p, one can use the momentum equation, to obtain:

Dω

Dt
= −ω(∇ · u) + (ω · ∇)u

+
1

ρ
∇ρ×

(

g − Du

Dt

)

+
1

ρ
∇× (∇ · τ ) + ∇× g

(1.10)

Equations 1.9 and 1.10 are the most general forms of the vorticity equa-
tion. Considering a Newtonian fluid and only potential body forces, the
vorticity equation reduces to:

Dω

Dt
= (ω · ∇)u + ν∇2ω (1.11)

where ν is the kinematic viscosity of the fluid. In expanded form the vorticity
equation is expressed as:

∂ω

∂t
+ (u · ∇)ω = (ω · ∇)u + ν∇2ω (1.12)

1.4 Mathematical background of vortex rings

1.4.1 Invariants

Consider the cylindrical coordinates (r,φ,x); r radial, φ azimuthal and x
axial (see Fig. 1.3). For a general axisymmetric flow (∂/∂φ = 0) with swirl
(i.e. flow in the azimuthal direction uφ 6= 0), we can define the following
invariants:

Hydrodynamic Impulse (I): The hydrodynamic impulse is equal to the
mechanical impulse required to generate a flow from rest.
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φ

φ

r

r

x

x

u

u

u

R

0

0

Figure 1.3: The coordinate system for a vortex ring.

I = 1
2ρ

∫

x × ωdV (1.13)

where x is a position vector and dV is a differential of volume. In the case
of an axisymmetric flow the axial component of the impulse is:

Ix = πρ

∫

∞

0

∫

∞

−∞

ωφr
2dxdr (1.14)

where ωφ is the azimuthal component of the vorticity. In the absence of
external forces, the impulse is invariant even in the presence of viscosity.

Circulation (Γ): For a closed circuit the circulation is defined in Eq. 1.7.
To calculate the vortex ring circulation we first consider a plane of constant
φ. Then we encircle the region of vorticity of the upper half part of the
plane (Fig. 1.3). This is expressed as
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Γ =

∫

∞

0

∫

∞

−∞

ωφdxdr (1.15)

If the fluid is inviscid, the vortex circulation is constant; however, if the
effect of viscosity is important, the vortex ring circulation will decrease with
time.

Kinetic Energy (E): the total kinetic energy is defined as

E = ρ

∫

u · (x × ω)dV (1.16)

for an axisymmetric flow:

E = πρ

∫

∞

0

∫

∞

−∞

(ψωφ + u2
φr)dxdr (1.17)

where ψ = ψ(r, x) is the Stokes stream function. The kinetic energy is only
invariant in an ideal fluid where the effect of viscosity can be neglected.

The Integral of the Helicity density (H): In inviscid, barotropic flows
for which al body forces are conservative, this quantity is conserved and in
general is given by

H =

∫

u · wdV (1.18)

In the case of an axisymmetric flow:

H = −4π

∫

∞

0

∫

∞

−∞

ωφuφrdxdr (1.19)

Angular momentum (M): For an unbounded flow this quantity is defined
as:

M = −1

2
ρ

∫

r2ωdV (1.20)

In the axisymmetric case it can only exists one component of angular impulse

Mx = −πρ
∫

∞

−∞

∫

∞

0
r3ωxdrdx = 2πρ

∫

∞

−∞

∫

∞

0
r2uφdrdx (1.21)

If the vortex rings do not have swirl (i.e. uφ = 0), both H and M are zero.
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1.4.2 Formation of vortex ring: Slug model

This model is based on the assumption that the vortex ring is generated by a
cylindrical ‘slug’ of fluid that is ejected from a nozzle using a piston-cylinder
arrangement (Didden 1979, Lim & Nickels 1995). The model considers that
the boundary layer thickness δ ≪ D/2 and the wall-normal velocity com-
ponent ur is much smaller than the streamwise component ux. Under this
conditions, we may write the circulation as

dΓp

dt
≈
∫ D/2

D/2−δ
ωφuxdr ≈

∫ D/2

D/2−δ
ux

(

−dux

dr

)

dr (1.22)

considering that the velocity at the edge of the boundary layer is equal to
the piston velocity Up, the total circulation ejected through the cylinder exit
is expressed as

Γp ≈
∫ T0

0

[

−u
2
x

2

]D/2

D/2−δ

dt = 1
2U

2
pT0 = 1

2UpLm (1.23)

where T0 is the total duration of the piston stroke (total discharge time) and
Lm is the total piston displacement. The impulse Ip and the kinetic energy
Ep per unity density of the ejected fluid can be obtained:

Ip = 1
4πUpD

2
0Lm (1.24)

Ep = 1
8πcU

2
pD

2
0Lm (1.25)

where c is the fraction of the nominal kinetic energy of the ‘plug’ of fluid
actually injected into the ring (Linden & Turner 2001). Previous investi-
gations have found some differences between the slug model and the actual
experimental results. These discrepancies are attributed to different causes
(Didden 1979):

• When the piston starts moving, there is an acceleration of flow near the
wall leading to increased velocity gradients and, therefore, increased
vorticity flux into the ring.

• At larger times the boundary layer grows leading to an increment in
the velocity at the center of the cylinder in order to satisfy continuity.
Thus, the slug model underestimates the maximum real velocity. This
is more critical for low Reynolds numbers.
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• The ingestion of secondary vorticity of opposite sign produced at the
external wall leads to reduced circulation.

Despite all this limitations, the slug model is often used for comparison
with experimental data since it requires the knowledge of easily measurable
parameters.

1.4.3 Thin cored vortex rings

The first studies of vortex rings appeared in the 19th century. For a vortex
ring with circulation Γ, radius R0 (i.e. the distance from the vortex center to
the symmetry axis), core radius ǫ ≪ R0 and uniform vorticity distribution
(see Fig. 1.4), Kelvin (1867) obtained the formula for the vortex translation
velocity

U =
Γ

4πR0

(

log
8R0

ǫ
− 1

4

)

(1.26)

For the case of a hollow vortex ring (or filled with immobile fluid)
Hicks(1885) obtained the equation

U =
Γ

4πR0

(

log
8R0

ǫ
− 1

2

)

(1.27)

Based of Lamb’s (1932) ideas, Saffman (1992) studied thin vortices and
derived relations which allow consideration of viscosity effect, swirling, un-
steadiness and compressibility. Consider s and θ, the polar coordinates
about an origin in the core distance from the axis of symmetry (Fig. 1.4).
Saffman defined the function

Γ0(s) =

∫ s

0
2πω0(s

′)s′ds′ (1.28)

so Γ = Γ0(ǫ). The velocity and vorticity in the azimuthal direction could be
defined in terms of s so uφ = uφ0(s) and ωφ = ω0(s); where uφ0 and ω0 are
constants. The expression to obtain the vortex ring translation velocity is
defined as:

U =
Γ

4πR0

(

log
8R0

ǫ
− 1

2
+ 2

π2ǫ2u2
θ

Γ2
− 4

π2ǫ2u2
φ0

Γ2

)

(1.29)

where uθ = Γ0(s)/2πs. The lines above the velocity components represent
the average over the vortex cross-section. Saffman also derived an estimation
for the kinematic energy:
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Γ
θ

2ǫ

s

R0

x0

U

Figure 1.4: The coordinate system for a vortex ring with finite area.

E =
1

2
R0Γ

2

(

log
8R0

ǫ
− 2 + 2

π2ǫ2u2
θ

Γ2
+ 2

π2ǫ2u2
φ0

Γ2

)

(1.30)

It is important to note from Eq. 1.29 that the swirl velocity could slow
down the vortex velocity; in fact, when uφ is high enough the ring could go
backwards. Saffman derived the translation velocity for a viscous vortex ring
considering the distribution of circulation corresponding to the Oseen-Lamb
vortex filament

Γ(s, t) = Γ(1 − e−s2/4νt) (1.31)

the speed for the viscous vortex ring with a thin core is obtained

U =
Γ

4πR0

[

log
8R0√
4νt

− 0.688

]

(1.32)

The above equation is valid only in the limit as t≪ R2
0/4ν, i.e. for small

time and as long as the vortex core remains small. Kaplanski & Rudi (1999)
derived the translation velocity for a viscous vortex ring using a vorticity
distribution ω = ω(r, x, t) which is valid for a wider time range. Following
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ring´s core
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Rmin Rmax

RN αRN

Figure 1.5: The meridional cross-section area of the Fraenkel-Norbury vortices.

the approach by Saffman, Moore (1985) obtained the velocity translation of
a uniform vortex ring in a compressed medium

U =
Γ

4πR0

[

log
8R0

ǫ
− 1

4
− 5M2

12

]

(1.33)

where M = Γ/2πǫc∞ is the Mach number and c∞ is the sound velocity at
infinity.

1.4.4 Fraenkel-Norbury vortices

Fraenkel (1970) proved the existence of steady vortex rings with sufficiently
small core size, i.e. ǫ/R0 ≪ 1, in an inviscid fluid. Without swirling,
Fraenkel derived relations for the shape, the translation velocity and other
properties of these vortex rings with the help of expansion in the small
parameter ǫ/R0 in the solution of integral equation on the stream function
(Fraenkel 1972):

ψ(r, x) = −1

2
Wr2 +

1

2π

∫ ∫

G(r, r′, x− x′)F (ψ′)dr′dx′ (1.34)

where W is an uniform stream velocity (in the axial direction), which corre-
sponds to the propagation velocity U of the ring when it moves through
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fluid at rest at infinity. F (ψ) = ωφ/r is the vorticity distribution and
ψ′ ≡ ψ(r′, x′) . The kernel G is the stream function at x = (r, x) of a
singular vortex circle about axis of symmetry through the point x′ = (r′, x′).

Fraenkel (1972) studied examples of steady vortices with convex cross
section and relatively small area, while Norbury (1972) gave examples of
steady vortex rings with large cross section close to the so called Hill’s (1894)
spherical vortex. Finally, Norbury (1973) proposed the existence of a family
of steady vortex rings in terms of a non-dimensional mean core radius α
defined by the equation:

α2 =
A

πR2
N

(1.35)

where A is the cross-sectional area of the rings’s core and RN = (Rmin +
Rmax)/2 is a measure of the ring radius (see Fig. 1.5). The values of α
are in the range 0 < α ≤

√
2, extending from a vortex ring with small

cross-section (where α → 0) to the Hill’s spherical vortex (for which α =√
2). The vorticity equation u · grad(ωφ/r) = 0 is satisfied trivially by the

particular distribution ωφ = Ω0r (Ω0=constant) of vorticity. The problem
can be stated as (Norbury 1973): find the Stokes stream function ψ(r, x)
and boundary ∂A of the cross section area A such that:

{

∂2

∂r2
− 1

r

∂

∂r
+

∂2

∂x2

}

ψ(r, x) =

{

−Ω0r
2 inside ∂A

0 outside ∂A

}

(1.36)

These vortices were named as the “Norbury-Fraenkel” family. Introduc-
ing the function F (ψ′) = Ω0 in Eq. 1.34 and considering that ψ(r, x) = k
on ∂A (k is a positive constant), Norbury obtained:

k = −1

2
Wr2 +

Ω0

2π

∫ ∫

G(r, r′, x− x′)dr′dx′ for (r, x) ∈ ∂A (1.37)

The problem is reduced to finding curves ∂A that satisfy Eq. 1.37 for
different W ,Ω0 and k. Norbury (1973) resolved the above equation using a
numerical scheme. He gave results for the core boundary shape and propaga-
tion velocity, as well as other vortex properties like the circulation, impulse
and kinetic energy and presented them in tabular form for different α. The
shape of the vortex ring cross-section is presented in Fig. 1.6.
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Figure 1.6: Shape and streamlines of Norbury vortices for different α.

.

1.5 Vortex identification

Notwithstanding vortices have been studied for a long time, there is not a
consensus of a mathematical definition of a vortex in the fluid mechanics
community. Normally a vortex is associated with a region of flow with high
vorticity, however, as noted by Haller (2005): “...there is no universal thresh-
old over which vorticity is to be considered high”. In parallel shear flows
it is possible to find regions with high vorticity but no vortices are present.
Definitions requiring pressure minima are incomplete or unsatisfactory while
criteria based on closed pathlines or streamlines are ambiguous because the
topology of the these lines can change with different frames of reference.
Jeong & Hussain (1995) discuss the problems of using these definitions.

In real fluids, the diffusion of vorticity by viscosity impedes the exis-
tence of a sharp boundary between rotational and irrotational flow. The
interaction of vorticity distribution with strain field, makes the problem of
identifying vortices more complicated (Chakraborty et al. 2005). Concern-
ing vortex rings, some authors have limited the size of the vortex by choosing
an arbitrary minimum vorticity contour value or a percentage of the max-
imum vorticity at the center of the ring. Such criteria are subjective and
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inappropriate when there is not a ‘physical’ separation between the vortex
ring and the trailing jet.

There are some schemes to identify vortices based on local analysis of
the velocity gradient tensor ∇u. These vortex identification criteria are
Galilean invariant, i.e. remain invariant in different inertial frames of refer-
ence. Examples of these techniques are the Q criterion of Hunt et al. (1988),
the λ2 criterion of Jeong and Hussain (1995) and the ∆ criterion proposed
by Chong et al. (1990). For two dimensional flows, the Q criterion is known
as the Okubo-Weiss criterion proposed by Okubo (1970) and Weiss (1991).
The Q criterion uses the velocity gradient decomposition

∇u = D + Ω (1.38)

where D = 1
2((∇u) + (∇u)t) is the symmetric and Ω = 1

2 ((∇u) − (∇u)t)
the antisymmetric components of ∇u, respectively. The tensor D is usually
called the ‘rate of deformation tensor’ (or rate of strain tensor) while Ω is
also known as the ‘vorticity tensor’ (or rate of rotation tensor). The second
invariant Q, for an incompressible flow (∇ · u = 0) is defined by

Q =
1

2
(|Ω|2 − |D|2) (1.39)

where |Ω| = tr[ΩΩt]1/2 and |D| = tr[DDt]1/2. In regions where Q > 0 the
local measure of rotation rate is larger than the strain rate, therefore the
spatial region belong to a vortex. This function can be evaluated point-by-
point and we can classify each point as being inside or outside the vortex
ring.

1.6 Center of vortices

We use a method to find topologically relevant points in the flow to locate
the vortex ring center. In a two-dimensional flow, special points can be
found in the regions where the local velocity becomes zero (Oullette & Gol-
lub 2007). There are two types of special points. When located in a region of
the flow where the vorticity dominates, such points are elliptic; in a strain-
dominated region, they are hyperbolic (i.e., saddlelike). It has been shown
that the elliptical points correspond to the center of the vortices presented
in the flow (Chong et al. 1990). It is possible to find the elliptic and hy-
perbolic points by computing the curvature of Lagrangian trajectories, that
is, the trajectories of individual moving fluid elements; in this investigation,
we use the 2D velocity field obtained by the PIV technique (described in
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Figure 1.7: Viscous flow between two parallel plates.

chapter 2). Near both hyperbolic and elliptic points, the direction of fluid
particle trajectories changes over very short length scales, producing large
curvature values. The curvature was obtained following the scheme of Braun
et al. (2006):

k(t) =
|u × ∂tu + u × [u · ∇u]|

|u|3 (1.40)

where u is the velocity field and ∂t is the partial time derivative. Once the
points of local maximum curvature are identified, it is possible to classify
them as elliptic or hyperbolic using the Q criterion described above. If the
special point has a Q value Q < 0 the local flow is dominated by strain; if
Q > 0, where rotation dominates, the point is the center of a vortex ring.

1.7 Viscous fluids

Since part of this investigation is focused in the determination of the effects
of non-Newtonian behavior in the vortex ring formation process, it is appro-
priate to define the fluid properties. In particular, in this section we present
some definitions of non-Newtonian rheology.

1.7.1 Newtonian fluids

Consider the fluid between two horizontal plates shown in Fig. 1.7. A
flow is induced between the fixed lower plate and the upper plate moving
steadily at a velocity V . The distance between plates is h and there is
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not slip between the plates and the fluid. If the plates are large enough so
uy = uz = 0, a velocity distribution ux(y) is found. Consider also that there
is not acceleration nor pressure variation in the flow direction. If the fluid
between plates is Newtonian, the local stress (shear stress) necessary to keep
moving the upper plate at constant velocity is proportional to the velocity
gradient perpendicular to the plane of shear:

τxy = µ
dux

dy
= µγ̇ (1.41)

where µ is the fluid kinematic viscosity. The velocity gradient dux/dy is
usually known as the shear strain rate (or simply shear rate). Isaac New-
ton first described this phenomenon in his famous Principia Mathematica

(1687). Equation 1.41 is only valid for simple shear flows (Fig. 1.7). In
three dimensions (tensor form), the viscous stress tensor is defined as:

τ = µ2D (1.42)

where D is the rate of strain tensor defined in section 1.5. Equation 1.42
represents the constitutive equation for Newtonian fluids. Temperature has
a strong effect and pressure a moderate effect on viscosity. Gas viscosity
increases with temperature, while liquid viscosity decreases with temper-
ature and is roughly exponential µ ≈ ae−bT . Viscosity measurements on
Newtonian fluids, conducted at constant temperature and pressure, have
the following characteristics (Barnes 1989, §15):

• The stress versus shear rate curve is linear and passes through the
origin.

• The only stress generated in simple shear flow is the shear stress τ .

• The fluid viscosity does not vary whit shear rate.

• The viscosity is constant with respect of the time of shearing and the
stress in a liquid falls to zero immediately the shearing is stopped.

• The viscosities measured in different instruments and different types
of deformation are always proportional to one another. For example,
the viscosity measured in an uniaxial extensional flow is always three
times the value measured in simple shear flow.
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Figure 1.8: Rheological properties for different viscous fluids.

1.7.2 Non-Newtonian fluids

Any fluid showing different behavior than the listed above, is considered non-
Newtonian. As soon as the first instruments to measure viscosity appeared
and it was possible to observe the influence of the shear rate on the viscosity,
many materials presented a different behavior from the Newtonian fluids.
In Fig. 1.8 we show the rheological behavior of different viscous materials.
The main types of non-Newtonian fluids are:

• Shear-thinning fluids. In these materials, the viscosity decreases
with increasing the shear rate. These fluids are also known as pseudo-

plastics. Many materials such as dispersions, emulsions and polymer
solutions present this behavior. This effect is explained from the rear-
rangement of the material internal structure in the fluid; for example,
long chains in polymers align in the shear direction reducing viscosity.
Some examples are: lava, paints, whipped cream, ketchup and nail
polish. The blood is an example of shear thinning fluid presented in
nature.

• Shear-thickening fluids. These materials, also known as dilatants

experiment an increment in viscosity with increasing the shear rate.
The dilatant effect occurs when closely packed particles are combined
with enough liquid to fill the gaps between them. At higher shear
stress, the liquid is unable to fill the gaps created between particles,
and friction greatly increases, causing an increase in viscosity. The
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mixture of cornstarch with water is an example of dilatant fluid.

• Bingham plastic. This material behaves as a rigid body at low
stresses but flows as a viscous fluid at high stress. The explanation
of this behavior is that the liquid contains particles or large molecules
which have a kind of interaction, creating a weak solid structure. A
certain amount of stress is required to break this structure. Once
the structure has been broken, the particles move with structure. A
common example is toothpaste.

• Thixotropic fluids. These fluids show a time-dependent change in
viscosity. The measured shear stress, and hence the viscosity change
with time of shearing. Thixotropic fluids display a decrease in vis-
cosity over time at constant shear rate. Some shear-thinning fluids
show a thixotropic behavior. Some gels, colloids and clays present are
thixotropic fluids.

• Rheopectic fluids. This materials present the opposite effect than
the previous one. The longer the fluid undergoes a constant shear
strain rate, the higher its viscosity. Similarly as the previous case,
rheopectic materials are associated with shear-thickening. Rheopectic
fluids like some lubricants, thicken or solidify when shaken. Another
examples are the gypsum pastes and printer inks.

• Viscoelastic fluids. These materials exhibit both viscous and elastic
characteristics when deformation. Some characteristics in viscoelas-
tic materials are: (i) if the stress is held constant, the strain increases
with time (creep); (ii) if the strain is held constant, the stress decreases
with time (relaxation); (iii) if cyclic loading is applied, hysteresis (a
phase lag) is observed in the stress-strain curve, leading to a dissipa-
tion of mechanical energy. Some examples include: amorphous poly-
mers, semicrystalline polymers, biopolymers and metals at very high
temperature.

1.7.3 General viscous fluid

In general, the Newtonian constitutive equation accurate describes the rhe-
ological behavior of low molecular weight liquids and some polymers at very
slow rates of deformation. Many models that depend on rate of deformation
arise from the so called ‘general viscous model’. Consider that the total
stress σ depends only on the rate of strain.
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σ = f(2D) (1.43)

expanding in a power series gives:

σ = f0D
0 + f1D

1 + f2D
2 + f3D

3 + ... (1.44)

For an incompressible fluid D0 = I and f0 = −p. The Cayley-Hamilton
theorem states that any tensor satisfies its own characteristic equation, so
it is possible to write:

σ = −pI + η12D + η2(2D)2 (1.45)

where η1(II2D, III2D) and η2(II2D, III2D) are scalar functions of the invari-
ants of 2D. The Newtonian fluid is a special case with η1 = µ and η2 = 0.
The η2 term gives rise to normal stresses in steady shear flow; however they
are not in qualitative agreement with experimental observations so it is usu-
ally discarded (Macosko 1994 §83). Much rheological work has been done
with simple shear flows where III2D = 0 so the last equation is reduced to:

σ = −pI + η(II2D)2D (1.46)

note that the viscous stress tensor is defined by τ = 2η(II2D)D. Several
models are based on η(II2D); the most widely used one is the power law

model :

τ = m|II2D|(n−1)/2(2D) or τij = m|II2D|(n−1)/2(2Dij) (1.47)

This equation is most often applied to steady simple shear flows in which
the absolute value of the second invariant becomes |II2D| = γ̇2 and D12 =
D21 = γ̇/2 so

τ12 = τ21 = ηγ̇ = mγ̇n and η = mγ̇(n−1) (1.48)

where n is known as the power-law index and m is called the ‘consistency’.
η = η(γ̇) is commonly known as the apparent fluid viscosity. It is impor-
tant to note that Eq. 1.48 is valid only for simple shear flows. For three
dimensional flows Eq. 1.47 must be used. If n = 1 and m = µ we recover
the Newtonian case.

The power law model is a good approximation for the behavior of many
polymeric liquids and dispersions. In particular for shear-thinning fluids,
for which n < 1, at high shear rate (γ̇ > 1), the power law fits experimental
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data well. This model has also been used to model shear thickening fluids,
for which n > 1. One of the disadvantages of the power law is that it fails
to describe the low shear rate region in which η goes to infinity rather than
to a constant η0.



Chapter 2

Experimental setup

In this chapter we describe the experimental setup and the measurement
techniques used to obtain the velocity measurements and other properties
of vortex rings. We discuss the methodology of data acquisition and re-
port the rheological properties of the different liquids used in the present
investigation.

2.1 Description of the experiment

The experimental setup is shown in Fig. 2.1. Experiments were performed
in a tank using a piston-cylinder arrangement. Vortex rings were generated
by the displacement L of a piston inside the cylinder of inner diameter D0.
The cylinder is submerged in liquid with fixed free surface. The piston is
coupled to a driving mechanism which is moved in turn by a DC motor.
The DC motor is fed by a power supply, which is controlled by a computer.
It is possible to control and fix the piston velocity and displacement. Two
dimensional velocities were obtained using the particle image velocimetry
technique described in section 2.2. All the experimental system (tank, laser,
camera) is mounted on an anti-vibration table which allows flatness and
optical alignment (Fig. 2.9).

2.1.1 Piston-cylinder apparatus

In the present investigation, two different tanks were used. The first tank
dimensions are: 30 × 30 × 70 cm, it can contain approximately 53 liters of
liquid. The cylinder is 40 cm long and is set horizontally at the center of the
tank. The inner cylinder diameter is D0 = 25.7 mm with 3 mm of thickness.
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Figure 2.1: Experimental setup.

A sharp-edged cylindrical nozzle was coupled at the end of the cylinder. The
tip angle of the nozzle is θnoz = 20◦ and the exit diameter is also 25.7 mm
(see a nozzle detail in Fig. 2.2b). This angle avoids wall effects at the exit
on the formed vortex rings. The nozzle exit plane is placed 25 cm (∼ 7.8D0)
from the quadratic wall, 15 cm (∼ 5.8D0) from the side (rectangular) walls
and 45 cm (∼ 17.5D0) from the front wall. This tank was used mainly for
Newtonian vortex ring experiments.

The second tank dimensions are 20 × 18 × 30 cm. The cylinder is 40
cm long and its inner diameter is D0 = 19.4 mm. In this case the nozzle
exit was placed ∼ 3.6D0 from the wall, ∼ 6.4D0 from the lateral walls and
∼ 11.9D0 from the opposite wall. This tank was mainly used for flows with
low Re numbers and all the non-Newtonian experiments. For both tanks,
the axial axis x is placed to coincide with the center-line of the nozzle and
the nozzle exit plane is located in the plane x = 0. The piston is made of
stainless steel and it is machined with two grooves to fit ‘o-rings’ which seal
the gap between the piston and cylinder.

2.1.2 Driving mechanism

The driving mechanism consists of the following. The piston is coupled with
a stem or piston rod, which is pushed through by a screw rod, coupled to a
DC motor (see Fig. 2.2 a). We used three screw rods with different travel
distance (different thread and speed ratio) in order to generate different
ranges in piston velocity. The DC motor is a BALDOR R© DC Gear motor
with 1/25 HP and 90 Volts - 0.49 ampere maximum. It produces 5.1 lb.s of
torque and output velocity of 344 rpm with gear reducer. By coupling the
screw rod directly to the DC motor without gear reducer, the maximum out-
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Figure 2.2: (a) Driving mechanism (b) Nozzle detail, dimensions in mm

put velocity is increased up to approximately 1700 rpm. This configuration
allows a further increase of the mean piston velocity (see Fig. 2.8).

The DC motor is powered by a power supply which is able to provide a
maximum current of 0.51 ampere and voltages in the range of 0-100 volts.
The mean piston velocity Up was proportional to the supplied voltage (Fig.
2.3a). The power supply was controlled by a computer; specifically, we
controlled the piston velocity program introducing the voltage and duration
of supply. Therefore, it was possible to control and fix the piston velocity
and displacement. If the desired displacement was Lm = jD0, where j =
1, 2...10, the piston moved a distance xm so |xm − Lm| /Lm ≤ 0.02. Different
piston velocities and displacements were implemented. In Fig.2.3(b) we
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Figure 2.3: (a) Piston velocity as a function of voltage supply. (b) Piston velocity
program for different voltages.

present three different piston velocities programs; velocities are normalized
with the mean velocity. In these tests, we measured the piston velocity
by calculating its displacement between consecutive frames obtained with a
digital camera at different frame rates (fps). We can observe that the piston
velocity program was impulsive and the mean piston velocity was reached
at 0.25 s approximately.

2.2 Particle image velocimetry technique

The particle image velocimetry (PIV) is a non-invasive laser optical method
for mapping flow fields in gases and liquids. This technique provides in-
stantaneous velocity vector measurements in a cross-section of a flow. Two
velocity components are obtained; however, using a stereoscopic scheme it
is possible to measure the third component of velocity and obtain the 3D
velocity vectors on a plane. PIV has been used broadly in industry and
physics of fluids research.

Some applications examples include: general hydrodynamics, rotating
machinery, vortex dynamics, wind tunnel measurements, mixing, convec-
tion phenomena, etc. PIV measurements are important for environmental
research as combustion, wave dynamics, geophysical flows, coastal engineer-
ing, river hydrology and others. This technique has also been used in multi-
phase flows investigations as sprays, bubbly flows, granular flows and free
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Figure 2.4: PIV principle.

surface measurements. There are also micro-fluidics applications as micro-
channels, MEMS and biological flows.

At present it is possible to obtain PIV measurements from high speed
flows using ‘time resolved’ PIV systems which incorporate high speed cam-
eras. These systems now allow a complete study of turbulent flows and
mixing phenomena. The new ‘volumetric’ PIV systems provide truly vol-
umetric velocity data, using to four cameras and a thick light sheet or a
scanning thick light sheet. The PIV measurements are also used for experi-
mental verification of CFD models.

2.2.1 Principle

The PIV technique measures the distance traveled by particles suspended
in the flow within a known time interval ∆t. These particles, also known
as ‘seeding’ or ‘tracer’ particles, could be made of different materials and
have different sizes depending on the nature of the flow to be investigated.
In air flows, oil drops in the range 1 µm to 5 µm are typically used. For
water applications the tracers could be made of polystyrene, polyamide or
hollow glass spheres in the range 5 µm to 100 µm. Seeding particles must
be neutrally buoyant and able to follow the flow. In order to detect their
movement, a ‘flat’ area of the flow field is illuminated by a light sheet. In
Fig. 2.4 we show a diagram of the PIV principle. A pulsed laser beam
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system and optical components generate a sheet-form laser which produces
a stroboscopic effect, freezing the motion of the seeding particles. To detect
the position of the illuminated particles, a CCD (charge coupled device)
camera is placed at right angle to the light-sheet. In order to obtain actual
particle displacements, the image scale factor has to be determined. This
factor is defined as F=object/image, i.e. the relation between the object
(real) space and the image (camera) space.

Two pulses with known time delay are generated from the laser sys-
tem. These pulses and the camera shots are synchronized so that particle
positions from laser pulse 1 are registered on camera frame 1, and particle
positions from pulse 2 are registered on frame 2. The camera images are
divided into quadratic or rectangular regions called interrogation areas and
for each of these interrogation areas the image from the first and the second
pulse of the light-sheet are ‘correlated’ to produce an average particle dis-
placement vector (see Fig. 2.5). 10 to 25 particles should be seen in each
interrogation area. Performing the same correlation procedure for all inter-
rogation regions, produces a vector map of average particle displacements.
Dividing with the time interval ∆t between the two images captured, the
instantaneous vector velocity field of the flow is generated.

The statistical spatial cross-correlation technique is used to estimate the
average displacement of tracer particles in each interrogation area. Consider
that the function f(k, l) describes the light intensity within an interrogation
area of frame 1 recorded in time t and the function g(k, l) describes the light
intensity recorded at time t+ ∆t. k and l are image co-ordinates in pixels.
The discrete cross-correlation function is defined as the expected value:

Φfg(k, l) = E[f(k, l), g(k, l)] (2.1)

Φfg(k, l) =

i=∞
∑

i=−∞

j=∞
∑

j=−∞

f(i, j) · g(i + k, j + l) (2.2)

A high cross-correlation value is observed where many particles from
frame 1, match up with their corresponding spatially shifted partners from
frame 2. Small correlation peaks are observed when individual particles
match up with different other particles. When the number of matching
particles is large enough, the highest correlation peak is considered to rep-
resent the best match between functions f(k, l) and g(k, l). The position of
the peak in the correlation plane corresponds directly to the average par-
ticle displacement within the interrogation area investigated. An accurate
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Figure 2.5: Interrogation areas.

measure of the displacement is achieved with sub-pixel interpolation. To
efficiently compute the correlation plane, fast Fourier transform processing
is often used in PIV.

Seeding particles entering or leaving the interrogation area between the
recording of the first and the second frame, contribute to ‘random’ correla-
tions and a decrease of the signal-to-noise ratio. This phenomenon is often
referred to as ‘loss-of-pair’ or ‘signal drop-out’. This is particularly more
frequent close to the interrogation area edges. To overcome this problem an
‘overlap’ on the interrogation area could be implemented. By overlapping
interrogation areas, one increases the chance that all particle pairs are com-
pleted within at least one interrogation area. Processing with overlap also
produces additional vectors through suitable interpolations. The number of
vectors that are actually obtained with PIV technique are defined by the
relation:

No. pixels in CCD row

(1 −Oint)Nint,h
× No. pixels in CCD column

(1 −Oint)Nint,v
(2.3)

where Oint is the percentage of overlap, for example 0.25. Nint,h is the
horizontal length of the interrogation area in pixels and Nint,v is the vertical
length. Different validation and filter techniques can be implemented to the
raw velocity velocity fields in order to obtain better results. Particulary
we implemented the method ‘adaptive correlation’ which enables a ‘window
shifting’ procedure (Westerwheel, 1997). The principle of this method is
an iterative procedure: from an initial guessed offset value, an offset is
introduced from the first window (the interrogation area in the image frame
from laser pulse one) to the second window. The obtained vector es validated
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and is used as a new estimate for the window offset. A new run is made,
but this time with a smaller window (interrogation area). A more detailed
description of the PIV technique can be found in Willert & Gharib (1991)
and Raffel et al. (1998).

2.3 Data acquisition

In Fig. 2.6 we show the experimental scheme for data acquisition. Two
dimensional velocity fields were obtained using a PIV Dantec Dynamics R©
system. The laser sheet is aligned with the central vertical plane of the
cylinder. In all our experiments, the axial x-axis coincides with the center-
line of the nozzle and the nozzle exit plane is located in the plane x = 0.
The laser is generated by the Solo III PIV Nd:YAG laser system of New
Wave R©. The maximum energy is 50 mJ for a 532 nm laser beam (green
light). The maximum repetition rate (measurement frequency) is 15 Hz, the
pulse width is 3-5 ns and the beam diameter is 4 mm approximately. Special
optical components are mounted to the laser head to generate and control
the thickness of the laser-sheet.

A CCD camera is placed at right angle to the light-sheet. The Kodak
R© Megaplus ES 1.0 used in the experiment has a resolution of 1008 × 1016
pixels. The camera contains a special electronic control mode used for fast
inter-frame acquisition of two images (also known as double frame mode).
Light-sensitive cells are exposed to the scattered light from the first pulse
of the laser sheet; this information is then transferred to equal number of
storage cells. The CCD chip is then cleared and exposed to scattered light
from the second pulse of laser sheet. The storage cells now contain the first
frame and the light sensitive cells the second. The minimum time between
these two frames is ∆t = 1µs. The maximum repetition rate for this camera
is 15 Hz for double frame mode (15 image pairs per second).

Camera shots and laser pulses are triggered and synchronized by a con-
trol and acquisition unit. Both images frames from the camera are also
transferred to this unit. The Flowmap Processor also includes input ‘buffers’
for image storage and a ‘correlator’ unit used for real-time (on-line) vector
processing. The processor is controlled by a computer using the FlowMan-

ager software. This software is a visual database, which keeps track of
the recorded data, the set-ups and the experimental configurations. This
software is also used for velocity vector calculations. Post-processing, i.e.
vorticity, Q criteria, vortex translation velocity etc, is carried out using the
Matlab R© program.
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Figure 2.6: Acquisition control system.

In our experiment, a typical measurement area of 141 × 142 mm2 was ob-
tained. The velocity field consisted of 62 × 62 vectors using an interrogation
area of 32 × 32 pixels and and overlap of 50 %. The spatial resolution, with-
out vector interpolation, was 2.24 × 2.24 mm2 approximately. Silver-coated
glass spheres with an average diameter 10±5 µm were used as particle trac-
ers. The experimental sampling rate (frequency) was 8 to 15 Hz, depending
on the velocity of the flow.

The DC motor was powered by a Agilent R© DC power supply which
provides 0-100 volts and 0-0.5 amperes. The power supply was controlled
by a computer via serial port using the LabView R© software.

2.4 Test liquids

Different liquids were used in the present study. In order to reduce the
Reynolds number in Newtonian vortex rings, an aqueous solution of polyethy-
lene glycol (PEG) 6% weight was used. The viscosity of the solution in-
creases with concentration; for this particular case the dynamic viscosity is
µ = 8 mPa·s. PEG refers to an oligomer or polymer of ethylene oxide. It
is also known as polyethylene oxide (PEO) or polyoxyethylene (POE) de-
pending on its molecular weight. It has many application from industrial
manufacturing to medicine. The PEG used in the present experiment has
a molecular weight of 20,000 g/gmol and is fabricated by Clariant R©. For
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Newtonian and non-Newtonian experiments we also used different concen-
trations of Glycerol (glycerine or glycerin). Pure glycerol has 1.26 g/cm3

of density and 1.5 Pa·s of viscosity at 20 ◦C. To measure the Newtonian
viscosity we used the Brookfield R© DV-III viscometer.

In the present work, we studied the effect of shear-thinning liquids on
vortex ring formation. We used different aqueous solutions of xanthan gum.
This high molecular weight extracellular microbial polysaccharide derives
its name from the strain of bacteria using during the fermentation process,
Xanthomonas campestris. It is produced by fermentation of glucose or su-
crose and is used as food additive and rheology modifier. A small amount
of gum increases water’s viscosity by a large factor (100) at low shear rate.
The viscosity of xanthan gum solutions increases with concentration and de-
creases with with higher shear rates (shear-thinning behavior). The addition
of xantham gum to glycerol solutions and also diluted potassium thiocyanate
solutions, has been used to produce transparent blood-like fluids (Benard
et al. 2007). For the experiments we used a KELTROL R© xanthan gum
which is used for food and personal care applications distributed by CP-
kelco R© company. It is important to note that all the liquids used in the
experiments do not have elastic properties or they are too small. For shear-
thinning liquids we can define the Reynolds number in terms of the power

law model parameters:

Re0 =
21−nρU2−n

p Dn
0

m
(2.4)

where n is the power law index and m is the ‘consistency’. Note that for
Newtonian experiments n = 1 and m = µ is the liquid dynamic viscosity. In
table 2.1 we present physical properties of the different solutions used in the
present thesis as well as the experimental configuration: cylinder diameter
D0 piston velocity Up. PEG-06 refers to an aqueous solution 6% weight of
polyethylene glycol. Gly-65 refers to a mixture of 35 % water - 65% glycerol
in weight. Xan-450 means 450 ppm (parts per million) of xanthan gum in
water. G55-X200 is an aqueous solution of glycerol 55 % weight and 200
ppm. Note that the Reynolds number for all xanthan solutions (one case
of Xan-450) is approximately 260. This allows us to study the effect of
non-Newtonian behavior using different xanthan concentration (different n
for example) for the same flow condition (Re number). We are also able
to compare the shear-thinning behavior with the Newtonian liquid Gly-65
which has the same Re.

In Fig. 2.7 we present the viscosity as a function of the shear rate γ̇
for different xanthan solutions. The rheological tests consist in producing
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Liquid Density Consistency m Power index n Diameter D0 Vel. piston Up Re0
[kg/m3] [mPa.sn] [mm] [cm/s]

water 1000 µ = 1 1 25.7 1.3 330
water ” ” ” ” 4.8 1230
water ” ” ” 19.4 10.5 2100

PEG-06 1000 µ = 8 1 25.7 2.85 93
PEG-06 ” ” ” 25.7 4.8 150
Gly-65 1151 µ = 13.59 1 19.4 16 263

Xan-450 1000 23.5 0.6088 19.4 7.5 138
Xan-450 1000 ” ” ” 12 265
Xan-450 1000 ” ” ” 22 616
Xan-600 1000 41.5 0.5431 19.4 15.7 261.8
Xan-900 1000 88.9 0.4781 19.4 23 262

G55-X200 1125 27.06 0.814 19.4 18.7 263

Table 2.1: Physical properties of the test liquids and experimental configurations.
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Figure 2.7: Viscosity as function of shear rate for different xanthan solutions.

a simple shear flow between two solid surfaces; one surface rotates as the
other is maintained fixed. Viscosity measurements were obtained using a
Rheometer AR 1000-N from T.A. Instruments R©. The rheometer measures
viscosity in imposed shear stress mode, i.e. a torque is imposed to the rotat-
ing geometry and the fluid response is next measured with the corresponding
shear strain. We use a steel cone and plate geometry with 60 mm diameter,
2◦ angle and gap equal to 65 µm. All measurements were performed at
a controlled temperature of 23 ◦C. Liquid viscosity was obtained for shear
strain rates in between 1 ≤ γ̇ ≤ 200 s−1. Different levels of shear stress were
applied step by step by a decreasing way which allowed a better determina-
tion of liquid viscosity for low shear rates. It can be observed from Fig. 2.7
the non-Newtonian behavior of the xanthan solutions; even a small amount
of xanthan (200 ppm) makes a glycerol solution a shear-thinning fluid. The
plotted lines correspond to the power law model η = mγ̇n−1; where m and
n are shown in table 2.1 for each liquid. We can observe that this model fits
well experimental data for the measured shear rate range.
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Figure 2.8: Piston-cylinder apparatus and driving mechanism.
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Figure 2.9: Experimental setup, tank 1.
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Figure 2.10: Experimental setup, tank 2.



Chapter 3

Newtonian vortices

In this chapter we present experimental results of vortex rings generated
in Newtonian liquids at different Reynolds numbers. We first show some
image maps to explain the characteristics of this type of flow structure.
We present some vortex properties such as trajectories, diameters, velocity
profiles propagation velocities. Then, we explain the method to determine
the vortex ring circulation and compare with other methods described in
the literature. We measure the vortex ring circulation at different distances
from the nozzle and with different stroke ratios. We also compare the vortex
ring circulation at different Reynolds numbers. Finally, we compare our data
to those obtained by some experimental, analytical and numerical previous
studies to validate our experimental results.

3.1 Image maps

Figure 3.1 shows the velocity, vorticity and the Q criterion fields (top, middle
and bottom rows, respectively) of two flow cases. The first one (Fig. 3.1 a,
b, c) corresponds to the production of a single and isolated vortex ring. This
configuration occurs for a relatively small stroke ratio; in this case Lm/D0 =
3. The second case (Fig. 3.1 d, e, f) correspond to a flow for which a leading
vortex ring followed by a trailing jet was observed. This regime results for
larger Lm/D0 (in this case Lm/D0 = 10). Both vortices are located at a
position of x = 4D0. For the case Lm/D0 = 3, Rev = 1100 and the vortex-
jet case Rev = 1400. In both cases Re0 = 1200. Different experimental
condition (exit diameters, exit plane geometries and non impulsive piston
velocities) carried out by Gharib et al. (1998), showed that the transition
between the two regimes occurs when Lm/D0 ≈ 4.
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Figure 3.1: Velocity, vorticity and Q criterion fields (top, middle and bottom rows
respectively). (a),(b),(c) Lm/D0 = 3; (d),(f),(g) Lm/D0 = 10. Vortex position at
x ≈ 4 Re0 = 1200, vorticity values in s−1 and Q values in s−2.
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The vorticity fields of figure 3.1(b) show that most of the vorticity in
the flow is concentrated in the vortex ring area. This means that the vor-
ticity generated in the boundary layer inside the cylinder was introduced
into the vortex ring. On the other hand, the vorticity field for the case
Lm/D0 = 10 shows a trailing shear layer connected with the leading vortex
ring. It is important to note that a process of separation between the vor-
tex ring and trailing jet can occur at different distances depending on the
maximum stroke ratio (Rosenfeld et al. 1998). However, as Dabiri (2009)
pointed out, the physical separation is not to be confused with the vortex
ring “pinch-off” which is the process whereby a forming vortex ring is no
longer able to entrain additional vorticity. The separation may occur later
or not at all. In our experiments the latter case occurs for low Reynolds
numbers. Most authors have limited the size of the vortex ring by choosing
an arbitrary minimum vorticity contour value or a percentage of the max-
imum vorticity at the vortex core. Such criteria become subjective when a
physical separation of the vortex ring and the trailing jet is not evidently
observable.

Figures 3.1(c) and 3.1(f) show the Q fields for the previous cases. For
the single vortex ring case we observe that the region of high rotation rate
(Q > 0) coincides with the core of the vortex ring. The plot shows that this
area is smaller than the corresponding vorticity field. The Q criterion map
for the case Lm/D0 = 10 shows a remarkable separation between the vortex
ring and the trailing jet. In fact, it is possible to locate secondary vortices
behind the leading one. We can also observe strain-dominant regions of the
flow (negative Q values) which are located behind and in front of the leading
vortex ring. Based on these observations, we will consider the area of the
vortex ring to be that for which Q > 0.01s−2 for all cases.

Figure 3.2 shows the location of points of maximum curvature (circles),
and maximum (or minimum) vorticity (squares) for (a),(b) Re0 = 150 and
(c),(d) Re0 = 1200. For both cases the stroke ratio is Lm/D0 = 4 and the
position of the vortex center (considering maximum curvature) is x ≈ 8D0.
Contours of constant curvature (top) and constant vorticity (bottom) are
shown in solid black lines. The minimum and maximum contour values are
150 m−1 and 3000 m−1 (vortex center) respectively. The minimum vorticity
value is 0.5 s−1 for both cases and the maximum absolute vorticity value is
1.8 s−1 for Re0 = 150 and 5 s−1 for Re0 = 1200. We observe that vortex
rings tend to broaden as Re decreases. To calculate vorticity and curvature
scalar maps (and also peak values) we first constructed a subgrid of dx/3
and dy/3 (∼ 0.75 mm) nodes, then we compute a interpolation of velocity
vectors to fit the subgrid using triangle-based linear interpolation. If x is the
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Figure 3.2: Comparison between points of maximum curvature (black circles) and
maximum (or minimum) vorticity (black squares). Curvature (top) and vorticity
(bottom) contours in solid lines. Lm/D0 = 4 and x ≈ 8D0. (a),(b) Re0 = 150 and
(c)(d) Re0 = 1200.

distance desired to locate the vortex ring (say x = 8D0) we found a max-
imum error of |x − xk|/x ≤ 3% (where xk is the vortex position measured
with peak curvature) but typically less than 1%. Vectors from Fig. 3.2 are
resampled for clarity. It is important to note that in most of our experi-
ments, the maximum vorticity coincides with the maximum Q value, i.e. the
region of the flow with high rotation rate. However, the point of maximum
vorticity does not necessarily coincide with the point of maximum curva-
ture. In general, the point of maximum vorticity tends to move towards the
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Figure 3.3: Trajectory of vortex ring center considering maximum curvature and
maximum vorticity for Lm/D0 = 4.

axis of symmetry; for lower Reynolds numbers (Fig. 3.2a) this difference
is more noticeable. We observe in fact that the maximum point of curva-
ture better locates the geometric centers of the vortex rings. Some previous
publications (Michalke & Timme 1967) indicate that it is possible to have
vortical structures with the extremum value of vorticity outside the rotation
axis. The so-called “hollow vortices” are characterized by a slowly rotat-
ing center (weak vorticity), surrounding by a high speed circumferential jet
(strong vorticity). These vortices have been observed in nature, specifically
in geophysical flows like the Antarctic Stratospheric vortex (ozone hole) and
the Great Red Spot(GRS) on Jupiter (Shetty et al. 2007).

3.2 Vortex properties

Figure 3.3 shows the vortex ring trajectory considering the points of maxi-
mum curvature and maximum vorticity for stroke ratio Lm/D0 = 4 and two
different Reynolds numbers. In this graph, the position of the vortex ring
center on the upper half plane (r > 0) is plotted. The points of maximum
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Figure 3.4: Diameter of vortex ring for different stroke ratios. Re0 = 1200.

curvature (kmax) are located at a distance r/D0 ≈ 1 for both Reynolds num-
ber and the points of maximum vorticity are close to r/D0 = 0.5. We can
also observe that the vortex ring center uncertainty is larger for the com-
putation of the points of maximum vorticity. For a given Lm/D0 Weigand
& Gharib (1997) found that the trajectories of the vortex rings centers are
spatially independent of the Reynolds number, in agreement with our results
presented in Fig. 3.3. For all the results presented in this paper, the vortex
ring position is obtained from the point of maximum curvature.

Figure 3.4 shows the evolution of the non-dimensional vortex ring diam-
eter Dv/D0 for different stroke ratios, locating the center from the point of
maximum curvature. The Reynolds number is Re0 = 1200. Here xm is the
mean x-position of the centers, i.e. the upper and lower section of the vortex
ring. The results indicate that the vortex ring diameter initially increases
and then remains constant with a value close to 2D0. We can also observe
that the vortex ring diameter increases with stroke ratio; however, the ex-
perimental data suggest that there is a limit in the vortex ring size for large
Lm/D0. This dependence of ring diameter on stroke ratio has been reported
by Didden (1979). It is important to note that the vortex rings diameters
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Figure 3.5: Horizontal velocity profile at r = 0 for different stroke ratios. Vortex
ring centers at x = 3D0. Re0 = 1200.

presented in Fig. 3.4 could be slightly different from those reported in previ-
ous works; for example, Didden (1979) presented D/D0 = 1.1−1.4 for rings
with Lm/D0 = 2. This difference results from the way through which the
vortex ring center is located; in our case, the maximum curvature points. If
we consider the maximum vorticity points as vortex centers (Fig. 3.3), the
diameters for Re0 = 1200 and Lm/D0 = 4 would be Dv ≈ 1.4D0 instead of
Dv ≈ 2D0. Didden (1979) measured vortex diameter using dye visualization
images (movie films) and reported a sudden decrease (not observed in the
present study) of the ring diameter after the end of each stroke.

The horizontal velocity profiles (ux) at r = 0 (center line) are presented
in Fig. 3.5 for different stroke ratios. For all cases the piston velocity is Up =
4.8cm/s and the vortex ring center is located at x = 3D0. The Reynolds
number is Re0 = 1200. The plot indicates that the u-velocity is maximum
at the x-location of the vortex ring center and that the velocity profile is
symmetric when a single vortex ring is generated. In our experiments, the
trailing jet appears when Lm/D0 ≥ 4.5 which is consistent with Gharib’s
experiments. Although the mean piston velocity is the same for all runs, the
value of maximum velocity varies with Lm/D0. When the piston is moving,
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Figure 3.6: Propagation velocity of vortex rings for different stroke ratios. (a)
Re0 = 150 and (b) Re0 = 1200.

there is an acceleration of u component at the center line because of the
initial growth of boundary layer on the cylinder wall; therefore, for large
stroke ratios ux/Up > 1 close to the nozzle.

Figure 3.6 shows the non-dimensional propagation velocity Uv of vortex
rings for different Lm/D0 for two Re numbers (a) Re0 = 150 (b) Re0 = 1200.
The vortex ring velocity is obtained by a numerical differentiation of the vor-
tex ring position based on the location of maximum curvature. For small
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Figure 3.7: Non-dimensional vortex ring circulation as a function of the stroke ratio
for Re0 = 1200. x = 8D0

stroke ratios (Lm/D0 = 2) the decay of the propagation velocity is impor-
tant. Didden (1979) and Weigand & Gharib (1997) indicated that vortex
rings velocity decays with time. When Re0 = 1200 and the stroke ratio is rel-
atively large Lm/D0 ≥ 6, the vortex ring velocity initially is approximately
0.5Up and then it increases slightly as the vortex ring moves away from the
nozzle; however, a vortex ring velocity decay is expected for larger distances
from the nozzle. The velocity for Lm/D0 = 4 remains constant close to
0.55Up. In their analytical model Mohseni & Gharib (1998) predicted a
propagation velocity Uv = 0.5Up, which is close to this particular stroke ra-
tio. The vortex ring velocity when Re0 = 150 is considerable lower than the
previous case. The maximum velocities are in a range 0.3 ≤ Uv/Up ≤ 0.4.

3.3 Vortex Circulation

Figure 3.7 shows the total non-dimensional circulation in the visible domain
(ωφ > 0) and the non-dimensional vortex ring circulation as a function
of the stroke ratio Lm/D0 for Re0 = 1200. The vortex rings are located
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at a position x = 8D0. At this distance it is possible to observe a clear
separation (minimum vorticity contour value) between the vortex rings and
their trailing jet. The points plotted correspond to the average of 5 different
runs of the piston. The error bars represent the standard deviation of data.
In order to compare our calculation method with previous works, we present
the vortex ring circulation in two forms. The first one is based on the Q

criterion explained in section 1.5. The circulation is obtained from Eq. 1.7

Γ =

∫

AQ

ωφdA (3.1)

where ωφ is the azimuthal vorticity defined as

ωφ =
∂ur

∂x
− ∂ux

∂r

and AQ is the region of flow where Q ≥ 0.01s−2. The second form of vortex
ring calculation is based on the method used by Gharib et al. (1998). From
the vorticity contours (Fig. 3.1b,e), they obtained the vortex ring circulation
by integrating the vorticity contained within a given contour lever for either
positive or negative senses. This contour level was determined to be at 1s−1.
In the presence of a trailing jet, the vortex ring circulation was measured
when a clear separation between vorticity contours from the leading vortex
ring and the trailing jet exited. Therefore the vortex ring circulation was
measured at larger vortex positions from the nozzle: x & 9D0. For our
experiments (Re0 = 1200) we could observe this separation at x ≈ 8D0.

In figure 3.7 we observe that when using the Q criterion the values of
vortex ring circulation are lower than those obtained by Gharib’s method.
This difference is mainly due to the smaller vortex ring area obtained when
using Q criterion, see Fig 3.1c,f. The difference becomes smaller as Lm/D0

decreases; this means that for these cases (when a trailing jet is not present)
most of the non-zero vorticity could be associated with the vortex ring. On
the contrary, as the stroke ratio increases some of the vorticity created in the
flow, although high, based on the Q definition, cannot be associated with
“rotation” of fluid particles. Thus, the resulting vortex ring area is reduced.
Despite the above arguments, we observe that the trend of the curves is
similar. This means that most of the bulk of vorticity is concentrated inside
the core of the vortex ring. The large uncertainty for Lm/D0 ≥ 9 might
be explained by the shedding of excess vorticity from the leading vortex
ring (Gharib et al. 1998); hence, high irregularity in the vorticity contours
is observed. It is important to note that for shorter distances from the
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Figure 3.8: Non-dimensional vortex ring circulation at different distances from the
nozzle. Re0 = 1200.

nozzle exit, it is difficult (if not impossible) to observe vorticity contour
separation between the leading vortex ring and the trailing jet. The same
problem has been reported in numerical simulations (Rosenfeld et al. 1998).
When Reynolds number is small enough this separation may not appear
(Dabiri 2009). Moreover, the time or distance at which this “physical”
separation occurs (for identical initial conditions) could slightly change with
the lowest contour level chosen. Although the Q criterion seems to be a
very broad definition of a vortex (i.e. it does not consider pressure minima),
the method allows a less subjective vortex ring identification even in the
formation stages.

Figure 3.8 shows the non-dimensional vortex ring circulation as function
of the distance x/D0, for different stroke ratios Lm/D0, for Re0 = 1200.
It can be observed that the vortex ring circulation grows as the vortex
moves away from the nozzle until the vortex reaches a distance between
4 ≤ x/D0 ≤ 6; after that, the vortex ring circulation, for this particular
Reynolds number, decreases slightly. We can also observe that the larger the
stroke ratio, the larger is the circulation value. However, the experimental
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data suggests that there is a stroke ratio limit (Lm/D0 = 8) above which
the dimensionless circulation of vortex ring cannot increase.

Figure 3.9(a) shows the vortex ring circulation as a function of the stroke
ratio Lm/D0. The curves correspond to different vortex ring positions. For
clarity we present only some of the total distances obtained. We can observe
that the maximum vortex ring circulation for each stroke ratio depends on
the distance at which the measurement is done; this has been reported by
Rosenfeld et al. (1998). For example, close to the nozzle (x = 3D0) the
circulation for large stroke ratios (Lm ≥ 5) has not reached its maximum
value. This indicates that the vortex is still feeding of vorticity from the
shear layer behind it, i.e. the vortex has not completed its formation. The
maximum circulation values are reached at a distance within a range of
4.5D0 ≤ x ≤ 7D0. Beyond this distance the vortex ring begins to dissipate
vorticity; therefore, its circulation decreases (see vortex circulation for x =
9D0). We can also observe from Fig. 3.9(a) that for relatively farther
distances from the nozzle (x ≥ 4.5) the maximum vortex ring circulation is
attained when Lm/D0 ≈ 8. For this Reynolds number, a physical separation
between vortex ring and trailing jet (minimum vorticity contour level is ±1)
is clearly seen at x ≈ 8D0.

Figure 3.9(b) shows the same plot for Re0 = 150. The reduction of vortex
ring circulation as the vortex moves away from the nozzle is remarkable. The
graph indicates that the maximum values of circulation are obtained when
the vortex ring is located within the range of 3D0 ≤ x ≤ 5D0. For low stroke
ratios this distance is even closer to the nozzle exit. This suggests that for
low Reynolds numbers, the vortex ring formation is completed at closer
distances from the nozzle. We can also observe from the data presented in
Fig. 3.9(b) that the maximum vortex circulation is obtained when Lm/D0 ≈
5. However, as the vortex ring separates from the nozzle (x ≥ 7D0) the
maximum circulation is found when Lm/D0 ≈ 8. For this Re number we
did not observe a physical separation between vortex ring and trailing jet.

If we consider the maximum circulation value for each stroke ratio re-
gardless of the distance at which this value is reached, we obtain the plot
shown in Fig. 3.10. In this graph we present four different Reynolds num-
bers and the experimental results from Gharib et al. (1998) and Akhmetov
(2001). For the lower Reynolds number, Re0 = 150 we observe that the
maximum circulation values are reached when the stroke ratio Lm/D0 ≈ 4,
for Re0 = 263 Lm/D0 ≈ 6, for Re0 = 1200 Lm/D0 ≈ 8 and for Re0 = 2037
the vortex circulation grows monotically at least to Lm/D0 ≈ 10. We also
observe that the vortex circulation is larger as Re decreases. This is more
evident for Re0 = 150. It is interesting to note that for Re0 = 150 and
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Re0 = 1200, the piston mean velocity and velocity program is the exactly
the same. The maximum non-dimensional circulation value (for the Re0
studied) is approximately Γ/D0Up ≈ 2. This suggests that at this value, the
vortex ring has reached a saturation condition beyond which it is not pos-
sible to attain more vorticity. The vortex circulation values for Re0 = 2037
are similar to the results from Gharib et al. (1998) for Lm/D0 < 5; how-
ever, our experimental results indicate that the vortex circulation keeps on
increasing for Lm/D0 > 5. This result is consistent with the experimental
results from Akhmetov (2001) despite the difference between the Reynolds
number.

Gharib et al. obtained the velocity and vorticity fields using the PIV
technique. They did not specify the exact distance where the vortex ring
circulation was measured; however, they stated that for the cases where a
trailing jet appeared, “the vortex ring circulation was measured when a clear
separation between vorticity contours of the vortex from those of the trailing
region existed”; thus, the circulation was determined at a distance far enough
away from the nozzle. Nevertheless, at larger distances, the vortex ring has
lost part of its circulation because viscous dissipation. This could explain
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the differences between the circulation values for larger Lm/D0. Akhmetov
(2001) generated vortex rings in air. He defined the non-dimensional jet
length as L∗ = U0T0/R0; where U0 was the jet velocity, T0 the discharge
time and R0 the nozzle radius. The jet length is equivalent to the stroke ratio
2Lm/D0 = L∗ = 2UpT0/D0. Akhmetov determined the vortex circulation
by integrating the velocity distribution

Γ =

∮

ABCDA
u(x, r) · dl (3.2)

along the closed rectangle ABCDA which encloses the upper section of the
vortex ring and whose side AB lies on the axis of symmetry. Assuming that
the vortex ring propagation velocity u0 remains constant as it moves through
a velocity probe, Akhmetov (2001) determined the vortex ring circulation
by the expression

Γ = u0

∫ tA

0
u(t)dt (3.3)

where tA → ∞. The velocity distribution as a function of time u(t) was
measured using the hot wire anemometry technique. The probe was placed
far from the discharge nozzle on the axial axis.

3.4 Discussion

Some authors have suggested that changing the conditions of the ejected
fluid, the formation number of vortex rings can be different from the value
obtained experimentally by Gharib et al. (1998). We would like to compare
our experimental results to those obtained by some analytical studies.

Mohseni & Gharib (1998) and Linden & Turner (2001) proposed models
based on matching the properties of the ejected fluid to the corresponding
properties of the “Fraenkel-Norbury” vortex ring family described in section
1.4.4. The effect of viscosity is considered negligible. The properties of the
ejected fluid plug are based on the slug flow approximation (see section
1.4.2). The circulation Γp, the impulse Ip and the kinetic energy Ep of the
plug fluid are defined as

Γp = 1
2UpLm (3.4)

Ip = 1
4πUpD

2
0Lm (3.5)
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Figure 3.11: Critical stroke ratio (squares) and non-dimensional propagation ve-
locity (circles) against non-dimensional mean core radius. Taken from Linden &
Turner (2001).

Ep = 1
8πcU

2
pD

2
0Lm (3.6)

The mean core radius defined by Norbury is expressed as:

α2 =
A

πR2
N

(3.7)

Equating the above equations to the corresponding scaled relations in
Norbury’s (1973) analysis, and considering circulation, impulse and energy
conserved, Mohseni & Gharib found the following equation

Lm

D0
=

√

π

2

I
1/2
R Γ

3/2
R

ER
(3.8)

Similarly, Linden & Turner found that

W

Up
=
WRIR
2ER

(3.9)
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where W = Uv is the propagation velocity of the ring. The values ΓR, ER,
IR, and WR are available in tabulated form for different mean core radius
α in Norbury’s paper. Figure 3.11 shows the ratio between the velocity
propagation and the ejection velocity as a function of α. The values are in the
range 0.4 < W/Up < 0.7 which compare very well with our measurements
for Re0 = 1200 (0.3 < Uv/Up < 0.65) showed in figure 3.6b. Figure 3.11 also
shows the stroke ratio Lm/D0 as a function of α. The maximum value of
Lm/D0 above which a single ring cannot be formed is Lm/D0 = 7.83. This
limit corresponds to Hill’s spherical vortex. This value is close to our critical
stroke ratio for Re0 = 1200. This fact suggests that the vortex rings we are
forming are “thicker” that the ones produced in Gharib’s experiments. To
verify the above result, we measured the size of vortex rings considering the
non-dimensional radius RQ based on the definition of α (Eq. 3.7):

R2
Q =

AQ

πL2
Q

(3.10)

where LQ is the distance between the maximum Q value (maximum vortic-
ity) and the axis of symmetry (r = 0). As mentioned before, we consider
the vortex ring area as AQ: the region of flow where Q ≥ 0.01, which is also
the region within which we calculated the vortex ring circulation. Figure
3.12 shows the non-dimensional radius RQ as a function of Lm/D0 for two
Reynolds numbers: Re0 = 1200 and Re0 = 150 (shown in Fig. 3.10). For
Re0 = 1200 we obtain 0.64 ≤ RQ ≤ 0.85. These values are higher than those
predicted by Mohseni & Gharib (1998) for the cylinder-piston mechanism:
0.45 . α . 0.6 and their critical values of stroke ratios 3.0 . Lm/D0 . 4.5.
In fact, we consider that our calculation of AQ may be underestimated be-
cause regions with relatively small rotation rate are excluded. (see Fig.3.1
e and f). A bigger size allows vortices to attain more vorticity. The prox-
imity of a trailing jet (Lm/D0 > 4) can increase the vortex ring size (Fig.
3.4) and therefore, increase its circulation beyond the formation number
t∗ = L/D0 = 4 obtained by Gharib et al. (1998). We think that when
the vortex ring has ‘separated’ from the trailing jet, it has lost part of its
circulation by viscous dissipation (Fig. 3.8).

For Re0 = 150, we observe from Fig. 3.12 that the range of non-
dimensional radius is 0.85 ≤ RQ ≤ 1.23 which are larger values than those
for Re0 = 1200. When the Reynolds number is small, the axial velocity
profile ux(r) inside the tube becomes more parabolic. We will show in chap-
ter 4 that, for a Newtonian fluid and laminar flow, the axial velocity at the
tube center is ux = 2Up. As Re decreases the boundary layer δ increases
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Figure 3.12: Non-dimensional radius (Eq.3.10) for Re0 = 150 and Re0 = 1200.

and this might produce thicker vortices at the nozzle exit capable to attain
more vorticity; therefore, the saturation of circulation is achieved at a lower
stroke ratio. This is demonstrated for Re0 = 150 for which the critical value
(maximum circulation) is Lm/D0 ≈ 4 (Fig. 3.10). For a parabolic input
velocity profile Linden & Turner (2001) stated that corrections had to be
made to the slug assumption. This correction consists in a change of the
constants of the slug flow equations (3.4-3.6). Using the same matching pro-
cedure, Linden & Turner found that the maximum plug length is reduced
by a factor of 0.43, i.e. the (Lm/D0)max corresponding to the Hill’s vortex
would be 3.39. This result is consistent with the reduction of critical value
of Lm/D0 (formation number) for the case Re0 = 150 presented in figure
3.10.

Gharib et al. (1998) proposed an analytical model to interpret their re-
sults. The model is based on a variational principle proposed by Kelvin
(1880) and later by Benjamin (1976). This model states that a steady vortex
ring must have maximum energy with respect to perturbations that preserve
the impulse and vorticity. They suggested that close to Lm/D0 ≈ 4 the pis-
ton apparatus is no longer able to supply energy at a rate compatible with
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this energy requirement. Gharib et al. (1998) discussed that the critical
value of Lm/D0 is determined by an energy constraint associated with the
maximum energy carried by a vortex when the two cores touch. For rings
with thicker cores, the excess of vorticity is left in the wake. Our results
show that the trailing jet appears very close to this value; however, vortices
created with larger Lm/D0 had larger circulation. This suggests that the
vortex generator used in this experimental setup allows the leading vortex
to feed of more vorticity above Lm/D0 = 4 by producing thicker vortices.

The analytical models proposed by Linden & Turner (2001) and Mohseni
& Gharib (1998) consider that the formation of vortex rings is essentially
an inviscid process. However, we have shown that for Reynolds numbers
of O(100) the size of the vortices will be affected and a reduction of the
formation number is expected. Hence, corrections in the slug assumption
have to be made by considering a parabolic profile velocity at the exit.

In their numerical simulations Rosenfeld et al. (1998) showed that the
vortex formation number Lm/D0 = 4 could be reduced up to 77% (parabolic
profile) or increased by 30% by manipulating the temporal and spatial exit
velocity profiles. However, the maximum value of the vortex ring circulation
(scaled by the maximum discharge velocity and the diameter of the cylin-
der) is only weakly dependent on the discharge velocity profile or velocity
program. Their values of maximum vortex ring circulation are in the range
2.61 > Γ/LmD0 > 1.85. These numerical values agree very well with our
experimental results of maximum vortex ring circulations (Figs. 3.9 and
3.10). From these figures we can also observe that the pinch-off process
occurs closer to the cylinder exit for lower Reynolds numbers.

Mohseni & Gharib (1998) also suggested that thicker vortex rings could
be generated using a cylinder with a time varying exit diameter during for-
mation; therefore, the formation number could be delayed to higher values.
The above was confirmed experimentally by Dabiri & Gharib (2005); they
found that the vortex ring pinch-off could be delayed up to Lm/D0 = 8,
which is very close to our results. Mohseni et al. (2001) carried out numer-
ical simulations to study the formation of vortex rings that are generated
by applying a long-duration non-conservative force. They showed that the
pinch-off could be delayed (Lm/D0 > 4) if the trailing shear layer accelerates
relative to the forming vortex ring so that the shear layer energy was suffi-
cient to be accepted by the vortex ring making them thicker (similar to Hill’s
spherical vortex). We do not have any experimental evidence that this kind
of acceleration is occurring. However, when Reynolds number is low enough,
the leading vortex ring velocity will decrease faster and the trailing jet may
eventually catch the vortex ring up or may never separate from it; therefore
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Figure 3.13: Vortex ring circulation as a function of formation time (Ūpt/D0) for
the case Lm/D0 ≈ 8, and Re = Γ/ν ≈ 2800 for pinched-off vortex ring. Taken
from Gharib et al. (1998).

the vortex ring could accept more energy and achieve a different vortex ring
configuration: increase their size and delay the formation number.

The formation number obtained by Gharib et al. (1998) is equal to the
formation time that the total circulation in the domain reaches a value equal
to the leading vortex ring after formation (Fig. 3.13). This computation re-
quires that vortex ring has reached a physical separation (defined by Gharib
et al. as pinch-off), but fails when this separation does not occur (which is,
in fact the case for small Re). Our results from Figs. 3.9 and 3.10 are com-
parable with Fig. 6 from Gharib et al. (1998) and Fig. 9 from Rosenfeld
et al. (1998) where circulation is plotted as a function of maximum stroke
ratio Lm/D0. Rosenfeld et al. presented the non-dimensional circulation of
vortex rings at a formation time of t∗ ≈ 10 when physical separation is
visible. Their numerical calculations reported that the maximum vortex
ring circulation is reached when 6.5 ≤ Lm/D0 ≤ 8. These results are in
agreement to our experimental results presented in Fig. 3.7 where physical
separation is also reached. Of course, the maximum circulation could de-
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pend on the time or distance at which the vortex ring circulation is measured
(see Fig. 3.9a,b). For that reason we decided to consider the maximum cir-
culation value for each stroke ratio regardless of the distance at which this
value is reached: Fig. 3.10.

Akhmetov (2009 Chapter 3) pointed out the discrepancy between his
experimental results (vortex ring circulation) and the results from Gharib
et al. (1998). According to Akhmetov’s data, presented in Fig. 3.10, the
circulation of the vortex ring continues to increase monotonically with the
jet length L∗ at least up to L∗ ≈ 20 (which corresponds to the notation
of the stroke ratio Lm/D0 ≈ 10 adopted in this investigation). Akhmetov
(2009) explained that “since the (production of) secondary vortices entrain a
portion of vorticity of the vortex sheet flowing off the tube edge, it is evident
that further growth of the circulation of the leading vortex ring would be
limited by the circulation value that has existed by the moment when the
secondary vortices start to emerge”. He noted that this mechanism might
explain the effect of limitation of vortex ring circulation. We observed in
our experiments that as Re0 decreases, the production of secondary vortex
rings is limited or even not possible. Akhmetov (2001) also reported that the
propagation vortex ring velocity practically do not change beyond Lm/D0 ≈
4; while the core radius and the vortex radius increase continuously with
Lm/D0. As Re0 decreases, Akhmetov (2001) observed that the vortex rings
became practically ‘spherical’, similar in structure to a spherical Hill (1894)
vortex. Finally, Akhmetov (2009) noted that “it is controversial to state
that a dimensionless time of jet discharge equal exactly to Upt/D ≈ 4− 5 is
some universal time scale which characterizes the phenomenon of limitation
of the growth of circulation of the vortex ring”.



Chapter 4

Non-Newtonian vortices

In this chapter we present experimental results of the formation and evo-
lution of vortex rings generated in non-Newtonian liquids. As mentioned
before, we focused our investigation in shear-thinning liquids. The viscosity
of these liquids reduces with the shear rate. We present different physical
properties of the vortex rings as the trajectory, size, translation velocity,
etc. We also describe how does the non-Newtonian behavior affect the criti-
cal stroke ratio for which the circulation value is maximum. To do that, we
tested different liquids described in section 2.4: aqueous solutions of xanthan
gum. The Reynolds number (Eq. 2.4) is defined in terms of the power law
parameters: n is the power law index and m is the consistency. Most of the
results in this chapter are presented in two forms. The first one is consid-
ering the same liquid (n fixed) with different piston velocities, i.e. different
Reynolds numbers. In the second form, different liquids (with different n)
are presented but the piston velocity is modified so the Reynolds number in
all cases is the same (see table 2.1); a Newtonian liquid is also presented in
this last case.

4.1 Image maps

In Figures 4.1, 4.2, 4.3 and 4.4 we present different image maps of non-
Newtonian vortex rings. The image maps are: (a) the velocity field (b)
vorticity field [s−1] (c) stream lines field (d) velocity magnitude [m/s] (e)
Q criterion [s−2] and (f) the local strain [s−1]. Fig. 4.1 shows image maps
for a vortex ring generated in a 450 ppm (parts per million) xanthan gum
aqueous solution. The stroke ratio is Lm/D0 = 4 and the Reynolds number
is Re0 = 265. The vortex ring is located at a distance x ≈ 4D0 considering
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maximum curvature. In this case we observe a single vortex ring without
trailing jet; however, since the Reynolds number is relatively small, the
vortex tends to broaden in the axial direction The above can be observed
more clearly in the vorticity field (Fig. 4.1 b). The center of the vortex
ring in the vector field coincides well with the vortex center in the stream
lines map (r ≈ 1), as it was observed with Newtonian vortices. The vortex
center considering maximum vorticity is closer to the axis line at r ≈ 0.7.
Fig. 4.1(d) shows that the maximum velocity is located close to the axis
line. The Q criterion map shows the regions with high rotation rate which
correspond to the vortex ring core. Finally Fig. 4.1(e) shows the regions of
flow with high strain. The largest strain occurs in front of the vortex ring as
in the Newtonian case. The strain is obtained by computing the modulus of
the ‘rate of strain tensor’ |D| (described in section 1.5) at all points in the
grid. Figure 4.2 shows image maps of a vortex ring with the same liquid as
the previous case, the same Reynolds number and a stroke ratio Lm/D0 = 8.
In this case we observe a vortex rings followed by a jet. In Fig. 4.2 (b) we
observe zones of large vorticity in both the leading vortex and the trailing
jet. In the Q criterion map we observe a ‘deformation’ of the vortex core, not
seen in Newtonian vortex rings: the maximum Q value is deflected from the
vortex center and the shape of the iso-Q lines are more elliptical compared
with Newtonian cases. High strain values (Fig. 4.2 e) appear in front of
the leading vortex as well as the trailing jet where there are large velocity
gradients. Figures 4.3 and 4.4 show vortex ring for a aqueous solution of
xanthan 900ppm (Xan-900); the stroke ratio is Lm/D0 = 4 and Lm/D0 = 8
respectively and the Reynolds number is Re0 = 262. Observe that for all
cases the maximum local strain values are in the order 100 (for example,
5.8 s−1 in Fig. 4.2 b). In Fig. 2.7 we presented the viscosity as function
of the strain rate for different non-Newtonian liquids and we observed that
the shear-thinning behavior is presented from 100 to 102 s−1, i.e. we can
guarantee that at the first stages of formation and evolution, we have non-
Newtonian vortex rings. As the vortex velocity decreases, the local strain
decreases too and the liquid in the vortex region behaves more as a viscous
Newtonian fluid.

4.2 Vortex properties

In Fig. 4.5 we show the trajectories of vortex ring centers: (a) A xan-
than 450ppm solution with different Reynolds numbers and a stroke ratio of
Lm/D0 = 4, (b) Various shear-thinning liquids and a Newtonian one with
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Figure 4.1: xanthan 450ppm Lm/D0 = 4 Re0 = 265 x ≈ 4D0. (a) velocity field (b)
vorticity [s−1] (c) stream lines (d) velocity magnitude [m/s] (e) Q criterion [s−2]
(f) local strain [s−1].
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Figure 4.2: xanthan 450ppm Lm/D0 = 8 Re0 = 265 x ≈ 4D0. (a) velocity field (b)
vorticity [s−1] (c) stream lines (d) velocity magnitude [m/s] (e) Q criterion [s−2]
(f) local strain [s−1].
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Figure 4.3: xanthan 900ppm Lm/D0 = 4 Re0 = 262 x ≈ 4D0. (a) velocity field (b)
vorticity [s−1] (c) stream lines (d) velocity magnitude [m/s] (e) Q criterion [s−2]
(f) local strain [s−1].
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Figure 4.4: xanthan 900ppm Lm/D0 = 8 Re0 = 262 x ≈ 4D0. (a) velocity field (b)
vorticity [s−1] (c) stream lines (d) velocity magnitude [m/s] (e) Q criterion [s−2]
(f) local strain [s−1].
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Figure 4.5: Trajectories of vortices (maximum curvature) (a) Xanthan 450ppm
Lm/D0 = 4 (b) Different liquids Re0 ≈ 260 Lm/D0 = 4.

Re0 ≈ 260 and Lm/D0 = 4. We present the position of the vortex center
on the upper half plane (r = 0) considering maximum curvature. In Fig
4.5(a) we observe that the initial position of the vortex ring with Re0 = 138
is r ≈ 0.8D0; just after four diameters of travel in the axial direction, the
vortex ceases its movement in this direction and begins to move upwards
(through the radial direction). This movement occurs symmetrically, i.e the



70 Non-Newtonian vortices

0 1 2 3 4 5 6 7 8
1.6

1.8

2

2.2

2.4

2.6

x
m

/D
0

D
v/D

0

 

 

L
m

/D
0
=2

L
m

/D
0
=4

L
m

/D
0
=6

L
m

/D
0
=8

L
m

/D
0
=10

Figure 4.6: Vortex ring diameters for Xanthan 450ppp solution Re0 = 265

vortex ring diameter increases. The vortex initial position for Re0 = 265
and Re0 = 616 is in the range 0.9 ≤ r/D0 ≤ 1, which is a slightly higher
than the first case; however, in the same way, the vortex ring stops its path
in the axial radiation and moves in the radial direction before it dissipates
completely. Fig. 4.5(b) shows the trajectories of vortex rings generated in
aqueous solutions with different concentration of xanthan gum: 450, 600,
900 ppm and an aqueous solution of glycerol 55 % weight with 200 ppm
(G55X200). We also present the trajectory of a vortex ring in a Newto-
nian fluid: water-glycerol 65% weight (Gly65). The Reynolds number for
all liquids is Re0 ≈ 260 (see table 2.1) and the stroke ratio is Lm/D0 = 4.
The initial position for all cases is near to r = D0. We observe that as we
increase the xanthan concentration (decreasing power index n) the vortex
ring stops its axial movement closer from the exit nozzle and travels through
the radial direction. The vortex path for G55X200 is similar as the Xan900
solution. For the Newtonian case, the initial vortex position is r/D0 ≈ 1
and it conserves the radial position along the seven diameters presented in
the figure. This result is consistent with Fig 3.3 in which we plotted the
trajectories of Newtonian vortices.

Fig. 4.6 shows the non-dimensional vortex ring diameter Dv/D0 for
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different stroke ratios for the Xanthan 450ppm solution and Re0 = 265. xm

is the mean x-position of the centers (upper and lower vortex ring sections).
First, we observe that the initial vortex diameter is in the range 1.8 ≤
Dv/D0 ≤ 2. When Lm/D0 = 2 the vortex ring stops at 3D0 approximately.
The vortex ring diameter increases as the vortex moves away from the exit
nozzle and the trend is similar for all stroke ratios. This result is different
from the diameters of Newtonian vortex rings where the initial diameter
varies with the stroke ratio. Particulary, in Fig. 3.4 we observe that the
vortex diameter increases with Lm/D0 until it reaches a limit size close to
Lm/D0 = 6. The Reynolds number for these Newtonian vortices is Re0 =
1200. The dependence of ring diameter on stroke ratio has been reported
by Didden (1979).

Fig. 4.7 shows the horizontal velocity profiles ux of vortex rings at the
axial axis (r = 0): (a) A xanthan 450ppm solution with Re0 = 616; (b) Dif-
ferent liquids with Re ≈ 260 and a stroke ratio of Lm/D0 = 4. For all cases
the vortex ring center is located at x = 4D0 considering the point of max-
imum curvature. We can observe that the maximum axial velocity values
coincide well with the vortex rings center positions. Fig. 4.7 (a) shows that
the value of the velocity profile ux increases with the stroke ratio, despite the
piston mean velocity is the same in all cases. This dependence on the stroke
ratio was also reported in Fig. 3.5 where we presented the velocity profiles
for Newtonian vortex rings; however, in that graph (Re0 = 1200), the max-
imum velocity value was reached when Lm/D0 ≈ 8. This discrepancy may
be due to the value of Reynolds number, i.e. in this non-Newtonian vortices
Re0 is considerably lower. Fig. 4.7 (b) shows the horizontal velocity profile
of different shear-thinning fluids and the Newtonian case (Glycerol 65% solu-
tion). The piston velocity is different for all cases but the Reynolds number
is the same. We observe clearly that when increasing xanthan concentration,
i.e. decreasing power index n, the velocity profiles values decrease too. The
velocity profile for G55X200 is similar to the Xan-900 solution profile. The
velocity profile from the Newtonian case (Gly65) is the highest in the graph.
We discuss this further in section 4.4.

Fig. 4.8 shows the non-dimensional propagation velocity Uv of vortex
rings: (a) a xanthan 450ppm solution for different Reynolds numbers and
Lm/D0 = 8, (b) Different liquids with Re0 ≈ 260 and Lm/D0 = 4. The
propagation velocity is obtained by numerical differentiation of the vortex
position, similar to Fig. 3.6. In Fig. 4.5 (a) we observe the vortex ring
velocity for the same non-Newtonian fluid with different Reynolds numbers.
The initial velocity is in the range 0.4 ≤ Uv/Up ≤ 0.5 for the three Re0.
The maximum vortex velocity (∼ 0.6Up) is reached at x ≈ 3D0; beyond this
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Figure 4.7: Horizontal velocity profile at r = 0 (a) Xanthan 450ppm Re0 = 616 (b)
Different liquids Re0 ≈ 260 and Lm/D0 = 4.

distance the vortex propagation velocity remains constant for Re0 = 265
and Re0 = 616, but a reduction of velocity is expected farther. For the
lower Reynolds number the vortex ring velocity decays closer to the nozzle,
as was expected. It is important to remark that Mohseni & Gharib (1998)
predicted analytically a propagation velocity of Uv = 0.5Up and Linden
& Turner (2001) also predicted a maximum propagation velocity of Uv =
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Figure 4.8: Propagation velocity of vortex rings (a) Xanthan 450ppm different Re0
and Lm/D0 = 8 (b) Differen liquids Re0 ≈ 260 and Lm/D0 = 4.

0.7Up (see Fig. 3.11), both in Newtonian fluids. Fig 4.8 (b) shows the
propagation velocity of vortex rings in different non-Newtonian liquids (the
same reported). The mean piston velocity is different in each liquid, but
in the same way as before, the Reynolds number is the same for all cases.
The stroke ratio is Lm/D0 = 4. The initial velocity also lays in the range
0.4 ≤ Uv/Up ≤ 0.5. It is interesting to note that the vortex propagation
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decreases with the xanthan concentration presented in the solution. On
the contrary, the propagation velocity for the Newtonian case is the highest.
This graph is consistent with Fig 4.7(b) where we observe that the horizontal
velocity ux decreases with the xanthan concentration and the maximum
velocity occurs when the liquid is Newtonian. Theses issues will be discussed
later in this chapter.

4.3 Vortex circulation

Fig. 4.9 shows the non-dimensional vortex ring circulation as a function
of the distance x/D0 (a) a Xanthan 900ppm solution with Re0 = 262 and
different stroke ratios, (b) different liquids with Re ≈ 260 and Lm/D0 = 8.
The vortex circulation was obtained using Eq. 1.7. The points plotted
correspond to the average of 5 different runs of the piston and the error
bars represent the standard deviation. It is important to note that for all
non-newtonian fluids studied in the present thesis, we did not observe a
‘physical separation’ between the leading vortex ring and its trailing jet
(large stroke ratios). Here we show the vortex circulation of one liquid (Fig.
4.9 a). We observe that for Lm/D0 = 4 the vortex circulation decreases as
soon as the vortex is forming. For larger stroke ratios the vortex circulation
first increases, reaches a maximum value and beyond a certain distance x/D0

from the the exit, the circulation decreases. We observe that for Lm/D0 = 8
the vortex circulation remains constant in the range presented in the graph.
The distance for which the vortex circulation decays, depends on the stroke
ratio and in general on the Reynolds number. In Fig. 4.9(b) we present the
vortex circulation for the same shear-thinning fluids presented in previous
graphs and the Newtonian liquid Gly-65% for a stroke ratio Lm/D0 = 8. The
Reynolds number is the same in all cases. We observe that, at any distance,
the circulation value is slightly larger for liquids with lower xanthan gum
concentration. In other words, the vortex circulation is larger for larger
power index n values. It is interesting to note that the circulation trend for
all liquids is similar.

Fig. 4.10 shows the non-dimensional vortex ring circulation as a function
of the stroke ratio Lm/D0. (a) Xanthan 450ppm solution with Re0 = 265 (b)
Xanthan 900ppm with Re0 = 262. The curves correspond to different vortex
ring positions, considering maximum curvature. As we expected, the max-
imum vortex ring circulation for each stroke ratio depends on the distance
of measurement. This result has been reported by Rosenfeld et al. (1998)
for Newtonian vortex rings. Fig. 4.10 (a) shows that the maximum val-
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Figure 4.9: Non-dimensional vortex ring circulation as a function of the distance
x/D0 (a) Xanthan 900ppm Re0 = 262 (b) Different liquids with Re0 ≈ 260 and
Lm/D0 = 8.

ues of vortex ring circulation for Lm/D0 =1,2,3 occur at a distance close
to x/D0 = 1. For larger stroke ratios the maximum circulation is reached
farther. Fig. 4.10 (b) shows the same plot for a liquid with more xanthan
gum concentration. The trend is similar; however, despite the fact that the
Reynolds number is the same, the maximum vortex ring circulation for each
stroke ratio is lower than the previous case.
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Figure 4.10: Non-dimensional vortex ring circulation as a function of Lm/D0 at
different distances (a) Xanthan 450ppmRe0 = 265 (b) Xanthan 900ppmRe0 = 262.

Fig. 4.11 shows the non-dimensional maximum vortex circulation as a
function of Lm/D0 for (a) Xanthan 450ppm solution with different Reynolds
numbers and (b) different liquids with Re0 ≈ 260. In Fig. 4.11(a) we
observe that for stroke ratios Lm/D0 ≤ 4 the vortex circulation is larger as
Reynolds number is reduced (compare the cases Re0 = 138 and Re0 = 616).
This results is similar to the presented in Fig. 3.10, where the vortex ring
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Figure 4.11: Maximum vortex ring circulation as a function of Lm/D0 (a) Xanthan
450ppm (b) Different liquids Re0 ≈ 260.
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circulation for Re0 = 150 reached a saturation value (close to Γ/D0Up = 2)
when Lm/D0 ≈ 4 while for Re0 = 1200 the vortex circulation, for the same
stroke ratio was Γ/D0Up = 1.4. All the maximum vortex ring circulation
values for larger Reynolds numbers, were below this saturation value. In
Fig. 4.11(a), we observe that when Re0 = 138 the vortex ring circulation
saturates at Γ/D0Up ≈ 1.7. Nevertheless, unlike the Newtonian results,
we observe that is possible to further increase the vortex ring circulation
for larger Reynolds numbers if Lm/D0 is high enough. Remind that as we
increase the strain rate (rising up the piston velocity and Re0) on a shear-
thinning fluid, the viscosity is reduced. Fig. 4.11(b) shows the maximum
vortex ring circulation for different shear thinning liquids and the Newtonian
liquid Gly65%. We kept the Reynolds number fixed, in order to study the
effect of the power index n on the vortex ring circulation. Remember that
n is related with the slope of the line obtained in the plot viscosity versus
strain rate; while the consistency m is related to the viscosity when γ̇ → 0.
First we observe that the larger the xanthan gum concentration the lower the
vortex vortex ring circulation for each Lm/D0. The Newtonian liquid has
the largest values of circulation. In other word, the vortex ring circulation
increases with n. It is important to observe that the trend of the curves
for all liquids is very similar: the vortex ring circulation increases with the
stroke ratio and close to lm/D0 = 6, we detect a change of slope, which
suggest that the vortex has reached a ‘saturation’ state of formation.

4.4 Discussion

To aid our discussion, we solve the flow through a round pipe for a power law
fluid. The purpose of this exercise is to gain some insight in the production
of vorticity within the tube. Consider the flow through a circular tube with
radius R shown in Fig. 4.12. We assume that the flow is symmetric, steady,
laminar, incompressible and fully developed; the gravity is negligible and
there are isothermal conditions. The axial velocity ux = ux(r), uθ = 0
and ur = 0; thus, the continuity equation is satisfied identically and the
momentum balance is expressed as:

0 = −∂p
∂x

+
1

r

∂

∂r
(rτrx) (4.1)

where the pressure gradient −∂p/∂x = G = constant. Using the definition
of shear stress for a power-law fluid we obtain
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Figure 4.12: Flow through a circular tube

0 = Gr +
∂

∂r

[

rm

(

∂ux

∂r

)n]

(4.2)

Integrating we find (considering symmetry conditions)

∂ux

∂r
= −

(

G

2m

)1/n

r1/n (4.3)

Integrating again, the axial velocity can be obtained, considering non-slip
at the wall

ux =
n

n+ 1

(

G

2m

)1/n
[

R(n+1)/n − r(n+1)/n
]

(4.4)

In figure 4.13(a) we show the axial velocity profile of fluids with different
power law index n; we consider G, m, and R constants. For a Newtonian
fluid (n = 1) we observe a parabolic profile; a more pluglike velocity profile
is observed as n decreases; i.e. the axial velocity at the tube center becomes
flatter. We also observe that the velocity close to the wall is larger as we
decrease n. We can determine the flow rate by integrating the velocity profile

Q =

∫ 2π

0

∫ R

0
uxrdrdθ = 2π

∫ R

0
uxrdr (4.5)

Q =
πR3

1/n + 3

(

GR

2m

)1/n

(4.6)

G can be understood as the constant force (per volume) acting over the
slug of fluid to conserve the flow rate Q constant. This force is related to the
motor torque acting over the piston. We can determine the actual flow rate
by computing the volume of fluid discharged through the tube exit during
a known time:
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Figure 4.13: Axial velocity profile (a) different n with constant G,m and R, (b) test
liquids used in the present investigations for Re0 ≈ 260.
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Figure 4.14: Vorticity distribution for the test liquids

Q =
πR2Lm

T0
= πR2Up (4.7)

where Lm is the total piston displacement, T0 is the discharge time and Up

is the piston velocity. We assume that the piston has an impulsive velocity
program. Substituting expression 4.7 in Eq. 4.6, we obtain

G =
2m

R

[(

Up

R

)(

1

n
+ 3

)]n

(4.8)

thus, the axial velocity can be expressed as:

ux =
3n+ 1

n+ 1

[

1 − r(n+1)/n

R(n+1)/n

]

Up (4.9)

Considering the properties of the liquids presented in table 2.1, we can
compute the actual axial velocity using Eq. 4.9. The velocity profiles are
presented in Fig. 4.13(b). We present liquids with different xanthan con-
centration but with similar Reynolds number Re0 ≈ 260. For all cases the
maximum velocity value is located at the center of the tube. The maximum
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Figure 4.15: Total circulation as a function of δ for the test liquids; Lm/D0 = 5.

velocity for the Newtonian fluid (Gly-65%) is umax = 2Up. The maximum
velocity for the shear-thinning liquids is lower than this value. However; as
n decreases, the velocity at the wall can be slightly larger than the Newto-
nian case. This can be explained as follows: the shear rate is larger close to
the wall; in this zone, the apparent liquid viscosity for shear-thinning liquids
decreases considerable and thus, the liquid flows easier close to the wall. We
can also determine the vorticity distribution:

ωφ = −∂ux

∂r
=

3n+ 1

n

[

r1/n

R(n+1)/n

]

Up (4.10)

thus, the vorticity at the wall is

ωφ|wall =
3n+ 1

n

Up

R
(4.11)

In Fig. 4.14 we show the vorticity distribution for the test liquids at
different distances from the tube center. We observe that for all cases, the
vorticity value increases as we approach to the wall. For the Newtonian case
the dependence with r is linear. It is interesting to note that for the shear-
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thinning liquid with n = 0.61 (Xan-450ppm) the vorticity is always lower
than the Newtonian case, while for the liquid with n = 0.48 (Xan-900ppm)
the vorticity increases considerably close to the wall. The vorticity close to
the tube center is larger for the Newtonian liquid.

Finally we can take the ‘slug’ approximation model described in section
1.4.2 to determine the circulation ejected through the tube nozzle. The
circulation was defined in Eq. 1.23:

Γ =

∫ T0

0

[

−u
2
x

2

]R

R−δ

dt

where δ is the boundary layer size; hence, we obtain

ΓT =

(

3n+ 1

n+ 1

)2

R−2(n+1)/n
[

R(n+1)/n − (R− δ)(n+1)/n
]2 UpLm

2
(4.12)

With this formula we obtain the total circulation ejected during the
piston displacement. For large Lm/D0, part of this circulation is confined
inside the leading vortex ring and another part is left behind in a wake.
Some circulation is canceled by the entraining fluid outside the tube (Didden
1979). In Fig. 4.15 we show the total circulation as a function of δ for a
stroke ratio of Lm/D0 = 5. For small δ the total circulation is slightly larger
as n decreases; the circulation for the Newtonian liquid is the lowest. For
large δ values, the total circulation is larger as n increases; the circulation
for the Newtonian liquid case is notably larger than the others as δ → R.
Remember that the Reynolds number is the same for all liquids. There is a
crossing point where all shear thinning curves ‘touch’ the Newtonian curve.
This point is located at different δ for each liquid, but is close to δ ≈ 0.45R.
When δ has this value the total circulation values are approximately the
same for all liquids for any Lm/D0.

In Fig. 4.16 we show the total circulation as a function of Lm/D0 for
(a) δ = 0.052R and (b) δ = R. We observe that when δ is small, the cir-
culation is larger for the most shear-thinning fluid (Xan-900ppm); however,
if we consider δ = R, the total circulation ejected from the tube is reduced
as n decreases. The question is, how large is the boundary layer δ for a
given liquid?. The slug approximation for Newtonian vortices described be-
fore, assumes that δ ≪ R and the velocity at the edge of the boundary
layer is equal to the piston velocity Up. As the Reynolds number decreases,
this approximation becomes incorrect; observe the velocity profiles in Fig.
4.13(b). In fact, we can observe that the maximum velocity for any case
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Figure 4.16: Total circulation as a function of Lm/D0 for the test liquids (a) δ =
0.052R (b) δ = R.
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Figure 4.17: Experimental total circulation as a function of Lm/D0 for the test
liquids.

is umax > 1.5Up. We can guarantee laminar flow because the Reynolds
number Re0 ≈ 260 is sufficiently small. Didden (1979) also reported that at
large discharge times, boundary layer grows leading to an increment in the
velocity at the center of the cylinder in order to satisfy continuity. These
arguments suggest that δ might be as large as the radius.

In Fig. 4.17 we show the experimental total circulation for the test
liquids. The total circulation is determined by integrating the vorticity ωφ >
0 in the visible domain (see Fig. 3.7). Similarly to the vortex circulation,
the total circulation changes along the axis direction; therefore, we plot
the maximum circulation value for each Lm/D0. We observe that the total
circulation increases with the stroke ratio and is larger for the Newtonian
case (Gly-65% n = 1). As n decreases the total circulation decreases too.
These experimental results are in agreement with the results presented if
Fig. 4.16(b) for which δ = R; however, the circulation values in this plot are
larger. In fact, the experimental values are approximately 50% lower than
the predicted values; for the Xanthan-900ppm solution Γexp ≈ 0.4Γpredicted.
The difference between the circulation values might be explained by the
fact that the velocity gradients outside the cylinder are lower than inside;
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therefore, the vorticity is reduced and the circulation too. As soon as the
flow is ejected from the cylinder, the jet loses its strength because of viscous
dissipation. This effect is more critical for lower Re0.

The experimental results (see Fig. 4.9 and Fig. 4.11) presented in this
chapter indicate that the vortex ring circulation decreases with n. We have
shown that the total circulation ejected from the tube is reduced for more
shear-thinning liquids; thus, the circulation confined inside the vortex ring,
will be reduced too. It is important to note that as we increase the xanthan
concentration, the consistency m increases. This value is related to the
liquid viscosity as the shear strain rate γ̇ → 0; i.e. zones of flow where
the local velocity is low (low shear strain) the apparent viscosity increases
considerably. This is the case of the stagnant fluid surrounding the vortex
rings in movement. For example, the vortex ring in a xanthan 900ppm
solutions have to move in a more viscous stagnant fluid than any other
lower concentration. Therefore, the vortex ring propagation velocity will
reduce faster; this was shown in Fig.4.8 (b).

All the non-Newtonian vortex rings studied in this investigation have a
considerably low Reynolds number; it was not possible to observe a ‘physical
separation’ between the leading vortex ring and its trailing jet; some authors
have stated that there is not vortex ring pinch-off if it is not possible to
guarantee the mentioned separation. Therefore, it is difficult to study a
vortex ring formation number. However, in Fig. 4.11(b) we observe that
the vortex ring circulation increases with the stroke ratio Lm/D0 until it
reaches a ‘saturation state’ close to Lm/D0 = 6 where we detect a change of
the slope. This suggests that the vortex ring cannot attain vorticity in the
same rate as Lm/D0 increases; thus the vortex ring has reached a limited
size or limited state of formation.



Chapter 5

Conclusions

The main objective of this study was to conduct experiments to analyze the
formation of vortex rings at Reynolds numbers in the range 100 to 2000.
To our knowledge measurements at this low Re with Lm/D0 > 4 do not
exist in the specialized literature. To find the conditions at which vortices
are formed, we had to consider an identification scheme which was different
from what had been used for flows at higher Re. We proposed the use of
the so-called Q criterion to identify and measure the vortex strength. We
used a calculation of the curvature of Lagrangian trajectories to locate the
vortex centers. We used these techniques to analyze the formation process,
obtain some vortex properties and determine the dependence of the vortex
ring circulation on the stroke ratio Lm/D0. We found the same qualitative
trend as previous investigations but we found some differences in the critical
value of the stroke ratio at which the circulation inside the leading vortex
ring is maximum and remains constant for higher Lm/D0. For Re0 = 1200
we observed that the critical value of Lm/D0 was approximately 8 and for
Re0 = 150 it was approximately 4. For the case Re0 = 2037 we observed
that the vortex ring circulation increases monotonically with the stroke ratio
at least to Lm/D0 ≈ 10. We explained that these differences are, in fact,
possible according to the discussion of several published works.

We also found that as the Reynolds number increases the vortex ring
circulation decreases for the same Lm/D0; this is more evident for the case
for small values of Re. We explained in chapter 4 that as the thickness of the
boundary layer increases, the total circulation ejected from the cylinder also
increases. Evidently, for lower Reynolds numbers we have a more parabolic
velocity profile inside the tube and the layer size increases. A larger bound-
ary layer may produce thicker vortex rings which might increase their ability
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to attain more vorticity and consequently more circulation. A value of the
non-dimensional vortex ring circulation Γmax/D0Up ≈ 2 may indicate a sat-
uration condition beyond which it is not possible to increase the vortex
circulation for any Reynolds number.

By measuring the non-dimensional radius RQ of the vortex rings we
showed that thicker vortices can be produced as the Reynolds number de-
creases. We also demonstrated that the vortices generated in our experi-
ments are thicker than those predicted analytically by Mohseni & Gharib
(1998). A bigger size allows vortices to attain more vorticity, increase
their circulation and therefore experience a delay in the formation num-
ber. In their conclusions, Gharib et al. (1998) argued that for some cases,
it was possible to increase the circulation of a vortex ring after its formation
through entrainment of the leading vortex of the trailing jet by the vortex
ring.

In some cases (when Re was high enough), we were able to observe a
‘physical separation’ between the leading vortex ring and the trailing jet;
This occurred when Lm/D0 ≈ 4 in concordance with Gharib et al. (1998)
experiments; however, we think that for Lm/D0 ≥ 4, because of the prox-
imity of the trailing jet, the vortex ring is able to increase quickly its cir-
culation, but as soon as it reaches a saturation value, the vortex ring sheds
the excess of vorticity into its wake. This phenomenon has been reported by
Gharib et al. (1998) in their conclusions. This rapid change of circulation
is less evident for lower stroke ratios Lm/D0 ≤ 4, where trailing jet is not
present. For the case of Re=150, the vortex ring reaches this saturation
state at Lm/D0 ≈ 4. We observed that the vortex ring circulation (for our
Re numbers) changes continuously during the formation and propagation of
the vortex rings. As the circulation does not remain constant, the impulse,
energy, and consequently, the propagation velocity will change as well. The
measurements of vortex ring diameter and velocity propagation indicate that
there is a stroke ratio limit above which the vortex size and velocity cannot
increase. The vortex identification scheme used in this paper allows us to
obtain measurements of the vortex ring circulation with small uncertainty,
since the same cutoff criterion can be used at any instant of the vortex ring
formation, any distance from the exit and any Reynolds number. The ex-
perimental results are in agreement with theoretical models and numerical
studies reported in the literature.

In the present investigation, we studied the vortex ring formation in
shear-tinning liquids, using different xanthan gum concentrations. We car-
ried out experiments to study some properties of these non-Newtonian vor-
tices. We tested different liquids with different rheological properties and
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change experimental configurations in order to keep the Reynolds number
constant. In particular, we determined how the vortex ring circulation was
affected by the power index n. We observed that the vortex diameter grows
in the axial direction x in the same proportion for all Lm/D0 and Re0 = 265.
The horizontal velocity at the vortex center increases with the stroke ratio
for a given Re. For the same Reynolds number Re0 ≈ 260 and Lm/D0 = 4
the horizontal velocity decreases with the power index n. The vortex ring
propagation velocity also decreases with n. This can be explained by the
fact that the stagnant fluid surrounding the vortex ring is more viscous
than the vortex itself; i.e. when the shear rate γ̇ ≈ 0 the liquid viscosity
(which is related with the consistency m), increases. We observed that at
low γ̇ the viscosity is larger as the concentration of xanthan gum increases.
The larger the concentration, the faster the propagation velocity and the
horizontal velocity decrease.

Our results indicate that the vortex ring circulation decreases with n.
We showed that the total circulation ejected from the tube is reduced for
more shear-thinning liquids considering δ > 0.5R0. From the axial velocity
profiles, we concluded that the size of the boundary layer δ is as large as the
radius itself. If the total plug circulation decreases for more shear thinning
fluids, we expect that the vortex ring circulation will be reduced too. We also
observed that the vortex circulation increases with Lm/D0 until it reaches
a change of the slope close to Lm/D0 = 6, for which the vortex ring has
reached a limited state of formation.
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mains constant (Gharib et al., 1998). The critical num-

ber, called formation number is between 3.5 and 4.5 for
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