

UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO

FACULTAD DE CIENCIAS

TÍTULO DE LA TESIS

ALGUNOS PROBLEMAS EN LA TEORÍA DE RAMSEY

QUE PARA OBTENER EL TÍTULO DE: MATEMÁTICO

P R E S E N T A:

SINUHÉ CANEK VILLAJUANA BONEQUI

DIRECTOR DE TESIS: Dr. JUAN JOSÉ MONTELLANO BALLESTEROS 2010

UNAM – Dirección General de Bibliotecas Tesis Digitales Restricciones de uso

DERECHOS RESERVADOS © PROHIBIDA SU REPRODUCCIÓN TOTAL O PARCIAL

Todo el material contenido en esta tesis esta protegido por la Ley Federal del Derecho de Autor (LFDA) de los Estados Unidos Mexicanos (México).

El uso de imágenes, fragmentos de videos, y demás material que sea objeto de protección de los derechos de autor, será exclusivamente para fines educativos e informativos y deberá citar la fuente donde la obtuvo mencionando el autor o autores. Cualquier uso distinto como el lucro, reproducción, edición o modificación, será perseguido y sancionado por el respectivo titular de los Derechos de Autor.

Agradecimientos

"La paciencia es una planta amarga, pero su fruto es dulce" Proverbio Alemán.

Desde tiempos remotos los hombres han buscado la gloria y la perduración de sus nombres, más aun encontrar el lugar al que pertenecen, como resultante se han hecho incontables descubrimientos. Gracias a estos, sus nombres se han inscrito en los anaqueles de la historia junto a sus grandes hazañas y descubrimientos.

Para mí el encontrar el lugar al que pertenezco no ha sido cosa fácil, hasta que llegue a la universidad y me tope primero con la Teoría de Números, la Historia, la Filosofía y Enseñanza de las Matemáticas, pero nada me convenció más que la Teoría de Gráficas. En ella encontré que simples modelos matemáticos podían expresar grandes cosas e involucrarse en diferentes actividades de nuestra sociedad; desde un horario hasta algo más complicado como una red de flujo, por dar un ejemplo burdo, ya que hasta ahora con los conocimientos básicos que tengo junto con lo poco que he explorado en esta rama es lo que más me ha impresionado.

Con grandes profesores como Víctor Neumann Lara, Hortensia Galeana Sánchez y más aun a mi estimado asesor Juan José Montellano Ballesteros que junto con sus excelentes explicaciones, que me fueron encaminando hacia el gusto por trabajar con graficas y gracias a su forma de explicar me fui involucrando más y más, me decidí hacer mi tesis en este campo. El concepto de las coloraciones me llamo la atención y solicite a Juancho temas que se

relacionaran con estas. De allí nació la idea de hacer algo acerca de la Teoría de Ramsey.

Así empecé el camino que me llevo tres años en recorrer entre desapariciones y apariciones por largos periodos, fui cumpliendo con los requisitos, lo más difícil fue encontrar información acerca del tema que era poco divulgado y casi todas las fuentes se servían del libro que yo use como base. Después de acabar de entender y tratar de explicar lo que comprendí en mis propias palabras estuve escribiendo lo que a mi parecer era lo correcto. Como era de esperarse las indicaciones y la forma de escribir fueron cambiando conforme Juan me explicaba y corregía mis notas. Aprendí tanto, que ahora al leer algo tengo la necesidad de analizar y comprender "¿por qué?" el autor ignora ciertos aspectos y el "¿por qué?" enfatiza otros.

Esto me ayudo a comprender que la tesis es parte fundamental en nuestra carrera, ya que gracias a esta empezamos a ver desde otra perspectiva y sobretodo a ser más formales en nuestra forma escrita...gracias Juan.

Solo me resta agradecer a mis sinodales Hortensia Galeana, Bernardo Llano, Rita Zuazua y Ricardo las observaciones con respecto a esta Tesis y su paciencia cuando les expuse, gracias por los consejos, además agradecer a mi mamá Maria de la Luz Bonequi y mi papá Fred Villajuana la paciencia, por aguantarme, por prestarme apoyo y más aun por creer en mí.

Agradezco también a todos mis amigos que siempre me estuvieron alentando y presionando por que acabara la tesis en especial a ti Eli que fuiste detonador. A mi hermana Mitzi y a Sacbé, la primera por ser un ejemplo a seguir y a la segunda por esos paseos diarios donde puedo reflexionar o por lo menos

relajar un poco mi mente. Y finalmente a mí (quien más me puso trabas) por que al fin decidí poner todo el empeño y sentarme a escribir lo que sentía que era infinito. ¡¡GRACIAS A TODOS POR ESTAR AHÍ CUANDO SE LES NECESITABA!!

Hoja de Datos del Jurado

1.- Datos del alumno. Villajuana Bonequi Sinuhé Canek 5634-7965 Universidad Nacional Autónoma de México Facultad de Ciencias Matemático 094247330 2.- Datos del asesor. Dr. Montellano Ballesteros Juan José 3.- Datos del sinodal 1

Dra.

Hortensia

Galeana

Sánchez

4.- Datos del sinodal 2

Dr.

Bernardo

Llano

Pérez

5.- Datos del sinodal 3

Dr.

Ricardo

Gómez

Aisa

6.- Datos del sinodal 4

Dra.

Rita Esther

Zuazua

Vega

7.- Datos de la tesis.

Algunos problemas en la Teoría de Ramsey.

71 p.

2010

Contenido

Agradecimientos	i
Introducción	3
1 Definiciones Básicas y Preliminares	5
2 Teorema de Ramsey	8
2.1 El Número de Ramsey	8
2.2 El Principio del Palomar	9
2.3 El Teorema de Ramsey para $k = 2$	10
2.4 El Teorema de Ramsey para $k = 3$	14
2.5 Un Ejemplo	
2.6 Teorema de Ramsey	24
3 Ramsey en la Teoría de Gráficas	29
3.1 Definiciones en la Teoría de Gráficas	29
3.2 Ramsey en Gráficas	31
3.3 El caso $r = 2$	32
3.4 Algunas cotas	37
3.5 Teorema de Ramsey para $r \ge 2$	40
3.6 Teorema de Schur	43
4 Teorema de Van der Waerden	44
4.1 Teorema de Van der Waerden	44
4.2 Una cota exacta	44
4.3 Un esbozo	47
4.4 Construyendo Van der Waerden	48
4.5 Prueba del Teorema de Van der Waerden	54

Bibliografía	65
Anexos	66

Teoría de Ramsey.

Los problemas sin resolver abundan, y nuevas e interesantes preguntas abiertas aparecen más rápido que las soluciones a los problemas existentes.

F. Harary

Matemáticos como H. Burkill y L. Mirsky decían que: "Existen numerosos teoremas en matemáticas los cuales, en términos generales podemos decir que, aseguran que todo sistema de cierta clase posee un subsistema, relativamente grande, con un altísimo grado de organización, comparado con la organización del sistema original." Uno de los principales ejemplos de este tipo de resultados es la existencia del Número de Ramsey.

Fue en el año de 1930 cuando Frank P. Ramsey, en su artículo titulado "On a Problem of Formal Logic" (*Un problema de Lógica Formal*), presenta el resultado que será luego conocido como el Teorema de Ramsey. El resultado no se hizo popular hasta que en 1935, en un artículo de los matemáticos P. Erdös y G. Szekeres, se hace referencia al resultado de Ramsey.

En la actualidad se entiende como Teoría de Ramsey a la rama de las matemáticas que, podríamos decir grosso modo, estudia las condiciones combinatorias bajo las cuales el orden debe aparecer en algún subsistema de un sistema dado. Los problemas de la Teoría de Ramsey típicamente plantean preguntas tales como: ¿cuántos elementos de alguna estructura debe haber para garantizar que alguna propiedad en particular se cumpla?

En la presente tesis abordaremos tres problemas de tipo Ramsey que podrían considerarse clásicos, a saber, el Teorema de Ramsey, un Teorema de Van der Waerden y un Teorema de Schur.

La presente tesis esta organizada de la siguiente manera:

En el primer capítulo se presentan las definiciones, resultados y nociones básicas para entender este trabajo.

En el segundo capítulo daremos la definición del Número de Ramsey, veremos algún ejemplo y mostraremos una prueba del Teorema de Ramsey.

En el tercer capítulo profundizaremos en una instancia del Teorema de Ramsey que se enmarca de manera natural en la Teoría de las Gráficas. Veremos algunos resultados del Teorema de Ramsey envueltos en ésta teoría, y mostraremos cómo el Teorema de Schur se desprende de manera directa desde esta.

En el cuarto capítulo nos abocaremos al estudio del Teorema de Van der Waerden. Daremos ejemplos, resultados previos y finalmente mostraremos una prueba del teorema.

Capítulo 1 Definiciones Básicas y Preliminares

Denotaremos como N al conjunto de los naturales positivos. Dado un conjunto X, denotaremos como |X| a la cardinalidad del conjunto X. Dados $m,n\in N$, con $n\leq m$, $[n,m] \text{ denotará al conjunto } \{n,n+1,...,m\} \text{ . El conjunto } \{1,2,...,n\} \text{ también se denotará como } [n] \text{ .}$

Dado un conjunto X y un entero positivo k, $\left[X\right]^k$ denotará todos los subconjuntos de X de cardinalidad k, esto es $\left[X\right]^k = \{Y: Y \subset X, |Y| = k\}$.

Dado un conjunto Q y un conjunto S, una Q-coloración de S es una función $\Gamma:S\to Q$ donde para cada $s\in S$, $\Gamma(s)\in Q$ es el "color" asignado a s. A su vez a Γ le corresponde una partición de S en la familia de conjuntos $\left\{\Gamma^{-1}(b):b\in Q\right\}$ llamados clases cromáticas. Un subconjunto de S que esté totalmente contenido en alguna clase cromática será llamado conjunto monocromático (con respecto a Γ).

Un conjunto de enteros P se dice que es una progresión aritmética de longitud k si y sólo si existen los enteros a y d>0 tal que

$$P = \{a + id : 0 \le i \le k - 1\}.$$

Al entero d lo llamaremos el período de la progresión P .

Lema 1.1 Sea S un conjunto de cardinalidad n y sea Q un conjunto de cardinalidad r. El número de distintas Q-coloraciones de S es r^n .

Prueba. Probaremos este resultado por inducción sobre la cardinalidad de S.

Dado un conjunto S de un solo elemento, es claro que existen exactamente $|Q|=r=r^1$ distintas Q-coloraciones de S (los distintos "colores" que puede adquirir el único elemento de S). Sea S un conjunto de n elementos y supongamos que el número de distintas Q-coloraciones de un conjunto de n-1 elementos es r^{n-1} . Sea x un elemento de S y para cada $y\in Q$, sea ψ_y el conjunto de Q-coloraciones de S tales que el elemento S recibe el "color" S0.

Así, el número de distintas Q -coloraciones de un conjunto de n elementos $|Q|\cdot r^{n-1}=r\cdot r^{n-1}=r^n. \blacksquare$

Lema 1.2 Dados $n, k \in N$, con $n \ge k \ge 1$, tenemos que $\binom{n}{k} \le n^k$.

Prueba. Por definición
$$\binom{n}{k} = \frac{n!}{k!(n-k)!} = \frac{n \cdots (n-k+1)}{k \cdots (1)} = \prod_{i=1}^{k} \left(\frac{n-k+i}{i}\right).$$

Como para cada $1 \le i \le k$,

$$\frac{n-k+i}{i} \le n ,$$

entonces

$$\binom{n}{k} = \prod_{i=1}^{k} \left(\frac{n-k+i}{i} \right) \le \prod_{i=1}^{k} (n) = n^{k} . \square$$

Capítulo 2 Teorema de Ramsey.

En el presente capítulo estudiaremos el Teorema de Ramsey, para lo cual necesitaremos previamente introducir algunas definiciones.

2.1 El Número de Ramsey

Definición 2.1 Dados $n, k, l_1, l_2, ..., l_r$ números naturales positivos, con $n \ge l_1, l_2, ..., l_r \ge k$, escribimos $n \to (l_1, l_2, ..., l_r)^k$ si dada cualquier [r]— coloración de $[n]^k = \{Y: Y \subset \{1, ..., n\}, |Y| = k\}$, existe $i \in [r]$ y un conjunto $T \subseteq [n]$ de cardinalidad l_i , tal que todo elemento de $[T]^k$ recibe el color i.

Definición 2.2 Definimos la función de Ramsey como

$$R_k(l_1,...,l_r) = \min\{n_0 : n \ge n_0, n \to (l_1,...,l_r)^k\}.$$

Teorema 2.1 (Teorema de Ramsey). Dados k, $l_1,...,l_r$ números naturales positivos, existe $n_0 \in N$ tal que para $n \ge n_0$,

$$n \rightarrow (l_1, ..., l_r)^k$$
.

Nótese que para r=1, el teorema es trivialmente cierto, por lo que en adelante supondremos que $r\geq 2$.

Antes de pasar a la prueba del teorema, haremos un estudio sobre los casos k=1, k=2 y k=3, para aclarar el procedimiento de demostración en el caso general.

2.2 El Principio del Palomar.

Teorema 2.2 (Teorema de Ramsey para k=1) Sean $l_1, l_2, ..., l_r$ números naturales

positivos. Entonces para toda $n \ge 1 + \sum_{i=1}^{r} (l_i - 1)$,

$$n \to (l_1, l_2, ..., l_r).$$

Prueba. Sean $n \ge 1 + \sum_{i=1}^r (l_i - 1)$ y $\Gamma:[n] \to [r]$ una [r] -coloración de [n]. Para cada $j \in [r]$ sea $T_j = \{u \in [n]: \Gamma(u) = j\}$.

Obsérvese que $\{T_1, T_2, ..., T_r\}$ es una partición de [n], por lo que

$$\sum_{i=1}^r \left| T_i \right| = n.$$

Probaremos este teorema por contradicción. Supongamos que no se cumple $n \to (l_1, l_2, ..., l_r) \,,\, \text{o equivalentemente, que para cada} \,\, i \in [r] \,,\, \left|T_i\right| \le l_i - 1.$

Si para cada $i \in [r]$, $|T_i| \le l_i - 1$, entonces vemos que

$$\sum_{i=1}^r (l_i - 1) \ge \sum_{i=1}^r |T_i|,$$

y así

$$\sum_{i=1}^{r} (l_i - 1) \ge n;$$

pero por hipótesis $n \ge 1 + \sum_{i=1}^r (l_i - 1)$, lo cual es una contradicción. \square

2.3 Teorema de Ramsey para $k{=}2$.

Teorema 2.3 Sean $l_1, l_2, ..., l_r$ números naturales positivos. Sean $p = R_1(l_1, ..., l_r) + 1$ y $c = \sum_{i=1}^{p-1} \binom{i}{1}$. Entonces para toda $n \ge r^c$

$$n \to (l_1, l_2, ..., l_r)^2$$
.

Prueba. Sea S un conjunto de cardinal $n \ge r^c$ y sea $\Gamma: [S]^2 \to [r]$ una [r] -coloración de $[S]^2$.

Denotemos a S como S_1 , escojamos un elemento x_1 de S_1 y definimos $Q_1 = \{x_1\}$. Ahora hacemos una partición del conjunto $S_1 \setminus \{x_1\}$ en clases de equivalencia definidas de la siguiente manera.

Dados $w,y\in S_1\setminus\{x_1\}$, w y y pertenecen a la misma clase de equivalencia si y sólo si $\Gamma(w,x_1)=\Gamma(y,x_1)$.

Observemos que el número de clases de equivalencia es r . Sean T_1,T_2,\ldots,T_r las clases de equivalencia.

Sea $M_2 = m \acute{a} x \left\{ \left| T_j \right| \colon j \in [r] \right\}$ y supongamos que $\left| T_d \right| = M_2$.

Denotamos $S_2 = T_d$; escogemos un elemento $x_2 \in S_2$ y definimos $Q_2 = Q_1 \bigcup \left\{x_2\right\}$.

Ahora definiremos de forma recursiva al conjunto S_{i+1} y al conjunto Q_{i+1} con $i \ge 2$ de la siguiente forma:

I. Hacemos una partición del conjunto $S_i \setminus \{x_i\}$ en clases de equivalencia definidas de la siguiente manera:

Dado $w \in S_i \setminus \{x_i\}$, sea $\Gamma_w : [Q_i]^1 \to [r]$ la [r] – coloración de $\left[\left\{ x_1, x_2, \ldots, x_i \right\} \right]^1 = [Q_i]^1 \quad \text{donde} \quad \text{para} \quad \text{cada} \quad \left\{ x \right\} \in \left[\left\{ x_1, x_2, \ldots, x_i \right\} \right]^1,$ $\Gamma_w(x) = \Gamma(w, x) \, .$

Dados $w,y\in S_i\setminus\{x_i\}$, w y y pertenecen a la misma clase de equivalencia si y sólo si $\Gamma_w=\Gamma_y$. Esto es $w\equiv y$ si y sólo si para toda $\{x\}\in \left[Q_i\right]^1$, $\Gamma(x,w)=\Gamma(x,y)$.

Observe que el número de clases de equivalencia, llamémoslo s, es igual al número de distintas [r]-coloraciones de $[Q_i]^1$.

Sea T_1,T_2,\ldots,T_s las clases de equivalencia. Ahora sea $M_{i+1}=m\acute{a}x\left\{\left|T_j\right|\colon j\in[s]\right\}$ y supongamos que $\left|T_d\right|=M_{i+1}$.

 $\it II.$ Sea $S_{i+1}=T_d$; escogemos un elemento $x_{i+1}\in S_{i+1}$ y sea $Q_{i+1}=Q_i\cup \left\{x_{i+1}\right\}$. La recursión termina cuando para algún t>1, $\left|S_t\right|=1$ y $S_t\setminus \left\{x_t\right\}=\varnothing$.

Ahora veremos que:

Afirmación
$$|Q_t| = |\{x_1,...,x_t\}| \ge R_1(l_1,...,l_r) = p-1$$
.

Para probar esta afirmación, mostraremos que:

Para cada
$$i = 1, ..., (p-1), S_i \neq \emptyset$$
. (1)

Nótese que al probar (1) tenemos que $\{x_1,...,x_{k-1},x_k,...,x_{p-1}\}\subseteq Q_t$, probando así la afirmación.

Para probar (1) mostraremos que para cada j=1,...,(p-1) tenemos que, $\left|S_j\right| \geq r^{q_j} \geq r^{p-1} > 0 \text{ donde } q_j = \sum_{i=j}^{p-1} i \text{ para cada } j=1,...,p-1 \, .$

Para ver esto procedemos por inducción sobre j:

Para
$$j=1, |S_1| \ge r^c = r^{\sum_{i=1}^{p-1} i} = r^{q_1}$$
.

Ahora supongamos que para cada $1 \le j \le n, \ \left|S_j\right| \ge r^{q_j}$.

Sea j = n+1.

Por definición, $M_{n+1} = m \acute{a} x \{ \big| T_j \big| \colon j \in [s] \}$, donde $\{ T_1, ..., T_s \}$ es una partición de $S_n \setminus \{ x_n \}$ y s es el número de [r]-coloraciones distintas de $[\{ x_1, ..., x_n \}]^{\! 1}$. Por el Lema 1.1 vemos que $s = r^n$.

Definamos la coloración $\Gamma' = S_n \setminus \{x_n\} \rightarrow [s]$ como: $\Gamma'(x) = i$ si y sólo si $x \in T_i$.

Como por hipótesis inductiva, $\left|S_n\right|=M_n\geq r^{q_n}$ vemos que

$$\left|S_{n}\setminus\{x_{n}\}\right| \geq r^{q_{n}}-1 = r^{\sum_{i=n}^{p-1}i}-1 = r^{n} \cdot \left(r^{\sum_{i=n}^{p-1}i-n}-1\right) + \left(r^{n}-1\right) \geq \sum_{j=1}^{r^{n}} \left(r^{\sum_{i=n+1}^{p-1}i}-1\right) + 1.$$

Note que $q_n - n = \sum_{i=n}^{p-1} i - n = \sum_{i=n+1}^{p-1} i = q_{n+1}$ entonces

$$\left|S_n \setminus \{x_n\}\right| \ge \sum_{j=1}^{r^n} \left(r^{\sum_{i=n+1}^{p-1} i} - 1\right) + 1 = \sum_{j=1}^{r^n} \left(r^{q_{n+1}} - 1\right) + 1$$

que por el Teorema 2.2 (Principio del Palomar) implica que

$$|S_n \setminus \{x_n\}| \rightarrow (l_1, l_2, ..., l_s),$$

donde $s=r^n$ y $l_j=r^{q_{n+1}}$ para cada $j\in [s]$. Así pues, existe $j\in [s]$ y un conjunto $X\subseteq S_n\setminus \{x_n\}$ de cardinalidad al menos $l_j=r^{q_{n+1}}$ tal que para todo $x\in X$, $\Gamma'(x)=j$, y como por definición, $\Gamma'(x)=j$ si y sólo si $x\in T_j$, vemos que $\left|T_j\right|=\left|X\right|\geq r^{q_{n+1}}$.

 $\mathsf{Asi}\ M_{\scriptscriptstyle n+1} = m\acute{a}x\left\{\left|T_{\scriptscriptstyle j}\right|\colon j\in\left[s\right]\right\} \geq r^{q_{\scriptscriptstyle n+1}}\ \ \mathsf{y}\ \mathsf{por}\ \mathsf{tanto}\ \left|S_{\scriptscriptstyle n+1}\right| = M_{\scriptscriptstyle n+1} \geq r^{q_{\scriptscriptstyle n+1}}\ .$

Así pues, para cada i=1,...,p-1, $\left|S_i\right|\geq r^{q_i}\geq r^{p-1}>0$, entonces (1) es cierto y la afirmación queda probada. $\frac{1}{1}$

Ahora observemos lo siguiente con respecto de la sucesión $x_1,...,x_{p-1}$. Por definición, para cada $1 \le i < p-1$ y cada $z,w \in S_{i+1}, \quad \Gamma\big(x_i,z\big) = \Gamma\big(x_i,w\big).$ En particular, como $\big\{x_{i+1},...,x_{p-1}\big\} \subseteq S_{i+1}$ tenemos que para cada $i \in [p-2]$,

$$\Gamma(x_i, x_{i+1}) = \Gamma(x_i, x_{i+2}) = \dots = \Gamma(x_i, x_{p-1}).$$

A partir de esto, definamos una [r]- coloración Γ " sobre el conjunto $\left[\{x_1,x_2,...,x_{p-1}\}\right]^1=\left[Q_{p-1}\right]^1$ de la siguiente manera. Sea Γ ": $\left[Q_{p-1}\right]^1\to [r]$ donde para cada $i\in [p-2]$, Γ " $(x_i)=\Gamma\left(x_i,x_{i+1}\right)=\Gamma\left(x_i,x_{i+2}\right)=\cdots=\Gamma\left(x_i,x_{p-1}\right)$ y Γ " $\left(x_{p-1}\right)=r$ (como se verá más adelante, el color asignado a x_{p-1} por Γ " es irrelevante).

 $\mbox{Como} \quad p-1 = R_1(l_1,...l_r) \;\; , \;\; p-1 \to (l_i,l_2,...,l_r) \;\; \mbox{por lo que existe} \quad j \in [r] \;\; \mbox{y una}$ subsucesión $x_{j_1},x_{j_2},...,x_{j_{l_j}}$ de tamaño l_j tal que para toda $m \in [l_j], \;\; \Gamma"(x_{j_m}) = j$.

Para terminar con la prueba del teorema veremos que todo elemento de $\left[\left\{x_{j_1}, x_{j_2}, ..., x_{j_{l_j}}\right\}\right]^2 \text{ recibió el color } j \text{ bajo la coloración } \Gamma \,.$

Sea $\{x_{j_m}, x_{j_n}\} \in \left[\left\{x_{j_1}, x_{j_2}, ..., x_{j_{l_j}}\right\}\right]^2$ y supongamos que $j_m < j_n$. Observemos que, por definición de Γ ", Γ " $(x_{j_m}) = j$ si y sólo si $\Gamma(x_{j_m}, x_{j_n}) = j$ y como para toda $x \in \left\{x_{j_1}, ..., x_{j_{l_j}}\right\}$, Γ "(x) = j vemos que todo elemento de $\left[\left\{x_{j_1}, x_{j_2}, ..., x_{j_{l_j}}\right\}\right]^2$ recibió el

color j bajo la coloración Γ . Aquí termina la prueba y es donde se observa que el color asignado a x_{p-1} es irrelevante, pues el color que tiene la pareja $\left\{x_{j_m}, x_{j_n}\right\}$ bajo Γ es el que tiene x_{j_m} en Γ ", con $j_m < j_n \le p-1$; esto es, con $j_m < p-1$. \square

2.4 Teorema de Ramsey para k=3.

Teorema 2.4 Sean $l_1, l_2, ..., l_r$ números naturales positivos. Sea $p-1=R_2(l_1, l_2, ..., l_r)$ y sea $c=\sum_{i=2}^{p-1}\binom{i}{2}$. Entonces para toda $n\geq r^c+1$,

$$n \to (l_1, l_2, ..., l_r)^3$$
.

Prueba. Sea S un conjunto de cardinal $n \ge r^c + 1$ y sea $\Gamma : [S]^3 \to [r]$ una [r]-coloración de $[S]^3$.

Escojamos dos elementos, en este caso x_1 y x_2 , de S . Denotemos a $S \setminus \{x_1\}$ como S_2 y definamos $Q_2 = \{x_1, x_2\}$.

Ahora hacemos una partición del conjunto $S_2 \setminus \{x_2\} = S \setminus \{x_1, x_2\}$ en clases de equivalencia definidas de la siguiente manera.

Dados $w,y\in S_2\setminus\{x_2\}$, w y y pertenecen a la misma clase de equivalencia si y sólo si $\Gamma(w,x_1,x_2)=\Gamma(y,x_1,x_2)$.

Observemos que el número de clases de equivalencia es r . Sean T_1,T_2,\ldots,T_r las clases de equivalencia.

Sea $M_3 = m\acute{a}x\{|T_j|: j \in [r]\}$ y supongamos que $|T_d| = M_3$.

Denotemos $S_3=T_d$; escogemos un elemento $x_3\in S_3$ y definamos $Q_3=Q_2\cup\{x_3\}$. Ahora definiremos de forma recursiva al conjunto S_{i+1} y al conjunto Q_{i+1} con $i\geq 3$ de la siguiente forma:

I. Hacemos una partición del conjunto $S_i \setminus \{x_i\}$ en clases de equivalencia definidas de la siguiente manera:

Dado
$$w \in S_i \setminus \{x_i\}$$
, sea $\Gamma_w : \left[\left\{ x_1, x_2, \ldots, x_i \right\} \right]^2 \to [r]$ la $[r]$ – coloración de
$$\left[\left\{ x_1, x_2, \ldots, x_i \right\} \right]^2 \qquad \text{donde} \qquad \text{para} \qquad \text{cada} \qquad \left\{ x, y \right\} \in \left[\left\{ x_1, x_2, \ldots, x_i \right\} \right]^2,$$

$$\Gamma_w(x,y) = \Gamma(w,x,y) \; .$$

Dados $w,y\in S_i\setminus\{x_i\}$, w y y pertenecen a la misma clase de equivalencia si y sólo si $\Gamma_w=\Gamma_y$. Esto es, $w\equiv y$ si y sólo si para toda pareja $\{x,z\}\in \left[Q_i\right]^2$, $\Gamma(x,z,w)=\Gamma(x,z,y)$.

Observe que el número de clases de equivalencia, llamémoslo s, es igual al número de distintas $\begin{bmatrix}r\end{bmatrix}$ -coloraciones de $\begin{bmatrix}x_1,x_2,\ldots,x_i\end{bmatrix}^2$.

Sean T_1,T_2,\ldots,T_s las clases de equivalencia. Sea $M_{i+1}=m\acute{a}x\left\{\left|T_j\right|:j\in[s]\right\}$ y supongamos que $\left|T_d\right|=M_{i+1}$.

II. Denotamos $S_{i+1}=T_d$; escogemos $x_{i+1}\in S_{i+1}$ y definamos $Q_{i+1}=Q_i\cup \left\{x_{i+1}\right\}$. La recursión termina cuando para algún t>2, $\left|S_t\right|=1$ y $S_t\setminus \left\{x_t\right\}=\varnothing$.

Ahora veremos que:

Afirmación $|Q_t| = |\{x_1, ..., x_t\}| \ge R_2(l_1, ..., l_r) = p - 1$.

Por definición,
$$\left|S\right| \ge r^c + 1$$
, con $c = \sum_{i=2}^{p-1} \binom{i}{2}$ y $Q_2 = \{x_1, x_2\} \subseteq Q_{t+1}$.

Para probar esta afirmación, mostraremos que:

Para cada
$$i = 2,...,(p-1)$$
, $S_i \neq \emptyset$ (1)

Obsérvese que al probar (1), y dado que $\{x_1,x_2\}=Q_2$, tenemos que $\{x_1,...,x_{k-1},x_k,...,x_{p-1}\}\subseteq Q_t$, con lo cual la afirmación queda demostrada.

Para probar (1) mostraremos que para cada j=2,...,(p-1) tenemos que,

$$\left|S_j\right| \geq r^{q_j} \geq r^{\binom{p-1}{2}} > 0 \text{ donde } q_j = \sum_{i=j}^{p-1} \binom{i}{2}.$$

Para ver esto procedemos por inducción sobre j:

Para
$$j=2$$
, $\left|S_{2}\right|=\left|S\right|-1\geq r^{c}$ donde $c=\sum_{i=2}^{p-1}\binom{i}{2}=q_{2}$.

Ahora supongamos que para cada $2 \le j \le n, \ \left| S_j \right| \ge r^{q_j}$.

Sea j = n + 1.

Por definición $M_{n+1}=m\acute{a}x\left\{\left|T_{j}\right|:j\in[s]\right\}$ donde $\left\{T_{1},T_{2},\ldots,T_{s}\right\}$ es una partición de $S_{n}\setminus\{x_{n}\}$ siendo s el número de $\left[r\right]$ -coloraciones distintas de $\left[\left\{x_{1},x_{2},\ldots,x_{n}\right\}\right]^{2}$. Por el Lema 1.1 vemos que $s=r^{\binom{n}{2}}$.

Definamos la coloración $\Gamma': S_n \setminus \{x_n\} \rightarrow [s]$ como:

$$\Gamma'(x) = i$$
 si y sólo si $x \in T_i$.

Como por hipótesis inductiva, $\left|S_{\scriptscriptstyle n}\right|=M_{\scriptscriptstyle n}\geq r^{\scriptscriptstyle q_{\scriptscriptstyle n}}$ vemos que

$$|S_n \setminus \{x_n\}| \ge r^{q_n} - 1 = r^{\binom{n}{2}} (r^{q_n - \binom{n}{2}} - 1) + (r^{\binom{n}{2}} - 1) \ge \sum_{i=1}^{\binom{n}{2}} (r^{q_n - \binom{n}{2}} - 1) + 1.$$

Note que

$$q_n - \binom{n}{2} = \sum_{i=n}^{p-1} \binom{i}{2} - \binom{n}{2} = \sum_{i=n+1}^{p-1} \binom{i}{2} = q_{n+1},$$

entonces

$$\left|S_n \setminus \{x_n\}\right| \ge \sum_{j=n+1}^{r^{\binom{n}{2}}} (r^{q_n - \binom{n}{2}} - 1) + 1 = \sum_{j=n+1}^{r^{\binom{n}{2}}} (r^{q_{n+1}} - 1) + 1$$

que por el Teorema 2.2 implica que $\left|S_n \setminus \{x_n\}\right| \to (l_1, l_2, \dots, l_s)$ donde $s = r^{\binom{n}{2}}$ y $l_j = r^{q_{n+1}}$ para cada $j \in [s]$. Así pues, existe $j \in [s]$ y un conjunto $X \subseteq S_n \setminus \{x_n\}$ de cardinalidad al menos $l_j = r^{q_{n+1}}$ tal que para todo $x \in X$, $\Gamma'(x) = j$, y como por definición, $\Gamma'(x) = j$ si y sólo si $x \in T_j$, vemos que $\left|T_j\right| = \left|X\right| \ge r^{q_{n+1}}$.

Así
$$M_{n+1} = m\acute{a}x\{|T_j|: j \in [s]\} \ge r^{q_{n+1}}$$
 y por tanto $|S_{n+1}| = M_{n+1} \ge r^{q_{n+1}}$.

Así pues, para cada i=2,...,p-1, $\left|S_i\right| \ge r^{q_i} \ge r^{\left(\frac{p-1}{2}\right)} > 0$ entonces $\left(1\right)$ es cierto y la afirmación queda probada. $\frac{1}{16}$

Ahora observemos lo siguiente con respecto de la sucesión $x_1,...,x_{p-1}$. Sea $\{x_i,x_j\}\in \left[\left\{x_1,x_2,...,x_{p-1}\right\}\right]^2$. Por definición toda pareja $z,w\in S_{s+1}$, con $s=m\acute{a}x\{i,j\}$, cumple que $\Gamma(x_i,x_j,w)=\Gamma(x_i,x_j,z)$. En particular, como $\left\{x_{s+1},...,x_{p-1}\right\}\subseteq S_{s+1}$ tenemos que $\Gamma(x_i,x_j,x_{s+1})=\Gamma(x_i,x_j,x_{s+2})=\cdots=\Gamma(x_i,x_j,x_{p-1})$.

A partir de esto definamos una [r] – coloración Γ " sobre el conjunto $\left[\left\{x_1,x_2,...,x_{p-1}\right\}\right]^2 = \left[Q_{p-1}\right]^2 \text{ como sigue}:$

 $\text{Sea} \quad \Gamma" = [Q_{p-1}]^2 \to [r] \quad \text{donde} \quad \text{para} \quad \text{cada} \quad \{x_i, x_j\} \in \left[\left\{x_1, x_2, \ldots, x_{p-2}\right\}\right]^2,$ $\Gamma"(x_i, x_j) = \Gamma\left(x_i, x_j, x_{s+1}\right) = \Gamma\left(x_i, x_j, x_{s+2}\right) = \cdots = \Gamma\left(x_i, x_j, x_{p-1}\right) \quad \text{donde} \quad s = m\acute{a}x \left\{i, j\right\} \leq p-2 \; ,$ $\text{y para cada} \quad \left\{x_i, x_{p-1}\right\} \quad \text{con} \quad i \in [p-2] \quad \text{sea} \quad \Gamma"\left(x_i, x_{p-1}\right) = r \quad \text{(de igual manera que en el caso}$ $k = 2 \; , \; \text{el color de las parejas que tienen como elemento} \quad \text{a} \quad x_{p-1} \quad \text{ser\'a irrelevante}).$

Como por definición, $p-1=R_2(l_1,l_2,...,l_r)$, existe $j\in [r]$ y una subsucesión $x_{j_1},x_{j_2},...,x_{j_l}$ de tamaño l_j tal que para toda $\left\{x_{j_m},x_{j_n}\right\}\in \left[\left\{x_{j_1},x_{j_2},...,x_{j_{l_j}}\right\}\right]^2$, $\Gamma"(x_{j_m},x_{j_n})=j\,.$

Para terminar con la prueba del teorema, veremos que toda terna de la subsucesión recibió el color j bajo Γ .

Sea $\{x_{j_m}, x_{j_n}, x_{j_s}\} \in \left[\left\{x_{j_1}, x_{j_2}, ..., x_{j_{l_j}}\right\}\right]^3$, y supongamos que $j_m < j_n < j_s$. Ahora sólo observe que Γ " $(x_{j_m}, x_{j_n}) = j$ si y sólo si $\Gamma(x_{j_m}, x_{j_n}, x_{j_s}) = j$ y como para toda pareja $\left\{x_{j_m}, x_{j_n}\right\} \in \left[\left\{x_{j_1}, x_{j_2}, ..., x_{j_{l_j}}\right\}\right]^2$, Γ " $\left(x_{j_m}, x_{j_n}\right) = j$ se sigue el resultado. \square

2.5 Un ejemplo

Veremos un ejemplo de cómo se construyen las particiones y la sucesión $x_1,...,x_{p-1}$ en una [2]-coloración de las ternas de un conjunto de 18 elementos, y donde encontraremos un subconjunto de cuatro elementos cuyas ternas todas recibieron el mismo color. El conjunto en cuestión es $S=\{1,2,3,4,5,6,7,8,9,A,B,C,D,E,F,G,H,I\}$ y la coloración Γ está descrita en el Anexo.

Tomemos dos elementos arbitrarios de S , $a_1=6$ y $a_2=C$. Denotamos a $S\setminus\{6\}$ como S_2 y sea $Q_2=\{6,C\}$.

Dividimos a $S_2 \setminus \{C\} = S \setminus \{6,C\}$ en clases de equivalencia de la siguiente manera:

Dados
$$x, y \in S_2 \setminus \{C\}$$
, $x \equiv y$ si y sólo si $\Gamma(6, C, x) = \Gamma(6, C, y)$.

Esta relación de equivalencia define la siguiente partición de $S_2 \setminus \{C\}$ en dos partes (las posibles [2]-coloraciones de $[6,C]^2$ que es un conjunto de 1 elemento), la roja y la negra, a saber $\{I,7,8,2,D,A,F,3,G\}$ y $\{1,4,5,9,B,E,H\}$.

.

16C	26C	36C	46C	56C	76C	86C	96C
A6C	B6C	D6C	E6C	F6C	G6C	H6C	I6C

Tomaremos el conjunto más grande de la partición que es $\{I,7,8,2,D,A,F,3,G\}$ y lo nombraremos S_3 .

Ahora escogemos arbitrariamente un elemento de S_3 . Sea $a_3=2$, y sea $Q_3=Q_2 \cup \{2\}=\{6,C,2\}\,.$

Dividimos a $S_3 \setminus \{a_3\} = \{I,7,8,D,A,F,3,G\}$ en clases de equivalencia de la siguiente manera:

Dados $x,y\in S_3\setminus \left\{a_3\right\}$, $x\equiv y$ si y sólo si ocurre que:

$$\Gamma(6,C,x) = \Gamma(6,C,y),$$

$$\Gamma(2,6,x) = \Gamma(2,6,y)$$

$$y$$

$$\Gamma(2,C,x) = \Gamma(2,C,y).$$

Esto nos define una partición de $S_3 \setminus \{a_3\}$ en 8 partes (las posibles [2]-coloraciones de $[6,C,2]^2$ que es un conjunto de 3 elementos), a saber:

- 1) Los elementos $x \in S_3 \setminus \{a_3\}$ tales que $\Gamma(6,C,x)$ es negro, $\Gamma(2,6,x)$ es negro y $\Gamma(2,C,x) \text{ es negro.}$
- 2) Los elementos $x \in S_3 \setminus \{a_3\}$ tales que $\Gamma(6,C,x)$ es negro, $\Gamma(2,6,x)$ es negro y $\Gamma(2,C,x)$ es rojo.
- 3) Los elementos $x \in S_3 \setminus \{a_3\}$ tales que $\Gamma(6,C,x)$ es negro, $\Gamma(2,6,x)$ es rojo y $\Gamma(2,C,x)$ es negro.
- 4) Los elementos $x \in S_3 \setminus \{a_3\}$ tales que $\Gamma(6,C,x)$ es negro, $\Gamma(2,6,x)$ es rojo y $\Gamma(2,C,x)$ es rojo.

- 5) Los elementos $x \in S_3 \setminus \{a_3\}$ tales que $\Gamma(6,C,x)$ es rojo, $\Gamma(2,6,x)$ es negro y $\Gamma(2,C,x)$ es negro.
- 6) Los elementos $x \in S_3 \setminus \{a_3\}$ tales que $\Gamma(6,C,x)$ es rojo, $\Gamma(2,6,x)$ es negro y $\Gamma(2,C,x)$ es rojo.
- 7) Los elementos $x \in S_3 \setminus \{a_3\}$ tales que $\Gamma(6,C,x)$ es rojo, $\Gamma(2,6,x)$ es rojo y $\Gamma(2,C,x)$ es negro.
- 8) Los elementos $x \in S_3 \setminus \{a_3\}$ tales que $\Gamma(6,C,x)$ es rojo, $\Gamma(2,6,x)$ es rojo y $\Gamma(2,C,x)$ es rojo.

Dada la coloración Γ en este ejemplo, 6 de estas partes son vacías y las partes restantes son:

$$\{I,7,8,D\}$$
 y $\{A,F,3,G\}$.

I6C	76C	86C	D6C	AC6	F6A	36C	G6C
l62	762	862	D62	A62	F62	362	G62
IC2	7C2	8C2	DC2	AC2	FC2	3C2	GC2

Tomemos un conjunto de tamaño máximo $\{I,7,8,D\}$ y lo nombraremos S_4 . Ahora escogemos arbitrariamente un elemento de S_4 . Sea $a_4=D$ y definimos a $Q_4=Q_3 \cup \{a_4\}=\{6,C,2,D\}$.

Dividimos a $S_4 \setminus \{a_4\} = \{I,7,8\}$ en clases de equivalencia de la siguiente manera:

Dados $x,y\in S_4\setminus \{a_4\}$, $x\equiv y$ si y sólo si para todo subconjunto T de dos elementos de $Q_4=\{6,C,2,D\}$ se cumple que $\Gamma\big(T\cup \{x\}\big)=\Gamma\big(T\cup \{y\}\big)$. Esto nos define una partición de $S_4\setminus \{a_4\}$ en $64=2^6$ partes (las posibles $\begin{bmatrix}2\end{bmatrix}$ -coloraciones de $\begin{bmatrix}6,C,2,D\end{bmatrix}^2$). En este ejemplo 62 son vacías y las partes restantes son $\{7\}$ y $\{8,I\}$.

I6C	l62	I6D	IC2	ICD	I2D
76C	762	76D	7C2	7CD	72D
86C	862	86D	8C2	8CD	82D

Tomaremos un conjunto de cardinalidad máxima, que en este caso es $\big\{8,I\big\}$ y lo nombraremos S_5 .

Ahora escogemos un elemento de S_5 . Sea $a_5=I$ y sea $Q_5=Q_4 \cup \left\{a_5\right\}=\left\{6,C,2,D,I\right\} \ .$ Dividimos a $S_5 \setminus \left\{a_5\right\}$ en clases de equivalencia de la siguiente manera:

Dados $x,y\in S_5\setminus\{a_5\}$, $x\equiv y$ si y sólo si para todo subconjunto T de dos elementos de $Q_5=\{6,C,2,D,I\}$ se cumple que $\Gamma\bigl(T\cup\{x\}\bigr)=\Gamma\bigl(T\cup\{y\}\bigr)$. Esto nos define una partición de $S_5\setminus\{a_5\}$ en 2^{10} partes. En este ejemplo, $2^{10}-1$ de ellas son vacías y la no vacía es el $\{8\}$. Definimos $S_6=\{8\}$; escogemos un elemento a_6 de S_6 . Sea $a_6=8$ y definimos $Q_6=Q_5\cup\{a_6\}=\{6,C,2,D,I,8\}$.

Notemos que hasta aquí llega la definición recursiva de \mathcal{Q}_i y \mathcal{S}_i .

Tenemos entonces que $a_1=6$, $a_2=C$, $a_3=2$, $a_4=D$, $a_5=I$ y $a_6=8$. Obsérvese que por construcción para cada pareja a_ia_j con i < j, tenemos que:

$$\Gamma(a_i, a_j, a_s) = \Gamma(a_i, a_j, a_r),$$

para cualesquiera s y r tales que j < s, r.

Con ésto podemos definir una coloración Γ " sobre $\left[\left\{6,C,2,D,I,8\right\}\right]^2$ donde para cada pareja $\left\{a_i,a_j\right\}\in\left[\left\{6,C,2,D,I,8\right\}\right]^2$ con i,j<6, Γ " $\left(a_i,a_j\right)=\Gamma\left(a_i,a_j,a_s\right)$ con $i< j< s\leq 6$ y Γ " $\left(a_i,a_6\right)=negro$ para i=1,...,5.

$$\Gamma"(6,C) = \Gamma(6,C,2) = \Gamma(6,C,D) = \Gamma(6,C,I) = \Gamma(6,C,8) = rojo$$

$$\Gamma"(6,2) = \Gamma(6,2,D) = \Gamma(6,2,I) = \Gamma(6,2,8) = rojo$$

$$\Gamma"(6,D) = \Gamma(6,D,I) = \Gamma(6,D,8) = negro$$

$$\Gamma"(6,I) = \Gamma(6,I,8) = negro$$

$$\Gamma"(C,2) = \Gamma(C,2,D) = \Gamma(C,2,I) = \Gamma(C,2,8) = negro$$

$$\Gamma"(C,D) = \Gamma(C,D,I) = \Gamma(C,D,8) = rojo$$

$$\Gamma"(C,I) = \Gamma(C,7,8) = negro$$

$$\Gamma"(2,D) = \Gamma(2,D,I) = \Gamma(2,D,8) = negro$$

$$\Gamma"(2,I) = \Gamma(2,I,8) = rojo$$

$$\Gamma"(D,I) = \Gamma(D,I,8) = negro$$

$$\Gamma"(B,I) = \Gamma(D,I,8) = negro$$

$$\Gamma"(B,I) = \Gamma(D,I,8) = negro$$

Entonces tendremos la siguiente coloración de $\left\lceil \left\{ 6,C,2,D,I,8 \right\} \right\rceil^2$ (ver Fig. 2.1):

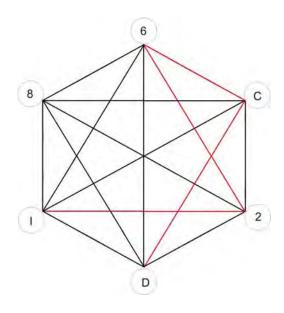


Fig. 2.1

Dado que las parejas **6D**, **6l** y **Dl** son de un mismo color, negro, por definición de Γ " vemos que, las ternas **6Dl**, **6D8**, **6l8** y **Dl8** son negras bajo la coloración Γ .

Por tanto todas las ternas del conjunto $\{6,D,I,8\}$ bajo Γ son de color negro.

2.6 Teorema de Ramsey

Teorema 2.1 Sean $k, l_1, l_2, ..., l_r$ naturales positivos. Entonces existe n_0 tal que si $n \ge n_0$,

$$n \to (l_1, l_2, ..., l_r)^k$$
.

Prueba. Lo probaremos por inducción sobre k. Los casos para $k \le 3$ ya fueron probados anteriormente en los Teoremas 2.2, 2.3 y 2.4.

Sea $k \geq 4$ y supongamos que el teorema es cierto para todo k' < k. Sea $p-1 = R_{k-1}(l_1, l_2, ..., l_r) \text{ y } c = \sum_{i=k-1}^{p-1} \binom{i}{k-1}. \text{ Probaremos el teorema mostrando que para toda}$ $n \geq r^c + (k-2) \text{ se cumple } n \to (l_1, l_2, ..., l_r)^k.$

Sean S un conjunto de cardinalidad $n \geq r^c + (k-2)$ y $\Gamma:[S]^k \to [r]$ una [r]-coloración de $[S]^k$. Tómese k-1 elementos $\{x_1,x_2,...,x_{k-1}\}$ de S, denotemos a $S\setminus\{x_1,...,x_{k-2}\}$ como S_{k-1} y definamos $Q_{k-1}=\{x_1,x_2,...,x_{k-1}\}$.

Ahora dividimos el conjunto $S\setminus\{x_1,x_2,...,x_{k-1}\}=S_{k-1}\setminus\{x_{k-1}\}$ en clases de equivalencia definidas de la siguiente manera:

Dados $w, y \in S_{k-1} \setminus \{x_{k-1}\}$, w y y pertenecen a la misma clase de equivalencia si y sólo si $\Gamma(w, x_1, ..., x_{k-1}) = \Gamma(y, x_1, ..., x_{k-1})$.

Observe que el número de clases de equivalencia es r. Sea $T_1,T_2,...,T_r$ las clases de equivalencia. Sea $M_k=\max\left\{\left|T_j\right|\colon j\in[r]\right\}$ y supongamos que $\left|T_d\right|=M_k$.

Denotemos $S_k = T_d$; escogemos un elemento $x_k \in S_k$ y definamos $Q_k = Q_{k-1} \cup \left\{x_k\right\}$. Ahora definamos de forma recursiva al conjunto S_{i+1} y Q_{i+1} de la siguiente manera:

I. Partiremos el conjunto $S_i \setminus \{x_i\}$ en clases de equivalencia definidas de la siguiente manera:

Dado $w \in S_i \setminus \{x_i\}$, sea $\Gamma_w : [Q_i]^{k-1} \to [r]$ la [r]-coloración de $\left[\left\{ x_1, ..., x_i \right\} \right]^{k-1} = \left[Q_i \right]^{k-1}$ donde para cada $M \in [Q_i]^{k-1}$,

$$\Gamma_{w}(M) = \Gamma(w,M).$$

Dados $w,y\in S_i\setminus\{x_i\}$, w y y pertenecen a la misma clase de equivalencia si y sólo si $\Gamma_w=\Gamma_y$. Esto es, $w\equiv y$ si y sólo si para todo $M\in \left[Q_i\right]^{k-1}$ $\Gamma(w,M)=\Gamma(y,M)$.

Obsérvese que el número de clases de equivalencia, llamémoslo s, es exactamente igual al número de distintas $rac{r}{-}$ -coloraciones de $rac{[Q_i]^{k-1}}$.

Sean $T_1,T_2,...,T_s$ las clases de equivalencia. Sea $M_{i+1}=m\acute{a}x\left\{\left|T_j\right|:j\in[s]\right\}$ y supongamos que $\left|T_d\right|=M_{i+1}$.

II. Denotemos $S_{i+1}=T_d$; escogemos un elemento $x_{i+1}\in S_{i+1}$ y definamos $Q_{i+1}=Q_i\cup \left\{x_{i+1}\right\}.$

La recursión termina cuando para alguna t>k-1, $\left|S_{t}\right|=1$ y $S_{t}\setminus\left\{x_{t}\right\}=\varnothing$.

Ahora veremos que:

Afirmación $|Q_t| \ge R_{k-1}(l_1,...,l_r) = p-1$.

$$\text{Por definición, } \left| S \right| \geq r^c + (k-2), \text{ con } c = \sum_{i=k-1}^{p-1} \binom{i}{k-1} \text{ y } Q_{k-1} = \{x_1, ..., x_{k-1}\} \subset Q_t \, .$$

Para probar la afirmación mostraremos que:

Para cada
$$i = (k-1),...,(p-1), S_i \neq \emptyset$$
. (1)

Obsérvese que al probar (1), y dado que $Q_{k-1}=\{x_1,...,x_{k-1}\}$ tenemos $\{x_1,...,x_{k-1},x_k,...,x_{p-1}\}\subseteq Q_t$, con lo cual queda probada la afirmación.

Para probar (1) mostraremos que para cada j = (k-1),...,(p-1) tenemos que,

$$\left|S_j\right| \ge r^{q_j} \ge r^{\binom{p-1}{k-1}} > 0 \text{ donde } q_j = \sum_{i=j}^{p-1} \binom{i}{k-1}.$$

Para ver esto procedemos por inducción sobre j:

Para
$$j = k-1$$
, $|S_{k-1}| = |S| - (k-2) \ge r^{q_{k-1}}$.

Ahora supongamos que para cada $k-1 \leq j \leq n, \ \left|S_{j}\right| \geq r^{q_{j}}$.

Sea
$$j = n + 1$$
.

Por definición $M_{n+1}=m\acute{a}x\left\{\left|T_{j}\right|:j\in[s]\right\}$ donde $\left\{T_{1},T_{2},...,T_{s}\right\}$ es una partición de $S_{n}\setminus\{x_{n}\}$, siendo s el número de $\left[r\right]$ -coloraciones distintas de $\left[\left\{x_{1},x_{2},...,x_{n}\right\}\right]^{k-1}$. Por el Lema 1.1 sabemos que $s=r^{\binom{n}{k-1}}$.

Definamos la coloración $\Gamma'\colon S_n \setminus \{x_n\} \to [s]$ como $\Gamma'(x) = i$ si y sólo si $x \in T_i$. Por hipótesis inductiva $\left|S_n\right| = M_n \ge r^{q_n}$ entonces

$$\left| S_n \setminus \{x_n\} \right| \ge r^{q_n} - 1 = r^{\binom{n}{k-1}} (r^{q_n - \binom{n}{k-1}} - 1) + (r^{\binom{n}{k-1}} - 1) \ge \sum_{j=n+1}^{\binom{n}{k-1}} (r^{q_n - \binom{n}{k-1}} - 1) + 1.$$

Nótese que

$$q_{n} - \binom{n}{k-1} = \sum_{i=n}^{p-1} \binom{i}{k-1} - \binom{n}{k-1} = \sum_{i=n+1}^{p-1} \binom{i}{k-1} = q_{n+1},$$

por lo que

$$\left| S_n \setminus \{x_n\} \right| \ge \sum_{i=n+1}^{\binom{n}{(k-1)}} \left(r^{q_{n+1}} - 1 \right) + 1$$

que por el Teorema 2.2 implica que $\left|S_n \setminus \{x_n\}\right| \to (l_1, l_2, ..., l_s)$ donde $s = r^{\binom{n}{k-1}}$ y $l_j = r^{q_{n+1}}$ para cada $j \in [s]$. Así pues, existe $j \in [s]$ y un conjunto $X \subseteq S_n \setminus \{x_n\}$ de cardinalidad al menos $l_j = r^{q_{n+1}}$ tal que para todo $x \in X$, $\Gamma'(x) = j$ y como, por definición $\Gamma'(x) = j$ si y sólo si $x \in T_j$, vemos que $\left|T_j\right| = \left|X\right| \ge r^{q_{n+1}}$.

 $\text{Asi } M_{n+1} = m\acute{a}x\left\{\left|T_j\right| \colon j \in [s]\right\} \geq r^{q_{n+1}} \text{ y por tanto } \left|S_{n+1}\right| = M_{n+1} \geq r^{q_{n+1}} \text{. Asi pues, para }$ $\text{cada } k-1 \leq i \leq p-1, \ \left|S_i\right| \geq r^{q_i} \geq r^{\binom{p-1}{k-1}} > 0 \text{ con lo que (1) es cierto y la afirmación queda }$ $\text{probada. } \frac{\|\mathbf{r}\|}{\|\mathbf{r}\|}$

Ahora observemos lo siguiente con respecto de la sucesión $x_1,...,x_{p-1}$. Dado $M\in \left[\left\{x_1,x_2,...,x_{p-1}\right\}\right]^{k-1}$, para toda pareja $z,w\in S_{s+1}$ con $s=\max\{i:x_i\in M\}$, tenemos que $\Gamma(M,w)=\Gamma(M,z)$. En particular, como $\left\{x_{s+1},...,x_{p-1}\right\}\subseteq S_{s+1}$ vemos que $\Gamma(M,x_{s+1})=\Gamma(M,x_{s+2})=\cdots=\Gamma(M,x_{p-1})$.

A partir de ésto definamos una [r]-coloración Γ " sobre el conjunto $\left[\left\{x_1,x_2,...,x_{p-1}\right\}\right]^{k-1}=\left[Q_{p-1}\right]^{k-1} \text{ como sigue:}$

 $\text{Sea} \quad \Gamma" = \left[Q_{p-1} \right]^{k-1} \to \left[r \right] \quad \text{donde} \quad \text{para} \quad \text{cada} \quad M \in \left[\left\{ x_1, ..., x_{p-2} \right\} \right]^{k-1},$ $\Gamma"(M) = \Gamma(M, x_{s+1}) = \Gamma\left(M, x_{s+2}\right) = \dots = \Gamma\left(M, x_{p-1}\right) \text{ donde} \quad s = m \acute{a} x \left\{ i : x_i \in M \right\} \leq p-2 \, ; \, \, \text{y si}$ $x_{p-1} \in M \quad \text{entonces} \quad \Gamma"\left(M\right) = r \, .$

Como por definición $p-1=R_{k-1}(l_1,l_2,...,l_r)$, existe $j\in [r]$ y una subsucesión $x_{j1},x_{j2},...,x_{jl_j}$ de tamaño l_j tal que para toda $M\in \left[\left\{x_{j_1},x_{j_1},...,x_{j_{l_j}}\right\}\right]^{k-1}$, Γ "(M)=j.

Para terminar con la prueba del teorema veremos que todo elemento de $\left[\left\{x_{j_1}, x_{j_2}, ..., x_{j_{l_j}}\right\}\right]^k \text{ recibió el color } j \text{ bajo la coloración } \Gamma \,.$

Sea $\{x_{j_{m_1}},x_{j_{m_2}},...,x_{j_{m_k}}\}\in \left[\left\{x_{j_1},x_{j_2},...,x_{j_{l_j}}\right\}\right]^k$ y supongamos que $j_{m_k}>j_{m_{k-1}}>\cdots>j_{m_2}>j_{m_1}$. Observe que por definición Γ " $(x_{j_{m_1}},...,x_{j_{m_{k-1}}})=j$ si y sólo si $\Gamma(x_{m_1},...,x_{m_{k-1}},x_{m_k})=j$ y como para todo $\left\{x_{j_{m_1}},...,x_{j_{m_{k-1}}}\right\}\in \left[\left\{x_{j_1},x_{j_2},...,x_{j_{j_j}}\right\}\right]^{k-1}$ Γ " $\left(x_{j_{m_1}},...,x_{j_{m_{k-1}}}\right)=j$ se sigue el resultado. \square

Capítulo 3 Ramsey en la Teoría de Gráficas.

En este capítulo profundizaremos nuestro estudio de los números de Ramsey para el caso k=2, esto es, coloraciones de conjuntos de tamaño 2, siendo uno de los lugares más naturales para hacer esto las gráficas. El estudio de tales números en el contexto de la Teoría de las Gráficas permite, además de dar otras pruebas de la existencia de estos números, dar mejores cotas de los valores de los mismos que los que se obtienen de las pruebas del capítulo anterior. Así mismo, presentaremos un resultado de Schur que se deriva directamente del Teorema de Ramsey en este contexto.

Para esto, antes presentaremos algunas definiciones.

3.1 Definiciones

Una gráfica G es un par ordenado (V(G), E(G)) donde V(G) es un conjunto finito no vacío de elementos llamados *vértices* y E(G) es un conjunto finito de pares no ordenados de elementos de V(G) llamados *aristas*. Una arista $\{x,y\}$ de G será denotada como xy.

Una gráfica es *simple* si en E(G) todos los pares no ordenados son distintos y cada par está formado por dos elementos distintos de V(G). Aquí sólo nos enfocaremos en gráficas simples.

Dada una gráfica G, un par de vértices x, y de G se dice que son *adyacentes*, o vecinos, en G si la arista xy pertenece a E(G), y se dirá que la arista xy es incidente a los vértices x y y.

Una $gráfica\ completa$ es aquella en la que cada uno de los vértices es adyacente a todos los demás. Denotaremos como K_n a la gráfica completa de n vértices.

Un subconjunto S de V(G) es llamado *conjunto independiente* en G si ningún par de vértices en S son adyacentes en G .

Una gráfica G es *bipartita* si existe una partición de $V\!\left(G\right)$ en dos conjuntos de vértices independientes.

Una gráfica H es una subgráfica inducida de G si $V(H) \subseteq V(G)$ y dados $x,y \in V(H)$, $xy \in E(H)$ si y sólo si $xy \in E(G)$. Dado $S \subseteq V(G)$, $G\langle S \rangle$ denota la subgráfica inducida H de G tal que S = V(H). Observe que si G es la gráfica completa K_n , toda subgráfica inducida de G por un conjunto $S \subseteq V(G)$ es una gráfica completa de |S| vértices.

Dados $r,n\in N$, una [r]- coloración de las aristas de K_n es una función $\Gamma: E(K_n) \to [r]$. Dada Γ una [r]- coloración de las aristas de K_n y $T \subseteq V(K_n)$, la subgráfica de K_n inducida por T será llamada *monocromática de color* $i \in [r]$ si todas las aristas de $K_n \langle T \rangle$ recibieron el color i.

3.2 Ramsey en gráficas

El Teorema de Ramsey nos dice que dados $l_1,...,l_r$ números naturales positivos existe $n_0 \Big(l_1,...,l_r \Big) \in N$ tal que para $n \geq n_0 \Big(l_1,...,l_r \Big)$,

$$n \rightarrow (l_1, ..., l_r)^2$$
.

Esto es, dados $l_1,...,l_r$ naturales positivos existe un $n_0\big(l_1,...,l_r\big)$ tal que para toda [r]-coloración de las parejas de $[n]^2$, con $n \geq n_0\big(l_1,...,l_r\big)$, existe $T \subseteq [n]$ de cardinalidad l_i para algún $1 \leq i \leq r$, en donde todo elemento de $[T]^2$ recibió el color i.

Si denotamos a los vértices de K_n como $\{1,2,...,n\}=[n]$, entonces toda [r]- coloración de las aristas de K_n es una [r]- coloración de $[n]^2$, y dado $T\subseteq V\big(K_n\big)=\big[n\big], \, \big[T\big]^2$ es el conjunto de aristas de la subgráfica de K_n inducida por T.

En este contexto el Teorema de Ramsey nos dice que:

Teorema 3.2.1 Dados $l_1,...,l_r$ números naturales positivos, existe un entero $n_0\left(l_1,...,l_r\right)$ tal que para toda $\left[r\right]$ - coloración de las aristas de K_n , con $n \geq n_0\left(l_1,...,l_r\right)$, existe $T \subseteq V(K_n)$, de cardinalidad l_i para algún $1 \leq i \leq r$, en donde toda arista de la subgráfica completa de K_n inducida por T, recibió el color i.

O equivalentemente:

Teorema 3.2.1 Dados $l_1,...,l_r$ números naturales positivos, existe un entero $n_0\left(l_1,...,l_r\right)$ tal que para toda [r]-coloración de las aristas de K_n , con $n \geq n_0\left(l_1,...,l_r\right)$, tenemos que para algún $i \in [r]$ existe una copia de K_{l_i} que es monocromática de color i.

Claramente dados $l_1,...,l_r$ números positivos, $R_2\big(l_1,...,l_r\big)$ es el mínimo entero $n_0\big(l_1,...,l_r\big)$ tal que para toda [r]-coloración de las aristas de K_n , con $n \geq n_0\big(l_1,...,l_r\big)$, para alguna $i \in [r]$ existe una copia de K_{l_i} que es monocromática de color i.

A continuación presentaremos un estudio más detallado de estos números de Ramsey asociados a las gráficas, y presentaremos pruebas de existencia de estos números en términos puramente de gráficas.

Dado que en este capítulo sólo nos interesan los números de Ramsey $R_2(l_1,...,l_r)$, omitiremos el subíndice y escribiremos $R(l_1,...,l_r)$ en lugar de $R_2(l_1,...,l_r)$.

3.3 El caso r=2

Aquí nos concentraremos en las 2-coloraciones de las aristas de la gráfica $K_{\scriptscriptstyle n}$. Analicemos primero los casos pequeños.

Teorema 3.3.1 Para toda $n \ge 2$,

$$R(2,n)=n.$$

Prueba. Para realizar esta prueba, debemos mostrar por un lado, que existe una coloración de K_{n-1} sin ninguna arista de color 1 y sin copias de K_n con todas sus aristas de color 2.

Por otro lado debemos de probar que en toda coloración de K_n con colores 1 y 2 existe una arista de color 1 o existe una copia de K_n con todas sus aristas de color 2.

Dada una coloración de K_{n-1} donde todas sus aristas reciben el color 2 no se produce ninguna arista de color 1 ni una copia de K_n con todas sus aristas de color 2, por lo que R(2,n)>n-1. Ahora sea una 2-coloración de K_n . Si no existe ninguna arista de color 1 entonces toda arista de K_n tiene color 2. Por tanto $R(2,n)\leq n$. \square

Ahora veremos que:

Teorema 3.3.2 R(3,3) = 6.

Prueba. Primero veremos que $R(3,3) \ge 6$ dando una 2-coloración de K_5 sin triángulos monocromáticos. Pintemos K_5 con la siguiente coloración: las aristas $\{v_1v_2, v_2v_3, v_3v_4, v_4v_5, v_5v_1\}$ forman un ciclo, digamos de color azul, y el complemento $\{v_1v_3, v_3v_5, v_5v_2, v_2v_4, v_4v_1\}$ de color rojo (ver Fig. 3.1). Esta coloración no contiene a K_3 como una subgráfica, por lo tanto $R(3,3) \ge 6$.

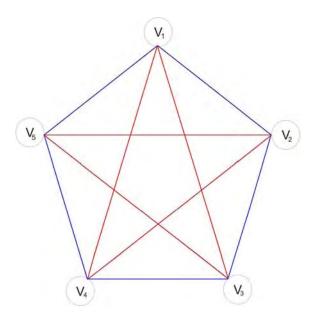


Fig. 3.1

Ahora consideremos cualquier 2-coloración de las aristas de K_6 y sea $v \in V\left(K_6\right)$. Sin pérdida de generalidad, podemos suponer que al menos 3 aristas incidentes a v son del

mismo color, digamos rojo. Sean vv_1 , vv_2 y vv_3 de color rojo (ver Fig. 3.2). Entonces si cualquiera de las aristas v_1v_2 , v_2v_3 y v_3v_1 fueran de color rojo, se tendría un triángulo de color rojo como subgráfica; de otra forma las aristas v_1v_3 , v_2v_1 y v_3v_2 deben tener el otro color (azul). Esto nos produce un triángulo azul.

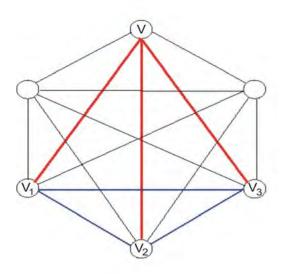


Fig. 3.2

Por tanto $R(3,3) \le 6$, y entonces R(3,3) = 6. \square

Corolario 3.3.1 En cualquier reunión de 6 o más personas, hay tres personas que se dieron las manos o hay tres que no se las dieron.

Ahora pasaremos a probar que:

Teorema 3.3.3 Para todo par de enteros $p,q\geq 2$, existe un entero $n_0\big(p,q\big)$ tal que para todo $n\geq n_0\big(p,q\big)$, cualquier 2-coloración de las aristas de la gráfica K_n contiene una copia de K_p monocromática de color 1 o contiene una copia de K_q monocromática de color 2.

Prueba. La prueba será por inducción sobre p+q.

Sean p y q tales que $p+q \le 6$.

Aquí se contemplan los casos R(2,4), y R(3,3) que previamente han sido analizados (Teoremas 3.3.1 y 3.3.2).

Ahora supongamos que existe $m \ge 6$ tal que para toda pareja p' y q', con $p'+q' \le m$, el número $R\left(p',q'\right)$ existe. Ahora sean p y q tales que p+q=m+1. Por hipótesis sabemos que existen R(p-1,q) y R(p,q-1). Veremos que para toda $n \ge R(p,q-1) + R(p-1,q)$ se tiene que cualquier 2-coloración de las aristas de K_n contiene una copia de K_p monocromática de color 1 o una copia de K_q monocromática de color 2.

Sea n=R(p,q-1)+R(p-1,q), Γ una 2-coloración de las aristas de K_n (digamos 1=rojo y 2=azul), y sea $v\in V(K_n)$. De las n-1 aristas incidentes a v hay cierto número de ellas rojas y otras azules (ver Fig. 3.3).

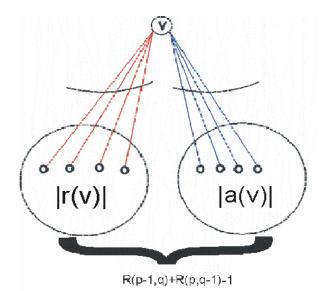


Fig. 3.3

Sea r(v) el conjunto de vértices x de K_n tales que la arista vx es roja y sea a(v) el conjunto de vértices x de K_n tal que la arista vx es azul.

Claramente $n-1=\left|r(v)\right|+\left|a(v)\right|$ y además, por definición n-1=R(p-1,q)+R(p,q-1)-1.

Si $|r(v)| \ge R(p-1,q)$ entonces la subgráfica de K_n inducida por r(v) es una completa de $|r(v)| \ge R(p-1,q)$ vértices en la cual Γ induce una 2-coloración. Por tanto, en $K_n \langle r(v) \rangle$ existe un conjunto T de q vértices tales que la subgráfica inducida por T en $K_n \langle r(v) \rangle$ es un K_q monocromático azul (que está en K_n), o existe un conjunto T de p-1 vértices tales que la subgráfica inducida por T en $K_n \langle r(v) \rangle$ es un K_{p-1} monocromático rojo, y entonces la subgráfica inducida por $T \cup \{v\}$ en K_n es un K_p monocromático rojo.

Si $|r(v)| \le R(p-1,q)-1$ entonces, como

$$|r(v)| + |a(v)| = R(p-1,q) + R(p,q-1) - 1,$$

tenemos que $|a(v)| \ge R(p, q-1)$.

Entonces la subgráfica de K_n inducida por a(v) es una gráfica completa de $\left|a(v)\right| \geq R\left(p,q-1\right)$ vértices en la cual Γ induce una 2-coloración. Por tanto, en $K_n\left\langle a(v)\right\rangle$ existe un conjunto T de p vértices tales que la subgráfica inducida por T en $K_n\left\langle a(v)\right\rangle$ es un K_p monocromático rojo (que está en K_n), o existe un conjunto T de q-1 vértices tales que la subgráfica inducida por T en $K_n\left\langle a(v)\right\rangle$ es un K_{q-1} monocromático azul, y entonces la subgráfica inducida por $T\cup\{v\}$ en K_n es un K_q monocromático azul.

Entonces R(p,q) existe, y lo que es más $R(p,q) \le R(p-1,q) + R(p,q-1)$. Así queda demostrado el teorema. \square

Corolario 3.3.2 Una gráfica G con $n \ge R(p,q)$ vértices contiene un conjunto independiente de q vértices o una subgráfica completa de p vértices.

3.4 Algunas cotas

En el Capítulo 2 de esta Tesis se presentó una cota superior de $R_2(m,n)$ dada por $2^c + 1$

$$\mathrm{con}\ c = \sum_{i=1}^{p-1} i = \binom{p}{2} \ \mathrm{siendo}\ p = R_1 \left(m,n\right) + 1 = m+n \ . \ \mathrm{Esto}\ \mathrm{es}\ R_2 \left(m,n\right) \leq 2^{\binom{m+n}{2}} + 1 \ .$$

A continuación se presenta una cota mejor que la presentada en el Capítulo 2.

Teorema 3.4.1 Para todo par de enteros positivos m y n,

$$R(m,n) \le {m+n-2 \choose m-1}.$$

Prueba. La prueba es por inducción sobre k = m + n. Como se vio anteriormente

$$R(2,n) = n = \binom{n+2-2}{2-1} = \binom{n}{1}$$
 y $R(3,3) = \binom{3+3-2}{3-1} = \binom{4}{2} = 6$.

Ahora supongamos que para todo par m' y n' de enteros positivos con $6 \le n' + m' \le k$, se cumple que $R\left(m', n'\right) \le \binom{m' + n' - 2}{m' - 1}$.

Sean n y m enteros positivos, tales que n+m=k+1. Recuérdese que en la prueba del Teorema 3.3.3 se mostró que:

$$R(m,n) \leq R(m-1,n) + R(m,n-1)$$
,

que por hipótesis de inducción implica que:

$$R(m,n) \leq {m-1+n-2 \choose m-2} + {m+n-1-2 \choose m-1}.$$

Ahora observe que:

$${m+n-3 \choose m-2} + {m+n-3 \choose m-1} = \frac{(m+n-3)!}{(m-2)!((m+n-3)-(m-2))!} + \frac{(m+n-3)!}{(m-1)!((m+n-3)-(m-1))!}$$

$$= \frac{(m+n-3)!}{(m-2)!(n-1)!} + \frac{(m+n-3)!}{(m-1)!(n-2)!} = \frac{(m+n-3)!(m-1) + (m+n-3)!(n-1)}{(m-1)!(n-1)!}$$

$$= \frac{(m+n-3)!(m-1+n-1)}{(m-1)!(n-1)!} = \frac{(m+n-3)!(m+n-2)}{(m-1)!(n-1)!} = \frac{(m+n-2)!}{(m-1)!(n-1)!}$$

$$= {m+n-2 \choose m-1}.$$

Por tanto $R(m,n) \le \binom{m+n-2}{m-1}$ y así probamos este resultado. \mathbb{D}

A continuación veamos una cota inferior de los números de Ramsey de la forma $R_2(k,k)$, también llamados *números diagonales de Ramsey.*

Teorema 3.4.2 Para todo entero positivo k,

$$R(k,k) \ge 2^{\left(\frac{k-1}{2}\right)-\left(\frac{1}{k}\right)}$$
.

Prueba. Sean $x_1, x_2, ..., x_n$ los vértices de K_n . Sea G la gráfica bipartita con partes $\left(X,Y\right)$ donde X es el conjunto de todos los subconjuntos de k vértices de K_n y Y es el conjunto de todas las coloraciones de $E\left(K_n\right)$ que, por el Lema 1.1, son $2^{\binom{n}{2}}$.

Dado $s\in X$ y $\Gamma\in Y$, $s\Gamma\in E\left(G\right)$ si y sólo si la completa inducida por s en K_{n} es monocromática bajo Γ .

Dado $s\in X$, obsérvese que el número de coloraciones bajo las cuales $K_n\langle s\rangle$ es monocromático es el número de formas en que $K_n\langle s\rangle$ puede ser monocromática (de dos formas, de color 1 o color 2), multiplicado por el número de formas en que las $\binom{n}{2}-\binom{k}{2}$ aristas restantes pueden ser 2-coloreadas $(2^{\binom{n}{2}-\binom{k}{2}}$ formas, de acuerdo al Lema 1.1). Así entonces, cada $s\in X$ es adyacente a $2^{\binom{n}{2}-\binom{k}{2}+1}$ vértices (coloraciones) en Y y por tanto el número de aristas de G es $|X|\cdot 2^{\binom{n}{2}-\binom{k}{2}+1}=\binom{n}{k}\cdot 2^{\binom{n}{2}-\binom{k}{2}+1}$.

Si $\binom{n}{k} 2^{\binom{n}{2} - \binom{k}{2} + 1} < |Y| = 2^{\binom{n}{2}}$, entonces existe un vértice $\Gamma \in Y$ tal que no es adyacente a ningún vértice de X, o lo que es lo mismo, Γ no produce una completa monocromática de orden k, por lo tanto existe una coloración de K_n sin copias monocromáticas de K_k de color 1 o 2 y entonces

$$n < R(k,k)$$
.

Así, si $n \ge R(k,k)$, entonces

$$\binom{n}{k} 2^{\binom{n}{2} - \binom{k}{2} + 1} \ge 2^{\binom{n}{2}} \quad y \quad \binom{n}{k} \ge 2^{\binom{k}{2} - 1}.$$

Sabemos, por el Lema 1.2, que $\binom{n}{k} \le n^k$, lo cual implica que $n^k \ge 2^{\binom{k}{2}-1}$ de donde se sigue que:

$$n \ge 2^{\frac{\binom{k}{2}-1}{k}} = 2^{\left(\frac{k-1}{2}\right)-\left(\frac{1}{k}\right)}$$
. D

3.5 Teorema de Ramsey para $r \ge 2$

Ahora extenderemos estos resultados para más de 2 colores. Veremos que dados $l_1,...,l_r \text{ números naturales positivos existe } n_0\big(l_1,...,l_r\big) \text{ tal que, para toda } n \geq n_0\big(l_1,...,l_r\big),$ en toda [r]-coloración de K_n existe un conjunto $T \subseteq V(K_n)$, donde $|T| = l_i$ para algún $1 \leq i \leq r$, tal que $K_n \left\langle T \right\rangle$, es un K_{l_i} monocromático de color i.

Antes de pasar a la prueba del Teorema, requerimos el siguiente resultado.

Lema 3.5.1 Dados $l_1,...,l_r$ números naturales positivos, si $R(l_1,...,l_r)$ existe, entonces $R(l_1,l_2,...,l_r,2)$ existe y

$$R(l_1, l_2, ..., l_r, 2) \le R(l_1, l_2, ..., l_r)$$
.

Prueba. Sea $n=R(l_1,l_2,...,l_r)$ y consideremos una ${r+1}-\text{coloración }\Gamma$ de K_n .

Si no existe una arista de color r+1 entonces Γ sólo usa r colores (esto es, Γ es una $\left[r\right]$ -coloración de K_n) y como $n=R(l_1,l_2,...,l_r)$ entonces existe un conjunto $T\subseteq V(K_n)$, donde $\left|T\right|=l_i$ con $1\leq i\leq r$, tal que $K_n\left\langle T\right\rangle$ es un K_{l_i} monocromático de color i.

Así
$$R(l_1, l_2, ..., l_r, 2) \le R(l_1, l_2, ..., l_r)$$
.

Ahora probaremos que:

Teorema 3.5.2 Para toda $r \geq 2$ y todo conjunto $l_1,...,l_r$ de números naturales positivos existe $n_0(l_1,...,l_r)$ tal que en cada [r]-coloración de K_n , con $n \geq n_0(l_1,...,l_r)$, existe un conjunto $T \subseteq V(K_n)$, donde $|T| = l_i$ para algún $1 \leq i \leq r$, tal que la subgráfica inducida por T es un K_{l_i} monocromático de color I.

Prueba. La prueba la realizaremos por inducción sobre r.

- 1) El caso en que r = 2 se sigue del Teorema 3.3.3.
- 2) Supongamos que para todo $2 \le m \le r$ y todo $l_1,...,l_m$, $R(l_1,...,l_m)$ existe.
- 3) Sean $l_1,...,l_r,l_{r+1}$ números naturales positivos.

Ahora probaremos que $R(l_1,...,l_r,l_{r+1})$ existe. La prueba de esto la haremos por inducción sobre $\sum_{i=1}^{r+1} l_i$.

- i) Como ya se vio previamente, Lema 3.5.1, para toda $l_1,...,l_r\geq 2$, $R(l_1,...,l_r,2)\leq R(l_1,...,l_r) \text{ y por tanto } R(l_1,...,l_r,2) \text{ existe.}$
- $ii) \ \ \text{Supongamos que para toda} \ \ l_1,...,l_r,l_{r+1} \ \ \text{tal que} \ \ \sum_{i=1}^{r+1} l_i \leq m \ , \ \ R(l_1,...,l_r,l_{r+1}) \ \ \text{existe}.$
- iii) Sea $l_1,...,l_r,l_{r+1}$ tal que $\sum_{i=1}^{r+1}l_i=m+1$ y sea

$$n = \sum_{i=1}^{r+1} R(l_1, ..., l_i - 1, ..., l_{r+1}) - (r+1) + 2.$$

Para cada $1 \leq i \leq r$ sea $N_i = R(l_1,...,l_i-1,...,l_r)$. Sea Γ cualquier [r+1]- coloración de las aristas de K_n . Sea $x \in V(K_n)$ y para cada $1 \leq i \leq r$, definimos

$$V_i = \{ y \in V(K_n) : \Gamma(xy) = i \}.$$

Así, por un lado $\sum_{i=1}^{r+1} |V_i| = n-1$ y por otro:

$$n-1 = \sum_{i=1}^{r+1} R(l_1, ..., l_i - 1, ..., l_r) - (r+1) + 1 = \sum_{i=1}^{r+1} [R(l_1, ..., l_i - 1, ..., l_r) - 1] + 1 = \sum_{i=1}^{r+1} (N_i - 1) + 1.$$

Entonces para algún $1 \le i \le r$, existe $|V_i| \ge N_i$ ya que de lo contrario, si para cada $i \le r+1$, $|V_i| \le N_i-1$ ocurriría lo siguiente:

$$n-1 = \left(\sum_{i=1}^{r+1} N_i - 1\right) + 1 \ge \sum_{i=1}^{r+1} |V_i| + 1 = n$$

lo cual es imposible.

Sea $1 \leq s \leq r$ tal que $|V_s| \geq N_s$. La coloración Γ induce una [r+1]-coloración en $K_n \left\langle V_s \right\rangle$ y como se escogió $N_s = R(l_1,...,l_s-1,...,l_r)$, por hipótesis de inducción hay un conjunto $T \subseteq V_s$ de l_j vértices, con $j \in [1,r+1] \setminus \{s\}$, tal que la subgráfica inducida por T en $K_n \left\langle V_s \right\rangle$ es una copia de K_{l_j} monocromática de color j (la cual está en K_n) o hay un conjunto $W \subseteq V_s$ de l_s-1 vértices tal que la subgráfica inducida por W en K_n es un K_{l_s-1} monocromático de color s. Así la subgráfica inducida por $W \cup \{x\}$ es un K_{l_s} monocromático de color s. \mathbb{R}

3.6 Teorema de Schur

A continuación veremos un resultado inmediato del Teorema 3.5.2

Teorema 3.6 Sea $r \ge 2$. Entonces existe un número natural positivo S(r), tal que si $n \ge S(r)$ y los primeros n números naturales positivos son coloreados con r colores, entonces en una clase cromática existen enteros x, y, z (no necesariamente distintos) que satisfacen la ecuación:

$$x + y = z$$
.

Prueba. Sea $r \ge 2$, $n \ge R(3,...,3) - 1$ y $\Gamma:[n] \to [r]$ una [r]-coloración de [n].

Sean $\{v_1,v_2,...,v_{n+1}\}$ los vértices de la gráfica completa K_{n+1} y una coloración $C:E(K_{n+1})\to [r]$ de las aristas de K_{n+1} definida como sigue:

Para cada $v_i v_j \in E(K_{n+1})$ la coloración se define como $C(v_i v_j) = \Gamma(|i-j|)$.

Como $n \ge R\underbrace{(3,...,3)}_{r \ veces} - 1$, entonces $n+1 \ge R\underbrace{(3,...,3)}_{r \ veces}$ por lo que existe un triángulo en K_{n+1}

con vértices v_i, v_j, v_k , tal que las aristas $v_i v_j$, $v_i v_k$ y $v_j v_k$ recibieron el mismo color.

Sin pérdida de generalidad, supongamos que i < j < k.

Entonces $C(v_i v_j) = C(v_k v_j) = C(v_k v_i)$ que por definición implica que

$$\Gamma(j-i) = \Gamma(k-j) = \Gamma(k-i).$$

Sea x = (j-i), y = (k-j), y z = (k-i). Obsérvese que x, y, y z son distintos de cero pues i < j < k. Así entonces vemos que x, y, z es un conjunto monocromático bajo Γ de números naturales positivos y

$$x + y = (j-i) + (k-j) = (k-i) = z$$
. \Box

CAPÍTULO 4 Teorema Van der Waerden

En este capítulo, presentaremos la prueba del siguiente teorema.

4.1 Teorema de Van der Waerden

Teorema 4.1 Sean $k,r \ge 2$ dos enteros positivos. Entonces existe un entero positivo W(k,r) tal que para toda [r]-coloración del conjunto de enteros $\{1,2,\ldots,W(k,r)\}$, al menos una clase cromática contiene una progresión aritmética de longitud k.

Al entero W(k,r) se le llama Número de Van der Waerden.

Antes de pasar a la prueba de este teorema, analizaremos algunos casos pequeños.

Por supuesto, para k=2 y $r\geq 1$, W(2,r)=r+1 ya que en cualquier $\begin{bmatrix} r \end{bmatrix}$ -coloración de $\begin{bmatrix} 1,r+1 \end{bmatrix}$ hay 2 enteros del mismo color (Principio del Palomar) y siempre dos enteros forman una progresión aritmética de 2 elementos.

4.2 Una cota exacta

Teorema 4.2 W(3,2) = 9.

Prueba. Primero mostraremos que W(3,2) > 8, para lo cual exhibiremos una 2-coloración de [1,8] con ninguna progresión aritmética de 3 términos monocromática. Si los enteros 1,4,5,8 son coloreados con el color rojo y los enteros 2,3,6,7 con el color azul,

obtenemos una 2-coloración de $\begin{bmatrix} 1,8 \end{bmatrix}$ que no contiene ninguna progresión aritmética de longitud 3.

Ahora mostraremos que $W(3,2) \le 9$.

Supongamos que existe una 2-coloración de [1,9] donde no hay ninguna progresión aritmética de tamaño 3 monocromática. Usemos dos colores, rojo y azul, y consideremos las posibles coloraciones de los enteros x y x+2, (con $3 \le x \le 7$):

Х	x+2
rojo	rojo
azul	azul
rojo	azul
azul	rojo

Si x y x+2 fueran rojos, como (x-2,x,x+2) no puede ser monocromático, x-2 es azul. Con el mismo razonamiento, como (x,x+1,x+2) y (x,x+2,x+4) no pueden ser monocromáticos rojas, x+1 y x+4 son azules; pero entonces la terna (x-2,x+1,x+4) es azul, lo cual no puede suceder por hipótesis. Con ésto concluimos que x y x+2, con $3 \le x \le 5$, no pueden ser del mismo color (es análogo el caso con el color azul).

Supongamos entonces, sin pérdida de generalidad, que 3 es rojo. Por lo visto anteriormente, 5 es azul y 7 es rojo. Además 4 y 6 son de distinto color. Así, las posibles coloraciones de (3, 4, 5, 6,7) son:

$$\Gamma_1 = (3, 4, 5, 6,7)$$

$$y$$

$$\Gamma_2 = (3, 4, 5, 6,7).$$

Caso 1 (3, 4, 5, 6,7).

Dado que la progresión (2,3,4) no es monocromática vemos que 2 es azul y por la progresión (2,5,8) se sigue que 8 es rojo. Por la terna (1,4,7) se ve que 1 es azul y entonces dada la progresión (1,5,9) se sigue que el 9 es rojo. Así la terna (7,8,9) es roja lo cual no es posible.

Caso 2 (3, 4, 5, 6,7).

Dada la terna (6,7,8) vemos que 8 es azul y entonces por la terna (2,5,8), el 2 es rojo. Así mismo la progresión (3,6,9) nos dice que 9 es azul y la terna (1,5,9) que el 1 es rojo. Por lo tanto (1,2,3) es roja, lo cual no es posible. \square

En los casos pequeños, como el de W(3,2), haciendo un análisis de todos los casos posibles se puede encontrar el valor exacto del número de Van der Waerden.

En el caso general éste tipo de análisis es imposible. De hecho, la prueba de la existencia de los números de Van der Waerden que presentamos aquí es mostrando que los valores de tales números están acotados, y por ende existen.

En este sentido, la técnica que utilizaremos en la prueba del teorema arroja cotas superiores de los números de Van der Waerden que posiblemente son enormes en comparación con el valor real de tales números.

Dado que dicha técnica puede ser un poco complicada, en busca de una mayor comprensión de la misma, antes de pasar a la prueba del Teorema, presentamos primero un esbozo de cómo es que con esta técnica se probaría que W(3,2) existe (mostrando

que $W(3,2) \le 325$), y luego, utilizando esta técnica presentamos una prueba de la existencia de W(3,3) mostrando que $W(3,3) \le 7(2 \cdot 3^7 + 1)(2 \cdot 3^{7(2 \cdot 3^7 + 1)} + 1)$. \square

4.3 Un esbozo

A continuación presentamos el esbozo de una prueba de que $W(3,2) \leq 325 = 5(2 \cdot 2^5 + 1) \; .$

Supongamos que los enteros $\{1, 2, ..., 325\}$ están bicoloreados. Dividamos a éstos en 65 bloques de longitud 5, esto es,

$$[1,325] = [1,5] \cup [6,10] \cup \cdots \cup [321,325],$$

lo cual se escribirá de la siguiente forma: $B_1 \cup B_2 \cup \cdots \cup B_{65}$, donde $B_i = \left[5(i-1)+1,...,5i\right]$ para cada $1 \le i \le 65$.

Dado que los enteros son divididos en 2 clases, es decir, la clase del color rojo y la clase del color azul, por el Lema 1.1 vemos que existen justamente $2^5 = 32$ posibles maneras de 2-colorear un bloque B_i . Por lo tanto en los primeros 33 bloques, algún par de bloques deben ser 2-coloreados en exactamente la misma forma (por el Principio del Palomar). Digamos que B_{11} y B_{26} están coloreados en exactamente la misma forma. Además suponga que la coloración es la que se muestra en la figura 4.1:

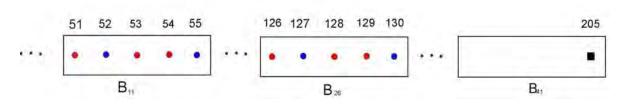


Fig. 4.1

Ahora consideremos todas las posibles progresiones de 3 elementos, con el primer elemento en B_{11} , el segundo B_{26} , y siendo ambos del mismo color. Estas progresiones son:

51-129-207, 51-126-201, 51-128-205, 53-126-199, 53-128-203, 53-129-205, 54-126-198, 54-128-202, 54-129-204, 52-127-202, 52-130-208, 55-127-199, 55-130-205.

Si el entero 205 es azul entonces 55, 130, 205 es una progresión aritmética de color azul, y si 205 es rojo entonces 51, 128, 205 es una progresión aritmética de color rojo. Lo mismo ocurre para los enteros 199 y 202. ₪

4.4 Construyendo Van der Waerden

Ahora veremos que W(3,3) existe.

Teorema 4.4 $W(3,3) \le 7(2 \cdot 3^7 + 1)(2 \cdot 3^{7(2 \cdot 3^7 + 1)} + 1)$.

Prueba. Sea $n=7(2\cdot 3^7+1)(2\cdot 3^{7(2\cdot 3^7+1)}+1)=m\cdot t$. Partimos el intervalo $\begin{bmatrix} n \end{bmatrix}$ en el conjunto de bloques $B_1,...,B_t$ con $t=2\cdot 3^{7(2\cdot 3^7+1)}+1$, donde para cada $1\leq i\leq t$, $B_i=\left(7\left(2\cdot 3^7+1\right)(i-1)+1,...,7\left(2\cdot 3^7+1\right)\cdot i\right);$ esto es partimos $\begin{bmatrix} n \end{bmatrix}$ en $t=2\cdot 3^{7(2\cdot 3^7+1)}+1$ bloques cada uno de longitud $m=7(2\cdot 3^7+1)$. Por el Lema 1.1 vemos que el número de distintas formas de 3-colorear un bloque es $3^{7(2\cdot 3^7+1)}$. Por tanto, por el Principio del Palomar, en los primeros $3^{7(2\cdot 3^7+1)}+1$ bloques, hay dos, digamos B_{i_1} y $B_{i_1+d_1}$ que están coloreados de la misma manera.

Ahora dividamos el bloque B_{i_1} en $t' = 2 \cdot 3^7 + 1$ bloques $B_{i_1,j}$, con j = 1,...,t', cada uno de éstos de 7 = m' enteros consecutivos (ver fig. 4.2).

De manera análoga se divide el bloque $B_{i_1+d_1}$ en bloques $B_{i_1+d_1,j}$ con j=1,...,t'. Por el Lema 1.1, hay 3^7 formas distintas de colorear a los bloques de 7 elementos. Por lo tanto en B_{i_1} , en los primeros 3^7+1 bloques B_{i_1} hay al menos dos que están coloreados exactamente de la misma forma. Digamos B_{i_1,i_2} y B_{i_1,i_2+d_2} .

Ahora analicemos cómo está coloreado el bloque B_{i_1,i_2} .

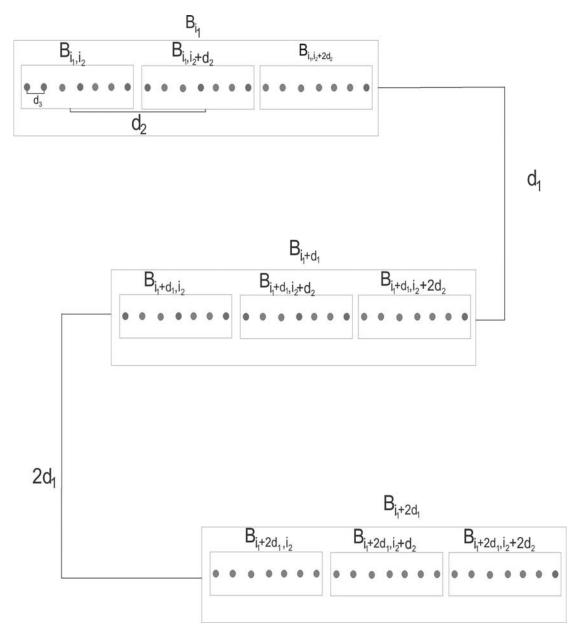


Fig. 4.2

En los primero cuatro lugares alguno de los colores debe de repetirse, ya que se colorea con tres colores (Fig. 4.3).

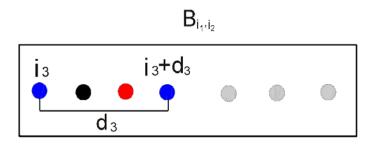


Fig. 4.3

Sin pérdida de generalidad digamos que i_3 y i_3+d_3 son azules. Observe que el elemento i_3+2d_3 no puede ser azul (Fig. 4.4), ya que completaría la progresión aritmética que estamos buscando.

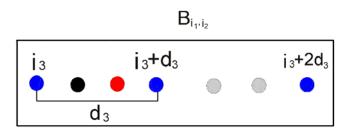


Fig. 4.4

Digamos entonces que $i_3 + 2d_3$ es de color rojo.

Sabemos que este patrón de colores se repite en el bloque B_{i_i,i_2+d_2} (ver Fig. 4.5).

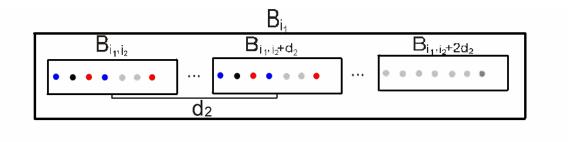


Fig. 4.5

Ahora consideremos la terna formada por los siguientes enteros

$$i_3 + 2d_3$$
, $i_3 + 2d_3 + m'd_2$ y $i_3 + 2d_3 + m'2d_2$,

(nótese que esta terna es una progresión aritmética de periodo $m'd_2$). Observe que $i_3 + 2d_3 + m'2d_2$ no puede ser rojo ya que $i_3 + 2d_3$ y $i_3 + 2d_3 + m'd_2$ son rojos (Fig. 4.6).

Ahora observe la terna i_3 , $i_3+d_3+m'd_2$ y $i_3+2d_3+m'2d_2$. Los dos primeros elementos son azules, por lo tanto el entero $i_3+2d_3+m'2d_2$ no puede ser ni azul ni rojo. Entonces $i_3+2d_3+m'2d_2$ es de otro color, digamos negro.

Por lo anterior tenemos que:

Los enteros i_3 , $i_3+d_3\in B_{i_1,i_2}\subset B_{i_1}$ son de color azul, y el entero $i_3+2d_3\in B_{i_1,i_2}\subset B_{i_1}$ es de color rojo. Los enteros $i_3+m'd_2$, $i_3+d_3+m'd_2\in B_{i_1,i_2+d_2}\subset B_{i_1}$ son de color azul, y el entero $i_3+2d_3+m'd_2\in B_{i_1,i_2+d_2}\subset B_{i_1}$ es de color rojo. El entero $i_3+2d_3+m'2d_2\in B_{i_1,i_2+2d_2}\subset B_{i_1}$ es de color negro.

Ahora bien, recordemos que B_{i_1} y $B_{i_1+d_1}$ están coloreados exactamente de la misma manera, por tanto el patrón de colores antes descrito se repite en $B_{i_1+d_1}$. Así entonces, los enteros i_3+md_1 , $i_3+d_3+md_1\in B_{i_1+d_1,i_2}\subset B_{i_1+d_1}$ son de color azul, y el entero

$$\begin{split} & \textbf{\textit{i}}_3 + 2d_3 + md_1 \in B_{i_1+d_1,i_2} \subset B_{i_1+d_1} \quad \text{es de color rojo. Los enteros} \quad \textbf{\textit{i}}_3 + m'd_2 + md_1, \\ & \textbf{\textit{i}}_3 + d_3 + m'd_2 + md_1 \in B_{i_1+d_1,i_2+d_2} \subset B_{i_1+d_1} \qquad \text{son de color azul, el entero} \\ & \textbf{\textit{i}}_3 + 2d_3 + m'd_2 + md_1 \in B_{i_1+d_1,i_2+d_2} \subset B_{i_1+d_1} \quad \text{es de color rojo. Finalmente el entero} \\ & \textbf{\textit{i}}_3 + 2d_3 + m'2d_2 + md_1 \in B_{i_1+d_1,i_2+2d_2} \subset B_{i_1+d_1} \quad \text{, es de color negro.} \end{split}$$

Esto se puede apreciar en la figura 4.6.

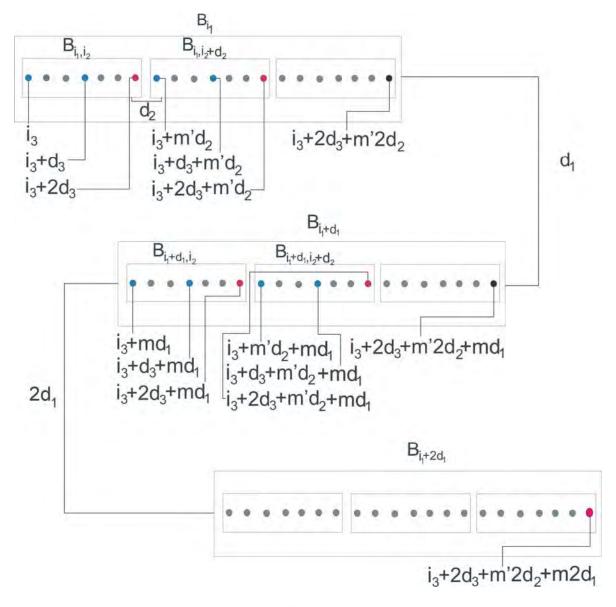


Fig. 4.6

Observe que de todas las posibles progresiones de tres elementos, con el primer elemento en B_{i_1} , el segundo en $B_{i_1+d_1}$ y siendo éstos del mismo color, hay al menos 3 que concurren en $i_3+2d_3+m'2d_2+m2d_1$, las cuales son:

- i_3 , $i_3 + d_3 + m'd_2 + md_1$ y $i_3 + 2d_3 + m'2d_2 + m2d_1$
- $i_3 + 2d_3$, $i_3 + 2d_3 + m'd_2 + md_1$ y $i_3 + 2d_3 + m'2d_2 + m2d_1$
- $i_3 + 2d_3 + m'2d_2$, $i_3 + 2d_3 + m'2d_2 + md_1$ y $i_3 + 2d_3 + m'2d_2 + m2d_1$.

Por lo que no importa de qué color sea el elemento $i_3 + 2d_3 + m'2d_2 + m2d_1$ se forma una progresión monocromática de longitud 3 (ver Fig. 4.7).

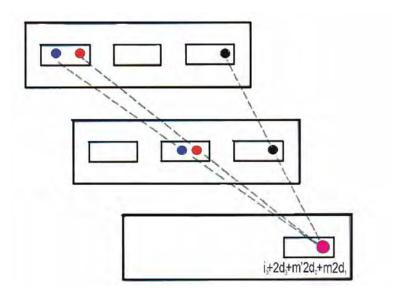


Fig. 4.7

Por lo tanto $W(3,3) \le 7(2 \cdot 3^7 + 1)(2 \cdot 3^{7(2 \cdot 3^7 + 1)} + 1)$. \square

4.5 Prueba del Teorema de Van der Waerden

Antes de pasar a la prueba del Teorema de Van der Waerden, haremos unas observaciones y daremos algunas definiciones que ayudarán en la comprensión de la misma.

Dados $p,n,m\in N$ y el intervalo de nm enteros $I=\Big[p,p+1,...,\big(p-1\big)+nm\Big],$ es claro que podemos hacer una partición de I en m intervalos $B_1,...,B_m$ cada uno de n enteros donde para cada $i\in [1,m]$

$$B_i = \{ p + (i-1)n + j : j = 0, ..., n-1 \}$$
 (Ver Fig. 4.8).

Definición 4.5.1 Dado $n \in N$, por un *n-bloque* entenderemos un intervalo de n enteros.

Definición 4.5.2 Dados $p,m,n\in N$ y el intervalo $I=[p,(p-1)+n\cdot m]$, por *la partición de* I *en n-bloques* entenderemos la sucesión $B_1,...,B_m$ de n-bloques, tal que para cada $1\leq i\leq m$,

$$B_i = \{ p + (i-1)n + j : j = 0,...,n-1 \}.$$

Dados $1 \le i \le m$ y $0 \le j \le n-1$ diremos que el entero p + (i-1)n + j es el j -ésimo elemento, o está en la j -ésima posición, del bloque B_i .

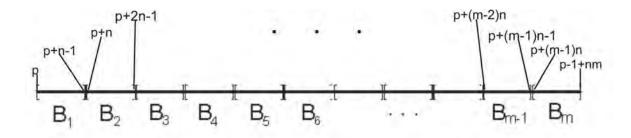


Fig. 4.8

Definición 4.5 3 Dados $p,n,m\in N$ y la partición del intervalo $\left[p,...,\left(p-1\right)+n\cdot m\right]$ en n-bloques $B_1,B_2,...,B_m$, a una subsucesión de bloques $B_{i_1},B_{i_2},...,B_{i_k}$ la llamaremos una progresión aritmética de bloques si y sólo si $i_1,i_2,...,i_k$ es una progresión aritmética. Si d es la diferencia de la progresión $i_1,i_2,...,i_k$, diremos que d es la diferencia de la progresión de bloques.

Obsérvese que si $B_{i_1}, B_{i_2}, ..., B_{i_k}$ es una progresión aritmética de n-bloques con periodo d , entonces para cada j=0,...,n-1 ,

$$p + (i_1 - 1)n + j$$
, $p + (i_2 - 1)n + j$,..., $p + (i_k - 1)n + j$,

es una progresión aritmética con periodo nd; esto es, tomando el j-ésimo elemento de cada bloque de la progresión obtenemos una progresión aritmética de enteros con diferencia nd.

Definición 4.5.4 Dados $r,p,m,n\in N$ sea Γ una [r]-coloración del intervalo $I=\left[p,...,(p-1)+mn\right]$ y sea Q el conjunto de n-adas ordenadas de elementos de [r]. Sea Γ' la Q-coloración del conjunto de los n-bloques $B_1,...,B_m$ de la partición I definida de la siguiente manera:

Para cada $1 \le i \le m$

$$\Gamma'[B_i] = \left(\Gamma\left(p + (i-1)n\right), \Gamma\left(p + (i-1)n + 1\right), \dots, \Gamma\left(p + (i-1)n + (n-1)\right)\right).$$

Esto es, Γ' le asigna a cada bloque B_i la n-ada ordenada de "colores" definida por Γ en el intervalo definido por el bloque B_i . A Γ' la llamaremos la coloración inducida por Γ en los bloques. Dados dos bloques B_j , B_i decimos que B_j y B_i tienen el mismo patrón de colores bajo Γ si

$$\Gamma' \lceil B_i \rceil = \Gamma' [B_i],$$

esto es, si en B_i y B_i la n-ada ordenada de colores es la misma.

Lema 4.5 Suponga que para alguna terna $k, r, n \in N$ el número $W(k, r^n) = m$ existe. Entonces para cualquier [r] – coloración Γ de un intervalo I de nm enteros, en la partición de I en n-bloques B_1, \ldots, B_m existe una progresión aritmética de bloques de longitud k donde todos los bloques de la progresión tienen el mismo patrón de colores bajo Γ .

Prueba. Sean $p,n,m\in N$, e $I=\left[p,....,\left(p-1\right)+nm\right]$ un intervalo de nm enteros. Sea $\Gamma:I\to [r]$ una [r] -coloración, sea $B_1,...,B_m$ la partición de I en n -bloques y $\Gamma':\left[\left\{B_1,...,B_m\right\}\right]\to Q$ la coloración inducida por Γ en los bloques, siendo Q el conjunto de n-adas ordenadas de elementos de [r]. Obsérvese que el cardinal de Q es r^n .

Sea $f:r^n\to Q$ una biyección entre r^n y Q , y sea Γ " una $\left[r^n\right]$ -coloración de $\left[1,m\right]$ definida como sigue:

Para cada
$$1 \le i \le m$$
, $\Gamma"(i) = j \in \lceil r^n \rceil$ si y sólo si $\Gamma'(B_i) = f(j) \in Q$.

Dado que $m=W(k,r^n)$, [1,m] contiene una progresión aritmética de tamaño k, $\left\{a,a+d,...,a+(k-1)d\right\}$, la cual es monocromática bajo Γ ", esto es, hay alguna $j\in \left[r^n\right]$ tal que para cada $0\leq i\leq k-1$, Γ " $\left(a+di\right)=j$, lo cual implica que para cada $0\leq i\leq k-1$ Γ ' $\left(B_{a+di}\right)=f\left(j\right)\in Q$, lo que, en términos de la coloración Γ , quiere decir que los bloques $B_a, B_{a+d},..., B_{a+(k-1)d}$ forman una progresión aritmética de bloques de longitud k y

diferencia d, donde todos los bloques tienen el mismo patrón de colores bajo Γ (Definición 4.5.4), a saber, f(j) que es una n-ada ordenada de elementos de [r]. \square Ahora sí pasamos a la prueba del Teorema de Van der Waerden.

Teorema 4.1 (Teorema de Van der Waerden) Sean $k,r \ge 2$ dos enteros positivos. Entonces existe un entero positivo W(k,r), tal que para toda [r]-coloración del conjunto de enteros $\{1,2,\ldots,W(k,r)\}$ existe al menos una clase cromática que contiene una progresión aritmética de longitud k.

Prueba. La prueba la realizaremos por inducción sobre k.

Paso (1): Para k=2 y cualquier $r \ge 2$, W(2,r) = r+1 ya que en cualquier [r]-coloración de [1,r+1] hay 2 enteros del mismo color (Principio del Palomar) y siempre dos enteros forman una progresión aritmética de dos elementos.

Paso (2): Sea $k \ge 2$ y suponga que para todo $r \ge 2$ el número W(k,r) existe.

Ahora demostraremos que para cualquier $r \ge 2$, W(k+1,r) existe. Para ésto sea $q_0=1$ y para cada $1\le s\le r$ definimos:

$$n_{s-1} = W(k, r^{q_{s-1}})$$
 ,
$$y$$

$$q_s = 2n_{s-1}q_{s-1}$$
 .

Paso (3): Por demostrar que $W(k+1,r) \le q_r$.

Sea una coloración $\Gamma:[q_r] \rightarrow [r]$.

Puesto que $\left[q_r\right]$ es un intervalo de $2n_{r-1}q_{r-1}$ enteros consecutivos, podemos definir la partición de $\left[q_r\right]$ en $\left(q_{r-1}\right)$ -bloques $B_1,B_2,...,B_{2n_{r-1}}$. Nótese que la mitad de está sucesión, $B_1,B_2,...,B_{n_{r-1}}$, es una partición en $\left(q_{r-1}\right)$ -bloques del intervalo $\left[1,n_{r-1}q_{r-1}\right]$ y dado que

 $n_{r-1}=W(k,r^{q_{r-1}})$, por el Lema 4.5, en $B_1,B_2,...,B_{n_{r-1}}$ existe una progresión aritmética de bloques de longitud k $B_{i_1},B_{i_2},...,B_{i_k}$ todos ellos con el mismo patrón de colores bajo Γ . Sea d_1 la diferencia de dicha progresión. Como los bloques $B_{i_1},B_{i_2},...,B_{i_k}$ están contenidos en la primera mitad del intervalo $\left[1,...,q_r=2n_{r-1}q_{r-1}\right]$, el bloque $B_{i_k+d_1}$ existe y entonces $B_{i_1},B_{i_2},...,B_{i_k},B_{i_k+d_1}$ es una progresión aritmética de bloques de longitud k+1 contenida en el intervalo $\left[1,...,q_r\right]$.

Para cada $1 \le J \le k$, a cada bloque B_{i_j} de la progresión lo denotaremos como B(J) y al bloque $B_{i_k+d_1}$ lo denotaremos como B(k+1). Nótese que entonces B(1), B(2), ..., B(k), B(k+1) es una progresión aritmética de bloques, donde los primeros k bloques tienen el mismo patrón de colores (obsérvese que no sabemos nada acerca de la coloración de B(k+1)).

Ya que B(1) es un intervalo de $q_{r-1}=2n_{r-2}q_{r-2}$ enteros, el bloque B(1) puede ser partido en $\left(q_{r-2}\right)$ -bloques $B(1)_1, B(1)_2, ..., B(1)_{2n_{r-2}}$. Una vez mas nótese que, la primera mitad de dichos bloques $B(1)_1, B(1)_2, ..., B(1)_{n_{r-2}}$, es una partición en $\left(q_{r-2}\right)$ -bloques de un intervalo de $n_{r-2}q_{r-2}$ enteros, y dado que $n_{r-2}=W(k,r^{q_{r-2}})$, otra vez por el Lema 4.5, en la primera mitad de B(1) hay una progresión aritmética de bloques de longitud k $B(1)_{i_1}, B(1)_{i_2}, ..., B(1)_{i_k}$ todos ellos con el mismo patrón de colores. Sea d_2 la diferencia de dicha progresión. Como los bloques $B(1)_{i_1}, B(1)_{i_2}, ..., B(1)_{i_k}$ están contenidos en la primera mitad del intervalo B(1), el bloque $B(1)_{i_1+d}$, está en B(1) y así

 $B(1)_{i_1}, B(1)_{i_2}, ..., B(1)_{i_k}, B(1)_{i_k+d_2}$ es una progresión aritmética de bloques de longitud k+1 contenida en B(1).

Para cada $1 \le J \le k$, a cada bloque $B(1)_{i_j}$ de la progresión lo denotaremos como B(1,J) y al bloque $B(1)_{i_k+d_2}$ lo denotaremos como B(1,k+1) (otra vez, obsérvese que no sabemos nada acerca de la coloración de B(1,k+1)).

Ahora observemos lo siguiente:

De igual forma que B(1), para cada $2 \le J \le k+1$, el bloque B(J) puede ser particionado en $B(J)_1, B(J)_2, ..., B(J)_{2n_{r-2}}$ (q_{r-2}) -bloques. De igual manera que $B(1)_{i_1}, B(1)_{i_2}, ..., B(1)_{i_k+d_2}$ es una progresión aritmética de bloques de diferencia d_2 en B(1).

 $B(J)_{i_1}, B(J)_{i_2}, ..., B(J)_{i_k+d_2}$ es una progresión aritmética de bloques en B(J) de diferencia d_2 . A los bloques de esta progresión los denotaremos como B(J,1), B(J,2), ..., B(J,k), B(J,k+1).

Ahora bien, dado que B(1),...,B(k) tienen el mismo patrón de colores bajo Γ , y que los bloques B(1,1),B(1,2),...,B(1,k) también tienen el mismo patrón bajo Γ , se sigue que:

- a) Para cada $1 \le I, J \le k$ todos los bloques $B\big(I,J\big)$ tienen el mismo patrón de color bajo Γ .
- b) Todos los bloques de la forma B(I,k+1) con $1 \le I \le k$ tienen el mismo patrón de colores bajo Γ , el cual no necesariamente es el mismo que B(1,1).

Dado que B(1,1) es un intervalo de $q_{r-2}=2n_{r-3}q_{r-3}$ enteros consecutivos, el bloque B(1,1) puede ser particionado en $\left(q_{r-3}\right)-$ bloques $B(1,1)_1,B(1,1)_2,...,B(1,1)_{2n_{r-3}}$.

Continuando con la prueba, dado que $n_{r-3}=W(k,r^{q_{r-3}})$, en la primera mitad de B(1,1) hay una progresión aritmética de longitud k de bloques $B(1,1)_{i_1}, B(1,1)_{i_2}, ..., B(1,1)_{i_k}$ (que denotaremos como B(1,1,1), B(1,1,2), ..., B(1,1,k)) todos ellos con el mismo patrón de colores. Sea B(1,1,k+1) el bloque $B(1,1)_{i_k+d_3}$ donde d_3 es la diferencia de dicha progresión.

De manera análoga a lo visto anteriormente definimos, para cada $1 \le I, J, S \le k+1$, a los bloques B(I,J,S) y vemos que:

- a) Para cada $1 \le I, J, S \le k$ todos los bloques B(I, J, S) tienen el mismo patrón de color.
- b) Todos los bloques de la forma B(I,J,k+1) con $1 \le I,J \le k$ tienen el mismo patrón de color, el cual no necesariamente es el mismo que el de B(1,1,1).

En general, para $s \leq r$ el bloque $B(\underbrace{1,...,1})$ será un intervalo de $q_{r-(s-1)} = 2n_{r-s}q_{r-s}$ enteros consecutivos, y si $B(\underbrace{1,...,1})$ es particionado en (q_{r-s}) bloques $B(\underbrace{1,...,1})_1, B(\underbrace{1,...,1})_2, ..., B(\underbrace{1,...,1})_{2n_{r-s}},$ como $n_{r-s} = W(k,r^{q_{r-s}})$ la primera mitad de $B(\underbrace{1,...,1})$ contendrá una progresión aritmética de bloques de longitud k, $B(\underbrace{1,...,1})_{i_1}, B(\underbrace{1,...,1})_{i_2}, ..., B(\underbrace{1,...,1})_{i_k},$ la cual denotaremos como

$$B(\underbrace{1,...,1}_{s-1},1), B(\underbrace{1,...,1}_{s-1},2),..., B(\underbrace{1,...,1}_{s-1},k),$$

con todos sus bloques con el mismo patrón de colores bajo Γ . De manera análoga denotamos como $B(\underbrace{1,...,1}_{s-1},k+1)$ al bloque $B(\underbrace{1,...,1}_{s-1})_{i_k+d_s}$ (el cual está contenido en el bloque $B(\underbrace{1,...,1}_{s-1})$) donde d_s es la diferencia de la progresión $B(\underbrace{1,...,1}_{s-1}),B(\underbrace{1,...,1}_{s-1},k)$.

Así mismo, definimos para cada $i_1,i_2,...,i_s \in [1,k+1]$ a los bloques $B(i_1,...,i_s)$.

Observación 4.5.1

- a) Si $i_1,...,i_s,j_1,...,j_s\in [1,k]$, entonces los bloques $B(i_1,...,i_s)$ y $B(j_1,...,j_s)$ tienen el mismo patrón de colores bajo Γ .
- b) Después del paso r en la recursión, los bloques tendrán un tamaño $q_0=1$, esto es, los bloques son enteros del intervalo original $\left[q_r\right]$.
- c) Sean $1 \leq i_1, i_2, ..., i_{s+1}, i_{s+2}, ..., i_r \leq k+1$ enteros. Entonces el entero $B(i_1, i_2, ..., i_s, i_{s+1}, ..., i_r)$ se encuentra en los bloques $B(i_1, ..., i_s)$ para cada $1 \leq s \leq r$. Dado $1 \leq j \leq k+1$, el entero $B(i_1, ..., i_s, i_{s+1}, ..., i_r)$ aparece en la misma "posición" en el bloque $B(i_1, ..., i_s)$ que el entero $B(j_1, ..., j_s, i_{s+1}, ..., i_r)$ en el bloque $B(j_1, ..., j_s)$.
- d) Si $1 \leq i_1,...,i_s, j_1,...,j_s \leq k$, como $B(i_1,...,i_s)$ y $B(j_1,...,j_s)$ tienen el mismo patrón de colores, los enteros $B(i_1,...,i_s,i_{s+1},...,i_r)$ y $B(j_1,...,j_s,i_{s+1},...,i_r)$ tienen el mismo color bajo Γ .
- e) Para $1 \le s \le r$, ya que $B(i_1,...,i_{s-1},i_s+1) = B(i_1,...,i_{s-1})_{i_s+1} = B(i_1,...,i_{s-1})_{i_s+d_s}$, donde $B(i_1,...,i_{s-1})_{i_s} = B(i_1,...,i_s)$, y dado que los bloques (ahora enteros)

$$B(i_1,...,i_{s-1},i_s,i_{s+1},...,i_r)$$

$$B(i_1,...,i_{s-1},i_s+1,i_{s+1},...,i_r)$$

aparecen en la misma posición dentro de sus respectivos bloques, y cada bloque tiene longitud q_{r-s} entonces

$$B(i_1, ..., i_{s-1}, i_s + 1, i_{s+1}, ..., i_r) - B(i_1, ..., i_{s-1}, i_s, i_{s+1}, ..., i_r) = q_{r-s}d_s .$$
 (1)

Consideremos ahora los siguientes r+1 enteros. Para cada $i \in [0,r]$ sea

$$b_i = B(\underbrace{1,...,1}_{i},\underbrace{k+1,...,k+1}_{r-i}).$$

Ya que Γ es una [r]-coloración, por el Principio del Palomar existen u y v, con $0 \le u < v \le r \text{ tales que } \Gamma(b_u) = \Gamma(b_v) \,.$

Por cada $i \in [1, k+1]$ definimos

$$a_i = B(\underbrace{1,...,1}_{u},\underbrace{i,...,i}_{v-u},\underbrace{k+1,...,k+1}_{r-v})$$
.

De esta forma

$$a_1 = b_v \text{ y } a_{k+1} = b_u \text{ .}$$

Si $1 \leq i \leq k-1$, por la Observación 4.5.1 (d) vemos que los bloques $B(\underbrace{1,...,1}_{v-u},\underbrace{i,...,i}_{v-u},\underbrace{k+1,...,k+1}_{v-u})$ y $B(\underbrace{1,...,1}_{v-u},\underbrace{i+1,...,i+1}_{v-u},\underbrace{k+1,...,k+1}_{r-v})$ tienen el mismo patrón de color. Además también por la observación 4.5.1 (c), note que $a_i = B(\underbrace{1,...,1}_{u},\underbrace{i,...,i}_{v-u},\underbrace{k+1,...,k+1}_{r-v})$ y $a_{i+1} = B(\underbrace{1,...,1}_{u},\underbrace{i+1,...,i+1}_{v-u},\underbrace{k+1,...,k+1}_{r-v})$ están en la

misma posición en sus respectivos bloques. Por tanto a_i y a_{i+1} tienen el mismo color.

Así, como $\Gamma(a_{_{\! 1}})=\Gamma(a_{_{\! k+1}})\,$ el conjunto $\{a_{_{\! 1}},...,a_{_{\! k+1}}\}\,$ es monocromático bajo Γ .

Para terminar con la prueba solo resta mostrar que $\{a_1,...,a_{k+1}\}$ es una progresión aritmética de longitud k+1. Para ésto, dado $i\in[1,k]$ y para cada $m\in[0,v-u]$ definimos

$$a_{i,m} = B(\underbrace{1,...,1}_{u},\underbrace{i+1,...,i+1}_{m},\underbrace{i,...,i}_{v-u-m},\underbrace{k+1,...,k+1}_{r-v}).$$

Vernos que $a_{i,0}=a_i$ y $a_{i,\nu-u}=a_{i+1}$.

También obsérvese que para cada $i \in [1, k]$ y $m \in [0, v - u]$, como

$$a_{i,m} = B(\underbrace{1,...,1}_{u},\underbrace{i+1,...,i+1,i+1}_{m},\underbrace{i,...,i,k+1,...,k+1}_{v-u-m})$$

У

$$a_{i,m-1} = B(\underbrace{1,...,1,i+1,...,i+1}_{u},\underbrace{i,i,...,i}_{v-u-m+1},\underbrace{k+1,...,k+1}_{r-v}),$$

entonces

$$a_{i,m}$$
 esta en el bloque $B(\underbrace{1,...,1,i+1,...,i+1}_{m})$

У

$$a_{i,m-1}$$
 esta en el bloque $B(\underbrace{1,...,1,i+1,...,i+1}_{u},i)$,

y ambos están en la misma posición en cada uno de sus bloques.

Así entonces, por (1) vemos que para cada $i\in [1,k]$ y $m\in [0,v-u],$ $a_{i,m}-a_{i,m-1}=q_{r-(u+m)}d_{u+m}.$

Dado que para cada $i \in [1,k], \ a_{i,0} = a_i$ y $a_{i,v-u} = a_{i+1}$, vemos que

$$a_{i+1} - a_i = \sum_{m=1}^{v-u} a_{i,m} - a_{i,m-1};$$

y por lo tanto, para cada $i \in [1, k]$,

$$a_{i+1} - a_i = \sum_{m=1}^{\nu-u} q_{r-(u+m)} d_{u+m}$$
.

Así

$$\{a_1, a_2, ..., a_k, a_{k+1}\}$$

es una progresión aritmética con diferencia $\sum_{m=1}^{v-u}q_{r-(u+m)}d_{u+m}$, y con ésto se concluye la prueba.oxdot

Bibliografía

- [1] Bondy J.A. & Murty U.S.R., *Graph Theory with Applications*, North-Holland, (1976).
- [2] Chartrand G. Wilson R.J., *Graphs and Digraphs*, Second Edition, The Wadswordth & Brooks/Cole Mathematics series (1979).
- [3] Fernández P. & Fernández J., "El desorden absoluto es imposible": la Teoría de Ramsey, Gaceta de la Real Sociedad Matemática Española, ISSN 1138-8927, Vol. 2, N° 2, 1999, Págs. 263-289.
- [4] Fernández P. & Fernández J., *Notas de Matemática Discreta*, Universidad Autónoma de Madrid, (2003).
- [5] Graham, R.L. & Rothschld, B.L., *A Short Proof of Van der Waerden's Theorem on Arithmetic Progressions*, Proc. Amer. Math. Soc. 42, (1974), Págs. 385-386.
- [6] Graham R.L., Rothschild B.L. & Spencer J.H., *Ramsey Theory*, Second Edition, Wiley, (1990).
- [7] Harary, F., *Graph Theory*, Third Edition, Addison-Wesley, (1972).
- [8] Herbert N.J., *Teoría Combinatori*a, Maracaibo Venezuela, (1996).
- [9] Johannson K.R., Variations on a Theorem by Van der Waerden, Manitoba, (2007).
- [10] Landman B.M. & Robertson A., *Ramsey Theory on the Integers*, American Mathematical Society, (2004).
- [11] Magyar A. & Lyall N., Schur's Theorem, REU, (2005).
- [12] Muñoz R., Matemática Discreta, ESCET, (2003).

Anexo

123	1AF	28G	3DG	567	69F	8AB
124	1AG	28H	3DH	568	69G	8AC
	1AH	28I	3DI			8AD
125	İ			569	69H	
126	1AI	29A	3EF	56A	69I	8AE
127	1BC	29B	3EG	56B	6AB	8AF
128	1BD	29C	3EH	56C	6AC	8AG
129	1BE	29D	3EI	56D	6AD	8AH
12A	1BF	29E	3FG	56E	6AE	8AI
12B	1BG	29F	3FH	56F	6AF	8BC
12C	1BH	29G	3FI	56G	6AG	8BD
12D	1BI	29H	3GH	56H	6AH	8BE
12E	1CD	291	3GI	561	6AI	8BF
12F	1CE	345	3HI	578	6BC	8BG
12G	1CF	346	456	579	6BD	8BH
12H	1CG	347	457	57A	6BE	8BI
12I	1CH	348	458	57B	6BF	8CD
134	1CI	349	459	57C	6BG	8CE
135	1DE	34A	45A	57D	6BH	8CF
136	1DF	34B	45B	57E	6BI	8CG
137	1DG	34C	45C	57F	6CD	8CH
138	1DH	34D	45D	57G	6CE	8CI
139	1DI	34E	45E	57H	6CF	8DE
13A	1EF	34F	45F	57I	6CG	8DF
13B	1EG	34G	45G	589	6CH	8DG
13C	1EH	34H	45H	58A	6CI	8DH
13D	1EI	341	45I	58B	6DE	8DI
13E	1FG	356	467	58C	6DF	8EF
13F	1FH	357	468	58D	6DG	8EG
13G	1FI	358	469	58E	6DH	8EH
13H	1GH	359	46A	58F	6DI	8EI
13I	1GI	35A	46B	58G	6EF	8FG
145	1HI	35B	46C	58H	6EG	8FH
146	234	35C	46D	581	6EH	8FI
147	235	35D	46E	59A	6EI	8GH
148	236	35E	46F	59B	6FG	8GI
149	237	35F	46G	59C	6FH	8HI
14A	238	35G	46H	59D	6FI	9AB
14B	239	35H	461	59E	6GH	9AC
14C	23A	351	478	59F	6GI	9AD
14D	23B	367	479	59G	6HI	9AE
14E	23C	368	47A	59H	789	9AF
14F	23D	369	47B	591	78A	9AG
14G	23E	36A	47C	5AB	78B	9AH
14H	23F	36B	47D	5AC	78C	9AI

141	23G	36C	47E	5AD	78D	9BC
156	23H	36D	47F	5AE	78E	9BD
157	231	36E	47G	5AF	78F	9BE
158	245	36F	47H	5AG	78G	9BF
159	246	36G	471	5AH	78H	9BG
15A	247	36H	489	5AI	78 I	9BH
15B	248	361	48A	5BC	79A	9BI
15C	249	378	48B	5BD	79B	9CD
15D	24A	379	48C	5BE	79C	9CE
15E	24B	37A	48D	5BF	79D	9CF
15F	24C	37B	48E	5BG	79E	9CH
15G	24D	37C	48F	5BH	79F	9CI
15H	24E	37D	48G	5BI	79G	9DE
15I	24F	37E	48H	5CD	79H	9DF
167	24G	37F	481	5CE	791	9DG
168	24H	37G	49A	5CF	7AB	9DH
169	241	37H	49B	5CG	7AC	9DI
16A	256	371	49C	5CH	7AD	9EF
16B	257	389	49D	5CI	7AE	9EG
16C	258	38A	49E	5DE	7AF	9EH
16D	259	38B	49F	5DF	7AG	9EI
16E	25A	38C	49G	5DG	7AH	9FG
16F	25B	38D	49H	5DH	7AI	9FH
16G	25C	38E	491	5DI	7BC	9FI
16H	25D	38F	4AB	5EF	7BD	9GH
16I	25E	38G	4AC	5EG	7BE	9GI
178	25F	38H	4AD	5EH	7BF	9HI
179	25G	381	4AE	5EI	7BG	ABC
17A	25H	39A	4AF	5FG	7BH	ABD
17B	251	39B	4AG	5FH	7BI	ABE
17C	267	39C	4AH	5FI	7CD	ABF
17D	268	39D	4AI	5GH	7CE	ABG
17E	269	39E	4BC	5GI	7CF	ABH
17F	26A	39F	4BD	5HI	7CG	ABI
17G	26B	39G	4BE	678	7CH	ACD
17H	26C	39H	4BF	679	7CI	ACE
171	26D	391	4BG	67A	7DE	ACF
189	26E	3AB	4BH	67B	7DF	ACG
18A	26F	3AC	4BI	67C	7DG	ACH
18B	26G	3AD	4CD	67D	7DH	ACI
18C	26H	3AE	4CE	67E	7DI	ADE
18D	261	3AF	4CF	67F	7EF	ADF
18E	278	3AG	4CG	67G	7EG	ADG
18F	279	зан	4CH	67H	7EH	ADH
18G	27A	3AI	4CI	671	7EI	ADI
18H	27B	3BC	4DE	689	7FG	AEF
18I	27C	3BD	4DF	68A	7FH	AEG
19A	27D	3BE	4DG	68B	7FI	AEH

19B	27E	3BF	4DH	68C	7GH	AEI
19C	27F	3BG	4DI	68D	7GI	AFG
19D	27G	3ВН	4EF	68E	7HI	AFH
19E	27H	3BI	4EG	68F	89A	AFI
19F	271	3CD	4EH	68G	89B	AGH
19G	289	3CE	4EI	68H	89C	AGI
19H	28A	3CF	4FG	681	89D	AHÍ
191	28B	3CG	4FH	69A	89E	BCD
1AB	28C	зсн	4FI	69B	89F	BCE
1AC	28D	3CI	4GH	69C	89G	BCF
1AD	28E	3DE	4GI	69D	89H	BCG
1AE	28F	3DF	4HI	69E	891	всн
BCI	CEH	2AB	2DE			
BDE	CEI	2AC	2DF			
BDF	CFG	2AD	2DG			
BDG	CFH	2AE	2DH			
BDH	CFI	2AF	2DI			
BDI	CGH	2AG	2EF			
BEF	CGI	2AH	2EG			
BEG	СНІ	2AI	2EH			
BEH	DEF	2BC	2EI			
BEI	DEG	2BD	2FG			
BFG	DEH	2BE	2FH			
BFH	DEI	2BF	2FI			
BFI	DFG	2BG	2GH			
BGH	DFH	2BH	2GI			
BGI	DFI	2BI	2HI			
BHI	DGH	2CD	EGI			
CDE	DGI	2CE	EHI			
CDF	DHI	2CF	FGH			
CDG	EFG	2CG	FGI			
CDH	EFH	2CH	FHI			
CDI	EFI	2CI	GHI			
EF	CEG	EGH	9CG			