

UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO

Vniver4dad Nacional AvFnºma de Mexico

PROGRAMA DE MAESTRÍA Y DOCTORADO EN INGENIERÍA

FACULTAD DE INGENIERÍA

COMPARACIÓN ENTRE SISTEMAS ESTRUCTURALES COMPUESTOS, TANTO CON ELEMENTOS DISIPADORES DE ENERGÍA COMO CON MUROS Y CONSTRUIDOS EN ZONAS SÍSMICAS

TESIS

QUE PARA OBTENER EL GRADO DE:

MAESTRO EN INGENIERÍA

INGENIERÍA CIVIL – ESTRUCTURAS

P R E S E N T A :

Emiliano Santiago Bautista

TUTOR: Dr. JAIME GARCÍA PÉREZ

Noviembre 2009

Universidad Nacional Autónoma de México

UNAM – Dirección General de Bibliotecas Tesis Digitales Restricciones de uso

DERECHOS RESERVADOS © PROHIBIDA SU REPRODUCCIÓN TOTAL O PARCIAL

Todo el material contenido en esta tesis esta protegido por la Ley Federal del Derecho de Autor (LFDA) de los Estados Unidos Mexicanos (México).

El uso de imágenes, fragmentos de videos, y demás material que sea objeto de protección de los derechos de autor, será exclusivamente para fines educativos e informativos y deberá citar la fuente donde la obtuvo mencionando el autor o autores. Cualquier uso distinto como el lucro, reproducción, edición o modificación, será perseguido y sancionado por el respectivo titular de los Derechos de Autor.

JURADO ASIGNADO:

Presidente:	Dr. Escobar Sánchez José Alberto
Secretario:	Dr. Reinoso Angulo Eduardo
Vocal:	Dr. García Pérez Jaime
1 ^{er.} Suplente:	Dr. Díaz López Orlando Javier
2 ^{do.} Suplente:	M. I. García Domínguez Octavio

Lugar donde se realizó la tesis:

INSTITUTO DE INGENIERÍA, UNAM.

TUTOR DE TESIS:

Dr. Jaime García Pérez

DEDICATORIA

Con todo mí amor:

A mís padres Agustín y Altagracía, por su gran ejemplo de superación, su apoyo incondicional y educación brindada.

A mís hermanos Adalberta, Catalína, Julia, Margaríta, Elena y Bonífacío, por todo su apoyo y constante motívación.

A mis sobrinos Ieda, Laura, Monica, Jair, Adalí, Astrid y Aitana.

A Ita por su comprensión, ayuda y por ser una excelente mujer en todos los aspectos.

A mí híjo Ariel Alain, que es y será mi razón para continuar luchando incansablemente, para que lo motive a mantener una visión de éxito y superación en todos los aspectos de su vida.

AGRADECIMIENTOS

Al Consejo Nacional de Ciencia y Tecnología (CONACyT) por el apoyo económico brindado para la realización de la Maestría.

Al Instituto de Ingeniería por otorgarme las herramientas tecnológicas e instalaciones para la realización de este trabajo.

Al Dr. Jaime García Pérez por haber confiado en mí, por su tiempo, gran interés en revisar y aportar valiosos comentarios para esta tesis.

A mis sinodales, que dedicaron su valioso tiempo en la revisión de este trabajo y que sus comentarios y opiniones fueron de gran ayuda.

A mis profesores, del Programa de Maestría y Doctorado en Ingeniería de la UNAM, por transmitirme y compartir sus invaluables conocimientos.

A mis tíos, por sus buenos consejos y apoyo.

A los Ingenieros, Ignacio Barrón y José M. Orozco Bataz, por brindarme su amistad, ayuda y motivación en mis estudios de Licenciatura.

A mis amigos de Tlaxiaco, Oaxaca, de Mazatlán, Sinaloa, así como los que conocí en la Universidad Nacional Autónoma de México, por la sincera amistad que me han brindado.

RESUMEN

Se diseñan cuatro edificios simétricos en planta y elevación de trece niveles con diferentes estructuraciones, considerando la interacción suelo estructura. Un sistema denominado convencional consta de marcos de concreto reforzado, otro sistema es a base de marcos de concreto reforzado con elementos disipadores de energía ADAS y, los otros dos modelos son a base de marcos de concreto reforzado con muros de concreto y mampostería, respectivamente. Las diferentes estructuraciones se diseñan de acuerdo con las Normas Técnicas Complementarias del Reglamento de Construcciones para el Distrito Federal, 2004. El objetivo principal de este estudio es evaluar y comparar las confiabilidades sísmicas entre estos edificios en los límites del colapso. Para evaluar las confiabilidades se empleó un método de segundos momentos probabilísticos con un índice de daño, llevando a cabo análisis de empuje lateral y análisis paso a paso. Se concluye que el sistema con marcos de concreto reforzado y disipadores ADAS presenta los índices más altos de confiabilidad.

ABSTRACT

Four symmetric buildings with different structuring and thirteen stories high are designed considering soil structure interaction. A system called conventional is just comprised of reinforced concrete frames, while the other three systems are composed of reinforced concrete frames with energy dissipating devices (ADAS), reinforced concrete walls, and masonry, respectively. The systems are designed in accordance with the specifications of the Federal District Building Code and their Complementary Technical Norms (RCDF- 2004). The main objective in this study is to assess and compare seismic reliabilities of these buildings at the incipient collapse. In order to compute reliabilities a second moment probabilistic approach together with a damage index is used, carrying out also pushover and step by step analysis. It is concluded that the system comprised of reinforced concrete frames and energy dissipating devices (ADAS) shows much better reliability than the others.

DEDICATORIAS	i
AGRADECIMIENTOS	iii
RESUMEN	v
ABSTRACT	v
CONTENIDO	. vii
CAPÍTULO 1. INTRODUCCIÓN	1
1.1. OBJETIVOS	2
1.2. ALCANCES Y LIMITACIONES	3
CAPÍTULO 2. DISEÑO SÍSMICO DE ESTRUCTURAS	5
2 1 DISEÑO DE EDIFICIOS CON BASE EN EL DESEMPEÑO	5
2.2. CONCEPTOS DE CONFIABILIDAD ESTRUCTURAL	6
CAPÍTULO 3 DISTINTOS TIPOS ESTRUCTURALES EN ESTUDIO	13
31 SISTEMAS DE MARCOS DE CONCRETO REFORZADO (CONVENCIONALES)	13
3.1.1. Parámetros para el análisis y diseño de los modelos	13
3.1.2. Geometría del sistema convencional	14
3 1 3 Diseño del sistema convencional	15
3.2 SISTEMAS DE MARCOS DE CONCRETO REFORZADO Y DISIPADORES DE	
ENERGÍA	15
3.2.1 Reglamento actual sobre el diseño de sistemas con elementos disinadores de	
energía	15
322 Dispositivos disipadores de energía ADAS	16
3 2 3 Comportamiento de los dispositivos ADAS	16
3.2.4. Uso de los ADAS	17
3.2.5. Procedimiento analítico para definir la curva carga-deformación y ecuaciones para	
el diseño de los dispositivos ADAS	17
3.2.6. Análisis elástico de estructuras con dispositivos ADAS	18
3.2.7. Análisis v modelado no lineal de una estructura incorporando dispositivos ADAS.	19
3.2.8. Geometría del sistema con disipadores de energía ADAS	20
3.2.9. Diseño del sistema con disipadores de energía ADAS	20
3.3. SISTEMA FORMADO POR MARCOS Y MUROS DE CONCRETO REFORZADO	21
3.3.1. Geometría del sistema a base de marcos y muros de concreto reforzado	22
3.3.2. Diseño del sistema a base de marcos y muros de concreto reforzado	22
3.4. SISTEMAS DE MARCOS DE CONCRETO REFORZADO Y MUROS DE	
MAMPOSTERÍA	23
3.4.1. Geometría del sistema a base de marcos de concreto reforzado y muros de	
Mampostería	23
3.4.2. Diseño del sistema a base de marcos de concreto reforzado y muros de	-
mampostería	23
•	

CONTENIDO

CAPÍTULO 4. INCERTIDUMBRES, EXCITACIÓN SÍSMICA E HISTÉRESIS	31
4.1. ANÁLISIS Y MANEJO DE INCERTIDUMBRES	31
4.1.1. Incertidumbres en las cargas vivas para edificios	31
4.1.2. Incertidumbres en las cargas muertas para edificios	33
4.1.3. Incertidumbres en las geometrías de los elementos estructurales de concreto	
reforzado	34
4.1.4. Incertidumbre en la resistencia a compresión del concreto	34
4.1.5. Incertidumbre en la resistencia a tensión del concreto	35
4.1.6. Incertidumbre en el módulo tangente del concreto	
4.1.7. Incertidumbre en el comportamiento mecánico de las barras de refuerzo	37
4.1.8. Incertidumbre en el porcentaje de acero longitudinal	
4.1.9. Simulación de disipadores de energía	
4.2. EXCITACION SISMICA	
4.3. MODELO DE COMPORTAMIENTO HISTERETICO Y DE DANO PARA VIGAS DE	40
CONCRETO REFORZADO	
4.4. SIMULACION DE SISTEMAS ESTRUCTURALES	42
CAPÍTULO 5. ANÁLISIS NO LINEAL	45
51 ANÁLISIS DINÁMICO NO LINEAL PASO A PASO	45
5 1 1 Análisis paso a paso del sistema convencional	45
5.1.2. Análisis paso a paso del sistema con disipadores de energía ADAS	46
5.1.3. Análisis paso a paso del sistema con marcos y muros de concreto reforzado	
5.1.4. Análisis paso a paso del sistema con marcos y muros de mampostería	
5.2. ANÁLISIS DE EMPUJE LATERAL (PUSHOVER)	49
5.3. ANÁLISIS DE EMPUJE LATERAL PARA LOS DIFERENTES SISTEMAS	49
	70
CAPITULU 6. ANALISIS DE CUNFIABILIDAD	59
6.1. METODOLOGIA EMPLEADA EN ESTE ESTUDIO	
6.2. DETERMINACIÓN DEL INDICE DE DANO D	00
0.3. SEUDOACELEKACION NORMALIZADA Z	01
6.5 DETERMINACIÓN DEL VALOR MEDIO Y DE LA DESVIACIÓN ESTÁNDAR	02
DE Ω -L n (7)	63
$E = \sum_{n=1}^{\infty} \sum_{i=1}^{\infty} \sum_{j=1}^{\infty} \sum_{i=1}^{\infty} $	05
6.0. INDICE DE CORNELL $p = E[M] / o[M]$.	03
6.7. CURVAS DE CONFIABILIDAD PARA CADA SISTEMA ESTRUCTURAL	64
CAPÍTULO 7. COSTOS DE LOS SISTEMAS EN ESTUDIO	89
CAPÍTULO 8. ANÁLISIS DE RESULTADOS	97
CAPÍTULO 9. CONCLUSIONES Y RECOMENDACIONES	101
REFERENCIAS	103
	100
APÉNDICE A. DISTRIBUCIÓN NORMAL PARA LA SIMULACIÓN DE LOS	100
DISITADURES DE ENERGIA	109
APÉNDICE B. DISTRIBUCIÓN MULTINORMAL EMPLEADA PARA LA	
GENERACIÓN DE NÚMEROS ALEATORIOS	111

APÉNDICE C. ARCHIVO DE ENTRADA PARA EL PROGRAMA DRAIN-2D...... 115

CAPÍTULO 1

INTRODUCCIÓN

El diseño sísmico de estructuras en México, al igual que en otros muchos países del mundo, se sigue realizando tradicionalmente por el método de resistencias (método implícito en el RCDF-2004), en donde se emplean espectros de aceleración de diseño sísmico que son reducidos por medio de factores de comportamiento sísmico, debido al comportamiento inelástico de los elementos estructurales; donde se verifica después que se cumplan principalmente las distorsiones máximas de entrepiso establecidos.

Los objetivos del diseño sísmico se sintetizan en un equilibrio adecuado, entre los costos de construcción y mantenimiento y los riesgos aceptables de daño o fallas durante la vida útil de cada obra. Lo anterior implica, lograr a un nivel suficientemente bajo el riesgo de colapso ante sismos de las mayores intensidades probables en el sitio de la construcción, proteger la integridad física de los ocupantes y salvaguardar sus bienes, controlar pérdidas económicas asociadas con bienes materiales, costos de reparación y las actividades que puedan suspenderse debido al no funcionamiento de las estructuras después del evento sísmico. Cualquiera que sea el criterio que se adopte para establecer las acciones de diseño sísmico de las estructuras, variables de control y márgenes de seguridad aceptables e intervalos de recurrencia de sismos, deben lograr el equilibrio mencionado.

El diseño por el método de resistencias se aplica a las diferentes estructuraciones más comunes en nuestro país, por ejemplo, para estructuras a base de marcos de concreto reforzado, estructuras a base de marcos con muros de concreto reforzado o muros de mampostería, estructuras de mampostería, entre otras. Además, diseñadas así las estructuras, se encuentra que éstas llevan implícitamente cierto grado de confiabilidad, debido a los factores de carga y de resistencias que se recomiendan. Así pues, la confiabilidad implícita, difiere para cada tipo de estructuración y para el estado límite al que se desempeñen las estructuras.

Para las estructuras poco comunes, por ejemplo, en las que se implementan disipadores de energía del tipo pasivo, es difícil estimar la confiabilidad que éstas poseen, ya que no hay factores recomendados para el diseño. La gran mayoría de los estudios realizados sobre edificios en donde se han implementado dispositivos disipadores de energía, han sido, en general para observar el comportamiento (mejora en las respuestas) de éstas ante excitaciones sísmicas; todos estos estudios se hicieron sin seguir un criterio unificado, tanto para el análisis y diseño de éstos edificios, y mucho menos un criterio establecido para llevar a cabo el diseño de edificios con disipadores de energía en la práctica. Tena-Colunga (1998b, 2000) hace algunas recomendaciones para el modelado elástico e inelástico de edificios con disipadores ADAS, Presichi (2007) propone un método explícito para el diseño de estructuras con disipadores de energía, tanto para el método estático, como para el modal espectral.

En este estudio, se analizan y comparan cuatro estructuras simétricas en planta y elevación de 13 niveles, en términos de índices de confiabilidad (índice β de Cornell), en donde los índices son calculados cuando las estructuras se desempeñan muy cercanas al colapso. Se supone que los edificios se desplantan en terreno blando de la Ciudad de México, con un periodo dominante del suelo igual a 2 segundos. Las estructuras que se analizan son: una a base de marcos de concreto reforzado (convencional), una compuesta por marcos de concreto reforzado y dispositivos disipadores de energía ADAS, una a base de marcos con muros de concreto reforzado y una compuesta por marcos de

concreto reforzado con muros de mampostería. Se consideran los efectos de la interacción suelo estructura (ISE).

En este trabajo se emplean, el RCDF y sus NTC-2004, recomendaciones para el modelado elástico e inelástico del edificio con disipadores de energía (Tena-Colunga, 2000; Whittaker et al., 1989), programas para análisis elástico e inelástico (Corona 2004; Kanaan y Powell, 1973), programa para la simulación de estructuras con elementos de concreto reforzado (Alamilla, 2001) y métodos para simular elementos de acero (como los disipadores de energía).

Se consideran las incertidumbres para elementos de concreto reforzado (Alamilla, 2001), las excitaciones que afectan a las respuestas de las estructuras y se emplea como indicador de desempeño cercano al colapso el índice de rigidez secante global (Esteva e Ismael, 2004). Posteriormente, con base en teorías sobre confiabilidad estructural se calculan las curvas de confiabilidad para cada tipo de estructuración. Se determinan los costos directos del volumen de materiales que constituyen a los marcos analizados, sin hacer un análisis detallado sobre los mismos.

Todo lo anterior en conjunto, se empleará para la comparación entre los diferentes modelos estudiados.

Esta tesis consta de 9 capítulos. El primer capítulo presenta una introducción, definición de los objetivos y alcances del trabajo. El capítulo 2 trata del diseño sísmico con base en el desempeño, así como el concepto de confiabilidad en las estructuras. El capítulo 3 muestra detalladamente las geometrías, análisis y diseño convencional de las estructuraciones. El capítulo 4 describe el modelo de comportamiento histerético e incertidumbres que definen las respuestas de los edificios. Con base en lo establecido en el capítulo anterior, se realizan análisis no lineales en el capítulo 5. Así, se tienen parámetros para llevar a cabo el análisis de confiabilidad de las estructuraciones en el capítulo 6. En el capítulo 7 se determinan los costos iniciales de los modelos. El capítulo 8 muestra los resultados de la tesis y, en el último capítulo se dan las conclusiones y recomendaciones para probables estudios en el futuro.

1.1. OBJETIVO DE LA TESIS

El objetivo principal de esta tesis es hacer una comparación entre cuatro estructuraciones distintas de trece niveles, para conocer cuál de ellas presenta mejor comportamiento, en términos de confiabilidad en los límites del colapso. La primera estructura está conformada solamente con marcos de concreto reforzado. Las tres restantes están compuestas por marcos de concreto reforzado, y estructuraciones con elementos disipadores de energía ADAS, muros de concreto reforzado y muros de mampostería, respectivamente.

1.2. ALCANCES Y LIMITACIONES

Se estudian edificios regulares en planta y elevación, considerando los efectos de interacción suelo estructura, debido a la zona donde se suponen desplantados. Los efectos de torsión ocasionados por la excentricidad accidental son considerados en el análisis y diseño convencional.

Los sistemas a base de vigas y columnas de concreto reforzado, de marcos de concreto reforzado con dispositivos disipadores de energía ADAS, y de marcos con muros de concreto reforzado se diseñaron para una distorsión máxima de entrepiso de 0.015, utilizando un factor de comportamiento símico Q = 3, estos números se fijaron para que la comparación fuera uniforme. El sistema compuesto de marcos y muros de mampostería se diseñó para una distorsión de 0.006, empleando un factor Q = 2, debido a las restricciones de las NTC (principalmente por la poca capacidad de deformación de la mampostería).

Se siguieron las recomendaciones del RCDF y sus NTC para el diseño de los elementos estructurales de las estructuras convencional, del sistema compuesto por marcos con muros de concreto reforzado y marcos que forman parte del sistema con disipadores. En la etapa del análisis elástico del sistema con disipadores, éstos se representaron con diagonales equivalentes.

En el proceso de los análisis no lineal, como empuje lateral y el análisis paso a paso, se analizaron marcos planos que consideran incertidumbres en las propiedades mecánicas de los elementos estructurales, así como las asociadas a las acciones gravitacionales y las debidas a sismos. Para la estructura con marcos rígidos y muros de mampostería, los paneles de mampostería se reemplazaron por elemento diagonales de acero que trabajan a compresión. El análisis para la estructura con disipadores de energía se llevó a cabo siguiendo recomendaciones encontradas en la literatura, en donde se modelan los disipadores de energía como elementos axiales equivalentes.

Se generó un grupo de 51 edificios, obteniéndose así 50 edificios simulados y uno con propiedades medias, esto se realizó para cada tipo de estructuración. Para cada edificio con propiedades medias, se determinaron las respuestas en términos de desplazamientos de azotea empleando como excitación el sismo real registrado en la SCT (sismo SCT8519SE.3EW).

Se tomaron sismos simulados como excitaciones para cada grupo de estructuras simuladas en el cálculo de las respuestas en la etapa de la determinación de curvas de confiabilidad.

Se estableció que las curvas de confiabilidad (índices de β de Cornell) se calculan para un nivel de desempeño cercano al colapso, empleando como indicador de desempeño el índice de reducción de rigidez secante. Este indicador se empleó debido a la sensibilidad que pueden mostrar las curvas de confiabilidad (variabilidad en los índices β), si se adopta calcular éstas en función de la demanda de ductilidad de sistemas simplificados de referencia.

En la etapa de los costos de los sistemas, sólo se determinaron los asociados a los marcos tridimensionales (costo directo de materiales), incluyendo muros de concreto, de mampostería o elementos disipadores de energía, según sea el caso. Para esto último, se consideraron precios actuales de los materiales según el mercado.

CAPÍTULO 2

DISEÑO SÍSMICO DE ESTRUCTURAS

2.1. DISEÑO DE EDIFICIOS CON BASE EN EL DESEMPEÑO

En la actualidad el diseño sísmico de estructuras se orienta a la investigación, desarrollo de procedimientos, metodologías y criterios que permitan la estimación del desempeño de las estructuras ante diversas intensidades sísmicas (Diseño Sísmico Basado en Desempeño). En otras palabras, los niveles esperados de daños y de sus consecuencias sobre los requisitos de funcionalidad de las estructuras después de un sismo de cierta intensidad, o más bien, intensidades asociadas con periodos de retorno especificados en el sitio de construcción. Para las intensidades de los sismos, de acuerdo con su probabilidad de ser excedida durante la vida de una estructura, pueden definirse mediante los términos, frecuente, ocasional, rara o muy rara, que corresponden a periodos de retorno de 43, 72, 475 y 970 años, respectivamente. Para cada una de estas intensidades y también de acuerdo con la importancia de las estructuras se pueden establecer cuatro tipos de desempeño, que son; "plenamente operacional", "operacional", "protección de vidas" o "cercano al colapso" y se pueden definir como (Paulay y Priestley, 1992):

Nivel 1 o completa operación: El comportamiento de las estructuras es en el intervalo elástico y se esperaría la inexistencia de daños y por tanto deben seguir cumpliendo con sus funciones las estructuras.

Nivel 2 u operacional: Se espera que los daños sean de poco a moderados y posiblemente se requieran algunas reparaciones para la posterior ocupación de las estructuras.

Nivel 3 o seguridad de vida: Los daños en elementos estructurales son de moderados a importantes, así como daños importantes en los elementos no estructurales, además, hay un amplio margen de seguridad con respecto al colapso.

Nivel 4 o cercano al colapso: Este nivel de desempeño es el que viene en el reglamento actual de diseño sísmico y viene dado en términos de distorsiones máximas (contra colapso) de entrepiso, cociente del desplazamiento relativo de dos niveles consecutivos entre la altura de entrepiso. Cabe mencionar que la estructura quedará muy dañada y no seguirá cumpliendo con sus funciones.

Para el caso del terreno blando de la Ciudad de México, los espectros definidos en las NTC-2004 para el nivel de protección de vidas, corresponde a un intervalo de recurrencia de 125 años y no de 475 como lo propone el comité VISIÓN 2000 (Esteva, 2001).

Para la práctica, los niveles de desempeño antes descritos deben expresarse en términos de indicadores cuantitativos de la relación entre la demanda de respuesta estructural y la capacidad del sistema para evitar la ocurrencia de cada modo de falla, los indicadores más simples son en términos de desplazamientos relativos (Qi y Moehle, 1991) y distorsiones laterales. Con la finalidad de conocer en forma explícita el nivel de comportamiento no lineal en marcos dúctiles, los indicadores antes descritos se sustituyen por las demandas de ductilidad, tanto locales como globales, donde, las primeras se refieren a la relación entre la fuerza cortante basal del sistema y el desplazamiento relativo de la azotea con respecto a la base, mientras que para las segundas pueden referirse a las relaciones entre momento

y curvatura de las secciones críticas de los miembros que trabajan a flexión. En la literatura se puede encontrar criterios más refinados para describir el desempeño contra el colapso en términos de daño acumulado y de energía disipada por comportamiento histerético (Park y Ang, 1984; Wang y Shah, 1987; Esteva et al, 2001).

Un criterio relativamente sencillo y con buena aproximación para estimar la configuración del sistema y determinar su capacidad de deformación, es suponer que tal configuración coincide con la determinada por medio de un empuje lateral (pushover). Para determinar el daño acumulado, desplazamientos y deterioro de rigidez que se mencionan en las siguientes secciones, se necesitan otros análisis, como el análisis dinámico paso a paso. Así, con la ayuda de ambos análisis se determinan los parámetros relacionados con el desempeño de las estructuras.

2.2. CONCEPTOS DE CONFIABILIDAD ESTRUCTURAL

Debido a las variaciones o incertidumbres involucradas para la estimación de las acciones sobre una estructura y todos los factores que intervienen en la estimación de resistencias, siempre existe una probabilidad finita de que las demandas sobrepasen las resistencias mencionadas, a esto se le llama probabilidad de falla y el complemento es la confiabilidad estructural, en otras palabras, esto último es la probabilidad de sobrevivencia de la estructura o de no falla. Es evidente entonces que las estructuras siempre pueden fallar, con mayor o menor probabilidad de falla, mismas probabilidades que son función de muchos modos de falla.

La confiabilidad se define como $\Re = (1 - P_f)$, donde P_f es la probabilidad de que la estructura falle durante el periodo de referencia especificado. Para el cálculo de la confiabilidad de las estructuras se requiere determinar las distribuciones acumuladas de probabilidad y las distribuciones de densidad de probabilidad de todas las variables que intervienen, esto no es sencillo, pues llevan a expresiones matemáticas complicadas, pero, existen métodos aproximados para estimar dicha confiabilidad. La determinación de la probabilidad de falla $P_F(y)$ para un sistema de varios grados de libertad sometido a una excitación sísmica con intensidad y, y por tanto con múltiples modos de falla, implica estimar la probabilidad de que, para cualquiera de dichos modos de falla, la deformación demandada por la respuesta dinámica del sistema exceda de la correspondiente capacidad de deformación. Para el caso de edificios con marcos continuos, los modos de falla más probables consisten en el agotamiento de las capacidades de deformación de entrepiso.

Esteva y Ruiz (1989) presentaron un procedimiento para estimar un índice de confiabilidad β semejante al propuesto inicialmente por Cornell (1969).

$$\beta = -\frac{E[\ln Z]}{\sigma[\ln Z]} \tag{2.1}$$

En esta ecuación, Z es el cociente de la demanda de deformación, Ψ , entre la correspondiente capacidad de deformación global, Ψ_c , en donde dicho cociente adquiere su máximo valor durante un temblor con una intensidad dada. E[.] y $\sigma[.]$ denotan el valor esperado y la desviación estándar,

respectivamente. Suponiendo que Z tiene distribución logarítmico-normal, β puede correlacionarse con la probabilidad de falla para la intensidad en cuestión por medio de la relación $p_F(y) = \Phi(-\beta)$, donde $\Phi(.)$ es la función de distribución de distribución normal estándar.

Para el cálculo de la confiabilidad estructural resulta necesario desarrollar modelos probabilísticos que permitan estimar la probabilidad de falla. Para ello, es necesario definir antes el criterio de falla cuya probabilidad se desea evaluar, así como las variables aleatorias que intervienen en dicho criterio; sin olvidar que tales variables deben poder ser descritas por medio de sus funciones tanto de distribución acumulada de probabilidad F[.] como de densidad de probabilidad f[.]. Estas funciones, por lo general, pueden determinarse empleando datos estadísticos generados, por ejemplo, a partir de pruebas de control en laboratorio haciendo uso del concepto de frecuencia relativa; en ocasiones se puede recurrir a la observación del comportamiento de las variables aleatorias en sistemas existentes similares a aquel que se planea construir, a la asignación totalmente subjetiva de una probabilidad, basada en experiencias del pasado o en modelos heurísticos de comportamiento.

El modelo probabilístico de mayor aceptación para calcular la probabilidad de falla se fundamenta en el conocido criterio de diseño que se establece en muchos reglamentos de construcción del mundo:

$$S \le R \tag{2.2}$$

Donde S representa las solicitaciones que actúan sobre el sistema estructural o sobre un elemento específico, R la resistencia que corresponde a un estado límite (el de servicio o falla) elegido para el sistema global o para el elemento a diseñar. En el caso general, tanto S como R son variables inciertas y se describen por medio de sus correspondientes funciones de densidad de probabilidades, $F_S(S)$ y $F_R(r)$ (Esteva, 2006). La probabilidad de falla es igual a la del evento S > R y se calcula como:

$$p_F = \int f_s(s) F_R(s) ds = \int f_R(r) (1 - F_s(r)) dr$$
(2.3)

El cálculo de la probabilidad de falla para sistemas estructurales de varios grados de libertad, empleando el procedimiento anterior, conduce con frecuencia a modelos matemáticos complejos que no pueden representarse fácilmente en forma de expresiones analíticas sencillas; lo cual ha llevado a buscar alternativas de solución que simplifican el cálculo con el correspondiente costo de pérdida de precisión, pero ofrecen estimaciones con suficiente aproximación para la probabilidad de falla. Uno de estos caminos es el desarrollado inicialmente por Esteva (1968) y Cornell (1969) que se sintetiza en la determinación del índice de β , el cual se define mediante el procedimiento mostrado a continuación (Segui, 2000):

en condición de falla;

$$S > R \tag{2.4}$$

dividiendo entre S el límite de falla

$$\frac{R}{S} < 1 \tag{2.5}$$

Al cociente R/S se le denomina factor de seguridad y se calcula la probabilidad de falla recurriendo al concepto de distribución acumulada de probabilidades para dicho cociente.

$$p_F = P \left[\frac{R}{S} < 1 \right] \tag{2.6}$$

Empleando el logaritmo natural de $\frac{R}{S}$ se tiene

$$p_F = P\left[\ln\left(\frac{R}{S}\right) < \ln 1\right] = P\left[\ln\left(\frac{R}{S}\right) < 0\right]$$
(2.7)

Considerando que el $\ln(R/S)$ obedece a una distribución normal de probabilidades, la forma estandarizada de la variable $\ln(R/S)$ puede definirse con el siguiente cambio de variable

$$U = \frac{\ln\left(\frac{R}{S}\right) - \left[\ln\left(\frac{R}{S}\right)\right]_{m}}{\sigma_{\ln\left(\frac{R}{S}\right)}}$$
(2.8)

donde $\left[\ln\left(\frac{R}{S}\right)\right]_m$ y $\sigma_{\ln\left(\frac{R}{S}\right)}$ son el valor medio y desviación estándar de $\ln\left(\frac{R}{S}\right)$, respectivamente.

Esta transformación convierte la abscisa U en múltiplos de desviación estándar y coloca la media U en U = 0. La probabilidad de falla puede entonces calcularse como

$$p_F = P\left[\ln\left(\frac{R}{S}\right) < 0\right] = P\left(\left\{U\sigma_{\ln(R/S)} + \left[\ln\left(\frac{R}{S}\right)\right]_m\right\} < 0\right)$$
(2.9)

Simplificando la expresión se tiene

$$p_{F} = P \left\{ U < -\frac{\left[\ln \frac{R}{S} \right]_{m}}{\sigma_{\ln(R/S)}} \right\} = F_{U} \left\{ -\frac{\left[\ln \frac{R}{S} \right]_{m}}{\sigma_{\ln(R/S)}} \right\}$$
(2.10)

Donde F_U es la función de distribución de probabilidad acumulada de U, o la probabilidad de que U no exceda el argumento de la función. Si hacemos

$$\beta = -\frac{\left\lfloor \ln \frac{R}{S} \right\rfloor_m}{\sigma_{\ln(R/S)}}$$
(2.11)

Similar a la ecuación 2.1, sólo que en tal caso el límite de seguridad está basado en la distorsión global observada y la de falla. Entonces

$$\left[\ln\frac{R}{S}\right]_{m} = \beta\sigma_{\ln(R/S)}$$
(2.12)

La variable β puede interpretarse como el número de desviaciones estándar a la que está, desde el origen, el valor medio de $\ln(R/S)$. Por seguridad el valor medio debe ser mayor que cero y en consecuencia, β se llama índice de seguridad o índice de confiabilidad. Entre mayor sea este valor, mayor será el margen de seguridad. La Figura 2.1 muestra la interpretación geométrica del índice de confiabilidad, donde se aprecia que la probabilidad de falla, que aparece sombreada en dicha Figura y llamada p_F será más pequeña en la medida que β sea mayor.

Por analogía, se puede emplear el concepto de margen de seguridad, para obtener una expresión alternativa del índice de confiabilidad (Hart, 1982).

De la ecuación 2.2 se obtiene 0 > R - S e introduciendo una nueva variable M = R - S y en la condición de falla M < 0. Considerando que R y S tienen distribución normal de probabilidades, entonces M = R - S y $\sigma_R^2 = \sigma_R^2 + \sigma_S^2$.

La probabilidad de falla se expresa entonces como

$$p_F = P[(R-S) < 0] = P[M < 0]$$
(2.13)

Para la forma estandarizada de distribución normal de M se define el cambio de variable

$$U = \frac{M - \overline{M}}{\sigma_M} \tag{2.14}$$

Esta transformación convierte la abscisa U en múltiplos de desviación estándar y coloca la media de U en U = 0. La probabilidad de falla puede entonces calcularse como

$$p_F = P[M < 0] = P(\{U\sigma_M + \overline{M}\} < 0)$$
(2.15)

Despejando U se tiene

$$p_F = P \left[U < -\frac{\overline{M}}{\sigma_M} \right] = F_U \left\{ -\frac{\overline{M}}{\sigma_M} \right\}$$
(2.16)

Donde F_U es la función de distribución acumulada de U o la probabilidad de que U no exceda el argumento de la función. Si:

$$\beta = -\frac{\overline{M}}{\sigma_{M}} = \frac{\overline{R} - \overline{S}}{\sqrt{\sigma_{R}^{2} + \sigma_{S}^{2}}}$$
(2.17)

Entonces

$$\overline{M} = \beta \sigma_M \tag{2.18}$$

Figura 2.1. Interpretación geométrica del índice $\beta\,$ de confiabilidad.

CAPÍTULO 3

DISTINTOS TIPOS ESTRUCTURALES EN ESTUDIO

Uno de los propósitos de una estructura es soportar las cargas gravitacionales, pero en la realidad no solo estas fuerzas son las que se presentan en las estructuras, por esto, las estructuras también deben ser capaces de resistir fuerzas laterales debidas a sismos o a la acción del viento principalmente.

Para resistir las acciones, se tienen diferentes sistemas estructurales que pueden cumplir con dichas solicitaciones; dentro de los sistemas estructurales más comunes se tienen los marcos de vigas y columnas de concreto reforzado, sistemas compuestos por marcos con muros de concreto reforzado, sistemas con marcos de concreto reforzado y muros de mampostería, entre otras distintas estructuraciones. Otro sistema estructural, relativamente nuevo y que ha demostrado ser eficaz (Bergman y Goel, 1987; Whittaker et al., 1989 y 1991; Aiken et al., 1993, entre otros.) para mejorar la repuesta estructural de edificios ante sismos intensos, es el sistema compuesto por marcos de concreto reforzado y dispositivos disipadores de energía.

3.1. SISTEMAS DE MARCOS DE CONCRETO REFORZADO (CONVENCIONALES)

Este tipo de estructuración se compone sólo de elementos columnas y vigas de concreto reforzado que soportan a las losas, la unión de éstos es mediante una conexión rígida. Este sistema es conveniente por la gran libertad que permite en el uso del espacio interno del edificio debido a las secciones relativamente pequeñas de las columnas; desde el punto de vista sísmico, la gran ventaja de dicho sistema es la gran ductilidad y disipación de energía que se puede lograr.

Dado que el comportamiento de este sistema estructural ante cargas laterales está regido por las deformaciones de flexión de sus elementos, éste presenta una rigidez y resistencia a cargas laterales relativamente bajas, a menos que las secciones de sus elementos sean muy robustas. Los edificios con este tipo de estructuración, son generalmente flexibles y por tanto, se vuelve crítico el problema de mantener las distorsiones de entrepiso dentro de los límites establecidos por la normas. Los marcos de este tipo, con facilidad soportan las cargas gravitacionales si se tiene la resistencia adecuada para cargas laterales; finalmente, este sistema estructural es recomendado y es el más usado para edificaciones de altura mediana y baja en zonas sísmicas.

3.1.1. Parámetros para el análisis y diseño de los modelos

En la Tabla 3.1. se definen los parámetros para llevar a cabo el análisis sísmico convencional de los modelos. En ésta también se definen los parámetros ISE, cumpliendo con las especificaciones del RCDF-2004 y sus respectivas NTC.

El sistema convencional a base de marcos dúctiles de concreto reforzado (SC), se diseña tomando como límite de distorsión máxima contra colapso 0.015. Las rigideces totales de entrepiso de este

sistema se muestran en la columna 2 de la Tabla 3.2a. Esta estructuración es la de referencia para el diseño de las otras estructuras.

Los marcos de concreto reforzado que aportan una fracción de las rigideces totales de los sistemas se denominan como marcos reducidos (MR), la otra parte la aportarán, para cada sistema, ya sea los elementos disipadores de energía (ADAS), los muros de concreto reforzado (MCR) o los muros de mampostería (MP).

Los sistemas de MR se diseñan con ADAS y MCR, respectivamente, con una distorsión máxima contra colapso igual a 0.015. La columna 3 de la Tabla 3.2a muestra las rigideces del MR y en la columna 4 se presenta la relación de rigideces entre el MR y SC. Las rigideces que aportan los ADAS se dan en la columna 5. En la columna 6 se tienen las sumas de las rigideces del MR y ADAS, que corresponden al sistema a base de marcos de concreto con ADAS, denominado como SEDE. Las columnas 2 y 6 de esta Tabla muestran que las rigideces de los SC y SEDE son muy parecidas. Por otra parte, la columna 7 de la misma Tabla presenta la relación de rigideces entre los ADAS y el SEDE, sólo para mostrar la aportación de los disipadores de energía.

En la columna 10 de la Tabla 3.2b se dan las rigideces de los MCR. Sumando éstas con las rigideces del MR (columna 9) se obtienen las rigideces del sistema a base de marcos con muros de concreto reforzado (columna 11). Se identifica a este sistema como DUAL. En la columna 12 de la Tabla 3.2b se muestra la relación de rigideces entre los MCR y el sistema DUAL, y se observa que los MCR aportan el 70 por ciento y el MR el 30 por ciento, aproximadamente. No se logra distribuir en igual proporción las rigideces entre los elementos resistentes, debido a las restricciones del reglamento de diseño, que se mencionan en la sección 3.3.2 de este trabajo.

Para la estructura compuesta por marcos de concreto reforzado con muros de mampostería, se considera una distorsión máxima contra colapso de 0.006, para cumplir con las NTC del RCDF-2004. Las secciones del marco de concreto reforzado de este sistema resultan más grandes, respecto del MR empleado en los sistemas anteriores. En la columna 13 de la Tabla 3.2b se tienen las rigideces de este sistema, incluyendo muros de mampostería y marcos. Los muros de mampostería se identifican como (MP). Las columnas 14 y 15 de la misma Tabla muestran las rigideces aportadas por los marcos y MP, respectivamente. La última columna de la Tabla 3.2b muestra la relación de rigideces entre los marcos de concreto y el sistema en sí, donde se aprecia que los MP aportan el 20 por ciento y los marcos el 80 por ciento de rigideces.

Las rigideces de entrepiso que se muestran en las Tablas 3.2a y 3.2b para las diferentes estructuraciones, se determinaron a partir de considerar un vector de fuerzas laterales, es decir, los desplazamientos de entrepiso son debidos a un vector de fuerzas estimadas por el método estático. El análisis modal espectral se lleva a cabo para obtener los elementos mecánicos de las estructuras y así diseñar las secciones de cada modelo.

3.1.2. Geometría del sistema convencional

La geometría en planta y elevación de este edificio es simétrica, tres crujías en cada sentido horizontal, con una longitud de 7 m cada una, consta de trece niveles, la altura del primer entrepiso es de 3.5 m y el resto de los entrepisos tiene una altura de 3 m, todos las marcos que forman esta estructura son a base de columnas y vigas con conexión rígida entre éstos, como se muestra en la Figura 3.1, además que cuenta con una cimentación como la especificada en la Tabla 3.1.

3.1.3. Diseño del sistema convencional

El análisis convencional para esta estructuración es del tipo modal espectral, empleando el programa EcogcW (Corona, 2004) (se emplea este mismo programa para el análisis de los otros modelos) y considerando los parámetros definidos en la Tabla 3.1. Las rigideces de entrepiso de este sistema son las que se presentan en la Tabla 3.2a. El diseño de este sistema es iterativo hasta cumplir con las distorsiones máximas permitidas, aclarando nuevamente que se ha considerado tal distorsión máxima de entrepiso igual a 0.015; cumpliendo con cuantías de acero mínimo y máximo, etc., según el RCDF y las NTC, obteniéndose así las secciones teóricas que se muestran en la Tabla 3.3.

3.2. SISTEMA DE MARCOS DE CONCRETO REFORZADO Y DISIPADORES DE ENERGÍA

Los elementos que forman este tipo de estructuración, son los marcos dúctiles de concreto reforzado y los elementos disipadores de energía, éstos últimos se montan generalmente sobre diagonales de acero. La función principal de los disipadores de energía es aportar rigidez, incrementar amortiguamiento y resistencia lateral, concentrar los daños en éstos cuando haya comportamiento en el intervalo inelástico ante la presencia de un sismo u otras fuerzas laterales y así evitar o limitar daños en los elementos estructurales de concreto, según la intensidad de las fuerzas; donde los elementos de concreto son más difíciles de reparar si se llegan a dañar.

3.2.1. REGLAMENTO ACTUAL SOBRE EL DISEÑO DE SISTEMAS CON ELEMENTOS DISIPADORES DE ENERGÍA

En México aún no existen normas similares a las Normas Técnicas Complementarias para Diseño y Construcción de Estructuras de Concreto, de Estructuras Metálicas o Estructuras de Mampostería, para la construcción de estructuras con dispositivos disipadores de energía. Pero, sí se permite la implementación de estos dispositivos en las estructuras, siempre y cuando satisfagan los requerimientos mínimos que las mismas Normas fijan.

En las Normas Técnicas Complementarias para Diseño por Sismo del Distrito Federal, sección 1.12 se establecen las condiciones para el empleo de dispositivos especiales en estructuras, textualmente se tiene:

Cuando la estructura se aísle sísmicamente en su base, o se adopten dispositivos especiales capaces de disipar energía por amortiguamiento o comportamiento inelástico, podrán emplearse criterios de diseño sísmico que difieran de los aquí especificados, pero congruentes con ellos, si se demuestran, a satisfacción de la administración, tanto de la eficacia de los dispositivos o soluciones estructurales, como la validez de los valores del amortiguamiento y del factor de comportamiento sísmico que se propongan.

Respecto de lo que se establece en el párrafo anterior y para el desarrollo de esta tesis se han reunido, información y pruebas que han comprobando el buen desempeño que se tiene en los edificios donde se han implementado disipadores de energías, como los del tipo que se emplea en uno de los modelos analizados en este trabajo. La metodología que se sigue para el análisis y diseño de este sistema, es el

recomendado por uno de los investigadores que tal vez es el más dedicado al estudio de estos tipos de dispositivos (ADAS) a nivel nacional, y parece ser que sus esfuerzos y de otros van encaminados a que éstas sean partes de la normas de diseño. Información sobre el factor de comportamiento sísmico Q que se emplea para este sistema es igual a 3, la razón principal de seleccionar dicho factor es sencilla, se establece como parámetro de diseño para poder comparar las respuestas de los diferentes sistemas analizados. Por todo lo anterior, se emplea la información con la que se cuenta hasta ahora para el análisis y diseño de este modelo.

3.2.2. Dispositivos disipadores de energía ADAS

La placa en forma de X fue desarrollada en Nueva Zelanda para usarse principalmente como elemento de soporte de pipas (Tyler, 1978; Bergman y Goel 1987). Después se ha usado en otras estructuras como disipador de energía.

Cuando una placa rectangular se deforma plásticamente en doble curvatura, fluirán únicamente sus extremos, esta concentración es particularmente indeseable tanto en términos de cantidad de energía que puede ser absorbida como por el patrón de deformación y por su falta de estabilidad en el intervalo plástico.

Los dispositivos ADAS consisten en una serie de placas de la forma X "que se asemeja a la forma de un reloj de arena" (Figuras 3.2a y 3.2b), arreglada en paralelo con elementos en los extremos para su fijación. Estos dispositivos son diseñados para disipar energía a través de la deformación por flexión de las placas en doble curvatura cuando son sometidas a cargas laterales; la ventaja particular de una placa en forma de X es, cuando se deforma en doble curvatura, la deformación de la placa es uniforme en toda su altura y se genera un diagrama de esfuerzos casi uniforme en todo el peralte que cambia con el signo en el eje neutro.

3.2.3. Comportamiento de los dispositivos ADAS

El comportamiento histerético de los dispositivos ADAS depende principalmente de su resistencia y desplazamiento de fluencia (Δ_y), del grado de restricción que tengan sus extremos, esto es, depende únicamente de las características mecánicas y de las condiciones de apoyo, siendo éstas las dos ventajas principales del dispositivo. También los ADAS trabajan básicamente a cortante, pueden soportar un gran número de ciclos de carga y pueden acumular una gran cantidad de deformación plástica sin perder resistencia o rigidez. La susceptibilidad de estos elementos de fallar por fatiga es mínima a menos que su resistencia lateral sea muy baja. Los ADAS son capaces de soportar más de 100 ciclos de carga a una deformación de $3\Delta_y$ con respuesta estable y sin señales de degradación, éstos también pueden con seguridad ser diseñados para desplazamientos arriba de $10\Delta_y$, la falla de este elemento se alcanza cuando se somete a15 ciclos de carga con una amplitud de $14\Delta_y$ (Whittaker et al., 1989; Aiken et al., 1993).

3.2.4. Uso de los ADAS

El objetivo de incluir los disipadores de energía ADAS en una estructura que resistirá un sismo es concentrar el comportamiento histerético en secciones especialmente diseñadas y evitar comportamiento inelástico en los elementos que resistirán las cargas gravitacionales, excepto en las condiciones más severas. Así, la deformación plástica puede concentrarse en éstos dispositivos durante un evento y los daños en otros elementos estructurales son limitados. Durante la excitación, los ADAS aumentan la rigidez y resistencia lateral del edificio considerablemente, puede haber una reducción significante de deformación de entrepiso, aumento de capacidad de disipar energía y por tanto un estable y buen comportamiento de las estructuras.

Por lo descrito en el párrafo anterior y con base en otros resultados de algunos estudios (Whittaker et al., 1989, 1991; Aiken et al., 1993; Perry et al., 1993; Dargush y Soong, 1995; entre otros), se demuestra claramente que los ADAS pueden ser usados con alto grado de "confiabilidad" en la reparación de estructuras y en el diseño sísmico de edificios si se diseñan correctamente. Los dispositivos son diseñados de forma independiente para cada proyecto, basado en la fuerza y desplazamiento de fluencia que se desee y en otras recomendaciones que se enuncian en siguientes secciones de esta tesis.

3.2.5. Procedimiento analítico para definir la curva carga-deformación y ecuaciones para el diseño de los dispositivos ADAS

La función principal de un elemento disipador de energía pasivo es incrementar el amortiguamiento histerético en la estructura. La ecuación básica de energía para estructuras con disipadores de energía del tipo pasivo es la siguiente:

$$E_I = E_K + E_S + E_{\xi} + E_H$$

Donde:

 E_I : Energía de entrada debido al sismo

 E_{κ} : Energía cinética de la estructura

 E_s : Energía en la estructura debido a deformaciones

 E_{ε} : Energía disipada por amortiguamiento viscoso

 E_{H} : Energía disipada por amortiguamiento histerético

La función principal del uso de los disipadores de energía en una estructura es aumentar E_H y así disminuir E_s para un determinado E_I .

Un elemento ADAS es definido como un dispositivo ADAS y dos diagonales tipo chevrón que soportan a los dispositivos. Se presentan las geometrías, real e idealizada del dispositivo ADAS y parámetros que intervienen en las ecuaciones de diseño (Figuras 3.3a y 3.3b). Se supone que la placa tiene una geometría equivalente en forma de X triangular, como en la propuesta de Whittaker et al.

Para un dispositivo ADAS compuesto de n placas e idealizado como lo propone Whittaker et al. (1989), el desplazamiento de fluencia es el calculado por la ecuación 3.1, mientras que el cortante de fluencia y la rigidez elástica a cortante se calculan con las ecuaciones 3.2 y 3.3. En las siguientes

ecuaciones, $b_{1eq} = h/2$, t es el espesor de la placa, σ_y es el esfuerzo de fluencia del acero estructural que se emplea para el diseño de las placas y E es el módulo elástico.

$$\Delta_y = \frac{3\sigma_y h^2}{4Et} \tag{3.1}$$

$$V_{y} = \frac{n\sigma_{y}b_{1eq}t^{2}}{2h}$$
(3.2)

$$K = \frac{2}{3}n\frac{Et^{3}}{h^{3}}b_{1eq}$$
(3.3)

La curva carga-deformación a cortante del dispositivo ADAS puede ser idealizada y definida con las ecuaciones 3.1 a 3.3 como una curva elastoplástica perfecta o como una bilineal, como se recomienda en la literatura. Las curvas idealizadas se pueden ver en las Figuras 3.4a y 3.4b, teniendo en cuenta que la geometría del dispositivo es también la idealizada.

3.2.6. Análisis elástico de estructuras con dispositivos ADAS

Como los disipadores se montan generalmente en contravientos metálicos, una manera fácil de lograr la modelación en el intervalo elástico con la ayuda de un programa de análisis estructural convencional es, que el sistema contraviento-disipador puede ser representado por una diagonal equivalente, donde la rigidez axial de cada una de las diagonales equivalentes es función de la geometría del sistema y de las rigideces relativas de los disipadores y de los contravientos utilizados (Tena-Colunga 2000). Así se tiene que para el caso que los disipadores ADAS se monten en contravientos tipo chevrón, éstos estarían trabajando en el mismo sentido lateral que la estructura, pero en dirección oblicua con respecto al eje longitudinal de las diagonales que forman parte del contraventeo. Se tiene para este caso que, la rigidez axial de cada diagonal equivalente, K_{eq} , con respecto a su eje longitudinal principal está dada por la ecuación 3.4, siempre y cuando el contraventeo chevrón cuente con diagonales de la misma longitud y mismo ángulo de inclinación, θ , medido con respecto al eje horizontal; donde K_{diag} es la rigidez axial elástica de cada una de las diagonales que forman parte del contraviento chevrón con respecto a su eje principal, mientras que K_{DDE} es la rigidez elástica del dispositivo disipador de energía, esta última se obtiene con la ecuación 3.3.

$$\frac{1}{K_{eq}} = \frac{1}{K_{diag}} + \frac{2\cos^2\theta}{K_{DDE}}$$
(3.4)

El área de las diagonales que satisface a K_{diag} se calcula usando la ecuación siguiente, en ésta va implícitamente la condición; $K_{diag} = 2K_{DDE}$, condición que permite un buen comportamiento del dispositivo ADAS:

$$A = \frac{2LK_{DDE}}{E}$$
(3.5)

Y para K_{eq} :

$$A = \frac{K_{diag} K_{DDE}}{K_{DDE} + K_{diag} 2Cos^2 \theta} * \frac{L}{E}$$
(3.6)

L representa la longitud de la diagonal y E es el módulo elástico del acero estructural empleado.

3.2.7. Análisis y modelado no lineal de una estructura incorporando dispositivos ADAS

Hay diferentes formas de llevar a cabo el análisis no lineal de las estructuras en donde se implementan disipadores de energía, en este caso, los ADAS. Tena- Colunga (2000) ha modelado de diferentes formas y ha comparado resultados de modelos con este tipo de dispositivos y, comenta que es erróneo usar diagonales equivalentes para el modelado inelástico de este tipo de estructuras como se hace en el modelado elástico, pues, viola los más elementales criterios de las relaciones esfuerzo-deformación. Un método alterno, no idóneo, pero bastante bueno en teoría para modelar los dispositivos disipadores de energía en un marco empleando diagonales tipo chevrón es el llamado "Método del elemento axial equivalente". Esta es la forma en que se modelan los disipadores ADAS para el presente trabajo.

A continuación se mencionan las consideraciones para el modelado no lineal de los disipadores y diagonales tipo chevrón que forman parte del sistema analizado, tales consideraciones se tomaron de diferentes trabajos (Whittaker et al., 1989; Tena-Colunga, 2000; Tehranizadeh, 2001).

- Elementos perfectamente plásticos si los desplazamientos de los ADAS están limitados a $6\Delta_{y}$ (ductilidad local del dispositivo). En este trabajo no se considera este comportamiento.
- La máxima resistencia calculada del ADAS se tomará en cuenta para los efectos de deformación por endurecimiento, esta relación de endurecimiento por deformación generalmente es pequeña (0.01- 0.1) y su efecto en la respuesta de la estructura es reducir las deformaciones laterales y aumentar las fuerzas en la estructura. En este trabajo se considera el 0.05, es decir el 5% de la pendiente inicial.
- Cuando los disipadores ADAS son reemplazados por un elemento axial equivalente (Figura 3.5), se usará la siguiente ecuación para el dimensionamiento de cada elemento axial equivalente. Las propiedades de rigidez, resistencia y comportamiento histerético del elemento axial equivalente corresponden a las del ADAS.

$$K_{eaeq} = K_{DDE} \tag{3.7}$$

En la ecuación anterior, K_{DDE} se determina como se ha descrito en la sección 3.2.5.

• La resistencia de cada elemento axial equivalente está dada por la ecuación:

$$F_{ueaeq} = F_u \tag{3.8}$$

 F_u representa la fuerza de diseño de los dispositivos disipadores de energía ADAS, para el caso en donde se sustituyen dichos dispositivos por elementos axiales equivalentes, la fuerza de diseño es la que se toma para diseñar los elementos equivalentes.

- La relación de rigideces de las diagonales y la del dispositivo disipador K_{diag}/K_{DDE} es importante, esta relación de rigideces entre las diagonales y la de los dispositivos varía significativamente dependiendo del tipo de dispositivos y la magnitud permisible de distorsiones de entrepiso. Un valor de $K_{diag} \ge 2K_{DDE}$ es conveniente para el diseño de los dispositivos, esto produce un sistema razonablemente eficiente.
- El área de cada diagonal que conforma al contraviento chevrón se calcula con la ecuación 3.5.

3.2.8. Geometría del sistema con disipadores de energía ADAS

En la Figura 3.6. se muestra en planta y elevación la estructura con disipadores de energía, los disipadores ADAS se colocan en las crujías centrales de los marcos exteriores, el resto de los marcos es compuesto por elementos vigas y columnas de concreto reforzado.

3.2.9. Diseño del sistema con disipadores de energía ADAS

Se consideran los parámetros de diseño especificados en la Tabla 3.1 y con la ayuda del programa de análisis estructural se realiza el análisis modal espectral; aclarando que se ha empleado el mismo espectro de diseño y factor de reducción para esta estructura, pues es lo que se ha establecido para el análisis de la estructura, y conforme progrese el análisis de la misma, se verifica si es correcto el haber considerado estos valores.

Para iniciar con el análisis de este edificio, se proponen las secciones de concreto reforzado (denominado MR) que deben aportar el 50 % de rigideces de entrepiso respecto de la estructura convencional, esto se logra reduciendo las secciones de las vigas y columnas del sistema convencional de tal forma que sus momentos de inercia se reduzcan en un 50 %, la variable principal a despejar es la altura y ancho de los elementos, y de forma iterativa se hace esto hasta cumplir con las rigideces que se establecen.

Por otra parte, siguiendo con la metodología que se ha presentado en la sección 3.2.5 se obtienen las dimensiones de las diagonales equivalentes que representan a los elementos ADAS para el modelado convencional de la estructura en el intervalo elástico. Los cálculos necesarios para las dimensiones de éstas diagonales se presentan en la Tabla 3.4.

En esta parte, es importante definir la articulación de las diagonales equivalentes en el programa de análisis estructural, pues así no tomarán momentos y contribuirán con la rigidez lateral que se supone deben aportar para cumplir con las rigideces de entrepiso, mismas que deben ser iguales a las del sistema convencional. Los resultados muestran una ligera variación de rigideces de entrepiso de este sistema con respecto a las rigideces de entrepiso del sistema convencional, esto se puede ver en la Tabla 3.2a. Se entiende que al aportar los marcos el 50 % de las rigideces en cada entrepiso y el otro 50 % los elementos ADAS, implica que éstos últimos también aportan el mismo porcentaje en resistencia lateral.

El periodo efectivo de esta estructura es casi idéntico al periodo de la estructura convencional, pues no es tan rígida como la estructura con muros de concreto reforzado.

Una vez realizado el análisis estructural con base en lo anterior, se tiene que se ha cumplido con las distorsiones máximas permisible por el reglamento, posteriormente se obtienen los elementos mecánicos y se procede a diseñar los elementos estructurales de concreto reforzado con apego a las NTC correspondientes, dichas secciones que forman parte de este sistema son las mostradas en la Tabla 3.5.

Para llevar a cabo el diseño de los dispositivos ADAS y de las diagonales que soportan a éstos, se siguen las recomendaciones y ecuaciones que se han presentado en la sección 3.2.4 de este capítulo. En este estudio no se usan las placas probadas por (Whittaker et al., 1989) porque son muy pequeñas, y se requerirá un gran número de las mismas para satisfacer las demandas de rigidez y fuerzas cortantes en cada entrepiso, donde en la práctica no se podrán instalar. Debido a estas razones, se propone una placa con dimensiones más grandes para que al momento de diseñarlas, resulten menos número de placas y así sea factible instalarlas. La determinación del número de placas requeridos en cada entrepiso y las dimensiones de los contravientos se presenta en el capítulo 7 de este trabajo.

En la columna 2 de la Tabla 3.4 se tienen las rigideces que deben aportar los disipadores de energía para cada entrepiso, en la columna 3 se toma la mitad de cada rigidez de entrepiso que se tiene en la columna 2, éstas serán las aportadas por las diagonales equivalentes, pues hay elementos disipadores en 2 de los ejes del sistema (ejes o marcos exteriores) en cada dirección; en las columnas 8 y 9 se tienen las rigideces y áreas correspondientes para las diagonales que soportan a los dispositivos, las cuales se calculan con la ecuación 3.5, en la columna 9 se tiene el áreas de cada diagonal equivalente que se emplea en el programa de análisis estructural convencional, el cual es calculado con la ecuación 3.6 y finalmente en la columna 11 se tienen los anchos de las barras equivalentes, en donde se nota que éstas son de sección cuadrada.

3.3. SISTEMA FORMADO POR MARCOS Y MUROS DE CONCRETO REFORZADO

Este sistema se constituye de vigas, columnas y muros de concreto reforzado. Cuando se da la interacción entre los marcos de concreto reforzado y los muros de concreto reforzado se proporciona una adecuada resistencia lateral al sistema ante la presencia de las fuerzas que provienen de los sismos o del viento.

El sistema dual combina características importantes que tienen los marcos y muros de concreto reforzado, lo que se puede apreciar cuando se considera la compatibilidad de desplazamientos laterales de ambos sistemas; en los pisos superiores los marcos tienden a restringir los desplazamientos laterales causados por los desplazamientos de flexión del muro. Paulay y Priestley (1992) recomiendan que en edificios de 20 niveles o más es recomendable usar esta estructuración.

3.3.1. Geometría del sistema a base de marcos y muros de concreto reforzado

En la Figura 3.7 se muestra la configuración de la estructura a base de marcos de concreto reforzado y muros de concreto, es un edificio simétrico en planta, se colocan los muros de concreto reforzado en las crujías centrales de los marcos exteriores para proporcionales rigidez y resistencia lateral.

3.3.2. Diseño del sistema a base de marcos y muros de concreto reforzado

Como se diseña la estructura convencional, de forma análoga se lleva a cabo el análisis y diseño de este modelo con muros de concreto. La diferencia es que aquí se tiene un marco reducido (MR) que aporta el cincuenta por ciento de rigideces con respecto a las rigideces de entrepiso del SC. Lo anterior se hace con la finalidad de incluir muros de concreto para proporcionar la otra fracción de rigidez que falta y así cumplir con las distorsiones de entrepiso contra el colapso.

Se trató de cumplir con la condición de que al incluir los muros de concreto, las rigideces de entrepiso de este sistema se igualaran con las del sistema convencional, para así tener parámetros congruentes en la comparación de las respuestas. Esto no se cumplió debido a las restricciones del RCDF y sus NTC-2004, principalmente cuando se usa un factor de ductilidad Q=3. Dentro de las otras restricciones que existen en el Reglamento, se tienen éstas que fueron las determinantes para no igualar las rigideces de entrepiso entre el sistema convencional y DUAL:

• En las Normas Técnicas Complementarias para Diseño y Construcción de Estructuras de Concreto, en la sección 6.5.2.1. se tiene:

El espesor de los muros sujetos a fuerzas horizontales en su plano no puede ser menor de 130 mm; tampoco será menor que 0.06 veces la altura no restringida lateralmente, a menos que se realice un análisis de pandeo lateral de los bordes del muro, o se les suministre restricción lateral.

• En estas mismas normas, en la sección 7.1.2 se establecen requisitos complementarios cuando se diseña con Q = 3 para marcos dúctiles con muros de concreto reforzado, se enuncia lo siguiente:

La fuerza cortante inducida por el sismo resistida por los marcos en algún entrepiso sea menor que el 50 % de la total.

Tomando en cuenta lo anterior, se realizó el diseño de los elementos de forma iterativa con apego a las NTC, se obtienen las secciones teóricas para este modelo que se muestran en la Tabla 3.6.

En la base del sistema con muros de concreto reforzado, la rigidez es mayor que para el sistema convencional y para el sistema con disipadores de energía, lo cual implica que hay menores distorsiones de entrepiso y también el periodo efectivo de la estructura es ligeramente menor con respecto a los periodos efectivos de los sistemas convencional y sistema con dispositivo ADAS.

3.4. SISTEMAS DE MARCOS DE CONCRETO REFORZADO Y MUROS DE MAMPOSTERÍA

Los muros de mampostería son elementos que se pueden emplear para rigidizar a los edificios y se emplean de manera frecuente en la construcción de diversas edificaciones. Es claro que no tienen un comportamiento sísmico como los muros de concreto reforzado o estructuras de acero, debido a que es un material de baja resistencia a tensión y de comportamiento frágil. Pero está demostrado que con refuerzo y confinamiento adecuado se puede lograr un comportamiento satisfactorio si estos muros reciben fuerzas en su plano principal y no se inducen flexiones normales a dicho plano.

Los muros que interesan en este estudio son los que resisten cargas horizontales en conjunto con marcos de concreto reforzado, por tanto, se emplean los muros del tipo diafragma. Se ha observado que los muros de mampostería y marcos de concreto reforzado trabajan como una columna ancha en la que las columnas del marco proporcionan casi toda la rigidez a flexión mientras que el muro absorbe la mayoría de los esfuerzos cortantes. Las cargas horizontales que actúan sobre estructuras de mampostería se deben a diversas causas, sin embargo, la causa más frecuente e importante es el sismo, produciendo diversos efectos, de los cuales, el más importante es el de la fuerza cortante en la estructura.

3.4.1. Geometría del sistema a base de marcos de concreto reforzado y muros de mampostería

Al igual que para los diferentes modelos de estudio, se presenta la geometría del modelo a base de marcos de concreto reforzado y muros de mampostería, en donde los muros se colocan en las crujías centrales de los marcos exteriores y el edificio tiene las dimensiones que se muestran en la Figura 3.8.

3.4.2. Diseño del sistema a base de marcos de concreto reforzado y muros de mampostería

Este sistema tiene el mismo número de entrepisos que los otros tres modelos, lo que varía aquí es la distribución de rigideces y resistencias de los elementos estructurales, pues, se seleccionó este sistema para estudiar su comportamiento, pero asumiendo que se tienen muros de mampostería maciza con un espesor de 14 cm. y otras propiedades que se concentran el la Tabla 3.1.

Se analiza y diseña el edificio con este tipo de estructuración con una Q = 2, apegándose a lo que las NTC-Concreto y NTC-Mampostería establecen. Los muros de mampostería que se emplean son los del tipo diafragma, éstos a la vez se supone son reforzados interiormente. No se detalla el armado de los muros, pues, la finalidad de este estudio es comparar las respuestas como se ha subrayado, para esto, como dato principal y necesario para alcanzar el objetivo es, conocer las rigideces de entrepiso que aportan dichos muros para la resistencia de las fuerzas laterales.

Las geometrías de vigas y columnas de concreto reforzado que forman parte de este sistema se obtienen de forma iterativa hasta cumplir con los requisitos de las normas correspondiente y las secciones se muestran en la Tabla 3.7. Se hace notar que estas secciones y las de los otros sistemas, son secciones teóricas.

llso y grupo al que pertenecen los edificios	
	Destinado para, oficinas
Grupo al que pertenecen	Edificación del tino B
Acciones permanentes y variables	
Carda muerta	CM-0.56 t/m² para azotea. 0.42 t/m² para entrenisos
	$CV/M=0.10 t/m^2$ para azotea 0.25 t/m² para entrepisos
	$CVI=0.07 t/m^2$ para azotea. 0.18 t/m ² para entrepisos
Resistencias nominales de los materiales	
Módulo elástico del acero de refuerzo	E_=2 039E07 t/m ²
Resistencia a la fluencia del acero de refuerzo	f.=42000 t/m ²
Módulo elástico del acero estructural A-36	F _c =2039E07_t/m ²
Resistencia a la fluencia del acero estructural	f.=25300 t/m ²
Resistencia última del acero estructural	f.=40800 t/m ²
Resistencia de diseño a compresión de la mampostería	f_*=10000 t/m ²
Módulo de elasticidad de la mampostería	$F_{m} = 600000 \text{ t/m}^2$
Módulo elástico del concreto	E_=2213594.3 t/m ²
Fíc del concreto I	f'c=250004.0 t/m ²
Puntos que definen al espectro de aceleraciones	
Aceleración del terreno	a ₀ =0.25 (s ₂ /g)
Coeficiente sísmico	$C_{s}=1.20$ (sa/g)
Periodo T _a	T ₂ =1.175 seq.
Periodo T _b	T _b =2.40 seq.
Factor deductilidad y regularidad	
Factor de ductilidad	Q=3
Factor de regularidad	k=1
Propiedades mecánicas del suelo	
Peso volumétrico	γ=1.25 t/m ³
Amortiguamiento histerético	ξ=0.03
Periodo fundamental del suelo	T _s =2.00 s
Relación de Poisson	v=0.45
Profundidad de depósitos de arcilla	Hs=41.00 m
Módulo de rigidez a corte	G=857.00 t/m ²
Capacidad de carga del suelo	C=2.00 t/m ²
Cimentación de 3 de los sistemas	
Altura del cajón de cimentación	D=4 m
Pilotes de fricción	49
Diámetro de los pilotes	D _p =0.92 m
Longitud de los pilotes	L _p =34.86 m
Cimentación de la estructura con mampostería	
Altura del cajón de cimentación	D=4 m
Pilotes de fricción	49
Diámetro de los pilotes	D _p =1.12 m
Longitud de los pilotes	L _p =36.80 m
Distorsiones máximas de entrepiso contra colapso	
Distorsión para tres de los sistemas	d _r = 0.015
Distorsión para la estructura con mampostería	d _r =0.006

Tabla 3.1. Parámetros para el análisis modal espectral de los modelos con ISE

Sistema convencional (SC)		Marco reducido		Sistema con disipadores de energía (SED		
Entrepiso	(SC)	(MR)	MR/SC	ADAS	MR+ADAS	ADAS/SEDE
					(SEDE)	
	t/m	t/m		t/m	t/m	
(1)	(2)	(3)	(4)	(5)	(6)	(7)
13	29658	14026	0.5	10439	24465	0.4
12	39271	19940	0.5	19198	39138	0.5
11	54670	27799	0.5	26650	54450	0.5
10	69865	36015	0.5	32813	68828	0.5
9	82423	42004	0.5	38443	80448	0.5
8	96009	48650	0.5	43930	92580	0.5
7	110226	55382	0.5	49729	105111	0.5
6	121689	61218	0.5	55954	117173	0.5
5	125757	63467	0.5	61033	124500	0.5
4	130735	65936	0.5	67100	133036	0.5
3	144191	71413	0.5	76395	147808	0.5
2	165641	80024	0.5	86602	166626	0.5
1	245732	125461	0.5	119816	245277	0.5

Tabla 3.2a. R	igideces de los	sistemas	convencional v	con disipadores	de energía ADAS

Tabla 3.2b. Rigideces de los sistemas con muros de concreto reforzado y mampostería

					-			
Sistema con muros de concreto reforzado (MCR)					Siste	ema con muro	os de mampo	stería (MP)
Entrepiso	(MR)	MCR	MR+MCR		Rigidez	Rigidez	Rigidez	Relación rigid.
			(DUAL)	MCR/DUAL	sistema.	marcos	MP	marcos/sistema
	t/m	t/m	t/m		t/m	t/m	t/m	
(8)	(9)	(10)	(11)	(12)	(13)	(14)	(15)	(16)
13	14026	10471	24496	0.4	114468	86721	27747	0.8
12	19940	26771	46711	0.6	165527	115195	50332	0.7
11	27799	40427	68227	0.6	240569	178932	61637	0.7
10	36015	53564	89579	0.6	302216	233355	68861	0.8
9	42004	67736	109740	0.6	365717	289050	76668	0.8
8	48650	82037	130686	0.6	387527	303595	83932	0.8
7	55382	98637	154019	0.6	407058	317425	89632	0.8
6	61218	119453	180671	0.7	481196	382686	98510	0.8
5	63467	144462	207929	0.7	499806	396735	103071	0.8
4	65936	179622	245559	0.7	521260	411744	109516	0.8
3	71413	234656	306069	0.8	578168	458344	119824	0.8
2	80024	308313	388337	0.8	609438	484600	124838	0.8
1	125461	462899	588360	0.8	670478	541834	128644	0.8

	Secciones del sistema convencional						
Entrpiso	Columnas (m)	Vigas (m)	Muros (m)				
1-3	1.05 * 1.05	0.43 * 0.89	-				
4-6	0.95 * 0.95	0.43 * 0.89	-				
7	0.85 * 0.85	0.43 * 0.89	-				
8-9	0.85 * 0.85	0.39 * 0.80	-				
10	0.75 * 0.75	0.39 * 0.80	-				
11	0.75 * 0.75	0.33 * 0.66	-				
12-13	0.65 * 0.65	0.33 * 0.66	-				

Tabla 3.3. Secciones del sistema convencional

Tabla 3.4. Área de las diagonales equivalentes para llevar a cabo el análisis elástico convencional
del sistema con ADAS

Nivel	Rigidez de	Rigidez	Longitud de	Elasticidad	Inclinación de	cos²θ	Rigidez de	Área de la	Área de la	Ancho de la
	entrepiso	ADAS	la diagonal	del acero	la diagonal (θ)		la diagonal	diagonal	diagonal eq.	diagonal eq.
	T/m	T/m	m	T/m2	grados		T/m	m2	m2	m
13	15632.30	7816.15	4.609	20390000	40.601	0.576	15632.30	0.0035336	0.001068864	0.03269348
12	19330.97	9665.49	4.609	20390000	40.601	0.576	19330.97	0.0043696	0.001321761	0.03635604
11	26871.04	13435.52	4.609	20390000	40.601	0.576	26871.04	0.006074	0.001837316	0.04286393
10	33849.65	16924.83	4.609	20390000	40.601	0.576	33849.65	0.0076514	0.002314481	0.04810905
9	40418.53	20209.27	4.609	20390000	40.601	0.576	40418.53	0.0091363	0.00276363	0.05257024
8	47358.72	23679.36	4.609	20390000	40.601	0.576	47358.72	0.0107051	0.003238168	0.0569049
7	54844.01	27422.01	4.609	20390000	40.601	0.576	54844.01	0.0123971	0.003749977	0.06123706
6	60470.15	30235.08	4.609	20390000	40.601	0.576	60470.15	0.0136688	0.004134666	0.06430137
5	62290.11	31145.06	4.609	20390000	40.601	0.576	62290.11	0.0140802	0.004259106	0.06526183
4	64798.31	32399.16	4.609	20390000	40.601	0.576	64798.31	0.0146472	0.004430605	0.06656279
3	72777.51	36388.76	4.609	20390000	40.601	0.576	72777.51	0.0164508	0.004976186	0.07054209
2	85617.08	42808.54	4.609	20390000	40.601	0.576	85617.08	0.0193531	0.005854096	0.07651206
1	120270.62	60135.31	4.949	20390000	45.000	0.500	120270.62	0.0291917	0.009730575	0.09864368

Tabla 3.5. Secciones de concreto reforzado para el sistema con dispositivos ADAS

Secciones del sistema con disipadores de energía ADAS						
Entrepiso	Columnas (m)	Vigas (m)	Muros (m)			
1	0.97 * 0.97	0.30 * 0.63	-			
2-3	0.97 * 0.97	0.37 * 0.73	-			
4-6	0.89 * 0.89	0.37 * 0.73	-			
7	0.77 * 0.77	0.37 * 0.73	-			
8-9	0.77 * 0.77	0.32 * 0.67	-			
10	0.70 * 0.70	0.32 * 0.67	-			
11	0.70 * 0.70	0.26 * 0.54	-			
12-13	0.62 * 0.62	0.26 * 0.54	-			

Secciones del sistema con muros de concreto reforzado						
Entrepiso	Columnas (m)	Vigas (m)	Muros (m)			
1	0.97 * 0.97	0.30 * 0.63	0.315			
2	0.97 * 0.97	0.37 * 0.73	0.285			
3	0.97 * 0.97	0.37 * 0.73	0.260			
4	0.89 * 0.89	0.37 * 0.73	0.240			
5	0.89 * 0.89	0.37 * 0.73	0.215			
6	0.89 * 0.89	0.37 * 0.73	0.190			
7	0.77 * 0.77	0.37 * 0.73	0.180			
8-9	0.77 * 0.77	0.32 * 0.67	0.180			
10	0.70 * 0.70	0.32 * 0.67	0.180			
11	0.70 * 0.70	0.26 * 0.54	0.180			
12-13	0.62 * 0.62	0.26 * 0.54	0.180			

Tabla 3.6. Secciones del modelo a base de marcos	y muros de concreto reforzado
--	-------------------------------

Tabla 3.7. Secciones del modelo a base de marcos y muros de mampostería

Secciones del sistema con muros de mampostería			
Entrepiso	Columnas (m)	Vigas (m)	Muros (m)
1-3	1.10 * 1.10	0.55 * 1.35	0.14
4-6	1.00 * 1.00	0.55 * 1.35	0.14
7-9	0.85 * 0.85	0.55 * 1.35	0.14
10	0.75 * 0.75	0.55 * 1.35	0.14
11	0.75 * 0.75	0.50 * 1.05	0.14
12	0.65 * 0.65	0.50 * 1.05	0.14
13	0.65 * 0.65	0.49 * 0.98	0.14

Figura 3.1. Planta y elevación del sistema convencional

a) b) Figuras 3.2. Placa en forma de X y dispositivo ADAS

Figuras 3.3. Geometría real e idealizada de los dispositivos ADAS

Figuras 3.4. Curvas carga-deformación de los dispositivos ADAS, elastoplástica y bilineal

Figura 3.5. Contraviento chevrón y elementos axiales equivalentes a los dispositivos ADAS

Figura 3.6. Planta y elevación de la estructura con disipadores de energía ADAS

Figura 3.7. Planta y elevación del sistema con marcos y muros de concreto reforzado

Figura 3.8. Planta y elevación del sistema con marcos y muros de mampostería

CAPÍTULO 4

INCERTIDUMBRES, EXCITACIÓN SÍSMICA E HISTÉRESIS

4.1. ANÁLISIS Y MANEJO DE INCERTIDUMBRES

Para la estimación de las respuestas sísmicas de las estructuras en el intervalo inelástico existen muchas incertidumbres. Por ejemplo, las asociadas a las propiedades mecánicas de los elementos estructurales, las asociadas a las resistencias de los materiales, las que existen en las geometrías de los elementos estructurales, las asociadas a las acciones actuantes en las estructuras, tanto en las cargas muertas, vivas y cargas accidentales, éstas últimas dependientes de los sismos específicamente.

Los valores probables y medios de las propiedades mecánicas de los elementos estructurales, son determinados a partir de los valores nominales de la estructuras diseñadas de acuerdo con las NTC y empleando el método de simulación de Monte Carlo. En la aplicación de este método se consideran algunas incertidumbres que pueden ser representadas por modelos probabilísticos. Enseguida se describen de forma general, ya que son las consideradas en el programa SIMESTRU (Alamilla, 2001), que se emplea para la generación de estructuras con propiedades simuladas (estructuras con elementos de concreto reforzado).

4.1.1. Incertidumbres en las cargas vivas para edificios

Para la estimación de la incertidumbre en la intensidad de la carga viva se emplea el modelo probabilístico lineal propuesto por Pier y Cornell (1973), dicho modelo es representado por la ecuación siguiente.

$$w(x, y) = m + \gamma_b + \gamma_f + \varepsilon(x, y)$$
(4.1)

En la ecuación anterior, w(x,y) representa la intensidad de la carga viva sostenida en un punto cualquiera con coordenadas horizontales (x,y) sobre un piso dado y para una estructura dada; *m* representa la carga viva media para la población de estructuras con el mismo tipo de ocupación: oficinas, departamentos, etc.; γ_b es una variable aleatoria independiente con media cero que toma en cuenta la variación de la intensidad de la carga media de una estructura a otra; mientras que γ_f toma en cuenta la variación de la intensidad de carga media de un piso a otro pero en el mismo edificio; $\varepsilon(x,y)$ es una variable aleatoria independiente de γ_b y γ_f , con media cero, que representa la variación espacial de la intensidad de la carga sobre un piso dado de un determinado edificio.

Las propiedades estadísticas para w(x,y) en dos puntos distintos (x_0,y_0) y (x_1,y_1) sobre un mismo piso están dadas por las siguientes ecuaciones:

$$E[w(x, y)] = m \tag{4.2}$$

$$\operatorname{cov}[w(x_0, y_0), w(x_1, y_1)] = \sigma_b^2 + \sigma_f^2 + \operatorname{cov}[\varepsilon(x_0, y_0), \varepsilon(x_1, y_1)]$$
(4.3)

En la ecuación 4.3, σ_b^2 y σ_f^2 son la varianzas de γ_b y γ_f respectivamente; el último término de la misma ecuación es la función de covarianza entre $\varepsilon(x_0, y_0)$ y $\varepsilon(x_1, y_1)$ y que a la vez se puede escribir también de la forma:

$$\operatorname{cov}[\varepsilon(x_0, y_0), \varepsilon(x_1, y_1)] = \sigma_{sp}^{2} e^{-r^{2}/d}$$
(4.4)

Donde σ_{sp}^2 es la varianza espacial de $\epsilon(x,y)$, *r* es la distancia horizontal entre los dos puntos (x_0,y_0) y (x_1,y_1) y *d* es un parámetro estimado. Cuando dos puntos (x_0,y_0) y (x_2,y_2) están localizados en diferentes pisos, la ecuación 4.4 se transforma en la siguiente:

$$\operatorname{cov}[\varepsilon(x_0, y_0), \varepsilon(x_2, y_2)] = \rho_c \sigma_{sp}^{-r^2/d}$$
(4.5)

En ésta última, ρ_c es la correlación entre la variación espacial de la intensidad de las cargas en dos puntos, uno en un piso y otro directamente sobre el superior. Esta correlación se presenta cuando los ocupantes de un edificio tienden a cargar de la misma forma los pisos. También ρ_c depende del número de pisos entre los dos puntos y por simplicidad se asume que es constante para un determinado edificio.

Para tener una expresión práctica, es necesario expresar el modelo descrito anteriormente en términos de cargas unitarias por unidad de área, U(A), para distintos valores de *A*. Para obtener tal expresión se requiere integrar la función w(x,y) sobre un área dada y posteriormente dividirla entre el área de integración. De esta forma, para un área rectangular de un piso determinado las propiedades estadísticas de U(A) se expresan como:

$$E[U(A)] = m \tag{4.6}$$

у

$$\operatorname{var}[U(A)] = \sigma_{b}^{2} + \sigma_{f}^{2} + \sigma_{U}^{2} \frac{K(A)}{A}$$
(4.7)

donde:

$$\sigma_U^2 = \pi d\sigma_{sp}^2 \tag{4.8}$$

$$K(A) = \left[erf\left(\sqrt{\frac{A}{d}}\right) - \sqrt{\frac{d}{A\pi}} (1 - e^{-\frac{A}{d}}) \right]^2$$
(4.9)

$$erf(z) = \frac{2}{\pi} \int_0^z e^{-t^2} dt$$
(4.10)

En caso de que se tenga n pisos con área rectangular común de un determinado edificio, las ecuaciones 4.6 y 4.7 se pueden escribir como sigue:

$$E[U(A_n)] = m \tag{4.11}$$

$$\operatorname{var}[U(A_{n})] = \sigma_{b}^{2} + \frac{\sigma_{f}^{2}}{n} + \frac{\sigma_{U}^{2}K(A)}{nA} + \rho_{c}\left(\frac{n-1}{n}\right)\frac{\sigma_{sp}^{2}K(A)}{A}$$
(4.12)

Es necesario calibrar el modelo mediante el ajuste a casos reales de los coeficientes de variación de la carga unitaria $\sqrt{\operatorname{var}[U(A)]}/m$, contra A, y $\sqrt{\operatorname{var}[U(A)]}/m$, contra n. De la calibración se obtienen los valores de los parámetros que intervienen en la ecuación 4.12.

De los trabajos de Mitchel y Woodgate, Pier y Cornell (1973) observaron que la función de densidad de probabilidades de U(A) es una función tipo Gamma, $G(k,\lambda)$, con parámetros k y λ , definidos por las siguientes ecuaciones:

$$k = \frac{E[U(A)]^{2}}{\operatorname{var}[U(A)]} = \frac{m^{2}}{\sigma_{b}^{2} + \sigma_{f}^{2} + \sigma_{U}^{2} \frac{K(A)}{A}}$$
(4.13)

$$\lambda = \frac{E[U(A)]}{\operatorname{var}[U(A)]} = \frac{m}{\sigma_b^2 + \sigma_f^2 + \sigma_U^2 \frac{K(A)}{A}}$$
(4.14)

Por lo anterior, Alamilla (2001) hace una transformación de los valores de dichos parámetros con el objeto de representarlos para condiciones de edificación en el Distrito Federal. Así, toma el valor medio de la carga viva en edificios de oficinas obtenido por Ruiz y Soriano (1997), $m_o = 75.1 \text{kg/m}^2$. La transformación consiste en expresar la incertidumbre en el modelo citado en términos de coeficientes de variación. Esto se justifica, debido a que los datos estadísticos expresados en términos de los coeficientes de variación de cargas vivas en edificios desplantados en la Ciudad de México se ajustan adecuadamente al modelo ajustado por Pier y Cornell. La metodología anterior se puede ver con detalle en el trabajo de Alamilla (2001), Soriano et al. (1997) y Sampayo et al. (2001).

4.1.2. Incertidumbres en las cargas muertas para edificios

Debido a la variación en las geometrías de los elementos estructurales y a las variaciones de los pesos específicos de los materiales empleados, existen incertidumbres en la estimación de las cargas muertas. Respecto a los pesos específicos de los materiales empleados, éstos se han considerado de forma aproximada por medio de la gran cantidad de datos estadísticos con que se cuenta, por esto, sí se pueden estimar de forma aproximada las cargas muertas que actúan sobre las estructuras.

En el RCDF-2004 se establece, para fines de diseño, un valor nominal para la carga muerta. Dicho valor corresponde a una probabilidad de ser excedida que en general varía entre el dos y cinco por ciento. Meli (1976), estableció que el valor nominal de carga muerta w_n , y su valor medio, m_{cm} , se puede expresar como sigue:

$$m_{cm} = \frac{W_n}{1 + 2Cv} \tag{4.15}$$

En esta ecuación, C_{ν} , corresponde al coeficiente de variación de la carga muerta, al que generalmente se asigna un valor igual a 0.08.

Para evaluar la intensidad de la carga muerta, en este trabajo se empleó una metodología desarrollada por Alamilla (2001), basada en el método de Monte Carlo. En ésta, las intensidades de las cargas se consideran como variables aleatorias correlacionadas de piso a piso. Para cada entrepiso se adopta una

variable aleatoria que es caracterizada por una función de distribución marginal tipo gamma, con media dada por la ecuación 4.15 y coeficiente de variación igual a 0.08.

Alamilla (2001) considera que la correlación entre cargas que provienen de diferentes pisos se puede obtener en forma subjetiva por medio de la distribución del cociente entre cargas en pisos diferentes. La correlación se evaluó de manera que la probabilidad de que dicho cociente tome valores entre 0.8 y 1.25 sea de 0.90; resultando así un coeficiente de correlación igual a 0.5.

4.1.3. Incertidumbres en las geometrías de los elementos estructurales de concreto reforzado

En relación con las características geométricas de los elementos estructurales, como; altura, ancho, área de acero, espesor de losa, peraltes efectivos, etc., pueden presentarse variaciones debidas al tipo de molde empleado, a la calidad de la mano de obra y a la inapropiada supervisión de las mismas, entre otros; estas variaciones generan errores en la estimación de la rigidez, la resistencia y la capacidad de deformación de los elementos citados; por eso, la necesidad de considerar incertidumbres relacionadas con la geometría de los elementos estructurales de CR.

Dependiendo del procedimiento que se emplea para la construcción de estructuras de concreto reforzado se determina el grado de desviación o error entre los valores de diseño y los reales. Para una recopilación de trabajos de mediciones en edificios construidos en varios países, incluido México, Mirza y MacGregor (1979a) evaluaron las propiedades estadísticas, media y desviación estándar, de las diferencias o errores entre las dimensiones reales de secciones transversales de elementos y las correspondientes dimensiones proyectadas. Estos errores se consideran como variables aleatorias correlacionadas con distribución de probabilidad normal (Alamilla, 2001), y se calculan de acuerdo con la metodología propuesta por este autor, en donde la correlación se determina a partir de los primeros momentos estadísticas provienen de la misma muestra de secciones transversales, además, se considera que las variaciones de los errores son estadísticamente independientes en secciones de diferentes elementos.

Mediante la aplicación del método de Monte Carlo se obtienen los valores representativos de las variaciones que sufren las geometrías de las secciones de los elementos estructurales durante el proceso de construcción de los mismos, respecto de su geometría de diseño. Para conocer dichas variaciones, se obtienen simulaciones de los errores de las variables descritas y, posteriormente estos valores simulados se suman a las dimensiones nominales de diseño.

4.1.4. Incertidumbre en la resistencia a compresión del concreto

Para conocer la resistencia a compresión del concreto utilizado para la fabricación de elementos estructurales se realizan pruebas de laboratorio. Estas consisten en ensayes sobre cilindros con 28 días de edad y con ciertas condiciones de elaboración (técnica de curado, el tipo y calidad de agregado, relación agua-cemento, temperatura, humedad, etc.), por todos éstos factores se hace evidente la existencia de incertidumbres en la estimación de las resistencias. Esta incertidumbre puede ser expresada en forma cuantitativa por las variaciones existentes entre la resistencia nominal a compresión del concreto, f'c, y la resistencia real del cilindro o muestra.

Ha sido posible estimar las propiedades estadísticas de la resistencia a compresión del concreto en la estructura, como función de la resistencia media obtenida de ensayes experimentales de cilindros de concreto (Mendoza, 1991). Este autor obtiene las siguientes relaciones:

$$\bar{f}_{co} = 0.95 \bar{f}'_{c}$$
 (4.16)

$$V_{co} = 1.15V_c$$
 (4.17)

Aquí, \bar{f}_{co} es la resistencia media del concreto a compresión en la estructura, \bar{f}'_{c} , es la resistencia media de ensayes de cilindros de concreto sometidos a compresión, V_{co} es el coeficiente de variación de la resistencia a compresión del concreto en la estructura y V_c es el coeficiente de variación de la resistencia a compresión que proviene de ensayes de cilindros de concreto.

En el trabajo de Meli y Mendoza (1991), se estimaron los primeros momentos estadísticos de la resistencia a compresión de concretos utilizando pruebas de cilindros de concreto de resistencias nominales especificadas. Estos autores concluyen que es posible representar la resistencia mediante una función de distribución de probabilidad de tipo normal. También, determinan que para una resistencia nominal igual a f'c=250kg/cm², que es la utilizada en esta tesis, la resistencia a compresión del concreto en cilindros tiene media igual a $\bar{f'c}=268$ kg/cm² y coeficiente de variación $V_c=0.167$.

Por otro lado, existe una elevada correlación entre las resistencias de un mismo elemento, de diferentes elementos en un mismo entrepiso, así como de los elementos de concreto en todo el edificio (Alamilla, 2001). Para tomar en cuenta esta correlación, este autor estima en forma subjetiva los coeficientes de correlación de la resistencia a compresión del concreto entre elementos de un mismo nivel y entre los elementos de diferentes entrepisos. Estos coeficientes son calculados a partir de los coeficientes de las resistencias de los elementos en cuestión y de aplicar la metodología que él propone.

En esta tesis se emplea el procedimiento descrito en el párrafo anterior para obtener los valores simulados de la resistencia a compresión del concreto en elementos estructurales, además se considera que dicha resistencia se comporta de acuerdo con una función de distribución lognormal, ya que los valores de las resistencias del concreto solo pueden tomar valores positivos.

4.1.5. Incertidumbre en la resistencia a tensión del concreto

Es necesario caracterizar y cuantificar la incertidumbre asociada a la resistencia a tensión del concreto, ya que esta influye en el nivel de agrietamiento de los elementos de concreto cuando éstos se someten a esfuerzos de tensión originados por flexión principalmente, pero también por los esfuerzos de tensión debidos a cortante, torsión, etc. Mendoza (1984), propone que la resistencia a tensión del concreto puede ser estimada a partir de la prueba indirecta sobre especímenes de concreto ensayados en laboratorio, en función de su resistencia a compresión, dicha resistencia se estima con la siguiente ecuación

$$f_t = \phi_t \sqrt{f_c} \tag{4.18}$$

Aquí ϕ_t es una variable con media $\overline{\phi}_t = 1.935$ y coeficiente de variación $V_{\phi} = 0.20$. La correlación existente entre la compresión y la tensión no ha podido ser evaluada en términos cuantitativos, debido principalmente a que las resistencias a compresión y tensión de los cilindros provienen de diferentes

muestras; por esto, Alamilla (2001) propone una metodología para estimar la correlación entre éstas variables. En la metodología se asume que la resistencia a tensión y compresión del concreto son variables aleatorias representadas por F_t y F_c respectivamente y se relacionan de la forma siguiente:

$$F_t = \beta \sqrt{F_c} \tag{4.19}$$

Donde β representa a una variable aleatoria independiente con media $\overline{\beta}$ y coeficiente de variación V_{β} , tales variables se definen como:

$$\overline{\beta} = E\left[\frac{F_t}{\sqrt{F_c}}\right] = \frac{\overline{\phi}_t \sqrt{f'_c}}{\sqrt{\overline{f}'_c}(1 - V_c^2/8)}$$
(4.20)

$$V_{\beta}^{2} = \frac{V_{\phi t}^{2} (8 - V_{c}^{2})^{2} - 16V_{c}^{2}}{64 + V_{c}^{4}}$$
(4.21)

En las ecuaciones anteriores, *E*[.] denota al operador esperanza y V_c es el coeficiente de variación de la resistencia a compresión del concreto. La ecuación 4.21 es válida para todo $V_{\phi t}^2 V_{\sqrt{F_c}}^2 = (16V_c^2/(8-V_c^2)^2)$.

 β y F_c se suponen con distribución lognormal. Para determinar los valores simulados de resistencias de concreto se simulan los valores de β en forma independiente de los valores dados de F_c , como opción práctica, debido a que no es necesario evaluar el coeficiente de correlación entre las variables, además, los valores de F_t se obtienen a partir de distribuciones marginales de probabilidad, las cuales presentan ventajas al simular respecto a las distribuciones conjuntas.

4.1.6. Incertidumbre en el módulo tangente del concreto

El módulo contribuye de manera muy significativa a la resistencia de los elementos estructurales de concreto reforzado, contra las fuerzas cortantes y axiales. Éste módulo se define a partir de la pendiente del tramo recto inicial de la curva esfuerzo-deformación unitaria.

En la estimación del módulo existe incertidumbre, pues existe correlación con la resistencia nominal a compresión, esto puede verse en la ecuación 4.22.

$$E_c = \phi_E \sqrt{f'_c} \tag{4.22}$$

En donde ϕ_E es una variable aleatoria con propiedades estadísticas dadas y *f*'*c* es la resistencia a compresión del concreto dada en kg/cm². En estudios realizados por Mendoza (1984), se encontró que tales propiedades, media y coeficiente de variación son: 8500 y 0.12 respectivamente.

Para estudiar la relación probabilística entre la resistencia a compresión y a tensión del concreto y aplicar lo propuesto por Alamillla (2001), E_c y f'_c se consideran variables aleatorias independientes representadas por M_E y F_c , cuya relación está dada por la ecuación

$$M_E = \gamma \sqrt{F_c} \tag{4.23}$$

Donde γ representa a una variable aleatoria independiente con media $\overline{\gamma}$ y coeficiente de variación V_{γ} , dados por las siguientes expresiones:

$$\overline{\gamma} = E\left[\frac{M_E}{\sqrt{F_c}}\right] = \frac{\overline{\phi}_E \sqrt{f'_c}}{\sqrt{\overline{f}'_c}(1 - V_c^2/8)}$$
(4.24)

$$V_{\gamma}^{2} = \frac{V_{\phi E}^{2} (8 - V_{c}^{2})^{2} - 16V_{c}^{2}}{64 + V_{c}^{4}}$$
(4.25)

La ecuación 4.25 es válida para todo $V_{\phi E}^{2} V_{\sqrt{F_{c}}}^{2} = (16V_{c}^{2}/(8-V_{c}^{2})^{2})$.

Mediante la ecuación 4.23, dada la resistencia a compresión del concreto y obteniendo por simulación de Monte Carlo el valor de la variable γ , es posible obtener un valor simulado de E_c asociado con dicha resistencia (Alamilla, 2001).

4.1.7. Incertidumbre en el comportamiento mecánico de las barras de refuerzo

El acero de refuerzo en elementos de concreto reforzado proporciona mayor resistencia y capacidad de disipar energía ante solicitaciones que demandan comportamiento inelástico. Las propiedades estadísticas que caracterizan el modelo de comportamiento mecánico del acero estructural definen la capacidad para resistir un determinado nivel de esfuerzos y deformaciones en los elementos estructurales. Por tales razones, es importante conocer la variación en las propiedades mecánicas de las barras de refuerzo producidos en México.

A partir de pruebas experimentales de probetas de acero ensayadas a tensión, con un régimen de carga monotónico, Rodríguez y Botero (1996) determinan la curva esfuerzo-deformación de barras de acero fabricadas en el país, utilizando un modelo como el mostrado en la Figura 4.1.

La zona elástica está comprendida en el intervalo de 0 a ε_y , donde ε_y es la deformación unitaria de fluencia, que se considera igual a 0.002. Si el módulo de elasticidad E_s del acero es conocido, el esfuerzo para este intervalo se puede evaluar con la ecuación 4.26. La zona de fluencia corresponde al intervalo $\varepsilon_y \le \varepsilon_s \le \varepsilon_{sh}$, donde ε_{sh} es la deformación unitaria del acero en el límite de la zona de endurecimiento por deformación. Para la zona de fluencia, el esfuerzo se evalúa con la ecuación 4.27. La zona de endurecimiento por deformación ocurre en el intervalo $\varepsilon_{sh} \le \varepsilon_s \le \varepsilon_{su}$, donde ε_{su} es la deformación última del acero asociada al esfuerzo máximo en la barra, f_{su} , en esta zona el esfuerzo puede ser caracterizado en forma adecuada por la expresión propuesta por Mander (1984), ecuación 4.28.

$$f_s = E_s \mathcal{E}_s \tag{4.26}$$

$$f_s = f_y \tag{4.27}$$

$$f_{s} = f_{su} + (f_{y} - f_{su}) \left(\frac{\varepsilon_{su} - \varepsilon_{s}}{\varepsilon_{su} - \varepsilon_{sh}} \right)^{P}$$
(4.28)

La ecuación 4.28 es válida para $f_y \leq f_s \leq f_{su}$, *P* es un parámetro adimensional que controla la forma de dicha ecuación. Después de que esta función alcanza el esfuerzo máximo, se presenta una disminución gradual de esfuerzos, así como un aumento continuo de deformaciones hasta alcanzar la ruptura del acero, misma que ocurre a una deformación ε_{suu} .

Con base en los resultados experimentales obtenidos de las probetas ensayadas, Alamilla (2001) define un conjunto de variables aleatorias con el fin de representar las características observadas en cada una de las zonas descritas anteriormente. Dichas variables caracterizan a las propiedades estadísticas de los parámetros que controlan la curva esfuerzo-deformación de las barras de refuerzo.

$$f_y = f_y \tag{4.29a}$$

$$\xi_0 = f_{su} - f_y \tag{4.29b}$$

$$\xi_1 = \varepsilon_{sh} - \varepsilon_y \tag{4.29c}$$

$$\xi_2 = \varepsilon_{su} - \varepsilon_{sh} \tag{4.29d}$$

$$\mathcal{E}_{3} = \mathcal{E}_{suu} - \mathcal{E}_{su} \tag{4.29e}$$

Para estas variables se obtiene la matriz de covarianzas y se ajusta una función de distribución de probabilidad logarítmica normal. El coeficiente de variación de la resistencia se toma del trabajo realizado por Mirza y MacGregor (1979b) y es asociado al obtenido para una sola fuente de procedencia del acero. Por otro lado, se considera a la resistencia de un lecho de acero R, de la cual depende de la variación dentro del lote y de la variación de lote a lote (Alamilla, 2001). Los coeficientes de variación están descritos por la siguiente ecuación

$$V = \sqrt{\left(\sqrt{1 - V_{FY}^{2}} - 1\right)}$$
(4.30)

En ésta, V_{FY} es el coeficiente de variación de f_y definida en la ecuación 4.29a. El procedimiento utilizado para obtener los valores simulados de la curva de comportamiento del acero para cada lecho de las estructuras aquí estudiadas está basado en lo descrito en los previos párrafos.

4.1.8. Incertidumbre en el porcentaje de acero longitudinal

El área real del acero de refuerzo longitudinal en elementos de concreto reforzado difiere de la cantidad de acero que se obtiene de los cálculos de diseño, esto es debido principalmente a la combinación de barras de refuerzo que se recomienda para el armado de los elementos en la práctica, también hay variación en los diámetros de las barras que vienen directamente de las fábricas.

El área de acero real en cada sección transversal de elementos de concreto reforzado se puede representar mediante la variable aleatoria $A_R = \phi A_D$ (Mirza y MacGregor, 1979b), donde ϕ es una variable aleatoria independiente con media igual a 1.01 y coeficiente de variación de 0.04 y A_D es el área de acero que resulta del diseño convencional, por tanto, esta última es una variable determinista.

En esta tesis se obtienen valores de A_R simulando independientemente valores de ϕ para cada lecho de acero con base en la distribución de probabilidad logarítmico normal propuesta por Alamilla (2001).

4.1.9. Simulación de disipadores de energía

Debido a que no se cuenta con datos experimentales para la simulación de los disipadores de energía ADAS, se suponen los valores de las variables que se han seleccionado que pueden ser involucradas en la simulación, a decir, los valores del esfuerzo del material con el que se fabrican los disipadores y la rigidez que éstos aportan. Considerando lo anterior, se procede primero a generar dos grupos de números aleatorios independientes, suponiendo que tienen una distribución normal con cierta media y desviación estándar; el método empleado para la generación de estos números se presenta en el apéndice A.

Una vez que se obtienen los números aleatorios con este primer criterio, se toman éstos para los archivos del DRAIN para los análisis no lineales, pero, se observó que el comportamiento de ésta estructura no mejoraba.

Entonces, como segundo esfuerzo por generar números aleatorios, se ejecuta la simulación, suponiendo que las variables consideradas como incertidumbres tienen una distribución multinormal (son dependientes y con cierta correlación), ver método empleado en apéndice B de este trabajo. Los valores generados por este método son tomados nuevamente para los análisis no lineales, pero al igual que la simulación con variables independientes, no mejoran notablemente las rigideces y resistencias de las estructuras, debido a que las incertidumbres consideradas pudieran ser insuficientes para alcanzar la misma rigidez y resistencia que presenta el marco convencional; por todo esto, finalmente se decide tomar los valores nominales de los disipadores de energía y en función de éstos es como son calculadas las respuestas, curvas de confiabilidad y los cálculos necesario para alcanzar los objetivos. Sin embargo, las rigideces iniciales entre el sistema convencional y el sistema con ADAS son aproximadamente iguales (cuando se realiza el ajuste bilineal, el cual se explica en el capítulo 5).

4.2. EXCITACIÓN SÍSMICA

Para conocer el nivel de desempeño de las estructuras, se requiere estimar con bastante aproximación las respuestas de éstas, que pueden ser en términos de desplazamientos, velocidades, aceleraciones, resistencias, ductilidades o cualquier otro parámetro que se establezca; entonces es evidente que las respuestas de las estructuras están en función de las aceleraciones del terreno y por tanto éstas últimas deben ser estimadas también de forma satisfactoria.

No existen suficientes registros de movimientos fuertes del terreno para diferentes sitios en México, como para tomarlos y excitar a las estructuras que se analizan en diferentes estudios, por esto y por lo descrito en el párrafo anterior surge la necesidad de simular dichos movimientos; en este trabajo se le designa como simulación de acelerogramas. Para la generación de dichos acelerogramas hay diferentes métodos en la literatura, dadas las distancias de la fuente al sitio "R" y la magnitud "M" del evento. A continuación se explica brevemente el método que se usa para la generación de los acelerogramas utilizados como excitaciones de las estructuras estudiadas en esta tesis.

El procedimiento aplicado para simular registros es el método híbrido desarrollado por Ismael y Esteva (2006), en éste se aprovechan las ventajas que presentan el método de las funciones de Green empíricas, MFGE (Ordaz et al., 1995) y el método de las funciones generalizadas de atenuación (Alamilla et al., 2001a). Este procedimiento consiste en utilizar todos los registros disponibles en el sitio de interés para desarrollar ecuaciones de atenuación generalizadas dependientes de la distancia, las cuales serán empleadas para establecer factores de escala para ser aplicados a los registros reales, con la finalidad de cambiarlos a su correspondiente distancia de fuente-sitio, antes de manejarlos como funciones de Green.

Aspectos más relevantes del método híbrido y algunos resultados se pueden ver con más detalle en el trabajo de Ismael y Esteva (2006).

Es importante aclarar que los acelerogramas empleados en este trabajo no son simulados por el autor, ya que lo importante era obtener respuestas de las estructuras debidas a diferentes excitaciones y compararlas. Por tanto, se toman como excitaciones para las estructuras analizadas en el presente trabajo 50 acelerogramas obtenidos de la simulación que realizan Ismael y Esteva (2006). El procedimiento empleado para la simulación es el método híbrido; inicialmente se simularon 300 sismos, después se obtuvieron sus espectros elásticos de respuestas, donde se observan diferentes intensidades máximas de cada espectro que van desde 0.15 a 1.8 gals. Enseguida se escalaron todos los espectros en la misma proporción hasta llevar el pico de los mismos a una intensidad de 2 gals. Con este mismo factor se escalan los 300 sismos y después se agrupan de acuerdo a las intensidades de sus correspondientes espectros. Así, se forman los siguientes 5 grupos con diferentes intervalos de intensidades: de 0.0-0.4, 0.4-0.8, 0.8-1.2, 1.2-1.6, 1.6-2.0 gals y finalmente se seleccionan 10 sismos de cada intervalo de forma aleatoria. Entonces se tienen 50 sismos que cubren el intervalo de intensidades de 0.2 a 2.0 gals que son los usados en esta tesis.

Los espectros de respuesta elásticos de los 50 sismos y calculados para un amortiguamiento crítico del 5% son los que se muestran en la Figura 4.2.

4.3. MODELO DE COMPORTAMIENTO HISTERÉTICO Y DE DAÑO PARA VIGAS DE CONCRETO REFORZADO

Este modelo de comportamiento histerético se crea con la finalidad de contar con uno más confiable, para estimar las respuestas de los sistemas en su comportamiento no lineal ante excitaciones sísmicas, específicamente para estructuras compuestas de vigas y columnas de concreto reforzado. El modelo es inspirado en los modelos de Wang y Shah (1987) y es modificado con base en información experimental sobre curvas histeréticas de vigas en voladizo ensayadas en laboratorio. Para la construcción de dicho modelo también se emplearon datos experimentales de los trabajos de Ma et al., 1976; Wang y Shah, 1987; Townsend y Hanson, 1977; Scribner y Wight, 1978; Uzumeri, 1977. Para la aplicación del modelo, se incorporó al DRAIN-2D (Kanaan y Powel, 1973 y 1975) como un nuevo elemento.

Se considera que el daño sufrido por un elemento se concentra en sus extremos y depende de la historia de deformaciones locales a la que hayan estado sometidos los extremos, los daños se manifiestan mediante la formación de articulaciones plásticas. La formación de una articulación completa indica que hay un daño máximo, o sea, pérdida total de resistencia y rigidez de la sección.

Para el desarrollo del modelo se supone que el diagrama momento-curvatura puede ser idealizada como una curva envolvente bilineal, donde aparecen solamente los puntos de fluencia, *A*, y punto de falla, *B*, ver Figura 4.3a. De la curva bilineal, es fácil pasar a una curva de momento rotación plástica (Figura 4.3b) si se utilizan las siguientes ecuaciones (Campos y Esteva, 1997):

$$\theta = lp(\phi - \phi_y), \text{ para } \phi_y \le \phi \le \phi_F$$

$$(4.31)$$

$$\theta_F = lp(\phi_F - \phi_y) \tag{4.32}$$

En las ecuaciones se supone que no hay daño en el rango elástico y:

 θ es la rotación plástica, θ_F es la rotación asociada a la falla, lp es la longitud de articulación plástica que se considera constante, ϕ_y , $\phi y \phi_F$ son las curvaturas de fluencia, post-fluencia y de falla, respectivamente.

La formación de articulaciones plásticas en los extremos de los elementos estructurales es un claro indicio de la presencia de daño, en términos de reducción de rigidez y resistencia. La Figura 4.4 representa la función momento-rotación plástica para una de las articulaciones. En la rama de carga inicial la función pasa por los tramos OA y Ab, correspondiendo el punto $b=(\theta_b, M_b)$ a la máxima amplitud, para después descargarse y cargarse en sentido contrario. En la primera recarga positiva, la curva va desde *f* hasta *g*, pasando por el punto $f'=(\theta_f, M_f)$, donde se manifiesta el deterioro y se observan las ecuaciones siguientes:

$$\theta_{f'} = \theta_b \tag{4.33}$$

$$M_{f'=}(1-\mathcal{E}) M_b \tag{4.34}$$

En la ecuación anterior, ε denota el deterioro debido al daño acumulado en la sección, como consecuencia de la historia de carga anterior.

Es claro que las amplitudes máximas de cada ciclo de carga y el número de ellos están relacionados con el deterioro de la resistencia y rigidez de las secciones del elemento. Por esto, se define un índice de daño ε que depende de un parámetro de daño acumulado *D*, éste último toma en cuenta las amplitudes acumuladas y los parámetros se definen como:

$$D = \sum \frac{\theta}{\theta_F} \tag{4.35}$$

$$\varepsilon = 1 - e^{-\alpha D} \tag{4.36}$$

El valor de α depende de la información experimental que se haya empleado para ajustar el modelo a los resultados de pruebas de laboratorio, en esta propuesta (Campos, 2005) se toma igual a 0.0671, ε toma valores en el intervalo de 0 a 1, $\varepsilon = 1$ si $\theta = \theta_F$.

En la Figura 4.4 se muestra el modelo utilizado, el cual corresponde a un diagrama momento-rotación plástica, que a su vez se obtiene de una curva envolvente que relaciona el momento y la curvatura, dada una carga monotónica creciente.

El desarrollo del comportamiento histerético que se muestra en la Figura 4.4 está controlado por las siguientes reglas, donde las rotaciones están referidas a rotaciones plásticas o de postfluencia:

TRAMO *Oa*: Mientras $M < M_Y$, $\theta = 0$.

TRAMO *ab*: Cuando $M > M_Y$ se continúa por la curva envolvente *AB*.

TRAMO *bc*: Cuando la sección se descarga, $\theta = \theta_b$, donde *b* es el punto máximo alcanzado en el ciclo y $D_b = \theta_b / \theta_F$.

TRAMO *fg*: Se fija un punto *f*', entre *f* y *g*, y sobre la recta de descarga bc, $f' = (\theta_f, M_f)$, $\theta_f = \theta_b$, $M_{f'} = [1 - \varepsilon(D_b)]M_b$, $\varepsilon = 1 - exp(-\alpha * D_b)$. Si desde el punto *f* se supera el punto *f*' se puede alcanzar a la envolvente *AB* en *g* y continuar por ella (tramo *gh*) hasta *h*, donde se inicia la siguiente descarga.

TRAMO *hi*: La descarga es similar al tramo *bc*, y $D_h = D_b + \theta_h / \theta_F$.

TRAMO *lm*: Se debe pasar por $l' = (\theta_l, M_l)$ obtenida como *f*'. $\theta_l = \theta_h, M_l = [1 - \varepsilon(D_h)]M_h$. Si *m* no alcanza la envolvente no habrá cambio de pendiente.

TRAMO *mn*: Descarga similar a *bc*, $D_m = D_h + \theta_m / \theta_F$.

TRAMO *pq*: Se define $p'=(\theta_p; M_p)$, de forma similar a los puntos *f* y *l*, sobre el tramo *mn* de descarga. $\theta_p = \theta_m, M_p = [1 - \varepsilon(D_m)]M_m$, donde M_m corresponde a la envolvente. *q* no superó *p*'. TRAMO *qs*: Descarga similar a *bc*, $D_a = D_m + \theta_a / \theta_F$.

TRAMO *pr*: En el ciclo anterior no se supero la rotación θ_m ; no se cruzó el tramo *mn*. La recarga *pq* podría superar *p*', y alcanzaría a la envolvente en *r*, tramo *BC* donde $\theta = \theta_F$, perdiéndose totalmente la capacidad de resistir momento positivo ($\varepsilon = 1$); la curva descenderá, entonces, desde *r* hasta *C*.

Se considera que una deformación incrementa el daño solo si en la correspondiente descarga el momento cambia de signo. Por ejemplo en la Figura 4.4, si en *s* hay una recarga positiva, la curva regresaría hacia *p* y continuaría después hacia *p*', sin que *D* y ε sufran modificaciones debido a la descarga *qs*.

4.4. SIMULACIÓN DE SISTEMAS ESTRUCTURALES

Debido a que no se cuenta con datos de las propiedades mecánicas de un gran número de edificios donde se supone están desplantados los sistemas que se estudian, o sería muy costoso llevar a cabo la búsqueda de dichos datos, surge la necesidad de simular, en otras palabras, de reproducir algo que es real, haciendo uso de modelos que describen adecuadamente el fenómeno.

Como una parte fundamental de esta tesis, se han analizado estructuras que son producto de la simulación estructural, empleando el programa SIMESTRU (Alamilla, 2001). Este programa considera las incertidumbres descritas en las secciones 4.1 y 4.2 de este trabajo para sistemas que tienen elementos estructurales a base de vigas, columnas y muros de concreto reforzado, para otros materiales no se pueden simular las estructuras. Para generar las estructuras, en principio se diseña una estructura convencional con determinadas propiedades y de éstas el programa genera un conjunto de estructuras que son las analizadas en esta tesis, esto es para cada sistema estructural. Lo anterior es válido, pues la muestra generada por una simulación de Monte Carlo es similar a una muestra observada experimentalmente, por tanto, los datos obtenidos así se pueden manejar estadísticamente.

Figura 4.1. Curva esfuerzo-deformación de barra de acero.

Figura 4.2. Espectros de respuesta elástica de los 50 sismos simulados

a) Curva Momento- Curvatura

b) Curva Momento- Rotación Plástica

Figuras 4.3. Curvas envolventes

Figura 4.4. Modelo de comportamiento histerético

CAPÍTULO 5

ANÁLISIS NO LINEAL

Es necesario realizarles los análisis no lineales a las estructuras que se estudian, en principio, porque éstas con seguridad tendrán un comportamiento inelástico o porque sus elementos estructurales sobrepasarán el límite de fluencia, debido a que se han seleccionado y escalado sismos artificiales que llevan a tales estructuras a los límites del colapso (para análisis paso a paso); para el análisis de empuje lateral, se emplea una rampa de aceleración creciente lentamente hasta conocer su capacidad última de deformación.

Las estructuras pueden fallar de muy diversas formas, además, por los grados de libertad que se tienen y por la participación de los modos superiores de vibrar, sin olvidar todas las incertidumbres asociadas a las respuestas estructurales que se describieron. Entonces, al llevar las estructuras al límite del colapso, perderán rigidez y resistencia, mismas que serán manifestadas mediante la formación progresiva de articulaciones plásticas conforme tiendan a cero dichas rigideces y resistencia.

De estos análisis, estático no lineal incremental y análisis dinámico paso a paso podemos determinar los desplazamientos de entrepiso y azotea, rigidez última y cortantes basales, que son básicamente los parámetros que serán empleados en las comparaciones de respuesta de los diferentes sistemas estructurales que se estudian.

5.1. ANÁLISIS DINÁMICO NO LINEAL PASO A PASO

El análisis paso a paso se realiza con la ayuda del programa DRAIN (Powell, 1973) y después modificado por otros en el Instituto de Ingeniería de la UNAM en diferentes años. El DRAIN usado tiene incorporado el modelo de comportamiento histerético y de daño para vigas de concreto reforzado (Campos y Esteva, 1997), también tiene incorporado parámetros de interacción suelo estructura para considerar los efectos de tal interacción en el desempeño de las estructuras (Mendoza, 1997.), entonces el DRAIN empleado es el DEIHINTER (Ismael, 2005).

Una consideración importante en esta etapa para llevar a cabo el análisis paso a paso a las estructuras con propiedades medias, con el fin de obtener respuestas en términos de desplazamientos de azotea, principalmente, para realizar una primera comparación; es que se emplea como excitación a las estructuras con propiedades medias, un sismo real (sismo SCT8519SE.3EW), sin asegurar que con este movimiento las estructuras alcancen el desempeño muy cercano al colapso. Pero, lo anterior es suficiente para observar el comportamiento de las diferentes estructuraciones.

5.1.1. Análisis paso a paso del sistema convencional

Para poder realizar este análisis estructural, primero se seleccionan dos marcos de la estructura diseñada convencionalmente, después son unidos por elementos biarticulados con alta rigidez axial (Figura 5.1), de 40 cm por 20 cm y con armado mínimo para cumplir con dicha rigidez. La

representación que muestra la Figura anterior forma el modelo base para la generación de 51 estructuras a base de marcos de concreto reforzado (empleando el programa SIMESTRU), obtenido así el grupo de estructuras con esta configuración, una de ellas es la que tiene propiedades medias y 50 con propiedades simuladas. Las rigideces de este grupo de estructuras, coeficientes de amortiguamiento y masas son las determinadas por el programa SIMESTRU. Posteriormente, se calculan y se añaden los parámetros de rigideces de traslación y amortiguamiento transversal de cabeceo del marco analizado, esto con el fin de tomar en cuenta los efectos de la interacción suelo estructura. Lo anterior es calculado de acuerdo a lo establecido en el apéndice de las NTC.

Posteriormente, con la ayuda del DEIHINTER, se le realiza el análisis paso a paso sólo a la estructura con propiedades medias, suponiendo que el sismo de excitación es el mostrado en la Figura 5.2. Así pues, se calculan las respuestas para este modelo y en la Figura 5.3 se presenta la respuesta en términos de desplazamientos de azotea para la estructura convencional.

Es necesario aclarar, que la forma para calcular los parámetros para tomar en cuenta la interacción suelo estructura, las masas, rigideces y coeficientes de amortiguamiento, para las otras estructuraciones es exactamente igual como se ha explicado para este caso. El mismo programa se emplea para el análisis paso a paso. Sólo se explicarán en las secciones correspondientes las partes que aquí no se detallaron y que se considera pueden ser importantes.

5.1.2. Análisis paso a paso del sistema con disipadores de energía ADAS

Empleando el programa SIMESTRU, se genera un grupo de 51 estructuras con este tipo de estructuración, a partir de un modelo base, compuesto de un marco exterior y unido por un elemento biarticulado de alta rigidez axial con un marco interior (Figura 5.4), pues se supone que es adecuado analizar la estructura tridimensional con sólo estos marcos planos.

El programa SIMESTRU está diseñado para simular marcos planos de concreto reforzado, por tanto, los disipadores de energía no se simulan en esta etapa y sólo se generan las secciones de concreto reforzado; posteriormente, por separado se simulan los dispositivos de energía empleando el procedimiento que se menciona en la sección 4.1.9. Así, se tienen todos los elementos "simulados", tanto secciones de concreto y elementos que representan a los disipadores, para formar la estructura y proceder a realizar el análisis no lineal paso a paso.

Adicionalmente a la simulación de los elementos de esta estructuración, se obtienen las matrices de rigidez y el vector de masas asociados a la estructura. Lo anterior se logra modificando las matrices de rigidez que arrojó el SIMESTRU, de tal forma que se tuvieran las contribuciones de las rigideces por parte de los disipadores; para llevar a cabo dicha modificación se considera que los disipadores sólo aportan rigidez a cortante, por esto, fue fácil aumentar las rigideces en las componentes correspondientes de la matriz proporcionada por el SIMESTRU; de igual forma se modificó el vector o matriz de masas, incluyendo las masas de los elementos que representan a los disipadores de energía y las de los contravientos chevrón. También se modifican los coeficientes de amortiguamiento α y β que proporciona el programa SIMESTRU, éstos son función de las rigideces y masas.

Los disipadores de energía que se emplean en este trabajo se representan con elementos axiales equivalentes, como se muestra en la Figura 5.5.

En los párrafos siguientes, se describe el procedimiento para calcular las dimensiones de los elementos axiales equivalentes que representan a los disipadores ADAS para el modelado inelástico, tanto para el

análisis paso a paso como para el empuje lateral de la estructura. En el apéndice C se presenta el archivo de entrada para llevar a cabo los análisis no lineales de la estructura con disipadores de energía, empleando el DRAIN (Powell, 1973).

Con base en las recomendaciones presentadas en la sección 3.2.7, es posible calcular las dimensiones de las barras axiales equivalentes que representan a los ADAS y las dimensiones de los contravientos que soportan a tales dispositivos.

En la Tabla 5.1 se muestran los cálculos necesarios para llegar a las dimensiones de los elementos mencionados. En la columna dos de esta Tabla se tienen las rigideces por entrepiso que deben aportar los dispositivos ADAS (el 50 por ciento de la rigidez lateral total de entrepiso); en la columna tres se toma la mitad de los valores de la columna dos, debido a cómo se distribuyen los ADAS y por los marcos planos que se toman para llevar el análisis; la columna cuatro muestra la longitud de las diagonales que forman parte del contraviento chevrón que soportarán a los disipadores; en la columna seis se muestran las áreas que deben tener las secciones transversales de cada diagonal para cada entrepiso, entendiendo que hay dos diagonales en cada entrepiso y en la columna siete se tienen las áreas que corresponden a cada barra axial equivalente que funcionan como los ADAS.

Hasta aquí se han expuesto las consideraciones hechas para definir el marco (con propiedades medias) y sus otras propiedades para poder ejecutar el análisis paso a paso; tomando como excitación, el sismo SCT8519SE.3EW mostrado en la Figura 5.2. Una vez hecho el análisis, la respuesta del edificio con disipadores de energía está dada en términos de desplazamientos de azotea (Figura 5.6).

5.1.3. Análisis paso a paso del sistema con marcos y muros de concreto reforzado

Se muestran los marcos que se seleccionan del sistema tridimensional diseñado convencionalmente (Figura 5.7) para la simulación y para el análisis paso a paso.

Como herramienta, se utiliza el programa SIMESTRU para generar el grupo de 51 estructuras compuestas de columnas, vigas y muros de concreto reforzado, considerando todas las incertidumbres descritas en el capítulo 4. Tanto las matrices de masas como las de rigideces de todas las estructuras simuladas obtenidas por simulación son correctas y son las utilizadas para otros cálculos.

Se toma el mismo sismo real mostrado en la Figura 5.2 como excitación de esta estructura con propiedades medias. Las respuestas correspondientes en términos de desplazamientos de azotea se muestran en la Figura 5.8.

5.1.4. Análisis paso a paso del sistema con marcos y muros de mampostería

De forma análoga como se simularon las estructuras con los dispositivos disipadores de energía, se simulan las estructuras con marcos de concreto reforzado y muros de mampostería, llegando así a tener el grupo de 51 estructuras. También, como en el caso del sistema con ADAS, se han incorporado las rigideces de los paneles de mampostería a las matrices proporcionadas por el SIMESTRU, así como también se adicionan las masas correspondientes a dichos paneles.

En la Figura 5.9 se muestran los marcos planos que se seleccionaron de la planta de la estructura tridimensional con mampostería para realizar el análisis dinámico no lineal paso a paso. Se puede

apreciar que el muro de mampostería se representa por diagonales equivalentes, esto es válido, pues los muros o paneles de mampostería son confinados y puede aplicarse el método propuesto por Bazán (1980), en donde considera que se puede idealizar un muro confinado por una diagonal equivalente en compresión dentro del marco. Lo anterior es soportado por resultados de estudios analíticos con elementos finitos. En el programa DEIHINTER, el método de las diagonales a compresión no es el único disponible para tal análisis, ya que se pueden modelar los muros de mampostería como paneles, asignando las propiedades y parámetros adecuados, así; los resultados que se obtienen son aproximadamente los mismos. Lo anterior se comprobó con cierta cantidad de estructuras, pero los resultados no son mostrados en este trabajo, por no completarse.

Bazán (1980) propone que la diagonal equivalente tenga el mismo espesor t y módulo de elasticidad E_m del muro, y que su ancho sea:

$$w = (0.35 + 0.022\lambda)h \tag{5.1}$$

Donde *h* es la altura entre ejes del tablero y λ es un parámetro adimensional basado en las rigideces relativas entre muro y marco, que se define como:

$$\lambda = \frac{(E_c A_c)}{(G_m A_m)} \tag{5.2}$$

donde

$$G_m = 0.4E_m \tag{5.3}$$

es el módulo de cortante de la mampostería, E_c es el módulo de elasticidad del concreto en las columnas del marco, A_c el área de la sección transversal de cada una de las columnas y A_m es el área de la sección transversal de muro.

Al deducir la ecuación 5.1 se considera que el marco es continuo en sus esquinas y es aplicable para valores de λ ente 0.9 y 11 y para relaciones de aspecto $\xi = \frac{b}{h}$ entre 0.75 y 2.5, siendo *b* la distancia entre las columnas y *h* la altura de entrepiso. Tales intervalos cubren la mayoría de los casos prácticos.

Con apego al método anterior, se obtienen las diagonales equivalentes a compresión que representan a los muros de mampostería, las secciones de estas diagonales se pueden ver en la Tabla 5.2. En esta Tabla, f*m es la resistencia de diseño a compresión de la mampostería, Lam : es el factor λ , Ld, Ad y Kd son longitud, área y rigidez de la diagonal equivalente, respectivamente.

Una vez que se tienen las áreas transversales y los otros datos de las diagonales que sustituyen a los muros de mampostería, éstas se incorporan al DRAIN. Para la excitación de la estructura se toma el mismo acelerograma que se muestra en la Figura 5.2 sin ser amplificado, ya que solo se analizan las respuestas cuando se presenta este movimiento.

La respuesta de la estructura en el tiempo (con propiedades medias) en términos de desplazamientos de azotea es la mostrada en la Figura 5.10.

5.2. ANÁLISIS DE EMPUJE LATERAL (PUSHOVER)

El empuje lateral (pushover) consiste en aplicar fuerzas laterales monotónicas crecientes a la estructura hasta llevarla al colapso. El objetivo de realizar un análisis de este tipo es estimar la capacidad resistente de la estructura, la capacidad de deformación local y global, además de las propiedades mecánicas. Así, los datos determinados son necesarios para poder estimar el desempeño que puedan tener las estructuras ante un evento sísmico.

El procedimiento que se utiliza para la ejecución de dicho análisis en este trabajo es el propuesto por Esteva et al (2001); el cual consiste en suponer la acción de una aceleración del terreno que crece linealmente con el tiempo a un ritmo suficientemente bajo para evitar los efectos dinámicos. Debido a lo anterior, se genera un conjunto de fuerzas laterales de inercia que actúan sobre la estructura creciendo monotónicamente. La rampa de aceleración se define por dos puntos de coordenadas (0,0) y (t,a). El programa que se usa para realizar los empujes laterales es el DRAIN (Powel, 1973), versión DEIH (Ismael, 2005).

Al ejecutar el análisis de empuje lateral, se puede obtener una curva de desplazamiento de azotea *vs* cortante basal, también se puede estimar con facilidad la rigidez inicial $K_0 = V_y/D_y$, donde, V_y y D_y son el cortante de fluencia y desplazamiento de fluencia, que se determinan una vez realizado el ajuste bilineal que se describe en el siguiente párrafo. El parámetro K_0 es importante para determinar el índice de daño *D* que se presenta en el capítulo 6.

Las curvas de empuje lateral obtenidas, no permiten con facilidad ubicar exactamente el punto donde inicia la fluencia de la estructura, por esto, es necesario realizar un ajuste mediante dos líneas (ajuste bilineal) para distinguir el punto mencionado; este procedimiento de ajuste se lleva a cabo igualando las áreas bajo las curvas real y ajustada, el área bajo la curva real comprende desde el punto (0,0) hasta (D_u, V_u) , donde $D_u y V_u$ son deformación última y cortante basal último, respectivamente. El criterio para establecer la deformación última es, tomar dicha deformación asociada a un cortante último que es función del cortante basal máximo disminuido en un 20 por ciento (Alamilla y Esteva, 2006). Una vez realizado el ajuste bilineal, se distinguen los valores del cortante de fluencia y desplazamiento de fluencia de la estructura que sirven para definir la rigidez inicial secante $K_0 = V_y/D_y$, al mismo tiempo el valor K_0 interviene en la ecuación 6.1.

5.3. ANÁLISIS DE EMPUJE LATERAL PARA LOS DIFERENTES SISTEMAS

Con lo expuesto en la sección anterior, se procede a realizar el análisis de empuje lateral a cada una de las estructuras con propiedades medias descritas en la sección 5.1, llegando así a las curvas de empuje lateral de la Figura 5.11. En la Figura 5.12 se puede ver una comparación de ellas, en donde:

Al determinar las rigideces iniciales K_0 de los sistemas con propiedades medias se tiene; 57362.89 t/m para la estructura convencional, 59549.08 t/m para la estructura con disipadores de energía, 62474.43 t/m para la estructura con muros de concreto y 218846.73 t/m para la estructura con marcos de concreto y muros de mampostería. Se observa que la estructura con muros de mampostería tiene

mucho más rigidez inicial respecto de las otras, y esto es debido a las distorsiones de entrepiso que se limitaron en el diseño elástico; por otro lado, la estructura con marcos y muros de concreto, es menos rígida que la estructura con muros de mampostería, pero ligeramente tiene una rigidez inicial mayor que la estructura convencional y la compuesta por marcos y disipadores de energía, donde estas últimas tienen una rigidez parecida. Todo lo anterior concuerda con los parámetros tomados para el diseño elástico de las estructuras. También se determina que la estructura con más capacidad de deformación (más ductilidad) es la estructura con marcos y disipadores de energía, lo cual puede indicar que para que sea alcanzada tal deformación, se requerirá de un sismo suficientemente grande; la estructura con menos capacidad de deformación última, respecto de la anterior, es la convencional, y por último tenemos a las estructuras con muros de concreto y mampostería, respectivamente. La estructura con muros de mampostería, a pesar de ser la más rígida de todas, es la que menos capacidad de deformación tiene, esto puede deberse a que los elementos de mampostería no tienen suficiente capacidad de deformación (son frágiles) y pierden rápidamente rigidez cuando aparecen las primeras grietas.

Nivel	Rigidez entrep.	K_{DDE}	L. diagonal	Mód. Elástico	Área de c/diag.	Área de EAE
	t/m	t/m	m	t/m ²	cm ²	cm ²
13	15632.3	7816.15	4.609	20390000	35.33559132	13.41663806
12	19330.97	9665.485	4.609	20390000	43.69614553	16.59107283
11	26871.04	13435.52	4.609	20390000	60.73988394	23.06244237
10	33849.65	16924.825	4.609	20390000	76.51448595	29.05193109
9	40418.53	20209.265	4.609	20390000	91.36292534	34.68976336
8	47358.72	23679.36	4.609	20390000	107.0506819	40.64627759
7	54844.01	27422.005	4.609	20390000	123.9705945	47.07063144
6	60470.15	30235.075	4.609	20390000	136.6880438	51.89934404
5	62290.11	31145.055	4.609	20390000	140.801921	53.46134993
4	64798.31	32399.155	4.609	20390000	146.4715109	55.61404733
3	72777.51	36388.755	4.609	20390000	164.5078684	62.46230628
2	85617.08	42808.54	4.609	20390000	193.530712	73.48204512
1	120270.62	60135.31	4.949	20390000	291.9172626	103.2239259

Tabla 5.1. Área los elementos axiales equivalentes que representan a los ADAS y área de cadadiagonal que conforma el contraviento chevrón

Tabla 5.2. Diagonales equivalentes que simulan el comportamiento de los muros de mampostería

Nivel	Muro t		Col.	Ac	Am	f´c	Ec	f*m	Em	Gm	Lam	Diagonales equivalentes			ntes	
	b	h		cuad.									w	Ld	Ad	Kd
13	635	300	14	65	4225	8890	250	221359	100	60000	24000	4.383	133.93	761.577	1875.03	147721.9
12	635	300	14	65	4225	8890	250	221359	100	60000	24000	4.383	133.93	761.577	1875.03	147721.9
11	625	300	14	75	5625	8750	250	221359	100	60000	24000	5.929	144.133	761.577	2017.86	158975.2
10	625	300	14	75	5625	8750	250	221359	100	60000	24000	5.929	144.133	761.577	2017.86	158975.2
9	615	300	14	85	7225	8610	250	221359	100	60000	24000	7.74	156.082	761.577	2185.14	172154.1
8	615	300	14	85	7225	8610	250	221359	100	60000	24000	7.74	156.082	761.577	2185.14	172154.1
7	615	300	14	85	7225	8610	250	221359	100	60000	24000	7.74	156.082	761.577	2185.14	172154.1
6	600	300	14	100	10000	8400	250	221359	100	60000	24000	10.98	177.469	761.577	2484.56	195743.6
5	600	300	14	100	10000	8400	250	221359	100	60000	24000	10.98	177.469	761.577	2484.56	195743.6
4	600	300	14	100	10000	8400	250	221359	100	60000	24000	10.98	177.469	761.577	2484.56	195743.6
3	590	300	14	110	12100	8260	250	221359	100	60000	24000	13.51	194.174	761.577	2718.43	214168.5
2	590	300	14	110	12100	8260	250	221359	100	60000	24000	13.51	194.174	761.577	2718.43	214168.5
1	590	350	14	110	12100	8260	250	221359	100	60000	24000	13.51	226.536	782.624	3171.5	243143.7

Elementos biarticulados con alta rigidez axial

Figura 5.1. Marco para el análisis no lineal, sistema convencional

Figura 5.2. Acelerograma SCT8519SE.3EW

Figura 5.3. Respuesta del sistema convencional

Figura 5.4. Marco plano con disipadores ADAS

Elementos biarticulados con alta rigidez axial

Tiempo (s)

Figura 5.6. Respuestas del sistema con ADAS

Elementos biarticulados con alta rigidez axial

Figura 5.7. Marco para análisis no lineal, sistema con muros de concreto

Figura 5.8. Respuesta del sistema con muros de concreto reforzado

Elementos biarticulados con alta rigidez axial

Figura 5.9. Marco para análisis no lineal del sistema con mampostería

Figura 5.10. Respuesta del sistema con muros de mampostería

a) Curva pushover de la estructura con propiedades medias, sistema convencional

b) Curva pushover del sistema con propiedades medias, edificio con disipadores de energía

c) Curva pushover del sistema con propiedades medias, con muros de concreto reforzado

d) Curva pushover de la estructura con propiedades medias, sistema con mampostería

Figuras 5.11. Curvas de empuje lateral de los diferentes sistemas

Figura 5.12. Curvas de empuje lateral de los diferentes sistemas

CAPÍTULO 6

ANÁLISIS DE CONFIABILIDAD

6.1. METODOLOGÍA EMPLEADA EN ESTE ESTUDIO

En este capítulo presenta el procedimiento para determinar los índices β de Cornell, que describen las curvas de confiabilidad para cada tipo de estructura analizada. Para esto, se presenta una metodología en donde se describen las actividades para alcanzar el objetivo.

- a) Del diseño tridimensional de cada estructuración presentado en el capítulo 3, se seleccionan los marcos planos (con propiedades nominales) que forman los modelos base para la generación de estructuras (ver capítulo 5 para los diferentes casos). Se utiliza el programa SIMESTRU (Alamilla, 2001) para generar marcos y muros de concreto reforzado por medio de simulación. Para cada caso se generan grupos de 51 edificios, de estos, se tienen 50 con propiedades simuladas y una con propiedades medias. El procedimiento descrito en la sección 4.1.9 se emplea para la simulación de los disipadores de energía.
- b) Se cuenta con 50 acelerogramas artificiales, producto de la simulación realizada por Ismael y Esteva (2006).
- c) Se lleva a cabo el análisis de empuje lateral para cada grupo de estructuras siguiendo la metodología expuesta en la sección 5.2. Ejecutado dicho análisis, se realiza el ajuste bilineal para cada estructura, con la finalidad de identificar los puntos clave que son necesarios para la obtención de parámetros importantes para el cálculo de las confiabilidades. El parámetro más importante que se determina con la ayuda de este análisis para los fines de este trabajo, es la rigidez inicial K_0 de las estructuras, y la determinación de ésta se muestra en la sección 6.2.
- d) Se realizan los análisis paso a paso para cada grupo de estructuras, tomando los sismos que se mencionan en el inciso b) como excitación de éstas, donde, éstos son escalados de tal forma que sean lo suficientemente intensos para llevar a las estructuras muy cercano al colapso. Lo anterior significa que hay gran deterioro de resistencia y rigidez, acompañado de grandes desplazamientos de azotea, principalmente. El índice que se emplea para medir el daño es el índice de daño D (índice de reducción de rigidez secante, Esteva e Ismael, 2004). Para más detalles, ver las secciones 5.1 que corresponde a la forma de realizar los análisis paso a paso y 6.2. referente al cálculo de la rigidez secante degradada (K-final). En las Figuras 6.1a y 6.1b se muestran las respuestas de estructuras para algunos casos, cuando se llevan a cabo los análisis paso a paso.
- e) Con la rigidez inicial calculada en el inciso c) y la rigidez secante degradada que se determina en el inciso d) se define el índice de daño *D*, ver sección 6.2.
- f) Se determinan los espectros lineales de respuesta de aceleración de todos los sismos amplificados, que fueron empleados como excitaciones para cada grupo de estructuras en el análisis paso a paso. Se hace notar que los 50 espectros de respuesta son diferentes para cada

grupo de estructuras y fueron determinados con la ayuda del programa DEGTRA (Ordaz y otros, 1995). Las aceleraciones son las asociadas a los periodos de la estructura con interacción suelo estructura (periodo efectivo de la estructura) y son las que se muestran en las Tablas 6.7 a 6.10, ver sección 6.3.

- g) Se normalizan las aceleraciones determinadas en el inciso f); multiplicando la aceleración correspondiente al periodo de la estructura por la masa total de la estructura con propiedades medias, lo anterior se divide entre el cortante basal de fluencia de la estructura con propiedades medias, el procedimiento se puede ver con más detalle en la sección 6.3., el cual es aplicado para cada estructura y para cada grupo, las aceleraciones normalizadas se pueden ver en las Tablas 6.7 a 6.10.
- h) A las aceleraciones que se refiere el inciso anterior se identifican con la letra Z y se calcula el logaritmo natural de las mismas. Así, se tienen los pares (D, Ln(z)), cuyas gráficas de dispersión se mencionan en la sección 6.4.
- i) Se determinan, la esperanza o valor medio y la desviación estándar de las aceleraciones normalizadas como se explica en la sección 6.5.
- j) Se calculan los índices β de Cornell con la ecuación 6.11 para los diferentes casos, ver sección 6.6. Los índices se muestran en las Tablas 6.15 a 6.18 para cada tipo de estructura.
- k) Con la ayuda de los índices β de Cornell, se trazan las curvas de confiabilidad de los cuatro casos. Ver sección 6.7.

6.2. DETERMINACIÓN DEL ÍNDICE DE DAÑO D

El procedimiento a seguir para medir el daño en las estructuras y así determinar las curvas de confiabilidad es el método **del índice de reducción de rigidez secante**, Ismael y Esteva (2004) establecen la siguiente ecuación:

$$D = \frac{K_0 - K_{\text{sec}}}{K_0}$$
(6.1)

donde *D* es el índice de daño o índice de reducción de rigidez secante y se alcanza la falla cuando este valor se aproxima a 1, o también cuando K_{sec} (*K*-final) tiende a cero; K_0 es la rigidez tangente inicial de la estructura global, ésta es determinada con la ayuda del análisis de empuje lateral que relaciona al desplazamiento de azotea y cortante basal, ver sección 5.2 para determinar la curva bilineal; la rigidez incicial se define como:

$$K_0 = \frac{V_y}{D_y} \tag{6.2}$$

En la ecuación 6.2, V_y es el cortante basal de fluencia asociado al desplazamiento de fluencia D_y de azotea; en la ecuación 6.1, K_{sec} es la rigidez degradada de cada una de las estructuras y se determina como:

$$K_{\rm sec} = \frac{V_b}{D_{\rm max}} \tag{6.3}$$

En esta ecuación, V_b y D_{max} son el cortante basal y desplazamiento máximo absoluto de azotea, respectivamente, pero son tomados del análisis paso a paso realizado a la estructura, sin olvidar que la excitación de ésta es amplificada hasta llevar a dicha estructura muy cercano al colapso.

Hasta aquí se tienen todos los datos necesario para calcular los índices de daño D para los cuatro grupos de 51 estructuras y son los que se presentan en las Tablas 6.1 hasta 6.4.

6.3. SEUDOACELERACIÓN NORMALIZADA Z

En la sección anterior se ha calculado el índice de daño D, lo que sigue ahora es determinar la seudo aceleración **Sa** correspondiente a cada estructura de cada grupo; así, se forma un par coordenado y será posible construir una gráfica de dispersión.

La seudoaceleración **Sa** se obtiene de los espectros de respuesta de los sismos amplificados que se emplearon en los análisis paso a paso hasta llevar a las estructuras muy cercanas al colapso; dicha seudoaceleración es la asociada al periodo fundamental de cada una de las estructuras simuladas considerando el periodo efectivo que resulta de la interacción suelo estructura. Para calcular el periodo efectivo de las estructuras simuladas, se sigue el procedimiento del Apéndice A.6.3 que recomiendan las NTC-Sismo-2004.

Para el caso de las estructuras convencionales y estructuras con muros de concreto reforzado, los periodos asociados a éstas, pero con base rígida, se toman directamente de los calculados por el SIMESTRU; posteriormente se calculan los periodos considerando la interacción suelo estructura con el procedimiento que viene en el Apéndice A.6.3 de las NTC-Sismo. Para los grupos de las estructuras con disipadores de energía y con muros de mampostería, es necesario modificar las matrices de rigideces y matrices de masas para obtener en principio el periodo fundamental con base rígida de estas estructuras, el cambio que se le hace a cada una de las matrices correspondientes para cada tipo de estructuración ya se ha descrito en previas secciones; una vez que se tienen los periodos fundamentales con base rígida, se procede de acuerdo al apéndice para calcular los periodos efectivos. En las Tablas 6.5 y 6.6 sólo se muestran los periodos con base rígida y con base flexible del grupo de estructuras con disipadores de energía y estructuras con muros de concreto; pero, se han determinado todos los periodos efectivos de los otros grupos.

Una vez determinados los periodos efectivos de las estructuras, también se obtienen las seudoaceleraciones correspondientes a éstos, de la forma como se ha indicado al inicio de esta sección. Lo que sigue es normalizar las seudoaceleraciones, como: multiplicar la masa total del edificio de propiedades medias (MT_{pm}) y dividir por la fuerza cortante basal que provoca la fluencia del miso

edificio de propiedades medias (Vy_{pm}) y que se obtiene de las curvas de empuje lateral, ajustadas bilinealmente. La seudoaceleración normalizada se identifica con **Z**, y ésta queda de la forma, $Z = (S_a * MT_{pm}/Vy_{pm})$. Después, se obtiene el logaritmo natural de Z, es decir Q = Ln(z). Lo descrito aquí se concentra en las Tablas 6.7 a 6.10.

6.4. DISPERSIÓN D vs Ln (Z)

Con los pares (D, Ln(z)) de las Tablas 6.7 a 6.10 se realizan las gráficas de dispersión, las cuales se muestran para las diferentes estructuraciones en las Figuras 6.2a- 6.2d.

Es importante mencionar que si los sismos no se escalan, de tal forma que las estructuras en los análisis paso a paso tengan una rigidez K_{sec} que tienda a cero, en las gráficas de dispersión se tendrían índices de daño D con valores muy cercanos a cero o que pueden llegar a ser 1; si esto último llegara a pasar, lo que se hace es modelar matemáticamente una línea de ajuste que representa el valor esperado $\overline{Q}(D) = E[Ln(Z)] = E(Q)$, a la que se le llama función de valor esperado de la seudoaceleración y que relaciona la acción sísmica S_a con la respuesta estructural D.

Ya que se conoce la función de valor esperado $\overline{Q}(D)$, se procede a elaborar la gráfica de dispersión *S* vs *D* que relaciona el índice de daño *D* de cada edificio con $S = (Q - \overline{Q}(D))^2$ y aplicando la siguiente ecuación se puede determinar la desviación estándar de Q = Ln(Z).

$$\sigma[Q] = \sqrt{E[S]} = \sqrt{E[(Q - \overline{Q}(D))^2]}$$
(6.4)

Donde S se calcula para cada valor de D; E[S] representa la varianza de la dispersión y se puede modelar matemáticamente por una línea de ajuste denominada función de varianza y su raíz cuadrada se puede llamar función de la desviación estándar. Así, la varianza y desviación estándar se expresan en términos del índice de daño D.

Una vez determinadas las funciones de valor esperado de la seudoaceleración y la de desviación estándar de Q, se calcula con facilidad el índice de confiabilidad β de Cornell, empleando la siguiente ecuación:

$$\beta = \frac{\overline{Q}(D) - Q}{\sigma[Q]} \tag{6.5}$$

Si en esta última ecuación se evalúan las funciones de valor esperado de la seudoaceleración y su desviación estándar, con D=1.0, lo que implicaría colapso, se obtiene la confiabilidad deseada para el desempeño incipiente, o sea:

$$\beta = \frac{\overline{Q}_F - Q}{\sigma_F} \tag{6.6}$$

Así, con los valores calculados se puede construir la curva de confiabilidad, relacionando los valores de β y Z.

6.5. DETERMINACIÓN DEL VALOR MEDIO Y DE LA DESVIACIÓN ESTÁNDAR DE Q=Ln (Z)

En este estudio no se hace ningún ajuste para calcular la función de valor esperado de seudoaceleración y de desviación estándar que se describe en la sección 6.4, pues las excitaciones de las estructuras se han escalado, esto último implica que los valores de K_{sec} y D calculados son cercanos a la falla, por tanto, estos ya son los valores esperados. Debido a lo anterior, se realiza a continuación el cálculo directo de los valores medios y desviación estándar de Q = Ln(Z) para cada grupo de 51 estructuras, es decir; de los valores Q se obtiene la media aritmética, y después se determina la raíz cuadrada de este valor, que en este caso es la desviación estándar, denominadas aquí con \overline{Q}_F y σ_F . En las Tablas 6.11 a 6.14 se muestra la determinación de los valores de \overline{Q}_F y σ_F para cada grupo de estructuras cercanos a la falla. Éstos son los que intervienen en la ecuación utilizada para el cálculo de los índices de confiabilidad en la siguiente sección.

6.6. ÍNDICE DE CORNELL $\beta = E[M]/\sigma[M]$

Para aplicar la ecuación 6.6 se siguen los siguientes pasos:

Primero se define el margen de seguridad.

$$M = (Qr - Qa) \ge 0 \tag{6.7}$$

Donde Qr = Ln(Zr) y Qa = Ln(Za); aquí Zr es la seudoaceleración normalizada correspondiente a la falla inminente y Za es un valor cualquiera de seudoaceleración normalizada inferior a Zr, lo que implica una realización de Z y que Qa es un valor determinístico.

Por tanto:

$$E[M] = E[Qr - Qa] = E[Qr] - Qa = \overline{M} = \overline{Q}r - Qa$$
(6.8)

Por definición de varianza, siendo Qa determinístico se tiene:

$$\sigma_M^2 = Var[M] = E[(M - \overline{M})^2]$$
$$\sigma_M^2 = E[(Qr - Qa - \overline{Q}r + Qa)^2]$$
$$\sigma_M^2 = E[(Qr - \overline{Q}r)^2] = \sigma_{Qr}^2$$

Entonces, la desviación estándar es:

$$\sigma[M] = \sigma[Qr] = \sqrt{E[S]} = \sqrt{E[Qr - \overline{Q}r]^2}$$
(6.9)

Se eliminan los subíndices r por ser éstos los puntos de la falla incipiente en las gráficas de dispersiones mostradas para la sección 6.4; ahora, dividiendo la ecuación 6.8 entre la 6.9 se obtiene lo que se quería demostrar:

$$\beta = \frac{E[M]}{\sigma[M]} = \frac{\overline{Q}(D) - Q}{\sigma[Q]} = \frac{E[Ln(Z)] - Ln(Z)}{\sigma[Ln(Z)]}$$
(6.10)

Y si D=1, o cuando hay falla en los edificios

$$\beta = \frac{\overline{Q}_F - Q}{\sigma_F} = \frac{E[Ln(Z)]_F - Ln(Z)}{\sigma[Ln(Z)]}$$
(6.11)

6.7. CURVAS DE CONFIABILIDAD PARA CADA SISTEMA ESTRUCTURAL

Considerando los valores \overline{Q}_F y σ_F de un edificio que se estudia y evaluando 51 valores (por tener grupos de edificios con 51 elementos) de Q en la ecuación 6.11 se obtienen 51 valores de β .

Así, se tienen los pares (Z, β) que son de ayuda para trazar las curvas de confiabilidad de cada sistema estudiado. El procedimiento para el cálculo de los valores de Z y β para los diferentes modelos es el que se muestra en las Tablas 6.15 a 6.18. De las Tablas anteriores se toman los valores de (Z, β) para trazar las respectivas curvas de confiabilidad de cada edificio que se ha analizado, mismas que se muestran en las Figuras 6.3 a 6.6.

Cada una de las curvas de la Figura 6.7 presenta un formato conveniente para utilizarse en el diseño de una estructura nueva, o para la revisión estructural de una existente (Rangel, 2007). Sólo podrán usarse

para estructuras con características similares a las estudiadas aquí. Para estructuras existentes, se puede considerar la masa total de la misma, una intensidad sísmica asociada al periodo de la estructura con cierto periodo de retorno y un cortante basal que nos permitiría conocer el índice de confiabilidad que ésta presenta, mientras más altos sean los índices de confiabilidad, menores son las probabilidades de falla. Para una estructura nueva, si se desea tener un cierto índice de confiabilidad, se tendría que determinar la intensidad normalizada como se indica en la sección 6.3, tomando nuevamente en cuenta la aceleración correspondiente a un movimiento sísmico con un periodo de recurrencia, se puede estimar la masa del edificio de manera aproximada y la variable que uno fijaría es el cortante basal que se desea, esto se puede fijar con apego a lo que establece el RCDF-2004.

Finalmente, se comparan las curvas de confiabilidad de los diferentes sistemas estructurales analizados, como se muestra en la Figura 6.7 y los comentarios al respecto se dan en el capítulo 8, que corresponde al análisis de resultados.
Edificio	Sismo	Índice daño	Edificio	Sismo	Índice daño	Edificio	Sismo	Índice daño
simulado #	aplicado	D	simulado #	aplicado	D	simulado #	aplicado	D
Prop. Medias	sismo 001	0.898447877	Simulado 17	sismo 017	0.963451687	Simulado 34	sismo 034	0.877272639
Simulado 01	sismo 001	0.835541051	Simulado 18	sismo 018	0.954910458	Simulado 35	sismo 035	0.887329570
Simulado 02	sismo 002	0.949892885	Simulado 19	sismo 019	0.882782114	Simulado 36	sismo 036	0.984737312
Simulado 03	sismo 003	0.998297614	Simulado 20	sismo 020	0.912890956	Simulado 37	sismo 037	0.913381107
Simulado 04	sismo 004	0.910977820	Simulado 21	sismo 021	0.921473352	Simulado 38	sismo 038	0.945417360
Simulado 05	sismo 005	0.740880196	Simulado 22	sismo 022	0.942614916	Simulado 39	sismo 039	0.937261970
Simulado 06	sismo 006	0.848601421	Simulado 23	sismo 023	0.964206461	Simulado 40	sismo 040	0.972812100
Simulado 07	sismo 007	0.930416344	Simulado 24	sismo 024	0.925960485	Simulado 41	sismo 041	0.914540798
Simulado 08	sismo 008	0.930538958	Simulado 25	sismo 025	0.940895130	Simulado 42	sismo 042	0.964048604
Simulado 09	sismo 009	0.879788316	Simulado 26	sismo 026	0.946540230	Simulado 43	sismo 043	0.902135182
Simulado 10	sismo 010	0.962929898	Simulado 27	sismo 027	0.945234042	Simulado 44	sismo 044	0.971636340
Simulado 11	sismo 011	0.920478521	Simulado 28	sismo 028	0.938325240	Simulado 45	sismo 045	0.891073073
Simulado 12	sismo 012	0.921799204	Simulado 29	sismo 029	0.936111907	Simulado 46	sismo 046	0.884526542
Simulado 13	sismo 013	0.976143864	Simulado 30	sismo 030	0.893566243	Simulado 47	sismo 047	0.909283875
Simulado 14	sismo 014	0.994930378	Simulado 31	sismo 031	0.972142226	Simulado 48	sismo 048	0.957801075
Simulado 15	sismo 015	0.914256145	Simulado 32	sismo 032	0.907751992	Simulado 49	sismo 049	0.793641939
Simulado 16	sismo 016	0.917478497	Simulado 33	sismo 033	0.958385542	Simulado 50	sismo 050	0.904038733

Tabla 6.1. Índice de daño D para el grupo de estructuras convencional

Tabla 6.2. Índice de daño D para el grupo de estructuras con disipadores ADAS

Edificio	Sismo	Índice daño	Edificio	Sismo	Índice daño	Edificio	Sismo	Índice daño
simulado #	aplicado	D	simulado #	aplicado	D	simulado #	aplicado	D
Prop. Medias	sismo 001	0.907124062	Simulado 17	sismo 017	0.925565152	Simulado 34	sismo 034	0.997820245
Simulado 01	sismo 001	0.896524689	Simulado 18	sismo 018	0.922785085	Simulado 35	sismo 035	0.988650225
Simulado 02	sismo 002	0.837260661	Simulado 19	sismo 019	0.871344132	Simulado 36	sismo 036	0.991297072
Simulado 03	sismo 003	0.920284938	Simulado 20	sismo 020	0.965062773	Simulado 37	sismo 037	0.950751305
Simulado 04	sismo 004	0.840873344	Simulado 21	sismo 021	0.927288374	Simulado 38	sismo 038	0.973706558
Simulado 05	sismo 005	0.786729056	Simulado 22	sismo 022	0.917583121	Simulado 39	sismo 039	0.957253312
Simulado 06	sismo 006	0.851558203	Simulado 23	sismo 023	0.949370480	Simulado 40	sismo 040	0.993563655
Simulado 07	sismo 007	0.931793504	Simulado 24	sismo 024	0.978837062	Simulado 41	sismo 041	0.967596980
Simulado 08	sismo 008	0.883971084	Simulado 25	sismo 025	0.874942544	Simulado 42	sismo 042	0.992855379
Simulado 09	sismo 009	0.917714652	Simulado 26	sismo 026	0.968293520	Simulado 43	sismo 043	0.921406894
Simulado 10	sismo 010	0.855817437	Simulado 27	sismo 027	0.981698253	Simulado 44	sismo 044	0.966469644
Simulado 11	sismo 011	0.931594949	Simulado 28	sismo 028	0.927864254	Simulado 45	sismo 045	0.930199658
Simulado 12	sismo 012	0.972354519	Simulado 29	sismo 029	0.995022882	Simulado 46	sismo 046	0.969852549
Simulado 13	sismo 013	0.922508917	Simulado 30	sismo 030	0.950968588	Simulado 47	sismo 047	0.929598647
Simulado 14	sismo 014	0.946751237	Simulado 31	sismo 031	0.987289059	Simulado 48	sismo 048	0.983582183
Simulado 15	sismo 015	0.923227879	Simulado 32	sismo 032	0.941680575	Simulado 49	sismo 049	0.941727961
Simulado 16	sismo 016	0.958608998	Simulado 33	sismo 033	0.949345638	Simulado 50	sismo 050	0.997077099

Edificio	Sismo	Índice daño	Edificio	Sismo	Índice daño	Edificio	Sismo	Índice daño
simulado #	aplicado	D	simulado #	aplicado	D	simulado #	aplicado	D
Prop. Medias	sismo 001	0.57601223	Simulado 17	sismo 017	0.94449969	Simulado 34	sismo 034	0.97092791
Simulado 01	sismo 001	0.86607852	Simulado 18	sismo 018	0.50922009	Simulado 35	sismo 035	0.80354533
Simulado 02	sismo 002	0.81930164	Simulado 19	sismo 019	0.90308806	Simulado 36	sismo 036	0.79285660
Simulado 03	sismo 003	0.86593671	Simulado 20	sismo 020	0.81633206	Simulado 37	sismo 037	0.82108236
Simulado 04	sismo 004	0.90584293	Simulado 21	sismo 021	0.92633482	Simulado 38	sismo 038	0.75001437
Simulado 05	sismo 005	0.84819402	Simulado 22	sismo 022	0.90917781	Simulado 39	sismo 039	0.63224980
Simulado 06	sismo 006	0.52198123	Simulado 23	sismo 023	0.70303308	Simulado 40	sismo 040	0.91651012
Simulado 07	sismo 007	0.77504262	Simulado 24	sismo 024	0.93607210	Simulado 41	sismo 041	0.94012588
Simulado 08	sismo 008	0.95412082	Simulado 25	sismo 025	0.86864856	Simulado 42	sismo 042	0.89727787
Simulado 09	sismo 009	0.95156404	Simulado 26	sismo 026	0.57267610	Simulado 43	sismo 043	0.95571326
Simulado 10	sismo 010	0.82648884	Simulado 27	sismo 027	0.91696528	Simulado 44	sismo 044	0.94047337
Simulado 11	sismo 011	0.96633453	Simulado 28	sismo 028	0.94747825	Simulado 45	sismo 045	0.97407870
Simulado 12	sismo 012	0.85742901	Simulado 29	sismo 029	0.71183871	Simulado 46	sismo 046	0.82667318
Simulado 13	sismo 013	0.90328422	Simulado 30	sismo 030	0.74842742	Simulado 47	sismo 047	0.92181958
Simulado 14	sismo 014	0.89741570	Simulado 31	sismo 031	0.87413924	Simulado 48	sismo 048	0.93655939
Simulado 15	sismo 015	0.90454200	Simulado 32	sismo 032	0.94499342	Simulado 49	sismo 049	0.95145513
Simulado 16	sismo 016	0.97784202	Simulado 33	sismo 033	0.98030802	Simulado 50	sismo 050	0.82271430

Tabla 6.3. Índice de daño D para el grupo de estructuras con muros de concreto

Tabla 6.4. Índice de daño D para el grupo de estructuras con muros de mampostería

Edificio	Sismo	Índice daño	Edificio	Sismo	Índice daño	Edificio	Sismo	Índice daño
simulado #	aplicado	D	simulado #	aplicado	D	simulado #	aplicado	D
Prop. Medias	sismo 001	0.65373223	Simulado 17	sismo 017	0.80930464	Simulado 34	sismo 034	0.72495312
Simulado 01	sismo 001	0.80521301	Simulado 18	sismo 018	0.77581118	Simulado 35	sismo 035	0.92477169
Simulado 02	sismo 002	0.71213195	Simulado 19	sismo 019	0.68751556	Simulado 36	sismo 036	0.68520883
Simulado 03	sismo 003	0.81972901	Simulado 20	sismo 020	0.64772349	Simulado 37	sismo 037	0.63519870
Simulado 04	sismo 004	0.87090335	Simulado 21	sismo 021	0.78650538	Simulado 38	sismo 038	0.67598193
Simulado 05	sismo 005	0.65150924	Simulado 22	sismo 022	0.76655571	Simulado 39	sismo 039	0.72121377
Simulado 06	sismo 006	0.67213296	Simulado 23	sismo 023	0.79470399	Simulado 40	sismo 040	0.71622168
Simulado 07	sismo 007	0.74768021	Simulado 24	sismo 024	0.65622351	Simulado 41	sismo 041	0.66143440
Simulado 08	sismo 008	0.77221541	Simulado 25	sismo 025	0.88038187	Simulado 42	sismo 042	0.59289222
Simulado 09	sismo 009	0.77551710	Simulado 26	sismo 026	0.73463571	Simulado 43	sismo 043	0.66990857
Simulado 10	sismo 010	0.58363592	Simulado 27	sismo 027	0.76299020	Simulado 44	sismo 044	0.79259065
Simulado 11	sismo 011	0.70792300	Simulado 28	sismo 028	0.79025171	Simulado 45	sismo 045	0.65226198
Simulado 12	sismo 012	0.65467791	Simulado 29	sismo 029	0.62739253	Simulado 46	sismo 046	0.63831633
Simulado 13	sismo 013	0.85006835	Simulado 30	sismo 030	0.77171809	Simulado 47	sismo 047	0.63402851
Simulado 14	sismo 014	0.78933467	Simulado 31	sismo 031	0.76753441	Simulado 48	sismo 048	0.79305645
Simulado 15	sismo 015	0.77866789	Simulado 32	sismo 032	0.67730018	Simulado 49	sismo 049	0.66248541
Simulado 16	sismo 016	0.70961645	Simulado 33	sismo 033	0.73571785	Simulado 50	sismo 050	0.75366667

_	Per. de la es	structura (seg)	Per. de la estructura (seg)				Per. de la es	structura (seg)
Edificio	Base rígida	Base flexible	Edificio	Base rígida	Base flexible	Edificio	Base rígida	Base flexible
Prop. Med.	0.775	0.818333259	Simulado 17	1.106	1.136785082	Simulado 34	1.03	1.062988393
Simulado 01	1.046	1.078499107	Simulado 18	1.106	1.136785082	Simulado 35	1	1.033945996
Simulado 02	1.034	1.066864716	Simulado 19	1.053	1.085289511	Simulado 36	1.074	1.105676410
Simulado 03	1.103	1.133866537	Simulado 20	1.079	1.110533801	Simulado 37	1.028	1.061050575
Simulado 04	0.997	1.031044772	Simulado 21	1.043	1.075589756	Simulado 38	1.055	1.087230115
Simulado 05	1.122	1.152357723	Simulado 22	1.075	1.106647786	Simulado 39	1.131	1.161122441
Simulado 06	1.021	1.054270043	Simulado 23	1.116	1.146516604	Simulado 40	1.076	1.107619214
Simulado 07	1.015	1.048460454	Simulado 24	1.021	1.054270043	Simulado 41	0.982	1.016547256
Simulado 08	1.027	1.060081753	Simulado 25	1.034	1.066864716	Simulado 42	1.038	1.070741950
Simulado 09	1.023	1.056207045	Simulado 26	1.089	1.120252348	Simulado 43	0.979	1.013649507
Simulado 10	1.001	1.034913196	Simulado 27	1.054	1.086259786	Simulado 44	0.995	1.029110938
Simulado 11	1.063	1.094994668	Simulado 28	1.106	1.136785082	Simulado 45	1.011	1.044588590
Simulado 12	1.025	1.058144283	Simulado 29	1.046	1.078499107	Simulado 46	1.004	1.037815168
Simulado 13	1.004	1.037815168	Simulado 30	1.078	1.109562221	Simulado 47	1.036	1.068803220
Simulado 14	1.061	1.093053211	Simulado 31	1.08	1.111505431	Simulado 48	1.103	1.133866537
Simulado 15	1.073	1.104705084	Simulado 32	0.992	1.026210662	Simulado 49	1.016	1.049428570
Simulado 16	1.06	1.092082562	Simulado 33	1.059	1.091111966	Simulado 50	1.067	1.098878211

Tabla 6.5. Periodos con y sin interacción suelo estructura, estructuras con disipadores ADAS

Tabla 6.6. Periodos con y sin interacción suelo estructura, estructuras con muros de concreto

Per. de la estructura (seg)				Per. de la es		Per. de la estructura (seg)		
Edificio	Base rígida	Base flexible	Edificio	Base rígida	Base flexible	Edificio	Base rígida	Base flexible
Prop. Med.	0.884	0.949178736	Simulado 17	1.401	1.443012569	Simulado 34	1.305	1.350003434
Simulado 01	1.414	1.455637411	Simulado 18	1.35	1.393550958	Simulado 35	1.375	1.417783225
Simulado 02	1.391	1.433305715	Simulado 19	1.392	1.434276219	Simulado 36	1.316	1.360639656
Simulado 03	1.368	1.410995490	Simulado 20	1.276	1.321991026	Simulado 37	1.318	1.362574135
Simulado 04	1.454	1.494523427	Simulado 21	1.429	1.470212662	Simulado 38	1.332	1.376120733
Simulado 05	1.373	1.415843661	Simulado 22	1.335	1.379024754	Simulado 39	1.349	1.392582232
Simulado 06	1.319	1.363541445	Simulado 23	1.379	1.421662855	Simulado 40	1.352	1.395488543
Simulado 07	1.36	1.403240633	Simulado 24	1.49	1.529569963	Simulado 41	1.308	1.352903645
Simulado 08	1.474	1.513988201	Simulado 25	1.313	1.357738293	Simulado 42	1.496	1.535415342
Simulado 09	1.442	1.482851399	Simulado 26	1.401	1.443012569	Simulado 43	1.432	1.473128736
Simulado 10	1.374	1.416813422	Simulado 27	1.448	1.488686761	Simulado 44	1.336	1.379992852
Simulado 11	1.397	1.439129345	Simulado 28	1.375	1.417783225	Simulado 45	1.387	1.429424105
Simulado 12	1.392	1.434276219	Simulado 29	1.439	1.479934212	Simulado 46	1.378	1.420692885
Simulado 13	1.408	1.449809737	Simulado 30	1.298	1.343237981	Simulado 47	1.415	1.456608826
Simulado 14	1.406	1.447867491	Simulado 31	1.336	1.379992852	Simulado 48	1.387	1.429424105
Simulado 15	1.318	1.362574135	Simulado 32	1.504	1.543211027	Simulado 49	1.385	1.427483546
Simulado 16	1.291	1.336474943	Simulado 33	1.435	1.476045146	Simulado 50	1.376	1.418753070

Edificio	Índice daño D	Sa (gals)	MTpm (kg s2/cm)	Vypm (ka)	Z= (Sa*MTpm)/Vypm	Q= Ln (Z)
Prop. Med	0 898447877	935 280174	2953 7	1474800	1 873160463	0 62762709
Simulado 01	0.835541051	1394 365830	2953 7	1474800	2 792608050	1 02697594
Simulado 02	0.949892885	1108 768422	2953 7	1474800	2 220619263	0 79778610
Simulado 03	0.998297614	1044.119475	2953.7	1474800	2.091141641	0.73771016
Simulado 04	0.910977820	1252 835806	2953 7	1474800	2 509154544	0.91994586
Simulado 05	0.740880196	1371.999731	2953.7	1474800	2.747813674	1.01080557
Simulado 06	0.848601421	1214 957273	2953 7	1474800	2 433292174	0 88924514
Simulado 07	0.930416344	1124 763912	2953 7	1474800	2 252654710	0.81210939
Simulado 08	0.930538958	921.088396	2953.7	1474800	1.844737453	0.61233697
Simulado 09	0.879788316	1085.222857	2953.7	1474800	2.173462674	0.77632160
Simulado 10	0.962929898	1397.202361	2953.7	1474800	2.798288998	1.02900816
Simulado 11	0.920478521	793.215553	2953.7	1474800	1.588636276	0.46287596
Simulado 12	0.921799204	1334.999673	2953.7	1474800	2.673710696	0.98346728
Simulado 13	0.976143864	1109.445815	2953.7	1474800	2.221975931	0.79839686
Simulado 14	0.994930378	1175.935545	2953.7	1474800	2.355140235	0.85660027
Simulado 15	0.914256145	1097.159700	2953.7	1474800	2.197369545	0.78726098
Simulado 16	0.917478497	943.482881	2953.7	1474800	1.889588681	0.63635918
Simulado 17	0.963451687	1019.642794	2953.7	1474800	2.042120233	0.71398860
Simulado 18	0.954910458	1031.354517	2953.7	1474800	2.065576239	0.72540924
Simulado 19	0.882782114	995.067642	2953.7	1474800	1.992901610	0.68959167
Simulado 20	0.912890956	1167.922659	2953.7	1474800	2.339092187	0.84976290
Simulado 21	0.921473352	1281.158039	2953.7	1474800	2.565877746	0.94230062
Simulado 22	0.942614916	1133.588821	2953.7	1474800	2.270329063	0.81992478
Simulado 23	0.964206461	1274.285620	2953.7	1474800	2.552113802	0.93692196
Simulado 24	0.925960485	1018.167697	2953.7	1474800	2.039165940	0.71254087
Simulado 25	0.940895130	1155.926852	2953.7	1474800	2.315067224	0.83943873
Simulado 26	0.946540230	847.145943	2953.7	1474800	1.696646985	0.52865394
Simulado 27	0.945234042	976.555131	2953.7	1474800	1.955825122	0.67081216
Simulado 28	0.938325240	981.485453	2953.7	1474800	1.965699473	0.67584815
Simulado 29	0.936111907	859.054112	2953.7	1474800	1.720496427	0.54261287
Simulado 30	0.893566243	917.006813	2953.7	1474800	1.836562940	0.60789586
Simulado 31	0.972142226	963.385690	2953.7	1474800	1.929449628	0.65723480
Simulado 32	0.907751992	1079.447932	2953.7	1474800	2.161896769	0.77098597
Simulado 33	0.958385542	872.668112	2953.7	1474800	1.747762275	0.55833627
Simulado 34	0.877272639	980.090647	2953.7	1474800	1.962905984	0.67442602
Simulado 35	0.887329570	1017.884207	2953.7	1474800	2.038598171	0.71226240
Simulado 36	0.984737312	794.543155	2953.7	1474800	1.591295169	0.46454826
Simulado 37	0.913381107	1035.484100	2953.7	1474800	2.073846886	0.72940528
Simulado 38	0.945417360	907.636907	2953.7	1474800	1.817797079	0.59762537
Simulado 39	0.937261970	799.301742	2953.7	1474800	1.600825572	0.47051948
Simulado 40	0.972812100	988.135401	2953.7	1474800	1.979017857	0.68260069
Simulado 46	0.884526542	922.487138	2953.7	1474800	1.847538825	0.61385439
Simulado 47	0.909283875	1115.720089	2953.7	1474800	2.234541923	0.80403625
Simulado 48	0.957801075	899.477450	2953.7	1474800	1.801455482	0.58859494
Simulado 49	0.793641939	930.357149	2953.7	1474800	1.863300726	0.62234950
Simulado 50	0.904038733	918.380085	2953.7	1474800	1.839313302	0.60939230

Tabla 6.7. Índice de daño D y seudoaceleración normalizada Z, estructura convencional

Edificio	Índice daño	Sa (gals)	MTpm	Vypm	Z= (Sa*MTpm)/Vypm	Q= Ln (Z)
Prop. Mod	0.007124062	043 608510	2576 65125	1109129	2 020201601	0 70768677
Fiop. Med.	0.907124002	1074 528042	2576.65125	1100120	2.029291001	0.2261204
Simulado 01	0.837360661	1074.520942	2576 65125	1100120	2.01125677	0.78806800
Simulado 02	0.037200001	1405 788020	2576 65125	1100120	2.201123077	1 16838445
Simulado 03	0.920204930	1495.766929	2576.05125	1190120	3.210791550	0.82008822
Simulado 04	0.796720056	1012 499949	2576.05125	1190120	2.270700104	0.82008823
Simulado 05	0.760729030	025 027942	2576.05125	1190120	2.179373001	0.77912935
Simulado 06	0.031336203	935.937643	2576.05125	1190120	2.012795313	0.09952440
Simulado 07	0.931793504	1275.094667	2576.05125	1190120	2.742174203	1.00875111
Simulado 00	0.003971004	042 784252	2576.05125	1190120	0.007540540	0.33100041
Simulado 09	0.917714032	942.761203	2576.05125	1190120	2.027512512	0.70680968
Simulado 10	0.000017437	1144.551476	2576.65125	1190120	2.401432323	0.90074351
Simulado 11	0.931594949	965.458322	2576.65125	1198128	2.076281026	0.73057833
Simulado 12	0.972354519	1049.604643	2576.65125	1198128	2.257243172	0.81414423
Simulado 13	0.922508917	917.180680	2576.65125	1198128	1.972456810	0.67927988
Simulado 14	0.946751237	869.129009	2576.65125	1198128	1.869118562	0.62546696
Simulado 15	0.923227879	1119.978636	2576.65125	1198128	2.408587029	0.87904028
Simulado 16	0.958608998	1222.679072	2576.65125	1198128	2.629451008	0.96677508
Simulado 17	0.925565152	1218.646794	2576.65125	1198128	2.620779331	0.96347173
Simulado 18	0.922785085	962.020101	2576.65125	1198128	2.068886907	0.72701074
Simulado 19	0.871344132	1128.331757	2576.65125	1198128	2.426550960	0.88647089
Simulado 20	0.965062773	868.113852	2576.65125	1198128	1.866935401	0.62429826
Simulado 21	0.927288374	1014.869241	2576.65125	1198128	2.182542426	0.78049045
Simulado 22	0.917583121	866.428120	2576.65125	1198128	1.863310125	0.62235454
Simulado 23	0.949370480	1057.575611	2576.65125	1198128	2.274385258	0.82170980
Simulado 24	0.978837062	929.805722	2576.65125	1198128	1.999607787	0.69295105
Simulado 25	0.874942544	1084.802133	2576.65125	1198128	2.332937666	0.84712827
Simulado 26	0.968293520	820.268132	2576.65125	1198128	1.764040061	0.56760667
Simulado 27	0.981698253	1096.755008	2576.65125	1198128	2.358643104	0.85808650
Simulado 28	0.927864254	862.794205	2576.65125	1198128	1.855495154	0.61815159
Simulado 29	0.995022882	934.408797	2576.65125	1198128	2.009507000	0.69788942
Simulado 30	0.950968588	923.046551	2576.65125	1198128	1.985071749	0.68565506
Simulado 31	0.987289059	1000.128520	2576.65125	1198128	2.150841545	0.76585918
Simulado 32	0.941680575	1238.936049	2576.65125	1198128	2.664412697	0.97998366
Simulado 33	0.949345638	1284.308507	2576.65125	1198128	2.761989124	1.01595112
Simulado 34	0.997820245	888.484392	2576.65125	1198128	1.910743574	0.64749247
Simulado 35	0.988650225	1041.239423	2576.65125	1198128	2.239253221	0.80614243
Simulado 36	0.991297072	1096.205213	2576.65125	1198128	2.357460735	0.85758508
Simulado 37	0.950751305	743.780340	2576.65125	1198128	1.599548083	0.46972114
Simulado 38	0.973706558	1106.939543	2576.65125	1198128	2.380545610	0.86732971
Simulado 39	0.957253312	1153.582262	2576.65125	1198128	2.480853816	0.90860278
Simulado 40	0.993563655	900.736081	2576.65125	1198128	1.937091629	0.66118769
Simulado 46	0.969852549	919.281272	2576.65125	1198128	1.976974271	0.68156753
Simulado 47	0.929598647	955.247971	2576.65125	1198128	2.054323001	0.71994635
Simulado 48	0.983582183	765.066888	2576.65125	1198128	1.645326190	0.49793866
Simulado 49	0.941727961	984.642968	2576.65125	1198128	2.117538857	0.75025450
Simulado 50	0.997077099	1159.439684	2576.65125	1198128	2.493450583	0.91366753

Tabla 6.8. Índice de daño D y seudoaceleración normalizada Z, estructura con ADAS

Edificio	Índice daño	Sa	MTpm	Vypm	Z= (Sa*MTpm)/Vypm	Q= Ln (Z)
	D	(gals)	(kg s2/cm)	(kg)		
Prop. Med.	0.57601223	554.88328	3034	1282600	1.312580584	0.271995111
Simulado 01	0.86607852	806.09104	3034	1282600	1.906814441	0.645434017
Simulado 02	0.81930164	870.87432	3034	1282600	2.060059790	0.722735007
Simulado 03	0.86593671	628.58656	3034	1282600	1.486926272	0.396711085
Simulado 04	0.90584293	707.13047	3034	1282600	1.672722486	0.514452530
Simulado 05	0.84819402	782.93714	3034	1282600	1.852043728	0.616289747
Simulado 06	0.52198123	884.41743	3034	1282600	2.092096112	0.738166488
Simulado 07	0.77504262	661.65639	3034	1282600	1.565153200	0.447983711
Simulado 08	0.95412082	730.57601	3034	1282600	1.728183088	0.547070618
Simulado 09	0.95156404	750.57572	3034	1282600	1.775492532	0.574077867
Simulado 10	0.82648884	832.86442	3034	1282600	1.970147089	0.678108204
Simulado 11	0.96633453	698.51475	3034	1282600	1.652341915	0.502193624
Simulado 12	0.85742901	802.89478	3034	1282600	1.899253675	0.641461006
Simulado 13	0.90328422	644.91894	3034	1282600	1.525560640	0.422361975
Simulado 14	0.89741570	779.52942	3034	1282600	1.843982749	0.611927770
Simulado 15	0.90454200	795.72014	3034	1282600	1.882282020	0.632484881
Simulado 16	0.97784202	745.22166	3034	1282600	1.762827473	0.566919039
Simulado 17	0.94449969	885.72345	3034	1282600	2.095185529	0.739642107
Simulado 18	0.50922009	842.48204	3034	1282600	1.992897645	0.689589682
Simulado 19	0.90308806	745.99853	3034	1282600	1.764665163	0.567960963
Simulado 20	0.81633206	915.23118	3034	1282600	2.164986281	0.772414025
Simulado 21	0.92633482	882.69480	3034	1282600	2.088021221	0.736216833
Simulado 22	0.90917781	941.63213	3034	1282600	2.227437923	0.800852011
Simulado 23	0.70303308	949.85094	3034	1282600	2.246879576	0.809542398
Simulado 24	0.93607210	779.81761	3034	1282600	1.844664465	0.612297399
Simulado 25	0.86864856	1003.64629	3034	1282600	2.374132882	0.864632269
Simulado 26	0.57267610	779.06237	3034	1282600	1.842877925	0.611328440
Simulado 27	0.91696528	746.11284	3034	1282600	1.764935564	0.568114182
Simulado 28	0.94747825	658.93063	3034	1282600	1.558705379	0.443855591
Simulado 29	0.71183871	624.64361	3034	1282600	1.477599177	0.390418593
Simulado 30	0.74842742	767.65450	3034	1282600	1.815892524	0.596577096
Simulado 31	0.87413924	701.91615	3034	1282600	1.660387960	0.507051286
Simulado 32	0.94499342	955.79309	3034	1282600	2.260935773	0.815778786
Simulado 33	0.98030802	833.56832	3034	1282600	1.971812162	0.678952999
Simulado 34	0.97092791	854.60820	3034	1282600	2.021582169	0.703880457
Simulado 35	0.80354533	687.00528	3034	1282600	1.625116179	0.485579308
Simulado 36	0.79285660	766.01450	3034	1282600	1.812013094	0.594438434
Simulado 37	0.82108236	791.95834	3034	1282600	1.873383443	0.627746124
Simulado 38	0.75001437	799.78382	3034	1282600	1.891894671	0.637578799
Simulado 39	0.63224980	694.86184	3034	1282600	1.643700941	0.496950371
Simulado 40	0.91651012	863.06137	3034	1282600	2.041578190	0.713723131
Simulado 46	0.82667318	676.41206	3034	1282600	1.600057837	0.470039777
Simulado 47	0.92181958	713.23931	3034	1282600	1.687172971	0.523054330
Simulado 48	0.93655939	727.78618	3034	1282600	1.721583703	0.543244625
Simulado 49	0.95145513	769.16136	3034	1282600	1.819457014	0.598538113
Simulado 50	0.82271430	696.85298	3034	1282600	1.648411004	0.499811796

Tabla 6.9. Índice de daño D y seudoaceleración normalizada Z, estructura con muros de concreto

Edificio	Índice daño	Sa	MTpm	Vypm	Z= (Sa*MTpm)/Vvpm	Q= Ln (Z)
22/10/0	D	(gals)	(kg s2/cm)	(ka)	(ex kiii), t 3kiii	<u> </u>
Prop. Med.	0.65373223	1152.74232	3435.87	2026520	1.954420752	0.6700939
Simulado 01	0.80521301	1308.90000	3435.87	2026520	2.219178810	0.7971372
Simulado 02	0.71213195	1189.67000	3435.87	2026520	2.017029915	0.7016261
Simulado 03	0.81972901	1689.34000	3435.87	2026520	2.864197060	1.0522881
Simulado 04	0.87090335	1105.65118	3435.87	2026520	1.874579933	0.6283846
Simulado 05	0.65150924	1312.66433	3435.87	2026520	2.225561051	0.8000090
Simulado 06	0.67213296	1257.91705	3435.87	2026520	2.132739593	0.7574073
Simulado 07	0.74768021	1165.10617	3435.87	2026520	1.975383094	0.6807624
Simulado 08	0.77221541	968.02513	3435.87	2026520	1.641241394	0.4954529
Simulado 09	0.77551710	1175.94175	3435.87	2026520	1.993754301	0.6900194
Simulado 10	0.58363592	940.26161	3435.87	2026520	1.594169635	0.4663530
Simulado 11	0.70792300	1057.11133	3435.87	2026520	1.792282883	0.5834902
Simulado 12	0.65467791	1367.15087	3435.87	2026520	2.317940438	0.8406790
Simulado 13	0.85006835	1156.34000	3435.87	2026520	1.960520457	0.6732100
Simulado 14	0 78933467	1087 49570	3435.87	2026520	1 843798155	0.6118277
Simulado 15	0 77866789	1374 74213	3435.87	2026520	2 330811066	0.8462163
Simulado 16	0 70961645	1276 17107	3435.87	2026520	2 163688437	0 7718144
Simulado 17	0 80930464	1396 78000	3435.87	2026520	2 368175246	0.8621197
Simulado 18	0 77581118	1170 69950	3435.87	2026520	1.984866323	0.6855516
Simulado 19	0.68751556	1372 79046	3435.87	2026520	2 327502105	0 8447956
Simulado 20	0.64772349	922 56010	3435.87	2026520	1 564157560	0 4473474
Simulado 21	0 78650538	956 78000	3435.87	2026520	1 622175798	0 4837683
Simulado 22	0.76655571	1005 00853	3435.87	2026520	1 703945011	0.5329462
Simulado 23	0 79470399	1214 09883	3435.87	2026520	2 058447848	0 7219522
Simulado 24	0.65622351	969 76171	3435.87	2026520	1 644185680	0 4972452
Simulado 25	0.88038187	1535 41033	3435.87	2026520	2 603216491	0.9567478
Simulado 26	0 73463571	941 01380	3435.87	2026520	1 595444947	0 4671527
Simulado 27	0.76299020	1111 36985	3435.87	2026520	1 884275661	0.6335435
Simulado 28	0.79025171	995 05192	3435.87	2026520	1 687064049	0.5229898
Simulado 29	0.62739253	987 45000	3435.87	2026520	1.674175351	0.5153207
Simulado 30	0.77171809	1097 93406	3435.87	2026520	1 861495917	0.6213804
Simulado 31	0 76753441	1014 28128	3435.87	2026520	1 719666535	0 5421304
Simulado 32	0.67730018	999 84927	3435.87	2026520	1 695197738	0.5277994
Simulado 33	0.73571785	1286 84667	3435.87	2026520	2 181788413	0 7801449
Simulado 34	0.72495312	905 67021	3435.87	2026520	1 535521537	0 4288701
Simulado 35	0.92477169	1237 09880	3435.87	2026520	2 097443234	0 7407191
Simulado 36	0.68520883	1119 51990	3435.87	2026520	1 898093701	0.6408501
Simulado 37	0.63519870	988 01872	3435.87	2026520	1.675139581	0.5158965
Simulado 38	0.67598193	1059 56552	3435.87	2026520	1 796443852	0.5858091
Simulado 39	0.72121377	1075.98152	3435 87	2026520	1.824276408	0.6011834
Simulado 46	0.63831633	991 70431	3435 87	2026520	1.681388336	0.5196198
Simulado 47	0.63402851	1098 53517	3435.87	2026520	1 862515062	0.6219278
Simulado 48	0 79305645	927 23616	3435.87	2026520	1.572085592	0 4524031
Simulado 49	0.66248541	939 03922	3435.87	2026520	1 592097136	0 4650521
Simulado 50	0.75366667	1115.88979	3435.87	2026520	1.891939018	0.6376022

Tabla 6.10. Índice de daño D y seudoaceleración normalizada Z, estructura con muros de mampostería

Edificio	Índice daño D	Z= (Sa*MTpm)/Vypm	Q= Ln (Z)	S=[Ln(Z)-Qm)^2
Prop. Medias	0.898447877	1.873160463	0.627627091	0.009186769
Simulado 01	0.835541051	2.792608050	1.026975944	0.092112991
Simulado 02	0.949892885	2.220619263	0.797786104	0.005522181
Simulado 03	0.998297614	2.091141641	0.737710156	0.000202648
Simulado 04	0.910977820	2.509154544	0.919945861	0.038600908
Simulado 05	0.740880196	2.747813674	1.010805568	0.082559014
Simulado 06	0.848601421	2.433292174	0.889245145	0.027479832
Simulado 07	0.930416344	2.252654710	0.812109392	0.007856104
Simulado 08	0.930538958	1.844737453	0.612336965	0.012351601
Simulado 09	0.879788316	2.173462674	0.776321598	0.002792792
Simulado 10	0.962929898	2.798288998	1.029008158	0.093350679
Simulado 11	0.920478521	1.588636276	0.462875960	0.067911716
Simulado 12	0.921799204	2.673710696	0.983467281	0.067596130
Simulado 13	0.976143864	2.221975931	0.798396859	0.005613326
Simulado 14	0.994930378	2.355140235	0.856600274	0.017722412
Simulado 15	0.914256145	2.197369545	0.787260984	0.004068687
Simulado 16	0.917478497	1.889588681	0.636359176	0.007589119
Simulado 17	0.963451687	2.042120233	0.713988598	0.000089987
Simulado 18	0.954910458	2.065576239	0.725409238	0.00003742
Simulado 19	0.882782114	1.992901610	0.689591672	0.001148061
Simulado 20	0.912890956	2.339092187	0.849762900	0.015948703
Simulado 21	0.921473352	2.565877746	0.942300621	0.047884773
Simulado 22	0.942614916	2.270329063	0.819924783	0.009302614
Simulado 23	0.964206461	2.552113802	0.936921958	0.045559722
Simulado 24	0.925960485	2.039165940	0.712540871	0.000119549
Simulado 25	0.940895130	2.315067224	0.839438726	0.013447650
Simulado 26	0.946540230	1.696646985	0.528653942	0.037955137
Simulado 27	0.945234042	1.955825122	0.670812162	0.002773345
Simulado 28	0.938325240	1.965699473	0.675848148	0.002268291
Simulado 29	0.936111907	1.720496427	0.542612870	0.032711010
Simulado 30	0.893566243	1.836562940	0.607895857	0.013358474
Simulado 31	0.972142226	1.929449628	0.657234796	0.004387728
Simulado 32	0.907751992	2.161896769	0.770985970	0.002257319
Simulado 33	0.958385542	1.747762275	0.558336269	0.027270709
Simulado 34	0.877272639	1.962905984	0.674426020	0.002405775
Simulado 35	0.887329570	2.038598171	0.712262400	0.000125716
Simulado 36	0.984737312	1.591295169	0.464548257	0.067042915
Simulado 37	0.913381107	2.073846886	0.729405282	0.000035172
Simulado 38	0.945417360	1.817797079	0.597625372	0.015838059
Simulado 39	0.937261970	1.600825572	0.470519479	0.063986356
Simulado 47	0.909283875	2.234541923	0.804036251	0.006490160
Simulado 48	0.957801075	1.801455482	0.588594940	0.018192556
Simulado 49	0.793641939	1.863300726	0.622349499	0.010226311
Simulado 50	0.904038733	1.839313302	0.609392296	0.013014800
	Suma		36.89721092	1.192074693
	Media de Q=Qm y media de S		0.723474724	0.023374014
	Desviación estándar de Q			0.152885623

Tabla 6.11. Valor medio y desviación estándar de Q=Ln(Z), edificio convencional

Edificio	Índice daño D	Z= (Sa*MTpm)/Vypm	Q= Ln (Z)	S=[Ln(Z)-Qm)^2
Prop. Medias	0.907124062	2.029291601	0.707686767	0.004463428
Simulado 01	0.896524689	2.310844501	0.837613043	0.003983804
Simulado 02	0.837260661	2.201125677	0.788968901	0.000209475
Simulado 03	0.920284938	3.216791550	1.168384450	0.155148382
Simulado 04	0.840873344	2.270700164	0.820088226	0.002078682
Simulado 05	0.786729056	2.179573801	0.779129354	0.000021471
Simulado 06	0.851558203	2.012795313	0.699524459	0.005620680
Simulado 07	0.931793504	2.742174203	1.008751111	0.054875618
Simulado 08	0.883971084	1.736133324	0.551660413	0.049655546
Simulado 09	0.917714652	2.027512512	0.706809678	0.004581392
Simulado 10	0.855817437	2.461432523	0.900743507	0.015938520
Simulado 11	0.931594949	2.076281026	0.730578325	0.001928732
Simulado 12	0.972354519	2.257243172	0.814144233	0.001572010
Simulado 13	0.922508917	1.972456810	0.679279878	0.009066044
Simulado 14	0.946751237	1.869118562	0.625466962	0.022209552
Simulado 15	0.923227879	2.408587029	0.879040280	0.010929578
Simulado 16	0.958608998	2.629451008	0.966775082	0.036971378
Simulado 17	0.925565152	2.620779331	0.963471728	0.035711956
Simulado 18	0.922785085	2.068886907	0.727010736	0.002254818
Simulado 19	0.871344132	2.426550960	0.886470891	0.012538453
Simulado 20	0.965062773	1.866935401	0.624298264	0.022559257
Simulado 21	0.927288374	2.182542426	0.780490448	0.000035938
Simulado 22	0.917583121	1.863310125	0.622354543	0.023146918
Simulado 23	0.949370480	2.274385258	0.821709800	0.002229175
Simulado 24	0.978837062	1.999607787	0.692951055	0.006649522
Simulado 25	0.874942544	2.332937666	0.847128274	0.005275497
Simulado 26	0.968293520	1.764040061	0.567606668	0.042803053
Simulado 27	0.981698253	2.358643104	0.858086498	0.006987429
Simulado 28	0.927864254	1.855495154	0.618151590	0.024443467
Simulado 29	0.995022882	2.009507000	0.697889418	0.005868516
Simulado 30	0.950968588	1.985071749	0.685655059	0.007892652
Simulado 31	0.987289059	2.150841545	0.765859182	0.000074589
Simulado 32	0.941680575	2.664412697	0.979983657	0.042225318
Simulado 33	0.949345638	2.761989124	1.015951117	0.058300740
Simulado 34	0.997820245	1.910743574	0.647492472	0.016129809
Simulado 35	0.988650225	2.239253221	0.806142427	0.001001518
Simulado 36	0.991297072	2.357460735	0.857585080	0.006903852
Simulado 37	0.950751305	1.599548083	0.469721141	0.092887505
Simulado 38	0.973706558	2.380545610	0.867329709	0.008618161
Simulado 39	0.957253312	2.480853816	0.908602782	0.017984721
Simulado 47	0.929598647	2.054323001	0.719946354	0.002975626
Simulado 48	0.983582183	1.645326190	0.497938656	0.076483774
Simulado 49	0.941727961	2.117538857	0.750254498	0.000587634
Simulado 50	0.997077099	2.493450583	0.913667527	0.019368810
	Suma		39.499278459	0.961306843
l	Media de Q=Qm y media de	S	0.774495656	0.018849154
	Desviación estándar de Q			0.1372924959

Tabla 6.12. Valor medio y desviación estándar de Q=Ln(Z), edificio con disipadores ADAS

Edificio	Índice daño D	Z= (Sa*MTpm)/Vypm	Q= Ln (Z)	S=[Ln(Z)-Qm)^2
Prop. Medias	0.57601223	1.312580584	0.271995111	0.10855455
Simulado 01	0.86607852	1.906814441	0.645434017	0.00193272
Simulado 02	0.81930164	2.060059790	0.722735007	0.01470489
Simulado 03	0.86593671	1.486926272	0.396711085	0.04192674
Simulado 04	0.90584293	1.672722486	0.514452530	0.00757226
Simulado 05	0.84819402	1.852043728	0.616289747	0.00021959
Simulado 06	0.52198123	2.092096112	0.738166488	0.01868558
Simulado 07	0.77504262	1.565153200	0.447983711	0.02355844
Simulado 08	0.95412082	1.728183088	0.547070618	0.00295943
Simulado 09	0.95156404	1.775492532	0.574077867	0.00075040
Simulado 10	0.82648884	1.970147089	0.678108204	0.00587322
Simulado 11	0.96633453	1.652341915	0.502193624	0.00985605
Simulado 12	0.85742901	1.899253675	0.641461006	0.00159918
Simulado 13	0.90328422	1.525560640	0.422361975	0.03208015
Simulado 14	0.89741570	1.843982749	0.611927770	0.00010934
Simulado 15	0.90454200	1.882282020	0.632484881	0.00096184
Simulado 16	0.97784202	1.762827473	0.566919039	0.00119386
Simulado 17	0.94449969	2.095185529	0.739642107	0.01909118
Simulado 18	0.50922009	1.992897645	0.689589682	0.00776485
Simulado 19	0.90308806	1.764665163	0.567960963	0.00112294
Simulado 20	0.81633206	2.164986281	0.772414025	0.02922142
Simulado 21	0.92633482	2.088021221	0.736216833	0.01815636
Simulado 22	0.90917781	2.227437923	0.800852011	0.03975267
Simulado 23	0.70303308	2.246879576	0.809542398	0.04329359
Simulado 24	0.93607210	1.844664465	0.612297399	0.00011720
Simulado 25	0.86864856	2.374132882	0.864632269	0.06925370
Simulado 26	0.57267610	1.842877925	0.611328440	0.00009716
Simulado 27	0.91696528	1.764935564	0.568114182	0.00111270
Simulado 28	0.94747825	1.558705379	0.443855591	0.02484271
Simulado 29	0.71183871	1.477599177	0.390418593	0.04454324
Simulado 30	0.74842742	1.815892524	0.596577096	0.00002395
Simulado 31	0.87413924	1.660387960	0.507051286	0.00891514
Simulado 32	0.94499342	2.260935773	0.815778786	0.04592770
Simulado 33	0.98030802	1.971812162	0.678952999	0.00600342
Simulado 34	0.97092791	2.021582169	0.703880457	0.01048764
Simulado 35	0.80354533	1.625116179	0.485579308	0.01343095
Simulado 36	0.79285660	1.812013094	0.594438434	0.00004946
Simulado 37	0.82108236	1.873383443	0.627746124	0.00069037
Simulado 38	0.75001437	1.891894671	0.637578799	0.00130375
Simulado 39	0.63224980	1.643700941	0.496950371	0.01092462
Simulado 47	0.92181958	1.687172971	0.523054330	0.00614922
Simulado 48	0.93655939	1.721583703	0.543244625	0.00339034
Simulado 49	0.95145513	1.819457014	0.598538113	0.0000860
Simulado 50	0.82271430	1.648411004	0.499811796	0.01033465
	Suma		30.67503558	0.870460915
	Media de Q=Qm y media de	e S	0.601471286	0.017067861
	Desviación estándar de (Q		0.130644024

Tabla 6.13. Valor medio y desviación estándar de $Q=Ln(Z)$, edificio con muros	de concreto
---	-------------

Edificio	Índice daño D	Z= (Sa*MTpm)/Vypm	Q= Ln (Z)	S=[Ln(Z)-Qm)^2
Prop. Medias	0.65373223	1.954420752	0.670093859	0.00207626
Simulado 01	0.80521301	2.219178810	0.797137222	0.02979399
Simulado 02	0.71213195	2.017029915	0.701626090	0.00594414
Simulado 03	0.81972901	2.864197060	1.052288053	0.18297878
Simulado 04	0.87090335	1.874579933	0.628384599	0.00001487
Simulado 05	0.65150924	2.225561051	0.800009042	0.03079364
Simulado 06	0.67213296	2.132739593	0.757407347	0.01765696
Simulado 07	0.74768021	1.975383094	0.680762351	0.00316232
Simulado 08	0.77221541	1.641241394	0.495452903	0.01666035
Simulado 09	0.77551710	1.993754301	0.690019445	0.00428915
Simulado 10	0.58363592	1.594169635	0.466352996	0.02501929
Simulado 11	0.70792300	1.792282883	0.583490161	0.00168409
Simulado 12	0.65467791	2.317940438	0.840679049	0.04672133
Simulado 13	0.85006835	1.960520457	0.673209977	0.00236995
Simulado 14	0.78933467	1.843798155	0.611827659	0.00016130
Simulado 15	0.77866789	2.330811066	0.846216304	0.04914576
Simulado 16	0.70961645	2.163688437	0.771814375	0.02169332
Simulado 17	0.80930464	2.368175246	0.862119720	0.05644989
Simulado 18	0.77581118	1.984866323	0.685551568	0.00372389
Simulado 19	0.68751556	2.327502105	0.844795635	0.04851789
Simulado 20	0.64772349	1.564157560	0.447347379	0.03139293
Simulado 21	0.78650538	1.622175798	0.483768333	0.01981325
Simulado 22	0.76655571	1.703945011	0.532946158	0.00838721
Simulado 23	0.79470399	2.058447848	0.721952227	0.00949151
Simulado 24	0.65622351	1.644185680	0.497245234	0.01620087
Simulado 25	0.88038187	2.603216491	0.956747792	0.11037008
Simulado 26	0.73463571	1.595444947	0.467152661	0.02476696
Simulado 27	0.76299020	1.884275661	0.633543482	0.00008128
Simulado 28	0.79025171	1.687064049	0.522989769	0.01030999
Simulado 29	0.62739253	1.674175351	0.515320716	0.01192620
Simulado 30	0.77171809	1.861495917	0.621380421	0.00000991
Simulado 31	0.76753441	1.719666535	0.542130397	0.00678934
Simulado 32	0.67730018	1.695197738	0.527799394	0.00935640
Simulado 33	0.73571785	2.181788413	0.780144914	0.02421666
Simulado 34	0.72495312	1.535521537	0.428870087	0.03828197
Simulado 35	0.92477169	2.097443234	0.740719095	0.01350040
Simulado 36	0.68520883	1.898093701	0.640850067	0.00026641
Simulado 37	0.63519870	1.675139581	0.515896494	0.01180078
Simulado 38	0.67598193	1.796443852	0.585809073	0.00149915
Simulado 39	0.72121377	1.824276408	0.601183419	0.00054496
Simulado 47	0.63402851	1.862515062	0.621927758	0.0000676
Simulado 48	0.79305645	1.572085592	0.452403140	0.02962692
Simulado 49	0.66248541	1.592097136	0.465052101	0.02543252
Simulado 50	0.75366667	1.891939018	0.637602238	0.00017094
	Suma		31.850921273	1.12601680
	Media de Q=Qm y media de	S	0.624527868	0.02207876
	Desviación estándar de Q			0.148586596

Tabla 6.14. Valor medio y desviación estándar de Q=Ln(Z), edificio con muros de mampostería

$E[Q]_F$	$\sigma[Q]_{_F}$	Q = Ln(Z)	$Z = e^{Q}$	β
0.723474724	0.152885623	0.627627091	1.873160463	0.626923781
0.723474724	0.152885623	1.026975944	2.792608050	-1.985152136
0.723474724	0.152885623	0.797786104	2.220619263	-0.486058657
0.723474724	0.152885623	0.737710156	2.091141641	-0.093111650
0.723474724	0.152885623	0.919945861	2.509154544	-1.285085766
0.723474724	0.152885623	1.010805568	2.747813674	-1.879384335
0.723474724	0.152885623	0.889245145	2.433292174	-1.084277370
0.723474724	0.152885623	0.812109392	2.252654710	-0.579744952
0.723474724	0.152885623	0.612336965	1.844737453	0.726934009
0.723474724	0.152885623	0.776321598	2.173462674	-0.345662812
0.723474724	0.152885623	1.029008158	2.798288998	-1.998444518
0.723474724	0.152885623	0.462875960	1.588636276	1.704534145
0.723474724	0.152885623	0.983467281	2.673710696	-1.700569048
0.723474724	0.152885623	0.798396859	2.221975931	-0.490053503
0.723474724	0.152885623	0.856600274	2.355140235	-0.870752577
0.723474724	0.152885623	0.787260984	2.197369545	-0.417215555
0.723474724	0.152885623	0.636359176	1.889588681	0.569808634
0.723474724	0.152885623	0.713988598	2.042120233	0.062047207
0.723474724	0.152885623	0.725409238	2.065576239	-0.012653341
0.723474724	0.152885623	0.689591672	1.992901610	0.221623530
0.723474724	0.152885623	0.849762900	2.339092187	-0.826030425
0.723474724	0.152885623	0.942300621	2.565877746	-1.431304617
0.723474724	0.152885623	0.819924783	2.270329063	-0.630864152
0.723474724	0.152885623	0.936921958	2.552113802	-1.396123653
0.723474724	0.152885623	0.712540871	2.039165940	0.071516553
0.723474724	0.152885623	0.839438726	2.315067224	-0.758501681
0.723474724	0.152885623	0.528653942	1.696646985	1.274291062
0.723474724	0.152885623	0.670812162	1.955825122	0.344457256
0.723474724	0.152005025	0.073040140	1.903099473	1 192097092
0.723474724	0.152885623	0.542012870	1.720490427	0.755082574
0.723474724	0.152885623	0.657234706	1.000002940	0.133364601
0.723474724	0.152885623	0.037234790	2 161896769	-0 310763339
0.723474724	0.152885623	0.558336269	1 747762275	1 080143781
0.723474724	0.152885623	0.674426020	1 962905984	0.320819597
0 723474724	0 152885623	0 712262400	2 038598171	0.073337985
0.723474724	0.152885623	0.464548257	1.591295169	1.693595924
0.723474724	0.152885623	0.729405282	2.073846886	-0.038790814
0.723474724	0.152885623	0.597625372	1.817797079	0.823160149
0.723474724	0.152885623	0.470519479	1.600825572	1.654539130
0.723474724	0.152885623	0.682600690	1.979017857	0.267350412
0.723474724	0.152885623	0.744259731	2.104882678	-0.135951350
0.723474724	0.152885623	0.809924274	2.247737769	-0.565452455
0.723474724	0.152885623	0.804036251	2.234541923	-0.526939850
0.723474724	0.152885623	0.588594940	1.801455482	0.882226740
0.723474724	0.152885623	0.622349499	1.863300726	0.661443656
0.723474724	0.152885623	0.609392296	1.839313302	0.746194610

Tabla 6.15. Cálculo del índice β de confiabilidad de Cornell, estructura convencional

$E[Q]_F$ $\sigma[Q]_F$ $Q = Ln(Z)$ $Z = e^Q$ β 0.7744956560.137292220.7076867672.022916010.4866181710.7744956560.137292220.8376130432.310844501-0.4597302480.7744956560.137292220.7889689012.201125677-0.1054192650.7744956560.137292220.7889689012.20172505-2.8889811590.7744956560.137292220.8200882262.270700164-0.3320841480.7744956560.137292220.6995244592.012757301-0.037506200.7744956560.137292220.6995244592.012757301-1.7062543950.7744956560.137292220.7068096782.0275125120.4930066510.7744956560.137292220.7068096782.0275125120.4930066510.7744956560.137292220.7068096782.0275125120.4930066510.7744956560.137292220.7068096782.0275125120.4930066510.7744956560.137292220.706735252.0762810260.319827520.7744956560.137292220.8792798781.9724568100.6935263930.7744956560.137292220.6792798781.9724568100.6935263930.7744956560.137292220.8792798781.9724568100.6935263930.7744956560.137292220.867400202.406857029-0.7614752250.7744956560.137292220.8794708912.4265509600.8155978160.7744956560.137292220.823454311.8693101251.10615333<
0.774495656 0.13729222 0.707686767 2.029291601 0.486618171 0.774495656 0.13729222 0.837613043 2.310844501 -0.459730248 0.774495656 0.13729222 0.788968901 2.20115677 -0.105419265 0.774495656 0.13729222 0.16008226 2.27070164 -0.332084148 0.774495656 0.13729222 0.999524459 2.01279573801 -0.033750620 0.774495656 0.13729222 0.699524459 2.0127957331 0.546070249 0.774495656 0.13729222 0.056160413 1.73813324 1.623072615 0.774495656 0.13729222 0.706809678 2.027512512 0.493006651 0.774495656 0.13729222 0.706809678 2.027512512 0.49300651 0.774495656 0.13729222 0.70749733 2.057281026 0.31982152 0.774495656 0.13729222 0.70749783 2.07521026 0.31982752 0.774495656 0.13729222 0.70749783 1.97245610 6.033282583 0.774495656 0.13729222 0.625466962
0.774495656 0.13729222 0.837613043 2.310844501 -0.459730248 0.774495656 0.13729222 0.789968901 2.201125677 -0.105419265 0.774495656 0.13729222 0.82088226 2.207070164 -0.32084148 0.774495656 0.13729222 0.699524459 2.012795313 0.546070249 0.774495656 0.13729222 0.699524459 2.012795313 0.546070249 0.774495656 0.13729222 0.561660413 1.73613324 1.623072615 0.774495656 0.13729222 0.708609678 2.027512512 0.493006651 0.774495656 0.13729222 0.706809678 2.027612512 0.49300651 0.774495656 0.13729222 0.706809678 2.027612512 0.208789887 0.774495656 0.13729222 0.814144233 2.5274172 0.288789887 0.774495656 0.13729222 0.87929978 1.972456810 0.693526393 0.774495656 0.13729222 0.86775082 2.629451008 -1.400512175 0.774495656 0.13729222 0.86775082
0.774495656 0.13729222 0.789968901 2.201125677 -0.105419265 0.774495656 0.13729222 1.163384450 3.216791550 -2.868981159 0.774495656 0.13729222 0.820088226 2.27070164 -0.332064148 0.774495656 0.13729222 0.799129354 2.179573801 -0.033750620 0.774495656 0.13729222 0.099524459 2.012795131 0.546070249 0.774495656 0.13729222 0.551660413 1.73613334 1.623072615 0.774495656 0.13729222 0.706809678 2.02751212 0.493006651 0.774495656 0.13729222 0.706809678 2.076281026 0.319882152 0.774495656 0.13729222 0.70748563 2.076281026 0.319882152 0.774495656 0.13729222 0.87947833 2.257243172 -0.288789687 0.774495656 0.13729222 0.87940280 2.40857029 -0.761475225 0.774495656 0.13729222 0.862471728 2.629451008 1.400512175 0.774495656 0.13729222 0.862471728
0.774495656 0.1372922 1.168384450 3.216791550 -2.868981159 0.774495656 0.13729222 0.820088226 2.270700164 -0.332084148 0.774495656 0.13729222 0.79129354 2.107573801 -0.033750620 0.774495656 0.13729222 0.699524459 2.01275513 0.546070249 0.774495656 0.13729222 0.551660413 1.73613324 1.623072615 0.774495656 0.13729222 0.706809678 2.027512512 0.439006651 0.774495656 0.13729222 0.900743507 2.461432523 -0.319882152 0.774495656 0.1372922 0.706809678 2.027512512 0.439006651 0.774495656 0.1372922 0.700578325 2.06281026 0.319882152 0.774495656 0.1372922 0.679279878 1.972456810 0.693526393 0.774495656 0.1372922 0.862460962 1.869118562 1.086445348 0.774495656 0.1372922 0.862470291 2.42650960 -0.815597816 0.774495656 0.1372922 0.86470891
0.774495656 0.1372922 0.82008826 2.270700164 -0.332084148 0.774495656 0.13729222 0.779129354 2.179573801 -0.03370620 0.774495656 0.13729222 0.699524459 2.012795313 0.546070249 0.774495656 0.1372922 0.651660413 1.73613324 1.623072615 0.774495656 0.1372922 0.706809678 2.027512512 0.493006651 0.774495656 0.1372922 0.70730578325 2.076281026 0.319882152 0.774495656 0.1372922 0.80743307 2.461432523 -0.919555751 0.774495656 0.1372922 0.80743302 2.257243172 -0.288799687 0.774495656 0.1372922 0.679279878 1.869118652 1.085485348 0.774495656 0.1372922 0.625466962 1.869118652 1.085485348 0.774495656 0.1372922 0.963471728 2.620779331 -1.376451424 0.774495656 0.1372922 0.963471728 2.620779331 -1.376451424 0.774495656 0.1372922 0.782498675
0.7744956560.137292220.7791293542.179573801-0.0337506200.7744956560.137292220.6995244592.0127953130.5460702490.7744956560.137292220.5016604131.736133241.6230726150.7744956560.137292220.5516604131.736133241.6230726150.7744956560.137292220.900745072.461432523-0.9195557510.7744956560.137292220.800745072.461432523-0.9195557510.7744956560.137292220.8792798781.9724568100.6935263930.7744956560.137292220.6792798781.9724568100.6935263930.7744956560.137292220.879402802.408587029-0.7614752250.7744956560.137292220.9667750822.629451008-1.4005121750.7744956560.137292220.9667750822.629451008-1.4005121750.7744956560.137292220.864708912.426550960-0.8155978160.7744956560.137292220.6223545431.869354011.0939978380.7744956560.137292220.6223545431.8633101251.1081553830.7744956560.137292220.6223545431.8633101251.1081553830.7744956560.137292220.6223545431.8633101251.1081553830.7744956560.137292220.6223545431.8633101251.1081553830.7744956560.137292220.6223545431.8633101251.1081553830.7744956560.137292220.6223545431.8633101251.10815
0.774495656 0.13729222 0.699524459 2.012795313 0.546070249 0.774495656 0.13729222 1.008751111 2.742174203 -1.708254395 0.774495656 0.13729222 0.551660413 1.73613324 1.623072615 0.774495656 0.13729222 0.706809678 2.027512512 0.493006651 0.774495656 0.13729222 0.700578325 2.076281026 0.319882152 0.774495656 0.13729222 0.730578325 2.076281026 0.319882152 0.774495656 0.13729222 0.679279878 1.972456810 0.693526393 0.774495656 0.13729222 0.625466962 1.869118562 1.085485348 0.774495656 0.13729222 0.625466962 1.869118562 1.085485348 0.774495656 0.13729222 0.963771782 2.629451008 1.400512175 0.774495656 0.13729222 0.963471728 2.60274931 1.376451424 0.774495656 0.13729222 0.88470891 2.426550960 -0.815597816 0.774495656 0.13729222 0.622354543
0.7744956560.137292221.0087511112.742174203-1.7062543950.7744956560.137292220.5516604131.7361333241.6230726150.7744956560.137292220.7068096782.0275125120.4930066510.7744956560.137292220.9007435072.461432523-0.919557510.7744956560.137292220.7305783252.0762810260.3198821520.7744956560.137292220.8141442332.257243172-0.2887896870.7744956560.137292220.6792788781.9724568100.6935263930.7744956560.137292220.8790402802.408587029-0.7614752250.7744956560.137292220.9667750822.629451008-1.4005121750.7744956560.137292220.9664717282.620779331-1.3764514240.7744956560.137292220.824408912.426550960-0.815578160.7744956560.137292220.6224982641.8669350111.0939978380.7744956560.137292220.6223545431.8663301251.1081553830.7744956560.137292220.6223545431.8633101251.1081553830.7744956560.137292220.8217098002.274385258-0.3438952580.7744956560.137292220.856066881.7640400611.5069243370.7744956560.137292220.856066881.7640400611.5069243370.7744956560.137292220.8580864982.358643104-0.6088534460.7744956560.137292220.6181515901.855491541.13
0.7744956560.137292220.5516604131.7361333241.6230726150.7744956560.137292220.7068096782.0275125120.4430066510.7744956560.137292220.9007435072.461432523-0.919557510.7744956560.137292220.7305783252.0762810260.3198821520.7744956560.137292220.8141442332.257243172-0.2887896870.7744956560.137292220.625469621.8691185621.0854853480.7744956560.137292220.625469621.8691185621.0854853480.7744956560.137292220.9667750822.629451008-1.4005121750.7744956560.137292220.9667750822.629451008-1.4005121750.7744956560.137292220.9664717282.620779331-1.3764514240.7744956560.137292220.8864708912.4265509600.8155978160.7744956560.137292220.8242982641.869354011.0939978380.7744956560.137292220.6223545431.8633101251.1081553830.7744956560.137292220.6223545431.8633101251.1081553830.7744956560.137292220.6223545431.8633101251.1081553830.7744956560.137292220.6223545431.8633101251.1081553830.7744956560.137292220.6223545431.8633101251.1081553830.7744956560.137292220.6223545431.8633101251.1081553830.7744956560.137292220.6767666681.7640400611.5069
0.7744956560.137292220.7068096782.0275125120.4930066510.7744956560.137292220.9007435072.4614325230.9195557510.7744956560.137292220.7305783252.0762810260.3198821520.7744956560.137292220.8141442332.2572431720.2287896870.7744956560.137292220.6792798781.9724568100.6935263930.7744956560.137292220.6254669621.8691185621.0854853480.7744956560.137292220.867750822.629451008-1.4005121750.7744956560.137292220.9667750822.620779331-1.3764514240.7744956560.137292220.864708912.4265509600.8155978160.7744956560.137292220.864708912.4265509600.8155978160.7744956560.137292220.8223545431.869354011.093978380.7744956560.137292220.8223545431.8633101251.1081553830.7744956560.137292220.8223545431.8633101251.1081553830.7744956560.137292220.8217098002.274385258-0.3438952580.7744956560.137292220.8676606681.760400611.5069243370.7744956560.137292220.5676066681.760400611.5069243370.7744956560.137292220.5676066681.760400611.5069243370.7744956560.137292220.5676066681.760400611.5069243370.7744956560.137292220.5676066681.760400611.506924337
0.7744956560.137292220.9007435072.461432523-0.9195557510.7744956560.137292220.7305783252.0762810260.3198821520.7744956560.137292220.8141442332.257243172-0.2887896870.7744956560.137292220.6792798781.9724568100.6935263930.7744956560.137292220.6254669621.8691185621.0854853480.7744956560.137292220.86790402802.408587029-0.7614752250.7744956560.137292220.9667750822.629451008-1.4005121750.7744956560.137292220.9634717282.620779331-1.3764514240.7744956560.137292220.9634717282.0688869070.3458675200.7744956560.137292220.864708912.426550960-0.8155978160.7744956560.137292220.6224982641.869354011.993978380.7744956560.137292220.6224982641.869354011.993978380.7744956560.137292220.6223545431.8633101251.1081553830.7744956560.13729220.8217098002.274385258-0.3438952580.7744956560.13729220.8670166681.7640400611.5069243370.7744956560.13729220.858064982.358643104-0.6088534460.7744956560.13729220.8580664982.358643104-0.6088534460.7744956560.13729220.6181515901.8554951541.1387685760.7744956560.13729220.6856550591.8550707000.5579745
0.7744956560.137292220.7305783252.0762810260.3198821520.7744956560.137292220.8141442332.257243172-0.2887896870.7744956560.137292220.6792798781.9724568100.6935263930.7744956560.137292220.6254669621.8691185621.0854853480.7744956560.137292220.8790402802.408587029-0.7614752250.7744956560.137292220.9667750822.629451008-1.4005121750.7744956560.137292220.9634717282.620779331-1.3764514240.7744956560.137292220.7270107362.0688869070.3458675200.7744956560.137292220.6242982641.8669354011.0939978380.7744956560.137292220.6223545431.8633101251.1081553830.7744956560.137292220.8217098002.274385258-0.436644680.7744956560.137292220.8221098002.274385258-0.3438952880.7744956560.137292220.8217098002.274385258-0.3438952880.7744956560.137292220.867606681.7640400611.5069243370.7744956560.137292220.567606681.7640400611.5069243370.7744956560.137292220.68768064982.358643104-0.6088534460.7744956560.137292220.68768064982.358643104-0.6088534660.7744956560.137292220.68768064982.358643104-0.6088534660.7744956560.137292220.6978894182.009507000<
0.7744956560.137292220.8141442332.257243172-0.2887896870.7744956560.137292220.6792798781.9724568100.6935263930.7744956560.137292220.6254669621.8691185621.0854853480.7744956560.137292220.8790402802.408587029-0.7614752250.7744956560.137292220.9667750822.629451008-1.4005121750.7744956560.137292220.963717282.620779331-1.3764514240.7744956560.137292220.7270107362.0688869070.3458675200.7744956560.137292220.8864708912.426550960-0.8155978160.7744956560.137292220.6242982641.8669354011.0939978380.7744956560.137292220.6223545431.8633101251.1081553830.7744956560.137292220.8217098002.27438528-0.3438952580.7744956560.137292220.822704551.9996077870.5939491750.7744956560.137292220.8570666681.7640400611.5069243370.7744956560.137292220.8580864982.358643104-0.6088534460.7744956560.137292220.6181515901.8554951541.1387685760.7744956560.137292220.6181515901.8554951541.1387685760.7744956560.137292220.687894182.0095070000.557794510.7744956560.137292220.685650591.9850717490.647091700.7744956560.137292220.685650591.9850717490.647091
0.7744956560.137292220.6792798781.9724568100.6935263930.7744956560.137292220.6254669621.8691185621.0854853480.7744956560.137292220.8790402802.408587029-0.7614752250.7744956560.137292220.9667750822.629451008-1.4005121750.7744956560.137292220.9634717282.620779331-1.3764514240.7744956560.137292220.7270107362.0688869070.3458675200.7744956560.137292220.8242982641.8669354011.0939978380.7744956560.137292220.6223545431.8633101251.1081553830.7744956560.137292220.6223545431.8633101251.1081553830.7744956560.137292220.8217098002.274385258-0.3438952580.7744956560.137292220.8217098002.274385258-0.5939491750.7744956560.137292220.8676066881.7640400611.5069243370.7744956560.137292220.6678066681.7640400611.5069243370.7744956560.137292220.6181515901.8554951541.1387685760.7744956560.137292220.6978894182.0095070000.5579794510.7744956560.137292220.6978894182.0095070000.5579794510.7744956560.137292220.6978894182.0095070000.5579794510.7744956560.137292220.6978894182.0095070000.5579794510.7744956560.137292220.6978894182.0095070000.
0.7744956560.137292220.6254669621.8691185621.0854853480.7744956560.137292220.8790402802.408587029-0.7614752250.7744956560.137292220.9667750822.629451008-1.4005121750.7744956560.137292220.9634717282.620779331-1.3764514240.7744956560.137292220.7270107362.0688869070.3458675200.7744956560.137292220.8864708912.426550960-0.8155978160.7744956560.137292220.6242982641.8669354011.0939978380.7744956560.137292220.6223545431.8633101251.1081553830.7744956560.137292220.8217098002.274385258-0.3438952580.7744956560.137292220.8217098002.274385258-0.5939491750.7744956560.137292220.8471282742.332937666-0.59203666550.7744956560.137292220.8471282742.332937666-0.59203666550.7744956560.137292220.8676066881.7640400611.5069243370.7744956560.137292220.6181515901.8554951541.1387685760.7744956560.137292220.6181515901.8554951541.1387685760.7744956560.137292220.6978894182.0095070000.579794510.7744956560.137292220.6978894182.0095070000.579794510.7744956560.137292220.6978594182.00950710790.6470912700.7744956560.137292220.6978894182.009507100 <t< td=""></t<>
0.7744956560.137292220.8790402802.408587029-0.7614752250.7744956560.137292220.9667750822.629451008-1.4005121750.7744956560.137292220.9634717282.620779331-1.3764514240.7744956560.137292220.7270107362.0688869070.3458675200.7744956560.137292220.8864708912.426550960-0.8155978160.7744956560.137292220.6242982641.8669354011.0939978380.7744956560.137292220.6223545431.8633101251.1081553830.7744956560.137292220.6223545431.8633101251.1081553830.7744956560.137292220.6223545431.8633101251.1081553830.7744956560.137292220.6929510551.9996077870.5939491750.7744956560.137292220.5676066681.7640400611.5069243370.7744956560.137292220.6876066681.7640400611.5069243370.7744956560.137292220.6181515901.8554951541.1387685760.7744956560.137292220.66778894182.095070000.5579794510.7744956560.137292220.6978894182.095077000.5579794510.7744956560.137292220.6978894182.095077000.5579794510.7744956560.137292220.6856550591.9850717490.6470912700.7744956560.137292220.6978894182.095077000.5579794510.7744956560.137292220.6978894182.095077000.55797
0.7744956560.137292220.9667750822.629451008-1.4005121750.7744956560.137292220.9634717282.620779331-1.3764514240.7744956560.137292220.7270107362.0688869070.3458675200.7744956560.137292220.8864708912.426550960-0.8155978160.7744956560.137292220.6242982641.8669354011.0939978380.7744956560.137292220.6223545431.8633101251.1081553830.7744956560.137292220.6223545431.8633101251.1081553830.7744956560.137292220.8217098002.274385258-0.3438952580.7744956560.137292220.8471282742.332937666-0.5290366650.7744956560.137292220.5676066881.7640400611.5069243370.7744956560.137292220.6181515901.8554951541.1387685760.7744956560.137292220.6978894182.0095070000.5579794510.7744956560.137292220.6978894182.00950717490.6407912700.7744956560.137292220.6978894182.00950717490.6470912700.7744956560.137292220.6978894182.00950717490.6470912700.7744956560.137292220.6978894182.00950717490.6470912700.7744956560.137292220.6978894182.00950717490.6470912700.7744956560.137292220.6978894182.00950717490.6470912700.7744956560.137292220.6978894182.0095071749
0.7744956560.137292220.9634717282.620779331-1.3764514240.7744956560.137292220.7270107362.0688869070.3458675200.7744956560.137292220.8864708912.426550960-0.8155978160.7744956560.137292220.6242982641.8669354011.0939978380.7744956560.137292220.7804904482.182542426-0.0436644680.7744956560.137292220.6223545431.8633101251.1081553830.7744956560.137292220.8217098002.274385258-0.3438952580.7744956560.137292220.6929510551.9996077870.5939491750.7744956560.137292220.8471282742.332937666-0.5290366650.7744956560.137292220.6676066681.7640400611.5069243370.7744956560.137292220.6181515901.8554951541.1387685760.7744956560.137292220.6978894182.0095070000.5579794510.7744956560.137292220.6876505991.9850717490.647091270
0.7744956560.137292220.7270107362.0688869070.3458675200.7744956560.137292220.8864708912.426550960-0.8155978160.7744956560.137292220.6242982641.8669354011.0939978380.7744956560.137292220.7804904482.182542426-0.0436644680.7744956560.137292220.6223545431.8633101251.1081553830.7744956560.137292220.8217098002.274385258-0.3438952580.7744956560.137292220.6929510551.9996077870.5939491750.7744956560.137292220.8471282742.332937666-0.5290366650.7744956560.137292220.5676066681.7640400611.5069243370.7744956560.137292220.6181515901.8554951541.1387685760.7744956560.137292220.6978894182.0095070000.5579794510.7744956560.137292220.6856550591.9850717490.647091270
0.7744956560.137292220.8864708912.426550960-0.8155978160.7744956560.137292220.6242982641.869354011.0939978380.7744956560.137292220.7804904482.182542426-0.0436644680.7744956560.137292220.6223545431.8633101251.1081553830.7744956560.137292220.8217098002.274385258-0.3438952580.7744956560.137292220.6929510551.9996077870.5939491750.7744956560.137292220.8471282742.332937666-0.5290366650.7744956560.137292220.5676066681.7640400611.5069243370.7744956560.137292220.6181515901.8554951541.1387685760.7744956560.137292220.6978894182.0095070000.5579794510.7744956560.137292220.685650591.9850717490.647091270
0.7744956560.137292220.6242982641.8669354011.0939978380.7744956560.137292220.7804904482.182542426-0.0436644680.7744956560.137292220.6223545431.8633101251.1081553830.7744956560.137292220.8217098002.274385258-0.3438952580.7744956560.137292220.6929510551.9996077870.5939491750.7744956560.137292220.8471282742.332937666-0.5290366650.7744956560.137292220.85676066681.7640400611.5069243370.7744956560.137292220.6181515901.8554951541.1387685760.7744956560.137292220.6181515901.8554951541.1387685760.7744956560.137292220.6978894182.0095070000.5579794510.7744956560.137292220.685655591.9850717490.647091270
0.7744956560.137292220.7804904482.182542426-0.0436644680.7744956560.137292220.6223545431.8633101251.1081553830.7744956560.137292220.8217098002.274385258-0.3438952580.7744956560.137292220.6929510551.9996077870.5939491750.7744956560.137292220.8471282742.332937666-0.5290366650.7744956560.137292220.5676066681.7640400611.5069243370.7744956560.137292220.6181515901.8554951541.1387685760.7744956560.137292220.6181515901.8554951541.1387685760.7744956560.137292220.6978894182.0095070000.5579794510.7744956560.137292220.6856550591.9850717490.647091270
0.7744956560.137292220.6223545431.8633101251.1081553830.7744956560.137292220.8217098002.274385258-0.3438952580.7744956560.137292220.6929510551.9996077870.5939491750.7744956560.137292220.8471282742.332937666-0.5290366650.7744956560.137292220.5676066681.7640400611.5069243370.7744956560.137292220.8580864982.358643104-0.6088534460.7744956560.137292220.6181515901.8554951541.1387685760.7744956560.137292220.6978894182.0095070000.5579794510.7744956560.137292220.6856550591.9850717490.647091270
0.7744956560.137292220.8217098002.274385258-0.3438952580.7744956560.137292220.6929510551.9996077870.5939491750.7744956560.137292220.8471282742.332937666-0.5290366650.7744956560.137292220.5676066681.7640400611.5069243370.7744956560.137292220.6181515901.8554951541.1387685760.7744956560.137292220.6978894182.0095070000.5579794510.7744956560.137292220.685650591.9850717490.647091270
0.7744956560.137292220.6929510551.9996077870.5939491750.7744956560.137292220.8471282742.332937666-0.5290366650.7744956560.137292220.5676066681.7640400611.5069243370.7744956560.137292220.8580864982.358643104-0.6088534460.7744956560.137292220.6181515901.8554951541.1387685760.7744956560.137292220.6978894182.0095070000.5579794510.7744956560.137292220.6856550591.9850717490.647091270
0.774495656 0.13729222 0.847128274 2.332937666 -0.529036665 0.774495656 0.13729222 0.567606668 1.764040061 1.506924337 0.774495656 0.13729222 0.858086498 2.358643104 -0.608853446 0.774495656 0.13729222 0.618151590 1.855495154 1.138768576 0.774495656 0.13729222 0.697889418 2.009507000 0.557979451 0.774495656 0.13729222 0.685655059 1.985071749 0.647091270
0.774495656 0.13729222 0.567606668 1.764040061 1.506924337 0.774495656 0.13729222 0.858086498 2.358643104 -0.608853446 0.774495656 0.13729222 0.618151590 1.855495154 1.138768576 0.774495656 0.13729222 0.697889418 2.009507000 0.557979451 0.774495656 0.13729222 0.685655059 1.985071749 0.647091270
0.774495656 0.13729222 0.858086498 2.358643104 -0.608853446 0.774495656 0.13729222 0.618151590 1.855495154 1.138768576 0.774495656 0.13729222 0.697889418 2.009507000 0.557979451 0.774495656 0.13729222 0.68565059 1.985071749 0.647091270
0.774495656 0.13729222 0.618151590 1.855495154 1.138768576 0.774495656 0.13729222 0.697889418 2.009507000 0.557979451 0.774495656 0.13729222 0.685655059 1.985071749 0.647091270
0.774495656 0.13729222 0.697889418 2.009507000 0.557979451 0.774495656 0.13729222 0.685655059 1.985071749 0.647091270
0.774495656 0.13729222 0.685655059 1.985071749 0.647091270
0.774495656 0.13729222 0.765859182 2.150841545 0.062905781
0.774495656 0.13729222 0.979983657 2.664412697 -1.496719918
0.774495656 0.13729222 1.015951117 2.761989124 -1.758697328
0.774495656 0.13729222 0.647492472 1.910743574 0.925057397
0.774495656 0.13729222 0.806142427 2.239253221 -0.230506656
0.774495656 0.13729222 0.857585080 2.357460735 -0.605201253
0.774495656 0.13729222 0.469721141 1.599548083 2.219896466
0.774495656 0.13729222 0.867329709 2.380545610 -0.676178540
0.774495656 0.13729222 0.908602782 2.480853816 -0.976800618
0.774495656 0.13729222 0.661187688 1.937091629 0.825305087 0.774495650 0.42769292 0.667769292 0.6677769292 0.577769292
U.1774495656 U.13729222 U.697798260 2.009323824 0.558643426 0.774495656 0.40700000 0.0075656777 0.001010010 0.07558643426
0.774495050 0.13729222 0.867525877 2.381012642 -0.677607375
U.1/14495050 U.13/29222 U.1/19946354 2.054323001 0.397322603 0.774405050 0.40700000 0.40700000 0.40700000 0.40700000
0.774495050 U.13729222 U.497938656 1.64532619U 2.014367596
0.1744550000 U.13729222 U.750254498 Z.117538857 U.176506146

Tabla 6.16. Cálculo del índice β de confiabilidad de Cornell, estructura con disipadores de energía

$E[Q]_F$	$\sigma[Q]_{_F}$	Q = Ln(Z)	$Z = e^{Q}$	β
0.601471286	0.130644024	0.271995111	1.312580584	2.52193835
0.601471286	0.130644024	0.645434017	1.906814441	-0.33650779
0.601471286	0.130644024	0.722735007	2.060059790	-0.92819952
0.601471286	0.130644024	0.396711085	1.486926272	1.56731395
0.601471286	0.130644024	0.514452530	1.672722486	0.66607529
0.601471286	0.130644024	0.616289747	1.852043728	-0.11342625
0.601471286	0.130644024	0.738166488	2.092096112	-1.04631806
0.601471286	0.130644024	0.447983711	1.565153200	1.17485339
0.601471286	0.130644024	0.547070618	1.728183088	0.41640380
0.601471286	0.130644024	0.574077867	1.775492532	0.20967985
0.601471286	0.130644024	0.678108204	1.970147089	-0.58660868
0.601471286	0.130644024	0.502193624	1.652341915	0.75990970
0.601471286	0.130644024	0.641461006	1.899253675	-0.30609682
0.601471286	0.130644024	0.422361975	1.525560640	1.37097209
0.601471286	0.130644024	0.611927770	1.843982749	-0.08003798
0.601471286	0.130644024	0.632484881	1.882282020	-0.23739008
0.601471286	0.130644024	0.566919039	1.762827473	0.26447629
0.601471286	0.130644024	0.739642107	2.095185529	-1.05761302
0.601471286	0.130644024	0.689589682	1.992897645	-0.67449236
0.601471286	0.130644024	0.567960963	1.764665163	0.25650100
0.601471286	0.130644024	0.772414025	2.164986281	-1.30846198
0.601471286	0.130644024	0.736216833	2.088021221	-1.03139465
0.601471286	0.130644024	0.800852011	2.227437923	-1.52613735
0.601471286	0.130644024	0.809542398	2.246879576	-1.59265694
0.601471286	0.130644024	0.612297399	1.844664465	-0.08286727
0.601471286	0.130644024	0.864632269	2.374132882	-2.01433616
0.601471286	0.130644024	0.611328440	1.842877925	-0.07545047
0.601471286	0.130644024	0.568114182	1.764935564	0.25532820
0.601471286	0.130644024	0.443855591	1.558705379	1.20645162
0.601471286	0.130644024	0.390418593	1.477599177	1.61547912
0.601471286	0.130644024	0.596577096	1.815892524	0.03746203
0.601471286	0.130644024	0.507051286	1.660387960	0.72272728
0.601471286	0.130644024	0.815778786	2.260935773	-1.64039267
0.601471286	0.130644024	0.678952999	1.971812162	-0.59307507
0.601471286	0.130644024	0.703880457	2.021582169	-0.78387949
0.601471286	0.130644024	0.485579308	1.625116179	0.88708212
0.601471286	0.130644024	0.594438434	1.812013094	0.05383218
0.601471286	0.130644024	0.627746124	1.873383443	-0.20111779
0.601471286	0.130644024	0.637578799	1.891894671	-0.27638090
0.601471286	0.130644024	0.496950371	1.643700941	0.80004360
0.601471286	0.130644024	0.713723131	2.041578190	-0.85921913
0.601471286	0.130644024	0.470039777	1.600057837	1.00602772
0.601471286	0.130644024	0.523054330	1.687172971	0.60023378
0.601471286	0.130644024	0.543244625	1.721583703	0.44568943
0.601471286	0.130644024	0.598538113	1.819457014	0.02245164
0.601471286	0.130644024	0.499811796	1.648411004	0.77814114

Tabla 6.17. Cálculo del índice β de confiabilidad de Cornell, estructura con muros de concreto
reforzado

$E[Q]_F$	$\sigma[Q]_{\scriptscriptstyle F}$	Q = Ln(Z)	$Z = e^{Q}$	β
0.624527868	0.148589235	0.670093859	1.954420752	-0.306657415
0.624527868	0.148589235	0.797137222	2.219178810	-1.161654502
0.624527868	0.148589235	0.701626090	2.017029915	-0.518868153
0.624527868	0.148589235	1.052288053	2.864197060	-2.878810053
0.624527868	0.148589235	0.628384599	1.874579933	-0.025955653
0.624527868	0.148589235	0.800009042	2.225561051	-1.180981739
0.624527868	0.148589235	0.757407347	2.132739593	-0.894273928
0.624527868	0.148589235	0.680762351	1.975383094	-0.378455968
0.624527868	0.148589235	0.495452903	1.641241394	0.868669690
0.624527868	0.148589235	0.690019445	1.993754301	-0.440755864
0.624527868	0.148589235	0.466352996	1.594169635	1.064510979
0.624527868	0.148589235	0.583490161	1.792282883	0.276182236
0.624527868	0.148589235	0.840679049	2.317940438	-1.454689369
0.624527868	0.148589235	0.673209977	1.960520457	-0.327628774
0.624527868	0.148589235	0.611827659	1.843798155	0.085471933
0.624527868	0.148589235	0.846216304	2.330811066	-1.491954887
0.624527868	0.148589235	0.771814375	2.163688437	-0.991232687
0.624527868	0.148589235	0.862119720	2.368175246	-1.598984283
0.624527868	0.148589235	0.685551568	1.984866323	-0.410687220
0.624527868	0.148589235	0.844795635	2.327502105	-1.482393836
0.624527868	0.148589235	0.447347379	1.564157560	1.192418071
0.624527868	0.148589235	0.483768333	1.622175798	0.947306407
0.624527868	0.148589235	0.532946158	1.703945011	0.616341489
0.624527868	0.148589235	0.721952227	2.058447848	-0.655662293
0.624527868	0.148589235	0.497245234	1.644185680	0.856607369
0.624527868	0.148589235	0.956747792	2.603216491	-2.235827674
0.624527868	0.148589235	0.467152661	1.595444947	1.059129264
0.624527868	0.148589235	0.633543482	1.884275661	-0.060674746
0.624527868	0.148589235	0.522989769	1.687064049	0.683347610
0.624527868	0.148589235	0.515320716	1.674175351	0.734960051
0.624527868	0.148589235	0.621380421	1.861495917	0.021182202
0.624527868	0.148589235	0.542130397	1.719666535	0.554531899
0.624527868	0.148589235	0.527799394	1.695197738	0.650979018
0.624527868	0.148589235	0.780144914	2.181788413	-1.047296899
0.624527868	0.148589235	0.428870087	1.535521537	1.316769557
0.624527868	0.148589235	0.740719095	2.097443234	-0.781962616
0.624527868	0.148589235	0.640850067	1.898093701	-0.109847789
0.624527868	0.148589235	0.515896494	1.675139581	0.731085088
0.624527868	0.148589235	0.585809073	1.796443852	0.260576043
0.624527868	0.148589235	0.601183419	1.824276408	0.157107267
0.624527868	0.148589235	0.475007557	1.608026349	1.006266104
0.624527868	0.148589235	0.650476020	1.916452882	-0.174630092
0.624527868	0.148589235	0.433561932	1.542742894	1.285193609
0.624527868	0.148589235	0.621927758	1.862515062	0.017498642
0.624527868	0.148589235	0.452403140	1.572085592	1.158392985
0.624527868	0.148589235	0.465052101	1.592097136	1.073265954
0 624527868	0 148589235	0 637602238	1 891939018	-0 087990023

Tabla 6.18. Cálculo del índice β de confiabilidad de Cornell, estructura con muros de mampostería

Figura 6.1a. Respuestas de las estructuras convencionales, cercano al colapso

Figura 6.1b. Respuestas de las estructuras con disipadores de energía, cercano al colapso

Figura 6.2a. Gráfica de dispersión acción-respuesta para el grupo de edificios convencional

Figura 6.2b. Gráfica de dispersión acción-respuesta para el grupo de edificios con disipadores de energía

Figura 6.2c. Gráfica de dispersión acción-respuesta para el grupo de edificios con muros de concreto

Figura 6.2d. Gráfica de dispersión acción-respuesta para el grupo de edificios con muros de mampostería

Curva de confiabilidad del sistema convencional con más de 51 puntos

Figura 6.3. Curva de confiabilidad del sistema convencional

Curva de confiabilidad del sistema con disipadores de energía con más de 51 puntos

Figura 6.4. Curva de confiabilidad del sistema con disipadores de energía

Figura 6.5. Curva de confiabilidad del sistema con muros de concreto reforzado

Curva de confiabilidad del sistema marcos-muros de mampostería con

CAPÍTULO 7

COSTOS DE LOS SISTEMAS EN ESTUDIO

Se calculan los costos iniciales de los diferentes sistemas que se estudian, ya que éstos también serán parámetros importantes a considerar en la comparación de las diferentes estructuraciones. Se determinan sólo los costos directos de los materiales, tomando los precios actuales aproximados en el mercado. No se hace un análisis detallado para calcular los costos totales, pues el objetivo principal de esta tesis no es el análisis detallado de costos de diferentes estructuraciones, por tanto, queda fuera del alcance para un análisis completo en donde se debieran considerar las cimentaciones, losas, acabados, costos indirectos, etc.

Los sistemas que se analizan en esta parte de la tesis son marcos tridimensionales compuestos de vigas, columnas, y en el caso donde se incorporan los muros de concreto, muros de mampostería o disipadores de energía, éstos se cuantifican; es decir, se calculan los costos de los sistemas como son tomados para el modelado elástico convencional tridimensional, pero en el análisis de costos no se consideran las cimentaciones.

Para la determinación del número de dispositivos disipadores de energía (número de placas) que se requieren en cada entrepiso del sistema estructural con este elemento, se proponen las medidas de este disipador; las variables relacionadas con las dimensiones de éste, son las que se muestran en la Tabla 7.1., y éstas al mismo tiempo se refieren a las mostradas en la Figura que representa al disipador idealizado, como se presentó en la sección 3.2.4. La rigidez y fuerza cortante de este disipador se determinan con las ecuaciones también planteadas en los capítulos correspondientes.

Los costos así calculados, dan una idea sobre la estructuración más costosa, debido a que las cimentaciones, acabados, etc., se considera que son las mismas para tres de los modelos, excepto para el caso del edificio con muros de mampostería y marcos de concreto reforzado que varía completamente su cimentación.

Al llevar a cabo el análisis de costos como se ha descrito, se obtienen las cantidades mostradas en las Tablas 7.2 a 7.5, y en la Tabla 7.6 se presentan los costos totales por entrepiso de los cuatro sistemas.

Espesor de la placa (<i>t</i>)	5.00 cm.
Ancho en los extremos de la placa (b ₁)	34.36 cm.
Ancho de garganta de la placa (b ₂)	6.08 cm.
Altura de la placa (<i>h</i>)	50.80 cm.
Ancho equivalente de b ₁ (b _{1eq})	25.40 cm.

Tabla 7.1. Dimensiones del disipador de energía ADAS

Tabla 7.2a. (Costo de las	columnas para	el sistema	convencional
---------------	--------------	---------------	------------	--------------

Nivel	#	Long.	Col.	Vol.	Precio del	Costo de	Área	Vol.	Peso	Varilla	Precio	Costo	Costo
	Cols.	cols.	cuadrada		conc.	conc.	varillas	varillas	varilla	cols.	Varilla	varilla	columnas
		(m)	(m*m)	(m3)	(\$/m3)	(\$)	(m2)	(m3)	(ton/m3)	(ton)	(\$/ton)	(\$)	(\$)
13	16	3	0.65	20.28	1661	33685.1	0.078	0.247	7.85	1.941	8560	16612	50296.7
12	16	3	0.65	20.28	1661	33685.1	0.087	0.275	7.85	2.155	8560	18449	52134.0
11	16	3	0.75	27.00	1661	44847.0	0.104	0.327	7.85	2.567	8560	21971	66818.1
10	16	3	0.75	27.00	1661	44847.0	0.125	0.393	7.85	3.083	8560	26391	71237.7
9	16	3	0.85	34.68	1661	57603.5	0.124	0.390	7.85	3.062	8560	26213	83816.4
8	16	3	0.85	34.68	1661	57603.5	0.150	0.472	7.85	3.705	8560	31716	89319.7
7	16	3	0.85	34.68	1661	57603.5	0.154	0.485	7.85	3.807	8560	32588	90191.8
6	16	3	0.95	43.32	1661	71954.5	0.148	0.465	7.85	3.652	8560	31259	103213.6
5	16	3	0.95	43.32	1661	71954.5	0.151	0.477	7.85	3.745	8560	32055	104009.4
4	16	3	0.95	43.32	1661	71954.5	0.154	0.484	7.85	3.797	8560	32504	104458.2
3	16	3	1.05	52.92	1661	87900.1	0.177	0.558	7.85	4.381	8560	37499	125399.1
2	16	3	1.05	52.92	1661	87900.1	0.201	0.632	7.85	4.964	8560	42494	130394.5
1	16	3.5	1.05	61.74	1661	102550.1	0.420	1.543	7.85	12.111	8560	103668	206217.8

Tabla 7.2b. Costo de las vigas para el sistema convencional

Zona	Long.	Base	Altura	Vol.	#	Vol.	Precio	Costo	Área	Vol.	Peso	Varilla	Precio	Costo	Costo
rígida	vigas			1	Vigas	vigas	conc.	conc.	varilla	varila	varilla	vigas	varilla	varilla	vigas
vigas				viga				vigas						vigas	
(m)	(m)	(m)	(m)	(m3)		(m3)	(\$/m3)	(\$)	(m2)	(m3)	(ton/m3)	(ton)	(\$/ton)	(\$)	(\$)
0.325	7	0.33	0.66	1.45	24	34.89	1661	57955	0.035	0.24	7.85	1.90	8560	16258	74212.42
0.325	7	0.33	0.66	1.45	24	34.89	1661	57955	0.049	0.34	7.85	2.68	8560	22964	80918.89
0.375	7	0.33	0.66	1.44	24	34.63	1661	57521	0.065	0.45	7.85	3.53	8560	30196	87716.88
0.375	7	0.39	0.80	2.07	24	49.61	1661	82399	0.093	0.65	7.85	5.10	8560	43621	126019.66
0.425	7	0.39	0.80	2.05	24	49.23	1661	81777	0.106	0.73	7.85	5.72	8560	48988	130765.31
0.425	7	0.39	0.80	2.05	24	49.23	1661	81777	0.113	0.78	7.85	6.14	8560	52533	134309.54
0.425	7	0.43	0.89	2.52	24	60.39	1661	100308	0.137	0.95	7.85	7.42	8560	63518	163825.68
0.475	7	0.43	0.89	2.50	24	59.93	1661	99545	0.144	0.99	7.85	7.77	8560	66497	166041.89
0.475	7	0.43	0.89	2.50	24	59.93	1661	99545	0.154	1.06	7.85	8.31	8560	71101	170645.65
0.475	7	0.43	0.89	2.50	24	59.93	1661	99545	0.163	1.11	7.85	8.75	8560	74894	174439.16
0.525	7	0.43	0.89	2.48	24	59.47	1661	98782	0.165	1.12	7.85	8.80	8560	75325	174107.53
0.525	7	0.43	0.89	2.48	24	59.47	1661	98782	0.150	1.02	7.85	7.99	8560	68399	167181.70
0.525	7	0.43	0.89	2.48	24	59.47	1661	98782	0.126	0.86	7.85	6.74	8560	57709	156491.44
										Cos	sto de los	marcos (convend	ional) \$	3084182.66

Nivel	# Cols.	Long. cols.	Col. cuadrada	Vol.	Precio del conc.	Costo de conc. cols.	Área varillas	Vol. varillas	Peso varilla	Varilla cols.	Precio Varilla	Costo varilla cols.	Costo columnas
		(m)	(m*m)	(m3)	(\$/m3)	(\$)	(m2)	(m3)	(ton/m3)	(ton)	(\$/ton)	(\$)	(\$)
13	16	3	0.62	18.45	1661	30647.4	0.061	0.192	7.85	1.503	8560	12869.4	43516.8
12	16	3	0.62	18.45	1661	30647.4	0.061	0.192	7.85	1.503	8560	12869.4	43516.8
11	16	3	0.70	23.52	1661	39066.7	0.078	0.247	7.85	1.939	8560	16594.7	55661.4
10	16	3	0.70	23.52	1661	39066.7	0.078	0.247	7.85	1.939	8560	16594.7	55661.4
9	16	3	0.77	28.46	1661	47270.7	0.095	0.299	7.85	2.346	8560	20083.0	67353.7
8	16	3	0.77	28.46	1661	47270.7	0.114	0.359	7.85	2.815	8560	24096.2	71366.9
7	16	3	0.77	28.46	1661	47270.7	0.119	0.374	7.85	2.936	8560	25133.4	72404.1
6	16	3	0.89	38.02	1661	63152.5	0.155	0.487	7.85	3.822	8560	32715.3	95867.9
5	16	3	0.89	38.02	1661	63152.5	0.175	0.550	7.85	4.315	8560	36940.2	100092.7
4	16	3	0.89	38.02	1661	63152.5	0.200	0.629	7.85	4.935	8560	42244.6	105397.1
3	16	3	0.97	45.16	1661	75016.1	0.241	0.759	7.85	5.961	8560	51028.8	126044.9
2	16	3	0.97	45.16	1661	75016.1	0.284	0.896	7.85	7.031	8560	60181.3	135197.4
1	16	3.5	0.97	52.69	1661	87518.8	0.340	1.250	7.85	9.814	8560	84010.8	171529.5

Tabla 7.3a. Costo de las columnas para el sistema con disipadores de energía

Tabla 7.3b. Costo de las vigas para el sistema con disipadores de energía

Zona	Long.	Base	Altura	Vol.	#	Vol.	Precio	Costo	Área	Vol.	Peso	Varilla	Precio	Costo	Costo
rígida	vigas			1	Vigas	vigas	conc.	conc.	varilla	varila	varilla	vigas	varilla	varilla	vigas
vigas				viga				vigas						vigas	
(m)	(m)	(m)	(m)	(m3)		(m3)	(\$/m3)	(\$)	(m2)	(m3)	(ton/m3)	(ton)	(\$/ton)	(\$)	(\$)
0.310	7	0.26	0.54	0.94	24	22.54	1661	37443	0.03	0.23	7.85	1.83	8560	15671	53114.31
0.310	7	0.26	0.54	0.94	24	22.54	1661	37443	0.04	0.27	7.85	2.11	8560	18069	55512.16
0.350	7	0.26	0.54	0.93	24	22.41	1661	37219	0.04	0.27	7.85	2.10	8560	18008	55227.17
0.350	7	0.32	0.67	1.43	24	34.22	1661	56836	0.05	0.38	7.85	2.97	8560	25449	82285.69
0.385	7	0.32	0.67	1.42	24	34.04	1661	56537	0.06	0.38	7.85	3.00	8560	25679	82216.66
0.385	7	0.32	0.67	1.42	24	34.04	1661	56537	0.05	0.38	7.85	2.99	8560	25623	82160.65
0.385	7	0.37	0.73	1.79	24	42.88	1661	71225	0.07	0.46	7.85	3.58	8560	30673	101898.74
0.445	7	0.37	0.73	1.77	24	42.49	1661	70579	0.06	0.44	7.85	3.44	8560	29405	99984.75
0.445	7	0.37	0.73	1.77	24	42.49	1661	70579	0.06	0.42	7.85	3.28	8560	28046	98625.02
0.445	7	0.37	0.73	1.77	24	42.49	1661	70579	0.06	0.38	7.85	2.99	8560	25604	96183.06
0.485	7	0.37	0.73	1.76	24	42.23	1661	70149	0.05	0.33	7.85	2.61	8560	22303	92451.98
0.485	7	0.37	0.73	1.76	24	42.23	1661	70149	0.04	0.27	7.85	2.08	8560	17835	87983.98
0.485	7	0.30	0.63	1.23	24	29.55	1661	49086	0.03	0.19	7.85	1.51	8560	12898	61984.31

Rig.	Rig. De	#	Vol.	Vol.	Peso	Peso	Precio	Costo	Vol.	Peso	Costo	Costo	Placas	Costo
ADAS	1 placa	de	1 placa	placas	acero	de	acero	ADAS	4 diags.	diags.	diags.	ADAS y	у	sistema
entrep.	prototipo	plac.	prototipo			ADAS	A-36					diags.	otros	ADAS
(t/m)	(t/m)		(m3)	(m3)	(t/m3)	(ton)	(\$/ton)	(\$)	(m3)	(ton)	(\$)	(\$)	(\$)	(\$)
15632	4453.48	4	0.00323	0.0113	7.85	0.089	14000	1244	0.065	0.511	7159	8404	15607	24011
19331	4453.48	4	0.00323	0.0140	7.85	0.110	14000	1539	0.081	0.632	8853	10392	19300	29692
26871	4453.48	6	0.00323	0.0195	7.85	0.153	14000	2139	0.112	0.879	12307	14446	26828	41273
33850	4453.48	8	0.00323	0.0245	7.85	0.192	14000	2695	0.141	1.107	15503	18197	33795	51992
40419	4453.48	9	0.00323	0.0293	7.85	0.230	14000	3217	0.168	1.322	18511	21729	40353	62082
47359	4453.48	11	0.00323	0.0343	7.85	0.269	14000	3770	0.197	1.549	21690	25460	47282	72742
54844	4453.48	12	0.00323	0.0397	7.85	0.312	14000	4366	0.229	1.794	25118	29484	54755	84239
60470	4453.48	14	0.00323	0.0438	7.85	0.344	14000	4814	0.252	1.978	27695	32508	60372	92881
62290	4453.48	14	0.00323	0.0451	7.85	0.354	14000	4959	0.260	2.038	28528	33487	62190	95676
64798	4453.48	15	0.00323	0.0469	7.85	0.368	14000	5158	0.270	2.120	29677	34835	64694	99529
72778	4453.48	16	0.00323	0.0527	7.85	0.414	14000	5793	0.303	2.381	33331	39125	72660	111785
85617	4453.48	19	0.00323	0.0620	7.85	0.487	14000	6815	0.357	2.801	39212	46027	85479	131506
120271	4453.48	27	0.00323	0.0871	7.85	0.684	14000	9574	0.578	4.536	63509	73083	135726	208809
										Costo	de los i	marcos coi	n ADAS \$	3299455

Tabla 7.3c. Costo de las diagonales y disipadores de energía

Tabla 7.4a. Costo de las columnas para el sistema con muros de concreto reforzado

Nivel	# Cols.	Long. cols.	Col. cuadrada	Vol.	Precio del conc.	Costo de conc. cols.	Área varillas	Vol. varillas	Peso varilla	Varilla cols.	Precio Varilla	Costo varilla cols.	Costo columnas
		(m)	(m*m)	(m3)	(\$/m3)	(\$)	(m2)	(m3)	(ton/m3)	(ton)	(\$/ton)	(\$)	(\$)
13	16	3	0.62	18.45	1661	30647.4	0.061	0.192	7.85	1.503	8560	12869	43516.8
12	16	3	0.62	18.45	1661	30647.4	0.061	0.192	7.85	1.503	8560	12869	43516.8
11	16	3	0.70	23.52	1661	39066.7	0.078	0.247	7.85	1.939	8560	16595	55661.4
10	16	3	0.70	23.52	1661	39066.7	0.078	0.247	7.85	1.939	8560	16595	55661.4
9	16	3	0.77	28.46	1661	47270.7	0.095	0.299	7.85	2.346	8560	20083	67353.7
8	16	3	0.77	28.46	1661	47270.7	0.114	0.359	7.85	2.815	8560	24096	71366.9
7	16	3	0.77	28.46	1661	47270.7	0.119	0.374	7.85	2.936	8560	25133	72404.1
6	16	3	0.89	38.02	1661	63152.5	0.155	0.487	7.85	3.822	8560	32715	95867.9
5	16	3	0.89	38.02	1661	63152.5	0.175	0.550	7.85	4.315	8560	36940	100092.7
4	16	3	0.89	38.02	1661	63152.5	0.200	0.629	7.85	4.935	8560	42245	105397.1
3	16	3	0.97	45.16	1661	75016.1	0.241	0.759	7.85	5.961	8560	51029	126044.9
2	16	3	0.97	45.16	1661	75016.1	0.284	0.896	7.85	7.031	8560	60181	135197.4
1	16	3.5	0.97	52.69	1661	87518.8	0.340	1.250	7.85	9.814	8560	84011	171529.5

Zona	Long.	Base	Altura	Vol.	#	Vol.	Precio	Costo	Área	Vol.	Peso	Varilla	Precio	Costo	Costo
rígida	vigas			1	Vigas	vigas	conc.	conc.	varilla	varila	varilla	vigas	varilla	varilla	vigas
vigas				viga				vigas						vigas	
(m)	(m)	(m)	(m)	(m3)		(m3)	(\$/m3)	(\$)	(m2)	(m3)	(ton/m3)	(ton)	(\$/ton)	(\$)	(\$)
0.310	7	0.26	0.54	0.94	24	22.54	1661	37443	0.033	0.23	7.85	1.83	8560	15671	53114.31
0.310	7	0.26	0.54	0.94	24	22.54	1661	37443	0.038	0.27	7.85	2.11	8560	18069	55512.16
0.350	7	0.26	0.54	0.93	24	22.41	1661	37219	0.038	0.27	7.85	2.10	8560	18008	55227.17
0.350	7	0.32	0.67	1.43	24	34.22	1661	56836	0.054	0.38	7.85	2.97	8560	25449	82285.69
0.385	7	0.32	0.67	1.42	24	34.04	1661	56537	0.055	0.38	7.85	3.00	8560	25679	82216.66
0.385	7	0.32	0.67	1.42	24	34.04	1661	56537	0.055	0.38	7.85	2.99	8560	25623	82160.65
0.385	7	0.37	0.73	1.79	24	42.88	1661	71225	0.066	0.46	7.85	3.58	8560	30673	101898.74
0.445	7	0.37	0.73	1.77	24	42.49	1661	70579	0.064	0.44	7.85	3.44	8560	29405	99984.75
0.445	7	0.37	0.73	1.77	24	42.49	1661	70579	0.061	0.42	7.85	3.28	8560	28046	98625.02
0.445	7	0.37	0.73	1.77	24	42.49	1661	70579	0.055	0.38	7.85	2.99	8560	25604	96183.06
0.485	7	0.37	0.73	1.76	24	42.23	1661	70149	0.049	0.33	7.85	2.61	8560	22303	92451.98
0.485	7	0.37	0.73	1.76	24	42.23	1661	70149	0.039	0.27	7.85	2.08	8560	17835	87983.98
0.485	7	0.30	0.63	1.23	24	29.55	1661	49086	0.028	0.19	7.85	1.51	8560	12898	61984.31

Tabla 7.4b. Costo de las vigas para el sistema con muros de concreto reforzado

Tabla 7.4c. Costo de los paneles de concreto para el sistema con muros de concreto reforzado

#	Long.	Altura	Ancho	Vol.	Precio	Costo	Acero	Acero	Vol.	Vol.	Peso	Acero	Precio	Costo	Costo
de	muro	muro	muro	muro	conc.	conc.	Н.	٧.	acero	acero	acero	total	acero	acero	muros
muros									Н.	۷.					
	(m)	(m)	(m)	(m3)	(\$/m3)	(\$)	(m2)	(m2)	(m3)	(m3)	(t/m3)	(ton)	(\$)	(\$)	(\$)
4	6.38	2.46	0.18	11.3	1661	18770	0.010	0.010	0.067	0.024	7.85	0.71	8560	6082	24852
4	6.38	2.46	0.18	11.3	1661	18770	0.010	0.010	0.067	0.024	7.85	0.71	8560	6082	24852
4	6.30	2.46	0.18	11.2	1661	18534	0.010	0.010	0.067	0.024	7.85	0.71	8560	6082	24616
4	6.30	2.33	0.18	10.6	1661	17555	0.010	0.010	0.067	0.022	7.85	0.70	8560	5999	23553
4	6.23	2.33	0.18	10.5	1661	17360	0.010	0.010	0.067	0.022	7.85	0.70	8560	5999	23358
4	6.23	2.33	0.18	10.5	1661	17360	0.011	0.011	0.079	0.026	7.85	0.83	8560	7087	24447
4	6.23	2.27	0.18	10.2	1661	16913	0.015	0.015	0.105	0.034	7.85	1.10	8560	9381	26294
4	6.11	2.27	0.19	10.5	1661	17509	0.015	0.015	0.108	0.035	7.85	1.12	8560	9592	27100
4	6.11	2.27	0.22	11.9	1661	19812	0.017	0.017	0.119	0.038	7.85	1.23	8560	10565	30377
4	6.11	2.27	0.24	13.3	1661	22116	0.019	0.019	0.131	0.043	7.85	1.36	8560	11668	33784
4	6.03	2.27	0.26	14.2	1661	23645	0.020	0.020	0.140	0.045	7.85	1.45	8560	12428	36074
4	6.03	2.27	0.29	15.6	1661	25919	0.022	0.022	0.155	0.050	7.85	1.61	8560	13759	39678
4	6.03	2.87	0.32	21.8	1661	36219	0.026	0.026	0.180	0.074	7.85	1.99	8560	17013	53232
									Costo	de los n	narcos o	on mur	os de cor	ncreto \$	2585457

Nivel	# Cols.	Long. cols.	Col. cuadrada	Vol.	Precio del conc.	Costo de conc. cols.	Área varillas	Vol. varillas	Peso varilla	Varilla cols.	Precio Varilla	Costo varilla cols.	Costo columnas
		(m)	(m*m)	(m3)	(\$/m3)	(\$)	(m2)	(m3)	(ton/m3)	(ton)	(\$/ton)	(\$)	(\$)
13	16	3	0.65	20.28	1661	33685.1	0.068	0.213	7.85	1.674	8560	14326	48010.7
12	16	3	0.65	20.28	1661	33685.1	0.068	0.213	7.85	1.674	8560	14326	48010.7
11	16	3	0.75	27.00	1661	44847.0	0.090	0.284	7.85	2.227	8560	19067	63914.0
10	16	3	0.75	27.00	1661	44847.0	0.100	0.314	7.85	2.468	8560	21124	65971.4
9	16	3	0.85	34.68	1661	57603.5	0.116	0.364	7.85	2.860	8560	24486	82089.2
8	16	3	0.85	34.68	1661	57603.5	0.120	0.377	7.85	2.957	8560	25311	82914.7
7	16	3	0.85	34.68	1661	57603.5	0.134	0.423	7.85	3.318	8560	28406	86009.2
6	16	3	1.00	48.00	1661	79728.0	0.160	0.504	7.85	3.956	8560	33867	113594.8
5	16	3	1.00	48.00	1661	79728.0	0.160	0.504	7.85	3.956	8560	33867	113594.8
4	16	3	1.00	48.00	1661	79728.0	0.160	0.504	7.85	3.956	8560	33867	113594.8
3	16	3	1.10	58.08	1661	96470.9	0.194	0.610	7.85	4.787	8560	40979	137449.7
2	16	3	1.10	58.08	1661	96470.9	0.194	0.610	7.85	4.787	8560	40979	137449.7
1	16	3.5	1.10	67.76	1661	112549.4	0.245	0.901	7.85	7.076	8560	60571	173120.1

Tabla 7.5a. Costo de las columnas para el sistema con muros de mampostería

Tabla 7.5b. Costo de las vigas para el sistema con muros de mampostería

Zona	Long.	Base	Altura	Vol.	#	Vol.	Precio	Costo	Área	Vol.	Peso	Varilla	Precio	Costo	Costo
rígida	vigas			1	Vigas	vigas	conc.	conc.	varilla	varila	varilla	vigas	varilla	varilla	vigas
vigas				viga				vigas						vigas	
(m)	(m)	(m)	(m)	(m3)		(m3)	(\$/m3)	(\$)	(m2)	(m3)	(ton/m3)	(ton)	(\$/ton)	(\$)	(\$)
0.325	7	0.49	0.98	3.21	24	76.93	1661	127777	0.054	0.38	7.85	2.98	8560	25545	153322.34
0.325	7	0.50	1.05	3.50	24	84.11	1661	139698	0.061	0.42	7.85	3.33	8560	28531	168229.16
0.375	7	0.50	1.05	3.48	24	83.48	1661	138652	0.065	0.45	7.85	3.56	8560	30477	169128.55
0.375	7	0.55	1.35	4.92	24	118.06	1661	196094	0.090	0.62	7.85	4.89	8560	41901	237994.13
0.425	7	0.55	1.35	4.88	24	117.17	1661	194614	0.098	0.67	7.85	5.29	8560	45277	239890.62
0.425	7	0.55	1.35	4.88	24	117.17	1661	194614	0.108	0.74	7.85	5.85	8560	50037	244650.28
0.425	7	0.55	1.35	4.88	24	117.17	1661	194614	0.118	0.81	7.85	6.38	8560	54639	249252.21
0.500	7	0.55	1.35	4.83	24	115.83	1661	192394	0.129	0.88	7.85	6.90	8560	59078	251472.12
0.500	7	0.55	1.35	4.83	24	115.83	1661	192394	0.140	0.95	7.85	7.49	8560	64151	256544.37
0.500	7	0.55	1.35	4.83	24	115.83	1661	192394	0.148	1.01	7.85	7.94	8560	67948	260341.69
0.550	7	0.55	1.35	4.79	24	114.94	1661	190914	0.155	1.05	7.85	8.23	8560	70429	261342.62
0.550	7	0.55	1.35	4.79	24	114.94	1661	190914	0.160	1.08	7.85	8.49	8560	72668	263581.64
0.550	7	0.55	1.35	4.79	24	114.94	1661	190914	0.155	1.05	7.85	8.26	8560	70729	261642.98

Long.	Altura	Área	Precio	Costo
paner		+ paneles	de panel	paneles
(m)	(m)	(m2)	(\$)	(\$)
6.35	2.02	51.308	150	7696.20
6.35	1.95	49.530	150	7429.50
6.25	1.95	48.750	150	7312.50
6.25	1.65	41.250	150	6187.50
6.15	1.65	40.590	150	6088.50
6.15	1.65	40.590	150	6088.50
6.15	1.65	40.590	150	6088.50
6.00	1.65	39.600	150	5940.00
6.00	1.65	39.600	150	5940.00
6.00	1.65	39.600	150	5940.00
5.90	1.65	38.940	150	5841.00
5.90	1.65	38.940	150	5841.00
5.90	2.15	50.740	150	7611.00
		Costo de los marcos	con muros de mampostería \$	4367120.69

Tabla 7.5c. Costo de los paneles de mampostería para el sistema con muros de mampostería

Tabla 7.6. Comparación de costos de los diferentes sistemas

Nivel	Costo por entrepiso sistema convencional (\$)	Costo por entrepiso sistema con ADAS (\$)	Costo por entrepiso sistema dual-concreto (\$)	Costo por entrepiso sistema dual-mampostería (\$)
13	124509.157	120641.976	121482.983	209029.273
12	133052.900	128720.900	123880.836	223669.389
11	154534.957	152161.903	135505.110	240355.052
10	197257.350	189939.410	161500.595	310153.034
9	214581.683	211652.311	172928.794	328068.289
8	223629.265	226269.488	177974.366	333653.451
7	254017.471	258541.981	200596.657	341349.960
6	269255.449	288733.358	222952.691	371006.902
5	274655.084	294393.925	229094.580	376079.158
4	278897.322	301108.883	235364.548	379876.472
3	299506.642	330281.392	254570.442	404633.308
2	297576.165	354687.169	262859.060	406872.326
1	362709.212	442322.370	286746.133	442374.079
Costo total (\$)	3084182.658	3299455.066	2585456.795	4367120.694

CAPÍTULO 8

ANÁLISIS DE RESULTADOS

Se toman los resultados de los análisis no lineales para los edificios con diferentes estructuraciones que fueron analizadas, análisis de empuje lateral y análisis paso a paso, éstos últimos se llevaron a cabo de acuerdo con lo descrito en el capítulo 5. De los resultados se tiene lo siguiente:

Las rigideces iniciales de las estructuras se pueden estimar con la ayuda de los puntos definidos en las curvas bilineales (Figuras 5.11) y por medio de la fórmula $K_0 = V_y/D_y$, donde V_y es el cortante de

fluencia y D_y es el correspondiente desplazamiento de fluencia; al calcular las rigideces iniciales de los

sistemas se tienen los siguientes datos; 57362.89 t/m para la estructura convencional, 59549.08 t/m para la estructura con disipadores de energía, 62474.43 t/m para la estructura con muros de concreto y 218846.73 t/m para la estructura con marcos de concreto y muros de mampostería. Se nota que la estructura con muros de mampostería tiene mucho más rigidez inicial respecto de las otras, esto es debido a las distorsiones de entrepiso que se limitaron en el diseño elástico; por otro lado, la estructura con marcos y muros de concreto, es menos rígida que la estructura con muros de mampostería, pero ligeramente tiene una rigidez inicial mayor que la estructura convencional y la compuesta por marcos con disipadores de energía, donde estas últimas tienen una rigidez parecida. Todo lo anterior concuerda con los parámetros tomados para el diseño elástico de las estructuras. Con la ayuda de este mismo análisis se estiman las capacidades últimas de deformación para cada tipo de estructura, donde se determina que la estructura con más capacidad de deformación (más ductilidad) es la estructura con marcos y disipadores de energía, lo cual puede indicar que para que sea alcanzada tal deformación, se requerirá de un sismo suficientemente grande. La estructura con menos capacidad de deformación última, respecto de la anterior, es la convencional y, por último tenemos a las estructuras con muros de concreto y muros de mampostería, respectivamente. La estructura con muros de mampostería, a pesar de ser la más rígida de todas, es la que menos capacidad de deformación tiene, esto puede deberse a que los elementos de mampostería no tienen suficiente capacidad de deformación (son frágiles) y pierden rápidamente rigidez cuando aparecen las primeras grietas.

En la etapa del análisis paso a paso de las estructuras con propiedades medias, tomando como excitación un sismo real como el que se muestra en la Figura 5.2 las respuestas de las estructuras son como sigue:

Realizando la comparación de respuestas entre los sistemas que tienen disipadores de energía y los que tienen muros de concreto reforzado (Figuras 5.6 y 5.8), se observa que el sistema con muros de concreto tiene mayores desplazamientos de entrepiso. Aquí, solo se muestran los desplazamientos de azotea, por ser los más representativos para las respuestas; a pesar de que el sistema con marcos y muros de concreto es más rígida, para esta excitación en específico los desplazamientos no fueron menores que los obtenidos para el sistema con disipadores, pues uno podría pensar que por ser más rígida controlaría mejor las respuestas, sin embargo, esto último puede pasar siempre y cuando las respuestas se encuentren en el rango elástico.

La comparación entre los sistemas con ADAS y el sistema convencional (Figuras 5.3 y 5.5), resultan en todos los entrepisos desplazamientos menores en el sistema con disipadores que en los entrepisos del sistema convencional, por tanto, el sistema con disipadores controla mejor los desplazamientos; y las rigideces de entrepiso consideradas para el diseño estructural de todos los entrepisos de ambos sistemas son casi iguales, como se presenta en la Tabla 3.2.

Comparando el sistema con muros de concreto y el sistema convencional (Figuras 5.3 y 5.8), la diferencia de desplazamientos a nivel de azotea es mínima, siendo menores los desplazamientos para el sistema convencional, así como para el sistema con disipadores de energía, los desplazamientos presentados son menores que para la estructura convencional. Entonces, para los tres sistemas; convencional, marcos con muros de concreto y marcos con disipadores de energía, todas diseñadas considerando la misma cimentación, factor de comportamiento sísmico, etc., se tienen casi idénticos desplazamientos en el nivel de azotea cuando se considera que se presenta un sismo como el ya mencionado, las respuestas pueden verse en las Figuras 5.3, 5.6 y 5.8.

Para el sistema con marcos y muros de mampostería, donde se consideró una distorsión máxima de entrepiso contra colapso de 0.006 para diseño, muestra en todos los entrepisos menores desplazamientos respecto de los otros tres sistemas, y es debido a la gran rigidez de entrepiso que tiene en toda la altura, se muestra la respuesta en la Figura 5.10 sólo para el nivel de azotea, debido a que en este nivel es donde se presentan los desplazamientos máximos globales.

Entonces, para el sismo específico considerado (SCT8519SE.3EW) para el análisis paso a paso en esta etapa, la estructura que mejor controla los desplazamientos es la compuesta por marcos y muros de mampostería. Sin embargo, lo calculado hasta aquí no nos dice qué estructura es la que tiene mejor desempeño muy cercano al colapso, pues como puede observarse, los desplazamientos de azotea de todos los sistemas aún están por debajo de la capacidad última de deformación que fueron calculadas con la ayuda de las curvas pushover; por tanto, se requieren sismos más intensos para conocer las respuestas de las estructuras cercano al colapso o muy cercano a las capacidades últimas de deformación calculadas en el análisis de empuje lateral. Ya que el objetivo principal de este trabajo es observar el desempeño de las estructuras en el nivel preestablecido, por lo eso, a continuación se presentan los resultados de las diferentes estructuraciones en términos de índices de β de Cornell.

Las curvas de confiabilidad para cada estructuración de la Figura 6.7, refleja que para intensidades de aceleración bajas y muy cercanas a cero, todas las curvas tienen los mismos valores, lo cual significa que las confiabilidades son iguales para todas estas estructuraciones en este pequeño intervalo, esto puede deberse, a que los diferentes sistemas se trataron de diseñar para que tengan las mismas rigideces de entrepiso, periodo fundamental y resistencias (por lo menos, para la estructura convencional, marcos con disipadores de energía y marcos con muros de concreto).

Cuando las intensidades son ligeramente mayores, por ejemplo, en el intervalo 0.01 < Z < 0.10, los índices β empiezan a variar para cada estructuración, pareciéndose más las curvas de confiabilidad de los sistemas con disipadores y con muros de concreto, así también se parecen las curvas de los sistemas convencional y el compuesto por marcos y muros de mampostería, pero por debajo de las dos anteriores. Hasta en este mismo intervalo la estructura más confiable es la compuesta por marcos y muros de concreto y la menos confiable es la de marcos con muros de mampostería, la justificación de que la estructura con muros de concreto sea más confiable, en este rango puede ser que aún la intensidad sísmica no es la suficiente para que esta estructuración, junto con la de disipadores de energía se degraden lo suficiente para perder por completo las resistencias; para la menos confiable, a pesar de ser la más rígida de todas, y debido a su gran masa, rigidez y poca capacidad de deformación, es probable que en este intervalo los paneles de mampostería han sido dañados y por eso las bajas confiabilidades que presenta.

Para intervalos mayores a 0.10, o conforme las intensidades de aceleración crecen, la estructura con disipadores de energía es la que presenta mayores índices de confiabilidad, contrario a esto, en el sistema dual con muros de concreto, empiezan a decrecer gradualmente las confiabilidades, a tal punto en que la curva se llega a encontrar por debajo de la curva del sistema convencional, y esto puede

deberse a que los muros de concreto en ésta parte ya no son capaces de aportar resistencia o se vuelven ineficientes, sobre todo en los últimos entrepisos, por tanto, los que toman la mayoría de las fuerzas son los marcos de concreto, también puede ser debido a la pérdida de rigidez y falla frágil de los paneles de concreto (exactamente no se sabe cuáles son los primeros elementos que fallan, pues no se dio seguimiento a los elementos que presentaron primero las articulaciones plásticas). Además que los disipadores de energía, son capaces de soportar un gran número de ciclos de carga sin mostrar degradación de rigidez.

En el caso de la estructura convencional, en el intervalo mayor a 0.10 presenta confiabilidades que crecen de forma gradual, hasta llegar a presentar confiabilidades cercanas, pero menores de las que se tienen para la estructura con disipadores, esto puede ser razonable, pues es debido a que esta estructura es compuesta en su totalidad por marcos dúctiles y porque presenta una capacidad de deformación un poco mayor que la estructura con muros de concreto. Por último, las confiabilidades para el sistema dual con muros de mampostería se mantuvieron casi siempre por debajo de todas las curvas de confiabilidad para los otros modelos, esto se debe principalmente a la gran rigidez que tienen, mucho peso, poca capacidad de deformación, no son capaces de soportar sismos tan intensos como los demás sistemas, por todo esto se comportaron de la forma anterior.

En los resultados de este estudio también se llevaron a cabo los cálculos de los costos directos de los materiales para los marcos analizados, costos que fueron calculados como ya se expuso en el capítulo. En la Tabla 7.6 se resumen los costos de los diferentes sistemas por entrepiso y se observa que el sistema con el más alto costo inicial es el compuesto por marcos con muros de mampostería, esto es debido en gran parte, a que es una estructura compuesta por elementos con secciones muy grandes, mismos que son requeridos para limitar los desplazamientos totales de entrepiso como ya se indicaba en el proceso de diseño para ésta. En términos de costos, sigue el sistema con marcos y disipadores de energía, en ésta, lo que hace que el costo aumente en gran parte es el mismo costo del sistema contraviento-disipador y sus conexiones; seguido de ésta se encuentra el sistema a base de sólo marcos dúctiles, resultando más costosa que el sistema dual con muros de concreto reforzado, principalmente porque cuenta con elementos estructurales más grandes y la razón de esto es porque la estructura no fue diseñada considerando la distorsión máxima de entrepiso contra colapso de 0.03 como lo indica el reglamento en la parte del apéndice. Por último, el modelo que presenta el más bajo costo para todos los sistemas, debido a la forma que se distribuyen los elementos estructurales y en general, por las restricciones impuestas para el diseño, es el sistema dual con muros de concreto reforzado.

CAPÍTULO 9

CONCLUSIONES Y RECOMENDACIONES

En este trabajo se compararon las confiabilidades de 4 edificios de 13 niveles con diferentes estructuraciones, a decir, edificio convencional, edificio a base de marcos de concreto con disipadores de energía ADAS, edificio a base de marcos y muros de concreto, edificio a base de marcos de concreto y muros de mampostería. Las tres primeras estructuras, en lo posible, se diseñaron para aportar la rigidez y resistencia lateral en la misma proporción; la última se diseñó considerando que los muros tienen un espesor de 14 centímetros, tomando en cuenta los parámetros para análisis y diseño que se presentaron en la Tabla 3.1, así como el factor de comportamiento sísmico Q = 2 que se usó, donde ésta tiene una rigidez mayor respecto de los otros tres modelos, como se mostró en la Tabla 3.2.

El desempeño sísmico de los sistemas estructurales cercanos al colapso fue evaluado por medio de un índice de reducción de rigidez secante. Para poder llevar los edificios a niveles cercanos al colapso se requirió de sismos con diferentes intensidades. De los cuatro sistemas, el compuesto por marcos de concreto y disipadores de energía es el que requirió de sismos más intensos para llegar a dicho nivel de desempeño. Lo anterior implicó que las confiabilidades calculadas fueran mayores en este sistema respecto de los otros, para casi cualquier intensidad sísmica. La estructura con marcos y muros de concreto reforzado mostró mayores confiabilidades para intensidades relativamente bajas, respecto de la estructura convencional, pero, cuando las intensidades sísmicas son altas, la estructura más confiable entre estas dos es la convencional; la estructura con marcos de concreto y muros de mampostería es la que tuvo menores confiabilidades de todos los sistemas para cualquier intensidad sísmica.

Al determinar los costos iniciales (de materiales) de los marcos analizados, la estructura que resulta más costosa es la de marcos de concreto con muros de mampostería y la menos costosa es la compuesta por marcos con muros de concreto reforzado. Entonces, de los parámetros, costos y confiabilidades de los modelos analizados, la estructura conveniente para responder a las acciones sísmicas en el terreno blando de la Ciudad de México es la compuesta por marcos de concreto y disipadores de energía ADAS. Aunque, ésta resulte más costosa inicialmente que la convencional y la compuesta por marcos con muros de concreto reforzado, a largo plazo puede resultar más factible, debido al fácil mantenimiento y reemplazo de los ADAS, y otros que se deriven durante su vida útil.

Se concluye también que el factor de comportamiento sísmico Q = 3 empleado para el sistema con disipadores de energía es adecuado, pues, la confiabilidad que tiene esta estructuración es mayor que la determinada para el sistema convencional.

Las conclusiones anteriores, son estrictamente las derivadas de los modelos analizados en este trabajo, con todas las características y restricciones que se describieron. Como se explica en la sección 6.7, las curvas de confiabilidad presentadas en la figura 6.7 pueden ser de ayuda para el diseño de una nueva estructura con cierta confiabilidad o estimar la confiabilidad de una existente.

Es recomendable estudiar más edificios con mayor números de niveles, diferentes configuraciones geométricas en planta y elevación de los sistemas estructurales que se han estudiado aquí, pero excluyendo la compuesta por marcos de concreto y muros de mampostería, ya que es una estructuración costosa, con mucha masa y con confiabilidades muy bajas.

Se recomienda modelar inelásticamente el sistema contraviento-disipador ADAS con tres barras de acero, como se describió en la sección 3.2, lo anterior se deduce de haber comparado un modelo pequeño modelando a dicho sistema con cuatro y tres barras (como se muestra en la figura 3.5), donde se observa que las respuestas son muy similares. Esto es conveniente, por las limitaciones que presenta el DRAIN 2D (Powell, 1973) para llevar a cabo los análisis no lineales de los elementos barras.

REFERENCIAS

Aiken I. D., Nims, D. K., Whittaker, A. S. y Kelly, J. M. (1993), "Testing of Passive Energy Dissipation Systems", Earthquake Spectra, Vol. 9, No. 3, pp. 335-369.

Alamilla J. (2001), "Criterios de diseño sísmico basados en confiabilidad de estructuras aporticadas", Tesis doctoral, División de Estudios de Posgrado, Facultad de Ingeniería, UNAM, México.

Alamilla J., Esteva, L., García-Pérez, J. y Díaz-López, O. (2001a), "Evolutionary properties of stochastic models of earthquake accelerograms: their dependence on magnitude and distance", Journal of Seismology, Vol. 5, pp. 1-21.

Alamilla J. y Esteva, L. (2006), "Seismic reliability functions for multistorey frame and wall-frame systems", Earthquake Engineering and Structural Dynamics, No. 35, August, pp. 1899-1924.

Ang A. H-S. y Tang, W. H. (2007), "Probability Concepts in Engineering-Emphasis on Aplications in Civil & Environmental Engineering", John Wiley & Sons, Inc., 406 pp.

Bazán E. (1980), "Muros de mampostería ante cargas laterales: estudios analíticos", Tesis doctoral, Facultad de Ingeniería, UNAM, México, D. F.

Bazán E. y Meli, R. (2003), "Diseño sísmico de edificios", Limusa-Noriega, México, 317 pp.

Bergman D. M. y Goel, S. C. (1987), "Evaluation of cyclic testing of steel-plate devices for added damping and stiffness", Technical Report UMCE 87-10. University of Michigan, Ann Arbor, MI.

Campos-Arias D. M. (2005), "Diseño sísmico óptimo de edificios con disipadores de energía", Tesis doctoral, Programa de Maestría y Doctorado en Ingeniería, UNAM, México.

Campos-Arias D. y Esteva, L. (1997), "Modelo de comportamiento histerético y de daño para vigas de concreto reforzado", XI Congreso Nacional de Ingeniería Sísmica, Veracruz, Ver., México, pp. 567-573.

Chopra A. K. (1995), "Dynamics of Structures-Theory and Applications to Earthquake Engineering", Prentice Hall, 729 pp.

Cornell C. A. (1969), "A probability-based structural code", ACI Journal of the American Concrete Institute, Vol. 66, No. 12.

Corona G. A. (2004), "EcogcW-programa para análisis y diseño de edificios de concreto", versión 2.22

Dargush G. F. y Soong T. T. (1995), "Behavior of Metallic Plate Dampers in Seismic Passive Energy Dissipation Systems", Earthquake Spectra, Vol. 11, No. 4, Noviembre, pp. 545-568.

Díaz-Alcántara J. L. (2008), "Criterios de aceptación para el diseño sísmico por desempeño y confiabilidad de edificios de concreto reforzado, con piso suave en planta baja, desplantados en suelos blandos de la Ciudad de México", Tesis de maestría, Programa de Maestría y Doctorado en Ingeniería, UNAM, México.

Esteva L. (1968), "Bases para la formulación de decisiones de diseño sísmico", Tesis doctoral, División de Estudios de Posgrado, Facultad de Ingeniería, UNAM, México.

Esteva. L. (2001), "Diseño sísmico basado en desempeño: tendencias y retos", Revista de Ingeniería Sísmica, No. 63, pp. 31-54.

Esteva L. (2006), "Retos para el establecimiento de criterios óptimos para el diseño sísmico basado en desempeño", VII Simposio Nacional de Ingeniería Sísmica, Cuernavaca, Morelos, México.

Esteva L. y Mendoza., E. (1989), "Influencia de la interacción suelo estructura en la respuesta sísmica inelástica de edificios", Informe interno, Proyecto 6704, Instituto de Ingeniería, UNAM, México, Junio.

Esteva L. y Ruiz, S. E. (1989), "Seismic failure rates of multistory frames", ASCE Journal of Structural Engineering, Vol. 115, No. 2, Febrero, pp. 268-284.

Esteva L., Díaz-López, O. y García-Pérez, J. (2001), "Reliability functions for earthquake resistant design", Reliability Engineering and System Safety, No. 73, pp. 239-262.

Esteva L. e Ismael, E. (2004), "A maximun likelihood approach to system reliability with respect to seismic collapse", Proc. International Federation for information Processing, WG7.5 Working Conference, Banff, Canadá.

NTC del RCDF (2004), "Normas Técnicas Complementarias del Reglamento de Construcciones para el Distrito Federal", Departamento del Distrito Federal, Gaceta Oficial del Distrito Federal, 29 de enero, México, D. F.

Hanson R. D. (2001), "Seismic design with supplemental energy dissipation devices", Earthquake Engineering Research Institute (EERI), 135 pp.

Hart G. (1982), "Uncertainty analysis, loads and safety in structural engineering", Prentice Hall, Inc., Englewood Cliffs, New Jersey.

Ismael E. (2002), "Notas para el manejo del programa SIMESTRU-tomadas durante conversaciones personales con Alamilla J.", Instituto de Ingeniería, UNAM, México.

Ismael E. (2005), "DEIH y DEIHINTER", Programas desarrollados en el Instituto de Ingeniería, UNAM, México, 2005.

Ismael E. y Esteva, L. (2006), "A hybrid method for simulating strong ground motions records", First European Conference on Earthquake Engineering and Seismology, Paper Number: 1265, Geneva, Switzerland, 3-8 Septiembre.

Kanaan A. y Powell G. H. (1973), "DRAIN-2D: general purpose computer program for dynamic analysis of inelastic plane structures", Report UCB/EERC-73/06, Earthquake Engineering Research Center, University of California at Berkeley, EUA.

López-López L. A. (2008), "Comportamiento histerético de elementos de concreto reforzado: su influencia en la confiabilidad sísmica de edificios", Tesis de maestría, Programa de Maestría y Doctorado en Ingeniería, UNAM, México.
López-Ramírez J. O. (2005), "Análisis de confiabilidad sísmica de marcos con y sin disipadores de energía", Tesis de maestría, Programa de Maestría y Doctorado en Ingeniería, UNAM, México.

Ma S. M., Bertero, V. V., Popov, E. P. (1976), "Experimental and analytical studies on the hysteretic behavior of reinforced concrete rectangular and T-beams", Earthquake Engineering Research Center, Report No. EERC 76-2, University of California at Berkeley, EUA.

Martinez-Romero E. (1993), "Experiences on the Use of Supplementary Energy Dissipators on Building Structures", Earthquake Spectra, Vol. 9, No. 3, pp. 581-625.

Meli R. (1976), "Bases para los criterios de diseño estructural del proyecto del reglamento de construcciones para el Distrito Federal", Serie Azul del Instituto de Ingeniería, UNAM, México. No. 375, Junio, pp. 137-157.

Meli R. (2000), "Diseño estructural", Limusa, México, D. F., 596 pp.

Meli R., Mendoza, C. J. (1991), "Reglas de verificación de calidad del concreto", Revista de Ingeniería LXI, México.

Mendoza C. J. (1984), "Propiedades mecánicas de los concretos fabricados en el Distrito Federal", Tesis de Maestría, División de Estudios de Posgrado, Facultad de Ingeniería, UNAM, México.

Mendoza C. J. (1991), "Evaluación de la resistencia del concreto en la estructura por medio del ensaye de corazones", Revista de Construcción y Tecnología, IMCYC, Vol. III, No. 34, Marzo, pp. 6-11.

Mirza S. A. y McGregor, J. G. (1979a), "Variability in dimensions of reinforced concrete members", ASCE Journal of Structural Division, Vol. 105, No. ST4, Abril, pp. 751-766.

Mirza S. A. y McGregor, J. G. (1979b), "Variability of mechanical properties of reinforcing bars", ASCE Journal of Structural Division, Vol. 105, No. ST5, Mayo, pp. 921-937.

Ordaz M., Arboleda, J. y Singh, S. K. (1995), "A scheme of random summation of an empirical Green's function to estimate ground motions from future large earthquakes", Bulletin of the Seismological Society of America, Vol. 85, No. 6, pp. 1635-1647.

Ordaz M. y Montoya, C. (2001), "Programa Degtra A4, versión 2.0.10", Instituto de Ingeniería, UNAM, y CENAPRED, México.

Park Y. J. y Ang, A. H-S (1984), "Mechanistic seismic damage model for reinforced concrete", ASCE Journal of the Structural Division, Vol. 110, pp. 722-739.

Paulay T. y Priestley M. J. N. (1992), "Seismic Design of Reinforced Concrete and Masonry Buildings", John Wiley & Sons, Inc., 744 pp.

Perry C. L., Fierro, E. A., Sedarat, H. y Roger, E. (1993), "Seismic Upgrade in San Francisco Using Energy Dissipation Devices", Earthquake Spectra, Vol. 9, No. 3, pp. 559-579.

Pier J. y Cornell, A. (1973), "Spatial and temporal variability of live loads", ASCE Journal of the Structural Division, Vol. 99, No. ST5, Mayo, pp. 903-922.

Presichi D. (2007), "Aplicación de los métodos estático y dinámico modal para el diseño sísmico de edificios con disipadores de energía", Tesis de maestría, Programa de Maestría y Doctorado en Ingeniería, UNAM, México.

Qi X. y Moehle, J. P. (1991), "Displacement design approach for reinforced concrete structures subjected to earthquakes", Report No. UCB/EERC-91/02, University of California at Berkeley.

Rangel J. G. (2007), "Funciones de confiabilidad sísmica de sistemas estructurales con elementos disipadores de energía", Tesis de maestría, Programa de Maestría y Doctorado en Ingeniería, UNAM, México.

Rodríguez M. y Botero, J. C. (1996), "Aspectos del comportamiento sísmico de estructuras de concreto reforzado considerando las propiedades mecánicas de aceros de refuerzo producidos en México", Serie Azul del Instituto de Ingeniería, UNAM, México, No. 575, Enero.

Rubinstein Reuven Y. (1981), "Simulation and the Monte Carlo Method", John Wiley & Sons, 278 pp.

Ruiz E., Mejía, R. y Ruiz, E. (1996), "Análisis comparativo de dos marcos: uno diseñado convencionalmente, y otro con dispositivos TADAS", Revista de Ingeniería Sísmica, No. 53, pp. 37-48.

Sampayo A., Ruiz, S. E., Soriano, A., Vázquez, J. M. y Cervantes, G. (2001), "Cargas vivas máximas para salones de clase", Serie Azul del Instituto de Ingeniería, UNAM, México, No. 621, Abril.

Scribner C. F. y Wight, J. K. (1978), "Delaying shear strength decay in reinforced concrete flexural members and large load reversals", Report No. UMEE 78R2, Department of Civil Engineering, University of Michigan, Michigan, EUA.

SEAOC (1995), "Structural Engineers Association of California, Performance Based Seismic Engineering of Buildings", informe final del Comité VISION 2000, Vols. 1 y 2.

Segui W. T. (2000), "Diseño de estructuras de acero", Segunda edición, Internacional Thomson Editores, México.

Soriano A. y Ruiz, S. E. (1997), "Análisis teórico de cargas vivas en edificios", Serie Azul del Instituto de Ingeniería, UNAM, México, No. 586, Febrero.

Tehranizadeh M. (2001), "Passive energy dissipation device for typical steel frame building in Iran", Engineering Structures, No. 23, pp. 643-655.

Tena-Colunga A. (1997), "Mathematical modelling of the ADAS energy dissipation device", Engineering Structures, No.10, Great Britain, pp. 812-821.

Tena-Colunga A. (1998b), "Modelado analítico de edificios con disipadores de energía, aplicaciones en proyectos de reestructuración", Memorias, V Simposio Nacional de Ingeniería Sísmica: Disipadores de energía para controlar la respuesta sísmica de edificios, Toluca, Estado de México, pp. 85-120, Septiembre.

Tena-Colunga A. (2000), "Modelado analítico de edificios con disipadores de energía", Revista de Ingeniería Sísmica, No. 62, pp. 29-62.

Townsend W. H. y Hanson, R. D. (1977), "Reinforced concrete connection hysteresis loops", Publication ACI SP53-13, pp. 351-370.

Tsai K.-C., Chen, H.-W., Hong, C.-P. y Su, Y.-F. (1993), "Design of Steel Triangular Plate Energy Absorbers for Seismic-Resistant Construction", Earthquake Spectra, Vol. 9, No. 3, pp. 505-528.

Tyler R. G. (1978), "Tapered steel cantilever energy absorbers", Bulleting of the N. Z. Nat. Soc. for Earthquake Eng. 11(4): pp. 282-294.

Uzumeri S. M. (1977), "Strength and ductility of cast-in-place beam-column joints", Publication ACI SP53-13, pp. 283-350.

Wang M. L. y Shah, S. P. (1987), "Reinforced concrete hysteresis model based on the damage concept", Earthquake Engineering and Structural Dynamics, Vol. 15, pp. 993-1003.

Whittaker A. S., Bertero, V. V., Thompson, C. L. y Alonso, L. J. (1989), "Earthquake simulator testing of steel plate added damping and stiffness elements", Report UCB/EERC-89/02, Earthquake Engineering Research Center, University of California at Berkeley.

Whittaker A. S., Bertero, V. V., Thompson, C. L. y Alonso, L. J. (1991), "Seismic Testing of Steel Plate Energy Dissipation Devices", Earthquake Spectra, Vol. 7, No. 4, pp. 563-604.

APÉNDICE A

DISTRIBUCIÓN NORMAL PARA LA SIMULACIÓN DE LOS DISIPADORES DE ENERGÍA

Como primer intento para la simulación de los disipadores de energía, se emplea el método de simulación de dos variables aleatorias independientes, siguiendo el siguiente procedimiento. Las variables para aplicar el método, son; la rigidez de los disipadores de energía y el módulo de elasticidad del acero con que se construyen los dispositivos.

Una variable aleatoria X tiene una distribución normal si la función de densidad de probabilidad es

$$f_x(x) = \frac{1}{\sigma\sqrt{2\pi}} \exp\left[-\frac{(x-\mu)^2}{2\sigma^2}\right], \qquad -\infty < x < \infty.$$
(A.1)

Se denota $N(\mu, \sigma^2)$. Aquí μ es la media y σ^2 es la varianza. Entonces $X = \mu + \sigma Z$, donde Z es la variable normal estándar detonada por N(0,1), y solo consideramos la generación de N(0,1).

Si, U_1 y U_2 son variables aleatorias independientes de U(0,1), entonces las variables Z_1 y Z_2 son normales e independientes:

$$Z_1 = \left(-2\ln U_1\right)^{1/2} \cos 2\pi U_2 \tag{A.2}$$

$$Z_2 = (-2\ln U_1)^{1/2} sen 2\pi U_2$$
(A.3)

Algoritmo para la generación de números aleatorios normales (dos variables independientes) e independientes (Rubinstein, 1981).

Algoritmo

- 1. Generar dos variables aleatorias independientes U_1 y U_2 de U(0,1).
- 2. Calcular Z_1 y Z_2 simultáneamente de las ecuaciones A.2 y A.3.

APÉNDICE B

DISTRIBUCIÓN MULTINORMAL EMPLEADA PARA LA GENERACIÓN DE NÚMEROS ALEATORIOS

Se aplica el siguiente procedimiento para la simulación de los dispositivos disipadores de energía (Rubinstein, 1981), tomando como variables a las rigideces de los elementos y el esfuerzo de fluencia del material de fabricación de los mismos, se considera también que existe una correlación de 0.9 entre estas dos variables. Al final se da un algoritmo para la simulación.

Un vector aleatorio $X = (X_1, ..., X_n)$ tiene una distribución multinormal si la función de densidad de probabilidad está dada por

$$f_{x}(X) = \frac{1}{(2\pi)^{n/2} |\Sigma|^{1/2}} \exp\left[-\frac{1}{2}(x-\mu)^{T} \Sigma^{-1}(x-\mu)\right]$$
(B.1)

y denotada por $N(\mu, \Sigma)$.

Aquí $\mu = (\mu_1, ..., \mu_n)$ es el vector de valores medios (medio), Σ es la matriz de covarianza (n * n)

$$\Sigma = \begin{vmatrix} \sigma_{11} & \sigma_{12} & . & . & \sigma_{1n} \\ \sigma_{21} & \sigma_{22} & . & . & \sigma_{2n} \\ . & . & & . \\ . & . & & . \\ . & . & & . \\ \sigma_{n1} & \sigma_{n2} & . & . & \sigma_{nn} \end{vmatrix},$$
(B.2)

la cual es positiva y simétrica, $|\Sigma|$ es el determinante de Σ , y Σ^{-1} es la matriz inversa de Σ . Cuando Σ se define de forma simétrica y positiva, existe una única matriz triangular inferior

tal que

$$\Sigma = CC^T . \tag{B.4}$$

Así el vector X puede ser representado como

$$X = CZ + \mu, \tag{B.5}$$

donde $Z = (Z_1,...,Z_n)$ es un vector normal con media cero y matriz de covarianza igual a la matriz identidad, esto es, todos los componentes de Z_i , i = 1,...n, de Z están distribuidos de acuerdo con la distribución normal estándar N(0,1).

Para obtener *C* de $\Sigma = CC^{T}$ el método llamado "método de la raíz cuadrada" puede ser usado, el cual provee una serie de fórmulas recursivas para el cálculo de los elementos de *C*.

De la ecuación B.5 se tiene que

$$X_1 = c_{11} Z_1 + \mu_1 \,. \tag{B.6}$$

Por tanto, $var X_1 = \sigma_{11} = c_{11}^2$ y $c_{11} = \sigma_{11}^{1/2}$. Siguiendo con la ecuación B.5 obtenemos

$$X_2 = c_{21}Z_1 + c_{22}Z_2 + \mu_2 \tag{B.7}$$

у

$$var X_2 = \sigma_{22} = var(c_{21}Z_1 + c_{22}Z_2).$$
(B.8)

De las ecuaciones B.6 y B.7

$$E[(X_1 - \mu_1)(X_2 - \mu_2)] = \sigma_{12} = E[c_{11}Z_1(c_{21}Z_1 + c_{22}Z_2)].$$
(B.9)

De B.8 y B.9

$$c_{21} = \frac{\sigma_{12}}{c_{11}} = \frac{\sigma_{12}}{\sigma_{11}^{1/2}}$$
(B.10)

$$c_{22} = \left(\sigma_{22} - \frac{\sigma_{21}^2}{\sigma_{11}}\right)^{1/2}$$
(B.11)

Generalizando, c_{ij} puede ser determinado con la siguiente fórmula recursiva:

$$c_{ij} = \frac{\sigma_{ij} - \sum_{k=1}^{j-1} c_{ik} c_{jk}}{\left(\sigma_{jj} - \sum_{k=1}^{j-1} c_{jk}^2\right)^{1/2}}$$
(B.12)

Donde

$$\sum_{k=1}^{0} c_{ik} c_{jk} = 0, \quad 1 \le j \le i \le n.$$

El siguiente algoritmo describe los pasos necesarios para generar una variable multinormal.

Algoritmo

1. Generar $Z = (Z_1, ..., Z_n)$ con N(0,1).

2.
$$c_{ij} = \frac{\sigma_{ij} - \sum_{k=1}^{j-1} c_{ik} c_{jk}}{\left(\sigma_{jj} - \sum_{k=1}^{j-1} c_{jk}^2\right)^{1/2}}$$
, donde $\sum_{k=1}^{0} c_{ik} c_{jk} = 0$, $1 \le j \le i \le n$.

- 3. $X \leftarrow CZ + \mu$.
- 4. Guarda X.

APÉNDICE C

ARCHIVO DE ENTRADA PARA EL PROGRAMA DRAIN-2D

Se presentan las secciones A, B1, B2, B3, B4, B5, B6, C1, C2, C3 (a), C4, D1, D5 y el bloque donde se agregan los disipadores de energía y sus contravientos para el archivo de entrada del programa DRAIN-2D (Kanaan y Powell, 1973), para el sistema estructural con disipadores de energía ADAS.

En esta parte se da inicio al programa y se ordenan los datos como lo especifica el manual.

START STOP EDIFICIO_13_NIVELES_SISTEMACONDISIPADOR
126 27 9 1 13 13 3 0 0 013 7 7 1 1 0 1 0 0 0
$1.0\ 1.0\ 1.0\ 1.0\ 1.0\ 1.0\ 1.0\ 1.0\ $
350.00 300.00 300.00 300.00 300.00 300.00 300.00 300.00 300.00 300.00 300.00 300.00 300.00
1 0.000 0.000
2 700.000 0.000
3 1050.000 0.000
4 1400.000 0.000
5 2100.000 0.000
6 2210.000 0.000
7 2910.000 0.000
8 3610.000 0.000
9 4310.000 0.000
10 0.000 350.000
11 700.000 350.000
12 1050.000 350.000
13 1400.000 350.000
14 2100.000 350.000
15 2210.000 350.000
16 2910.000 350.000
17 3610.000 350.000
18 4310.000 350.000
118 0.000 3950.000
120 1050.000 3950.000
121 1400.000 3950.000
122 2100.000 3950.000
123 2210.000 3950.000
124 2910.000 3950.000
125 3010.000 3950.000
12 120 11 9 0.000
14 122 11 9 0.000
15 123 11 9 0.000
16 124 11 9 0.000
17 125 11 9 0.000
18 126 11 9 0.000
1 1 1 1 9 1
1 8 10 11 13 14 15 16 17 18
1 8 19 20 22 23 24 25 26 27
1 8 28 29 31 32 33 34 35 36
1 8 37 38 40 41 42 43 44 45
1 8 46 47 49 50 51 52 53 54
1 8 55 56 58 59 60 61 62 63
1 8 64 65 67 68 69 70 71 72
1 8 73 74 76 77 78 79 80 81
1 8 82 83 85 86 87 88 89 90
1 8 91 92 94 95 96 97 98 99
1 8 100 101 103 104 105 106 107 108
1 8 109 110 112 113 114 115 116 117

1	8 118 119	9 121 12	22 123	124	125	126	
10	216.374	0.000	0.000			1.000	
19	216.820	0.000	0.000			1.000	
28	212.809	0.000	0.000			1.000	
37	209.178	0.000	0.000			1.000	
46	209.130	0.000	0.000			1.000	
55	204.055	0.000	0.000			1.000	
64	199.336	0.000	0.000			1.000	
73	195.377	0.000	0.000			1.000	
82	192.641	0.000	0.000			1.000	
91	190.113	0.000	0.000			1.000	
100	182.000	0.000	0.000			1.000	
109	179.238	0.000	0.000			1.000	
110	109.333	0.000	1,000	1.0	00	0.000	0.000
10	0.000 1	1880 36	1.000	1.0	00	0.000	0.000
11	0.000 -1	2145 54	0.00	0	0		
13	0.000 -2	2145.54	0.00	0	0		
14	0.000 -1	2145.54	0.00	0	0		
15	0.000 -1	2491.12	0.00	ő	0		
16	0.000 -2	212151.12	0.00	õ	õ		
17	0.000 -2	2145.54	0.00	ŏ	ŏ		
18	0.000 -1	4889.36	0.00	Ő	0		
19	0.000 -1	4889.36	0.00	Ő	0		
20	0.000 -2	2145.54	0.00	Õ	Õ		
22	0.000 -2	2145.54	0.00	0	0		
23	0.000 -1	2491.12	0.00	0	0		
24	0.000 -1	2491.12	0.00	0	0		
25	0.000 -2	2145.54	0.00	0	0		
26	0.000 -2	2145.54	0.00	0	0		
27	0.000 -1	4889.36	0.00	0	0		
28	0.000 -1	3965.77	0.00	0	0		
29	0.000 -2	1221.96	0.00	0	0		
31	0.000 -2	1221.96	0.00	0	0		
32	0.000 -1	1567.53	0.00	0	0		
33	0.000 -1	1567.53	0.00	0	0		
34	0.000 -2	1221.96	0.00	0	0		
35	0.000 -2	1221.96	0.00	0	0		
36	0.000 -1	3965.77	0.00	0	0		
37	0.000 -1	3965.77	0.00	0	0		
38	0.000 -2	1221.96	0.00	0	0		
40	0.000 -2	1221.96	0.00	0	0		
41	0.000 -1	1567.53	0.00	0	0		
42	0.000 -1	1567.53	0.00	0	0		
43	0.000 -2	1221.96	0.00	0	0		
44	0.000 -2	1221.96	0.00	0	0		
45	0.000 -1	3965.77	0.00	0	0		
46	0.000 -1	3965.77	0.00	0	0		
4/	0.000 -2	1221.96	0.00	0	0		
49 50	0.000 -2	1221.90	0.00	0	0		
50	0.000 -1	1567.55	0.00	0	0		
51	0.000 -1	1221.06	0.00	0	0		
52	0.000 -2	1221.90	0.00	0	0		
53	0.000 -2	3065 77	0.00	0	0		
55	0.000 -1	2729 36	0.00	0	0		
56	0.000 -1	9985 54	0.00	Ő	0		
58	0.000 -1	9985 54	0.00	ő	0		
59	0.000 -1	0331 12	0.00	õ	õ		
60	0.000 -1	0331.12	0.00	õ	õ		
61	0.000 -1	9985.54	0.00	ő	0		
62	0.000 -1	9985.54	0.00	Ő	0		
63	0.000 -1	2729.36	0.00	õ	õ		
64	0.000 -1	2729.36	0.00	0	0		
65	0.000 -1	9985.54	0.00	0	0		
67	0.000 -1	9985.54	0.00	0	0		
68	0.000 -1	0331.12	0.00	0	0		
69	0.000 -1	0331.12	0.00	0	0		
70	0.000 -1	9985.54	0.00	0	0		
71	0.000 -1	9985.54	0.00	0	0		

72	0.000 -12729.36	0.00	0	0		
73	0.000 -12729.36	0.00	0	0		
74	0.000 -19985.54	0.00	0	0		
76	0.000 -19985.54	0.00	0	0		
77	0.000 -10331.12	0.00	0	0		
78	0.000 -10331.12	0.00	0	0		
79	0.000 -19985.54	0.00	0	0		
80	0.000 -19985.54	0.00	0	0		
81	0.000 -12729.36	0.00	0	0		
82	0.000 -12090.67	0.00	0	0		
83	0.000 -19346.85	0.00	0	0		
85	0.000 -19346.85	0.00	0	Õ		
86	0.000 -9692.43	0.00	0	Õ		
87	0.000 -9692.43	0.00	Ő	Ő		
88	0.000 -19346.85	0.00	0	0		
89	0.000 -19346.85	0.00	0	0		
00	0.000 -17540.85	0.00	0	0		
01	0.000 - 12090.07 0.000 - 12090.67	0.00	0	0		
02	0.000 -12090.07	0.00	0	0		
92	0.000 -19340.83	0.00	0	0		
94	0.000 -19540.85	0.00	0	0		
95	0.000 -9692.43	0.00	0	0		
90	0.000 - 9692.43	0.00	0	0		
97	0.000 -19346.85	0.00	0	0		
98	0.000 -19346.85	0.00	0	0		
99	0.000 -12090.67	0.00	0	0		
100	0.000 -11412.19	0.00	0	0		
101	0.000 -18668.37	0.00	0	0		
103	0.000 -18668.37	0.00	0	0		
104	0.000 -9013.95	0.00	0	0		
105	0.000 -9013.95	0.00	0	0		
106	0.000 -18668.37	0.00	0	0		
107	0.000 -18668.37	0.00	0	0		
108	0.000 -11412.19	0.00	0	0		
109	0.000 -11412.19	0.00	0	0		
110	0.000 -18668.37	0.00	0	0		
112	0.000 -18668.37	0.00	0	0		
113	0.000 -9013.95	0.00	0	0		
114	0.000 -9013.95	0.00	0	0		
115	0.000 -18668.37	0.00	0	0		
116	0.000 -18668.37	0.00	0	0		
117	0.000 -11412.19	0.00	0	0		
118	0.000 -9049.29	0.00	0	0		
119	0.000 -16305.47	0.00	0	0		
121	0.000 -16305.47	0.00	0	Õ		
122	0.000 -6651.05	0.00	0	Õ		
123	0.000 -6651.05	0.00	Ő	Ő		
124	0.000 -16305.47	0.00	Ő	Ő		
125	0.000 - 16305.47	0.00	0	0		
125	0.000 -90/9.29	0.00	0	0		
8630	0.000 - 0.049.29	0.00	0	0		
0.57		66 0	იიი			
11	2 20 11 20 20	20 10	, (, 1	7 20		
11 56	2 20 11 29 20 17 65 56 71 25	20 25 83 7	, 4 1 (1 30		
101	-+/ UJ JU /4 03	0.5 /· 10	+ >	·2 03		
101	92 110 101 119 1	10				

Este bloque de datos es el que corresponde a los disipadores de energía y contravientos, además de los parámetros para considerar la interacción suelo estructura, y es también el final del programa. Ver manual del DRAIN para más información.

0

7	203	0000		0.00	1′	23 071	2530.0	0 -3914 720
0	203	0000		0.00	10	23.771	2520.0	0 2280 420
0	203	0000		0.00	1	1 262	2530.0	0 -3380.430
9	203	9000		0.00		91.303	2530.0	0-2885.040
10	203	9000	9	0.00		/6.514	2530.0	0 -2416.160
11	203	9000	(0.00	(50.740	2530.0	0 -1918.030
12	203	9000	(0.00	4	43.696	2530.0	0 -1379.830
13	203	9000	(0.00	1	35.336	2530.0	0 -1115.820
14	203	9000	(0.05	10	03.224	2380.19	0 -2380.190
15	203	9000	(0.05	-	73.482	3292.50	0 -3292.500
16	203	9000	(0.05	(52.462	3763.91	0 - 3763.910
17	203	9000		0.05		55 614	4051 49	0 -4051 490
18	203	0000		0.05	7	53 /61	3070 0/	2 -3979 042
10	203	0000		0.05	7	51 900	2707.09	0 2707 880
19	203	0000		0.05		11.077	2700.24	2 2700 242
20	203	9000		0.05	4	+/.0/1	3/99.34	3-3/99.343
21	203	9000	(0.05	4	40.646	3887.99	0 -3887.990
22	203	9000	(0.05	-	34.690	3911.02	4 -3911.024
23	203	9000	(0.05	4	29.052	3822.90	0 -3822.900
24	203	9000	(0.05	4	23.062	3655.61	0 -3655.610
25	203	9000	(0.05		16.591	3489.52	7 -3489.527
26	203	9000	(0.05		13.417	2212.55	1 -2212.551
1	2	12	0	1	1	0		
2	4	12	0	1	1	0		
2	11	21	0	2	1	0		
3	11	21	0	2	1	0		
4	13	21	0	2	1	0		
5	20	30	0	3	1	0		
6	22	30	0	3	1	0		
7	29	39	0	4	1	0		
8	31	39	0	4	1	0		
9	38	48	0	5	1	0		
10	40	48	0	5	1	0		
11	47	57	Ő	6	1	Ő		
12	10	57	0	6	1	0		
12	49 56	66	0	7	1	0		
13	50	00	0	7	1	0		
14	28	00	0	/	1	0		
15	65	/5	0	8	1	0		
16	6/	15	0	8	1	0		
17	74	84	0	9	1	0		
18	76	84	0	9	1	0		
19	83	93	0	10	1	0		
20	85	93	0	10	1	0		
21	92	102	0	11	1	0		
22	94	102	0	11	1	0		
23	101	111	0	12	1	0		
24	103	111	Ő	12	1	Õ		
25	110	120	0	13	1	õ		
25	110	120	0	12	1	0		
20	112	120	0	13	1	1		
27	11	12	0	14	1	1		
28	20	21	0	15	1	0		
29	29	30	0	16	1	0		
30	38	39	0	17	1	0		
31	47	48	0	18	1	0		
32	56	57	0	19	1	0		
33	65	66	0	20	1	0		
34	74	75	0	21	1	0		
35	83	84	0	22	1	0		
36	02	03	ő	23	1	õ		
20	101	102	0	23	1	0		
21	110	102	0	24 25	1	0		
38	110	111	0	25	1	U		
39	119	120	0	26	1	0		
2732	680.0)()	8	6927	.50			
7.504	165E	12 6	.89	680E	09			
STO	Р							