

UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO

PROGRAMA DE MAESTRÍA Y DOCTORADO EN INGENIERÍA

Vniver4dad Nacional AvFnºma de Mexico

TUTOR: DRA. PETIA MIJAYLOVA NACHEVA

2009

Universidad Nacional Autónoma de México

UNAM – Dirección General de Bibliotecas Tesis Digitales Restricciones de uso

DERECHOS RESERVADOS © PROHIBIDA SU REPRODUCCIÓN TOTAL O PARCIAL

Todo el material contenido en esta tesis esta protegido por la Ley Federal del Derecho de Autor (LFDA) de los Estados Unidos Mexicanos (México).

El uso de imágenes, fragmentos de videos, y demás material que sea objeto de protección de los derechos de autor, será exclusivamente para fines educativos e informativos y deberá citar la fuente donde la obtuvo mencionando el autor o autores. Cualquier uso distinto como el lucro, reproducción, edición o modificación, será perseguido y sancionado por el respectivo titular de los Derechos de Autor.

JURADO ASIGNADO:

- Presidente: Dra. Ma. Del Carmen Durán Domínguez
- Secretario: Dra. Georgina Fernández Villagómez
- Vocal: Dra. Petia Mijaylova Nacheva
- 1^{er.} Suplente: Dr. Adalberto Noyola Robles
- 2^{do.} Suplente: Dra. Gabriela Moeller Chávez

Lugar en donde se realizó la tesis:

UNAM, Campus Morelos

TUTOR DE TESIS:

Dra. Petia Mijaylova Nacheva

FIRMA

AGRADECIMIENTOS

Al Consejo Nacional de Ciencia y Tecnología (CONACYT), por extender la beca con la cual me fue posible llevar a cabo los estudios de posgrado.

A la Dra. Petia Mijaylova Nacheva, por el tiempo dedicado en la dirección y edición de esta tesis. Agradezco también el apoyo para llevar a cabo las actividades necesarias para alcanzar el objetivo de esta investigación.

A los integrantes del comité, Dra. Carmen Durán, Dra. Georgina Fernández, Dra. Gabriela Moeller, Dr. Adalberto Noyola y Dra. Petia Mijaylova, por sus comentarios y observaciones que ayudaron a mejorar la calidad de este trabajo.

A todo el equipo presente en la planta piloto de tratamiento de aguas residuales del IMTA que de diversas maneras apoyaron las actividades de este proyecto.

A Margarita Cisneros por su apoyo en la implementación y seguimiento de técnicas de AME necesarias para esta investigación.

A mis padres y hermanos, que siempre me han apoyado a continuar en el camino.

Gracias.

A mis padres por su cariño y apoyo incondicional.

A Jermaine Braithwaite por mostrarme el camino a la felicidad.

ÍNDICE DE CONTENIDO

<u>ÍND</u>	DICE DE TABLAS	8
<u>ÍND</u>	DICE DE FIGURAS	10
<u>RE</u>	SUMEN	13
<u>AB</u>	STRACT	14
<u>NO</u>	MENCLATURA	15
<u>1</u>	INDUSTRIA DE LA PRODUCCIÓN DE CARNE Y LA PROBLEMÁTICA AMBIENTAL EN RASTROS	17
1.1 1.2	Situación actual Problemática ambiental generada por los rastros 1.2.1 Consumo de agua 1.2.2 Generación de aguas residuales	17 19 21 22
1.3 1.4 1.5	Objetivo y metas 1.4.1 Objetivo general 1.4.2 Metas 1.4.3 Hipótesis Alcance	25 25 25 26 26 26
<u>2</u>	TRATAMIENTO DE AGUAS RESIDUALES PROVENIENTES DE RASTROS	27
2.1 2.2 2.3	Tecnologías implementadas para la depuración de efluentes de rastros Tratamiento de aguas residuales de rastros en México Fundamentos del tratamiento anaerobio de aguas residuales 2.3.1 Microbiología de los procesos anaerobios 2.3.2 Procesos metabólicos en la degradación anaerobia 2.3.2.1 Hidrólisis 2.3.2.2 Biodegradación y oxidación anaerobia 2.3.2.3 Metanogénesis	27 30 31 32 33 34 35 36
	 2.3.3 Diseño de sistemas anaerobios 2.3.3 Diseño de sistemas anaerobios 2.3.3.1 Carga orgánica volumétrica 2.3.3.2 Efectos de la temperatura 2.3.3.3 Efectos y control del pH y la alcalinidad 2.3.3.4 Requerimientos de nutrientes 2.3.3.5 Compuestos tóxicos 2.3.3.6 Concentración de la biomasa y tiempo de retención celular 2.3.4 Tipos de reactores anaerobios 	38 38 40 40 42 42 42 43 45

		2.3.4.1 Reactor anaerobio de flujo	ascendente y lecho de lodos	46
		2.3.4.2 Reactor anaerobio de lecho	expandido	47
2.4	Sistem	as de tratamiento acoplados anaerobio-	aerobio	48
2.5	Proces	os aerobios con biomasa suspendida p	ara el tratamiento de aguas residuales	49
		2.5.1.1 Lodos activados		50
o ∎				Ę٥
<u>3 I</u>	METUDU	LUGIA		52
3.1	Caracte	rización del agua residual de rastro		52
3.2	Configu	ración de los sistemas experimentales		53
	3.2.1	Reactor UASB		55
	3.2.2	Reactor AEBR		57
	3.2.3	Reactor de lodos activados		59
3.3	Operac	ón y control del sistema experimental		60
	3.3.1	Arranque de los sistemas		60
		3.3.1.1 Inoculación y empacado de	los reactores	60
		3.3.1.2 Aclimatación de la biomasa		61
	3.3.2	Evaluación del desempeño de los sist	emas	63
	3.3.3	Operación de los sistemas		65
3.4	Análisis	estadísticos		66
<u>4</u> [RESULT	ADOS Y DISCUSIÓN		68
4.1	Caracte	rización del agua residual de rastro		68
4.2	Lodo g	anular		72
4.3	Carbor	activado granular		/3
4.4	Arrang	le y aclimatación de la biomasa de los	reactores anaerobios	13
	4.4.1			13
4 5	4.4.Z	Reación UASB	reactores anacrobios	/0 70
4.5		Dooctor AERD	Teaciones anaeropios	78 70
	4.3.1	A 5 1 1 Carga orgánica volumátrica	y romoción do matoria orgánica	79
		4.5.1.1 Calga Olyanica Volumenica 4.5.1.2 Droducción do biogás y act	ividad motanogónica	19 Q0
		4.5.1.2 Floudection de blogas y act		02 85
		4.5.1.4 Nitrógeno total y fósforo		87
		4 5 1 5 Sólidos suspendidos totale	s v volátiles	90
		4516 Evolución de temperatura	oH alcalinidad ácidos grasos y relación alfa	92
	452	Reactor UASB		95
	11012	4.5.2.1 Carga orgánica volumétrica	v remoción de materia orgánica	96
		4.5.2.2 Producción de biogás y act	ividad metanogénica	99
		4.5.2.3 Nitrógeno amoniacal, sulfat	os y sulfuros	102
		4.5.2.4 Nitrógeno total y fósforo	5	104
		4.5.2.5 Sólidos suspendidos totale	s y sólidos suspendidos volátiles	106
		4.5.2.6 Evolución de la temperatur	a, pH, alcalinidad, ácidos grasos y relación alfa	108
4.6	Arrang	e de reactores de lodos activados		111
	4.6.1	Inoculación		111
4.7	Operac	ón y control del los reactores de lodos	activados	112
	4.7.1	Remoción de materia orgánica		112
	4.7.2	Remoción de nitrógeno amoniacal		117

4.8	 7.3 Características de 4.7.3.1 Concer 4.7.3.2 Propied 4.7.3.3 Tasa e: 4.7.3.3 Tasa e: 4.7.4 Evolución de pH, esempeño de los reactor 8.1 Reactores anaero 8.2 Sistema acoplado 	e la biomasa en los reactores anaerobios ntración de sólidos suspendidos volátiles en los reactores aerobios dades de sedimentación specífica de utilización de oxígeno OD y temperatura res anaerobios y el sistema acoplado bios	124 124 126 127 128 130 130 133
<u>5 CC</u>	ICLUSIONES Y RECOM	IENDACIONES	137
5.1 5.2	onclusiones ecomendaciones		137 139
<u>ANEX(</u>	Α		140
Método Prueba Detern Cuanti	de análisis para los para implificada de actividad ación indirecta de la cor ación del biogás por des	ámetros fisicoquímicos determinados metanogénica específica en discontinuo en sistemas estáticos ncentración de ácidos grasos volátiles, AGV splazamiento de líquido y determinación de la producción teórica	140 141 144 145
ANEX	Β		<u> 147</u>
Detern Cálcul Equilib	ación de la cantidad de de requerimiento de nutr o de especies de azufre	biomasa adherida al CAG ientes para los sistemas anaerobios	147 148 149
ANEX	С		150
Datos Análisi	perimentales estadísticos ferencia entre concentra aerobios ferencia entre concentra ferencia entre concentra ferencia entre porcentaje robios ferencia entre los porcer ferencia entre los porcer ferencia entre los porcer r4.kgSSV ^{-1.} d ⁻¹ en los rea ferencia entre los porcer RC mayor de 14 días) ferencia entre los porcer robios (TRC mayor de 1	ción de nitrógeno amoniacal en el influente y efluente de reactores ción de nitrógeno total en el influente y efluente de reactores anaerobios ción de fósforo total en el influente y efluente de reactores anaerobios es de remoción de materia orgánica medida como DQO en los reactores ntajes de remoción de N-NH₄ de los reactores aerobios de remoción de N-NH₄ en los reactores aerobios ntajes de remoción de N-NH₄ con cargas mayores y menores a 0.15 kg N actores aerobios ntajes de remoción de N-NH₄ con respecto al TRC en los reactores aerob ntajes de remoción de M-NH₄ con respecto al TRC en los reactores aerob	150 176 177 178 179 179 180 - 180 181 0res 181

ÍNDICE DE TABLAS

Tabla 1.1. Producción nacional de carne en canal	17
Tabla 1.2. Guía de consumo de agua en rastros por tecnología disponible	22
Tabla 1.3. Consumo de agua en rastros. Estimado en México	22
Tabla 1.4. Concentraciones promedio de contaminantes en el agua residual de plantas de sacrificio por	
especie	24
Tabla 2.1. Reactores y características de operación empleadas para el tratamiento anaerobio para aguas	S
residuales de rastros	29
Tabla 3.1. Volumen del reactor UASB	55
Tabla 3.2. Volumen del reactor AEBR	58
Tabla 3.3. Características del material del carbón activado granular	61
Tabla 3.4. Parámetros a determinar y punto de muestreo correspondiente	64
Tabla 4.1. Caracterización inicial general del agua residual del Rastro Municipal de Cuernavaca tomada c	le
una fosa de sedimentación	69
Tabla 4.2. Caracterización al agua de rastro en diferentes fechas	71
Tabla 4.3. Parámetros de campo y alcalinidad del agua de rastro en diferentes fechas	71
Tabla 4.4. Condiciones de operación del reactor AEBR durante el período de aclimatación	76
Tabla 4.5. Condiciones de operación del reactor UASB durante el periodo de arranque y estabilización	77
Tabla 4.6. Resultados promedio y remoción de DQO en el reactor AEBR y eficiencia de remoción obtenid	la 81
Tabla 4.7. Actividad metanogénica específica. Reactor AEBR	84
Tabla 4.8. Concentraciones máximas, mínimas y promedio de N-NH4 en el reactor AEBR	86
Tabla 4.9. Concentraciones máximas, mínimas y promedio de NT en el reactor AEBR	88
Tabla 4.10. Concentraciones máximas, mínimas y promedio de PT en el reactor AEBR	90
Tabla4.11. Concentraciones máximas, mínimas y promedio de SST y SSV a la entrada y salida del reacto	or
AEBR	92
Tabla 4.12. Resultados promedio y remoción de DQO en el reactor UASB y eficiencia de remoción obteni	ida98
Tabla4.13. Actividad metanogénica específica del lodo granular	102
Tabla 4.14. Concentraciones máximas, mínimas y promedio de N-NH $_4^+$ en el reactor UASB	103
Tabla 4.15. Concentraciones máximas, mínimas y promedio de NT en el reactor UASB	105
Tabla 4.16. Concentraciones máximas, mínimas y promedio de PT en el reactor UASB	106
Tabla 4.17. Concentración máxima, mínima y promedio de SST y SSV en el influente y efluente del reacto	or
UASB	108

Tabla 4.18. Concentración de materia orgánica medida como DQO en el influente y efluente de los reacto	ores
de lodos activados	114
Tabla 4.19. Tasa de utilización de oxígeno observada en los reactores de lodos activados	128
Tabla 4.20. Comparación de tratamiento anaerobio de aguas residuales provenientes de rastros	132
Tabla 4.21. Comparación de tratamiento de aguas residuales provenientes de rastros implementando	
sistemas acoplados anaerobio-aerobio	134
Tabla 4.22. Limites máximos permisibles para materia orgánica, NT y PT	135

ÍNDICE DE FIGURAS

Figura 1.1. Diagrama de flujo del proceso y características generales de los efluentes de cada etapa	23
Figura 2.1. Esquema de degradación anaerobia de materia orgánica compleja	37
Figura 3.1. Diagrama esquemático del sistema anaerobio aerobio acoplado, UASB-LA	53
Figura 3.2. Diagrama esquemático del sistema anaerobio aerobio acoplados, AEBR-LA	54
Figura 3.3. Fotografía de sólidos retenidos del agua de rastro cargada al tanque de alimentación	55
Figura 3.4. Esquema del reactor UASB	56
Figura 3.5. Esquema del reactor AEBR	58
Figura 3.6. Esquema general de un reactor de lodos activados	59
Figura 3.7. Sistema acoplado anaerobio-aerobio. Puntos de muestreo	64
Figura 4.1. Gránulos anaerobios para la inoculación del reactor UASB	72
Figura 4.2. Carbón activado granular mineral de lignita usado como medio de soporte en el reactor AEBR	73
Figura 4.3. Fotografía de la malla dañada	75
Figura 4.4. Porcentajes de remoción de DQO del reactor UASB durante el periodo de aclimatación	77
Figura 4.5. Concentraciones de DQO en el influente y efluente del reactor UASB durante el periodo de	
aclimatación	78
Figura 4.6. COV alimentada al reactor AEBR durante el periodo de operación del reactor	80
Figura 4.7. Concentración de DQO en el influente y efluente del reactor AEBR durante el periodo de operado	ción
	80
Figura 4.8. Porcentajes de remoción de DQO en el reactor AEBR	81
Figura 4.9. Variación de la tasa de remoción de materia orgánica con la COV alimentada al reactor AEBR	82
Figura 4.10. Producción de biogás. Reactor AEBR	83
Figura 4.11. Producción de biogás en el reactor AEBR con relación a la materia orgánica removida	84
Figura 4.12. Concentraciones de N-NH $_4^+$ en el influente y efluente del reactor AEBR	85
Figura 4.13. Concentraciones de NT en el influente y efluente del reactor AEBR	88
Figura 4.14. Concentración de PT en el influente y efluente del reactor AEBR	89
Figura 4.15. Contenido de SST en el influente y efluente del reactor AEBR	91
Figura 4.16. Contenido de SSV en el influente y efluente del reactor AEBR	91
Figura 4.17. Seguimiento de temperatura en el influente y efluente del reactor AEBR	92
Figura 4.18. Seguimiento de pH en el influente y efluente del reactor AEBR	93
Figura 4.19. Alcalinidad total y a pH 5.75 en el reactor AEBR	94

Figura 4.20. Evolución de la relación $lpha$ en el reactor AEBR	95
Figura 4.21. COV alimentada al reactor UASB durante el periodo de operación	96
Figura 4.22. Concentración de DQO en el influente y efluente del reactor UASB	97
Figura 4.23. Porcentajes de remoción de DQO en el reactor UASB	98
Figura 4.24. Variación de la tasa de remoción de materia orgánica con respecto a la COV en el reactor	UASB
	99
Figura 4.25. Fenómeno de acumulación de biogás en el reactor UASB	100
Figura 4.26. Producción de biogás. Reactor UASB	101
Figura 4.27. Producción de biogás en el reactor AEBR con relación a la materia orgánica removida	101
Figura 4.28. Concentración de N-NH4 en el influente y efluente del reactor UASB	103
Figura 4.29. Concentraciones de NT en el influente y efluente	104
Figura 4.30. Concentración de PT en el influente y efluente del reactor AEBR	105
Figura 4.31. Contenido de SST en el influente y efluente del rector UASB	107
Figura 4.32. Contenido de SSV en el influente y efluente del reactor UASB	107
Figura 4.33. Perfil de temperatura en el influente y efluente del reactor UASB	108
Figura 4.34. Comportamiento de pH en el influente y efluente del reactor UASB	109
Figura 4.35. Perfil de alcalinidad total y contenido de AGV en el reactor UASB	110
Figura 4.36. Comportamiento de la relación $lpha$ en el reactor UASB	111
Figura 4.37. Perfil F/M para los reactores LAAEBR y LAUASB durante el periodo de operación	113
Figura 4.38. COV alimentada a los reactores LA _{AEBR} y LA _{UASB} durante el periodo de operación	113
Figura 4.39. Remoción de materia orgánica en reactores de lodos activados	115
Figura 4.40. Variación de la tasa de remoción de materia orgánica respecto a la F/M, comportamiento t	ípico
para los reactores de lodos activados	116
Figura 4.41. Variación de las eficiencias de remoción de materia orgánica respecto a la COV aplicada a	a los
reactores de lodos activados	117
Figura 4.42. Concentraciones de nitrógeno amoniacal en influente y efluente del reactor LA _{AEBR}	118
Figura 4.43. Concentraciones de nitrógeno amoniacal en el influente y efluente del reactor LAUASB	118
Figura 4.44. Carga volumétrica de N-NH $_4$ en los reactores LA durante el periodo de operación	119
Figura 4.45. Carga volumétrica de N-NH $_4$ en los reactores LA durante el periodo de operación	119
Figura 4.46. Eficiencia de remoción de nitrógeno amoniacal en los reactores de lodos activados	120
Figura 4.47. Tasas de remoción específicas de N-NH4 para los dos reactores de LA	120
Figura 4.48. Variación en la tasa de remoción de N-NH4 ⁺ en los reactores de LA con respecto a la carga	а
alimentada de N-NH4 ⁺	121

Figura 4.49. Variación en la tasa específica de remoción de N-NH4 en los reactores de LA con respecte	o a la
relación F/M	122
Figura 4.50. Formación excesiva de espuma en el reactor LA _{UASB}	124
Figura 4.51. Concentración de SSV en el reactor LAUASB y en el efluente del mismo	125
Figura 4.52. Tiempo de retención de sólidos en el reactor de LA _{UASB}	125
Figura 4.53. Variación de la eficiencia de remoción de materia orgánica y N-NH4 con respecto al TRS e	en el
reactor LA _{UASB}	126
Figura 4.54. Índice volumétrico de lodos a lo largo del periodo de operación de los reactores de LA	127
Figura 4.55. Evolución de pH en los reactores de LA	129
Figura 4.56. Seguimiento de temperatura a la salida de los reactores de LA	129
Figura 4.57. Concentración de oxígeno disuelto, OD, en los reactores de lodos activados	130

RESUMEN

El objetivo de este proyecto fue la evaluación de dos sistemas de biodegradación anaerobia-aerobia para el tratamiento de efluentes de rastros, a nivel de laboratorio. Las configuraciones implementadas fueron las siguientes: reactor anaerobio de flujo ascendente y lecho de lodos (UASB, por sus siglas en inglés) y lodos activados (LA) y reactor anaerobio de lecho expandido (AEBR, por sus siglas en inglés) y LA. Los reactores empleados fueron de acrílico, con volumen de: AEBR, 8 L; UASB, 15 L; LA_{AEBR}, 16 L; LA_{UASB}, 18 L. Los reactores anaerobios se operaron con una carga orgánica volumétrica, COV, de 4 kg·m⁻³·d⁻¹. Los reactores LA, operando en condiciones de aireación extendida, tuvieron una alimentación con base en una relación F/M de 0.3 g DQO·g SSV-1·d-1. Durante el periodo de operación de los reactores anaerobios (COV=4 kg·m⁻³·d⁻¹), se obtuvieron remociones de DQO del 83 y 73%, para el AEBR y UASB, respectivamente. Sin embargo, durante el periodo de operación del reactor AEBR se observó constantemente la formación de bloques de lecho, éste es un problema comúnmente encontrado en este tipo de reactores. El fenómeno de formación de bloques afectó las condiciones hidráulicas dentro del reactor, provocando el paro en la operación en el día 327. El reactor UASB también se operó bajo una COV de 6 kg·m⁻³·d⁻¹, bajo estas condiciones la respuesta de remoción en el sistema alcanzó un 84%. Los reactores aerobios de lodos activados, operados con una carga de 0.34 g DQO·g SSV-1·d-1, alcanzaron remociones promedio de DQO del 70% para el LA_{AEBR} y 60% para el LA_{UASB}. La remoción promedio de N-NH₄ en los reactores aerobios fue de 66 y 60% para LA_{AEBR} y LA_{UASB}, respectivamente. La combinación de procesos de biodegradación anaerobia-aerobia es adecuada para el tratamiento de aguas residuales de rastros. La configuración del sistema UASB-LA permite obtener remociones de DQO y N-NH₄ de 87 y 60%, respectivamente. Mediante el sistema AEBR-LA se obtienen remociones ligeramente mayores, de 95 y 66%, respectivamente. Los reactores de lodos activados, en su modalidad de aeración extendida, no alcanzan la capacidad de remoción de nitrógeno amoniacal requerida para el cumplimiento de los límites normativos para descarga a cuerpos receptores por lo que deberá buscarse una opción alternativa.

ABSTRACT

The objective of this study was to evaluate two anaerobic-aerobic systems for the treatment of slaughterhouse wastewater at laboratory scale. The implemented configurations were as follows: upflow anaerobic sludge blanket (UASB) reactor plus an activated sludge (AS) reactor; and anaerobic expanded bed reactor (AEBR) plus an AS system. Reactors operation volumes were: 8 L, AEBR; 15 L, UASB; 16 L, AS_{AEBR}; 18 L, AS_{UASB}. Reactors were operated at a volumetric organic load (VOL) of 4 kg COD·m⁻³·d⁻¹. AS reactors, operating under extended aeration conditions, were fed with an F/M ratio, 0.34 g DQO·gSSV⁻¹·d⁻¹. Treatment effectiveness was calculated with influent and effluent characterization data of each reactor. During operation period (VOL=4 kg COD·m⁻³·d⁻¹) 83% and 73% COD removals were obtained for AEBR and UASB, respectively. Nevertheless, throughout operation particles adhesion at AEBR was observed. This non-ideal behavior affected hydraulic conditions inside the reactor. This phenomenon is reported as quite common on biological beds. The hydraulic changes caused the pressure to rise causing physical damage in the AEBR. The operation of this reactor ended at day 327. UASB reactor was operated also with a VOL of 6 COD·m⁻³·d⁻¹; under this condition 84% COD removal was obtained. Aerobic reactors operated under F/M ratio of 0.34 g DQO·g SSV⁻¹·d⁻¹ achieved a COD removal of 70% for AS_{AEBR} and 60% for AS_{UASB}. NH₄-N average removal was 66 and 60% for AS_{AEBR} and AS_{UASB}, respectively. Combination of anaerobicaerobic biodegradation processes is adequate for slaughterhouse wastewater treatment. UASB-LA treatment system allows COD and NH₄-N overall removal percentages of 87% and 60%, respectively. By means of AEBR-AS treatment system, slightly higher removal percentages were attained, 95% and 66%, respectively. AS reactors, under extended aeration conditions, do not achieve ammonium removal capacity needed to comply with discharge limits, a different aerobic treatment option has to be provided.

NOMENCLATURA

α	Relación alfa
AEBR	Reactor anaerobio de lecho expandido (anaerobic expanded bed reactor)
AGV	Ácidos grasos volátiles
Alc _{4.3}	Alcalinidad a pH 4.3
AIC 5.7	Alcalinidad a pH 5.7
AME	Actividad metanogénica específica
AS	Lodos activados (activated sludge)
b	Coeficiente de decaimiento
Bv	Carga orgánica volumétrica
BPM	Bacterias productoras de metano
BSR	Bacterias sulfato reductoras
CAG	Carbón activado granular
CE	Conductividad eléctrica
Ci	Concentración de materia orgánica biodegradable en el agua sin tratar
COV	Carga orgánica volumétrica
DBO ₅	Demanda bioquímica de oxígeno (5 días)
DBO _{5 SOL}	Demanda bioquímica de oxígeno (5 días). Soluble
DO	Día de operación
DQO	Demanda química de oxígeno
DQO _{SOL}	Demanda química de oxígeno. Soluble.
EGSB	Reactor de lecho granular expandido (expanded granular bed reactor)
F/M	Relación entre la alimentación como DBO o DQO y microorganismos como
	sólidos suspendidos volátiles (feed/microorganism)
FA	Filtro anaerobio
FC	Factor de conversión de mL de metano a gramos de DQO
GyA	Grasas y aceites
Inf	Influente
IVL	Índice volumétrico de lodos
LA	Lodos activados
MSSV	Masa de lodo en la botella de ensayo

Ν	Nitrógeno
NMP	Número más probable
NT	Nitrógeno total
OD	Oxígeno disuelto
OHPA	Bacterias productoras obligadas de hidrógeno (obligate hydrogen producing
	acetogens)
Р	Fósforo
PT	Fósforo total
Q	Flujo volumétrico
Q _{lr} ,	Caudal del lodo residual concentración de los SSV en el licor mezclado, mg·L-1;
R	Velocidad de producción de metano
S	Concentración de sustrato
SAAM	Sustancias activas al azul de metileno (detergentes)
SDT	Sólidos disueltos totales
SDV	Sólidos disueltos volátiles
SF	Sólidos fijos
SST	Sólidos suspendidos totales
ST	Sólidos totales
SV	Sólidos volátiles
TIF	Tipo inspección federal
TRC	Tiempo de retención celular
TRH	Tiempo de residencia hidráulica
UASB	Reactor anaerobio de lecho de lodos y flujo ascendente (upflow anaerobic bed
	reactor)
UASBf	Reactor anaerobio de lecho de lodos floculentos y flujo ascendente
UASBg	Reactor anaerobio de lecho de lodos granular y flujo ascendente
V	Volumen
Х	Concentración de los SSV en el licor mezclado
X _e ,	Concentración de los SSV en el efluente del sedimentador, mg·L-1
Xır	Concentración de los SSV en el lodo residual, mg·L-1
Y	Coeficiente rendimiento de la biomasa
μ	Tasa de proliferación de la biomasa

1 INDUSTRIA DE LA PRODUCCIÓN DE CARNE Y LA PROBLEMÁTICA AMBIENTAL EN RASTROS

1.1 Situación actual

El proceso de sacrificio de animales de abasto para la producción de carne es una actividad económica de gran importancia a nivel mundial (Ockerman y Hansen, 2000). En México, la producción de carne de bovino es una de las actividades fundamentales del sector pecuario nacional. Debido a los patrones de consumo de la población, el consumo per cápita de la carne de bovino ha mantenido un comportamiento estable de 16 y 17 kg por año. En la Tabla 1.1 se resume la producción nacional de carne en canal del año 2002 al 2007 (INEGI, 2008) y se observa que la carne de bovino tiene el mayor aporte económico, siendo éste en el 2007 del 66%, seguido de la carne de porcino con 33%.

	2002	2003	2004	2005	2006	2007
Total	22,749,990	24,407,456	26,904,976	26,412,183	26,746,308	28,412,083
Ganado bovino	14,188,194	15,683,218	17,812,188	17,754,127	17,844,502	18,789,082
Ganado porcino	8,294,929	8,486,199	8,892,388	8,422,655	8,653,577	9,375,163
Ganado ovino	76,701	91,554	100,373	134,425	143,439	146,270
Ganado caprino	190,166	146,485	100,027	100,976	104,790	101,568

Tabla 1.1. Producción nacional de carne en canal (Valores en miles de pesos corrientes)

Fuente: INEGI (2008)

Para poder hacer llegar los productos cárnicos a intermediarios comerciales o consumidores finales se lleva a cabo el proceso de obtención de carne, el cual, da inicio en las instalaciones que son designadas para la matanza de los animales de abasto. En México, a las instalaciones donde se lleva a cabo este proceso se les conoce como rastros o mataderos. Existen 4 tipos de establecimientos destinados para realizar el sacrificio de los animales de abasto (Castillo *et al.*, 2001):

- Rastros municipales;
- Rastros particulares;
- Establecimientos Tipo Inspección Federal (TIF);
- Mataderos clandestinos.

Los rastros municipales, de acuerdo con la definición del Instituto Nacional de Estadística, Geografía e Informática (INEGI, 2008) son establecimientos instalados por los gobiernos de los estados en coordinación con los municipios, cuya inspección sanitaria es controlada por la Secretaría de Salud y con una infraestructura que cumpla con los requerimientos que la misma Secretaría estipula.

En general, se consideran como rastros a los establecimientos que rebasan la capacidad mínima diaria de sacrificio establecida en la Norma Oficial Mexicana NOM-194-SSA1-2004 "Especificaciones sanitarias en los establecimientos dedicados al sacrificio y faenado de animales para abasto, almacenamiento, transporte y expendio". Aquellos establecimientos que tengan una capacidad de sacrificio y faenado menor a la especificada son considerados Mataderos (SSA, 2004).

Los rastros TIF tienen una mejor planeación del proceso, lo que se traduce en altos estándares de higiene y calidad; sin embargo, este tipo de establecimientos representan el menor porcentaje de los dedicados al sacrificio de animales de abasto. Los mataderos clandestinos son establecimientos que no cuentan con un registro por la Secretaría de Salud, las condiciones de operación son higiénicamente riesgosas, no hay un control en el proceso y carecen de las condiciones necesarias que se especifican en la NOM-194-SSA1-2004 para la operación de los mismos.

INEGI (2008) publica en el libro "*Estadísticas de Sacrificio de Ganado en Rastros Municipales por Entidad Federativa*", referente a la serie 2002-2007, que existe el registro de 890 rastros municipales

en el territorio Nacional. Sin embargo, la situación actual de los rastros en México en cuanto a instalaciones y operación, no es la óptima. Este hecho provoca que la industria sea un foco generador de problemas de salud y ambientales.

1.2 Problemática ambiental generada por los rastros

Debido al incremento paulatino de la contaminación de las aguas superficiales y subterráneas, se ha acrecentado el interés sobre la importancia del tratamiento de los efluentes de rastros, por los altos volúmenes de agua utilizados en el proceso y por la relativa escasez de ésta (Castillo *et al.*, 2001). La problemática ambiental generada por los rastros municipales se debe principalmente al alto consumo de agua y a las descargas de efluentes con alta carga orgánica (COWI, 2001).

El consumo de agua se ve influenciado por las necesidades de cumplir con estándares altos de higiene. Es por esto que en el proceso de obtención de carne el agua se utiliza principalmente con fines de limpieza; el agua se emplea para el lavado de los animales antes del sacrificio, lavado de las canales, preparación de vísceras, limpieza y sanitización del equipo y las instalaciones (COWI, 2001).

En el proceso existen etapas que requieren mayores volúmenes de agua en comparación con otras. Por ello, debido al uso diferenciado del recurso, los efluentes en cada etapa tienen diferentes niveles de contaminación. El consumo de grandes cantidades de agua potable por los rastros genera una competencia con la población local por ésta y contribuye al aumento en la demanda de nuevas instalaciones hidráulicas (COFEPRIS, 2006).

Indudablemente el volumen de consumo de agua tendrá estrecha relación con el volumen de las descargas. Estas descargas se constituyen por una variedad de compuestos fácilmente biodegradables, como proteínas y grasas, presentes tanto en forma soluble como no soluble También se caracterizan por sus altas concentraciones de nitrógeno, fósforo y sales (EPA, 2002; IFC, 2007).

Un punto de gran atención, en cuanto a la constitución de las descargas de los rastros, es el aspecto microbiológico. El alto contendido de materia orgánica resulta propicio para el desarrollo de microorganismos patógenos normalmente presentes (*Salmonella spp., Shigella spp.*), además de contener, entre otros elementos huevos de parásitos y quistes de amibas (COFEPRIS, 2006; IFC, 2007).

Otros constituyentes que se pueden encontrar son algunos residuos de plaguicidas (presentes en el alimento de los animales), cloro (limpieza de instalaciones), salmuera, etc. Todas estas características de las aguas residuales de los rastros convierten a las descargas en un contaminante potencial del suelo y el agua, en el que proliferan los malos olores por la descomposición de la materia orgánica (COFEPRIS, 2006; IFC, 2007).

Algunos estudios microbiológicos y operacionales de rastros municipales en México coinciden en que las condiciones higiénicas y operativas en las plantas de sacrificio con frecuencia son precarias (Godínez *et al.*, 2000; Villanueva y Aluja, 1998). Esto genera un alto potencial de contaminación de la carne así como altos volúmenes de residuos, tanto líquidos, como sólidos, los cuales a menudo no son manejados adecuadamente.

Interesados en valorar las condiciones de operación de los rastros, se llevó a cabo en el 2006 un estudio por la Comisión Federal para la Protección de Riesgos Sanitarios (COFEPRIS) donde evaluaron los riesgos de los rastros y mataderos municipales, en comunidades de más de 50,000 habitantes. En este estudio se afirma que más del 50% de los rastros y mataderos evaluados tienen riesgo de medio a muy alto. Esto quiere decir, que las condiciones de operación del rastro no son las óptimas en cuanto a condiciones sanitarias, físicas y operativas (COFEPRIS, 2006).

De acuerdo con los datos presentados por la COFEPRIS, en la mayoría de los rastros evaluados, la disposición de los efluentes del proceso se da regularmente sin previo o escaso tratamiento, lo que los convierte en una fuente importante de contaminación de las aguas superficiales debido a su composición. Además, representan una fuente de generación de impacto a la salud pública, consecuencia de los contaminantes presentes en las descargas (COFEPRIS, 2006).

1.2.1 Consumo de agua

El agua potable es un insumo indispensable en un rastro. Se utiliza para diferentes propósitos incluyendo (COWI, 2001):

- Bebida al ganado;
- Limpieza o baño del ganado;
- Lavado de los camiones en los que se transporta el ganado;
- Escaldado en la producción de cerdos y aves;
- Remoción de piel;
- Lavado en la evisceración;
- Lavado de la canal;
- Transporte de subproductos o residuos;
- Limpieza y esterilización del equipo;
- Limpieza de pisos y superficies de trabajo;
- Enfriamiento de maquinaria.

El consumo de agua en esta industria varía de un establecimiento a otro. Los principales factores que afectan este consumo son las prácticas de limpieza, el tamaño de la planta, la modernidad del tipo de proceso, el nivel de automatización y la variedad de especies que se faenan (COWI, 2001).

Como guía, en la Tabla 1.2, se hace mención de las cifras que presenta COWI (Consulting Engineers and Planners AS, Denmark). Esta publicación se basa en el nivel de tecnología como punto de referencia para estimar el consumo de agua en rastros, entendiéndose los niveles de tecnología como se presenta a continuación.

- Tecnología tradicional: rastros de medianos a grandes con uso menor de la capacidad instalada y sin uso de las herramientas de "Producción limpia" (generalmente países en vías de desarrollo o países con economías emergentes);
- Tecnología promedio: rastros grandes utilizando lo mínimo de las técnicas de "Producción limpia";
- Mejor tecnología disponible: Rastros industriales con excelentes prácticas de "Producción limpia", alta producción.

La cantidad y composición de los residuos, así como del agua residual, dependen del tipo de animal sacrificado, métodos de sacrificio, tipo de equipo utilizado, producto y de la utilización de subproductos, así como de las prácticas locales y costumbres, existiendo poca variación en las cantidades de desechos sólidos, cuyos datos reproducibles pueden ser estimados a partir del tipo y peso de los animales sacrificados (Banks y Wang, 1994; Johns, 1995).

Animal		Linidadaa	Tecnología	Tecnología	Mejor tecnología
Animai	Insumo	Unidades	tradicional	promedio	disponible
Bovinos	Λαμο	Lanimal	5 000	2 500	1 000
(250 kg)	Ayua	L/diliiilidi	5,000	2,300	1,000
Cerdo	Λαμα	l /animal	1 400	700	300
(90 kg)	Ayua	L/animai	1,400	700	500

Tabla 1.2. Guía de consumo de agua en rastros por tecnología disponible

Fuente: COFEPRIS (2006)

En México no se tienen datos nacionales sobre el consumo promedio de agua en esta industria. Los datos disponibles se basan en promedios obtenidos en un estudio de la FAO (1994), "Manual para la instalación del pequeño matadero modular", debido a que los procedimientos que se aplican en el mencionado estudio son de gran similitud a los que se desarrollan en México. En la Tabla 1.3 se presentan los valores de consumo estimados para el país.

Especie	Agua promedio requerida (litros)			
Animales mayores	1,000			
Porcinos	450			
Ovinos y caprinos	100			

 Tabla 1.3. Consumo de agua en rastros. Estimado en México

Fuente: COFEPRIS (2006)

1.2.2 Generación de aguas residuales

El volumen de aguas residuales está estrechamente relacionado con la cantidad de agua requerida en el proceso. Aproximadamente, el 80-95% del agua utilizada en rastros es descargada como efluente (COWI, 2001). En la Figura 1.1 se muestra un diagrama de los usos principales del agua en el proceso de sacrificio de ganado; se indica, además, el tipo de contaminación que recibe el agua en los diferentes procesos.

Fuente: COFEPRIS (2006)

Los efluentes de los rastros generalmente exhiben las siguientes propiedades (Castillo *et al.*, 2001; COFEPRIS, 2006; COWI, 2001; IFC, 2007):

- Altas cargas orgánicas debido a la presencia de sangre, grasa, excremento y contenido estomacal;
- Altos niveles de grasas;
- Fluctuaciones en el pH debido a la presencia de agentes limpiadores;
- Altos niveles de nitrógeno, fósforo y sal;
- Alta temperatura.

Las concentraciones de contaminantes en los efluentes de rastros pueden variar significativamente de una planta a otra, dependiendo de la medida de exclusión de algunos desechos del drenaje (COWI, 2001). En la Tabla 1.4 se presentan las concentraciones promedio de algunos parámetros de la calidad de las aguas residuales de rastros que manejan diferentes especies de animales y aves. La información indica la contaminación que provocan las descargas de las plantas de sacrificio.

Parámetro	Porcinos	Bovinos	Aves	Mixto
рН	7.2	7.2	ND	7 – 8.5
DBO ₅ (mg·L ⁻¹)	1,250	2,000	1,550	-
DQO (mg·L ⁻¹)	2,500	4,000	2,500	1,000 – 3,000
SST (mg⋅L⁻¹)	700	1,600	ND	400 – 800
Grasas y aceites (mg·L-1)	150	270	ND	< 350
N (mg⋅L-¹)	150	180	150 – 400	<300
P (mg·L ⁻¹)	25	27	16 – 50	< 10

Tabla 1.4. Concentraciones promedio de contaminantes en el agua residual de plantas de sacrificio por especie

Fuente: COWI (2001); COFEPRIS (2006)

En general, los rastros tienen una problemática ambiental inherente debido a la naturaleza de su proceso. Esta situación se agrava cuando existen condiciones precarias en cuanto a herramientas y tecnología se refiere. En particular, en México, el problema incrementa por el pobre o nulo manejo de los residuos generados y muchas veces por la falta de recursos destinados al tratamiento del agua residual. Debido a esto es necesario generar información útil para la implementación de soluciones factibles para esta industria y de esta manera contribuir a la disminución del estado de contaminación de las aguas superficiales causado por la falta de aplicación de tratamientos adecuados en los rastros municipales del país.

1.3 Justificación

El sacrificio de animales para la obtención de carne representa una actividad económica importante e incluso los patrones alimenticios de la población demandan el continuo funcionamiento de instalaciones necesarias para este proceso. Sin embargo, esta actividad conlleva un impacto ambiental importante debido a la naturaleza del proceso. Uno de los componentes ambientales con mayor afectación es el agua ya que las descargas de aguas residuales sin tratamiento apropiado son un foco importante de contaminación de cuerpos superficiales. Además, representan un riesgo para la salud de la población.

Debido a esto es necesario generar información útil para la implementación de soluciones en esta industria y de esta manera contribuir a la disminución del estado de contaminación de las aguas superficiales causado por la falta de aplicación de tratamientos adecuados en los rastros municipales del país. En este proyecto se evaluaron dos sistemas de tratamiento acoplando biodegradación anaerobia y aerobia. Los reactores implementados han sido empleados anteriormente de manera individual para el tratamiento de aguas residuales de rastros, y son reactores que han sido ampliamente estudiados para el tratamiento de agua de manera general; sin embargo, poca información se tiene sobre el acoplamiento de este tipo de reactores, en específico, para el tratamiento de los efluentes del proceso de sacrificio de animales. Por medio de esta investigación se evalúa la factibilidad de los sistemas propuestos para la remoción de materia orgánica y nitrógeno amoniacal de las aguas residuales de rastros.

1.4 Objetivo y metas

1.4.1 Objetivo general

Implementar un tratamiento de aguas residuales provenientes de rastro mediante un sistema de biodegradación anaerobia-aerobia, a nivel laboratorio.

1.4.2 Metas

- Caracterización inicial y subsecuente de la descarga de agua residual modelo para la investigación mediante análisis fisicoquímicos.
- Arranque y estabilización de los procesos biológicos (anaerobios y aerobios) siguiendo una estrategia de aclimatación de la biomasa en cada reactor.
- Determinación de la capacidad de remoción de los dos sistemas acoplados anaerobio-aerobio tomando en cuenta la remoción de materia orgánica medida como demanda química de oxígeno.
- Determinación de la cantidad de biogás generado en los reactores anaerobios mediante mediciones por desplazamiento de líquido.

1.4.3 Hipótesis

Las eficiencias de remoción de materia orgánica son diferentes para cada sistema combinado de un sistema anaerobio con un sistema aerobio debido a la capacidad de remoción de cada tipo de reactor anaerobio implementado y a la temperatura de operación de los sistemas.

1.5 Alcance

Se implementaron dos sistemas de biodegradación anaerobia-aerobia. Las configuraciones fueron las siguientes:

- Reactor anaerobio de flujo ascendente y lecho de lodos (UASB, por sus siglas en inglés) y lodos activados (LA_{UASB}).
- Reactor anaerobio de lecho expandido (AEBR, por sus siglas en inglés) y lodos activados (LA_{AEBR}).

El agua a tratar fue agua de rastro real proveniente del Rastro Municipal de la ciudad de Cuernavaca, Morelos.

2 TRATAMIENTO DE AGUAS RESIDUALES PROVENIENTES DE RASTROS

2.1 Tecnologías implementadas para la depuración de efluentes de rastros

La tecnología desarrollada para el tratamiento del agua residual generada en los rastros se basa principalmente en la degradación anaerobia. Los procesos anaerobios son bastante apropiados para depurar las aguas residuales provenientes de rastros, debido a la naturaleza de estos desechos. Altas cargas de DBO y de sólidos en suspensión, son características propias de las descargas de los rastros y son, además, puntos clave para el éxito del tratamiento anaerobio (Braile y Cavalcanti, 1993). La implementación de sistemas de tratamiento aerobio para el agua residual de rastro ha sido menos frecuente, dada la gran cantidad de lodos producidos durante la degradación de los contaminantes, lo que implica establecer otro tren de tratamiento para estabilizarlos o disminuirlos, aumentando así el costo total del tratamiento de los efluentes de los rastros (Castillo *et al.*, 2001).

Inicialmente los sistemas de tratamiento anaerobio (filtro anaerobio, reactor estacionario descendente de película fija, reactor fijo de lecho expandido, reactor fluidificado y UASB) se desarrollaron para el tratamiento de aguas residuales con materia orgánica soluble; por lo tanto, estos sistemas sólo proporcionan un tratamiento parcial en el caso de residuos complejos, es decir, residuos parcialmente solubles, que contienen una fracción alta de sólidos suspendidos lentamente biodegradables, como en el caso de las aguas residuales de rastros (Sayed *et al.*, 1993). Integrando los procesos anaerobios de tratamiento com otros procesos biológicos y con métodos físico-químicos, puede lograrse un tratamiento completo de las aguas residuales a bajos costos (Lettinga *et al.*, 1997).

Se han desarrollado diversos proyectos con diferentes configuraciones de reactores anaerobios de una sola etapa para el tratamiento de aguas residuales de rastros. Chen *et al.* (1997) estudiaron la opción de tratar los efluentes por medio de un reactor anaerobio de lecho fluidificado y

continuamente agitado. Sayed *et al.* (1993) llevaron a cabo investigaciones a nivel de laboratorio con reactores anaerobios de flujo ascendente con lecho de lodos (UASB), haciendo la comparación con lodos en flóculos y lodos en gránulos y demostrando que la digestión de la DQO insoluble es más fácil con el lodo floculado, mientras que los lodos en gránulos permiten con mayor facilidad la digestión de la DQO soluble. Además, concluyeron que al usar sistemas de tratamiento anaerobio de una sola etapa, ya sea lodo granular o floculado, sólo se proporciona un tratamiento parcial de los efluentes de rastros.

Viraragharan y Varadajaran (1996) evaluaron el funcionamiento de una planta a gran escala para tratamiento de efluentes de rastros mediante un sistema de filtro anaerobio. Las eficiencias de remoción de DQO reportadas fueron de 37-77%, el sistema fue operado a temperaturas de 23.6-27.1°C. Borja *et al.* (1995 y 1998) investigaron el uso de filtros anaerobios híbridos de flujo ascendente, realizando pruebas a nivel de laboratorio, operando dos sistemas diferentes a una temperatura de 35°C. Para cada sistema se utilizaron diferentes tipos de empaques, se combinó 1/3 de material de soporte (anillos de bentonita y espuma de poliuretano respectivamente) con los 2/3 restantes de lecho de lodos. Las eficiencias máximas obtenidas en cuanto a remoción de DQO fueron de 98% en el primer caso y de 90.2-93.4% en el segundo.

Manjunath *et al.* (2000) evaluaron el desempeño de un UASB para el tratamiento de un efluente de rastro. Utilizaron como pretratamiento un sistema de flotación por aire disuelto (DAF). La operación del reactor UASB fue a 30°C, la eficiencia de remoción alcanzada fue de 90% para el agua pretratada y de 72-75% para el agua sin pretratamiento. Del Nery *et al.* (2001), estudiaron también el funcionamiento a gran escala de un sistema DAF-UASB para el tratamiento de efluentes de un rastro en Brasil. La eficiencia de remoción global de DQO del sistema fue de 83-84%.

Massé *et al.* (2000) evaluaron el uso de reactores anaerobios SBR para el tratamiento de las descargas de un rastro en Canadá. Con el proceso alcanzaron remociones del 98% de la DQO total. Del Pozo *et al.* (2002) utilizaron un reactor anaerobio de película fija. Operando el sistema a temperaturas de 20-24°C, obtuvieron eficiencias de remoción de DQO de 57%.

En continuas ocasiones se ha propuesto el uso de reactores UASB como parte de un sistema secuencial de tratamiento. Ruiz *et al.* (1997) estudiaron la combinación UASB-filtro anaerobio a nivel de laboratorio obteniendo eficiencias de remoción de DQO del 59-93%, el sistema fue operado a temperaturas de 37°C; Núñez y Martínez (2001) investigaron el desempeño de un sistema acoplado UASB-Lodos activados para la remoción de carbono y nitrógeno de efluentes de rastros. El modelo utilizado fue a escala de laboratorio y fue operado a temperatura controlada de 35°C. La eficiencia de remoción de DQO global fue de 85%.

Otra configuración propuesta es el reactor anaerobio de lecho granular expandido (Expanded Granular Sludge Bed Reactor, EGSB). Núñez y Martínez (1999) investigaron el desempeño de este tipo de reactor bajo condiciones mesofílicas. La eficiencia de remoción promedio de DQO fue de 70%, la carga orgánica máxima fue de 15 kg DQO/ (m³.d) y con TRH (tiempo de residencia hidráulico) de 5 horas. En la Tabla 2.1 se presentan algunas configuraciones de reactores anaerobios empleadas para el tratamiento de aguas residuales de rastros; se indican las condiciones de operación así como el porcentaje de DQO insoluble del agua tratada y el % de remoción de DQO.

Reactor	Carga orgánica,	трц д	d DQO insoluble, %	Remoción de DQO
	kg DQO·m-3·d-1	IКП, U		total, %
UASBf	3.5	0.3	40-50	70
UASBg	11	0.5-0.6	40-50	55-85
UASBf	6.5	1-2	12-33	60-90
Filtro Anaerobio	1.4	0.5	-	80
Filtro Anaerobio	2-18.5	0.5-5	45	30-85
Filtro Anaerobio	5	1.5	12-33	63-85
UASB-UASB	15	0.2	55	90
UASB-FA	5-32	0.1-0.5	10	45-98
Lecho fluidificado	35	0.1-0.3	4	85
EGSB	15	0.2	45	70

 Tabla 2.1. Reactores y características de operación empleadas para el tratamiento anaerobio para aguas residuales de rastros

UASB_f – UASB con lodo floculado; UASB_g – UASB con lodo granular; FA – Filtro anaerobio; TRH – Tiempo de residencia hidráulica; EGSB – Reactor anaerobio de lecho granular expandido, por sus siglas en inglés *Fuente: Núñez y Martínez (1999)*

Aunque pocos, también se tienen reportes de propuestas para el tratamiento de efluentes mediante sistemas biológicos aerobios, como es el caso de Chen et al. (2003), quienes propusieron como esquema de tratamiento para una planta de aguas residuales la combinación de un proceso de lodos activados con aireación por contacto. El sistema acoplado presentó eficiencias de remoción de DQO del 96%.

2.2 Tratamiento de aguas residuales de rastros en México

En México existen trabajos previos sobre el tratamiento de agua residual de rastros. Rivera *et al.* (1997) emplearon un sistema que consistía de un digestor anaerobio seguido de un humedal artificial de flujo horizontal subsuperficial. Evaluaron la eficiencia del tratamiento durante un periodo de 12 meses, en promedio la remoción de DQO fue del 87.4%, la temperatura de operación fluctuó entre los 13 y 25°C.

Rodríguez *et al.* (2002) emplearon un sistema de degradación anaerobia para la remoción de DQO de efluente de rastros. Utilizaron un reactor UASB-híbrido, el filtro anaerobio fue empacado con bauxita, la temperatura de operación fue de 38°C y obtuvieron eficiencias de remoción del 80% para cargas de 5-6 g DQO·L⁻¹·d⁻¹.

Gutiérrez-Sarabia *et al.* (2004) evaluaron el desempeño de un sistema que incluía un humedal para el tratamiento del efluente de un rastro en el estado de Hidalgo. El sistema de tratamiento completo consistía en un tanque de sedimentación primaria, una laguna anaerobia y un humedal artificial de flujo subsuperficial en serie. La eficiencia de remoción de DQO, SST y DBO5 fue de 91%, 89% y 85% respectivamente. A pesar de que el sistema alcanzó niveles satisfactorios de remoción, no se alcanzaron los límites máximos permisibles que establece la normativa mexicana.

2.3 Fundamentos del tratamiento anaerobio de aguas residuales

Los procesos anaerobios son la principal tecnología en la que se basa el tratamiento del agua residual generada en los rastros. Su aplicación ha sido estudiada por diversos autores como se presentó previamente en el inciso anterior.

Para el tratamiento de efluentes con alta carga orgánica se ha demostrado que el tratamiento anaerobio provee una alternativa efectiva en términos de costos, ya que en comparación con los procesos aerobios puede ahorrarse energía, adición de nutrientes y el volumen del reactor. Debido a que los procesos anaerobios dejan un residual relativamente alto de orgánicos no degradados en el efluente, el tratamiento anaerobio solo con poca frecuencia resulta en remoción de materia orgánica mayor a 80 – 90%. Por lo tanto, para aplicaciones que requieran una remoción alta de materia orgánica, un proceso anaerobio puede a lo más constituir solamente una parte del sistema de tratamiento (Malina y Pohland, 1992). Los contaminantes remanentes después del tratamiento anaerobio pueden ser tratados adicionalmente con procesos biológicos aerobios o tecnología de tratamiento físico-química (Odegaad, 1988).

En general, los procesos anaerobios muestran ventajas en comparación con los procesos aerobios, algunas de éstas son las siguientes (Speece, 1996):

- Las cargas volumétricas orgánicas pueden ser de 5 10 veces mayores;
- La velocidad de síntesis de biomasa es sólo del 5 20% de las tasas para procesos aerobios;
- Los requerimientos de nutrientes son sólo del 5 20% de lo que necesitan los procesos aerobios;
- La biomasa anaerobia permanece viable por mucho tiempo, meses o años, sin deterioro severo de su actividad;
- No se requiere energía para aireación en los procesos anaerobios, mientras que en los aerobios se requieren de 500 – 2,000 kW h por 1,000 kg DQO;
- En los anaerobios se tiene producción de metano, 12, 660,670 kJ (12, 000,000 BTU) por 1,000 kg DQO.

Posibles desventajas del tratamiento anaerobio (Speece, 1996):

- Tiempo largo de arranque para el desarrollo de la biomasa necesaria;
- Requerimientos de alcalinidad;
- En algunos casos la calidad del efluente es insuficiente para cumplir con normas de descarga a cuerpos superficiales;
- En el caso de aguas residuales diluidas no hay la producción suficiente de metano para mantener una temperatura óptima de 35°C;
- Generación de olores, en el caso de aguas residuales con contenido alto de sulfatos;
- No es posible llevar a cabo la nitrificación;
- Tasas cinéticas bajas a bajas temperaturas;
- Se requieren concentraciones de NH4⁺ de 40-70 mg L⁻¹ para maximizar la actividad de la biomasa.

2.3.1 Microbiología de los procesos anaerobios

La producción de metano es el paso final de una serie de reacciones bioquímicas que toman lugar dentro de los reactores anaerobios los cuales tratan los componentes orgánicos de aguas residuales o lodos. Sin embargo, ningún microorganismo es capaz de llevar a cabo todas estas reacciones de manera independiente. De esta manera, los procesos de tratamiento anaerobio son ecosistemas complejos que abarcan diversos gremios microbianos que trabajan de manera conjunta en forma coordinada para convertir los componentes orgánicos en metano y dióxido de carbono (Mara y Horan, 2003). El número y tipos de microorganismos presentes en los reactores anaerobios dependen del tipo de digestor, las condiciones de operación y la composición de los desechos a tratar (Archer y Kirsop, 1990).

Conforme se ha desarrollado un mejor entendimiento del proceso anaerobio, se han identificado grupos de microorganismos que llevan a cabo un rol específico en el proceso en general. Tales organismos efectúan una degradación completa de la materia orgánica a través de una serie de procesos metabólicos, un proceso que involucra un flujo secuencial de sustratos y productos de un gremio microbiano a otro. En general se diferencian tres grupos principales de microorganismos (Mara y Horan, 2003):

- El primer grupo se compone de bacterias hidrolíticas, este grupo microbiano es el primero que interviene en el proceso de mineralización de la materia orgánica. Se encargan de degradar lípidos, proteínas, carbohidratos y materia orgánica particulada a componentes solubles sencillos tales como ácidos grasos de cadena corta, glicerol, péptidos, aminoácidos, oligosacáridos y azúcares.
- El segundo grupo se conoce como bacterias formadoras de ácido y se compone por bacterias acidógenas y bacterias acetógenas. Ambos grupos convierten los productos de las bacterias hidrolíticas a sustratos clave de la metanogénesis, particularmente acetato, hidrógeno, dióxido de carbono, y productos intermediarios tales como formiato, propionato, butirato, valerato, etc.
- El proceso se completa con el tercer grupo bacteriano, las metanógenas, las cuales consumen los productos del grupo anterior y los convierten el los productos finales del proceso, metano y dióxido de carbono. Las metanógenas abarcan dos grupos de bacterias formadoras de metano que difieren fisiológicamente entre sí, a saber, bacterias metanógenas acetoclásticas y bacterias metanógenas hidrogenófilas.

Otros organismos que pueden presentarse en los procesos anaerobios son las bacterias sulfato reductoras, las cuales pueden ser un problema cuando las aguas residuales contienen cantidades significativas de sulfatos. Estos organismos pueden reducir el sulfato a sulfuro de hidrógeno, el cual puede ser tóxico para las bacterias metanógenas cuando se encuentra en concentraciones altas (Mara y Horan, 2003).

2.3.2 Procesos metabólicos en la degradación anaerobia

La degradación anaerobia describe diferentes procesos de tratamiento anaerobio. El principio básico común entre ellos es el hecho de que la degradación de la materia orgánica presente en los desechos se logra sin requerimientos de oxígeno molecular; es un proceso natural en el cual una variedad de especies de dos reinos totalmente diferentes trabajan juntos para convertir los desechos orgánicos a metano, el cual es una excelente fuente de energía (McCarty, 2001). Los microorganismos efectúan una degradación completa de la materia orgánica a través de una serie de procesos metabólicos (Mara y Horan, 2003), que involucran reacciones paralelas y en serie

(Bryant, 1979; Gujer y Zehnder, 1983; Kaspar y Wuhrmann, 1978; Zehnder, 1978; Zehnder *et al.*, 1982; Zinder, 1984).

Diversos autores han estudiado los procesos metabólicos que intervienen en la degradación anaerobia. Como ya se mencionó, de manera muy general, los procesos básicos que se ven involucrados son tres: hidrólisis, biodegradación y metanogénesis (Pavlostathis y Giraldo-Gómez, 1991).

2.3.2.1 Hidrólisis

La hidrólisis es el primer paso esencial en la degradación anaerobia de polímeros complejos (Mara y Horan, 2003). Este paso es crucial debido a que la materia orgánica polimérica no pude ser utilizada por microorganismos a menos que se descomponga a compuestos solubles los cuales pueden atravesar la membrana celular. En términos de composición química, se consideran tres los principales constituyentes de la materia orgánica polimérica compleja: carbohidratos, proteínas y lípidos (Pavlostathis y Giraldo-Gómez, 1991).

Ciertas enzimas hidrolíticas extracelulares, que son capaces de iniciar la degradación de estos sustratos complejos, pueden producirse dentro de los biorreactores anaerobios por el gremio de bacterias hidrolíticas. Estas enzimas pueden ser proteasas, lipasas, celulasas, pectinasas, amilasas, quitinasas, etc., y su composición y actividad relativa reflejará la prevalencia de sus sustratos respectivos provenientes de la alimentación del digestor. Siendo enzimas extracelulares, son capaces de alcanzar moléculas grandes de sustrato que no pueden acceder a la célula a través de la membrana celular debido a su tamaño (Mara y Horan, 2003).

El resultado de la hidrólisis de materia orgánica compleja son compuestos orgánicos solubles sencillos, tales como ácidos grasos de cadena corta, glicerol, péptidos, aminoácidos, oligosacáridos y azúcares (Mara y Horan, 2003). Se ha afirmado que la hidrólisis es el paso limitante cuando los residuos que se pretenden tratar contienen grandes cantidades de materia insoluble (Boone, 1982; Eastman y Ferguson, 1981).

2.3.2.2 Biodegradación y oxidación anaerobia

Los monómeros producidos por las bacterias hidrolíticas durante la primera etapa del proceso de digestión son degradados produciendo varios productos intermediarios, particularmente acetato, propionato, butirato e hidrógeno. Cada ácido contiene un grupo carboxilo el cual fue introducido a su estructura durante la biodegradación y por lo tanto, los microorganismos responsables de su formación se denominan bacterias formadoras de ácido. Como se mencionó anteriormente este grupo se conforma por las acidógenas y acetógenas (Mara y Horan, 2003).

Las bacterias acidógenas se encargan de metabolizar aminoácidos y azúcares a productos intermediarios, acetato, hidrógeno y dióxido de carbono. Por otro lado, las bacterias acetógenas tienen como objetivo principal la producción de acetato, dióxido de carbono e hidrógeno, ya que éstos son los únicos sustratos que pueden ser metabolizados por las bacterias metanógenas en la etapa final de la degradación anaerobia. Se pueden distinguir dos grupos diferentes de acetógenas con base en su metabolismo (Mara y Horan, 2003).

El primer grupo, las bacterias productoras obligadas de hidrógeno (obligate hydrogen producing acetogens, OHPA), producen ácido acético, dióxido de carbono e hidrógeno a partir de los principales ácidos grasos intermediarios (propionato y butirato), alcoholes y otros ácidos grasos de cadena larga. Las especies de OHPA son particularmente importantes en la β -oxidación de ácidos grasos de cadena larga originados de la hidrólisis de los lípidos y están, además, involucradas en la degradación de compuestos aromáticos (Mara y Horan, 2003). El cambio de energía libre asociado con la oxidación de ácidos grasos y producción de hidrógeno, requiere bajas concentraciones de hidrógeno en el sistema, con una presión parcial del H₂<10⁻⁴ atm, para que la reacción se lleve a cabo (McCarty y Smith, 1986).

Este hecho conduce a una relación sintrófica entre las bacterias metanógenas y las OHPA. Debido a que las metanógenas son capaces de mantener una baja presión parcial de H₂, el equilibrio de las reacciones de fermentación se mantiene hacia la formación de productos finales de oxidación. Si el proceso se altera y los organismos metanógenos no utilizan lo suficientemente rápido el hidrógeno producido, la fermentación del propionato y butirato disminuirá y habrá una acumulación de ácidos grasos volátiles en el reactor anaerobio y posiblemente una reducción del pH (Metcalf & Eddy,
2003). Específicamente, las bacterias metanógenas se ven inhibidas por ácidos grasos volátiles (sustrato de las OHPA) y las OHPA se inhiben por hidrógeno (sustrato de las metanógenas); cualquier aumento significativo en el nivel de cualquiera de estos sustratos conducirá eventualmente a la inhibición de ambos grupos de bacterias (Mara y Horan, 2003).

El segundo grupo de bacterias acetógenas son las homoacetógenas, las cuales son microorganismos anaerobios estrictos que catalizan la formación de acetato a partir de hidrógeno y dióxido de carbono. Estas bacterias también tienen relaciones sintróficas debido a que participan en la transferencia ínterespecies de hidrógeno, proceso mediante el cual se mantienen las concentraciones bajas de hidrógeno requeridas por las OHPA. Sin embargo, su relevancia en este punto, en comparación con las metanógenas, aún no está clara debido a que el número de bacterias homoacetógenas en los reactores anaerobios es considerablemente menor que el de las metanógenas, sugiriendo un rol de menor importancia en este asunto.

Así, con las reacciones de biodegradación y oxidación anaerobia que se llevan en esta etapa, es como los productos finales, dióxido de carbono, hidrógeno y acetato, se convierten en los precursores de la formación del metano (Metcalf & Eddy, 2003).

2.3.2.3 Metanogénesis

La metanogénesis se lleva a cabo por un grupo de organismos conocidos como metanógenas. Son los organismos clave en la producción de metano y sin ellas la degradación completa de la materia orgánica no se llevaría a cabo. La metanogénesis es considerada como la etapa más lenta del proceso de degradación anaerobia (Mara y Horan, 2003).

Por otro lado, las bacterias que intervienen en esta etapa prefieren rangos neutros de pH, con un rango óptimo aceptado de aproximadamente 6.5 a 8.2 de pH. Son muy sensibles a las condiciones del ambiente cuando en éste no existen las condiciones necesarias para que se produzca un efecto amortiguador ante la acidificación causada por las bacterias acidógenas y acetógenas. Condiciones por debajo o arriba del intervalo de pH establecido reflejan un decremento abrupto de la tasa de producción de metano (Speece, 1996).

En la producción de metano están involucrados dos grupos de bacterias metanógenas diferenciadas por la especificidad de su sustrato. Un grupo, conocido como metanógenas acetoclásticas, reducen el acetato a metano y dióxido de carbono. El segundo grupo, llamado metanógenas hidrogenófilas, utilizan el hidrógeno como donador de electrones y CO₂ como aceptor de electrones para producir el metano (Metcalf & Eddy, 2003).

En la Figura 2.1, se presenta un esquema general de la degradación anaerobia de materia orgánica compleja, mostrando las etapas que se llevan a cabo, así como los productos y subproductos de cada una de ellas.

Fuente: Pavlostathis y Giraldo-Gómez (1991)

Figura 2.1. Esquema de degradación anaerobia de materia orgánica compleja

El acetato es el sustrato más importante para las metanógenas acetocásticas. En los reactores anaerobios, cerca del 65 al 70% del metano producido se obtiene por la reducción del grupo metilo del acetato (Jeris y McCarty, 1965; Mara y Horan, 2003; Metcalf & Eddy, 2003; Smith y Mah, 1966). A pesar de este hecho, son pocos los géneros de metanógenas que son capaces de utilizar el acetato como sustrato (Mara y Horan, 2003).

Las bacterias metanógenas hidrogenófilas producen una cantidad significante del metano obtenido en digestores o reactores anaerobios, alrededor del 30%. Estas bacterias reducen el dióxido de carbono, formiato, metanol y metilaminas, utilizando el hidrógeno producido en la biodegradación. Cuando utilizan sólo hidrógeno y dióxido de carbono, proliferan como organismos autótrofos quimiolitótrofos porque su energía y fuente de carbono provienen de sustancias químicas inorgánicas.

A pesar de que estas bacterias contribuyen con una cantidad significativa de producción de metano, su importancia recae en el hecho de que intervienen en la transferencia interespecies de hidrógeno. Mediante esta actividad regulan la tasa de las reacciones de producción de hidrógeno, controlando la presión parcial de éste en el sistema (Pavlostathis y Giraldo-Gómez, 1991), permitiendo así el mantenimiento de las condiciones apropiadas para que el proceso de degradación anaerobia concluya exitosamente en la formación de metano.

2.3.3 Diseño de sistemas anaerobios

2.3.3.1 Carga orgánica volumétrica

Las altas cargas orgánicas volumétricas indican que se pueden procesar mayores volúmenes de agua residual por unidad de volumen disponible en el reactor (Malina y Pohland, 1992). La posibilidad de aplicar altas cargas orgánicas es una de las ventajas más importantes de los procesos anaerobios y es una de las principales consideraciones de operación. Debido a que en un sistema anaerobio no hay limitantes en cuanto a la transferencia de oxígeno y en cuanto al espesamiento de la biomasa, con una inmovilización adecuada de la biomasa se pueden alcanzar tasas de carga mucho mayores que en los tratamientos aerobios (Speece, 1996).

La carga orgánica volumétrica puede calcularse de la siguiente manera (Malina y Pohland, 1992):

$$B_v = \frac{C_i \cdot Q}{V}$$

donde,

 B_{ν} es la carga orgánica volumétrica, kg DQO m⁻³·d⁻¹;

Cies la concentración biodegradable del agua residual sin tratar, mg DQO·L-1;

Q es la tasa de flujo del agua residual, m³·d-1;

Ves el volumen del biorreactor, m³.

La selección de B_{ν} en sí no es un parámetro que controle directamente el funcionamiento del proceso, pero es una característica conveniente para la comparación de diseños alternativos de procesos anaerobios (Malina y Pohland, 1992). Para realizar los diseños de los sistemas, en pruebas preliminares, se realiza la evaluación de las eficiencias de remoción del proceso como una función de la carga orgánica volumétrica.

El uso eficiente del volumen disponible en el reactor, como en todo proceso biológico, depende de la optimización de un número de atributos fundamentales del proceso. Los más importantes son (Malina y Pohland, 1992):

- La cinética de biodegradación de los contaminantes;
- La estequiometría del desarrollo de la biomasa;
- La concentración de biomasa en el reactor;
- Las tasas de transferencia de masa de los contaminantes o sustrato a la biomasa.

La capacidad de tratamiento de un reactor anaerobio para remover los contaminantes será maximizada cuando todos los pasos de transformación de la materia orgánica hayan sido llevados a una tasa de degradación óptima. La tasa volumétrica de remoción orgánica se maximiza asegurando que en el reactor existan altas concentraciones de biomasa activa. Algunos factores de diseño ejercen influencia en la actividad específica de la biomasa en un proceso anaerobio (Malina y Pohland, 1992).

2.3.3.2 Efectos de la temperatura

La temperatura del biorreactor es uno de los factores con mayor influencia en la actividad de la biomasa. Un intervalo óptimo de temperatura para las bacterias anaerobias es de los 30 a los 40°C. Sin embargo, las bacterias anaerobias pueden aclimatarse a temperaturas fuera de este rango. Las bacterias metanogénicas permanecen activas a temperaturas de 8 – 10°C, pero su actividad y capacidad de tratamiento se reduce a un 10 – 20% de los valores obtenidos a 35°C (Malina y Pohland, 1992).

Para descargas con altas temperaturas se puede considerar la operación anaerobia termófila a 50 – 60°C. La actividad de la biomasa en procesos termofílicos generalmente es 25-50% mayor que en los procesos mesofílicos. Hay algunos problemas que se asocian con la operación anaerobia a temperaturas elevadas, tal como rendimientos de desarrollo bacteriano bajos y alta tasa de respiración endógena. Las bacterias metanógenas termofílicas tienen un residual más alto de ácidos grasos volátiles que pueden llegar a estar en concentraciones de 1,000 mg·L⁻¹ en vez de los niveles de 100 – 500 mg·L⁻¹ observados en los sistemas mesofílicos (Malina y Pohland, 1992).

Las bacterias anaerobias son muy sensibles a los cambios de temperatura rápidos; por lo tanto, se deben minimizar durante el proceso. El diseño del sistema debe ser tal que prevenga cambios de temperatura mayores a 1°C por día (Malina y Pohland, 1992).

2.3.3.3 Efectos y control del pH y la alcalinidad

También para el pH las bacterias anaerobias exhiben actividades óptimas en intervalos específicos. Dentro del reactor, el pH debe de encontrarse dentro del intervalo de 6.5 a 8.2 para hacer posible un procesamiento anaerobio exitoso (Speece, 1996). Si el pH no se controla, la producción biológica de ácidos orgánicos y ácido carbónico tiende a incrementar naturalmente aumentando la acidez dentro del reactor (Malina y Pohland, 1992).

$$CH_{3}COOH \leftrightarrow CH_{3}COO^{-} + H^{+}$$
$$H_{2}O + CO_{2} \text{ (gas) } \leftrightarrow H_{2}CO_{3} \text{ (liq) } \leftrightarrow HCO_{3}^{-} + H^{+}$$

Para aguas residuales que no contienen suficiente alcalinidad como para tener un efecto amortiguador durante la producción de ácidos, el pH del reactor puede controlarse mediante la adición de sustancias alcalinas. Para estos casos se prefiere el uso de mezclas de cationes como Ca(OH)₂, NaOH, y KOH, con el fin de evitar altas concentraciones de metales que puedan tener potencial de toxicidad (Malina y Pohland, 1992).

La alcalinidad es uno de los principales factores que influyen en los procesos anaerobios. La alcalinidad se conforma por diferentes especies de sales de ácidos débiles, convencionalmente se expresa en equivalentes de CaCO₃ (Speece, 1996). La alcalinidad en un agua residual anaerobia está constituida por las sales de hidróxidos, carbonatos, bicarbonatos y ácidos débiles, como ácidos grasos volátiles. Comúnmente, en el pH encontrado en un digestor no existen los iones hidroxilo y carbonatos (UNAM, 1993).

La importancia de la alcalinidad recae en que ésta es una medida de la capacidad de un sistema acuático de amortiguar el pH en la presencia de ácidos adicionales (Speece, 1996). La alcalinidad debida a bicarbonatos es útil para fines de amortiguamiento de pH. La alcalinidad debida a AGV sólo es una medida indirecta de su concentración, por lo que se debe procurar mantener en valores bajos (UNAM, 1993).

La alcalinidad a pH de 5.75 representa la capacidad de amortiguamiento útil del sistema, debida a bicarbonatos, sin que se considere la capacidad amortiguadora de los ácidos grasos volátiles, medida entre valores de pH de 5.75 a 4.3. Teóricamente, a pH de 5.75 el 80% de los bicarbonatos serán titulados con una contribución de AGV menor al 20% (Jenkins *et al.*, 1992). Rojas (1988) propuso una relación alfa entre ambas alcalinidades:

$$\alpha = \frac{(Alc_{4.3} - Alc_{5.75})}{Alc_{4.3}}$$

Indicando que un sistema tendrá una excelente capacidad amortiguadora cuando esta relación se aproxime a 0.2. Para digestores o reactores anaerobios, se logra una correcta operación con valores alfa de 0.4 como máximo, representando un 60% en la capacidad amortiguadora.

2.3.3.4 Requerimientos de nutrientes

Para la biosíntesis de biomasa es necesario proveer las cantidades suficientes de macronutrientes y micronutrientes. El nitrógeno constituye aproximadamente el 12% del peso seco de la célula, el contenido de fósforo en la célula es de 1/5 a 1/7 de los requerimientos de nitrógeno. Se supone que el 10% de la DQO que se degrada en el proceso se convierte a material celular nuevo (Malina y Pohland, 1992).

La concentración de nitrógeno dentro del reactor debe oscilar entre 40 y 70 mg·L⁻¹ para prevenir la restricción del nitrógeno. Además de nitrógeno y fósforo, otras sustancias han sido identificadas como micronutrientes para las bacterias metanógenas. Estos requerimientos son mucho menores que los de los sistemas aerobios, debido a la reducida cantidad de síntesis de biomasa que se lleva a cabo en los procesos anaerobios. Los más importantes son calcio, magnesio, hierro, cobalto, níquel y sulfuros, todos requeridos en cantidades de mg·L⁻¹. Generalmente, estos están presentes en las aguas residuales; sin embargo, durante los procesos anaerobios cantidades significantes de estos metales pueden precipitar como carbonatos o sulfuros, adoptando un estado en el cual no están disponibles para las bacterias (Speece, 1996).

2.3.3.5 Compuestos tóxicos

La actividad de las bacterias anaerobias pude verse afectada por efectos tóxicos o inhibitorios de una variedad de compuestos orgánicos e inorgánicos. En algunos casos se ha observado que las bacterias anaerobias pueden ser sometidas a un proceso de aclimatación mediante el cual llegan a soportar concentraciones de sustancias que tienen un efecto potencialmente tóxico o inhibitorio (Malina y Pohland, 1992).

Se tiene particular interés en dos compuestos tóxicos, amoniaco (NH₃) y sulfuro de hidrógeno (H₂S), ya que éstos se pueden producir durante el proceso anaerobio. El nitrógeno amoniacal se forma durante la biodegradación anaerobia de compuestos orgánicos nitrogenados tales como proteínas y aminoácidos. El nitrógeno inorgánico puede existir en dos formas, el ion amonio (NH₄+) y amoniaco libre (NH₃), los cuales se relacionan con el siguiente equilibrio (Malina y Pohland, 1992):

$NH_{4^+} \leftrightarrow NH_3 + H^+ (pK_a = 9.27 \text{ a } 35^{\circ}\text{C})$

Cuando sube el pH en el reactor, la proporción de nitrógeno inorgánico presente en la forma de amoniaco libre aumentará. La inhibición de bacterias metanógenas se presenta a niveles por arriba de 1,500 mg·L⁻¹ de nitrógeno amoniacal (Malina y Pohland, 1992).

El sulfuro de hidrógeno es otro tóxico que se puede formar durante el tratamiento anaerobio de aguas residuales que contienen niveles elevados de sulfatos. Los sulfatos en sí no son inhibidores de las bacterias metanogénicas. Sin embargo, las bacterias sulfato–reductoras compiten con las bacterias metanogénicas por el material orgánico biodegradable presente en las aguas residuales. Por cada gramo de DQO consumido por las sulfato-reductoras, 1.5 g de sulfato o 0.5 g de S será reducido a H₂S (Castro-González, 2004; Malina y Pohland, 1992).

Se ha reportado la operación satisfactoria de reactores anaerobios a tasas de carga orgánica de 5 – 10 kg DQO m⁻³.d⁻¹, incluso con la presencia de concentraciones de 200 mg·L⁻¹ de sulfuro de hidrógeno. La inhibición por sulfuro es más probable que ocurra en aguas residuales que tienen bajas concentraciones de DQO y la relación DQO/ SO₄-² sea menor que 7.5. En tales situaciones, las cantidades de biogás producido pueden no ser suficientes para arrastrar el sulfuro producido del líquido. Si los niveles de sulfuro son excesivos, se puede minimizar la inhibición por (Malina y Pohland, 1992):

- Dilución del efluente;
- Adición de sales de hierro para precipitar el sulfuro de la solución;
- Oxidación biológica de sulfuros y recuperación de azufre.

2.3.3.6 Concentración de la biomasa y tiempo de retención celular

La concentración de la biomasa ejerce gran influencia en la tasa de remoción alcanzable en un proceso anaerobio, por lo que se deben asegurar las condiciones ambientales adecuadas dentro del reactor para que la actividad de la biomasa anaerobia sea óptima (Malina y Pohland, 1992). Considerando la ecuación cinética de la tasa específica de proliferación de los microorganismos (Parkin y Owen, 1986):

$$\mu = \frac{dX}{dt \cdot X} = Y \cdot \left(\frac{-dS}{dt}\right) - b$$

donde,

 μ , es la tasa de proliferación de la biomasa, d⁻¹;

 $S_{\rm r}$ es la concentración de sustrato, kg DQO.m⁻³;

Y, es el coeficiente rendimiento de la biomasa, kg SSV.kg DQO⁻¹;

b, es el coeficiente de decaimiento, d⁻¹.

Esta ecuación indica que la tasa neta de crecimiento de las bacterias es la diferencia entre el crecimiento de la biomasa nueva por la remoción del sustrato y la muerte de la biomasa existente. Adicionalmente, el tiempo de retención celular se define como el recíproco de la tasa específica de proliferación (Lawrence y McCarty., 1970).

El tiempo de retención celular (TRC), es el tiempo promedio de retención de los microorganismos en el sistema y es de gran relevancia en el tratamiento anaerobio debido a las características distintivas de las bacterias anaerobias. Esto es, para permitir la multiplicación de las bacterias anaerobias, que se caracterizan por su lento crecimiento, el TRC debe mantenerse por arriba del valor mínimo, el cuál va a estar definido por la tasa máxima de proliferación que prevalezca bajo las condiciones del sistema (Malina y Pohland., 1992).

Para maximizar la capacidad de remoción de contaminantes, el TRC se mantiene en el valor máximo posible. Las ventajas paralelas de mantener TRC altos en conjunto con concentraciones altas de biomasa, vienen dadas por la reducción del volumen requerido del reactor, así como por una capacidad elevada de efecto amortiguador para protección contra efectos de toxicidad e inhibición por cambios en la alimentación (Malina y Pohland, 1992).

Uno de los principales objetivos del diseño de procesos anaerobios es maximizar la concentración de biomasa en el reactor. Los procesos de biomasa suspendida se pueden diseñar de tal forma que la biomasa sea separada del efluente y recirculada al reactor. De esta manera, el control del TRC esta totalmente desconectado del tiempo de residencia hidráulica del proceso (Castro-González, 2004; Malina y Pohland, 1992).

Los reactores de biopelícula utilizan la estrategia de fijar la biomasa a soportes para el desarrollo de concentraciones altas de ésta, requeridas para el tratamiento eficiente de aguas residuales. El soporte consiste en un material inerte, el cual se adiciona al reactor y el proceso se opera de tal forma que las condiciones que prevalezcan en el sistema favorezcan el desarrollo de los microorganismos en la superficie del material de soporte. La adherencia física biomasa-soporte, previene la pérdida de la biomasa en el efluente; además que, de esta manera, se alcanzan valores altos de TRC y concentración de biomasa (Malina y Pohland, 1992).

2.3.4 Tipos de reactores anaerobios

Existen dos tipos generales de reactores anaerobios, sistemas de biomasa fija o sistemas de biomasa suspendida. Las aplicaciones iniciales del tratamiento anaerobio eran sistemas de biomasa suspendida desarrollados a partir del proceso de lodos activados. El éxito del sistema dependía de las propiedades de sedimentación de la biomasa en los clarificadores, que tenían potencial limitado para retener los sólidos de la biomasa. Consecuentemente el potencial de concentración máxima de biomasa en el reactor es limitado, lo que condiciona también, la tasa de carga orgánica. De esta manera se requerían reactores muy grandes debido a que con los clarificadores no era posible mantener proporciones altas de TRC/TRH (Speece, 1996).

A fin de maximizar el tiempo de retención de la biomasa anaerobia, se propusieron los sistemas de biomasa fija. Estos procesos, denominados de alta tasa, tienen la característica en común de retener la biomasa en el reactor de tal manera que el tiempo de retención de sólidos sea mucho mayor al tiempo de residencia hidráulica por lo que se consigue aumentar la eficacia del proceso (Lettinga *et al.*, 1983).

El concepto de reactores anaerobios de alta tasa se basa en tres aspectos fundamentales (Iza, 1991):

 Acumulación, dentro del reactor, de la biomasa ya sea por sedimentación o por adhesión a soportes fijos o móviles o por recirculación. Asegurando que el tiempo de retención celular sea mucho mayor que el tiempo de residencia hidráulica, estos sistemas permiten la retención de microorganismos con crecimiento lento.

- Mejor contacto entre la biomasa y el agua residual, superando problemas de difusión de sustratos de la fase líquida hacia la biopelícula o la biomasa granular.
- Se incrementa la actividad de la biomasa debido a la adaptación y proliferación.

Tomando en cuenta el aspecto de acumulación, los reactores anaerobios de alta carga, se pueden clasificar en función de la manera en la que retienen la biomasa: los que retienen la biomasa en un material de soporte y en la superficie del soporte, como el filtro anaerobio; los lechos de lodos, en los que la biomasa queda retenida por sedimentación en la parte baja del reactor en forma de gránulos o flóculos, UASB; y los que se basan en la inmovilización de la biomasa sobre la superficie de soportes móviles, como los lechos expandidos o fluidificados (Jewell *et al.*, 1981).

Las grandes concentraciones de biomasa con elevada actividad que se consiguen, permiten el funcionamiento a altas velocidades de carga orgánica con buenas eficacias de eliminación. Estos sistemas muestran dos grandes ventajas en el tratamiento de aguas residuales. La primera, tiempos de retención de sólidos inherentes mucho más altos, con tiempos de residencia hidráulica relativamente bajos. Además, el potencial de tener un flujo hidráulico similar al flujo pistón que permite la elución rápida de sustancias tóxicas (Speece, 1996).

2.3.4.1 Reactor anaerobio de flujo ascendente y lecho de lodos

Los reactores anaerobios de flujo ascendente y lecho de lodos (upflow anaerobic sludge blanket, UASB, por sus siglas en inglés), son una de las tecnologías anaerobias con mayor uso en el tratamiento de diversos tipos de efluentes (Lettinga y Hulshoff, 1991).

En los reactores UASB el agua residual es distribuida por el fondo del reactor y se desplaza en flujo ascendente a través del lecho de lodo. Los elementos críticos de diseño de los reactores UASB son el sistema de distribución del influente, separador gas-sólido y el diseño de separación del efluente (Metcalf & Eddy, 2003). La recirculación del efluente, para fluidificar el lecho, no es necesario debido al sistema de distribución del influente, que garantiza contacto suficiente entre el agua residual y el lodo (Rajeshwari *et al.*, 1999).

Una de las ventajas más relevantes del UASB son los requerimientos mínimos de inversión comparados con los filtros anaerobios o los sistemas de lecho fluidizado (Rajeshwari *et al.*, 1999). Además, el uso de los lodos granulares, con alta velocidad de sedimentación, hacen innecesario el uso de material de soporte que, en otras configuraciones, es necesario para tener una retención de biomasa apropiada. Una característica de operación distintiva de los reactores UASB es la elevada carga orgánica que se puede aplicar en estos sistemas (Speece, 1996). Entre sus desventajas se encuentran el largo periodo de arranque del sistema, así como un requerimiento elevado de inóculo granular cuando se desea acelerar este proceso (Rajeshwari *et al.*, 1999).

En los reactores UASB de lodo floculado, la presencia de materia suspendida poco o no biodegradable resulta en una caída de la actividad metanogénica debido a que los sólidos dispersos quedan atrapados en el lodo. El potencial de carga de un sistema de lodo floculento, operando a temperatura de 30°C, se encuentra en el orden de 2-8 kg DQO m⁻³ d⁻¹. El efecto negativo a la actividad metanogénica por la presencia de materia suspendida puede evitarse utilizando reactores UASB de lodo granular. Los sistemas de lodo granular, operando a temperaturas de 20 a 40°C, pueden recibir cargas en el intervalo de 4-32 kg DQO m⁻³·d⁻¹, dependiendo de las características del agua a tratar. La presencia de grasas y lípidos en el agua residual puede provocar la flotación de la biomasa, floculenta y granular (Malina y Pohland, 1992).

2.3.4.2 Reactor anaerobio de lecho expandido

El reactor anaerobio de lecho expandido (anaerobic expanded bed reactor, AEBR) es un reactor de biopelícula que requiere un soporte en el cual la biomasa se fija y desarrolla, obteniéndose altas concentraciones de ésta (Malina y Pohland, 1992).

Con este tipo de reactores se pretende mejorar la transferencia de masa utilizando partículas pequeñas como medio de soporte. Se prefiere que estas partículas tengan relaciones altas de superficie-volumen. De tal forma que, utilizando medio de soporte de diámetro pequeño, los espacios intersticiales en un lecho fijo normalmente se obstruirían rápidamente; sin embargo, aplicando altas velocidades superficiales, el medio puede ser expandido para producir un incremento sustancial en los espacios intersticiales del lecho (Malina y Pohland, 1992). Debido a que el sistema

de lecho expandido no esta totalmente fluidificado, algunos sólidos son retenidos y ocurre en cierto grado la biodegradación de éstos (Metcalf & Eddy, 2003).

El soporte empleado para la formación de la biopelícula puede ser arena, carbón activado granular, resinas de intercambio iónico y tierra diatomácea. El uso del carbón activado granular es común debido a sus propiedades de adsorción, que incrementan la concentración de la materia orgánica en la interfase, estimulando el crecimiento biológico y la asimilación (Speece, 1996).

Las cargas orgánicas que se alcanzan en este tipo de reactores suelen ser de 21 kg DQO m⁻³·d⁻¹, debido a esto, el volumen del reactor se reduce y los costos también disminuyen. Sin embargo, para lograr la expansión del medio, es necesario la recirculación del efluente, lo que se traduce en gastos de energía (Rajeshwari *et al.*, 1999). Para la operación con una expansión del lecho de 20% se requiere una velocidad de flujo ascendente de 2 m·h⁻¹ (Metcalf & Eddy, 2003).

Una innovación en reactores anaerobios expandidos es el reactor de lecho de lodos granular expandido, EGSB, por sus siglas en inglés (Speece, 1996). En este tipo de reactor no se requiere material de soporte puesto que el lodo granular se pone en contacto directo con el agua a tratar. Se aplican velocidades superficiales mayores a 6 m·h⁻¹ para que el lecho de lodos granular alcance la expansión (Malina y Pohland, 1992).

2.4 Sistemas de tratamiento acoplados anaerobio-aerobio

El desarrollo de los sistemas de tratamiento anaerobio de alta carga de una sola etapa se dio en dirección al tratamiento de aguas residuales constituidas principalmente por materia soluble y con cargas orgánicas media y baja. Su desempeño para el tratamiento de aguas residuales complejas, con residuos parcialmente solubles como los efluentes de rastros, sólo refleja un tratamiento parcial (Sayed *et al.*, 1993).

Además, los procesos de tratamiento anaerobio son solamente eficientes en la remoción de materia orgánica biodegradable y, generalmente, no remueven fosfato, amonio y sulfuros. Por esto, dependiendo de las restricciones establecidas para la descarga de efluentes, se deberá aplicar un

postratamiento adecuado para remover este tipo de compuestos y algún remanente de contaminantes orgánicos, incluyendo también sólidos suspendidos (Malina y Pohland, 1992). De esta manera, para situaciones de efluentes municipales e industriales complejos, se investigó la idea de integrar los procesos anaerobios de tratamiento con otros procesos biológicos o fisicoquímicos para poder lograr un tratamiento completo de las aguas residuales a bajos costos (Lettinga *et al.*, 1997).

En cuanto al postratamiento mediante procesos biológicos, los procesos aerobios pueden emplearse después del tratamiento anaerobio como una etapa de pulimento al efluente, utilizando así los beneficios de ambos procesos (Metcalf & Eddy, 2003). Se ha demostrado que sistemas de tratamiento con reactores anaerobio-aerobio en serie, son factibles para el tratamiento de aguas residuales municipales en climas cálidos, con bajos requerimientos energéticos y menos producción de lodos (Garuti *et al.*, 1992; Goncalves y De Avaujo, 1999). La combinación de tratamiento anaerobio-aerobio también se ha utilizado exitosamente para el tratamiento de diferentes efluentes industriales (Cruz y Buitrón, 2001; Kalyuzhnyi *et al.*, 2003; Mijaylova-Nacheva *et al.*, 2007; Núñez y Martínez, 2001; Van Lier *et al.*, 2001). Para aguas residuales de alta carga, se ha demostrado que la combinación de tratamiento anaerobio-aerobio puede ser económicamente factible (Obayashi *et al.*, 1981).

2.5 Procesos aerobios con biomasa suspendida para el tratamiento de aguas residuales

Los sistemas aerobios de biomasa suspendida comprenden agregados de microorganismos que generalmente crecen en forma de flóculos y que se encuentran en estrecho contacto con el agua residual que se está tratando. Los fóculos son responsables de la remoción de material contaminante y se conforman por un amplio rango de especies de microorganismos. La fuente de alimentación de todos estos microorganismos puede estar en forma soluble, disuelta en el agua, o como materia particulada que es primeramente solubilizada por acción microbiológica (Horan, 2003).

El tratamiento de aguas residuales en ambientes con biomasa suspendida ofrece algunas ventajas, lo cual ha conducido a la proliferación de este tipo de tratamiento. Las lagunas aireadas y los lodos

activados son ejemplos de opciones para el tratamiento de aguas residuales que se basan en la acción de microorganismos proliferando en suspensión en el agua residual bajo tratamiento (Horan, 2003).

Los sistemas aerobios aprovechan el oxígeno como el aceptor final de electrones y son capaces de llevar a cabo un gran número de reacciones importantes que utilizan diferentes donadores de electrones. De estas reacciones las principales son: oxidación de la materia orgánica, la cual disminuye los valores de DBO; oxidación de amonio a nitrato, la cual disminuye la concentración de amonio; y la asimilación del fosfato con la síntesis de polifosfato, con lo que se disminuyen las concentraciones de fosfato en el efluente (Horan, 2003).

Se encuentran disponibles una gran variedad de opciones para lograr las condiciones aerobias en el agua residual. La carga del agua residual a tratar indica la cantidad de oxígeno que debe de ser introducida al reactor. Como guía se considera que para cada mg de DBO que se quiere remover se deben introducir 1.2 mg de O₂ y 4.8 mg de O₂ por cada mg de amoniaco a remover (Horan, 2003). Debido a esto, el uso de tratamientos aerobios para efluentes de alta carga orgánica debe considerarse y tomar en cuenta los costos para lograr los requerimientos de oxigenación para un tratamiento exitoso.

2.5.1.1 Lodos activados

El proceso de lodos activados (LA) forma parte de los procesos biológicos de tratamiento de agua que se caracterizan por tener la biomasa en suspensión. El principio básico del proceso de LA consiste en que las aguas residuales se pongan en contacto con una población microbiana mixta, en forma de suspensión floculenta en un sistema aireado y agitado (Winkler, 1994).

Los procesos aerobios utilizan el oxígeno como aceptor de electrones, en las reacciones, los microorganismos metabolizan los contaminantes orgánicos y utilizan la energía obtenida para el mantenimiento y replicación de nuevas células. La biomasa incrementa en proporción a la energía disponible del metabolismo de los contaminantes orgánicos. La biomasa debe concentrarse dentro del reactor para maximizar la remoción de los contaminantes orgánicos y aumentar la estabilidad del

proceso. Los procesos aerobios tienen la peculiaridad, por los procesos energéticos de los mismos, de que la producción de biomasa puede ser hasta 10 veces mayor que en los tratamientos anaerobios (Speece, 1996).

Debido a que los sistemas aerobios, como los lodos activados, son capaces de llevar a cabo un gran número de reacciones importantes utilizando diferentes donadores de electrones (Horan, 2003), pueden utilizarse en serie después de un reactor anaerobio para reducir los contaminantes que estos no pueden remover, generalmente fosfato, amonio y sulfuros (Malina y Pohland, 1992). De esta manera se aprovecha la capacidad de los reactores anaerobios para tratar efluentes de alta carga orgánica, sin producción excesiva de lodos, y las eficiencias de remoción del tratamiento aerobio de lodos activados como pulimento del efluente (Obayashi *et al.*, 1981).

Los inicios de esta tecnología datan de los años 1880 con el trabajo del Dr. Angus Smith, quién investigó la aireación de aguas residuales en tanques y la aceleración de la oxidación de la materia orgánica (Metcalf & Eddy, 2003). A partir de entonces, la tecnología del proceso de LA ha evolucionado e incluso ha sido adaptada a diferentes configuraciones y reactores. También se han estudiado los principales factores que intervienen en el diseño y en la eficiencia del proceso (Metcalf & Eddy, 2003):

- Temperatura;
- Oxígeno disuelto;
- Alcalinidad;
- Carga orgánica;
- Relación F/M (F feed, en inglés, M microorganismos; relación alimentación como DBO o DQO y microorganismos como sólidos suspendidos volátiles, SSV);
- Tiempos de residencia hidráulica;
- Tiempo de retención celular;
- Nutrientes y macronutrientes;
- Sedimentación de los lodos.

3 METODOLOGÍA

3.1 Caracterización del agua residual de rastro

El agua residual modelo para la investigación es el agua residual proveniente del Rastro Municipal de Cuernavaca. Se conoce de la literatura que la composición del agua residual de rastros, como la de cualquier otra industria, es muy variable. Esto se debe particularmente a que los procesos y prácticas que se llevan a cabo para el sacrificio de los animales pueden ser diferentes de un establecimiento a otro; además, otro factor importante de variación en la composición del efluente es el número de animales sacrificados por día.

Por estas razones es importante conocer los componentes del agua antes de aplicar el tratamiento. Con una caracterización inicial completa del agua será posible identificar contaminantes que pudieran causar problemas al funcionamiento del proceso.

Los parámetros principales a analizados fueron: Demanda química de oxígeno (DQO), demanda bioquímica de oxígeno (DBO₅), grasas y aceites, sólidos suspendidos totales (SST), sólidos suspendidos volátiles (SSV), alcalinidad, nitrógeno amoniacal (N-NH₄), nitrógeno total (NT), fósforo total (PT), sulfuros (S⁻²) y sulfatos (SO₄-²), sólidos disueltos totales (SDT), sólidos disueltos volátiles (SDV), coliformes fecales y totales, calcio (Ca), hierro (Fe), magnesio (Mg), manganeso (Mn), potasio (K), sodio (Na).

Los parámetros DQO, SST, SSV, alcalinidad, N-NH₄, NT y fósforo total, así como los parámetros de campo, se determinaron en el agua residual cada vez que se realizó el transporte de la cantidad de agua requerida para los experimentos desde el rastro hasta el laboratorio.

3.2 Configuración de los sistemas experimentales

Para el desarrollo del proyecto se contó con dos sistemas experimentales anaerobio-aerobio acoplados: UASB-LA y AEBR-LA, los cuales se muestran en las Figuras 3.1 y 3.2.

Sistema 1. UASB-LA

Se conformó de la siguiente manera:

- Tanque de alimentación;
- Bomba de alimentación;
- Reactor anaerobio de flujo ascendente y lecho de lodos (UASB);
- Tanque de transferencia;
- Reactor de lodos activados.

El sistema no contó con equipo de calentamiento de agua para ninguno de los reactores implementados.

Figura 3.1. Diagrama esquemático del sistema anaerobio aerobio acoplado, UASB-LA

Sistema 2. Reactor anaerobio de lecho expandido y lodos activados

El sistema consistió en:

- Tanque de alimentación;
- Bomba de alimentación;
- Reactor anaerobio de lecho expandido (AEBR);
- Sedimentador (1L);
- Bomba de recirculación;
- Sistema de calentamiento de agua para el reactor anaerobio;
- Bomba del sistema de calentamiento para el reactor anaerobio;
- Tanque de transferencia;
- Reactor de lodos activados.

Figura 3.2. Diagrama esquemático del sistema anaerobio aerobio acoplados, AEBR-LA

La alimentación de ambos sistemas provenía del mismo tanque. El tanque de alimentación consistió en un tanque plástico, conocido en México como ROTOPLÁS, de 250 L, el cual se cargó regularmente (de cada 4 a 10 días dependiendo del flujo de alimentación a los sistemas) con agua residual del Rastro Municipal de Cuernavaca. Para cargar el agua residual de rastro al tanque de alimentación, se colocó una malla 0.5 cm de apertura, con la finalidad de retener cualquier sólido

grueso que se encontrara aún en el agua residual de rastro, esta actividad se muestra en la Figura 3.3.

Figura 3.3. Fotografía de sólidos retenidos del agua de rastro cargada al tanque de alimentación

El tanque de transferencia de cada reactor consistió en un recipiente con volumen de 2L, al cual se le adaptó una válvula para permitir la salida constante del exceso de agua que no fue alimentada al reactor aerobio correspondiente. Esta válvula se colocó a una altura tal que permitiera la acumulación de sólo un litro de agua dentro del tanque de transferencia. Así, el tiempo de residencia hidráulica (TRH) en el tanque de transferencia se consideró que no afectaba las concentraciones de contaminantes en el agua; sin embargo, en el caso de la temperatura del efluente del reactor AEBR se presentaron cambios, éstos se discutirán más adelante

3.2.1 Reactor UASB

El reactor UASB que se utilizó en este proyecto se muestra en la Figura 3.4, fue elaborado de acrílico, con diámetro de 15 cm y altura total de 1.5 m. La salida del efluente se encuentra a una altura de 1 m, el lecho de lodo granular alcanza 0.80 m. En la Tabla 3.1 se detalla el volumen del reactor UASB.

Volumen	L
Volumen útil	15
Volumen total	17.7

Tabla 3.1. Volumen del reactor UASB

El agua del tanque de alimentación se bombeaba al reactor mediante una bomba peristáltica Masterflex Cole-Parmer Modelo 7553-70 de 6-600rpm y un controlador de velocidad de la misma marca. El agua se introducía al reactor por la parte inferior a temperatura ambiente y entraba en contacto con el lecho de lodo granular. El reactor contaba con un separador gas-sólido de acrílico tipo campana, el efluente tratado se obtenía mediante una salida lateral a 1 m de altura de la base del reactor.

Figura 3.4. Esquema del reactor UASB

3.2.2 Reactor AEBR

El reactor AEBR fue construido para estudios previos. Se presenta en la Figura 3.5; es de flujo ascendente y tiene un sistema de calentamiento para mantener la temperatura en el intervalo deseado. El reactor fue elaborado en acrílico, con una altura de 180 cm y 10.2 cm de diámetro. Para la construcción del reactor con la chaqueta se utilizaron dos tubos de acrílico concéntricos de medidas comerciales. Cuenta con un sedimentador de acrílico de 1L.

El reactor AEBR se divide en tres partes:

- Parte inferior de la columna: Consiste en un cilindro de acrílico de 22 cm de altura y de 10.2 cm de diámetro, el cual en la parte superior cuenta con una placa perforada de acrílico con perforaciones de 1mm de diámetro, la cual sirve para que la alimentación entre al reactor de forma uniforme y para sostener el material de soporte. En la parte inferior cuenta con una válvula de purga. A 11cm de la base se encuentran, en sentido opuesto, las entradas del influente y de la recirculación. El influente se bombea del tanque de alimentación mediante una bomba peristáltica Masterflex Cole-Parmer Modelo 7554-80 de 6-600rpm, el caudal de recirculación se bombea también mediante una bomba peristáltica de la misma marca Modelo 7520-00 de 6-600 rpm. En esta parte del reactor existe una zona de mezclado del influente con el caudal de recirculación.
- Zona de biodegradación: Consiste de dos tubos de acrílico concéntricos de 10.2 cm y de 15.2 cm de diámetro, respectivamente. El agua residual se alimenta por la parte interna del tubo de menor diámetro, donde se encuentra el material de soporte y la biomasa. El espacio que hay entre la parte exterior del tubo de menor diámetro y la pared del tubo de diámetro mayor tiene la función de chaqueta, para mantener la temperatura del reactor en 30 ±1.5°C. El agua caliente se bombea a partir del sistema de calentamiento mediante una bomba peristáltica, Masterflex Cole-Parmer Modelo 7553-20 de 6-600rpm, a la parte inferior de la chaqueta y sale por la parte superior transfiriendo calor al reactor.
- Parte superior de la columna: Esta zona tiene una altura de 30 cm, en la base de esta sección se encuentra pegada una malla que impide el arrastre de las partículas del lecho expandido con el efluente. La salida del efluente del reactor se localiza a 13 cm de base de esta sección. La parte superior tiene una tapa de acrílico, la cual está perforada en el centro y en la que se sitúa una válvula para la salida de biogás.

En la Tabla 3.2 se especifica el volumen del reactor AEBR.

Tabla 3.2. Volumen del reactor AEBR					
Volumen	L				
Volumen útil	8				
Volumen total	14				

Figura 3.5. Esquema del reactor AEBR

3.2.3 Reactor de lodos activados

Respecto al reactor de lodos activados, en ambos sistemas se emplearon reactores tipo Eckenfelder elaborados de acrílico. Los reactores LA se denominaron LA_{AEBR} para el correspondiente al sistema AEBR-LA, y LA_{UASB} para el sistema UASB-LA. El volumen de trabajo de los reactores fue de 16 y 18 L, respectivamente. La diferencia entre el volumen de trabajo de los reactores se debió a una diferencia mínima en las dimensiones de estos. Los reactores cuentan con una zona de sedimentación de 4 litros de volumen, el control de la concentración de SSVLM se lleva a cabo mediante una mampara movible. En la Figura 3.6 se muestra de manera esquemática a los reactores de lodos activados utilizados en este proyecto.

Figura 3.6. Esquema general de un reactor de lodos activados

Para satisfacer los requerimientos de aireación, cada reactor contaba con difusores de aire de porcelana porosa. Durante toda la operación, se mantuvo una concentración de oxígeno disuelto >2mg·L⁻¹ en los dos reactores.

3.3 Operación y control del sistema experimental

El desarrollo de este proyecto se planteó en dos etapas, primero el arranque y estabilización de los sistemas biológicos; posteriormente, la operación y control de los sistemas experimentales de tratamiento de agua residual proveniente de rastros.

El proyecto planteó también la evaluación de las alternativas de tratamiento anaerobio, para lo cual se implementaron dos configuraciones de reactores anaerobios, UASB y AEBR. La evaluación se basó en eficiencias de remoción de DQO. También se tomó en cuenta la determinación de la cantidad de biogás generado en los reactores anaerobios.

3.3.1 Arranque de los sistemas

3.3.1.1 Inoculación y empacado de los reactores

Reactores anaerobios

El lodo granular que se utilizó en el reactor UASB provenía de UNIPAC, industria que se dedica al reciclaje de papel para producción de cartón. El lodo granular fue empleado anteriormente para el desarrollo de un estudio de tratabilidad de aguas residuales provenientes de un ingenio azucarero. La altura del lecho de lodos fue de 80 cm. Se caracterizó el lodo granular con el cual se empacó el reactor y se sometió a aclimatación al sustrato presente en el agua residual del rastro.

El reactor AEBR contaba con una cantidad de carbón activado granular (CAG) que ocupaba 3.5 L del volumen del reactor. Para realizar esta investigación se añadió una cantidad de CAG mineral nuevo (2.5 L de volumen) y se obtuvo un total de 6 L de medio de soporte. El CAG mineral nuevo se tamizó para obtener solamente la fracción mayor a 1.7 mm. El CAG adicionado fue del mismo tipo del que ya había en el reactor, esto es, carbón activado granular mineral de lignita CLARIMEX, CAGR 8x30. Las características del carbón activado utilizado se presentan en la Tabla 3.3.

Características	CLARIMEX CAGR 8 x 30
Densidad aparente, kg·L-1	0.37-0.40
Peso específico real, kg·L-1	1.4
Área superficial, m²·g-1	650
Diámetro del poro, Å (μm)	56 (0.0056)

Tabla 3.3. Características del material del carbón activado granular

Las características del carbón activado granular hacen que éste proporcione un área considerable para el desarrollo de las bacterias en su superficie y poros. (Malina y Pohland, 1992). Antes de adicionar al reactor el volumen de CAG nuevo, éste se sometió a varios lavados con agua potable para remover las impurezas, enjuagando finalmente con agua desionizada. Después de los lavados el CAG se dispuso en un recipiente al cual se adicionó agua residual de rastro con el objetivo de iniciar el crecimiento de la biomasa en la superficie del material. Luego se mezcló con el CAG anterior y con la mezcla se empacó el reactor. Se determinó la cantidad de biomasa adherida al CAG empleando la técnica que se describe en el Anexo B.

Reactores aerobios

Para el arranque del los reactores de lodos activados se utilizó un volumen de 16 y 18L de licor mezclado proveniente del tanque de aireación de la planta de tratamiento de aguas residuales del IMTA. Se determinó la cantidad de SST y SSV del licor mezclado. Se realizaron también pruebas de sedimentación y se determinó la tasa de respiración.

3.3.1.2 Aclimatación de la biomasa

El arranque de los sistemas tiene como objetivo lograr la aclimatación de la biomasa de los reactores al agua residual de rastro y alcanzar el correcto funcionamiento hidráulico de los reactores.

Reactores anaerobios

Debido a que el lodo granular fue utilizado previamente para tratamiento de aguas residuales provenientes de un ingenio azucarero, fue necesario un periodo de aclimatación de la biomasa a la nueva agua residual. Esta aclimatación se llevó a cabo con carga orgánica baja, ya que para el arrangue de reactores UASB se recomienda un intervalo de 1 a 2 kg DQO·m⁻³·d⁻¹ (UNAM, 1993).

En el caso del reactor AEBR, el carbón activado granular cuenta con biomasa inactiva, porque el sistema había sido empleado anteriormente para el tratamiento de agua del proceso de la destilación de alcohol etílico de una industria productora de ron y posteriormente para el tratamiento de las aguas residuales de un ingenio azucarero. Además, para esta investigación, se adicionó una cantidad nueva de carbón. Debido a lo anterior, este sistema necesitaba también de una fase inicial para el desarrollo y aclimatación al agua a tratar. En general, para el arranque de reactores anaerobios se recomienda una carga orgánica volumétrica de 3 kg DQO·m⁻³·d⁻¹, (UNAM, 1993).

Para llevar a cabo la estrategia de activación y aclimatación de la biomasa anaerobia a las altas cargas orgánicas del agua residual de rastro, se optó por iniciar el proceso mezclando el agua residual de rastro con agua residual proveniente de las instalaciones del Instituto Mexicano de Tecnología del Agua, IMTA. El agua residual del IMTA se considera agua residual de baja carga y se caracteriza por tener, en promedio, una DQO de 200 mg·L⁻¹.

Como tanque de alimentación de ambos reactores se dispuso de un tanque plástico, conocido en México como ROTOPLÁS, de 250 L, en este tanque se realizó la mezcla agua residual de rastro – agua residual del IMTA. La estrategia de aclimatación consideró el manejo de tres porcentajes diferentes del agua de rastro en la mezcla antes de llegar a la alimentación al 100%. De esta manera se manejaron las siguientes proporciones agua residual rastro/agua residual IMTA: 30/70, 50/50 y 70/30. Correspondieron a cada una de estos porcentajes cargas orgánicas volumétricas diferentes, para el AEBR 1.8, 2.5 y 2.8 kg DQO·m⁻³·d⁻¹ y para el UASB 2.0, 2.6 y 2.9 kg DQO·m⁻³·d⁻¹. El incremento en el porcentaje de agua de rastro, dependió de la respuesta del sistema. Se fijó como base para éste, la obtención de un 80% de remoción de materia orgánica, así como la producción de biogás.

Reactores aerobios

La biomasa aerobia también requiere un periodo de aclimatación, especialmente cuando se pretende dar tratamiento a agua residual industrial. El origen de la biomasa, la temperatura y la edad del lodo, determinan el tiempo requerido para la aclimatación. Los periodos típicos de aclimatación reportados son desde varios días hasta 5 o 6 semanas (Eckenfelder, 1992).

En el caso de los reactores de lodos activados empleados en este proyecto, la biomasa con la que se inocularon proviene del tanque de aireación de la planta de tratamiento de agua residual del IMTA, esta planta trata agua residual con concentraciones bajas de materia orgánica, \cong 200 mg·L⁻¹, por lo que fue necesario un periodo de adaptación. Se consideró un periodo de aclimatación de la biomasa de 30 días.

La operación de los reactores de lodos activados se llevó a cabo con base en la relación F/M. Los valores reportados en la literatura para DBO/M varían de 0.04 g de sustrato·g de biomasa⁻¹·d⁻¹, para procesos de aireación extendida, a 1.0 g de sustrato·g de biomasa⁻¹·d⁻¹ para procesos de alta carga (Metcalf & Eddy, 2003). Para este proyecto la relación F/M fue de 0.34 g DQO·g SSVLM⁻¹·d⁻¹.

3.3.2 Evaluación del desempeño de los sistemas

Para evaluar el desempeño de los reactores en el tratamiento del agua residual de rastros se dio seguimiento a las características del influente y efluente de los reactores. Para esto, se realizaron muestreos periódicos. Los puntos de muestreo fueron 5, como de indican en la Figura 3.7: Influente a los reactores anaerobios (1), lecho de lodos y lecho expandido de los reactores anaerobios (2), efluente de los reactores anaerobios (3), licor mezclado de los reactores aerobios (4), efluente de los reactores aerobios (5). Como se mencionó anteriormente, se consideró que el TRH en el tanque de transferencia sólo afecta a la temperatura del efluente de los reactores anaerobios. En el caso de la concentración de materia orgánica el efecto se consideró despreciable debido a que el TRH en el tanque de transferencia sería mucho menor en comparación al TRH del reactor anaerobio.

Los parámetros evaluados son relevantes para el control de este tipo de procesos y son útiles al momento de evaluar los sistemas. Los métodos mediante los cuales se realizaron los análisis físico-

químicos se mencionan en el Anexo A. Los parámetros a determinar en cada punto de muestreo se indican en la Tabla 3.4.

Figura 3.7. Sistema acoplado anaerobio-aerobio. Puntos de muestreo

Darámetro	Punto de muestreo					
T arametro	Frecuencia	1	2	3	4	5
DQO, mg·L ⁻¹	2/semana	Х		Х		Х
SST, mg·L ⁻¹	2/semana	Х		Х		Х
SSV, mg⋅L ⁻¹	2/semana	Х		Х		Х
SST, mg·L⁻¹	2/semana				Х	
SSV, mg·L ⁻¹	2/semana				Х	
NT, mg·L ^{.1}	2/semana	Х		Х		Х
N-NH4, mg·L ⁻¹	2/semana	Х		Х		Х
Alcalinidad, mg de CaCO ₃ ·L ⁻¹	Diario	Х		Х		
Sulfuros, mg·L ⁻¹	1/mes	Х		Х		Х
рН	Diario	Х		Х		Х
T, °C	Diario	Х		Х	Х	
OD, mg·L ⁻¹	Diario				Х	
Conductividad, mS·cm-1	Diario	Х		Х		Х

Tabla 3.4. Parametros a determinar y punto de muestreo correspondiente
--

Se realizaron también las siguientes actividades para el seguimiento de los reactores anaerobios:

- Determinación de la actividad metanogénica (AME), la metodología seguida se presenta en el Anexo A;
- Cuantificación del biogás por el método de desplazamiento de líquido y estimación de la producción teórica de acuerdo a los niveles típicos de producción reportados en reactores anaerobios, 0.5 m³ de biogás·kg DQO removida⁻¹ (Malina y Pohland, 1992);
- Ácidos grasos volátiles, todos los días de operación, la metodología seguida se presenta en el Anexo A.

En el caso de los reactores aerobios, se determinó el TRC mediante la fórmula:

$$\theta_c = \frac{V X}{Q_{lr} X_{lr} + Q X e}$$

donde,

V, volumen del reactor, m³;

X, concentración de los SSV en el licor mezclado, mg·L-1;

Q_{Ir}, caudal del lodo residual

 X_{lr} , concentración de los SSV en el lodo residual, mg·L-1;

Q, caudal del agua (influente o efluente del sistema biológico);

X_e, concentración de los SSV en el efluente del sedimentador, mg·L-1.

Además, se determinó la tasa de consumo de oxígeno y el índice volumétrico de lodos siguiendo la metodología descrita en el libro *Standard Methods for the Examination of Water and Wastewater* (APHA, 1998).

3.3.3 Operación de los sistemas

Reactores anaerobios

La operación de los reactores anaerobios se realizó con base en la carga orgánica volumétrica (COV). De acuerdo con la literatura, para establecer la carga orgánica volumétrica se debe de tomar en cuenta la concentración de materia orgánica del agua a tratar y la fracción insoluble de DQO.

Núñez y Martínez (1999) reportan que el contenido de DQO del agua residual de rastros varía en el intervalo de 1,440-4,200 mg DQO·L⁻¹, y la fracción soluble de esta se encuentra en el intervalo de 40%. Para concentraciones de DQO en el intervalo de 2,000-6,000 mg DQO·L⁻¹ y fracción insoluble de DQO de 30% a 60% se recomiendan cargas orgánicas de 3-18 kg DQO·m⁻³·d⁻¹, para temperaturas de 30°C (Lettinga y Hulshoff Pol, 1991).

Los reactores AEBR pueden adecuarse a tasas de carga orgánica mayores que los UASB, siendo capaces de alcanzar cargas orgánicas de 21 kg DQO·m⁻³·d⁻¹ (Malina y Pohland, 1992), incluso se reportan intervalos de cargas de 1-50 kg DQO·m⁻³·d⁻¹ (Rajeshwari *et al.*, 1999). Para este estudio, en cada sistema se aplicó la misma carga orgánica de 4 kg DQO·m⁻³·d⁻¹.

El control de la carga orgánica volumétrica se llevó a cabo mediante variaciones del flujo de alimentación dependiendo de la concentración de DQO en el influente.

Reactores aerobios

Los reactores aerobios se operaron con base en la relación F/M, esta se mantuvo alrededor de 0.34 mg DQO·mg SSV⁻¹, el control de la relación se llevó a cabo manteniendo la concentración de SSV en la biomasa, coloquialmente conocida como licor mezclado (LM), necesaria para alcanzar la relación F/M establecida. La concentración de SSV fue controlada mediante purgas.

3.4 Análisis estadísticos

Para la prueba referente a la diferencia entre dos medias se utilizó la prueba de t.

$$t = \frac{\overline{x}_1 - \overline{x}_2 - \partial}{\sqrt{\frac{(n_1 - 1)s_1^2 + (n_2 - 1)s_2^2}{n_1 + n_2 - 2} \cdot \left(\frac{1}{n_1} + \frac{1}{n_2}\right)}}$$

donde:

 \overline{x}_1 es la media de la muestra 1;

 \overline{x}_2 es la media de la muestra 2;

∂ toma un valor de 0 cuando la hipótesis nula establece que no hay diferencia entre las medias;

 s_{1^2} es la varianza de la muestra 1;

 s_2^2 es la varianza de la muestra 2;

*n*₁ es el tamaño de la muestra 1;

*n*₂ es el tamaño de la muestra 2;

4 RESULTADOS Y DISCUSIÓN

4.1 Caracterización del agua residual de rastro

La composición del agua residual de rastros es muy variable de un establecimiento a otro, dependen del tipo de animal sacrificado, los métodos de sacrificio, del tipo de equipo utilizado, del producto y de la utilización de subproductos, así como de las prácticas locales y costumbres. Por estas razones es importante conocer los componentes del agua antes de aplicar el tratamiento. Para dar inicio a este proyecto, se llevó a cabo un muestreo de las aguas residuales provenientes del Rastro Municipal de Cuernavaca, se evaluaron parámetros fisicoquímicos, de absorción atómica, y microbiológicos. Los resultados de la caracterización inicial completa se presentan en la Tabla 4.1.

A partir de esta caracterización general del agua residual del Rastro Municipal de Cuernavaca se puede evaluar la factibilidad de los procesos anaerobios para este tipo de agua. En cuanto a compuestos inorgánicos inhibitorios, Na, K, Ca, Mg, N-NH₄ y sulfuros, los niveles reportados en la caracterización están muy por debajo de los que se reportan en la literatura (Malina y Pohland, 1992) como moderadamente inhibitorios.

En cuanto a materia orgánica, la relación DBO₅/DQO totales de 0.76 indica que el agua de rastro es fácilmente biodegradable; sin embargo, si se comparan estos parámetros en forma soluble, DBO₅ _{SOL}/ DQO _{SOL}, la relación es 0.45. Este valor es aún un buen indicativo de la biodegradabilidad del agua. Considerando sólo la materia biodegradable tenemos que, DBO₅ _{SOL}/DBO₅ nos da un valor de 0.45, este valor es indicativo de la presencia de gran cantidad de materia orgánica biodegradable en suspensión. Dicha cuestión se observa analizando las determinaciones de sólidos en el agua residual del rastro, el 94% de los SST son SSV, es decir materia orgánica biodegradable.

Tabla 4.1. Caracterización inicial general del agua residual del Rastro Municipal de Cuernavaca tomada de una fosa de sedimentación

Parámetro	Valor	Parámetro	Valor
Acidez, mg CaCO ₃ ·L ⁻¹	178	N - NO ₃ , mg·L ⁻¹	2.08
Alcalinidad total, mg CaCO ₃ ·L ⁻¹	658	N - orgánico, mg·L ^{.1}	87
Bicarbonatos, mg·L ⁻¹	803	N - NH ₃ , mg·L ⁻¹	131
Carbonatos, mg·L ⁻¹	0	NTK, mg·L ⁻¹	218
Cloruros, mg·L-1	342	SDT, mg·L-1	1,072
Fenoles, mg·L ⁻¹	0.183	SDV, mg·L ⁻¹	265
Color, UPt-Co	5,000	SST, mg·L ⁻¹	910
Color aparente, UPt-Co	1,000	SSV, mg·L ⁻¹	853
рН	6.76	Turbiedad unt	430
DBO ₅ , mg·L ⁻¹	1,820	SAAM*, mg·L ⁻¹	0.538
DBO _{5Sol} , mg·L ⁻¹	809	Colif. Fecales, NMP·100mL ⁻¹	1.50E+06
DQO, mg·L ⁻¹	2,364	Colif. Totales, NMP·100mL-1	1.50E+07
DQO _{sol} , mg·L ⁻¹	1,781	Enterococos fec., NMP-100mL-1	6.66E+05
Fluoruros, mg·L-1	1.47	Ca, mg·L ⁻¹	37.09
Grasas y aceites, G y A, mg·L ⁻¹	83.3	Fe, mg·L ^{.1}	2.55
Fosfatos, mg·L-1	50.76	Mg, mg·L-1	13.11
P-(hidrolizable), mg·L ^{.1}	2.99	Mn, mg·L ⁻¹	1.34E-01
P-orgánico, mg·L-1	13.6	K, mg·L ^{.1}	2.64E+01
P-orto, mg·L ⁻¹	6.14	Na, mg·L ^{.1}	2.46E+02
P-total, mg·L ⁻¹	16.59	Sulfatos, mg·L-1	61.8
N (NO ₂ + NO ₃), mg·L ⁻¹	2.13	Sulfuros, mg·L ⁻¹	56.8
N - NO ₂ , mg·L ⁻¹	0.054		

* Sustancias activas al azul de metileno (detergentes)

En cuanto a requerimientos de nutrientes, el agua cuenta con niveles, tanto de N como de P, adecuados para satisfacer las necesidades de las bacterias. Es de notar que el contenido de grasas y aceites reportado en esta caracterización (83.3 mg·L⁻¹) es bajo comparado con los valores reportados en la literatura como típicos para este tipo de agua, > 150 mg·L⁻¹ (COFEPRIS, 2006; COWI, 2001; EPA, 2002).

El pH de la descarga de agua residual del rastro se encuentra dentro del intervalo recomendado para la operación de procesos anaerobios, por lo que no presenta problemas. En cuanto al contenido de alcalinidad, Nuñez y Martínez (2001) reportaron un buen funcionamiento de un reactor anaerobio tratando agua residual de rastro con una alcalinidad mínima de 470 mg CaCO₃·L⁻¹. El contenido de alcalinidad en el agua de estudio fue 658 mg CaCO₃·L⁻¹, por lo que se consideró que es suficiente para amortiguar cambios en el pH que se pudieran presentar dentro del proceso anaerobio.

Cada vez que se realizó el transporte de la cantidad de agua requerida para los experimentos, desde el rastro hasta el laboratorio, se determinaron los parámetros DQO, SST, SSV, alcalinidad, N-NH₄, NT y fósforo total, así como los parámetros de campo. En las Tablas 4.2 y 4.3 se muestran los resultados de este seguimiento. De esta manera, se muestra la variabilidad de la composición del agua residual tratada, típica de efluentes industriales. Es evidente también, la alta carga de materia orgánica, nutrientes, y sólidos. Cabe resaltar que en cuanto al seguimiento de los parámetros fisicoquímicos, se observó que durante el periodo de noviembre a enero se presentó un notable incremento en las concentraciones de DQO, N-NH₄, NT y SSV. Éste se debió a prácticas no recomendadas dentro del proceso de sacrificio de los animales, principalmente la recuperación ineficiente de sangre.

Los SST pueden afectar el desempeño de los reactores anaerobios empleados en el proyecto, por lo que fue necesario utilizar una malla a manera de tamiz para reducir la concentración de éstos en el influente de los reactores. La carga orgánica volumétrica a los reactores se controló siempre mediante ajustes al flujo de entrada al reactor, por lo que el aumento o la disminución de la concentración de DQO no afectaron el proceso, salvo en casos donde se presentó limitación en el flujo debido a las bombas de alimentación.

Día de o AEBR -	peración - UASB	DQO, mg·L ⁻¹	N-NH₄ ⁺ , mg∙L ⁻¹	NT, mg∙L-1	PT, mg·L ⁻¹	SST, mg∙L [.] 1	SSV, mg∙L ^{.1}
176	165	3,814	344	740	22	1,480	1,300
204	193	2,637	244	420	19	1,000	7,00
225	214	2,640	272	560	-	3,057	2,560
250	239	4,790	148	384	15	1,680	1,280
264	253	3,857	172	302	-	1,220	900
285	274	5,746	468	540	17	3,580	2,920
323	312	8,052	570	850	28	2,100	1,880
347	336	7,879	376	590	-	2,080	2,040
362	351	3,351	248	300	14	1,060	8,20
379	368	2,500	230	290	12	9,80	760
393	382	2,800	190	260	10	8,90	710
Prom	nedio	4,370	297	476	17	1739	1443
Desv	. Est.	2,037	131	197	5.8	895	791

Tabla 4.2. Caracterización al agua de rastro en diferentes fechas

Tabla 4.3. Parámetros de campo y alcalinidad del agua de rastro en diferentes fechas

Día de o AEBR	operación - UASB	рН	T, °C	Conductividad, µS	Alcalinidad total, mg·L ⁻¹ CaCO ₃
176	165	6.6	26	11,340	1,000
204	193	6.4	25.1	3,910	544
225	214	6.3	24.4	9,640	464
250	239	6.6	23.8	11,560	992
264	253	6.8	21.7	2,420	480
285	274	6.7	22.9	3,980	1,160
323	312	6.4	20.8	5,070	1,300
347	336	6.2	23.5	4,710	800
362	351	6.3	21.1	3,900	470
379	368	6.4	23	3,300	690
393	382	6.6	20.9	4,400	820
Pror	nedio	6.5	23	5,839	793
Desv	v. Est.	0.2	1.8	3,323	293
4.2 Lodo granular

Para la inoculación del reactor UASB se empleó lodo granular proveniente de la empresa UNIPAC, usado previamente para el tratamiento de aguas residuales provenientes de un ingenio azucarero. Se emplearon 15 L de lodo granular para la inoculación, los lodos alcanzaron una altura de 0.80 m en el reactor. Los gránulos anaerobios se muestran en la Figura 4.1 y tienen un diámetro entre 2 - 4 mm. El contenido de SSV en el lodo inoculado fue de 88.4 g·L⁻¹, correspondiente a un 43% de los SST (203.18.4 g·L⁻¹). Posteriores determinaciones indican un incremento en el porcentaje de SV.

Figura 4.1. Gránulos anaerobios para la inoculación del reactor UASB

La determinación final de contenido de sólidos en el lodo indica un aumento de SV, alcanzando un porcentaje de 58% de los ST; en cuanto a los SF el contenido de éstos disminuyó en un 38%. Se ha descrito en la literatura, que el contenido, tanto inorgánico, como microbiológico, de los gránulos depende principalmente de la composición del agua residual que se esté tratando (Schmidt y Ahring, 1996). A lo largo del periodo de operación del reactor UASB se observó un incremento en la altura del lecho de lodos llegando éste a tener una altura máxima de 0.84 m.

4.3 Carbón activado granular

El carbón activado granular fue utilizado como medio de soporte de las bacterias en el reactor AEBR. El CAG empacado alcanzó una altura de 0.74 m dentro del reactor AEBR. En la Figura 4.2 se muestra una fotografía del CAG empleado.

Figura 4.2. Carbón activado granular mineral de lignita usado como medio de soporte en el reactor AEBR

Se determinó la cantidad de biomasa en el soporte a los 220 días de operación, el promedio de biomasa adherida al CAG fue de 0.004 g SV·g CAG. La concentración dentro del reactor correspondió a 5.6 g SV·L⁻¹.

4.4 Arranque y aclimatación de la biomasa de los reactores anaerobios

El periodo de aclimatación de la biomasa tuvo como objetivo su adaptación al agua a tratar en este proyecto. Con este fin, se siguió la estrategia de aclimatación descrita en el Capítulo de Metodología. El periodo de aclimatación fue de 129 días en el caso del AEBR y 118 días en el caso del UASB. En el Anexo C se presentan todos los datos crudos.

4.4.1 Reactor AEBR

De acuerdo con la estrategia de aclimatación, el arranque del reactor AEBR inició con alimentación de mezcla agua residual rastro/agua residual IMTA en una proporción 30/70. Esta proporción se

mantuvo durante los primeros 40 días de operación. A partir del día 41, la proporción aumentó a 50/50. Dos semanas después del arranque del reactor se presentó un fenómeno no deseable de formación de bloques de lecho con burbujas de biogás atrapadas, lo que redujo la interfase de contacto de la biomasa con el agua, dificultando también el flujo de biogás. Este fenómeno de formación de bloques es considerado un problema común durante la operación de reactores con lecho biológico (Iza, 1991).

A fin de desintegrar los bloques de lecho, la recirculación se aumentaba temporalmente para crear un flujo hidráulico mayor que rompiera estos bloques y liberara el biogás de éstos para que escapara del reactor por la parte superior. Frecuentemente, debido al flujo de agua, estos bloques se levantaban hasta la malla de retención en la parte superior del reactor, lo cual provocaba la necesidad de parar temporalmente la recirculación, para que el bloque sedimentara, posteriormente se volvía a arrancar la recirculación con una alta velocidad. Estas acciones se repetían hasta la desintegración completa del bloque.

La formación de los bloques puede atribuirse a que la biopelícula que se empezó a desarrollar en la superficie de los gránulos de carbón activado produjo exopolímeros para mantenerse unida a la superficie del medio de soporte. Estos exopolímeros pudieron haber causado la adhesión entre los gránulos de biomasa y el carbón, provocando el atrapamiento de las burbujas de gas y limitando la fluidez de éste. Durante las manipulaciones para la desintegración de los bloques se empezaron a presentar problemas hidráulicos de taponamiento de los conductos en la salida del reactor.

La frecuente presencia de la formación de los bloques de lecho causó mayores problemas al funcionamiento del reactor. Al elevar el flujo de recirculación y elevarse los bloques de lecho a la parte superior del reactor, se aplicó presión a la malla ubicada en la parte superior del reactor para la retención del medio. Esta presión fue constante y acabó por romper la malla. Las partículas de carbón activado granular empezaron a escaparse por la salida del efluente llegando a ser recirculadas a la parte inferior del reactor. La salida de CAG de la zona de biodegradación, provocó los siguientes problemas:

- Obstrucción de la conexión T antes del sedimentador;
- Obstrucción de la entrada del flujo de agua al sedimentador;

Obstrucción de la manguera de recirculación, causando disminución en el flujo de éste;

Se decidió desmantelar el reactor y someterlo a reparación debido a los problemas causados por la frecuente formación de bloques. Se hizo una revisión general del estado de todo el reactor. Se encontró que la malla superior de retención había sido perforada (Figura 4.3), las conexiones de salida del biogás se encontraban parcialmente obstruidas. La malla fue reemplazada y se dio mantenimiento a las conexiones de salida del biogás.

Figura 4.3. Fotografía de la malla dañada

Una vez reparado el reactor, se re-ensambló y se realizaron pruebas hidráulicas. Fue necesario reparar fugas antes de arrancar nuevamente el reactor. Durante la reparación del reactor, el lecho extraído de éste, se colocó en un recipiente donde fue alimentado con agua residual de rastro en forma discontinua. Esto permitió la conservación de la biomasa y que el proceso de aclimatación no se detuviera debido al paro del reactor.

En la Tabla 4.4 se resumen las condiciones de operación del reactor AEBR durante el período de aclimatación de la biomasa y reparación del reactor. Las evaluaciones del funcionamiento del reactor durante la etapa de aclimatación indicaron remociones de DQO de 58, 51 y 60% para los porcentajes manejados de agua de rastro 30, 50 y 70%, respectivamente. El periodo de aclimatación se llevó a cabo bajo una carga orgánica volumétrica, COV, de 2 kg DQO·m⁻³·d⁻¹ y un TRH de 13.6 h.

Día de operación	B _v , kg DQO⋅m ⁻³ ⋅d- ¹	Q, m ³ ·d ⁻¹
12	2.05	0.012
20	1.03	0.012
34	2.39	0.022
46	2.43	0.014
125	3.60	0.029
127	1.93	0.017

Tabla 4.4. Condiciones de operación del reactor AEBR durante el período de aclimatación

4.4.2 Reactor UASB

La estrategia de aclimatación de los lodos granulares del reactor UASB se llevó a cabo de la manera descrita en el capítulo de Metodología. El arranque de este reactor inició 11 días después que el reactor AEBR. La proporción de mezcla de agua residual rastro/agua residual IMTA se mantuvo en 30/70 del día 1 de operación hasta el día 29, del día 30 al 70 se aumentó la proporción a 50/50, seguido de esto se incrementó la proporción a 70/30 y se mantuvo así hasta el día 119. En la Tabla 4.5 se muestran las condiciones de operación del reactor UASB durante el periodo de arranque y estabilización del sistema.

La carga orgánica volumétrica promedio aplicada al reactor UASB durante el periodo del día 1 al día 119 desde el arranque fue de fue de 2.81 kg DQO·m⁻³·d⁻¹. En las Figuras 4.4 y 4.5 se muestran las eficiencias de remoción de materia orgánica, medida como DQO, y las concentraciones en el influente y efluente del reactor UASB.

Día de operación	B _v , kg DQO·m ⁻³ ·d ⁻¹	Q, m ³ ·d ⁻¹
9	1.50	0.030
23	1.86	0.030
25	3.67	0.030
35	2.03	0.021
39	2.96	0.021
65	3.23	0.021
67	3.12	0.021
71	1.78	0.021
73	2.94	0.021
77	3.13	0.028
86	2.37	0.028
88	2.43	0.028
92	2.97	0.028
107	5.35	0.028
114	3.30	0.047
116	1.34	0.021
119	4.83	0.018
126	2.88	0.015
129	2.71	0.017

Tabla 4.5. Condiciones de opera	ación del reactor UASB durante	el periodo de arranque	y estabilización
---------------------------------	--------------------------------	------------------------	------------------

Figura 4.4. Porcentajes de remoción de DQO del reactor UASB durante el periodo de aclimatación

Figura 4.5. Concentraciones de DQO en el influente y efluente del reactor UASB durante el periodo de aclimatación

Durante la aclimatación y estabilización del proceso, el reactor UASB llegó a presentar remociones de DQO cercanas al 90%, al ir aumentando la concentración de agua de rastro en la alimentación se observa que al inicio de un periodo con mayor porcentaje de agua de rastro se presenta una caída en la remoción de DQO, seguido por una mejora en las remociones. En el periodo de tiempo durante el cual se manejó una mezcla 70/30 se observan dos caídas bastante significativas en los porcentajes de remoción de DQO. Esto se atribuye a una reducción en la carga orgánica volumétrica debido a la concentración de DQO en el influente. Las remociones de DQO promedio alcanzadas durante este periodo fueron de 59, 47 y 67%, respectivamente, para los periodos de alimentación con 30, 50 y 70% de agua residual de rastro.

4.5 Operación y evaluación del desempeño de los reactores anaerobios

Una vez concluida la etapa de aclimatación de la biomasa de los dos reactores anaerobios, se procedió a la operación de ambos reactores con una carga orgánica volumétrica, COV, de 4 kg DQO·m⁻³·d⁻¹. En esta sección se presentan los parámetros de operación de los reactores anaerobios, así como los resultados obtenidos mediante estos sistemas.

4.5.1 Reactor AEBR

El reactor se operó a temperatura de 30.3±1.4°C, con un flujo variable de alimentación, con el fin de controlar la carga orgánica volumétrica, y con un caudal de recirculación de 1.48 m³·d⁻¹, correspondiente a una velocidad ascendente en el reactor de 7.87 m/h. Del día 229 al día 262, se paró la operación del reactor debido a una obstrucción en la placa perforada de la parte inferior del reactor. Dicha obstrucción fue causada por fallo en la bomba de recirculación, lo que permitió la sedimentación y compresión del lecho de CAG. El empaque fue retirado del reactor y se alimentó agua residual de rastro en forma discontinua, a fin de mantener la biomasa activa. Una vez reparado el reactor, se ensambló, se realizaron pruebas hidráulicas y se repararon fugas antes de arrancar nuevamente. El fenómeno de formación de bloques se presentó nuevamente, modificando el funcionamiento hidráulico del reactor; en esta ocasión los bloques de lecho provocaron una pérdida significativa de carga hidráulica y la acumulación de biogás dentro del reactor, por lo que la presión aumentó considerablemente, resultando en daños a la estructura física del reactor e impidiendo la operación de feste. La operación del reactor AEBR fue de 327 días.

4.5.1.1 Carga orgánica volumétrica y remoción de materia orgánica

Durante el periodo de operación del reactor AEBR se determinó la eficiencia de remoción de materia orgánica, medida como DQO. El periodo de operación del reactor AEBR se divide en dos etapas: la primera, bajo la carga orgánica volumétrica (COV) de 4 kg DQO·m⁻³·d⁻¹; la segunda el periodo durante el cual se presentó un incremento significativo en la concentración de materia orgánica en el agua de rastro, reflejándose como un aumento no controlado en la COV debido a limitaciones del equipo de bombeo en cuanto al flujo mínimo suministrado.

En la Figura 4.6 se presenta la evolución de la COV a lo largo del periodo de operación del reactor AEBR. Se presenta una línea divisora separando las etapas de operación descritas anteriormente. Es evidente el considerable aumento en la COV a partir del día 285 y hasta el día 330, se alcanzó una COV máxima de 12 kg DQO·m⁻³·d⁻¹, la COV promedio en este periodo fue de 7 kg DQO·m⁻³·d⁻¹.

Figura 4.6. COV alimentada al reactor AEBR durante el periodo de operación del reactor

Debido a las limitaciones en el equipo de bombeo, la COV en la última etapa de operación del reactor fue directamente dependiente de la concentración de materia orgánica en el agua de rastro entrando al reactor. En la Figura 4.7 se observa la concentración de materia orgánica, medida como DQO, tanto en el influente, como en el efluente del reactor. Durante la primera etapa, del día 130 al día 285, la DQO presenta un promedio de 3,500 mg·L^{-1,} en el influente y 560 mg·L⁻¹ en el efluente. En la segunda etapa se presentaron niveles de DQO en el influente de hasta 8,000 mg·L⁻¹, con una media de 5,000 mg·L⁻¹.

Figura 4.7. Concentración de DQO en el influente y efluente del reactor AEBR durante el periodo de operación

En este mismo periodo el efluente presentó una DQO promedio de 1,300 mg·L⁻¹. En la Figura 4.8 se presenta la evolución de la eficiencia de remoción de materia orgánica medida como DQO.

Figura 4.8. Porcentajes de remoción de DQO en el reactor AEBR

En la primera etapa de operación se obtuvo una eficiencia de remoción promedio del 84%; mientras que en la segunda etapa, la eficiencia de remoción resultó ser del 73%. La disminución en la eficiencia de remoción se atribuye principalmente a los problemas hidráulicos y operativos que se presentaron durante la operación del reactor AEBR. Debido a estos problemas, las condiciones de transferencia de masa dentro del reactor no fueron las óptimas. Como se mencionó anteriormente, el aumento de presión en el sistema resultó en daños físicos al reactor, por lo que ya no fue posible lograr nuevamente la estabilización del sistema. En la Tabla 4.6 se presenta un resumen de las eficiencias de remoción alcanzadas durante la operación del reactor AEBR.

COV, kg DQO·m ⁻³ ·d ⁻¹	I _{AEBR} , mg⋅L ⁻¹	E _{AEBR} , mg·L ⁻¹	%Raebr
4	3,400	570	84
7	5,100	1,350	73
12 (máx.)	8,600	2,250	72

Tabla 4.6. Resultados promedio y remoción de DQO en el reactor AEBR y eficiencia de remoción obtenida

COV - carga orgánica volumétrica; I_{AEBR} - materia orgánica medida como DQO en el influente del reactor AEBR; E_{AEBR} - materia orgánica medida como DQO en el efluente del reactor AEBR; R_{AEBR} - remoción de materia orgánica Se determinó la tasa de remoción de materia orgánica, medida como DQO. La tasa de remoción indica la velocidad a la cual el contaminante en cuestión es removido se expresa en kg sustrato consumido-m-³.d-¹. En la Figura 4.9 se presenta la variación de ésta con respecto a la COV alimentada. La línea diagonal representa remoción del 100% de la materia orgánica. A pesar de que se observa un decremento en la eficiencia de remoción de materia orgánica al aumentar la COV, la gráfica indica que el sistema tuvo la capacidad de remover mayores cantidades de DQO a COV mayores. Este resultado es similar al obtenido en estudios implementando reactores de lecho fluidificado para el tratamiento de aguas residuales provenientes de rastros (Borja *et al.*, 1995).

Figura 4.9. Variación de la tasa de remoción de materia orgánica con la COV alimentada al reactor AEBR

4.5.1.2 Producción de biogás y actividad metanogénica

Durante la operación del reactor AEBR se observó constantemente la formación de burbujas en el lecho y en el sobrenadante, indicando la producción de biogás. El método para la medición de éste fue por desplazamiento de líquido. El promedio de biogás producido fue de 18.2±3.1 L·d⁻¹. Como se mencionó anteriormente, el reactor llegó a presentar problemas hidráulicos que también afectaron la captación y medición del biogás. Los valores reportados fueron determinados con base en los resultados obtenidos en periodos de funcionamiento hidráulico adecuado. Desde el arranque del reactor AEBR la producción de biogás se manifestó continuamente. No se observaron cambios conforme se fue incrementando el porcentaje de agua de rastro alimentada al reactor. De hecho, los

valores obtenidos indican el incremento de la producción de biogás con el aumento de remoción de materia orgánica, relacionado directamente con el incremento de carga orgánica en el sistema. En la Figura 4.10 se muestran los resultados de producción de biogás obtenidos durante el periodo comprendido entre los días 290 – 324 de operación, cuando la COV subió de 4 a 7 kg DQO·m⁻³·d⁻¹. Siguiendo la evolución del biogás producido, se observa un aumento a partir del día 306. Este evento corresponde a un aumento constante en la COV alimentada al reactor. Sin embargo, a pesar del constante incremento en la COV, el día 313 se observa una caída en la producción de biogás. Esta disminución se debe a que el porcentaje de remoción de materia orgánica bajó a un 52% en ese día, afectando directamente la generación de biogás en el reactor.

Figura 4.10. Producción de biogás. Reactor AEBR

En la Figura 4.10 se presenta también la cantidad teórica de producción de biogás. Ésta fue determinada con base a niveles típicos de producción de biogás en reactores anaerobios, 0.5 m³ de biogás·kg DQO removida⁻¹ (Malina y Pohland, 1992). De esta forma, en la determinación se incluyeron valores de COV y el porcentaje de remoción de materia orgánica, medida como DQO, en el día de operación correspondiente. Respecto a esta relación se observó que el biogás capturado fue correspondiente a un 93% de la producción teórica estimada, un valor muy aceptable, considerando que se midió por desplazamiento.

En la Figura 4.11 se presenta la relación entre la cantidad de biogás producido y la cantidad de materia orgánica removida, así como la producción de biogás, expresada en m³ de biogás·kg DQO removida⁻¹. Se observa un claro aumento de la producción de biogás con respecto a la cantidad de materia orgánica removida. La relación de estos parámetros es muy similar al indicado en la literatura como típico, 0.5 m³ de biogás·kg DQO removida⁻¹; en promedio, la producción de biogás en el reactor AEBR fue de 0.47±0.03 m³ de biogás·kg DQO removida⁻¹.

Figura 4.11. Producción de biogás en el reactor AEBR con relación a la materia orgánica removida

Como se mencionó en la metodología, se llevaron a cabo pruebas para determinar la actividad metanogénica específica (AME) de la biomasa anaerobia del reactor AEBR (inciso 3.3.2). En la Tabla 4.7 se presentan los resultados promedio y la desviación estándar en cada caso, la prueba se llevó a cabo por duplicado. La AME resultó ser de 0.72 g CH₄-DQO· g SSV⁻¹·d⁻¹, el cual es un valor dentro del rango reportado para reactores anaerobios de biopelícula en filtros anaerobios y lechos fluidificados, siendo éste de 0.5 a 1.2 g CH₄-DQO· g SSV⁻¹·d⁻¹ (IMTA, 2002).

	AME, g CH₄-DQO- g SSV-1-d-1	Desviación estándar
24-Feb-09	0.72	0.08
13-Mar-09	0.72	0.04
26-Mar-09	0.71	0.04

Tabla 4.7. Actividad metanogénica específica. Reactor AEBR

4.5.1.3 Nitrógeno amoniacal, sulfatos y sulfuros

El nitrógeno amoniacal y el sulfuro de hidrógeno son compuestos que en ciertos niveles de concentración pueden provocar efectos tóxicos o inhibitorios a las bacterias metanogénicas. Estos compuestos tienen la particularidad de que se pueden producir durante el proceso anaerobio, lo que indica que aún si los niveles en el influente no son tóxicos, dentro del reactor pueden aumentar. Por esta razón se les dio seguimiento durante el periodo de operación del reactor AEBR.

El nitrógeno amoniacal (N-NH₄⁺) se forma durante la biodegradación anaerobia de compuestos orgánicos nitrogenados tales como proteínas y aminoácidos. En la Figura 4.12, se presentan las concentraciones de N-NH₄⁺, tanto en el influente, como en el efluente del reactor AEBR. A lo largo de los perfiles de concentración se observa que los niveles de N-NH₄⁺ son significativamente superiores (p>0.05) en el efluente. Sin embargo, este aumento no llegó a alcanzar niveles moderadamente tóxicos. En la Tabla 4.8 se presentan las concentraciones máximas, mínimas y promedios de N-NH₄⁺, tanto en el influente, como en el efluente del reactor AEBR.

Figura 4.12. Concentraciones de N-NH4⁺ en el influente y efluente del reactor AEBR

Cabe destacar que tanto el incremento de carga orgánica, como el incremento en la concentración de N-NH4⁺ se presentaron de manera simultánea. Esta observación se hace ver en la gráfica

mediante una línea divisora en el día 285. Este fenómeno en el aumento de la COV y la concentración de N-NH4⁺ está asociado principalmente a las prácticas dentro del proceso de sacrificio en el Rastro Municipal de Cuernavaca, ya que a partir del día 285 se observó una coloración más roja en el agua recolectada, lo que sugirió el aumento de una cantidad considerable de sangre en el agua residual. Estas observaciones fueron confirmadas por trabajadores del rastro, al indicar que la recuperación de sangre no se estaba realizando con la misma eficiencia de antes. La sangre es uno de los principales contaminantes que aporta niveles importantes tanto de materia orgánica, como nitrógeno.

Tabla 4.8. Concentraciones máximas, minimas y promedio de N-NH₄ en el reactor AEBR			
Concentración de N-NH4, mg·L-1			
C IAEBR EAEBR			
Mínima	226	296	
Máxima	620	650	
Promedio	390	412	

.

IAEBR - influente del reactor AEBR; EAEBR - efluente del reactor AEBR; C - concentración

El sulfuro de hidrógeno es otro tóxico que se puede formar durante el tratamiento anaerobio de aquas residuales que contienen niveles elevados de sulfatos. Los sulfatos en sí no son inhibidores de las bacterias metanogénicas. Sin embargo, las bacterias-sulfato reductoras al consumir materia orgánica reducen el sulfato a sulfuro. La concentración promedio de sulfatos en el influente y efluente del reactor AEBR fue de 381±141 y 250±36 mg·L⁻¹ respectivamente. Esto indica que sólo un 34% de los sulfatos fueron reducidos dentro del reactor AEBR.

La reducción incompleta de sulfatos ha sido reportada en diversos estudios (Ferguson *et al.*, 1982; Isa et al., 1986; Palns et al. 1991; Puhakka et al., 1990; Uberoi y Bhattacharya, 1996; Yoda et al., 1987). Isa *et al.* (1986) concluyeron que la incapacidad de las bacterias sulfato-reductoras (BSR) de exceder la actividad de las bacterias productoras de metano (BPM) se atribuye, a la alta concentración de sustrato y a la colonización preferente del soporte acarreador por las BPM. En este sentido, Yoda et al. (1987) observaron también que las BPM demuestran una habilidad superior de adhesión a la superficie de los soportes comparadas con las BSR. De esta forma, los sistemas anaerobios con biomasa inmovilizada dan una ventaja a las BPM sobre las BSR ya que la biomasa de BPM es retenida de mejor forma.

La concentración promedio de sulfuro en el influente y efluente del reactor AEBR fue de 2.6 ± 1.2 y 1.3±0.7 mg·L⁻¹ respectivamente. Estas concentraciones son mucho menores de las reportadas como moderadamente inhibitorias (Castro-González, 2004; Malina y Pohland, 1992). Contrario a lo esperado, la concentración de sulfuro en el efluente disminuyó, esto no refleja la reducción del 34% de los sulfuros anteriormente mencionada; sin embargo, Speece (1996) resalta la dificultad de cerrar los balances de azufre en procesos de tratamiento anaerobio. Las probables causas de esta situación es la presencia de H₂S en el biogás, la síntesis microbiana de compuestos con azufre o la precipitación interna de sulfuro. Teniendo en cuenta el pH de operación del reactor AEBR y el equilibrio de las especies de azufre (Anexo B), aproximadamente un 60% se encuentra como H₂S y el 40% restante como HS⁻. Esto indica que 40% del sulfuro se encontrará en medio acuoso. Considerando la cantidad de sulfatos reducidos dentro del reactor (112 mg·L⁻¹), aproximadamente un tercio de esa cantidad se encontraría como sulfuros (37 mg·L⁻¹). Si el 40% se encuentra en dilución, esto significaría tener 15 mg·L-1 de sulfuro en el efluente. De esta concentración, una parte será utilizada por las bacterias para la síntesis de compuestos azufrados. Con base en que para la síntesis de azufre se requiere un 150% de los requerimientos de fósforo (Speece, 1996), y de acuerdo con los cálculos de requerimientos de nutrientes del Anexo B, el requerimiento sería 7.5 mg·L⁻¹, lo que significaría una concentración similar de sulfuro en el efluente (7.5 mg·L⁻¹). La concentración promedio en el efluente es mucho menor. Esto se puede atribuir a precipitación del sulfuro con las sales metálicas presentes en el agua residual de rastro. Una evaluación profunda de las características de la biomasa en el reactor podría confirmar estas suposiciones en un estudio posterior.

4.5.1.4 Nitrógeno total y fósforo

Debido a las condiciones en los sistemas anaerobios, no se espera una disminución de la concentración de nitrógeno considerable; sin embargo, pueden presentarse pequeñas disminuciones en el nitrógeno total (NT) debido al consumo de éste por las bacterias. El nitrógeno se considera

como uno de los requerimientos nutricionales importantes de las bacterias anaerobias. En la Figura 4.13 se presenta el perfil de concentración de NT en el influente y efluente del reactor AEBR. Se observa claramente que los niveles de NT en el efluente son menores que en el influente, esta diferencia significativa (p>0.05), se atribuye al consumo de N por las bacterias. El NT considera la forma orgánica, amoniacal, nitritos y nitratos. Mediante bacterias anaerobias y en condiciones anaerobias sólo se puede tener la conversión de nitrógeno orgánico en amoniacal y la conversión de nitritos y nitratos en nitrógeno gaseoso; sin embargo, las concentraciones de nitritos y nitratos en el agua de rastro son muy bajas (0.054 y 2.08 mg·L-1 respectivamente) por lo que la conversión a nitrógeno gaseoso no es relevante.

Figura 4.13. Concentraciones de NT en el influente y efluente del reactor AEBR

En cuanto a concentraciones de NT, durante el periodo de operación del reactor AEBR, la Tabla 4.9 concentra los valores mínimos, máximos y promedio de concentración de NT en el reactor AEBR.

Tabla 4.9. Concentraciones maximas, minimas y promedio de NT en el reactor AEBR			
Concentración de NT, mg·L-1			
С	laebr	Eaebr	
Mínima	360	350	
Máxima	850	750	
Promedio	550	500	

IAEBR - influente del reactor AEBR; EAEBR - efluente del reactor AEBR; C - concentración

La diferencia observada de NT promedio, en el influente y efluente, es de 50 mg·L-1, considerando el cálculo de NT requerido por los sistemas, desarrollado en el Anexo B, se tiene que la diferencia observada es mayor al requerimiento de NT calculado (37 mg·L-1); sin embargo, diversos factores pueden afectar el consumo real de nutrientes por las bacterias, como lo es la carga orgánica específica (Malina y Pohland, 1992). En este estudio sólo se discute el punto de que la cantidad de NT que se remueve en el reactor está en el orden de consumo de NT por las bacterias anaerobias.

El fósforo, medido en este proyecto como fósforo total (PT), es otro de los macronutrientes necesarios para el correcto funcionamiento de los sistemas anaerobios. Al igual que en el caso del nitrógeno, sólo una pequeña parte del PT es consumida por las bacterias anaerobias para satisfacer sus requerimientos nutricionales (Mara y Horan, 2003; Metcalf & Eddy, 2003). En la Figura 4.14 se presenta el perfil de concentración de PT a la entrada y salida del reactor AEBR. Se puede observar que las concentraciones de PT en el efluente se encuentran por debajo de las del influente del reactor. Esta diferencia no es significativa (p>0.05) y puede asociarse al fenómeno descrito anteriormente, esto es, el consumo de PT por los microorganismos presentes en el reactor.

En la Tabla 4.10 se presentan las concentraciones máximas, mínimas y promedio en la entrada y salida del reactor AEBR. Se pueden apreciar claramente las diferencias de concentración de PT en ambos puntos. La remoción promedio de PT en el reactor AEBR fue de 18%.

Figura 4.14. Concentración de PT en el influente y efluente del reactor AEBR

Considerando nuevamente el cálculo de requerimientos de nutrientes (Anexo B), se tiene que la diferencia observada de PT en el influente y efluente del reactor es de 2 mg·L⁻¹, menor a la estimación calculada, 5 mg·L⁻¹; sin embargo, con esto se demuestra que la diferencia de la concentración de PT en el influente y efluente es factible que se deba al consumo de PT por las bacterias anaerobias.

Concentración de PT, mg·L·1		
С	laebr	Eaebr
Mínima	10	8
Máxima	35	22
Promedio	15	13

Tabla 4.10. Concentraciones máximas, mínimas y promedio de PT en el reactor AEBR

IAEBR – influente del reactor AEBR; EAEBR – efluente del reactor AEBR; C – concentración.

En el caso de macronutrientes, existen recomendaciones en cuanto a las relaciones mínimas entre DQO, NT y PT. La relación de mayor aplicación es la que considera una relación DQO:NT:PT de 100:2.5:0.5 (40:1:0.02), suficiente para satisfacer los requerimientos de estos nutrientes por las bacterias anaerobias. El agua de rastro tratada en esta investigación tenía en promedio una relación 100:13:0.4 (7.7:1:0.03). Lo que indica una concentración de nitrógeno mucho mayor a la requerida para el buen funcionamiento de los microorganismos, aproximadamente 5 veces más, con respecto a la recomendación tomando en cuanta la materia orgánica presente en el agua de rastro.

4.5.1.5 Sólidos suspendidos totales y volátiles

Las aguas residuales de rastro se caracterizan por un alto contenido de sólidos suspendidos totales (SST), de los cuales la mayor parte corresponde a materia orgánica, determinados como sólidos suspendidos volátiles (SSV). En el caso de reactores anaerobios de alta tasa, un alto contenido de SST en el influente pude afectar la calidad del efluente ya que sólo una cierta cantidad de sólidos suspendidos son retenidos dentro del reactor para su posterior degradación; el resto se descarga en el efluente e influye en el contenido de SST y materia orgánica de éste. En las Figuras 4.15 y 4.16 se presenta la evolución de concentraciones de SST y SSV, tanto en el efluente, como en el influente del reactor AEBR, durante el periodo de operación del mismo.

Figura 4.15. Contenido de SST en el influente y efluente del reactor AEBR

Figura 4.16. Contenido de SSV en el influente y efluente del reactor AEBR

En la Tabla 4.11 se presenta un resumen las concentraciones máximas, mínimas y promedio de SST y SSV del influente y efluente del reactor AEBR. De estos valores, se tiene que el 81% de los SST que entran al reactor consisten en SSV; de manera similar, los SSV en el efluente del reactor conforman un 73% de los SST. Estos porcentajes indican la gran cantidad de materia orgánica no soluble que entra y sale del reactor. Ahora bien, los SSV en el efluente del reactor AEBR pueden asociarse a los SSV del influente que no fueron retenidos en el reactor debido al tiempo de

residencia hidráulica del sistema; o bien, biomasa en forma de flóculos que sale del reactor debido a propiedades pobres de sedimentación. La reducción promedio de SST fue de 70±18%, mientras que la reducción de SSV fue de 73±21%.

Tabla 4.11. Concentraciones máximas, mínimas y promedio de SST y SSV a la entrada y salida del reactor AEBR

C	SST,	mg∙L ^{_1}	SSV,	mg∙L ⁻¹
	IAEBR	Eaebr	I _{AEBR}	Eaebr
Mínima	540	80	380	40
Máxima	2,700	800	2,400	660
Promedio	1,300	380	1,050	280

IAEBR - influente del reactor AEBR; EAEBR - efluente del reactor AEBR; C - concentración

4.5.1.6 Evolución de temperatura, pH, alcalinidad, ácidos grasos y relación alfa

La temperatura promedio en el reactor AEBR fue de 30.3±1.4°C. En la Figura 4.17 se presenta el perfil de temperatura, tanto en el efluente, como en el influente del reactor. La temperatura promedio en el influente fue de 22.1±2.1°C.

Figura 4.17. Seguimiento de temperatura en el influente y efluente del reactor AEBR

El comportamiento del pH en el reactor AEBR se muestra en la Figura 4.18. En esta gráfica se puede observar también el perfil de pH del agua de rastro (AR) alimentada al reactor. El perfil de pH del AR oscila en un intervalo mucho más amplio de valores de pH que el perfil del AEBR, el valor promedio de pH en el influente del reactor fue de 7.6 ± 0.5 y en el efluente el valor promedio fue de 7.5 ± 0.3 , manteniendo así, condiciones favorables para las bacterias anaerobias.

El pH en los reactores anaerobios es muy importante para el buen funcionamiento del sistema. El mantenimiento de éste en el intervalo de valores apropiados depende de la capacidad amortiguadora del reactor, es decir, la alcalinidad presente; así como de la concentración de ácidos grasos volátiles.

Figura 4.18. Seguimiento de pH en el influente y efluente del reactor AEBR

En la Figura 4.19 se muestran los perfiles de alcalinidad total del agua de rastro y del reactor AEBR. La alcalinidad total promedio en el influente del reactor AEBR fue de $1,180\pm480 \text{ mg}\cdot\text{L}^{-1}$ y en el efluente fue de $1,600\pm390 \text{ mg}\cdot\text{L}^{-1}$ de CaCO₃; la alcalinidad promedio a pH 5.75 en el influente fue de $640\pm285 \text{ mg}\cdot\text{L}^{-1}$ de CaCO₃, mientras que en el efluente fue de $1345\pm360 \text{ mg}\cdot\text{L}^{-1}$ de CaCO₃. Cabe mencionar que, en contadas ocasiones, los valores de alcalinidad a pH 5.75 en el reactor, que se considera la capacidad amortiguadora útil debida a carbonatos (Jenkins *et al.*, 1991), fueron menores de $1,000 \text{ mg} \text{ CaCO}_3\cdot\text{L}^{-1}$. En los casos en los que fue menor, se debió al contenido de alcalinidad del influente.

Figura 4.19. Alcalinidad total y a pH 5.75 en el reactor AEBR

Como se observa en la Figura 4.19, los valores de alcalinidad en el reactor siguen la misma tendencia que la alcalinidad del influente; sin embargo, en el reactor, la alcalinidad es siempre mayor, esto se debe a la alcalinidad generada durante la degradación de sustratos orgánicos. Es importante destacar la diferencia entre la alcalinidad a pH 4.3 y 5.75, tanto en el influente como en el efluente. Esta diferencia se relaciona directamente con el contenido de AGV en la muestra. Así, se observa que en el influente la diferencia entre la alcalinidad a pH 4.3 y 5.75, es clara, cercana a los 200 mg $CaCO_3 \cdot L^{-1}$; sin embargo, en el caso del efluente, esta diferencia se reduce a aproximadamente 30 mg $CaCO_3 \cdot L^{-1}$, indicando una baja concentración de AGV.

La determinación indirecta de ácidos grasos volátiles descrita en el Anexo A da como resultado valores negativos. De acuerdo a Jenkins *et al.* (1991) se espera una correlación pobre entre los valores reales de AGV y los calculados, cuando la concentración de AGV en la muestra es baja. Además, a valores bajos de AGV el error de cálculo se incrementa. Debido a estas afirmaciones y al resultado de valores de AGV calculados en este proyecto, se considera que la concentración de AGV en el sistema fue muy baja. El contenido de AGV en el sistema no representó ningún problema debido a que el sistema siempre contó con alcalinidad suficiente, lo que se comprueba con los valores reportados de alcalinidad, seguimiento de pH y relación α (Figura 4.20).

Figura 4.20. Evolución de la relación α en el reactor AEBR

La relación α del reactor AEBR, Figura 4.20, se mantuvo siempre por debajo de 0.4, con un promedio de 0.16±0.10, indicando que en el reactor siempre contaba con la capacidad amortiguadora suficiente para mantener un pH apropiado.

4.5.2 Reactor UASB

El reactor UASB operó a una temperatura promedio de 23.2±1.5°C. Con la finalidad de controlar la COV alimentada al reactor se operó bajo flujo variable de alimentación. No se presentaron problemas operativos serios; sin embargo, debido a la concentración de materia orgánica en el influente y la COV establecida, el flujo de alimentación al reactor durante la mayor parte del periodo de operación fue bajo, del orden de 0.017 m⁻³·d⁻¹, lo que representa una velocidad ascendente de 0.040 m·h⁻¹. Este flujo no resultó ser suficiente para facilitar la salida del biogás, por lo que se observó en ocasiones acumulación de éste dentro del reactor causando el levantamiento del lecho y la obstrucción en la salida del efluente. Esto hizo que se optara por implementar un mecanismo de recirculación, que se empleó con el único propósito de facilitar la salida del biogás, por un lapso no mayor a 2 minutos cada 8 o 15 horas aproximadamente, dependiendo de la acumulación del biogás.

4.5.2.1 Carga orgánica volumétrica y remoción de materia orgánica

La eficiencia de remoción de materia orgánica en el reactor UASB se determinó mediante el parámetro de DQO. El periodo de operación del reactor UASB se divide en dos etapas con base en la COV alimentada, Figura 4.21. Durante la primera etapa, la operación del reactor fue bajo la COV establecida de 4 kg DQO·m⁻³·d⁻¹, esto es del día 130 al 272. La segunda etapa consistió en el periodo durante el cual se presentó un incremento de la concentración de materia orgánica en el agua residual y de la COV alimentada al reactor; esto fue del día 272 al 390. Es importante mencionar que durante esta segunda etapa hubo un periodo en el cual se presentó una limitación con respecto al control de la COV debido al equipo de bombeo. El flujo de alimentación se fijó en el mínimo posible. Esto quiere decir, que la COV alimentada al reactor dependía completamente de la concentración de materia orgánica en el influente.

Figura 4.21. COV alimentada al reactor UASB durante el periodo de operación

En la Figura 4.22 se presenta el perfil de concentración de materia orgánica medida como DQO en el influente y efluente del reactor UASB. En esta Figura se presenta una línea divisora separando las dos etapas de operación del reactor, como es de notarse, en la segunda etapa los valores de DQO reportados son mayores durante el periodo comprendido del día 272 al día 346, éste fue el periodo donde la COV fluctuó sin control ya que el flujo de alimentación era el mínimo posible con el equipo de bombeo utilizado.

Figura 4.22. Concentración de DQO en el influente y efluente del reactor UASB

Después del día 346, las concentraciones de materia orgánica en el agua de rastro disminuyeron considerablemente, la coloración del agua volvió a ser café rojiza, indicando que la recuperación de la sangre se estaba llevando a cabo de manera más eficiente; fue entonces que se tuvo control nuevamente sobre la COV alimentada al reactor. Debido a que el porcentaje de remoción de materia orgánica se había mantenido estable a pesar de los incrementos en la COV, al volver a tener control sobre ésta, se mantuvo en 8 kg DQO·m⁻³·d⁻¹ durante una semana; sin embargo, se observó una disminución considerable en los porcentajes de remoción, por lo que se decidió disminuir la COV a 6 kg DQO·m⁻³·d⁻¹, COV máxima alimentada en el periodo inmediato posterior.

En la gráfica (Figura 4.22), se observa también la concentración en el efluente durante las dos etapas del periodo de operación del reactor UASB. La concentración de materia orgánica promedio en el efluente, medida como DQO, fue de 900 mg·L⁻¹ del día 119 al 274, mientras que del día 275 al 390 fue de 800 mg·L⁻¹. En la Figura 4.23 se presenta el perfil de remoción de materia orgánica expresado como porcentajes.

Figura 4.23. Porcentajes de remoción de DQO en el reactor UASB

Como se observa en la Figura 4.23, la eficiencia de remoción de materia orgánica varió considerablemente en la primera etapa de operación (COV= 4 kg DQO·m·3·d·1) se obtuvieron eficiencias entre 60 y 90%, teniendo como media 73%. Sin embargo, en la segunda etapa de operación, a pesar de tener incrementos constantes en la COV alimentada, las eficiencias de remoción obtenidas fueron más constantes, salvo un importante decremento cuando la COV llegó a 8 kg DQO·m·3·d·1. Una vez controlada la COV el sistema volvió a responder con buenos porcentajes de remoción. El promedio de eficiencia de remoción en esta etapa fue de 84%. En la Tabla 4.12 se muestra un resumen de los resultados obtenidos durante las dos etapas experimentales, así como las eficiencias y la calidad del efluente obtenido en cada periodo.

COV kg DQO·m ⁻³ ·d ⁻¹	I _{UASB} mg·L-1	E _{UASB} mg·L-1	%Ruasb
4	3,400	900	73
6	4,900	800	84
8	3,400	1,500	56

Tabla 4.12. Resultados prome	io y remoción de DQO	en el reactor UASB	y eficiencia de remo	ción obtenida
------------------------------	----------------------	--------------------	----------------------	---------------

COV - carga orgánica volumétrica; I_{UASB} - materia orgánica medida como DQO en el influente del reactor UASB; E_{UASB} - materia orgánica medida como DQO en el efluente del reactor UASB; R_{UASB} - remoción de materia orgánica

En la Figura 4.24 se presenta la tasa de remoción de materia orgánica con respecto a la COV alimentada al reactor UASB. La línea diagonal representa una remoción total de la materia orgánica

alimentada al reactor. Se observa en el gráfico una tendencia ascendente, reflejando el aumento de la tasa de remoción de manera proporcional con la COV alimentada.

Figura 4.24. Variación de la tasa de remoción de materia orgánica con respecto a la COV en el reactor UASB

Sin embargo, con la COV de 8 kg DQO·m⁻³·d⁻¹ no se observa el seguimiento de la tendencia descrita anteriormente, esto es debido al súbito decremento del porcentaje de remoción de materia orgánica al incrementar la COV. Para futuros proyectos es necesario tomar esto en cuenta y programar aumentos de COV paulatinos para evitar afectar la remoción de materia orgánica por el sistema. Se observa también, que con el aumento de la COV, los datos se alejan de la diagonal, lo que indica, una disminución en los porcentajes de remoción al incrementar la carga orgánica.

4.5.2.2 Producción de biogás y actividad metanogénica

Desde la etapa de aclimatación de la biomasa, se observó constantemente la formación de pequeñas burbujas en el lecho de lodo granular indicando la producción de biogás por el sistema. Como se mencionó anteriormente, debido al flujo de alimentación al reactor UASB, la velocidad ascendente era pequeña (0.040 m·h⁻¹) y esto presentó problemas para el desplazamiento del biogás hacia la superficie, observándose acumulación del mismo y levantamiento del lecho en la zona inferior del reactor. En la Figura 4.25 se muestra una fotografía de este fenómeno. El biogás

acumulado salía del reactor de manera súbita y el separador de fases gas-líquido no contaba con la capacidad de captar tal volumen desplazado. De esta manera, una parte importante del biogás se perdía en esta acción. Este hecho se hizo notar en las mediciones de biogás producido. En la Figura 4.26 se presenta el biogás producido y captado en el reactor UASB, medido mediante desplazamiento de líquido; se presenta también la producción teórica de biogás con base al valor típico reportado en literatura (0.5 m³ de biogás·kg DQO removida⁻¹).

Figura 4.25. Fenómeno de acumulación de biogás en el reactor UASB

El inicio de la gráfica (Figura 4.26) corresponde al periodo donde el flujo de alimentación al reactor era mínimo con el fin de mantener la COV y el fenómeno de acumulación de biogás se observó frecuentemente. Se optó por acondicionar al reactor un sistema de recirculación para evitar la constante acumulación de biogás. Es importante aclarar que el sistema de recirculación se operó ocasionalmente, 2 a 3 veces por día, durante un periodo no mayor de 2 min. Este sistema se instaló alrededor del día 310. La cantidad de biogás medido fue mayor, sin embargo no se acercó lo suficiente al estimado teórico. A partir del día 350 el flujo de alimentación en el reactor se incrementó, alcanzando una velocidad ascendente de 0.10 m·h⁻¹, velocidad con la cual disminuyó la frecuencia de acumulación del biogás en el reactor. No obstante, la diferencia entre el biogás capturado y el estimado teórico siguió siendo significativa. El promedio de biogás producido por día fue de $20.3\pm8.2 \ L·d^{-1}$. El biogás capturado del reactor UASB resultó ser sólo un 52% de la producción teórica estimada.

Figura 4.26. Producción de biogás. Reactor UASB

En la Figura 4.27 se presenta la relación entre el biogás producido y la cantidad de materia orgánica removida, así como los valores de esta relación expresados en volumen de biogás por kilogramo de materia orgánica removida. Los valores graficados corresponden al periodo donde el fenómeno de acumulación de biogás no se observó frecuentemente. Se observa que existe una tendencia ascendente en la producción de biogás con respecto a la remoción de materia orgánica.

Figura 4.27. Producción de biogás en el reactor AEBR con relación a la materia orgánica removida

Ahora bien, los valores de biogás producido por kilogramo de materia orgánica removida en este periodo varían entre 0.21 y 0.40 m³ de biogás-kg DQO removida⁻¹, teniendo como promedio

 0.28 ± 0.05 m³ de biogás·kg DQO removida⁻¹. Este valor se encuentra muy por debajo del valor indicado en la literatura como típico, 0.5 m³ de biogás·kg DQO removida⁻¹ (Malina y Poland, 1992).

Se llevaron a cabo pruebas para determinar la actividad metanogénica específica (AME) del lodo granular y así determinar si la biomasa en el reactor UASB no contaba con la capacidad de producción de metano. La Tabla 4.13 muestra los resultados obtenidos, la AME promedio fue de 0.71 g CH₄-DQO· g SSV·1·d⁻¹. Para lodos granulares con concentración de SSV en un intervalo de 70 a 120 g SSV·L⁻¹ se han reportado AME de 0.5 a 1.5 g CH₄-DQO· g SSV⁻¹·d⁻¹ (IMTA, 2002), por lo que los resultados obtenidos en la prueba de AME indican que el lodo granular en el reactor UASB contaba con actividad metanogénica adecuada. Además, se confirma que los bajos valores de biogás medidos directamente del reactor se deben a fallas y fugas en el sistema de separación gas-líquido.

Tabla 4.13. Actividad metanogénica específica del lodo granular

	AME, g CH₄-DQO- g SSV-1-d-1	Desviación estándar
10-Feb-09	0.65	0.02
06-Mar-09	0.73	0.15
19-Mar-09	0.75	0.04

4.5.2.3 Nitrógeno amoniacal, sulfatos y sulfuros

En la Figura 4.28 se presentan las concentraciones de N-NH₄⁺, tanto en el influente, como en el efluente del reactor UASB. Los niveles de N-NH₄⁺ son significativamente superiores (p>0.05) en el efluente. Se observa que del día 272 al día 351, los niveles de N-NH₄⁺ aumentan paulatinamente, este fenómeno se relaciona directamente con el aumento de la carga de N-NH₄⁺ junto con la COV que se dio durante este mismo periodo. El motivo de este aumento fue que la sangre del sacrificio de animales no estaba siendo completamente recuperada. Este punto es destacable ya que se ve un efecto directo de las prácticas del proceso de sacrificio en el proceso anaerobio. La concentración máxima de N-NH₄ entrando al reactor en este periodo fue de 860 mg·L⁻¹, correspondiente a una COV de 6 kg DQO·m⁻³·d⁻¹.

Figura 4.28. Concentración de N-NH4 en el influente y efluente del reactor UASB

Una vez que las prácticas dentro del rastro de Cuernavaca fueron ajustadas, los valores de N-NH₄ se mantuvieron en niveles aceptables, en un intervalo de 200 – 300 mg·L⁻¹. Salvo el periodo descrito anteriormente, las concentraciones de N-NH₄ se mantuvieron en niveles no riesgosos. En la primera etapa de operación, la concentración promedio en el influente y efluente fue de 370 mg·L⁻¹ y 380 mg·L⁻¹, respectivamente. En la segunda etapa, del día 272 al 351, en el influente fue de 660 mg·L⁻¹ mientras que en el efluente era de 680 mg·L⁻¹. Seguido de esto, las concentraciones llegaron a 230 mg·L⁻¹ y 240 mg·L⁻¹, para el influente y efluente, respectivamente y ninguno de estos valores presentó riesgo alguno al sistema. En la Tabla 4.14 se presentan las concentraciones máximas, mínimas y promedio de N-NH₄ para todo el periodo de operación.

Concentración de N-NH4, mg·L-1					
С	Iuasb	Euasb			
Mínima	160	180			
Máxima	860	770			
Promedio	400	413			

Tabla 4.14. Concentraciones máximas, mínimas y promedio de N-NH4⁺ en el reactor UASB

I_{UASB -} Influente del reactor UASB; E_{UASB} – efluente del reactor UASB; C – concentración

Con respecto a sulfatos dentro del reactor UASB, se encontró que las concentraciones promedio en el influente y efluente fueron 381 ± 141 y 250 ± 110 mg SO_4^{2} ·L⁻¹, respectivamente. Estos resultados

son similares a los obtenidos con el reactor AEBR, lo cual se puede explicar con lo mencionado en el inciso 4.5.1.3 referente a la presencia de bacterias sulfato-reductoras en reactores con biomasa adherida. En el reactor UASB no se favorecería la retención de las bacterias sulfato-reductoras ya que las bacterias metanogénicas tienen mayor capacidad de adhesión a soportes que las bacterias sulfato-reductoras (Isa et al., 1986; Speece, 1996; Yoda et al., 1987).

De igual manera, se presentó una reducción incompleta de sulfatos, de un 34%, y la concentración de sulfuros en el efluente fue mucho más baja que en el influente. Las concentraciones promedio en el influente y efluente fueron de 2.6 ± 1.2 y 1.6 ± 1.2 mg S²⁻·L⁻¹, respectivamente. Esto como se explicó en el inciso 4.5.1.3 se puede atribuir a los diversos mecanismos que existen en el reactor anaerobio para la remoción de los sulfuros y a las dificultades en la cuantificación de las transformaciones correspondientes a cada mecanismo.

4.5.2.4 Nitrógeno total y fósforo

En la Figura 4.29 se presenta la concentración de NT en el influente y efluente del reactor UASB en función del tiempo.

Figura 4.29. Concentraciones de NT en el influente y efluente

Se observa que en el efluente hay una disminución de NT, que al igual que en caso del reactor AEBR, se atribuye al consumo de N por las bacterias anaerobias. La gráfica corresponde al periodo en el cual se encontraron las más altas concentraciones de NT entrando al sistema. En la Tabla 4.15 se presenta un resumen de concentraciones de NT, indicando la concentración mínima, máxima y promedio para todo el periodo de operación del reactor UASB.

Concentración de NT, mg·L-1				
С	Iuasb	Euasb		
Mínima	190	190		
Máxima	870	810		
Promedio	520	490		

Table 115 Canaantraalanaa				
Tabla 4.15. Concentraciones	maximas, minimas	s y promedio (de NT en e	I reactor UASB

IUASB - Influente del reactor UASB; EUASB - efluente del reactor UASB; C - concentración

Otro de los macronutrientes necesarios para el correcto funcionamiento de los sistemas anaerobios es el fósforo, en este proyecto cuantificado como fósforo total (PT). En la Figura 4.30 se presenta el perfil de concentración de PT a la entrada y salida del reactor UASB. Se observa que las concentraciones de PT en el efluente se encuentran por debajo de las del influente del reactor. Esta diferencia no es significativa (p>0.05). Sin embargo, puede asociarse al consumo de PT por los microorganismos presentes.

Figura 4.30. Concentración de PT en el influente y efluente del reactor AEBR

En la Tabla 4.16 se presentan las concentraciones máximas, mínimas y promedio de PT en la entrada y salida del reactor UASB. En esta Tabla se puede apreciar las diferencias de concentración de PT en ambos puntos. La reducción promedio de PT en el reactor UASB es de 13%.

Concentración de PT, mg·L-1					
С	Iaebr	Euasb			
Mínima	10	8			
Máxima	35	27			
Promedio	16	13			

Tabla 4.16. Concentraciones máximas, mínimas y promedio de PT en el reactor UASB

Iuasb - Influente del reactor UASB; Euasb - efluente del reactor UASB; C - concentración

En el Anexo B se presenta el cálculo del requerimiento promedio tanto de NT, como de PT para el caso del reactor UASB, tomando en cuenta la concentración de materia orgánica promedio a lo largo de todo el periodo de operación. Las cantidades estimadas fueron de 37.4 y 5.3 mg·L⁻¹ de NT y PT, respectivamente. La disminución promedio de NT fue de 30 mg·L⁻¹, mientras que en el caso del PT fue de 3 mg·L⁻¹. De esta manera se comprueba que la reducción de estos nutrientes puede deberse al consumo por las bacterias anaerobias.

4.5.2.5 Sólidos suspendidos totales y sólidos suspendidos volátiles

Los reactores UASB fueron diseñados para el tratamiento de aguas residuales que contienen materia orgánica soluble, es por esto que un contenido elevado de SST puede afectar a la calidad del lecho de lodo. En las Figuras 4.31 y 4.32 se muestra el contenido de SST y SSV, tanto en el influente, como en el efluente del reactor UASB.

En la Tabla 4.17 se presenta de manera resumida las concentraciones de SST y SSV durante el periodo de operación del reactor UASB. Esta información indica que, en el influente del reactor UASB, un 85% de los SST corresponden a SSV, es decir, la mayor parte de la materia no soluble consiste en materia orgánica; de la misma manera, los SST en el efluente del reactor se componen en un 79% de materia volátil.

Figura 4.31. Contenido de SST en el influente y efluente del rector UASB

Figura 4.32. Contenido de SSV en el influente y efluente del reactor UASB

La materia orgánica no soluble puede ser lentamente degradada por los microorganismos anaerobios si es retenida en el lecho de lodos dentro del reactor; si no es así, estos sólidos salen con el efluente y afectan la calidad de éste. Como se observa, un gran porcentaje de los SST en el efluente consisten precisamente en materia orgánica; sin embargo, no es posible afirmar que estos SSV estén presentes únicamente debido a los SSV en el influente, ya que podían contarse como SSV la biomasa anaerobia en forma de flóculos que sale del reactor en el efluente. El promedio de
remoción de SST en el reactor UASB para todo el periodo de operación fue de $54\pm19\%$, mientras que la remoción de SSV fue de $57\pm20\%$.

C	SST,	mg.L	SSV, mg.L		
	Iuasb	Euasb	Iuasb	Euasb	
Mínima	540	220	380	80	
Máxima	2,700	1,300	2,380	1300	
Promedio	1,300	595	1,050	470	

Tabla 4.17. Concentración máxima, mínima y promedio de SST y SSV en el influente y efluente del reactor

COV, carga orgánica volumétrica; I_{UASB}, influente del reactor UASB; E_{UASB}, efluente del reactor UASB

4.5.2.6 Evolución de la temperatura, pH, alcalinidad, ácidos grasos y relación alfa

La temperatura en el reactor UASB dependió directamente de la temperatura del agua de rastro alimentada. La temperatura promedio en el influente fue de 22.1±2.1°C, mientras que en el efluente fue de 23.2±1.5. En la Figura 4.33 se presenta un gráfico con el perfil de temperatura durante el periodo de operación del reactor UASB.

Figura 4.33. Perfil de temperatura en el influente y efluente del reactor UASB

En cuanto al pH, durante el periodo observado, se mantuvo cercano a la neutralidad con un valor de 7.3±0.3. Este valor se encuentra dentro del intervalo recomendado para el mantenimiento de las bacterias metanogénicas. En la Figura 4.34 se presentan los valore de pH a lo largo del periodo de operación del reactor UASB, tanto del influente, como del efluente del mismo. Las fluctuaciones en el agua de alimentación fueron constantes, con valores de pH en el efluente dependientes de la tendencia mostrada por el influente; sin embargo, las variaciones en el pH dentro del reactor no son tan extremas. Esto es importante ya que en reactores anaerobios el pH es un factor relevante para el buen funcionamiento del sistema.

Figura 4.34. Comportamiento de pH en el influente y efluente del reactor UASB

En la Figura 4.35 se muestran los perfiles de alcalinidad total y a pH 5.75 del agua de rastro y del reactor UASB. La alcalinidad total promedio fue de 1,180±480 mg·L⁻¹ de CaCO₃ en el influente del reactor UASB, en el efluente el promedio fue de 1,640±600 mg·L⁻¹ de CaCO₃; la alcalinidad promedio a pH 5.75 en el influente fue de 643 ± 286 mg·L⁻¹ de CaCO₃, mientras que en el reactor UASB fue de 1412±548 mg·L⁻¹ de CaCO₃. Se destaca nuevamente la diferencia entre las alcalinidades a pH 4.3 y 5.75. Esta diferencia es menor en el efluente y es indicio de una baja concentración de AGV.

Figura 4.35. Perfil de alcalinidad total y contenido de AGV en el reactor UASB

Durante la operación del reactor no se detectaron indicios de acidificación en el mismo. La alcalinidad útil disponible siempre fue suficiente para amortiguar cambios bruscos en el pH, lo que se confirma siguiendo el comportamiento de éste en el reactor; como se observa en la Figura 4.34, no se tuvieron valores de pH por debajo de 6.7. Es notorio que los valores de alcalinidad dentro del reactor son mayores que los del influente. Como se mencionó anteriormente, esto se debe a la degradación de compuestos orgánicos (Malina y Poholand, 1992) presentes en el agua residual de rastro. El agua residual de rastro, por la sangre desechada en el proceso, contiene cantidades significativas de proteínas y, al llevarse a cabo el metabolismo de éstas, se produce la liberación de amonio, produciendo bicarbonato de amonio y generando alcalinidad, lo que ayudó a mantener un valor de pH cercano a 7 en el caso de los dos reactores anaerobios.

La determinación de AGV indicó que la concentración de estos en el reactor es muy baja. El método empleado para la determinación (Jenkins, 1991) arroja como resultados valores negativos. Esto indica un error del método de cálculo cuando los valores a determinar son muy bajos. Se realizó también un seguimiento a la relación α . En el caso del reactor UASB, la relación α promedio fue de 0.14±0.07. Esta relación está directamente relacionada con el contenido de AGV. En la Figura 4.36 se muestra el comportamiento observado. En general, la relación α se mantuvo dentro de un intervalo que indica un funcionamiento adecuado del reactor.

Figura 4.36. Comportamiento de la relación α en el reactor UASB

4.6 Arranque de reactores de lodos activados

4.6.1 Inoculación

Los reactores aerobios de lodos activados fueron inoculados con licor mezclado proveniente del tanque de aireación de la planta de tratamiento de aguas residuales del IMTA. Los reactores de LA, LA_{AEBR} y LA_{UASB}, forman parte del tratamiento del agua residual de rastro y el influente a cada reactor proviene de los reactores anaerobios AEBR y UASB, respectivamente. El influente de los reactores fue alimentado a estos desde un tanque de transferencia. Se determinó el contenido de sólidos suspendidos volátiles del licor mezclado utilizado en la inoculación, resultando una concentración de SSV de 2,080mg·L⁻¹ para el LA_{AEBR} y de SSV de 1,400 mg·L⁻¹ para el LA_{UASB}. Se evaluaron también las características de sedimentación del lodo, el índice volumétrico resultó ser de 115.4 mL·mg SST⁻¹ para ambos reactores. El volumen de licor mezclado inoculado en cada reactor fue de 16 y 18 L para LA_{AEBR} y LA_{UASB}, respectivamente. El volumen de inóculo correspondió al volumen de trabajo de cada reactor.

4.7 Operación y control del los reactores de lodos activados

Como segunda etapa del tratamiento del agua residual de rastro se implementaron reactores aerobios de lodos activados en la modalidad de aireación extendida. El periodo de operación dependió directamente de la operación de los reactores anaerobios; de esta manera, el periodo de operación del reactor LA_{AEBR} fue de 68 días, mientras que la operación del reactor LA_{UASB} fue de 140 días, ya que se conectaron en los días 260 y 249 de la operación de los reactores anaerobios respectivos. Los primeros 30 días de operación de los reactores aerobios, correspondieron a un periodo de aclimatación de la biomasa. En este periodo se dio seguimiento solamente a los SSV dentro del reactor, así como a la eficiencia de remoción de reactor, la eficiencia de remoción fue constantemente superior al 60%, con un promedio de 65 y 60% para el reactor LA_{AEBR} y LA_{UASB}, respectivamente.

Como se mencionó anteriormente, el influente de los reactores de lodos activados, que corresponde al efluente de los reactores anaerobios, fue alimentado a estos desde un tanque de transferencia. El TRH en el tanque de transferencia fue en promedio 2 h para el efluente alimentado a ambos reactores, LA_{UASB} y LA_{AEBR}. Después del periodo de aclimatación de la biomasa, la operación de los reactores se llevó a cabo con base en la relación F/M, que fue aproximadamente de 0.4 mg DQO·mg SSVLM⁻¹·d⁻¹, valor que se encuentra dentro del intervalo mencionado en la literatura para la operación de reactores de lodos activados (Metcalf & Eddy, 2003). Los reactores aerobios operaron a temperatura ambiente. Los resultados obtenidos se discuten en las siguientes secciones.

4.7.1 Remoción de materia orgánica

El desempeño de los reactores de LA se evaluó con respecto a la remoción de materia orgánica, medida como DQO. La F/M promedio aplicada a los reactores fue de 0.39±0.12 mg DQO·mg SSV-1·d-1 para LA_{AEBR} y 0.42±0.33 mg DQO·mg SSV-1·d-1 para LA_{UASB}. El tiempo de residencia hidráulica (TRH) fue de 1.4 y 1.6 días, respectivamente, para LA_{AEBR} y LA_{UASB}. La diferencia en el TRH se debe a que el volumen de trabajo de cada reactor es diferente y la alimentación para ambos

fue de 11.52 L·d⁻¹. En las Figuras 4.37 y 4.38 se presentan los perfiles, tanto de F/M, como de COV, para cada uno de los reactores.

Figura 4.37. Perfil F/M para los reactores LAAEBR y LAUASB durante el periodo de operación

Figura 4.38. COV alimentada a los reactores LAAEBR y LAUASB durante el periodo de operación

En la Tabla 4.18 se presenta la concentración promedio, mínima y máxima de materia orgánica en el influente y efluente de cada uno de los reactores de lodos activados para todo el periodo de operación. La concentración de materia orgánica en el influente fue muy variable, debido a esto en el efluente se obtuvieron también grandes fluctuaciones en la concentración de materia orgánica. De esta manera, para el caso del reactor LA_{AEBR} el promedio de materia orgánica en el influente y

efluente fue de 990 \pm 908 y 297 \pm 293 mg·L⁻¹, respectivamente; para el reactor LA_{UASB} éstos fueron de 940 \pm 550 y 377 \pm 231 mg·L⁻¹, respectivamente.

С	LA _{AEBR}			LA _{UASB}		
Ū	I	E	R	I	E	R
Promedio	990	297	67	942	377	60
Mínima	170	60	50	313	145	46
Máxima	2770	1,215	87	3,067	1,031	78

Tabla 4.18. Concentración de materia orgánica medida como DQO en el influente y efluente de los reactores de lodos activados

I – materia orgánica en el influente (mg·L⁻¹); E – materia orgánica en el efluente (mg·L⁻¹); R – remoción (%)

Ahora bien, bajo estas condiciones se alcanzaron eficiencias de remoción de materia orgánica del 50 al 87% para el reactor LA_{AEBR} y del 46 al 78% para el reactor LA_{UASB}. En la Figura 4.39 se presentan las eficiencias de remoción alcanzadas de ambos reactores durante el periodo donde se manejaron la F/M y COV antes mencionada. Las eficiencias de remoción resultaron ser significativamente diferentes en cada reactor (p>0.05), la eficiencia promedio de remoción de materia orgánica fue de 67% para el reactor LA_{AEBR} y de 60% para el reactor LA_{UASB}. Estas eficiencias obtenidas son bajas respecto a la capacidad de remoción de materia orgánica en lodos activados para el tratamiento de aguas residuales municipales; sin embargo, coinciden e incluso son superiores a los resultados obtenidos por Núñez y Martínez (2001), empleando un reactor de lodos activados alimentado con el efluente de un reactor UASB, tratando agua residual de rastros. En este artículo, las eficiencias de remoción de materia orgánica de 20°C.

Las bajas eficiencias de remoción alcanzadas en el tratamiento aerobio, alimentado con el efluente de un tratamiento anaerobio previo, se atribuyen a que el efluente del tratamiento anaerobio tiene una baja biodegradabilidad, ya que en éste permanecen los compuestos refractarios presentes en el agua de rastro. Gorgün *et al.* (1995) determinaron, mediante ensayos de respirometría, que cerca del 13% de la materia orgánica, medida como DQO, del agua residual de rastro corresponde a materia orgánica no biodegradable

Figura 4.39. Remoción de materia orgánica en reactores de lodos activados

Se determinó la relación DBO₅/DQO del efluente de los reactores anaerobios y aerobios implementados en este proyecto. El valor promedio para el efluente anaerobio fue de 0.40, que se encuentra por debajo de 0.5, valor al cual se considera que el agua residual es fácilmente biodegradable; mientras que el valor para el efluente aerobio resultó de 0.10. Además, el remanente de materia orgánica promedio, medida como DQO, en el efluente de los reactores de lodos activados fue cercano al 10%, valor similar al porcentaje estimado de materia orgánica no biodegradable en el agua de rastro obtenido por Gorgün *et al.* (1995). Esta información indica que aún si los porcentajes de remoción alcanzados no superan el 70%, la capacidad de remoción del sistema va de acuerdo con estos resultados obtenidos debido a las características del agua en tratamiento.

En general, los sistemas tuvieron una buena respuesta al aumento de carga. En la Figura 4.40 se presenta la variación de la tasa de remoción de materia orgánica respecto a la F/M. Los sistemas fueron capaces de remover mayor cantidad de sustrato al aumentar la F/M. Además se observa que, con el aumento de F/M, el porcentaje de remoción de materia orgánica disminuye. Esto es claro ya que al aumentar los valores de F/M, los puntos en la gráfica tienen una relación (pendiente de una recta) cada vez menor. Con base en estos resultados se puede afirmar que las tasas de remoción de materia orgánica fueron mayores cuando se manejaron cargas menores. De acuerdo con el gráfico de la Figura 4.40, con una F/M máxima de 0.26 kg DQO·kg SSVLM⁻¹·d⁻¹, se alcanza una tasa de

remoción de 0.20 kg DQO-kg SSVLM⁻¹·d⁻¹, resultando un 77% de remoción de materia orgánica. Estos resultados se pueden considerar en estudios posteriores, teniendo en cuenta que a valores de F/M menores de 0.26 kg DQO-kg SSVLM⁻¹·d⁻¹ las eficiencias de remoción son mayores, que a valores más altos de F/M.

Figura 4.40. Variación de la tasa de remoción de materia orgánica respecto a la F/M, comportamiento típico para los reactores de lodos activados

Por otro lado, al comparar la variación de la eficiencia de remoción de materia orgánica con la carga orgánica volumétrica (COV) alimentada al reactor, Figura 4.41, se observa que no hay algún tipo de tendencia en esta relación. Para una misma COV la remoción alcanzada es variable y, al aumentar la COV, las eficiencias no aumentan ni disminuyen, se mantienen en un intervalo entre 60 y 70% para el caso de LA_{UASB}, mientras que para el reactor LA_{AEBR} no se encontró tampoco relación entre estos parámetros. Estos resultados indican la capacidad del sistema con respecto a la eficiencia de remoción de materia orgánica.

El hecho de que los reactores de LA hayan mantenido una respuesta similar, sin importar el aumento de la COV no es sorprendente, ya que al operar el sistema en la modalidad de aireación extendida, se pretende aprovechar el largo tiempo de residencia hidráulica en cada reactor para proporcionar una mayor homogenización del agua alimentada y amortiguar cambios bruscos en la COV y la temperatura.

Figura 4.41. Variación de las eficiencias de remoción de materia orgánica respecto a la COV aplicada a los reactores de lodos activados

4.7.2 Remoción de nitrógeno amoniacal

En los reactores aerobios de lodos activados se presentó la oxidación del nitrógeno amoniacal. En las Figuras 4.42 y 4.43 se presenta la concentración de N-NH₄⁺ en el influente y efluente de cada uno de los reactores LA. Como se observa, la concentración de N-NH₄⁺ en el efluente de ambos reactores fue elevada, en promedio en el reactor LA_{AEBR} fue de 170±54 mg·L⁻¹, mientras que en el reactor LA_{UASB} fue de 190±84 mg·L⁻¹. Es importante destacar que, durante el periodo de operación del reactor LA_{UASB}, las concentraciones de N-NH₄⁺ en el influente fueron altas durante un periodo por las condiciones existentes en el agua de rastro cruda. Al cambiar estas condiciones y disminuir la concentración de N-NH₄⁺, se obtuvo una mejoría importante en el efluente, llegando éste a concentraciones de 60 mg·L⁻¹ de N-NH₄⁺ después del día 110 de operación (Figura 4.43).

Figura 4.42. Concentraciones de nitrógeno amoniacal en influente y efluente del reactor LAAEBR

Figura 4.43. Concentraciones de nitrógeno amoniacal en el influente y efluente del reactor LAUASB

En las Figuras 4.44 y 4.45 se presenta la carga de N-NH₄⁺, tanto másica, como volumétrica, alimentada a los dos reactores de lodos activados durante el periodo de operación de los mismos. Con respecto a la carga másica de N-NH₄⁺, el promedio en cada reactor fue 0.11 ± 0.03 kg de N-NH₄⁺·SSV⁻¹·d⁻¹ para el LA_{AEBR} y 0.17 ± 0.08 kg de N-NH₄⁺·SSV⁻¹·d⁻¹ para el LA_{UASB}. El promedio de carga volumétrica de N-NH₄⁺ para los reactores LA_{AEBR} y LA_{UASB} fue de 0.36 ± 0.06 y 0.28 ± 0.12 kg de N-NH₄⁺·m⁻³·d⁻¹, respectivamente.

Figura 4.44. Carga volumétrica de N-NH₄ en los reactores LA durante el periodo de operación

Figura 4.45. Carga volumétrica de N-NH₄ en los reactores LA durante el periodo de operación

Los porcentajes de remoción de N-NH₄⁺ alcanzados bajo estas condiciones se presentan en la Figura 4.46. Para el reactor LA_{AEBR}, el promedio de eficiencia de remoción de N-NH₄⁺ fue de $66\pm13\%$ para cargas de N-NH₄⁺ de hasta 0.47 kg N-NH₄⁺·m⁻³·d⁻¹; en el caso del reactor LA_{UASB}, la eficiencia de remoción promedio fue de $61\pm7\%$ para cargas de N-NH₄⁺ alimentadas de hasta 0.50 kg N-NH₄⁺·m⁻³·d⁻¹. Las eficiencias de remoción promedio alcanzadas en cada reactor son significativamente diferentes (p>0.05).

Figura 4.46. Eficiencia de remoción de nitrógeno amoniacal en los reactores de lodos activados

El promedio de la tasa específica de remoción de N-NH₄⁺ no resultó ser significativamente diferente en cada reactor (p>0.05), el valor fue de 0.07 ± 0.03 kg N-NH₄⁺·kg SSVLM⁻¹·d⁻¹ para LA_{AEBR} y de 0.11 ± 0.06 kg N-NH₄⁺·kg SSVLM⁻¹·d⁻¹ para LA_{UASB}. En la Figura 4.47 se presentan las tasas específicas de remoción de N-NH₄⁺ para el periodo de operación de los dos reactores de LA.

Figura 4.47. Tasas de remoción específicas de N-NH₄ para los dos reactores de LA

Núñez y Martínez (2001) reportan eficiencias de nitrificación máximas del 75% con cargas de alimentación de hasta 0.6 kg N·m⁻³·d⁻¹; sin embargo, reportan también haber observado eficiencias

mucho más bajas, correspondientes a una tasa específica de nitrificación de 0.002 kg N·m⁻³·d⁻¹. La tasa específica de remoción de N-NH₄⁺ mínima observada durante la operación de los reactores fue de 0.037 kg N-NH₄⁺·kg SSVLM⁻¹·d⁻¹ para LA_{AEBR} y 0.030 kg N-NH₄⁺·kg SSVLM⁻¹·d⁻¹ para LA_{UASB}. Las tasas de remoción de N-NH₄⁺ obtenidas se encuentran en el rango de las encontradas por otros autores, 0.03-0.08 kg N·kg SSVLM⁻¹·d⁻¹ (Wiesmann, 1994), e incluso llegaron a ser superiores a este rango.

En la Figura 4.48 se presenta la relación entre la tasa de remoción específica de N-NH₄⁺ y la carga de N-NH₄⁺ alimentada a los reactores de LA. Los sistemas presentaron una buena respuesta al aumento de carga, transformando mayor cantidad de N-NH₄⁺ mientras más fuera alimentado; sin embargo, las eficiencias de remoción alcanzadas no fueron suficientes para lograr una remoción totalmente exitosa del N-NH₄⁺.

Figura 4.48. Variación en la tasa de remoción de N-NH4⁺ en los reactores de LA con respecto a la carga alimentada de N-NH4⁺

Analizando el gráfico de la Figura 4.48 se observa que los datos se alejan cada vez más de la diagonal, correspondiente a una remoción de 100%, a partir de la carga de 0.15 kg N-NH₄⁺·kg SSVLM⁻¹·d⁻¹. Esto indica que, a cargas mayores que ésta, la eficiencia de remoción de N-NH₄⁺ se ve

afectada significativamente (p>0.05). De esta manera, se tendrá que tener en consideración el establecimiento de este valor de carga máxima de $N-NH_4^+$ para poder optimizar la capacidad de remoción $N-NH_4^+$ del sistema.

En la Figura 4.49 se presenta la relación entre F/M y la tasa específica de remoción de N-NH₄⁺ obtenida con base en los resultados de todo el periodo de operación. En el intervalo de F/M de 0.16 a 0.28 kg DQO·m⁻³·d⁻¹ se observa en el gráfico (Figura 4.49) un incremento en la tasa específica de remoción de N-NH₄⁺. A valores de F/M entre 0.33 y 0.56 kg DQO·m⁻³·d⁻¹ los valores de la tasa específica de remoción de N-NH₄⁺ son muy similares, con un valor promedio de 0.12 kg N-NH₄⁺·kg SSVLM⁻¹·d⁻¹. A valores de F/M mayores de 0.86 y 1.6 kg DQO·m⁻³·d⁻¹ la tasa de remoción de N-NH₄⁺ fue mayor en casi un 100% con respecto a la tasa de remoción obtenida en el intervalo de 0.33 y 0.56 kg DQO·m⁻³·d⁻¹, teniendo como valor promedio 0.23 kg N-NH₄⁺·kg SSVLM⁻¹·d⁻¹. Se observa además que la eficiencia de remoción de N-NH₄⁺ alcanza mayores porcentajes a valores bajos de F/M (<0.28 kg DQO·m⁻³·d⁻¹).

Figura 4.49. Variación en la tasa específica de remoción de N-NH₄ en los reactores de LA con respecto a la relación F/M

La similitud en los resultados obtenidos en este proyecto y en los reportes de Nuñez y Martínez (2001) en cuanto a eficiencias de remoción de N-NH4⁺ alcanzadas indica que la capacidad del

sistema evaluado no alcanza la eficiencia de remoción de nitrógeno amonical requerida para lograr concentraciones en el efluente lo suficientemente bajas para poder cumplir con la normativa mexicana de descarga establecida (60 mg·L⁻¹ de NT como promedio diario, NOM-001-ECOL-1996). No obstante, las cargas de N-NH₄⁺ aplicadas, así como la concentración de SSV en el reactor, pueden ser modificadas de tal manera que los reactores operen a cargas menores y que se tenga una concentración más elevada de SSV en el licor mezclado.

Además, la capacidad máxima del sistema puede estar afectada por fenómenos de inhibición para las bacterias nitrificantes. Determinaciones puntuales de las concentraciones de N-NH₄, N-NO₃ y N-NO₂ en el influente y efluente del reactor indican la oxidación del N-NH₄; las concentraciones determinadas en el influente fueron 229, 0.205, 0.0425 mg·L⁻¹ de N-NH₄, N-NO₃ y N-NO₂, respectivamente, y en el efluente fueron de 161, 35.6 y 102.6 mg·L⁻¹, respectivamente. Claramente se percibe el incremento de N-NO₃ y N-NO₂, indicando la oxidación del N-NH₄; sin embargo, la alta concentración de N-NO₂ puede ser indicio de acumulación de éste en el sistema, debido a inhibición de las bacterias nitrificantes (Fernández-Polanco, 1996). Se sabe que los organismos nitrificantes son sensibles a una amplia variedad de compuestos, tanto orgánicos como inorgánicos, entre ellos aminas, proteínas y amonio libre. En el caso del sistema estudiado tales tipos de compuestos inhibitorios, los organismos nitrificantes continúan proliferando y llevando a cabo las reacciones de oxidación, pero a tasas más bajas (Metcalf & Eddy, 2003).

Durante la operación de los reactores de LA se observó formación excesiva de espuma (Figura 4.50), a partir del día 58 y hasta el día 118. Esto coincide con el periodo en el que la carga específica de N-NH₄⁺ fue superior a 0.2 kg de N-NH₄⁺·kg SSV⁻¹·d⁻¹ (Figura 4.45). Además de la formación de espuma se observó un cambio en las características de los flóculos. Durante el periodo mencionado, se observaron flóculos finos y ligeros. Este punto se discutirá más adelante. Estas observaciones se consideran indicios de inhibición de la biomasa en el reactor.

Figura 4.50. Formación excesiva de espuma en el reactor LAUASB

4.7.3 Características de la biomasa en los reactores anaerobios

4.7.3.1 Concentración de sólidos suspendidos volátiles en los reactores aerobios

La concentración promedio de SSV en el reactor fue de 3,000±537 mg·L⁻¹ para el reactor LA_{AEBR} y de 1,900±558 mg·L⁻¹ para el reactor LA_{UASB}. En éste último reactor, se observó un cambio en las características de los flóculos durante el periodo del día 58 al día 118. Este cambio, como se mencionó anteriormente, coincide con el periodo en que el sistema recibió las más altas cargas de N-NH₄. El hecho de tener flóculos ligeros y finos provocó que las condiciones hidráulicas dentro del área de sedimentación no permitieran la completa sedimentación de éstos, provocando así pérdidas constantes de biomasa en el efluente.

En la Figura 4.52 se observa que la concentración de SSV en el efluente del reactor LA_{UASB} en dicho periodo, osciló entre 250 y 750 mg·L⁻¹. Debido a la baja concentración de SSV y a la pérdida constante de SSV en el efluente, no se llevó a cabo purga de lodos después del día 58. Esto provocó que el tiempo de retención celular (TRC) en el reactor dependiera directamente de las pérdidas de SSV en el efluente

Figura 4.51. Concentración de SSV en el reactor LA_{UASB} y en el efluente del mismo

El TRC varió constantemente. En la Figura 4.52 se presenta la gráfica que describe la variación del TRC a lo largo del periodo de operación.

Figura 4.52. Tiempo de retención de sólidos en el reactor de LAUASB

Se evaluó también la relación existente entre el TRC y la eficiencia de remoción, tanto de materia orgánica, como de nitrógeno amoniacal. La Figura 4.53 presenta estas relaciones. No se observa diferencia significativa (p>0.05) en las eficiencias de remoción de materia orgánica con respecto al TRC.

Figura 4.53. Variación de la eficiencia de remoción de materia orgánica y N-NH₄ con respecto al TRS en el reactor LA_{UASB}

En cuanto a las eficiencias de remoción de $N-NH_4^+$, se percibe un incremento significativo (p>0.05) en la remoción con el aumento del TRC (mayor de 14 días), esto puede relacionarse con el hecho de que las bacterias que oxidan el $N-NH_4^+$ tienen un crecimiento más lento, por lo que TRC elevados permiten el desarrollo de consorcios mayores, incrementando la cantidad de $N-NH_4^+$ oxidado.

4.7.3.2 Propiedades de sedimentación

Las características de sedimentación del los SST (SSV y SSF) de los reactores de lodos activados se evaluaron por medio del índice volumétrico de lodos (IVL). En la Figura 4.54 se presentan los valores correspondientes al IVL de los SST de ambos reactores. Respecto a este parámetro, se considera que un lodo con un IVL de 100 mL·g⁻¹ o menor, tiene buenas propiedades de sedimentación; IVL superior a un valor de 150 mL·g⁻¹ indica presencia de organismos filamentosos que evitan una buena sedimentación (Metcalf & Eddy, 2003).

Figura 4.54. Índice volumétrico de lodos a lo largo del periodo de operación de los reactores de LA

Como se puede observar en la Figura 4.54, con el transcurso del tiempo las propiedades de sedimentación de los SST de ambos reactores fueron mejores. Sin embargo, en el caso del reactor LA_{UASB} se observó un cambio en las características de los flóculos de grandes y pesados a finos y ligeros. Esto ocurrió del día 58 al día 108. Además, se observó la excesiva presencia de espuma en el reactor. Se realizó una re-inoculación al reactor, pero continuó la presencia de espuma y los flóculos siguieron presentando las características descritas anteriormente. Estos fenómenos se presentaron cuando el influente al reactor alcanzó las máximas concentraciones de N-NH₄ y COV elevada, una vez que la concentración de N-NH₄ y la COV presentaron niveles menores, se observó la disminución de la espuma así como también mejora en las características del lodo.

4.7.3.3 Tasa específica de utilización de oxígeno

Se llevaron a cabo pruebas de respiración de los lodos de cada uno de los reactores. El seguimiento de esta prueba sirve para evaluar la "salud" del lodo en cuestión, ya que tasas de respiración muy bajas pueden indicar problemas de toxicidad (Madoni, 1999). A partir de estas pruebas, se determinó la tasa específica de utilización de oxígeno (TEUO) para la biomasa de los dos reactores de LA. La Tabla 4.19 presenta los resultados promedio observados durante el periodo de operación de los reactores.

Deaster	TUO	TEUO	
Reación	mg O ₂ ·L ⁻¹ ·min ⁻¹	mg O ₂ ·mg SSVLM ⁻¹ ·h ⁻¹	
LA UASB	0.450±0.180	0.014±.004	
LA A _{EBR}	0.580±0.207	0.013±.004	

Tabla 4.19. Tasa de utilización de oxígeno observada en los reactores de lodos activado

TUO, tasa de utilización de oxígeno; TEUO tasa específica de utilización de oxígeno

Madoni *et al.* (1999) determinaron la tasa específica de utilización de oxígeno de una biomasa de un reactor de lodos activados tratando agua residual, tanto municipal, como industrial. Determinaron que, para el lodo en cuestión, la tasa específica de utilización de oxígeno fue 0.026±0.005 mg O₂·mg SSV-1·h·1. Comparando este resultado con el obtenido en este estudio, se observa que el licor mezclado tratando agua residual de rastro presenta una TEUO mucho menor, casi la mitad de la reportada por Madoni *et al.* (1999). Esto puede deberse a la menor biodegradabilidad que presenta el agua de rastro previamente tratada mediante sistemas anaerobios. También indica que la salud de las bacterias heterotróficas no es la adecuada.

4.7.4 Evolución de pH, OD y temperatura

El pH, temperatura, conductividad y oxígeno disuelto fueron evaluados diariamente para asegurar que se encontraran en intervalos adecuados para la operación de los reactores de lodos activados. Las Figuras 4.55 a 4.57 muestran la evolución de estos parámetros en ambos reactores de LA.

Los sistemas de lodos activados operan efectivamente dentro de un intervalo de pH de 6.5 a 8.5. En la Figura 4.56 se observa que ambos reactores operaron en el intervalo de 5.5 a 7.5. El pH de entrada a los reactores es de 7.5 y 7.3, respectivamente, por lo que no fue necesario neutralizar. Es claro que a lo largo del periodo de operación de los reactores de LA el pH disminuyó de manera constante. Este fenómeno se asocia al proceso de nitrificación. Este proceso conlleva el consumo de alcalinidad, lo que se refleja en la disminución del pH.

Figura 4.55. Evolución de pH en los reactores de LA

Como se mencionó anteriormente, el reactor LA_{AEBR} fue alimentado con el efluente del reactor AEBR, el cual operó a una temperatura de 30 °C. Sin embargo, el efluente del AEBR pasaba primero por el sedimentador de 1L y después pasaba al tanque de transferencia.

Figura 4.56. Seguimiento de temperatura a la salida de los reactores de LA

El TRH en el sedimentador más el TRH en el tanque de transferencia fue aproximadamente de 4 h, suficiente para que la temperatura elevada del efluente del reactor AEBR (30°C) disminuyera. Esto se comprobó con mediciones de temperatura donde se observaba la disminución de temperatura en

2°C tanto en el sedimentador, como en el tanque de transferencia. Esto aunado a la aireación en el reactor de lodos activados tuvo como resultado que la temperatura dentro de los dos reactores fue similar, como se puede observar en la Figura 4.56. Con una temperatura promedio de 20.4 ± 0.7 °C en el caso del reactor LA_{AEBR}, y 20.8±0.9 °C en el caso del reactor LA_{UASB}.

La concentración de OD en los reactores de LA debe de mantenerse por arriba de los 2 mg·L⁻¹ (Champman *et al.*, 1976; Jenkins *et al.*, 1993). Como se puede observar en la Figura 4.57, en el caso del reactor LA_{AEBR} con respecto al LA_{UASB}, el OD se mantuvo arriba de esta concentración recomendada, siendo el promedio de OD 4.7±1.2y 5.3 ± 0.9 mg·L⁻¹, respectivamente.

Figura 4.57. Concentración de oxígeno disuelto, OD, en los reactores de lodos activados

4.8 Desempeño de los reactores anaerobios y el sistema acoplado

4.8.1 Reactores anaerobios

El objetivo de la implementación de los reactores anaerobios fue la remoción de una gran parte de la materia orgánica para que los sistemas aerobios no recibieran cargas muy elevadas. En este sentido, el desempeño de los reactores anaerobios jugó un papel muy importante en la calidad del

efluente final. En la Tabla 4.20 se presentan los resultados obtenidos sólo en los reactores anaerobios implementados, así como resultados de otras investigaciones usando diferentes configuraciones anaerobias para el tratamiento de agua residual de rastro

El reactor UASB operó con una temperatura de 23 °C y con una carga similar que los reactores UASBf y UASBg, que operaron a temperatura de 20°C, alcanzando mayores eficiencias de remoción que estos. El TRH en el reactor UASB fue mayor (0.8 d) y el porcentaje de DQO insoluble en el agua tratada menor (30-40%). Estos factores influyeron favorablemente en la operación del reactor, reflejando mayores eficiencias de remoción que las presentadas para los reactores UASBf y UASBg.

Comparando las remociones obtenidas con el reactor UASB en este proyecto con las obtenidas en el caso del reactor UASBf operado a 37°C, la carga de operación del UASB es ligeramente menor (6 kg DQO·m⁻³·d⁻¹), así como la eficiencia de remoción, 84%, comparada con la máxima alcanzada en el reactor UASBf (37°C), 90%. La diferencia de temperatura a la que se operaron los reactores es notable, y se esperaría un mejor desempeño del reactor operado a temperatura mayor. Además, el TRH en el reactor UASBf (37°C) llega a ser más del doble del TRH en el reactor UASB (37°C) llega a ser más del doble del TRH en el reactor UASB y el porcentaje de materia orgánica insoluble, medida como DQO, en el agua tratada también es menor (12-33%).

En cuanto al resto de los reactores, estos fueron operados a COV mucho mayores que las aplicadas al reactor UASB.

Analizando el desempeño del reactor AEBR (30 °C) con respecto al los reactores UASBf y FA que, a pesar de la diferencia de temperatura, operaron en condiciones mesofílicas (37°C), y con COV dentro del rango de operación del reactor AEBR (4 a 7 kg DQO·m⁻³·d⁻¹), se observa un desempeño similar en cuanto a eficiencias de remoción de materia orgánica. No obstante, el reactor AEBR operó con TRH significativamente menor (0.6 d) y mayor contenido de materia orgánica insoluble en el agua tratada (30-40%), bajo estas condiciones los resultados obtenidos con este reactor son excelentes comparados con los resultados reportados para los reactores UASBf y FA.

		-				
Poactor	COV,	трц ч	T °C	DQO	Remoción de	Doforoncia
Reactor	kg DQO·m ⁻³ ·d ⁻¹	TIXIT, U	insoluble, % DQO total		DQO total, %	Kelelelicia
UASBf	3.5	0.3	20	40-50	70	Sayed y DeZeeuw (1984)
UASBg	4-5	0.4	20	40-50	62	Sayed <i>et al.</i> (1987)
Filtro anaerobio	2-18.5	0.5-5	20	45	30-85	Tritt (1992)
UASBf	6.5	1-2	37	12-33	60-90	Ruiz <i>et al</i> . (1997)
Filtro anaerobio	5	1.5	37	12-33	63-85	Ruiz <i>et al.</i> (1997)
Lecho fluidificado	35	0.1-0.3	35	4	85	Borja <i>et al</i> . (1995)
EGSB	15	0.2	35	45	70	Núñez y Martínez (1999)
UASB-UASB	15	0.2	18	55	90	Sayed <i>et al</i> . (1993)
UASB-FA	5-32	0.1-0.5	35	10	45-98	Borja <i>et al.</i> (1995)
AEBR	4, 7	0.6	30	30-40	84, 73	Resultados de este
UASB	4, 6	0.8	23	30-40	73, 84	proyecto

Tabla 4.20. Comparación de tratamiento anaerobio de aguas residuales provenientes de rastros

 $\begin{array}{l} \text{UASB} - \text{reactor anaerobio de flujo ascendente y lecho de lodos (upflow anaerobic sludge bed); } \text{UASB}_{f} - \text{UASB} \\ \text{con lodo floculado; } \text{UASB}_{g} - \text{UASB} \\ \text{con lodo granular; } \text{FA} - \text{Filtro anaerobio; } \text{EGSB} - \text{Reactor con lecho de lodo} \\ \text{granular expandido (expandend granular sludge bed); } \text{AEBR} - \text{reactor anaerobio de lecho expandido (anaerobic expanded bed reactor); } \text{COV} - \text{carga orgánica volumétrica; } \text{TRH} - \text{tiempo de residencia hidráulica; } \text{T, temperatura} \\ \end{array}$

El resto de los sistemas operados en condiciones mesofílicas fueron alimentados con cargas orgánicas superiores a las aplicadas al reactor AEBR (15 a 35 kg DQO·m⁻³·d⁻¹). Además, en el caso del reactor fluidificado y la combinación UASB-FA, la fracción de materia orgánica suspendida en el agua residual es mucho más baja que la reportada en otros estudios (4 y 10%). Siendo que la hidrólisis de la materia orgánica suspendida se considera la etapa limitante en la degradación anaerobia, la comparación entre estos reactores y los implementados en este estudio no es posible.

Tomando en cuenta el desempeño del reactor AEBR y el UASB operando a una COV similar, es claro que la temperatura de operación del reactor AEBR favorece el desempeño del mismo de manera significativa. El reactor UASB, operando con una COV mayor, presentó en una mejoría notable en la eficiencia de remoción alcanzada, incluso similar a la reportada por sistemas operados a temperatura mayor, como el reactor AEBR. Los problemas de operación descritos con anterioridad que se presentaron en el reactor AEBR afectaron su desempeño y esto se refleja en la disminución en la eficiencia de remoción de materia orgánica cuando el reactor fue operado con COV de 7 kg DQO·m⁻³·d⁻¹.

Debido a que los reactores anaerobios estudiados en este proyecto pueden ser operados bajo cargas orgánicas volumétricas mayores a las manejadas en este estudio, es recomendable la evaluación del desempeño de estos sistemas bajo cargas superiores, habilitando la comparación de los resultados con los de otros proyectos, como los presentados en la Tabla 4.21.

4.8.2 Sistema acoplado

De acuerdo con el objetivo planteado, se evaluó la remoción de materia orgánica mediante los sistemas descritos anteriormente. El sistema AEBR-LA operando bajo una COV de 4 kg DQO·m⁻³·d⁻¹ permitió obtener un 94% de remoción de materia orgánica medida como DQO. Bajo estas mismas condiciones el sistema UASB-LA alcanzó un porcentaje ligeramente inferior, del 89%.

Ahora bien, debido a cambios imprevistos en las características del agua de rastro, aunado a limitaciones en el equipo de bombeo, los sistemas operaron a COV superiores a 4 kg DQO·m⁻³·d⁻¹. En estas condiciones, el sistema AEBR-LA alcanzó un porcentaje de remoción de materia orgánica, medida como DQO, del 12% (7 kg DQO·m⁻³·d⁻¹), mientras que el sistema UASB-LA permitió obtener un 93% de remoción (6 kg DQO·m⁻³·d⁻¹). Como es de notarse, el porcentaje de remoción alcanzado con una COV de 7 kg DQO·m⁻³·d⁻¹). Como es de notarse, el porcentaje de remoción alcanzado con una COV de 7 kg DQO·m⁻³·d⁻¹. Este resultado se adjudica, no a la capacidad del reactor AEBR, sino a los problemas operativos que surgieron en ese periodo. Además, es importante mencionar que los sistemas no se están comparando entre ellos ya que los reactores anaerobios operaron a diferentes temperaturas (30°C en AEBR y 23°C en UASB) y la literatura menciona que en el caso de degradación anaerobia la temperatura tiene un efecto importante con respecto a la actividad microbiana (Castro-González, 2004; Malina y Pohland, 1992; Speece, 1996).

En la Tabla 4.20 se presentan los resultados obtenidos en este proyecto, y el obtenido por Nuñez y Martínez (2001) implementando un sistema acoplado anaerobio-aerobio para el tratamiento de aguas residuales de rastros.

Tabla 4.21. Comparación de tratamiento de aguas residuales provenientes de rastros implementandosistemas acoplados anaerobio-aerobio

Poactor	COV,		T °C	DQO	Remoción de	Poforoncia	
Reactor	kg DQO·m-3·d-1	TRH, U	insoluble, % DQO total, %		Referencia		
UASB – LA	2.5	0.7	35, 20	-	85	Núñez y Martínez (2001)	
AEBR – LAAEBR	4, 7	2.1	30, 20	30-40	94, 91	Resultados de este	
UASB – LAUASB	4, 6	2.4	23, 20	30-40	89, 93	proyecto	

AEBR – reactor anaerobio de lecho expandido (anaerobic expanded bed reactor); UASB – reactor anaerobio de flujo ascendente y lecho de lodos (upflow anaerobic sludge bed); LA – Lodos activados; COV – carga orgánica volumétrica; TRH – tiempo de residencia hidráulica; T – temperatura; DQO – demanda química de oxígeno.

La eficiencia de remoción de materia orgánica alcanzada mediante los sistemas implementados en esta investigación es superior a la alcanzada por Núñez y Martínez (2001), incluso operando a una COV mayor. Sin embargo, el TRH en los sistemas acoplados, AEBR–LA_{AEBR} y UASB–LA_{UASB}, es tres veces mayor al reportado por Núñez y Martínez (2001), por lo que la biomasa se encontraba mayor tiempo en contacto con el agua residual, permitiendo una mayor transferencia de sustrato. El TRH en los reactores aerobios LA_{AEBR} y LA_{UASB} contribuye con más de la mitad del TRH total en el sistema, y es el doble del TRH en los reactores anaerobios. La operación de todos los sistemas fue a diferentes temperaturas. A pesar de esto el sistema UASB–LA_{UASB}, operado a las temperaturas más bajas, mostró un excelente desempeño alcanzando remociones superiores a las del sistema reportado por Núñez y Martínez (2001), y eficiencias similares al AEBR–LA_{AEBR}.

La calidad del efluente final de los sistemas acoplados se estimó que cumple con los límites de descarga para materia orgánica establecidos en la normativa mexicana (NOM-001-SEMARNAT-1996). Esto tomando en cuenta la relación de DBO₅/DQO y la concentración promedio de materia orgánica medida como DQO determinada en el efluente de los reactores aerobios. De esta manera, se estimó que la concentración de DBO₅ promedio en el efluente sería de 30 mg·L⁻¹ para el LA_{AEBR} y de 42 mg·L⁻¹ para el LA_{UASB}. En la Tabla 4.22 se presentan los niveles máximos de materia orgánica, y nutrientes, establecidos en la normativa mexicana para descarga a cuerpos receptores, así como las concentraciones de los efluentes finales de los sistemas acoplados implementados en esta investigación.

Tabla 4.22. Limites máximos permisibles para materia orgánica, NT y PT y calidad del efluente de los
sistemas acoplados UASB-LA y AEBR-LA

	Parámetros		DBO5, mg·L ⁻¹	NT, mg·L ⁻¹	PT, mg·L-
	Lice on rigge agrícola (A)	P.M.	150	40	20
	USO en nego ágricola (A)	P.D.	200	60	30
Díoc	Lico público urbano (D)	P.M.	75	40	20
RIUS		P.D.	150	60	30
	Drotocción do vido covótico (C)	P.M.	30	15	5
	Protección de vida acualica (C)	P.D.	60	25	10
Embolação	Llee on riege egrícele (D)	P.M.	75	40	20
Empaises	USO en nego ágricola (B)	P.D.	150	60	30
naturales y artificiales		P.M.	30	15	5
	Uso publico urbano (C)	P.D.	60	25	10
	Explotación pesquera, navegación	P.M.	150	N.A.	N.A.
	y otros usos (A)	P.D.	200	N.A.	N.A.
٨		P.M.	75	N.A.	N.A.
Aguas	Recreación (B)	P.D.	150	N.A.	N.A.
	Faturation (D)	P.M.	75	15	5
	Estuarios (B)	P.D.	150	25	10
	UASB – LA	E (P.D.)	42*	70	11.9
	AEBR - LA	E (PD)	30*	110	11.5

* Estimaciones en base a DQO y relación DBO₅/DQO en el efluente de los reactores aerobios; P.D. – Promedio diario; P.M. – Promedio mensual; N.A. – No es aplicable; (A), (B) y (C): Tipo de cuerpo receptor según la Ley Federal de Derechos; E – efluente.

De acuerdo con los niveles establecidos de materia orgánica, el efluente cumple con los requerimientos de descarga a cuerpos receptores tipo A, B y C, tomando en cuenta el promedio diario de DBO₅. En cuanto al PT, las determinaciones al efluente de los reactores aerobios indican una concentración promedio de 11.5 y 11.9 mg·L⁻¹, para el reactor LA_{AEBR} y LA_{UASB}, respectivamente. Estas concentraciones son aceptables para descarga a cuerpos receptores tipo A y B, con excepción de estuarios. Sin embargo, los niveles de NT alcanzados sobrepasan el límite máximo establecido en la norma. La concentración más baja de NT en el efluente fue de 110 y 70

mg·L⁻¹, para el reactor LA_{AEBR} y LA_{UASB}, respectivamente. Esto indica que el sistema aerobio de lodos activados en modalidad aireación extendida no alcanza la capacidad suficiente de remoción de nitrógeno amoniacal requerida para el cumplimiento de la norma.

5 CONCLUSIONES Y RECOMENDACIONES

5.1 Conclusiones

Se implementaron a nivel de laboratorio dos tratamientos de aguas residuales provenientes de rastro mediante sistemas de biodegradación anaerobia-aerobia. Se obtuvo que, la combinación de procesos de biodegradación anaerobia-aerobia es adecuada para el tratamiento de aguas residuales de rastros.

Se llevaron a cabo caracterizaciones a la descarga de agua residual de rastro modelo para la investigación mediante análisis fisicoquímicos y microbiológicos. Por razón de la caracterización inicial del agua residual de rastro se determinó que es factible implementar sistemas anaerobios para el tratamiento de agua residual de rastro. Las caracterizaciones subsecuentes evidenciaron la variabilidad de la composición del agua residual descargada. De los parámetros evaluados se observó que, el incremento en las concentraciones de N-NH₄ depende directamente de la recuperación de la sangre en el proceso de matanza.

El arranque y estabilización los procesos biológicos anaerobios se llevó a cabo siguiendo una estrategia de aclimatación de la biomasa en cada reactor. La estrategia de aclimatación consideró el manejo de tres porcentajes diferentes del agua de rastro antes de llegar a la alimentación al 100%. El aumento en el porcentaje alimentado de agua de rastro se realizó una vez que el sistema alcanzara una eficiencia de remoción del 80%. El periodo de aclimatación fue de 129 días en el caso del reactor AEBR y 118 días en el caso del UASB.

La capacidad de remoción de los dos sistemas acoplados anaerobio-aerobio se determinó tomando en cuenta la remoción de materia orgánica medida como demanda química de oxígeno. La configuración del sistema UASB (23°C)-LA (20°C) permite obtener remociones de DQO del 89 al 93% y de N-NH₄ del 60%. Mediante el sistema AEBR (30°C)-LA (20°C) se obtienen remociones ligeramente mayores, de 91 a 94% y 70%, respectivamente. En el caso de los sistemas anaerobios implementados, se tiene que, al aplicar una carga orgánica volumétrica promedio de 4 kg DQO·m⁻³·d⁻¹, el proceso de biodegradación anaerobia del agua de rastro permitió la obtención de remociones promedio de DQO del 84 y 73%, para el AEBR y UASB, respectivamente. Con un aumento en la COV a 6 kg DQO·m⁻³·d⁻¹, los resultados en el reactor UASB fueron favorables alcanzando una remoción promedio de 84%. En este periodo al no ser adecuadas las condiciones hidráulicas en el reactor AEBR se obtuvo una menor remoción, del 73%, a pesar de operar a una temperatura mayor.

Los reactores aerobios de lodos activados, operados con una carga promedio de 0.40 g DQO·g SSVLM·1·d⁻¹, alcanzaron remociones promedio de DQO del 67% para el LA_{AEBR} y 60% para el LA_{UASB}. La remoción promedio de N-NH₄ en los reactores aerobios fue de 66 y 61%, para LA_{AEBR} y LA_{UASB}, respectivamente.

La cantidad de biogás generado en los reactores anaerobios se determinó mediante mediciones por desplazamiento de líquido. En el caso del reactor AEBR, el promedio de biogás producido fue de 18.2±3.1 L, correspondiente a un 92% de la producción teórica estimada. Se relacionó la producción de biogás con la materia orgánica removida, en promedio, este valor fue de 0.47±0.03 m³ de biogás·kg DQO removida⁻¹. Por otro lado, el promedio de biogás producido en el reactor UASB por día fue de 20.3±8.2 L que corresponde sólo a un 52% de la producción teórica estimada. En cuanto a la producción de biogás por materia orgánica removida el valor promedio fue de 0.28±0.05 m³ de biogás·kg DQO removida⁻¹. Los bajos valores de biogás medidos directamente del reactor UASB se debieron a fallas y fugas en el sistema de separación gas-líquido.

La hipótesis planteada de que las eficiencias de remoción de materia orgánica son diferentes para cada sistema combinado de un sistema anaerobio con un sistema aerobio, se acepta. Las eficiencias de remoción alcanzadas fueron diferentes para cada combinación de sistema anaerobio con sistema aerobio.

5.2 Recomendaciones

Los sistemas anaerobios implementados son de alta carga por lo que se recomienda evaluar su desempeño a cargas orgánicas volumétricas superiores a las implementadas en este proyecto (mayores a 6 kg DQO·m⁻³·d⁻¹), corrigiendo previamente los problemas de diseño y operación encontrados en esta investigación.

Los reactores de lodos activados, en su modalidad de aeración extendida, bajo las condiciones operativas en este proyecto no alcanzaron la capacidad de remoción de nitrógeno amoniacal requerida para el cumplimiento de los límites normativos para descarga a cuerpos receptores. Se recomienda buscar una opción alternativa de tratamiento aerobio o variar las condiciones de operación, principalmente el aumento en concentración de SSV en cada reactor que, en este proyecto, se mantuvo alrededor de 2,000 mg·L⁻¹ y disminuir la F/M a valores en el intervalo de 0.20 a 0.25 g DQO·g SSV⁻¹·d⁻¹.

ANEXO A

Métodos de análisis para los parámetros fisicoquímicos determinados

Para los análisis especificados en la Tabla 3.4 se siguieron los métodos de acuerdo con el libro *Standard Methods for the Examination of Water and Wastewater* (APHA, 1998), salvo por los métodos que se especifique diferente. La siguiente tabla es un resumen de los métodos empleados:

Parámetro	Método de análisis	Equipo
Demanda química de oxígeno (DQO)	Digestión con permanganato de potasio*	Espectrofotómetro Hach, DR 2000
Nitrógeno total (NT)	Digestión con persulfato (HACH 10072)	Espectrofotómetro Hach, DR 2000
Nitrógeno amoniacal (NH ₄ -N)	Método Nessler*	Espectrofotómetro Hach, DR 2000
Fósforo total (PT)	Digestión con persulfato ácido*	Espectrofotómetro Hach, DR 2000
Sulfatos (SO ₄ ²⁻)	Sulfaver 4 (HACH 8051)	Espectrofotómetro Hach, DR 2000
Sulfuros (S ²⁻)	Azul de metileno*	Espectrofotómetro Hach, DR 2000
Alcalinidad total como CaCO ₃	Volumétrico	Bureta
Sólidos suspendidos volátiles (SSV)	Gravimétrico	Estufa de secado. Mufla
Sólidos suspendidos totales (SST)	Gravimétrico	Estufa de secado. Mufla
Sólidos suspendidos fijos (SSF)	Gravimétrico	Estufa de secado. Mufla

*Adaptado de Standard Methods for the Examination of Water and Wastewater (APHA, 1998)

Prueba simplificada de actividad metanogénica específica en discontinuo en sistemas estáticos

Material:

- Botellas de suero de 500 mL;
- Incubadora o baño maría a 35°C;
- Tapones de hule;
- Embudos pequeños;
- Matraz de 1 litro;
- Matraz de 100 mL;
- Probeta graduada de 100 mL;
- Agujas desechables;
- Manguera de látex;
- Conexiones "Y";
- Agua destilada.

Soluciones:

- Solución de sosa 1N: Colocar un matraz de 1 litro que contenga aproximadamente 600 mL de agua destilada, en un recipiente con agua fría. Pesar 40 g de NaOH y adicionarlos al matraz, tapar y mezclar ligeramente hasta la completa disolución de la sosa; esperar a que se enfríe y adicionar 5 gotas de fenoftaleína, aforar a 1 litro. Esta solución deberá renovarse cuando el pH de la solución esté por debajo de 12, lo cual se indica por el vire de incoloro a rosa;
- Solución de fenoftaleína: Disolver 0.5 g de fenoftaleína en agua destilada y diluir a 100 mL;
- Solución patrón de ácido acético a 100 g DQO·L⁻¹: En un matraz de 1 litro, colocar 150 mL de agua destilada, adicionar 89 mL de ácido acético glacial (99.7%). Para ajustar el pH, colocar el matraz dentro de un recipiente con agua y adicionar sosa 6N, gota a gota. Cuando se esté cerca de pH=7, diluir la sosa cinco veces y continuar hasta el pH=7. Aforar a 1litro con agua destilada. 1 mL de está solución equivale a 100mg de DQO como ácido acético.

Procedimiento

- 1. Determinar previamente al lodo, los sólidos suspendidos totales, volátiles y fijos, la muestra debe estar perfectamente homogenizada.
- En una botella de suero de 500 mL, adicionar a 250 mL de agua destilada hervida y sin airear 10 mL de la solución de ácido acético (4 g DQO·L⁻¹ concentración en la botella).
- Agregar el volumen necesario de lodo para una masa de 1 g SSV, que corresponde aproximadamente a una concentración del orden de 4 g SSV·L⁻¹ dentro de las botellas. La masa de lodo adicionado debe ser medida con precisión.
- 4. En caso de sospechar limitación de nutrientes, adicionar: 1 mL·L⁻¹ de la solución de macronutrientes, oligoelementos y sulfuros, así como 0.2 g·L⁻¹ de extracto de levadura.

Solución	рН	Reactivo	Concentración
		NH ₄ CI	170 g⋅L-1
Solución do macronutriantos	Aprox. 3.27	KH ₂ PO ₄	37 g⋅L-1
		CaCl ₂ . 2H ₂ O	8 g·L ⁻¹
		MgSO ₄ . 4H ₂ O	9 g·L⁻¹
		FeCl ₃ . 4H ₂ O	2000 mg·L ⁻¹
		CoCl ₂ . 6H ₂ O	2000 mg·L ⁻¹
		MnCI . 4 H ₂ O	500 mg·L ⁻¹
Solución de micronutrientes		CuCl ₂ . 2H ₂ O	30 mg⋅L ⁻¹
Para la preparación de la solución,		ZnCl ₂	50 mg⋅L ⁻¹
disolver primero la rezarsurina y	Aprox. 1.63	H ₃ BO ₃	50 mg⋅L ⁻¹
después agregar los demás		(NH ₄)6M07O ₂₄ .4H ₂ O	90 mg⋅L ⁻¹
elementos. Agitar hasta la completa		NaSeO ₃ . 5H ₂ O	100 mg⋅L ⁻¹
disolución		NiCl ₂ . 6H ₂ O	50 mg·L ⁻¹
		EDTA	1000 mg·L ⁻¹
		HCI 36%	1 mg·L⁻¹
		Resarzurina	500 mg·L ⁻¹
Solución de sulfuro		NaS.9H ₂ O	100 g⋅L-1
Esta solución debe prepararse el			
mismo día que se va a utilizar			

- 5. Llenar la botella con el agua destilada hervida, cuidadosamente para evitar su aireación, hasta el volumen efectivo (90% del volumen total). Tapar la botella con tapón de hule perforado a todo lo alto con una aguja de jeringa. Verificar que no se tengan fugas.
- 6. Mantener el sistema a una temperatura constante de 35°C.
- 7. En otra botella de suero adicionar hasta su llenado total la solución de NaOH; tapar con tapón de hule perforado por una aguja, con cuidado para evitar derrames.
- Colocar la botella de NaOH boca abajo y conectarla por medio de la manguera a la botella que contiene el lodo. Colocar un tubo en forma de "T" en el doblez inferior de la manguera. La "T" funciona como trampa para NaOH, impidiendo su entrada en la botella de lodo.
- 9. Poner una segunda aguja, en el tapón de la botella con sosa. Este arreglo permite la evacuación de la solución por desplazamiento y así medir el volumen de metano producido, el cual es igual al volumen de NaOH desplazado y recogido en el frasco con embudo.
- 10. Una vez que el experimento ha comenzado, determinar la producción de metano a intervalos regulares de tiempo, mediante la lectura del líquido desalojado a la probeta con el propósito de identificar el periodo en el que se obtiene la máxima producción de gas. Es importante agitar suavemente la botella que contiene el lodo antes de realizar la lectura, para liberar el gas del lodo.
- 11. Puede considerarse conveniente hacer una segunda y tercera alimentación. En este caso, cuando el 80% del sustrato se haya consumido, adicionar una segunda alimentación de AGV y hasta una tercera adición. Se puede estimar el sustrato consumido con la producción esperada de metano.
- 12. Cada muestra de lodo se corre por duplicado. Para cada serie de ensayos se incluye un blanco que contiene lodo y micronutrientes, sin sustrato. Esto sirve para corregir la producción endógena de gas, así como el volumen desplazado por cambios de temperatura y de presión atmosférica.
- 13. Construir una gráfica de volumen acumulado de metano en mililitros contra tiempo acumulado en horas.
- 14. Definir el periodo de tiempo en el que se ha obtenido alrededor del 50% del metano esperado a partir del sustrato adicionado.
- 15. La pendiente de la línea de regresión de este segmento corresponde a la velocidad máxima de producción de metano (R). En caso de presentarse una fase lag (de aclimatación) no considerarla en la determinación de la pendiente.
- 16. Una vez obtenido el valor de R, la actividad metanogénica específica, AME, puede calcularse mediante la siguiente fórmula:

$$A_{CH_*} = \frac{(R*24)}{(FC*MSSV)}$$

donde:

 $R = Velocidad de producción de CH_4 en mL CH_4 d^{-1};$

24 = Factor de conversión de horas a días;

FC = Factor de conversión de mL de metano a gramos de DQO en mL CH₄·g DQO⁻¹ (ver Tabla) MSSV = masa de lodo en la botella de ensayo, g SSV

Temperatura de la botella invertida °C	CH₄seco mL CH₄∙gDQO-1	CH _{4húmedo}
10	363	367
15	369	376
20	376	385
25	382	394
30	388	405
35	395	418
40	401	433
45	408	450
50	414	471

Determinación indirecta de la concentración de ácidos grasos volátiles, AGV

La determinación de la concentración de AGV se llevó a cabo con base en el estudio publicado por Jenkins *et al.* (1991). En este estudio los autores describen un método para calcular indirectamente la concentración de AGV tomando en cuenta la determinación de alcalinidad a pH 5.75 y 4.3. Utilizando la siguiente ecuación, se obtiene el valor de AGV calculado en mg CaCO₃·L⁻¹.

$$CVA = \frac{(A/k_{4.3} - 1.25A/k_{5.75})}{0.85 \cdot 0.83}$$

donde,

CVA, es el valor calculado de ácidos grasos volátiles;

Alk_{4.3}, es la determinación de alcalinidad a pH 4.3;

*Alk*_{5.75}, es la determinación de alcalinidad a pH 5.75.

Jenkins *et al.* (1991) encontraron que por este método los valores reales de AGV y los calculados tenían una buena correlación cuando la concentración de AGV era alta pero no a bajos valores de AGV. Así pues, cuando la concentración de AGV es baja, se espera que el error asociado al análisis se incremente. De este modo, se espera una correlación baja a valores bajos de AGV. Incluso considerando los valores de AGV bajos, los resultados de una prueba de probabilidad de dos colas en un valor de 0.15, soportan la hipótesis de que AGV=CVA no puede ser rechazada a este nivel. El coeficiente de correlación de AGV y CVA es de 0.92.

Cuantificación del biogás por desplazamiento de líquido y determinación de la producción teórica

La cuantificación del biogás generado por los reactores anaerobios AEBR y UASB se determinó mediante el desplazamiento de un líquido. Se utilizaron dos muestreadotes de gas de un volumen aproximado de 300 mL. Estos se conectaron mediante una manguera de látex. Se introdujo el líquido para el desplazamiento a los muestreadotes, en uno de los muestreadotes se colocaba la manguera de salida del biogás del reactor, en el otro muestreador las salidas se tapaban para observar el desplazamiento del líquido por el volumen de biogás que entraba al muestreador. En la

siguiente figura se presenta un diagrama del sistema de cuantificación empleado en esta investigación.

Las mediciones se realizaron 3 o 4 veces por día por un lapso de 5 minutos.

Para determinar la producción teórica del biogás se calculó la cantidad de materia orgánica removida por día, considerando la concentración a la entrada de los reactores y la eficiencia de remoción observada en el día correspondiente. El valor resultante se multiplico por 0.5 m³ de biogás·kg de DQO removida⁻¹, valor de producción de biogás típico en reactores anaerobios (Malina y Pohland, 1992). De esta manera se obtiene el volumen de biogás teórico de acuerdo a la producción típica de biogás en reactores anaerobios reportada en la literatura.

ANEXO B

Determinación de la cantidad de biomasa adherida al CAG

Para determinar la biomasa adherida se tomaron muestras de CAG, se decantó el exceso de agua de las muestras y se determinó su volumen (V_M). Las muestras se colocaron en vasos de precipitados de 100 mL y se les adicionó un volumen determinado de agua destilada. Los vasos de precipitado con el CAG y el agua se introdujeron a un limpiador ultrasónico (Ultrasonic Cleaner AS5150B) por 30 min a una frecuencia de 60kHz.

Seguido de esto, se separó el CAG del líquido mediante decantación y se determinó la masa de sólidos orgánicos por el método gravimétrico (X_V). La cantidad de sólidos orgánicos determinada se relacionó con el volumen de muestra de CAG tomado inicialmente, dando como resultado la cantidad de biomasa por mL de CAG (X_S) expresada en masa de sólidos orgánicos·volumen de CAG⁻¹:

$$X_S = \frac{X_V}{V_M}$$

Ahora bien, para obtener la relación de sólidos orgánicos por masa de CAG, se emplea el valor de la masa específica real ($P_e=1.4 \text{ kg}\cdot\text{L}^{-1}$). De esta manera se obtiene X_X expresado en masa de sólidos orgánicos·masa de CAG⁻¹:

$$X_{\chi} = \frac{X_{S}}{P_{e}}$$

La cantidad total de biomasa en el reactor se calcula multiplicando X_X por la masa total de soporte en el reactor, o bien X_S por el volumen total de soporte.

Cálculo de requerimiento de nutrientes para los sistemas anaerobios

Los requerimientos de nutrientes necesarios para el desarrollo anaerobio se pueden estimar considerando el contenido de nitrógeno y fósforo en la célula, tomando en cuenta la fórmula empírica del material celular bacteriano, C₂H₇O₂N. Esto indica que el nitrógeno constituye cerca del 12% de la masa celular seca. El contenido de fósforo de las bacterias es aproximadamente 1/7 o 1/5 del requerimiento de nitrógeno. Se considera además que el 10% de la materia orgánica, medida como DQO, degradada es convertida a nuevas células bacterianas (0.1 kg SSV·kg DQO removida-1). Los cálculos para determinar los requerimientos de nitrógeno y fósforo para los reactores AEBR y UASB se describen en la siguiente tabla. El promedio de DQO en el influente y las eficiencias promedio obtenidas se calcularon teniendo en cuenta de todo el periodo de operación de los reactores anaerobios.

Reactor	AEBR	UASB
DQO promedio influente, mg·L-1	3829	4048
Eficiencia del tratamiento, %	80%	77%
DQO removida, mg·L-1	3063	3117
Desarrollo de la biomasa, mg SSV ·L-1	306	312
Nitrógeno requerido, mg·L-1	37.8	37.4
Fósforo requerido, mg·L-1	5.3	5.3

Cálculo de nitrógeno y fósforo requerido en los sistemas anaerobios implementados

Equilibrio de especies de azufre

Concentración de los componentes, %

ANEXO C

Datos experimentales

Concentración de materia orgánica (medida como DQO) en el influente y efluente de los reactores
anaerobios, flujo de alimentación y carga orgánica volumétrica

UASB	AEBR		COV, kg DQO.m ⁻³ .d ⁻¹					
DO	DO	Influente	AEBR	% R	UASB	% R	AEBR	UASB
130	119	4644	1030	413	78	91	4	4
137	126	3272	417	670	87	80	5	4
140	129	2821	793	600	72	79	5	4
144	133	1990	451	639	77	68	3	3
147	136	2468	438	525	82	79	4	3
148	137	3824	443	606	88	84	6	5
151	140	3384	275	1011	92	70	5	4
153	142	3332	563	884	83	73	5	4
159	148	4598	1260	821	73	82	5	4
161	150	3766	500	466	87	88	6	3
166	155	2880	628	1204	78	58	5	4
168	157	5866	818	1405	86	76	4	5
173	162	4275	1434	1123	66	74	6	4
180	169	2506	677	694	73	72	4	4
182	171	4636	489	680	89	85	4	4
187	176	3458	815	900	76	74	5	4
189	178	3199	977	593	69	81	5	4
194	183	3748	946	1114	75	70	5	5
196	185	3632	824	1319	77	64	5	5
201	190	4899	545	1903	89	61	4	4
203	192	3399	1235	2256	64	60	5	3
208	197	2829	239	973	92	66	5	4
214	203	1540	485	548	69	64	2	4
217	206	2394	154	923	94	61	4	4
222	211	3012	246	1600	92		4	4
224	213	3056	255	2123	92		4	4
229	218	3053	874	759	71	75	4	4
232	221	3021		729		76		5
235	224	4215		605		86		4
238	227	4697		1310		72		4
243	232	3440		849		75		4
246	235	3089		798		74		4
249	238	4001		464		88		3
253	242	4120		782		81		3
258	247	4312		471		89		4
260	249	3980		576		86		3
263	252	2892	262	621	91	79	4	3
266	255	3911	169	1602	96	59	6	4
271	260	3420	212	650	94	81	5	3
273	262	2263	298	684	87	70	3	2

UASB	AEBR		DC	20, mg.L ⁻¹			COV, kg D	QO.m ⁻³ .d ⁻¹
DO	DO	Influente	AEBR	% R	UASB	% R	AEBR	UASB
278	267	2831	224	913	92	68	4	3
281	270	2834	54	397	98	86	4	3
285	274	4707	214	762	95	84	7	5
287	276	3636	346	471	90	87	5	4
292	281	4437	1499	875	66	80	6	5
299	288	3995	1013	676	75	83	6	4
301	290	3681	532	570	86	85	5	4
306	295	4293	1192	609	72	86	6	4
308	297	5011	1291	704	74	86	7	5
313	302	5847	2769	398	53	93	8	5
315	304	5942	1980	808	67	86	9	5
320	309	5911	1666	386	72	93	9	5
322	311	5746	2438	993	58	83	8	5
327	316	8052	2250	1027	72	87	12	5
329	318	7894		1213		85		5
333	322	7445		1348		82		5
336	325	8603		1118		87		6
341	330	9221		1559		83		6
343	332	5896		571		90		4
350	339	9236		1672		82		6
357	346	6335		1421		78		7
362	351	3352		1881		44		8
364	353	3425		1170		66		8
369	358	2305		1042		55		5
371	360	2200		1020		54		5
376	365	2229		314		86		6
378	367	2018		649		68		5
383	372	2276		531		77		6
385	374	1932		469		76		6
390	379	2300		424		82		7
392	381	2090		571		73		6
397	386	2800		640		77		6
399	388	2800		570		80		6
Pron	nedio	4048	795	880	80	77	5	5
Desv	. Est.	1802	640	433	11	10	2	1

Concentración de nitrógeno amoniacal en el influente y efluente de los reactores anaerobios

UASB	AEBR		N-NH ₃	
DO	DO	Influente	AEBR	UASB
148	159	388	358	160
150	161	420	392	362
155	166	384	410	416
157	168	474	438	430
162	173	518	534	510
164	175	550	502	492
169	180	496	500	486
171	182	454	468	472
176	187	486	488	468
178	189	526	502	500
183	194	418	456	408
185	196	434	436	434
190	201	386	416	440
192	203	376	426	406
197	208	256	274	258
203	214	252	282	292
206	217	240	286	274
211	222	272	252	268
213	224	286	206	360
218	229	298	346	358
221	232	298		386
224	235	300		524
227	238	296		290
232	243	346		346
235	246	266		268
238	249	344		366
242	253	488		4/6
247	258	404	456	478
249	260	522		418
252	263	226	390	408
255	266	344	360	306
260	2/1	320	318	284
262	2/3	300	310	320
267	278	234	296	296
2/4	285	334	328	310
276	287	414	362	326
281	292	468	456	468
283	294	394	434	4/2
288	299	408	450	392
290 205	30 I	408	400	368
295	300 200	460	494	410
271	კ∩გ 210	42U	44Z	420 500
30Z	ა ა ე1⊏	57Z	004	5UZ
აU4 200	310	022 274	161	000 202
207	3ZU	Z14	404	372

-				
UASB	AEBR		$N-NH_3$	
DO	DO	Influente	AEBR	UASB
311	322	466	510	456
316	327	568	654	616
318	329	680		606
322	333	790		664
325	336	588		764
330	341	860		694
332	343	724		768
339	350	600		632
344	355	568		732
346	357	528		672
351	362	248		686
353	364	366		414
358	369	256		204
360	371	212		264
365	376	248		184
367	378	178		202
372	383	232		212
374	385	162		212
379	390	254		212
381	392	276		260
386	397	192		226
Pron	nedio	400	412	413
Desv	/.Est.	150	94	150

UASB	AEBR		NT			PT			S-2			SO4	
DO	DO	Influente	AEBR	UASB									
274	285	480	450	470									
276	287	360	350	300	124	98	102						
281	292	600	630	620	126	146	112	2.8	2.1	1.7	330	270	190
283	294	400	380	410	136	148	134						
288	299	450	420	350	116	120	106						
290	301	560	430	430	104	88	88						
295	306	510	450	470	118	116	114	2.1	1.1	0.8	330	200	160
297	308	490	480	480	178	170	166						
302	313	730	750	780	172	166	134						
304	315	650		540	165	100	140						
309	320	570	490	450	156	104	90	1.8	0.8	0.7	510	280	240
311	322	570	560	380	140	162	132						
316	327	850	710	640	254	150	148						
318	329	750		620	220		180						
322	333	800		660	264		154						
325	336	740		730	230		184						
330	341	870		740	212		120	3.9		1.7	410		260
332	343	740		750									
339	350	720		760									
344	355	780		810	200		184	4.7		3.9	630		500
346	357	500		680	196		206						
351	362	300		530	138		180						
353	364	330		320	180		172						
358	369	280		290	180		166	1.6		1.5	160		150
360	371	300		310	180		160						
365	376				104		80						
367	378	190		190	118		116						
372	383	230		200	116		82						
374	385	260		260	130		124						
379	390	260		210	118		94	1.2		0.9	300		250
381	392	260		280	184		152						
Pron	nedio	518	508	489	15	13	13	3	1	2	381	250	250
Desv	. Est.	206	122	192	6	3	5	1	1	1	141	36	110

Concentración de NT, PO_4 , S^{-2} y SO_4 en el influente y efluente de los reactores anaerobios

DO AEBR	Biogás, L.d ⁻¹	Producción teórica de biogás, L.d ^{.1}	Producción de biogás, m ^{3.} kg DQO removida-1
292	17.2	16.92	0.51
293	16.9		
294	22.3		
295	17.4		
298	17.5		
299	15.9	17.18	0.46
301	16.8	18.14	0.46
302	16.9		
305	16.6		
306	17.7	17.86	0.49
308	21.2	21.43	0.49
309	23.6		
313	15.1	17.73	0.43
314	10.9		
315	21.8	22.80	0.48
316	16.8		
319	21.7		
320	21.7	24.45	0.44
322	17.7	19.05	0.47
Promedio	18.2	19.5	0.47
Desv. Est.	3.1	2.7	0.03

Producción de biogás en el reactor AEBR

	Biogás,	Producción teórica de biogás,	Producción de biogás m ^{3.} kg
DO UASD	L.d ⁻¹	L.d ⁻¹	DQO removida-1
288	2.5	28.7	
290	2.3	26.9	
295	2.7	31.8	
297	2.4	37.2	
302	5.5	39.2	
304	5.7	37.0	
309	5.1	39.8	
311	7.2	34.2	
316	10.2	40.5	
318	14.5	38.5	
322	16.7	35.1	0.24
330	20.2	44.1	0.23
332	20.0		0.33
339	13.7	43.6	
353	19.3	45.5	0.21
358	20.3	25.5	0.40
360	13.9	23.8	0.29
365	24.3	44.1	0.27
367	16.5	31.5	0.26
372	28.5	40.2	0.35
374	19.8	37.9	0.26
379	23.0	45.9	0.25
381	25.4	39.4	0.32
386	17.3	40.4	0.21
388	23.7	41.7	0.28
Promedio	20.3	38.8	0.28
Desv. Est.	8.2	6.3	0.05

Producción de biogás en el reactor UASB

UASB	AEBR		pН		Temperatura, °C				
DO	DO	Influente	AEBR	UASB	Influente	AEBR	UASB		
100	144	7 5 2	7.4	7 50	22.4	27.4	24.0		
133	144 146	7.53 7.53	7.4 7.15	7.59 7.22	23.4 23.4	27.4 20.8	24.0 24.3		
140	140	7.33	7.15	7.22	23.4	29.0	24.5		
141	152	7.31	7.09	7.01	23.5	29.5	26.1		
144	155	6.79	7.39	7.27	23.5	27.0	24.2		
145	156	7.18	7.3	7.38	25.4	30.0	25.7		
147	158	7.2	6.83	6.87	22.2	27.0	23.1		
148	159	7.04	7.13	7.24	22.2	29.0	23.1		
149	160	/.4 ファ	1.2	7.24	22.6	27.0	23.4		
150	101 160	7.5 7.0	7.50 7.54	7.08 7.0	22.4 22.6	27.0	22.9		
151	102 165	7.9 7 7	7.04	7.2 7.2/	23.0 22.5	20.0 30.0	20.9		
155	166	7.85	7.21	7.56	22.3	27.0	22.7		
156	167	6.51	7.43	7.33	17.2	28.2	23.0		
157	168	6.81	7.69	7.59	22.8	28.0	24.2		
158	169	7.13	7.24	7.21	22.2	29.4	24.3		
161	172	7.61	7.57	7.78	23.5	29.3	23.4		
162	173	7.39	7.8	7.79	22.9	30.0	22.7		
163	1/4	1.41	7.43	7.56	22.9	29.0	23.4		
164	1/5 176	7.52 7.00	7.93 0.00	7.84	23.4 25.0	31.0	23.3		
168	170	7.00	0.02	7.0	20.0	30.0	20.0		
169	180	7.22	8 16	7.88	24.2	30.2	27.2		
170	181	7.1	7.69	7.55	17.0	30.0	23.7		
171	182	7.13	8.09	7.58	22.4	30.2	23.6		
172	183	7.47	7.91	7.36	23.1	30.3	23.7		
175	186	7.94	7.97	8.16	23.2	29.1	23.2		
176	187	7.99	7.99	7.61	23.2	29.4	22.1		
1/8	189	8.13	1.16	8.03	23.4	29.8	24.3		
182	193 107	8.28 7.85	7.74 8.00	7.91	23.2 24.2	30.0	22.9 24.3		
184	194	7.03	8.16	7.72	24.2	30.4	24.5		
185	196	7.92	8.07	7.35	24.8	31.4	26.2		
186	197	8.15	8.15	7.51	25.1	31.6	26.2		
189	200	8.13	7.64	7.6	23.9	30.0	23.3		
190	201	8.17	7.51	7.47	23.2	30.2	24.5		
191	202	8.11	7.7	7.61	22.0	31.4	23.8		
192	203	8.3	1.98 רג ר	1.92 7 4 7	26.0	30.0	26.0		
193	204 207	0.5Z	7.47 7.11	7.07 7.12	24.0 2/ 0	30.0 20 1	24.7 25.2		
190	207	6.74	7.44	7.26	24.7	29.0	23.5		
198	209	7.33	7.43	7.05	23.3	29.9	23.8		
199	210	7.63	7.46	7.23	23.5	30.0	23.8		
200	211	7.49	7.31	7.12	23.8	30.0	24.4		
203	214	7.83	7.52	7.43	22.9	29.8	23.5		
206	217	/.8	1.57	/.31	23.5	30.1	24.6		
207	218	8.12 4.41	7.44 7.40	1.33	23.2	29.7 20 E	24.1 ว⊑ ว		
210	∠∠ I 222	0.01 7.46	7.43 7.25	1.24 6.02	10.0 22.0	30.5 30 1	20.3 25.7		
212	223	7.64	7.75	7.29	23.7	30.4	25.2		

Seguimiento de pH, temperatura y conductividad en los reactores anaerobios

UASB	AEBR		рН		Tem	peratura, °	С
DO	DO	Influente	AEBR	UASB	Influente	AEBR	UASB
213	224	7.62	7.48	6.93	23.7	30.1	24.5
214	225	6.72	7.43	7.1	23.9	29.9	24.9
217	228	7.42	7.52	6.9	21.8	30.0	22.9
218	229	7.78	7.57	7.43	25.4	30.2	25.5
219	230	7.81	7.36	7.02	26.2	31.0	26.8
220	231	7.78		7.01	23.4		23.5
221	232	7.84		/.04	26.1		26.3
224	235	7.8		6.98	24.2		23.9
225	236	7.8		6.93	23.9		24.0
220	237	7.83 7.75		0.88 7 4 7	23.0		24.0
227	230 220	1.13		7.47	24.0		24.Z 22.2
220	239	0.77		7.02	21.9		23.3 25.1
231	242	7.75		7.14	23.0		23.1
232	243	7.70		7.32	23.2		23.0
234	245	7.8		7.13	21.0		22.5
235	246	7.79		7.23	21.0		22.9
238	249	8.02		7.33	21.6		22.5
239	250	6.78		7.16	20.9		22.5
240	251	7.67		7.36	23.6		23.8
241	252	7.71		7.4	23.3		23.7
242	253	7.89	7.39	7.35	19.7		20.4
245	256	7.35	7.74	7.3	24.0		25.3
246	257	6.73	7.32	7.45	22.2		24.1
247	258	6.68	/.16	7.23	20.2		23.4
248	259	6.97	7.1Z	7.07	20.9		21.4
249	200	/.58	7.15 7.22	/. 7 14	22.0	20.1	23.0 22 E
202	203	0.04	7.3Z 7.20	7.10	21.7	30.1 20.1	23.0 22 5
253	265	6.8	7.32	7.10	21.7	30.1	23.5
255	266	7.38	7.17	7.33	23.2	30.9	24.7
256	267	7.62	7.62	7.22	22.0	30.5	23.1
259	270	7.86	7.26	6.95	23.3	30.9	24.6
260	271	7.72	7.71	7.52	23.4	30.5	24.1
261	272	8.09	7.58	7.27	23.2	30.9	26.4
262	273	8.14	7.58	7.32	20.9	30.4	23.0
263	274	6.82	7.49	7.04	17.9	30.7	23.2
266	2//	6.8	/.19	7.33	24.1	30.8	24.7
267	278	6.89	/.5 7.22		20.6	30.9	21.8
208	279	7.02	7.3Z	0.90	20.4	30.0	22.2 24.1
209	200 281	7.55	7.44	7.20	24.3	30.9 30.9	24.1
270	201	7.88	7.27	7.02	21.7	30.7	22.7
274	285	6.74	7.42	7.16	22.9	30.8	24.4
275	286	7.31	7.35	7.02	23.2	31.5	24.2
276	287	7.66	7.39	7.03	22.8	31.6	23.6
277	288	7.5	7.19	7.16	23.2	31.8	23.9
280	291	7.84	7.21	7.32	22.9	31.2	24.3
281	292	7.98	7.48	7.47	24.1	33.0	24.1
282	293	7.93	7.35	7.33	23.5	31.9	25.4
283	294	8.13	1.16	1.58	24.9	31.2	25.5
284	295	0.94 7.01	7.15 7.25	1.2	25.0	30.9	24.9
ZØ/	278	1.31	1.35	1.02	Z1.7	30.8	22.0

UASB	AEBR		рН		Tem	peratura, °	С
DO	DO	Influente	AEBR	UASB	Influente	AEBR	UASB
288	299	7.55	7.47	7.43	21.6	30.8	21.8
289	300	7.93	7.35	7.37	20.1	30.6	20.8
290	301	8.13	7.93	7.59	20.0	31.2	20.4
291	302	8.14 7.05	7.74	7.29	20.2	32.0	21.1
294	305	7.85 7.97	7.4Z	1.21 7.20	20.5	31.8	21.5 21.4
296	307	7.02	7.30	7.20	20.0	29 0	21.4
297	308	7.96	7.85	7.53	22.6	31.0	22.6
298	309	6.95	7.34	7.26	22.0	35.0	23.6
301	312	7.53	7.23	7.18	21.7	34.0	22.1
302	313	7.75	7.22	7.7	21.4	30.0	22.6
303	314	7.87	7.22	7.2	20.7	30.3	21.8
304	315	7.9	7 22	7.43	22.2	22.0	21.3
305	310 210	7.98 6 7 2	7.3Z	7.47	22.0	32.U 22 5	22.3 22.6
300	317	7 38	7.42	7.5	16.8	32.5	22.0
310	321	7.28	7.26	7.17	19.9	32.0	22.4
311	322	7.23	7.14	7.14	20.9	31.8	22.4
312	323	7.74	7.34	7.67	20.6	28.3	23.6
315	326	8.35	7.71	7.85	20.3	34.0	23.5
316	327	7.23	7.52	7.45	22.1	32.4	22.5
317	328	7.61	1.57	1.51	21.4	29.9	21.9
318	329	8.02 9.12		7.70 7.90	21.1 22.2		23.8
322	333	8 55		7.02	18.7		24.0
323	334	8.13		7.6	21.4		22.6
324	335	8.17		7.47	20.7		21.8
325	336	8.11		7.61	22.2		21.3
326	337	8.3		7.92	21.7		22.3
329	340	8.1/		1.67	20.4		22.9
330	34 I 242	7.98 0.26		7.39 7.02	20.7		21.0
332	343	8 25		7.05	24.0		24.7
339	350	7.98		7.42	21.0		22.3
340	351	8.14		7.46	21.0		22.0
343	354	8.81		7.89	20.3		21.3
344	355	7.69		7.33	18.9		22.0
345	356	8.05		1.55	19.7		20.5
350	361	6./5 7.25		1.33	22.4 21.1		21.8 21.0
351	302 363	7.23		7.52	21.1		21.0 21.0
353	364	8.04		7.10	19.5		20.8
354	365	6.55		7.18	18.0		20.9
357	368	7.58		7.3	21.0		21.9
358	369	7.89		7.16	20.8		21.1
359	370	7.9		7.22	21.0		22.0
360	3/1	8.15		/.0/ 7 17	21.1		22.2
301	312 376	0.1 7.26		7.17 6.06	20.9 22.0		∠1.0 22.1
366	377	7.47		7	22.0		22.1
367	378	7.3		, 7.02	17.6		19.2
368	379	6.4		7.09	18.1		20.1
371	382	6.91		7.09	18.5		20.4

UASB	AEBR		рН			Temperatura, °C			
DO	DO	Influente	AEBR	UASB	Influente	AEBR	UASB		
372	383	7.02		7	17.8		21.8		
373	384	7.36		6.96	22.0		22.1		
374	385	7.47		7	21.0		21.4		
375	386	6.62		7.06	16.0		23.8		
378	389	7.39		7	24.0		24.8		
379	390	7.8		7.3	23.7		23.5		
380	391	8.03		7.33	23.4		23.6		
381	392	7.98		7.18	23.5		23.4		
385	396	7.79		7.24	20.3		21.6		
386	397	6.98		6.84	16.7		19.7		
Pron	nedio	7.6	7.5	7.3	22.1	30.3	23.2		
Desv	. Est.	0.5	0.3	0.3	2.1	1.4	1.5		

UASB	AEBR	Alcalini	dad, pH	5.75	Alcalin	idad, p⊦	4.3	Re	elación o	L
DO	DO	Influente	AEBR	UASB	Influente	AEBR	UASB	Influente	AEBR	UASB
100	144									
133	144									
135	140									
140	151									
141	102									
144	100	600	1040	1000	1125	1200	1100	0.40	0 1 2	0.00
145	150	100	040 040	050	000	1/200	1240	0.40	0.13	0.08
147 170	150	400	1100	900 1100	900 1220	1420	1/40	0.51	0.39	0.29
140	160	640	1120	1120	1220	1600	1400	0.51	0.22	0.19
147	161	800	1120	1150	1260	1550	1400	0.40	0.30	0.24
150	162	710	1260	1250	1200	1640	1560	0.37	0.24	0.24
154	165	950	1200	1230	1320	1670	1640	0.44	0.23	0.20
155	166	1010	1310	1250	1330	1530	1570	0.20	0.11	0.20
156	167	650	1360	1170	1450	1690	1570	0.55	0.20	0.25
157	168	680	1460	1330	1410	1840	1690	0.52	0.21	0.21
158	169	710	1490	1350	1430	1890	1720	0.50	0.21	0.22
161	172	860	1510	1690	1560	1890	2030	0.45	0.20	0.17
162	173	1473	1349	1549	1701	1634	1853	0.13	0.17	0.16
163	174	817	1406	1568	1406	1748	1739	0.42	0.20	0.10
164	175	846	1463	1435	1501	1720	1758	0.44	0.15	0.18
165	176	694	1463	1577	1359	1720	1843	0.49	0.15	0.14
168	179	874	1663	1653	1435	1872	1957	0.39	0.11	0.16
169	180	1159	1653	1786	1729	1957	1995	0.33	0.16	0.10
170	181	902.5	1995	1900	1387	2071	2088	0.35	0.04	0.09
171	182	950	1634	1596	1463	1824	1881	0.35	0.10	0.15
172	183	1064	1900	1843	1577	1976	2147	0.33	0.04	0.14
175	186	1254	1767	1634	1767	1900	1900	0.29	0.07	0.14
176	187	1254	1672	2166	1710	1976	2394	0.27	0.15	0.10
1/8	189	1140	1691	1881	16/2	1995	1976	0.32	0.15	0.05
182	193	1387	1976	1919	1938	2185	2261	0.28	0.10	0.15
183	194	12/8	2014	1986	1///	2138	2176	0.28	0.06	0.09
184	195	1169	2052	2052	1615	2090	2090	0.28	0.02	0.02
185	196	1154	1980	1891	1015	2090	2043 1005	0.29	0.05	0.07
100	197	1140	1919	1704	1010	2090	1995	0.29	0.08	0.13
109	200	800	2223 1472	1700	1000	2200	1907	0.27	0.03	0.09
190	201	1072	1472	1240	1240	158/	166/	0.30	0.00	0.20
102	202	1072	1360	1/2/	12/18	1504	1536	0.20	0.00	0.10
193	203	448	1216	1392	576	1408	1536	0.17	0.10	0.07
196	207	288	1248	1040	544	1360	1232	0.47	0.08	0.07
197	208	304	992	960	656	1120	1008	0.54	0.11	0.05
198	209	336	1104	896	672	1152	960	0.50	0.04	0.07
199	210	320	800	768	640	880	848	0.50	0.09	0.09
200	211	368	848	784	688	896	864	0.47	0.05	0.09
203	214	400	784	832	640	880	928	0.38	0.11	0.10
206	217	416	832	816	672	960	880	0.38	0.13	0.07
207	218	496	800	784	720	912	912	0.31	0.12	0.14
210	221	352	704	688	752	800	784	0.53	0.12	0.12
211	222	336	896	864	672	976	992	0.50	0.08	0.13
212	223	352	800	880	624	960	1008	0.44	0.17	0.13

Seguimiento de alcalinidad a pH 4.3 y 5.75 , relación alfa en los reactores anaerobios

UASB	AEBR	Alcalini	dad, pH	5.75	Alcalin	idad, p⊦	4.3	Re	elación o	l
DO	DO	Influente	AFBR	UASB	Influente	AFBR	UASB	Influente	AFBR	UASB
213	224	304	768	832	560	1056	1056	0.46	0.27	0.21
214	225	320	864	800	592	1008	1024	0.46	0.14	0.22
217	228	400	912	832	672	1088	1056	0.40	0.16	0.21
218	229	400	784	832	672	976	992	0.40	0.20	0.16
219	230	400	592	704	672	768	928	0.40	0.23	0.24
220	231	432		768	688		960	0.37		0.20
221	232	512		944	832		1072	0.38		0.12
224	235	352		656	656		1264	0.46		0.48
225	236	384		768	672		1088	0.43		0.29
226	237	400		864	688		1024	0.42		0.16
227	238	400		816	/68		9/6	0.48		0.16
228	239	416		1008	848		1168	0.51		0.14
231	242	480		004 1104	928		960 1200	0.48		0.31
232	243	490		1104	944 076		1200	0.47		0.00
233	244 245	400		1120	970		1200	0.51		0.07
234	245	410		1120	864		1210	0.33		0.07
238	240	528		1024	928		1072	0.40		0.07
239	250	496		1056	976		1184	0.49		0.11
240	251	496		1040	944		1200	0.47		0.13
241	252	512		1072	960		1264	0.47		0.15
242	253	592		1264	1184		1456	0.50		0.13
245	256	560		1488	1008		1680	0.44		0.11
246	257	400		864	752		928	0.47		0.07
247	258	400		928	768		1008	0.48		0.08
248	259	432		1152	848		1248	0.49		0.08
249	260	700		1440	1340		1640	0.48		0.12
252	263	240	1220	1220	480	1560	1360	0.50	0.22	0.10
253	264	240	1220	1220	480	1560	1360	0.50	0.22	0.10
254	205	360	1260	1240	1040	1580	1500	0.49	0.20	0.17
200	200	500	1340	1480	1060	1500	1000	0.53		0.07
250	207	500	1420	1/200	1060	1500	1600	0.40	0.05	0.00
209	270	560	1340	1400	1080	1440	1660	0.55	0.11	0.07
260	272	700	1340	1580	960	1560	1760	0.40	0.04	0.10
262	273	700	1280	1020	1000	1380	1360	0.30	0.07	0.25
263	274	300	1320	1020	540	1400	1440	0.44	0.06	0.29
266	277	360	1260	1240	700	1580	1500	0.49	0.20	0.17
267	278	400	1020	1000	740	1200	1180	0.46	0.15	0.15
268	279	360	1010	990	740	1210	1260	0.51	0.17	0.21
269	280	330	985	760	745	1230	1050	0.56	0.20	0.28
270	281	420	1120	1280	800	1200	1380	0.48	0.07	0.07
273	284	350	1020	890	710	1220	1170	0.51	0.16	0.24
274	285	490	1040	980	1080	1270	1230	0.55	0.18	0.20
2/5	286	500	1250	1030	1110	1520	1320	0.55	0.18	0.22
2/6	287 200	430	1250	1000	1040	1550	1450	0.59	0.19	0.31
2//	200 201	420	10/0	11/U 1400	1090	1040	1550	0.01		0.25
28U 201	271 202	590	1750	1000 1500	1330	1040 1520	1710	0.50	0.05	0.00
201	∠72 202	620	1300	1520	1290	1500	1670	0.55	0.11	0.10
283	293	720	1390	1490	1320	1530	1680	0.33	0.13	0.07
284	295	200	1020	1030	370	1270	1260	0.46	0.20	0.18
287	298	435	1185	1255	820	1435	1455	0.47	0.17	0.14

UASB	AEBR	Alcalini	dad, pH	5.75	Alcalin	idad, p⊦	4.3	Re	elación o	ι
DO	DO	Influente	AEBR	UASB	Influente	AEBR	UASB	Influente	AEBR	UASB
288	299	670	1350	1480	1270	1600	1650	0.47	0.16	0.10
289	300	680	1520	1620	1340	1760	1750	0.49	0.14	0.07
290	301	690	1500	1600	1310	1620	1700	0.47	0.07	0.06
291	302	700	1510	1620	1300	1700	1750	0.46	0.11	0.07
294	305	700	1680	1720	1440	1810	1860	0.51	0.07	0.08
295	306	670	1700	1610	1420	2030	2090	0.53	0.16	0.23
296	307	790	1570	1690	1560	1920	2100	0.49	0.18	0.20
297	308	780	1620	1930	1590	1880	2020	0.51	0.14	0.04
298	309	620	1570	1850	1180	2000	2020	0.47	0.22	0.08
301	31Z 212	730	1150	2140	1690	1850	2300	0.57	0.38	0.07
302	217	1520	720	2020	2270	1600	2200	0.00	0.37	0.10
303	214	700	800	1920	1750	1000	2220	0.33	0.50	0.14
303	310	420	1530	1490	970	1960	1710	0.55	0.33	0.14
309	320	460	1510	1540	1010	1930	1790	0.54	0.22	0.10
310	321	540	1400	1700	1160	1920	1960	0.53	0.27	0.13
311	322	620	1410	1820	1600	2000	2140	0.61	0.30	0.15
312	323	750	1600	2200	1820	2170	2450	0.59	0.26	0.10
315	326	500	1910	2050	1320	2290	2470	0.62	0.17	0.17
316	327	660	1950	2150	1780	2590	2650	0.63	0.25	0.19
317	328	720	1970	2320	1900	2620	2780	0.62	0.25	0.17
318	329	880		2500	2150		2820	0.59		0.11
319	330	900		2520	2190		2840	0.59		0.11
322	333	970		2600	2180		2860	0.56		0.09
323	334 225	960		2590	2140		2870	0.55		0.10
324	330 224	920		2030	2100		2900	0.00		0.09
320	330 227	900 1010		2000	2100		2970	0.55		0.11
320	337	980		2710	2190		3150	0.54		0.12
330	341	800		2160	1940		2760	0.57		0.10
332	343	820		2200	1800		2700	0.54		0.19
336	347	840		2660	1840		2900	0.54		0.08
339	350	960		2660	1940		2900	0.51		0.08
340	351	1040		2620	2000		2920	0.48		0.10
343	354	1160		2600	2200		2960	0.47		0.12
344	355	600		2320	1520		2880	0.61		0.19
345	356	980		2760	2140		3100	0.54		0.11
350	361	400		2200	800		2580	0.50		0.15
351	362	560		1/00	940		2020	0.40		0.16
352	303 264	620 620		1120	1140		1260	0.40		0.11
303	304 265	320		100	740		1300	0.42		0.13
354	368	480		980	1020		1200	0.57		0.17
358	369	500		980	860		1200	0.33		0.10
359	370	500		1000	840		1200	0.40		0.17
360	371	640		1000	860		1050	0.26		0.05
361	372	650		1010	850		1100	0.24		0.08
365	376	500		820	810		910	0.38		0.10
366	377	510		850	800		950	0.36		0.11
367	378	400		750	660		840	0.39		0.11
368	379	420		830	690		960	0.39		0.14
371	382	340		890	600		980	0.43		0.09
372	383	350		930	630		1020	0.44		0.09

UASB	AEBR	Alcalini	dad, pH	5.75	Alcalin	idad, pH	4.3	Re	lación α	2
DO	DO	Influente	AEBR	UASB	Influente	AEBR	UASB	Influente	AEBR	UASB
373	384	350		820	680		1000	0.49		0.18
374	385	350		750	700		950	0.50		0.21
375	386	370		800	730		980	0.49		0.18
378	389	670		1150	1100		1300	0.39		0.12
379	390	600		1000	1070		1100	0.44		0.09
380	391	600		1160	1060		1270	0.43		0.09
381	392	570		1090	900		1200	0.37		0.09
385	396	400		970	820		1190	0.51		0.18
386	397	240		1000	540		1100	0.56		0.09
Prom	nedio	643	1345	1412	1183	1605	1635.	0.45	0.16	0.14
Desv	. Est.	285	363	548	478	394	606	0.10	0.10	0.07

		-		
UASB	AEBR	Acidos (grasos vo ikins 199	látiles 1)
DO	DO	Influente	AEBR	UASB
135	146	269	-98	-166
140	151	371	337	149
141	152	459	34	-15
144	155	371	195	66
145	156	254	73	81
147	158	364	63	-2
148	159	129	-176	51
149	160	66	-105	/ 105
150	101	023 E 47	-10 15	105
151	102	520	10	27
154	165	171	21	-81
156	167	-137	-51	-01
157	168	376	-9	-216
158	169	434	-107	-35
161	172	480	-107	-125
162	173	334	-202	-107
163	174	274	-107	-232
164	175	253	-413	-280
165	176	269	-213	-111
168	179	241	-390	-153
169	180	195	-301	-139
170	181	139	-111	-306
1/1	182	195	-301	-139
175	183 104	241	-110	-300
175	100	190	-301 279	-139
170	180	175	-270	-135
182	193	151	-464	-464
183	194	168	-383	-313
184	195	186	-301	-162
185	196	162	-487	-269
186	197	242	-234	-8
189	200	4	-289	-211
190	201	-12	-191	-238
191	202	16	-109	-199
192	203	180	-195	-66
193	204	270	-11/	-18/
196	207	240	-223 117	-150
197 100	200 200	∠34 222	-117 _160	-109
100	207	127	-100	-100
200	210	148	-78	-137
203	214	98	-86	-66
206	217	305	-78	-74
207	218	246	-141	-86
210	221	180	-39	-90
211	222	176	94	16
212	223	187	-70	23
213	224	168	-51	16

Calculo de concentración de ácidos grasos volátiles, método descrito en el Anexo A

		Ácidos (orasos vo	látiles
UASB	AEBR	(Jen	kins, 199	1)
DO	DO	Influente	AEBR	UASB
214	225	168	-4 27	-4/
217	228 220	108	27	47
210	230	143		-105
220	231	211		434
221	232	187		125
224	235	184		-55
225	236	262		-43
226	237	320		-90
227	238	320		127 176
220	239	310		-170
231	242	352		-199
233	244	297		-195
234	245	262		-203
235	246	348		-133
238	249	316		-98
239	250	312		-/4 101
240	251	434 201		-121 176
241	252	246		-170
245	256	262		-148
246	257	301		-187
247	258	454		-156
248	259	176	34	-161
249	260	1/6	34 E	-161
252	203 267	244 125	с 171-	-49 -211
253	265	327	-269	-244
255	266	425	-171	-244
256	267	371	-278	-210
259	270	83	-112	-210
260	271	122	-215	83
261	272	101	-244 5	101
202	273	244 234	-73	-49 -68
266	277	283	-51	22
267	278	325	-1	98
268	279	269	-195	-215
269	280	266	-54	56
270	281 วอ4	45/ 47/	-29	5 วา
213	204 285	474 <u>4</u> 01	-4∠ ₋12	აz 105
275	286	552	208	85
276	287	579	-339	-283
277	288	552	-166	-200
280	291	532	-122	-266
281	292	410	-203	-1/8
282 202	293 201	270	-5 _15	-27 -111
203	295	422	-45	-195
287	298	478	-137	-269
288	299	437	-249	-293

UASB	AEBR	Ácidos (Jrasos vo	látiles
DO	DO	Influente	AEBR	UASB
289	300	415	-183	-269
290	301	552	-283	-283
291	302	569	-93	76
294	305	559	-42	-12
295	306	601	-142	-383
296	307	395	37	-286
297 200	308	/59 770	403 205	-360
290 301	309	261	390 720	-209
302	313	745	120	-159
303	314	745	771	-159
304	315	435	46	-149
305	316	425	42	-132
308	319	474	166	-161
309	320	806	232	-132
310	321	862	166	-293
311	322	6/9	-95	-90 27
31Z 315	323 326	933	149 157	-37
315	320	1025	134	-298
317	328	1040		-303
318	329	945		-381
319	330	918		-359
322	333	928		-378
323	334	913		-334
324	335	906		-300
325	330 227	1040		-269 50
320 320	337 340	918 757		-79 -79
330	341	771		-415
332	343	723		-415
336	347	684		-347
339	350	732		-283
340	351	752		-20
343	354	893		-342
344	355	293		-166
345 250	350 241	234		-103 127
300 351	362	330 278		-137
352	363	332		-49
353	364	410		-24
354	365	229		-122
357	368	210		-49
358	369	59		-195
359	370	37		-159
360	3/1	181		-112
30 265	312 276	159 154		-110 05
300 366	370 377	161		-90 -76
367	378	171		-129
368	379	188		-139
371	382	237		-24
372	383	256		12

UAS	3 AEBI	R Ácio	Ácidos grasos volátiles (Jenkins, 1991)			
DO	DO	Influe	nte AEBI	R UASB		
373	384	261		-20		
374	385	256)	-134		
375	386	312)	-146		
378	389	303	}	-176		
379	390	183	}	-159		
380	391	312	-	-22		
381	392	234	ļ	-146		
Pro	omedio	371	-74	-127		
De	sv. Est.	245	5 206	137		

Concentración de materia orgánica (medida como DQO), en influente y efluente de los reacto	ores
aerobios	

DO			DQ	0		
DO	Inf _{AEBR}	LAAEBR	% R	Inf _{UASB}	LAUASB	% R
4	262	100	62	621	280	55
7	169	60	65	1602	660	59
12	212	80	62	650	240	63
14	298	100	66	684	265	61
19	224	80	64	913	360	61
22	531	180	66	397	150	62
26	214	75	65	762	300	61
28	346	110	68	471	180	62
40				676	256	62
42				570	201	65
47	1192	406	66	609	272	55
49	1292	544	58	705	520	26
54	2769	358	87			
56		386		808	407	50
61	1666	280	83			
63	2438	1215	50	993	424	57
68	2251	474	79			
70				1044	518	50
74				1348	571	58
77				1118	506	55
82				1559	842	46
96				3067	968	68
98				1421	1031	
103				1881	675	64
105				1170	590	50
110				1042	434	58
112				1020	390	62
11/				313	275	70
119				649	145	/8
124				531	235	56
131				424	350	70
133				5/1	160	/2
138		007	(7	640	260	59
Promedio	990	297	6/	942	377	60
Des. Est.	908	293	9	550	231	9

DO	F/M, kg DQO.kg SSV ⁻ ¹ .d ⁻¹		CO, kg DQO.m ⁻³ .d ⁻¹		Tasa de remoción de materia orgánica LA _{UASB}	
	LAAEBR	LAUASB	LAAEBR	LAUASB	kg DQO∙kg SSV-1∙d-1	kg DQO∙m- ³ .d-1
40	0.33	0.22	0.73	0.43	0.14	0.27
42	0.30	0.19	0.70	0.36	0.12	0.23
47	0.35	0.20	0.86	0.39	0.11	0.24
49	0.32	0.21	0.93	0.45		0.28
54	0.61		1.99			
56		0.28		0.52	0.14	0.32
61	0.27		1.20			
63	0.41	0.50	1.76	0.64	0.28	0.40
68	0.50		1.62			
70		0.33		0.67	0.17	0.42
74		0.48		0.86	0.28	0.54
77		0.39		0.72	0.21	0.44
82		0.46		1.00	0.21	0.62
96		1.64		1.96	1.12	1.22
98		0.41		0.91		0.57
103		0.86		1.20	0.55	0.75
105		0.56		0.75	0.28	0.47
110		0.52		0.67	0.30	0.41
112		0.47		0.65	0.29	0.41
117						0.00
119		0.26		0.42	0.20	0.26
124		0.18		0.34	0.10	0.21
131		0.22		0.27		0.17
133		0.20		0.37	0.14	0.23
138		0.16		0.41	0.09	0.25
Promedio	0.39	0.42	1.22	0.67	0.26	0.40
Desv. Est.	0.12	0.33	0.50	0.38	0.24	0.25

Carga orgánica y tasa de remoción en reactores aerobios

DO			Ν	IT					N-1	NH4		
DO	Inf _{AEBR}	LAAEBR	% R	Inf _{UASB}	LAUASB	% R	Inf _{AEBR}	LAAEBR	% R	Inf _{UASB}	LAUASB	% R
40	420	350	17	380	280	26	450	308	32	392	284	
42	620	110	82	430	150	65	400	140	65	368	268	
47	450	170	62	470	180	62	494	128	74	416	110	74
49	480	220	54	480	160	67	442	116	74	420	110	74
54	750	700	7	780	390	50	564	158	72	502	238	53
56		380		540	460	15		188		568	234	59
61	490	390	20	450	520	0	464	136	71	392	246	
63	560	370	34	410	380	7	510	168	67	456	188	59
68	710	450	37	640	580	9	654	174	73	616	222	64
70				620	560	10				606	222	63
74				690	660	4				664	320	52
77				730	630	14				684	272	60
82				740	590	20				694	260	63
96				810	710	12				780	296	62
98				680	590	13				672	330	51
103				530	490	8				686	246	64
105				320	440	0				414	192	54
110				290	230	21				204	106	
112				310	210	32				264	108	59
117				170	160	6				184	76	59
119				190	122	36				202	114	
124				200	190	5				212	92	57
131				210	240	0				212	58	73
133				270	230	15				260	98	62
138				260	230	12				226	104	54
Promedio	560	349	39	464	375	18	497	168	66	444	192	61
Desv. Est.	115	164	24	199	187	24	75	54	13	188	84	7

Concentración de nitrógeno total y amoniacal en los reactores aerobios

		AE	BR			UA	\SB	
DO	Carga de N-NH ₄ $^{+}$		Remoción de N-NH4 $^{+}$		Carga de N-NH4 ⁺		Remoción de N-NH4 ⁺	
	kg NH₄∙m⁻³∙d⁻¹	kg NH₄∙ kg SSV-1∙d-1	kg NH₄⋅m⁻³⋅d⁻¹	kg NH₄∙ kg SSV-1∙d-1	kg NH₄∙m⁻³∙d⁻¹	kg NH₄∙ kg SSV-¹∙d-¹	kg NH₄⋅m⁻³⋅d⁻¹	kg NH₄∙ kg SSV-1∙d-1
40	0.32	0.12	0.10	0.04				
42	0.29	0.08	0.19	0.05				
47	0.36	0.15	0.26	0.11	0.27	0.14	0.20	0.10
49	0.32	0.11	0.23	0.08	0.27		0.20	
54	0.41	0.12	0.29	0.09	0.32	0.17	0.17	0.09
56						0.20		0.12
61	0.33	0.07	0.24	0.05	0.25	0.20		
63	0.37	0.08	0.25	0.06	0.29	0.23	0.17	0.13
68	0.47	0.14	0.35	0.11	0.39	0.20	0.25	0.13
70					0.39	0.19	0.25	0.12
74					0.42	0.24	0.22	0.12
77					0.44	0.24	0.26	0.14
82					0.44	0.21	0.28	0.13
96					0.50	0.42	0.31	0.26
98					0.43	0.20	0.22	0.10
103					0.44	0.31	0.28	0.20
105					0.26	0.20	0.14	0.11
110								
112					0.17		0.10	
117					0.12	0.08	0.07	0.05
119								
124					0.14	0.07	0.08	0.04
131					0.14	0.11	0.10	0.08
133					0.17	0.09	0.10	0.06
138					0.14	0.06	0.08	0.03
Р	0.36	0.11	0.24	0.07	0.28	0.17	0.14	0.11
D.E.	0.06	0.03	0.07	0.03	0.12	0.08	0.10	0.06

Carga y tasas de remoción de nitrógeno amoniacal en los reactores aerobios

DO	SS	SV	١٧	<u></u>
DO	LAAEBR	LAUASB	LAAEBR	LAUASB
4	2100	1900	128.4	122.0
7	2150	1920	127.1	123.9
12	2480	2060	121.4	118.4
14	2520	2100	117.6	113.3
19	2490	2400	116.9	106.8
22	2500	2100	130.7	122.0
26	2900	2600	112.6	107.9
28	2980	2680	109.3	103.6
39	2460	1980	118	101
41	3220	1940	127	113
46	2160	1900	134	113
48	2560	2160	121	104
53	2900	1920	98	104
55	3300	1820	80	93
60	4000	1260	/0	107
62	3840	1280	/3	63
6/	2900	1940	66	95
68	2600	2020	/3	79
74		1/80		/0
/6		1840		/
81		3160		57
84 00		4120		49
00 05		2440 1200		70
90 07		1200		90 50
97 100		2200 1540		09 70
102		1/100		86
103		1400		00 75
105		1340		82
105		1540		65
100		2000		50
107		1800		56
109		1680		54
110		1280		74
112		1380		65
113		1560		58
117		1500		53
119		1580		51
123		1840		49
130		1260		79
132		1820		55
137		2600		54
Promedio	2991	1912	107	82
Desv. Est.	537	558	24	25

Concentración de SSV y valores de IVL del lodo de los reactores aerobios

D.O.	p	Н	-	Г	C	D
DO	LAAEBR	LAUASB	LAAEBR	LAuasb	LAAEBR	LAUASB
2	8.1	8.6	21.5	21.6	5.03	5.20
3	7.9	8.5	20.5	20.1	4.41	3.82
4	7.9	8.8	19.9	19.9	6.40	6.76
5	7.5	7.2	19.5	19.9	5.98	5.72
8	6.5	6.7	19.9	20.2	5.20	5.70
9	6.7	6.8	20.1	19.9	3.03	5.40
10	6.8	67	20.6	20.6	4 78	5 17
11	6.9	67	21.8	20.0	4 30	4 89
12	67	6.6	21.0	21.6	3 24	3 50
15	67	67	20.3	20.7	2 15	3 55
16	7.4	6.9	20.0	20.7	2.16	3 20
10	67	67	19.6	20.1	4 07	3 13
17	63	6.8	20.2	20.1	3 07	3.13
10	6.5	67	10.2	20	4.01	3.02
22	6.6	75	20.8	20.2	3.4	5.02
22	6.6	6.0	20.0	10 0	3.4	5.50
23	0.0	0.7	20.1	17.7 20.4	J.40 2.2	5.50
24	0.5	0.0	20.3	20.4	3.3 2.10	5.59
20	0.0	0.9	20.0	20.0	3.19 2.54	0.40
20	0.0	0.0	20.3	20.3	5.04	0.00
29	0.2	0.4	20.2	20.3	0.3 4.04	0.20
30	0.0	0.9	20.4	20.3	4.80	5.53
31	6.7	6.6	20.3	20.3	3.14	3.23
32	6.5	6.6	20.6	21.1	4.85	3.32
33	6.5	6.6	20.5	20.5	4.76	3.57
36	6.3	6.7	18.4	19	6.53	5.28
37	6.2	6.7	20.6	20.8	6.31	5.08
38	6.2	6.8	19.6	19.8	6.01	4.96
39	6.3	6.8	20.2	20	5.98	4.82
43	6.4	6.4	20.3	20.7	5.48	3.98
44	6.0	6.3	21.5	21	5.03	4.56
45			19.6	20.1	4.41	
46	6.3	6.4	20.2	20	6.40	4.50
47			19.9	20.2	5.98	
50	6.0	6.2	20.8	21	5.20	4.64
51			20.1	19.9	3.03	
52			20.3	20.4	4.78	
53	6.2	6.2	20.5	20.5	4.30	4.53
54			20.3	20.3	3.24	
57	6.0	6.4	21.5	21.6	5.3	5.22
58	5.9	6.1	20.5	20.1	4.86	4.94
59	5.9	6.0	19.9	19.9	3.14	6.11
60	5.8	6.1	19.5	19.9	4.85	5.80
63			19.9	20.2		
64	6.0	6.2	20.1	19.9	6.53	5.70
65	5.9	6.2	20.6	20.6	6.31	5.90
66	5.6	6.2	21.8	21.1	6.01	6.00
67	5.8	6.2	21.1	21.6	5.98	6.30
68	6.0	6.0		20.3		6.10
71		6.1		21		6.40
72		6.0		19.9		6.26
74		6.0		20.5		5.80
78		6.0		20.3		6.10

Parámetros de campo (pH, temperatura, conductividad y OD) en los reactores aerobios

79		6.0		20.3		6.22
80		6.2		20.3		6.10
81		6.3		21.1		6.05
82		6.2		20.5		5.90
85		6.0		20.5		5.90
86		5.9		21.4		5.88
87		5.9		22		5.60
88		5.9		21.9		5.60
89		6.0		22.5		5.20
92		6.1		22.8		5.73
93		6.0		22.6		3.8
94		5.9		22.7		3.8
95		6.2		23		3.7
99		5.8		21		3.7
100		6.2		20.2		3.78
104		5.7		20.9		6.10
105		5.9		21.8		6.22
106		5.7		21		6.10
107		5.8		19.2		6.05
108		5.8		20.3		5.90
111		5.9		20.5		5.90
112		6.1		21.4		5.88
113		6.1		22		5.60
114		5.9		21.9		5.60
115		6.0		22.5		5.20
118		5.8		22.8		5.73
119		5.7		22.6		5.90
120		5.8		22.7		5.88
121		5.9		23		5.60
125		5.8		21		5.90
126		5.7		20.2		5.88
130		5.5		20.5		5.02
131		5.8		20.9		5.09
132		5.8		21		5.17
133		5.9		21		5.24
134		5.9		20.8		5.31
137		5.8		20.5		5.54
138		5.9		21.3		5.61
139		5.8		19.7		5.69
140		5.9		20		5.76
Promedio	6.5	6.3	20.4	20.8	4.7	5.3
Desv. Est.	0.6	0.6	0.7	0.9	1.2	0.9

Análisis estadísticos

Los datos experimentales utilizados en las pruebas estadísticas se presentan en la sección anterior a este inciso.

Diferencia entre concentración de nitrógeno amoniacal en el influente y efluente de reactores anaerobios

Prueba de t. Reactor AEBR

- Muestra 1, concentración de nitrógeno amoniacal en el influente
- Muestra 2, concentración de nitrógeno amoniacal en el efluente

 $H_0: \partial = 0$

 $H_A:\partial \neq 0$

$\overline{X}_1 = 390$	$\overline{X}_2 = 412$
$S_1^2 = 10025$	$S_2^2 = 9358$
<i>n</i> ₁ = 33	<i>n</i> ₂ = 32
<i>g.l.</i> = 63	$t_{0.05} = 2.00$
<i>t</i> = -4.67	

 $t = -4.67 < t_{0.05} = -2.00$: la hipótesis nula se rechaza, las medias son significativamente diferentes.

Prueba de t. Reactor UASB

Muestra 1, concentración de nitrógeno amoniacal en el influente

Muestra 2, concentración de nitrógeno amoniacal en el efluente

 $H_0: \partial = 0$

$$H_A: \partial \neq 0$$

$\overline{X}_{1} = 403$	$\bar{X}_2 = 413$
$S_1^2 = 22465$	$S_2^2 = 23353$
<i>n</i> ₁ = 63	<i>n</i> ₂ = 61
<i>g.l.</i> = 122	$t_{0.05} = 1.98$
<i>t</i> = -12.55	

 $t = -12.55 < t_{0.05} = -1.98$: la hipótesis nula se rechaza, las medias son significativamente diferentes.

Diferencia entre concentración de nitrógeno total en el influente y efluente de reactores anaerobios

Prueba de *t.* Reactor AEBR

Muestra 1, concentración de nitrógeno total en el influente

Muestra 2, concentración de nitrógeno total en el efluente

H₀: $\partial = 0$ H_A: $\partial \neq 0$ $\overline{x}_1 = 555$ $\overline{x}_2 = 508$ $s_1^2 = 17844$ $s_2^2 = 16361$ $n_1 = 13$ $n_2 = 12$ g.l. = 23 $t_{0.05} = 2.07$ t = 32.44

 $t = 32.44 > t_{0.05} = 2.07$: la hipótesis nula se rechaza, las medias son significativamente diferentes.

Prueba de t. Reactor UASB

Muestra 1, concentración de nitrógeno total en el influente

Muestra 2, concentración de nitrógeno total en el efluente

 $H_0: \partial = 0$

 $H_A: \partial \neq 0$

$\overline{X}_{1} = 518$	$\overline{X}_2 = 489$
$S_1^2 = 43970$	$S_2^2 = 38053$
<i>n</i> ₁ = 30	<i>n</i> ₂ = 30
<i>g.l.</i> = 58	$t_{0.05} = 2.00$
<i>t</i> = 19.40	
1 10 10 1	

 $t = 19.40 < t_{0.05} = 2.00$: la hipótesis nula se rechaza, las medias son significativamente diferentes.

Diferencia entre concentración de fósforo total en el influente y efluente de reactores anaerobios

Prueba de *t.* Reactor AEBR

Muestra 1, concentración de fósforo total en el influente

Muestra 2, concentración de fósforo total en el efluente

 $H_0: \partial = 0$

 $H_A: \partial \neq 0$

$\overline{X}_{1} = 14.9$	$\bar{X}_2 = 13.1$
$S_1^2 = 16.5$	$S_2^2 = 8.7$
<i>n</i> ₁ = 12	<i>n</i> ₂ = 12
<i>g.l.</i> = 22	$t_{0.05} = 2.07$
<i>t</i> = 1.10	

 $t = 1.10 < t_{0.05} = 2.07$: la hipótesis nula se acepta, las medias no son significativamente diferentes.

Prueba de t. Reactor AUASB

Muestra 1, concentración de fósforo total en el influente

Muestra 2, concentración de fósforo total en el efluente

 $H_0: \partial = 0$

 $H_A:\partial \neq 0$

$\bar{x}_1 = 16$	$\overline{X}_2 = 13$
$S_1^2 = 36$	$S_2^2 = 24$
<i>n</i> ₁ = 30	$n_2 = 30$
<i>g.l.</i> = 58	$t_{0.05} = 2.00$
<i>t</i> = 1.62	
+ 1 4 2 . +	2.00 . 10

 $t = 1.62 < t_{0.05} = 2.00$: la hipótesis nula se acepta, las medias no son significativamente diferentes.

Diferencia entre porcentajes de remoción de materia orgánica medida como DQO en los reactores aerobios

Prueba de t

Muestra 1, porcentaje de remoción de materia orgánica en el rector LAAEBR

Muestra 2, porcentaje de remoción de materia orgánica en el reactor LAUASB

H₀: $\partial = 0$ H_A: $\partial \neq 0$ $\overline{x}_1 = 67\%$ $\overline{x}_2 = 60\%$ $s_1^2 = 220.1$ $s_2^2 = 67.7$ $n_1 = 6$ $n_2 = 18$ g.l. = 22 $t_{0.05} = 2.07$ t = 2.38

 $t = 2.38 > t_{0.05} = 2.07$: la hipótesis nula se rechaza, las medias son significativamente diferentes. El porcentaje de remoción de materia orgánica medida como DQO es diferente en cada reactor.

Diferencia entre los porcentajes de remoción de N-NH4 de los reactores aerobios

Prueba de t

Muestra 1, porcentaje de remoción de N-NH₄ en el rector LA_{AEBR}

Muestra 2, porcentaje de remoción de N-NH4 en el reactor LAUASB

 $H_0: \partial = 0$

 $H_A: \partial \neq 0$

$\overline{X}_1 = 66\%$	$\overline{X}_2 = 61\%$
$S_1^2 = 12.6$	$S_2^2 = 46.5$
<i>n</i> ₁ = 7	<i>n</i> ₂ = 20
<i>g.l.</i> = 25	$t_{0.05} = 2.06$
<i>t</i> = 3.74	

 $t = 3.74 > t_{0.05} = 2.06$: la hipótesis nula se rechaza, las medias son significativamente diferentes. El porcentaje de remoción de N-NH₄ en los reactores aerobios no es el mismo.
Diferencia entre las tasas de remoción de N-NH₄ en los reactores aerobios

Prueba de *t* Muestra 1, tasas de remoción de N-NH₄ en el rector LA_{AEBR} Muestra 2, tasas de remoción de N-NH₄ en el reactor LA_{UASB} H₀: $\partial = 0$ H_A: $\partial \neq 0$ $\overline{x}_1 = 0.07$ $\overline{x}_2 = 0.10$ $s_1^2 = 0.00073$ $s_2^2 = 0.00286$ $n_1 = 8$ $n_2 = 20$ g.l = 26 $t_{0.05} = 2.06$ t = 1.78 $t = 1.78 > t_{0.05} = 2.06 \therefore$ la hipótesis nula se acepta, las medias no son significativamente diferentes.

Las tasas de remoción de N-NH₄ en los reactores aerobios no son significativamente diferentes.

Diferencia entre los porcentajes de remoción de N-NH₄ con cargas mayores y menores a 0.15 kg N-NH₄·kgSSV⁻¹·d⁻¹ en los reactores aerobios

Prueba de t

Muestra 1, porcentajes de remoción de N-NH₄ alcanzados con cargas menores a 0.15 kg N-NH₄·kgSSV-1·d-1

Muestra 2, porcentajes de remoción de N-NH₄ alcanzados con cargas mayores a 0.15 kg N-NH₄·kgSSV⁻¹·d⁻¹

 $H_0: \partial = 0$

 $H_A: \partial \neq 0$

$$\overline{x}_1 = 65\%$$
 $\overline{x}_2 = 59\%$ $s_1^2 = 60$ $s_2^2 = 25$ $n_1 = 7$ $n_2 = 12$ $g.l. = 17$ $t_{0.05} = 2.11$ $t = 2.29$

 $t = 2.29 > t_{0.05} = t = 2.29$ \therefore la hipótesis nula se rechaza, las medias son significativamente diferentes. Los porcentajes de remoción de N-NH₄ a cargas mayores de 0.15 kg N-NH4·kgSSV⁻¹·d⁻¹, en los reactores aerobios, son significativamente diferentes a los porcentajes de remoción de N-NH₄ a cargas menores de 0.15 kg N-NH4·kgSSV⁻¹·d⁻¹.

Diferencia entre los porcentajes de remoción de N-NH₄ con respecto al TRC en los reactores aerobios (TRC mayor de 14 días)

Prueba de t

Muestra 1, porcentajes de remoción de N-NH₄ alcanzados con TRC mayor a 14 días Muestra 2, porcentajes de remoción de N-NH₄ alcanzados con TRC menor a 14 días

 $H_0: \partial = 0$

 $H_A:\partial \neq 0$

$\overline{X}_1 = 63\%$	$\overline{X}_2 = 56\%$
$S_1^2 = 67$	$S_2^2 = 29$
<i>n</i> ₁ = 78	<i>n</i> ₂ = 16
<i>g.l.</i> = 22	$t_{0.05} = 2.07$
<i>t</i> = 2.51	

 $t = 2.51 > t_{0.05} = 2.07$ \therefore la hipótesis nula se rechaza, las medias son significativamente diferentes. Los porcentajes de remoción de N-NH₄ alcanzados a TRC mayores de 14 días en los reactores aerobios son significativamente diferentes a los porcentajes de remoción de N-NH₄ alcanzados a TRC menores de 14 días

Diferencia entre los porcentajes de remoción de materia orgánica con respecto al TRC en los reactores aerobios (TRC mayor de 14 días)

Prueba de t

Muestra 1, porcentajes de remoción de materia orgánica alcanzados con TRC mayor a 14 días Muestra 2, porcentajes de remoción de materia orgánica alcanzados con TRC menor a 14 días $H_0: \partial = 0$ $H_A: \partial \neq 0$ $\overline{x}_1 = 60\%$ $\overline{x}_2 = 59\%$ $S_1^2 = 38$ $S_2^2 = 80$ $n_1 = 6$ $n_2 = 13$ g.l. = 17 $t_{0.05} = 2.11$ t = 0.30

 $t = 0.30 < t_{0.05} = 2.011$ \therefore la hipótesis nula se acepta, las medias no son significativamente diferentes. Los porcentajes de remoción de materia orgánica alcanzadas a TRC mayores de 14 días en los reactores aerobios, no son significativamente diferentes a los porcentajes alcanzados a TRC menores de 14 días.

REFERENCIAS

- Anthonisen A.C., Loehr R.C., Prakasan T.B.S. y Srinath E.G. (1976). Inhibition of nitrification by ammonia and nitrous acid. *J. W. P. C. F.* 48:835–852.
- APHA. (1998). Standard methods for the examination of water and wastewater. American Public Health Association / American Water Works Association/Water Environment Federation. Washington, D.C., USA.
- Archer D.B. y Kirsop B.H. (1990). *The microbiology and control of anaerobic digestion*. Anaerobic Digestion: A Waste Treatment Technology, Criteria Reports on Applied Chemistry, Vol. 31. Editorial SCI. pp. 43-74.
- Banks C.J., y Wang Z. (1994). Development of a two phase anaerobic digester for the treatment of mixed abattoir wastes. *Water Science and Technology.* 40(1):69-76.
- Boone J. (1982). *Op. Cit.* Archer D.B. y Kirsop B.H. (1990). *The microbiology and control of anaerobic digestion*. Anaerobic Digestion: A Waste Treatment Technology, Criteria Reports on Applied Chemistry, Vol. 31. Editorial SCI. pp. 43–74.
- Borja R., Banks C. J. y Wang Z. (1995). Performance of a hybrid anaerobic reactor, combining a sludge blanket and a filter, treating slaughterhouse wastewater. *Appl. Microbiol. Biotechnol.* 43: 351-357.
- Borja R., Banks C. J., Wang Z. y Mancha A. (1998) Anaerobic digestion of slaughterhouse wastewater using a combination of sludge blanket and filter arrangement in a single reactor. *Bioresource Tech.* 65:125-133.
- Braile P.M. y Cavalcanti J.E.W.A. (1993). *Manual de tratamiento de águas residuárias industriais*.
 Compañía de Tecnología de Saneamento Ambiental. Brasil. 764 p.
- Bryant M. P. (1979). *Op. Cit.* Pavlostathis S.G. y Giraldo-Gómez E. (1991). Kinetics of anaerobic treatment. *Water Science and Technology.* 24(8):35-59.
- Campos J.R., Foresti E. y Camacho R.D.P. (1986). Anaerobic wastewater treatment in the food processing industry: Two case studies. *Water Science and Technology*. 18(12):87-97.
- Castro-González A. (2004). Efecto de la temperatura en la actividad metanogénica y sulfatoreductora de consorcios microbianos en condiciones anaerobias. Tesis doctoral. Programa de

Maestría y Doctorado en Ciencias Químicas (Ingeniería Química). Facultad de Química, UNAM. México D.F.

- Castillo R. L., Montoya L. y Ruiz J. (2001). Tratamiento integral de residuos de rastros. *Ciencia y Desarrollo.* 27(160):48-53.
- Chapman T. D., L. C. Matsch y E. H. Zander. (1976). Effect of High Dissolved Oxygen Concentration in Activated Sludge Systems. *Journal (Water Pollution Control Federation)*. 48(11):2486-2510.
- Chen Chung-Yu, Li Chun-The y Shieh Wen (1997). Anaerobic fluidized bed pretreatment of hog wastewater. J. Environ. Eng. 123(4):389-394.
- Chen C.K. y Lo S.L. (2003). Treatment of slaughterhouse wastewater using an activated sludge/contact aeration process. *Water Science and Technology.* 47(12):285-292.
- COFEPRIS. (2006). *Evaluación de riesgos de los rastros y mataderos municipales.* Comisión Federal para la Protección contra Riesgos Sanitarios. México. D.F. 32 p.
- COWI (2001). *Cleaner production assessment in meat processing*. Consulting Engineers and Planners AS. Dinamarca. 84 p.
- Cruz A. y Buitrón G. (2001). Biodegradation of disperse blue 79 using sequenced anaerobic/aerobic biofilters. *Water Science and Technology*. 44(4):159–166.
- Del Nery V., Damianovic M. H. Z. y Barros F. G. (2001). The use of upflow anaerobic sludge blanket reactors in the treatment of poultry slaughterhouse wastewater. *Water Science and Technology*. 44(4):83-88.
- Del Pozo R., Diez V. y Salazar G. (2002). Start-up of a pilot-scale anaerobic fixed film reactor at low temperature treating slaughterhouse wastewater. *Water Science and Technology.* 46(4):215-221.
- Eastman J.A. y Ferguson J.F. (1981). *Op. Cit.* Archer D.B. y Kirsop B.H. (1990). *The microbiology* and control of anaerobic digestion. Anaerobic Digestion: A Waste Treatment Technology, Criterial Reports on Applied Chemestry, Vol. 31. Editorial SCI., pp. 43 – 74.
- Eckenfelder W. W., Grau P. (1992). Activated sludge process design and control: Theory and practice. Water Quality Management Library. Vol. 1. Technomic. 350 p.
- EPA. (2002). Development document for the proposed effluent limitations guidelines and standards for the meat and poultry products industry point source category (40 cfr 432). Enviromental Protection Agency. Washington, D.C. USA. 666 p.

- FAO. (1994). *Manual para la instalación del pequeño matadero modular*. Organización de las Naciones Unidas para la Agricultura y la Alimentación. Roma, Italia.
- Ferguson J.F., Eis B.J. y Benjamin M.M. (1982) *Op. Cit.* Speece R.E. (1996). *Anaerobic biotechnology for industrial wastewaters*. Archae Press. USA. 394 p.
- Fernández-Polanco F., Villaverde S., García A. (1996). Nitrite accumulation in submerged biofilters
 combined effects. *Water Science and Technology.* 34(3-4):371-378.
- Garuti G., Dohanyes M. y Tilche A. (1992). *Op. Cit.* Metcalf & Eddy. George Tchobanoglous, Franklin L. Burton, H. David Stensel. (2003). *Wastewater engineering: treatment and reuse.* Ed. McGraw-Hill. 4^a ed. 1819p.
- Godínez G., Reyes J.A., Zúñiga A., Sánchez I., Castro, J., Román A.D., Santos E.M. (2000).
 Condiciones microbiológicas en cuatro rastros municipales del estado de Hidalgo. *En VII Congreso Nacional de Ciencia de los Alimentos y III Foro de Ciencia y Tecnología de Alimentos.* Guanajuato, Gto.
- Goncalves R.F. y De Avaujo V. L. (1999). *Op. Cit.* Metcalf & Eddy. Tchobanoglous, George; Franklin L. Burton; H. David Stensel. (2003). *Wastewater Engineering: Treatment and Reuse.* Ed. McGraw-Hill. 4^a ed. 1819p.
- Gorgün E., Ubay Gokgür, E., Ohron D., Germili F. and Artan N. (1995). Modeling biological treatability for meat processing effluent. *Water Science and Technology.* 32(12):43–52.
- Gujer W. y Zehnder A.J.B. (1983). *Op. Cit.* Pavlostathis S.G. y Giraldo-Gómez E. (1991). Kinetics of anaerobic treatment. *Water Science and Technology.* 24(8):35-59.
- Gutiérrez-Sarabia A., Fernandez-Villagómez G., Martínez Pereda P., Rinderknecht-Seijas N., Poggi-Valardo H.M. (2004). Slaughterhouse wastewater treatment in a full-scale system with constructed wetlands. *Environ. Res.* 76:334.
- Horan N. (2003). Suspended growth processes. Eds. Mara D. y Horan N. En: The Handbook of Water and Wastewater Microbiology. Academic Press. 819 p.
- IFC. (2007). Environmental, Health and Safety Guidelines for Meat Processing. International Finance Corporation. World Bank Group. 14 p. Disponible en el sitio de Internet de la Corporación Internacional de Financiamiento (IFC, Interational Finance Corporation. Wrold Bank Group): <u>http://www.ifc.org/ifcext/sustainability.nsf/AttachmentsByTitle/gui_EHSGuidelines2007_MeatProce</u> <u>ssing/\$FILE/Final+-+Meat+Processing.pdf</u>

- IMTA. (2002). *Tratamiento anaerobio de aguas residuales*. Instituto Mexicano de Tecnología del Agua. 206 p. Jiutepec, Morelos
- INEGI. (2007). Estadística de sacrificio de ganado en rastros municipales. Instituto Nacional de Estadística Geografía e Informática. México. D.F. 134 p.
- Isa Z., Grusenmeyer S. y Verstraete W. (1986). Sulfate Reduction Relative to Methane Production in High-Rate Anaerobic Digestion: Microbiological Aspects. *Applied and Environmental Microbiology*. 51(3):580-587.
- Iza J. (1991). International workshop on anaerobic treatment technology for municipal and industrial wastewaters: summary paper. *Water Science and Technology*. 24(8):1-16.
- Jenkins D., M.G. Richard y G. Daigger. (1993). *Causes and Control of Activated Sludge Bulking and Foaming*, 2a ed., Publicaciones Lewis, Boca Raton, FL.
- Jenkins S.R., Morgan J.M., Zhan X. (1992) Measuring the usable carbonate alkalinity of perating anaerobic digesters. *Res J. Wat. Pollut. Contrl Fed.* 63:28-34.
- Jeris J.S. y McCarty P.L. (1965). *Op. Cit.* Pavlostathis S.G. y Giraldo-Gómez E. (1991). Kinetics of anaerobic treatment. *Water Science and Technology*. 24(8):35-59.
- Jewell W.J., Switzenbaum M.S., Morris J.W. (1981). Municipal wastewater treatment with the anaerobic attached microbial film expanded bed process. *J.W.P.C.F.* 53(4):482-490.
- Johns M. R. (1995). Developments in wastewater treatment in the meat processing industry: a review. *Bioresource Technology*. 54:203-216.
- Kalyuzhnyi S., Gladchenko M. y Epov A. (2003). Combined anaerobic-aerobic treatment of landfill leachates under mesophilic, submesophilic and psychrophilic conditions. *Water Science and Technology.* 48(6): 311–318.
- Kaspar H.F. y Wuhrmann K. (1978). *Op. Cit.* Pavlostathis S.G. y Giraldo-Gómez E. (1991). Kinetics of anaerobic treatment. *Water Science and Technology.* 24(8):35-59.
- Lawrence A.W. y McCarty P.L. (1970). *Op. Cit.* Pavlostathis S.G. y Giraldo-Gómez E. (1991). Kinetics of anaerobic treatment. *Water Science and Technology.* 24(8):35-59.
- Lawrence A.W. (1971). *Op. Cit.* Pavlostathis S.G. y Giraldo-Gómez E. (1991). Kinetics of anaerobic treatment. *Water Science and Technology.* 24(8):35-59.
- Lettinga G. (1984). High rate anaerobic wastewater treatment using the UASB reactor under a wide range of temperature conditions. *Biotechnology and Genetic Engineering Review*. 2:252-84 pp.

- Lettinga G., Field J., Zeeman G. y Hulshoff Pol, L.W. (1997). Advanced anaerobic wastewater treatment in the near future. *Water Science and Technology.* 35(10):5-12.
- Lettinga G., Hobma S.W., Hulshoff Pol L.W. y De Zeeuw W. (1983). Design, operation and economy of anaerobic treatment. *Water Science and Technology*, 15:177-195.
- Lettinga G. y Hulshoff Pol. L.W. (1991). UASB- Process design for various types of wastewaters. *Water Science and Technology.* 24(8):87-107.
- Madoni P., Davoli D., y Guglielmi L. (1999). Response of SOUR and AUR to heavy metal contamination in activated sludge. *Water Resarch.* 33(10): 2459-2464.
- Malina J.F. y Pohland F.G. (1992). *Design of anaerobic processes for the treatment of industrial and municipal wastes*. Water Quality Management Library Vol. 7. Technomic. 214 p.
- Manjunath N.T., Mehrotra I. y Mathur R.P. (2000). Treatment of wastewater from slaughterhouse by DAF-UASB system. *Water Research.* 24(6):1930-1936.
- Mara D. y Horan N. (2003). *The handbook of water and wastewater microbiology*. Academic Press. 819 p.
- Massé D.I., Masse L, Bourgeois N. (2000). Anaerobic processing of slaughterhouse wastewater in a SBR. *Agriculture and Agri-Food Canada*. pp. 375-387.
- McCarty P.L. (2001). The development of anaerobic treatment and its future. *Water Science and Technology.* 44(8): 149-156.
- McCarty P.L. y Smith D.P. (1986). *Op. Cit.* Metcalf & Eddy. (2003). George Tchobanoglous; Franklin L. Burton; H. David Stensel. Eds. *Wastewater engineering: Treatment and Reuse.* Ed. McGraw-Hill. 4^a ed. 1819 p.
- Metcalf & Eddy. (2003) George Tchobanoglous; Franklin L. Burton; H. David Stensel. Eds.
 Wastewater engineering: Treatment and reuse. Ed. McGraw-Hill. 4^a ed. 1819 p.
- Mijaylova-Nacheva P., Ramírez-Camperos E., Cuevas-Velasco S. (2007). Treatment of organic synthesis wastewater using anaerobic packed bed and aerobic suspended growth bioreactors. *Water Science and Technology*. 55(7):235-243.
- Núñez L.A. y Martínez B. (1999). Anaerobic treatment of slaughterhouse wastewater in an expanded granular sludge (EGSB) reactor. *Water Science and Technology.* 40(8): 99-106.
- Núñez L. A. y Martínez B. (2001) Evaluation of an anaerobic/aerobic system for carbon and nitrogen removal in slaughterhouse wastewater. *Water Science and Technology.* 44(4): 271-277.

- Obayashi A., Stensel H.D. y Kominek E.G. (1981). George Tchobanoglous; Franklin L. Burton; H. David Stensel. Eds. *Wastewater engineering:Treatment and Reuse*. Ed. McGraw-Hill. 4^aed.1819 p.
- Ockerman H.W. y Hansen C.L., (2000). *Animal by-product processing and utilization*. Technomic Publishing Co., Inc. Lancaster, USA.
- Odegaad H. (1988). *Treatment of anaerobically pretreated effluents.* Anaerobic Digestion, Proc. 5th Int. Symp. Anaerobic Digestion, E. R. Hall y P. N. Hobson, eds., Pergamon Press, Londres. Pp 225-238.
- Palns S.S., Lowenthal R.E., Wentzel M.C. y Marais G.R. (1991). *Op. Cit.* Speece R.E. (1996).
 Anaerobic biotechnology for industrial wastewaters. Archae Press. USA. 394 p.
- Parkin G.F. y Owen W. F. (1986). Fundamentals of anaerobic digestion of wastewater sludges. *J. Environ. Eng. Div. Amer. Soc. Civil Eng.* 112:8867-920.
- Pavlostathis S.G. y Giraldo-Gómez E. (1991). Kinetics of anaerobic treatment. Water Science and Technology. 24(8):35-59.
- Puhakka J.A., Salkinoja-Salonen M., Ferguson J.F. y Benjamin M.M. (1990). *Op. Cit.* Speece R.E. (1996). *Anaerobic biotechnology for industrial wastewaters*. Archae Press. USA. 394 p.
- Rajeshwari K.V., Balakrishnan M, Kansal A, Kusum Lata, Kishore V.V.N. 1999. State-of-the-art of anaerobic digestion technology for industrial wastewater treatment. *Renewable and Sustainable Energy Reviews*. 4:135-156.
- Rivera F., Warren A., Curds C.R., Robles E., Gutiérrez A., Gallegos E., Calderón A. (1997). The application of the root zone method for the treatment and reuse of high-strength abattoir waste in México. *Water Science and Technology*. 35(5): 271-278.
- Rodriguez J., Sosa G., Garza Y. (2002). Bioconversión anaerobia como una alternativa para la remoción de DQO contenido en aguas residuales del rastro municipal de la ciudad de Saltillo, Coahuila, México. *Journal of the Mexican Chemestry Society*. 46(002):185-188.
- Rojas Ch.O. (1988). *Op. Cit.* IMTA. (2002). *Tratamiento anaerobio de aguas residuales.* Instituto Mexicano de Tecnología del Agua. 206 p. Jiutepec, Morelos.
- Ruiz I., Veiga M. C., de Santiago P. y Blázquez R. (1997) Treatment of slaughterhouse wastewater in a UASB reactor and an anaerobic filter. *Bioresource Technology*. 60, 251-258.
- SAGARPA. (2006). Situación actual y perspectiva de la producción de carne de bovino en México 2006. Secretaría de Agricultura, Ganadería, Desarrollo Rural, Pesca y Alimentación. México, D. F. 48 p.

- Sayed S.K.I., Spoel H, Truijen G.J.P. (1993). A complete treatment of slaughterhouse wastewater combined with sludge stabilization using two stage high rate UASB process. *Water Science and Technology.* 27(9): 83-90.
- Sayed S.K.I., Van Campen L. y Lettinga G. (1987). Anaerobic treatment of slaughterhouse waste using a granular sludge UASB reactor. *Biol. Wastes.* 21:11-28.
- Sayed S.K.I. y De Zeeuw W. (1984). Anaerobic treatment of slaughterhouse using a flocculent sludge UASB reactor. *Agric. Wastes.* 11: 197-226.
- Schmidt J.E. y Ahring B.K. (1996). Granular sludge formation in upflow anaerobic sludge blanket (UASB) reactors. *Biotechnology and Bioengineering*. 49(4): 229-246.
- SEMARNAT (1997). Norma Oficial Mexicana NOM-001-SEMARNAT-1996, que establece los limites máximos permisibles de contaminantes en las descargas residuales en aguas y bienes nacionales. Secretaria de Medio Ambiente y Recursos Naturales. Diario Oficial de la Federación. 6 de enero de 1997.
- Smith P.H. y Mah R.A. (1966). *Op. Cit.* Pavlostathis S.G. y Giraldo-Gómez E. (1991). Kinetics of anaerobic treatment. *Water Science and Technology.* 24(8):35-59.
- Speece R.E. (1983). *Op. Cit.* Pavlostathis S.G. y Giraldo-Gómez E. (1991). Kinetics of anaerobic treatment. *Water Science and Technology.* 24(8):35-59.
- Speece R.E. (1996). *Anaerobic biotechnology for industrial wastewaters*. Archae Press. USA. 394 p.
- SSa. (2004). NOM-194-SSA1-2004. Productos y servicios. Especificaciones sanitarias en los establecimientos dedicados al sacrificio y faenado de animales para abasto, almacenamiento, transporte y expendio. Secretaría de Salud. Diario Oficial de la Federación, 18 de Septiembre de 2004. México D.F.
- Tritt W.P. (1992). *The anaerobic treatment of slaughterhouse wastewater in fixed-bed reactors. Bioresource Technology*. 41: 201-207.
- Uberoi V. y Bhattacharya S.K. (1996). *Op. Cit.* Speece R.E. (1996). *Anaerobic biotechnology for industrial wastewaters*. Archae Press. USA. 394 p.
- UNAM (1993). *Tratamiento anaerobio de aguas residuales.* Apuntes. Universidad Nacional Autónoma de México. México D.F.
- Vellinga S.H.J., Hack P.J.F.M. y Van der Vlugt A.J. (1986). *New type high rate anaerobic reactor*. Proc Anaerobic Treatment-A-Grown-Up Technology, pp. 547-562. Amsterdam, Holanda.

- Van Lier J.B., Tilche A., Ahring B.K., Macarie H., Moletta R., Dohanyos M., Hulshoff Pol L.W., Lens P. y Verstraete W. (2001). New perspectives in anaerobic digestion. *Water Science and Technology*. 43(1):1–18.
- Villanueva V. y A.S. de Aluja. (1998). Estado actual de algunas plantas de sacrificio de animales para consumo humano en México. *Vet. Mex.*, 29(3):273-277.
- Viraraghavan T. y Varadarajan R. (1996) Low temperature kinetics of anaerobic filter wastewater treatment. *Bioresource Tech*. 57:165-171.
- Wiesmann, U. (1994). Biological nitrogen removal from wastewater. *Advances in Biochemical Engineering Biotechnology*. 51:113–154.
- Winkler M. (1994). *Tratamiento biológico de aguas de desecho.* Ed. Limusa. México. Pp. 87-181.
- Yoda M., Kitagawa M. y Miyaji Y. (1987). Long term competition between sulfate-reducing and methane-producing bacteria for acetate in anaerobic biofilm. *Water Research*. 21:1547-1556.
- Zehnder A.J.B. (1978). *Op. Cit.* Pavlostathis S.G. y Giraldo-Gómez E. (1991). Kinetics of anaerobic treatment. *Water Science and Technology.* 24(8):35-59.
- Zehnder A.J.B., Ingvorsen K. y Marti T. (1982). *Op. Cit.* Pavlostathis S.G. y Giraldo-Gómez E. (1991). Kinetics of anaerobic treatment. Water Science and Technology. 24(8):35-59.
- Zinder S.H. (1984). Op. Cit. Pavlostathis S.G. y Giraldo-