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Faŕıas, Vı́ctor Pérez Abreu por la revisión final del trabajo que ayudó a
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en la Teoŕıa de Valores Extremos para series de tiempo no–lineales.
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Introducción

La investigación sobre las propiedades probabilistas y estad́ısticas de procesos
estocásticos con varianza y covarianzas dependientes del tiempo ha tenido un
gran auge en los últimos años. Uno de los mayores impulsos para esta activi-
dad ha sido la creciente evidencia de que gran parte de la teoŕıa financiera
actual se basa en el estudio de la volatilidad. De este reconocimiento surge
la necesidad de desarrollar modelos emṕıricamente razonables para probar,
aplicar y aśı profundizar este conocimiento teórico.

La manera más usual de definir un proceso (Yt)t∈T con volatililidad aleato-
ria Vt es mediante

Yt =

{∫ t
0

√
Vs−dLs, si T = [0,∞),√

VtZt, si T = N.
(1)

En el caso de tiempo continuo, el proceso (Lt) es un proceso de Lévy y si el
tiempo es discreto, la sucesión {Zt} es i.i.d. con media 0 y varianza unitaria.
Pasar del modelo de volatilidad aleatoria (1) a un modelo de volatilidad
estocástica, implica modelar el proceso (Vt).

En tiempo continuo, una posibilidad es considerar a (Vt) como un proceso
de Ornstein–Uhlenbeck generalizado, es decir, como solución de la ecuación
estocástica

dVt = −λVtdt+ dU(λt)

donde el proceso U es un proceso de Lévy espectralmente positivo, con deriva
nula. La elección inusual del parámetro temporal λt en la ecuación es una
manera de garantizar que la distribución marginal de Vt no depende del
parámetro λ. Puede encontrarse una explicación detallada del uso de este
tipo de procesos en finanzas en Barndorff-Nielsen and Shephard (2001).

Como generalización de este planteamiento se propone que (Vt) tenga la

5



6 CONTENTS

forma

Vt = e−ξt
(
V0 +

∫ t

0

eξs−dηs

)
(2)

donde (ξt, ηt) es un proceso de Lévy bivariado independiente del valor inicial
V0 y ηt es un subordinador. Lindner and Maller (2005) contribuyeron de
forma esencial en el conocimiento de las propiedades probabilistas de este
tipo de procesos.

Los modelos en tiempo continuo son muy útiles para los desarrollos teóricos
y han contribúıdo enormemente al entendimento de la dinámica financiera y
económica.

En tiempo discreto también hay muy diversas maneras de modelar el
proceso {Vt}. Una de las formas más conocidas es el proceso ARCH (Au-
toregressive conditional heteroskedasticity), introducido en Engle (1982) que
especifica

Vt = α0 +

p∑
i=1

αiVt−i.

Destaca el paralelismo de esta especificación con los modelos autoregresivos
tan ampliamente utilizados para las variaciones de la media. Del mismo modo
que los modelos autoregresivos pueden extenderse a modelos (autoregresivos
y) de promedios móviles, el modelo ARCH puede generalizarse especificando

Vt = α0 +

p∑
i=1

αiVt−i +

q∑
j=1

Y 2
t−j

donde Yt está dado en (1). Este proceso es conocido como GARCH (gene-
ralized autoregressive conditional heteroskedasticity) y fue por primera vez
planteado por Bollerslev (1986). Como en el caso de modelación en tiempo
continuo, existen muy diversos modelos para la volatilidad estocástica. Boller-
slev et al. (1992, 1994); Engle and Ishida (2002) presentan un compendio de
generalizaciones al modelo ARCH de Engle. Shephard (2005) ejemplifica la
modelación de la volatilidad estocástica con otros métodos y establece una
comparativa entre estos modelos y los modelos tipo ARCH.

Una de las razones del éxito de este tipo de modelos en las aplicaciones
es su capacidad de reproducir las propiedades emṕıricas estilizadas. Las
propiedades emṕıricas estilizadas son propiedades no triviales comunes a una
amplia gama de instrumentos, un denominador común entre las propiedades
observadas en datos históricos de diferentes mercados que abarcan más de
medio siglo. Las siguientes son las más conocidas de ellas:
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1. Autocorrelación idénticamente cero en el proceso {Yt}.

2. Decaimiento lento de las autocorrelaciones del proceso {|Yt |} y también
de {Y 2

t }.

3. Colas pesadas en las distribuciones marginales.

4. Agrupación de la volatilidad.

5. Colas condicionales pesadas.

Esta no es la única afinidad entre la modelación en tiempo discreto y
continuo. De hecho, los modelos en tiempo discreto pueden entenderse como
aproximaciones naturales de los modelos de tiempo continuo. Como ejemplo
concreto, Nelson (1990) demuestra que los procesos ARCH son una aproxi-
mación discreta del modelo

dVt = λ(a− Vt)dt+ σVtdWt

donde Wt es un movimiento Browniano. Puede demostrarse que en este caso
Vt admite la representación

ξt =− σWt + (σ
2

2
+ λ)t,

Vt =e−λt
(
λa

∫ t

0

eξsds+ V0

)
,

de modo que es un caso particular de (2). Drost and Werker (1996) exa-
minan los procesos de difusión que surgen como ĺımites débiles de procesos
GARCH(1,1) a escala temporal hN con h→ 0 y muestran que son soluciones
a ecuaciones de la forma

dXt =
√
VtdW

(1)
t

dVt =θ(γ − Vt)dt+ %VtdW
(2)
t

(3)

dondeW
(1)
t yW

(2)
t son movimientos Brownianos independientes. Este estudio

tuvo por objetivo el construir un proceso estocástico en tiempo continuo
que tuviese las propiedades estilizadas (1–5) mencionadas anteriormente y
concluyó con el proceso (3), que fue llamado GARCH a tiempo continuo.
Llama la atención que en el proceso GARCH a tiempo discreto se tiene una
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única fuente de aleatoriedad, la sucesión {Zt}, en tanto que en la difusión

ĺımite aparecen dos fuentes de aleatoriedad independientes, W
(1)
t y W

(2)
t .

Esto motivó a Klüppelberg et al. (2004) a construir un modelo en tiempo
continuo análogo al GARCH en tiempo discreto, especificado mediante las
ecuaciones

dYt =
√
Vt−dLt,

dVt =− β(Vt− − c)dt+ αVt−d[L,L]δt ,

donde (Lt) es un proceso de Lévy unidimensional, [L,L]δ es la parte discon-
tinua de su variación cuadrática y los parámetros α, β, c son positivos. Este
modelo es conocido como COGARCH(1,1). Brockwell et al. (2006) han ex-
tendido el concepto al caso COGARCH(p,q). En ambos casos, la intención
de los modelos es imitar las propiedades que tiene el proceso GARCH a
tiempo discreto en un proceso de volatilidad estocástica a tiempo continuo.
Klüppelberg et al. (2004) establecen una comparativa muy precisa entre las
propiedades del GARCH y del COGARCH.

En este escenario resalta la importancia de conocer las propiedades de
los procesos GARCH unidimensionales en tiempo discreto: Dan lugar al
planteamiento de modelos en tiempo continuo con propiedades deseables para
la modelación financiera.

A pesar de que los modelos unidimensionales han sido empleados con
éxito para describir el comportamiento de activos financieros por separado,
la interdependencia entre distinos precios, retornos e incluso mercados es
evidente tanto de consideraciones teóricas como de observaciones emṕıricas.
Por lo tanto, el uso de procesos de volatilidad estocástica multivariados es
indispensable para mejorar la presición de los modelos en estos ámbitos.

La generalización del proceso (1) a dimensión superior es directa y da
lugar a

Yt =

{∫ t
0
H

1/2
s− dLs, si T = [0,∞),

H
1/2
t Zt, si T = N.

(4)

En este caso Ht es una matriz de dimensiones d × d y H
1/2
t representa una

matriz tal que

H
1/2
t (H

1/2
t )T = Ht. (5)

Para t ∈ [0,∞) el proceso (Lt) es un proceso de Lévy d–dimensional y
para t ∈ N la sucesión {Zt} es de vectores aleatorios independientes e
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idénticamente distribúıdos, centrados y con matriz de varianzas y covarianzas
igual a la identidad.

De nuevo, es necesario modelar estocásticamente la dinámica de Ht. En el
caso unidimensional, es indispensable en toda modelación de volatilidad es-
tocástica garantizar que Vt ≥ 0 para todo valor de t, puesto que Vt representa
la varianza condicional de Yt dado el pasado del proceso. Este requerimiento
adquiere mayor complejidad en el caso multidimensional puesto que Ht es la
matriz de varianzas y covarianzas condicionales del vector Yt dado el pasado
del proceso, de modo que es necesario garantizar que es no–negativa definida
para todo t.

Barndorff-Nielsen and Stelzer (2007) estudian las condiciones para repre-
sentar por medio de ecuaciones diferenciales estocásticas procesos de Lévy
y procesos tipo Ornstein–Uhlenbeck con valores en el cono cerrado de ma-
trices no–negativas definidas. Similar al caso unidimensional, estos procesos
pueden representarse como la solución de

dHt = AHtdt+ dLt,

donde A es un operador matricial y (Lt) es un proceso de Lévy con valores
en el espacio de matrices cuadradas de dimensión d denotado porM(d× d).
Si (Lt) es un subordinador matricial y H0 es no–negativa definida, entonces
Ht es no–negativa definida para toda t, lo cual permite utilizar este tipo de
procesos como modelos de volatilidad estocástica.

En el caso de tiempo discreto, también se tienen modelos de volatili-
dad estocástica generalizados a mayores dimensiones. Para definirlos se han
tomado dos alternativas, definir la dinámica de Ht directamente y buscar
condiciones para que sea no–negativa definida o bien definir la dinámica de
H

1/2
t y garantizar que Ht es no–negativa definida mediante la ecuación (5).

Como ejemplo del primer método, y dado que Ht debe modelar la matriz
de varianzas y covarianzas (condicional) de un proceso estocástico, podemos
considerar la representación

Ht = DtRtDt

dondeDt es una matriz diagonal no–negativa conDt(i, i) =
√
H(i, i). Obsérvese

que Ht(i, i) es la varianza (condicional) de Yt(i), de modo que es no–negativa
y la ráız es tomada, también, no–negativa. La matriz Rt es la matriz de
correlación condicional Rt(i, j) = Corr(Yt(i), Yt(j)|Ft−1).
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Podemos simplificar el problema de modelación suponiendo que Rt es
independiente de t, es decir, que es constante en el tiempo. Esto da lugar a
los modelos de correlaciones condicionales constantes para los cuáles

Ht = DtRDt,

de modo que para generar un modelo de volatilidad estocástica con corre-
laciones condicionales constantes, basta describir la dinámica de la matriz
diagonal no–negativa Dt.

Entre los modelos con correlaciones condicionales constantes, destaca el
GARCH, dado en Bollerslev (1990), que especifica

δ(Dt) = c+

p∑
i=1

Aiδ(Dt−i) +

q∑
j=1

δ(Yt−jY
T
t−j). (6)

El śımbolo δ(M) representa el vector en Rd cuyas componentes son los ele-
mentos diagonales de la matriz M . Los parámetros C ∈ Rd, Ai ∈ M(d ×
d), Bj ∈ M(d × d) tienen entradas no–negativas. Podemos ver que este
planteamiento es análogo al del GARCH unidimensional al considerar al-
gunos valores pasados del proceso de volatilidad {Dt−i} y los cuadrados de
algunos valores pasados del proceso {Yt}.

Las matrices {Ht} son no–negativas–definidas, ya que las entradas de Dt

son no–negativas y R es no–negativa–definida al ser una matriz de correla-
ciones. Son definidas positivas si y sólo si todas las varianzas condicionales
son positivas y la matriz R es positiva definida.

Como ejemplo del segundo método de definición, el describir la dinámica
de H

1/2
t , tenemos los modelos basados en el factor de Cholesky. En este caso,

para simplificar la modelación, se supone que H
1/2
t es una matriz triangular

inferior y se representa vectorialmente mediante la operación de sobreposición
de columnas de una matriz (vech(M)), cuya definición precisa puede consul-
tarse en Horn and Johnson (1990).

Entre las especificaciones de este tipo contamos con el GARCH, propuesto
en Kawakatsu (2003) que especifica

vech(H
1/2
t ) = c+

p∑
i=1

Aivech(H
1/2
t−i ) +

q∑
j=1

BjYt−j.

Comparando esta ecuación con (6), vemos que la operación vech(M) toma el
lugar de δ(·), lo cuál es de esperarse puesto que ahora se busca dar un modelo
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para todas las entradas de la matriz Ht, no sólo su diagonal. En contraste con
(6), se utiliza el proceso Yt−j en lugar de vech(Yt−jY

T
t−j). Podemos justificar

esto observando que Yt−j es la ráız cuadrada de Yt−jY
T
t−j y el modelo está

dado para H
1/2
t , la ráız de Ht.

El parámetro C ∈ R
d(d+1)

2 se supone distinto de cero. Los parámetros
Ai ∈ M(d(d+1)

2
× d(d+1)

2
) tienen todos sus renglones distintos del vector 0 al

igual que las matrices Bj ∈M(d(d+1)
2
×d). Como se mencionó anteriormente

Ht es automáticamente no–negativa definida en virtud de (5).
En este trabajo, demostramos que las propiedades asintóticas de estos

modelos multivariados de volatilidad estocástica discretos son consistentes
con las de sus análogos univariados. Las técnicas utilizadas en cada caso son
distintas por las diferencias naturales entre ambos modelos. En el caso del
GARCH con correlaciones condicionales constantes, mostramos que bajo las
hipótesis

H0: Las matrices Ai, Bj tienen todos sus renglones distintos del vector 0.

H1: La distribución F de los ruidos admite una densidad f con soporte en
todo el espacio Rd.

H2: Para todo θ ≥ 1 existe h > 1 tal que

θh ≤ E
[
η2h
t,j

]
≤ ∞ para todo 1 ≤ j ≤ n,

las distribuciones finito dimensionales del proceso son de variación regular.
Esta propiedad es la versión multivariada de la presencia de colas pesadas.
Utilizando la teoŕıa de valores extremos multivariados, mostramos también
que el proceso {‖Yt‖} presenta aglomeraciones con tamaño promedio 1/θ > 1,
donde θ representa el ı́ndice extremo de la sucesión {Yt}, cuya definición
puede consultarse en Leadbetter et al. (1983). Por último, demostramos que
si los ruidos {Zt} tienen distribuciones marginales simétricas, entonces el
comportamiento asintótico de la función muestral de autocovarianzas

γY,n(h) =
1

n

n−h∑
t=1

YtY
T
t+h, h ≥ 0, (7)

depende del ı́ndice de variación regular del proceso {Yt}. Denotando por
α > 0 este ı́ndice, distinguimos tres casos: Si α ∈ (0, 2) no tenemos con-
sistencia, sino convergencia a una variable aleatoria α/2 estable. Si α > 2
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tenemos consistencia, pero un Teorema Ĺımite Central sólo es posible para
valores α > 4.

En este desarrollo se hace uso de algunas propiedades conocidas y de-
mostradas en Boussama (1998) del proceso. En particular, la representación
estocástica recursiva

Ỹt = A(ηt)Ỹt−1 +G,

con

Ỹt =(δ(Ht+1)
T , . . . , δ(Ht−q+2)

T , δ(YtY
T
t )T , . . . , δ(Yt−p+2Y

T
t−p+2)

T )T

G =(CT , 0, . . . , 0)T

A(ηt) =



A1diag(ηtη
T
t ) +B1 B2 · · · Bq−1 Bq A2 A3 · · · Ap

I 0 · · · 0 0 0 0 · · · 0
0 I · · · 0 0 0 0 · · · 0
...

...
. . .

...
...

...
...

. . .
...

0 0 · · · I 0 0 0 · · · 0
diag(ηtη

T
t ) 0 · · · 0 0 0 0 · · · 0

0 0 · · · 0 0 I 0 · · · 0
...

...
. . .

...
...

...
...

. . .
...

0 0 · · · 0 0 0 · · · I 0


y sus implicaciones tanto en la existencia y unicidad de una distribución
estacionaria para el proceso {Yt} como en las propiedades de “mixing” del
proceso estacionario.

Para el modelo GARCH del factor de Cholesky, mostramos que bajo las
hipótesis

H0 : %(
∑p

i=1Ai) < 1

H1 : Los vectores {Zt} tienen una densidad f positiva y continua en Rd

H3 : Existe h0 ∈ (0,∞] tal que

E
[
|Zt(i) |h

]
<∞ si h < h0,

limh→h0 E
[
|Zt(i) |h

]
=∞.

H4 : Existe k ∈ N tal que los vectores

{{Vi}i, {Ṽi}i, {A(0)Vi}i, {A(0)Ṽi}i, . . . {A(0)rVi}i, {A(0)rṼi}i}
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generan RD.

el proceso {Yt} admite una única distribución estacionaria, que el proceso
estacionario es “β–mixing” a taza geométrica y finalmente que sus distribu-
ciones finito dimensionales son de variación regular. Esto está basado en la
representación estocástica recursiva

Ỹt = A(Zt)Ỹt−1 +G

con

Ỹt =(vech(Lt+1)
T , . . . , vech(Lt−p+2)

T , Y T
t , . . . , Y

T
t−q+2)

T

G =(CT , 0, . . . , 0)T

A(Zt) =



A1 + (ZT
t ⊗B1)K A2 · · · Ap−1 Ap B2 B3 · · · Bq

I 0 · · · 0 0 0 0 · · · 0
0 I · · · 0 0 0 0 · · · 0
...

...
. . .

...
...

...
...

. . .
...

0 0 · · · I 0 0 0 · · · 0
(ZT

t ⊗ I)K 0 · · · 0 0 0 0 · · · 0
0 0 · · · 0 0 I 0 · · · 0
...

...
. . .

...
...

...
...

. . .
...

0 0 · · · 0 0 0 · · · I 0


Obsérvese que en contraste con la representación recursiva para el GARCH
con correlaciones condicionales constantes, las matrices involucradas en este
modelo y sus productos pueden tener entradas negativas. Aunque esta dife-
rencia puede parecer trivial a primera vista, en realidad no lo es y sortearla
requiere del uso de metodoloǵıas muy distintas a las usadas en el caso de
matrices con entradas no–negativas.

En particular, para mostrar la irreducibilidad de la cadena de Markov

W0 = x0, Wn =
A(Zn)Wn−1

‖A(Zn)Wn−1‖

sobre los conjuntos abiertos de la esfera Sd−1 fue necesario considerar una
transformación del proceso Wn como un sistema dinámico estocástico. De
la controlabilidad de este sistema se puede obtener una hipótesis suficiente
para concluir que el proceso {Wn} visita eventualmente cualquier abierto de
Sd−1 con probabilidad positiva.
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Otra diferencia es que en este caso es necesario que el componente no–
singular de la distribución de

vec(Πn) = vec(A(Zn) . . . A(Z1))

con respecto a la medida de Lebesgue en Rd tenga una densidad uniforme-
mente acotada por abajo sobre un cubo C ⊆ Rd.

Para lograr esta cota escribimos

vec(Πn) = (I ⊗ A(Zn))vec(Πn−1)

y mostramos que el Kernel de transición P (·, ·) del proceso Markoviano
{vec(Πn)} admite un componente continuo, es decir, una función semicon-
tinua inferiormente T (·, ·) tal que

P (x,A) ≥ T (x,A).

De esta relación, y bajo la hipótesis de que la distribución de {Zn} admite
una densidad continua, obtenemos la cota deseada.

También demostramos las propiedades de agrupación del proceso {‖Yt‖}
a partir de la teoŕıa de valores extremos. Encontramos que las propiedades
asintóticas de la función de autocovarianzas dependen del ı́ndice de variación
regular exactamente como en el caso de correlaciones condicionales con-
stantes, con la salvedad de que en este caso no necesitamos suponer que
las distribuciones marginales de la sucesión {Zt} son simétricas.

Nuestra mayor contribución con este trabajo es el estudio de las propiedades
del modelo GARCH del factor de Cholesky. En este caso nuestra prop-
uesta sobre los parámetros del modelo hace posible demostrar la existencia
y unicidad de una distribución estacionaria y la presencia de las propiedades
emṕıricas estilizadas.

El plan de la Tesis es el siguiente. En el Caṕıtulo 1 se dan los resultados
preliminares que sirven de base para el desarrollo posterior. El Caṕıtulo 2
está dedicado al proceso GARCH con correlaciones condicionales constantes.
El contenido de este caṕıtulo ha sido aceptado para su publicación en Journal
of Multivariate Analysis, vol. 100, no.7, agosto de 2009 y está disponible en
ĺınea en http://dx.doi.org/10.1016/j.jmva.2009.01.002. El modelo GARCH
para el factor de Cholesky es estudiado en el caṕıtulo 3. El contenido de este
caṕıtulo ha sido sometido para su publicación.

Se ha elegido redactar la Tesis en lengua inglesa por ser más apropiado
para su revisión y uso internacionales.



Chapter 1

Preliminaries

This Chapter is devoted to the presentation of the theories that are the basis
for the developement of our results. We briefly outline Multivariate Extreme
Value Theory as applied to GARCH processes in Chapters 2 and 3. First,
in Sections 1.1, through 1.3 we present the classical theory of independent,
identically distributed vectors. The results developed in these Sections are
then extended to stationary sequences of random variables in Section 1.4.

Next, we focus on an important class of stochastic processes, the ones
that admit a recursive representation in Section 1.6. We state sufficient
conditions for the stationary version of these processes to be multivariate
regularly varying and finally, in Section 1.7 we explain further properties of
stochastic recursions when embeded into Markov processes.

As was discussed in the Introduction, the stylized facts are most impor-
tant properties when it comes to modelling stochastic volatility in discrete
time. It is by using the concepts of multivariate regular variation and multi-
variate extremal index, which are explained in this Chapter, that a theoreti-
cally solid proof of these properties can be provided for multivariate GARCH
processes in Chapters 2 and 3. Furthermore, stochastic recursions and point
processes are a technical requirement of these developements.

1.1 Multivariate Extremes

In this section we overview some results on Multivariate Extreme Value The-
ory. In the multidimensional case the term “extreme” holds a degree of
ambiguity. The notion of maxima is unclear, and how to define it should

15
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answer some of the needs the theory itself answers.
Consider the financial scenario of managing a portfolio and recording the

values of the different assets in it in the vectors Xi = (X
(1)
i , . . . , X

(d)
i ) day

after day. The maximum may be defined here componentwise suggesting
that we are interested in the extremal behaviors of each of the assets X

(j)
i ,

taking into account the way they relate to each other.
As another example, we may think of X

(i)
n as the n–th measurement

of the temperature of a specific location. We then may be interested in
the fluctuations of {X(i)

n }. By considering the random vector {X(i)
n , 1 ≤

i ≤ d} and the componentwise maxima we will understand the temperature
fluctuation in each region and the way they relate to each other too, which
is more informative than marginal considerations.

Definition 1. Given a sequence {Xn} of random vectors in Rd, with com-

ponents X
(i)
n , set for n ≥ 1

Mn =

(
max
i≤n

X
(1)
i , . . . ,max

i≤n
X

(d)
i

)
= (M (1)

n , . . . ,M (d)
n )

One of the main concerns of Multivariate Extreme Value theory is charac-
terizing the possible asymptotic distribution functions of the normalized and
centered maxima. In other words, given Xn = (X

(1)
n , . . . X

(d)
n ) a sequence of

random vectors with common distribution function F , it is intended to find
sequences of real vectors

an = (a(1)
n , a(2)

n , . . . , a(d)
n ) bn = (b(1)

n , b(2)
n , . . . , b(d)n )

such that a
(i)
n > 0 for all i = 1, 2, . . . , d and a multivariate distribution

function G for which

P

[
M

(i)
n − b(i)n
a

(i)
n

≤ x(i), 1 ≤ i ≤ d

]
−−−→
n→∞

G(x(1), . . . , x(d)). (1.1)

We will first assume that the vectors {Xn} are i.i.d.

Definition 2. Let G be as in (1.1) and with non–degenerate marginal dis-
tribution functions Gi. We call G a multivariate extreme value distribution
(MEVD) and the class of distribution functions F for which (1.1) holds, the
Maximum Domain of Attraction of G, denoted by MDA(G).
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Remark 1. The marginal distributions Gi are non–degenerate. Since joint
convergence entails marginal convergence, the Fisher–Tippet Theorem (See
Embrechts et al. (1997)) implies that for i = 1, . . . , d, the distribution func-

tion Gi is a real extreme value distribution with norming constants a
(i)
n , b

(i)
n .

We say a multivariate distribution G is max–stable if there exist functions
α(i)(t) > 0, β(i)(t) such that

Gt(x) = G(α(1)(t)x(1) + β(1)(t), . . . , α(d)(t)x(d) + β(d)) (1.2)

for all t > 0.

Proposition 1. The class of MEVDs is exactly the class of max–stable dis-
tribution functions with non–degenerate marginals.

Proof. If G is max–stable with functions α(i)(t) > 0 and β(i)(t) and it has

non–degenerate marginals, thenG ∈MDA(G) with norming constants a
(i)
n =

(α(i)(n))−1 and b
(i)
n = −β(i)(n)/α(i)(n), so that G is MEVD.

To prove the converse, if G is MEVD then marginal convergence together
with the Kintchine’s convergence to types Theorem guarantee that

α(i)(t) = lim
n→∞

a
(i)
n

a
(i)
[nt]

, β(i)(t) = lim
n→∞

b
(i)
n − b(i)[nt]

a
(i)
[nt]

both exist. Since

P
[
M[nt] ≤ anx+ bn

]
= F [nt](anx+ bn) = (F n(anx+ bn))[nt]/n,

we have
(M

(i)
[nt] − b

(i)
n )/a(i)

n
d−→ Gt. (1.3)

On the other hand
(M

(i)
[nt] − b

i
[nt])/a

(i)
[nt]

d−→ G. (1.4)

Let Y (t) be a vector with distribution functionGt (observe how equation (1.3)
implies Gt is a distribution function) for each t > 0. Combining equations
(1.3), (1.4) and the definition of the functions αi(t), βi(t) we obtain

((M
(i)
[nt] − b

(i)
[nt])/a

(i)
[nt], 1 ≤ i ≤ d)

=

((
M

(i)
[nt] − b

(i)
n

a
(i)
n

)
a

(i)
n

a
(i)
[nt]

+
b
(i)
n − b(i)[nt]

a
(i)
[nt]

, 1 ≤ i ≤ d

)
⇒ (α(i)(t)Y (i)(t) + β(i)(t), 1 ≤ i ≤ d)

d
= Y (1),

so that G is max–stable.
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The most common approach to study multivariate domains of attraction
is to transform the coordinates making them have the standard Fréchet dis-
tribution. For a detailed treatment see Resnick (1987), and for an alternative
method, based on copulas, see Hsing (1989). By changing the marginal dis-
tribution functions, no difficulties arise as is shown in the next Proposition.

Proposition 2. Let G be a multivariate distribution function with marginals
Gi and let X ∼ G. For y ∈ R, x ∈ Rd, define

ϕi(y) =

(
1

− logGi

)
(y) and ϕ(x) = (ϕ1(x

(1)), . . . , ϕd(x
(d))).

Name G∗ the distribution function of ϕ(X). Then G∗ has standard Fréchet
marginals and G is a MEVD if and only if G∗ is also a MEVD.

Furthermore, given a multivariate distribution function F with marginals
Fi and Y ∼ F , let

Ui(y) =
1

1− Fi
(y) and U(x) = (U1(x

(1)), . . . , Ud(x
(d))).

Name F∗ the distribution function of U(Y ). Then if F ∈ MDA(G) with
norming norming vectors an, bn, we have F∗ ∈MDA(G∗) with norming vec-
tors an∗ = (n, n, . . . , n), bn∗ = 0.

Conversely, if F∗ ∈ MDA(G∗) with the given norming vectors and Fi ∈
MDA(Gi) with norming constants a

(i)
n , b

(i)
n for each i = 1, 2, . . . , d, then F ∈

MDA(G).

In what follows the next notation is used for a, b ∈ Rd

(a, b) = {x ∈ Rd : a(i) < x(i) < b(i), 1 ≤ i ≤ d}

and analogously for [a, b), [a, b] so that comparison between elements in Rd

is defined componentwise. Also, given l ∈ Rd the set E = [l,∞] \ {l} is
the compact set [l,∞] with the point l removed and topologized so that
compact sets in E are those bounded away from l and E remains complete
(See Linskog (2004); Resnick (1987)).

Proposition 3. Let F be a multivariate distribution function. The following
are equivalent:

1. F t is a distribution function for all t > 0,
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2. There exists l ∈ Rd and a Radon measure µ on the space E = [l,∞]\{l}
such that

F (x) = exp{−µ((−∞, x]c)}.

The measure µ satisfies

µ([−∞, x]c)→ 0, x→∞ (1.5)

l = −∞, or x ≥ l and x(i) = −∞⇒ µ([−∞, x]c) =∞. (1.6)

3. There exists l ∈ Rd and a Radon measure µ on the space E = [l,∞]\{l}
as in part 2 and PRM(dt×dµ) on [0,∞)×E, given by ξ =

∑
k δ(tk, jk)

such that

F (y) = P
[
max
tk≤t

jk ∨ l ≤ y

]
.

Proof. Call F max–id if F satisfies the hypothesis of part 1. We show 1
implies 2. Let F be max–id. It can be shown that the set A = {F > 0} is a
rectangle, A = ⊗di=1Ai where each Ai is of the form [li,∞) or (−∞,∞). See
Resnick (1987).

Set l = inf(A) and E = [l,∞] \ {l} and define the Radon measures
µn = nF 1/n. Observe that for x ∈ E

µn([l, x]c) = n(1− F 1/n(x)) ∼ − log(F (x)) <∞.

This means that for every x ∈ E we have

sup
n≥1

µn([l, x]c) <∞.

Since compact sets of E are bounded away from l it is evident that given a
relatively compact set B, there exists x ∈ E such that B ⊆ [−∞.x]c so that
for all relatively compact B

sup
n≥1

µn(B) <∞.

This condition is enough for µn to be relatively compact in the vague topology
(see Kallenberg (1969)). Let µI , µII be two limit points, then

µI([−∞, x]c) = lim
n→∞

µn([−∞, x]c) = − log(F (x)).
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Since this is also true for µII , it follows that for all x ∈ E we have

µI([−∞, x]c) = µII([−∞, x]c)

which is enough to have µI ≡ µII .
Thus, if µ is the vague limit of µn then µ is a Radon measure and

F (x) = exp{− logF (x)} = exp{−µ([−∞, x]c}.

That µ satisfies the conditions (1.5) and (1.6) follows from considering the
limit properties of distribution functions.

As was said earlier, it is enough to focus on MEVD’s with standard
Fréchet marginals G∗. For G∗ the max–stability condition becomes

Gt
∗(tx) = G∗(x), (1.7)

which follows from the marginal considerations, by which we may take a
(i)
n =

n, b
(i)
n = 0. Let µ∗ be the exponent measure of G∗. Since each marginal is

Fréchet, and hence concentrated on [0,∞), it is appropriate to take E =
[0,∞]d \ {0} as the support of µ∗. In terms of µ∗, equation (1.7) is

µ∗([0, x]c) = tµ∗([0, tx]c) = tµ∗(t[0, x]c). (1.8)

For a fixed t > 0 this relation holds for all rectangles in E, and so

µ∗(B) = tµ∗(tB) (1.9)

for a generating π–system and thus for all Borel subsets of E. Thus (1.9)
and (1.7) are equivalent.

From condition (1.5) it follows that

µ∗

(
d⋃
i=1

{y ∈ E : y(i) =∞}

)
= 0. (1.10)

Let | · | be any norm on Rd. The fact that | · | is not defined in all of E
is immaterial because of (1.10). Let Sd−1 be the unit sphere in Rd, which
is compact on E because it is bounded away from 0, for any given norm.
Define the measure σ on B(Sd−1) by

σ(A) = µ∗ ({x : |x| > 1, x/|x| ∈ A)
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Since µ∗ is a Radon measure, if Sd−1 ∩ E is compact, then σ defines a finite
measure. Consider T : E → (0,∞] × Sd−1 the “polar” coordinate transfor-
mation

T (x) = (|x|, x/|x|)
With respect to this coordinates µ∗ is a product measure: The first coordinate
governs length while the second governs directions. Indeed, for r > 0 and
A ∈ B(Sd−1) we have

µ∗ ({y : |y| > r, y/|y| ∈ A})
= r−1µ∗

(
{r−1y : |y|, y/|y| ∈ A}

)
= r−1µ∗ ({x : |x| > 1, x/|x| ∈ A}) = r−1σ(A),

which implies that

µ∗ ◦ T−1(dr, da) = r−2drσ(da).

Therefore we can write

µ∗([0, x]c) =

∫∫
T ([0,x]c)

r−2drσ(da)

=

∫
Sd−1

σ(da)

∫
r>mini

x(i)

a(i)

ff r−2dr


=

∫
Sd−1

d∨
i=1

(
a(i)

x(i)

)
σ(da).

Putting all this facts together we get the next Proposition.

Proposition 4 (Representation of MEVD’s). The following are equivalent

1. G∗ is a MEVD with standard Frechét marginals,

2. There exists a finite measure σ on Sd−1 such that∫
Sd−1

a(i)σ(da) = 1, 1 ≤ i ≤ d (1.11)

and that for x ∈ Rd

G∗(x) = exp

{
−
∫

Sd−1

d∨
i=1

(
a(i)

x(i)

)
σ(da)

}
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3. There exists
∑

k δ(tk,jk), a PRM(dt× dµ∗) on [0,∞)× E with

µ∗ ({y : |y| > r, y/|y| ∈ A}) = r−1σ(A)

and σ a finite measure on Sd−1 satisfying (1.11) such that for x ≥ 0

G∗(x) = P

[∨
tk≤1

jk ≤ x

]

Proof. It only remains to prove (1.11). Since G∗ has Fréchet marginals we
have

G(i)
∗ (x(i)) = lim

x(j)→∞
j 6=i

G∗(x) = exp{−(x(i))−1} (1.12)

On the other hand, as proved before

µ∗([0, x]c) =

∫
Sd−1

d∨
i=1

(
a(i)

x(i)

)
σ(da)

so that

G(i)
∗ (x(i)) = exp

{
−(x(i))−1

∫
Sd−1

a(i)σ(da)

}
(1.13)

which completes the proof by comparing (1.12) with (1.13)

Remark 2. The measure σ associated to the exponent measure µ∗ is known
as “spectral measure”. It describes the distribution of the angular component
of the points {jk} of the associated Point Process and is relevant in the study
of stationary sequences with Point Processes as will be seen later.

1.1.1 Regular variation of real valued functions

The notion of regular variation is very common in applications and parti-
cularly important in Extreme Value Theory. Basically, a regularly varying
function of real variable behaves asymptotically as a power function.

Definition 3. A function f is

• slowly varying if

lim
x→∞

f(xt)

f(x)
= 1
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• regularly varying of index α for some α ∈ R if

lim
x→∞

f(xt)

f(x)
= tα

We call α the exponent of regular variation. We shall denote byRV (α) the
set of all regularly varying functions with exponent α. It is immediate from
the definition that a regularly varying function of index α can be expressed
as f(x) = xαL(x) where L(x) is a slowly varying function. Of course, the
canonical regularly varying function of index α is xα itself.
The functions ln(1 + x), ln(ln(e + x)), exp{(ln(x))β} with 0 < β < 1 are
slowly varying. Any function with limx→∞ f(x) = f(∞) < ∞ is slowly
varying. Examples of functions which are not regularly varying include ex or
sin(x+ 2).
As we see in the definition, regular variation implies both, the existence of
the limit

lim
x→∞

f(xt)

f(x)
= h(t) and h(t) = tα

for some α ∈ R. Observe, however, that given that h(t) exists as defined
above we have for s > 0, t > 0

f(xst)

f(x)
=
f(xst)

f(tx)

f(tx)

f(x)

which, letting x→∞, yields

h(st) = h(s)h(t)

so that h satisfies the Hamel equation and is therefore of the form xα for
some α ∈ R. This means we can weaken slightly the definition of regular
variation.

Definition 4. A function f is regularly varying if there exists a function h
such that for all t > 0

lim
x→∞

f(tx)

f(x)
= h(t)

In this case h(x) = xα for some real number α which is called exponent of
variation.
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Some widely used properties of regularly varying functions include their
integrability properties which lead to a usefull representation. We present
the results without proofs. See Bingham et al. (1989), Resnick (1987) and
the references therein.

Theorem 1 (Karamata’s Theorem). 1. If α ≥ −1 then f ∈ RV (α) im-
plies

∫ t
0
f(x)dx ∈ RV (α + 1) and

lim
t→∞

tf(t)∫ t
0
f(x)dx

= α + 1

If α < −1 then f ∈ RV (α) implies
∫∞
t
f(x)dx is finite and belongs to

RV (α + 1) and

lim
t→∞

tf(t)∫∞
t
f(x)dx

= −α− 1

2. If f satisfies

lim
t→∞

tf(t)∫ t
0
f(x)dx

= λ ∈ (0,∞)

then f ∈ RV (λ− 1). If
∫∞
t
f(x)dx is finite and

lim
t→∞

tf(t)∫∞
t
f(x)dx

= λ ∈ (0,∞)

then f ∈ RV (−λ− 1).

Corollary 1 (Karamata’s Representation). The function L is slowly varying
if and only if it can be represented as

L(t) = c(t) exp

{∫ t

1

x−1ε(x)dx

}
(1.14)

for t > 0 where c : R+ → R+ and ε : R+ → R+ and

lim
t→∞

c(t) = c > 0, lim
x→∞

ε(x) = 0

Observe that this Corollary can also be used to represent regularly varying
functions of index α for real α: Given f a regularly varying function of index
α, we know that f(t) = tαL(t) where L is slowly varying. Using Karamata’s
Representation (1.14) on L we get

U(t) = c(t) exp

{∫ t

1

t−1α(x)dx

}
where c is as before and limx→∞ α(x) = α.
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1.1.2 Multivariate regular variation

For multivariate valued functions the notion of regular variation has some
different definitions. One of the most usefull ones follows.

Definition 5. An Rd valued random vector X is regularly varying if there
exist a sequence {an} such that an ↗ ∞ and a non–zero Radon measure µ

on B(Rd \ {0}) with µ(Rd \ Rd) = 0 such that, as n→∞

nP
[
a−1
n X ∈ ·

] v−→ µ( · ), in B(Rd \ {0}) (1.15)

One feature of the limit measure µ appearing in definition 5 is scaling.

Theorem 2 (Linskog (2004)). If the conditions of definition 5 hold, then
there exists an α > 0 such that µ(tB) = t−αµ(B) for every t > 0 and

measurable set B ∈ B(Rd \ {0}).

The best way to understand how this α > 0 works is expressed in the
next Theorem which gives an equivalent formulation of regular variation

Theorem 3 (Linskog (2004)). Let X be an Rd valued vector. The following
are equivalent

1. X is regularly varying in the sense of definition 5,

2. Let | · | denote any given, fixed norm on Rd and Sd−1 be the ball of
radius 1 for that norm. Then, there exists an α > 0 and a probability
measure σ on B(Sd−1), such that for every x > 0, as t→∞

P [|X | > tx,X/ |X | ∈ · ]
P [|X | > t]

w−→ x−ασ( · ) in B(Sd−1) (1.16)

A very simple example of a regularly varying vector can be constructed
as follows. Let X = RU where R is a non–negative random variable and U
is an Sd−1–valued random element which are independent. If R is regularly
varying of index α > 0, then

P [|X | > tx,X/ |X | ∈ · ]
P [|X | > t]

=
P [R > tx]

P [R > t]
P [U ∈ cdot ]

w−→ x−αP [U ∈ · ] .

Observe that the definition of regular variation given in Theorem 3 holds
irrespective of the norm | · | in Rd chosen to specify Sd−1. Therefore, given
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two different norms | · |1 and | · |2 on Rd, the vector X is regularly varying
with index α for the norm | · |1 if and only if it is also regularly varying with
index α for the norm | · |2. However, the spectral measure differs for each
choice of the norm.

Basrak et al. (2002a) explored the possibility of explaining regular varia-
tion of a given vector X as has been described with the regular variation of
linear combinations of the entries of X. Formally, they explored the situation
where there exists an α > 0 and a slowly varying function L such that for all
x ∈ Rd we have

lim
t→∞

P [〈x,X〉 > t]

t−αL(u)
= w(x) exists, and there exists a x0 6= 0 with w(x0) > 0

(1.17)
The choice of α plays an important role in the equivalence between (1.16)
and (1.17) as shown in Basrak et al. (2002a).

Theorem 4. [Basrak et al. (2002a)] Let X be an Rd valued vector

1. If X is regularly varying with index α, then condition (1.17) holds with
the same value of α

2. If X satisfies condition (1.17) where α is positive and non–integer,
then X is regularly varying with index α and the spectral measure σ is
uniquely determined.

3. If X is non–negative in each entry and satisfies (1.17) where α is an
odd integer, then X is regularly varying with index α and the spectral
measure α is uniquely determined.

Remark 3. It is worth mentioning that for α even, the result doesn’t hold
in general. A counterexample can be found in Basrak et al. (2002a).

1.2 Multivariate Domains of Attraction

Domains of attraction for multivariate extreme value distributions can be
described by regular variation conditions similar to the real case.

As said before, we study only the distributions G∗ with standard Frechét
marginals.
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Proposition 5. [Domain of Attraction of G∗] Let G be a multivariate ex-
treme value distribution and F a multivariate distribution function. Let G∗
and F∗ be defined as in Proposition 2. Then

1. F∗ ∈ D(G∗) if and only if 1 − F∗ is regularly varying in (0,∞)d with
limit function

w(x) =
− log(G∗(x))

− log(G∗(1))

2. F ∈ D(G) if and only if marginal convergence to standard Frechét holds
and F∗ ∈ D(G∗).

Proof. We sketch the proof. For details see Resnick (1987).
For 1, assume first that 1− F∗ is regularly varying in (0,∞)d. Define an by

1− F∗(an) ∼ n−1(− log(G∗(1))),

so that replacing t with an one gets as n→∞

n(1− F∗(anx))→ − log(G∗(x)), x > 0.

It follows immediately that

F n
∗ (anx)→ G∗(x) x > 0,

from which F∗ ∈ D(G∗) with norming constants an. Conversely, if F∗ ∈
D(G∗) it can be shown by marginal considerations that we may take an = n
so that F∗ ∈ D(G∗) implies

F∗(nx)→ G∗(x), x > 0.

Taking logarithms and the usual Taylor approximation of − log(t) we get

n(1− F∗(nx))→ − log(G∗(x)), x > 0.

Which in turn gives us

1− F∗(nx)

1− F∗(n1)
→ − log(G∗(x))

− log(G∗(1))
.

We now replace n by t by monotonicity and get the desired regular variaton
of 1− F∗.
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Example 1
Consider the bivariate distribution given by

1− F (x, y) = e−x + e−y − (ex + ey − 1)−1

introduced by Marshall and Olkin in Marshal and Olkin page 176. Then,
F (x, y) has standard exponential marginals and, following the notation of
Proposition 2, we have

Ui(x) =
1

1− Fi(x)
= ex x > 0 i = 1, 2

U−1
i (y) = log(y) y > 1 i = 1, 2

Therefore

1− F∗(tx, ty)

1− F∗(t, t)
=
x−1 + y−1 − (x+ y − t−1)

2− (2− t−1)
→ x−1 + y−1 − (x+ y)−1

3/2

as t→∞ verifying 1 of Proposition 5. We identify G∗ by

− logG∗(x, y) = x−1 + y−1 − (x+ y)−1

Now, to identify G we have, from marginal convergence that

n(1− Fi(x+ log(n)))→ e−x, x ∈ < i = 1, 2

from which it follows that, again in the notation of Proposition 2,

ϕ−1
i (x) = 1/(− logGi(x)) = e−x, x ∈ <, i = 1, 2

and

G(x, y) = G∗(ϕ
−1
1 (x), ϕ−1

2 (y)) = exp{−(e−x + e−y − (ex + ey)−1}

In the next Proposition domains of attraction are explained in terms of
the exponent of regular variation and the spectral mesure.

Proposition 6. Let F, F∗, G,G∗ be as in Proposition 5 and µ∗, σ, Sd−1 as in
Section 1.1. Let X∗ be a random vector with distribution function F∗, then,
the following are equivalent

1. F∗ ∈ D(G∗)
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2. For every x > 0,

lim
t→∞

1− F∗(tx)

1− F∗(t1)
=
µ∗([0, x]c)

µ∗([0, 1]c)

3. nP [n−1X∗ ∈ · ]
v−→ µ∗ on [0,∞]d \ {0}

4. As measures on B(Sd−1)

P [|X∗ | > tx,X∗/ |X∗ | ∈ · ]
P [|X | > t]

v−→ x−1σ( · )

Proof. 1 is equivalent to 2 by propositon 5 and the representation of G∗ by
its exponent measure explained in section 1.1. To prove 3 we observe that
F∗ ∈ D(G∗) means that F n

∗ (nx)→ G∗(x) for x > 0 which is equivalent to

n(1− F∗(nx)) = nP
[
n−1X∗ ∈ [0, x]c

]
→ − logG∗(x) = µ∗([0, x]c), x > 0

Expanding this to convergence on rectangles we get the desired vague con-
vergence on [0,∞]d \ {0}. For the equivalence between 3 and 4 see Resnick
(1987).

We now restate this Proposition in a more appliable way, without the
need to compute F∗.

Corollary 2. Let F be a distribution funcion on <d, then

1. If F satisties the regular variation condition

lim
t→∞

1− F (tx)

1− F (t1)
= W (x) > 0, x > 0

and W (cx) = c−αW (x), for any c > 0, x > 0 and a certain α > 0, then
F ∈ D(G) for

G(x) = exp{−W (x)}, x > 0}

2. If F has regular variation index α and spectral measure σ then F ∈
D(G) for G(x) = exp{−µ([−∞, x]c)}, x > 0 where µ is the Radon
measure described by

µ
(
{x ∈ <d \ {0}, |x | > r, x/ |x | ∈ A}

)
= r−ασ(A)
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1.2.1 Point Processes

We follow the point processes theory developed in Kallenberg (1969). Let E
be a locally compact second countable Hausorf (lcscH) space and E be its
Borell sigma–field. Denote by M(E) the set of all measures defined on E
and endow it with the sigma–fieldM generated by the evaluation mappings
{µ→ µ(B), B ∈ E}.
Given a probability space (Ω,F ,P) we call any measurable mapping

ξ : (Ω,F)→ (M(E),M)

a random measure. Denote by M+(E) the subset of M(E) of counting mea-
sures, that is, measures of the form

µ( · ) =
∞∑
i=1

δXi
( · )

where Xi ∈ E and δXi
denotes the unit mass measure at Xi. A random

measure µ with values in M+(E) and such that µ(K) < ∞ for K ∈ E
compact (µ is Radon) is called a point process.
For any random measure ξ and Borell function f : E → [0,∞) we write

ξ(f) =

∫
E

fdξ and Lξ(f) = E [ξ(f)]

The function Lξ is called the Laplace transform of ξ. In terms of the distri-
bution of ξ, the measure Pξ = P ◦ ξ−1, it can written as

Lξ(f) =

∫
M(E)

(
exp

{
−
∫
E

f(x)m(dx)

})
Pξ(dm)

Remark 4. Given any set A ∈ E, we can compute the probability P [ξ(A) = 0]
by knowing the Laplace transform of ξ alone.

Proof. Let A ∈ E and ft(x) = t11 (x ∈ A). The Laplace transform of ξ
applied to ft yields

Lξ(f) = E [exp{−ξ(f)}] = E
[{
−
∫
t11 (A) dξ

}]
= E [exp{−tξ(A)}]

Observe that as t grows exp{−tξ(A)} tends to 1 if ξ(A) = 0 and to 0 if
ξ(A) > 0, that is

lim
t→∞

exp{−tξ(A)} = 11 (ξ(A) = 0)
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Therefore, by the bounded convergence theorem we have

lim
t→∞

E [exp{−tξ(A)}] = P [ξ(A) = 0]

The Laplace transform determines uniquely the distribution of the ran-
dom measure ξ, see Kallenberg (1969) or Resnick (1987).
A particularly important class of point processes is the class of Poisson point
processes. Given a Radon measure µ on E , a Poisson point process with
intensity measure µ is characterized by having the Laplace transform

L(f) = exp

{∫
E

1− e−f(x)µ(dx)

}
We will denote this process as PRM(dµ) which stands for Poisson Random
Measure with intensity measure µ. The most important features of PRM(dµ)
are explained in the next proposition.

Proposition 7. Let N be a PRM(dµ) for a given Radon measure µ on E,
then

1. For any F ∈ E and k ∈ N,

P [N(F ) = k] =

{
exp{−µ(F )}(µ(F ))k/k!, if µ(F ) <∞,

0, if µ(F ) =∞.

2. For any k ≥ 1 and mutually disjoint sets F1, F2, . . . , Fk the random
variables

N(Fi), 1 ≤ i ≤ k

are independent.

In order to relate point processes to the stochastic behaviour of extremes of
random variables or vectors, weak convergence is a basic tool. In order to
study the weak convergence of point process, we topologize the space M(E)
with the vague convergence: Given µn random measures, we say µn converges
vaguely to µ, written as µn

v−→ µ if for any non–negative, continuous function
f defined on E for which supp(f) is compact we have

lim
n→∞

∫
E

fdµn =

∫
fdµ (1.18)
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Remark 5. The definition above may be mistaken with weak convergence
of measures. Nonetheless there’s an important difference, namely that for
weak convergence the condition 1.18 is imposed on every bounded continuous
function f and not only on those which are compactly supported. Since all
continuous, compactly supported functions are bounded it follows that weak
convergence implies vague convergence.
For the converse implication the additional hypothesis that the sequence (µn)
is tight is needed. See Kallenberg (2002) Lemma 4.20.

The integral definition of vague convergence is suitable for many theore-
tical purposes, however, it is also very usefull to understand the convergence
of measures in terms of sets, just as with Portmanteau’s Theorem in the case
of weak convergence. The next Theorem is the vague–convergence–version
of this result.

Theorem 5 (Kallenberg (1969)). Let {µn}n≥0 be a sequence of Radon mea-
sures on (E, E). Then, the following statements are equivalent.

1. µn
v−→ µ0,

2. µn(B)→ µ0(B) for every relatively compact set B ∈ E with µ0(∂B) =
0,

3. lim supn→∞ µn(F ) ≤ µ0(F ) and lim infn→∞ µn(G) ≥ µ0(G) for every
compact set F ∈ E and every open, relatively compact set G ∈ E.

In the special case where the sequence {µn} is composed by point processes
alone, it is clear that for all n ≥ 0 there exists a sequence of points in E, say,
{x(n)

j } such that µn =
∑∞

j=1 δ(x
(n)
j ). Then, as a consequence of the above

Theorem, we have the next Corollary.

Corollary 3. Suppose {µn}n≥0 are point processes such that µn
v−→ µ0. For

K compact with µ0(∂K) = 0 we have, for n ≥ n(K) a labeling of the points
of µn, n ≥ 0 in K such that

µn( · ∩K) =
P∑
j=1

δ
x
(n)
i

( · ), n ≥ 0

and in EP endowed with the product topology

(x
(n)
j , 1 ≤ i ≤ P )→ (x

(0)
j , 1 ≤ i ≤ P ), as n→∞
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1.3 Characterizing the Maximum Domains of

attraction with Point Processes

The relation of weak convergence of sequences of Point Processes to extreme
value theory is expressed in the next two results.

Theorem 6. [Resnick (1987)] For each n ∈ N, suppose {Xn,j, j ≥ 1} are
i.i.d. random elements of (E, E). Define

Nn =
∞∑
j=1

δ(jn−1, Xn,j)

and suppose N is PRM on [0,∞) × E with mean measure dt × dµ. Then
Nn ⇒ N in M([0,∞)× E) if and only if

nP [Xn,1 ∈ · ]
v−→ µ on E (1.19)

Proof. First, we prove a simpler result: If N is PRM(µ) on E, then

Nn =
∞∑
j=1

δ(Xn,j)⇒ N in M(E)

if and only if (1.19) holds. We show for this propose convergence of Laplace
functionals. Given a function f ∈ C+

K(E) we have

LNn(f) = E

[
exp

{
−
∞∑
j=1

f(Xn,j)

}]
= (E [−f(Xn,1)])

n

=

(
1−

∫
E

(1− e−f(x))nP [Xn,1 ∈ dx]

n

)n

which converges to the Laplace functional of PRM(µ)

exp{−
∫
E

(1− e−f(x))µ(dx)

if and only if (1.19) holds.
With this same method, we now show the full result of the Proposition. For
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f ∈ C+
K([0,∞)× E) we have

LNn(f) = E

[
exp

{
−
∞∑
j=1

f(jn−1, Xn,j)

}]

=
∏
j

(
1−

∫
E

(1− e−f(jn−1,Xn,j)P [Xn,1 ∈ dx]

)
Suppose (1.19) holds and define λn by

λn(ds, dx) =
∑
j

δ(jn1)dsP [Xn,1 ∈ dx]

so that
λn(ds, dx)

v−→ dsµ(dx)

This implies that∑
j

∫
E

(1− e−f(jn1−,Xn,j))P [Xn,1 ∈ dx] =

∫∫
[0,∞)×E

(1− e−f )dλn

→
∫∫

(1− e−f(s,x))dsµ(dx)

(1.20)

Furthermore, since f is compactly supported, then there exists a compact
set A ⊆ E such that

sup
j

∫
E

(1− e−f(jn−1,Xn,j))P [Xn,1 ∈ dx] ≤ P [Xn,1 ∈ A]→ 0 (1.21)

where the last convergence is a byproduct of (1.19). Using the expansion

ln(1 + z) = z(1 + ε(z)), | ε(z) | ≤ | z | , if | z | ≤ 1/2

we have∣∣∣∣∣− lnLNn(f)−
∑
j

∫
E

(1− e−f(jn−1,Xn,j))P [Xn,1 ∈ dx]

∣∣∣∣∣
≤

n∑
j=1

(∫
E

(1− e−f(jn−1,Xn,j))P [Xn,1 ∈ dx]

)2
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for sufficiently large n ∈ N, which may be bounded by

≤
(

sup
j

∫
E

(1− e−f(jn−1,Xn,j))P [Xn,1 ∈ dx]

)
×
∞∑
j=1

∫
E

(1− e−f(jn−1,Xn,j))P [Xn,1 ∈ dx]→ 0

by (1.20) and (1.21). Therefore, if (1.19) holds, we have that lnLNn → lnLN
which shows the convergence LNn → LN and thus Nn ⇒ N .
Conversely, if we know LNn → LN we set f(s, x) = 11 (s ∈ [0, 1]) g(x) where
g ∈ C+

K(E) and we get

E

[
exp

{
−

n∑
j=1

g(Xn,j)

}]
→ exp

{
−
∫

(

1− e−g)dµ
}

(1.22)

Of course, since f is not an element of C+
K([0,∞)×E) we need to use standard

approximation arguments. Now, observe that (1.22) says that
∑

j δ(Xn,j)
converges weakly to PRM(µ) and so (1.19) holds by the discussion at the
beginning of the proof.

Corollary 4 (Resnick (1987)). Let {Xn} be a sequence of i.i.d. random
variables with distribution function F ∈ D(G), where G is an EVD. Denote
by Mn the sample maxima of the sequence {Xn}, so there exists norming
constants an > 0, bn such that

P
[
a−1
n (Mn − bn) ≤ x

]
= F n(anx+ bn)→ G(x) (1.23)

Suppose, for simplicity, that the norming constants are chosen canonically.
Define the point process (in the different spaces mentioned for the different
cases listed bellow)

Nn =
∞∑
j=1

δ(jn−1, a1
n(Xj − bn))

1. If G = Λ, set E = (−∞,∞], µ(x,∞] = e−x for x ∈ < then (1.23) is
equivalent to

Nn ⇒ N = PRM(dt× dµ)

in M([0,∞)× (−∞,∞]).
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2. If G = φα and if F (0) = 0, then set E = (0,∞], µ(x,∞] = x−α for
x > 0. Then (1.23) is equivalent to

Nn ⇒ N = PRM(dt× dµ)

in M([0,∞)× (0,∞]).

3. If G = ψα so that xF = sup {x ∈ < s.t. F (x) < 1 } < ∞, set E =
(−∞,×0] and µ(x, 0] = (−x)α for x < 0. Then (1.23) is equivalent to

Nn ⇒ N = PRM(dt× dµ)

in M([0,∞)× (−∞, 0]).

Proof. It follows directly from (1.23) that

nP
[
a−1
n (X1 − bn) > x

]
→ − lnG(x)

for x such that G(x) > 0 and this last convergence is equivalent to (1.19)
because of the choice of µ and the topology for E in each case.

As a consequence to this Corollary and the continuous mapping Theorem
we know that given a real number x and the normalizing sequences an >
0, bn ∈ R, we have

N̂n = Nn([0,∞)× (x,∞])⇒ N([0,∞)× (x,∞]).

The Process N̂n counts the number of exceedances over the thresholds un =
anx + bn by the sequence Xn and is deeply studied in Leadbetter et al.
(1983). It’s relevance in EVT is also discussed in Embrechts et al. (1997)
both theoretically and statistically.

The first advantage of the Point Process approach is that the dimension of
the space in which the random variables are defined makes no difference, only
its topological structure. Also, since it is based on weak convergence, when
a result is made corollaries emerge based on arguments involving continuity.
This, in turn, results theoretically powerfull but lacks the precision needed to
take the results to practice: It doesn’t seem to explain neither the necessity of
regular variation nor the quality of convergence. Another important feature
is that we can use the Point Processes theory in more general cases such as
that of stationary sequences.
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1.4 Stationary sequences

One way to extend the results of classical Extreme Value Theory is to change
the independence assumption to something less restrictive. A natural hy-
pothesis to consider is k–dependence which means Xj is independent of Xi

whenever | i− j | ≥ k. Another possibility is that the association degree de-
creases as the magnitude | i− j | increases. For this, we have three distinct
approaches. First, the correlational restriction Corr(Xi, Xi+k) ≤ h(k) where
h(k) → 0 as k → ∞. Obviously, this kind of restriction is most usefull for
elliptical distributions for which correlation and independence characterize
each other. Another possibility is the mixing condition of Rosenblatt

|P [A ∩B]− P [A] P [B] | ≤ h(k),

where A ∈ F(X1, . . . , Xp), B ∈ F(Xp+k+r, r ≥ 1) for any p and h(k)→ 0 as
k → ∞. This condition can be interpreted saying that the past up to time
p is “almost independent” of the future time from p + k + 1 onwards if k is
large. The third approach, more general than the other ones, to be briefly
accounted here, is the distributional mixing condition.

This condition is used in Leadbetter et al. (1983). It is intuitively based
on the observation that for studying the distribution of the sample maxima
Mn one studies sets of the form {Mn ≤ x} =

⋂n
i=1{Xi ≤ x} and so, a mixing

condition is necessary only for this family of events.

Definition 6. The condition D will be said to hold if for any integers

i1 < i2 < . . . < ip < ip + k ≤ j1 < j2 · · · < jq

and for any real u we have∣∣Fi1,i2,...,ip,j1,j2,...,jq(u, u, . . . , u)− Fi1,i2,...,ip(u, . . . , u)Fj1,j2,...,jq(u, . . . , u)
∣∣ ≤ g(k)

with g(k)→ 0 as k →∞.

This condition can be weakened to be satisfied by only sequences {un} of
real numbers.

Definition 7. The condition D(un) is said to hold if for any integers

i1 < i2 < . . . < ip < ip + k ≤ j1 < j2 · · · < jq ≤ n
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we have∣∣Fi1,i2,...,ip,j1,j2,...,jq(un, un, . . . , un)− Fi1,i2,...,ip(un, . . . , un)Fj1,j2,...,jq(un, . . . , un)
∣∣

≤ α(n, k)

with α(n, kn)→ 0 as n→∞ for some sequence kn = o(n).

Observe that α(n, · ) may be taken as a decreasing function. Indeed,
α(n, k) may be replaced by

α′(n, k) = max
i1<···<ip<ip+k≤j1<···<jq≤n

∣∣Fi1,i2,...,ip,j1,j2,...,jq(u, u, . . . , u)−

Fi1,i2,...,ip(u, . . . , u)Fj1,j2,...,jq(u, . . . , u)
∣∣

so that α′(n, k) ≤ α(n, k) and α′(n, kn) → 0 as n → ∞ for kn = o(n).
Furthermore α′(n, k) is decreasing in k because the possible choices of indexes
with j1 − ip ≥ k include those with j1 − ip ≥ k + 1 for fixed n. This in turn
implies there exists a sequence kn = o(n) such that α(n, kn)→ 0 as n→∞
if and only if for every λ > 0 we have α(n, [nλ])→ 0. This observations are
sometimes convenient.

The role of the condition D(un) is to confer a stationary sequence a degree
of asymptotic independence so that the known results from the classical
extreme value theory still hold. Particularly, D(un) will guarantee that any
limiting distribution for normalized maxima of a stationary sequence is an
extreme value distribution. This is proven by a series of approximations.

In what follows, we denote by E ⊆ {1, 2, . . . , n} the maximum value
taken by the sequence Xn over E,

M(E) =
∨
i∈E

{Xi}.

Also, any segment of consecutive integers {i1, i1 + 1, . . . , i2} will be called an
interval with length i2 − i1 + 1.

Lemma 1. Let {Xn} be a stationary sequence of random variables. Sup-
pose D(un) holds for some sequence {un}. Let n, r, k be fixed integers and
E1, E2, . . . , Er be subintervals of {1, . . . , n} such that for i 6= j the intervals
Ei, Ej are separated by at least k. Then∣∣∣∣∣P

[
r⋂
i=1

{M(Ei) ≤ un}

]
− Πr

i=1P [M(Ej) ≤ un]

∣∣∣∣∣ ≤ (r − 1)α(n, k) (1.24)
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Proof. Write Ai = {M(Ei) ≤ un} and Ei = {ki, . . . , li} with k1 ≤ l1 < k2 ≤
· · · ≤ lr. Then

|P [A1 ∩ A2]− P [A1] P [A2] | =
|Fk1,...,l1,k2,...,l2(un, . . . , un)− Fk1,...,l1(un, . . . , un)Fk2,...,l2(un, . . . , un) | ≤ α(n, k)

because k2 − l1 ≥ k by hypothesis. Analogously,

|P [A1 ∩ A2 ∩ A3]− P [A1] P [A2] P [A3] | ≤ |P [A1 ∩ A2 ∩ A3]− P [A1 ∩ A2] P [A3] |
+ |P [A1 ∩ A2]− P [A1] P [A2] |P [A3]

≤ 2α(n, k)

because E1 ∪ E2 ⊆ {k1, . . . , l2} and k3 − l2 ≥ k. Proceeding in this way we
obtain (1.24) as desired.

The next two Lemmas will show how condition D(un) forces the limit
distribution to be an extreme value distribution. Observe that in this deve-
lopment the existence of the limit distribution for the stationary sequence is
assumed.

First, some notation. Let k be a fixed integer and n′ = [n/k]. For large
n, let k < m < n′, we divide the first n′k integers in 2k consecutive intervals
of lengths n−m,m alternatively, as follows. Define

I1 = {1, 2, . . . , n′ −m}, J1 = {n′ −m+ 1, . . . , n′}

and similarly I2, J2, . . . , Ik, Jk. Finally, let

Ik+1 = {(k − 1)n′ +m+ 1, . . . , kn′} Jk+1 = {kn′ + 1, . . . , kn′ +m}

Lemma 2. Let {Xn} be a stationary sequence, and assume D(un) holds,
then, with the notation above∣∣P [Mn ≤ un]− (P [Mn′ ≤ un])k

∣∣ ≤ (2k + 1)P [M(I1) ≤ un < M(J1)]

+ (k − 1)α(n,m)

(1.25)

Proof. First, observe that {Mn ≤ un} ⊆
⋂k
i=1{M(Ij) ≤ un} and in their

difference we have {M(Ij) ≤ un < M(Jj) for some j ≤ k}. Therefore, by
stationarity, we have

0 ≤ P

[
k⋂
i=1

{M(Ij) ≤ un}

]
− P [Mn ≤ un] ≤ (k + 1)P [M(I1) ≤ un < M(J1)]

(1.26)
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Lemma 1 with Ij for Ej and the fact that P [M(Ij) ≤ un] is independent of
j give∣∣∣∣∣P

[
k⋂
j=1

{M(Ij) ≤ un}

]
− (P [M(I1) ≤ un])k

∣∣∣∣∣ ≤ (k − 1)α(n,m) (1.27)

Finally,

0 ≤ P [M(I1) ≤ un]− P [Mn′ ≤ un] = P [M(I1) ≤ un < M(J1)]

From the fact that if 0 ≤ x ≤ y ≤ 1 then 0 ≤ yk − xk ≤ k(y − x) applied to

y = P
[⋂k

j=1{M(Ij) ≤ un}
]

and x = P [M(I1) ≤ un] we get∣∣ (P [M(I1) ≤ un])k − (P [Mn′ ≤ un])k
∣∣ ≤ kP [M(I1) ≤ un < M(J1).] (1.28)

Combining (1.26) with (1.27) and (1.28) we get the desired result.

Lemma 3. If D(un) holds, r ≥ 1 is a fixed integer and if n ≥ (2r + 1)mk,
then,

P [M(I1) ≤ un < M(J1)] ≤
1

r
+ 2rα(n,m). (1.29)

Proof. Being n ≥ (2r+ 1)mk we may pick E1, E2, . . . Er subintervals of I1 =
{1, 2 . . . , n′ −m} each with r elements and separated among them and of J1

by at least m. Then

P [M(I1) ≤ un < M(J1)] ≤ P

[
r⋂
j=1

{M(Ej) ≤ un}, {M(J1) > un}

]

= P

[
r⋂
j=1

{M(Ej) ≤ un}

]
− P

[
r⋂
j=1

{M(Ej) ≤ un} {M(J1) ≤ un}

]
.

(1.30)

By stationarity, the quantity P [M(Ej) ≤ un] = P [M(J1) ≤ un] is indepen-
dent of j. Name it p. By Lemma 1, we have∣∣∣∣∣P

[
r⋂
j=1

{M(Ej) ≤ un}

]
− pr

∣∣∣∣∣ ≤ (r − 1)α(n,m),∣∣∣∣∣P
[

r⋂
j=1

{M(Ej) ≤ un {M(J1) ≤ un}

]
− pr+1

∣∣∣∣∣ ≤ rα(n,m).
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Therefore

P [M(I1) ≤ un < M(J1)] ≤ pr − pr+1 + 2rα(n,m).

The bound pr − pr+1 ≤ 1
r

for 0 ≤ p ≤ 1 gives

P [M(I1) ≤ un < M(J1)] ≤
1

r
+ 2rα(n,m),

which completes the proof.

Let us now assume that there exist a non–degenerate distribution function
G and norming constants an > 0, bn such that

P
[
a−1
n (Mn − bn) ≤ x

]
→ G(x), (1.31)

for the stationary sequence {Xn}. From the development in section 1.1 we
know that G is an extreme value distribution if and only if it is max–stable
and from Kintchine’s convergence to types theorem this will follow if

P
[
a−1
nk (Mn − bnk) ≤ x

]
→ G1/k(x) k ≥ 1. (1.32)

Since the case k = 1 is our assumption (1.31), it is enough to prove that if
(1.32) is valid for k = 1 then it remains valid for k ≥ 2. This is clearly the
case if

P [Mnk ≤ ankx+ bnk]− (P [Mn ≤ ankx+ bnk])
k → 0. (1.33)

Lemma 2 gives us a bound on this difference using n = nk and appropriate un.
What remains is to dominate the righthand side of (1.25) which is achieved
via Lemma 3. We thus deduce that

P [Mn ≤ un]− (P [Mn′ ≤ un])k −−−→
n→∞

0. (1.34)

As a consequence of the foregoing development, we have the next Theorem.

Theorem 7. Let {Xn} be a stationary sequence and an > 0, bn ∈ R cons-
tants such that P [a−1

n (Mn − bn)] → G(x) for a non–degenerate distribution
function G. Suppose D(un) for each sequence un = anx + bn with x ∈ R.
Then G is an extreme value distribution.

Proof. Simply use n = nk in place of n in equation (1.34) to get equation
(1.32) which implies that G is max–stable and thus an extreme value distri-
bution.
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As has been shown, the condition D(un) plays an important role, namely,
if there is a non–degenerate limit distribution G for the maxima of the sta-
tionary sequence {Xn}, then, under D(un), for propper sequences un, G is
an extreme value distribution.

Theorem 8. Suppose un(τ) is defined for τ > 0 in such a way that nF̄ (un)→
τ , and D(un(τ)) holds for every τ > 0. Then, there exist constants 0 ≤ θ ≤
θ′ ≤ 1 such that

lim sup
n→∞

P [Mn ≤ un(τ)] = e−θτ ,

lim inf
n→∞

P [Mn ≤ un(τ)] = e−θ
′τ .

Proof. Let lim supn→∞ P [Mn ≤ un(τ)] = h(τ). Observe that (1−n′F̄ (un(τ))) ≤
P [Mn′ ≤ un(τ)], and so(

1− τ

k

)
≤ lim inf

n→∞
P [Mn′ ≤ un(τ)] ≤ lim sup

n→∞
P [Mn′ ≤ un(τ)] .

Taking kth power and using the approximation (1.34) we find that(
1− τ

k

)k
≤ lim sup

n→∞
P [Mn ≤ un(τ)] ,

and letting k →∞ we have

h(τ) ≥ e−τ ∀τ > 0.

Now, if τ ′ < τ then for n large enough un(τ ′) > un(τ) and then h(τ) is a
decreasing function of τ . As we have already proven in (1.34), for a fixed
integer k and n′ = [n/k],

P [Mn ≤ un(τ)]− (P [Mn′ ≤ un(τ)])k −−−→
n→∞

0,

therefore
lim sup
n→∞

P [Mn′ ≤ un] = h1/k(τ).

Also, arguing by cases where un(τ) ≥ un′(τ/k) and un(τ) < un′(τ/k), we see
that

|P [Mn′ ≤ un(τ)]− P [Mn′ ≤ un′(τ/k)] | ≤ n′ |F (un′(τ/k))− F (un(τ)) |
= n′

∣∣ F̄ (un′(τ/k))− F̄ (un(τ))
∣∣

= n′
∣∣∣∣ τ/kn′ (1 + o(1))− τ

n
(1 + o(1)).

∣∣∣∣
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Thus |P [Mn′ ≤ un(τ)]− P [Mn′ ≤ un′(τ/k)] | → 0 being n′ ∼ n/k. This in
turn implies that

lim sup
n→∞

P [Mn′ ≤ un(τ)] = h(τ/k),

which yields
h1/k(τ) = h(τ/k), ∀τ > 0. (1.35)

The only decreasing solution h > 0 to (1.4) and (1.35) is known to be h(τ) =
eθτ for some θ ≥ 0. Since, as in (1.4), h(τ) ≥ e−τ it follows that 0 ≤ θ ≤ 1.

Similarly, lim infn→∞ P [Mn ≤ un(τ)] = e−θ
′τ for some 0 ≤ θ′ ≤ 1. It is

evident that θ′ ≥ θ completing the proof.

A simple but remarkable consequence of this Theorem is that if for a
given τ > 0 the sequence P [Mn ≤ un(τ)] converges then θ = θ′ and therefore
the sequence converges for every τ > 0 to e−θτ .

Definition 8. A stationary sequence of random variables {Xn} is said to
have extremal index 0 ≤ θ ≤ 1 if for every τ > 0

1. There exists a sequence un(τ) such that nF̄ (un(τ))→ τ , and

2. P [Mn ≤ un(τ)]→ e−θτ .

Theorem 9. Let {Xn} be a stationary sequence with extremal index θ > 0.
Let {X̂n} be a sequence of i.i.d. random variables with the same distribution
F as {Xn} and M̂n its sample maxima. Then, Mn has a non–degenerate
limit distribution if and only if M̂n does and the limiting distributions are of
the same type. The same norming constants may be used.

Proof. First we will prove that for 0 ≤ % ≤ 1 the limit relations

P
[
M̂n ≤ vn

]
→ %, (1.36)

P [Mn ≤ vn]→ %θ, (1.37)

are equivalent. Suppose (1.36) true. First assume 0 < % ≤ 1 and write
% = e−τ for some τ ∈ [0,∞). Take τ ′ > τ so that e−τ

′
< e−τ = %. Condition

1 in the definition of extremal index tells us there exist a sequence un(τ ′)
such that nF̄ (un(τ ′))→ τ ′ and also P [Mn ≤ un(τ ′)]→ e−τ

′θ. We then have

P
[
M̂n ≤ un(τ ′)

]
→ e−τ , P

[
M̂n ≤ vn

]
→ e−τ > e−τ

′
.
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So, for sufficiently large n we have vn > un(τ ′), giving

lim inf
n→∞

P [Mn ≤ vn] ≥ lim
n→∞

P [Mn ≤ un(τ ′)] = e−τ
′θ.

Since this is true for all τ ′ > τ , we have

lim inf
n→∞

P [Mn ≤ vn] ≥ %θ.

For % = 1 we get, in particular, P [Mn ≤ vn] → 1 = %θ. Now, for 0 < % < 1
it is similarly shown – by taking e−τ

′
> e−τ = % –, that

lim sup
n→∞

P [Mn ≤ vn] ≤ %θ.

This two relations put together are exactly (1.37). The proof that (1.37)
implies (1.36) is analogous.

Now, assume that the sequence {M̂n} has a non–degenerate limiting dis-
tribution G, that is

P
[
a−1
n (M̂n − bn) ≤ x

]
−−−→
n→∞

G(x), ∀x ∈ R.

Then, the preceding with vn = anx+ bn shows that

P
[
a−1
n (Mn − bn) ≤ x

]
−−−→
n→∞

Gθ(x), ∀x ∈ R.

Since G is an extreme value distribution, it is max–stable and therefore Gθ

and G are of the same type. To see the converse, assume {Mn} has a non–
degenerate limiting distribution H so that

P
[
A−1
n (Mn −Bn) ≤ x

] w−−−→
n→∞

H(x),

then, as before,

P
[
A−1
n (M̂n −Bn) ≤ x

]
w−−−→

n→∞
H1/θ(x).

This means H1/θ is an extreme value distribution and therefore max–stable.
Again, this is enough to ensure both limiting distributions are of the same
type.
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There is one important aspect that condition D(un) doesn’t deal with
making it unable to guarantee the existence of the limiting distribution for
Mn. It’s clustering.

In section 1.3 it was explained that in the independent case, the conver-
gence P [a−1

n (Mn − bn) ≤ x]→ G(x) is equivalent to weak convergence of the
process

∞∑
j=1

δ(j/n,a−1
n (Xj−bn))( · )

to a PRM(dt × dµ) where µ is determined by G. It is clear from the very
definition of Poisson Process that there is no clustering. We therefore need
further conditions to extend the classical results concerning the Poisson Mea-
sures to the stationary case.

Definition 9. The condition D′(un) is said to hold for the stationary se-
quence {Xn} and {un} if

lim
k→∞

lim sup
n→∞

n [n/k]∑
j=2

P [X1 > un, Xj > un]

 = 0 (1.38)

Observe that under D′(un)

E

 ∑
1≤i<j≤[n/k]

11 (Xi > un, Xj > un)

 ≤ n

[n/k]∑
j=1

E [11 (Xi > un, Xj > un)]→ 0

so D′(un) is a way to avoid joint exceedances over un among X1, . . . , X[n/k].
In Leadbetter et al. (1983) it is proven that under D′(un) the extreme

law for the normalized maxima exists so that under both D(un) and D′(un)
the extremes of stationary sequences are just like those of i.i.d. sequences.

However, the condition D′(un) is mainly thought to deal with the so–
called point process of exceedances, formally defined for x ∈ R as

∞∑
j=1

δ(j/n,a−1
n (Xj−bn))([0,∞)× (un(x),∞))

for un(x) = anx+ bn with an, bn the usual norming constants.
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A more general approach was taken in Davis and Hsing where the weak
convergence of

∞∑
j=1

δ(j/n, a−1
n (Xj − bn))

is shown under a proper mixing condition for strictly stationary sequences of
regularly varying random variables.

Let {Xn}n∈N be a sequence of random variables equal in distribution to
a given random variable X. Assume that

P [|X | > x] = x−αL(x) (1.39)

for L a slowly varying function. Let us work only with the random part of
the process, that is

∞∑
j=1

δ(a−1
n (Xj))

where bn = 0 because of the regular variation condition.

Definition 10. Given a strictly stationary sequence of random variables
{Xn}n∈N whose distribution satisfies (1.39) and the sequence of real num-
bers {an}n∈N defined by

nP [|X1 | > an]→ 1 (1.40)

we say condition A(an) holds for {Xn}n∈N if there exists a sequence of positive
integers {rn} such that rn →∞, rn/n→ 0 as n→∞ and

E

[
exp

{
−

n∑
j=1

f(a−1
n Xj)

}]
−

(
E

[
exp

{
−

rn∑
j=1

f(a−1
n Xj)

}])[n/rn]

→ 0

(1.41)
for all f step function with bounded support on R \ {0}.

Observe that condition A(an) is closely related to the Laplace transforms
of the processes

N̂n =

[n/rn]∑
i=1

Nrn,i,

where each Nrn,i is independent of the rest and with the same distribution
as

rn∑
i=1

δ(a−1
n Xj).
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In fact, condition A(an) implies that Nn converges weakly if and only if N̂n

does and the limits coincide.
The first result given in Davis and Hsing is the description of all possible

weak limits for Nn via the Laplace transform. Before stating the result, let
us define for y ≥ 0

My = {µ : µ([−y, y]c) > 0, and µ([−x, x]c) = 0, for some0 < x = xµ <∞}.

For µ ∈M0 with points a
(i)
µ let µ+ = max(0,max(a

(i)
µ )) and µ− = max(0,min(a

(i)
µ ))

and xµ = max(µ+, µ−). Define the mapping

T : µ→ (xµ, µ(xµ · ))

Observe that T defines a continuous mapping with range (0,∞)×M̂ where M̂
is the set of measures with support contained in [−1, 1] and µ({−1}∪{1}) >
0.

Theorem 10 (Davis and Hsing). Assume condition A(an) for the stationary

sequence {Xn} of random variables and Nn
d−→ N for some not null random

measure N . Then N is infinitely divisible with canonical measure λ such
that λ(M c

0) = 0 and λ ◦ T−1 = ϑ × Q where Q is a probability measure on
(M̂,B(M̂)) and

ϑ(dy) = γαy−α−111 (y > 0) dy,

with γ ∈ (0, 1] defined by

γ = λ ({µ : µ([−1, 1]c) > 0}) .

In this case the Laplace transform of N may be written for measurable f as

LN(f) = exp

{
−
∫ ∞

0

∫
M̂

(1− exp(−µf(y · )))Q(dµ)ν(dy)

}
Proof. For fixed A ∈ B(M̂), define the measure

QA(E) = λ ◦ T−1(E × A) E ∈ B((0,∞)).

As shown in Lemma 2.2 of Davis and Hsing, for any given u > 0 and the
mapping πu : µ→ µ(u−1 · ), the measure λ satisfies the relation λ = uαλ◦πu,
so that for every E ∈ B((0,∞)) we have

QA(uE) = λ◦T−1(uE×A) = λ◦πu◦T−1(E×A) = u−αλ◦T−1(E×A) = u−αQA(E).
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It now follows that the measure QA admits a density with respect to Lebesgue
measure for fixed A ∈ B(M̂) and

QA(dx) = αx−α−1QA((1,∞))11 (x > 0) .

Since γ 6= 0 by Lemma 2.2 in Davis and Hsing, so we may as well write

QA(dx) = γαx−α−1

(
Q((1,∞))

γ

)
11 (x > 0) ,

so that for Q(A) = Q((1,∞))/γ, we see that QA can be written as QA(E) =
Q(A)× ν and Q(A) depends only on A. Regarding Q as a measure on M̂ we
obtain the desired decomposition

λ ◦ T−1 = ν ×Q.

Observe further that

γ = λ ({µ : µ([−1, 1]c) > 0}) = − log(P [N([−1, 1])c = 0])

is the extremal index of |Xn |. Indeed,

P
[
a−1
n max

1≤j≤n
|Xj | ≤ x

]
=P [Nn([−x, x]c) = 0]

→ exp {−λ ({µ : µ([−x, x]c) > 0})} .

By the scaling property of λ we obtain

P
[
a−1
n max

1≤j≤n
|Xj | ≤ x

]
→ exp

{
−γx−α

}
, x > 0

which implies that γ is the extremal index of |Xj | as stated. We now con-
clude that γ ∈ (0, 1]. Therefore

γ = λ ({µ : µ([−1, 1]c) > 0}) = λ ◦ T−1((1,∞)× M̂) = γQ(M̂)

which shows that Q is indeed a probability measure and ends the proof.

With this characterization we understand the limit point process N as
a compound Poisson with intensity measure ϑ and spectral component dis-
tributed according to Q, more explicitly
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Corollary 5 (Davis and Hsing). N =
∑∞

i=1

∑∞
j=1 δ(PiQi,j) where

∑∞
i=1 δ(Pi)

is Poisson with intensity measure ϑ and
∑∞

j=1Qi,j, i ≥ 1 are mutually inde-
pendent point processes identically distributed according to Q.

The next result gives a neater description of the components of the limit
process N .

Theorem 11 (Davis and Hsing). Under the condition A(an) for {Xn}, the
following are equivalent

(1) Nn converges weakly to some not–null N ,

(2) For some finite, positive constant γ, and kn = [n/rn],

knP

[
rn∨
j=1

|Xj | > anx

]
→ γx−α, x > 0,

and for some probability measure Q on M̂ ,

P

[
rn∑
j=1

δ

(
Xj/

rn∨
j=1

|Xj |

)
∈ ·

∣∣∣ rn∨
j=1

|Xj | > anx

]
w−→ Q, x > 0

In this case N is infinitely divisible with canonical measure λ confined to M0

and such that
λ ◦ T−1 = ν ×Q

with ν(dy) = γαy−α−1dy.

Proof. First, we assume (1) holds and that the canonical measure λ admits
the representation λ ◦ T−1 = ν × Q. Then, since N has no fixed atoms
(Lemma 2.2 in Davis and Hsing), we have that for any x > 0

Nn([−x, x]c)
d−→ N([−x, x]c)

Due to condition A(an) Nn may be replaced by N̂n. Thus, letting k−1
n λn be

the common distribution of the processes Nrn,i we have

knP

[
rn∨
j=1

|Xj | > anx

]
= λn(Mx)

= − log
(
P
[
N̂n([−x, x]c) = 0

])
+ o(1)

→ − log (P [N([−x, x]c) = 0]) = λ(Mx) = λ ◦ T−1((x,∞)× M̂)

= ϑ(x,∞) = γx−α
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The equality λn(Mx) = − log
(
P
[
N̂n([−x, x]c) = 0

])
+ o(1) is worth a few

lines. Observe that, since N̂n =
∑kn

i=1Nrn,i with Nrn,i i.i.d.,

LN̂n
(f) =

(
LNrn,1(f)

)kn

From this we get

P
[
N̂n(A) = 0

]
= P [Nrn,1(A) = 0]kn = (1− P [Nrn,1(A) > 0])kn

=

(
1− λn(Mx)

kn

)kn

= exp{−λn(Mx)}+ o(1)

We have proven the first part in (2). For the second part, define the proba-
bility measures Pn,x and Px on M0 by

Pn,x =
λn( · ∩Mx)

λn(Mx)
Px =

λ( · ∩Mx)

λ(Mx)

It can be shown that Pn,x
w−→ Px as n → ∞, see Davis and Hsing. Since the

mapping T is continuous

Pn,x ◦ T−1 w−→ Px ◦ T−1

on (0,∞) × M̂ . Using the marginal convergence implied by the bivariate
convergence and the facts that λ(Mx) = ν((x,∞)), and T−1((x,∞)× M̂) =
Mx, we conclude that

Pn,x ◦ T−1((x,∞)× · ) w−→ Px ◦ T−1((x,∞)× · )

=
λ ◦ T−1((x,∞)×) ·

γx−α
= Q( · )

on M̂ which completes the proof (2). For the converse similar arguments
may be used to prove that for all measurable f we have∫

(1− e−µf )λn(dµ)→
∫

(1− e−µf )λ(dµ)

which is (1) expressed in terms of the corresponding Laplace transforms. See
Davis and Hsing for further details.
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One last result to add is a necessary condition for the existence of the
limit N of the point processes Nn. See Davis and Hsing for the proof.

Theorem 12 (Davis and Hsing). Suppose that {Xj} is a stationary sequence
of random variables for which all finite–dimensional distributions are jointly
regularly varying with index α > 0 and denote by ηm = (η

(i)
m , | i | ≤ m)

the random vector corresponding to the spectral measure associated to the
distribution of {Xi, | i | ≤ m}. Assume condition A(an) and that

lim
m→∞

lim sup
n→∞

P

 ∨
m≤| i |≤rn

|Xj | > tan

∣∣∣ |X0 | > tan

 = 0, t > 0 (1.42)

Then the limit

γ = lim
m→∞

E
[∣∣∣ η(0)

m

∣∣∣α −∨m
j=1

∣∣∣ η(j)
m

∣∣∣α]
+

E
[∣∣∣ η(0)

m

∣∣∣α]
exists. If γ = 0 then Nn

d−→ 0, but if γ > 0 then Nn converges to not–null N
with canonical measure λ such that λ ◦ T−1 = ϑ×Q as described earlier and
Q is the weak limit of

E
[(∣∣∣ η(0)

m

∣∣∣α −∨m
j=1

∣∣∣ η(j)
m

∣∣∣α)
+

11
(∑

| i |≤m δ(η
(i)
m ) ∈ ·

)]
E
[∣∣∣ η(0)

m

∣∣∣α −∨m
j=1

∣∣∣ η(j)
m

∣∣∣α]
+

as m→∞ which exists.

The theory presented so far applies for stationary sequences of real ran-
dom variables. However, the very same concepts can be taken to the mul-
tivariate setting without essential modifications in the proofs. We reffer the
reader to Davis and Hsing, Hüsler (1990) and to Davis and Mikosch (1998)
where the results are presented.

The results presented so far are applied to establish the presence of the
stylized properties in two multivariate GARCH models in chapters 2 and
3. It is worth mentioning that in both cases the mixing properties of the
process play a determining role. While sufficient conditions for the CCC-
GARCH process to be β–mixing have been provided in Boussama (1998),
this property, together with stationarity, is proven for the Cholesky factor
GARCH in Chapter 3.
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The one concept that changes radically with multidimensionality is the
extremal index. In the multivariate setting the condition D(un(x)), for vector
sequences1 un(x) = an � x + bn, doesn’t imply the existence of a constant
θ ∈ [0, 1] such that

G(x) = Ĝ(x)θ (1.43)

for x ∈ Rd, where G is the EVD associated to the independent sequence and
Ĝ is the limit of n(1− F (un(x))) as n→∞. In fact, if we assume equation
(1.43) holds, then we get that for any fixed 1 ≤ i0 ≤ d, by taking limit as
x(i) →∞ for i 6= i0,

Gi0(x
(i0)) = Ĝθ

i0
(x(i0)) (1.44)

so that every marginal distribution can be expressed with the same extremal
index θ. Compare (1.44) with Definition 8. Nonetheless, examples can be
constructed where this is not the case. See Hsing (1989) or Hüsler (1990).

In Nandagopalan (1994), the author proposes the multivariate extremal
index as a function θ(x) with values on (0, 1] –by avoiding the case θ(x) = 0
we clear out the degenerate limits– via the relation

G(x) = Ĝθ(x)(x) (1.45)

where G and Ĝ are defined as before. In Nandagopalan (1994) the extremal
index function θ(x) is explained with dependence functions or copulas, but
we find it convenient to do it otherwise.

Following equation (1.45) and using the fact that we may normalize the
marginal distributions to be Frechét, see Proposition 2, and that the corres-
ponding distributions G∗ and Ĝ∗ are max–stable as implied by Propositions
1 and 2 2, we may write equation (1.45) in terms of the extremal measures
µ∗ and µ̂∗ as

µ∗([0, x]c) = θ(x)µ̂∗([0, x]c), ∀x > 0 (1.46)

With this definition, it is simple to calculate for fixed 1 ≤ j ≤ d,

θj = lim
x(i)→∞,i 6=j

θ(x) = lim
x(i)→∞,i 6=j

− log(G(x))

− log(Ĝ(x))
=
− log(Gj(x

(j)))

− log(Ĝj(x(j)))
(1.47)

1For vectors z, w in Rd, z�w represents the direct product vector (z(i) · w(i), 1 ≤ i ≤ d)
2The proof of Proposition 1 tells us that if the marginal distributions converge to EVD’s

and the joint distribution converges to, say, G, then G is a MEVD. This remains valid for
stationary sequences under condition D(un).
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The value θj exists under D(un) and is the extremal index for the sequence

{X(j)
n }, so that the two concepts are indeed related.
Because of the homogeneous nature of µ∗ and µ̂∗ shown in (1.9), we see

that

µ∗([0, x]c) = u−1µ∗(u[0, x]c) = u−1µ∗([0, ux]c)

= u−1θ(ux)µ̂∗([0, ux]c) = u−1θ(ux)uµ̂∗([0, x]c)
(1.48)

which shows that for any u > 0 and x > 0 we have

θ(ux) = θ(x)

This suggests that we may as well define the extremal index for x ∈ Sd−1

only and write (1.45) as

G(x) = Ĝθ(x/|x |)(x), ∀x > 0

Now, putting this together with (1.47) and letting {ei, 1 ≤ i ≤ d} be the
canonical basis of Rd we see that for every fixed 1 ≤ j ≤ d we have

θ(ej) = θj

so that on the axis the values of the function θ are the individual extremal
indexes corresponding to the components of the vector X.

1.5 Autocovariance Function Convergence

Given a mean zero time series {Xn} in R, the autocovariance function is
defined by

γX(h) = E [X0Xh] .

As a natural approximation to this function, we have the sample autocova-
riance function, which is given by

γn,X(h) =
1

n

n−h∑
t=1

XtXt+h.

Assuming that the sequence {Xn} is in L2, stationary and ergodic, the Er-
godic Theorem of Von–Newman and Birkhoff (See Kallenberg (1969)) tells
us that

γn,X(h)
c.s.−−−→
n→∞

γX(h), h ≥ 0
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Given this convergence, a Central Limit Theorem is expected. This result,
however needs some extra hypotheses. In Doukhan (1994) it is shown that
if we assume further that the sequence {Xn} is strongly mixing and in L4,
then

lim
n→∞

n−1/2 (γn,X(h)− γX(h))
d
= Y

where Y is a centered Normal random variable and
d
= means limit in distri-

bution.
There are some interesting questions regarding the convergence of the

Sample Autocovariance Function when the sequence {Xn} is regularly vary-
ing. As is detailed in Bingham et al. (1989), Embrechts et al. (1997) and
Resnick (1987), among others, a regularly varying random variable with in-
dex α > 0 satisfies

E
[
|X |β

]
<∞, for β < α,

E
[
|X |β

]
=∞, for β > α.

Therefore, if α < 2 the sequence is not in L2 so that the function γX(h) is not
defined. In this case the almost sure limit of γn,X(h) provides no information.
If 2 < α < 4 then the sequence is in L2 so that the Ergodic Theorem applies
and γn,X(h)

a.s.−−−→
n→∞

γX(h). However, the CLT result in Doukhan (1994) will

not apply because the sequence {Xn} is not in L4.
An explanation of the asymptotical behavior of the sample autocovariance

function in these special cases was given in Davis and Mikosch (1998) for
stationary sequences with regularly varying finite dimensional distributions.
The notation in the following Theorem is the same as in section 1.4.

Theorem 13 (Theorem 3.5 in Davis and Mikosch (1998)). Assume that
{Xn} is a strictly stationary sequence with regularly varying finite–dimensional
distributions of index α > 0 and such that

Nn
d−−−→

n→∞
N

where Nn and N are the point processes described in section 1.4.

1. If α ∈ (0, 2), then

(n1−2/α(γn,X(h)))h=0,1,...,m
d−→ (Vh)h=0,1,...,m (1.49)

where (V0, V1, . . . , Vm) is jointly α/2 stable in Rm.
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2. If α ∈ (2, 4), then

(n1−2/α(γn,X(h)− γX(h)))h=0,1,...,m
d−→ (Vh)h=0,1,...,m (1.50)

were (V0, V1, . . . , Vm) is jointly α/2 stable in Rm.

The convergence of the autocovariance function is important for statistical
analysis, particularly in time series. As is shown in Chapters 2 and 3 both,
the CCC GARCH and the Cholesky factor GARCH, exhibit the behavior
explained in the last Theorem as a consequence of regular variation.

1.6 Stochastic Recurrence Equations

Consider an Rd valued process {Xn}n∈Z given as the solution to the stochastic
recurrence equation

Xn = AnXn−1 +Bn, n ∈ Z (1.51)

for some i.i.d. sequence Ψ = (An, Bn) of random d × d matrices and d × 1
vectors Bn. Let | · | denote a norm in Rd and ‖ · ‖ the corresponding operator
norm in the matrix space given by

‖A‖ = sup
|x |=1

|Ax |

Also, define the relation “>” componentwise for vectors and entrywise for
matrices so that, for example x > 0 for a given vector x ∈ Rd means x(i) > 0
for all 1 ≤ i ≤ d and A > 0 for a given d× d matrix means A(i, j) > 0 for all
1 ≤ i, j ≤ d.
By recursively applying equation (1.51) we see that the process Xn = Xn(Ψ)
may be written as

Xn(X0,Ψ) =
n−1∑
j=0

(
n−1∏
i=n−j

Ai

)
Bn−j−1 +

(
n−1∏
i=0

Ai

)
X0

In Brandt (1986) conditions for the existence of a unique casual stationary
solution to (1.51) are given.
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Theorem 14 (Brandt (1986)). If the sequence Ψ = {(An, Bn)} is stationary
and ergodic and

E [ln ‖A0‖] < 0 and E
[
ln+ |B0 |

]
<∞ (1.52)

then

Xn(Ψ) =
∞∑
j=0

(
n−1∏
i=n−j

Ai

)
Bn−j−1, n ∈ N (1.53)

is the only proper stationary solution of (1.51) for the given Ψ (where we
set
∏n−1

i=n Ai = 1). The sum in equation (1.53) converges absolutely almost
surely. Furthermore,

P
[

lim
n→∞

|Xn(Y,Ψ)−Xn(Ψ) | = 0
]

= 1 (1.54)

for arbitrary random variables Y on the same probability space as Ψ. In
particular,

Xn(X0,Ψ)
d−−−→

n→∞
X0(Ψ) (1.55)

Proof. First, we prove the absolute convergence of (1.53). By assumptions
(1.52) and the strong law of large numbers for stationary and ergodic se-
quences we have

lim sup
k→∞

1

k

(
−k∑
i=−1

ln ‖An+i‖ + ln |Bn−k−1 |

)
< 0, a.s.

which means that

lim sup
k→∞

log(‖An−1‖ ‖An−2‖ . . . ‖An−k‖ |Bn−k−1 |)1/k < 1, a.s.

From this, almost sure absolute convergence of (1.53) follows by the Cauchy’s
root criterion.
We now prove (1.54). By definition

|Xn(Y,Ψ)−Xn(Ψ) | =

∣∣∣∣∣−
∞∑
j=n

(
n−1∏
i=n−j

Ai

)
Bn−j−1 +

(
n−1∏
i=0

Ai

)
Y

∣∣∣∣∣
≤

(
n−1∏
i=0

‖Ai‖

)
(|X0(Ψ) |+ |Y |)

(1.56)
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Again, by the strong law of large numbers, we get from (1.52)

n−1∏
i=0

‖Ai‖ =

(
exp

(
1

n

n−1∑
i=0

ln ‖Ai‖

))n

−−−→
n→∞

0, a.s.

Together with (1.56) this implies (1.54). Now, observe that the shift applied
to Ψ on the right–hand side of (1.53) produces the shift of {Xn(Ψ)} on the
left–hand side so that {Xn(Ψ)} is stationary.
Now, from (1.54) we get that Xn(Y,Ψ) converges to Xn(Ψ) in probability

which together with the fact that Xn(Ψ)
d
= X0(Ψ) implies (1.55). Moreover

AnXn(Ψ) +Bn = An

(
∞∑
j=0

(
n−1∏
i=n−j

Ai

)
Bn−j−1

)
+Bn

=
∞∑
j=1

 (n+1)−1∏
i=(n+1)−j

Ai

B(n+1)−j−1 +Bn = Xn+1(Ψ), a.s.

so that the sequence {Xn(Ψ)} satisfies the relation (1.51) almost surely.
Thus, {Xn(Ψ)} is a stationary solution of the stochastic recurrence equa-
tion for Ψ. To complete the proof, let us assume {Yn} is another stationary
solution of (1.51) for Ψ. Then

|Yn −Xn(Ψ) | = ‖An−1‖ |Yn−1 −Xn−1(Ψ) | = . . .

=

∥∥∥∥∥
k∏
i=1

An−i

∥∥∥∥∥ |Yn−k −Xn−k(Ψ) |

≤

∥∥∥∥∥
k∏
i=1

An−i

∥∥∥∥∥ |Yn−k |+
∥∥∥∥∥

k∏
i=1

An−i

∥∥∥∥∥ |Xn−k(Ψ) |

(1.57)

By the assumptions (1.52) and the strong law of large numbers, we obtain∥∥∥∥∥
k∏
i=1

An−i

∥∥∥∥∥ =

(
exp

(
1

k

k∑
i=1

ln ‖An−1‖

))k

−−−→
k→∞

0, a.s.

Therefore, being {Yn} and {Xn(Ψ)} stationary sequences, we see that∥∥∥∥∥
k∏
i=1

An−i

∥∥∥∥∥ |Yn−k | P−→ 0,

∥∥∥∥∥
k∏
i=1

An−i

∥∥∥∥∥ |Xn−k(Ψ) | P−→ 0



58 CHAPTER 1. PRELIMINARIES

as k →∞. Using this and (1.57) we find that Yn−Xn(Ψ) = 0 almost surely
for n ∈ Z which proves the uniqueness of the solution of (1.51) for Ψ.

Remark 6. In the proof of this Theorem it jumps out, while applying the
strong law of large numbers, that the conditions (1.52) can be softened to

γ = lim
n→∞

1

n
E [ln ‖An−k . . . An−1‖] < 0, E

[
ln+ |B0 |

]
<∞ (1.58)

The coefficient γ is called top Lyapunov exponent of the sequence of random
matrices {An} and is generally hard to compute. In Furstenberg and Kesten
(1960) it is shown that if E

[
ln+ ‖A1‖

]
<∞ then

γ = lim
n→∞

1

n
ln ‖A1 . . . An‖ , a.s..

The relation between the existence of the stationary solution and the
strict negativity of the Top Lyapunov exponent has been further examined.
In Bougerol and Picard (1992), the authors show that under an irreducibility
condition of the model (1.51), both properties are equivalent.

Definition 11. The model (1.51) is called irreducible if given that there exists
I ⊆ {1, 2, . . . , D} such that the linear space V generated by the canonical
vectors {ei, i ∈ I} satisfies A1V +G ⊆ V , then V = RD.

Theorem 15 (Theorem 2.5 in Bougerol and Picard (1992)). Suppose that
the model (1.51) has i.i.d. coefficients and that both E

[
log+ ‖A1‖

]
and

E
[
log+ ‖B1‖

]
are finite. Then there exists a unique casual stationary so-

lution to (1.51) if and only if the Top Lyapunov exponent is strictly negative,
that is

γ = lim
n→∞

1

n
E [ln ‖An−k . . . An−1‖] < 0

Remark 7. It is worth mentioning that without the assumption of irreduci-
bility this equivalence does not hold.

To study the extremes and point process convergence for the model (1.51),
we focus on the stationary distribution of {Xn}. The heavy–tailedness of this
distribution can be shown using some of the results in Kesten (1973). Two
scenarios are possible:

1. Either the distribution of A1 has its support on the cone of nonnegative
matrices, or
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2. the support of the distribution of A1 contains matrices with both, pos-
itive and negative entries.

The first case is easier to handle, and less conditions on the matrices {An}
are required for X1 to be, in some sense, regularly varying. Theorems 3 and
4 in Kesten (1973) put together deal with this case.

Theorem 16 (Theorems 3 and 4 in Kesten (1973)). Let (An, Bn) be a se-
quence of i.i.d. random d × d matrices and d × 1 vectors with non–negative
entries such that P [|B1 | = 0] = 0. Assume the following

1. For some ε > 0, E [‖A1‖ε] < 1,

2. A1 has no zero rows with probability one,

3. The group generated by the set

{ln ‖A1 . . . An‖ : n ≥ 1, Ai ∈ supp(PA1)}

is dense in R.

4. There exists a γ0 such that

E

(min
1≤i≤d

d∑
j=1

A(i, j)

)γ0/2
 ≥ dγ0/2

5. E [ln ‖A1‖γ0 ln ‖A1‖] <∞,

Then, the following hold

1. There exists a unique solution γ ∈ (0, γ0] to the equation

0 = lim
n→∞

1

n
ln E [‖A1 . . . An‖γ]

2. If E [|B1 |γ] <∞, then X satisfies the following regular variation con-
dition

For all x ∈ Rd \ {0}, lim
u→∞

P [〈x,X1〉 > u] = w(x) (1.59)

exists and is positive for all non–negative vectors x ∈ Rd \ {0}.
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In the second case, that is, if the matrices A1 have positive probability
of having negative entries, more hypotheses are needed to guarantee regular
variation. In this scenario, Kesten’s theorem 6 is needed, and we present it
next.

Theorem 17 (Theorem 6 in Kesten (1973)). Let (An, Bn) be a sequence of
i.i.d. random d × d matrices and d × 1 vectors such that E

[
log+ (‖A1‖)

]
Assume the following conditions hold

1. The matrix A1 is a.s. nonsingular.

2. For every given x ∈ Sd−1 define the Markov chain {Wn} by

W0 = x, Wn = AnWn−1

Then, the process

W̃0 = x, W̃n =
Wn

‖Wn‖
is open set irreducible in Sd−1.

3. There exists n ∈ N and a cube C ⊆ Rd2 such that the nonsingular
component of the distribution of AnAn−1 . . . A1 has a density bounded
bellow by δ > 0 on C.

4. The group generated by the set

{ln ‖A1 . . . An‖ : n ≥ 1, Ai ∈ supp(PA1)}

is dense in R.

5. For every fixed vector r we have

P [B1 = (I − A1)r] < 1

6. There exists κ0 > 0 such that

0 < E [‖B1‖κ0 ] <∞
E
[
‖A1‖κ0 log+ (‖A1‖)

]
<∞

E [(λ(A1))
κ0 ] ≥ 1
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then there exists κ1 ∈ (0, κ0] such that X satisfies the following regular
variation condition

lim
u→∞

P [〈x,X1〉 > u] = w(x) (1.60)

exists and is positive for all x ∈ Sd−1.

Observe that the properties (1.59) and (1.60) are not the regular variation
of the vector X but the regular variation of any given linear combination of
their entries. Remember from section 1.1.1 that this two regular variations
are equivalente only in certain cases. See Theorem 4.

1.7 Dynamical systems and Markov Chains

Analysis

In this section we outline some techniques used to analyze Markov Chains
when they are stochastic realizations of a Dynamical System. In Rd a general
dynamical system with state space A and control set O is defined by the
relation

x0 = x, xn = F (xn−1, zn) (1.61)

where
F : A×O → A

is a C∞ function. The sets A ⊆ Rd and O ⊆ Rp are assumed open. Define
the k–th iteration of F by

F (1)(x, z) = F (x, z), F (k)(x) = F (F (k−1)(x, zk−1), zk).

Then, the orbit of the point x is defined as the set

A+(x) =
⋃
k∈N

{y : y = F (k)(x, z1, . . . , zk), zj ∈ O}.

This set is also referred to as the set of reachable states starting from x. Now,
consider an i.i.d. sequence {Wn} of random variables in Rp and define

X0 = x, Xn = F (Xn−1,Wn). (1.62)

The process {Xn} is then a Markov chain and it may be viewed as a stochastic
realization of the dynamical system (1.61). The support of the (common)
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distribution of the sequence {Wn} is taken to be the control set O and we
call the sequence a disturbance sequence.

The stability properties of the deterministic system (1.61) are deeply
linked with the (random) stability properties of the Markov chain (1.62).
The model (1.61) is called controllable if for x ∈ A the set A+(x) has non–
empty interior. Observe that this property depends heavily on the choice of
the control set O. This controllability for the deterministic system implies
that the transition kernel of the random system (1.62) has a continuous
component. To explain further, we first introduce some concepts on Markov
Chains. Since a deeper treatment on Markov chains is out of the scope of
this Thesis, we refer to Nummelin (1984), Meyn and Tweedie (1993) and the
references therein.

Definition 12. Let {Xn} be a Markov chain defined on Rd for some d ≥
1. We call {Xn} a T–chain if there exists a discrete random variable N ,
independent of {Xn} such that for all x ∈ Rd and A ⊆ B(Rd)

P
[
XN ∈ A

∣∣X0 = x
]
≥ T (x,A)

where the function T ( · , A) satisfies

lim inf
y→x

T (y, A) ≥ T (x,A).

The function T ( · , · ) is then called a continous component of the sampled
chain XN .

One of the most important properties of T–chains is the link between the
property of petiteness and topollogical compactness. In a sense, the existence
of the continuous component T ( · , · ) indicates that the chain {Xn} has a
transition almost adapted to the topollogy of its state space.

Theorem 18 (Theorem 6.0.1 in Meyn and Tweedie (1993)). If {Xn} is a
T–chain, then every topologically compact set is petite. Conversely, if every
compact set is petit and the chain {Xn} is ψ–irreducible for some non–trivial
measure ψ, then it is a T–chain.

This irreducibility property can be linked to the topology of the space,
as is to be expected. Call a point reachable if the chain {Xn} can, with
possitive probability, reach every open neighborhood of it, and call the chain
{Xn} open set irreducible if every point in its state space is reachable.
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Proposition 8 (Proposition 6.2.1 in Meyn and Tweedie (1993)). If {Xn} is
a T–chain with one reachable point x∗, then the chain is ψ irreducible for the
measure ψ(A) = T (x∗, A). Thus, if the T–chain {Xn} is open set irreducible,
then it is ψ–irreducible.

Back to the link between Markov chains and dynamical systems, we have
the following results.

Proposition 9 (Proposition 7.1.2 in Meyn and Tweedie (1993)). If the deter-
ministic model (1.61) is controllable and if the distribution of the disturbance
sequence {Wn} has a continuous density with respect to Lebesgue measure,
then the process {Xn} defined by (1.62) is a T–chain.

The relationship between deterministic stability and random stability can
now be further developed.

Definition 13. A set E such that A+(E) ⊆ E is called invariant for the
dynamical system (1.61). A set is called minimal if it is (topologically) closed,
invariant, and does not contain any other closed, invariant proper subset.

It can be shown that an invariant M set has the property

M = A+(x), x ∈M

As expected, this minimal set has a close relationship with irreducibility.

Proposition 10. If M is a minimal set for (1.61) and the disturbance se-
quence has a continuous density with respect to Lebesgue measure, then the
process {Xn} defined by (1.62) restricted to M is an open set irreducible
(hence ψ–irreducible) T–chain. In particular, every compact K ⊆ M is pe-
tite.
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Chapter 2

The Constant Conditional
Correlations GARCH model

Multivariate GARCH (M-GARCH) modelling has been one of the most suc-
cessful and prominent tools to understand and predict the temporal depen-
dence among the second order moments of financial returns in the last two
decades. M-GARCH models arise naturally as an empirically more relevant
explanation of this feature than working with separate univariate GARCH
models for each asset. See Bauwens et al. (2006) for a survey of multivari-
ate GARCH models and Engle and Kroner (1995) for a presentation of the
theoretical formulation and estimation of such models within simultaneous
equations systems.

M-GARCH models are far from being the only description for stochastic
volatility studied to date. The reader is referred to Shephard (2005) to find
several other possible models for stochastic volatility and a comparison of
each of them with the M-GARCH model.

One of the shortfalls of M-GARCH models is that as the dimension grows
larger, the number of parameters increases dramatically. To avoid this issue,
Bollerslev introduced the M-GARCH with constant conditional correlations
(CCC-GARCH) in Bollerslev (1990) which reduces the number of parame-
ters involved in estimation. The reduction of parameters makes the CCC-
GARCH an attractive model for empirical applications.

The research on asymptotic theory for multivariate GARCH models has
been developed in two main areas, stationarity and estimation. By using
Markov chain theory in Boussama (1998), the author proved the existence
of a unique strictly stationary and ergodic solution for multivariate GARCH

65
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models. He also showed that if the noise sequence distribution has a strictly
positive density around 0, then the stationary solution is also geometrically
β–mixing.

Regarding estimation, the consistency and asymptotic normality of the
quasi–maximum likelihood estimator were proved in Comte and Lieberman
(2003) for square integrable BEKK–GARCH processes (see also Ling and
McAleer (2003)). Later Hafner and Preminger obtained the same for a mul-
tivariate factor–GARCH model under the assumption of finiteness of the
fourth moment of the noise distribution in Hafner and Preminger (2008).

For multivariate models with constant conditional correlations, the reg-
ular variation of the marginal distributions of the squared process is given
in Stărică (1999). The author characterizes the spectral measure for this
process and gives an empirical method to estimate it in the two–dimensional
space.

The asymptotic theory of the sample autocovariance function of M-GARCH
models has not been developed. For the one–dimensional case this asymp-
totics are realted to the regular variation of the finite–dimensional distribu-
tions of the GARCH(1, 1) process in Mikosch and Stărică (2000). Later,the
same relationship is established for the general GARCH(p, q) in Basrak et al.
(2002b).

The regular variation properties are used to study the maximum do-
main of attraction of the stationary distribution of the one–dimensional
GARCH(p, q) process in Davis and Mikosch (2006).

The results presented here generalize the ones given in Basrak et al.
(2002b) and Davis and Mikosch (2006) for the one–dimensional case to the
multidimensional CCC-GARCH model. Assuming that the generating noise
sequence {ηt}t∈Z satisfies:

1. For all t ∈ Z and i = 1, 2, . . . , d the random variable ηt(i) has a sym-
metric distribution with a density which is strictly positive on R.

2. The distribution of the noise sequence is such that for any given θ ≥ 1
and 1 ≤ j ≤ d there exists h > 1 for which

θh ≤ E
[
η2h
t,j

]
≤ ∞,

we establish the regular variation of the finite–dimensional distributions of
the CCC-GARCH(p, q). Using this regular variation property we give two al-
ternative expressions for the componentwise–maximum domain of attraction
of the stationary distribution of the process.
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We also show that the asymptotic behavior of the sample autocovariance
function of the CCC-GARCH(p,q),

γn,X(h) = n−1

n−h∑
t=1

XtX
T
t+h, h ≥ 0,

depends on the so–called index of regular variation of the finite–dimensional
distributions of the process. Denoting this index by α, three cases are possi-
ble: If α ∈ (0, 2) we have no consistency but convergence to an α/2–stable
random variable. If α > 2 we have consistency but a Central Limit Theorem
is only achieved for α > 4.

This Chapter is structured as follows:

In Section 2.1 we introduce the notation used throughout the paper. Sec-
tion 2.2 is devoted to the regular variation properties of the CCC-GARCH(p,q)
process. In this Section our main Theorem, which gives sufficient conditions
on the noise distribution for the process to have regularly varying finite–
dimensional distributions, is stated and proven, and some examples of pos-
sible noise distributions which satisfy these conditions are given. In Section
2.3 we provide two alternative expressions for the componentwise–maximum
domain of attraction of the stationary distribution of the CCC-GARCH. The
asymptotic properties of the sample autocovariance function are studied in
Section 2.4. Finally, in Section 2.5 the reader will find some of the technical
results used in the proof of our main theorem.

2.1 Notation

Let M(d × d) be the space of square d × d matrices with real coefficients,
and let M ∈M(d× d)

1. δ(M) denotes the vector in Rd whose entries are δ(M)(i) = M(i, i) for
i = 1, 2, . . . , d, that is, the main diagonal of M .

2. diag(M) denotes the diagonal matrix with the same diagonal as M ,
namely,

diag(M)(i, j) =

{
0, if i 6= j

M(i, i), for 1 ≤ i ≤ d.
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3. The symbol vec (M) stands for the column–stack operation of the ma-
trix M so that vec(M) is a vector in Rd2 whose entries are

vec(M)(i) =


M(1, i), for i = 1, 2, . . . , d,

M(2, i− d), for i = d+ 1, . . . , 2d,
...

...

M(d, i+ d− d2), for i = d2 − d+ 1, . . . , d2.

4. Given another matrix N of arbitrary dimensions, we define the Kro-
necker product of M and N by

M ⊗N =


M(1, 1)N M(1, 2)N · · · M(1, d)N
M(2, 1)N M(2, 2)N · · · M(2, d)N

...
...

. . .
...

M(d, 1)N M(d, 2)N · · · M(d, d)N

 .
Given another matrix P, the vec operation and the ⊗ product are re-
lated by

vec (MNP ) = (P T ⊗M)vec (N) . (2.1)

5. ‖M‖ denotes the matrix norm of M ,

‖M‖ = sup {‖Mx‖ : ‖x‖ = 1} ,

and take ‖x‖ the max–norm in Rd from now on.

6. Given a sequence of square d× d random matrices {At}t∈N defined on
the same measurable space, we define its top Lyapunov exponent as

γ = inf

{
1

t
E [ln(‖AtAt−1 . . . A1‖)] , t ∈ N

}
.

If E
[
ln+ ‖A1‖

]
<∞, then

γ = lim
t→∞

1

t
ln ‖AtAt−1 . . . A1‖ a.s.

as proved in Furstenberg and Kesten (1960) which provides, potentially,
a way to evaluate the index γ via simulation. On this subject, see
Gol′dshĕıd (1991).

7. Given two vectors x, y ∈ Rd we denote by 〈x, y〉 their inner product
〈x, y〉 =

∑d
i=1 xiyi.
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2.2 Main Result

The multivariate GARCH(p,q) model with constant conditional correlations
was introduced in Bollerslev (1990) and is defined as follows, see Bauwens
et al. (2006).

Definition 14. Given a sequence of i.i.d. random vectors {ηt}t∈Z with mean
vector 0 and covariance matrix R such that R(i, i) = 1 for all i = 1, 2, . . . , d,
we say the stochastic process {Xt}t∈Z is a CCC-GARCH(p,q) if it satisfies
the equations

δ(Ht) =C +

p∑
i=1

Aiδ(Xt−iX
T
t−i) +

q∑
j=1

Bjδ(Ht−j),

Dt =diag(Ht(1, 1)1/2, Ht(2, 2)1/2, . . . , Ht(d, d)1/2),

Ht =DtRDt,

Xt =Dtηt.

(2.2)

The vector C is assumed positive to avoid the trivial solution Xt = 0. The
matrices Ai, Bj are assumed to be nonnegative for i = 1, 2, . . . , p and j =
1, 2, . . . , q. Finally, the matrices Ap, Bq are supposed to be non–zero to avoid
ambiguity about the order of the process.

Remark 8. The matrices {Ht}t∈Z are non–negative–definite because the
entries of Dt are non–negative and R is non–negative–definite. They are
positive–definite if and only if all the conditional variances are positive and
the matrix R is positive–definite. Furthermore, Ht is the covariance matrix
of Xt conditional on Ft = σ(Xs, s < t) as the following lines show.

E
[
XtX

T
t

∣∣Ft] =E
[
H

1/2
t ZtZ

t
t(H

1/2
t )T

∣∣Ft]
=H

1/2
t E

[
ZtZ

T
t

]
(H

1/2
t )T

=H
1/2
t I(H

1/2
t )T

=Ht

In Boussama (1998), it is shown that the CCC-GARCH process admits a
Markovian state space representation which solves the stochastic recurrence
equation (SRE)

Yt = A(ηt)Yt−1 +G, (2.3)
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where

Yt =(δ(Ht+1)
T , . . . , δ(Ht−q+2)

T , δ(XtX
T
t )T , . . . , δ(Xt−p+2X

T
t−p+2)

T )T

G =(CT , 0, . . . , 0)T

A(ηt) =



A1diag(ηtη
T
t ) +B1 B2 · · · Bq−1 Bq A2 A3 · · · Ap

I 0 · · · 0 0 0 0 · · · 0
0 I · · · 0 0 0 0 · · · 0
...

...
. . .

...
...

...
...

. . .
...

0 0 · · · I 0 0 0 · · · 0
diag(ηtη

T
t ) 0 · · · 0 0 0 0 · · · 0

0 0 · · · 0 0 I 0 · · · 0
...

...
. . .

...
...

...
...

. . .
...

0 0 · · · 0 0 0 · · · I 0


(2.4)

Remark 9. It is shown in Boussama (1998) that a unique causal stationary
solution {Yt} to (2.3) exists if and only if the top Lyapunov exponent of the
sequence of matrices {A(ηt)} satisfies

γ(A(ηt)) < 0

Furthermore if the noise distribution has a density which is strictly positive
on Rd the stationary solution is geometrically β–mixing.

Remark 10. The matrices {A(ηt)}t∈Z used in representation (2.3) are sim-
ilar to those used in Basrak et al. (2002b) to embed the one–dimensional
GARCH process into a SRE. In the multivariate case the matrices are de-
fined blockwise and thus calculations involving them need to be done with
appropriate matrix techniques.

Using this representation the regular variation of the marginal distribu-
tions of the process {Xt} is shown by Kesten’s Theorem, see Theorem 2.4
in Basrak et al. (2002b), and the regular variation of the finite dimensional
distributions is provided for noise distributions with symmetric marginals as
a consequence. Three hypotheses are made for this purpose:

H0: The parameters Ai, Bj have no zero rows.
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H1: The distribution F of the noise sequence admits a density f which is
strictly positive on Rd.

H2: For any given θ ≥ 1 there exists h > 1 for which

θh ≤ E
[
η2h
t,j

]
≤ ∞ for 1 ≤ j ≤ n.

Hypothesis H0 is a natural one. It states that every vector Xt−i, i = 1, . . . , p
and every matrix Ht−j j = 1, . . . , q is involved in the definition of the matrix
Ht. Hypotheses H1 and H2 imply that the noise sequence is sufficiently
spread–out. It is worth mentioning that hypothesis H2 is, as will be shown
in section 2.2.1, rather mild.

Theorem 19. Let {Xt}t∈Z be a stationary CCC-GARCH(p,q) process with
parameters {Ai, Bj, i ≤ p, j ≤ q} and {Yt}t∈Z its SRE representation (2.3).
Under H0, H1 and H2, there exists κ1 > 0 and w(x) > 0 such that

∀x ∈ Rd(p+q−1) \ {0}, lim
u→∞

uκ1P [〈x, Y1〉 > u] = w(x).

Proof. Let m be an arbitrary natural number and consider the sequence
{Ytm}t∈Z which, as shown in Basrak et al. (2002b), satisfies the stochastic
recurrence equation

Ytm = Â
(m)
t Y(t−1)m + B̂

(m)
t ,

for

Â
(m)
t =AtmAtm−1 . . . Atm−m+1,

B̂
(m)
t =

m−1∑
k=1

AtmAtm−1 . . . Atm−k+1G.

It is for this sequence that we will verify Kesten’s hypothesis by choosing a
suitable value for m. For ease of presentation, the required hypothesis are
restated one by one with its respective proof.

1. E [ln ‖At‖] < ∞ and E [ln ‖Bt‖] < ∞ and the top Lyapunov exponent
of the sequence of random matrices {At} is strictly negative.
This was proved in Boussama (1998).
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2. Both E
[
ln(
∥∥∥Â(m)

t

∥∥∥)
]

and E
[
ln(
∥∥∥B̂(m)

t

∥∥∥)
]

are finite, and there exists

ε > 0 such that E [‖A‖ε] < 1.

In Basrak et al. (2002b) these properties are shown to be satisfied for
m ≥M0 with M0 a given natural number in the one–dimensional case. The
argument rests on the negativity of the Lyapunov exponent associated to the
SRE representation of the process. Remark 9 tells us that stationarity is
equivalent to the fact that the top Lyapunov exponent of the sequence A(ηt)
in (2.3) is strictly negative. Therefore, we can follow exactly the same lines
as in the one–dimensional case to prove Kesten’s hypotheses 1 and 2.

3. The matrix Â
(m)
t has no zero rows a.s. (for any fixed m ∈ N)

The matrices Atm and Atm−1 have no zero rows a.s. because of hypotheses
H0 and H1. It follows that their product AtmAtm−1 shares this property as
Lemma 4 shows. Using Lemma 4 recursively we conclude that the matrix
Â

(m)
t has no zero rows a.s. for any fixed m ∈ N.

4. The set {ln(‖an . . . a1‖) : n ≥ 1, an . . . a1 > 0, ai ∈ supp(P)} generates

a dense group in R. P stands for the distribution of Â
(m)
1 .

Observe that the support of the random variables {η2
t (i)} is the interval

(0,∞). The entries of the matrix Â
(m)
1 are multilinear forms of the random

variables
{η2

s(i), i = 1, . . . , d, s = tm−m+ 1, . . . , tm},
as will be shown below. Since multilinear forms are continuous functions,
the support of Â

(m)
1 is connected. The same can be said about the support of∥∥∥Â(m)

1

∥∥∥. Therefore, the support of ln
(∥∥∥Â(m)

1

∥∥∥) contains an interval, which

yields the desired property.
Let us now argue that the entries of the matrix Â

(m)
1 have the aforementioned

form.
We denote the blocks by square brackets, so that the block (i, j) of the ma-
trix Atm is denoted by Atm[i, j].
Begin observing that the blocks Atm[1, 1] and Atm[q + 1, 1] are already mul-
tilinear forms of the random variables

{η2
tm(i), i = 1, 2 . . . , d}.
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Block–matrix multiplication rules show that all the blocks

AtmAtm−1[1, j], and AtmAtm−1[q + 1, j], j = 1, 2 . . . , d

are multilinear forms of the random variables

{η2
tm−j(i), i = 1, 2 . . . , d, j = 1, 2}.

The particular arrangement of the identity blocks in the matrix Atm, see
(2.4), implies the following block equalities

AtmAtm−1[i, j] = Atm−1[i− 1, j], for i 6= 1, q + 1 (2.5)

which show two things. First, that the blocks

AtmAtm−1[2, 1] and AtmAtm−1[q + 2, 1]

are multilinear forms of the random variables

{η2
tm−1(i), i = 1, 2 . . . , d}.

Second, and as a consequence, that the blocks

AtmAtm−1Atm−2[i, j] and AtmAtm−1Atm−2[q + i, j]

are in the desired form for i = 1, 2 and j = 1, 2, . . . , d
We can now see that the entries of the product AtmAtm−1 . . . Atm−k are

multilinear forms of the random variables

{η2
tm−l(i), l = 1, 2, . . . , k; i = 1, 2 . . . , d}

in all the blocks (i, j) and (q + i, j) for i = 1, . . . , k − 1 and j = 1, 2 . . . , d.
This suffices to prove Assertion A.

5. There exists a κ0 > 0 such that

E

[(
min
i

∑
j

Aij

)κ0
]
≥ dκ0/2 and E [‖A1‖κ0 ln(‖A1‖)] <∞.

Take m = max(p+ 1, q+ 1,M0). For this particular choice of m all of the
previously proved hypotheses hold. For ease of notation, let

Ŷt := Ŷ
(m)
t , Ât = Â

(m)
t , B̂t = B̂

(m)
t .
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The block
Ât[1, 1] = AtmAtm−1 · · ·A(t−1)m[1, 1]

contains the term

(A1diag(ηtmη
T
tm) +B1) · · · (A1diag(η(t−1)mη

T
(t−1)m) +B1)

added to others, which implies it also contains the term

Bm−1
1 A1diag(η(t−1)mη

T
(t−1)m).

The block equalities (2.5) show that the block Ât[k, 1] contains the term

Bm−k
1 A1diag(ηtm−mη

T
tm−m)

added to others for k = 1, 2, . . . , (q − 1).
Observe that

Bm−k
1 A1diag(η(t−1)mη

T
(t−1)m)(i, 1) = (Bm−k

1 A1)(i, 1)η2
(t−1)m,1

which implies∑
j

Ât(i, j) ≥ (Bm−k
1 A1)(i, 1)η2

(t−1)m,1 i = 1, 2, . . . , dq − 1.

Let us now analyze the blocks (k, 1) with k ≥ q + 1. The block (q + 1, 1)
contains the term

diag(ηtmη
T
tm)(A1diag(ηtm−1ηtm−1)

T +B1) · · · (A1diag(η(t−1)mη
T
(t−1)m) +B1)

added to others. Again, because of the equalities (2.5), we see that the block
Ât[q + k, 1] contains the term

diag(ηtm−kη
T
tm−k)B

m−k−1
1 .

Since

(diag(ηtm−kη
T
tm−k)B

m−k−1
1 )(i, 1) = η2

tm−k,iB
m−k−1
1 (i, 1),

then∑
j

Ât(i, j) ≥ B
m−k(i)−1
1 (i, 1)η2

tm−k(i),i i = dq, dq + 1, . . . , dq + dp− 1
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where k(i) =
[
i
qd

]
. Therefore upon using hypothesis H2 for the random

variables {ηt,i} on each of the two parts of the matrix, we conclude that
there exists h > 1 such that

E

(min
i

∑
j

Ât(i, j)

)h
 ≥ dh/2.

For this value of h > 1, by the moment conditions on the variables {ηt}
and the independence of this sequence it can be seen that

E
[∥∥∥Â1

∥∥∥h] ≤ E

(∑
i,j

Â(i, j)

)h


< E

[∑
i,j

Â(i, j)h

]
<∞.

Finally, as in Basrak et al. (2002b) for the one–dimensional case, it follows
that

E
[∥∥∥Â1

∥∥∥h ln
(∥∥∥Â1

∥∥∥)] <∞.
Having proved all of Kesten’s hypotheses we know there exists κ1 > 0

and w(x) > 0 such that

∀x ∈ R(p+q−1)d \ {0}, lim
u→∞

uκ1P [〈x, Y1〉 > u] = w(x),

proving the Theorem.

Corollary 6. Let {Xt} be a stationary CCC–GARCH(p,q) process satisfying
the hypotheses of Theorem 19 and let κ1 be the regular variation index of
〈x, Y1〉.

1. If κ1 is not an even integer, then Xt is regularly varying with index
2κ1.

2. If, furthermore, for all t the vector ηt has symmetric marginal distribu-
tions, then the finite–dimensional distributions of the process {Xt} are
regularly varying with index 2κ1.
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Proof. Using Theorem 1.1 in Basrak et al. (2002a) and the sequence {Yt}
being stationary we conclude that its marginal distributions are multivariate
regularly varying if the number κ1 is not an even integer. To show that X1

is regularly varying write

X1 = diag(η1)(σ1(1), . . . , σ1(d))T .

Observe that the vector (σ1(1), . . . , σ1(d))T is regularly varying which fol-
lows because Yt is regularly varying and σ1(i) is a.s. non–negative. Apply
Proposition 5.1 in Basrak et al. (2002b) to finish the proof of 1.

To show that the finite–dimensional distributions of {Xt} are multivariate
regularly varying if the distribution F of the noise sequence has symmetric
marginal distributions, begin by observing that by Corollary 2.7 in Basrak
et al. (2002b) the finite dimensional distributions of the process {Yt} are
regularly varying with index κ1, which implies that for any given k ∈ N the
vector

(δ(H1), δ(X1X
T
1 ), . . . , δ(Hk), δ(XkX

T
k ))T

is regularly varying. Since for all i = 1, 2, . . . , d and t = 1, 2, . . . , k we have
that σt(i) ≥ 0 and Xt(i) is symmetric, it follows that the vector

(σ1(1), . . . , σ1(d), X1(1), . . . , X1(d), . . . , σk(1), . . . , σk(d), Xk(1), . . . Xk(d))T

is also regularly varying, with index 2κ1 by Lemma 5 which completes the
proof.

Remark 11. Hypothesis H2 can be changed for the following one.

H2’: There exists h0 > 2 such that E
[
| ηt |h

]
<∞ for h < h0 and

E
[
| ηt |h0

]
=∞.

This moment assumption implies that

E
[
| ηt |h

]
−−−→
h→h0

∞

from which hypothesis H2 follows. It is some times more convenient to work
with H2′ than with H2.
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2.2.1 Examples

In this section we provide examples of distribution functions for the noise
sequence {ηt}t∈Z satisfying the moment conditions H2 or H2′. To do this, we
consider different i.i.d. sequences {Zt}t∈Z with mean vector 0 and identity
covariance matrix and a fixed correlation matrix R with R(i, i) = 1 for
i = 1, 2, . . . , d. The noise sequence {ηt}t∈Z is then defined by the relation

ηt = LZt. (2.6)

The matrix L is the unique Cholesky factor of R which exists because R is
non–negative definite.

Regarding the model’s parameters, we assume that hypothesis H0 is sat-
isfied and also that

H3: The spectral radius of
∑

iAi +
∑

j Bj is strictly less than one.

Assumption H3 implies that the top Lyapunov exponent of the sequence
{A(ηt)}t∈Z is strictly negative so that a unique stationary CCC-GARCH
process exists. See Remark 9. The reader is referred to Boussama (1998) for
the proof of this implication.

The main purpose of this section is to show that the noise sequence {ηt}t∈Z
needs not be heavy–tailed for the generated CCC-GARCH process to be
regularly varying as it could seem at first glance.

It is worth mentioning that the conditions of Theorem 19 also apply to
the one–dimensional case, with obvious modifications, so that the examples
given here provide regularly varying one–dimensional GARCH processes.

Example 2 Heavy–tailed noise sequence
Let {Zt}t∈Z be i.i.d. random vectors with independent entries and with
Pareto–like tails, i.e.,

P [Zt(i) > x] ∼ Kx−α, α > 0, x→∞ (2.7)

and with a positive density on R. Define {ηt}t∈Z as in (2.6). Then, for each
i = 1, 2, . . . , d the random variable ηt(i) is regularly varying with index α > 0
(because it is a linear combination of independent regularly varying random
variables). Consequently

E
[
| ηt(i) |h

]{<∞, h < α,

=∞, h > α.
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By Remark 11 we conclude that the CCC-GARCH(p,q) process generated
with this noise sequence has regularly varying marginal distributions.

If the noise distribution has symmetric marginals, then the process has
regularly varying finite dimensional distributions as well. This is the case if
we let Zt(i) have a Student’s t distribution with ϑ degrees of freedom with
density given by

f(x) =
Γ((ϑ+ 1)/2)√

ϑπ

(
1 +

t2

ν

)−(ν+1)/2

which, by Karamata’s Theorem, satisfies (2.7) for α = ϑ.

This example is the easiest one to construct, but it may mislead the reader
into thinking that the heavy–tailedness of the noise sequence is somehow nec-
essary for the regular variation of the CCC-GARCH process. The following
examples show that this is not the case.

Example 3 Medium–tailed noise sequence
Consider a family of random vectors {ηt}t∈N such that for all i = 1, 2 . . . d we
have ηt,i ∼ logN(0, 1) and such that its covariance matrix is R. Then, since

E
[
η2n
t,i

]
= exp{2n2}

it is easy to prove that for any given c > 1 there exist n ∈ N such that

E
[
η2n
t,i

]
≥ cn.

Indeed, it suffices to take n ≥ 1
2

ln(c). By Theorem 19 the CCC-GARCH(p,q)
process generated by this sequence will be regularly varying.

Remark 12. The support of the logNormal density doesn’t contain a neigh-
borhood of 0. Therefore, using the logNormal distribution for the random
variables Zt we generate a stationary CCC-GARCH process which may not
be β–mixing. The process is, however, multivariate regularly varying. To
understand why, observe that the aforementioned density assumption is only
used in the proof of hypothesis 3 of Kesten’s Theorem indirectly by showing
it implies that the random variables {η2

t (i)} have the interval (0,∞) as sup-
port for its density. For the logNormal distribution this property is also true
so that the marginal distributions of the CCC-GARCH process generated are
regularly varying. For the finite–dimensional distributions observe that since
the random variables ηt have strictly positive entries, so does the random
vector Xt. Thus, by the same argument given in the proof of Theorem 19 the
finite dimensional distributions of {Xt} are regularly varying.
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Example 4 Gaussian noise
In time series applications Gaussian noise is the most common noise. It is
therefore desirable to include this distribution in the list of the ones generat-
ing regularly varying CCC-GARCH processes. Consider a sequence {Zt} of
i.i.d. standard normal random vectors and let {ηt} be defined as in equation
(2.6). Observe that each component of ηt is Gaussian with mean 0 and fixed
variance σi, i = 1, 2, . . . d.

Therefore, for any given component we have

E
[
η2n
t,i

]
=
σ2n
i (2n)!

2nn!
.

From which, given that c ≥ 1, it is enough to take

n ≥ 2c− 1

to get
E
[
η2n
t,i

]
≥ cn.

Therefore, the Gaussian generated CCC-GARCH has regularly varying finite–
dimensional distributions.

2.3 Extreme Values

In this section we study the extreme values of the CCC-GARCH process.
The main focus is on the asymptotic behavior of the norm–maximum and
the componentwise–maximum of the process, which are defined as follows.

Definition 15. The norm–maximum of the CCC-GARCH process {Xt}t∈Z
is defined by

M‖X‖
n = max{‖Xt‖ , t ≤ n}

and its componentwise–maximum Mn by the equations

Mn(i) = max{Xt(i), t ≤ n}, for i = 1, 2 . . . , d

Mn = (Mn(1),Mn(2), . . . ,Mn(d)).

The interest lies in the description of all distribution functions such that

P
[
a−1
n M‖X‖

n ≤ x
]
→ G(x), (2.8)

P
[(
a−1
n Mn(1) ≤ x(1), . . . , a−1

n Mn(d) ≤ x(d)
)]
→ H(x(1), . . . , x(d)), (2.9)
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where 0 < an →∞ is the sequence of regular variation of the CCC-GARCH
process. Of course, G in relation (2.8) is a real valued distribution function
while H in relation (2.9) is Rd–valued. To simplify notation, the limit (2.9)
will be written

P
[
a−1
n Mn ≤ x

]
→ H(x), for x ∈ Rd.

It is known from classical extreme value theory for stationary sequences
that the convergence in distribution of the norm–maximum and the component–

wise–maximum is related to that of the point process

Nn( · ) =
n∑
t=1

εa−1
n Xt

( · ) (2.10)

where εt( · ) is the Dirac measure at t. For a review of classical multivariate
extreme value theory see Resnick (1987), Embrechts et al. (1997), Hsing
(1989) and Hüsler (1990). It is also known that for a regularly varying
sequence with index α > 0 and a mixing property (see Leadbetter et al.
(1983)) the coefficients {an} satisfy

an ∼ n1/α (2.11)

and it is therefore customary to take an = n1/α in this case. Since the CCC-
GARCH process is stationary and β–mixing, relation (2.11) can be assumed
to hold.

The next proposition gives the distributional limit for the point process
(2.10) and is the basis for studying the extremes of the CCC-GARCH process.

Proposition 11. Let {Xt}t∈Z be a CCC-GARCH(p,q) process. Assume all
the conditions in part 2 of Corollary 6 are satisfied. Then there exists a point
process N such that Nn → N in distribution and N is identical in law to the
point process

∞∑
i=1

∞∑
j=1

εPiQi,j
( · )

where
∑∞

i=1 εPi
( · ) is a Poisson process with intensity measure

ν(dy) = θαy−α−111 (y > 0) dy

for some 0 < θ < 1 and independent of the sequence of i.i.d. point processes∑∞
j=1 εQi,j

( · ), i ≥ 1.
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Proof. By Theorem 19 we know that the finite–dimensional distributions of
the process {Xt} are regularly varying. By the β–mixing property we also
know that there exists a sequence of positive integers rn such that rn →
∞, kn = [n/rn]→∞ as n→∞ and

E

[
exp

{
−

n∑
t=1

f(Xta
−1
n )

}]
−

(
E

[
exp

{
−

rn∑
t=1

f(Xta
−1
n )

}])kn

→ 0,

as n → ∞ for all simple, non–negative, measurable function f . See Basrak
et al. (2002b).
Finally, it can be proved as is done in Basrak et al. (2002b) for the one
dimensional case, that for all y > 0

lim
k→∞

lim sup
n→∞

P
[

max
k≤| t |≤rn

‖Xt‖ > any
∣∣ ‖X0‖ > any

]
= 0.

These conditions enable us to apply Theorem 2.8 in Davis and Mikosch (1998)
to finish the proof.

We now deal with the extreme values of the CCC-GARCH process.

Theorem 20. Let {Xt}t∈Z be a stationary CCC-GARCH(p,q) process sat-
isfying the hypotheses of part 2 of Corollary 6 and denote by α its index of
regular variation.

1. The norm–maximum of {Xt}t∈Z satisfies

P
[
n−1/αM‖Xt‖

n ≤ x
]
→ exp{−θx−α}11 (x > 0) ,

where θ is the extremal index of ‖Xt‖.

2. The componentwise–maximum of the sequence {Xt}t∈Z satisfies

P
[
n−1/αMn ≤ x

]
→ exp{−λ ({µ : µ(Bx) > 0})},

where λ is the canonical measure of the point process N and

Bx = (−∞, x]c for any fixed x ∈ Rd
+.
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Proof. The density ν(dy) in the description of the point process N given
in Proposition 11 is the asymptotic density of the extremes of the sequence
{‖Xt‖}, see Davis and Mikosch (2006) or Davis and Mikosch (1998). Part 1
is thus proved.
To prove part 2, first observe that

P
[
n−1/αMn ≤ x

]
= P [Nn(Bx) = 0] . (2.12)

Since the setBx is relatively compact, Proposition 11 gives us the convergence

P [Nn(Bx) = 0] −−−→
n→∞

P [N(Bx) = 0] . (2.13)

By dominated convergence, we have

P [N(Bx) = 0] = E
[

lim
t→∞

e−N(t11(Bx))
]

= lim
t→∞

E
[
e−N(t11(Bx))

]
.

Since λ is the canonical measure of N , see Kallenberg (1969), this expectation
can be calculated as

E
[
e−N(t11(Bx))

]
= exp

{
−
∫

(1− e−µ(t11(Bx)))λ(dµ)

}
.

Because of this equality and, again, dominated convergence we now have

P [N(Bx) = 0] = lim
t→∞

exp

{
−
∫

(1− e−µ(t11(Bx)))λ(dµ)

}
= exp

{
−
∫

(1− 11 (µ(Bx) = 0))λ(dµ)

}
,

which shows that

P [N(Bx) = 0] = exp

{
−
∫

11 (µ(Bx) > 0)λ(dµ)

}
. (2.14)

Putting equations (2.12), (2.13) and (2.14) together, it is seen that

P
[
n−1/αMn ≤ x

]
−−−→
n→∞

exp{−λ ({µ : µ(Bx) > 0})}.

Remark 13. Three comments on the last result:
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1. Despite the fact that the measure λ enables us to express the limit
distribution of the normalized componentwise–maximum of the CCC-
GARCH process {Xt}t∈Z, it is of no practical use for probability compu-
tations. However, by showing the existence of the limiting distribution
it suggests that we can use non–parametrical statistical methods or re-
sampling techniques to estimate it.

2. The number κ1 = α/2 is only known to solve equation

0 = lim
n→∞

1

n
ln(E [‖An . . . A1‖κ1 ]),

which cannot be solved explicitly.

3. There’s no closed known expression for calculating the extremal index
θ of the sequence ‖Xt‖. We only know that θ < 1, which means the
sequence ‖Xt‖ has clusters with mean size 1/θ > 1.

To obtain an alternative expression for the domain of attraction of the
componentwise –maximum for the CCC-GARCH process, we follow section
6 in Perfekt (1997) to obtain:

Proposition 12. Let {Yt} be the stationary solution to the CCC-GARCH(p,q)
stochastic recurrence equation representation (2.3). Let ν be such that

nP
[
a−1
n Y1 ∈ ·

] v−→ ν( · ).

Assume that ν satisfies

ci = ν ({y : yi > 1}) > 0, for all i = 1, 2, . . . , d2(p+ q − 1).

Then, for x ∈ (0,∞)d we have

P
[
a−1
n Mn ≤ x

] n→∞−−−→ exp

{
−
∫

[0,x]c
P

[
j∏
i=1

Aiy ≤ x; j ≥ 1

]
ν(dy)

}
.

Remark 14. Observe that due to the definition of the multivariate extremal
index, see Nandagopalan (1994), and the result in Proposition 12, the mul-
tivariate extremal index of the stationary process {Yt} may now be written
as

θ(x) =

∫
[0,x]c

P
[∏j

i=1Aiy ≤ x; j ≥ 1
]
ν(dy)

ν([0, x]c)
.
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This expression enables us to write the marginal extremal index for the ith
component of Yt as

θi =

∫
{y : yi>1} P

[∏j
i=1Aiy ≤ x; j ≥ 1

]
ν(dy)

ci
.

This is the only closed form for this index known to the writers, and gener-
alizes the one given in Mikosch and Stărică (2000) for the extremal index of
the variances of the one–dimensional GARCH(1,1) process.

2.4 Autocovariance function

In this section we study the sample autocovariance function of the CCC-
GARCH process defined as

γn,X(h) = n−1

n−h∑
t=1

XtX
T
t+h, h ≥ 0.

One expects this sample function to converge a.s. to

γX(h) = E
[
X0X

T
h

]
,

which is the autocovariance function of the process, by the Law of Large
Numbers. Furthermore, having this convergence the Central Limit Theorem
is also expected to apply, that is, a convergence of γn,X(h) − γX(h) to a
Normal distribution at rate n1/2 is expected.

For a regularly varying CCC-GARCH process, these limit relations need
not be true. The reason is that the moments of the stationary distribution
of the CCC-GARCH process depend on the index of regular variation. The
relationship between the index of regular variation and the moments of a
random variable is well known and can be found in Resnick (1987), Embrechts
et al. (1997) or Bingham et al. (1989) among others.

The following result is the generalization of Theorem 3.6 in Basrak et al.
(2002b) for the autocovariance function of the CCC-GARCH process.

Theorem 21. Let {Xt} be a stationary CCC-GARCH(p,q) process satisfy-
ing all the conditions in Theorem 19 and assume that the noise vectors ηt
have symmetric marginal distributions. Let α denote the regular variation
exponent of {Xt}, then
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1. If α ∈ (0, 2), then

(n1−2/αvec (γn,X(h))h=0,1,...,m

d−→ (Vh)h=0,1,...,m (2.15)

where (V0, V1, . . . , Vm) is jointly α/2 stable in Rdm.

2. If α ∈ (2, 4), then

(n1−2/α(vec (γn,X(h)− γX(h))h=0,1,...,m

d−→ (Vh)h=0,1,...,m (2.16)

were (V0, V1, . . . , Vm) is jointly α/2 stable in Rdm.

3. If α > 4 then equation (2.16) holds with normalization n1/2, where V
is multivariate normal with mean zero.

Proof. 1. If α ∈ (0, 2) the result is immediate from Proposition 11 and
Theorem 3.5 in Davis and Mikosch (1998).

2. For α ∈ (2, 4) it is necessary to show that the following condition holds.

lim
ε→0

lim sup
n→∞

var

(
n−2/α

n−h∑
t=1

Xt,iXt+h,j11
(
|Xt,iXt+h,j | ≤ n2/αε

))
= 0

for all i, j = 1, 2, . . . , d.

To this end, choose h ≥ 1. First, by symmetry of the noises {ηt} the
random variables {Xt,iXt+h,j11

(∣∣Xt,iXt+h,j ≤ n2/αε
∣∣) are uncorrelated.

This, together with the fact thatX0,iXh,j is regularly varying with index
α/2 implies

var

(
n−h∑
t=1

Xt,iXt+h,j11
(∣∣Xt,iXt+h,j ≤ n2/αε

∣∣))
= (n− h)n−4/αE

[
X2

0,iX
2
h,j11

(∣∣Xt,iXt+h,j ≤ n2/αε
∣∣)]

∼ n1−4/α(n2/αε)2(4− α)P
[∣∣X0,iXh,j > n2/αε

∣∣]
→ (4− α)ε2−α/2, as n→∞
→ 0, as ε→ 0.

where the asymptotic equivalence follows from Karamata’s Theorem,
see Bingham et al. (1989).
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3. For α ∈ (4,∞) we see that the stationary time series

{X2
t,i, Xt,iXt+1,j, . . . Xt,iXt+m,j, i, j = 1, 2, . . . , d}t

has a finite 2 + θ moment (for some θ > 0) and is geometrically β–
mixing, and thus geometrically α–mixing. It follows from standard
limit Theorems for mixing sequences (see Doukhan (1994)) that

(n1/2(vec (γn,X(h)− γX(h)))h=0,1,...,m
d→ (Vh)h=0,...,m

where V has a multivariate normal distribution with mean zero.

2.5 Technical Results

In this section we state some of the technical results used to prove Theorem
19 and present their proof when needed.

Lemma 4. If two non–negative matrices have no zero rows then their product
(when defined) has no zero rows either.

Proof. Let p, q, r be fixed natural numbers. Consider the matrices A and B
of respective dimensions p×q and q×r so that the matrix AB is well defined
and of dimension p× r. Assume that A and B have no zero rows.

To show that AB has no zero rows, first consider a fixed i ∈ {1, 2, . . . , p}.
Since A has no zero rows it follows that

∃ j ∈ {1, 2, . . . , q} such that A(i, j) > 0

For this particular j, and since B has no zero rows,

∃ k ∈ {1, 2, . . . , r} such that B(j, k) > 0

Therefore,

AB(i, k) =

q∑
l=1

A(i, l)B(l, k) ≥ A(i, j)B(j, k) > 0

which shows that row i of AB is not a zero row. This being true for all
i = 1, 2, . . . , p, the matrix AB has no zero rows.
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2.5.1 Multivariate regular variation

The notion of multivariate regular variation in Rd has been treated by many
authors. See for example Resnick (1987), Embrechts et al. (1997), Bingham
et al. (1989), Linskog (2004), Basrak et al. (2002a) and Jessen and Mikosch
(2006). We only give some results used earlier and, if necessary, their proof.

Lemma 5. Let {Xi}ki=1 and {Yi}ki=1 be d–dimensional random vectors such
that for all i, Xi is non–negative a.s. and Yi has symmetric marginal distri-
butions. If the vector

Z2 :=
(
δ(X1X

T
1 )T , δ(Y1Y

T
1 )T , . . . , δ(XkX

T
k )T , δ(YkY

T
k )T

)T
is regularly varying with index 2α then the vector

Z :=
(
XT

1 , Y
T
1 , . . . , X

T
k , Y

T
k

)T
is regularly varying with index α.

Proof. Denote by S+
dk−1 and by S the sets

S+
dk−1 =

{
x ∈ <dk+ : ‖x‖ = 1

}
S =

{
x ∈

k⊗
i=1

(
Rd ∩ supp(Xi) ∩ supp(Yi)

)
: ‖x‖ = 1

}
We need to show that there exists a Radon measure ν such that for any
Borel–measurable subset S of S we have

lim
u→∞

P [‖Z‖ > ut, Z/ ‖Z‖ ∈ S]

P [‖Z‖ > u]
= ν(S) (2.17)

Consider first S ⊆ S with non–negative elements and the set of dk–dimensional
vectors

I = {(1,±1, 1,±1, . . . , 1,±1)} .
For any given β ∈ I, let

S(β) = {(x1β1, . . . , xdkβdk) : x ∈ S} .

By symmetry of the random vectors {Yi}ki=1 we have that

P [‖Z‖ > ut, Z/ ‖Z‖ ∈ S] = P [‖Z‖ > ut, Z/ ‖Z‖ ∈ S(β)] (2.18)
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for all β ∈ I. This entails that

2dkP [‖Z‖ > ut, Z/ ‖Z‖ ∈ S]

P [‖Z‖ > u]
=

P [‖Z2‖ > u2t2, Z2/ ‖Z2‖ ∈ S2]

P [‖Z2‖ > u2]
(2.19)

Letting u → ∞ we find that equation (2.17) holds for S with non–negative
elements. The measure ν is determined by the Radon measure of the squares,
µ by the relation

ν(S) = 21−dkµ(S2)

It follows from (2.18) that if S ⊆ S+
dk−1(β) for some β ∈ I then (2.17) also

holds. To finish the proof, observe that for arbitrary S ⊆ S we may write

S =
⋃
β∈I

(S ∩ S+
dk−1(β))

and use the previous argument. That the index of regular variation of Z is
α is a consequence of equation (2.19).



Chapter 3

The Cholesky Factor GARCH

3.1 Introduction

Multivariate GARCH models are a way to describe the temporal dependence
among the second order moments of financial returns capturing the nowadays
widely accepted feature that financial volatilities move together over time
across assets and markets. There are several ways to define multivariate
GARCH models. We refer to Bauwens et al. (2006) for an excellent survey
on the subject.

One approach to multivariate GARCH modelling is providing an autore-
gressive expression for the conditional autocovariance matrices {Ht} of an
Rd–valued time series {Xt}. Observe that since Ht is intended to be a co-
variance matrix it must be nonnegative–definite. This is one of the difficulties
of this approach.

Sufficient conditions have been given for specific processes guaranteeing
the nonnegative–definiteness of Ht. For the VEC model these conditions can
be found in Section 6.1 of Gouriéroux (1997). The BEKK model is studied
in Engle and Kroner (1995). See also Stelzer for the relationships between
these two models.

An alternative approach to guarantee that Ht is nonnegative–definite is to
consider Ht = LtL

T
t where Lt is lower triangular and known as the Cholesky

factor of Ht. In this case a GARCH type specification for the matrices
Lt is given. Observe that the parameters involved in defining Lt need no
restrictions for Ht to be nonnegative–definite. A GARCH model based on
the Cholesky factor Lt can be found in Gallant and Tauchen, Kawakatsu

89
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(2003) and Tsay (2005).
We will focus on the parametrization for the Cholesky factor Lt provided

in Kawakatsu (2003) and defined by the equations

vech(Lt) =C +

p∑
i=1

Aivech(Lt−i) +

q∑
j=1

BjXt−j,

Ht =LtL
T
t ,

Xt =LtZt.

Where C,Ai, Bj are parameters and {Zt} is an i.i.d. sequence of random
vectors. In specifying the model, the author restricts the parameters to
identify Lt uniquely. He argues that the way to guarantee that Lt is uniquely
defined is making its diagonal elements strictly positive and thus imposes the
following identifiability condition:
Let r denote the rows in vech(Lt) corresponding to the diagonal elements in
Lt. Then the Cholesky factor vech model is identified if

1. rows r of Ai are positive in columns r and zero elsewhere,

2. rows r of Bj are all zeros.

These conditions for the parameters imply that the diagonal elements
of Lt do not depend on the values of the innovation vectors Xt−j. Since
Ht = LtL

T
t the diagonal elements of Ht do depend on the values of Xt−j

except for the entry Ht(1, 1), so that the identifiability requirements don’t
appear to be very restrictive. However, as is shown in Remarks 18 and 22
bellow, these conditions have important consequences.

We consider the Cholesky factor GARCH model restricting the parame-
ters to have nonzero rows only and show that it can be uniquely defined in
distribution by embedding it into a Stochastic Recurrence Equation of the
type

Yt = A(Zt)Yt−1 +G, (3.1)

Necessary and sufficient conditions for the existence and uniqueness of a
stationary causal solution to the Cholesky Factor GARCH equations are
derived from this representation using the well known results of Brandt (1986)
and Bougerol and Picard (1992).

We then focus on this uniquely defined process and establish its regu-
lar variation. To study the tails of the finite dimensional distributions of
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GARCH processes it is customary to use the representation (3.1) and Theo-
rems 3 and 4 in Kesten (1973). See Mikosch and Stărică (2000) for the one–
dimensional GARCH(1,1) case, Basrak et al. (2002b) for the one–dimensional
GARCH(p,q) model and Fernández and Muriel (2008) for the multivariate
CCC-GARCH(p,q) process. The reason for this method to work is that
the matrices A(Zt) in the representation (3.1) for the mentioned models are
almost surely non–negative. For the Cholesky factor GARCH model the ma-
trices A(Zt) may be negative and thus the conventional approach can’t be
taken. Instead, we use Kesten’s theorem 6 in Kesten (1973) which includes
two extra hypotheses, namely,

1. the process defined by equation (3.1) with G = 0 is an open set irre-
ducible Markov chain, and

2. the process defined by

W0 = w, Wn = (I ⊗ A(Zn))Wn−1

admits a Nummelin–small set.

To prove these conditions, we use a dynamical system approach to Markov
chains analysis which is detailed in Chapter 7 of the book Meyn and Tweedie
(1993).

Improving the results for other GARCH processes, we obtain the regular
variation for the Cholesky factor GARCH model without assuming that the
marginal distributions of the noise sequence are symmetric.

As is usual in stationary, mixing time series, regular variation is linked to
extreme values and autocovariance function convergence. In accordance with
the known results for the one–dimensional GARCH models (see Basrak et al.
(2002b)) and the CCC-GARCH model (see Fernández and Muriel (2008)),
we show that the asymptotic behavior of the sample autocovariance function
of the Cholesky Factor GARCH(p,q),

γn,X(h) = n−1

n−h∑
t=1

XtX
T
t+h, h ≥ 0,

depends on the so–called index of regular variation of the finite–dimensional
distributions of the process. Denoting this index by κ, three cases are pos-
sible: If κ ∈ (0, 2) we have no consistency but convergence to a κ/2–stable
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random variable. If κ > 2 we have consistency but a Central Limit Theorem
is only achieved for κ > 4.

The paper is structured as follows: Notation and preliminary results are
given in Section 3.2. Section 3.3 introduces the Cholesky Factor GARCH(p,q)
model and characterizes the strictly stationary solutions to it. Simple con-
ditions to guarantee geometrical β–mixing are also given in this Section. In
Section 3.4 the regular variation for the finite dimensional distributions of
the process is proven. Section 3.5 is devoted to the study of the extremes and
the limit behaviour of the sample autocovariance function of the Cholesky
Factor GARCH via the weak convergence of point processes generated by it.

3.2 Notation and Preliminary Results

We will denote the space of d × k matrices with real coefficients by M(d ×
k). Given two matrices A and B, we denote by A ⊗ B their Kronecker
(tensor) product. By vec and vech we denote the well–known column stack
operations for general matrices and for symmetric matrices respectively. For
the relationships between the vec operation and the Kronecker product, we
refer to Chapter 4 of Horn and Johnson (1991). The operations vec and vech
are related by

∃K such that for any given symmetric matrix A of dimensions d× d, we have

vec (()A) = Kvech(A). (3.2)

A proof can be found in Appendix A of Boussama (1998).

Remark 15. When vech is applied to lower triangular matrices, (3.2) re-
mains true though for a different matrix K̂. For ease of notation, we will
still write K for this matrix.

Given a square d×d matrix A we denote its spectral radius by %(A) and its
minimum singular value by λ(A). We refer to Horn and Johnson (1990). The
column vectors of the matrix A will be denoted by A[ · , i], i = 1, 2, . . . , d.
For a matrix M ∈ M(d × k), the symbol ‖M‖ denotes the matrix norm of
M ,

‖M‖ = sup {‖Mx‖ : ‖x‖ = 1} ,
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where ‖x‖ is a vector norm in Rd. When no comments are made on which
norm is chosen for Rd it is because it is unimportant and we may use
whichever norm.

Given a sequence of random d × d matrices {At} defined on the same
probability space, we denote their top Lyapunov exponent as

γ(At) = inf

{
1

t
E [ln(‖AtAt−1 . . . A1‖)] , t ∈ N

}
.

We will consider d dimensional GARCH processes of orders (p, q) and use
the notations

D := pd(d+1)
2

+ (q − 1)d and d∗ := d(d+1)
2

throughout the paper.
Given a vector v ∈ RD we write v(i), i = 1, 2, . . . , D for its components,

and given a set of vectors V = {vi, i ∈ I} we write S(V ) for the linear space
generated by them. We will use the Zariski closure of this kind of sets and
on the topic refer the reader to Boussama (1998), and Benedetti and Risler
(1990).

Given a Markov chain X = {Xn} with state space RD, we say that a
Borel measurable set A is Nummelin–small if there exist a natural number
n > 0 and a nontrivial measure νn defined on the Borel sets of RD such that
for any measurable set B

P
[
Xn ∈ B

∣∣X0 = x
]
≥ νn(B)11 (x ∈ A) .

Finally, a Markov chain X is called T–chain if there exists a discrete
random variable N independent of X and a substochastic kernel T such that
for every measurable set A and for every x ∈ RD

P
[
XN ∈ A

∣∣X0 = x
]
≥ T (x,A) and T (x,RD) > 0,

and the function T ( · , A) is lower semicontinuous. The reader is referred to
Meyn and Tweedie (1993) for further details on Nummelin–small sets and
T–chains..

3.3 Stationarity and Mixing

3.3.1 The Model

The dynamics for the Cholesky factor introduced in Kawakatsu (2003) define
a GARCH type process which we will call the Cholesky factor GARCH(p,q)
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(ChF–GARCH for short) and is defined as follows.

Definition 16. Given a sequence of i.i.d. random vectors {Zt}t∈Z with mean
vector 0 and identity covariance matrix, we say that the stochastic process
{Xt}t∈Z is a ChF–GARCH(p,q) if it satisfies the equations

vech(Lt) =C +

p∑
i=1

Aivech(Lt−i) +

q∑
j=1

BjXt−j,

Ht =LtL
T
t ,

Xt =LtZt.

(3.3)

The vector C is assumed nonzero to avoid the trivial solution Xt = 0. The
matrices Ai, Bj are supposed to have nonzero rows and the matrix Lt is as-
sumed lower triangular.

Remark 16. The matrix Ht is the covariance matrix of Xt conditional on
Ft = σ(Xs, s < t), as can be easily shown. Furthermore, Ht is non–negative
definite from the equality Ht = LtL

T
t .

We will embed this process into a Markovian process using Stochastic Re-
currence Equations (SRE) as is done for the one–dimensional GARCH(p,q)
in Basrak et al. (2002b) and for the multivariate CCC-GARCH(p,q) in Bous-
sama (1998).

3.3.2 SRE representation and Stationarity

From Remark 15, there exists K = K(d) ∈ M(d2 × d∗) such that for any
lower triangular matrix A we have vec (()A) = Kvech(A) which gives us

BjXt−j = BjLt−jZt−j =(ZT
t−j ⊗Bj)vec (()Lt−j)

=(ZT
t−j ⊗Bj)Kvech(Lt−j)

Substituting into equation (3.3) we get

vech(Lt) =C + (A1 + (ZT
t−1 ⊗B1)K)vech(Lt−1) +

p∑
i=2

Aivech(Lt−i)

+

q∑
j=2

BjXt−j

Xt =(ZT
t ⊗ I)Kvech(Lt)

(3.4)
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Letting

Yt = (vech(Lt+1)
T , . . . , vech(Lt−p+2)

T , XT
t , . . . , X

T
t−q+2)

T (3.5)

we find that

Yt = A(Zt)Yt−1 +G (3.6)

where

G =(CT , 0, . . . , 0)T

A(Zt) =



A1 + (ZT
t ⊗B1)K A2 · · · Ap−1 Ap B2 B3 · · · Bq

I 0 · · · 0 0 0 0 · · · 0
0 I · · · 0 0 0 0 · · · 0
...

...
. . .

...
...

...
...

. . .
...

0 0 · · · I 0 0 0 · · · 0
(ZT

t ⊗ I)K 0 · · · 0 0 0 0 · · · 0
0 0 · · · 0 0 I 0 · · · 0
...

...
. . .

...
...

...
...

. . .
...

0 0 · · · 0 0 0 · · · I 0


(3.7)

Equation (3.6) is the SRE representation for the ChF–GARCH(p,q). The
existence and uniqueness of a causal stationary solution to a given SRE are
studied in Brandt (1986) and Bougerol and Picard (1992). We apply these
results to the ChF–GARCH(p,q).

Proposition 13. The SRE (3.6) is irreducible in the sense that if there exists
I ⊆ {1, 2, . . . , D} such that the linear space V generated by the canonical
vectors {ei, i ∈ I} satisfies A(Z1)V +G ⊆ V , then V = RD.

Proof. The proof follows the lines of that of Theorem 5.4.3 in Boussama
(1998) where the reader is referred for further details.
Let {ei, i = 1, 2, . . . , D}, {fi, i = 1, 2, . . . , d∗}, {gi, i = 1, 2, . . . , d} be the
canonical bases in RD,Rd∗ and Rd respectively. Let I ( {1, 2, . . . , D} and
V = S({ei, i ∈ I}) and assume that A(Zt)V +G ⊆ V . Since 0 ∈ V it follows
that G ∈ V and since C > 0 we get that

{ei, i = 1, 2, . . . , d∗} ⊆ V



96 CHAPTER 3. CHF–GARCH

Furthermore, G ∈ V also gives us A(Zt)V ⊆ V a.s. Computing A(Zt)ei for
i = 1, 2, . . . , d∗ we see that

([(A1 + (ZT
t ⊗B1)K)f1]

T , fT1 , 0, 0, . . . , [(Z
T
t ⊗ I)Kf1]

T , 0, . . . , 0)T ∈ V

which is the same as

([(A1 + (ZT
t ⊗B1)K)f1]

T , 0, 0, . . . , 0)T + ed∗+i + Zt,l(i)epd∗+j(i)+1 ∈ V

The particular values of l(i) and j(i) make no difference, so we don’t provide
them.
Since (A1 + (ZT

t ⊗B1)K)f1]
T , 0, 0, . . . , 0) ∈ V it follows that

ed∗+i + Zt,l(i)epd∗+j(i)+1 ∈ V.

Observe that Zt,l(i) is not constant a.s. from which it follows that for at least
two different values x, y we have

ed∗+i + xepd∗+j(i)+1 ∈ V and ed∗+i + yepd∗+j(i)+1 ∈ V.

Taking the difference between them, and rearranging the numbers j(i) we
get that

epd∗+j ∈ V for j = 1, 2, . . . , d.

Finally, this implies that

ed∗+i ∈ V for i = 1, 2, . . . , d∗.

So far, we have shown that

{ei, i = 1, 2, . . . , 2d∗, pd∗ + j, j = 1, 2, . . . , d} ⊆ V

Continuing to argue in this way, we next find that

{ei, i = 1, 2, . . . , 3d∗, pd∗ + j, j = 1, 2, . . . , 2d} ⊆ V

Recursively, we finally get that

ei ∈ V for i = 1, 2, . . . , D

so that V = RD as desired.
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Corollary 7. There exists a unique causal stationary solution to (3.6) if
and only if the Top Lyapunov exponent associated to the sequence {A(Zt)}
satisfies

γ(A(Zt)) < 0

Proof. By Theorem 1 in Brandt (1986) and Theorem 2.5 in Bougerol and
Picard (1992) it follows that if

1. the matrices {A(Zt)}t∈Z are i.i.d.,

2. E
[
log+(‖G‖)

]
<∞,

3. E
[
log+ ‖A(Z1)‖)

]
<∞, and

4. the SRE model is irreducible,

then the condition γ(A(Zt)) < 0 is equivalent to the existence and uniqueness
of a causal solution to the SRE (3.6).

Condition 1 is satisfied because A(Zt) depends only on Zt and the se-
quence {Zt}t∈Z is i.i.d. Condition 2 is satisfied since G is a constant vector.
Moreover, since Zt ∈ L2, condition 3 is also satisfied. Finally, Proposition 13
shows that condition 4 is also met which gives us the result.

Remark 17. The stationary causal solution is of the form

Yt = f(Zs, s ≤ t)

so that it is ergodic in a measure theoretic way. See Chapter 9 of Kallenberg
(2002)

Remark 18. Observe that even if we do not impose the condition that the di-
agonal elements of Lt are strictly positive, we get the existence of a unique sta-
tionary causal solution to the ChF–GARCH equations. It is for this uniquely
defined process that we will study the distributional properties in what fol-
lows.
Furthermore, under the identifiability conditions imposed by Kawakatsu in
Kawakatsu (2003), Proposition 13 doesn’t hold. A simple example to this
situation is given by the ChF–GARCH(1,1) in R2. It is not hard to see that
in this case the subspaces

V = {(0, αx, 0)T , α ∈ R}, x ∈ R

are invariant for Yt.
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Corollary 7 gives necessary and sufficient conditions for the ChF–GARCH
model to have a unique causal stationary solution. However, the condition
γ(A(Zt)) < 0 is in general hard to prove for there is no closed known form
for γ(A(Zt)). For particular cases, we may use numerical analysis. See
Gol′dshĕıd (1991) on this subject. The following Proposition provides a link
between the coefficients Ai defining the ChF–GARCH and the negativity of
the top Lyapunov exponent γ(A(Zt)).

From now on we will write A(0) for the matrix A(Zt) in (3.7) evaluated
at Zt = 0.

Proposition 14. Consider a ChF–GARCH(p,q) with matrix parameters (Ai, Bj).
If %(

∑p
i=1Ai) < 1 then γ(A(Zt)) < 0.

Proof. By Proposition 4.1 in page 118 of de Saporta it is enough to show
that

%
(
E
[
A(Z1)⊗ A(Z1)

T
])
< 1 (3.8)

Since E [A(Zt)] = A(0), it is not hard to see, by the definition of the tensor
product ⊗, that

E
[
A(Z1)⊗ A(Z1)

T
]

= A(0)⊗ A(0)T .

Now, the proper values of the matrix A(0)⊗ A(0)T are

{λµ : λ is a proper value of A(0), and µ is a proper value of A(0)T}.

Since the proper values of A(0)T are the same as those of A(0), it follows
that every proper value of A(0)⊗A(0)T is the product of two proper values
of A(0). Consequently it is enough to have %(A(0)) < 1.

This is indeed our case, because by Lemma A.1.1 in Boussama (1998) the
assumption %(

∑p
i=1Ai) < 1 is equivalent to %(A(0)) < 1.

Remark 19. The condition %(
∑
Ai) < 1 is sufficient for γ(A(Zt)) > 0 but

not necessary. Therefore a stationary ChF–GARCH process may exist with
%(
∑
Ai) ≥ 1.

3.3.3 Mixing

To study the mixing properties of the ChF–GARCH(p,q) process we will
assume that



3.3. STATIONARITY AND MIXING 99

H0 : %(
∑p

i=1Ai) < 1

H1 : The random vectors {Zt} have a density f with respect to Lebesgue
measure in Rd such that E = {x : f(x) > 0} contains a neighborhood
of {0}.

Theorem 22. Under the hypotheses H0 and H1, any solution {Yt} to the
SRE (3.6) is a positively Harris recurrent, geometrically ergodic Markov
chain. Furthermore, the stationary solution is geometrically β–mixing.

Proof. For y ∈ RD
+ define

Y y
0 = y, Y y

n = A(0)Y y
n−1 +G.

From hypothesis H0 and Lemma A.1.1 in Boussama (1998) it follows that
%(A(0)) < 1 so that

Y y
n

n→∞−−−→
∞∑
j=0

A(0)jG := T for all y ∈ RD
+ .

Furthermore, T satisfies the fixed point equation

T = A(0)T +G.

Following Lemma 3.4.3 in page 54 of Boussama (1998) we find that the
stationary process {Yt} satisfies the Foster–Lyapunov condition
“∃k ∈ N, a compact set K in RD, and α < 1, s < 1 such that for y ∈ RD

+

E
[
V (Yk)

∣∣Y0 = y
]
≤ αk (V (y) + b11 (y ∈ K)) ,

where V is the function defined by V (y) = 1 + ‖y‖s.”
From the mixing criteria in Mokkadem (1990) (See also to Theorem 2.3.5 in
page 41 of Boussama (1998) for a restatement of these criteria), it follows that
{Yt} is a positively Harris recurrent, geometrically ergodic Markov chain and
that the stationary solution is β–mixing. As is shown in Doukhan (1994),
the β–mixing rate is the same as the ergodicity rate, so that the stationary
process {Yt} is geometrically β–mixing which completes the proof.
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3.4 Regular Variation

In this section we give sufficient conditions for the stationary Cholesky Factor
GARCH(p,q) to have regularly varying finite–dimensional distributions. We
do so by using the SRE representation (3.6) and Kesten’s theorem. We
remark here that since the matrices {A(Zt)} in (3.7) may have negative
entries, we can’t use Theorems 3 and 4 in Kesten (1973) as is done for the
one–dimensional case in Basrak et al. (2002b) and for the CCC-GARCH in
Fernández and Muriel (2008). We will instead use Kesten’s Theorem 6.

As mentioned in the introduction, we will take a dynamical system ap-
proach which is detailed in Chapter 7 of the book Meyn and Tweedie (1993).
This will be done using the decomposition

A(Zt) = A(0) +
d∑
i=1

Zt,j(i)Ci +
d∑
i=1

Zt,k(i)C̃i (3.9)

where the columns of Ci and C̃i are all, but one, equal to 0. Denote the
nonzero column vector of Ci and C̃i by Vi and Ṽi respectively. The particular
values of j(i) and k(i) in (3.9) will be of no relevance for which we don’t
provide them.

Proposition 15. Under H0, the deterministic model defined by

x0 = x, xn = A(un)xn−1, un ∈ Rd

is controllable in the sense that the sets

A+(x) =
⋃
k∈N

{y : y = A(Zk) . . . A(Z1)x, Zt ∈ Rd}, x 6= 0.

have non–empty interior. Furthermore, there exists r > 0 such that the affine
space generated by the vectors

{{Vi}i, {Ṽi}i, {A(0)Vi}i, {A(0)Ṽi}i, . . . {A(0)rVi}i, {A(0)rṼi}i}

is minimal for {xn}.

Proof. To show that the model is controllable, let W1 be the Zariski closure
of the set

{A(ut)x, ut ∈ Rd}.
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We claim that W1 = A(0)x + E1 where E1 is the linear subspace of RD

generated by the vectors

{V1, . . . , Vd, Ṽ1, . . . , Ṽd}

To see this, use (3.9) to obtain

A(Zt)x =A(0)x+
d∑
i=1

Zt(j(i))Cix+
d∑
i=1

Zt(k(i))C̃ix

=A(0)x+
d∑
i=1

Zt(j(i))xiVi +
d∑
i=1

Zt(k(i))xiṼi

Therefore W1 contains an open set of A(0)x+E1. Consequently, since W1 ⊆
A(0)x+ E1, it follows that W1 = A(0)x+ E1.
Proceeding recursively, define Wk as the Zariski closure of the set

{A(ut)v, v ∈ Wk−1, ut ∈ Rd}

and Ek as the linear subspace of Rd generated by the vectors

{V1, . . . , Vd, A(0)V1, . . . , A(0)Vd, . . . , A(0)kV1, . . . , A(0)kVd, . . . , A(0)kṼ1, . . . , A(0)kṼd}.

Following the calculations in page 85 of Boussama (1998) it can be proven
that for all k ∈ N the equality Wk = A(0)kx+Ek holds. This shows that for
x 6= 0 the set A+(x) has nonempty interior, and thus that the model {xn} is
controllable.

To complete the proof of the Proposition, observe that the sequence of
linear subspaces {Ek} is strictly increasing in RD so that it is constant from
a certain rank on, say r ≤ D. Define

W := lim
k→∞

Ek = Er.

By assumption H0 and Lemma A.1.1 in Boussama (1998) we have that
%(A(0)) < 1 which shows that A(0)k → 0, thus the topological closure of
A+(x) satisfies

A+(x) = lim
k→∞

Wk = W ∀x 6= 0

. By Proposition 7.2.3 in page 162 of Meyn and Tweedie (1993) the set W
is minimal for {xn} which yields the result.
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Corollary 8. If the distribution function of the i.i.d. sequence of random
vectors {Zt} has a density f on Rd which is lower semicontinuous and whose
support is Rd, then the Markov process

X0 = x, Xn = A(Zn)Xn−1

restricted to W is an open set irreducible T–chain.

Proof. This is an immediate consequence of Proposition 15 together with
Theorem 7.2.4 in page 163 of Meyn and Tweedie (1993).

We now study the regular variation of the ChF–GARCH process using
the following hypotheses:

H2 : The distribution of the vectors {Zt} admits a continuous and every-
where positive density with respect to Lebesgue measure.

H3 : There exists h0 ∈ (0,∞] such that

E
[
|Zt(i) |h

]
<∞ if h < h0,

limh→h0 E
[
|Zt(i) |h

]
=∞.

H4 : Hypothesis H0 is satisfied and there exists k ∈ N such that the
vectors

{{Vi}i, {Ṽi}i, {A(0)Vi}i, {A(0)Ṽi}i, . . . {A(0)rVi}i, {A(0)rṼi}i}

generate the space RD.

Theorem 23. Let {Xt} be a stationary ChF–GARCH(p,q) process with SRE
representation {Yt} as given in (3.6). Under H2,H3 and H4 there exists
κ > 0 such that

∀x ∈ RD \ {0} lim
u→∞

uκP [〈x, Y1〉 > u] = w(x)

exists and w(x) > 0. Furthermore, if κ is not an even integer, then the
finite–dimensional distributions of {Xt} are regularly varying.
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Proof. Let m be an arbitrary natural number and consider the sequence
{Ytm}t∈Z which, as shown in Basrak et al. (2002b), satisfies the stochastic
recurrence equation

Ytm = Â
(m)
t Y(t−1)m + B̂

(m)
t ,

for

Â
(m)
t =AtmAtm−1 . . . Atm−m+1,

B̂
(m)
t =

m−1∑
k=1

AtmAtm−1 . . . Atm−k+1G.

It is for this sequence that we will verify Kesten’s hypotheses by choosing a
suitable value for m. For ease of presentation, the required hypotheses are
restated one by one with its respective proof.

1. Both E
[
ln
(∥∥∥Â(m)

t

∥∥∥)] and E
[
ln
(∥∥∥B̂(m)

t

∥∥∥)] are finite, and there ex-

ists
ε > 0 such that E

[∥∥∥Ât(m)
∥∥∥ε] < 1.

In Basrak et al. (2002b) these properties are shown to be satisfied for
m ≥M0 with M0 a given natural number in the one–dimensional case. The
argument rests on the negativity of the Lyapunov exponent associated to
the SRE representation of the process. Corollary 7 tells us that stationarity
of the ChF–GARCH is equivalent to the fact that the top Lyapunov expo-
nent of the sequence {A(Zt)} in (3.7) is strictly negative. Therefore, taking
m ≥M0, we can follow exactly the same lines as in the one–dimensional case
to prove this Kesten’s hypothesis.

2. The matrix Â
(m)
t is nonsingular a.s.

Since the matrices Ai have no zero rows, it is not difficult to see that
for all t ∈ Z we have Rank(At) = D a.s. from which it follows that the

matrix At is a.s. nonsingular. Â
(m)
t is thus nonsingular, being a product of

nonsingular matrices.

3. For every open set U ⊆ Sd−1 and x ∈ Sd−1 there exists n ∈ N such
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that

P

 Â
(m)
n . . . Â

(m)
1 x∥∥∥Â(m)

n . . . Â
(m)
1 x

∥∥∥ ∈ U
 > 0. (3.10)

By Corollary 8 and the continuity assumption on the density of the ran-
dom vectors {Zt} in H2, it follows that the Markov Chain Vn = Â

(m)
n Vn−1

restricted to W is an open set irreducible T–chain.

Hypothesis H4 tells us that W = RD. This implies (3.10) by the equality

P

 Â
(m)
n . . . Â

(m)
1 x∥∥∥Â(m)

n . . . Â
(m)
1 x

∥∥∥ ∈ U
 = P [Vn ∈ {y : ‖y‖ > 0, y/ ‖y‖ ∈ U ]

4. There exists n ∈ N, a cube C ⊆ RD2
and γ0 > 0 such that the density

of the distribution of vec (() Â
(m)
n · · · Â(m)

1 ) with respect to Lebesgue measure
is bounded from bellow by γ0.

Let Un = vec (()A(Zn) · · ·A(Z1)). Then we have the Markovian relation-
ship

Un = (I ⊗ A(Zn))Un−1.

Observe that Kesten’s hypothesis 4, which we wish to prove, is equivalent to
the existence of a Nummelin–small cube for the chain {Un} (See Chapter 5
of Meyn and Tweedie (1993)).

Arguing as we did in the proof to Proposition 15 and using again our hy-
pothesis H4 it is not hard to see that {Un} is an open set irreducible T–chain
on RD2

. From Theorem 6.2.5 in page 138 of Meyn and Tweedie (1993) we
conclude that every compact set is Nummelin–small. It follows that there
exists a Nummelin-small cube C for the chain {Un} as desired.

5. The set {ln(‖an . . . a1‖) : n ≥ 1, an . . . a1 > 0, ai ∈ supp(P)} generates

a dense group in R, where P stands for the distribution of Â
(m)
1 .

If m ≥ max(p, q), then the entries of the matrix Âm1 are multilinear forms
of the random variables {Zt(i)}, which can be proven as is done for the CCC-
GARCH process in Fernández and Muriel (2008). Take m ≥ max(M0, p, q)

and from now on, write Ât for Â
(m)
t .
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The support of the random variables {Zt(i)} is R, thus, by continuity of mul-
tilinear forms, the support of Â1 is connected. By continuity of the norm,

the same can be said about the support of
∥∥∥Â1

∥∥∥. Therefore, the support of

ln
(∥∥∥Â1

∥∥∥) contains an interval, which yields the desired property.

6. For every fixed vector r we have P
[
G = (I − Â1)r

]
< 1

This follows from assumption H2. Since the random vectors Zt have a
density with Rd as support, it is straightforward that

P
[
Â1x = w

]
< 1

for any fixed vectors x,w, in particular for x = r and w = r−G which gives
the desired result.

7. There exists κ0 > 0 such that

E
[∥∥∥Â1

∥∥∥κ0

ln
(∥∥∥Â1

∥∥∥)] <∞ and E
[
(λ(Â1))

κ0

]
≥ 1

To prove that E
[
(λ(Â1))

κ0

]
≥ 1 we will focus on the first block, Â1[1, 1]

of the matrix Â1. By Corollary 3.1.3 in Horn and Johnson (1991), page 149
it is enough to obtain the bound for λ(Â1[1, 1]).
From the Courant–Fischer Theorem for singular values, Theorem 3.1.2 in

Horn and Johnson (1991) page 148, we need only show that E
[∥∥∥Â1[1, 1]x

∥∥∥κ0

2

]
≥

1 for ‖x‖ = 1.

As said earlier, all the entries in the block Â1[1, 1] are multilinear forms of
the random variables {Zt(i)}, thus, by assumption H3 there exists κ0 > 0,
close enough to h0, such that

E
[∥∥∥Â1[1, 1]x

∥∥∥κ0

2

]
≥ 1.

The proof that E [‖A1‖κ0 ln(‖A1‖)] < ∞ is done as in Basrak et al.
(2002b) for the one–dimensional GARCH process.

Having proved all of Kesten’s hypotheses we know that there exists κ > 0
and w(x) > 0 such that
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∀x ∈ RD \ {0}, lim
u→∞

uκP [〈x, Y1〉 > u] = w(x),

proving the first part of the Theorem. To conclude the proof observe that if
κ is not an even integer, then by Theorem 1.1 in page 910 of Basrak et al.
(2002a) the random vector Y1 is regularly varying. By Corollary 2.7 in page
100 of Basrak et al. (2002b) we find that the finite dimensional distributions
of {Yt} are regularly varying. Since {Xt} is embedded in {Yt} it follows that
the finite dimensional distributions of {Xt} are also regularly varying. The
index of regular variation for these distributions is κ.

Remark 20. The regular variation of the random vector Y1 implies the ex-
istence of a sequence of real numbers

0 < an ↗∞,

and a Radon measure µ defined on B(Rd), such that

P
[
a−1
n Y1 ∈ ·

] v−→ µ( · ),

where “
v−→” stands for vague convergence (See Chapter 5 of Resnick (1987)).

Remark 21. The vectors {Xt, vech(Lt)} are also embedded into {Yt}. The
proof of Theorem 23 tells us that {Xt, vech(Lt)} also has regularly varying
finite dimensional distributions. In particular, the sequence {vech(Lt)} shares
this property.

Remark 22. Hypothesis H4 is not compatible with the identification rules
proposed in Kawakatsu (2003). These identification rules restrict the pa-
rameters to ensure that the diagonal elements of Lt are strictly positive. As
mentioned earlier in Remark 18, these identification rules are not important
for our analysis since uniqueness of the stationary solution is guaranteed.

3.5 Point Process Convergence

In this section we study the weak convergence of Point Processes

Nn( · ) =
n∑
t=1

εa−1
n Xt

( · ) (3.11)
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where εx( · ) is the Dirac measure at x, {Xt} is the stationary solution to the
Cholesky Factor GARCH equations provided in Definition 16 and {an} is
the sequence given in Remark 20. Point Process convergence is the basis for
the study of the extremes of the ChF–GARCH as well as of the asymptotics
of the sample autocovariance function. The following result is based on the
work Davis and Mikosch (1998).

Proposition 16. Let {Xt} be a stationary ChF–GARCH(p,q) process. As-
sume all hypotheses in Theorem 23 are satisfied. Then, there exists a point
process N such that Nn → N in distribution and N is identical in law to the
point process

∞∑
i=1

∞∑
j=1

εPiQi,j
( · )

where
∑∞

i=1 εPi
( · ) is a Poisson process with intensity measure

ν(dy) = θαy−α−111 (y > 0) dy

for some 0 < θ < 1 and independent of the sequence of i.i.d. point processes∑∞
j=1 εQi,j

( · ), i ≥ 1.

Proof. By Theorem 23 we know that the finite–dimensional distributions of
the process {Xt} are regularly varying. By the geometrical β–mixing shown
in Theorem 22, we also know that there exists a sequence of positive integers
rn such that rn →∞, kn = [n/rn]→∞ as n→∞ and

E

[
exp

{
−

n∑
t=1

f(Xta
−1
n )

}]
−

(
E

[
exp

{
−

rn∑
t=1

f(Xta
−1
n )

}])kn

→ 0,

as n → ∞ for all simple, non–negative, measurable function f . See Basrak
et al. (2002b).
Finally, it can be proved as is done in Basrak et al. (2002b) for the one
dimensional case, that for all y > 0

lim
k→∞

lim sup
n→∞

P
[

max
k≤| t |≤rn

‖Xt‖ > any
∣∣∣ ‖X0‖ > any

]
= 0.

These conditions enable us to apply Theorem 2.8 in Davis and Mikosch (1998)
to complete the proof.
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3.5.1 Extreme Values

In this section we study the extreme values of the ChF–GARCH process.
The main focus is on the asymptotic behavior of the norm–maximum and
the componentwise–maximum of the process, which are defined as follows.

Definition 17. The norm–maximum of the ChF–GARCH process {Xt} is
defined by

M‖X‖
n = max{‖Xt‖ , t ≤ n}

and its componentwise–maximum Mn by the equations

Mn(i) = max{Xt(i), t ≤ n}, for i = 1, 2 . . . , d

Mn = (Mn(1),Mn(2), . . . ,Mn(d)).

The interest lies in the description of all distribution functions such that

P
[
a−1
n M‖X‖

n ≤ x
]
→ G(x), (3.12)

P
[(
a−1
n Mn(1) ≤ x(1), . . . , a−1

n Mn(d) ≤ x(d)
)]
→ H(x(1), . . . , x(d)), (3.13)

where 0 < an →∞ is the sequence of regular variation of the ChF–GARCH
process. Of course, G in relation (3.12) is a real valued distribution function
while H in relation (3.13) is Rd–valued. To simplify notation, the limit (3.13)
will be written

P
[
a−1
n Mn ≤ x

]
→ H(x), for x ∈ Rd.

As said earlier, Proposition 16 is the basis for the study of the extreme
values for the ChF–GARCH process. Due to the regular variation proven in
Theorem 23, the sequence {an} in Proposition 16 satisfies an ∼ n1/κ, with
κ > 0 the index of regular variation. We will, as is customary, take an = n1/κ.

Theorem 24. Let {Xt}t∈Z be a ChF–GARCH(p,q) process satisfying the
hypotheses of Theorem 23 and let κ > 0 be its index of regular variation.

1. The norm–maximum of {Xt}t∈Z satisfies

P
[
n−1/κM‖Xt‖

n ≤ x
]
→ exp{−θx−κ}11 (x > 0) ,

where 0 < θ < 1 is the extremal index of ‖Xt‖.
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2. The componentwise–maximum of the sequence {Xt}t∈Z satisfies

P
[
n−1/κMn ≤ x

]
→ exp{−Λ ({µ : µ(Bx) > 0})},

where Λ is the canonical measure of the point process N and

Bx = (−∞, x]c for any fixed x ∈ Rd
+.

Proof. The density ν(dy) in the description of the point process N given
in Proposition 16 is the asymptotic density of the extremes of the sequence
{‖Xt‖}, see Davis and Mikosch (1998, 2006). Part 1 is thus proved.
To prove part 2, first observe that

P
[
n−1/κMn ≤ x

]
= P [Nn(Bx) = 0] . (3.14)

Since the setBx is relatively compact, Proposition 16 gives us the convergence

P [Nn(Bx) = 0] −−−→
n→∞

P [N(Bx) = 0] . (3.15)

By dominated convergence, we have

P [N(Bx) = 0] = E
[

lim
t→∞

e−N(t11(Bx))
]

= lim
t→∞

E
[
e−N(t11(Bx))

]
.

Since Λ is the canonical measure of N (see Kallenberg (1969)), this expecta-
tion can be calculated as

E
[
e−N(t11(Bx))

]
= exp

{
−
∫

(1− e−µ(t11(Bx)))Λ(dµ)

}
.

Because of this equality and, again, dominated convergence we now have

P [N(Bx) = 0] = lim
t→∞

exp

{
−
∫

(1− e−µ(t11(Bx)))Λ(dµ)

}
= exp

{
−
∫

(1− 11 (µ(Bx) = 0))Λ(dµ)

}
,

which shows that

P [N(Bx) = 0] = exp

{
−
∫

11 (µ(Bx) > 0) Λ(dµ)

}
. (3.16)

Putting equations (3.14), (3.15) and (3.16) together, it is seen that

P
[
n−1/κMn ≤ x

]
−−−→
n→∞

exp{−Λ ({µ : µ(Bx) > 0})}.
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Remark 23. It is worth mentioning that

1. There’s no closed known expression for calculating the extremal index
θ of the sequence ‖Xt‖. We only know that 0 < θ < 1, which means
the sequence ‖Xt‖ has clusters with mean size 1/θ > 1.

2. The measure λ provides a theoretical expression for the limiting distri-
bution of the normalized componentwise–maximum of the ChF–GARCH
process {Xt}t∈Z. However, this expression is of no use for probability
computations.

An alternative expression for the domain of attraction of the componen-
twise –maximum for the ChF-GARCH process can be found by following
section 6 in Perfekt (1997) to obtain:

Proposition 17. Let {Yt} be the stationary solution to the ChF–GARCH(p,q)
SRE representation (3.6). Let ν be a measure such that

nP
[
a−1
n Y1 ∈ ·

] v−→ ν( · ).
Assume that ν satisfies

ci := ν ({y : yi > 1}) > 0, for all i = 1, 2, . . . , d2(p+ q − 1).

Then, for x ∈ (0,∞)d we have

P
[
a−1
n Mn ≤ x

]
−−−→
n→∞

exp

{
−
∫

[0,x]c
P

[
j∏
i=1

Aiy ≤ x; j ≥ 1

]
ν(dy)

}
.

Remark 24. In view of the definition of the multivariate extremal index,
see Nandagopalan (1994), and the result in Proposition 17, the multivariate
extremal index of the stationary process {Yt} may now be written as

θ(x) =

∫
[0,x]c

P
[∏j

i=1Aiy ≤ x; j ≥ 1
]
ν(dy)

ν([0, x]c)
.

This expression enables us to write the marginal extremal index for the ith
component of Yt as

θi =

∫
{y : yi>1} P

[∏j
i=1Aiy ≤ x; j ≥ 1

]
ν(dy)

ci
.

These results are analogous to the ones found in Mikosch and Stărică (2000)
for the one–dimensional GARCH(p,q) process and in Fernández and Muriel
(2008) for the CCC-GARCH(p,q) process.
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3.5.2 Sample Autocovariance Function

Using Proposition 16 we can describe the asymptotics of the sample autoco-
variance function for the stationary ChF–GARCH defined as

γn,X(h) = n−1

n−h∑
t=1

XtX
T
t+h, h ≥ 0.

One expects this sample function to converge a.s. to

γX(h) = E
[
X0X

T
h

]
,

which is the autocovariance function of the process, by Remark 17 and the
ergodic theorem. Furthermore, having this convergence the Central Limit
Theorem is also expected to apply, that is, a convergence of γn,X(h)− γX(h)
to a Normal distribution at rate n1/2 is expected.

For a regularly varying ChF–GARCH process, these limit relations need
not be true. The reason is that the moments of the stationary distribution
of the ChF–GARCH process depend on the index of regular variation. The
relationship between the index of regular variation and the moments of a
random variable is well known and can be found in Resnick (1987), Embrechts
et al. (1997) or Bingham et al. (1989) among others.

In this section we will use the hypothesis

H5 : The marginal densities of the distribution of the random vectors {Zt}
have symmetric marginals.

We have the following result, which is the generalization of Theorem 3.6 in
Basrak et al. (2002b) for the autocovariance function of the ChF–GARCH
process.

Theorem 25. Let {Xt} be a stationary ChF-GARCH(p,q) process satisfy-
ing all the conditions in Theorem 23 and assume that hypothesis H5 is also
satisfied. Let κ denote the index of regular variation of {Xt}, then

1. If κ ∈ (0, 2), then

(n1−2/κvec (() γn,X(h)))h=0,1,...,m
d−→ (Vh)h=0,1,...,m (3.17)

where (V0, V1, . . . , Vm) is jointly κ/2 stable in Rdm.
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2. If κ ∈ (2, 4), then

(n1−2/κ(vec (() γn,X(h)− γX(h))))h=0,1,...,m
d−→ (Vh)h=0,1,...,m (3.18)

were (V0, V1, . . . , Vm) is jointly κ/2 stable in Rdm.

3. If κ > 4 then equation (3.18) holds with normalization n1/2, where V
is multivariate normal with mean zero.

Proof. 1. If κ ∈ (0, 2) the result is immediate from Proposition 16 and
Theorem 3.5 in Davis and Mikosch (1998).

2. For κ ∈ (2, 4) it is necessary to show that the following condition holds.

lim
ε→0

lim sup
n→∞

var

(
n−2/α

n−h∑
t=1

Xt(i)Xt+h(j)11
(
|Xt(i)Xt+h(j) | ≤ n2/κε

))
= 0

for all i, j = 1, 2, . . . , d.

To this end, choose h ≥ 1. First, by symmetry of the noises {ηt} the
random variables {Xt(i)Xt+h(j)11

(
|Xt(i)Xt+h(j) | ≤ n2/κε

)
} are un-

correlated. This, together with the fact that X0(i)Xh(j) is regularly
varying with index κ/2 implies

var

(
n−h∑
t=1

Xt(i)Xt+h(j)11
(
|Xt(i)Xt+h(j) | ≤ n2/κε

))
= (n− h)n−4/κE

[
X0(i)

2Xh(j)
211
(
|Xt(i)Xt+h(j) | ≤ n2/κε

)]
∼ n1−4/κ(n2/κε)2(4− κ)P

[
|X0(i)Xh(j) | > n2/κε

]
→ (4− κ)ε2−κ/2, as n→∞
→ 0, as ε→ 0.

where the asymptotic equivalence follows from Karamata’s Theorem,
see Bingham et al. (1989).

3. For κ ∈ (4,∞) we see that the stationary time series

{Xt(i)
2, Xt(i)Xt+1(j), . . . Xt(i)Xt+m(j), i, j = 1, 2, . . . , d}t
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has a finite 2 + θ moment (for some θ > 0) and is geometrically β–
mixing, and thus geometrically α–mixing. It follows from standard
limit Theorems for mixing sequences (see Doukhan (1994)) that

(n1/2(vec (() γn,X(h)− γX(h))))h=0,1,...,m
d→ (Vh)h=0,...,m

where V has a multivariate normal distribution with mean zero.

3.5.3 Examples

In this section we discuss some examples of Cholesky factor GARCH pro-
cesses satisfying some or all of the hypotheses required for the regular vari-
ation and autocovariance function convergence results to hold. In each case,
we analyze which hypotheses are satisfied and thus which results hold. We
will focus on the two–dimensional ChF–GARCH(1,1) with parameters (A,B)
given by the equations

vech(Lt) =C + Avech(Lt−1) +BXt−1,

Ht =LtL
T
t ,

Xt =LtZt.

(3.19)

where {Zt} is an i.i.d sequence of two–dimensional random vectors with dis-
tribution function F .

Example 5 Hypothesis H4

Since we are considering only two–dimensional ChF–GARCH(1,1) processes,
we have that A(Zt) = A+ (ZT ⊗B)K so that the decomposition (3.9) is

A(0) = A, V1 = Ṽ1 = B[ · , 1], V2 = Ṽ2 = B[ · , 2].

Therefore, hypothesis H4 is satisfied if

H0 is satisfied, A has no zero rows and AV1 6∈ S(V1, V2).

For a concrete example, consider the matrices

A =

 1/2 0 0
1/3 1/3 0
1/6 1/6 1/6

 B =

 1 0
0 1
0 0

 .
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Since A is a triangular matrix, its diagonal elements are its eigenvalues,
therefore

%(A) = 1/2 < 1

so that H0 is satisfied. By proposition 14 this implies that the ChF–GARCH
defined by the equations (3.19) admits a unique casual stationary solution.

Since A(0)V1 = (1/2, 1/3, 1/6)T it follows that AV1 6∈ S(V1, V2), so that
these vectors generate R3. Finally, the matrix A has no zero rows. This
shows that H4 holds for this particular choice of A and B.

The next step is choosing a distribution function F satisfying hypotheses
H2,H3 and H5. We assume that the parameter set (A,B) is the one given
in Example 5.

Example 6 Heavy–tailed distribution function
Assume that the random variables {Zt(i)} have the Student’s t distribution
function with ν degrees of freedom whose density is given by

f(x) =
Γ((ν + 1)/2)√

νπ

(
1 +

x2

ν

)−(ν+1)/2

This distribution function satisfies hypothesis H2 and has regularly varying
tails with index α = ν, which follows from Karamata’s theorem (See Bingham
et al. (1989)). Therefore,

E
[
|Zt(i) |h

]{<∞, if h < ν,

=∞, if h > ν

Moreover, E [|Zt(i) |ν ] = ∞ so that hypothesis H3 is fulfilled with h0 = ν.
Finally, the Student’s t distribution is symmetric so that hypothesis H5 is
also satisfied.
Generally speaking, if we assume that the marginal distribution functions
have Pareto–like tails, i.e.,

P [Zt(i) > x] ∼ Kx−α, α > 0, x→∞,

and a continuous, everywhere positive density with respect to Lebesgue mea-
sure f , then the conclusions of Theorem 23 hold true. For the autocovariance
function convergence detailed in Theorem 25 symmetry of the function f is
necessary.
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Example 7 Light–tailed distribution function
Take {Zt} Normally distributed with parameters (0, 0) and σ2I, where I
is the 2 × 2 identity matrix and σ2 > 0. This distribution function has
an everywhere positive density with respect to Lebesgue measure, and thus
satisfies H2. Since

E
[
|Zt(i) |h

]
=

{
0, if h = 2k + 1,
σ2n(2n)!

2nn!
, if h = 2k,

hypothesis H3 is satisfied with h0 = ∞ (observe that h0 may be ∞ in H3).
Finally, the marginal distribution functions are standard Normal, so that
they are symmetric and thus H5 holds.
More generally, if all the moments of the distribution function F exist and the
support of its (continuous) density f is R then the hypotheses in Theorem 23
hold but symmetry is needed for the conclusions of Theorem 25 to be true.

Example 8 Mid–talied distribution function
Assume {Zt(i)} have a standard logNormal distribution, then

E [Zt(i)
n] = exp{n2/2}

so that hypothesis H3 is satisfied with h0 =∞.
Since the logNormal random variable has R+ as support, hypothesis H2 is
not satisfied. However, the proof to Theorem 23 can still be achieved because
hypothesis H2 was only used in this proof to show that the support of A(Zt)
is connected. The argument is thus still true if the support of {Zt(i)} is
R+. Therefore, the ChF–GARCH(1,1) (and indeed, the ChF–GARCH(p,q)
in any other dimension d > 2) generated with logNormally distributed {Zt}
has regularly varying finite dimensional distributions.
Observe that the point 0 is not in the interior of the support of the logNor-
mal density, so that the β–mixing property stated in Theorem 22 can not be
guaranteed in this case. Also, since the logNormal density is not symmetric
the autocovariance function convergence rates given in Theorem 25 may not
hold.
This example can be generalized to distribution functions with a continuous
density supported in R+, finite moments of all orders, but no Laplace trans-
form. In this generic case, the above argument shows that the regular varia-
tion of the finite–dimensional distribution functions of the ChF–GARCH(1,1)
is guaranteed by Theorem 23. However, the β–mixing may not hold, so that
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the Point Process convergence in Proposition 16 could fail and, thus, the
rates of convergence of the sample autocovariance function need not agree
with those given in Theorem 25.



Comentarios finales y trabajo
futuro

Hemos visto que los procesos GARCH de correlaciones condicionales con-
stantes y para el factor de Cholesky son procesos con colas pesadas bajo
hipótesis generales sobre los ruidos con que los generamos y cómo esta propiedad
tiene consecuencias en la conducta asintótica de los extremos y de la función
muestral de autocovarianzas. Nuestro estudio tiene tres pilares:

1. La representación recursiva estocástica

Yt = A(Zt)Yt−1 +Gt (3.20)

y los Teoremas de Kesten (1973).

2. La convergencia de los procesos puntuales

Nn =
n∑
i=1

δa−1
n Xi

para sucesiones estacionarias con propiedades de mixing y sus conse-
cuencias para la función muestral de autocovarianzas dadas en Davis
and Mikosch (1998).

3. La representación del ı́ndice extremo multivariado para procesos con
SRE dada en Perfekt (1997).

No obstante, el uso de estos resultados para cada caso difiere sustancialmente.
En el caso del CCC–GARCH la técnica utilizada es una generalización de
la dada en Basrak et al. (2002b) para el caso unidimensional. Esto se debe
a que tanto el planteamiento del modelo como las hipótesis a verificar para

117
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comprobar la variación regular son muy similares. Cabe destacar que para
este proceso, nuestra mayor contribución fue dar una prueba rigurosa de las
propiedades de variación regular.

En el caso del GARCH basado en el factor de Cholesky, nuestro estudio
fue mucho más profundo en virtud de que se contaba únicamente con cierto
conocimiento del estimador de log–máxima–verosimilitud. En este caso, la
representación recursiva (3.20) fundamentó la relación entre los coeficientes
del proceso y su estacionariedad fuerte. Aqúı vemos una diferencia entre los
distintos GARCH. Tanto para el GARCH unidimensional como para el CCC–
GARCH, se conocen condiciones necesarias y suficientes para garantizar la
estacionariedad, pero para el GARCH del factor de Cholesky sólo se tienen
condiciones suficientes.

La condición necesaria involucra al ı́ndice de Lyapunov que es, en general,
muy dif́ıcil de conocer. En primer lugar, no se tiene una expresión sencilla,
cerrada para él y estimarlo numéricamente puede ser muy complicado. Véase
Gol′dshĕıd (1991) a este respecto.

Hay que recordar que las reglas de identificación originales de Kawakatsu
(2003) no permiten la existencia de esta distribución estacionaria en todo
el espacio, es decir, restringen el proceso estacionario a un subespacio de
dimensión menor. Esta limitante del modelo de Kawakatsu (2003) fue supe-
rada imponiendo condiciones distintas a los parámetros del proceso, mismas
que no son restrictivas en modo alguno.

La variación regular también depende de la representación (3.20), pero
a diferencia del proceso CCC–GARCH, las hipótesis a verificar son distintas
a las del caso unidimensional. En particular, el hecho de que las matrices
A(Zt) puedan tomar valores negativos nos llevó a utilizar ciertas técnicas de
sistemas dinámicos perturbados por ruidos estocásticos y a encontrar compo-
nentes continuos para el Kernel de transición de ciertas cadenas de Markov
asociadas al proceso (3.20).

Otra diferencia llamativa es que para el GARCH unidimensional y para
el CCC–GARCH se requiere la hipótesis de simetŕıa en las distribuciones
marginales, tanto para la variación regular de las distribuciones finito di-
mensionales como para relacionarla con la convergencia de la función de
autocovarianzas. Para el modelo de Cholesky esta hipótesis es innecesaria
para todas las propiedades de variación regular, de modo que en este caso
nuestros resultados son más generales.

En ambos casos, es importante observar que la sucesión de ruidos {Zn}
no necesita ser de colas pesadas para que el proceso GARCH tenga esta
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propiedad. Esta caracteŕıstica es por demás interesante y llama a extender
los resultados a más y distintos modelos GARCH.

Los métodos presentados en este trabajo no pueden utilizarse para culquier
proceso GARCH multivariado ya que no todos ellos admiten la representación
(3.20). Por ejemplo, el modelo vech–GARCH de Bollerslev,

vech(Ht) = C +

p∑
i=1

Aivech(Ht−i) +

q∑
j=1

vech(Xt−jX
T
t−j), (3.21)

no admite dicha representación. La razón de ello es que el producto tensorial
⊗, que es el modo natural de lidiar con la operación vec (es suficiente trabajar
con vec en virtud de la relación entre ambas operaciones), nos lleva a las
igualdades

vec(Xt−jX
T
t−j) =H

1/2
t ⊗H1/2

t vec(Zt−jZ
T
t−j)

=(vec(ZtZ
T
t )⊗ I)vec(H

1/2
t ⊗H1/2

t ).
(3.22)

De modo que no es posible obtener vech(H
1/2
t ) en el término derecho de

(3.22) con este procedimiento y no se puede plantear una ecuación recursiva
de la forma (3.20).

Sin embargo, los métodos pueden extenderse a modelos de volatilidad es-
tocástica con correlaciones condicionales constantes y modelos basados en el
factor de Cholesky que admitan la representación (3.20) sin que sean GARCH
multivariados. La diferencia será la forma de las matrices A(Zt) y de los vec-
tores Gt y las hipótesis de momentos sobre las variables {Zt} necesarias en
cada caso. Dar una explicación más concreta de cuáles procesos se pueden
incluir en esta categoŕıa y los resultados de variación regular y convergencia
es un primer objetivo para mi trabajo futuro.

Otro problema interesante para el futuro es estudiar otros modelos GARCH
multivariados puesto que se intuye que comparten las propiedades expuestas,
pero requieren de metodoloǵıas distintas. Concretamente, es deseable contar
con una teoŕıa de variación regular para procesos Markovianos de la forma

X0 = x, Xn = F (Xn−1, Zn),

donde F es una función suave. La pregunta a abordar es: ¿Para qué clase
F de funciones F se obtiene con esta recursión un proceso de estacionario,
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absolutamente regular y con colas pesadas? La respuesta no es trivial, in-
cluso partiendo de que {Zn} tenga colas pesadas, cuanto menos si tiene colas
ligeras.

Por último, se tiene contemplado abundar sobre las consecuencias prácticas
de los resultados sobre la convergencia de la función de autocovarianzas en
el campo de estimación de series de tiempo.
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