

Universidad Nacional Autónoma de México

FACULTAD DE CIENCIAS

Análisis estadístico del cáncer en México

T E S I S

QUE PARA OBTENER EL TÍTULO DE: ACTUARIO

PRESENTA: EMMA LAURA MIRANDA OLIVOS

DIRECTOR DE TESIS: PEDRO REYES PÉREZ

UNAM – Dirección General de Bibliotecas Tesis Digitales Restricciones de uso

DERECHOS RESERVADOS © PROHIBIDA SU REPRODUCCIÓN TOTAL O PARCIAL

Todo el material contenido en esta tesis esta protegido por la Ley Federal del Derecho de Autor (LFDA) de los Estados Unidos Mexicanos (México).

El uso de imágenes, fragmentos de videos, y demás material que sea objeto de protección de los derechos de autor, será exclusivamente para fines educativos e informativos y deberá citar la fuente donde la obtuvo mencionando el autor o autores. Cualquier uso distinto como el lucro, reproducción, edición o modificación, será perseguido y sancionado por el respectivo titular de los Derechos de Autor.

1. Hoja de Datos del Jurado

1. Datos del Alumno

Miranda

Olivos

Emma Laura

58 44 32 57

Universidad Nacional Autónoma de México

Facultad de Ciencias

Actuaría

096315756

2. Datos del tutor

M en C

Pedro

Reyes

Pérez

3. Datos del sinodal 1

M en D

Alejandro

Mina

Valdés

4. Datos del sinodal 2

Act.

Francisco

Sánchez

Villarreal

5. Datos del sinodal 3

M en C

Gonzalo

Pérez

De la Cruz

6. Datos del sinodal 4

M en C

Fernando Guerrero Poblete

7. Datos del trabajo escrito

Análisis estadístico del cáncer en México

Una aplicación de los modelos de regresión Poisson mixtos.

100 p

2010

Agradecimientos

Gracias a Dios por la familia y la gente que me rodea.

A la persona que me ha dado su amor, cariño, tiempo, apoyo y consejos incondicionalmente todos y cada uno de los días de mi vida, gracias mamá.

A mi papá, a mis hermanos Julio César y Gerardo, que han sido la razón por la que deseo superarme día tras día. A mis padrinos, tíos y primos por su apoyo y cariño.

Mi más sincero agradecimiento para el M. en C. Pedro Reyes Pérez por su tiempo, dedicación, paciencia, dirección, enseñanzas y amistad que me ha brindado durante la realización de este trabajo.

A mis sinodales el M. en D. Alejandro Mina Valdés, Act. Francisco Sánchez Villarreal, M. en C. Gonzalo Pérez De la Cruz y al M. en C. Fernando Guerrero Poblete por su dedicación en la revisión de mi trabajo y por sus comentarios para mejorarlo.

A mis amigos que siempre me brindaron ayuda desinteresada y consejos para que no decayera en el trabajo: Abraham Durán Sánchez, Mónica Ramírez Aguilar, Mitzi Haíde García García, Claribell Méndoza Pérez, B. Estela Porfirio Castillo, Santiago Lara Jiménez, Raymundo Reyes, Samuel Cerón, Rene y Angela Santillan. Sin olvidar a los que me apoyaron durante mi paso por la Facultad de Ciencias: Ma. Laura Méndoza Castillo, Gisela Camacho Espinoza, Israel Lozano, Ariadna Martínez García, Beatriz Interial, Charbel Mercado, además de los que por mi mala memoria se me escapan en este momento.

A la Facultad de Ciencias, a la UNAM.

Gracias...

Índice general

1.	Intr	oducciór	1	1
2.	Defi	niciones	y panoramas generales	3
	2.1.	Població	n	3
	2.2.	Acceso a	servicios médicos	7
	2.3.			10
	2.4.	Zonas .		14
		2.4.1. P	Oblación por zona	15
		2.4.2. A	acceso a servicios médicos por zona	17
			analfabetismo por zona	18
3.	Vali	dación d	le datos	21
	3.1.	Població	n	22
	3.2.	Mortalid	ad	25
		3.2.1. N	Muertes por cáncer del cuello del útero	25
		3.2.2. N	Muertes por cáncer de tráquea, bronquios y pulmón	27
		3.2.3. N	Iuertes por cáncer de próstata	29
4.	Moi	rtalidad	por cáncer en México	33
	4.1.	Introduc	ción	33
	4.2.	Cáncer d	lel cuello del útero	35
		4.2.1. D	Defunciones por zona geográfica	38
		4.2.2. D	Defunciones por edad	39
	4.3.	Cáncer d	le tráquea, bronquios y pulmón	42
			Cáncer de tráquea, bronquios y pulmón en el sexo mas-	
				44
			Cáncer de tráquea, bronquios y pulmón en el sexo femenino	
	4.4.		1	51
			1 0 0	53
		4.4.2. D	Defunciones por edad	54

5.	6. Tratamiento de la informació	n histórica 5	9
	5.1. Modelos Lineales Generaliza	dos Mixtos 6	60
	5.1.1. Ajuste de modelos r	egresivos para el cáncer del cuello	
	del útero		i4
	5.1.2. Ajuste de modelos re	gresivos para el cáncer de tráquea,	
	bronquios y pulmón		1
	5.1.3. Ajuste de modelos re	gresivos para el cáncer de próstata . 7	8
6.	6. Conclusiones	8	7
7.	. Anexo	9	1
8.	3. Bibliografía	9	7
	8.1. Páginas electrónicas		8

Capítulo 1

Introducción

La salud, es uno de los aspectos más importantes de cualquier ser vivo y, en particular para el ser humano es un tema en el que siempre se ha interesado a través del tiempo. En el último siglo sobre todo con ayuda de los avances tecnológicos, el hombre ha ido encontrando la forma de atacar las diversas enfermedades que lo aquejan. Sin embargo, hay algunas que a pesar de lo avanzado de la ciencia no se pueden controlar y en muchos casos ni siquiera prevenir. De tal forma que estas enfermedades siguen causando muerte a pesar de todos los esfuerzos. Las enfermedades que encabezan las más altas tasas de mortalidad en la república mexicana en las últimas décadas son diferentes, sin embargo, el cáncer aparece en esta lista, año tras año. Es por esto que nosotros estamos interesados en realizar un estudio estadístico que nos dé un panorama amplio de como se ve afectada la población a causa de esta enfermedad.

Uno de los objetivos principales de este trabajo, es hallar un modelo regresivo que nos permita pronosticar la cantidad de muertes que esta enfermedad provocará en los próximos años. Para lograr lo anterior, tomaremos como base de datos la información estadística registrada en la Secretaría de Salud (SSA), así como la del Instituto Nacional de Estadística y Geografía (INEGI), a partir de 1990 hasta el año 2007.

Iniciaremos el capítulo 2, introduciendo conceptos básicos, tales como: población rural, población urbana, analfabetismo y derechohabiente. Además de analizar la distribución de la población en el territorio mexicano, y estudiar tanto el analfabetismo y la derechohabiencia, en cada estado de la república.

Para facilitar el estudio, dividimos el territorio mexicano en cinco zonas, de acuerdo al grado de marginación que tiene cada estado de la república. Esta clasificación la hace el Consejo Nacional de Población (CONAPO).

Según Mina (2006), los datos de las encuestas no son del todo confiables, por lo que en el capítulo 3, hacemos una validación de los datos tanto de la SSA como del INEGI, con el Índice de Naciones Unidas y el Índice de Whipple.

En el capítulo 4, hacemos un análisis estadístico exhaustivo sobre las muertes registradas, considerando: estado de la república, tipo de zona, grupo de edad y cantidad de población, lo anterior lo hacemos para cada una de las siguientes enfermedades: cáncer del cuello del útero (sección 4.2), cáncer de tráquea, bronquios y pulmón (sección 4.3), y para el cáncer de próstata (sección 4.4).

Con base en los capítulos 2, 3 y 4, en el capítulo 5 nos enfocaremos exclusivamente a los modelos de regresión, y presentaremos aquellos que mejor modelan nuestra información estadística, realizamos algunos pronósticos sobre las muertes que ocurrirán en cada estado y zona de la república mexicana, esto para cada uno de los cánceres estudiados a partir de los modelos ajustados.

Capítulo 2

Definiciones y panoramas generales

El presente capítulo tiene como objetivo primordial, explorar algunos factores sociales, que utilizaremos como base en el desarrollo de este trabajo.

Iniciaremos analizando la distribución de la población en el territorio mexicano. Posteriormente, estudiaremos la población, con respecto a los habitantes que están o no afiliados a alguna institución de seguridad social. Y por último, observaremos la cantidad de personas que habitan en la república mexicana que no saben leer ni escribir, es decir los analfabetas. Todos los análisis se realizarán por cada estado.

Los datos que utilizaremos son del Censo Nacional de Población y Vivienda de 1990 y 2000, así como del Conteo de Población y Vivienda de los años 1995 y 2005.

2.1. Población

Para tener una idea precisa de cómo está distribuida la población en México, tomaremos como base la siguiente clasificación, la cual divide a la población en rural o urbana dependiendo del número de habitantes que tenga la localidad en la que reside, (DEPUALC, 1999).

■ Población rural: es aquella que reside en localidades de menos de 2,500 habitantes, por lo general sufren un rezago social además de tener carencias en infraestructura.

■ Población urbana: es la que vive en localidades de 2,500 o más habitantes, y se supone que goza más servicios públicos que la rural.

El II Conteo de Población y Vivienda 2005 indica que existen 187,938 localidades en el país, de las cuales más del $98\,\%$ son rurales (INEGI, 2005). En la Tabla 2.1, se presentan los datos correspondientes a la distribución de la población.

Localidades	Habitantes
185,000	menos de $2,500$
2,640	2,500 - 15,000
427	15,000 - 100,000
112	100,000 - 1,000,000
8	más de 1,000,000

Tabla 2.1: Observamos que más del 98% de las localidades, son rurales.

Analizaremos el porcentaje de localidades y población que tiene cada estado¹ con respecto al total nacional, así como su distribución tanto rural como
urbana. En la Tabla 2.2, se presentan las tres entidades federativas con mayor
y menor porcentaje de localidades. Observamos que si un estado tiene mayor
cantidad de localidades rurales en relación con sus localidades urbanas, no
significa que su población rural va a ser mayor en número, que su población
urbana.

	% Localidades			% Población		
Entidad	Total	Rural	Urbana	Total	Rural	Urbana
Veracruz	10.95	10.80	0.15	6.89	2.71	4.17
Chiapas	10.32	10.24	0.08	4.16	2.17	1.98
Chihuahua	6.46	6.44	0.02	3.14	0.49	2.65
Tlaxcala	0.66	0.61	0.05	1.03	0.23	0.81
Colima	0.59	0.58	0.01	0.55	0.07	0.48
Distrito Federal	0.26	0.02	0.24	8.45	0.03	8.42

Tabla 2.2: Estados con el mayor y menor porcentaje de localidades, en el 2005.

Si analizamos la Tabla 2.3, observamos que el Distrito Federal tiene un porcentaje de localidades rurales muy superior a sus localidades urbanas, sin

¹El Distrito Federal será considerado como estado en lo que respecta a este trabajo.

embargo su población rural es menor que su población urbana. Esto significa que el Distrito Federal tiene unas cuantas localidades saturadas de habitantes, mientras que en el resto de sus localidades, los residentes son escasos.

Estado	%	Localida	des	0,	% Poblaci	ón
	Total	Rural	Urbana	Total	Rural	Urbana
Nacional	100.00	98.082	1.918	100.00	23.517	76.483
Aguascalientes	0.985	0.972	0.013	1.032	0.195	0.837
Baja California	2.110	2.085	0.026	2.755	0.193	2.561
Baja California Sur	1.313	1.304	0.009	0.496	0.076	0.420
Campeche	1.396	1.381	0.015	0.731	0.190	0.541
Coahuila	2.095	2.072	0.023	2.416	0.241	2.176
Colima	0.592	0.583	0.009	0.550	0.068	0.482
Chiapas	10.315	10.236	0.079	4.158	2.173	1.985
Chihuahua	6.460	6.436	0.024	3.139	0.487	2.652
Distrito Federal	0.256	0.017	0.239	8.445	0.029	8.416
Durango	3.197	3.176	0.022	1.461	0.479	0.983
Guanajuato	4.591	4.529	0.063	4.739	1.436	3.303
Guerrero	3.827	3.760	0.068	3.017	1.280	1.736
Hidalgo	2.423	2.364	0.060	2.271	1.083	1.188
Jálisco	5.663	5.568	0.095	6.539	0.908	5.630
México	2.562	2.329	0.233	13.565	1.750	11.815
Michoacán	4.864	4.770	0.094	3.841	1.231	2.609
Morelos	0.725	0.679	0.046	1.562	0.218	1.344
Nayarit	1.379	1.355	0.024	0.920	0.309	0.611
Nuevo León	2.776	2.750	0.026	4.067	0.229	3.837
Oaxaca	5.420	5.334	0.086	3.396	1.797	1.599
Puebla	3.378	3.236	0.142	5.213	1.532	3.681
Querétaro	1.375	1.340	0.035	1.548	0.469	1.079
Quintana Roo	0.970	0.958	0.012	1.099	0.159	0.941
San Luis Potosí	3.665	3.633	0.031	2.334	0.874	1.460
Sinaloa	3.126	3.081	0.045	2.526	0.738	1.788
Sonora	3.928	3.895	0.034	2.319	0.330	1.990
Tabasco	1.346	1.293	0.053	1.927	0.867	1.060
Tamaulipas	3.990	3.965	0.024	2.929	0.373	2.556
Tlaxcala	0.659	0.606	0.054	1.034	0.225	0.809
Veracruz	10.949	10.798	0.151	6.886	2.711	4.175
Yucatán	1.237	1.185	0.052	1.761	0.300	1.462
Zacatecas	2.425	2.393	0.032	1.324	0.566	0.758

Tabla 2.3: Porcentaje de localidades y población en el año 2005, con respecto al total nacional.

Continuando con la Tabla 2.3, nos percatamos que el Estado de México² (11.815%) y el Distrito Federal (8.416%), son los estados que tuvieron la mayor

²En las tablas y figuras, la palabra México se refiere al Estado de México.

cantidad de población urbana en el año 2005. En la Tabla 2.4, presentamos los porcentajes de población rural y población urbana, calculados con base en la población residente en cada estado de la república mexicana. Analizando esta tabla nos damos cuenta que los estados de Chiapas, Hidalgo y Oaxaca son los que presentaron los porcentajes más altos en población rural, por otro lado, Baja California, Distrito Federal y Nuevo León han presentado los porcentajes más altos en población urbana.

	1	990	2	000	2	005
Estado	rural	urbana	rural	urbana	rural	urbana
Nacional	28.66	71.34	25.36	74.64	23.52	76.48
Aguascalientes	23.48	76.52	19.77	80.23	18.85	81.15
Baja California	9.10	90.90	8.42	91.58	7.02	92.98
Baja Calif. Sur	21.75	78.25	18.70	81.30	15.24	84.76
Campeche	29.97	70.03	29.01	70.99	25.98	74.02
Coahuila	13.95	86.05	10.59	89.41	9.96	90.04
Colima	16.68	83.32	14.41	85.59	12.40	87.60
Chiapas	59.61	40.39	54.30	45.70	52.26	47.74
Chihuahua	22.61	77.39	17.47	82.53	15.51	84.49
Distrito Federal	0.27	99.73	0.24	99.76	0.35	99.65
Durango	42.61	57.39	36.21	63.79	32.76	67.24
Guanajuato	36.59	63.41	32.80	67.20	30.30	69.70
Guerrero	47.74	52.26	44.69	55.31	42.44	57.56
Hidalgo	55.21	44.79	50.68	49.32	47.68	52.32
Jalisco	18.15	81.85	15.45	84.55	13.89	86.11
México	15.59	84.41	13.68	86.32	12.90	87.10
Michoacán	38.38	61.62	34.60	65.40	32.06	67.94
Morelos	14.38	85.62	14.57	85.43	13.94	86.06
Nayarit	37.95	62.05	35.84	64.16	33.56	66.44
Nuevo León	8.01	91.99	6.59	93.41	5.64	94.36
Oaxaca	60.55	39.45	55.47	44.53	52.93	47.07
Puebla	35.71	64.29	31.72	68.28	29.40	70.60
Querétaro	40.28	59.72	32.43	67.57	30.28	69.72
Quintana Roo	26.13	73.87	17.54	82.46	14.42	85.58
San Luis Potosí	44.84	55.16	40.96	59.04	37.46	62.54
Sinaloa	35.92	64.08	32.58	67.42	29.20	70.80
Sonora	20.87	79.13	16.91	83.09	14.21	85.79
Tabasco	50.34	49.66	46.26	53.74	45.01	54.99
Tamaulipas	18.93	81.07	14.58	85.42	12.74	87.26
Tlaxcala	23.50	76.50	21.54	78.46	21.78	78.22
Veracruz	43.78	56.22	40.95	59.05	39.37	60.63
Yucatán	21.37	78.63	18.66	81.34	17.02	82.98
Zacatecas	54.06	45.94	46.66	53.34	42.75	57.25

Tabla 2.4: Porcentaje de población en los años 1990, 2000 y 2005.

Observamos que la forma en que la población mexicana se ha distribuido a través del tiempo es casi la misma.

2.2. Acceso a servicios médicos

Es inminente que la vida de los seres vivos, y en particular la del ser humano, está plagada de riesgos que amenazan su salud e incluso su vida, ya sea por alguna enfermedad o accidente.

Por esta razón es útil contar con seguridad social, de lo contrario esta clase de eventos fortuitos, en ocasiones llevan a crisis económicas familiares, pues se tienen que solventar con recursos propios.

Se dice que son derechohabientes, aquellas personas que cuentan con seguridad social.

Las instituciones encargadas de la seguridad social en México son:

- El Instituto Mexicano del Seguro Social (IMSS) es responsable de brindar servicios a los trabajadores del sector privado.
- El Instituto de Seguridad y Servicios Sociales de los Trabajadores del Estado (ISSSTE) atiende a los empleados del gobierno.
- Petróleos Mexicanos (PEMEX), la Secretaría de Marina Armada de México (SEMAR) y la Secretaría de la Defensa Nacional (SEDENA) otorgan servicios y prestaciones a los trabajadores de sus propias dependencias.

Si analizamos por entidad federativa los porcentajes de la población derechohabiente y no derechohabiente en el 2005, que se presentan en la Figura 2.1, observamos que Chiapas, Guerrero, Hidalgo, Michoacán, Oaxaca, Puebla, Tlaxcala, Veracruz y Zacatecas son los estados que presentaron mayor porcentaje de población no derechoabiente con respecto al total de su población, y comparados con los demás estados.

Por otro lado, las entidades con mayor porcentaje de población derechohabiente son Aguascalientes, Nuevo León, Colima, Coahuila, Baja California Sur, Sonora, Tabasco, Tamaulipas y Sinaloa.

Siguiendo con la Figura 2.1, observamos una enorme diferencia entre la cantidad de población derechohabiente y la no derechohabiente, por ejemplo en: Chiapas, Oaxaca, Guerrero y Michoacán, entre otros. Queremos hacer notar que la población con seguridad social se ha incrementado en los últimos años. Para esto se presentan en la Tabla 2.5, los resultados de restar a los datos del año 2005 los correspondientes del 2000.

En la segunda columna de la Tabla 2.5, se presenta el incremento de la población total en cada uno de los estados de la república mexicana, siendo Michoacán el único estado cuya población presentó un decremento.

Por otra parte, en la tercer columna observamos que todos los estados tiene signo negativo, con excepción de Michoacán, lo cual significa que el porcentaje

Figura 2.1: Porcentaje de derechohabientes en el año 2005.

de personas sin seguridad social o no derechohabientes en el 2000, fue mayor que el porcentaje del año 2005.

Analizando la cuarta columna de la Tabla 2.5, observamos que la población derechohabiente a nivel nacional, disminuyó en 1.75 por ciento.

Esto no significa que $1.75\,\%$ de la población derechohabiente en el 2000, dejo de serlo en el año 2005. Esta disminución puede deberse al incremento de la población.

		64 D 11 17	64 B 11 17
		% Población	% Población
Estado	Población	sin seguridad	con seguridad
		social	social
Nacional	5,779,976	-0.81	-1.75
Aguascalientes	121,131	-9.13	-3.46
Baja California	357,102	-8.07	-5.10
Baja Calif. Sur	88,129	-13.23	-6.37
Campeche	64,041	-5.41	-3.71
Coahuila	197,130	-5.92	-2.49
Colima	25,369	-3.27	-1.23
Chiapas	372,567	-1.91	-7.26
Chihuahua	188,537	-3.60	-2.22
Distrito Federal	115,677	-0.72	-0.57
Durango	60,456	-2.09	-2.00
Guanajuato	230,780	-2.45	-2.42
Guerrero	35,553	-0.27	-0.86
Hidalgo	109,923	-1.78	-3.05
Jalisco	430,111	-3.49	-3.05
México	910,809	-2.95	-3.66
Michoacán	-19,594	0.13	0.35
Morelos	57,603	-1.52	-2.02
Nayarit	29,499	-1.91	-1.23
Nuevo León	365,151	-6.59	-2.67
Oaxaca	68,056	-0.45	-1.50
Puebla	306,447	-2.05	-3.82
Querétaro	193,833	-6.98	-6.38
Quintana Roo	260,346	-13.70	-12.33
San Luis Potosí	111,054	-2.41	-2.35
Sinaloa	71,598	-1.79	-0.93
Sonora	177,892	-5.35	-2.43
Tabasco	98,140	-3.42	-1.67
Tamaulipas	271,016	-6.37	-3.13
Tlaxcala	105,561	-3.83	-6.96
Veracruz	201,239	-1.15	-1.72
Yucatán	160,738	-5.12	-4.34
Zacatecas	14,082	-0.44	-0.59

Tabla 2.5: Incremento de población en año 2005 en comparación con el 2000.

A los estados de la república mexicana, que presentaron en el año 2005, un porcentaje de población no derechohabiente mayor que el de derechohabientes (en alguna institución de salud), les llamamos estados críticos en seguridad social. De acuerdo con la Figura 2.1, observamos que los estados críticos son los que están principalmente en la parte sur de la república mexicana, esto se percibe mejor en la Figura 2.2.

Figura 2.2: Estados críticos en seguridad social.

2.3. Analfabetismo

La educación es un factor importante en el desarrollo de cualquier sociedad, pero debido al abandono de los estudiantes antes de adquirir la documentación que les acredita el último grado de estudios, es difícil tener claro el nivel educativo que tiene la población en una zona determinada.

Por esta razón, nos daremos una idea de la educación en México, analizando los porcentajes de analfabetismo que existió en cada entidad federativa, entendiéndose por analfabeta aquella persona de 15 años o más, que no es capaz de leer ni escribir.

En la Figura 2.3, se observa gráficamente que el porcentaje de analfabetismo se comportó de manera muy parecida en los años 2000 y 2005, presentando una ligera disminución en cada uno de los estados, en el año 2005. Hecho que se refleja en el porcentaje de analfabetas a nivel nacional, pasando de 9.456 % (en el año 2000) a 8.354 % (en el 2005).

Continuando con la Figura 2.3, observamos que Chiapas, Guerrero, Oaxaca, Hidalgo, Veracruz y Puebla tuvieron los porcentajes más altos de analfabetas en 2000 y 2005, en el caso contrario, los estados Tamaulipas, Sonora, Nuevo León y Distrito Federal mostraron los porcentajes más bajos.

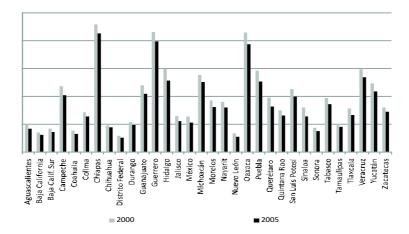


Figura 2.3: Porcentaje de analfabetas en los años 2000 y 2005.

Para tener presente a los tres estados que presentaron el decremento más alto en analfabetismo, y los que tuvieron el decremento más bajo en el año 2005 con respecto al 2000, se presenta la Tabla 2.6.

Estado	2000	2005	Decremento
Hidalgo	14.91	12.79	2.12
Oaxaca	21.47	19.33	2.14
Puebla	14.59	12.70	1.90
Baja California	3.52	3.07	0.45
Chihuahua	4.79	4.41	0.38
Distrito Federal	2.90	2.59	0.32

Tabla 2.6: Estados con disminución representativa en analfabetismo.

Para realizar un estudio más detallado, en la Tabla 2.7 se muestran los porcentajes de la población analfabeta total por estado y por sexo en los años 2000 y 2005, con respecto a la población correspondiente mayor de 15 años de edad³. En ésta, observamos que de la población mayor de 14 años que vivía en nuestro país en el 2005, el 8.354% eran analfabetas. Y si consideramos únicamente a la población femenina, el porcentaje de analfabetismo fue de 9.772%, a nivel nacional, en el caso de los hombres, el 6.797% presentaba esta característica, en el mismo año.

³Ver Tabla 7.1 en el Anexo.

		2000			2005	
Estado	Total	Hombres	Mujeres	Total	Hombres	Mujeres
Nacional	9.456	7.433	11.308	8.354	6.797	9.772
Aguascalientes	0.046	0.040	0.051	0.042	0.038	0.046
Baja California	0.085	0.076	0.094	0.081	0.075	0.087
Baja California Sur	0.019	0.019	0.019	0.018	0.018	0.018
Campeche	0.083	0.070	0.095	0.075	0.065	0.085
Coahuila	0.094	0.090	0.098	0.081	0.080	0.082
Colima	0.039	0.038	0.040	0.036	0.036	0.036
Chiapas	0.832	0.616	1.029	0.815	0.623	0.989
Chihuahua	0.150	0.151	0.150	0.136	0.136	0.135
Distrito Federal	0.288	0.160	0.405	0.241	0.145	0.329
Durango	0.079	0.077	0.080	0.070	0.070	0.069
Guanajuato	0.554	0.438	0.661	0.483	0.396	0.562
Guerrero	0.631	0.503	0.748	0.562	0.460	0.655
Hidalgo	0.338	0.259	0.410	0.291	0.230	0.347
Jalisco	0.422	0.386	0.455	0.361	0.338	0.382
México	0.843	0.538	1.123	0.714	0.479	0.929
Michoacán	0.550	0.486	0.608	0.476	0.434	0.515
Morelos	0.146	0.115	0.175	0.127	0.104	0.148
Nayarit	0.086	0.087	0.086	0.075	0.076	0.073
Nuevo León	0.140	0.124	0.155	0.118	0.108	0.128
Oaxaca	0.723	0.510	0.919	0.636	0.463	0.794
Puebla	0.723	0.514	0.914	0.642	0.475	0.794
Querétaro	0.138	0.098	0.174	0.123	0.093	0.151
Quintana Roo	0.067	0.054	0.078	0.065	0.055	0.074
San Luis Potosí	0.259	0.217	0.297	0.228	0.199	0.255
Sinaloa	0.211	0.225	0.198	0.163	0.178	0.149
Sonora	0.104	0.107	0.100	0.088	0.092	0.083
Tabasco	0.187	0.143	0.227	0.166	0.133	0.196
Tamaulipas	0.152	0.135	0.168	0.135	0.124	0.145
Tlaxcala	0.077	0.054	0.098	0.069	0.050	0.086
Veracruz	1.066	0.827	1.284	0.947	0.763	1.115
Yucatán	0.216	0.178	0.251	0.198	0.171	0.223
Zacatecas	0.108	0.100	0.116	0.095	0.090	0.100

Tabla 2.7: Porcentaje de analfabetismo en los años 2000 y 2005, con respecto a la población nacional .

Para tener una idea más clara, en la Tabla 2.8 presentamos los porcentajes de analfabetismo pero de acuerdo a la cantidad residente en cada estado de la república, tomando en cuenta el sexo. En ésta observamos que Chiapas, Guerrero y Oaxaca son los estados con más analfabetas, en nuestro país.

		2000			2005	
Estado	Total	Hombres	Mujeres	Total	Hombres	Mujeres
Nacional	9.46	7.43	11.31	8.35	6.80	9.77
Aguascalientes	4.84	4.26	5.35	4.15	3.78	4.48
Baja California	3.52	2.99	4.06	3.07	2.70	3.44
Baja Calif. Sur	4.20	3.87	4.55	3.60	3.32	3.89
Campeche	11.80	9.59	13.97	10.17	8.54	11.73
Coahuila	3.86	3.61	4.11	3.28	3.15	3.41
Colima	7.15	6.91	7.37	6.42	6.38	6.46
Chiapas	22.91	16.63	28.88	21.33	16.15	26.13
Chihuahua	4.79	4.67	4.91	4.41	4.30	4.52
Distrito Federal	2.90	1.65	4.00	2.59	1.58	3.47
Durango	5.40	5.29	5.51	4.83	4.85	4.82
Guanajuato	11.98	9.76	13.90	10.43	8.86	11.76
Guerrero	21.55	17.48	25.15	19.86	16.59	22.72
Hidalgo	14.91	11.59	17.87	12.79	10.33	14.94
Jalisco	6.45	5.95	6.90	5.54	5.21	5.84
México	6.39	4.07	8.54	5.31	3.55	6.93
Michoacán	13.89	12.64	14.97	12.57	11.79	13.23
Morelos	9.24	7.41	10.86	8.12	6.77	9.31
Nayarit	9.04	8.90	9.18	8.00	8.02	7.98
Nuevo León	3.32	2.85	3.77	2.77	2.45	3.09
Oaxaca	21.47	15.47	26.74	19.33	14.50	23.48
Puebla	14.59	10.60	18.10	12.70	9.64	15.35
Querétaro	9.79	7.04	12.27	8.13	6.17	9.88
Quintana Roo	7.52	5.69	9.44	6.58	5.25	7.94
San Luis Potosí	11.28	9.49	12.91	9.91	8.70	11.00
Sinaloa	7.96	8.24	7.68	6.42	6.83	6.02
Sonora	4.39	4.36	4.42	3.73	3.77	3.69
Tabasco	9.72	7.29	12.04	8.56	6.75	10.26
Tamaulipas	5.13	4.48	5.75	4.51	4.07	4.93
Tlaxcala	7.80	5.45	9.95	6.67	4.90	8.26
Veracruz	14.85	11.63	17.76	13.41	10.97	15.57
Yucatán	12.29	9.94	14.51	10.87	9.17	12.48
Zacatecas	7.96	7.49	8.39	7.19	6.91	7.44

Tabla 2.8: Porcentaje de analfabetismo en los años 2000 y 2005, con respecto a la población por sexo y estado de la república.

2.4. Zonas

Hasta este momento, se han analizado los estados de la república mexicana en forma individual bajo los criterios: porcentaje de ruralidad o urbanización, analfabetismo y acceso a servicios médicos.

Ahora se van a clasificar los 32 estados en cinco zonas, con base al grado de marginación calculado por el Consejo Nacional de Población (CONAPO), las zonas en que se divide la república mexicana son

- (Z1) Muy alto : Guerrero, Chiapas y Oaxaca.
- (Z2) Alto : Veracruz de Ignacio de la Llave, Hidalgo, San Luis Potosí, Puebla, Campeche, Tabasco, Michoacán de Ocampo y Yucatán.
- (Z3) Medio : Nayarit, Zacatecas, Guanajuato, Durango, Tlaxcala, Querétaro de Arteaga y Sinaloa.
- (Z4) Bajo : Quintana Roo, Morelos, Estado de México, Tamaulipas, Chihuahua, Baja California Sur, Colima, Sonora, Jalisco y Aguascalientes.
- (Z5) Muy bajo : Coahuila de Zaragoza, Baja California, Nuevo León y Distrito Federal.

Esta clasificación la hizo CONAPO con base en el II Conteo de Población y Vivienda 2005, y la Encuesta Nacional de Ocupación y Empleo (ENOE) 2005, IV trimestre. Para visualizar gráficamente las cinco zonas, ver la Figura 2.4.

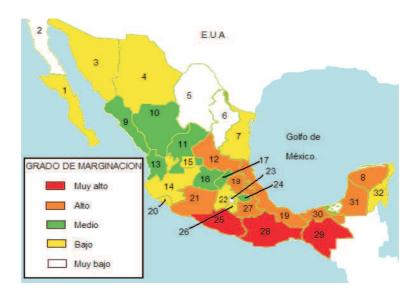


Figura 2.4: Grado de marginación por entidad federativa, CONAPO 2005.

El II Conteo de Población y Vivienda 2005, considera un total de 46,172 AGEB⁴ urbanas habitadas, las cuales corresponden a localidades censales de 2,500 o más habitantes, así como a localidades que son cabeceras municipales. En estas AGEB residen 80.1 millones de personas. Sin embargo, el índice de marginación urbana se calculó únicamente para 39,172 AGEB urbanas, cuya población total asciende a 79.8 millones de personas, lo que equivale a 99.6 por ciento de la población en AGEB urbanas del país. Esto se fijó con el fin de contar con datos suficientemente representativos, en términos absolutos, para la estimación de los siguientes diez indicadores

- Porcentaje de población de 6 a 14 años que no asiste a la escuela (I_1)
- Porcentaje de población de 15 años o más sin secundaria completa (I_2)
- Porcentaje de población sin derechohabiencia a los servicios de salud (I_3)
- Porcentaje de hijos fallecidos de las mujeres de 15 a 49 años (I_4)
- Porcentaje de viviendas particulares sin agua entubada dentro de la vivienda (I_5)
- Porcentaje de viviendas particulares sin drenaje conectado a la red pública o fosa séptica (I_6)
- Porcentaje de viviendas particulares sin excusado con conexión de agua (I_7)
- Porcentaje de viviendas particulares con pisos de tierra (I_8)
- Porcentaje de viviendas particulares con algún nivel de hacinamiento (I_9)
- Porcentaje de viviendas particulares habitadas sin refrigerador (I_{10}) que sintetiza el índice de marginación, (CONAPO, 2005).

2.4.1. Población por zona

Examinemos la distribución de las localidades y de la población por zona geográfica, la cual se muestra en la Tabla 2.9. Notamos que la zona Z1 es la que presentó el mayor porcentaje en localidades rurales, seguida de la zona

⁴Áreas Geoestadísticas Básicas: Constituyen la unidad fundamental del Marco Geoestadístico Nacional, el cual se ajusta, en lo posible, a los límites municipales y estatales de la división político-administrativa del país. Dependiendo de la densidad de población y uso del suelo las AGEB se clasifican en urbanas y rurales.

Z3 en el año 2005, sin embargo, si analizamos los porcentajes de población rural, observamos que van en orden descendente y los porcentajes de población urbana van en orden ascendente, esto es lógico pues las zonas están clasificadas por grado de marginación, y en el grado de marginación está involucrada la variable ruralidad.

Zona	% Loc	alidades	% Población		
	Rural	Urbana	Rural	Urbana	
Z1	98.84	1.16	49.67	50.33	
Z2	97.96	2.04	35.21	64.79	
Z3	98.36	1.64	31.15	68.85	
Z4	98.16	1.84	13.73	86.27	
Z5	95.66	4.34	3.92	96.08	

Tabla 2.9: Localidades y población por regiones en el año 2005.

Ahora analizaremos la distribución de la población total en el 2005 de acuerdo al sexo y población en cada zona, el resultado se presenta en la Figura 2.5. Podemos observar que más del $50\,\%$ de la población en cada zona, es femenina. La menor diferencia la presentó la zona Z4 con $50.98\,\%$ mujeres y $49.02\,\%$ hombres.

Figura 2.5: Porcentaje de población total por sexo del año 2005.

En algunos estados el número de hombres fue mayor que el de mujeres⁵, tal fue el caso de Baja California, Baja California Sur, y Sonora. En el resto de los estados, el número de mujeres es mucho mayor al de hombres, siendo los estados de Campeche, Colima y Quintana Roo los que presentan la menor diferencia en cantidad entre la población femenina y masculina.

2.4.2. Acceso a servicios médicos por zona

En la Tabla 2.10, se presentan los porcentajes de la población derechohabiente en alguna institución de salud y los porcentajes de la población no derechohabiente. Estos porcentajes se calcularon con base en la población por zona.

Año	Región	Con Derecho	Sin Derecho
	Z1	22.88	78.96
	Z2	42.42	59.78
2000	Z3	53.87	49.16
	Z4	55.09	47.82
	Z5	63.28	38.50
	Z1	21.88	75.52
	Z2	40.72	57.39
2005	Z3	51.16	46.69
	Z4	51.02	44.30
	Z5	59.69	36.32

Tabla 2.10: Porcentaje de derechohabiencia en los años 2000 y 2005.

Como era de esperarse, en la Tabla 2.10 se observa que el porcentaje de derechohabientes se incrementa con forme aumenta el grado de marginación de cada zona. Y el porcentaje de población no derechohabiente disminuye conforme aumenta el grado de marginación de cada zona⁶.

En las Tablas 7.2 y 7.3 del Anexo, se observa la distribución de derechohabientes por institución y estado de los años 2000 y 2005 respectivamente, tener presente que los porcentajes presentado es éstas, son calculados con base a la población nacional y no con respecto a la población de cada estado.

 $^{^5\}mathrm{Ver}$ Tabla 7.4 en el Anexo.

⁶Grado de marginación: Z1 Muy alto, Z2 Alto, Z3 Medio, Z4 Bajo y Z5 Muy bajo.

2.4.3. Analfabetismo por zona

El analfabetismo es una característica de lugares marginados o muy pobres, ya que la población joven tiene que trabajar en lugar de asistir a la escuela.

Para tener una idea del comportamiento del analfabetismo en nuestro país, presentamos en la Tabla 2.11, los porcentajes del mismo por zona. Observamos que del total de población de 15 años y más en la república mexicana, el 9.46 % era analfabeta en el año 2000, y de este 9.46 % la zona Z2 aportó un 3.88 % de analfabetas.

Año	Z1	Z2	Z3	Z4	Z5	Nacional
1990	2.83	4.44	1.69	2.57	0.89	12.42
1995	2.39	3.88	1.43	2.22	0.68	10.60
2000	2.19	3.42	1.25	1.99	0.61	9.46
2005	2.01	3.02	1.08	1.72	0.52	8.35

Tabla 2.11: Porcentaje de analfabetismo en los años 1990, 1995, 2000 y 2005.

Los porcentajes de la Tabla 2.11 fueron obtenidos con base en la población de 15 años y más a nivel nacional⁷. Ahora presentamos la Figura 2.6, la cual representa los porcentajes de analfabetismo pero con respecto a la población mayor de 14 años residente en cada zona de estudio, en los años censados.

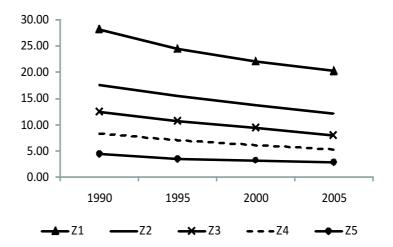


Figura 2.6: Porcentaje de analfabetismo por zona con respecto su población.

Si observamos las tendencias de los porcentajes de analfabetismo de cada zona, que se presentan en la Figura 2.6, notamos que la zona Z1 ha decrecido más rápido que las demas zonas.

 $^{^7\}mathrm{Ver}$ Tabla7.1en el Anexo

Para concluir este capítulo y con base en lo analizado a lo largo del mismo, presentamos la Tabla 2.12 con los estados con mayor porcentaje de población: total, rural, urbana, derechohabiente, no derechohabiente y analfabeta.

Total	Rural	Urbana	Derechohabiente	No Derechohabiente	Analfabeta
Edo. México	Chiapas	Distrito Federal	Aguascalientes	Chiapas	Chiapas
Distrito Federal	Oaxaca	Nuevo León	Coahuila	Oaxaca	Guerrero
Veracruz	Hidalgo	Baja California	Campeche	Guerrero	Oaxaca
Jalisco	Tabasco	Coahuila	Nuevo León	Michoacán	Veracruz
Puebla	Guerrero	Colima	Sonora	Tlaxcala	Hidalgo

Tabla 2.12: Estados con los porcentajes más altos en cada rubro.

Capítulo 3

Validación de datos

Debemos considerar muy seriamente que la información con la que contamos (de INEGI y SSA), tiene errores ocasionados por diversas causas, entre los más frecuentes están: por un lado la información falsa, ya que al realizar las encuestas de los censos y conteos, la gente no responde con la mayor honestidad posible, tal es el caso al momento de declarar su edad; por otro lado están los errores de los encuestadores o los que se cometen al capturar la información, además del desconocimiento de la causa exacta de muerte, en algunos casos.

Considerando estas situaciones tenemos indicios de que los datos que nos dan tanto el INEGI como la SSA, no son del todo confiables. Por esto, evaluaremos el grado de confiabilidad de los datos de población y posteriormente la información sobre mortalidad.

Antes de iniciar con la validación de las bases de datos, queremos dejar claro el concepto: grupo de edad o grupo quinquenal de edad, ya que lo utilizaremos a partir de esta parte y en adelante. Cuando nos referimos a un grupo de edad estamos hablando de los que se muestran en la Tabla 3.1.

Grupo	Grupo de	Grupo	Grupo de
	edad		edad
1er.	0 a 4 años	10o.	45 a 49 años
2do.	5 a 9 años	11o.	$50 \text{ a } 54 \text{ a} \tilde{\text{nos}}$
3er.	10 a 14 años	12o.	55 a 59 años
40.	15 a 19 años	13o.	$60 \text{ a } 64 \text{ a} \tilde{\text{nos}}$
5o.	20 a 24 años	14o.	65 a 69 años
6o.	25 a 29 años	15o.	70 a 74 años
70.	30 a 34 años	16o.	75 a 79 años
80.	35 a 39 años	17o.	80 a 84 años
9o.	40 a 44 años	18o.	85 y más años

Tabla 3.1: Grupos quinquenales de edad.

Observar que el último grupo contempla todas las edades a partir de los

85 años de edad.

Nota 1 . Hay que resaltar que algunas bases tienen como primer grupo, aquel que está formado por la población de 1 a 4 años y agrupan aparte a los menores de un año.

3.1. Población

Para evaluar el grado de confiabilidad de los datos de población, emplearemos el Indice de Naciones Unidas (INU), en algunos textos le llaman a esto estructura por edad (Mina, 2006).

Definición 3.1.1 El Índice de Naciones Unidas es

$$INU = I_G^H + I_G^M + 3I(S),$$

donde: I_G^H , I_G^M y I(S) son los índices de naciones unidas de hombres, mujeres y ambos sexos respectivamente. Los cuales se construyen de la siguiente manera

$$I_G^H = \frac{\sum_{i=1}^{13} \left| \frac{2P_{(5i),(5i+4)}^H}{P_{(5i-5),(5i-1)}^H + P_{(5i+5),(5i+9)}^H} - 1 \right|}{13} \times 100,$$

$$I(S) = \frac{\sum_{i=1}^{13} \left| \frac{P_{(5i),(5i+4)}^{H}}{P_{(5i),(5i+4)}^{M}} - \frac{P_{(5i+5),(5i+9)}^{H}}{P_{(5i+5),(5i+9)}^{M}} \right|}{13} \times 100,$$

donde $P^H_{(5i), (5i+4)}$ es la población de hombres de 5i a 5i+4 años de edad, el I^M_G se construye igual que el I^H_G , pero con la población femenina respectiva.

Para tener un parámetro de referencia, se consideran a los países que tienen censos de alta calidad en el control de la declaración de edad, el INU en estos países está alrededor de 9, tomando en cuenta que conforme el INU se aleje de este número, en esa medida se intensifica la mala declaración de la edad.

Cuando la declaración de edad no es confiable, uno de los métodos que se utilizan para corregir la información, es la fórmula de graduación de un dieciseisavo. Ver Mina (2006), pág. 16.

Definición 3.1.2 La fórmula de graduación de un dieciseisavo se construye de la siguiente manera:

$$\hat{S}_i = \frac{1}{16} \{ -S_{i+2} + 4S_{i+1} + 10S_i + 4S_{i-1} - S_{i-2} \}, \tag{3.1.1}$$

donde \hat{S}_i es la población estimada del i-ésimo grupo de edad, y S_{i+2} es la población registrada del grupo de edad i+2.

Validación de datos 23

Nota 2 . Al corregir los datos con la fórmula (3.1.1), los dos primeros y los dos últimos grupos de edad se pierden.

Esto es porque con la fórmula (3.1.1), el primer grupo de edad que se puede estimar es el tercero, es decir \hat{S}_3 que es el de 10 a 14 años,

$$\hat{S}_3 = \frac{1}{16} \{ -S_5 + 4S_4 + 10S_3 + 4S_2 - S_1 \},\,$$

y el último grupo es \hat{S}_{15} , de 70 a 74 años de edad,

$$\hat{S}_{15} = \frac{1}{16} \{ -S_{17} + 4S_{16} + 10S_{15} + 4S_{14} - S_{13} \}.$$

En la Tabla 3.2, se presentan tanto el INU de los datos de población registrados por el INEGI (sin corrección), como el INU de la población corregida con la fórmula (3.1.1), para los años 1990 y 1995.

	INU 1990		INU 1995	
Estado	Registrada	Corregida	Registrada	Corregida
Nacional	13.76	8.13	16.49	8.98
Aguascalientes	19.30	11.30	19.29	12.10
Baja California	17.92	8.52	18.93	9.33
Baja California Sur	18.56	12.29	20.43	11.37
Campeche	23.75	12.84	18.87	12.31
Coahuila	14.79	7.11	15.13	8.88
Colima	14.07	10.38	20.39	12.98
Chiapas	43.46	10.21	24.99	11.15
Chihuahua	14.14	8.94	15.82	6.62
D.F.	16.42	11.32	20.78	11.60
Durango	16.59	11.99	16.61	10.95
Guanajuato	16.59	10.22	20.58	11.28
Guerrero	25.99	10.77	24.56	10.79
Hidalgo	22.85	12.70	19.65	12.54
Jalisco	16.25	12.69	15.81	10.69
México	15.97	11.80	17.77	11.45
Michoacán	22.13	12.81	23.90	13.35
Morelos	18.37	10.47	20.44	13.23
Nayarit	16.08	12.71	15.40	10.41
Nuevo León	15.58	9.80	15.22	8.41
Oaxaca	19.93	8.74	20.13	10.21
Puebla	14.63	8.04	18.03	10.03
Querétaro	16.32	10.65	21.28	12.62
Quintana Roo	24.60	16.69	19.95	17.34
San Luis Potosí	15.99	9.89	18.08	10.69
Sinaloa	18.30	12.96	15.90	12.40
Sonora	16.16	8.87	15.38	8.19
Tabasco	18.65	10.49	20.62	12.99
Tamaulipas	13.91	6.67	15.93	7.29
Tlaxcala	16.58	9.14	14.09	11.81
Veracruz	14.09	7.24	16.81	8.89
Yucatán	14.94	10.94	15.53	9.23
Zacatecas	18.75	13.58	20.43	12.28

Tabla 3.2: INU de la población registrada y de la corregida en 1990 y 1995.

Tener presente que conforme el INU se aleja del 9, en esa medida se intensifica la mala declaración de la edad. En la Tabla 3.3, se exhiben los índices de naciones unidas de los años 2000 y 2005.

	INU 2000		INU 2005	
Estado	Registrada	Corregida	Registrada	Corregida
Nacional	12.96	7.05	13.17	7.86
Aguascalientes	15.21	11.12	14.11	10.43
Baja California	16.83	10.71	15.63	11.28
Baja California Sur	14.47	9.66	13.67	8.86
Campeche	16.37	10.81	17.45	11.24
Coahuila	13.37	7.16	11.27	7.07
Colima	16.11	11.86	14.95	9.34
Chiapas	23.63	11.28	23.53	13.68
Chihuahua	12.54	6.92	11.68	8.61
D.F.	17.06	10.90	16.59	11.30
Durango	16.17	10.09	15.96	10.86
Guanajuato	18.11	10.17	18.40	10.72
Guerrero	21.68	11.34	19.99	13.14
Hidalgo	18.13	12.25	22.00	14.28
Jalisco	12.72	7.86	11.60	7.41
México	14.27	9.81	14.57	9.74
Michoacán	21.24	12.13	19.46	12.09
Morelos	18.85	12.39	19.68	12.25
Nayarit	13.84	9.21	16.22	11.27
Nuevo León	14.66	7.50	11.73	6.78
Oaxaca	17.79	10.38	20.07	12.97
Puebla	15.59	8.72	15.83	8.70
Querétaro	15.68	10.10	16.28	10.23
Quintana Roo	19.53	15.33	12.75	10.71
San Luis Potosí	19.55	10.46	19.73	12.37
Sinaloa	14.60	8.93	13.98	8.17
Sonora	12.10	6.07	11.97	6.26
Tabasco	19.46	12.96	16.54	12.89
Tamaulipas	13.92	6.92	11.01	7.15
Tlaxcala	14.62	11.13	14.02	10.61
Veracruz	16.90	10.75	17.67	12.47
Yucatán	15.08	7.06	15.87	7.11
Zacatecas	20.04	12.23	20.93	14.70

Tabla 3.3: INU de la población registrada y de la corregida en los años 2000 y 2005.

Si comparamos los índices de naciones unidas de la población registrada (sin corrección) a nivel nacional, en los años 1990 y 1995 con los correspondientes del 2000 y 2005 (ver tablas 3.2 y 3.3), observamos que los índices de los últimos dos conteos están más próximos a 9, es decir, los datos de edad son más confiables.

Con esto terminamos el análisis de confiabilidad de los registros de población del INEGI.

Sin embargo, aunque hemos logrado datos más confiables, no vamos a utilizarlos porque como vimos en la Nota 2, hay datos que se pierden.

Validación de datos 25

3.2. Mortalidad

Para evaluar la confiabilidad de los registros de mortalidad por cáncer, primero estudiaremos las pirámides de mortalidad de la población registrada de 1990, 1995, 2000 y 2005, ya que en estos años se realizaron los censos de población, (SINAIS 2009 y SALUD 2009).

Es importante mencionar que la SSA tiene registros de mortalidad anualmente a partir del año de 1990 hasta 2007.

Al preguntarle la edad a la población, ésta tiende a redondearla en terminos de 0 ó 5, lo cual desvia la veracidad de la información. Por ésto calcularemos el Índice de Whipple, Mina (2006).

Definición 3.2.1 El Índice de Whipple (I_w) se utiliza para estimar la preferencia hacía las edades terminadas en 0 y 5, de la población que declaró su edad entre los 23 y 62 años.

$$I_w = \frac{\sum_{i=5}^{12} P_{5i}}{\sum_{i=23}^{62} P_i} \times 5 \times 100, \tag{3.2.1}$$

donde: P_{5i} y P_i son los datos de mortalidad en las edades 5i e i respectivamente. El criterio que utilizaremos para evaluar la información con base en el Índice de Whipple es el siguiente:

	Clasificación de la
Rango de I_w	$in formaci\'on$
100 a 104	muy precisa
105 a 109	precisa
110 a 124	a proximada
125 a 174	deficiente
175 a más	$muy\ deficiente$

Nota 3 . Analizando la fórmula (3.2.1) observamos que un valor menor a 100 índica que no existe atracción hacía las edades terminadas en 0 ó 5, lo cual podría indicar un sesgo hacía otro dígito, por lo que la información es deficiente; en el lado opuesto, el valor máximo (500) se obtiene cuando todas las edades que se declararon terminaban en dichos dígitos.

3.2.1. Muertes por cáncer del cuello del útero

Iniciaremos nuestro estudio con las pirámides de mortalidad por cáncer del cuello del útero.

En la Figura 3.1, se observa que en los grupos de edad de 45 a 49 y de 55 a 59 años, se presentaron más muertes por cáncer del cuello del útero, en el año de 1990; manteniéndose muy similar para el año de 1995.

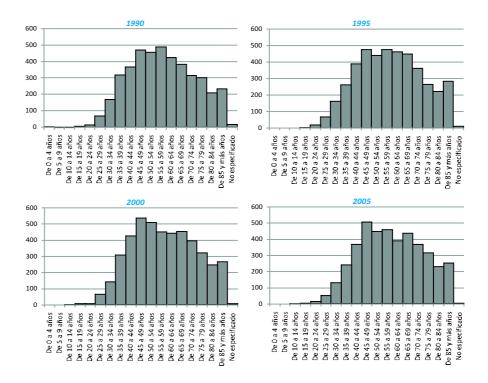


Figura 3.1: Pirámides de mortalidad por cáncer de cuello del útero en los años censales 1990, 1995, 2000 y 2005.

Siguiendo con la Figura 3.1, notamos que en el año 2000, hubo mayor cantidad de defunciones en el grupo de edad de 45 a 49 años, que en el grupo de 55 a 59, hecho que continúa en el año 2005. Observemos también que en el año 2000, el grupo de 50 a 54 años fue el segundo grupo que mostró más muertes por esta enfermedad, tanto que ocupó el tercer lugar en defunciones en los años 1990, 1995 y 2005.

Después de haber revisado las pirámides de mortalidad, continuaremos con la clasificación de los estados de nuestro país, dependiendo de la calidad que tuvo su información de muertes por cáncer del cuello del útero, en los años 1990, 1995, 2000 y 2005 según el Índice de Whipple I_w , ver Tabla 3.4.

Validación de datos 27

Clasificación	1990	1995	2000	2005
Deficiente por sesgo a otro dígito (Menos de 100)	Chiapas Chihuahua Guerrero Jalisco México Michoacán Nayarit Nuevo León Querétaro Yucatán	Coahuila Colima Distrito Federal México Nuevo León Quintana Roo Sinaloa Tabasco Tamaulipas Tlaxcala Veracruz Zacatecas	Aguascalientes Baja California Campeche Coahuila Colima Chiapas Chihuahua Durango Jalisco Morelos Nuevo León Querétaro Quintana Roo Sinaloa Sonora Tlaxcala Yucatán	Baja Calif. Sur Coahuila Chiapas Distrito Federal Michoacán Morelos Nayarit Nuevo León Quintana Roo Sonora Veracruz
Muy precisa (100 a 104)	Durango Morelos Tamaulipas	Chihuahua	Distrito Federal Guanajuato Guerrero Hidalgo Puebla Zacatecas	Sinaloa
Precisa (105 a 109)	Campeche Distrito Federal Puebla Sinaloa Zacatecas	Michoacán Querétaro	México Oaxaca	Chihuahua Guerrero Querétaro Zacatecas
Aproximada (110 a 124)	Colima Guanajuato Hidalgo Tlaxcala Veracruz	Guerrero Nayarit Puebla	Nayarit San Luis Potosí Veracruz	Guanajuato Jalisco México Oaxaca San Luis Potosí Yucatán
Deficiente (125 a 174)	Aguascalientes Baja California Baja Calif. Sur Coahuila Oaxaca San Luis Potosí Sonora Tabasco	Baja California Chiapas Durango Guanajuato Hidalgo Jalisco Morelos Oaxaca San Luis Potosí Sonora Yucatán	Baja Calif. Sur Michoacán Tabasco Tamaulipas	Baja California Colima Hidalgo Puebla Tabasco Tamaulipas Tlaxcala
Muy Deficiente (175 a más)	Quintana Roo	Aguascalientes Baja Calif. Sur Campeche		Aguascalientes Campeche Durango

Tabla 3.4: Clasificación de los estados, de acuerdo a la información de defunciones por cáncer del cuello del útero según el I_w , ver Nota 3.

Analizando cada una de las clasificaciones que presentamos en la Tabla 3.4, observamos que la calidad de información de Aguascalientes tiene un nivel deficiente o muy deficiente según el índice de Wipple, con excepción de la que se declaró en el año 2000.

3.2.2. Muertes por cáncer de tráquea, bronquios y pulmón

Veamos lo que ocurre con la mortalidad por cáncer de tráquea, bronquios y pulmón. La Figura 3.2, representa las defunciones ocurridas por esta causa en los años de 1990, 1995, 2000 y 2005, desglosadas por grupo quinquenal de edad.

Se observa que en 1990, este tumor le quitó la vida principalmente a hombres de entre los 45 y 84 años de edad, siendo el grupo de 65 a 69 años el

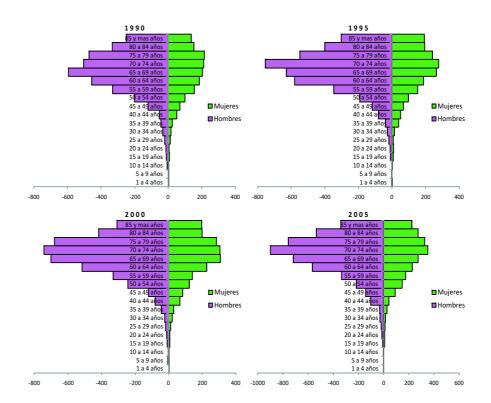


Figura 3.2: Pirámides de mortalidad por cáncer de tráquea, bronquios y pulmón en 1990, 1995, 2000 y 2005.

más afectado; en el caso de las mujeres, las muertes por esta enfermedad se incrementaron en menor proporción al pasar de un grupo de edad a otro, (en comparación con el caso de los hombres) siendo el grupo de 75 a 79 años de edad en el que se registró la mayor cantidad de decesos.

Continuando con la Figura 3.2, nos percatamos que a diferencia del año 1990, la pirámide de mortalidad de 1995, presentó un mayor registro de muertes en el grupo de 70 a 74 años de edad, tanto en el sexo masculino como en el femenino. En las pirámides de los años 2000 y 2005 notamos que el grupo de 70 a 74 años de edad tuvo la mayor cantidad de defunciones por cáncer de tráquea, bronquios y pulmón, comparado con los demás grupos de edad.

Para terminar con el análisis de los datos que se tienen con respecto a la mortalidad por esta enfermedad, presentamos en la Tabla 3.5, la clasificación de la información según el Índice de Whipple.

Queremos remarcar que Tlaxcala y Nayarit han presentado un índice de Whipple menor de 105 en los cuatro años de análisis. Y el Distrito Federal ha obtenido menos de 110 en este índice, lo cual nos índica una buena declaración de edad, ver Nota 3 y Tabla 3.5.

Clasificación	1990	1995	2000	2005
	Aguascalientes	Aguascalientes	Aguascalientes	Baja California
	Baja California	Baja Calif. Sur	Baja California	Campeche
	Baja Calif. Sur	Campeche	Baja Calif. Sur	Colima
	Chihuahua	Chihuahua	Campeche	Distrito Federal
	Colima	Colima	Chiapas	Durango
	Distrito Federal	Durango	Chihuahua	Hidalgo
Deficiente por sesgo	Jalisco	Hidalgo	Coahuila	Morelos
a otro dígito	México	Jalisco	Distrito Federal	Nayarit
(Menos de 100)	Nayarit	Nayarit	Guanajuato	Querétaro
	Querétaro	Nuevo León	Guerrero	Sonora
	Quintana Roo	Oaxaca	Jalisco	Tabasco
	San Luis Potosí	Querétaro	Michoacán	Tlaxcala
	Sonora	Quintana Roo	Nuevo León	
		San Luis Potosí	Oaxaca	
		Sinaloa	Puebla	
		Sonora	Querétaro	
		Tabasco	Quintana Roo	
		Tlaxcala	Sinaloa	
			Sonora	
			Tlaxcala	
Muy precisa	Tlaxcala	México	Nayarit	Guerrero
(100 a 104)			Veracruz	
l	Tabasco	Distrito Federal	México	Baja Calif. Sur
Precisa		Veracruz		México
(105 a 109)		Yucatán Michoacán		Quintana Roo
	Durango		Durango	Aguascalientes
	Nuevo León	Puebla	Tamaulipas	Chiapas
A	Sinaloa			Chihuahua
Aproximada	Tamaulipas			Coahuila
(110 a 124)	Veracruz			Jalisco Michoacán
				Nuevo León
				San Luis Potosí Sinaloa
				Tamaulipas
	Campeche	Baja California	Colima	Guanajuato
	Coahuila	Chiapas	Hidalgo	Oaxaca
	Guanajuato	Coahuila	Morelos	Puebla
	Guerrero	Guanajuato	San Luis Potosí	Veracruz
Deficiente	Hidalgo	Guerrero	Yucatán	Zacatecas
(125 a 174)	Michoacán	Morelos	Zacatecas	Zacatecas
(120 a 114)	Morelos	Tamaulipas	Zacatecas	
	Puebla	Zacatecas		
	Yucatán	Zacatecas		
	Zacatecas			
Muy Deficiente	Chiapas		Tabasco	Yucatán
(175 a más)	Oaxaca		Tabasco	1 ucatan
(110 a mas)	Canaca		l	

Tabla 3.5: Clasificación de la información de defunciones por cáncer de tráquea, bronquios y pulmón, según el I_w , ver Nota 3.

3.2.3. Muertes por cáncer de próstata

Por último analizaremos las pirámides de defunciones por cáncer de próstata, por grupo de edad.

En los grupos menores a 45 años de edad, hay registros de mortalidad por este cáncer, pero son mínimos (menos de 5 muertes), en la Figura 3.3 se observa que a partir de los 45 años se incrementan considerablemente las defunciones por esta enfermedad, hasta alcanzar el punto máximo en el grupo de 75 a 79 años, que registró 477 muertes en 1990.

Para el año 1995, la mayor cantidad de decesos por este tumor se presentó en los grupos de 75 a 79 y 80 a 84 años de edad, con 580 y 581 muertes respectivamente. En el 2000, el grupo de 75 a 79 años, ocupó nuevamente el primer lugar en registros por esta causa, seguido del grupo de 80 a 84 años que registró 654 defunciones.

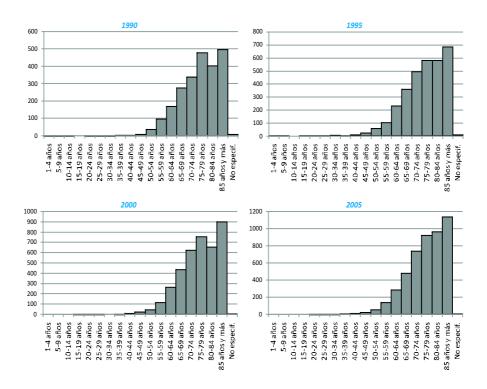


Figura 3.3: Pirámides de mortalidad por cáncer de próstata en los años censales 1990, 1995, 2000 y 2005.

La pirámide de mortalidad del 2005, representada en la Figura 3.3, índica con mayor claridad que los decesos por cáncer de próstata se incrementan al aumentar la edad, apartir de los 45 años. Tener en cuenta que en el último grupo están registradas las defunciones de todos los hombres mayores de 85 años de edad.

A continuación calcularemos el Índice de Whipple I_w , para clasificar la información sobre las muertes por cáncer de próstata de todos y cada uno de los estados de la república mexicana.

Clasificación	1990	1995	2000	2005
Deficiente por sesgo a otro dígito (Menos de 100)	Aguascalientes Campeche Chihuahua Distrito Federal Durango Hidalgo Jalisco Michoacán Morelos Oaxaca Querétaro Quintana Roo Tabasco Tamaulipas Yucatán	Campeche Chiapas Chihuahua Guanajuato Guerrero Michoacán Nayarit Oaxaca Puebla Quintana Roo Sinaloa Tabasco Veracruz Zacatecas	Baja California Coahuila Chiapas Chihuahua Distrito Federal Hidalgo México Morelos Nuevo León San Luis Potosí Sonora Tlaxcala Yucatán	Aguascalientes Campeche Distrito Federal Guanajuato Hidalgo Jalisco Nayarit Nuevo León Querétaro Sinaloa Sonora Veracruz Zacatecas
Muy precisa (100 a 104)			Colima Puebla	Chiapas Morelos San Luis Potosí Tabasco Yucatán
Precisa				
Aproximada (110 a 124)		Baja California Distrito Federal Nuevo León	Veracruz	
Deficiente (125 a 174)	Guerrero México Puebla San Luis Potosí Sonora Zacatecas	Durango Hidalgo Jalisco Querétaro San Luis Potosí Tlaxcala	Aguascalientes Guerrero Jalisco Michoacán Nayarit Oaxaca Quintana Roo Sinaloa Tabasco Tamaulipas Zacatecas	Baja Calif. Sur Coahuila Colima Durango Guerrero México Oaxaca Tamaulipas
Muy deficiente (175 y más)	Baja California Coahuila Colima Chiapas Guanajuato Nayarit Nuevo León Sinaloa Tlaxcala	Baja Calif, Sur Coahuila Morelos Sonora Tamaulipas Yucatán	Campeche Durango Guanajuato Querétaro	Baja California Chihuahua Michoacán Puebla Tlaxcala

Tabla 3.6: Estados clasificados según el I_w , por la calidad de sus datos de mortalidad por cáncer de próstata, ver Nota 3.

Como hemos visto a lo largo del capítulo 3, la información registrada tanto de la SSA como del INEGI no es muy confiable; sin embargo, es la "información oficial" y si la corregimos, la nueva información aunque ya es "mejor", no sabemos que tan confiable es, pues no tenemos un párametro con el cual comparar. Es por esto que en este trabajo estaremos trabajando con los datos de salida de las instituciones ya mencionadas.

Capítulo 4

Mortalidad por cáncer en México

4.1. Introducción

Como sabemos, la natalidad, la mortalidad y la migración son factores que delimitan el crecimiento de la población, para nuestro objetivo estaremos interesados únicamente en la mortalidad.

Para tener una idea clara de cómo se comporta la mortalidad en México, observemos en la Tabla 4.1 que los accidentes, las enfermedades del corazón y los tumores malignos fueron las tres principales causas de muerte de 1987 hasta 1996, a partir del año 1997 la diabetes mellitus desplazó a los accidentes.

Los términos tumor, neoplasia y cáncer son utilizados como sinónimos para designar a las masas de tejido constituido por células que crecen y se multiplican desordenadamente, sin obedecer las leyes que controlan el crecimiento celular normal.

Tumor: Deriva del latín tumor, que significa masa extraña o "bulto". En principio, los tumores pueden ser benignos (verrugas, fibromas, etc. que aparecen sólo en una parte del cuerpo) y malignos, a éstos últimos se les llama cánceres.

Cáncer: Del latín cáncer (cangrejo), se refiere al crecimiento de un tejido u órgano por una multiplicación descontrolada y desordenada de células.

Neoplasia: Término que deriva de neo (nuevo) y del griego plasma (formación), indica la formación de células nuevas sin orden ni control. Es similar al término cáncer.

Además debemos considerar que hay tumores que son exclusivos de algún sexo, es decir, algunos de éstos afectan únicamente a mujeres, otros sólo a

Año	Causa	Defunciones	Año	Causa	Defunciones
	Total	406,913		Total	419,074
1987	Accidentes	42,798	1994	Enf. del corazón	60,773
	Enf. del corazón	42,520		Tumores malignos	46,423
	Tumores malignos	37,437		Accidentes	37,234
	Total	412,987		Total	430,278
1988	Enf. del corazón	47,905	1995	Enf. del corazón	63,609
	Accidentes	41,626		Tumores malignos	48,222
	Tumores malignos	39,378		Accidentes	35,567
	Total	423,304		Total	436,321
1989	Enf. del corazón	50,980	1996	Enf. del corazón	65,603
	Tumores malignos	40,628		Tumores malignos	49,916
	Accidentes	40,154		Accidentes	35,073
	Total	422,803		Total	440,437
1990	Enf. del corazón	52,999	1997	Enf. del corazón	68,040
	Tumores malignos	41,168		Tumores malignos	51,254
	Accidentes	39,400		Diabetes Mellitus	36,027
	Total	411,131		Total	444,665
1991	Enf. del corazón	54,149	1998	Enf. del corazón	68,677
	Tumores malignos	41,985		Tumores malignos	52,670
	Accidentes	39,020		Diabetes Mellitus	41,832
	Total	409,814		Total	443,950
1992	Enf. del corazón	55,606	1999	Enf. del corazón	69,278
	Tumores malignos	43,692		Tumores malignos	53,662
	Accidentes	38,246		Diabetes Mellitus	45,632
	Total	416,335		Total	437,667
1993	Enf. del corazón	58,442	2000	Enf. del corazón	68,677
	Tumores malignos	44,951		Tumores malignos	54,990
	Accidentes	37,024		Diabetes Mellitus	46,609

Tabla 4.1: Las tres principales causas de muerte en el periodo de 1987 - 2000.

hombres y otros tumores afectan a los dos sexos.

En la Tabla 4.1, observamos que los tumores malignos son la segunda causa de muerte desde 1989. En la Figura 4.1, se aprecia claramente que desde 1990 la mortalidad causada por tumores malignos se incrementó año con año hasta llegar al 2000, a partir del cual la mortalidad por esta causa se mantuvo un tanto estable hasta el año 2004, presentando un pequeño decremento en el 2005.

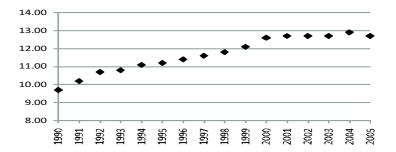


Figura 4.1: Porcentaje de mortalidad causada por tumor maligno.

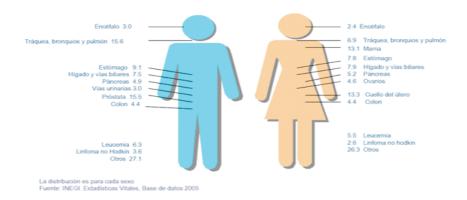


Figura 4.2: Porcentaje de mortalidad por cáncer en México, en el año 2005, con respecto al total de defunciones por cáncer en cada sexo.

En la Figura 4.1, observamos que el cáncer con mayor porcentaje de muerte en las mujeres, fue el de cuello del útero, y en los hombres fue el de próstata. Asimismo vemos que el cáncer de tráquea, bronquios y pulmón es elcáncer que no hace distinción de género y además tiene un un porcentaje de muerte alto.

Según "Hombres y Mujeres" (2006), las muertes por tumor maligno representaron 11.3 % del total de fallecimientos en el sexo masculino y 14.5 % del sexo femenino, en el año 2005. La Organización Mundial de la Salud, dice que dentro de los cánceres que afectan a ambos sexos, el cáncer de tráquea, bronquios y pulmón es el que tiene mayor incidencia.

A continuación, analizaremos algunos tipos de cáncer, aquellos que provocan la mayor cantidad de defunciones en México.

4.2. Cáncer del cuello del útero

Uno de los cánceres que afecta de manera importante la salud de las mujeres de México es el que se desarrolla en el cuello del útero, conocido como cáncer cervico uterino, cervico o del cuello del útero.

El objetivo de este trabajo es analizar las cifras de defunciones ocasionadas por esta enfermedad desde diferentes puntos de vista. Por ejemplo analizaremos estadísticamente si el cáncer está relacionado con la edad, nivel educativo, área geográfica, y/o acceso a los servicios médicos.

Exactamente no se conocen las causas de este cáncer, pero su aparición o desarrollo parece estar relacionado con múltiples factores (INSP, 2009), como:

• Iniciar la vida sexual a edad temprana.

Tener relaciones sexuales con más de una pareja y sin prevención.

- Antecedentes de infecciones ginecológicas.
- Infección por el Virus del Papiloma Humano (VPH).
- Tabaquismo.
- Deficiencia de folatos y vitaminas A, C y E.

Iniciamos este estudio analizando las tablas de defunciones (femeninas) registradas a partir de 1990 al 2005, en periodos de 5 años. Los datos fueron obtenidos de la Secretaria de Salud (SSA) y el Instituto Nacional de Estadística y Geografía (INEGI). Ver INEGI (1990 y 2000), SSA (2009) y SINAIS(2009).

Con la información desagregada por estado, calculamos los porcentajes de defunciones ocasionadas por este tumor, con respecto a las muertes a nivel nacional. En la Tabla 4.2, se muestran los tres estados de la república que presentaron los porcentajes más altos y más bajos, así como el promedio de decesos diarios a nivel nacional.

				Promedio de
Año	Estado	Defunciones	Porcentaje	defunciones
			•	diarias
	Nacional	4,280	100.00	11.73
	Veracruz	453	10.58	
	D.F.	396	9.25	
1990	México	366	8.55	
	Tlaxcala	29	0.68	
	Quintana Roo	19	0.44	
	Baja Cal. Sur	8	0.19	
	Nacional	4, 392	100.00	12.03
	Veracruz	448	10.20	
	México	391	8.90	
1995	D.F.	388	8.83	
	Campeche	32	0.73	
	Quintana Roo	21	0.48	
	Baja Cal. Sur	13	0.30	
	Nacional	4,620	100.00	12.66
	México	496	10.74	
	Veracruz	426	9.22	
2000	D.F.	384	8.31	
	Quintana Roo	30	0.65	
	Colima	30	0.65	
	Baja Cal. Sur	21	0.45	
	Nacional	4,270	100.00	11.70
	México	503	11.78	
	Veracruz	444	10.40	
2005	D.F.	312	7.31	
	Campeche	35	0.82	
	Colima	19	0.44	
	Baja Cal. Sur	15	0.35	

Tabla 4.2: Defunciones por cáncer cervico-uterino. Total nacional.

Es importante hacer notar que la mortalidad por este tumor maligno, presentó una tendencia creciente de 1990 al 2000, pero hubo un decrecimiento muy importante en el 2005, de hecho, las muertes por esta enfermedad fueron menores que las que ocurrieron en 1990.

Podemos observar en la Tabla 4.2, que el Distrito Federal, el Estado de México y Veracruz son los estados con los porcentajes más altos, sin embargo, debido a la diferencia en el número de personas que habitan cada estado, estos porcentajes no revelan cómo afecta esta enfermedad a la población, por ejemplo, la cantidad de población femenina que vive en el Estado de México, es diferente a la que habita en Tlaxcala, por lo que estos porcentajes nos llevan a una percepción errónea de la realidad.

Dado que en las tablas de defunciones que se obtuvieron de la SSA, son mínimos los registros de muertes en mujeres menores de 15 años por cáncer del cuello del útero, únicamente se considerarán a la mujeres mayores de esta edad para nuestro estudio.

La Tabla 4.3 presenta porcentajes de acuerdo al número de defunciones con respecto a la población femenina en cada estado. En ésta, observamos a los cinco estados con los porcentajes más altos y los dos estados con los porcentajes más bajos. En los años 2000 y 2005 la población femenina de los estados de Chiapas, Morelos, Veracruz y Yucatán, tuvo mayor riesgo de morir por cáncer del cuello del útero, que las mujeres del resto del país. Por otra parte se observa que Nuevo León es el estado que registra menor porcentaje de muertes por este tumor.

Año	Estado	Defunciones
	Colima	0.284
	Morelos	0.248
1990	Nayarit	0.234
	Veracruz	0.232
	Tamaulipas	0.229
	Nuevo León	0.104
	B.C.S	0.082
	Nayarit	0.278
	Colima	0.222
1995	Yucatán	0.210
	Veracruz	0.201
	Morelos	0.192
	Quintana Roo	0.098
	Nuevo León	0.098

Año	Estado	Defunciones
	Nayarit	0.261
	Morelos	0.237
2000	Yucatán	0.214
	Chiapas	0.181
	Veracruz	0.180
	Zacatecas	0.093
	Nuevo León	0.090
	Veracruz	0.170
	Chiapas	0.156
2005	Morelos	0.154
	Yucatán	0.154
	Oaxaca	0.151
	Guanajuato	0.086
	Nuevo León	0.080

Tabla 4.3: Porcentajes de defunciones por cada 1,000 mujeres.

4.2.1. Defunciones por zona geográfica

Ahora analizaremos el comportamiento de los registros de mortalidad causada por esta enfermedad, en las diferentes zonas geográficas ya definidas (página 14). Podemos observar en la Tabla 4.4, que las zonas Z2 y Z4 han presentado más muertes, si las comparamos con las zonas Z1, Z3 y Z5.

			Z1		Z2		Z3		Z4		Z5
añ	ĭо	Def	Población	Def	Población	Def	Población	Def	Población	Def	Población
19	90	433	4,486,262	1,277	10,780,141	553	5,830,363	1,285	12,584,997	708	7,673,913
19	95	506	4,923,841	1,318	11,933,240	568	6,411,759	1,251	14,658,795	707	8,330,156
20	00	534	5,348,733	1,327	12,732,080	572	6,821,703	1,439	16,175,026	712	8,813,617
20	05	529	5,632,344	1,287	$13,\!344,\!275$	500	7,214,472	1,294	17,493,490	610	9,328,852

Tabla 4.4: Defunciones por cáncer del cuello del útero, por zona.

Si en lugar de analizar la cantidad de muertes causadas por el cáncer del cuello del útero, analizamos el porcentaje de mortalidad calculado con base en la población correspondiente a cada zona, obtenemos la Figura 4.3, con ésta podemos concluir que las zonas Z1 y Z2 son las que presentan los porcentajes más altos de mortalidad por ésta enfermedad.

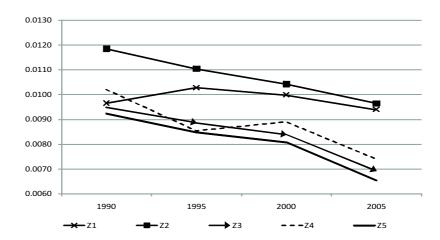


Figura 4.3: Porcentajes de mortalidad por cáncer del cuello del útero, por zona.

Además podemos observar que en general, las cinco zonas presentan tendencias decrecientes en su porcentaje de mortalidad por cáncer del cuello del útero.

4.2.2. Defunciones por edad

Ahora analizaremos la mortalidad causada por este cáncer, por grupos quinquenales de edad, tomando como inicio el grupo de 15 a 19 años, 20 a 24 años y así sucesivamente hasta el de 85 años y más. Cabe mencionar que en la SSA hay registros de defunciones por esta causa en el grupo de 10 a 14 años, pero el número de casos es mínimo (10), por lo que se considera como no significativo en este trabajo.

En la Figura 4.4 se puede ver que el número de defunciones se incrementa en gran medida a partir de los 25 años, alcanzando su nivel máximo en el grupo de 45 a 49 años de edad.

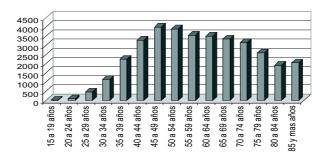


Figura 4.4: Defunciones totales de 1990-2007 por grupos quinquenales de edad.

Para tener una idea más clara de cómo afecta el cáncer del cuello del útero a la población mexicana, veamos la Figura 4.5 que representa el porcentaje de muerte por esta causa, con base en la población correspondiente a cada grupo quinquenal de edad, en los años 1990, 1995, 2000 y 2005. Tener presente que existe un proceso que también interfiere, éste es el proceso natural de muerte (mayor edad, mayor probabilidad de morir), el cual no mediremos en este trabajo.

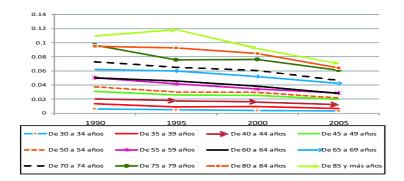


Figura 4.5: Porcentaje de mortalidad por grupos quinquenales de edad.

A continuación, se muestran en la Tabla 4.5 los porcentajes de mortalidad con base en la población femenina¹ correspondiente por grupo de edad y zona.

Grupo	Z1	Z2	Z3	Z4	Z5
15 a 19 años	0.0000	0.0001	0.0001	0.0001	0.0002
20 a 24 años	0.0002	0.0002	0.0002	0.0001	0.0001
25 a 29 años	0.0030	0.0020	0.0010	0.0012	0.0009
30 a 34 años	0.0035	0.0050	0.0026	0.0037	0.0033
35 a 39 años	0.0119	0.0101	0.0060	0.0101	0.0074
40 a 44 años	0.0191	0.0162	0.0163	0.0164	0.0122
45 a 49 años	0.0275	0.0295	0.0242	0.0253	0.0201
50 a 54 años	0.0312	0.0313	0.0277	0.0309	0.0251
55 a 59 años	0.0413	0.0311	0.0251	0.0422	0.0278
60 a 64 años	0.0447	0.0470	0.0318	0.0391	0.0269
65 a 69 años	0.0653	0.0664	0.0412	0.0491	0.0353
70 a 74 años	0.0745	0.0678	0.0642	0.0532	0.0507
75 a 79 años	0.1072	0.0710	0.0913	0.0710	0.0642
80 a 84 años	0.0883	0.0924	0.0779	0.0903	0.0676
85 y más años	0.0780	0.1015	0.1180	0.0896	0.0638
No Especificado	0.0009	0.0006	0.0052	0.0002	0.0000
Total	0.0158	0.0157	0.0127	0.0130	0.0111
La suma de los porcentaj	es por grupo	de edad en ca	ada zona, no	suman el por	centaje total, porque

estos se calcularon de acuerdo a la población femenina de cada grupo

Tabla 4.5: Porcentajes de mortalidad por grupos de edad en el año 2000.

Observamos en la Tabla 4.5, que la zona Z1 fue la que mostró el mayor porcentaje de mortalidad por cáncer del cuello del útero, seguida de la zona Z2, en el año 2000. Este hecho no es lo que observamos en la Figura 4.3. Esto puede deberse a que los porcentajes de dicha figura fueron calculados con respecto a la población por zona, incluyendo la población femenina menor de 15 años, edad en la cual la mortalidad por esta enfermedad no es significativa.

A continuación analizaremos los porcentajes correspondientes al año 2005, ver Tabla 4.6. En ésta observamos que las cinco zonas presentaron una reducción en el porcentaje de mortalidad por este cáncer (comparado con el 2000), siendo las zonas Z1 y Z2 las que mostraron los porcentajes más altos, y la zona Z5 presentó el porcentaje más bajo, recordar que esta zona es la menos marginada.

¹Ver Tablas 7.5 y 7.7 en el Anexo.

Grupo	<i>Z</i> 1	Z2	Z3	Z4	Z5
15 a 19 años	0.0002	0.0000	0.0000	0.0001	0.0000
20 a 24 años	0.0004	0.0002	0.0002	0.0005	0.0001
25 a 29 años	0.0024	0.0013	0.0009	0.0007	0.0015
30 a 34 años	0.0039	0.0033	0.0034	0.0031	0.0022
35 a 39 años	0.0118	0.0083	0.0040	0.0052	0.0052
40 a 44 años	0.0185	0.0137	0.0105	0.0106	0.0088
45 a 49 años	0.0165	0.0210	0.0163	0.0228	0.0144
50 a 54 años	0.0254	0.0251	0.0195	0.0212	0.0145
55 a 59 años	0.0329	0.0345	0.0233	0.0318	0.0161
60 a 64 años	0.0210	0.0345	0.0246	0.0328	0.0193
65 a 69 años	0.0642	0.0451	0.0404	0.0390	0.0329
70 a 74 años	0.0672	0.0538	0.0469	0.0407	0.0331
75 a 79 años	0.1008	0.0743	0.0597	0.0461	0.0441
80 a 84 años	0.0706	0.0800	0.0565	0.0609	0.0503
85 y más años	0.0731	0.0859	0.0584	0.0592	0.0712
No Especificado	0.0000	0.0005	0.0000	0.0003	0.0003
Total	0.0142	0.0138	0.0100	0.0104	0.0088
1					

La suma de los porcentajes por grupo de edad en cada zona, no suman el porcentaje total, porque estos se calcularon de acuerdo a la población femenina de cada grupo.

Tabla 4.6: Porcentajes de mortalidad por grupos de edad en el año 2005.

Al estudiar los datos de cada grupo de edad de las Tablas 4.5 y 4.6, observamos que los porcentajes más altos están en los grupos de 65 a más años de edad.

Es importante aclarar que

- Se tomaron en cuenta las defunciones de edad no especificada, en el porcentaje que se obtuvo por zona.
- Para 2005, los últimos dos grupos de edad, en que se tiene información de población femenina, son de 75 a 99 y de 100 a más años, por esta razón se sumó tanto la población femenina de estos dos grupos, así como las defunciones de mujeres de 75 y más años de edad, para obtener el porcentaje de mortalidad.

Con lo que podríamos concluir que el porcentaje de mortalidad por cáncer del cuello del útero está relacionado con el grado de marginación de la zona en que se vive; sin embargo, el porcentaje de la zona Z4 (en los años 2000 y 2005) nos detiene para hacer esta afirmación, ya que Z4 tiene mayor porcentaje de mortalidad que la zona Z3, y ésta sufre de más marginación que la zona Z4, ver página 14.

4.3. Cáncer de tráquea, bronquios y pulmón

El Instituto Nacional de Enfermedades Respiratorias (INER), informa que: " la mortalidad por cáncer en general ocupa del segundo al tercer lugar en la población mayor de 40 años; el cáncer pulmonar es muy frecuente pues, lo hay de dos tipos: el que se origina en otros órganos y da siembras al pulmón, y el que propiamente se origina en los bronquios, este último constituye el cáncer por el que más personas fallecen en la actualidad y tiene una importante relación con el hábito de fumar. En el cáncer pulmonar, el cambio de células normales a células cancerosas normalmente tarda varios años.", INER (2009).

Algunos síntomas de este cáncer son los siguientes

- Tos que no desaparece, ronquera,
- Dolor en el pecho que a menudo empeora al respirar profundamente,
- Esputo (saliva o flema) con sangre o de color rojizo,
- Dificultad para respirar,
- Infecciones recurrentes, como bronquitis y neumonía.

Como el cáncer de tráquea, bronquios y pulmón, que en lo sucesivo abreviaremos como CTByP, no es característico de algún sexo, edad, o nivel económico, puede afectar a una mayor cantidad de individuos, por esto la importancia de realizar un análisis de este tipo de cáncer.

Comenzaremos estudiando el comportamiento de los registros de muerte por este tumor maligno a partir del año de 1990 hasta el 2005. Para esto, mostramos la Figura 4.6 que representa estos decesos por año y sexo. En ella

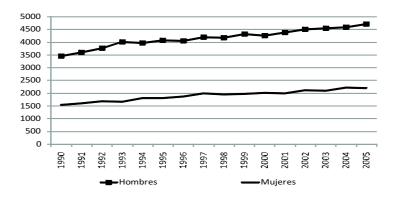


Figura 4.6: Muertes por cáncer de tráquea, bronquios y pulmón 1990-2005.

se observa claramente que la mortalidad por esta causa, afectó a un mayor número de individuos del sexo masculino que del femenino. Notemos que las defunciones en ambos sexos presentan una tendencia creciente.

Si analizamos el CTByP, a través del número de muertes registradas en cada estado de la república mexicana desde 1990 al 2005, observamos que en todos los estados se registró mayor cantidad de muertes en el sexo masculino. Además podemos observar que el Distrito Federal, Jalisco, Estado de México y Nuevo León son los estados con mayor número de muertes por esta causa. Por otro lado, Colima, Campeche, Tlaxcala y Quintana Roo, fueron los estados que tuvieron la menor cantidad de decesos por esta causa. Esto lo podemos ver en la Figura 4.7.

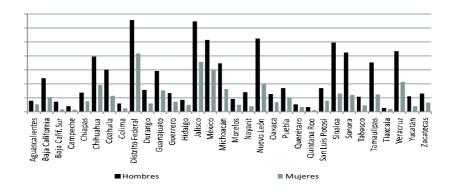


Figura 4.7: Defunciones por CTByP por estado desde 1990 al año 2005.

Las Figuras 4.6, y 4.7 representan los registros de mortalidad por CT-ByP sin tomar en cuenta la cantidad de población. Por esto, en la Figura 4.8 representamos los porcentajes de mortalidad con base en la población correspondiente.

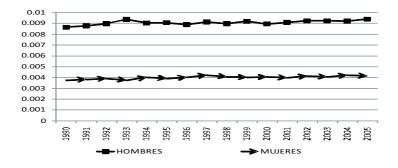


Figura 4.8: Porcentaje de mortalidad por CTByP de 1990-2005, por sexo.

En la Figura 4.8, observamos que la mortalidad por esta enfermedad se ha mantenido un tanto constante, pero si comparamos el porcentaje del año 2005 con el de 1990, notaremos que éste se ha incrementado, en ambos sexos. También observamos en esta figura, que los hombres son los más afectados por este tumor.

Para hacer un análisis más detallado sobre cómo afecta este cáncer a la población, consideraremos las muertes ocasionadas tanto a hombres como a mujeres, por separado.

4.3.1. Cáncer de tráquea, bronquios y pulmón en el sexo masculino

Iniciamos analizando los porcentajes de mortalidad masculina, originada por esta enfermedad en los años 2000 y 2005, por zona geográfica. Como puede verse en la Figura 4.9, la zona Z3 presentó el mayor porcentaje de mortalidad seguida de Z5 y Z4, mientras que la zona Z1 fue la que registró el menor porcentaje en defunciones.

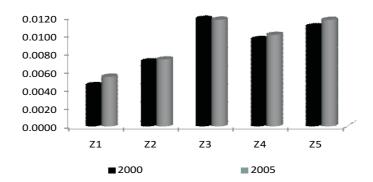


Figura 4.9: Porcentaje de muertes masculinas por CTByP en el 2000 y 2005.

Con base en la Figura 4.9, podemos afirmar que no es cierto que a mayor marginación mayor mortalidad por CTByP (recordar que la zona Z1 es la más marginada). Como mencionamos al inicio de la sección 4.3, esta enfermedad esta muy relacionada con el tabaquismo y según las "Estadísticas a propósito del día mundial sin tabaco", (INEGI y CONADIC 2005) la proporción de fumadores es mayor en áreas urbanas que en áreas rurales, así como también menciona que hay menos mujeres consumidoras de tabaco que hombres.

Según se observa en la Figura 4.9, todas las zonas mostraron un incremento en su porcentaje de mortalidad del 2005 comparado con el que tuvieron en el año 2000, con excepción de la zona Z3 que tuvo una pequeña disminución.

Ahora analizaremos los porcentajes de mortalidad por este cáncer, por grupos de edad que se representan en la Figura 4.10. En ésta observamos que se mantienen constantes hasta el grupo quinquenal de 35 a 39 años, a partir de éste los porcentajes se incrementan hasta alcanzar el máximo en el grupo de 80 a 84 años.

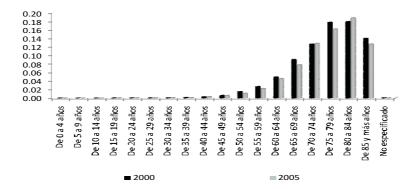


Figura 4.10: Porcentaje de muertes masculinas por CTByP en los años 2000 y 2005, por grupos de edad.

Para dejar más claro lo que ocurre con los porcentajes de mortalidad por CTByP de la población masculina menor a los 40 años de edad, presentamos la Figura 4.11. Por mencionar un ejemplo, en el grupo de 25 a 29 años murieron 18 y 19 jovenes a nivel nacional, por esta causa los años 2000 y 2005 respectivamente.

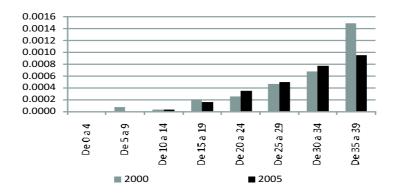


Figura 4.11: Porcentaje de muertes por CTByP de hombres menores de 40 años, por grupos de edad, en los años 2000 y 2005.

A continuación se presenta la distribución de la población y de las muertes masculinas por CTByP, por zona dependiendo de si la población es rural o urbana, en los años 2000 y 2005.

		R		Urba	na	
Año	Zona	Defunciones	Población	Defunciones		Población
	Z1	70 0.0026 %	2,676,960	160	0.0066%	2,413,613
	Z2	253 0.0055 %	4,600,297	602	0.0081%	7,414,630
2000	Z3	258 0.0116 %	2,216,764	504	0.0119%	4,250,814
	Z4	233 0.0097 %	2,404,951	1,258	0.0095%	13,203,022
	Z5	54 0.0144 %	375,738	867	0.0108%	8,035,462
	Total	868 0.0071 %	12,274,710	3,391	0.0096%	35,316,541
	Z1	120 - 0.0045 %	2,656,585	167	0.0064%	2,626,553
	Z2	291 0.0065 %	4,447,726	621	0.0078%	7,986,995
2005	Z3	304 0.0143 %	2,127,588	488	0.0105%	4,653,033
	Z4	291 0.0124 %	2,347,747	1,395	0.0096%	14,472,705
	Z5	60 0.0162 %	369,891	982	0.0115%	8,561,133
	Total	868 0.0089 %	12,274,710	3,391	0.0095%	35,316,541

Tabla 4.7: Población masculina, defunciones por CTByP y porcentaje de mortalidad por zona en los años 2000 y 2005.

En la Tabla 4.7, observamos que los porcentajes más altos de mortalidad, los presentan las zonas Z3, Z5 y Z4. También notamos que las zonas que disminuyeron su porcentaje de un año a otro, fueron Z1, Z2 y Z3 (población urbana). Tomar en cuenta que estos porcentajes incluyen la población masculina menor de 40 años, edad en la cual hay pocas muertes por CTByP, ver Figura 4.10.

Analizando la Tabla 4.8, afirmamos que las zonas Z3, Z4 y Z5 mostrarón los porcentajes más altos en el año 2005.

Área	Grupo	Z1	Z2	Z3	Z4	Z5
	40 a 44 años	0.0017	0.0023	0.0039	0.0042	0.0149
	45 a 49 años	0.0029	0.0041	0.0079	0.0049	0.0060
	50 a 54 años	0.0023	0.0072	0.0105	0.0130	0.0071
	55 a 59 años	0.0098	0.0147	0.0292	0.0197	0.0565
	60 a 64 años	0.0264	0.0234	0.0639	0.0525	0.0339
Rural	65 a 69 años	0.0326	0.0451	0.0844	0.0818	0.1073
	70 a 74 años	0.0381	0.0661	0.1646	0.1636	0.1542
	75 a 79 años	0.0979	0.0838	0.2109	0.1427	0.1220
	80 a 84 años	0.0626	0.0964	0.1640	0.2117	0.3303
	85 y + años	0.0437	0.0610	0.1220	0.1370	0.1706
	No especific.	0.0000	0.0000	0.0000	0.0023	0.0000
	Total	0.0173	0.0237	0.0530	0.0438	0.0545
	40 a 44 años	0.0047	0.0038	0.0037	0.0040	0.0027
	45 a 49 años	0.0082	0.0053	0.0073	0.0063	0.0064
	50 a 54 años	0.0109	0.0086	0.0124	0.0138	0.0124
	55 a 59 años	0.0108	0.0180	0.0189	0.0287	0.0263
	60 a 64 años	0.0193	0.0298	0.0475	0.0584	0.0597
Urbana	65 a 69 años	0.0396	0.0606	0.0952	0.0959	0.1006
	70 a 74 años	0.0851	0.1253	0.1513	0.1502	0.1468
	75 a 79 años	0.0987	0.1237	0.2279	0.2018	0.2040
	80 a 84 años	0.1628	0.1420	0.2338	0.2365	0.2642
	85 y + años	0.1518	0.0844	0.1730	0.1595	0.1881
	No especific.	0.0000	0.0006	0.0000	0.0000	0.0003
	Total	0.0233	0.0270	0.0385	0.0334	0.0373

Tabla 4.8: Porcentaje de mortalidad por CTByP por zona en el 2005.

4.3.2. Cáncer de tráquea, bronquios y pulmón en el sexo femenino

En las Figuras 4.6 y 4.8 observamos que la mortalidad de hombres y de mujeres presentan tendencias muy parecidas. Y a pesar de que el CTByP afecta en menor media al sexo femenino, esta enfermedad fue la tercer causa de muerte por tumor maligno de las mujeres mexicanas, en el año 2005.

Iniciaremos nuestro estudio analizando los porcentajes de mortalidad femenina, con respecto a la población correspondiente de cada estado de la república mexicana. Representados en la Figura 4.12 en los años 2000 y 2005.

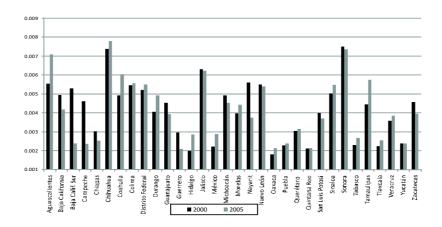


Figura 4.12: Porcentaje de mortalidad femenina por CTByP por estado en el 2000 y 2005.

En la Figura 4.12, podemos observar que los estados de Baja California, Chiapas, Guanajuato, Jalisco, Michoacán, Nuevo León, San Luis Potosí, Sonora y Zacatecas mostraron una pequeña reducción en su porcentaje de mortalidad. Mientras que Baja California Sur, Campeche, Guerrero y Nayarit presentaron una reducción mayor. Los estados en los que se incrementó el porcentaje de mortalidad femenina por CTByP, en el año 2005 comparandolo con el 2000, son los que se presentan en la Tabla 4.9. En la Tabla 4.9, notamos

Aguascalientes	Durango	Puebla	Tamaulipas
Chihuahua	Hidalgo	Querétaro	Tlaxcala
Coahuila	Edo.México	Quintana Roo	Veracruz
Colima	Morelos	Sinaloa	Yucatán
D.F.	Oaxaca	Tabasco	

Tabla 4.9: Estados que incrementaron su porcentaje de mortalidad femenina por CTByP, en 2005.

que en más de la mitad (19) de los estados de la república, la mortalidad femenina por CTByP se incrementó, entre ellos se encuentran el Distrito Federal y el Estado de México, que son los estados más poblados, ver Tabla 2.4.

Ahora vamos a revisar los porcentajes de mortalidad por zona, representados en la Figura 4.13, aquí notamos que la zona Z5 tuvo el mayor porcentaje de mortalidad por CTByP, mientras que Z1 fue la zona con el menor porcentaje, en los años 2000 y 2005.

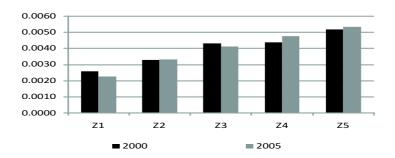


Figura 4.13: Porcentaje de mortalidad femenina por CTByP en el 2000 y 2005.

También se observa que las zonas Z1 y Z3 disminuyeron ligeramente su porcentaje en el año 2005 con respecto al 2000.

Ahora vamos analizar el número de muertes por grupos quinquenales de edad. Los registros de éstas se representan en la Figura 4.14, en la cual notamos que los únicos grupos de edad en los que disminuyó el número de muertes, fue en el de 40 a 44 y de 65 a 69 años; esto en el año 2005.

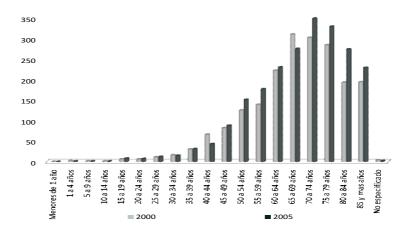


Figura 4.14: Defunciones femeninas por CTByP en el 2000 y 2005, por grupo de edad.

En lugar de analizar las defunciones, analizaremos en la Figura 4.15, los porcentajes de mortalidad, los cuales consideran la cantidad de población femenina correspondiente a cada grupo de edad, que vivía en los años 2000 y 2005.

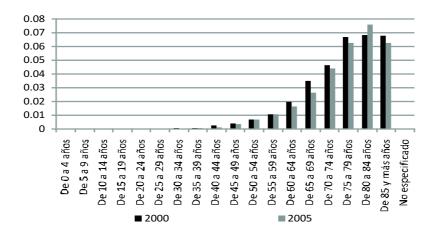


Figura 4.15: Porcentaje de mortalidad femenina por CTByP, por grupo de edad, en el 2000 y 2005.

En la Figura 4.15, se observa que de los grupos de edad mayores de 39 años, todos mostraron una disminución en sus porcentajes, con excepción del de 55 a 59 y de 80 a 84 años.

Ahora veamos el comportamiento de estos porcentajes en la población femenina menor de 45 años en la Figura 4.16. En el grupo de 15 a 19 años sólo se registraron 6 y 8 muertes durante el año 2000 y 2005 respectivamente.

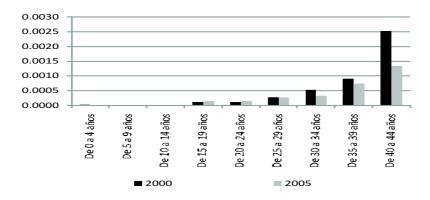


Figura 4.16: Porcentaje de mortalidad femenina por CTByP, por grupo de edad, en el 2000 y 2005.

Con esto, podemos concluir que la zona con mayor porcentaje de mortalidad por cáncer de tráquea, bronquios y pulmón fue la zona Z5, en los años 2000 y 2005.

4.4. Cáncer de próstata

Por obvias razones, esta enfermedad afecta exclusivamente al sexo masculino. El cáncer de próstata, ocupa el segundo lugar en la lista de principales causas de muerte por tumor maligno en la población masculina mexicana.

Según la Asociación Mexicana de lucha contra el cáncer esta enfermedad generalmente presenta los siguientes "síntomas"

- Aumenta el número de veces que necesita orinar.
- Disminuye la fuerza habitual del chorro y se presenta un goteo al terminar de orinar.
- Tiene a menudo una necesidad urgente de orinar.
- Debe esforzarse para empezar a orinar.
- Después de orinar, incluso dos o tres veces en un corto plazo de tiempo, tiene la sensación de que aún tiene orina en la vejiga.
- No puede orinar y retiene toda la orina.

En los datos de mortalidad por cáncer de próstata que tiene el INEGI, a partir del año 1990 hasta 2007, se observa que las muertes se han ido incrementando año con año, teniendo un ligero decremento en los años 1992, 2004 y 2006, como se ve en la Figura 4.17.

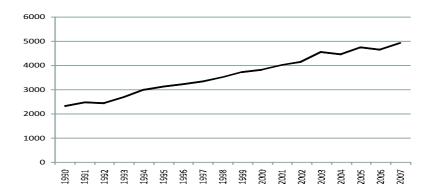


Figura 4.17: Defunciones por cáncer de próstata de 1990-2007.

Si examinamos los decesos por cáncer de próstata registrados en cada estado de la república mexicana, de los años 2000 y 2005 representados en la Figura 4.18, observamos que el Distrito Federal, Jalisco, Estado de México y Veracruz son los estados que registran mayor cantidad de muertes. En el caso opuesto, Baja California Sur, Campeche, Colima, Quintana Roo y Tlaxcala, registran el menor número de muertes (menos de 45 por año), comparados con los demás estados del país.

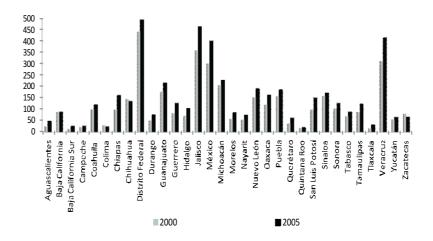


Figura 4.18: Defunciones por cáncer de próstata en los años 2000 y 2005.

En la Figura 4.18 se representan las muertes en cada estado de la república, sin embargo ésta puede ser un tanto engañosa, ya que no consideramos la cantidad de población en ella. Si calculamos el porcentaje de mortalidad por este cáncer, con respecto a la población residente en cada estado en los años 2000 y 2005, a partir de esto obtenemos la Figura 4.19.

Lo primero que observamos en la Figura 4.19, es que Nayarit, fue el estado con el índice más alto en este tipo de mortalidad en el 2005, seguido del estado de Jalisco. Información de la cual no nos percatamos con la Figura 4.18.

Es claro que la Figura 4.19 nos da una idea más real, de lo que ocurre en cada estado de nuestro país, con respecto al cáncer de próstata. Al seguir analizando la figura 4.19, observamos que Baja California, Chihuahua, Colima, Quintana Roo y Zacatecas disminuyeron su porcentaje de mortalidad por este tumor en el 2005, comparado con el que tuvieron en el año 2000. También observamos que el Distrito Federal no presentó el porcentaje más alto, sin embargo si está dentro de los cinco estados con los porcentajes más altos en defunciones por cáncer de próstata. Ver Tabla 4.10.

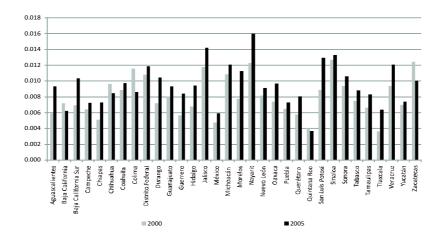


Figura 4.19: Porcentaje de mortalidad por cáncer de próstata en el 2000 y 2005.

		Porcentajes		Porcentajes
Año	Estado	Altos	Estado	Bajos
	Sinaloa	0.0126	Guerrero	0.0056
	Zacatecas	0.0124	Chiapas	0.0051
2000	Nayarit	0.0123	Edo. de México	0.0047
	Jalisco	0.0118	Quintana Roo	0.0040
	Colima	0.0116	Tlaxcala	0.0036
	Nayarit	0.0160	Campeche	0.0072
	Jalisco	0.0142	Tlaxcala	0.0064
2005	Sinaloa	0.0133	Baja California	0.0062
	San Luis Potosí	0.0129	Edo. de México	0.0059
	Veracruz	0.0121	Quintana Roo	0.0037

Tabla 4.10: Estados con porcentajes extremos en mortalidad de cáncer de próstata.

4.4.1. Defunciones por zona geográfica

Para tener una mejor idea de cómo afecta el cáncer de próstata a la población por zona, calculamos los porcentajes de mortalidad con respecto a la población residente en cada zona de nuestro país, en los años 2000 y 2005. Analizando la Tabla 4.11, notamos que los porcentajes de las cinco zonas, aumentaron del año 2000 al 2005. Siendo Z5 y Z3 las dos zonas con mayor porcentaje, en el año 2000, y las zonas Z3 y Z2 en el año 2005.

Queremos resaltar, que los porcentajes de muerte de las zonas Z1 y Z4 son muy parecidos entre sí y, al mismo tiempo son muy diferentes si las comparamos con las otras tres zonas, según los datos del año 2005.

Zona	2000	2005
Z1	0.0060	0.0083
Z2	0.0083	0.0102
Z3	0.0090	0.0104
Z4	0.0074	0.0087
Z5	0.0094	0.0100
Nacional	0.0080	0.0095

Tabla 4.11: Porcentaje de mortalidad causada por cáncer de próstata.

Dado que en la sección 2.4.1, analizamos a la población rural y urbana por zona, a continuación estudiaremos la cantidad de muertes por cáncer de próstata por zona, considerando si es área rural o urbana esto en los años 2000 y 2005.

		F	Rural	Urbana		
$ ilde{ ext{Año}}$	Zona	Defunciones	Población	Defunciones	Población	
	Z1	112	2,676,960	193	2,413,613	
	Z2	294	4,600,297	706	7,414,630	
2000	Z3	206	$2,\!216,\!766$	377	4,250,815	
	Z4	184	$2,\!404,\!951$	969	13,203,021	
	Z5	184	$375{,}738$	758	8,035,462	
	Nacional	828	12,274,712	3,003	35,317,541	
	Z1	191	2,656,585	250	2,626,553	
	Z2	546	$4,\!447,\!726$	808	7,986,994	
2005	Z3	246	$2,\!127,\!589$	456	4,653,032	
	Z4	274	$2,\!347,\!746$	1,187	14,472,705	
	Z5	37	$369,\!892$	857	8,561,133	
	Nacional	1,204	11,949,538	3,558	38,300,417	

Tabla 4.12: Muertes por cáncer de próstata y población masculina por zona.

Comparando los registros de mortalidad y la población de los años 2000 y 2005 mostrados la Tabla 4.12, observamos que los datos a nivel nacional del 2005 aumentaron con respecto a los del año 2000. Con excepción de la población rural, sin embargo las muertes por este tumor maligno si aumentaron en las áreas rurales.

4.4.2. Defunciones por edad

Ahora estudiaremos la mortalidad por cáncer de próstata de acuerdo a la edad en la que falleció la persona. Analizaremos los grupos de edad de 1-4 años,

5-9 y así sucesivamente hasta 80-84 y 85 y más años, con lo cual conoceremos en que grupos se presenta más frecuencia de defunciones por este cáncer.

En la Figura 4.20, se representan las defunciones que ocurrieron en el año de 1990, en ésta observamos que en el grupo de 75 a 79 años, es donde se presentó el mayor número de decesos.

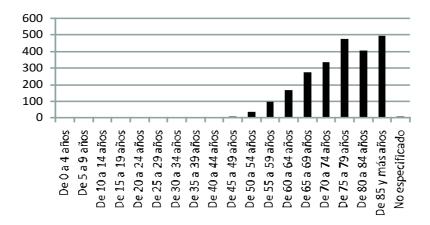


Figura 4.20: Muertes por cáncer de próstata 1990.

Veamos si las defunciones registradas en la SSA en los años 2000 y 2005, tuvieron el mismo comportamiento que en 1990. Para esto, analizaremos la Figura 4.21, que muestra los datos de las muertes por cáncer de próstata.

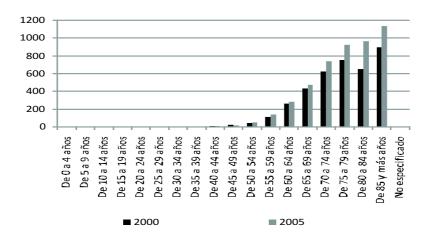


Figura 4.21: Muertes por cáncer de próstata en los años 2000 y 2005.

En la Figura 4.21 se observa que las muertes por cáncer de próstata empiezan en el grupo de edad de 35 a 39 años, incrementándose conforme la edad de las personas avanza, hasta llegar al grupo de 75 a 79 años, en el cual alcanzó su valor máximo en el año 2000 con 754 muertes.

Siguiendo con el análisis de la Figura 4.21, observamos que las defunciones registradas en el 2005, se incrementaron en todos los grupos de edad, con la diferencia que en dicho año se registró mayor cantidad de defunciones en el grupo de 80 a 84 años de edad con 965 decesos.

Si calculamos las muertes diarias por cáncer de próstata que ocurrieron en el año 2000, obtenemos la Tabla 4.13. En ésta notamos que fallecieron aproximadamente 10 hombres por día a consecuencia de este tumor. Y en el 2005 hubo un incremento de tres muertes por día, es decir, en promedio murieron 13 hombres diariamente por esta enfermedad, esto se observa en la Tabla 4.14.

Grupo	Promedio	Grupo	Promedio	Grupo	Promedio	Grupo	Promedio
de edad		de edad		de edad		de edad	
1-4	0.00	25-29	0.00	50-54	0.13	75-79	2.07
5-9	0.00	30-34	0.00	55-59	0.32	80-84	1.79
10-14	0.00	35-39	0.01	60-64	0.72	85 y +	2.46
15-19	0.00	40-44	0.02	65-69	1.19	No Esp.	0.01
20-24	0.01	45-49	0.07	70-74	1.71	Total	10.49

Tabla 4.13: Promedio de muertes diarias por cáncer de próstata en el año 2000.

Grupo	Promedio	Grupo	Promedio	Grupo	Promedio	Grupo	Promedio
de edad		de edad		de edad		de edad	
1-4	0.00	25-29	0.01	50-54	0.15	75-79	2.53
5-9	0.00	30-34	0.00	55-59	0.38	80-84	2.64
10-14	0.00	35-39	0.01	60-64	0.78	85 y +	3.12
15-19	0.00	40-44	0.03	65-69	1.31	No Esp.	0.01
20-24	0.01	45-49	0.06	70-74	2.02	Total	13.04

Tabla 4.14: Promedio de muertes diarias por cáncer de próstata en el año 2005.

En las tablas 4.13 y 4.14, notamos que la muerte por este cáncer se presenta principalmente en hombres mayores de 60 años de edad.

Para tener una idea más realista del comportamiento de la mortalidad por cáncer de próstata, estudiaremos la Figura 4.22, que representa el porcentaje de mortalidad con base en la cantidad de población correspondiente a cada grupo de edad. En esta figura no se ve claramente que hay porcentajes (pequeños) de mortalidad en los dos primeros grupos de edad que se muestran, pero en

el grupo de 45 a 49 años hay registradas 24 y 21 muertes en los años 2000 y 2005, respectivamente y, 47 y 57 decesos en el grupo de 50 a 54 años, a nivel nacional.

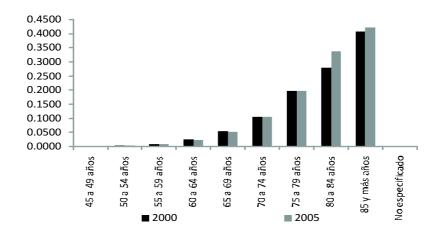


Figura 4.22: Muertes por cáncer de próstata en los años 2000 y 2005.

Según los registros de la SSA, en el año 2007 ocurrieron 13.848 muertes por día causadas por el cáncer de próstata, esto representa diariamente una muerte más que en el 2005.

Capítulo 5

Tratamiento de la información histórica

Iniciamos explicando cómo organizamos los datos para facilitar su manejo y aprovechar al máximo su información.

En el capítulo 2, se tratarón los temas de población

- Rural, urbana,
- Derechohabiente, no derechohabiente y
- Analfabeta.

De los cuales, en lo que respecta a la población derechohabiente (en alguna institución de salud pública o privada), por un lado, existe población que está dada de alta en más de una institución y por otro lado, cuando una persona se dá de alta (por ejemplo en el ISSSTE), también quedan asegurados sus hijos y/o conyuge y/o padres. Por lo tanto no conocemos con exactitud la cantidad de población que es derechohabiente en nuestro país. En cuanto al analfabetismo, no contamos con esta información desagregada por grupos quinquenales de edad.

Pero, como mencionamos en el capítulo 2.4, el índice de marginación de CONAPO se calcula basandose en diez variables, entre ellas la derechohabiencia, y el analfabetismo, considerando población rural o urbana. Por lo que de alguna forma estas variables se están considerando en la clasificación de las zonas Z1, Z2, Z3, Z4 y Z5 presentadas en la Figura 2.4 de la pág. 14.

Los datos de mortalidad que estamos utilizando, se obtuvieron de la Secretaría de Salud (SSA), los cuales están ordenados de acuerdo a las siguientes variables: año (1990-2007), estado de la república, población por:

sexo y grupo de edad, además de que si ésta es rural o urbana.

Dado que nos interesan únicamente los datos de población a partir de 1990, para nosotros será lo mismo censo que conteo, y ambos se realizan cada cinco años, es por esto que los datos que necesitamos no se tienen anualmente.

A continuación resolveremos el inconveniente de los datos faltantes de población, de 1991 - 1994, 1996 - 1999, etc. Para esto, suponemos que la población tuvo un incremento o decremento constante, calculamos la ecuación de la recta entre dos registros de población consecutivos, y valuamos en los años que no se tiene información. Este proceso se hace para completar los datos faltantes de población, como son: la población total, por estado, por área rural o urbana, por sexo y por grupo de edad. Ver Figura 5.1.

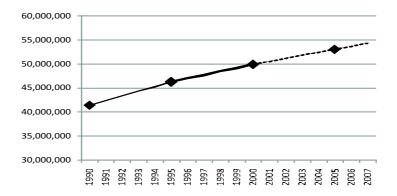


Figura 5.1: Estimación de la población femenina.

Ahora tenemos una base de datos completa con las siguientes variables: año, zona, estado, población (por área rural o urbana, sexo, grupo de edad) y muertes por cáncer (del cuello del útero, de próstata y de tráquea, bronquios y pulmón).

5.1. Modelos Lineales Generalizados Mixtos

El objetivo que perseguimos es ajustar modelos de regresión, a los datos de los tres tipos de cáncer que se han analizado a lo largo de este proyecto, para pronosticar la cantidad de muertes que éstos pueden ocasionar.

Para lograr el objetivo haremos una breve referencia de los modelos lineales generalizados (Generalized Linear Models (GLM)), los cuales nos permiten trabajar con variables respuesta con distribuciones diferentes a la Normal. En un modelo lineal generalizado la variable respuesta debe ser miembro de la

familia exponencial (Normal, Gaussiana inversa, Gamma, Poisson o Binomial).

De acuerdo con Kleinbaum (1988) y Montgomery (2002), para realizar un análisis de regresión donde la variable respuesta es de conteo, es decir, es el número de veces que ocurre un evento, los modelos que mejor se ajustan son los de Poisson. Un ejemplo de esto, es el trabajo de Stark P. et al. (1997).

La función de distribución Poisson esta dada por

$$f(y) = \frac{e^{-\mu}\mu^y}{y!}, \quad y = 0, 1, \dots$$

donde $\mu > 0$, $\mathbf{E}(y) = \mu$, y $Var(y) = \mu$.

Se supondrá que hay una función g que relaciona la media de la respuesta con un predictor linear, digamos

$$g(\mu_i) = \eta_i = \beta_0 + \beta_1 x_1 + \dots + \beta_k x_k = x_i' \beta.$$

donde, a la función g se le llama función liga o cadena. Una forma alternativa de escribir esta relación es

$$\mu_i = g^{-1}(\eta_i) = g^{-1}(x_i'\beta).$$

Entre las funciones cadena que se usan con la distribución Poisson, esta la cadena logarítmica.

$$g(\mu_i) = \ln(\mu_i) = x_i'\beta.$$

Si le aplicamos a la cadena logarítmica su función inversa g^{-1} , la relación entre la media de la respuesta y el predictor lineal es

$$\mu_i = g^{-1}(x_i'\beta) = e^{x_i'\beta}.$$

Es claro que la función g asegura que todos los valores pronosticados sean no negativos.

El método de máxima verosimilitud se usa para estimar los parámetros de la regresión Poisson. Si se tiene una muestra aleatoria de n observaciones de la variable respuesta y y los predictores x, la función de verosimilitud es

$$L(y,\beta) = \prod_{i=1}^{n} f_i(y_i) = \prod_{i=1}^{n} \frac{e^{-\mu_i} \mu_i^{y_i}}{y_i!} = \frac{\prod_{i=1}^{n} \mu_i^{y_i} \exp(-\sum_{i=1}^{n} \mu_i)}{\prod_{i=1}^{n} y_i!},$$

donde $\mu_i = g^{-1}(x_i'\beta)$.

Los datos sobre defunciones de los tres tipos de cáncer que analizamos, son registros de conteos a través del tiempo, y según Chein e Ibrahim (2000), el análisis de Stark et al.(1997) que se basa en un modelo Poisson, supone conteos independientes entre sí, y no considera la estructura real de los datos.

La cuestión inmediata que se presenta es ¿Nuestros conteos son independientes?, según Skrondal y Rabe-Hesketh (2004), nuestros datos tienen una correlación temporal. (Y quizás espacial, por ejemplo entre estados colindantes, pero este tipo de estudio no es realizado en este trabajo).

Por otro lado, nuestros datos son conteos, que se van obteniendo a través del tiempo, esto es lo que se conoce como estructura longitudinal y es lo que analizaremos.

Hedeker (2003), menciona que los modelos que suponen que todos los datos son independientes entre sí, no son apropiados para analizar varios tipos de estructuras de datos correlacionados, en particular datos longitudinales.

En los datos longitudinales las observaciones o conteos están relacionados con los objetos de estudio, y en cierta forma esta relación se mantiene en los conteos correspondientes, pero en diferentes tiempos de observación (consecutivos). En nuestro caso, la población residente en Veracruz en el año 1995 (por mencionar un ejemplo), tuvo las mismas condiciones ambientales, sociales, económicas y geográficas que la población residente en Veracruz pero en 1996 o en 1997. Sin olvidar los eventos demográficos como la natalidad, mortalidad y migración, la mayoría de la población sigue siendo la misma, por lo tanto no podemos asegurar que la población de Veracruz es independiente con respecto al tiempo, en nuestro caso de un año a otro. Frecuentemente se refieren a este tipo de datos como datos multiniveles.

Para analizar datos multiniveles y longitudinales, se debe agregar una variable al modelo de regresión, la cual indique el efecto de cada variable regresora correlacionada. Como resultado obtenemos un modelo mixto, que incluye los efectos fijos (estimadores β_i) de las variables regresoras y los efectos de las variables correlacionadas.

Si llamamos j a un objeto e i la i-ésima observación del objeto. Entonces el modelo mixto más simple aumenta al vector lineal predictor con un sólo efecto aleatorio al objeto j

$$\eta_{ij} = x'_{ij}\beta + v_j, \tag{5.1.1}$$

donde v_j es el efecto aleatorio (uno por cada objeto). Los efectos representan la influencia del objeto j en las observaciones, que no son considerados por las covarianzas. Estos efectos son tratados como aleatorios porque se supone

que representan una población de objetos, y usualmente se supone que se distribuyen $N(0, \sigma_v^2)$. Si incluimos el efecto aleatorio, el valor esperado de la respuesta, la cual esta relacionada con el predictor lineal por medio de la función cadena, esta dada por

$$\mu_{ij} = \mathbf{E}[Y_{ij}|v_j, x_{ij}].$$

Esta es la esperanza condicional de Y_{ij} , dados los efectos aleatorios.

Nota 4 Consideramos que la esperanza condicional

$$\boldsymbol{E}[Y_{ij}|v_j,x_{ij}]$$

es un estimador adecuado para \hat{y}_{ij} . Por lo que en adelante para simplificar la notación en los modelos regresivos, utilizaremos simplemente \hat{y}_{ij} .

Como resultado, se refieren a los GLMMs como modelos condicionales en contraste a las Generalized Estimating Equations (GEE), las cuales representan una generalización alternativa de los GLM para datos correlacionados.

El modelo (5.1.1) puede ser fácilmente extendido para incluir múltiples efectos aleatorios. Por ejemplo, en problemas longitudinales, es común tener un intercepto aleatorio y una tendencia de tiempo aleatoria. Para esto, denotamos z_{ij} como el vector de variables $r \times 1$ con efectos aleatorios (una columna de unos comunmente se usa para incluir el intercepto aleatorio). Se asume que el vector de efectos aleatorios v_j tiene una distribución normal multivariada con esperanza 0 y varianza-covarianza \sum_v . A partir de estas observaciones el modelo (5.1.1) lo podemos ver como

$$\eta_{ij} = x'_{ij}\beta + z'_{ij}v_j. (5.1.2)$$

Por lo tanto el modelo de regresión Poisson mixto, tiene la siguiente distribución.

$$\mathbf{P}(Y_{ij} = y | v_j, x_{ij}, z_{ij}) = \frac{e^{-\mu_{ij}} \mu_{ij}^y}{y!}.$$

Ahora presentaremos los modelos regresivos Poisson mixtos que se ajustaron a los registros de mortalidad por cáncer de

- cuello del útero,
- próstata y
- tráquea, bronquios y pulmón.

que ocurrieron en los años de 1990 a 2007 en nuestro país.

Para ajustar los modelos de regresión de los tres tipos de cáncer mencionados, utilizaremos el paquete estadístico STATA, ver Rabe-Hesket y Skrondal (2008).

5.1.1. Ajuste de modelos regresivos para el cáncer del cuello del útero

Iniciamos estudiando la gráfica de dispersión de las muertes por cáncer del cuello del útero, registradas en todos los estados de la república mexicana. Esto se observa en la Figura 5.2, la cual muestra una tendencia cuadrática.

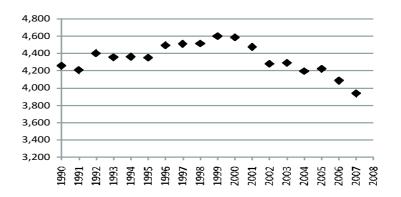


Figura 5.2: Defunciones por cáncer del cuello del útero, en México.

Por esto, ajustamos un modelo de segundo grado en los datos de población y muertes por esta enfermedad, a nivel nacional. El modelo de regresión poisson mixto ajustado al cáncer del cuello del útero, es

$$\hat{y}_i = e^{11.25273 - .0003814t - .0021688t^2 - 5.31e^{-08}X_i + \hat{v}_0}, \tag{5.1.3}$$

donde X_i es la *i*-ésima observación de población y \hat{v}_0 es un estimador del valor del efecto aleatorio (moda o esperanza a posteriori).

Los datos de salida se muestran en la Tabla 5.1

Variable	Coef.	Std. Err.	z	P > z	[95 % Conf. Interval		
time	0003814	.0176904	-0.02	0.983	0350541	.0342912	
$time^2$	0021688	.0005399	-4.02	0.000	003227	0011105	
pob	-5.31e-08	3.53 e-08	-1.50	0.133	-1.22e-07	1.62e-08	
const	11.25273	2.221131	5.07	0.000	6.899391	15.60606	
Variances and covariances of random effects							
*** Level 2 (Nacional)							
var(1): .03172656 (2.2678882)							

Tabla 5.1: Estadísticas del modelo (5.1.3), para la mortalidad por cáncer del cuello del útero, Nacional.

Las estadísticas de la Tabla 5.1, índican que a menor población mayor número de muertes, pero también vemos que las variables población y tiempo son no significativas, lo cual significa, que si quitamos una de estas variables, tal vez las dos variables restantes pueden explicar el comportamiento de las defunciones.

Además, si graficamos el modelo (5.1.3), junto con los datos observados, notamos que el ajuste de la curva es muy bueno, ver Figura 5.3. Tener presente que con estos modelos podemos pronosticar las muertes de a lo más dos años, ya que los modelos se tienen que ir actualizando.

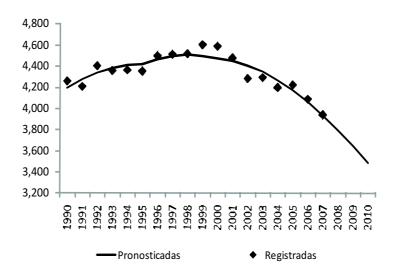


Figura 5.3: Dispersión de muertes registradas por cáncer del cuello del útero de todos los estados de la república mexicana y la curva del modelo ajustado (5.1.3).

Ahora ajustaremos un modelo de regresión Poisson mixto, a las defunciones por este cáncer registradas en cada estado de la república mexicana. El modelo obtenido es el siguiente

$$\hat{y}_{ij} = e^{(4.2211 + \hat{v}_j) - 0.0317834 t - 0.0012239 t^2 + 2.19e^{-07} X_{ij}}, \tag{5.1.4}$$

donde

$$\hat{v}_j = 0 .2847106Z1 + 0 .1099896Z2 - 0 .3890387Z3 - 0 .3816147Z4 + \hat{\varepsilon}_j.$$

 X_{ij} es la *i*-ésima observación de población del estado *j*. Z1, Z2, Z3 y Z4 son variables dicotómicas que representan a las zonas que hemos estudiado (toman valores 0,1), para Z5 $v_j = 0 + \hat{\varepsilon}_5$, $\hat{\varepsilon}_j$ es un error aleatorio, \hat{v}_j es un estimador del efecto aleatorio (moda o esperanza posteriori) con distribución $N(0, \sigma_v^2)$,

con a lo más un estimador fijo, y por lo tanto las variables Z_i 's asociadas a las otras zonas toman el valor de cero.

Los estadísticos del modelo (5.1.4), los presentamos en la Tabla 5.2.

cuello	Coef.	Std. Err.	z	P > z	[95 % Con	f. Interval]
time	0317834	.0027101	-11.73	0.000	037095	0264717
$time^2$	0012239	.0001513	-8.09	0.000	0015204	0009274
pob	2.19e-07	1.82e-08	12.05	0.000	1.84e-07	2.55e-07
Z1	.2847106	.0776067	3.67	0.000	.1326042	.436817
Z2	.1099896	.0944768	1.16	0.244	0751816	.2951608
Z3	3890387	.1829017	-2.13	0.033	7475195	0305579
Z4	3816147	.0874503	-4.36	0.000	553014	2102153
const	4.2211	.0687766	61.37	0.000	4.0863	4.3559

Tabla 5.2: Los estadísticos del modelo (5.1.4) sirven para pronosticar el promedio de muertes e identificar factores de riesgo.

Analizando los estadísticos mostrados en la Tabla 5.2, notamos que la zona Z1 es la que presenta mayor cantidad de muertes por cáncer del cuello del útero, y que disminuye a medida que disminuye el grado de marginación¹. Esto ya lo habíamos observado en la Figura 4.3 (pág. 38). Además el estimador de la población nos índica que entre más población femenina hay, más muertes por esta enfermedad ocurren, lo cual es muy lógico. Por otro lado, observamos que la zona Z2 es no significativa, esto quiere decir que, dado un tiempo y población fijos la zona Z2 no es diferente de la zona base, Z5.

Como acabamos de analizar, el modelo (5.1.4), además de pronosticar el promedio de muertes por esta enfermedad en cada estado de nuestro país, nos sirve para encontrar factores de riesgo, como son el analfabetismo, la no derechohabiencia (en instituciones de salud) y recursos económicos bajos, medidos por el grado de marginación.

En la Figura 5.4 se representan los registros de mortalidad por cáncer del cuello del útero y las estimaciones (linea roja) en cada uno de los treinta y dos estados, obtenidas con el modelo (5.1.4).

¹Grado de marginación: Z1 Muy alto, Z2 Alto, Z3 Medio, Z4 Bajo y Z5 Muy bajo.

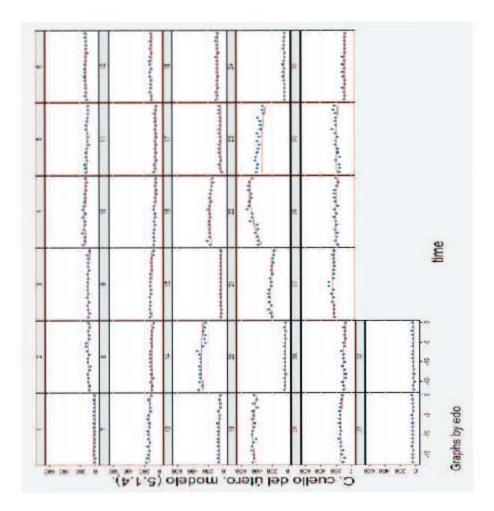


Figura 5.4: Defunciones observadas y estimadas por cáncer del cuello del útero, en cada uno de los 32 estados de nuestro país, con el modelo (5.1.4), ver mapa en pág. 14.

El modelo (5.1.4) es el más simple de los modelos regresivos Poisson mixtos, porque sólo tiene el intercepto aleatorio. Si ahora queremos un modelo más complejo, es decir, que además del intercepto aleatorio tenga un coeficiente también aleatorio, nuestro modelo tendrá la siguiente forma

$$\hat{y}_{ij} = e^{(\hat{\beta}_0 + \hat{v}_{0j}) + (\hat{\beta}_1 + \hat{v}_{1j})t + \hat{\beta}_2 t^2 + \hat{\beta}_{3j} X_{ij}},$$

donde

$$(\hat{\beta}_0 + \hat{v}_{0j}) = \hat{\beta}_0 + \hat{\beta}_{4j}Z1 + \hat{\beta}_{5j}Z2 + \hat{\beta}_{6j}Z3 + \hat{\beta}_{7j}Z4 + \hat{\varepsilon}_{0j},$$

$$(\hat{\beta}_1 + \hat{v}_{1j})t = \hat{\beta}_1t + \hat{\beta}_{8j}Z1t + \hat{\beta}_{9j}Z2t + \hat{\beta}_{10j}Z3t + \hat{\beta}_{11j}Z4t + \hat{\varepsilon}_{1j}t.$$

Ahora ajustaremos un modelo de regresión Poisson mixto, con intercepto y coeficiente aleatorios, a los datos de muertes por cáncer del cuello del útero, registradas en cada estado de la república mexicana. El cual es

$$\hat{y}_{ij} = e^{(3.617294 + \hat{v}_{0j}) + (-.4294395 + \hat{v}_{1j}) t - .0012626t^2 + 1.83e - 07X_{ij}},$$
(5.1.5)

donde

$$\hat{v}_{0j} = \mathbf{.}5118154Z1 + \mathbf{.}3937108Z2 - \mathbf{.}0463054Z3 - \mathbf{.}0121346Z4 + \hat{\varepsilon}_{0j},$$

$$\hat{v}_{1j}t = \mathbf{.}0176251Z1t + \mathbf{.}0011308Z2t - \mathbf{.}0103367Z3t + \mathbf{.}000529Z4t + \hat{\varepsilon}_{1j}t.$$

Los estadísticos del modelo (5.1.5) se muestran en la Tabla 5.3. Estos son más difíciles de interpretar, pero los coeficientes nos índican que además de que la zona Z1 presenta mayor número de muertes por cáncer del cuello del útero (comparada con Z5), esta tiene un comportamiento distinto a través del tiempo, algo similar ocurre con las zonas Z2 y Z4. Aunque los coeficientes de las variables tiempo, Z3, Z2t y Z4t son no significativos, en este modelo, podríamos decir que su comportamiento a través del tiempo es similar.

cuello	Coef.	Std. Err.	z	P > z	[95 % Con	f. Interval]
time	4294395	3.092082	-0.14	0.890	-6.489808	5.630929
$time^2$	0012626	.000151	-8.36	0.000	0015586	000966
pob	1.83e-07	3.31e-09	55.17	0.000	1.76e-07	1.89e-07
Z1	.5118154	.026753	19.13	0.000	.4593806	.5642503
Z2	.3937108	.0222917	17.66	0.000	.3500199	.4374017
Z3	0463054	.0286939	-1.61	0.107	1025445	.0099337
Z4	0121346	.02222354	-0.55	0.585	557152	.0314461
Z1t	.0176251	.0027139	6.49	0.000	.012306	.0229443
Z2t	.0011308	.0022102	0.51	0.609	0032012	.0054628
Z3t	0103367	.0028248	-3.66	0.000	0158732	0048002
Z4t	.000529	.0021892	-0.24	0.809	0037618	-0048198
const	3.617294	.0261014	138.59	0.000	3.566136	3.668452

Tabla 5.3: Estadísticas del modelo (5.1.5), para estimar mortalidad por cáncer del cuello del útero, por estado.

En la Figura 5.5 se representan los registros de muertes por cáncer del cuello del útero y los pronósticos obtenidos con el modelo (5.1.5).

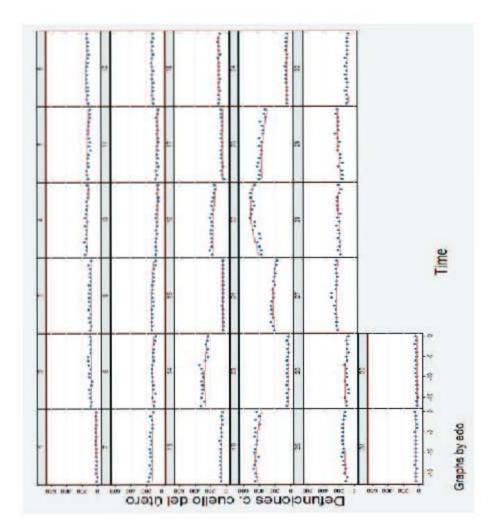


Figura 5.5: Defunciones observadas y estimadas por cáncer del cuello del útero, en cada uno de los 32 estados de nuestro país, con el modelo (5.1.5).

Si comparamos la Figura 5.4 con la Figura 5.5, parecen ser la misma, la principal diferencia se observa en los estados 22 y 23. Dado que el modelo (5.1.4) es más parsimonioso, utilizaremos éste para pronosticar el promedio de muertes, en los siguientes años.

En la Tabla 5.4, presentamos los registros de mortalidad por cáncer del cuello del útero en el año 2007, asi como las estimaciones con el modelo (5.1.4), para cada estado en los años 2007 a 2010.

	Registros		Estima	aciones	
Estado	2007	2007	2008	2009	2010
Aguascalientes	37	29.00	46.00	44.52	42.98
B.C.	95	84.08	109.03	106.10	102.99
B.C.S.	17	13.71	25.87	25.02	24.13
Campeche	42	31.65	18.76	18.13	17.49
Coahuila	91	95.18	122.97	119.21	115.29
Colima	25	27.93	44.21	42.71	41.15
Chiapas	219	176.97	88.74	86.42	83.96
Chihuahua	136	122.77	232.28	225.16	217.72
D.F.	320	284.20	186.80	180.72	174.42
Durango	53	50.16	80.04	77.37	74.60
Guanajuato	144	155.02	248.53	241.34	233.79
Guerrero	133	118.85	59.13	57.14	55.08
Hidalgo	69	69.32	67.26	65.11	62.87
Jalisco	235	262.97	420.04	409.37	397.99
México	451	477.21	468.16	461.58	454.18
Michoacán	169	182.85	176.91	170.76	164.44
Morelos	78	83.65	81.05	78.34	75.55
Nayarit	43	51.34	81.87	79.08	76.19
Nuevo León	126	112.88	146.35	142.39	138.20
Oaxaca	200	174.58	86.94	84.10	81.15
Puebla	229	219.88	131.27	127.82	124.16
Querétaro	53	39.36	63.00	61.08	59.07
Quintana Roo	40	25.73	25.04	24.31	59.07
San Luis Potosí	105	95.79	92.94	89.96	86.87
Sinaloa	83	95.95	153.18	148.11	142.86
Sonora	81	82.79	156.58	151.72	146.66
Tabasco	70	80.09	47.51	45.96	44.36
Tamaulipas	117	124.39	235.74	228.90	221.72
Tlaxcala	32	34.09	33.31	32.24	31.72
Veracruz	434	396.88	386.24	375.02	363.28
Yucatán	73	92.56	107.04	103.69	100.19
Zacatecas	37	44.17	70.42	67.99	65.49

Tabla 5.4: Registros y pronósticos de muertes por cáncer del cuello del útero por estado, obtenidos a partir del modelo (5.1.4).

Para pronosticar las defunciones causadas por este cáncer, en cada una de las zonas en que clasificamos a la república mexicana, ajustamos el siguiente modelo

$$\hat{y}_{ij} = e^{5.673742 - .0377573t - .0010878t^2 - 9.14e - 08X_{ij} + \hat{v}_j}$$
(5.1.6)

donde \hat{v}_j , es un estimados del efecto aleatorio por zona, ya se la media y moda a posteriori.

Tener presente que el modelo (5.1.6), sólo nos sirve para estimar las defunciones por esta enfermedad, en cada zona. En la Tabla 5.5, se muestran los pronósticos de mortalidad para los años 2007 a 2010, estimados con el modelo (5.1.6).

En la Tabla 5.5 observamos que las zonas Z1 y Z5 presentarán una disminución en muertes, las zonas Z2 y Z3 prácticamente se mantendrán constantes; y la zona Z4 tendrá un crecimiento en muertes por este cáncer, si las comparamos con las muertes registradas en el año 2007.

Zona	2007a	2007	2008	2009	2010			
Z1	532	422.98	408.98	394.58	379.86			
Z2	1,171	1,173.61	1,142.11	1,109.18	1,074.99			
Z3	425	490.73	475.45	459.68	443.48			
Z4	1,183	1,298.85	1,279.91	1,258.54	1,235.11			
Z5	626	598.02	580.78	562.81	544.24			
Nota:	Nota: 2007a Muertes registradas en el año 2007							

Tabla 5.5: Pronóstico de muertes por cáncer del cuello del útero por zona, en los años 2007-2010, obtenido con el modelo (5.1.6).

5.1.2. Ajuste de modelos regresivos para el cáncer de tráquea, bronquios y pulmón

Como sabemos, el CTByP no hace distinción entre hombres y mujeres, ya que esta enfermedad afecta a ambos sexos. Es por esto que en la Figura 5.6, representamos la cantidad de muertes totales por este cáncer a nivel nacional, que ocurrieron en los años de 1990 a 2007.

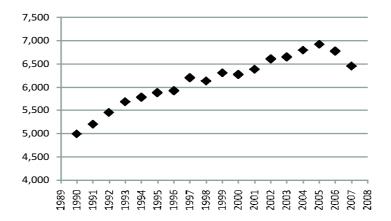


Figura 5.6: Defunciones totales por CTByP en México, 1990-2007.

Por la forma que se observa en la Figura 5.6, ajustamos un modelo de regresión Poisson de segundo grado, a los datos de mortalidad por CTByP a nivel nacional. El cual es

$$\hat{y}_{ij} = e^{8.858139 + .0003723t - .0011323t^2 - 2.33e - 09X_{ij} + \hat{v}_0}.$$
(5.1.7)

Si analizamos los estadísticos de salida del modelo (5.1.7) en la Tabla 5.6, observamos que a menor población, mayor mortalidad por cáncer de tráquea, bronquios y pulmón ocurre. Pero podemos observar que la población es no significativa esto quiere decir que esta variable no aporta mucho a mi modelo,

CTByP	Coef.	Std. Err.	z	P > z	[95 % Conf	. Interval]
time	0003723	.0091815	0.04	0.968	00176231	.0183676
$time^2$	0011323	.0003666	-3.09	0.002	0018508	0004138
pob	-2.33e-09	1.07e-08	-0.22	0.827	-2.33e-08	1.86e-08
const	8.858139	1.431183	6.19	0.000	6.053071	11.66321

Tabla 5.6: Estadísticos del modelo (5.1.7) para estimar el promedio de muertes por CTByP, a nivel nacional.

dado que estamos considerando la variable tiempo. Entonces se tendría ajustar un nuevo modelo sin la variable población.

En la Figura 5.7, se observa el ajuste del modelo (5.1.7) a los registros de decesos por CTByP.

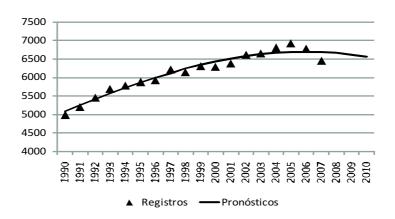


Figura 5.7: Registros y estimaciones de defunciones por CTByP en México, con el modelo (5.1.7) en los años 1990-2007.

Si pronosticamos la cantidad de muertes en nuestro país por CTByP a nivel nacional con el modelo (5.1.7), obtenemos la Tabla 5.7, en la cual también se muestran los registros de mortalidad por este cáncer. En esta tabla observamos que los pronósticos que obtuvimos para el 2007 son muy buenos, si los comparamos con los datos observados ese año. Además se hicieron estimaciones de muerte por CTByP para los años 2008, 2009 y 2010. Según estas estimaciones, notamos que en promedio ocurrirán 6,600 muertes en la presente década.

Ahora presentamos el modelo de regresión poisson mixto que ajustamos a los datos de mortalidad registrada en cada estado de la república. Este modelo sólo tiene el intercepto aleatorio, tal modelo es

$$\hat{y}_{ij} = e^{(5.213397 + \hat{v}_0) - .0042586t - .0009543t^2 + 7.32e^{-08}X_{ij}},$$
 (5.1.8)

Año	Registradas	Pronosticadas	Año	Registradas	Pronosticadas
1990	4,993	5,070.25	2001	6,379	6,510.85
1991	5,202	5,241.01	2002	6,611	6,577.18
1992	5,455	5,405.27	2003	6,646	6,629.16
1993	5,686	5,562.07	2004	6,795	6,666.43
1994	5,782	5,710.46	2005	6,920	6,688.75
1995	5,877	5,849.56	2006	6,772	6,695.92
1996	5,920	5,988.47	2007	6,451	6,687.80
1997	6,203	6,116.81	2008		6,664.51
1998	6,132	6,233.78	2009		6,626.18
1999	6,305	6,338.60	2010		6,573.04
2000	6,274	6,430.61			

Tabla 5.7: Muertes por CTByP registradas y pronosticadas con el modelo (5.1.7).

donde

$$\hat{v}_0 = -$$
 . $8794415Z1 - .6650066Z2 - .5534216Z3 - .4705086Z4 + $\hat{\varepsilon}_{0i}$.$

 X_{ij} es la *i*-ésima observación de población del estado *j*. Z1, Z2, Z3 y Z4 son variables dicotómicas (toman valores 0,1) que representan a las zonas, para Z5 $\hat{v}_0 = 0 + \hat{\varepsilon}_{05}$.

Si analizamos los estadísticos de salida del modelo (5.1.8), que se muestran en la Tabla 5.8, los coeficientes nos dicen que si aumenta la cantidad de población, va aumentar el número de muertes por esta enfermedad, lo cual parece ser lógico. También notamos que todas las variables son significativas al 5%, con excepción de la variable tiempo, dadas las otras variables consideradas.

CTByP	Coef.	Std. Err.	z	P > z	[95 % Con	f. Interval]
time	0042586	.0021948	-1.94	0.052	0085604	.0000432
$time^2$	0009543	.0001269	-7.52	0.000	001203	0007056
pob	7.32e-08	3.14e-09	23.30	0.000	6.70e-08	7.93e-08
Z1	8794415	.0594212	-14.80	0.000	9959049	7629781
Z2	6650066	.0555701	-11.97	0.000	773922	5560911
Z3	5534216	.053493	-10.35	0.000	658266	4485773
Z4	4705086	.0348254	-13.51	0.000	5387652	402252
const	5.213397	.035189	148.15	0.000	5.144428	5.282367

Tabla 5.8: Estadísticas del modelo (5.1.8), para el CTByP por estado.

Queremos resaltar que con el modelo (5.1.8) podemos estimar el promedio de defunciones por CTByP en cada estado, e identificar factores de riesgo. Es decir, en la Tabla 5.8, observamos que entre más marginada sea una zona², el número de muertes se reduce, por lo que podemos deducir que

²Grado de marginación: Z1 Muy alto, Z2 Alto, Z3 Medio, Z4 Bajo y Z5 Muy bajo.

el analfabetismo, la no derechohabiencia y los bajos recursos económicos no incrementan el riesgo de morir por CTByP. En otras palabras, a menor marginación más muertes por este cáncer. Lo cual resulta congruente con lo que mencionamos en el capítulo 4.3, acerca de la relación que existe entre las muertes por CTByP y el hábito de fumar, es decir, en una zona con grado de marginación bajo, se tienen los recursos económicos para mantener dicha costumbre.

Analizando las estimaciones de mortalidad generadas por el modelo (5.1.8), que se presentan en la Tabla 5.9, observamos que el Distrito Fedreal, Jalisco, el Estado de México y Nuevo León, son de los estados con más muertes registradas por CTByP.

	Registros		Estim	aciones	
Estado	2007	2007	2008	2009	2010
Aguascalientes	85	78.79	78.52	78.10	77.53
B.C.	221	211.77	211.83	211.48	210.73
B.C.S.	50	52.12	51.91	51.61	51.21
Campeche	24	33.38	33.24	33.04	32.77
Coahuila	222	247.89	247.32	246.28	244.78
Colima	44	48.11	47.89	47.57	47.16
Chiapas	170	130.42	130.45	130.23	129.77
Chihuahua	343	353.24	352.38	350.84	348.65
D.F.	583	640.30	638.05	634.59	629.96
Durango	114	126.95	126.40	125.62	124.60
Guanajuato	268	270.20	269.71	268.74	267.26
Guerrero	133	122.18	121.60	120.80	119.78
Hidalgo	84	81.90	81.60	81.16	80.56
Jalisco	567	505.43	505.98	505.56	504.18
México	550	536.05	542.25	542.36	545.41
Michoacán	272	299.37	297.73	295.56	292.87
Morelos	93	82.77	82.41	81.90	81.24
Nayarit	86	106.21	105.70	105.00	104.10
Nuevo León	378	390.35	390.40	389.71	388.30
Oaxaca	132	117.49	117.00	116.28	115.35
Puebla	189	164.14	164.14	163.83	163.20
Querétaro	74	51.84	51.71	51.49	6 51.17
Quintana Roo	41	26.90	26.87	26.78	26.64
San Luis Potosí	148	147.49	146.96	146.17	145.10
Sinaloa	318	370.90	369.36	367.13	364.21
Sonora	284	327.56	326.71	325.23	323.16
Tabasco	94	91.65	91.30	90.78	90.10
Tamaulipas	277	288.36	288.00	287.09	285.64
Tlaxcala	41	28.18	28.07	27.92	27.71
Veracruz	379	390.48	389.60	388.04	385.77
Yucatán	92	89.60	89.34	88.92	88.32
Zacatecas	95	115.34	114.77	113.98	112.98

Tabla 5.9: Registros y pronósticos de muertes por CTByP por estado, estimadas con el modelo (5.1.8).

Para que sea más ilustrativo el ajuste del modelo (5.1.8), en la Figura 5.8, presentamos los registros puntuales de muertes por CTByP y las estimaciones con este modelo, en cada estado de la república mexicana, representadas por la linea roja. En ésta se observa un buen ajuste a los datos observados.

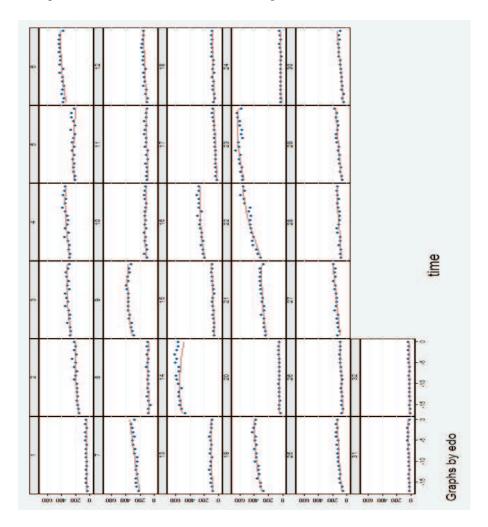


Figura 5.8: Registros y estimaciones de defunciones por CTByP en México, con el modelo (5.1.8) en los años 1990-2007, ver mapa en pág. 14.

Si además de tener un intercepto aleatorio, queremos coeficientes aleatorios, para estimar las muertes por CTByP en cada estado de la república mexicana. El paquete estadístico nos da el siguiente modelo

$$\hat{y}_{ij} = e^{(\hat{\beta}_0 + \hat{v}_{0j}) + (\hat{\beta}_1 + \hat{v}_{1j})t - .0010137t^2 + 9.50e^{-08}X_{ij}},$$
(5.1.9)

donde

$$\begin{array}{rcl} (\hat{\beta}_0 + \hat{v}_{0j}) & = & 4 \cdot 812082 + (- \cdot 9663361Z1 - \cdot 88579718Z2 - \cdot 4976707Z3 \\ & & - \cdot 6291355Z4) + \hat{\varepsilon}_{0j}, \\ (\hat{\beta}_1 + \hat{v}_{1j})t & = & - \cdot 0162647t + (\cdot 280667Z1t + \cdot 0099216Z2t + \cdot 0055938Z3t \\ & & + 0052154Z4t) + \hat{\varepsilon}_{1j}t. \end{array}$$

cuello	Coef.	Std. Err.	z	P > z	[95 % Con	f. Interval]
time	0162647	.0026075	-6.24	0.000	0213753	011154
$time^2$	0010137	.000127	-7.98	0.000	0012627	0007648
pob	9.50e-08	1.03e-09	92.38	0.000	9.30e-08	9.70e-08
Z1	9663361	.025918	-37.28	0.000	-1.017134	9155377
Z2	8579718	.0179578	-47.78	0.000	8931685	8227751
Z3	4976707	.018708	-26.60	0.000	5343377	4610038
Z4	6291355	.0160754	-39.14	0.000	6606427	5976283
Z1t	.0280667	.002806	10.00	0.000	.022567	.0335663
Z2t	.0099216	.0018853	5.26	0.000	.0062265	.0136166
Z3t	.0052154	.0019084	2.93	0.003	.0018534	.0093343
Z4t	.0052154	.0016849	3.10	0.002	.0019131	.0085177
const	4.812082	.0162517	296.10	0.000	4.78023	4.843935

Tabla 5.10: Estadisticas del modelo (5.1.9), ajustado para prónosticar las defunciones por CTByP, en cada estado de la república mexicana.

Las estadísticas del modelo (5.1.9) mostradas en la Tabla 5.10, nos dicen que a mayor población hay más casos de mortalidad por CTByP. Asimismo que dadas las otras variables, en la zona Z3 hay más muertes por este cáncer comparada con la zona Z5. También podemos observar que la tendencia de todas las zonas es diferente a la de Z5. Notar que todas las variables son significativas.

Ahora presentaremos en la Figura 5.9, los datos observados y las estimaciones de muertes por CTByP, obtenidas con el modelo (5.1.9).

La Figura 5.8 y la Figura 5.9 parecen ser la misma, para elegir entre el modelo (5.1.8) y el modelo (5.1.9), es el analista el que decide cual modelo utilizar, basado en su experiencia.

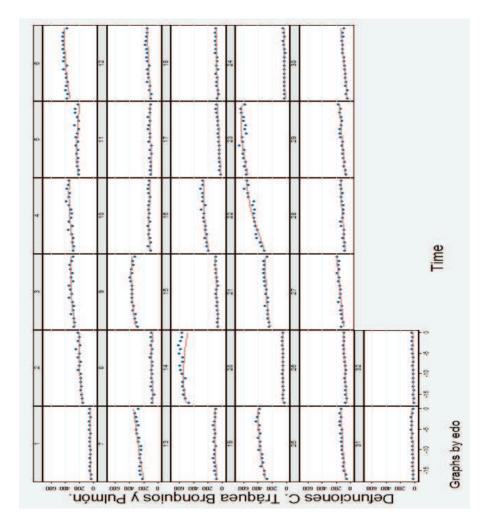


Figura 5.9: Registros y estimaciones de defunciones por CTByP en México, con el modelo (5.1.9) en los años 1990-2007.

Ahora, presentaremos el modelo que ajustamos a la mortalidad causada por CTByP, por zona. Este modelo es

$$\hat{y}_{ij} = e^{6.222806 - .0111439t - .0007769t^2 + 4.08e - 08X_{ij} + \hat{v}_j}.$$
 (5.1.10)

Tener presente que el modelo (5.1.10), sólo nos sirve para estimar las defunciones por esta enfermedad, en cada zona y no es útil para identificar factores de riesgo. En la Tabla 5.11, se muestran los pronósticos de mortalidad para los años 2007 a 2010, estimados con el modelo (5.1.10).

Según la Tabla 5.11, las zonas Z1, Z2 y Z5, va a disminuir el número de muertes por CTByP en los años 2008, 2009 y 2010 en referencia a las que

Zona	2007a	2007	2008	2009	2010		
Z1	435	401.31	398.10	394.30	389.93		
Z2	1,282	$1,\!173.55$	1,169.95	1,164.70	1,157.77		
Z3	996	$1,\!129.90$	1,122.99	1,114.48	1,104.34		
Z4	2,334	2,667.61	2,691.15	2,710.75	2,726.83		
Z5	1,404	$1,\!351.96$	1,347.49	1,340.95	1,332.41		
Nota:	Nota: 2007a Muertes registradas en el año 2007						

Tabla 5.11: Registros y pronóstico de muertes por CTByP por zona, en los años 2007-2010, obtenidos con el modelo (5.1.10).

ocurrieron en el año 2007. En el lado opuesto las zonas Z3 y Z4 presentarán un incremento en mortalidad.

5.1.3. Ajuste de modelos regresivos para el cáncer de próstata

Por obvias razones este cáncer sólo afecta al sexo másculino, es por esto, que para ajustar los modelos regresivos a los registros de mortalidad por este cáncer, se utilizó únicamente la población masculina.

Iniciemos observando la dispersión de las muertes totales en México registradas desde el año de 1990 al 2007.

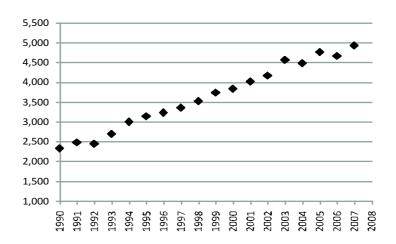


Figura 5.10: Defunciones totales por cáncer de próstata en México, 1990-2007.

Por la forma que se observa en la Figura 5.10, ajustamos un modelo de regresión Poisson mixto de primer grado a la variable tiempo para ajustar los datos de mortalidad por cáncer de próstata a nivel nacional. El cual es

$$\hat{y}_{ij} = e^{4.625214 + .0391571t + 1.80e^{-07}X_{ij} + \hat{v}_{0j}}. (5.1.11)$$

Los estadísticos de salida del modelo (5.1.11) se presentan en la Tabla 5.12, en ésta observamos que a mayor población, mayor mortalidad por cáncer de próstata ocurre. También observamos que la variable tiempo es la única que no es significativa. Esto es porque las variables tiempo y población están correlacionadas y en este caso, las muertes pueden ser modeladas sólo con la población dada.

Próstata	Coef.	Std. Err.	z	P > z	[95 % Conf	. Interval]
time	.0092422	.005375	1.72	0.086	0012926	.0197769
pob	5.62e-08	8.57e-09	6.55	0.000	3.94e-08	7.30e-08
const	5.743813	1.265461	4.54	0.000	3.263555	8.22407

Tabla 5.12: Estadísticos de mortalidad por cáncer de próstata, obtenidos con el modelo (5.1.11), Nacional.

En la Figura 5.11, representamos la cantidad de muertes registradas en la SSA, considerando las ocurridas en todos los estados de la república mexicana, en los años 1990-2007, asimismo mostramos las estimaciones de mortalidad para los años 2007 a 2010, calculadas con el modelo (5.1.11).



Figura 5.11: Defunciones registradas y pronosticadas, por cáncer de próstata en México, con el modelo (5.1.11) en los años 1990-2010.

Ahora presentamos el modelo de regresión Poisson mixto que ajustamos a los datos de mortalidad registrada en cada estado de la república. Este modelo sólo tiene el intercepto aleatorio.

$$\hat{y}_{ij} = e^{(4.625214 + \hat{v}_{0j}) + .0391571t + 1.80e - 07X_{ij}}, (5.1.12)$$

donde

$$\hat{v}_{0j} = - \cdot 32777443Z1 - \cdot 1661416Z2 - \cdot 3207406Z3 - \cdot 5125891Z4 + \hat{\varepsilon}_{0j},$$

 X_{ij} es la *i*-ésima observación de población del estado *j*. Y las variables Z1,...,Z5 toman el valor de 0 ó 1, dependiendo de la zona en la que se esté analizando. \hat{v}_{0j} es el estimador del efecto aleatorio (moda o esperanza posteriori) con distribución normal.

Si analizamos los estadísticos del modelo (5.1.12), que se muestran en la Tabla 5.13, los coeficientes nos dicen que si aumenta la cantidad de población, va aumentar el número de muertes por esta enfermedad. También notamos que todas las variables son significativas al 1%.

CTByP	Coef.	Std. Err.	z	P > z	[95 % Con	f. Interval]
time	.0391571	.0008194	47.79	0.000	.0375511	.0407631
pob	1.80e-07	1.03e-08	17.54	0.000	1.60e-07	2.00e-07
Z1	3277443	.0685645	-4.78	0.000	4621282	1933605
Z2	1661416	.0582336	-2.85	0.004	2802774	0520058
Z3	3207406	.0965963	-3.32	0.001	5100659	1314153
Z4	5125891	.0400992	-12.78	0.000	5911821	433996
const	4.625214	.0723521	63.93	0.000	4.483406	4.767021

Tabla 5.13: Estadísticas del modelo (5.1.12), para estimar la cantidad de muertes por cáncer de próstata en cada estado de la república.

Es impotante resaltar, que con el modelo (5.1.12) podemos estimar el promedio de decesos por este cáncer en cada estado, e identificar factores de riesgo. Es decir, en la Tabla 5.13, observamos que no se puede deducir si hay una relación directa o inversamente proporcianal entre las muertes por cáncer de próstata y el grado de marginación³. Sin embargo, los coeficientes de las zonas Z1 y Z3 nos índican que existe una variable considerada por el índice de marginación, la cual tiene cierta relación entre ella y el número muertes. Pero para saber cual es esa variable se necesita hacer un estudio más exhaustivo.

Ver en la Figura 5.12, los registros observados a través del tiempo y los decesos estimados por esta enfermedad, con el modelo (5.1.12), por estado.

³Grado de marginación: Z1 Muy alto, Z2 Alto, Z3 Medio, Z4 Bajo y Z5 Muy bajo.

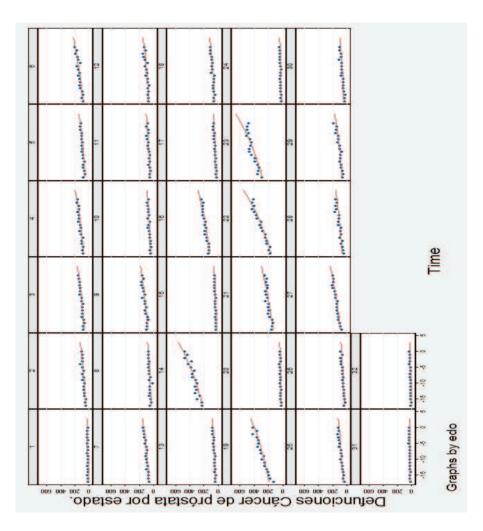


Figura 5.12: Registros y estimaciones de muertes por cáncer de próstata en México, con el modelo (5.1.12) en los años 1990-2007, ver mapa en pág. 14.

En la Tabla 5.14, presentamos el promedio de muertes en cada uno de los treinta y dos estados de nuestro país, generadas por el modelo (5.1.12).

	Registros		Estima	aciones	
Estado	2007	2007	2008	2009	2010
Aguascalientes	47	50.07	52.18	54.38	56.67
B.C.	105	110.43	115.62	121.05	126.74
B.C.S.	16	25.12	26.17	27.26	28.39
Campeche	29	29.71	30.93	32.19	33.52
Coahuila	106	125.53	131.01	136.72	142.69
Colima	32	36.69	38.18	39.72	41.33
Chiapas	193	151.63	158.64	165.97	173.63
Chihuahua	164	171.85	179.30	187.07	195.17
D.F.	478	584.94	609.64	635.38	662.21
Durango	71	82.13	85.49	89.00	92.66
Guanajuato	230	250.54	261.46	272.88	284.80
Guerrero	124	113.81	118.39	123.16	128.11
Hidalgo	106	102.98	107.26	111.72	116.36
Jalisco	469	491.97	515.47	540.10	565.90
México	410	472.73	499.20	527.15	556.88
Michoacán	248	270.44	281.05	292.11	303.63
Morelos	89	79.03	82.26	85.62	89.13
Nayarit	80	71.96	74.87	77.90	81.05
Nuevo León	203	195.33	204.47	214.03	224.07
Oaxaca	159	144.25	150.11	156.20	162.54
Puebla	195	211.08	220.73	230.83	241.38
Querétaro	52	56.98	59.45	62.03	64.72
Quintana Roo	27	20.01	20.90	21.84	22.81
San Luis Potosí	131	132.66	138.19	143.96	149.97
Sinaloa	159	166.65	173.50	180.62	188.04
Sonora	150	147.14	153.50	160.13	167.06
Tabasco	99	92.01	95.83	99.81	103.96
Tamaulipas	150	139.49	145.76	152.31	159.16
Tlaxcala	42	37.26	38.82	40.44	42.13
Veracruz	413	398.35	415.30	433.07	451.60
Yucatán	70	74.47	77.66	80.99	84.46
Zacatecas	83	92.59	96.31	100.18	104.21

Tabla 5.14: Registros y pronósticos de muertes por cáncer de próstata por estado, estimados con el modelo (5.1.12).

Un modelo más complejo que el modelo (5.1.12), es el que presentamos a continuación ya que además de tener un intercepto aleatorio, tiene un coeficiente también aleatorio, que nos índica la tendencia el efecto de la población correlacionada de cada zona, a través del tiempo. El paquete estadístico nos da el siguiente modelo

$$\hat{y}_{ij} = e^{(\hat{\beta}_0 + \hat{v}_{0j}) + (\hat{\beta}_1 + \hat{v}_{1j})t + 3 \cdot 30e - 07X_{ij}},$$
(5.1.13)

donde

$$(\hat{\beta}_0 + \hat{v}_{0j}) = 4.598369 + (-.2538633Z1 - .0587833Z2 - .3040282Z3 - .3291318Z4) + \hat{\varepsilon}_{0j},$$

$$(\hat{\beta}_1 + \hat{v}_{1j})t = .0194829t + (.0811308Z1t) + (.0047818Z2t) - (.0041327Z3t) + (.0067169Z4t) + \hat{\varepsilon}_{1j}.$$

Las estadísticas del modelo (5.1.13) mostradas en la Tabla 5.15, nos dicen que a mayor población hay más decesos por cáncer de próstata. Asimismo vemos que en la zona Z2 hay más muertes por este cáncer comparada con las zonas Z1, Z3 y Z4. También podemos observar que con excepción de la zona Z3, la tendencia de las demás zonas es creciente, es decir que las muertes van a incrementarse a través de los años, siendo la zona Z1 la que presenta la pendiente más pronunciada seguida de la zona Z4. Notar que todas las variables son significativas al 5%, excepto Z3t.

cuello	Coef.	Std. Err.	z	P > z	[95 % Con	f. Interval]
time	.0194829	.0017208	11.32	0.000	.0161102	.0228555
pob	3.30e-07	2.70e-09	122.22	0.000	3.25 e-07	3.35e-07
Z1	2538633	.0282254	-8.99	0.000	3091841	1985424
Z2	0587833	.0207638	-2.83	0.005	0994795	018087
Z3	3040282	.0240734	-12.63	0.000	3512111	2568453
Z4	3291318	.020012	-16.45	0.000	3683547	2899089
Z1t	.0811308	.0033481	24.23	0.000	.0745686	.0876931
Z2t	.0047818	.002275	2.10	0.036	.0003228	.0092407
Z3t	0041327	.0026091	-1.58	0.113	0092465	.0009811
Z4t	.0067169	.0022138	3.03	0.002	.0023779	.011056
const	4.598369	.0180389	254.91	0.000	4.563013	4.633724

Tabla 5.15: Estadisticas del modelo (5.1.13) del cáncer de próstata por estado.

En la Figura 5.13, se observan gráficamente los datos observados y los pronósticos de muerte, estimados con el modelo (5.1.13). En esta figura, observamos que la estimación del estado 8 (Yucatán) no es buena, por lo que concluímos que el modelo (5.1.12) nos da mejores pronósticos de las muertes por cáncer de próstata, por estado, ver mapa en la pág. 14.

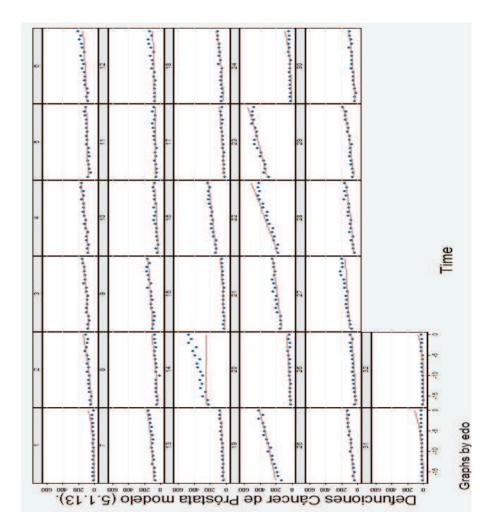


Figura 5.13: Registros y estimaciones de muertes por cáncer de próstata en México, con el modelo (5.1.13) en los años 1990-2007.

Ahora, presentaremos el modelo que ajustamos a la mortalidad causada por cáncer de próstata, pero a nivel zona. El modelo es

$$\hat{y}_{ij} = e^{5.913256 + .0422543t + 1.26e - 08X_{ij} + \hat{v}_{0j}}. (5.1.14)$$

Tener presente que el modelo (5.1.14), sólo nos sirve para estimar las defunciones por esta enfermedad, en cada zona. Pero no es útil para identificar factores de riesgo.

Las estadísticas del modelo (5.1.14), mostradas en la Tabla 5.16, nos índican que entre más población masculina hay, mayor va a ser el número de casos de mortalidad por cáncer de próstata, sin embargo observamos que la variable población, es no significativa dado el tiempo, en nuestro modelo. Como el

tiempo y la población están correlacionadas, quizás sea suficiente con una de ellas en el modelo.

Próstata	Coef.	Std. Err.	z	P > z	[95 % Con:	f. Interval]
time	.0422543	.0014545	29.05	0.000	.0394035	.045105
pob	1.26e-08	8.13e-09	1.55	0.122	-3.35e-09	2.85e-08
const	5.913256	.0593751	99.59	0.000	5.796883	6.029629

Tabla 5.16: Registros y pronóstico de muertes por cáncer de próstata por zona de marginación, en los años 2007-2010, con base en el modelo (5.1.14).

Ahora mostramos en la Tabla 5.17, los pronósticos de mortalidad para los años 2007 a 2010, estimados con el modelo (5.1.14).

Zona	2007a	2007	2008	2009	2010
Z1	476	412.10	430.09	448.87	468.47
Z2	1,291	1,067.21	1,114.54	$1,\!164.11$	1215.88
Z3	717	843.02	880.10	918.83	959.26
Z4	1,554	1,885.06	1,971.23	2,064.09	2158.60
Z5	892	1,022.33	1,067.87	$1,\!115.45$	1165.15
Nota:	2007a M	uertes regis	stradas en o	el año 2007	•

Tabla 5.17: Registros y pronóstico de muertes por cáncer de próstata por zona de marginación, en los años 2007-2010, obtenido con el modelo (5.1.14).

En la Tabla 5.17, podemos observar que la zona Z1 es la que presenta el menor promedio de muertes por este cáncer, este hecho ya lo habíamos observado en la tabla 4.11, (ver sección 4.4.1). Continuando con el análisis de esta tabla, notamos que en las zonas Z3, Z4 y Z5 se va a incrementar el número de muertes, este año. Mientras la mortalidad en las zonas Z1 y Z2 se mantienen constantes, comparandolo con los registros del año 2007.

Capítulo 6

Conclusiones

Recordemos que nuestro objetivo inicial fue: analizar las muertes ocasionadas por cáncer en la república méxicana, con los datos de la SSA e INEGI a partir del año de 1990 a 2005. Los datos de estudio son las muertes ocasionadas por los tres tipos de cáncer

- cuello del útero,
- próstata y
- tráquea, bronquios y pulmón.

Ahora daremos las conclusiones generales obtenidas a lo largo del presente trabajo.

En el capítulo 2, observamos que en el año 2005, los estados con mayor cantidad de habitantes fueron

- Estado de México
- Distrito Federal
- Veracruz
- Jalisco
- Puebla
- Guanajuato
- Chiapas y
- Nuevo León

También notamos que en todos los estados la población urbana fue mayor que la rural con excepción de Chiapas y Oaxaca, (ver Tabla (2.3)). Observamos que el Estado de México, Veracruz, Chiapas, Guerrero, Hidalgo, Michoacán, Oaxaca y Puebla, fueron los estados donde se presentó mayor cantidad de población no derechohabiente a alguna institución de salud, (ver Figura (2.1)). Y por otro lado, el Estado de México, Veracruz, Chiapas, Oaxaca y Puebla tuvieron los porcentajes más altos en analfabetismo tanto en el 2000 como en el año 2005, (ver Tabla (2.7)).

Dado que los datos que utilizamos como base en este trabajo son de la SSA (sobre la mortalidad por cánceres mencionados) e INEGI (sobre la población que vivió en cada estado de la república en 1990, 1995, 2000 y 2005). En el Capítulo 3 realizamos un estudio de los datos para verificar su confiabilidad, para esto utilizamos los índices de Naciones Unidas y el Índice de Whipple. El análisis concluyó que los datos de ambas instituciones son poco confiables, a partir de esto utilizamos la fórmula de graduación de un diesiseisavo para corregirlos, sin embargo los datos corregidos no se utilizaron pues esto causa pérdida de información, la cual como hemos visto es escaza.

Analizando directamente las muertes por cáncer cervical, en el Capítulo 4, vimos que en los años 1990, 1995, 2000 y 2005, se presentaron al rededor de 12 defunciones diarias, la enfermedad empieza afectar a la población a partir de los 15 años, alcanzando sus niveles máximos entre los 40 y 74 años. La población más afectada es de la zona Z2. En el año 2007 se registraron 3,937 muertes, y éstas han disminuido desde entonces y, para el presente año se estiman que ocurrirán alrededor de 3,400 muertes por cáncer del cuello del útero, (ver Figura (5.3))

Con respecto al cáncer de tráquea, bronquios y pulmón observamos que éste afecta a ambos sexos, sin embargo, la población más afectada es del sexo masculino, (ver Figura (4.6)). Además, observamos que la zona Z3 presentó el mayor porcentaje de mortalidad, en el sexo masculino mientras que en el sexo femenino tuvo mayor incidencia la zona Z5, con respecto a las otra zonas en los años 2000 y 2005, (como se observa en la Figura (4.9) y Figura (4.13), respectivamente). Las muertes por este cáncer empiezan a aparecer a partir de 15 años de edad, alcanzando la mayor tasa de mortalidad en la población de 60 a 84 años, tanto en hombres como en mujeres, (ver Figura (4.10) y Figura (4.14)).

Continuando con el capítulo 4, notamos que el cáncer de próstata causa más defunciones en Nayarit, Jalisco, y Sinaloa, (ver Figura (4.19)).

Conclusiones 89

Tomando en cuenta la población por cada estado observamos que la zonas más afectadas en los años 2000 y 2005 fueron Z5y Z3 respectivamente, (ver Tabla (4.11)). Las muertes ocurridas por esta enfermedad empiezan a partir de los 35 años, alcanzando sus valores máximos en el grupo de 75 a 79 años, (ver Figura (4.20) en la pág. 55).

Por último, en el capítulo 5 logramos obtener diferentes modelos de regresión poisson mixtos que nos ayudan a estimar las defunciones que ocurrirán ya sea a nivel nacional, zona ó estado de la república, esto para cada uno de los tres diferentes tipos de cáncer arriba mencionados. Algunos resultados que obtuvimos fueron:

Modelos regresivos a nivel nacional, que produjeron buenas estimaciones comparadas con los datos observados, apesar de tener variables que no aportaban mucho al modelo para que éste nos explicara el comportamiento de la de mortalidad, de cada uno de los cánceres.

Identificamos factores que propician o tienen cierta influencia en la mortalidad por cáncer. En el caso del cáncer del cuello del útero, observamos que las zonas con mayor grado de marginación tienden a presentar más mortalidad por esta enfermedad. Recordando que el grado de marginación considera los recursos económicos, la derechohabiencia y la educación. Podemos concluir que la cantidad de muerte por este cáncer es mayor en zonas pobres y con pocos servicios médicos.

A diferencia del cáncer del cuello del útero, observamos que morir por cáncer de tráquea, bronquios y pulmón es más común en las zonas no marginadas, es decir, que el CTByP es una enfermedad característica de las zonas con buen nivel económico.

Por otro lado, cuando ajustamos el modelo de regresión poisson a los registros de muerte por cáncer de próstata, no pudimos concluir si el grado de marginación es directamente o inversamente proporcional a las muertes, pero deducimos que uno o unos indicadores que componen al índice de marginación, tienen cierta relación con las muertes por esta enfermedad.

Con lo aprendido o estudiado durante el desarrollo de este trabajo, nos damos cuenta que hace falta desarrollar más los métodos para análizar datos o estructuras correlacionadas, especificamente los conteos.

Sabemos que el estudio que se realizó en este trabajo, es un pequeño análisis debido a que se puede desglozar más, un ejemplo de esto es modelar los registros de mortalidad por grupo quinquenal de edad, o más aún por edad, falta ajustar

 $\operatorname{modelos}$ que tengan la variable sexo, o talvez el peso de cada persona fallecida, etc.

Es importante mencionar que este estudio, se puede realizar utilizando, series de tiempo (para conteos) ó Generalized Estimating Equations (GEE), entre otros métodos.

Capítulo 7

Anexo

En este apartado, se presentan tablas utilizadas en el desarrollo de la tesis.

POBLACIÓN									
- 2 - 2 - 3 - 3 - 3									
	15 año	symás añ	io 2000	15 años y más año 2005					
Estado	Total	Hombres	Mujeres	Total	Hombres	Mujeres			
Nacional	62,842,638	30,043,824	32,798,814	68,802,564	32,782,806	36,019,758			
Aguascalientes	595,497	280,032	315,465	690,851	325,407	365,444			
Baja California	1,523,780	763,479	760,301	1,822,210	912,731	909,479			
Baja Calif. Sur	284,984	145,205	139,779	341,597	174,360	167,237			
Campeche	443,363	219,243	224,120	509,989	249,491	260,498			
Coahuila	1,526,166	747,552	778,614	1,689,560	827,710	861,850			
Colima	343,190	166,592	176,598	386,079	186,960	199,119			
Chiapas	2,281,622	1,112,834	1,168,788	2,627,814	1,265,390	1,362,424			
Chihuahua	1,972,457	971,574	1,000,883	2,116,027	1,039,597	1,076,430			
Distrito Federal	6,231,227	2,907,415	3,323,812	6,418,438	3,004,024	3,414,414			
Durango	914,584	438,577	476,007	991,890	475,364	516,526			
Guanajuato	2,907,596	1,347,265	1,560,331	3,185,978	1,466,061	1,719,917			
Guerrero	1,840,111	864,656	975,455	1,947,210	909,141	1,038,069			
Hidalgo	1,424,760	671,497	753,263	1,565,206	729,605	835,601			
Jalisco	4,112,397	1,949,438	2,162,959	4,484,515	2,127,915	2,356,600			
México	8,286,915	3,975,350	4,311,565	9,241,780	4,420,165	4,821,615			
Michoacán	2,488,588	1,155,723	1,332,865	2,606,609	1,205,311	1,401,298			
Morelos	995,301	467,015	528,286	1,073,434	501,834	571,600			
Navarit	600,032	293,070	306,962	641,682	312,382	329,300			
Nuevo León	2,651,060	1,306,114	1,344,946	2,935,240	1,447,773	1,487,467			
Oaxaca	2,116,722	989.855	1,126,867	2,264,935	1,047,619	1,217,316			
Puebla	3,112,993	1,456,907	1,656,086	3,478,730	1,615,687	1,863,043			
Querétaro	885,463	419,119	466,344	1,043,681	492,224	551,457			
Quintana Roo	559,713	287,628	272,085	677,442	343,255	334,187			
San Luis Potosí	1,442,368	687,178	755,190	1,581,636	748,094	833,542			
Sinaloa	1,665,153	820,181	844,972	1,746,010	856,060	889,950			
Sonora	1,482,068	736,417	745,651	1,615,822	801,383	814,439			
Tabasco	1,206,897	588,233	618,664	1,330,791	643,911	686,880			
Tamaulipas	1,862,448	906,220	956,228	2,059,108	1,003,258	1,055,850			
Tlaxcala	620,464	296,315	324,149	709,044	334,970	374,074			
Veracruz	4.508,106	2,136,761	2.371.345	4,858,837	2,279,768	2,579,069			
Yucatán	1,103,497	536,840	566,657	1,252,562	609,376	643,186			
Zacatecas	853,116	399,539	453,577	907,857	425,980	481,877			
	230,110	550,000	230,011		120,000				

Tabla 7.1: Población de 15 años y más en los años 2000 y 2005.

POBLACIÓN TOTAL POR ENTIDAD FEDERATIVA Y PORCENTAJE DE SU DISTRIBUCIÓN SEGÚN CONDICIÓN DE ACCESO A SERVICIOS DE SALUD E INSTITUCIÓN.

		%	%DISTRIBUCIÓN SEGÚN ACCESO A SERVICIOS MÉDICOS						
				INSTITUCIÓN¹					
Entidad	Población	No				PEMEX,		No Espe-	
Federativa	Total	Derecho-	Total	IMSS	ISSSTE	DEFENSA	En otra	cificado	
		habiente				O MARINA	Institucion ²		
Nacional	97,483,412	56.99	40.13	32.34	5.90	1.09	1.07	2.88	
Aguascalientes	944,285	0.42	0.54	0.47	0.07	0.00	0.00	0.01	
Baja California	2,487,367	0.97	1.31	1.14	0.12	0.01	0.04	0.27	
Baja Calif. Sur	424,041	0.17	0.26	0.18	0.07	0.01	0.00	0.01	
Campeche	690,689	0.43	0.27	0.19	0.06	0.03	0.00	0.01	
Cohauila	2,298,070	0.67	1.64	1.46	0.16	0.01	0.03	0.04	
Colima	542,627	0.27	0.25	0.21	0.04	0.01	0.00	0.03	
Chiapas	3,920,892	3.13	0.71	0.47	0.18	0.03	0.03	0.18	
Chihuahua	3,052,907	1.23	1.76	1.54	0.13	0.01	0.08	0.14	
Distrito Federal	8,605,239	4.06	4.53	3.23	1.15	0.12	0.07	0.24	
Durango	1,448,661	0.73	0.73	0.57	0.16	0.00	0.00	0.03	
Guanajuato	4,663,032	3.09	1.62	1.37	0.21	0.04	0.01	0.08	
Guerrero	3,079,649	2.47	0.64	0.38	0.24	0.03	0.00	0.05	
Hidalgo	2,235,591	1.60	0.67	0.50	0.15	0.02	0.00	0.03	
Jalisco	6,322,002	3.49	2.87	2.67	0.18	0.02	0.01	0.12	
México	13,096,686	7.36	5.33	4.19	0.64	0.13	0.39	0.74	
Michoacán	3,985,667	2.94	1.07	0.84	0.22	0.01	0.01	0.07	
Morelos	1,555,296	0.99	0.55	0.43	0.11	0.01	0.00	0.06	
Nayarit	920,185	0.55	0.38	0.29	0.09	0.00	0.00	0.01	
Nuevo León	3,834,141	1.23	2.59	2.34	0.14	0.02	0.10	0.11	
Oaxaca	3,438,765	2.68	0.80	0.56	0.20	0.04	0.00	0.05	
Puebla	5,076,686	3.72	1.30	1.05	0.18	0.02	0.05	0.19	
Querétaro	1,404,306	0.76	0.65	0.59	0.06	0.01	0.00	0.03	
Quintana Roo	874,963	0.46	0.41	0.34	0.07	0.01	0.00	0.02	
San Luis Potosí	2,299,360	1.44	0.88	0.73	0.13	0.01	0.01	0.03	
Sinaloa	2,536,844	1.18	1.38	1.18	0.20	0.01	0.00	0.04	
Sonora	2,216,969	0.95	1.28	1.04	0.15	0.01	0.09	0.04	
Tabasco	1,891,829	1.35	0.57	0.28	0.10	0.10	0.10	0.02	
Tamaulipas	2,753,222	1.31	1.45	1.16	0.20	0.09	0.00	0.06	
Tlaxcala	962,646	0.68	0.29	0.23	0.06	0.01	0.00	0.01	
Veracruz	6,908,975	4.83	2.18	1.68	0.26	0.24	0.00	0.08	
Yucatán	1,658,210	0.92	0.77	0.67	0.09	0.01	0.01	0.02	
Zacatecas	1,353,610	0.92	0.45	0.36	0.09	0.00	0.00	0.02	

¹ La suma de las distintas instituciones de salud puede ser mayor al total por aquella población que tiene derecho a este servicio en más de una institución de salud.

Tabla 7.2: Población total y derechohabiente en el año 2000.

² Incluye las instituciones de seguridad social de los gobiernos estatales y otro tipo de instituciones de salud públicas o privadas.

Anexo 93

POBLACIÓN TOTAL POR ENTIDAD FEDERATIVA Y PORCENTAJE DE SU DISTRIBUCIÓN SEGÚN CONDICIÓN DE ACCESO A SERVICIOS DE SALUD E INSTITUCIÓN.

		%DISTRIBUCIÓN SEGÚN ACCESO A SERVICIOS MÉDICOS						
				INSTITUCIÓ N¹				
Entidad	Población	No Derecho-				SEGURO	No	
Federativa	Total	habiente	Total	IMSS	ISSSTE	POPULAR	Especificado	
Nacional	103,263,388	49.78	46.92	31.07	5.60	7.09	3.30	
Aguascalientes	1,065,416	0.28	0.73	0.47	0.08	0.18	0.02	
Baja California	2,844,469	0.98	1.55	1.19	0.12	0.12	0.23	
Baja Calif. Sur	512,170	0.15	0.32	0.21	0.07	0.03	0.03	
Campeche	754,730	0.29	0.43	0.21	0.05	0.14	0.01	
Coahuila	2,495,200	0.70	1.67	1.43	0.16	0.04	0.05	
Colima	567,996	0.14	0.38	0.22	0.04	0.12	0.02	
Chiapas	4,293,459	3.18	0.83	0.39	0.16	0.19	0.15	
Chihuahua	3,241,444	1.13	1.83	1.49	0.13	0.08	0.18	
Distrito Federal	8,720,916	3.60	4.53	2.94	1.01	0.18	0.32	
Durango	1,509,117	0.70	0.73	0.52	0.15	0.06	0.03	
Guanajuato	4,893,812	2.32	2.35	1.39	0.22	0.66	0.08	
Guerrero	3,115,202	2.23	0.71	0.35	0.23	0.09	0.07	
Hidalgo	2,345,514	1.41	0.82	0.43	0.15	0.21	0.04	
Jalisco	6,752,113	2.93	3.35	2.63	0.18	0.40	0.25	
México	14,007,495	7.14	5.75	4.00	0.59	0.45	0.67	
Michoacán	3,966,073	2.70	1.05	0.72	0.22	0.09	0.09	
Morelos	1,612,899	0.85	0.64	0.40	0.11	0.12	0.07	
Nayarit	949,684	0.35	0.55	0.28	0.09	0.18	0.02	
Nuevo León	4,199,292	1.14	2.81	2.35	0.12	0.10	0.11	
Oaxaca	3,506,821	2.57	0.76	0.41	0.19	0.11	0.06	
Puebla	5,383,133	3.30	1.77	0.97	0.17	0.51	0.14	
Querétaro	1,598,139	0.72	0.78	0.61	0.06	0.09	0.05	
Quintana Roo	1,135,309	0.46	0.51	0.38	0.07	0.04	0.14	
San Luis Potosí	2,410,414	1.14	1.17	0.75	0.13	0.25	0.03	
Sinaloa	2,608,442	0.84	1.60	1.04	0.20	0.35	0.09	
Sonora	2,394,861	0.70	1.54	1.04	0.14	0.23	0.07	
Tabasco	1,989,969	0.62	1.27	0.26	0.09	0.72	0.04	
Tamaulipas	3,024,238	0.93	1.90	1.18	0.19	0.39	0.10	
Tlaxcala	1,068,207	0.66	0.36	0.20	0.06	0.09	0.02	
Veracruz	7,110,214	4.07	2.73	1.58	0.26	0.61	0.09	
Yucatán	1,818,948	0.79	0.93	0.68	0.08	0.14	0.04	
Zacatecas	1,367,692	0.75	0.56	0.33	0.09	0.14	0.02	
1 La suma de las	distintas instit	uciones de salue	l nuede s	ser mayo	r al total ne	or aquella nobl	ación que	

¹ La suma de las distintas instituciones de salud puede ser mayor al total por aquella población que tiene derecho a este servicio en más de una institución de salud.

Tabla 7.3: Población total y porcentaje de derechohabiencia con respecto a la población nacional en el año 2005.

Entidad		2000 a			2005 b	
Federativa	Total	Hombres	Mujeres	Total	Hombres	Mujeres
Total	97,483,412	47,592,253	49,891,159	103,263,388	50,249,955	53,013,433
Aguascalientes	944,285	456,533	487,752	1,065,416	515,364	550,052
Baja California	2,487,367	1,252,581	1,234,786	2,844,469	1,431,789	1,412,680
Baja California Sur	424,041	216,250	207,791	512,170	261,288	250,882
Campeche	690,689	344,334	346,355	754,730	373,457	381,273
Coahuila	2,298,070	1,140,195	1,157,875	2,495,200	1,236,880	1,258,320
Colima	542,627	268,192	274,435	567,996	280,005	287,991
Chiapas	3,920,892	1,941,880	1,979,012	4,293,459	2,108,830	2,184,629
Chihuahua	3,052,907	1,519,972	1,532,935	3,241,444	1,610,275	1,631,169
Distrito Federal	8,605,239	4,110,485	4,494,754	8,720,916	4,171,683	4,549,233
Durango	1,448,661	709,521	739,140	1,509,117	738,095	771,022
Guanajuato	4,663,032	2,233,315	2,429,717	4,893,812	2,329,136	2,564,676
Guerrero	3,079,649	1,491,287	1,588,362	3,115,202	1,499,453	1,615,749
Hidalgo	2,235,591	1,081,993	1,153,598	2,345,514	1,125,188	1,220,326
Jalisco	6,322,002	3,070,241	3,251,761	6,752,113	3,278,822	3,473,291
México	13,096,686	6,407,213	6,689,473	14,007,495	6,832,822	7,174,673
Michoacán	3,985,667	1,911,078	2,074,589	3,966,073	1,892,377	2,073,696
Morelos	1,555,296	750,799	804,497	1,612,899	775,311	837,588
Nayarit	920,185	456,105	464,080	949,684	469,204	480,480
Nuevo León	3,834,141	1,907,939	1,926,202	4,199,292	2,090,673	2,108,619
Oaxaca	3,438,765	1,657,406	1,781,359	3,506,821	1,674,855	1,831,966
Puebla	5,076,686	2,448,801	2,627,885	5,383,133	2,578,6646	2,804,469
Querétaro	1,404,306	680,966	723,340	1,598,139	772,759	825,380
Quintana Roo	874,963	448,308	426,655	1,135,309	574,837	560,472
San Luis Potosí	2,299,360	1,120,837	1,178,523	2,410,414	1,167,308	1,243,106
Sinaloa	2,536,844	1,264,143	1,272,701	2,608,442	1,294,617	1,313,825
Sonora	2,216,969	1,110,590	1,106,379	2,394,861	1,198,154	1,196,707
Tabasco	1,891,829	$934,\!515$	957,314	1,989,969	977,785	1,012,184
Tamaulipas	2,753,222	1,359,874	1,393,348	3,024,238	1,493,573	1,530,665
Tlaxcala	962,646	469,948	492,698	1,068,207	517,477	550,730
Veracruz	6,908,975	3,355,164	3,553,811	7,110,214	3,423,379	3,686,835
Yucatán	1,658,210	818,205	840,005	1,818,948	896,562	922,386
Zacatecas	1,353,610	$653,\!583$	700,027	1,367,692	659,333	708,359
Nota:	Cifras corres	spondientes a	las siguientes	fechas censales	s: 14 de febrer	o (2000) y
	17 de octub					
a	Incluye una	estimación po	or un total de	1 730 016 pers	onas, correspo	ondientes a
	425 724 Viv	iendas sin info	ormación de o	cupantes.		
b				2 625 310 pers	onas, correspo	ondientes a
	647 491 Viv	iendas sin info	ormación de o	cupantes.		
FUENTE:				n y Vivienda 2	000.	
	INEGI. II C	onteo de Pob	lación y Vivie	nda 2005.		

Tabla 7.4: Población por sexo en los años 2000 y 2005.

Anexo 95

Grupo de edad	Z1	Z2	Z3	Z4	Z5
De 15 a 19 años	0	1	1	2	2
De 20 a 24 años	1	2	1	2	1
De 25 a 29 años	12	21	6	17	8
De 30 a 34 años	12	45	13	47	24
De 35 a 39 años	38	83	26	112	48
De 40 a 44 años	48	108	58	146	66
De 45 a 49 años	57	158	66	171	85
De 50 a 54 años	52	138	62	169	89
De 55 a 59 años	55	107	44	173	73
De 60 a 64 años	54	144	49	135	61
De 65 a 69 años	59	158	49	128	61
De 70 a 74 años	50	120	58	101	67
De 75 a 79 años	45	82	53	88	54
De 80 a 84 años	27	73	33	74	39
De 85 y más años	23	85	50	73	34
No especificado	1	1	3	1	0

Tabla 7.5: Defunciones por cáncer del cuello del útero, por grupos de edad y zona en el año 2000.

Grupo de edad	Z1	Z2	Z3	Z4	Z5
De 15 a 19 años	1	0	0	2	0
De 20 a 24 años	2	2	1	8	1
De 25 a 29 años	10	14	5	10	12
De 30 a 34 años	15	33	19	45	18
De 35 a 39 años	41	76	20	66	37
De 40 a 44 años	54	106	44	111	54
De 45 a 49 años	41	137	56	197	75
De 50 a 54 años	51	135	54	146	62
De 55 a 59 años	51	144	49	163	52
De 60 a 64 años	31	125	45	138	51
De 65 a 69 años	70	125	56	122	65
De 70 a 74 años	55	115	50	94	53
De 75 a 79 años	53	106	42	70	46
De 80 a 84 años	27	78	29	61	36
De 85 y más años	27	89	30	59	47
No especificado	0	1	0	2	1

Tabla 7.6: Defunciones por cáncer del cuello del útero, por grupos de edad y zona en el año 2005.

Año	Grupo de edad	Z1	Z2	Z3	Z4	Z5
	De 15 a 19 años	580,858	1,340,919	729,887	1,615,494	815,329
	De 20 a 24 años	489,978	1,192,802	663,532	1,564,721	856,501
	De 25 a 29 años	401,123	1,030,621	572,023	1,450,116	842,378
	De 30 a 34 años	341,870	908,181	497,625	1,267,403	738,088
	De 35 a 39 años	318,977	819,782	436,630	1,105,056	648,765
	De 40 a 44 años	251,150	664,711	354,798	888,642	540,761
	De 45 a 49 años	207,246	536,128	272,487	677,128	421,925
2000	De 50 a 54 años	166,445	440,856	224,000	547,799	354,820
	De 55 a 59 años	133,293	344,471	174,987	409,751	262,657
	De 60 a 64 años	120,702	306,296	154,263	345,108	226,373
	De 65 a 69 años	90,310	238,119	118,972	260,842	172,876
	De 70 a 74 años	67,097	177,000	90,378	189,942	132,151
	De 75 a 79 años	41,991	115,556	58,054	124,030	84,101
	De 80 a 84 años	30,574	78,978	42,347	81,994	57,686
	De 85 y más años	29,496	83,770	42,359	81,472	53,262
	No especificado	106,434	171,024	57,575	481,624	203,469
	De 15 a 19 años	601,029	1,345,921	729,966	1,637,916	798,283
	De 20 a 24 años	496,643	1,194,701	649,495	1,557,750	812,600
	De 25 a 29 años	425,215	1,057,382	580,689	1,442,071	792,277
	De 30 a 34 años	384,519	1,011,211	557,328	1,429,135	805,784
	De 35 a 39 años	348,459	915,467	495,597	1,265,036	716,595
	De 40 a 44 años	291,926	773,959	417,680	1,050,968	611,186
	De 45 a 49 años	248,087	$652,\!274$	343,706	863,923	519,116
2005	De 50 a 54 años	200,546	536,878	276,823	687,667	429,016
	De 55 a 59 años	155,097	417,854	210,241	512,238	323,660
	De 60 a 64 años	147,608	362,681	183,118	420,644	264,637
	De 65 a 69 años	109,113	277,348	138,643	312,526	197,847
	De 70 a 74 años	81,805	213,635	106,702	230,942	160,330
	De 75 a 79 años	52,583	142,686	70,358	151,837	104,308
	De 80 a 84 años	38,244	97,517	51,346	100,185	71,538
	De 85 y más años	36,935	103,604	51,409	99,683	66,033
	No especificado	109,820	182,379	121,545	694,054	296,723

Tabla 7.7: Población femenina por grupos de edad en los años 2000 y 2005.

Capítulo 8

Bibliografía

- DEPUAL (1999). Distribución Espacial y Urbanización de la Población en América Latina y el Caribe. En CEPAL, Boletín Demográfico N°63.
- Chen, M. and Ibrahim, J. (2000). Bayesian Predictive Inference for Time Series Count Data Biometrics, Vol. 56, No. 3682-283.
- CONAPO (2005). Anexo C. Metodología de estimación del índice de marginación urbana 2005.
- Faraway, J. (2005). Extending the linear Model with R: Generalized Linear, Mixed Effects and Nonparametric Regression Models. Chapman & Hall.
- Hedeker, D. and Gibbons, R. D. (2006). Longitudinal Data analysis. John Wiley & Sons, Inc.
- Kleinbaum, D.G., Kupper L.L., and Muller K.E. (1988). Applied Regression Analysis and Other Multivariable Methods, PWS-KENT Publishing Company Boston. United States of America.
- Hombres y Mujeres (2006) Publicación de INEGI "Hombres y Mujeres en México" Decima edición.
- INEGI (1990). Anuario Estadistico por entidad federativa 1990.
- INEGI (1995). Anuario Estadistico por entidad federativa 1995.
- Mina, A. (2006). Elaboración y utilidad de la tabla abreviada de mortalidad, Vínculos Matemáticos No.42. Facultad de Ciencias, UNAM.

Montgomery, D.C., Peck E.A. y Vining, G.G. (2002). Introducción al Análisis de regresión Lineal Tercera edición, Cecsa, México.

- Rabe-Hesket, S. and Skrondal, A. (2008). Multilevel and Longitudinal Modeling Using Stata. Stata Press.
- Skrondal, A. and Rabe-Hesket, S. (2004). Generalized latent variable modeling. Chapman & Hall/CRC.

8.1. Páginas electrónicas

- INEGI (2000). http://www.inegi.org.mx/est/contenidos/espanol/proyectos/ censos/cpv2000/bd/pv2000/ptl.asp?s=est&c=10261. En esta dirección, se obtuvo la población por entidad federativa, sexo, área rural y urbana del año 2000.
- INEGI (2005).

 http://www.inegi.org.mx/est/contenidos/espanol/proyectos/
 conteos/conteo2005/bd/consulta2005/pt.asp?s=est&c=10401.

 En esta dirección, se obtuvo la población por entidad federativa, sexo, área rural y urbana del año 2005.
- INEGI y CONADIC (2005). http://www.inegi.gob.mx/inegi/contenidos/espanol/prensa/ default.asp?c=269&e=
- INER (2009). http://www.iner.salud.gob.mx/contenidos/Cancer_Pulmonar.html. En esta dirección se obtuvieron algunas causas del cáncer de pulmón.
- SINAIS (2009). Dirección General de Información en Salud (DGIS). Base de datos de defunciones 1979-2007. [en línea]: Sistema Nacional de Información en Salud (SINAIS). [México]: Secretaría de Salud. < http://www.sinais.salud.gob.mx > [Consulta: 01 abril 2009]. http://www.sinais.salud.gob.mx/basesdedatos/index.html. En esta dirección, se obtuvieron las bases de muerte por cáncer.