

UNIVERSIDAD NACIONAL AUTÓNOMA

Facultad de Ingeniería

"METODOLOGÍA DE CÁLCULO PARA EL DISEÑO TÉRMICO DE UN RECUPERADOR DE CALOR PARA FLUJOS EN DOS FASES"

Que para obtener el Título de

INGENIERO MECÁNICO

PRESENTA:

ARIS ITURBE HERNÁNDEZ

Director: M.I Eliseo Martínez Espinosa

Ciudad Universitaria Mayo 2010

Universidad Nacional Autónoma de México

UNAM – Dirección General de Bibliotecas Tesis Digitales Restricciones de uso

DERECHOS RESERVADOS © PROHIBIDA SU REPRODUCCIÓN TOTAL O PARCIAL

Todo el material contenido en esta tesis esta protegido por la Ley Federal del Derecho de Autor (LFDA) de los Estados Unidos Mexicanos (México).

El uso de imágenes, fragmentos de videos, y demás material que sea objeto de protección de los derechos de autor, será exclusivamente para fines educativos e informativos y deberá citar la fuente donde la obtuvo mencionando el autor o autores. Cualquier uso distinto como el lucro, reproducción, edición o modificación, será perseguido y sancionado por el respectivo titular de los Derechos de Autor.

Índice de contenido

NOMENCLATURA	1
OBJETIVOS	4
METAS	4
JUSTIFICACIÓN	5
CAPÍTULO 1 INTRODUCCIÓN	7
CAPÍTULO 2 METODOLOGÍA DEL CÁLCULO	11
2. Modelos para la trasferencia de calor y caída de presión del intercambiador	12
2.1. Modelado de dos fases aplicado a la parte interna	13
2.1.2 Trasferencia de Calor	13
2.1.3 Caída de presión	15
2.1.3.1 Componente por fricción (ΔPfi)	15
2.1.3.2 Componente por aceleración (ΔPa)	18
2.1.3.3 Componente por retorno (ΔPb)	
2.2 Modelado de una fase aplicado a la parte externa	19
2.2.2 Transferencia de Calor	19
2.2.3 Caída de Presión	
CAPÍTULO 3 APLICACION DE LA METODOLOGÍA DE CÁLCULO	21
Generalidades del intercambiador considerando en el presente trabajo	
CAPÍTULO 4 ANÁLISIS DE RESULTADOS Y CONCLUSIONES	
CONCLUSIONES:	35
TRABAJO FUTURO:	
RECOMENDACIONES:	
REFERECIAS:	
APENDICE A0	
APENDICE A1	40
APENDICE B	41
APÉNDICE C	43
APENDICE D	47

AGRADECIMIENTOS:

A Dios.

A mis padres: Norma Hernández Rangel y Florencio Iturbe Gonzalez.

A mi hermano Adriot F. Iturbe Hernández y familiares.

A mi director de tesis M.I Eliseo Martínez Espinosa, tutor Dr. William Vicente y Rodríguez, al Dr. Martin Salinas Vázquez.

A mis amigos y compañeros de la carrera e instituto de ingeniería.

Y a todas los profesores que durante mi estancia en esta gran universidad se preocuparon y ocuparon de que transmitir su conocimiento a personas que nos interesa.

NOMENCLATURA

A_{p0}	área libre de la superficie exterior del tubo (m^2/m)
A_0	área exterior total del tubo aletado (m ² /m)
A_{f}	área de la aleta (m ² /m)
$A_{\rm C}$	área proyectada (m ² /m)
A_n	área libre de flujo (m ² /m)
A_1, A_2	Coeficiente experimental para columna de tubos aletados
A_{w}	área promedio homogénea de la pared del tubo (m²/m) $$
\mathbf{A}_{i}	área interior del tubo (m ² /m)
A_{itotal}	área interior del banco de tubos (m ²)
A_n	área libre de flujo(m ² /m)
Ср	calor especifico a presión constante (J/kgK)
$d_{\rm v}$	diámetro equivalente en volumen (m)
d_0	diámetro exterior del tubo liso (m)
d_{f}	diámetro exterior del tubo aletado (m)
\mathbf{d}_{i}	diámetro interior del tubo (m)
$e_{\rm w}$	espesor del tubo (m)
$e_{\rm f}$	espesor de aleta (m)
\mathbf{f}_{s}	ancho de aleta (m)
Fr	número de Froude
g	aceleración debida a la gravedad(m²/s)
G	flujo másico por unidad de área (kg/sm ²⁾

$\mathbf{h}_{\mathbf{i}}$	Coeficiente convectivo interno (W/mK)
h_0	Coeficiente convectivo externo (W/mK)
$h_{\rm r}$	Coeficiente de transferencia por radiación (W/mK)
k	conductividad térmica del flujo (W/mK)
\mathbf{k}_{w}	conductividad térmica del material del tubo (W/mK)
lf	longitud de aleta (m)
Le	longitud efectiva de tubos (m)
Nr	número de tubos por línea
Nt	número de líneas de tubos
р	presión (Pa)
Ts	temperatura promedio en la aleta (K)
Te1, Te2	temperaturas de entrada y salida del fluido de mayor temp-
Te1, Te2 Ti1,Ti2	temperaturas de entrada y salida del fluido de mayor temp- temperaturas de entrada y salida del fluido de menor temp.
Te1, Te2 Ti1,Ti2 n _f	temperaturas de entrada y salida del fluido de mayor temp- temperaturas de entrada y salida del fluido de menor temp. número de aletas (1/m)
Te1, Te2 Ti1,Ti2 n _f Nu	temperaturas de entrada y salida del fluido de mayor temp- temperaturas de entrada y salida del fluido de menor temp. número de aletas (1/m) número de Nusselt
Te1, Te2 Ti1,Ti2 n _f Nu Pr	temperaturas de entrada y salida del fluido de mayor temp- temperaturas de entrada y salida del fluido de menor temp. número de aletas (1/m) número de Nusselt número de Prandlt
Te1, Te2 Ti1,Ti2 n _f Nu Pr Ra	temperaturas de entrada y salida del fluido de mayor temp- temperaturas de entrada y salida del fluido de menor temp. número de aletas (1/m) número de Nusselt número de Prandlt rugosidad media (m)
Te1, Te2 Ti1,Ti2 n _f Nu Pr Ra Re	temperaturas de entrada y salida del fluido de mayor temp- temperaturas de entrada y salida del fluido de menor temp. número de aletas (1/m) número de Nusselt número de Prandlt rugosidad media (m) número de Reynolds
Te1, Te2 Ti1,Ti2 n _f Nu Pr Ra Re R _{fo}	temperaturas de entrada y salida del fluido de mayor temp- temperaturas de entrada y salida del fluido de menor temp. número de aletas (1/m) número de Nusselt número de Prandlt rugosidad media (m) número de Reynolds factor de ensuciamiento externo (m ² K/W)
Te1, Te2 Ti1,Ti2 n _f Nu Pr Ra Re R _{fo} R _{fi}	temperaturas de entrada y salida del fluido de mayor temp- temperaturas de entrada y salida del fluido de menor temp. número de aletas (1/m) número de Nusselt número de Prandlt rugosidad media (m) número de Reynolds factor de ensuciamiento externo (m ² K/W) factor de ensuciamiento interno (m ² K/W)
Te1, Te2 Ti1,Ti2 n _f Nu Pr Ra Re R _{fo} R _{fo}	temperaturas de entrada y salida del fluido de mayor temp- temperaturas de entrada y salida del fluido de menor temp. número de aletas (1/m) número de Nusselt número de Prandlt rugosidad media (m) número de Reynolds factor de ensuciamiento externo (m ² K/W) factor de ensuciamiento interno (m ² K/W) número de Reynolds dos fases

S_{L}	paso longitudinal (m)
\mathbf{S}_{T}	paso transversal (m)
S_{f}	espacio entre aletas (m)
Tb	temperatura promedio de los gases (K)
Ts	temperatura promedio en la aleta (K)
$T_{\rm w}$	temperatura en la pared de tubo (K)
$t_{\rm w}$	espesor en la pared (m)
t_{f}	espesor de aleta (m)
U	Coeficiente global de transferencia de calor (W/m^2K)
vb	viscosidad cinemática promedio (gases)
We	número de Weber
W_{f}	anchura de aleta (m)
Xc	factor de obstrucción
х	calidad (%)

Griego

ρ	densidad de los flujos (kg/m ³)
η	eficiencia de aleta
μ	viscosidad dinámica de los flujos (kg/(ms))
ψ	factor de corrección en tipo de fase
υ	viscosidad cinemática
σ	tensión superficial
φ	Factor de corrección para caídas de presión

OBJETIVOS

General.

 Desarrollar una metodología de cálculo para el diseño térmico de un recuperador de calor para flujos en dos fases, que permita su integración al diseño de una caldera de recuperación de calor de circulación forzada.

Particulares

- Desarrollo de un software de cálculo que permita su integración al diseño de calderas de recuperación de calor.
- Analizar diferentes dimensiones de aleta y configuraciones en el arreglo de tubos.

METAS

- La obtención de un software de cálculo.
- Presentación del trabajo en un congreso nacional.

JUSTIFICACIÓN

Actualmente existe una gran preocupación por la alteración del sistema climático mundial, ocasionado por la acumulación de gases de efecto invernadero. Una meta mundial es la reducción de estos gases en poco más de 5% en promedio respecto a los niveles que se tenían en 1990 durante el período de 2008-2012 (Protocolo de Kyoto [1]). Existen diversos mecanismos para minimizar las emisiones de GEI como la sustitución de combustibles fósiles por fuentes alternas de energía (solar, eólica, etc.) uso de combustibles con nulo contenido de carbono como el hidrógeno, el desarrollo de tecnologías nucleares como la fusión nuclear o la disminución en el consumo de combustibles fósiles mediante procesos de generación de energía más eficientes. Una opción de impacto inmediato que no requiere cambios importantes en la infraestructura del sector industrial es el planteamiento de proyectos de recuperación de energía térmica. En este tipo de proyectos se puede lograr el máximo aprovechamiento de la energía residual de los gases de combustión en recuperadores de calor compactos y se estima que se pueden llegar a eficiencias en los equipos de combustión de 86% (DOE Energy Tips-steam [2]).

Un recuperador de calor básicamente es un intercambiador de calor compacto (Figura 1 y 2) que utiliza los gases de combustión como fuente de energía para el calentamiento de fluidos de trabajo, precalentamiento de fluidos para combustión o generación de vapor.

Fig. 1 Configuración de los fluidos

Fig. 2 Evaporador compacto

Los gases se enfrían a temperaturas mayores al punto de rocío de los gases ácidos para evitar problemas de corrosión. Sin embargo, en la mayoría de los casos las temperaturas en los tubos son superiores al punto de rocío de los gases y por ende, es viable una mayor recuperación de energía. Por lo tanto, en el presente trabajo se plantea el desarrollo de una metodología de cálculo de recuperadores de calor para flujos en dos fases (evaporador) que permita el diseño óptimo de estos equipos.

CAPÍTULO 1 INTRODUCCIÓN

Conceptos y definiciones del intercambiador de calor.

Un recuperador de calor es un aparato que facilita el intercambio de calor entre dos fluidos que se encuentran a temperaturas diferentes evitando que se mezclen entre si. El recuperador de tubo doble está constituido por dos tubos con céntricos de diámetros diferentes. Uno de los fluidos fluye por el interior de menor diámetro a una menor temperatura menor (Ti) y el otro fluye por el espacio anular entre los dos tubos a una temperatura mayor (Te). En este tipo de recuperadores son posibles dos configuraciones en cuanto a la dirección del flujo de los fluidos: contra flujo y flujo paralelo. En la configuración de flujo paralelo los fluidos entran por el mismo extremo y fluyen en el mismo sentido. En la configuración en contra flujo los fluidos entran por extremos opuestos y fluyen en sentidos opuestos. En un recuperador de calor en flujo paralelo la temperatura de salida del fluido de menor temperatura de salida del fluido anular (Te2). El caso límite se tiene cuando Ti2 es igual a la Te1. La temperatura de salida del fluido interno Ti2 nunca puede ser superior a Te1.

Los recuperadores de calor aprovechan la energía térmica contenida en los gases de escape, producto de la combustión en cualquier proceso industrial. Dentro de estos equipos se tienen superficies extendidas de intercambio de calor en forma de bancos de tubos. En las centrales de ciclo combinado los gases de escape de la turbina de gas se utilizan para generar vapor en las calderas de recuperación (HRSG, Fig.3). En la industria rara vez se dispone de espacios grandes por lo que el tamaño de la caldera de recuperación debe ser el menor posible, lo cual nos lleva a un diseño de recuperadores de calor compactos. El diseño de recuperadores de calor requiere un cálculo adecuado de los fenómenos de transferencia de calor y de la dinámica de fluidos. En la actualidad, existen dos métodos principales de diseño; el que utiliza técnicas de dinámica de fluidos computacional (CFD) y el que utiliza modelos semiempíricos. El método CFD proporciona información completa y detallada de las variables relevantes de los fenómenos termodinámicos y los evalúa con cierta precisión, dependiendo de los modelos usados. Sin embargo, esta técnica requiere una buena infraestructura computacional, teórica y de grandes tiempos de cálculo, no siempre disponibles en el sector industrial. Los modelos semiempíricos permiten una evaluación rápida y sencilla de los fenómenos termodinámicos, con una infraestructura computacional mínima. Sin embargo, la información proporcionada no es detallada y la precisión de los resultados esta en función de las correlaciones utilizadas. Por lo tanto, se analizará el método semiempírico para el análisis de recuperadores de calor a nivel industrial.

Fig. 3. Caldera de recuperación de vapor.

Los tubos aletados helicoidal mente (Fig.4) se han utilizado para obtener diseños de recuperadores de calor compactos porque la turbulencia y transferencia de calor de un flujo de gases calientes se incrementa. Sin embargo, la caída de presión de los gases también aumenta y puede presentarse un problema de contra presión. Por lo tanto, el uso de modelos predictivos adecuados permitirá la obtención de diseños más eficientes y con menor riesgo de que se presenten problemas operativos.

Figura 4. Tubo aletado helicoidalmente segmentado.

Existen algunos trabajos que se han enfocado al análisis de tubos aletados helicoidal mente o de recuperadores de calor compactos. La mayoría de los estudios, se han enfocado al análisis de tubos con aletas helicoidales sólidas como el trabajo desarrollado por Genic y col. [3]. Existen pocos trabajos enfocados al análisis de tubos con aletas helicoidales y segmentadas y por consiguiente hay pocos modelos para evaluar la transferencia de calor y caída de presión. Entre los estudios más utilizados para el análisis de tubos con aletas helicoidales y segmentadas, se encuentra el trabajo desarrollado por Weierman [4, 5], quien desarrolló correlaciones para la transferencia de calor y factor de fricción de arreglos de tubos en línea y estratificados. Estas correlaciones fueron modificadas por la empresa ESCOA [6, 7] (Extended Surface Corporation of America) para obtener mejores modelos predictivos. Posteriormente, Nir [8] presentó correlaciones de fácil aplicación pero con desviaciones del orden de 10%. Finalmente, Kawaguchi y col. [9] presentaron modelos más recientes pero que no han sido validados experimentalmente aún. Actualmente, algunos autores como Martin [10, 11] ha tratado de utilizar la ecuación generalizada de Lévêque [12] para geometrías complejas. Sin embargo, los resultados todavía no han sido concluyentes.

Algunos de los modelos descritos anteriormente han sido validados experimentales en equipos e instalaciones académicas como lo muestran los trabajos desarrollados por Hoffmann y col. [13], quienes validaron las correlaciones de Weierman [4, 5] and Lévêque [12]. Otros autores como Naess [14, 15] han validado experimentalmente el modelo de Weierman [4, 5] y Nir [8] con mejores resultados en las correlaciones de Weierman [4, 5].

En la parte interna el coeficiente convectivo fue calculado utilizando el modelo de Dumont y Heyen [24], este modelo se considera el cálculo de los coeficientes convectivos por separado para cada una de las fases. Para evaluar cada una de las fases se empleo el modelo de Geniliski, que de acuerdo con Bejan [20] es el mejor modelo disponible en la literatura abierta. Para la caída de presión interna el modelo de Beattie-Whalley corregido por Friedel, de acuerdo a Ghiaasiaan [19] es uno de los métodos mas precisos disponible hasta hoy en día. Esta correlación se basa en un banco de datos muy amplio y es aplicable para flujos de dos fases en uno o dos componentes.

Los modelos de Kaguaguchi y Weierman se emplearon para el calculo de la parte externa, que de acuerdo con Martínez [23] son los que tienen los mejores resultados. El modelo de Kaguaguchi es el que se adapta a las condiciones planteadas en el presente trabajo, por lo tanto es el que se utilizara. La caída de presión externa se calculó con el modelo de Weierman [6,7]. En el análisis se consideró un máximo valor permisible de 248.9 [Pa] (1 pulgada columna de agua) [22] para evitar problemas operacionales. Los resultados que se obtengan del presente estudio ayudarán a comprender mejor el comportamiento de este tipo de equipos y permitirán tener una base experimental para estudios más detallados como las simulaciones numéricas.

CAPÍTULO 2 METODOLOGÍA DEL CÁLCULO

La metodología de cálculo del RACHS se realizó con el método de la Diferencia de Temperaturas Media Logarítmica (DTML) el flujo de calor (Q*) del recuperador de calor es:

$$Q^* = A * U_0 * \Delta T \tag{A}$$

La diferencia de temperatura media logarítmica entre los fluidos anular (Te) e interno (Ti)

$$\Delta T = \frac{(TeI - Ti2) - (Te2 - TiI)}{\ln \frac{(TeI - Ti2)}{(Te2 - TiI)}}$$
(B)

El método DTML considera la evaluación de los coeficientes convectivos de transferencia de calor al interior y exterior de la tubería aletada, factores de ensuciamiento típicos dependientes de los materiales utilizados, geometría de la tubería y la resistencia térmica para la evaluación del Coeficiente Global de Transferencia de Calor (U₀). Este coeficiente se determina en base a la superficie exterior del arreglo de tubos como se muestra en la siguiente ecuación:

$$U_{0} = \frac{1}{\frac{A_{0} + A_{0}R_{f0}(h_{0} + h_{r})}{(h_{0} + h_{r})(\eta_{f}A_{f} + A_{i})} + \frac{e_{w}A_{0}}{k_{w}A_{i}} + (\frac{1}{h_{i}} + R_{fi})\frac{A_{0}}{A_{i}}}$$
(1)

El coeficiente por radiación de (h_r) puede despreciarse si la temperatura de los gases de combustión es menor a 300°C [8], como es el caso del presente estudio. El modelo propuesto por Shah [25] que son dependientes del tiempo y variables que no aplican en este caso, por lo cual dichos factores interno (R_{fi}) y externo (R_{f0}), considerados en el presente trabajo se determinaron mediante tablas (Apéndice D). En el caso de las propiedades térmicas de los materiales y gases de combustión se utilizaron tablas de Ganapathy [8] tales como k_w, que es la conductividad térmica del tubo.

2. Modelos para la trasferencia de calor y caída de presión del intercambiador

En los recuperadores de Calor con tubos Aletados Helicoidalmente y Segmentados (RCAHS) se incrementa la transferencia de calor del flujo de externo, sin embargo la caída de presión de los gases aumenta y puede presentarse un problema de contra-presión. Por lo tanto, el uso de de los modelos predictivos adecuados permitirá la obtención de diseños mas eficientes y con menor riesgo de que se presente problemas operativos. A continuación, se presenta el análisis del RCAHS, considerando para su estudio la parte interna y externa del banco de tubos por separado.

Primero se analizara la parte interna, en donde los modelos para la transferencia de calor de Dumont – Heyen [24]. y el modelo de Geniliski , que de acuerdo con Bejan [20] es el mejor modelo disponible en la literatura abierta. Para la caída de presión el flujo en dos fases se obtiene con el modelo de Beattie - Whalley corregido por Friedel, que de acuerdo a Ghiaasiaan [19] es uno de los métodos mas precisos disponible en la literatura abierta. Esta correlación se basa en un banco de datos muy amplio. Es aplicable para flujos de dos fases en uno o dos componentes

A continuación, para la parte externa, en el calculo del coeficiente convectivo externo, se emplearon los modelos de Kaguaguchi y Weiermar , que de acuerdo con Martínez [23] son los que tienen los mejores resultados. La caída de presión externa se calculó con el modelo de Weierman[6,7], según Martínez es el mejor modelo predictivo ya que sus valores son siempre superiores a los datos experimentales, y tiene la mejor precisión (más del 89%). En el análisis de la caída de presión, se consideró un máximo valor permisible de 248.9 [Pa] (1 pulgada columna de agua) [22] para evitar problemas operacionales tales como contra flujo.

Para determinar las propiedades térmicas de los fluidos del tubo aletado, se utilizaron tablas de propiedades (apéndice C) para los gases residuales, tablas de vapor de agua, así como tablas de propiedades para el agua disponibles en cualquier texto de mecánica de fluidos, transferencia de calor y termodinámica:

273 K < T < 100 K, P < 1000bar 1100 K < T < 2000 K, P < 100bar

2.1. Modelado de dos fases aplicado a la parte interna

2.1.2 Trasferencia de Calor

El modelo de Dumont y Heyen [24] se utilizo para el cálculo del coeficiente convectivo interno (h_i) , con la siguiente ecuación:

$$h_i = \sqrt[3]{h_{\text{conv}}^3 + h_B^3} \tag{2}$$

Para el coeficiente de convección tenemos:

$$\left(\frac{h_{\text{conv}}}{h_{l0}}\right)^{-2} = \left[(1-x)+1.2x^{0.4}(1-x)^{0.01}\left(\frac{\rho_{\text{liq}}}{\rho_{\text{vap}}}\right)^{0.37}\right]^{-2.2} + \left[\frac{h_{g\theta}}{h_{lo}}x^{0.01}(1+8(1-x)^{0.7}(\frac{\rho_{\text{liq}}}{\rho_{\text{vap}}})^{0.67}\right]^{-2}$$
(3)

El modelo de Dumont considera el cálculo de los coeficientes convectivos por separado para cada una de las fases . El coeficiente convectivo de cada fase se determino con el modelo de Geniliski (ec.4), que de acuerdo con Bejan [20] es el mejor modelo disponible en la literatura abierta.

$$Nu = \frac{h d_i}{k} = \frac{(f_i/8)(Re - 1000) Pr}{1 + 12.7 \sqrt{(f_i/8)}(Pr^{2/3} - 1)}$$

$$f_i = \frac{1}{(1.82 \log_{10} Re - 1.64)^2}$$
(4)

Reescribiendo la ecuación 4 se tiene:

$$h_{i0} = \frac{k \left(\frac{1}{8\sqrt{(1.82\log_{10}Re_{i0}) - 1.64}}\right) (Re_{i0} - 1000) \operatorname{Pr}}{d_i \left(1 + 12.7\sqrt{\left(\frac{1}{8\sqrt{(1.82\log_{10}Re_{i0}) - 1.64}}\right) (\operatorname{Pr}^{2/3} - 1)}\right)}$$
(5)

donde Re_{l0} es el Reynols fase liquida, k es la conductividad térmica del liquido o vapor y Pr el número de Pranldt.

$$R e_{l0} = \frac{G d_i}{\mu_l} \tag{6}$$

$$G = \frac{m_{interno}}{N_r A_i} \tag{7}$$

$$Pr = \frac{Cp \,\mu}{k} \tag{8}$$

Para fase solo vapor tenemos:

$$h_{g0} = \frac{k \left(\frac{1}{8\sqrt{(1.82\log_{10} R e_{g0}) - 1.64}}\right) (R e_{g0} - 1000) \operatorname{Pr}}{d_i \left(1 + 12.7\sqrt{\left(\frac{1}{8\sqrt{(1.82\log_{10} R e_{g0}) - 1.64}}\right) (\operatorname{Pr}^{2/3} - 1)}\right)}$$
(9)

Para la fase gaseosa el número de Reynolds se calcula:

$$Re_{g} = \frac{Gd_{i}}{\mu_{g}}$$
(10)

En la etapa de ebullición se presentan distintos patrones de flujo que ocasionan un cambio en la tasa trasferencia de calor. El coeficiente debido a la ebullición se obtuvo mediante a la ecuación (11):

$$h_{B} = \psi \, 18418 \left(\frac{q_{o}}{15 \times 10^{4}}\right)^{n(p_{o})} \left[2.692 \frac{0.43}{p_{o}} + \frac{1.6 \frac{p_{o}}{p_{o}}}{1-p_{o}}\right] \left(\frac{0.01}{d_{i}}\right)^{0.5} \left(\frac{R_{a}}{10^{-6}}\right)^{0.133} \left(\frac{G}{100}\right)^{0.25} \left[1-\frac{0.1}{p_{o}}\left(\frac{q_{o}}{q_{PB}}\right)\right]$$
(11)

$$n = k(0.8 - 0.13) \times 10^{(0.66 \, p_o)} \tag{12}$$

$$q_{PB} = 9.19 \times 10^6 p_o^{0.4} (1 - p_o)$$
⁽¹³⁾

$$p_{o} = \frac{p}{p_{c}} = \frac{p}{220.34} \tag{14}$$

14

El cambio en la tasa de transferencia de calor ocasionada por los distintos patrones de flujo (presentados en el apéndice C) son considerados mediante el factor de corrección experimental Ψ y K para HRSG de la Tabla 1.

Tabla 1 Valores de coeficientes de corrección

	Valor	Valor	Valor para HRSG
	Mínimo	máximo	
K	0.72	1	0.81
Ψ(flujo anular	0.74	1	0.87
Ψ(flujo de tapón)	0.65	1	0.8
Ψ (estratificado - en ondas)	0.45	0.86	0.65

2.1.3 Caída de presión

La ecuación de momento para mezclas en dos fases [6], se utilizo para el cálculo la caída de presión de interna ΔP_{ifinal} , se consideran tres componentes: por fricción (ΔP_{fi}), aceleración (ΔP_a) y por retorno (ΔP_b).

$$\Delta P_{ifinal} = \Delta P_{i} + \Delta P_{a} + \Delta P_{b} \tag{15}$$

2.1.3.1 Componente por fricción (ΔP_{fi}).

En el modelo para mezclas homogéneas (MH) se asume una mezcla homogénea en las dos fases y que se fluyen a una misma velocidad. Una manera simple para calcular la caída de presión en dos fases con el modelo para mezclas homogéneas (MH) puede obtenerse haciendo una analogía con el flujo para una sola fase. En dicha analogía se considera un flujo homogéneo a lo largo de una tubería unidimensional y recordando que para un flujo turbulento en una fase tenemos la ecuación (17).

Del lado derecho de la ec. (16) tenemos el gradiente de presión en términos de una sola fase que resulta de la analogía anterior, multiplicada por un factor de corrección propuesto por Friedel, que de acuerdo con Ghiaasiaan [6] es el mejor factor de corrección para flujos en dos fases en tubos horizontales disponible en la literatura abierta. Mientras que en el lado izquierdo de la ec.(16) tenemos el gradiente de presión debido a la fricción en términos de las dos fases.

$$\left[\Delta P_{fi}\right]_{\text{fases}} = \left[\Delta P_{fi}\right] \Phi_{\text{L0}}^2 \tag{16}$$

$$\Delta P_{\rm fi} = 4 f_{\rm up} \frac{1}{d_i} \frac{G^2}{2 \rho_{\rm up}}$$
(17)

El factor de fricción en dos fases, f_{ip} es determinado con el modelo de Colebrook:

$$\frac{1}{\sqrt{f_{w}}} = -2\log\left(\frac{\varepsilon/2}{3.7} + \frac{2.51}{Re_{w}\sqrt{f_{w}}}\right)$$
(18)

donde ε/D es la rugosidad relativa, Re_{tp} es el número de Reynolds para dos fases determinados por la expresión:

$$R e_{ip} = \frac{G d_i}{\mu_{ip}} \tag{19}$$

La viscosidad dinámica μ_{tp} de las dos fases es calculada con la correlación de McAdams [5], amplia mente utilizada en mezclas homogéneas para vapor- líquido en dos fases es:

$$\mu_{tp} = \left(\frac{x}{\mu_{g0}} + \frac{1 - x}{\mu_{l0}}\right)^{-1} \tag{20}$$

de manera semejante se calcula ρ_{tp} que es la densidad de las dos fases:

$$\rho_{\psi} = \left(\frac{x}{\rho_{g0}} + \frac{1 - x}{\rho_{I0}}\right)^{-1} \tag{21}$$

El factor de corrección para el flujo horizontal en dos fases utilizado fue el de Friedel (Φ^2_{L0}),

$$\Phi_{L0}^{2} = A + 3.24 \mathbf{x}^{0.78.} (1-x)^{0.24} (\frac{\rho_{l0}}{\rho_{g0}})^{0.91} (\frac{\mu_{g0}}{\mu_{l0}})^{0.19} (1-\frac{\mu_{g0}}{\mu_{l0}})^{0.7} Fr^{-0.0454} We^{-0.035}$$
(22)

donde We es el número de Weber definido como $We = \frac{G^2 d_i}{\rho_{ip}\sigma}$ y el número de Freud es

definido como $Fr = \frac{G^2}{d_i g \rho_{ip}^2}$, mientras que el parámetro A se calcula con la ecuación:

$$A = (1-x)^2 + x^2 \rho_{l0} f_{g0} (\rho_{g0} f_{l0})^{-1}$$
(23)

donde los parámetros fg0 y fl0 son los son factores de fricción monofásica, que son calculados usando la ecuación (24), considerando $Re_{j0} = \frac{Gd_i}{\mu_{j0}}$ donde j= 10 o g0. Para régimen de flujo turbulento(Re_{j0}>1500) Friedel [6] recomienda:

$$f_{j0} = 0.25 \left[0.86859 \ln \left\{ \frac{R e_{j0}}{1.964 \ln R e_{j0} - 3.8215} \right\} \right]^{-2}$$
(24)

Finalmente acoplando la ecuación (23) y la ec.(24) el factor de corrección de Friedel resulta:

$$\Phi_{L0}^{2} = (1-x)^{2} + x^{2} \rho_{l0} f_{g0} (\rho_{g0} f_{l0})^{-1} + 3.24 x^{0.78} (1-x)^{0.24} (\frac{\rho_{l0}}{\rho_{g0}})^{0.91} (\frac{\mu_{g0}}{\mu_{l0}})^{0.19} (1-\frac{\mu_{g0}}{\mu_{l0}})^{0.7} Fr^{-0.0454} We^{-0.035}$$
(25)

2.1.3.2 Componente por aceleración (ΔPa)

Los términos de aceleración son a menudo importantes en flujo de dos fases. En la ebullición en estado estable, la magnitud del término aceleración es comúnmente mayor que el gradiente de presión por fricción. Obtenido con la ecuación:

$$\Delta P_{a} = \frac{G^{2}}{\rho_{p}} - \frac{G^{2}}{\rho_{l0}}$$
(26)

2.1.3.3 Componente por retorno (ΔPb)

La componente para la caída de presión por retorno esta definido por:

$$\Delta P_b = \Phi_{L0} K \frac{G^2}{2 \rho_{tp}}$$
⁽²⁷⁾

donde K es el coeficiente de pérdida obtenido de tablas (Apéndice A)

De manera similar a la caída de presión por fricción se utiliza un factor de corrección, la correlación de Chisholm, para dos fases en la caída de presión por retorno es:

$$\Phi_{L0} = (1-x)^2 \left(\frac{1+20}{X} + \frac{1}{X^2}\right)$$
(28)

donde X es el parámetro de Martinelli definido:

$$X = \sqrt{\frac{\Delta P_{liquido}}{\Delta P_{vapor}}} = \left(\frac{1-x}{x}\right)^{0.875} \left(\frac{\rho_{g0}}{\rho_{l0}}\right)^{0.5} \left(\frac{\eta_{l0}}{\eta_{g0}}\right)^{0.125}$$
(29)

2.2 Modelado de una fase aplicado a la parte externa

2.2.2 Transferencia de Calor

En la parte externa del tubo, la transferencia de calor se calculará con el modelo de Kawaguchi [5] para banco de tubos aletados helicoidalmente y segmentados. El modelo esta en términos del número Nusselt, de acuerdo a la siguiente expresión:

$$Nu = A_2 R e_v^{0.784} \Pr^{\frac{1}{3}} \left(\frac{s_f}{d_v}\right)^{-0.062}$$
(30)
para 7000 \le Rev \le 50000 y 0.112 \le sf/dv \le 0.198

donde A_2 es el coeficiente para fila de tubos aletados, depende de N_L es el número de filas por las que pasa el flujo, los valores comerciales son en listados en la siguiente tabla 2. Re_v es el número Reynolds equivalente en volumen, sera determinado como sigue:

$$Re_{v} = \frac{Gd_{v}}{\rho_{\text{aire}}v_{\text{aire}}}$$
(31)

El es el diámetro equivalente en volumen d_v

$$d_{v} = \sqrt{t_{f} n_{f} \{ (d_{0} + 2 \cdot h_{f})^{2} - d_{0}^{2} \} + d_{0}^{2}}$$
(32)

donde t_f , n_f y h_f son el espesor, el número y altura de la aleta, respectivamente, d_0 es el diámetro exterior del tubo liso.

Tabla 2 Coeficiente para filas de tubos aletados segmentados

NL	3	4	5	6
A2	0.0500	0.0576	0.0618	0.0635

2.2.3 Caída de Presión

La caída de presión de los gases se calculó con el modelo de Weierman [3]. En el análisis se consideró un máximo valor permisible de 248.9 [Pa] (1 pulgada columna de agua) [13] para evitar problemas operacionales.

Con la referencia anterior se determinó la caída de presión de los gases residuales mediante la siguiente correlación empírica:

$$\Delta P_{0} = \frac{(f_{0} + A)G^{2}N_{r}}{1.083 \times 10^{9}\rho_{ex}}$$
(34)

donde f_0 es el factor de fricción, ρ_{gp} es la densidad de la fase gaseosa y N_r número de líneas de tubos. *a* esta definida con la siguiente expresión:

$$A = \frac{(1+B^2)\rho_{gp}}{4N_r} \tag{35}$$

donde *B* esta definido como el cuadrado de la relación entre el área libre de la superficie exterior del tubo y el área exterior total del superior de calentamiento.

El factor de fricción f para diño en el banco de estratificado es:

$$f_{0s} = 0.07 + 8Re^{-0.45} \left[0.11 \left(\frac{0.05 S_T}{d_0} \right)^{-0.7 \left(\frac{l_r}{s_f} \right)^{0.25}} \right] \left[1.1 + \left(1.8 - 2.1 e^{-0.15 N_r^2} \right) e^{-2 \left(\frac{S_L}{S_T} \right)} - \left(0.7 - 0.8 e^{-0.15 N_r^2} \right) e^{-0.6 \left(\frac{S_L}{S_T} \right)} \right] \left(\frac{d_f}{d_0} \right)^{0.5} \left(\frac{T_b}{T_f} \right)^{-0.25}$$
(36)

20

CAPÍTULO 3 APLICACION DE LA METODOLOGÍA DE CÁLCULO

En este capítulo se presenta una galería de imágenes de uno de los entornos de trabajo que se utilizaron en el software realizado.

		MENU DE OPCIO	DNES	
	Fluido Exterior]	Diámetro	os de tubo nominales:
1	Aire			0.38
2	Gases de gas natural			0.5
3	Gases de fuel-oil			0.63
4	Gases de Turbogas			0.75
				1
	Fluido Interior			1.25
5	Agua líquida			1.5
6	Fluido térmico			1.75
7	Aire			2
8	Gases de fuel-oil			2.5
9	Vapor de agua			3
	Materiales:			
А	Acero al carbón			
в	Cobre			
С	Aluminio			
	Tipo de arreglo:			Tipo de Interccambiador
11	Sólido en Línea		Р	Paralelo
12	Sólido Estratificado		С	Contracorriente
21	Serreteada en Línea			
22	Serreteada Estratificada			
	Opciones			Elección
El	ige el fluido exterior (1 - 4))	2	Gases-GN
Е	lige el fluido interior (5-9)		5	Agua
	Material del tubo (A o B)		А	Acero al carbón
N	Material de la aleta (A o C)		Α	Acero al carbón
Ι	Diámetro nominal del tubo		2	###
Elig	ge un Arreglo (11, 12, 21, 2	2)	22	Estratificado
	Tipo de aleta			Serreteada
Гіро с	le presión de trabajo (alta, b	baja)	baja	Tubo Fluxing
O	peración del equipo (C o P))	С	Contracorriente

Modulo 1-A Menú de opciones

Figura 5 Modulo 1-A

Modulo 1-B Parámetros de diseño

PARÁMETROS DE DISEÑO			
Datos de Diseño	SI		
Longitud efectiva del tubo	m	3.4	
Número de tubos por línea		12	Nr
Número de líneas de tubos propuesto		6	Nt
Paso Transversal	m	0.1143	
Paso Longitudinal	m	0.0991	
Paso Diametral	in		
Datos capturados para base de datos			
Diámetro exterior del tubo	m	0.0508	
Espesor del tubo	m	0.00305	
Número de aletas por pulgada			
Altura de la aleta	m	0.02540	
Espesor de la aleta	m	0.00124	
Área de las obstrucciones (sección transversal)			
Segmento de la aleta	m	0.00394	
Area de la aleta	m2	0.01000	
Condiciones de Operación			
Temperatura inicial del fluido exterior (Te1)	°C	450	
Temperatura final del fluido exterior (Te2)	°C	225	
Temperatura inicial del fluido interior (Ti1)	°C	100	
Flujo másico del fluido exterior	kg/s	9	
Flujo másico del fluido interior	kg/s	6.5	
Presión de los gases	kPa	100	
Temperatura de saturación del fluido interior	°C	114	
Temperatura final del fluido interior Ti2(propuesta)		150	
Radio de curvatura	m	0	

Figura 6 Modulo 1-B

	CALCULO DE CAIDA DE PRESI	ON INTERNA P	ARA DOS	FASES				
					-	factor de fricción propuesto	0.020969565	a iterar
					eldi	rugosidad relativa	0.001006621	aiterar
			-		ciui	Baize	0.144808719	
	1.74	76.0558339				Marze Marze	6 905661546	
	2	19.62 m	-2			III NAMERI	6 905661578	
	((1))_r0 875	4 89580502	52		line	factor de friegién des faces modele Colebraek	0.020969565	
	((1-3)(3) 0.013 (p=0/p10)00 5	0.10444754			mp	Tactor de moción dos rases modelo colebrook	0.020303303	
	(pgorpio) 0.5	125777049			ð:	Orea interna	0.001569576	-2
v	Darámetre de Martinelli	0.69430246			mi	Arealmenta	0.001303310	1112
^	201V	20 005000040						
	11/22	20.0030034			2			
1	Easter de Companiée de Lieuride (Ma	2.01444011			2	Calcula da la anna ante frianica anna la		
LOZ	r actor de Corrección de Liquido(i*iai	31.0003370			£	Calculo de la componete micción para la	calda de pres	ion
					Deter	Deve al de a faces a	215457 5721	
					неф	Reynolds dos rases	7 100255-05	K-l
					μα	Viscosidad dinamica didos rases	1. IDU30E-U0	Kgrms Male 2
					Ptp	Citate Costases	00.34241400	Ngrmo
					ΔPfr	Laida de presión dos rases por fricción	0.000070050	
		2	-		-	4ftp	0.083878259	
					10	GZ/(Zrotp)	883.5443443	
							13636.55363	
					ΔΡΙΠ	Laida de presion por friccion dos fases	45228.55366	Pa
					ΔРЬ	Caida de presión por retornos de dos fases	2436.540174	Pa
					۵P	Caida de presiòn parte interna dos fases	47665.09984	Pa
alo	Eactor de correción para retorno	31,255483			∆Pfrl	Caida de Presión por fricción (modelo Fr	iedel)	
ΨĽŪ	actor de concelor para retorno	01.200400			fa	factor de fricción fase gaseosa		
					0	1.964"Ln (ReG)-3.8215	23.32133293	
	Calculo de la componete acele	eración para la	caída de	presión	1	0.86859Ln(ReG/0)	9.268559884	
					fa	Factor de fricción fase gas	0.002910151	
	G2/ptp	1779.08989				277		
	G2/oI0	129,926013			fl	Factor de fricción fases líquida		
APa	Caida de presión por aceleración	1649 16388 P	-(3)					

Modulo 2-A Calculo de caída de presión interna

Fig. 7 Cálculos para la caída de presión interna

	Cálculos para coeficiente co		Cálculo coeficiente debido a convección							
	vapor									
	(Prg0°2/3)-1	0.003081133		numer	t"hi0"Z"1.1				1387603.201	
	Gdi	15.42752332	Kg/ms	denom3	raiz d ť 2+	Z°2.2			52.91291537	
Reg0	Reynolds fase gas	1004680.059	100000							
Pra0	Pranldt interno solo gas	1.004625258	2	heony	Coeficien	te convectivo		3	26224.28175	WIm2*
-	(Rea0-1000)Pra0	1008322.338								
					Cálculo de	el coeficiente debido	a ebullición			
		0.04400000								DTU
hgt	Factor interno vapor (Gnielinski)	0.01160269	_	q	Flujo de calor			2	2572.595468	BIU/s
	ξ/8	0.001450336			-					
	raiz d ξ/8	0.03808328		P	Relacion	de presiones			0.037472806	
numerador	k"ξ/8"Reg0-100"Prg0	41.9700263		n	constante	para nucleación			0.709262265	
	(\$/8)*(Prg0^2/3)-1	4.46868E-06		d3	18418"(q")	15e4)în			310270.5606	
	raiz d (ξ/8)*(Prg0^2/3)-1	0.002113925		d4	2.692"p"^	0.43		(0.655802442	
	1+12.7° raiz d (ξ/8)° (Prg0°2/3)-1	1.026846848		d5	1.6°p**6.5				8.57582E-10	
enom	r6r*di	0.045904161		d6	1-p*^4.4			0.99999947		
				d7	(0.01/di)°0.5		0.472962609			
hg0	Coeficiente conv. Fase vapor	914.296764	W/m2*C	d8	(Ra/101.6)10.133				0.219825092	
				d9	(G/100)°0.	25			1.362973641	
	(1-x)	0.86		d10	1-p**0.1			1	0.279935132	
	(1-x)°0.01	0.998492908		gorb	9.19°6"p**	0.4"(1-p")			155880.7778	W/m2
	(1-x)°0.7	0.899806064		eO	(g'/gerb)			- 81	0.016503609	
	1.2°x^0.4	0.546553224		e1	d5/d6				8.57582E-10	
grad	(p10/p40)^0.37	5.321270188		e2	d4+e1			(0.655802443	
-	(1-s)+1.2*s*0.4*(1-s*0.01	1.405729518		e3	e2'd7				0.310170034	
Z	(1-x)+1.2"x"0.4"(1-x"0.01" grad	7.480266575		e4	d8'd9				0.299615806	
Aris N	relacion coeficientes gas-liquido	0.314125608		e5	e4'd10'e0)			0.001384207	
	x^0.01	0.980530891		e6	e3'e5				0.00042934	
dada	1+8(1-yr0 7	8 198448516		hiB	e6'd3				133 2114245	Wim24
arad2	[01040-0120 67	20.63841655		THE	00 00				100.2111210	
fru	Arie N° v°O O1	0.308009862			Cálculo de	a coeficiente conuect	iuo interno fin:	al		
dach	dada"grad2	169 2029955			Calculo di	e obendierke obriveou	wo interno fine	-		
t t	fru [*] dash	52 11619138		c1	heanu ² 3				1.80348E+13	
•	ind dash	32.11013130		07	WB'3				2363874 509	
				02	nib 5			2	1 903/9F+13	
					01+02	Cálculo de coe	ficiente cor	weetive int	erno final	
						Calculo de ODE	novenice our		cino mia	
					c1	hconv [°] 3		1.8E+13		
					o2	hiB^3		2363875		
				-	ct	c1+c2		1.8E+13		
				-	hi	Coeficiente copu	interno final	26224 28	WIm2*C	
				10		Soenoiente conv.	a service findi	20227.20	THE C	

Modulo 2-B Calculo del coeficiente convectivo interno

Figura 8 Cálculos para coeficiente convectivo interno.

	c	ALCULOS PARA	LA CAIDA DE	PRESION EXTER	NA Y COEFIC	IENTE EXTE	RNO	2		
					SI		Para diseño esca	alonado		P
		0.147ft	ł		31		C2	0.2		-
di	diametro interno	1.760 ir	n	4.47%	m			0.2		-
							<u>C4</u>	1.2		
Ai	Area interna de un tubo	0.461ft	t2/ft	14.04%	m2/m					
							<u>C6</u>	0.96	i	_
Aitotal	Area interna de los tubos	2.765ft	t2/ft	25.68%	<u>m2/m</u>					
df	diametro exterior de aleta	2 250	n 2	0.219/	m 2	-	I	0.28		-
Ш	<u>diametro</u> extendi de aleta	5.2501		0.21%			B	0.30		-
sf	espacio entre aletas	0.118	n	0.30%	m2		-	0.5		-
		0.110		0.50%			а	-0.02		+
Ap0	Area libre de la <u>sup ext</u> del tubo	0.370ft	t2/ft	11.27%	<u>m2/m</u>				1	
							Apext	0.87		
AO	Area exterior total del superior	5.787ft	<u>t2/ft</u>	176.39%	<u>m2/m</u>					
	calentamiento/L				1		Discussion bild			
AfO	Superficie de la aleta per lengitud	E 410ft	2 /ft	165 109/	m 2/m	Dn	Diametro hidr	aulico	1.549	<u>6 m</u>
ALV	Superficie de la aleta por longitud	5.4101	2/16	105.12 /		Ga	velocidad ma	sica entre tubos	566 719	Ka/m2
AC	Área provectada de la aleta por longitud	0.197ft	t2/ft	6.01%	m2/m	-	reiselaud mu.		500.717	o Isg/III a
					12.00		LNr(St-Ac)		158.819	6m2
An	Área neta en una línea de tubos por longitur	17.099ft	t2/ft	521.16%	<u>m2/m</u>					
						Gn	velocidad ma	sica de flujo <u>Ext</u>	2035407.579	6Kg/hrm
dv	diametro equivalente (en Volumen)	0.2031		6.18%	m					
	tf*nf	0.204		20,40%		Rev	#Reynolds eq	ulvalente <u>n EXI</u>	1259532.239	6
	(de+2bf)/2	0.073	2	25.40%	m2		0		120 619	KilkaC
	do ⁴ 2	0.075	12	0.00%	m2		viscosidad		0.009	Kalsm
	(do+2hf)*2-do*2	0.046ft	2	0.42%	m2		do		5.089	6 m
	tf*nf((do+2hf)*2-do*2)	0.013		0.12%	m2		k gases StSI		4 199	KI/smC
				N					0.989	6m2
				4		3	Adv		0.30%m2	
Dh	Diametro hidraulico	0.051E	t	1.54%	ш		Ao		176.409	6m2/m
C -	uplosidad masica entre tubes	1.101	h lith D a	FCC 710	Valor 2c					
64	velocidad masica entre tubos	1.1611	0/1125	566.71%	Ng/IIIZS	Reh	#Reynolds his	draulico (AP) EXTERNA	3144.047	5
	(Nr(St-Ac)	17 095 ft	2	158.81%	m2	Bai	#Downolds or		10220.000	_
110.00		11.0554		150.017		NEI	# Key Holds ex	<u> </u>	10320.969	4
Gn	velocidad <u>masica</u> de flujo <u>Ext</u>	4168.637	lb/hr ft2	2035407.57%	Kg/hrm2	Pr	# <u>Prandl</u> tubo	8		
Rev	#Revnolds equivalente h EXT	12594,199		1259532.23%		Drf	#Prandl Aleta			
					8		#Fland Aleca			
	Qe	0.288B	TU/Ib ºF	120.61%	Ki/KgC	Nuss	#Nusselt (700	00≤ <u>Rev</u> ≤50000)		
	viscosidad	0.067	b/hr.ft.	0.00%	Kg/sm					
	do	0.167ft		5.08%	m	Ad	Area ducto tra	ansversal		
	<u>k</u> gases	0.024B	TU/hr ft ºF	4.19%	KI/smC		for the state of the	14 - (6 1)		
	SISI	0.106ft2		0.98%	m2	I	ractor de frico	tion (tiam)		
	Adv	0.032ft	2	0.30%	mz	- +	factor de frico	ion(f turb)		
	Ao	5.787	12/11	176.40%	m_/m	-	I ractor de friccion(<u>I turb</u>)			
Reh	#Reynolds hidraulico (AP) EXTERNA	3143.7672		3144.0475	5	hext	coef EXT de to	ransf de calor	78.956	<mark>3</mark> W/m2 9
						_				
Rei	# <u>Reynolds ext</u>	10319.9814		10320.9692	2					

Modulo 3 Calculo de caída de presión y coeficiente convectivo externos

Figura 9 Cálculos para caída de presión y coeficiente convectivo externo.

Generalidades del intercambiador considerando en el presente trabajo

El tipo de intercambiador que se consideró en el estudio es de circulación forzada con tubos horizontales acuatubular a contracorriente.

Fig. 6 Temperaturas en Contracorriente

Tubos	[mm]	Aletas	[mm]	Arreglo tubo	s [mm]
d ₀	50,8	$l_{\rm f}$	30	ST	114,3
e _w	3,05	Ls	20	SL	99,1
di	47,75	e _f	1,2	Nr	12
L _{tf}	3400	$\mathbf{S}_{\mathbf{f}}$	3,94	Nt	6
L _{tb}	1	f_s	2	Arreglo estra	tificado
L _{tube}	3500	\mathbf{f}_{d}	1,2		
		d_{f}	50		

El conjunto de ecuaciones siguientes del apéndice A0 y los modelos para el cálculo de las propiedades termodinámicas con los valores en parámetros de diseño del recuperador de calor forman parte del programa realizado en OpenCalc V 3.1.

Dicho programa considera tres módulos, y tres librerías, el primer modulo comprende los parámetros de diseño (Figura 5) y el menú de opciones (Figura 6) en donde se capturan los datos de entrada. En el modulo 2-A se tiene los cálculos para la caída de presión interna (Fig. 7), y en el modulo 2-B los cálculos para el coeficiente convectivo interno (Fig.8). En el modulo 3 (Fig.9) se tienen los cálculos para la caída de presión y el coeficiente convectivo externos. Cada una de las librerías contiene los datos y tablas de propiedades termodinámicas presentadas en el apéndice D

Para determinar el impacto de los coeficientes convectivo interno y externo en el coeficiente global, se partió de un valor en el coeficiente convectivo externo de 86 [W/m²K] aumentando un 10% su valor hasta llegar a un 90%, Posteriormente se dejo constante el coeficiente convectivo externo y se inicio con un valor en el coeficiente convectivo interno de 25,000 [W/m²K]se incremento porcentual mente hasta un 90% A continuación se realizó un análisis en la relación de pasos (pitch) variando dicha relación a partir de un valor igual a 1, ya que valores menores a 1 son físicamente inviables.

Ya elegido un pitch, se procedió a un análisis para determinar una altura de aleta óptima, para poder observar el comportamiento de las variables como coeficiente de transferencia global y caída de presión externa, se propuso una adimensionalización de estas como sigue:

$$\Delta P^{\star} = \frac{\Delta P_{calc}}{\Delta P_{max}} \quad ; \quad U^{\star} = \frac{U_{calc}}{U_{max}}$$

donde Δp_{calc} es la caída de presión calculada y Δp_{cmax} es el valor máximo en la caída de presión.

A continuación se realizó un análisis de la parte interna referido al coeficiente convectivo, en la caída de presión con un máximo permisible de $3x10^5$ [Pa], la calidad es uno de los principales parámetros que rigen el desempeño interno, por lo cual se realizo una variación de esta en un rango del 1 al 95%, con el fin de obtener un rango de calidades óptimo para las condiciones del presente trabajo.

CAPÍTULO 4 ANÁLISIS DE RESULTADOS Y CONCLUSIONES

Los coeficientes convectivos interno y externo impactan en distinta proporción al coeficiente global de transferencia de calor, como se muestra en la Tabla 3.1. En la tabla se presenta el impacto de cada coeficiente convectivo (interno y externo) sobre el coeficiente global de transferencia de calor. Por ejemplo, un incremento en el coeficiente convectivo interno un 100% se refleja en un aumento del coeficiente global del 4.39%. Por otra parte, al incrementar el valor del coeficiente externo en un 100% el coeficiente global aumentó un 34.87%. Los resultados muestran que la fase gaseosa es la que tiene un mayor impacto en la transferencia de calor. Por lo tanto, el coeficiente convectivo de transferencia de calor externo tiene un mayor impacto en el coeficiente global de transferencia de calor y por consiguiente domina la transferencia de calor

	TABLA 3.1		
Incremento en hi [%]	Incremento de U [%]	Incremento en hext[%]	Incremento de U [%]
10	0.7720	10	4.9325
20	1.4245	20	9.4305
30	1.9833	30	13.5490
40	2.4672	40	17.3341
50	2.8902	50	20.8247
60	3.2633	60	24.0539
70	3.5948	70	24.0539
80	3.8912	80	29.8374
90	4.1578	90	32.4370

Tabla 3.1 Impacto de los coeficientes convectivos en el coeficiente global

A continuación se realizará un análisis enfocado a la parte externa, en donde las variables principales son: la caída de presión, coeficiente de transferencia de calor convectivo y global. En lo que se refiere al coeficiente convectivo externo algunos de los parámetros relevantes del coeficiente convectivo externo, son la altura de aleta, la proporción de pasos transversal (pitch) y longitudinal.

El análisis en la relación de pasos se realizó una variación a partir de un valor igual a 1, ya que valores menores a 1 son físicamente inviables, en la gráfica siguiente (4.1) se presenta la relación de pasos y su impacto en uno de los parámetros principales de este estudio, el coeficiente convectivo externo.

Gráfica 4.1 Coeficiente convectivo externo a distintos rangos de pasos

En la gráfica 4.1 se observa que el máximo coeficiente convectivo de transferencia externo se encuentra constante para un relación de pasos entre 1 y 1.143. Por lo tanto se seleccionara este rango para continuar con el análisis de la parte externa. En las tablas 3.2, 3.3 y en la gráfica 4.2 se presentan los resultados para la caída de presión externa y coeficiente de transferencia de calor adimensionalizados ante un aumento en la altura de aleta.

En las tablas 3.2 y 3.3 se encuentran las principales variables de este estudio, en donde la diferencia radica en la relación elegido para su evaluación. A una relación de pasos de 1.14 corresponde un ángulo de 60 grados, en su configuración dentro del banco de tubos.

En la tabla 3.4 se puede observar que los rangos en la caída de presión calculada que van desde 32 hasta los 176.47 [Pa], a diferencia de los rangos en la caída de presión calculada para un relación entre pasos longitudinal y transversal de 1 (al cual corresponde un ángulo de 45 grados) que van desde 44.8 hasta los 194.47 [Pa].

Es decir, para un máximo en el coeficiente convectivo externo, tenemos una menor caída de presión con una relación de 1.14 (con un ángulo de 60 grados). Por lo tanto se elige esta relación para continuar con el análisis de la parte externa.

	TABLA 3.2			
	Con ST/SL=1			
haleta [mm]	U*	Ucalc [W/m2K]	ΔP^*	ΔP calc [Pa]
9.53	1.0000	224.42	0.2412	44.8
12.7	0.7625	171.11	0.3146	58.4
15.88	0.5729	128.56	0.4319	80.16
19.05	0.4454	99.96	0.5923	109.92
22.23	0.8764	87.61	0.7105	131.9
25.4	0.3469	77.85	0.8454	156.90
28.58	0.3127	69.95	0.9785	186
31.75	0.3037	68.15	1.0000	194.47

TABLA 3.3

	Con ST/SL=1.14			
haleta [mm]	U*	Ucalc [W/m2K]	$\varDelta P^*$	ΔP calc [Pa]
9.53	1.0000	218.81	0.1818	32.0
12.7	0.7641	167.19	0.2443	43.0
15.88	0.6187	135.38	0.3174	55.87
19.05	0.5194	113.64	0.4065	71.54
22.23	0.4468	97.76	0.5144	90.5
25.4	0.3912	85.59	0.6457	113.65
28.58	0.3472	75.97	0.8060	142
31.75	0.3114	68.15	1.0000	176.47

Una vez elegido una relación de pasos de 1.14, se procede a un análisis para determinar una altura de aleta óptima, como se puede observar en las tablas 3.2 y 3.3 En las tablas se observa que el coeficiente de transferencia de calor global disminuye mientras que las caída de presión aumenta, ya que estas variables no tienen las mismas dimensiones se propuso una adimensionalización de estas para observar su comportamiento ante un aumento en la altura de aleta ya que se suponía un posible cruce.

En la gráfica 4.2 se observa que ante un aumento en la altura de aleta, la caída de presión externa adimensionalizada aumenta, mientras que el coeficiente global de trasferencia de calor adimensionalizado disminuye. El comportamiento de las curvas conllevan a el cruce antes supuesto y ahora confirmado en la gráfica 4.2 que corresponden una altura de aleta de 22 [mm], para un arreglo de tubos estratificado, el cual es propuesto para estudios posteriores con técnicas de mecánica de fluidos computacional.

Gráfica 4.2 Coeficiente convectivo externo a distintos rangos de pasos

A continuación se presenta un análisis de la parte interna referido al coeficiente convectivo y caída de presión, para asegurar un rango de operación óptimo y evitar problemas operacionales tales como contra-presión, se considero un máximo de $3x10^{5}$ [Pa] en la caída de presión interna.

La calidad es un parámetro que nos permite analizar las variables como la caída de presión y coeficiente convectivo interno. Por lo cual para el análisis del la parte interna se vario dicho parámetro para observar el desempeño de la caída de presión y coeficiente convectivo.

En la gráfica 4.3 se observa el coeficiente convectivo interno tiene sus mayores valores para un rango de calidades del 20 - 40%, por otro lado el coeficiente de transferencia global permanece constante, este comportamiento se debe a la magnitud del coeficiente convectivo interno (alrededor de los 18,000 - 26,000 [W/m²K]), que de acuerdo a la ecuación (1), el inverso de dicho valor es muy pequeño (.00005555 – 0.00003846 [m²K/W]).

En lo que refiere al desempeño de la caída de presión en el interior, en la gráfica 4.4 se observa un comportamiento exponencial, por lo tanto se recomienda un análisis en los rangos de calidad para no sobrepasar el máximo permisible en la caída de presión interna de 300 [kPa].

Gráfica 4.3 Coeficiente convectivo externo a distintos rangos de pasos

En la tabla 3.4 se tienen los resultados de algunas de las principales variables involucradas en la parte interna como lo son el coeficiente convectivo y caída de presión interna con su impacto en el coeficiente de transferencia de calor global, las tres variables se encuentran en función del incremento de la calidad.

En la tabla 3.4 se observa un rango máximo del coeficiente de transferencia de calor global de 224.91 a 224.8[W/m²K] correspondiente a un rango de calidad de 20-40% y una caída de presión interna dentro de un rango de 50 – 156 [kPa], el cual se encuentra dentro del máximo permisible de 300 [kPa]. Por lo tanto se recomienda un rango de calidades de 20 - 40%

Calidad [X]	hi[W/m²k]	U[W/m² K]	∆Pint[Pa]
0.01	20481.71	221.49	1155.66
0.05	22956.11	223.48	6939.34
0.1	24173.72	224.32	17816.03
0.15	24788.48	224.71	32217.57
0.2	25102.53	224.91	50007.28
0.25	25228.34	224.98	71199.93
0.3	25221.88	224.98	95876.32
0.35	25115.47	224.91	124149.12
0.4	24929.40	224.80	156144.47
0.45	24677.09	224.64	191989.41
0.5	24367.46	224.44	231801.36
0.55	24006.23	224.21	275677.30
0.6	23596.40	223.93	323681.05
0.65	23138.23	223.61	375826.62
0.7	22628.55	223.24	432054.75
0.75	22058.96	222.81	492199.11
0.8	21411.54	222.29	555939.53
0.85	20647.80	221.64	622761.24
0.9	19675.00	220.75	692143.17
0.95	18201.83	219.23	766995.27

TABLA 3.4

Tabla 3.8. Desempeño de la parte interna a distintas calidades

CONCLUSIONES:

Se encontró una metodología para el cálculo del diseño térmico de un recuperador de calor para flujos en dos fases bajo un análisis integral determinando las condiciones óptimas de la altura en aleta que resultó ser 2.2 [cm] con una relación de pasos (pitch) de 1.14, la cual corresponde un ángulo de 60 grados. Dicha configuración nos permite tener un máximo en el coeficiente convectivo externo de $80[W/m^2K]$ con un mínimo en la caída de presión (por ejemplo para un coeficiente global adimensionalizado (U*) de 1 la caída de presión de $S_T/S_L = 1.14$ es 25% menor a la caída de presión de un $S_T/S_L = 1$) para un diseño en el banco de tubos estratificado. La metodología consiste en la evaluación de:

Los coeficientes convectivos interno y externo, que impactan en distinta proporción al coeficiente global de transferencia de calor. El coeficiente de trasferencia externo (h_0) impacta de manera significativa a el coeficiente global (U) en un 35%, mientras que el coeficiente convectivo interno solo lo hace en un 4.1%, es decir, la fase gaseosa es la dominante en la transferencia de calor. Por lo tanto, se concluye que el coeficiente convectivo externo es el que domina en el coeficiente global de transferencia de calor.

Algunos de los parámetros relevantes que intervienen en el coeficiente convectivo externo, son: la altura de aleta, la proporción de pasos transversal (pitch) y longitudinal. El análisis del pitch se realizó una variación a partir de un valor igual a 1, ya que valores menores a 1 son físicamente inviables.

La altura de aleta se analizo para medidas dentro del rango 0.9525-3.175 [cm], para fines prácticos se adimensionalizo el coeficiente de transferencia de calor global y la caída de presión externa para determinar un punto de equilibrio y una altura de aleta, resultando ser esta de 2.2 [cm], considerando los valores para los parámetros de altura de aleta y configuración de pasos mencionados anteriormente, se analizo la parte interna mediante la evaluación del coeficiente convectivo y caída de presión.

En el análisis de la parte interna, la calidad es un importante parámetro involucrado en el fenómeno de la transferencia de calor y la caída de presión en el interior, en la gráfica 4.4 se observa un comportamiento exponencial en la caída de presión interna a medida que aumenta la calidad.

La máxima caída de presión dentro del rango permisible se tiene para una calidad del 57%, en la tabla 3.8 se muestran los coeficientes convectivo interno y de transferencia global, para los cuales se tiene un máximo en el coeficiente convectivo interno en un rango de 20-40% y una caída de presión interna permisible $(3x10^5[Pa])$, en un rango dentro de 1-55% de calidad, en base a estos rangos, se recomienda un rango de calidades entre el 20-40%, lo que concuerda con el rango experimental observado por Dumont-Heyes [24] que resulta ser de 20-40%.

TRABAJO FUTURO:

Utilizar técnicas de dinámica de fluidos computacional (CFD) para obtener información completa y detallada de variables tales como la caída de presión y coeficiente global para la altura de aleta y configuraciones propuestas anteriormente

RECOMENDACIONES:

Para temperaturas mayores a 460°C o con post-combustión se recomienda evaluar el coeficiente radiactivo mediante algún modelo y/o proponerlo.

Realizar corridas del programa para diferentes condiciones del flujo como el número de Reynolds para validar el ángulo (60°) propuesto en este estudio, para poder generalizarlo como el óptimo para el tipo de banco de tubos aletados y segmentados helicoidalmente.

REFERECIAS:

[1] Protocolo de Kyoto de la convención marco de las naciones unidas sobre el cambio climático. ONU, 1998.

[2] DOE Energy Tips, Steam tip sheet 26A, 2007. 20 de junio de 2008.

[3] Srbislav B. Genic, Branislav M. Jacimovic, Boris R. Latinovic. Research on air pressure drop in helically-finned tube heat exchangers. *Applied Thermal Engineering* 26 (2006) 478-485.

[4] Weierman, C. "Correlations Ease The Selection of Finned Tubes". Oil and Gas Journal 74:36 (1976) 94-100.

[5] Weierman C. and Taborek J. Comparison of the performance of in-line and staggered banks of tubes with segmented fins, *Chem. Engineers* 74:174 (1978) 39-46.

[7] ESCOA,

[8] Nir A. Nir. Heat Transfer and Friction Factor Correlations for Crossflow over Staggered Finned Tube Banks. *Heat Transfer Engineering* 12-1 (1991) 43-58.

[9] Kiyoshi Kawaguchi, Kenichi Okui, Takaharu Kashi. Heat transfer and pressure drop characteristics of finned tube banks in forced convection. *Journal of Enhanced Heat Transfer* 12-1 (2005) 1-20.

[10] Martin Holger Martin. The generalized Lévêque equation and its practical use for the prediction of heat and mass transfer rates from pressure drop. Chemical Engineering Science 57 (2002) 3217–3223.

[11] Martin Holger Martin. How to Predict Heat and Mass Transfer from Fluid Friction. 4th International Conference on Heat Transfer, Fluid Mechanics and Thermodynamics HEFAT 2005. Cairo, Egypt.

[12] Lévêque, A. Les lois de la transmission de chaleur par convection. *Annales des Mines* 13 (1928) 201–299, 305–362, 381–415.

[13] R. Hofmann, F. Frasz, K. Ponweiser, Performance evaluation of solid and serrated finned-tube bundles with different fin geometries in forced convection, *in: Fifth European Thermal-Sciences Conference*, 2008.

[14] Erling Naess. Heat Transfer in Serrated-Fin Tube Bundles with Staggered Tube Layouts. 9th U.K. National Heat Transfer Conference. Manchester, U.K, 2005.

[15] Erling Naess. Heat Transfer and Pressure Drop in Serrated-Fin Tube Bundles for Waste Heat Recovery Applications. 6th World Conference on Experimental Heat Transfer, Fluid Mechanics, and Thermodynamics, Miyagi, Japan, 2005.

[16] Ramesh K. Saha Fundamentals of Heat Exchangers Desing. Wiley and sons (2003)

[17] Ganapathy, V. Industrial boilers and heat recovery steam generators: design, applications and calculations. Marcel Dekker, 2003.

[18] Gnielinski, V. New equations for heat and mass transfer in turbulent pipe and channel flow, *Int. Chem. Eng.* 16 (1976) 359-366.

[19] S. Mostafa Giaasiaan, Two Phase Flow Boiling and Condensation in Conventional and Miniature Systems Cambridge 2008

[20] Bejan, A. Convection Heat Transfer, 2nd ed., Wiley, 1995.

[21] Mc Adams

[22] Jonh Weale, P.E., Peter H. Rumsey, P.E., Dale Sartor, P.E., and Lee Eng Lock. Laboratory Low-Pressure Drop Design. *ASHRAE Journal* August (2002) 38-42.

[23] E. Martínez, W. Vicente, M. Salinas, G. Soto. Single-phase experimental analysis of heat transfer in helically finned heat exchangers. *Applied Thermal Engineering* 29 (2009) 2205-2210.

[24] Marie-Noelle Dumont, George Heyen. Mathematical modelling and desing of an advanced once-through heat recovery steam generator. Computers and Chemical and Engineering 28 (2004) 651-660

[25] Ramesh K. Shah, Dusan P. Sekulic Heyen. Fundamentals of Heat Exchanger Desing (2003) 863-890

APENDICE A0

Ecuaciones generales del programa para el cálculo de áreas.

$$\begin{split} d_i &= d_0 - (2*t_w) \\ A_{itotal} &= \frac{3.1416*d_i}{12} * N_i \\ A_0 &= \frac{3.1416*d_0}{12} \\ A_i &= 3.1416 \frac{(d_i - t_w)}{12} \\ d_f &= d_0 + (2*l_f) \\ s_f &= \left(\frac{1}{n_f}\right) - t_f \\ A_{\rho 0} &= \frac{3.1416*d_0(1 - n_f * t_f)}{12} \\ A_0 &= \frac{3.1416*d_0(1 - n_f * t_f)}{12} + \frac{3.5416*n_f(d_0 + 0.2)}{12 + 3.1416*n_f(d_0 + 0.2)[(2*l_f - 0.4)w_s * t_f]} \\ A_f &= A_0 - A_{\rho 0} \\ A_C &= \frac{d_0 + 2*l_f * t_f * n_f}{12} \\ A_n &= A_d - (A_C * L_e * N_f - X_C) \\ G &= \frac{W_0}{A_n} \\ Re &= \frac{G_n * d}{\mu} \\ DTML &= \frac{(TeI - Ti2) - (Te2 - TiI)}{\ln \frac{(TeI - Ti2)}{(Te2 - TiI)}} \end{split}$$

APENDICE A1

TABLA A1 TEMA Desing Fouling Resistances for Industrial Fluids			
Industrial Fluid	Rf[m ² K/W]		
Fuel Oil No. 2	0,000352		
Trasformer oil	0,000176		
Engine lube oil	0,000176		
Gas and vapors			
Manufactured gas	0,001761		
Engine exhaust gas	0,001761		
Steam (nonoil bering)	0,000088		
Exhaust steam (oil bearing)	0,000270		
Refrigerant vapors (oil bearing)	0,000352		
Compressed air	0,000176		
CO2 vapor	0,000176		
Coal flue gas	0,000176		
Natural gas flue gas	0,000881		

Valores de resistencia de ensuciamiento para fluidos industriales (Tabla A1) y agua (Tabla A2).

TABLA A2 Fouling Resistences for Water	
--	--

	Rf [m ² K/W]	
Seawater	0,000088	0,000176
Cooling tower trated make up	0,000176	0,000352
untrated	0,000528	0,000705
City or well water	0,000176	0,000352
Trated boiler feedwater	0,000176	0,000176
Boiler blowdown	0,000352	0,000352

Tablas de: Stadards of the Tubular Exchanger Manufacturers Association (1998) by Tubular Heat Exchanger Manufacturers Association

APENDICE B

Temperaturas en la pared del tubo y aleta.

Para el cálculo de la temperatura en la aleta se usará la siguiente ecuación, que de acuerdo con Ganaphaty es una buena estimación [17].

$$T_{s} = T_{fb} + (T_{b} - T_{fb}) \times (1.42 - 1.4 \eta_{f})$$
(1)

donde T_s , T_{fb} , T_b , son respectivamente las temperatura promedio en la aleta, la base de la aleta y los gases. η_f es la eficiencia de aleta determinada con la ecuación:

$$\eta_f = \frac{\tanh(mh)}{mh} \tag{1}$$

Donde h es altura de aleta y el factor m se calcula :

$$m = \left[\frac{h_0(b+ws)}{Kbsw}\right]^{0.5}$$
(1)

 h_0 es el coeficiente de transferencia del fluido exterior, *b* el espesor de la aleta, *w* es el flujo por cada tubo, *s* la holgura en la aleta y *K* es la conductividad térmica de aleta.

 T_{fb} es la temperatura en la base y se determina como sigue:

$$T_{fb} = T_i + q(R_3 + R_4 + R_5)$$
⁽¹⁾

donde R_3 , $R_4 y R_5$ son las resistencias a la transferencia de calor en la película interior, en la capa de ensuciamiento y en la pared del tubo, respectivamente. q es el flujo de calor dado por:

$$q = A * U(T_b - T_i) \tag{1}$$

U es el coeficiente global de transferencia de calor, A el área total de trasferencia. R_3 , R_4 y R_5 se calculan con la siguientes expresiones:

$$R_{3} = \frac{1}{C_{i}}; R_{4} = \frac{1}{h_{0}}; R_{5} = \frac{d}{24K_{m}} \ln \frac{d}{d_{i}}$$
(1)

donde C_i es la constante del lado del vapor, K_m es la conductividad térmica del tubo, $d y d_i$ son los diámetros externo e interno respectivamente.

APÉNDICE C

Patrones de flujo en tubos horizontales

Para los patrones de flujo en dos fases, la distribución de la fase líquida y vapor en el canal de flujo es un aspecto importante su descripción. Cuando se presenta dicha distribución es necesario recordar que los fluidos que se manejan pueden estarse desplazando con los patrones de flujo a continuación presentados:

Flujo con burbujas (Bubbly flow).

Las burbujas se encuentran dispersas en el líquido, con una alta concentración de estas en la mitad superior del tubo debido a su flotabilidad. Cuando las fuerzas de corte son dominantes, las burbujas tienden a dispersarse de manera uniforme en el tubo. En los flujos horizontales, el régimen en general, sólo se produce a altas velocidades de flujo.

Flujo estratificado (Stratified flow).

A velocidades del líquido y gas reducidas, la separación completa de las dos fases se produce. El gas va a la cima y el líquido a la parte inferior del tubo, separados por una interfaz horizontal inalterada. Por lo tanto el líquido y el gas son plenamente estratificados en este régimen.

Flujo estratificado ondulado (Stratified-wavy flow).

Debido a un aumento en la velocidad del gas del flujo en el régimen estratificado se forman olas en la interfaz que viajan en la dirección del flujo. La amplitud de las olas es notable, y depende de la velocidad relativa de las dos fases, sin embargo no empapan la cima del tubo. Se presenta cuando la velocidad del líquido es menor a la velocidad del gas.

Flujo intermitente.

Un nuevo aumento de la velocidad del gas, estas ondas se interfaciales suficientemente grandes para empapar la parte superior del tubo. Este régimen se caracteriza por la gran amplitud de las ondas intermitente mente lavado la parte superior del tubo con menor amplitud de las ondas en el medio. Gran amplitud de las ondas con frecuencia arrastrado contener burbujas. La parte superior de pared es casi continuamente mojada por la gran amplitud de las olas y la delgada película de líquido detrás de la izquierda. Intermitente de flujo es también un compuesto de la clavija y babosas regímenes de flujo. Estas sub-categorías se caracterizan como sigue:

Flujo e tapón (Plug flow)

Este régimen de flujo de líquido ha tapones que están separados por alargadas burbujas de gas. Los diámetros de las burbujas alargadas son más pequeños que el tubo de tal forma que la fase líquida es continuo a lo largo de la parte inferior del tubo por debajo de la alargada burbujas. Enchufe el flujo también es denominado a veces el flujo de burbuja alargada.

Flujo de pastoso (Slug flow).

De gas a altas velocidades, los diámetros de las burbujas de ser alargada similar en tamaño a la altura de canal. El líquido que separen estos babosas alargada burbujas también pueden ser descritos como grandes olas de amplitud.

Flujo anular (Annular flow).

Aún mayor en las tasas de flujo de gas, el líquido forma una película continua de anular todo el perímetro del tubo, similar a la de flujo vertical, pero la película líquida es más grueso en la parte inferior de la parte superior. La interfaz entre el líquido y el vapor anular básico es perturbado por las pequeñas gotas de las olas y la amplitud puede ser disperso en la central de gas. En fracciones de gas de alta, la parte superior del tubo delgado con su película seca se convierte en primer lugar, a fin de que la película se refiere a anular sólo una parte del perímetro del tubo y, por tanto, ésta se clasifica como flujo estratificado-ondulado.

Flujo de niebla (Mist flow)

Similar al flujo vertical, a muy altas velocidades del gas, todo el líquido puede ser despojado de la pared y arrastrado como pequeñas gotas en la actualidad continua en fase gaseosa.

Mapa del patrón de flujo para evaporación en tubos horizontales.

Para la evaporación en tubos horizontales, Figura 1 de Collier y Thome (1994) representa los típicos patrones de flujo, incluyendo la sección transversal. Para la condensación, los regímenes de flujo son similares con la salvedad de que la parte superior de la pared del tubo no está seca en tipos de flujo estratificados, sino que está recubierto con una fina película de condensado.

APENDICE D

A continuación se presenta las tablas, gráficas y modelos que fueron utilizadas para determinar las propiedades termodinámicas de los fluidos en el programa, los datos de las tablas se obtuvieron de Industrial boilers and Heat recovery steam generators, V. Ganapathy y Termodinámica de Cengel 5^{ta} edición.

T1.Agua (liquido)

(Densidad y calor especifico)

Temperatura	ρ	Ср
(°C)	(kg/m3)	(kJ/kgºK)
10	999.2	4.195
15.56	998.6	4.186
21.11	997.4	4.179
26.67	995.8	4.179
32.22	994.9	4.174
37.78	993	4.174
43.33	990.6	4.174
48.89	988.8	4.174
54.44	985.7	4.179
60	983.3	4.179
65.55	980.3	4.183
71.11	977.3	4.186
76.67	973.7	4.191
82.22	970.2	4.195
87.78	966.7	4.199
93.33	963.2	4.204
104.4	955.1	4.216
115.6	946.7	4.229
126.7	937.2	4.250
137.8	928.1	4.271
148.9	918	4.296
176.7	890.4	4.371
204.4	859.4	4.47

T1 Gráfica1. Densidad vs Temperatura para el agua líquida

T1 Gráfica 2. Calor específico vs Temperatura para el agua líquida.

T2. Agua (liquido)

(Viscosidad dinámica y conductividad térmica)

Т	Т	μ	K
(°K)	(°C)	(kg/ms)	(W/m°K)
280	7	1.42E-03	0.583
290	17	1.08E-03	0.598
300	27	8.55E-04	0.613
310	37	6.95E-04	0.628
320	47	5.77E-04	0.640
330	57	4.89E-04	0.65
340	67	4.20E-04	0.66
350	77	3.65E-04	0.668
360	87	3.24E-04	0.674
370	97	2.89E-04	0.679
380	107	2.60E-04	0.683
390	117	2.37E-04	0.686
400	127	2.17E-04	0.688
410	137	2.00E-04	0.688
420	147	1.85E-04	0.688
430	157	1.73E-04	0.685
440	167	1.62E-04	0.682
450	177	1.52E-04	0.678
460	187	1.43E-04	0.673
470	197	1.36E-04	0.667
480	207	1.29E-04	0.66
490	217	1.24E-04	0.651
500	227	1.18E-04	0.642
510	237	1.13E-04	0.631
520	247	1.08E-04	0.621
530	257	1.04E-04	0.608
540	267	1.01E-04	0.594
550	277	9.70E-05	0.58
560	287	9.40E-05	0.563
570	297	9.10E-05	0.548
580	307	8.80E-05	0.528
590	317	8.40E-05	0.513
600	327	8.10E-05	0.497

T2 Gráfica 1. Conductividad térmica vs temperatura (rango de temperatura: 7-127°C)

T2 Gráfica 2. Conductividad térmica vs temperatura (rango de temperatura: 137-327°C)

T2 Gráfica 3. Viscosidad dinámica vs temperatura

Temperatura	Ср	μ	k
(K)	(kJ/kg°C)	(Kg/ms)	(W/m°C)
300	1.0047	1.98E-05	0.02624
350	1.009	2.08E-05	0.03003
400	1.014	2.29E-05	0.03365
450	1.0207	2.48E-05	0.03707
500	1.0295	2.67E-05	0.04038
550	1.0392	2.85E-05	0.0436
600	1.0551	3.02E-05	0.04659
650	1.0635	3.18E-05	0.04953
700	1.0752	3.33E-05	0.0523
750	1.0856	3.48E-05	0.05509
800	1.0978	3.63E-05	0.05779
850	1.1095	3.77E-05	0.06028
900	1.1212	3.90E-05	0.06279
950	1.1321	4.02E-05	0.06525
1000	1.1417	4.15E-05	0.07

T3.Propiedades del aire

T3 Gráfica 2. Viscosidad dinámica vs temperatura.

T3 Gráfica 3. Conductividad térmica vs temperatura

T4. Propiedades del Gas Natural

Temperatura	Ср	μ	k
(°F)	(BTU/lb°F)	(Lb/ft hr)	(BTU/ft hr °F)
400	0.2557	0.0575	0.0211
800	0.2907	0.075	0.0287
1200	0.3059	0.0908	0.0362
1600	0.3203	0.105	0.0434
2000	0.3326	0.1174	0.0511

T4 Gráfica 2. Viscosidad dinámica vs temperatura.

T4 Gráfica 3. Conductividad térmica vs temperatura.

T5. Propiedades del Fuel-Oil

Temperatura	emperatura Cp		k	
(°F)	(BTU/lb°F)	(Lb/ft h)	(BTU/ft h °F)	
400	0.266	0.0583	0.0211	
800	0.2812	0.0757	0.0284	
1200	0.2959	0.0915	0.04	
1600	0.3094	0.1055	0.0427	
2000	0.3206	0.1178	0.0497	

T5 Gráfica 1. Calor especifico vs temperatura.

T5 Gráfica 2. Viscosidad dinámica vs temperatura.

T5 Gráfica 3. Conductividad térmica vs temperatura.

T6. Propiedades de Turbogas

Temperatura	Ср	μ	k	
(°F)	(BTU/lb°F)	(Lb/ft h)	(BTU/ft h °F)	
200	0.2529	0.0517	0.0182	
400	0.2584	0.0612	0.0217	
600	0.2643	0.0702	0.0252	
800	0.2704	0.0789	0.0287	
1000	0.2768	0.087	0.0321	

T6 Gráfica 1. Calor especifico vs temperatura.

T6 Gráfica 3. Conductividad térmica vs temperatura

T7. Propiedades del Fluido térmico

Temperatura	ρ	Ср	Ср	μ	μ	k
(°C)	(kg/m^3)	(cal/g°C)	(kJ/kg°K)	(mPa*s)	(Pa*s)	(W/m°K)
0	878.8	0.4304	1.802	195		0.1334
10	874.7	0.439	1.838	87		0.1337
20	870.6	0.4476	1.874	43.2		0.133
30	866.5	0.4563	1.910	23.4		0.1323
40	862.5	0.4649	1.946	14.8		0.1316
50	858.4	0.4736	1.982	10.4	0.010400	0.1308
60	854.3	0.4822	2.018	7.5	0.007500	0.1301
70	850.2	0.4908	2.054	5.66	0.005660	0.1294
80	846.2	0.4995	2.091	4.45	0.004450	0.1287
90	842.1	0.5081	2.127	3.68	0.003680	0.128
100	838	0.5168	2.163	3.09	0.003090	0.1273
110	833.9	0.5254	2.199	2.64	0.002640	0.1266
120	829.9	0.534	2.235	2.29	0.002290	0.1259
130	825.8	0.5427	2.272	2	0.002000	0.1251
140	821.7	0.5513	2.308	1.78	0.001780	0.1244
150	817.6	0.56	2.344	1.58	0.001580	0.1237
160	813.5	0.5686	2.380	1.43	0.001430	0.123
170	809.5	0.5772	2.416	1.28	0.001280	0.1223
180	805.4	0.5859	2.453	1.16	0.001160	0.1216

T7 Gráfica 1. Densidad vs temperatura.

T7 Gráfica 2. Calor especifico vs temperatura.

T7 Gráfica 4. Viscosidad dinámica vs temperatura.

