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A los profesores Ángel Tamariz Mascarúa, Rafael Rojas Barbachano, José
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y su Instituto de Matemáticas.
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2.2 Katětov order and Ramsey properties . . . . . . . . . . . . . . 40
2.3 Q and Q+-ideals . . . . . . . . . . . . . . . . . . . . . . . . . . 44
2.4 P and P+-ideals . . . . . . . . . . . . . . . . . . . . . . . . . . 44
2.5 Weaker partition properties . . . . . . . . . . . . . . . . . . . 47
2.6 On a theorem of Farah . . . . . . . . . . . . . . . . . . . . . . 53
2.7 Monotonicity and Ramsey property . . . . . . . . . . . . . . . 56
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Resumen

El propósito del presente trabajo es estudiar diversas propiedades acerca
de los ideales y filtros sobre conjuntos numerables, a los que también lla-
maremos ideales sobre ω o filtros sobre ω; y clasificar estos ideales y filtros
mediante relaciones de orden o propiedades de definibilidad. Esencialmente,
estu-diamos propiedades combinatorias, invariantes cardinales, relaciones de
orden y buscamos objetos cŕıticos para tales propiedades. Usualmente, tales
objetos cŕıticos son ideales definibles, la mayoŕıa de los casos borelianos
y ocasionalmente coanaĺıticos. Nuestra principal herramienta es el orden
de Katětov, el cual provee de un lenguaje útil que nos permite traducir
propiedades combinatorias en funciones e ideales definibles.

En el primer caṕıtulo introducimos los conceptos estudiados a lo largo
de este trabajo, tales como las propiedades combinatorias (P-ideales, ideales
altos), los invariantes cardinales, las relaciones de orden, y agregamos ademas
una larga lista de ejemplos de ideales, para los cuales calculamos sus inva-
riantes cardinales y su complejidad anaĺıtica. Frecuentemente establecemos
la ubicación de estos ideales en las diferentes relaciones de orden.

El segundo caṕıtulo está dedicado a estudiar las propiedades combinato-
rias de los ideales sobre ω entre los ideales en general. En este caṕıtulo se
exploran los ĺımites de los resultados que pueden ser obtenidos sin hacer uso
de la definibilidad de los ideales. Espećıficamente, se discuten aspectos como
la destructibilidad de los ideales en extensiones genéricas, las propiedades
de tipo Ramsey y los ideales cŕıticos para las familias más estudiadas de
ultrafiltros.

En el tercer caṕıtulo hacemos uso del poder que provee la definibilidad
en los ideales. Aqúı aparecen argumentos de determinación de juegos, inva-
riantes cardinales, y absolutez y genericidad. Este caṕıtulo es protagonizado
por los ideales Fσ y los P-ideales anaĺıticos, debido a las importantes carac-
terizaciones de éstos en términos de submedidas inferiormente semicontinuas,
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viii RESUMEN

dadas por Mazur y Solecki, respectivamente.
Finalmente, el cuarto caṕıtulo está dedicado al estudio de un juego muy

natural que involucra pares de ideales Borel y que fué llamado el juego de
comparación. Este juego permite clasificar en una estructura (casi?) bien
ordenada a los ideales Borel, donde las anticadenas podŕıan tener cardinali-
dad a lo más 2. Esta clasificación es muy cercana a la jerarqúıa de Borel, al
orden de Wadge y al orden monótono de Tukey.

Las principales contribuciones de este trabajo son:
(1) La identificación de algunos ideales cŕıticos para propiedades com-

binatorias tales como los ideales Ramsey (ver teorema 2.2.2), los ideales
ω-separadores borelianos, (ver teorema 3.2.1) y muchos otros, en cuyo caso
se encuentran algunas clases de ultrafiltros como los P-puntos, los Q-puntos,
los ultrafiltros selectivos y los ultrafiltros rápidos (ver sección 2.8).

(2) El cálculo de los invariantes cardinales de algunos ideales particulares,
como el ideal S de Solecki (ver teorema 1.6.2), el ideal EDfin cuyos invariantes
de hecho complementan en cierto sentido al diagrama de Cichón (ver teorema
1.6.6) y el ideal Gfc, los cuales fueron estudiados de manera independiente
por Minami (ver teorema 1.6.21).

(3) El cálculo de las complejidades de algunos ideales como los de Cantor-
Bendixson y los productos de Fubini.

(4) El análisis de la propiedad de Ramsey y propiedades relacionadas,
como P+, Q+ y algunas versiones débiles de la propiedad de Ramsey. Con
respecto a la propiedad local de Ramsey en ideales borelianos, no hemos con-
seguido un ejemplo de tales ideales, de modo que conjeturamos que de hecho
no los hay, de modo que el ideal R generado por los conjuntos homogéneos de
la gráfica random seŕıa localmente mı́nimo entre los ideales Borel en el orden
de Katětov. Al menos conocemos una clase grande de ideales borelianos, la
clase de aquellos ideales I cuyo cociente P(ω)/I es propio o la extensión
genérica de éste no agrega nuevos números reales, que está incluida en la
clase de los ideales que están localmente por encima del ideal R en el orden
de Katětov (ver teoremas 2.4.5 y 3.3.1).

Hemos encontrado fuertes relaciones entre la propiedad y P+ y la propiedad
Fσ. El teorema 2.8.3 provee un criterio para P-puntos en términos de la ex-
tendibilidad a ideales Fσ en ideales borelianos. El teorema 3.2.7 muestra la
equivalencia entre (a) ser extendible a un ideal P+, (b) ser extendible a un
ideal Fσ y (c) ser extendible a un P-ideal maximal. Hemos aislado un ideal
I0 que es P+ y no es Fσ, pero tal ideal no es alto (ver teorema 4.3.1). En
este momento no tenemos un ejemplo de ideal P+ alto que no sea Fσ.
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Respecto a la propiedad Q+, nuestro resultado es el teorema 3.2.1 que
muestra la equivalencia entre (a) ser Q-ideal, (b) no estar debajo de EDfin

en el orden de Katětov, (c) no ser ω-separador, (d) no ser ω-intersectante y
(e) tener uniformidad no-numerable, para todo ideal Borel.

Finalmente, hemos encontrado ideales cŕıticos y ejemplos de ideales que
satisfacen algunas versiones débiles de la propiedad de Ramsey.

(5) Hemos estudiado profusamente las propiedades estructurales del orden
de Katětov y mostramos que el orden de Katětov, incluso restringido al
segmento de los ideales Fσ, es muy complicado. El teorema 3.1.1 muestra
que hay un encaje de ordenes parciales del álgebra P(ω)/fin ordenada por
⊆∗ en la familia de los ideales sumables ordenada por el orden de Katětov.
El teorema 3.4.1 de la Dicotomı́a de Categot́ıa de Hrušák parte la clase de los
ideales Borel en dos subclases: los que son destructibles por Cohen forcing y
los que o bien no son P+ o no son Q+.

(6) El análisis de la patoloǵıa de las submedidas inferiormente semicon-
tinuas tiene su piedra angular en el teorema 3.6.5 de la Dicotomı́a de Medida
de Hrušák, el cual divide a la familia de los P-ideales anaĺıticos en dos clases,
una de ellas la de los ideales que no son demasiado patológicos, que tiene
como ideal cŕıtico a Z, el ideal de conjuntos con densidad asintótica cero;
y la otra, que tiene a los ideales que localmente son muy patológicos y que
tiene al ideal S de Solecki como ideal cŕıtico. El teorema 3.7.5 muestra la
relación entre satisfacer el lema de Fatou, satisfacer la propiedad de Fubini
y ser patológico.

Finalmente, mencionaremos que hemos resuelto las preguntas publicadas
que a continuación se describen:

(1) El teorema 2.1.17 responde una pregunta de Brendle y Yatabe [8],
quienes probaron que un ideal I es Random-destructible si y sólo si existe
un conjunto tr(N )-positivo X tal que I ≤K tr(N ) � X. Brendle y Yatabe
preguntaron si el conjunto X puede ser omitido, y por nuestro teorema, la
respuesta es afirmativa.

(2) En Filipow et al [17] los autores preguntaron si es verdad que la

relación ω �� (I +)2
2 implica ω �� (I +)2

3 ; y también preguntaron si

ω �� (I +)2
2 implica que ω �� (I +)2

n para toda n > 2. El teorema

2.7.6 responde ambas preguntas en negativo.

(3) En [44], Solecki demostró que el ideal S es cŕıtico con respecto a
satisfacer el lema de Fatou, en el orden de Katětov, y preguntó si el ideal
S puede ser reemplazado por el ideal Gfc de gráficas con número cromático
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finito en tal caracterización. El teorema 3.5.4 responde la pregunta de Solecki
en negativo.

En el último caṕıtulo estudiamos un problema de Farah, en el que pre-
guntó si todos los ideales Fσδ tienen una forma simple, cercana en esṕıritu
a las caracterizaciones que Mazur y Solecki hicieron de los ideales Fσ y los
P-ideales anaĺıticos, respectivamente.



Preface

The aim of this work is to study several properties about ideals and filters
on countable sets, which be called ideals on ω or filters on ω, and to classify
those ideals and filters with order relations or definability properties. Es-
sentially, we study combinatorial properties, cardinal characteristics, order
relations and look for critical ideals for combinatorial properties. Usually
that critical objects are definable ideals, most of them Borel and exception-
ally co-analytic ideals. Our principal tool is the Katětov order which provides
a useful language making us able to translate combinatorial properties into
functions and definable ideals.

In the first chapter we introduce the concepts studied along this work,
such that the combinatorial properties (P-ideals, tall ideals), cardinal char-
acteristics, order relations, and we add a long list of examples of ideals with a
calculation of their cardinal invariants and their analytic complexity. Some-
times we establish which position they occupy in some order relations.

The second chapter is dedicated to study combinatorial properties of ide-
als on ω among general ideals. Destructibility of ideals by forcing extensions,
Ramsey and related properties and critical ideals for classical families of ul-
trafilters are studied in this chapter. We explore the limits of results that
can be proved without using definability of the ideals.

In the third chapter we make use of the power of definability. Game the-
oretic proofs, cardinal invariants, forcing and absoluteness arguments appear
in this chapter. The Fσ and analytic P-ideals are the protagonists, since two
powerful theorems, one of them due to Mazur and the other due to Solecki
relate lower semicontinuous submeasures with both classes of ideals.

In forth chapter we study a very natural game involving pairs of Borel
ideals, that we have called the comparison game. It allows to classify ideals
in an almost(?) well ordered structure, where the antichains just can be of
cardinality at most 2. Such classification is very near to Borel hierarchy,

xi
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Wadge order and monotone Tukey order.
The main contributions of this work are:
(1) The identification of some critical ideals for combinatorial properties

like Ramsey ideals (see theorem 2.2.2), Borel ω-splitting ideals (see theorem
3.2.1) and many others, in which case are the classical properties about
ultrafilters, like P-point, Q-point, selectivity and rapid ultrafilters (see section
2.8).

(2) The calculation of cardinal characteristics of some particular ideals
like Solecki’s ideal S (see theorem 1.6.2), the ideal EDfin whose cardinal char-
acteristics actually complete in some sense the Cichoń diagram (see theorem
1.6.6), and the ideal Gfc which were studied independently by Minami (see
theorem 1.6.21).

(3) The calculation of complexity of ideals like Cantor Bendixson ideals
and Fubini products (see proposition 1.6.16).

(4) The analysis of the Ramsey property and related combinatorial prop-
erties like P+, Q+ and some weak versions of Ramsey property. Concerning
to the local Ramsey property among Borel ideals we do not have any exam-
ple of such ideal, and then we conjecture that the random graph ideal R is
locally minimal among Borel ideals in the Katětov order. At least we know
that a very large class of Borel ideals, the class of ideals such that the quo-
tient forcing P(ω)/I is proper or does not add new real numbers, is included
in the class of ideals which are locally Katětov-above R (see theorems 2.4.5
and 3.3.1).

About P+ property we have found some very strong relations with the
property Fσ. Theorem 2.8.3 gives a criterion for P-point ultrafilters in terms
of the extendability to Fσ-ideals of Borel ideals. Theorem 3.2.7 shows the
equivalence between (a) to be extendable to a P+ ideal, (b) to be extendable
to an Fσ ideals and (c) to be extendable to a maximal P-ideal. We have
isolated a P+ ideal I0 which is not Fσ, but such ideal is not tall (see theorem
4.3.1). At this moment we do not have any example of a P+ tall ideal which
is not Fσ.

Concerning with the Q+ property, the result is theorem 3.2.1 which shows
the equivalence between to be Q-ideal, not to be Katětov above EDfin, not
be ω-splitting ideal, not be an ω-hitting ideal and to have uncountable uni-
formity number for all Borel ideals.

Finally we have found critical ideals and examples of ideals satisfying
some weak versions of Ramsey property.

(5) The structural properties of Katětov order have been extensively stud-
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ied and we have show that Katětov order, even restricted to a segment of
Fσ-ideals is very complicated. Theorem 3.1.1 shows that there is an or-
der embedding from the algebra P(ω)/fin ordered by ⊆∗ into the family
of summable ideals with the Katětov order. Hrušák’s Category Dichotomy
Theorem 3.4.1 splits the class of Borel ideals in two subclasses: the Cohen-
destructible ideals and the ideals such that either are not P+ or are not
Q+-ideals.

(6) The analysis of pathology of lower semicontinuous submeasures has
its cornerstone in the Hrušák’s Measure Dichotomy Theorem 3.6.5, which
splits the family of analytic P-ideals in two classes, one of them the non-too-
pathological ideals, which have Z as a critical ideal; and the ideals with a very
pathological restriction, whose critical ideal is the Solecki’s ideal S. Theorem
3.7.5 shows the relationship between fulfil the Fatou’s lemma, satisfy the
Fubini property and be pathological.

Finally, we have answered some published questions like the following:
(1) Theorem 2.1.17 answers a question of Brendle and Yatabe [8] who

proved that an ideal I is Random-destructible if and only if there is a tr(N )
positive set X such that I ≤K tr(N ) � X. They asked if the set X could
be omitted in their result, and our proposition answers in the positive.

(2) In Filipow et al [17] the authors ask if is it true that ω �� (I +)2
2

implies ω �� (I +)2
3 and ω �� (I +)2

2 implies ω �� (I +)2
n for all n >

2. Theorem 2.7.6 answers this question in the negative.
(3) In [44], S�lawomir Solecki proved that the ideal S is critical with respect

to fulfil Fatou’s lemma in Katětov order, and he asked if the ideal S could
be replaced by the ideal Gfc of graphs with finite chromatic number in such
characterization. Theorem 3.5.4 answers Solecki’s question in the negative.

In the last chapter we also study a problem of Farah, asking whether all
Fσδ ideals are of a simple form, close in spirit to the powerful characterization
by Mazur and Solecki of Fσ-ideals and analytic P-ideals.
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Preliminaries

This pre-chapter is a compilation of set theoretical and topological concepts
and results that we use in this work. The familiarized reader can skip this
preliminary chapter.

0.1 Set theoretic and topological conventions

This work is framed by the standard set theory Zermelo-Fraenkel with axiom
of Choice. About set theoretical matters we follow Kunen’s book [33], and
for general topology matters we follow Willard’s book [49]. Any ordinal
number α is the set of all those ordinal numbers which are smaller than
α. Natural numbers are the finite ordinal numbers. A cardinal number is
an ordinal number which is no equipotent with any ordinal smaller than it.
The expressions XY , X<κ, [X]κ and [X]<κ respectively mean, the set of
all functions from Y into X, the set of all functions from some α < κ into
X, the set of all subsets of X with cardinality κ and the set of all subsets
of X with cardinality smaller than κ, where X and Y are sets and κ is
a cardinal number. Given a function f and a set A, f ′′A denotes the set
{f(x) : x ∈ A} and ran(f) = {y : (∃x)(f(x) = y)}. For projections of
a subset A of a cartesian product X × Y we agree the following notation:
(A)x = {y ∈ Y : (x, y) ∈ A} and (A)y = {x ∈ X : (x, y) ∈ A}, where x ∈ X
and y ∈ Y . We say that a family X ⊆ P(ω) is ω-hitting (see [11]) if for any
countable family 〈Xn : n < ω〉 of infinite subsets of ω, there is an element X
of X such that X ∩ Xn is infinite, for all n < ω; and we will say that X is
ω-splitting if for any countable family {Xn : n < ω} of infinite subsets of ω
there exists an element X of X such that |X ∩ Xn| = |Xn \ X| = ℵ0, for all
n < ω.

About descriptive set theory we use results and notations appearing in
Kechris’ book [30]. For any topological space X the Borel σ-algebra of X is

xv
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the minimal σ-algebra on X containing all open sets of X, and it is denoted
by Borel(X). When X is a metrizable space, such σ algebra is stratified as
follows. Δ0

1 is the family of clopen sets, Σ0
1 is the family of all open sets, Π0

α

is the family of complements of Σ0
α sets, and for α > 1, Σα is the family of

all unions of countable families of sets taken from the classes Πβ with β < α;
and Δ0

α = Σ0
α∩Π0

α, for all α < ω1. Hence, Σ0
2 is the class of Fσ sets, Π0

2 is the
class of Gδ sets, Σ0

3 is the family of Gδσ sets, Π0
3 is the class of Fσδ sets and so

on. Finally, Borel(X) =
⋃

α<ω1
Σ0

α. If X i s a Polish space and A ⊆ X, then
A is an analytic sets if there is a Borel subset (equivalently, closed subset) B
of ωω and a continuous mapping f : ωω → X such that f ′′B = A. A subset
C of X is co-analytic if its complement is an analytic subset of X.

We denote cones by 〈s〉 = {f ∈ Xω : s ⊆ f} where s ∈ X<ω. By ŝ t we
denote the concatenation of the sequences s and t of X and if t ∈ X then ŝ t
denotes ŝ (t). For any tree T ⊆ X<ω we will denote the family of branches
of T by [T ] and for any t ∈ T , succT (t) = {n : t̂ n ∈ T}. If A is a family of
subsets of ω and T ⊆ ω<ω is a tree, then T is an A-branching tree if for all
t ∈ T , succT (t) ∈ A.

0.2 Absoluteness

Two classical results about absoluteness of formulae are used in this work.
Proofs of these theorems can be seen in Miller’s book [39].

Theorem 0.2.1 (Mostowski’s absoluteness). Suppose M ⊆ N are two tran-
sitive models of ZFC∗ and θ is a Σ1

1 sentence with parameters in M . Then

M |= θ if and only if N |= θ.

�

Theorem 0.2.2 (Schoenfield absoluteness). If M ⊆ N are transitive models
of ZFC∗ and ωN

1 ⊆ M , then for any Σ1
2(x) sentence θ with parameter x ∈ M

(and then, for Π1
2(x) sentences too)

M |= θ if and only if N |= θ.

�
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0.3 Determinacy

One of the most powerful tools used in this work is determinacy. Let A be
a non-empty set and X ⊆ Aω. The game G(A,X) consists of two players,
called Player I and Player II, who take turns choosing elements of A, con-
structing a sequence 〈ai : i < ω〉 ∈ Aω. Player I wins if 〈ai : i < ω〉 ∈ X
and Player II wins otherwise. A winning strategy for Player I is a function
ϕ :

⋃
n A2n → A such that if x ∈ Aω satisfies x(2n + 1) = ϕ(x � 2n) for

all n < ω, then x ∈ X. A winning strategy for Player II is also a function
ψ :

⋃
n A2n+1 → A such that if x ∈ Aω satisfies x(2n + 2) = ψ(x � 2n + 1)

for all n < ω, then x /∈ X.
In most cases, games are defined by rules, that is, not every sequence

of choices of elements of A is allowed by the game. In this case we think
that the game is not played in the whole of the tree A<ω but in a pruned
subtree T of A<ω, whose nodes are called the legal positions of the game. We
usually denote this kind of games by G(T, Y ), where Y ⊆ [T ]. A game with
rules G(T, Y ) is always equivalent with a game G(A,X) since rules can be
coded in such way that any winning strategy for G(A,X) induces a winning
strategy for G(T, Y ) and any winning strategy for G(T, Y ) induces a winning
strategy for G(A,X).

A game G(T, Y ) is determined if there is a winning strategy for one of
the two players. Under Axiom of Choice there are sets X ⊆ ωω such that the
game G(ω, X) is not determined. Bernstein sets are such examples. However,
the complexity of Y as a subspace of the product Aω of the discrete space A
can guarantee the determinacy of the game G(T, Y ).

Theorem 0.3.1 (Gale and Stewart). If Y is a closed or open subset of [T ]
then G(T, Y ) is determined. �

And moreover

Theorem 0.3.2 (D. A. Martin). If Y is a Borel subset of [T ] then G(T, Y )
is determined. �

We will use determinacy of games several times in this work. A typical
game used is defined as follows: Let U be an ultrafilter on ω, and I a Borel
ideal on ω. In step i Player I chooses an element Ui ∈ U and then Player II
chooses an element ni ∈ Ui. Player I wins if {ni : i < ω} ∈ I .

We use Martin’s theorem in order to prove the determinacy of this game
by taking A = P(ω), T ⊆ A<ω defined by t = 〈B0, B1, . . . , Bn〉 ∈ T if for
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any i ≤ n, Bi ∈ U if i is even, |Bi| = 1 (and then, Bi = {ni} for a unique
ni < ω) if i is odd and Bi+2 ∩ [0, ni] = ∅ if i is even; and X ⊆ Aω defined by
x = 〈Bi : i < ω〉 ∈ X if

⋃
i<ω B2i ∈ I . Note that T is not the pruned tree

of legal positions of G(U ,I ), however the tree T is naturally isomorphic to
the tree of legal positions of the game. On the other hand, note that the
function f : T → P(ω) = 2ω given by f(x) =

⋃
i<ω B2i is continuous, since

initial segments of that unions are determined by finite sequences. Then,
since X = f−1[I ] we have that X is Borel and by Martin’s theorem the
game is determined.

0.4 Cardinal invariants of the continuum

Some cardinal invariants of the continuum will be used in this work. We use
some facts about the Baire space ωω ordered by ≤∗. For f, g ∈ ωω, we say
f ≤∗ g if f(n) ≤ g(n) for all but finitely many n < ω. A family F ⊆ ωω is
bounded if there is h ∈ ωω such that f ≤∗ h for all f ∈ F ; and we say F is
dominating if for any g ∈ ωω there is f ∈ F such that g ≤∗ f . Two very
usual cardinal invariants are the minimal cardinality of an unbounded family
b, and the minimal cardinality of a dominating family d.

For any ideal I on a set X, the following cardinal numbers are defined:

• add(I ) = min{|A| : A ⊆ I ∧ ⋃A /∈ I },

• cov(I ) = min{|A| : A ⊆ I ∧ ⋃A = X},

• non(I ) = min{|Y | : Y ⊆ X ∧ Y /∈ I } and

• cof(I ) = min{|A| : A ⊆ I ∧ (∀I ∈ I )(∃A ∈ A)(I ⊆ A)}.

Cardinal invariants of any ideal I satisfy

cov(I )

������������

add(I )

������������

������������
cof(I )

non(I )

������������

(1)
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where every arrow points at the bigger or equal cardinal number. Cardinal
invariants of two important σ-ideals on the real line R (or equivalently the
Cantor space 2ω or the Baire space ωω) are considered: M denotes de σ-ideal
of meager sets and N denotes de σ-algebra of null sets (with respect to the
Lebesgue measure). The following picture shows some inequalities holding
and is known as the Cichoń’s diagram.

cov (N ) �� non (M) �� cof (M) �� cof (N )

b

��

�� d

��

add (N )

��

�� add (M) ��

��

cov (M) ��

��

non (N )

��

For more about Cichoń’s diagram see [2].

Other usual cardinal invariants come from [ω]ω ordered by almost inclu-
sion. We say A ⊆∗ B if and only if A \ B is finite; and we say A =∗ B if
A � B is finite. Let A be a subfamily of [ω]ω. We say A is a splitting family
if for any set B ∈ [ω]ω there is A ∈ A such that |B ∩A| = |B \A| = ℵ0. We
say A is a reaping family if for any B ∈ [ω]ω there is A ∈ A such that A ⊆∗ B
or A ∩ B =∗ ∅. A is open if for any A ∈ A and any B ⊆∗ A, B ∈ A; and is
dense if for any B ∈ [ω]ω there is A ∈ A such that A ⊆∗ B. We say that A
has the strong finite intersection property if any finite subfamily B of A has
an infinite intersection. A set B ⊆ ω is a pseudointersection of A if B ⊆∗ A
for all A ∈ A. A tower is an ordinal-indexed family 〈Aα : α < λ〉 of infinite
subsets of ω such that Aα ⊆∗ Aβ if β < α < λ and there are no infinite
pseudointersections for it. Then the cardinal invariants are defined by (1) s

is the minimal cardinality of a splitting family, (2) r is the minimal cardi-
nality of a reaping family, (3) h is the minimal cardinality of a set of open
dense families with empty intersection, (4) t is the minimal cardinality of a
tower and (5) p is the minimal cardinality of a family with the strong finite
intersection property without infinite pseudointersections. The inequalities
holding for these cardinal invariants are displayed in the following picture,
which is known as the van Douwen’s diagram.
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r d

b

����������

����������
s

����������

h

		��������

��								

t

��

p

��

ℵ1

��

For more about van Dowen’s diagram and cardinal characteristics of the
continuum see Blass’ article [5].

0.5 Forcing

We refer the reader to Kunen’s book [33] for the elementary theory of forcing.
We identify the non-separative preorder 〈[ω]ω,⊆〉 with its separative quotient
P(ω)/fin and in general, we will identify the non-separative forcing 〈I +,⊆〉
with its separative quotient P(ω)/I , for any ideal I . By σ-closedness
P(ω)/fin does not add new real numbers, ω-sequences of real numbers nor
Borel sets. Moreover, in the extension V [G], the generic filter G is a selective
ultrafilter.

Proofs which use selective ultrafilters are supported by the following forc-
ing and absoluteness argument. If we want to prove ϕ, we take a model
V of ZFC∗ and then we go to the forcing extension V [G] where G is a
P(ω)/fin-generic ultrafilter over V . We note that in V [G], G is a selective
ultrafilter and then the argument is correct in V [G] and so V [G] |= ϕ. Fi-
nally, if ϕ is a sufficiently absolute sentence (see Schoenfield’s theorem 0.2.2)
as for example, a Katětov relation between two Borel ideals (see 1.5.3), then
V |= ϕ.

Finally, we will say that a forcing P is ωω-bounding (or adds a dominating
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real) if it adds a real ṙ such that P � “(∀f ∈ ωω ∩ V )(f ≤∗ ṙ)”. We say that
P adds an unbounded real if there is a P-name ṙ for a real number such that
P � “(∀f ∈ ωω ∩ V )(ṙ �∗ f)”.
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Chapter 1

Ideals and their cardinal
invariants

Let X be a non-empty set. An ideal on X is a family I of subsets of X
satisfying:

• ∅ ∈ I and X /∈ I ,

• if A,B ∈ I then A ∪ B ∈ I and

• if A ⊆ B and B ∈ I then A ∈ I .

Unless we specify the contrary, if I is an ideal on X then the family of finite
subsets of X is included in I . If ϕ is a bijective function from X onto Y , and
I is an ideal on X we can think of I as an ideal on Y , since {ϕ′′I : I ∈ I }
is an ideal on Y isomorphic to I . We are interested essentially in ideals on
countable sets. Sometimes, we are interested in σ-ideals on the real line R,
the Cantor space 2ω or the Baire space ωω. A σ-ideal on X is an ideal which
is closed under unions of countable subfamilies of the ideal.

The notion of a filter is dual to the notion of an ideal. A filter on X is a
family F of subsets of X satisfying:

• ∅ /∈ F and X ∈ F ,

• if A,B ∈ F then A ∩ B ∈ F and

• if A ⊆ B and A ∈ F then B ∈ F .

1
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As in the case of ideals, unless we specify the contrary, if F is a filter on
X then F contains every cofinite subset of X. Maximal filters are called
ultrafilters. Given an ideal I on X, we denote by I ∗ the family (filter)
{A ⊆ X : X \ A ∈ I }, which is called the dual filter of I ; and we denote
by I + = {A ⊆ X : A /∈ I } the set of I -positive sets of X. Dually, given
a filter F on X, we denote by F∗ = {ω \ A : A ∈ F}. F∗ is called the dual
ideal of F .

Given an I -positive set Y , the restriction of I in Y is defined by

I � Y = {I ∩ Y : I ∈ I }.

If A, B ⊆ X then we say that A and B are I -almost disjoint if A∩B ∈ I ;
and we say that A is I -almost contained in B (in symbols, A ⊆I B) if
A \ B ∈ I .

A family A ⊆ I is a base for I if for any I ∈ I there is A ∈ A such
that I ⊆ A. Hence, cof(I ) is the minimal cardinality of a base for I . A
family B ⊆ I is a subbase for I if the family of all finite unions of members
of B is a base for I . Given a family C of subsets of X, if there is not a finite
subfamily D of C such that

⋃D = X then the ideal generated by C is the
minimal ideal containing C. Note that C is a subbase of the ideal generated
by C.

1.1 Ideals on ω

Let I be an ideal on a set X. We say I is an ideal on ω if X is a countable
set and I contains all finite subsets of X. In general we will assume that
such countable set X is ω, the first infinite ordinal number.

Fin denotes the ideal of all finite subsets of ω.

We say that an ideal I on ω is:

• tall if for every infinite subset A of ω there is I in I such that I ∩A is
infinite. Equivalently, I is tall if for all I -positive set X the restriction
I � X is not the family of finite subsets of X.

• a P-ideal if for every sequence 〈In : n < ω〉 of elements of I there
exists an element I of I such that In ⊆∗ I, for all n < ω.
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1.2 Measure and category of ideals on ω

Ideals on ω, as subsets of the power set P(ω), can be seen as subspaces
of Cantor’s space 2ω, and so, they can be studied through their analytic
complexity and their topological and measure-theoretic properties.

Proposition 1.2.1 (Folklore). The minimal possible complexity of ideals on
ω is Fσ.

Proof. Since Fin is countable, it is an Fσ ideal. Let I be an ideal on ω.
Since every ideal on ω is a dense subset of 2ω, I can not be a closed set.
Since I ∗ is a subspace of 2ω isomorphic to and disjoint from I , by Baire
category I can not be Gδ.

Proposition 1.2.2 (0-1 Law, Sierpiński). Let I be an ideal on ω. Then

(1) If I has the Baire property then I is meagre.

(2) If I is Lebesgue measurable then I is a null set.

Proof. Note that the switch function sw : 2ω → 2ω given by sw(x)(n) =
1− x(n) for all n < ω is a homeomorphism. Even more, for any t ∈ 2<ω, the
function swt given by swt(x)(n) = t(n) if n < |t| and swt(x)(n) = 1 − x(n)
if n ≥ |t| is an autohomeomorphism of the clopen set 〈t〉.

(1) Assume that I has the Baire Property and is not meagre. Let t ∈ 2<ω

be such that U = 〈t〉 is a basic clopen set of 2ω such that I ∩U is comeagre.
Since swt witnesses that I ∩ U is homeomorphic to I ∗ ∩ U , we have two
disjoint comeagre subsets of U , a contradiction with Baire Category theorem.

(2) Let λ denote the Lebesgue measure on 2ω. Assume that I is Lebesgue
measurable and λ(I ) > 0. Note that for any basic clopen set U = 〈t〉,

λ(I ∩ U) = λ(I )λ(U) (1.1)

since for any s ∈ 2<ω with |s| = |t|, λ(I ∩U) = λ(I ∩〈s〉). Then equation 1.1
also holds for any open set U . We will prove that λ(I ) = 1, by contradiction.
Let suppose that there is a closed set C with positive measure and disjoint
with I . Let U be an open set such that C ⊆ U , and λ(C) < λ(U) < λ(C)

1−λ(I )
.

Then 1 − λ(I ) < λ(C)
λ(U)

and then λ(I ) > λ(U)−λ(C)
λ(U)

. Hence, λ(I ∩ U) >

λ(U \C) and then, C ∩I �= ∅, a contradiction. Now, since sw is a function
that preserves measures of sets, we have that I and I ∗ are disjoint full
measure sets, a contradiction.
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A very important result about category of filters (and ideals) is the follow-
ing theorem due to Jalali-Naini and Talagrand. We will say that a filter F is
bounded if the family of increasing enumeration functions eA of the elements
A of F is a ≤∗-bounded family.

Theorem 1.2.3 (Jalali-Naini [25], Talagrand [46] see [2] theorem 4.1.2). Let
F be a filter on ω. The following conditions are equivalent.

1. F has the Baire property,

2. F is meager,

3. F is bounded,

4. there is a partition of ω in intervals {In : n < ω} such that for any
F ∈ F , F ∩ In �= ∅ for all but finitely many n < ω and

5. there is a function f ∈ ωω fin-to-one such that {f−1[F ] : F ∈ F} is the
cofinite filter. �

A well-known corollary of Jalali-Naini - Talagrand theorem is the follow-
ing.

Corollary 1.2.4 (Folklore). For any meager ideal I and any I -positive
set X there is an almost-disjoint family A of I -positive subsets of X of
cardinality c.

Proof. If I is meager then I ∗ is meager and by Jalali-Naini - Talagrand
theorem there is a partition of ω in intervals {In : n < ω} such that for any
F ∈ I ∗, F ∩ In �= ∅ for all but finitely many n < ω. Then, if B ⊆ ω is such
that In ⊆ B for infinitely many n then X ∈ I +. Define S = {n : In∩X �= ∅}
and Jn = In ∩X for all n ∈ S. It is clear that S is infinite, and then there is
a bijective function ψ : 2<ω → S. For each x ∈ 2ω, define Ax =

⋃
n<ω Jψ(x�n).

Hence the family A = {Ax : x ∈ 2ω} is the required one.

An ideal I is hereditarily meager if for any I -positive set X the restric-
tion I � X is a meager ideal.

Note that by the 0-1 law, any Borel, analytic or co-analytic ideal is heredi-
tarily meager, since such ideals are hereditarily Borel, analytic or co-analytic,
respectively. Recall that all analytic and co-analytic sets have the Baire prop-
erty (see [30], theorem 29.5).

The following lemma shows that partial orders of the form P(ω)/I with
I hereditarily meager ideal are never c.c.c.
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Lemma 1.2.5 (Disjoint Refinement Lemma for Definable Ideals). If I is
a hereditarily meager ideal and {Xn : n < ω} is a family of I -positive sets
then there is a pairwise disjoint family {Yn : n < ω} of I -positive sets such
that Yn ⊆ Xn for all n < ω.

Proof. For any n < ω we construct an I -almost disjoint family An as fol-
lows. Let A0 be an I -almost disjoint family of I -positive subsets of X0 of
cardinality c. For any n, we have two cases: (1) if Xn+1 \

⋃
k≤n Xk is I -

positive then we choose an I -almost disjoint family Bn of I -positive subsets
of Xn+1 \

⋃
k≤n Xk of cardinality c and then define An+1 = An ∪ Bn, and (2)

if Xn+1 is I -almost contained in
⋃

k≤n Xk then we have two new cases: (a)
if there is an element A in An I -almost contained in Xn+1 then we take an
I -almost disjoint family Cn of positive subsets of A of cardinality c and then
we define An+1 = (An \ {A})∪ Cn, and (b) if every A ∈ An is I -almost dis-
joint with Xn+1 then we take an I -almost disjoint family Dn of I -positive
subsets of Xn+1 of cardinality c, and then we define An+1 = An ∪ Dn. Note
that in every case, An+1 is an I -almost disjoint family of cardinality c. De-
fine A =

⋃
n<ω

⋂
k≥n Ak. Note that P(Xn) ∩ A is uncountable for all n,

since only countably many of the elements of An could have been modified.
Finally, we can recursively define Yn as follows: pick Y0 ∈ A contained in
X0 and Yn+1 = Zn+1 \

⋃
k≤n Yk, where Zn+1 is an element of A contained in

Xn+1.

1.3 Ideals and submeasures

A natural way to define ideals on ω is by using submeasures. They provide
ideals with low complexity and good combinatorial properties.

Definition 1.3.1. A submeasure on a set X is a function ϕ : P(X) → [0,∞]
satisfying:

• ϕ(∅) = 0,

• (Monotonicity) If A ⊆ B then ϕ(A) ≤ ϕ(B) and

• (Subadditivity) ϕ(A ∪ B) ≤ ϕ(A) + ϕ(B).

If ϕ is a submeasure on ω and satisfies:

• (Lower semicontinuity) ϕ(A) = limn→∞ ϕ(A ∩ n)



6 CHAPTER 1. IDEALS AND THEIR CARDINAL INVARIANTS

then ϕ is called a lower semicontinuous submeasure, which is abbreviated
by lscsm. For any lscsm ϕ, the finite and exhaustive ideals are defined as
follows:

• Fin(ϕ) = {A ⊆ ω : ϕ(A) < ∞} and

• Exh(ϕ) = {A ⊆ ω : limn→∞ ϕ(A \ n) = 0}.

It is immediate that Fin(ϕ) is an Fσ-ideal and Exh(ϕ) is an Fσδ P-ideal.
The following theorem claims that the converses are valid too.

Theorem 1.3.2. Let I be an ideal on ω. Then

• (Mazur [38]) If I is an Fσ-ideal then there is a lscsm ϕ such that
I = Fin(ϕ) and

• (Solecki [43]) If I is an analytic P-ideal then there is a lscsm ϕ such
that I = Exh(ϕ).

If I is an Fσ P-ideal then there is a lscsm ϕ such that I = Exh(ϕ) =
Fin(ϕ). �

It follows that many ideals given in the examples section 1.6 are Fσ-ideals
or analytic P-ideals.

1.4 Cardinal invariants of ideals on ω

Let I be a tall ideal on ω. The cardinal invariants of I are defined as
follows (see [20]).

• add∗(I ) = min{|A | : A ⊆ I ∧ (∀I ∈ I )(∃J ∈ A )(|J \ I| = ℵ0)}.

• cov∗(I ) = min{|A | : A ⊆ I ∧ (∀X ∈ [ω]ℵ0 ∩I )(∃J ∈ A )(|X ∩ J | =
ℵ0)}.

• non∗(I ) = min{|X | : X ⊆ [ω]ℵ0 ∧ (∀I ∈ I )(∃X ∈ X )(I ∩X =∗ ∅)}.

Cardinal invariants of ideals on ω satisfy the following relations:
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cov∗(I )

������������

add∗(I )

������������

������������
cof(I )

non∗(I )

������������

(1.2)

where every arrow points at the bigger or equal cardinal number.

Remark 1.4.1. Let I be a tall ideal on ω. Then

• non∗(I ) = min{|X | : X ⊆ [ω]ℵ0 ∧ (∀I ∈ I )(∃X ∈ X )(I ∩ X = ∅)}
and

• cov∗(I ) = min{|A | : A ⊆ I ∧(∀X ∈ [ω]ℵ0)(∃J ∈ A )(|X∩J | = ℵ0)}.
Proof. Note that if X witnesses non∗(I ) then X ′ = {X \ n : X ∈ X ∧
n < ω} is a witness for non∗(I ) too; and since tall ideals have elements
intersecting infinitely each infinite set, we are done.

The following remark is an immediate consequence of definitions.

Remark 1.4.2. Let I be a tall ideal on ω. Then,

(1) I is a P-ideal iff ℵ0 < add∗(I ) and

(2) I is ω-splitting iff ℵ0 < non∗(I ).

�

1.5 Orders on ideals on ω

We now introduce four (pre)orders between ideals on ω and then we will
discuss how they impact on cardinal invariants of ideals. Let I and J be
ideals on ω.

• (Katětov order) I ≤K J if there is a function f : ω → ω such that
f−1[I] ∈ J , for all I ∈ I .
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• (Katětov-Blass order) I ≤KB J if there is a finite-to-one function
f : ω → ω such that f−1[I] ∈ J , for all I ∈ I .

• (Rudin-Keisler order) I ≤RK J if there is a function f : ω → ω such
that A ∈ I if and only if f−1[I] ∈ J .

• (Tukey order) I ≤T J if there is a function f : I → J such that
for every ⊆-bounded set X ⊆ J , f−1[X] is ⊆-bounded in I .

We will say I and J are Katětov-equivalent if I ≤K J and J ≤K I .
Analogously Katětov-Blass, Rudin-Keisler and Tukey-equivalent are defined.

Remark 1.5.1. Let I and J be ideals on ω.

(1) If I ⊆ J then I ≤K J .

(2) If X ∈ I + then I ≤K I � X and I � X ≤T I .

Proof. Idω is a witness of I ≤K J . Inclusion of X into ω is a witness of
I ≤K I � X, and inclusion of I � X into I is a witness of I � X ≤T

I .

Theorem 1.5.2. Let I and J be ideals on ω. Then

(1) If I ≤K J then non∗(I ) ≤ non∗(J ) and cov∗(J ) ≤ cov∗(I ).

(2) If I ≤T J then cof(I ) ≤ cof(J ) and add∗(J ) ≤ add∗(I ).

Proof. (1) Let X witness the definition of non∗(J ) and let f : ω → ω be
a witness to I ≤K J . Define Y = {f [X] : X ∈ X }. Given I ∈ I ,
f−1[I] ∈ J and so, there exists a X ∈ X such that X ∩ f−1[I] is finite.
Hence, f [X] ∩ I is finite, proving that non∗(I ) ≤ |Y | ≤ non∗(J ).

Now, let A witness the definition of cov∗(I ). We claim that

B = {f−1[A] : A ∈ A } ∪ {f−1[F ] : F ∈ Fin}
is a witness to the definition of cov∗(J ). Let X be an infinite subset of ω.
If f [X] is infinite then there exists A ∈ A such that A∩ f [X] is infinite and
hence X ∩ f−1[A] is infinite. If f [X] is finite then X ⊆ f−1[f [X]] ∈ B. In
both cases, X has an infinite intersection with a member of B.

(2) Let f : I → J be a Tukey reduction and X a base for J . For
every X ∈ X there exists an IX ∈ I such that I ⊆ IX if f(I) ⊆ X. Then,
{IX : X ∈ X } is cofinal in I .
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Now, let A be a witness for add∗(I ). Note that direct image of a ⊆-
unbounded subset under a Tukey reduction is ⊆-unbounded. Hence, {f(A) :
A ∈ A } is unbounded.

By Schoenfield absoluteness theorem we show that the Katětov order
among Borel ideals is absolute for models M ⊆ N such that ωN

1 ⊆ M .

Proposition 1.5.3. If I and J are Borel ideals then the relation I ≤K J
is absolute for models M ⊆ N such that ωN

1 ⊆ M .

Proof. If I and J are Borel ideals then there are Σ0-formulae ϕI and ϕJ

such that for any A ⊆ ω,

A ∈ I if and only if ϕI (A) holds

and
A ∈ J if and only if ϕJ (A) holds.

Then we can express Katětov order between I and J by the formula:

(∃f ∈ ωω) (∀I ∈ P(ω)) (∀J ∈ P(ω))[
ϕI (I) → (

(∀n ∈ ω) (f(n) ∈ I ↔ n ∈ J) → ϕJ (J)
)]

which is a Σ1
2 formula.

1.6 Examples

In this section we define most of the ideals and families of ideals on ω which
we have isolated as critical ideals for combinatorial or measure theoretic
properties. In most cases, we calculate their cardinal invariants and analytic
complexity.

Fin and ∅
Fin is the ideal of finite subsets of ω. Fin is the unique countable ideal on
ω so, its complexity is Fσ and its cardinal invariants are trivial. Fin is not a
tall ideal. By ∅ we denote the ideal whose unique element is the empty set.
Strictly speaking, ∅ is not an ideal on ω, as we stipulated that all ideals on
ω contain all the finite subsets of ω, but it will be useful to have notation for
it.
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nwd

nwd is the ideal on the set of rational numbers Q whose elements are the
nowhere dense subsets of Q. nwd is a tall non P-ideal, and its analytic
complexity is Fσδ (see corollary 4.3.5). A result of Keremedis, reformulated
and proved by Balcar, Hernández-Hernández and Hrušák ([1] Theorem 1.4)
shows that cov∗(nwd) = cov(M). In Theorem 1.6 of [1] was proved that
cof(nwd) = cof(M). Any countable base for open sets of Q is a witness for
non∗(nwd) = ℵ0.

Solecki’s ideal S
Solecki’s ideal S is the ideal on the countable set

Ω = {A ∈ Clop(2ω) : λ(A) =
1

2
},

which is generated by the subsets of Ω with non-empty intersection. Equiv-
alently, a subbase for S is the family of all subsets of Ω of the form:

Ix = {A ∈ Ω : x ∈ A}

where x is an element of 2ω.

Proposition 1.6.1. S is a tall Fσ- ideal.

Proof. Let {An : n < ω} be an infinite subset of Ω, and define Y = {x ∈ 2ω :
(∃∞n)(x ∈ An)}. We will see that δ = λ(Y ) ≥ 1

2
. Suppose δ < 1

2
. Define

Bn = An \ Y . So, λ(Bn) ≥ 1
2
− δ = ε > 0. Define for every a ∈ [ω]<ω

Ca = {x ∈ 2ω : x ∈ Bn ↔ n ∈ a}.

Then, {Y } ∪ {Ca : a ∈ [ω]<ω} is a countable partition of 2ω in measurable
sets. Let G be a finite subset of [ω]<ω such that λ(Y ∪ ⋃

a∈G Ca) ≥ 1 − ε
2
.

If n /∈ ⋃
G then Bn ∩ ⋃

a∈G Ca = ∅. But λ(Bn) ≥ ε for all n. This is a
contradiction.

The function ϕ(A) = min{|X| : X ⊆ 2ω ∧ (∀a ∈ A)(∃x ∈ X)(x ∈ a)} is a
lscsm such that S = Fin(ϕ), proving that S is an Fσ-ideal.

On the cardinal invariants of S we have the following result.

Theorem 1.6.2. The following holds.
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(1) add∗(S) = non∗(S) = ℵ0,

(2) cov∗(S) = non(N ) and

(3) cof(S) = c.

Proof. In order to prove (1), it will be enough to find a countable family A
of subsets of Ω such that for every I ∈ S exists A ∈ A such that A∩ I =∗ ∅.
For every s ∈ ⋃

2≤n<ω 2n define As = {A ∈ Ω : A ∩ 〈s〉 = ∅}. Note that

As is infinite for all s, since λ(〈s〉) ≤ 1
4
. Moreover, if F is a finite subset of⋃

2≤n<ω 2n and λ(
⋃

s∈F 〈s〉) ≤ 1
4

then BF = {A ∈ Ω : (∀s ∈ F )(〈s〉∩A = ∅)} is
infinite. Define A as the family of all BF with F a finite subset of

⋃
2≤n<ω 2n.

Now, given A ∈ S, there exist x0, . . . , xk ∈ 2ω such that A ⊆ ⋃
i≤n Ixi

.

Pick si an initial segment of xi such that
∑k

i=1 λ(〈si〉) ≤ 1
4
. Hence, for

F = {si : i ≤ k} we have A ∩ BF = ∅.
In order to prove (2), we need the following result. Here, λ∗ denotes the

outer Lebesgue measure on 2ω.

Lemma 1.6.3. Let X be a subset of 2ω.

(a) If λ∗(X) < 1
2

then there exists an infinite subset A of Ω such that Ix ∩
A =∗ ∅, for all x ∈ X.

(b) If λ∗(X) > 1
2

then for every infinite subset A of Ω there exists x ∈ X
such that |Ix ∩ A| = ℵ0.

Proof. (a) Let U be an open subset of 2ω such that λ(U) < 1
2

and X ⊆ U .
Let 〈Un : n < ω〉 be an increasing family of clopen sets such that U =

⋃
n Un.

For every n < ω, choose An ∈ Ω such that An ∩Un = ∅. Then, if x ∈ X then
there is n < ω such that x ∈ Un and then x ∈ Ak implies k < n.

(b) Let {An : n < ω} be a countable subset of Ω, and define Y =
{x ∈ 2ω : ∃∞n(x ∈ An)}. In the proof of proposition 1.6.1 was proved that
λ(Y ) = δ ≥ 1

2
. Given λ∗(X) > 1

2
, we have X ∩ Y �= ∅.

Let T be a witness for cov∗(S). For every T ∈ T pick a finite subset aT

of 2ω such that T ⊆ ⋃
x∈aT

Ix. Define X =
⋃

T∈T aT and T ′ = {Ix : x ∈ X}.
Note that T ′ is a witness for cov∗(S). By (a) of previous lemma, we have
λ∗(X) ≥ 1

2
, and so, X /∈ N . Obviously, |X| = cov∗(S), proving non(N ) ≤

cov∗(S).
On the other hand, let X ⊆ 2ω be a witness for non(N ). By defining

X + Fin = {y ∈ 2ω : (∃x ∈ X)(y =∗ x)} and proving λ∗(X + Fin) ≥ 1
2

we
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will be done (by (b) in previous lemma). Actually, arguments given in the
proof of measure 0-1 law (proposition 1.2.2(2)) prove that λ∗(X + Fin) = 1.

Now, we will prove (3). Let A be a subset of S with |A| < c. For
every B ∈ A, pick a finite subset aB of 2ω such that B ⊆ ⋃

x∈aB
Ix. Note

that |⋃B∈A aB| < c. Let y ∈ 2ω \ ⋃
B∈A aB. Note that, for every B ∈ A,

Iy \ B ⊇ Iy \
⋃

x∈aB
Ix and |Iy \

⋃
x∈aB

Ix| = ℵ0.

ED
The eventually different ideal is defined by

ED = {A ⊆ ω × ω : (∃m,n ∈ ω)(∀k ≥ n)(|(A)k| ≤ m)}.1

ED is the ideal on the countable set ω × ω generated by vertical lines and
graphs of functions in ωω. It can be thought as the ideal on ω generated
by the elements of an infinite partition of ω in infinite sets, and selectors of
this partition. ED is an Fσ-ideal, since ED = Fin(ϕ) where ϕ is the lscsm
defined by ϕ(A) = min{n < ω : (∀m ≥ n)|Am| ≤ n}, for all A ⊆ ω.

On the cardinal invariants of ED we have the following result.

Theorem 1.6.4. The following conditions hold.

(1) add∗(ED) = non∗(ED) = ℵ0,

(2) cov∗(ED) = non(M) and

(3) cof(ED) = c.

Proof. (1) Let us proof that the set {{n} × ω : n < ω} is a witness for
non∗(ED). If A is an infinite subset of ω × ω then there are two cases: (1)
There exists n < ω such that |(A)n| = ℵ0, in such case {n}×ω has an infinite
intersection with A; and (2) A intersects an infinite number of columns, and
in such case a selector of that intersections is in ED.

In order to prove (2) we need de following result due to Bartoszyński and
Miller.

Lemma 1.6.5 ([2], Lemma 2.4.8). For any cardinal κ the following are equiv-
alent:

(a) κ < non(M),

1See the notation for columns in products given in the preliminaries.
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(b) (∀F ∈ [ωω]κ)(∃g ∈ ωω)(∃X ∈ [ω]ω)(∀f ∈ F )(∀∞n ∈ X)(f(n) �= g(n))
and

(c) 2 (∀F ∈ [C]κ)(∃g ∈ ωω)(∀S ∈ F )(∀∞n)(g(n) /∈ S(n)). �

Let F be a subset of ωω with minimal cardinality such that

(∀g ∈ ωω)(∀X ∈ [ω]ω)(∃f ∈ F)(∃∞n ∈ X)(f(n) = g(n)).

Define A = F ∪{{n}×ω : n < ω} (we are identifying every function f ∈ ωω

with its graph {(n, f(n)) : n < ω}). Obviously A ⊆ ED. We claim that A is
a covering family. Let A be an infinite subset of ω ×ω. If there exists n < ω
such that (A)n is infinite, then (A)n is an infinite subset of an element of A. If
the set X = {n < ω : (A)n �= ∅} is infinite then there exists f ∈ F such that
f(n) = min((A)n) for an infinite number of elements n of X. Hence, f ∩ A
is infinite. On the other hand, let A be a subset of ED with |A| < non(M).
For every A ∈ A, let nA < ω such that |(A)k| ≤ nA for all k ≥ nA, and define
a function SA : ω → [ω]≤nA by:

SA(n) =

{
∅ if n < nA

(A)n if n ≥ nA.

Note that |{SA : A ∈ A}| = |A|, and by previous lemma, there is g ∈ ωω

such that for every A ∈ A, g(n) /∈ SA(n), for almost all n < ω. Hence, g ∩A
is finite for all A ∈ A, and so, A is not a covering family.

Finally we prove (3). We define a perfect subset C of ED as follows. Let
ψ : 2<ω → ω be defined by ψ(t) = n if and only if t is the n-th element of
2<ω in the lexicographical order. For each f ∈ 2ω, let us define

Af = {(2n, ψ(f � n)) : n < ω}.

Then, let C = {Af : f ∈ 2ω}. Note that for any I ∈ ED, the set

{f ∈ 2ω : Af ⊆ I}

is just a finite set. Hence, for any family A ⊆ I with less than c elements,
there is f ∈ 2ω such that Af � I for all I ∈ A.

2C = {S ∈ ([ω]<ω)ω :
∑∞

n=1
|S(n)|

n2 < ∞}, definition 2.3.2 in [2].
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EDfin

The ideal EDfin is defined as the restriction of ED to the set

Δ = {(n,m) : m ≤ n < ω}.

Also EDfin can be thought as the ideal on ω generated by the selectors of a

partition {In : n < ω} of ω in finite sets and such that |In| n→∞ �� ∞ . EDfin

is a tall ideal (every infinite subset of ω × ω intersects an infinite number
of columns, and a selector from that intersections is an infinite element of
EDfin); and is Fσ since it is a restriction of an Fσ-ideal. EDfin is an ω-
splitting ideal, and moreover, is critical with respect to this property in
Katětov-Blass order among Borel ideals, as we prove in theorem 3.2.1.

About the cardinal invariants of EDfin we have the following result.

Theorem 1.6.6. The following conditions hold.

(1) add∗(EDfin) = ℵ0,

(2) s ≤ cov∗(EDfin) and non∗(EDfin) ≤ r,

(3) cov(M) = min{d, non∗(EDfin)} ,

(4) non(M) = max{cov∗(EDfin), b}, and

(5) cof(EDfin) = c.

Proof. There is not a set A in EDfin such that every row (ω \ n) × {n} is
almost contained in A.

The first part of (2) will be shown in the proof of theorem 1.6.23.
Let us prove the second part of (2). We will say that a family R is

hereditarily reaping if for every X ∈ R and every infinite subset Y of X
there is R in R such that R ⊆ Y or R ⊆ X \ Y .

Lemma 1.6.7. r = min{|R| : R is hereditarily reaping}.
Proof. It will be enough to prove that there is a hereditarily reaping family
of cardinality r. Let Q be a reaping family of cardinality r. Define Q0 = Q
and by recursion, for any n < ω, let Qn+1 be such that for any A ∈ Qn,
Qn+1 ∩ P(A) is a reaping family of cardinality r. So, R =

⋃
n<ω Qn is a

hereditarily reaping family.
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Let R be a hereditarily reaping family, and for every R ∈ R and n < ω
define

XR,n = {(m,n) : m ≥ n ∧ m ∈ R}.
We will see that A = {XR,n : R ∈ R ∧ n < ω} witnesses non∗(EDfin). Let
I be in EDfin, and choose a family {fi : i ≤ N} of functions such that
I ⊆ ⋃

i≤N fi. Define Aj = {k : (∃i ≤ N)(fi(k) = j)}, for j ≤ N . Let R0 be
in R such that R0 ∩ A0 = ∅ or R0 ⊆ A0. In general, for 1 ≤ j ≤ N we can
find Rj ∈ R such that Rj ∩ (Rj−1 ∩ Aj) = ∅ or Rj ⊆ Rj−1 ∩ Aj. If the first
case holds for some j ≤ N we are done, because for such j minimal, we have
that XRj ,j ∩ I = ∅. Suppose that Rj ⊆ Rj−1 ∩ Aj for all 1 ≤ j ≤ N . Then,
for any k ∈ RN , (I)k = N + 1, and then, XRN ,N+1 ∩ I = ∅.

In order to prove (3) we will need the following lemma, due to Bar-
toszyński and Miller.

Lemma 1.6.8 ([2], lemma 2.4.2). For any cardinal κ the following conditions
are equivalent:

1. κ < cov(M), and

2. (∀F ∈ [ωω]κ)(∀G ∈ [[ω]ω]κ)(∃g ∈ ωω)(∀f ∈ F )(∀X ∈ G)
(∃∞n ∈ X)(f(n) = g(n)). �

Let X be a subset of [Δ]ℵ0 with |X | < cov(M). For every X ∈ X
define GX = {n < ω : (X)n �= ∅} and let fX ∈ ωω be a function such
that fX(n) ∈ (X)n. By lemma 1.6.8, there is a function g ∈ ωω such that
fX(n) = g(n) for infinitely many elements n of GX , for all X ∈ X . Then,
Δ ∩ g is an element of EDfin intersecting infinitely to every element of X ,
proving |X | < non∗(EDfin). It is a well known fact that cov(M) ≤ d. Let
κ be a cardinal lower than d and non∗(EDfin). We will use and prove the
following lemma.

Lemma 1.6.9. Let κ be an infinite cardinal. The following are equivalent.

(a) κ < non∗(EDfin) and

(b) for every bounded family F of κ functions in ωω and every family A of
κ infinite subsets of ω there exists a function g ∈ ωω such that for all
f ∈ F and A ∈ A, f(n) = g(n) for infinitely many n ∈ A.
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Proof. Assume that κ satisfies (b) and let B be a family of κ infinite subsets
of Δ. For every B ∈ B, let XB = {n : (B)n �= ∅} and fB : ω → ω
such that fB(n) ∈ (B)n if n ∈ XB, and fB(n) = 0 if not. The families
F = {fB : B ∈ B} and A = {XB : B ∈ B} have cardinality κ, and so, there
exists a function g ∈ ωω such that for all B ∈ B there are infinitely many
n ∈ XB such that g(n) = fB(n), showing that g has an infinite intersection
with B.

Now, assume that κ < non∗(EDfin), F ⊆ ωω and A ⊆ [ω]ω have car-
dinality κ, and F is bounded by an increasing function h ∈ ωω. We will
identify every f ∈ F with a subset of an EDfin-positive subset Δ′ of Δ, as
follows: Define X = h′′ω, Δ′ =

∏
n∈X n, A′ = h′′A if A ∈ A, and for each

f ∈ F , define f ′ : X → ω by f ′(n) = f(h−1(n)). So, F ′ = {f ′ : f ∈ F}
is a family of infinite subsets of Δ′. Let B = {f ′ � A′ : f ∈ F ∧ A ∈ A}.
Since |B| = κ, there exists I ∈ EDfin such that I ∩ B is infinite for all
B ∈ B. Let {gi : i ≤ N} be a set of functions in ωω such that I ⊆ ⋃

i≤N gi.
Choose Bf,A = {n ∈ A′ : f ′(n) = gi(n)}, for some i ≤ N such that
|(f ′ � A′) ∩ gi| = ℵ0, and define C = {Bf,A : f ∈ F ∧ A ∈ A}. By (1)
|C| ≤ κ < r, and so, there exists Y ∈ [ω]ω such that |Y ∩Bf,A| = ω = |Bf,A\Y |
for all f and A. Inside Y , by considering {Bf,A ∩ Y : f ∈ F ∧A ∈ A}, there
is a partition Y ′

0 , Y
′
1 of Y such that |Y ′

0 ∩Bf,A| = ℵ0 = |Y ′
1 ∩Bf,A| for all f and

A. Inductively, by considering such kind of partitions we can find a partition
{Yi : i ≤ N} of Y such that for all i ≤ N , |Bf,A ∩ Yi| = ℵ0. Now, define
g(n) = gi(n) if n ∈ Yi and g(n) = 0 if n /∈ Y . Given f and A, if i ≤ N is such
that Bf,A = {n ∈ A′ : f ′(n) = gi(n)} then f ′(n) = g(n) for infinitely many
n ∈ Yi ∩ A′, and so, f(n) = g(h(n)) for infinitely many n ∈ h−1[Yi] ∩ A.

Let us prove that κ < cov(M), by using lemma 1.6.8. Let F and G be
families as in 1.6.8(2).

Claim. There exists h ∈ ωω such that for all X ∈ G, f(n) < h(n) for
infinitely many n ∈ X.

Proof of the claim. For every f, A, let eA be the enumeration function of A
and let hf,A ∈ ωω be such that hf,A(n) ≥ f(eA(i)) for all i ≤ n. A function
h which is not dominated by the family {hf,A : A ∈ A ∧ f ∈ F} does the
work.

Now, for every f ∈ F define f ′ ∈ ωω such that f ′(n) = f(n) if f(n) < h(n)
and f ′(n) = 0 otherwise; define Cf,A = {n ∈ A : f(n) < h(n)}, A′ = {Cf,A :
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f ∈ F ∧ A ∈ G} and F ′ = {f ′ : f ∈ F}. F ′ is bounded and so, by lemma
1.6.9, there is g ∈ ωω such that for all f ∈ F and for all A ∈ A, g(n) = f ′(n)
for infinitely many n ∈ Cf,A and in consequence, g(n) = f(n) for infinitely
many n ∈ A.

In order to prove (4), note that b ≤ non(M) and note that ED ≤K

EDfin and so, cov∗(EDfin) ≤ cov∗(ED) = non(M). We are going to use the
following lemma.

Lemma 1.6.10 ([2], theorem 2.4.7). non(M) is the size of the smallest fam-
ily F ⊆ ωω such that for every g ∈ ωω there is an element f of F such that
f(n) = g(n) for infinitely many n ∈ ω. �

Let κ be a cardinal bigger than cov∗(EDfin) and bigger than b. Let
G = {fα : α < κ} be an unbounded family of functions in ωω, and let Gα a
witness of cov∗(EDfin) in Δα = {〈n,m〉 : m ≤ fα(n)}, for all α < κ. Without
loose of generality we can assume that every element I of Gα is the graph of
a function f ∈ ωω. We will prove that F =

⋃
α<κ Gα is such that for every

g ∈ ωω there is f ∈ F such that f(n) = g(n) for infinitely many n ∈ ω.
Given g ∈ ωω, let α < κ be such that fα �∗ g. Then, g ∩ Δα is infinite and
so, there is I ∈ Gα such that I ∩ (g∩Δα) is infinite. Since I is the graph of a
function in F , we are done. The proof of 1.6.4(3) is also a proof for (5).

Remark 1.6.11. Parts (3) and (4) of previous theorem are particularly
relevant since they show that non∗(EDfin) and cov∗(EDfin) complete in a
sense the Cichoń’s diagram, because they make cov(M) be the minimum
of a pair of cardinal invariants, one of them d; and make non(M) be the
maximum of a pair of cardinal invariants, one of them b.

The inequalities b < non(M) and cov(M) < d are both known to be
relatively consistent with ZFC, b < non(M) holds in the Random real model
and cov(M) < d holds in the Laver model. We will prove that the inequalities
cov∗(EDfin) < b and non∗(EDfin) > d are both consistent.

Theorem 1.6.12. Con(ZFC) implies Con (ZFC + cov∗(EDfin) < add(M))
and Con (ZFC + cof(M) < non∗(EDfin)).

Before proving this theorem, it is necessary to introduce some concepts
and a result of preservation under finite support iteration of Laver type forc-
ing with the Fréchet filter as a parameter.

Laver forcing LFr is defined as the family of all perfect trees T ⊆ ω<ω such
that there is a node stem(T ) ∈ T such that for all t ∈ T either t ⊆ stem(T )
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or stem(T ) ⊆ t and for all node t ⊇ stem(T ), succT (t) is a cofinite subset of
ω. The order is the inclusion.

Let us introduce the following notation:

Fn(Δ) = {A ⊆ Δ : ∀k, m1,m2 ((k, m1), (k, m2) ∈ A → m1 = m2)} .

We will say that a forcing P strongly preserves cov∗(EDfin) if for any P-
name Ȧ such that P � “Ȧ ∈ Fn(Δ)”, there is a countable family {Bn : n <
ω} ⊆ Fn(Δ) such that for all B ∈ Fn(Δ) for which |B ∩ Bn| = ℵ0 for all
n, it happens that P � “|B ∩ Ȧ| = ℵ0”. Note that if P strongly preserves
cov∗(EDfin) then P � “2ω ∩ V is a cov∗(EDfin) family”. We will prove that
the finite support iteration of Laver forcing with Fréchet filter of arbitrary
length strongly preserves cov∗(EDfin).

Lemma 1.6.13. Let ḣ be a LFr-name for an element of Fn(Δ). Then there
is a countable subfamily {hn : n < ω} of Fn(Δ) such that for any g ∈ Fn(Δ),
if |g ∩ hn| = ℵ0 for all n then LFr � “|ḣ ∩ g| = ℵ0”.

Proof. By shrinking ḣ we can assume that the increasing enumeration {ḋn :
n < ω} of dom(ḣ) is such that dn > l̇gen, where l̇gen is the LFr-generic real.
For any n < ω and s ∈ ω<ω define rkn(s) as follows:

• rkn(s) = 0 iff there is T ∈ LFr with stem(T ) = s and there is m < ω
such that T � “ḋn = m”,

• rkn(s) ≤ α iff there are infinitely many k < ω such that rkn(ŝ k) < α,
and

• rkn(s) = min{α : rkn(s) ≤ α}.
First, we claim that every s ∈ ωω has a rkn for all n < ω. Suppose not.
Let s ∈ ω<ω be without a rkn. Then for any m < ω there are only finitely
many k < ω such that rkn(ŝ k) is defined. Hence, we can construct a tree
T ∈ LFr such that for all t ∈ T , rkn(t) is not defined; but for an extension
T ′ ≤ T deciding ḋn we have a contradiction by considering stem(T ′). Now,
for n < ω and s ∈ ω<ω with rkn(s) = 1, let us define hn,s : dom(hn,s) → ω
such that m ∈ dom(hn,s) iff there is k < ω and there is a tree T ∈ LFr with
stem(T ) = ŝ k such that T � “ḋn = m”; and
hn,s(m) =
min{l : ∃k(∃T ∈ LFr)ŝ k prefers ḣ(m) = l∧stem(T ) = ŝ k∧T � “m = ḋn”}.
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Let us note that if rkn(s) = 1 then there exist infinitely many m < ω for
which there is k < ω such that ŝ k prefers ḋn = m. If not, there were m
such that for infinitely many k, ŝ k prefers ḋ = m, and then, s itself prefers
ḋ = m, showing that rkn(s) = 0. Let g be an element of Fn(Δ) such that
|g∩hn,s| = ℵ0 for all n and s possible. By contradiction, suppose that there is
a tree T ∈ LFr and there is m < ω such that T � “(∀n ≥ m)(ḣ(ḋn) �= g(ḋn))”.
Let s be the stem of T and n ≥ m such that rkn(s) > 0. By following inside T
we can find t ∈ T with s ⊆ t and rkn(t) = 1. By cofiniteness of succT (t), there
is a k ∈ succT (t) and M < ω such that t̂ k prefers ḣ(M) = g(M), and hence
there is an extension T ′ of T such that T ′ � “ḋn = M ∧ ḣ(M) = g(M)”, a
contradiction.

Note that easily we can strength the previous lemma by adding the same
condition for any sequence 〈ḣn : n < ω〉 of LFr-names for elements of Fn(Δ).

Strong preservation of cov∗(EDfin) property is even satisfied by finite
support iteration of LFr.

Lemma 1.6.14. Let α be an ordinal number and let Lα
Fr be the finite support

iteration of LFr with length α. Then, if ḣ is an Lα
Fr-name for an element of

Fn(Δ) then there is a countable subfamily {kn : n < ω} of Fn(Δ) such that
for any g ∈ Fn(Δ), if |g ∩ kn| = ℵ0 for all n then Lα

Fr � “|ḣ ∩ g| = ℵ0”.

Proof. By induction on α. For successor step α+1 we can consider a sequence
〈ḣn : n < ω〉 of Lα

Fr-names for elements of Fn(Δ)∩ V [G] where G is an Lα
Fr-

generic filter on V , such that

V [G] |= (∀g ∈ Fn(Δ))
(
(∀n < ω|g ∩ hn| = ℵ0) → LFr � “|ḣ ∩ g| = ℵ0”

)

and by inductive hypothesis and the note on previous lemma, in V there is
a countable family {k̇n : n < ω} such that for any g ∈ Fn(Δ) such that
|g ∩ k̇n| = ℵ0 for all n < ω it happens that Lα

Fr � “∀n < ω|g ∩ ḣn| = ℵ0”,
and then, if G′ is a LFr-generic filter on V [G] then V [G][G′] |= |g ∩ ḣ| = ℵ0.

For cf(α) = ω, let 〈αm : m < ω〉 an increasing sequence with supk<ω αk =

α and inductively assume that for each k, the forcing Lαk+1−αk

Fr strongly pre-
serves cov∗(EDfin)-families, and let ḣ be a Lα

Fr-name such that Lα
Fr � “ḣ ∈

Fn(Δ)”. Let G be a Lα
Fr generic ultrafilter on V . For any m < ω, let

pm ∈ G be such that pm decides ḣ � m. Let nm < ω be such that pm ∈ Lαnm
Fr ,

and choose a countable family of Lα−αnm
Fr -names {k̇m

i : i < ω} such that if
V [G] = V [G � Lαnm

Fr ][Gm] then

V [G � Lαnm
Fr ] |= (∀B)((∀i)(|B ∩ k̇m

i | = ℵ0) → Lα−αnm
Fr � “|B ∩ ḣ| = ℵ0”).
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By inductive hypothesis for any m, i < ω there is a family {kj
m,i : j < ω} such

that for any g, if |g ∩ kj
m,i| = ℵ0 for all j < ω then Lαnm

Fr � “|g ∩ k̇m,i = ℵ0|”,

and hence if |g ∩ kj
m,i| = ℵ0 for all m, i, j < ω then V [G] |= |g ∩ ḣ| = ℵ0.

For cf(α) > ω we only note that ḣ is essentially a Lβ
Fr-name for some

β < α and then by inductive hypothesis we have that Lβ+1
Fr � “|g∩ ḣ| = ℵ0”.

Now we can prove the theorem 1.6.12.

Proof of theorem 1.6.12. Let V be a model of CH and let Ȧ be a Lω2
Fr-name for

an infinite subset of Δ and let G be a Lω2
Fr-generic ultrafilter on V . Without

lose of generality, we can assume that V [G] |= Ȧ ∈ Fn(Δ). Since Lω2
Fr

strongly preserves cov∗(EDfin), we have that there is 〈Bn : n < ω〉 ∈ Fn(Δ)∩
V such that if B ∈ Fn(Δ) ∩ V is such that |B ∩ Bn| = ℵ0 for all n then
Lω2

Fr � “|B ∩ Ȧ| = ℵ0”. Then we can find such set B intersecting every Bn

in an infinite set as follows: Let {Dn : n < ω} be a disjoint refinement of
the family {dom(Bn) : n < ω} (use lemma 1.2.5 for I = Fin) and define
B ∈ Fn(Δ) by B =

⋃
n Bn � Dn. Hence, we have proved that Fn(Δ) ∩ V

is a cov∗(EDfin)-family in V [G] and since V |= CH, we conclude that it is
a cov∗(EDfin)-family of cardinality ℵ1. It is well known, Lω2

Fr adds a Cohen
real and adds an unbounded real, hence V [G] |= cov∗(M) = b = ω2, and
since add(M) = min{cov(M), b} we have proved the first consistency result.
For the second one we refer the reader to an informal communication of Jörg
Brendle [7] where it is proved that if V |= MA+¬CH and G is a Lω1

Fr generic
ultrafilter then V [G] |= cof(M) = ω1 ∧ non∗(EDfin) > ω1.

The ideal EDfin is critical with respect to ω-splitting property in Katětov
order among Borel ideals, i.e. I is a Borel ω-splitting ideal if and only
if I ≥KB EDfin. Consequently non∗(I ) ≥ non∗(EDfin) for all the ω-
splitting Borel ideals, and then, uniformities of Borel ideals I satisfy either
non∗(I ) = ℵ0 or non∗(I ) ≥ non∗(EDfin). This highlights how important
the cardinal non∗(EDfin) is.

conv

The ideal conv is defined as the ideal on Q∩ [0, 1] generated by sequences in
Q ∩ [0, 1] convergent in [0, 1]. In other words, A ∈ conv if and only if there
is N ∈ ω such that for every ε > 0 there is a ∈ [A]N such that for all but
finitely many n ∈ A there is m ∈ a such that |n − m| < ε. Clearly, conv is a
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Borel ideal, moreover, its complexity is Fσδσ. It is clear that conv ⊆ nwd. In
subsection 3.2 we will see that conv is a critical ideal for a property closely
related to the extendability of ideals to Fσ ideals. About cardinal invariants
of conv we have the following theorem.

Theorem 1.6.15. The following holds.

(1) add∗(conv) = non∗(conv) = ℵ0 and

(2) cov∗(conv) = cof(conv) = c.

Proof. (1) Let 〈xn : n < ω〉 a strictly increasing sequence of real numbers in
(0, 1] and for each n < ω, define An = (xn−1, xn) (put x−1 = 0). Hence, if
I ∈ conv then |I ∩ An| < ℵ0 for all but finitely many n < ω.

(2) Let κ be a cardinal number smaller than c, {Iα : α < κ} ⊆ conv and
X = {x ∈ [0, 1] : (∃α < κ)(x ∈ Iα)}. Then |X| = κ. Take y ∈ [0, 1] \ X
and choose a sequence 〈qn : n < ω〉 in Q ∩ [0, 1] which converges to y. Then
Iα ∩ {yn : n < ω} is finite for all α < κ.

Cantor-Bendixson ideals

Let α be a countable ordinal and A ⊆ Q ∩ [0, 1]. We shall denote by A(α)

the α-th Cantor-Bendixson derivative of the closure in [0, 1] of A. We shall
denote by CBα = {A ⊆ Q ∩ [0, 1] : A(α) = ∅}. CBα will be called the α-th
Cantor-Bendixson ideal. Note that every CBα is an ideal over Q∩ [0, 1] and
CBα ⊂ CBβ if α < β. In fact, CB =

⋃
α<ω1

CBα is an ideal on Q, and it is

equal to ctbl, the ideal of subsets of Q ∩ [0, 1] with countable closure in R,
which is contained in nwd. Moreover, CB2 is equal to conv. So, we have the
following chain of ideals:

{∅} = CB0 ⊂ Fin = CB1 ⊂ conv = CB2 ⊂ CB3 ⊂ · · · ⊂ CB = ctbl ⊂ nwd

In this moment we do not know if CBα+1 ≤K CBα for some α < ω1.
Finally, we note that for any limit ordinal α < ω1, the complexity of the
ideal CBα is at most Σα and the complexity of CBα+n is at most Σα+2n. In
order to proof that, we will need to fix a family of clopen subsets of Q∩ [0, 1]
as follows. Let Cn = {Cn

k : k < 2n} be a partition of Q ∩ [0, 1] in clopen
intervals with length smaller than 1

n
and refining Cn−1 (if n > 0). Then

C =
⋃

n<ω Cn is a countable base for the usual topology of Q ∩ [0, 1].
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Now we will proceed by induction. CB1 = Fin is an Fσ ideal. If α is a
limit ordinal then CBα =

⋃
γ<α CBγ and then the result follows immediately.

Finally, we note that A ∈ CBα+1 if and only if there is m < ω such that for
all n, |{Cn

k : A ∩ Cn
k /∈ CBα}| ≤ m, proving that complexity of CBα+1 is at

most the complexity of CBα plus 2.

Fubini Products
Let I , J be ideals on ω. Fubini Product I × J is defined by

I × J = {A ⊆ ω × ω : {n : (A)n /∈ J } ∈ I }.

We have noted that Fubini product of Borel ideals is also a Borel ideal.
Actually we have the following result about complexity of Fubini products
of Borel ideals.

Proposition 1.6.16. Let I and J be ideals on ω. Then

• If I is a Σα ideal and J is a Σβ ideal then I × J is a Σβ+α ideal.

• If I is a Σα ideal and J is a Πβ ideal then I × J is a Σβ+α ideal.

• If I is a Πα ideal and J is a Σβ ideal then I × J is a Πβ+α ideal.

• If I is a Πα ideal and J is a Πβ ideal then I × J is a Πβ+α ideal.

Proof. If I is a Σα ideal (respectively Πα ideal) then there is a sequence
〈Fn : n < ω〉 of sets such that every Fn belongs Παn (resp. Fn belongs
Σαn) with αn < α and I =

⋃
n<ω Fn (resp. I =

⋂
n<ω Fn). Let us define

ψ : 2ω×ω → 2ω by
ψ(A) = {k : (A)k /∈ J }.

Then, I =
⋃

n<ω ψ−1[Fn] (resp. I =
⋂

n<ω ψ−1[Fn]). About such function
ψ we have the following result.

Lemma 1.6.17. If J is a Σβ or Πβ ideal and s ∈ 2<ω then ψ−1[〈s〉] is a
Σβ+1 and Πβ+1 set.

Proof of lemma. ψ−1[〈s〉] = {A ⊆ ω×ω : (si = 0 implies (A)i ∈ I )}∩{A ⊆
ω × ω : (si = 1 implies (A)i /∈ I )}. Then ψ−1[〈s〉] is an intersection of a Σβ

set with a Πβ set.
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Inductively, is easy to prove that if F is a Σγ subset of 2ω then ψ−1[F ] is
a Σβ+γ subset of 2ω×ω and if F is a Πγ subset of 2ω then ψ−1[F ] is a Πβ+γ

subset of 2ω×ω, for all γ < ω1. By using such result for the Fn sets, we are
done.

Fin × ∅
Fin × ∅ can be thought as the ideal generated by an infinite partition of ω
whose elements are infinite sets. This is not a tall ideal, and therefore is
Katětov equivalent to Fin. This ideal is not a P-ideal.

∅ × Fin

∅×Fin can be thought as an ideal I for which there is a partition in infinitely
many infinite sets {Pn : n < ω} of ω, such that I ∈ I if and only if I ∩ Pn

is finite for all n < ω. This is not a tall ideal and consequently is Katětov
equivalent with Fin, but ∅ × Fin is minimal with respect to Tukey order
among analytic P-ideals, by a theorem of Todorčević [48]. ∅×Fin also can be
thought as the ideal on ω×ω generated by the sets Δf = {(n,m) : m ≤ f(n)}
with f ∈ F , where F is a dominant family of functions in ωω. That also
prove that cof(∅ × Fin) = d. ∅ × Fin is a P-ideal, because given a family
{In : n < ω} ⊆ ∅ × Fin there is a family {fn : n < ω} ⊆ ωω such that
(In)k ⊆ fn(k) for all n and k; and by taking a function g which dominates
fn for all n; we have that Δg = {(i, j) : j ≤ g(i)} ⊇∗ In for all n.

Fin × Fin

Fin × Fin is the ideal on ω × ω generated by columns and areas below the
graphs of functions in ωω, that is:

Fin × Fin = {A ⊆ ω × ω : ∃(f ∈ ωω)(∀∞n)(∀m ∈ (A)n)(m ≤ f(n))} .

Moreover, Fin×Fin can be seen as an ideal on ω generated by an infinite
partition {Pn : n < ω} of ω in infinite sets, and the sets A ⊆ ω such that
|A ∩ Pn| < ℵ0 for all n < ω. Actually, it is very easy to see that

Proposition 1.6.18. For any ideal I on ω, I ≥K Fin × Fin if and only
if there is a partition {Qn : n < ω} of ω in infinite sets such that every Qn

is in I and every A ⊆ ω satisfying |A ∩ Qn| < ℵ0 is in I . �
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Fin × Fin is a tall ideal, but is not a P-ideal, essentially by the same
reasons as ED. Additionally, Fin × Fin is not an ω-splitting ideal since
there are no elements of Fin × Fin infinitely intersecting all columns in
ω × ω. By proposition 1.6.16, the complexity of Fin × Fin is Fσδσ. About
cardinal invariants of Fin × Fin we have the following results.

Theorem 1.6.19 (Folklore). The following conditions hold.

1. add∗(Fin × Fin) = non∗(Fin × Fin) = ℵ0,

2. cov∗(Fin × Fin) = b and

3. cof(Fin × Fin) = d.

Proof. (1) Fin × Fin does not split columns {n} × ω.
Let us see (2). Let A be a witness cov∗(Fin × Fin). For every A ∈ A

pick fA ∈ ωω such that (∀∞n < ω)(∀m ∈ (A)n)(m ≤ fA(n)). The family
{fA : A ∈ A} is an unbounded family, proving b ≤ cov∗(Fin×Fin). In order
to prove the other inequality, we use the following result.

Lemma 1.6.20 (Roitman [40], see [2] lemma 1.3.3). b is the minimal cardi-
nality of a family of increasing functions in ωω such that for every function
g ∈ ωω and for all infinite subset X of ω there exists f ∈ F such that
g(n) < f(n) for infinitely many n ∈ X. �

Let F be a family satisfying previous lemma, and for every f ∈ F let Δf

be the area under f . A = {Δf : f ∈ F} ∪ {{n} × ω : n < ω} is a subset
of Fin × Fin of cardinality b and if Y is an infinite subset of ω × ω, there
are two cases: (a) (∃n)(|(Y )n| = ℵ0), and in such case we are done, and (b)
(∃∞n)((Y )n �= ∅), and in such case, doing X = {n : (∃m)((n, m) ∈ Y )} and
defining g ∈ ωω be such that g(n) = min(Y )n if n ∈ X, there exists f ∈ F
such that g(n) < f(n) for infinitely many n ∈ X, and so, Δf has infinitely
many elements of Y .

Now we will prove (3). Let F a dominating family of functions in ωω of
cardinality d. For every f ∈ F and n < ω, define

Af,n = {(i, j) ∈ ω × ω : n ≤ i → j ≤ f(i)}.
The family A = {Af,n : f ∈ F ∧ n < ω} is a cofinal subset of Fin × Fin of
cardinality d. On the other hand, let A be a cofinal subset of Fin×Fin and
pick fA ∈ ωω like in proof of (2), for A ∈ A. Given f ∈ ωω, there is A ∈ A
such that Δf ⊆∗ A. So, f ≤∗ fA, proving {fA : A ∈ A} is a dominating
family in ωω.
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Ideals based on graphs
A graph G is a pair 〈V, E〉, where V is a set and E ⊆ [V ]2. Elements of

V are the vertices and elements of G are the edges of the graph. G = 〈V, E〉
is a complete graph if E = [V ]2. A coloring for a graph G = 〈V, E〉 is a
function ϕ from V into a set X such that for all v, w ∈ V if {v, w} ∈ E then
ϕ(v) �= ϕ(w). The chromatic number χ(G) of a graph G, is defined as the
minimal |X| such that there is a coloring ϕ from V into X.

Along this work, we will say G ⊆ [ω]2 is a graph on ω if 〈ω, G〉 is a graph.

Gfc

Gfc is the ideal of graphs with finite chromatic number, i.e.

Gfc = {G ⊆ [ω]2 : χ(G) < ω}.

Gfc is a tall ideal since every infinite graph has an infinite subgraph with
chromatic number 2. The ideal Gfc is an Fσ ideal since the function ϕ defined
such that for all A ⊆ ω,

ϕ(A) = min{|B| : A ⊆
⋃

B ∧ (∀G ∈ B)χ(G) = 2}

is a lscsm and Gfc = Fin(ϕ).
We have isolated the cardinal invariant of the continuum s2 defined as

follows. A pair-splitting family P is a family of infinite subsets of ω such that
for any infinite set A ⊆ [ω]2, there is P ∈ P such that |P ∩a| = 1 for infinitely
many elements a ∈ A. s2 is the minimal cardinality of a pair-splitting family.
This cardinal invariant was introduced in an independent context by Hiroaki
Minami, and we have presented it in [23]. Minami has defined the cardinal
invariant r2 dual of s2 as the minimal cardinality of a pair-reaping family. A
pair-reaping family is a family R of infinite sets of pairs of natural numbers
such that for any infinite A ⊆ ω there is R ∈ R that R is not pair-split by
A.

About cardinal invariants of Gfc we have the following results:

Theorem 1.6.21. The following holds.

1. add∗(Gfc) = ℵ0,

2. cov∗(Gfc) = s2,
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3. non∗(Gfc) is the minimal cardinality of a family A ⊆ [[ω]2]ω such that
for any finite partition P of ω there is an element A of A such that for
every set a ∈ A there is P ∈ P such that a ⊆ P , and

4. r2 ≤ non∗(Gfc) ≤ r.

Proof. (1) For every n < ω define the set An = {{k, m} : k ≤ n ∧ m �=
k}. Note that An has finite chromatic number and every set which almost-
contains all An has an infinite complete subgraph. (2) Fix T ⊆ [ω]ω with
|T | < cov∗(Gfc), and define T ′ = T ∪{ω\n : n ∈ ω}. For every A ⊆ ω we will
denote by IA the set{{n,m} : n ∈ A ∧ m ∈ ω \ A}. Since |T ′| < cov∗(Gfc),
there exists an infinite X ⊆ [ω]2 such that X ∩ IT is finite, for all T ∈ T ′.
Moreover, {m : {m,n} ∈ X} is finite, for all n ∈ ω. Therefore, X has an
infinite subset Y whose elements are pairwise disjoint. That Y is not split
by elements of T follows from the fact that IT is finite for all T ∈ T . We
conclude that cov∗(Gfc) ≤ s2.

On the other hand, define JA = {{n,m} : n ∈ A∧m ∈ ω \A}, for A ⊆ ω.
Note that {JA : A ⊆ ω} is a subbase of Gfc. It shall be enough to prove that
if T ⊆ [ω]ω is not a pair splitting family then {JT : T ∈ T } is not covering.
Let P be an infinite set of pairwise disjoint pairs of natural numbers such
that no T ∈ T splits P. Then, there are not T ∈ T splitting

⋃P.
(3) Note that if P is a finite partition of ω then GP = {{n,m} : (∃a �= b ∈

P )(n ∈ a ∧ m ∈ b)} ∈ Gfc, and moreover, {GP : P is a finite partition of ω}
is a base of Gfc. Then, if A is a family as in (3) then A itself witnesses
non∗(Gfc); and if B is a witness of Gfc then defining A as the family of finite
changes of elements of B we are done.

(4) follows directly from (3) since given a hereditarily reaping family R we
construct a family A as in (3) as follows: For any R ∈ R, let {nR

k : k ∈ ω}
be an enumeration of R and define IR = {{nR

k , nR
k+1} : k ∈ ω}. Define

A = {IR : r ∈ R}. Then, if P = {P0, . . . , Pn} is a finite partition of ω then
either there is R ∈ R such that R ⊆ P0 or R ⊆ ⋃

0<i≤n Pi. In first case we
are done. In second case we can find R1 ∈ R such that either R1 ⊆ R ∩ P1

or R1 ⊆ R∩⋃
1<i≤n Pi. We can repeat this procedure while second case stills

holding, and in step n − 1, we will have Rn−1 ⊆ Pn for some Rn−1 ∈ R and
then we will be done.

About the position of Gfc in Katětov order we have the following results:

Theorem 1.6.22. The following relations hold.
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(1) S ≤KB Gfc and

(2) EDfin ≤KB Gfc.

Proof. (1) Remember that for x ∈ 2ω, the set Ix = {C ∈ Ω : x ∈ C} ∈ S.
Let f : [ω]2 → Ω be given by f({n,m}) = {x ∈ 2ω : x(n) �= x(m)}. It will
be enough to prove that Jx = f−1[Ix] is finitely chromatic for all x ∈ 2ω. In
fact, χ(Jx) = 2 since x itself is a coloring for Jx.

(2) Define f : [ω]2 → Δ by f({n,m}) = 〈max{n,m}, min{n, m}〉. We
will prove that f is a Katětov function. It will be enough to prove that for
every g ∈ ∏

0<n<ω n, Jg = f−1[{〈n, g(n)〉 : n < ω}] ∈ Gfc. In fact, χ(Jn) = 2,
since we can define a coloring ψ as follows. ψ(0) = 0 and for all n > 0, define
ψ(n) = 1 − ψ(g(n)). ψ is well defined since g is a regressive function, and
immediately we have that if {m,n} ∈ Jg then ψ(m) �= ψ(n).

About s2 and r2 we have the following results:

Theorem 1.6.23. s ≤ s2 ≤ min{non(N ), cov∗(EDfin)} and max{cov(N ), cov(M)} ≤
r2 ≤ r.

Proof. By theorems 1.6.22 and 1.6.21(2) we have that s2 = cov∗(Gfc) ≤
cov∗(S) = non(N ) and s2 = cov∗(Gfc) ≤ cov∗(EDfin) ≤ non(M). Let κ < s

be a cardinal number and let A be a family of κ infinite subsets of ω. Since A
is not a splitting family, there is an infinite subset B of ω such that B ⊆∗ A
or B ∩ A =∗ ∅ for all A ∈ A. Let {nk : k < ω} be an enumeration of B and
define G = {{nk, nk+1} : k < ω}. A is not a pair-splitting family since for
any A ∈ A, for all but finitely many p ∈ G, either p ⊆ A or p∩A = ∅. Hence
κ < s2. The inequality r2 ≤ r was proved in 1.6.21(4). Let κ be a cardinal and
let A be a family of infinite sets of pairs of natural numbers with |A| = κ. In
order to prove that A is not a pair-reaping family we can suppose without loss
of generality that every A ∈ A is pairwise disjoint. For any infinite pairwise
disjoint A ⊆ [ω]2 we define DA = {X ∈ [ω]ℵ0 : X splits A}. Note that for
any A, DA is a comeager subset of 2ω, since the family of sets X ∈ [ω]ℵ0 such
that |a ∩ X| = 1 for some a ∈ A is open and dense. Moreover the measure
of DA is 1 since, given a ∈ X and ε > 0, we can find an open set U in 2ω

with measure less than ε such that every set which does not split A belongs
to U . Then, if κ < cov(M) or κ < cov(N ) then there exists an infinite
X ∈ ⋂

A∈A DA, witnessing A is not a pair-reaping family.
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Gc

The ideal Gc of graphs without infinite complete subgraphs is defined as the
family of subsets I of [ω]2 such that for every infinite X ⊆ ω there exists
n �= m ∈ X such that {n,m} /∈ I. In other words, Gc consists of all graphs
I on ω that do not have infinite complete subgraphs. That such family is an
ideal is a direct consequence of Ramsey’s theorem.

Lemma 1.6.24. Gc is a co-analytic ideal.

Proof. Define F = {(B,A) ∈ [ω]ℵ0 × P([ω]2) : [B]2 ⊆ A}. Clearly, Gc is the
complement of the projection of F . Let us prove that F is closed. Let ϕ
be a bijection between [ω]2 and ω \ {0} such that ϕ{i, j} ≥ max{i, j}, and
let {(Xn, Yn) : n ∈ ω} ⊆ F be a sequence convergent to (B, A). Then, for
all N < ω, there exists k(N) > N such that (∀n ≥ k(N))(Xn ∩ k(N) =
B∩k(N)). If i �= j ∈ B, then {i, j} ⊆ B∩k(ϕ{i, j}) = Xϕ{i,j}∩k(ϕ{i, j}) =
Xm∩k(ϕ{i, j}), for all m ≥ k(ϕ{i, j}). So, {i, j} ∈ Ym for all m ≥ k(ϕ{i, j}),
and therefore, {i, j} ∈ A, proving that (B, A) ∈ F .

Additionally, Gc is tall (every infinite subset of [ω]2 has an infinite sub-
graph without infinite complete subgraphs), but it is not a P-ideal (every
infinite pseudointersection of the family {An : n ∈ ω}, where An = {{k, m} :
k ≤ n∨m ≤ n}, has an infinite complete subgraph). Since G is not a P -ideal
we know that add∗(Gc) = ℵ0. About other cardinal invariants of Gc we need
to establish some preliminary results.

Lemma 1.6.25. Fin × Fin ≤K Gc.

Proof. Define f : [ω]2 → ω × ω by f({n,m}) = (min{n,m}, max{n,m}). If
X ∈ Fin × Fin then there exists a N ∈ ω such that for every n ≥ N , Xn is
finite. Hence for almost every n ∈ ω, {m ∈ ω : {n,m} ∈ f−1[X]} is finite,
and therefore, f−1[X] can not contain an infinite complete subgraph.

A set A ⊆ ω is homogeneous for a given graph G if either [A]2 ⊆ G or
[A]2 ∩ G = ∅. Andreas Blass in [5] defined the following. If G ⊆ [ω]2 and
H ⊆ ω then H is almost homogeneous for G if there is a finite set F ⊆ ω such
that H\F is homogeneous for G. par2 is defined as the smallest cardinality of
a family F of subsets of [ω]2 such that no single infinite subset of ω is almost
homogeneous for all G ∈ F . Theorem 3.5 of [5], proves that par2 = min{b, s},
and in particular, h ≤ par2. We will use this cardinal relation in subsection
2.6 in order to prove that the ideal nwd satisfies a Ramsey type property.
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Theorem 1.6.26. min{b, s} = par2 ≤ cov∗(Gc) ≤ min{b, s2}.

Proof. Let A be a subset of Gc with |A| < par2. Note that every A ∈ A
defines a partition of [ω]2. Hence, there exists X ∈ [ω]ω such that [X\F ]2 ⊆ A
or [X \F ]2 ⊆ [ω]2 \A, for all A ∈ A. First case is not possible since A has no
infinite complete subgraphs. Hence [X \F ]2 ⊆ [ω]2 \A. Let Y be an infinite
pseudointersection of {[X \ F ]2 : F ∈ [ω]<ω}. Then, A ∩ Y is finite, for all
A ∈ A. The other inequalities are consequence of previous lemma, Gfc ⊆ Gc

and 1.7.1(1).

Question 1.6.27. Are the inequalities in 1.6.26 consistently strict?
Is cov∗(Gc) = min{b, s2}?

The random graph ideal R
Given a graph G on ω, we can define a possibly improper ideal IG as the
ideal generated by the set of all the subsets of ω which are homogeneous for
G. We investigate the ideal R on ω generated by the homogeneous sets in
the random graph E, which is going to be defined below (see [9]).

Let {Xn : n < ω} be an independent family of subsets of ω. We can
suppose that the family satisfies n ∈ Xm if and only if m ∈ Xn, for all
n < ω (if not, we can do finite changes and get that family). The set
E = {{n,m} : m ∈ Xn} is the set of edges of the random graph. The
following property is the crucial one for random graph.

Lemma 1.6.28. Let E be the random graph defined above. Given a and b
disjoint finite subsets of ω there is k < ω such that {{k, l} : l ∈ a} ⊆ E and
{{k, l} : l ∈ b} ∩ E = ∅.

Proof. Take k ∈ (
⋂

i∈a Xi) \
⋃

j∈b Xj. Such k exists by independence.

Actually, this property gives an algorithm to construct the random graph
in an alternative way: Let us define recursively an increasing family of initial
segments {Fn : n < ω} of ω and an increasing family {En : n < ω} of subsets
of [ω]2 as follows. Define F0 = {0} and E0

0 = ∅. Let suppose defined Fn and
En and let {aj : j < 2|Fn|} be an enumeration of all subsets of Fn. Then,
define En+1 = En ∪ {{|Fn| + j, i} : j < 2|Fn| ∧ i ∈ aj

}
. It is immediate that

E =
⋃

n<ω En satisfies the lemma.
Moreover, the random graph E satisfies the following property:
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Lemma 1.6.29. Given a graph 〈ω, G〉, there is a subset X ⊆ ω such that
〈ω, G〉 ∼= 〈X,E � X〉.
Proof. Such set X can be found by taking xn ∈ ω as in lemma 1.6.28 for
a = {xj : j < n ∧ {j, n} ∈ G} and b = {xj : j < n ∧ {j, n} /∈ G}. The map
n �→ xn is the required isomorphism onto X = {xn : n < ω}.

By Ramsey theorem, R is tall. The function ϕ defined by

ϕ(A) = min{|X | : (∀X ∈ X )(([X]2 ⊆ E ∨ [X]2 ∩ E = ∅) ∧ A ⊆
⋃

X )}

is a lscsm such that R = Fin(ϕ). The random graph ideal R has a very
important property with respect to the Ramsey properties studied in section
3.3. About cardinal invariants of R we have the following results.

Theorem 1.6.30. The following holds.

1. add∗(R) = non∗(R) = ℵ0 and

2. cov∗(R) = cof(R) = c.

Proof. Lemma 3.3.3 claims that R ≤K conv, and then, by theorem 1.5.2 we
are done.

Ideals generated by MAD families
Given A,B infinite subsets of ω we say A and B are almost disjoint if

A∩B is finite. A family A of infinite subsets of ω is an almost disjoint family
if A and B are almost disjoint for any A �= B ∈ A. A MAD family is an
almost disjoint family maximal with respect to almost disjoint property, that
is, A is a MAD family if for every infinite set X there is an element A of A
such that A ∩ X is infinite. Existence of MAD families is a consequence of
Axiom of Choice.

Given an almost disjoint family A we can define the ideal I (A) generated
by A, that is, I ∈ I (A) if and only if there is a finite subfamily B of A such
that I ⊆ ⋃B. Note that I (A) is a tall ideal if and only if A is a MAD
family. In [37], Adrian Mathias proved that ideals based on MAD families
are meager but non analytic ideals.

Summable ideals
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Let f : ω → (0,∞) be a function such that
∑∞

n=0 f(n) = ∞. The
summable ideal of f is defined by If = {I ⊆ ω :

∑
n∈I f(n) < ∞}. If

lim inf f(n) = 0 then Fin � If and if lim f(n) = 0 then If is a tall ideal.
Note that the function ϕ : P(ω) → [0,∞] given by ϕ(A) =

∑
n∈A f(n) is

a lower semicontinuous submeasure (actually, a measure) on ω and If =
Fin(ϕ) = Exh(ϕ), proving that If is an Fσ P-ideal. In subsection 3.1 we
will see that Katětov order is very complex among summable ideals, and
cardinal invariants possibly too.

Erdös-Ulam ideals

Given a function f : ω → [0,∞), the Erdös-Ulam ideal EUf for f is
defined as the family of subsets of ω with f -density zero, that is

EUf =

{
A ⊆ ω : lim

n→∞

∑
i∈A∩n f(i)∑

i<n f(i)
= 0

}
.

The function ϕ : P(ω) → [0,∞] given by

ϕ(A) = sup
n

∑
i∈A∩n f(i)∑

i<n f(i)

is a lscsm and EUf = Exh(ϕ), and then it is an Fσδ P-ideal. The most
important of the Erdös-Ulam ideals is Z, the asymptotical density zero ideal,
defined by

Z =

{
A ⊆ ω : lim

n→∞
|A ∩ n|

n
= 0

}
.

An alternative expression for Z is:

Z =

{
A ⊆ ω : lim

n→∞
|A ∩ [2n, 2n+1)|

2n
= 0

}
.

Ilijas Farah (Claim 1.13.10 in [14]) has proved that every Erdös-Ulam ideal
is Rudin-Blass equivalent to Z. Then cov∗(I ) = cov∗(Z) and non∗(I ) =
non∗(Z) for all Erdös-Ulam ideal I . Hernández-Hernández and Hrušák
have proved in Theorem 2.2 of [20] that min{b, cov(N )} ≤ cov∗(Z) ≤
max{b, non(N )}. Additionally, they proved that add∗(I ) = add(N ) and
cof(I ) = cof(N ), for all tall Erdös-Ulam ideal I .
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1.7 Elementary facts about Katětov order

Position in Katětov order can be crucial for some combinatorial and topo-
logical properties but Katětov order is interesting in itself.

As an order type, Katětov order is complex. We prove that is both,
downward and upward directed, with a minimal element, the ideal Fin. All
non-tall ideals are Katětov-equivalent with Fin and among tall ideals, the
family of ideals generated by MAD families is coinitial.

This order was introduced by Miroslav Katětov in [29]. It is a general-
ization of Rudin-Keisler order (remember that Rudin-Keisler order was first
used by Katětov in the same paper).

1.7.1 Structural properties of Katětov order

Some immediate properties of Katětov order are listed here.

Proposition 1.7.1. The following relations hold.

1. If I ⊆ J then I ≤K J .

2. If X ∈ I + then I ≤K I � X.

3. I ⊕ J ≤K I and I ⊕ J ≤K J .

4. I ,J ≤K I × J .

Proof. Identity in ω is a witness for (1); inclusion from X into ω is a witness
for (2), inclusions of ω into ω⊕ω are witnesses for (3) and projection functions
are witnesses for (4).

Properties (3) and (4) establish that Katětov order is both, upward and
downward directed. The following proposition lists some of the order-type
properties of the Katětov order.

Proposition 1.7.2. The following hold.

(1) Every family A of at most c ideals has a ≤K-lower bound,

(2) The family of maximal ideals is cofinal in Katětov order,

(3) Fin is minimal in Katětov order. Moreover, the following are equivalent:
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(a) I ≤K Fin,

(b) I ∼=K Fin, and

(c) I is not a tall ideal.

(4) Ideals generated by MAD families are coinitial in Katětov order among
tall ideals.

Proof. (1) Let A = {Iα : α < c} be a family of ideals on ω and let {Aα :
α < c} a MAD family. For every α < c pick a bijection iα from ω onto Aα

and define

I = {I ⊆ ω : (∀α < c)(i−1
α (I ∩ Aα) ∈ Iα)}.

It is easy to verify that I is an ideal on ω and iα is a witness for I ≤K Iα.
(2) is a consequence of the Ulam and Tarski’s Boolean Prime Ideal The-

orem.
(3) Fin ⊆ I for every ideal I . It is clear that (a) and (b) are equivalent,

and if f is a witness for I ≤K Fin then X = f ′′ω is an I -positive set
and I � X is the family of finite subsets of X. On the other hand, if
I � X = Fin(X) then I ≤K Fin.

(4) Let I be a tall ideal and let A be an almost disjoint family which
is maximal with respect to the property of be contained in I . Actually I
is a MAD family, because if X ∈ I + is almost disjoint with every element
of A then X is almost disjoint with every element of I , contradicting the
tallness of I . Hence I (A) ⊆ I .

1.7.2 Chains and antichains in Katětov order

The remain of this section will be dedicated to answer the following question:
How long are chains and antichains in Katětov order? Some partial answers
were done by Michael Hrušák and Salvador Garćıa-Ferreira in [19].

Theorem 1.7.3. Let I be a tall ideal on ω. Then

(1) there is a ≤K-antichain below I of cardinality c and

(2) there is a ≤K-decreasing chain with length c+ below I .

Proof. (1) is an immediate consequence of proposition 1.7.2(4) and the fol-
lowing lemma
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Lemma 1.7.4 (Garćıa-Ferreira and Hrušák, 2003 (Proposition 2.5 in [19])).
There is a collection of c-many pairwise Katětov incomparable MAD families
≤K-below every MAD family A. �

In order to prove (2) we recursively construct a family {Aα : α < c+}
of MAD families such that I (Aα) ≤K I (Aβ) and I (Aβ) �K I (Aα) if
β < α < c+ as follows: Let A0 be a MAD family such that I (A0) ≤K I .
If α is limit we use 1.7.2(1) in order to obtain Aα; and in successor step we
will use the following lemma:

Lemma 1.7.5 (Garćıa-Ferreira and Hrušák, 2003 (Proposition 2.3 in [19])).
For every MAD family A there is a MAD family B such that B refines A
and I (A) �K I (B). �

It is clear that if B refines A then I (B) ≤K I (A).

Question 1.7.6 (Garćıa-Ferreira and Hrušák [19]). Is there (consistently) a
MAD family ≤K-maximal among MAD families?



Chapter 2

Combinatorics of ideals and
filters and Katětov order

The importance of Katětov order lies in the fact that many combinatorial
properties of ideals and filters have a critical ideal with respect to ≤K . In
the first chapter we stated without proof that ideals like R and EDfin are
critical for properties such that fulfilling a Ramsey-type property or be an
ω-splitting ideal. Hence, combinatorial properties can be stated by using
Katětov order and critical ideals. In particular in subsection 2.8 we study
the critical ideals for some classes of ultrafilters, and in next section we will
see the relevance of critical ideals concerning their destructibility by forcing
extensions.

2.1 Forcing with quotients

Jindřich Zapletal in [51] has studied the forcing notions PI of I-positive Borel
subsets of a Polish space X, ordered by inclusion, where I is a σ-ideal on X.
PI is a non-separative partial order whose separative quotient is the σ-algebra
Borel(X)/I. Zapletal has given the following characterization of the proper
forcing notions with this form: PI is proper if and only if for every countable
elementary submodel M of a large enough structure and every condition
B ∈ M ∩PI the set C = {x ∈ B : x is M -generic} is not in the ideal I, where
it is said that a point x is M -generic if the collection {A ∈ PI ∩ M : x ∈ A}
is a filter on PI ∩ M which meets all open dense subset of the poset PI that
are elements of the model M . One of the most important properties about

35
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a forcing notion of the type PI is the Continuous Reading of Names (CRN).

Definition 2.1.1 (Zapletal [51]). If PI is a proper forcing then it has the
CRN if for every Borel function f : B → 2ω with an I-positive Borel domain
B there is an I-positive set C ⊆ B such that f � C is continuous.

Zapletal and Hrušák in [24] studied the relationship between PI forcing
notions and quotients P (ω)/I , where I is an ideal on ω. The connection
between this classes of posets is given by the following definition.

Definition 2.1.2 (Brendle). For a σ-ideal I on 2ω or ωω is defined the trace
ideal tr(I) on 2<ω or ω<ω by a ∈ tr(I) if and only if {r : ∃∞n(r � n ∈ a)} ∈ I.

Hrušák and Zapletal proved the following theorem, completing the link
between forcing notions with the form PI and P(ω)/I .

Theorem 2.1.3 (Hrušák and Zapletal [24]). Let I be a σ-ideal on X = 2ω

or X = ωω. If PI is a proper forcing with CRN then P(X)/tr(I) is a proper
forcing as well and is naturally isomorphic to a two-step iteration of PI and
an ℵ0-distributive forcing.

2.1.1 Destructibility of ideals by forcing

In the same paper Hrušák and Zapletal characterized the destructibility of
ideals in forcing extensions in terms of Katětov order. A forcing notion P
destroys an ideal I on ω if it introduces a set x ⊆ ω such that every ground
model element A ∈ I has a finite intersection with x.

Theorem 2.1.4 (Hrušák and Zapletal [24]). If PI is a proper forcing with
CRN and I is an ideal on ω then the following conditions are equivalent:

(1) there is a condition B ∈ PI such that B � “the ideal I is destroyed”,
and

(2) there is a tr(I)-positive set a such that I ≤K tr(I) � a.

Theorem 2.1.4 can be improved when the trace ideal is K-homogeneous
(see section 2.1.2).

Theorem 2.1.5. If PI is a proper forcing with CRN and I is an ideal on
ω, tr(I) is K-homogeneous then the following conditions are equivalent:
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(1) there is a condition B ∈ PI such that B � “the ideal I is destroyed”

(2) I ≤K tr(I).

Some of the classical forcing notions have a critical ideal with respect to
forcing destructibility.

Theorem 2.1.6 (Hrušák[21], Brendle and Yatabe [8]). Let I be a tall ideal
on ω. Then

(1) I is Cohen-destructible iff I ≤K nwd,

(2) I is Random-destructible iff I ≤K tr(N ) and

(3) I is Sacks destructible iff I ≤K tr(S) iff I is P-destructible for any
forcing P which adds new real numbers. �

Remark 2.1.7. Concerning to (2) in previous theorem, Brendle and Yatabe
proved that I is Random-indestructible if and only if there is an I -positive
set X such that I ≤ tr(N ) � X, but (2) follows from theorem 2.1.17.

In some cases, just knowing the cardinal invariants of the ideal suffices to
show a Katětov relation.

Corollary 2.1.8. Let I be a Borel ideal on ω. If cov(M) ≤ cov∗(I ) then
I ≤K nwd.

Proof. Let assume cov(M) ≤ cov∗(I ). Since in Cohen model cov(M) = c

we have that cov∗(I ) = c which proves that I is destroyed, and by theorem
2.1.6(1) we are done.

2.1.2 Homogeneity and K-uniformity

We will say that an ideal I on ω is:

• homogeneous if I 	 I � X for all I -positive set X.

• weakly homogeneous if for any I positive set X there is an I -positive
subset Y of X such that I � Y 	 I .

• K-uniform if I � X ≤K I for all I -positive set X.

It is trivial that homogeneity implies weak homogeneity.
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Proposition 2.1.9. If I is a maximal ideal then I is K-uniform.

Proof. Let X be an I -positive set and note that ω\X ∈ I . Then f : ω → X
such that f � X is the identity function in X and f � ω \ X is constantly
equal to min X. Then f is a Katětov function.

Question 2.1.10.

Is every weakly homogeneous ideal K-uniform?

Proposition 2.1.11. The ideal Z of asymptotic density zero is K-uniform.

Proof. Let X be a Z-positive set, and e : ω → X the increasing enumeration
of X. Then, |e−1(I) ∩ n| = |I ∩ {e(0), . . . , e(n − 1)}| for any I ⊆ X, so if

I ∈ Z � X then limn→∞
|e−1(I)∩n|

n
= limn→∞

|I∩{e(0)...e(n−1)}|
n

= 0

We have a criterion for K-uniformity of trace ideals.

Definition 2.1.12. Let I and J be σ-ideals on X = 2ω or X = ωω. We
say I is continuously lower than J , I ≤c J if there is a continuous function
F : X → X such that F−1[a] ∈ J for all a ∈ I.

Continuous order reflects on trace ideals in Katětov order.

Theorem 2.1.13. Let I and J be σ-ideals on X = 2ω or X = ωω. If I ≤c J
then tr(I) ≤K tr(J).

Proof. Let F : X → X be a witness of I ≤c J . Inductively, we define a
function f : 2<ω → 2<ω (or f : ω<ω → ω<ω) by f(∅) = ∅ and if f � 2n is
defined, s ∈ 2n and k < ω then

f(ŝ k) =

{
max{r ⊇ f(s) : F ′′〈ŝ k〉 ⊆ 〈r〉} if |F ′′〈ŝ k〉| ≥ 2

f(s)̂ l otherwise and F ′′〈ŝ k〉 ⊆ 〈f(s)̂ l〉.

Analogously f : ω<ω → ω<ω if X = ωω. Let us prove that f is a Katětov
function. Let a be in tr(I) and x ∈ π(f−1(a)). Note that by the continuity
of F in x, for each n such that x � n ∈ f−1(a) there is m > n such that

f(x � n) � f(x � m) ∈ a.

Then, F (x) ∈ π(a), proving that π(f−1(a)) ⊆ F−1(π(a)) ∈ J .
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Definition 2.1.14. A forcing of the form PI where I is a σ-ideal on X = 2ω

or X = ωω is continuously homogeneous if for every I-positive Borel set b
there is a continuous function F : X → b such that F−1(a) ∈ I for all
a ∈ I � b.

Corollary 2.1.15. If I is a σ-ideal such that PI is continuously homogeneous
then tr(I) is K-uniform.

The σ-ideal N of null subsets of ωω is an example of a σ-ideal for which
PI is continuously homogeneous.

Lemma 2.1.16. The forcing PN is continuously homogeneous.

Proof. Let X be a non-null subset of 2ω. Then there is a non-null perfect
set C ⊆ X. Let T ⊆ 2<ω be a pruned tree such that C = [T ]. Without lose
of generality, we can assume that any open subset of C is non-null, because
otherwise we can prune [T ] satisfying such condition. For each branching
node t ∈ T , let mt = μ(C ∩ 〈t〉) and m = m∅. On the other hand, for each
s ∈ ωω, let us denote ls = λ(〈s〉) = 2−|s|s(|s|−1), the product measure on ωω.
For each n < ω, we will define subsets Pt of ωn for each branching node t of T
such that there are exactly n branching nodes of T shorter than t, satisfying:

1. Pt ∩ Pt′ = ∅ if t �= t′,

2. If t′ ∈ 2≤|t| and t′ ⊆ t is a branching node of T then Pt ⊆ Pt′ and

3.
∑

s∈Pt
ls = mt

m

As we can see the sets Pt are uniquely defined. The continuous reduction
that we are looking for is given by ϕ(x) = y if and only if for all n < ω there
is k < ω such that y � k is branching node of T having exactly n branching
nodes of T contained in it and x � n ∈ Py�k. It is clear that ϕ is continuous
and carries the measure on C to ωω and for each null subset N of C the set
ϕ−1[N ] is a null set of ωω.

As an immediate consequence of we have the following theorem.

Theorem 2.1.17. tr(N ) is a K-homogeneous ideal. �
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2.2 Katětov order and Ramsey properties

Several Ramsey like properties are studied in this work. A coloring for un-
ordered n-tuples of natural numbers in m colors is a function ϕ from the set
[ω]n of n-tuples of natural numbers into m. A subset A of ω is ϕ-homogeneous
if ϕ � [A]n is constant. Classical Infinite Ramsey Theorem claims that for
every coloring ϕ of unordered n-tuples of natural numbers in m colors there
is an infinite subset X of ω such that X is ϕ-homogeneous. Our first ap-
proach to ideal versions of Ramsey theorem concerns to colorings of pairs in
two colors.

Definition 2.2.1. Let I be an ideal on ω. We will say that I satisfies

ω �� (I +)2
2

if for every coloring ϕ : ω → 2 there is an I -positive set X homogeneous
with respect to ϕ. We will say that I satisfies

I + �� (I +)2
2

if for every I -positive set X and every coloring ϕ : [X]2 → 2 there is an
I -positive subset Y of X homogeneous with respect to ϕ.

Mathias’ happy families [37] and Farah’s semiselective coideals [13] give
examples of ideals satisfying both properties. However, these ideals are not
definable. In section 2.5 we will construct some examples of definable ideals

satisfying ω �� (I +)2
2 , but failing I + �� (I +)2

2 . The link between

this properties and the ideal R is the following theorem which claims that

the random graph ideal R is critical with respect to ω �� (I +)2
2 property.

Theorem 2.2.2. Let I be an ideal on ω. Then,

ω �� (I +)2
2 if and only if I �K R.

Proof. Assume R ≤K I . Let f ∈ ωω such that for every R ∈ R, f−1[R] ∈
I . Define a coloring ϕ by

ϕ({n,m}) =

{
0 if {f(n), f(m)} ∈ E

1 otherwise.
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If A ⊆ ω is ϕ-homogeneous, let say ϕ′′[A]2 = {0} (the other case is anal-
ogous), we have that {f(n), f(m)} ∈ E for all n �= m ∈ A. Then, f ′′A is
E-homogeneous and consequently f ′′A ∈ R, and so, A ⊆ f−1[f ′′A] ∈ I .

On the other hand, assume that ω �� (I +)2
2 fails. Let G be a subset

of [ω]2 such that every G-homogeneous is in I , and take a subset X of ω and
a function f : ω → X such that f : (ω, G) ∼= (X, E ∩ [X]2). Let see that f is
a Katětov reduction. For a subbasic set I ∈ R, assuming [I]2 ⊆ E (the other
case is analogous), we have that for n �= m ∈ f−1[I], f(n) �= f(m) ∈ I and
so, {f(n), f(m)} ∈ E. Therefore, {n,m} ∈ G. That proves [f−1[I]]2 ⊆ G,
and then, f−1[I] ∈ I .

Returning to the I + �� (I +)2
2 property, note that it implies the prop-

erty ω �� (I +)2
2 , and actually, the following conditions are equivalent:

• I + �� (I +)2
2 ,

• X �� ((I � X)+)2
2 , for all X ∈ I +, and

• R �K I � X, for all X ∈ I +.

However, ω �� (I +)2
2 is not equivalent to I + �� (I +)2

2 as will be

proved in 2.5.11.

Definition 2.2.3. Let I be an ideal on ω. We will say that I is a P+-ideal
if for every decreasing sequence {Xn : n < ω} of I -positive sets there is an
I -positive set X such that X ⊆∗ Xn, for all n < ω. We will say that I is
a Q+-ideal if for every I -positive set X and every partition {Fn : n < ω} of
X in finite sets there is an I -positive set Y ⊆ X such that |Y ∩Fn| ≤ 1, for
all n < ω.

Other related notions will be defined in section 3.2. The following result
is a well known one.

Theorem 2.2.4 (Folklore). If I is a P+ and Q+-ideal then I + �� (I +)2
2 .

Proof. Let X be an I -positive subset of ω and ϕ : [X]2 → 2. For i = 0, 1
and n ∈ X, define Ai

n = {k ∈ X : ϕ{k, n} = i}. Inductively we will define an
increasing function g ∈ ωω and a ⊆-decreasing sequence of I -positive sets
〈Bn : n < ω〉 such that Bn ⊆ A

g(n)
n for all n < ω. Such sequences can be
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constructed as follows: B0 = A
g(0)
0 where A

g(0)
0 ∈ I +. Since Bn ∈ I + we

note that either Bn ∩ A0
n+1 ∈ I + or Bn ∩ A1

n+1 ∈ I +. Then take g(n + 1)

and Bn+1 such that Bn+1 = Bn ∩ A
g(n+1)
n+1 ∈ I +. Given that I is P+-ideal,

there is an I -positive set B such that B ⊆∗ Bn for all n ∈ X. Since either
{n ∈ B : g(n) = 0} ∈ I + or {n ∈ B : g(n) = 1} ∈ I +, we can assume
that g(n) = i for a fixed i ∈ 2 and all n ∈ B. Let us define a sequence
〈nj : j < ω〉 as follows: n0 = min B; n1 = min{k ∈ B : B \ k ⊆ B0} and
nj+1 = min{k ∈ B : k > nj ∧ B \ k ⊆ Bnj

}. Note that if k ∈ B ∩ [nj, nj+1)
and l ∈ B ∩ [nj+2,∞) then ϕ{k, l} = i. Define C0 = B ∩ ⋃

j<ω[n2j, n2j+1)
and C1 = B∩⋃

j<ω[n2j+1, n2j+2). Either C0 or C1 is I -positive and intervals
defined by 〈nj : j < ω〉 are a partition of such I -positive set. Then, since
I is a Q+ ideal we have that there is a selector of this partition that is I -
positive. Such selector is an I -positive subset of X which is ϕ-homogeneous
in color i.

In order to investigate the validity of the converse of previous theorem,
we have the following

Proposition 2.2.5. If I satisfies I + �� (I +)2
2 then I is a Q+ ideal.

Proof. Suppose I is not Q+ and let X be an I -positive set having a par-
tition {Fn : n < ω} in finite sets such that every selector is in I . Define a
coloring ϕ : [X]2 → 2 by ϕ({k, m}) = 0 if and only if there is n such that
k, m ∈ Fn. Any ϕ-homogeneous set is finite or is contained in a selector for
〈Fn : n < ω〉 and so, the ϕ-homogeneous sets are in I .

However we have an example witnessing that the previous theorem is not
reversible.

Example 2.2.6. A non P+-ideal satisfying I + �� (I +)2
2 . Let sup-

pose that for every n < ω we have a MAD family An, satisfying An+1 =⋃
A∈An

An+1 � A and every An+1 � A is a MAD family in P(A). Let us
define In = I (An) and I =

⋂
n<ω In. Let us prove that I satisfies

I + �� (I +)2
2 . First, note that I + =

⋃
n<ω I +

n , and that (by a result of

Mathias ([37])) I +
n

�� (I +
n )2

2 . Let ϕ : [X]2 → 2 be a coloring. If X ∈ I +

then there is n0 < ω such that X ∈ I +
n0

and then there is Y ∈ I +
n0

∩ P(X)
(and so in I +) which is ϕ-homogeneous. Now, let us prove that I is not a
P+-ideal. Take a sequence 〈An : n < ω〉 such that An ∈ An, An ⊇ An+1, and
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An ∈ In \ In+1 for all n < ω. Hence, if A ⊆∗ An for all n < ω then A ∈ In

for all n and so, A ∈ I .

A MAD family A is completely separable if for every I (A)-positive set
X there is an element A of A contained in X. Erdös and Shelah [12] asked
whether completely separable MAD families exist in ZFC. It is well known
that under CH and under MA there is a completely separable MAD family.
Recently Shelah announced that if 2ℵ0 < ℵω then there is a completely
separable MAD family.

Remark 2.2.7. If the MAD families used in the previous example are com-
pletely separable then P(ω)/I is forcing equivalent with the collapse forcing1

Coll(ω, 2ω).

Proof. Note that
⋃

n<ω An is a dense subset of I +, since A ∈ I + implies
there is n < ω such that A ∈ I +

n and then there is B ∈ An contained in A.
Then, below every A ∈ I + there is an antichain of cardinality c (An+1 � A
is such antichain) and by McAloon’s theorem (see theorem 14.17 in [32]) we
are done.

The following theorem due to Adrian Mathias will be used in this section.
In section 3.2 we will give a game theoretic proof of it.

Theorem 2.2.8 (Mathias [37], Theorem 2.12). Let U be a ultrafilter on ω.
Then, U is selective if and only if U ∩I �= ∅ for every analytic and tall ideal
I on ω. �

We want to know whether a definable ideal fulfils I + �� (I +)2
2 . Un-

fortunately P+ and Q+ is not a criterion for analytic ideals, as the following
remark shows.

Remark 2.2.9. There are no tall analytic ideals which are both P+ and Q+.

Proof. Let I be an analytic ideal on ω, and suppose that I is a P+ and
Q+-ideal. Then, by P+ condition I + is a σ-closed forcing, and then it does
not add new real numbers. Let G be an I +-generic ultrafilter. Let us prove
that in V [G], G is a P and Q ultrafilter. Given a sequence 〈An : n < ω〉 ⊆ G,
since I is a P+-ideal, there is A ∈ G such than A ⊆∗ An for all n < ω. Let
{In : n < ω} be a partition of ω in finite sets. Since I is a Q+-ideal there

1For reference about Collapse Forcing see [26].
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is an I -positive selector of such partition and then there is B ∈ G such
that |B ∩ In| ≤ 1 for all n < ω. Then, in V [G], G is a selective ultrafilter
and I V [G] = I is an analytic ideal disjoint from G, contradicting Mathias
theorem 2.2.8 (in V [G]).

Among the maximal ideals, these conditions have been well studied, since
a maximal P+-ideal is the dual of a P-point and maximal Q+-ideal is the dual
ideal of a Q-point.

2.3 Q and Q+-ideals

Definition 2.3.1. Let I be an ideal on ω. I is a Q-ideal if for every
partition 〈Fn : n < ω〉 of ω into finite sets there is an I -positive set X such
that |X ∩ Fn| ≤ 1 for all n < ω.

The ideal EDfin is critical for the property of be a Q-ideal with respect
to the Katětov-Blass order, as the following theorem shows.

Theorem 2.3.2. Let I be an ideal on ω. Then

1. I is a Q-ideal if and only if I �KB EDfin, and

2. I is a Q+-ideal if and only if I � X �KB EDfin for all I -positive set
X.

Proof. (1) Let suppose that EDfin ≤KB I , and let f : ω → Δ be a Katětov-
Blass reduction. Then, the family {f−1[{n}× (n+1)] : n < ω} is a partition
of ω in finite sets and every selector of this partition belongs I . On the
other hand, if I is not a Q-ideal then there is a partition 〈Fn : n < ω〉 of
ω in finite sets such that every selector belongs I . Note such a partition
must have elements of arbitrarily large finite cardinality, because otherwise,
I would be an improper ideal. Take a sequence 〈Gn : n < ω〉 such that
|Gn| = n, Gn ⊆ Fin for some in < ω and X =

⋃
n Gn ∈ I +. Then I � X is

a copy of EDfin inside I . (2) Analogous to (1).

2.4 P and P+-ideals

The P+ property as such does not have a critical ideal, since the ideal I =
(Fin × Fin) ⊕ ED is Katětov-equivalent to ED and the second one is a P+



2.4. P AND P+-IDEALS 45

ideal while the first one is not. Proofs of these facts are (1) by Proposition
1.7.1 we have I ≤ ED, (2) up isomorphism, ED ⊆ I and (3) I is not P+

because it contains a copy of Fin × Fin (see Theorem 2.4.2). However, the
ideals Fin × Fin and conv are critical for a slight strengthening of P+. Let
us introduce the following definition.

Definition 2.4.1. Let I be an ideal on ω. We will say that I is decom-
posable if there is an infinite partition {Xn : n < ω} of ω in I -positive sets
such that for every X ⊆ ω

X ∈ I if and only if (∀n < ω)(X ∩ Xn ∈ I ).

Such partition X will be called an I -decomposition. We will say that I is
hereditarily decomposable if for every I -positive set X, I � X is decompos-
able.

We will say that I is indecomposable if it is not decomposable.

Theorem 2.4.2. Let I be an ideal. Then I is a P+-ideal if and only if I
is indecomposable and Fin × Fin �K I � X, for all X ∈ I +.

Proof. Let I be a P+-ideal. If {Xn : n < ω} is a partition of ω in I -
positive sets then there is Y ∈ I + such that Y \ ⋃

k≥n Xk is finite for all
n, proving that {Xn : n < ω} is not a decomposition. Given X ∈ I +

and f : X → ω × ω, if Y is an I -positive pseudointersection of the family
{f−1[(ω \n)×ω] : n < ω} then f ′′Y ∈ Fin×Fin but Y ∈ I +, proving that
f is not a Katětov function.

On the other hand, if I is not P+ then there is a decreasing sequence
〈Xn : n < ω〉 of I -positive sets whose pseudointersections are in I and
X0 = ω. If there is N such that for all n ≥ N , Xn \ Xn+1 belongs I then
I � XN contains a copy of Fin × Fin. Otherwise, by taking a sequence kn

such that Xkn \ Xkn+1 ∈ I + we have that this family is a decomposition of
I � X.

The ideal conv is useful for study the property P+. The following theorem
characterizes those ideals which are Katětov above the ideal conv.

Theorem 2.4.3. For any ideal I on ω the following are equivalent

1. I ≥K conv,
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2. there is a linear order � for ω such that (ω,�) is order-isomorphic
to Q ∩ [0, 1] and every increasing and every decreasing sequence with
respect to � is in I ,

3. there is a topology τ on ω such that (ω, τ) is homeomorphic to Q∩ [0, 1]
and every τ -convergent sequence (having a limit in [0, 1]) belongs to I ,
and

4. there is a countable family X ⊆ [ω]ω such that for every Y ∈ I + there
is X ∈ X such that |X ∩ Y | = |Y \ X| = ℵ0.

Proof. (2 → 1) Such an isomorphism from ω into Q is a Katětov reduction
between I and conv since every convergent sequence can be split as the
union of an increasing with a decreasing sequences.

(3 → 2) Such homeomorphism between ω and Q carries an order to ω
isomorphic to the order of Q∩[0, 1], and every increasing and every decreasing
sequences are in I since they are τ -convergent.

(4 → 3) Let X be such family. We can suppose that X separates points
(i.e., for each pair {n,m} there is X ∈ X such that |X ∩ {m,n}| = 1) and
every Boolean combination of its elements is infinite. Let τ be the topology
on ω whose basic clopen sets are the Boolean combinations of elements of
X . This topology is homeomorphic to the standard topology of Q and if
Y ∈ I + then Y can not be covered by finitely many τ convergent sequences
because there is a family of clopen sets {Cs : s ∈ 2<ω} such that {Cs : s ∈ 2n}
is pairwise disjoint for all n, Cŝ0 ∪ Cŝ1 = Cs and Y ∩ Cs is infinite for all
s ∈ 2<ω.

(1 → 4) Let C be a base of clopen sets of Q and f a witness of conv ≤K I .
Define X = {f−1[C] : C ∈ C}. Let I ⊆ ω be such that for every X ∈ X ,
I ∩ X is finite or I \ X is finite. Then, for every basic set C ∈ C, f ′′I is
almost contained in C or is almost contained in Q \ C, then f ′′I is covered
by a convergent sequence of Q, and hence I ⊆ f−1[f ′′I] ∈ I .

The decomposability of ideals gives a criterion for ideals which are Katetov-
above the ideal conv.

Lemma 2.4.4. If there is a family {Xn : n < ω} of I -decompositions
such that (1) Xn+1 refines Xn and (2) all pseudointersections of decreasing
chains 〈An : n < ω〉 of I -positive sets such that An ∈ Xn are in I , then
I ≥K conv.



2.5. WEAKER PARTITION PROPERTIES 47

Proof. We will proof that X =
⋃

n<ω Xn is a family as in 2.4.3(4). Let Y
be an I -positive set. Then for all n < ω and all A ∈ Xn either Y ⊆∗ A or
|Y ∩ A| < ℵ0 or |Y ∩ A| = |Y \ A| = ℵ0. If for some n < ω the third case
holds, we are done. Let assume case 3 does not hold for all n. Since any
Xn is an I -decomposition, second case is not possible for some An ∈ Xn.
If there is n < ω and B ∈ Xn with An �= B such that |B ∩ Y | = ω we are
done. Let us assume not. Then Y is a pseudointersection of the sequence
〈An : n < ω〉, and then Y ∈ I , a contradiction.

Theorem 2.4.5. Let I be an ideal on ω such that the quotient P(ω)/I is
a proper forcing and adds a new real number. Then there is an I -positive
set X such that I � X ≥K conv.

We will work with the forcing I + instead of P(ω)/I since the last one
is the separative quotient of the first one.

Proof. Properness of I + implies that for any countable family of maximal
antichains {An : n < ω} there exists an I +-condition X which is incom-
patible with all but countably many elements of An, for all n < ω. Let ṙ
be an I + name for a new real number, and pick a family {An : n < ω}
of maximal antichains in I + such that An+1 refines An and any condi-
tion in An decides ṙ � n, for all n < ω. Now, pick X ∈ I + such that
Bn = {A ∈ An : A ∩ X ∈ I +} is countable for all n < ω. Recursively, we
can refine each Bn into a pairwise disjoint family of positive sets Xn which
is a family of decompositions as in previous lemma. Note that if Y is an
I -positive subset of X then there is C ∈ Xn such that C ∩ Y ∈ I +. If not,
Y (and consequently X too) must be compatible with an element of An \Bn,
a contradiction. That proves X is an I -decomposition. Condition (1) was
required while constructing X , and finally we will prove condition (2). Let
Y be an I -positive subset of X. We claim that there is n < ω and there
are A0 �= A1 ∈ Cn such that |Y ∩ A0| = |Y ∩ A1| = ℵ0. That n can be found
by taking a large enough n < ω such that Y does not decide ṙ � n, and A0

and A1 must be compatible conditions with Y deciding different values for
ṙ � n.

2.5 Weaker partition properties

The partition properties defined below are weak versions of the previous
properties.
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Definition 2.5.1. Let I be an ideal on ω. We will say that I satisfies:

(a) ω �� (ω, I +)2
2 if for every coloring ϕ : [ω]2 → 2 either there is an

infinite 0-homogeneous set or there is an I -positive 1-homogeneous set.

(b) ω �� (< ω, I +)2
2 if for every coloring ϕ : [ω]2 → 2 either for every

m < ω there is a 0-homogeneous set X with |X| = m or there is an
I -positive 1-homogeneous set.

(c) I + �� (ω, I +)2
2 if for any I -positive set Y and any coloring ϕ :

[Y ]2 → 2 either there is an infinite 0-homogeneous set or there is an
I -positive 1-homogeneous set.

(d) I + �� (< ω, I +)2
2 if for any I positive set Y and any coloring ϕ :

[Y ]2 → 2 either for every m < ω there is a 0-homogeneous set X with
|X| = m or there is an I -positive 1-homogeneous set.

In the following diagram are shown the implications between these prop-
erties:

ω �� (I +)2
2

�� ω �� (ω,I +)2
2

�� ω �� (< ω, I +)2
2

I + �� (I +)2
2

��

�� I + �� (ω,I +)2
2

��

�� I + �� (< ω, I +)2
2

��

Definition 2.5.2 (Thümmel, [47]). We say that 〈Xi : i ∈ X〉 is an I -tower
if X ∈ I +, Xi ⊆ X and X \Xi ∈ I for all i ∈ X. A diagonal of an I -tower
〈Xi : i ∈ X〉 is a subset D of X such that D \ (i + 1) ⊆ Xi for all i ∈ D. We
say that an ideal I contains an I -tower if there is an I -tower such that
all of its diagonals are in the ideal.

Theorem 2.5.3 (Thümmel). Let I be an ideal on ω. If I does not contain

an I -tower then I + �� (< ω, I +)2
2 .

Proof. Let X ∈ I + and ψ : [X]2 → 2 be a coloring. Suppose by con-
tradiction that for some m < ω there is no Y ∈ [X]m homogeneous in
color 0 and there is no Y ∈ I + homogeneous in color 1. Take an I -
positive X̄ = {xi : i < ω} ⊆ X such that this m becomes minimal. Define
Xi = {y ∈ X̄ : ψ({xi, y}) = 1}. Suppose that for some i, Z = X̄ \ Xi ∈ I +.
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By minimality of m, there is a Z ′ ∈ [Z]m−1 homogeneous in color 0, a con-
tradiction. We have therefore X̄ \ Xi ∈ I for all i. Let X̄i =

⋂
j≤i Xj.

〈X̄i : i ∈ X̄〉 is an I -tower. Any diagonal is homogeneous in color 1, and by
our assumption is in I , i.e. the ideal contains an I -tower.

An example of an ideal I which does not contain a I -tower is nwd.

Lemma 2.5.4. nwd does not contain a nwd-tower.

Proof. Suppose that 〈Xi : i ∈ X〉 is a nwd-tower and fix a contable base
{Ui : i < ω} of Q and a type-ω order � for Q. We can assume that Xi+1 ⊆ Xi.
Choose d0 ∈ X arbitrary and suppose di was found. If there is d � di with
d ∈ Xdi

∩Ui then take di+1 = d, else take arbitrary di+1 � di with di+1 ∈ Xdi
.

By the construction D = {di : i < ω} is a diagonal of the tower, but if X is
dense in an open set U then D is dense in U too, hence D ∈ nwd+.

By 2.5.3 we have that nwd+ �� (< ω, nwd+)2
2 . Two other ideals satis-

fying that property are Fin × Fin and EDfin.

Lemma 2.5.5. EDfin does not contain an EDfin-tower and Fin×Fin does
not contain a Fin × Fin-tower.

Proof. Let 〈Xi : i ∈ X〉 be a decreasing EDfin-tower and let e be a one-to-
one function from X onto ω. For every i ∈ X, we can find ni > e(i) such
that |Xi ∩ ({ni}× (ni + 1))| ≥ e(i). Hence, D =

⋃
i∈X(Xi ∩ ({ni}× (n + 1)))

is an EDfin-positive diagonal of 〈Xi : i ∈ X〉. Analogously (but taking ni

such that |Xi ∩ ({ni} × ω)| = ℵ0) we can prove Fin × Fin does not contain
a Fin × Fin-tower.

However, EDfin does not satisfy the property ω �� (ω, I +)2
2 .

Lemma 2.5.6.

ω � (ω, ED+
fin)2

2.

Proof. Let ϕ : Δ → 2 be given by ϕ({(n1,m1), (n2, m2)}) = 0 if and only
if n1 = n2. It is clear that every 0-homogeneous set is contained in a col-
umn, and every 1-homogeneous is a partial selector of columns and so 1-
homogeneous are in EDfin.
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In fact, every ideal I ≥KB EDfin fails the property ω �� (ω,I +)2
2

since a Katětov-Blass reduction defines a partition of ω in finite arbitrarily
large sets such that every selector of that partition is in I , and so, we can
define a coloring ϕ in analogous way of previous proof, witnessing I does

not satisfy ω �� (ω, I +)2
2 .

In order to define an ideal I satisfying ω �� (< ω, I +)2
2 we have

studied some properties closely related. For every n < ω we will say that
an ideal I is n-Ramsey if for any coloring ϕ : [ω]2 → 2 either there is a 0-
homogeneous set A of cardinality n or there is an I -positive 1-homogeneous
set A. We denote such property by

ω �� (n, I +)2
2 .

Let us denote by Kn the complete graph with n vertices. We will say that a
graph H contains Kn if H has a subgraph isomorphic to Kn.

Lemma 2.5.7. For every 3 ≤ n < ω there is a unique-up-isomorphisms
graph Gn = 〈ω, En〉 such that for every graph H on ω, H does not contain
Kn if and only if there is a subset A of ω such that H ∼= 〈A, En � [A]2〉.
Proof. Fix n < ω, and let us define En as in the alternative construction of
Random Graph below proof of 1.6.28 was done. We will define recursively
an increasing family {Fk : k < ω} of initial segments of ω and a ⊆-increasing
family {Ek : k < ω} of subsets of [ω]2 as follows: Define F0 = {0} and
E0 = ∅. Let suppose defined Fk and Ek and Define P (k) = {a ⊆ Fk :
(∀b ∈ [a]n−1)(∃l �= m ∈ b)({l,m} /∈ Ek)} and let {aj : j < |P (k)|} be an
enumeration of P (k). Then, we define Ek+1 = Ek ∪ {{|Fk| + j, i} : j <
|P (n)| ∧ i ∈ aj}, Fk+1 = Fk ∪ {|Fk| + j : j < |P (k)| and En =

⋃
k<ω Ek. It is

clear that every subgraph of En does not contain Kn, and given a graph H
which does not contain Kn we can construct the isomorphism required as we
have done in proof of 1.6.29.

Definition 2.5.8. We define Rn as the ideal on ω generated by the free sets
in Gn.

Let us note that Rn is not a trivial ideal for all n ≥ 3. If there were a finite
family {Xi : i ≤ N} of free sets with respect to Gn such that

⋃
i<N Xi = ω

then we can not embed the (N + 2)-cycle in Gn, contradicting the universal
property of Gn, since the (N + 2)-cycle does not have complete subgraphs of
order greater than 2 for N > 2.

The ideal Rn is critical with respect to n-Ramsey property.



2.5. WEAKER PARTITION PROPERTIES 51

Theorem 2.5.9. Let I be an ideal on ω. Then I is n-Ramsey if and only
if I �K Rn.

Proof. If I is not n-Ramsey then there is a coloring ϕ : [ω]2 → 2 such that
there is not 0-homogeneous sets of cardinality n and every 1-homogeneous set
is in I . Put H = ϕ−1{0}. Note that H does not have complete subgraphs of
cardinality n, and so, there is an isomorphism f from 〈ω, H〉 to 〈A,En � A〉
for some A ⊆ ω. f is a Katětov reduction since for every En-free set B,
f−1[B] is 1-homogeneous with respect to ϕ, and so, f−1[B] ∈ I . On the
other hand, let f be a Katětov reduction, i.e., a function such that for every
Gn-free set f−1[A] ∈ I , and define ϕ : [ω]2 → 2 by ϕ({m,n}) = 0 iff
f(m) �= f(n) and {f(m), f(n)} ∈ En. If A is a 0-homogeneous set with
|A| = n then f [A] is a complete subgraph of Gn, a contradiction. If A is a
1-homogeneous set then f [A] ∈ Rn and so, A ⊆ f−1[f [A]] ∈ I .

Given an ideal I on ω, the ideal Ĩ is defined as follows.

Ĩ = {A ⊆ ω × ω : (∃k, i0)((∀i ≤ i0 (A)i ∈ I ) ∧ (∀i > i0 |(A)i| < k))}.2

It is clear that if I is a Borel ideal then Ĩ is a Borel ideal.

Lemma 2.5.10. If I + �� (< ω, I +)2
2 then ω �� (Ĩ +)2

2
.

Proof. Let a coloring ψ : [ω × ω]2 → 2 be given. Assume by contradiction

that there is no homogeneous X ∈ Ĩ +. We construct inductively for every
i < ω:

• an increasing sequence mi < ω,

• a pairwise different finite sequence ni,j with j < i,

• a color li < 2 and

• a decreasing Ai ∈ (Fin × I )+,

such that if (m,n) ∈ Ai then ψ({(mi, ni,j)(m,n)}) = li, for all i < ω and
all j < i. In step i + 1 we take mi+1 > mi such that (Ai)mi+1

∈ I +.
Let {ei

k : k < ω} be an enumeration of (Ai)mi+1
. We find a decreasing

sequence Ai,k ∈ (Fin × I )+ for k < ω such that ψ({(mi+1, e
i
k), (m,n)} is

2See the notation for columns in products given in the section of preliminaries.
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constant for all (m,n) ∈ Ai,k. We find A ∈ I + such that A ⊆ (Ai)mi+1

and ψ({(mi+1, e
i
k), (m,n)}) = li+1 for all k ∈ A and (m,n) ∈ Ai,k. Our

assumption and the partition relation give us now a set {ni+1,j : j ≤ i}
homogeneous in color li+1. We put Ai+1 =

⋂
j≤i Ai,ni+1,j

. In this way, we
fulfill the inductive assumption. Let C ⊆ ω be such that li = lj for all

i, j ∈ C. Then {(mi, ni,j) : i ∈ C ∧ j < i} is an Ĩ -positive homogeneous set
for ψ.

An immediate consequence of the lemma is the following.

Corollary 2.5.11.

ω → (ñwd
+
)2
2 and ω → (ẼDfin

+

)2
2

�

Another (non immediate) consequence is

Corollary 2.5.12.
ω → (ω, ED+)2

2.

Proof. We still using notation for columns in products defined in the section
of preliminaries. Let a coloring ψ : [ω × ω]2 → 2 be given and suppose that
there are not infinite 0-homogeneous sets. We will construct, for i < ω:

• an increasing sequence mi ∈ ω,

• a set {ni,j : j < i} of pairwise distinct elements of ω, and

• a decreasing Ai ∈ (Fin × Fin)+

such that for any i < ω, {(mi, ni,j) : j < i} is 1-homogeneous and ψ({(mi, ni,j)(m,n)}) =
1 for all (m,n) ∈ Ai and j < i.

In step 0 we can take m0 = 0, and A0 = ω × ω. In step i + 1 we take
mi+1 > mi such that

1. |(Ai)mi+1
| = ℵ0 and

2. there is a 1-homogeneous subset B of {mi+1}×(Ai)mi+1
with |B| = i and

such that {(n,m) ∈ Ai : ψ({(n,m), (mi+1, k)}) = 1} ∈ (Fin × Fin)+

for all pair (mi+1, k) ∈ B.



2.6. ON A THEOREM OF FARAH 53

We will prove by contradiction that it is possible to find such mi+1. If not,
let K the maximal i that we can do the construction below, and we now
construct:

• an increasing sequence {m′
i : i < ω} with m′

0 = mK and

• a decreasing sequence of sets Bi ∈ (Fin × Fin)+ with B0 ⊆ AK ,

such that for every i < ω there is ki ∈ (Bi)m′
i
such that

Bi+1 = {(m,n) ∈ Bi : m > m′
i ∧ ϕ({(m′

i, ki), (m,n)}) = 0} ∈ (Fin × Fin)+.

We can find such sequences since for every k ≥ K, if (AK)k is infinite and
{k} × (AK)k does not have infinite 0-homogeneous sets, then by Ramsey
theorem, it has an infinite 1-homogeneous set. But 1-homogeneous infinite
subsets of columns must have an element l such that {(n,m) ∈ AK : n > k∧
ψ({(k, l), (n,m)}) = 0} ∈ (Fin × Fin)+. Hence, by construction, {(m′

i, ki) :
i < ω} is an infinite 0-homogeneous set, a contradiction. Then {(mi, ni,j) :
i < ω ∧ j < i} is an ED-positive 1-homogeneous set.

Example 2.5.13. Let I be the ideal on Q of all subsets A of Q that there
is not an order embedding from Q into A. Such ideal is a co-analytic one,

satisfies I + �� (ω, I +)2
2 and does not satisfy I + �� (I +)2

2 . Details

of this proof are given by Todorčević and Farah in [16]. James Baumgart-

ner proved in [4] that for any ultrafilter U , U �� (ω,U)2
2 if and only if

U �� (U)2
2 . We would like to know which is the relationship between

these properties among Borel ideals.

2.6 On a theorem of Farah

We now consider colorings into infinitely many colors. Of course, one can
not ask for infinite homogeneous sets, but can ask for sets which are weakly
homogeneous in the sense of using ”few” colors.

Definition 2.6.1. Let I be an ideal on ω and ϕ : [ω]n → ω. We will say
A ⊆ ω is I -homogeneous for ϕ if ϕ′′[A]n ∈ I . We will say that I has the
property

ω �� (ω)n
ω,I

if every ϕ : [ω]n → ω has an infinite I -homogeneous set.
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In [15] Ilijas Farah used this property with the aim of extending the char-
acterization of non meager ideals done by Jalali-Naini - Talagrand theorem
1.2.3. Farah claimed that for every hereditary subset J of P(ω), J is non-
meager if and only if for every n ≥ 1 and every h : [ω]n → ω either h
has an infinite homogeneous set or there is an infinite J -homogeneous set.
Restricting this result to ideals, we have noted that this is not completely
correct. Since singletons are in any ideal, Farah’s claim becomes equivalent
with the sentence: for all ideal on ω, I is nonmeager if and only if for all

n ≥ 1, ω �� (ω)n
ω,I . However, Farah’s proof of necessity uses only case

n = 1 and the fact that a function h : [ω]1 → ω which does not have any
infinite homogeneous set is essentially a finite-to-one function from ω into ω
and then the case 1 is equivalent to a version of the Jalali-Naini - Talagrand
theorem. That version must be (5) in theorem 1.2.3, which is immediately
equivalent with I �RB Fin. However, it is easy to see that case n = 1 is
equivalent with I �K Fin, and this condition is equivalent to I is tall.

The ideal Gc of graphs without infinite complete subgraphs is a critical

ideal with respect to ω �� [ω]2ω,I property in Katětov order. The ideal

Gc was defined in section 1.6 as the family of subsets I of [ω]2 such that for
every infinite X ⊆ ω there is n �= m ∈ X such that {n,m} /∈ I.

Proposition 2.6.2. Let I be an ideal on ω. Then ω �� (ω)2
ω,I if and

only if I �K Gc.

Proof. Let f : [ω]2 → ω be a witness of I ≤K Gc. f itself is a coloring
and given an infinite subset X of ω, f ′′[X]2 is not in I , because in the
other case, [X]2 ⊆ f−1[f ′′[X]2] ∈ Gc, a contradiction. On the other hand,
given a coloring ϕ : [ω]2 → ω witnessing no ω ��(ω)2

ω,I , ϕ itself witnesses
I ≤K Gc.

Actually, the previous theorem can be extended for all n ≥ 2 if we define
the ideal Gn

c on [ω]n generated by all subsets of [ω]n which do not contain a

set [A]n with |A| = ℵ0. Then, ω �� (ω)n
ω,I if an only if I �K Gn

c . Farah’s

theorem would imply that for every meager (in particular Borel) ideal there
is n < ω such that I ≤ Gn

c . We will prove that this is not possible.

The ideal nwd satisfies the arrow property ω �� (ω)2
ω,I . We have a

proof of this fact using cardinal invariants, forcing, and absoluteness. In
theorem 1.6.26 we have proved that par2 ≤ cov∗(Gc); Balcar, Hernández-
Hernández and Hrušák [1] have proved that cov∗(nwd) = cov(M) and Blass
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[5] has proved that h ≤ par2. Mathias model satisfies cov(M) = ℵ1 and
h = ℵ2, hence in this model nwd �K Gc. This fact is expressed by the
Π1

2-sentence
(∀f : [ω]2 → Q)(∃A ∈ [ω]ω)(f ′′[A]2 ∈ nwd)

and by Shoenfield’s absoluteness theorem this formula is true in any model
of ZFC.3 We can generalize this result for every analytic ideal I with
cov∗(I ) ≤ cov(M).

The following lemma plus a forcing argument followed by an absolute-
ness argument, shows the connection between CBα ideals and the property

ω �� (ω)2
ω,I .

Lemma 2.6.3 (ZFC + there exists a selective ultrafilter). Let f be a function
from [ω]2 to Q ∩ [0, 1]. Then there is an infinite subset A of ω such that
f ′′[A]2 ∈ CB3.

Proof. Let U be a selective ultrafilter on ω.

Claim. There is a real number r such that for every ε > 0 there is Uε ∈ U
such that f ′′[Uε]

2 ⊆ B(r, ε).

Proof. Define recursively a sequence In of subintervals of I0 = [0, 1] by defin-
ing I0

n+1 and I1
n+1 both with length 2−n−1 and such that I0

n+1 ∪ I1
n+1 = In.

Let In+1 = I0
n+1 if there is a U ∈ U such that f ′′[U ]2 ∈ I0

n+1, and In+1 = I1
n+1

otherwise. Note that since U is a Ramsey ultrafilter, if In+1 = I1
n+1 then

there is U ∈ U such that f ′′[U ]2 ⊆ I1
n+1. Let r be the unique element of⋂

n<ω In. Hence, for every ε > 0 take n such that 2n > ε−1 and then take Uε

such that f ′′[Uε]
2 ⊆ In ⊆ B(r, ε).

Claim. For all n ∈ ω there is Vn ∈ U such that {f{n,m} : m ∈ Vn} is a
sequence in [0, 1] which converges to some rn ∈ [0, 1].

Proof. We only will use that U is a P-point. Analogously to first claim, using
a sequence of nested two-part partitions, we can find rn, and, for all k ∈ ω,
we can find V(n,k) ∈ U such that

{
f{n,m} : m ∈ V(n,k)

} ⊆ B(rn, 2−k). By
taking a pseudointersection Vn of {V(n,k) : k ∈ ω} in U , we are done.

Let U be a pseudointersection of {U2−k : k ∈ ω}. It is clear that {rn : n ∈
U} converges to r. We have two cases:

3See subsection 0.2.
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I. U ′ = {n ∈ U : rn = r} ∈ U .

II. U ′′ = {n ∈ U : rn �= r} ∈ U .

In the first case, we shall prove that for every ε > 0 the set {{i, j} ⊆ U ′ :
f({i, j}) /∈ B(r, ε)} is finite. If not, either there is i ∈ U ′ such that for
infinitely many j ∈ U ′, f({i, j}) /∈ B(r, ε) (but that is impossible, since

f({i, j})
j→∞
j∈U ′

�� ri = r ), or for infinitely many i ∈ U ′ there is j ∈ U ′ such that

i < j and f({i, j}) /∈ B(r, ε)) (but that is impossible too, because for every
k, if i, j are sufficiently large {i, j} ∈ U2−k and so, f({i, j}) ∈ B(r, 2−k)).
Therefore, in case I, f ′′[U ]2 ∈ CB2. In the second case, let {nk : k ∈
ω} be the increasing enumeration of U ′′. Since U is a Ramsey ultrafilter,
we can suppose without loss of generality that {rnk

: k ∈ ω} are pairwise
distinct. Inductively, for every k ∈ ω, define εk > 0 and Wk ∈ U such that
B(rnk

, εk) ∩ {rm : k < m} = ∅ = B(rnk
, εk) ∩ B(rni

, εi), for all i < k, and
f ′′[Wk]

2 ⊆ B(rnk
, εk). Let V be a pseudointersection of {Wk : k ∈ ω} in U .

Then, f ′′[V ]2 ∈ CB3, because any f({m,n}) (with m,n ∈ V ) is a term of a
convergent sequence isolated in some B(rk, εk).

Lemma 2.6.4.

ω �� (ω)2
ω,CB3

.

Proof. Let V be any model of ZFC∗. Let G be a 〈[ω]ω,⊆∗〉-generic ultra-
filter on V . By σ-closedness, V [G] does not have new real numbers and

G is a selective ultrafilter. Then in V [G], ω �� (ω)2
ω,CB3

holds. By the

absoluteness of Katětov order on Borel ideals V |= ω �� (ω)2
ω,CB3

.

Argument given in lemma 2.6.3 can be displayed in order to prove that

ω �� (ω)n
ω,CBn+1

implies ω �� (ω)n+1
ω,CBn+2

, and since CBω ≥K CBn for

all n, we have that CBω (and every Katětov greater ideal, particularly nwd)
is a counterexample to Farah’s theorem.

2.7 Monotonicity and Ramsey property

In [17], Filipów, Mrożek, Rec�law and Szuca introduced the following defini-
tions:
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Definition 2.7.1. Let I be an ideal on ω. Then

1. I is Mon (monotone) if for any sequence (xn : n < ω) of real (equiva-
lently rational) numbers there is an I -positive set X such that (xn) � X
is monotone.

2. I is h−Mon (hereditarily monotone) if I � A is Mon for all A ∈ I +.

3. I is Fin − BW (finitely Bolzano-Weierstrass) if for any bounded se-
quence (xn : n < ω) of real numbers there is an I -positive set X such
that (xn) � X is convergent.

4. I is locally selective if for every partition {An : n < ω} of ω in sets
from I there is an I -positive set S such that |An ∩ S| ≤ 1.

It is easy to prove that ω �� (I +)2
2 implies I is Mon and I is Mon

implies I is Fin−BW . They remark that the summable ideal I 1
n

is Fin−
BW but is not Mon and they ask if every Mon ideal satisfies ω �� (I +)n

2 ,
for all n < ω. An immediate corollary of theorem 2.4.3 is

I is Fin − BW if and only if I �K conv

and it is immediate that

I is locally selective if and only if I �K ED.

Proposition 22 in [17] claims that if I is Mon then it is locally selective.
The following result is an easy consequence of their results.

Theorem 2.7.2. If I is Mon then I �K conv and I �K ED. �

On the other hand, we have a criterion for Mon ideals.

Theorem 2.7.3. Let I be an ideal on ω. If I �K conv and I � X �K ED
for all I -positive set X then I is Mon.

Proof. Let f : ω → Q be a sequence. Since I �K conv there is A ∈ I + such
that f ′′A is the image of a convergent sequence. {A∩ f−1{m} : m ∈ f ′′A} is
a partition of A. If there is m ∈ f ′′A such that f−1{m} ∈ I + we are done. If
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not, since f is not a witness for I � A ≥K ED, there is an I -positive subset
B of A such that f � B is one to one. Let l be the limit of f � B. Then either
B0 = B∩f−1(−∞, l) ∈ I + or B1 = B∩f−1(l,∞) ∈ I +. Let us suppose the
first case (the other case is analogous). Let {bk : k < ω} be the increasing
enumeration of B0. Let k0 = 0 and k1 be such that f(bk) > f(b0) for all
k ≥ k1; and for every j ≥ 1 let kj+1 be such that f(bk) > max{f(bi) : i < kj}
for all k ≥ kj+1. For any i < ω define the family Ci = {bk : ki ≤ k < ki+1}.
Then, {Ci : i < ω} is a partition of B in finite sets. Since I � B �K EDfin

there is an I -positive subset D of B such that |C ∩ Ci| ≤ 1 for all i < ω.
Now, either D0 =

⋃
i<ω(C ∩C2i) ∈ I + or D1 =

⋃
i<ω(C ∩C2i+1) ∈ I +, and

f � D0 and f � D1 are both increasing sequences.

Corollary 2.7.4. Every ideal I on ω is h−Mon if and only if I � X �K

conv and I � X �k ED, for all I -positive set X.

Moreover, in [17] the authors asked about colorings with more than two
colors.

Question 2.7.5 (Filipow et al, [17], problems 59 and 60). Let I be an ideal

on ω. Is it true that if ω �� (I +)2
2 then ω �� (I +)2

3 ?

Is it true that if ω �� (I +)2
2 then ω �� (I +)2

n for all n > 2?

We have an example answering in negative both questions. Such example
is ẼD.

Theorem 2.7.6. ω �� (ẼD+
)2
2

but ω � (ẼD+
)2
3.

Proof. By corollary 2.5.12 we have that ω �� (< ω, ED+)2
2 and by 2.5.10,

ω �� (ẼD+
)2
2
. Let us consider the following coloring ϕ : [ω × ω × ω]2 → 3

given by

ϕ{(n1, n2, n3), (m1, m2,m3)} =

⎧
⎪⎨
⎪⎩

0 if n1 = m1 and n2 = m2,

1 if n1 = m1 and n2 �= m2,

2 if n1 �= m1.

Let A be a subset of ω × ω × ω. If A is 0-homogeneous set then the first
projection of A is in ED because second projection of A is contained in a
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column of ω × ω; if A is 1-homogeneous then the first projection of A is in
ED because second projection of A is contained in a selector of the columns
of ω ×ω. Finally, if A is 2-homogeneous, then A is contained in a selector of
the columns of the product ω × (ω × ω). In the three cases, A ∈ ẼD.

2.8 Ultrafilters and Katětov order

In this section we study some classes of ultrafilters on ω, and their relation
with Katětov order. Particularly, we study the critical ideals for well studied
classes of ultrafilters: P-points, Q-points, selective ultrafilters and rapid ul-
trafilters. We conclude this section with the study of S-ultrafilters, i.e. the
ultrafilters which satisfy the Fubini property. We must emphasize that every
one of the ideals which are critical with respect to classical properties on
ultrafilters, is a Borel ideal.

First we give game theoretic proofs of a different kind of characteriza-
tions of selectivity and P-pointness due to Mathias [37] and Zapletal [50]
respectively.

2.8.1 Game theoretic proof of Mathias’ theorem

We present a new, game theoretic, proof of Mathias theorem 2.2.8 which say
that a ultrafilter U is selective if and only if it intersects all the analytic tall
ideals.

Game theoretic proof of Mathias theorem. Let us consider the following game
G(U , ω, I +) defined by the following clauses: In step k, Player I chooses an
element Uk of U ; Player II chooses a natural number nk ∈ Uk; and Player II
wins a run of G(U , ω, I +) if {nk : k < ω} ∈ I +. It is easy to see that

• Player I has a winning strategy if and only if there is a U -branching
tree T ⊆ ω<ω such that ran(f) ∈ I for all branch f ∈ [T ], and

• Player II has a winning strategy if and only if there is a U -branching
tree T ⊆ ω<ω such that ran(f) ∈ I + for all branch f ∈ [T ].

Claim. If player II has a winning strategy then I is not a tall ideal.

Proof of the claim. Let T = {tn : n < ω} be an enumeration of a U -
branching tree such that ran(f) ∈ I + for all f ∈ [T ]. Define An =
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⋂
m≤n succT (tm), for all n < ω. In the first place, note that {An : n < ω}

is a decreasing sequence of elements of U . In second place, note that for
all I ∈ I there is n < ω such that I ∩ An = ∅, because in other case,
there were a branch of T contained in an element of I . We will define a
branch f ∈ [T ] such that I � ran(f) = Fin(ran(f)). Let k0 be in A0 and
r0 such that t0̂ k0 = tr0 . For all j < ω let kj+1 be in Arj

and rj+1 such
that trj

k̂j+1 = trj+1
. It is clear that f =

⋃
j<ω trj

is a branch of [T ] and
ran(f) ⊆∗ An for all n < ω. Then |I ∩ ran(f)| < ∞ for all I ∈ I .

Claim (Galvin, Shelah (see [2], theorem 4.5.3)). U is selective if and only if
for all U-branching tree T there is a branch f ∈ [T ] such that ran(f) ∈ U .

Proof of the claim. Let suppose that U is a selective ultrafilter and T is a
U -branching tree. Since U is a P-point, there is a pseudointersection X of
{succT (t) : t ∈ T} in U . Define g : ω → ω by g(0) = 0, and g(n + 1)
as the minimal k > g(n) such that for every increasing t ∈ T such that
ran(t) ⊆ g(n), X \ k ⊆ succT (t). Since U is a Q-point, there is Y ∈ U
such that |Y ∩ X ∩ [g(n), g(n + 1))| ≤ 1 for all n < ω. Then either Y0 =⋃

n<ω(Y ∩X ∩ [2n, 2n+1)) ∈ U or Y1 =
⋃

n<ω(Y ∩X ∩ [2n+1, 2n+2)) ∈ U .
If Yi ∈ U then Yi is a positive set contained in the image of a branch of [T ].
On the other hand, let 〈Un : n < ω〉 be a decreasing sequence of elements of
U and define T the tree such that succT (t) = Un for all t ∈ Tn. The image
of a branch f ∈ [T ] is a pseudointersection of 〈Un : n < ω〉.
By the first claim if I is tall then Player II does not have a winning strategy
and by the second claim, if U is selective and I ∩ U = ∅ then Player I does
not have a winning strategy. Then G(U , ω, I +) is not determined and then,
I is not analytic.

2.8.2 Characterization of P-point ultrafilters

We will use the following result which is an immediate consequence of theo-
rem 2.4.2.

Remark 2.8.1. The ideal Fin×Fin is a Borel ideal such that there are no
P+-ideals (and so, there are no Fσ-ideals) Katětov-above it.

In [50] (claim 2.4), Zapletal proved that if U is a P-point ultrafilter on ω
then for every analytic ideal I disjoint from U there is an Fσ-ideal J disjoint
from U and containing I . We prove the inverse implication of Zapletal’s
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result and integrate it in the following theorem. However, we will begin with
a definition.

Definition 2.8.2 (Laflamme and Leary [36]). Let X be a set of infinite
subsets of ω. A tree T ⊆ ([ω]<ω)<ω is a X -tree of finite sets if for each s ∈ T
there is an Xs ∈ X such that ŝ a ∈ T for each a ∈ [Xs]

<ω.

Theorem 2.8.3 (Characterization of P-points; Zapletal 2007, Hrušák, Meza-
-Alcántara and Thümmel, 2008). Let U be a ultrafilter on ω. Then U is a
P-point if and only if for every Borel ideal I disjoint from U there is an
Fσ-ideal J disjoint from U and containing I .

Proof. Let U be a P-point ultrafilter and let I be a Borel ideal disjoint from
U . Let us consider the following game G2. In step n, Player I chooses a
set Un ∈ U and Player II chooses a finite subset an of Un. Player II wins if⋃

n an ∈ I +. It is immediate that

Claim. Player I has a winning strategy for G2 if and only if there is a U-tree
of finite sets T such that

⋃
n<ω f(n) ∈ I for all f ∈ [T ]. �

However if U is a P-point then for all U -tree of finite sets there is f ∈ [T ]
such that

⋃
n f(n) ∈ U . Hence, if U ∩ I �= ∅ then Player I does not have a

winning strategy for G2. Since G2 is a determined game there is a winning
strategy for Player II. It is immediate that

Claim. Player II has a winning strategy in G2 if and only if there is a tree
T ⊆ ([ω]<ω)<ω such that (a) for all U ∈ U and all t ∈ T there is a ∈ succT (t)
such that a ⊆ U and (b)

⋃
n f(n) ∈ I + for all f ∈ [T ]. �

Let T be as in the previous claim. For any t ∈ T define

Ct = {X ⊆ ω : (∀a ∈ succT (t))(a \ X �= ∅)}.

(1) It is immediate that Ct is hereditary.
(2) Note that Ct is also a closed set since for a given a ∈ succT (t) and

Y ∈ Ct, there is X ∈ Ct such that X ∩ (max(a) + 1) = Y ∩ (max(a) + 1) and
then a \ Y �= ∅.

(3) Note that I ⊆ ⋃
t∈T Ct since if X /∈ ⋃

t∈T Ct then there is a branch
f of T such that

⋃
n f(n) ⊆ X, proving that X ∈ I +.

(4) By (a) it is clear that U ∩ ⋃
t∈T Ct = ∅. The ideal J required is the

ideal generated by
⋃

t∈T Ct. It is clear that J ∩ U = ∅. Then we will be
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done if we prove that J is Fσ. However, note that if Ki (i ≤ n) are closed
hereditary sets then U(K0, . . . , Kn) = {X : (∃k0 ∈ K0) . . . (∃kn ∈ Kn)(X ⊆⋃

i≤n ki)} is a closed hereditary set (since is the image of the compact set
K0 × · · · × Kn under the continuous function (k0, . . . , kn) �→ ⋃

i≤n ki), and
then, J =

⋃
n<ω

⋃
f∈[T ]n U(Cf(0), . . . , Cf(n)) is an Fσ ideal.

On the other hand, let us assume that U is not a P-point. Then let {Xn :
n < ω} be a partition of ω in elements of U∗, such that if A∩Xn is finite for all
n < ω then A ∈ U∗. Such partition can be chosen by defining Xn = Un\Un+1

where 〈Un : n < ω〉 is a strictly ⊆∗-decreasing sequence of elements of U
without pseudointersections in U , and with U0 = ω. By defining the ideal
I generated by {Xn : n < ω} ∪ {A ⊆ ω : (∀n < ω)(|A ∩ In| < ℵ0)}, we
have that I is a copy of Fin×Fin contained in U∗ and then, I can not be
extended to an Fσ-ideal disjoint from U , by lemma 2.8.1.

2.8.3 I -ultrafilters

James Baumgartner has introduced the following definition in [3]. Let I
be a family of subsets of a set X such that I contains all singletons and is
closed under subsets. A ultrafilter U is an I-ultrafilter if for any function
F : ω → X there is A ∈ U such that F ′′A ∈ I. The I-ultrafilters have been
studied by Baumgartner and some other authors like Jana Flašková [18],
Saharon Shelah, Jörg Brendle and Christopher Barney. They have made
emphasis on families I contained in R, 2ω and ωω. Particularly, they have
studied I-ultrafilters when I consists of:

(1) all discrete subsets of 2ω (discrete ultrafilters),

(2) all scattered subsets of 2ω (scattered ultrafilters),

(3) all subsets of 2ω with closure of measure zero (measure zero ultrafilters)
and

(4) all nowhere dense subsets of 2ω (nowhere dense ultrafilters).

Baumgartner noted that if I consists of all finite subsets of 2ω then the I-
ultrafilters are exactly the principal ultrafilters, and he also proved that every
P-point ultrafilter is discrete and that the class defined in (n) is included in
the class defined in (n + 1) for 1 ≤ n ≤ 3. David Booth proved in [6] that
if I = {Y ⊆ 2ω : Y is finite or has order type ω∗} then the I-ultrafilters are
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exactly the P-points, where the order type of Y is calculated with respect to
the lexicographical ordering. Shelah proved that it is consistent that there are
no P-point ultrafilters [41] and that there are no nowhere dense ultrafilters
[42].

We have noted that I-ultrafilters are characterized by Katětov order,
when I is an ideal on ω.

Proposition 2.8.4. Let I be an ideal on ω. Then a ultrafilter U on ω is
an I -ultrafilter if and only if I �K U∗.

Proof. Let us suppose that U is an I -ultrafilter, and f ∈ ωω. Then there
is a U ∈ U such that f [U ] ∈ I , but U ⊆ f−1[f [U ]] ∈ U , proving f is not
a witness for I ≤ U∗. On the other hand, let us suppose that I �K U∗.
Given f ∈ ωω there is I ∈ I such that f−1[I] /∈ U∗, that is, f−1[I] ∈ U .

We have characterized some special classes of ultrafilters in Katětov order.
The following theorem shows our first example.

Theorem 2.8.5. Let U be a free ultrafilter on ω. The following conditions
are equivalent:

(1) U is a selective ultrafilter,

(2) ED �K U∗, and

(3) R �K U∗.

Proof. 1↔2 follows directly from the following lemma.

Lemma 2.8.6. For any ideal I on ω, ED ≤K I if and only if there is a
partition of ω in infinitely many infinite sets {An : n < ω} such that every
An and every selector of such partition are in I .

Proof of lemma. If f : ω → ω × ω is a witness for ED ≤K I then An =
f−1[{n} × ω] defines our partition requested.

On the other hand, doing f : ω → ω × ω such that f � An is a bijection
between An and {n×}ω we have that f is the Katětov function requested.

Now, 1↔3 is a consequence of 2.2.2, since a selective ultrafilter is the dual
filter of a maximal Ramsey ideal.

Theorem 2.8.7. Let U be a free ultrafilter on ω. The following conditions
are equivalent:
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1. U is a P-point ultrafilter,

2. Fin × Fin �K U∗ and

3. conv � U∗.

Proof. (2→1) In example 2.8.1 we discussed that there are no P+-ideals
Katětov-above Fin × Fin and note that U∗ is a P+-ideal if U is a P-point
ultrafilter.

(3→ 2) Note that f : ω → Q defined by f(n,m) = (n+1)(m+1)(n+3)−1
(m+1)(n+2)(n+3)

is a
witness for conv ≤K Fin × Fin.

(1→3) Let us suppose that conv ≤K U∗ and let f : ω → Q ∩ [0, 1] be a
witness. For any interval I of rational numbers (open, closed or semi-closed)
with rational end points let us denote by I0, I1 the intervals contained in I
such that I0 is delimited by inf I and the middle point of I not including it,
and I1 is delimited by the middle point of I including it and sup I; and I0

(resp. I1) will include the left end point (resp. right) if and only if I includes
it. By recursion we define two sequences, 〈Un : n < ω〉 of elements of U and
〈In : n < ω〉 of intervals of rational numbers, as follows: I0 = [0, 1], Un is
given by

Un =

{
f−1[I0

n] if f−1[I0
n] ∈ U

f−1[I1
n] otherwise

and In+1 = f ′′Un. Note that 〈Un : n < ω〉 is a decreasing sequence of elements
of U and if A is a pseudointersection of 〈Un : n < ω〉 then f � A is a sequence
in Q ∩ [0, 1] convergent to the unique element of

⋂
n<ω clR(In). Since A is a

subset of the f -preimage of that sequence, we conclude that A ∈ U∗.

The Q-points are characterized by Katětov-Blass order.

Theorem 2.8.8. Let U be a free ultrafilter on ω. Then U is a Q-point
ultrafilter if and only if EDfin �KB U∗.

Proof. Let us suppose that U is a Q-point ultrafilter and let f : ω → Δ be a
finite-to-one function. Let us denote Δn = {n} × (n + 1). Then {f−1[Δn] :
n < ω} is a partition on ω in finite sets. Let A ∈ U be a selector for that
partition, and note that |f ′′A∩Δn| ≤ 1 for all n < ω and so, f ′′A ∈ EDfin but
A ⊆ f−1[f ′′A] ∈ U . On the other hand, let P = {In : n < ω} be a partition
of ω in finite sets. We can assume that |In| increases to infinity since if not,
then we can reorder that family in such way that |In| is increasing and if such
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cardinalities were bounded, then we can find a partial selector in U without
using Katětov order as follows. Let N, M < ω such that |In| = N for all
n > M . For any i < N and n > M define ai

n the i-th element of In and
define Ci = {ai

n : n > M}. Note that
⋃

i<N Ci =
⋃

n>M In ∈ U and then
there is i < N such that Ci ∈ U . Such Ci is a partial selector of P . Done
that assumptions, define Δ′ =

⋃
n<ω{n} × In and define f : ω → Δ′ given

by f(k) = (n, k) where n is the unique element of ω such that k ∈ In. Note
that f is a finite-to-one function (actually is one-to-one) but since f is not a
Katětov function, there are n < ω and B ⊆ Δ′ such that |B ∩ Δ′

k| = n for
all k > n and f−1[B] ∈ U . But P � f−1[B] has bounded cardinalities and by
some lines above, it has a partial selector in U .

Finally, we characterize the rapid ultrafilters in Katětov order.

Definition 2.8.9. A filter F on ω is a rapid filter if for any increasing
function f : ω → ω there is X ∈ F such that |X ∩ f(n)| ≤ n for all n < ω.

Clearly every Q-point ultrafilter is a rapid ultrafilter, but the converse
does not hold. Bartoszyński and Judah (lemma 4.6.2 in [2]) have proved
that a filter F is a rapid filter if and only if for any sequence 〈εn : n < ω〉
such that εn → 0, there is X ∈ F such that

∑
n∈X εn < ∞ .

The summable ideals Ig and Katětov-Blass order characterize the rapid
ultrafilters.

Theorem 2.8.10. Let U be a free ultrafilter on ω. Then, the following
conditions are equivalent:

1. U is a rapid filter,

2. I �KB U∗ for all tall summable ideal I and

3. I �KB U∗ for all tall analytic P-ideal I .

Proof. (1→2). Let g : ω → (0,∞) be a function such that limn→∞ g(n) = 0
and

∑∞
n=0 g(n) = ∞, and denote I = Ig. Let us suppose that there is a

finite-to-one function h : ω → ω witnessing I ≤KB U∗. Take an infinite
subset X = {xn : n < ω} of ω such that for any k < ω, if k > xn then g(k) ≤
2−n. Without loss of generality we can assume that h[ω] ∩ [xn, xn+1) �= ∅
for all n < ω. Now we define an increasing function f : ω → ω as follows:
f(0) = max h−1[0, x0] and f(n + 1) = max({f(n) + 1} ∪ h−1[0, xn+1]). Note
that if k > f(n) then h(k) > xn and then g(h(k)) < 2−n. Now, if A = {ak :



66 CHAPTER 2. COMBINATORICS OF IDEALS

k < ω} ⊆ ω satisfies |A ∩ f(n)| ≤ n for all n then h(an+1) > xn for all n.
Then

∑
n∈A g(h(n)) ≤ g(h(a0)) +

∑∞
n=0 2n. Hence h[A] is a g-summable set

and since h is a Katětov function, A ∈ U∗.
(2→1). Let us suppose that I �KB U∗ for all summable ideal I . Let

f : ω → ω be an increasing function such that f(0) = 0. Let us define
g : ω → ω such that for k ∈ [f(n), f(n + 1)), g(k) = 1

n+1
. Since identity is

not a Katětov function, there is a g-summable set A in U . By removing an
initial segment of A we can find B ⊆ A in U such that

∑
k∈B g(k) < 1. This

condition implies that |B ∩ f(n)| ≤ n, proving that U is a rapid filter.
2→3. If I is a tall P-ideal then there exists a lscsm ϕ such that I = Exh(ϕ)
and limn→∞ ϕ({n}) = 0. By defining g(n) = ϕ({n}) we have that Ig ⊆ I
and then, if Ig �KB U∗ then I �KB U∗.

(3→2). Every summable ideal is an Fσ P-ideal.

2.8.4 S-ultrafilters

This subsection is very related with the study of pathology of submeasures
that is given in sections 3.5, 3.6 and 3.7. We will refer the reader to those
sections for many definitions and results used in this subsection.

Let U be an ultrafilter on ω, and An a Borel subset of the Cantor space
2ω, for all n < ω. The U -limit of that sequences of sets is the set defined by

U − lim An = {x ∈ 2ω : {n ∈ ω : x ∈ An} ∈ U}.
If 〈xn : n < ω〉 is a sequence of real numbers then l ∈ R is the U -limit of that
sequence provided that {n < ω : |xn − l| < ε} ∈ U for all ε > 0.

An S-ultrafilter is, by proposition 2.8.4, a free ultrafilter that U is not
Katětov above the Solecki’s ideal S.

Definition 2.8.11. We will say that I satisfies the Fubini property if for
any Borel subset A of ω × 2ω and any ε > 0, {n < ω : λ(An) > ε} ∈ I +

implies λ∗({x ∈ 2ω : Ax ∈ I +}) ≥ ε (here λ∗ means the Lebesgue outer
measure on 2ω).

Theorem 2.8.12. Let U be a free ultrafilter. Then the following conditions
are equivalent:

1. U is an S-ultrafilter,

2. U∗ satisfies the Fubini property and
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3. for any sequence 〈An : n < ω〉 of Borel subsets of 2ω,

if U − lim λ(An) > 0 then U − lim An �= ∅.

Proof. Theorem 3.7.1 claims that the ideals I which do not have I -positive
sets X such that I � X ≥K S, are exactly those ideals satisfying the Fubini
property, and since every maximal ideal is K-uniform (lemma 2.1.9) we have
that dual ideals of S-ultrafilters are exactly the maximal ideals with the
Fubini property. Now, Fubini property among maximal ideals (or ultrafilters)
means: for any sequence 〈An : n < ω〉 of Borel subsets of 2ω and any ε > 0,
if {n < ω : λ(An) > ε} ∈ U then λ∗({x ∈ 2ω : {n < ω : x ∈ An} ∈ U}) ≥ ε.
Hence, if S �K U∗ and U − lim λ(An) > 0 then λ∗(U − lim An) > 0 and then
U − lim An �= ∅. On the other hand, let suppose that U − lim λ(An) > ε
and λ∗(U − lim An) = δ < ε, for some sequence 〈An : n < ω〉 and some
ε > 0. For any k < ω let us choose a Borel set A′

k ⊆ Ak \ U − lim An, with
λ(A′

k) = ε − δ. Then, U − lim λ(A′
n) ≥ ε − δ but U − lim A′

n = 0, since for
any x ∈ 2ω, {n : x ∈ An} ∈ U∗.
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Chapter 3

Katětov order on definable
ideals

As we saw in the previous chapter, in most of the cases, actually in all cases
considered here, critical ideals are definable ideals. We now restrict our study
of Katětov order to definable (basically Borel and analytic) ideals.

Even among definable ideals Katětov order is interesting. Summable
ideals are a very complicated segment of Borel ideals in Katětov order. In
theorem 3.1.1 we prove that there is an order embedding from the algebra
P(ω)/fin into the family of summable ideals.

In section 3.3 we investigate for which classes of Borel ideals, the ideal R
generated by the homogeneous sets of the random graph is locally minimal
among Borel (analytic) tall ideals, that is, for any Borel (analytic) ideal I
there is an I -positive set X such that I � X ≥K R. We prove that there
is a large class of definable ideals having such property: the class of ideals
I such that P(ω)/I is a proper forcing or does not add new real numbers
(see theorems 3.3.1 and 3.3.4). All definable tall ideals that we know are
not strictly Katětov below R. In theorem 2.2.2 we showed that R is critical

with respect to the Ramsey property ω �� (I +)2
2 . That is, I satisfies

this property if and only if I �K R. Then, this makes this question doubly
interesting.

In subsection 2.1 we studied the Q and Q+-ideals and we showed that
EDfin is a critical ideal with respect to Q property in the Katětov-Blass
order. Adding definability, this property is equivalent to be non ω-spliting,
to be non ω-hitting, and to have countable non∗ number.

69
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We show that the P+-ideals are very closely related with Fσ-ideals. In sub-
section 3.2 we study the ideals which are extendable to Fσ, P+ and maximal
P-ideals. This property is very relevant since by a theorem of Lafflame (see
[35]), every ideal contained in an Fσ-ideal is destructible by an ωω-bounding
forcing.

Hrušák’s Category Dichotomy splits ideals in two classes, the first one
consisting in all the Cohen destructible ideals, and the second one split in
two classes. Ideals which are not P+ and ideals which are not Q+.

S�lawomir Solecki probably gave the first theorem showing a critical ideal
for some property about ideals in terms of the Katětov order. He proved that
ideal the S is critical with respect to fulfil the Fatou’s lemma. In section 3.5
we answer a question of Solecki about criticality of Gfc with respect to Fatou’s
lemma.

Pathology of submeasures is closely related with the Fubini property.
Hrušák’s Measure Dichotomy splits all the analytic P-ideals in two classes.
The first one, consisting of those ideals which have a non too pathological
submeasure, is determined by Z, the ideal of asymptotical density zero; and
on the other hand, the class of ideals corresponding with locally strongly
pathological submeasures, determined by the Solecki’s ideal S.

Finally, by using the Measure Dichotomy we prove the equivalence be-
tween the classes of ideals such that (1) fulfil de Fatou’s lemma, (2) are not
pathological and (3) satisfy the Fubini property.

3.1 Summable ideals in Katětov order

The following theorem has as a consequence that Katětov order on Borel
(even Fσ) ideals has chains of length b and antichains of cardinality c. We
will denote by Σ the family of summable ideals on ω. A similar but weaker
result was obtained by Ilijas Farah (theorem 1.12.1(c) in [14]) about Rudin-
Blass order.

Theorem 3.1.1. There is an order embedding ϕ from P(ω)/Fin into Σ.

Proof. It is easy to construct by recursion a partition of ω in finite intervals
〈In : n < ω〉 such that min(In+1) = max(In)+1, and a sequence 〈rn : n < ω〉
of real numbers in (0, 1] such that:

(1) |In|rn ≥ |⋃j<n Ij| and
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(2) |In|rn+1 ≤ 2−n−1.

For each infinite subset A of ω, define a function fA : ω → (0, 1] such that
for every k < ω

fA(k) =

{
rn if k ∈ In and n /∈ A

rn+1 if k ∈ In and n ∈ A

Theorem follows immediately from claims below.

Claim. For every infinite and coinfinite subset A of ω, IfA
is a non-trivial

tall ideal.

Proof of claim. Note that

∑
n<ω

fA(n) =
∑
j<ω

∑
n∈Ij

fA(n) ≥
∑

j∈ω\A
rj|Ij| ≥

∑
j∈ω\A

|
⋃
i<j

Ii| = ∞.

Claim. If A,B ∈ [ω]ω and A ⊆∗ B then IfA
≤K IfB

.

Proof of claim. Note that if A ⊆∗ B then fB ≤∗ fA and then IfA
⊆ IfB

,
and so IfA

≤K IfB
.

Claim. If A,B ∈ [ω]ω and |A \ B| = ℵ0 then IfA
�K IfB

.

Proof of claim. Let ϕ be in ωω and let us prove that ϕ is not a witness for
IfA

≤K IfB
. First note that for any n < ω there is Fn ⊆ In such that

|Fn| ≥ 1
2
|In| and, either ϕ(x) < min(In) for all x ∈ Fn or ϕ(x) ≥ min(In) for

all x ∈ Fn. Then we have two cases:
Case 1. The family C = {n ∈ A \ B : x ∈ Fn implies ϕ(x) < min(In)}

is infinite. Note that by condition (1) and the pigeonhole principle, for any
n ∈ C there is kn ∈ ⋃

j<n Ij such that |ϕ−1[{kn}] ∩ Fn| ≥ 1
2rn

. Note that

for any n ∈ A \ B,
∑

i∈ϕ−1(kn) fB(i) ≥ rn · 1
2rn

= 1
2
. If {kn : n ∈ C} is

finite, then it belongs IfA
. In other case we can take an infinite C ′ ⊆ C

such that for every j < ω, |{kn : n ∈ C ′} ∩ Ij| ≤ 1, Then, we have that⋃
n∈C′ ϕ−1[{kn}] /∈ IfB

but {kn : n ∈ C ′} ∈ IfA
. Hence in this case, ϕ is not

a witness for IfA
≤K IfB

.
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Case 2. The family D = {n ∈ A\B : x ∈ Fn implies ϕ(x) ≥ min(In)} is
infinite. Note that Y =

⋃
n∈D Fn is an IfB

positive set and J = ϕ′′Y ∈ IfA

since ∑
n∈J

fA(n) ≤
∑
y∈Y

fA(ϕ(y)) =
∑
n∈D

∑
y∈Fn

fA(ϕ(y)) ≤
∑
n∈D

rn+1|Fn| ≤
∑
n∈D

2−n−1.

Hence in case 2, ϕ is not a witness for IfA
≤K IfB

.

3.2 Q+, P+ and Fσ-ideals

In this section we continue the study of P+, Q+ and related properties from
chapter 2, in the definable context. Among definable Q-ideals, theorem 2.3.2
is extended as the following theorem shows.

Theorem 3.2.1. For any Borel ideal I the following are equivalent:

1. I is a Q-ideal,

2. EDfin �KB I ,

3. I is not ω-hitting ideal,

4. I is not ω-splitting ideal and

5. non∗(I ) = ω.

Proof. (1 ↔ 2) was proved in section 2.3. Equivalence between 3,4 and 5 is
very easy (and it does not need the hypothesis of Borelness).

(3 → 1) Assume I is not a Q-ideal, and let {Fn : n < ω} be a partition
of ω in finite sets such that every selector belongs to I . Given a partition
{Xn : n < ω} of ω in infinite sets, there is a partial selector X of {Fn : n < ω}
which intersects every Xk in an ifinite set. In order to find this partial
selector, let h, k : ω → ω be two functions such that h−1{n} is infinite for
all n < ω, and k is an increasing function such that Fk(n) ∩ Xh(n) = ∅. Now,
for every n, take xn ∈ Fk(n) ∩ Xh(n) and then, X = {xn : n < ω} is a partial
selector of {Fn : n < ω} and Xn ∩ X in infinite for all n.
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(2 → 4) Let us play the following game G1: In step k, Player I chooses
a finite subset Fk of ω and Player II chooses nk ∈ ω \ Fk. Player I wins if
{nk : k < ω} ∈ I . Since I is analytic this game is determined and

Claim. Player I has a winning strategy if and only if EDfin ≤KB I .

Proof of the Claim. If EDfin ≤KB I then there is a partition {Hn : n < ω}
in finite sets such that every selector belongs I . We will describe a winning
strategy for I. In step 0, I plays F0 = ∅ and in step k + 1, I must play
Fk+1 =

⋃{Hi : (∃j ≤ k)(nj ∈ Hi)}. Then II must play a partial selector of
{Hn : n < ω} and then I wins.

On the other hand, a winning strategy for I could be seen as a cofinite-
branching tree T ⊆ ω<ω such that ran(f) ∈ I for all branch f ∈ [T ].
Without loss of generality, we can assume that T consists of strictly increasing
sequences, because otherwise we can refine it. Let g ∈ ωω such that g(0) = 0,
g(1) > 0 and

g(n + 1) = min{k : (∀t ∈ T )(ran(t) ⊆ g(n) implies succT (t) ∪ k = ω)}.

Define Cn = [g(n), g(n + 1)) for all n < ω and consider C =
⋃

k<ω C2k and
D =

⋃
k<ω C2k+1 partitioned by the sets Ck. Every selector in C follows a

branch in T and the same for D. Hence, every selector of {Cn : n < ω}
belongs I .

Now it will be enough to prove that if I is an ω-splitting ideal then
Player II does not have a winning strategy. In order to see this, note that a
winning strategy for II produces an infinitely branching tree T ⊆ ω<ω such
that ran(f) ∈ I + for all branch f of T . However, being I an ω-splitting
ideal that is not possible, since for {succT (t) : t ∈ T} we have an element I
of I such that |I ∩ succT (t)| = ℵ0 for all t ∈ T , and then we can construct
a branch f ∈ [T ] in I by taking x0 ∈ succT (∅) and xn+1 ∈ I ∩ succT (f � n),
for all n < ω.

In 1.6.6 was proved that non∗(EDfin) ≥ cov(M) (in fact, it was proved
that cov(M) = min{d, non∗(EDfin)}) and from previous theorem, we have
immediately the following corollary.

Corollary 3.2.2. If I is an analytic ideal on ω then either non∗(I ) = ω
or non∗(I ) ≥ non∗(EDfin).
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In [45], Otmar Spinas constructed an Fσ splitting family that does not
contain a closed family. On the other hand, he also proved that every analytic
ω-splitting family contains a closed ω-splitting family. Previous theorem
make us able to prove in a very easy way this result for ideals.

Corollary 3.2.3. If I is an ω-splitting ideal then I contains a perfect
ω-splitting subset.

The P+ property has a very important link with Fσ ideals. In order
to prove this we will begin with some preliminary results The first one is
probably due to Phil Olin of Ilijas Farah.

Lemma 3.2.4 (Folklore). Every Fσ-ideal is a P+-ideal.

Proof. Let ϕ be a lower semicontinuous submeasure on ω such that I =
Fin(ϕ), and 〈Xn : n < ω〉 a decreasing sequence of I -positive sets. Then
we can find finite sets Fn ⊆ Xn such that ϕ(Fn) ≥ n for all n < ω. Then
X =

⋃
n<ω Fn is a pseudointersection of 〈Xn : n < ω〉 and ϕ(X) = ∞, hence

X ∈ I +.

Corollary 3.2.5. If I is a tall Fσ-ideal then there is an I -positive set X
such that I � X is ω-splitting.

Proof. Put 3.2.4, 2.3.2 and 2.2.9 together.

Remember that R, the ideal generated by the homogeneous sets of the
random graph, is an Fσ-ideal. We conjecture that is locally minimal in
Katětov order among Borel (analytic) ideals, but it could be interesting to
weaken this conjecture and ask if R is locally minimal among Fσ-ideals.
About extendability to maximal P-ideals we have the following trivial obser-
vation.

Lemma 3.2.6 (CH). If I is a P+ ideal then there is a maximal P-ideal J
containing I .

Proof. We will find a P-point U such that I ∗ ⊆ U . Let 〈Xα : α < ω1〉 be
an enumeration of P(ω). For α < ω we define Uα ∈ I + such that Uα ⊆ Xα

or Uα ∩ Xα =∗ ∅ and if β < α then Uβ ⊇∗ Uα. Let suppose defined Uβ for
all β < α, and let V ∈ I + such that V ⊆∗ Uβ for all β < α and define
Uα = V ∩ Xα if this set belongs to I + and Uα = V \ Xα otherwise. The
family 〈Uα : α < ω1〉 is a base for a ultrafilter contained in I + and since
this sequence is ⊆∗-decreasing, the filter generated is a P-point.
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We characterize those ideal which are extendable to Fσ, P+ and maximal
P-ideals as the following theorem shows.

Theorem 3.2.7. Let I be a Borel ideal on ω. Then the following conditions
are equivalent

1. there is an Fσ-ideal J containing I ,

2. there is a P+-ideal K containing I

and assuming CH, 1 and 2 are equivalent to

3. there is a maximal P-ideal L containing I .

Proof. By lemma 3.2.4, every Fσ ideal is P+, hence 1 → 2. Assuming CH,
lemma 3.2.6 proves 2 → 3, and since every maximal P-ideal is a P+-ideal we
have proved 3 → 2. Let us prove 2 → 1. Let G be an I +-generic ultrafilter.
Since I is P+, I + is a σ-closed forcing and then it does not add new real
numbers, sequences of real numbers and Borel sets. Note that, in V [G], G is a
P-point ultrafilter, because given a decreasing sequence X = 〈Xn : n < ω〉 of
sets in G, we can define a set DX = {Y ∈ I + : (∀nY ⊆∗ Xn)∨ (∃nY ∩Xn =
∅)} which is dense, but since there is no Z ∈ G such that Z ∩ Xn = ∅, G
must contain a set Y which is almost contained in every Xn. It is clear that
I ∩ G = ∅. Then, by theorem 2.8.3, there is an Fσ ideal K containing I
and disjoint from G. Since I + does not add new real numbers, such ideal
K was already defined in V by a lower semicontinuous submeasure.

Definition 3.2.8 (Laflamme and Leary [36]). An ideal I on ω is a P+(tree)-
ideal if every I +-tree of finite sets has a branch whose union is in I +.

Laflamme and Leary proved that an ideal I is not P+(tree) if and only if
Player I has a winning strategy for the following game G3: In step n, Player
I chooses an I -positive set Xn and Player II chooses a finite set Fn ⊆ Xn.
Player II wins if

⋃
n<ω Fn ∈ I +. In fact that game characterizes the Fσ

ideals, as the following theorem proves.

Lemma 3.2.9. Let I be a Borel ideal. Then, Player II has a winning
strategy in G3 if and only if I is an Fσ-ideal.

Proof. If I is an Fσ ideal then there is a lower semicontinuous submeasure
ϕ such that I = Fin(ϕ). In step n, II plays a finite subset Fn of Xn with
ϕ(Fn) ≥ n. That is possible since ϕ(Xn) = ∞.

On the other hand, we will prove that Player I has a winning strategy in
G3 if I is not an Fσ ideal. Recall the following result.
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Lemma 3.2.10 (Kechris-Louveau-Woodin [30], theorem 21.22). Let X be
a Polish space, let A ⊆ X be analytic, and let B ⊆ X be arbitrary with
A ∩ B = ∅. Then either there is an Fσ set K ⊆ X separating A from B or
there is a perfect set C ⊆ A ∪ B such that C ∩ B is countable dense in C.�

By Kechris-Louveau-Woodin theorem there is a perfect set C ⊆ P(ω)
such that C ∩I + is countable dense in C. In the Banach-Mazur Game 1 G0

for C∩I + Player I has a winning strategy, since I is comeager in C and the
game is determined. Now, we will prove that if Player I has a winning strategy
for G0(C ∩I +) then Player I has a winning strategy for G3. Let σ be a win-
ning strategy for Player I in G0(C∩I +). In step 0, let τ(∅) = X0 ∈ V0 = σ(∅)
be an I -positive set. Such set exists since V0 is an open non-empty subset of
C and I +∩C is dense in C. Let us assume that we have defined our strategy
τ until step n joint with a sequence of σ-legal positions. We will define it
for step n + 1. Given an answer F ⊆ Xn of Player II for a τ -legal sequence
〈X0, F0, . . . , Xn−1, Fn−1, Xn〉, σ entails F as the clopen set U of all subsets A
of ω such that A ∩ (max(F ) + 1) = F , and if 〈V0, U0, . . . , Vn−1, Un−1, Vn〉 is
the σ-legal position associated to 〈X0, F0, . . . , Xn−1, Fn−1, Xn〉, then U = Un,
Vn+1 = σ(〈V0, U0, . . . , Vn−1, Un−1, Vn, Un〉) and let

τ(〈X0, F0, . . . , Xn−1, Fn−1, Xn, F 〉) = Xn+1 ∈ Vn

be an I -positive set. By density of I + in C we have the existence of such
set again. Finally, note that τ is a winning strategy for I, since for every
τ -legal run of G3 〈X0, F0, X1, F1, . . . 〉,

⋃
n<ω Fn ⊆∗ ⋂

n<ω Un ∈ I .

From this results and Borel determinacy follows immediately the following
theorem.

Theorem 3.2.11. Let I be a Borel ideal. Then I is a P+(tree)-ideal if
and only if I is an Fσ-ideal. �

At this moment we do not have an example of a tall P+-ideal non-Fσ-
ideal I . The ideal I0 isolated in our study of the comparison game on Borel
ideals (see [22] or chapter 4) is presented below.

1Banach-Mazur Game G0(C ∩I +) is defined as follows: In step 0, Player I chooses an
open set V0 and Player II chooses an open subset U0 of V0. In step n+1, Player I chooses
an open set Vn+1 ⊆ Un and Player II chooses an open set Un+1 ⊆ Vn+1. Player II wins if⋂

n<ω Un =
⋂

n<ω Vn ⊆ I +.
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Example 3.2.12. We define the ideal I0 as the minimal ideal such that
there is an I +

0 -tree of finite sets which does not have an I0-positive branch.
Such ideal has an incarnation in 2<ω as the ideal generated by all the non-
eventually zero branches. It is clear that such ideal is not a tall ideal and
in theorem 3.1 of the same paper was proved that is not an Fσ ideal. We
now prove that I0 is a P+ ideal. Let 〈An : n < ω〉 be a decreasing sequence
of I0-positive sets. If for every n < ω, An contains an infinite antichain
then we can select an ∈ An incompatible with ak for all k < n, and then
{an : n < ω} is an I0-positive pseudointersection of 〈An : n < ω〉. If
for some N < ω, AN does not have an infinite antichain then there is an
eventually zero branch B such that |B∩An| = ℵ0 for all n ≥ N , and then we
can choose an ∈ An ∩B such that ak � an for all k < n. Hence {an : n ≥ N}
is an I0 pseudointersection of 〈An : n < ω〉.

One of our principal problems is to characterize (in Katětov order) whether
an ideal I can be extended to an Fσ-ideal. About this, we have conjectured
the following.

Conjecture 3.2.13. If I is a Borel ideal then either there is an I -positive
subset X of ω such that I � X ≥K conv or there is an Fσ-ideal J containing
I .

An approximation to this conjecture is the following result.

Theorem 3.2.14. Let I be a Borel ideal such that the forcing quotient
P(ω)/I is proper. Then, either there is an I -positive set X such that
conv ≤K I � X or there is an Fσ-ideal J containing I .

Proof. Case 1. P(ω)/I adds new real numbers. This is just theorem 2.4.5.
Case 2. P(ω)/I does not add new real numbers. Let G be a P(ω)/I -
generic ultrafilter and define U = {U ⊆ ω : [U ] ∈ G}. If U were a P-point
(in V [G]) then, by Zapletal’s theorem 2.8.3, there is an Fσ-ideal J ⊇ I
disjoint from U . Then, in V [G], there is a lower semicontinuous submeasure
ϕ such that J = Fin(ϕ). Since ϕ is defined by its values in the finite sets,
and P(ω)/I does not add new real numbers, ϕ is actually defined in V and
I ⊆ J . If U is not a P-point then there is a strictly ⊆∗-decreasing sequence
X = 〈Un : n < ω〉 of elements of U without pseudointersections in U . Define
D = {Y ∈ I + : (∀n < ω)(Y ⊆∗ Un) ∨ (∃n < ω)(Y ∩ Un = ∅)}. Since
X does not have pseudointersections in U , D is not dense, and so, there is
Z ∈ I + such that every I -positive subset Y of Z is not in D. Let us see
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that I � Z ≥K Fin × Fin. Note that for any n < ω, Z \ Un ∈ I , but
Z �∗ Un. For every n < ω define a set In ∈ I as follows: I0 = Z \ U0,
In+1 = Z ∩ Un \ Un+1. Each In is an infinite element of I � Z,

⋃
n<ω In = Z

and if A ⊆ Z is such that A ∩ In is finite for all n < ω then A ∈ I . Hence
I � Z ≥K Fin × Fin. Since Fin × Fin ≥K conv we are done.

3.3 Looking for Katětov-locally minimal ide-

als

We do not know whether there is a tall Borel ideal minimal among tall
Borel ideals. We conjecture that the answer is negative. However, a weaker
question i whether there is a Borel tall ideal J such that for every Borel tall
ideal I there is an I -positive set X such that J ≤K I � X (we call such
J locally minimal). There is a natural candidate, the ideal R introduced
in chapter 1, and for which we proved that is critical with respect to the
Ramsey property I + → (I +)2

2 (see theorem 2.2.2).

Theorem 3.3.1. Let I be an analytic tall ideal on ω such that P(ω)/I
does not add new real numbers. Then there is an I -positive set X such that
I � X ≥K R.

Proof. Assume that theorem is false. Then for every I -positive set X and
for every f : [ω]2 → 2 exists an I -positive and f -homogeneous subset Y of
X. Let G be a P(ω)/I -generic ultrafilter. U = {U ⊆ ω : [U ]I ∈ G} ⊂ I ∗ is
a selective ultrafilter. Since G does not add new partitions of [ω]2, G is also
selective in V [G]. But G∩I = ∅, contradicting Mathias theorem 2.2.8.

As a corollary, we have that R is locally minimal among Fσ ideals.

Corollary 3.3.2. For every Fσ tall ideal I there is an I -positive X such
that I � X ≥K R.

Proof. Immediate from 3.2.4 and P+ implies σ-closed.

We will prove that the class of ideals I such that P(ω)/I is proper is

included in the class of ideals I failing the I + �� (I +)2
2 property, i.e.

the class of ideals for which R is locally minimal.

Lemma 3.3.3.
R ≤K conv.
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Proof. It will be equivalent if we prove

ω � (conv+)2
2.

We will use a trick due to Wac�law Sierpiński. Let � be a type-ω ordering
for Q, and define ψ : [Q]2 → 2 such that ψ({q, r}) = 0 if and only if
q � r ↔ q < r. Hence, every infinite 0-homogeneous set has order type
ω and every infinite 1-homogeneous set has order type ω∗, and then, all the
ψ-homogeneous sets are in conv.

From lemma 3.3.3 and theorems 2.4.5 and 3.3.1, it follows immediately
one of the main results of this chapter:

Theorem 3.3.4. If I is a Borel ideal and P(ω)/I is proper then there is
an I -positive set X such that R ≤K I � X.

Proof. Assume P(ω)/I is proper. If it adds a new real number then by 2.4.5
there is an I -positive set X such that conv ≤K I � X, and then, by lemma
3.3.3 R ≤K I � X. If not, then immediately by 3.3.1 we are done.

Another consequence of theorem 2.4.3 is the following result.

Corollary 3.3.5. If I is an Fσ ideal on ω then I �K conv.

Proof. Let {Xn : n < ω} be a family of infinite subsets of ω. Recursively
define Yn (n < ω) as follows: Y0 = X0 if X0 ∈ I +, else Y0 = ω \ X0;
Yn+1 = Xn+1∩Yn if Xn+1∩Yn ∈ I +, else Yn+1 = Yn\Xn+1. For every n < ω
let Fn a finite subset of Yn \ Yn+1 such that ϕ(Fn) ≥ n, where ϕ is a lower
semicontinuous submeasure on ω such that I = Fin(ϕ). Hence,

⋃
n<ω Fn is

an I -positive set which is not split by the family {Xn : n < ω}.

3.4 Category dichotomy

In this section we will prove the following fundamental structural theorem
for Borel ideals.

Theorem 3.4.1 (Category Dichotomy, Hrušák). Let I be a Borel ideal.
Then either I ≤K nwd or there is an I -positive set X such that I � X ≥K

ED.
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Proof. Let us play the following game G3(I ): In step k, Player I chooses a
set Ik in I and then Player II chooses nk in ω but not in Ik. Player I wins
if {nk : k < ω} ∈ I .

Claim. (a) Player I has a winning strategy in G3(I ) if and only if there is
an I ∗-branching tree T ⊆ {s ∈ ωω : s is increasing} such that rng(x) ∈
I for all branch x of T , and

(b) The following conditions are equivalent:

• Player II has a winning strategy in G3(I ),

• there is an I +-branching tree S ⊆ ω<ω such that rng(x) ∈ I + for
all branch x of S, and

• there is a pairwise disjoint family {Xn : n < ω} of I -positive sets
such that for every I ∈ I there is n < ω such that Xn ∩ I = ∅.

Proof of claim. Let us prove (a). If σ is a winning strategy for Player I
then it is easy to define recursively a tree T ′ ⊆ (ω × I )<ω such that
〈(n0, I0), . . . (nk, Ik)〉 ∈ T ′ if and only if

• I0 = σ(∅),
• n0 /∈ I0,

• Ij+1 = σ(〈I0, n0, . . . , Ij, nj〉) for all j < k, and

• nj+1 > nj.

Hence, put T ∩ ω1 = {〈n〉 : n ∈ ω \ σ(∅)} and inductively assume that
for any sequence 〈n0 < · · · < nk−1〉 ∈ T ∩ ωk, there is 〈I0, . . . , Ik−1〉 such
that 〈(n0, I0), . . . , (nk−1, Ik−1)〉 ∈ T ′, and we define succT (〈n0, . . . , nk〉) =
ω \ σ(〈I0, n0, . . . , Ik, nk〉). Hence, any branch of T is following the strategy σ
and then the images of branches of T are in I .

On the other hand, given the tree T let us define recursively the strat-
egy σ as follows: σ(∅) = ω \ {n < ω : 〈n〉 ∈ T} and if k < ω and the
sequence 〈I0, n0, . . . , nk−1, Ik〉 is following σ then we define for all l /∈ Ik

σ(〈I0, n0, . . . , Ik, l〉) = ω \ succT (〈n0, . . . , nk−1, l〉). Since T is I ∗-branching,
for all σ-legal position s = 〈n0, I0, . . . , nk, Ik, l〉, we have that σ(s) ∈ I and
〈n0, . . . , nk−1, l〉 ∈ T . Hence, if 〈I0, n0, I1, n1, . . . 〉 follows σ then 〈nk : k < ω〉
follows a branch of T , and then it is in I .
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Now we will prove (b). Let τ be a winning strategy for Player II. Let us
consider the tree S ′ ⊆ (ω×I )<ω such that 〈(n0, I0), . . . , (nk, Ik)〉 ∈ S ′ if and
only if nj = τ(〈I0, n0, . . . , nj−1, Ij〉) for all j ≤ k. We can define recursively by
levels, a subtree S ′′ of S ′ such that for every k < ω, if 〈(n0, I0), . . . , (nk, Ik)〉
and 〈(n0, I

′
0), . . . , (nk, I

′
k)〉 are in S ′′ then Ij = I ′

j for all j ≤ k. Then S =
{s ∈ ω<ω : ∃t ∈ I <ω : |s| = |t| ∧ 〈(si, ti) : i < |s|〉 ∈ S ′′} is the required tree.
First, if s ∈ S ∩ ωk and I = succS(s) ∈ I then we will be in contradiction
because σ(I0, s0, . . . , Ik−1, sk−1, I) = l for some l ∈ I. Moreover, every branch
of S follows τ , and then, rng(x) is an I -positive set for all branch x of S.

Let suppose the tree S given and let 〈sn : n < ω〉 be an enumeration of all
branching nodes of S and Yn = succS(sn). Then, if A intersects every Yn then
A contains a branch of T and then A is not in I . By the Disjoint Refinement
Lemma 1.2.5 we can get the family {Xn : n < ω} from {Yn : n < ω}.

Finally, if the family {Xn : n < ω} satisfies that for any I ∈ I there is a
Xn disjoint from I, then Player II can choose an element nk in Xk \ Ik and
then she will win.

Claim. If for every I -positive set X Player II has a winning strategy in
G3(I � X) then I ≤K nwd.

Proof of claim. Define {Xs : s ∈ ω<ω} such that X∅ = ω and {Xŝn : n < ω}
is a partition of Xs in I -positive sets such that for any I ∈ I � Xs there
is n < ω such that I ∩ Xŝn = ∅. We can refine that partitions in order to
separate every pair {n,m} by enumerating such pairs and making sure that
k-th pair is separated in level k, that is, refine if necessary the disjoint family
{Xs : s ∈ ωk} in such way that the k-th pair-set of our enumeration would be
separated by two elements of level k. Let τ be the topology on ω generated
by {Xs : s < ω}. It is clear that 〈ω, τ〉 is a countable Hausdorff second
countable and zero-dimensional topological space without isolated points,
and then, by Sierpinski’s theorem (see [30]), it is isomorphic with the space
of rational numbers. Note that any element I of I is nowhere dense in such
topology since for any basic set Xs there is n < ω such that I ∩ Xŝn = ∅.
Hence, a homeomorphism ϕ between 〈ω, τ〉 and Q is the Katětov function
requested.

Claim. If there is an I -positive set Y such that Player I has a winning
strategy for G3(I � Y ) then there is an I -positive set X ⊆ Y such that
I � X ≥K ED.
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Proof. By the first claim, there is an (I � Y )∗-branching tree T such that
any (image of a) branch is in I . Let 〈sn : n < ω〉 be an enumeration of T
and let us denote by Yn = succT (sn), for each n ∈ ω.
Case 1. If the family {Yn : n ∈ ω} does not have I -positive pseudointersec-
tions then define I0 = Y \Y0 and In+1 = (

⋂
k≤n Yk)\Yn+1 for all n < ω. Note

that every In is an element of I since every Yn is in (I � X)∗. We take Y as
our X requested and note that {In : n < ω} is a partition of X in elements
of I � X, and any I ⊆ X such that |I ∩ In| < ω for all n is necessarily in
I since such I is a pseudointersection of the family 〈Yn : n < ω〉. Then in
Case 1, we have that I � X ≥K Fin × Fin ≥K ED.
Case 2. If the family {Yn : n < ω} has an I -positive pseudointersection,
let X be such I -positive pseudointersection and we define a strictly increas-
ing function g : ω → X such that for any t ∈ T , if rng(t) ⊆ X ∩ g(n)
then X \ g(n + 1) ⊆ succT (t). Define g(0) = min X and for every n < ω
define Wn =

⋂{succT (t) : rng(t) ⊆ X ∩ g(n)}. Clearly Wn ∈ I ∗ and
X ⊆∗ Wn. Define g(n + 1) = min{k < ω : X \ k ⊆ Wn}. We define
An = X ∩ [g(n), g(n + 1)) and we split X = A ∪ B where A =

⋃
n<ω A2n

and B =
⋃

n<ω A2n+1. Clearly {An : n < ω} is a partition of X and if S is
a selector of this partition, we split S = (S ∩ A) ∪ (S ∩ B) and note that
S ∩A and S ∩B are in I since both sets respectively follow a branch of T .
Since I ≥K EDfin is equivalent to the existence of a partition {In : n < ω}
in finite sets such that every selector is in I , we have proved the claim.

Hence, by Martin’s theorem 0.3.2 we are done.

Note that from Category Dichotomy’s proof we have actually deduced a
trichotomy: For every Borel ideal I either I ≤K nwd or there is an I -
positive set X such that I � X ≥K Fin × Fin or there is an I -positive
set X such that I � X ≥KB EDfin. But note that I � X ≥KB EDfin is
equivalent to not be a Q+-ideal; and by theorem 2.4.2, Fin × Fin ≤K I
implies I is not P+. Hence we conclude that Category Dichotomy implies
that for every Borel ideal, either I ≤K nwd or I is not a Q+ ideal or I is
not a P+ ideal.

Recall that cov∗(nwd) = cov(M) and cov∗(ED) = non(M), hence the
name of Category Dichotomy.
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3.5 Fatou’s lemma and Solecki’s ideal S
Another property having a critical ideal with respect to Katětov order was
isolated by S�lawomir Solecki in [44], where it was shown that the ideal S
is critical with respect to fulfilling the Fatou’s Lemma. We will explain the
property of fulfilling Fatou’s Lemma and answer a question of Solecki.

Given a sequence (an)n∈ω of real numbers and an ideal I on ω, the lower
I -limit of this sequence is defined by

lim
I

inf an = sup{r ∈ R : {n ∈ ω : an < r} ∈ I }.

Let (X,B, μ) be a σ-finite measure space with μ defined on a σ-algebra B.
Let fn : X → [0,∞] be a sequence of μ-measurable functions and let I be
an ideal on ω. We say that Fatou’s lemma holds on 〈fn : n ∈ ω〉 with respect
to I if

∫
lim
I

inf fndμ ≤ lim
I

inf

∫
fndμ

where
∫

is the lower integral, i.e., if g ≥ 0, then

∫
gdμ = sup

{∫
fdμ : f ≤ g and f is μ-measurable

}
.

Let I be an ideal on ω. We say that Fatou’s lemma holds forI if Fatou’s
lemma holds with respect to I for any sequence 〈fn : n ∈ ω〉 of measurable
functions from X to [0,∞) on any σ-finite measure space.

The following result due to Solecki shows in which sense the ideal S is
critical with respect to fulfil Fatou’s lemma.

Theorem 3.5.1 (Solecki, [44]). Let I be a Borel ideal on ω. Then I does
not satisfy Fatou’s lemma if and only if there exists X ∈ I + such that
S ≤K I � X.

Concerning this theorem, Solecki asked the following question.

Question 3.5.2 (Solecki, [44]). Can S be replaced by Gfc?

Recall in chapter 1 was proved that cov∗(S) = non(N ) and cov∗(Gfc) = s2.
In [44], Solecki proved that S ≤K Gfc, but we have the following result.
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Theorem 3.5.3.

Gfc �K S.

Proof. In the Cohen model, cov∗(Gfc) < cov∗(S) since s2 ≤ non(M). By
proposition 1.5.2, Gfc ≤K S in the Cohen model. By the absoluteness of
Katětov order on Borel ideals, ZFC � Gfc ≤K S.

In order to answer Solecki’s question, we need to find a Borel ideal I
such that I ≥K S but for every X ∈ I +, I � X ≥K Gfc. The ideal nwd
of nowhere dense subsets of Q is such ideal. Recall that nwd is a K-uniform
ideal.

The ideal nwd is important when we think which ideals on ω are Cohen-
destructible. Theorem 1.3 in [19]] (see 2.1.6(1)) claims that I is Cohen-
destructible if and only if I ≤K nwd. By this theorem, we can decide the
Katětov order between Gfc and nwd and between S and nwd.

Theorem 3.5.4. The following relations hold.

1. S ≤K nwd.

2. Gfc ≤K nwd.

Proof. Since adding c+-many Cohen reals enlarges cov∗(S) = non(N ) ≥
cov(M), Fn(c+, 2) destroys I for all Fσ-ideal I , but by homogeneity and
c.c.c this implies that Fn(ω, 2) destroys I , and hence, Cohen forcing de-
stroys S. By Theorem 2.1.6,(1) S ≤K nwd. However, Fn(c+, 2) forces that
cov∗(Gfc) = spair ≤ non(M) = ω1, so, Gfc is Cohen-indestructible. Then, if
G is a Fn(c+, 2)-generic ultrafilter on V then V [G] |= cov∗(Gfc) < cov∗(nwd)
and then by theorem 1.5.2 V [G] |= Gfc �K nwd. Hence by the absoluteness
of the Katětov order V |= Gfc �K nwd.

By Theorems 3.5.4 and 3.5.3, S can not be replaced by Gfc in Theorem
3.5.1. Hence, the answer of Solecki’s Question is in the negative.

3.6 Measure dichotomy

Pathological submeasures have been studied by many authors like Chris-
tensen, Farah, Kanovei, Reeken and Solecki.
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Definition 3.6.1. Let ϕ be a submeasure supported by a set X. We will
say that ϕ is a pathological submeasure if there is A ⊆ X such that

sup{μ(A) : μ is a measure on X dominated by ϕ} < ϕ(A).

Recall that Solecki’s theorem 1.3.2 claims that for every analytic P-
ideal I there is a lower semicontinuous submeasure (lscsm) ϕ such that
I = Exh(ϕ). The main theorem of this section splits the family of analytic
P-ideals in two classes: the first one contains all ideals whose submeasures
are sufficiently non-pathological and the other one contains all ideals with
very pathological submeasures. The ideals Z of sets with asymptotical den-
sity zero and Solecki’s ideal S are the critical ideals with respect to these
classes. In next section we will prove that the pathology of submeasures is
closely related with the Fubini property defined in such section. Since the
correspondence between analytic P-ideals and lower semicontinuous submea-
sures is far from being one-to-one, we need to chooses an adequate lower
semicontinuous submeasure for any ideal given.

For each lscsm given ϕ, Farah defined another lscsm ϕ̂ as follows: for all
A ⊆ X

ϕ̂(A) = sup{μ(A) : μ is a measure on X dominated by ϕ},
and then, ϕ is non-pathological if and only if ϕ = ϕ̂. Moreover, for any
analytic P-ideal I the following conditions are equivalent:

• there is a lscsm ϕ such that I = Exh(ϕ) � Exh(ϕ̂), and

• for any lscsm ϕ, if I = Exh(ϕ) then I � Exh(ϕ̂).

Then we can say that an analytic P-ideal I on ω is a non-pathological ideal
if there is a lscsm ϕ such that I = Exh(ϕ) = Exh(ϕ̂).

We will do a little change in the following definition with respect to
Farah’s definition. The degree of pathology of a submeasure ϕ on X is defined
by

P (ϕ) =
ϕ(X)

sup{μ(X) : μ is a measure dominated by ϕ} ,

provided that ϕ(X) < ∞.
J. L. Kelley defined in [31] what now is known as Kelley’s covering number

as follows: let F be a set and B ⊆ P(F ). For any finite sequence S =
〈S0, . . . Sn〉 of (possibly non distinct) elements of B:

m(S) = min {|{i ∈ n + 1 : x ∈ Si}| : x ∈ F} .
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And the covering number C(B) is defined by:

C(B) = sup

{
m(S)

|S| : S ∈ B<ω

}
.

Remark 3.6.2. If B ⊆ P(F ) and δ > 0 then C(B) > δ means that there
is N < ω and there is a sequence 〈A0, . . . , AN−1〉 of elements of B such that
|{i < N : x ∈ Ai}| ≥ Nδ, for all x ∈ F .

The fundamental theorem of Kelley which links the covering number with
submeasures is the following. We say that a (sub)measure ϕ on a set X is
normalized if ϕ(X) = 1.

Theorem 3.6.3 (Kelley; [31], corollary 6). For each non-void subclass B of
P(F ) the covering number C(B) is the minimum of the numbers sup{μ(A) :
A ∈ B}, where the minimum is taken over all normalized measures μ on
P(F ). �

Working on the Maharam’s problem (equivalent with the Control mea-
sure problem), Jens Peter Reus Christensen defined in [10] the concept of
pathological submeasure for Boolean algebras as follows: A submeasure ϕ
on a Boolean algebra is pathological if it does not dominate any bounded
finitely additive positive measure. This is a good definition for pathological
submeasures in atomless Boolean algebras. However in the finite case it is
not applicable since every positive submeasure on a finite set admits a posi-
tive measure bounded by it. Theorem 2 in [10] is very useful when we work
with atomless measures, and we have a quantitative version of that result
which is useful working with submeasures on finite sets.

Lemma 3.6.4 (Quantitative version of Christensen’s lemma). Let F be a
finite set, ε > 0, ϕ a normalized submeasure on P(F ) and Aε = {A ⊆ F :
ϕ(A) < ε}. Then

C(Aε) ≥ 1 − 1

εP (ϕ)
.

Proof. By Kelley’s theorem, it will be sufficient to proof that for all nor-
malized measure on F there is a set A ∈ Aε such that μ(A) ≥ 1 − 1

εP (ϕ)
,

i.e., it will be sufficient to show that for a given normalized measure μ on F
there is a set A ∈ Aε such that μ(F \ A) ≤ 1

εP (ϕ)
. Fix a normalized mea-

sure μ on F and define ψ = ϕ − εμ. Note that ψ(A ∪ B) ≤ ψ(A) + ψ(B)
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if A and B are disjoint subsets of F . Let F be a maximal disjoint fam-
ily of subsets of F such that ψ(B) < 0 for all B ∈ F . Define A =

⋃F .
Note that (1) εμ � P(F \ A) ≤ ϕ � P(F \ A) and (2) ϕ(B) < εμ(B) for
all B ∈ F . We denote by ε̂μ the measure on F supported by F \ A.
Hence, ε̂μ ≤ sup{ν(F ) : ν is a measure dominated by ϕ}. Then, by (1)
εμ(F \ A) ≤ 1

P (ϕ)
. On the other hand, as a consequence of (2) we have:

ϕ(A) ≤
∑
B∈F

ϕ(B) <
∑
B∈F

εμ(B) = εμ(A) ≤ ε.

Theorem 3.6.5 (Measure Dichotomy, Hrušák). Let I be an analytic P-
ideal. Then, either I ≤K Z or there is X ∈ I + such that S ≤K I � X.

Proof. By Solecki theorem 1.3.2, there is a lscsm ϕ such that I = Exh(ϕ).
The remainder of this paragraph is a sketch of the remainder of this proof. We
will consider two cases. The first one is when ϕ is very-pathological. In such
case, we will take a sequence of intervals whose union is a positive set and
the degrees of pathology of the restrictions of ϕ in these intervals increases
to infinity. For each interval we will define a partition of the Cantor set
2ω in clopen sets, and by joining some elements of that partition we will
form elements of Ω which are going to be the images of the Katětov function
requested. In the not-so pathological case we will use the previous theorem in
order to define a measure which approximates ϕ, and then we will be able to
define a Katětov function from ω to a restriction of Z. As Z is K-uniform,
this will show that I ≤K Z.

Without loss of generality we can assume that |ϕ| = limn→∞ ϕ(ω\n) > 1.
Since there are no ϕ-exhaustive final segments of ω, there exists a partition
〈Fn : n < ω〉 of ω in intervals such that for any n < ω, min(Fn+1) =
max(Fn) + 1, ϕ(Fn) ≥ 1 and ϕ(Fn \ {max Fn}) < 1. Let ϕn be the normal-
ization (by multiplying by 1

ϕ(Fn)
) of ϕ � Fn and let rn = P (ϕn) = P (ϕ � Fn)

for all n < ω.

Case 1. 〈rn : n < ω〉 is an unbounded sequence.
Let 〈rnk

: k < ω〉 be a subsequence such that rnk
≥ 3 · 2k+1 and define

X =
⋃

k<ω Fnk
. It is clear that X ∈ I +. We will see that S ≤K I � X. By

lemma 3.6.4, for any k < ω, by taking εk = 2−k−1, we have that C(Aεk
) ≥ 2

3
,

where Aεk
= {A ⊆ Fnk

: ϕnk
(A) < εk}. For any k < ω, take a sequence



88 CHAPTER 3. KATĚTOV ORDER ON DEFINABLE IDEALS

Ak = 〈Ak
0, . . . , A

k
Nk−1〉 ⊆ Aεk

such that |{i < Nk : x ∈ Ai}| ≥ 2
3
Nk, for all

x ∈ Fnk
; and choose a sequence 〈Uk

i : i < Nk〉 of open subsets of 2ω with
λ(Uk

i ) = 1
Nk

. For any x ∈ Fnk
define Wx =

⋃{Uk
i : x ∈ Ak

i }. Note that

μ(Wx) ≥ 2
3
. Then, every Wx includes infinitely many elements of Ω. For

every x ∈ X choose an element Ux of Ω contained in Wx, such that Ux = Uy

for all y < x. f(x) = Ux is a one-to-one function from X to Ω such that
for all z ∈ 2ω and for all k < ω there exists at most one i < Nk such that
z ∈ Uk

i . Hence, given z ∈ 2ω, we have that

ϕnk
({x ∈ Fnk

: z ∈ f(x)}) ≤ ϕnk
({x ∈ Fnk

: z ∈ Wx}) ≤ ϕnk
(Ak

i ) <
εk

ϕ(Fnk
)
,

and then, for the subbasic set Iz = {C ∈ Ω : z ∈ C}, we have that

ϕ(f−1[Iz]) ≤
∑
k<ω

ϕ(f−1[Iz] ∩ Fnk
) =

=
∑
k<ω

[ϕ(Fnk
) · ϕnk

(f−1[Iz] ∩ Fnk
)] <

∑
k<ω

1

2k+1
< ∞.

Actually, the previous formula shows that f−1[Iz] is ϕ-exhaustive, and
then we conclude that f witnesses S ≤KB I � X.
Case 2. 〈rn : n < ω〉 is bounded by some r < ∞.
For any n < ω there is a measure μn on Fn bounded by ϕ and such that
ϕ(Fn)
μn(Fn)

≤ r. Define a submeasure ψ on P(ω) such that for any A ⊆ ω:

ψ(A) = sup{μn(A ∩ Fn) : n < ω}.
It is clear that ψ ≤ ϕ, and so, Exh(ϕ) ⊆ Exh(ψ). Moreover, ω /∈ Exh(ψ)
since ψ(ω \ n) ≥ 1

r
for all n < ω. We will see that there is Y ∈ Z+ such that

Exh(ψ) ≤K Z � Y . Let 〈Mn : n < ω〉 be a sequence of natural numbers such
that 2Mn−n−2 > |Fn| and let {Ax : x ∈ Fn} be a family of pairwise disjoint
subsets of [2Mn , 2Mn+1) such that for any x ∈ Fn:

2Mn
μn({x})
μn(Fn)

− 2Mn−n−1

|Fn| < |Ax| < 2Mn
μn({x})
μn(Fn)

+
2Mn−n−1

|Fn| .

It is always possible to find such pairwise-disjoint family since 2Mn−n−2 >
|Fn|. Hence, we have that for any x ∈ Fn,

∣∣∣∣
|Ax|
2Mn

− μn({x})
μn(Fn)

∣∣∣∣ ≤ 2−n−1,
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and so, the normalized counting-measure in [2Mn , 2Mn+1) is a 2−n−1-approxi-
mation to μn in Fn for all n < ω. Define Y =

⋃
n<ω

⋃
x∈Fn

Ax. Y is a
Z-positive set since Y \ k is 2−m-approximated to

⋃
n≥m[2Mn , 2Mn+1), where

m = min{l : k < 2Ml}. Hence, defining f : Y → ω by

f(y) = x iff y ∈ Ax

we have that f witnesses I ≤K Z � Y . In order to prove this, take B ∈
Exh(ψ). Then f−1[B] =

⋃
x∈B Ax intersects every interval [2Mn , 2Mn+1) in a

set whose cardinality is 2−n−1-approximated to ϕ(B ∩ Fn). Hence

lim
n→∞

|f−1[B] ∩ [2Mn , 2Mn+1)|
2Mn

= 0.

Since Z is a K-uniform ideal (see 2.1.11) we have that

I ≤K Z � Y ≤K Z.

3.7 Fubini property

Recall that definition 2.8.11 says that I satisfies the Fubini property if for
any Borel subset A of ω × 2ω and any ε > 0, {n < ω : λ((A)n) > ε} ∈ I +

implies λ∗({x ∈ 2ω : (A)x ∈ I +}) ≥ ε (here λ∗ means the Lebesgue outer
measure on 2ω). In [27], Kanovei and Reeken claimed without a proof that
Fubini property is equivalent with fulfil Fatou’s lemma. We will prove this
as a corollary of Solecki’s theorem 3.5.1 and theorem 3.7.1. By paraphrasing
Solecki’s proof of 3.5.1 we will prove the following theorem.

Theorem 3.7.1. If I is an ideal on ω then the following conditions are
equivalent:

1. there exists an I -positive set X such that I � X ≥K S and

2. I does not satisfy the Fubini property.

Proof. Let f : X → Ω be a witness of I � X ≥K S, and define A =
{(n, x) : x ∈ f(n)} . Note that (A)n = f(n) and then λ((A)n) = 1

2
for

all n ∈ X. However, for any x ∈ 2ω, {S ∈ Ω : x ∈ S} ∈ S and then
{n < ω : x ∈ (A)n} ∈ I for all x ∈ 2ω.
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On the other hand, assume that I does not satisfy the Fubini property,
and take a Borel set A ⊆ ω × 2ω such that for some ε > 0,

X = {n < ω : λ((A)n) > ε} ∈ I +

and if R = {x ∈ 2ω : (A)x ∈ I +} then λ∗(R) < ε. We can assume that
(1) R = ∅,
(2) for any n ∈ X, An is closed and
(3) for any n ∈ X, λ(An) = ε.
If not we could replace (a) R with a Gδ set R′ ⊇ R with λ(R′) = λ∗(R),

(b) ε with ε−λ∗(R) and (c) An with a closed subset of An\R with measure ε−
λ(R). Let k < ω be such that (1−ε)k < 1

3
. We recall that the power of Cantor

space (2ω)k with the product measure λk is isomorphic with Cantor space 2ω

with Lebesgue measure λ, via a homeomorphism between those spaces. For
any n < ω, we will define a subset A′

n of (2ω)k by A′
n =

⋃k
i=1 proj−1

i [An]. Then

(2ω)k \A′
n =

∏k
i=1(2

ω \An) and then λn(A′
n) = 1− λn(2ω \A′

n) > 1− 1
3

= 2
3
.

We note that the family {A′
n : n ∈ X} fulfils that

R′ = {x ∈ (2ω)k : {n < ω : x ∈ A′
n} ∈ I +} = ∅,

since if x = 〈xi : 1 ≤ i ≤ k〉 then

{n < ω : x ∈ A′
n} = {n < ω : ∃i(1 ≤ i ≤ k & xi ∈ An)}

=
k⋃

i=1

{n < ω : xi ∈ An} ∈ I .

Now, for n ∈ X choose a clopen subset Un of (2ω)k such that λk(Un) ≥ 7
12

and λk(Un \ An) < 1
3·2n+2 . If S = {x ∈ (2ω)k : {n ∈ ω : x ∈ Un} ∈ I +} then

S ⊆ ⋂
n<ω

⋃
m≥n(Um \A′

m), proving that λk(S) = 0. Let {Cn : n < ω} be an

increasing family of clopen sets such that S ⊆ ⋃
n<ω Cn and λk(

⋃
n<ω Cn) ≤

1
12

. Finally, by taking for any n ∈ X a clopen subset Vn of Un \ Cn with
λk(Vn) = 1

2
we get the Katětov function wanted, since for any x ∈ 2ω = (2ω)k,

if {n ∈ X : x ∈ Vn} is infinite then x /∈ ⋃
Cn and then x /∈ S. Hence

{n ∈ X : x ∈ Vn} ∈ I for all x ∈ 2ω.

We have immediately from Solecki’s theorem and the previous theorem
the following result.

Corollary 3.7.2. If I is a universally measurable ideal on ω then I has
the Fubini property if and only if I fulfils Fatou’s lemma. �
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Corollary 3.7.3. Fin and Z have the Fubini property.

Proof. Since S is a tall ideal and Fin is K-uniform we have that S �K Fin �
X, for all infinite subset X of ω. Now, let f : ω → Ω be a function. By
Fubini’s theorem, there is An ∈ Ω such that |{m ∈ [2n, 2n+1) : x ∈ f(m)}| ≥
2n−1. Since Fin has the Fubini property, there is x ∈ 2ω and there is a
sequence 〈nk : k ∈ ω〉 such that x ∈ Ank

. Then, for any k < ω,

lim sup
n→∞

|f−1[Ix] ∩ [2n, 2n+1)|
2n

≥ lim
k→∞

|f−1[Ix] ∩ [2nk , 2nk+1)|
2nk

≥ 1

2

proving that f is not a witness for S ≤K Z.

Definition 3.7.4. Let I and J be ideals on ω. We say that I is completely
Katětov below J (in symbols I <<K J ) if I � X ≤K J for all I -
positive set X.

Theorem 3.7.5. If I is an analytic P-ideal then the following conditions
are equivalent:

(a) I <<K Z,

(b) I fulfills Fatou’s lemma,

(c) I has the Fubini property and

(d) I is non-pathological.

Ilijas Farah claimed (without a proof) that (c)→(d) follows from argu-
ments of Christensen in [10] and (d)→(c) was proved by Kanovei and Reeken
(Corollary 25 in [28]) by using an idea of Christensen. We will prove the
theorem by using arguments contained in the proof of Measure Dichotomy
Theorem 3.6.5, where the cornerstone was the quantitative version of Chris-
tensen’s theorem 3.6.4.

Proof. (a)↔(b) is Solecki’s theorem 3.5.1 plus measure dichotomy 3.6.5.
(b)↔(c) is corollary 3.7.2.
(d)→(a) If I is a non-pathological ideal then there is a lscsm ϕ such that

I = Exh(ϕ) = Exh(ϕ̂). We can suppose that ϕ̂(ω) > 1 and we can find
a partition of ω into finite intervals Fn with n < ω as in the proof of 3.6.5.
Since P (ϕ̂ � Fn) = 1 for all n < ω, we have fallen in case 2 of theorem 3.6.5,
and then I <<K Z.



92 CHAPTER 3. KATĚTOV ORDER ON DEFINABLE IDEALS

(a)→(d) Let suppose that I is a pathological ideal and let ϕ be a lscsm
such that I = Exh(ϕ). Then there is a subset A of ω such that A ∈
Exh(ϕ̂) \ Exh(ϕ). Put ε = limn→∞ ϕ(A \ n). We will define a partition of
A in infinitely many intervals Fn (n < ω), such that for n ≥ 1, ϕ(Fn) > ε

2

and ϕ̂(Fn) < ε
2n

. We can define that sequence of intervals, by taking k0 = 0,
k1 < ω such that ϕ̂(A\k1) < ε

2
, and kn+1 > kn such that ϕ(A∩[kn, kn+1)) > ε

2

and ϕ̂(A \ kn+1) < ε
2(n+1)

, for all n ≥ 1. Then Fn = A ∩ [kn, kn+1). With

that partition, we have fallen in case 1 of the proof of theorem 3.6.5 (P (ϕ �
A ∩ [kn, kn+1)) increasing to infinity), and then I is not completely Katětov
below Z.



Chapter 4

Comparison game on Borel
ideals

This chapter deals with the Comparison Game on Borel ideals. Motivated by
Tukey order with monotone functions we propose a natural game involving
pairs of ideals, called comparison game, which defines an order relation �,
and its corresponding equivalence relation �. These relations are closely
related with the Wadge order on Borel sets (see [30]). We studied the classes
of Fσ and Fσδ ideals. We prove that in this order the ideal Fin is the minimal
ideal, all Fσ ideals are equivalent with Fin, I0 is the minimal ideal among
Borel non-Fσ ideals (see its definition in example 3.2.12), all the analytic
P-ideals are below ∅ × Fin, and ∅ × Fin is below Fin × Fin.

4.1 Comparison Game Order

Definition 4.1.1. Let I and J be ideals on ω. The Comparison Game for
I and J denoted by G(I ,J ) is defined so that in step n, Player I chooses
an element In of I and Player II chooses an element Jn of J . Player II
wins if

⋃
n In ∈ I if and only if

⋃
n Jn ∈ J ; otherwise, Player I wins.

Comparison game allows to define an order between ideals on ω.

Definition 4.1.2. Let I and J be ideals on ω. We say I � J if Player
II has a winning strategy in the comparison game G(I ,J ). We say that
I � J if I � J and J � I .

93
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Let us note that the relation � is reflexive and transitive, but not anti-
symmetric; and the relation � is an equivalence relation.

Recall that a function f from I to J is a Tukey function if for each
A ∈ J there is B ∈ I such that I ⊆ B if f(I) ⊆ A. Tukey order is defined
by I ≤T J if there is a Tukey function from I to J ; and let us denote
by I ≤MT J when there is a monotone (with respect to inclusion) Tukey
function from I to J . The order � refines the monotone Tukey order.

First, we will prove that the comparison game among Borel ideals is
determined. To that end we define the following game

Definition 4.1.3. The game G′(I , J ) is defined for ideals I and J on ω
as follows: In step n Player I has to choose a natural number kn and Player
II has to choose a natural number ln too. Player II wins if {kn : n < ω} ∈ I
if and only if {ln : n < ω} ∈ J .

Let us note that by defining a set X̃ = {x ∈ ωω : rng(x) ∈ X} for a
subset X of P(ω), we have that game G′(I ,J ) is equivalent to the Wadge

game W (Ĩ , J̃ ) (see [30]).

Theorem 4.1.4. Player I has a winning strategy for G(I ,J ) if and only
if Player I has a winning strategy for G′(I ,J ), and the same for Player II.

Proof. First, let us assume that Player I has a winning strategy σ for the
game G(I ,J ), and take a bijective function f from ω into ω × ω such
that if f(n) = 〈k, l〉 then max{k, l} ≤ n. A winning strategy for Player
I in G′(I ,J ) can be done by playing in parallel G(I ,J ). In step 0,
Player I plays with the first element k0 of I0, where I0 = σ(∅). In step
n + 1, we suppose played a sequence 〈k0, l0, . . . , kn, ln〉 of legal positions
for G′(I , J ) and attached with this sequence, we have another sequence
〈I0, {l0}, I1, {l1}, . . . , In, {ln}〉 of legal positions of G(I , J ) which follows σ.
Then, by taking kn+1 as the k-th element of Il, where f(n + 1) = 〈k, l〉, we
have defined the winning strategy required for Player I. That is true since
{kn : n < ω} =

⋃
n In and the sequence 〈I0, {l0},I1, {l1}, . . . 〉 follows a win-

ning strategy for Player I in G(I , J ), that is {kn : n < ω} ∈ I if and
only if {ln : n < ω} /∈ J . Then we have that Player I will win this stage in
G′(I ,J ).

On the other hand, let us assume that Player I has a winning strategy τ
for G′(I ,J ). In step 0, Player I has to play {k0}, where k0 = τ(∅), and
in step n + 1 Player I has to play {kn+1} where kn+1 is the answer given by
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Player I in G′(I , J ) following τ when Player II has played the l-th element
ln+1 of Jk where f(n + 1) = 〈k, l〉, if Jk has at least l elements, and 0 if
not. Then,

⋃
n{kn} ∈ I if and only if {kn : n < ω} ∈ I if and only if⋃

n Jn = {0} ∪ {ln : n < ω} /∈ J .
Analogously can be proved that Player II has a winning strategy for

G(I ,J ) if and only if Player II has a winning strategy for G′(I ,J ).

By previous theorem we can conclude that I � J if and only if Ĩ ≤W

J̃ .

Lemma 4.1.5. If I ≤MT J then I � J .

Proof. Let f : I → J a monotone Tukey function. Then Player II only
has to answer f(In) for any In given by Player I. If

⋃
n In ∈ I then by

monotonicity,
⋃

n f(In) ⊆ f(
⋃

n In) ∈ J . If
⋃

n In /∈ I then by Tukeyness⋃
n f(In) /∈ J .

We were interested in knowing how different monotone Tukey order and
Tukey order are. In section 4.2 we will conclude those orders are quite dif-
ferent.

Let us note that on Borel ideals, the comparison game order is “almost”
linear.

Lemma 4.1.6. If I , J and K are Borel ideals, I �� J and J �� K
then K � I .

Proof. Hypothesis means that Player I has a winning strategy in games
G(I ,J ) and G(J ,K ). Then Player II is going to follow those strate-
gies. First, in both games G(I ,J ) and G(J ,K ), Player I follows her
own strategies, producing I0 and J0. Given the first choose K0 of Player I
in G(K ,I ), let us consider K0 as the answer of Player II in G(J ,K ),
and then let J1 be the answer of Player I in the same game, given by her
winning strategy. Let us consider J1 as the answer of Player II in G(I ,J )
and let I1 be the answer of Player I given by her winning strategy and then
I1 will be the answer of Player II in G(K , I ). Let supposed that in step
n, Player I chooses a set Kn and that set can be considered as the answer
of Player II in G(J ,K ) for the sequence 〈J0, K0, J1, . . . , Jn〉, and then the
winning strategy for Player I in this game makes her choose a set Jn+1. Such
set Jn+1 can be considered as the answer of Player II in G(I , J ) for the
sequence 〈I0, J1, I1, . . . , In〉 and then the winning strategy for Player I makes
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her choose a set In+1. Such set will be what Player II plays in G(K ,I ) in
step n. Hence, since the sequences 〈J0, K0, J1, K1, . . . 〉 and 〈I0, J1, I1, J2, . . . 〉
follow the winning strategies for Player I in G(J ,K ) and G(I ,J ) respec-
tively, we have that

⋃
n Jn ∈ J if and only if

⋃
n Kn /∈ K , and

⋃
n≥1 Jn ∈ J

if and only if
⋃

n In /∈ I and then we are done.

An immediate consequence of the previous lemma is that if we have two
incomparable ideals then every other ideal has the same order relation with
both ideals of the incomparable pair.

Corollary 4.1.7. Let I and J be two �-incomparable ideals. Then, for
any ideal K on ω, K � I iff K � J or I � K iff J � K . �

It is natural to ask if � is a linear order or moreover, if is a well order.
Recall that comparison game can be seen as a game on integers which looks
like a Wadge game.

Lemma 4.1.8. If I is a Σ0
α (respectively Π0

α) ideal then Ĩ is a Σ0
α+1 (resp

Π0
α+1) set.

Proof. Let us define a function rngn : ωω → P(ω) by rngn(x) = {x(k) : k <
n} for all x ∈ ωω. Note that rngn is a continuous function and rng(x) =
limn→∞ rngn(x) for all x ∈ ωω. Hence, preimages under rng of clopen sets
are Δ0

2 sets, and inductively we can get the result.

Previous lemma shows that equivalent classes modulus comparison game
order could contain ideals with different complexities, but not too different;
i.e., if I � J then complexities of I and J differ at most by 1. An-
other consequence is that comparison game order is at least as long as Borel
hierarchy.

Corollary 4.1.9. • The game G(I ,J ) is determined for every pair
I ,J of Borel ideals.

• The order � is well-founded.

• The equivalence classes of � are unions of “intervals” of Wadge degrees
of ideal.

• There are uncountable many �-classes.
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Another consequence is that I ≤MT J implies that the complexity of
I is not so different with the complexity of J , while there is an Fσ ideal
Imax which is maximal in Tukey order, since classes of monotone Tukey order
are included in classes of comparison game equivalence. Such ideal Imax is
defined as the ideal on 2<ω generated by all sets {f � n : n < ω} with f ∈ 2ω,
making monotone Tukey order look very different with Tukey order.

Question 4.1.10. Is the order � linear (a well order)?

4.2 Fσ-ideals in the comparison game order

About the ideal Fin we have that

Lemma 4.2.1. Let J be an ideal on ω. Then Fin � J .

Proof. A winning strategy for Player II in G(Fin, J ) is the following. Player
II has to answer the initial interval Jn =

[
0, max

(⋃
i≤n Ii

)]
, given that Ii, (i ≤

n) are the finite sets played by Player I until step n. Then,
⋃

n In ∈ Fin
implies

⋃
n Jn is a finite set and then an element on J . On the other hand,

if
⋃

n In /∈ Fin then
⋃

n Jn = ω ∈ J +.

A criterion for equivalence with the ideal Fin is the following result.

Lemma 4.2.2. If I is an ideal on ω then I � Fin if and only if Player
II has a winning strategy in the game G′′(I ) defined as follows: In step n,
Player I chooses an element In of I and Player II chooses a natural number
kn. Player II wins if

⋃
n In ∈ I if and only if the sequence {kn : n < ω} is

bounded.

Proof. If Player II has a winning strategy for G(I ,Fin) then in step n Player
II of G′′(I ) has to play kn = max Jn where Jn is the finite set played by
Player II following a fixed winning strategy for her in G(I ,Fin), under the
same sets played by Player I. On the other hand, the winning strategy for
Player II in G(I ,Fin) consists in to play {kn} in step n, where kn is the
answer given in step n for a fixed winning strategy for Player II in G′′(I ).

By Mazur’s theorem 1.3.2, Fin can win when he plays vs. any Fσ-ideal.

Lemma 4.2.3. If I is an Fσ-ideal then I � Fin.
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Proof. By Mazur’s theorem, there is a lower semicontinuous submeasure ϕ
such that I = Fin(ϕ). Let us play the game G′′(I ). Then in step n
Player II has to play kn, the minimal k ∈ ω such that ϕ(

⋃
j≤n Ij) < k. Then

ϕ(
⋃

n In) < ∞ if and only if {kn : n < ω} is bounded.

Recall that in 3.2.11 we have proved that I is an Fσ-ideal if and only if
I is a P+-tree ideal, for any Borel ideal I .

Lemma 4.2.4. If I is not a P+(tree) ideal then Player I has a winning
strategy for G′′(I ).

Proof. Let T be an I +-tree of finite sets with all branches in I . In her
first steps, Player I has to play with the ordered elements of

⋃
succT (∅) until

Player II increases her answers. If in step n, Player II chooses a number
bigger than all of her previous plays then Player II collects the (finite) set
F0 of answers given until that step and then he begins taking the elements
of succT (F0) in its order and he will not move of that positive set unless
Player II increases her numbers picked. Hence, if eventually Player II does
not increase her picks then Player I will choose every element of succT (t) for
some t ∈ T and then he will collect an I -positive set. In the other case
Player II will collect a set which follows a branch of T and then its union
will be in I .

Theorem 4.2.5. For any Borel ideal I , I � Fin if and only if I is Fσ.

Proof. It follows from two facts: if I is a Borel ideal then G′′(I ) is deter-
mined, and by theorem 3.2.11, J is a P+(tree)-ideal if and only if J is an
Fσ-ideal, for all Borel ideal J .

It is well known that Z ≤T I 1
n

and since Z is not an Fσ-ideal, we have

that Z �� I 1
n

and by lemma 4.1.5, Z �MT I 1
n
, proving that Tukey order

and monotone Tukey order are different orders.

4.3 Fσδ-ideals in the Comparison Game Order

The ideal I0 was defined as the minimal ideal I such that there is an I +-
tree of finite sets which does not have an I -positive branch (see 3.2.12). Let
us denote Af = {f � n : n < ω} for a given f ∈ 2ω.

Theorem 4.3.1. If I is not an Fσ ideal then I0 � I .
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Proof. By Kechris-Louveau-Woodin theorem 3.2.10 there is a Cantor set C ⊆
P(ω) such that D = C \I is countable dense in C. Let T ⊆ 2<ω be a perfect
tree such that [T ] = C. On the other hand, there is a homeomorphism
ϕ : 2ω → C such that if F = {f ∈ 2ω : (∀∞n)f(n) = 0} then ϕ′′F = D,
since F is a countable dense subset of 2ω. Such ϕ induces an embedding
Φ : 2<ω → [ω]<ω which is monotone (i.e. s ⊆ t implies Φ(s) ⊆ Φ(t)) and
such that

⋃
n Φ(f � n) ∈ I if and only if f is not eventually zero. Now we

will describe a winning strategy for Player II in G(I0,I ). In step n, if Player
I plays In ∈ I0 then Player II plays Jn = [0, kn] ∪ ⋃{Φ(s) : (∃k ≤ n)(∃t ∈
Ik)(s ⊆ t)}, where kn is the maximal cardinality of an antichain in

⋃
k≤n Ik.

We argue why is this a winning strategy for Player II. If I =
⋃

n In ∈ I0

then there are m < ω and f0, . . . , fm ∈ 2ω \F such that I ⊆ ⋃
j≤m Afj

. Then
m is an upper bound for kn and

⋃{Φ(s) : (∃k < ω)(∃t ∈ Ik)(s ⊆ t)} ⊆⋃
j≤m

⋃
n Φ(fj � n) ∈ I , and then

⋃
n Jn ∈ I . On the other hand, if I /∈ I0

then either 〈kn : n < ω〉 is unbounded, and then J =
⋃

n Jn /∈ I , or there is
an eventually zero function f such that f � n ∈ I for infinitely many n < ω,
and in that case,

⋃
n

{Φ(s) : (∃t ∈ In)s ⊆ t} ⊇
⋃
n

{Φ(f � n) : n < ω} /∈ I .

Borel complexity of I0 is Fσδ. The family F of all sets which can be
covered by finitely many branches is an Fσ-set and the family F ′ of all sets
which have finite intersection with all eventually zero branches is an Fσδ-set,
and I0 = F ∩ F ′.

We know that I0 � ∅×Fin, since ∅×Fin is not an Fσ-ideal but actually
such inequality is strict.

Theorem 4.3.2.
∅ × Fin �� I0.

Proof. For every 1 ≤ n < ω we define a game Gn as follows. In step k,
Player I picks a finite subset Ik of ω × ω and Player II picks an antichain Jk

of cardinality n in I0, and such that for all i < k and all t in Ji there is a
unique s ∈ Jk such that s ⊇ t. Player II wins if

⋃
n In ∈ ∅×Fin if and only if⋃

n Jn ∈ I0. Inductively, we will prove that Player I has a winning strategy
in game Gn, for all n, but now we are going to prove how this fact implies
that Player I has a winning strategy for G(∅ × Fin,I0) by describing it.
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Let {Xr : r < ω} be a partition of ω \ {0} in infinite sets. The main idea
is based in the following trick: Player I is going to play the game Gn but
in Xn × ω instead of ω × ω. In step 0, Player I plays ∅ and in step k > 0,
define N(k) = min{∑h(l) : h ∈ Jk ∧ l ∈ dom(h)} and let M(k) be the
maximal cardinality of an antichain in

⋃
i<k Ji. If M(k) = M(k − 1) then

Player I has to play the game GM(k) in XM(k−1) × ω instead of ω × ω, and
if M(k) > M(k − 1), then Player I has to abandon what he has played and
begin a new game of GM(k) inside the copy XM(k) × ω, and in both cases,
Player I has to add {min XM(k)} × N(k) to the sets defined above.

If Player II makes M(k) increase in infinitely many steps, then
⋃

n Jn /∈
I0, but Player I will abandon all pieces where he played, and the

⋃
n In ∈

∅ × Fin.
If there is K such that M(k) = M(K) for all k > K then the winning

strategy for Player I in GM(K) makes Player I win in G(∅ × ω, I0).
Now, we prove that Player I has a winning strategy for the game G1.

In step 0, Player I plays {(0, 0)}. In step k, Player I just play a double-
tons with the form {(0, N(k)), (nk,mk)}, as we will define. Let N(k) be
defined as few lines above, and then in step k Player I has to play {0} ×
N(k)

⋃{(nK−1,mK−1 + 1)} if Jk � Jk−1 and there is m ∈ domJk \ domJk−1

such that Jk(m) = 1; and {0} × N(k)
⋃{(nK−1 + 1,mK−1)} otherwise. If

Player II plays an infinite set then he will play along a branch and then
Player I know that he has won because he just will fill the column {0} × ω.
Let us assume that Player II plays finite sets only. Then if there is K such
that Jk = JK for all k ≥ K then

⋃
n Jn ∈ I0 but Player I will fill the column

{mK} × (ω \ nK) for K minimal; and if Player II increases the length of Jk

for infinitely many steps k then, if there is K such that the increasing of Jk is
just with 0’s then column {0}×N(k) will not increase and playing of Player
I will follow a row; but if Player II increases the length of Jk and he adds a
new 1 in infinitely many steps then Player I will make the column {0}×N(k)
increase to {0} × ω and then

⋃
n In /∈ ∅ × Fin.

Inductively assume that Player I has a winning strategy for Gn and let
us prove that he has a winning strategy for Gn+1. Fix a partition {Xj

i : j ≤
n ∧ i < ω} of ω \ {0}. In step 0, Player I plays ∅ and then assume that
Player II has been played with an antichain Jk with cardinality n+1. Let us
enumerate this antichain as {a0

r : r ≤ n} and for each r ≤ n, we enumerate
Jk = {ak

r : r ≤ n} in such way that ak
r ⊇ a0

r for all r ≤ n. Then, Player I
will play simultaneously the game Gn in Xr

i × ω for some i (depending of
k and r), where answers of Player I are given by the winning strategy for
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her when Player II plays Jk \ ak
r ; and following this rule: If ak

r � ak−1
r and

Player I is playing in the copy Xr
i ×ω then she abandon this copy and begins

playing Gn in Xr
i+1 × ω and if not, he stills playing in the same Xr

i × ω, i.e.,
i(k, r) = i(k − 1, r). In both cases Player I adds the column {0} × N(k).
Now we will prove that this is a winning strategy for Player I.

If all the sequences ak
r are eventually increasing then we have two cases:

(1) For each k ≤ n the sequence
⋃

r ak
r is not eventually-zero. Then, Player

I will increase the column {0}×N(k) to {0}×ω, making
⋃

n Jn ∈ ∅×Fin+.
(2) There is k ≤ n such that

⋃
r ak

r is an eventually-zero branch. Then,
the column {0}×N(k) will not increase and in all the pieces of the partition
will be played the game Gn and since all increase, all pieces are abandoned
and then,

⋃
n Jn ∈ ∅ × Fin.

If for some k, the sequence ak
r does not increase then Player I will be

playing the game Gn and since she has a winning strategy for this game, we
are done, because the column {0} × N(k) will not increase.

Now we give a criterion for ideals �-below ∅ × Fin.

Lemma 4.3.3. Let I be an ideal on ω. Then I � ∅ × Fin if and only if
Player II has a winning strategy for the following game G′′′(I ): In step n,
Player I chooses an element In of I and then Player II chooses an increasing
function fn ∈ ωω. Player II wins if

⋃
n In ∈ I if and only if the sequence

{fn : n < ω} is bounded.

Proof. Let us assume that Player II has a winning strategy σ for G(I , ∅ ×
Fin). For every element J ∈ ∅ × Fin, let fJ : ω → ω given by fJ(n) =
min{k > fJ(n − 1) : (∀m > k) (n,m) /∈ J}. Then we describe a winning
strategy for Player II in G′′′(I ) as follows: Given I0 ∈ I , let f0 be the
function fσ(I0). Assume that the legal position 〈I0, f0, . . . , In, fn〉 follows the
strategy which we are defining. Then in parallel we have a legal position
〈I0, J0, . . . , In, Jn〉 of G(I , ∅ × Fin) following σ. Then, given In+1, define
Jn+1 = σ(〈I0, J0, . . . , In, Jn, In+1〉) and the function fn+1 = fJn+1 . It is easy
to check that this is a winning strategy for Player II in G′′′(I ). On the other
hand, for any function f ∈ ωω define Jf = {(n,m) ∈ ω × ω : m ≤ f(n)}.
Analogous to first part, Player II in G(I , ∅×Fin) has to play with Jf where
f is the answer given by Player II in G′′′(I ).

Ilijas Farah asked in [14] if every Fσδ-ideal I satisfies that there is a
family of compact hereditary sets {Cn : n < ω} such that

I = {A ⊆ ω : (∀n < ω)(∃m < ω)(A \ [0, m) ∈ Cn)}.
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We will say I is a Farah ideal if I fulfils that property. Note that every
Farah ideal I is an Fσδ ideal. We have a characterization of Farah ideals by
using Fσ hereditary and closed under finite changes sets.

Theorem 4.3.4. Let I be an ideal on ω. Then, I is Farah if and only if
there is a sequence {Fn : n < ω} of hereditary and closed under finite changes
Fσ-sets such that I =

⋂
n Fn.

Proof. Let 〈Cn : n < ω〉 be a family of compact hereditary sets such that
I = {A ⊆ ω : (∀n)(∃k)(A \ k ∈ Cn)}. For any n, define Fn as the closure of
Cn under finite changes. It is clear that Fn is hereditary, closed under finite
changes, Fσ and containing I . If A ∈ Fn then there is a finite set F such
that A � F ∈ Cn and by taking and an adequate k > max(F ) we have that
A \ k ∈ Cn.

Now, let {Fn : n < ω} be an increasing sequence of hereditary and closed
under finite changes Fσ-sets such that I =

⋂
n Fn. Let us write Fn =

⋃
k En

k

where 〈En
k : k < ω〉 is an increasing sequence of closed sets. We can assume

that each En
k is a hereditary sets, and we can define

Ẽn
k = {A \ (k + 1) ∪ {k} : A ∈ En

k }

and Cn = {∅} ∪ ⋃
k Ẽn

k . Note that each Cn is a closed hereditary set, and if
A \ k ∈ Cn we can assume k ∈ A and then A ∈ Ẽn

k ⊆ Fn for all n. Finally, if
A is an infinite set in I (the finite case is trivial) then for each n take k such
that A \ k ∈ Ek and k ∈ Ek (this is possible since the En

k is an increasing
family). Hence A \ k ∈ Cn.

Corollary 4.3.5. The ideal nwd is Farah.

Proof. Let {Un : n < ω} be a base of the topology of Q, and define Fn =
{A ⊆ Q : (∃m)(Um ⊆ Un ∧ A ∩ Um = ∅)}. Note that nwd =

⋂
n Fn and each

Fn is Fσ hereditary and closed under finite changes.

We have refined theorem 4.3.4 as the following shows.

Theorem 4.3.6. Let I be an ideal on ω. Then, I is Farah if and only if
there is a sequence {Fn : n < ω} of Fσ closed under finite changes sets such
that I =

⋂
n Fn.
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Proof. Without loss of generality, we can assume that all Fn are meager,
because if Fn is nonmeager then there is a non-empty clopen set contained
in Fn and by closedness under finite changes, Fn = 2ω.

Sufficiency is a consequence of theorem 4.3.4, and by the same theorem, it
will be enough to prove that if F is a meager Fσ closed under finite changes set
then there is an Fσ hereditary set E such that I ⊆ E ⊆ F . Let us consider
the game H defined such that in step k, Player I chooses a set Bk /∈ F and
Player II picks a finite subset ak of Bk. Player I wins if

⋃
k ak ∈ A. Note

that H is determined since A is Borel.

Claim. Player II has a winning strategy in H.

Proof of claim. Let {En : n < ω} be an increasing sequence of closed sets
such that F =

⋃
n En and for each n, let Tn be a pruned tree such that

En = [Tn]. Since each En is a nowhere dense set, in step k, if Player I plays
Bk then there is mk < ω such that mk−1 < mk (m−1 = 0) and χBk

� mk /∈ Tk.
Then, Player II has to play ak = Bk ∩ mk. It is clear that

⋃
k ak /∈ F and

then
⋃

k ak /∈ I .

It is very easy to see that

Claim. Player II has a winning strategy in H if there is a tree T ⊆ ([ω]<ω)<ω

such that (a) for all A /∈ F and all t ∈ T there is a ∈ succT (t) such that
a ⊆ A and (b)

⋃
n f(n) ∈ I + for all f ∈ [T ].

Hence, by defining Ct = {A ⊆ ω : (∀a ∈ succT (t))(a � A)}, for all
t ∈ T , we have immediately that Ct is closed and hereditary and I ⊆ Ct

(details can be checked in proof of 2.8.3). Finally, (a) is the contrapositive
of

⋃
t∈T Ct ⊆ F . Hence,

⋃
t Ct is the Fσ hereditary set required.

Question 4.3.7. Given an Fσδ-ideal I and an Fσ-set such that I ⊆ F , is
there a hereditary Fσ-set E such that I ⊆ E ⊆ F?

Note that an affirmative answer implies each Fσδ is a Farah ideal.

By theorem 4.3.4 it is clear that any Farah ideal fulfils the following
definition.

Definition 4.3.8. An ideal I is weakly Farah if there is a sequence 〈Fn :
n < ω〉 of Fσ and hereditary sets such that I =

⋂
n Fn.
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Without loss of generality, the sequence in previous definition is increas-
ing, and it is clear that any weakly Farah ideal is Fσδ. Weakly Farah ideals
are below ∅ × Fin in the comparison game order.

Theorem 4.3.9. If I is a weakly Farah ideal then I � ∅ × Fin.

Proof. Let {Fn : n < ω} be a family of hereditary Fσ sets such that I =⋂
n Fn. Without loss of generality, we can assume that for any n, Fn =

⋃
k En

k

where each En
k is a closed hereditary set. Then, for any A ⊆ ω

A ∈ I if and only if (∃fA ∈ ωω)(∀n < ω)(A /∈ En
k ↔ k < fA(n)). (4.1)

Hence, playing the game G′′′(I ), for any step n, Player II has to play f⋃
j<n Ij

.

So, if I =
⋃

n In ∈ I then fI bounds all the fIn functions; and if I /∈ I then
there is k such that I /∈ Ek

j for all j < ω and then, 〈fIn(k) : n < ω〉 increases
to infinity, because in other case, there were j such that In ∈ Ek

j for all n

and I /∈ Ek
j , contradicting the closedness of Ej

k.

A positive answer to Farah’s question would imply that every Fσδ ideal
is � below ∅ × Fin.

Note that by Solecki’s theorem, any analytic P-ideal is a Farah ideal.

Corollary 4.3.10. If I is an analytic P-ideal then I � ∅ × Fin. �

Theorem 4.3.11. The following ideals on ω are comparison game equivalent:

(1) Z,

(2) nwd and

(3) ∅ × Fin.

Proof. (1) � (3) use Z is an analytic P-ideal.
(2) � (3) use nwd is a Farah ideal.
(3) � (1). Let g be a bijective function from ω × ω on to ω such that

g(n, m) ≥ max{n,m}. Given n,m ∈ ω, we define I(j,k) = [2g(j,k), 2g(j,k)+1).

Given a function f ∈ ωω and k ∈ ω, we define Bf
(j,k) ⊆ I(j,k) as the interval

[2g(j,k), 2g(j,k)+2g(j,k)−k) if j ≤ f(k), and the interval [2g(j,k), 2g(j,k)+2g(j,k)−k−j)
if j > f(k). Finally, we define Bf =

⋃
j,k<ω Bf

(j,k). For any I ∈ ∅ × Fin, let
us take fI as we defined in proof of lemma 4.3.3, and now we describe the
winning strategy for Player II in G(∅×Fin,Z). In step n, if I0, . . . In are the
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elements of ∅ × Fin played by Player I, then define I ′
n =

⋃
l≤n Il and define

fn = fI′n . Player II has to play Bfn . Now we will argue why is this a winning
strategy for Player II. If I =

⋃
n In ∈ I then {fn : n < ω} is bounded by

a function f , and then, given ε > 0 we can find N = max{g(j, k) : 2−k ≥
ε∧j ≤ f(k)}. Then, note that for all m ≥ N , |I∩[2m, 2m+1)| ≤ 2m−N < 2mε.
On the other hand, if I /∈ I then there is K < ω such that {fn(K) : n < ω}
is not bounded and then |I ∩ Ij,K | = 2g(j,K)−K = 2−K |I(j,K)| for all j < ω,
and then I /∈ Z.

(3) � (2) Let {Vn : n < ω} be a sequence of pairwise disjoint open
subsets of Q and for each n, let {qn

k : k < ω} be an enumeration of Vn.
Let us play the G(∅ × Fin, nwd) game. In step n, if Player I has played
In ∈ ×Fin, take a function f ∈ ωω such that for all k, m, (k, m) ∈ In implies
m ≤ f(k), and then Player II must play Jn = {qk

s : s < g(k) ∧ k < ω}. Jn is
a nowhere dense subset of Q since it intersects each Vn in a finite set, and if
I =

⋃
n In ∈ ∅ × Fin then J =

⋃
n Jn intersects each Vn in a finite set, and

then, J ∈ nwd; and if for some k, I ∩ ({k}×ω) is infinite, then J will contain
Vk, and then J ∈ nwd+.

Concerning to analytic P-ideals, we have noted that every one of them is
either equivalent with Fin (i.e., is Fσ) or equivalent with ∅ ×Fin. Then the
class of P-ideals skips the intermediate class of I0.

Theorem 4.3.12. Let I be an analytic P-ideal. Then either I � Fin or
I � ∅ × Fin.

Proof. Let ϕ be a lscsm such that I = Exh(ϕ). We will consider two cases:
Case 1. There is ε > 0 such that for any set X, ϕ(X) < ε implies X ∈ I .
Note than in such case I is an Fσ ideal, because C = {A ⊆ ω : ϕ(X) ≤ ε}
is a closed set and I =

⋃
n{A ⊆ ω : A \ n ∈ C}.

Case 2. For all ε > 0 there is an I -positive set X such that ϕ(X) < ε.
Take a family Yn of I -positive sets such that ϕ(Yn) ≤ 2−n and by the
Disjoint Refinement Lemma for hereditary meagre ideals 1.2.5, there is a
disjoint family of positive sets {Xn : n < ω} such that ϕ(Xn) ≤ 2−n. Let
{xn

k : k < ω} be an enumeration of Xn. Let us describe a winning strategy
for Player II in G(∅ × Fin, I ). In step n, if Player I plays In, we consider
the function fn given by fn(k) = max{0} ∪ {j : (∃l ≤ n)((k, j) ∈ Il)} and
then Player II has to play Jn = {xk

j : j ≤ fn(k)}. Hence, if I =
⋃

n In ∈ I
then the family 〈fn : n < ω〉 is bounded by f and then J =

⋃
n Jn intersects

each Xn in a finite set Fn which has submeasure smaller than 2−n and so, J
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is a ϕ-exhaustive set. On the other hand, if I /∈ ∅×Fin then there is k such
that fn(k) increases to infinity, and so, J ∩ Xk = Xk ∈ I +.

Finally, we will show that the ideal Fin×Fin belongs a higher class than
∅ × Fin. It is very easy to see that ∅ × Fin � Fin × Fin.

Proposition 4.3.13. ∅ × Fin � Fin × Fin.

Proof. Let {Xn : n < ω} be an infinite partition of ω in infinite pieces. Given
I in ∅ × Fin, we define another element JI of ∅ × Fin by

JI = {(k, l) : (∃n < ω)(k ∈ Xn ∧ (n, l) ∈ I)}.

The winning strategy for Player II consists in play JIn for a set In played by
Player I in step n. If I =

⋃
n In ∈ ∅ × Fin then J =

⋃
n JIn ∈ ∅ × Fin, and

if for some k < ω, I ∩ {k} × ω is infinite then J ∩ {l} × ω will be infinite for
all l ∈ Xk, and then J /∈ Fin × Fin.

Theorem 4.3.14. Fin × Fin �� ∅ × Fin.

Proof. We will describe a winning strategy for Player I in G′′′(Fin × Fin).
Without loss of generality, we can assume that Player II plays in such way
that fk(n) ≥ fk−1(n) for all n. First, take an infinite partition {Xn : n < ω}
of ω in infinite pieces, and let {xn

r : r < ω} be an enumeration of Xn. Player I
will play just with selectors of the family {Xn×ω : n < ω}. In step 0, Player
I plays (0, 0). In step k, if fk = fk−1 (f−1 ≡ 0) and Jk−1 = {(xn

r ,mn
r ) : r < ω}

then Jk+1 = {(xn
r ,mn

r + 1) : r < ω}, and otherwise, if l = min{n : fk(n) >
fk−1(n) then Jk+1 = {(xn

r ,mn
r + 1) : r ≤ l} ∪ {(xn

r+1,m
n
r ) : r > l}.

If there is N such that {fk(N) : k < ω} increases in infinitely steps then⋃
n Jn ∈ I since all but finitely many pieces Xr are turning to the right in

infinitely many steps and if {fk : k < ω} is bounded by a function f then
eventually in all the pieces Player I will be adding point in a same column,
making

⋃
n Jn /∈ Fin × Fin.

4.4 Questions

Our principal questions about Katětov order are:

Question 4.4.1. Is there a ≤K-minimal ideal I among Borel tall ideals?
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Question 4.4.2. Is there a locally ≤K-minimal ideal I among Borel tall
ideals?

Question 4.4.3. Is R locally ≤K-minimal among Borel tall ideals?

Or in the contrary sense,

Question 4.4.4. Is there a Borel tall ideal I on ω satisfying

I + �� (I +)2
2 ?

Question 4.4.5. Is there a decreasing (increasing) chain of length c in
Katětov order among Borel ideals?

Question 4.4.6. Is it true that for every Borel ideal I either there is an
I -positive set X such that conv ≤K I � X or there is an Fσ-ideal J
containing I .

A result of M. Laczkovich and I. Rec�lav [34] shows that for every ideal
I either I ≥K Fin × Fin or there is an Fσ set E such that I ⊆ E and
E ∩ I ∗ = ∅. We wish to know if Fσ hypothesis could be weaken in order to
replace “set” with “ideal”.

Question 4.4.7. Must every ideal I satisfy I ≥K Fin × Fin or satisfy
that there is an Fσδ − ideal J such that I ⊆ J ?

About Fσ and P+ ideals, in example 3.2.12 we have a Borel P+ ideal
which is not an Fσ-ideal, but such ideal is not tall.

Question 4.4.8. Does every Borel tall ideal I contain an Fσ tall ideal?

Question 4.4.9. Is there a Borel tall P+-ideal which is not an Fσ-ideal?

Question 4.4.10. Does Measure dichotomy hold for Fσ-ideals?

About cardinal invariants of the continuum we have the following ques-
tions

Question 4.4.11. Is non∗(Gfc) = r2?

Question 4.4.12. Is consistently strict some inequality of r2 ≤ non∗(Gfc) ≤
r?
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Question 4.4.13. Is cov∗(Gc) = min{b, s2}?
Question 4.4.14. Is some inequality consistently strict in par2 ≤ cov∗(Gc) ≤
b, s2?

Concerning with the comparison game order we have the following ques-
tions.

Question 4.4.15. Is there a pair of incomparable Borel ideals in comparison
game?

Question 4.4.16. Is there a Borel ideal I satisfying the inequalities I0 �
I � ∅ × Fin strictly?

Question 4.4.17. Are all Fσδ ideals below ∅ × Fin? Are they below Fin ×
Fin?

Question 4.4.18. Does weakly Farah property imply Farah property?

Question 4.4.19. Are there Fσδ ideals which are not weakly Farah? and not
Farah?
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