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Abstract

The application-oriented observer design problem for a practically important
class of agitated and tubular reactors is addressed within a unifying design approach.
First of all the problem of concentration estimation for a continuous stirred tank reac-
tor (CSTR) with temperature measurements is considered. The designed dissipative
observer is combined with a passive state-feedback controller for output-feedback
control purposes. The performance of the dissipative-passive output-feedback is an-
alyzed through analytical considerations and numerical simulation studies. The ob-
tained estimator and controller provides an important contribution in the area of
chemical process engineering sciences because they combine basic requirements of (i)
a systematic design, (ii) convergence improvement, (iii) mathematically rigorous con-
vergence and closed-loop stability criteria with physical meaning, and (iv) ensured
performance in a realistic scenario with modeling and measurement errors.

Having the CSTR dissipative observer as methodological point of departure, the
result is extended to the consideration of distributed transport and reaction phenom-
ena in an isothermal tubular reactor with concentration point measurements at the
boundary and/or in the domain. A dissipative observer is designed which provides
important innovation in the respective are of chemical process engineering studies,
because, in comparison to previous studies on this subject reported in the literature,
the dissipative observer combines (i) a systematic design, (ii) mathematically rigor-
ous convergence criteria with physical meaning, and (iii) convergence improvement.
The performance of the dissipative observer is tested through numerical simulations.

Based on the dissipative observers for the continuous stirred and the isothermal
tubular reactor, the problem of estimating the concentration and temperature profile
of a non-isothermal tubular reactor with boundary and/ or domain point temperature
measurements is addressed. The designed dissipative observer has the same features
as the previous ones and thus provides an important contribution in the chemical

process engineering field.
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On the basis of the obtained dissipative observer design methodology for a
class of agitated and tubular reactors, some implications on the design of dissipa-
tive observers for more general multi-species transport-reaction system networks are

presented.
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Resumen

El problema de diseno de observadores para una clase de reactores agitados y
tubulares es considerado con un enfoque unificador de disefio. Primero, se considera
el problema de estimacién de la concentracién en un reactor continuo agitado (CSTR
por sus signos en inglés) con mediciones de temperatura. El observador disipativo
que se disena es combinado con un control pasivo de retroalimentacion de los estados
para fines de regulacién mediante retroalimentacion de salida. FEl desempeno del
controlador disipativo-pasivo es analizado mediante consideraciones analiticas y sim-
ulaciones numéricas. El observador disipativo y el controlador dindmico disipativo-
pasivo presentan contribuciones importantes en el area de ingenieria de procesos
quimicos, porque combinan requerimientos bdsicos como (i) un diseno sistematico,
(ii) mejora de convergencia, (iii) criterios de convergencia y estabilidad en lazo cer-
rado matematicamente rigurosos y con implicaciones fisicas, y (iv) desempeno ase-
gurado en escenarios realistas con errores en el modelo y en las mediciones.

Basandose metodolégicamente en el observador disipativo para el CSTR, se ex-
tiende el diseno para el caso de transporte y reaccion distribuidos en un reactor tubu-
lar isotérmico con mediciones de concentracién en la frontera y/ o en el dominio. El
observador disipativo que se disena representa una contribucién importante en el area
de ingenieria de procesos quimicos porque, en comparacion con los resultados repor-
tados en la literature, combina (i) un diseno sistematico, (ii) rigurosidad matematica
en los criterios de convergencia con sentido fisico, y (iii) mejora de convergencia. El
desempeno del observador es analizado mediante simulaciones numéricas.

Con base en el observador disipativo para el reactor continuo agitado y el tubular
isotérmico, se enfoca el problema de estimacion de concentracién y temperatura para
un reactor tubular no-isotérmico con mediciones de temperatura en puntos discretos
en la frontera y el dominio. Se disena un observadore disipativo el cual tiene las
mismas caracteristicas que se mencionaron para los casos anteriores, por lo cual

representa una contribucion importante en el area de ingenieria de procesos quimicos.
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Basandose en la metodologia de diseno de observadores disipativos obtenidos
para una clase de reactors agitados y tubulares, se pesentan algunas implicaciones
para el diseno de observadores disipativos para redes de sistemas de transporte y

reaccién con multiples especies.
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Chapter 1
Introduction

In this chapter the consideration of the estimation problem for a class of agitated
and tubular reactors is motivated and justified by means of the state-of-the-art in
chemical engineering (tubular) reactor observer design in particular and distributed
parameter system observer design in general. The approach employed for the so-
lution of the problem is motivated on the basis of results recorded in the chemical

engineering literature, and the main contributions are announced.



1.1 Motivation

Modern control applications in the chemical, biological and biochemical pro-
cess engineering sciences seek for process optimization on the basis of (i) cost effi-
ciency, (ii) product quality, (iii) sustainability, and (iv) robustness. These issues are
closely related to the efficiency of the employed control algorithms, in the light of (i)
non-wastefulness, (ii) convergence speed, and (iii) robustness oriented convergence
properties. Since the early works of Kalman in 1964 [1] and Willems in 1971 [2] it
is known that there is a close relation between dissipativity and optimality. This
issue has been particularly exploited in the theory of modern nonlinear constructive
[3, 4] and passive [5, 6] control. These considerations suggest to approach the above
requirements within an energy dissipation framework.

Chemical processes naturally involve many different states, such as tempera-
tures, concentrations and pressures, which interact in complex dynamical networks
and the efficient manipulation of given control inputs to such networks requires a high
degree of mathematical abstraction. The problem of implementing non-wasteful, fast
and robust controllers to achieve high quality products, has to tackle the additional
problem that there is an inherent problem in measuring concentrations in chemical
reaction networks. In spite of this problematic, in many practically important appli-
cations in catalytic chemical and biological reactors, the concentration (or substrate)
can be measured [7, 8]. Nevertheless, if such measurements are not at hand, and for
systems in which spatially inhomogeneous profiles of temperature and concentra-
tion are involved, it becomes necessary to employ state estimators, because it is not
possible to measure a complete state profile. This is of particular importance in
chemical reactor control applications, since modern (robust and optimal) controllers
require knowledge of the complete physical state of the reactor. Depending on the
chemical process involved, chemical reactors differ in form, size and operation mode.
Two main classes of reactors are given by the tubular and the continuous stirred
reactor, being the last one the limit case of the first one in the case of high diffusion
(spatial profiles become homogeneous) [9]. The design of an estimator for inference
of (eventually spatially inhomogeneous) concentrations on the basis of temperature
measurements, thus represents a key element for the entire process design task.

Chemical reactors represent a particular class of transport reaction systems.
The dynamic behavior of these systems is completely determined by the continuous

interplay between the two basic mechanism of transport and reaction, in the under-



standing that the phenomenological behavior depends on the type of reaction and
the kind of transport at place. There are many different kinds of linear and nonlinear
transport processes characterizing important classes of systems. For instance, tubu-
lar reactors are often driven by diffusive-convective transport [10, 7], or by purely
convective (plug-flow) transport [10, 11] corresponding to high flow velocities, while
nonlinear transport phenomena such as convective acceleration, characterize e.g. the
Korteweg-de Vries(-Burger) equation [12] or the Kuramoto-Shivashinsky equation
[13, 14], used to describe flow and flame expansions for instance. In the case of
very high diffusion, the tubular reactor corresponds to the continuous stirred reac-
tor [9, 10] and is described by a corresponding ODE model [10, 15]. In the present
study, the attention is restricted to linear diffusive-convective constant parameter
transport phenomena in agitated and tubular reactors. With respect to the reaction,
only pointwise reaction rates are considered, in the understanding that the reaction
rate’s value at each point of the system extension, is determined by the state values
in this point, and does not depend on spatial changes in the states. From a phe-
nomenological viewpoint, one can make the following interpretation of these basic

process mechanisms:

e Diffusion: A phenomenon caused by Brownian motion of particles within a
conductive media (molecules in a fluid, etc.). Diffusion is a natural mass and
energy dissipating mechanism, in the understanding that it tends to homoge-

nize the spatial distribution of the considered variables.

e Advection and Convection: A phenomenon due to energy and heat transport
by a larger-scale motion of currents in the transporting media. Such currents
may be caused e.g. by gradients in density or pressure. Due to the motion of

the transporting media such mechanisms naturally dissipate mass and energy.

e Reaction: A kinetic degradation of some reactants to products by molecular
transformations. Reactions may have different properties and the correspond-
ing kinetic rate expressions attain different algebraic forms. Of particular inter-
est for the present study is a differentiation of the nature in terms of reversibility
and inhibition. Reversibility is a property inherent to the reaction mechanism
and causes different effects in the corresponding kinetic rate. Inhibition is nor-
mally caused by the consumption of a resource necessary for the reaction (e.g.

the surface of a catalyst, the concentration of certain enzymes). Both effects



may cause non-monotonic behavior of the kinetic rate: for reversible reactions
passing a certain threshold concentration causes a decrease in the degradation
and additionally favors the return path of the reaction direction, while inhi-
bition obviously implies a certain threshold where the reaction rate reaches a
maximum due to high concentration of the reactants while, passing it, there
is too much reactant to ensure the same reactivity with respect to its concen-
tration. Typical rates corresponding to such phenomena are the Haldane-type
kinetics [16, 17] in biochemical engineering and Langmuir-Hinsheldwood type
kinetics [18, 19] in chemical engineering processes. Saturation phenomena of
similar type may also lead to monotonic behavior with slowly decreasing rate
as for example known from Monod-type kinetics [8]. These effects may cause

regional differences between production or consumption phenomena.

The interplay of diffusive-convective transport with chemical reaction thus in-
troduces a complex interaction of mass and energy consuming (dissipating) and mass
and energy producing (or consuming) mechanisms. Consequently the phenomenolog-
ical behavior depends on the considered process characteristics in terms of: conduc-
tivity, permeability, flow velocity (as a result of construction, operation mode, and
control), reaction enthalpy, etc. Some of these parameters are explicitly depending
on the process and control design while others are inherent to the desired opera-
tion mode. The analysis of the different kinds of mechanisms at play is therefore
of fundamental interest as it reveals inherent possibilities for, and requirements on
the design of the process in the way that the interplay of them enables, or destructs
the desired performance. This applies also for the design of a state estimator, in the
understanding that: (i) the data-assimilation scheme has to improve the stabilizing
and diminish the destabilizing mechanisms at play , (ii) accordingly the sensors have
to be chosen (if possible) to obtain from, the less necessary number, the maximal
possible information content on the critical elements in the system dynamics, (iii) the
gain tuning should exploit the natural dissipation mechanisms in the sense of an op-
timal innovation, and (iv) the influence of uncertainties and errors has to be analyzed

carefully, in particular those related to the possibly destabilizing mechanisms.



1.2 Methodological Approach

Based on the above discussion, the requirements on a chemical reactor observer
for concentration and temperature profile estimation, has to satisfy basic require-
ments: (i) systematic design, (ii) simple implementation and tuning, (iii) some op-
timality criteria, (iv) mathematical rigor, (v) exploitation of process inherent struc-
tural mechanisms, and (vi) certain ensured robustness issues. As has already been
mentioned, dissipativity, in an abstract system theoretic sense, has turned out to be
a key element between some of these requirements [1, 2, 3, 5, 6]. In this spirit the
present study is based on the employment of concepts from, the physically motivated
dissipativity theory. In order to employ these concepts, a combination of modern
estimation theory and Lyapunov-type stability theory is combined with chemical en-
gineering physical knowledge and mathematical analysis. This complex objective is
focussed on employing an inductive three-step approach, based on the fact that the
agitated reactor is a physical limit case of the tubular reactor [9].

In this spirit, first, the limit case corresponding to high diffusion of the non-
isothermal tubular reactor with temperature measurements is considered, i.e. the
non-isothermal continuous stirred tank reactor (CSTR). The basic dissipation mech-
anisms are identified and exploited for the design of an exponentially stable observer.
In order to analyze the behavior of the designed observer in combination with a pas-
sive (robust, optimal) controller, an exothermic CSTR with non-monotonic kinetics
is considered in the understanding that this kind of kinetics implies difficult observer
and control design problems [19, 20, 21, 22].

Next, an isothermal tubular reactor with concentration measurements is consid-
ered, in the understanding that (i) the analysis of this case allows for extending the
main components of the design methodology to the distributed case, and (ii) there
exist important application examples and studies based on concentration measure-
ments in chemical and biological system sciences (e.g. [23, 24, 25, 26, 27])

Then, the non-isothermal tubular reactor with temperature measurements is
considered, in the sense that, based on the previous steps, the solution of this com-
plex problem reduces to the consideration of the coupling phenomena while the
methodological tools for the analysis and design have already been identified and
analyzed in the preceding studies.

Based on these particular cases, next, the corresponding state of the art in the

particular area is identified.



1.3 State of the Art

1.3.1 Estimation and control of non-monotonic CSTRs

From experimental and numerical estimation studies on reactors with non-
monotonic Langmuir-Hinshelwood [28] or Haldane-type kinetics [16, 8, 29] it is known
that the concentration can, in principle, be estimated: (i) with convergence speed
fixed by the inverse residence time [28] (or dilution rate [8]), using an open-loop (OL)
observer driven by a mass balance-based reaction rate inference, and (ii) with ad-
justable convergence speed, using an Extended Kalman Filter (EKF) driven by the
actual measurement. By construction, the OL observer (referred to as asymptotic
in the bioreactor engineering literature) is more robust than its EKF counterpart,
in the sense that the OL observer does not need the reaction kinetic model, and the
EKF is quite model dependent (including rate function derivatives).

From a control perspective, the output-feedback (OF) control problem, has
been addressed by implementing a state-feedback (SF) controller with: (i) an OL (or
asymptotic) observer to attain regulation at maximum reaction rate with convergence
speed fixed by the dilution rate, or (ii) an EKF to achieve regulation at reaction rate
sufficiently below its maximum in order to have local observability and adjustable
convergence speed [29, 22].

These considerations manifest, that the slow OL and fast EKF estimators rep-
resent extreme cases of an inherent compromise between reconstruction speed and
robustness, which has not been formally considered in terms of suitable observability
and controllability properties. Furthermore they motivate the design of an observer
with: (i) convergence rate between the fast (EKF) and slow (OL) convergence rates
attainable with the mentioned observers, (ii) robustness behavior between the strong
(EKF) and weak (OL) model dependencies, and (iii) functioning which includes the
robust open-loop observer as a particular case and the combination of the observer

with a passive, optimal, nonlinear controller for OF control purposes.

1.3.2 Estimation of Tubular Reactors

In the understanding that the tubular reactor is a distributed parameter system,
there are, in principle, many different methods which apply to it.
Most of the reported studies are based on a priori spatial truncations of the

distributed parameter model followed by the employment of lumped observer design



methods (e.g. [7, 30, 31, 32]). This early-lumping (EL) approach yields good perfor-
mance from an application point of view, but it implies different inherent problems:
(i) structural properties depend on the truncation method [7, 11], (ii) stability of
the truncation does not necessarily imply stability of the distributed model [33], and
many design degrees of freedom have to be handled due to high-dimensional model
approximations [34].

In the seek of maximal mathematical rigor, different methods have been devel-
oped to perform the observer design based on the original PDE model. Respectively,
this approach is called late-lumping (LL).

For the linear case, since the 1970’s, (i) modal (spectral decomposition) ap-
proaches have been reported (e.g. [35, 36, 37, 38, 39]), and (ii) stochastic Kalman
filters have been employed (e.g. [40]).

For bilinear systems a modal approach with collocated measurement injection

in the boundary has been proposed recently [26].
For integro-differential systems, [41] proposed a backstepping observer design.

For nonlinear PDE systems, since the late 1970’s, (i) a physical-heuristic ap-
proach has been employed [42, 43, 44, 45], (ii) open-loop (OL) (or asymptotic) ob-
servers have been introduced [46, 47, 48, 49, 50|, (iii) Approximate Inertial Manifolds
(AIM) have been applied [51, 11], (iv) linear-quadratic-regulator-type observers have
been reported [52], and (v) stochastic Kalman filters have been designed [53]. From
these approaches, the physically-heuristic, OL, AIM, and Kalman filters have been

applied to tubular reactor studies.

The physically-heuristic approach as well as the OL approach are based on in-
terpolation of the temperature profile between the measurement points. This implies
some problems: (i) a mathematically rigorous convergence analysis becomes difficult,
(ii) the interpolation requires many measurements and implies many degrees of free-
dom, and (iii) in the OL case, the concentration convergence is fixed by the process
itself and cannot be improved.

The approach using AIMs, yields rather complex analytic expressions for the
approximated lumped model which become even more complicated when consider-
ing nonlinear, non-monotonic concentration and temperature dependencies of the

reaction kinetic rate.

The EKF on the other hand is based on a linearization of the nonlinear model

around a given trajectory and consequently the convergence result is basically of



local character [7].

Summarizing, the two main approaches applied to tubular reactors are: (i) a
priori truncation-based EL approaches, and (ii) approaches based on the original
PDE model (LL). All approaches reported in the literature on the tubular reactor
estimation problem present a lack of some main requirements as there are (cp. e.g.
[54, 11, 55])

e a systematic and mathematically rigorous, non-local design
e simple implementation and explicit solvability conditions

e physical insight

e convergence improvement.

Furthermore, none of the reported studies considered explicitly the implications of
non-monotonic reactions. In the studies which apply to the non-monotonic case, no
specific analysis has been presented, identifying the inherent limitations and require-

ments implied by the non-isotonicity feature.

1.4 Contribution

Having as point of departure the previous studies on the design of observers
(and controllers) for agitated and tubular reactors, the main contributions of this

thesis consist in:

e design of a dissipative observer for a non-monotonic continuous stirred reactor
which yields (i) systematic design, (ii) identification of capabilities and limita-
tions, (ii) convergence conditions with physical meaning, (iv) tuning guidelines,

and (v) convergence improvement

e combination of the dissipative observer with a nonlinear passive (optimal, ro-
bust) state-feedback (SF) controller for output-feedback (OF) stabilization of
a non-monotonic exothermic jacketed reactor at maximum production rate,
yielding (i) solvability conditions with physical meaning, (ii) rigorous closed-
loop stability criteria, (iii) tuning guidelines, and (iv) performance recovery of
ideal SF



e concentration profile estimation of an isothermal tubular reactor with bound-
ary and/ or domain point concentration measurements, with (i) systematic de-
sign criteria, (i) mathematical rigor, (iii) explicit convergence conditions with

physical meaning, and (iv) convergence improvement

e temperature and concentration profile inference of a non-isothermal tubular
reactor with temperature point measurements at the boundary and/ or in the
domain, allowing for (i) systematic design approach, (ii) rigorous convergence
criteria, (iii) physical implications on process design, and (iv) convergence im-

provement

In all cases the implications of the reaction kinetics’ isotonicity feature are discussed
and the corresponding limitations are identified.

These problems are tackled by the combination of (i) chemical engineering sci-
ences (e.g. [10, 9, 7, 15]), (ii) system-theoretic and physical concepts of dissipation
(e.g. [2, 56, 57,58, 59]), and (iii) estimation and control theory of linear and nonlinear
lumped and distributed parameter systems (e.g. [3, 6, 34, 38, 39, 60]).

In particular, the continuous stirred reactor observer design uses the recently
proposed design methodology for lumped dissipative observers [61, 62]. For the
isothermal tubular reactor estimation problem, the conceptual ideas of the previ-
ous design are extended for the consideration of distributed transport and reaction
phenomena, and combined with basic ideas of linear distributed parameter systems
estimation (and control) theory [34, 37, 60|, and the convergence analysis is based
on DPS stability theory [63, 64, 60, 65, 59, 66]. The analysis of the non-isothermal
tubular reactor is based on the previous results for the continuous stirred and the
isothermal tubular reactor, which are combined and extended for the consideration
of the coupling effects present in the non-isothermal tubular case.

A particular effort throughout this work is spend on addressing the particular
problems within a unifying design framework, in the understanding that the contin-
uous stirred and the isothermal tubular reactor represent particular limiting cases of
the non-isothermal tubular reactor [10, 9, 47].

In this spirit, the design methodology introduced for the non-isothermal tubular
reactor estimation study and the corresponding limit cases represents another con-
tribution of the thesis, in the understanding that it allows for (i) systematic design,

(il) mathematical rigor, (iii) physical insight, and (iv) performance improvement.
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Finally, this methodology is put into a more general context of multi-species
transport reaction system networks and combined with a system-theoretic dissipa-

tivity framework, to obtain general convergence criteria.

1.5 Summary

Based on the respective state-of-the-art in observer design in chemical process
engineering sciences and distributed parameter systems, the considered agitated and
tubular reactor estimation problems have been motivated and justified. The method-
ological approach which will be followed has been motivated in general terms, and

the main contributions have been announced.
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Chapter 2
Estimation Problem

In this chapter the estimation problem for a class of chemical reactors is for-
mulated, including the consideration of three specializations of the regarded system
class: (i) the non-isothermal stirred tank reactor with temperature measurement as
the limiting case of the tubular reactor with high dispersion, (ii) the isothermal case
of the tubular reactor with boundary and/or domain point concentration measure-
ments, and (iii) the non-isothermal tubular reactor with boundary and/or domain
temperature measurements. Each of these problems constitutes a relevant study sub-
ject in chemical process systems engineering. Furthermore, the first two problems
are inductive methodological steps towards the consideration of the non-isothermal
tubular reactor class, and represent a step towards the development of a general

purpose methodology for transport-reaction systems.
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2.1 Non-isothermal tubular reactor

In the spirit of its unifying character, the model of the non-isothermal tubu-
lar reactor is presented and subsequently the particular application examples are
presented as limit cases of the tubular reactor corresponding to high diffusion and

isothermal reaction.

2.1.1 Modelling

The basic constellation of a non-isothermal tubular reactor is sketched in Figure

2.1. The reactor consists of the reaction tube, covered by the cooling jacket. The

c(L,t)

T(L,t)

Figure 2.1: Basic constellation of a jacketed non-isothermal tubular reactor.

reactor is fed with a flow with corresponding reactant concentration and fluid tem-
perature. The cooling jacket is fed with cooling fluid in parallel or counterflow with
respect to the reactor fluid. The reactor interior may be filled with a catalytic bed
(packed-bed reactor) or be empty (empty tube). Mass and energy are transported
through the reactor by two mechanisms: (i) diffusion (up- and downstream trans-
port), and (ii) convection (down-stream transport). Along the reactor extension, the
reactant is transformed to product through the chemical reaction. The reaction heat
produced within the reactor is transferred to the cooling jacket, a process supposed
to be instantaneous (infinite radial diffusion), and an energy interchange with the
jacket takes place. At the outlet of the reactor no changes take place and the fur-

ther processing of the product with remaining reactant depends on the design of the
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complete process.

Based on these general considerations, next, the mass and energy balance are
shortly presented without going into detail, in order to establish the system dynamics,

based on which the estimation problem is formulated.

2.1.2 Mass balance

Consider the tubular reactor with length L, and superficial area A, in which
a reagent R with concentration ¢ = [R]/[R]° (referred to pure reagent [R]%), is fed
into with an inflow stream of flowrate ¢[l/s] and transported through the reactor
by the corresponding convective stream with superficial velocity v = q/A, dispersed
through the interior with proportionality factor D, and decreased continuously by the
reaction to product P with kinetic rate kr(c,T'), depending on (i) the concentration
¢, (ii) the temperature T of the reaction mixture, and (iii) the reaction frequency
(proportionality) factor k. Taking into account that the total mass flow through the
system is characterized by the combination of dispersion (expressed by Fick’s law of

diffusion) and convection (characterized by the advective superficial flow), i.e.

dc(&, 1)

—vc(, 1), (2.1)

the mass balance in the interior (£ € (0,1)) of the reactor is given by

dc(§,7) 0T (&, 7)
or - 85 - kT(C(f, T)? T(fT))

e oeen)
=D an —v 85 - kr(c(§77>7T(§at))

(2.2)

for 7 > 0. Furthermore, it is assumed that the spatial change at the inlet depends
on the concentration difference between feed concentration and actual reactor con-
centration at £ = 0, while at the outlet of the reactor no changes take place. These

considerations are mathematically expressed in Danckwerts boundary conditions [67]

0c(0,7)
o8

Oc(L, 1)
73

E=0: D —ve(0,7) = —ve (), £=1L: =0, t>0.(2.3)

The evolution of the mass component in time additionally depends on the initial
pI‘Oﬁle C(fa O) = CO(f)a g € [07 L]
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2.1.3 Energy Balance

Considering two types of energy transport through the reactor, (i) diffusion
with constant a[m/s?], corresponding to Fourier’s law, and (ii) convection due to
advective transport according to the fluid flow through the reactor with the superficial

velocity v = 9 the total (thermal) energy flow is given by

A?

aT (&,

Fel,17)=a o€ ) _ vT'(E, 7). (2.4)

Furthermore, a continuous change of energy is induced by (i) interchange of heat
through a diathermal wall with transport coefficient U and area Ay, and (ii) exother-
mic (or endothermic) reaction with the reaction enthalpy (—AH)[J] and reaction

frequency k[1/s]. Correspondingly, the energy balance reads
aT(fa T) _ ang (57 T)
PCp -
or 0&
=« —v - UAU(T(£7T) _T‘]) + (_AH) k?T(C(g,T),T(g,T)),

—UAG(T(&,7) = Tj) + (=AH) kr(c(&,7), T(€, 7))

(2.5)

for ¢ € (0,L). Furthermore the possible temperature values and gradients on the

boundary are related by Danckwert’s boundary conditions [67]

or 8T

where T}, (7) is the feed temperature. The initial condition is given by a profile

T(&,0) = To(8).

2.1.4 The non-isothermal tubular reactor model

Combination of the mass balance (2.2)-(2.3) with the energy balance (2.5)-(2.6)

and using the chemical process engineering parametrization [7, 68, 69

§ t L te L t L
xr = — = — = — —_— —
£/7 D Pa ’U’ R k;f
t=—, P.=2 D, Pgp=-2
tD’ tf47 Ay T tca (27)
1 H
Le:—an v v B ( )

PCp Vpcp PCp
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yields the non-isothermal tubular reactor model

Oc 1 &% Oc

b s
i P:Tw — Le% —n(T —=1T;) + BD,r(c,T)
for x € (0,1), t > 0, boundary conditions
L oe _ c—c de
r=0: Pfc%‘%ﬂ_ ) , x=1: 3_%:0 (2.9)
Pros 1 1o e

for ¢ > 0, and initial profiles = € [0,1] : ¢(x,0) = ¢o(x), T(x,0) = Ty(z). This set
of equations describes the considered dynamics of the non-isothermal tubular reactor
with axial dispersion and forms the basis of the model-based observer design problem

formulated in the next section.

2.1.5 The estimation problem

The estimation problem corresponding to the non-isothermal tubular reactor
consists in inferring the concentration and temperature profiles from boundary and/ or
domain point temperature and or concentration measurements. Generally speaking,

the problem of estimating spatially distributed state profiles includes decisions on
(i) estimation model

(ii) data-assimilation scheme

(ili) sensor location.

In the present context of the non-isothermal tubular reactor estimation problem,

these issues obtain the following basic interpretation:

ad (i): design of the observer on the basis of the distributed model (late lumping) or

use of a spatial discretization (early lumping).

ad (ii): choice of an explicit correction mechanism from an infinite number of possible

spatial distributions and measurement coupling combinations.
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ad (iii): analysis of the information content of the measurement, in dependence on the
sensor location, to choose an optimal sensor location in terms of estimation

performance (convergence speed and robustness).

The corresponding decisions should be taken in the light of particular requirements as
there are (i) simple and cheap implementation, (ii) mathematical rigor and ensured
performance, (iii) convergence improvement, and (iv) explicit convergence criteria
with physical meaning.

Based on these considerations: (i) the late lumping approach is employed to
enable maximal mathematical rigor based on physical insight to the reactor dynam-
ics, (ii) the data-assimilation scheme is considered as an important design degree of
freedom, in the sense of comparing some particular possibilities in order to get close
to an optimal choice (in the above mentioned sense of desired performance), and
(iii) the sensor location is identified as a key issue for the design of an estimator but
no analytical analysis method is employed for the location of the sensor, but only

general considerations are performed.

2.1.6 The methodological approach

In order to address the estimation problem of the regarded chemical reactor
class described by the equation set (2.8)-(2.9), in the spirit of a unifying framework,
the following particular cases are considered as specializations of the non-isothermal
tubular reactor estimation problem.

1.) Non-isothermal stirred tank reactor with temperature measure-
ment: As it is well-known [9], in the limit case of infinite diffusion, the tubular reac-
tor dynamics are perfectly well described by the dynamics of a continuous stirred tank
reactor (CSTR). The consideration of the estimation problem for the non-isothermal

CSTR permits to address two main issues:

e identify the main mechanisms at play in terms of mass and energy transport
phenomena and chemical reaction, and exploit them in order to obtain math-

ematically rigorous convergence criteria coupled with simple tuning guidelines

e analyze the application of the designed state estimation scheme for output-
feedback (OF) purposes, combining the dissipative observer with a passive
nonlinear state-feedback (SF), to obtain rigorous and simple convergence con-

ditions with physical interpretation



17

2.) Isothermal tubular reactor with concentration measurement: The
consideration of the inference of the concentration profile from boundary and/or

domain point concentration measurements enables to identify two basic issues:

e analysis and assignment of the energy-dissipation properties corresponding to

distributed diffusive-convective transport

e handling the spatially distributed nature of the influence of the chemical reac-

tion on the convergence properties

3.) Non-Isothermal tubular reactor with temperature measurement:
Based on the preceding results obtained for the non-isothermal CSTR with tem-
perature measurement and the isothermal tubular reactor with concentration mea-
surements, the problem of concentration and temperature profile inference for the
non-isothermal tubular reactor based on temperature point measurements at the
boundary and/or in the domain relies in the consideration of two different kind of

coupling phenomena:
e linear coupling through the correction injection mechanism
e nonlinear coupling through the chemical reaction

Correspondingly, the particular study cases allow for a step-by-step identifica-
tion and solution of the main problems which have to be addressed for the consider-
ation of the non-isothermal tubular reactor estimation problem.

Furthermore, each problem in itself represents a contribution with respect to
previous studies in the stirred and tubular reactor fields.

In the sequel the particular estimation problems are presented.

2.2 Non-isothermal stirred tank reactor

2.2.1 The estimation model

It is known [9] that the dynamics of a tubular reactor with infinite diffusion
are completely described by the model of a continuous stirred tank reactor (CSTR).
In a more realistic scenario, considering the case that the process conditions lead to
high diffusion coefficients and the flow velocity is considerably small, in the under-

standing that the diffusion-characteristic (Einstein) time tp = L?/D is much less
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than the convection-characteristic time ¢. = L/v and thus energy and mass are dis-
persed rapidly through the reactor, the spatially distributed profile rapidly tends to
a spatially constant profile. If furthermore a mixing mechanism is employed, a homo-
geneous spatial distribution can be assumed without loss of important information
[10, 7, 68]. Under this assumption the mass and energy balances naturally lead to
the model of a Continuous Stirred Tank Reactor (CSTR). Figure 2.2 shows the basic

coolant output

coolant entrance

Figure 2.2: Configuration of the continuous stirred tank reactor (CSTR).

configuration of a CSTR.
Using the standard notion in chemical engineering sciences of the dilution rate
1
or inverse residence time 6 = = %, the CSTR model equations are given by
R
¢=0(cc—c)—r(¢,T,p;), ¢(0)=co
T = G(Te - T) - U(T - T]) + ﬁ’l"(C, TaPr)a T(O) = T07 (210)
y=T

with parameter vector p = (pL,pI)?, p. = (ce,8,n)T being the vector with the
feed concentration (c.), the adiabatic temperature rise () and the heat transfer
coefficient (7). Note that the reaction rate expression is given by r = kR. It is
known [70] that the trajectories of the reactor (3.1) are restricted to the compact
interval = = [0, 1] x[T"~, T"], where T~ = min(7,, ;) (or Tt = max(T.,T.)+/) is the
minimum (or maximum) possible temperature determined by mass-heat conservation
and thermodynamic’s second law arguments.

The consideration of the non-isothermal CSTR estimation problem based on

temperature measurements allows to identify
e the main mechanisms at play in terms of transport and reaction phenomena

e the main issues corresponding to the application of an energy-based dissipative

observer
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e the main interplay between system inherent transport and reaction mechanisms

and the imposed correction mechanism

e a methodological framework to analyze the nonlinear dissipation components

corresponding to the chemical reaction.

Furthermore, it enables the analysis of the application of the designed observer
for OF control purposes. Therefor, the dissipative observer is combined with a passive

nonlinear SF controller. This allows to

e exploit the structure-oriented approach of the dissipative observer based on an

explicit energy and dissipation characterization

e analyze the performance of the OF controller employing Lyapunov’s direct

method.

Methodologically speaking, the stirred tank estimation (and control) problem is
addressed by combining dissipativity, (passivity,) and chemical reaction engineering

tools.

2.3 Isothermal tubular reactor

2.3.1 The estimation model

Assuming a constant temperature profile corresponding to an isothermal re-
action, the estimation model, with boundary and/or domain point concentration

measurements follows from the mass balance (2.2)-(2.3)

Oc(x,t) 1 9*c  Oc

7815 — P—ec@ - % —DaT(C(ZL‘,t),T(Jf,t)) (2]‘1)
fort >0, x € (0,1), boundary conditions
1 0c(0,1) 1 0c(1,t)

= (c(0,t) —cin(t)), z=1:

for ¢ > 0, initial profile x € [0,1] : ¢(x,0) = ¢y(z) and measurement vector

y(t) = [C(O>t)’ C(&J)? C(Lt)]T’ (2'13)
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where & € (0,1) is the domain-sensor location.

It is noteworthy, that the isothermal tubular reactor case represents also an
important class in bio-systems engineering (see e.g. [27, 25]).

The isothermal reactor estimation problem will be addressed by extending
the stirred transport-reaction dissipation concept to distributed diffusive-convective
transport, and exploiting the sector characterization of the stirred case, adapting it
to the distributed case.

Mathematically speaking, standard tools from functional analysis and related
Lyapunov-type methods are employed to perform the technical part including the
convergence assessment and the derivation of explicit solvability conditions with

physical meaning.

2.4 Non-isothermal tubular reactor with temper-

ature measurements

The non-isothermal tubular reactor estimation problem is based on the mass
and energy balance (2.8)-(2.9), and the assumption that only point temperature
measurements at the boundary and in some point of the domain are available.

Having as point of departure the preceding non-isothermal agitated and isother-
mal tubular reactor studies, the main issues which have to be addressed for the non-
isothermal tubular reactor consist in the coupling by the reaction kinetics, and the

artificial coupling introduced by the correction mechanism.

2.5 Implications for a class of more general trans-

port reaction systems

Finally, some implications and considerations for transport-reaction distributed
systems in general are discussed, based on a generalized model including several
species which dynamically interact through various simultaneous reactions.

This issue allows to establish the basis for a more general observer design
methodology for larger classes of transport-reaction systems. For this purpose, the
basic features of the developed design methodology for the isothermal and the non-

isothermal tubular reactor are extended to a more general abstract dissipativity
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framework. The approach combines dissipativity, passivity and chemical reaction

engineering tools with functional analytic methods.

2.6 Practical Stability Framework

The underlying practical stability framework, employed for the subsequent ob-
server (and control) design studies is presented. The employment of the concept of
practical stability for the chemical reactor estimation (and control) studies is moti-
vated by the fact, that the real process has to be supposed to be subject to (i) errors
in the parameters and the measurements, and (ii) disturbances in the exogenous
load, which are unknown. The corresponding robustness oriented stability prop-
erty, enables to analytically delimit an ensured convergence behavior in a real-world

application.

Consider the (tubular or continuous stirred) reactor with constant (p) parame-
ter, time-varying reactor temperature measurement g, time-varying exogenous load

(feed) d, and actuator bounded errors. The actual reactor system dynamics are given

by

%:f(z,d+J(t),u+ﬂ(t),p+ﬁ), 2(0) =2, y=Czx+yt), z=z (2.14)

where z = [¢,T] € Z is the (possibly spatially distributed) state vector in the state
space Z (an euclidean or L? space), d € R* is the exogenous (possibly distributed)
load, v € U is the (possibly distributed) control input, an element of the input
space U (including possibly space and time varying functions), and p is the constant
parameter vector of the reactor dynamics. Consider that all errors and disturbances
are bounded

<0, [a(®)lly < 0w, [5(0)]gyp < 0y,

sup sup —

(7

where 6,, d4, 0, and 0, are the error sizes, and ||-|| is the Euclidian (vector) norm,
||||4up 18 the supremum norm of a real valued function, and |[-||; is the norm corre-
sponding to the input (function) space U (normally a L?-space in space and time).

In deviation form, referred to the steady state z, the preceding reactor system (2.14)
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is written as follows
e ~ = = T 3T ~T\T
gl fele,e(t)], e(0) =€y, e=2—2, u. = (p ,d" ,u )", f(0,0)=0. (2.15)
The definition of nonlocal input-to-state (IS) stability [71, 72, 3], which underlies the

present study, is stated next.

Definition 2.1. The steady-state e = 0 of system (2.15) is said to be practically
uniformly stable if an admissible disturbance size (6y.) produces an admissible
state deviation size (c,): given (Oue,€.) there is a K L-class (increasing-decreasing)
function T and a K-class (increasing) function « so that the state responses of system
(2.15) are bounded as follows

lleoll 7z < b0, [[te(®)llye < Sue = [le@)lz < T(lleoll 1) + alllte(t)]ue)

(2.16)
S 7(50, 0) + &(5ue) =&,

where T (or ) bounds the transient (or asymptotic) component of the response.

The (necessary and sufficient) Lyapunov characterization of the ISS property is

given by [72]
ar(|lell;) < V(e) < asllell,), V= —as(llell ;) + aa(llelly.) (2.17)
where V' is a positive definite radially unbounded function and aq,---, a4 are K-

class functions. Henceforth, practical uniform stability will be simply referred to as
practical (P) stability.

Furthermore, a particular Lyapunov-like exponential stability result is employed
frequently. Consider the state space Z, an euclidean or L? space, with norm ||-|| ,. Let
E(e) be a functional which defines a norm equivalent to ||-||;, in the understanding

that there exist my, mo > 0 such that
my [[el[* < E(e) < my|le]|. (2.18)

Then the following result holds.

Lemma 2.1. Let E(e) be a functional which fulfils (2.18). Furthermore, let é =
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f(t,e), e(0) = ey with e(t) € ZVt > 0, so that f(t,0) =0, Vt > 0. If it holds that

dE(e)
dt

< —2)\E, A>0, (2.19)
then it follows

le®l < alleolle™,  a= /may/mu. (2.20)

Proof. Tt follows from the comparison principle [73], that E(e(t)) < E(eg)e M and
with (2.18), property (2.20) follows. O

2.7 Summary

The estimation problem addressed in the present study has been formulated,
and the corresponding P-stability framework has been presented. Three particular
study objects have been identified: (i) the non-isothermal CSTR with tempera-
ture measurement, as the limiting case of high dispersion of a tubular reactor, (ii)
the isothermal tubular reactor with concentration measurements, and (iii) the non-
isothermal tubular reactor with temperature measurements.

The particular advantages of considering these specializations of the non-isothermal
tubular reactor estimation problem allow to solve the distributed estimation problem

in an inductive way, in the understanding that

e the consideration of the lumped CSTR estimation problem with temperature
measurement enables the identification of a methodological framework to ex-
ploit the process inherent mechanisms of (i) transport, and (ii) reaction, in
order to obtain (a) mathematically rigorous convergence criteria, and (b) phys-

ically meaningful solvability conditions.

e the isothermal tubular reactor with concentration measurements includes the
basic distributed mechanisms at play in all tubular reactors with diffusive-
convective transport, and thus allows to extend the previously identified method-
ological framework to the case of distributed diffusive-convective transport, and
enables the analysis of the distributed nonlinear kinetic influence on the con-

vergence behavior.
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e the estimation problem for the non-isothermal tubular reactor with temper-
ature measurements reduces to the analysis of the influence of the coupling
effects between the concentration and temperature dynamics, and the exten-
sion of the methodological treatment of the nonlinear kinetic influence of the
reaction to the case that the distributed reaction mechanism depends on more

than one state variable.

Each of these problems constitutes an important field of actual studies in the
chemical process engineering sciences and offers an interesting contribution with
respect to the preceding literature.

Additionally, the consideration of these particular study cases will enable to
conclude the work with some implications for a more general class of systems, which
includes the regarded cases as specializations. These considerations represent an
interesting contribution in the field of observer design methodologies for (distributed)

transport-reaction systems.
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Chapter 3

The non-isothermal stirred tank

reactor

In this chapter the concentration estimation problem is addressed for the high-
dispersion limiting case of the non-isothermal tubular reactor: the non-isothermal
continuous stirred tank reactor with temperature measurement.

The purpose is twofold: (i) a methodological step towards the consideration of
the tubular reactor and (ii) the resolution of estimation and control problems in the
light of previous studies in chemical reactor systems engineering.

First, the reactor inherent energy interchange mechanisms are analyzed and
their importance for the observer design are discussed. Next, based on the notions of
observability and detectability, the dissipative observer is introduced exploiting the
reactor’s transport and reaction mechanisms, applying Lyapunov’s second method
to obtain convergence conditions coupled with simple tuning guidelines.

Finally, the dissipative observer is combined with a nonlinear passive SF con-
troller to yield an OF controller with closed-loop stability conditions and simple

tuning guidelines. The results are illustrated through numerical simulations.
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3.1 Introduction

The consideration of continuous stirred tank reactors (CSTRs) represents an
important first step in the consideration of the tubular reactor problem, in the un-
derstanding that a tubular reactor with infinite diffusion (and thus instantaneous
complete dispersion of information through the reactor) is perfectly well described
by the model of a CSTR [9]. Therefore, the consideration of the lumped ODE model
of the CSTR already allows to identify the main issues connected with chemical

reactors in terms of

e advection-type mass and energy transport
e diffusion-type energy transport through the reactor wall

e reactive mass and energy consumption or production,

and to identify a methodological framework which permits to exploit their continuous

interplay to obtain explicit solvability conditions with physical meaning.

According to (3.1) the CSTR is described by the set of ODEs

¢=0(cc—c)—r(¢,T,p,), ¢(0)=co

. (3.1)
T = H(Te - T) - U(T - T]) + ﬁr(c, Tapr)a T(O) = To.

For the given purpose, an abstract energy interchange framework is employed to an-
alyze the intrinsic process characteristic mechanisms, namely transport and reaction,
and their influence on the estimation error dynamics. The particular issues addressed

in this chapter are the following:

(i) analysis of the natural estimation error dissipation of the CSTR (to be de-
fined) is analyzed in a Lyapunov-like energy dissipation framework, in order to
characterize divergence and convergence sources and to compare the respective

elements with convergence superhavit with those of convergence deficit,

(i) identification of the observability properties of the non-isothermal CSTR with

temperature measurement and non-monotonic reaction,

(ii) design of a dissipative observer for the CSTR exploiting the process inherent
transport and reaction mechanisms, in the sense of improving the energy in-
terchange mechanisms, yielding (i) systematic design, (ii) simple convergence

conditions with physical meaning and (iii) tuning guidelines,



27

(iii) combination of the dissipative observer with a passive nonlinear state-feedback
control to stabilize the SS with maximum reaction rate of the reactor, which

is possibly open-loop unstable, and not locally observable.

For the purpose of constructing the dissipative observer, establishing explicit
convergence criteria, and applying it to a challenging OF control problem, the con-
ceptual framework of dissipativity (in a physical and system-theoretic sense) is com-
bined with modern control theory, and physical experience from chemical engineering

sciences in a mathematically rigorous way.

3.2 Natural Error Dissipation

In this section, the underlying transport and reaction mechanisms and their
interplay are characterized in a Lyapunov-like energy dissipation framework with
emphasis on (i) physical meaning, (ii) identification of divergence versus convergence

sources, as well as superhavit versus deficit, and (iii) compensation possibilities.

3.2.1 Deviation Dynamics

Consider a copy of the CSTR (3.1) with an initial deviation eq = Zy — g, Zo
being the initial condition of the deviated dynamics, and driven by the same input
signal u(t) = [0(t), T;(t)]" as the actual reactor. The corresponding dynamics of the

reactor copy read

é‘: Q(Ce — é) — T[A,TaprLé(O) = éO (3 2)
T =0T, T) — y(T —T.) + . |

ﬁ
~
~»
=
=
~»
S
(e
S~—
I
S

In order to identify the main divergence versus convergence sources in the reactor

dynamics, the deviation (error) dynamics are considered.
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3.2.2 Error Dynamics

From the subtraction of (3.1) and (3.2) the deviation or error dynamics follow

(with e, 2 é—c,ep 2T =T)

g, = —0c. — p(c, T, e7), £.(0) = e (3.3)
Ep = —(‘9‘|‘77) 5T+ﬁp(ca Tu 5078T)7 gT(O) = €70,
ple,Tiecer) 2r(c+ee, T +er,p)—1(c,T,py). (3.4)

Note that there is a direct correspondence of the mass and heat transfer and dilution
characterizing the original reactor (3.1), whereas the nonlinear kinetic influence in
the dynamics are determined by the difference between the reaction rate’s value of
the reactor (3.1) and its copy (3.2). Furthermore, one appreciates that the only
coupling between both state variables consists in the dependence on the nonlinear
kinetic rate. The basic underlying interplay between heat and mass transport and the

kinetic mechanism is shown in Figure 3.2. To obtain insight into the basic stabilizing

\ 4

S —

A

|

Figure 3.1: Basic interconnection structure of the error dynamics (3.3), with
Y :prer, Sy pr e, Xt (€, ¢) = op.
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and destabilizing mechanisms, the error dynamics (3.3) are analyzed in a Lyapunov

energy dissipation framework.

3.2.3 A qualitative analysis of the error dissipation and con-

vergence

In order to identify the main mechanisms in the reactor natural error dynamics
(3.3), in the sense of divergence versus convergence sources, a Lyapunov-like en-
ergy approach is considered. For this purpose the simple quadratic error Lyapunov

function candidate is used

1
E = 5 (5 +¢2), (3.5)
The corresponding error dissipation is
E = —[0+n)é2 — 02 + [Ber — e]p. (3.6)

The first term in the error dissipation (3.6) represents the natural dissipation due
to energy interchange of the tank without considering reaction, and the second term
represents, accordingly, the dilution of a substance in the reactor. The influence of

the chemical reaction kinetics on the error dissipation is reflected in the last terms.

The linear heat and mass dissipation mechanisms are obviously sources of con-
vergence, while the influence of the kinetics on the dissipation has to be analyzed
with more detail. In order to identify the basic influence of the kinetic rate on the

error dissipation, consider a first order kinetics of the type
r(c,T) = kee /T (3.7)
Accordingly, the nonlinear function p(c, T'; e., e7) obtains the following form®

ple, Tiee,er) = keee VT + ké%e_W/TgT, T=T+nepr, 0 <n<l.
T

1p = k ([C + 55]677/(T+6T) — Cef"//T) = k ([c + gc] {67"//(T+5T) + 67’7/T — e*“//T} — cefv/T) —
keee /T 4 ké%e—v/%;ﬁ, r=T+nep, 0<n<1.
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and it follows that the above dissipation (3.6) obtains the form
E=—lo4n— 5012] 2y [ﬁkeﬂ/T _ ké%e—w] ere. — [0+ ke /7] &2,
T T

For strongly exothermic reactions, the adiabatic temperature rise 3 is respectively
high, so that the corresponding coefficient for the temperature error dissipation can
be positive, i.e. the kinetic influence can destabilize the error dynamics. The concen-
tration error itself corresponds to a strict dissipation, because the reaction rate de-
pendence on the concentration is monotonic. Note that, generally speaking, for every
monotonic dependence of the reaction rate r(-) on the concentration, the appearing
term pe. is always positive and correspondingly these terms represent convergence
sources, whereas, for a non-monotonic reaction rate dependence on concentration,
this term is negative for some concentration pairs (¢, ¢) (because the slope becomes
negative after passing the concentration which corresponds to maximum rate), and
consequently the respective quadratic term represents an additional source of error

divergence.

Furthermore, one can show that even for the simple first order kinetics (3.7),
there are parameter constellations for which three equilibrium states of the reac-
tor exist, one unstable and two stable steady states (corresponding to ignition and
extinction regimes) [10, 74]. The corresponding area of attraction of each of these
stable equilibria are separated by a separatrix. The corresponding phase portrait
is illustrated in Figure 3.7. For the generation of this phase portrait the following
parameters were used: 0 = 1,¢;, = 1,7 = 1,T; = 350K, T, = 350K. One appreci-
ates the convergence to the ignition and extinction respective regimes, and concludes
that, near the separatrix, for every (arbitrary close) initial condition pair (zg, Z¢),
where xy and Zo correspond to different sides of the separatrix, the corresponding
trajectories will always converge to distinct equilibria. This shows that the error
between trajectories corresponding to initial conditions in areas of attraction corre-
sponding to different equilibrium profiles will never converge. This phenomenon is
actually a consequence of the kinetic influence on the energy interchange mechanisms
in the reactor, in the sense of high sensitivity with respect to small changes in initial
thermal energy content in the reactor. These qualitative considerations are actually
valid for large classes of different kinetic types (see e.g. [10]), and in particular for

non-monotonic kinetics.

The conclusions obtained from this introductory qualitative analysis are twofold:
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Figure 3.2: Phase portrait corresponding to the reactor dynamics with first order
monotonic kinetics (3.7).

e on the one hand, they reveal which are the basic stabilizing and destabilizing
mechanisms of the error dynamics, and consequently which mechanisms im-
prove the convergence of the natural estimation and which obstruct them, so
that it becomes clear that there is a need of introducing additional coupling ele-
ments in the estimator (3.2) in order to permit a compensation of convergence

deficit by the mechanisms which correspond to convergence superhavit,

e on the other hand, they show that the consideration of non-monotonic reaction
rate dependencies on concentration implies that the compensation of the desta-
bilizing behavior of the kinetic mechanism is a quite more challenging task as

in the case of a monotonic reaction rate dependency.

Motivated by the last issue, the subsequent analysis focuses on the consideration
of reaction rates with non-monotonic concentration dependence. First, a system
inherent possibility to estimate the concentration based on the measurement of the
temperature, namely the detectabilty of the nonlinear reactor is addressed [75, 76,
7).
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3.2.4 Observability and Detectability

Note that in the most widely studied case of a reactor (3.1) with a monotonic
(increasing) reaction rate dependency on concentration, the reactor is locally and
globally observable, in the sense that all initial states are distinguishable for every
input function [21], meaning that different initial states produce different measure-
ments for the same input signal. Moreover, the first approximation (Taylor lin-
earization) of the system around any state & € X is observable, and consequently,
completely uniformly observable, implying that a high-gain [78] or geometric [79]

convergent observer can be designed.

Considering a non-monotonic reaction, the reaction rate function grows with
the temperature 7', and grows with concentration ¢ up to a concentration value c*
where the reaction rate reaches its maximum value, and decreases with concentration
for values larger than ¢*. Technically speaking, the rate function r(c, T, p,) depends
isotonically on the temperature 7', and non-monotonically on the concentration c,

according to the expressions

chTpT ) >0 VYT e[l T,

—(¢, T, p,) > 0c € [0,c"),

or, B
/'L(Tapr)a %(C (T>7T7pr) - 07

Jc
c*
or
5 —(c, T, p,) <0, ce€ (¢ 1]

where T~ (or T7) is the minimum (or maximum) possible temperature determined
by mass-heat conservation and thermodynamic’s second law arguments [70], and p is
the algebraic function which sets the concentration ¢* associated with the maximum
rate r* depending on the prescribed temperature 7'. For each T', the graph (¢, r(c,T))
over [0, u(T)] (or [p(T'),1]) is the isotonic (or antitonic) branch of the reaction rate

function over [0, 1] (see Figure 3.3).

However, as mentioned above, in the reactor case with non-monotonic reaction
rate, the situation is quite different. On the one hand, the reactor (3.1) is not
locally observable about any steady-state  with maximum reaction rate 7*, as the

reactor’s first approximation does not meet Kalman’s observability condition [77, 80]

or
because 8_( ,T*,p,) = 0. On the other hand, the reactor has bad inputs [76]. This
c

phenomenon resides in the physical fact that the same reaction rate value is produced
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Figure 3.3: Non-monotonic kinetics.

by the same temperature and two different concentrations, one in the isotonic branch

of r and one in the antitonic one (see Figure 3.3):
rlei(t), T(t), pr] = r[ca(t), T(t), pr], c1 €[0,¢7], o € [¢", 1], ¢ = pu(T).

The existence of bad inputs implies that the reactor (3.1) is not globally observ-
able, and consequently that it is not possible to construct a globally convergent
observer with assignable convergence velocity for every input. As mentioned before,
the lack of (global) observability rules out the possibility of most nonlinear observer
design methods, among them being the high-gain [78], Lipschitz, error linearization
observers, as well as geometric estimators [79]. On the other side, recall the con-
centration error dynamics (3.3) with the bad input (0,7}, c.)(t) and two different
(indistinguishable) concentration initial conditions (¢19 and ¢g0) and corresponding

error €, = ¢ — ¢

€(t) = —Oe. — p(c, T €., 0),
— —fe, (3.8)
p(C, T; €c, 0) = T’(C + €, T, pr) - T(Ca Ta pr) - 07
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which we refer to as indistinguishable dynamics [81, 79, 75, 21]. Given that, by
process design specifications and restrictions, the reactant feed flowrate ¢ (3.1) is
greater or equal than a lower saturation limit ¢—, the (possibly time-varying) dilution

rate 0 input has the same feature:
0(t)y >0 =q /V > 0. (3.9)

From this process design consideration, in conjunction with the particular form (3.8)
of the reactor indistinguishable dynamics, it follows that the reactor model (3.1)
is globally detectable for any input, and for any possible indistinguishable motion
pair (generated by any bad input). This, in turn, implies two important conclusions
on inherent estimation capabilities and limitations, regardless of the particular data

assimilation scheme employed:

1. In the presence of bad inputs over a certain time interval, the convergence
rate attainable with any observer is fixed by the process itself and cannot
be modified by the designer. This means that the maximal ensured global

convergence speed corresponds to the inverse residence time 6(t).

2. In the absence of bad inputs over a certain time interval, the convergence rate
can be made faster than the natural dilution rate input 6 (¢), depending on the

employment of an adequately designed estimator.

From a phenomenological point-of-view it can be stated that the detectability cor-
responds to the strict consumption of the energy corresponding to indistinguishable
trajectories. The condition on the flow-rate ¢ > q~ corresponds to the persistence of
physical dissipation due to a convection-kind mechanism. This shows that the per-
sistence of flow (dilution) condition q > q~ actually ensures the energy dissipation
along all indistinguishable trajectories, in the understanding that the nonzero flow

condition 6 > 0 is met by the continuous stirred tank reactor class.

This detectability characterization (i) sets inherent capabilities and limitations
of any observer design, (ii) draws a conceptual connecting point between process
and control design via the detectability property, and (iii) establishes the conceptual

point of departure for the design of the dissipative observer.
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3.2.5 Discussion

In the context of the previously discussed subject of steady-state multiplicity,
the detectability property has to be understood on the basis that indistinguishable
trajectories correspond to the same temperature. As the different equilibria of the
reactor (3.1) correspond to different temperature regimes, the multiplicity issue does
not affect the detectability properties of the reactor, because trajectories converging
to different SS are not indistinguishable.

The presented considerations show that there is a basic interplay between the
process inherent physical mechanisms, characterizing the dissipation properties of
the error dynamics, as there are (i) linear transport of heat and mass (systems 3y
and X, respectively), and (ii) nonlinear kinetics (system Xy ). Furthermore, as
there is no inherent interchange mechanism between the convergence superhavit of
the linear temperature transport mechanism and deficit of the linear mass transport,
and nonlinear kinetic mechanisms, the over-all dissipation is almost characterized
by the properties of the kinetic mechanism because of nonlinear coupling effects. It
results that there is a need of (i) improving the dissipation of the linear transport
subsystem, and (ii) compensating the convergence deficit of the kinetic mechanism, in
the sense of enabling an over-all strict dissipation via a compensation of convergence

deficit by the heat mechanism with convergence superhavit.

3.3 Dissipative Observer

The preceding reactor detectability assessment in the light of the present es-
timation problem naturally fits with the conditions required for the consideration
of a dissipative observer [61, 62], because of two reasons: (i) the functioning of a
dissipative observer does not depend on the fulfillment of a complete observability
property , and (ii) the structure-oriented approach of the dissipative observer sets a
tractable manner to address the difficult exploitation of the process inherent linear

transport and nonlinear reaction mechanisms.

3.3.1 Observer Construction

To begin, assume for the moment that the model parameters and the exogenous
inputs are exactly known and that the measurements at the inlet and outlet are er-

rorless (in the understanding that this assumption will be relaxed later), and consider
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the observer with the standard linear-additive measurement injections (y = 7') in the
concentration-temperature dynamics and one peculiar injection in the concentration

argument of the reaction rate (as proposed in [62, 82]):

¢=0(cc—¢) = (e — k(T = y),y.pr] — ke(T = y),&(0) = éo

A

T =0T, —-T) =0T —T,) + Br[¢c — k(T — ), y, 0] — (T — ), T(0) = T,

(3.10)
where k. (or k7) is the standard linear concentration (or temperature) gain, and x,
is a constant gain for correction of the kinetics’ argument.

Observe that: when x, = 0, a form of Luenbegrer observer with linear and
constant gain pair (kr, k.) is obtained. Comparing with EKF [28], Luenbegrer [42],
High-Gain [78] and Geometric [79] observers employed in previous chemical reactor
studies, the proposed observer is simpler in the sense of constant (model independent)
gains. As we shall see later, this simplicity and robustness oriented features will be

exploited by combining transport and reaction dissipation mechanism features.

3.3.2 Estimation Error Dynamics

From the subtraction of (3.1) and (3.10) the stirred tank estimation error dy-

namics follow (with e, £ ¢ —¢,ep 2T —T)

Ec = —be. — Keer — plc,y; €. — KreT),
E;T:_(9+77+/€T>5T—|—ﬁp(cay;€c_ﬁr€T> (311)
ple,y;ec — keer) £ 1 (c+ec— Keer, y,pr) — 1 (¢, Y, pr)

These dynamics can be written as a two-subsystem interconnection in Lur’e-Popov
form [73, 56] 2

[ olt) ] _ [ —~0(t) ke [ ) | |1 ] V (3.12)
ep(t) 0 —(0(t) +n+ k) er(t) —f
( Ze. — krer, (3.13)
v=—ple,y:0), (3.14)

2For a possible physical interpretation of the output of the advective subsystem see [83] where
it was argued that it can be viewed as an energy form: based on the definition of the adiabatic
temperature rise 3, the variable ( is simply the enthalpy of the reacting mixture in dimensionless
units and referred to the zero estimation error state (¢, 7).
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where: (i) the advective subsystem (3.12)-(3.13) is linear and dynamic (with input v
and output (), and (ii) the kinetic subsystem (3.14), with the induced reaction rate

error, is nonlinear and static.

3.3.3 Estimation Error Dissipation

In the light of the previous interpretation of the estimation error dynamics in
terms of a two subsystem interconnection of (i) a linear dynamical transport subsys-
tem, and (ii) a nonlinear static kinetic subsystem, the convergence assessment can
be addressed within an energy-interchange framework, in the understanding that
zero energy content corresponds to a zero estimation error. For this aim, a possi-
ble choice of a candidate Lyapunov energy function for the (closed) two-subsystem

interconnection is given by the quadratic (potential squared error) energy function

(er+¢%), (3.15)

DO | =

E(er,() =

in terms of the temperature estimation error e and the new variable ¢ (which con-
stitutes the output of the linear subsystem). In order to express the corresponding

dissipation in terms of e and ( note that the dynamics of ( is given by
é =€, — Kpér = —0C — [ke — k(N + K7)ler — [1 + k. O]p, (3.16)
Accordingly, the estimation error dissipation is

E= erér + CC
[0 +n + w&rler — [ke — w5, + wr))er¢ — 0C + [Ber — (1 + K, 8)(]p (3.17)

—
L2Dp LDy

-

One clearly identifies two main elements of the dissipation corresponding to the
dissipation of the linear dynamical transport subsystem Dy and to the nonlinear
static kinetic’s subsystem Dy. The analysis of these two elements is addressed
next. First of all, the influence of the nonlinear kinetic mechanism on the dissipation
is analyzed, in the understanding that the bounds for the dissipation of the kinetic

mechanism set the requirements for the dissipation of the linear transport mechanism.
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Quadratic bounds for the nonlinear kinetics dissipation component D

As the reaction rate r is continuously differentiable, the mean value theorem

ensures the existence of a continuous secant function o such that

p(c,y;¢) =0 (c,y;Q) ¢ = o (c,y;€) [ec — krer], (3.18)
which has conic bounds

sp < O'(C,y;C) < Su
s = min re(€,y,pe) <0, sy = rr)lgxrc(c, Yy, pr) >0 (3.19)

X, C X, rad(X,) = ex,

where X, is a concentration-temperature set of radius ex. Accordingly, the dissi-
pation of the static-nonlinear subsystem (3.14) is fixed by the reaction rate’s slope

o =r., and can be characterized by its restriction to the conic sector in the variable

¢ [73, 6],

T _ Suts;
SC 2 (SUC - p(chv g)) (p(chv g) - Slg) = [ C ] [ susj:jl 2 ] [ g ] > 0.
P “ p

(3.20)
A geometrical interpretation of this condition is illustrated in Figure 3.4. Correspondingly,
the nonlinear kinetic subsystem’s dissipation component Dy can be bounded by a

quadratic form

D = [Ber — (1 + K:B)Clp+ 8¢ — &
T
B
o " ’ Su+s 7%1+/€ B) o (321)
S C O —SuS] ulfr C )
p g Su+817§1+ﬂrﬁ) _1 p

and the observer design consists in finding output injection gains k.., k7, k, for the
linear subsystem (3.12,3.13) such that the two-system interconnection becomes in-
ternally exponentially stable, in the understanding that the sum of the dissipation of

the linear transport and the nonlinear kinetic subsystem becomes strictly negative.
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Figure 3.4: Geometric interpretation of the sector condition (3.20).

Quadratic bounds for the linear transport subsystem dissipation compo-

nent Dy

Note that corresponding to (3.17) the dissipation Dy of the linear transport

subsystem can be expressed in the quadratic form

o
¢

This shows that the heat and mass transport dissipation mechanisms are improved

(3.22)

[0+ 1+ k7] 7’60—”*&"“” ] [ er ]

fec—fwg]—l—fw) 0 C

in the understanding that (i) without correction terms (k, = k. = K = 0) the
corresponding components strictly dissipate energy (compare the preceding analysis
of the natural dissipation by transport), and (ii) the heat transfer corresponding
dissipation is improved by the gain k1, and an artificial coupling of the mass transfer

with the heat transfer component is introduced.
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Quadratic bounds for the estimation error dissipation

According to the preceding analysis, the overall dissipation can be bounded as

follows:
E =Dy + Dk
T
€r 0+n+kr %’HW) _g er 5o
<—1¢ w 0+ 5,5, _8u+sl—21—fwﬂ
_B _ sutsi—1l—r.p 1
2 2

This bound for the dissipation of the (potential squared error) energy (3.15) in
quadratic form allows to analyze the complex inherent energy-interchange mecha-
nisms in a simple and compact form. Based on this result, explicit convergence
conditions can be drawn in terms of (i) system parameters and (ii) the observer

correction gain triplet (k., kr, k).

Convergence criteria

If one can show that the strict dissipativity condition £ < —2\E holds for some
A > 0, it follows by Lyapunov’s direct method that the vector [er, (]T converges
exponentially to e = [0,0]7 with rate \, and amplitude a = 1 (see [73, 65] and
compare Lemma 2.1). Thus it is sufficient to show that the quadratic form (3.23) is

negative definite. This leads to the following result.

Proposition 3.1. The observer (3.10), implemented in the presence of bounded
model parameter, exogenous inputs, and measurement errors, with estimate € (),
converges exponentially to the motion x (t) of the actual reactor (3.1) driven by a
limited from below dilution rate input 6(t) > 6~ > 0 (3.26), with transient expo-
nential response and bounded asymptotic error offset, depending on the disturbance
sizes, if the estimator gain triplet (Kr, ke, K,) is chosen so that the following LMI is

met (s;, s, being the minimum and mazimum reaction rate’s slope, corresponding to

(3.19))

9_'_77_'_ /‘QT Hc_ﬁrén‘i‘ﬁT) _g
ncfmgwrw) 0+ 5,5  —tacloed s ) (3.24)
_B _ Sutsi—1-kf 1
2 2

This LMI has a solution if and only if 6= + s,s;, > 0.
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(Proof in Appendiz A.)

3.4 Discussion of the results

A short discussion of the particular features of the preceding observer design
method is in order. As qualitative basis the basic structure of the dynamic intercon-
nections characterizing the estimation error (3.12)-(3.14) is depicted in Figure 3.5

in block diagram form. The basic interplay of linear transport and nonlinear reac-

€T

g
T

\4

\ 4

N
=

Figure 3.5: Basic interconnection structure of the error dynamics (3.12)-(3.14) cor-
responding to the stirred reactor dissipative observer (3.10), with

Yg:iprer, Xy (poer) — €, X (€ey €1, C) — p.

tion, characterizing the reactor, observer, and estimation error dynamics, is exploited

within an abstract energy interchange framework, in the sense that:

e the dissipation properties of the nonlinear kinetic subsystem have been bounded
using a sector condition, representing a worst case scenario, in the understand-

ing of maximal influence of the nonlinear kinetic subsystem on the energy
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dissipation of the estimation error dynamics (3.12)-(3.14). It resulted that
for non-monotonic kinetic rates, the kinetic dissipation component Dy has a

destabilization potential, which has to be compensated.

e the basic energy dissipation mechanisms are identified, in the understanding
that the transport mechanisms naturally dissipate the squared estimation error

potential energy

e additional interconnection degrees of freedom have been introduced by the
correction mechanism which allow to (i) improve the natural dissipation mech-
anisms by coupling them with the dissipation mechanism corresponding to
physical heat transfer phenomena in the reactor itself, and (ii) compensate the

convergence deficit of the nonlinear kinetic component.

In particular, note that the gain triplet (kr, k., k) modifies the dissipation properties
of the Lur’e-Popov’s linear-dynamic subsystem (3.12)-(3.13), and of its interconnec-
tion with the nonlinear static subsystem (3.14), in the sense that: (i) (k., k7) shapes
the dissipation of the linear dynamical subsystem, while (ii) , determines the inter-
connection form by correcting the output of the linear system. The design procedure
can thus be viewed as an optimization in the sense of best input-output structure and
property assignment for the two-subsystem interconnection (3.12)-(5.14).

Furthermore, it is noteworthy that for x,, = —1/ the dynamics of the variable ¢
becomes a reaction invariant, i.e. a variable independent of the kinetic error function
p. This choice of gain corresponds to the open-loop observer [47, 8] which converges
robustly with rate fixed by the reactor residence time.

Additionally, there is a clear detectability-type (3.9) condition for the stability

of the (-dynamics, namely
0+ s,s; >0, s =minr,., s, = maxr,, (3.25)

which reveals that a monotonic kinetics (s,5;, > 0) improves the observer convergence,
while for non-monotonic kinetics (s,s; < 0) the residence time has to be chosen in
correspondence to (3.25). Comparing this detectability condition with (3.9), one
notes that the present condition (3.25) specifies the lower bound ¢~ of the volumetric
flowrate ¢ in dependence of the kinetic properties of the chemical reaction rate.
Furthermore, note that the consideration of the sector condition in the conver-

gence assessment allows to employ structural information about the nonlinearity in



43

the linearity-oriented approach using quadratic forms. It allows to obtain a simple
LMI which is constant in the system nonlinearity gains s; and s,.

Finally, in the presence of bounded parameter, measurement and exogenous load
errors and disturbances, respectively, the fulfillment of the LMI (3.24) in Proposition
3.1 ensures the estimation error convergence to a ball around the origin in the (er, {)-
plane with radius fixed by the error and disturbance sizes [83]. The corresponding
LMI can be solved analytically or numerically and the corresponding solutions for
the gains should be tested and adapted through numerical simulations, considering

practically realistic disturbance sizes.

3.5 Application to Output-Feedback Control

In the sequel the problem of controlling a continuous exothermic (possibly open-
loop unstable) reactor with non-monotonic kinetics, temperature measurements,
joint manipulation of reactant and heat exchange rates, and operation at maximum
production rate is considered. The respective work has been published in a series
of conference articles [84, 85] and in the Journal of Process Control [83] propos-
ing a solution within the robustness-oriented practical stability framework, drawing
the identification of the underlying detectability and relative degree properties, and
an interlaced passive controller-dissipative OF control design with emphasis on the
derivation of: (i) solvability conditions with physical meaning, and (ii) a closed-loop

stability criterion coupled with simple tuning guidelines.

3.5.1 Control Problem
In compact vector notation the reactor model (3.26) is written as follows
&= fle,d(t),u,p], z(0)==xy, y=Czx, z==zx (3.26)

where

r=[e,T" € X =[0,1] x (T, T*) CR? p=(pl,p))" flz,d,ap|=0
d = [Ce? Te]/7 Te = ye - gea u = [Q,TC]T, C - [07 1]7 pa - (Cea 5777)T

x is the state, u (or d) is the control (or exogenous, possibly time-varying) input, p

is the parameter vector of the nonlinear function f, and y (or z) is the measured (or
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regulated) output. X is a concentration-temperature set with respect to which the
reactor system (3.26) is positively invariant, meaning that all state motions starting
in X stay in X [70].

The considered control problem consists in designing an observer-based dynam-
ical output-feedback (OF) controller, on the basis of the reactor model (3.1) (with
parameter approximation p). This problem formulation captures well the relevant
features of industrial exothermic reactors with non-monotonic kinetics [19, 28, 7], in
the sense that the attention is focused on the non-monotonicity, detectability, and
open-loop instability features. The design of the complementary measurement-driven
volume and cooling system control components can be performed in a straightforward
manner [86, 87, 88].

From a robust control design perspective [89, 4] it is known that if a nonlinear
(OF) controller does exist, it should be possible to implement it as the combination
of a passive nonlinear state-feedback (SF) controller with a compatible nonlinear
estimator, in the understanding that the interlaced estimator-control design is by
no means trivial. Given that the reactant concentration and the reacting mixture
temperature of an exothermic jacketed continuous reactor can be robustly controlled,
regardless of the reaction kinetics, by manipulating the reactant dosage and the heat
exchange rate according to a straightforward material-balance SF control scheme
[87], the difficulty of the OF control problem with only temperature measurements
resides in the two-valued nature of the non-monotonic kinetics rate function, which
manifests itself as: (i) the lack of global complete observability, because the same
reaction rate (quickly inferrable via temperature measurements and calorimetric es-
timation [86, 87, 22] corresponds to two different concentrations (see Figure 3.3), and
(ii) the absence of local complete observability about the maximum reaction steady-
state regime, because the reaction rate becomes insensitive to concentration changes.
These considerations in conjunction with the peculiar observability /detectability fea-
ture of reactors with non-monotonic kinetics (see e.g. [19, 21]), motivate the present
work with focus on the interplay between observer and control design, and empha-
sis on the identification of solvability conditions with physical meaning, and the
characterization of a suitable tradeoff between reconstruction speed and robust (i.e.

practical) convergence.
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3.5.2 State-feedback (SF) control

In this section, a constructive control approach ([89, 3]) is applied to design a
passive nonlinear SF controller, with emphasis on robustness and the identification

of solvability conditions with physical meaning.
Accordingly, let rd(u, z) denote the relative degree vector of the reactor with
respect to the input-output pair (u,z), with u” = [0, T;] and 2 = [¢, T, and draw

the following conditions
rd(u,2) = (1,1), =2 =[c,T|",u=[0,Tj)]" ©c.#c,n#0 (3.27)

for the feedback equivalence of the reactor with respect to this input-output pair to

a passive system [90].3

The nominal steady-state (of maximum production rate) of (3.26) is character-
ized by the nominal control input values, (i) the nominal residence time 6 and (ii)

the nominal coolant jacket temperature T}, according to

eyl

(Ce — ") —r(c, T p,) =0,

(Te = T*) = n(T* = T}) + Br(c*, T*, p;) = 0. 52

eyl

Based on these considerations, the corresponding linear-decentralized closed-loop

output error dynamics (k. and kp are the adjustable control gains)

ec = —keee, e.=c—¢ ér=—krer, er=T-T (3.29)
is enforced upon the reactor dynamics (3.1), to obtain the nonlinear SF passive
controller

0=r(c,T)—kec—2)]/(ce —c),
Ty =T —[Br(c,T) +0(T. = T) + kr(T — T)]/n,
or, in compact form,
u=p(x,d,p). (3.30)

Consider the preceding state feedback controller with state (¢), parameter (p,) and

3The zero dynamics of the system with control output z is trivial and thus naturally asymptot-
ically stable, meaning that the reactor is minimum phase with respect to this input-output pair.
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measurement () errors and load disturbances (d),
u=p(x+i,d+dp+p), (3.31)

apply it to the actual reactor system (2.14), and obtain the closed-loop dynamics

(with e = [e.,er]t =2 — 7, € = [e., er]T =& — )
¢=—Ket [ leedt),p|, e(0)=co, K=diaglkohr)  (3.32)

where

f(e;e,ci,ﬁ) = f [a‘:+e,d+c§,ﬂ<x+e,j+d,p+ﬁ>,pﬂﬂ —flz+ed p(r.dp).pl,

e is the state regulation error, and f (e;¢, d, p) means that f vanishes with the argu-
ments after its semicolon, i.e. f (e;0,0,0) = 0. Given that the system has nominally
trivially stable zero-dynamics e = 0, the (errorless) closed-loop is (nominally) stable.
Thus, from the Lipschitz continuity of (f, u) the practical-stability of the closed-loop
system follows [71, 72, 3, 73], with a suitable tradeoff between the initial state (dy),
parameter (9,), input (d4 and ;) and state excursion (e,) sizes, depending on the
choice of the control gain pair (k., kr) (compare Lemma 2.1). The P-stable reactor
dynamics (3.32) represents: (i) the behavior attainable with any robust controller,

and (ii) the recovery target for the OF control design of the next section.

For OF control design purposes, let us introduce the Lyapunov characterization
of the closed-loop P-stability property (2.17) with the nonlinear passive SF control
(3.31):

= (€2 +ef),
V = —(kee? + kreq) + e’ f [e; ¢, d,ﬁ] (3.33)
—2min{ke, kr}V + €T f [e; e, d, 15] .

IN

This characterization shows: (i) the unperturbed feedback (with (i, d,p) = (0,0,0))
is exponentially stable, and (ii) the closed loop system is ISS with respect to errors
in estimation, parameter and exogenous input estimates. The task of the interlaced
observer-controller tuning thus consists in providing conditions for which, in presence
of state estimation errors, the closed-loop is not only ISS but is exponentially stable

(in the absence of parameter and exogenous perturbations).
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3.5.3 Output-feedback (OF) control

In this section, the closed-loop behavior of the exact model-based passive nonlin-
ear SF controller (2.14) is recovered, up to the concentration estimation convergence
rate fixed by the above discussed reactor detectability property, with: (i) an inter-
laced passive control-dissipative observer design, (ii) a closed-loop robust stability
assessment coupled with simple tuning guidelines, and (iii) the identification of the
underlying robustness versus response speed compromise in the light of the nonlocal

practical stability framework.

Dynamic OF controller

The combination of the SF (3.30) passive nonlinear controller with the dissipa-

tive observer (3.10) yields the dynamic OF controller

é = —T’[é — liT(T - y)ayvpr] + 6)(Ce - é) - Hc(y)(T - y) ) é(O) = éo

~

T = Brle — wp (T — ), y.py) + 6(T — T)—
T - T~ me)(T —y), TO) =Ty, (334
— [r(e— k(T — )y pr) — kel — O]/ (co — ),
— 51— 5o (T = ).y, p2) + O(T, + T) + k(T — T)] /.

IS
I
N~

Closed-loop dynamics

The application of this controller to the actual reactor (2.14) yields the closed-

loop dynamics (see Appendix B for its derivation)

0 — k - —
€e = —k’cec + ( et O-)A(CG C) €c — ﬁrgce feT
Ce — C Ce — C
éT = —]{]TGT — BO'GC — (kT - 77 - 97‘ - ’V”'T'ﬁa) e€r (335)
éc = —[er + U]Gc - [ﬁc - HTU] €r

éT - _[er + n + Ky + /{rﬁg]eT + ﬁO’EC,

where o is the reaction rate’s slope function according to (3.18).

Convergence criteria

The following specific stability conditions in terms of the five-gain set (k., kr, ke,
Ky, kr) of the proposed passive-dissipative OF controller (3.34) can be established,

which may serve as a basis for a gain-tuning scheme.
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Proposition 3.2. The actual reactor (2.14) with the proposed dynamic OF controller
(3.34) yields a P-stable (2.16) closed loop system (3.35) if: the (reactor and estimator
states, exogenous input, measurement and actuator) disturbance sizes (0, €), and the

control (ke, kr) and estimator (K., kr, k) gains satisfy

(1) 0 = po(ke) > —kr,  (id) ke > te(ke)

(3.36)
(1i1) kp > vp(ke), (iv) kr > tr(ke, b, K7, Key K ),
with pg given in (3.31) and e, iy, L. defined as
(0" = [ke = 0](ce — ©))?
c kc = = s r\Fr) = r s
te(ke) e~ (6, 1 0 b (Kr) u+n+:ﬁa
k3o (kr — K, fo)
k) = G 3.37
alke) = T T o=ty - Al ‘ (3:37)
w(kCa /{/07 K’T’ { }
Ly = — U, Ly = Mmaxqiy, Lo},
2 6 + o) 1,02

and w is a bounded function of its arquments. Furthermore, if (cz, p) = (0,0), the

exponential convergence follows.

(Proof in Appendix C).

Condition (i) is a closed-loop detectability requirement, Condition (ii) ensures
the stability of the regulation-estimation concentration dynamics and imposes lower
and upper limits (k. =~ 0, kT ~ 40) on the composition control gain k. ([87]), and
Conditions (iii) and (iv) ensure the stability of the regulation-estimation temperature
dynamics and of the complete interconnection. Thus, for s, ~ 1/3, k. ~ 30, the
preceding inequalities can be met by choosing: (i) kr sufficiently large to dominate

tr(ke, Ke, ki), and (ii) Kk sufficiently large to dominate ¢, (k., k7, ke, Kr).

Tuning guidelines

From the preceding P-stability conditions the conventional-like tuning guidelines

follow:
(i) set the gains conservatively at (ke, kr) =~ (1,3), (k, = 1/, ke = ke, k7 = 10K,

(ii) increase the T-estimation gain rr until oscillatory response is obtained at x7.,
back off and set ky = k7. /(2-t0-3),

(iii) in the same way set kr = &k} /(2-to-3),
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(iv) increase k. (sufficiently below k' a 46) until there is no improvement, and

adjust k.

(v) If necessary, repeat steps (ii) to (iv).

3.5.4 Discussion of the results

The nominal closed loop stability (i.e. without parameter (p), exogenous input
(d), and measurement () errors) can be established on the basis that the closed-
loop dynamics can be viewed as a master-slave system interconnection, due to the
single-way coupling (the control error dynamics depends on the estimation error,
but not vice versa). This is reflected in the vector representation of the coupled

control-estimation error dynamics

. [ _kT 0 /‘irﬁO' — kT —ﬁo’
‘- 0 —k. °r —ppole=c  G=lkeol(ce=c) €
2y 2 p
r ‘ ¢ 3.38
. —0, + nkr + k. PBo Bo ( )
€= €.
i KrO — Ke —(0, + o)

A
= e

Correspondingly: the master system is exponentially stable (e converges exponen-
tially to zero in the errorless case), and the slave is input-to-state stable (ISS) with
respect to the master system’s state, i.e. the estimation error (the connection matrix
B has bounded norm ||B.|| for bounded gains and ¢ # ¢.), and, for ¢ = 0, the
e-dynamics is exponentially stable. The closed-loop dynamic’s asymptotic stability
follows (cp. [84]).

On the other hand, the need of a more constructive stability criterion in the sense
of practical applicability for gain tuning and behavior assessment purposes motivates
the formulation of explicit stability conditions in terms of the system parameters
and the estimator-controller five gain set ke, kr, ke, Ky, k7. As the temperature is
measured, the temperature estimation is a rather simple task, and the estimation
problem resides in the concentration ambivalence caused by the non-monotonicity
feature of the reaction rate. This ambivalence issue causes the discussed lack of
observability, and limits the global estimation speed in correspondence to the inverse

residence time 6, characterizing the detectability condition (3.9). Furthermore, the
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temperature control is also simple, as it is directly measured, while the concentration
is difficult to control, because of the mentioned estimation ambivalence feature. Thus,
the main problem resides in the inherent structural restrictions for the concentration

estimation and control.

The solvability of the robust OF reactor control problem is a consequence of: (i)
the solvability of the OF control (3.27) and dissipative closed-loop observer (condition
(i) in Proposition 3.2) problems, and (ii) the adequate choice of gains according to

Proposition 3.2.

3.5.5 Application Example

To subject the proposed OF controller to a severe test, let us consider an extreme
case of an industrial situation: the operation of the continuous reactor (2.14) with
the Langmuir-Hinshelwood (LH) kinetics model [18, 19]

v

ck;ef(f)
(1 + 00)2 (339)
re=(c",T,m1)=0,c"=1/c

r(e, T,m) =

adapted from a previous (partial open-loop or asymptotic and full measurement
injection) estimation study with EKF and experimental data for the catalytic carbon
monoxide oxidation reaction ([28]), with ¢ being the dimensionless concentration of
carbon monoxide. Figure 3.6 shows how this kinetics depends on the inhibition
parameter 0. With the following nominal parameters and inputs

d*

(6., T,) = (1,370K),u’ = (0,T.) = (1,370K),

p =L, p")", pa = (8,7)" = (200,1),
pF =(k,7,0) = (¢*,10000,3), " = 1/3

the reactor has three open-loop steady-states [22], with two of them corresponding to
extinction and ignition stable regimes, and one of them being unstable with maximum
concentration rate r* &~ 0.6614 at concentration ¢ = ¢* = 1/3 and temperature

T = 430K.

Tuning of the control and estimator gains in accordance to the conditions (3.36)
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Figure 3.6: Dependence of the Langmuir-Hinshelwood kinetics (3.39) on the inhibi-
tion parameter o: Monotonic behavior for o < 1 (and ¢ € [0, 1]) and non-monotonic
behavior (with maximum in ¢* = 1/0 for o > 1).

yielded the following gain values:

1
e =062, kp =30, K, = —, ko=2, kp=3.
R, RT K 50 T

The reactor (xp) and estimator (%) initial conditions were set about the unstable
steady-state:
zo = [0.28,430]",  Z¢ = [0.35,425]"

In the spirit of the nonlocal P-stability framework employed in the control design
developments, the reactor closed-loop system with nominal SF (without modeling
and measurement errors), nominal OF and perturbed OF will be subjected to initial
state, input (persistent model parameter and sinusoidal exogenous input) distur-
bances, and the kind of transient, asymptotic and combined transient-asymptotic
responses will be analyzed. For the nominal maximum rate-unstable steady-state
regime, the relative degree (3.27) and global detectability [83] conditions are ade-

quately met, according to the following quantitative values:

Ce—C=2/3>0n=1>0,1/3=0" <0< =3/2
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Behavior with SF control without modeling and measurement errors and

disturbances

For methodological development and comparison purposes, the closed-loop re-
actor behavior with exact model-based nonlinear passive SF controller (3.30) with
errorless model, and initial state deviations is presented in Figure 3.7. As expected
from the control gain values the concentration (or temperature) response is about
one half (or quarter) settling residence time (4/0 = 4), with smooth and coordinated
dilution rate and coolant temperature control actions, safely away from saturation.
This is in agreement with the optimality-based non-wasteful feature of the SF con-

trollers discussed in [83].

+ + t t t t 450
O[min ] Q T;[K]
R 350

0 0 1 2 3 4

Time t [min]

Figure 3.7: Reactor closed-loop nominal behavior with nonlinear SF controller: input
and response (—) , estimate (— —), and set point (---).

Behavior with OF control without modeling and measurement errors and

load disturbances

Initially, the reactor was in the above stated deviated initial conditions, and
subjected to the known constant feed concentration and temperature inputs ¢, = 1
and T, = 370K, respectively. The resulting behavior with errorless model-based OF
control (3.34) is presented in Figure 3.8, showing that: (i) the concentration and

temperature responses are quite similar to the ones of the nonlinear SF controller
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(Figure 3.7), in spite of a sluggish concentration estimate response (about 3/4th of
the natural settling time), and (iii) the control actions occur in a smooth and efficient
manner, reasonably away from saturation. This test verifies the ISS property of the
closed-loop reactor system with the proposed OF dynamic control, with asymptotic

convergence to the prescribed steady-state.

440
TR
8%
el B
o8
7[min~!] /—_d’(
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6[min "] /ef T;[K]
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Figure 3.8: Reactor closed-loop nominal behavior with nonlinear OF controller: input
and response (—) , estimate (— —), and set point (---).

Behavior with OF control subject to modeling and measurement errors

and load disturbances

To test the robustness of the proposed OF controller, the reactor and the estima-
tor initial states were deviated from the nominal open-loop unstable and maximum
reaction rate steady-state, the closed loop system was subjected to oscillatory feed

concentration and temperature
ce =0.99 + 0.01 cos(4nt), T, =370+ 2sin(4nt)

and the estimation model had the following errors: (i) the feed concentration was set
at the mean value ¢.(t) = 0.991 of the actual periodic input signal, (ii) the measured
feed and reactor temperatures had rather drastic periodic errors T.(t) — T.(t) =

y(t) — T (t) = 2cos(407t) (four degrees amplitude band and frequency close to
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natural resonance mechanism), as well as (iii) a —1.5, —10, and +3 % errors in the
activation energy (), heat transfer coefficient (1), and adiabatic temperature rise
(B), respectively. It must be pointed out that the combination of these measurement
and modelling errors represents a worst-case situation meant to subject the proposed
OF controller to a rather severe robustness test. The resulting robust closed-loop
behavior is presented in Figure 3.9, showing that: (i) the closed loop system is
adequately P-stable with transient response trend that basically coincides with the
one of the errorless model case (see Figure 3.8), (ii) as expected from the severe
modelling errors, the unmeasured concentration exhibits a significant (= —30%)
asymptotic offset, some reaction rate offset (= —20%) and the temperature estimate
generated by the linear-dynamical advective (that is mass-energy balance based)
component of the dissipative estimator displays an offset-less trend response, and (iii)
given the flatness feature of the reaction kinetics in the isotonic branch of the reaction
rate function, in spite of the —30% concentration trend offset, the reaction rate trend
is only a —20% of its maximum set point value. In principle , the optimal reaction
rate offset can be arbitrarily reduced by performing online kinetic parameter model
calibration on the basis of the occasional or periodic concentration measurements
that are usually taken in industrial settings for product quality and process efficiency

assessment purposes.
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Figure 3.9: Reactor closed-loop robust behavior with nonlinear OF controller: input
and response (—) , estimate (— —), and set point (---).
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3.5.6 Concluding Remarks

The preceding responses to initial state deviations, exogenous input distur-
bances, and model parameter errors verify that, in agreement with the methodologi-
cal developments, the proposed passive-dissipative OF controller: (i) recovers rather
well the behavior of its exact model-based nonlinear passive SF counterpart, with
optimality-based robustness and non-wastefulness, and (ii) exhibits P-(robust and
non local) stability with respect to model, and measurement errors. The closed-loop
behavior assessment through simulations made quantitative the P-stability features,
like transient response speed, overshoot, and high frequencies oscillatory compo-
nents, as well as asymptotic response offsets, and verifies the effectiveness of the

tuning guidelines in the light of the P-stability characterization.

3.6 Summary

In this chapter, the problem of concentration and temperature estimation for a
non-isothermal CSTR with temperature measurement was addressed.

Motivated by the process inherent transport and reaction mechanisms, as well
as the underlying detectability properties of the CSTR, a dissipative observer was
designed which allowed to

e identify the basic dissipation mechanisms of the estimation error dynamics,

corresponding to linear transport and nonlinear reaction

e improve their corresponding dissipation features by appropriately choosing the
energy interchange structure between both mechanisms in function of the cor-

rection gains

e identify an approach to employ bounds for the nonlinear subsystem’s dissipa-
tion in the sense of a quadratic form by means of conic sector conditions for

the (induced) nonlinear reaction rate error

e obtain explicit solvability conditions in terms of detectability-type conditions,

and low dimensional matrix inequalities

In comparison to previous results the presented dissipative observer unifies the basic

requirements of (i) systematic design, (ii) mathematically rigorous and physically
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meaningful convergence conditions, (iii) simple implementation, and (iv) convergence
improvement.

Furthermore, the dissipative observer was combined with a passive nonlinear
SF' controller to obtain a dynamic OF controller for the stabilization of the SS of the
reactor with maximum production rate. This particular application study enables
to identify the structural features corresponding to the employment of a dissipa-
tive observer, in the understanding that the structure-oriented design approach of
the dissipative observer permits to treat the complex nonlinear closed-loop stabil-
ity problem by means of explicit matrix inequalities. This issue allows to overcome
the corresponding difficulties of the closed-loop stability assessment and yields ex-
plicit simple convergence criteria with physical meaning based on which explicit and
mathematically rigorous tuning guidelines are identified.

In comparison with previous studies on this subject, the presented dissipative-
passive OF controller offers (i) systematic design, (ii) mathematically rigor with
physical meaning, (iii) implications for process design parameters, (iv) identification
of capabilities and limitations, (v) recovery of the ideal SF controller.

The non-isothermal stirred tank represents the limit case of the non-isothermal
tubular reactor and thus constitutes an important particular sub-problem which had

to be addressed before treating the tubular reactor case because it enables to

e identify the main structural features of a unifying chemical reactor observer
design methodology has to include in virtue of exploiting the process inherent

structural properties

e set the methodological starting point of an energy-based Lyapunov-type design

approach for a entire class of chemical reactors

e identify a mathematically rigorous way of analyzing the influence on the dissi-

pation of the nonlinear kinetic mechanisms (employing sector conditions)

In the spirit of a methodological inductive step towards the distributed tubular
reactor counterpart, next, the isothermal tubular reactor with concentration mea-

surements is considered, because it allows to

e extend the analysis of the lumped transport characteristic dissipativity prop-

erties to the case of diffusive-convective distributed transport
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e identify a way of analyzing the spatially distributed influence of the nonlinear
kinetic mechanism on the dissipation, extending the sector-condition approach

employed in this chapter to the distributed case.
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Chapter 4

The Isothermal Tubular Reactor

Having as point of departure the stirred tank reactor dissipative observer, in
terms of a dissipation mechanism with linear-dynamical transport and nonlinear-
static reaction components, in this section the basic ideas of the dissipative approach
are extended to the distributed case associated with the isothermal tubular reactor
with boundary and/ or domain point concentration measurements. The consideration
of this problem represents an important intermediate step towards the consideration
of the non-isothermal tubular reactor with temperature measurements, because it
allows to identify a methodological framework for the treatment of (i) the distributed
diffusive-convective transport, and (ii) the distributed nonlinear reaction.

Accordingly, functional analysis and Lyapunov-type energy methods for dis-
tributed parameter systems are employed to draw the corresponding version of the
convergence criteria and the tuning guidelines.

In comparison with previous studies reported in the literature the designed
observer presents (i) a systematic design approach, (ii) mathematically rigorous con-
vergence conditions with physical meaning, (iii) convergence improvement, and (iv)
explicit implications of the isotonicity features of the reaction kinetic rate on the
attainable observer performance.

The extension of the employment of the sector condition to the context of the
distributed system enables the weighting of regions of maximal versus those of mini-
mal convergence, what represents a first step towards the complex problem of trans-
ferring convergence intensity superhavit to regions with a slower convergence, in
accordance with the diffusive-convective transport physical mechanisms.

The results are illustrated through numerical simulations including cases of low

and high Peclet-numbers.



99

4.1 Introduction

This chapter deals with the extension of the dissipative observer design employed
in the preceding chapter for the non-isothermal CSTR with temperature measure-
ment, to the isothermal tubular reactor with boundary and/ or domain point concen-
tration measurements. The isothermal tubular reactor model is given by (see (2.11)
in Section 2.3)

dc(z,t) 1 d9*c  Oc

5 = Pecw o Dyr(c(x,t), T(x,t)) (4.1)

fort >0, x € (0,1), with corresponding Danckwerts’ boundary conditions

1 0¢(0,t) 1 0c(1,t)
=0: = — ¢ =1: = 4.2
x=0 P on (c(0,t) — cin(t)), = P on 0, (4.2)
for all t > 0, initial profile ¢(z,0) = ¢o(z), and measurement vector
y(t) = [c(0,1), e(&, 1), c(1,1)]". (4.3)

The related estimation problem represents an important intermediate step towards
the consideration of the non-isothermal tubular reactor with temperature measure-
ments, in the understanding that the main mechanisms of distributed nature of the

process can already be characterized for the isothermal case. These are
e diffusive-convective transport,
e nonlinear distributed chemical reaction,
e locally discrete measurements.

For this purpose, the previously identified energy-function Lyapunov-type dissipa-
tive observer design is extended to address the design of a locally distributed data-
assimilation scheme for the profile estimation of the concentration, based on point
concentration measurements on the boundary and/ or in the domain.

For the analysis of the distributed transport and the innovation mechanisms,
linear functional analysis tools are employed, as there are: (i) spectral theory based
on Fourier series synthesis, and (ii) basic ideas from variational calculus (energy
method).
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4.2 Dissipative Observer

4.2.1 Observer Construction

As a generalization of the structure of the dissipative observer (3.10)!, em-

ployed in the CSTR case study, a linear gain Luenberger-type observer is set (y =

[0, 1), (&, 1), e(1,6)]"):

8<at D_ L OC % h el t).T) — () — () (44)

1 0¢(0,t) R
z=0: = ¢(0,t) — cin(t) — lp(¢(0, ) — y1 (T

]chaé(aft) (0,1) (t) = lo(c(0, ) — 11 (1)) (45
r=1 — = —o(¢(0,) — y3(t)),

for t > 0, and initial condition é(z,0) = é(z), « € [0,1]. The data-assimilation-
scheme (4.4)-(4.5) depends on: (i) the observer gains ly,l; at the boundary, (ii)
the location £ € (0,1) of the measurement y, in the domain, and (iii) the spatial
distribution l¢(x) of the corresponding injection mechanism, which represents an

important design degree of freedom whose influence will become clear later.

4.2.2 Estimation Error Dynamics

For the assessment of explicit convergence conditions the estimation error dy-
namics, given by the difference of (4.4)-(4.5) and (4.1)-(4.2) is considered

= =D Az A Da[r(c+e) —r(c)] = le(x)e(&, 1) (4.6)

for x € (0,1),¢ > 0, with boundary conditions

1 Oe 1 0¢
Pec%(o,t) — G(O,t) = —loe(O,t), r=1: Pec%(lat) - _lle(]-)t) (47)

r=0:

for ¢ > 0, and initial conditions e(x,0) = eo(z), =z €[0,1], ep(x) = éo(x) — co(x).

I'Note that in the distributed case examples no correction mechanism is introduced for the
reaction rate’s argument. Such a mechanism can be considered but in the present work the main
attention is focussed on the design of a conventional-like observer of simple structure, in order to
focuss the attention on the main issues which have to be taken into account for the design.
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In a way that is analogous to the treatment of the stirred tank reactor (Sec-
tion 3.3), the estimation error dynamics for the isothermal tubular reactor case is
represented as an interconnection of two subsystems, one associated with the dis-
tributed convective-diffusive mass transport (compare (3.12)-(3.13)), and one with

the nonlinear kinetics (compare(3.14))

d
d—: =Ace + Dyv, (4.8)
v == plese), (4.9)

for e € Dom(A,), where A, is the linear transport operator given by

1 07 0
= Plot  or (410

Ac

which acts on its domain of definition Dom(A,), characterized basically by the bound-

ary conditions (4.7)

—(x) a.c.,

Dom(A,) = {h(l“) € L*([0,1],Z C R) : h(x), dr (4.11)

and (4.7) holds},

and p(c; e) is the nonlinear function which represents the induced reaction rate error
plcie) =r(c+e)—r(c), p(c;0)=0, (4.12)

in dependence of the (space and time) varying actual concentration. From Figure 4.1
one can appreciate that the basic structure is the same as in the case of the stirred
tank (compare Figure 3.5), in the understanding that in the limiting case of high
dispersion, the isothermal reactor (4.1)-(4.3) becomes the isothermal version of the
lumped non-isothermal reactor (3.1) [9] with concentration measurement (compare
Figure 3.2 without Xp).

In order to analyze the dissipation properties of the given estimation error dy-
namics in dependence on the system parameters and correction gain structure, in the
spirit of the stirred tank study (Chapter 3), an energy-based Lyapunov-type method
is employed, which exploits the process inherent interplay of transport and reaction

mechanisms.
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\g
<

g
=

I

Figure 4.1: Basic interconnection structure of the mass transport and the kinetic
subsystems in the estimation error dynamics (4.8)-(4.9), with
Yapipro € Nt (€6, 0) — p.

4.2.3 Estimation Error Dissipation

Here, in the spirit of the Lyapunov approach for distributed parameter systems
(see e.g. [63, 65]) the underlying energy dissipation mechanism is identified in the
light of the above discussed mass transport plus kinetics system partition, in order to
identify explicit bounds for the dissipation which serve as a basis for the convergence
assessment.

For this aim, the influences of the nonlinear kinetic and the linear transport
subsystems are identified, and subsequently bounds for the corresponding dissipa-
tions are drawn. For the nonlinear kinetic subsystem an explicit bound is obtained
by employing the sector condition (3.20) previously identified for the lumped contin-
uous stirred reactor, and for the linear transport subsystem two different approaches
are employed to find explicit bounds for the dissipation: (i) in terms of the dominant
eigenvalues via a spectral decomposition approach (cp. [35, 38, 37, 39, 26]), and (ii)
a direct, functional-analytic approach (cp. [34, 91, 65, 66]).

For this aim, introduce the potential (weighted squared error) energy in Z =
L*([0,1],Z=1[0,1] C R)

E(e) :/0 w(x)e*(z,t)dx = (e, we), (4.13)
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where w(x) > 0 is the continuous positive definite weighting function, which is
viewed as an important design degree of freedom, and which later will be related
to the particular data-assimilation structure chosen for the correction mechanism in

the domain.

The dissipation corresponding to (4.13) is given by

dB(e) _
) —p 0, (4.14)
Dk =— 2/0 w(z)e(x,t)Dy {r[c(x, t) + e(x,t)] — rle(x, )]} dz (4.15)

1 2
1 0%e(x,t)  Oe(x,t)
Dr=—2 [ w(x)e(z,t){ — L “ +le(x)e(ét) pde,  (4.16
r=-2 [ wllele.t) { - - To 5+ S (alele ) an, (410
where D is the dissipation corresponding to the kinetic component (4.9) of the
estimation error dynamics, and Dy is the linear transport dissipation component,
corresponding to the linear dynamical subsystem (4.8) of the estimation error dy-

namics.

In accordance to the preceding CSTR estimation study, the subsequent analysis
is performed for the dissipation of the nonlinear static kinetic subsystem Dy, and of
the linear dynamic transport subsystem Dp. The degree of freedom w(z) > 0 will
be exploited in the analysis of the linear dynamical transport subsystem dissipation
component, which will turn out to depend explicitly on the particular structure of

the correction mechanism l¢(x) which is employed.

4.2.4 Quadratic bounds for the nonlinear kinetic subsystem

dissipation Dy

Next, the dissipation of the nonlinear kinetic subsystem Y (4.9), corresponding
to the nonlinear kinetic function p(c;e), is bounded employing the sector condition
(3.20), used in the preceding CSTR study, in a version extended for the consideration
of the spatially distributed case.

Remember that, due to the continuous differentiability of the rate function
r(c,T), in any point € [0,1], and for any value c(z,t), the nonlinear function

ple(x, t); e(x, t)) is included in the sector [s;, s,], where s; = min P and S, = max _7"’

Oc Oc



64
(sue — plc; €)) (ple; €) — si€) = 0, (4.17)

and, accordingly, one can bound the influence of the kinetic mechanism on the dissi-
pation (4.14) in any z € [0, 1] using quadratic forms. Note that, in consequence, for

all (at least continuous) positive definite functions h(x) it holds that for all € [0, 1]

h(z) (sue = p(c;e)) (plc; ) = sie) 2 0,

and thus one finds the integrally weighted sector condition

Sp = /0 h(z) (sye — p(c;e)) (p(c;e) — sie) dx > 0. (4.18)

Consequently, an explicit bound for the kinetic subsystem dissipation component is

given by

Dk = -2 /1 w(z)e(x,t)Dyp(c; e)dx + 8 — S,
’ 2D w(x) — [sy + si]h(x)

el hx)sus e
< _/0 [ 0 ] 2D w(x) — [sy + si|h(z) h(2x) [ ) ] dx.
2

(4.19)

This bound characterizes the first dissipation component Dy of the estimation error
dynamics dissipation (4.14) corresponding to the weighted squared energy (4.13).
Note, that an additional degree of freedom h(z) > 0 has been introduced, which later
on will result to allow the derivation of explicit convergence conditions by combining
the given bound (4.19) for the dissipation Dg of the kinetic subsystem (4.9) with
a bound for the linear transport subsystem dissipation component Dr (4.16) which
is identified next for two different types of injection mechanisms (treated accordingly

in two different theoretical frameworks).
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4.2.5 Quadratic bounds for the linear transport subsystem
dissipation Dy

Bounds for the linear innovated transport subsystem (4.8) will clearly depend
on the particular correction mechanism l¢(z) employed. As mentioned in Section
1.3 for linear systems different estimation and control design techniques have been
reported and different approaches to the analysis of the related stability issues have
been employed. In the sequel, two main approaches, reported in the DPS literature,
are employed for the design of the correction mechanism for the linear dynamic
distributed parameter transport subsystems (4.8), to draw explicit quadratic bounds

for the corresponding dissipation component D (4.16). These approaches are:

(A) Modal injection, within a Fourier frequency, spectral decomposition approach
(34, 35, 36, 38, 37, 91, 39].

(B) Point injection within a direct, functional-analytic approach (energy method)[34,
91, 65, 33, 59].

(A) Spectral Approach

In the spirit of modal innovation mechanisms recorded in the literature for
applications in control and observation of linear DPS (see e.g. [34, 35, 36, 38, 37,
91, 39, 26]), a finite-dimensional modal correction mechanism can be employed to
reassign the first N dominant eigenvalues of the linear transport subsystem. For this
purpose consider a Fourier series expansion of the estimation error function e(x, t) in
the bi-orthogonal eigenfunction basis (®y, W) of the eigenfunctions ®; of the mass

transport operator A, and the adjoint ones ¥ (see Appendix D for more details)

e(z,t)=>_ /O w(z)e(x, )W (x)de Oy(z), (4.20)

k=1 _

with the weighting function w(z) of the energy definition (4.13), which will be de-
fined next. Correspondingly, the e(t) are the modes of the linear dynamical transport
subsystem Y(A., D,). The weighting function w(z) is chosen such that the eigen-
functions are pairwise orthogonal, i.e. (cp. e.g. [92, 93, 94, 95])

w(x) = e Feer/2, (4.21)
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Corresponding to the eigenfunction property A.®, = A\ P, with \; being the k-th

eigenvalue of the operator A., the action of the operator A, can be expressed as
Ace(,t) = Mer(t) (). (4.22)

Note, that the negative of the operator A, is a Sturm-Liouville (SL) operator. In
virtue of this SL property, it is known [96] that all eigenvalues \;, & € N of the
operator A. are real, negative, and form a discrete series which mono-
tonically decreases to minus infinity. Consequently, for each negative number
—0 < 0, there is a finite number of eigenvalues which are greater or equal to it, i.e.
the set

{)\k : )\k 2 —5}
is finite. This means that there exists a number N € N so that
Ap < —0, Vk>N. (4.23)

Consequently, one can separate the modes ex(t) in those which are fast or slow with
respect to —d. Accordingly, and in virtue of the representation (4.22) of the action of
the operator A., one can formulate the dynamics of the linear dynamical transport

subsystem Y (A., D,) in form of a modal decomposition according to

die | _
dtei—

(see e.g. [38, 37, 92, 39] for more details), where the vector e] has dimension N

A0
0 A

o ] (4.24)
€k

(4.23), and the corresponding N x N matrix A? is diagonal

Based on this modal representation of the dynamics of the linear transport subsys-
tem, it is natural to consider a N-dimensional modal innovation mechanism to im-

prove the dissipation properties of the linear dynamical transport subsystem. There-
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fore consider the innovation mechanism

le(é(&, 1) lek@k (¢(&,t) — ya(t)). (4.26)

Furthermore, the estimation error corresponding to the point x = £ where the mea-

surement s is obtained at, can be expressed analogously as
e(€,1) = e(6, 1) =Y et (4.27)
k=1

and, consequently, the action of the operator A. (4.22) together with the modal

correction mechanism l¢ (4.26) obtains the following form

A (.’L’ t) — lg Z )\kek (I)k Z lg kq)k (Z €l ) .
=1

Introducing the modal gain vector
Ly = : , (4.28)

and the restriction of the corresponding measurement operator to the N-dimensional

space of slow modes Z¢, i.e

C =] @e), o, on(O) ] (4:29)

and the corresponding restriction to the (infinite-dimensional) modal subspace of

fast modes Z/ according to

oo

Cle(é,t) = Z e (t)Pr(§), (4.30)

k=N+1
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one obtains the modal representation of the innovated linear transport subsystem’s

dafe]_
dteg_

Accordingly, a necessary and sufficient condition for the assignability of the dominant

dynamics

A5 — LyC* LyCY
0 Al

o ] . (4.31)

€k

slow eigenvalues Ay, ..., Ay is given by Kalmann’s observability condition for the pair

(Az, C*) [38, 37, 39], i.e. the full rank condition of the observability matrix
0° = [C®]A%Ce] .. [(AHN ] (4.32)

This obviously sets a condition on the sensor location & € [0,1] in the light of
the structure of the measurement matrix C* (4.29). More precisely, this condition
requires that the sensor location ¢ € [0, 1] does not correspond to any root
of the first N eigenfunctions & (x), k=1,..., N [37].

Based on these considerations, one can find explicit bounds on the dissipation
Dr, a function of the innovated linear transport operator action, in terms of the
reassigned eigenvalues of the slow, dominant modal dynamics, and the fast modal

dynamics corresponding to the linear transport operator A..

Lemma 4.1. Under the consideration of the modal correction mechanism (4.26), the
dissipation Dy of the linear dynamic transport subsystem is bounded in the following

way
'DT S 2 max{ﬂ?(/\*), /\N+1}E, (433)

where R(A*) denotes the real part of the mazimal eigenvalues of the N x N matriz

| M= le1®i(§) e ®a(§) - —le1 PN (§)
A5 B A IO = —55,2.@1(5) Az — lg2Po(§) —lg,Q?N(f) 7
I —le NP1(E) —len®2(&) - Av—len®n(§) |

(4.34)

Ani1 1S the N + 1-th eigenvalue of the linear transport operator A. (4.10) and
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1
E = / w(x)e?(z,t)dx (4.13) is the weighted squared estimation error energy, with

0
weighting function w(x) given by (4.21).

(Proof in Appendiz E.)

This finishes the bounding of the linear transport dissipation component D
(4.16) using a modal injection mechanism. For later comparison, an alternative
bound, using a point injection mechanism is drawn next within a direct, functional

analytic framework.

(B) Variational Approach

Next, an alternative bound for the linear transport dissipation component D
(4.16) is drawn, based on the employment of a point injection mechanism in place of
the modal injection mechanism. For this aim, a direct, functional analytic approach
(33, 34, 91, 65, 59] (in mathematical theory called energy method, see e.g. [59]) is
employed to obtain quadratic bounds for the dissipation component Dry. Considering
a point-injection in the domain, i.e. setting the data-assimilation scheme in the

following way,
le = 1{6(x =€), (4.35)

integrating by parts the expression for Dy (4.16), and employing Wirtinger’s in-
equality (e.g. [97, 98, 66]) to bound the integral over the squared estimation error
gradient by an integral over the squared estimation error profile, one obtains the
following bound for the dissipation component D7 of the linear dynamical transport

subsystem (4.8) of the estimation error dynamics.

Lemma 4.2. Under the consideration of the correction mechanism given in (4.35),

the dissipation of the linear dynamical transport subsystem is bounded in the following
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way

ga| T T ,
0 0 Rw() 0
0 0 0 Ry
d*w dw Wy
D _ _
[w] dax? T dx 2P..
dw Winin T
:RQ _E(O) — low(O) -+ 2Pec
dw
Ri = —— (1) + [Pe + h]w(l).

(Proof in Appendiz F).

(4.36)

(4.37)

(4.38)

This bound, based on a point injection mechanism, varies from the bound (4.33)

in the following sense: (i) the weighing function w(x) > 0 is not fixed by method-

ological requirements, (ii) the values of the estimation error on the boundary appear

directly, and not in form of the underlying eigenvalues, and (iii) the collocated mea-

surement injection in x = & appears as a separate component in the dissipation

bound (4.36) for Dr.

The particular differences implied by the presented data assimilation schemes

are discussed later, on the basis of the corresponding convergence criteria, obtained

next by combining the previously identified bounds for the nonlinear kinetic dissipa-

tion component Dy (4.19), with the bounds (4.33) and (4.36) of the linear transport

dissipation component D.

4.2.6 Convergence Assessment

According to the two different injection mechanisms employed in the above

analysis, (A) a finite-dimensional modal injection, and (B) a point injection, two

different sets of convergence criteria and conditions are obtained.



71

(A) Modal injection - spectral decomposition approach

First, convergence criteria are drawn for the case of a modal injection mech-
anism, using the corresponding bound (4.33) for the linear transport dissipation
component Dr together with the bound Dy of the nonlinear kinetic dissipation
component.

Therefor, recall the dissipation (4.14) with the corresponding components Dy
(4.16) of the linear dynamical subsystem (4.8), with the finite-dimensional measure-
ment injection mechanism (4.26), and Dy (4.15) of the nonlinear static (feedback)
subsystem (4.9) as given in (4.33) and (4.19), and write the corresponding estimation
error dissipation with respect to the energy (4.13)

dE(e) = 'DT + 'DK
dt
<_/1[ ¢ ]T —2yw(x) + h(z)s,.s 2Due(z) _2[3” s [ 6 ]dx
=TI, | | 2Dae) = [s.+ sin) h(x) 0

2
Y= maX{)‘*a )‘N+1}

(4.39)

In the light of the Lyapunov-like approach (cp. Lemma 2.1), the aim of the observer
design consists in ensuring that the dissipation (4.39) becomes strictly negative, in

the understanding that it fulfills an inequality of the type

dE(e)
dt

< —2\E(e), A >0. (4.40)

These considerations motivate the following result, stating explicit conditions for the
exponential stability of the estimation error dynamics in terms of (i) sensor location,
(ii) system parameters, and (iii) modal observer gains.

Recall, that the weighting function w(z) is given by (4.21), so that the main
degrees of freedom are (i) the innovation dimension N, (ii) the weighting function for
the nonlinear kinetic dissipation bounds h(x) > 0, (iii) the sensor location & € [0, 1],
and (iv) the modal gains l¢ . For the particular choice of the sector weighting func-
tion h(z) = w(x) = e T= it is furthermore possible to find explicit conditions which

allow to draw simple conditions on the observer gains and the system parameters.

Theorem 4.1. Consider the isothermal tubular reactor (4.1)-(4.2), together with the

dissipative observer (4.4)-(4.5), with lo = l; = 0 and modal measurement injection
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r r

le(x) corresponding to (4.26). Let s; = min e and s, = max — be the minimal
c c

and the mazximal slope of the reaction rate v, respectively, and h(z) = w(x) = e T,

The estimation error e = ¢ — ¢ converges exponentially to zero with rate A > 0 and

Pec/2

amplitude a = e i.e.

lle(z, )| < alleg(2)l] ™, (4.41)
if the following conditions are met

(i) the modal innovation dimension N is chosen so that

(2D, — [sy + sl])2
4

Ve e [0,1]:  —2Ayy > — suS1+ 2, (4.42)

(ii) the sensor location x = & does not correspond to any root of the first N eigen-
functions @,k =1,..., N of A., and

(111) the modal gains le y, k =1,..., N are chosen so that
A< Ay (4.43)
where \* is the mazimal eigenvalue of the matriz A5 = A3 — LyC*® (4.34).

(Proof in Appendiz G.)
Before this result is discussed, its counterpart corresponding to the pointwise

injection mechanism (4.35) is presented.

(B) Point injection - variational approach

Next, the convergence criteria are drawn which correspond to the bound (4.36)
for the dissipation component Dr corresponding to the linear dynamical subsystem
(4.8) with the point injection structure (4.35).

In virtue of the expression (4.36) and (4.19) for the dissipation component Dy of
the linear transport subsystem subject to to the point correction mechanism (4.35),
and the dissipation Dy of the nonlinear static kinetic subsystem, respectively, the

dissipation according to the energy (4.13) can be written as an integral quadratic
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form
dE b
— < - | w Quwdxz, (4.44)
dt 0
with the vector
= = [e(,1), e(0,8), p(c;e), e(€, 1), e(1,0)]" (4.45)

and the matrix valued function

Dlw] “wz 0 0
L P (R
0 0 R 0

0 0 0 Rw(§)

Qi
(>
[\]
0

d2w dw o (446)

D[w]:—?—Ped—jLﬁ
1 w 2-2[0—P€c .

Ry = — - =0 “ee WninT
TRE T

w 1_'_ ec
R = —(1 ——w(1).
1 Pecdx()+ P w(l)

Correspondingly, if one can ensure the strict dissipation (4.40) based on the given
bound (4.44) for the dissipation component Dy corresponding to the proposed data-
assimilation scheme, one can ensure the exponential stability of the estimation error
zero solution e(x,t) = 0 in terms of the systems transport and kinetic parameters

and the observer injection gains.

Theorem 4.2. Consider the isothermal tubular reactor (4.1)-(4.2), together with

the dissipative observer (4.4)-(4.5), with point correction injection le = d(x — &)I2

0
corresponding to (4.35). Let s; = min a—r, and s, = max T~ be the minimal and the
c c
maximal slope of the reaction rate r, respectively, and let A > 0 be a constant. If
there exists a (C*) function w(x) > 0, a function h(x) > 0, and gains lo, 3,1, such

that it holds
Q > diag(2\w, 0,0,0,0), (4.47)

where Q) is the matriz-valued function given in (4.46), then the estimation error zero



74
solution e(x,t) =0 is g.e.s., i.e.

e, D)l] < alleoz) ||~ (4.48)
with a = \/w* /w,, w* = max,cp1 w(z) and w, = mingep 1w ().

(Proof in Appendiz H.)
Note that, choosing a particular function w(z), the condition (4.47) corresponds
to a LMI for each point x € [0, 1]. Thus, finding a w(x) > so that D[w] > 2 \w, one

obtains the following explicit solvability conditions in terms of the system parameters

and the correction gains.

Proposition 4.1. The estimation error dynamics (4.6) has g.e.s. zero solution
e(z,t) = 0, if the following conditions on the system parameters and the measurement

injection gains are satisfied:

(Z) Pec Z Ll(sua Si, Daa )‘)7 (”) ZO < LZ(Peca Su, SlvDav /\)

o . (4.49)
(@ii) [ >0, (iv) 1 > 13(Pec, Su, 51, Das A),

with w(zx) being the weighting function given by

P2 2D, — ul)?
w(z) = woe” Fee*/2 cosh <\/Z€ - P, (2)\ — 818y + ( 51 4 5u]) )$> . (4.50)

4
W, = Mingepow(x), and vy, ..., 13 bounded functions of its arguments according to

11 = 8\ — 4518, + (2D, — [51+ 54])?

dw
2w, — —
e we = (0)
w(0)
N dw

13 = —w(l)%(l) — P...

(Proof in Appendix 1.)
Corresponding to the differences identified for the bounds (4.33) and (4.36) for
the linear transport dissipation component Dp, the obtained convergence criteria

present similar differences. A short discussion of this issue is given in the next

section.
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4.3 Discussion of the results

4.3.1 General Considerations

Using the modal and point injection mechanisms it has been shown, that one
can find explicit conditions which ensure the exponential convergence with rate A
in dependence on (i) the system transport and kinetic parameters, (ii) the sensor
location, and (iii) the observer gains.

In comparison to a natural dissipation mechanism (corresponding to the case
that all gains are set to zero), one can see that the dissipation and thus the conver-
gence can be improved by choosing the corresponding observer gains according to the
presented conditions. According to the preceding studies on this subject, reported
in the literature, the presented results yield interesting contributions.

It turned out, that the convergence conditions can be represented in form of
space-dependent LMIs. This issue allows a systematic approach to the solution of the
design problem, but it should be mentioned here, that the solution of general space-
dependent LMIs is a non-trivial task, in the understanding that the classical problem
does not consider this case [99]. In particular, if there are several state variables, the
corresponding LMIs become difficult to solve. For instance, one can approach the
solution of the integral LMIs (4.33) and (4.36) by maximization algorithms in the
understanding of a variational calculus, seeking to find an optimal weighting function
h(xz) > 0, but this is an issue which should be addressed in future studies.

For the particular result based on the modal injection (4.26), the injection gains
in the boundary were set to zero. This condition is not necessary, but allows to focuss
the main attention on the action of the distributed modal innovation mechanism. Ef-
fectively, the boundary injection gains can be shown to enable a dominant eigenvalue
shift of about —37%/4. Therefore, the consideration of boundary injection gains for
the eigenvalue-reassignment allows an interesting degree of freedom, in particular
for processes which are diffusion dominated (low Peclet numbers). For a convection
dominated process, it results that the eigenvalues are thus negative, that shifting
them about 7/2 does not provoke an important change from a frequency analysis
point of view [26, 100]. On the other hand, from the variational approach it results
that the effect of the boundary injection gains may cause additional improvement
which is not directly reflected in the linear eigenvalue decomposition approach.

The modal injection is particularly useful if the Peclet-number is small, be-
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cause, as mentioned above, the eigenvalue distribution of the corresponding linear
diffusive-convective transport operator with Danckwert’s boundary conditions can be
improved using low gain correction injections. This becomes clear when considering

that the eigenvalues A, of A. correspond to the relation

Pee + 4wy

)\n - )
4P,.

(4.51)
and the corresponding eigenfrequencies w, satisfy bounds of the following type (see

Appendix J for a derivation)

0<w, < (4.52)

(n— )71 <w, < nm.

Accordingly, the difference between the eigenvalues is basically bounded by the num-
ber 7, while the location of the eigenvalues is determined by the square of the Peclet
number. This implies that for high Peclet numbers the innovation gains would have
to be great in order to perform a significant change in the convergence behavior.

In the light of this basic restriction, the point injection in the domain allows
for a performance improvement even in the case of convection-dominated scenarios
(high Peclet-numbers), in particular when considering several measurements in the
domain, as will become clear in the numerical application study at the end of this
chapter.

From the variational approach it follows in particular, that there is an intrinsic
interplay of the injection mechanism at the inlet (e(0,¢)) with the behavior of the
dissipation in the estimation error profile (e(z,t)) and the reaction rate estimation
error (p).

The weighting function (4.50) differs from the conventional exponential weight-
ing (4.21) for pure transport dynamics. This difference consists in the reaction rate-
dependent term connecting the transport with the reaction specific time measures,
and further the sector bounds of the nonlinearity. The consideration of this weight-
ing function thus permits to identify the regions with strong influence on the over
all dissipation, and those with less influence. This particular issue should be studied
in future work with more detail, in the light of a possible transfer of convergence
intensity superhavit to regions with convergence deficit.

The region characterized by condition (i) in (4.49) can be graphically represented
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in the (P,, D,)-plane. The basic interrelation of these two parameters according to

the given condition is presented in Figure 4.2 for the case that the sum s; + s,

15000}

10000

5000

Figure 4.2: Feasibility regions according to condition (I.4). The possible constella-
tions correspond to points above the drawn lines. —— (solid line) s; + s, > 0, — —
(dashed line) s; + s, < 0.

is (i) positive (solid line), corresponding to a monotonic or a weakly non-isotonic
kinetics (the negative gain is less than the positive one), and (ii) negative (dashed
line), corresponding to strongly non-isotonic kinetics (the negative slope is greater
than the positive one). One appreciates, that for a monotonic kinetics (s,s;, > 0)
the condition on the required Peclet-number (proportional to the fluid velocity v
and inversely proportional to the diffusion coefficient D) is weaker than for the non-
monotonic case. This observation corresponds to the fact that the non-monotonicity
feature of the reaction rate introduces destabilizing effects to the estimation error
dynamics, and consequently, the dissipation of the linear mass transport subsystem
Y has to be stronger, in order to compensate the dissipation deficit of the nonlinear
kinetic subsystem Y g

It is important to remark that the present assumption of isothermal reaction
can be relaxed by assuming the temperature profile to be known. This assumption
can be found frequently in the literature on tubular reactor observers [42, 46, 47, 49],

where it is based on the application of many temperature sensors between which the
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profile is interpolated. A more physical cause for a completely known temperature
profile is given for the case of high thermal conductivity in the reaction mixture and
short reactor extensions, yielding an almost homogeneous spatial temperature profile.
Accordingly, measuring the temperature at any point of the reactor extension yields
the same temperature trajectory. In either of these cases the reaction proportionality
factor will be (possibly) space-dependent. This change has no major implications on
the design methodology proposed here, because the nonlinear reaction rate error

function is bounded via the employment of the spatially weighted sector condition

(4.18).

4.3.2 Behavior with modelling and measurement errors

It is widely known, that for real-world applications, and in particular for those
in chemical, biological, and biochemical engineering, one has to expect errors and
disturbances in: (i) the system parameters, and in particular in the reaction rate
parameters p,, i.e. p,, (i) the measurement ¢, due to noise and a standard (about
1-2%) uncertainty, and (iii) exogenous load (feed) disturbances due to temporal vari-
ations and uncertainties in the feed concentration ¢, (t). It is straight-forward to
consider parameter (p,) and measurement () errors in the above framework, and
this issue is analyzed in this section. The consideration of feed (exogenous load)
disturbances can be modelled in the present case in form of a time-varying distur-
bance (¢;,) acting only in the inlet = 0. Accordingly, assuming the above nominal
(i.e. errorless) strict dissipation £ < —AE for some A > 0, the consideration of the

mentioned errors yields the corresponding dissipation of the estimation error
dE ! _ N _ 8
o < =AE+ | w(z)[leg — Dae(z,t)r(c(x, t); pr)] dz + e(0, t)w(0)é(t).  (4.53)
0

Correspondingly, one notices that: (i) the estimation error dynamics is ISS [72, 73]
with respect to these parameter errors (in the sense of norm-convergence), (ii) the
measurement noise is injected proportionally, according to the chosen correction
mechanism, (iii) the reaction parameter offset p, yields a spatio-temporally varying
linear offset function, and (iv) the time-varying exogenous load (feed) disturbance
of the inlet concentration ¢;, yields a time-varying offset. These disturbances imply

the following:

e if the innovation gain is chosen too large, the amplified measurement noise may
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destroy the convergence properties.

e the reaction parameter error yields a spatio-temporally varying linear gain (k)
disturbance which implies the existence of a ball around the origin (with radius
proportional to the linear gain k,), to which the estimation error will converge,

but which is impossible to be penetrated.

e the time-varying exogenous load (feed concentration) error yields an offset,
which can not be removed by the considered estimation scheme. This means

that the convergence in norm will nether reach the origin completely.

From these basic considerations, the following requirements are deduced for an ap-
plication in a realistic scenario: (i) the innovation structure and the corresponding
gains, and, in particular, the sensor location, play a key role in the possible per-
formance attainable with the observer, (ii) the reaction approximation should be
iteratively improved by repeated product quality monitoring, so that the constant
parameter offset reduces, and furthermore, the sensor location should be chosen so
that the region of maximal reaction rate error can be dominated, and (iii) the load
disturbance size has to be normally sufficiently small, so that the time-varying offset
will not destroy the performance.

These considerations suggest that a practical convergence can be obtained by
adequately choosing: (i) the innovation structure in dependence on system parame-
ters (over all the (Peclet,Damkohler)-number pair (P., D,)), (ii) the sensor location
¢ € (0,1) according to simulation studies with considerable modeling and measure-
ment errors, and (iii) gain tuning in the light of a suitable compromise between

convergence speed and robustness.

4.4 Application Example

In order to illustrate the convergence behavior of the dissipative observer for
a critical case, a non-monotonic (non-isotonic) Langmuir-Hinshelwood (LH) type
kinetics [18, 19] is considered, in the understanding that: (i) non-isotonical kinetics
imply a difficult observation problem because of the presence of destabilizing regions
corresponding to certain estimation error regimes, (i) the non-monotonicity feature
is characterized by different signs of the reaction rate slope and accordingly the

dissipation expression proportional to s;s, represents an inherent burden in the strict
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dissipation assessment, and (iii) it permits to understand the principal mechanism for
monotonic kinetics too, as they present, particular limit cases of the non-monotonic
ones.

The LH (in a biological context also known as Haldane) kinetics is analytically

given by [18, 19] (compare Section 3.5.5)

C

Ao (4.54)

r(c,o) =
where o is the inhibition coefficient. A local (pointwise) sector for this kinetics, which

can be determined by application of the mean value theorem, is given by
1
/ h(x) (suee — plc;ee)) (p(e; ec) — siee) dx > 0, (4.55)
0

where s; = minr, = BT, and s, = maxr. = 1. The negative lower bound character-
izes the non-monotonicity feature of the reaction kinetics r(c, o) (4.54). Simulation
studies for the proposed observer with this reaction rate expression have been carried
out considering different regimes of parameters: (i) a diffusion dominated behavior
(packed-bed) corresponding to (P.,o, D,) = (10,3,10) and (ii) a more convection
dominated (open-tube) corresponding to (FP,,o,D,) = (100,3,10). For either of
these cases the nominal (errorless) and robust (considering errors 6,7 and exoge-
nous disturbances ¢;,) convergence behavior is tested for initial conditions around

the concentration with maximal reaction rate, one in the increasing and one in the

decreasing branch of the reaction kinetics.

4.4.1 Dissipative observer with modal injection

The effect of distributed modal injection with one single point measurement in
the domain & € (0, 1) is compared with the behavior of a simple system copy (natu-
ral error dissipation) to see the convergence improvement. Furthermore the robust
convergence behavior is tested, considering parameter (/Nﬂ,&), and measurement g
errors and exogenous disturbances ¢;,, which have to be expected in practical ap-
plications. Based on the consideration of such errors the sensor location has been
varied in various simulations and the best obtained results are presented suggesting
the localization of the sensor in the first third of the reactor extension (compare e.g.

the suggestion in [46]).
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Convergence without modelling and measurement errors

Simulation results for the case that the process is diffusion-dominated (P, o, D,) =
(10, 3,10), with initial conditions [cy(z), ¢(0)(x)] = [0.2, 0.7] are presented in Figure

4.3. The simulation at the top corresponds to a pure system response (i.e. the ob-

observation errorfl{:()

Figure 4.3: Estimation error behavior with exact (errorless) model for diffusion-
dominated scenario (P.,o,D,) = (10,3,10) and [top] [ = 0 (natural system re-
sponse), and [bottom] measurement (in & = 0.3) injection over the first four eigen-
modes with corresponding modal injection gains l¢, = 75,k = 1,... 4.

server gains are all set to zero). In the graphics at the bottom one appreciated the
behavior corresponding to a modal injection of the measurement located in & = 0.3.
Considering that the corresponding eigenvalues A\, are given in correspondence to

the expression (4.56) in dependence on the eigenfrequencies wy (4.57)

P2
M = — Z@ —w? (4.56)
4w? — P?
cot (u)k) :fpiu)ke, (457)

(see Appendix J), one can see that it is sufficient to innovated over the first N = 4
modes. The corresponding modal gains have been chosen all equal to l¢; = 75.
Analyzing the presented behavior one notices that: (i) the convergence is wave-like,

from the inlet towards the outlet of the reactor, and (ii) the innovated convergence
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behavior shortens the convergence time of about two times. The sensor location was
determined through numerical simulations to obtain the best convergence behavior.

For high Peclet-numbers P, > 20, the eigenvalues are very great \; ~ 20?/4 =
100, in correspondence to (4.56), and the natural solution accordingly decreases
exponentially with rate about A\;. Consequently, an important improvement is only
possible using very high injection gains, what on the other hand implies a lost of
robustness issues with respect to realistic measurement errors (the error g is amplified

proportional to the injection gain).

Convergence with modelling and measurement errors

In order to expose the observer behavior to a sever test, parameter errors in
the reaction rate are considered about (Ak, Ac) = (+20%, —30%) and measurement
errors with superposed noise are imposed, considering Ay = 2% and noise frequencies
simulated by a high-frequency sinus (periodicity of 7/50).

Figure 4.4 shows the corresponding simulation results for the case that the pro-
cess is diffusion dominated (P., o, D,) = (10, 3, 10), with initial conditions [cy, ¢(0)] =
[0.31,0.35] (i.e. around the concentration of maximum rate). One can see that the
asymptotic offset of the natural system response is clearly diminished (about two
times) and that the convergence speed-up is maintained. As mentioned above, for
high Peclet-numbers P, > 20, due to the corresponding eigenvalues \; < —100, there
is no realistic improvement possible, unless the employed gains are chosen thus high,

that the considered realistic measurement uncertainty becomes amplified to much.

4.4.2 Dissipative observer with point injections

The corresponding results for point injections as proposed by the variational ap-
proach considering measurements at the boundary and in some point of the domain,
is compared with the behavior of a simple system copy (natural error dissipation) to
see the convergence improvement. Furthermore it is straight-forward to consider in
the presented methodological framework more than one measurement and injection
in the domain. The consideration of three such collocated measurement injections is
presented for the analyzed cases in order to show how the performance can be fur-
ther improved. Based on the consideration of modeling and measurement errors the
sensor location has been varied in various simulations and the best obtained results

are presented.
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observation errorflE:[]

Figure 4.4: Estimation error behavior with kinetic parameter errors (Ak, Ac) =
(+20%, —30%) and high-frequency measurement noise. Simulation results for
diffusion-dominated scenario (P, o, D,) = (10,3,10) and [top] ¢ = 0 (natural sys-
tem response), and [bottom] measurement (in £ = 0.3) injection over the first four
eigenmodes with corresponding modal injection gains l¢, = 75,k = 1,...,4.

Convergence without modeling and measurement errors

Simulation results for the case that the process is diffusion-dominated (P, o, D,) =
(10, 3,10), with initial conditions [co(x), ¢(0)(z)] = [0.2, 0.7] are presented in Fig-
ure 4.5. The graphic at the top shows the response considering a pure system
copy (all observer gains are set to zero). In the center one appreciates the con-
sideration of measurement injection at the boundaries x = 0,1 and in the domain
(¢ = 0.35). The corresponding gain triplet used for this simulation is given by
(ko, ke, s1) = (0.1, =50, —10). Analyzing the presented behavior one notices that: (i)
the natural convergence is wave-like, from the inlet towards the outlet of the reactor,
(ii) the innovated convergence behavior shortens the convergence time of about two
times by shortening the distance which the information has to pass. The graphic
at the bottom represents the consideration of three collocated measurement point
injections in the domain whose location was determined through numerical simula-
tions. One notices a clear convergence speed-up of about two times compared with

the consideration of one single point measurement injection in the domain.
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Figure 4.5: Estimation error behavior with exact model for diffusion-dominated sce-
nario (P.,o0,D,) = (10,3,10) and [top] (ko, ke, k1) = (0,0,0) (natural system re-
sponse), [center| measurement injection at the boundaries and in & = 0.35 with
(Ko, ke, k1) = (0.1, =50, 10), [bottom] measurement injection at the boundaries and
in three points in the domain & = 0.15, & = 0.35, &3 = 0.65 and corresponding gains
(ko, ke1, kea, kes, ki) = (0.1, —50, =50, —50, —10).

A convection-dominated scenario with (P., o, D,) = (100, 3,10) is analyzed in
comparison and the results are presented in Figure 4.6. In the graphic at the top,
one can appreciate a more shock-wave-like convergence propagation from the inlet
towards the outlet of the reactor. As can be noticed in the graphic in the center,
the convergence is speed up about two times by shortening the wave-expansion time

considering a measurement injection in £ = 0.35. The location of the sensor is chosen
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Figure 4.6: Estimation error behavior with exact model for convection-dominated
scenario (P.,0,D,) = (100,3,10) and [top] (ko, ke, k1) = (0,0,0) (natural system
response), [center] measurement injection at the boundaries and in & = 0.35 with
(Ko, ke, k1) = (0.1,—50,10), [bottom] measurement injection at the boundaries and
in three points in the domain & = 0.15, & = 0.35, &3 = 0.65 and corresponding gains
(ko, ke1, kea, kes, ki) = (0.1, =50, =50, —50, —10).

through numerical simulations such that the propagation time from the injection to-
wards the outlet of the reactor is already identical to the propagation time from the
inlet towards the injection. This ensures the present convergence speed-up. Consid-
ering more than one measurement injection these propagation times can be shorten
and the convergence can be speed up even more, as can be appreciated in the graphic

at the bottom of Figure 4.6. The gain tuning has been carried out in correspondence
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to the consideration of severe errors in the kinetics parameters, what is presented

next.

Convergence with modeling and measurement errors

In order to expose the observer behavior to a sever test, parameter errors in
the reaction rate are considered about (Ak, Ac) = (+20%, —30%) and measurement
errors with superposed noise are imposed, considering Ay = 2 and different noise

frequencies in each measurement following Table 4.1

measurement location | amplitude | frequency-expression ||
x=0 2% | cos(25¢) |
x=0.15 2% | cos(30¢) |
x=0.35 2% | sin(35¢) ||
x=0.65 2% | sin(35¢) |
x=1 2% | sin(35t) ||

Table 4.1: Considered amplitude and frequency for noise simulation at the different
measurement points.

Figure 4.7 shows the corresponding simulation results for the case that the pro-
cess is diffusion dominated (P, k, o) = (10, 3, 10), with initial conditions [cy(z), ¢(0)(z)] =
[0.31,0.35] (i.e. around the concentration of maximum rate). One can see that the
asymptotic offset of the natural system response is clearly diminished (about two
times) and the consideration of more measurement injections reduces this offset even
more.

Figure 4.8 shows the corresponding simulation results for the case that the
process is convection dominated (P, k,0) = (100,3,10). It can be noticed that
the improvement of the robust convergence behavior remains like in the diffusion
dominated case. In comparison with the diffusion dominated behavior the strong
convective phenomena sharpen the profile near the peaks due to the strong shock-
wave-like convergence distribution from the inlet towards the outlet superposed with

the reactive error propagation.
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Figure 4.7: Estimation error behavior with kinetic parameter errors (Ak,Ac) =
(+20%, —30%) and measurement noise according to Table 4.1. Simulation results for
diffusion-dominated scenario (P., o, D,) = (10, 3,10) and [top] (ko, ke, k1) = (0,0,0)
(natural system response), [center] measurement injection at the boundaries and in
¢ = 0.35 with (ko, ke, k1) = (0.1,—50,10), [bottom| measurement injection at the
boundaries and in three points in the domain & = 0.15,& = 0.35,&; = 0.65 and
corresponding gains (ko, ke1, ke2, kes, k1) = (0.1, =50, —50, =50, —10)..

Concluding remarks

The presented simulation studies show that (i) for small Peclet-numbers, say
P. < 20, the domain injection improves the convergence behavior and (ii) there is
a clear wave-like convergence propagation (information propagates up- and down-

stream), (iii) for both, low and high Peclet-numbers, the point correction mechanism
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Figure 4.8: Estimation error behavior with kinetic parameter errors (Ak,Ac) =
(+20%, —30%) and measurement noise according to Table 4.1. Simulation results
for convection-dominated scenario (P, o, D,) = (100, 3,10) and [top] (ko, ke, k1) =
(0,0,0) (natural system response), [center| measurement injection at the boundaries
and in & = 0.35 with (ko, k¢, k1) = (0.1, =50, 10), [bottom| measurement injection at
the boundaries and in three points in the domain & = 0.15,& = 0.35, &3 = 0.65 and
corresponding gains (ko, ke1, ke2, kes, k1) = (0.1, =50, —50, —50, —10)..

acts as a dissipating element in the specific injection point, and thus should be lo-
cated, in accordance to numerical simulations, in the region of greatest dissipation
deficit (according to the simulation studies this is in the first third of the reactor ex-
tension), (iv) for Peclet-numbers corresponding to convection-dominated transport

behavior (P, > 20) the domain point injection effectively allows to shorten the shock-
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wave like convergence propagation and thus to significantly increment the conver-
gence time. This motivates the employment of various measurements and injections

in the domain, to improve the convergence behavior under realistic conditions.

4.5 Summary

In this chapter, the dissipative observer design methodology introduced for the
non-isothermal CSTR with temperature measurement has been extended to the
isothermal tubular reactor with point concentration measurements at the bound-
ary and/or in the domain. In comparison with previous studies on the estimation
problem with similar dynamics (i) the presented observer allows for consideration of
non-monotonic kinetic rates, (ii) enables a convergence improvement due to the dis-
tributed domain injection mechanism, and (iii) the methodological framework yields
mathematical rigor and insight into the underlying interplay between kinetics, trans-
port and injection as well as the influence of isotonicity features on the convergence
properties.

Furthermore, the consideration of this problem allowed to address two particular

issues:

e the extension of the analysis for the lumped transport mechanisms energy in-

terchange properties to the case of diffusive-convective distributed transport

e the consideration of the influence of a distributed nonlinear reaction kinetic
mechanism on the energy interchange behavior of the related estimation error

dynamics.

These issues have been analyzed in detail and three main approaches have emerged
from this study: two different data-assimilation structures and an innovating ap-
proach for the analysis of the distributed influence of the kinetic mechanism on the

convergence behavior.

e A modal innovation mechanism has been designed which allowed to shape
the dissipation of the squared estimation error energy corresponding to the

dominant modes of the linear diffusive-convective transport.

e A point correction injection mechanism has been employed which, in depen-

dence of the sensor location introduces a point-wise innovation to the estimation
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error dynamics and showed to improve the convergence in a significant manner

in numerical simulations.

e The employment of a spatially weighted integral sector condition together with
the spatial weighting of the transport mechanism, show a structural require-
ment of geometrical character, which may allow to approach the complicated
question of compensating regional differences of dissipation superhavit and

deficit, in order to obtain an over-all, improved strict dissipation.

The results of this chapter, together with those of the preceding CSTR estima-
tion study, form the basis for the following consideration of the estimation problem
for the non-isothermal tubular reactor with point temperature measurements at the

boundary and/ or in the domain.
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Chapter 5

The Non-Isothermal Tubular

Reactor

Based on the preceding non-isothermal continuous stirred and isothermal tubu-
lar reactor studies, in this chapter the dissipative observer design approach is ex-
tended to the non-isothermal tubular reactor with boundary and/or domain point
temperature measurements. Having as point of departure the preceding extension of
the design methodology to the consideration of distributed transport and reaction

mechanisms, the present study has to address two main issues:

e the analysis and exploitation of the underlying mechanisms in the light of re-
gional convergence sources and sinks, for a possible compensation of regional
convergence deficit by means of linear coupling with the mechanisms of con-

vergence superhavit, i.e. the heat and mass transfer mechanisms

e the extension of the analysis framework used for the bounding of the dissipation
of the nonlinear kinetic subsystem, to the consideration of nonlinear coupling

of temperature and concentration dynamics through the kinetic mechanism.

For this aim, both approaches introduced for the isothermal tubular reactor
with concentration measurements (spectral, and variational) are applied to obtain
bounds for the dissipation corresponding to the linear transport mechanisms, and a
Lipschitz-type sector condition is employed to bound the dissipation of the nonlinear
kinetics mechanism.

In comparison to previous studies recorded in the literature, the resulting dissi-

pative observer allows for considering monotonic or non-monotonic reaction kinetic
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rates, requires only few temperature sensors, and satisfies basic design requirements
with respect to (i) mathematical rigor, (ii) simple implementation, and (ii) conver-
gence improvement.

The obtained dissipative observer is tested numerically considering a non-monotonic
strongly exothermic Langmuir-Hinshelwood kinetics for different data-assimilation
structures (modal, distributed and point injections), and parameter constellations

covering strongly diffusive and strongly convective flow scenarios.
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5.1 Introduction

In this chapter, the dissipative observer for the isothermal tubular reactor with
boundary and/ or domain point concentration measurements is extended to the con-
sideration of the non-isothermal tubular reactor with boundary and/or domain
point temperature measurements. Based on the preceding non-isothermal contin-
uous stirred and isothermal tubular reactor, this extension has to consider two main

issues:

e exploitation of the underlying mechanisms for compensation of regional conver-
gence deficit by means of linear coupling of the temperature and concentration

dynamics through the correction mechanism

e extending the analysis for the consideration of nonlinear coupling of the tem-

perature and concentration dynamics through the kinetic mechanism.*

The dynamics of the non-isothermal tubular reactor with boundary and/or

domain point temperature measurements are governed by

e 1 0% Oc

T paeT
2" Poog e MY 51
T L T T ' :
— == L —q(T;, - T D T
ot P.p Ox? “Ox (T )+ BDar(e,T)
for z € (0,1), t > 0, with boundary conditions
1 Oc 1 0T
=0:——=c— — =TT 2
TV T P : 2
oc oT
=1:—=0, — =0 5.3
X ax ) ax ) ( )

for ¢ > 0, initial conditions =z € [0,L] : ¢(x,0) = co(x), T(z,0) = Ty(z), and

measurement vector
y = [T(0,1), T(&,1), T(L1)]", €€ (0,1). (5.4)

For this reactor a dissipative observer is designed in the sequel.

!'Remember that in the previous studies, the sector conditions employed for bounding the dis-
sipation of the nonlinear kinetic subsystem did only depend on the concentration and not on tem-
perature.
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5.2 Dissipative Observer

In this section, a dissipative observer is designed for the estimation of the con-
centration and temperature profile for the non-isothermal tubular reactor (5.1)-(5.4)

with boundary and/ or domain point temperature measurements.

5.2.1 Observer Construction

In the previous isothermal tubular reactor study it turned out that the domain
correction mechanism represents an important design degree of freedom. For this
reason, the dissipative observer is set with simple and constant, linear gains for the
boundary correction mechanisms and a general injection mechanism for the concen-
tration and temperature correction in the domain. Correspondingly, the dissipative
observer is given by

oc 1 9%¢  0¢ I ~
EA =P o o Dar(¢,T) = lee(T(€,t) — ya(t))

/ [ 5.5)
or L. 9°T oT . X A . (
oo Legy MG-T Dor(¢,T) = lre(T(&,t) — yao(t
ot P.r 0x? “Ox n( J ) + ﬁ aT(C, ) Taf( (57 ) y2( ))

for z € (0,1), t > 0, with boundary conditions
1 O¢ .
- =C— - lc T O,t — t

z=0: P.. 0z €T Ce o(T(0,) =y (t))

1 o9r . . ;
— =T — TE — lT70(T(O, t) — yl(t))’
Der 0 (5.6)
& .

g =~ lea(T(18) —ys(t))

r=1: o7 )
— = —lp(T(1,t) — ys(t
ax T’l( ( ? ) y3( ))7

for t > 0, and initial conditions z € [0, L] : é(z,0) = éo(z), T(x,0) = Ty(x).

Correspondingly, the design degrees of freedom for the dissipative non-isothermal
tubular reactor observer are (i) the gains l.g, l.1, l10, 71 of the boundary injections,
(ii) the sensor location & € (0, 1) for the temperature measurement ys in the domain,
and (iii) the structure ., l7¢ used for the data-assimilation of the measurement in

the domain.
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5.2.2 Estimation Error Dynamics

The estimation error dynamics for the dissipative non-isothermal tubular reactor
observer (5.5)-(5.6) is obtained from the subtraction of (5.1)-(5.2) from (5.5)-(5.6)
(ee2é—c,er 2T —T)

Oe, 1 9%, Oe. . e

ot - PLo  on P [T(C’ T)=reT)
der L. 826T_L8£
ot P Ox2 ‘Oz

—Loe(T(€,1) = (1))

—ner + BD, [1(e.T) = r(e,T)| = (@ (6, 1) = (1)
(5.7)

| ES—

’

for x € (0,1), t > 0, with boundary conditions

1 Oe. 7
» ; = e = leo(T(0,1) = 1 (1))
t>0: i (7£T I 7
eT or (5.8)

Ce 1 (T(1, 1) — ys(t)
= —Ip1(T(1,) — ys(t)),

r=1 t>0: &T

and initial condition = € [0, L] : e.(z,0) = e.o(z), er(z,0) = ero(x).

In the spirit of the estimation studies of the preceding chapters, two main com-
ponents of the estimation error dynamics (5.7)-(5.8) are identified: (i) a linear dy-
namical subsystem representing the transport of heat and mass through the reactor,
and (ii) a nonlinear static subsystem corresponding to the kinetic mechanism at
play. Accordingly, the estimation error dynamics (5.7)-(5.8) can be expressed in

Popov-Lur’e form for the vector profile e = [e., er|T,

% = Ae + Gv (5.9)

v=—p(e,T;e), (5.10)

for e € Dom(A). Here, the linear transport operator A is given by

1 02 0 0
A. 0 P .02 Ox
0 AT 0 € —n

I S
P, . 0x? ox
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with domain of definition corresponding to the boundary conditions

Dom(A) = {e = [ e ] € L*([0,1],Z C R?) : e, % a.c., and (5.8) hold)}, (5.12)

kinetic gain vector

G = [ ~Da ] : (5.13)

and nonlinear reaction rate error
ple,Tie) = r(c+e.,T+er)—r(c,T). (5.14)

This dynamic interconnection is represented in form of a block diagram in Figure
5.1. One can see that the underlying interchange structure between the heat and
mass transfer subsystem, and the nonlinear kinetic subsystem is basically the same as
for the non-isothermal continuous stirred reactor (compare Figure 3.5). This results
natural, taking into account that the non-isothermal continuous stirred reactor is the

lumped counterpart of the non-isothermal tubular reactor [9].

5.2.3 Error Dissipation

Following the ideas of the preceding isothermal tubular reactor study, a Lyapunov-
like approach (cp. [63, 65]) is employed for the exponential stability assessment.
First, the dissipation components of the estimation error dynamics (5.7)-(5.8) are
identified, then the corresponding dissipation expressions are bounded, and explicit
convergence criteria are drawn.

Therefor, the potential (weighted squared error) energy

/ {wi(z)el(z, t) + waeh(z,t) )} da, (5.15)

is introduced, where wy,ws > 0 are positive definite continuously differentiable
weighting functions, which represent important design degrees of freedom, as has
turned out in the isothermal tubular reactor estimation study. Recall that, according
to this previous study, these weighting functions should to be chosen in correspon-

dence to the employed data-assimilation structure. The dissipation associated with
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er
> ZH »—
v
€c
> ZM > >
P (667 eT)

YK

IC,T

Figure 5.1: Basic dynamic interconnection of the estimation error dynamics (5.9),

with

Yg:iprer, Xy (poer) — €, Y (€ €r,¢,T) — p..

(5.15) is given by the sum of the dissipation components D, and Dy, of the non-

linear kinetic subsystem and the linear dynamical transport subsystem, respectively,

i.e.

Dy = —2/ {—e(z,t)"WGp(c,T;e)} de, W = diag(wy, ws),

0
! 1 0%, Oe,
DT = —2/0 { |:— Pec 8302 + % + l&C@T(é,t)} Wy ee+

_ L. Per + Leaﬂ
P.r 022 oxr

(5.16)

+ ner + le rer(&, t)] wgeT} dzx.

In the sequel, quadratic bounds for these two components are drawn, extending the

approach previously presented for the isothermal tubular reactor: (i) the nonlin-

ear kinetic dissipation component D is bounded via employing a sector condition,
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and (ii) the linear transport dissipation component Dr is bounded in dependence
of the employed data-assimilation scheme. In the spirit of the preceding isothermal
tubular reactor study, two different kinds of correction mechanisms are used: (A) a
modal injection mechanism, analyzed correspondingly using a spectral decomposi-
tion, and (B) a coupled point and distributed injection mechanism, analyzed using

direct functional analytic integral transformations.

Finally, combining the bounds for the nonlinear (D) and linear transport (D)
dissipation components, conditions will be drawn which ensure the strict dissipation

of the energy E(e) (5.15), and therefore the exponential stability.

5.2.4 Quadratic bounds for the nonlinear kinetic dissipation

component Dy

The nonlinear kinetic dissipation component Dy is bounded using a Lipschitz

sector condition for the nonlinear function p (5.14).

Note that the sector condition employed in the previous studies for the contin-
uous stirred and the isothermal tubular reactor, can not be used here, because the
nonlinear function p depends on two arguments, e, and er. Therefore, a Lipschitz
sector condition is employed, in the understanding that, due to the Lipschitz conti-
nuity of the reaction rate r(c, T"), with Lipschitz constant L,, it follows directly that
for all z € [0, 1]

p(zie) < |p(zie)| = Ir(z+e) —r(z)| < Ly [lel], (5.17)
and consequently the sector-type condition
(Ly llell = plz €)(p(z5€) + L, llel)) 2 0, Va € [0,1], (5.18)

holds. This condition remains valid if one multiplies it in every point with a positive

definite function h(z) > 0, i.e.

hx)(Ly [le]| = p(z;€))(p(z;€) + Ly [lel]) = 0, V€ [0, 1],
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and integrates over the spatial domain, yielding

Shr = /O W) (Ly [le(z, O)]| = p(2(z,1); ez, 1)) (p((x, 1); e, 1)) + Ly ||e(z, 1)|[)dx

_ /1 [ e(z,t) ]T [ L2h(z) 1, 0 ] [ e(z,t) ] dr> 0.
o | pzie) 0 —h(z) | | p(z;€) a

Based on this structural property of the nonlinear kinetic function p, the following

(5.19)

bound is obtained for the dissipation of the nonlinear kinetic mechanism

pes- [ [49]

These quadratic bounds allow to delimit the maximal destabilizing influence of the

~-GTw h(x)

e(z,t)
dx (5.20)
oo

nonlinear kinetic mechanism, and, consequently, establishes the basis for the design
of the dissipative observer, in the understanding that the functioning of the dissi-
pative observer is motivated by on the transfer of convergence intensity superhavit
to mechanisms and regions of convergence deficit. For this purpose, the next step
to be addressed is given by the bounding of the linear innovated transport dynamic

dissipation component of the estimation error dynamics.

5.2.5 Quadratic bounds for the linear transport dynamic dis-

sipation component D

Next, the linear dissipation component Dr is bounded. Recall that in the
preceding study on the isothermal tubular reactor, the respective bound depended
on the particular data-assimilation scheme employed in the correction mechanism in
the domain. There, (A) a modal innovation and (B) a point innovation has been
employed, and correspondingly different bounds for the linear dissipation have been
found. Accordingly, the analysis presented here follows the same approach.

Note that the basic mass transport mechanism has already been analyzed previ-
ously in the isothermal tubular reactor estimation study. Furthermore, the structure
of the linear heat transport subsystem, without the heat exchange component, is
basically the same as the one of the mass transport analyzed in the previous chap-

ter. The only difference thus resides in the heat exchange mechanism, but this
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has been already analyzed in the CSTR estimation study of Chapter 3. In par-
ticular this implies that the spectral and variational approaches used to bound the
dissipation component Dr in the preceding isothermal tubular reactor study, can
be directly extended to the present case. The particular form, the linear dynamic
transport dissipation component D attains, in correspondence to the choice of the

data-assimilation structure, is presented in the following.

(A) Spectral Approach

On the basis of an eigenfunction-eigenvalue Fourier expansion of the linear
transport subsystem of the estimation error dynamics (5.9), considering a modal
innovation over the first N dominant modes of the temperature and concentration

dynamics

I¢ <T(§, t) - y(t)> = i L 1Pk <T(£, t) - y(t))
k=1 (5.21)

i (T(é,t) - y(t)) = lens (T(é,t) - y@)) ,
k=1

and setting the weighting function so that the linear heat and mass transport eigen-
functions are pairwise orthogonal (with respect to the corresponding weighted inner
product) [92, 93, 95, 94], i.e.

wy = e ey = e Fer®, (5.22)

one obtains the following bound for the dissipation of the linear subsystem.

Lemma 5.1. For the modal injections (5.21), and weighting functions (5.22), the
dissipation Dy of the linear transport subsystem (A, G) in (5.9) can be bounded

as follows:
®T S maX{)\}:N, >\N+1,17 AN+172}E’ (523)

where X}y is the mazimal eigenvalue of the 2N x 2N (constant coefficient) matrix
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¢ given by
My My ... My
* My ... M
e (5.24)
* * * MNN
) iy
My = | 2 @k‘PTkz(@ ]
L x 2Mk2 — lg,k@m(f) (5.25)
My, = 0 —lg 1p52(§) ]
=
| a8~ geia(€) = I jena(E)

and Ant14, @ = 1,2 is the N-th eigenvalue of the linear concentration and temper-
ature transport operator A. and Arp, respectively, and @i o, k =1,..., N s the k-th

eigenfunction of the temperature transport operator Ar.

(Proof in Appendiz 5.1.)

This quadratic bound for the linear dissipation component Dy will later be
combined with the bound for the nonlinear component Dy in order to obtain a
quadratic bound for the complete dissipation (5.16) and corresponding convergence
criteria on the basis of a strict dissipation condition. But before this final step is
addressed, an alternative data-assimilation scheme is employed and another bound
for the linear dissipation component Dy is obtained, in order to allow for later

comparison of the corresponding convergence results.

(B) Variational Approach

In correspondence to the analysis for the isothermal tubular reactor, due to the
measurement of the temperature in the point x = £, a point injection can be used in
the temperature dynamics to improve the convergence behavior. On the other hand,
as the concentration is not measured, a general distributed injection is considered
for the correction mechanism in the concentration dynamics based on temperature

measurement injection. This leads to the following injection mechanism

l&,c = l&,c(x>7 l&,T = l27T5($ — f) (526)

Following the variational approach employed in the isothermal tubular reactor study;,

integration by parts of the differential terms in the dissipation expression Dy and
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application of Wirtinger’s Lemma [97, 98, 66], allows to bound Dy by an integral

quadratic form.

Lemma 5.2. The dissipation of the linear transport subsystem (A, G) is bounded

in the following way

D < — | &'Q@dz,
0
@ = [ec(x,1), er(x,t), ec(0,1), er(0,1), er(£,t), eo(1,t), ep(1,1)]"
[ Dfuy] 0 -t 0 leod 0 0 ]
x  Drlwy] 0 Lzt 0 0 0
* * :ch lcy()wl(O) 0 0 0
Q' = * * * R0 0 0 0 ;
* * * * I pwy(§) 0 0
* * * * * Rea lc,lwlﬁ(l)
S * * * * * Rrq |
1 d>wy  dwy;  wyT (5.27)
Defuwy] = —5— 0 — ’ :
) ==507 ~ o T an.
L. d>wy  dw, Lowsy 1
D ——— = )
rlwel = =5 T~ Tt e,
WA T 1 Ou, P.—2
Reg = —2
0= 5p, TP oe V0O
W2 4 T0 Le 8w2 PeT -+ ZZTO — 2Le
Ry = — 0
0 2Pe,T Pe,T ox ( ) PeT w2( )
1 8w1
Req = —(1 1
1= e+ ()
L. 0 21
:RTJ = ﬂ(l) + Lew (]_)M

Pe,T

(Proof in Appendiz L.)
This quadratic bound for the linear dissipation D, and the one previously
determined for a modal correction mechanism will be used in the sequel to draw

explicit convergence criteria.

5.2.6 Convergence Assessment

Having as point of departure the previously drawn quadratic bounds for the
nonlinear (D) and linear transport (Dr) dissipation components, next, conditions

for strict dissipation are identified by combining both components, and employing
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the Lyapunov-like convergence result presented in Lemma 2.1.

Recall that the proposed modal correction mechanism (5.21) and the coupled
point and distributed injection mechanism (5.26) yield different bounds for the dissi-
pation of the linear transport subsystem. Therefore the following convergence anal-

ysis is carried out in dependence of the corresponding case.

(A) Modal Injection - Spectral Approach

Based on (i) the bound (5.20) for the dissipation of the nonlinear kinetic sub-
system, (ii) the modal injection mechanism (5.21), and (iii) the corresponding bound
(5.23) for the dissipation of the linear transport subsystem, both in integral quadratic

form, the estimation error dissipation is bounded as follows

dE&ﬂm0)<(/1[6@J)]T[2MM/Lymwh _wa

e(z,t) ] I

o plzie) ~GTW W) | | plze)
A= max{A} . AN41,1, AN+1.2),
W = diag(wl, U}Q), wy = e—Pecac’ wWo = €_P6Tx.

(5.28)

Accordingly, the exponential stability can be concluded if a strict dissipation property
of the form E(e) < —2AE(e) is fulfilled. This requirement yields the following criteria

for exponential convergence.

Theorem 5.1. Consider the tubular reactor (5.1)-(5.2) together with the linear dis-
tributed gain Luenberger-type observer (5.5)-(5.6), with modal injection according to
(5.21), and modal gains l§ ). and lgk. Let L, be the Lipschitz constant of the reaction
rate expression r(c,T), A1 (or Ap2) be the eigenvalues of the linear concentration
(or temperature) transport operator, i1 (0r i2) the corresponding eigenfunctions,

and N a finite number so that for a given A > 0

GGTW
h(z)

is satisfied for some continuous positive definite function h(z), and w;(z), i = 1,2

VY S [O, 1] . —2 max{/\NH,l, )\N+172}IQ > Lth_l + 2\ + (529)

giwen by (5.22). If: (i) the sensor location x = £ € [0,1] does not correspond to any
of the roots of the first N temperature eigenfunctions, i.e. pr2(§) #0, k=1,...,N,

and (i1) the modal gains lgk,lgk, k =1,...,N are chosen such that the maximal
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eigenvalue X5 v of the N x N matriz MY given in (5.24) satisfies

Da(wi + f*w3)
h(z) ’

Ve e[0,1]: —2Xjy > Lo+ 2)\ + (5.30)

then, the estimation error zero solution e(x,t) = 0 is g.e.s. with convergence rate A >

0 and amplitude a = \/w* /w,, wW* = MaXye(0,1],i=1,2 Wi(T), Wy = Milge(o),i=1,2 Wi (7).

(Proof in Appendixz M.)

Note that this result invokes decisions on the weighting function h(x) > 0, the
innovation dimension N, the sensor location £ € [0, 1] and the modal observer gains

Hi,i=1..Nj=¢T

Before this result is discussed, its counterpart corresponding to the injection

mechanism (5.26) is presented.

(B) Point and Distributed Injection - Variational Approach

Recall the quadratic bounds for (i) the dissipation component D g of the nonlin-
ear kinetic subsystem (5.20), and (ii) (5.27) for the dissipation component D7 of the

linear transport subsystem. Correspondingly, the complete dissipation is bounded
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as follows

E(e) < — [, ¢QCda,
(= [e_c(:p,t), er(z,t), p(z;e), e.(0,t), er(0,t), er(&,t), e.(1,t), eT(l,t)]T,

D.[w1] — 2w, 0 D,w, —ug%ei;‘w 0
* Drlws] — 2 ws  —(BDyws 0 Le;”;i;mTWr
* * h 0 07
B * * * Reo leowr(0)
Q= * * * * Rro
* * * * *
* * * * * (5.31)
I * * * * *
e~ 0 0]
0 0 0
0 0 0
0 0 0
0 0 0 ’
rwale) O 0
* :Rc,l lc,l%(’?
* * Rra |

with D., Dy, R;;,t = ¢,T,5 = 0,1 given in (5.27). Requiring a strict dissipation
property of the form E(e) < —2AE(e), the following criteria for exponential conver-

gence are obtained.

Theorem 5.2. Consider the non-isothermal tubular reactor (5.1)-(5.2) with the dis-
sipative observer (5.5)-(5.6), and the injection gain structure given by (5.26). The

estimated profile converges exponentially to the actual profile with rate A > 0 and

amplitude a = \/m, W* = MaXye[o,1]i=1,2 Wi(T), Wy = MiNgefo1)i=1,2 wi(x), i.e.
le(z, )] < alleo()|] e, (5.32)
if for all x € [0, 1] the following LMI holds
Q > diag(2\wr, 2\ws, 0,0, 0, 0,0, 0) (5.33)

with @ given in (5.581).
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dE
Proof. 1f the above condition is satisfied it follows »r +2AFE < 0 and the exponential

stability results from Lemma 2.1. O

Based on this general result, particular solvability conditions for the process

parameters can be found for the exponential convergence.

Proposition 5.1. The observer gains can be chosen such that the LMI (5.83) is
fulfilled, if the transport (P.., P.r, L.) and reaction (D,, B) parameters and the
required dissipation A > 0 satisfy the following set of inequalities

Pe,c > Lcl(Peca )\7 Lpa Da)

(5.34)
Pe,T > LTl(PeTa )\7 Lp7 Daa 67”)7

and the weighting functions are chosen as

2
wy(z) = h(z) = el cosh(w.x), w, = ZC —P..(2X+ L2+ my)
wo(x) = efer® cosh(wrx), wr = —— + P.p(n — 2\ — 32D? —my),

and the functions v;;, 1 = ¢,T,j = 1,2,3 are bounded functions of their arguments

according to

D4 2
tn =420+ L2+ o/
Lov/(D3f* = 1)

i1 24 (2) + 32D2 + L, /(D232 — 1) — n)

(Proof in Appendixz N.)
A short comparison between this and the previous (modal injection) convergence

criteria is given in the following discussions of the results.

5.3 Discussion of the results

5.3.1 General Considerations

Note that for the modal injection, the requirement on the innovation dimension
N depends on (i) the desired convergence velocity A, (ii) the transport characteristic
Peclet-numbers P.;, i = ¢,T (i.e. the diffusion-to-convection characteristic time

quotient), as can be seen from (4.51)-(4.52), and (iii) the reaction characteristic
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Lipschitz constant L,, the Damkéhler number D, (i.e. the convection-to-reaction
characteristic time quotient), and the adiabatic temperature rise  (i.e. the heat
production-to-capacity ratio). The gain condition on the other hand is less clear

because it involves the determination of the eigenvalues of the matrix M} (5.24).

The possibilities to assign the eigenvalues of the temperature dynamics depend
on the location & € [0,1] of the temperature sensor, while the eigenvalues of the
linear concentration dynamics cannot be assigned arbitrarily, due to the diagonal
structure of the transport operator. The question on how the eigenvalue coupling
is influenced by the kinetic coupling of temperature and concentration, has to be

addressed in future studies.

The conditions (5.34) on the Peclet numbers P,.;, i = ¢, T basically require
that the stability issues induced by hydrodynamical transport are strong enough
to dominate the destabilization potential of the nonlinear reaction rate estimation
error, characterized by the adiabatic temperature rise 3, the reaction-to-convection
characteristic time quotient D,, and the corresponding Lipschitz constant L, of the
reaction rate expression r, characterizing the maximal (minimal) slope of the reaction

rate.

The conditions have to be viewed in the light of a worst case scenario, in the
understanding that it is supposed that the reaction rate error attains its maximal
value in all points along the reactor. Therefore the drawn conditions are conservative,
but reflect the principal requirements for all tubular reactors and their interpretation
nicely corresponds to the argumentation in the stability assessment of open-loop

observers (compare [47, 49]), based on hydrodynamically induced stability.

It should be mentioned here that, for a practical scenario, the slope bounds
have to be considered in a certain region about a given nominal (SS) profile which is
determined according to some product quality criteria and, accordingly, the process

design parameters.

For the analyzed particular structures of the correction mechanism, it turned out
that, the greater Péclet’s characteristic transport parameters P, ;, i = ¢,T’, i.e. the
more convection dominated the transport, the corresponding stabilization effects of
the heat and mass transfer corresponding mechanisms are very strong. On the other
hand, the smaller the Peclet-numbers are, i.e. the more diffusion-dominated is the
transport behavior, the stabilizing effect of the transport mechanism becomes weaker.

In the limit P.; — 0, ¢ = ¢,T', the phenomenological behavior is equivalent to the
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CSTR [9], and as shown in Chapter 3, the corresponding solvability conditions require
a minimum volumetric flow rate ¢, in order to permit a solution. Without going into
more detail, a clear parallel exists between this condition for the observer existence in
the case of the CSTR and the conditions for the tubular reactor observer existence,

L L
because the flow rate ¢ determines the Peclet-numbers P, ; = v 4 D;,=a,D.

D, DA

The consideration of modeling and measurement errors corresponds to the rea-
soning presented in the last chapter (see Section 4.3.2). Accordingly, the reactor
estimation error dynamics is input-to-state stable with respect to bounded, exoge-
nous errors, but does not compensate them completely. This subject should be

analyzed with more detail in future studies.

5.4 Application Example

The observer convergence behavior is tested by consideration of the critical case
example used in the previous studies: the non-monotonic exothermic Langmuir-
Hinshelwood type reaction kinetics. This choice is based on the facts that: (i) non-
isotonical kinetics imply a difficult observation problem because of the presence of
destabilizing regions corresponding to certain estimation error regimes, and impos-
sibility to directly infer the concentration profile from temperature measurements,
(ii) a strongly exothermic reaction requires strongly stabilizing features of the cor-
responding transport mechanisms (cp. the discussion in Section 3.2.3), and (iii) it
permits to understand the principal mechanism for monotonic kinetics too, in the
understanding that monotonic kinetics present, from a local point of view, particular

limit cases of non-monotonic ones.

The Langmuir-Hinshelwood (in a biological context also known as Haldane)

kinetics is analytically expressed as [18, 19|

c
rle,o) = ————e /7T, 5.35

(c.0) (14 0c)? ( )

where ¢ is the inhibition coefficient, and v = E4/R is the Arrhenius quotient of
the activation energy E4 and the gas constant R. A possible Lipschitz constant

—_
——

L, for this nonlinearity can be derived using the mean-value theorem (= = [0, 1] x
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[T, T*] C R? is the region where the reactor states attain their values):

sup||r(c—|—ec,T—|—eT —r(c, T)||

q|

e[

= sup \/(%(&T)Y + (3—9(5,7))2

eC
er ’
and correspondingly one identifies

L,> "en) +(Lien) (5.36)
p_sgp 9% T 9T .7) ) . .
Note further that

or ? or > I 1—02§2+£2Z—j T Y2
\/(%@,r)) +(oren) e \/ e

so that a Lipschitz constant is given by

Vr&, )

sup

_~ /T4 ’}/2
L,=e¢ T4\ 1+ =S (5.37)
Consequently the estimation nonlinearity p(z;e) = r(z+e) —r(z) satisfies the sector
condition (5.19) with L, given by (5.37).

Simulation studies of the proposed observer with the non-monotonic reaction
rate expression (5.35) have been carried out considering different regimes of param-
eters: (i) a diffusion dominated behavior (packed-bed) exothermic one, correspond-
ing to (P.., P.r, Da,0,3,7) = (10,10, 3 - 10%,200, 3, 10%) and (ii) a more convection
dominated (open-tube) exothermic one, corresponding to (P.., P.r, D, 0,0,7) =
(100, 100, 3 - 10*,200, 3,10%). For either of these cases the nominal (errorless) and
robust (considering errors ¢,y and exogenous disturbances ¢;,, Tm) convergence be-
havior is tested for initial conditions corresponding to trajectories around the concen-
tration with maximal reaction rate, one in the increasing and one in the decreasing

kinetic branch.
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5.4.1 Modal Correction Mechanism

In order to test the modal injection mechanism (5.21), the reactor model (5.1)
was equipped with parameters corresponding to (i) a diffusion dominated scenario
P, = 0(10), and (ii) a convection dominated scenario P, = O(10%). The conver-
gence behavior has been tested (i) for the nominal case (no errors in parameters and
measurement), and (ii) for the case that the dynamics are subject to errors in the
reaction parameters and the measurement.

As pointed out in the isothermal tubular reactor study, for Peclet P, num-
bers higher than approximately 20, the convergence speed induced by the transport
process is so fast, that a modal improvement would require very high gains and inno-
vation dimensions, which on the other hand imply a loss of robustness with respect
to measurement error amplification. Therefore, only the diffusion dominated case is

analyzed for the application of the spectral modal innovation approach.

Convergence without modeling and measurement errors

In order to test the convergence behavior of the observer (5.5) with modal mea-
surement injection mechanism (5.21), the reactor was equipped with the parameter
set (P.1, P.a, Da,v,0,8) = (10,10,3 - 10%,10%,3,200). The measurement location
has been determined through numerical simulation in the light of reaction parameter
offsets and measurement errors (see the next section), which yield best behavior for
¢ = 0.3. The initial conditions have been set to 2o = [375,0.2]7, 2, = [380,0.4]7.
The modal innovation dimension has been chosen as N = 4, and the correspond-
ing modal gains, obtained from tuning in the sense of convergence speed up and

robustness improvement (see the next section) are given by
(L g Ty 1E 1, 18 5, 1 5, 1€ 4) = (20,25,50,10,—0.5, =1, —1.5,—0.5).  (5.38)

The corresponding result is presented in Figure 5.2. One appreciates that (i) the
convergence behavior is wave like, from the inlet towards the outlet (up-stream),
(ii) the correction mechanism in the temperature dynamics behaves like a secondary
wave, imposed in correspondence to the shape of the first 4 eigenfunctions (compare
Figure J.2) and in particular improving the convergence around the outlet z = 1,
(iii) the convergence is sped up in the temperature estimation error about 70 %, and

(iv) the convergence speed of the concentration estimation is about the one of the
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Figure 5.2: Convergence behavior for diffusion dominated process corresponding to
parameters (P, P.o, Do, 3,0,7) = (10,10, 3 - 104,200, 3,10%), and constant initial
profiles zo = [375,0.2]7, 2, = [380,0.4]7. On the left: natural convergence behav-
ior. On the right: improved convergence behavior corresponding to the observer
(5.5) with gains according to (5.39). Top: Temperature estimation error, bottom:
concentration estimation error.
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Figure 5.3: Robust convergence behavior for diffusion dominated process correspond-
ing to parameters (P.;, Puy, Dq, 3,0,v) = (100, 100, 3 - 101,200, 3, 10%), and constant
initial profiles zo = [375,0.2]7, 2y = [380,0.4]". The process is subject to reaction
parameter errors of -60 % in o,v, and D,, and measurement noise of 2 K ampli-
tude and 50 Hz frequency. On the left: natural convergence behavior. On the
right: improved convergence behavior corresponding to the observer (5.5) with gains
according to (5.39). Top: Temperature estimation error, bottom: concentration
estimation error.

natural convergence speed.

Convergence with modeling and measurement errors

In order to test the designed observer in the presence of reaction parameter
errors of -60 % of the nominal parameters (0,7, D,) = (3,10%,3 - 10%), and measure-
ment uncertainty of 2 K and noise, simulated by sinusoidal signals with frequency
50 Hz. The modal gains used for simulation are given by (5.38). The correspond-
ing simulation result is presented in Figure 5.3. One appreciates that the natural
asymptotic offset is reduced: (i) in the temperature estimation about 70 %, and (ii)

the maximal concentration offset is reduced about 50 %.
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5.4.2 Coupled point and distributed injection

The performance of the observer convergence has been tested in terms of im-
provement in comparison to natural convergence behavior through numerical simu-
lations. For these simulations, a simple method of lines algorithm has been used.
First, assuming errorless parameter estimates, measurements and perfect knowledge
of exogenous feed concentration and temperature, two cases are analyzed: (i) a diffu-
sion dominated scenario, and (ii) a convection dominated one, in order to identify the
corresponding effects of the process transport mechanism. Then, considering offsets
in the reaction parameters (k,o,7), the robust convergence behavior is considered

for both cases.

Convergence without modeling and measurement errors

As stated in the analysis of the dissipation behavior, the transport character-
istic Peclet-numbers P,;, i = ¢,’I" can be used to characterize the stability property
of the estimation error dynamics. For low Peclet numbers (P, < 20) the process
is diffusion dominated and in the limit case corresponding to P, = 0, the spatial
profile is homogenous. The case of very low Peclet numbers thus corresponds to
the consideration of continuous stirred reactors and has been analyzed in Chapter
3 (for a more analytic comparison of the tubular reactor and the stirred tank see
e.g. [9]). On the other hand, the destabilization potential due to the reaction grows
if (i) the reaction frequency k is augmented and correspondingly the reaction time
becomes shorter, and / or (ii) the reaction enthalpy —AH grows and correspondingly
the ratio of stored heat becomes greater. In the light of this interplay of stabilizing
transport and potentially destabilizing reaction, the particular reactor parameters of
the subsequent simulation studies have been chosen, in order to provide a challenging

reactor observation problem.

Considering a diffusion dominated scenario with fast and strongly exother-
mic reaction, the reactor parameters are set to (P.1, P, Dg, 3,0,7v) = (10,10,3 -
10%,200, 3,10%). The convergence improvement is studied in comparison to the nat-
ural convergence behavior. The corresponding simulation results corresponding to
spatially constant initial profiles 29 = [375,0.2]7, 2, = [380,0.4]" are presented in

Figure 5.4. The natural convergence behavior is shown on the left side of the figure,
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and the improved convergence behavior on the right side, corresponding to gains
(Iro, lre, U, Leos Leg, Ler) = (—10, 30,20, 0.75,0.1, —0.25). (5.39)

At the top of the figure one can appreciate the convergence of the temperature esti-
mation errors and at the bottom of the concentration estimation errors, respectively.
The sensor location in the domain has been chosen as & = 0.4 through numerical sim-
ulation studies considering the parameter offsets and measurement errors (see next
section). One notices that: (i) for all errors the basic convergence is wave-like from
the inlet x = 0 towards the outlet x = 1, (ii) the innovated temperature error con-
verges about 30 % faster than the natural one, (iii) the corresponding convergence is
wave-like from the injection points up- and downstream, and (iv) the concentration
error convergence is speed-up about 10 %. One notices that the basic convergence
behavior of the concentration is quite different in comparison to the natural one.
This is due to the distributed measurement injection throughout the extension with
constant gain [.¢ = 0.1. The injection at the boundaries x = 0,1 is proportional to
the temperature estimation error offset at these points.

In order to consider a convection-dominated transport the parameter set is cho-
sen as (P.1, Pu, Dq, 3, 0,7) = (100,100, 3-10%, 200, 3, 10%), the gains are chosen equal
(5.39), and the initial conditions are set as constant profiles zy = [375,0.2]7, 2, =
[380,0.4]7. The corresponding simulation results are presented in Figure 5.5. In
comparison with the diffusion-dominated transport, one appreciates that: (i) the
natural convergence is quite faster, (ii) the convergence speed up in the concentra-
tion estimation error is less visible (unless still about 10 %), (iii) the corresponding
temperature estimation error convergence also maintains the corresponding improve-
ment about 30 %, (iv) the basic convergence behavior becomes sharper, in the sense
that one notices a shock-wave-like distribution over the reactor extension, and (v)
the temperature estimation error convergence is unidirectional (down-stream) from

the corresponding measurement injection points.

Convergence with modeling and measurement errors

In order to test the designed observer in a more realistic scenario, the above
simulation studies have been repeated considering (i) constant reaction parameter
offsets in o,7, k of -60%, and (ii) temperature measurement errors with amplitude

2 K and overlaid sinusoidal oscillation with frequency of 50 Hz, and phase offset
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Figure 5.5: Convergence behavior for convection dominated process corresponding to
parameters (P,1, P.o, Dy, 3,0,7) = (100,100, 3 - 10*, 200, 3, 10%), and constant initial
profiles zo = [375,0.2]7, 2, = [380,0.4]. On the left: natural convergence behav-
ior. On the right: improved convergence behavior corresponding to the observer
(5.5) with gains according to (5.39). Top: Temperature estimation error, bottom:
concentration estimation error.
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Figure 5.6: Robust convergence behavior for convection dominated process corre-
sponding to parameters (P.i, P.o, D,,[3,0,7) = (100,100, 3 - 10,200, 3,10%), and
constant initial profiles zy = [375,0.2]7, 2, = [380,0.4]7. The process is subject
to reaction parameter errors of -60 % in o,~, and D,, and measurement noise of 2 K
amplitude and 50 Hz frequency. On the left: natural convergence behavior. On the
right: improved convergence behavior corresponding to the observer (5.5) with gains
according to (5.39). Top: Temperature estimation error, bottom: concentration
estimation error.

corresponding to the measurement point (dpg, d¢g, d¢p) = (0, 1,1.5). The simulation

parameters have been chosen equal to the above simulations, i.e.
(P.1, Pay, Dy, 3,0,7) = (10,10, 3 - 10*, 200, 3, 10%)
for the diffusion dominated case study, and
(P.1, Poy, Dy, 3,0,7) = (100, 100, 3 - 10*, 200, 3, 10%)

for the convection dominated one. The corresponding simulation results are shown
in Figures 5.6 and 5.7.

One appreciates that: (i) for the diffusion dominated case (Figure 5.6), the

asymptotic convergence offset due to the errors in the reaction parameters o,~, k,

is attenuated in the corresponding maximum about 70 % (temperature) and 50 %
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Figure 5.7: Robust convergence behavior for convection dominated process corre-
sponding to parameters (P, P.o, D,,[3,0,7) = (100,100,3 - 10,200, 3,10%), and
constant initial profiles zy = [375,0.2]7, 2, = [380,0.4]7. The process is subject
to reaction parameter errors of -60 % in o,~, and D,, and measurement noise of 2 K
amplitude and 50 Hz frequency. On the left: natural convergence behavior. On the
right: improved convergence behavior corresponding to the observer (5.5) with gains
according to (5.39). Top: Temperature estimation error, bottom: concentration
estimation error.
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(concentration), and (ii) for the convection dominated scenario (Figure 5.7), the
corresponding offset is strongly propagated up-stream, causing a stronger impact
and less attenuation of the maximum in the concentration estimation error offset

(about 2 %).

5.4.3 Concluding Remarks

The presented simulation studies show that the employment of the observer (5.5)
with (i) collocated point injection of the boundary measurements, (ii) point injection
in the temperature dynamics of the temperature measurement in the domain at
x = &, and (iii) (constant) distributed injection in the concentration dynamics of
this measurement, improves the convergence behavior in the understanding of faster
convergence with more robustness against errors in the reaction parameters under
consideration of measurement errors. The presented cases reflect the basic interplay
between transport and reaction and show that for strongly convective transport
the obtained improvement in the concentration estimation becomes less than in the
diffusion-dominated case. The presented results can be improved: (i) by considering
more temperature sensors, (ii) if possible employing concentration sensors, and (iii)
probably by designing the distributed injection gain in the estimated concentration

dynamics in a non-constant (eventually only regionally active) gain function.

5.5 Summary

In this chapter the dissipative observer design methodology, previously employed
for the continuous stirred and the isothermal tubular reactor, has been extended to
the non-isothermal tubular reactor with boundary and/ or domain point temperature
measurements. The main issues addressed were the coupling phenomena caused by
(i) the nonlinear non-isothermal chemical reaction kinetic rate, and (ii) the correction
terms in the concentration dynamics depending on the temperature. The design
approach based on the dissipation properties of the estimation error dynamics have

been adapted to the consideration of these issues in the following manner

e an integrally weighted Lipschitz sector condition has been used to bound the

dissipation according to the kinetic mechanism

e a modal decomposition has been employed to analyze the influence of a modal
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injection structure in the temperature and concentration dynamics

e a coupled point and distributed injection mechanism has been proposed for
the correction mechanism, employing direct transformations of the dissipation

expression via integration by parts and application of integral inequalities.

Together with the results for the continuous and the isothermal tubular reactor
studies, these steps presented the basic issues which had to be dis