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estuvo dispuesto a enseñarme y a guiarme a lo largo del trabajo.

Agradezco también a los profesores Fernando Hernández Hernández, Mikhail
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Ondřej Zindulka y David Meza Alcantara por su revisión y sugerencias.

Por supuesto, agradezco y comparto la conclusión de este proyecto con mis

padres y hermanos. Sin su apoyo siempre presente, el camino hasta acá habŕıa
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Prólogo

En este prólogo hacemos una descripción general del trabajo, enunciando los

resultados más importantes que aqúı se presentan.

El estudio de la Teoŕıa de selecciones continuas tiene su origen en un art́ıculo

trascendental escrito en 1951 por Ernest Michael [44], donde se estudian propiedades

importantes de hiperespacios de espacios topológicos y se establecen los primeros

resultados acerca de la existencia de selecciones (continuas) y sus propiedades.

En lo que se refiere a ésto último, Michael analiza la siguiente pregunta general:

¿ Cuándo un espacio topológico admite una selección (débil) continua?

Michael mostró que una condición suficiente es que el espacio sea debilmente

ordenable. Una pregunta natural es si la condición de ser débilmente ordenable

es en realidad una caracterización de aquellos espacios que admiten una selección

débil continua. Si bien este problema se presenta de manera impĺıcita en el

trabajo de Michael, es en el trabajo de Jan van Mill y Evert Wattel ( [46]) donde

se expone de forma expĺıcita esta pregunta. Por esta razón, este problema es

conocido desde entonces como el Problema de van Mill y Wattel.

A partir del art́ıculo de Michael, diversos autores han obtenido soluciones

parciales positivas al problema anterior. Sin embargo, el problema general se

manteńıa abierto:

¿Es todo espacio topolgico que admite una selección débil débilmente orden-

able?

En el Caṕıtulo 1 introducimos las nociones básicas en la Teoŕıa de hiperes-

pacios, selecciones y selecciones débiles. Enunciamos tres de los resultados más

importantes obtenidos por Michael en la Teoŕıa de Selecciones Continuas y fi-

nalmente exponemos los principales resultados obtenidos alrededor del problema

vii
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de van Mill y Wattel, poniendo especial atención al trabajo realizado por van

Mill y Wattel[46].

En el Caṕıtulo 2 presentamos una solución general al problema de van Mill y

Wattel. Para ello, estudiamos el comportamiento de selecciones débiles contin-

uas en espacios separables muy especiales, llamados Espacios de Mrówka-Isbell.

Finalmente, presentamos un ejemplo de un espacio separable, el cual será un es-

pacio de este tipo, que admite una selección débil continua pero no es débilmente

ordenable.

En el Caṕıtulo 3 continuamos con el estudio de los espacios separables que

admiten una selccíıon débil continua. A partir de las ideas que hay detrás del

contraejemplo del Caṕıtulo 1, obtenemos algunas propiedades especiales para

estos espacios. Estas propiedades nos permiten resolver parcialmente el siguiente

problema de extensión de selecciones débiles establecido por Valentin Gutev y

Tsugunori Nogura [24]. En la búsqueda de una solución al problema de van Mill

y Wattel, ellos se interesaron por determinar bajo qué condiciones es posible

construir un espacio que admite una selección continua para la colección de sus

subconjuntos finitos con a lo más n puntos, para algún n ∈ ω, pero no para

la colección de sus subconjuntos con a lo más n + 1 puntos. Un ejemplo de

este tipo seŕıa un contraejemplo para el problema principal. Mostramos en este

caṕıtulo que en el caso separable ésto no es posible: Toda selección débil continua

definida sobre un espacio separable X puede extenderse continuamente a una

selección continua definida sobre el subconjunto de 2X que consiste de todos los

subconjuntos finitos de X.

En el Caṕıtulo 4 realizamos un estudio de selecciones débiles pero desde

otro punto de vista. Partiendo de una selección débil en un conjunto dado (no

necesariamente dotado de una topoloǵıa), definimos una topoloǵıa en el con-

junto base, naturalmente determinada por la selección débil. Analizamos sus

propiedades básicas, como son axiomas de separación y continuidad de la se-

lección débil que genera la topoloǵıa del espacio. Definimos y estudiamos clases

especiales de espacios topológicos que están muy relacionadas con la existencia

de selecciones débiles continuas y sus correspondientes topoloǵıas inducidas, in-

teresándonos de nueva cuenta en determinar propiedades de orden satisfechas

por ellos.



ix

La mayoŕıa del material presentado en los Caṕıtulos 2 y 3 ha sido publicado

en [35]. Los resultados presentados en el Caṕıtulo 4 se presentan en [36].
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Introduction

The concept of orderability has been present in Mathematics since its origins,

appearing simultaneously with the idea of number. The development of many

classical theories was devoted to construct and study the properties of the real

line (the most well known ordered set) and its subsets.

When the idea of proximity comes and brings the development of Topology,

the study of spaces whose topology is determined by a linear order appears as a

natural problem. G. Cantor, [4] who had before contributed to the study of or-

dered sets with the introduction of ordinal and cardinal numbers and order type

for sets as well, stated a result that implicitely involves a topological condition.

He proved that any countable ordered set which is densely ordered with no end

points is isomorphic, seen as an ordered set, to the rationals with its usual order.

O.Veblen [60] is considered the first who obtained an orderability theorem

by proving that every metric continuum with exactly two non-cut points is

homeomorphic to the closed interval. Thereafter, the problem of recognizing

which topological spaces satisfy an orderability condition has been studied by

many mathematicians in various forms. It did not take long to make them aware

of the many important properties satisfied by this kind of spaces.

Later, when it was determined that the property of being ordered is not a

hereditary condition, the separated study of topological spaces which can be seen

as subspaces of ordered spaces also appeared. E. Čech [5] pioneered on the study

of these spaces, calling them generalized ordered spaces or simply GO-spaces.

In his PhD dissertation, S. Purish [52] introduced the term suborderable, as a

translation of “unterordnungsfähig” founded in turn on H. Herrlich’s work [33],

to refer to such spaces. The Sorgenfrey line is perhaps the best known example

of a suborderable not ordered space; however, we can find many other interesting

xi
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examples of these spaces such as the Michael line or the set {0} ∪ (0, 1] with

euclidean topology.

Finally, S. Eilenberg [11] further weakens the orderability condition and de-

fines the weakly orderable spaces, as those whose base set admits a linear order

such that its induced topology is coarser than the original of the space. These

are also called Eilenberg orderable spaces or KOTS.

In all these cases, it was relevant to seek a general result characterizing spaces

that meet the corresponding orderability condition. In 1973, J. van Dalen and E.

Wattel [8] solved the general problem for the two strongest properties. They first

proved that a space is suborderable if and only if X has a subbase consisting of

two nests, (i.e. collections of sets that are linearly ordered by inclusion). Going

further, they also characterized ordered spaces by adding an extra condition to

the corresponding two nests.

The case of weakly orderable spaces is approached separately. As far as we

know, unlike orderability and suborderability, there is no general characteriza-

tion of weakly orderable spaces available so far. However, with the beginning

of a new theory, which has turned out to be very important in diverse areas of

mathematics, this problem acquired a particular interest.

In 1951, Ernest Michael [44] wrote a seminal paper on the Theory of Hyper-

spaces. At first, he studied from various viewpoints the hyperspace of a topo-

logical space X which consists of all nonempty closed subsets of X equipped

with a particular topology. Leopolod Vietoris [62] was the first who introduced

a general definition of hyperspace topology. The first deep study of these spaces

is due to Michael. The main importance of Michael’s paper is the definition and

development of a new mathematical theory involving special functions between

spaces and hyperspaces, named Theory of continuous selections. In the course

of our work we will refer in a more detail to the general idea. At the moment we

only mention a particular case which will be the one that actually we are more

interested in.

One of the most transcendental, and also controversial, principles of modern

mathematics is the Axiom of Choice and its various equivalences. The principal

form in which it is presented justifies its name: For every non empty set X,

it is possible to define a function( often called choice or selective function) f :
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P(X) → X such that f(A) ∈ A for every A ∈ P(X).

Our intention is not to argue on the acceptance of this independent axiom.

We will suppose it true and we will also suppose that X is not only a set

but a Hausdorff topological space. Moreover, after we have defined a topology

for the collection of closed subsets of X, it is valid to question us not only

about the existence of selective functions for the hyperspace of X but about

their continuity. In fact, we will still consider a more particular case; we can

study (continuous) functions defined on the set of pairs of X such that for every

pair of points the function chooses one of them. These special functions were

named weak selections because of their close relation with the weak orderability

condition.

Eilenberg characterized connected weakly orderable spaces. On the other

hand, Michael noticed that every weakly orderable space admits a continuous

weak selection. In order to characterize weakly orderable spaces in terms of the

existence of a continuous weak selection, he presented the first result in this

direction by proving that every connected space admitting a continuous weak

selection is weakly orderable. Since then, in search of a general solution to

this fundamental problem, many authors contributed to develop the theory of

continuous weak selections, showing that weak orderability is characterized by

existence of a continuous weak selection for a rather large collection of spaces.

Nevertheless, the general problem remains open:

Question 0.1. Let X be a space. Is X weakly orderable if and only if it admits

a continuous weak selection?

The aim of the present thesis is to study in detail the above problem and

to discuss some others which later appeared. In Chapter 1 we provide basic

notions of the theory of hyperspaces, continuous selections and continuous weak

selections. We will explicitly enunciate three of the most important Michael’s

results on the Theory of Continuous Selections and we will finally expose the

most important results that have been achieved so far around Question 0.1,

paying special attention to the work done by van Mill and Wattel [46] for the

compact case.

Chapter 2 provides a negative solution to Question 0.1. To be able to come to
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it, we will study continuous weak selections in some particular separable spaces,

named Mrówka-Isbell spaces. Finally, we will present an example of a separable

space, namely a Mrówka-Isbell space that admits a continuous weak selection

but is not weakly orderable.

In Chapter 3 we continue with the study of separable spaces admitting a

continuous weak selection. Starting from the ideas involved in the construction

of the counterexample of Chapter 2, we obtain special properties satisfied by

these spaces. These properties allow us to approach an extension problem for

continuous weak selections stated by Valentin Gutev and Tsugunori Nogura.

[24] In search of a solution to the characterization problem, they were interested

in knowing under what conditions it is possible to construct an example of a

space which admits a continuous selection for the collection of its subsets of

at most n points, for some n ∈ ω, but not for the collection of sets with at

most n + 1 points. Such an example would also be a counterexample for the

principal problem. We show that in the separable case it is not possible: for

every continuous weak selection defined on a separable space X can be extended

to a continuous selection for the subspace of 2X consisting of all finite subsets

of X.

In Chapter 4 we realize a study of weak selections from another point of

view. Starting from a weak selection on a given set (not necessarily endowed

with a topological structure), we define a topology on the base set, which is

naturally determined by the weak selection. We analyze their basic properties,

such as separation axioms and continuity of the weak selection generating the

topology of the space. We define and study some special classes of topological

spaces that are closely related to the existence of continuous weak selections and

their corresponding induced topologies, being interested again in determining

orderability properties that they satisfy.

Most of the material presented in Chapter 2 and Chapter 3 has been pub-

lished in [35]. The results presented in Chapter 4 are reproduced from [36].



Chapter 1

2
X and continuous selections

During his study on metric spaces, Hausdorff realized that when (X, d) is a

compact metric space, it is possible to state an appropriate way to measure

distances between any two closed subsets of X by setting the metric dH on 2X ,

named the Hausdorff metric, defined as:

dH(A,B) = max{sup{d(a,B) : a ∈ A}, sup{d(A, b) : b ∈ B}}.

This way, we can now consider closed subsets of X as points of a metric

space. Later, this study was generalized by Leopold Vietoris for all topological

spaces. He introduced a topology for the collection of all non empty closed

subsets, known as the Vietoris topology, providing also many properties around

it.

Given a topological space X, we define the hyperspace 2X , to be the set of

all non empty closed subsets of X equipped with the topology τV generated by

sets of the form:

〈U ;V0, . . . , Vn〉 = {F ∈ 2X : F ⊆ U and F ∩ Vi 6= ∅ for any i ≤ n},

where U, V0, . . . , Vn are open subsets of X.

It is well known that the collection of sets of the form 〈V ;V0, . . . , Vn〉, where

V =
⋃
{Vi : i ≤ n}, is also a base for τV . We will denote this kind of basic sets

by 〈V0, . . . , Vn〉.

Vietoris introduced this topology in [62], seeking to obtain a suitable notion

of manifold on the power set of a space or, more precisely, on the collection of

1



2 CHAPTER 1. 2X AND CONTINUOUS SELECTIONS

closed subsets, by giving it a spacial structure. It is worth to mention that, in

addition to the Vietoris topology, there are many other topologies on 2X which

have been studied, for example the Fell topology, hit-and-miss topologies, etc.

We will only be interested in the study of 2X eqquiped with τV , although at the

end of this chapter we will pay some attention to Fell topology.

A basic open neighborhood for an element F ∈ 2X can be visualized as

follows:

F

U0

U1

U2

U3

Figure 1.1: 〈U0, U1, U2, U3〉

Many important topological properties are inherited to closed subsets and

some of them are carried over to the collection of closed subsets. In the case

when a space is metric and compact, the Vietoris topology of its hyperspace

coincides with the topology induced by the Hausdorff metric. It follows that

if X is compact, then it is metrizable if and only if so is 2X . Vietoris studied

the relation between a space and its corresponding hyperspace with respect to

basic topological notions. He proved for instance that 2X is compact (connected)

if and only if X is so. In [44], Ernest Michael presents an extensive study of

the Vietoris topology, called finite topology thereby. Among other things, he

proves the following results that relate a space and its hyperspace with respect

to separation axioms, except Property (6) which was obtained later by Veličko

[61] by using results of Keesling ([38] and [39]).

Proposition 1.1 ([44]). Let X be a topological space. Then

(1) 2X is a T0 space.
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(2) If X is T1 then so is 2X.

(3) 2X is Hausdorff if and only if X is regular.

(4) 2X is regular if and only if it is Tychonoff.

(5) 2X is regular if and only if X is normal.

(6) 2X is normal if and only if X is compact. �

He also proved that a space X is locally compact if and only if 2X is locally

compact.

1.1 Some special subsets of 2
X

There are some special subsets of the hyperspace of a given space that are of

particular interest in this work.

Definition 1.2. Let X be a space and n ∈ ω \ {0}. Define the following sets:

(a) [X]n = {F ∈ 2X : |F | = n}.

(b) Fn(X) = {F ∈ 2X : |F | ≤ n}.

(c) Fin(X) =
⋃
{Fk(X) : k ≥ 1}.

(d) K(X) = {F ∈ 2X : F is compact}.

It is easy to see that Fin(X) is a dense subspace of 2X . Hence X is separable

if and only if 2X is separable. It also holds that Fn(X) is a closed subset of 2X

for every n ∈ ω. It follows that X embeds, via identification of x with {x}, into

2X as a closed subspace, i.e. X is admissible.

Michael also realized the importance of the subspace K(X) of 2X consisting

of compact subsets of X.

Proposition 1.3 ([44]). Let X be a space. Then

(1) X is second countable if and only if K(X) is second countable.
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(2) X is first countable if and only if K(X) is first countable.

(3) If Fin(X) ⊆ C ⊆ K(X), then X is locally connected if and only if C is

locally connected.

(4) X is zero-dimensional if and only if K(X) is zero-dimensional.

(5) X is totally disconnected if and only if K(X) is totally disconnected.

(6) X is discrete if and only if K(X) is discrete. �

1.2 Continuous selections

In the study of continuous functions on topological spaces we can find problems

related with an extension property: Given X and Y and a continuous function

from an special subset of X to Y , when is it possible to extend the given function

to a continuous function on the whole space X? A special subset can for instance

be a non empty closed subset, as in Extension Theorem for normal spaces, or

a dense subset of a compact space, as in the characterization of the Stone-Čech

compactification of a space. In some cases, in the search of such an extension

we need to add some extra hypotheses for the spaces X and Y ; one of these

cases involves conditions for each x ∈ X to be in a certain subset of Y . This last

problem motivated Ernest Michael to develop the so called Selection Theory.

As mentioned in [55], we can find a more general idea behind Michael’s

theory, which shows the naturality of the concept of selection and why it goes

beyond its application in topology. Many statements in mathematics can be

phrased as follows:

∀x ∈ X ∃y ∈ Y P (x, y)

To every element x ∈ X we can associate its corresponding subset Ax = {y ∈

Y : P (x, y)}, defining thus a “multivalued function”, which can be interpreted

as a mapping that associates to every initial data x ∈ X of a given problem P

a nonempty set of solutions of this problem. Following the same idea, we can

now question about how and when it is possible to choose a unique solution of

the problem under certain initial conditions.
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Suppose now that X and Y are topological spaces and let φ : X → Y be

a multivalued function, i.e. f(x) ⊆ Y for every x ∈ X. Suppose that φ(x) is

closed for every x. After we have fixed a topology on the collection of closed sets

of Y , the multivalued function φ is actually a single-valued function between the

spaces X and 2Y and thus it makes sense to study topological properties of φ, like

continuity or extension properties with respect to special subsets. Multivalued

functions received a lot of attention in topology. Given a continuous function

f : X → Y , the mapping φ : Y → 2X assigning to each y ∈ Y its preimage with

respect to f , i.e. φ(y) = f−1{y}, provides a natural example of a multivalued

function.

Definition 1.4 ([44]). Let X and Y be spaces and let φ : X → 2Y . A selection

for φ is a function f : X → Y such that

f(x) ∈ φ(x) for every x ∈ X.

As an easy example, if f : X → Y is a continuous surjective function, a

function g : Y → X is a selection for the function φ : Y → 2X defined above if

g(y) ∈ f−1({y}) = φ(y) for every x ∈ X.

The definition of selection is due to Michael [44], establishing with this the

initial elements on Selection Theory. In the same paper, he stated a fundamental

and natural question

Question 1.5 ([44]). Suppose that φ : X → 2Y is a function. When is it possible

to find a continuous selection for φ?

The general characterization of mappings that admit a continuous selection

is still unknown. However, many positive cases, and negative as well, can be

obtained by adding some extra hypotheses to the involved spaces.

1.3 Michael’s Selection Theorems

Michael provides the first fundamental results in what refers to continuous se-

lections on (multivalued) functions. The involved properties in Michael’s results

show the usefulness of selection theory for applications in several areas. We

include here three of his most important results.
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Definition 1.6. Let X and Y be topological spaces and let φ : X → Y be a

multivalued function. We will say that φ is

(1) lower semi-continuous (abbreviated l.s.c.) provided that for every open

subset V ⊆ Y , the set

{x ∈ X : φ(x) ∩ V 6= ∅}

is open

(2) upper semicontinuous (u.s.c.) provided that for every open set V ⊆ X,

the set

{x ∈ X : φ(x) ⊆ V }

is open. �

Remark 1.7. A multivalued function φ : X → Y is continuous, with respect to

the Vietoris topology, if and only it is l.s.c. and u.s.c.

Theorem 1.8 (Convex-valued selection theorem, [45]). Let X be a para-

compact space, B a Banach space and φ : X → Y a l.s.c. multivalued function

with nonempty closed convex values. Then φ admits a continuous selection. �

Theorem 1.9 (Zero-dimensional selection theorem, [45]). Let X be a zero-

dimensional paracompact space, M a completely metrizable space and φ : X →

M a l.s.c. multivalued function with nonempty closed values. Then φ admits a

continuous selection. �

The following theorem corresponds to an extension property.

Theorem 1.10 (Normed linear selection theorem, [45]). Let (L, || · ||) be a

normed linear space, let X be a space and let φ : X → L be a l.s.c. multivalued

function such that φ(x) is convex in L and complete with respect to || · ||. Then

for every closed subset A of X and every continuous selection f : A → L for

the function φ ↾ A : A→ L there exists a continuous selection g : X → L for φ

which extends f . �
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We conclude this section by mentioning that from several results on selection

theory, included the three theorems presented here, we can obtain a wide collec-

tion of results and applications, including well-known results such as the Tietze

Extension Theorem, the Uryshon Lemma or the Dugundji Extension Theorem

in normed linear spaces. A broad analysis can be found in [48] and [54].

1.4 A particular case

As Michael stated, we can also find a sufficient condition to answer Question 1.5

by reducing the Selection Problem to two problems that are easier to understand

and even to solve. The first problem is related to the continuity of the function

for which we want to find a selection and the second one is a particular case of

the selection problem, but where X = Y .

Proposition 1.11 ([44]). A function φ : X → 2Y admits a continuous selection

if:

(1) φ is continuous and

(2) The identity map i : 2Y → 2Y admits a continuous selection. �

Along this work we are interested in the study of these particular selections

which, certainly, transmit in a better way the idea of selectivity of this kind of

functions.

Definition 1.12. Let A ⊆ 2X . A function ψ : A → X is a selection on A if

ψ(F ) ∈ F for every F ∈ A.

We will say that ψ is continuous if it is continuous with respect to the

subspace topology on A and we will denote by Sel(A) the collection of all

continuous selections on A.

We can now consider the corresponding question:

Question 1.13. When does 2X (or a subspace of it) admit a continuous selec-

tion?
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As a first example we present a proof that the real line is a (ordered) space

whose hyperspace does not admit a continuous selection.

Proposition 1.14 (Engelking, Heath, Michael, [12]). There exists no continu-

ous selection on 2R.

Proof. Aiming towards contradiction suppose ϕ is a continuous selection on 2R

and let F = {0, 1}. Suppose without loss of generality that ϕ(F ) = 1. Let f :

[0, 1]→ [1, 2] be the continuous function f(t) = 1+ t. Note that, by the continu-

ity of ϕ and f , ϕ({0, 1+t}) = 1+t for every t ≤ 1 and thus ϕ({0, 2} = 2. Indeed,

suppose the contrary and let l = sup{r ∈ [1, 2] : ϕ({0, s}) = s for any s ∈ [1, r]}.

By the continuity of ϕ we have that 1 < l < 2 and hence U∩[1, l) 6= ∅ 6= U∩(1, 2]

for every open interval U containing l. It follows that there are u, v ∈ U such

that ϕ({0, u}) = u and ϕ({0, v}) = 0 and thus ϕ is not continuous, which is a

contradiction.

In the same way, let g : [0, 1] → 2X be the continuous function defined

by g(t) = {0, t, 2}. By the continuity of g we obtain that ϕ({0, 1, 2}) = 2.

Inductively, we can prove that ϕ({0, 1, . . . , n}) = n for every n ∈ N. Let n0 ∈ N

be such that ϕ(N) = n0. Then there is U , a basic neighborhood of N, with

ϕ(F ) ∈ (n0 − 1, n0 + 1) for every F ∈ U . But we can find n > n0 with

{0, 1, . . . , n} ∈ U , which is a contradiction.

In a similar way, Engelking, Heath and Michael also proved the following

result.

Proposition 1.15 ([12]). There exists no continuous selection on 2Q. �

Later, van Mill, Pelant and Pol obtained a more general result, which specifies

a necessary condition for metrizable spaces whose hyperspace admit a continuous

selection.

Proposition 1.16 ([49]). If X is a metric space and Sel(2X) 6= ∅ then X is

completely metrizable. �

In case X is strongly zero-dimensional the converse holds as well.

Proposition 1.17 ([12]). If X is a strongly zero-dimensional complete metric

space then Sel(2X) 6= ∅. �
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In particular, the hyperspace of P, the set of irrational numbers, admits a

continuous selection.

1.5 Continuous weak selections

In search of a general answer to Question 1.13, E. Michael studied properties of

continuous selections defined on the collection of pair sets in a given topological

space and in particular he asks when the existence of such a continuous selection

entails a continuous selection on the whole hyperspace.

Given a space X, a selection ϕ : F2(X) → X is named a weak selection on

X. If Sel(F2(X)) 6= ∅ we will say that X admits a continuous weak selection.

It is not difficult to see that X admits a continuous weak selection if and

only if there is a continuous function ϕ : X2 → X such that ϕ(x, y) = ϕ(y, x) ∈

{x, y}. We will also refer to such a ϕ as a weak selection and, moreover, since

any weak selection on X is continuous for all singletons, we will be interested in

selections for [X]2, which will also be named weak selections.

Given a weak selection ϕ on X and x, y ∈ X, we will denote by x →ϕ y

(or equivalently y ←ϕ x) the condition ϕ(x, y) = y. In a more general way, if

A,B ⊆ X we will write A ⇉ϕ B whenever a →ϕ b for every a ∈ A and b ∈ B

and we will say that B dominates A with respect to ϕ (or just that B dominates

A if ϕ is clear from context). We will also say that A and B are aligned and

will write A||B if either A ⇉ϕ B or B ⇉ϕ A. In general, we will suppress the

use of subscripts when there is no danger of confusion.

An immediate characterization of continuous weak selections is the following:

Proposition 1.18 (Folklore). A selection ϕ : [X]2 → X is continuous if and

only if for every x, y ∈ X such that x→ y, there are open neighborhoods U and

V of x and y, respectively, such that U ⇉ V .

Proof. It follows by the fact that

B = {〈U, V 〉 ∩ [X]2 : U, V are open and U ∩ V = ∅}

is a base for [X]2.
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U V

x y

Figure 1.2: Continuity of ψ in {x, y}.

1.6 Weak selections and orderability properties

Recall that a relation ≤ on a set X is a linear order if it satisfies the following

conditions:

(1) Reflexivity : x ≤ x for every x ∈ X.

(2) Transitivity : If x ≤ y and y ≤ z, then x ≤ z.

(3) Antisymmetry : If x ≤ y and y ≤ x then x = y.

(4) Linearity : For every x, y ∈ X either x ≤ y or y ≤ x.

Recall also that a space is ordered if it is possible to find a linear order on it in

such a way that the topology determined by this order coincides with that of

the space.

Given a linear order ≤ on X and x ∈ X, we denote by (←, x)≤ and (x,→)≤

the initial open segment and final open segment determined by x respectively,

i.e. (←, x)≤ = {y ∈ X : y < x} and (x,→)≤ = {y ∈ X : x < y}, similarly we

denote (←, x]≤ = X \ (x,→)ϕ and [x,→)≤ = X \ (←, x)ϕ.

Suppose that X is an ordered space whose topology is determined by a linear

order ≤ on X. If x and y are elements of X such that x < y, we can find disjoint

open intervals Ix and Iy containing x and y, respectively, and such that x′ < y′

for any x′ ∈ Ix and y′ ∈ Iy. Therefore, if we define the weak selection ϕ on

X by ϕ({a, b}) = min{a, b} (or ϕ({a, b} = max{a, b}) then clearly ϕ satisfies

the property of Proposition 1.18 and so it is continuous. Therefore, any ordered

space admits a continuous weak selection. Indeed, the only required property by

the linear order on X to guarantee continuity of ϕ is that any interval which is

open with respect to the order is so in the topological sense. This fact provides
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a motivation to work with some properties that are weaker than orderability

but still preserve the elementary order notions in the topological structure of a

space.

Definition 1.19. Let X be a topological space. We will say that X is:

1. Suborderable if it is a subspace of an ordered space.

2. Weakly orderable if it admits a weaker topology generated by a linear

order.

Proposition 1.20 ([44]). Every weakly orderable space admits a continuous

weak selection. �

As a consequence of this proposition, a natural and fundamental problem

arises. If a space X admits a continuous weak selection ψ, we can identify

the selection ψ as a function that, for any given elements x, y ∈ X, chooses

the ”smallest” element of both points with respect to the relation ≤ψ, which

is defined in the natural way: x ≤ψ y whenever x ← y. This relation is re-

flexive, antisymmetric and linear but, unfortunately, it is not transitive since

it is possible to find distinct points x, y, z ∈ X such that x → y and y → z

but x ← z. Although this last relation does not determine a linear order on X

we can still try to find an addecuate linear order induced by properties of the

continuous weak selection ψ and to ask, in a more general way, if the existence

of a continuous weak selection actually characterizes weakly orderable spaces.

Following with the idea that a weak selection ψ defined on a space X estab-

lishes a way to compare any pair of points on X, for every x ∈ X we can define

the sets Lx = {y ∈ X : y ← x} and Ux = {y ∈ X : x ← y}. Therefore, Lx

is the set of points below x and Ux is the set of points above x with respect to

≤ψ. When ψ is continuous, the characterization of continuity in weak selections

yields to obtain the following conditions for every x ∈ X:

(i) Lx and Ux are closed,

(ii) Lx ∪ Ux = X and

(iii) Lx ∩ Ux = {x}.
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Since Lx \ {x} and Ux \ {x} are disjoint open sets for any x ∈ X, the set

X \ {x} is not connected when Lx \ {x} 6= ∅ 6= Ux \ {x}. This property yields

the following result:

Proposition 1.21 ([44]). If X = R
n for some n > 1 or X = {(x, y) ∈ R

2 :

x2 + y2 = 1}, then Sel(F2(X)) = ∅. �

1.7 Some history of positive results

As we mentioned above, a fundamental problem in the theory of continuous

weak selections is:

Question 1.22. Is every space admitting a continuous weak selection weakly

orderable?

This problem was implicitly studied by Michael when he introduced the ini-

tial notions on Selection Theory. Certainly, the main problem is to find condi-

tions for a space to admit a continuous selection. But trying to solve it, Michael

proved that in some particular cases we only need to verify that the space ad-

mits a continuous weak selection and, also in some cases, the existence of such

selection is closely related with an orderability property of the space. By this

reason, Question 1.22 acquired a great importance and, since Michael’s paper,

there have been many results around the search for an answer to this question.

In this section we present results that, under our consideration, are the most

important in this direction and give a partial affirmative answer to Question

1.22 on some topological spaces. They are not presented in chronological order

but with respect to the involved properties.

1.7.1 Connected spaces

In 1941, Samuel Eilenberg [11] began the study of weakly orderable spaces,

named ordered topological spaces there. In particular, he was interested in the

connected case. Among other things, he proved that a connected space X is

weakly orderable if and only if P (X) = (X × X) \ {(x, x) : x ∈ X} is not

connected. He also proved that in this case, P (X) consists of two components,
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where each one is reflected on the other one by the diagonal of X ×X. In fact,

these components determine the only two possible linear orders on X whose

induced topology is weaker than the (original) topology on X and one of them

is an inverse to the other.

Michael first proved by using Eilenberg results that the relation determined

by a continuous weak selection on a connected space X is in fact a linear order,

and hence the space X is weakly orderable. This also implies that the space X

admits only two continuous weak selections.

We will present a different proof of this fact by using properties of particular

triplets of points.

Definition 1.23. Let ψ be a weak selection on a space X. A triple {x, y, z} ⊆ X

is a 3-cycle with respect to ψ if either x→ y → z → x or x← y ← z ← x.

Notice that the abscence of such 3-cycles determines transitivity of the in-

duced relation ≤ψ and thus weak orderability of the given space. The next

result shows that the existence of 3-cycles determines a partition of the space

into clopen subsets.

Proposition 1.24. Let ϕ be a continuous weak selection on a space X and let

x, y, z ∈ X be such that {x, y, z} is a 3-cycle with respect to ϕ. Then there is a

partition P of X into clopen subsets such that |P| ≤ 5 and |P ∩ {x, y, z}| ≤ 1

for every P ∈ P.

Proof. Suppose without loss of generality that x → y → z → x and consider

the following sets:

P0 = (Lz \ {z}) ∩ (Uy \ {y}),

P1 = (Lx \ {x}) ∩ (Uz \ {z}),

P2 = (Ly \ {y}) ∩ (Ux \ {x}),

P3 = (Lx \ {x}) ∩ (Ly \ {y}) ∩ (Lz \ {z}),

P4 = (Ux \ {x}) ∩ (Uy \ {y}) ∩ (Uz \ {z}).
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Clearly, P is a partition of X and, by the continuity of ϕ, Pi is open (and so

clopen) for every i < 5. Notice also that x ∈ P0, y ∈ P1 and z ∈ P2.

Corollary 1.25. Every connected space admitting a continuous weak selection

is weakly orderable. �

The space X = {(0, 0)} ∪ {(x, sin( 1

x
)) : 0 < x ≤ 1}, seen as a subspace

of R
2, is a connected space that admits a continuous weak selection but is not

ordered. On the other hand, Example 1.14 shows that, in general, the existence

of a continuous weak selection on a connected space X does not guarantee the

existence of a continous selection for the hyperspace 2X . However, adding the

extra condition that every F ∈ 2X has a first element with respect to the order

determined by a continuous weak selection ψ, Michael proves that the weak

selection ψ can be extended to a selection for the whole hyperspace 2X . The

above condition clearly holds when X is compact. Moreover, since for any

Hausdorff compact space any nontrivial weaker topology on it coincides with

the original one, Michael presents a nice characterization of connected compact

spaces that admit a continuous weak selection.

Theorem 1.26 ([44]). Let X be a connected compact space. The following are

equivalent:

(a) X admits a continuous weak selection.

(b) The hyperspace 2X admits a continuous selection.

(c) X is ordered. �

Finally, Kuratowski, Nadler and Young [41] proved that when the space is

also metrizable, it must be an arc, i.e. a space homeomorphic to the closed

interval.

1.7.2 Compact spaces

Young claimed in [63], without an explicit proof, that in Theorem 1.26 we can

replace connectedness of the space for zero-dimensionality. In 1981, Jan van

Mill and Evert Wattel proved that connectedness hypothesis is not necessary in
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Michael’s result. The technique used by van Mill and Wattel is very original

and will be so helpful for future results. Since we will employ it, we decided to

include their proof.

Theorem 1.27 ([46]). Let X be a compact space. The following are equivalent:

(a) X admits a continuous weak selection.

(b) 2X admits a continuous selection.

(c) X is ordered.

Proof. We only need to prove (a) ⇒ (c) because (c) ⇒ (b) ⇒ (a) are already

proved in [44]. Let ψ be a continuous weak selection on X and for every x ∈ X

let Lx and Ux be defined as above. Let ≺ be a well ordering of X. For every

x ∈ X, we will recursively construct closed sets Ax, Bx ⊆ X satisfying the

following conditions:

(1) Ax ∪ Bx = X and Ax ∩Bx = {x},

(2) if y ≺ x and x ∈ Ay, then Ax ⊆ Ay \ {y},

(3) if y ≺ x and x ∈ By, then Bx ⊆ By \ {y},

(4) if z ∈ Ax and z /∈
⋃
{Ay : y ≺ x and x ∈ By}, then z ∈ Lx,

(5) if z ∈ Bx and z /∈
⋃
{By : y ≺ x and x ∈ Ay}, then z ∈ Ux.

For a given x ∈ X, the set Ax will be the initial segment determined by x,

including the point x, with respect to the constructed linear order, and Bx will

be the final segment. The main idea involved in establishing a relation between

a point x ∈ X and any other element z ∈ X is to first determine if they are

already ordered by a ≺-smaller element. In that case, we do not need to do

anything else. Otherwise, we just have to let the weak selection decide it.

Let x0 be the ≺-first element of X and define Ax0
= Lx0

, Bx0
= Ux0

.

Suppose now that we have defined Ay and By for all y ≺ x such that they
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satisfy conditions (1) − (5) and define the sets E = {y ≺ x : x /∈ Ay} and

F = {y ≺ x : x /∈ By}. Let

Z = X \ (
⋃
{Ay : y ∈ E} ∪

⋃
{By : y ∈ F}).

The set Z consists of those points for which we cannot decide, from smaller

points, how to relate them to the point x. In order to define the sets Ax and

Bx, we will require the following special properties. Not all proofs are provided.

They are all alike. We only show those that shed some light on the general idea

of the proof.

Let κ = |E| and for each η < κ define a point yη as follows:

(6) y0 = minE,

(7) yη = min{{x} ∪ {y ∈ E : yµ ≺ y for µ < η and y /∈
⋃
{Ayµ : µ < η}}.

Let ξ ≤ κ be the first ordinal for which yξ = x. We consider only the case of

ξ limit, for the case of ξ isolated is similar.

Claim 1: If ξ0 ≤ ξ, then
⋃
{Ay : y ∈ E and y ≺ yξ0} =

⋃
{Ayµ : µ < ξ0}

Claim 2: If µ0 < µ1 < ξ then Ayµ0
⊆ Ayµ1

\ {yµ1
}.

Claim 3: If µ0 < µ1 < ξ then Ayµ1
\ Ayµ0

⊆ Uyµ0
.

Claims (1) − (3) will guarantee that we can approach to the set Ax in an

orderly manner by considering a≺-chain of elements fromE with their respective

initial segments, that are defined above.

Claim 4: If t ∈ clX(
⋃
{Ay : y ∈ E})\

⋃
{Ay : y ∈ E} then t is a cluster point

of the net {yµ : µ < ξ}.

Suppose the contrary and let C be a closed neighborhood of t such that

C ∩ clX({yµ : µ < ξ}) = ∅.

From Claim 1 we know that
⋃
{Ay : y ∈ E} =

⋃
{Ayµ : µ < ξ} and since t is

an accumulation point of
⋃
{Ay : y ∈ E}, we can find a cofinal set G ⊆ ξ such

that for each µ ∈ G there exists a point cµ ∈ C ∩ Lyµ such that

µ = min{δ < ξ : cµ ∈ Ayδ
}.

Let µ ∈ G. We claim that cµ ∈ Lyµ, i.e. cµ ← yµ. If not, since cµ ∈ Ayµ , by the

contrapositive to condition (4) there is a y ≺ yµ such that cµ ∈ Ay and yµ ∈ By.



1.7. SOME HISTORY OF POSITIVE RESULTS 17

Since y ≺ yµ and yµ ∈ By, condition (3) implies that Byµ ⊆ By or, equivalently,

Ay ⊆ Ayµ \ {yµ}. But yµ ∈ E and hence by definition x /∈ Ayµ , which implies

that x /∈ Ay. By Claim 1, we can find a δ < µ such that cµ ∈ Ayδ
. This is

because cµ ∈ Ay, y ≺ yµ and y ∈ E. However, this contradicts the condition

that µ is the first element with this property. Thus cµ ← yµ for every µ ∈ G.

Let (c, y) be a cluster point of the net {(cµ, yµ) : µ ∈ G} (here we use

the compactness condition). Then c ∈ C, y /∈ C and continuity of ψ yields

that c ← y. On the other hand, given µ ∈ G, we know by Claim (3) that

Ayδ
\ Ayµ ⊆ Uyµ for every δ > µ and thus, in particular, yµ ← cδ. Referring

again to continuity of ψ, we obtain yµ ← c and hence y ← c; but y 6= c and

y ← c← y, a contradiction. Therefore t is a cluster point of {yµ : µ < ξ}.

Using a similar idea, we can prove the following claim:

Claim 5: If u and t are cluster points of the net {yµ : µ < ξ} then u = t.

As an immediate consequence of Claims (4) and (5) we get:

Claim 6:
⋃
{Ly : y ∈ E} has at most one boundary point.

Claim 7: If t ∈ Z and µ < ξ then yµ ← t.

Suppose the contrary, i.e. t /∈ Uyµ . Since t ∈ Z we have t ∈ X\(
⋃
Ay : y ∈ E)

and in particular t /∈ Ayµ . Hence t ∈ Byµ and thus, by condition (5), t ∈ By

for some y ≺ yµ with yµ ∈ Ay. First suppose that x ∈ Ay \ {y}. In this case,

x /∈ By or, equivalently y ∈ F . Therefore Z∩By = ∅, which is not possible since

t ∈ Z ∩ By. Now suppose that x /∈ Ay, i.e. y ∈ E. By Claim (1) applied to µ,

we know that
⋃
{Az : z ∈ E and z ≺ yµ} =

⋃
{Ayδ

: δ < µ}. As yµ ∈ Ay, we

can find a δ < µ such that yµ ∈ Ayδ
, contradicting again the minimal condition

in the definition of yµ. Therefore, yµ ← t.

Notice that Ayµ \ {yµ} is open for every µ < ξ, Ayµ0
⊆ Ayµ1

\ {yµ1
} for

µ0 < µ1 < ξ and
⋃
{Ay : y ∈ E} =

⋃
{Ayµ : µ < ξ}. Hence,

⋃
{Ay : y ∈ E} has

a unique limit point, say a.

By an analogous construction, we can now approximate “from the right”,

with a collection of elements in F , such that we can find an ordinal η, which we

will also suppose limit, and for every µ < η a point zµ ∈ F such that:

(8) Bδ ⊆ Bµ \ {zµ} for every δ < µ < η,
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(9)
⋃
{Bz : z ∈ F} =

⋃
{Bzµ : µ < η} and

(10) if t ∈ Z and µ < η then t← zµ.

Again, the set
⋃
{Bzµ : µ < η} has a unique limit point, which is also a cluster

point of the net {zµ : µ < η}.

Finally, to define the sets Ax and Bx we consider all possible cases for the

points a and b.

Case 1: a = b. We assert that Z = {a} = {b} = {x}. Indeed, take t ∈ Z.

By Claim 7, yµ ← t for every µ < ξ and thus, by the continuity of ψ and since a

is a cluster point of the net {yµ : µ < ξ}, we have that a ← t. Analogously, by

condition (10), t ← zµ for every µ < η and hence t ← b. Therefore t = a = b.

It follows that Z = {x} and x = a. Define the sets Ax =
⋃
{Ay : y ∈ E} ∪ {x}

and Bx =
⋃
{By : y ∈ F}∪{x}. Notice that Ax and Bx are closed because both

sets contain the limit point x = a = b.

Case 2: a 6= b and x /∈ {a, b}. In this case, define Ax =
⋃
{Ay : y ∈

E} ∪ (Z ∩ Lx) and Bx =
⋃
{By : y ∈ F} ∪ (Z ∩ Ux). By Claim 7 we know that

yµ ← x for every µ < ξ and thus, by the continuity of ψ, a ← x, i.e. a ∈ Lx.

Also, since a is an accumulation point of
⋃
{Ay : y ∈ E} and Z closed, we also

have that a ∈ Z and therefore a ∈ Z ∩ Lx, which implies that Ax is closed.

Analogously, Bx is also closed.

Case 3: a = x and a 6= b, In this case, define Ax =
⋃
{Ay : y ∈ E}∪{x} and

Bx =
⋂
{Byµ : µ < ξ}.

Case 4: b = x and a 6= b. Define Ax =
⋂
{Azµ : µ < η} and Bx =

⋃
{Bz :

z ∈ F} ∪ {x}.

Let ≤ be the relation on X defined by x ≤ y ≡ x ∈ Ay. Then ≤ is a linear

order such that (←, x]≤ = Ax and [x,→)≤ = Bx are closed for every x ∈ X

and thus ≤ induces a weaker topology on X. Finally, since X is a Hausdorff

compact space, we conclude that X is ordered.

As van Mill and Wattel pointed out, the technique used in the proof of the

compact case cannot be generalized to all topological spaces. By this reason,

they explicitly present Question 1.22 and, since then, this problem has been

known as the van Mill-Wattel Problem on continuous selections.
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Figure 1.3: The case a 6= b and x /∈ {a, b}

1.7.3 Locally connected spaces

S. Eilenberg proved the following result:

Proposition 1.28 ([11]). A connected locally connected space X is ordered if

and only if P (X) = (X ×X) \ {(x, x) : x ∈ X} is not connected. �

Notice that this proposition, together with Corollary 1.25, implies that every

connected locally connected space admitting a continuous weak selection is or-

dered. Michael [44] also proved that when a space X admits a continuous weak

selection and all its connected components are open, then it is weakly order-

able. In particular, every locally connected space admitting a continuous weak

selection is weakly orderable.

Finally, Nogura and Shakmatov worked around the characterization of locally

connected spaces and obtained the most general result in this direction:

Theorem 1.29 ([51]). A locally connected space which admits a continuous weak

selection is ordered. �

1.7.4 Locally compact spaces

The first result on locally compact spaces is due to Kuratowski, Nadler and

Young.

Proposition 1.30 ([41]). A locally compact separable metric space which admits

a continuous weak selection is homeomorphic to a subset of the real line R (and

so it is suborderable). �

Separability of the space is necessary because any uncountable discrete space

satisfies the rest of the hypothesis. As we will see later, metrizability is also a

necessary condition in the above result.
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In [1], G. Artico, U. Marconi, J. Pelant, L. Rotter and M. Tkachenko also

investigated the locally compact case. On one hand, they considered spaces that

are also connected and obtained the following result:

Proposition 1.31 ([1]). Let X be a connected weakly orderable space. If X is

locally compact, then it is ordered. �

As an immediate consequence, every connected locally compact space ad-

mitting a continuous weak selection is ordered. On the other hand, they con-

structed, under the Diamond Principle, a topology τ on ω1, weaker than the

order topology, such that (ω1, τ) is a locally compact space admitting a continu-

ous selection for 2ω1 (and so for [ω1]
2) but is not suborderable. Therefore, locally

compact spaces behave different than locally connected spaces with respect to

being ordered. However, they also proved that that local compactness and local

connectedness are equivalent for connected weakly orderable spaces. In order to

see if while we weaken the orderability condition we can still obtain a character-

ization of locally compact spaces admitting a continuous weak selection, Gutev

and Nogura posed the following question:

Question 1.32 ([24]). Let X be a locally compact space, with Sel(F2(X)) 6= ∅.

Then, is X weakly orderable?

Gutev has recently proved that the answer is affirmative for paracompact

spaces. In fact, he states the following result:

Theorem 1.33 ([31]). A locally compact paracompact space is suborderable if

and only if it has a continuous weak selection. �

1.7.5 Pseudocompact spaces

After van Mill and Wattel provided a characterization of compact spaces that

admit a continuous weak selection, it is natural to ask how far we can weaken the

compactness condition and still have a characterization of spaces admitting a

continuous selection in terms of an orderability property. E. van Douwen started

the study of this kind and obtained a first partial result.
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Proposition 1.34 ([10]). If X is a countably compact space that admits a con-

tinuous weak selection, then X is sequentally compact . �

J. van Mill and E. Wattel also obtained important results in this direction,

which were originally aimed to solve another problem. They wanted to charac-

terize suborderable spaces in terms of certain special continuous weak selections.

Definition 1.35. A weak selection ϕ on a space X is called locally uniform

provided that for all x ∈ X and for each neighborhood U of x there is a neigh-

borhood V with V ⊆ U , such that for all p ∈ X \ U :

V ⇉ {p} if and only if x→ p.

The authors associated the notion of local uniformity of a weak selection with

a property involving the Stone-Čech compactification of the space, achieving a

characterization of continuous weak selections that are locally uniform. Here

we can see the relation between this kind of functions and particular compact

spaces.

Proposition 1.36 ([47]). Let X be a space and let ϕ : X2 → X be a weak

selection. The following statements are equivalent:

(1) ϕ is locally uniform and

(2) for all p ∈ βX \ X, ϕ can be extended to a continuous weak selection

ϕ∗ : (X ∪ {p})2 × (X ∪ {p}). �

Finally, using the last result they obtained a suitable characterization of

suborderable spaces.

Theorem 1.37 ([47]). Let X be a Tychonoff space. The following statements

are equivalent.

(1) X has a locally uniform weak selection and

(2) X is a suborderable space. �
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Artico et al. [1] proved that for every space X such that X ×X is pseudo-

compact, every continuous weak selection is locally uniform and therefore, as a

consequence of Proposition 1.34 and Theorem 1.37, X is sequentially compact

and suborderable. Working with the relation between locally uniform weak se-

lections and some properties of βX, the authors obtained a more general result.

Theorem 1.38 ([1]). For a completely regular space X, the following are equiv-

alent:

(1) βX is ordered,

(2) X is a pseudocompact suborderable space,

(3) X is countably compact and admits a continuous weak selection,

(4) X2 is pseudocompact and X admits a continuous weak selection. �

Finally, Garćıa Ferreira and Sanchis proved that the extra hyphotesis re-

quired in condition (4) of Theorem 1.38 is always true in the pseudocompact

case under the existence of a continuous weak selection on X.

Theorem 1.39 ([17]). Let X be a pseudocompact space admitting a continuous

weak selection. Then X × Y is pseudocompact for every pseudocompact space

Y . �

It follows that every pseudocompact space admitting a continuous weak se-

lection is suborderable.

1.7.6 Separable spaces

We first study countable spaces. In this case, Garćıa Ferreira et al [16] proved

that every countable spaceX admitting a continuous weak selection is weakly or-

derable. Concernig the existence of a continuous selection for 2X , Fuji, Miyazaki

and Nogura obtained a characterization for countable regular spaces.

Theorem 1.40 ([15]). A countable regular space X has a continuous selection

if and only if it is scattered. �
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Camillo Costantini considered the case when a separable space admits a

countable dense subset consisting of isolated points. Adding an extra hypothesis,

he answers Question 1.22 in the affirmative.

Proposition 1.41 ([7]). Let X be a separable space with a countable dense

subset consisting of isolated points. If X admits a continuous weak selection and

is second countable, then it is weakly orderable. �

He also proved that this proposition is true if we replace “second countable”

with “collectionwise normal”.

Using results related with connected components and disconnectedness prop-

erties, like cut points and special sets named Purish sets, Gutev has recently

generalized Proposition 1.41, by showing that when a space is second countable

and admits a continuous weak selection, we do not need to request a special

condition for the countable dense set on the space to guarantee its weak order-

ability.

Theorem 1.42 ([28]). Every second countable space admitting a continuous

weak selections is weakly orderable. �

In the same way, he also generalized Costantini’s result on collectionwise

normal spaces.

Proposition 1.43 ([28]). Let X be a separable space that admits a continuous

weak selection and such that [X]2 is collectionwise Hausdorff1. Then, X is weakly

orderable. �

Finally, Gutev also characterized homogeneous separable metric spaces ad-

mitting a continuous selection.

Proposition 1.44 ([26]). Let X be a homogeneous separable metric space such

that Sel(2X) 6= ∅. Then, one of the following holds:

(a) X is a discrete space,

(b) X is a discrete sum of copies of the Cantor set, or

1If X is a collectionwise normal space then [X ]2 is collectionwise Hausdorff
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(c) X is the irrational line2. �

In Chapter 2 and Chapter 3 we will widely study the separable case.

1.7.7 Spaces of continuous functions

A broad analysis of spaces of continuous functions of the form Cp(X,E) which

admit continuous selections is presented by Tamariz Mascarúa [58]. At first, he

studied some cases when the hyperspace of a space Cp(X,E) admits a continuous

selection.

Proposition 1.45 ([58]). For a countable space X and a metrizable space E

the following holf:

(1) If Sel(Cp(X,E)) 6= ∅, then X is discrete and E is completely metrizable.

(2) If X is discrete and E is strongly zero-dimensional completely metrizable,

then Sel(Cp(X,E)) 6= ∅. �

In the particular case when E is the real line, Tamariz Mascarúa stated that

there is not a continuous selection on 2Cp(X) for any space X. The situation

concerning continuous selections on K(Cp(X)) (and in particular with respect

to continuous weak selections) is not so different from the above.

Proposition 1.46 ([58]). Let G be a subcollection of K(Cp(X)) containing

F2(Cp(X)). The following statements are equivalent:

(1) There is a continuous selection on G,

(2) the space Cp(X) is weakly orderable,

(3) the space Cp(X) is suborderable,

(4) the space Cp(X) is ordered,

(5) |X| = 1. �

2The subspace of irrational numbers on the real line



1.7. SOME HISTORY OF POSITIVE RESULTS 25

Tamariz Mascarúa also studied spaces Cp(X,E) where X is zero-dimensio-

nal and proved that Cp(X,E) does not admit a continuous weak selection when

c(X) ≥ ω1. Gutev has recently characterized the collection of zero-dimensional

spaces X for which Cp(X,E) admits a continuous weak selection.

Proposition 1.47 ([32]). Let X be a zero-dimensional space and let E be a

topological space such that Cp(X) admits a continuous weak selection. Then X

is separable. �

Finally, by adding a zero-dimensional property to the space E instead of the

space X, Gutev obtained a partial affirmative answer to Question 1.22.

Theorem 1.48 ([32]). Let E be a strongly zero-dimensional metrizable space.

Then for any space X, the following are equivalent:

(1) Cp(X,E) admits a continuous weak selection and

(b) Cp(X,E) is weakly orderable. �

1.7.8 Topological groups

In [1], Artico et al. obtained a dichotomy theorem for pseudocompact topological

groups admitting a continuous weak selection.

Proposition 1.49 ([1]). A pseudocompact topological group G that admits a

continuous weak selection is either finite or topologically homeomorphic to the

Cantor set. �

They also answered the question of van Mill and Wattel for locally pseudo-

compact topological groups.

Proposition 1.50 ([1]). If G is a locally pseudocompact topological group ad-

mitting a continuous weak selection, then it is locally compact, metrizable and

ordered. �
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1.7.9 The Fell topology

Definition 1.51. Let X be a topological space. The Fell Topology on 2X ,

denoted by τF , is the topology generated by the sets of the form 〈V0, . . . , Vn〉, as

a basis, where V0, . . . , Vn open subsets of X and X \
⋃
{Vi : i ≤ n} is compact.

It is clear that the Fell topology is weaker than the Vietoris one and both

topologies coincide if X is compact. It turns out that many properties that

are distinct for Vietoris topology are equivalent for Fell topology. Some results

concerning separation axioms are a sample of this.

Proposition 1.52 ([2]). Let X be a Hausdorff space. The following are equiv-

alent:

(1) (2X , τF ) is Hausdorff,

(2) (2X , τF ) is regular,

(3) (2X , τF ) is completely regular and

(4) (2X , τF ) is locally compact. �

In respect to τF -continuous selections, Gutev and Nogura have obtained some

nice results which characterize spaces admitting a continuous (weak) selection

with respect to Fell topology.

Definition 1.53. An ordered space X is called topologically well orderable if

every non-empty closed subset of X has a first element.

Theorem 1.54 ([22] and [23]). Let X be a Hausdorf space. The following are

equivalent:

(1) X admits a τF -continuous selection,

(2) X admits a τF -continuous weak selection,

(3) X is topologically well-orderable. �



Chapter 2

Solution to the van Mill-Wattel

Problem

In Chapter 1 we mentioned that every countable space admitting a continuous

weak selection is weakly orderable. In fact, following van Mill and Wattel’s

proof of Theorem 1.27 we can convince us that this result is true because, when

the space is countable, in every iteration step of the proof we work only with a

finite collection of open sets and closed sets and hence we can eventually refine

the partial constructions until we obtain a linear order for the countable space,

whose induced topology is weaker than the original of the space. This suggests

to study the separable case. As a first attempt, we can try to carry out a similar

construction: Start with a countable dense subset of a separable space and, using

the result for the countable case, obtain an appropriate linear order this dense

subset and extend this order to a linear order on the whole space. However, if

we try to extend the order from the dense subset to the whole space using the

continuous weak selection to separate points, we can run into a problem since, as

we will see later, it is not always possible: There are separable spaces containing

pairs of points that are indistinguishable by weak selections.

The main goal of this chapter is to analyze this phenomenon in order to show

that, contrary to what all the previous results might suggest, the van Mill-Wattel

problem on continuous selections has a negative solution. We will present an

example of a space which admits a continuous weak selection but is not weakly

orderable. This example will also help us to answer a question of Gutev and

27
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Nogura.

2.1 Almost disjoint families and continuous

selections

A family A ⊆ [ω]ω is almost disjoint (AD) if |A ∩ B| < ω for every A,B ∈ A.

A family is called maximal almost disjoint (MAD), if it is AD and it is not a

proper subset of an AD family.

It is well known that there are AD families of size c. Indeed, identify ω with

2<ω and enumerate 2ω by {fα : α < c}. For every α < c, let Aα = {fα ↾ n : n ∈

ω}. It is easy to see that the family A = {Aα : α < c} is AD.

For a given AD family A we define the ideal I(A) to consist of sets F ⊆ ω

such that F ⊆∗
⋃
A

′

for some A
′

∈ [A]<ω. The dual filter 〈{ω \ A : A ∈ A}〉 is

denoted I∗(A) and I+(A) = P(ω) \ I(A).

Definition 2.1. Let A be an AD family. The Ψ-space or Mrówka-Isbell space

of the family A, denoted by Ψ(A), is defined as follows: The underlying set is

ω ∪ A, all elements of ω are isolated and basic neighborhoods of A ∈ A are

subsets of the form {A} ∪ (A \ F ), where F ∈ [ω]<ω.

It is clear that Ψ(A) is a first countable, locally compact and separable space

with a countable dense subset consisting of isolated points. Notice also that A

is relatively discrete and thus Ψ(A) is scattered. Another property satisfied by

Ψ-spaces, which is closely related to combinatorial properties of the AD family,

is that Ψ(A) is pseudocompact if and only if A is MAD.

The concept of Ψ-spaces was independently introduced by S. Mrówka [50]

and J. Isbell. Psi-spaces have served as counterexamples for many topological

problems. As we will see later, the van Mill-Wattel problem turns out to be one

of them.

Hrušák, Szeptycki and Tomita [34] worked around Ψ-spaces admitting con-

tinuous selections and obtained many results in this direction. In particular,

they constructed an example of an almost disjoint family whose Ψ-space admits

a continuous weak selection and another example where the corresponding Ψ-
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space does not admit it. We will not include these examples here but we will

later present examples of both cases.

In order to determine what happens when we work with MAD families,

Nogura asked whether Ψ(A) admits a continuous weak selection if A is MAD.

This question was explicitly answered by Hrušák et al [34]. We will include here

the proof of this result to familiarize ourselves with the terms and properties

that will be used when we work with selections on Ψ-spaces. We will require the

following auxiliar result.

Lemma 2.2 ([43]). For every MAD family A and every decreasing sequence

{Xi : i ∈ ω} ⊆ I
+(A) there is X ∈ I+(A) such that X \ i ⊆

⋂
{Xj : j < i} for

every i ∈ X. �

Lemma 2.3 ([34]). Let A be a MAD family and let f : [ω]2 → 2. Then there

exists a set B ∈ I+(A) such that f ′′[B]2 = {i} for some i ∈ 2.

Proof. Extend the filter I∗(A) to a ultrafilter U and construct a function g : ω →

2 as follows. For n ∈ ω and i ∈ 2 define the set Ani = {m ∈ ω : f({n,m}) = i}.

Then {An
0
, An

1
} is a partition of ω and, since U is ultrafilter, we can choose

g(n) ∈ 2 such that An
g(n)
∈ U . Notice that for any A

′

∈ [A]<ω, the set
⋂
{ω \A :

A ∈ A
′

} ∈ U , which implies that An
g(n)

/∈ I(A) for every n ∈ ω. Hence, by

Lemma 2.3, we can find an X ∈ I+(A) such that X \ n ⊆
⋂
{Xi : i < n} for

every n ∈ ω. Finally, define Bi = {n ∈ X : g(n) = i} for every i ∈ 2 and let

j ∈ 2 be such that Bj ∈ I
+(A). The set B = Bj is as desired.

This Ramsey-type lemma is related Nogura’s question by the following.

From a given weak selection ψ on ω we can define a natural induced function

f : [ω]2 → 2 by f({n,m}) = 0 if and only if ψ({n,m}) = min{n,m}. Hence, if

we take an arbitrary weak selection on the Mrówka-Isbell space determined by

a MAD family A then its restriction to [ω]2 will be a weak selection on ω and,

applying Lemma 2.3, we can find a “big” set where the selection agrees with

the usual order on it, i.e. it is either the max weak selection or the min weak

selection. However, this fact will actually be a problem to define continuous

weak selections on Ψ(A).
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Proposition 2.4 ([34]). The space Ψ(A) does not have a continuous weak se-

lection for any maximal almost disjoint family A.

Proof. Suppose that A is a MAD family and let φ be a weak selection on Ψ(A).

Let f : [ω]2 → 2 be the function on [ω]2 naturally determined by φ ↾ [ω]2 and

the usual order on ω, defined as in the previous paragraph, and let B ∈ I+(A)

be such that f ′′[B]2 = {i} for some i ∈ 2. Take A0, A1 ∈ A such that B ∩Aj is

infinite for j ∈ 2. We claim that φ is not continuous in the element F = {A0, A1}.

Indeed, suppose that φ(F ) = A0 and let U be a basic neighborhood of F . We

can find a k ∈ ω such that V = 〈{A0} ∪ (A0 \ k), {A1} ∪ (A1 \ k)〉 ⊆ U .

Suppose first that f ′′[B]2 = {0}. Then choose n > k such that n ∈ (A1 ∩

B)\A0 and also take m > n with m ∈ (A0∩B)\A1. Note that {n,m} ∈ V and

φ({n,m}) = n /∈ A0. On the other hand, if f
′′[B]2 = {1}, take n > k such that

n ∈ (A0 ∩B) \A1 and let m > n be with m ∈ (A1 ∩B) \A0. Then, {n,m} ∈ V

and φ({n,m}) = m /∈ A0. Therefore, in any case φ′′(V ∩ [ω]2) 6⊆ A0, which

implies that φ is not continuous on F .

As Michael et al. indicated in [34], Nogura’s question can also be answered

by a more general result, due to Artico et al [1], which states that for every

pseudocompact scattered space X admitting a continuous weak selection, the

space X2 is pseudocompact. This implies, by Theorem 1.38, that X is a subor-

derable space. However, every pseudocompact suborderable space is countably

compact, which is not the case for Ψ(A).

In general, the study of spaces of the form Ψ(A) becomes more interesting

when A is uncountable because we can then obtain more combinatorial prop-

erties than when we only have a finite or a countable almost disjoint family.

This, however, is not the case if we want to study the existence of a continuous

selection on the hyperspace of Ψ(A) when A is not countable.

Theorem 2.5 ([34]). If X is regular, separable and contains an uncountable

closed discrete set, then 2X does not admit a continuous selection. �

In particular, Ψ(A) does not admit a continuous selection for any uncount-

able almost disjoint family A.
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2.2 Extension of weak selections on ω

We provide ω with the discrete topology. Thus, any weak selection defined on

ω is automatically continuous. We investigate first which weak selections on

ω can be continuously extended to a Ψ-space. Then we choose an appropriate

weak selection to extend. To this end, we will introduce the following version

of the alignment conditions between sets with respect to a given weak selection,

presented in Chapter 2, but with finite exceptions. It is similar to the “almost

containment” and “almost equality” required notions to define the Mrówka-Isbell

topology on Ψ-spaces.

Given a weak selection ψ on ω and A,B ∈ [ω]ω, say that B almost dominates

A with respect to ψ (or simply B almost dominates A if ψ is clear from context),

and write A ⇉∗
ψ B, whenever there is k ∈ ω such that A \ k ⇉ψ B \ k. Say

that A and B are almost aligned, denoted by A||∗ψB, if there is k ∈ ω such

that A \ k||ψB \ k. If n ∈ ω, say that A is almost dominated by {n}, and

write A ⇉∗ {n}, if A \ k ⇉ψ {n} for some k ∈ ω. In a similar way, we can

define {n}⇉∗
ψ A and A||∗ψn. We will omit the subscript if there is no danger of

confusion.

The following result characterizes continuous weak selections on ω that can

be extended to a continuous weak selection on a given Mrówka-Isbell space. It

is nothing but the translation of Proposition 1.18 using the previous notation.

Lemma 2.6. Let A be an AD family. A weak selection ψ on ω can be ex-

tended to a (unique) continuous weak selection defined on Ψ(A) if and only if

the following hold:

(1) A||∗B for every A,B ∈ A,

(2) A||∗{n} for every A ∈ A and n ∈ ω. �

Example 2.7. Let ψ : [ω]2 → ω be the weak selection defined by ψ({m,n}) =

min{m,n} and let A be an almost disjoint family with at least two elements.

For A,B ∈ A and k ∈ ω, we can find a0 ∈ A and b0 ∈ B such that k < a0 < b0.

Similarly, there are a1 ∈ A and b1 ∈ B with k < b1 < a1. Henc condition (2) of

the previous Lemma fails for ψ and A. Analogously, the weak selection max on

ω cannot be extended to any Ψ(A) with |A| ≥ 2.
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The example shows that weak selections extendable to a non trivial Mrówka-

Isbell space are nontrivial. We can in fact consider the “most complicated” weak

selection defined on ω and try to extend it to a Ψ-space determined by a suitable

AD family.

2.3 Universal Weak Selection

A graph Γ is a couple (X,A), where X is a non empty set and A ⊆ [X]2.

Elements of the set X are thought as the nodes or vertices of the graph and

elements of A as the segments or edges of Γ. If we assign an orientation to every

edge of a graph, we obtain a so called directed graph. In a more formal way:

Definition 2.8. A directed graph is a set Γ = (V,A), where V is the set of

vertices, and A ⊆ V 2 \ {(x, x) : x ∈ V } is such that, for every x, y ∈ V , either

(x, y) /∈ A or (y, x) /∈ A. We will say that Γ is complete if for any distinct

x, y ∈ X, exactly one of the following occurs: (x, y) ∈ A or (y, x) ∈ A.

A weak selection ϕ on a set X determines in a natural way a complete

directed graph Γ = (V,A) on X, where V = X and A = {(x, y) ∈ X2 : x, y ∈

X and x → y}. Similarly, any complete directed graph with X as its set of

vertices induces a weak selection on X. In particular, when X is the countable

discrete space ω, any (continuous) weak selection on ω corresponds to an infinite

countable directed graph.

In the study of several mathematical structures we can find the existence of

a universal structure which is able to explain in a general way the behaviour

of any other structure of the same kind. This is the case for infinite graphs.

In 1964, R. Rado [53] constructed a countable undirected graph Γ in a simple

way as follows: The set of vertices is ω and for x < y, the vertices x and y

are adjacent if and only if, when y is written in base 2, the x-th digit is 1.

He proved that Γ has the following universal property: Any finite or countable

graph embeds into Γ. R. Fräıssé [14] had done a more general study before

Rado. He developed and used the back-and-forth method to determine whether

two model theoretic structures were elementarily equivalent. The main point

of his construction was to show how to approximate an infinite structure by its
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finitely generated structures in such a way that the infinite structure is a sort

of limit of its finite substructures. Using this construction it can be proved for

instance that (Q, <), with its usual order, is the Fräısse limit of the finite linear

orderings and it is, up to isomorphism, the only countable dense linear order

without endpoints.

It is interesting that Urysohn obtained twenty years before Fräısse a very

similar topological version of his result. In a posthumous paper [59] published

in 1927 he proved the existence of a unique homogeneous Polish space, today

known now as the Urysohn space, where homogeneous means that any isometry

defined between finite subsets of the space can be extended to an isometry of the

whole space. Separability of the space corresponds to countability in Fräıssé’s

work.

Analogous to the Universal Rado graph, we can construct a Universal Weak

Selection on ω as the Fräıssé limit of the collection of all weak selections defined

over a finite subset of ω. Our construction is more combinatorial, using the well

know notion of independent families over ω.

A family I ⊆ [ω]ω is independent if |
⋂
F\

⋃
F

′

| = ω for every F ,F
′

∈ [I]<ω.

There are independent families of size c but, for our construction, we only require

a countable independent family.

The following result will be crucial for our study.

Proposition 2.9. There is a weak selection ϕ : [ω]2 → ω satisfying the following

extension property:

(D) : For every disjoint F,G ∈ [ω]≤ω, there is n ∈ ω \ (F ∪ G) such that

F ⇉ {n}⇉ G.

Proof. Let J = {Jn : n ∈ ω} ⊆ [ω]ω be an independent family. Recursively, we

define a family I = {In : n ∈ ω} ⊆ [ω]ω in the following way:

• I0 = J0,

• In+1 = (Jn \ {k ≤ n : n+ 1 ∈ Ik}) ∪ {k ≤ n : n+ 1 /∈ Ik}.

By construction, |In△Jn| < ω for every n ∈ ω and so I is also an independent

family. Notice that also by construction, n ∈ Im if and only m /∈ In. This
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property allows us to define ϕ : [ω]2 → ω by

ϕ({n,m}) = n if and only if n ∈ Im.

To verify that ϕ satisfies the property D, let F and G be disjoint finite subsets

of ω. Since I is independent, U =
⋂
{In : n ∈ F} \

⋃
{Im : m ∈ G} is infinite

and, by definition of ϕ, F ⇉ {k}⇉ G for every k ∈ U .

Definition 2.10. Let X and Y be sets and let ψ and ϕ be weak selections on

X and Y respectively. Say

(a) ψ and ϕ are isomorphic, and write ψ ≈ ϕ, if there is a bijection ρ : X → Y

such that ψ({a, b}) = ϕ({ρ(a), ρ(b)}) for all a 6= b ∈ X,

(b) the weak selection ψ is embedded in ϕ if ψ ≈ ϕ ↾ [A]2 for some A ⊆ Y

Property D of Theorem 2.9 will let us obtain important properties satisfied

by the weak selection on ω that will be built. In fact, this extension property

characterizes the universal structure that we are looking for.

Proposition 2.11. Any two weak selections defined on ω satisfying Property D

are isomorphic.

Proof. We will use the so called “back and forth” argument to define an ap-

propriate bijection on ω. Let ψ and ρ be two weak selections on X satisfying

Property D. Before proving the proposition, let us make an easy but important

remark.

Suppose that for F,G ∈ [ω]<ω we have defined a bijection f from F to

G such that, for every x, y ∈ F , x →ψ y if and only if f(x) →ρ f(y) and

let z ∈ ω \ F . It is possible to extend the bijection f to a bijection g in

F ∪ {z} with the same properties. Indeed, put A0 = {n ∈ F : n →ψ z} and

A1 = {n ∈ F : z →ψ n}. By property D we can find w ∈ ω \ G in such a way

that {f(k) : k ∈ A0}⇉ρ {w}⇉ρ {f(k) : k ∈ A1}. Then, it is enough to define

f(z) = w. In the same way, we can extend f to a bijection g containing a given

point z ∈ ω \G on its range.

We now construct the desired bijection. In fact, we will construct a collection

of finite bijections {fn : n ∈ ω}, where each fn is defined on a certain domain
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Fn ∈ [ω]n and extends the previous defined functions. Start with f0 = ∅ and

suppose that we have defined fm. If m is even, let k = min(ω \ Fm) and

define fm+1 to be a bijection defined on Fm ∪ {k} and extending fm. Here

we used the forth condition. Whenever m is odd we work backwards. Let

r = min(ω \ fm[Fm]) and extend fm to a bijection fm+1 containing r on its

range. The function f =
⋃
{fn : n ∈ ω} is a bijection on ω, and n→ψ m if and

only f(n)→ρ f(m) for every n,m ∈ ω.

We will denote by ϕ the unique weak selection on ω satisfying Property D,

and we will call it the universal weak selection. The next propositionn says that

ϕ is universal.

Proposition 2.12. Every weak selection ψ on ω can be embedded in ϕ.

Proof. We will employ the forth property technique used in Proposition 2.11. For

every n ∈ ω, construct a bijection fn, whose domain is n and such that l →ψ k

if and only if fn(l)→ϕ fn(k) for all l, k ∈ n. Define f0 = ∅ and suppose that we

have defined fn. Put U = {k ≤ n : k →ψ n+1} and V = {k ≤ n : n+1→ψ k}.

By property D, there is m ∈ ω \ fn[n] such that fn[U ] ⇉ϕ {m} ⇉ϕ fn[V ].

Let fn+1 be the bijection extending fn and such that fn+1(n) = m. Finally, let

f =
⋃
{fn : n ∈ ω}.

2.4 ϕ-positive sets

The study of a universal structure turns out to be important from distinct

points of view. On one hand, the universal structure can help us to explain

the behaviour of any substructure with respect to certain properties that itself

satisfies. On the other hand, by its own complexity, it satisfies many interesting

properties that not any simpler structure carries out. It is the case with the

universal weak selection. We can find special properties satisfied by ϕ which are

rarely satisfied by another weak selection. In the following result we present two

of these properties which will be useful in subsequent constructions. The first

property establishes that ϕ satisfies a pigeonhole property in the sense that when

we partition ω into a finite collection of subsets, for at least one of these subsets

the restriction of ϕ on it is as complicated as it was on ω. The second property
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states that whenever we have found a set that is aligned with two disjoint finite

subsets, we still have a complicated selection when we restrict ϕ on this set.

We will denote by R the collection of all infinite subsets of ω such that the

restriction of ϕ to each of them is as complicated as the original one:

R = {X ⊆ ω : ϕ ↾ [X]2 ≈ ϕ}.

Elements of R will be called ϕ-positive sets.

Proposition 2.13. Let ϕ be the universal weak selection. Then

(1) If {P0, P1} is a partition of ω then either P0 ∈ R or P1 ∈ R.

(2) If F,G ∈ [ω]<ω are disjoint then

{k ∈ ω \ (F ∪G) : F ⇉ {k}⇉ G} ∈ R

.

Proof. To prove (1), let us suppose the contrary and let {P0, P1} be a partition

of ω such that neither P0 ∈ R nor P1 ∈ R. For i ∈ 2, we can find Fi, Gi finite

disjoint subsets of Pi such that every n ∈ Pi does not dominate the set Fi or is

not dominated by Gi with respect to ϕ. By Property D, we can find an n ∈ ω

such that F ⇉ {n}⇉ G, where F = F0 ∪ F1 and G = G0 ∪G1. As {P0, P1} is

a partition of ω, n ∈ Pi for i ∈ 2 but in both cases we have a contradiction.

To verify the property (2), again aiming towards contradiction, suppose that

we can find F,G ∈ [ω]≤ω such that

A = {k ∈ ω \ (F ∪G) : F ⇉ {k}⇉ G} /∈ R

. By property (1), ω \ A ∈ R. Since F and G are finite subsets of ω \ A, there

is n /∈ A dominating F and dominated by G; but n must be an element of A,

which clearly is not possible.

As a consequence of the above result, if we make finite changes to the uni-

versal weak selection ϕ, we still have a weak selection as complex as ϕ. We can

for instance delete a finite number of vertices or change the direction of some of

the arrows and get a weak selection that is isomorphic to ϕ.
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2.5 ϕ-positive sets and linear orders on ω

In order to obtain an extension of the universal weak selection to an appropriate

Ψ-space, we will simultaneously study linear orders on ω and special properties

determined by ϕ-positive sets. Our plan is, given a linear order on ω, to carefully

construct two disjoint infinite sets that are aligned with respect to the weak

selection ϕ but whose elements are alternating with respect to the given order.

Definition 2.14. Let ≤ be a linear order on a set X. Then

(1) A subset S ⊆ X is downward closed if x ≤ y and y ∈ S implies x ∈ S.

(2) A subset S ⊆ X is upward closed if x ≥ y and y ∈ S implies x ∈ S.

(3) An infinite subset Y ⊆ X is monotone if either there is a downward closed

set S ⊆ X containing Y such that, for every s ∈ S, Y ∩ (←, s)≤ is finite,

or there is an upward closed set T ⊆ X with Y ⊆ T such that Y ∩ (t,→)≤
is finite for every t ∈ T .

Proposition 2.15. Let ϕ be the universal weak selection and let � be a linear

order on ω. If X ∈ [ω]ω is a ϕ-positive set, then there are X0, X1 ∈ [X]ω

satisfying:

(1) X0 ∩X1 = ∅,

(2) X0 ⇉ X1,

(3) X0 ∪X1 is monotone with respect to �.

Proof. We will recursively construct the sets X0 and X1 as follows. If X ∩ (←

, 0)� ∈ R, defineM0 = X∩(←, 0)� ∈ R and defineM0 = X∩[0,→)� otherwise.

Notice that, by Proposition 2.13 (1), in both cases M0 is a ϕ-positive set and

thus we can find distinct a0, b0, c0 ∈ M0 such that {a0, b0, c0} is a 3-cycle in

M0. Choose x0, y0 ∈ {a0, b0, c0} in such a way that x0 ≺ y0 and x0 → y0 and

define then the set D1 = {n ∈ M0 : x0 → n → y0} \ {x0, y0}. By Proposition

2.13 (2), the set D1 is also positive. As before, let M1 = D1 ∩ (←, 1)� be if

D1∩(←, 1)� ∈ R, andM1 = D1∩[1,→)� otherwise. Choose now a1, b1, c1 ∈M1
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such that {a1, b1, c1} is a 3-cycle in M1 and let x1, y1 ∈ {a1, b1, c1} be such that

x1 → y1 and y1 ≺ x1. By construction, {x0, x1}⇉ {y0, y1}.

Following this procedure, recursively form a collection {Mn : n ∈ ω} of ϕ-

positive sets and disjoint sets W0 = {xn : n ∈ ω}, W1 = {yn : n ∈ ω} ∈ [X]ω

such that for every n ∈ ω, Mn+1 ⊆ Mn, {x0, . . . , xn} ⇉ {y0, . . . , yn}, xn ≺ yn

whenever n is even, and yn ≺ xn if n is odd. Also by construction, when the

set S = {n ∈ ω : Mn ⊆ (n,→)� is infinite, then it is �-downward closed, and

T = {n ∈ ω :Mn ⊆ (←, n)�} is �-upward closed if T is infinite.

We refine now the sets W0 and W1 to obtain, after joining both refinements,

a �-monotone subset. We claim that either W0 ∩ S and W1 ∩ S are infinite or

W0 ∩ T and W1 ∩ T are infinite. To see this, suppose e.g. that W0 ∩ S is finite.

Since S and T form a partition of ω, we can find a k ∈ ω such that for all n ≥ k,

xn ∈ T . Otherwise, xm ≺ ym whenever m ≥ k is even and since T is �-upward

closed, yn ∈ T . This proves that, in this case, |W0 ∩ T | = ω = |W1 ∩ T |. When

W0 ∩ S and W1 ∩ S are both infinite, define X0 = W0 ∩ S and X1 = W1 ∩ S.

In this case, the recursion guarantees that, for every n ∈ S, whenever k ≥ n

we have that Mk ⊆ Mn ⊆ (n,→)�, and then xk, yk ∈ (n,→)�. Therefore,

(X0 ∪X1) ∩ (←, n)� ⊆ n and so X0 ∪X1 is monotone. In the other case, when

either W0 ∩S is finite or W1 ∩S is finite, define X0 = W0 ∩T and X1 = W1∩T .

Using the same reasoning, it can be proved that X0 ∪X1 is monotone.

2.6 The counterexample

In this section we provide a negative answer to the question of van Mill and

Wattel. The main idea is to define an almost disjoint family of size c such that we

can simultaneously extend the universal weak selection ϕ to the corresponding

Mrówka-Isbell space and, using the elements of the AD family, to “destroy” all

possible linear orders on the constructed Ψ space. In fact, by density of ω we will

only be interested in linear orders on ω. This is the reason why in Proposition

2.6 we just restrict our attention to ω and its orders.

We first find a large almost disjoint family and a weak selection on the

induced Ψ-space that extends the universal weak selection.
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Lemma 2.16. There is an almost disjoint family A ⊆ [ω]ω satisfying the fol-

lowing conditions:

(1) |A| = c,

(2) A ⊆ R,

(3) A||∗B for every A,B ∈ A.

Proof. Identify ω with 2<ω. We construct the almost disjoint family on 2<ω

using the branches determined by elements of 2ω. Given f ∈ 2ω, put Af = {f ↾

n : n ∈ ω} and define A = {Af : f ∈ 2
ω}. Clearly A = c. If f, g ∈ 2ω are distinct

functions, there is n ∈ ω such that f(k) = g(k) for k < n and f(n) 6= g(n),

which guarantees that |Af ∩ Ag| < ω.

If f, g ∈ 2<ω, we will write f⊥g whenever there is an n ∈ ω such that

f(n) 6= g(n) and f 6⊥g if f ⊆ g or g ⊆ f . Notice that f 6⊥g if and only if there is

h ∈ 2ω such that f, g ∈ Ah. Define the weak selection ψ on 2<ω by ψ(f, g) = g

if and only if either f 6⊥g and ϕ(|f |, |g|) = |g| or f⊥g and f(f△g) = 0, where

f△g = min{k ∈ ω : f(k) 6= g(k)}.

Without loss of generality we may suppose, by universality of ϕ, that ψ ⊆ ϕ.

Moreover, by definition of ψ if f ∈ 2ω, then ψ ↾ [Af ]
2 ≈ ϕ. It turns out

that the branch determined by f is ϕ-positive for every f ∈ 2ω. Finally, if

f, g ∈ 2ω are distinct functions and f(f△g) = 0 then, again by definition of ψ,

Af \ 2
f△g ⇉ Ag \ 2

f△g, which implies that Af ||
∗Ag.

We require elements of A to belong to R to independently work with each of

them and, taking advantage of the properties satisfied by ϕ-positive sets, to take

care of each of the possible orders on ω. To start, enumerate by {≤α: α < c}

the set of all linear orders on ω. Our plan is to refine the obtained family A

by replacing each element of A by two disjoint infinite subsets which are almost

aligned among themselves and with any element of ω. This condition will allow

us to extend the universal weak selection to the given Mrówka-Isbell space. We

will also require that, for each α < c, the two chosen subsets to replace Aα must

have the same behaviour with all elements of ω with respect to the linear order

≤α, except possibly a finite set. In fact, both sets together, seen as subspaces of
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ω, are like a Dedekind cut for ≤α. The latter will imply that the corresponding

linear order on Ψ(X) which extends ≤α may not determine a topology weaker

than that of the Ψ-space.

Lemma 2.17. For every α < c, there are Xα
0
, Xα

1
∈ [Aα]

ω such that:

(1) Xα
0
∩Xα

1
= ∅,

(2) Xα
0
||∗Xα

1
,

(3) Xα
i ||

∗{n} for every n ∈ ω and i ∈ 2,

(4) Xα
0
∪Xα

1
is ≤α-monotone.

Proof. Fix α < c. By Lemma 2.16, Aα is ϕ-positive and, by Proposition 2.15,

we can also find X0, X1 ∈ [Aα]
ω such that X0||X1 and X0 ∪X1 is ≤α-monotone.

We will recursively refine the sets X0 and X1 to satisfy condition (3).

For every x ∈ X, either x→ 0 or 0→ x and therefore, C0 ∈ [X0]
ω such that

C0||{0}. Recursively, we can construct a family of infinite subsets C = {Cn :

n ∈ ω} such that, for every n ∈ ω, Cn+1 ⊆ Cn and Cn||{n}. Let Xα
0
be a

pseudointersection of the family C. For every n ∈ ω, the set Xα
0
\ Cn is finite,

wich guarantees that Xα
0
||{n}. Similarly, we construct a family E = {En : n ∈

ω} ⊆ [X1]
ω to satisfy En+1 ⊆ En and En||{n} for every n ∈ ω. Therefore, if

Xα
1
is a pseudointersection of the family E then Xα

0
, Xα

1
satisfy, by construction,

properties (1)− (3), and (4) is also true, because Xα
0
∪Xα

1
is an infinite subset

of X0 ∪X1, which satisfies 2.16(4).

We are now ready to present the main result of this chapter. It answers the

question of van Mill and Wattel in the negative.

Theorem 2.18. There is a separable, first countable, locally compact space ad-

mitting a continuous weak selection but that is not weakly orderable.

Proof. Let B = {Xα
0
, Xα

1
: α < c}, where Xα

0
and Xα

1
are as in Lemma 2.17 for

every α < c and i ∈ 2, and let X = Ψ(B) be the Mrówka-Isbell space associated

to B. By Lemma 2.17, the space X and the universal weak selection ϕ satisfy

all conditions on Lemma 2.6 and therefore, ϕ can be continuously extended to

a weak selection ϕ̄ on X.



2.6. THE COUNTEREXAMPLE 41

To conclude, we will prove that X is not weakly orderable by showing that

non linear order on X induces a topology that is weaker than the original of

the space. Aiming towards a contradiction, suppose that � is a linear order

on X whose induced topology is coarser than the topology on X. Let α < c

be such that �↾ ω2 =≤α. We can suppose without loss of generality that

there are points Xα
0
, Xα

1
∈ X such that Xα

0
� Xα

1
. By Lemma 2.17(4), the

set X
′

= Xα
0
∪Xα

1
is ≤α-monotone. We may assume that there is a downward

closed subset S ∈ [ω]ω containing X
′

and such that, for every s ∈ S, X
′

∩(←, s)�
is finite. If there is s ∈ S such that Xα

0
� s then, since (←, s)� is open, we

can find a finite set F ⊆ ω such that Xα
0
∈ {Xα

0
} ∪ (Xα

0
\ F ) ⊆ (←, s)�. But

|Xα
0
∩(←, s)�| < ω, which is a contradiction. On the other hand, if s ∈ (←, Xα

0
)�

for every s ∈ S, i.e. S ⊆ (←, Xα
0
)�, then also Xα

1
⊆ (←, Xα

0
)� and thus

Xα
1
∩ (Xα

0
,→)� = ∅. However, Xα

0
� Xα

1
implies that for some F ∈ [ω]≤ω,

{Xα
1
} ∪ (Xα

1
\ F ) ⊆ (Xα

0
,→)� which, again, is not possible.

In a similar way it can be proved that when X
′

is contained in an upward

directed set T we obtain a contradiction of the same kind. Therefore, the topol-

ogy determined by the order � cannot be coarser than the original of X and

consequently X is not weakly orderable.

X0

α

2<ω

X1

α
X0

βX1

β

Aβ

Aα

  

  

      

Figure 2.1: The space Ψ(B)

The above result also allows us to provide a negative answer to Question 1.32.

Hence when we restrict ourselves to the collection of locally compact spaces, the

existence of a continuous weak selection is not equivalent to be weakly orderable.
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2.7 An example on βω

The first idea when we started to work on the van Mill-Wattel problem was to

prove that for the collection of separable spaces, the existence of a continuous

weak selection was equivalent to being weakly orderable. However, we encoun-

tered the difficulty of extending the linear order determined by the continuous

weak selection from the countable dense subset to the entire space. One reason is

that for certain separable spaces we can find points that cannot be distinguished

by the corresponding continuous weak selection. In the example presented in

Theorem 2.18, we can find uncountable many of these points. This follows from

results that will be presented in Chapter 3, but we can explicitly obtain it by

adjusting the construction of points Xα
0
and Xα

1
in the proof of Proposition

2.6. Indeed, for every n ∈ ω, we can refine Mn to M
′

n = Mn ∩ (←, n)ϕ if it is

ϕ-positive or M
′

n = Mn ∩ (n,→)ϕ otherwise. Later, we can continue with the

proof.

In order to provide a negative answer to Question 1.5, we started to work with

βω indexβω and the universal weak selection. It was possible to achieve here the

first step of the construction of the counterexample, which involved to find two

appropriate disjoint infinite subsets of ω to take care of a given linear order just as

in the proof of Proposition 2.6. At the end, it was easier to work with a Ψ-space

instead of a space containing free ultrafilters as elements. We can now return to

the original idea and make the construction of a counterexample as a subspace

of the Čech-Stone compactification of ω. Actually, it follows immediately from

the previous results by identifying every element of the almost disjoint family

with an appropriate ultrafilter on ω.

Proposition 2.19. There is a space X ⊆ βω which admits a continuous weak

selection but is not weakly orderable.

Proof. Let B be the almost disjoint family presented in Theorem 2.18. For every

B ∈ B, let pB be an ultrafilter on ω containing B, i.e. pB ∈ B
∗, and define the

space X = ω∪{pB : B ∈ B}. The universal selection ϕ determines a continuous

selection ψ : [X]2 → X in the natural way and thus X admits a continuous weak

selection. Analogously, for every linear order ≤ on X we can find pA, pB ∈ X
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which guarantee, exactly as in the proof of Theorem 2.18, that≤ does not induce

a weaker topology on X. o 
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Chapter 3

Selections on separable spaces

Once we know that the existence of a continuous weak selection on a space does

not guarantee it to be weakly orderable, we can still try to understand why

the constructed space in Theorem 2.18 does not satisfy the weak orderability

condition and, in a more general way, how close separable spaces are to being

weakly orderable.

To start, we should go back to the idea of defining an appropriate linear order

by considering the natural relation determined by a continuous weak selection.

Recall that for a given space X and a continuous weak selection ψ on X, the

relation ≤ψ defined by x ≤ψ y if and only if either ψ(x, y) = x or x = y is a

reflexive, transitive and total relation. However, ≤ψ cannot be in general a linear

order on X because it is not transitive: We can find distinct points x, y, z in X

such that x→ y and y → z but x 6→ z, i.e. {x, y, z} is a 3-cycle with respect to

ψ. In the connected case we do not have this situation because, as it was shown

in Proposition 1.24, the existence of a 3-cycle implies the existence of a finite

clopen partition of the space. On other hand, in the separable case it is clear

that we cannot avoid the existence of 3-cycles but, as we will see in this chapter,

these special triples can help us to obtain special properties in the collection of

separable spaces with respect to orderability conditions and extension properties

of continuous weak selections.

45
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3.1 2-to-1 functions on linear orders

If X is a space that admits a continuous 1-to-1 function f from X into a linear

order (L,≤) then we can define a linear order ⊑ on X by x ⊑ y if and only

if f(x) ≤ f(y). It implies, by the continuity of f , that the order ⊑ induces a

weaker topology on X, i.e. the space is weakly orderable. It turns out that for

separable spaces admitting a continuous weak selection we cannot always find

an injective function to a linear space. However, as we will show in Section 3.2,

it will be possible to define a 2-to-1 continuous function.

A relation R on a set X is said to be total if for every x, y ∈ X, either

(x, y) ∈ R or (y, x) ∈ R. If X is equipped with a topology, the relation R is said

to be closed if it is closed with respect to the product topology onX×X. We will

also say that R separates the points x, y ∈ X if either (x, y) /∈ R or (y, x) /∈ R.

Finally, recall that for a given weak selection ψ on a space X, any point x ∈ X

determines in a natural way two closed subsets: Lx = {z ∈ X : z ← x} and

Ux = {z ∈ X : x← z}.

Proposition 3.1. Let X be a separable space that admits a continuous weak

selection ψ. Then there is a closed, reflexive, total and transitive relation R ⊆

X ×X such that |{z ∈ X : (x, z) ∈ R and (z, x) ∈ R}| ≤ 2 for all x ∈ X.

Proof. Let D = {dn : n ∈ ω} be a countable dense subset of X. Enumerate by

T = {Tn : n ∈ ω} the set of all triples T ∈ [D]3 that are 3-cycles with respect

to ψ. For every n ∈ ω, let En be the canonical partition determined by Tn, as

in Proposition 1.24. We will recursively construct for n ∈ ω closed relations

Rn ⊆ X×X, where each Rn will refine the previously defined relations. We will

carry out the construction in such a way that, for every n ∈ ω, Rn will separate

all points x and y in X \ {dn} that have not been separated by the relations

defined before and such that {dn} 6 ||{x, y}. We will also require Rn to refine

the partition En−1 such that x and y will be separated by Rn if they belong to

distinct elements of En−1.

Let R0 = X ×X and suppose that we have defined the relation Rn which is

closed, reflexive, total and satisfies the following condition:

There is a unique finite family Cn = {C0, . . . , Ckn} of closed subsets of X

such that for every x, y ∈ X and i < j ≤ kn:
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(1) X =
⋃
{Cl : l ≤ kn},

(2) Cn is a refinement of the partition En−1, where E−1 = {X},

(3) If x, y ∈ Ci then (x, y) ∈ Rn ∩ R
−1

n ,

(4) If x ∈ Ci and y ∈ Cj \ Ci then (y, x) /∈ Rn,

(5) If Ci ∩ Cj 6= ∅ then Ci ∩ Cj = {dl} for some l < n and Ci ∩ Cj 6= ∅ only

when j − i = 1,

(6) If d ∈ Cj ∩ {dl : l < n} and z → d for some z ∈ Cj \ {d} then Cj ⇉ {d},

(7) If d ∈ Cj ∩ {dl : l < n} and d→ z for some z ∈ Cj \ {d} then {d}⇉ Cj,

(8) If d ∈ Ci ∩ Ci+1, then Ci+1 ⇉ {d}⇉ Ci.

Conditions (3) and (4) guarantee uniqueness of the family Cn. These properties

certainly state an equivalence between Cn and Rn: (x, y) /∈ Rn if and only if

there are i < j ≤ kn such that y ∈ Ci and x ∈ Cj \ Ci. The rest of conditions

settles how we will recursively extend the closed relations.

Step 1: The first approximation of the relation Rn+1

Consider the point dn ∈ D and let i ≤ kn be such that dn ∈ Ci. If dn is

isolated then define the sets Ci,0 = Ci ∩ Ldn \ {dn}, Ci,1 = {dn} and Ci,1 =

Ci ∩ Un \ {dn}. Define also the set

Sn = Rn \ {(x, y) : x ∈ Ci,l, y ∈ Ci,s and 0 ≤ s < l ≤ 2}.

Otherwise, if dn is not isolated, put Ci,0 = Ci ∩Ldn and Ci,1 = Ci ∩Udn . In this

case, let

Sn = Rn \ {(x, y) : x ∈ Ci,1 \ {dn}, y ∈ Ci,0 \ {dn}}.

In any case, the relation Sn is total and reflexive since so is Rn and we are only

separating points x and y in Ci that were not separated before. We claim that

Sn is also closed. Indeed, suppose that (x, y) /∈ Sn. Since Rn is closed and

Sn ⊆ Rn we can also suppose that (x, y) ∈ Rn, which yields that x, y ∈ Ci,

x → dn and dn → y. By conditions (5) and (8) we get that x /∈ Ci−1 since

otherwise this would imply x ∈ Ci−1 ∩ Ci and thus, in particular, Ci ⇉ {x}.
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But dn ∈ Ci and x → dn. Similarly, we can prove that y /∈ Ci+1. Therefore,

there are disjoint neighborhoods Ux and Uy of x and y respectively such that

Ux ⊆ (Ci ∪ Ci+1) \ (Ci−1 ∪ Ci+2) and Uy ⊆ (Ci−1 ∪ Ci) \ (Ci−2 ∪ Ci+1). In the

case when x = dn is isolated, we can take Ux = {dn} and analogously for Uy.

Define U
′

x = Ux ∩ (Ldn \ {dn}) and U
′

y = Uy ∩ (Udn \ {dn}). The open subset

V = U
′

x × U
′

y ⊆ X × X contains the ordered pair (x, y) and, by condition (4)

and the definition of Sn, is disjoint from Sn. We proved that Sn is closed.

Define now the collection C
′

= {C
′

0
, . . . , C

′

kn+2
}, where C

′

j = Cj for 0 ≤ j < i,

C
′

i = Ci,0, C
′

i+1
= Ci,1, C

′

i+2
= Ci,2 and C

′

j = Cj−2 if i+ 2 < j ≤ kn + 2. When

dn is not isolated, take C
′

i+2
= ∅.

Notice that we are only refining the element Ci ∈ C and we do it in such a

way that the closed relation Sn together with C
′

satisfies conditions (1) − (8),

except possibly condition (2). We only require to refine the relation Sn so as to

obtain a refinement of the partition En.

Step 2: A refinement of En and definition of Rn+1

Define k
′

n = kn +2 if dn is isolated and k
′

n = kn +1 otherwise and fix j ≤ k
′

n.

We will find a partition Dj of C
′

j consisting of closed subsets which refines En.

We have to consider separately five possible cases:

Case 1: There is an E ∈ En such that C
′

j ⊆ E. In this case we are done;

simply define the trivial partition Dj = {Dj,0}, where Dj,0 = C
′

j.

Case 2: {E ∈ En : E ∩ C
′

j 6= ∅} = {E0, . . . , Et}, where 0 < t ≤ 5, C
′

j ∩ {dl :

l ≤ n} = {d}, {d} ⇉ C
′

j and d ∈ Et. In this case, we only need to guarantee

that the set Et ∩ C
′

j is above any other element of the desired partition with

respect to the refinement of Sn, where ”above” with respect to a relation S

means that (x, y) ∈ S for every x ∈ C
′

j and y ∈ Et ∩ C
′

j . We obtain this by

defining Dj = {Dj,l : 0 ≤ l ≤ t}, where Dj,l = El ∩ C
′

j for every l.

Case 3: {E ∈ En : E ∩ C
′

j 6= ∅} = {E0, . . . , Et}, where 0 < t ≤ 5, C
′

j ∩ {dl :

l ≤ n} = {d}, C
′

j ⇉ {d} and d ∈ E0. We want to define our partition such that

E0 ∩ C
′

j is below any other element of the desired partition. “Below” has an

analogous meaning as “above” in the previous case. Again, define Dj = {Dj,l :

0 ≤ l ≤ t}, where Dj,l = El ∩ C
′

j for every l.

Case 4: {E ∈ En : E ∩ C
′

j 6= ∅} = {E0, . . . , Et}, with 0 < t ≤ 5, C
′

j ∩ {dl :

l ≤ n} = {d, d
′

}, d
′

→ d, d ∈ E0 and d
′

∈ Et. This is a combination of Cases
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2 and 3. We need to simultaneously guarantee the two conditions presented in

cases 4 and 5. But the partition Dj defined as before will do.

Case 5: {E ∈ En : E ∩ C
′

j 6= ∅} = {E0, . . . , Et} with 0 < t ≤ 5, C
′

j ∩ {dl :

l ≤ n} = {d, d
′

}, d
′

→ d and d, d
′

∈ E0}. In this case, we need to split the

element E0 to obtain a subset above any element of C
′

j and another subset

below. Take x ∈ C
′

j \ E0. By conditions (6) and (7), d
′

→ x and x → d.

Let Dj = {Dj,l : 0 ≤ l ≤ t + 1}, where Dj,0 = C
′

j ∩ E0 ∩ {y ∈ X : y ← x},

Dj,l = C
′

j ∩El for 1 ≤ l ≤ t and Dj,t+1 = C
′

j = C
′

j ∩ E0 ∩ {y ∈ X : x← y}.

Define now Cn+1 =
⋃
{Dj : j ≤ k

′

n}. By construction, we can enumerate

Cn+1 as {Dj : j ≤ kn+1} in such a way that, for every i ≤ j ≤ kn+1, if x ∈ Di

and y ∈ Dj then (x, y) ∈ Sn. Therefore, Cn+1 is the refinement we are looking

for. Finally, define the relation Rn+1 as follows:

Rn+1 = Sn \ {(x, y) : y ∈ Di, x ∈ Dj and i < j}.

We have obtained a transitive, reflexive and total relation, contained in Rn and

refining En. In fact, it can be proved, in the same way as for Sn, that the relation

Rn+1 is also closed and, together with Cn+1, it satisfies conditions (1)− (8). This

concludes the recursive construction.

Let R =
⋂
{Rn : n ∈ ω}. The relation R is closed, reflexive and total because

so is each Rn is. We only need to prove that R is transitive. To show this we

will use two auxiliary properties of R.

Fact 1: If x, y ∈ X and there is a d ∈ D such that x→ d→ y and d belongs

to a 3-cycle with respect to ψ, then (x, y) /∈ R ∩R−1.

Let n ∈ ω be such that d ∈ Tn. Since {x, y} 6 ||{d}, the points x and y do not

belong to the same element of the partition En and thus either (x, y) /∈ Rn+1 or

(y, x) /∈ Rn+1

By density of D, we can generalize this property to get: If x, y ∈ X and

there is a z ∈ X such that {x, y, z} forms a 3-cycle, then (x, y) /∈ R ∩R−1.

Fact 2: For any x ∈ X, the set Px = {z ∈ X : (x, z) ∈ R ∩R−1} contains at

most two points.

Suppose the contrary. Let y and z be distinct points of Px \{x}. We can also

suppose, without loss of generality, that x→ y → z (the other cases are treated

analogously). Since D is dense, we can find a d ∈ D such that x→ d→ y. Let
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k = min{l ∈ ω : {x, y} 6 ||{dl}} and let Ck be the collection that together with

the relation Rk satisfies (1) − (7). Since y ∈ Px, there is a C ∈ Ck such that

x, y ∈ C. We also have that dk /∈ C because otherwise the relation Rk+1 (and so

R) would separate the points x and y, contradicting our first assumption. The

construction of Rk implies that there is an l < k such that either {x, y, dk} 6 ||{dl}

or x, y and dk do not belong to the same element of the canonical partition El
associated to the 3-cycle Tl or there are E ∈ El and w ∈ X \E with x, y, dk ∈ E,

{x, y}||{w} and {x, y, dk} 6 ||{w}. In the first case, either {x, y} ⇉ {dl} and

dk ← dl or {dl}⇉ {x, y} and dl ← dk. In any of these subcases, we can build a

3-cycle containing dk. In an analogous way, we can prove the same in the third

case. Finally, when the second possibility occurs, we can also find a 3-cycle

containing the point dk.

To conclude the proof, we need to show that R is transitive. Let x, y, z ∈ X

be such that (x, y) ∈ R and (y, z) ∈ R. Aiming at a contradiction, suppose that

(x, z) /∈ R and (z, x) ∈ R. Let n ∈ ω be such that (x, z) /∈ Rn, and let Cn be the

corresponding family determined by Rn. There are three possible cases:

Case 1: (x, y) ∈ R ∩ R−1. Since (x, z) /∈ Rn, there are i < j ≤ kn such that

z ∈ Ci and x ∈ Cj \Ci. But (x, y), (y, x) and (y, z) belong to Rn, which implies

that j = i+ 1 and y ∈ Ci ∩ Ci+1. Notice that (y, x) ∈ Rn ∩R
−1

n , i.e.˜the points

y and z are indistinguishable until the n-th stage. But, by Fact 2 they must

eventually be separated. However, since y = dl for some l < n and Cn ⇉ {y},

the construction of the relation R yields that (z, y) ∈ R, which is not possible.

Case 2: (y, z) ∈ R ∩R−1 is analogous to Case 1.

Case 3: (y, x) /∈ R and (z, y) /∈ R. As in the previous cases, there is n ∈ ω

such that, if Cn is as before, there are i < j < k such that z ∈ Ci, x ∈ Cj \Ci and

y ∈ Ck \Cj. But k > i+1, which implies that Ci∩Ck = ∅ and thus y ∈ Ck \Ci.

We conclude, by condition (4), that (y, z) /∈ Rn, which is a contradiction.

 

D1

· · ·

D2
D3 D4 · · · Dkn−1 Dkn

Figure 3.1: The relation Rn
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3.2 Almost weakly orderable spaces

The relation R defined above is determined by the dense subset, the weak selec-

tion and the set of 3-cycles in the space X. Therefore, if we work with another

countable dense subset, or even the same dense set but with another enumera-

tion, we can obtain different closed relations. In any case, the obtained relation

fails to be a linear order if there are points x and y in X that are “indistin-

guishable” with respect to the weak selection ψ in the sense that for any point z

distinct from x and y, x→ z if and only if y → z. Certainly, as we will shall see

later, the problem occurs if the collection of pairs consisting of indistinguisable

points is uncountable. This is the case with the counterexample presented in

Theorem 2.18, where the Ψ-space was constructed in such a way that for any

element of the AD family we can find another element indistinguishable with

this.

The next proposition states that for a separable space, we are close to sep-

arate points under the existence of a continuous weak selection and thus, we

are also close to define a topology on the space, weaker than the original and

determined by a linear order.

Corollary 3.2. Let X be a separable space that admits a continuous weak selec-

tion ψ. Then there are an ordered space L and a continuous function f : X → L

satisfying:

(i) |f−1[{y}]| ≤ 2 for every y ∈ L (i.e., f is ≤ 2-to-1),

(ii) if {x, y, z} is a 3-cycle with respect to ψ, then f ↾ {x, y, z} is injective.

Proof. Let R be the closed, transitive, reflexive and total relation constructed in

Proposition 3.1. Let D be the countable dense subset of X required to define R

and let T = {T ∈ [D]3 : T is a 3-cycle with respect to ψ}. Define the relation

∼R on X as follows:

x ∼R y if and only if Px = Py,

where Pz = {w ∈ X : (z, w) ∈ R ∩R−1}.

By Proposition 3.1 we know that Px contains at most two points for every

x ∈ X. In particular, when x is an isolated element of D then Px = {x}. Hence,
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the relation ∼R is in fact an equivalence relation. Let L = X/ ∼R be the set of

equivalence classes determined by ∼R. Define the relation ≤ on L as follows:

[x]∼R
≤ [y]∼R

if and only if either x = y or (x, y) ∈ R and (y, x) /∈ R.

After we have identified every pair of indistinguishable points on X using

the relation ∼R, we can guarantee the antisymmetry of ≤. The rest of order

properties also hold because the relation R satisfies them. With all this, ≤ is a

linear order.

Define the function f : X → L by f(x) = [x]∼R
. Clearly, |f−1[{y}]| ≤ 2 for

every y ∈ L. Also, if {x, y, z} is a 3-cycle then, by density of D, we can find a

T ∈ T such that the points x, y and z belong to distinct elements of the canonical

partition determined by T , which implies that f ↾ {x, y, z} is injective. To verify

continuity of f , let F be a closed subset of L. Let us prove that f−1[F ] is closed.

Take x ∈ X \ f−1[F ], i.e. f(x) /∈ F . Since F is closed, there are a, b ∈ X

such that [a]∼R
< [x]∼R

< [b]∼R
and ([a]∼R

, [b]∼R
)≤ ∩ F = ∅. Hence, we can find

n ∈ ω such that (x, a) /∈ Rn and (b, x) /∈ Rn. Therefore, we can find open subsets

W0 ⊆ X and V0 ⊆ X such that (x, a) ∈W0×V0 ⊆ (X×X)\Rn. The same way,

let W1 and V1 be neighborhoods of b and x such that W1 × V1 ⊆ (X ×X) \Rn.

Finally, the open subset V = W0 ∩ V1 contains the point x and f [V ] ∩ F = ∅,

which guarantees the continuity of f .

If we enumerate by {(xα, yα) : α < κ} the collection of all pairs (x, y) ∈ X×X

such that x← y and x ∼R y, then X = X0 ∪X1, where X0 = X \ {yα : α < κ}

and X1 = X \ {xα : α < κ}. Notice that Xi is weakly orderable for i ∈ 2.

Therefore, X can be written as the union of two weakly orderable spaces.

3.3 Second countable spaces

As mentioned in Chapter 1, Costantini [7] proved that every second countable

space that admits a continuous weak selection is weakly orderable if it has a

countable dense subset consisting of isolated points. Gutev [28] generalized this

result by suppresing the extra condition of the dense subset. In this section we

provide another proof of the result due to Gutev. For this purpose, we apply

some of the ideas involved in Costantini’s proof.



3.3. SECOND COUNTABLE SPACES 53

Proposition 3.3. ([28]) Every second countable space which admits a continu-

ous weak selection is weakly orderable.

Proof. Let ψ be a continuous weak selection onX, D = {dn : n ∈ ω} a countable

dense subset of X and let T = {T ∈ [D]3 : T is a 3-cycle}. Consider the

closed relation R determined by D and T as in Proposition 3.1. In order to

obtain an adequate linear order on X whose induced topology is weaker than

the (original) topology of X, we will take care of all pair of points of X that are

indistinguishable with respect to R.

Define the set P = {(x, y) ∈ X ×X : x ∼R y and x← y}.

Fact 1: If (x, y) ∈ P, then Ux and Ly are disjoint clopen sets.

To prove that Ux is open we only need to prove that x is an interior point of

Ux. Since y → x, we can find two disjoint neighborhoods Wx and Wy of x and y

respectively such that Wy ⇉ Wx. We know that x and y are indistinguishable

with respect to R (and also with respect to ψ) and thus, for all z ∈ X, y → z if

and only if x→ z. Hence, {x}⇉ Wx and x ∈ Wx ⊆ Ux, which implies that Ux

is open. By the same argument, Wy ⇉ {y} and so Ly is clopen.

Fact 2: The set P is relatively discrete in X ×X.

Take (x, y) ∈ P and let Wx and Wy be as in Fact 1. We claim that the open

set W = Wx×Wy satisfies W ∩P = {(x, y)}. Indeed, consider any (x
′

, y
′

) ∈W .

Since Wy ⇉ Wx and y
′

∈ Wy, we have that y
′

→ x, which also implies that

y
′

→ y. Similarly, given that x
′

∈ Wx we have y → x
′

. Therefore, y
′

→ y → x
′

and hence (x
′

, y
′

) /∈ P.

Note that these two properties do not require the space to be second count-

able.

Fact 3: The set P is countable.

Let B be a countable base for X×X and, for every (x, y) ∈ P, choose Bx,y ∈

B such that Bx,y ∩ P = {(x, y)}. Clearly, Bx,y 6= Bx
′
,y

′ when (x, y) 6= (x
′

, y
′

).

This guarantees that |P| ≤ ω.

Enumerate the set P as {(xk, yk) : k ∈ ω} and fix n ∈ ω. In the proof of

Proposition 3.1 we can refine the relation Rn to a closed relation Qn such that

whenever (x, y) ∈ Rn ∩R
−1

n , x ∈ Uxn and y ∈ Lyn then (y, x) /∈ Qn. Indeed, put

Qn = Rn \ {(y, x) : (x, y) ∈ Rn, x ∈ Uxn and y ∈ Lyn}.
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Notice that if Cn = {Ci : i ≤ kn} is the collection of closed sets as-

sociated to the relation Rn then, since xn ∼R yn, we can find an r ≤ kn

such that xn, yn ∈ Cr and, again because xn and yn are indistinguishable,

for every i 6= r either Ci ⊆ Uxn or Ci ⊆ Lyn . Thus, the collection C
′

n =

{C0, . . . , Cr−1, Cr,0, Cr,1, Cr+1, . . . , Ckn} satisfies properties (1)− (7) in the proof

of Proposition 3.1, where Cr,0 = Cr ∩Ux and Cr,1 = Cr ∩Lx. Hence, we can con-

tinue the construction as before. Finally, let Q =
⋂
{Qn : n ∈ ω}. If (x, y) ∈ Q

then (x, y) /∈ R, (xn, yn) ∈ Q and (yn, xn) /∈ Q for every n ∈ ω. Therefore, the

relation Q is in fact a linear order and thus X is weakly orderable.

Another consequence of the last result is: Every separable space that admits

a continuous weak selection ψ is weakly orderable whenever the set of indis-

tinguishable pairs, with respect to ψ, is at most countable. This is behind the

motivation to add an extra condition in the van Mill-Wattel problem and to

state the following question.

Question 3.4. Let ψ be a continuous weak selection on a space X such that

for every x, y ∈ X there is z ∈ X \ {x, y} which satisfies {x, y} 6 ||{z}. Is X a

weakly orderable space?

3.4 From F2(X) to F3(X)

Recall that every (weakly) orderable space X admits a natural continuous weak

selection determined by its compatible linear order. Moreover, for any n ∈ ω the

selection min : Fn(X) → X is continuous. Indeed, suppose that � is a linear

order on X whose generated topology is weaker than the topology of X and let

F = {x0, . . . , xk}, with k ≤ n and such that xi ≺ xj if i < j. Take disjoint

open sets Wi, for i ≤ k, containing xi and such that x ≺ y if x ∈ Wi, y ∈ Wj

and i < j. Then the open set (in the subspace Fn(X)) W = 〈W0,W1, . . . ,Wk〉

contains F and min[W] ⊆W0, which guarantees the continuity of min.

Michael [44] in fact obtained a more general result and proved that every

weakly orderable space admits a continuous selection for the collection of its

compact subsets, i.e. Sel(K(X)) 6= ∅ (the selection min also works in this

case). However, we cannot always extend the given selection from K(X) to the
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hyperspace 2X since we can find ordered spaces, for instance the real line, such

that Sel(2X) = ∅.

In the same spirit and also trying to obtain an answer to the van Mill-Wattel

problem, the following question was stated by Gutev and Nogura:

Question 3.5 ([24]). Is there exist a space X which admits a continuous weak

selection, but Sel(Fn(X)) = ∅ for some n > 2.

A positive solution to the van Mill-Wattel problem would entail a negative

answer to Gutev and Nogura’s question. Thus, now when we know that Question

1.22 has a negative answer, the previous problem acquires a greater importance.

It should also be mentioned that Question 3.5 is still open even when n = 3.

We present in this section some extension results for the first case n = 3.

The first known result in this direction is due to J. Steprans.

Proposition 3.6 ([57]). Let X be a separable space with a countable dense subset

of isolated points. If X admits a continuous weak selection then Sel([X]3) 6= ∅.

�

Garćıa Ferreira, Gutev and Nogura found the following result. It states that

if we want to extend a continuous selection from X to F3(X), we just need to

know how to continuously choose elements from triples. We present here a proof

of this result, somewhat different from the original.

Proposition 3.7 ([18]). Let ψ be a continuous weak selection and let ρ : [X]3 →

X be a continuous selection. Then F3(X) admits a continuous selection φ such

that φ ↾ F2(X) = ψ.

Proof. We will define the selection φ by cases. Let F ∈ F3(X).

Case 1: F ∈ F2(X). In this case, let φ(F ) = ψ(F ).

Case 2: F ∈ [X]3 and F is not a 3-cycle with respect to ψ. Hence, we can

find a unique x ∈ F such that F ⇉ {x}. In this case, define φ(F ) = x.

Case 3: F ∈ [X]3 and F is a 3-cycle with respect to ψ. In this case define

φ(F ) = ρ(F ).

To prove the continuity of φ, suppose first that F = {x, y} and φ(F ) =

ψ(F ) = x. By the continuity of ψ, we can find disjoint neighbourhoods U and
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V of x and y, respectively, such that V ⇉ U . Let U = 〈U, V 〉. If G ∈ U ∩F3(X)

then |G| = 2 or |G| = 3 but, in either case, we can find w ∈ G ∩ U such that

G ⇉ {w}, which implies that φ(G) = w ∈ U .

Suppose now that F = {x, y, z} is not a 3-cycle and φ(F ) = x. Hence

F ⇉ {x} and, again by the continuity of ψ, we can find disjoint open sets U and

V , where x ∈ U and y, z ∈ V , such that V ⇉ U , which guarantees continuity of

φ in F .

Finally, suppose that F = {x, y, z}, x→ y → z → x and φ(F ) = ρ(F ) = x.

By the continuity of ρ and of ψ, we can find pairwise disjoint open sets U ,

V and W such that x ∈ U , y ∈ V , z ∈ W , U ⇉ V ⇉ W ⇉ U and, if

U = 〈U, V,W 〉, then ρ[U ] ⊆ U . Notice that any G ∈ U ∩ [X]3 is a 3-cycle and

therefore φ(G) = ρ(G) ∈ U . We conclude that φ is continuous.

In the same paper, they also stated the following extension result.

Proposition 3.8 ([18]). Let X be a space, p ∈ X, and let f : F2(X)→ X and

g : F3(X \ {p}) → X be continuous selections. Then f can be extended to a

continuous selection for F3(X). �

Finally, the next proposition, due to Gutev and Nogura, sets an extension

property from triples to quadruples.

Proposition 3.9 ([30]). If X is a space such that Sel(F3(X)) 6= ∅, then

Sel(F4(X)) 6= ∅. �

3.5 Extension of continuous selections

Recall that, given a weak selection ψ on a space X, the sets A,B ⊆ X are said

to be aligned (with respect to ψ), denoted by A||B, if either A ⇉ B or B ⇉ A.

We can go beyond and consider a more general situation, working not only with

pairs but with families of aligned sets. The discussion of this case is presented

in [18], where the notion of the so called decisive sets is introduced.

Definition 3.10. Let ψ be a weak selection on a space X. A set C ⊆ ℘(X) is

ψ-decisive if A||ψB for any A,B ∈ C.
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When there is no danger of confusion we shall write decisive instead of ψ-

decisive. Similarly, a decisive partition of a set F ⊆ X is a partition of F where

any pair of elements is aligned with respect to the weak selection.

For any space X and any weak selection on it, X admits the trivial decisive

partitions C = {{x} : x ∈ X} and E = {X}. When X is an ordered set,

we can find many distinct decisive partitions of size 2 with respect to the min

selection. Indeed, if ≤ is a linear order on X, then for any x ∈ X the partition

P = {(←, x)≤, [x,→)≤} is decisive. In the general case, we can study how sets

behave aligned with respect to a weak selection by defining the decisive index.

Definition 3.11 ([27]). Let ψ be a weak selection on X and let F ⊆ X. The

decisive index of F with respect to ψ, denoted by di(F, ψ), is 1 if |F | = 1 and

di(F, ψ) = min{|P| : P is a decisive partition and |P| ≥ 2}

otherwise.

Our aim will be to answer Question 3.5 in the case of separable spaces and,

more generally, to work with the collection of finite subsets Fin(X) of an ar-

bitrary separable space X. Therefore, we are interested in the study of the

decisive index of finite subsets. The following uniqueness result will be useful

for extending continuous selections in a way more general than in the previous

section.

Proposition 3.12 ([27]). Let ψ be a weak selection on a space X and let F ∈

Fin(X). If di(F, ψ) > 2 then there is a unique decisive partition P on F with

|P| = di(F, ψ). Moreover, ifM is another decisive partition of F then for every

M ∈ M there is a P ∈ P such that M ⊆ P (i.e. M refines P). �

The above result is not true when di(F, ψ) = 2. For instance, any ordered

set does not satisfy it when ψ = min. However, although a finite subset can

admit more than one decisive partition of size 2, we can define a sort of minimal

element between all these decisive partitions.

Definition 3.13. Let ψ be a weak selection on a space X and let B ⊆ X. We

will say that B is ψ-minimal if it satisfies the following conditions:
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(1) (X \B) ⇉ B,

(2) B ⊆ C whenever C ⊆ X and (X \ C) ⇉ C.

Clearly the ψ-minimal subset, if it exists, is unique. For the compact case

(and in particular for the finite case), Garćıa Ferreira et al. [18] proved that the

minimal set exists. We include here the proof of their result.

Proposition 3.14 ([18]). Let ψ be a weak selection on a space X. Then every

non-empty compact set F has a unique ψ-minimal set.

Proof. Consider the family

D = {B ∈ 2F : (F \B) ⇉ B}.

Notice that the family D is non empty because F ∈ D. We claim that any pair

of elements of D are ⊆-comparable. To show this, suppose that we can find B

and C in D such that B \C 6= ∅ 6= C \B. Take x ∈ B \C and y ∈ C \B. Since

y ∈ F \ B, we have that y → x. The same way x ∈ F \ C, which implies that

x→ y. The two conditions imply x = y, a contradiction.

Since D is a subset of K(X) and, by this property, has the finite intersection

property, it yields D =
⋂
D 6= ∅. Finally, if x ∈ D and y /∈ D then there is a

B ∈ D such that x ∈ B and y /∈ B, which implies that y → x. Therefore, D is

ψ-minimal.

The next result is due to Gutev.

Proposition 3.15 ([27]). Let X be a space and let ψ ∈ Sel(F2(X)). The

function diψ : (Fin(X) \ [X]1) → ω defined by diψ(F ) = di(F, ψ) is continuous.

�

Applying the above proposition, he obtained a generalization of Proposition

3.7 for every n ∈ ω. For completeness we outline the proof.

Theorem 3.16 ([27]). Let X be a topological space. If Sel(Fn(X)) 6= ∅ and

Sel([X]n+1) 6= ∅ then Sel(Fn+1(X)) 6= ∅.
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Proof. Let ψ : Fn(X)→ X and ρ : [X]n+1 → X be continuous selections. Since

[X]1 admits a trivial continuous selection, to define a function on Fn+1(X) we

will only consider the set D = Fn+1 \ [X]1. Put ψ
′

= ψ ↾ [X]2. The continuous

function diψ′ , defined above, determines a clopen partition {Ck : 1 ≤ k ≤ n+ 1}

of D, where Ck = {F ∈ D : di(F, ψ
′

) = k} for every 1 ≤ k ≤ n + 1. Hence, we

can separately define a continuous selection φk on Ck.

Notice that Cn+1 ⊆ [X]n+1 so that we can define φn+1(F ) = ρ(F ) for every

F ∈ Cn+1. Suppose now that F ∈ C2 and let P = {P0, P1} be the decisive

partition containing the ψ-minimal set P0 of F . In this case, observe that |Pi| ≤

n for i ∈ 2, which allows us to define φ2(F ) = ψ(P0). Finally, suppose that

F ∈ Ck for some 3 ≤ k ≤ n and let P = {Pi : i < k} be the decisive partition of

F of cardinality k. Again, for every i < k we have |Pi| ≤ k. In this case, define

φn+1(F ) = ψ({ψ(Pi) : i < k}).

Finally, using graph theory, in particular special functions termed flows,

Gutev also generalized Proposition 3.9.

Theorem 3.17 ([27]). Let X be a space such that Sel(F2n+1(X)) 6= ∅ for some

n ≥ 1. Then, Sel([X]2n+2) 6= ∅. �

3.6 Selections for finite subsets

The goal of this section is to provide a partial answer to Question 3.5 by showing

that any separable space that admits a continuous weak selection in fact admits

a continuous selection on the collection of its finite subsets.

As an antecedent, we should mention that Jiang has two results that also

allow, under suitable conditions, to answer Question 3.5 in the negative.

Proposition 3.18 ([37]). Let X be a Hausdorff space with a single non-isolated

point p ∈ X, and let f be a continuous weak selection. Then f can be extended

to a continuous selection on Fin(X). �

Proposition 3.19 ([37]). If a scattered hereditarily paracompact Hausdorff space

X admits a continuous weak selection, then it also admits a continuous selection

on Fin(X). �
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We first prove the following auxiliary result that gives a partial answer to

Question 3.5.

Proposition 3.20. Let X be a space that admits a continuous weak selection

ψ. If there are an ordered space (Y,�) and a continuous function f : X → Y

such that:

(i) |f−1[{y}]| ≤ 2 for every y ∈ Y ,

(ii) If {x0, x1, x2} is a 3-cycle with respect to ψ then f ↾ {x0, x1, x2} is injective,

then there is a sequence {ψn : n ≥ 2} of compatible continuous selections such

that ψn ∈ Sel(Fn(X)) for every n ∈ ω.

Proof. We will inductively construct the family {ψn : n ≥ 2} of continuous

selections. Start with ψ2 = ψ and suppose that we have defined continuous

selections ψk : Fk(X) → X, for k ≤ n, such that ψs+1 ↾ Fs(X) = ψs for every

s < n.

We will define the continuous selection ψn+1 : Fn+1(X)→ X by cases:

Case 1: Suppose that F ∈ Fn+1 and di(F, ψ) ≤ n. Define ψn+1(F ) exactly

as in the proof of Theorem 3.16. Indeed, let P be the decisive partition of F (ψ-

minimal partition if di(F, ψ) = 2) and define ψn+1(F ) = ψn({ψn(P ) : P ∈ P}).

Case 2: Suppose that F ∈ [X]n+1 and di(F, ψ) = n + 1. If x and y are

elements of F and x→ y, we claim that there must be an element z ∈ F \{x, y}

such that {x, y} 6 ||{z} because, otherwise, the partition P = {{z} : z ∈ F \

{x, y}} ∪ {x, y} would be a decisive partition of size n − 1. Hence, any two

elements of F are comparable and the function f restricted to the set F is

injective. Therefore, we can find a unique x ∈ F such that f(x) = min{f(z) :

z ∈ F}. Define ψn+1(F ) = x.

Case 1 is defined exactly the same way as in the proof of Theorem 3.16, so

we only need to prove continuity of ψn+1 in Case 2. Let F = {x0, x1, . . . , xn} ∈

[X]n+1 be such that x0 ≺ x1 ≺ · · · < xn. Then ψn+1(F ) = x0. By the continuity

of ψ, for every i ≤ n we can find an open neighbourhood Vi containing xi and

such that Vi ⇉ Vj if and only if xi ⇉ xj for i 6= j. On the other hand, by

the continuity of f , we can find open pairwise disjoint intervals I0, . . . , In in Y ,
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where each Ii contains f(xi) and such that, for every i < j ≤ n, z ≺ w for

every z ∈ Ii and w ∈ Ij . For every i ≤ n define Wi = Vi ∩ f
−1[Ii]. Finally, if

we consider the open set W = 〈W0, . . . ,Wn〉, then W ⊆ [X]n+1, F ∈ W and

ψn+1[W] ⊆W0, which guarantees the continuity on F .

To conclude the inductive step, we need to show that ψn+1 extends the

selection ψn. Let F ⊆ X be such that |F | ≤ n. If di(F, ψ) = n then ψn+1(F ) =

ψn{{ψn({x}) : x ∈ F}} = ψn(F ). Otherwise, if di(F, ψ) < n, let P be the

decisive partition of F with |P| = di(F, ψ). Since P < n and |P | < n for every

P ∈ P, the inductive hypothesis yields:

ψn+1(F ) = ψn({ψn(P ) : P ∈ P}) = ψn−1({ψn−1(P ) : P ∈ P}) = ψn(F ).

Theorem 3.21. Let X be a space that admits a continuous weak selection ψ, let

Y be an ordered space and f : X → Y a continuous function as in Proposition

3.20. Then Sel(Fin(X)) 6= ∅.

Proof. Let {ψn : n ≥ 2} be a sequence of compatible continuous selections,

as in Proposition 2.6. For every n ≥ 2 we have that ψn ∈ Sel(Fn(X)) and

ψn+1 ↾ Fn(X) = ψn. Define Φ =
⋃
{ψn : n ≥ 2}. It is clear that Φ is a selection

on Fin(X). To prove the continuity of Φ we will use the following property:

Claim: Let F ∈ Fin(X) and let M be a decisive partition of F . Then

Φ(F ) = Φ({Φ(M) : M ∈ M}).

We argue by induction on |F |. Clearly the result is true when |F | = 2.

Assume that this result is true for every E ⊆ X with |E| ≤ n and let F ∈ [X]n+1.

Let M be an arbitrary decisive family of F and put G = {Φ(M) : M ∈ M}.

We will show that Φ(F ) = Φ(G).

The result is evidently true if di(F, ψ) = n + 1 because in this case M =

{{x} : x ∈ F}. Hence, we can suppose that 2 ≤ di(F, ψ) ≤ n. We will consider

separately the cases di(F, ψ) = 2 and di(F, ψ) > 2.

Case 1: Suppose first that di(F, ψ) = 2 and let P = {P0, P1} be the partition

of F , where P1 is ψ-minimal. In particular, P0 ⇉ P1 and thus Φ(F ) = Φ(P1).

For the decisive partitionM, we must study separately the cases when |M| = 2

and when 2 < |M| ≤ n.
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Subcase 1: If M = {M0,M1} and M0 ⇉ M1 then Φ(G) = Φ(M1). Since P1

is minimal, we have P1 ⊆M1. Hence {M1 \ P1, P1} is a decisive partition of M1

and |M1| ≤ n. Therefore, by inductive hypothesis and because M1 \ P1 ⇉ P1,

Φ(M1) = Φ({Φ(M1 \ P1),Φ(P1)}) = Ψ(P1) and thus Φ(G) = Φ(P1).

Subcase 2: Suppose now that M = {M0, . . . ,Mk−1} and 2 < k < n. Define

the sets M0 = {M ∈ M : M ∩ P0 6= ∅} and M1 = {M ∈ M : M ∩ P1 6=

∅}. We assert that |M0 ∩M1| ≤ 1. Aiming at a contradiction, suppose that

M,M
′

∈ M0 ∩M1. Hence, M ∩ P0 ⇉ M
′

∩ P1 and also M
′

∩ P0 ⇉ M ∩ P1,

which contradicts that M is decisive. Again, we will separately consider the

cases |M0 ∩M1| = 0 and |M0 ∩M1| = 1.

If M0 and M1 are disjoint then Mi is a decisive partition of Pi. For i ∈ 2,

let Ni = {Φ(M) : M ∈ Mi}. Notice that N = {N0, N1} is a decisive partition

of G = {Φ(M) : M ∈ M} such that N0 ⇉ N1. Hence, by inductive hypothesis,

Φ(G) = Φ(N1). But M1 is a decisive partition of P1 and |M1| ≤ n, which

implies that Φ(G) = Φ(N1) = Φ(P1).

On the other hand, suppose that M1 ∩M2 = {M∗}. Then, {M∗ ∩ P1} ∪

(M0 ∪M1) \ {M
∗} is a decisive partition of F

′

= F \ (M∗ ∩ P0). Applying the

inductive assumption to the set M∗ and its partition {M∗ ∩ P0,M
∗ ∩ P1}, we

obtain Φ(M∗) = Φ(M∗ ∩ P1}. Hence:

Φ(G) = Φ{{Φ(M∗ ∩ P1)} ∪ {Φ(M) : M ∈ (M1 ∪M2) \ {M
∗}}} = Φ(F

′

).

But {P1, F
′

\ P1} is also a decisive partition of F
′

with (F
′

\ P1) ⇉ P1, which

implies that Φ(G) = Φ(F
′

) = Φ(P1).

Case 2: Suppose that 2 < di(F, ψ) ≤ n and let P be the decisive partition of

F of cardinality di(F, ψ). For every P ∈ P, we have |P | ≤ n andMP = {M ∈

M : M ⊆ P} is a decisive partition of P . Therefore, Φ(P ) = Φ({Φ(M) : M ∈

MP}). Notice also that P
′

= {G ∩ P : P ∈ P} is a decisive partition of G and

|G| = |M| ≤ n. By the inductive assumption, Φ(G) = Φ({Φ(G ∩ P ) : P ∈ P}).

Furthermore, because of the way G is defined, for every P ∈ P we have:

Φ(G ∩ P ) = Φ({Φ(M) : M ⊆ P}) = Φ({Φ(M) : M ∈MP}) = Φ(P ).

Therefore Φ(G) = Φ({Φ(P ) : P ∈ P}) and thus Φ(F ) = Φ(G). The inductive

proof is complete.
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To prove the continuity of Φ, let F = {xi : i < n} ⊆ X and let U be an open

set containig Φ(F ). By the continuity of ψn, there is a pairwise disjoint decisive

family {Vi : i < n} of open subsets of X such that xi ∈ Vi for every i < n and

ψn(G) ⊆ V for every G ∈ V ∩ Fn(X), where V = 〈V0, . . . , Vn−1〉. Moreover, if

G ∈ Fin(X) ∩ V then {Vi ∩G : i < n} is a decisive partition for G and thus, by

the previous claim, we obtain that:

Φ(G) = Φ({Φ(Vi ∩G) : i < n}) = ψn({Φ(Vi ∩G) : i < n}) ⊆ U,

which guarantees the continuity of Φ.

As an immediate consequence of Corollary 3.2 together with Theorem 3.21,

we get the following result.

Corollary 3.22. Let X be a separable space that admits a continuous weak

selection. Then Sel(Fin(X)) 6= ∅. �

3.7 A selection for K(X)

The counterexample X constructed in Theorem 2.18, being separable, not only

admits a continuous weak selection but a continuous selection on Fin(X). By

Theorem 2.5 we also know that 2X does not admit a continuous selection. How-

ever, we can still ask what happens with the collection of the compact subsets

of X. In order to analyze the compact case, let us prove an easy and well known

result which characterizes compact subsets of Ψ-spaces.

Proposition 3.23 (Folklore). Let B be an AD family and let X be its induced

Mrówka Isbell space. A set K ⊆ X is compact if and only if |K ∩ B| < ω and

|K \
⋃
{B : B ∈ K ∩ B}| < ω.

Proof. Suppose first that |K ∩ B| < ω and |K \
⋃
{B : B ∈ F ∩ B}| < ω. Let

C be a cover for F consisting of basic open sets. For every B ∈ K ∩ B, choose

CB ∈ C such that B ∈ CB. Note that, by hypothesis and since each CB is a

basic open set, (K ∩ ω) ⊆∗
⋃
{CB : B ∈ K ∩ B}. Hence,

C
′

= {CB : B ∈ K ∩ B} ∪ {{n} : n ∈ (K ∩ ω) \
⋃
{CB : B ∈ K ∩ B}}
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is a finite subcover for K.

On the other hand, if K ∩B is infinite then, as |U ∩K ∩B| ≤ 1 for any basic

open set U , K is not compact. Suppose that K ∩ ω \
⋃
{B : B ∈ K ∩ B} is

infinite and for every B ∈ K ∩ B let CB = {B} ∪ B. The cover

C = {CB : B ∈ K ∩ B} ∪ {{n} : n ∈ K ∩ ω \
⋃
{B : B ∈ K ∩ B}}

does not contain a finite subcover for K and thus K is not compact.

Utilizing the idea from the the beginning of Chapter 2, let us make the

following remark. Given a weak selection ψ on ω we can define the function

f : [ω]2 → 2 as follows:

f({n,m}) =

{
0 if ψ({n,m}) = min{n,m}

1 if ψ({n,m}) = max{m,n}
.

Now if we consider in particular the universal weak selection ϕ and the almost

disjoint family B constructed in the proof of Theorem 2.18, by Ramsey’s The-

orem we can find for every B ∈ B an infinite set B∗ ⊆ B such that either

ϕ ↾ [B∗]2 = min or ϕ ↾ [B∗]2 = max. In fact, we can slightly modify the con-

struction of the AD family B to include this additional property. From this

remark and the results obtained in the previous section we obtain a general-

ization of Theorem 2.18, which states that even the existence of a continuous

selection on the collection of compact subets of a space X is not sufficient to

guarantee the weak orderability of X.

Proposition 3.24. There is a separable space which admits a continuous selec-

tion on K(X) but is not weakly orderable.

Proof. Let ϕ be the universal weak selection and let B be the almost disjoint

family introduced in Theorem 2.18, with the extra property that either ϕ ↾

[B]2 = min or ϕ ↾ [B]2 = max for every B ∈ B. Consider the space X =

Ψ(B) and consider also the continuous selection Φ ∈ Sel(Fin(X)) determined

by Corollary 3.22. We will define a continuous selection Θ on K(X) point by

point. LetK be a compact subset ofX. By Proposition 3.23, we can find integers
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q ≤ s, a finite set B0 = {B0, . . . , Bn} ⊆ B, a family A0 = {Ai ∈ [Bi]
≤ω : i ≤ q}

and a finite set F ⊆ ω \
⋃
{Bi : i ≤ n} such that K = F ∪ B0 ∪

⋃
A0. Let

k = min{n ∈ ω : {Bi \ n : i ≤ s} ∪ {{x} : x ∈ F ∪Gn} is decisive},

where Gn :
⋃
{Aj ∩ n : j ≤ q} for every n ∈ ω. The last is possible because of

the extra condition added to B and the fact that B||∗C and B||∗{n} for every

B,C ∈ B and n ∈ ω.

Enumerate the set F ∪ Gk as {m0, . . . , mt} and, for every i ≤ s, set xi =

min(Ai \ k) when (A : i \ k) ∩K 6= ∅ and ϕ ↾ [Bi]
2 = min or xi = Bi otherwise.

Define

Θ(K) = Φ({xi : i ≤ s} ∪ {mj : j ≤ t}).

To prove continuity of Θ in K, let V be a neighborhood of Θ(K). By con-

tinuity of Φ, we can find an r ∈ ω such that r ≥ k and if for every i ≤ s,

Vi = {xi} when xi ∈ ω, and Vi = {Bi} ∪ Bi \ r when xi = Bi, then for

V = 〈V0, . . . , Vs, {m0}, . . . , {mt}〉 ∩ Fin(X) it holds that Φ[V] ⊆ V .

Enumerate the set
⋃
{(Aj∩r)\k : j ≤ q} as {mt+1, mt+2, . . . , mv} and define

W = 〈{B0} ∪B0 \ r, . . . , {Bs} ∪ Bs \ r, V0, . . . , Vs, {m0}, . . . , {mv}〉 ∩ K(X).

Notice thatW is a neighborhood ofK. It only remains to prove that Θ[W] ⊆

V . Let K
′

∈ W. Hence, we can find integers u, w ∈ j + 1 with u ≤ w,

z0, z1, . . . , zw ∈ j + 1, a family A
′

= {A
′

zj
⊆ Bzj

: j ≤ u} and a finite subset

F
′

⊆ ω \
⋃
{Bzj

: l ≤ w} such that K
′

= F
′

∪
⋃
{A

′

zj
: j ≤ u} ∪ {Bzi:i≤w. As

before, define

l = min{n ∈ ω : {Bzj
\ n : j ≤ w} ∪ {{x} : x ∈ F

′

∪G
′

n} is decisive},

where G
′

n =
⋃
{Azj

∩ n : j ≤ u} for every n ∈ ω.

Notice that F
′

⊆ {m0, . . . , mv}∪
⋃
{Bj \r : j ≤ s}, which implies that l ≤ k.

For every j ≤ w, let yj = min(Azj
∩ l) if ϕ ↾ [Bzj

]2 = min and (Bzj
∩ l)∩K

′

6= ∅

and let yj = Bzj
otherwise. Notice also that in the particular case when Θ(K

′

) =

Bzj
for some j ≤ w and ϕ ↾ [Bzj

]2 = min, we have (K
′

∩k)∩(Azj
\l) = ∅ because,

if Mj = (K
′

∩ k) ∩ (Bzj
\ l) were nonempty then ({Mj ∪ {Φ(K)}}) ∪ ({{xi : i ≤

s}} \ Φ(K)) ∪ {{m} : m ∈ {m0, . . . , mv} \Mj} would be a decisive partition
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of {xi : i ≤ s} ∪ {mi : i ≤ v} and Φ(Mj ∪ {Θ(K)}) = minMj , which is not

possible. Therefore, yj = Θ(K). Hence Φ({yj : j ≤ w} ∪ (F
′

∪ G
′

l)) = Φ({yj :

j ≤ w} ∪ (F
′

∪ G
′

l) ∪ {xi : i ≤ s} ∪ {mj : j ≤ v} ⊆ V , which implies that

Θ(K
′

) ⊆ V . We conclude that Sel(K(X)) 6= ∅.

A property useful for obtaining the above result was that for every element of

the almost disjoint family, the defined weak selection agrees with the usual order

of its elements (with respect to min or max). We do not know if the extension

condition holds for every Ψ-space and every continuous weak selection defined

on it. This is the reason to state the following questions:

Question 3.25. Does Sel(K(X)) 6= ∅ for every Mrówka-Isbell space X admit-

ting a continuous weak selection?

Question 3.26. Does every (separable) space which admits a continuous weak

selection admit a continuous selection for all compact sets?

Remark 3.27. The example X presented in Proposition 2.19 also admits a

continuous selection for the collection of its compact subsets, as K(X) = Fin(X).

3.8 A curious example

We conclude the chapter with the following result, which will serve us for two

purposes. On one hand, it presents an example of a Ψ-space that does not

admit a continuous weak selection. On the other hand, it proves that for a given

space X, the existence of a selection for [X]3 does not imply the existence of a

continuous weak selection.

Proposition 3.28. There is a separable space X that admits a continuous se-

lection for [X]3 but Sel(F2(X)) 6= ∅.

Proof. Identify ω with 2<ω. For every f ∈ 2ω let Af = {f ↾ n : n ∈ ω} be the

branch determined by f and define A = {Af : f ∈ 2ω}. Notice that A is an

almost disjoint family of size c and enumerate it by {Aα : α < c}. Enumerate

also the collection of weak selections on 2<ω as {fα : α < c}.



3.8. A CURIOUS EXAMPLE 67

For every α < c we will define a function gα : [Aα]
2 → 2 as follows:

gα({f ↾ n, f ↾ m}) =

{
0 if fα({f ↾ n, f ↾ m}) = f ↾ min{n,m},

1 if fα({f ↾ n, f ↾ m}) = f ↾ max{n,m},

where f ∈ 2ω is such that Aα = Af . By Ramsey’s Theorem , we can find a

gα-homogeneous set Bα ∈ [Aα]
ω such that gα ↾ [Bα] = i for some i ∈ 2. Split

now the set Bα as {B0

α, B
1

α}, so that |B0

α| = |B
0

α| = ω. Define the AD family

B = {B0

α, B
1

α : α < c} and, finally, let X = Ψ(B) be the Mrówka Isbell space

associated with B.

Define the relation � on X as follows:

x � y if






x = y

x, y ∈ 2<ω and x ⊆ y

x = f ↾ n ∈ 2<ω and y = Bi
α , where Aα = Af and i ∈ 2.

The relation � is clearly reflexive, transitive and antisymmetric. It is not total

because elements belonging to distinct branches are incomparable. In general,

when x 6� y and y 6� x, we will write x ⊥ y. In this case, we will associate to

the pair {x, y} an element ∆x,y of ω ∪ {ω} thus:

∆x,y =






min{n : x(n) 6= y(n)} if x, y ∈ 2<ω,

min{n : x(n) 6= f(n)} if x ∈ 2<ω and y = Bi
α ∈ B,

min{n : f(n) 6= g(n)} if x = Bi
α, y = B

j

β with i, j ∈ 2 and α 6= β,

ω if {x, y} = {B0

α, B
1

α} for some α < c.

.

Define the function ρ : [X]3 → X by ρ({x, y, z}) = x if either x � y and x � z,

or x ⊥ y, x ⊥ z and ∆x,y = ∆x,z.

To prove that ρ is well defined, take F = {x, y, z} ∈ [X]3. Notice that F can

contain at most an element that is�-less than any other element of F and, hence,

the function is well defined. Suppose now that x ⊥ y and x ⊥ z. Notice that if

either y ≤ z or z ≤ y, then ∆x,y = ∆x,z and so ρ({x, y, z}) = x. Therefore we

can also suppose that y ⊥ z. If ∆x,y = ∆x,z then x ↾ ∆x,y = y ↾ ∆x,y = z ↾ ∆x,y,

x(∆x,y) 6= y(∆x,y) and x(∆x,y) 6= z(∆x,y), which implies that y(∆x,y) = z(∆x,y)

and then ∆x,y < ∆y,z. In this case ρ(F ) = x. Now suppose that ∆x,y < ∆x,z.
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Then x(∆x,y) = z(∆x,y), which shows that ∆y,z = ∆x,y and thus ρ(F ) = y.

Otherwise, if ∆x,y > ∆x,z we have that ∆y,z = ∆x,z and so ρ(F ) = z.

Let us prove now the continuity of ρ. Let F = {x, y, z} ∈ [X]3 and suppose

that ρ(F ) = x. We study separately both possible cases.

Case 1: x � y and x � z. There are f ∈ 2ω and n ∈ ω such that x = f ↾ n.

In this case, set Wx = {x}. If y ∈ 2<ω, set Wy = {y}. Otherwise, if y = Bi
α

for some i ∈ 2, where Aα = Af , let Wy = {By
α} ∪ (ω \ {f ↾ k : k ≤ n}). In

the same manner, let Wz = {z} if z ∈ 2<ω and let Wz = {z} ∪ {f ↾ k : k ≤ n}

otherwise. HenceW = 〈Wx,Wy,Wz〉 is a neighborhood of F and by construction

ρ[W] ⊆Wx, which guarantees continuity of ρ in F .

Case 2: x ⊥ y, x ⊥ z and ∆x,y = ∆x,z. Suppose first that x ∈ 2<ω and let

Wx = {x}. If also y ∈ 2<ω, let Wy = {y} and let Wy = {y} ∪ Bi
α \ {g ↾ n : n ≤

∆x,y} if y = Bi
α for some α < c and i ∈ 2. Define the set Wz exactly the same

way and consider the open set W = 〈Wx,Wy,Wz〉. Note that for any y0 ∈ Wy

and z0 ∈ Wz we have x ⊥ y0, x ⊥ z0 and ∆x,y0 = ∆x,z0 = ∆x,y. Therefore

ρ[W] = {x}.

Suppose now that x = Bi
α for some α < c and i ∈ 2. Let Aα = Af and

let V be an open set (in X) containing x. Choose n ∈ ω in such a way that

{Bi
α} ∪ B

i
α \ {f ↾ k : k ≤ n} ⊆ V . Let m = max{n,∆x,y} and define Wx =

{x}∪Bi
α \{f ↾ k : k ≤ m}. In an analogous way to the Case 1, if y ∈ 2<ω define

Wy = {y} and if y = B
j

β for some β < c and j ∈ 2, letWy = {y}∪Bj

β\{g ↾ k : k ≤

m}, where Aβ = Ag. In a similar way, define the open set Wz containing z. As

before, define the open set W = 〈W0,W1,W2〉, which satisfies ρ[W] ⊆ Wx ⊆ V .

This proves that ρ ∈ Sel([X]3).

To conclude the proof, we will show that X does not admit a continuous

weak selection. Let h be any weak selection on X and let h ↾ 2<ω = fα. Let

Aα = Af and assume, without loss of generality, that h({B0

α, B
1

α}) = B0

α. Let

V be a basic neigborhood of {B0

α, B
1

α}. Moreover, suppose that there is k ∈ ω

such that V = 〈{B0

α} ∪ B
0

α \ {f ↾ l : l < k}, {B1

α} ∪ B
1

α \ {f ↾ l : l < k}〉. If

fα ↾ [Bα]
2 = f ↾ min{n,m}, choose n,m ∈ ω such that n > m > k, f ↾ n ∈ B0

α

and f ↾ m ∈ B1

α. Then {f ↾ n, f ↾ m} ∈ V and h(f ↾ n, f ↾ m) = f ↾ m /∈ B0

α. In

the other case, if fα[Bα]
2 = f max{n,m}, choose n,m ∈ ω such that n > m > k,

f ↾ m ∈ B0

α and f ↾ n ∈ B1

α. Again, h(f ↾ n, f ↾ m) /∈ B0

α, which shows that h
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is not continuous in {B0

α, B
1

α}. D 
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Chapter 4

Spaces determined by selections

Our analysis of (continuous) weak selections has been developed so far in two

directions. On one hand, we have been interested in the search of required con-

ditions to set up an equivalence between the existence of a continuous weak

selection on a topological space and an order property satisfied by it. On the

other hand, we have studied the extension property of continuous weak selec-

tions in certain spaces, in such a way that we cannot only continuously choose

points from sets of pairs but from finite (or even compact) sets. In both cases,

we start from a given topology for the space and we work with selections and

weak selections that are continuous with respect to the hyperspace topology

determined by the topology of the spaces.

Our goal in this chapter will be somewhat different. Starting from a weak

selection on an arbitrary set, we will define a topology on the base set from the

given weak selection or, more precisely, from the natural relation determined by

it, already mentioned in the preceding chapters. Thus, the given weak selec-

tion will acquire a preponderant role in the corresponding space as topological

properties will be related one or another way to properties satisfied by the given

function.

4.1 The topology τψ

Let ψ be a weak selection on a set X and consider the relation ≤ψ on X.

Throughout this work we have highlighted the order properties satisfied by this

71
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relation and its proximity to define a linear order on X. Because of this, some

authors agree to name it an order-like relation. Following this idea, it is possible

to induce an order-like topology for the set X, where open sets are determined

by sets that correspond to open intervals in the ordered case.

Given a weak selection on a setX, we will work with a notation different from

that introduced in Section 1.6 to represent the sets Lx and Ux for every x ∈ X.

The reason behind this is to stage in a better way the “almost” orderability

condition of the relation ≤ψ. At first, we define the “open intervals” with respect

to ≤ψ as follows:

(←, x)ψ = {y ∈ X \ {x} : y ← x},

(x,→)ψ = {y ∈ X \ {x} : x← y},

(x, y)ψ = (x,→)ψ ∩ (←, y)ψ.

Similarly, we define the “closed intervals” (←, x]ψ = (←, x)ψ ∪ {x}, [x,→)ψ =

(x,→)ψ ∪ {x} and [x, y]ψ = [x,→)ψ ∩ (←, y]ψ. Notice that since ≤ψ is not

a transitive relation, the open sets (x, y)ψ and (y, x) can be simultaneously

nonempty, and likewise for the closed case.

Now that we have defined the corresponding open and closed intervals in X,

we construct the induced topology on X exactly in the same way as when we

start from a linear order on X.

Definition 4.1. Let ψ be a weak selection on a set X. The topology generated

by the weak selection ψ, denoted by τψ, is the one having as subbase the set

B = {(←, x)ψ : x ∈ X} ∪ {(x,→)ψ : x ∈ X}.

Therefore, any basic neighborhood of a point x ∈ X will be determined by

a finite set of points, all of them distinct from x, and their respective arrow

directions.

4.2 Regularity of τψ

Let ψ be a weak selection on a set X and let x and y be points in X such that

x ← y. Suppose first that there is a point z ∈ X \ {x, y} so that {x, y} 6 ||{z}.
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Without loss of generality we can also suppose that x← z ← y. Then Vx = (←

, z)ψ and Vy = (z,→)ψ are disjoint open sets such that x ∈ Vx and y ∈ Vy. Now

suppose that {x, y}||{z} for every z ∈ X \ {x, y}. By proof of Proposition 3.3,

the sets Vx = [x,→)ψ and Vy = (←, y]ψ are clopen, disjoint and, clearly, x ∈ Vx
and y ∈ Vy. Thus, in any case there are disjoint open sets that, respectively,

contain the points x and y, which ensures that (X, τψ) is a Hausdorff space.

In fact, Gutev and Nogura [25] obtained a more general result and proved

that every space of the form (X, τψ) is a regular space. In order to determine

whether it is possible to strengthen this result even more, they state the following

natural question.

Question 4.2 ([25]). Is (X, τψ) a normal space?

Garćıa Ferreira and Tomita have recently answered this question in the neg-

ative.

Proposition 4.3 ([19]). There is a weak selection ψ defined on P, the set of

irrational numbers, such that (P, τψ) is not normal. �

The constructed example is Tychonoff but not normal. This observation

inspired the authors to reformulate the previous question by weakening the sep-

aration condition.

Question 4.4 (Garćıa Ferreira - Tomita). Are there a set X and a weak selection

ψ on X such that the space (X, τψ) is not Tychonoff?

They also provided a partial negative answer in a certain collection of spaces.

Proposition 4.5 ([19]). If ψ is a weak selection on X such that τψ has countable

pseudocharacter, then (X, τψ) is Tychonoff. �

4.3 Components and quasicomponents in τψ

In this section we review a well-known property of spaces of the form (X, τψ),

which is interesting in its own right and will help us to provide a general answer

to Question 4.4. The proof is included for completeness.
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Definition 4.6. Let X be a topological space. For every x ∈ X we define the

following sets:

(1) The (connected) component of x, denoted by Cx, is

Cx =
⋃
{C ⊆ X : x ∈ C and C is connected}.

(2) The quasi-component of x, denoted by C∗x, is defined as:

C∗x =
⋂
{C ⊆ X : x ∈ C and C is clopen}.

For any given space X and any point x ∈ X it turns out that Cx ⊆ C∗x. On

other hand, there are examples where these sets are not the same. However, it

is not the case in the situation that concerns us. We prepare an auxiliary result.

Lemma 4.7 ([20]). Let ψ be a weak selection on a set X. If x ∈ X and y, z ∈ C∗x,

where C∗x is the τψ-quasicomponent of x, then [y, z]ψ ⊆ C∗x.

Proof. Aiming towards a contradiction, suppose that we can find y, z ∈ C∗x[X]

and t ∈ X \ C∗x with y ← t← z. Since t /∈ C∗x there is a clopen set V ⊆ X such

that C∗x ⊆ V and y /∈ V . Define the set

W = (←, t] ∩ V = (←, t) ∩ V.

Notice that W is a clopen set and z /∈ W . It yields a contradiction since

z ∈ C∗x = C∗y ⊆W .

Theorem 4.8 ([20]). Let ψ be a weak selection on X and let x ∈ X. Then

Cx = C∗x.

Proof. We need to prove that C∗x ⊆ Cx. It will be sufficient to show that C∗x is

connected. By Lemma 4.7 we have

C∗x =
⋃
{[y, z]ψ : y, z ∈ C∗x, y ← z and y ← x← z}.

Hence, we are done if we prove that [y, z]ψ is connected, where y, z are as above.

Suppose to the contrary that [y, z]ψ is not connected for some points y, z ∈ C∗x
with y ← z. Thus, there is a clopen (in [y, z]ψ) set W ⊆ [y, z]ψ such that z ∈W
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and [y, z]ψ \W 6= ∅. Take t ∈ [y, z]ψ \W and define T = W ∩ [t, z]ψ. Note that

T is clopen in W ∩ [t, z]ψ, z ∈ T and t /∈ T .

Claim: G = T ∪ [z,→)ψ is clopen in X. Actually, the set G is closed because

T and [z,→)ψ are closed. To prove that G is also open notice first that, since W

is open in [y, z]ψ, we can find an open set (in X) V such that W = V ∩ [y, z]ψ,

z ∈ V and t /∈ V . Therefore:

T = W ∩ [y, z]ψ

= V ∩ [y, z]ψ ∩ [t, z]ψ

= (V ∩ [y, z]ψ ∩ [t, z]ψ) \ (←, t)ψ

= V \ (←, t)ψ ∩ [y, z]ψ ∩ [t, z]ψ

= V \ (←, t]ψ ∩ [t, z]ψ

= E ∩ [t, z]ψ,

where E = V \ (←, t]ψ is open. Therefore

G = T ∪ [z,→)ψ

= (E ∩ [t, z]ψ) ∪ [z,→)ψ

= E ∪ (z,→).

Hence G is a clopen set in X such that z ∈ G and t /∈ G. However, this

contradicts t, z ∈ C∗x. Therefore, we conclude that C∗x is connected and it turns

out that Cx = C∗x.

4.4 (X, τψ) is Tychonoff

Start with a set X and a weak selection ψ on X. Given a point x ∈ X, consider

the sets V0 = (←, x)ψ \ Cx and V1 = (x,→)ψ \ Cx. Take y ∈ Cx and let z ∈ V0.

Suppose first that y ← x. By Lemma 4.7, [y, x]ψ ⊆ Cx. Therefore z ← y because

otherwise we would obtain z ∈ [y, x]ψ, which is not possible. On the other hand,

suppose that x← y. If y ← z then T = {x, y, z} would be a 3-cycle and then x

and y would belong to distinct elements of the canonical partition determined

by the 3-cycle T which is not possible. Thus, in this case we also obtain that

z ← y. We conclude that Cx ⇉ V0. Analogously it can be proved that V1 ⇉ Cx.
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Therefore, any x ∈ X determines a finite decisive partition P ofX, consisting

of two open sets V0 and V1 together with the closed connected set Cx, which

satisfies V1 ⇉ Cx ⇉ V0. With all this, we obtain a strange way to represent the

space (X, τψ).

V0

Cx

V1

Figure 4.1: The space (X, τψ)

Using the last figure, we can arrive to an idea of how to prove the following

result.

Lemma 4.9. Let x 6= y ∈ X and let ψ be a weak selection on X such that x← y.

Then there are τψ-continuous functions f : X → [0, 1] and g : X → [0, 1] such

that:

(1) f(x) = 1 and f ′′[y,→)ψ = {0},

(2) g(y) = 1 and g′′(←, x]ψ = {0}.

Proof. We will prove (1). The proof of (2) can be done in the same manner.

There are two possibles cases:

Case 1: There is a clopen set C ⊆ X such that x ∈ C and y /∈ C.

Let U = (←, y)ψ ∩C. Note that U = (←, y]∩C, which yields U is a clopen

set such that x ∈ C and [y,→)ψ ⊆ (X \ U). In this case, In this case, let

f : X → [0, 1] be the function defined by f(z) = 1 if z ∈ U and f(z) = 0

otherwise.

Case 2: For every C ⊆ X clopen, x ∈ C if and only if y ∈ C.

Then y ∈ Cx. By Theorem 4.8, Cx is connected. Moreover, the relation

≤ψ restricted to Cx × Cx is transitive and hence the component Cx, considered

a subspace of X, is ordered. In particular, it is a normal subspace and thus

[x, y]ψ, being closed in X (and hence in Cx), is also normal. This condition

lets us find a continuous function h : [x, y]ψ → [0, 1] such that h(x) = 1 and
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h(y) = 0. The next step in the proof will be to extend the function h to X.

Define f : X → [0, 1] by

f(z) =






1 if z ∈ (←, x]ψ,

h(z) if z ∈ [x, y]ψ,

0 if z ∈ [y,→)ψ.

.

Notice that, by Lemma 4.7, (←, x]ψ ∩ [x, y]ψ = {x}, [x, y]ψ ∩ [y,→)ψ = {y} and

(←, x]ψ∩[y,→)ψ = ∅. Hence f is well defined. Moreover, since f is continuous on

the closed sets (←, x]ψ, [x, y]ψ and (y,→)ψ we have that f is τψ-continuous.

We finally give a negative answer to Question 4.4.

Theorem 4.10. Let ψ be a weak selection on a set X. Then (X, τψ) is Ty-

chonoff.

Proof. Let x ∈ X and let U be a basic neighborhood of x. There are z0, z1, . . . , zn ∈

X \ {x} such that U =
⋂
{Ui : i ≤ n}, where Ui = (←, zi)ψ if x ← zi and

Ui = (zi,→)ψ if zi ← x. By Lemma 4.9, for every i ≤ n we can find a contin-

uous function fi : X → [0, 1] with f(zi) = 1 and f
′′

(X \ Ui) = {0}. Define the

function f : X → [0, 1] given by f =
∏
{fi : i ≤ n}.

The function f is continuous and, by construction, f(x) = 1. If z /∈ U then

z /∈ Ui for some i ≤ n and so fi(z) = 0, which implies that f(z) = 0. Therefore,

f
′′

(X \ U) ⊆ {0}. This proves that (X, τψ) is Tychonoff.

4.5 Topologies determined by selections

we can try to analyze how this weak selection behaves with respect to the topol-

ogy determined by itself. more generally, we can start from a topological space

that admits a continuous weak selection and investigate the relationship between

the original topology on the space and that induced by the continuous weak se-

lection. Certainly, at the end of Section 1.6 we have implicitly mentioned a

result in this direction.

Proposition 4.11 ([21]). Let ψ be a continuous weak selection on a Hausdorff

space (X, τ). Then τψ ⊆ τ . �



78 CHAPTER 4. SPACES DETERMINED BY SELECTIONS

Therefore a weak selection, when continuous, induces a weaker topology.

This result motivates studying the case where the inclusion in Proposition 4.11

is actually an equality and hence the space not only admits a continuous weak

selection but is topologically determined by it.

4.5.1 wDS spaces

Definition 4.12. A topological space (X, τ) is weakly determined by selections

(wDS) if there is a weak selection ψ on X such that τ = τψ.

Every ordered space is clearly wDS since its topology is determined by the

weak selection ψ = min. In this case, the weak selection is even τψ-continuous.

The converse is not true because, as will be shown in the next subsection, not

even weak orderability of a wDS can be guaranteed.

In [25] the authors present a wide collection of spaces of the form (X, τ),

which admit a τ -continuous weak selection ψ such that τψ 6= τ . As we will see

later, there are spaces for which not only τψ 6= τ but ψ is not τψ-continuous,

even when ψ is τ -continuous. In all these cases ψ is trivially continuous when X

is endowed with the discrete topology. In order to determine wether a space X

admits a minimal topology that makes the weak selection ψ continuous, Gutev

and Nogura [21] ask if it is always possible to find the coarsest topology τ ∗ ⊆ τ

such that ψ is τ ∗-continuous. The following result lets us provide a negative

answer to this question.

Proposition 4.13. Let ψ be a weak selection on a set X. Then τψ is the

intersection of all Hausdorff topologies τ on X such that ψ is τ -continuous.

Proof. Define the topology τ ∗ on X by:

τ ∗ =
⋂
{τ : τ is a Hausdorff topology on X and ψ is τ -continuous}.

By Proposition 4.11 it follows that τψ ⊆ τ ∗. We only need to prove that τ ∗ ⊆ τψ.

For every x ∈ X define

Nx = {U ⊆ X : x ∈ U and U is τψ-open}.



4.5. TOPOLOGIES DETERMINED BY SELECTIONS 79

For every x ∈ X, let τx be the topology generated by Nx ∪ {{y} : y ∈ X \ {x}}.

Thus any point in X \ {x} is isolated and every τψ-open neighborhood of x is

τx-open. Let y ∈ X \ {x} and suppose, without loss of generality, that x ← y;

the other case can be treated likewise. Then Ux = (←, y)ψ and Uy = {y} are

disjoint τx-open sets which respectively contain x and y and Uy ⇉ Ux. This

proves that ψ is τx-continuous for every x ∈ X and thus τ ∗ ⊆
⋂
{τx : x ∈ X},

which yields that τ ∗ ⊆ τψ.

We conclude that there exists the coarsest topology on τ ∗ on X such that ψ

is τ ∗-continuous if and only if ψ is τψ-continuous. In this case, τ ∗ = τψ.

4.5.2 The counterexample again

We study once again the counterexample X = Ψ(B) presented in Chapter 2,

together with the weak selection ϕ extending the universal selection ϕ, but now

we focus on the topology generated by ϕ.

We first consider the universal selection ϕ and ask if it is continuous when we

endow ω with the topology τϕ. Recall that the main property of ϕ states that

for any pair of disjoint sets A and B in [ω]<ω, the set {n ∈ ω : A ⇉ {n}⇉ B} is

infinite. On the other hand, τϕ-open sets are determined by a finite set, assigning

an arrow direction to each one of its elements. The continuity of ϕ would mean

that for any n,m ∈ ω such that n → m we can find finite sets F = F0 ∪ F1

and G = G0 ∪ G1 such that U0 =
⋂
{(←, x)ϕ : x ∈ F0} ∩

⋂
{(x,→)ϕ : x ∈ F1}

and U1 =
⋂
{(←, y)ϕ : y ∈ G0} ∩

⋂
{(y,→)ϕ : y ∈ G1} are disjoint open sets,

containing n and m, respectively, with U0 ⇉ U1. However, this implicitly entails

that two finite sets, or more precisely the arrow direction of two finite sets,

determine a unique way to select point from pairs, which would contradict the

extension property of ϕ.

The next proposition shows that not only the universal selection but its

extending weak selection ϕ is not continuous with respect to the topology it

generates.

Proposition 4.14. Let X = Ψ(B) and ϕ ∈ Sel(F2(X)) be as in Theorem 2.18.

Then ϕ is not a τϕ -continuous.
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Proof. Aiming towards a contradiction, let us suppose that ϕ is continuous with

respect to the topology τϕ defined on X.

Recall that B = {Xα
0
, Xα

1
: α < c} is an almost disjoint family, Xα

0
→ Xα

1

for every α < c and, for every branch A in 2<ω, ϕ ↾ [A]2 ≈ ϕ, where ϕ is

the universal selection. Choose α < c so that {Xα
0
, Xα

1
}||{z} for every z ∈

X \ {Xα
0
, Xα

1
}, i.e. Xα

0
and Xα

1
are indistingushable with respect to ϕ. This is

possible because otherwise X would be weakly orderable. By the τϕ-continuity

of the weak selection ϕ, we can find two disjoint τϕ - open neighbourhoods U0

and U1 of Xα
0

and Xα
0
, respectively, such that U0 ⇉ U1. In fact, we can suppose

that the open sets U0 and U1 are determined by the same finite set F = {yi :

i < n} ∈ [X]<ω \ {Xα
0
, Xα

1
}, with their corresponding arrow directions, in such

a way that U0 =
⋂
{Ui : i < n}∩ (Xα

1
,→)ϕ and U1 =

⋂
{Ui : i < n} ∩ (←, Xα

0
)ϕ,

where Ui = (yi,→)ϕ if {Xα
0
, Xα

1
}⇉ {yi} and Ui = (←, yi)ϕ if {yi}⇉ {Xα

0
, Xα

1
}.

Let Aα be the branch containing Xα
0
∪Xα

1
and, without loss of generality, let

us suppose that ϕ ↾ [Aα]
2 = ϕ ↾ [Aα]

2. We can find k ∈ ω such that {x}||(Aα\k)

for every x ∈ F \Aα. Let A
′

α = (Aα \ k) ∪ (F ∩ k). Since |Aα \A
′

α| < ω and Aα

is a ϕ-positive set, it turns out that A
′

α is also ϕ-positive. Now, as X i
0
||∗{w} for

every w ∈ F ∩ k and i ∈ 2, we can find x0 ∈ X
α
0
\ k and x1 ∈ X

α
1
\ k satisfying:

(1) x0 → Xα
1

and Xα
0
→ x1,

(2) {xi, X
α
i }||{w} for every w ∈ F ∩ k and i ∈ 2.

Notice that x0 ∈ U0 and x1 ∈ U1. Define the finite sets G0 = {w ∈ F ∩ k :

w → Xα
0
} ∪ {x1} and G1 = {w ∈ F ∩ k : Xα

0
→ w} ∪ {x0}. Given that A

′

α

is ϕ-positive and G0, G1 ∈ [Aα]
<ω are disjoint, we can find z ∈ A

′

α \ (G0 ∪ G1)

such that G0 ⇉ {z} ⇉ G1. Hence {z,Xα
0
, Xα

1
}||{w} for every w ∈ F and

x1 → z → x0. There are two possible cases.

Case 1: Xα
0
→ z. Then z ∈ U1. On the other hand, x0 ∈ U0, which should

imply that x0 → z, which is a contradiction.

Case 2: z → Xα
1
. Then z ∈ U0. Since x1 ∈ U1, it occurs that z → x1 which,

again, is not possible.

Remark 4.15. If τ is the Mrówka-Isbell topology associated with the space X =

Ψ(B) then, since ϕ is τ -continuous, we have that τϕ ⊆ τ . Hence (X, τϕ) is not
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weakly orderable because otherwise (X, τ) would also be. We conclude that there

are wDS spaces that are not weakly orderable.

As consequence of Proposition 4.14 we can restate the problem of van Mill

and Wattel, starting now from the fact that a given space has a property stronger

than only admitting a continuous weak selection.

Question 4.16. Is every space X that admits a weak selection ψ which is τψ-

continuous a weakly orderable space?

This is a motivation to study and to identify topological spaces determined by

weak selections that are also continuous with respect to their induced topology.

4.5.3 DS spaces

Definition 4.17. A topological space (X, τ) is determined by selections (DS)

if there is a continuous weak selection ψ on X such that τ = τψ.

In this case, the weak selection ψ is clearly τψ-continuous. In order to try

to relate the DS property with an orderability condition, in this section we will

present some examples of spaces, most of them well-known suborderable spaces,.

The double arrow space

Consider the set R × R and define the order ≺ on it by letting (x, y) ≺ (z, w)

whenever x < z or x = z and y < w. This relation is called the lexicographic

order. The space is a classical example of an ordered space that is studied in a

basic course in topology.

We will be interested in studying this order relation but restricting ourselves

to the set X = R×{0, 1}. This space is often called the Alexandroff double arrow

space. The first reason to present this space is since it provides an example of a

separable ordered space (and hence DS) such that for every x ∈ X we can find

a unique point which is indistinguishable from x with respect to the min weak

selection. That is, there is y ∈ X \ {x} such that {x, y}||X \ {x, y}. Indeed,

given the point (x, 0) ∈ X, we have that for every z ∈ R \ {x} and every i ∈ 2,

(z, i) ≺ (x, 0) if and only if (z, i) ≺ (x, 1). Therefore this separable space has
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uncountably many indistinguishable points, similar to our counterexample, but

turns out to be even ordered.

On the other hand, we will study a well-known subspace of X. To do this,

we should identify how the basic open set ((a, 0), (b, 1) looks when a < b:

R× {0}

(a, 0)

(a, 1)

R× {1}

(b, 0)

(b, 1)

Figure 4.2: The open set ((a, 0), (b, 1))≺

The Sorgenfrey line

We will denote by Rl the set of the real numbers R equipped with the topology

τl having as a base the set B = {[a, b) : a, b ∈ R and a < b}. This space is named

the Sorgenfrey line after R. Sorgenfrey [56], who first presented this example.

Rl is a classical example of a separable, first countable normal space which is

not second countable (and hence not metrizable).

An interesting property satisfied by Rl is that it is homeomorphic to a count-

able disjoint sum of copies of itself. Indeed, for every z ∈ Z, partition the interval

[z,z+1) as
⋃
{[z + 1 − 1

n
, z + 1 − 1

n+1
) : n ∈ ω \ 1} and, for every n ∈ ω, let

Zn =
⋃
{[z + 1− 1

n
, z + 1− 1

n+1
) : z ∈ ω}, endowed with the subspace topology

with respect to τl. It is not difficult to see that Zn ≈ Rl for every z ∈ ω and

hence it can be proved that (Rl, τl) ≈ (Z, τ) =
⋃
{Zn× {n} : n ∈ ω}, where τ is

the topology on Z corresponding to the disjoint sum of Z, i.e. Zn is τ -open for

every n ∈ ω and, fixing n ∈ ω, if U is open in Zn then U × {n} is also τ -open.

Notice that Rl = X ∩ (R × {1}), where X is the double arrow space, and

hence it is a suborderable space. On the other hand, it can be proved that the

Sorgenfrey line is not ordered by proving that none linear order on it determines

its topology. However, the same result can be obtained easier as a consequence

of the following classical result.

Recall that the diagonal of a space Y is ∆(Y ) = {(y, y) ∈ Y × Y : y ∈ Y }
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Theorem 4.18 (Lutzer, [42]). An ordered space with a Gδ diagonal is metriz-

able. �

Since ∆(Rl) =
⋂
{∆n(Rl) : n ∈ ω}, where ∆n(Rl) = {(z, w) ∈ Rl × Rl :

n + z ≥ w} is open for every n ∈ ω, we have that ∆(Rl) is Gδ and thus, the

Sorgenfrey line is a suborderable space that is not ordered.

In a similar way, we can define the space R
∗
l = X ∩ (R × {0}), whose base

of open subsets consists of sets of the form (a, b], where a < b. It can be proved

that Rl and R
∗
l are homeomorphic spaces.

Our interest in the Sorgenfrey line stems from the following: Trying to deter-

mine the strongest orderability condition satisfied by DS spaces, we required to

first establish if it was possible that every DS space might be ordered. The next

result solved our initial question by showing that orderability is not a necessary

condition for a space to be determined by selections.

Proposition 4.19. Rl is a suborderable DS space which is not ordered.

Proof. Let (X, τ) =
⋃
{Xn× {n} : n ∈ ω}. where Xn = Rl if n is odd, Xn = R

∗
l

if n is even and τ is the sum topology on X. Notice that (Rl, τl) ≈ (X, τ). Hence

we can work in X. By construction, basic open sets in Xn×{n} are of the form

[x, y)×{n} if n is odd and (x, y]×{n} if n is even, where x, y ∈ R are such that

x < y. To simplify our notation, for every n ∈ ω write Yn = Xn × {n}.

Define ψ : [X]2 → X as follows: ψ({(x, n), (y,m)}) = (x, n) if and only if

one of the following conditions is met:

(1) x < y and |n−m| ≤ 1,

(2) x = y, n = 2k + 1 for some n ∈ ω and |n−m| = 1,

(3) m− n > 2,

(4) n−m = 2.

We will prove that ψ is continuous and τψ = τ . Let us first show that τ ⊆ τψ.

Fix n ∈ ω and let x, y ∈ R be such that x < y. Define

U = ((x, n+ 1),→)ψ ∩ (←, (y, n+ 1))ψ ∩ (←, (x, n+ 3))ψ.
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By (3) and (4) on the definition of ψ, Yk||{(x, n+1), (y, n+1)} for every k ∈ ω

with |k−(n+1)| ≥ 2. Since (x, n+1)← (z, w)← (y, n+1) for every (z, w) ∈ U ,

we can start from U ⊆ (Yn−1 ∪ Yn ∪ Yn+1). Moreover, since we also know by (3)

that Yn+1 ⇉ Yn+3 and we have that (z, w)← (x, n + 3) for (z, w) ∈ U , it turns

out that U ⊆ (Yn−1 ∪ Yn). Finally, since Yn−1 ⇉ Yn+1 and (z, w) ← (y, n + 1)

for any (z, w) ∈ U , we conclude that U ⊆ Yn. With all this, it is not difficult to

verify that U = [(x, n), (y, n))× {n} if n is odd and U = ((x, n), (y, n)]× {n} if

n is even, which proves that τ ⊆ τψ and, in particular, Xn × {n} is τψ-clopen

for every n ∈ ω.

To prove that τψ ⊆ τ , by Proposition 4.11 it is enough to show that ψ is

τ -continuous. To that end, let (x, n), (y,m) ∈ X be such that (x, n) ← (y,m).

There are three possible cases:

Case 1: n = m. Then x < y. Let z ∈ R be such that x < z < y and define

the τ -open sets U = (x− 1, z)× {n} and V = (z, y + 1)× {n}. We have that U

and V are disjoint open sets such that (x, n) ∈ U , (y, n) ∈ V and V ⇉ U .

Case 2: |n −m| = 1. If x < y then the continuity of ψ in {(x, n), (y, n)} is

verified as in Case 1. If x = y then n is odd and m is even. In this case, define

the τ -open sets U = (x − 1, x] × {n} and V = [x, x + 1) × {m}. It holds that

(x, n) ∈ U , (y,m) ∈ V and, by construction, V ⇉ U .

Case 3: |n−m| > 1. As Yn||Ym and both Yn and Ym are τ -open, it is enough

to define U = Yn and V = Ym.

A suborderable space which is not DS

In this section we will present an easy example of a suborderable space whose

topology cannot be determined by a continuous weak selection. It will follow

that suborderability is not necessary for DS.

Proposition 4.20. X = (0, 1)∪{2}, as a subspace of R, is suborderable but not

DS.

Proof. Let ψ be a continuous weak selection on X. Using an idea similar to

that presented in the proof of Proposition 1.14, we can deduce that either ψ ↾

[(0, 1)]2 = min or ψ ↾ [(0, 1)]2 = max.



4.5. TOPOLOGIES DETERMINED BY SELECTIONS 85

 

 

 

(x, n − 1)

(x, n)

(x, n + 1)

 

 

 

 

 

 

Xn × {n}

Xn+1 × {n + 1}

Xn−1 × {n− 1}

Xn−2 × {n− 2}

Figure 4.3: Case when (x, n) is odd

Without loss of generality, suppose that ψ ↾ [(0, 1)]2 = min. If there is a point

z ∈ (0, 1) such that z ← 2 then, by connectedness of (0, 1) and the continuity of

ψ, it occurs that {2}⇉ (0, 1). In this case, (X, τψ) ≅ (0, 1].

On the other hand, if 2 ← z for some z ∈ (0, 1), then (0, 1) ⇉ {2} and

hence (X, τψ) ≅ [0, 1). In any case, (X, τψ) is not homeomorphic to the space

(0, 1) ∪ {2}.

All the DS spaces we studied were suborderable spaces. In order to determine

if all DS spaces are suborderable, we state the following question.

Question 4.21. Is every DS space a suborderable space?

We do not even know the solution to the van Mill-Wattel problem if we

restrict to the collection of DS spaces.

Question 4.22. Is every DS space a weakly orderable space?

u k
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4.5.4 sDS spaces

Definition 4.23. A topological space (X, τ) is strongly determined by selections

(sDS) if X is DS and τψ = τ for every continuous weak selection τ on X.

An immediate result is that every weakly orderable sDS is ordered. The real

line is an example of a sDS space and even finitely many copies of R are so.

Generally, by Eilenberg and Michael’s results, every connected space can only

admit two continuous weak selectm,m,ions, namely the min and max selections.

Henceb a connected space is DS (and thus sDS) only if it is ordered. By

Proposition 1.29, this happens when X is also locally connected. Therefore

every connected locally connected DS space is sDS. The next example states

that local connectedness is not sufficient.

Example 4.24 ([25]). There exists a locally connected DS space (X, τ) and

ψ ∈ Sel(X, τ) such that τ 6= τψ.

Proof. Let X = {0} ∪ {2−n : n ∈ ω} and let τ be the discrete topology on X.

As the space (X, τ) is discrete (and hence ordered), it is DS. To prove that it

is not sDS, define ψ : [X]2 → X by ψ({x, y}) = min{x, y}. Then, τψ is the

euclidean subspace topology on X and hence τψ 6= τ .

On the other hand, every compact space (X, τ) which is DS is also sDS

simply because if ψ is a continuous weak selection on X, then τψ ⊆ τ and the

identity function i : (X, τ) → (X, τψ) is a continuous closed bijection. Hence

in order to determine if the above properties characterize sDS spaces the next

question is posed in [25]:

Question 4.25 (Gutev-Nogura). Is there a noncompact sDS space that is nei-

ther connected nor locally connected?

The following result gives an affirmative answer to Question 4.25.

Proposition 4.26. There is a sDS space which is neither compact nor con-

nected nor locally connected.
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Proof. Let X =
⋃
{Un : n ∈ ω}, where U0 = (−1, 0] and Un = ( 1

n+1
, 1

n
) for every

n ≥ 1, endowed with the subspace topology τ . Clearly, the space X is neither

compact nor connected. Moreover, the space X is not locally connected at the

point 0. Since the min selection induces the subspace topology on X, we have

that X is a DS space. To prove that it is sDS, let ψ be any continuous weak

selection ψ on X.

We already know that either ψ ↾ [Un]
2 = min or ψ ↾ [Un]

2 = max for every

n ∈ ω and, availing from the fact that each Uk is connected and ψ is continuous,

we also have that Un||Um for every n,m ∈ ω. In any case, notice that for

every interior point x ∈ X \ 0 and any open set U containing it, we can find

a, b ∈ X such that a ← x ← b and (a,→)ψ ∩ (←, b)ψ ⊆ U . Therefore, we only

need to show that any basic open neighbourhood of 0 in X contains a τψ-open

neigbourhood of 0.

Let U = (a, b) ∩ X an open set containing 0 and suppose, without loss of

generality, that a← 0 (the another case is analogous). We can also suppose that

b = 1

n
for some n ∈ ω, i.e. U = (a, 0]∪

⋃
{Uk : k ≥ n}. By the continuity of ψ, we

can also suppose that U \U0 ⇉ U0. Define the set F = {0 < k < n : Uk ⇉ U0}.

If F is empty then, in particular, {a} ⇉ Uk for every 0 < k < n. This last

implies that (a,→)ψ ⊆ (a, 0] ∪
⋃
{Uk : k ≥ n} = U and hence (a,→)ψ ∩ (←, b)ψ

is a τψ-open neighbourhood of 0 contained in U . Therefore, we can suppose that

F is non empty. It should also be noted that Uk ⇉ {0} for every k ∈ F .

By the continuity of ψ and since |F | < ω, we can find an m > n in such a

way that {Uk : k ∈ F} ⇉
⋃
{Us : s > m}. Take z ∈ Um+1 and consider the

τψ open set V = (a,→)ψ ∩ (←, z)ψ. Notice that 0 ∈ V . On the other hand, if

x ∈ X \ U then either x ∈ (0, a] or x ∈ Uk for some k < n. If x ∈ (0, a] then

0 ← x ← a and hence x /∈ V . On the other hand, if x ∈ Uk for some k < n,

there are two possible cases. In the first case, if k /∈ F then, since U0 ⇉ Uk,

x← 0 and again x /∈ V . Finally, if k ∈ F then z ← x, which implies that x /∈ V .

We conclude that V ⊆ U and therefore τ ⊆ τψ

Most of the non compact sDS examples we studied were spaces homeomor-

phic to copies of R or copies of disjoint open intervals on an ordered set, which

occur to be locally connected. The example presented in Proposition 4.26 is

not locally connected but is very close to, since 0 is the only point that does
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not admit a connected local base. This is behind the motivation to present the

following question:

Question 4.27. Let X be a non-compact sDS space. Is the set

{x ∈ X : x is locally connected}

dense in X?.



Chapter 5

Open questions

In this chapter we pose some open questions oirginated from the resuts of this

work. Some of these questions have been presented in previous chapters.

Question 5.1. Let ψ a continuous weak selection on X such that every pair of

points in X are distinguishable with respect to ψ. Is X a weakly orderable space?

Question 5.2. Is every space which admits a continuous weak selection a con-

tinuous ≤ 2− to− 1 preimage of an ordered space?

Question 5.3. Is there a space X such that Sel(F2(X)) 6= ∅ but Sel(K(X)) =

∅?

Question 5.4. Does Sel(K(X)) 6= ∅ for every Mrówka-Isbell space X admitting

a continuous weak selection?

Question 5.5. Let ψ be a τψ-continuous weak selection on X. Is (X, τψ) weakly

orderable?

Question 5.6. Is every DS space a normal space?

Question 5.7. Is every DS space a weakly orderable space?

Question 5.8. Let ψ a continuous weak selection on X such that every pair of

points in X are distinguishable with respect to ψ. Is X a weakly orderable space?

Question 5.9. Is every space which admits a continuous weak selection a con-

tinuous ≤ 2− to− 1 preimage of an ordered space?

89
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Glossary

ω The first infinite countable ordinal. It is the set {0, 1, 2, . . .}. It is identical

to N.

ω1 The first uncountable ordinal.

c The cardinality of R.

f ′′A The image of A under the function f .

Q The set of rational numbers.

P The set R \ P of irrational numbers.

Cp(X,E) For topological spaces X and E, Cp(X,E) denotes the space which

consists of all continuos maps f : X → Y , endowed with the subspace topology

with respect to the product space EX . This topology is named the pointwise

convergence topology.

Banach A Banach space is a vector space over the real or complex numbers

with a norm ‖ · ‖ such that every Cauchy sequence (with respect to the metric

d(x, y) = ‖x− y‖ has a limit.

collectionwise Hausdorff A topological space X is collectionwise Haus-

dorff if for any closed discrete D ⊆ X there are disjoint open sets separating

points of D.

complete (metric space) A metric space X is complete if every Cauchy

sequence of points in X has a limit point that is also in X.

completely metrizable A topological space X is completely metrizable if

it admits a metric d such that the space (X, d) is a complete metric space and

d induces the topology on X.

91
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convex A set C in a linear space X is convex if for all x, y ∈ C and all

t ∈ [0, 1], the point tx+ (1− t)y is in C.

conv(A) For a set A on a linear space X, conv(A) denotes the smallest

convex subset of X containing A.

diamond Principle The diamond principle is a combinatorial principle

which is an independent statement of ZFC. It says that there exists a col-

lection {Aα : α < ω1} such that for every α ∈ ω1 Aα ⊆ α and for any subset A

of ω1 the set A ∩Aα is stationary.

Dugundji Extension Theorem Let L be a normed linear space. For every

space X, for every closed A ⊆ X and for every continuous function f : A → L

there exists a continuous extension f : X → L such that f(X) ⊆ conv(f(A)).

filter A collection F of subsets of ω is a filter if it does not contain the empty

set, A ∩ B ∈ F whenever A and B are in F and if C ∈ F and C ⊆ A then

A ∈ F .

flow network Given a finite directed graph Γ = (X,A) with a source vertex

s and a sink vertex t in which for every edge {u, v} it has been asigned a non-

negative real value c(u, v), named the capacity of u and v, a flow network is a

function f : V × V → R with the following conditions:

(1) f(u, v) ≤ c({u, v}) for all (u, v) ∈ V × V , where c({u, v}) = 0 when

{u, v} /∈ A.

(2) f(u, v) = −f(v, u) for all (u, v) ∈ V × V .

(3)
∑
{f(u, v) : v ∈ V } = 0 for all u ∈ V \ {s, t}.

In this case, the flow of the network is
∑
{f(s, v) : v ∈ V }. zero-dimensional

A topological space is zero-dimensional if it admits a base consisting of clopen

sets.

homogeneous A topological space X is homogeneous if for any x, y ∈ X

there is an homeomorphism f : X → X such that f(x) = y.

linear space A topological space is linear if it is a real vector space endowed

with a (separable metrizable) topology with the properties that the basic vector

functions are continuous.
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locally pseudocompact (group) A topological group is locally pseudo-

compact if it contains a nonempty open set with pseudocompact closure.

Michael line The Michael line is the space (X, τ), where X = R and τ is

the topology with base {(a, b) : a, b ∈ R} ∪ {{x} : x ∈ P}.

net normed A linear space X is normed if it admits a norm ‖ · ‖ such that

the topology of X is induced by the metric d defined by (x, y) = ‖x− y‖.

order topology If (X,≤) is an ordered set, the order topology on X is

the topology generated by sets of the form (x,→)≤ = {y ∈ X : x < y} and

(←, x)≤ = {y ∈ X : y < x}, where x ∈ X.

paracompact A topological space is paracompact if every open cover has a

locally-finite open refinement.

Polish space A topological space X is a Polish space if the topology on X

is compatible with a complete seaparable metric.

pseudocharacter of a point For a spaceX and x ∈ X, the pseudocharacter

of x, denoted by ψ(x,X), is defined as

ψ(x,X) = min{|B| : B is a family of open sets such that
⋂
B = {x}}.

pseudocharacter of a space The pseudocharacter of a topological space

X, denoted by ψ(X) is defined as follows:

ψ(X) = sup{ψ(x,X) : x ∈ X}.

pseudocompact A topological space X is pseudocompact if every continu-

ous function f : X → R is bounded.

Purish set For a topological spaceX such that |{x ∈ X : X\{x} is connected }| ≤

2, a subset Z of X is Purish if for every x ∈ X the following hold:

(a) C[x] ⊆ Z provided C[x] is a singleton, where C[x] is the component of x.

(b) |C[x] ∩ Z| = 1 provided {x ∈ X : X \ {x} is connected } = ∅.

(c) |C[x] ∩ Z| = 2 and {x ∈ X : X \ {x} is connected } ⊆ Z otherwise.
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Ramsey’s theorem This result says that for any mapping f : [ω]2 → 2

there is a set A ∈ [ω]ω such that f ↾ [A]2 = {i} for some i ∈ 2.

scattered A topological space X is scattered if for every closed subset C of

X the set of isolated points of C is dense in C.

sequentally compact A topological space is sequentally compact if every

sequence has a convergent subsequence.

strongly zero-dimensional A topological space is strongly zero-dimensional

if βX is zero-dimensional.

topological group A group G is a topological group if it is endowed with a

topology such that the group’s binary operation and the group’s inverse function

are continuous.

totally disconnected A topological space is totally disconnected if all its

connected componentes are points.

ultrafilter A filter F is an ultrafilter if it is not properly contained in any

other filter or, equivalently, if for every A ⊆ ω either A ∈ F or ω \ A ∈ F .
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[6] P. Cohen, The independence of the Continuum Hypothesis, Proc Natl.

Acad. Sci. U. S. A. 50 (1963), 1143-1148.

[7] C. Costantini, Weak Orderability of some spaces which admit a weak se-

lection, Comment. Math. Univ. Carolin. 47 (2006), no. 4, 609-615

[8] J. van Dalen and E.Wattel, A topological characterization of ordered

spaces, Gen. Topology Appl. 3 (1973), 347-354.

[9] E. K. van Douwen, The integers and topology, in K. Kunen, J. Vaughan,

editors, Handbook of Set Theoretic Topology (1984), North-Holland, 111-

167.

95



Bibliography

[1] G. Artico, U. Marconi, J. Pelant, L. Rotter and M. Tkachenko, Selections

and suborderability, Fund. Math. 175 (2002), 1-33.

[2] G. Beer, R.Tamaki, The infimal value functional and the uniformization

of hit-and-miss hyperspace topologies, Proc. Amer. Math. Soc. 122 (1994),

601-611.

[3] P. J. Cameron, The Random Graph, in R. L. Graham, J. Nešetřil (Eds.),
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