

UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO

FACULTAD DE ESTUDIOS SUPERIORES CUAUTITLÁN

ANÁLISIS DE ESFUERZOS UTILIZANDO EL MÉTODO DEL ELEMENTO FINITO EN LAS UNIONES TECHO-ENVOLVENTE Y ENVOLVENTE-FONDO DE TANQUES DE ALMACENAMIENTO ATMOSFÉRICOS.

T E S I S

QUE PARA OBTENER EL TÍTULO DE:

INGENIERO MECÁNICO ELECTRICISTA

P R E S E N T A: OSWALDO ALBERTO SÁNCHEZ RUBIO

ASESOR: M. I. FELIPE DÍAZ DEL CASTILLO RODRÍGUEZ COASESOR: ING. CARLOS CORTÉS SALAS

CUAUTITLÁN IZCALLI, EDO. DE MEX.

2009

Universidad Nacional Autónoma de México

UNAM – Dirección General de Bibliotecas Tesis Digitales Restricciones de uso

DERECHOS RESERVADOS © PROHIBIDA SU REPRODUCCIÓN TOTAL O PARCIAL

Todo el material contenido en esta tesis esta protegido por la Ley Federal del Derecho de Autor (LFDA) de los Estados Unidos Mexicanos (México).

El uso de imágenes, fragmentos de videos, y demás material que sea objeto de protección de los derechos de autor, será exclusivamente para fines educativos e informativos y deberá citar la fuente donde la obtuvo mencionando el autor o autores. Cualquier uso distinto como el lucro, reproducción, edición o modificación, será perseguido y sancionado por el respectivo titular de los Derechos de Autor. DEDICATORIAS

A Dios Por darme la fortaleza en todo momento de dificultad y brindarme la oportunidad de terminar mis estudios con éxito.

A mis Padres y Hermano Por su paciencia, por su comprensión, por su empeño, por su amor, porque los quiero, porque gracias a ellos soy quien soy hoy en día.

A mi "Pulguita" Por el impulso y el apoyo incondicional que me has brindado para alcanzar esta meta, por tu comprensión, por compartir tantos momentos conmigo, Gracias!

> A mis tíos Alberto y Maribel Por el cariño y la confianza depositados en mí, gracias.

Universidad Nacional Autónoma De México En especial a la Facultad de Estudios Superiores Cuatlitlán por darme la oportunidad de aprender valiosos conocimientos que contribuyeron a mi desarrollo.

Gracias al departamento de Recipientes a Presión y Cambiadores de Calor del Instituto Mexicano del Petróleo por todas las facilidades que me otorgaron y en general a todas las personas que hicieron posible la terminación de este trabajo. En especial al ingeniero Carlos Cortés Salas, por su tiempo y sabiduría transmitida.

INDICE

	Pag.
INTRODUCCIÓN	1
OBJETIVOS	2
CAPITULO 1	
GENERALIDADES	
1.1 INTRODUCCIÓN	3
1.2 CLASIFICACIÓN	3
1.3 TIPOS DE TECHO	3
1.3.1 TANOUES DE TECHO FIJO	4
1.3.2 TANOUES DE TECHO FLOTANTE	5
1 4 TIPOS DE FONDO	8
1.5 CÓDIGOS	10
1 6 MATERIALES	13
CAPITULO 2	15
DISEÑO	
2 1 CONSIDER ACIONES	18
2.1 CONSIDERACIONES	10
2.2 DATOS DE DISENO 2.2 DETERMINACIÓN DE LOS ESDESODES DE LA ENVOLVENTE	10
2.5 DETERMINACIÓN DE LOS ESPESORES DE LA ENVOLVENTE	20
2.4 DETERMINACIÓN DEL LOS ESPESORES DE LAS PLACAS DEL FONDO	24
2.5 DETERMINACIÓN DEL ESPESOR DEL TECHO	24
2.6 ANGULO DE CORONAMIENTO Y AREA PARTICIPANTE EN LA UNION	24
TECHO-ENVOLVENTE	24
2.7 DISENO DE LA CUBIERTA	27
2.8 CALCULO DE PESOS	46
2.9 DISENO POR VIENTO	51
2.10 DISENO POR SISMO	63
2.11 ANCLAJE	71
CAPITULO 3	
MODOS DE FALLA Y DESCRIPCIÓN DEL MODELO	
3.1 INTRODUCCIÓN	74
3.2 MODOS DE FALLA	74
3.2.1 FALLA EN LA UNIÓN TECHO-ENVOLVENTE	75
3.2.2 FALLA EN LA UNIÓN ENVOLVENTE-FONDO DEBIDO A LA	
CEDENCIA DE LA ENVOLVENTE	75
3.2.3 FALLA EN LA SOLDADURA DE LA UNIÓN ENVOLVENTE-FONDO	76
3.2.4 FALLA EN LA SOLDADURA DE LAS PLACAS DEL FONDO	77
3.2.5 FALLA EN LOS ACCESORIOS DEBIDO AL LEVANTAMIENTO	77
3.3 DESCRIPCIÓN DEL MODELO DE ANÁLISIS	77
3.3.1 ESTRUCTURA	78
3.3.3 ELECCIÓN DE ELEMENTOS	80
3.3.4 RESTRICCIONES	82
CAPITULO 4	
ANALISIS EN DIFERENTES CONDICIONES	
4.1 INTRODUCCIÓN	85
4.2 OBJETIVO	85
4.3 CARGAS	85
4 4 ANÁLISIS	88
CASO I TANOUE VACÍO	88

94
95
104
106

INTRODUCCIÓN

Debido a la creciente necesidad de satisfacer la demanda de la industria nacional ha sido ineludible realizar la revisión, evaluación y rehabilitación de tanques de almacenamiento atmosféricos, así como el diseño de nuevos reservorios para la distribución del crudo y productos derivados del mismo. Por tanto, esta investigación está enfocada al análisis de esfuerzos en las uniones techo-envolvente y envolvente-fondo de un tanque de almacenamiento atmosférico para una capacidad de veinte mil barriles, sustentada en la Norma API 650.

Las características mecánicas del material son consideradas en el modelo numérico, empleando para ello el Método del Elemento Finito.

El presente trabajo es expuesto teniendo en cuenta que el vapor dentro de un tanque de almacenamiento, debido al llenado y vaciado del mismo, puede estar en sus límites de flamabilidad, llevando a una pérdida catastrófica de la integridad del tanque. Para prevenir una falla en la pared o en el fondo, se pretende inducir una falla en la unión techoenvolvente con cierta presión, creando así un área de ventilación que reduciría la presión en el tanque.

Cada tópico del diseño y análisis de tanques de almacenamiento atmosféricos es expuesto de forma sencilla y precisa en esta tesis, la cual se compone de cuatro capítulos que a continuación se resumen:

En el primer capítulo se expone una clasificación de los tanques en base a los diferentes tipos de techo y fondo existentes, así como las organizaciones que establecen los códigos que rigen el cálculo y el diseño de los mismos, por último se mencionan los materiales y sus propiedades.

En el segundo capítulo, se presentan los cálculos de diseño para un tanque de junta frágil, así como el análisis por viento y sismo para aseverar la seguridad del mismo.

En el tercer capítulo se comenta acerca de la sobre presurización en un tanque de almacenamiento atmosférico, la cual puede causar el levantamiento del mismo. De ahí la importancia de estudiar los modos de falla posibles, tal es el caso de las fracturas en las uniones techo-envolvente, envolvente-fondo, placa del fondo y accesorios.

Se continuará describiendo el modelo numérico a utilizar en los análisis, características de los elementos finitos y del procedimiento del análisis.

Por último se analizará la respuesta de tanques de almacenamiento atmosférico debido a la sobre presurización en diferentes condiciones como: tanque vacío sin pandeo, tanque mitad lleno sin pandeo y tanque lleno sin pandeo. Las condiciones anteriores serán analizadas variando la presión interna que permite el código de diseño.

Obtenidos los resultados se presentarán las conclusiones correspondientes.

OBJETIVO

- Mediante el método del elemento finito analizar los esfuerzos en las uniones techo-envolvente y envolvente-fondo aplicando la norma A.P.I. 650.

- Prevenir fallas no deseadas en los tanques de almacenamiento.

- Proveer consejos aplicables al diseño de tanques de almacenamiento.

CAPITULO 1 GENERALIDADES

1.1 INTRODUCCION

Los tanques sirven para almacenar cualquier tipo de líquido, vapor o incluso sólidos y han sido utilizados en varios procesos como:

Almacenamiento, separación de fases, mezclado, etc.

En este caso el término de "Tanques Atmosféricos" se refiere a tanques de almacenamiento cilíndrico diseñados para almacenar o procesar fluidos, generalmente a presión atmosférica o presión interna relativamente baja.

Las normas y códigos que son utilizados para el cálculo, diseño y construcción de tanques atmosféricos son parte fundamental, ya que estas amparan un margen de seguridad y funcionalidad ya justificado por la experiencia en esa área en particular.

1.2 CLASIFICACIÓN

En la actualidad no existe un sólo método universal para clasificar los tanques de almacenamiento ya sea por su forma o el líquido a almacenar, normalmente se contempla la presión interna o externa y en base a ésta se determina la forma y consecuentemente el tipo de tanque a utilizar.

Los códigos contra incendio definen un tanque atmosférico como aquél que opera con una presión hasta 3447 Pa (½ psi) por encima de la presión atmosférica. Mientras que los de baja presión son diseñados para trabajar hasta con una presión de 103421 Pa (15 psi) por encima de la presión atmosférica. Por último se encuentran los recipientes a presión los cuales operan con una presión mayor a 103421 Pa (15 psi).

1.3 TIPOS DE TECHO

En base a la especificación API 650 se hace una clasificación de los tanques en cuanto al tipo de techo. Es importante tener en cuenta que el espesor requerido para los techos debe resistir la presión interna para evitar flexiones y deformaciones evidentes en los mismos. Sin

olvidar que entre más grande sea el tanque mayor será el efecto de la presión que ejerce el techo sobre la estructura. Es por esto que en los casos donde la presión interna es alta se utilizan techos tipo domo o esferas.

1.3.1 TANQUES DE TECHO FIJO

Se emplean para contener productos no volátiles como son: agua, diesel, asfalto, petróleo crudo, etc. debido a que al disminuir la columna del fluido, se va generando una cámara de aire que facilita la evaporación del fluido, lo que es altamente peligroso.

Dentro de los tanques de techo fijo se encuentran:

-Tanques de techo cónico: tanque de placas verticales cilíndricas con un eje vertical de simetría. El fondo es normalmente plano y el techo en forma de cono con columnas de soporte. Son los más utilizados para el almacenamiento de grandes cantidades de líquido gracias a los bajos costos y su fácil construcción.

-Tanques de techo tipo paraguas: similares a los de techo cónico, pero el techo se ve como un paraguas por la superficie segmentada, de ahí su nombre. Usualmente construidos para diámetros no mayores de 18.3 m (60 ft). Son techos de estructura auto soportada ya que no cuentan con columnas de soporte.

-Tanques techo tipo domo: tanques similares a los de techo tipo paraguas excepto por el domo que se aproxima a una superficie esférica.

-Tanques de aluminio de techo tipo domo geodésico: tanques que ofrecen una mejor opción en cuanto a la resistencia a la corrosión, sin columnas centrales, soportado por la misma configuración de su superficie curva sobre el último anillo de la envolvente del tanque.

En la figura 1.1 se exponen las ventajas y desventajas de algunos tanques de techo fijo.

Figura 1.1. Techos Fijos

1.3.2 TANQUES DE TECHO FLOTANTE

Parecidos a los tanques de techo fijo, pero la diferencia radica en una cubierta que flota sobre la superficie del líquido (ver figura 1.2). Se emplean para almacenar productos volátiles como son: alcohol, gasolinas y combustibles en general.

La superficie flotante o techo es una estructura en forma de disco que cuenta con suficiente flotabilidad para asegurar que el techo flote ante cualquier condición esperada, incluso cuando éste tenga alguna fuga. Se construye con una separación de 8 a 12 pulgadas entre la envolvente y el techo para evitar que se trabe cuando se mueva hacia arriba o hacia abajo junto con el nivel del líquido. Se tiene un sello entre la envolvente y el techo para evitar que se derrame el líquido. Existen dos categorías de tanques de techo flotante:

1. Tanques de Techo Flotante Externo (TFE)

2. Tanques de Techo Flotante Interno (TFI)

Si el tanque tiene una abertura en el techo se le llama de techo flotante externo, estos tanques trabajan a presión atmosférica. Si el tanque esta cubierto con un techo fijo se le llama techo flotante interno. La función de la cubierta es para reducir la pérdida de evaporación y la contaminación del aire, esto reduciendo la superficie del líquido expuesto a la atmósfera.

Dentro de los tanques flotantes externos se encuentran diversos tipos:

-Techo tipo pontón: Estos techos son comúnmente utilizados para diámetros de 9.144 m a 30.48 m (30 a 100 ft). El techo esta compuesto de una cubierta de acero junto con un compartimiento anular el cual provee flotabilidad al techo.

-Doble cubierta: Techo formado por dos cubiertas una superior y otra inferior; separadas por bordes circulares que dividen el espacio interior en una serie de pontones concéntricos. Está diseñado para flotar en contacto con el producto almacenado. Se pueden utilizar este tipo de techos incluso cuando el diámetro excede los 30.48 m (100ft). Son techos fuertes y durables gracias a su doble cubierta.

Dentro de los tanques flotantes internos se encuentran diversos tipos:

- Techos flotantes tipo cacerola (Pan roof): Techos de acero en forma de disco con bordes levantados para provocar flotabilidad. Se hunden fácilmente al tener una fuga.

-Bulkhead pan roof: Techo con compartimientos anulares en la periferia para prevenir el hundimiento del mismo.

-Techos tipo membrana (Skin roof): Techos construidos usualmente con una capa de aluminio, que es soportada por una serie de pontones tubulares de aluminio.

TECHOS FLOTANTES							
TIPO	VENTAJAS	DESVENTAJAS					
CUBIERTA FLOTANTE TIPO PONTON ATIESADOR PONTÓN TUBERÍA FLEXIBLE DE DRENAJE	-BUENA FLOTABILIDAD -APTO PARA REPARAR EN SERVICIO. -COSTO DE CONSTRUCCIÓN MÁS ACCESIBLE QUE EL DE DOBLE CUBIERTA.	-ESTRUCTURALMENTE MÁS DÉBIL QUE EL DE DOBLE CUBIERTA. -DISEÑO POBRE PARA EL AISLAMIENTO DEL TECHO. -ALGUNA FUGA EN EL TECHO PUEDE CAUSAR QUE EL CRUDO SALGA POR LA TURERIA DE					
		DRENAIE O INCENDIO					
TECHO DE DOBLE CUBIERTA		DIENTIE O INCLUDIO.					
ANILLO ATIESADOR PONTONES TUBERÍA FLEXIBLE DE DRENAJE TECHO DE DOBLE CUBIERTA	-SE PUEDEN AISLAR FÁCILMENTE SI SE REQUIERE. -MUY RESISTENTE ESTRUCTURALMENTE. -EN CASO DE FUGA EL	-APTO SÓLO PARA TANQUES PEQUEÑOS. -PIERDE CAPACIDAD POR EL ESPACIO REQUERIDO PARA EL TECHO.					
ANILLO ATIESADOR PONTONES TUBERÍA FLEXIBLE DE DRENAJE	CRUDO NO ESTARÁ SOBRE EL TECHO Y NO SALDRÁ POR LA TUBERIA DE DRENAJE	-PIERDE CAPACIDAD POR EL ESPACIO REQUERIDO PARA EL TECHO.					
TECHO FLOTANTE INTERNO CON VENTILACIÓN EN EL TECHO VENTILACIÓN CENTRAL PLACAS PLACAS PLACAS PONTON	-LA BUENA VENTILACIÓN MAXIMIZA LA CAPACIDAD DE TANQUE.	-COSTO MUY ELEVADO PARA MODERNIZAR EL EQUIPO.					

Figura 1.2. Techos Flotantes

1.4 TIPOS DE FONDO

Debido a que el fondo sufre gran presión y los sedimentos se almacenan en éste es inminente la importancia de su diseño. La corrosión es más severa en el fondo, es por esta razón que su diseño ejerce un efecto significante en la vida útil del tanque. Se ha demostrado que el fondo es una fuente primaria de fugas debido al contacto que existe entre el fondo y el suelo, por ello es necesario monitorear y detectar las fugas a tiempo.

Los tipos de fondos son clasificados por su forma:

-Plano

Este fondo es construido como su nombre lo menciona, totalmente plano y se utiliza para diámetros menores a 6.096 m (20 ft).

-Cónico

Comúnmente se utilizan los fondos cónicos en industrias químicas o en plantas de proceso para obtener un drenado completo o para el removimiento de sólidos. Dentro de los fondos cónicos se encuentra la siguiente clasificación:

-Cono arriba: Este fondo es construido con un punto más alto en la parte central del tanque. La pendiente que logra esto es aproximadamente de 2 pulgadas por 10 pies. El fondo podrá parecer plano pero el líquido tendrá la tendencia de ir hacia el perímetro del fondo para ser drenado totalmente.

-Cono abajo: Usualmente se construye con un colector en el centro y tuberías por debajo del suelo que actúan drenando el tanque. Las tuberías se conectan a un pozo para almacenar el líquido a drenar. Al requerir un recolector y la construcción de tuberías por debajo del tanque se comprende un diseño aún más complejo que el de los anteriores. Se llegan a tener problemas de corrosión cuando no se es meticuloso en cuanto al diseño y la construcción de detalles así como a la protección contra la corrosión y revestimientos o protección catódica.

-Pendiente simple

Diseño utilizado para un fondo plano inclinado hacia un lado. El drenado del tanque se efectúa en el punto más bajo del perímetro, donde el líquido es recolectado efectivamente. Usualmente utilizados para diámetros menores a 30.48 m (100ft).

Las ventajas y desventajas de algunos tipos de fondos se pueden observar en la figura 1.3.

FONDOS						
TIPO	VENTAJAS	DESVENTAJAS				
	-FABRICACIÓN ECONÓMICA. -CONEXIONES ACCESIBLES PARA SU INSPECCIÓN Y MANTENIMIENTO.	-SE DIFICULTA EL DRENADO DEL LÍQUIDO ALMACENADO.				
FONDO CONO ARRIBA CONEXIÓN DE DRENAJE RRODUCTO H CONEXIÓN DE DRENAJE TÍPICA M CONEXIÓN DE DRENAJE TÍPICA M CONEXIÓN DE DRENAJE TÍPICA	-MEJOR DRENADO QUE EL FONDO PLANO. -FÁCIL DE CONSTRUIR. -CONEXIONES EN LA ENVOLVENTE Y EL FONDO ACCESIBLES PARA EL MANTENIMIENTO.	-MENOS CAPACIDAD QUE LOS DE FONDO CONO ABAJO. -EL DRENADO NO ES COMPLETO EN LA PERIFERIA. -SURGEN SEDIMENTOS EN LA PERIFERIA.				
ENDOCONO ABAJO OCNEXIONDEL PROUCTO CONEXIÓNIDE DRENALE CONEXIÓNIDE DRENALE CONEXIÓNIDE DRENALE CONEXIÓNIDE DRENALE CONEXIÓNIDE DRENALE	-BUENO PARA TANQUES DONDE ES FRECUENTE EL CAMBIO DEL PRODUCTO Y EL DRENADO DE AGUA ES REQUERIDO. -COLECTOR CENTRAL REDUCE EL AREA DE CONTACTO AGUA- PRODUCTO, Y AGUA- FONDO.	-REQUIERE TUBERÍA INTERNA AL CENTRO DEL TANQUE. -SÓLO PARA RESERVAR LÍQUIDOS MENOS PESADOS QUE EL AGUA.				
CONEXION DEL PRODUCTO COLECTOR DE FANGO COLECTOR DE FANGO CONEXIÓN DE DRENAJE TÍPICA	-CONEXIONES EN EL FONDO ACCESIBLES PARA INSPECCIÓN Y MANTENIMIENTO. -BUENO PARA TANQUES DONDE ES FRECUENTE EL CAMBIO DEL PRODUCTO Y EL DRENADO ES REQUERIDO.	-COSTO MÁS ALTO QUE EL DE CONO ABAJO Y CONO ARRIBA DEBIDO AL DISEÑO Y ERECCIÓN DE LA ENVOLVENTE. -EL SEDIMENTO FORMA BOLSAS DE AGUA QUE NO SE PUEDEN DRENAR.				

Figura 1.3 Fondos

1.5 CÓDIGOS

Los códigos y normas surgen con el propósito de promover la seguridad en cuanto al diseño, la construcción e instalación de tanques atmosféricos.

En cuanto al diseño y cálculo de los elementos constitutivos de los tanques de almacenamiento los códigos y normas más utilizados son:

-Norma A.P.I. 650 -Código A.S.T.M. -Código A.S.M.E. -Código N.F.P.A. -British Standard 14015 -Norma A.W.S.

Norma A.P.I. 650

El Instituto Americano del Petróleo (American Petroleum Institute) fue fundado en 1919 y alberga más de 500 normas y recomendaciones prácticas cubriendo todos los segmentos de la industria petrolera.

La "Norma A.P.I. 650" cubre aquellos tanques en los cuales se almacenan fluidos líquidos. Están construidos de acero con el fondo uniformemente soportado por una cama de arena, grava, concreto, asfalto, etc. Diseñados para soportar una presión de operación atmosférica o presiones internas que no excedan el peso del techo por unidad de área y una temperatura de operación no mayor de 93 °C (200 °F). Tanques de almacenamiento que no se usen para servicios de refrigeración. Establece los requerimientos mínimos de los materiales, diseño, fabricación, así como sugerencias en las secuencias en la erección del tanque, recomendación de procedimientos de soldaduras, pruebas e inspecciones, así como lineamientos para su operación.

A continuación se muestra el contenido del código A.P.I. 650

Sección 1AlcanceSección 2ReferenciasSección 3DefinicionesSección 4MaterialesSección 5DiseñoSección 6FabricaciónSección 7Erección

- Sección 8 Métodos de Inspección de Juntas
- Sección 9 Procedimiento y revisión de soldaduras
- Sección 10 Señalamiento (Marking)

Apéndices:

- A Bases de Diseño Opcional para tanques pequeños
- B Recomendaciones para el Diseño y la Construcción de la Cimentación para Tanques de Almacenamiento de Petróleo
- C Techos Flotantes Externos
- D Investigaciones Técnicas
- E Diseño Sísmico de Tanques de Almacenamiento
- F Diseño de Tanques para Presiones Internas Bajas
- G Techos de Aluminio Tipo Domo Estructuralmente Soportados
- H Techos Flotantes Internos
- I Detección de Fugas Bajo el Tanque y grado de Protección
- J Compra de Tanques
- K Ejemplo de Aplicación del Punto de Diseño Variable Método para Determinar el Espesor de las Placas de la Envolvente
- L API STD 650 Hoja de Información del Tanque
- M Requerimientos para Tanques Operados a Elevadas Temperaturas
- N Uso de nuevos Materiales no Identificados
- O Recomendaciones para Conexiones por debajo del Fondo
- P Cargas Externas Permisibles en Aberturas de la Envolvente
- R Combinaciones de Cargas
- S Tanques de Acero Inoxidable
- T Resumen de Requerimientos
- V Diseño de Tanques de Almacenamiento para presiones externas
- W Recomendaciones Comerciales y Documentación

El código A.S.T.M.

(American Society for Testing and Materials) Organización fundada en 1898, con la necesidad de satisfacer la demanda de la producción del acero que la Revolución Industrial generaba. Ya que los materiales fabricados no cumplían con los requisitos necesarios de seguridad del transporte ferroviario, se investigaron las propiedades técnicas del acero y demás materiales involucrados en el ferrocarril. Se estudiaron y cambiaron las propiedades químicas del acero y demás materiales obteniendo una mayor resistencia a las cargas y menor desgaste.

Todas las reformas hechas se consensaban en un foro determinando para su aplicación o no, publicándose cada norma una vez al año, hasta 1910 cuando se introduce un libro anual de normas ASTM.

El Código A.S.M.E.

(American Society of Mechanical Engineers) El Código para calderas y recipientes a presión se originó a causa de las continuas explosiones de calderas. Siendo la industria del acero y el hierro los grandes pilares de la economía de Estado Unidos era de gran importancia normalizar todo lo que ésta involucraba. Es de esta manera que se realizan normas que legislan la construcción de calderas de vapor considerando la seguridad como algo primordial.

El Código N.F.P.A.

(National Fire Protection Association) Organización internacional que desarrolla normas sobre la prevención, protección y problemática del fuego. Con el propósito de proteger a la gente, a la industria y al medio ambiente; ha producido y difundido conocimientos técnicos, datos y consejos sobre la seguridad contra incendios.

El Código British Standard 14015

El Instituto Británico de Normas (British Standards Institution), el cual publicó las primeras normas comerciales para dirigir sistemas administrativos de calidad, medio ambiente, seguridad y salud ocupacional, administración de proyectos, proporciona normas para la capacitación, certificación de productos, pruebas e inspecciones de productos en otros.

El código utilizado en varios países de Europa en cuanto a tanques de almacenamiento se refiere es el BS 14015, el cual especifica los requerimientos de materiales, diseño, fabricación, erección, pruebas e inspección de tanques cilíndricos verticales para el almacenamiento de líquidos. Este código aplica a todos los tanques de techo fijo, tanques de techo flotante, y tanques abiertos (sin techo), siempre y cuando el tanque no sea utilizado para refrigerar el producto.

Norma A.W.S.

Sociedad Americana de Soldadura (American Welding Society) ha establecido una serie de códigos de identificación y clasificación para los diferentes tipos de electrodos que existen en el mercado, incluyendo los requerimientos de soldadura para estructuras hechas de acero al carbón; estos códigos se han convertido en la referencia más común, por su fácil reconocimiento.

1.6 MATERIALES

El término "materiales" comprende cualquiera de las siguientes piezas: placas, láminas, perfiles, pernos, remaches, tornillos, soldadura, piezas de fundición o piezas forjadas para la fabricación del tanque. Es importante seleccionar el material adecuado dentro de la variedad de aceros que existen en el mercado y así generar un buen diseño, cálculo y manufactura del tanque, previniendo fallas, deformaciones, corrosión o fracturas.

Todos los materiales deben tener las dimensiones, características y calidad que se indiquen en el proyecto, en la hoja de datos técnicos de los tanques a fabricar. De acuerdo con la norma A.P.I. 650 la selección de un material depende de las condiciones para las cuales el tanque sea usado. La mayoría de los tanques de almacenamiento se fabrican de acero al carbón, aunque en ciertas industrias como la química se utilizan tanques de almacenamiento tanto de acero inoxidable como de aluminio, por mencionar algunos.

Con el fin de ofrecer el costo más bajo y satisfacer los requerimientos del cliente se deben tener en cuenta factores que afectan a la selección del material como son: El esfuerzo permisible, la corrosión, la dureza, el costo de placas, la disponibilidad y términos de compra y de entrega del producto.

La norma API 650 se basa en la norma ASTM para las propiedades de los materiales a utilizar los cuales se enlistan a continuación:

Placas

La denominación "placa" es únicamente para materiales con espesor de 4.8 mm. (3/16") o más. El material de las placas anulares del fondo, debe ser del mismo tipo que el del primer anillo de la envolvente con el que se une, pudiendo tener forma poligonal hacia el interior del tanque.

Todas las placas empleadas en la fabricación de tanques atmosféricos, deben corresponder a las siguientes especificaciones, ver tabla 1.1

	MÍNIMO MPa (ksi)		O MPa (ksi)	ESFUERZO	ESFUERZO PERMISIBLE	
ESPECIFICACIÓN ASTM	GRADO	MÁXIMO mm (in)	PUNTO DE FLUENCIA	RESISTENCIA A LA TENSIÓN	PERMISIBLE DE DISEÑO MPa (ksi)	PARA LA PRUEBA HIDROSTÁTICA MPa (ksi)
A-283M/A-283	C	25 (1)	205 (20)	380 (55)	127 (20)	154 (22.5)
A-285M/A-285	С	25 (1)	203 (30)	380 (33)	137 (20)	154 (22.5)
	A	12.5 (1/2)				
A 121N4/A 121	В	25 (1)	235 (34)	400 (59)	157 (22.7)	171 (24.0)
A-151M/A-151	CS	40 (11/2)	-	400 (58)		171 (24.9)
	EH36	45 (1¾)	360 (51)		160 (23.2)	
A-36M/A-36		40 (11/2)	250 (36)	400 (58)	160 (23.2)	171 (24.9)
A-573M/A-573	450	40 (11/2)	220 (32)	400 (58)	147 (21.3)	165 (24)
A-573M/A-573	485	40 (11/2)	290 (42)	515 (74.7)	193 (28)	208 (30)
	380 (55)	40 (11/2)	205 (30)	380 (55)	137 (20)	154 (22.5)
	415 (60)	40 (11/2)	220 (32)	415 (60)	147 (21.3)	165 (24)
A-510M/A-510	450 (65)	40 (11/2)	240 (35)	450 (65)	160 (23.3)	180 (26.3)
	485 (70)	40 (11/2)	260 (38)	485 (70)	173 (25.3)	195 (28.5)
A-662M/A-662	В	40 (11/2)	275 (40)	450 (65)	180 (26)	193 (27.9)
A-002101/A-002	С	40 (11/2)	295 (43)	515 (74.7)	194 (28)	208 (30)
A 527NA/A 527	1	40 (11/2)	345 (50)	485 (70)	194 (28)	208 (30)
A-537M/A-537	2	40 (11/2)	415 (60)	515 (74.7)	220 (32)	236 (34.3)
A-633M/A-633	C D	45 (1¾)	345 (50)	515 (74.7)	194 (28)	208 (30)
A-678M/A 679	А	40 (11/2)	345 (50)	515 (74.7)	194 (28)	208 (30)
A-6/8M/A-6/8	В	45 (1¾)	415 (60)	515 (74.7)	220 (32)	236 (34.3)

Tabla 1.1 Propiedades de los Materiales para la Fabricación de Placas

A-737M/A-737	В	40 (11/2)	345 (50)	515 (74.7)	194 (28)	208 (30)
A-841M/A-841	CLASE 1	40 (1½)	345 (50)	515 (74.7)	194 (28)	208 (30)
	CLASE 2	40 (1½)	415 (60)	515 (74.7)	220 (32)	236 (34.3)

Láminas

La denominación "lámina" es únicamente para materiales con espesor menor de 4.8 mm (3/16"). Las láminas para la construcción de tanques atmosféricos deben corresponder a las especificaciones de la ASTM A-1011M grado 33 (o equivalente).

Tabla 1.2 Propiedades de los Materiales para la Fabricación de Láminas

ESPECIFICACIÓN	GRADO	MÍNIMO MPa (ksi)			
ASTM		PUNTO DE FLUENCIA	RESISTENCIA A LA TENSIÓN		
A-1011M	33	230 (33.4)	360 (52.2)		

Perfiles Estructurales

Los perfiles estructurales como vigas, ángulos, tubos y canales deben ser fabricados por los procesos de horno abierto, horno eléctrico, u oxigeno básico y deberán cumplir con alguna de las siguientes especificaciones: ASTM A 36, A529 grado 50,55, A 131 grado A, AH32, AH36.

Tabla 1.3. Propiedades de los Aceros A-36, A-529, A-131

ESPECIFICACIÓN ASTM	GRADO	PUNTO DE FLUENCIA MPa	RESISTENCIA A LA TENSIÓN (ksi)
A-36	-	248 (36)	400 (58)
A-529	50	345 (50)	450 (65)
	55	380 (55)	485 (70)
	А	400 (58)	235 (34)
A-131	AH32	469 (68)	314 (46)
	AH36	490 (71)	352 (51)

Tubería, Coples y Forjas

Excepto cuando se indique otra cosa, la tubería y coples deben de estar de acuerdo con cualquiera de las siguientes especificaciones o sus equivalentes.

-API Especificación 5L Grado A, B y X42

-ASTM A 53 Grado A y B

-ASTM A 106 Grado A y B

-ASTM A 234M/A 234 Grado WPB

-ASTM A 333M/A 333 Grado 1 y 6

-ASTM A 334M/A 334 Grado 1 y 6

-ASTM A 420M/A 420 Grado WPL6

-ASTM A 524, GRADOS I Y II

-ASTM A 671 Grado de acero al carbono Grados CA 55, CC 60, CC 65, CC 70, CD 70, CD 80, CE 55, y CE 60

Las siguientes especificaciones ASTM o equivalentes son aceptables para forjas.

-ASTM A 105M/A 105

-ASTM A 181M/A 181

-ASTM A 350M/A 350 Grados LF1 y LF2

Bridas

Los materiales de bridas Hub, Slip-On y Welding-Neck deberán cumplir con los requerimientos del ASME B16.5 para bridas de acero al carbono. Comúnmente se utilizan los siguientes materiales:

- A-105

- A-182 grado F11, F22, F5a, F91, F5, F304, F304H, F316, F316H, F317.

- A-350 grado LF2, LF6, LF3, LF1.

Tornillos, Pernos y Tuercas

La tornillería debe atender las especificaciones correspondientes a las de la ASTM A-307, salvo otra indicación.

El material para las anclas de fijación del tanque a la cimentación en caso de requerirse, debe ser del tipo ASTM-307-B o ASTM-193-B7.

Los materiales de los pernos deben estar de acuerdo al ASTM A 307 o ASTM 193M/A 193. A 325M/A 325, solo debe ser usado con propósitos estructurales. El comprador debe especificar la forma de los pernos y de las tuercas. En cuanto al material de las tuercas, éste debe cumplir con los requisitos de las especificaciones ASTM A 194 / A 194 M o equivalente.

Electrodos

Para los materiales de soldadura con un esfuerzo mínimo a la tensión menor de 550 MPa, los electrodos para soldadura por arco manual deben ser de acuerdo a la clasificación AWS (American Welding Society; Sociedad Americana de Soldadura) serie E60 y E70.

Por otro lado para los materiales de soldadura con un esfuerzo mínimo a la tensión entre 550 MPa y 585MPa deben corresponder a la serie E80 de la AWS.

CAPITULO 2 DISEÑO

2.1 CONSIDERACIONES

En esta sección se proporcionan los datos y la información necesaria para llevar a cabo el diseño y cálculo de un tanque de almacenamiento atmosférico.

El diseño de este tanque atmosférico aplica sólo a tanques de acero al carbono de techo cónico soportado de junta frágil, con fondo cono arriba, y una capacidad real de veinte mil barriles. Todos los cálculos estarán basados en la norma A.P.I. 650.

Se considera a un tanque de junta frágil como aquél en que la junta del techo-envolvente falla antes de que la junta envolvente-fondo falle siempre y cuando haya cierta presión interna. Para lograr esto se debe cumplir con lo siguiente:

- El diámetro del tanque debe ser de 15.25m o mayor.
- La pendiente formada por el techo y la horizontal no debe exceder 5.08 cm en 30.5 cm es decir el ángulo máximo permitido será de 9.46°.
- El ángulo de coronamiento debe estar soldado con filete continuo al techo de un solo lado sin exceder 5 mm.

El techo estará sostenido por trabes que formarán polígonos regulares múltiplos de cinco y en cada arista de estos se colocará una columna. Los polígonos compuestos por trabes se encargarán de soportar los largueros, y estos a su vez soportarán las placas del techo. Tanto largueros como trabes y columnas serán seleccionados del manual del Instituto Mexicano de la Construcción en Acero (IMCA).

2.2 DATOS DE DISEÑO

La información mínima requerida, es decir las condiciones de operación y de diseño como: volumen, temperatura, peso específico del líquido, corrosión permisible, materiales etc, se obtienen de la hoja de datos proporcionada por el área de proceso como la que se muestra a continuación (ver tabla 2.1), de esta tabla se resumieron las características necesarias para comenzar con el diseño (ver tabla 2.2).

Tabla 2.1. Hoja de Datos de Proceso para Tanques de Almacenamiento

										HOJA	A DE DA	TOS DE
INSTITUTO MEXICANO DEL PETRÓLEO						PR	OCESO	PARA				
						Т		SDE				
DELEGACION REGIONAL ZONA MARINA						1/						
							ALM/	ACENAI	MIENTO			
CLIENTE	:	PEN	IEX-EXPLO	RACION PR	ODUCCION				PRO	ECTO	: F.3 ′	1653
PLANTA:		TER	RMINAL MAR	RITIMA DE D	OS BOCAS TA	BASCO			HOJA	: 1	DE:	1
LOCALIZ	ACIÓN:	DOS	S BOCAS TA	ABASCO							TMDB-A-	201
CLAVE D	EL EQUIF	O: TV-2	201						No. DE UN	IIDADE	:S: 1	(UNO)
SERVICIO	D:	CRI	JDO PESAD	0	CAPACIDAD:	20,000 E	Bls		POSICION	: VE	RTICAL	
Tipo de flu	uido:	HID	ROCARBUR	20	Flujo:	214,14	2 k	g/h (2)	Densi	dad:	980.00	kg/m ³
Vapor o G	Gas:				Flujo:		k	g/h	Densi	dad:		kg/m ³
Temperat	ura: Ope	ración:	38	°C	Máxima:	45	°(C	Diseñ	0:	60	°C
Presión:	Operació	n:	ATM	kg/cm ² m	an. Máxima:	ATM	k	g/cm ² man.	Diseñ	0:	ATM	kg/cm ² man.
Dimensio	nes: Lo	ngitud T-T	12,192	2 mm	Diámetro	18,300	0 m	nm	Cap.	Fotal:	3,207	m³ (T-T)
Nivel: No	ormal:			mm	Máximo:	10,363	3 m	nm	Mínim	10:	700	mm
Alarma al	to nivel:		8,914	mm	Alarma bajo ni	vel: 3,110	6 m	nm	Nivel de pa	iro:		mm
Materiales	s: Cuerp	0:	A-36		Techo/ Piso:	A-36	N	lalla separad	ora:	Es	pesor:	mm
Tipo circu	lar:	diámetro	: m	ım;	Tipo rectangula	ar: Long	jitud:		mm A	Ancho:		mm
Corrosión	permisibl	e: Cuer	po/ Fc 3.2	mm	Techo:	1.6 mm;	A	islamiento:	NO F	Recubri	imiento inte	rno: (7)
	0 i	D 11	BOQUILLA	S (5)					N	OTAS		
No.	Cant.	D. Nom.		SER	VICIO		1) Dis	seño de tanqu	le conforme	a API-	-650 Ult. Ed	lic.
1 A/B	2	610	Registro de	e hombre			2) Aco	otaciones en r	nm.			
8	1	203	Ventila de e	emergencia			3) Flu	ijo intermitent	e de entrad	a.		
11	1	407	Alimentació	n de Diesel			4) Teo	cho fijo.				
18	1	508	Salida de D	iesel			5) NRF	F-017-PEME	X-2001			
31A/B/C	3	152	Drene				6) El C	Contratista co	nstruirá un :	sistema	a de detecc	ión de fugas a
33 A/B/C	3	254	Válvula de	presión-vacío	o con arrestador	r de flama	través	del fondo, el	uso de geo	membr	ranas, prote	ección catodica
35	1	102	Conexión d	e servicio			y recul	brimiento de	placas de fo	ondo de	e tanque.	
46 A/B	2	51	Trasmisor i	ndicador de o	densidad		7) Rec	cubrimiento in	nterno confo	rme a l	a especific	acion
45 A/B	2	102	Trasmisor i	ndicador de r	nivel		Peme	x No. P.2.035	. P.2.0351.01			
55 A/B/C	3	203 Cámara de espuma										
40	1	38	Trasmisor i	ndicador de t	emperatura							
						(8)) (55)	\sim				
							_ ^	^{4-B-C} (40)				
(1)	(2)(4)				(33) A-B-C	ノ		+	18			
					\perp			< ⁻				
		LT	T T	1	► N <u>. M</u> AX.]			
					A	AN				\frown		
					10,363				- H	45) _{А, В}		
						_{8,914} Al	BN			14		
		12	.192			7	•					
			,				3116			11)		
				<u>س</u>				<u>N</u> .	MIN.	46	-	
								f ₇	00		В	
			A/F									
		L T-						V	!			
			1,000									
		•	11111	//////	///////////////////////////////////////	/////	////	//////	11,11	777	77777	N.P.T.
						- = 18.300	0					
Revisić	ón		в	0	1	2				1		
Fech	3	25-1	- un-05	U	<u> </u>							
Flahor	ró	F	71									
Aprob	Ó	L	GM									1

Servicio:	Almacenamiento
Capacidad del Tanque:	20000 barriles
Producto:	Crudo
Diámetro del Tanque:	18.3m
Altura del Tanque:	12.2m
Presión de diseño:	atmosférica
Lugar:	Dos Bocas, Tabasco
Densidad del crudo (G):	0.98
Material del Tanque y Componentes:	A-36
Corrosión:	3.17mm
Temperatura de Diseño:	60°
Temperatura de Operación:	38°

Tabla 2.2. Datos de Diseño

2.3 DETERMINACIÓN DE LOS ESPESORES DE LA ENVOLVENTE

El espesor de la envolvente requerida debe ser mayor que el espesor de diseño incluyendo el margen a contemplar por corrosión o el espesor para la prueba hidrostática, pero nunca menor a los siguientes valores (API 650 párrafo 5.6.1.1).

DIÁMETRO NO	OMINAL DEL	ESPESOR NO	DMINAL DE	
TANO	QUE	PLACA		
(m)	(ft)	(mm)	(in)	
<15	<50	5	3/16	
de 15 a 36	de 50 a 120	6	1/4	
de 36 a 60	de 120 a 200	8	5/16	
>60	>200	10	3/8	

Tabla 2.3. Diámetros del Tanque y Espesores de la Envolvente requeridos

Para obtener el número de anillos a utilizar en el tanque se utilizó la siguiente fórmula en la cual se toma en cuenta, que el ancho mínimo permitido de las placas por la API 650 es de 1.8m, por lo que se ha elegido un ancho comercial de 2.438m (8 ft):

No. de anillos =
$$\frac{altura}{ancho de anillo} = \frac{12.192m}{2.438m} = 5$$
 (2.1)

Con el número de anillos se procedió a calcular los espesores de los anillos de la envolvente. El método utilizado fue el método de un pie. Hay que aclarar que este método es utilizado para obtener espesores de los anillos de un tanque atmosférico siempre que éste sea de un diámetro de 60 m o menor.

El espesor mínimo requerido para las placas deberá ser mayor al calculado mediante las siguientes fórmulas para el sistema internacional (API 650 párrafo 5.6.3.2):

$$t_{d} = \frac{4.9D \ (H-0.3) G}{S_{d}} + Ca$$
(2.2)
$$t_{t} = \frac{4.9D \ (H-0.3)}{S_{t}}$$
(2.3)

Donde:

 t_d = Espesor de diseño de la envolvente en (mm).

 t_t = Espesor de la envolvente para la prueba hidrostática en (mm).

D = Diámetro nominal del tanque en (m)

H = Nivel de diseño del liquido en (m). Altura considerada desde el fondo hasta la parte superior de la envolvente.

G = Gravedad especifica del diseño del liquido almacenado.

C = Corrosión permisible en (mm) indicada por el cliente.

 S_d = Esfuerzo permisible para las condiciones de diseño en (MPa) ver Tabla 1.1.

 S_t = Esfuerzo permisible para la condición de la prueba hidrostática (MPa) ver Tabla 1.1.

Primer Anillo:

$$t_d = \frac{4.9D(H-0.3)G}{Sd} + C = \frac{4.9(18.3)(12.2-0.3)0.98}{160} + 3.17 = 9.706 \, mm$$

 $t_d = 9.706 \, mm$

$$t_t = \frac{4.9D (H-0.3)}{S_t} = \frac{4.9(18.3)(12.2-0.3)}{171} = 6.240 \, mm$$

 $t_t = 6.24 \, mm$

Segundo Anillo:

$$t_d = \frac{4.9D(H-0.3)G}{Sd} + C = \frac{4.9(18.3)(9.754 - 0.3)0.98}{160} + 3.17 = 8.362 \, mm$$

 $t_d = 8.362 \, mm$

$$t_{t} = \frac{4.9D (H-0.3)}{S_{t}} = \frac{4.9(18.3)(9.754-0.3)}{171} = 4.958 mm$$
$$t_{t} = 4.958 mm$$

Tercer anillo:

$$t_d = \frac{4.9D(H-0.3)G}{Sd} + C = \frac{4.9(18.3)(7.316-0.3)0.98}{160} + 3.17 = 7.023 \, mm$$

 $t_d = 7.023 \, mm$

$$t_{t} = \frac{4.9D (H-0.3)}{S_{t}} = \frac{4.9(18.3)(7.316-0.3)}{171} = 3.679 mm$$
$$t_{t} = 3.679 mm$$

Cuarto Anillo:

$$t_d = \frac{4.9D(H-0.3)G}{Sd} + C = \frac{4.9(18.3)(4.878 - 0.3)0.98}{160} + 3.17 = 5.684 \, mm$$

 $t_d = 5.684 \, mm$

$$t_t = \frac{4.9D (H-0.3)}{S_t} = \frac{4.9(18.3)(4.878-0.3)}{171} = 2.401 mm$$

 $t_t = 2.401 mm$

Quinto Anillo:

$$t_d = \frac{4.9D(H-0.3)G}{Sd} + C = \frac{4.9(18.3)(2.44-0.3)0.98}{160} + 3.17 = 4.345 \, mm$$

$$t_d = 4.345 \, mm$$

$$t_{t} = \frac{4.9D (H-0.3)}{S_{t}} = \frac{4.9(18.3)(2.44-0.3)}{171} = 1.122mm$$
$$t_{t} = 1.122mm$$

Espesores de la Envolvente				
Anillo	De Diseño sin Factor de Corrosión (mm)	De Diseño con Factor de Corrosión (mm)	Para la prueba Hidrostática (mm)	Comercial a utilizar (mm)
Primer	6.536	9.706	6.240	10
Segundo	5.192	8.362	4.958	10
Tercer	3.853	7.023	3.679	8
Cuarto	2.514	5.684	2.401	6
Quinto	1.175	4.345	1.122	6

Tabla 2.4. Espesores de Placa para la Envolvente

De las ecuaciones 2.2 y 2.3 se despejó el esfuerzo actuante de diseño y el esfuerzo actuante para la prueba hidrostática, ambos para el sistema internacional.

$$Sd = \frac{4.9D(H-0.3)G}{t_d} \qquad (2.4) \qquad Sd = \frac{4.9D(H-0.3)G}{t_d-C} \qquad (2.5)$$
$$S_t = \frac{4.9D(H-0.3)}{t_t} \qquad (2.6)$$

	Esfuerzos Actuantes			
Anillo	De Diseño sin Factor de Corrosión (MPa)	De Diseño con Factor de Corrosión (MPa)	Para la condición de la prueba hidrostática sin Factor de Corrosión (MPa)	Para la Condición de la prueba hidrostática con Factor de Corrosión (MPa)
Primer	145.297	99.238	156.233	106.707
Segundo	115.529	78.907	124.225	84.846
Tercer	121.274	73.219	130.402	78.73
Cuarto	135.138	63.740	145.310	68.538
Quinto	63.296	29.855	68.060	32.102

2.4 DETERMINACIÓN DE LOS ESPESORES DE LAS PLACAS DEL FONDO

Todos los espesores de las placas del fondo requieren de un espesor mínimo nominal de 6.4 mm (¼ in) sin considerar el margen de corrosión. En caso de que el cliente no especifique el ancho de las placas, éstas deberán tener un ancho mínimo nominal de 1.8m (párrafo 5.4.1. del A.P.I. 650).

$$t_f = t_m + Ca \tag{2.7}$$

Donde:

 $t_f = Espesor de las placas del fondo.$

t_m = Espesor mínimo requerido.

Ca = margen de corrosión

$$t_f = 6.4mm + 3mm = 9.4mm$$

2.5 DETERMINACIÓN DEL ESPESOR DEL TECHO

Con base al párrafo 5.10.2.2 del API 650 todas las placas del techo deben tener un espesor mínimo nominal de 5mm (3/16pulg) o calibre 7, sin considerar el margen de corrosión.

Considerando que se quiere crear una junta frágil, todas las placas del techo deben ser soldadas con filete continuo al ángulo de un solo lado sin exceder 5mm (párrafo 5.10.2.6 del API 650).

Espesor mínimo requerido:

t = 5mm

2.6 ÁNGULO DE CORONAMIENTO y ÁREA PARTICIPANTE en la UNIÓN TECHO-ENVOLVENTE

Al crear una junta frágil, las dimensiones del ángulo de coronamiento a utilizar deberán ser menores a las de la siguiente tabla. (Párrafo 5.1.5.9 del API 650)

Diámetro del Tanque	Tamaño Mínimo del Ángulo de Coronamiento (mm)	
$D \le 11m$	51 x 51 x 4.8	
$11m < D \le 18m$	51 x 51 x 6.4	
D > 18m	76 x 76 x 9.5	

Tabla 2.6. Dimensiones del Ángulo de Coronamiento

El ángulo a considerar deberá ser menor a 76 mm x 76 mm x 9.5 mm. y será seleccionado del manual de construcción en acero, ver tabla 2.7.

Tabla 2.7. Dimensiones de Ángulo de Lados Iguales.

Por lo tanto el área participante en la unión techo-envolvente se calculará con la ecuación 2.8:

$$A_p = D \cdot \pi \cdot t_a \qquad (2.8)$$
$$A_p = 18.2m \cdot \pi \cdot 0.076m = 4.37m^2$$

Donde:

 $A_P = \text{área participante } (m^2)$

D = diámetro del tanque (m)

t_a = Ancho del ángulo de coronamiento (m)

La siguiente figura muestra los tipos de arreglo en la unión techo-envolvente, de los cuales solo los detalles de la "a" a la "e" son permitidos para tanques de junta frágil. (Apéndice F del API 650)

Figura 2.1 Tipos de Unión Techo-Envolvente

De la figura anterior se ha seleccionado el detalle "e". Teniendo en cuenta que, el ángulo formado entre el techo y el plano horizontal en la unión techo-envolvente no debe de exceder 9.46° para techos de junta frágil, por lo tanto se ha propuesto un ángulo de 8° (párrafo 5.10.2.6 del A.P.I. 650).

2.7 DISEÑO DE LA CUBIERTA

Cargas en la Cubierta

En base al párrafo 5.2.1 inciso e del A.P.I. 650, además de soportar su propio peso, los techos deben soportar una carga viva uniforme sobre su área proyectada no menor de 122 Kg/m² (25 Lb/ft²). Es por esta razón que para obtener las cargas en la cubierta se tomó en cuenta la carga muerta y la carga viva.

$$Pc = cm + cv$$
(2.9)

$$cm = \frac{Pt}{A}$$
(2.10)

$$cm = \frac{10440.5 kg}{265.6 m^2} = 39.31 \frac{kg}{m^2}$$

$$Pc = 39.31 \frac{kg}{m^2} + 122 \frac{kg}{m^2} = 161.31 \frac{kg}{m^2}$$

Donde:

Pc=	Carga de la cubierta		kg
cm=	Carga muerta		kg
cv=	Carga viva	122	kg/m ²
Pt =	Peso del techo	10440.5	kg
A=	Area del Techo	265.6	m^2

Diseño de los Soportes de la Cubierta del Tanque

Con referencia al punto 5.10.4.4 del A.P.I. 650 el espacio entre largueros en el perímetro de la circunferencia exterior no debe exceder 0.6Л m ó 2Л pie. Por lo tanto se estima un espacio máximo de 1.88 m entre cada larguero.

$$N_L = \frac{\pi \cdot d}{0.6m \cdot \pi} = \frac{18.3m}{0.6m} = 30.5$$
(2.11)

Donde:

 $N_L = N$ úmero de largueros

d = diámetro del tanque [m]

Se utilizará una estructura tipo pentágono por lo que se deberá tener un número de largueros igual por cada trabe por lo tanto serán 35 largueros en total. 7 largueros sostenidos por cada trabe espaciados a 1.64m. El diseño propuesto se muestra en la figura 2.2 de donde se obtuvo el área a soportar por el larguero L3 el cual como se puede observar en la siguiente figura es el más crítico:

Figura 2.2 Arreglo de Largueros L3-L6

Selección y Diseño de los Largueros L3-L6

Para seleccionar los largueros L3-L6 se calculó el peso del área tributaria, la carga distribuida, el momento y el módulo de sección mínimo requerido como se muestra a continuación:

$$A1 = A3$$

$$A_{t} = 2 \cdot A1 + A2 \qquad (2.12)$$

$$0.39m \cdot 4.62m$$

$$A1 = \frac{0.39m \cdot 4.62m}{2} = 0.9m^2 \tag{2.13}$$

$$A2 = 0.81m \cdot 4.62m = 3.742m^{2}$$
(2.14)
$$A_{t} = 2(0.9m^{2}) + 3.742m^{2} = 5.542m^{2}$$

$$Pat = Pc \cdot A_t \tag{2.15}$$

$$w_l = \frac{Pat}{l} \tag{2.16}$$

$$M = \frac{w_l \cdot l^2}{8} \tag{2.17}$$

$$S_{X} = \frac{M}{F_{bx}} = \frac{M}{0.6 \cdot F_{y}}$$
 (2.18)

$$Pat = 161.31 \frac{kg}{m^2} \cdot 5.542 m^2 = 893.98 kg$$
$$w_l = \frac{893.98 kg}{4.62 m} = 193.50 \frac{kg}{m}$$
$$M = \frac{193.50 \frac{kg}{m} \cdot (4.62m)^2}{8} = 516.27 kg m$$
$$S_x = \frac{M}{0.6 \cdot F_y} = \frac{51627 kg cm}{0.6 \cdot 2530 \frac{kg}{cm^2}} = 34.01 cm^3$$

Donde:

Pat =	Peso del área tributaria		kg
At =	Área tributaria		m^2
wl =	Carga por unidad de longitud		kg/m ²
M =	Momento		kg m
Sx =	Módulo de sección requerido		cm ³
Pc =	Peso de la cubierta	161.31	kg/m ²
1 =	Longitud del larguero	4.62	m
Fy =	Esfuerzo de Fluencia del material	2530	kg/cm ²

Con base en los resultados anteriores se ha elegido el perfil CE de 152 mm x 12.2 kg/m (6 in x 8.2 lb/ft) del Manual de Construcción en Acero con el módulo de sección Sx de 71cm³ el cual se puede observar en la tabla 2.8

Tabla 2.8 Dimensiones del Perfil CE.

Revisión a Flexión del Perfil CE

Para el esfuerzo permisible se toma en cuenta que cuando:

$$\sqrt{\frac{717 \, x10^4 \, Cb}{Fy}} \le \frac{l}{r} \le \sqrt{\frac{3590 \, x10^4 \, Cb}{Fy}} \tag{2.19}$$

Entonces:

$$Fb = \left[\frac{2}{3} - \frac{Fy\left(\frac{l}{r}\right)^2}{1080 x 10^5 Cb}\right] (2530)$$
(2.20)

Donde:

$$Fb = Esfuerzo Permisible kg/cm^2$$

- Fy = Esfuerzo de Fluencia del 2530 kg/cm²Material
- Cb = Coeficiente de Flexión 1
- l = Longitud del larguero 462 cm
- r = Radio de giro del larguero 5.94 cm

$$\sqrt{\frac{717 \, x10^4 \, (1)}{2530}} \le \frac{462}{5.94} \le \sqrt{\frac{3590 \, x10^4 \, (1)}{2530}}$$

 $53 \le 77 \le 119.12$

Entonces:

$$Fb = \left[\frac{2}{3} - \frac{2530 \frac{kg}{cm^2} \left(\frac{462 \, cm}{5.94 \, cm}\right)^2}{1080 \, x 10^5 \, (1)}\right] (2530)$$
$$Fb = 1328.13 \frac{kg}{cm^2}$$

Con el módulo de sección propuesta el esfuerzo actuante se obtiene de la siguiente manera:

$$fb = \frac{Mx}{Sx}$$
(2.21)

$$fb = \frac{51627 \, kg \, cm}{71.0 \, cm^3} = 727.1 \frac{kg}{cm^2}$$

Como fb < Fb se concluye que el perfil seleccionado es adecuado.

Revisión del Perfil CE por Deflexión

$$Dreal = \frac{5 \cdot wl \cdot l^4}{384 \cdot E \cdot I} \tag{2.22}$$

$$Dperm = \frac{l}{240} + 0.5 \tag{2.23}$$

$$Dreal = \frac{5 \cdot 1.935 \frac{kg}{cm} \cdot (462 \, cm)^4}{384 \cdot 2100000 \frac{kg}{cm^2} \cdot 541.1 \, cm^4} = 1.01 \, cm$$
$$Dperm = \frac{462 \, cm}{240} + 0.5 = 2.425 \, cm$$

Donde:

Dreal =	Deformación real		cm
Dperm =	Deformación permisible		cm
E =	Modulo de Elasticidad del Material	2.1 x 10 ⁶	kg/cm ²
$I_{xx} =$	Momento de Inercia	541.1	cm^4

Como Dreal < Dperm el perfil es adecuado.
Se evalúa de nuevo el larguero pero en esta ocasión tomando en cuenta el peso por unidad de longitud del larguero (12.2 kg/m).

$$M = \frac{w_{l} \cdot l^{2}}{8}$$

$$S_{x} = \frac{M}{F_{bx}} = \frac{M}{0.6 \cdot F_{y}}$$

$$fb = \frac{M}{S_{x}}$$

$$Dreal = \frac{5 \cdot wl \cdot l^{4}}{384 \cdot E \cdot I}$$

$$M = \frac{\left(193.5 \frac{kg}{m} + 12.2 \frac{kg}{m}\right) \cdot (4.62m)^{2}}{8} = 548.8 kg m$$

$$S_{x} = \frac{M}{0.6 \cdot F_{y}} = \frac{54880 kg cm}{0.6 \cdot 2530 \frac{kg}{cm^{2}}} = 36.15 cm^{3}$$

$$fb = \frac{54880 kg cm}{71 cm^{3}} = 772.96 \frac{kg}{cm^{2}}$$

$$Dreal = \frac{5 \cdot \left(1.935 \frac{kg}{cm} + 0.122 \frac{kg}{cm}\right) \cdot (462 cm)^{4}}{384 \cdot 2100000 \frac{kg}{cm^{2}} \cdot 541.1 cm^{4}} = 1.07 cm$$

Tanto el esfuerzo actuante como la deformación real se encuentran dentro de los valores admitidos por lo que se llega a la conclusión de que el larguero seleccionado es el adecuado para las condiciones de operación.

Selección y Diseño de los Largueros L1-L2

Con referencia al punto 5.10.4.4 del A.P.I. 650 el espacio entre largueros en el perímetro de la circunferencia interna no debe exceder 1.7m.

Por lo tanto el número de largueros dentro del polígono se obtiene con la siguiente fórmula:

$$N_L = \frac{\pi \cdot d}{1.7m} = \frac{\pi \cdot 9.15m}{1.7m} = 16.9$$
(2.24)

Donde:

N_L = Número de Largueros

d = diámetro de la circunferencia interior 9.15 m

Debido a que se consideraron 20 largueros, serán 4 largueros sostenidos por cada lado del polígono espaciados a 1.44m. El diseño propuesto se muestra en la figura 2.3 de donde se obtuvo el área a soportar por los largueros L2 el cual como se puede observar es el más crítico:

Figura 2.3 Arreglo de Largueros L1-L2

Para seleccionar los largueros L1-L2 se hizo el mismo procedimiento que para el diseño y selección de los largueros L3-L6 como por ejemplo el peso del área tributaria, la carga distribuida, el momento y el módulo de sección mínima requerida.

$$A_{t} = \frac{1.487 \, m \cdot 5.66 \, m}{2} = 4.21 \, m^{2} \tag{2.25}$$

$$w = Pc \cdot A_t \tag{2.26}$$

$$M = 0.128 \cdot w \cdot l \tag{2.27}$$

$$S_{x} = \frac{M}{F_{bx}} = \frac{M}{0.6 \cdot F_{y}}$$

$$w = 161.31 \frac{kg}{m^{2}} \cdot 4.21m^{2} = 679.12kg$$

$$M = 0.128 \cdot 679.12kg \cdot 5.19m = 451.15kg m$$

$$S_{x} = \frac{M}{0.6 \cdot F_{y}} = \frac{45115kg cm}{0.6 \cdot 2530 \frac{kg}{cm^{2}}} = 29.72 cm^{3}$$

Donde:

At =	Área tributaria		m^2
w =	Peso del área tributaria		kg
M =	Momento		kg m
Sx =	Módulo de sección mínima requerida		cm ³
Pc =	Peso de la cubierta	161.31	kg/m ²
1 =	Longitud del larguero	5.19	m
Fy =	Esfuerzo de Fluencia del material	2530	kg/cm ²

Con base en los resultados anteriores se ha elegido el perfil CE de 152 mm x 12.2 kg/m (6 in x 8.2 lb/ft) del Manual de Construcción en Acero con el módulo de sección Sx de 71cm³ el cual se puede observar en la tabla 2.8.

Revisión a Flexión del Perfil CE

Como

$$\sqrt{\frac{717 \, x10^4 \, Cb}{Fy}} \le \frac{l}{r} \le \sqrt{\frac{3590 \, x10^4 \, Cb}{Fy}}$$

Entonces:

$$Fb = \left[\frac{2}{3} - \frac{Fy\left(\frac{l}{r}\right)^{2}}{1080 \, x 10^{5} \, Cb}\right] (2530)$$

Donde:

Fb =	Esfuerzo Permisible		kg/cm ²
Fy =	Esfuerzo de Fluencia del	2530	kg/cm ²
	Material		
Cb =	Coeficiente de Flexión	1	
1 =	Longitud del larguero	519	cm
r =	Radio de giro del larguero	5.94	cm

$$\sqrt{\frac{717\,x10^4\,(1)}{2530}} \le \frac{519}{5.94} \le \sqrt{\frac{3590\,x10^4\,(1)}{2530}}$$

$$53 \le 87 \le 119.12$$

Entonces:

$$Fb = \left[\frac{2}{3} - \frac{2530 \frac{kg}{cm^2} \left(\frac{519 \, cm}{5.94 \, cm}\right)^2}{1080 \, x 10^5 (1)}\right] (2530)$$
$$Fb = 1238.07 \frac{kg}{cm^2}$$

Con el módulo de sección propuesto el esfuerzo actuante se obtiene de la siguiente manera:

$$fb = \frac{Mx}{Sx}$$
$$fb = \frac{45115 \, kg \, cm}{71.0 \, cm^3} = 635.4 \frac{kg}{cm^2}$$

Como fb < Fb se concluye que el perfil seleccionado es adecuado.

Revisión del Perfil CE por Deflexión

$$Dreal = \frac{0.01304 \cdot w \cdot l^{3}}{E \cdot I}$$
(2.28)
$$Dperm = \frac{l}{240} + 0.5$$

$$Dreal = \frac{0.01304 \cdot 679.12 \, kg \cdot 519^{3}}{2100000 \frac{kg}{cm^{2}} \cdot 541.1 cm^{4}} = 1.09 cm$$

$$Dperm = \frac{519 \, cm}{240} + 0.5 = 2.66 \, cm$$

Donde:

Dreal =	Deformación real		cm
Dperm =	Deformación permisible		cm
E =	Modulo de Elasticidad del	2.1 x 10 ⁶	kg/cm ²
	Material		
I _{xx} =	Momento de Inercia	541.1	cm^4

Como Dreal < Dperm el perfil es adecuado.

Ahora se comprueba si el larguero es adecuado teniendo en cuenta su peso (63.3 kg).

$$M = 0.128 \cdot w \cdot l$$

$$S_{x} = \frac{M}{0.6 \cdot F_{y}}$$

$$fb = \frac{M}{S_{x}}$$

$$Dreal = \frac{0.01304 \cdot w \cdot l^{3}}{E \cdot I}$$

$$M = 0.128 \cdot (679.12 \, kg + 63.3 \, kg) \cdot 5.19 \, m = 493.3 \, kg \, m$$

$$S_{x} = \frac{M}{0.6 \cdot F_{y}} = \frac{49320 \, kg \, cm}{0.6 \cdot 2530 \frac{kg}{cm^{2}}} = 32.49 \, cm^{3}$$

$$fb = \frac{49320 \, kg \, cm}{71 \, cm^{3}} = 694.64 \frac{kg}{cm^{2}}$$

$$Dreal = \frac{0.01304 \cdot (679.12 \, kg + 63.3 \, kg) \cdot (519 \, m)^{3}}{2100000 \frac{kg}{cm^{2}} \cdot 541.1 \, cm^{4}} = 1.19 \, cm$$

 $Como \ fb < Fb$, $Dreal < Dperm \ se \ puede \ concluir \ que \ tanto \ el \ esfuerzo \ actuante \ como \ la deformación \ real \ se \ encuentran \ dentro \ de \ los \ valores \ permisibles \ por \ lo \ que \ se \ confirma \ que \ el \ larguero \ seleccionado \ es \ el \ adecuado.$

Selección y Diseño de las Trabes T1

Para el diseño y selección de trabes T1, las cuales se consideran como vigas simplemente apoyadas. Todos los cálculos se hicieron de acuerdo al arreglo mostrado en la siguiente figura:

Figura 2.4 Arreglo de las Trabes T1 y de las Columnas

Para obtener las cargas a soportar de las trabes T1 primero se calcularon las fuerzas de reacción Ra y Rb de los largueros más largos L1-L2 así como de los largueros más largos L3-L6. La reacción sobre la trabe T1 se multiplicó por el número de largueros soportados por T1ver tabla 2.9.

Tabla 2.9 Carga a Soportar por las Trabes T1.

De la tabla anterior el diseño de las Trabes T1 se hizo teniendo en cuenta lo siguiente:

Como en los procedimientos anteriores lo primero a obtener es el módulo de sección requerida.

$$M_{X} = \frac{799.09 \frac{kg}{m} \cdot (6.64m)^{2}}{8} = 4403.95 kg m$$
$$S_{X} = \frac{440395 kg cm}{0.6 \cdot 2530 \frac{kg}{cm^{2}}} = 290.12 cm^{3}$$

Con los resultados anteriores se seleccionó del Manual para la Construcción en Acero el perfil IR de 252mm x 32.9 kg/m (10 in x 22 lb/ft) con un módulo de sección Sx de 380cm³ ver tabla 2.10.

Tabla 2.10 Dimensiones del Perfil IR.

Revisión a Flexión del Perfil IR

Con el módulo de sección elegida se calculó el esfuerzo permisible y el actuante así como la deflexión real. Para determinar el esfuerzo permisible se obtiene el valor de la relación longitud/radio de giro y se comprueba si está dentro del intervalo siguiente:

Como

$$\sqrt{\frac{717 \, x10^4 \, Cb}{Fy}} \le \frac{l}{r} \le \sqrt{\frac{3590 \, x10^4 \, Cb}{Fy}}$$

Entonces:

$$Fb = \left[\frac{2}{3} - \frac{Fy\left(\frac{l}{r}\right)^{2}}{1080 \, x 10^{5} \, Cb}\right] (2530)$$

Donde:

Fb =	Esfuerzo Permisible		kg/cm ²
Fy =	Esfuerzo de Fluencia del	2530	kg/cm ²
	Material		
Cb =	Coeficiente de Flexión	1	
1 =	Longitud del Larguero	664	cm
r =	Radio de giro de la Trabe	10.8	cm

$$\sqrt{\frac{717 \, x10^4 \, (1)}{2530}} \le \frac{664}{10.8} \le \sqrt{\frac{3590 \, x10^4 \, (1)}{2530}}$$

$$53 \le 61.48 \le 119.12$$

Entonces:

$$Fb = \left[\frac{2}{3} - \frac{2530 \frac{kg}{cm^2} \left(\frac{664 \, cm}{10.8 \, cm}\right)^2}{1080 \, x 10^5 \, (1)}\right] (2530)$$
$$Fb = 1462 \frac{kg}{cm^2}$$

Por otra parte el esfuerzo actuante se calculó de la siguiente manera:

$$fb = \frac{Mx}{Sx}$$
$$fb = \frac{440395 \, kg \, cm}{380 \, cm^3} = 1159 \frac{kg}{cm^2}$$

Como fb < Fb se concluye que el perfil seleccionado es adecuado.

Revisión del Perfil IR por Deflexión

$$Dperm = \frac{l}{240} + 0.5$$
$$Dreal = \frac{5 \cdot wl \cdot l^4}{384 \cdot E \cdot I}$$
$$Dperm = \frac{664 \, cm}{240} + 0.5 = 3.3 \, cm$$
$$Dreal = \frac{5 \cdot 7.99 \frac{kg}{cm} \cdot (664 \, cm)^4}{384 \cdot 2100000 \frac{kg}{cm^2} \cdot 4912 \, cm^4} = 1.96 \, cm$$

Donde:

Dreal =	Deformación real		cm
Dperm =	Deformación permisible		cm
E =	Modulo de Elasticidad del Material	2.1×10^6	kg/cm ²
$I_{xx} =$	Momento de Inercia	4912	cm^4

Como Dreal < Dperm el perfil es adecuado.

Se comprobó si el larguero era adecuado teniendo en cuenta su peso (32.9 kg/m), es decir, se calculó el módulo de sección requerido, el esfuerzo actuante y la deflexión real.

$$M = \frac{\left(799.09\frac{kg}{m} + 32.2\frac{kg}{m}\right) \cdot (6.64m)^2}{8} = 4581.41kg m$$

$$S_x = \frac{M}{0.6 \cdot F_y} = \frac{458141kg cm}{0.6 \cdot 2530\frac{kg}{cm^2}} = 301.81cm^3$$

$$fb = \frac{458141kg cm}{380cm^3} = 1205.6\frac{kg}{cm^2}$$

$$Dreal = \frac{5 \cdot \left(7.99\frac{kg}{cm} + 0.322\frac{kg}{cm}\right) \cdot (664cm)^4}{384 \cdot 2100000\frac{kg}{cm^2} \cdot 4912cm^4} = 2.04cm$$

Tanto el módulo de sección elegido, como el esfuerzo actuante y la deformación real se encuentran dentro de los valores permisibles por lo que se confirma que el perfil IR seleccionado es el adecuado.

Diseño y Selección de la Columna Central y las Columnas Secundarias

Para el diseño de la columna central se tomó la fuerza de reacción Ra de los largueros L1-L2 de la tabla 2.9. y se multiplicó por el número de largueros L1-L2 para así obtener la carga axial en la columna central como se muestra a continuación:

$$C_a = (N_{L1-L2}) \cdot (Ra)$$
 (2.35)
 $C_a = 20 \cdot 247.47 \, kg = 4949.4 \, kg$

Donde:

$C_a =$	Carga axial		kg
$N_{L1-L2} =$	Número de largueros L1-L2	20	
Ra =	Fuerza de reacción	247.47	Kg

En este caso se a propuesto una columna tubular oc de 324 mm x 10.31 mm (12.75 in x 0.406 in) (ver tabla 2.12.) de la cual se va a calcular la relación de esbeltez, el esfuerzo permisible y el actuante, para determinar si es adecuada o no.

$$Cc = \sqrt{\frac{2\pi^2 E}{Fy}}$$
(2.36)
$$\frac{KL}{r} < 200$$
(2.37)

Donde:

Cc =Carga Crítica de esbeltez d = 32.4 Diámetro de la columna propuesta cm $2.1x \ 10^{6}$ kg/cm² E =Módulo de elasticidad del material kg/cm² Fv =Esfuerzo de Fluencia del material 2530 K = Factor de longitud efectiva (ver tabla 2.11.) 1 L = Altura de la columna central 1348 cm r = Radio de giro 11.1 cm

$$Cc = \sqrt{\frac{2\pi^2 \cdot 2.1x 10^6 \frac{kg}{cm^2}}{2530 \frac{kg}{cm^2}}} = 128$$
$$\frac{KL}{r} = \frac{1 \cdot 1348 cm}{11.1 cm} = 121.44$$

La línea punteada muestra el perfil pandeado de la columna					▼		
Valor teórico de K	0.5	0.7	1.0	1.0	2.0	2.0	
Valores recomendados de K cuando se aproxima a las condiciones ideales	0.65	0.80	1.2	1	2.10	2.0	
Simbología de la		Rotación	impedida]	Fraslaciór	ı	
condición de los				i	mpedida		
extremos		Rotación	libre]	Fraslaciór	1	
	0	impedida					
		Rotación impedida Traslación libre					
	9	Rotación	libre]	Fraslaciór	n libre	

Tabla 2.11. Factores de Longitud Efectiva para Columnas con Carga Axial. ------

1

_

Como $\frac{KL}{r} < Cc$ se aplica la siguiente ecuación para obtener el esfuerzo permisible en compresión:

$$Fa = \frac{\left[1 - \frac{(KL/r)^2}{2(Cc)^2}\right] Fy}{\frac{5}{3} + \frac{3(KL/r)}{8(Cc)} - \frac{(KL/r)^3}{8(Cc)^3}}$$
(2.38)
$$Fa = \frac{\left[1 - \frac{(121.44)^2}{2(128)^2}\right] \left(2530\frac{kg}{cm^2}\right)}{\frac{5}{3} + \frac{3(121.44)}{8(128)} - \frac{(121.44)^3}{8(128)^3}} = 726.28\frac{kg}{cm^2}$$

Por otra parte el esfuerzo actuante se determinó de la siguiente manera:

$$fa = \frac{C_a}{A}$$
(2.39)
$$fa = \frac{4949.4 \, kg}{101.57 \, cm^2} = 48.73 \frac{kg}{cm^2}$$

Como fa < Fa la columna es adecuada

Para las columnas secundarias se hicieron los mismos cálculos que para la columna central, pero se tomó la fuerza de reacción Ra de las trabes T1 y se multiplicó por dos ya que las columnas secundarias soportan dos trabes T1 a la vez.

$$Ra = Rb$$

$$Ra = \frac{1}{2}w \cdot l$$

$$Ra = \frac{1}{2}831.99 \frac{kg}{m} \cdot 6.64m = 2762.2kg$$

$$C_a = (2) \cdot (Ra) \qquad (2.40)$$

$$C_a = 2 \cdot 2762.2kg = 5524.41kg$$

Donde:

Ra, Rb =Fuerzas de reacción de las trabes T1kg
$$C_a$$
 =Carga axialkgw =Carga soportada por la trabe T1 más su propio peso831.99l =Longitud de la trabe T16.64m

En este caso se a propuesto una columna tubular oc de 324 mm x 6.35 mm (12.75 in x 0.250 in) (ver tabla 2.12.) de la cual se va a calcular el radio de giro, la relación de esbeltez, el esfuerzo permisible y el actuante, para determinar si es adecuada o no.

$$Cc = \sqrt{\frac{2\pi^2 E}{Fy}}$$
$$\frac{KL}{r} < 200$$

Donde:

Cc =	Carga crítica de esbeltez		
d =	Diámetro de la columna propuesta	32.4	cm
E =	Módulo de elasticidad del material	2.1×10^6	kg/cm ²
Fy =	Esfuerzo de Fluencia del material	2530	kg/cm ²
K =	Factor de longitud efectiva	1	
L =	Altura de las columnas secundarias	1269.12	cm
r =	Radio de giro	11.23	cm

$$Cc = \sqrt{\frac{2\pi^2 \cdot 2.1x 10^6 \frac{kg}{cm^2}}{2530 \frac{kg}{cm^2}}} = 128$$
$$\frac{KL}{r} = \frac{1 \cdot 1269.12 cm}{11.23 cm} = 113$$

Como $\frac{KL}{r} < Cc$ se aplica la siguiente ecuación para obtener el esfuerzo permisible en

compresión:

$$Fa = \frac{\left[1 - \frac{(KL/r)^2}{2(Cc)^2}\right] Fy}{\frac{5}{3} + \frac{3(KL/r)}{8(Cc)} - \frac{(KL/r)^3}{8(Cc)^3}}{\frac{1}{8(Cc)^3}}$$
$$Fa = \frac{\left[1 - \frac{(113)^2}{2(128)^2}\right] \left(2530\frac{kg}{cm^2}\right)}{\frac{5}{3} + \frac{3(113)}{8(128)} - \frac{(113)^3}{8(128)^3}} = 807.7\frac{kg}{cm^2}$$

Por otra parte el esfuerzo actuante se determinó de la siguiente manera:

$$fa = \frac{C_a}{A}$$
$$fa = \frac{5524.41kg}{63.35cm^2} = 87.21\frac{kg}{cm^2}$$

Como fa < Fa las columnas secundarias son adecuadas.

	× ×		OC TUBO CIRCULAR DIMENSIONES Y PROPIEDADES						
	Designacion		Diam. nom.	Diam. int.r	Peso	Peso Area Ejes		X-X y Y-Y	
	mm x mm in. x in.		in.	mm	kg/m	cm2	cm4	cm3	cm
Columnas Secundarias	324 x 6.35	12.75 x 0.250	12	311.2	49.73	63.35	7989.09	493.24	11.23
Columna Central	x 10.31	x 0.406		303.28	79.73	101.57	12498.8	771.8	11.1

Tabla 2.12. Dimensiones del Tubo Circular OC

2.8 CÁLCULO DE PESOS

Peso de la Envolvente Incluyendo el Ángulo de Coronamiento

Para obtener el peso de la envolvente y del ángulo de coronamiento se utilizaron los siguientes datos:

Dimensiones del ángulo de coronamiento	(0.076 x 0.076 x 0.006)	m
Peso por unidad de longitud	7.29	kg/m
Diámetro del tanque	18.3	m
Ancho de placas	2.438	m
Perímetro	57.49	m
Densidad del material	7850	kg/m ³

	Espes	or (m)				Volum	en	(\mathbf{m}^3)	Peso	Peso (kg)		
Anillo	Sin	Con	Á	rea		Sin		Con	Sin	Con		
	factor de	factor de	(r	n ²)	fa	ctor de	f	actor de	factor de	factor de		
	corrosión	corrosión			CO	rrosión	C	orrosión	corrosión	corrosión		
Primer	0.00683	0.010			C).9573		1.4016	7514.75	11002.56		
Segundo	0.00683	0.010		140.16).9573		1.4016	7514.75	11002.56		
Tercer	0.00483	0.008	14).6769		1.1213	5314.24	8802.21		
Cuarto	0.00283	0.006).3967		0.8410	3113.72	6601.85		
Quinto	0.00283	0.006		().3967		0.8410	3113.72	6601.85		
				Σ		26571.1	8	44011.03	;			

Tabla 2.13. Peso de los Anillos

En cuanto al ángulo de coronamiento se tomó su peso por unidad de longitud y se multiplicó por el perímetro del tanque como se muestra a continuación:

$$P_{ac} = p_L \cdot per_t$$
 (2.41)
 $P_{ac} = 7.29 \frac{kg}{m} \cdot 57.49m = 419.1021kg$

Donde:

P_{ac} = peso del ángulo de coronamiento

 $p_L = peso por unidad de longitud$

 $per_t = perímetro del tanque$

Por lo tanto el peso de la envolvente junto con el del ángulo de coronamiento se puede observar en la tabla 2.14:

C	Peso Kg		
Componente	Sin factor de corrosión	Con factor de corrosión	
Envolvente	26571.18	44011.03	
Ángulo de coronamiento	419.10	419.10	
Total	26990.2	44430.13	

Peso del Techo

Los datos para el cálculo del peso del techo se obtuvieron de la siguiente figura:

Figura 2.6 Arreglo del Techo

Fórmulas utilizadas para la obtención del peso del techo:

$$A = \frac{1}{2} per_t \cdot r \tag{2.42}$$

$$V = A \cdot t$$
 (2.43)

$$Pt = V \cdot \rho$$
 (2.44)

$$A = \frac{1}{2} 57.49 \, m \cdot 9.24 \, m = 265.60 \, m^2$$

$$V = 265.60 \, m^2 \cdot 0.005 \, m = 1.33 \, m^3$$

$$Pt = 1.33 \, m^3 \cdot 7850 \, \frac{kg}{m^3} = 10440.5 \, kg$$

Donde:

A=	Área		m^2
V=	Volumen		m ³
Pt=	Peso del techo		Kg
per _t =	Perímetro del tanque	57.49	m
t=	Espesor de placas	0.005	m
r=	Radio a considerar	9.24	m
p=	Densidad del material	7850	Kg/m ³

Peso del Fondo

Para el cálculo del peso del fondo se utilizaron las dimensiones de la figura 2.7

Con base al inciso 5.4.4 del A.P.I. 650 la pendiente mínima del fondo debe ser de 2.54 cm en 304.8 cm (1 in en 120 in) es decir un ángulo mínimo de 0.47°.

Figura 2.7 Arreglo del Fondo

Fórmulas utilizadas para la obtención del peso del fondo:

$$A = \frac{\pi \cdot d^2}{4}$$

$$V = A \cdot t_f$$

$$Pf = V \cdot \rho$$

$$A = \frac{\pi \cdot (18.3m)^2}{2} = 263.02m^2$$

$$(2.45)$$

$$(2.45)$$

$$(2.47)$$

$$4$$

$$V = 263.02 m^{2} \cdot 0.01 m = 2.63 m^{3}$$

$$Pf = 2.63 m^{3} \cdot 7850 \frac{kg}{m^{3}} = 20645.5 kg$$

Donde:

A =	Área del fondo		m^2
V =	Volumen del fondo		m^3
Pf =	Peso del fondo		kg
d =	diámetro del tanque	18.3	m
$t_{\rm f} =$	Espesor de placas	0.01	m
ρ =	Densidad del material	7850	kg/m ³

Peso del Líquido

Para el cálculo del peso del líquido se utilizaron las siguientes fórmulas:

$$V = \frac{\pi \cdot d^2}{4} \cdot h \tag{2.48}$$

$$Pl = V \cdot \rho_{H_2O} \tag{2.49}$$

$$V = \frac{\pi \cdot (18.3m)^2}{4} \cdot 12.2m = 3208.868m^3$$
$$W_{agua} = 3208.87m^3 \cdot 980\frac{kg}{m^3} = 3144692.6kg$$

Donde:

V =	Volumen o capacidad del tanque		m ³
$W_{agua} =$	Peso del líquido		kg
d =	diámetro del tanque	18.3	m
h =	Altura de diseño del tanque	12.2	m
ρ =	Densidad del agua	980	kg/m ³

Peso de Perfiles Estructurales

El peso de los perfiles utilizados se resume en la siguiente tabla:

Dorfil Tino	Use	Contidod	Longitud	Longitud Peso por Unidad de	
renn npo	USU	Cantuau	(m)	Longitud (kg/m)	Total (kg)
Canal CE	Largueros L1-L2	20	5.19	12.2	1266.36
Canal CE	Largueros L3-L6	35	4.62	12.2	1972.74
Viga I	Trabes T1	5	6.64	32.9	1092.28
Tubo Circular OC	Columna Central	1	13.48	79.73	1074.76
Tubo Circular OC	Columna Secundaria	5	12.69	49.73	3155.37
				Σ	8561.51

Peso del Tanque Vacío y lleno de Agua

Los valores del tanque vacío y lleno de agua se obtienen mediante la siguiente suma:

$$\begin{split} W_{vacio} &= Pt + Pe + Pf + Pp & (2.50) \\ W_{lleno} &= W_{vacio} + W_{agua} & (2.51) \\ W_{vacio} &= 10440.5\,kg + 44430.13\,kg + 20645.5\,kg + 8561.51 = 84077.64\,kg \\ W_{lleno} &= 84077.64\,kg + 3144692.6\,kg = 3228770.24\,kg \end{split}$$

Donde:

$W_{vacio} =$	Peso del tanque vacío		kg
W _{lleno} =	Peso del tanque lleno de agua		kg
Pt =	Peso del techo	10440.5	kg
Pe =	Peso de la envolvente con el ángulo de coronamiento	44430.13	kg
Pf =	Peso del fondo	20645.5	kg
Pp =	Peso de perfiles estructurales	8561.51	kg
W _{agua} =	Peso del líquido	3144692.6	kg

2.9 DISEÑO POR VIENTO

Para la obtención de los momentos que influyen en la estabilidad de tanques de almacenamiento atmosféricos se utiliza el procedimiento indicado en inciso 5.11.1 del API 650.

Para ello es necesario contar con las velocidades de viento, las cuales se determinan con la metodología establecida en el Manual de Diseño de Obras Civiles de la Comisión Federal de Electricidad.

Es importante señalar que el análisis a aplicar es para revisar la seguridad de la estructura del tanque ante el efecto de las fuerzas que generan presiones producidas por el viento sobre superficies expuestas.

Del Manual de la Comisión Federal de Electricidad se tomó el diagrama de flujo que se presenta en la figura 2.8. Del diagrama de flujo sólo se llega al cálculo de la velocidad de diseño V_D que es necesaria para obtener las presiones vertical y horizontal de viento según el inciso 5.11 del A.P.I. 650.

Figura 2.8 Procedimiento del Análisis de Viento

Clasificación de las Estructuras según su Importancia

Grupo

Grupo

Atendiendo al grado de seguridad aconsejable para una estructura, las construcciones se clasifican según los grupos que se indican a continuación:

> Estructuras para las que se recomienda un grado de seguridad elevado. Pertenecen a este grupo aquellas que en caso de fallar causarían la pérdida de un

número importante de vidas, o perjuicios económicos o culturales А excepcionalmente altos; asimismo, las construcciones y depósitos cuya falla implique un peligro significativo por almacenar o contener sustancias tóxicas o inflamables.

Estructuras para las que se recomienda un grado de seguridad moderado. Se encuentran dentro de este grupo aquellas que en caso de fallar, representan un

bajo riesgo de pérdida de vidas humanas y que ocasionarían daños materiales de В magnitud intermedia. Este es el caso de plantas industriales, bodegas ordinarias, gasolineras, comercios, restaurantes, etc.

Estructuras para las que se recomienda un bajo grado de seguridad

Son aquellas cuya falla no implica graves consecuencias, ni puede causar daños Grupo a construcciones de los grupos A y B. Este es caso de bodegas provisionales, С cimbras, carteles, así como sus recubrimientos tales como cancelerías y elementos estructurales que formen parte de las fachadas de las construcciones.

Como el producto a almacenar (crudo) es inflamable se ha determinado que el tanque atmosférico pertenece al grupo A de la clasificación de las estructuras según su importancia.

Clasificación de las Estructuras según su Respuesta ante la Acción del Viento

Las construcciones se clasifican en cuatro tipos. Con base en esta clasificación podrá seleccionarse el método para obtener las cargas de diseño por viento sobre las estructuras y la determinación de efectos dinámicos suplementarios si es el caso.

- Tipo 1 Estructuras poco sensibles a las ráfagas y a los efectos dinámicos del viento. Abarca todas aquellas en las que la relación de aspecto H/D ≤ 5. Pertenecen a este tipo la mayoría de los edificios para habitación u oficinas, bodegas, naves industriales, teatros y auditorios, puentes cortos y viaductos.
- Tipo 2 Dentro de este tipo ser cuentan los edificios con relación de aspecto H/D > 5. Pertenecen a este tipo tanques elevados, antenas, bardas, parapetos, anuncios y en general, las construcciones que presentan una dimensión muy corta paralela a la dirección del viento.
- Tipo 3 En este tipo se incluyen las construcciones y elementos aproximadamente cilíndricos o prismáticos esbeltos, tales como chimeneas, tuberías exteriores o elevadas.
- Tipo 4En este tipo se hallan las formas aerodinámicamente inestables como son los cables
de las líneas de transmisión, las tuberías colgantes y las antenas parabólicas.

En el caso del tanque atmosférico la relación de aspecto; altura sobre diámetro interior es igual a:

$$\frac{H}{D} = \frac{12.2m}{18.3m} = 0.67 \tag{2.52}$$

Por lo tanto cumple con lo establecido por el tipo 1 de la clasificación de las estructuras según su respuesta ante la acción del viento.

Categorías de Terrenos y Clases de Estructuras

Tanto en el procedimiento de análisis estático como en el dinámico intervienen factores que dependen de las condiciones topográficas y de exposición locales del sitio en donde se instalará la construcción, así como del tamaño de ésta, a fin de evaluar correctamente dichos factores, es necesario establecer clasificaciones de carácter práctico. En la tabla 2.16. se consignan cuatro categorías de terreno atendiendo al grado de rugosidad que se presenta alrededor de la zona de instalación. La tabla 2.17. divide a las estructuras y a los elementos que forman parte de ellas en tres clases de acuerdo con su tamaño.

Cat.	Descripción	Ejemplos	Limitaciones	
1	Terreno	Franjas costeras planas, zonas	La longitud mínima de este	
	abierto,	de pantanos, campos aéreos,	terreno en la dirección del viento	
	prácticamente	pastizales y tierras de cultivo sin	debe ser de 2000 m o diez veces	
	plano y sin	setos o bardas alrededor.	la altura de la construcción por	
	obstrucciones.	Superficies nevadas planas	diseñar, la que sea mayor.	
2	Terreno plano u	Campos de cultivo o granjas	Las obstrucciones tienen alturas	
	ondulado con	con pocas obstrucciones tales	de 1.5 m a 10 m en una longitud	
	pocas	como setos o bardas alrededor,	mínima de 1500 m.	
	obstrucciones.	árboles y construcciones		
		dispersas.		
3	Terreno	Áreas urbanas, suburbanas y de	Las obstrucciones presentan	
	cubierto por	bosques, o cualquier terreno con	alturas de 3 a 5 m. la longitud	
	numerosas	numerosas obstrucciones mínima de este tipo de terro		
	obstrucciones	estrechamente espaciadas. El la dirección del viento deb		
	estrechamente	tamaño de las construcciones	500 m o diez veces la altura de la	
	espaciadas.	corresponde al de las casas y	construcción, la que sea mayor.	
		viviendas.		
4	Terreno con	Centros de grandes ciudades y	Por lo menos el 50% de los	
	numerosas	complejos industriales bien	edificios tienen una altura mayor	
	obstrucciones	desarrollados.	que 20 m. las obstrucciones miden	
	largas, altas y		de 10 a 30 m de altura, la longitud	
	estrechamente		mínima de este tipo de terreno en	
	espaciadas.		la dirección del viento debe ser la	
			mayor entre 400 m y diez veces la	
			altura de la construcción.	

Tabla 2.16. Categoría del Terreno Según su Rugosidad

Clase	Descripción
А	Todo elemento de recubrimiento de fachadas, de ventanerías y de techumbres
	y sus respectivos sujetadores. Todo elemento estructural aislado, expuesto
	directamente a la acción del viento. Asimismo, todas las construcciones cuya
	mayor dimensión, ya sea horizontal o vertical, no sea mayor que 20 m.
В	Todas las construcciones cuya mayor dimensión, ya sea horizontal o vertical,
	varíe entre 20 y 50 m.
С	Todas las construcciones cuya mayor dimensión, ya sea horizontal o vertical,
	sea mayor que 50 m.

Tabla 2.17. Clase de Estructura Según su Tamaño

De las tablas anteriores se ha determinado que la categoría del terreno según su rugosidad, y la clase de estructura a considerar son "1", "A" respectivamente.

Velocidad Regional V_R

La velocidad regional del viento VR es la máxima velocidad media probable de presentarse con un cierto periodo de recurrencia en una zona o región determinada del país. En este caso se tomó la velocidad regional de 140 km/h para un período de recurrencia de 50 años (ver figura 2.9.).

Factor de Exposición Fa

El coeficiente Fa refleja la variación de la velocidad del viento con respecto a la altura H. Asimismo, considera el tamaño de la construcción o de los elementos de recubrimiento y las características de exposición. El factor de exposición se calcula con la siguiente expresión:

$$Fa = Fc \cdot Frz \tag{2.53}$$

Donde:

Fa = Factor de exposición

Fc = Factor de tamaño

Frz = Factor de rugosidad y altura

Figura 2.9. Velocidades Regionales para un Periodo de Retorno de 50 años

Factor de Tamaño Fc

Factor que determina la influencia del tamaño de la construcción, toma en cuenta el tiempo en el que la ráfaga del viento actúa de manera efectiva sobre una construcción y puede determinarse de acuerdo a la siguiente tabla:

Clase de la Estructura	Fc
А	1.0
В	0.95
С	0.90

Tabla 2.18 Factor de Tamaño Fc

Como la clase de la estructura según su tamaño es A se ha determinado que Fc = 1

Factor de Rugosidad y Altura Frz

Factor que establece la variación de la velocidad del viento con la altura H. Dicha variación está en función de la rugosidad del terreno y del tamaño de la construcción. Se obtiene de acuerdo a las expresiones siguientes:

$$Frz = 1.56 \left[\frac{10}{\delta}\right]^{\alpha} \quad si H \le 10$$
 (2.54)

$$Frz = 1.56 \left[\frac{H}{\delta} \right]^{\alpha} \quad si10 < H < \delta$$
 (2.55)

$$Frz = 1.56$$
 $si H \ge \delta$ (2.56)

Donde:

 δ = Altura gradiente

α = Exponente que determina la forma de la variación de la velocidad del viento con la altura

Ambos coeficientes se obtienen de la siguiente tabla:

Tabla 2.19 Valores de α y δ

Categoría	α			δ
del	Clase	Clase de Estructura		
Terreno	А	В	C	
1	0.099	0.101	0.105	245
2	0.128	0.131	0.138	315
3	0.156	0.160	0.171	390
4	0.170	0.177	0.193	455

m

Como la categoría del terreno es 1, y la clase de la estructura es A se puede establecer que los valores para α y δ son 0.099 y 245 respectivamente. Por lo tanto como:

Entonces se utiliza la ec.2.54:

$$Frz = 1.56 \left[\frac{H}{\delta} \right]^{\alpha}$$
$$Frz = 1.56 \left[\frac{12.2 m}{245 m} \right]^{0.099}$$
$$Frz = 1.159$$

Ya con los dos factores se procede a calcular el factor de exposición Fa:

$$Fa = Fc \cdot Frz$$
$$Fa = 1.0 \cdot 1.159 = 1.159$$

Factor de Topografía Local Ft

Este factor toma en cuenta el efecto topográfico local del sitio donde se instala la estructura. Se obtiene de la tabla 2.20.

Tabla 2.20 Factor de Topografía Local Ft
--

Sitios	Topografía	
Protegidos	Base de promontorios y faldas de serranías del lado de sotavento.	0.8
1100051000	Valles cerrados	0.9
Normales	Terreno prácticamente plano, campo abierto, ausencia de cambios	1.0
	topograneos importantes, con pendientes menores que 5%.	
	Terrenos inclinados con pendientes entre 5 y 10 %, valles abiertos y litorales planos	1.1
Expuestos	Cimas de promontorios, colinas o montañas, terrenos con pendientes	
	mayores que 10%, cañadas cerradas y valles que forman un embudo o	1.2
	cañón, islas.	

Con base en la tabla 2.20 se ha determinado un factor de topografía Ft = 1.0

Velocidad de Diseño

Con los datos anteriores se procede a calcular la velocidad de diseño V_D . La velocidad de diseño es la velocidad a partir de la cual se calculan los efectos del viento sobre la estructura o sobre un componente de la misma. Ésta se obtiene de acuerdo a la siguiente ecuación:

$$V_{D} = Ft \cdot Fa \cdot V_{R}$$

$$V_{D} = 1 \cdot 1.159 \cdot 140 \frac{km}{h}$$

$$V_{D} = 162.26 \frac{km}{h}$$
(2.57)

Una vez obtenida la velocidad de diseño, se utiliza en las ecuaciones 2.66 y 2.67 para determinar la presión vertical y horizontal de viento y con éstas evaluar las dos condiciones para que el tanque no sea anclado (inciso 5.11.1 del API 650). Dichas condiciones a cumplir se presentan a continuación:

1.
$$0.6 M_W + M_P < M_{DL} / 1.5$$
 (2.58)

2.
$$M_W + 0.4 M_P < (M_{DL} + M_F) / 2$$
 (2.59)

Donde:

- M_W = Momento en la unión envolvente-fondo que involucra el momento por presión horizontal y el momento por presión vertical del viento.
- M_P = Momento en la unión envolvente-fondo que involucra la presión interna.
- M_{DL} = Momento en la unión envolvente-fondo que involucra el peso de la envolvente, soportes y placas del techo.
- M_F = Momento en la unión envolvente-fondo que involucra el peso del líquido a la mitad de la altura del tanque.

Los momentos anteriores se calculan con las siguientes ecuaciones:

$$M_w = Mh + Mv \tag{2.60}$$

$$M_{DL} = (Pt + Pe + Ps) \cdot r \tag{2.61}$$

$$M_F = \frac{W_{lleno}}{2} \cdot r \tag{2.62}$$

 $M_P = P_{\max} \cdot A_o \cdot r \tag{2.63}$

$$Mh = P_{\rm h} \cdot A_{\Pi} \cdot \frac{h}{2} \tag{2.64}$$

$$Mv = P_{v} \cdot A_{o} \cdot r \tag{2.65}$$

$$P_{\nu} = 0.86 \, k P a \left(\frac{V_D}{190}\right)^2 \tag{2.66}$$

$$P_{h} = 1.44 \, kPa \left(\frac{V_{D}}{190}\right)^{2} \tag{2.67}$$

$$\mathbf{A}_{\Box} = \mathbf{h} \cdot \mathbf{D} \tag{2.68}$$

$$P_{\max} = \frac{1.1 \cdot A \cdot \tan \theta}{D^2} + 0.08(t)$$
 (2.69)

$$A = (wc + wh + 76) \cdot t \tag{2.70}$$

$$wc = 0.6(r \cdot t)^{o.5}$$
 (2.71)

$$wh = 0.3(R_2 \cdot t)^{0.5}$$
 (2.72)

$$R_2 = \frac{r}{sen\theta} \tag{2.73}$$

Donde:

Mh =	Momento que involucra la presión horizontal		
Mv =	Momento que involucra la presión vertical		
Pt =	Peso del techo	10440.5	kg
Pe =	Peso de la envolvente	44430.13	kg
Ps =	Peso de largueros, trabes y columnas	8561.51	kg
r =	Radio interno de la envolvente	9150	mm
W _{lleno} =	Peso del tanque lleno	3228754.9	kg
P _{max} =	Presión máxima de diseño		MPa
$A_{\circ} =$	Área del techo	263021990.94	mm^2
$A_{\Box} =$	Área frontal del tanque		mm^2
$P_h =$	Presión de viento horizontal		MPa
$P_v =$	Presión de viento vertical		MPa
$V_D =$	Velocidad de diseño del viento	162.26	km / h
A =	Área a compresión en la unión techo-envolvente		mm^2
wc =	Longitud del ángulo de coronamiento a		
	compresión		111111

wh =	Longitud del techo a compresión		mm
$\theta =$	Ángulo entre la horizontal y el techo	8	0
D =	Diámetro del tanque	18300	mm
h =	Altura del tanque	12192	mm
t =	Espesor del techo	5	mm

Aplicando los valores a las ecuaciones anteriores tenemos que:

$$P_{\nu} = 0.86 \, kPa \left(\frac{126.26}{190}\right)^2 = 0.62721 \, \text{kPa}$$
$$P_{\nu} = 0.000627212 \, \text{MPa}$$
$$P_{h} = 1.44 \, kPa \left(\frac{126.26}{190}\right)^2 = 1.05022 \, \text{kPa}$$
$$P_{h} = 0.001050215 \, \text{MPa}$$
$$A_{\Box} = 12192 \, \text{mm} \cdot 18300 \, \text{mm} = 223113600 \, \text{mm}^2$$

 $Mh = 0.00105022 MPa \cdot 223113600 mm^2 \cdot \frac{12192mm}{2} = 1428398006.89 Nmm$

 $Mv = 0.000627212 MPa \cdot 263021990.94 mm^{2} \cdot 9150 mm = 1509479945.58 Nmm$ $M_{w} = 1428398006.89 Nmm + 1509479945.58 Nmm = 2937877952.48 Nmm$

 $M_{_{DL}} = (10440.5\,kg + 44430.42\,kg + 8561.51kg) \cdot 9.15m = 580406.73kgm$ $M_{_{DL}} = 5692413090\,Nmm$

$$M_{F} = \frac{3228754 \cdot 9 \, kg}{2} \cdot 9.15 \, m = 14771553 \cdot 67 \, kgm$$

$$\frac{M_{F} = 1.4486 \, x10^{11} \, Nmm}{R_{2}} = \frac{9150 \, mm}{sen8^{\circ}} = 65745.5 \, mm$$

$$wc = 0.6(9150 \, mm \cdot 5 \, mm)^{o.5} = 128 \, mm$$

$$wh = 0.3(65745.5 \, mm \cdot 5 \, mm)^{0.5} = 172 \, mm$$

$$A = (128 \, mm + 172 \, mm + 76 \, mm) \cdot 5 \, mm = 1880 \, mm^{2}$$

$$P_{max} = \frac{1.1 \cdot 1880 \, mm^{2} \cdot \tan 8}{(18.3 \, m)^{2}} + 0.08(5 \, mm) = 1.269 \, kPa$$

$$P_{max} = 0.001269 \, MPa$$

 $M_{P} = 0.001269 MPa \cdot 263021990.94 mm^{2} \cdot 9150 mm = 3054040394.50 Nmm$

Una vez obtenidos todos los valores se procede a evaluar las dos condiciones:

$$0.6(2937877952.48 \text{ Nmm}) + 3054040394.50 \text{ Nmm} < \frac{5692413090 \text{ Nmm}}{1.5}$$

$$4816767165 \text{ Nmm} < 3794942060 \text{ Nmm} \Rightarrow \text{No se cumple}$$

$$2937877952.48 \text{ Nmm} + 0.4 (3054040394.50 \text{ Nmm}) < \frac{(5692413090 \text{ Nmm} + 1.4486x10^{11} \text{ Nmm})}{2}$$

$$4159494110 \text{ Nmm} < 75276206550 \text{ Nmm} \Rightarrow \text{Si se cumple}$$

Como la primer condición no se cumple es necesario anclar el tanque. El anclaje será calculado posteriormente a la evaluación por sismo.

2.10 DISEÑO POR SISMO

Las recomendaciones que se estipulan en el presente inciso tienen por objeto determinar las fuerzas sísmicas que obran sobre tanques sometidos a temblores. Tales fuerzas son función de la masa del recipiente, las masas impulsivas y convectivas que simulan el fluido y la masa de la estructura de soporte, así como de las aceleraciones espectrales derivadas del espectro de diseño correspondiente a la zona sísmica y el tipo de terreno en que se ubica la estructura.

Para el diseño sísmico de tanques de almacenamiento es necesario tener en cuenta los efectos hidrodinámicos del líquido almacenado en adición a los efectos de inercia de la masa del conjunto. Las paredes y el fondo de un recipiente necesitan diseñarse ante presiones hidrodinámicas generadas por movimientos impulsivos y convectivos del fluido. Las presiones impulsivas son debidas a1 impacto del liquido con el recipiente en movimiento, en tanto que las presiones conectivas se deben a las oscilaciones del fluido.

Para tratar los efectos hidrodinámicos, el fluido almacenado se puede reemplazar por dos masas virtuales ligadas a1 recipiente: una masa impulsiva, ligada rígidamente, que representa los efectos hidrodinámicos debidos a1 movimiento de cuerpo rígido del recipiente; y una masa convectiva, ligada flexiblemente, que representa los efectos hidrodinámicos debidos a1 modo fundamental de vibración del líquido.

El procedimiento para esta evaluación se tomó del apéndice E del API 650 y con ayuda del Manual de Obras Civiles de la Comisión Federal de Electricidad se obtuvo el coeficiente de la zona sísmica.

Momento de Volteo por Sismo

El momento de volteo por sismo se puede determinar mediante la siguiente expresión (apéndice E del API 650):

$$M = ZI(C_1W_sX_s + C_1W_rH_t + C_1W_1X_1 + C_2W_2X_2)$$
(2.74)

Donde:

M =	Momento de volteo por sismo K			
Z =	Coeficiente sísmico de la zona.			
C1 , C2 =	Coeficiente de fuerza lateral			
I =	Factor de rigidez	1		
W /	Peso de la masa efectiva del líquido que se adhiere a las	Kg		
$\mathbf{vv}_1 =$	paredes del tanque (convectiva).			
W _	Peso de la masa efectiva del líquido que se mueve en el		Va	
vv ₂ -	primer modo de Sloshing (chapoteo).		мg	
Wr =	Peso del techo	10440.5	kg	
Ws =	Peso total de la envolvente	44430.13	kg	
V . –	Altura medida de la parte inferior del tanque hasta el		m	
$X_1 \equiv$	centroide de la fuerza sísmica lateral generada por W1.		111	
V . –	Altura medida de la parte inferior del tanque hasta el		m	
$\Lambda_2 =$	centroide de la fuerza sísmica lateral generada por W2.		111	
V –	Altura de la base del tanque al centro de gravedad de la	61	m	
Λ_8 –	envolvente	0.1 III		
Ht =	Altura total del tanque.	12.2	m	

Para obtener los valores de los espectros sísmicos, primero se tiene que localizar la zona sísmica en la cual se propone instalar el tanque (Dos Bocas, Tabasco) mediante el siguiente mapa que se tomó del Manual de Obras Civiles de la Comisión Federal de Electricidad:

Figura 2.10. Regionalización Sísmica de la República Mexicana

Clasificación de los terrenos de acuerdo a su rigidez:

- I Terrenos firmes como: Tepetate, arenisca medianamente cementada, arcilla muy compacta o suelo con características similares.
- II Suelo de baja rigidez como: Arenas no cementadas o limos de mediana o alta compacidad, arcillas de mediana compacidad o suelos de características similares.
- III Arcillas blandas muy compresibles.

Con base en la región sísmica "B", y al tipo de suelo "II" podemos determinar el coeficiente sísmico Z, el cual es 0.30 ver tabla 2.21.

Zona	Tipo de	Coeficiente
Sísmica	Suelo	Sísmico
	Ι	0.14
В	II	0.30
	III	0.36

Tabla 2.21 Coeficiente Sísmico

Masa Efectiva Contenida en el Tanque

Las masas efectivas W_1 y W_2 se determinarán multiplicando el peso total del fluido del tanque WT por las relaciones W_1/WT y W_2/WT respectivamente obtenidas de la figura 2.11. y de la relación Diámetro /Altura H.

Las alturas desde el fondo del tanque a los centroides de las fuerzas sísmicas laterales, aplicadas a W_1 y W_2 , (X_1 y X_2), se determinan multiplicando H por las relaciones X_1/H y X_2/H respectivamente obtenidas de la Figura 2.12 y de la relación D/H.

Figura 2.11. Masas Efectivas

Figura 2.12. Centroide de la Fuerza

Sísmica

Siendo:

$$\frac{D}{H} = \frac{18.3}{12.2} = 1.5$$
(2.75)
WT = 3144692.6kg (ver inciso 2.8 calculo de pesos)

De las gráficas tenemos que:

$$W_1 / WT = 0.7$$
 y $W_2 / WT = 0.3$
 $X_1 / H = 0.41$ y $X_2 / H = 0.7$

Despejando las variables:

$$W_{1} = 0.7 \cdot 3144692.6 \, kg = 2201284.82 \, kg$$
$$W_{2} = 0.3 \cdot 3144692.6 \, kg = 943407.78 \, kg$$
$$X_{1} = 0.41 \cdot 12.2 \, m = 5.002 \, m$$
$$X_{2} = 0.7 \cdot 12.2 \, m = 8.54 \, m$$

Periodo Fundamental del Efecto de Sloshing T

$$T = 1.81 \cdot (K) (D)^{0.5} \tag{2.76}$$

Donde:

- T = Periodo fundamental del efecto de sloshing a calcular
- K = Coeficiente obtenido de la figura 2.13 0.58
- D = Diámetro del tanque 18.3 m

Figura. 2.13. Grafica de Relación D/H en K

Sustituyendo el valor de K en la fórmula 2.76 del periodo fundamental de sloshing, tenemos que:

$$T = (1.81)(0.58)(18.3m)^{0.5} = 4.49 s$$

Coeficientes de Fuerzas Laterales

El coeficiente sísmico de fuerza lateral C1 será de 0.60, siendo este un valor estándar. C2 estará en función del período fundamental del efecto sloshing T.

Cuando:
$$T < 0.45$$
 $C2 = \frac{0.75}{T}S$ (2.77)
 $T > 0.45$ $C2 = \frac{3.375}{T^2}S$ (2.78)

Donde:

C1, C2 Coeficientes de fuerzas laterales a calcular

S = Factor de amplificación de sitio para el tipo de suelo 2 (ver tabla 2.22) 1.0

T = Periodo fundamental del efecto de sloshing

Tipo de suelo	Factor de
	amplificación
Ι	1.0
II	1.0
III	1.5

Tabla 2.22 Factor de Amplificación del Sitio

4.49
Como T > 0.45 se aplica la ecuación $C2 = \frac{3.375}{T^2}$ S

$$C_2 = \frac{3.375}{4.49^2} 1$$
$$C_2 = 0.1674$$

Una vez obtenido todos estos valores se sustituyen en la fórmula del momento de volteo M.

$$M = 0.3 \cdot I \begin{pmatrix} 0.6 \cdot 44430.13kg \cdot 6.1m + 0.6 \cdot 10440.5kg \cdot 12.2m \\ + 0.6 \cdot 2201284.82kg \cdot 5.002m + 0.1674 \cdot 943407.78kg \cdot 8.54m \end{pmatrix}$$
$$M = 2465400kgm$$

Resistencia al volteo, WL

La resistencia al momento de volteo respecto del fondo del tanque podrá ser prevenida por el peso del cuerpo del tanque y mediante anclaje. Para tanques sin anclaje, el peso de la porción del líquido contenido puede ser usado para resistir el volteo.

$$WL = 99(tb)\sqrt{FyHG}$$
(2.79)

WL no debe ser mayor que 196 HDG.

Donde:

WL =	Resistencia al volteo a calcular		N/m
tb =	Espesor del primer anillo menos factor de corrosión	6.4	mm
Fy =	Esfuerzo mínimo de fluencia del material del fondo	250	MPa
G =	Densidad relativa del crudo.	0.98	

$$WL = 99(6.4 mm) \sqrt{250 MPa(12.2 m)(0.98)} = 34640 \frac{N}{m}$$

196HDG = 196(12.2 m)(18.3 m)(0.98) = 42883.78 (2.80)
WL \le 196HDG no es necesario anclar el tanque

Compresión del Cuerpo

Para tanques sin anclaje la fuerza máxima de compresión en el fondo del cuerpo, puede determinarse mediante lo siguiente:

Caso:

$$1 \quad \frac{M}{D^2 (Wt + WL)} \le 0.785 \qquad \Rightarrow \quad b = (W_t) + \frac{1.273M}{D^2}$$
(2.81)

2
$$0.785 \le \frac{M}{D^2 (Wt + WL)} \le 1.5$$

3
$$1.5 \le \frac{M}{D^2(Wt + WL)} \le 1.57$$

 $4 \quad \frac{M}{D^2 \left(Wt + WL\right)} > 1.57$

$$\Rightarrow \frac{b+W_L}{W_t+W_L} = \frac{1.49}{1-\frac{0.637M}{D^2(W_t+W_L)}}$$
(2.82)

El tanque es estructuralmente inestable. La fuerza máxima de compresión longitudinal en el fondo del cuerpo, será determinada

por:
$$b = (W_t) + \frac{1.273M}{D^2}$$
 (2.83)

Donde:

$$W_{t} = \frac{W_{r} + W_{n}}{\pi \cdot D}$$
(2.84)
$$W_{t} = \frac{44430.13 \, kg + 13679.6}{\pi \cdot 18.3 \, m}$$

$$W_{t} = 1010.76 \frac{kg}{m}$$

→

Siendo:

b =	Fuerza máxima de compresión en el fondo del cuerpo		
	sobre el perímetro		
$\mathbf{W}_t =$	Peso del tanque actuando en el perímetro de la base		kg/m
M =	Momento de volteo de sismo	2458234.33	kg m
WL =	Resistencia al volteo	34640	N/m
		(3532.21)	(kg/m)
Wn =	Peso del techo y largueros	13679.6	kg
$W_s =$	Peso de la envolvente	44430.13	kg
D =	Diámetro del tanque	18.3	m

Por lo tanto:

$$\frac{M}{D^2 (Wt + WL)} = \frac{2465400 \, kg \, m}{(18.3 \, m)^2 \cdot \left(1010.76 \frac{kg}{m} + 3532.21 \frac{kg}{m}\right)}$$
(2.85)
$$\frac{M}{D^2 (Wt + WL)} = 1.62$$

Como el valor de la relación $\overline{D^2(Wt + WL)}$ es igual a 1.62 se procede a determinar b según el caso 4.

Figura 2.14 Fuerza de Compresión

Compresión Máxima Permisible del Cuerpo

El esfuerzo máximo de compresión longitudinal en la envolvente será determinado de acuerdo a los siguientes casos:

Caso:

1
$$\frac{\mathbf{G} \cdot \mathbf{H} \cdot \mathbf{D}^2}{t^2} \ge 44$$
 \Rightarrow $Fa = \frac{83 \cdot t}{D}$ (2.86)
2 $\frac{\mathbf{G} \cdot \mathbf{H} \cdot \mathbf{D}^2}{t^2} < 44$ \Rightarrow $Fa = \frac{8 \cdot t}{2.5 \cdot D} + 7.5\sqrt{(G \cdot H)}$
Fa, no será mayor de 0.5 Fty

Donde:

Fa =	Esfuerzo máximo de compresión permisible a		
	calcular		
t =	Espesor del anillo inferior sin corrosión permisible	6.4	mm
G =	Densidad relativa del crudo.	0.98	
H =	Altura del tanque	12.2	m
D =	Diámetro del tanque	18.3	m

$$\frac{G \cdot H \cdot D^2}{t^2} =$$
(2.87)
$$\frac{0.98 \cdot 12.2 \cdot (18.3)^2}{(6.4)^2} = 97.75$$

Como 97.75 > 44 se utiliza:

$$Fa = \frac{83 \cdot t}{D}$$
$$Fa = \frac{83 \cdot 6.4}{18.3} = 29 MPa$$

La condición a cumplir para que el tanque no sea anclado es:

$$\frac{b}{t} < Fa$$

$$\frac{103.8235 \frac{kg}{cm}}{0.64 cm} = 162.2 \frac{kg}{cm^2} = 15.91 MPa$$

$$15.91 MPa \langle 29 MPa$$

$$\therefore No es necesario anclar el Tanque$$

2.11 ANCLAJE

Una de las condiciones (0.6 $M_W + M_P < M_{DL} / 1.5$) para no anclar el tanque en la evaluación por viento bajo la condición de tanque vacío con presión interna junto con las presiones externas vertical y horizontal no se cumplió, es por ello que a continuación se presenta el cálculo de las anclas.

Para este caso se proponen 8 anclas con un diámetro de 2.54 cm (1 pulg) cada una. Donde la fuerza actuante de cada ancla se puede calcular con la siguiente expresión (párrafo 5.11.3 del API 650):

$$tb = \left(\frac{4 \cdot M}{d \cdot N}\right) - \left(\frac{W}{N}\right) \tag{2.88}$$

$$W = Pt + Pe - 0.4[(P - 0.08 \cdot t) \cdot D^2 \cdot 0.785] - W1)$$
(2.89)

Donde:

tb =	Fuerza de tensión en un ancla a calcular		Ν
$\mathbf{W} =$	Peso del techo más el peso de la envolvente menos 0.4		Ν
	veces la presión de levantamiento		
W1 =	Peso de la envolvente más la carga muerta que actúe sobre el		Ν
	perímetro (fuerzas de reacción) menos el factor de corrosión		
P =	Presión máxima de diseño	1.269	kPa
D =	Diámetro del tanque	18.3	m
t =	espesor del techo	5	mm
pe =	Peso de la envolvente sin factor de corrosión	264685	N
Pe =	Peso de la envolvente con factor de corrosión	435713	Ν
Mw =	Momento de volteo por viento	2937877.95	N m
d =	Diámetro al centro del ancla	18.44	m
N =	Número de anclas	8	

Para determinar la carga muerta que se sumará al peso de la envolvente y así obtener W1 se toman los datos del inciso 2.8 del presente capítulo. La carga muerta de las placas del techo es igual a 39.31 kg/m^2 , el área tributaria de 5.542 m^2 y la longitud de los largueros L3 es de 4.62 m. Con estos datos se obtiene la carga muerta en el área tributaria, el peso por unidad de longitud y finalmente se determinan las fuerzas de reacción en los largueros mencionados teniendo en cuenta su propio peso:

$$Pat = cm \cdot At$$
$$w = \frac{Pat}{l}$$
$$Pat = 39.31 \frac{kg}{m^2} \cdot 5.542 m^2 = 217.86 kg$$
$$w = \frac{217.86 kg}{4.62 m} = 47.16 \frac{kg}{m}$$

Donde:

Pat =	Peso del área tributaria		
$\mathbf{w} =$	Peso por unidad de longitud del larguero L3		
cm =	Carga muerta de las placas del techo	39.31	kg/m ²
At =	Área tributaria	5.542	m^2

Con ayuda de la siguiente figura se determinaron las fuerzas de reacción Ra.

LARGUERO L3

Figura 2.15 Larguero L3

$$Ra = Rb$$
$$Ra = \frac{1}{2}w \cdot b$$

$$Ra = \frac{1}{2}59.16\frac{kg}{m} \cdot 4.62m = 137.12\,kg$$

Número de largueros = 35

Reacción a considerar = Ra

$$Ra \cdot N_L = 137 .12 \ kg \cdot 35 = 4799 .2 \ kg = 47080 \ N$$

 $W1 = 264685 N + 47080 \ N = 311765 \ N$

 $W = 102421.3N + 435713N - 0.4 \left[\left((1.269 \, kPa - 0.08 \cdot 5 \, mm) \cdot (18.3 \, m)^2 \cdot 0.785 \right) - 311765 \, N \right]$ W = 662748.9

 $\Rightarrow tb = \left(\frac{4 \cdot 2937877.95 N m}{18.44 m \cdot 8}\right) - \left(\frac{662748.9 N}{8}\right) = -3183.15 N$

Estudiando los factores que involucran la fórmula anterior se comprende que es una fuerza a compresión, es decir el mismo peso de la estructura mantiene al tanque estable. Las anclas sufren cierta tensión al evitar el levantamiento del tanque, es por eso que sólo trabajan a tensión, por lo tanto en este caso no es necesario anclarlo.

CAPÍTULO 3 MODOS DE FALLA Y DESCRIPCIÓN DEL MODELO

3.1 INTRODUCCIÓN

En este capítulo se discutirá acerca de la sobre presurización en un tanque de almacenamiento atmosférico, por lo que es importante mencionar los modos de falla posibles, tal es el caso de las fracturas en las uniones techo-envolvente, envolvente-fondo, placa del fondo, accesorios, así como deformaciones fuera de la norma.

Se continuará con la descripción del modelo numérico a utilizar en los análisis, características de los elementos finitos y del procedimiento del análisis.

3.2 MODOS DE FALLA

Para presentar fallas de componentes estructurales, los ingenieros han investigado las causas que llevan al inicio de éstas y como minimizar el crecimiento de las mismas. Se han desarrollado varios estudios representando modelos con cargas e imperfecciones, y se ha demostrado que las fallas dependen tanto de las cargas como de la geometría de un componente.

A pesar de cuidadosas inspecciones de los materiales se omiten defectos que a la larga producen falla. Ya sea por una incorrecta fabricación o pésimo procedimiento de instalación, el material presenta ciertos defectos que a la larga causan falla.

Los modos de falla potenciales y apropiados para el caso en donde el levantamiento del tanque puede ocurrir como parte de la presurización del mismo, crean la necesidad de examinar los esfuerzos involucrados en las uniones anteriormente mencionadas con más detalle.

En los modos de falla en discusión, es importante reconocer que la deformación no necesariamente es una condición de falla, sino que depende del tipo de deformación que esté ocurriendo. Un ejemplo de esto se nota en las pequeñas deformaciones que presentan las placas de la envolvente causadas por el calor ejercido de la soldadura, a lo que se le conoce como pandeo.

3.2.1 FALLA EN LA UNIÓN TECHO-ENVOLVENTE

Una falla en la unión techo-envolvente asegura la integridad de la envolvente y de la unión envolvente-fondo ante una sobre presurización inesperada.

Es debida a que el ángulo de coronamiento cede en compresión por pandeo local ante una presión interna, originando así una fractura en la soldadura entre el ángulo y las placas del techo.

El esfuerzo circunferencial a compresión que inicia la cedencia en el ángulo, es causado por la presión interna que empuja al techo comenzándolo a deformar y éste a la vez jala al ángulo de coronamiento hacia adentro (ver figura 3.1)

Fig. 3.1 Falla en la Unión Techo-Envolvente

Como el techo es prácticamente plano se pueden crear altos esfuerzos a compresión con presiones relativamente bajas.

La falla en la unión techo-envolvente es independiente del levantamiento del tanque. El criterio de diseño para inducir la falla en esta unión se basa en la presión necesaria para la cual la unión entre techo-envolvente cede. Los cálculos de la presión para inducir este tipo de falla se verán en el siguiente capítulo.

3.2.2 FALLA EN LA UNIÓN ENVOLVENTE-FONDO DEBIDO A LA CEDENCIA DE LA ENVOLVENTE

De forma similar a la falla en la unión techo-envolvente, este modo de falla es debida a los esfuerzos circunferenciales a compresión. Estos esfuerzos son el resultado del levantamiento del tanque. Si los esfuerzos en la envolvente exceden el límite de fluencia habrá una deformación que aumentará el levantamiento y el pandeo local causando la falla en la unión mencionada.

El criterio de esta falla se basa en la cedencia de la envolvente como resultado de la presión interna, la cual causa levantamiento del tanque empujando así la parte baja de la envolvente hacia adentro generando esfuerzos circunferenciales en la unión envolvente-fondo.

La soldadura en la unión techo-envolvente es deliberadamente débil creando así la junta frágil, mientras que en la unión envolvente-fondo la soldadura es diseñada para ser resistente, por lo que el pandeo ocurrido en la unión techo-envolvente no sucederá tan fácilmente en la junta envolvente-fondo.

Es necesario aclarar que para esta condición la norma A.P.I. 650 no ha establecido lineamiento alguno a seguir en cuanto a cálculos se refiere. Por lo anterior se puede asumir que esta falla depende de la altura del producto en el tanque, la resistencia en la envolvente, la resistencia en el fondo, la resistencia en el techo así como en la unión techo-envolvente y el desplazamiento generado por el levantamiento del tanque.

3.2.3 FALLA EN LA SOLDADURA DE LA UNIÓN ENVOLVENTE-FONDO

La soldadura en la unión envolvente-fondo es formada por un filete continuo por cada lado de las placas de la envolvente. Para placas con un espesor nominal de 12.5 mm o menor, la norma A.P.I 650 (inciso 5.1.5.7), requiere que la soldadura a aplicar sea de no más de 12.5mm. y no menor al espesor de la placa más delgada de las dos a soldar, o no menor a los valores de la tabla 3.1

Espesor Non	ninal de Placas	Tamaño de filete mínimo		
(mm)	(in)	(mm)	(in)	
5	0.1875	5	3/16	
>5 a 20	>0.1875 a 0.75	6	1/4	
>20 a 32	>0.75 a 1.25	8	5/16	
>32 a 45	>1.25 a 1.75	10	3/8	

Tabla 3.1 Tamaño Mínimo de la Soldadura de Filete

Bajo estas especificaciones la soldadura en la unión mencionada no fallará.

3.2.4 FALLA EN LA SOLDADURA DE LAS PLACAS DEL FONDO

Las placas del fondo son soldadas por la parte superior con filete continuo. Durante el levantamiento algunas placas se separan de la cimentación por lo que la soldadura puede estar expuesta a esfuerzos por flexión.

3.2.5 FALLA EN LOS ACCESORIOS DEBIDO AL LEVANTAMIENTO

Cuando surge un levantamiento del tanque los accesorios y la envolvente están expuestos al incremento de cargas lo que conlleva a concentraciones de esfuerzos en los accesorios o en la envolvente de ahí que ocurra alguna fractura entre los accesorios y la envolvente.

Se puede asumir que los materiales especificados por la norma A.P.I. 650 y elegidos para la estructura y demás partes del tanque proveen la suficiente resistencia para evitar la iniciación y propagación de fracturas. Debe notarse que existen diferentes consecuencias en cuanto a fallas debido a fracturas; una fractura inducida en la unión techo-envolvente tiene el efecto de liberar la presión interna, mientras que una fractura en la unión envolvente-fondo podría resultar en una falla en el fondo que desencadenaría una catástrofe.

3.3 DESCRIPCIÓN DEL MODELO DE ANÁLISIS

A continuación se muestra el procedimiento de modelación de un tanque de almacenamiento con capacidad nominal de veinte mil barriles por el modelado matemático de análisis estructural denominado Método del Elemento Finito, utilizando para ello el programa ANSYS versión 10.

Consideraciones

Antes de generar el modelo y de efectuar cualquier tipo de análisis se consideró lo siguiente:

- Las dimensiones se obtuvieron del capítulo 2.
- Las unidades a manejar serán las del sistema internacional.
- Se utilizarán elementos axisimétricos por lo que el modelo sólo presentará una sección del tanque.

- La gravedad específica del producto a emplear será 1.
- Siendo el material del tanque acero A-36 se aplicará un módulo de elasticidad de 205946 $\frac{N}{mm^2}$, un coeficiente de poisson de 0.3, y una densidad de 0.00007697 $\frac{N}{mm^3}$.
- Al comprender un modelo axisimétrico los largueros no serán contemplados por lo que se restringen ciertas zonas en las placas del techo para simular en parte sus efectos en el tanque.
- Se simulará el tanque con y sin anclaje. (ver figuras 3.13-3.14)
- Boquillas, entradas hombre, escaleras no fueron contemplados.

3.3.1 ESTRUCTURA

Una revisión precisa de la estructura involucra la realización de la geometría con ayuda del programa Autocad para tomar coordenadas, datos de diseño, y finalmente generar la geometría del modelo en Ansys (ver figuras 3.2-3.7).

Fig. 3.3 Detalle Elementos Finitos Unión Techo Envolvente

Fig. 3.6 Detalle Autocad Unión Envolvente Fondo

Fig. 3.5 Detalle Elementos Finitos Unión

20 y 3er. Anillo

Fig. 3.7 Detalle Elementos Finitos Unión Envolvente Fondo

3.3.3 ELECCIÓN DE ELEMENTOS

El modelado de los anillos de la envolvente, las placas del fondo y del techo, así como la columna central, se realizan utilizando elementos axisimétricos.

Cuando los objetos comprenden cierto tipo de simetría, la cual puede ser de carácter repetitivo, con respecto a un plano o con respecto a un eje central (ver fig. 3.8), hay la posibilidad de sacar ventaja, ejemplo de esto es:

La reducción del número de elementos a utilizar, del tiempo de solución y del procedimiento en general. En algunos casos lleva a mejores resultados en comparación con un modelo equivalente realizado en tres dimensiones.

Existen varios elementos en Ansys capaces de modelar problemas axisimétricos, es decir, problemas que posean simetría respecto a un eje central.

Fig. 3.8 Tipos de Simetría

Una estructura axisimétrica puede ser representada en el plano X-Y únicamente. El eje Y es considerado como el eje axial, es en éste donde se aplica la fuerza de gravedad y la simetría, mientras el eje X es el eje radial.

Todos los elementos axisimétricos son modelados en una base de 360 grados, de ahí que cualquier flujo de calor, fuerza, presión, momento, flujo de fluido, carga eléctrica, flujo magnético etc. deba introducirse como se haría en un modelo de tres dimensiones. Se desarrolla el modelo solamente en el cuadrante positivo de X, ya que los elementos axisimétricos no permiten el uso del cuadrante negativo. Para nuestro caso se recurre al elemento axisimétrico PLANE 82.

El elemento PLANE 82 provee resultados más eficientes para un mallado automático mixto (cuadriláteros-triángulos) y toleran formas irregulares sin gran pérdida de exactitud. El elemento está definido por 8 nodos teniendo 2 grados de libertad nodal: traslación en las direcciones "x", "y" (ver figura 3.9).

Fig. 3.9 Estructura del Elemento Plane 82

Puede utilizarse como un elemento plano o como un elemento axisimétrico, pero siempre debe emplearse en el plano X-Y como lo muestra la figura 3.9. El elemento tiene la capacidad de presentar grandes deformaciones.

Por otro lado debajo de las placas del fondo se emplean elementos tipo de contacto con la finalidad de simular el contacto entre el tanque y la cimentación, y así observar zonas que pudieran deformarse libremente, por ejemplo; un levantamiento.

Para este caso se recurre al elemento tipo de contacto llamado CONTAC12, el cual representa dos superficies en 2D, que mantienen o rompen el contacto físico y o pueden deslizarse relativamente. Este elemento tiene la capacidad de soportar compresión en dirección normal a la superficie y cizallamiento en la dirección tangencial. El elemento comprende dos nodos y dos grados de libertad en cada uno: traslación en las direcciones "x" "y" (ver figura 3.10). Sólo opera en análisis estáticos o en análisis dinámicos transitorios.

Los nodos I y J deben coincidir con la orientación que se indica en la figura 3.10.

Fig. 3.10 Estructura del Elemento Contac12

3.3.4 RESTRICCIONES

El apoyo del tanque se simula restringiendo el desplazamiento en todas direcciones en todos los nodos inferiores de los elementos de contacto, de esta manera se permitirán las deformaciones en las placas. Se aplica una restricción de tipo axisimétrica en los extremos del techo y del fondo para que se considere la sección en una base de 360° (ver figuras 3.11-3.12).

Fig. 3.11 Restricciones en Techo

Fig. 3.12 Restricciones en Fondo

Con la finalidad de obtener el correcto comportamiento del tanque los análisis se consideran con/sin anclaje por lo que para simular esta condición se restringen los nodos del centro de la pestaña de las placas del fondo esto (ver figuras 3.13 y 3.14).

En las figuras 3.15 y 3.16 se pueden apreciar los modelos generados tanto en Autocad como en Ansys respectivamente.

Fig. 3.15 Vista General del Dibujo en Autocad

Fig. 3.16 Vista General del Modelo de Elementos Finitos

Las cargas se presentan en el capítulo siguiente, debido a los diferentes casos a analizar.

CAPITULO 4

ANALISIS EN DIFERENTES CONDICIONES

4.1 INTRODUCCIÓN

El presente capítulo pretende mostrar el comportamiento de un tanque de almacenamiento debido a la sobre presurización en diferentes condiciones como: tanque vacío, mitad lleno y lleno. Las condiciones anteriores se analizan variando la presión interna. Es importante aclarar que las presiones aplicadas son calculadas bajo el apéndice F del A.P.I. 650.

4.2 OBJETIVO

Determinar el estado de esfuerzos así como estudiar y verificar el comportamiento mecánico en las uniones techo-envolvente y envolvente-fondo. Comparar los resultados contra la norma A.P.I. 650 y prevenir fallas no deseadas.

4.3 CARGAS

Antes de efectuar algún análisis se calculan las cargas a aplicar. Estas son determinadas como presiones sobre los elementos:

Presión sobre el Techo

En vista de que los largueros, las trabes y las columnas secundarias no se modelan se contempla una presión uniforme sobre el techo. Esta presión es la división de la suma del peso total de los largueros, las trabes y las columnas secundarias entre el área que forman las placas del techo. La presión se aplicará a todos los modelos para simular el jalón que ejerce esta estructura a las placas. Con la siguiente ecuación se determina dicha presión:

$$P_{T} = \left(\frac{\left(P_{1-2} + P_{3-6} + P_{T1} + P_{C \text{ sec}}\right)}{A_{T}}\right) = \left(\frac{73300.8 N}{2.63 \times 10^{8} mm^{2}}\right) = 0.00027871 \frac{N}{mm^{2}}$$
(4.1)

Donde:

$$\begin{array}{rcl} Peso \ N \ (Kg) \\ P_{1-2} = & Largueros \ L1-L2 & 12299.2 \ (1254.16) \\ P_{3-6} = & Largueros \ L3-L6 & 19346.1 \ (1972.74) \\ P_{T1} = & Trabes \ T1 & 10711.7 \ (1092.28) \\ P_{Csec} = & Columnas \ secundarias & 30943.8 \ (3155.37) \\ \Sigma & 73300.8 \ (7473.5) \\ A_T = & \ Area \ del \ techo \ mm^2 \ (m^2) & 2.63 \ x \ 10^8 \ (263) \end{array}$$

Presión Hidrostática

Para determinar la presión hidrostática en el fondo y en la envolvente se recurre a la siguiente ecuación:

$$P_{h} = h \cdot g \cdot \rho$$
(4.2)
$$P_{h} = 12.164 \, m \cdot 9.81 \frac{m}{s^{2}} \cdot 1000 \frac{kg}{m^{3}} = 119328.84 \, \text{Pa} = 0.11933 \, \text{MPa}$$

Donde:

$P_h =$	Presión hidrostática		Pa
h =	Nivel del líquido	12.164	m
g =	Fuerza de gravedad	9.81	m/s^2
$\rho =$	Densidad del líquido	1000	kg/m ³

Con el valor de la presión hidrostática se procede a obtener el gradiente de presiones a utilizar en la envolvente. Para este gradiente se calcula la variación de presión por cada mm (ver figura 4.1). La variación utilizada se deduce de la división de la presión hidrostática entre la altura del líquido:

Fig. 4.1 Presión Hidrostática en Fondo y Envolvente

Presión máxima de diseño

Para obtener la presión máxima de diseño se utiliza la siguiente fórmula obtenida del inciso 4.1 del apéndice F del A.P.I. 650.

$$P_{\max} = \frac{1.1 \cdot A \cdot \tan \theta}{D^2} + 0.08(t) \tag{4.4}$$

Dicha presión fue utilizada en la revisión por viento en el capítulo 2 inciso 2.9 siendo ésta de:

$$P_{\max} = 1.268 \, kPa$$
$$P_{\max} = 0.001268 \, MPa$$

Presión de falla en la unión Techo-Envolvente

Para tanques de junta frágil, la falla puede esperarse cuando el esfuerzo en el área a compresión alcance el límite de fluencia. Con base en lo anterior se ha desarrollado una ecuación aproximada para obtener la presión a la cual la falla en la unión anteriormente mencionada deba ocurrir (inciso 6 del apéndice F del A.P.I. 650).

$$P_f = 1.6P_i + 0.047(t) \tag{4.9}$$

Donde:

$P_f =$	Presión de falla		MPa
$P_i =$	Presión interna de diseño	1.268	kPa
t =	espesor del techo	5	mm

$$P_f = 1.6(1.268 \, kPa) - 0.047(5 \, mm)$$

 $P_f = 1.7948 \, kPa$
 $P_f = 0.0017948 \, MPa$

0.8 de la Presión de falla

Para proveer un margen de seguridad entre la presión máxima de diseño y la presión de falla calculada, se sugiere una presión de operación máxima para tanques de junta frágil según el inciso 4.3 del apéndice F del A.P.I. 650:

$$P_{op.\,\max} \le 0.8 \cdot P_f \tag{4.10}$$

Donde:

Pop. max=	Presión de operación máxima		MPa
$P_f =$	Presión de falla	0.0017938	MPa

 $\begin{aligned} P_{op.\max} &\leq 0.8 \cdot 0.0017948 \, MPa \\ P_{op.\max} &\leq 0.001436 \, MPa \end{aligned}$

4.4 ANÁLISIS

Caso I Tanque Vacío

Se analiza la respuesta de un tanque vacío con columna central con/sin anclaje a diferentes presiones:

• Peso Propio; Para este caso no hay presión alguna a considerar, la única carga del tanque es su peso propio.

• Con presión máxima de diseño; Cargas a considerar son el peso propio más la presión interna en todas las superficies.

• Con 0.8 de la presión de falla; Se considera el peso propio más 0.8 de la presión falla en todas las superficies.

• Con la presión de falla; Se aplica la presión de falla en todas las superficies y se considera el peso propio.

Resultados Caso I

Peso Propio

Los siguientes resultados se obtuvieron del modelo donde el tanque cuenta con columna pero no está anclado.

Al no contar con largueros como soporte se crea una deflexión máxima de 4 mm en las placas del techo ver figura 4.2-a. Las deformaciones en las uniones techo-envolvente y envolvente fondo son prácticamente nulas. Los detalles de ambas uniones se pueden apreciar en las figuras 4.2-b y 4.2-c.

Los esfuerzos equivalentes se aprecian en la figura 4.3, donde el esfuerzo máximo se concentra en la unión entre la columna y el techo con un valor de 201.646 MPa. Es importante precisar que sobre la columna se apoya el capitel y sobre éste las placas guía donde se aseguran los largueros y encima las placas del techo, por lo que esa concentración de esfuerzos se puede descartar, se modeló de esta manera sólo para simplificar y simular cierto soporte a las placas del techo.

El valor del esfuerzo en la junta techo-envolvente es de 34.44 MPa. En cuanto a la junta envolvente-fondo se tiene una concentración de esfuerzos de 7.069 MPa (ver figs 4.3-b,4.3-c).

Las deformaciones de las gráficas están magnificadas 100 veces.

a) Deformación Máx. de 4.064 mm.

c) Deformación Máx. de 0.092 mm Fig. 4.2 Deformaciones Resultantes bajo Peso Propio

a) Esfuerzo Máx. de 201.646 MPa.

Máx. de 201.646 MPa. c) Esfuerzo Máx. de 7.069 MPa Figura 4.3 Esfuerzos Resultantes bajo Peso Propio

Con Presión Máxima de Diseño

A continuación se presentan los esfuerzos y deformaciones obtenidos del tanque con columna y sin anclar bajo presión máxima de diseño.

El efecto de la presión aplicada es evidente en las placas del techo, es ahí donde la deformación alcanza 15 mm. En la unión techo-envolvente la deformación es de 2.47 mm, mientras en la unión envolvente-fondo es prácticamente nula. Las deformaciones resultantes así como sus detalles se pueden observar en la figura 4.4.

Para esta condición el esfuerzo máximo se presenta en la unión techo-envolvente siendo éste de 140.8 MPa. En la zona envolvente-fondo el esfuerzo es de sólo 4.6 MPa. Ambos esfuerzos no representan ningún riesgo a la integridad del tanque. Los esfuerzos resultantes así como sus detalles se pueden observar en la figura 4.5.

Las deformaciones de las gráficas están magnificadas 30 veces.

Fig. 4.4 Deformaciones Resultantes bajo Presión Máxima de Diseño

Figura 4.5 Esfuerzos Resultantes bajo Presión Máxima de Diseño

Con 0.8 de la Presión de falla

Para esta condición se presentan los esfuerzos y deformaciones del tanque anclado con columna bajo 0.8 de la presión de falla.

Bajo esta presión la deformación tanto en las placas del techo como en las uniones techoenvolvente y envolvente-fondo aumentan.

En la unión techo-envolvente la deformación máxima es de sólo 2.8 mm. Por otro lado en la unión envolvente-fondo es prácticamente nula. Las deformaciones resultantes así como sus detalles se presentan en la figura 4.6

El esfuerzo máximo se concentra en la unión techo-envolvente siendo éste de 172 MPa. Cerca de la unión envolvente-fondo el esfuerzo es de tan sólo 3.7 MPa. Los esfuerzos resultantes así como sus detalles se presentan en la figura 4.7

Las deformaciones de las gráficas están magnificadas 30 veces.

a) Deformación Máx. de 18.431 mm. c) Deformación Máx. de 0.005 mm

Fig. 4.6 Deformaciones Resultantes bajo 0.8 de la Presión falla

c) Esfuerzo Máx. de 3.793 MPa Figura 4.7 Esfuerzos Resultantes bajo 0.8 de la Presión falla

Con Presión de Falla

Para esta condición se muestran los resultados tanto de esfuerzos como deformaciones del tanque anclado y con columna.

Con esta presión, la máxima deformación en las placas del techo alcanza 24.8 mm, mientras en la unión techo-envolvente es de 4.2 mm. En la unión envolvente-fondo el anclaje evita deformación alguna. Las deformaciones resultantes así como sus detalles se observan en la figura 4.8.

Se aprecia un aumento de los esfuerzos en la unión techo-envolvente a 235.2 MPa, el cual queda aún por debajo del esfuerzo de fluencia del material (250 MPa). Bajo esta condición se esperaba que el esfuerzo en dicha unión sobrepasará los 250 MPa, por lo que lo establecido en el apéndice F del API 650 no se cumple. Los esfuerzos en la unión envolvente-fondo se mantienen en 3.7 MPa.

Las deformaciones de las figuras mencionadas están aumentadas 30 veces.

Fig. 4.8 Deformaciones Resultantes bajo Presión de Falla

a) Esfuerzo Máx. de 235.205 MPa

c) Esfuerzo Máx. de 3.743 MPa Figura 4.9 Esfuerzos Resultantes bajo Presión de Falla

		Tanque Anclado		Tanque S	ESF.	
Condición	Unión	ESF.	DEF.	ESF.	DEF.	Permisible
		(Mpa)	(mm)	(Mpa)	(mm)	(Mpa)
Dasa Dronia	T-E	34.57	0.66	34.44	0.639	
reso riopio	E-F	6.88	0.002	7.07	0.092	
Dr. Máy Disaño	T-E	135.77	1.86	140.84	2.47	
Pr. Max. Disello	E-F	5.99	0.005	4.63	0.013	250
$D_r \cap Q$ de Felle	T-E	172.05	2.89	172.11	2.82	230
FI. U.O UE Falla	E-F	3.79	0.005	4.10	0.0115	
Dr. do Follo	T-E	235.21	4.26	235.34	3.33]
FI. de Falla	E-F	3.74	0.008	3.71	0.0116	
T-E = Techo - Envolvente						
E-F = Envolvente -	Fondo					

Tabla 4.1 Resumen de Resultados del Tanque Vacío

Caso II

Tanque Mitad Lleno

Se analiza la respuesta de un tanque mitad lleno con columna con/sin anclaje para cuatro situaciones:

Las condiciones y el resumen de resultados se presentan en la siguiente tabla.

		Tanque Anclado		Tanque S	ESF.	
Condición	Unión	ESF.	DEF.	ESF.	DEF.	Permisible
		(Mpa)	(mm)	(Mpa)	(mm)	(Mpa)
Deso Propio	T-E	46.616	0.600	32.976	0.428	
Peso Propio	E-F	86.899	0.049	76.116	0.096	
Pr. Máx. Diseño	T-E	66.219	0.741	110.808	1.408	
	E-F	88.922	0.050	77.776	0.105	250
Dr. 0.9 de Felle	T-E	143.041	1.842	144.396	1.853	230
FI. 0.0 de Falla	E-F	89.579	0.055	77.996	0.106	
Dr. de Falla	T-E	217.307	2.903	219.223	2.882	
FI. de Falla	E-F	90.417	0.059	78.439	0.110	
T-E = Techo - Envolution E-F = E	olvente - Fondo					

Tabla 4.2 Resultados del Tanque Mitad Lleno

Hay que aclarar que el apéndice F del API 650 no especifica el nivel del producto a considerar en cuanto a la aplicación de presiones, es por esta razón que se realizó este caso.

La deformación máxima obtenida bajo la condición de la presión de falla no representa algún riesgo a la integridad del tanque pues es de tan sólo 2.9 mm. Los esfuerzos resultantes a una presión de falla son a penas de 217.3 MPa, cuando deberían de alcanzar o sobrepasar los 250 MPa, por lo tanto, lo establecido en dicho apéndice no se cumple.

Caso III Tanque Lleno

Se analiza la respuesta de un tanque lleno con/sin anclaje y con/sin restricciones en las placas del techo para cuatro situaciones:

• Peso Propio: Se aplica la presión hidrostática al fondo del tanque y la variación de presión a las placas de la envolvente.

 Con Presión Máxima de Diseño: Se suma la presión hidrostática más la presión máxima de diseño y se aplican al fondo del tanque y a la envolvente con una nueva variación de presión. Se aplica la presión máxima de diseño en las superficies donde no hay líquido.

• Con 0.8 de la Presión de falla: Se suma la presión hidrostática más 0.8 de la presión de falla y se aplican al fondo del tanque y a la envolvente con una nueva variación de presión. Se aplica 0.8 de la presión de de falla en las superficies donde no hay líquido.

• Con la presión para causar falla en la unión Techo-Envolvente: Se suma la presión hidrostática más la presión para causar falla, se aplican al fondo del tanque y a la envolvente con una nueva variación de presión. Se aplica la presión de falla en las superficies donde no hay líquido.

Resultados Caso III

Peso Propio

Para este caso se presentan las imágenes y resultados del análisis del tanque sin columna y sin anclar. Las deformaciones máximas se crean en las placas del techo siendo estas de 12.4 mm (ver figura 4.10-a). En los primeros anillos de la envolvente se distingue cierta deformación a causa de la presión que ejerce el líquido (ver detalle de la unión envolvente-fondo figura 4.10-c).

Al no contar con soporte alguno como columnas y largueros la unión techo-envolvente presenta una concentración de esfuerzos de 97.3 MPa (ver figura 4.11), siendo su deformación de 0.8 mm. El esfuerzo máximo se concentra en la unión envolvente-fondo con un valor de 155 MPa (ver la fig. 4.11-c).

Es importante aclarar que las deformaciones de las gráficas están magnificadas 50 veces.

Fig. 4.10 Deformaciones Resultantes sin anclaje sin columna

Con Presión Máxima de Diseño

Para este caso se presentan las imágenes y resultados del análisis del tanque anclado con columna.

El efecto de la presión en el techo es notable (ver fig. 4.12-a), tanto los esfuerzos como las deformaciones más críticas se presentan en las placas del techo. Se generan concentraciones de esfuerzos en la junta techo-columna muy elevados (ver fig. 4.13-a).

El esfuerzo en la unión techo-envolvente es de 127.5 Mpa. Cerca de esta zona se localiza la máxima deformación siendo de 3.145 mm (figs. 4.12-b y 4.13-b).

Se puede notar que el anclaje ayuda a disminuir la deformación en la unión envolventefondo siendo su deformación de sólo 0.76 mm (fig. 4.12-c), en cuanto al esfuerzo de esta zona éste alcanza los 163.6 Mpa (fig. 4.13-c).

Las deformaciones de las gráficas están magnificadas 50 veces.

a) Deformación Máx. de 8.892 mm.

c) Deformación Máx. de 0.763 mm Fig. 4.12 Deformaciones Resultantes

c) Esfuerzo Máx. de 163.625MPa Fig. 4.13 Esfuerzos Resultantes

Con Presión de 0.8 de falla

Para este caso se presentan las imágenes y resultados del análisis del tanque anclado sin columna.

El anclaje mantiene el fondo en su sitio evitando grandes levantamientos de las placas (fig. 4.14-c). Los esfuerzos de esta zona no tienen un aumento considerable, aún así son un poco más altos que en el análisis por presión máxima de diseño (fig. 4.15-c).

La máxima deformación ocurre en las placas del techo siendo de 28.9 mm (fig. 4.14-a), mientras en la unión techo-envolvente aumenta de 3.14 mm a 4.72 mm (fig. 4.14-b).

Se han generado esfuerzos muy elevados en la unión techo-envolvente de hasta 260.7 MPa (fig. 4.15-b), éste esfuerzo sobrepasa el límite de fluencia del material el cual es de 250 MPa, por lo que se puede esperar una falla en dicha unión. Es importante mencionar que esta falla sucede antes que la falla en la envolvente-fondo, pero ocurriría tan sólo con 0.8 de la presión de falla por lo cual lo especificado en la norma A.P.I. 650 no se cumple.

Las deformaciones de las gráficas están magnificadas 25 veces.

c) Deformación Máx. de 0.765 mm Fig. 4.14 Deformaciones Resultantes

Fig. 4.15 Esfuerzos Resultantes

Con Presión de Falla

Para este caso se presentan las imágenes y resultados del análisis del tanque con restricciones en las placas del techo y sin anclar.

Se han puesto dos restricciones en el techo para simular que las placas del techo van soldadas de forma intermitente a los largueros, de esta manera se espera que los esfuerzos y deformaciones se distribuyan a lo largo de las placas del techo lo que resulta en un comportamiento más real.

A pesar de utilizar la presión de falla la deformación máxima en las placas del techo disminuye a 8 mm (fig. 4.16-a), mientras la deformación en la unión techo-envolvente es de sólo 2.46 mm (fig. 4.16-b). Por otra parte en la unión de la envolvente-fondo se crea una deformación máxima de 0.84 mm (fig. 4.16-c).

Los esfuerzos en la unión techo-envolvente disminuyen a 75.78 MPa (fig. 4.17-b). El esfuerzo más crítico se concentra en una de las restricciones del techo siendo éste de 186 MPa (fig. 4.19).

Las deformaciones de las gráficas están magnificadas 30 veces.

c) Esfuerzo Máx. de 157.46 MPa

Fig. 4.17 Esfuerzos Resultantes

 Fig. 4.18 Deformación Máx. de 2.243 mm en la Restricción del Techo
 Fig. 4.19 Esfuerzo Máx. de 186 MPa en la Restricción del Techo

Los detalles de la restricción del techo se observan en las siguientes figuras.

En las siguientes tablas se aprecia el resumen de todos los análisis hechos al tanque lleno.

		Tanque Sin Anclar					ESF.	
Condición	Unión	Con Columna		Sin Co	Sin Columna		Restr. echo	Permisible (Mpa)
		ESF.	DEF.	ESF.	DEF.	ESF.	DEF.	
		(Mpa)	(mm)	(Mpa)	(mm)	(Mpa)	(mm)	
Peso	T-E	26.56	1.31	97.38	4.19	20.76	1.39	
Propio	E-F	154.8	0.83	155.14	0.83	154.8	0.83	
Pr. Máx.	T-E	123.86	1.87	219.05	3.2	47.49	1.12	250
Diseño	E-F	156.27	0.84	156.74	0.85	156.42	0.84	250
Pr. 0.8	T-E	154.79	2.23	260.79	3.76	56.47	1.16	
de Falla	E-F	156.47	0.85	156.59	0.85	156.63	0.84	
Pr. de	T-E	224.12	3.1	350.34	4.98	75.78	2.46	
Falla	E-F	156.87	0.85	156.74	0.86	157.46	0.85	
T-E = Techo - Envolvente								
E-F = Envolv	ente – Fo	ndo						

Tabla 4.3 I	Resumen de	Resultados	del Ta	anque Lleno	o Sin A	Inclar
-------------	------------	------------	--------	-------------	---------	--------

	Unión		ESF.						
Condición		Con Columna		Sin Columna		Permisible (Mpa)			
		ESF.	DEF.	ESF.	DEF.				
		(Mpa)	(mm)	(Mpa)	(mm)				
Peso Propio	T-E	26.18	1.45	97.38	2.2				
	E-F	161.95	0.72	161.94	0.75				
Pr. Máx. Diseño	T-E	127.57	1.94	219.05	3.22	250			
	E-F	163.63	0.76	163.76	0.76	230			
Pr. 0.8	T-E	158.44	2.3	260.79	4.73				
de Falla	E-F	163.66	0.76	163.76	0.77				
Pr. de	T-E	229.11	3.19	350.3	4.99				
Falla	E-F	164.52	0.77	164.53	0.77				
T-E = Techo - Envolvente									
E-F = Envolvente - Fondo									

Tabla 4.4 Resumen de Resultados del Tanque Lleno Anclado
CONCLUSIONES

Del trabajo realizado se pueden mencionar las siguientes conclusiones:

1.- Las ecuaciones del apéndice F del API 650 para obtener las cargas a aplicar no contemplan el peso de la estructura (largueros, parte de las columnas secundarias, parte de la columna central, etc...) y solamente son ecuaciones aproximadas.

2.- El apéndice mencionado anteriormente no indica un nivel del producto en el tanque, es decir no señala si las cargas a aplicar deben evaluarse con el tanque vacío, a la mitad o lleno, es por ello que se propusieron revisar estos tres casos.

3.- Los esfuerzos localizados en la unión envolvente-fondo en el tanque vacío bajo peso propio son mayores que cuando se evalúa la misma condición con cierta presión interna. Se comprende que sin presión alguna todo el peso del tanque es soportado por la unión envolvente-fondo, de ahí que haya cierta concentración de esfuerzos en esa zona. La presión máxima de diseño contrarresta el efecto de la carga provocada por las placas del techo disminuyendo los esfuerzos en la unión antes mencionada.

4.- El modelo del tanque mitad lleno presenta esfuerzos más elevados en la unión envolvente-fondo en comparación con el modelo del tanque vacío, sin embargo en la unión techo-envolvente donde los esfuerzos y deformaciones se ven disminuidos.

5.- Los esfuerzos generados bajo cualquier presión establecida por el API 650 en los casos de tanque vacío y mitad lleno no alcanzan el esfuerzo de fluencia por ello no representan peligro alguno a la integridad del mismo.

6.- Como era de esperarse con el tanque lleno bajo y peso propio presenta cierta deformación del primer anillo debido a la presión ejercida por el producto. Tanto los esfuerzos presentados en la soldadura de la unión techo-envolvente como los de la unión

envolvente-fondo se encuentran dentro del esfuerzo permisible, ver esfuerzos actuantes en la envolvente para la prueba hidrostática (capítulo 2).

7.- Según el apéndice F con la presión de falla la unión techo envolvente debería de colapsar. Al tener los largueros como soportes del techo éstos están unidos a las placas mediante soldadura intermitente. Analizando este modelo con la presión de falla se crean concentraciones de esfuerzos de 186 Mpa en las partes restringidas de techo debido al modelado de la condición. En la unión del techo-envolvente el esfuerzo alcanza 75.7 Mpa por lo que se puede concluir que los esfuerzos se concentran en las restricciones, por tanto la unión no fallará. Los esfuerzos más altos en la unión envolvente-fondo son de 164 Mpa los cuales se encuentran muy por debajo del límite de fluencia (250 Mpa), denotando que esta unión no presentará falla.

8.- Es evidente que los modelos anclados presentan menores deformaciones en la zona de la unión envolvente-fondo, es decir mayor estabilidad en el tanque. Sin embargo como consecuencia del anclaje se obtiene un aumento en los esfuerzos en esa zona en comparación con el tanque sin anclar.

Es importante recalcar que el uso del método del elemento finito en este caso con ayuda del programa Ansys facilitaron la evaluación de la junta frágil del tanque de almacenamiento atmosférico, por ello la elaboración del presente trabajo puede servir como metodología a toda persona o industria que necesite calcular y evaluar dichas estructuras.

BIBLIOGRAFÍA

 Design of Thin Cylindrical Tanks against Buckling Zaya H. Malick B.
Exeter Collage. USA. 1974

2. - El Método de los Elementos FinitosO.C. Zienkiewics.Ed. Reverté, S.A. España. 1980

3. -Welded Steel Tanks for Oil Storage API Standard 650.API (American Petroleum Institute).Tenth Edition. USA. 1998 Addendum 2003

4. -Tank Inspection, Repair, Alteration, and Reconstruction API Standard 653.API (American Petroleum Institute).Second Edition. USA. 1995

 -Diseño Básico de Estructuras de Acero Bruce G. Johnston, F.J. Lin, T.V. Galambos Prentice Hall. México. 1986

6. –Aboveground Storage TanksPhilip E. MyersMc Graw Hill. USA. 1997

7. -Especificaciones Generales de Construcción de Tanques Atmosféricos.Petróleos Mexicanos.Primera Edición. México

 Respuesta Sísmica de Tanques Cilíndricos de Almacenamiento de Gran Capacidad Anclados.
Sánchez Sánchez Héctor A. y Cortés Salas Carlos.
SMIS. México. 2007 9. -Study to Establish Relations for the Relative Strength of API 650 Cone Roof-to-Shell and Shell to Bottom.API (American Petroleum Institute).API. USA. 2005

10. -Fundamentos del Método del Elemento Finito.Ing. Carlos Cortés Salas.IMP. México. 2007

11.- Manual de Diseño de Obras Civiles, Diseño por Viento y Sismo.Comisión Federal de Electricidad.México. 1993.

12. -Manual Ansys V 10.Ansys Inc, USA.

13. -Manual de Construcción en AceroInstituto Mexicano de la Construcción en Acero. A.C.Limusa. México. 1987