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y ser humano. Por el apoyo ecónomico que me brindó para poder realizar
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Introducción

Este trabajo esta dividido en dos partes, en la primera construimos y estudiamos
propiedades de 2 tipos de procesos estocásticos: los procesos estable tempera-
dos, vistos como integrales estocásticas de ciertas funciones deterministas con
respecto a medidas aleatorias estable temperadas, y procesos de Lévy relaciona-
dos mediante la representación de Lamperti (ver [46]) para procesos de Markov
autosimilares positivos con algunos procesos estables. En la segunda parte se
construye un modelo probabilista microscópico para describir la dinámica de una
población sexual. Daremos un breve panorama del contenido de este trabajo.

En el primer caṕıtulo damos una construcción de la integral estable tem-
perada como una forma de construir procesos estocásticos cuyas distribuciones
finito dimensionales son estable temperadas. Definimos esta integral como la
integral de una función determinista con respecto a una medida aleatoria estable
temperada. También estudiamos ciertas propiedades que satisface la integral es-
table temperada en términos de sus integrandos deterministas como: linealidad,
independencia, cambio de variable y algunos teoremas de convergencia. Y por
último damos ejemplos de procesos estable temperados, como el movimiento de
Lévy estable temperado, el proceso de Orstein-Uhlenbeck, etc.

Posteriormente en el caṕıtulo 2 utilizamos la construcción de la integral es-
table temperada para construir una nueva clase de procesos que les llamamos
procesos de promedios móviles pesados temperados o WTMAP. A diferencia de
los procesos de promedios móviles temperados que se definen como la integral
estocática con respecto a una medida aleatoria estable temperada con la me-
dida de Lebesgue como medida de control, para definir un WTMAP utilizamos
como medida de control cualquier medida absolutamente continua con respecto
a la medida de Lebesgue; y su derivada de Radon-Nikodým es el peso al cual
deben su nombre. Estos procesos permiten mas libertad para aplicaciones en
series de tiempo que los procesos de promedios móviles usuales. Probamos que
estos procesos, a pesar de no ser estacionarios en general, para α ∈ (0, 1) tienen
la propiedad de mixing, lo cual implica ergodicidad. Y por último probamos
que a tiempos cortos se comportan como procesos de promedios móviles pesa-
dos estables y a tiempos cortos como procesos de promedios móviles pesados
Gaussianos.

En el caṕıtulo 3 estudiamos una nueva clase de procesos de Lévy a la cual
llamamos procesos de Lamperti estables. Estos procesos surgen como una gen-
eralización de una familia de procesos de Lévy estudiados por Lamperti [46] y
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recientemente por Caballero y Chaumont [14] que están relacionados mediante
la representación de Lamperti para procesos de Markov autosimilares positivos
con el subordinador estable y algunos procesos estables condicionados. Esta
clase de procesos tienen la ventaja de que se pueden calcular muchas expre-
siones matemáticas, como por ejemplo: funcionales exponenciales, funciones de
escala, descomposición de Weiner Hopf, etc.

Comenzamos estudiando las distribuciones Lamperti estables en Rd y obten-
emos algunas de sus propiedades. Entre estas propiedades podemos mencionar
brevemente que tienen momentos de todos los ordenes, y tienen densidad en
C∞.

Posteriormente estudiamos los procesos de Lévy Lamperti estables con énfasis
en el caso unidimensional y obtenemos una forma cerrada expĺıcita para su ex-
ponente caracteŕıstico, y probamos que a tiempos cortos se comportan como
procesos de Lévy estables mientras que a tiempos largos como un movimiento
Browniano.

Finalmente proporcionamos una representación en series para estos procesos
que permite realizar simulaciones de sus trayectorias y damos algunos ejemplos
de ellas.

Motivados por el trabajo desarrollado en el caṕıtulo 3 nos enfocamos a es-
tudiar una nueva clase de procesos de Lévy. Dado que la norma de un proceso
estable simétrico en Rd es un proceso de Markov autosimilar positivo, obten-
emos esta nueva clase de procesos mediante la representación de Lamperti que
se mencionó anteriormente.

Calculamos el generador infinitesimal de esta nueva clase y por ende, sigu-
iendo a Lamperti (ver [46]), sus caracteŕısticas, es decir: su medida de Lévy y
su coeficiente lineal. También obtenemos en el caso d = 1 una descomposición
de esta clase de procesos como la suma de dos procesos de Lévy independientes:
un proceso de Lévy Lamperti estable y un proceso de Poisson compuesto.

También obtenemos identidades explicitas para el problema de salida de un
intervalo, la distribución de ı́nfimo, y exploramos el problema de que el proceso
toque dos puntos.

Por último obtenemos la descomposición de Weiner Hopf para esta clase
lo cual nos permite obtener una forma cerrada expĺıcita para su exponente
caracteŕıstico.

La segunda parte de este trabajo esta enfocada a encontrar un modelo
matemático probabilista para describir la dinámica de una población biológica
haploide donde los individuos se reproducen sexualmente. En este modelo con-
sideramos los fenómenos de selección natural y recombinación genética para
describir la evolución de la población, a través de: la competencia entre los
individuos por recursos y el intercambio génetico entre ellos al dar descenden-
cia. Uno de los objetivos de este modelo es estudiar el fenónemo de especiación
simpátrica, es decir la formación de dos o mas especies a partir de una sola
especie ancestral sin obstáculos geográficos.

En el caṕıtulo 5 damos preliminares biólogicos sobre los factores que nos
interesa incluir y estudiar en el modelo: como los fenómenos de recombinación
genética, selección natural, especiación simpátrica, etc.
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Dado que nos interesaba obtener un modelo a tiempo continuo realista desde
el punto de vista biológico decidimos estudiar modelos discretos que se encon-
traban ya publicados en la literatura.

El primero, que se estudia en el caṕıtulo 6, fue un modelo propuesto por
Bürger [11] para estudiar la evolución de la densidad de individuos con determi-
nadas caracteŕısticas en una población asexual. Encontramos una relación entre
su modelo y los propuestos por Del Moral [22] a tiempo discreto, que satisfacen
la fórmula de Feynman-Kac. Posteriormente estudiamos una aproximación a
tiempo continuo del modelo de Bürger, discretizando el tiempo y considerando
una renormalización adecuada de los factores de selección y mutación. Final-
mente estudiamos este modelo a tiempo continuo y la relación que guarda con
los modelos que satisfacen la fórmula de Feynman-Kac a tiempo continuo.

En el caṕıtulo 7, estudiamos el modelo determinista propuesto por Nagylaki
[54] a tiempo discreto, para describir la dinámica de la densidad de individuos
con determinado genotipo en una población sexual haploide. En este modelo in-
tervienen dos factores principales: selección natural, y recombinación genética.
Posteriormente motivados por la idea desarrollada en el caṕıtulo anterior obten-
emos una aproximación a tiempo continuo del modelo a tiempo discreto de
Nagylaki, recuperando asi el modelo propuesto por Shashahani [72].

Finalmente en el caṕıtulo 8, inspirados por el trabajo de Méléard y Champag-
nat [19], desarrollamos un modelo probabilista para estudiar la dinámica de una
población sexual. Asignando a cada individuo relojes aleatorios de nacimiento
y muerte podemos describir su evolución en la población.

En este caṕıtulo damos la construcción del modelo de población como la
solución a cierta ecuación diferencial estocástica; asimismo demostramos propie-
dades de momentos y de martingala para este proceso.

Luego obtenemos una aproximación cuando el tamaño de la población es
grande del proceso bajo cierta renormalización, la cual resulta ser la solución a
una ecuación diferencial determinista. También vemos como esta aproximación
se reduce bajo ciertas condiciones a los modelos deterministas macroscópicos
estudiados por Shashahani [72] y Doebeli [25].

Finalmente damos un algoritmo de simulación para este proceso, y lo ilus-
tramos con algunos ejemplos orientados en estudiar el fenómeno de especiación
simpátrica.



Part I

Probabilistic models
associated with stable
stochastic processes.
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Chapter 1

On tempered stable
stochastic integrals

1.1 Introduction

Tempered stable processes have been known for quite some time as the trun-
cated Lévy flight model used to model turbulence. The Tempered stable Lévy
processes and the Tempered fractional motion have been recently studied by
Rosiński and Houdré respectively in [67] and [35]. The importance of these pro-
cesses is that in a certain way they mix both α-stable and Gaussian trends, and
so they have many applications for example in mathematical finance to model
volatility or in option pricing.
In this paper we use the parametrization for tempered stable distributions given
in [67] to construct the tempered α-stable stochastic integral.
To do this (Section 3), we first prove the existence of a stochastic process by
means of its finite dimensional distributions; this is used to construct a tempered
α-stable random measure (Section 4). Then we define the tempered α-stable
stochastic integral for a deterministic function in a certain class F with respect
to a tempered α-stable random measure. We first define it for simple deter-
ministic functions, and then the definition for f ∈ F is obtained as a limit
in probability of a sequence of tempered α-stable integrals of simple functions
(Section 5).
The difference between this approach and the one given in [67] is that in the
later one they construct the stochastic tempered integral by means of the shot
noise representation. Each method has advantages, the shot noise method al-
lows numerical approximations among other things. With our method we can
study some properties that would be difficult to explore with the shot noise
representation.
These properties are the main results of this paper and are given in Section 6.
in Theorem 1, we prove that under suitable conditions on the deterministic
functions (fn) the corresponding integrals converge in probability.

10



1.2. PRELIMINARIES AND NOTATIONS 11

Theorem 2 gives conditions under which two tempered α-stable integrals are
independent, and in Therorem 3 we explore the effect of a change of variable in
the integral.
Another advantage of our method is that it allows us to construct, with a differ-
ent approach, examples that have already been studied: the tempered α-stable
Lévy motion, and the tempered Ornstein-Uhlenbeck process in [67], and the
tempered stable fractional motion in [35]; as well as new ones, like the tem-
pered moving averages process. All of which are given in Section 7.

1.2 Preliminaries and notations

We set some notations that will be used throughout the paper.
Rd is the d-dimensionl euclidean space with the norm ‖ · ‖.
Rd0 = Rd − {0}, and B(Rd0) is the Borel σ-field of Rd0. We will write d= to

denote equality in law, and
f.d.d.→ is used for convergence in the sense of the

finite dimensional distributions.
Now we recall the definition of a tempered stable distribution as well as some
of their properties, which will be used later.

Definition 1. An infinitely divisible probability measure, without Gaussian part
on Rd0 is called tempered stable if its Lévy measure ν has the following form

ν(B) =
∫

Rd0

∫ ∞
0

1B(sx)s−α−1e−sdsR(dx), B ∈ B(Rd).

Where α ∈ (0, 2) and where R is a measure defined in B(Rd) such that∫
Rd
‖x‖αR(dx) <∞.

In a similar way as in the stable case the two parameters α and R determine
a tempered stable distribution in Rd.
The characteristic function of a tempered stable distribution in Rd, is given by
(see [67]).

µ̂(y) = exp{
∫

Rd0
ψα(〈y, x〉)R(dx) + i〈y, b〉}. (1.2.1)

Under the assumption that when α = 1∫
Rd0
‖x‖(1 + log+ ‖x‖)R(dx) <∞,

where

ψα(s) =


kα[1− (1− is)α], 0 < α < 1
(1− is) log(1− is) + is, α = 1
kα[(1− is)α − 1 + iαs], 1 < α < 2.

(1.2.2)
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Here kα = |Γ(1− α)|, α 6= 1. And is important to note that (1.2.1) determines
the pair (α,R) uniquely.
We write µ ∼ TS(α,R; b) if the characteristic function of µ is given by (1.2.1).
Finally let (E, ε,m) be a a measure space and let us choose when α 6= 1

F = Lα(E, ε,m),

where

Lα(E, ε,m) = {f : E → R measurable,
∫
E

|f(x)|αm(dx) <∞};

when α = 1 we take
F = F(E, ε,m),

where

F(E, ε,m) = {f : f ∈ L1(E, ε,m) and
∫
E

|f(s) log |f(s)||m(ds) <∞}.

Without loss of generality we will suppose that m is σ-finite, because if f ∈ F it
implies that the support of f is contained in a region of E where m is σ-finite.

1.3 Construction of the tempered stable inte-
gral process

An α-tempered stable integral is defined by

I(f) =
∫
E

f(s)M(ds),

where M is an independently scattered α tempered stable random measure on
E with control measure m(dx) and 0 < α ≤ 2, (E,m) is a σ-finite complete
measure space, f : E → R is measurable and such that f ∈ F.
The distribution of the process {I(f) : f ∈ F} is determined by its finite di-
mensional distributions, given in terms of its characteristic functions. We will
construct the stable tempered integral as a stochastic processes {I(f), f ∈ F}
indexed by a set of functions F , the idea follows the construction of the stable
integral in [69].

1.3.1 Specification of the finite-dimensional distributions

Given f1, . . . , fd ∈ F , we will define a probability measure Pf1,...,fd in Rd by its
characteristic function as follows:

φf1,...,fd(y1, . . . , yd) = exp
{
kα

∫
R0

∫
E

ψα(x〈f(s), y〉)m(ds)R(dx)
}
. (1.3.3)



1.3. CONSTRUCTION OF THE TEMPERED STABLE INTEGRAL
PROCESS 13

where

f(s) = (f1(s), . . . , fd(s)),
y = (y1, . . . , yd).

Where the function ψα is defined in (1.2.2) and R is a measure in R0 satisfying∫
R0

|x|αR(dx) <∞, (1.3.4)

and when α = 1 we ask additionally that∫
R0

|x|| log |x||R(dx) <∞,

Next, in order to prove that φf1,...,fd is the characteristic function of a probability
measure Rd0, we make the change of variables zj = fj(s) in (1.3.3) to obtain

φf1,...,fd(y1, . . . , yd) = exp

{
kα

∫
R0

∫
E+

ψα(x〈f(s), y〉)m(ds)R(dx)

}

= exp
{
kα

∫
R0

∫
Rd
ψα(x〈z, y〉)ρ(dz)R(dx)

}
, (1.3.5)

where

E+ = {s ∈ E :
d∑
j=1

fj(s)2 > 0},

and
ρ(A) =

∫
E+

1A(f(s))m(ds) for every A ∈ B(Rd0).

Finally we will construct another measure in Rd0 given by

µ(A) =
∫

R0

∫
Rd0

1A(xz)ρ(dz)R(dx) for every A ∈ B(Rd0),

In terms of µ, (1.3.5) can be written as:

φf1,...,fd(y1, . . . , yd) = exp

{
kα

∫
R0

∫
Rd0
ψα(〈xz, y〉)ρ(dz)R(dx)

}

= exp

{
kα

∫
Rd0
ψα(〈ω, y〉)µ(dω)

}
. (1.3.6)
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Assume for the moment that α 6= 1. We claim that
∫

Rd0
‖ω‖αµ(dω) <∞.

Indeed observe that∫
Rd0
‖ω‖αµ(dω) =

∫
R0

∫
Rd0
‖xz‖αρ(dz)R(dx)

=
(∫

R0

|x|αR(dx)
)(∫

Rd0
‖z‖αρ(dz)

)

=
(∫

R0

|x|αR(dx)
)(∫

E

‖f(s)‖αm(ds)
)

≤
(∫

R0

|x|αR(dx)
)( d∑

i=1

∫
E

fj(s)αm(ds)

)
.

(1.3.7)

Which together with (1.3.4) and the fact that fj ∈ F for j = 1, . . . , d, proves
true the claimed fact. And so it follows from (1.3.6) that in the case α 6= 1,
φf1,...,fd is the characteristic function of a tempered stable law in Rd. The case
α = 1 is done in a similar way.
So we have a family of probability measures {Pf1,...,fd : f1, . . . , fd ∈ F} in Rd
that play the role of the finite dimensional distributions. We will see that this
family is consistent in order to apply Kolmogorov’s existence theorem, for any
permutation (π(1), . . . , π(d)) of (1, . . . , d) we have

φfπ(1),...,fπ(d)(yπ(1), . . . , yπ(d)) = φf1,...,fd(y1, . . . , yd),

and for any n ≤ d

φf1,...,fn(y1, . . . , yn) = φf1,...,fn,...,fd(y1, . . . , yn, 0, . . . , 0),

which proves consistency.
So there is a stochastic process {I(f), f ∈ F} whose finite-dimensional distri-
butions are defined by its Fourier transform in (1.3.3). We will call this process
the tempered stable integral of f , and m is its control measure.
As expected I(f) has a tempered stable distribution and I(·) is linear:

Property 1. Let f ∈ F . Then I(f) ∼ TS(α, µ; 0) where

µ(A) =
∫

R0

∫
E+

1A(xf(s))m(ds)R(dx) for A ∈ B(R0). (1.3.8)

Proof. To obtain the characteristic function of I(f) we take y2 = · · · = yd = 0
and f1 = f in (1.3.3), then

φf1(y) = exp
{
kα

∫
R0

∫
E

ψα(xf1(s)y)m(ds)R(dx)
}
.
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Then making the change of variable w = xf1(s) we have

φf1(y) = exp

{
kα

∫
R0

∫
E+

ψα(xf(s)y)m(ds)R(dx)

}

= exp
{
kα

∫
R0

ψα(wy)µ(dw)
}
, (1.3.9)

where the measure µ is given by (1.3.8).
Following a method similar to (1.3.7) we obtain∫

R0

|w|αµ(dw) <∞ when α 6= 1, (1.3.10)∫
R0

|w(1 + | log |w||)|µ(dw) <∞ when α = 1.

Because of (1.3.9) and (1.3.10) we can finally conclude that I(f) ∼ TS(α, µ; 0).

Another useful property of the stable tempered integral is that it is linear.

Property 2. If f1, f2 ∈ F , then

I(a1f1 + a2f2) = a1I(f1) + a2I(f2) a.s. (1.3.11)

for any real numbers a1 and a2.

Proof. We have from (1.3.5) that

E[exp{iy(I(a1f1 + a2f2)− a1I(f1)− a2I(f2))}]
= E[exp {i(yI(a1f1 + a2f2)− (a1y)I(f1)− (a2y)I(f2))}]

= exp
{
ka

∫
R

∫
E

ψα(x(y(a1f1 + a2f2)− (a1y)f1 − (a2y)f2))m(ds)R(dx)
}

= 1.

The last equality follows from the fact that ψα(0) = 0, and it implies (1.3.11).

1.4 Tempered stable random measures

We will now define the tempered stable random measure M . We will denote
(Ω, F, P ) the underlying probabiliy space and L0(Ω) the set of all real random
variables defined on it and let

ε0 = {A ∈ ε : m(A) <∞}.

With all these elements we can now define the tempered stable random measure.
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Definition 2. An independently scattered σ-additive set function

M : ε0 → L0(Ω).

such that for each A ∈ ε0,

M(A) ∼ TS(α,m(A)R; 0),

is called a tempered stable random measure of index α on (E, ε) with control
measure m.

We will now prove the existence of the tempered stable random measure.

Proposition 1. For every measure R0 in R that satisfies∫
R0

|x|αR(dx) <∞ when α 6= 1, (1.4.12)∫
R0

|x(1 + | log |x||)|R(dx) <∞ when α = 1, (1.4.13)

there exists a tempered stable random measure on (E, ε) with control measure
R.

Proof. We use the existence of the process {I(f), f ∈ F} applied to f = 1A for
A ∈ ε0 to obtain a stochastic process {M(A), A ∈ ε0} with finite-dimensional
distributions given in terms of its characteristic function by (1.3.5). Now con-
sider A ∈ ε0 then by (1.3.5) its easy to see using that ψα(0) = 0

E[exp{i(M(A)y)}

= exp
{
kα

∫
R0

∫
E

ψα(x(1A(s)y))m(ds)R(dx)
}

= exp
{
kα

∫
R0

ψα(xy)m(A)R(dx)
}
.

Which implies that M(A) ∼ TS(α,m(A)R; 0). We will now show that M is
indeed a random measure, first we will prove that it is independently scattered.
Let A1, . . . , Ad be disjoint sets belonging to ε0. Then using that ψα(0) = 0 and
that the sets A1, . . . , Ad are disjoint

E[exp{i(
d∑
j=1

M(Aj)yj)}]

= exp

kα
∫

R0

∫
E

ψα(x(
d∑
j=1

1Aj (s)yj))m(ds)R(dx)


=

d∏
i=1

exp
{
kα

∫
R0

ψα(xyj)m(Aj)R(dx)
}

=
d∏
i=1

E[exp{i(M(Aj)yj)}].
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Which proves that M(A1), . . . ,M(Ad) are independent.
The finite additivity follows from the linearity of the integral, let A1, . . . , Ad be
disjoint sets belonging to ε0 then

M(
d⋃
j=1

Aj) = I(1⋃d
j=1 Aj

) = I(
d∑
j=1

1Aj )
a.s.=

d∑
j=1

I(1Aj ) =
d∑
j=1

M(Aj).

Now that we have the finite additivity for the random measure, we will prove
the σ-additivity. We take A1, A2, · · · ∈ ε0 disjoint sets, and we suppose that⋃∞
j=1Aj ∈ ε0. Then using the finite additivity

M(
∞⋃
j=1

Aj)−
d+1∑
j=1

M(Aj) = M(
∞⋃
j=1

Aj)−M(
d+1⋃
j=1

Aj) = M(
∞⋃

j=d+1

Aj).

Then p− limd→∞M(
⋃∞
j=d+1) = 0 implies that

M(
∞⋃
j=1

Aj) = p− lim
d→∞

d∑
j=1

M(Aj), (1.4.14)

and because the series
∑d
j=1M(Aj) has independent summands, we have that

(1.4.14) is equivalent to

M(
∞⋃
j=1

Aj) = lim
d→∞

d∑
j=1

M(Aj) a.s.

Now recall that M(
⋃∞
j=dAj) ∼ TS(α,m(

⋃∞
j=dAj)R; 0), and since m is a mea-

sure

m(
∞⋃
j=d

Aj) =
∞∑
j=d

m(Aj), this sum is finite because
∞⋃
j=d

Aj ∈ ε0.

the above implies that limd→∞m(
⋃∞
j=dAj) = 0, and so we have that

lim
d→∞

E[exp{iyM(
∞⋃
j=d

Aj)}] = lim
d→∞

exp

kαm(
∞⋃
j=d

Aj)
∫

R0

ψα(xy)R(dx)


= 1.

We have then that M(
⋃∞
j=dAj)→ 0 as d→∞ in law, which is equivalent to

p− lim
d→∞

M(
∞⋃
j=d

Aj) = 0,

proving that M is σ-additive.
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1.5 Tempered stable integrals

We will define the tempered stable integral for f ∈ F and we still call it I(f).
First, let us consider a simple function in F , f =

∑d
j=1 aj1Aj , (where the

A1, . . . , Ad are disjoint), in this case we define the tempered stable integral as
follows

I(f) =
∫
E

f(s)M(ds) =
d∑
j=1

ajM(Aj).

Using (1.3.6) we have

E[exp {iy(ajM(Aj))}] = exp
{
kα

∫
R0

∫
E

ψα(xy(aj1Aj (s))m(ds)R(dx)
}
.

Using the independence of M(A1), . . . ,M(Ad) we have

E[exp{iy(
d∑
j=1

ajM(Aj))}] = exp


d∑
j=1

∫
R0

∫
E

ψα(xy(aj1Aj (s))m(ds)R(dx)


= exp


∫

R0

∫
E

ψα(xy(
d∑
j=1

aj1Aj (s))m(ds)R(dx)


= exp

{
kα

∫
R0

ψα(xω)µ(dω)
}
, (1.5.15)

where the measure µ has the form given in (1.3.8), and satisfies (1.3.7). The
later implies that ∫

E

f(s)M(ds) ∼ TS(α, µ; 0).

On the other hand we notice that the integral I(·) is linear on the space of
simple functions.
Now consider f ∈ F , then we take a sequence of simple functions {fn}∞n=1 that
satisfy the following

fn → f a.s. on E,
|fn| ≤ P a.s. on E, with P ∈ F . For every n ≥ 1.

Using (1.5.15) and the linearity of the integral in the simple functions we have

I(fn)− I(fm) = I(fn − fm) ∼ TS(α, µ; 0),

where for every A ∈ B(R0),

µ(A) =
∫

R0

∫
E

1A(x(fn(s)− fm(s)))m(ds)R(dx).
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Then

E[exp {iy(I(fn − fm)}] = exp
{
kα

∫
R0

∫
E

ψα(xy(fn(s)− fm(s)))m(ds)R(dx)
}
.

We will first find an upper bound for the function ψα(s).
When α 6= 1 we know from (3.3) in [67] that

|ψα(s)| ≤ Cα|s|α. (1.5.16)

Then we note the following

|ψα(x(fn(s)− fm(s))y)| ≤ Cα|x|α|fn(s)− fm(s)|αyα

≤ 2Cα|x|α|P (s)|αyα, (1.5.17)

and using the fact that P ∈ F and (1.4.12) we have∫
R0

∫
E

|x|α|P (s)|αm(ds)R(dx) =
∫

R0

|x|αR(dx)
∫
E

|P (s)|αm(ds) <∞.

And now for the case α = 1, using Remark 2.5 in [67] we obtain

|ψ1(s)| = |1
2

log(1 + s2)−s tan−1 s+ i(s− s log(1 + s2)
1
2 − tan−1 s|

≤ | log(1 + |s|)|+ π

2
|s|+ 2|s|+ |slog(1 + |s|)|

≤ C1|s|(1 + | log |s||), (1.5.18)

the first inequality follows from the monoticity of the logarithm, and in the
second one we used the bounds log(1 + v) ≤ v and log(1 + v) ≤ log 2 + | log v|,
v > 0.
Proceeding in the same way

|ψ1(x(fn(s)− fm(s))y)| ≤K1(y)(|x(fn(s)− fm(s))|
+ |x(fn(s)− fm(s))| log |x(fn(s)− fm(s))|)
≤ K1(y)(|xP (s)|+ |xP (s)| log |xP (s)|), (1.5.19)

again using (1.4.12) and the fact that P ∈ F it follows∫
R0

∫
E

K1(y)(|xP (s)|+ |xP (s)| log |xP (s)|)m(ds)R(dx)

=
∫

R0

|x|R(dx)
∫
E

|P (s)|m(ds) +
∫

R0

|x log |x||R(dx)
∫
E

|P (s)|m(ds)

+
∫

R0

|x|
∫
E

|P (s) log |P (s)||m(ds) <∞.
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Then thanks to (1.5.17) and (1.5.19) we can apply the Dominanted Convergence
Theorem to obtain

lim
n,m→∞

∫
R0

∫
E

ψα(xy(fn(s)− fm(s)))m(ds)R(dx)

=
∫

R0

∫
E

lim
n,m→∞

ψα(xy(fn(s)− fm(s)))m(ds)R(dx) = 0.

The last equality follows from the fact that ψα(s) is continuous in R.
This implies that {I(fn)}∞n=1 is a Cauchy sequence in distribution, and so
Cauchy sequence in probability. Recalling that the convergence in probabil-
ity is complete, we can define I(f) as the limit in probability of {I(fn)}∞n=1

We can proceed as in [69] to prove that the above limit does not depend on the
choice of the approximating sequence. Since convergence in probability implies
convergence in distribution, we have the following:

Proposition 2. Let f ∈ F then

I(f) ∼ TS(α,Rf ; 0).

Where

Rf (A) =
∫

R0

∫
E+

1A(xf(s))m(ds)R(dx), for A ∈ B(R0),

i.e.,

E[exp {iyI(f)}] = exp
{
kα

∫
R0

∫
E

ψα(xf(s)y)m(ds)R(dx)
}
.

Proposition 3. Let f, g ∈ F , a, b ∈ R. Then

I(af + bg) = I(af) + I(bg) a.s.

Proof. The proof follows the ideas of Samorodnitsky and Taqqu in [69].

The linearity of the integral and Proposition 1, imply

Proposition 4. For any f1, . . . , fd in F , the characteristic function of the
random vector (I(f1), . . . , I(fd)) is given by (1.3.5).

This gives us that the vector (I(f1), . . . , I(fd)) is tempered α-stable, and
that the two constructions of the tempered integral are equivalent.

1.6 Main results on tempered stable integrals

Theorem 1. Let Xj =
∫
E
fj(x)M(dx), j = 1, 2, . . . and X =

∫
E
f(x)M(dx),

where M is an α tempered stable random measure, with control measure m.
If in the case α 6= 1

lim
j→∞

∫
E

|fj(s)− f(s)|αm(ds) = 0, (1.6.20)
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then
p− lim

j→∞
Xj = X.

The result is still true for α = 1 if we assume furthermore that

lim
j→∞

∫
E

|fj(s)− f(s)| ln |fj(s)− f(s)|m(ds) = 0. (1.6.21)

Proof. The linearity of the tempered stable integral and Proposition 1, imply
that

E[exp {iyI(fj − f)}] = exp
{
kα

∫
R0

∫
E

ψα(x(fj(s)− f(s))y)m(ds)R(dx)
}
.

Now we have for α 6= 1 using (1.5.16)

|
∫

R0

∫
E

ψα(x(fj(s)− f(s))y)m(ds)R(dx)|

≤
∫

R0

∫
E

|ψα(x(fj(s)− f(s))y)|m(ds)R(dx)

≤
∫

R0

∫
E

Cα(y)|x|α|fj(s)− f(s)|αm(ds)R(dx)

= Cα(y)
∫

R0

|x|αR(dx)
∫
E

|fj(s)− f(s)|αm(ds).

And for α = 1 using (1.5.18)

|
∫

R0

∫
E

ψ1(x(fj(s)− f(s))y)m(ds)R(dx)|

≤
∫

R0

∫
E

|ψ1(x(fj(s)− f(s))y)|m(ds)R(dx)

≤
∫

R0

∫
E

C1(y)((|x(fn(s)− fm(s))|

+ |x(fn(s)− fm(s))| log |x(fn(s)− fm(s))|)m(ds)R(dx)

= C1(y)
∫

R0

|x|R(dx)
∫
E

(|(fn(s)− fm(s))|

+ |(fn(s)− fm(s))| log |(fn(s)− fm(s))|)m(ds).

So using (1.6.20) in the case α 6= 1 and (1.6.20)-(1.6.21) in the case α = 1,

lim
j→∞

∣∣∣∣∫
R0

∫
E

ψα(x(fj(s)− f(s))y)m(ds)R(dx)
∣∣∣∣ = 0, (1.6.22)

which implies that limj→∞(Xj −X) = 0 in distribution, and therefore in prob-
ability. But this is equivalent to

p− lim
j→∞

Xj = X,

which proofs the proposition.
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Now we will give some conditions for the independence of tempered integrals.

Theorem 2. Let X1 =
∫
E
f1(s)M(ds) and X2 =

∫
E
f2(s)M(ds) be two tem-

pered stable integrals of index α ∈ (0, 2) and control measure m. Then X1 and
X2 are independent if

f1f2 = 0 m-a.s. on E.

Proof. Since f1f2 = 0 m-a.s. and ψα(0) = 0 we have

ψα

 2∑
j=1

yjfj(s)

 =
2∑
j=1

ψα(yjfj(s)) m-a.s.

And since {Xj}2j=1 are jointly tempered α-stable, then

E

exp

i
 2∑
j=1

yjXj


 = exp

kα
∫

R0

∫
E

ψα

x 2∑
j=1

yjfj(s)

m(ds)R(dx)


=

2∏
j=1

exp
{
kα

∫
R0

∫
E

ψα (xyjfj(s))m(ds)R(dx)
}

=
2∏
j=1

E [exp {i (yjXj)}] .

Which proves that they are independent.

The natural question of whether the independence of X1 and X2 imply
f1f2 = 0 m-a.s. on E seems difficult to answer due to the fact that ψα has a
very complicated expression.
Now we will prove a theorem which will allow us to make a change of variable
in tempered integrals.

Theorem 3. Let M1 and M2 be two tempered α-stable random measures defined
on (E1, ε1) and (E2, ε2) with control measures m1 and m2 respectively, and
suppose that there exists g : E1 → E2 such that for every A ∈ ε2

m2(A) =
∫
E1

1A(g(s))m1(ds). (1.6.23)

Then if f ∈ F (M2) we have that∫
E2

f(s)M(ds) d=
∫
E1

f(g(s))M1(ds).

Proof. Let us consider α 6= 1. Since f ∈ Lα using (1.6.23) it follows that∫
E1

|f(g(s))|αm1(ds) =
∫
E2

|f(s)|αm2(ds) <∞,
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which implies that f(g) ∈ F (M1), so it makes sense to define the tempered
integral of f(g) with respect to the tempered random measure M1.
On the other hand let X =

∫
E2
f(s)M2(ds), then the characteristic function of

X is given by

E[e(iyX)] = exp
{
kα

∫
R0

∫
E2

ψα((xf(s))y)m2(ds)R(dx)
}
. (1.6.24)

Now from (1.6.23) it follows that∫
E2

ψα((xf(s))y)m2(ds) =
∫
E1

ψα(xf(g(s))y)m1(ds).

So if we substitute the above relation on (1.6.24) we have that

E[e(iyX)] = exp
{
kα

∫
R0

∫
E2

ψα((xf(s))y)m2(ds)R(dx)
}

= exp
{
kα

∫
R0

∫
E2

ψα(xf(g(s))y)m1(ds)R(dx)
}

= E[e(iyY )].

Where Y =
∫
E1
f(g(s))M1(ds). The case α = 1 is proved in a similar way.

1.7 Examples

Example 1. The α-Tempered Stable Lévy Motion.

Let

X(t) =
∫ ∞

0

1{s≤t}M(ds) =
∫ t

0

M(ds) t ≥ 0,

where M is an αtempered stable random measure with control measure m(ds) =
ds. Then

X(0) = 0 a.s,

X(t)−X(r) =
∫ t

r

M(ds) = M([r, t]) ∼ TS(α, (t− r)R). (1.7.25)

And by Proposition 2, if 0 ≤ t1 < t2 < · · · < tn, then

(X(t2)−X(t1), . . . , X(tn)−X(tn−1),

=

(∫ t2

t1

M(ds), . . . ,
∫ tn

tn−1

M(ds)

)
.

Observe that the entries of the above random vector are independent because
their support are disjoint; which implies that the process has independent in-
crements. The fact that the process has stationary increments follows from
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(1.7.25).
Therefore the process {X(t), t ≥ 0} is a Lévy process, and by (1.7.25) the incre-
ments have a tempered stable distribution. This process has been studied by
Rosiński in [67].

Example 2. Moving Averages

Let us take f a measurable function on R satisfying∫
R
|f(s)|αds <∞, for α 6= 1,∫

R
|f(s)(1 + | log |f(s)||)|ds <∞, for α = 1,

and let us take
X(t) =

∫ ∞
−∞

f(t− s)M(ds), t ∈ R,

where M is a tempered α-stable random measure with control measure m(ds) =
ds. We will now prove that this process is stationary, so let us take t1, . . . , td,
h ∈ R, and real θ1, . . . , θ2,

E[exp{i(
d∑
j=1

yjX(tj + h))}]

= exp

kα
∫

R0

∫
E

ψα(x(
d∑
j=1

yjf(tj + h− s))dsR(dx)


now by the change of variable z = s− h we have

= exp

kα
∫

R0

∫
E

ψα(x(
d∑
j=1

yjf(tj − z))dzR(dx)


= E[exp{i(

d∑
j=1

yjX(tj))}].

Therefore the process is stationary.

Example 3. Ornstein-Uhlenbeck process

Consider λ > 0 and M a tempered α-stable random measure, with Lebesgue
control measure and α ∈ (0, 2]. And let us take the associated Ornstein-
Uhlenbeck process

X(t) =
∫ t

−∞
e−λ(t−x)M(dx), −∞ < t <∞.

As we know taking f(s) = e−λx1{0,∞}(s) the process X(t) is a moving average
process, and because of the above it is stationary. And finally for fixed s < t,

X(t)− e−λ(t−s)X(s) =
∫ t

s

e−λ(t−s)M(ds).
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Theorem 2 implies that the above random variable will be independent of any
linear combination

∑d
j=1 bkX(uk), uk ≤ s, k = 1, . . . , n. Therefore X(t) −

e−λ(t−s)X(s) is independent of σ(X(u), u ≤ s). This implies that the tempered
Ornstein-Uhlenbeck process is a Markov process. Further properties have been
obtained by Rosiński in [67].

Example 4. Tempered Stable Fractional Motion

Let M be a tempered α-stable random measure, with Lebesgue control mea-
sure and α ∈ (0, 2] and consider

X(t) =
∫ ∞
−∞

(|t− s|H−1/α − |s|H−1/α)M(ds), −∞ < t <∞,

where 0 < H < 1, H 6= 1/α. This integral is well defined (see [69]).
First we will prove that it has stationary increments, i.e., for any τ ∈ R

{X(t)−X(0),−∞ < t <∞} d= {X(t+ τ)−X(τ),−∞ < t <∞}.

By linearity of the tempered integral we have

X(t+ τ)−X(τ) =
∫ ∞
−∞

(|t+ τ − s|H−1/α − |s|H−1/α)M(ds)

−
∫ ∞
−∞

(|τ − s|H−1/α − |s|H−1/α)M(ds)

=
∫ ∞
−∞

(|t+ τ − s|H−1/α − |τ − s|H−1/α)M(ds).

Then for t1, . . . , td it follows

E[ exp{i
d∑
j=1

yj(X(tj + τ)−X(τ))}]

= exp

kα
∫

R0

∫
E

ψα(x(
d∑
j=1

yj(|tj + τ − s|H−1/α − |s− τ |H−1/α))dsR(dx)


now by the change of variable z = s− τ we have

= exp

kα
∫

R0

∫
E

ψα(x(
d∑
j=1

yj(|tj − z|H−1/α − |z|H−1/α))dsR(dx)


= E[exp{i

d∑
j=1

yj(X(tj)−X(0))}],

then it has stationary increments. This process has been studied with detail by
Houdré in [35].



Chapter 2

On weighted tempered
moving averages processes

2.1 Introduction

Tempered stable processes have been known for quite some time as the trun-
cated Lévy flight model used to model turbulence. The Tempered stable Lévy
processes and the Tempered fractional motion have been recently studied by
Rosiński [67] and Houdré and Kawai [36] respectively. The importance of these
processes is that in a certain way they mix both α-stable and Gaussian trends,
and so they have many applications for example in mathematical finance to
model volatility or in option pricing.

We study a new class of processes which we call Weighted tempered moving
averages processes; we use the construction of the tempered stochastic integral
in [59], to define them as a stochastic integral with respect to a tempered stable
random measure. The usual definition of the moving averages process is given
as a stochastic integral with respect to a random measure with control measure
the Lebesgue measure. Here we do it with a general control measure, we only
ask that it is absolutely continuous with respect to Lebesgue measure; and its
Radon-Nikodým derivative is the weight to which they owe their name. This
class of processes allows more freedom in the applications to time series than
the usual moving averages processes.

These processes have interesting properties; although these processes in gen-
eral are no longer stationary, we prove in Section 3 that for α ∈ (0, 1), they are
mixing which implies ergodicity for this class.

Finally in Section 4 we prove that these processes have a similar behavior to
the one found by Rosiński [67] for the tempered Lévy motion and Houdré and
Kawai [36] for the tempered fractional motion.

26
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2.2 Preliminaries and notations

We set some notations that will be used throughout the paper.
Rd is the d-dimensionl euclidean space with the norm ‖ · ‖.
Rd0 = Rd−{0}, B(Rd0) is the Borel σ-field of Rd0, and Sd−1 := {x ∈ Rd : ‖x‖ = 1}.
We will write d= to denote equality in law, and

f.d.d.→ is used for convergence in
the sense of the finite dimensional distributions.
Now we recall the definition of a tempered stable distribution as well as some
of their properties, which will be used later.

Definition 3. 1 An infinitely divisible probability measure, without Gaussian
part on Rd0 is called tempered stable if its Lévy measure ν, in polar coordinates,
has the following form

ν(B) =
∫

Rd0

∫ ∞
0

1B(rx)r−α−1q(r, u)drσ(du),

where α ∈ (0, 2), σ is a finite measure on Sd−1, and q : (0,∞)×Sd−1 → (0,∞)
is a Borel function such that q(·, u) is completely monotone with q(∞, u) = 0
and q(0+, u) = 1 for each u ∈ Sd−1.

Now by Theorem 2.3 in Rosiński [67], the Lévy measure of a tempered stable
distribution can be written in the following form

ν(B) =
∫

Rd0

∫ ∞
0

1B(sx)s−α−1e−sdsR(dx), B ∈ B(Rd),

where R is a unique measure defined in B(Rd) such that∫
Rd
‖x‖αR(dx) <∞.

In a similar way as in the stable case the two parameters α and R determine a
tempered stable distribution in Rd.
Under the assumption that in the case where α = 1∫

Rd0
‖x‖(1 + log+ ‖x‖)R(dx) <∞,

the characteristic function of a tempered stable distribution in Rd, is given by
Rosiński (see [67]).

µ̂(y) = exp
{∫

Rd0
ψα(〈y, x〉)R(dx) + i〈y, b〉

}
(2.2.1)

1Definition 1 corresponds to the family of probability distributions named as proper tem-
pered stable distributions by Rosiński in [67].
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where

ψα(s) =


kα[1− (1− is)α], 0 < α < 1
(1− is) log(1− is) + is, α = 1
kα[(1− is)α − 1 + iαs], 1 < α < 2.

(2.2.2)

Here kα = |Γ(1− α)|, α 6= 1. And is important to note that (2.2.1) determines
the pair (α,R) uniquely.
We write µ ∼ TS(α,R; b) if the characteristic function of µ is given by (2.2.1).
Finally let (E, ε,m) be a a measure space and let us define the following

F =
{
Lα(E, ε,m), if α 6= 1;
{f ∈ L1(E, ε,m) :

∫
E
|f(s) log |f(s)||m(ds) <∞} if α = 1;

}
Without loss of generality we will suppose that m is σ-finite, because if f ∈ F it
implies that the support of f is contained in a region of E where m is σ-finite.

2.3 Tempered stable integrals

In this section we give a quick review of the construction of tempered stable
integrals given in chapter 1.

Recall the definition of a tempered stable random measure. We will denote
(Ω, F, P ) the underlying probabiliy space and L0(Ω) the set of all real random
variables defined on it and let

ε0 = {A ∈ ε : m(A) <∞}

With all these elements we can now define the tempered stable random measure.

Definition 4. An independently scattered σadditive set function

M : ε0 → L0(Ω)

such that for each A ∈ ε0,

M(A) ∼ TS(α,m(A)R; 0)

is called a tempered stable random measure of index α on (E, ε) with control
measure m.

An α-tempered stable integral is defined by

I(f) =
∫
E

f(s)M(ds),

where M is an independently scattered tempered stable random measure on
E with control measure m(dx) and 0 < α < 2, (E,m) is a σ-finite complete
measure space, f : E → R is measurable and such that f ∈ F.



2.4. WEIGHTED TEMPERED MOVING AVERAGES PROCESS 29

The distribution of the process {I(f) : f ∈ F} is determined by its finite dimen-
sional distributions, given in terms of its characteristic functions by

φf1,...,fd(y1, . . . , yd) = exp
{
kα

∫
R0

∫
E

ψα(x〈f(s), y〉)m(ds)R(dx)
}

(2.3.3)

where

f(s) = (f1(s), . . . , fd(s)),
y = (y1, . . . , yd).

Where the function ψα is defined in (2.2.2) and R is a measure in R0 satisfying∫
R0

|x|αR(dx) <∞,

and when α = 1 we ask additionally that∫
R0

|x|| log |x||R(dx) <∞,

In [59] using Kolmogorov’s existence theorem an alternative construction of the
tempered stable integral is given as a stochastic process {I(f), f ∈ F} indexed
by the set of functions F .

2.4 Weighted tempered moving averages pro-
cess

In this section we study the Weighted Tempered Moving Averages Process,
which is a wider class of process that include the tempered moving averages
process as a special case. As we have already mentioned, they have interesting
behavior under different scalings similar to the tempered stable Lévy motion,
and the tempered fractional motion studied by Rosiński in [67] and Houdré and
Kawai in [36] respectively.

Definition 5. Let m be a measure on B(R) absolutely continuous which respect
the Lebesgue measure, a measurable function f on R satisfying∫

R
|f(s)|αm(ds) <∞, for α 6= 1,∫

R
|f(s)(1 + | log |f(s)||)|m(ds) <∞, for α = 1.

Define

X(t) =
∫ ∞
−∞

f(t− s)M(ds), t ∈ R

Where M is a tempered α-stable random measure with control measure m.
Then we call the process X(t) a weighted tempered moving averages process or
WTMAP.
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When the measure m is not the Lebesgue measure then the WTMAP is not
always stationary, but we can prove an asymptotic result which guarantees that
for the case α < 1 the process is mixing.

2.5 Asymptotic behavior of weighted moving av-
erages tempered stable processes

We will analyze the behavior of a weighted moving averages tempered stable
process, using the function

I(θ1, θ2; t) :=− lnE[exp{i(θ1X(t) + θ2X(0))}]
+ lnE[exp{i(θ1X(t))}] + lnE[exp{i(θ2X(0))}]

We begin by recalling a result given by Hardin Jr. in [34] which tells us that
that if limt→∞ I(θ1, θ2; t) = 0 for any θ1 and θ2, then the process {X(t), t ∈ R}
is mixing, that is,

lim
t→∞

| P (A ∩B)− P (A)P (B) |= 0,

for every A ∈ σ{X(s), s ≤ t} and B ∈ σ{X(s), s ≥ t}. We will now prove that
a weighted tempered stable moving averages process is mixing when α < 1.

Theorem 4. For a weighted tempered stable moving averages process with
0 < α < 1,

lim
t→∞

I(θ1, θ2; t) = 0.

Proof. Suppose first that f has compact support. Then we can find T ∈ R,
such that if t ≥ T then f(t+ ·) and f(·) have disjoint supports. Then for t ≥ T
and recalling that ψα(0) = 0 we have

− lnE[exp{i(θ1X(t) + θ2X(0))}]

= −kα
∫

R0

∫
R
ψα(z(θ1f(t− x) + θ2f(−x)))dxR(dz)

= −kα
∫

R0

∫
R
ψα(z(θ1f(t− x)))dxR(dz)

− kα
∫

R0

∫
R
ψα(z(θ2f(−x)))dxR(dz)

= − lnE[exp{i(θ1X(t))}]− lnE[exp{i(θ2X(0))}].

Which implies that for t ≥ T

I(θ1, θ2; t) = 0,

and hence limt→∞ I(θ1, θ2; t) = 0.
If f does not have compact support, let ε > 0 be arbitrary and choose a bounded
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interval Kε such that
∫

R |f(−x)|α1Kc
ε
(−x)dx < ε. We now note that the func-

tion g = f1Kε has compact support, so we can find T ≥ 0 such that if t ≥ T
then g(t+ ·) and g(·) have disjoint supports. Then for t ≥ T

I(θ1, θ2; t)ε =

kα

∫
R0

∫
R
ψα(z(θ1f(t− x)1Kε(t− x) + θ2f(−x)1Kε(−x)))dxR(dz)

− kα
∫

R0

∫
R
ψα(z(θ1f(t− x)1Kε(t− x)))dxR(dz)

− kα
∫

R0

∫
R
ψα(z(θ2f(−x)1Kε(−x)))dxR(dz)

= 0. (2.5.4)

It is easy to see that if α ∈ (0, 1), then for any s, r ∈ R,

|ψα(r)− ψα(rs)| ≤ Cα|s− r|α. (2.5.5)

So using (2.5.5) it follows that

J(θ1, θ2) :=
∣∣∣∣ ∫

R0

∫
R
ψα(z(θ1f(t− x)1Kε(t− x) + θ2f(−x)1Kε(−x)))dxR(dz)

−
∫

R0

∫
R
ψα(z(θ1f(t− x)(t− x) + θ2f(−x)))dxR(dz)

∣∣∣∣
≤ Cα

∫
R0

∫
R
|(z(θ1f(t− x)1Kε(t− x) + θ2f(−x)1Kε(−x)

− θ1f(t− x) + θ2f(−x)))|αdxR(dz)

≤ Cα
(∫

R0

|z|αR(dz)
)(∫

Kc
ε

|θ1f(t− x)|αdxR(dz)

+
∫
Kc
ε

|θ2f(−x)|αdxR(dz)
)

< Cα

(∫
R0

|z|αR(dz)
)

(θα1 + θα2 )ε = Mα(θ1, θ2)ε. (2.5.6)

In a similar way it follows for i = 1, 2

J(θi) :=
∣∣∣∣ ∫

R0

∫
R
ψα(z(θif(t− x)1Kε(t− x)))dxR(dz)

−
∫

R0

∫
R
ψα(z(θif(t− x)(t− x)))dxR(dz)

∣∣∣∣
≤ Cα

(∫
R0

|z|αR(dz)
)(∫

Kc
ε

|θif(t− x)|αdxR(dz)

)

< Cαθ
α
i

(∫
R0

|z|αR(dz)
)
ε = Mα(θi)ε, (2.5.7)
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so using (2.5.4), (2.5.6), and (2.5.7) it follows that if t ≥ T ,

|I(θ1, θ2; t)| = |I(θ1, θ2; t)− I(θ1, θ2; t)ε|
≤ J(θ1, θ2) + J(θ1) + J(θ2) < (Mα(θ1, θ2) +Mα(θ1) +Mα(θ2))ε.

Noting that ε is arbitrary, we have for fixed θ1, θ2 that

lim
t→∞

I(θ1, θ2; t) = 0,

which completes the proof.

2.6 Short and long time behavior of weighted
tempered stable moving averages processes

Finally in this section we determine for a certain kind of weighted tempered
moving averages process their behavior under different scalings.
We will obtain an asymptotic result for the rescaled processes in the sense of
their finite dimensional distributions. As it will be seen in the next Theorem
their behaviour in a short time frame is close to an α-stable weighted moving
averages process, while in a long time frame its very similar to a Gaussian
weighted moving averages process.
We remark that the method used to prove the next Theorem is inspired in the
work of Rosiński (see [67]) for the tempered stable Lévy process.

Theorem 5. Let us take a measure m on B(R) satisfying that m is absolutely
continuous with respect the Lebesgue measure, and a measurable function f on
R such that f ∈ F .
Let g be the Radon-Nikodým derivate of m with respect the Lebesgue measure
and define the following family of measures {mh}h∈R

mh(A) =
∫
A

g(s/h)ds with A ∈ B(R).

Let α ∈ (0, 2), and Mh a tempered α-stable random measure with control mea-
sure mh, and define

Xh(t) =
∫ ∞
−∞

f(t− s)Mh(ds).

(i)Short time behavior:

Suppose the following

1. There exists a measurable function u1 on R and a function r1 ∈ F such
that |u1(h)f(ht)| ≤ r1(t) for all t ∈ R.

2. There exists a function L1 ∈ F , such that limh→0 u1(h)f(ht) = L1(t) for all t ∈ R.
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Then when α 6= 1

{h−1/αu1(h)Xh(ht) : t ≥ 0} f.d.d.→ {cX(α)(t) : t ≥ 0} as h→ 0+.

Where
X(α)(t) = c

∫ ∞
−∞

L1(t− s)M (α)(ds),

M (α) is an α-stable random measure with control measure m, and

c =
(
kα| cos

πα

2
|
∫

R0

|x|αR(dx))
)1/α

.

And when α = 1

{h−1u1(h)(Xh(ht)− b(h, t)) : t ≥ 0} f.d.d.→ {cX(1)(t) : t ≥ 0} as h→ 0+.

Where

b(h, t) = log h
∫

R0

xR(dx)
∫ ∞
−∞

f(t− s)m(ds).

And

X(1)(t) = c

∫ ∞
−∞

L1(t− s)M (1)(ds) + µ,

c =
π

2

∫
R0

|x|R(dx),

µ =
∫

R0

∫ ∞
−∞

x
k∑
i=1

aiL1(ti − s)(1− log |x|)m(ds)R(dx),

where M (1) is an 1-stable random measure with control measure m.
(ii)Long time behavior:

Assume the following

1.
∫

R0
|x|2R(dx) <∞.

2. There exists a measurable function u2 on R and a function r2 ∈ L2(R,B(R),m),
such that |u2(h)f(ht)| ≤ r2(t) for all t ∈ R.

3. There exists a function L2 ∈ L2(R,B(R),m), such that
limh→∞ u2(h)f(ht) = L2(t) for all t ∈ R.

Let 1 ≤ α < 2, then

{h−1/2u2(h)X(ht) : t ≥ 0} f.d.d.→ {cX(2)(t) : t ≥ 0} as h→∞.



2.6. SHORT AND LONG TIME BEHAVIOR OF WEIGHTED TEMPERED
STABLE MOVING AVERAGES PROCESSES 34

Where
X(2)(t) = c

∫ ∞
−∞

L2(t− s)M (2)(ds),

M (2) is an Gaussian random measure with control measure m, and

c =
(
α

2
Γ(2− α)

∫
R0

x2R(dx)
)1/2

.

And when 0 < α < 1

{h−1/2u2(X(ht)− k(h, t)) : t ≥ 0} f.d.d.→ {cX(2)(t) : t ≥ 0} as h→∞.

Where

k(h, t) = αΓ(1− α)
∫

R0

∫ ∞
−∞

xf(ht− s)mhdsR(dx),

and

X(2)(t) = c

∫ ∞
−∞

L2(t− s)M (2)(ds),

M (2) is an Gaussian random measure with control measure m, and

c =
(
α

2
Γ(2− α)

∫
R0

x2R(dx)
)1/2

.

Proof. It suffices to show that for any reals {ai}ki=1, and nonnegative nonde-
creasing reals {ti}ki=1 k ∈ N, the random variable

∑k
i=1 aiXh(hti) converges in

law to
∑k
i=1 aiX

(α)(ti), as h→ 0.

We note the following

k∑
i=1

ai(h−1/αu1(h)Xh(hti)) =
k∑
i=1

aih
−1/αu1(h)

∫ ∞
−∞

f(hti − s)Mh(ds)

=
∫ ∞
−∞

( k∑
i=1

aih
−1/αu1(h)f(hti − s)

)
Mh(ds).

Now by (2.3.3) we have

E

[
exp

{
iy

( k∑
i=1

aih
−1/αu1(h)Xh(hti)

)}]

= exp
{∫

R0

∫ ∞
−∞

ψα

(
xy

( k∑
i=1

aih
−1/αu1(h)f(h(ti − s/h))

))
g(s/h)dsR(dx)

}

= exp
{∫

R0

∫ ∞
−∞

hψα

(
xy

( k∑
i=1

aih
−1/αu1(h)f(h(ti − s))

))
m(ds)R(dx)

}
.

(2.6.8)
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On the other hand it is easy to see, following the proof of Theorem 3.1 (i) in
Rosiński [67], that for α 6= 1,

lim
h→0

hψα

(
xy

( k∑
i=1

aih
−1/αu1(h)f(h(ti − s))

))
= φα

(
xy

( k∑
i=1

aiL1(ti − s)
))

,

where φα(s) is given by,

φα(s) = −kα
∣∣∣∣ cos

πα

2

∣∣∣∣|s|α(1− tan
πα

2
sign(s)

)
,

and
|hψα(h−1/αs)| ≤ zα|s|α,

where zα is some constant depending only on (α 6= 1).
So using the above inequality in the integrand of (2.6.8) it follows that∣∣∣∣hψα(xy( k∑

i=1

aih
−(1/α)u1(h)f(h(ti − s))

))∣∣∣∣ ≤ zα|x|α|y|α| k∑
i=1

air1(ti − s)|α.

(2.6.9)
From the above calculation, and using that r1 ∈ F it follows that∫

R0

∫ ∞
−∞
|x|α

∣∣∣∣ k∑
i=1

air1(ti − s)
∣∣∣∣αm(ds)R(dx)

≤
∫

R0

|x|αR(dx)
∫ ∞
−∞

∣∣∣∣ k∑
i=1

air1(ti − s)
∣∣∣∣αm(ds) <∞. (2.6.10)

Now from (2.6.9), (2.6.10), and using the bounded convergence theorem

lim
h→0

E

[
exp

{
iy

( k∑
i=1

aih
−1/αu1(h)Xh(hti)

)}]

= exp
{∫

R0

∫ ∞
−∞

lim
h→0

hψα

(
xy

( k∑
i=1

aih
(−1/α)u1(h)f(h(ti − s))

))
m(ds)R(dx)

}

= exp
{∫

R0

∫ ∞
−∞

φα

(
xy

( k∑
i=1

aiL1(ti − s)
))

m(ds)R(dx)
}
. (2.6.11)

Finally it is easy to show that∫
R0

∫ ∞
−∞

φα

(
xy

( k∑
i=1

aiL1(ti − s)
))

m(ds)R(dx)

= −
∫ ∞
−∞

∣∣∣∣cy k∑
i=1

aif(ti − s)
∣∣∣∣α(1− i tan

πα

2
β

(
sign

(
y

k∑
i=1

aiL1(ti − s)
))

m(ds).

(2.6.12)
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Where

c =
(

Γ(−α)
∣∣∣∣ cos

πα

2

∣∣∣∣ ∫
R0

|x|αR(dx)
)1/α

,

β =

∫
R0
x<α>R(dx)∫

R0
|x|αR(dx)

,

and x〈α〉 := |x|αsign(x).
Then by (2.6.12) it follows that (2.6.11) is the characteristic function of a
weighted α-stable moving averages process

X(α)(t) = c

∫ ∞
−∞

L1(t− s)M (α)(ds),

where M (α) is an α-stable random measure, such that for every A ∈ B(R)

M (α)(A) ∼ Sα((m(A))1/α, β, 0).

Now we will work the case α = 1, then following the procedure in (2.6.8)

E

[
exp

{
iy

( k∑
i=1

aih
−1u1(h)(Xh(hti)− b(ti, h))

)}]

= exp
{∫

R0

∫ ∞
−∞

(
hψ1

(
h−1u1(h)xy

( k∑
i=1

aif(h(ti − s))
))

− ixy
( k∑
i=1

aiu1(h)f(h(ti − s))
)

log h
)
m(ds)R(dx)

}
. (2.6.13)

It is easy to see that the function ψ1(s) satisfies the following

|hψ1(h−1s)− is log h| ≤ C|s|(1 + | log |s||) for all h ∈ (0, 1]. (2.6.14)

We use the inequality in (2.6.14) to uniformly bound the integrand (2.6.13) for
h ∈ (0, 1]∣∣∣∣hψ1

(
h−1u1(h)xy

( k∑
i=1

aif(h(ti − s))
))
− ixyu1(h)

( k∑
i=1

aif(h(ti − s))
)

log h
∣∣∣∣

≤ C
∣∣∣∣xy k∑

i=1

air1(ti − s)
∣∣∣∣(1 +

∣∣∣∣ log
∣∣∣∣xy k∑

i=1

air1(ti − s)
∣∣∣∣∣∣∣∣).

(2.6.15)

And using the fact that r1 ∈ F and the hypothesis 1, it follows that (2.6.15) is
integrable.
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Now it can be shown following that

lim
h→0

hψ1

(
h−1u1(h)xy

( k∑
i=1

aif(h(ti − s))
))
− ixyu1(h)

( k∑
i=1

aif(h(ti − s))
)

log h

= −π
2

∣∣∣∣xy k∑
i=1

aiL1(ti − s)
∣∣∣∣+ ixy

( k∑
i=1

aiL1(ti − s)
)(

1− log
∣∣∣∣xy k∑

i=1

aiL1(ti − s)
∣∣∣∣).

(2.6.16)

So using the Bounded Convergence Theorem and (2.6.16) it follows that

lim
h→0

E

[
exp

{
iy

( k∑
i=1

aih
−1u1(h)(Xh(hti)− b(ti, h))

)}]

= exp
{
−
∫ ∞
−∞

∣∣∣∣cy k∑
i=1

aiL1(ti − s)
∣∣∣∣(

1 + i
2
π
β

(
sign

(
y

k∑
i=1

aiL1(ti − s)
))

log
∣∣∣∣y k∑

i=1

aiL1(ti − s)
∣∣∣∣)+ i(cy)µ

}
.

(2.6.17)

Where

c =
π

2

∫
R0

|x|R(dx)

β =

∫
R0
xR(dx)∫

R0
|x|R(dx)

µ =
∫

R0

∫ ∞
−∞

(
x

k∑
i=1

aiL1(ti − s)
)

(1− log |x|)m(ds)R(dx).

And again (2.6.17) is the characteristic function of a 1-stable moving averages
process

X(1)(t) = c

∫ ∞
−∞

L1(t− s)M (1)(ds) + µ,

where M (1) is an 1-stable random measure, such that for every A ∈ B(R)

M (1)(A) ∼ S1(m(A), β, 0).
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Now we are going to prove ii), let us consider the case 1 ≤ α < 2. We have that

E

[
exp

{
iy

k∑
i=1

aih
−1/2u2(h)Xh(hti)

}]

= exp
{∫

R0

∫ ∞
−∞

ψα

(
xy

k∑
i=1

aih
−1/2u2(h)f(h(ti − s/h))

)
g(s/h)dsR(dx)

}

= exp
{∫

R0

∫ ∞
−∞

hψα

(
xyh−1/2u2(h)

k∑
i=1

aif(h(ti − s))
)
m(ds)R(dx)

}
.

(2.6.18)

It is easy to prove that

lim
h→∞

hψα

(
xyh−1/2u2(h)

k∑
i=1

aif(h(ti − s))
)

= −α
2

Γ(2− α)xy
( k∑
i=1

aiL2(ti − s)
)2

,

(2.6.19)

and∣∣∣∣hψα(xyh−1/2u2(h)
k∑
i=1

aif(h(ti − s))
)∣∣∣∣ ≤ Γ(2− α)x2y2

( k∑
i=1

air2(ti − s)
)2

.

(2.6.20)
So from the above inequality, the hypothesis on the existence of the second
moment of the measure R, and recalling that r2 ∈ L2(R,B(R),m) we note the
following∫

R0

∫ ∞
−∞

x2

( k∑
i=1

air2(ti − s)
)2

m(ds)R(dx)

≤
∫

R0

x2R(dx)
∫ ∞
−∞

( k∑
i=1

air2(ti − s)
)2

m(ds) <∞.

Then from (2.6.19),(2.6.20) and using the bounded convergence theorem it fol-
lows from (2.6.18) that

lim
h→∞

E

[
exp

{
iy

k∑
i=1

aih
−1/2u2(h)Xh(hti)

}]

= exp
{(
− α

2
Γ(2− α)

∫
R0

x2R(dx)
∫ ∞
−∞

( k∑
i=1

aiL2(ti − s)
)2

ds

)
y2

}
.

(2.6.21)

And (2.6.21) is the characteristic function of a Gaussian moving averages pro-
cesses

cX(2)(t) = c

∫ ∞
−∞

L2(t− s)M (2)(ds).
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Where M (2) is a Gaussian random measure such that

M (2)(A) ∼ N(0, (m(A))),

and

c =
(
α

2
Γ(2− α)

∫
R0

x2R(dx)
)1/2

.

And now for the case 0 < α < 1 we have that

E

[
exp

{
iy

k∑
i=1

aih
−1/2u2(h)(Xh(hti)− k(h, ti))

}]
=

= exp
{∫

R0

∫ ∞
−∞

(
ψα

(
xy

k∑
i=1

aih
−1/2u2(h)f(h(ti − s/h))

)

− iyh−1/2u2(h)αΓ(1− α)x
k∑
i=1

aif(h(ti − s))
)
g(s/h)dsR(dx)

}

= exp
{∫

R0

∫ ∞
−∞

h

(
ψα

(
xyh−1/2u2(h)

k∑
i=1

aif(h(ti − s))
)

− iyh−1/2u2(h)αΓ(1− α)x
k∑
i=1

aif(h(ti − s))
)
m(ds)R(dx)

}
. (2.6.22)

Using the same ideas it is easy to see that

lim
h→∞

h

(
ψα

(
xyh−1/2u2(h)

k∑
i=1

aif(h(ti − s))
)

− αΓ(1− α)xyh−1/2u2(h)
k∑
i=1

aif(h(ti − s))
)

= −α
2

Γ(2− α)
(
xy

k∑
i=1

aiL2(ti − s)
)2

, (2.6.23)

and

h

∣∣∣∣ψα(xyh−1/2u2(h)
k∑
i=1

aif(h(ti − s))
)
− iyh1/2u2(h)αΓ(1− α)x

k∑
i=1

aif(ti − s)
∣∣∣∣

≤ α

2
Γ(2− α)x2y2

( k∑
i=1

air2(ti − s)
)2

.

(2.6.24)
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The term in (2.6.24) is integrable, so using the bounded convergence theorem
and using (2.6.23) in (2.6.22) we have

lim
h→∞

E

[
exp

{
iy

k∑
i=1

aih
−(1/2)u2(h)(Xh(hti)− k(h, ti))

}]

= exp
{
−
(
α

2
Γ(2− α)

∫
R0

x2R(dx)
∫ ∞
−∞

( k∑
i=1

aiL2(ti − s)
)2

m(ds)
)
y2

}
.

(2.6.25)

And (2.6.25) is the characteristic function of a Gaussian moving averages pro-
cesses

cX(2)(t) = c

∫ ∞
−∞

L2(t− s)M (2)(ds),

where M (2) is a Gaussian random measure such that

M (2)(A) ∼ N(0, (m(A))) and,

c =
(
α

2
Γ(2− α)

∫
R0

x2R(dx)
)1/2

.

And so the theorem is proved.

Corollary 1. Let us take a measure m on B(R) satisfying that m is absolutely
continuous with respect the Lebesgue measure, and a measurable function f on
R such that f ∈ F ∩ L2(R,B(R),m) .
Let g be the Radon-Nikodým derivate of m with respect the Lebesgue measure
and define the following family of measures {mh}h∈R

mh(A) =
∫
A

g(s/h)ds with A ∈ B(R).

Let α ∈ (0, 2), and Mh a tempered α-stable random measure with control mea-
sure mh, and define

Xh(t) =
∫ ∞
−∞

f(t− s)Mh(ds).

Suppose that
f(ht) = hNf(t) for some N ∈ R,

then when α 6= 1
(i)Short time behavior:

{h−(N+1/α)Xh(ht) : t ≥ 0} f.d.d.→ {cX(α)(t) : t ≥ 0} as h→ 0,

where
X(α)(t) = c

∫ ∞
−∞

f(t− s)M (α)(ds),



2.6. SHORT AND LONG TIME BEHAVIOR OF WEIGHTED TEMPERED
STABLE MOVING AVERAGES PROCESSES 41

M (α) is an α-stable random measure with control measure m, and

c =
(

Γ(−α)
∣∣∣∣ cos

πα

2

∣∣∣∣ ∫
R0

|x|αR(dx)
)1/α

.

And when α = 1

{h−(N+1)(Xh(ht)− b(h, t)) : t ≥ 0} f.d.d.→ {cX(1)(t) : t ≥ 0} as h→ 0,

where

b(h, t) = log h
∫

R0

xR(dx)
∫ ∞
−∞

f(t− s)m(ds),

and

X(1)(t) = c

∫ ∞
−∞

f(t− s)M (1)(ds) + µ

c =
π

2

∫
R0

|x|R(dx)

µ =
∫

R0

∫ ∞
−∞

x
k∑
i=1

aif(ti − s)(1− log |x|)m(ds)R(dx),

where M (1) is an 1-stable random measure with control measure m.
(ii)Long time behavior:
Assume that ∫

R0

|x|2R(dx) <∞,

and let 1 ≤ α < 2, then

{h−(N+1/2)X(ht) : t ≥ 0} f.d.d.→ {cX(2)(t) : t ≥ 0} as h→∞,

where
X(2)(t) = c

∫ ∞
−∞

f(t− s)M (2)(ds),

M2 is an Gaussian random measure with control measure m, and

c =
(
α

2
Γ(2− α)

∫
R0

x2R(dx)
)1/2

.

And when 0 < α < 1

{h−(N+1/2)(X(ht)− k(h, t)) : t ≥ 0} f.d.d.→ {cX(2)(t) : t ≥ 0} as h→∞,
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where

k(h, t) = αΓ(1− α)
∫

R0

∫ ∞
−∞

xf(ht− s)mh(ds)R(dx),

and

X(2)(t) = c

∫ ∞
−∞

f(t− s)M (2)(ds),

M (2) is an Gaussian random measure with control measure m, and

c =
(
α

2
Γ(2− α)

∫
R0

x2R(dx)
)1/2

.

Proof. The proof follows from Theorem 6, by taking ui(h) = h−N and ri(t) =
Li(t) = f(t) for i = 1, 2.



Chapter 3

Lamperti stable processes

3.1 Introduction

In recent years the interest in having more accurate models in various domains
of applied probability has lead to an increasing attention paid to some special
classes of Lévy processes related to the stable law, for example: the tempered
stable and the layered stable processes introduced by Rosiński in [67] and Houdré
and Kawai in [35], respectively. Both families of processes have nice structural
and analytical properties, such as combining in short time the behavior of stable
processes and in long time the behavior of a Brownian motion. They also have
a series representation which may be used for sample paths simulation.

Lamperti [46] and more recently, Caballero and Chaumont [14] studied four
families of Lévy processes which are related to the stable subordinator and
some conditioned stable processes via the Lamperti representation of positive
self-similar Markov processes. Those studies are the starting point of our work.
Recall that positive self-similar Markov processes, (X,Px), x > 0, are strong
Markov process with càdlàg paths, which fulfill a scaling property, i.e. there
exists a constant α > 0 such that for any b > 0:

The law of (bXb−αt, t ≥ 0) under Px is Pbx.

We shall refer to these processes as pssMp. According to Lamperti [46], any
pssMp up to its first hitting time of 0 may be expressed as the exponential
of a Lévy process, time changed by the inverse of its exponential functional.
Reciprocally, any Lévy process ξ can be expressed as the logarithm of a time
changed pssMp X. In this paper we refer to this Lamperti transformation as
LT1 and the details can be seen in [46].

One of the examples treated by Lamperti in [46] is the case when (X,Px)
is a stable subordinator of index α ∈ (0, 1) starting from x > 0. Lamperti in
[46], describes the characteristics of the associated Lévy process s = (st, t ≥ 0)

43
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which is again a subordinator, with no drift and with Lévy measure given by

η(dx) =
c+e

x

(ex − 1)α+1
dx, x > 0.

The three cases of pssMp studied in [14] are related to some conditioned stable
processes. The first one is the stable Lévy processes killed when it first exits from
the positive half-line, here denoted by (X∗,Px). The second class corresponds
to that of stable processes conditioned to stay positive (see for instance [20, 26]),
denoted by (X↑,Px). Finally, the third class of pssMp is that of stable processes
conditioned to hit 0 continuously, denoted by (X↓,Px). The corresponding
Lévy processes under the LT1 transformation are denoted by ξ∗, ξ↑ and ξ↓,
respectively. These three classes of Lévy processes have no gaussian component
and their Lévy measure are of the type

π(dx) =
(

c+e
dx

(ex − 1)α+1
1I{x>0} +

c−e
dx

(1− ex)α+1
1I{x<0}

)
dx,

where c+, c− are the constants of the Lévy measure of the original stable process
and d is a positive parameter. We recall that for ξ∗ the constant d equals 1 and
moreover it has finite lifetime if c− > 0 and, when c− = 0, it has infinite lifetime
and drifts to −∞. For ξ↑ the constant d is equal to αρ+ 1, where ρ = P0(X1 <
0). It has infinite lifetime and drifts to ∞. Finally, for the processes ξ↑ the
constant d is αρ. It has infinite lifetime and drifts to −∞. We remark that such
processes have linear coefficients in their respective characteristic exponent that
we denote by a∗, a↑ and a↓. Such constants are computed explicitly in [14] in
terms of α, ρ, c− and c+. Actually it was proved recently in [21], that the
process ξ↓ corresponds to ξ↑ conditioned to drift to −∞ (or equivalently ξ↑ is
ξ↓ conditioned to drift to +∞).

Finally, motivated by self-similar continuous state branching processes with
immigration, Patie has recently studied in [58] the family of Lévy process with
no positive jumps with Lévy measure

η∗(dx) =
c−e

(α+ϑ)x

(1− ex)α+1
dx, x < 0,

where ϑ > −α.
These Lévy processes have the advantage that the law of many functionals

can be computed explicitly, for example: the first exit time from a finite interval
or semi-finite interval, overshoots distributions and exponential functionals (see
for instance Caballero and Chaumont [14], Chaumont et al. [21], Kyprianou and
Pardo [45] and Patie [58]). We also emphasize that in some cases the Wiener-
Hopf factors can be computed and scale functions in the spectrally one sided
case can be obtained. Since many tractable mathematical expressions can be
computed, this class seems to be an useful tool for applications and rich enough
to be of particular interest.

In this work, we investigate a generalization of the Lévy processes mentioned
above and we will refer to them as Lamperti stable processes. We also study
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these processes in higher dimensions. We will see that this class has nice struc-
tural and analytical properties close to those for tempered stable and layered
stable processes.

In section 3.3 we begin by studying the Lamperti stable distributions, which
are multivariate infinitely divisible distributions with no Gaussian component
and whose Lévy measure is characterized by a triplet (α, f, σ), more precisely an
index α ∈ (0, 2), a function f , and a finite measure σ, both defined on the unit
sphere in Rd. In particular, the radial component of any of these Lévy measures
is asymptotically equivalent to that of a stable distribution, with index α, near
zero and has exponential decay at infinity. These distributions have a density
with respect to the Lebesgue measure, have finite moments of all orders and
exponential finite moments of some order. In the one dimensional case, the
density is C∞. In some particular cases, we also prove that these distributions
are self-decomposable.

In section 3.4, we formally introduce the Lamperti stable processes and study
their properties with emphasis in the one dimensional case, where we obtain an
explicit closed form for the characteristic exponent. Motivated by the works of
Rosiński [67] and Houdré and Kawai [35], we prove in section 3.5, 3.6 and 3.7
that Lamperti stable processes in a short time look like a stable process while
in a large time scale they look like a Brownian motion, that they are absolute
continuous with respect to its short time limiting stable process and they admit
a series representation that allows simulations of their paths, respectively.

In section 3.8, we study some related processes: the Ornstein-Uhlenbeck
processes whose limiting distribution is a Lamperti stable law and the Lévy
processes with no positive jumps whose descending ladder height process is a
Lamperti stable subordinator. Finally we illustrate with several examples the
presence of Lamperti stable distributions in recent literature.

3.2 Preliminaries

Recall that positive self-similar Markov processes, (X,Px), x > 0, are strong
Markov process with càdlàg paths, which fulfill a scaling property, i.e. there
exists a constant α > 0 such that for any b > 0:

The law of (bXb−αt, t ≥ 0) under Px is Pbx.

We shall refer to these processes as pssMp. According to Lamperti [46], any
pssMp up to its first hitting time of 0 may be expressed as the exponential of a
Lévy process, time changed by the inverse of its exponential functional. More
formally, let (X,Px) be a pssMp with index α > 0, starting from x > 0, set

S = inf{t > 0 : Xt = 0}

and write the canonical process X in the following form:

Xt = x exp
{
ξτ(tx−α)

}
0 ≤ t < S , (3.2.1)
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where for t < S,

τ(t) = inf
{
s ≥ 0 :

∫ s

0

exp {αξu}du ≥ t
}
.

Then under Px, ξ = (ξt, t ≥ 0) is a Lévy process started from 0 whose law does
not depend on x > 0 and such that:

(i) if Px(S = +∞) = 1, then ξ has an infinite lifetime and drifts towards +∞,

(ii) if Px(S < +∞, X(S−) = 0) = 1, then the process ξ has an infinite lifetime
and drifts towards −∞.

(iii) if Px(S < +∞, X(S−) > 0) = 1, then ξ is killed at an independent
exponentially distributed random time with parameter λ > 0.

As it is mentioned in [46], the probabilities Px(S = +∞), Px(S < +∞, X(S−) =
0) and Px(S < +∞, X(S−) > 0) are 0 or 1 independently of x, so that the three
classes presented above are exhaustive. Moreover, for any t <

∫∞
0

exp{αξs}ds,

τ(t) =
∫ xαt

0

ds
(Xs)α

, Px-a.s.

Therefore (3.2.1) is invertible and yields a one to one relation between the class
of pssMp’s killed at time S and the one of Lévy processes.

3.3 Lamperti stable distributions

In this section, we define Lamperti stable distributions on IRd and establish
some of their basic properties. According to Theorem 14.3 in Sato [70], the Lévy
measure Π of a stable distribution with index α on IRd in polar coordinates is
of the form

Π(dr, dξ) = r−(α+1)drσ(dξ)

where α ∈ (0, 2) and σ is a finite measure on Sd−1, the unit sphere on IRd.
The measure σ is uniquely determined by Π. Conversely, for any non-zero finite
measure σ on Sd−1 and for any α ∈ (0, 2) we can define an stable distribution
with Lévy measure defined as above.

Motivated by the form of the Lévy measure of the processes mentioned in
the introduction and the previous discussion, we define a new family of infinitely
divisible distributions that we call Lamperti stable.

Definition 6. Let µ be an infinitely divisible probability measure on IRd without
Gaussian component. Then, µ is called Lamperti stable if its Lévy measure on
IRd

0 := IRd \ {0} is given by

να,fσ (B) =
∫
Sd−1

σ(dξ)
∫ ∞

0

1IB(rξ)erf(ξ)(er − 1)−(α+1)dr, B ∈ B(IRd
0),

(3.3.2)
where α ∈ (0, 2), σ is non-zero finite measure on Sd−1, and f : Sd−1 → R is a
measurable function such that γ := supξ∈Sd−1 f(ξ) < α+ 1.
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Note that να,fσ is indeed a Lévy measure on IRd
0. To see this, we need to

verify that∫
IRd0

(1 ∧ ‖x‖2)να,fσ (dx) =
∫
Sd−1

σ(dξ)
∫ ∞

0

(1 ∧ r2)erf(ξ)(er − 1)−(α+1)dr <∞.

On the one hand, since erf(ξ)(er − 1)−(α+1) ∼ r−(α+1) as r → 0, 1 we have that∫
Sd−1

σ(dξ)
∫ 1

0

r2erf(ξ)(er − 1)−(α+1)dr <∞.

One the other hand, from elementary calculations we deduce∫
Sd−1

σ(dξ)
∫ ∞

1

erf(ξ)(er − 1)−(α+1)dr ≤ σ(Sd−1)
(1− e−1)α+1

∫ ∞
1

e−r(α+1−γ)dr,

where γ := supξ∈Sd−1 f(ξ). Since γ < α + 1, the above integral is finite and
therefore να,fσ is a Lévy measure.

In the one dimensional case f takes only two possible values, since S0 =
{−1, 1}. In the sequel, we denote these two values by f(1) := β and f(−1) := δ
. From the definition of the measure σ, we have σ({1}) = c+ and σ({−1}) = c−.
Therefore each distribution associated to the Lévy processes mentioned in the
introduction belongs to the class of Lamperti stable distribution. Following the
notation of the introduction, for:

• the subordinator s, β = 1 and c− = 0,

• the process ξ∗, β = 1 and δ = α,

• the process ξ↑, β = αρ+ 1 and δ = α(1− ρ),

• the process ξ↓, β = αρ and δ = α(1− ρ) + 1,

• the class of Lévy processes with no positive jumps considered by Patie
[58], δ = 1− ϑ and c+ = 0.

Note that Lamperti stable distributions satisfy the divergence condition, i.e.

∞∫
0

erf(ξ)(er − 1)−(α+1)dr =∞ for any ξ ∈ Sd−1.

Thus from Theorem 27.10 in [70], we deduce that they are absolutely continuous
with respect to the Lebesgue measure. Also note that the class of Lamperti
stable distributions and that of layered stable distributions (see [35]) are disjoint.
This follows from the following estimate

erf(ξ)

(er − 1)α+1
∼ e−(α+1−f(ξ))r as r →∞.

1We say that f ∼ g as x→ x0 if for x0 ∈ Rd limx→x0 f(x)/g(x) = 1.
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Lamperti stable distributions do not belong in general to the class of tempered
stable distributions. For instance, fix ξ ∈ Sd−1 and take f(ξ) ∈ ((α+1)/2, α+1).
It is not difficult to see that the first derivative of the function

q(r, ξ) =
erf(ξ)

(er − 1)α+1
r1+α,

is positive for r ∈ (0, 2− (α+ 1)/c), which implies that q(r, ξ) is not completely
monotone.

Proposition 5. Let µ be a Lamperti stable distribution with Lévy measure να,fσ

given by (3.3.2). If ζ < α+ 1− γ, then∫
Rd

eζ‖x‖µ(dx) <∞,

In particular, for κ < α+ 1 and if f ≡ κ, we have∫
Rd

eζ‖x‖µ(dx) <∞ if and only if ζ < α+ 1− κ.

Proof. Consider

∫
{‖x‖>1}

eζ‖x‖να,fσ (dx) ≤ σ(Sd−1)(1− e−1)−(α+1)

∞∫
1

er(ζ+γ−(α+1))dr,

which is finite since ζ < α + 1 − γ. Hence by Theorem 25.3 in [70], we obtain
the desired result.
Next, we suppose that f ≡ κ. The former arguments imply that for ζ < α+1−κ,
the Lamperti stable distribution µ has a finite exponential moment of order ζ.
In a similar way, it is clear that

∫
{‖x‖>1}

eζ‖x‖να,κσ (dx) ≥ σ(Sd−1)

∞∫
1

er(ζ+κ−(α+1))dr.

This implies that
∫

{‖x‖>1}
eζ‖x‖να,κσ (dx) is finite if and only if ζ < α+ 1−κ.

Corollary 2. Let µ be be a Lamperti stable distribution. Then∫
Rd

‖x‖pµ(dx) <∞ for all p > 0.

Our next result shows that Lamperti stable distributions belong to the Jurek
class and that in some cases they are self-decomposable. We recall briefly these
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definitions. The class of infinitely divisible distributions for which the Lévy
measure ν takes the following form

ν(B) =
∫

Sd−1

σ(dξ)

∞∫
0

1IB(rξ)`(ξ, r)dr, for B ∈ B(Rd0),

is called:

(1) Self-decomposable if r`(ξ, r) is non negative, measurable in ξ ∈ Sd−1

and decreasing in r ∈ (0,∞).

(2) Jurek class if `(ξ, r) is measurable in ξ ∈ Sd−1, and decreasing in r ∈
(0,∞).

Proposition 6. Let µ be a Lamperti-stable distribution on Rd with Lévy mea-
sure να,fσ given by (3.3.2), then µ belongs to the Jurek class. Moreover, µ is
selfdecomposable if f(ξ) ≤ α+ 1/2, for all ξ ∈ Sd−1 and α ∈ (0, 2).

Proof. In the case of a Lamperti stable distribution, we have

`(ξ, r) =
ef(ξ)r

(er − 1)α+1
,

so the measurability of r`(ξ, r) and `(ξ, r) is clear.
In order to prove that ` is decreasing in r > 0, we fix ξ ∈ Sd−1 and consider the
derivative of `1(·) = `(ξ, ·), i.e.

`′1(r) =
ef(ξ)r

(er − 1)α+2

(
er(f(ξ)− α− 1)− f(ξ)

)
.

Hence `′1(r) < 0 for r > 0, since f(ξ) ≤ α + 1. This implies that µ is in the
Jurek class.

For the second part of the Proposition, we take k(ξ, r) = r`(ξ, r). Note that
the derivative of k(ξ, r) with respect to r, can be written as

ef(ξ)r

(er − 1)α+2

(
er
[
(1 + f(ξ)r − (α+ 1)r

)
− f(ξ)

]
,

Elementary calculations prove that k is decreasing for r > 0, if f(ξ) ≤ α + 1/2
for all ξ ∈ Sd−1 and α ∈ (0, 2). We leave the details to the reader.

We note that we can find α ∈ (0, 2) such that if f(ξ) > α+1/2, the Lamperti
stable distribution µ is not self-decomposable.

We finish this section with some properties of Lamperti stable distributions
defined on IR. The first of which says in particular that the density of any
Lamperti stable distribution belongs to C∞.

Proposition 7. Let µ be a Lamperti stable distribution on IR, then µ has a C∞

density and all the derivatives of the density tend to 0 as |x| tends to ∞.
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Proof: Recall that the function f takes two values, β = f(1) and ρ = f(−1) as
usual. According to [56] it is enough to prove that

g(r) =
∫ r

0

x2 eβx

(ex − 1)α+1
dx, verifies that lim inf

r→0

g(r)
r2−a > 0, (3.3.3)

for some a ∈ (0, 2). But this is immediate because for r sufficiently small, we
have ∫ r

0

x2 eβx

(ex − 1)α+1
dx ≥ K

∫ r

0

x2

xα+1
dx = Kr2−α,

where K > 0. In particular when a = α, the condition in (3.3.3) is satisfied and
the statement follows.

Before we state the last result of this section, we recall the definition of
a particular class of distributions which is important in risk theory (see for
instance [27] and [42]).

Definition 7 (Class L(q)). Take a parameter q ≥ 0. We shall say that a
distribution function G on [0,∞) with tail G := 1 − G belongs to class L(q) if
G(x) > 0 for each x ≥ 0 and

lim
u→∞

G(u− x)
G(u)

= eqx for each x ∈ R.

The tail of any (Lévy or other) measure, finite and non-zero on (x0,∞) for
some x0 > 0, can be renormalised to be the tail of a distribution function and
by extension, then is said to be in L(q), if the associated distribution function is
in L(q).

Now, we will prove that the tail of the Lévy measure of any Lamperti stable
distributions defined in IR belongs to the class L(α+1−β), where β = f(1) as
usual.

Proposition 8. Let µ be a Lamperti-stable distribution on IR, then the tail of
its Lévy measure belongs to the class L(α+1−β). In particular when µ is defined
on IR+, we have that µ belongs to the class L(α+1−β).

Proof: First, we define

ν(u) =
1
K

∫ u

1

eβr

(er − 1)α+1
dr, u ≥ 1,

where K =
∫ ∞

1

eβr

(er − 1)α+1
dr. Note that ν corresponds to the distribution

function associated to the tail of the Lévy measure of a Lamperti stable distri-
bution.
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From elementary calculations, we get

ν(u− x)
ν(u)

=
∫ ∞
u−x

eβr

(er − 1)α+1
dr
(∫ ∞

u

eβr

(er − 1)α+1
dr
)−1

≤ (α+ 1− β)eu(α+1−β)

∫ ∞
u−x

eβr

(er − 1)α+1
dr

= e(α+1−β)x
(

1− e−(u−x)
)−α−1

.

Similarly

ν(u− x)
ν(u)

≥ (1− e−u)α+1(α+ 1− β)eu(α+1−β)

∫ ∞
u−x

e(β−(α+1))rdr

= e(α+1−β)x(1− e−u)α+1.

Therefore taking u large enough, we deduce that ν ∈ L(α+1−β). The case when
µ is defined in IR+ follows from Proposition 3.4 in Kyprianou et al. [42].

3.4 Lamperti stable Lévy processes

Here, we introduce the class of Lévy processes which is associated to Lamperti
stable distributions. We also discuss, specially in the one dimensional case,
a number of coarse and fine properties of their paths which are of particular
interest for applications.

Definition 8. A Lévy process without gaussian component, and linear term θ,
is called Lamperti stable with characteristics (α, f, σ, θ) if its Lévy measure is
given by (3.3.2).

In the sequel, we denote the Lamperti stable Lévy process with characteris-
tics (α, f, σ, θ) by XL = (XL

t , t ≥ 0). Its characteristic exponent is defined by
E[exp(i〈y,XL

t 〉)] = exp(−tΨ(y)) for t ≥ 0, y ∈ IRd where

Ψ(y) = i〈y, θ〉+
∫

IRd0

(
1− ei〈y,x〉 + i〈y, x〉1I{‖x‖<1}

)
να,fσ (dx), (3.4.4)

the measure να,fσ has the form given in (3.3.2) and θ ∈ IRd.
The first property in study is the p-th variation of Lamperti stable processes.

In particular, we prove that their p-th variation is similar to that of stable
processes.

Proposition 9. Let XL be a Lamperti stable process with characteristics (α, f, σ, θ).

i) If α ∈ (1, 2), the process XL is a.s. of finite p-th variation in every finite
interval if and only if p ∈ (α, 2).

ii) The process XL is a.s. of finite variation in every finite interval if and
only if α ∈ (0, 1).
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Proof: (i) From Theorem III in Bretagnolle [10], we have that for p ∈ (1, 2), the
process XL is a.s. of finite p-th variation on every finite interval if and only if∫

{‖x‖≤1}
‖x‖pνα,fσ (dx) <∞.

Recall that γ := supξ∈Sd−1 f(ξ). From the form of the Lévy measure να,fσ and
some elementary calculations, we have∫
{‖x‖≤1}

‖x‖pνα,fσ (dx) ≤ σ(Sd−1)eγ
∫ 1

0

rp

(er − 1)α+1
dr ≤ σ(Sd−1)eγ

∫ 1

0

rp−(α+1)dr.

(3.4.5)
On the other hand, we have∫
{‖x‖≤1}

‖x‖pνα,fσ (dx) ≥ σ
(
{ξ ∈ Sd−1 : f(ξ) ≥ 0}

)∫ 1

0

rp

(er − 1)α+1
dr

+
∫
Sd−1

1I{f(ξ)<0}e
f(ξ)σ(dx)

∫ 1

0

rp

(er − 1)α+1
dr

≥ K
(
σ
(
{ξ ∈ Sd−1 : f(ξ) ≥ 0}

)
+
∫
Sd−1

1I{f(ξ)<0}e
f(ξ)σ(dx)

)∫ 1

0

rp−(α+1)dr,

(3.4.6)

for some K > 0. Therefore XL is of finite p-th variation on every finite interval
if and only if p > α.
The proof of part (ii) is very similar. According to Theorem 3 of Gikhman and
Skorokhod [32], it is enough to prove that∫

{‖x‖≤1}
‖x‖να,γσ (dx) <∞,

if and only if α ∈ (0, 1). But this follows from (3.4.5) and (3.4.6) taking p = 1,
which concludes the proof.

Recall that the characteristic exponent of a Lévy process has a simpler ex-
pression when its sample paths have a.s. finite variation in every finite interval.
In this case, we have that the characteristic exponent in (3.4.4) takes the form

ΨL(y) = −i〈d, y〉+
∫

IRd0

(
1− ei〈y,x〉

)
να,fσ (dx),

where d = −θ −
∫
{‖x‖≤1}

xνα,fσ (dx) and, in this case, d is known as the drift

coefficient.
In the rest of this section we work with real valued processes. We are now

interested in two important properties of Lévy processes: creeping and the
regularity of 0. Define for each x ≥ 0, the first passage time

τ+
x = inf

{
t > 0 : XL

t > x
}
,
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with the convention inf ∅ = ∞. We say that the Lamperti stable process XL

creeps upwards if for all x ≥ 0, P0(XL
τ+
x

= x) > 0. If −XL creeps upwards, we
say that XL creeps downwards. Recall that if creeping occurs at just one x then
creeping occurs at all x.

Proposition 10. Let XL be a Lamperti stable process with characteristics L =
(α, f, σ, θ).

i) If α ∈ (0, 1) and d > 0, the process XL creeps upwards.

ii) If α ∈ [1, 2) and c+ = 0, the process XL creeps upwards.

iii) If α ∈ [1, 2) and c+ > 0, the process XL does not creep upwards.

Proof. The first part of our statement follows directly from part (i) of Theorem
8 in [43].

From Proposition 9, for α ∈ [1, 2) the process XL is of unbounded variation.
In this case, a result due to Vigon [76] says that XL creeps upwards if and only
if the following integral converges,

1∫
0

xνα,fσ

(
[x,∞)

)
H(x)

dx, where H(x) =

0∫
−x

y∫
−1

να,fσ

(
(−∞, u]

)
dudy. (3.4.7)

If c+ = 0, it is clear that the above integral is equal to 0 which implies part (ii).
In order to prove part (iii), we first study the case when c+ > 0 and c− > 0; in
this case we have

|u|ανα,fσ ((−∞, u]) = c−|u|α
u∫

−∞

e−δx

(e−x − 1)α+1
dx ∼ c−

α
as u ↑ 0. (3.4.8)

Then, it is not difficult to deduce that

xα−2H(x) ∼ c−
(2− α)(α− 1)α

as x ↓ 0.

Similar arguments as those used in (3.4.8) allows us to write

xανα,fσ

(
[x,∞)

)
∼ c+

α
as x ↓ 0.

Therefore,

xνα,fσ

(
[x,∞)

)
H(x)

∼ (2− α)(α− 1)c+
c−

1
x

as x ↓ 0,

which implies that the integral K in (3.4.7) diverges.
Finally, if c+ > 0 and c− = 0 the integral (3.4.7) obviously diverges. The

proof is now complete.
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We recall that for a Lévy process X a point x ∈ R is regular for (0,∞) if

Px(τ (0,∞) = 0) = 1,

where τ (0,∞) = inf{t > 0 : Xt ∈ (0,∞)}.

Proposition 11. For a Lamperti stable process XL with characteristics (α, f, σ, θ),
the point 0 is regular for (0,∞) if one of these three conditions hold:

i) α ∈ [1, 2).

ii) α ∈ (0, 1) and d > 0.

iii) α ∈ (0, 1), d = 0 and c+ > 0.

Proof. (i) Recall from Proposition 9 that XL has unbounded variation for α ∈
[1, 2). Hence from Theorem 11 in [43], we deduce that 0 is regular for (0,∞).

Now we prove parts (ii) and (iii). Suppose that α ∈ (0, 1). In this case XL

has bounded variation and again from Theorem 11 in [43], we know that the
point 0 is regular for (0,∞) if the drift coefficient d > 0 or if d = 0 and the
following condition holds

1∫
0

xνα,fσ (dx)
H1(x)

=∞, where H1(x) =

x∫
0

να,fσ (−∞,−y)dy. (3.4.9)

It is enough to prove that (3.4.9) holds when d = 0 and c+ > 0 to conclude our
proof. The case when c+ > 0 and c− = 0 is immediate. For the second case,
i.e. when c+ > 0 and c− > 0, we first recall from (3.4.8) that

yανα,fσ ((−∞,−y]) ∼ c−
α

as y ↓ 0,

which implies that

xα−1H1(x) ∼ c−
α(1− α)

as x ↓ 0.

We observe then, that

x2eβx(ex − 1)−(α+1)

H(x)
∼ α(1− α)

c−
, as x ↓ 0,

which implies (3.4.9).

Our next result deals with the computation of the characteristic exponents
of Lamperti stable processes. Denote by

(z)α =
Γ(z + α)

Γ(z)
, for z ∈ C,

which is known as the Pochhammer symbol. And by

ψ(z) =
d

dz
Γ(z), for z ∈ C, (3.4.10)

which is called the Digamma function.



3.4. LAMPERTI STABLE LÉVY PROCESSES 55

Theorem 6. Let XL be a Lamperti stable process with characteristics (α, f, σ, θ).

i) If α ∈ (0, 1) ∪ (1, 2), the characteristic exponent of XL is given by

ΨL(λ) = iλθ̃ − c+Γ(−α) ((−iλ+ 1− β)α − (1− β)α)
− c−Γ(−α) ((iλ+ 1− δ)α − (1− δ)α) , λ ∈ R.

ii) If α = 1, the characteristic exponent of XL is given by

ΨL(λ) = iλθ̃ − c+
(

(−iλ+ 1− β)ψ(−iλ+ 2− β)− (1− β)ψ(2− β)
)

− c−
(

(iλ+ 1− δ)ψ(iλ+ 2− δ)− (1− δ)ψ(2− δ)
)
, λ ∈ R.

Where ψ is the Digamma function (see 3.4.10), θ̃ is given by

θ̃ =


−d if α ∈ (0, 1),
θ −

(
c+ãβ − c−b̃δ + (c+ − c−)(1− C)

)
if α = 1,

θ −
(
c+ãβ − c−b̃δ + c+−c−

α−1

)
if α ∈ (1, 2),

(3.4.11)

where C is the Euler constant and ãβ , b̃δ are given by:

ãβ =

1∫
0

xe−x(1− e−(α−β)x)
(1− e−x)α+1

dx+

1∫
0

e−x
1− x− e−x

(1− e−x)α+1
dx+

∞∫
1

e−x

(1− e−x)α
dx,

b̃δ =

1∫
0

xe−x(1− e−(α−δ)x)
(1− e−x)α+1

dx+

1∫
0

e−x
1− x− e−x

(1− e−x)α+1
dx+

∞∫
1

e−x

(1− e−x)α
dx,

for all β, δ < α+ 1.

Proof: i) First we will consider the case where α ∈ (0, 1). Without loss of gen-
erality, we assume that d = 0. Since α ∈ (0, 1), we know that the characteristic
exponent of XL is given by

ΨL(λ) = −
(
c+

∫ ∞
0

(eiλx − 1)
eβx

(ex − 1)α+1
dx

+ c−

∫ 0

−∞
(eiλx − 1)

e−δx

(e−x − 1)α+1
dx

)
. (3.4.12)

We compute each of these integrals which we call I1 and I2 respectively. Since
all the computations involved are valid for all λ ∈ R, we center our attention
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in the variable β. In order to compute I1 explicitly we will define in the set
U = {z ∈ C : <(z) < α+ 1}, the following function F : U → C, given by

F (z) :=
∫ ∞

0

(eiλx − 1)
ezx

(ex − 1)α+1
dx =

∫ ∞
0

(eiλx − 1)
e−z1x

(1− e−x)α+1
dx

=
∫ 1

0

(u−iλ − 1)uz1−1(1− u)−(α+1)du, (3.4.13)

where z1 = α + 1 − z and <(z1) > 0. Then by making an integration by parts
in the last integral of (3.4.13) we obtain for <(z1) > 1∫ 1

0

(u−iλ − 1)uz1−1(1− u)−(α+1)du =
(−iλ− z1 + 1)

α

∫ 1

0

u−iλ+z1−2(1− u)−αdu

+
z1 − 1
α

∫ 1

0

uz1−2(1− u)−αdu. (3.4.14)

Now recalling the integral representation for the Beta function, (see [48]), we
have for <(a),<(b) > 0

B(a, b) =
∫ 1

0

ua−1(1− u)b−1du =
Γ(a)Γ(b)
Γ(a+ b)

(3.4.15)

we can express (3.4.14), in the following form:∫ 1

0

(u−iλ − 1)uz1−1(1− u)−(α+1)du =
−(iλ+ z1 − 1)

α

Γ(−iλ+ z1 − 1)Γ(1− α)
Γ(−iλ+ z1 − α)

+
(z1 − 1)

α

Γ(z1 − 1)Γ(1− α)
Γ(z1 − α)

,

finally by the recurrence relation for the Gamma function, Γ(x + 1) = xΓ(x),
and the fact that z1 = α+ 1− z, we obtain

F (z) = Γ(−α)
(

Γ(−iλ+ α+ 1− z)
Γ(−iλ+ 1− z)

− Γ(α+ 1− z)
Γ(1− z)

)
, (3.4.16)

for <(z1) > 1, i.e. <(z) < α. So we have the desired result for β < α. In order
to obtain it for β ∈ [α, α+ 1) we do the following: The equality (3.4.16) is valid
in particular in Dα = {z ∈ C : ‖z‖ < α}, in order to extend it to the case where
‖z‖ < α + 1, we will prove first that both sides of the equality in (3.4.16) are
analytic functions in the disk Dα+1 = {z ∈ C : ‖z‖ < α+ 1}.
First we take F , and then using a series expansion we have

F (z) =
∫ ∞

0

(eiλx − 1)
ezx

(ex − 1)α+1
dx =

∫ ∞
0

∞∑
n=0

(eiλx − 1)
(zx)n

n!
(ex − 1)−(α+1)dx.

(3.4.17)
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Now consider the following∫ ∞
0

∞∑
n=0

∥∥∥∥(eiλx − 1)
(zx)n

n!
(ex − 1)−(α+1)

∥∥∥∥ dx
≤
∫ ∞

0

∞∑
n=0

(|λ|x)
(‖z‖x)n

n!
(ex − 1)−(α+1)dx

=
∫ ∞

0

(|λ|x)e‖z‖x(ex − 1)−(α+1)dx, (3.4.18)

which is finite when ‖z‖ < α + 1, therefore we can apply Fubini’s Theorem in
(3.4.17) and obtain

F (z) =
∞∑
n=0

zn

n!

∫ ∞
0

(eiλx − 1)
xn

(ex − 1)α+1
dx =

∞∑
n=0

anz
n, (3.4.19)

for z ∈W , where

an =
1
n!

∫ ∞
0

(eiλx − 1)
xn

(ex − 1)α+1
dx.

which implies that F is analytic in Dα+1.
Since for ‖z‖ < α+1 we have that <(−iλ+α+1−z) > 0, and <(α+1−z) > 0,
therefore the function G : U → C, given by

G(z) = Γ(−α)
(

Γ(−iλ+ α+ 1− z)
Γ(−iλ+ 1− z)

− Γ(α+ 1− z)
Γ(1− z)

)
,

is analytic in Dα+1. Since F and G are analytic in Dα+1, and F ≡ G in Dα,
we conclude that F ≡ G in Dα+1, which implies that

I1 = F (β) = Γ(−α)
(

Γ(−iλ+ α+ 1− β)
Γ(−iλ+ 1− β)

− Γ(α+ 1− β)
Γ(1− β)

)
,

for all β < α+ 1.
Now we compute the second integral in the right-hand side of (3.4.12)

I2 =
∫ 0

−∞
(eiλx − 1)

e−δx

(e−x − 1)α+1
dx =

∫ 1

0

(uiλ − 1)uδ1−1(1− u)−(α+1)du,

where δ1 = α + 1− δ, hence following the same arguments used in the compu-
tation of I1, we get

I2 = Γ(−α)
(

Γ(iλ+ α+ 1− δ)
Γ(iλ+ 1− δ)

− Γ(α+ 1− δ)
Γ(1− δ)

)
,

for all δ < α+ 1. Therefore from the form of I1 and I2 we get

ΨL(λ) = −c+Γ(−α) ((−iλ+ 1− β)α − (1− β)α)
− c−Γ(−α) ((iλ+ 1− δ)α − (1− δ)α) .



3.4. LAMPERTI STABLE LÉVY PROCESSES 58

for all β, δ < α+ 1.
Now we consider the case where α ∈ (1, 2). As in the case where α ∈ (0, 1), we
assume that θ = 0. Since α ∈ (1, 2), the characteristic exponent of XL is given
by

ΨL(λ) = −
(
c+

∫ ∞
0

(
eiλx − 1− iλx1I{x<1}

) eβx

(ex − 1)α+1
dx

+ c−

∫ 0

−∞

(
eiλx − 1− iλx1I{x>−1}

) e−δx

(e−x − 1)α+1
dx

)
, (3.4.20)

We call I1 and I2 respectively the integrals in (3.4.20). To study I1 to do that
we define the function G : U → C, given by

G(z) :=
∫ ∞

0

(
eiλx − 1− iλx1I{x<1}

) ezx

(ex − 1)α+1
dx

=
∫ ∞

0

(
eiλx − 1− iλx1I{x<1}

) e−z1x

(1− e−x)α+1
dx

=
∫ ∞

0

(eiλx − 1)e−z1x − iλ(1− e−x)e−x

(1− e−x)α+1
dx+ iλ

∫ 1

0

x(e−x − e−z1x)
(1− e−x)α+1

dx

+ iλ

∫ 1

0

e−x
1− x− e−x

(1− e−x)α+1
dx+ iλ

∫ ∞
1

e−x

(1− e−x)α
dx

= iλã+ iλI(z) +
∫ 1

0

(u−iλ − 1)uz1−1 + iλ(u− 1)
(1− u)α+1

du, (3.4.21)

where z1 = α+ 1− z, <(z1) > 0,

ã =
∫ 1

0

e−x
1− x− e−x

(1− e−x)α+1
dx+

∫ ∞
1

e−x

(1− e−x)α
dx,

and I : U → C is defined by

I(z) :=
∫ 1

0

xe−x(1− e−(α−z)x)
(1− e−x)α+1

dx. (3.4.22)

We consider the last integral in (3.4.21), an integration by parts gives us for
<(z1) > 2∫ 1

0

(u−iλ − 1)uz1−1 + iλ(u− 1)
(1− u)α+1

du =
iλ

α
− (z1 − 1)

α

∫ 1

0

(u−iλ − 1)uz1−2(1− u)−αdu

+
iλ

α

∫ 1

0

(u−iλ+z1−2 − 1)(1− u)−αdu.

(3.4.23)

We now compute the integrals in the right-hand side of (3.4.23), using (3.4.15)



3.4. LAMPERTI STABLE LÉVY PROCESSES 59

and making an integration by parts, we obtain for the first integral the following∫ 1

0

(u−iλ − 1)uz1−2(1− u)−αdu

=
(z1 − 2)
1− α

∫ 1

0

(u−iλ − 1)uz1−3(1− u)1−αdu− iλ

1− α

∫ 1

0

u−iλ+z1−2(1− u)1−αdu

=
(−iλ+ z1 − 2)

1− α

∫ 1

0

u−iλ+z1−3(1− u)1−αdu− (z1 − 2)
1− α

∫ 1

0

uz1−3(1− u)1−αdu

= Γ(1− α)
(

Γ(−iλ+ z1)
(−iλ+ z1 − 1)Γ(−iλ+ z1 − α)

− Γ(z1)
(z1 − 1)Γ(z1 − α)

)
,

(3.4.24)

and for the second integral in the right-hand side of (3.4.23)∫ 1

0

(u−iλ+z1−2 − 1)(1− u)−αdu =
1

α− 1
+

(−iλ+ z1 − 2)
1− α

∫ 1

0

u−iλ+z1−3(1− u)1−αdu

=
1

α− 1
+

(−iλ+ z1 − 2)
1− α

Γ(−iλ+ z1 − 2)Γ(2− α)
Γ(−iλ+ z1 − α)

=
1

α− 1
+

Γ(−iλ+ z1)
(−iλ+ z1 − 1)

Γ(1− α)
Γ(−iλ+ z1 − α)

,

(3.4.25)

so using (3.4.24) and (3.4.25), in (3.4.23) and recalling that z1 = α+ 1− z, we
get∫ 1

0

(u−iλ − 1)uz1−1 + iλ(u− 1)
(1− u)α+1

du =
iλ

α− 1

+ Γ(−α)
(

Γ(−iλ+ α+ 1− z)
Γ(−iλ+ 1− z)

− Γ(α+ 1− z)
Γ(1− z)

)
,

if <(z) < α− 1.
So if we consider the function P : U → C defined by

P (z) =
iλ

α− 1
+ Γ(−α)

(
Γ(−iλ+ α+ 1− z)

Γ(−iλ+ 1− z)
− Γ(α+ 1− z)

Γ(1− z)

)
, (3.4.26)

we have that
G(z) = iλã+ iλI(z) + P (z),

for <(z) < α − 1, in particular the equality holds in the set Dα−1 = {z ∈ C :
‖z‖ < α− 1}.
We will prove that G is analytic in Dα+1, so we follow the same method as in
(3.4.18) and (3.4.19) and obtain

G(z) =
∞∑
n=0

zn

n!

∫ ∞
0

(
eiλx − 1− iλx1I{x<1}

)
xn(ex − 1)−(α+1)dx

=
∞∑
n=0

anz
n,
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for z ∈ Dα+1, where

an =
1
n!

∫ ∞
0

(
eiλx − 1− iλx1I{x<1}

)
xn(ex − 1)−(α+1)dx.

In a similar way we prove that the function I defined in (3.4.22) is an entire
function.
We note that if z ∈ Dα+1, then <(−iλ+ α+ 1− z) > 0, and <(α+ 1− z) > 0,
which implies that the function P defined in (3.4.26) is also analytic in Dα+1.
Finally since G = iλã+ iλI + P in Dα−1, and both sides are analytic in Dα+1,
then G = iλã+ iλI + P in Dα+1.
Therefore the first integral in the right-hand side of (3.4.20), I1, is given by

I1 = G(β) = iλ

(
ãβ +

1
α− 1

)
+Γ(−α)

(
Γ(−iλ+ α+ 1− β)

Γ(−iλ+ 1− β)
− Γ(α+ 1− β)

Γ(1− β)

)
,

where

ãβ = ã+ I(β) =
∫ 1

0

xe−x(1− e−(α−β)x)
(1− e−x)α+1

dx+
∫ 1

0

e−x
1− x− e−x

(1− e−x)α+1
dx

+
∫ ∞

1

e−x

(1− e−x)α
dx,

for all β < α + 1. Now we compute the second integral in the right-hand side
of (3.4.20)

I2 = −iλb̃δ +
∫ 1

0

(uiλ − 1)uδ1−1 + iλ(u− 1)
(1− u)α+1

du,

where

b̃δ =
∫ 1

0

xe−x(1− e−(α−δ)x)
(1− e−x)α+1

dx+
∫ 1

0

e−x
1− x− e−x

(1− e−x)α+1
dx+

∫ ∞
1

e−x

(1− e−x)α
dx,

and δ1 = α+1−δ, hence following the same arguments used in the computation
of I1, we get

I2 = −iλ
(
b̃δ +

1
α− 1

)
+ Γ(−α)

(
Γ(iλ+ α+ 1− δ)

Γ(iλ+ 1− δ)
− Γ(α+ 1− δ)

Γ(1− δ)

)
,

for all δ < α+ 1. Therefore from the form of I1 and I2 we get

ΨL(λ) = −iλ
(
c+ãβ − c−b̃δ +

c+ − c−
α− 1

)
− c+Γ(−α) ((−iλ+ 1− β)α − (1− β)α)

− c−Γ(−α) ((iλ+ 1− δ)α − (1− δ)α) ,

for all β, δ < α+ 1.
ii) Now we will compute the characteristic exponent when α = 1. In the follow-
ing we assume that θ = 0 and that c+ = c− = 1. Since α = 1, the characteristic
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exponent of XL is given by

ΨL(λ) = −
(
c+

∫ ∞
0

(
eiλx − 1− iλx1I{x<1}

) eβx

(ex − 1)2
dx

+ c−

∫ 0

−∞

(
eiλx − 1− iλx1I{x>−1}

) e−δx

(e−x − 1)2
dx

)
.

We will follow the same arguments used in the first part of the computation
of the characteristic exponent in the case α ∈ (1, 2). But to compute the two
integrals in (3.4.23) we will need the following integral representation for the
Digamma function (see [33])

ψ(z) =
∫ 1

0

tz−1 − 1
z − 1

dt− C, for z ∈ C, (3.4.27)

where C is the Euler constant.
Now by making an integration by parts, using (3.4.27), and the recurrence
relation for the Digamma function ψ(z + 1) = ψ(z) + z−1, we can express the
first integral, for <(z1) > 1, in the following form∫ 1

0

(u−iλ − 1)uz1−2(1− u)−1du = −
(∫ 1

0

u−iλ+z1−2 − 1
u− 1

du−
∫ 1

0

uz1−2 − 1
u− 1

du

)
= ψ(z1 − 1)− ψ(−iλ+ z1 − 1)

= ψ(z1)− 1
z1 − 1

− ψ(−iλ+ z1) +
1

−iλ+ z1 − 1
,

(3.4.28)

As for the second integral in the right-hand side of (3.4.23)∫ 1

0

(u−iλ+z1−2 − 1)(1− u)−1du = −ψ(−iλ+ z1 − 1)− C

=
1

−iλ+ z1 − 1
− ψ(−iλ+ z1)− C. (3.4.29)

So using (3.4.28) and (3.4.29), in (3.4.23) and recalling that z1 = 2− z, we get∫ 1

0

(u−iλ − 1)uz1−1 + iλ(u− 1)
(1− u)2

du = iλ(1− C) + (−iλ+ 1− z)ψ(−iλ+ 2− z)

− (1− z)ψ(2− z) (3.4.30)

if <(z) < 1.
We note that (3.4.30) can be extended to the case where, <(z) < 2, by the same
arguments used in the case α ∈ (1, 2), we only need to remark that the function
P : U → C defined by

P (z) = iλ(1− C) + (−iλ+ 1− z)ψ(−iλ+ 2− z)− (1− β)ψ(2− z),
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is analytic in the disc D2 = {z ∈ C : ‖z‖ < 2}. This implies that (3.4.30) is
true for all z ∈ D2, so in particular

I1 = G(β) = iλ(ãβ + 1− C) + (−iλ+ 1− β)ψ(−iλ+ 2− β)− (1− β)ψ(2− β),

where

ãβ =
∫ 1

0

xe−x(1− e−(1−β)x)
(1− e−x)2

dx+
∫ 1

0

e−x
1− x− e−x

(1− e−x)2
dx+

∫ ∞
1

e−x

(1− e−x)
dx,

for all β < 2.
Finally by the same arguments used in the computation of I1, we obtain

I2 = −iλ(b̃δ + 1− C) + (iλ+ 1− δ)ψ(iλ+ 2− δ)− (1− δ)ψ(2− δ),

where

b̃δ =
∫ 1

0

xe−x(1− e−(1−δ)x)
(1− e−x)2

dx+
∫ 1

0

e−x
1− x− e−x

(1− e−x)2
dx+

∫ ∞
1

e−x

(1− e−x)
dx,

for all δ < 2. Therefore from the form of I1 and I2 we get

ΨL(λ) = −iλ
(
c+ãβ − c−b̃δ + (c+ − c−)(1− C)

)
− c+

(
(−iλ+ 1− β)ψ(−iλ+ 2− β)− (1− β)ψ(2− β)

)
− c−

(
(iλ+ 1− δ)ψ(iλ+ 2− δ)− (1− δ)ψ(2− δ)

)
,

for all β, δ < 2.

Using the well known relationship between the Laplace and the characteristic
exponents, we obtain:

Corollary 3. Let XL be a Lamperti stable process with characteristics (α, f, σ, θ).

i) Let α ∈ (0, 1) and suppose that XL is a Lamperti stable subordinator, then
its Laplace exponent is given by

ΦL(λ) = dλ− c+Γ(−α)
(

(λ+ 1− β)α − (1− β)α

)
, λ ≥ 0,

where d ≥ 0.

ii) Let α ∈ (1, 2) and suppose that XL has no positive jumps then its Laplace
exponent is given by

ΦL(z) = −θ̃λ+ c−Γ(−α)
(

(λ+ 1− δ)α − (1− δ)α
)
, λ ≥ 0,

where θ̃ is given by (3.4.11).



3.4. LAMPERTI STABLE LÉVY PROCESSES 63

Remark 1. This Corollary has, as particular cases, the two recent results found
in:

i) Corollary 2, and Lemma 4, in [21], where the result is obtained by means
of the Lamperti transformation.

ii) Proposition 3.1 in [58], where the Laplace exponent is obtained using spe-
cial functions. The ideas in [58] as well as in [14], inspired parts of the
proof if Theorem 1, specifically the decomposition (3.4.21).

Now we turn our attention to another group of properties. Let H = (Ht, t ≥
0) be the increasing ladder height process of XL (see chapter VI in [6]) and
Ĥ = (Ĥt, t ≥ 0), its decreasing ladder height process. Denote by k and k̂ for
the characteristic exponents of H and Ĥ, which are subordinators, and suppose
that XL drifts to −∞ and να,fσ (0,∞) > 0. Under this hypothesis, the process
H is a killed subordinator and we denote by ΠH for its Lévy measure. The
following result give us a relation between να,fσ and ΠH .

Proposition 12. Let XL be a Lamperti stable process with positive jumps and
characteristics (α, f) such that it drifts to −∞. Then, the tail of the Lévy
measure of H, its increasing ladder height process, belongs to L(α+1−β) and

να,fσ (u,∞) ∼ k̂(−i(α+ 1− β))Π(u,∞) as u→∞.

Proof: The proof follows directly from Proposition 5.3 in [42] and Proposition
4.

We finish this section with some properties of Lamperti stable processes with
no positive jumps.

Proposition 13. Let XL be a Lamperti stable process with no positive jumps
and characteristics (α, δ, σ, θ), such that θ̃ = 0 in (3.4.11). Then,

i) there exist δ0 ∈ (1, 2) such that XL drifts to ∞, oscillates or drifts to −∞
according as δ ∈ (−∞, δ0), δ = δ0 or δ ∈ (δ0, α+ 1).

ii) for δ ∈ (δ0, α+ 1), we have that there exist λ > 0 such that

P0

(
SL∞ > x

)
∼ c

λk
e−λx, as x→∞, (3.4.31)

where SL∞ = supt≥0X
L
t , c = − log P0(H1 < ∞), k = E0(H1e

λH1 ;H1 <
∞) and H is the increasing ladder height process.

iii) for δ ∈ (δ0, α+ 1), we have that there exist λ > 0 such that

P0

(
I(XL) > x

)
∼ K2x

−λ, as x→∞, (3.4.32)

where K2 is a positive constant and

I(XL) =

∞∫
0

exp
{
XL
t

}
dt.
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iv) the probability that the process XL has increase times is 1. 2

v) the process XL satisfies the Spitzer’s condition at ∞, i.e.

lim
t→∞

1
t

t∫
0

P(XL
s ≥ 0)ds = 1/α as x→∞.

vi) the process XL satisfies the following law of the iterated logarithm

lim sup
x→0

XL
t Φ−1

L (t−1 log | log t|)
log | log t|

= α−α(1− α)α−1 a.s., (3.4.33)

where Φ−1
L denotes the right-continuous inverse of Φ−1

L .

Proof. (i) We know that in this case α ∈ (1, 2), so from Corollary VII.2 in [6],
the process XL drifts to +∞, oscillates or drifts to −∞ according as Φ′L(0+)
is positive, zero or negative. Hence, from the Laplace exponent of XL we
have, using the recursion formula for the Gamma and Digamma functions, the
following

Φ′L(0+) = c−Γ(−α)(1 + α− δ)α(ψ(1− δ + α)− ψ(1− δ)),

= c−Γ(−α)
Γ(1 + α− δ)

Γ(3− δ)

·
(

(2− δ)(1− δ)((ψ(1− δ + α)− ψ(1− δ)) + 3− 2δ
)
,

= g(δ). (3.4.34)

We have from (3.4.34) that g(1) < 0, and g(2) > 0. On the other hand, in the
interval (1, 2), the function g is continuous and decreasing which implies that
there exist δ0 ∈ (1, 2) such that g(δ0) = 0. Thus, we deduce that XL drifts to
∞, oscillates or drifts to −∞ according as δ ∈ (−∞, δ0), δ = δ0 or δ ∈ (δ0, α+1).
(ii) Any Lévy process with no positive jumps which drifts to −∞ has the prop-
erty that its Laplace exponent has a strictly positive root. Hence for a Lamperti
stable process with no positive jumps and with δ ∈ (δ0, α+1), there exists λ > 0
such that

E0

(
exp{λXL

1 }
)

= 1,

i.e. that XL satisfies the Cramér condition. Thus, the main result in [7] gives
us the sharp estimate in (3.4.31).
(iii) First note that XL is not arithmetic and that under our assumptions the
Cramér condition is satisfied for some λ > 0. Hence from Lemma 4 in [63], we

2Recall that an instant t > 0 is an increase time for a path ω if for some ε > 0,

ω(t′) ≤ ω(t) ≤ ω(t′′) for all t ∈ [t− ε, t] and t′′ ∈ [t, t+ ε].
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get the sharp estimate (3.4.32) for the exponential functional I(XL).
(iv) Here, we need the following estimate of the Pochhammer symbol (see for
instance [48]),

(λ+ 1− δ)α ∼ λα as λ→∞. (3.4.35)

From Corollary VII.9 and Proposition VII.10 in [6] we know that XL has in-
crease times if

∞∫
λ−3ΦL(λ)dλ <∞,

which in our case is satisfied since from (3.4.35), we have

ΦL(λ) ∼ c−Γ(−α)λα as λ→∞. (3.4.36)

(v) From (3.4.36), we see that ΦL is regularly varying at∞ with index α. Hence,
the statement follows from Proposition VII.6 in [6].
(vi) Since ΦL is regularly varying at ∞ with index α, we have that its right-
continuous inverse Φ−1

L is regularly varying at ∞ with index 1/α which cor-
responds to the Laplace exponent of the first passage time of XL (which is a
subordinator). Therefore, from Theorem III.11 in [6] we deduce the law of the
iterated logarithm (3.4.33).

3.5 Short and long time behaviour

Motivated by the works of Rosiński [67] and Houdré and Kawai [35], we study
the short and long time behavior of Lamperti stable processes. In particular, we
will show that this class of processes share with the tempered and layered stable
processes, the peculiarity that in short time they behave like stable processes.

The convergence in distribution of processes, considered in this section, is in
the functional sense, i.e. in the sense of the weak convergence of the laws of the
processes on the Skorokhod space and will be denoted by “ d→ ”.

Proposition 14. Let XL be a Lamperti stable process with characteristics
(α, f, σ, 0) and

ηα =


0 if α = 1,∫
Sd−1

ξσ(dξ)
∫ 1

0

ref(ξ)r(er − 1)−(α+1)dr if α ∈ (0, 1),∫
Sd−1

ξσ(dξ)
∫ ∞

1

ref(ξ)r(er − 1)−(α+1)dr if α ∈ (1, 2).

Then, (
h−1/α

(
XL
ht − htηα

)
, t > 0

)
d→ (Xt, t > 0) as h→ 0,

where (Xt, t > 0) is a stable process of index α.
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Proof: The proof is similar to that of the short time behaviour of layered stable
process, since for each ξ ∈ Sd−1

ef(ξ)r(er − 1)−(α+1) ∼ r−(α+1) as r → 0.

Thus, we follow the proof of Theorem 3.1 in [35] with

q(ξ, r) = ef(ξ)r(er − 1)−(α+1)

and the desired result is obtained.

Theorem 7. Let XL
t be a Lamperti stable process with characteristics (α, f, σ, 0)

and
ηα = −

∫
Sd−1

ξσ(dξ)
∫ ∞

1

ref(ξ)r(er − 1)−(α+1)dr.

Then, (
h−1/2

(
XL
ht − htηα

)
, t > 0

)
d→ (Wt, t > 0) as h→∞, (3.5.37)

where (Wt, t > 0) is a centered Brownian motion with covariance matrix∫
IRd0

xx′να,fσ (dx).

Proof: According to a standard result on the convergence of processes with
independent increments due to Skorokhod (see for instance Theorem 15.17 of
Kallenberg [39]), the functional convergence (3.5.37) holds if and only if

h−1/2
(
XL
h − hηα

) d→W1 as h→∞.

Now, we introduce the following transform for positive measures, for any r > 0

(Trν)(B) = ν(r−1B) for B ∈ B(IRd).

Note that the random variable h−1/2XLS
h is infinitely divisible and since it has

finite first moment, we may rewrite its characteristic exponent as follows;

ih

∫
IRd0

〈y, x〉1I{‖x‖≥1}(Th−1/2να,fσ )(dx)−h
∫

IRd0

(
ei〈y,x〉−1−i〈y, x〉1I{‖x‖≤1}

)
(Th−1/2να,fσ )(dx).

Hence, from Theorem 15.14 of Kallenberg [39] we only need to check the follow-
ing convergences as h increases:

a) h(Th−1/2να,fσ ) converges vaguely towards 0 on IRd
0,

b) for each k > 0, h

∫
‖x‖≤κ

xx′(Th−1/2να,fσ )(dx)→
∫

Rd0
xx′να,fσ (dx),



3.5. SHORT AND LONG TIME BEHAVIOUR 67

c) for each k > 0, h

∫
‖x‖≥k

x(Th−1/2να,fσ )(dx)→ 0.

We first prove (a) or equivalently

lim
h→∞

∫
IRd0

g(x)h(Th−1/2να,fσ )(dx) = 0 (3.5.38)

for all bounded continuous functions g : IRd
0 → IR vanishing in a neighborhood

of the origin. Let g be such a function satisfying that |g| ≤ C, and that for some
δ > 0, g(x) ≡ 0 on {x ∈ IRd

0 : ‖x‖ < δ}. Let γ := supξ∈Sd−1 f(ξ), then we have∣∣∣∣h∫
IRd0

g(x) (Th−1/2να,fσ )(dx)
∣∣∣∣

≤ h1+1/2

∫
Sd−1

σ(dξ)
∫ ∞

0

|g(rξ)|erf(ξ)h1/2
(erh

1/2
− 1)−(α+1)dr

=
∫
Sd−1

σ(dξ)
∫ ∞
δ

|g(rξ)| (rh
1/2)3

r3
erh

1/2γ(erh
1/2
− 1)−(α+1)dr.

(3.5.39)

On the other hand, since γ < α+ 1 it follows

lim
r→∞

r3 erγ

(er − 1)α+1
= 0,

then for ε > 0 sufficiently small, there exist M > 0 such that for all r ≥M

r3erf(ξ)(er − 1)−(α+1) < ε.

Since r > δ, we may take h >
(
M
δ

)2
in (3.5.39) and obtain∣∣∣∣h∫

IRd0

g(x) (Th−1/2να,fσ )(dx)
∣∣∣∣ < ε

∫
Sd−1

σ(dξ)
∫ ∞
δ

|g(rξ)| 1
r3

dr

≤ εC
∫
Sd−1

σ(dξ)
∫ ∞
δ

1
r3

dr.

Note that the last integral in the right-hand side of the above inequality is finite
and therefore the convergence (3.5.38) follows.

Next, we prove part (b). First note that
∫

IRd0

‖x‖2να,fσ (dx) is finite. This follows

by similar arguments as those used in proposition 1. This implies that the

integral
∫

IRd0

xx′να,fσ (dx) is well defined. Now take k > 0 fixed, and note that

h

∫
{‖x‖≤k}

xx′(Th−1/2να,fσ )(dx) =
∫
{‖x‖≤h1/2k}

xx′να,fσ (dx)→
∫

IRd0

xx′να,fσ (dx),
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as h goes to ∞, which proves part (b).
Finally, we consider k > 0 and recall that γ = supξ∈Sd−1 f(ξ), then∥∥∥∥h∫

{‖x‖≥k}
z(Th−1/2να,fσ )(dz)

∥∥∥∥
=
∥∥∥∥h1+1/2

∫
Sd−1

ξσ(dξ)
∫ ∞
k

rerf(ξ)h1/2
(erh

1/2
− 1)−(α+1)dr

∥∥∥∥
≤ (1− e−kh

1/2
)−(α+1)

∥∥∥∥h1+1/2

∫
Sd−1

ξσ(dξ)
∫ ∞
k

rerh
1/2(γ−(α+1))dr

∥∥∥∥
=

e−kh
1/2(α+1−γ)

(1− e−kh1/2)α+1

(
hk

α+ 1− γ
− h1/2

(α+ 1− γ)2

)∥∥∥∥∫
Sd−1

ξσ(dξ)
∥∥∥∥ ,

which goes to 0 as h→∞ since γ < α+ 1. This completes the proof.

Let us apply the above results to the special cases treated in the introduction.
In particular when we start with a stable process (X,Px), x > 0, of index
α, applying the result in short time behavior after various transformations we
return to this initial process. Recall that associated to the stable process three
Lévy processes are obtained via the Lamperti representation of pssMp: ξ∗, ξ↑, ξ↓.
Then the normalization of any of them according to proposition 10, converges
weakly in the space of Skorokhod to the original stable process X, i.e.

X
kill−→ X∗

LT−→ XL norm−→ XL
h

d→ X as h→ 0

X
kill−→ X∗

DT−→ XC LT−→ XL norm−→ XL
h

d→ X as h→ 0

where kill, LT , DT and norm means killing , the Lamperti representation of
pssMp, Doob-transform or conditioning, and normalization of a given process,
respectively. Moreover XC is the conditioned process (to be positive or to hit
0 continuously), XL stands for any of the Lamperti stable processes ξ↑, ξ↓ and
ξ∗, and XL

h is the normalization of each of them given in proposition 10. In the
same spirit we could also write, using theorem 2,

X
kill−→ X∗

LT−→ XL norm−→ XL
h

d→W as h→∞,

X
kill−→ X∗

DT−→ XC LT−→ XL norm−→ XL
h

d→W as h→∞,

where W is a centered brownian motion.

The final result of this section follows the line of reasoning of last remark
but uses additional tools that we shall briefly introduce. In [15] the convergence
in the Skorokhod space is studied in relation to the second Lamperti transfor-
mation (LT2), i.e. the one that transforms Lévy processes with no negative
jumps to continuous state branching processes. The problem of explosions is
difficult to handle in this metric so the authors consider another metric d∞ on
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the Skorohod space which given by

d∞(f, g) = 1 ∧ inf
λ∈Λ∞

‖f − g ◦ λ‖∞ ∨ ‖λ− I‖∞.

and where Λ∞ is the set of increasing homeomorphisms of [0,∞) into itself.
According to the authors the convergence in this metric implies it in the usual
Skorohod metric. Two of the main results in [15] say that the Lamperti trans-
form LT2, is continuous with this new metric (proposition 4) and that a sequence
(Y ∗,n) of stopped Lévy processes with no negative jumps converges in this new
metric towards Y , a stopped Lévy process when the sequence of the associated
Laplace exponents of (Y ∗,n) converges towards the associated Laplace exponent
of Y (proposition 5). Therefore, a combination of the results mentioned above
and proposition 8 give us the following corollary.

Corollary 4. Let X and XL be a stable proces of index α with no negative
jumps and a Lamperti stable processes with no negative jumps with character-
istics (α, β) which does not drift towards +∞, respectively. Let Yh = LT2(XL

h )
and Y = LT2(X). Then

Yh
d→ Y as h→ 0.

3.6 Absolute continuity with respect to stable
processes

We showed that in small times a Lamperti-stable process behaves like a stable
process, now following Rosiński [67] we will relate the law of both processes.
In other words, we will find a probability measure under which the law of a
Lamperti stable process with characteristics (α, f, σ) is the same that the law
of the short time limiting stable process with index α.

Theorem 8. Let P and Q be two probability measures on (Ω,F) and such
that under P the canonical process (Xt, t ≥ 0) is a Lamperti stable process
with characteristics (α, f, σ, a), while under Q it is a stable process with index
α with linear term b. Let (Ft) be the canonical filtration, and assume that
f ∈ L2(Sd−1,B(Sd−1), σ). Then

i) P |Ft and Q|Ft are mutually absolutely continuous for every t > 0 if and
only if

a−b =



∫
Sd−1

ξσ(dξ)
∫ 1

0

rerf(ξ)(er − 1)−(α+1)dr, if α ∈ (0, 1),∫
Sd−1

ξσ(dξ)
∫ 1

0

r(erf(ξ)(er − 1)−(α+1) − r−(α+1))dr, if α = 1,∫
Sd−1

ξσ(dξ)
∫ 1

0

r(erf(ξ)(er − 1)−(α+1) − r−(α+1))dr

−
∫
Sd−1

ξσ(dξ)
∫ ∞

1

r−(α+1)dr, if α ∈ (1, 2).
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ii) For each t > 0,
dQ
dP

∣∣∣∣
Ft

= eUt ,

where (Ut, t ≥ 0) is a Lévy process defined on (Ω,F , P ) by

Ut = lim
ε↓0

∑
{s∈(0,t]:‖∆Xs‖>ε}

[(
e‖∆Xs‖f(∆Xs)(e‖∆Xs‖ − 1)−(α+1)‖∆Xs‖α+1

)
− t(να,fσ −Π)

(
{z ∈ Rd0 : ‖z‖ > ε}

)]
.

In the above right hand side, the convergence holds P -a.s. uniformly in t
on every interval of positive length.

Proof: From Theorem 33.2 in Sato [70], we only need to verify that∫
IRd0

(eϕ(x)/2 − 1)2Π(dx) <∞,

where ϕ : IRd
0 → IR is defined by

dνα,fσ

dΠ
(x) = eϕ(x).

In particular, we have ϕ(rξ) = log
(
erf(ξ)(er − 1)−(α+1)rα+1

)
. Thus, we need

to check∫
Sd−1

σ(dξ)
∫ ∞

0

[(
erf(ξ)r(1+α)

(er − 1)(α+1)

)1/2

− 1

]2

1
r1+α

dr <∞ (3.6.40)

By Taylor expansion and the Lagrange form for the residual, we have (er−1) =
rerθr , where θr ∈ (0, 1). This implies

erf(ξ)r(1+α)

(er − 1)(α+1)
= er(f(ξ)−θr(α+1)). (3.6.41)

Now, noting that f(ξ)− (α+ 1) ≤ f(ξ)− θr(α+ 1) ≤ f(ξ), it follows

er(f(ξ)−(α+1))/2 − 1 ≤ er(f(ξ)−θr(α+1))/2 − 1 ≤ erf(ξ)/2 − 1,

and since f(ξ) ≤ γ = supξ∈Sd−1 f(ξ), we have(
er(f(ξ)−θr(α+1))/2 − 1

)2

≤
(
er(f(ξ)−(α+1))/2 − 1

)2

∨
(
erf(ξ)/2 − 1

)2

(3.6.42)

Using a Taylor expansion again and (3.6.42), it is clear that there exists a
constant R > 0 such that if r < R, then(

er(f(ξ)−θr(α+1))/2 − 1
)2

≤ K3(f2(ξ) + 1)r2, (3.6.43)
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where K3 is a positive constant. Hence from (3.6.41) and (3.6.43), it follows
that ∫

Sd−1
σ(dξ)

∫ R

0

[(
erf(ξ)r(1+α)

(er − 1)(α+1)

)1/2

− 1

]2

1
r1+α

dr

≤ K3

(
σ(Sd−1) +

∫
Sd−1

f2(ξ)dξ
)∫ R

0

r2

r1+α
dr,

which is finite because α ∈ (0, 2) and f ∈ L2(Sd−1,B(Sd−1), σ). In the case
when r > R, we have

∫
Sd−1

σ(dξ)
∫ ∞
R

[(
erf(ξ)r(1+α)

(er − 1)(α+1)

)1/2

− 1

]2

1
r1+α

dr

≤ 4
(

(1− e−R)−(α+1)

∫
Sd−1

σ(dξ)
∫ ∞
R

er(f(ξ)−(α+1))dr + σ(Sd−1)
∫ ∞
R

1
r1+α

dr
)

≤ 4σ(Sd−1)
(

(1− e−R)−(α+1)

∫ ∞
R

er(γ−(α+1))dr +
∫ ∞
R

1
r1+α

dr
)
,

which is also finite because γ < α+ 1. Therefore (3.6.40) follows.
The proof of the second statement of the Theorem follows directly from

Theorem 33.2 of Sato [70].

Here, we follow the same notation as in Theorem 3. Note that under the
conditions of Theorem 4.1 in [35], if R is another probability measure on (Ω,F)
under which the canonical process X = (Xt, t ≥ 0) is a layered stable process,
we have that R|Ft and Q|Ft are mutually absolutely continuous for every t > 0.
From our previous result, we obtain the corresponding result for Lamperti stable
processes, i.e. that R|Ft and P |Ft are mutually absolutely continuous for every
t > 0. Similar result holds for the tempered stable processes, see Theorem 4.1
in [67].

3.7 Series representations of Lamperti stable pro-
cess

In this section, we establish a series representation for Lamperti stable pro-
cesses which allow us to generate some of their sample paths. To this end,
we will use the LePage’s method found in [49]. We first introduce the follow-
ing sequences of mutually independent random variables defined in [0, T ]. Let
{Γi}i≥1 be a sequence of of partial sums of iid standard exponential random
variables, {Ui}i≥1 be a sequence of uniform random variables on [0, T ], and let
{Vi}i≥1 be a sequence of iid random variables in Sd−1 with common distribution
σ(dξ)/σ(Sd−1). In order to use the LePage’s method, we consider the following
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function δ−1 : (0,∞)× Sd−1 → IR+ given by

ρ−1(u, ξ) := inf
{
x > 0 : ρ([x,∞), ξ) < u

}
,

where
ρ([x,∞), ξ) =

∫ ∞
x

ef(ξ)r(er − 1)−(α+1)dr.

Now, let {ci}i≥1 be a sequence of constants defined as follows,

ci =
∫ i

i−1

E
(
ρ−1(s/T, V1)V11I{ρ−1(s/T,V1)≤1}

)
ds.

Then from Theorem 5.1 in [68], the process( ∞∑
i=1

(
ρ−1(Γi/T, Vi)Vi1I{Ui≤t} − ci

t

T

)
, t ∈ [0, T ]

)
,

converges uniformly a.s. towards a Lamperti stable process with characteristics
(α, f, σ) and linear term θ = 0 (in the Lévy-Khintchine formula). In particular
when f(ξ) = 1, we have that

ρ−1(u, ξ) = ln(1 + (αu)−1/α),

hence the series representation for a Lamperti stable Lévy process XL with
characteristics (α, 1), is as follows

XL
t

d=
∞∑
i=1

(
ln
(

1 +
(
αΓi
T

)−1/α)
Vi1I{Ui≤t} − ci

t

T

)
where

ci = E
(
V1

)∫ i

i−1

ln
(

1 +
(
αs

T

)−1/α)
1I{ln(1+(αsT−1)−1/α)≤1}ds.

Let us observe below some sample paths of this particular Lamperti stable pro-
cess generated via the series representation.

3.8 Associated processes and examples

Here, we are interested in study some related processes to Lamperti stable dis-
tributions (or processes) and give some examples of Lamperti stable processes
which appear in the literature but they are not the main objects in study. In par-
ticular, we study the Ornstein-Uhlenbeck process and the self-similar additive
process related to a Lamperti stable distribution in the case when the latter is
self-decomposable. We also investigate the parent process of a Lamperti stable
subordinator.
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Figure 3.1: α = 0.5, f = 1, σ(1) = σ(−1) = 1.
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Figure 3.2: α = 1.5, f = 1, σ(1) = σ(−1) = 1.
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Figure 3.3: α = 1, f = 1, σ(1) = σ(−1) = 1.
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Figure 3.4: α = 0.5, f = 1, σ(1) = 1, σ(−1) = 0.
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Figure 3.5: α = 1.5, f = 1, σ(1) = 0, σ(−1) = 1.
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Figure 3.6: α = 1.9, f = 1, σ(1) = 1, σ(−1) = 1.
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3.8.1 Ornstein-Uhlenbeck type processes and self-simlar
additive processes

Ornstein-Uhlenbeck type processes appear in many areas of science, for instance
in physics, biology and mathematical finance. One of the particularity of these
processes is that its limiting distribution is self-decomposable. Recall that a
random variable Y on IRd, distributed as a Lamperti stable law with charac-
teristics (α, f, σ) is self-decomposable if and only if f ≤ α + 1/2. Therefore,
according to Wolfe [77] and Jurek and Vervaat [38], there exists a Lévy process
Z = (Zt, t ≥ 0) on IRd, with E0(log+ |Z1|) <∞ such that

Y
law= I :=

∫ ∞
0

e−csdZs,

where c > 0. Consequently, one can define an Ornstein-Uhlenbeck type process
driven by Z with initial state U0 and parameter c > 0, that is the solution of

Ut = U0 + Zt − c
∫ t

0

Usds,

and such that the law of Ut converge towards the law of Y as t goes to∞. From
Theorem 17.5 in [70], we have that the process Z has no Gaussian component,
its Lévy measure is given by

ΠZ(B) = −c
∫
Sd−1

σ(dξ)
∫ ∞

0

1IB(rξ)h(r, ξ)dr, B ∈ B(IRd),

where

h(r) =
erf(ξ)

(er − 1)α+2

(
rer(f(ξ)− α− 1) + er − rf(ξ)− 1

)
;

and linear term
υ = cη −

∫
{‖x‖≥1}

x

‖x‖
ΠZ(dx).

In the one dimensional case, the form of the Lévy measure of Z is reduced to

ΠZ(dx) = c

(
c+

eβx

(ex − 1)α+2

(
xβ + 1− ex + xex(α+ 1− β)

)
1I{x>0}

− c−
e−ρx

(e−x − 1)α+2

(
xρ− 1 + e−x + xe−x(α+ 1− ρ)

)
1I{x<0}

)
dx,

where β = f(1), ρ = f(−1), c+ = σ({1}) and c− = σ({−1}), as usual. In this
case, we have another process which is related to the Lamperti stable distribu-
tion Y , to Z and to the Ornstein-Uhlenbeck type process U . To this end, recall
that in Theorem 16.1 of [70], it is showed that a distribution is self-decomposable
if and only if for any fixed H > 0, it is the distribution of V1 for some additive
process V = (Vt, t ≥ 0) which is self-similar, meaning that for each k > 0

(Vkt, t ≥ 0) d=
(
kHVt, t ≥ 0

)
.
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We remark that self-similar additive processes can be used to model space-time
scaling random phenomena that can be observed in many areas of science. In
particular, they are recently used to model asset prices and the risk-neutral
process (see for instance [18]) in financial mathematics.

Assume that V is the self-similar additive process associated to I, in which
case V1 has the same law I, and that H = c. From Theorem 1 in [37], there
are two independent copies of Z denoted by Z(−) = (Z(−)

t , t ≥ 0) and Z(+) =
(Z(+)

t , t ≥ 0) which are defined by

Z
(−)
t

(def)=
∫ 1

e−t

dVr
rγ

and Z
(+)
t

(def)=
∫ et

1

dVr
rγ

.

The process V can be recovered by

Vr =


∫ ∞

log(1/r)

e−ctdZ(−)
t if 0 ≤ r ≤ 1,

Y +
∫ log(r)

0

ectdZ(+)
t if r ≥ 1,

and moreover (U (+)
t = e−tcVet , t ≥ 0) is the Ornstein-Uhlenbeck process driven

by Z(+) with initial state I and parameter c; and (U (−)
t = etcVe−t , t ≥ 0) is the

Ornstein-Uhlenbeck process driven by −Z(−) with initial state I and parameter
−c.

3.8.2 Parent process

Motivated in generating new examples of scale functions, Kyprianou and Rivero
[44] constructed Lévy processes with no positive jumps around a given possibly
killed subordinator which plays the role of the descending ladder height process.
One of our aims is to determine the characteristics of the Lévy process with no
positive jumps whose descending ladder height process is a Lamperti stable
subordinator.

Let XL be a Lamperti stable subordinator with characteristics (α, β, σ, θ)
with zero drift and no killing rate. Since the density of its Lévy measure is
decreasing, then according to Theorem 1 in [44], there is XPL = (XPL

t , t ≥ 0),
a Lévy process with no positive jumps that we call the parent process of XL

whose Laplace exponent is given by

ψPL(λ) = λΦL(λ), for λ ≥ 0,

where ΦL is the Laplace exponent of XL. Moreover, the process XPL has no
Gaussian coefficient, its Lévy measure is given by

ΠPL(dx) = c+
e−βx

(e−x − 1)α+2

(
(α+ 1− β)e−x + β

)
dx for x < 0,

and with linear term
b =

∫
(−∞,1)

xΠPL(dx).
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Note that XPL oscillates or drifts to ∞ according to whether ΦL(0) is equal
zero or strictly positive. From the form of its Lévy measure, we deduce that
XPL is the sum of two Lamperti stable processes with no positive jumps X1

and X2 with characteristics (α + 1, β + 1, σ1, b1) and (α + 1, β, σ2, b2), where
σ1({1}) = σ2({1}) = 0,

σ1({−1}) = c+(α+ 1− β), σ2({−1}) = c+β,

b1 =
∫

(−∞,−1)

xΠ1(dx)− ãβ+1, b1 =
∫

(−∞,−1)

xΠ2(dx)− ãβ ,

and Π1 and Π2 are the respective Lévy measures of X1 and X2. On the other
hand, the binomial expansion give us∫ ∞

x

eβx

(ex − 1)α+1
dx = e−x(α+1−β)

∞∑
n=0

(α+ 1)n(α− β)n
n!(α+ 1− β)n

e−nx, (3.8.44)

which is clearly log-convex on (0,∞) since it is completely monotone. Hence
according to Theorem in 2 [44], there is a subordinator X∗,L with Laplace
exponent Φ∗L such that

ΦL(λ) =
λ

Φ∗L(λ)
for λ ≥ 0.

Moreover the subordinator X∗,L has no drift and no killing term and the scale
function of the parent process XPL is determined by

W (x) =
∫ x

0

Π∗L(y,∞)dy,

where Π∗L is the Lévy measure of X∗,L. Note that for β = 1, we have that

Π∗L(y,∞) =
α

Γ(α)Γ(1− α)
(1− e−y)α−1, for y > 0,

but for β 6= 1 we do not have an explicit form for Π∗L.
The Example 2 in [44] is related to the Lamperti stable subordinators con-

sidered above but with a given killing rate. Let us explain in detail such example
in terms of Lamperti stable processes. Take XL,K to be a Lamperti stable sub-
ordinator with characteristics (α, β, σ, θ) with zero drift and killing rate given
by

K =
c+Γ(−α)Γ(1− β + α)

Γ(1− β)
.

According to Kyprianou and Rivero [44], there is a subordinator, here now
denoted by Y with no drift, no killing rate and Lévy measure given by

ΠY (dx) =
1

c+Γ2(1− α)

(
(α−β)e−(α−β)x(ex− 1)α−1 + (2−α)

e−(α−1−β)x

(ex − 1)2−α

)
dx,
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which is the sum of two subordinators, one of which is a Lamperti stable with
characteristics (1− α, β + 1− α, σY ), where

σY ({1}) =
(2− α)

c+Γ2(1− α)
, and σY ({−1}) = 0.

Moreover, the Laplace exponent of the subordinator Y satisfies that

φY (λ) =
λ

φL(λ)
, for λ ≥ 0.

From the form of ΠY , we have the restriction that β < 1. Thus, his parent
process Y P , a spectrally negative Lévy process, has Laplace exponent

ψY P (λ) =
λ2Γ(1− β + λ)

Γ(1− β + λ+ α)
,

which has no Gaussian component and its Lévy measure satisfies

ΠY P (−∞, y) = ΠY (dy)/dy.

According to Kyprianou and Rivero and by (3.8.44), its associated scale function
is given by

WY P (x) = −Kx+ c+

∞∑
n=0

(α+ 1)n(α− β)n
n!(α+ 2− β)n

(
1− e−(α+2−β+n)x

)
, x ≥ 0.

Now Y ∗,P , the parent process of the Lamperti subordinator XL,K with killing
rate K, is a spectrally Levy process which drifts to ∞, with Laplace exponent

ψY P,∗(λ) =
c+Γ(−α)λΓ(λ+ 1− β + α)

Γ(λ+ 1− β)
,

which has no Gaussian coefficient and whose Lévy measure satisfies

ΠY P,∗(dx) = ΠPL(dx), x < 0,

with linear term
b =

∫
(−∞,1)

xΠPL(dx)−K,

and the associated scale function is given by

W ∗(x) =
1

c+Γ2(1− α)

∫ x

0

e−(α−β)y(ey − 1)α−1dy.

As the processXPL, Y ∗,P may be seen as the sum of two Lamperti stable process
with no positive jumps Y 1 and Y 2 with characteristics (α+ 1, β+ 1, σ1, b1−K)
and (α+ 1, β, σ2, b2), where σ1, σ2, b1 and b2 are defined as above.

It is important to note that the above example have been recently used for
the risk neutral stock price model by Eberlein and Madan [28].
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3.9 Examples

Examples of Lamperti stable processes appear in the literature at least in the
papers mentioned in the introduction ([14, 21, 45, 58]) but they also appear (in
a hidden way) in many other recent works. We will give a quick overview of
some of them, not pretending to be exhaustive in this list.

In [8], we find two examples related to the factorization

e law= eατ−αα .

where e is an exponential variable independent of the α-stable variable τα. The
first of them is related with the exponential functional of a killed subordinator
Z1 whose Laplace exponent is given by

φ1(λ) =
Γ(αλ+ 1)

Γ(α(λ− 1) + 1)
.

It is easy to see that it is related to the Laplace exponent ΦL of a Lamperti
stable subordinator XL with characteristics (α, α, σ, θ), zero drift, and σ({1}) =
α/Γ(1− α). The relationship between both Laplace exponents is

φ1(λ) = ΦL(αλ) +
1

Γ(1− α)
.

This subordinator is also studied in Rivero [64], where the author finds its
renewal density and other related computations.

The Laplace exponent of the second subordinator, here denoted by Z2, is
given by

φ2(λ) = λ
Γ(α(λ− 1) + 1)

Γ(αλ+ 1)
,

and can be expressed in terms of the Laplace exponent ΦL,2 of a Lamperti
stable subordinator XL,2 with characteristics (1−α, 1, σ, θ), and zero drift where
σ({1}) = α/Γ(1− α). The relation between them is

φ2(λ) = αΦL,2(αλ).

In both cases this allows us to compute the law of the exponential functional
of αXL and αXL,2 in terms of the one of Z1 and Z2, respectively.

There is another example in [8] which is related to the factorization

e law= γαs J
(γ)
s ,

where s ≥ α, γs is a Gamma r.v. with parameter s and J
(γ)
s denotes a certain

r.v which is independent of γs. In this case, the killed subordinator related
to the exponential functional which has the same moments as the γs, can be
expressed as the sum of two independent Lamperti stable procesess. In [64]
further calculation are carried over concerning this subordinator.
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In the paper [71] in section 5.3, the authors found the Lévy measure of the
inverse of the local time at 0 of an Ornstein Uhlenbeck process driven by a
standard Brownian motion and parameter γ > 0. This measure is

ν(t) =
γ3/2eγt/2√

2π(sinh(γt))3/2
=

(2γ)3/2e2γt

√
2π(e2γt − 1)3/2

and the corresponding Laplace exponent is computed. It is related to a Lamperti
stable distribution with characteristics (1/2, 1,

√
γ/π).

This computation as well as the three former examples can be carried out
by recognizing that behind those measures there is a related Lamperti stable
distribution and applying our Theorem 1 to calculate the corresponding Laplace
exponent.

In the papers [21] , [45], [58] the main processes in study are Lamperti
stable processes. All these papers share the property that many useful explicit
calculations are be carried out. This is, we believe, the main advantage of
this class: being at the same time a good model for many situations, allowing
simulation of the paths as well as many explict calculation to be carried on.



Chapter 4

Explicit identities for Lévy
processes associated to
symmetric stable processes

4.1 Introduction and preliminaries

Let Z = (Zt = {Z(1)
t , . . . Z

(d)
t }, t ≥ 0) be a symmetric stable Lévy process of

index α ∈ (0, 2) in IRd (d ≥ 1), that is, a process with stationary independent
increments, its sample paths are càdlàg and

E0

(
exp{i < λ,Zt >}

)
= exp{−t‖λ‖α},

for all t ≥ 0 and λ ∈ IRd. Here Pz denotes the law of the process Z initiated
from z ∈ IRd and < ·, · > the Euclidean inner product.
The process Z(k) = (Z(k)

t , t ≥ 0) will be called the k-th coordinate process of Z.
Of course, Z(k) is a real symmetric stable process whose characteristic exponent
is given by

E0

(
exp

{
iθZ

(k)
t

})
= exp{−t|θ|α},

for all t ≥ 0 and θ ∈ IR.
Recall that Z is transient for α < d, that is

lim
t→∞

‖Zt‖ =∞ a.s.,

and it oscillates otherwise, i.e. for α ∈ [1, 2) and d = 1, we have

lim sup
t→∞

Zt = lim inf
t→∞

Zt =∞ a.s.

When d ≥ 2, we have that single points are polar, i.e. for every x, y ∈ IRd

Px(Zt = z for some t > 0) = 0.

82
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In the one-dimesional case, points are polar for α ∈ (0, 1] and when α ∈ (1, 2)
the process Z makes infinitely many jumps across a point, say x, before the first
hitting time at x.

Since Z is isotropic and satisfies the scaling property with index α, i.e. for
every b > 0

The law of (bZb−αt, t ≥ 0) under Px is Pbx, (4.1.1)

the radial process R = (Rt, t ≥ 0) defined by Rt = ‖Zt‖, is a positive self-
similar Markov process with index α. The fact that the radial process satisfies
the scaling property follows from (4.1.1) and that it is a Markov process is
explained in Millar [53]. According to Millar [53] the process R hits points if
and only if the process Z(1) hits points. This occurs when α ∈ (1, 2) as it was
stated above. In what follows, we assume that the process Z is transient which
implies that the radial process drifts to +∞.

Recall that positive self-similar Markov processes (X,Qx), x > 0, are strong
Markov processes with càdlàg paths, which fulfill a scaling property. We shall
refer to these processes as pssMp. Well-known examples of this kind of processes
are: Bessel processes, stable subordinators, stable processes conditioned to stay
positive, etc.

According to Lamperti [46], any pssMp up to its first hitting time of 0 may
be expressed as the exponential of a Lévy process, time changed by the inverse
of its exponential functional. More formally, let (X,Qx) be a pssMp with index
β > 0, starting from x > 0, set

S = inf{t > 0 : Xt = 0}

and write the canonical process X in the following form:

Xt = x exp
{
ξτ(tx−β)

}
0 ≤ t < S , (4.1.2)

where for t < S,

τ(t) = inf
{
s ≥ 0 :

∫ s

0

exp {βξu}du ≥ t
}
.

Then under Qx, ξ = (ξt, t ≥ 0) is a Lévy process started from 0 whose law does
not depend on x > 0 and such that:

(i) if Qx(S = +∞) = 1, then ξ has an infinite lifetime and lim sup
t→+∞

ξt = +∞,

Px-a.s.,

(ii) if Qx(S < +∞, X(S−) = 0) = 1, then ξ has an infinite lifetime and
lim
t→∞

ξt = −∞, Px-a.s.,

(iii) if Qx(S < +∞, X(S−) > 0) = 1, then ξ is killed at an independent
exponentially distributed random time with parameter λ > 0.
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As mentioned in [46], the probabilities Qx(S = +∞), Qx(S < +∞, X(S−) = 0)
and Qx(S < +∞, X(S−) > 0) are 0 or 1 independently of x, so that the three
classes presented above are exhaustive. Moreover, for any t <

∫∞
0

exp{βξs}ds,

τ(t) =
∫ xβt

0

ds
(Xs)β

, Qx − a.s.

Therefore (4.1.2) is invertible and yields a one-to-one relation between the class
of pssMp’s killed at time S and the one of Lévy processes.

Another important result of Lamperti [46] provides the explicit form of the
generator of any PSSMP (X,Qy) in terms of its underlying Lévy process. Let ξ
be the underlying Lévy process associated to (X,Qy) via (4.1.2) and denote by
L and M for their respective infinitesimal generators. Let DL be the domain
of the generator L and recall that it contains all the functions with continuous
second derivatives on [−∞,∞], and that if f is such a function then L acts as
follows for x ∈ IR, where µ ∈ IR and σ > 0:

Lf(x) = µf ′(x) +
σ2

2
f ′′(x) +

∫
IR

(
f(x+ y)− f(x)− f ′(x)`(y)

)
Π(dy)− bf(x).

The measure Π(dx) is the so-called Lévy measure of ξ, which satisfies

Π({0}) = 0 and
∫

IR
(1 ∧ |x|2)Π(dx) <∞.

The function `(·) is a bounded Borel function such that `(y) ∼ y as y → 0. The
positive constant b represents the killing rate of ξ (b=0 if ξ has infinite lifetime).
Lamperti establishes the following result in [46].

Theorem 9. If g is such that g, yg′ and y2g′′ are continuous on [0,∞], then
they belong to the domain, DM, of the infinitesimal generator of (X,Qy), which
acts as follows for y > 0

Mg(y) = µy1−βg′(y) +
σ2

2
y2−βg′′(y)− by−βg(y)

+ y−β
∫ ∞

0

(
g(yu)− g(y)− yg′(y)`(log u)

)
G(du),

where G(du) = Π(du) ◦ log u, for u > 0. This expression determines the law of
the process (Xt, 0 ≤ t ≤ T ) under Qy.

4.2 The underlying Lévy process of R

In this section, we compute the characteristics of the underlying Lévy process
in the Lamperti representation (4.1.2) of the radial process R, here denoted by
ξ.

To this end, it will be useful to invoke the expression of Z as a subordi-
nated Brownian motion. More precisely, let B = (Bt, t ≥ 0) be a d-dimensional
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Brownian motion initiated from x ∈ IRd and let σ = (σt, t ≥ 0) be an inde-
pendent stable subordinator with index α/2 initiated from 0. Then the process
(B2σt , t ≥ 0) is a standard symmetric α-stable process.

Let us define the so-called Pochhammer symbol by

(z)α =
Γ(z + α)

Γ(z)
, for z ∈ C,

and the Gauss’s hypergeometric function by

2F1

(
a, b; c; z

)
=
∞∑
k=0

zk
(a)k(b)k
(c)k k!

, for ‖z‖ < 1,

where a, b, c > 0.

Theorem 10. If f : R+ → R is such that f ∈ C2
0 (R+). Hence the infinitesimal

generator of R = (Rt, t ≥ 0), denoted by M , acts as follows for a > 0,

Mf(a) =
2αα(d/2)α/2
Γ(1− α/2)

a−α
∫ ∞

0

(
f(ρa)− f(a)− l(log ρ)f ′(a)

)
× ρd−1

(1 + ρ2)α+d/2
F̄

((
2ρ

1 + ρ2

)2
)
dρ,

where

F̄ (z) = 2F1((α+ d)/4, (α+ d)/4 + 1/2; d/2; z) for z ∈ (−1, 1), (4.2.3)

and 2F1 is the Gauss’s hypergeometric function. The function l is given by

l(y) =
y

1 + y2
e(1−d)y(1 + e2y)α+d/2−11Aε(e

y).

Proof. From Theorem 32.1 in [70] and the above remark, the infinitesimal gen-
erator M of R = (Rt, t ≥ 0) is given as follows

Mf =
∫ ∞

0

(Psf − f)ρ(ds),

where

ρ(ds) =
2α/2−1α

Γ(1− α/2)
s−(1+α/2)1I{s>0}ds,

is the Lévy measure of 2σ, Ps is the semi-group of the d-dimensional Bessel
process and f is in the domain of the infinitesimal generator of (Pt, t ≥ 0).

Let x ∈ IRd and f be as in the statement. Recall that according to [61] for
a = |x| > 0, the semi-group for the d-dimensional Bessel process satisfies

Psf(a) =
∫ ∞

0

dρ
(ρ
a

)d/2−1 ρ

s
exp

(
−ρ

2 + a2

2s

)
Id/2−1

(aρ
s

)
f(ρ).
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where Id/2−1 is the modified Bessel function of index d/2− 1.
Therefore putting the pieces together, it follows

Mf(a) =
2α/2−1α

Γ(1− α/2)

∫ ∞
0

dρ ρd−1(f(ρ)− f(a))(aρ)1−d/2

×
∫ ∞

0

ds

s2+α/2
exp

(
−a

2 + ρ2

2s

)
Id/2−1

(aρ
s

)
.

Recall that

Id/2−1(x) =
∞∑
k=0

(x/2)2k+d/2−1

Γ(d/2 + k)k!
,

this implies∫ ∞
0

ds exp
(
−a

2 + ρ2

2s

)
Id/2−1

(aρ
2s

)
s−2−α/2

=
∞∑
k=0

∫ ∞
0

ds
(aρ

2s

)2k+d/2−1 1
k!

s−2−α/2

Γ(d/2 + k)
exp

(
−a

2 + ρ2

2s

)

=
∞∑
k=0

(aρ
2

)2k+d/2−1 1
k!

1
Γ(d/2 + k)

(
a2 + ρ2

2

)−2k−(α+d)/2 ∫ ∞
0

dz z2k+(α+d)/2−1e−z

= 2α/2+1 (aρ)d/2−1

(a2 + ρ2)(α+d)/2

∞∑
k=0

(
aρ

(a2 + ρ2)

)2k Γ(2k + (α+ d)/2)
Γ(k + 1)Γ(d/2 + k)

. (4.2.4)

Next, we consider the following property of the Gamma function

Γ(2z) = (2π)−1/222z−1/2Γ(z)Γ(z + 1/2),

and we deduce

Γ(2k + (α+ d)/2) = (2π)−1/222k+(α+d)/2−1/2Γ(k + (α+ d)/4)Γ(k + (α+ d)/4 + 1/2)

= (2π)−1/222k+(α+d)/2−1/2Γ((α+ d)/4)Γ((α+ d)/4 + 1/2)
× ((α+ d)/4)k((α+ d)/4 + 1/2)k,

where (z)n = Γ(z + n)/Γ(z). Therefore using the above identity, we see that
(4.2.4) is equal to

2α/2+1(aρ)d/2−1

(a2 + ρ2)α+d/2

Γ((α+ d)/2)
Γ(d/2)

∞∑
k=0

((
2aρ

a2 + ρ2

)2
)k

((α+ d)/4)k((α+ d)/4 + 1/2)k
(d/2)k k!

,

where the series from above is the Gauss’s hypergeometric function

2F1

(
(α+ d)/4, (α+ d)/4 + 1/2; d/2;

(
2aρ

a2 + ρ2

)2
)
. (4.2.5)
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For simplicity, we use the notation established in (4.2.3). Finally, we see that
the infinitesimal generator M satisfies the following identity

Mf(a) =
2ααΓ((α+ d)/2)
Γ(1− α/2)Γ(d/2)

∫ ∞
0

ρd−1 (f(ρ)− f(a))
(a2 + ρ2)(α+d)/2

F̄

((
2aρ

a2 + ρ2

)2
)
dρ

=
2αα

Γ(1− α/2)
(d/2)α/2a−α

∫ ∞
0

(f(ρa)− f(a))
ρd−1

(1 + ρ2)(α+d)/2
F̄

((
2ρ

1 + ρ2

)2
)
dρ.

(4.2.6)

Now let us consider the following integral∫ ∞
0

log ρ
1 + log2 ρ

1
1 + ρ2

F̄

((
2ρ

1 + ρ2

)2
)

1Aε(ρ)dρ, (4.2.7)

where for ε > 0, Aε = {ρ ≥ 0 : 1
1+ε < ρ < 1 + ε}. Now we will check that the

integral in (4.2.7) is equal zero, to this end consider the following∫ ∞
0

log ρ
1 + log2 ρ

1Aε(ρ)
1 + ρ2

F̄

((
2ρ

1 + ρ2

)2
)
dρ =

∫ 1

1/1+ε

log ρ
1 + log2 ρ

1Aε(ρ)
1 + ρ2

F̄

((
2ρ

1 + ρ2

)2
)
dρ

=
∫ ε

1

log ρ
1 + log2 ρ

1Aε(ρ)
1 + ρ2

F̄

((
2ρ

1 + ρ2

)2
)
dρ.

(4.2.8)

So making ρ′ = ρ−1 in the first integral of (4.2.8) we obtain∫ 1

1/1+ε

log ρ
1 + log2 ρ

1Aε(ρ)
1 + ρ2

F̄

((
2ρ

1 + ρ2

)2
)
dρ

= −
∫ 1+ε

1

log ρ′

1 + log2 ρ′
1Aε(ρ

′)
1 + ρ′2

F̄

((
2ρ′

1 + ρ′2

)2
)
dρ′,

so using the above expression in (4.2.8) we have that∫ ∞
0

log ρ
1 + log2 ρ

1
1 + ρ2

F̄

((
2ρ

1 + ρ2

)2
)

1Aε(ρ)dρ = 0.

Now if we add the integral in (4.2.7) to (4.2.6) we obtain the following

Mf(a) =
2αα(d/2)α/2
Γ(1− α/2)

a−α
∫ ∞

0

(f(ρa)− f(a))
ρd−1

(1 + ρ2)(α+d)/2
F̄

((
2ρ

1 + ρ2

)2
)
dρ

=
2αα(d/2)α/2
Γ(1− α/2)

a−α
∫ ∞

0

[
(f(ρa)− f(a))

ρd−1

(1 + ρ2)(α+d)/2
F̄

((
2ρ

1 + ρ2

)2
)
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− log ρ
1 + log2 ρ

1Aε(ρ)
(1 + ρ2)

F̄

((
2ρ

1 + ρ2

)2
)
f ′(a)

]
dρ

=
2αα(d/2)α/2
Γ(1− α/2)

a−α
∫ ∞

0

(
f(ρa)− f(a)− log ρ

1 + log2 ρ

(1 + ρ2)α+d/2−1

ρd−1
1Aε(ρ)f ′(a)

)
× ρd−1

(1 + ρ2)(α+d)/2
F̄

((
2ρ

1 + ρ2

)2
)
dρ

=
2αα(d/2)α/2
Γ(1− α/2)

a−α
∫ ∞

0

(f(ρa)− f(a)− f ′(a)l(log ρ))
ρd−1

(1 + ρ2)(α+d)/2
F̄

((
2ρ

1 + ρ2

)2
)
dρ,

(4.2.9)

where the function l in (4.2.9) is given by

l(y) =
y

1 + y2
e(1−d)y(1 + e2y)α+d/2−11Aε(e

y). (4.2.10)

Let us remark that the function l in (4.2.10) satisfies the following:

• It is a bounded Borel function.

• And also that l(y) ∼ y as y → 0.

From (4.2.9) we obtain the infinitesimal generator of a pssMp in the form sug-
gested by Lamperti’s result recalled Theorem 1:

G(du) =
2αα(d/2)α/2
Γ(1− α/2)

ud−1

(1 + u2)(α+d)/2
F̄

((
2u

1 + u2

)2
)
du. (4.2.11)

Finally to obtain the characteristics of the Lévy process ξ = (ξt, t ≥ 0) associated
to R = (Rt, t ≥ 0) by the Lamperti transformation, from Theorem 1

Π(du) = G(du) ◦ eu,

so using (4.2.11) we obtain

Π(du) = eu
2αα(d/2)α/2
Γ(1− α/2)

e(d−1)u

(1 + e2u)(α+d)/2
F̄

(
4e2u

(e2u + 1)2

)
du

=
2αα(d/2)α/2
Γ(1− α/2)

edu

(1 + e2u)(α+d)/2
F̄

(
4e2u

(e2u + 1)2

)
du. (4.2.12)

And finally we note that according to [46] the lineal term µ is given by

µ =
2αα(d/2)α/2
Γ(1− α/2)

∫
R

(u1{|u|≤1} − l(u))
edu

(1 + e2u)(α+d)/2
F̄

(
4e2u

(e2u + 1)2

)
du.
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So the characteristic function of ξt is the following:

E[exp{iλξt}] = exp
{
iµt+ t

∫
R

(
eiλu − 1− iλu1{|u|≤1}

)
Π(du)

}
. (4.2.13)

The above computations give us the following corollary:

Corollary 5. Let ξ the Lévy process in the Lamperti representation (4.1.2) of
the radial process R. The infinitesimal generator A, of ξ, with domain DA is
given

Af(x) =
∫

IR

(
f(x+ y)− f(x)− f ′(x)`(y)

)
Π(dy),

for any f ∈ DA and x ∈ IR, where

Π(dy) =
edy

(1 + e2y)(α+d)/2
F

(
4e2y

(e2y + 1)2

)
dy.

Equivalently, the characteristic exponent of ξ is given by

Ψ(λ) = iλb+
∫

IR

(
1− eiλy + iλy1I{|y|<1}

)
Π(dy),

where

b =
∫

R

(
`(y)− y1I{|y|≤1}

) edy

(1 + e2y)(α+d)/2
F

(
4e2y

(e2y + 1)2

)
dy.

We finish this section with a remarkable result on the decomposition of the
Lévy measure of the process ξ when the dimension is d = 1. Such decomposition
describes the structure of ξ in terms of two independent Lévy processes, each
with different types of path behaviour. Recall in this case that the symmetric
stable process Z is of bounded variation and so its radial part R and the Lévy
process ξ. Hence, the characteristic exponent of ξ is given by

E[exp{iλξt}] = exp
{
idλt+ t

∫
R

(
eiλu − 1

)
Π(du)

}
. (4.2.14)

Proposition 15. Let us consider that d = 1, then we have the following de-
composition for the process ξ:

ξ
L= ξ1 + ξ2

where ξ1 = (ξ1
t , t ≥ 0) is a Lamperti stable Lévy process, and ξ2 = (ξ2

t , t ≥ 0) is
a compound Poisson process independent of ξ1.
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Proof. For x ∈ [0, 1) the hypergeometric function in (4.2.5) takes the following
form

2F1

(
(α+ 1)/4, (α+ 1)/4 + 1/2; 1/2;x2

)
=
∞∑
k=0

x2k ((α+ 1)/4)k((α+ 1)/4 + 1/2)k
k!(1/2)k

=
Γ(1/2)

Γ((α+ 1)/4 + 1/2)
1

Γ((α+ 1)/4)

∞∑
k=0

x2kΓ((α+ 1)/4 + k)
Γ(k + 1)

Γ((α1)/4 + 1/2 + k)
Γ(k + 1/2)

=
Γ(1/2)

Γ((α+ 1)/4 + 1/2)
1

Γ((α+ 1)/4)

∞∑
k=0

x2k 21/2−(α+1)/2−2kΓ((α+ 1)/2 + 2k)
21/2−2k−1Γ(2k + 1)

=
21/2−α/2Γ(1/2)

(2π)1/221/2−(α+1)/2Γ((α+ 1)/2)
· 1

2

( ∞∑
k=0

xk
Γ((α+ 1)/2 + k)

Γ(1 + k)
+
∞∑
k=0

(−x)k
Γ((α+ 1)/2 + k)

Γ(1 + k)

)

=
1
2

( ∞∑
k=0

xk
((α+ 1)/2)k

k!
+
∞∑
k=0

(−x)k
((α+ 1)/2)k

k!

)
= 2−1

(
(1− x)−(α+1)/2 + (1 + x)−(α+1)/2

)
. (4.2.15)

Now using (4.2.15) in (4.2.12) we obtain that the Lévy measure of the process
ξ when d = 1 is given by

Π(dy) =
2α−1α(1/2)α/2

Γ(1− α/2)
ey

(1 + e2y)(α+1)/2

((
1− 2ey

e2y + 1

)−(α+1)/2

+
(

1 +
2ey

e2y + 1

)−(α+1)/2
)
dy

=
2α−1α(1/2)α/2

Γ(1− α/2)
ey
(
|ey − 1|α+1 + (ey + 1)α+1

)
dy

= Π1(dy) + Π2(dy),

where Π1 and Π2 are given respectively by

Π1(dy) =
2α−1α(1/2)α/2

Γ(1− α/2)

(
ey

(ey − 1)α+1
1{y≥0} +

ey

(1− ey)α+1
1{y<0}

)
dy

Π2(dy) =
2α−1α(1/2)α/2

Γ(1− α/2)
ey

(ey + 1)α+1
dy.

So using (4.2.14) we obtain that the characteristic function of the Lévy process
ξ at time t ≥ 0 is:

E[eiλξt ] = exp
{
idλt+ t

∫
R

(
eiλy − 1

)
Π(dy)

}
= exp

{
idλt+ t

∫
R

(
eiλy − 1

)
Π1(dy)

}
× exp

{
2α−1α(1/2)α/2

Γ(1− α/2)
ct

∫
R

(eiλy − 1)Π2(dy)
}

= E[eiλξ
1
t ]E[eiλξ

2
t ],
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where

c =
∫

R

ey

(ey + 1)α+1
dy.

So we can conclude that for each t ≥ 0, ξt = ξ1
t + ξ2

t . Where ξ1 = (ξ1
t , t ≥ 0) is

a Lamperti stable process with Lévy measure Π1 given by

Π1(dy) =
2α−1α(1/2)α/2

Γ(1− α/2)

(
ey

(ey − 1)α+1
1{y≥0} +

ey

(1− ey)α+1
1{y<0}

)
dy.

On the other hand using that

c =
∫

R
ey(ey + 1)−(α+1)dy <∞,

the Lévy process ξ2 = (ξ2
t , t ≥ 0) is a compound Poisson process independent

of ξ1 with rate

c′ =
2α−1α(1/2)α/2

Γ(1− α/2)
c,

and jump distribution

Π2(dy) = c−1ey(ey − 1)−(α+1)dy.

4.3 Entrance laws for the process ξ: Intervals

In this section, we study the probability that the Lévy process ξ makes its first
exit from an interval. In particular, we obtain some explicit identities for the
one-sided exit problems.

In what follows, P will be a reference probability measure on D (the Sko-
rokhod space of IR-valued càdlàg paths) under which ξ is the Lévy process
described in Corollary 1 starting from 0. For any y ∈ R let

T+
y = inf{t ≥ 0 : ξt > y} and T−y = inf{t ≥ 0 : ξt < y} ,

and for any y > 0 let

σ+
y = inf{t ≥ 0 : Rt > y} and σ−y = inf{t ≥ 0 : Rt < y}.

Lemma 1. Fix −∞ < v < 0 < u < ∞. Suppose that A is any interval in
[u,∞) and B is any interval in (−∞, v]. Then,

P
(
ξT+
u
∈ A;T+

u <∞
)

= Px
(
Rσ+

eu
∈ eA;σ+

eu <∞
)

and
P
(
ξT−v ∈ B;T−v <∞

)
= Px

(
Rσ−

ev
∈ eB ;σ−ev <∞

)
,

where x satisfies that ‖x‖ = 1.
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The proof is a straightforward consequence of the Lamperti representation
and is left as an exercise. Although somewhat obvious, this lemma indicates
that for the process ξ, we need to understand how the radial process R exit a
positive interval around x > 0. Fortunately this is possible thanks to a result of
Blumenthal et al. [9] who established the following for the symmetric α-stable
process Z.

Define,

f(y, z) = π−(d/2+1)Γ
(
d

2

)
sin
(πα

2

) ∣∣1− ‖y‖2∣∣α/2∣∣1− ‖z‖2∣∣−α/2‖y − z‖−d.
Theorem 11 (Blumenthal et al. [9]). Suppose that α < d and that (Z,Px) is
an symmetric α-stable process with values in IRd, initiated from x. For ‖y‖ < 1
and ‖z‖ ≥ 1, we have

Py
(
Zσ+

1
∈ dz;σ+

1 <∞
)

= f(y, z)dz. (4.3.16)

Similarly for ‖y‖ > 1 and ‖z‖ ≤ 1, we have

Py
(
Zσ−1

∈ dz;σ−1 <∞
)

= f(y, z)dz. (4.3.17)

The one-side exit problem for ξ can be obtained from Lemma 1 and Theorem
3 as follows.

Proposition 16. Fix θ ≥ 0 and u > 0

P
(
ξT+
u
− u ∈ dθ, T+

u <∞
)

=
2
π

sin
πα

2
(1− e−2u)α/2(e2θ − 1)−α/2ed(u+θ)(e2(θ+u) − 1)−1dθ (4.3.18)

Proof. Let us recall that the process ξ is a Lévy process associates to the process
R = |Z|, where Z is an α symmetric stable process in Rd.
First we recall the following property that can be found in [21], fix 0 < u <∞,
and suppose that A is any interval in [u,∞), then

P
(
ξT+
u
∈ A;T+

u <∞
)

= P1

(
Xσ+

eu
∈ eA;σ+

eu <∞
)
. (4.3.19)

On the other hand since Z is isotropic and satisfies the scaling property it easy
to see that for each b > 0, and any set B ∈ B(R), that

Px(b−ασ+
b ∈ B) = Px/b(σ+

1 ∈ B).

This in turn implies that

Px/b(|Zσ+
1
| ∈ dy;σ+

1 <∞) = Px(b−1|Zσ+
b
| ∈ dy;σ+

b <∞). (4.3.20)



4.3. ENTRANCE LAWS FOR THE PROCESS ξ: INTERVALS 93

Then using (4.3.20) we have the following

P1(|Zσ+
eu
| ∈ [eu, eu+θ];σ+

eu <∞) = P1(e−u|Zσ+
eu
| ∈ [1, eθ];σ+

eu <∞)

= Pe−u(|Zσ+
1
| ∈ [1, eθ];σ+

1 <∞),

Now fix x ∈ Rd such that |x| = e−u, and set wd = 2πd/2Γ(d/2)−1; then using
(4.3.16) and the Poisson formula in Rd, we have

Px

(
|Zσ+

1
| ∈ [1, eθ];σ+

1 <∞
)

=
∫

1<|y|<eθ
π−(d/2+1)Γ

(
d

2

)
sin

πα

2
|1− |x|2|α/2|1− |y|2|−α/2|x− y|−ddy

= π−(d/2+1)Γ
(
d

2

)
sin

πα

2
(1− e−2u)α/2

∫
1<|y|<eθ

|1− |y|2|−α/2|x− y|−ddy

= π−(d/2+1)Γ
(
d

2

)
sin

πα

2
(1− e−2u)α/2

∫ eθ

1

dr
rd−1

(r2 − 1)−α/2

×
∫ π

0

dθ
sind−2 θ

(r2 + |x|2 − 2r|x| cos θ)d/2
(4.3.21)

On the other hand, from formula 3.665 in [33] we get for r > 1∫ π

0

dθ
sind−2 θ

(r2 + |x|2 − 2r|x| cos θ)d/2
= wdr

2−d(r2 − |x|2)−1 (4.3.22)

So using (4.3.22) in (4.3.21) we obtain

Px

(
|Zσ+

1
| ∈ [1, eθ];σ+

1 <∞
)

= π−(d/2+1)Γ
(
d

2

)
sin

πα

2
wd(1− e−2u)α/2

×
∫ eθ

1

drr(r2 − 1)−α/2(r2 − |x|2)−1

=
2
π

sin
πα

2
(1− e−2u)α/2

∫ eθ

1

drr(r2 − 1)−α/2(r2 − e−2u)−1. (4.3.23)

So using (4.3.19), (4.3.20), and (4.3.23) we conclude that

P
(
ξT+
u
≤ u+ θ;T+

u <∞
)

= P1

(
|Zσ+

eu
| ∈ [eu, eu+θ];σ+

eu <∞
)

= Pe−u
(
|Zσ+

1
| ∈ [1, eθ];σ+

1 <∞
)

=
2
π

sin
πα

2
(1− e−2u)α/2

∫ eθ

1

drr(r2 − 1)−α/2(r2 − e−2u)−1. (4.3.24)

So differentiating (4.3.24) we obtain (4.3.18), which completes the proof.
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Proposition 17. Suppose that α < d, fix θ ≥ 0 and −∞ < u < 0, then

P
(
v − ξT−v ∈ dθ, T

−
v <∞

)
=

2
π

sin
πα

2
(e−2v − 1)α/2(1− e−2θ)−α/2ed(v−θ)(1− e2(v−θ))−1dθ (4.3.25)

Proof. Let us recall that the process ξ is a Lévy process associates to the process
R = |Z|, where Z is an α symmetric stable process in Rd.
First we recall the following property that can be found in [21], fix −∞ < v < 0,
and suppose that B is any interval in (−∞, v], then

P
(
ξT−v ∈ B;T−v <∞

)
= P1

(
Xσ−

ev
∈ eB ;σ−ev <∞

)
. (4.3.26)

On the other hand since Z is isotropic and satisfies the scaling property it easy
to see that for each b > 0, and any set B ∈ B(R), that

Px(b−ασ−b ∈ B) = Px/b(σ−1 ∈ B).

This in turn implies that

Px/b(|Zσ−1 | ∈ dy;σ−1 <∞) = Px(b−1|Zσ−b | ∈ dy;σ−b <∞). (4.3.27)

Then using (4.3.27) we have the following

P1(|Zσ−
ev
| ∈ [ev−θ, ev];σ−ev <∞) = P1(e−v|Zσ−

ev
| ∈ [e−θ, 1];σ−ev <∞)

= Pe−v (|Zσ−1 | ∈ [e−θ, 1];σ−1 <∞),

Now fix x ∈ Rd such that |x| = e−v, and set wd = 2πd/2Γ(d/2)−1; then using
(4.3.17) and the Poisson formula in Rd, we have

Px

(
|Zσ−1 | ∈ [e−θ, 1];σ−1 <∞

)
=
∫
e−θ<|y|<1

π−(d/2+1)Γ
(
d

2

)
sin

πα

2
× |1− |x|2|α/2|1− |y|2|−α/2|x− y|−ddy

= π−(d/2+1)Γ
(
d

2

)
sin

πα

2
(e−2v − 1)α/2

∫
e−θ<|y|<1

|1− |y|2|−α/2|x− y|−ddy

= π−(d/2+1)Γ
(
d

2

)
sin

πα

2
(e−2v − 1)α/2

∫ 1

e−θ
dr

rd−1

(1− r2)−α/2

×
∫ π

0

dθ
sind−2 θ

(r2 + |x|2 − 2r|x| cos θ)d/2
(4.3.28)

On the other hand, from formula 3.665 in [33] we get for r < 1∫ π

0

dθ
wd sind−2 θ

(r2 + |x|2 − 2r|x| cos θ)d/2
= wd|x|2−d(|x|2 − r2)−1. (4.3.29)
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So using (4.3.29) in (4.3.28) we obtain

Px

(
|Zσ−1 | ∈ [e−θ, 1];σ−1 <∞

)
= π−(d/2+1)Γ

(
d

2

)
sin

πα

2
(e−2v − 1)α/2wd|x|2−d

×
∫ 1

e−θ
drrd−1(1− r2)−α/2(|x|2 − r2)−1

=
2
π

sin
πα

2
(e−2v − 1)α/2(e−v)2−d

∫ 1

e−θ
drrd−1(1− r2)−α/2(e−2v − r2)−1.

(4.3.30)

So using (4.3.26), (4.3.27), and (4.3.30) we conclude that

P
(
v − ξT−v ≤ θ;T

−
v <∞

)
= P1

(
|Zσ−

ev
| ∈ [ev−θ, ev];σ−ev <∞

)
= Pe−v

(
|Zσ−1 | ∈ [e−θ, 1];σ−1 <∞

)
=

2
π

sin
πα

2
(e−2v − 1)α/2(e−v)2−d

∫ 1

e−θ
drrd−1(1− r2)−α/2(e−2v − r2)−1.

(4.3.31)

So differentiating (4.3.31) we obtain (4.3.25), which completes the proof.

Relatively straightforward computations yield the following proposition.

Proposition 18. Let ξ∞ = inf
t≥0

ξt. For z ≥ 0

P (−ξ∞ ∈ dz) =
2Γ(d/2)

Γ(α/2)Γ((d− α)/2)
e−z(d−1)(e2z − 1)α/2−1. (4.3.32)

Proof. Fix 0 ≤ y < 1 and, x ∈ Rd such that |x| = 1. Then

Px/y
(
σ+

1 =∞
)

= Px/y
(
σ+

1 =∞
)

= Pa/y

(
inf
t≥0

|Zt| > 1
)

= P

(
inf
t≥0

a/yeξt > 1
)

= P

(
inf
t≥0

ξt > log y/a
)
. (4.3.33)

On the other hand using Corollary 2 in [9] we know that

Px(σ−1 =∞) =
Γ(d/2)

Γ(α/2)Γ((d− α)/2)

∫ |x|2−1

0

(u+ 1)−d/2uα/2−1du. (4.3.34)

So using (4.3.33) and (4.3.34) we have that:

P (−ξ∞ ≤ z) =
Γ(d/2)

Γ(α/2)Γ((d− α)/2)

∫ e2z−1

0

(u+ 1)−d/2uα/2−1du, (4.3.35)

so differentiating (4.3.35) we obtain (4.3.32) which completes the proof.
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4.4 Entrance laws: points

In this section we explore the two-point hitting problem for the Lévy-Lamperti
process ξ. There has been little work dedicated to this theme in the past with
the paper of Getoor [31] being our principle reference.

Henceforth we shall denote by (X,Px) a symmetric α-stable process in Rd
issued from x > 0 where α ∈ (1, 2). An important quantity in the forthcoming
analysis is the potential kernel of the process Z = |X|. From [60] we know that
the potential kernel has the following form for 1 < α < d

u(x, y) =
2(d/2)−αΓ(d/2)Γ(d− α/2)

Γ(α/2)
(xy)1−N/2|x2−y2|α/2−1P

1−d/2
−α/2

(
x2 + y2

|x2 − y2|

)
,

for x, y > 0, where P νµ is the usual Legendre function of the first kind.
And for 1 < α < d and r > 0

u(r, r) =
π−1/22d/2−2Γ((α− 1)/2)

Γ((α+ d)/2− 1)
Γ(d/2)Γ((d− α)/2)

Γ(α/2)
rα−d.

Let B = {r1, r2, · · · , rn} where r1 < r2 < · · · < rn, then according to the
method presented in Port [60], the matrix Uij = u(ri, rj) is invertible. Denote
its inverse by KB(i, j). If σB = inf{t > 0 : Zt ∈ B} then if

HB(a, rj) = P|x|(ZσB = rj ; σB <∞),

the point hitting probability in Port [60] is given by the formula

HB = (|x|, rj) =
n∑
i=1

u(|x|, ri)KB(ri, rj). (4.4.36)

For a two point set B = {r1, r2} we have that

KB =
1
∆

(
U22 −U12

−U12 U11

)
, (4.4.37)

where ∆ = U11U22 − U2
12. Then from (4.4.36)

HB(|x|, r1) =
u(|x|, r1)u(r2, r2)− u(|x|, r2)u(r2, r1)

u(r1, r1)u(r2, r2)− u(r1, r2)2
,

HB(|x|, r2) =
u(|x|, r2)u(r1, r1)− u(|x|, r1)u(r1, r2)

u(r1, r1)u(r2, r2)− u(r1, r2)2
. (4.4.38)

Recalling the definition of ξ as the Lévy-Lamperti processes associated now
with the norm of a symmetric stable process in Rd with 1 < α < d we have the
following result.

Theorem 12. Fix 1 < α < d and −∞ < v < 0 < u <∞. Define

T{v,u} = inf{t > 0 : ξt ∈ {v, u}}.
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We have
P
(
ξT{v,u} = v

)
= f(1, ev, eu),

and
P
(
ξT{v,u} = u

)
= f(1, eu, ev),

where

f(x, a, b) =
u(x,a)
u(b,a) −

u(x,b)
u(b,b)

u(a,a)
u(b,a) −

u(a,b)
u(b,b)

.

4.5 Weiner-Hopf factorization

In this section we compute explicitly the characteristic exponent of the process
ξ using its Weiner-Hopf factorization. Denote by {(L−1

t , Ht) : t ≥ 0} and
{(L̂−1

t , Ĥt) : t ≥ 0} the (possibly killed) bivariate subordinators representing the
ascending and descending ladder processes of ξ (see [6] for a proper definition).
Write κ(α, β) and κ̂(α, β) for their joint Laplace exponents for α, β ≥ 0. For
convenience we will write

κ̂(0, β) = q̂ + ĉβ +
∫

(0,∞)

(1− e−βx)ΠĤ(dx),

where q̂ ≥ 0 is the killing rate of Ĥ so that q̂ > 0 if and only if limt↑∞ ξt =∞,
ĉ ≥ 0 is the drift of Ĥ and ΠĤ is its jump measure. Similar notation will also
be used for κ(0, β) by replacing q̂, ξ̂, ĉ and ΠĤ by q, ξ, c and ΠH . Note that
necessarily q = 0 since limt↑∞ ξt =∞.

Associated with the ascending and descending ladder processes are the bi-
variate renewal functions V and V̂ . The former is defined by

V (ds,dx) =
∫ ∞

0

dt · P (L−1
t ∈ ds,Ht ∈ dx)

and taking double Laplace transforms shows that∫ ∞
0

∫ ∞
0

e−αs−βxV (dx,ds) =
1

κ(α, β)
for α, β ≥ 0 (4.5.39)

with a similar definition and relation holding for V̂ . These bivariate renewal
measures are essentially the Green’s measures of the ascending and descending
ladder processes. With an abuse of notation we shall also write V (dx) and V̂ (dx)
for the marginal measures V ([0,∞),dx) and V̂ ([0,∞),dx) respectively. (Since
we shall never use the marginals V (ds, [0,∞)) and V̂ (ds, [0,∞)) there should
be no confusion). Note that local time at the maximum is defined only up to a
multiplicative constant. For this reason, the exponent κ can only be defined up
to a multiplicative constant and hence the same is true of the measure V (and
then obviously this argument applies to V̂ ).

The main result of this section is the Wiener-Hopf factorization of the char-
acteristic exponent of the Lévy process ξ.
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Lemma 2. Let ξ be the Lévy process in the Lamperti representation (4.1.2)
of the radial process R. The Laplace exponent of the descending ladder height
process Ĥ of ξ is given by

κ̂(0, λ) =
Γ((d+ λ)/2)Γ((d− α)/2)
Γ(d/2)Γ((d− α+ λ)/2)

. (4.5.40)

Proof. Let us consider Ty = inf{t ≥ 0 : |Zt| < y}, x ∈ Rd, and a = ‖x‖. Then

using that bZxb−αt
L= Zbxt we have

Px(Ty =∞) = Px/y(T1 =∞) = Pa/y
(

inf
t≥0

Rt > 1
)

= P
(

inf
t≥0

(a/y)eξt > 1
)

= P
(

inf
t≥0

ξt > log(y/a)
)
. (4.5.41)

Now let us recall the following result in Corollary 2 in [9]

Px(T1 =∞) =
Γ(d/2)

Γ((d− α)/2)Γ(α/2)

∫ |x|2−1

0

(u+ 1)−d/2uα/2−1du. (4.5.42)

Then using (4.5.42) in (4.5.41) we obtain the following

P
(
− inf
t≥0

ξt < z

)
=

Γ(d/2)
Γ((d− α)/2)Γ(α/2)

∫ e2z−1

0

(u+ 1)−d/2uα/2−1du.

(4.5.43)

Also recall that V̂ denotes the renewal function associated with Ĥ. From Propo-
sition VI.17 in [6], we know that

V̂ (x) = V̂ ([0, x]) = V̂ ([0,∞))P
(

sup
t≥0
−ξt ≤ x

)
= V̂ ([0,∞))P

(
− inf
t≥0

ξt ≤ x
)
.

As we mentioned before, it is well known that V̂ is unique up to a multiplicative
constant which depends on the normalization of local time of ξ at its infimum.
Without loss of generality we may therefore assume in the forthcoming analysis
that V̂ (∞), which is equal to the reciprocal of killing rate of the descending
ladder height process, may be taken identically equal to 1. Hence

V̂ (z) =
Γ(d/2)

Γ((d− α)/2)Γ(α/2)

∫ e2z−1

0

(u+ 1)−d/2uα/2−1du.
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Now, let K(α, d) = Γ(d/2)
(
Γ((d− α)/2)Γ(α/2)

)−1 and note that

λ

∫ ∞
0

e−λxU−(x)dx = λK(α, d)
∫ ∞

0

e−λx
∫ e2x−1

0

(u+ 1)−d/2uα/2−1du

= K(α, d)
∫ ∞

0

(u+ 1)−d/2uα/2−1

∫ ∞
1/2 log(u+1)

λe−λxdxdu

= K(α, d)
∫ ∞

0

(u+ 1)−(d+λ)/2uα/2−1du

= K(α, d)
∫ 1

0

u(d+λ−α)/2−1(1− u)α/2−1du

=
Γ((d+ λ)/2)Γ((d− α)/2)
Γ(d/2)Γ((d+ λ− α)/2)

, (4.5.44)

Now recalling that

κ̂(0, λ) =
(
λ

∫ ∞
0

e−λxU−(x)dx
)−1

,

we conclude the result.

The previous result tells gives us the explicit form of the Weiner-Hopf factor
corresponding to the descending ladder height process Ĥ of ξ. In the next
proposition we will obtain the corresponding factor for the ascending ladder
height process H.
First we recall the following property of the hypergeometric function 2F1 ([3]
(3.1.9)).

2F1(a, b; a− b+ 1;x) = (1 + x)−a 2F1

(
a/2, (a+ 1)/2; a− b+ 1;

4x
(1 + x)2

)
.

(4.5.45)
So the Lévy measure Π of the process ξ takes the following form

Π(dy) =
2αα(d/2)α/2
Γ(1− α/2)

edy

(e2y + 1)(α+d)/2

×2 F1

(
(α+ d)/4, (α+ d/4 + 1/2); d/2;

4e2y

(e2y + 1)2

)
dy

=
2αα(d/2)α/2
Γ(1− α/2)

e−αy

(1 + e−2y)(α+d)/2

×2 F1

(
(α+ d)/4, (α+ d)/4 + 1/2; d/2;

4e−2y

(1 + e−2y)2

)
1{y>0}dy

+
2αα(d/2)α/2
Γ(1− α/2)

edy

(1 + e2y)α+d/2

×2 F1

(
α/2 + d/4, α/2 + d/4 + 1/2; d/2;

4e2y

(e2y + 1)2

)
1{y<0}dy,
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So using (4.5.45) we obtain

Π(dy) = Aαe
−αu

2F1

(
α+ d/2, α+ 1; d/2; e−2u

)
1{u>0}du

+Aαe
du

2F1

(
α+ d/2, α+ 1; d/2; e2u

)
1{u<0}du. (4.5.46)

where Aα = 2αα(d/2)α/2/Γ(1− α/2). Now we can prove the following result:

Lemma 3. Let ξ be the Lévy process in the Lamperti representation (4.1.2)
of the radial process R. The Laplace exponent of the ascending ladder height
process H of ξ is given by

κ(0, λ) = 2α/2
Γ(d/2)Γ(−α/2)

B((d− α)/2), α/2)
Γ((λ+ α)/2)

Γ(λ/2)
. (4.5.47)

Proof. In order to compute the Laplace exponent of H we will first obtain its
Lévy measure µ+. To this end we will use the following result of Vigon [76], for
x > 0 we have

µ̄+(x) =
∫ ∞

0

Π̄+(x+ y)V̂ (dy), (4.5.48)

where µ̄+ denotes the tail of the Lévy measures of H, Π̄+ denotes the tail of
the restriction of the Lévy measure of ξ to (0,∞), and V̂ (dy) is the renewal
measure of the subordinator Ĥ which following (4.5.44) is given by

V̂ (dy) = 2
Γ(d/2)

Γ((d− α)/2)Γ(α/2)
(e2y)1−d/2(e2y − 1)α/2−1dy.

Now let us recall from (4.5.46) that Π+ is given by

Π+(dx) =
2αα(d/2)α/2
Γ(1− α/2)

e−αx 2F1((α+ d)/2, α/2 + 1; d/2; e−2x)1I{x>0}dx.

(4.5.49)
Then using (4.5.48) we have∫ ∞
x

µ+(dy) = C(α, d)
∫ ∞

0

(∫ ∞
x+y

e−αuF (e−2u)du
)

(e2y)1−d/2(e2y − 1)α/2−1dy,

(4.5.50)

where

C(α, d) =
2α+1α(d/2)α/2

Γ(1− α/2)
Γ(d/2)

Γ((d− α)/2)Γ(α/2)
,

and for notation purposes F (x) denotes the hypergeometric function in (4.5.49).
We will now compute the second integral in the right side of (4.5.50)∫ ∞

x+y

e−αuF (e−2u)du =
1
2

∫ e−2(x+y)

0

zα/2−1F (z)dz

= α−1

(
e−α(x+y)

2F1((d+ α)/2, α/2; d/2; e−2(x+y))
)
.

(4.5.51)



4.5. WEINER-HOPF FACTORIZATION 101

Now let us compute the second integral, then using (4.5.51) we have∫ ∞
0

∫ ∞
x+y

e−αuF (e−2u)(e2y)1−d/2(e2y − 1)α/2−1dudy

=
∫ ∞

0

α−1

(
e−α(x+y)

2F1

(
(d+ α)/2, α/2; d/2; e−2(x+y)

))
(e2y)1−d/2(e2y − 1)α/2−1dy

= α−1
∞∑
k=0

e−2x(α/2+k) ((d+ α)/2)k(α/2)k
(d/2)kk!

∫ ∞
0

(e2y)1−d/2−α/2−k(e2y − 1)α/2−1dy

= (2α)−1
∞∑
k=0

e−2x(α/2+k) ((d+ α)/2)k(α/2)k
(d/2)kk!

∫ 1

0

ud/2+k−1(1− u)α/2−1dy

= (2α)−1
∞∑
k=0

e−2x(α/2+k) ((d+ α)/2)k(α/2)k
(d/2)kk!

B(d/2 + k, α/2)

= (2α)−1B(α/2, d/2)e−αx
∞∑
k=0

e−2kx (α/2)k
k!

= (2α)−1B(α/2, d/2)e−αx(1− e−2x)−α/2.

Then using (4.5.50) we have that∫ ∞
x

µ+(dy) = 2α
Γ(d/2)

Γ(1− α/2)
1

B ((d− α)/2, α/2)
(e2x − 1)−α/2. (4.5.52)

So using (4.5.48) it is easy to see that µ+(dx) has a density with respect to the
Lebesgue measure µ+(x), then by differentiating in (4.5.52) we obtain

µ+(x) = 2α
Γ(d/2)

Γ(1− α/2)
α

B ((d− α)/2, α/2)
e2x

(e2x − 1)α/2+1
.

Now let us recall that the process does not creeps, this implies that H has no
drift term, and we also know that H has no killing term. Then the Laplace
exponent κ(0, λ) of H is given by

κ(0, λ) = A(α, d)
∫ ∞

0

(e−λx − 1)
e2x

(e2x − 1)α/2+1
dx, (4.5.53)

where

A(α, d) = 2α
Γ(d/2)

Γ(1− α/2)
α

B ((d− α)/2, α/2)
.

So we have from (4.5.53) that

κ(0, λ) =
A(α, d)

2

∫ ∞
0

(e−λ/2x − 1)
ex

(ex − 1)α/2+1
dx.
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The last integral has been computed in [16], so

κ(0, λ) = 2−1A(α, d)Γ(−α/2)
Γ((λ+ α))/2

Γ(λ/2)

= α2α−1 1
Γ(1− α/2)

Γ(d/2)Γ(−α/2)
B((d− α)/2), α/2)

Γ((λ+ α)/2)
Γ(λ/2)

. (4.5.54)

Which concludes the proof.

The Weiner-Hopf factorization for the process ξ allows to obtain an explicit
form of its characteristic exponent.

Theorem 13. Let ξ be the Lévy process in the Lamperti representation (4.1.2)
of the radial process R. Then its characteristic exponent Ψ enjoys the following
Wiener-Hopf factorization

ψ(λ) = k′α2α−1 Γ(d/2)Γ(−α/2)
Γ(1− α/2)Γ(α/2)

(
iλ+ d

2

)
α/2

(
− iλ

2

)
α/2

.

Proof. We recall the following classical result in [6] which states that there exists
a constant k′ > 0 such that

ψ(λ) = k′κ(0,−iλ)κ̂(0, iλ)

so using (4.5.40) and (4.5.47) in (4.5.55) we obtain the result.
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Chapter 5

Preliminaries

5.1 Introduction

5.1.1 What is the dynamics of a population?

The idea behind this work is to model the dynamics of a sexual population,
in other words how a population changes in time. Some individuals within a
population leave more offsprings than others. And as time passes the frequency
of the offsprings of theses individuals will increase. This difference in the re-
productive ability of individuals is known as the principle of natural selection
of Darwin. Those individuals that are better adapted to their environment will
have a larger number of descendants than those less adapted.

Each individual in the population has a specific genetic constitution which
is called genotype, then during its development the genotype is expressed in
the individual actual observable characteristics, like height, morphology, sex-
ual efficiency, which we call phenotype. Then the individuals in the population
characterized by their phenotype have to compete between themselves for re-
sources (like food, water, etc.); the outcome of this process of competition is
fundamental for the survival and reproduction ability of each individual. Those
phenotypes with a higher reproduction ability contribute with more offsprings to
the succeeding generation than the other individuals, this increases the preva-
lence of these phenotypes in the population, because these offsprings will inherit
their traits. So the competition between phenotypes induces a selection process
which is one of the driving mechanisms of evolution.

The adaptation of a phenotype depends not only on the environment but
also in the constitution of the rest of the population, by means of the exploit of
resources or the competition with other species in the population. This popula-
tion dynamics can also affect the set of genotypes in the population through the
main sources of variability which are mutations in the genome of the offsprings,
or by sexual reproduction (meiosis, recombination), and finally the environment
can also influence the way the genotype of an individual expresses to its pheno-
type, during the development of the individual.

104
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In the rest of this section we will give a deeper view to the main concepts
require for the rest of this work.

5.1.2 Basic genetics, haploid and diploid organisms

Mendel’s (1866) primary achievement was the recognition of the particular na-
ture of the hereditary determinants, now called genes. A gene may have differ-
ent forms, called alleles. From his experiments with peas he discovered that the
genes are present in pairs, one pair having inherited from the maternal parent,
the other form the paternal.

The allelic composition is called the genotype, and the set of observable
properties derived from the genotype is called the phenotype.

Since the 1940’s it has been known that the genetic material is desoxyri-
bonucleic acid (DNA). It consists of four bases: adenine (A), guanine (G),
thymine (T), and cytosine (C). Each base is linked to a sugar and a phosphate
group, yielding a nucleotide. The nucleotides are arranged along two chains to
form a double-stranded helix in which the pairings A-T and G-C between the
strands are formed. Therefore all genetic material is contained in each of the
two strands. Three bases code for one amino acid, which are the building blocks
of polypeptide chains and proteins. A gene typically represents a contiguous re-
gion of DNA coding for one polypeptide chain. Its position along the DNA is
called the locus, sampled from a population, and a particular sequence there is
called an allele.

There are two types of organisms in nature, haploid organisms which have
only one set of chromosomes like algae or fungi, and diploid organisms in which
chromosomes form homologous pairs, each one inherited from each parent like
higher plants or animals.

5.1.3 Asexual and sexual reproduction

The phenomena of reproduction is a fundamental feature of all life, it is the bio-
logical process by which new organisms are produced in a population. In nature
there are two main methods for reproduction: asexual, and sexual reproduction.

In a population with asexual reproduction an individual in the population
gives birth to an individual with similar or identical genetic material, without
the contribution of another organism in the population. Asexual reproduction
requires more energy and therefore its faster than sexual reproduction. Its
main characteristic which offers benefits and costs is that the offspring is ge-
netically similar to the parent, this similarity will be beneficial if the parent is
well adapted to a stable environment, but if the environment is changing it can
mean the disappearance of the population. Asexual lineages can increase their
numbers rapidly because every individual can produce viable offspring. Another
advantage of asexual reproduction include the ability to reproduce without part-
ner in situations where the density of the population is low, reducing the chance
to find a partner, or in situations where a single member of the population
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is enough to start a population. The main source of variation in an asexual
population is given by mutations.

Sexual reproduction is the biological process by which organisms create de-
scendants that have a combination of genetic material contributed from two
(usually) different members of the species, resulting in offsprings which are dif-
ferent between themselves, and from their parents. The sexual reproduction
cycle supposes an alternation of generations between haploid cells (cells with
a single set of chromosomes), and diploid cells (which have 2 complete sets
of chromosomes). The combination of the genetic material occurs when two
haploid cells fuse to produce a diploid cell called zygote, this process is called
fecundation, or mating if it occurs in diploid, or haploid organisms respectively.
Then when a descendant of the diploid cell divides by the process of meiosis,
new haploid cells are formed. During meiosis and before the chromosomes are
distributed in haploid sets, the chromosomes that belong to the diploid set ex-
change genetic material by the process of genetic recombination. In this way
each cell of the new haploid generation receives a different genetic load, so each
chromosome presents genes that come from one of the cells of the previous gen-
eration and genes that come from the other cell. In this way through cycles
of haploidy, cellular fusion, diploidy, and meiosis the old combinations of genes
disappear and new combinations are formed.

Sexual reproduction can occur in diploid and haploid organisms, the main
difference is in which phase the cells proliferate (by mitosis) to form a new
organism. In diploid organisms the cells proliferate during the diploid phase
forming a multicellular organism. Meanwhile in haploid organisms the haploid
cells are the ones that proliferate and the unique diploid cell is the zygote, that
exists transitorily after mating (see Fig. 5.1).

5.1.4 Mitosis and meiosis

Mitosis is the process by which a cell duplicates the chromosomes in its cell nu-
cleus, in order to generate two, identical, daughter nuclei. It is generally followed
immediately by cytokinesis, which divides the nuclei, cytoplasm, organelles and
cell membrane into two daughter cells containing roughly equal shares of these
cellular components.

The process of mitosis is complex and highly regulated. The sequence of
events is divided into phases, corresponding to the completion of one set of
activities and the start of the next. These stages are prophase, prometaphase,
metaphase, anaphase and telophase (see Fig. 5.2). During the process of mitosis
the pairs of chromosomes condense and attach to fibers that pull the sister
chromatids to opposite sides of the cell. The cell then divides to produce two
identical daughter cells. The process of mitosis which produces identical cells
is the basis of asexual reproduction. Meiosis is a process of cellular division
in which a diploid cell with 2n chromosomes will experience two consequence
cellular divisions, with the capacity to generate 4 haploid cells, i.e. with n
chromosomes.
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Figure 5.1: Sexual reproduction in diploids and haploids.

Figure 5.2: Mitosis.
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Figure 5.3: Meiosis and recombination.

During meiosis, the genome of a diploid cell, which is composed of long seg-
ments of DNA packaged into chromosomes, undergoes DNA replication followed
by two rounds of division, resulting in haploid cells called gametes. Each ga-
mete contains one complete set of chromosomes, or half of the genetic content
of the original cell. Because the chromosomes of each parent undergo genetic
recombination during meiosis, each gamete, and thus each zygote, will have a
unique genetic blueprint encoded in its DNA. In other words, meiosis and sexual
reproduction produce genetic variation.

Meiosis uses many of the same biochemical mechanisms employed during
mitosis to accomplish the redistribution of chromosomes. There are several fea-
tures unique to meiosis, most importantly the pairing and genetic recombination
between chromosomes.

5.1.5 Recombination

During meiosis, different chromosomes assort independently and crossing over
between two pair of homologous chromosomes may occur. Consequently, the
newly formed gamete contains maternal alleles at one set of loci and paternal
alleles at the complementary set. This process is called recombination. Since
it leads to random association between alleles at different loci, recombination
has the potential to combine favorable alleles of different ancestries in one ga-
mete and to break up combinations of deleterious alleles. These properties are
thought to confer a substantial evolutionary advantage to sexual species relative
to asexuals (see Fig. 5.3).
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5.1.6 Selection

Selection occurs when individuals of different genotypes leave different numbers
of progeny because they differ in their probability to survive to reproductive
age (viability), in their mating success, or in their average number of produced
offspring (fertility). Darwin (1859) recognized and documented the central im-
portance of selection as the driving force for adaptation and evolution.

Selection is measured in terms of fitness of individuals, i.e., by the number of
progeny contributed to the next generation. There are many different measures
of fitness, and it consists of several components because selection may act on
ear stage of the life cycle.

5.1.7 Biological problems

How to make the transition from the genotype of an individual to its
phenotype.-
In general little is known about how genes interact to produce a quantitative
character. One of the most simple models to describe how we can obtain the
phenotype of an individual from its genotype is the additive genetic model de-
vised by Fisher and Wright.
In an haploid population, we consider l loci, and describe the state of each l-
locus genotype by a vector, X, where the components of the vector Xi describe
the allelic state at locus i. The value of Xi can be taken as a real number (or
belonging to a state space χ) representing the contribution of the allele to the
character.

In the case of a diploid population we describe each genotype by a vector,
(X,X’), where the components Xi and X ′i describe the allelic state at locus i
on the paternally and maternally inherited chromosome, respectively.

In this model, the phenotypic value, P , of a single polygenic character is
assumed to be determined by a component, G, attributable to the influence of
the genotype, and an environmental component, E, attributable to all the non
genetic effects that influence the phenotype, such that

P = G+ E′

The genotypic value G, is determined additively by all allelic effects, in other
words,

G =
l∑
i=1

Xi

( l∑
i=1

(Xi +X ′i) if the population is diploid
)
.

This rests on the assumption that the genotypic value can be approximated by
the sum of the additive effects of the contributing genes. This assumption will
be a good approximation if dominance and epistatic deviations are small.

Finally the the environmental component is assumed to be normally dis-
tributed with mean 0, variance σ2

E , and independent of G.
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If we neglect environmental effects then the phenotypic value of a character in
an individual with genotype X is given by

P =
l∑
i=1

Xi. (5.1.1)

How to measure selection: The fitness function.-
Natural selection acts in different ways in the phenotype of an organism. Be-
cause the phenotype is described by a large number of characters it is difficult
to distinguish direct effects of selection from indirect effects. In principle, se-
lection can usually be described in discrete time models by a fitness function
that relates the fitness of individuals (the contribution of an organism to the
offspring pool) to the traits under consideration. There are three main types of
selection:

• Directional selection.- A trait is under directional selection if the fitness
function is an increasing or decreasing function of the trait value.

• Stabilizing selection.- A trait is under stabilizing selection if the fitness
function has a mode, or optimum, and decreases away from this mode.
A typical and simple example for a fitness function to model stabilizing
selection is obtained if the fitness function of individuals with genotype x
is assumed to deviate quadratically as x deviates from the optimum, in
other words,

W (x) = 1− sx2, |x| ≤ s−1/2,

which is called the quadratic optimum model.

• Disruptive selection.- It occurs if the fitness of extreme individuals is
greater than that of intermediates, i.e., if the fitness function has a mini-
mum between two peaks.

In practice, traits often experience combinations of these simple forms of selec-
tion. For more theory on the measurement of selection see Chapter VII in [11],
and Lande and Arnold [47].

We know that selection acts on phenotypes, but many models with recur-
rence relations for gamete and genotype frequencies involve genotypic fitness.
Therefore, the fitness function of an individual with genotypic value z is given
by

WG(z) = WP (p(z)),

whereWP is the phenotypic fitness function, and the function p is the phenotype-
genotype map. In case we are considering environmental effects, if we assume
they are Gaussian with mean zero and variance σ2

E the mean fitness of individ-
uals withe genotypic value z is given by

WG(z) = E[WP (G+ E)] =
1

(2πσ2
E)1/2

∫
R
WP (G+ E) exp[−E2/(2σ2

E)]dE.
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As an example of how to model selection by means of the fitness function,
imagine an asexually reproducing haploid population, in which we consider one
gene locus at which k alleles A1, . . . , Ak occur. Individuals carrying allele Ai
are assumed to have fitness Wi. Let ni denote the number of individuals with
allele Ai, and N the total size of the population. Then as we discussed before
we can think the fitness Wi as the average number of offspring per individual
with allele Ai. So in the next generation the number of individuals with allele
Ai is n′i = Wini, and the total size of the population is

N ′ =
k∑
i=1

n′i =
k∑
i=1

niWi

So if we denote by as pi the relative frequency of individuals with allele Ai, that
is to say pi = ni/N , then in the next generation the relative frequency p′i of
individuals with allele Ai is

p′i =
n′i
N ′

=
niWi∑k
i=1 niWi

=
piWi∑k
i=1 piWi

=
piWi

W
. (5.1.2)

where W =
∑k
i=1Wipi is called the mean fitness. Relation (5.1.2) is sometimes

referred as selection equation (see [11] p.30-31).
Meanwhile in continuous time models in order to describe selection we use

the malthusian fitness parameter. Consider we have a population at time t > 0
with size N(t), and that an average of b(x)∆tN(t) individuals with trait x are
born in an infinitesimal time interval ∆t, and that d(x)∆t individuals with trait
x die in the same time span. Then the malthusian fitness parameter for the
trait x is given by m(x) = b(x)−d(x), and the functions b and d are called birth
rate and death rate of the trait x respectively.

Relation between the malthusian parameter and the fitness function.-
For example let us consider the following simple model of the size of a popula-
tion. Let N(t), t = 0, 1, 2, . . . be the number of individuals in generation t. If
the average number of offspring per individual is W , where W is a compound
measure of reproductive success and survival, the population size at generation
t can be calculated from that of generation 0 according to

N(t) = WN(t− 1) = W 2N(t− 2) = · · · = W tN(0). (5.1.3)

Now lets consider a continuous time model analogous to the discrete one dis-
cussed above, assume that in a population of size N = N(t) an average of
b∆tN(t) progeny are born during an infinitesimal time interval ∆t and d∆tN(t)
individuals die in the same time span. The parameter b is called the birth rate
and d the death rate. The total change in population number during the time
interval ∆t is

∆N(t) = N(t+ ∆t)−N(t) = (b(t)− d(t))∆tN(t). (5.1.4)
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As ∆t→ 0, one obtains
dN(t)
dt

= mN(t), (5.1.5)

where m = b− d is called the Malthusian parameter or growth rate. The differ-
ential equation (5.1.5) has the solution

N(t) = exp(mt)N(0),

so that the population grows exponentially. Time can be measured in arbitrary
units as long as m is measured in the reciprocal of that unit.

Now suppose we change the time scale and therefore m so that t = 1 is the
time of the first generation, t = 2 is the time of the second generation, and
so on. Then the relation between the Malthusian parameter m and the fitness
function W is, by comparison of (5.1.3) and (5.1.6) the following,

W = exp(m) or m = log(W ). (5.1.6)

Frequency and density dependent selection.-
Density dependent selection occurs if the fitness of phenotypes depends on pop-
ulation size because for instance, under crowding conditions some types have
reduced fitness. Frequency dependent selection means that the fitness of pheno-
types depends on their frequency distribution. This typically occurs if certain
types have higher fitness when rare, for example if the ability to utilize different
different food resources depends on body size. An example which takes into con-
sideration density and frequency dependent selection is the quantitative-genetic
model analyzed by Slatkin [73]. He considered an approximately normally dis-
tributed phenotypic character, P , in a population of size N(t). The distribution
of the character is denoted by fP (P, t), its mean and variance by P (t) and σ2

P (t),
respectively. The fitness of individuals of type P is assumed to depend on N(t)
and fP (t) in the following way:

W (P, t) = 1 + ρ− ρN(t)
k(P )

∫
R
α(P − P ′)fP (P ′, t)dP ′,

where 1+ρ is the maximum fitness in the absence of competition, k(P ) represents
the resources that can be utilized by an individual of type P , and α(P − P ′)
represents the competition between individuals of type P and P ′ for the limiting
resource. As an example of k(P ), Slatkin uses a function proportional to a
Gaussian density with mean P0, which is the value of the character for which
the maximum resources are available, and variance σ2

k whichmeasures the range
of available resources. Similarly, as an example of α he uses

α(P − P ′) = exp
[
− 1

2σ2
α

(P − P ′)2

]
.

where σ2
α measures the extent of competition between individuals.
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Figure 5.4: A gold-colored Midas cichlid, Cichlasoma (Amphilophus) barlowi,
guarding fry.

5.1.8 Sympatric speciation

Sympatric speciation refers to the formation of two or more descendant species
from a single ancestral species all occupying the same geographical location.
This formation of new species without geographical barriers has often been dis-
missed by the argument that continuous gene flow would prevent the formation
establishment of fixed genetic differences which would be necessary for the for-
mation of species. However, a growing body of empirical data shows that closely
related species often occur in sympatry (without geographical barriers), like the
cichlids in East Africa (Meyer [52]), or the Midan cichlid in Nicaragua (Barlu-
enga et al. [5]), which do not seem to fit the usual requirement of long periods
of geographical isolation.

The most straightforward scenario for sympatric speciation requires disrup-
tive selection favoring two substantially different phenotypes, followed by the
elimination of all intermediate phenotypes. In sexual populations, the stumbling
block preventing sympatric speciation is that mating between divergent ecotypes
constantly scrambles gene combinations, creating organisms with intermediate
phenotypes. However this mixing can be prevented if there is assortative mating
instead of random mating, i.e., mating of individuals that are phenotypically
similar (Doebeli [24]). The study made by Barluenga and Meyer [5] on the
Midan cichlid species of fish in Nicaragua shows the prime role of assortive
mating through color preference with respect to ecological speciation based on
morphological traits as the jaw morph and body shape, in the Midas cichlid
species. The three-spined sticklebacks, freshwater fish, that have been studied
by Dolph Schluter provide an intriguing example of sympatric speciation. He
found that competition favoring fishes at either extreme of body size and mouth
size over those near to the mean (disruptive selection), and the fact that fish
preferred mates with similar size (assortive mating), favored a a divergence into
two subpopulations exploiting different food in different parts of the lake.



Chapter 6

Continuous time
approximation of a model
of an asexual population

6.1 Introduction

In this chapter we will work with a discrete time model for an asexual popu-
lation, taking into account natural selection, and mutation. This model was
introduced by Bürger [11] (p. 123-131), and has played an important role in
several analyses aimed at resolving the problem of how much genetic variation
can be maintained at a balance between mutation and stabilizing selection.

We find, that this model satisfies the Feyman-Kac formulae; and so is very
close to the models worked by Del Moral [22]. So using some asymptotic re-
sults on the Feyman- Kac formulae we are able to obtain a stochastic particle
interpretation of the model.

And finally using some hypothesis on the fitness function (weak selection)
we are able to obtain an approximation in continuous time of the model.

6.2 The model

We consider an effectively infinite, haploid population, in which individuals are
characterized by a trait x (phenotype), where x is an element in the trait space
χ.

In mathematical terms, χ is a locally compact space, in our case a closed
subset of Rd. Trait densities and mutation distributions are taken with respect
to the Lebesgue measure. In the following Bb(χ) will denote the set of bounded
measurable functions on χ and Cb(χ) the set of bounded continuous functions on
χ. The mutation rate of a trait x is denoted by µ(x), 0 ≤ µ(x) ≤ 1. Presently,

114



6.2. THE MODEL 115

it is not assumed that all types have the same mutation rate, though µ = µ(x)
can be constant. Conditioning on the assumption of a mutation event, the
probability density of mutations from trait x to trait y is denoted by u(x, y).
Therefore we have u(x, y) ≥ 0,∫

χ

u(x, y)dy = 1 for all x ∈ χ,

and µ(x)u(x, y) is the fraction of individuals of type y that come through mu-
tation from individuals of type x during one generation.

Let p(n, x) denote the density of individuals with trait x at time n (see [11]).
This means, when the trait space is discrete, that if N(n, x) is the number of
individuals with trait x at time n, and N(n) is the population size at time n
then:

p(n, x) =
N(n, x)
N(n)

.

We will assume that p(n, x) ≤ 1 for all n ∈ N and x ∈ χ.
The fitness for a trait x is denoted by W (x), where W (x) ≥ 0.

We define the mean fitness of the population at time n, by the following
expression

W (n) =
∫
χ

W (x)p(n, x)dx.

Lets recall that we can think W (x) for x ∈ χ as the average density of offspring
of an individual with trait x, so W (x)p(n, x) is the average number of individuals
with trait x at time n+ 1. Then, provided that 0 < W (n) <∞, and proceeding
in a similar way as in (5.1.2) the density of types after selection ps(n, x) becomes

ps(n, x) =
p(n, x)W (x)

W (n)
.

So the dynamics of the population proposed by Bürger is the following, the type
densities evolve according to

p(n+ 1, x) = (1− µ(x))ps(n, x) +
∫
χ

ps(n, y)µ(y)u(y, x)dy. (6.2.1)

So in terms of the trait density (6.2.1) becomes

p(n+ 1, x) =
(∫

χ

W (x)p(n, x)dx
)−1

·
(

(1− µ(x))p(n, x)W (x) +
∫
χ

p(n, y)W (y)µ(y)u(y, x)dy
)
.

(6.2.2)
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6.3 Bürger’s model and the Feynman-Kac for-
mulae

Let M1(χ) be the set of probability measures on χ. From now on for µ ∈M1(χ)
and f ∈ Bb(χ), we will denote by 〈µ, f〉, to the integral over χ of f with respect
to the probability measure µ, that is to say

〈µ, f〉 =
∫
χ

f(x)µ(dx).

Consider ηn ∈M1(χ) with density p(n, x), and a function f ∈ Bb(χ).
Now noting

∫
χ
u(x, y)dy = 1, and changing the order of integration, we

obtain the weak form of equation (6.2.2)∫
χ

f(x)ηn+1(dx) =
(∫

χ

W (x)ηn(dx)
)−1(∫

χ

(1− µ(x))W (x)f(x)ηn(dx)

+
∫
χ

∫
χ

f(x)µ(y)u(y, x)W (y)ηn(dy)dx
)

=
(∫

χ

W (x)ηn(dx)
)−1(∫

χ

∫
χ

f(x)µ(y)u(y, x)W (y)ηn(dy)dx

+
∫
χ

∫
χ

(1− µ(y))W (y)f(y)u(y, x)ηn(dy)dx
)
. (6.3.3)

Let η ∈ M1(χ), we then define the Boltzmann-Gibbs transformation of η, ψ :
M1(χ)→M1(χ) by

ψ(η) =
1

〈η,W 〉
W (x)η(dx). (6.3.4)

We also define the following probability kernel K by,

K(x, dy) = µ(x)u(x, y)dy + (1− µ(y))δx(dy), (6.3.5)

From (6.3.3) we see that (ηn)n≥0 satisfies the following difference equation,

ηn+1 = ψ(ηn)K
≡ Φ(ηn). (6.3.6)

Indeed let f ∈ Cb(χ) then using (6.3.3),

〈(ψ(ηn)K), f〉 =
〈
ψ(ηn),

∫
χ

µ(x)u(x, y)f(y)dy + (1− µ(x))f(x)
〉

=
1

〈ηn,W 〉

∫
χ

(∫
χ

µ(x)u(x, y)f(y)dy + (1− µ(x))f(x)
)
W (x)ηn(dx)

=
1

〈ηn,W 〉

∫
χ

∫
χ

µ(x)u(x, y)f(y)W (x)ηn(dx)dy

+
1

〈ηn,W 〉

∫
χ

(1− µ(x))f(x)W (x)ηn(dx)

= 〈ηn+1, f〉.
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From (6.3.6) it follows that (ηn)n≥0 satisfies the evolution equation satisfied by
the Feynman-Kac models, so following Definition 3.21 in Del Moral in [22] we
find the following particle interpretation:

Definition 9. The interacting particle model associated with the mapping Φ
defined in (6.3.6) and with an initial measure η0 ∈ M1(χ) is an homogeneous
Markov chain ξ(N) taking values at each time n ∈ N in the product space χN ,
that is

ξNn = (ξ(N,1)
n , . . . , ξ(N,N)

n ) ∈ χN .

The initial configuration ξN0 consists of N independent and identically dis-
tributed random variables with common η0. Its elementary transitions on χN

are given in a symbolic integral form by

PNη0 (ξNn ∈ dxn|ξNn−1) =
N∏
p=1

Φ

(
1
N

N∑
i=1

δ
ξ
(N,i)
n−1

(dxpn−1)

)
, (6.3.7)

where dxn = dx1
n × · · · × dxNn is an infinitesimal neighborhood of a point

xn = (x1
n, . . . , x

N
n ) ∈ χN .

A more explicit description of the transitions (6.3.7) in terms of a two stage
genetic type process can already be done. More precisely, using the fact that
the mapping under study Φ is given by (6.3.6) and that by (6.3.4) we have

Ψ
(

1
N

N∑
i=1

δxi

)
=

N∑
i

W (xi)∑N
j=1W (xj)

δxi ,

we can consider the particles as individuals in a population of size N , and we
see that the resulting evolution of these individuals can be decomposed into two
separate mechanisms

ξNn−1
Selection−→ ξ̂Nn−1

Mutation−→ ξNn .

These mechanisms can be modeled as follows:

Selection:

PNη0 (ξ̂Nn−1 ∈ dx|ξn−1) =
N∏
p=1

N∑
i=1

W (ξ(N,i)
n−1 )∑N

j=1W (ξ(N,j)
n−1 )

δ
ξ
(N,i)
n−1

(dxp).

Mutation:

PNη0 (ξn ∈ dz|ξ̂n−1) =
N∏
p=1

K(ξ̂(N,p)
n−1 , dzp). (6.3.8)

Thus, we see that the individuals evolve according to the following rules. In the
selection transition, at each time n ≥ 1, each individual examines the system
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ξNn−1 and chooses randomly a site ξ(N,i)
n−1 , 1 ≤ i ≤ N , with a probability that

depends on the entire configuration ξNn−1 and given by

W (ξ(N,i)
n−1 )∑N

j=1W (ξ(N,j)
n−1 )

.

In this mechanisms the individuals are selected for reproduction according to
their fitness, the most fit individuals being more likely to be selected. In other
words, this transition allows individuals to give birth to new individuals at the
expense of the lesser fit individuals which die.

On the mutation mechanism we replace the individual ξ̂(N,i)
n−1 , 1 ≤ i ≤ N ,

with a new individual (the offspring) according to the probability Kernel (6.3.8).
According to (6.3.5) the trait of the offspring will be chosen in the following way,
with probability 1− µ(ξ̂(N,i)

n−1 ) the offspring carries the same trait of the parent
ξ̂

(N,i)
n−1 ; and with probability µ(ξ̂(N,i)

n−1 ) the offspring is mutated, so we choose the
trait of the offspring according to the probability law U(ξ̂(N,i)

n−1 , y)dy.
So if we define the empirical measures,

ηNn =
1
N

N∑
i=1

δ
ξ
(N,i)
n

, (6.3.9)

the following asymptotic result due to Del Moral, Proposition 2.9 in [23], allows
us to consider the model (6.2.2) as an approximation of the empirical measures
(ηNn )n≥0, when the size of the population is very large (when N →∞).

Proposition 19. For any time n ≥ 0 and p ≥ 1 there exists some finite constant
C

(p)
n <∞, such that for every f ∈ Bb(χ)

E(|〈ηNn , f〉 − 〈ηn, f〉|p)1/p ≤ 1√
N
‖f‖∞C(p)

n .

The above result allows to give a microscopic interpretation of the discrete
time model described by (6.2.2) as an approximation of the empirical measures
(ηNt )t≥0 given by (6.3.9) when the size of the population is large. Given the
fact that we can interpret the empirical measures (ηNt )t≥0 as the distribution of
individuals in a population of size N , where the individuals are characterized
by their traits ξ(N,i) ∈ χ for 1 ≤ i ≤ N .

6.4 Convergence to a continuous-time model

The aim of this section is to obtain a continuous time approximation of the
discrete time model of Bürger [11] (p. 123-131). The main idea is to consider in
a fixed time interval [0, T ], bnT c generations of time length 1/n. Then we make
the length of each generation tend to 0, by increasing the number of generations,
in other words by making n tend to infinity. We assume that between each
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generation of length 1/n the population evolves according to (6.2.2) with fitness
function Wn and mutation rate µn.

To obtain the continuous time model we need to define the malthusian fit-
ness parameter, its relation with the fitness function Wn is given in the following
assumption:

Assumption (A1)
There exists a function m : χ→ R such that m ∈ Bb(χ) and assume that∫

χ

m(x)dx <∞.

Applying (5.1.6) to the subpopulation of trait x (in an individual), we obtain

Wn(x) = exp
(

1
n
m(x)

)
. (6.4.10)

Let us explain the reason of the renormalization by 1/n of the malthusian pa-
rameter in (6.4.10). As the number of generations on the interval [0, T ] increases,
we have to assume that the average number of offspring of each individual (given
by the fitness function Wn) decreases; otherwise the number of individuals born
in each generation will tend to infinity.

We make a second assumption related to the mutation rates µn:

Assumption (A2)
Suppose that there exists a function µ : χ→ [0, 1], and that the mutation rates
at each generation of length 1/n are given by

µn(x) =
1
n
µ(x).

And finally we make an assumption related to the mutation kernel u:

Assumption (A3)
There exist a constant D > 0 and a probability density function ū on χ such
that for all x, y ∈ χ,

u(x, y) ≤ Dū(x− y).

We now fix a certain time T , and we divide the interval [0, T ] in a series of
intervals of length 1/n (the length of each generation), therefore in the interval
[0, T ] we have a total of bnT c generations. We denote the time of each generation
by ti = m

n for i = 0, 1, . . . , bnT c+ 1.
Let us set qn(0, x) = q(0, x) for all n ∈ N (the initial density of individuals

with genotype x), and denote by qn(ti, x) to the density of individuals with
genotype x at generation ti (see [11]). This means, in the case of a discrete trait
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space, that if N(ti, x) is the number of individuals with trait x at the generation
ti, and N(ti) is the population size at the generation ti then:

qn(ti, x) =
N(ti, x)
N(ti)

.

We will assume that qn(ti, x) ≤ 1 for all n ∈ N, x ∈ χ, and i = 0, 1, . . . , bnT c+1.
We also define the mean fitness at time ti for i = 0, 1, . . . , bnT c + 1, by the
following expression

W
n
(ti) =

∫
x∈χ

Wn(x)qn(ti, x)dx.

We will assume that at each generation the population evolves as the discrete
time model (6.2.2), in other words that for ti with i = 0, 1, . . . , bnT c+1, qn(ti, x)
satisfies the following difference equation:

qn(ti+1, x)− qn(ti, x) =
1

W
n
(ti)

(
(1− µn(x))Wn(x)qn(ti, x)

+
∫
χ

Wn(y)µn(y)u(y, x)qn(ti, y)dy −Wn
(ti)qn(ti, x)

)
=

1
W

n
(ti)

(
(Wn(x)−Wn

(ti))qn(ti, x)

+
∫
χ

Wn(y)µn(y)u(y, x)qnti(y)dy − µn(x)Wn(x)qn(ti, x)
)
.

(6.4.11)

For each n ∈ N and x ∈ χ consider the function qn(t, x) : [0, T ]×χ→ R, defined
by:

qn(t, x) =
bnTc∑
i=0

qn(ti, x)1[ti,ti+1)(t). (6.4.12)

The following result allows us to obtain the continuous time approximation of
the discrete time model described by (6.4.11).

Theorem 14. Admit Assumptions (A1), (A2), and (A3). Then the sequence
of functions {qn}n∈N converges pointwise, as n goes to infinity, to the unique
continuous function q : [0, t]× χ→ R satisfying:

q(t, x) = q(0, x) +
∫ t

0

(m(x)−m(s))q(s, x)ds

+
∫ t

0

∫
χ

µ(y)u(y, x)q(s, y)dyds−
∫ t

0

µ(x)q(s, x)ds,

for any x ∈ χ, and t ∈ [0, T ].
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Proof. We start by taking the sum for i = 0, 1, . . . , bntc of (6.4.11), and noting
that qn(·, x) is constant in [ bntcn , t] we obtain

qn(t, x)− qn(0, x) =
bntc∑
i=0

1
W

n
(ti)

(
(Wn(x)−Wn

(ti))qn(ti, x)− µn(x)Wn(x)qn(ti, x)
)

+
bntc∑
i=0

1
W

n
(ti)

∫
χ

Wn(y)µn(y)u(y, x)qn(ti, y)dy.

Using the particular form of Wn in (6.4.10) we can make a Taylor expansion
around zero for fixed x ∈ χ, and we obtain

Wn(x) = 1 +
1
n
m(x) + hn(x), (6.4.13)

the function hn is the residual in Taylor’s Theorem and has the following form

hn(x) =
∫ m(x)

n

0

exp(t)(
m(x)
n
− t)dt. (6.4.14)

Using (6.4.13) we have the following expansion for W
n

with i = 0, 1, . . . , bntc,

W
n
(ti) = 1 +

1
n
mn(ti) + h

n
(ti),

where

mn(ti) =
∫
χ

m(x)qn(ti, x)dx,

and

h
n
(ti) =

∫
χ

hn(x)qn(ti, x)dx.

It is easy to see using the later expansions that

qn(t, x)− qn(0, x) =
bntc∑
i=1

1
W

n
(ti)

(m(x)−mn(ti))
qn(ti, x)

n

+
bntc∑
i=1

1
W

n
(ti)

(hn(x)− hn(ti))qn(ti, x)

+
bntc∑
i=1

1
W

n
(ti)

(∫
χ

µn(y)u(y, x)qn(ti, y)dy
)
−
bntc∑
i=1

µn(x)qn(ti, x)

+
bntc∑
i=1

1
W

n
(ti)

(∫
χ

hn(y)µn(y)u(y, x)qn(ti, y)dy
)
−
bntc∑
i=1

m(x)
n

µn(x)qn(ti, x)

+
bntc∑
i=1

1
W

n
(ti)

(∫
χ

m(y)
n

µn(y)u(y, x)qn(ti, y)dy
)
−
bntc∑
i=1

hn(x)µn(x)qn(ti, x).

(6.4.15)
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Now we define the functions mn, h
n
,W

n
: [0, T ]→ R, as follows,

mn =
bnTc∑
i=0

mn(ti)1[ti,ti+1),

h
n

=
bnTc∑
i=0

hn(ti)1[ti,ti+1),

W
n

=
bnTc∑
i=0

Wn(ti)1[ti,ti+1),

for i = 0, 1, . . . , bntc.
Let us take the first sum of (6.4.15) then we have the following:

bntc∑
i=1

1
W

n
(ti)

(m(x)−mn(ti))
qn(ti, x)

n
=
bntc∑
i=1

(m(x)−mn(ti))
qn(ti, x)

n

+
bntc∑
i=1

(
1− 1

W
n
(ti)

)
(m(x)−mn(ti))

qn(ti, x)
n

=
bntc∑
i=1

(m(x)−mn(ti))
qn(ti, x)

n
+
bntc∑
i=1

(
nmn(s)− hn(s)

n2W
n
(s)

)
(m(x)−mn(ti))

qn(ti, x)
n

=
bntc∑
i=1

(m(x)−mn(ti))
qn(ti, x)

n
+ (m(x)−mn(bntc))qn(bntc, x)(t− bntc)

+
bntc∑
i=1

(
nmn(s)− hn(s)

n2W
n
(s)

)
(m(x)−mn(ti))

qn(ti, x)
n

− (m(x)−mn(bntc))qn(bntc, x)(t− bntc)

=
∫ t

0

(m(x)−mn(s))qn(s, x)ds− (m(x)−mn(bntc))qn(bntc, x)(t− bntc)

+
bntc∑
i=1

(
nmn(ti)− h

n
(ti)

n2W
n
(ti)

)
(m(x)−mn(ti))

qn(ti, x)
n

=
∫ t

0

(m(x)−mn(s))qn(s, x)ds− (m(x)−mn(bntc))qn(bntc, x)(t− bntc)

+
bntc∑
i=1

C(ti, n)(m(x)−mn(ti))
qn(ti, x)

n
(6.4.16)

Where for each ti with i = 0, 1, . . . , bnT c+ 1 we have:

C(ti, n) =
nmn(ti)− n2h

n
(ti)

n2W
n
(ti)

.
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Now let us consider the third sum in (6.4.15) proceeding exactly as before we
obtain:
bntc∑
i=1

1
W

n
(ti)

(∫
χ

µn(y)u(y, x)qn(ti, y)dy
)

=
bntc∑
i=1

(∫
χ

µn(y)u(y, x)qn(ti, y)dy
)

+
bntc∑
i=1

(
1− 1

W
n
(ti)

)(∫
χ

µn(y)u(y, x)qn(ti, y)dy
)

=
∫ t

0

∫
χ

µ(y)u(y, x)qn(s, y)dyds− (t− bntc)
∫
χ

µ(y)u(y, x)qn(bntc, y)dy

+
bntc∑
i=1

C(ti, n)
(∫

χ

µn(y)u(y, x)qn(ti, y)dy
)
. (6.4.17)

Finally taking the fourth sum in (6.4.15) we obtain:

bntc∑
i=1

µn(x)qn(ti, x) =
bntc∑
i=1

µ(x)
n

qn(ti, x) =
∫ t

0

µ(x)qn(s, x)ds− µ(x)qn(ti, x)(t− bntc).

(6.4.18)

Using (6.4.16), (6.4.17), and (6.4.18) in (6.4.15) allows us to express it in the
following form:

qn(t, x)− qn(0, x) =
∫ t

0

(m(x)−mn(s))qn(s, x)ds−
∫ t

0

µ(x)qn(s, x)ds

+
∫ t

0

∫
χ

µ(y)u(y, x)qn(s, y)dyds+H(n, x, t). (6.4.19)

where

H(n, x, t) =
bntc∑
i=1

C(ti, n)(m(x)−mn(ti))
qn(ti, x)

n
+
bntc∑
i=1

1
W

n
(ti)

(hn(x)− hn(ti))qn(ti, x)

+
bntc∑
i=1

C(ti, n)
(∫

χ

µn(y)u(y, x)qn(ti, y)dy
)
−
bntc∑
i=1

m(x)
n

µn(x)qn(ti, x)

−
bntc∑
i=1

1
W

n
(ti)

(∫
χ

hn(y)µn(y)u(y, x)qn(ti, y)dy
)

+
bntc∑
i=1

1
W

n
(ti)

(∫
χ

m(y)
n

µn(y)u(y, x)qn(ti, y)dy
)
−
bntc∑
i=1

hn(x)µn(x)qn(ti, x)

− (t− bntc)
∫
χ

µ(y)u(y, x)qn(bntc, y)dy − µ(x)qn(ti, x)(t− bntc)

−mn(bntc))qn(bntc, x)(t− bntc). (6.4.20)
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We will prove that H(n, x, t)→ 0 as n→∞ uniformly in x and [0, T ]. We will
bound each term of (6.4.20), so let us start with some inequalities that will be
useful. By assumption (A1) the function m is bounded, in other words there
exists M ∈ R+ such that |m(x)| ≤M for all x ∈ χ. Then by (6.4.10) we have:

e−M/n ≤ |Wn(x)| ≤ eM/n. (6.4.21)

Now using that qn ≤ 1, we have for each ti with i = 0, 1, . . . , bnT c + 1 the
following:

W̄n(ti) =
∫
χ

Wn(x)qn(ti, x)dx ≥ e−M/n and,

m̄n(ti) =
∫
χ

mn(x)qn(ti, x)dx ≤M. (6.4.22)

We also have using (6.4.14) that

|hn(x)| ≤
∫ m(x)

n

0

et
(
M

n

)
dt ≤

(
M

n

)2

eM/n, (6.4.23)

and for each ti with i = 0, 1, . . . , bnT c+ 1 we have

|hn(ti)| ≤
∫
χ

|hn(x)|qn(ti, x)dx ≤
(
M

n

)2

eM/n. (6.4.24)

And finally using (6.4.21), (6.4.22), (6.4.23), and (6.4.24) we have that for each
ti with i = 0, 1, . . . , bnT c+ 1:

|C(ti, n)| =

∣∣∣∣∣nmn(ti)− n2h
n
(ti)

n2W
n
(ti)

∣∣∣∣∣
≤ M

n
eM/n +

M2

n2
e2M/n.

We will proceed to bound each term in (6.4.20).

1. First term.-∣∣∣∣ bntc∑
i=1

C(ti, n)(m(x)−mn(ti))
qn(ti, x)

n

∣∣∣∣ ≤ bntc∑
i=1

2M
n

(
M

n
eM/n +

M2

n2
e2M/n

)
≤ 2M

(
M

n
eM/n +

M2

n2
e2M/n

)
T.

2. Second term.-∣∣∣∣ bntc∑
i=1

1
W

n
(ti)

(hn(x)− hn(ti))qn(ti, x)
∣∣∣∣ ≤ bntc∑

i=1

2eM/n

(
M

n

)2

eM/n

≤ 2M
M2

n
e2M/nT.
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3. Third term.-∣∣∣∣ bntc∑
i=1

C(ti, n)
(∫

χ

µn(y)u(y, x)qn(ti, y)dy
) ∣∣∣∣ ≤ 1

n

(
M

n
eM/n +

M2

n2
e2M/n

)∫
χ

qn(ti, y)dy

≤
(
M

n2
eM/n +

M2

n3
e2M/n

)
T.

4. Fourth term.- ∣∣∣∣∣∣
bntc∑
i=1

m(x)
n

µn(x)qn(ti, x)

∣∣∣∣∣∣ ≤
bntc∑
i=1

M

n2
≤ M

n
T.

5. Fifth term.-∣∣∣∣∣∣
bntc∑
i=1

1
W

n
(ti)

(∫
χ

hn(y)µn(y)u(y, x)qn(ti, y)dy
)∣∣∣∣∣∣ ≤

bntc∑
i=1

(
M

n

)2 1
n

∫
χ

qn(ti, y)dy

≤
(
M

n

)2

T.

6. Sixth term.-∣∣∣∣ bntc∑
i=1

1
W

n
(ti)

(∫
χ

m(y)
n

µn(y)u(y, x)qn(ti, y)dy
) ∣∣∣∣ ≤ bntc∑

i=1

eM/nM

n2

∫
χ

qn(ti, y)dy

≤ eM/nM

n
T.

7. Seventh term.-∣∣∣∣ bntc∑
i=1

hn(x)µn(x)qn(ti, x)
∣∣∣∣ ≤ bntc∑

i=1

1
n

(
M

n

)2

eM/n

≤
(
M

n

)2

eM/nT.

8. Eighth term.-∣∣∣∣(t− bntc) ∫
χ

µ(y)u(y, x)qn(bntc, y)dy
∣∣∣∣ ≤ 1

n

∫
χ

qn(bntc, y)dy

≤ 1
n
.

9. Ninth term.-

|µ(x)qn(ti, x)(t− bntc)| ≤ 1
n
.
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10. Tenth term.-

|mn(bntc))qn(bntc, x)(t− bntc)| ≤ M

n
.

So finally using the bounds for each of the terms in (6.4.20) we just computed,
we can conclude that there exists a constant C(M,T ) ≥ 0 such that:

|H(n, x, t)| ≤ C(M,T )
n

. (6.4.25)

Now for any bounded function f : χ× [0, T ]→ R we define:

‖f‖(s) = sup
x∈χ
|f(x, s)|.

We will prove that for a fixed t ∈ [0, T ], the sequence (qn(·, t))n≥0 is Cauchy
uniformly in x, in other words that

lim
n,m→∞

‖qn − qm‖(s) = 0.

So using (6.4.19) we have the following

qn(s, x)− ql(s, x) =
∫ t

0

m(x)(qn(s, x)− ql(s, x))ds

+
∫ t

0

∫
χ

µ(y)u(y, x)(qn(s, y)− ql(s, y))dyds

−
∫ t

0

µ(x)(qn(s, x)− ql(s, x))ds+
∫ t

0

mn(s)(qn(s, x)− ql(s, x))ds

+
∫ t

0

(mn(s)−ml(s))ql(s, x)ds+ (H(n, x, t)−H(l, x, t))

=
∫ t

0

m(x)(qn(s, x)− ql(s, x))ds

+
∫ t

0

∫
χ

µ(y)u(y, x)(qn(s, y)− ql(s, y))dyds

−
∫ t

0

µ(x)(qn(s, x)− ql(s, x))ds+
∫ t

0

m(x)qn(s, x)(qn(s, x)− ql(s, x))ds

+
∫ t

0

∫
χ

m(x)(qn(s, x)− ql(s, x))ql(s, x)ds+ (H(n, x, t)−H(l, x, t)). (6.4.26)

Recalling the fact that m is bounded, then there exists a constant M , such that
m(x) ≤M for all x ∈ χ. So from (6.4.25), (6.4.26), and using assumption (A3)
we obtain

|qn(s, x)−ql(s, x)| ≤M
∫ t

0

‖qn − ql‖(s)ds+
∫ t

0

∫
χ

µ(y)u(y, x)‖qn − ql‖(s)dyds
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−
∫ t

0

µ(x)‖qn − ql‖(s)ds+M

∫ t

0

qn(s, x)‖qn − ql‖(s)ds

+M

∫ t

0

∫
χ

‖qn − ql‖(s)ql(s, x)ds+ |H(n, x, t)−H(l, x, t)|

≤ (3M +D + 1)
∫ t

0

‖qn − ql‖(s)ds+ C(M,T )
∣∣∣∣ 1n − 1

l

∣∣∣∣ .
Then by an application of Gromwall’s Lemma, it follows

‖qn − ql‖(t) ≤ C(M,T )
∣∣∣∣ 1n − 1

l

∣∣∣∣ e(3M+D+1)T ,

So from the above inequality we have

lim
n,l→∞

‖qn − ql‖(t) = 0.

We can then conclude that, for each t ≥ 0 and x ∈ χ, the sequence (qn(t, x))n≥0

is Cauchy, so it exists q(t, x) ∈ R such that

lim
n→∞

qn(t, x) = q(t, x). (6.4.27)

Let us consider the function q : [0, t]×χ→ R, obtained in (6.4.27); we will prove
that it is solution to a differential equation. First we see using assumption (A1)
that ∫

χ

m(x)qn(s, x)dx ≤
∫
χ

m(x)dx <∞, (6.4.28)

so using (6.4.28) and an application of The Dominated Convergence Theorem
we obtain:

m(s) =
∫
χ

m(x)q(s, x)dx = lim
n→∞

∫
χ

m(x)qn(s, x)dx.

Now we dominate each of the integrals in (6.4.19) in the following form∫ t

0

(m(x)−mn(s))qn(s, x)ds ≤ t
(
M +

∫
χ

m(x)dx
)
,∫ t

0

∫
χ

µ(y)u(y, x)qn(s, y)dyds ≤
∫ t

0

∫
χ

µ(y)u(y, x)dyds,∫ t

0

µ(x)qn(s, x)ds ≤
∫ t

0

µ(x)ds. (6.4.29)

The fact that m is integrable with respect to the Lebesgue measure in χ, that m,
q and µ are bounded, and that

∫
χ
u(y, x)dx ≤ 1, implies that each of the integrals

in (6.4.29) are finite. Therefore by taking limits in (6.4.19) and applying The
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Dominated Convergence Theorem we obtain in an integral form the differential
equation satisfied by q:

q(t, x) = lim
n→∞

qn(t, x) = lim
n→∞

(
qn(0, x) +

∫ t

0

(m(x)−mn(s))qn(s, x)ds
)

+ lim
n→∞

(∫ t

0

∫
χ

µ(y)u(y, x)qn(s, y)dyds−
∫ t

0

µ(x)qn(s, x)ds+ C(n, x, t)
)

= q(0, x) +
∫ t

0

(m(x)−m(s))q(s, x)ds

+
∫ t

0

∫
χ

µ(y)u(y, x)q(s, y)dyds−
∫ t

0

µ(x)q(s, x)ds. (6.4.30)

On the other hand let us consider for each n ∈ N and t ∈ [0, T ] the probability
measures ηnt , ηt with densities qn(t, ·), and q(t, ·) respectively.

From (6.4.12) we know that for for fixed n ∈ N, ηnt has the following form

ηnt =
bnTc∑
i=0

ηnti1[ti,ti+1)(t), (6.4.31)

so we can consider (6.4.31) as a function ηn : [0, T ]→M1(χ), which is constant
in each interval [ti, ti+1) and jumps at time ti+1, for i = 0, 1, . . . , bnT c, according
to the probability transitions defined in (6.3.7).

Using (6.4.27) we know that for fixed t ∈ [0, T ], the sequence of densities
(qn(t, ·))n∈N converges point-wise to the density q(t, ·) as n → ∞. So let us
fix t ∈ [0, T ] and consider a bounded measurable function f ∈ Bb(χ) such that
‖f‖∞ ≤ 1, then it is easy to see that

|〈ηnt , f〉 − 〈ηt, f〉| ≤
∣∣∣∣ ∫
χ

f(x)(qn(t, x)− q(t, x))dx
∣∣∣∣

≤
∫
χ

|qn(t, x)− q(t, x)|dx.

Therefore if we consider the variation norm defined for µ1 and µ2 in M1(χ) by

‖µ1 − µ2‖ = sup
f∈Bb(χ),‖f‖∞≤1

|〈µ1, f〉 − 〈µ2, f〉|,

then by an application of Scheffé’s Theorem we have the following result

lim
n→∞

‖ηnt − ηt‖ ≤ lim
n→∞

∫
χ

|qn(t, x)− q(t, x)|dx = 0.

Therefore the sequence of probability measures (ηnt )n∈N converges, for fixed
t ∈ [0, T ], in the variation norm in M1(χ) to the probability measure ηt as
n→∞.

In the next section we will see that the flow of measures ηt for t ∈ [0, T ]
generated by the densities q(t, ·) satisfies the continuous time Feynman-Kac
formulae.
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6.5 The continuous time model

In the previous section we obtained the model (6.4.30) as an approximation in
continuous time for the discrete time model (6.2.2). In this section we will link
this model with the continuous time Feynman-Kac formulae; in fact we will
prove that the flow of measures generated by the densities q(t, x) satisfies the
continuous time Feynman-Kac formulae.

We recall that the dynamics of the density of traits in continuous time sat-
isfies the following differential equation

dq(t, x)
dt

=
(
m(x)−

∫
χ

m(y)q(t, y)dy
)

+
∫
χ

µ(y)u(y, x)q(t, y)dy − µ(x)q(t, x),

(6.5.32)
now writing the weak form of (6.5.32), we obtain for a function f ∈ Cb(χ)∫
χ

f(x)q(t, x)dx−
∫
χ

f(x)q(0, x)dx

=
∫ t

0

∫
χ

f(x)
(
m(x)−

∫
χ

m(y)q(s, y)
)
q(x, s)dydxds

+
∫ t

0

∫
χ×χ

f(x)µ(y)u(y, x)q(s, y)dydxds−
∫ t

0

∫
χ

f(x)µ(x)q(t, x)dxds

=
∫ t

0

∫
χ×χ

f(y)m(y)q(s, x)q(s, y)dydxds−
∫ t

0

∫
χ×χ

f(x)m(y)q(s, y)q(s, x)dydxds

+
∫ t

0

∫
χ×χ

f(x)µ(y)u(y, x)q(s, y)dydxds−
∫ t

0

∫
χ×χ

f(y)µ(y)u(y, x)q(s, y)dydxds

=
∫ t

0

∫
χ×χ

(f(y)− f(x))m(x)q(s, x)q(s, y)dydxds

+
∫ t

0

∫
χ×χ

(f(x)− f(y))µ(y)u(y, x)q(s, y)dydxds.

Now if we consider the measure ηs ∈ MF (χ) with density q(s, x) then (6.5.33)
becomes∫
χ

f(x)ηt(dx) =
∫
χ

f(x)η0(dx) +
∫ t

0

∫
χ×χ

(f(x)− f(y))µ(y)u(y, x)ηs(dy)dxds

+
∫ t

0

∫
χ×χ

(f(y)− f(x))m(x)ηs(dy)ηs(dx)ds,

which we can express in the following form

d

dx
〈ηt, f〉 =

〈
ηt,

∫
χ

(f(x)− f(y))µ(y)u(y, x)dx+
∫
χ

(f(y)− f(x))m(y)u(y, x)ηt(dy)
〉
,

(6.5.33)
so by (6.5.33), the flow of measures (ηt)t≥0 satisfies the Feynman-Kac formulae
(see p.14 in Del Moral [23]).
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Following Del Moral we have the following interacting particle approxima-
tion. Let

(ξt)t≥0 = (ξ1
t , . . . , ξ

N
t )t≥0,

be a Markov process taking values in χN , where N ≥ 1 denotes the number of
particles.

At time t ≥ 0 the generator LN of the particle system is defined as the sum
of two generators

LN = LN1 + LN2

1. The first generator LN1 which is called the mutation generator is defined
for φ(x1, . . . , xN ) = φ1(x1) . . . φN (xN ), with φi ∈ Cb(χ) for i = 1, . . . , N
as

LN1 (φ) =
N∑
i=1

∏
j 6=i

φj(xj)
∫
χ

(φi(xi)− φi(y))µ(y)u(y, x)dy.

2. The second generator LN2 , which is called the selection generator, is de-
fined for any φ(x1, . . . , xN ) = φ1(x1) . . . φN (xN ), with φi ∈ Cb(χ) for
i = 1, . . . , N , and for any x = (x1, . . . , xN ) ∈ χN by

LN2 (φ)(x) =
1
N

N∑
i=1

N∑
j=1

(φ(xi,j)− φ(x))m(xj),

where for 1 ≤ i, j ≤ N and x = (x1, . . . , xN ) ∈ χN , xi,j is the element of
χN given by

∀ 1 ≤ k ≤ N , xi,jk =
{
xk, if k 6= i;
xj , if k = i.

The following result from Del Moral, Theorem 3.19 in [23], shows that for any
t ≥ 0 the empirical measures given by

ηNt =
1
N

N∑
i=1

δξit(·), (6.5.34)

are good approximations of ηt, t ≥ 0, for N large enough.

Theorem 15 (Del Moral [23]). There exists a finite constant CT > 0, such that
for all φ ∈ Bb(χ) and all 0 ≤ t ≤ T ,

E[|〈ηNt , φ〉 − 〈ηt, φ〉|] ≤ CT
‖φ‖√
N

where E designates the expectation relative to the process (ξt)t≥0.
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The above result allows to give a microscopic interpretation of the continuous
time model described by (6.5.32) in terms of the empirical measures (ηNt )t≥0

given by (6.5.34). We can interpret the empirical measures (ηNt )t≥0 as the
distribution of individuals in a population of size N , where the individuals are
characterized by their traits ξi ∈ χ for 1 ≤ i ≤ N . So the population evolves
according to the following dynamics:

Between jumps due to the interaction between individuals, at a random
time τ a given individual ξiτ , with probability µ(ξiτ ) (the mutation rate), will
be replaced by a new individual with trait randomly chosen according to the
mutation law µ(y)u(x, y). In other words at a random time τ , an individual
ξiτ gives birth to an offspring and dies, with probability 1− µ(ξiτ ) the offspring
carries the same trait ξiτ ; and with probability µ(ξiτ ) the offspring is mutated. If
a mutation occurs the trait of the offspring is chosen according to the mutation
law u(ξiτ , y)dy.

At a different random time σ we introduce a competitive interaction between
the individuals, during this stage a given individual ξiσ will be replaced by a
new particle ξjσ, 1 ≤ j ≤ N , with probability proportional to its ”adaptation”
(fitness) measured in terms of the malthusian parameter m(ξjσ).

So the model described (6.5.32) can be thought as an approximation when
the size of the population is very large (when N →∞) of the empirical measures
(ηNt )t≥0 given by (6.5.34).



Chapter 7

Continuous time
approximation for a model
of a sexual population

7.1 Introduction

In this chapter we will discuss two deterministic models to describe the dynamics
of a sexual population, in discrete and continuous time.

We will also find a continuous time approximation for the discrete time
model, using a weak selection hypothesis similar to the one we used in the
chapter 6 where we discussed an asexual population.
We will consider a modification for haploid populations of the multilocus model
developed by Nagylaki [54] and Nagylaki et al. [55], originally used to derive the
gametic frequencies under selection and recombination for a diploid population.

The models we present in this section are under the approach of quantitative
genetics, we are not interested in the size of the population that we can consider
constant, and the fitness is given a priori and depends only on the genotypes.

7.2 Discrete time model

We consider an haploid randomly mating population with discrete nonoverlap-
ping generations, in which two sexes don’t need to be distinguished. Selection
acts only through differential viabilities, which are constant, although the model
can be formulated for frequency -and time- dependent fitness. The number of
multiallelic loci, the linkage map (or recombination distribution), and epistasis
(the presence of interactions between the genes at different loci), are arbitrary.
We suppose that the genetic system consists of l loci and lk alleles A(k)

xk at locus
k, for xk = 1, . . . , lk. We use the multi-index x = (x1, . . . , xl) as an abbreviation
for the individual A(1)

x1 A
(2)
x2 . . . A

(l)
xl . We will call χ to the space of all possible

132
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genotypes, and we will write that x = (x1, . . . , xl) ∈ χ to say that the individual
with genotype A(1)

x1 A
(2)
x2 . . . A

(l)
xl ∈ χ. We remark that the space of genotypes χ

is discrete.
Let us denote the frequency of the genotype x by p(x). Once again this

means that if N(n, x) is the number of gametes with trait x, and N is the
population size then:

p(x) =
N(n, x)
N(n)

.

There are l1 . . . ll different l-locus gametes. Collectively, the gamete frequen-
cies form a vector p, a probability vector in the corresponding simplex. The
(marginal) frequency of A(k)

xk in gametes is

p(k)
xk

=
∑
x6=xk

px

where the sum runs over all muti-indices x with k-th component fixed as xk.
Let W (x) denote the fitness of genotype x. We define the mean fitness of

the population
W (p) =

∑
x∈χ

W (x)p(x)

respectively.
Let us now derive the recursion relations for the gamete frequencies. We

define {x, y → z} as the event that the genotype of the offspring of parents with
genotypes x and y is z. Then the frequency of gamete z in the next generation
is

p′(z) = W
−2 ∑

x,y∈χ
W (x)W (y)p(y)p(z)P ({x, y → z}), (7.2.1)

because selection acts before recombination, and where P (x, y → z) is the prob-
ability that parents with genotypes x and y give birth to an offspring with
genotype z.
Let L = {1, . . . , l} be the set of all loci and let {I, J} be a partition of L, (i.e.
I ∩ J = ∅ and I ∪ J = L). Assume that for an individual z = (z1, . . . , zl) I
is the subset of loci with alleles inherited from one parent, and J is the subset
of loci inherited from the other. Since for the moment we are not interested
in the parents, the partitions {I, J} and {J, I} will be identified. Without loss
of generality assume that the locus 1 is included in I, and remark that since
J = L\ I the partition {I, J} is completely determined by specifying I . There-
fore from now on we will identify the partition {I, J} with I. Consider a couple
of vectors x, y ∈ χ and a partition I of L. We will denote by xIyJ the vector
with coordinates

(xIyJ)i =
{
xi, if i ∈ I;
yi, if i ∈ J .

From now on I will denote all the set of all possible partitions of L, in other
words I = {I ⊂ L : 1 ∈ I}.
To describe recombination, we first have to talk about cross-overs which refers
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Figure 7.1: Recombination in the model.

to the special kind of exchange of chromosome parts between two chromosomes,
in meiosis. Suppose we have a couple of individuals with genotypes x, y, and a
partition I ∈ I, and lets call RI the event where there is reassociation (cross-
overs) of the genes at the loci in I inherited by one of the parents, with the genes
at the loci J = L \ I inherited from the other. We denote by rI the probability
of the event RI , and therefore we have that

∑
I∈I rI = 1.

We remark that the event RI is in general different from the event that
parents with genotypes x and y, give birth to an offspring with genotype xIyJ
or yIxJ . To see this suppose that x = y, then the genotype of the offspring z
will satisfy that z = xIyJ and that z = yIxJ even if there are no cross-overs
associated with the partition I.
In order to express P ({x, y → z}) in terms of the recombination probabilities
rI , we condition on the events RI with I ∈ I, and we obtain the following:

P ({x, y → z}) =
∑
I∈I

P ({x, y → z} | RI)P (RI) =
∑
I∈I

P ({x, y → z} | RI)rI .

(7.2.2)
Now conditioned on RI , the offspring of parents with genotypes x and y has a
genotype given by xIyJ or yIxj , each with the same probability, therefore:

P ({x, y → z} | RI) =

 1/2, if z = xIyJ ;
1/2, if z = yIxJ ;
0, i.o.c.

(7.2.3)
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So using (7.2.3) in (7.2.2) it follows that:

P ({x, y → z}) =
1
2

∑
I∈I

rI [1{z=xIyJ} + 1{z=yIyJ}]. (7.2.4)

A simple calculation using (7.2.4) shows that∑
x,y∈χ

W (x)W (y)p(x)p(y)P ({x, y → z})

=
1
2

∑
x∈χ

∑
I∈I

rIW (zIxJ)W (xIzJ)p(zIxJ)p(xIzJ)

+
1
2

∑
y∈χ

∑
I∈I

rIW (zIyJ)W (yIzJ)p(zIyJ)p(yIzJ)

=
∑
x∈χ

∑
I∈I

rIW (zIxJ)W (xIzJ)p(zIxJ)p(xIzJ), (7.2.5)

and finally noting that
∑
x∈χW (x)W (z)p(x)p(z) = p(z)W (z)W we can express

(7.2.5) as∑
x,y∈χ

W (x)W (y)p(x)p(y)P ({x, y →z}) = W (z)p(z)W −
∑
x∈χ

∑
I∈I

rIW (x)W (z)p(x)p(z)

+
∑
x∈χ

∑
I∈I

rIW (zIxJ)W (xIzJ)p(zIxJ)p(xIzJ).

(7.2.6)

Therefore, substitution of (7.2.6) into (7.2.1) yields the recursion relations for
the frequencies of the genotypes under the combined action of selection and
recombination:

p′(z) = p(z)
W (z)
W

− θ(z).

Here,

θ(z) =
1

W
2

∑
x

∑
I

rI(W (x)W (z)p(x)p(z)−W (xIzJ)W (zIxJ)p(xIzI)p(zIxJ)),

represents a measure of linkage disequilibrium in genotype z. (Nagylaki 1992,
Chapter 8.2; Nagylaki 1993).

Remark 2. If in the discrete time model for haploid populations developed by
Doebeli in [24], we assume random mating rather than assortive mating, then
his model reduces to (7.2.1).

7.3 A continuous deterministic model for a sex-
ual population

A multilocus model in continuous time was developed and analyzed by Shahsha-
hani [72] and Akin [1]; see also Pasekov [57] and Svirezhev and Passekov [74].
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As in the case of the model of Nagylaki we introduced in section 7.2, we will
consider a modification for haploid populations of the model of Shahshahani
[72] originally used to develop in continuous time the gametic frequencies of a
large randomly mating population of diploid organisms evolving solely under
the influence of fitness selection and recombination.

Let q(t, x) be the frequency of individuals with genotype x at time t ≥ 0.
This means that if N(t, x) is the number of individuals with trait x at time t,
and N(t) is the population size at time t then:

q(t, x) =
N(t, x)
N(t)

.

The birth rates of all genotypes are assumed to be equal and we denote them
by b, while we use d(x) for the death rate of the genotype x. The model is given
by the following system of ordinary differential equations,

dq(t, x)
dt

= q(t, x)(m(x)−m(t))− θ̃(t, x),

where m(x) = b− d(x) is the malthusian fitness of the genotype x, m(t) is the
mean fitness, and

θ̃(t, x) =
∑
y∈χ

∑
I∈I

brI(q(t, x)q(t, y)− q(t, xIyJ)q(t, yIxJ)),

measures linkage disequilibria in the genotype x.

7.4 Convergence to a continuous time model

In this section we are interested in obtaining a continuous time approximation of
the model of Nagylaki [54] we described in section 7.2. The idea is to consider on
a time interval [0, T ], a series of bnT c generations of time length 1/n, and then
accelerate time by making the time length between different generations tend
to 0. Between each generation of length 1/n we suppose that the population
evolves according to (7.2.1) with fitness function Wn.

In order to obtain a continuous time model we need first to define a malthu-
sian fitness parameter m, the relation of this malthusian fitness parameter with
the fitness function Wn is given in the following assumption:

Assumption (M)
There exists a bounded function m : χ→ R.
The relation with the fitness function Wn is given by the following expression,
for each x ∈ χ

Wn(x) = exp
(

1
n
m(x)

)
. (7.4.7)

This idea of performing a weak-selection approximation is similar to the one we
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explained in (5.1.6). As the time length between generations become smaller,
the number of generations on a fixed time T increases, so we suppose that the
average number of offspring of each individual (given by the fitness function
Wn) decreases. This is the reason behind the renormalization by 1/n of the
malthusian parameter m in (7.4.7).

We now fix a certain time T , and we divide the interval [0, T ] in a series
of intervals of length 1/n (the length of each generation), therefore in the in-
terval [0, T ], we have a total of bnT c generations. We denote the time of each
generation by ti = m

n for i = 0, 1, . . . , bnT c+ 1.
We set qn(0, x) = q(0, x) for all n ∈ N (the initial density of individuals

with genotype x), and qn(ti, x) as the density of individuals with genotype x
at generation ti. This means that if N(ti, x) is the number of individuals with
trait x at the generation ti, and N(ti) is the population size at the generation
ti then:

qn(ti, x) =
N(ti, x)
N(ti)

.

And we define the mean fitness at time ti for i = 0, 1, . . . , bnT c + 1 by the
following expression

W
n
(ti) =

∑
x∈χ

Wn(x)qn(ti, x).

In order to make the continuous time approximation of (7.2.1), we suppose that
for each ti with i = 0, 1, . . . , bnT c+ 1, qn(ti, x) satisfies the following difference
equation:

qn(ti+1, x) = qn(ti, x)
Wn(x)
W

n
(ti)
− θn(ti), (7.4.8)

where

θn(ti) =
1

(W
n
(ti))2

∑
y∈χ

∑
I

rI(Wn(x)Wn(y)qn(ti, x)qn(ti, y)

−Wn(xIyJ)Wn(yIxJ)qn(ti, xIyJ)qn(ti, yIxJ)),

We fix t ∈ [0, T ] and for i = 0, 1, . . . , bntc we take the difference between the
frequencies in each generation for a fixed genotype x ∈ χ, so using (7.4.8) it
follows that:

qn(ti+1, x)− qn(ti, x)

=
1

W
n
(ti)

(Wn(x)−Wn
(ti))qn(ti, x)− θn(ti). (7.4.9)

For each n ∈ N and x ∈ χ consider the function qn(t, x) : [0, T ]×χ→ R, defined
by:

qn(t, x) =
bnTc∑
i=0

qn(ti, x)1[ti,ti+1)(t).

The following result allows us to obtain the continuous time approximation of
the discrete time model described by (7.4.9).
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Theorem 16. Admit Assumption (M). Then the sequence of functions {qn}n∈N
converges pointwise, as n goes to infinity, to the unique continuous function
q : [0, t]× χ→ R satisfying for any x ∈ χ, and t ∈ [0, T ]:

q(0, x) +
∫ t

0

(m(x)−m(s))q(s, x)ds−
∫ t

0

θ(s)ds, (7.4.10)

where
m(s) =

∑
x∈χ

m(x)q(s, x)dx,

and
θ(s) =

∑
y∈χ

∑
I

rI(q(s, x)q(s, y)− q(s, xIyJ)q(s, yIxJ)).

Proof. We start by taking the sum of (7.4.9) for i = 0, 1, . . . , bntc, and noting
that qn(t, x) is constant in [ bntcn , t] we obtain

qn(t, x)− qn(0, x)

=
bntc∑
i=1

1
W

n
(ti)

(Wn(x)−Wn
(ti))qn(ti, x)−

bntc∑
i=1

θn(ti).

Then making a Taylor expansion of Wn around zero for fixed x ∈ χ, we obtain

Wn(x) = 1 +
1
n
m(x) + hn(x), (7.4.11)

the function hn is the residual in Taylor’s Theorem and is given by

hn(x) =
∫ m(x)

n

0

exp(t)(
m(x)
n
− t)dt. (7.4.12)

So using (7.4.11) we have the following expansion for W
n

with i = 0, 1, . . . , bntc,

W
n
(ti) = 1 +

1
n
m(ti) +

1
n2
h(ti),

where

mn(ti) =
∑
x∈χ

m(x)qn(ti, x)dx,

and

h
n
(ti) =

∑
x∈χ

hn(x)qn(ti, x)dx.
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It is easy to see using the later expansions that

qn(t, x)− qn(0, x) =
bntc∑
i=1

1
W

n
(ti)

(m(x)−mn(ti))
qn(ti, x)

n

+
bntc∑
i=1

1
W

n
(ti)

(h(x)− hn(ti))qn(ti, x) +
bntc∑
i=1

θ̃n(ti), (7.4.13)

Now we define the functions mn, h
n
,W

n
: [0, T ]→ R, as follows,

mn(t) =
bnTc∑
i=0

mn(ti)1[ti,ti+1)(t),

h
n
(t) =

bnTc∑
i=0

h
n
(ti)1[ti,ti+1)(t),

W
n
(t) =

bnTc∑
i=0

W
n
(ti)1[ti,ti+1)(t).

Proceeding in a similar way as in (6.4.19), we can express (7.4.13) in the follow-
ing form

qn(t, x)− qn(0, x) =
∫ t

0

(m(x)−mn(s))qn(s, x)ds+
∫ t

0

θ̃n(s)ds+H(n, x, t),

(7.4.14)

where

θ̃n(t) =
bnTc∑
i=0

θn(ti)1[ti,ti+1)(t).

And

H(n, x, t) =
bnTc∑
i=0

C(ti, n)(m(x)−mn(s))
qn(ti, x)

n
− θ̃n(bnT c)(t− bnT c)

− (m(x)−mn(bnT c))qn(bnT c, x)(t− bnT c)

+
bntc∑
i=1

1
W

n
(ti)

(h(x)− hn(ti))qn(ti, x), (7.4.15)

where for each ti with i = 0, 1, . . . , bnT c+ 1 we have:

C(ti, n) =
nmn(ti)− h

n
(ti)

n2W
n
(ti)

.
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We will prove that H(n, x, t)→ 0 as n→∞ uniformly in x and [0, T ]. We will
bound each term of (6.4.20), so let us start with some inequalities that will be
useful. By assumption (M) the function m is bounded, in other words there
exists m ∈ R+ such that |m(x)| ≤ m for all x ∈ χ. Then by (6.4.10) we have:

e−m/n ≤ |Wn(x)| ≤ em/n. (7.4.16)

Now using that qn ≤ 1, we have for each ti with i = 0, 1, . . . , bnT c + 1 the
following:

W̄n(ti) =
∫
χ

Wn(x)qn(ti, x)dx ≥ e−m/n and,

m̄n(ti) =
∫
χ

mn(x)qn(ti, x)dx ≤ m. (7.4.17)

We also have using (7.4.12) that

|hn(x)| ≤
∫ m(x)

n

0

et
(m
n

)
dt ≤

(m
n

)2

em/n, (7.4.18)

and for each ti with i = 0, 1, . . . , bnT c+ 1 we have

|hn(ti)| ≤
∫
χ

|hn(x)|qn(ti, x)dx ≤
(m
n

)2

em/n. (7.4.19)

Also recalling that the genotypic space χ is finite, we denote by |χ|, its cardi-
nality, and we obtain for each ti with i = 0, 1, . . . , bnT c+ 1:

|θ̃n(ti)| =
∣∣∣∣ 1
(W

n
(ti))2

∑
y∈χ

∑
I

rI(Wn(x)Wn(y)qn(ti, x)qn(ti, y)

−Wn(xIyJ)Wn(yIxJ)qn(ti, xIyJ)qn(ti, yIxJ))
∣∣∣∣

≤ e−2m/n
∑
y∈χ

∑
I

rI2e2m/n = 2|χ|.

And finally using (7.4.16), (7.4.17), (7.4.18), and (7.4.19) we have that for each
ti with i = 0, 1, . . . , bnT c+ 1:

|C(ti, n)| =

∣∣∣∣∣nmn(ti)− h
n
(ti)

n2W
n
(ti)

∣∣∣∣∣ ≤ m

n
e−m/n +

m2

n4
.

We will proceed to bound each term in (7.4.15).

1. First term.-∣∣∣∣∣∣
bnTc∑
i=0

C(ti, n)(m(x)−mn(s))
qn(ti, x)

n

∣∣∣∣∣∣ ≤
bnTc∑
i=0

2
m

n

(
m

n
e−m/n +

m2

n4

)
≤ 2mT.
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2. Second term.-

|(m(x)−mn(bnT c))qn(bnT c, x)(t− bnT c)| ≤ 2m
n
.

3. Third term.-∣∣∣∣∣∣
bntc∑
i=1

1
W

n
(ti)

(h(x)− hn(ti))qn(ti, x)

∣∣∣∣∣∣ ≤
bntc∑
i=1

2
(m
n

)2

≤ 2m2

n
T.

4. Fourth term.- ∣∣∣θ̃n(bnT c)(t− bnT c)
∣∣∣ ≤ 2|χ|

n
.

So finally using the bounds for each of the terms in (7.4.19) we just computed,
we can conclude that there exists a constant C(m) ≥ 0 such that:

|H(n, x, t)| ≤ C(m,T )
n

. (7.4.20)

We will prove that for a fixed t ∈ [0, T ], the sequence (qn)n≥0 is Cauchy
uniformly in x, in other words that

lim
n,m→∞

‖qn − qm‖(t) ≡ lim
n,m→∞

sup
x∈χ
|qn(t, x)− qm(t, x)| ≡ 0.

So using (7.4.14) we have the following

qn(t, x)− ql(t, x) =
∫ t

0

m(x)(qn(s, x)− ql(s, x))ds

+
∫ t

0

(mn(s)qn(s, x)−ml(s)ql(s, x))ds

−
∫ t

0

(θ̃n(s)− θ̃l(s))ds+ (H(n, x, t)−H(l, x, t)). (7.4.21)

First we will bound the second integral in expression (7.4.21), its easy to see
using the fact that we have a finite space χ, that there exists a constant K1 not
depending on n, l, such that

mn(s)qn(s, x)−ml(s)ql(s, x) = (mn(s)−ml(s))qn(s, x) +ml(s)(qn(s, x)− ql(s, x))

=
∑
y∈χ

m(y)(qn(s, y)− ql(s, y))qn(s, x)

+
∑
y∈χ

m(y)ql(s, y)(qn(s, x)− ql(s, x))

≤ K1‖qn − ql‖(s). (7.4.22)
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Proceeding in a similar way, there exists a constant K2 such that

θ̃n(s)− θ̃l(s) =
∑
y∈χ

∑
I

rI(qn(s, x)qn(s, y)− qn(s, xIyJ)qn(s, yIxJ))

−
∑
y∈χ

∑
I

rI(ql(s, x)ql(s, y)− ql(s, xIyJ)ql(s, yIxJ))

=
∑
y∈χ

∑
I

rIq
n(s, x)(qn(s, y)− ql(s, y))

+
∑
y∈χ

∑
I

rIq
l(s, y)(qn(s, x)− ql(s, x))

+
∑
y∈χ

∑
I

rIq
n(s, xIyJ)(qn(s, yIxJ)− ql(s, yIxJ))

+
∑
y∈χ

∑
I

rIq
l(s, yIxJ)(qn(s, xIyJ)− ql(s, xIyJ))

≤ K2‖qn − ql‖(s). (7.4.23)

It is easy to see using (7.4.20), (7.4.22), and (7.4.23), in (7.4.21), that

qn(t, x)− ql(t, x) ≤
(

sup
x∈χ
|m(x)|+K1 +K2

)∫ t

0

‖qn − ql‖(s)ds

+ C(m,T )
∣∣∣∣ 1n − 1

l

∣∣∣∣ .
So from the above inequality and by an application of Gromwall’s Lemma, it
follows that

lim
n,l→∞

‖qn − ql‖(t) = 0.

We can then conclude that, for each t ∈ [0, T ] and x ∈ χ, the sequence
(qn(t, x))n≥0 is Cauchy, so it exists q(t, x) ∈ R such that

lim
n→∞

qn(t, x) = q(t, x). (7.4.24)

Lets consider the function q : [0, T ]×χ→ R, obtained in (7.4.24); we will prove
that its solution to a differential equation.

It is no difficult to see that all the terms in the integrals of (7.4.14) are
bounded. Indeed this follows from the fact that the space χ is finite, and that
qn(x, t) ≤ 1, for all x ∈ χ, t ∈ [0, T ] and n ∈ N.

Moreover by an application of the Dominated Convergence Theorem we can
take limits in (7.4.14) and obtain

q(t, x) = lim
n→∞

qn(t, x) = q(0, x) + lim
n→∞

∫ t

0

(m(x)−mn(s))qn(s, x)ds

+ lim
n→∞

(∫ t

0

θ̃n(s)ds+ C(n, x, t)
)

= q(0, x) +
∫ t

0

(m(x)−m(s))q(s, x)ds−
∫ t

0

θ(s)ds, (7.4.25)
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where
m(s) =

∑
x∈χ

m(x)q(s, x)dx = lim
n→∞

∑
x∈χ

m(x)qn(s, x)dx,

and
θ(s) =

∑
y∈χ

∑
I

rI(q(s, x)q(s, y)− q(s, xIyJ)q(s, yIxJ)).

Remark 3. Equation (7.4.25) is a particular case of the model of Shashahani
[72] described in section 7.3, when the birth rates satisfy that b = 1. This allows
to consider the model of Shashahani (7.4.25) as a weak selection continuous
time approximation when b = 1, of the model of Nagylaki (7.2.1) for haploid
populations.



Chapter 8

Individual-based
probabilistic model for
sexual populations

8.1 Introduction

In this paper we are interested in modeling the evolution of a sexual population,
taking into account genotypic variation given by recombination and natural se-
lection through the competition between the individuals. To this end we use a
microscopic approach, i.e. we focus on the stochastic evolution of each individ-
ual, we use a multilocus genetics model to describe recombination which is a
fundamental factor in the variability of sexual populations.
The second objective of this work is to understand the phenomena of sympatric
speciation, which remains an important problem in biology. By sympatric speci-
ation we mean the apparition of new species without any geographical isolation
between them. The study of sympatric speciation has gained much attention
in the last few years and several discrete time macroscopic models have been
proposed (Doebeli [24], [25]), (Bürguer [12], [13]), but without any real justifica-
tion from the microscopic point of view. The advantage of our approach is that
we can understand better the biological assumptions under which our model is
based.
This work begins with the microscopic description of a population with a finite
number of individuals, in which each individual is characterized by its genotype,
which is described by a vector of allelic values for a given number of loci. Follow-
ing [19] the dynamics of the population is modeled by a Markov point process,
in which the stochastic dynamics of the population is described in continuous
time by its generator taking into account recombination in the birth of a new
individual, and death as influenced by the traits of an individual and its inter-
action with the rest of the population. The nature of recombination relies in the

144
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fact that when an individual is born its genotype will be a random combination
of the allelic values of the genotypes of the parents. We refer to the state space
formed by all the possible vector of allelic values as the space of genotypes,
and we will call genotype to the vector of allelic values. We also incorporate
assortive mating in our model by assuming that probability of mating between
a couple of individuals increases by the similarity of their phenotypes.
The process will be a solution to a stochastic differential equation driven by Pois-
son random measures (section 8.2). We will give an algorithmic construction of
the process in section 8.3, that we will help us to realize certain simulations, for
different parameters. Next in section 8.4 we will prove that the point popula-
tion process is a measure-valued semimartingale and we will compute some of its
characteristics. Then we will work on a particular renormalization of the point
process based on a large population limit, to obtain a deterministic integro-
differential equation (section 8.5), which in the case that the total number of
possible phenotypes is finite or infinite, reduces to the models obtained in [72]
and [25] respectively (section 8.6).

8.2 Population point process

In the following we will consider an haploid population in which a given trait
value (skin color, eye color, sex, etc.) is determined additively by l diallelic loci.

We model the evolution of the population as a stochastic interacting individ-
ual system, where each individual is characterized by a vector of allelic values
or genotype, x = (x1, . . . , xl), where the coordinate xi, gives the value of the
allele at the ith loci for i = 1, . . . , l. For the particular choice of the space of all
possible genotypes χ we will consider two cases:

• We will consider χ = {0, 1}l, in the case that the number of total possible
phenotypes is finite (see [24]), like eye color or the number of abdominal
bristles on a fruit fly.

• In the case of quantitative traits, such as body weight, brain volume,
i.e. traits which exhibit almost continuous variation, we will consider
χ = [0, 1]l.

The trait value of an individual will be determined additively by its vector
of allelic values that is to say we have a model without resampling; in other
words, for a given individual with genotype, x = (x1, . . . , xl), its phenotype or
trait, is given by

p(x) =
l∑
i=1

xi.

This allows us to consider the trait space as

• χp = {0, 1, . . . , l} if the genotypic space χ is {0, 1}l,
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• or χp = [0, l] if the genotypic space χ is [0, 1]l.

We will consider a model with sexual recombination, and the approach to
describe it is the following. The genotype z ∈ χ of the offspring of a couple of
individuals x, y ∈ χ will be randomly chosen according to the probability law
D(x, y; z)µ(dz). For the particular form D and µ we consider depending on χ,
two cases:

• Suppose that we have a finite space of genotypes, i.e. we consider that
χ = {0, 1}l (see Section 2). To describe sexual recombination in this
example we will need the following.
Let L = {1, . . . , l} be the set of all loci and let {I, J} be a partition
of L, (i.e. I ∩ J = ∅ and I ∪ J = L). Assume that for an individual
z = (z1, . . . , zl) I is the subset of loci with alleles inherited from one
parent, and J is the subset of loci inherited from the other one. Since for
the moment we are not interested in the parents, the partitions {I, J} and
{J, I} will be identified. Without loss of generality assume that the locus
1 is included in I, and remark that since J = L \ I the partition {I, J}
is completely determined by specifying I . Therefore from now on we will
identify the partition {I, J} with I.

Consider a couple of vectors x, y ∈ χ and a partition I of L. We will
denote by xIyJ the vector with coordinates

(xIyJ)i =
{
xi, if i ∈ I;
yi, if i ∈ J .

From now on I will denote the set of all possible partitions of L, in other
words I = {I ⊂ L : 1 ∈ I}.
For each partition I ∈ I we denote by rI the probability of reassociation
of the genes at the loci in I, inherited from one parent, with the genes
at the loci J , inherited from the other one (see [11] p. 54-56). In other
words rI is the probability that the genotype of the offspring of a couple
of individuals x, y ∈ χ is xIyJ , which implies that

∑
I∈I rI = 1.

We take the measure µ defined on χ as the uniform measure on the space
of genotypes χ, in other words

µ(dz) =
∑
x∈χ

δx(dz),

And define
D(x, y; z) =

∑
I∈I

rI1{xIyJ}(z).

• Consider a continuous space of genotypes χ, i.e. χ = [0, 1]l. In this case,
we take as the measure µ the Lebesgue measure in Rl, and D(x, y; z) as
the density of a probability measure on χ, for example a Gaussian law
with mean equal to (x+ y)/2 and conditioned to stay on χ (see [25]).
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We will denote by MF (χ) the set of all finite non negative measures on χ. Let
also M denote the subset of MF (χ) consisting in all the finite point measures:

M =

{
n∑
i=1

δxi , n ≥ 0, x1, . . . , xn ∈ χ

}
.

Here and below, δx denotes the Dirac mass at x. For any m ∈ MF (χ) , any
measurable function f ∈ χ, we set 〈m, f〉 =

∫
χ
fdm.

Our objective is to study the stochastic process νt, taking its values in M,
and describing the distribution of individuals and genotypes at time t. We define

νt =
N(t)∑
j=1

δXit ,

N(t) ∈ N denotes the number of individuals alive at time t, and X1
t , . . . , X

N(t)
t

describing the individuals’ genotypes (in χ).

In our model we will introduce assortive mating, assuming that the individu-
als in the population with similar traits mate more frequently. Several examples
of assortive mating can be found in models of sexual populations: Doebeli [24]
[25], Bürger [13], Matessi et al. [50], Gavrilets and Boake [30]. There also exists
strong evidence that assortive mating occurs in several species in nature, like
with the cichlid fishes [5], or the funnel-web spiders [62].

Following [24] we define a mating function α(p(x), p(y)), which expresses the
probability of mating between a couple of individuals with genotypes x, y ∈ χ,
we remark that the mating function is symmetric and depends only on their
phenotypes p(x), p(y) ∈ χp.

Following Doebeli (see [25]), in our model we consider that all the individuals
have the same per capita birth rate b. So for a population ν =

∑I
i=1 δxi and a

couple of genotypes in the population xi, xj ∈ χ, we define a birth rate by

b(p(xi), p(xj)) =
bα(p(xi), p(xj))1{i6=j}∑N
j=1,j 6=i α(p(xi), p(xj))

, (8.2.1)

the indicator function only means that we do not allow an individual to mate
with itself, and as we can see from (8.2.1) we have to normalize the birth rate by
the total amount of mating the individual xi participates in, so that if we take
the total contribution of the individual xi to the offspring pool, this is equal to
b, in other words

N∑
j=1

b(p(xi), p(xj)) =
N∑
j=1

bα(p(xi), p(xj))1{i6=j}∑N
j=1,j 6=i α(p(xi), p(xj))

= b.

We also define for a population ν =
∑I
i=1 δxi and a genotype x ∈ χ, a death

rate d(p(x), (U ◦ p) ∗ ν(x))=d(p(x),
∑I
i=1 U(p(x) − p(xi))) of individuals with
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genotype x. U denotes the interaction kernel affecting mortality. Note that
the birth and death rates, and the interaction kernel U depend uniquely on the
phenotype of the individuals. And finally let D(x, y; z)µ(dz) the probability
that the offspring of two individuals with genotypes x, y respectively, give birth
to an individual with genotype z.

Thus the population has the following dynamics. The initial population
is characterized by a (possibly random) counting measure ν0 ∈ M at time 0.
Each couple of individuals with genotypes x, y ∈ χ at time t has an exponen-
tially distributed random birth ”clock” with parameter b(p(x), p(y)). And each
individual with genotype x ∈ χ has an additional exponentially distributed ran-
dom death ”clock”, independent of its associated birth ”clocks”, with parameter
d(p(x), (U ◦ p) ∗ ν(x)).

If the birth clock of a couple of individuals with genotypes x, y ∈ χ rings, they
produce an offspring with a genotype given by z according to the probability
law D(x, y; z)µ(dz). If the death clock of an individual rings, this individual
dies and disappears.
When one of this events occurs all clocks are reset to 0.

8.2.1 Construction of the process

Let us justify the construction of a Markov process which follows the dynamics of
the population we described in the previous section. We will make the assump-
tion that the trait dependency is at most linear in the death rate. Specifically
we will work under the following hypotheses:

Assumptions (C1)
There exist constants d̄, Ū such that for each ν =

∑N
i=1 δxi and for x, y ∈ χ,

d(p(x),(U ◦ p) ∗ ν(x)) ≤ d̄(1 +N),

U(x) ≤ Ū .

We assume that there exists a constant C > 0 and a function D̄ : χ→ R, such
that for each x, y ∈ χ these two conditions hold:

D(x, y; z) ≤ CD̄(z) and
∫
χ

D̄(z)µ(dz) = 1. (8.2.2)

Let us see that the two conditions in (8.2.2) are satisfied for the particular two
possible choices for D and µ at the beginning of section 8.2.

• In the first case we assume that the space of genotypes is finite and given
by χ = {0, 1}l. In this case we take µ(dz) =

∑
x∈χ δx(dz) and the recom-

bination kernel as D(x, y; z) =
∑
I∈I rI1{xIyJ}(z). Now let us see that if

we take D(z) = 1/2l, and C = 2l, this particular choice satisfies (8.2.2).
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So let us take x, y ∈ χ, and consider the following:

D(x, y; z) =
∑
I∈I

rI1{xIyJ}(z) ≤
∑
I∈I

rI = 1 = CD(z),

and∫
χ

D(z)µ(dz) =
∑
x∈χ

∫
χ

D(z)δx(dz) =
∑
x∈χ

D(x) =
∑
x∈χ

∑
I∈I

rI1{xIyJ}(x)

=
∑
I∈I

rI = 1.

• In the second case the space of genotypes is given by χ = [0, 1]l. In
this case we take the measure µ as the Lebesgue measure on χ and the
recombination kernel D(x, y; z) as the density of a probability measure on
χ, which we assume is continuous for each x, y ∈ χ. So if we consider
D(z) = 1 and C = 1, it is straightforward using the fact that D(x, y; z)
is a density, to see that D(x, y; z) ≤ CD(z) for any x, y ∈ χ. Now let us
check the second condition in (8.2.2):∫

χ

D(x, y; z)µ(dz) ≤
∫
χ

dz = 1.

Finally we assume that there exists a constant α ≥ 0 such that for x, y ∈ χ,

α ≤ α(p(x), p(y)) ≤ 1.

These assumptions ensure that there exists a constant C̄, such that the total
event rate, for a population counting measure ν =

∑N
i=1 δxi is bounded by

C̄N(1 +N).
Let us give a pathwise description of the population process (νt)t≥0, the fol-
lowing is inspired in the work of Fournier and Méléard [29]. We introduce the
following notation.

Definition 10. Let N∗ = N \ 0. Let H = (H1, H2, . . . ,Hk, . . . ) :M :→ (χ)N∗

be defined by H(
∑n
i=1 δxi) = (xσ(1), xσ(2), . . . , xσ(n), 0, . . . , 0, . . . ), where xσ(1) �

· · · � xσ(n), for some arbitrary order on χ. (for example the lexicographic order).

This function H allows us to overcome the following (purely notational)
problem. Choosing a genotype uniformly among all genotypes in a population
ν ∈ M consists in choosing i uniformly in (1, . . . , 〈ν, 1〉), and then in choosing
the individual number i (from the arbitrary order point of view). The genotype
of such an individual is thus Hi(ν).
We now introduce the probabilistic elements we will need.

Definition 11. Let (Ω,F ,P) be a (sufficiently large) probability space. On this
space, we consider the following three independent random elements:
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• a M-valued random variable ν0 (the initial distribution),

• a Poisson random measure M1(ds, di, dj, dz, dθ) on [0,∞)×N∗×N∗×χ×
R+, with intensity measure ds(

∑
k≥1 δk(di))(

∑
k≥1 δk(dj))

µ(dz)dθ (the birth Poisson measure).

• a Poisson random measure M2(ds, di, dθ) on [0,∞) × N∗ × R+, with in-
tensity measure ds(

∑
k≥1 δk(di))dθ (the death Poisson measure).

Definition 12. Assume (C1). A (F)t≥0-adapted stochastic process ν = (ν)t≥0

is called a population process if a.s., for all t ≥ 0,

νt = ν0 +
∫

[0,t)×N∗×N∗×R+×χ
δz1{i≤〈νs−,1〉}1{j≤〈νs−,1〉}1{i6=j}

1{θ≤bα(p(Hi(νs−)),p(Hj(νs−)))D(Hi(νs−),Hj(νs−);z)ᾱ(p(Hi(νs−)))−1}M1(ds, di, dj, dθ, dz)

−
∫

[0,t)×N∗×R+
δHi(νs−)1{i≤〈νs−,1〉}1{θ≤d(p(Hi(νs−)),(U◦p)∗νs−(Hi(νs−))M2(ds, di, dθ),

(8.2.3)

where

ᾱ(p(Hi(νs−))) =
〈νs−,1〉∑
j=1,j 6=i

α(p(Hi(νs−)), p(Hj(νs−))). (8.2.4)

The indicator functions in θ are related to the rates. As mentioned in section
8.2, in the first indicator function that involves θ we have to normalize the rate
of mating between a couple of individuals by the function ᾱ so that the birth
rate of each individual remains constant and equal to b. In other words we
normalize by the total amount of mating each individual participates in (see
[25]) .
We will obtain now the infinitesimal generator for the population process. The
following work is adapted from Fournier and Méléard [29]

Proposition 20. Assume (C1) and consider a solution (νt)t≥0 to equation
(8.2.3) such that E[supt≤T 〈νt, 1〉2] < +∞, for all T ≥ 0. Then (ν)t≥0 is a
Markov process. Its infinitesimal generator L is defined for all measurable and
bounded mappings φ :M→ R, all ν in M, by (8.4.14) below. In particular the
law of (ν)t≥0 does not depend on the chosen order �.

Proof. The fact that (ν)t≥0 is a Markov process is classical. Let us now consider
a function φ as in the statement. With our notation ν0 =

∑〈ν0,1〉
i=1 δHi(ν0).

Now using that a.s., φ(νt) = φ(ν0) +
∑
s≤t(φ(νs− + (νs − νs−)) − φ(νs)), we



8.2. POPULATION POINT PROCESS 151

obtain

φ(νt) = φ(ν0) +
∫

[0,t)×N∗×N∗×R+×χ
(φ(νs− + δz))− φ(νs−))

1{θ≤bα(p(Hi(νs−)),p(Hj(νs−)))D(Hi(νs−),Hj(νs−);z)ᾱ(p(Hi(νs−)))−1}

1{i≤〈νs−,1〉}1{j≤〈νs−,1〉}1{i6=j}M1(ds, di, dj, dθ, dz)

+
∫

[0,t)×N∗×R+
(φ(νs− − δHi(νs−))− φ(νs−))1{i≤〈νs−,1〉}

1{θ≤d(p(Hi(νs−)),(U◦p)∗νs−(Hi(νs−))}M2(ds, di, dθ).

Taking expectations, we obtain

E[φ(νt)] = E[φ(ν0)]

+ E

[ ∫ t

0

〈νs,1〉∑
i=1

〈νs,1〉∑
j=1

∫
χ

(φ(νs + δz)− φ(νs))

bα(p(Hi(νs)), p(Hj(νs)))1{i6=j}∑〈νs,1〉
j=1,j 6=i α(p(Hi(νs)), p(Hj(νs)))

D(Hi(νs−), Hj(νs−); z)µ(dz)ds
]

+ E

[ ∫ t

0

〈νs,1〉∑
i=1

(φ(νs − δ(Hi(νs)))− φ(νs))d(p(Hi(νs)), (U ◦ p) ∗ νs(Hi(νs))ds
]
.

(8.2.5)

Now using the conditions in Assumption (C1) and the fact that φ is bounded,
we have the following:

E

[ ∫ t

0

〈νs,1〉∑
i=1

〈νs,1〉∑
j=1

∫
χ

|φ(νs + δz)− φ(νs)|

bα(p(Hi(νs)), p(Hj(νs)))1{i6=j}∑〈νs,1〉
j=1,j 6=i α(p(Hi(νs)), p(Hj(νs)))

D(Hi(νs−), Hj(νs−); z)µ(dz)ds
]

≤ 2b‖φ‖∞E
[ ∫ t

0

〈νs, 1〉ds
]
≤ 2b‖φ‖∞tE

[
sup
s≤t
〈νs, 1〉

]
≤ 2b‖φ‖∞tE

[(
sup
s≤t
〈νs, 1〉2 + 1

)]
< +∞, (8.2.6)
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where the last term is finite by hypothesis. Now we will bound the death term
in (8.2.5), once again using assumptions (C1) we obtain:

E

[ ∫ t

0

〈νs,1〉∑
i=1

|φ(νs − δ(Hi(νs)))− φ(νs)|d(p(Hi(νs)), (U ◦ p) ∗ νs(Hi(νs))ds
]

≤ 2‖φ‖∞E
[ ∫ t

0

〈νs,1〉∑
i=1

d̄(1 + 〈νs, 1〉)ds
]

≤ 2d̄‖φ‖∞E
[ ∫ t

0

(1 + 〈νs, 1〉2)ds
]

≤ 2d̄‖φ‖∞tE
[(

1 + sup
s≤t
〈νs, 1〉2

)]
< +∞. (8.2.7)

So using (8.2.6), (8.2.7) and applying Fubini’s Theorem in (8.2.5) we have:

E[φ(νt)] = E[φ(ν0)]

+
∫ t

0

E

[ 〈νs,1〉∑
i=1

〈νs,1〉∑
j=1

∫
χ

(φ(νs + δz)− φ(νs))

bα(p(Hi(νs)), p(Hj(νs)))1{i6=j}∑〈νs,1〉
j=1,j 6=i α(p(Hi(νs)), p(Hj(νs)))

D(Hi(νs−), Hj(νs−); z)µ(dz)
]
ds

+
∫ t

0

E

[ 〈νs,1〉∑
i=1

(φ(νs − δ(Hi(νs)))− φ(νs))d(p(Hi(νs)), (U ◦ p) ∗ νs(Hi(νs))
]
ds.

Differentiating this expression, evaluating at t = 0, leads to

Lφ(ν) =
〈ν,1〉∑
i=1

〈ν,1〉∑
j=1

∫
χ

bα(p(xi), p(xj))1{i6=j}∑〈ν,1〉
j=1,j 6=i α(p(xi), p(xj))

D(xi, xj ; z)(φ(ν + δz)− φ(ν))µ(dz)

+
〈ν,1〉∑
i=1

(φ(ν − δxi)− φ(ν))d(p(xi), (U ◦ p) ∗ ν(xi)). (8.2.8)

Now we will show the existence and moment properties for the population
process.

Theorem 17. (i)Assume (1) and that E[〈ν0, 1〉] < ∞. Then the population
process defined by (8.2.3) is well defined on R+.
(ii)If furthermore for some p ≥ 1, E[〈ν0, 1〉p] <∞, then for any T <∞,

E[ sup
s∈[0,T ]

〈νs, 1〉p] <∞. (8.2.9)
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Proof. We will first prove (ii). We consider the process (ν)t≥0. We introduce
for each n the following stopping time τn = {t ≥ 0, 〈νt, 1〉 ≥ n}. Then using
Assumption (C1) and dropping the non-positive terms,

sup
s∈[0,t∧τn]

〈νs, 1〉p ≤ 〈ν0, 1〉p +
∫

[0,t)×N∗×N∗×R+×χ
((〈νs, 1〉+ 1)p − 〈νs, 1〉p)

1{θ≤bα(p(Hi(νs−)),p(Hj(νs−)))D(Hi(νs−),Hj(νs−);z)ᾱ(p(Hi(νs−)))−1}

1{i≤〈νs−,1〉}1{j≤〈νs−,1〉}1{i6=j}M1(ds, di, dj, dθ, dz),

Using the inequality (1 + x)p − xp ≤ Cp(1 + xp−1), taking expectations, and
noting that

∫
χ
D(x, y; z)µ(dz) = 1 for each x, y ∈ χ, we thus obtain, the value

Cp changing from line to line:

E[ sup
s∈[0,t∧τn]

〈νs, 1〉p] ≤ E[〈ν0, 1〉p]

+ E

(∫ t∧τn

0

〈νs−,1〉∑
i=1

〈νs−,1〉∑
j=1

Cpb(1 + 〈νs−, 1〉p−1)
α(p(xi), p(xj))1{i6=j}∑〈ν,1〉
j=1,j 6=i α(p(xi), p(xj))

ds

)

≤ Cp
(

1 + E

(∫ t

0

(1 + 〈νs∧τn , 1〉p)ds
))

.

So we conclude using the Gronwall’s Lemma that for any T < ∞, there exists
a constant Cp,T , not depending on n, such that

E[ sup
t∈[0,T∧τn]

〈νt, 1〉p] ≤ Cp,T . (8.2.10)

As in Fournier and Méléard [29] we deduce that the sequence τn converges
a.s. to infinity. Indeed, if this is not the case, we can find T0 < ∞ such that
εT0 = P(supn τn < T0) > 0, this implies that E[supt∈[0,T∧τn]〈νt, 1〉p] ≥ εT0n

p,
which leads to a contradiction with (8.2.10). Now using Fatou’s Lemma and
letting n tend to infinity in (8.2.10) we obtain (8.2.9).

Point (i) is a consequence of Point (ii). Indeed, one builds the solution (ν)t≤0

step by step. One only has to check that the sequence of jump instants τn goes
a.s. to ∞ as n tends to ∞. But this follows from (8.2.9) with p = 1.

8.3 Simulation

8.3.1 Simulation algorithm

In this section we give an algorithmic construction of the population process in-
troduced in (8.2.3), using a variation of the algorithms constructed by Fournier
and Méléard in [29] and Champagnat et al. in [19].
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Step 0. We start by simulating the initial state ν0 and set T0 = 0.

Step 1. Then we compute the total event rate, which is given by m(0) =
m1(0) +m2(0), where

m1(0) = b〈ν0, 1〉 m2(0) = d̄〈ν0, 1〉(1 + 〈ν0, 1〉)

Simulate τ1 as an exponentially distributed random variable, with rate m(0),
and we set T1 = T0 + τ1. Then we set νt = ν0 for t < T1. Then with probability
m1/m0, and m2/m0 choose to go to Step 1.1, or Step 1.2 respectively.

Step 1.1. Choose randomly i and j from {1, . . . , 〈ν0, 1〉}2. Choose the genotype
of the offspring according to the law D(Hi(ν0), Hj(ν0); z)µ(dz). Do nothing
with probability
1−bα(p(Hi(ν0)), p(Hj(ν0)))D(Hi(ν0), Hj(ν0); z)1{i6=j}/CD̄(z)ᾱ(p(Hi(ν0)) where
ᾱ is given in (8.2.4), otherwise add a new individual to the population with geno-
type z.

Step 1.2. Choose randomly i from {1, . . . , 〈ν0, 1〉}. Then with probability
1−d(Hi(ν0), (U ◦p)∗ν(Hi(ν0)))/d̄(1+ 〈ν0, 1〉 do nothing, otherwise remove the
ith individual from the population.

Step 2. Compute the total event rate given by m(T1) = m1(T1) + m2(T1),
where

m1(T1) = b〈νT1 , 1〉 m2(T1) = d̄〈νT1 , 1〉(1 + 〈νT1 , 1〉)
Simulate τ2 as an exponentially distributed random variable, with rate m(T1),
and we set T2 = T1 + τ2. Then we set νt = νT1 for t ∈ [T1, T2) and so on.

8.3.2 Simulation examples and sympatric speciation

In this section we will show simulations of some particular examples. As men-
tioned in Section 5.8 the most straightforward scenario for sympatric speciation
is characterized by two conditions: assortive mating, and disruptive selection fa-
voring two phenotypes; so we will check in the following simulations that under
these two conditions sympatric speciation holds. We will begin by describing
the different parameters we will be using in our simulations.

In the following simulations we consider a discrete genotypic space, specifi-
cally χ = {0, 1}l. We consider that the population has a constant intrinsic grow
rate, which we will denote by b, that does not depend on the particular phe-
notypic value of the individuals. Following the above discussion we introduce
assortive mating, assuming that individuals in the population with similar traits
mate more frequently. To be explicit, we choose this mating function as:

α(x, y) = exp(−θ(x− y)2), (8.3.11)
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Figure 8.1: Initial density of individuals.

(see for example [13]).
The degree of assortive mating is given by the parameter θ, if the value of θ
is high we have a high degree of assortativeness, while taking θ = 0 we obtain
random mating, which means that the probability of mating for any couple of
individuals in the population is always 1.
To include disruptive selection in our simulations, then following Doebeli [24],
we consider a symmetric bimodal resource distribution. For this we use the
function

R1(x) = R0 · exp
(

(x− c/4)2

2µ2

)
and

R2(x) = R0 · exp
(

(x− 3c/4)2

2µ2

)
then we set,

R(x) = min{R1(x), R2(x)}. (8.3.12)

We remark that the two minima of this function are c/4 and 3c/4, this implies
that individuals with traits near these two minima will have an ecological ad-
vantage over the others by a better exploit of the resources. The parameter µ
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Figure 8.2: θ = 0, Random mating.

determines the strength of the competition between the individuals. A small
value of µ indicates a high level of competition, meanwhile for large values of µ
we obtain that the competition is less intense.
Another aim of these simulations is to show that sympatric speciation is a
very common phenomenon in nature. To favor the appearance of speciation
we will consider symmetric competition instead of asymmetric, in other words
we consider the following interaction kernel which is modification of the logistic
competition model of Kisdi in [40]:

U(x− y) =
2
K

(
1− 1

1 + 1.2 exp(−4(x− y)2)

)
. (8.3.13)

The parameterK scales the strength of the competition as well as the population
size. Finally the death parameter takes the following form:

d(x, U ∗ ν(x)) = R(x) ·
∫
χ

U(x− y)ν(dy).

• We simulated the population for a lapse of 1000 units of time.
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Figure 8.3: θ = 0.0001.
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Figure 8.4: θ = 0.01.

• We took the number of loci in the genotypes of the individuals as l = 20,
so the genotypic space is χ = {0, 1}20.

• The birth rate is b = 5, and the parameter K in the interaction kernel
(8.3.13) is K = 1.

• For the bimodal resource distribution we took K0 = 1, µ = 0.05, and
c = 20 in other words we favor the phenotypes with values 5 and 15.

• For the genotype of the offspring we used the recombination law we de-
scribed in section 8.2 for a discrete space of genotypes, with rI = 219 for
all I ∈ I.

• Finally in other to study how assortive mating favors the appearance of
speciation, we will vary the parameter θ in (8.3.11), we will show the
results of the simulations for θ = 0.0001, 0.01, 0.1, 100 and random mating
which is the case when θ = 0.

We simulated an initial distribution of N = 1000 individuals. To this end we
simulated the value at each loci according to a Bernoulli distribution with pa-
rameter 0.5. In Fig. 8.1 we see the plot of the initial density of individuals,
which is unimodal, with individuals concentrated around the phenotype with
value 10.
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Figure 8.5: θ = 1.
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Figure 8.6: θ = 100.

Fig. 8.2 shows the case when θ = 0 which corresponds to random mating, in
this case the mating function in (8.3.11) reduces to α = 1. As we can see from
the picture the population is still concentrated around the phenotype 10, in
other words we see no evidence of speciation in this case. In this case even with
the bimodal resource distribution the continuous gene flow allowed by random
mating does not allow the formation of two different modes.
In the next couple of pictures (Fig. 8.2 and Fig. 8.4) we introduce assortive
mating with small values of θ. And we see that even with small amounts of
assortment a certain degree of speciation starts to form, but it is not enough to
induce the formation of two modes in the density of the population.
Now in Fig. 8.5 we see that the level of bimodality increases with respect to

the previous simulations, and finally in Fig. 8.6 we observe that the density of
individuals is bimodal and we have two maxima in the density of the population
at the phenotypes 5 and 15 with a minimum at 10. We can give the following
interpretation, with θ = 100 the degree of assortment is high enough two induce
the formation of two modes reproductively isolated of each other, corresponding
to the phenotypes 5 and 15. This formation of a bimodal distribution appears
typically after 1000 units of time, which implies that it forms relatively fast.
Also we can conclude from the previous pictures that the degree of bimodality
increases with the level of assortment, and that in the extreme case of random
mating the distribution remains essentially unimodal. So these simulations sup-
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Figure 8.7: No bimodal resource distribution R = 1, θ = 0.01.

port the assumption we detailed in Section 5.8 that assortive mating is a key
ingredient in the phenomena of sympatric speciation.
Finally Fig. 8.7 shows a simulation with strong assortive mating (θ = 100) but

with no bimodal resource distribution, in other words we took the function R in
(8.3.12), as R ≡ 1. So we have no ecological advantage for any phenotype over
the others, unlike the previous cases. Then from the picture we can see that
even with strong assortive mating there is no evidence of bimodality in the den-
sity of the population. Without disruptive selection favoring two phenotypes,
assortive mating is not enough to induce sympatric speciation.
Therefore from the results of these simulations we can conclude that under the
presence of strong assortive mating and disruptive selection favoring a couple of
phenotypes in the population, sympatric speciation can be a common phenom-
ena in nature. Another important fact is that in our model sympatric speciation
occurs rather fast (around 1000 units of time) unlike speciation induced by ge-
ographical barriers which requires large periods of time. This is supported by
the empirical evidence found by Barluenga et al. [5] for the cichlid fishes.
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8.4 Martingale properties

In this section we follow Fournier and Méléard [29] and give the martingale
properties of the process (νt)t≥0, which are fundamental for our approach.
In order to do this, assume that ν ∈ M then for each x ∈ supp(ν) we consider
the following function T x : M → M defined by T x(ν) = ν − δx. Then using
this function we can write the infinitesimal generator of the process, defined by
(8.2.8), in the following form:

Lφ(ν) =
〈ν,1〉∑
i=1

〈ν,1〉∑
j=1

∫
χ

bα(p(xi), p(xj))D(xi, xj ; z)∑〈ν,1〉
j=1 α(p(xi), p(xj))− α(p(xi), p(xi))

(φ(ν + δz)− φ(ν))µ(dz)

−
〈ν,1〉∑
i=1

bα(p(xi), p(xi))D(xi, xj ; z)∑〈ν,1〉
j=1 α(p(xi), p(xi))− α(p(xi), p(xi))

(φ(ν + δxi)− φ(ν))

+
〈ν,1〉∑
i=1

(φ(ν − δxi)− φ(ν))d(p(xi), (U ◦ p) ∗ ν(xi))

=
∫
χ

∫
χ

∫
χ

bα(p(x), p(y))D(x, y; z)∫
χ
α(p(x), p(y))T x(νs)(dy)

(φ(ν + δz)− φ(ν))µ(dz)T x(νs)(dy)νs(dx)

+
∫
χ

(φ(ν − δx)− φ(ν))d(p(x), (U ◦ p) ∗ νs(x))νs(dx). (8.4.14)

Theorem 18. Assume (C1), and that for some p ≥ 2, E[〈ν0, 1〉] <∞.
(i)For all measurable functions φ from M into R such that for some constant
C, for all ν ∈M, |φ(ν))|+ |Lφ(ν)| ≤ C(1 + 〈ν, 1〉p), the process

φ(νt)− φ(ν0)−
∫ t

0

Lφ(νs)ds,

is a càdlàg (Ft)t≥0)-martingale starting from 0.
(ii)Point (i) applies to any function φ(ν) = 〈ν, f〉q, with 0 ≤ q ≤ p− 1 and with
f bounded and measurable on χ.
(iii) For such a function f , the process

Mf
t =〈νt, f〉 − 〈ν0, f〉

−
∫ t

0

∫
χ×χ×χ

bα(p(x), p(y))D(x, y; z)∫
χ
α(p(x), p(y))T x(νs)(dy)

f(z)µ(dz)T x(νs)(dy)νs(dx)ds

+
∫ t

0

∫
χ

f(x)d(p(x), (U ◦ p) ∗ νs(x))νs(dx)ds, (8.4.15)

is a càdlàg square integrable martingale starting from 0 with quadratic variation
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given by

〈Mf 〉t =
∫ t

0

∫
χ×χ×χ

bα(p(x), p(y))D(x, y; z)∫
χ
α(p(x), p(y))T x(νs)(dy)

f2(z)µ(dz)T x(νs)(dy)νs(dx)ds

+
∫ t

0

∫
χ

f2(x)d(x, (U ◦ p) ∗ νs(x))νs(dx)ds. (8.4.16)

Proof. First of all, note that point (i) is immediate thanks to Proposition 2 and
(8.2.9). Point (ii) follows from a straightforward computation using (8.4.14). To
prove (iii), we first assume that E[〈ν0, 1〉3] <∞. We apply (i) with φ(ν) = 〈ν, f〉.
This yields that Mf is a martingale. To compute its bracket, we first apply (i)
with φ(ν) = 〈ν, f〉2, and obtain that

〈νt, f〉2 − 〈ν0, f〉2

−
∫ t

0

∫
χ×χ×χ

bα(p(x), p(y))(2f(z)〈νs, f〉+ f2(z))∫
χ
α(p(x), p(y))T x(νs)(dy)

D(x, y; z)µ(dz)T x(νs)(dy)νs(dx)ds

−
∫ t

0

∫
χ

(−2f(x)〈νs, f〉+ f2(x))d(x, (U ◦ p) ∗ νs(x))νs(dx)ds, (8.4.17)

is a martingale. On the other hand we use Itô’s formula to compute 〈νt, f〉2
from (8.4.15). We obtain

〈νt, f〉2 − 〈ν0, f〉2

−
∫ t

0

2〈νs, f〉
∫
χ×χ×χ

f(z)
bα(p(x), p(y))D(x, y; z)∫
χ
α(p(x), p(y))T x(νs)(dy)

µ(dz)T x(νs)(dy)νs(dx)ds

+
∫ t

0

2〈νs, f〉
∫
χ

f(x)d(x, (U ◦ p) ∗ νs(x))νs(dx)ds− 〈Mf 〉t, (8.4.18)

is a martingale. Comparing (8.4.17) and (8.4.18) leads to (8.4.16). The exten-
sion to the case where only E[〈ν0, 1〉2] <∞ is straightforward, since even in this
case, E[〈Mf 〉t] <∞ thanks to (8.2.9) with p = 2.

8.5 Large-population renormalizations of the individual-
based process

In this section we are interested in a particular sequence of renormalizations
(XK

t )K∈N of the microscopic model for sexual populations introduced in (8.2.3).
These series of renormalizations are done in the following manner, we increase
the initial size of the population (which is of order K), while decreasing the
size of the individuals and the intensity of their interaction (which we assume
of order 1/K). The result of this section is that for each T > 0 the sequence of
renormalized process (XK

t )K∈N converges in law in the space D([0, T ],MF (χ)
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as K goes to infinity to the unique solution ξ ∈ C([0, T ],MF (χ)) of the following
equation: for any bounded function f : χ→ R

〈ξt, f〉 = 〈ξ0, f〉+
∫ t

0

∫
χ×χ×χ

bα(p(x), p(y))f(z)∫
χ
α(p(x), p(y))ξs(dy)

D(x, y; z)µ(dz)ξs(dy)ξs(dx)ds

−
∫ t

0

∫
χ

f(x)d(x, U ∗ ξs(x))ξs(dx)ds. (8.5.19)

This result is similar to the results due to Fournier and Méléard [29], and to
Champagnat and Méléard [19] in the case of asexual populations.
To this end assume that for any K, the set of parameters UK , VK , bK , and dK ,
satisfy the Assumption (C1). Let νKt be the counting measure of the population
at time t. We define the measure-valued Markov process (XK

t )t≥0 by

XK
t =

1
K
νKt .

As the system goes to infinity we need to assume the following
Assumption (C2):
The parameters UK , bK , dK are all continuous, ζ → d(x, ζ) is Lipschitz for any
x ∈ χ, and

UK(x) =
U(x)
K

.

The biological interpretation of this renormalization is simple, we assume that if
the initial number of individuals in the population increases, by a scale factor of
K, then the biomass of each individual must decrease by a scale factor of 1/K.
This follows from the fact that the amount of resources in the population is
fixed and that they are partitioned among the individuals, so larger populations
must be made up of smaller individuals. The renormalization of UK is related
to the decrease of competition for resources, so the parameter K can be thought
as scaling the resources available.
The generator LK of (νKt )t≥0 is given by (8.4.14), with parameters UK , bK , and
dK . The generator L

K
of (XK

t )t≥0 is obtained by writing, for any measurable
function φ from M(χ) into R and any ν ∈M(χ),

L
K
φ(ν) = ∂tEν [φ(XK

t )]t=0 = ∂tEKν [φ(νKt /K)]t=0 = LKφK(Kν),

where φK(µ) = φ(µ/K). Then we get

L
K
φ(ν) =K

∫
χ

∫
χ

∫
χ

bα(p(x), p(y))D(x, y; z)∫
χ
α(p(x), p(y))T x(Kνs)(dy)

(φ(ν +
δz
K

)− φ(ν))µ(dz)T x(Kνs)(dy)νs(dx)

+K

∫
χ

(φ(ν − δx
K

)− φ(ν))d(p(x), (U ◦ p) ∗ νs(x))νs(dx).

By a similar proof as the one of section 8.4, we may summarize the moment and
martingale properties of XK .
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Proposition 21. Assume that for some p ≥ 2, E[〈XK
0 , 1〉] < +∞.

(i)For any T > 0, E(supt∈[0,T ]〈XK
t , 1〉) < +∞.

(ii)For all measurable functions φ from MF into R such that for some constant
C, for all ν ∈MF , |φ(ν))|+ |LKφ(ν)| ≤ C(1 + 〈ν, 1〉p), the process

φ(XK
t )− φ(XK

0 )−
∫ t

0

LKφ(XK
s )ds,

is a càdlàg martingale.

(iii)For each bounded measurable function f , the process

MK,f
t =〈XK

t , f〉 − 〈XK
0 , f〉

−
∫ t

0

∫
χ×χ×χ

bα(p(x), p(y))D(x, y; z)∫
χ
α(p(x), p(y))T x(Kνs)(dy)

f(z)µ(dz)T x(Kνs)(dy)νs(dx)ds

+
∫ t

0

∫
χ

f(x)d(p(x), (U ◦ p) ∗ νs(x))νs(dx)ds (8.5.20)

is a càdlàg square integrable martingale starting from 0 with quadratic variation
given by

〈MK,f 〉t =
1
K

∫ t

0

∫
χ×χ×χ

bα(p(x), p(y))D(x, y; z)∫
χ
α(p(x), p(y))T x(Kνs)(dy)

f2(z)µ(dz)T x(νs)(dy)νs(dx)ds

+
1
K

∫ t

0

∫
χ

f2(x)d(x, (U ◦ p) ∗ νs(x))νs(dx)ds. (8.5.21)

We obtain the deterministic nature of the approximation by studying the
quadratic variation of the martingale term, given in (8.5.21).

8.5.1 Uniqueness of the solution

In the next theorem we will prove the uniqueness of the solution to (8.5.19).

Theorem 19. Assume Assumptions (C1) and (C2). Then for an initial con-
dition ξ0 ∈ M(χ), the solution to (8.5.19) is unique in C([0, T ],MF (χ)). In
other words let (ξ1

t )t∈[0,T ] and (ξ2
t )t∈[0,T ] be two solutions to (8.5.19) then

ξ1
t = ξ2

t for all t ∈ [0, T ].

Proof. First we consider the variation norm in M(χ), defined for µ1 and µ2 in
M(χ) by

‖µ1 − µ2‖TV = sup
f∈L∞(χ),‖f‖∞≤1

|〈µ1 − µ2, f〉|.
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Note that the solutions to (8.5.19) are continuous and have finite total mass
in finite time, to see the later consider t ∈ [0, T ] and (ξt)t∈[0,T ] a solution to
(8.5.19) then

〈ξt, 1〉 = 〈ξ0, 1〉+
∫ t

0

∫
χ×χ×χ

bα(p(x), p(y))f(z)∫
χ
α(p(x), p(y))ξs(dy)

D(x, y; z)µ(dz)ξs(dy)ξs(dx)ds

−
∫ t

0

∫
χ

f(x)d(x, U ∗ ξs(x))ξs(dx)ds

≤ 〈ξ0, 1〉+ b

∫ t

0

〈ξs, 1〉ds,

and using Gronwall’s Lemma we conclude that

〈ξt, 1〉 ≤ 〈ξ0, 1〉 exp(bt) <∞. (8.5.22)

Now returning to the problem of uniqueness, consider (ξ1
t )t∈[0,T ], and (ξ2

t )t∈[0,T ]

two solutions of (8.5.19) with the same initial condition ξ0 ∈M(χ).
By (8.5.22) these solutions have a finite total mass for t ∈ [0, T ], so we can
assume that AT = supt∈[0,T ]〈ξ1

t + ξ2
t , 1〉 <∞.

Let f be a bounded measurable function defined in χ such that ‖f‖∞ ≤ 1, then
we obtain

〈ξ1
s − ξ2

s , f〉 =
∫ t

0

∫
χ×χ×χ

bα(p(x), p(y))f(z)∫
χ
α(p(x), p(y))ξ1

s (dy)
D(x, y; z)µ(dz)ξ1

s (dy)ξ1
s (dx)ds

−
∫ t

0

∫
χ×χ×χ

bα(p(x), p(y))f(z)∫
χ
α(p(x), p(y))ξ2

s (dy)
D(x, y; z)µ(dz)ξ2

s (dy)ξ2
s (dx)ds

−
∫ t

0

∫
χ

f(x)d(x, U ∗ ξ1
s (x))ξ1

s (dx)ds

+
∫ t

0

∫
χ

f(x)d(x, U ∗ ξ2
s (x))ξ2

s (dx)ds. (8.5.23)

Now we can express (8.5.23) in the following form

〈ξ1
s − ξ2

s , f〉 =
∫ t

0

∫
χ×χ×χ

bα(p(x), p(y))f(z)∫
χ
α(p(x), p(y))ξ1

s (dy)
D(x, y; z)µ(dz)(ξ1

s − ξ2
s )(dy)ξ1

s (dx)ds

+
∫ t

0

∫
χ×χ×χ

bα(p(x), p(y))f(z)∫
χ
α(p(x), p(y))ξ2

s (dy)
D(x, y; z)µ(dz)ξ2

s (dy)(ξ1
s − ξ2

s )(dx)ds

−
∫ t

0

∫
χ×χ×χ

(
bα(p(x), p(y))∫

χ
α(p(x), p(y))ξ2

s (dy)
− bα(p(x), p(y))∫

χ
α(p(x), p(y))ξ1

s (dy)

)
f(z)D(x, y; z)µ(dz)ξ2

s (dy)ξ1
s (dx)ds

−
∫ t

0

∫
χ

f(x)d(x, U ∗ ξ1
s (x))(ξ1

s − ξ2
s )(dx)ds
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−
∫ t

0

∫
χ

f(x)(d(p(x), (U ◦ p) ∗ ξ1
s (x))− d(p(x), (U ◦ p) ∗ ξ2

s (x)))ξ2
s (dx)ds.

(8.5.24)

Let us consider the first integral in (8.5.24), so using Assumption (C1) we have
the following∣∣∣∣ ∫ t

0

∫
χ×χ×χ

bα(p(x), p(y))f(z)∫
χ
α(p(x), p(y))ξ1

s (dy)
D(x, y; z)µ(dz)(ξ1

s − ξ2
s )(dy)ξ1

s (dx)ds
∣∣∣∣

≤
∫ t

0

∫
χ

∣∣∣∣∣
∫
χ× χ bα(p(x), p(y))|f(z)|∫

χ
α(p(x), p(y))ξ1

s (dy)
D(x, y; z)µ(dz)(ξ1

s − ξ2
s )(dy)

∣∣∣∣∣ ξ1
s (dx)ds

≤ b
∫ t

0

∫
χ

‖ξ1
s − ξ2

s‖TV∫
χ
α(p(x), p(y))ξ1

s (dy)
ξ1
s (dx)ds

≤ bα−1

∫ t

0

‖ξ1
s − ξ2

s‖TV ds. (8.5.25)

Now let us turn our attention to the second integral in (8.5.24), in this case we
have∣∣∣∣ ∫ t

0

∫
χ×χ×χ

bα(p(x), p(y))f(z)∫
χ
α(p(x), p(y))ξ2

s (dy)
D(x, y; z)µ(dz)ξ2

s (dy)(ξ1
s − ξ2

s )(dx)ds
∣∣∣∣

≤ b
∫ t

0

∣∣∣∣∫
χ

(ξ1
s − ξ2

s )(dx)
∣∣∣∣ ds

≤ b
∫ t

0

∫
χ

‖ξ1
s − ξ2

s‖TV ds. (8.5.26)

Now proceeding as before we can bound the third integral in (8.5.24) in the
following way∣∣∣∣ ∫ t

0

∫
χ×χ×χ

(
bα(p(x), p(y))f(z)D(x, y; z)∫

χ
α(p(x), p(y))ξ2

s (dy)
− bα(p(x), p(y))f(z)D(x, y; z)∫

χ
α(p(x), p(y))ξ1

s (dy)

)
µ(dz)ξ2

s (dy)ξ1
s (dx)ds

∣∣∣∣
≤
∫ t

0

∫
χ×χ×χ

b|f(z)|D(x, y; z)
∣∣∣∫χ α(p(x), p(y))(ξ1

s − ξ2
s )(dy)

∣∣∣∫
χ
α(p(x), p(y))ξ1

s (dy)
∫
χ
α(p(x), p(y))ξ2

s (dy)
µ(dz)ξ2

s (dy)ξ1
s (dx)ds

≤
∫ t

0

∫
χ×χ

b‖ξ1
s − ξ2

s‖TV∫
χ
α(p(x), p(y))ξ1

s (dy)
∫
χ
α(p(x), p(y))ξ2

s (dy)
ξ2
s (dy)ξ1

s (dx)ds

≤
∫ t

0

∫
χ

b‖ξ1
s − ξ2

s‖TV∫
χ
α(p(x), p(y))ξ1

s (dy)
ξ1
s (dx)ds

≤ bα−1

∫ t

0

‖ξ1
s − ξ2

s‖TV ds. (8.5.27)
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On the other hand by using the hypothesis related to the death term in As-
sumption (C1) on the fourth integral of (8.5.24) we have∣∣∣∣ ∫ t

0

∫
χ

f(x)d(x, U ∗ ξ1
s (x))(ξ1

s − ξ2
s )(dx)ds

∣∣∣∣ ≤ d∫ t

0

(1 + 〈ξ1
s , 1〉)‖ξ1

s − ξ2
s‖Tvds

= d(1 +AT )
∫ t

0

‖ξ1
s − ξ2

s‖TV ds.

(8.5.28)

Finally by Assumption (C2) we know that the function d is Lipschitz continuous
in the second variable, we denote the constant Ld. Therefore we obtain for the
last integral in (8.5.24) the following∣∣∣∣ ∫ t

0

∫
χ

f(x)(d(p(x), (U ◦ p) ∗ ξ1
s (x))− d(p(x), (U ◦ p) ∗ ξ2

s (x)))ξ1
s (dx)ds

∣∣∣∣
≤ Ld

∫ t

0

∫
χ

∣∣∣∣ ∫
χ

(U ◦ p)(x− y)(ξ1
s − ξ2

s )(dy)
∣∣∣∣ξ1
s (dx)ds

≤ LdU
∫ t

0

∫
χ

‖ξ1
s − ξ2

s‖TV ξ1
s (dx)ds

≤ LdUAT
∫ t

0

‖ξ1
s − ξ2

s‖TV ds. (8.5.29)

Then using (8.5.25), (8.5.26), (8.5.27), (8.5.28), and (8.5.29) in (8.5.24) we ob-
tain

|〈ξ1
t − ξ2

t , f〉| = (2bα−1 + b+ d(1 +AT ) + LdATU)
∫ t

0

‖ξ1
s − ξ2

s‖TV ds. (8.5.30)

So taking the supremum over all functions f such that ‖f‖∞ ≤ 1 and applying
Gronwall’s Lemma we conclude that for all t ∈ [0, T ]

‖ξ1
s − ξ2

s‖TV = 0. (8.5.31)

And therefore uniqueness holds for (8.5.19).

In the next section we will prove that the sequence of laws QK = L(XK) is
tight in the space P(D([0, T ]),MF (χ)).

8.5.2 Tightness of the sequence of laws QK = L(XK)

In the following we will denote by (MF (χ), w) and by (MF (χ), v)) the space of
finite measures over χ endowed with the topology of weak and vague convergence
respectively.

And in this section we will prove the following:
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Theorem 20. Assume Hypothesis (C1), (C2), and also that

sup
K∈N

E
(
〈XK

0 , 1〉3
)
<∞. (8.5.32)

Then the sequence of laws QK = L(XK) is tight in the space P(D([0, T ]), (MF (χ), w)).

Proof. First we will start by establishing the tension of the laws of (XK)K∈N as
probability measures over the space D([0, T ]), (MF (χ), v), in other words when
MF (χ) is endowed with the topology of the vague convergence. To achieve
this we will use a result established by Roelly ([65], Theorem 2.1). It suffices to
prove that for any continuous bounded function over χ the sequence of processes
(〈XK , f〉)K∈N is tight over D([0, T ],R).

We recall that the martingale part MK,f of 〈XK , f〉 is defined in (8.5.20)
and we define the finite variation part of 〈XK , f〉 by:

V K,ft = − 1
K

∫ t

0

∫
χ

f(x)d(x, (U ◦ p) ∗XK
s (x))XK

s (dx)ds

+
1
K

∫ t

0

∫
χ×χ×χ

bα(p(x), p(y))D(x, y; z)∫
χ
α(p(x), p(y))T x(XK

s )(dy)
f(z)µ(dz)T x(XK

s )(dy)XK
s (dx)ds.

Using Proposition 3 we know that 〈XK , f〉 is a semimartingale, and therefore
we can use the Aldous-Rebolledo Criterion:

Suppose that Y n is a square integrable semimartingale, then if we write
V nt for the corresponding predictable finite variation process and 〈Mn〉t for the
quadratic variation of the martingale part, we have the following:

Theorem 21. (The Aldous-Rebolledo Criterion [2]).- Let {Y n}n≥1 be a se-
quence of real valued semimartingales with càdlàgs paths. Suppose that the fol-
lowing conditions are satisfied:

i) For each fixed T , {supt∈[0,T ] |Y nt |}n≥1 is tight.

ii) Given a sequence of stopping times τn, bounded by T , for each ε > 0 there
exists δ > 0 and n0 such that

sup
n≥n0

sup
θ∈[0,δ]

P
[
|V n(τn + θ)− V n(τn)| > ε

]
≤ ε, (8.5.33)

and
sup
n≥n0

sup
θ∈[0,δ]

P
[
|〈Mn〉τn+θ − 〈Mn〉τn | > ε

]
≤ ε. (8.5.34)

Then the sequence {Y n}n≥1 is tight.

So proving the conditions in the Aldous-Rebolledo Criterion for the semi-
martingale 〈XK , f〉, will imply the tension of the laws of XK in P(D([0, T ]),
MF (χ)), with MF (χ) endowed with the vague topology.
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We will begin by proving the first point, it suffices to show that

sup
K
E

[
sup
t∈[0,T ]

〈XK
t , 1〉3

]
<∞. (8.5.35)

Let us begin by recalling that XK = 1
K ν

k
t so following step by step the

proof of Theorem 2 (ii), with p = 3 it is easy to see that there exists a constant
CT > 0, that does not depend on K such that

E

[
sup
t∈[0,T ]

〈νKt , 1〉3
]
≤ CTE[ sup

t∈[0,T ]

〈νK0 , 1〉3]. (8.5.36)

So if we divide both terms in (8.5.36) by K3, and use the fact that by hypothesis
supK E[supt∈[0,T ]〈XK

0 , 1〉3] < +∞, we easily conclude (8.5.35).
The next step is to prove the tightness of the laws of the martingale part and
of the drift part of the semimartingale 〈XK , f〉.
To this end consider δ ≥ 0 and a sequence of stopping times (τn)n≥1 such that
0 ≤ τn ≤ T for all n ≥ 1, then taking θ ∈ [0, δ] and using Proposition 3 we
obtain

E[〈MK,f 〉τn+θ − 〈MK,f 〉τn ]

= E

[
1
K

∫ τn+θ

τn

∫
χ×χ×χ

bα(p(x), p(y))D(x, y; z)∫
χ
α(p(x), p(y))T x(XK

s )(dy)
f2(z)µ(dz)T x(XK

s )(dy)XK
s (dx)ds

+
1
K

∫ τn+θ

τn

∫
χ

f2(x)d(x, (U ◦ p) ∗XK
s (x))XK

s (dx)ds
]

≤ 1
K
‖f‖2∞E

[
b

∫ τn+θ

τn

〈XK
s , 1〉ds+ d̄

∫ τn+θ

τn

∫
χ

(1 + 〈XK
s , 1〉)XK

s (dx)ds
]

≤ 1
K
‖f‖2∞E

[
b

∫ τn+θ

τn

〈XK
s , 1〉ds+ d̄

∫ τn+θ

τn

(〈XK
s , 1〉+ 〈XK

s , 1〉2)ds
]

≤ 2
K
‖f‖2∞(b+ d̄)E

[
θ(1 + sup

s∈[0,T ]

〈XK
s , 1〉2)

]
≤ 2‖f‖2∞(b+ d̄)θ

(
1 + sup

K
E
[

sup
s∈[0,T ]

〈XK
s , 1〉2

])
≤ Cfδ (8.5.37)

where in the last inequality we used (8.5.35). Therefore using (8.5.37) we have

sup
n

sup
θ∈[0,δ]

P
[
|〈MK,f 〉τn+θ − 〈MK,f 〉τn

∣∣ > ε] ≤ 1
ε
E[〈MK,f 〉τn+θ − 〈MK,f 〉τn ]

≤ Cfδ

ε
, (8.5.38)

which with an adequate choice of δ > 0 proves (8.5.34). Now we will prove the
tightness of the finite variation part V K,f of 〈XK , f〉 by making the following
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computation

E[〈V K,f 〉τn+θ − 〈V K,f 〉τn ]

= E

[
1
K

∫ τn+θ

τn

∫
χ×χ×χ

bα(p(x), p(y))D(x, y; z)∫
χ
α(p(x), p(y))T x(XK

s )(dy)
f(z)µ(dz)T x(XK

s )(dy)XK
s (dx)ds

+
1
K

∫ t

0

∫
χ

f(x)d(x, (U ◦ p) ∗XK
s (x))XK

s (dx)ds
]

≤ 2‖f‖∞(b+ d̄)θ
(

1 + sup
K
E
[

sup
s∈[0,T ]

〈XK
s , 1〉3

])
≤ C̄fδ.

So proceeding as in (8.5.38), we obtain that (8.5.33) holds.
The previous steps imply the tightness of the laws of XK in P(D([0, T ]),MF (χ))
when MF (χ) is endowed with the vague topology.

By Prohorov’s Theorem, it is possible to extract from (XK)K∈N a conver-
gent subsequence in law in D([0, T ], (MF (χ), v)). Let us denote this subse-
quence by (Xφ(K))K∈N and by X a process with the law of the limit law of the
previous subsequence. Noting that since we also proved the tension of the se-
quence (〈XK , 1〉)K∈N, it is possible to choose the subsequence in such a way that
(〈Xφ(K), 1〉)K∈N converges in law to 〈X, 1〉 in D([0, T ].R). Also by construction
we know that:

sup
t∈[0,T ]

sup
f∈L∞,‖f‖∞

|〈XK
t , f〉 − 〈XK

t−, f〉| ≤
1
K
.

this implies that the limit process X is a.s. strongly continuous. Using Theorem
3 of Méléard and Roelly [51], the subsequence (Xφ(K))K∈N converges also in
law in D([0, T ], (MF (χ), w)), where MF (χ) is endowed with the topology of
the weak convergence. Applying Prohorov’s Theorem again we can deduce that
the sequence (XK)K∈N is tight in D([0, T ], (MF (χ), w)).

8.5.3 Characterization of the limit

In the previous section we showed that the sequence of laws of XK is tight
in P(D([0, T ]),MF (χ)) in the case when MF (χ) is endowed with the weak
topology. In this section we will prove that the sequence XK converges in law
in P(D([0, T ]), (MF (χ), w)) to the unique solution of (8.5.19).

Theorem 22. Admit Assumptions (C1) and (C2). Assume moreover that the
initial conditions XK

0 converge in law and for the weak topology on MF (χ) as
K increases, to a finite deterministic measure ξ0, and that
supK E(〈XK

0 , 1〉3) < +∞.
Then for any T > 0, the process (XK

t )t≥0 converges in law, in the Skorohod space
D([0, T ],MF (χ)), as K goes to infinity, to the unique deterministic continuous
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function ξ ∈ C([0, T ],MF (χ)) satisfying for any bounded f : χ→ R

〈ξt, f〉 = 〈ξ0, f〉+
∫ t

0

∫
χ×χ×χ

bα(p(x), p(y))f(z)∫
χ
α(p(x), p(y))ξs(dy)

D(x, y; z)µ(dz)ξs(dy)ξs(dx)ds

−
∫ t

0

∫
χ

f(x)d(x, U ∗ ξs(x))ξs(dx)ds.

Proof. We will check that a.s. the process (X)t≥0 is solution to (8.5.19). Using
(8.5.35) we have that

E[ sup
t∈[0,T ]

〈Xt, 1〉] ≤ (1 + sup
K
E[ sup

t∈[0,T ]

〈XK
t , 1〉3]) < +∞,

which implies that supt∈[0,T ]〈ξt, 1〉 < +∞ a.s. for each T > 0.
Now following standard density arguments it suffices to show that ξ is solu-

tion to (8.5.19) for any f ∈ Cb(χ) and all t > 0. So let us take f ∈ Cb(χ) and
t > 0 fixed.

Let ν ∈ C([0,∞),MF (χ)) and consider the following

Ψ1
t (ν) = 〈νt, f〉 − 〈ν0, f〉+

∫ t

0

∫
χ

f(x)d(x, (U ◦ p) ∗ νs(x))νs(dx)ds

−
∫ t

0

∫
χ×χ×χ

bα(p(x), p(y))f(z)∫
χ
α(p(x), p(y))νs(dy)

D(x, y; z)µ(dz)νs(dy)νs(dx)ds,

(8.5.39)

and

Ψ2
t (ν) =

∫ t

0

∫
χ×χ×χ

bα(p(x), p(y))f(z)∫
χ
α(p(x), p(y))νs(dy)

D(x, y; z)µ(dz)νs(dy)νs(dx)ds

−
∫ t

0

∫
χ×χ×χ

bα(p(x), p(y))f(z)D(x, y; z)∫
χ
α(p(x), p(y))T x(Kνs)(dy)

µ(dz)T x(Kνs)(dy)νs(dx)ds.

If we show that
EQ[|Ψ1

t (X)|] = 0, (8.5.40)

then a.s. Ψ1
t (X) = 0, which would imply that X solves (8.5.19).

Let us recall that by (8.5.20) it follows that

MK,f
t = Ψ1

t (X
K) + Ψ2

t (X
K). (8.5.41)

By a simple computation using Proposition 3, Assumption (C2), and (8.5.35)
we have that

E[|MK,f
t |2] = E[〈MK,f

t 〉2] ≤ 1
K
CfE

[∫ t

0

(1 + 〈XK
s , 1〉2)ds

]
, (8.5.42)
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which goes to 0 as K goes to infinity.
Next we have to deal with Ψ2

t (X
K), the convergence of this term to 0 follows

from the fact that T x(KXk) = KXK − δx for x ∈ supp XK , and the following
computation

|Ψ2
t (X

K)| =
∣∣∣∣ ∫ t

0

∫
χ×χ×χ

bα(p(x), p(y))f(z)∫
χ
α(p(x), p(y))νs(dy)

D(x, y; z)µ(dz)XK
s (dy)XK

s (dx)ds

−
∫ t

0

∫
χ×χ×χ

bα(p(x), p(y))f(z)D(x, y; z)∫
χ
α(p(x), p(y))T x(Kνs)(dy)

µ(dz)T x(Kνs)(dy)XK
s (dx)ds

∣∣∣∣
=
∣∣∣∣ ∫ t

0

∫
χ

1
A(x)

(∫
χ

bα(p(x), p(y))
∫
χ

f(z)D(x, y; z)µ(dz)XK
s (dy)

∫
χ

α(p(x)p(y))T x(KXK
s )(dy)

−
∫
χ

bα(p(x), p(y))
∫
χ

f(z)D(x, y; z)µ(dz)T x(KXK
s )(dy)

∫
χ

α(p(x), p(y))XK
s (dy)

)
XK
s (dx)

∣∣∣∣
=
∣∣∣∣ ∫ t

0

∫
χ

bα(p(x), p(x))
A(x)

(∫
χ

α(p(x), p(y))
∫
χ

f(z)D(x, x; z)µ(dz)XK
s (dy)

−
∫
χ

α(p(x), p(y))
∫
χ

f(z)D(x, y; z)µ(dz)XK
s (dy))

)
XK
s (dx)ds

∣∣∣∣
=
∣∣∣∣ ∫ t

0

∫
χ

bα(p(x), p(x))
KA(x)

(∫
χ

α(p(x), p(y))
∫
χ

f(z)D(x, x; z)µ(dz)T x(KXK
s )(dy)

−
∫
χ

α(p(x), p(y))
∫
χ

f(z)D(x, y; z)µ(dz)T x(KXK
s )(dy))

)
XK
s (dx)ds

∣∣∣∣
≤ 2b‖f‖∞

K

∫ t

0

∫
χ

α(p(x), p(x))∫
χ
α(p(x), p(y))XK

s (dy)
XK
s (dx)ds ≤ Cf,t

K
, (8.5.43)

where A(x) =
∫
χ
α(p(x), p(y))XK

s (dy)
∫
χ
α(p(x), p(y))T x(KXK

s )(dy).
So using (8.5.41),(8.5.42) and (8.5.43) we have the following

lim
K→∞

E[|Ψ1
t (X

K)] = 0. (8.5.44)

Now for fixed t ∈ [0, T ] we will show the continuity of Ψ1
t .

First we will need the following lemma:

Lemma 4. Let (νK)K≥0 be a sequence of probability measures on χ, such that

νK
L→ ν. If for each probability measure ν, on χ, we define

ψ(ν) =
(∫

χ

α(p(x), p(y))ν(dy)
)−1

ν(dx),

where the function α is bounded and continuous. Then ψ(νK) L→ ψ(ν).

Proof. By hypothesis νk L→ ν, so we use Skorohod’s Representation Theorem
(see for instance Theorem 4.30 in [39]). We know there exists a probability
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space which we denote (Ω̄, F̄ , P̄ ) with some random variables (ηK)K≥0 with
L(ηK) = νK and a random variable η with L(η) = ν, such that ηK → η P̄ a.s.

So let us take f ∈ Cb(χ), then using that α ≤ α(p(x), p(y)) for any x, y ∈ χ,
and The Dominated Convergence Theorem we have:

lim
K→∞

〈ψ(νK), f〉 = lim
K→∞

∫
χ

f(x)∫
χ
α(p(x), p(y)νK(dy)

νK(dx)

= lim
K→∞

∫
Ω̄

f(ηK(ω))∫
Ω̄
α(p(ηK(ω)), p(ηK(ω′))P̄ (dω′)

P̄ (dω)

=
∫

Ω̄

f(η(ω))∫
Ω̄
α(p(η(ω)), p(η(ω′))P̄ (dω′)

P̄ (dω)

=
∫
χ

f(x)∫
χ
α(p(x), p(y)ν(dy)

ν(dx) = 〈ψ(ν), f〉. (8.5.45)

Noting that (8.5.45) holds for any f ∈ Cb(χ), we have that ψ(νK) L→ ψ(ν).

So since X is a.s. strongly continuous, since f is continuous, thanks to the
continuity of the parameters (Assumption (C1) and (C2)), and using Lemma
4 we have that the function Ψt is a.s. continuous at X. Furthermore using
(8.5.39) we have for any ν ∈ D([0,∞),MF (χ))

|Ψ1
t (ν)| ≤ |〈νt, f〉|+ |〈ν0, f〉|+

∣∣∣∣ ∫ t

0

∫
χ

f(x)d(x, (U ◦ p) ∗ νs(x))νs(dx)ds
∣∣∣∣∣∣∣∣ ∫ t

0

∫
χ×χ×χ

bα(p(x), p(y))f(z)∫
χ
α(p(x), p(y))νs(dy)

D(x, y; z)µ(dz)νs(dy)νs(dx)ds
∣∣∣∣

≤ ‖f‖∞
(
〈νt, 1〉+ 〈ν0, 1〉+ d̄

∫ t

0

∫
χ

(1 + 〈νs, 1〉)νs(dx)ds

+ b

∫ t

0

∫
χ×χ

α(p(x), p(y))∫
χ
α(p(x), p(y))νs(dy)

νs(dy)νs(dx)ds
)

≤ ‖f‖∞
(

2 sup
s∈[0,T ]

〈νs, 1〉+ d̄

∫ t

0

(〈νs, 1〉+ 〈νs, 1〉2)ds+ b

∫ t

0

〈νs, 1〉ds
)

≤ (2 + d̄T + bT )‖f‖∞ sup
s∈[0,T ]

(1 + 〈νs, 1〉2)

= Cf,T sup
s∈[0,T ]

(1 + 〈νs, 1〉2). (8.5.46)

So using (8.5.35) and (8.5.46) we see that the sequence (Ψt(XK))K is uniformly
integrable and thus

lim
K→∞

E[|Ψ1
t (X

K)|] = E[ lim
K→∞

|Ψ1
t (X

K)|] = E[|Ψ1
t (X)|]. (8.5.47)

Associating (8.5.44) and (8.5.47) we conclude that (8.5.40) holds.
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8.6 Examples

In this section we work with two particular forms of equation (8.5.19). For
the two different choices of the space of genotypes and the parameters, equa-
tion (8.5.19) re-establishes the models of Shashahani [72] and Doebeli [25] from
microscopic individual processes, showing that a large population is the only
biological assumption needed to scale up to macroscopic evolutionary dynam-
ics. In other words the renormalization procedure in section 8.5 gives the good
scales between the coefficients to approach the microscopic individual-process
by the deterministic equations of these two particular models.

8.6.1 Finite number of alleles

Suppose that we have a finite space of genotypes, i.e. we consider that χ =
{0, 1}l. Following the discussion in section 8.2 we take the measure µ defined
on χ as the uniform measure on the space of genotypes χ, in other words

µ(dz) =
∑
x∈χ

δx(dz).

And define
D(x, y; z) =

∑
I∈I

rI1{xIyJ}(z),

then in this particular example (8.5.19) becomes

〈ξt, f〉 = 〈ξ0, f〉+
∫ t

0

∫
χ×χ

∑
I∈I

rIbα(p(x), p(y))∫
χ
α(p(x), p(y))ξs(dy)

f(xIyJ)ξs(dy)ξs(dx)ds

−
∫ t

0

∫
χ

f(x)d(x, U ∗ ξs(x))ξs(dx)ds. (8.6.48)

In the following we will not consider competition in the model, only natural
death of the individuals, and that the mating between the individuals is random,
in other words that α(x, y) = 1 for x, y ∈ χ.
Then by noting that the solution to (8.6.48) is a discrete measure, we have for
fixed z ∈ χ the following differential equation for the number of individuals
ξt(z), with the genotype z ∈ χ

∂tξt(z) =
∑
x∈χ

∑
I

1
〈ξt, 1〉

brIξt(zIxJ)ξt(xIzJ)− d(p(z))ξt(z). (8.6.49)

We remark that all the genotypes have the same birth rate, this follows from
the fact that

b =
∑
y∈χ

b
ξt(y)
〈ξt, 1〉

.
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So noting that
∑
I rI = 1, we can express relation (8.6.49), in the following form

∂tξt = (b− d(p(z)))ξt(z)−
∑
y∈χ

∑
I

brI
〈ξt, 1〉

(ξt(z)ξt(y)− ξt(zIyJ)ξt(yIzJ)).

(8.6.50)

Now lets consider the actual frequency of individual with a given trait, we denote
this frequency by qt(x) and its given by,

qt(x) =
ξt(x)
〈ξt, 1〉

.

To make a relation with previous deterministic models, we will look at the
dynamics of the frequency of a given trait z ∈ χ, so we consider the following:

∂tqt(x) =
∂tξt(x)
〈ξt, 1〉

− ∂t〈ξt, 1〉
〈ξt, 1〉2

ξt(x). (8.6.51)

We now compute the differential equation satisfied by the total population size,
so setting f ≡ 1 in equation (8.6.48) we obtain,

∂t〈ξt, 1〉 =
∑
x∈χ

∑
y∈χ

∑
I

brI
〈ξt, 1〉

ξt(x)ξt(y)−
∑
x∈χ

d(p(x))ξt(x)

= b〈ξt, 1〉 −
∑
x∈χ

d(p(x))ξt(x). (8.6.52)

So using (8.6.51), and (8.6.52) in (8.6.50) we have

∂tqt(z) = (b− d(p(z)))qt(z)−
∑
y∈χ

∑
I

brI(qt(z)qt(y)− qt(zIyJ)qt(yIzJ))

− bqt(z)−
(∑
x∈χ

d(p(x))qt(x)
)
qt(z). (8.6.53)

We will denote by m(p(z)) the malthusian parameter associated to the genotype
z ∈ χ, defined as

m(p(z)) = b− d(p(z)),
and the mean malthusian parameter defined as m(t) =

∑
x∈χm(p(x))qt(x), so

(8.6.53) becomes

∂tqt(z) = m(p(z))qt(z)−
∑
y∈χ

∑
I

brIqt(z)qt(y)− qt(zIyJ)qt(yIzJ))

−
(∑
x∈χ

(b− d(p(x)))qt(x))
)
qt(z)

= (m(p(z))−m(t))qt(z)−
∑
y∈χ

∑
I

brI(qt(z)qt(y)− qt(zIyJ)qt(yIzJ)).

(8.6.54)

Equation (8.6.54) describes the dynamics of the continuous time multilocus
model developed and analyzed in [72] (p. 8), and [1] (p. 5-11), introduced in
section 7.3.
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8.6.2 Model with continuous genotypic space

We consider a continuous space of genotypes χ, i.e. χ = [0, 1]l. In this case as
mentioned in section 8.2, µ is the Lebesgue measure in Rl, and D(x, y; z) is the
density of a Gaussian law with mean equal to (x+ y)/2 and conditioned to stay
on χ.
Then (8.5.19) takes the following form

〈ξt, f〉 = 〈ξ0, f〉+
∫ t

0

∫
χ×χ×χ

bα(p(x), p(y))∫
χ
α(p(x), p(y))ξs(dy)

f(z)D(x, y; z)dzξs(dy)ξs(dx)ds

−
∫ t

0

∫
χ

f(x)d(x, U ∗ ξs(x))ξs(dx)ds. (8.6.55)

In this case it is easy to see by taking f = 1A in (8.6.55) for any Borel set A
with Lebesgue measure zero, that if ξ0 has density with respect to the Lebesgue
measure then ξt has density with respect to the Lebsegue measure for every
t ≥ 0.
So if we denote this density by ξt(x), we have that

〈ξt, f〉 =
∫
χ

f(x)ξt(x)dx.

So we can write (8.6.55) in the following form

∂tξt(x) =
∫
χ×χ

bα(p(z), p(y))∫
χ
α(p(z), p(y))ξt(y)dy

D(z, y;x)ξt(y)ξt(z)dydz

− d(x, (U ◦ p) ∗ ξt(x))ξt(x),

which has the same form as the model recently developed by Doebeli in [25].

8.7 Appendix

We will present the code of the program for the simulations we presented in
section 4.32 for the variation of the model of Kisdi [40] to verify the appearance
of sympatric speciation under the conditions of disruptive selection and random
mating. The code is given for the program R, which is a free software environ-
ment for statistical computing and graphics, it can be downloaded in this web
site http://www.r-project.org/.
Now we introduce the code for the model we presented in section 4.32, the lines
preceded by the # symbol ar just explanatory notes and not part of the code.

#################################################################################
# #
# Code for the simulation of the variation of the model of Kisdi presented in #
# #
# section 4.32 following the simulation algorithm presented in 4.31. #
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8.6.2 Model with continuous genotypic space

We consider a continuous space of genotypes χ, i.e. χ = [0, 1]l. In this case as
mentioned in section 8.2, µ is the Lebesgue measure in Rl, and D(x, y; z) is the
density of a Gaussian law with mean equal to (x+ y)/2 and conditioned to stay
on χ.
Then (8.5.19) takes the following form

〈ξt, f〉 = 〈ξ0, f〉+
∫ t

0

∫
χ×χ×χ

bα(p(x), p(y))∫
χ
α(p(x), p(y))ξs(dy)

f(z)D(x, y; z)dzξs(dy)ξs(dx)ds

−
∫ t

0

∫
χ

f(x)d(x, U ∗ ξs(x))ξs(dx)ds. (8.6.55)

In this case it is easy to see by taking f = 1A in (8.6.55) for any Borel set A
with Lebesgue measure zero, that if ξ0 has density with respect to the Lebesgue
measure then ξt has density with respect to the Lebsegue measure for every
t ≥ 0.
So if we denote this density by ξt(x), we have that

〈ξt, f〉 =
∫
χ

f(x)ξt(x)dx.

So we can write (8.6.55) in the following form

∂tξt(x) =
∫
χ×χ

bα(p(z), p(y))∫
χ
α(p(z), p(y))ξt(y)dy

D(z, y;x)ξt(y)ξt(z)dydz

− d(x, (U ◦ p) ∗ ξt(x))ξt(x),

which has the same form as the model recently developed by Doebeli in [25].

8.7 Appendix

We will present the code of the program for the simulations we presented in
section 4.32 for the variation of the model of Kisdi [40] to verify the appearance
of sympatric speciation under the conditions of disruptive selection and random
mating. The code is given for the program R, which is a free software environ-
ment for statistical computing and graphics, it can be downloaded in this web
site http://www.r-project.org/.
Now we introduce the code for the model we presented in section 4.32, the lines
preceded by the # symbol ar just explanatory notes and not part of the code.

#################################################################################
# #
# Code for the simulation of the variation of the model of Kisdi presented in #
# #
# section 4.32 following the simulation algorithm presented in 4.31. #
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# #
#################################################################################
rm(list=ls(all=TRUE))

########### Declaration of the variables.
datelim <- 1000 # time we will simulate
K <- 200
l <- 20 # number of loci
b <- 5 # intrinsic birth rate of the simulation
###########################
# Parameters of the model.
###########################
sigma<- 0.01 #degree of assortment
set.seed(1)
genotypes<- array(data=rbinom(K*l,1,0.5), dim=c(K,l))
# simulation of the initial distribution of the individuals

traits<- array(rowSums(genotypes),dim=c(K,1))
# trait distribution of the initial population

ind<- function(x,y)
{

if( abs(x-y)==0 )
{

return(0)
}
else
{

return(1)
}

}
# condition which will not allow an individual to mate with himself.
alpha<- function(x,y)

dnorm(x-y,sd=sigma)*sqrt(2*pi)*sigma
}
# mating function
{
alpha2<- function(x,traits)
{

dnorm(x-traits,sd=sigma)*sqrt(2*pi)*sigma
}
# total mating individual with genotype x is involved.
R<- function(x)
{

return(min(exp((x-5)^2/20),exp((x-15)^2/20)))
}
# bimodal resource distribution
U<- function(x,traits)
{
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return(sum(2*(1-(1/(1+1.2*exp(-4*(x-traits)^2))))))
}
# competition Kernel
d<- function(x,traits)
{

return(U(x,traits)*R(x))
}
# death rate for individual with genotype x
barx <- 20
underx <- 0
pasfichier<-50
set.seed(1)

#############################################################################
chemin <- "C:/Documents and Settings"
dates <- array(data=0,dim=1)
psize<-K # Initial size of the population
set.seed(1)
##########################
# Indicators
##########################
nbdeaths <- 0
nbirths <- 0
##########################
# Saved data.
##########################
write(t(c(0, traits)),

file = paste(chemin,"savedtraits2effective.txt",sep=""),
ncolumns =2,append = TRUE)

##########################
# Simulations
##########################
set.seed(2)
t<- 2
while(dates[t-1]<datelim && psize>0)
{

dates2<-dates[t-1]
testpassage<-0
bound <- b*psize+ (4/K)*psize^(2) # total event rate
while(testpassage==0 && psize>0)
{

# Proposition for the time of the next event.
interval<-rexp(1,bound)
dates2<-dates2+interval
# Choice of the individuals.
indivi <- ceiling(runif(1,min=0,max=psize))
indivj <- ceiling(runif(1,min=0,max=psize))
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# Calculation of the bounds of each type of event.
m1 <- b*psize/(bound)
m2 <- m1+((K/4)*psize^(2)/(bound))
# Birth of an individual.
theta <- runif(1, min=0, max=1)
if(0 <= theta && theta<m1) #choice of the event of birth
{

n1 <- (b*alpha(traits[indivi],traits[indivj])*ind(indivi,indivj))
/(sum(alpha2(traits[indivj],traits))) #acceptance or rejection
theta2<- runif(1,min=0,max=1)

if(0 <= theta2 && theta2<n1) #recombination
{

dates<-c(dates,dates2)
fix<- array(data=rbinom(l-1,1,0.5),dim=c(l-1,1))
I<- c(rbind(1,fix))
T<- c(array(data=c(1), dim=c(l,1)))
J<- (T-I)
x2<- (genotypes[indivi,]*I)+(genotypes[indivj,]*J)
genotypes <- rbind(genotypes,x2)
psize<- psize+1
traits<- array(rowSums(genotypes),dim=c(psize,1))
nbirths <- nbirths+1
testpassage=1
t <- t+1

}
}
else if(m1 <= theta && theta<m2) # choice of event of death
{

n2<- d(traits[indivi],traits)/((4/K)*psize^(2))
theta3<- runif(1, min=0,max=1)
#acceptance or rejection of the death event
if(0 <= theta3 && theta3<n2)
{

dates<-c(dates,dates2) #death of an individual
if(psize>1)
{

if(indivi==1)
{

genotypes<-genotypes[2:psize,]
}
else if(indivi==psize)
{

genotypes<-genotypes[1:(psize-1),]
}
else
{
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genotypes<-rbind(array(data=genotypes
[1:(indivi-1),],dim=c(indivi-1,l)),
array(data=genotypes[(indivi+1):psize,],
dim=c(psize-indivi,l)))
}

}
psize<- psize-1
traits<- array(rowSums(genotypes),dim=c(psize,1))
nbdeaths <- nbdeaths+1
title<- paste("Time=",dates[t],"N=",psize)
plot(density(traits),xlab="Trait", ylab="Density",
xlim=c(0,barx),ylim=c(0, 0.15), main=title )
#density plot
testpassage=1
t <- t+1
}

}
}
if(identical(all.equal(t/pasfichier,as.integer(t/pasfichier)),TRUE) && psize>0)
{

# 4) Savedtraits
tempdensity<-
write(t(density(traits, give.Rkern=FALSE)$y),

file = paste(chemin,"savededensity.txt",sep=""),
ncolumns = 512,append = TRUE)

}
}

save.image(paste(chemin,"savedtraits.RData",sep=""))
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Flour, Lecture Notes in Math., 1987, Springer, (2007).
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