Vniver4dad NacionaL AvFn9ma de Mexico

UNIVERSIDAD NACIONAL AUTONOMA DE MEXICO

PROGRAMA DE MAESTRIA Y DOCTORADO EN INGENIERIA

FACULTAD DE QUIMICA

DESARROLLO Y EVALUACIÓN DE UN PROCEDIMIENTO DE CÁLCULO PARA PREDECIR LA FORMACIÓN DE HIDRATOS DEL GAS NATURAL

T E S I S

QUE PARA OPTAR POR EL GRADO DE:

MAESTRO EN INGENIERIA

INGENIERIA QUIMICA - PROCESOS P R E S E N T A :

I.Q. LUZ EUGENIA LUNA RODRÍGUEZ

TUTOR: DR. JOSÉ FERNANDO BARRAGÁN AROCHE

Universidad Nacional Autónoma de México

UNAM – Dirección General de Bibliotecas Tesis Digitales Restricciones de uso

DERECHOS RESERVADOS © PROHIBIDA SU REPRODUCCIÓN TOTAL O PARCIAL

Todo el material contenido en esta tesis esta protegido por la Ley Federal del Derecho de Autor (LFDA) de los Estados Unidos Mexicanos (México).

El uso de imágenes, fragmentos de videos, y demás material que sea objeto de protección de los derechos de autor, será exclusivamente para fines educativos e informativos y deberá citar la fuente donde la obtuvo mencionando el autor o autores. Cualquier uso distinto como el lucro, reproducción, edición o modificación, será perseguido y sancionado por el respectivo titular de los Derechos de Autor.

Jurado Asignado:

Presidente:	Dr. Martín Guillermo Hernández Luna			
Secretario:	Dr. Milton Thadeu García Medeiros De Oliveira			
Vocal:	M.I. Bernardo Carreón Calderón			
1 ^{er.} Suplente:	Dr. Yuri Fairuzov			
2 ^{do.} Suplente:	Dr. José Fernando Barragán Aroche			

Lugar donde se realizó la tesis:

Conjunto E. Departamento de Ingeniería Química. Facultad de Química. UNAM.

Tutor de tesis:

Dr. José Fernando Barragán Aroche

Sustentante:

I.Q. Luz Eugenia Luna Rodríguez

AGRADECIMIENTOS

A la Universidad Nacional Autónoma de México

A la Facultad de Química

Al Conacyt por el apoyo otorgado para realizar mis estudios

A todos mis profesores de la Facultad de Química a quienes siempre recordaré por su excelente labor, por su paciencia, y porque siempre nos han impulsado a ser mejor cada día.

Al Dr.Fernando Barragán, mi asesor, por el apoyo incondicional para terminar este trabajo. Por sus grandes enseñanzas, comprensión, por su gentileza y humildad que siempre lo han caracterizado. Gracias Fer.

A mis sinodales, Dr. Martín Hernández Luna, Dr. Bernardo Carreón Calderón, Dr. Milton García Medeiros y Dr. Yuri Fairuzov por su tiempo y dedicación para supervisar este trabajo.

A mis compañeros y amigos de la maestría: Sarai, Diana, Daniel. Gracias por compartir esta bonita y excelente experiencia de estudiar juntos y compartir momentos inolvidables. Mil gracias por todos sus consejos.

A toda la banda de Química: Salvador, Katy, Lorena, Eder, Selene, Ernesto, Almita, Pablo, aunque no estemos cerca siempre han sido parte importante en mi vida.

Dedicatorias

A mi Madre, la persona que se merece todo mi agradecimiento y cariño por estar siempre a mi lado, cuidarme y apoyarme incondicionalmente en los momentos difíciles.

Gracias Ma te quiero mucho.

Índice

1	Resumen Introducción	 2
	1.1. Estimaciones de los recursos mundiales de metano en los hidratos de gas y como recurso energético	3
2	Canaralidadaa da laa hidrataa	0
Ζ	2 1 Historia da las hidratas	0
	2.1 Historia de los filuratos	0
	2.2 Deninición y estructuras.	9 10
	2.2.1 Estructura de los muratos	17
	2.3 Curva de formación de hidratos de metano	14
	2.5 Mecanismos de formación y descomposición de hidratos de das	17
	2.5 1 Cinética de descomposición del hidrato	19
	2.6. Propiedades físicas y termodinámicas	20
	2.7 Generalidades sobre la presión v temperatura en aguas profundas	21
	2.7.1 Condiciones de temperatura y densidad de los fluidos	22
	2.7.2 Los efectos de la formación de hidratos durante las operaciones de control de pozos.	23
	2.8 Métodos de prevención	24
	2.9 Posibles usos alternativos de los hidratos de gas	24
	2.10 Impacto en el clima global	25
3	Planteamiento del Modelo	28
	3.1 Modelo de van der Waals y Platteeuw	29
	3.1.1 Analogía con la adsorción de Langmuir	31
	3.2 Modelo de Parrish y Prausnitz	32
	3.2.1 Potencial químico del agua en el hidrato	32
	3.2.2 Potencial químico del agua en la fase líquida	39
	3.3 Modificaciones al modelo	43
	3.3.1 Relaciones adicionales propuestas al modelo de Parrish y Prausnitz	46

4	Resultados y Conclusiones	50
	4.1 Ajuste de datos y parámetros	50
	4.1.1 Modelo A	50
	4.1.2 Modelo B	60

4.1.3 Modelo C	61
4.2 Resultados para mezclas multicomponentes	85
4.3 Discusión de resultados	97
4.3.1 Resultados de los sistemas binarios	97
4.3.2 Resultados de las mezclas multicomponentes	100
4.4 Conclusiones	101
Apéndice A	104
A.1 Algoritmo de Cálculo Modelo A	105
A.2 Algoritmo de Cálculo Modelo B	106
A.3 Algoritmo de Cálculo Modelo C	107
A.4 Hoja de Cálculo	108
Bibliografía	116

Resumen

En el campo del manejo, acondicionamiento y transporte de gas natural en ductos se presenta el problema de la formación de fases sólidas que se componen de un sistema de agua-hidrocarburo denominado "hidrato". Si la formación de los hidratos no se controla provoca la obturación de equipos y de la línea de transporte. Con el fin de establecer los procedimientos de control es necesario determinar las condiciones en las cuales se favorece la formación de los hidratos. Para ello se requiere de simuladores soportados en modelos de equilibrio sólido-líquido-gas. En este trabajo se presentan los primeros resultados del desarrollo de un simulador de formación de hidratos en sistemas asociados al gas natural. Para esto se emplea el método de Parrish y Prausnitz (Parrish y Prausnitz, 1972) para predecir la formación de hidratos de mezclas gaseosas, el cual es un método termodinámico estadístico basado en la teoría de van der Waals y Platteeuw (van der Waals y Platteeuw, 1959).

En este estudio se propone un procedimiento que elimina la suposición de un cristal con entramado constante para diferentes huéspedes, de acuerdo con los resultados de la química cuántica (Zele y col., 1999). Este procedimiento consiste en modificar el potencial químico de referencia propuesto por Parrish y Prausnitz, haciéndolo específico para cada tipo de molécula huésped. Se proponen relaciones adicionales al modelo para obtener la diferencia del potencial químico para hidratos de gas multicomponentes a partir de la composición de la fase del hidrato y de la temperatura.

Con estas modificaciones al modelo se pretende considerar el efecto del cambio de dimensiones del entramado debido al tamaño molecular del huésped en el potencial químico de referencia. Esto para predecir las condiciones de equilibrio para hidratos formados a partir de gases puros, mezclas binarias, y para hidratos multicomponentes.

Los resultados obtenidos son comparados con los que se obtienen con el módulo "*Hydrate formation*" de un simulador comercial y contra datos experimentales reportados en la literatura. Obteniéndose para el modelo propuesto una aproximación similar en el cálculo de equilibrio en hidratos.

Capítulo1 Introducción

1. Introducción

Las condiciones de formación de los hidratos son de interés en la tecnología química, especialmente en la industria del gas natural.

En el campo del transporte de gas natural en ductos se presenta el problema de la formación de fases sólidas que se componen de un sistema agua y algunos gases no polares, los cuales se combinan a bajas temperaturas y a altas presiones para formar clatratos no estequiométricos llamados *hidratos de gas*. Las moléculas de agua en los hidratos están unidas a otras por medio de los enlaces de hidrógeno para construir un entramado anfitrión con cavidades poliédricas que son lo suficientemente grandes para ser ocupadas por moléculas de gas pequeñas, tales como hidrocarburos parafínicos de bajo peso molecular como el metano, hasta el n-butano, algunas olefinas, y algunos de los componentes no hidrocarbónicos como CO₂, N₂ y H₂S.

Si la formación de los hidratos no se controla se provoca la obturación de la línea de transporte. Con el fin de establecer los procedimientos de control es necesario determinar las condiciones en las cuales se favorece la formación de los hidratos; ya que es indispensable para el diseño y operación de equipos de procesos en la industria petrolera.

Los modelos predictivos de la formación de hidratos, permiten calcular el punto incipiente de formación del sólido. Estos modelos están basados en los principios termodinámicos fundamentales y emplean una ecuación de estado para el cálculo de las condiciones de equilibrio. Además se pueden aplicar a varias composiciones y condiciones extremas de operación con más grado de confiabilidad a diferencia de aquellos métodos que se basan en expresiones empíricas.

Wilcox (y col. 1941) presentó diagramas de factores K para predecir la formación de hidratos en mezclas de gases. Sin embargo, debido a sus bases estrictamente empíricas, estos diagramas pueden dar resultados erróneos para condiciones diferentes a las que fueron realizadas.

El único requisito para la formación de hidratos es que una cantidad suficiente de agua debe estar presente en el vapor o en la fase condensada del hidrocarburo con los componentes formadores de hidratos. Una vez que una temperatura y una presión favorables son alcanzadas (esto es, temperaturas bajas cercanas a cero grados centígrados, sin variaciones bruscas de presión y con

condiciones de alta presión) la mezcla de moléculas formadoras de hidratos y las moléculas de agua tienden a formar una fase sólida no estequiométrica.

El gas natural normalmente se encuentra en el yacimiento en contacto con agua; en consecuencia, este gas contiene cantidades sustanciales de vapor de agua cuando se está produciendo en los pozos. En los hidratos el agua constituye aproximadamente el 90% en peso y el 10% restante está constituido por uno o más de los componentes formadores de hidratos.

Los hidratos han sido estudiados como una posible fuente de energía, para el almacenamiento de gas natural (Miller y Strong, 1946), para la desalinación del agua de mar (Knox y col. 1961; Barduhn, A. J. 1967), y como un medio para almacenar CO₂ (Herzog, 1998). El último uso está dirigido a reducir las emisiones de CO₂ a la atmósfera, para evitar la contribución de este gas con el fenómeno de calentamiento global. Recientemente, el papel de los hidratos en la obstrucción de las líneas de transmisión ha tenido mayor atención debido a la necesidad de transporte submarino de gas y aceite que contienen agua. Estimaciones recientes sugieren la existencia de enormes cantidades de metano en forma de hidrato en los lechos marinos, lo que abre la posibilidad de una nueva fuente de energía (Sloan, 1998).

Para evitar o inhibir la formación de hidratos, se establecen las condiciones de operación fuera de la curva de equilibrio predicha para los hidratos, o inyectar solventes inhibidores tales como glicoles o alcoholes para suprimir la formación de hidratos. Los solventes sirven como agentes anticongelantes, y suprimen las condiciones de congelamiento de hidratos. Otras alternativas que se tienen para prevención de formación de hidratos son: inhibidores cinéticos, deshidratación por absorción, deshidratación por adsorción, calentamiento del gas a temperaturas mayores a la de formación de hidratos.

1.1 Estimaciones de los recursos mundiales de metano en los hidratos de gas y como recurso energético

Se ha comprobado que los hidratos existen en la naturaleza en dos tipos de áreas: la primera en el subsuelo en latitudes extremas con bajas temperaturas como Siberia y la segunda bajo el lecho del fondo marino en distintos lugares del orbe (Velásques R.M., 2004; Somoza L., 1998). El derretimiento y la disociación de los hidratos del gas en el fondo del océano y en regiones del permafrost (capa subterránea de hielo), y por lo tanto la liberación del metano, puede aumentar el

calentamiento global (Hatzikiriakos y col., 1993; 1994). Esto podía conducir a un ciclo de emisión de gases dando por resultado temperaturas globales uniformes más altas.

Los hidratos de gas no solamente existen en las condiciones de aguas frías y profundas de los fondos marinos. En el golfo de México se ha observado la presencia de hidratos desde aguas poco profundas, con temperaturas de hasta 20° C, hasta más de 2000 metros de profundidad (González P. 2002).

Se puede decir que un fragmento de hidrato de gas tiene la apariencia de un trozo de hielo, con una determinada concentración de gas en su interior. Si este trozo de hidrato es expuesto a condiciones semejantes a las que se tienen sobre la superficie de la tierra, por ejemplo, a 20° C y 1 atmósfera de presión, el volumen de gas es equivalente a 164 veces el volumen del sólido. Se ha comprobado que 1 m³ de hidratos de gas tomados del fondo marino se transforman en 164 m³ de gas y 0.84 m³ de agua en la superficie (Velásques R.M., 2004; Dillon W., 1992; Collet T. y col., 1998). Lo anterior se traduce en un alto potencial de energía, que a su vez incrementa el interés sobre estos materiales.

Aunque existen distintos tipos de gases que pueden llegar a conformar hidratos, se sabe que los más abundantes corresponden a los de metano. Las estimaciones de la cantidad de metano en los hidratos de gas son todavía inciertas y son producto de la especulación. Sin embargo, se estima que los hidratos de gas se distribuyen en todo el mundo y el conocimiento geológico de los depósitos de hidratos de gas es incompleto. En 1981 el "Petoleum Gas Committee" resumió esas estimaciones las cuales muestran un rango que fluctúa alrededor de 1.4x10¹³ m³ de gas metano, para las regiones árticas de permafrost y de 7.6x10¹⁸ m³ de gas metano en los sedimentos no oceánicos (González P. 2002). Las estimaciones mundiales actuales de la cantidad de gas metano en los depósitos de hidratos de gas, in situ, incluyendo las zonas con permafrost en tierra y en los sedimentos de los fondos oceánicos, fluctúan entre 2.1x10¹⁶ m³ de gas metano, según Mac Donald, 1990, y 4x10¹⁶ m³ de gas metano según Kvenvolden y Claypool, 1988 (González P. 2002). El mayor volumen de hidratos de gas se encuentra en los sedimentos de los fondos marinos. Si estas estimaciones son válidas, la cantidad de gas metano contenida en los hidratos de gas es casi dos órdenes de magnitud mayor que el total de metano comercial mundial, evaluado en 2.5x10¹⁴ m³ y alrededor de dos veces el carbono equivalente a todos los depósitos conocidos de combustibles fósiles (carbón, petróleo y gas natural) (Dillon W., 1992; González P. 2002).

Figura 1.1. Distribución de carbono en la tierra. Unidades 10¹⁵ toneladas de carbón. (Dillon W., 1992; González P. 2002)

Una estimación reciente de la cantidad de metano atrapado en hidratos establece un valor de 300 veces las reservas convencionales de Estados Unidos (Sloan, 1998). En Estados Unidos se realizaron estimaciones directas de metano en los sedimentos y de gas libre bajo las capas de hidratos y los resultados de estos estudios indican la existencia de enormes cantidades de metano almacenando en hidratos de gas en el Blake Ridge en la costa del Atlántico de Estados Unidos, y en los depósitos de gas libre bajo la capa de hidratos. El gas libre sí existe en suficiente cantidad puede ser recuperado primero y eventualmente los hidratos de gas pueden ser al mismo tiempo disociados artificialmente y recuperarse el metano por diferentes métodos (González P. 2002).

Se han descubierto depósitos de hidratos de gas en distintas partes del orbe; sin embargo, los que han sido mayormente investigados se encuentran frente a las costas de Japón, Estados Unidos y Canadá (Dillon W., 1992). El gas "in situ" en los hidratos en Estados Unidos, en tierra y costafuera se ha estimado en una cantidad que fluctúa entre 113,000 y 670,000 billones (10¹²) de pies cúbicos con un valor medio de 320,000 billones (10¹²) de pies cúbicos. En esta cifra no se considera el porcentaje de recuperación de gas de los hidratos (González P. 2002). El Servicio Geológico de Japón, basado en los estudios realizados en 1993 han estimado los recursos de hidratos de metano "in situ", en el margen continental de ese país, en aproximadamente 6 trillones de metros cúbicos (González P. 2002).

El MITI (Ministry of International Trade and Industry) ha manifestado que los hidratos de metano pueden ser la futura fuente nacional de energía de Japón. La Japan National Oil Corporation (JNOC) realizó, en 1996, levantamientos sísmicos, gravimétricos y magnetométricos en los márgenes continentales de Japón para explorar los posibles depósitos de hidratos de metano (González P. 2002). En la década de 1990 el Servicio Geológico de Japón y otras organizaciones nacionales iniciaron un estudio de factibilidad para la exploración y desarrollo de hidratos de gas en el presente siglo.

El gobierno de India, por otra parte ha iniciado un ambicioso proyecto de hidratos de gas natural, entre Madras y Calcuta y en el mar de Andeman, entre India y Mianmar. En este último lugar se estima que existen sobre 200 trillones de pies cúbicos de gas contenido en hidratos de gas. Para el gobierno de India el proyecto de hidratos de gas tiene suma importancia para suplir la demanda creciente de energía de ese país. El National Gas Hydrate Proyect de India programó perforar cinco pozos para inverstigar los hidratos de gas, en mares profundos a fines de la década de 1990 (González P., 2002).

Por otra parte en Chile se demostró la existencia de depósitos de hidratos de gas con contenido de metano y etano en el talud de margen continental en el área costafuera de la península de Taitao. Esta información ha incrementado el interés por los hidratos de gas como posible recurso energético del futuro de varios países. Sin embargo, deben resolverse incertidumbres geológicas y muchos problemas técnicos y económicos para que sea posible considerarlos como una opción de fuente abastecedora de metano.

Capítulo 2 Generalidades De los Hidratos

2. Generalidades de los hidratos

2.1 Historia de los hidratos

El descubrimiento de la existencia de depósitos de gas no convencionales bajo el fondo marino, prácticamente se debió a una casualidad, al descubrirse e intentar explicar el por qué en gráficas efectuadas mediante sistemas de medición de reflexión sísmica (Landín, S. V.; Castillo, B. F., 2007) (que permiten representar una "imagen de lo que hay o cómo está conformada la tierra bajo el fondo marino") aparecía un doble fondo muy marcado, es decir como un "doble eco", normalmente paralelo al lecho marino real. Con el tiempo logró determinarse que esto correspondía a la parte inferior de la capa de hidratos de gas y el "doble eco" se producía por el efecto que generaban las ondas acústicas, por el hecho de pasar de una zona más rígida de hidratos ("hielo" y rocas) a una con baja rigidez como se muestra en la Figura 2.1. Al límite inferior de la capa de hidratos de gas metano en forma libre, el cual no fluye hacia la superficie al verse atrapado por la misma capa de hidratos.

Figura 2.1. Ubicación de los hidratos en el fondo del mar

Los primeros registros sobre experimentación para el descubrimiento de los hidratos aparecen en 1811, gracias a la aportación de Sir Hymphrey Davy. Sin embargo, Priestley descubrió los hidratos treinta años antes que Davy, aunque no existen registros que lo confirmen (Sloan, 1998; Somoza

1998). En los siguientes 100 años a su descubrimiento, todos los estudios siguieron el mismo patrón:

- a) Un investigador descubre un nuevo hidrato.
- b) Se cuestiona la composición del nuevo hidrato.
- c) Se confirman las estructuras y mediciones hechas en anteriores investigaciones.

Posteriormente surgen dos aportaciones importantes por parte de dos investigadores franceses: Villar, quien determinó la existencia de hidratos de metano, etano y propano y, de Forcrand quien tabuló las temperaturas de equilibrio a una atmósfera para 15 componentes incluyendo gases naturales, con excepción del isobutano, el cual fue analizado por Von Stackelberg y Muller (1954).

Una vez que se tuvo el conocimiento de su existencia, surgieron diferentes métodos para determinar sus propiedades. Tal es el caso de Villard quien utilizó valores de calor de formación mayores y menores al punto de congelación. Este método permitió hacer mediciones mucho más sencillas, tanto de presión como de temperatura, que cualquier otro. Sin embargo, actualmente la llegada de las técnicas modernas microscópicas basadas en espectroscopia y termodinámica estadística, permite la determinación directa de las propiedades en fase hidrato, para diferentes compuestos (Sloan, 1998).

Los hidratos de manera natural se encuentran en el fondo de los océanos y en las zonas glaciares almacenando grandes cantidades de energéticos sin explotar, es por ello que representan una futura fuente de energía. Por otra parte, el interés por los hidratos, surge debido a que representan un problema para las líneas de transmisión de gas, ya que al formarse dentro de ellas bloquea el flujo, y es así como Hammerschmidt los analiza en 1934 (Sloan 1998; Somoza 1998).

Hay dos formas en que los hidratos pueden formar reservas energéticas de gas, la primera es por la acumulación de metano y otros hidrocarburos ligeros dentro de los mismos hidratos, y la segunda por la formación de trampas usando sedimentos cementados con hidratos como sello.

2.2 Definición y estructuras

Los hidratos de gas son miembros de un grupo de sólidos cristalinos llamados clatratos (Powell, 1948), que significa encerrar en una estructura, y consisten de uno o varios componentes huéspedes y agua. Cada huésped está atrapado en una estructura de agua (anfitrión) que forma un entramado cristalino que contienen muchas cavidades. Las moléculas de gas que ocupan las

cavidades estabilizan el entramado, el cual no puede existir sin moléculas huésped. La formación de las estructuras cristalinas de los hidratos de gas se debe a la hidratación hidrofóbica.

La adición de moléculas hidrofóbicas en agua tiene como consecuencia la hidratación hidrofóbica e interacciones hidrofóbicos. Estos fenómenos permiten que suceda la disolución, la tensión interfacial y la cristalización (hidratos de gas) (Yaminsky, V.; Vogler, E., 2001). La hidratación hidrofóbica se refiere a la estructura, termodinámica y propiedades dinámicas del agua alrededor de una sustancia apolar. Por otro lado, la interacción hidrofóbica es el efecto neto que el medio acuoso ejerce sobre sustancias apolares en él. La interacción hidrofóbica es conocida también como atracción, fuerza, enlace, efecto de hidratación, etc.

Los efectos hidrofóbicos juegan un papel muy importante en muchos procesos biológicos y químicos fundamentales, como el plegamiento y estabilización de proteínas y ácidos nucleicos, la conformación y equilibrio de asociación de pequeñas moléculas en agua, la formación de micelas y biomembranas, y la baja solubilidad de hidrocarburos y gases inertes en agua (Mancera, R.L.; Buckingham, A. D., 1995).

Se sabe que al hidratar solutos hidrofóbicos, las moléculas de agua forman poliedros truncados que envuelven la estructura o dominio molecular hidrofóbico. Estas estructuras poliédricas están formadas por pentágonos y hexágonos. El pentámero parece ser fundamental en los mecanismos de hidratación al proporcionar la curvatura necesaria para formar la "jaula" ordenada de moléculas de agua que rodean los dominios y estructuras más apolares, lo que se conoce como estructura de clatrato. Se ha discutido que el caparazón de solvatación de solutos no polares en agua debería parecerse a las jaulas que se forman en los clatratos.

Para solventes orgánicos, el proceso de formación de superficie (cavidad) y disolución son endotérmicos. El decremento de la tensión superficial es paralelo al incremento de solubilidad. Sin embargo, para el agua a aproximadamente temperatura ambiente esto no sucede. Para explicar esto, Frank y Evans (Yaminsky, V.; Vogler, E., 2001) sugirieron que el agua encierra solutos no polares en una estructura distorsionada la cual permite el mantenimiento de enlaces de hidrógeno que el agua no puede formar con el centro hidrofóbico. El carácter exotérmico del proceso, como en cristalización, es señal de un número incrementado de enlaces de hidrógeno en agua alrededor de soluto.

Las sustancias hidrofóbicas son incapaces de formar enlaces de hidrógeno con el agua. Con la presencia de estas sustancias la fuerte asociación que existe entre las moléculas de agua se ve perturbada, y esta perturbación depende del tamaño de las sustancias hidrofóbicas. El comportamiento hidrofóbico de estas sustancias controla la solubilidad de hidrocarburos en el agua. La hidratación hidrofóbica es un fenómeno colectivo en el cual se ven involucradas un gran número de moléculas de agua, y su comportamiento depende, o corresponde, al tamaño del soluto o de alguna superficie hidrofóbica (Yaminsky, V.; Vogler, E., 2001).

A principios del siglo XX William Harkins, concluyó que la solubilidad de hidrocarburos en agua era controlada por la fuerte asociación entre moléculas de agua. Harkins basó su conclusión en una comparación de tensiones interfaciales entre agua-agua, agua-hidrocarburos, e hidrocarburo-hidrocarburo, de las cuales es evidente que la energía de interacción agua-hidrocarburo es apenas suficiente para competir con la energía de interacción agua-agua. Así, con esto se afirmó que la leve solubilidad de hidrocarburos en agua es debida al hecho que el agua está fuertemente auto-asociada, no porque los hidrocarburos estén altamente auto-asociados, como lo había supuesto Langmuir. Aunque la energía de cohesión agua-agua es muchísimo más grande que la adhesión agua-hidrocarburo, las energías de interacción hidrocarburo-hidrocarburo son casi como aquellas entre el agua y los hidrocarburos. Entonces, realmente no se puede decir que exista fobia entre el agua y los hidrocarburos (Yaminsky, V.; Vogler, E., 2001).

La baja solubilidad de moléculas no polares en agua resulta del hecho que la transferencia de estas moléculas de soluto desde la fase gas a la solución acuosa diluida involucra un incremento en la energía libre de Gibbs estándar (ΔG°). ΔG° es la combinación de un pequeño decremento en la entalpía estándar (ΔH°) y un gran decremento en la entropía estándar (ΔS°) a temperaturas cercanas a la ambiente. La mayoría de las teorías estructurales propusieron explicar las observaciones termodinámicas antedichas confiados en la idea de que un soluto no polar incrementa el grado de enlaces de hidrogeno (icelikeness) de las moléculas de agua en el caparazón de solvatación para maximizar la atracción agua-agua y evitar el centro duro del soluto, con una contribución negativa a la entalpia y un decremento sustancial en la entropía del agua.

Este cambio negativo en la entropía vendría entonces como una consecuencia de algún ordenamiento o reestructuración de las moléculas del agua en el caparazón de hidratación del soluto para que ellas mantengan sus enlaces de hidrógeno (Mancera, R.L.; Buckingham, A. D., 1995). El decremento de la entropía estándar que determina el efecto hidrofóbico es proporcional

a la superficie del soluto (a mayor superficie encerrada, se produce mayor orden en el disolvente y menor es la entropía de la disolución). Por otro lado, al diluir un soluto parcial o totalmente apolar en agua, la capacidad calorífica de la disolución aumenta respecto al agua sola, puesto que la formación de estructuras de agua alrededor del soluto supone un aumento de la energía necesaria para aumentar la temperatura de la disolución, al tener que romperse estructuras con más cohesión que en el líquido puro.

2.2.1 Estructura de los hidratos

Varias estructuras de hidratos son conocidas (Jeffrey; McMullan, 1967), pero la mayoría de los gases no polares y algunos gases débilmente polares forman una de las dos estructuras conocidas como tipos I y II, éstas se forman con huéspedes relativamente pequeños, por ejemplo, metano, nitrógeno, etano, etc. La estructura de los hidratos de gas fue determinada por Von Stackelberg y Muller (1954) con el uso de técnicas de difracción de rayos-X. Las propiedades físicas de las dos estructuras se muestran en la Tabla 2.1. La celda unitaria de cada estructura contiene varias cavidades de dos tamaños diferentes. La composición ideal del hidrato corresponde a la ocupación de todas las cavidades.

Tabla 2.1. Propiedades físicas de estructuras de hidratos ^a							
	Estruc	ctura I	Estructura II				
Composición ideal ^b	$3M_1 \cdot M_2$	$\cdot 23H_2O$	$M_1 \cdot 2M_2 \cdot 17H_2O$				
Número de moléculas de agua/celda unitaria	4	6	136				
	Pequeña	Grande	Pequeña	Grande			
Descripción	5 ¹²	5 ¹² 6 ²	5 ¹²	5 ¹² 6 ⁴			
Número de cavidades/ celda unitaria	2	6	16	8			
Diámetro de la celda $\begin{pmatrix} \circ \\ A \end{pmatrix}^c$	7.95	8.6	7.82	9.46			
Número de coordinación	20	24	20	28			

^a Datos de Von Stackelberg y Müller, excepto los señalados.

^b Composición del hidrato sí las moléculas grandes M₁ ocupan todas las cavidades grandes, y sí las moléculas pequeñas M₂ ocupan todas las cavidades chicas.

° Calculado por van der Waals y Platteeuw con datos de von Stackelberg y Müller.

La estructura formada depende principalmente del tamaño de la molécula huésped. El metano y etano forman hidratos de estructura I, y el propano y el iso-butano forman hidratos de estructura II. Las moléculas de gas cuántico (Helio, Hidrógeo y Neón) son probablemente tan pequeñas para formar hidratos I ó II (van der Waals; Platteeuw, 1959). El n-Butano y moléculas más grandes no

forman hidratos. En la figura 2.2, se muestra las estructuras formadas. El vértice de cada ángulo representa una molécula de agua y las líneas entre ellas representan enlaces de hidrógeno.

Figura 2.2. Tipos de Estructuras

La ocupación de las cavidades de los hidratos se determina en gran medida por el tamaño, naturaleza química, y forma de la molécula huésped que forma hidrato. Ambas estructuras, I y II, deben estar ocupadas en un 70% de sus cavidades por un solo gas huésped para estar estabilizadas.

La composición química de los hidratos posee un papel importante en la estabilidad de éstos. Por ejemplo, un porcentaje bajo de etano permite la existencia de hidratos a más baja presión y con mayor temperatura que los hidratos que contienen solamente metano. Por ejemplo, con 10% de etano en la mezcla de gas, los hidratos son estables a seis atmósferas de presión (aproximadamente 60 metros de columna de agua) y 6°C de temperatura, mientras que los hidratos de metano puro son estables solamente a presiones sobre 40 atmósferas (aproximadamente 400 metros de columna de agua) (Gónzalez P. 2002).

Estructura I

La estructura I (sI) es una estructura cúbica centrada en el cuerpo (bcc) (Jeffrey, G.; McMullan R., 1965) con un parámetro de entramado de 12.03 Å con óxido de etileno como huésped. La celda cúbica contiene 46 moléculas de agua, 2 dodecaedros (5¹²), y 6 cajas grandes (5¹²6²), donde 5¹² es usado para indicar que el poliedro contiene 12 pentágonos (Sloan, E., 1998). En la estructura I, las cavidades 5¹², están unidas a través del vértice.

Estructura II

La estructura II (sII) es una estructura cúbica centrada en el cuerpo con un parámetro de entramado de 17.31 Å para un hidrato binario con tetrahidrofurano y ácido sulfhídrico como huéspedes. Cada celda cúbica contiene 136 moléculas de agua, 8 cavidades grandes (5¹²6⁴), y 16 dodecaedros. En la estructura II las cavidades 5¹² están unidas a través de la cara compartida.

Existe otra estructura, la estructura H. Los hidratos de estructura H son raros, pero se sabe que existen en el Golfo de México, ya que ahí se encuentran reservas de hidrocarburos pesados que, por su migración natural a la superficie, dan lugar a la formación de los hidratos con estructura H. Ripmeister en 1987 y otros investigadores reportaron esta estructura. La estructura H (sH), con simetría hexagonal, es conocida solamente para formarse con al menos una molécula huésped (por ejemplo metano) y una molécula grande (Ripmeester; y col., 1987), por ejemplo con ciclooctano, metilciclohexano, etc. La celda unitaria de la estructura H contiene 34 moléculas de agua, una caja grande (5¹²6⁸), 3 dodecaedros, y 2 cavidades 4³5⁶6³. En la cavidad grande, el hidrato puede almacenar moléculas de gas huésped de una masa molecular grande, por ejemplo, butano y otros hidrocarburos más grandes. Debe haber la presencia de gases más pequeños para así darle estabilidad al hidrato. Estos hidratos no se estudiarán en este trabajo, solamente los hidratos de estructura I y II.

2.3 Condiciones de formación

La formación del hidrato estable es posible bajo ciertas condiciones gobernadas por el comportamiento de equilibrio de la fase del hidrato. Los hidratos se forman fácilmente en pozos y líneas de conducción de gas o aceite siempre que se permitan las condiciones propicias para su formación, es decir, presencia de agua líquida, hidrocarburos de peso molecular bajo (menor que el n-butano), temperatura baja y presión alta. La temperatura a la cual se forman los hidratos depende tanto de la composición como de la presión de la corriente de gas.

Un gas que forma hidratos debe satisfacer dos condiciones:

- 1. El tipo de enlace debe ser covalente, con moléculas más pequeñas que 8 Å.
- 2. El gas en estado líquido debe ser inmiscible en el agua.

Los factores secundarios que ayudan en la aceleración de formación de hidratos son: (Caroll, Jonh., 2002)

- 1. Turbulencia: alta velocidad, agitación.
- 2. Sitios de nucleación.

2.4 Curva de formación de hidratos de metano

Un hidrato puede existir en equilibrio con agua líquida o hielo, gas, aceite o en presencia de aditivos. Las condiciones de temperatura y presión para su formación están definidas por la curva de equilibrio del hidrato para un gas y para la composición de una solución dada. La curva de equilibrio del hidrato representa las condiciones de presión y de temperatura donde los hidratos se disocian (Bishnoi y col., 1994).

En la figura 2.3 se muestra un esquema de tres-fases (hidrato - agua líquida - gas). De la curva de equilibrio G-B-A-C-F la sección E y D denota las condiciones de formación de hidratos experimental (P_{f} , T_{exp}) y la descomposición experimental del hidrato (P_{d} , T_{exp}), respectivamente. El punto A representa las condiciones de crecimiento o descomposición de las partículas del hidrato, (Bishnoi y col., 1994) al cual se denomina punto de equilibrio o de formación. En un experimento de formación de hidratos, si la transferencia de calor es significativa, la temperatura de la partícula puede moverse sobre la curva de equilibrio hasta el punto C la cual es mayor que T_{exp} . De igual forma, para un experimento de la partícula puede moverse sobre la curva de equilibrio hasta el punto S la transferencia de calor es significativa, la temperatura de la partícula puede moverse sobre la curva de equilibrio hasta el punto B la cual es menor que T_{exp} .

Figura 2.3. Condiciones de equilibrio y fuerza impulsora, Bishnoi y col., 1994.

En la figura 2.4, se muestra el diagrama de fases para el hidrato de metano en función de temperatura y presión. En este diagrama se muestra la transición de un sistema en el que coexisten el gas metano libre y el hidrato de metano sólido. Cuando las condiciones se presentan a la izquierda del límite de fase, se producirán hidratos de gas; a la derecha del límite de fase se producirá una disociación del hidrato, convirtiéndose en agua y gas libre.

Además de la temperatura y la presión, el agua y la composición del gas es extremadamente importante para conciliar las condiciones de estabilidad de los hidratos de gas en distintos escenarios. La mayoría de los datos recolectados experimentalmente han sido para los sistemas con presencia de agua dulce o de agua de mar. Sin embargo, los ambientes subsuperficiales naturales pueden exhibir variaciones significativas en la química del agua de formación y estas variaciones cambiarán los límites de fases (la salinidad más alta restringe la formación de hidrato, causando que el límite de la fase cambie a la izquierda). Similarmente, la presencia de cantidades pequeñas de otros gases ligeros, como el bióxido de carbono, ácido sulfhídrico e hidrocarburos más grandes como el etano, aumentará la estabilidad del hidrato, cambiando la curva de límite de fase al lado derecho.

Figura 2.4. Diagrama de fases para el hidrato de metano (Collett, T. S y col., 2000)

2.5 Mecanismos de formación y descomposición de hidratos de gas

El proceso de formación de hidratos puede ser dividido en dos etapas: la nucleación y el crecimiento. La nucleación es un fenómeno estocástico microscópico donde los núcleos de gasagua arraciman, crecen y se dispersan hasta que algunos núcleos han crecido a un tamaño crítico. La nucleación puede ocurrir espontáneamente (nucleación homogénea), o puede ser inducida alrededor de las impurezas (nucleación heterogénea). Por otra parte, la nucleación

primaria, comienza sin cristales presentes, la nucleación secundaria ocurre en la vecindad de cristales ya desarrollados en el sistema. En una interfase gas-líquido, (Kvamme, B., 2002) se indica que la tasa de crecimiento del hidrato en el lado del gas es de 2 veces mayor que la tasa de crecimiento del lado del lado del lado del lado del lado del líquido.

La tasa de formación de hidratos (después del punto de turbiedad, figura 2.5) se expresa típicamente en términos de la cantidad de consumo del gas, la cual depende en gran medida del tamaño y geometría de la celda de ensayo, del tipo y colocación del agitador, y de la velocidad de agitación (Marit Mort, 2002).

El proceso de crecimiento comienza inmediatamente después de la formación de núcleos estables. Durante este proceso se forman partículas de crecimiento debido al depósito de gas en la fase hidrato (Bishnoi, P. R. y col., 1994). La Figura 2.5 muestra los procesos de disolución de gas, nucleación y crecimiento que ocurre durante cada experimento. La región de nucleación inicia a un tiempo t_{eq} cuando los moles de gas disuelto excedieron el valor de n_{eq}, correspondiendo a la temperatura experimental y la presión de equilibrio de las tres fases. La región de la nucleación termina en el punto de turbiedad. Subsecuentemente, las partículas de hidratos en crecimiento inician en la región de crecimiento. La nucleación ocurre durante el periodo de inducción. Durante este proceso la diferencia de concentración C-C_{eq} corresponde a n-neq que define la supersaturación de la solución. Apenas antes del punto de turbiedad, la supersaturación es igual a $C_{tb} - C_{eq}$ correspondiendo a $n_{tb} - n_{eq}$. La fuerza impulsora para la nucleación del hidrato se define como la supersaturación de la solución. Según Natarajan V., (1994) la fuerza impulsora también puede ser expresada en términos de las fugacidades como f´-fea esta definición de fuerza impulsora para la nucleación es similar tanto para crecimiento como para la descomposición del cristal. Cuando la formación de hidratos tiene lugar, la supersaturación se incrementa debido a la formación del tamaño crítico, los núcleos estables del hidrato.

Figura 2.5. Diagrama típico de moles de gas consumidos en 300 cm³ de agua a temperatura y presión constante (Bishnoi, P. R. y col., 1994)

2.5.1 Cinética de descomposición del hidrato

Algunos investigadores como Englezos, P. y col., (1987) y Kim, H. C. y col., (1987) estudiaron la cinética de descomposición de hidratos de metano usando un reactor *semi-batch* experimentando a temperaturas de 274 a 283 K y presión de 0.17 a 6.97 MPa, en un proceso de reducción de presión. Los análisis de resultados indican que la tasa de descomposición es proporcional al área superficial de la partícula y a la diferencia en la fugacidad del metano a la presión de equilibrio y presión de descomposición. Una estimación del diámetro de las partículas del hidrato en el experimento permitió el desarrollo de un modelo para la cinética de descomposición del hidrato. La fuerza impulsora para la descomposición del hidrato se convierte en la diferencia de fugacidades del gas a la presión de equilibrio de las tres fases y al valor en el volumen en la sección de la fase gas (Rosales, Limón E., 2007).

En la Fig. 2.3 la fuerza impulsora para la descomposición puede corresponder a la diferencia de fugacidades entre los puntos A y D. La razón de descomposición -dn/dt para una partícula de hidrato está dada por: (Kim, H. C. y col., 1987)

$$-\frac{dn}{dt} = k_{d}A_{p}\left(f_{eq} - f_{g}^{v}\right) \qquad 2.1$$

La constante cinética K_d es obtenida experimentalmente en un proceso de descomposición del hidrato. A_p corresponde a la superficie de los cristales.

2.6 Propiedades físicas y termodinámicas

Los hidratos de gas son cristales de hielo con formas poco definidas, de transparentes a traslúcidos, de cristales blancos a grises o amarillos.

Los hidratos pueden presentar diferentes coloraciones, debido a impurezas; los hidratos encontrados en Golfo de México son de colores amarillos, naranja y verdosos, los de las Bahamas son de color azul. Las impurezas que causan esta coloración en los hidratos de gas, pueden ser bacterias, minerales y otros gases que también son incorporados a los hidratos.

Los hidratos tienen densidad relativa alrededor de 0.98 y en consecuencia flotarán en el agua y se hundirán en hidrocarburos líquidos. A medida que la densidad relativa del gas asociado aumenta, también se incrementa el potencial para la formación de hidratos.

Las propiedades de los hidratos de gas se determinan por su composición y estructura cristalina. La estimación de las propiedades de los hidratos es complicada porque dependen de lo siguiente:

- 1. Tipo de hidrato.
- 2. Molécula huésped atrapada en el hidrato.
- 3. Del grado de saturación (recordando que los hidratos no son estequiométricos).

La	Tabla :	2.2	muestra	algunas	propiedades	de los	hidratos	de algu	nos ga	ses (l	Rosales,	Limón E	• ,
200)7).												

Tabla 2.2. Propiedades de hidratos de algunos gases							
Característica	Metano	Etano	Propano	Isobutano	CO ₂	H ₂ S	Hielo
Estructura	I	I	II	II	I	I	
Saturación	0.8723	0 0000	0 0000	0.0000	0 7295	0 9075	
pequeña	0.0720	0.0000	0.0000	0.0000	0.7200	0.0070	
Saturación	0 9730	0 9864	0 9987	0 9987	0.9813	0 9707	
Grande	0.0700	0.0004	0.0007	0.0007	0.0010	0.0707	
Masa molar	17 74	19.39	19 46	20.24	21.59	20.87	
(g/mol)	11.14	10.00	10.40	20.24	21.00	20.07	
Densidad							
(g/cm3)	0.913	0.967	0.899	0.934	1.107	0.917	0.917
(lb/ft3)	57	60.3	56.1	58.3	69.1	1.046	57.2
Entalpia							
(kJ/g)	3.06	3.70	6.64	6.58			0.333
(kJ/mol)	54.2	71.8	129.2	133.2			6.01
(MBtu/lb)	23.3	30.9	55.5	57.3			143
Capacidad							
Calorífica							
(J/g °C)	2.25	2.2	2.2	2.2			2.06
(J/mol °C)	40	43	43	43			37.1
(Btu/ lb °F)	0.54	0.53	0.53	0.53			0.492
Conductividad							
térmica	0.50 ±	0.50 ±					
W/m.k.	0.01	0.01					2.2

2.7 Generalidades sobre la presión y temperatura en aguas profundas

Los fluidos de terminación en pozos de aguas profundas, tienen que trabajar bajo regímenes de presión altos y temperaturas bajas en la línea de lodos, condiciones que favorecen la formación de hidratos de gas. El metanol es el único inhibidor de hidrato conocido que permite desarrollar fluidos de perforación y terminación con densidad baja y de un líquido protector contra la formación del hidrato, mientras que los glicoles y soluciones salinas pueden agregar densidad para los fluidos. Por otra parte, la alta volatilidad, toxicidad y flamabilidad del metanol hace este

producto químico un "mal" de uso necesario dentro las actividades de perforación y terminación de pozos. Por lo que algunos tecnólogos han recomendado eliminar el uso del metanol (Pakulski y col., 2005).

2.7.1 Condiciones de temperatura y densidad de los fluidos

Las bajas temperaturas que experimentan los lodos en las perforaciones en aguas profundas pueden aumentar radicalmente la densidad del lodo, viscosidad y esfuerzo de gel. Estos efectos perjudiciales deben estar cuidadosamente monitoreados y compensados para minimizar la presión excesiva mientras se perfora. El impacto de la baja temperatura sobre la tixotropía del lodo es muy significativo. Un incremento rápido de la tasa de agitación (bombeando, rotando, o disparando) puede aumentar la presión en la sección del pozo (Zamora, M. y col., 2000).

La densidad verdadera en el fondo del pozo corresponde a la densidad equivalente estática (ESD) que determina la verdadera presión hidrostática en la sección del pozo. Con el incremento del tirante de agua, la temperatura estática marina normalmente declina bruscamente en forma parabólica. Para el caso del Golfo de México La temperatura promedio declina rápidamente en un rango de 9°C (48°F) a 457 m (1500 pies). Debajo de esta profunda la temperatura del agua declina más intensamente hasta 4°C (40°F) a 914 m (3000 pies) (Barker, J.W.; Gomez, R. K., 1989).

La mayoría de los hidratos marinos parecen estar confinados en los límites de los continentes donde las aguas tienen una profundidad aproximada de 1500 pies (aproximadamente 500 m) y donde las aguas ricas en nutrientes descargan residuos orgánicos para que las bacterias lo conviertan en metano. Los hidratos de gas se han encontrado en el fondo del mar, pero su ubicación usual es de 325 a 1600 pies (100 a 500 m) por debajo de éste. En las regiones de Permafrost (capas situadas a cierta profundidad que permanecen heladas todo el año), los hidratos de gas pueden formarse en zonas menos profundas debido a que las temperaturas de la superficie son menores (Collet, T.; Y Kusskra, V., 1998).

Figura 2.6. Perfil de temperaturas promedio en función de la profundidad para el Golfo de México (Barker, J.W.; Gomez, R. K., 1989)

2.7.2 Los efectos de la formación de hidratos durante las operaciones de control de pozos

La formación de hidratos durante las operaciones de control de pozos en aguas profundas tiene muchos efectos adversos (Lai, D. T. y col., 1989; Arthur, H., Ashok, K. R., 1990; Grigg, R. B., Lynes, G. L., 1992; Kotkoskie, T. S. y col., 1992) entre los cuales se pueden incluir:

- 1. Taponamiento de las líneas de estrangulación y de matar, impidiendo su uso en la circulación del pozo.
- Formación de un tapón en los preventores o debajo de ellos lo cual impide la supervisión de la presión del pozo por debajo de ellos.
- 3. Creación de un tapón alrededor de la sarta de perforación en el *riser*, los preventores o la tubería de revestimiento, lo cual impide el movimiento de la sarta de perforación.
- 4. Surgimiento de un tapón entre la sarta de perforación y los preventores, lo cual impide el cierre completo de los preventores.
- 5. Formación de un tapón en la cavidad del ariete de un preventor cerrado impidiendo que éste se pueda abrir correctamente.

2.8 Métodos de prevención

La formación de hidratos se puede prevenir con inhibidores cinéticos o termodinámicos. Por otra parte existen técnicas de calentamiento, aislamiento de tuberías para reducir las pérdidas de calor (Peavy M. A. y col., 1994).

Los inhibidores termodinámicos es la primer línea de defensa (Peavy M. A. y col., 1994), pero éstos, por si solos, no son suficientes para prevenir la formación del hidrato a profundidades de agua extremas o líneas de temperatura muy bajas. Las sales (NaCl, CaCl₂, KCl, CaBr₂) y glicoles son extensivamente usados como inhibidores termodinámicos. De esos el NaCl da la mejor inhibición a condiciones cercanas de saturación.

En operaciones de aguas profundas, las sales solas no logran la inhibición completa de los hidratos, por lo que es necesario añadir glicol de etileno. Algunos operadores han sido renuentes en el uso del glicol, porque tiene un alto costo y se requieren altas concentraciones (mayores a 15 % wt).

Los inhibidores cinéticos alteran la nucleación y crecimiento de los cristales del hidrato, o previenen la formación de cristales individuales durante la aglomeración. Este tipo se encuentran en desarrollo por lo que no se han aplicado en operaciones de perforación y/o terminación.

2.9 Posibles usos alternativos de los hidratos de gas

El proceso de formación y disociación de hidratos de gas puede tener algunos usos útiles como los que se mencionan a continuación (Segura, Cornejo Víctor M., 2006).

• Desalinización de agua de mar

En este proceso se sugiere que si se combina agua de mar con un gas que pueda formar un hidrato de gas a una presión y temperaturas adecuadas, entonces los hidratos de gas se formarán. Después de que se forman los hidratos de gas, la salmuera que se forma puede ser extraída y queda sólo el hidrato de gas. Cuando se disocia este hidrato liberará el gas formador de hidratos y agua dulce. El gas liberado puede reciclarse para ser mezclado con más agua salada y seguir el mismo proceso.

• Almacenaje de dióxido de carbono (CO₂)

El dióxido de carbono del ambiente puede ser convertido en hidrato de gas que pueden ser almacenados en las condiciones ideales de conservación en el fondo oceánico, su disociación se dará mucho tiempo después de que formen estos hidratos de CO₂ (en tiempo geológico). Este tema es la causa de muchos debates y aún existen muchas especulaciones al respecto.

• Separación de mezclas gaseosas

El proceso de formación de hidratos de gas puede ser ocupado para hacer una separación en una mezcla gaseosa. Se ha demostrado que al tener las condiciones necesarias para la formación de hidratos, los gases con masa molecular más pequeña, forman hidratos de gas, e incluso dentro de estos mismos gases, se han identificado diferencias que los haces distinguibles fácilmente.

• Generación de electricidad a partir del gas fluyente

Otra interesante posibilidad que ha sido concebida, es la generación de energía obtenida a través del flujo del gas que proviene del fondo de los océanos a la costa por medio de tuberías. Una tubería conectada a una terminal de la costa, tiene un gradiente de presión que significa una alta presión a la salida, por lo cual se tiene que hacer una etapa de descompresión. El gas contenido en las tuberías, puede ser utilizado para alimentar turbinas para la generación de energía eléctrica. Esto cumplirá con dos funciones: la descompresión del gas en la tubería al reducir la velocidad del flujo, y la transmisión de energía cinética a las turbinas para la generación de energía energía eléctrica.

2.10 Impacto en el clima global

En la atmósfera de la tierra se presenta el metano como uno de sus componentes. Este proviene de diversas fuentes, tales como los hidratos de gas, los cuales existen en la naturaleza con un equilibrio global. Este equilibrio es afectado por cambios naturales en la presión y la temperatura. La cantidad de gas metano atrapado en los hidratos de gas continental y marina, es tal vez tres mil veces mayor que el que se encuentra en la atmósfera. Este metano está expuesto a los cambios de presión y temperatura y su liberación tendría consecuencias catastróficas para el clima global. Algunos de los postulados científicos que sugieren cómo este gas pudo haber sido liberado a la atmósfera en el pasado son las siguientes:

 Liberación de gas en zonas de hidratos, resultado de la disociación de éstos debido a un aumento de la temperatura.

- Liberación de gas en zonas de hidratos a causa de la elevación del piso oceánico debido al movimiento tectónico, causando disociación de hidratos de gas debida a la baja presión.
- Liberación catastrófica a gran escala debida a la inestabilidad del lecho marino y su reacción en cadena con otros depósitos de hidratos de gas.

Los hidratos de gas han sido ligados a los problemas ambientales ya que el metano es un gas invernadero con potencial nocivo diez veces mayor que el dióxido de carbono. Esto nos lleva a pensar que el escape de metano proveniente de los hidratos de gas puede jugar un papel muy importante en los cambios climáticos globales.

Se ha postulado que los cambios climáticos globales en el Pleistoceno pudieron haber causado la liberación de metano contenido en los hidratos de gas, pero también se puede suponer lo contrario; que los cambios climáticos globales en el Pleistoceno pudieron haber sido causados por la liberación de metano contenido en los hidratos de gas. El estudio de núcleos de hielo, indica que la cantidad de dióxido de carbono y de metano atmosférico se redujo gradualmente al inicio de la glaciación, pero al inicio de la deglaciación incrementó su volumen rápidamente.

Algunos geólogos han ligado escapes de gas de los hidratos con la extinción masiva de las especies en la historia geológica de la tierra. El geólogo de la Universidad de Oregon, Gregory Retallack, ha propuesto que un fenómeno de esta naturaleza pudo haber sido el culpable de la extinción masiva suscitada a finales del pérmico en el paleozoico. Retallack propone que se provocó una gran reacción en cadena a nivel mundial, que originó el escape de una gran cantidad de metano en todo el mundo, lo que provocó una gran disminución de oxígeno alrededor del mundo.

La conexión potencial entre los depósitos de hidratos de gas y el clima de la Tierra, es aún no muy bien comprendido y la contribución cuantitativa de diferentes elementos en este ciclo tan complejo, necesita ser establecido por los resultados de investigaciones más especializadas. Debe ser mencionado también que la falta de conocimientos acerca de la relación entre los depósitos de hidratos de gas y el clima de la Tierra, se debe a la falta de fondos para realizar investigaciones acerca de estos. El balance reside en que se inicien investigaciones relacionadas con el clima y procedimientos seguros para la extracción de metano proveniente de los hidratos de gas (Segura, Cornejo Víctor M., 2006).

Capítulo 3

Planteamiento del modelo

3. Planteamiento del modelo

En este capítulo se presenta el modelo de Parrish y Prausnitz para predecir condiciones de equilibrio de hidratos (*T* y *P* de formación). Este modelo tiene sus orígenes en la teoría de van der Waals y Platteeuw (vdWP), quienes fueron los primeros en desarrollar las ecuaciones de la termodinámica estadística para hidratos de gas con el uso de un modelo similar al de Langmuir para la adsorción de un gas.

Estos dos modelos, el de Parrish y Prausnitz y el de van der Waals y Platteeuw, se basan en la condición de equilibrio de fases para el agua, en donde se cumple que el potencial químico del agua en el hidrato es igual al potencial químico del agua en la fase líquida $\Delta \mu_w^{\ H} = \Delta \mu_w^{\ L}$.

Para el cálculo de $\Delta \mu_w^L$ emplean un potencial químico de referencia, $\Delta \mu_w^L(To, Po)$ a presión cero y a 273.15 K, constante para cada tipo de hidrato en el cálculo de la diferencia de potencial químico del agua en la fase líquida.

Posteriormente, en base a la teoría de distorsión del entramado causada por los huéspedes presentes en las cavidades de los hidratos (Zele y col., 1999), se plantean algunas modificaciones simples al modelo de Parrish y Prausnitz para obtener mejores resultados en la predicción de equilibrio de fases en hidratos.

Los cambios propuestos aquí consisten en modificar el potencial químico de referencia, $\Delta \mu_W^L(T, P_R)$, del modelo de Parrish y Prausnitz para convertirlo en un parámetro ajustable y dependiente del huésped. Este potencial , $\Delta \mu_W^L(T, P_R)$, es modificado debido a que en este término están considerados parámetros de energía de referencia $(\Delta h_w^a, \Delta h_w^f)$ y el potencial químico de referencia a las condiciones de congelamiento del agua $\Delta \mu_W^L(To, Po)$. Por lo cual, se propone una nueva relación para obtener dicho potencial para hidratos de gas puros en función de la temperatura y para hidratos de gas multicomponentes a partir de la composición de la fase del hidrato.

El modelo de Parrish y Prausnitz, así como las modificaciones realizadas a este se emplearán para predecir condiciones de equilibrio de hidratos (T y P de formación) en las fases L_w-H-V de
diferentes moléculas huésped en los hidratos de estructura I y II. Los resultados obtenidos se muestran en el capítulo 4.

3.1 Modelo de van der Waals y Platteeuw

Después de la determinación de las estructuras cristalinas de hidratos a principios de los años 50, fue posible generar teorías para el equilibrio de propiedades macroscópicas basadas en propiedades microscópicas. Con el conocimiento de la existencia de cavidades distinguibles conteniendo como máximo una partícula huésped surge la necesidad de describir la distribución de las partículas huésped por medio de la estadística (por ejemplo: ¿de cuántas maneras se puede distribuir *M* partículas indistinguibles en *L* distinguibles cajas conteniendo a lo más una partícula por caja?).

El método estadístico termodinámico proporciona un lazo entre las estructuras moleculares del cristal y las propiedades termodinámicas macroscópicas. Esto también proporciona un medio completo de corrección y predicción de todas las regiones de equilibrio del diagrama de fases.

El trabajo inicial en el área fue hecho por Barrer y Stuart (1957). Después en 1959, fue desarrollado un método más preciso por van der Waals y Platteeuw, quienes son considerados los fundadores del método más ampliamente usado.

Para el hidrato y agua que están en equilibrio, el potencial químico del agua en la fase del hidrato, μ_w^H , debe ser igual al potencial químico del agua en la fase (ya sea como agua líquida μ^L_w ó como hielo μ^a_w).

En el modelo vdWP, el potencial químico del agua en una estructura vacía hipotética del entramado anfitrión es designada como $\mu_w^{\ \beta}$. El entramado vacío no existe en la naturaleza, sin embargo; este representa un útil estado de referencia. La reducción en el potencial químico de agua en el entramado vacío debido a que las cavidades llegan a ser ocupadas, $\Delta \mu_w^{\ H}$, debe ser igual a la diferencia del potencial químico entre el entramado vacío y el agua, ya sea en fase líquida o como hielo, $\Delta \mu_w^{\ Ló\alpha}$.

$$\mu^{W} = \mu^{H} \to \mu^{\beta} - \mu^{W} = \mu^{\beta} - \mu^{H} \to \Delta \mu^{W} = \Delta \mu^{H}$$
(3.1)

Para desarrollar el modelo van der Waals y Platteeuw partieron de las siguientes suposiciones basadas en la estructura:

- 1. La contribución de las moléculas anfitrión a la energía libre es independiente de la ocupación de la cavidad. Esta suposición también implica que las moléculas atrapadas no distorsionan la cavidad.
- Cada cavidad puede contener como máximo una molécula huésped, la cual no se puede difundir de la cavidad.
- 3. No hay interacciones entre las moléculas de gas en las diferentes cavidades. Por ejemplo la energía de una molécula huésped encapsulada es independiente del número y tipos de otras moléculas de soluto. Y las moléculas de gas interactúan solamente con las moléculas de agua vecinas más cercanas.
- 4. Los efectos cuánticos no son necesarios, la estadística clásica es válida.
- 5. La interacción entre un gas y la molécula de agua se puede considerar mediante la función potencial par, y la cavidad puede ser tratada como una esfera perfecta.
- 6. Las moléculas de gas pueden rotar libremente dentro de la cavidad.
- En el modelo sólo las fuerzas de London son importantes para describir la interacción gas-H₂O; todas las fuerzas polares se consideran involucradas en el enlace de hidrógeno del entramado del hidrato.
- 8. La función de partición de movimiento interno de la molécula huésped es igual que la de un gas ideal. Esto es, las energías rotacional, vibracional, nuclear y electrónica no se ven afectadas por la enclatración, como lo demostraron los resultados espectroscópicos de Davidson (1971) y Davidson y Ripmeester (1984).
- 9. La energía potencial de una molécula huésped está dado por el potencial simétrico esférico *W*(*r*) propuesto por Lennard-Jones y Devonshire.

Las suposiciones (8) y (9) son más restrictivas que la (1) a la (7), ya que estas aplican más a moléculas monoatómicas o esféricas que para moléculas achatadas o polares. La predicción menos exacta del modelo para ciertos gases tal vez esté relacionada a inexactitudes de estas suposiciones.

3.1.1 Analogía con la adsorción de Langmuir

En la adsorción de Langmuir de un solo componente, se encuentran muchas analogías con el proceso de encapsulación de moléculas huésped en la cavidad del hidrato, las cuales proporcionan una interpretación física de la contención de la molécula huésped. En las suposiciones siguientes de la isoterma de adsorción de Langmuir de un solo componente, las analogías son fácilmente claras cuando se sustituyen las palabras "adsorción" o "desorción" con "enclatración" o "declatración", y la palabra "sitio" por "cavidades":

- 1. la adsorción de moléculas de gas ocurre en sitios diferenciados (discretos) en la superficie.
- La energía de adsorción en la superficie es independiente de la presencia de otras moléculas adsorbidas.
- 3. La máxima cantidad de adsorción corresponde a una monocapa, o una molécula por sitio.
- la adsorción es localizada y ocurre por la colisión de moléculas en la fase gas con sitios vacantes.
- 5. La velocidad de desorción depende sólo en la cantidad de material en la superficie.

Para ilustrar la analogía más claramente, es necesario considerar la derivación de la isoterma de adsorción de Langmuir. Se pueden incorporar las suposiciones mencionadas con antelación, en una expresión de equilibrio, la cual iguala la velocidad de adsorción r_{ads} con la velocidad de desorción r_{des} de las moléculas de gas tipo *J*. La velocidad de desorción es directamente proporcional a la fracción de sitios monocapas θ_{i}^{*} :

$$r_{des} = \chi' \theta_J^*$$

Donde $\chi^{:}$ es la constante de de proporcionalidad, llamada algunas veces constante de velocidad de desorción. La velocidad de adsorción es proporcional al producto de la presión de gas, P_{j} , y al número de sitios desocupados $(1-\theta_{j})$

$$r_{ads} = \chi P_J \left(1 - \theta_J^* \right)$$

En el equilibrio, cuando las velocidades de adsorción y desorción son iguales, se obtiene una expresión para la fracción de sitios ocupados, $_{\theta_{j}}$, la cual es semejante a la ecuación 3.3 (que se muestra más adelante) para hidratos simples de un solo componente.

$$\theta_J^* = \frac{\chi P_J}{\chi' + \chi P_J} = \frac{k P_J}{1 + k P_J}$$

Donde la constante de adsorción de Langmuir en el equilibrio ($k \equiv \chi / \chi'$) es análoga a la constante de Langmuir para hidratos, C_{ki} . Similarmente, la fracción de la monocapa adsorbida, θ_{j}^{*} , es análoga a la fracción ocupada de las cavidades tipo *i*, $\theta_{k,i}$. Finalmente, las constantes de Langmuir para la adsorción y la enclatración son sólo funciones de temperatura para cada tipo de molécula retenida en el sitio individual (o cavidad).

3.2 Modelo de Parrish y Prausnitz

Ahora en este apartado se presenta un método para calcular hidratos de gas en equilibrio en sistemas multicomponentes. Este método es el modelo de Parrish y Prausnitz, el cual está basado en la teoría de van der Waals y Platteeuw, y usa el potencial de Kihara (centro esférico).

En el equilibrio, el potencial químico del H₂O en la fase del hidrato es igual al de cada una de las otras fases coexistentes. Como se mencionó anteriormente $\Delta \mu_w^{\ H} = \Delta \mu_w^{\ L}$, a continuación se muestra el procedimiento para calcular $\Delta \mu_w^{\ H}$ y $\Delta \mu_w^{\ L}$

3.2.1 Potencial químico del agua en el hidrato

La diferencia entre $\mu_w^{\ \beta}$, el potencial químico del H₂O en el entramado del hidrato vacío y $\mu_w^{\ H}$, el potencial en el entramado del hidrato lleno, está dado por:

$$\Delta \mu_{w}^{H} = \mu_{w}^{\beta} - \mu_{w}^{H} = -RT\sum_{i} v_{i} \ln(1 - \sum_{k} \theta_{ki})$$
(3.2)

Donde *T* es la temperatura absoluta, *R* es la constante de los gases, v_i es el número de cavidades del tipo *i* por molécula de agua en el entramado, y θ_{ki} es la fracción de cavidades tipo *i* ocupada por el componente *k*. La ecuación 3.2 muestra que la fracción de cavidades ocupadas reduce el potencial químico del agua en el hidrato, además de que el hidrato se hace más estable termodinámicamente. El porcentaje más alto del llenado de las cavidades, reduce el valor del μ_{w}^{H} y

entonces el hidrato se vuelve más estable, dado que el logaritmo de fracciones pequeñas $\left(1-\sum_{k}\theta_{ki}\right)$ puede generar números negativos.

La fracción de cavidades tipo *i* ocupada por el componente gas *k* se obtiene con la ecuación 3.3, y para considerar la no idealidad del gas se emplea la fugacidad en su cálculo.

$$\theta_{ki} = \frac{C_{ki}f_{k}}{1 + \sum_{I}C_{Ji}f_{J}}$$
(3.3)

Esta ecuación es una de las ecuaciones más útiles en el método de predicción de hidratos. Y se puede reconocer como la isoterma de Langmuir. Donde C_{ki} es la constante de Langmuir y f_k es la fugacidad del componente gas *k*. Esta fugacidad está relacionada a y_k, la fracción mol en la fase gas, y *P*, la presión total:

$$f_k = \varphi_k y_k P \tag{3.4}$$

donde φ_k es el coeficiente de fugacidad. La constante de Langmuir considera la interacción gas-H₂O en la cavidad, y para su cálculo se usa la ecuación 3.5, la cual fue deducida por van der Waals y Platteeuw.

$$C_{ki} = \frac{4\pi}{kT} \int_{0}^{R} \exp\left(-\frac{w(r)}{kT}\right) r^2 dr$$
(3.5)

Donde *T* es la temperatura absoluta, *k* es la constante de Boltzmann, y w(r) es el potencial de celda simétrico esférico, el cual es una función del radio de la celda, el número de coordinación y la naturaleza de la interacción gas-H₂O. W(r) representa un promedio de todas las interacciones del huésped con las moléculas vecinas de agua *Zi*. Estas interacciones son calculadas en parejas. El potencial intermolecular fundamental entre una molécula de agua de la pared de la cavidad y una molécula de soluto puede ser descrito por un número de potenciales pares. El trabajo original (vdWP) usó el potencial par 6-12 Lennard Jones. Mckoy y Sinanoglu (1963) sugirieron que el potencial de Kihara era mejor para moléculas más largas y no esféricas; este es el potencial comúnmente usado, con parámetros ajustados a datos experimentales de disociación de hidratos.

La diferencia entre el potencial Lennard-Jones y el potencial de Kihara, es que en el potencial Lennard-Jones dos moléculas pueden interpenetrarse completamente si tienen suficiente energía; según este modelo, las moléculas están formadas por centros puntuales rodeados de una nube electrónica "blanda" (es decir, penetrable). Por otro lado, el potencial propuesto por Kihara considera que las moléculas poseen un núcleo (core) impenetrable (rígido), rodeado de una nube electrónica penetrable (blanda). En términos mecánicos, el modelo de Kihara (para moléculas con simetría esférica) considera una molécula como una bola de billar con un recubrimiento de goma elástica; una molécula de Lennard-Jones, por el contrario, sería una bola blanda hecha exclusivamente de goma elástica (Prausnitz, J.M; Lichtenthaler, R.N., 2000).

Las ecuaciones presentadas a continuación son para un centro esférico (Potencial de Kihara).

La energía potencial par ϕ entre la molécula huésped y cualquier molécula de agua está relacionada a la fuerza F que cada una ejerce en la otra $_{F=-\partial\phi/\partial R}$, donde *R* es la distancia del centro molecular entre las dos. El potencial el cual es una función de distancia de separación, es única para todo tipo molecular y se define de la siguiente manera:

$$\phi(R) = \infty, \quad R \le 2a \tag{3.6a}$$

$$\phi(R) = 4\varepsilon \left[\left(\frac{\sigma}{R - 2a} \right)^{12} - \left(\frac{\sigma}{R - 2a} \right)^{6} \right], \quad R > 2a$$
(3.6b)

Donde;

 σ : Distancia entre centros con una energía potencial de cero, ($\phi = 0$)donde hay un balance entre atracción y repulsión.

a: radio del centro esférico

 σ - a: Diámetro de colisión.

 ε : Energía característica. Máximo potencial atractivo $(a R = \sqrt[4]{2}\sigma)$

La ecuación 3.6 describe la interacción entre la molécula de gas y una molécula de H₂O en la pared de la cavidad. Promediando los potenciales pares (3.6a y 3.6b) entre el soluto y cada molécula de agua, para las moléculas Zi en la superficie de la cavidad esférica se obtiene el potencial de celda W(r).

$$w(r) = 2z\varepsilon \left[\frac{\sigma^{12}}{R^{11}r} \left(\delta^{10} + \frac{a}{R}\delta^{11}\right) - \frac{\sigma^6}{R^5r} \left(\delta^4 + \frac{a}{R}\delta^5\right)\right]$$
(3.7a)

$$\delta^{N} = \left[\left(1 - \frac{r}{R} - \frac{a}{R} \right)^{-N} - \left(1 - \frac{r}{R} - \frac{a}{R} \right)^{-N} \right] / N$$
(3.7b)

Donde N es 4,5,10 u 11 en la ecuación 3.7b; *z* y *R* son respectivamente, el número de coordinación y el radio de la celda de la cavidad, y r es la distancia entre la molécula huésped y el centro de la cavidad. La promediación de la función potencial sobre todos los ángulos de interacción con la pared permite que el potencial de la ecuación 3.7 sea expresada solamente en términos de la distancia r del centro de la cavidad para una molécula huésped dada.

Se debe notar que los parámetros \mathcal{E} , a y σ , son únicos para cada molécula huésped, y no cambian en los diferentes tipos de cavidades de la estructura I y II. Por otro lado los parámetros *z* y *R* han sido determinados únicamente para cada tipo de cavidad con datos de difracción de rayos-X, y no cambian como una función de las moléculas huésped.

Los radios de las diferentes cavidades en estructura I y II se listan en la Tabla 3.1. Ha habido un desacuerdo en la literatura en cuanto a qué conjunto de radios de cavidad debe ser utilizado. Los radios usados por Sloan (1998) son cercanos a mediciones con cristalografía pero son ligeramente ajustados para proporcionar una mejor representación del potencial de celda en su modelo (John y Holder 1982). John y col. (1985) usaron un conjunto de radios diferentes los cuales caracterizan mejor los resultados de su simulación de las interacciones huésped-anfitrión en una cavidad específica. Otros investigadores (Sparks y col., 1999) han determinado que el radio de las mediciones por cristalografía deben ser usadas, debido a que estos representan mejor el tamaño real de la cavidad.

Та	Tabla 3.1. Radio de la Cavidad (Klauda J.F.; Sandler, S. I., 2000)												
		Radio (Å)											
Estructura	Caja	Sloan (1998); Parrish y Prausnitz (1972)	Klauda y Sandler (2000)	John y col. (1985)									
1	5 ¹²	3.95	3.906	3.875									
	5 ¹² 6 ²	4.33	4.326	4.152									
	5 ¹²	3.91	3.902	3.87									
	5 ¹² 6 ⁴	4.73	4.682	4.703									

La siguiente ecuación es otra forma de escribir la ecuación 3.2, pero en términos de la constante de Langmuir:

$$\Delta \mu_{w}^{H} = \mu_{w}^{\beta} - \mu_{w}^{H} = RT \sum_{i} \nu_{i} \ln(1 + \sum_{k} C_{ki} f_{k})$$
(3.8)

Para mezcla de gases de n componentes, la ecuación 3.8 la cual representa la diferencia de potencial químico entre el agua en el hidrato y el hidrato vacío, y considerando que en la fase condensado no hubiera agua pura y que estuviera muy diluida se convierte en:

$$\Delta \mu_{w}^{H} = RT \sum_{i} v_{i} \ln(1 + \sum_{k} C_{ki} \varphi_{k} y_{k} P) + RT \ln x_{w}$$
(3.9)

La Tabla 3.2 lista los parámetros de Kihara para las interacciones gas-H₂O para 15 gases.

Tabla 3.2. inter	Parámet acciones	ros de Ki s gas-hid	hara para rato
Gas	2 <i>a</i> , Å	$\sigma, \overset{{}_\circ}{A}$	arepsilon/k,~K
Metano	0.600	3.2398	153.17
Etano	0.800	3.3180	174.97
Etileno	0.940	3.2910	172.87
Propano	1.360	3.3030	200.94
Propileno	1.300	3.2304	202.42
Ciclopropano	1.000	3.4559	210.58
Isobutano	1.600	3.1244	220.52
Nitrógeno	0.700	3.6142	127.95
Oxígeno	0.720	2.7673	166.37
CO ₂	0.720	2.9681	169.09
H ₂ S	0.720	3.1558	205.85
Argón	0.368	2.9434	170.50
Kriptón	0.460	2.9739	198.34
Xenón	0.560	3.1906	201.34
SF ₆	1.620	3.1379	220.73

Los parámetros de Kihara (σ , a, ε) que caracterizan la interacción gas-H₂O son obtenidos de datos experimentales de presión de disociación del hidrato, comparando las diferencias entre lo experimental y lo calculado entre los potenciales químicos del H₂O en la estructura del hidrato vacío y en la otra fase coexistente.

A partir de una función de potencial se pueden calcular los coeficientes del virial. El segundo coeficiente virial tiene en cuenta las interacciones entre pares de moléculas. Entonces, la relación

entre el segundo coeficiente del virial, B_{ij} , y la función potencial intermolecular ϕ_{ij} (ecuación 3.6), para moléculas *i* y *j*, con simetría esférica, donde *i* y *j* pueden ser, o no, moléculas químicamente idénticas, es la siguiente (Prausnitz, J.M; Lichtenthaler, R.N., 2000):

$$B_{ij} = 2\pi N_A \int_o^{\infty} \left[1 - e^{-\phi_{ij}(r)} \right] r^2 dr$$

Si se conoce la función potencial, ϕ_{ij} (*r*), puede calcularse B_{ij} , integrando la ecuación anterior, y de la misma manera, si se conocen los segundos coeficientes viriales se puede obtener ϕ_{ij} .

Sin embargo, los parámetros de Kihara del huésped ajustados experimentalmente en el potencial del hidrato W(r) de la ecuación 3.7 no son congruentes con aquellos encontrados de segundos coeficientes viriales o datos de viscosidad por varias razones, dos de las cuales se listan a continuación:

- El potencial de Kihara no ajusta adecuadamente viriales de agua sobre un amplio rango de temperatura y presión, y de esta manera no será adecuada para mezclas de agua e hidrocarburos.
- Con la teoría esférica Lennard-Jones Devonshire el potencial de la molécula de agua es inadecuado para dar un potencial esférico con los primeros vecinos, lo cual ocasiona que los parámetros de agua lleguen a ser incorrectos.

Parrihs y Prausnitz calcularon la constante de Langmuir para un rango de temperatura de 260-300 K con la siguiente ecuación:

$$C_{ki}(T) = (A_{ki}/T) \exp (B_{ki}/T)$$
 (3.10)

Donde A_{ml} , B_{ml} son constantes ajustadas cuyos valores se encuentran reportadas en la Tabla 3.3 y cuya aplicación es el rango de temperatura de 260 K - 300 K.

Tabla 3.3.	Parámetro	os para	calcular la	a consta	ante de Lan	gmuir e	ntre 260 y	300 K				
	ESTRUCTURA I ESTRUCTURA II											
	Pequeña	a, K	Grande	e,K	Pequeña	a, K	Grande	ə, K				
Gas	A _{ki}	B _{ki}	A _{ki}	B _{ki}	A _{ki}	B _{ki}	A _{ki}	B _{ki}				
Metano	0.0037237	2708.8	0.018372	2737.9	0.002956	2695.1	0.076068	2202.7				
Etano	0	0	0.006906	3631.6	0	0	0.040818	3038.4				
Etileno	0.000083	2396.9	0.005448	3663.8	0.0000641	2042.5	0.03494	3107.1				
Propano	0	0	0	0	0	0	0.012353	4406.1				
Propileno	0	0	0	0	0	0	0.020174	4005.7				
Ciclopropano	0	0	0.001449	4579.6	0	0	0.013136	4653.4				
Isobutano	0	0	0	0	0	0	0.01573	4453				
n-Pentano	0	0	0	0	0	0	0	0				
iso-Pentano	0	0	0	0	0	0	0	0				
n-Hexano	0	0	0	0	0	0	0	0				
Nitrógeno	0.0038087	2205.5	0.01842	2301.3	0.0030284	2175	0.075149	1860.6				
Oxígeno	0.0173629	2289.3	0.057732	1935.4	0.0144306	2382.6	0.15382	1518.7				
CO ₂	0.0011978	2860.5	0.008507	3277.9	0.0009091	2695.4	0.048262	2571.8				
H₂S	0.0030343	3736	0.01674	3610.9	0.0023758	3750.6	0.073631	2854.1				
Agua	0	0	0	0	0	0	0	0				
Argón	0.0257791	2227	0.075413	1918.1	0.0218923	2315.1	1.866043	1538.7				
Kriptón	0.016862	2840.5	0.057202	2446.6	0.0139926	2947.8	1.547221	1949.2				
Xenón	0.0040824	3606.3	0.020657	3413.3	0.0032288	3646.7	0.08358	2709				
Hexafluoruro de S	0	0	0	0	0	0	0.014122	4565.3				
n-butano	0	0	0	0	0	0	0	0				

La fracción mol del gas en la fase líquida rica en agua, se calcula usando la constante de la ley de Henry. Para la mayoría de los casos la solubilidad de hidrocarburos en agua es extremadamente baja, sin embargo a presiones muy altas esta solubilidad no puede considerarse insignificante. Por ello se emplea la siguiente relación para calcular esta solubilidad (Rubio, Coronel J. 2002):

$$Xg = \frac{f_g}{H \exp\left(\frac{P\overline{V}}{RT}\right)}$$
(3.11)

En donde la constante de Henry se define de la siguiente manera (Klauda J.F.; Sandler, S. I., 2000):

$$-\ln\left(\frac{H_{i}(T)}{101325}\right) = Hi^{[1]} + \frac{Hi^{[2]}}{T} + Hi^{[3]}\ln(T) + Hi^{[4]}T$$
(3.12)

Donde X_g es la composición del componente huésped en la fase líquida, f_g es la fugacidad del componente huésped en la fase gas calculada con la ecuación de estado PRSV, $H_i(T)$ es la constante de Henry para el gas, P es la presión del sistema, \overline{V} es el volumen parcial del gas, *R* es la constante de los gases, *T* es la temperatura, $Hi^{[1]}$, $Hi^{[2]}$, $Hi^{[3]}$, y $Hi^{[4]}$ son las constantes para calcular H_i *cuyas* unidades son Pa⁻¹, las cuales están reportadas en la Tabla 3.4. Por último, para obtener la composición del agua en la fase líquida:

$$X_w = 1 - Xg \tag{3.13}$$

Tabla 3.4	Tabla 3.4. Constantes usadas para calcular la solubilidad de los gases (KlaudaJ.F.; Sandler, S. I., 2000)												
	(4)	(0)	(2)	(1)	$\overline{V}^{ a}$								
	$\mathbf{H}_{i}^{(1)}$	$H_i^{(2)}$	$H_i^{(3)}$	H _i ⁽⁴⁾	(cm3/mol)								
Metano	-183.786	9112.582	25.0405	-0.00015	32								
Etano	-268.441	13369.4	37.5561	-0.0023	32								
Etileno	18.057885	-2627.6108			60								
Propano	-316.49	15922.7	44.3285	0	32								
n-Butano	22.150557	-3407.2181			32								
Isobutano	96.1158	-2472.57	-17.368	0	32								
Nitrógeno	-164.997	8433.619	21.5601	0.00844	32								
Oxígeno	17.160634	-1914.144			32								
CO2	-159.868	8742.426	21.6712	-0.0011	32								
H2S	-149.551	8227.328	20.2327	0.00129	32								

^a (Rubio, Coronel J. 2002)

3.2.2 Potencial químico del agua en la fase líquida

Ahora siguiendo la condición de equilibrio $\Delta \mu_w^L = \Delta \mu_w^H$, se procede a obtener el valor de $\Delta \mu_w^L$. Como se indica abajo, el valor de $\Delta \mu_w^L$ puede ser igualado a cantidades macroscópicas calculadas por la integración de relaciones termodinámicas.

Saito, Marshall y Kobayashi (1964) determinaron un método para obtener $\Delta \mu_{w}^{L}$. Dado que $\Delta \mu_{w}^{L}$ es una función de temperatura y presión solamente, los cambios dados son:

$$d\left(\frac{\Delta\mu_{W}^{L}}{RT}\right) = -\left(\frac{\Delta h_{W}^{L}}{RT^{2}}\right)dT + \left(\frac{\Delta V_{W}^{L}}{RT}\right)dP$$
(3.14)

Donde Δh_w^L y ΔV_w^L son la diferencia de entalpía y volumen entre el agua y el hidrato vacío. El hecho de que el equilibrio de tres fases para un sistema binario es univariante a cualquier presión ó temperatura, permitió a Saito proporcionar un cambio de variables de modo que la derivada de la presión podría ser reemplazada por la pendiente de la curva de equilibrio *P*-*T* de datos experimentales:

$$dP = \left(\frac{dP}{dT}\right) dT$$

La combinación de las dos ecuaciones anteriores produce una expresión de la termodinámica clásica que permite encontrar a $\Delta \mu_{W}^{L}$ a lo largo de la línea de tres fases, desde una temperatura de referencia:

$$\left(\frac{\Delta\mu_{W}^{L}}{RT}\right) - \left(\frac{\Delta\mu_{W}^{L}}{RT}\right)_{T_{o}} = -\int_{T_{o}}^{T} \left(\frac{\Delta h_{W}^{L}}{RT^{2}}\right) dT + \int_{T_{o}}^{T} \left(\frac{\Delta V_{W}^{L}}{RT}\right) \left(\frac{dP}{dT}\right) dT$$
(3.15)

La ecuación anterior aplica para una fase condensada de agua pura, tal como hielo o agua líquida sin un soluto. Si la fase de agua condensada no fuera pura, esta ecuación debería ser modificada para incluir un término final para la actividad del agua $\gamma_w X_w$ (o X_w para soluciones muy diluidas). Para mantener la cantidad $\Delta \mu_w$ como la diferencia entre fases puras, la relación $\mu_w = \mu_w^{puro} + RT \ln(\gamma_w X_w)$ es usada para obtener un término adicional a la derecha de la ecuación 3.15, de modo que:

$$\left(\frac{\Delta\mu_{w}^{L}}{RT}\right) - \left(\frac{\Delta\mu_{w}^{L}}{RT}\right)_{T_{o}} = -\int_{T_{o}}^{T} \left(\frac{\Delta h_{w}^{L}}{RT^{2}}\right) dT + \int_{T_{o}}^{T} \left(\frac{\Delta V_{w}^{L}}{RT}\right) \left(\frac{dP}{dT}\right) dT - \ln(\gamma_{w}X_{w})$$
(3.16)

Parrish y Prausnitz (1972) usaron una variación de la ecuación 3.16, la cual incluye un gas de referencia, para el cual la derivada dP/dT fue obtenida. Una segunda corrección de presión fue

necesaria $\left(\Delta V_w \left(\frac{P-P_R}{RT}\right)\right)$ para trasladar la presión del hidrato de referencia a la presión de interés. Un tercer término de presión corrigió el potencial químico del hidrato vacío de la presión

cero a la presión de disociación del hidrato de referencia a To. Holder (1980) simplificó el método considerablemente con la integración de la ecuación 3.14 para obtener:

$$\frac{\Delta\mu_W}{RT} = \frac{\Delta\mu_W^0}{RT_o} - \int_{T_o}^T \frac{\Delta h_W}{RT^2} dT + \int_0^P \frac{\Delta V_W}{RT} dP - \ln\gamma_W X_W$$
(3.17)

La ecuación 3.17 tiene dos ventajas sobre las ecuaciones usadas anteriormente para calcular $\Delta \mu_W$: (a) La integración directa con la presión y la temperatura elimina la necesidad del término dP/dT en 3.16 y las otras dos correcciones, y (b) la integración de Δh_W con la temperatura puede ser hecha a baja presión, de modo que solamente la corrección en el tercer término del lado derecho de la ecuación 3.17 es necesaria. El procedimiento seguido por Parrish y Praunitz, descrito más a detalle, se muestra a continuación.

En el equilibrio, el potencial químico del H₂O en la fase del hidrato es igual al de cada una de las otras fases coexistentes. Si el hielo estuviera presente:

$$\mu_{W}^{H}(T,P,\theta) = \mu_{W}^{\alpha}(T,P)$$
(3.18)

Donde $\mu_w^{\alpha}(T, P)$ es el potencial químico del hielo. Ahora, si estuviera presente agua líquida:

$$\mu_{W}^{H}(T, P, \theta) = \mu_{W}^{L}(T, P) + RT \ln x_{W}$$
(3.19)

Donde $\mu_w^L(T, P)$ es el potencial químico del agua líquida pura a T y P, y X_w es la fracción mol del agua en la fase líquida (la cual es muy cercana a la unidad).

Usando un hidrato de referencia, se calcula la diferencia de potencial químico, llamado experimental, $\Delta \mu_{W}^{L}(T, P)$, en dos pasos: **Primero**, para el hidrato de referencia, $\Delta \mu_{W}^{L}(T, P_{R})$, a una temperatura dada T y presión de disociación del hidrato de referencia P_R, se encuentra mediante la siguiente ecuación:

$$\frac{\Delta \mu_{W}^{L}(T, P_{R})}{RT} = \frac{\Delta \mu_{W}^{L}(To, Po)}{RTo} - \int_{T_{o}}^{T} \left(\Delta h_{w}^{\alpha} + \Delta h_{w}^{f} \right) / RT^{2} dT + \int_{T_{o}}^{T} \left(\Delta v_{W}^{\alpha} + \Delta v_{W}^{f} \right) / RT \left(\frac{dP}{dT} \right) dT$$
(3.20)

Donde $\Delta \mu_w^L(To, Po)$, es la diferencia del potencial químico del agua entre el entramado vacío y el hielo a *To* y *Po*, *Po* es la presión de disociación del hidrato de referencia a la temperatura del punto de hielo *To*; Δh_w^a y Δv_w^a son la diferencia molar de entalpía y volumen respectivamente entre la estructura del hidrato vacío y el hielo. Dado que el sistema es invariante, (dP/dT)dT remplaza la dP en la segunda integral donde dP/dT es la pendiente de la curva presión-temperatura para el hidrato de referencia. De la ecuación 3.22 se deriva para obtener dP/dT y se sustituye en la integral de la ecuación 3.20, la cual se resuelve mediante las fórmulas de cuadratura gaussiana para diez puntos. Δh_w^f y Δv_w^f son la diferencia molar en entalpía y volumen respectivamente entre el hielo y el agua líquida cuyos valores son 1435.94 cal/mol y 19.63 cm³/mol respectivamente.

En el **segundo** paso, se obtiene $\Delta \mu_w^L$ a *T* y *P*, mediante la siguiente ecuación:

$$\Delta \mu_w^L(T, P) = \Delta \mu^L(T, P_R) + \left(\Delta v_w^\alpha + \Delta v_w^f\right) \left(P - P_R\right)$$
(3.21)

Para la estructura I el hidrato de referencia es el hidrato de xenón (Barrer y Edge, 1967) para temperaturas debajo de 0 °C y el hidrato de metano para temperaturas arriba de 0°C. Para hidratos de estructura II, el hidrato de bromoclorodifluorometano (Glew, 1960) es el hidrato de referencia para temperaturas debajo de 0°C y los hidratos de gas natural (Deaton y Frost, 1946) son los hidratos de referencia para temperaturas arriba de 0°C. Las curvas presión-temperatura para hidratos de referencia son calculados mediante la siguiente ecuación empírica:

$$\ln P_{R} = A_{R+}B_{R}/T + C_{R}\ln T$$
(3.22)

Donde A_R , B_R , y C_R son constantes ajustadas para representar los datos experimentales. Estas constantes están dadas en la Tabla 3.5.

Tabla 3.5. Valores para presión de disociación del hidrato de referencia. P_R (atm), T (K)													
$A_R \qquad B_R \qquad C_R \qquad \text{Rango de T (K)}$													
Estructura I													
Xenon	23.0439	-3357.57	-1.85	211-273									
Metano	-1212.2	44344	187.719	273-300									
Estructura II													
Bromoclorodifluorometano	11.5115	4092.37	0.316033	253-273									
Mezclas de Gas Natural	-1023.14	34984.3	159.923	273-291									

La Tabla 3.6 muestra las propiedades termodinámicas (relativas al hielo) de la estructura del hidrato vacío y del agua, las cuales son necesarias en las ecuaciones 3.20 y 3.21. La entalpía de congelamiento del agua es una función de la temperatura con la entalpía de congelamiento a 0°C y la diferencia de capacidades caloríficas entre el agua y el hielo. La diferencia de volumen molar entre el hidrato vacío y el hielo (von Stackelberg y Müller, 1954) y entre el hielo y el agua líquida son asumidos independientes de la presión y la temperatura.

Tabla 3.6. Propiedades termodinámicas del hidrato vacío (fase β) y agua líquida relativa al hielo (fase α) a 0°C y presión cero												
Estructura I Estructura II												
$\mu_{\scriptscriptstyle W}^{eta}-\mu_{\scriptscriptstyle W}^{lpha}$, cal/mol	$\mu_W^{\beta} - \mu_W^{\alpha}$, cal/mol 167 ^e 222 ^b											
$h_{\scriptscriptstyle W}^{eta} - h_{\scriptscriptstyle W}^{lpha}$, cal/mol	275 ^a	193 ^a										
$v_W^{eta} - v_W^{lpha}$, cm ³ /mol	3.0 ^c	3.4 ^c										
$h_{\scriptscriptstyle W}^{\scriptscriptstyle L}-h_{\scriptscriptstyle W}^{\scriptscriptstyle lpha}$, cal/mol	1436 ^d											

^aParrish-Prausnitz. ^b Dharmawardhana, Parrish y Sloan. ^cvon Stackelberg y Müller . ^d Rossini . ^evan der Waals y Platteeuw.

Las ecuaciones 3.21 y 3.9 son el criterio de convergencia del algoritmo, cuando la diferencia entre ambas es mínima, la temperatura o presión estimada es la de formación a la presión o temperatura dada.

3.3 Modificaciones al modelo

En este trabajo se han realizado mejoras en la determinación de condiciones de equilibrio de formación de hidratos cambiando algunas de las suposiciones del modelo original de Parrish y Prausnitz, y por lo tanto del modelo de van der Waals y Platteeuw.

La modificación que se propone en este trabajo es eliminar el uso de parámetros de referencia de energía en el modelo de Parrish y Prausnitz para calcular condiciones de equilibrio en las fases L_W-H-V-de diferentes moléculas huésped en los hidratos de estructura I y II. Así, también se elimina la suposición de un cristal entramado constante para diferentes huéspedes con una estructura, lo cual no va de acuerdo con los cálculos de la química cuántica (Klauda J.F.; Sandler, S. I., 2000).

El modelo de van der Waals y Platteeuw asume que el tamaño del entramado de referencia del hidrato es constante e independiente del componente huésped; esto es, no hay distorsión del entramado. Como resultado de esta suposición, el potencial químico del hidrato vacío hipotético es el mismo para todos los huéspedes que ocupan una estructura específica. Sin embargo, aquí se pretende considerar el efecto de la distorsión (estiramiento) del entramado, basado en la teoría de Zele y col. (1999), en la cual ellos dicen que el tamaño del entramado de referencia varía de acuerdo al tamaño de las moléculas huésped. Por consiguiente, como las moléculas más grandes estiran el entramado, el entramado del hidrato vacío hipotético para moléculas más grandes debe también ser estirado a la misma extensión. Debido a la expansión, el entramado ocupada (estirado) sea igual al del agua líquida (o del hielo). De este modo la diferencia del potencial químico de referencia dal potencial químico de referencia del potencial químico de la gua en el entramado ocupada (estirado) sea igual al del agua líquida (o del hielo). De este modo la diferencia del potencial químico de referencia de la potencial químico de la presencia de un huésped grande. Este incremento será debido a la energía de interacción y al cambio de entropía ($\Delta(\Delta\mu^*) = \Delta U_H - T^*\Delta S$).

Adaptaciones anteriores del modelo de van der Waals y Platteeuw también asumieron que el potencial químico de referencia, $\Delta \mu(To, Po)$, es una constante que es independiente de la ocupación por huéspedes en la cavidad. Los valores constantes de $\Delta \mu(To, Po)$ sugeridos por Kamath y Holder (1984) son de 1120 J/mol (267.507 cal/mol) para la estructura I y 931 J/mol (222.365 cal/mol) para la estructura II. Los valores empleados en el modelo de Parrish y Prausnitz son: 167 cal/mol para estructura I y 222 cal/mol para estructura II.

Otros investigadores han usado diferentes valores (Sloan, 1998; Holder y col., 1988). En la tabla siguiente se muestras algunos de los valores reportados por diferentes autores.

hidrato	hidrato vacío a 273K y presión de cero											
	Estruct	ura I	Estruct	ura II								
	$\Delta \mu (To, Po)$	$\Delta h_{\scriptscriptstyle W}^lpha$	$\Delta \mu (To, Po)$	$\Delta h_{\scriptscriptstyle W}^{lpha}$								
	(cal/mol)	(cal/mol)	(cal/mol)	(cal/mol)								
van der Waals y Platteeuw (1959)	166.953282*	0	195.853635	0								
Barrer y Ruzicka (1962)			87-128									
Sortland y Robinson (1964)			210.900927									
Child (1964)	299.799369	179.85096	189.882488	199.914015								
Parrish y Prausnitz (1972)	301	274.672781	211	192.987484								
Holder y Hand (1982)	275.867011	91.0002866		0								
Dharmawardhana, Parrish y Sloan (1980)	309.783128	331.75695	222.038605*	244.817044								
Holder, Malekar, y Sloan (1984)	310.26082	444.492214										
John, Papadopoulos y Holder (1985)	267.507404	222.36553	409.381867	334.384255								
Davidson, Handa y Ripmeester (1986)	309.783128											
Tse y col. (1986)	307.394669	222.36553	255.087418	182.478265								

naise en preniedades termedinémie

*valores reportados también en la Tabla 3.3

Sin embargo, con la suposición $\Delta \mu(To, Po)$ constante, las presiones predichas fueron mucho más bajas que las presiones observadas experimentalmente, especialmente para moléculas grandes (Zele y col., 1999). Para reducir este problema, investigadores ajustaron los parámetros de Kihara de los huéspedes de modo que se alcanzara la concordancia entre las presiones calculas y las experimentales.

Aunque este método proporciona una correlación razonable para la predicción de presiones de equilibrio, carece de una explicación teórica de porque los parámetros moleculares fueron muy diferentes de aquellos obtenidos de coeficientes viriales o mediciones de viscosidad del gas.

Como ya se mencionó muchos asumieron que el potencial químico de referencia $\Delta \mu (To, Po)$ permanece constante, sin embargo, el trabajo experimental (Berecz y col., 1983; von Stachelberg y col., 1954) y computacional (Zele y col., 1999; Hwang, y col., 1993) han demostrado que el tamaño del entramado del cristal depende del huésped específico. Simulaciones dinámicas moleculares a presión constante de hidratos de gas con huéspedes de diferentes tamaños, realizadas por Zele y col., 1999 indican que el volumen de la celda en equilibrio incrementa con el tamaño del huésped. En particular, estos estudios encontraron que la constante del entramado puede incrementar un 3% del componente más pequeño al componente más grande que son

estables en una estructura cristalina específica (Klauda J.F.; Sandler, S. I., 2000). Estas simulaciones fueron usadas por Zele y col. (1999) para justificar la creación de la teoría de estiramiento, en la cual el potencial químico de referencia es dependiente del huésped.

El tamaño del entramado del hidrato vacío determina la fuerza de los enlaces de hidrógeno entre las moléculas del agua, por ejemplo, un hidrato más denso de la misma estructura tiene enlaces de hidrógeno más fuertes que un hidrato menos denso. Además, el potencial químico de referencia y otras propiedades del hidrato deberían variar dependiendo los huéspedes que ocupan el entramado (Klauda J.F.; Sandler, S. I., 2000). Para considerar esto Zele y col. (1999) ajustaron potenciales químicos de referencia $\Delta \mu(To, Po)$ de diferentes especies para estructura I y II, y así representar mejor datos de equilibrio experimentales; ellos usaron parámetros de Kihara de datos de coeficientes viriales y de viscosidad.

Al igual que en el trabajo de Zele y col. (1999) aquí se pretende considerar el efecto del estiramiento del entramado debido al tamaño de la molécula en el potencial químico de referencia entre el entramado vacío y el agua, y para ello un nuevo modelo termodinámico con una diferencia de potencial químico de referencia dependiente del huésped, es usado para predecir las condiciones de equilibrio para hidratos de gas con un componentes puro (un gas + agua) y para hidratos con multicomponentes.

3.3.1 Relaciones adicionales propuestas al modelo de Parrish y Prausnitz

Como se mencionó anteriormente, se propone cambiar el potencial de referencia del modelo de Parrish y Prausnitz, para ello se proponen tres modificaciones, los cuales los vamos a llamar Modelo A, Modelo B y Modelo C. Las modificaciones fueron hechas de tal manera que se pudiera considerar la contribución de cada componente en el potencial químico de referencia, por eso el cálculo de este potencial se pensó como una propiedad extensiva de un gas ideal, o como el cálculo de un peso molecular promedio de una mezcla. En donde, por ejemplo para una propiedad total este es igual a la suma de la propiedad del componente puro por su composición, o para el caso del peso molecular promedio este es igual a la suma del peso molecular de cada componente por su fracción mol.

Sea m, cualquier propiedad extensiva (u, h, s, g, v), la propiedad total va a ser igual a:

$$m^{\neq}(T,P) = \sum_{i=1}^{nc} yi * m^{\neq}_{i puro}(T,P)$$

Y para el caso del peso molecular promedio de una mezcla este es:

$$PM = \sum_{i=1}^{nc} yi * PM_{puro}$$

Los tres modelos, fueron ajustados con datos experimentales de hidratos puros y de hidratos multicomponentes. A continuación se describe el desarrollo de los modelos.

MODELO A

Con datos de equilibrio de hidratos puros se calcula el potencial químico de referencia óptimo a *To* y *Po*, a diferentes temperaturas, el cual es el primer término de la ecuación 3.20.

$$\Delta \mu_{W}^{L}(T, P_{R}) / RT = \Delta \mu_{W}^{L}(To, Po) / RTo - \int_{T_{o}}^{T} \left(\Delta h_{w}^{\alpha} + \Delta h_{w}^{f} \right) / RT^{2} dT + \int_{T_{o}}^{T} \left(\Delta v_{W}^{\alpha} + \Delta v_{W}^{f} \right) / RT \left(\frac{dP}{dT} \right) dT$$
(3.20)

De este cálculo se obtiene una ecuación lineal para calcular $\Delta \mu_w^L(To, Po)$ para componentes puros en función de la temperatura.

$$\Delta \mu_w^L (To, Po)_{puro} = a * T + b \tag{3.23}$$

Ahora, a partir de los potenciales puros (3.23) se propone una regla combinatoria para calcular el potencial de referencia de la mezcla, en función de los potenciales puros y de la composición.

$$\Delta \mu_{W}^{L} (To, Po)_{mezcla} = \sum_{i}^{nc} \Delta \mu_{W}^{L} (To, Po)_{i} * y_{i}$$
(3.24)

Donde y_i es la composición del componente i en la fase gas, y $\Delta \mu_W^L(To, Po)_i$ es el potencial de cada componente puro, el cual es calculado con la ecuación 3.23.

Este potencial de referencia de la mezcla a To y Po es sustituido en la ecuación 3.20, para calcular el potencial de referencia a T y P_R y posteriormente se continúa con el algoritmo normal de cálculo del modelo de Parrish y Prausnitz, el cual viene descrito en el apéndice A.

MODELO B

En esta modificación se hace un cambio a la ecuación 3.24, que consiste en agregar parámetros de interacción binaria C_{ij} , convirtiendo así esta relación en una regla de mezclado para calcular el potencial de referencia de la mezcla.

$$\Delta \mu_{W}^{L}(To, Po)_{mezcla} = \sum_{i=1}^{nc} \sum_{j=1}^{nc} x_{i} x_{j} \frac{\Delta \mu_{W}^{L}(To, Po)_{i} + \Delta \mu_{W}^{L}(To, Po)_{j}}{2} (1 - C_{ij})$$
(3.25)

Donde
$$C_{ii} = 0, C_{ij} = 0, C_{ij} = C_{ji}$$

MODELO C

En este modelo los cambios se realizan en el segundo término de la ecuación 3.20 $\int_{T_o}^{T} \left(\Delta h_w^{\alpha} + \Delta h_w^{f} \right) / RT^2 dT$, con el fin de modificar otro parámetro de referencia. Primero se calcula su valor óptimo a partir de datos de hidratos puros a diferentes temperaturas. De este paso se obtiene una relación lineal, en donde la ecuación queda definida de la siguiente manera:

$$\left(\int_{T_o}^{T} \left(\Delta h_w^{\alpha} + \Delta h_w^{f} \right) / RT^2 dT \right)_{puro} = c * T + d$$
(3.26)

Posteriormente, este valor es sustituido en la ecuación 3.20, obteniendo así un valor del potencial de referencia a T y P_R para cada componente puro $\left(\Delta \mu_{W}^{L}(T, P_{R}) / RT\right)_{puro}$. Por último, para obtener el potencial de referencia a T y P_R de la mezcla se emplea una regla combinatoria solamente, sin la necesidad de ajustar parámetros de interacción binaria.

$$\left(\Delta \mu_{W}^{L}(T, P_{R}) / RT \right)_{mezcla} = \sum_{i}^{nc} \left(\Delta \mu_{W}^{L}(T, P_{R}) / RT \right)_{i} * y_{i}$$
 (3.27)

Capítulo 4 RESULTADOS Y CONCLUSIONES

4. Resultados y Conclusiones

4.1 Ajuste de datos y parámetros

4.1.1 Modelo A

En este modelo, construido a partir del análisis de datos de hidratos de componentes puros a diferente temperatura y presión se calculó el valor óptimo de $\Delta\mu(To, Po)$. Se propone que la diferencia de potencial químico de referencia entre el entramado vacío y el agua a presión cero y 273.15 K; sea el resultado de un ajuste en función de la temperatura. Como resultado de este ajuste se obtuvo una relación lineal para $\Delta\mu(To, Po)$ de la siguiente forma.

$$\Delta \mu_W^L \big(To, Po \big)_{puro} = a * T(^\circ C) + b$$

Esta relación se calculó para siete componentes cuyos datos estaban disponibles en la literatura.

En el caso de que el componente sea un formador para la estructura I y estructura II, como es el caso de metano, etano, CO_2 , nitrógeno y H_2S , se calculó el valor del potencial de referencia óptimo para las dos estructuras. Para el formador metano, la dependencia del potencial con respecto a la temperatura no fue un comportamiento lineal. Sin embargo, los datos disponibles de este componente se dividieron en dos rangos de temperaturas, para así obtener un comportamiento lineal. Las relaciones encontradas para cada componente puro se muestran a continuación.

	Tabla 4.1. Potencial de	Referencia er	n función de temperatura	
Formador	Estructura I	rango temperatura	Estructura II	rango temperatura
Metano	$\Delta \mu_w^{L}$ (To, Po) = -4.5286 * T + 309.09	(0-16) °C	Δμ _w ^L (To, Po) = -4.198 * T +208.29	(0-16) °C
	Δμ _w ^L (To, Po) = -13.574 * T + 448.34	(16-23)°C	Δμ _w ^L (To, Po) = -13.241 * T + 347.63	(16-23)°C
Etano	Δμ _w ^L (To, Po) = -2.6232 * T + 312.84	(0-16) °C	Δμ _w ^L (To, Po) = -4.4605 * T + 126.22	(0-16) °C
Propano			Δμ _w ^L (To, Po) = -1.5538 * T + 213.59	(0-5) °C
Isobutano			Δμ _w ^L (To, Po) = -1.7444 * T + 215.65	(0-2) °C
Nitrógeno	∆μ _w ^L (To, Po) = -13.72 * T + 258.32	(0-11) °C	Δμ _w ^L (To, Po) = -13.705 * T + 154.62	(0-11) °C
CO ₂	Δμ _w ^L (To, Po) = -3.2399 * T + 312.58	(0-10) °C	Δμ _w ^L (To, Po) = -3.8825 * T + 129.04	(0-10) °C
H₂S	$\Delta \mu_w^L$ (To, Po) = -2.0574 * T + 320.42	(4-30) °C	$\Delta \mu_w^L$ (To, Po) = -1.4435 * T + 216.33	(4-30) °C

Estas relaciones también fueron empleadas para calcular el potencial de referencia del componente puro en el Modelo B.

Una vez que se calcula $\Delta \mu_W^L(To, Po)_{puro}$ se calcula ahora el potencial de referencia a To y Po pero para la mezcla:

$$\Delta \mu_{W}^{L}(To, Po)_{mezcla} = \sum_{i}^{nc} \Delta \mu_{W}^{L}(To, Po)_{i} * y_{i}$$

Y este valor es sustituido en la ecuación 3.20 para obtener $\Delta \mu_{W}^{L}(T, P)$.

A continuación se muestran los datos empleados de cada componente para calcular estos potenciales, así como su ajuste lineal.

	Tabla 4.2. Datos de equilibrio para el hidrato de metano																
y ₁ : Metano	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
T (K)	273.7	274.3	275.4	275.9	277.1	279.3	280.4	280.9	281.5	282.6	284.3	287.3	288.9	291.7	294.3	295.72	295.89
P (MPa) experim	2.77	2.9	3.24	3.42	3.81	4.77	5.35	5.71	6.06	6.77	8.12	11.65	14.05	20.11	28.57	33.992	35.302
T (°C) experim	0.55	1.15	2.25	2.75	3.95	6.15	7.25	7.75	8.35	9.45	11.15	14.15	15.75	18.55	21.15	22.57	22.74
P (atm) experim	27.338	28.621	31.976	33.753	37.602	47.076	52.800	56.353	59.808	66.815	80.138	114.977	138.663	198.470	281.964	335.475	348.404
Referencia	Sloan, 1998	Sloan, 1998	Sloan, 1998	Sloan, 1998	Sloan, 1998	Sloan, 1998	Sloan, 1998	Sloan, 1998	Sloan, 1998	Sloan, 1998	Sloan, 1998	Sloan, 1998	Sloan, 1998	Sloan, 1998	Sloan, 1998	Sloan, 1998	Sloan, 1998
Dato	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17
Δμ _w ^L (To,Po) I	303.363	300.604	297.234	295.876	291.105	283.298	279.077	277.665	274.942	269.733	261.175	243.091	230.502	202.008	164.863	140.653	136.011
∆μ _w ∟ (To,Po) Ⅱ	202.798	200.272	197.199	195.966	191.607	184.481	180.615	179.324	176.817	172.008	164.059	147.005	135.011	107.496	71.188	47.474	42.830

Figura 4.1. Potencial químico de referencia a To y Po para el hidrato de metano

Figura 4.2. Potencial químico de referencia a To y Po para el hidrato de metano (1^{er} rango de temperatura)

Figura 4.3. Potencial químico de referencia a To y Po para el hidrato de metano (2º rango de temperatura)

	Tabla 4.3. Datos de equilibrio para el hidrato de etano																	
y ₂ : Etano	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
T (K) experim	273.7	274.8	275.9	277.6	278.7	279.3	279.8	280.4	280.9	281.5	282.1	282.6	283.2	284.3	285.4	286	286.5	288.2
P (kPa) experim	510	579	662	814	931	1007	1083	1165	1255	1345	1448	1558	1689	1986	2303	2510	2600	3360
T (°C) experim	0.55	1.65	2.75	4.45	5.55	6.15	6.65	7.25	7.75	8.35	8.95	9.45	10.05	11.15	12.25	12.85	13.35	15.05
P (atm) experim	5.033	5.714	6.533	8.034	9.188	9.938	10.688	11.498	12.386	13.274	14.291	15.376	16.669	19.600	22.729	24.772	25.660	33.161
Referencia	Sloan, 1998	Sloan, 1998	Sloan, 1998	Sloan, 1998	Sloan, 1998	Sloan, 1998	Sloan, 1998	Sloan, 1998	Sloan, 1998	Sloan, 1998	Sloan, 1998	Sloan, 1998	Sloan, 1998	Sloan, 1998	Sloan, 1998	Sloan, 1998	Sloan, 1998	Sloan, 1998
Dato	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
Δμ _w ^L (To,Po) Ι	309.999	307.121	304.649	300.684	298.036	296.839	296.216	294.610	293.966	292.046	290.303	289.382	287.813	285.247	281.515	279.426	276.221	268.841
Δμ _w ^L (To,Po) ΙΙ	122.372	117.703	113.201	106.161	101.547	99.116	97.225	94.608	92.678	89.911	87.193	85.099	82.390	77.414	71.886	68.759	65.749	55.793

Figura 4.4. Potencial químico de referencia a $T_{\rm o}$ y $P_{\rm o}$ para el hidrato de etano

	Tabla 4.4. Datos de equilibrio para el hidrato de propano													
y ₄ : Propano	y4: Propano 1 <th< th=""></th<>													
T (K) experim	273.4	273.9	274.6	275.9	276.7	277.1	277.8	278	278.8	278.9				
P (kPa) experim	172	190	221	293	345	390	459	472	548	565				
T (°C) experim	0.25	0.75	1.45	2.75	3.55	3.95	4.65	4.85	5.65	5.75				
P (atm) experim	1.69750756	1.8751537	2.18109983	2.89168439	3.40488435	3.8489997	4.52997657	4.65827656	5.40833804	5.57611495				
Referencia	Sloan, 1998	Sloan, 1998	Sloan, 1998	Sloan, 1998	Sloan, 1998	Sloan, 1998	Sloan, 1998	Sloan, 1998	Sloan, 1998	Sloan, 1998				
Dato	1	2	3	4	5	6	7	8	9	10				
Δμ _w ^L (To,Po) Ι								-		-				
Δμ _w ^L (To,Po) II	213.403752	212.383632	211.284901	209.187367	207.528487	207.782437	206.724562	205.917642	203.613582	203.613935				

Figura 4.5. Potencial químico de referencia a $T_{\rm o}$ y $P_{\rm o}$ para el hidrato de propano

	Tabla 4.5. Datos de equilibrio para el hidrato de isobutano													
y7 : Isobutano	1	1	1	1	1	1	1	1	1	1	1			
T (K) experim	273.18	273.48	273.57	273.68	273.86	273.96	274.07	274.2	274.82	275	275.05			
P (kPa) experim	115	122	123	126	132	134	137	140	160	168	169			
T (°C) experim	0.03	0.33	0.42	0.53	0.71	0.81	0.92	1.05	1.67	1.85	1.9			
P (atm) experim	1.13496145	1.20404606	1.21391529	1.24352298	1.30273836	1.32247682	1.35208451	1.3816922	1.5790768	1.65803064	1.66789987			
Referencia	Sloan, 1998	Sloan, 1998	Sloan, 1998	Sloan, 1998	Sloan, 1998	Sloan, 1998	Sloan, 1998	Sloan, 1998	Sloan, 1998	Sloan, 1998	Sloan, 1998			
Dato	1	2	3	4	5	6	7	8	9	10	11			
Δμ _w ^L (To,Po) Ι														
Δμ _w ^L (To,Po) II	215.832071	215.211272	214.738788	214.58372	214.540117	214.1935	213.978669	213.590778	212.627728	212.637155	212.416668			

Figura 4.6. Potencial químico de referencia a To y Po para el hidrato de isobutano

Tabla 4.6. Datos de equilibrio para el hidrato de nitrógeno														
y ₁₁ : Nitrógeno	1	1	1	1	1	1	1	1	1	1	1			
T (K) experim	273.15	274.85	275.25	276.25	277.25	278.25	279.25	280.25	281.25	282.25	283.25			
P (MPa) experim	16.31	19.15	19.66	22.39	24.83	27.97	30.3	33.94	37.49	41.44	45.9			
T (°C) experim	0	1.7	2.1	3.1	4.1	5.1	6.1	7.1	8.1	9.1	10.1			
P (atm) experim	160.967141	188.995755	194.029062	220.97206	245.052981	276.042363	299.037669	334.961666	369.997433	408.980891	452.997657			
Referencia	Sloan, 1998													
Dato	1	2	3	4	5	6	7	8	9	10	11			
$\Delta \mu_w^L$ (To,Po) 1	249.256128	233.474077	229.656781	218.450061	206.694479	193.124448	180.406777	164.540365	148.227969	130.416603	110.756645			
$\Delta \mu_w^{L}$ (To,Po) II	145.462327	129.831266	126.130191	114.768443	103.042597	89.3962867	76.8556229	60.9383566	44.6578202	26.8624199	7.19119075			

Figura 4.7. Potencial químico de referencia a $T_{\rm o}$ y $P_{\rm o}$ para el hidrato de nitrógeno

			Tabla	4.7. Dato	s de equi	librio para	ı el hidrat	o de CO ₂				
y ₁₃ : CO2	1	1	1	1	1	1	1	1	1	1	1	1
T (K) experim	273.7	274.3	275.4	276.5	277.6	278.7	279.8	280.9	281.5	281.9	282.6	282.9
P (kPa) experim	1324	1420	1613	1848	2075	2413	2786	3213	3530	3709	4130	4323
T (°C) experim	0.55	1.15	2.25	3.35	4.45	5.55	6.65	7.75	8.35	8.75	9.45	9.75
P (atm) experim	13.067	14.014	15.919	18.238	20.479	23.814	27.496	31.710	34.838	36.605	40.760	42.665
Referencia	Sloan, 1998	Sloan, 1998	Sloan, 1998	Sloan, 1998	Sloan, 1998							
Dato	1	2	3	4	5	6	7	8	9	10	11	12
Δμ _w ^L (To,Po) Ι	309.871	308.297	305.222	302.421	298.258	295.610	292.101	287.973	286.033	284.111	281.109	279.643
Δμ _w ^L (To,Po) II	126.153	124.094	120.214	116.508	111.960	108.320	104.103	99.433	97.007	95.000	91.608	90.015

Figura 4.8. Potencial químico de referencia a To y Po para el hidrato de CO₂

			Tabla 4.	8. Datos de ec	uilibrio para	el hidrato de l	H ₂ S					
y ₁₄ : H2S	1	1	1	1	1	1	1	1	1	1		
T (K) experim	277.6	283.2	285.2	288.7	295.7	298.5	299.8	300.5	302.1	302.7		
P (kPa) experim	157	280	345	499	1034	1379	1596	1724	2068	2239		
T (°C) experim	4.45	10.05	12.05	15.55	22.55	25.35	26.65	27.35	28.95	29.55		
P (atm) experim	1.54946911	2.7633844	3.40488435	4.92474577	10.2047838	13.6096682	15.7512911	17.0145525	20.4095676	22.097206		
Referencia	Sloan, 1998	Sloan,1998	Sloan,1998	Sloan,1998	Sloan,1998	Sloan,1998	Sloan, 1998	Sloan,1998	Sloan,1998	Sloan,1998		
Dato	1	2	3	4	5	6	7	8	9	10		
Δμ _w ^L (To,Po) Ι	308.676228	299.261189	296.197338	290.984774	277.29531	269.583244	266.147776	263.968058	258.585912	256.844427		
Δμ _w ^L (To,Po) II	208.360481	201.265102	199.128074	195.681384	186.267839	180.658099	178.303166	176.740341	172.871198	171.737352		

Figura 4.9. Potencial químico de referencia a To y Po para el hidrato de H_2S

4.1.2 Modelo B

En este modelo se propone calcular un parámetro de interacción binaria, C_{ij} , el cual es calculado a partir de un ajuste contra datos de hidratos binarios. Este parámetro, al igual que las relaciones para calcular el potencial de referencia de componentes puros, reportados en la Tabla 4.1, fueron empleados para obtener el potencial de referencia de la mezcla de acuerdo con la siguiente regla de mezclado:

$$\Delta \mu_{W}^{L} (To, Po)_{mezcla} = \sum_{i=1}^{nc} \sum_{j=1}^{nc} x_{i} x_{j} \frac{\Delta \mu_{W}^{L} (To, Po)_{i} + \Delta \mu_{W}^{L} (To, Po)_{j}}{2} (1 - C_{ij})$$

Donde C_{ii} = 0, C_{jj} = 0, C_{ij} = C_{ji}

Para calcular el parámetro de interacción binaria, C_{ij} , primero se calculó el potencial de la mezcla (a To, Po) con la ecuación anterior para una serie de datos de hidratos binarios; posteriormente se calcula el potencial químico del agua en el hidrato $\Delta \mu_W^H(T, P)$ y el potencial del agua en la fase líquida $\Delta \mu_W^L(T, P)$, entonces el parámetro C_{ij} se optimiza hasta que la diferencia de los dos potenciales sea mínima para todo el conjunto de datos binarios.

Los parámetros encontrados se muestran a continuación.

Tabla 4.9.	Tabla 4.9. Parámetro de interacción binaria C _{ij}												
Sistema	Estructura I	Estructura II											
Metano-Etano	-0.060583004	-0.04650783											
Metano-Propano	0.436870921	-0.108634615											
Metano-Isobutano	0.759639513	-0.073303435											
Metano-Nitrógeno	-0.368671968	-0.464280646											
Metano-CO2	-0.020241961	-0.030048285											
Metano-H2S	-0.428146907	-0.582863885											
Etano-Propano	-0.657432716	-0.596683773											
Propano-Isobutano		-0.073073996											
Propano-CO2	0.104612472	-0.351409088											

4.1.3 Modelo C

En esta propuesta, la modificación consiste en encontrar una solución al término de corrección por

temperatura, $\left(\int_{T_o}^{T} \left(\Delta h_w^{\alpha} + \Delta h_w^{f}\right) / RT^2 dT\right)$, incluido en el cálculo del potencial de referencia, $\left(\Delta \mu_w^L(T, P_R) / RT\right)$. Para lo cual, a partir de datos de hidratos de componentes puros a diferentes

temperaturas y presiones, se calcula el valor óptimo de la solución de la integral, para posteriormente encontrar una relación de esta solución en función de la temperatura.

$$\left(\int_{T_0}^{T} \left(\Delta h_w^{\alpha} + \Delta h_w^{f}\right) / RT^2 dT\right)_{puro} = c * T + d$$

Una vez encontrada esta relación para cada componente, se calcula el potencial de referencia (ec.3.20) y con estos potenciales se calcula el potencial de referencia de la mezcla en función de la composición.

$$\begin{pmatrix} \Delta \mu_{W}^{L}(T, P_{R}) / RT \end{pmatrix}_{mezcla} = \sum_{i}^{nc} \begin{pmatrix} \Delta \mu_{W}^{L}(T, P_{R}) / RT \end{pmatrix}_{i} * y_{i}$$

Esta modificación, no considera parámetros de ajustes como en el caso del Modelo B.

En el caso de que el componente sea un formador para la estructura I y estructura II, como es el caso de metano, etano, CO₂, nitrógeno y H₂S, se calculó el valor de la solución de la integral óptimo para las dos estructuras. Para los formadores metano y nitrógeno, la dependencia del potencial con respecto a la temperatura no fue un comportamiento lineal. Sin embargo, los datos disponibles de estos componentes se dividieron en dos rangos de temperaturas, para así hacer su comportamiento lineal. Las relaciones encontradas para cada componente puro se muestran a continuación.

Та	bla 4.10. Solución a la 1ª integral	de ec. 3.37	en función de temperatura	
	Estrucuta I	Rango T	Estructura II	Rango T
Metano	$\left(\int_{T_0}^{T} (\omega_w^{a} + \omega_w^{a}) / R^2 dT\right)^{=} -0.00805^{*}T + 1.688$	(0-11)°C	$\left(\int_{T_0}^{T} (M_w^a + M_w^d) \right)_{RT^2 dT} = -0.00816^*T + 2.289$	(0-11)°C
	$\left(\int_{T_0}^{T} (\Delta M_w^2 + \Delta M_w^2) / RT^2 dT \right) = 0.02589^* T - 8.049$	(11-23)°C	$\left(\int_{T_0}^{T} \left(\int_{R^2/4T}^{4M_w^2 + \Delta M_w^2} \right)_{R^2/4T} \right) = 0.02562^* \text{T} - 7.403$	(11-23)°C
Etano	$\left(\int_{T_0}^{T} (\omega_{w}^{a} + \omega_{w}^{f}) / RT^{2} dT\right)^{a} = -0.01209^{*}T + 2.766$	(0-16)°C	$\left(\int_{T_0}^{T} (M_w^a + M_w^d) \right)_{RT^2 dT} = -0.00432^*T + 1.529$	(0-16)°C
Propano			$\left(\int_{T_0}^{T} (M_w^a + M_w^d) \right)_{RT^2 dT} = -0.01513^*T + 4.163$	(0-5)°C
Isobutano			$\left(\int_{T_0}^{T} (M_{W}^{a} + M_{W}^{f}) / RT^{2} dT \right)^{=} -0.01519^{*}T + 4.171$	(0-2)°C
Nitrógeno	$\left(\int_{T_0}^{T} \left(\frac{\Delta M_w^{\alpha} + \Delta M_w^{\beta}}{R^{2} dT} \right) = 0.03066^{*} \text{T} - 8.728$	(0-10)°C	$\left(\int_{T_{0}}^{T} \left(\int_{R^{-2}dT}^{d_{R}^{*} + M_{W}^{*}} \right)_{R^{-2}dT} \right) = 0.03168^{*}T - 8.426$	(0-10)°C
	$\left(\int_{T_0}^{T} (\omega_{w}^{a} + \omega_{w}^{f}) / RT^{2} dT \right)^{a} 0.12164^{*}T - 34.697$	(10-25)°C	$\left(\int_{T_0}^{T} \left(\frac{\Delta M_w^2 + \Delta M_w^2}{RT^2 dT}\right) = 0.12304^* \text{T} - 34.503$	(10-25)°C
CO ₂	$\left(\int_{T_0}^{T} (\omega_{w}^{a} + \omega_{w}^{f}) / R^{2} dT \right)^{a} = -0.01022^{*}T + 2.257$	(0-10)°C	$\left(\int_{T_0}^{T} (M_w^a + M_w^d) \right)_{RT^2 dT} = -0.00680^* T + 2.199$	(0-10)°C
H₂S	$\left(\int_{T_{0}}^{T} \left(\int_{R_{0}^{T}}^{AM_{0}^{d}} + \Delta h_{0}^{d} \right) / R^{2} dT \right)^{2} - 0.01270^{*}T + 2.890$	(4-30)°C	$\left(\int_{T_0}^{T} (M_w^a + M_w^d) \right)_{RT^2 dT} = -0.01398^*T + 3.822$	(4-30)°C

A continuación se muestran resultados (temperatura y presión de formación) de hidratos *binarios* usando los tres modelos, y son comparados con los resultados obtenidos con el simulador Hysys. Este simulador también ha incorporado y mejorado el modelo de Parrish y Prausnitz para dar mayor control sobre la predicción de formación de hidratos.

Los datos que se muestran a continuación, también son los datos que se emplearon para ajustar los parámetros del Modelo B.

	Tabla 4.11. Datos de equilibrio para el hidrato binario de metano y etano															
y ₁ : Metano	0.971	0.971	0.978	0.978	0.978	0.978	0.95	0.564	0.564	0.564	0.564	0.177	0.177	0.177	0.177	0.047
y₂: Etano	0.029	0.029	0.022	0.022	0.022	0.022	0.05	0.436	0.436	0.436	0.436	0.823	0.823	0.823	0.823	0.953
T (K) experim	277.6	280.4	277.6	280.4	282.6	283.2	283.2	274.8	277.6	280.4	283.2	281.6	283.3	284.8	286.2	286.4
P (kPa) experim	2958	4034	3227	4413	5668	6088	4771	945	1289	1758	2434	1420	1770	2140	2660	2510
T (°C) experim	4.45	7.25	4.45	7.25	9.45	10.05	10.05	1.65	4.45	7.25	10.05	8.45	10.15	11.65	13.05	13.25
P (atm) experim	29.193	39.812	31.848	43.553	55.939	60.084	47.086	9.326	12.721	17.350	24.022	14.014	17.469	21.120	26.252	24.772
Referencia	Sloan, 1998	Sloan, 1998	Sloan, 1998	Sloan, 1998	Sloan, 1998	Sloan, 1998	Sloan, 1998	Sloan, 1998	Sloan, 1998	Sloan, 1998	Sloan, 1998	Sloan, 1998	Sloan, 1998	Sloan, 1998	Sloan, 1998	Sloan, 1998
Estructura	I	I	I	I	I	I	I		I	I	I	I	I	Ι	I	I
No. Dato	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
Modelo A				-		-		-		-	-			-		
T (°C)	3.379	6.464	3.858	6.904	9.176	9.817	9.146	2.441	5.625	8.741	10.533	9.044	11.002	12.653	14.480	13.334
P (atm)	32.366	43.308	33.745	45.215	57.672	61.661	51.794	8.664	11.323	14.962	23.161	13.117	15.864	18.809	22.123	24.460
% error T	24.062	10.838	13.307	4.766	2.895	2.315	8.997	-47.953	-26.415	-20.570	-4.804	-7.031	-8.392	-8.613	-10.956	-0.635
% error P	-10.869	-8.779	-5.956	-3.817	-3.099	-2.626	-9.999	7.104	10.995	13.762	3.583	6.401	9.186	10.941	15.729	1.258
Modelo B				-		-		-			-			-		
T (°C)	3.209	6.300	3.729	6.777	9.034	9.667	8.843	1.067	4.346	7.434	9.792	8.301	10.248	11.884	13.687	13.107
P (atm)	32.900	44.103	34.172	45.857	58.626	62.740	53.632	9.832	12.852	17.029	24.500	14.250	17.274	20.547	24.276	25.318
% error T	27.893	13.106	16.203	6.525	4.400	3.808	12.009	35.314	2.328	-2.544	2.569	1.758	-0.965	-2.012	-4.884	1.082
% error P	-11.266	-9.729	-6.802	-5.024	-4.584	-4.233	-12.205	-5.141	-1.018	1.885	-1.954	-1.652	1.127	2.792	8.142	-2.159
Modelo C																
T (°C)	3.291	6.551	3.788	7.012	9.257	9.830	9.226	2.373	5.660	6.636	10.478	9.093	10.983	12.131	14.259	13.209
P (atm)	32.478	42.776	33.864	44.650	57.274	61.828	51.911	8.720	11.335	18.255	23.142	13.035	15.828	20.163	23.136	24.923
% error T	26.044	9.648	14.873	3.284	2.040	2.187	8.198	-43.807	-27.186	8.474	-4.261	-7.608	-8.207	-4.127	-9.263	0.306
% error P	-11.252	-7.443	-6.329	-2.519	-2.387	-2.903	-10.246	6.499	10.896	-5.214	3.661	6.991	9.391	4.530	11.869	-0.610
Hysys			T		T		ſ		1				I			1
T (°C)	3.6157	6.62	4.1154	7.15	9.49	10.14	9.06	2.268	5.0824	7.852	10.67	8.43	10.21	11.7	13.34	12.84
P (atm)	31.79	42.533	32.95	44	55.66	59.44	52.55	8.7147	11.86	16.2074	22.33	14.04	17.32	20.97	25.23	26.13
% error T	18.748	8.690	7.519	1.379	-0.423	-0.896	9.851	-37.455	-14.211	-8.303	-6.169	0.237	-0.591	-0.429	-2.222	3.094
% error P	-8.895	-6.833	-3.460	-1.027	0.498	1.072	-11.604	6.559	6.772	6.586	7.042	-0.183	0.850	0.711	3.894	-5.483

	Tabla 4.11. Datos de equilibrio para el hidrato binario de metano y etano (continuación)															
y₁ : Metano	0.047	0.047	0.047	0.047	0.047	0.016	0.016	0.016	0.177	0.016	0.978	0.95	0.95	0.809	0.946	0.946
y₂: Etano	0.953	0.953	0.953	0.953	0.953	0.984	0.984	0.984	0.823	0.984	0.022	0.05	0.05	0.191	0.054	0.054
T (K) experim	287.6	279.4	281.5	283.3	285.3	283.9	285.7	286.6	287	287.8	274.8	277.6	280.4	299	296.6	293.6
P (kPa) experim	2990	990	1340	1710	2170	1810	2310	2710	3000	3080	2365	2530	3447	35.61	34.44	24.24
T (°C) experim	14.45	6.25	8.35	10.15	12.15	10.75	12.55	13.45	13.85	14.65	1.65	4.45	7.25	25.85	23.45	20.45
P (atm) experim	29.509	9.771	13.225	16.876	21.416	17.863	22.798	26.746	29.608	30.397	23.341	24.969	34.019	351.443	339.896	239.230
Referencia	Sloan, 1998	Sloan, 1998	Sloan, 1998	Sloan, 1998	Sloan, 1998	Sloan, 1998	Sloan, 1998	Sloan, 1998	Sloan, 1998	Sloan, 1998	Sloan, 1998	Sloan, 1998	Sloan, 1998	Sloan, 1998	Sloan, 1998	Sloan, 1998
Estructura	Ι		Ι	Ι	I		I	I	I	Ι	Ι	I		Ι	I	
No. Dato	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31	32
Modelo A					1	1	1		1			1	1	1	1	
T (°C)	14.419	6.025	8.578	10.540	12.329	10.843	12.538	13.516	15.442	14.399	0.199	2.921	6.073	23.693	22.582	19.246
P (atm)	29.667	10.031	12.865	16.060	20.890	17.640	22.841	26.438	24.325	32.710	26.115	28.869	38.486	438.037	375.097	269.221
% error T	0.212	3.608	-2.734	-3.843	-1.476	-0.862	0.097	-0.494	-11.494	1.716	87.957	34.365	16.232	8.343	3.700	5.888
% error P	-0.537	-2.663	2.723	4.839	2.458	1.250	-0.188	1.149	17.844	-7.607	-11.885	-15.617	-13.129	-24.639	-10.356	-12.537
Modelo B																
T (°C)	14.192	5.797	8.351	10.313	12.102	10.763	12.856	13.437	14.634	14.329	0.033	2.632	5.801	24.040	22.702	19.535
P (atm)	30.902	10.301	13.224	16.530	21.561	17.832	21.737	26.807	26.790	33.483	26.428	29.659	39.644	427.824	370.823	263.333
% error T	1.787	7.256	-0.008	-1.601	0.397	-0.118	-2.440	0.097	-5.659	2.192	98.024	40.861	19.980	7.003	3.191	4.473
% error P	-4.509	-5.153	0.008	2.096	-0.672	0.173	4.882	-0.228	10.518	-9.215	-11.681	-15.813	-14.188	-17.853	-8.340	-9.153
Modelo C					T	T			1			T	T	1	1	
T (°C)	14.298	6.065	8.627	10.559	12.188	10.858	12.477	13.438	15.328	14.103	0.265	2.824	6.136	25.205	23.742	18.289
P (atm)	30.316	9.981	12.787	16.003	21.305	17.596	23.060	26.803	25.130	34.578	26.304	28.963	38.035	358.671	335.619	279.527
% error T	1.051	2.956	-3.319	-4.026	-0.314	-1.009	0.581	0.089	-10.668	3.733	83.945	36.533	15.359	2.497	-1.243	10.569
% error P	-2.735	-2.150	3.312	5.175	0.518	1.494	-1.150	-0.213	15.124	-13.754	-12.694	-15.995	-11.804	-2.057	1.258	-16.845
Hysys		r	r	T	1	1	1	T	1	1	r	1	1	1	1	1
T (°C)	14.026	5.87	8.27	10.145	11.88	10.55	12.262	13.297	14.1993	14.064	1.0215	3.08	6.0511	25.43	23.93	21.54
P (atm)	31.63	10.23	13.34	16.887	22.235	18.34	23.8	27.41	28.1722	33.84	24.85	28.77	38.65	374.13		203.34
% error T	2.934	6.080	0.958	0.049	2.222	1.860	2.295	1.138	-2.522	4.000	38.091	30.787	16.537	1.625	-2.047	-5.330
% error P	-7.188	-4.703	-0.871	-0.063	-3.823	-2.669	-4.395	-2.484	4.848	-11.326	-6.466	-15.222	-13.612	-6.455		15.002

Figura 4.10. Temperatura de equilibrio para el hidrato binario metano-etano

Figura 4.11. Presión de equilibrio para el hidrato binario metano-etano

			Tabla 4.	12. Datos	de equilil	orio para (el hidrato	binario de	e metano y	propano				
y ₁ : Metano	0.952	0.952	0.883	0.883	0.883	0.712	0.712	0.712	0.371	0.371	0.371	0.371	0.371	0.371
y ₂ : Propano	0.048	0.048	0.117	0.117	0.117	0.288	0.288	0.288	0.629	0.629	0.629	0.629	0.629	0.629
T (K) experim	274.8	277.6	274.8	277.6	280.4	274.8	277.6	280.4	274.45	275.91	277.08	278.65	280.16	282.31
P (kPa) experim	814	1138	552	779	1110	365	538	800	0.27	0.343	0.419	0.536	0.691	0.945
T (°C) experim	1.65	4.45	1.65	4.45	7.25	1.65	4.45	7.25	1.3	2.76	3.93	5.5	7.01	9.16
P (atm) experim	8.034	11.231	5.448	7.688	10.955	3.602	5.310	7.895	2.665	3.385	4.135	5.290	6.820	9.326
Referencia	Sloan, 1998													
Estructura			Ш				=	=	II	=	I	=	=	
No. Dato	1	2	3	4	5	6	7	8	9	10	11	12	13	14
Modelo A														
T (°C)	3.262	6.656	3.448	6.764	10.546	3.182	6.477	10.155	2.624	4.202	5.532	7.202	8.993	11.352
P (atm)	6.920	9.022	4.557	6.044	8.077	3.021	4.184	5.801	2.182	2.720	3.249	4.116	5.144	6.979
% error T	-97.671	-49.569	-108.940	-52.000	-45.459	-92.859	-45.547	-40.065	-101.862	-52.242	-40.751	-30.946	-28.282	-23.928
% error P	13.861	19.670	16.355	21.386	26.269	16.147	21.207	26.521	18.112	19.645	21.441	22.196	24.567	25.170
Modelo B														
T (°C)	2.914	6.332	2.643	6.020	9.686	1.528	4.989	8.572	0.815	2.484	3.861	5.562	7.351	9.656
P (atm)	7.158	9.320	4.952	6.539	8.709	3.650	4.992	6.851	2.855	3.523	4.177	5.243	6.501	8.733
% error T	-76.579	-42.302	-60.181	-35.286	-33.600	7.411	-12.112	-18.230	37.296	10.011	1.746	-1.128	-4.872	-5.420
% error P	10.898	17.013	9.097	14.942	20.505	-1.317	5.980	13.225	-7.136	-4.087	-1.003	0.888	4.675	6.362
Modelo C														
T (°C)	3.167	6.748	3.368	6.862	10.461	3.121	6.562	10.145	2.605	4.223	5.593	7.296	9.067	10.490
P (atm)	6.972	9.056	4.591	6.064	7.987	3.042	4.189	5.732	2.191	2.727	3.242	4.080	5.076	8.720
% error T	-91.952	-51.631	-104.112	-54.192	-44.285	-89.165	-47.471	-39.936	-100.390	-53.005	-42.310	-32.656	-29.348	-14.519
% error P	13.220	19.366	15.725	21.131	27.090	15.561	21.102	27.402	17.769	19.446	21.590	22.876	25.562	6.499
Hysys					1	1			1		1			
T (°C)	1.2632	3.988	1.47	4.13	6.92	1.57	4.26	7.123	1.65	3.04	4.22	5.7	7.26	9.225
P (atm)	8.427	11.88	5.57	8	11.415	3.64	5.45	8.033	2.5	3.23	3.94	5.12	6.55	9.23
% error T	23.442	10.382	10.909	7.191	4.552	4.848	4.270	1.752	-26.923	-10.145	-7.379	-3.636	-3.566	-0.710
% error P	-4.898	-5.777	-2.243	-4.057	-4.200	-1.047	-2.643	-1.743	6.181	4.583	4.721	3.212	3.954	1.034

	Tab	la 4.12. D	atos de e	quilibrio	para el h	idrato bin	ario de I	metano	y propan	o (contin	uación)		
y ₁ : Metano	0.362	0.362	0.362	0.2375	0.2375	0.2375	0.2375	0.2375	0.2375	0.974	0.974	0.974	0.952
y ₂ : Propano	0.638	0.638	0.638	0.7625	0.7625	0.7625	0.7625	0.7625	0.7625	0.026	0.026	0.026	0.048
T (K) experim	274.8	277.6	280.4	274.88	276.45	277.74	279.11	280.23	281.35	274.8	277.6	280.4	280.4
P (kPa) experim	272	436	687	0.263	0.35	0.443	0.56	0.689	0.83	1151	1593	2193	1586
T (°C) experim	1.65	4.45	7.25	1.73	3.3	4.59	5.96	7.08	8.2	1.65	4.45	7.25	7.25
P (atm) experim	2.684	4.303	6.780	2.596	3.454	4.372	5.527	6.800	8.191	11.359	15.722	21.643	15.653
	Sloan,	Sloan,	Sloan,	Sloan,	Sloan,	Sloan,	Sloan,	Sloan,	Sloan,	Sloan,		Sloan,	Sloan,
Referencia	1998	1998	1998	1998	1998	1998	1998	1998	1998	1998	Sloan, 1998	1998	1998
Estructura				II	I			I			I	I	
No. Dato	15	16	17	18	19	20	21	22	23	24	25	26	27
Modelo A		1	1	1		1	1	1					1
T (°C)	2.685	5.788	8.915	2.542	4.226	5.626	7.036	8.305	9.467	4.003	7.305	10.893	10.286
P (atm)	2.293	3.515	5.343	2.261	2.952	3.673	4.623	5.567	6.685	9.140	11.865	15.637	11.903
% error T	-62.743	-30.078	-22.970	-46.934	-28.070	-22.564	-18.055	-17.305	-15.446	-142.597	-64.169	-50.252	-41.877
% error P	14.589	18.319	21.199	12.877	14.532	15.985	16.347	18.133	18.390	19.538	24.531	27.751	23.955
Modelo B													
T (°C)	0.904	4.144	7.294	1.191	2.924	4.351	5.778	7.054	8.216	3.819	7.126	10.668	9.907
P (atm)	2.989	4.500	6.738	2.836	3.676	4.548	5.694	6.829	8.171	9.307	12.077	15.913	12.286
% error T	45.216	6.880	-0.606	31.168	11.386	5.213	3.057	0.368	-0.192	-131.462	-60.131	-47.143	-36.643
% error P	-11.342	-4.583	0.618	-9.269	-6.409	-4.022	-3.020	-0.422	0.250	18.066	23.185	26.476	21.507
Modelo C													
T (°C)	2.669	5.857	8.992	2.540	4.264	5.696	7.124	8.389	9.522	3.936	7.421	10.724	10.238
P (atm)	2.303	3.499	5.270	2.267	2.945	3.645	4.566	5.487	6.592	9.207	11.912	15.469	11.775
% error T	-61.729	-31.619	-24.029	-46.820	-29.217	-24.085	-19.538	-18.490	-16.117	-138.528	-66.773	-47.922	-41.214
% error P	14.227	18.677	22.266	12.642	14.743	16.630	17.382	19.313	19.523	18.946	24.232	28.527	24.772
Hysys													
T (°C)	1.72	4.47	7.22	1.81	3.356	4.64	5.95	7.11	8.19	1.89	4.6	7.25	6.62
P (atm)	2.65	4.29	6.8	2.55	3.42	4.326	5.53	6.75	8.1934	11.036	15.44	21.623	16.7
% error T	-4.242	-0.449	0.414	-4.624	-1.697	-1.089	0.168	-0.424	0.122	-14.545	-3.371	0.000	8.690
% error P	1.283	0.302	-0.293	1.757	0.991	1.054	-0.058	0.734	-0.024	2.848	1.792	0.093	-6.692

Figura 4.12. Temperatura de equilibrio para el hidrato binario metano-propano

Figura 4.13. Presión de equilibrio para el hidrato binario metano-propano

		Та	bla 4.13. Date	os de equilib	rio para el hi	drato binario	de metano e	isobutano			
Y ₁ : Metano	0.9918	0.9918	0.9918	0.988	0.988	0.988	0.988	0.975	0.975	0.94	0.94
y ₂ : Isobutano	0.0082	0.0082	0.0082	0.012	0.012	0.012	0.012	0.025	0.025	0.06	0.06
T (K) experim	275.4	280	283.5	274.4	277.7	279.9	283.2	274.4	285.2	274.8	280.4
P (kPa) experim	1270	2190	3340	950	1390	1800	2700	703	2740	505	1010
T (°C) experim	2.25	6.85	10.35	1.25	4.55	6.75	10.05	1.25	12.05	1.65	7.25
P (atm) experim	12.534	21.614	32.963	9.376	13.718	17.765	26.647	6.938	27.042	4.984	9.968
Referencia	Sloan, 1998	Sloan, 1998	Sloan, 1998	Sloan, 1998	Sloan, 1998	Sloan, 1998	Sloan, 1998	Sloan, 1998	Sloan, 1998	Sloan, 1998	Sloan, 1998
Estructura	I		I	II	I		II		I	I	
No. Dato	1	2	3	4	5	6	7	8	9	10	11
Modelo A											
T (°C)	1.452	6.985	11.363	-0.147	4.157	6.705	10.976	0.309		1.440	8.422
P (atm)	13.453	21.314	30.192	10.470	14.267	17.847	24.612	7.495	20.223	5.080	8.896
% error T	35.466	-1.964	-9.791	111.763	8.640	0.670	-9.218	75.292	100.000	12.740	-16.163
% error P	-7.330	1.388	8.407	-11.673	-4.002	-0.463	7.636	-8.020	25.214	-1.937	10.758
Modelo B											
T (°C)	1.406	6.946	11.310	-0.150	4.099	6.648	10.903	0.148		1.099	8.135
P (atm)	13.506	21.400	30.323	10.531	14.349	17.950	24.759	7.587	20.459	5.236	9.144
% error T	37.521	-1.396	-9.271	112.000	9.906	1.505	-8.488	88.144	100.000	33.372	-12.206
% error P	-7.755	0.989	8.011	-12.323	-4.598	-1.042	7.085	-9.352	24.344	-5.055	8.262
Modelo C											
T (°C)	1.384	7.089	11.063	0.002	4.095	6.796	10.780	0.373	12.857	1.373	8.527
P (atm)	13.584	21.105	30.413	10.521	14.321	17.685	24.658	7.531	28.531	5.120	8.807
% error T	38.494	-3.488	-6.893	99.863	10.000	-0.683	-7.265	70.147	-6.696	16.767	-17.613
% error P	-8.376	2.353	7.735	-12.214	-4.391	0.448	7.464	-8.549	-5.507	-2.734	11.651
Hysys											
T (°C)	1.045	5.675	9.161	-0.190	3.076	5.257	8.629	0.142	11.330	0.938	6.429
P (atm)	14.450	24.868	38.287	11.060	16.330	21.224	31.785	7.949	29.621	5.464	11.033
% error T	53.556	17.153	11.488	115.200	32.396	22.119	14.139	88.624	5.975	43.170	11.324
% error P	-15.287	-15.057	-16.151	-17.964	-19.039	-19.473	-19.282	-14.571	-9.538	-9.640	-10.685

	Tab	la 4.13. Dato	s de equilibri	o para el hid	rato binario d	de metano e i	sobutano (co	ontinuación)		
y ₁ : Metano	0.94	0.848	0.848	0.714	0.714	0.714	0.714	0.364	0.364	0.364
y2: Isobutano	0.06	0.152	0.152	0.286	0.286	0.286	0.286	0.636	0.636	0.636
T (K) experim	284.5	274	278.9	273.9	277.2	279.2	280.8	273.8	275.5	276.9
P (kPa) experim	1690	304	564	208	356	477	602	159	221	284
T (°C) experim	11.35	0.85	5.75	0.75	4.05	6.05	7.65	0.65	2.35	3.75
P (atm) experim	16.679	3.000	5.566	2.053	3.513	4.708	5.941	1.569	2.181	2.803
Referencia	Sloan, 1998	Sloan, 1998	Sloan, 1998	Sloan, 1998	Sloan, 1998	Sloan, 1998	Sloan, 1998	Sloan, 1998	Sloan, 1998	Sloan, 1998
Estructura	I		I	I		I	=		I	=
No. Dato	12	13	14	15	16	17	18	19	20	21
Modelo A										
T (°C)		1.053	6.789	0.513	5.043	7.485	9.595	1.182	3.306	4.915
P (atm)	12.765	2.942	4.970	2.107	3.111	3.971	4.798	1.447	1.879	2.338
% error T	100.000	-23.833	-18.065	31.599	-24.519	-23.718	-25.421	-81.882	-40.671	-31.058
% error P	23.466	1.953	10.717	-2.635	11.453	15.642	19.239	7.793	13.838	16.594
Modelo B										
T (°C)		0.209	6.144	-0.150	3.992	6.455	8.513	-0.135	2.094	3.749
P (atm)	13.107	3.183	5.333	2.424	3.538	4.489	5.401	1.759	2.267	2.803
% error T	100.000	75.451	-6.857	120.000	1.444	-6.694	-11.276	120.693	10.894	0.027
% error P	21.415	-6.095	4.185	-18.062	-0.699	4.643	9.098	-12.091	-3.937	-0.015
Modelo C										
T (°C)	13.783	1.022	6.860	0.538	5.025	7.538	9.560	1.167	3.266	4.887
P (atm)	19.083	2.945	4.957	2.107	3.132	3.961	4.769	1.446	1.890	2.351
% error T	-21.437	-20.240	-19.304	28.256	-24.086	-24.600	-24.967	-79.615	-38.989	-30.308
% error P	-14.414	1.842	10.950	-2.625	10.862	15.863	19.735	7.873	13.333	16.108
Hysys										
T (°C)	10.604	0.823	5.285	0.541	4.051	6.038	7.676	0.926	2.732	4.128
P (atm)	18.295	3.012	5.926	2.121	3.512	4.708	5.918	1.491	2.035	2.618
% error T	6.573	3.176	8.087	27.867	-0.025	0.198	-0.340	-42.462	-16.255	-10.080
% error P	-9.689	-0.392	-6.463	-3.322	0.041	-0.008	0.392	4.984	6.698	6.595

Figura 4.14. Temperatura de equilibrio para el hidrato binario metano-isobutano

Figura 4.15. Presión de equilibrio para el hidrato binario metano-isobutano

		Tabla 4.1	4. Datos de e	quilibrio par	a el hidrato b	inario de me	tano y nitróg	eno		
y ₁ : Metano	0.873	0.873	0.731	0.5025	0.5025	0.272	0.272	0.24	0.24	0.108
y ₂ : N ₂	0.127	0.127	0.269	0.4975	0.4975	0.728	0.728	0.76	0.76	0.892
T (K) experim	282.78	284.56	283.33	279.67	9.18	3.91	6.85	274.56	278.28	273.17
P (kPa) experim	7.4	9.31	8.95	7.77	103.528223	100.271377	124.747067	9.15	12.96	12.55
T (°C) experim	9.63	11.41	10.18	6.52	9.18	3.91	6.85	1.41	5.13	0.02
P (atm) experim	73.032	91.883	88.330	76.684	103.528	100.271	124.747	90.303	127.905	123.859
Referencia	Sloan, 1998	Sloan, 1998	Sloan, 1998	Sloan, 1998	Sloan, 1998	Sloan, 1998	Sloan, 1998	Sloan, 1998	Sloan, 1998	Sloan, 1998
Estructura							ļ			
No. Dato	1	2	3	4	5	6	7	8	9	10
Modelo A										
T (°C)										
P (atm)	55.456	60.289	46.177	40.022		47.208	-	49.476		69.181
% error T	100.000	100.000	100.000	100.000	100.000	100.000	100.000	100.000	100.000	100.000
% error P	24.066	34.384	47.722	47.809	100.000	52.920	100.000	45.212	100.000	44.145
Modelo B										
T (°C)	7.980		9.343	9.486	6.938	5.655	4.083	6.198	3.601	
P (atm)	81.623	87.027	85.277	108.226	79.752	128.537	85.552		103.740	144.385
% error T	17.137	100.000	8.225	-45.497	24.421	-44.632	40.388	-339.574	29.811	100.000
% error P	-11.763	5.284	3.456	-41.133	22.966	-28.190	31.420	100.000	18.893	-16.572
Modelo C										
T (°C)		12.706		-	-		-			
P (atm)	55.892		48.060	38.346						
% error T	100.000	-11.357	100.000	100.000	100.000	100.000	100.000	100.000	100.000	100.000
% error P	23.469	100.000	45.590	49.994	100.000	100.000	100.000	100.000	100.000	100.000
Hysys										
T (°C)	10.14	12.23	10.19	5.55	8.29	3.66	5.65	1.956	5.16	1.435
P (atm)	60.09	83.82	88.2	85.09	114.42			85.2		
% error T	-5.296	-7.187	-0.098	14.877	9.695	6.394	17.518	-38.723	-0.585	-7075.000
% error P	17.721	8.775	0.147	-10.962	-10.521	100.000	100.000	5.651	100.000	100.000

Figura 4.16. Temperatura de equilibrio para el hidrato binario metano-nitrógeno

Figura 4.17. Presión de equilibrio para el hidrato binario metano-nitrógeno

Tabla 4.15. Datos de equilibrio para el hidrato binario de metano y CO ₂														
y ₁ : Metano	0.66	0.7	0.64	0.68	0.72	0.4	0.56	0.875	0.915	0.93	0.945	0.29	0.39	0.48
y ₂ : CO ₂	0.34	0.3	0.36	0.32	0.28	0.6	0.44	0.125	0.085	0.07	0.055	0.71	0.61	0.52
T (K) experim	277	278.9	278.9	280.9	282.9	275.5	279.2	276.4	278.4	281	283.8	279.6	282.2	283.8
P (kPa) experim	2.84	3.46	3.43	4.24	5.17	1.99	3.08	3.2	3.95	5.1	6.89	3	4.27	5.27
T (°C) experim	3.85	5.75	5.75	7.75	9.75	2.35	6.05	3.25	5.25	7.85	10.65	6.45	9.05	10.65
P (atm) experim	28.029	34.148	33.851	41.846	51.024	19.640	30.397	31.582	38.983	50.333	67.999	29.608	42.142	52.011
Referencia	Sloan, 1998													
Estructura									I		I		I	
No. Dato	1	2	3	4	5	6	7	8	9	10	11	12	13	14
Modelo A														
T (°C)	4.887	6.448	6.771	8.385	9.812	2.937	6.262	4.066	5.646	7.804	10.218	7.052	9.587	10.913
P (atm)	25.209	31.664	30.271	38.896	50.645	18.520	29.695	29.190	37.404	50.594	71.592	27.556	39.220	50.089
% error T	-26.943	-12.134	-17.752	-8.196	-0.638	-24.979	-3.501	-25.115	-7.538	0.585	4.057	-9.329	-5.938	-2.465
% error P	10.060	7.273	10.577	7.048	0.743	5.699	2.310	7.573	4.050	-0.519	-5.284	6.930	6.933	3.696
Modelo B														
T (°C)	3.791	5.528	5.889	7.947	9.375	2.466	5.789	3.325	5.494	7.671	10.092	6.656	9.104	10.367
P (atm)	28.183	34.915	33.383	40.888	53.460	19.414	31.297	31.366	38.001	51.366	72.752	28.880	41.827	54.317
% error T	1.529	3.856	-2.421	-2.541	3.850	-4.930	4.321	-2.297	-4.639	2.279	5.239	-3.192	-0.599	2.662
% error P	-0.550	-2.248	1.384	2.288	-4.775	1.150	-2.960	0.683	2.519	-2.053	-6.990	2.458	0.747	-4.433
Modelo C														
T (°C)	4.892	6.517	6.845	8.467	9.810	2.908	6.317	4.017	5.685	7.927	10.167	7.100	9.583	10.780
P (atm)	25.296	31.528	30.142	38.499	50.618	18.586	29.539	29.406	37.350	49.900	73.064	27.410	39.093	50.899
% error T	-27.078	-13.331	-19.036	-9.255	-0.614	-23.763	-4.420	-23.609	-8.279	-0.983	4.533	-10.077	-5.887	-1.221
% error P	9.749	7.671	10.957	7.998	0.796	5.367	2.825	6.888	4.190	0.861	-7.449	7.422	7.235	2.138
Hysys				-	-									
T (°C)	4.32	5.87	6.15	7.79	9.28	2.5	5.61	3.78	5.43	7.71	10.33	6.47	8.97	10.32
P (atm)	26.61	33.67	32.36	41.62	53.92	19.3	31.93	29.88	38.26	51.08	70.4732	29.52	42.58	54.33
% error T	-12.208	-2.087	-6.957	-0.516	4.821	-6.383	7.273	-16.308	-3.429	1.783	3.005	-0.310	0.884	3.099
% error P	5.061	1.398	4.406	0.539	-5.676	1.730	-5.042	5.388	1.856	-1.484	-3.639	0.296	-1.040	-4.459

Figura 4.18. Temperatura de equilibrio para el hidrato binario metano-CO2

Figura 4.19. Presión de equilibrio para el hidrato binario metano-CO2

Tabla 4.16. Da	atos de eq	uilibrio para	el hidrato	binario de	metano y	/ H ₂ S
y ₁ : Metano	0.9177	0.9049	0.9622	0.9889	0.9708	0.786
y ₂ : H ₂ S	0.0823	0.0951	0.0378	0.0111	0.0292	0.214
T (K) experim	288.7	284.3	276.5	284.8	287.6	279.8
P (kPa) experim	4.83	2.59	2.03	6.69	6.65	1.03
T (°C) experim	15.55	11.15	3.35	11.65	14.45	6.65
P (atm) experim	47.668	25.561	20.035	66.025	65.630	10.165
	Sloan,	Sloan,	Sloan,	Sloan,	Sloan,	Sloan,
Referencia	1998	1998	1998	1998	1998	1998
Estructura						
No. Dato	1	2	3	4	5	6
Modelo A						
T (°C)			5.113	12.290		11.724
P (atm)	25.975	18.638	17.024	62.332	49.763	6.724
% error T	100.000	100.000	-52.632	-5.491	100.000	-76.306
% error P	45.509	27.085	15.024	5.594	24.177	33.852
Modelo B						
T (°C)		11.144	3.665	11.549	15.878	5.185
P (atm)	34.698	25.572	19.465	66.692	57.889	11.608
% error T	100.000	0.050	-9.396	0.864	-9.882	22.033
% error P	27.211	-0.042	2.842	-1.010	11.795	-14.190
Modelo C						
T (°C)			5.106	16.842	12.184	
P (atm)	25.416	18.972	17.170		53.834	6.704
% error T	100.000	100.000	-52.428	-44.567	15.683	100.000
% error P	46.681	25.779	14.297	100.000	17.975	34.048
Hysys						
T (°C)	16.17	11.75	4.21	11.45	13.83	9.242
P (atm)	44.13	23.9	18.31	67.53	70.96	7.77
% error T	-3.987	-5.381	-25.672	1.717	4.291	-38.977
% error P	7.423	6.499	8.608	-2.279	-8.121	23.564

Figura 4.20. Temperatura de equilibrio para el hidrato binario metano-H₂S

Figura 4.21. Presión de equilibrio para el hidrato binario metano-H₂S

		Tab	la 4.17. Dato	s de equilibri	o para el hid	rato binario d	de etano y pr	opano			
y ₁ : Etano	0.72	0.72	0.72	0.557	0.557	0.557	0.557	0.541	0.541	0.541	0.541
y ₂ : Propano	0.28	0.28	0.28	0.443	0.443	0.443	0.443	0.459	0.459	0.459	0.459
T (K) experim	277.9	276.9	276.5	275.9	276.4	277	277.4	275.8	276.4	277.6	278
P (kPa) experim	0.66	0.53	0.46	0.5	0.57	0.65	0.72	0.5	0.59	0.77	0.85
T (°C) experim	4.75	3.75	3.35	2.75	3.25	3.85	4.25	2.65	3.25	4.45	4.85
P (atm) experim	6.514	5.231	4.540	4.935	5.625	6.415	7.106	4.935	5.823	7.599	8.389
Referencia	Sloan, 1998	Sloan, 1998	Sloan, 1998	Sloan, 1998	Sloan, 1998	Sloan, 1998	Sloan, 1998	Sloan, 1998	Sloan, 1998	Sloan, 1998	Sloan, 1998
Estructura	I	I	I	I	I	I	I	I	I	I	I
No. Dato	1	2	3	4	5	6	7	8	9	10	11
Modelo A			1					1		1	
T (°C)	16.428	14.844	13.795	12.531	13.353	14.158	14.769	12.309	13.330	14.900	15.453
P (atm)	1.375	1.202	1.139	1.119	1.208	1.322		1.119	1.227		
% error T	-245.853	-295.828	-311.783	-355.658	-310.865	-267.745	-247.499	-364.495	-310.159	-234.831	- 218.610
% error P	78.896	77.019	74.912	77.317	78.534	79.386	100.000	77.325	78.930	100.000	100.000
Modelo B											
T (°C)	6.577	4.883	3.768	1.391	2.272	3.135	3.789	1.207	2.300	3.982	4.573
P (atm)	5.142	4.530	4.307	6.047	6.530	7.174	7.650	6.146	6.752	8.216	8.799
% error T	-38.463	-30.223	-12.468	49.403	30.089	18.572	10.837	54.448	29.219	10.516	5.715
% error P	21.052	13.401	5.131	-22.549	-16.081	-11.839	-7.657	-24.543	-15.964	-8.111	-4.892
Modelo C		•			•		•				
T (°C)	13.724	11.339	9.778	12.491	13.270	14.027	14.598	12.280	13.249	14.721	15.234
P (atm)	2.892	2.645	2.553	1.120	1.204	1.315		1.120	1.223		
% error T	-188.930	-202.361	-191.871	-354.212	-308.319	-264.349	-243.475	-363.398	-307.668	-230.813	- 214.104
% error P	55.599	49.428	43.775	77.313	78.591	79.501	100.000	77.312	78.990	100.000	100.000
Hysys											
T (°C)	0.337	-2.920	-6.180	1.182	1.744	2.296	2.717	1.342	2.050	3.148	3.539
P (atm)	12.137	10.650	10.115	7.165	8.118	9.487	12.208	6.723	7.796	12.411	12.030
% error T	92.916	177.867	284.478	57.029	46.342	40.366	36.080	49.362	36.923	29.261	27.035
% error P	-86.332	-103.606	-122.805	-45.189	-44.306	-47.889	-71.797	-36.238	-33.890	-63.311	-43.407

Tabla 4.17. Datos de equilibrio para el hidrato binario de etano y propano (continuación)										
y ₁ : Etano	0.342	0.342	0.342	0.271	0.271	0.271	0.271	0.26	0.26	0.26
y ₂ : Propano	0.658	0.658	0.658	0.729	0.729	0.729	0.729	0.74	0.74	0.74
T (K) experim	273.9	275.1	275.8	273.9	274.6	275.3	275.6	274.5	276.4	277.7
P (kPa) experim	0.44	0.59	0.69	0.54	0.6	0.77	0.87	0.63	0.94	1.12
T (°C) experim	0.75	1.95	2.65	0.75	1.45	2.15	2.45	1.35	3.25	4.55
P (atm) experim	4.342	5.823	6.810	5.329	5.922	7.599	8.586	6.218	9.277	11.054
Referencia	Sloan, 1998									
Estructura	I	Ш	II	I	I	I	II	I	II	
No. Dato	12	13	14	15	16	17	18	19	20	21
Modelo A										
T (°C)	8.795	10.343	11.131	8.881	9.397	10.563	11.098	9.473	11.247	11.919
P (atm)	1.043	1.288	1.456	1.159	1.318			1.317	1.871	2.382
% error T	-1072.633	-430.427	-320.053	-1084.149	-548.086	-391.311	-352.962	-601.730	-246.058	-161.966
% error P	75.981	77.885	78.621	78.257	77.749	100.000	100.000	78.817	79.832	78.450
Modelo B										
T (°C)	-0.078	1.566	2.401	1.534	2.078	3.303	3.862	2.414	4.270	4.964
P (atm)	5.024	6.253	7.145	4.596	5.245	6.007	6.375	5.050	7.386	9.929
% error T	110.400	19.709	9.397	-104.496	-43.277	-53.640	-57.653	-78.814	-31.394	-9.100
% error P	-15.704	-7.381	-4.929	13.756	11.429	20.960	25.753	18.786	20.380	10.177
Modelo C										
T (°C)	8.868	10.384	11.149	8.952	9.459	10.597	11.115	9.534	11.260	11.908
P (atm)	1.055	1.291	1.453	1.171	1.324			1.324	1.859	2.354
% error T	-1082.437	-432.537	-320.707	-1093.606	-552.358	-392.898	-353.692	-606.194	-246.455	-161.713
% error P	75.701	77.831	78.664	78.027	77.638	100.000	100.000	78.698	79.961	78.707
Hysys										
T (°C)	2.435	3.700	4.355	3.800	4.252	4.796	4.470	4.520	4.230	4.013
P (atm)	2.982	3.890	4.560	2.680	3.133	3.658	3.912	3.018	4.615	6.252
% error T	-224.640	-89.744	-64.340	-406.667	-193.241	-123.070	-82.449	-234.815	-30.154	11.804
% error P	31.327	33.194	33.037	49.713	47.100	51.861	54.438	51.469	50.254	43.443

Figura 4.22. Temperatura de equilibrio para el hidrato binario etano-propano

Figura 4.23. Presión de equilibrio para el hidrato binario etano-propano

Tabla 4.18. Datos de equilibrio para el hidrato binario de propano e isobutano										
y ₁ : Propano	0.794	0.653	0.488	0.475	0.271	0.112				
y ₂ : Isobutano	0.206	0.347	0.512	0.525	0.729	0.888				
T (K) experim	277.85	277.15	276.65	276.55	275.85	275.25				
P (kPa) experim	490	426.1	365.4	355.1	282.7	213				
T (°C) experim	4.7	4	3.5	3.4	2.7	2.1				
P (atm) experim	4.836	4.205	3.606	3.505	2.790	2.102				
Referencia	Sloan, 1998									
Estructura	II	II	II	II	II	II				
No. Dato	1	2	3	4	5	6				

Modelo A						
T (°C)	5.397	5.068	4.694	4.591	3.907	2.844
P (atm)	4.105	3.294	2.762	2.689	2.148	1.795
% error T	-14.822	-26.705	-34.122	-35.022	-44.690	-35.422
% error P	15.106	21.660	23.414	23.282	23.017	14.609

Modelo B						
T (°C)	4.582	3.934	3.439	3.338	2.911	2.342
P (atm)	4.976	4.270	3.657	3.554	2.664	1.996
% error T	2.520	1.639	1.739	1.826	-7.812	-11.538
% error P	-2.887	-1.547	-1.400	-1.422	4.523	5.034

Modelo C						
T (°C)	5.451	5.106	4.715	4.611	3.913	2.847
P (atm)	4.057	3.269	2.749	2.677	2.144	1.793
% error T	-15.971	-27.638	-34.716	-35.610	-44.924	-35.585
% error P	16.110	22.272	23.774	23.622	23.169	14.697

Hysys						
T (°C)	4.880	4.462	3.922	3.876	3.101	3.393
P (atm)	4.381	3.511	2.983	2.885	2.271	1.825
% error T	-3.830	-11.560	-12.043	-14.003	-14.841	-61.581
% error P	9.405	16.519	17.290	17.673	18.621	13.208

Figura 4.24. Temperatura de equilibrio para el hidrato binario propano-isobutano

Figura 4.25. Presión de equilibrio para el hidrato binario propano-isobutano

Tabla 4.19. Datos de equilibrio para el hidrato binario de propano y CO ₂															
y ₁ : Propano	0.055	0.08	0.08	0.09	0.09	0.09	0.13	0.25	0.42	0.86	0.83	0.15	0.83	0.72	0.65
y ₂ : CO ₂	0.945	0.92	0.92	0.91	0.91	0.91	0.87	0.75	0.58	0.14	0.17	0.85	0.17	0.28	0.35
T (K) experim	284.83	283.7	281.7	283.5	280.4	278.9	280.9	280.2	275.7	276	278.2	275.4	279.1	275.2	278.3
P (kPa) experim	4268	3179	2186	3034	1772	1455	1572	979	414	338	503	827	641	303	579
T (°C) experim	11.68	10.55	8.55	10.35	7.25	5.75	7.75	7.05	2.55	2.85	5.05	2.25	5.95	2.05	5.15
P (atm) experim	42.122	31.374	21.574	29.943	17.488	14.360	15.514	9.662	4.086	3.336	4.964	8.162	6.326	2.990	5.714
Referencia	Sloan, 1998														
Estructura	I	I	Ι		Ι			I				I			=
No. Dato	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
Modelo A															
T (°C)	11.417	10.521	7.644	10.523	6.156	4.370	6.356	5.539	2.248	4.992	7.333	0.961	8.502	6.043	10.555
P (atm)	44.659	31.505	24.097	29.230	19.818	16.710	18.136	11.377	4.231	2.176	3.148	9.345	3.760	1.451	2.236
% error T	2.248	0.271	10.595	-1.669	15.086	24.004	17.984	21.438	11.855	-75.155	-45.209	57.287	-42.894	-194.781	-104.959
% error P	-6.022	-0.418	-11.693	2.382	-13.323	-16.370	-16.899	-17.754	-3.552	34.770	36.589	-14.494	40.567	51.467	60.862
Modelo B															
T (°C)	11.674	10.873	7.994	10.910	6.542	4.756	6.877	6.358	3.274	2.643	4.593	1.548	5.793	1.851	5.866
P (atm)	42.173	29.957	23.076	27.728	18.953	16.010	17.099	10.414	3.755	3.476	5.439	8.787	6.535	3.096	5.067
% error T	0.050	-3.060	6.507	-5.414	9.760	17.285	11.261	9.822	-28.411	7.276	9.047	31.210	2.646	9.701	-13.911
% error P	-0.122	4.518	-6.963	7.397	-8.376	-11.489	-10.212	-7.780	8.099	-4.189	-9.564	-7.654	-3.308	-3.538	11.332
Modelo C															
T (°C)	11.900	11.220	8.155	11.318	6.598	4.634	7.021	6.640	2.393	5.065	7.409	0.756	8.565	6.119	10.554
P (atm)	40.338	28.694	22.553	26.494	18.713	16.042	16.659	9.996	4.132	2.161	3.103	9.308	3.702	1.448	2.210
% error T	-1.883	-6.348	4.619	-9.357	8.987	19.405	9.411	5.820	6.176	-77.729	-46.707	66.409	-43.945	-198.490	-104.937
% error P	4.234	8.542	-4.539	11.521	-7.006	-11.718	-7.380	-3.461	-1.136	35.222	37.487	-14.044	41.485	51.570	61.334
Hysys															
T (°C)	12.69	10.25	7.63	9.83	6.8	5.59	7.46	6.74	3.01	2.94	4.82	3.93	5.97	2.2	5.44
P (atm)	36.42	32.6	25.38	21.92	18.74	14.71	16.24	10.15	3.76	3.26	5.208	6.26	6.29	2.89	5.39
% error T	-8.647	2.844	10.760	5.024	6.207	2.783	3.742	4.397	-18.039	-3.158	4.554	-74.667	-0.336	-7.317	-5.631
% error P	13.537	-3.907	-17.641	26.795	-7.158	-2.439	-4.677	-5.051	7.975	2.272	-4.911	23.302	0.572	3.357	5.675

Figura 4.26. Temperatura de equilibrio para el hidrato binario propano-CO2

Figura 4.27. Presión de equilibrio para el hidrato binario propano-CO₂

4.2 Resultados para mezclas multicomponentes

A continuación se muestra los resultados obtenidos en la predicción de temperatura y presión de equilibrio para la formación de hidratos multicomponentes.

Se muestran los resultados obtenidos con los tres modelos propuestos A, B y C, el simulador de Hysys y el modelo de Parrish y Prausnitz original.

Tabla 4.20. Datos de equilibrio para hidratos de gas natural												
y₁ : Metano	0.73189	0.69249	0.88654	0.88654	0.7278	0.6249	0.908	0.7329	0.932	0.91		
y ₂ : Etano	0.14478	0.13428			0.145	0.1247	0.03	0.067	0.0425	0.032		
y ₃ : Etileno												
y₄ : Propano	0.07507	0.1328	0.07172	0.07172	0.0763	0.2062	0.02	0.039	0.0161	0.02		
y₅ : Propileno												
y ₆ : Ciclopropano				ļ								
y7 : iso-Butano								0.0036				
y ₈ : n-Pentano	0.00536	0.00357			0.0063	0.0058		0.002				
y₀ : iso-Pentano												
y ₁₀ : n-Hexano	0.00075	0.00039			0.0011	0.0011						
y ₁₁ : Nitrógeno	0.01711	0.01624			0.017	0.0147	0.01	0.15	0.0043	0.003		
y ₁₂ : Oxígeno												
y ₁₃ : CO2									0.0051	0.004		
y ₁₄ : H2S			0.04174	0.04174								
y ₁₅ : Agua												
y ₁₆ : Argón				ļ								
y ₁₇ : Kriptón												
y ₁₈ : Xenon												
y ₁₉ : 5F0	0.00504	0.00000			0.0005	0.0000	0.000	0.0055		0.004		
y_{20} : n-Butano	0.02504	0.02023			0.0265	0.0226	0.032	0.0055	40.00	0.031		
I (°C) experim	15.6	16.7	2.8	18	15.58	16.7	15.55	15.73	16.03	12.73		
P (atm) experim	41.530 Sloan.	41.530 Sloan.	5.537 Sloan.	33.230 Sloan.	41.520 Sloan.	Sloan.	49.672 Sloan.	44.027 Sloan.	68.729 Sloan.	34.157 Sloan.		
Referencia	1998	1998	1998	1998	1998	1998	1998	1998	1998	1998		
Estructura	II	11	Ш	1	Ш	Ι	I	Ι	I	Ш		
No. Dato	1	2	3	4	5	6	7	8	9	10		
Modelo A		,										
T (°C)	17.088	12.345	6.884	18.144	13.426	12.071	10.648	10.491	13.704	6.896		
P (atm)	39.256	55.118	3.722	33.337	47.938	54.738	67.746	51.517	74.787	59.545		
% error T	-9.539	26.081	-145.846	-0.797	13.827	27.721	31.523	33.309	14.508	45.827		
% error P	5.474	-32.720	32.774	-0.324	-15.458	-31.836	-36.387	-17.013	0 0 1 /	-74.326		
									-0.014			
1/*()	45.000	40.000	5 404	40.404	40.000	40.400	40.047	47 70 4	-0.014	0.005		
	15.622	12.900	5.181	19.194	12.282	13.133	10.617	17.724	18.237	6.995		
P (atm)	15.622 41.501	12.900 51.984	5.181 4.419	19.194 34.531	12.282 50.188	13.133 50.910	10.617 66.946	17.724 54.127	18.237 74.735	6.995 58.700		
P (atm) % error T	15.622 41.501 -0.140	12.900 51.984 22.755	5.181 4.419 -85.029	19.194 34.531 -6.634	12.282 50.188 21.167	13.133 50.910 21.360	10.617 66.946 31.722	17.724 54.127 -12.678	-8.814 18.237 74.735 -13.766	6.995 58.700 45.053		
P (atm) % error T % error P	15.622 41.501 -0.140 0.068	12.900 51.984 22.755 -25.173	5.181 4.419 -85.029 20.187	19.194 34.531 -6.634 -3.915	12.282 50.188 21.167 -20.876	13.133 50.910 21.360 -22.616	10.617 66.946 31.722 -34.777	17.724 54.127 -12.678 -22.941	-8.814 18.237 74.735 -13.766 -8.738	6.995 58.700 45.053 -71.851		
P (atm) % error T % error P Modelo C	15.622 41.501 -0.140 0.068	12.900 51.984 22.755 -25.173	5.181 4.419 -85.029 20.187	19.194 34.531 -6.634 -3.915	12.282 50.188 21.167 -20.876	13.133 50.910 21.360 -22.616	10.617 66.946 31.722 -34.777	17.724 54.127 -12.678 -22.941	-8.814 18.237 74.735 -13.766 -8.738	6.995 58.700 45.053 -71.851		
P (atm) % error T % error P Modelo C T (°C) P (atm)	15.622 41.501 -0.140 0.068 14.355 40.000	12.900 51.984 22.755 -25.173 17.110 41.868	5.181 4.419 -85.029 20.187 6.967 3.759	19.194 34.531 -6.634 -3.915 12.421 26.512	12.282 50.188 21.167 -20.876 0.000 49.082	13.133 50.910 21.360 -22.616 17.032 41 574	10.617 66.946 31.722 -34.777 19.446 66 140	17.724 54.127 -12.678 -22.941 15.064	-8.814 18.237 74.735 -13.766 -8.738 15.532 65 781	6.995 58.700 45.053 -71.851 13.178 35.150		
P (atm) % error T % error P Modelo C T (°C) P (atm) % error T	15.622 41.501 -0.140 0.068 14.355 40.000 7.978	12.900 51.984 22.755 -25.173 17.110 41.868 -2 453	5.181 4.419 -85.029 20.187 6.967 3.759 -148.804	19.194 34.531 -6.634 -3.915 12.421 26.512 30.995	12.282 50.188 21.167 -20.876 0.000 49.082	13.133 50.910 21.360 -22.616 17.032 41.574 -1 985	10.617 66.946 31.722 -34.777 19.446 66.140 -25.055	17.724 54.127 -12.678 -22.941 15.064 40.405 4 236	-8.814 18.237 74.735 -13.766 -8.738 15.532 65.781 3 108	6.995 58.700 45.053 -71.851 13.178 35.150 -3.520		
P (atm) % error T % error P Modelo C T (°C) P (atm) % error T % error P	15.622 41.501 -0.140 0.068 14.355 40.000 7.978 3.683	12.900 51.984 22.755 -25.173 17.110 41.868 -2.453 -0.815	5.181 4.419 -85.029 20.187 6.967 3.759 -148.804 32.114	19.194 34.531 -6.634 -3.915 12.421 26.512 30.995 20.215	12.282 50.188 21.167 -20.876 0.000 49.082 100.000 -18.213	13.133 50.910 21.360 -22.616 17.032 41.574 -1.985 -0.129	10.617 66.946 31.722 -34.777 19.446 66.140 -25.055 -33.155	17.724 54.127 -12.678 -22.941 15.064 40.405 4.236 8 226	-8.814 18.237 74.735 -13.766 -8.738 15.532 65.781 3.108 4.289	6.995 58.700 45.053 -71.851 13.178 35.150 -3.520 -2.905		
P (atm) P (atm) % error T % error P Modelo C T (°C) P (atm) % error T % error P Hysys	15.622 41.501 -0.140 0.068 14.355 40.000 7.978 3.683	12.900 51.984 22.755 -25.173 17.110 41.868 -2.453 -0.815	5.181 4.419 -85.029 20.187 6.967 3.759 -148.804 32.114	19.194 34.531 -6.634 -3.915 12.421 26.512 30.995 20.215	12.282 50.188 21.167 -20.876 0.000 49.082 100.000 -18.213	13.133 50.910 21.360 -22.616 17.032 41.574 -1.985 -0.129	10.617 66.946 31.722 -34.777 19.446 66.140 -25.055 -33.155	17.724 54.127 -12.678 -22.941 15.064 40.405 4.236 8.226	-8.814 18.237 74.735 -13.766 -8.738 15.532 65.781 3.108 4.289	6.995 58.700 45.053 -71.851 13.178 35.150 -3.520 -2.905		
P (atm) % error T % error P Modelo C T (°C) P (atm) % error T % error P Hysys T (°C)	15.622 41.501 -0.140 0.068 14.355 40.000 7.978 3.683 14.410	12.900 51.984 22.755 -25.173 17.110 41.868 -2.453 -0.815 15.990	5.181 4.419 -85.029 20.187 6.967 3.759 -148.804 32.114 4.190	19.194 34.531 -6.634 -3.915 12.421 26.512 30.995 20.215	12.282 50.188 21.167 -20.876 0.000 49.082 100.000 -18.213 14.420	13.133 50.910 21.360 -22.616 17.032 41.574 -1.985 -0.129 16.750	10.617 66.946 31.722 -34.777 19.446 66.140 -25.055 -33.155 12.990	17.724 54.127 -12.678 -22.941 15.064 40.405 4.236 8.226 14.630	-8.814 18.237 74.735 -13.766 -8.738 15.532 65.781 3.108 4.289 14.500	6.995 58.700 45.053 -71.851 13.178 35.150 -3.520 -2.905 10.290		
P (atm) P (atm) % error T % error P Modelo C T (°C) P (atm) % error T % error P Hysys T (°C) P (atm)	15.622 41.501 -0.140 0.068 14.355 40.000 7.978 3.683 14.410 50.036	12.900 51.984 22.755 -25.173 17.110 41.868 -2.453 -0.815 15.990 46.500	5.181 4.419 -85.029 20.187 6.967 3.759 -148.804 32.114 4.190 4.680	19.194 34.531 -6.634 -3.915 12.421 26.512 30.995 20.215 18.970 29.210	12.282 50.188 21.167 -20.876 0.000 49.082 100.000 -18.213 14.420 49.750	13.133 50.910 21.360 -22.616 17.032 41.574 -1.985 -0.129 16.750 41.150	10.617 66.946 31.722 -34.777 19.446 66.140 -25.055 -33.155 12.990 74.840	17.724 54.127 -12.678 -22.941 15.064 40.405 4.236 8.226 14.630 51.350	-8.814 18.237 74.735 -13.766 -8.738 15.532 65.781 3.108 4.289 14.500 87.790	6.995 58.700 45.053 -71.851 13.178 35.150 -3.520 -2.905 10.290 47.840		
P (atm) P (atm) % error T % error P Modelo C T (°C) P (atm) % error T % error P Hysys T (°C) P (atm) % error T	15.622 41.501 -0.140 0.068 14.355 40.000 7.978 3.683 	12.900 51.984 22.755 -25.173 17.110 41.868 -2.453 -0.815 15.990 46.500 4.251	5.181 4.419 -85.029 20.187 6.967 3.759 -148.804 32.114 4.190 4.680 -49.643	19.194 34.531 -6.634 -3.915 12.421 26.512 30.995 20.215 18.970 29.210 -5.389	12.282 50.188 21.167 -20.876 0.000 49.082 100.000 -18.213 14.420 49.750 7.445	13.133 50.910 21.360 -22.616 17.032 41.574 -1.985 -0.129 16.750 41.150 -0.299	10.617 66.946 31.722 -34.777 19.446 66.140 -25.055 -33.155 12.990 74.840 16.463	17.724 54.127 -12.678 -22.941 15.064 40.405 4.236 8.226 14.630 51.350 6.993	-8.814 18.237 74.735 -13.766 -8.738 15.532 65.781 3.108 4.289 14.500 87.790 9.545	6.995 58.700 45.053 -71.851 13.178 35.150 -3.520 -2.905 10.290 47.840 19.167		
P (atm) % error T % error P Modelo C T (°C) P (atm) % error T % error P Hysys T (°C) P (atm) % error T	15.622 41.501 -0.140 0.068 14.355 40.000 7.978 3.683 14.410 50.036 7.628 -20.483	12.900 51.984 22.755 -25.173 17.110 41.868 -2.453 -0.815 15.990 46.500 4.251 -11.969	5.181 4.419 -85.029 20.187 6.967 3.759 -148.804 32.114 4.190 4.680 -49.643 15.472	19.194 34.531 -6.634 -3.915 12.421 26.512 30.995 20.215 18.970 29.210 -5.389 12.097	12.282 50.188 21.167 -20.876 0.000 49.082 100.000 -18.213 14.420 49.750 7.445 -19.822	13.133 50.910 21.360 -22.616 17.032 41.574 -1.985 -0.129 16.750 41.150 -0.299 0.891	10.617 66.946 31.722 -34.777 19.446 66.140 -25.055 -33.155 12.990 74.840 16.463 -50.669	17.724 54.127 -12.678 -22.941 15.064 40.405 4.236 8.226 14.630 51.350 6.993 -16.634	-8.814 18.237 74.735 -13.766 -8.738 15.532 65.781 3.108 4.289 14.500 87.790 9.545 -27.733	6.995 58.700 45.053 -71.851 13.178 35.150 -3.520 -2.905 10.290 47.840 19.167 -40.057		
P (atm) P (atm) % error T % error P Modelo C T (°C) P (atm) % error T % error P Hysys T (°C) P (atm) % error T % error P Parrish-Prausnitz	15.622 41.501 -0.140 0.068 14.355 40.000 7.978 3.683 14.410 50.036 7.628 -20.483	12.900 51.984 22.755 -25.173 17.110 41.868 -2.453 -0.815 15.990 46.500 4.251 -11.969	5.181 4.419 -85.029 20.187 6.967 3.759 -148.804 32.114 4.190 4.680 -49.643 15.472	19.194 34.531 -6.634 -3.915 12.421 26.512 30.995 20.215 18.970 29.210 -5.389 12.097	12.282 50.188 21.167 -20.876 0.000 49.082 100.000 -18.213 14.420 49.750 7.445 -19.822	13.133 50.910 21.360 -22.616 17.032 41.574 -1.985 -0.129 16.750 41.150 -0.299 0.891	10.617 66.946 31.722 -34.777 19.446 66.140 -25.055 -33.155 12.990 74.840 16.463 -50.669	17.724 54.127 -12.678 -22.941 15.064 40.405 4.236 8.226 14.630 51.350 6.993 -16.634	-8.814 18.237 74.735 -13.766 -8.738 15.532 65.781 3.108 4.289 14.500 87.790 9.545 -27.733	6.995 58.700 45.053 -71.851 13.178 35.150 -3.520 -2.905 10.290 47.840 19.167 -40.057		
P (atm) % error T % error P Modelo C T (°C) P (atm) % error T % error P Hysys T (°C) P (atm) % error P Hysys T (°C) P (atm) % error T % error T % error T % error P P (atm) % error T % error P T (°C)	15.622 41.501 -0.140 0.068 14.355 40.000 7.978 3.683 -14.410 50.036 7.628 -20.483 15.878	12.900 51.984 22.755 -25.173 17.110 41.868 -2.453 -0.815 15.990 46.500 4.251 -11.969 17.361	5.181 4.419 -85.029 20.187 6.967 3.759 -148.804 32.114 4.190 4.680 -49.643 15.472 2.975	19.194 34.531 -6.634 -3.915 12.421 26.512 30.995 20.215 18.970 29.210 -5.389 12.097 21.102	12.282 50.188 21.167 -20.876 0.000 49.082 100.000 -18.213 14.420 49.750 7.445 -19.822 14.842	13.133 50.910 21.360 -22.616 17.032 41.574 -1.985 -0.129 16.750 41.150 -0.299 0.891 14.996	10.617 66.946 31.722 -34.777 19.446 66.140 -25.055 -33.155 12.990 74.840 16.463 -50.669 19.790	17.724 54.127 -12.678 -22.941 15.064 40.405 4.236 8.226 14.630 51.350 6.993 -16.634 17.078	-8.814 18.237 74.735 -13.766 -8.738 15.532 65.781 3.108 4.289 14.500 87.790 9.545 -27.733 22.158	6.995 58.700 45.053 -71.851 13.178 35.150 -3.520 -2.905 10.290 47.840 19.167 -40.057 17.663		
P (atm) P (atm) % error T % error P Modelo C T (°C) P (atm) % error T % error P Hysys T (°C) P (atm) % error P Hysys T (°C) P (atm) % error T % error P Parrish-Prausnitz T (°C) P (atm)	15.622 41.501 -0.140 0.068 14.355 40.000 7.978 3.683 14.410 50.036 7.628 -20.483 15.878 39.456	12.900 51.984 22.755 -25.173 17.110 41.868 -2.453 -0.815 15.990 46.500 4.251 -11.969 17.361 36.885	5.181 4.419 -85.029 20.187 6.967 3.759 -148.804 32.114 4.190 4.680 -49.643 15.472 2.975 5.400	19.194 34.531 -6.634 -3.915 12.421 26.512 30.995 20.215 18.970 29.210 -5.389 12.097 21.102 20.985	12.282 50.188 21.167 -20.876 0.000 49.082 100.000 -18.213 14.420 49.750 7.445 -19.822 14.842 46.982	13.133 50.910 21.360 -22.616 17.032 41.574 -1.985 -0.129 16.750 41.150 -0.299 0.891 14.996 52.017	10.617 66.946 31.722 -34.777 19.446 66.140 -25.055 -33.155 12.990 74.840 16.463 -50.669 19.790 25.803	17.724 54.127 -12.678 -22.941 15.064 40.405 4.236 8.226 14.630 51.350 6.993 -16.634 17.078 34.105	-8.814 18.237 74.735 -13.766 -8.738 15.532 65.781 3.108 4.289 14.500 87.790 9.545 -27.733 22.158 24.462	6.995 58.700 45.053 -71.851 13.178 35.150 -3.520 -2.905 10.290 47.840 19.167 -40.057 17.663 17.243		
P (atm) P (atm) % error T % error P Modelo C T (°C) P (atm) % error T % error P Hysys T (°C) P (atm) % error T % error P Parrish-Prausnitz T (°C) P (atm) % error T	15.622 41.501 -0.140 0.068 14.355 40.000 7.978 3.683 14.410 50.036 7.628 -20.483 15.878 39.456 -1.785	12.900 51.984 22.755 -25.173 17.110 41.868 -2.453 -0.815 15.990 46.500 4.251 -11.969 17.361 36.885 -3.961	5.181 4.419 -85.029 20.187 6.967 3.759 -148.804 32.114 4.190 4.680 -49.643 15.472 2.975 5.400 -6.264	19.194 34.531 -6.634 -3.915 12.421 26.512 30.995 20.215 18.970 29.210 -5.389 12.097 21.102 20.985 -17.232	12.282 50.188 21.167 -20.876 0.000 49.082 100.000 -18.213 14.420 49.750 7.445 -19.822 14.842 46.982 4.736	13.133 50.910 21.360 -22.616 17.032 41.574 -1.985 -0.129 16.750 41.150 -0.299 0.891 14.996 52.017 10.202	10.617 66.946 31.722 -34.777 19.446 66.140 -25.055 -33.155 12.990 74.840 16.463 -50.669 19.790 25.803 -27.267	17.724 54.127 -12.678 -22.941 15.064 40.405 4.236 8.226 14.630 51.350 6.993 -16.634 17.078 34.105 -8.573	-8.814 18.237 74.735 -13.766 -8.738 15.532 65.781 3.108 4.289 14.500 87.790 9.545 -27.733 22.158 24.462 -38.230	6.995 58.700 45.053 -71.851 13.178 35.150 -3.520 -2.905 10.290 47.840 19.167 -40.057 17.663 17.243 -38.749		

Та	bla 4.20	. Datos (de equili	ibrio para	hidrato	s de gas	natural	(continua	ción)	
y₁ : Metano	0.7964	0.785	0.686	0.878	0.932	0.879	0.879	0.784	0.794	0.752
y ₂ : Etano	0.0938			0.04	0.0425	0.044	0.044	0.06	0.058	0.059
y ₃ : Etileno										
y₄ : Propano	0.0322			0.021	0.0161	0.049	0.049	0.036	0.036	0.033
y₅ : Propileno										
y ₆ : Ciclopropano										
y ₇ : iso-Butano	0.0018									
y ₈ : n-Pentano	0.0015									
y ₉ : iso-Pentano										
y ₁₀ : n-Hexano	0.0005									
y ₁₁ : Nitrógeno	0.068			0.011	0.0043	0.011	0.011	0.094	0.095	0.143
y ₁₂ : Oxígeno										
y ₁₃ : CO2		0.139	0.249	0.0325	0.0051	0.002	0.002	0.002	0.003	0.002
y ₁₄ : H2S		0.076	0.065	0.0025						
y ₁₅ : Agua										
y ₁₆ : Argón										
y ₁₇ : Kripton										
y ₁₈ : Xenon										
y ₁₉ . Or 0	0.005.9			0.015		0.015	0.015	0.024	0.014	0.011
	10.12	7.05	6.05	7 15	4.52	0.015	0.015	5.02	2.22	2.22
P (ctm) experim	21 574	16 521	0.00	16.045	4.55	0.55	9.43	2.03	3.33	0.226
P (am) experim	Sloan,	Sloan,	Sloan,	Sloan,	Sloan,	Sloan,	Sloan,	Sloan,	Sloan,	9.326 Sloan,
Referencia	1998	1998	1998	1998	1998	1998	1998	1998	1998	1998
Estructura	П	I	I	II	Ш	II	11	II	П	11
No. Dato	11	12	13	14	15	16	17	18	19	20
Modelo A										
T (°C)	12.554	8.457	6.545	8.977	5.829	0.990	13.624	9.322	7.181	5.497
P (atm)	17.330	15.792	13.896	14.320	13.913	5.697	13.121	8.816	7.822	7.262
% error T	-23.933	-6.374	-8.184	-25.546	-28.684	-86.825	-44.479	-85.327	-115.631	-146.484
% error P	19.672	4.471	4.540	15.495	11.892	3.785	25.269	28.020	27.220	22.130
	44.050	0.405	4.045	0.005	E E4E	0.001	40.004	0.040	4 470	4 000
P (atm)	20 102	19511	4.915	8.385	5.515 1/ 356	6 171	12.831	10 901	4.479 9.864	10.055
% error T	-12 071	22 071	18 761	-17 279	-21 750	99 787	-36.063	-32 130	-34 518	54 175
% error P	6.825	-18 024	-11 377	10 721	9 088	-4 210	20 585	10 994	8 218	-7 813
Modelo C	0.020	10.024	11.011	10.721	0.000	7.210	20.000	10.004	0.210	7.010
T (°C)	0.000	8.538	6.598	8.596	5.878	0.330	0.000	8.400	6.808	5.154
P (atm)	18.017	15.668	13.853	14.828	13.956	6.031	13.636	9.491	8.268	7.681
% error T	100.000	-7.397	-9.054	-20.218	-29.765	37.653	100.000	-67.004	-104.458	-131.114
% error P	16.486	5.217	4.837	12.495	11.618	-1.848	22.334	22.507	23.072	17.644
Hysys										
T (°C)	8.750	6.860	5.270	4.870	3.030	-3.860	7.340	3.150	2.110	0.316
P (atm)	25.550	18.570	15.820	22.460	18.880	7.490	22.800	15.500	12.520	11.860
% error T	13.623	13.711	12.893	31.888	33.113	828.302	22.163	37.376	36.637	85.830
% error P	-18.429	-12.335	-8.675	-32.543	-19.564	-26.487	-29.860	-26.554	-16.491	-27.166
Parrish-Prausnitz										
T (°C)	14.538	3.684	1.982	2.710	1.354	4.777	13.160	10.555	0.588	8.267
P (atm)	10.994	32.782	27.450	37.157	26.420	8.700	10.804	5.946	16.566	4.194
% error T	-43.517	53.664	67.234	62.093	70.115	-801.231	-39.560	-109.843	82.347	-270.734
% error P	49.041	-98.307	-88.565	-119.276	-67.313	-46.922	38.464	51.452	-54.135	55.030

Tabla 4	.20. Datos d	e equilibrio	para hidratos d	le gas natural	(continuación	ו)
y₁ : Metano	0.886	0.8641	0.8641	0.906	0.906	0.906
v₂ : Etano	0.043	0.0647	0.0647	0.066	0.066	0.066
y ₃ : Etileno						
v₄ : Propano	0.02	0.0357	0.0357	0.018	0.018	0.018
y₅ : Propileno						
y ₆ : Ciclopropano						
y ₇ : iso-Butano		0.0099	0.0099	0.005	0.005	0.005
v ₈ : n-Pentano		0.0078	0.0078			
y ₉ : iso-Pentano						
y₁₀ : n-Hexano						
y ₁₁ : Nitrógeno	0.034	0.0064	0.0064			
y ₁₂ : Oxígeno						
y ₁₃ : CO2						
y ₁₄ : H2S				0.005	0.005	0.005
y₁₅ : Agua						
y ₁₆ : Argón						
y ₁₇ : Kriptón						
y ₁₈ : Xenon						
y ₁₉ .510	0.047	0.0111	0.0111			
y_{20} : n-Butano	0.017	0.0114	0.0114	04.00	00.00	05.40
I (°C) experim	4.43	20.93	25.13	24.33	26.83	25.43
P (atm) experim	12.929	95.534	269.627	273.180	407.994	333.087
Referencia	Sloan, 1998	Sloan, 1998	Sioan, 1998	Sloan, 1998	Sloan, 1998	Sloan, 1998
Estructura	11	11	1	1	1	1
No. Dato	21	22	23	24	25	20
	5 338	25 263	24 164	19 963	24 159	22 175
P (atm)	11 878	0.000	305 288	415 426	541 843	466 834
% error T	-20 499	-20 704	3 844	17 948	9 957	12 800
% error P	8 129	100.000	-13 226	-52 070	-32 807	-40 154
Modelo B	0.120	100.000	10.220	02.010	02.001	10.101
T (°C)	4.346	24.924	23.801	20.112	24.249	22.282
P (atm)	13.027	0.000	316.577	411.514	537.264	462.656
% error T	1.905	-19.083	5.288	17.337	9.620	12.380
% error P	-0.757	100.000	-17.413	-50.638	-31.684	-38.900
Modelo C						
T (°C)	4.754		28.367	17.624	27.895	21.938
P (atm)	12.575	80.592	247.606	364.415	395.439	378.308
% error T	-7.309	100.000	-12.879	27.563	-3.970	13.733
% error P	2.737	15.640	8.167	-33.397	3.077	-13.576
Hysys						
T (°C)	2.110	20.510	25.420	24.950	27.810	26.340
P (atm)	17.170	104.370	256.000	246.700	0.000	292.530
% error T	52.370	2.007	-1.154	-2.548	-3.653	-3.578
% error P	-32.805	-9.249	5.054	9.693	100.000	12.176
Parrish-Prausnitz						
T (°C)	10.834	17.135	16.889	20.903	15.701	18.734
P (atm)	5.660	0.000	0.000	0.000	0.000	0.000
% error T	-144.555	18.133	32.793	14.086	41.480	26.333
% error P	56.219	100.000	100.000	100.000	100.000	100.000

Mezcla Gas Natural

Figura 4.28. Temperatura de equilibrio para hidratos de gas

Mezcla Gas Natural

Figura 4.29. Presión de equilibrio para hidratos de gas

	Tabla 4.21. D	atos de	equilibri	o para h	hidratos	de gas	natura	l. Predic	ción de	temper	atura de	equilibr	io
y 1	: Metano	0.73189	0.69249	0.6249	0.7329	0.932	0.91	0.785	0.686	0.878	0.932	0.879	0.886
y ₂	: Etano	0.14478	0.13428	0.1247	0.067	0.0425	0.032			0.04	0.0425	0.044	0.043
y ₃	: Etileno												
y 4	: Propano	0.07507	0.1328	0.2062	0.039	0.0161	0.02			0.021	0.0161	0.049	0.02
y 5	: Propileno												
y 6	: Ciclopropano												
y 7	: iso-Butano				0.0036								
y ₈	: n-Pentano	0.00536	0.00357	0.0058	0.002								
y9	: iso-Pentano												
y 1	₀:n-Hexano	0.00075	0.00039	0.0011									
y 1	1 : Nitrógeno	0.01711	0.01624	0.0147	0.15	0.0043	0.003			0.011	0.0043	0.011	0.034
y 1	2 : Oxígeno												
y 1	₃ : CO2					0.0051	0.004	0.139	0.249	0.0325	0.0051	0.002	
y1	₄ : H2S							0.076	0.065	0.0025			
y 1	₅ : Agua												
y 1	6 : Argón												
y 1	7 : Kriptón												
y 1	8 : Xenon												
y 1	9 : SF6												
y ₂	₀ : n-Butano	0.02504	0.02023	0.0226	0.0055		0.031			0.015		0.015	0.017
	T (°C) experim	15.6	16.7	16.7	15.73	16.03	12.73	7.95	6.05	7.15	4.53	0.53	4.43
	P (atm) experim	41.530	41.530	41.520	44.027	68.729	34.157	16.531	14.557	16.945	15.791	5.922	12.929
	Referencia	Sloan,	Sloan,	Sloan,	Sloan,	Sloan,	Sloan,	Sloan,	Sloan,	Sloan,	Sloan,	Sloan,	Sloan,
	Estructura			1000	1000	1000		1000	1000				
	No. Dato	1	2	3	4	5	6	7	8	9	10	11	12
	Modelo C			Ū			Ū		Ū	Ū			
	T (°C)	14.355	17.110	17.032	15.064	15.532	13.178	8.538	6.598	8.596	5.878	0.330	4.754
	% error	7.978	-2.453	-1.985	4.236	3.108	-3.520	-7.397	-9.054	-20.218	-29.765	37.653	-7.309
	Hysys						•					·	
	T (°C)	14.410	15.990	16.750	14.630	14.500	10.290	6.860	5.270	4.870	3.030	-3.860	2.110
	% error	7.628	4.251	-0.299	6.993	9.545	19.167	13.711	12.893	31.888	33.113	828.302	52.370

Tabla 4.21. Dat	tos de ec	quilibrio pa	ara hidrat	os de ga	as natura	al. Predi	cción de	tempera	tura de e	quilibrio	(continua	ación)
y ₁ : Metano	0.654	0.879	0.784	0.878	0.91	0.908	0.886	0.674	0.7329	0.7964	0.8641	0.906
y ₂ : Etano	0.127	0.044	0.06	0.04	0.032	0.03	0.043	0.037	0.067	0.0938	0.0647	0.066
y3 : Etileno												
y₄ : Propano	0.103	0.049	0.036	0.021	0.02	0.02	0.02	0.019	0.039	0.0322	0.0357	0.018
y ₅ : Propileno												
y ₆ : Ciclopropano												
y7 : iso-Butano									0.0036	0.0018	0.0099	0.005
y ₈ : n-Pentano									0.002	0.0015	0.0078	
y ₉ : iso-Pentano												
y ₁₀ : n-Hexano										0.0005		
y ₁₁ : Nitrógeno	0.077	0.011	0.094	0.011	0.003	0.01	0.034	0.25	0.15	0.068	0.0064	
y ₁₂ : Oxígeno												
y ₁₃ : CO2	0.002	0.002	0.002	0.0325	0.004			0.008				
y ₁₄ : H2S				0.0025								0.005
y ₁₅ : Agua												
y ₁₆ : Argón												
y ₁₇ : Kriptón												
y ₁₈ : Xenon												
y ₁₉ : SF6												
y ₂₀ : n-Butano	0.037	0.015	0.024	0.015	0.031	0.032	0.017	0.012	0.0055	0.0058	0.0114	
T (°C) experim	10.03	4.53	2.73	16.13	4.43	12.73	7.23	10.03	14.53	12.53	25.13	26.83
P (atm) experim	17.824	9.800	8.912	51.853	12.248	34.226	17.893	31.236	37.967	28.917	269.627	407.994
Referencia	Sloan, 1998											
Estructura	1			I				I			I	
No. Dato	13	14	15	16	17	18	19	20	21	22	23	24
Modelo C												
T (°C)	8.531	5.844	4.194	17.284	3.575	12.886	8.486	8.535	16.221	12.110	28.367	27.895
% error	14.950	-29.014	-53.632	-7.153	19.290	-1.227	-17.369	14.908	-11.640	3.356	-12.879	-3.970
Hysys												
T (°C)	8.93	2.66	0.6335	13.4	2.134	10.32	4.7663	7.8	0	11.12	25.42	27.81
% error	10.967	41.280	76.795	16.925	51.828	18.932	34.076	22.233	100.000	11.253	-1.154	-3.653

Mezcla de Gas Natural

Figura 4.30. Temperatura de equilibrio para hidratos de gas calculada con el Modelo C

	Tabla	4.22. Da	itos de e	equilibrio	o para l	nidratos	s de gas	natural.	Predico	ión de p	oresión	de equil	ibrio		
x ₁ : Metano	0.73189	0.69249	0.88654	0.7278	0.6249	0.7329	0.932	0.91	0.7964	0.785	0.686	0.878	0.932	0.879	0.784
x ₂ : Etano	0.14478	0.13428		0.145	0.1247	0.067	0.0425	0.032	0.0938			0.04	0.0425	0.044	0.06
x3 : Etileno															
x4 : Propano	0.07507	0.1328	0.07172	0.0763	0.2062	0.039	0.0161	0.02	0.0322			0.021	0.0161	0.049	0.036
x5 : Propileno															
x ₆ : Ciclopropano															
x7 : iso-Butano						0.0036			0.0018						
x8 : n-Pentano	0.00536	0.00357		0.0063	0.0058	0.002			0.0015						
x9: iso-Pentano															
x ₁₀ : n-Hexano	0.00075	0.00039		0.0011	0.0011				0.0005						
x11 : Nitrógeno	0.01711	0.01624		0.017	0.0147	0.15	0.0043	0.003	0.068			0.011	0.0043	0.011	0.094
x ₁₂ : Oxígeno															
x ₁₃ : CO2							0.0051	0.004		0.139	0.249	0.0325	0.0051	0.002	0.002
x ₁₄ : H2S			0.04174							0.076	0.065	0.0025			
x ₁₅ : Agua															
x ₁₆ : Argón															
x ₁₇ : Kriptón															
x ₁₈ : Xenon															
x ₁₉ : SF6															
x ₂₀ : n-Butano	0.02504	0.02023		0.0265	0.0226	0.0055		0.031	0.0058			0.015		0.015	0.024
T (°C) experim	15.6	16.7	2.8	15.58	16.7	15.73	16.03	12.73	10.13	7.95	6.05	7.15	4.53	0.53	5.03
P (atm) experim	41.530	41.530	5.537	41.520	41.520	44.027	68.729	34.157	21.574	16.531	14.557	16.945	15.791	5.922	12.248
Referencia	Sloan, 1998														
Estructura			II		I		I		II	I	I		II	II	
No. Dato	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
Modelo C															
P (atm)	40.000	41.868	3.759	49.082	41.574	40.405	65.781	35.150	43.841	15.668	13.853	14.828	13.956	6.031	9.491
% error	3.683	-0.815	32.114	-18.213	-0.129	8.226	4.289	-2.905	-103.211	5.217	4.837	12.495	11.618	-1.848	22.507
Hysys															
P (atm)	50.036	46.500	4.680	49.750	41.150	51.350	87.790	47.840	25.550	18.570	15.820	22.460	18.880	7.490	15.500
% error	-20.483	-11.969	15.472	-19.822	0.891	-16.634	-27.733	-40.057	-18.429	-12.335	-8.675	-32.543	-19.564	-26.487	-26.554

Tabla 4.22. Datos de equilibrio para hidratos de gas natural. Predicción de presión de equilibrio (continuación)														
x ₁ : Metano	0.794	0.752	0.886	0.906	0.654	0.654	0.879	0.784	0.878	0.91	0.908	0.886	0.674	0.7964
x ₂ : Etano	0.058	0.059	0.043	0.038	0.127	0.127	0.044	0.06	0.04	0.032	0.03	0.043	0.037	0.0938
x3 : Etileno														
x ₄ : Propano	0.036	0.033	0.02	0.015	0.103	0.103	0.049	0.036	0.021	0.02	0.02	0.02	0.019	0.0322
x₅ : Propileno														
x ₆ : Ciclopropano														
x7 : iso-Butano														0.0018
x ₈ : n-Pentano														0.0015
x9: iso-Pentano														
x ₁₀ : n-Hexano														0.0005
x11 : Nitrógeno	0.095	0.143	0.034	0.012	0.077	0.077	0.011	0.094	0.011	0.003	0.01	0.034	0.25	0.068
x ₁₂ : Oxígeno														
x ₁₃ : CO2	0.003	0.002		0.009	0.002	0.002	0.002	0.002	0.0325	0.004			0.008	
x ₁₄ : H2S									0.0025					
x ₁₅ : Agua														
x ₁₆ : Argón														
x ₁₇ : Kriptón														
x ₁₈ : Xenon														
X ₁₉ : SF6														
x ₂₀ : n-Butano	0.014	0.011	0.017	0.02	0.037	0.037	0.015	0.024	0.015	0.031	0.032	0.017	0.012	0.0058
T (°C) experim	3.33	2.23	4.43	0.53	1.63	10.03	4.53	2.73	16.13	4.43	12.73	7.23	10.03	12.53
P (atm) experim	10.748	9.326	12.929	8.715	6.188	17.824	9.800	8.912	51.853	12.248	34.226	17.893	31.236113	28.9168439
Referencia	510an, 1998													
Estructura						I							1	
No. Dato	16	17	18	19	20	21	22	23	24	25	26	27	28	29
Modelo C														
P (atm)	8.268	7.681	12.575	10.254	4.212	19.891	8.692	7.982	55.923	13.239	34.594	16.019	33.611	27.782
% error	23.072	17.644	2.737	-17.660	31.933	-11.597	11.311	10.437	-7.848	-8.091	-1.072	10.472	-7.604	3.924
Hysys														
P (atm)	12.52	11.86	17.17	11.476	6.72	20.63	12.38	11.61	81.23	16.24	47.79	24.266	41.99	34.62
% error	-16,491	-27,166	-32,805	-31,688	-8.597	-15,744	-26.325	-30,275	-56,655	-32,596	-39,629	-35,618	-34,428	-19,723

Gas Natural

Figura 4.31. Presión de equilibrio para hidratos de gas calculada con el Modelo C

4.3 Discusión de resultados

Los potenciales químicos de referencia a To y Po para componentes puros, reportados en la tabla 4.1, fueron ajustados con una relación matemática a partir de datos de hidratos simples. Estos datos fueron obtenidos de la literatura y fueron ajustados en el rango de temperatura en el cual estaban disponibles dichos datos. Debido a que el comportamiento del potencial en función de la temperatura fue lineal, estos potenciales se pudieron extrapolar a temperaturas fuera del rango a la cual fueron ajustados para calcular el potencial de referencia de la mezcla a T y P_R. El caso más notorio es el del isobutano, cuyos datos como hidrato puro sólo estaban disponibles para una temperatura máxima de 2 °C, sin embargo la función lineal que se ajustó sólo en este rango de temperatura fue empleada para calcular el potencial químico de referencia de una mezcla de gas a una mayor temperatura (máxima de 26°C).

Los datos de equilibrio reportados para hidratos de mezcla de gas se encuentran en un rango de 0 a 30 °C; sin embargo sólo se tomaron los datos que se encontraban en el rango de 0 a 26 °C, debido a las limitaciones implícitas del modelo original de Parrish y Prausnitz; ya que la constante de Langmuir, la cual es necesaria para la predicción del equilibrio de hidratos y que es calculada con la ecuación 3.10, está ajustada para ser aplicada a una temperatura máxima de 26 °C. Lo mismo sucede con la P_R , (ecuación 3.22) donde las constantes para su cálculo están ajustadas para una temperatura máxima de 26° C.

4.3.1 Resultados de los sistemas binarios

Metano-Etano: Este sistema forma solamente hidratos de estructura I. El parámetro Cij para el modelo B tiene un valor pequeño (menor a -0.1), lo cual indica que la corrección que se tiene que hacer a la regla de mezclado para calcular el potencial químico de referencia a P y T_R, $\Delta \mu_w^L(T, P_R)$, es insignificante; y por esto mismo el modelo A y B tienen resultados similares, ya que el modelo B es el mismo que el modelo A, la diferencia es que el modelo B tiene un parámetro de corrección (Cij). Los resultados de los tres modelos propuestos y del simulador hysys no predice la presión, cuyo valor es de 340 atm.

Metano-Propano: Este sistema forma hidratos de estructura II. La temperatura obtenida con los modelo A y C en todos los puntos predichos son muy similares. Estos modelos presentan una temperatura mayor con respecto a los valores experimentales, siendo esta desviación de

aproximadamente 1.8 °C con respecto a la temperatura experimental. En cambio, las temperaturas obtenidas con el modelo B y hysys se parecen más a las experimentales. El parámetro Cij para la estructura II es menor que el parámetro para estructura I, lo cual indica que es más fácil para este sistema que se forme la estructura II. Por otro lado, los modelos A y C presentan una desviación de la presión calculada de aproximadamente 1.6 atm, mientras que el modelo B presenta una desviación de 1 atm, siendo la presión calculada con los modelos A, B y C ligeramente menor a la presión experimental.

Otro punto importante en este sistema es que algunas temperaturas de los datos están fuera del rango a la cual fue ajustado el potencial de referencia a To y Po del propano (reportado en la tabla 4.1); sin embargo en términos generales esto no afecta la temperatura y presión calculada, ya que se obtienen resultados satisfactorios.

Metano-Isobutano: Para este sistema se obtuvo hidratos de estructura II. El parámetro Cij del modelo B para estructura I, de todos los sistemas, es el que tiene el valor más grande. Su valor para hidratos de estructura II es menor a -0.1, entonces para este sistema es más probable que se forme la estructura II, ya que el parámetro Cij para estructura I implica mayor corrección/ajuste al modelo. Los modelos A y B no predicen los puntos 9 y 12, los cuales son los que tienen temperatura arriba de 10°C, en cambio el modelo C si predice todos los puntos, y tiene una diferencia promedio entre la temperatura experimental y la temperatura calculada de 0.8 °C y la de hysys es de 0.7 °C. A pesar que el modelo B no calcula dos puntos su diferencia promedio es de 0.6 °C. Las temperaturas predichas por hysys son menores a las experimentales. Con respecto a las presiones calculadas, a presiones menores a 5 atmósferas, los tres modelos y hysys obtienen resultados satisfactorios. A presiones arriba de 5 atmósferas, el modelo que presenta mayor por ciento de error es Hysys.

Metano-Nitrógeno: Los modelo A y C no predicen temperatura de equilibrio para este sistema, a pesar de que las temperaturas de los datos se encuentran dentro del rango de temperatura a la que fueron ajustados los potenciales químicos de los componentes puros. El modelo B predice más puntos pero con una diferencia promedio entre la temperatura experimental y la temperatura calculada de 2.3 °C, y la diferencia promedio para hysys es de 0.7 °C. Para el caso de las presiones calculadas los modelos A y C predicen muy pocos puntos. Los modelos B y Hysys predicen mejor cuando hay mayor cantidad de metano en la mezcla; cuando aumenta la concentración de nitrógeno el error de las presiones calculadas aumenta. Hysys no predice la presión en cuatro puntos, a diferencia del modelo B que sólo no predice un punto.

Metano-CO₂: La estructura obtenida en este sistema es la estructura I. Los modelos A y C presentan resultados satisfactorios a pesar de que no tienen un parámetro de corrección como es el caso del modelo B, y debido a que los resultados se acercan mucho a los valores experimentales el parámetro de interacción tiene un valor pequeño, es decir requiere menor corrección, y es el más pequeño de todos los sistemas. Las temperaturas y presiones calculadas con los tres modelos y con hysys son muy similares entre sí, y se parecen mucho a los valores experimentales. Este sistema es el que presenta menor por ciento de error en los valores calculados con los tres modelos, sin embargo el modelo B es el que más se acerca a los valores experimentales.

Metano-H₂S: Este sistema presenta estructura I. De los seis puntos calculados, el modelo A sólo predice la temperatura en dos puntos, el modelo C en tres puntos. Los resultados del modelo B Hysys son parecidos a los puntos experimentales. La temperatura de todos los datos está dentro del rango a la que fueron ajustados los potenciales químicos de los componentes puros, y a pesar de ello el modelo A y C no predicen adecuadamente la temperatura. Por otro lado, los tres modelos si predicen presión, siendo el modelo B el que obtiene mejores resultados, y son parecidos a los resultados de hysys.

Etano-Propano: La estructura calculada para este sistema es la estructura II. La predicción de temperatura de los modelos A y C es muy por arriba de la experimental. Es por ello que el valor del parámetro Cij tiene que ser grande, es decir la corrección tiene que ser mayor. El valor de Cij en este sistema es el más grande de todos los sistemas. La temperatura de todos los datos está dentro del rango a la que fueron ajustados los potenciales químicos de los componentes puros, y a pesar de ello se el modelo A y C no predicen adecuadamente temperatura y presión. La presión calculada por el modelo A y C presentan valores más bajos que los experimentales. Por otro lado, los resultados obtenidos de temperatura y presión con el modelo B son mejores que aquellos obtenidos con hysys.

Propano-Isobutano: Este sistema sólo forma estructura II. Los modelos A y C predicen temperaturas mayores a la experimental, alrededor de 1.5°C. En cambio, predicen presiones menores a la experimental, aproximadamente 1.5 atmósfera. En este sistema el modelo que mejor predice, tanto presión como temperatura, es el modelo B, siendo mejor sus resultados de presión que hysys.

Propano-CO₂: Este sistema presenta las dos estructuras. El modelo B presenta mayor precisión en el cálculo de temperatura, a diferencia de los modelos A y C. Estos modelos presentan mayor

99

error en puntos donde la composición de propano es grande (alrededor de 80% mol), a pesar de que estos puntos el potencial químico de referencia se encuentra dentro del rango de temperatura en donde fueron ajustados. Para el caso del cálculo de presión, tanto hysys como los tres modelos obtienen resultados satisfactorios.

4.3.2 Resultados de las mezclas multicomponentes

El modelo de Parrish y Prausnitz para los 26 puntos reportados en la tabla 4.20 tiene una diferencia promedio de temperatura, entre la temperatura experimental y la temperatura calculada, de 4 °C, el modelo A de 2.86 °C, el modelo B de 2.26 °C, y el modelo C de 3.92 °C.

Con respecto a los resultados de presión calculada, la diferencia promedio de presión para el modelo de Parrish y Prausnitz es de 11.17 atm, el modelo A de 22.57 atm, el modelo B de 21.97 atm, y el modelo C de 9.55 atm. Cabe resaltar que el modelo Parrish-Prausnitz no predice las presiones de los puntos 22 a 26, cuyas presiones están en el rango de 95 – 333 atm.

Comparando estos resultados el modelo B presenta mejores resultados para predecir la temperatura de equilibrio, en cambio el modelo C obtiene mejores resultados para el caso del cálculo de presión, mejorando por mucho los resultados del modelo B. Considerando esto, y el hecho de que el modelo B requiere el uso de parámetros de ajustes, se considera que el modelo C es la corrección más apropiada al modelo original; ya que el modelo C emplea una regla de mezclado sencilla y evita el uso excesivo de parámetros de ajuste al modelo haciendo con ello más complicado el uso del modelo.

En la figura 4.30 y 4.31, se muestran solamente los resultados obtenidos con el modelo C y se comparan con aquellos obtenidos del simulador hysys. Para el caso del cálculo de temperatura, el modelo C tiene una diferencia promedio de 0.98 °C, en cambio hysys su diferencia es de 2.24 °C. Y para el cálculo de presión, el modelo C tiene una diferencia promedio 0.14 atm, y hysys de 0.24 atm.
4.4 Conclusiones

La modificación presentada aquí, se basó en los resultados obtenidos por Zele y col. (1999), en donde ellos demuestran que el potencial químico de referencia es dependiente del componente formador. Es por ello, que se propone tratar al potencial químico de referencia como un parámetro ajustable y determinado encontrando el mejor ajuste entre condiciones de equilibrio experimentales y calculadas. La modificación consiste en hacer al potencial químico de referencia una función de la composición y temperatura, para así tomar en consideración la contribución de cada componente en esta propiedad, además de que el potencial químico es un propiedad intensiva, entonces se cumple que $\mu = \mu(T, P, x_1, x_2, ...)$.

En los modelos de van der Waals (1959), y Parrish y Prausnitz (1972) el potencial de referencia es considerado una constante que es independiente de la ocupación por huéspedes en las cavidades, este término es distinguible solamente para cada estructura con parámetros constantes para todos los tipos de huéspedes. Con la modificación propuesta este potencial de referencia se hace distinguible para cada estructura y dependiente del huésped.

Se propuso una nueva relación para calcular la diferencia del potencial químico de referencia para hidratos de gas multicomponentes, la cual contempla el efecto del estiramiento del entramado debido al tamaño de la molécula en el potencial químico de referencia. Con dicha relación se pretende que el potencial químico de referencia sea dependiente del huésped, y así predecir las condiciones de equilibrio para hidratos de gas con un componente o multicomponentes.

La propuesta presentada por Zele y col. (1999), considera la dependencia de cada molécula huésped; sin embargo en su trabajo sólo se reporta el cálculo del potencial de referencia para mezclas binarias con una relación compleja que se va complicando conforme aumenta el número de componentes.

Los resultados de los modelos A y C en los sistemas binarios son muy parecidos, las gráficas presentadas muestran la misma tendencia. Esto se debe a que estos modelos son iguales, tienen la misma corrección; la cual consiste en ajustar el potencial de referencia en función de la temperatura, solamente que en diferente término. Es decir, en el caso del modelo A, la corrección se suma en el potencial de referencia a To y Po; y en el caso del modelo B, la corrección se suma en la integral de la entalpía. Además este ajuste se buscó que fuera una dependencia lineal, y ambos modelos emplean una regla combinatoria similar, sin parámetro de ajuste, para calcular el potencial químico de la mezcla.

101

El modelo B, es una modificación, específicamente, al modelo A. La modificación consiste en emplear un parámetro de ajuste, C_{ij} , es por ello que sus resultados para sistemas binarios son mejores que aquellos de los modelos A y C. Cuando los resultados del modelo A se parecen a los valores experimentales, el valor del parámetro es pequeño (menor a -0.1), es decir la corrección por este parámetro es diminuto. Cuando los resultados del modelo A, no son parecidos a los valores experimentales, el valor de C_{ij} incrementa considerablemente (mayor a -0.1), es decir la corrección aumenta, y también se observa que los resultados del modelo C son similares a los del modelo A.

El modelo B presenta mejores resultados que los modelos A y C en sistemas binarios. Sin embargo, los resultados del modelo C no representan un error significativo. El modelo A tiene una desviación promedio de 2.5 °C y 2 atm, el modelo B tiene una desviación promedio de 0.7 °C y 1 atm, y la desviación del modelo C es de 2 °C y 2 atm. Por otro lado, en sistemas multicomponentes, los resultados del modelo B y C son similares, con la diferencia que el modelo B emplea un parámetro de ajuste para cada sistema binario. Con el fin de tener un modelo de fácil uso y con mayor flexibilidad al cálculo de equilibrio, se considera que la mejor propuesta presentada en este trabajo es el Modelo C, ya que evita que el modelo original se sature del uso de parámetros y se requiera de ajustes severo de parámetros, mejorando con ello la predicción de equilibrio en los hidratos de gas.

Los potenciales químicos de los componentes puros fueron ajustados en función de la temperatura, y se emplearon para obtener el potencial químico de mezclas y calcular las condiciones de equilibrio. Las temperaturas de las mezclas binarias experimentales en algunos casos se encontraban fuera del rango al que fueron ajustados los potenciales químicos de los componentes puros, y a pesar de ello los modelos si pudieron predecir las condiciones de equilibrio. Y en otros casos las temperaturas de los datos experimentales si se encontraban dentro del rango al que fueron ajustados los potenciales químicos no predijeron adecuadamente las condiciones de equilibrio de las mezclas binarias. Por lo tanto, se considera que los potenciales químicos puros ajustados linealmente sí se pueden emplear para calcular el potencial de referencia de la mezcla a cualquier temperatura, esté o no fuera del rango de ajuste, la mala predicción de los modelos no depende de la relación lineal para calcular los potenciales químicos de los componentes puros.

Para obtener la estructura que se formaba se calculó la temperatura o la presión, según fuera lo deseado, para las dos estructuras (I y II) y si sólo era obtenida para una estructura, se reportaba

102

esta estructura y el valor obtenido de temperatura o presión. Si con las dos estructuras se obtenían resultados se escogía el de menor valor, con su respectiva estructura. Después la estructura era corroborada con la predicha por hysys.

Para la predicción de formación de hidratos de mezclas de gases, se propuso en este trabajo una ecuación que pudiera calcular el potencial químico de referencia de la mezcla basada en potenciales químicos de referencia de componentes puros. En general, considerando el estiramiento del entramado se ha demostrado que la propuesta presentada predice con éxito las condiciones del equilibrio para los hidratos simples y de la mezcla.

APÉNDICE a

A.1 ALGORITMO DE CÁLCULO MODELO A.

A.2 ALGORITMO DE CÁLCULO MODELO B.

A.3 ALGORITMO DE CÁLCULO MODELO C.

Ι.

A.4 HOJA DE CÁLCULO

CÁLCULO DE CONDICIONES DE EQUILIBRIO PARA HIDRATOS

DATOS DE LA MEZCLA GASEOSA

	estructura I	estructura II	
T (°C)	15.6	15.6	
Т (К)	288.75	288.75	
P (atm)	41.52952565	41.52952565	

Ecuac. Edo.	2	2

1:	RKSM
2:	PRSV

COMPOSICIÓN MEZCLA					
Nombre	Composición				
x ₁ : Metano	0.73189				
x ₂ : Etano	0.14478				
x3 : Etileno	0				
x ₄ : Propano	0.07507				
x ₅ : Propileno	0				
x ₆ : Ciclopropano	0				
x ₇ : iso-Butano	0				
x ₈ : n-Pentano	0.00536				
x9: iso-Pentano	0				
x ₁₀ : n-Hexano	0.00075				
x ₁₁ : Nitrógeno	0.01711				
x ₁₂ : Oxígeno	0				
x ₁₃ : CO2	0				
x ₁₄ : H2S	0				
x ₁₅ : Agua	0				
x ₁₆ : Argón	0				
x ₁₇ : Kriptón	0				
x ₁₈ : Xenon	0				
x ₁₉ : SF6	0				
x ₂₀ : n-Butano	0.02504				
	1.0000				

II. PRESIÓN DE REFERENCIA

ESTRUCTURA I							
	Ar	Br	Cr	Rango T (K)	Т (К)	In Pr	Pr (atm)
Xenon	23.0439	-3357.57	-1.85	211-273	288.75	0.934663614	2.5463567
Metano	-1212.2	44344	187.719	273-300	288.75	4.905788883	135.0694219

ESTRUCTURA II							
	Ar	Br	Cr	Rango T (K)	Т (К)	In Pr	Pr (atm)
Bromoclorodif	11.5115	4092.37	0.316033	253-273	288.75	27.47471428	8.552E+11
Mezc Gas nat	-1023.14	34984.3	159.923	273-291	288.75	4.071302594	58.633288
Mezc Gas nat	4071.64	-193428.8	-599.755	291-303	288.75	3.808015364	45.060920

III. HIDRATO DE REFERENCIA

ESTRUCTURA I			ESTRUCT	URA II	
$\mu_w^{\ \beta} - \mu_w^{\ \alpha}$	167	cal/mol	$\mu_w{}^\beta-\mu_w{}^\alpha$	222	cal/mol
h_w^β - h_w^α	275	cal/mol	h _w ^β - h _w ^α	193	cal/mol
v_w^{β} - v_w^{α}	3	cm ³ /mol	v_w^β - v_w^α	3.4	cm ³ /mol
v _w - v _w	5		v _w - v _w	5.4	

Δh_w^{f}	1435.94	cal/mol	R(cal/mol K)	1.987
ΔV_w^{f}	19.63	cm ³ /mol	R(atmcm3/molK)	82.06
То	273.15	К		

IV.

* INTEGRACIÓN CUADRÁTICA GAUSSIANA (si						
	То	٨r				

T (K)	То	Ar	Br	Cr	Pr (atm)
288.75	273.15	-1212.2	44344	187.719	135.0694219

	xi	wi	Ti	f (Ti)	f (Ti) * wi
1	0.148874339	0.295524225	282.1112198	0.006734116	0.001990094
2	0.433395394	0.269266719	284.3304841	0.008801956	0.002370074
3	0.679409568	0.219086363	286.2493946	0.011145681	0.002441867
4	0.865063367	0.149451349	287.6974943	0.013355902	0.001996058
5	0.973906529	0.066671344	288.5464709	0.014866455	0.000991167
6	-0.973906529	0.066671344	273.3535291	0.002474738	0.000164994
7	-0.865063367	0.149451349	274.2025057	0.002716337	0.00040596
8	-0.679409568	0.219086363	275.6506054	0.003190212	0.000698932
9	-0.433395394	0.269266719	277.5695159	0.003962674	0.001067016
10	-0.148874339	0.295524225	279.7887802	0.005119389	0.001512903
					0.106384707

	* INTEGRACIÓN CUADRÁTICA GAUSSIANA (SII)						
Т (К)	То	To Ar Br Cr					
288.75	273.15	-1023.14	34984.3	159.923	58.63328826		

	xi	wi	Ti	f (Ti)	f (Ti) * wi
1	0.148874339	0.295524225	282.1112198	0.003115182	0.000920612
2	0.433395394	0.269266719	284.3304841	0.004188844	0.001127916
3	0.679409568	0.219086363	286.2493946	0.005430019	0.001189643
4	0.865063367	0.149451349	287.6974943	0.006618441	0.000989135
5	0.973906529	0.066671344	288.5464709	0.007438775	0.000495953
6	-0.973906529	0.066671344	273.3535291	0.001011941	6.74675E-05
7	-0.865063367	0.149451349	274.2025057	0.001124863	0.000168112
8	-0.679409568	0.219086363	275.6506054	0.001349504	0.000295658
9	-0.433395394	0.269266719	277.5695159	0.001723103	0.000463974
10	-0.148874339	0.295524225	279.7887802	0.00229586	0.000678482
					0.049896236

V. DIFERENCIA DEL POTENCIAL QUÍMICO DE REFERENCIA (SI):

 $\Delta \mu_w^{L}$ (T,P_R)

386.6863179 cal/mol

		Т		
		$\int (\Delta h^{\alpha} + \Delta h^{f}) / RT^{2} dT$	componente	mezcla
	Gas		Δμw ^L (T,P _R)	$\Delta \mu_w^L$ (T,P _R)
1	Metano	-0.571934472	402.7215223	294.7478549
2	Etano	-0.726030137	447.2166454	64.74802593
3	Etileno		237.5754435	0
4	Propano		237.5754435	17.83478854
5	Propileno		237.5754435	0
6	Ciclopropano		237.5754435	0
7	Isobutano		237.5754435	0
8	n-Pentano		237.5754435	1.273404377
9	iso-Pentano		237.5754435	0
10	n-Hexano		237.5754435	0.178181583
11	Nitrógeno	0.427029052	114.2708048	1.955173469
12	Oxígeno		237.5754435	0
13	CO2	-0.69380311	437.9110916	0
14	H2S	-0.777459221	462.0667935	0
20	n-butano		237.5754435	5.948889106
				386.6863179

DIFERENCIA DEL POTENCIAL QUÍMICO DE REFERENCIA (SII):

	∆μ _w ^L (T,P _R)	251.9793057	cal/mol	
			1	-
		$\int_{0}^{T} (\Lambda h^{\alpha} + \Lambda h^{f}) / RT^{2} dT$	componente	mezcla
	Gas	$\int_{T_0} (\Delta n_w + \Delta n_w) / (A - a)$	$\Delta \mu_w^L$ (T,P _R)	$\Delta \mu_w^L$ (T,P _R)
1	Metano	-0.004514834	264.6101844	193.6655478
2	Etano	0.279871351	182.4936735	26.42143405
3	Etileno		263.306526	0
4	Propano	-0.206714228	322.9952594	24.24725412
5	Propileno		263.306526	0
6	Ciclopropano		263.306526	0
7	Isobutano	-0.213780141	325.0355417	0
8	n-Pentano		263.306526	1.411322979
9	iso-Pentano		263.306526	0
10	n-Hexano		263.306526	0.197479894
11	Nitrógeno	1.024610955	- 32.54988726	- 0.556928571
12	Oxígeno		263.306526	0
13	CO2	0.232793559	196.0873859	0
14	H2S	-0.21411155	325.131236	0
20	n-butano		263.306526	6.593195411
				251.9793057

VI.	Diferencia del p	otencial químico en la	a fase L (sl):	Diferencia del po	otencial químico en la	fase L (sll):
	$\Delta \mu_w^{L}$ (T,P)	335.4221114	cal/mol	∆μ _w ^L (T,P)	242.4399642	cal/mol

VII. PARÁMETROS PARA CALCULAR LA CONSTANTE DE LANGMUIR

		ESTRUCTURA I			ESTRUCTURA II				
		Sma	all , K	Large , K		Small , K		Large , K	
	Gas	A x10 ³	B x10 ⁻³	A x10 ²	B x10 ⁻³	A x10 ³	B x10 ⁻³	A x10 ²	B x10 ⁻³
1	Metano	3.72E-03	2.71E+03	1.84E-02	2.74E+03	2.96E-03	2.70E+03	7.61E-02	2.20E+03
2	Etano	0	0	6.91E-03	3.63E+03	0	0	4.08E-02	3.04E+03
3	Etileno	8.30E-05	2.40E+03	5.45E-03	3.66E+03	6.41E-05	2.04E+03	3.49E-02	3.11E+03
4	Propano	0	0	0	0	0	0	1.24E-02	4.41E+03
5	Propileno	0	0	0	0	0	0	2.02E-02	4.01E+03
6	Ciclopropano	0	0	1.45E-03	4.58E+03	0	0	1.31E-02	4.65E+03
7	Isobutano	0	0	0	0	0	0	1.57E-02	4.45E+03
11	Nitrógeno	3.81E-03	2.21E+03	1.84E-02	2.30E+03	3.03E-03	2.18E+03	7.51E-02	1.86E+03
12	Oxígeno	1.74E-02	2.29E+03	5.77E-02	1.94E+03	1.44E-02	2.38E+03	1.54E-01	1.52E+03
13	CO2	1.20E-03	2.86E+03	8.51E-03	3.28E+03	9.09E-04	2.70E+03	4.83E-02	2.57E+03
14	H2S	3.03E-03	3.74E+03	1.67E-02	3.61E+03	2.38E-03	3.75E+03	7.36E-02	2.85E+03
15	Agua	0	0	0	0	0	0	0.00E+00	0.00E+00
16	Argon	2.58E-02	2.23E+03	7.54E-02	1.92E+03	2.19E-02	2.32E+03	1.87E+00	1.54E+03
17	Kripton	1.69E-02	2.84E+03	5.72E-02	2.45E+03	1.40E-02	2.95E+03	1.55E+00	1.95E+03
18	Xenon	4.08E-03	3.61E+03	2.07E-02	3.41E+03	3.23E-03	3.65E+03	8.36E-02	2.71E+03
19	SF6	0	0	0	0	0	0	1.41E-02	4.57E+03
20	n-butano	0	0	0	0	0	0	0.00E+00	0.00E+00

CONSTANTES (bar ⁻¹)

		ESTRUC	TURA I		ESTRUCTURA II			
	Smal	, К	Large, K		Small , K		Large , K	
1	Metano	1.53E-01	Metano	8.35E-01	Metano	1.16E-01	Metano	5.42E-01
2	Etano	0.00E+00	Etano	6.93E+00	Etano	0.00E+00	Etano	5.25E+00
3	Etileno	1.16E-03	Etileno	6.11E+00	Etileno	2.62E-04	Etileno	5.70E+00
4	Propano	0.00E+00	Propano	0.00E+00	Propano	0.00E+00	Propano	1.81E+02
5	Propileno	0.00E+00	Propileno	0.00E+00	Propileno	0.00E+00	Propileno	7.40E+01
6	Ciclopropano	0.00E+00	Ciclopropano	3.88E+01	Ciclopropano	0.00E+00	Ciclopropano	4.54E+02
7	Isobutano	0.00E+00	Isobutano	0.00E+00	Isobutano	0.00E+00	Isobutano	2.71E+02
11	Nitrógeno	2.74E-02	Nitrógeno	1.85E-01	Nitrógeno	1.96E-02	Nitrógeno	1.64E-01
12	Oxígeno	1.67E-01	Oxígeno	1.63E-01	Oxígeno	1.92E-01	Oxígeno	1.02E-01
13	CO2	8.32E-02	CO2	2.51E+00	CO2	3.57E-02	CO2	1.23E+00
14	H2S	4.37E+00	H2S	1.56E+01	H2S	3.60E+00	H2S	5.00E+00
16	Argon	2.00E-01	Argon	2.00E-01	Argon	2.30E-01	Argon	1.33E+00
17	Kripton	1.09E+00	Kripton	9.48E-01	Kripton	1.32E+00	Kripton	4.58E+00
18	Xenon	3.75E+00	Xenon	9.73E+00	Xenon	3.41E+00	Xenon	3.44E+00
19	SF6	0.00E+00	SF6	0.00E+00	SF6	0.00E+00	SF6	3.60E+02
20	n-Butano	0.00E+00	n-Butano	0.00E+00	n-Butano	0.00E+00	n-Butano	0.00E+00

Num

VIII.	CONSTANTES DE HENRY

							H (atm)	H (atm)
		H ⁽¹⁾	H ⁽²⁾	H ⁽³⁾	H ⁽⁴⁾	V (cm3/mol)	sl	sll
1	Metano	-183.786	9112.582	25.0405	-0.00015	32	32928.70048	32928.70048
2	Etano	-268.441	13369.4	37.5561	-0.0023	32	22647.099	22647.099
3	Etileno	18.057885	-2627.6108			60	7769.290897	7769.290897
4	Propano	-316.49	15922.7	44.3285	0	32	26919.80529	26919.80529
5	Propileno						0.99999973	0.99999973
6	Ciclopropano						0.99999973	0.99999973
7	Isobutano	96.1158	-2472.57	-17.368	0	32	51363.37826	51363.37826
8	n-Pentano						0.99999973	0.99999973
9	iso-Pentano						0.99999973	0.99999973
10	n-Hexano						0.99999973	0.99999973
11	Nitrógeno	-164.997	8433.619	21.5601	0.00844	32	73316.71082	73316.71082
12	Oxígeno	17.160634	-1914.144			32	37480.04249	37480.04249
13	CO2	-159.868	8742.426	21.6712	-0.0011	32	1248.019922	1248.019922
14	H2S	-149.551	8227.328	20.2327	0.00129	32	426.6653852	426.6653852
15	H2O						0.99999973	0.99999973
16	Argon						0.99999973	0.99999973
17	Kripton						0.99999973	0.99999973
18	Xenon						0.99999973	0.99999973
19	SF6						0.99999973	0.99999973
20	n-Butano	22.150557	-3407.2181			32	31277.91312	31277.91312

		S	:	S	II
		small	large	small	large
cavid/mol agua	ν	0.043	0.130	0.118	0.059

IX	COM	QUIDA		
	Componente	\hat{f}_{i} (bar)	\hat{f}_{i} (atm)	Xg
1	Metano	28.4167398	28.0451341	0.0008052
2	Etano	4.207321586	4.152302441	0.0001733
3	Etileno	0	0	0.0000000
4	Propano	1.762463471	1.739415736	0.0000611
5	Propileno	0	0	0.0000000
6	Ciclopropano	0	0	0.0000000
7	Isobutano	0	0	0.0000000
8	n-Pentano	0.079278305	0.078241582	0.0782416
9	iso-Pentano	0	0	0.0000000
10	n-Hexano	0.008830109	0.008714638	0.0087146
11	Nitrógeno	0.781561826	0.771341342	0.0000099
12	Oxígeno	0	0	0.0000000
13	CO2	0	0	0.0000000
14	H2S	0	0	0.0000000
15	H2O	0	0	0.0000000
16	Argon	0	0	0.0000000
17	Kripton	0	0	0.0000000
18	Xenon	0	0	0.0000000
19	SF6	0	0	0.0000000
20	n-Butano	0.461195062	0.455164015	0.0000138
	X w (sl)	0.9119804		

Componente	\hat{f}_{i} (bar)	$\hat{f}_{i(atm)}$	Ya
Metano	28 4167398	28 0451341	0.0008052
Etano	4 207321586	4 152302441	0.0001733
Etileno	0	0	0.0000000
Propano	1.762463471	1.739415736	0.0000611
Propileno	0	0	0.0000000
Ciclopropano	0	0	0.0000000
Isobutano	0	0	0.0000000
n-Pentano	0.079278305	0.078241582	0.0782416
iso-Pentano	0	0	0.0000000
n-Hexano	0.008830109	0.008714638	0.0087146
Nitrógeno	0.781561826	0.771341342	0.0000099
Oxígeno	0	0	0.0000000
CO2	0	0	0.0000000
H2S	0	0	0.0000000
H2O	0	0	0.0000000
Argon	0	0	0.0000000
Kripton	0	0	0.0000000
Xenon	0	0	0.0000000
SF6	0	0	0.0000000
n-Butano	0.461195062	0.455164015	0.0000138
Xw (sll)	0.9119804		

X. DIF	L DIFERENCIA DE POTENCIAL QUÍMICO EN LA FASE DEL HIDRATO				
	ls	١L	ll s	ΠL	
	4.35E+00	2.37E+01	3.29E+00	1.54E+01	
	0.00E+00	2.92E+01	0.00E+00	2.21E+01	
	0.00E+00	0.00E+00	0.00E+00	0.00E+00	
	0.00E+00	0.00E+00	0.00E+00	3.19E+02	
	0.00E+00	0.00E+00	0.00E+00	0.00E+00	
	0.00E+00	0.00E+00	0.00E+00	0.00E+00	
	0.00E+00	0.00E+00	0.00E+00	0.00E+00	
	0.00E+00	0.00E+00	0.00E+00	0.00E+00	
	0.00E+00	0.00E+00	0.00E+00	0.00E+00	
	0.00E+00	0.00E+00	0.00E+00	0.00E+00	
	2.14E-02	1.44E-01	1.53E-02	1.28E-01	
	0.00E+00	0.00E+00	0.00E+00	0.00E+00	
	0.00E+00	0.00E+00	0.00E+00	0.00E+00	
	0.00E+00	0.00E+00	0.00E+00	0.00E+00	
	0.00E+00	0.00E+00	0.00E+00	0.00E+00	
	0.00E+00	0.00E+00	0.00E+00	0.00E+00	
	0.00E+00	0.00E+00	0.00E+00	0.00E+00	
	0.00E+00	0.00E+00	0.00E+00	0.00E+00	
	0.00E+00	0.00E+00	0.00E+00	0.00E+00	
	0.00E+00	0.00E+00	0.00E+00	0.00E+00	
	4.37E+00	5.30E+01	3.31E+00	3.57E+02	
	1.680545378	3.989504516	1.460071396	5.880623966	
	0.07306719	0.520370154	0.171773105	0.345919057	

Estruct 1	$\Delta \mu_w^H$ (T,P)	287.619302	cal/mol
Estruct 2	Δμ _w ^H (T,P)	244.1607877	cal/mol

XI. función error

error sl	-47.80280937
error sll	1.720823497

BIBLIOGRAFÍA

Bibliografía

- 1. Arthur, H. Hale; Ashok, K. R. Dewan, Shell Development Co. Innhibition of gas hydrates in deepwater drilling. SPE Drilling Engineering. (June, 1990)
- Barduhn, A. J. Desalination by Crystallization Processes. Chem. Eng. Prog. 63, 98 (1967)
- 3. Barker, J. W.; Gomez, R. K. Formation of Hydrates During Deepwater Drilling Operations. Journal of Petroleum Technology. (March, 1989)
- 4. Barrer, R. M., Edge, A. V. J., Proc. Roy. Soc. (London), A300 (1460), 1 (1967)
- 5. Barrer, R.M., Stuart, W.I. Proc. Roy. Soc. No. 1233 243 172. Londrés (1957)
- Berecz, E.; Balla-Achs, M. Gas Hydrates; Studies in Inorganic Chemistry. 411; Elsevier: New York (English Translation), 1983.
- Bishnoi, P.R., Natarajan V. and Kalogerakis N. A Unified Description of the Kinetics of Hydrate Nucleation, Growth, and Decomposition. Department of Chemical and Petroleum Engineering University of Calgary, Calgary Alberta, Canada. T2N 1N4. 1994
- Caroll, John. Natural Gas Hydrates: A Guide for Engineers. Gulf Professional Publishing. Amsterdam, The Netherlands. (Octubre,2002).
- Collet, Timothy S., Lewis Rick, Uchida Takashi. El Creciente Interés en los Hidratos de Gas. Oilfield Review (2000)
- 10. Collet, T., Y Kusskra, V. "Hydrates contain vast store of world gas resources", Oil and Gas J. 19, 90-95. (May 1998)
- 11. Davidson, D.W., Can. J. Chem., 49, 1224 (1971)
- 12. Davidson, D.W., Ripmeesster, J.A., in Inclusion Compounds, Vol. 3. Chapter 3, J.L. Atwood, J.E.D. Davies, and D.D. MacNichol, eds, Academic Press (1984)
- 13. Deaton, W. H., Frost, E. M., U. S. Dept. of the Interior, Bureau of Mines, Monograph 8, 1946.
- Dillon William. "Gas (Methane Hydrates): A New Frontier", Marine and Coastal, Geology Program, U.S. Geological Survey. (Sep. 1992)
- Englezos, P.; Kalogerakis, N.; Dholabhai, P. D. and Bishoi. Kinetics of Gas Hydrate Formation from Mixtures of Methane and Ethane. Chemical Engineering Science, 42, 11, 2659-2666. (1987)
- 16. Glew, D. N., Can. J. Chem., 38, 208, 1960

- 17. González Pacheco, Eduardo. "Hidratos de Gas". Ciencia y Tecnología, Revista de Marina, Num. 2 y 3, Chile. (2002)
- Gribb, R. B.; Lynes, G.L. Oil-Based Drilling Mud as Gas-Hydrates Inhibitor. SPE Drilling Engineering. (March, 1992)
- Hatzikiriakos, S.G.; Englezos, P. Permafrost Melting and Stability of Offshore Methane Hydrates Subject to Global Warm. Ing. Int. J. Offshore Polar Eng. 4, 162 (1994)
- 20. Hatzikiriakos, S.G.; Englezos, P. The Relationship between Global Warming and Methane Gas Hydrates in the Earth. Chem. Eng. Sci. 48, 3963 (1993)
- 21. Hwang, M. J.; Holder, G. D.; Zele, S. R. Lattice Distortion by Guest Molecules in Gas-Hydrates. Fluid Phase Equilib. 1993, 83, 437.
- Herzog, H. Ocean Sequestration of CO₂ An Overwiew. Fourth international Conference on Greenhouse Gas Control Technologies, Inerlaken, Switzerland. (1998)
- 23. Hight, M. A. Texaco inc. State of the Surver on Hydrate Formation. SPE 28507. Septiembre, 1994.
- 24. Holder, G.D., Grigoriou, G.C., J. Chem. Thermo., 12, 1093
- 25. Holder, G.D., Zetts, S., Pradhan, N. Phase Behavior in Systems Containing Clathrate Hydrates. Rev. Chem. Eng. 1988
- 26. Hysys. Process 2.2 Documentation, Tutorial.
- 27. Jeffrey, G. A., McMullan, R. R., Progr. Inorg. Chem., 8, 43 (1967)
- Jeffrey, G. A.; McMullan, R. K.; Polyhedral Clathrate Hydrates. IX. Structure of Ethylene Oxide Hydrate. J. Chem. Phys. 42, 2745, 1965.
- 29. John, V.T., Papadopoulos, K.D., Holder, G.D.A Generalized-Model for Predicting Equilibrium Conditions for Gas Hydrates. AIChE J. 31, 252, 1985.
- John, V.T., Holder, G.D. Contribution of 2nd and Subsequent Water Shells to the Potential-Energy of Guest-Host Interactions in Clathrate Hydrates. J. Phys. Chem. 86, 455, 1982.
- 31. Kamath, V. A., Holder, G.D. J. Chem. Thermodyn. 1984
- 32. Kim, H. C.; Bishnoi P. R.; Heidemann, R. A. and Risvi S.S.H. Kinetics of Methane Hydrate Decomposition. Chemical Engineering Science, 42, 7, 1645-1653 (1987)
- Klauda, Jeffey B., Sandler Stanley I. A fugacity Model for Gas Hydrate Phase Equilibria. Ing, Eng, Chem. Res. 39, 3377-3386. 2000

- 34. Knox, W. G., Hess, M., Jones, G. E., Smith, H. B., Chem. Eng. Progr., 57 (2), 66 (1961)
- 35. Kotkoskie, T. S.; Al-Ubaldi, Basil; Wildeman, T. R.; Sloan Jr. Inhibition of Gas Hydrates in Water-Based Drilling Muds. SPE Drilling Engineering. (June, 1992).
- Kumar, S. Gas Production Engineering. Gulf Publishing Company, vol. 4, Houston, Texas (1987)
- 37. Kvamme, B. Initiation and Growth of Hydrate. Proceeding of the Fourth International Conference on Gas Hydrates, Yokohama, Japan, May, 2002.
- Lai, D. T.; Dzialowski, A. K.; M-I Drilling Fluids Co. Investigation of Natural Gas Hydrates in Various Drilling Fluids. SPE/IADC 18637. (1989)
- Landín, Sandoval V., Castillo, Borja F. Importancia de los hidratos de metano como fuente de energía. Conciencia Tecnológica, Instituto tecnológico de Aguascalientes. 60, 033 (2007)
- 40. Mancera, R.L.; Buckingham, A. D. Temperature Effects on the Hidrophobic Hydration of Ethane. J. Phys. Chem. 1995, 99, 14632-14640
- 41. Marit Mort, Formation Rate of Natural Gas Hydrate. Reactor Experiments and Models. Tesis Doctoral. (2002)
- 42. McKoy, V. Sinanoglu, O., J. Chem. Phys, 38 2946 (1963)
- 43. Miller, B., Strong, E. K., Amer. Gas Assoc. Monthly, 28 (2), 63 (1946)
- 44. Natarajan, V. Thermodynamics and Nucleation Kinetics of Gas Hydrates. Ph D. Dissertation. Department of Chemical and Petroleum Engineering. University of Calgary, Calgary Alberta, Canada. (1994)
- 45. Pakulski M., Qu Q. and Pearcy, SPE, BJ Services Co. Gulf of Mexico Deepwater Well Completion With Hydrate Inhibitors. SPE 92971. 2005
- 46. Parrish, Willian R.; Prausnitz, John M. Ind. Eng. Chem. Process Des. Develop. 11, No. 1, 1972,
- 47. Peavy, M. A, and Cayias J. L., Oryx Energy Co. Hydrate formation/inhibition during deepwater subsea completion operations. SPE 28477. 1994.
- 48. Powell, H. M., J. Chem. Soc., 1948, p. 61
- 49. Prausnitz, J.M; Lichtenthaler, R.N. Termodinámica Molecular de los Equilibrios de Fases. 3era edición. Prentice Hall. Madrid. (2000)
- 50. Ripmeester, J. A.; Tse, J. S.; Ratcliff C. I.; Powell, B. M. A New Clathrate Hydrate Structure. Nature, 325, 135. (1987)

- 51. Rosales, Limón Emiliano. Tesis de maestría en ingeniería petrolera y de gas natural. Metodología Experimental PVT para evaluar la formación de hidratos en sistemas metano salmueras binarias a condiciones de operación en aguas profundas. Facultad de Ingeniería. UNAM. 2007
- 52. Rossini, F. D., in U. S. Bureau of Standards, Circular 500, 1952
- 53. Rubio, Coronel Jesús. Tesis de maestría en ingeniería petrolera. Modelo matemático para predecir condiciones de formación de hidratos de gas natural. Facultad de Ingeniería, UNAM. 2002.
- 54. Saito, S., Marshall, D. R. y Kobayashi, R, AICHE Journal, 10 (5), 734-740 (1964)
- 55. Segura, Cornejo Víctor M. Tesis de Licenciatura de Ingeniería Petrolera. Hidratos de Gas. Facultad de Ingeniería. UNAM. 2006.
- 56. Sloan, E. D. Clathrate Hydrates of Natural Gases, 2nd ed.; M. Dekker: New York, 1998
- 57. Somoza Luis, (1998) El gas "Helado inflamable": el Futuro de la investigación de los fondos marinos para la próxima década, Proyecto TASYO, Instituto Geológico y Minero de España (IGME, ex ITGE). (1998)
- 58. Sortland, L. D., Robinson, D. B., Can. J. Che. Eng., 42, 38, 1964.
- Sparks, K. A.; Tester, J.W.; Cao, Z.; Trout, B.L. Configurational Properties of water clathrates: Monte Carlo and Multidimensional Integration versus the Lennard-Jones and Devonshire Approximation. J. Phys. Chem. B, 103, 6300. (1999).
- 60. Van der Waals, J. H., Platteeuw, J. C., Advan. Chem. Phys., 2, 1 (1959)
- 61. Velásques, Reyes M. "Los Hidratos de Gas Submarinos: Una esperanza energética y la contribución de la Armada para el futuro desarrollo del país". Ciencia y Tecnología, Revista de Marina, Num. 1, Chile. (2004).
- 62. Von Stackelberg, M., Müller, H. R., Z. Elektrochem., 58, 25 (1954)
- 63. Wilcox, W. I., Carson, D. B., Katz, D. L., ibid., 33, 662 (1941)
- 64. Yaminsky, V. V.; Vogler, E. A. Hydrophobic hydration. Current Opinion in Colloid and Interfase Science 6, 342-349. 2001
- 65. Zamora, M.; Broussard, P. N.; Stephes, M. P. The Top 10 Mud-Related Concerns in Deepwater Drilling Operations. SPE 59019. (Feb. 2000)
- 66. Zele, S. R.; Lee, S. Y.; Holder, G. D. A Theory of Lattice Distortion in Gas Hydrates. J. Phys. Chem. B 1999. 103, 102