

UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO

PROGRAMA DE MAESTRÍA Y DOCTORADO EN INGENIERÍA

FACULTAD DE ESTUDIOS SUPERIORES CUAUTITLÁN

DISEÑO DEL CONCENTRADOR SOLAR PARABÓLICO DE UN DESTILADOR DE AGUA

T E S I S

PARA OBTENER EL GRADO DE :

MAESTRO EN INGENIERÍA (METAL – MECÁNICA)

P R E S E N T A:

ING. JAIME FUENTES SÁNCHEZ

TUTOR: DR. VÍCTOR MANUEL CASTAÑO MENESES

2009

Universidad Nacional Autónoma de México

UNAM – Dirección General de Bibliotecas Tesis Digitales Restricciones de uso

DERECHOS RESERVADOS © PROHIBIDA SU REPRODUCCIÓN TOTAL O PARCIAL

Todo el material contenido en esta tesis esta protegido por la Ley Federal del Derecho de Autor (LFDA) de los Estados Unidos Mexicanos (México).

El uso de imágenes, fragmentos de videos, y demás material que sea objeto de protección de los derechos de autor, será exclusivamente para fines educativos e informativos y deberá citar la fuente donde la obtuvo mencionando el autor o autores. Cualquier uso distinto como el lucro, reproducción, edición o modificación, será perseguido y sancionado por el respectivo titular de los Derechos de Autor.

JURADO ASIGNADO:

Presidente:	Dr.	Miguel	de	Icaza	Herrera
-------------	-----	--------	----	-------	---------

- Secretario: Dr. Víctor Manuel Castaño Meneses
- Vocal: Dr. Andrés Herrera Vázquez
- 1^{er.} Suplente: Dr. Enrique Curiel Reyna
- 2^{do.} Suplente: M. I. Marco Antonio Alarcón Ramírez

Lugar donde se realizó la tesis: Facultad de Estudios Superiores Cuautitlán

TUTOR DE TESIS

Dr. Víctor Manuel Castaño Meneses

FIRMA

DEDICATORIAS

"A LA MEMORIA DE LOS PERSONAJES QUE NO ESCATIMARON ESFUERZOS PARA CUMPLIR SUS IDEALES"

Fuentes Enrique P., José Luis, Esteban Corona, Jesús González, ...

Gracias por sus palabras, ejemplos y participación en el presente. Les estoy agradecido.

A mí Madre y Hermanos, que de una forma u otra brindan su ternura

Coty, Celia, Francisco, Irma, Enrique, Lilia y Rubén Gracias por sus consejos. A los Sobrinos

"NUNCA ES TARDE CUANDO SE SABE A DONDE LLEGAR"

A todos los que con su lealtad inagotable propinan valores intangibles y ofrecen apoyos extraordinarios dignos de mi reconocimiento.

M. A. Juárez, F. González P., A. Molina, J. Pimentel, F. Martínez, A. García, M. A. Muñoz, A. Cruz, R. Barajas, C. Morales, M. A. Rios, F. Espinoza, B. Campos, D. Muñoz, I. Y. Vázquez, J. Cruz, F. González, E. Ávila F. ...

A MIS PRINCIPIOS

Sonia, J. Axel y Ximena

"ESENCIA VIVA DEL SER, CÚMULO DE VALORES É INSPIRACIÓN DE MÍ CAMINO"

Faltan palabras para agradecerles, su paciencia, su fe, su esperanza y su armonía

Los Amo. ...

AGRADECIMIENTOS

A los investigadores de CFATA - UNAM

"Su sencillez ideológica define realidades"

Dr. Víctor Manuel Castaño Meneses

Gracias por su asesoría y tutoría otorgadas de manera consistente, a los apoyos y ánimos concedidos fehacientemente para desarrollar el modelo del destilador solar y a las orientaciones brindadas de cómo realizar el proyecto de tesis de maestría; reciba mí reconocimiento.

Dr. Miguel de Icaza Herrera

Me es grato expresar que el apoyo como tutor y asesor que usted nos brinda para desarrollar y presentar la tesis referida, nos da la seguridad de poder emprender nuevos objetivos.

Las facilidades otorgadas para la culminación de la misma, confiriéndonos sesiones de discusión para afinar el trabajo, perfeccionar el proyecto del destilador solar y en particular el modelo del concentrador parabólico. Pudiendo decir que es un placer interactuar en su equipo.

Las palabras se reducen para definir el reconocimiento que ustedes nos merecen. Y solo puedo expresarles, Dr. de Icaza, Dr. Castaño; a nombre del equipo de FES-C. Siempre les estaremos agradecidos.

Dr. Héctor Enrique Curiel Reyna

Gracias por la confianza de integrarme a un proyecto que hoy inicia otra fase, por sus consejos, alternativas para limpiar el camino y cumplir dignamente la meta definida; reflejando sus principios en la culminación del proyecto del destilador solar y la presentación de la tesis de maestría.

A la Universidad Nacional Autónoma de México, a la Facultad de Estudios Superiores Cuautitlán, al Instituto de Física Aplicada y Tecnología Avanzada en Juriquilla, Querétaro. Por permitir realizar los estudios y proyecto de maestría.

A los Profesores de FES-Cuautitlán

J. J. Contreras, A. Aguilar, F. Gutiérrez, J. de la C. Hernández, J. R. Garibay, C. Rodríguez, J. Hernández, M. de N. Pineda, R. Ramos, J. L. Hernández, M. A. Alarcón, J. Altamira, R. Medina, C. S. Moreno, J. Romero, H. Neri, J. de la Cruz T. ...

Por su impulso indiscutible en el desarrollo académico mostrado.

ÍNDICE

1. OBJETIVO 1 2. INTRODUCCIÓN 3. CONSIDERACIONES GEOMÉTRICAS SOBRE LA SUPERFICIE **REGLADA DEL CONCENTRADOR** 3.1. Selección de las Dimensiones Óptimas 2 4 3.2. Análisis Geométrico de la Imagen en el Concentrador 3.3. Estimaciones Analíticas para el Cálculo del Área Mínima del Tubo Focal 5 7 3.4. La Orientación Geográfica del Concentrador 4. SELECCIÓN DE MATERIALES PARA EL CONCENTRADOR 10 5. DISEÑO DEL BASTIDOR Y CONFIGURACIÓN DEL CONCENTRADOR 11 5.1. Diseño del Bastidor 16 5.2. Configuración del Concentrador 6. EVALUACIÓN DEL CONCENTRADOR 19 6.1. Variables Climáticas 7. ANÁLISIS DE LA EFICIENCIA DEL CONCENTRADOR 7.1. Balance Energético 21 22 7.2. Energía en el Concentrador 24 7.3. Radiación de Stefan - Boltzmann 8. EXPERIMENTACIÓN 8.1. Montaje del Modelo Uno de la Cámara Focal y el Concentrador, 26 Conformando un Destilador Solar (Experimentos I, II, III) 30 8.2. Conformación del Modelo Dos de la Cámara Focal (Experimento IV) 8.3. Conformación del Modelo Tres de la Cámara Focal (Experimento V y VI) 31

8.4. Comportamiento Térmico del Destilador (Experimento VII) 34

Página

ÍNDICE

	Página
8.5. Destilador Solar con el Modelo Tres de la Cámara Focal Modificado (Experimento VIII)	
8.6. Diseño y Fabricación del Modelo Cuatro de la Cámara Focal y la	
Simulación del Calentamiento Solar Aprovechando la Combustión de	
Gas LP (Experimentos IX, X, XI, XII, XIII, XIV y XV)	40
8.7. Montaje del Destilador, Aprovechando la Energía Solar en el Modelo	
Cuatro de la Cámara Focal (Experimentos XVI y XVII)	53
8.8. Montaje del Destilador Solar Aplicando el Modelo Tres de la Cámara focal,	
Acoplado con Una Bomba Eléctrica (Experimentos XVIII y XIX)	56
9. EVALUACIÓN ENERGÉTICA DEL DESTILADOR Tablas EXP XIX (a, b y c)	58
9.1. Curvas de la Evaluación Energética del Destilador	61
9.2. Curvas de la Evaluación Energética del Concentrador	66
9.3. Curvas de la Evaluación Energética de la Cámara Focal	70
9.4. Curvas del Destilador	75
10. TABLAS EXPERIMENTOS	
10.1. Tablas Calentamiento Solar (Experimentos V, VI, VII y VIII)	76
10.2. Tablas Calentamiento Aprovechando la Combustión de gas LP	
(Experimentos XI, XII, XIII, XIV y XV)	80
10.3. Tablas del Destilador Solar (Experimentos XVI y XVII y XVIII)	84
11. CONCLUSIONES	86
12. BIBLIOGRAFÍA	87

1. OBJETIVO

Diseño y construcción de un concentrador solar de superficie parabólica reglada.

2. INTRODUCCIÓN

La producción y transformación de energía solar asociada a los resultados obtenidos en la industria la colocan a la vanguardia de las fuentes de producción de energía que están sustituyendo los energéticos no renovables.

Los sistemas de conversión de energía solar que utilizan concentradores de enfoque tienen distintas configuraciones, siendo las más conocidas el concentrador parabólico de revolución y el nuestro un cilindro parabólico; otras configuraciones son las lentes de fresnel y las torres de potencia con sistema de helióstatos.

La aplicación de cada uno de ellos depende de la temperatura que se desee alcanzar, así como de la disponibilidad de materiales y de una justificación técnica que determine su valor económico, siendo ésta: la obtención de potencia calorífica utilizada en sistemas de bombeo, generación de vapor, generación de energía eléctrica, procesos y hornos industriales.

El concentrador solar parabólico es un sistema óptico que refleja y concentra la radiación solar sobre su eje focal, sobre el que se monta una superficie metálica, el absorbedor, que se calienta al recibir la radiación solar. La conversión en energía calorífica se produce al incrementar su temperatura desde la ambiente hasta la temperatura que entregue el sistema de concentración solar (entre 100 y 500 °C).

La conversión de la energía solar en calor mediante colectores es una tecnología en desarrollo. La complejidad de los dispositivos de conversión depende de la temperatura que se desea obtener. En forma muy general, un concentrador solar es un dispositivo que transforma la energía solar en calor para transferirlo a un fluido apropiado.

La principal ventaja de un concentrador es que el flujo de energía por unidad de área es mayor, lo que reduce las pérdidas térmicas, ya que el área del absorbedor es menor, con lo cual se pueden alcanzar temperaturas aprovechables en el ciclo termodinámico, lográndose en él temperaturas mayores de 100 °C, pudiéndose llegar hasta 3800 °C.

Para lograr concentraciones dentro del intervalo de 10 a 3000 es necesario seleccionar una buena geometría además de la implantación precisa de la película reflejante sobre la superficie del bastidor y del helióstato móvil, encargado este último del seguimiento solar, ya sea mecánicamente o por control automatizado, capaz de reflejar la máxima cantidad de radiación solar hacia el concentrador. La reducción de perdidas de calor al utilizar áreas reflectoras, así como un absorbedor de área pequeña, no sólo mejora la eficiencia térmica sino que también reduce otros efectos, ya que la masa térmica es mucho más pequeña que en colectores planos.

Las desventajas del concentrador son su dependencia en las características geográficas y la utilización de la superficie reflectora con una alta calidad óptica, la cual requiere de una protección contra los agentes corrosivos del medio ambiente, debiéndole dar un mantenimiento para alargar su vida útil. Quedando restringida su utilización del presente concentrador a lugares de alta insolación.

3. CONSIDERACIONES GEOMÉTRICAS SOBRE LA SUPERFICIE REGLADA DEL CONCENTRADOR

3.1. SELECCIÓN DE LAS DIMENSIONES ÓPTIMAS

El lugar geométrico de todos los puntos de un plano que equidistan de un punto fijo F, el foco y una recta fija d, la directriz, es una parábola (cf. fig. 3.1).

Figura 3.1. Representación esquemática de la parábola. F es el foco, d la directriz, DVF el eje, p es la distancia del foco al vértice y también del vértice a la directriz, el vértice V es el punto donde el eje corta a la parábola, N y M es una recta paralela a la directriz d que pasa por el foco F y representa el lado recto L_R .

Nuestro objetivo es construir un reflector del tipo "cilindro parabólico" utilizando una hoja cuadrada de 50 cm de lado que debe seguir el perfil señalado por la curva NVM de la figura 3.1, de modo que el foco de la parábola se encuentre en el centro de la recta NM.

• La ecuación que describe una parábola con vértice en el origen es:

$$y = x^2/4p \tag{3.1}$$

donde p es el parámetro definido en la figura (3.1).

• La longitud de arco NVM, que debe ser 50 cm, está dada por:

$$S_x = 2\sqrt{2}p + 2p\ln(1+\sqrt{2})$$
(3.2)

Deduciendo de la ec. (3.2) la distancia focal p:

$$p = \frac{250}{\sqrt{2} + \ln(1 + \sqrt{2})}$$
(3.3)

Obtenemos p=10.9 cm y L_R = 43.6 cm

Sustituyendo el valor numérico de p, la ecuación de la parábola es:

$$y = 0.023x^2$$
 (3.4)

Su gráfica se representa en la figura 3.2.

Figura 3.2. Gráfica de la parábola del concentrador en el plano x,y, donde A y B son los puntos en las aristas de la superficie, cuyas coordenadas son : A(-21.8,10.9), B(21.8,10.9) y F es el punto focal de la parábola F(0,10.9).

La superficie que describe al concentrador se representa en la figura 3.3.

Figura 3.3. Superficie del concentrador. La línea AB es el lado recto de la parábola y la línea que cruza por F perpendicular a la línea AB, describe la línea focal del concentrador donde se alojara la cámara focal.

3.2. ANÁLISIS GEOMÉTRICO DE LA IMAGEN EN EL CONCENTRADOR

Un método que permite visualizar la imagen formada por la superficie cóncava del concentrador, consiste en la aplicación de las leyes básicas de la reflexión y el trazo de las trayectorias de rayos que divergen del objeto. El punto donde convergen todos los rayos reflejados ubica la imagen (cf. fig. 3.4).

El análisis inicia con el trazado de un rayo SK desde el objeto SJ hasta el punto K en el espejo, donde se refleja hacia el foco F, produciendo el segmento KS[´] que pasa por el foco. Esta construcción es compatible con la ley de Snell, es decir, que su ángulo de incidencia es igual al ángulo de reflexión.

Por otro lado, un rayo emitido por el objeto SJ en la dirección del foco F incide en el espejo en el punto L regresándose a lo largo del segmento LS´, paralelo al eje de la parábola.

Todos los rayos que salen de SJ e inciden en la parábola se reflejan hacia los puntos J´y S´.

Sean h_0 y h_i las alturas del objeto e imagen respectivamente, $S_{0 y} S_i$ las distancias del objeto SJ y la imagen S´J´ medidas a partir del foco F. Por la semejanza de los triángulos tenemos:

Figura 3.4. Representación geométrica de la imagen y el objeto en el concentrador.

3.3. ESTIMACIONES ANALÍTICAS PARA EL CÁLCULO DEL ÁREA MÍNIMA DEL TUBO FOCAL

La excentricidad de la orbita de la tierra denota una variación en la distancia al sol en un 3 % por esta razón el sol se observa desde la tierra con un ángulo de 32[´]. La geometría que presenta el esquema de la figura 3.5, muestra la incidencia de los rayos solares sobre la superficie terrestre en un ángulo determinado por el tamaño del Sol y la distancia a la Tierra. Con la estimación anterior se plantea la siguiente cuestión:

Nos interesa determinar el tamaño de la imagen del Sol en el eje del concentrador, para determinar las dimensiones óptimas de la cámara focal.

Figura 3.5. Proyección de los rayos solares en la superficie terrestre. Donde ho es el diámetro del Sol igual a 1.38 x 10^6 km, So es la distancia del Sol a la Tierra de 1.5 x 10^8 km, hi es el diámetro de Tierra igual a 12,700 km y α describe un ángulo de incidencia igual a 0.5 grados.

El análisis geométrico de la figura 3.5 establece la siguiente ecuación:

$$\frac{ho}{So} = \tan\alpha \tag{3.6}$$

Donde las variables h_0 y S_0 se definieron en el tema 3.2 y α es el ángulo que subtiende un diámetro solar visto desde la tierra con un valor de 0.5 grados.

De acuerdo con la ec.(3.5)

$$hi = \frac{ho}{So}f \tag{3.7}$$

Así mismo de las definiciones establecidas en el tema 3.2 y el valor de p obtenido de la ec. 3.3; la distancia focal f coincide con el valor del parámetro p igual a 109 mm.

Como tan (0.5°)
$$\cong \frac{\pi}{360^{\circ}}$$
, \Rightarrow

$$hi=0.95mm\cong 1mm$$

Considerando los cálculos anteriores de la imagen del sol que genera el paraboloide, para indicar; el tamaño mínimo del tubo receptor de la cámara focal debe tener un diámetro mayor de 1mm (cf. fig. 3.6 y 3.7).

Figura 3.6. Imagen de la línea focal generada por el concentrador de superficie reflejante remachada en un bastidor estructural.

Figura 3.7. Imagen de la línea focal generada por el concentrador de superficie reflejante adherida al molde permanente.

3.4. LA ORIENTACIÓN GEOGRÁFICA DEL CONCENTRADOR

La ubicación del sistema se especifica en la figura 3.8, donde el helióstato y el concentrador se encuentran en el mismo meridiano, con un ángulo de inclinación igual a la latitud. El concentrador se orienta hacia la estrella polar, aproximadamente 20° por encima del horizonte, en la dirección del norte geográfico¹. El helióstato se orienta hacia el sur, exhibiendo ambos sus caras.

Figura3.8. Configuración del sistema helióstato – concentrador. El segmento HN es paralelo al eje de rotación de la tierra, el eje HH indica la horizontal y el ángulo L que forma con el eje terrestre es la latitud del lugar. El ángulo θ se mide entre el rayo incidente y la normal CN al espejo. El ángulo ψ , entre el rayo reflejado y la normal al espejo, es, por las leyes de la reflexión igual a θ . La declinación solar es el ángulo D entre el plano del ecuador celeste y el rayo incidente.

Trazo del Norte Geográfico en el sitio donde colocaremos el destilador (figura 3.9).

Figura 3.9. Las fotografías (a,b), muestran la imagen de una circunferencia alojando en su centro una barra perpendicular cuya sombra la corta y genera un cruce, que marcamos en la mañana y por la tarde, obteniendo puntos de referencia utilizados en el trazo del Norte Geográfico¹.

¹ Ingenios Solares, Jiménez B. J M., España-Pamplona 2002

La forma parabólica de la superficie de concentración tiene como propósito mantener enfocado el sistema óptico lineal del colector, mismo que está orientado en la dirección de la radiación directa del helióstato. De está manera se aprovecha la luz reflejada para concentrarla sobre la línea focal en el absorbedor, mientras el helióstato realiza un movimiento rotacional y genera un haz cilíndrico dirigido hacia el concentrador durante el día (cf. fig. 3.10, 3.11 y 3.12).

Figura 3.10. Vista adyacente de la reflexión solar

Figura 3.11. Vista superior de la reflexión solar producida a nivel del helióstato y dirigida al concentrador. El destello de luz en la superficie parabólica genera un haz de luz que se concentra en la cámara focal.

Figura 3.12. La fotografía muestra la imagen del destilador solar. A la izquierda de la imagen el helióstato, frente a él de lado derecho el concentrador parabólico.

4. SELECCIÓN DE MATERIALES PARA EL CONCENTRADOR

El desarrollo excesivo de la contaminación y el abuso de los energéticos para el crecimiento y conservación de la tierra dan como resultado la elaboración y creación de proyectos ecológicos, que aunados al moderado avance económico regional, hacen oportuna la elección de materiales económicos, dúctiles, resistentes a la corrosión ambiental, con un grado óptico y de reflexión óptimos respectivamente:

Para la construcción del concentrador se requiere de acero estructural 1020 rolado en frío, en las siguientes presentaciones ángulo de 1", solera de 1", cuadrado de $1/_2$ " y placa de $1/_8$ ".

En la superficie reflejante, se propone una hoja de acero inoxidable 310, calibre 24 pulida a espejo con una superficie de 250 cm^2 (cf. fig 4.1).

Figura 4.1. Imagen de la conformación de los materiales en los modelos del concentrador y su superficie reflejante.

5. DISEÑO DEL BASTIDOR Y CONFIGURACIÓN DEL CONCENTRADOR

5.1 DISEÑO DEL BASTIDOR

Con la ecuación que define la parábola y = $0.023x^2$, Obtenemos la gráfica a escala real (cf. fig. 5.1).

Figura 5.1. Grafica de la parábola obtenida por computadora con dimensiones reales.

Con la gráfica, se traza una plantilla en una hoja de PVC que nos facilita el trazo y la obtención de una segunda plantilla en acrílico cuyo contorno favorece la elaboración de un molde de madera y obtener una base que nos permite fabricar el concentrador (cf. fig. 5.2).

Figura 5.2. a) Plantilla de acrílico; b) Molde de madera.

Haciendo uso del molde de madera, se confecciona el acero estructural, uniéndolo con soldadura 6013 con una planta de arco eléctrico y así conformar el bastidor del concentrador (cf. fig. 5.3).

Figura 5.3. Estructura del concentrador

Utilizando el mismo método de ensamble se fabrica la base, que por su forma y diseño permite utilizar piezas móviles que nivelan y compensan la variación de la latitud del lugar donde será aplicado el sistema helióstato concentrador (cf. fig. 5.4).

Figura 5.4. Base inclinada de acero estructural para el bastidor del concentrador.

El análisis de los esquemas y la aplicación de las técnicas de soldadura, han permitido la fabricación y obtención del bastidor con su base, cuyas imágenes se aprecian en las fotografías de la figura 5.5.

Figura 5.5. Fotografías de la estructura del bastidor y la base, que conforman el concentrador.

Tomando de referencia el dibujo de la figura 5.6, se procede a construir 2 bridas móviles de acero, que se colocan en la parte superior e inferior del concentrador como se muestra en la fotografía de la figura 5.7; las cuales por su diseño y libertad de movimientos permiten sujetar y alinear la cámara focal a lo largo del eje focal para hacerle incidir la imagen del sol.

Figura 5.6. Aditamento de sujeción.

Figura 5.7. Las imágenes de las fotografías muestran el aditamento que permite fijar y alinear la cámara focal sobre el eje de concentración.

5.2. CONFIGURACIÓN DEL CONCENTRADOR

Terminado el bastidor se procede a fijar la superficie de acero inoxidable 310 calibre 20, pulida a espejo y por su flexibilidad adquiere la forma parabólica que se conformo en el bastidor, se perfora y remacha la lámina confeccionando el concentrador (cf. fig. 5.8).

Figura 5.8. Fotografía con la imagen de la superficie reflejante remachada.

El concentrador con la lámina remachada presento una deformación en la superficie reflejante, derivando una línea focal irregular a lo largo del eje, motivo por el cual se procede a fabricar un segundo concentrador cuya superficie reflejante se adhiere por medio de pegamento. Como la fijación se realizo en los bordes y en la parte central de la lámina no se pudo obtener una superficie homogénea en la configuración de este concentrador (cf. fig. 5.9).

Figura 5.9. La imagen describe un concentrador cuya superficie reflejante se adhiere y soporta por medio de dos soleras soldadas en los bordes del bastidor.

Tomando en consideración los resultados obtenidos en los diseños anteriores, se procede a configurar un molde sólido de oxido de calcio, el cual nos permite obtener un área uniforme, a la cual se le adhiere por medio de pegamento una lámina reflejante. Este diseño nos permitió obtener una superficie homogénea como se observa en la fotografía de la figura 5.10, permitiendo eliminar las aberraciones que se tenían con las configuraciones anteriores.

Figura 5.10. Imagen de la superficie reflejante adherida en un molde sólido.

La fotografía de la figura 5.11, muestra la configuración final del concentrador.

Figura 5.11. La imagen que describe la fotografía presenta el concentrador utilizado en los experimentos con el destilador.

6. EVALUACIÓN DEL CONCENTRADOR

6.1. VARIABLES CLIMÁTICAS

Para realizar la evaluación del concentrador debemos medir sus diferentes características, tomando en cuenta aquellas variables externas que pueden modificar su eficiencia. Los principales factores externos que describen la exposición del dispositivo a los rayos solares así como las variables climáticas de nuestro interés son la temperatura y la radiación solar.

6.1.1. TEMPERATURA

La temperatura es la variable termodinámica más importante: está íntimamente ligada con el proceso de calentamiento y nos permite hacer un seguimiento preciso de la transferencia de calor al concentrador. Nosotros hemos hecho un seguimiento de la temperatura en la superficie reflejante, el aire entre la cámara focal y el concentrador así como también de la temperatura ambiental. La diferencia entre las dos primeras nos permite calcular la transferencia neta de calor al concentrador y su efecto en la cámara . Por otro lado, la estabilización del mismo se refleja precisamente en la constancia que alcanza en ciertos momentos a lo largo del día. La temperatura ambiente actúa por contacto térmico con el sistema, a pesar de todos los esfuerzos realizados para lograr su aislamiento.

En nuestro caso la variación y registro de las temperaturas, la realizamos con diferentes dispositivos, en la superficie reflejante, se obtiene con un termómetro bimetálico de tallo, marca TEL-TRU, modelo ROCHESTER USA y un rango de 0 a 150 °C, el aire, por el potencial eléctrico producido por un termopar acoplado a un multímetro, marca CLAMP METER, modelo DT266C, con un rango de -20 a 750 °C, ambos instrumentos tienen una sensibilidad de 1°C (cf. fig. 6.1).

Figura 6.1. La fotografía muestra en su imagen del lado izquierdo un termómetro bimetálico de caratula redonda con un tallo de 8 pulgadas, el lado derecho presenta un multímetro digital con un elemento sensor que se aprecia en la parte superior de la imagen.

6.1.2. RADIACIÓN SOLAR

La radiación solar es la cantidad de energía procedente del Sol que incide en una unidad de área a lo largo de todo el día. Ésta varía por la absorción y la dispersión de la atmósfera. Sus mediciones se realizan con un pirheliómetro tipo Kipp & Zonen acoplado en la estación meteorológica automática Almaraz, que monitorea la radiación solar, reportando los datos cada 15 minutos durante todo el año (cf. fig. 6.2 y 6.3).

Figura 6.2. La fotografía muestra la imagen de un pirheliómetro tipo Kipp & Zonen utilizado para monitorear la radiación solar.

Figura 6.3. La fotografía nos muestra la imagen de la estación meteorológica automatica Almaraz de lado izquierdo suspendido de una barra el pirheliómetro tipo Kipp & Zonen dentro de una circunferencia monitorea la radiación solar.

7. ANÁLISIS DE LA EFICIENCIA DEL CONCENTRADOR

7.1. BALANCE ENERGÉTICO

La primera ley de la termodinámica establece que existe una función de estado U, *la energía interna*, cuyo cambio ΔU en un proceso está dado por:

$$\Delta U = W + Q \tag{7.1}$$

donde W es el trabajo realizado sobre el sistema y Q es el calor *añadido* al sistema. Es precisamente en el marco de está ley que nos proponemos analizar el funcionamiento del concentrador. En lo que sigue U representa la energía interna del concentrador.

En los procesos que analizaremos no hay fuerzas que realicen trabajo sobre el concentrador, al menos de manera notoria: Las variaciones en la presión atmosférica efectivamente dan lugar a un cambio en el volumen del sistema que llamamos *concentrador*, sin embargo, tal cambio es tan pequeño que el trabajo correspondiente puede ser despreciado. En estas condiciones podemos afirmar que:

$$\Delta U = Q \tag{7.2}$$

Es decir, que el cambio en la *energía interna de nuestro sistema* no es sino que calor aplicado a lo largo del proceso. El estado termodinámico del sistema podemos especificarlo utilizando dos variables termodinámicas. Aquí nos inclinamos por utilizar la presión p y la temperatura T. Para evitar dificultades de unidades, desde ahora reportaremos la presión en pascales (Pa) y las temperaturas (absolutas) en grados Kelvin ($^{\circ}K$). En estas condiciones, la primera ley establece que U = U(p, T). Dado que las variaciones de presión son pequeñas, podemos poner U = U(T). La primera ley únicamente establece el *cambio* en la energía interna, definiendo así la energía en algún estado. Nosotros definimos, por tal motivo:

$$U(373.16) = 0 \tag{7.3}$$

tomando como estado de referencia el del sistema cuando su temperatura absoluta es T = 373.16. Si referimos todos los cambios respecto del estado de referencia, podemos escribir:

$$U(T) = Q \tag{7.4}$$

donde Q es el calor que se debe aplicar al sistema para que su estado pase desde el estado de referencia al estado cuya temperatura es T.

El calor Q añadido es la suma de varias contribuciones: Por un lado tenemos la radiación solar, de la que absorbe una parte, reflejando el resto hacia la cámara focal. Existe además una transferencia de calor entre el concentrador y el aire atmosférico (en general en movimiento). A continuación aclaramos cada uno de estos términos.

7.2. ENERGÍA EN EL CONCENTRADOR

La radiación Solar podemos caracterizarla mediante la Intensidad de su Radiación I_S , definida como la energía de radiación solar incidente por unidad de área (perpendicular a la dirección concentrador-Sol), por unidad de tiempo. I_S está dada por la estación meteorológica automática Almaraz de la Facultad de Estudios Superiores Cuautitlán, de la UNAM. La posibilidad de adoptar tales datos para describir nuestro experimento se sigue de la cercanía geográfica entre el lugar donde hemos instalado nuestro equipo y la ubicación de la dicha estación meteorológica.

Si exponemos nuestro concentrador a un *baño* de radiación solar I_S durante un intervalo de tiempo Δt , la energía solar incidente es:

$$Q_S = I_S A \Delta t \tag{7.5}$$

Donde *A* es el área de la superficie expuesta del concentrador a la radiación Solar. De ésta, una fracción es absorbida y $(1-\alpha)$ es reflejada (hacia la cámara focal).

Para el intercambio de calor con el aire circundante adoptamos un modelo muy sencillo: En lo que sigue supondremos que resulta proporcional a la diferencia de las temperaturas del concentrador y del aire. Si representamos mediante T_a la temperatura (absoluta) del aire circundante, que supondremos igual a la de los alrededores, dado que T es la temperatura (absoluta) del concentrador, el intercambio de calor, en el intervalo de tiempo Δt es:

$$Qc = \gamma \left(Ta - T\right)\Delta t \tag{7.6}$$

donde γ es una constante por determinar. Si $T_a > T$, es decir, si el aire está más caliente que el concentrador, entonces se *añade* calor al sistema, y recíprocamente.

Durante el experimento se registra un cambio de temperatura en la superficie laminar que hace variar su energía interna, a la que ahora llamamos (ΔU), (ec.7.7), siendo está el calor que absorbe la superficie reflejante y es resultado del producto del coeficiente calorífico (*c*) *de la lamina de acero inoxidable (AISI 430)* igual a 464.6 ($J/kg^{\circ}C$), de la masa del reflector (*m*) de 0.535 kg, la diferencia de temperaturas (ΔT) y un incremento de tiempo (Δt) de 600 segundos.

$$\Delta U = m c \left(\Delta T / \Delta t \right) \tag{7.7}$$

Los valores obtenidos de la temperatura y la variación de la energía interna en el concentrador los presentamos en las tablas (EXP XIX a, b de las pág. 58,59).

Las tres fotografías de la figura 7.1, presentan imágenes del concentrador, con los dispositivos utilizador par el registro de la temperatura.

а

Figura 7.1. Registro de temperatura en el concentrador. La fotografía (a) muestra la imagen del concentrador suspendiendo tres multímetros sobre su estructura, la fotografía (b) presenta el concentrador de frente al centro una columna que describe la cámara focal soportando dos termómetros bimetálicos de tallo dentro de una circunferencia cada uno, el que se observa en la parte central hace contacto con la lámina reflejante, el segundo colocado en la parte superior izquierda, registra una de las temperaturas internas de la cámara; por último, en la fotografía (c) observamos en la parte inferior la imagen de un multímetro que muestra la temperatura del aire de un sensor colocado entre la cámara y el concentrador, más arriba tenemos un termómetro de caratula redonda.

7.3. RADIACIÓN DE STEFAN-BOLTZMANN

La incidencia de los rayos solares en el concentrador al inicio de la experimentación comienzan a calentar la lámina y a la vez se presenta una energía radiada que calienta el aire ambiente, siendo ésta una energía de radiación por unidad de área que emite la lamina y es proporcional a su temperatura absoluta elevada a la cuarta potencia *(ley de Stefan-Boltzmann),* dada por la ecuación 7.8.

$$P_{\boldsymbol{R}} = s A T^{4} \tag{7.8}$$

Donde P_R es la radiación térmica, s es la constante de Stefan-Boltzmann igual a (5.67 x 10⁻⁸ W/m²K⁴), A es el área radiante del concentrador de (0.430 m²) y T es la temperatura absoluta en •*K*. (*cf. fig.* 7.2).

Figura 7.2. La fotografía (a) muestra la imagen del concentrador expuesto a la radiación solar que ilumina la lamina reflejante de base 0.43 m y altura de 0.50 m.

Las imágenes de las fotografías (b y c) muestran los sensores de temperatura, tanto del aire, como el de la superficie reflejante (cf. fig. 7.3).

(b)

(c)

Figura 7.3.las imágenes (b,c) presentan los sensores de temperatura del aire y de la superficie reflejante.
8. EXPERIMENTACIÓN

8.1. Montaje del modelo uno de la cámara focal y el concentrador, conformando un destilador solar (Experimentos I, II y III)

Experimento I

Iniciamos colocando los elementos que conforman el sistema destilador, sobre la línea del norte geográfico trazada previamente, seguimos con la distribución de sensores de temperatura, desde el contenedor, a lo largo de toda la cámara y en los sitios precisos del sistema.

Llenamos con agua teñida el contenedor y por gravedad llega a la cámara; aprovecharemos la conformación y exposición al sol de los elementos en su calentamiento (cf. fig. 8.1).

Figura 8.1. Montaje del destilador utilizando el modelo 1 de la cámara focal. En el croquis se pueden apreciar los termómetros colocados en el sistema destilador. El termómetro T_1 en el contenedor y así sucesivamente T_2 la entrada a la cámara, T_3 la salida, T_4 en la línea focal, T_5 el concentrador, T_6 el aire y T_7 registra el medio ambiente. El contenedor presenta un tubo en la parte inferior mostrando el flujo que pasa por la cámara y continua hacia el matraz.

En la prueba apreciamos una condensación en las paredes del tubo de salida (cf. fig. 8.2), seguida de la ebullición y posteriormente un arrojo cíclico de agua al matraz. La presencia de estos fenómenos muestran el comportamiento de la cámara, por lo que decidimos diseñar y acoplar nuevos elementos, a fin de evitarlos.

Figura 8.2. En la imagen de la fotografía observamos indicado con una flecha el condensado en el interior del tubo.

Experimento II

Acoplamos una serie de elementos al modelo uno de la cámara focal y realizamos un segundo intento. Montamos una trampa de vapor con una válvula de alivio, a dicha trampa se le instalo un tapón en la parte inferior y un tubo en la parte superior utilizado como salida. El tapón lo utilizamos para drenar y retirar los sedimentos que acumule la trampa; también acoplamos previo a la entrada de la cámara una válvula check, a fin de evitar el regreso del agua al contenedor (cf. fig. 8.3 y 8.4).

Figura 8.3. La imagen de la fotografía muestra la cámara focal terminada, acoplada a tres elementos, Válvula check, Válvula de alivio y trampa de vapor.

Figura 8.4. Montaje del destilador con el modelo uno modificado. Apreciamos en la parte superior de la cámara la válvula de alivio conectada a la trampa de vapor, también se presenta una válvula check entre el contenedor y la cámara.

En este experimento no se aprecia nada nuevo, es más, una de las adaptaciones resulto inconveniente y como la cámara no logra llenarse, decidimos suspender y dar por terminado éste intento.

Experimento III

Seguimos investigando y para realizar un nuevo intento, al modelo uno le retiramos la válvula de alivio, pensando que ésta sea la causa que dificulta el llenado de la cámara. Montamos nuevamente el destilador, observando que después de una hora de calentamiento, el inició de un goteo permanente durante las dos horas posteriores, suspendiéndose en ese instante; momento en el que decidimos finalizar la prueba. Por último medimos el volumen acumulado en el matraz, obteniendo 55 ml (cf. fig. 8.5).

(a)

(b)

Figura 8.5. La imagen de la fotografía (a) muestra el destilador durante el experimento, en la imagen (b) podemos apreciar la parte trasera del concentrador y un matraz conteniendo una pequeña muestra de agua.

8.2. Conformación del modelo dos de la cámara focal

Experimento IV

La nueva versión de la cámara focal ahora presenta dos tubos soldados longitudinalmente, uno de tres octavos de pulgada y otro de un octavo de diámetro. El tubo focal de menor diámetro es conectado por un costado a la trampa de vapor; otro tubo se acopla, comunicando la trampa y el tubo de alimentación; ésta adecuación se realiza con la finalidad de vaciar la trampa y a la vez ocupar el calor obtenido en el calentamiento del agua que alimenta la cámara (cf. fig. 8.6).

(C)

Figura 8.6. Las imágenes de las fotografías (a, b), muestran la parte superior de la cámara, acoplada a la trampa de vapor. En un costado conecta al tubo focal, de lado opuesto al tubo de alimentación, la imagen de la cámara terminada se muestra en (c).

Como con este modelo de la cámara focal se dificultó su llenado natural, forzamos el mismo, aspirando por el tubo que sale de la trampa de vapor, logrando abastecer la cámara. Se pudo observar un aumento de temperatura y un flujo continuo hacia el matraz; por lo que decidimos dar por terminada la prueba y abandonar este modelo.

8.3. Conformación del modelo tres de la cámara focal (Experimentos V y VI)

Experimento V

Tratando de resolver los problemas obtenidos con los modelos anteriores, diseñamos y fabricamos el modelo tres de la cámara focal. Acoplamos dos tubos longitudinalmente; en donde llega la alimentación, se presenta un tubo de una pulgada de diámetro, seguido de otro de tres octavos, en él se acopla la trampa de vapor. También conectamos un recipiente que comunica la trampa de vapor con el tubo de alimentación, denominado tanque de alivio. Cuyo propósito es evitar el llenado de la trampa, almacenando el excedente, para ser vaciado y precalentar el agua que entra a la cámara (cf. fig. 8.7).

(a)

Figura 8.7. Modelo tres de la cámara focal. La imagen de la fotografía (a) muestra la parte superior de la cámara y las conexiones de la trampa de vapor, el tanque de alivio y tubo de alimentación. El modelo tres de la camara se muestra en la imagen (b).

Utilizamos el modelo tres de la cámara focal, para montar el destilador y realizar un nuevo experimento (cf. fig. 8.8).

Con este modelo solo bombeamos agua caliente, ocasionado por el llenado de la trampa de vapor y el tanque de alivio. Se acumularon 0.0374 m³ en 2.75 hr. Los datos están registrados en la tabla EXP V de la página 76.

Experimento VI

Para resolver los problemas anteriores, como el flujo continuo, el llenado de la trampa de vapor y del tanque de alivio; decidimos acoplar una válvula de paso en el tanque de alivio, para drenar el excedente y registrar la llegada de agua a la cámara (cf. fig. 8.9).

Figura 8.9. La imagen de la fotografía (a) presenta la válvula de paso señalada con una flecha. La camara en toda su longitud se muestra en (b).

En este experimento se siguen presentando los mismos problemas, además el volumen acumulado disminuye a 0.02011 m^3 y el flujo de agua termina en ese instante. Los datos obtenidos se muestran en la tabla EXP VI de la pág. 76.

8.4. Comportamiento térmico del destilador

Experimento VII

Con el objeto de hacer un seguimiento riguroso del proceso térmico procedimos a implantar diez sensores de temperatura al montaje del modelo tres. Tales sensores están a lo largo de todo el sistema desde el contenedor hasta la salida, éstos se muestran en la figura. con las etiquetas de T₁ a T₁₀. La temperatura T₁ se registra en el contenedor, las temperaturas T₂, T₃, T₄, T₅ y T₆ se toman en el interior de la cámara focal, la temperatura T₇ es sensada en la cresta del tubo focal, la temperatura T₈ se registra en la lámina del concentrador, la temperatura T₉ se registra en la zona entre el concentrador y la cámara y la temperatura T₁₀ es la que presenta el medio ambiente (cf. fig. 8.10).

Figura 8.10. Montaje del destilador, para un seguimiento termico, utilizando el modelo tres de la cámara focal. Apreciamos la distribución de termómetros, colocados en puntos específicos y sensar las temperaturas: T_1 , vertedero; T_2 , T_3 , T_4 , T_5 y T_6 , internas de la cámara focal; T_7 , la línea focal; T_8 , la superficie del concentrador; T_9 , el aire entre el concentrador y la cámara y T_{10} , el medio ambiente.

Para realizar el experimento VII propuesto, al modelo tres de la cámara le cortamos el tubo focal en la parte superior, separándolo de la trampa de vapor y del tanque de alivio, con el fin de conectarle una manguera, para llenar un recipiente y registrar el gasto durante el experimento (cf. fig. 8.11).

(a)

(b)

Figura 8.11. Cámara focal para el seguimiento térmico. Las imágenes de las fotografías muestran el corte realizado en el tubo focal, señalado con una flecha en la imagen (a) y el total de la cámara en (b). La cámara focal extendida presenta una longitud de 277 cm, 130 cm en tubo flexible *(manguera)* de 13 mm de diámetro conectada al contenedor; los tubos de cobre que conforman la cámara son de 25.4 mm y 9.52 mm (cf. fig. 8.12). la capacidad total de la cámara y la manguera que la alimenta es de 586.178 x 10⁻⁶ m³ y en cada uno de los tramos calculamos consecutivamente el volumen que presentan entre los termómetros respectivos. Iniciando con el volumen de la manguera y parte de la cámara, descrito entre el termómetro uno y dos, con un valor en m³ de: ($V_1 = 233.41 \times 10^{-6}$, $V_2 = 91.73 \times 10^{-6}$, $V_3 = 194.61 \times 10^{-6}$, $V_4 = 51.69 \times 10^{-6}$ y $V_5 = 14.748 \times 10^{-6}$).

Figura 8.12. Cámara focal extendida en toda su longitud. Se muestra la distancia entre cada uno de los termómetros y en el interior del tubo se aprecian las áreas que indican el límite del volumen respectivo.

Para este experimento VII colocamos 81 litros de agua en el contenedor (cf. fig. 8.13), nivelamos la altura del tubo de alimentación y la superficie de agua en el contenedor. Los cuatro experimentos realizados muestran un comportamiento homogéneo y los detalles los mostramos en las tablas EXP VII (a,b,c,d) de las páginas 77 y 78.

Figura 8.13. La imagen del destilador solar presenta el contenedor sobre el nivel de la cámara y el helióstato alineado al concentrador.

8.5. Destilador solar con el modelo tres de la cámara focal modificado

Experimento VIII

Concluido el experimento VII, modificamos una vez más el modelo tres de la cámara focal, Prolongando el tubo que sale de la trampa de vapor y conectándolo a un cilindro que envuelve el tubo de alimentación, acoplado después de la válvula check y soldado en la parte inferior del mismo el tubo de salida (cf. fig. 8.14). El propósito de este arreglo es condensar más vapor con el calentamiento del agua que entra a la cámara, a fin de obtener agua destilada a menor temperatura en el vaso de precipitado.

(a)

(b)

Figura 8.14. La imagen de la fotografía (a) muestra la parte superior de la cámara, donde se puede reconocer el cilindro envolviendo el tubo de alimentación después de la válvula check. Que incluye en la parte inferior el tubo de salida. En la imagen (b) se muestra el tubo de alimentación, se puede reconocer el modelo tres de la cámara focal sobre la balanza electrónica que indica el peso de la misma (1.483 kg).

Montamos el destilador utilizando el modelo tres ya modificado (cf. fig. 8.15). Ahora regulamos el nivel de agua entre el contenedor y la cámara, abriendo la válvula de paso presente en el tanque de alivio.

Figura 8.15. Esquema del destilador donde observamos el condensador cubriendo el tubo en la entrada de la cámara focal.

En este experimento se acumulan 0.001275 m³ en cinco horas (cf. Tabla EXP VIII pág. 79). También apreciamos un fenómeno, que expande y contrae el recipiente de plástico donde acumulamos el agua condensada. Analizamos los resultados y datos obtenidos, llegando a la conclusión, que el aumento en la temperatura dos, refleja un vacío dentro del tubo de alimentación, que ocasiona la baja producción de agua, manifestando la existencia de una presión que obstruye la válvula check y suspende el flujo (cf. fig. 8.16).

Figura 8.16. Las imágenes de la fotografías presentan el termómetro dos dentro de una circunferencia, mismo que registra la temperatura en el interior del tubo de alimentación.

8.6. Diseño y fabricación del modelo cuatro de la cámara focal y la simulación del calentamiento solar aprovechando la combustión de gas LP (Experimentos IX, X, XI, XII, XIII, XIV y XV)

En vista de los resultados obtenidos en los experimentos solares, decidimos diseñar y fabricar el cuarto modelo de la cámara focal acoplada a la trampa de vapor. Obtenemos la cámara a partir de dos tubos de cobre soldados longitudinalmente, de 26 mm de diámetro en la entrada y 13 mm en la salida; la trampa de vapor se elabora con un tubo de 102 mm (cf. fig. 8.17).

Figura 8.17. La imagen de la fotografía (a) muestra dos tubos de cobre, (26 mm y 13 mm de diámetro por 500 mm de longitud), la trampa de vapor (102 mm de diámetro por 200 mm de altura), elementos para confeccionar la cámara focal; la imagen (b) presenta la vista interior de la trampa de vapor, donde apreciamos en el centro una placa soldada que llamamos de retención; la imagen (c) muestra el modelo cuatro de la cámara focal.

Experimento IX

Utilizamos el modelo cuatro de la cámara focal en el montaje del experimento IX. Ahora utilizamos la energía generada por la combustión de gas LP en el calentamiento de la cámara. Empleamos un quemador vertical, acoplado paralelamente a la cámara y fijo a un bastidor; aplicando directamente la flama que se forma sobre la cresta del tubo focal (cf. fig. 8.18).

Figura 8.18. Montaje experimental de la cámara focal expuesta a fuego directo. Podemos observar la cámara focal y los tubos que la conforman indicando sus diámetros. La alineación paralela con el quemador, indicando la flama en el borde de la cámara focal. El flujo de agua y gas se muestra por medio de flechas en el interior de los tubos respectivos. También se puede apreciar en detalle el corte A-A de la cámara focal, mostrando la vista interior y la indicación de su diámetro. En este experimento que duro dos horas (cf. fig. 8.19), observamos, que después del calentamiento de 15 minutos, la temperatura interior de la trampa de vapor permanece constante en 92 °C hasta el final del experimento. Se pudo apreciar la falta de agua en el interior del tubo de alimentación y un fenómeno que generaba la expansión y contracción de la bolsa de plástico que sella el recipiente donde se acumula el agua condensada.

(b)

Figura 8.19. En la fotografía (a) apreciamos, del lado izquierdo, la imagen del contenedor que alimenta la cámara. Se puede apreciar, en el centro de la imagen, en la parte superior, el recipiente tapado con una bolsa de plástico transparente, mismo que señalamos. En el extremo derecho, se presenta el recipiente de gas conectado al quemador. La imagen de la fotografía (b) presenta el montaje del modelo cuatro de la cámara, durante el experimento; donde podemos ver el acoplamiento entre la cámara, el quemador y el bastidor.

Experimento X

Después de analizar los resultados obtenidos en el experimento IX, efectuamos una serie de cambios al modelo cuatro de la cámara focal.

Primero instalamos en el contenedor una válvula check, seguida de un tubo de plástico transparente hasta la entrada de la cámara; a dicho tubo le insertamos uno de cobre, que sale de la trampa de vapor y continua hasta el recipiente para agua destilada; éste se cubre parcialmente con el agua que entra a menor temperatura. Realizamos estos arreglos para observar el flujo de agua hacia la cámara y aprovechamos el baño que presenta el tubo de cobre para condensar el vapor que en éste fluye y a la vez utilizar el calor disipado en el calentamiento del agua que alimenta la cámara. Por último, verificamos el llenado de la cámara, observando la altura que toma el agua en los niveles, mismos que se encuentran paralelos a la cámara y provistos cada uno de ellos con dos válvulas de paso para su regulación. En la base de la trampa de vapor soldamos un tubo acoplándole una válvula de paso, para su drenado (cf. fig. 8.20).

Figura 8.20. Esquema del montaje de calentamiento de agua con gas LP Se muestran dos tubos paralelos de nivelación en los costados de la cámara, mismos que contienen en la parte superior válvulas de paso (1,2,3,4); además contamos con dos termómetros para sensar las temperaturas, (T_1) en el contenedor y (T_2) en la trampa de vapor. Se puede observar un tubo pequeño en la salida de la trampa de vapor atravesando el tubo de alimentación, a fin de precalentar el agua que llega a la cámara y condensar el vapor generado.

En este experimento logramos observar el fenómeno que ocurre después de la válvula check. Primero percibimos el calentamiento en toda la cámara y se pudo apreciar la acumulación de vapor en el interior del tubo transparente que la alimenta. Este fenómeno desplaza el agua contenida en el tubo, suspendiendo el flujo. En consecuencia solo se evapora el agua que existe en la cámara.

Posteriormente se presentó otro fenómeno, capaz de absorber el agua acumulada en el recipiente de plástico, vaciándolo en su totalidad y comprimiéndolo: a continuación, de forma natural, se vuelve a llenar la cámara y el recipiente de plástico toma su forma original. Este fenómeno se repite varias veces durante el experimento. Este comportamiento se puede seguir con detalle gracias a que el tubo de alimentación y los de nivel son transparentes. A pesar de lo intrigante abandonamos este montaje sin investigar más (cf. fig. 8.21).

(a)

(b)

(C)

Figura 8.21. Las fotografías (a. b), muestran la cámara focal utilizada en el ensayo número dos; la imagen de la fotografía (c) presenta la cámara acoplada a un tubo transparente en la alimentación y frente a ella dos tubos transparentes para observar el nivel de agua que presenta.

Experimento XI

Después de analizar los fenómenos obtenidos en el experimento X, realizamos otra modificación al modelo cuatro. Sustituimos el tubo transparente por uno de cobre de 13 mm de diámetro, que va conectado de la válvula check a la cámara, acoplando en él un manómetro. El objetivo es observar la existencia de presión en dicho tubo y la temperatura que se presenta en esa zona (cf. fig. 8.22).

Figura 8.22. Montaje del modelo cuatro de la cámara focal, se puede apreciar la presencia de tres sensores de temperatura (T_1 , T_2 , T_3) y un manómetro (P_1) acoplado en el tubo de alimentación.

Realizamos el montaje del modelo cuatro modificado y de nuevo aplicamos calor a la cámara. En este proceso logramos apreciar la existencia de presión en el tubo de alimentación durante todo el experimento (cf. fig. 8.23). Ahora sabemos que existe una fuerza que detiene el flujo y sella la válvula check. Fenómeno que ocasiona la falta de agua y el llenado natural de la cámara (cf. tablas EXP XI (a, b) pág. 80).

(a)

(b)

(c)

Figura 8.23. En las imágenes de las fotografías (a, b) podemos apreciar la conformación del modelo cuatro de la cámara, donde se puede observar el tubo de cobre con un manómetro acoplado y en seguida un sensor de temperatura. La imagen (c) muestra el montaje del mismo modelo, podemos apreciar el contenedor, la cámara suspendida en el bastidor y el recipiente para gas en el piso.

Experimento XII

El resultado anterior permite rediseñar el modelo cuatro. Procedimos ahora a montar una bomba para llenar la cámara, por medio de un tubo soldado inmediatamente después de la válvula check. Proponemos que la bomba funcione automáticamente, regulando su funcionamiento con la variación de la temperatura (T_2), misma que debe arrancar cuando registra 90 °C, pero que se para al caer por debajo de 86 °C (cf. fig. 8.24).

Figura 8.24. Esquema del montaje de calentamiento de agua con gas LP. Donde se muestran dos tubos de nivelación en los costados de la cámara mismos que contienen en la parte superior válvulas de paso, además se cuenta con tres termómetros que sensan la temperatura en el contenedor (T_1), en el tubo de alimentación (T_2) y en la trampa de vapor (T_3), un manómetro que registra la presión en el tubo de alimentación (P_1). Se puede observar un tubo pequeño en la salida de la trampa de vapor, que atraviesa el tubo de alimentación para precalentar el agua en la entrada de la cámara. Además este sistema contiene un circuito alimentador con una bomba (BT2) controlada automáticamente.

Siendo la respuesta del sensor térmico (T_2) lenta, ocasiona que la bomba permanezca funcionando, llenando la cámara y la trampa de vapor, generándose un flujo continuo hacia el recipiente de condensado (cf. fig. 8.25). drenamos la trampa de vapor e iniciamos de nuevo el experimento. Como sigue presentándose el mismo fenómeno finalizamos después de dos horas el experimento (cf. tablas EXP XII (a, b) pág. 80).

Figura 8.25. La fotografía muestra la imagen del sistema alimentador; en la parte superior se presenta una flecha en dirección del flujo inducido a la cámara a través del tubo transparente; en el extremo superior derecho se indica el sensor térmico acoplado al tubo de alimentación.

Experimento XIII

El resultado obtenido en el experimento XII, nos lleva ha realizar un nuevo experimento, donde desechamos el funcionamiento automático de la bomba y utilizando el mismo modelo realizamos un nuevo intento. Ahora la operación de la bomba es manual, arranca cuando observamos en el sensor (T₂) una temperatura de 86 °C y la paramos cuando el sensor registra la caída de 10 °C de temperatura(cf. fig. 8.26).

Figura 8.26. La imagen de la fotografía muestra el deposito que alimenta la bomba, misma que señalamos en el interior de la circunferencia.

En este experimento logramos evitar el llenado de la trampa de vapor, pero la presión en el tubo de alimentación sigue existiendo; como lo indica el manómetro y se muestra en las lecturas registradas dentro de las tablas (cf. Tablas EXP XIII (a, b, c, d) páginas 81 y 82).

Experimento XIV

Después de analizar los resultados obtenidos, realizamos otra adecuación al modelo cuatro. El nuevo diseño, permite tener un sistema de enfriamiento, con el que esperamos eliminar la presión y a la vez condensar una mayor cantidad de vapor. Cubrimos el tubo de alimentación, soldando un cilindro de cobre en su periferia, éste presenta un diámetro de 40.8 mm, con una longitud de 575 mm y lo colocamos en seguida de la válvula check y hasta el borde de la cámara (cf. fig. 8.27).

Figura 8.27. El esquema presenta el montaje del modelo cuatro de la cámara focal modificado, donde se adapta un cilindro envolviendo el tubo de alimentación después de la válvula check. Con la bomba eléctrica (BT2) llenamos el cilindro por la parte inferior y lo vaciamos en el contenedor forzando el enfriamiento del tubo de alimentación, en este evento la válvula ocho permanece cerrada. Utilizamos el mismo procedimiento cuando se requiere llenar la cámara, solo que ahora cerramos la válvula siete y abrimos la válvula ocho, haciendo fluir el agua por el tubo de alimentación hacia la cámara.

Durante el experimento aprovechamos la bomba (BT2) en el llenado del cilindro, produciendo un flujo que llega hasta el contenedor durante 960 segundos y paramos la bomba. Conforme se llenó el recipiente de agua condensada y vapor, realimentamos la cámara abriendo la válvula ocho que llega al tubo de alimentación, esto se realiza manualmente, poniendo a funcionar la bomba en el segundo 1800 durante 60 segundos. También apreciamos en el segundo 300 una condensación en el interior del tubo transparente que se encuentra conectado entre la trampa de vapor y el cilindro enfriador (cf. fig. 8.28).

Finalmente drenamos la trampa de vapor, abriendo la válvula de paso número cinco; observamos que no salió agua. Pero podemos decir que la cámara si se encuentra abastecida ya que los niveles transparentes muestran la altura del agua (cf. tabla EXP XIV pág. 83).

(a)

(b)

Figura 8.28. La imagen de la fotografía (a) muestra en el extremo superior derecho la trampa de vapor conectada a un tubo transparente; la imagen (b) presenta el recipiente para acumular el condensado.

Experimento XV

Continuamos el experimento con el mismo montaje, realizando una segunda etapa, tomamos el segundo 1860 como el tiempo cero y registramos las lecturas en ese instante. Ahora enfriamos paulatinamente el agua del tubo de alimentación, generamos un flujo que dura 1800 segundos, poniendo a funcionar la bomba manualmente cada 300 segundos.

En esta etapa del experimento el manómetro no registra lectura alguna, lo que indica que el tubo de alimentación carece de presión (cf. fig. 8.29). Lográndose acumular 223 ml de agua condensada. Durante los dos experimentos el consumo de gas es de 168 gr (cf. tabla EXP XV pág. 83).

Figura 8.29. La fotografía presenta en su imagen el modelo cuatro durante el experimento, donde podemos apreciar en la parte superior izquierda el manómetro y en el extremo derecho el recipiente para gas.

8.7. Montaje del destilador, aprovechando la energía solar en el modelo cuatro de la cámara focal (Experimentos XVI y XVII)

Experimento XVI

Procedimos a experimentar el destilador solar utilizando el modelo cuatro de la cámara focal. Acoplamos cada uno de sus elementos, exhibiendo la cámara focal a la radiación solar reflejada por el concentrador parabólico (cf. fig. 8.30).

Figura 8.30. Esquema del acoplamiento del destilador solar utilizando el modelo cuatro de la cámara focal. Simulamos la radiación solar reflejada por una serie de flechas que salen del concentrador a la cámara. Se pueden apreciar los termómetros (T_1 a T_7), para el registro de las temperaturas en el experimento con el destilador, el flujo de agua en el sistema se indica con una serie de flechas durante su trayectoria, el nivel de agua que presenta la cámara lo muestran los tubos respectivos, el circuito realimentador permite enfriar el vapor que sale de la trampa y también abastecer la cámara, cuando ésta lo requiera; esto lo podemos lograr abriendo y cerrando las válvulas de paso presentes en el circuito.

Iniciamos el experimento colocando cada uno de los elementos que componen el destilador (helióstato – concentrador - cámara) sobre la línea que indica el Norte-Sur geográfico, trazada previamente, llenamos la cámara y observamos la altura del agua con el nivel que describen los tubos, enfocamos manualmente la imagen del sol sobre la cresta de la cámara focal dentro de la ventana y la dejamos fija. Al llegar a este paso arrancamos el motor que mantiene girando al helióstato. La línea focal medida con un vernier presenta un ancho de 2 mm.

Se pudo observar durante el experimento el desenfoque que presenta la imagen del sol, aproximadamente 0.5 mm, corrigiendo este manualmente cada que tomamos lecturas.

Por último las lecturas que registró el termómetro conectado en la trampa de vapor indican que solo se calentó el agua del sistema (cf. fig. 8.31). Concluimos que el calor es disipado por los elementos que no están forrados, como son, tubos de nivel y válvulas de paso (cf. tabla EXP XVI pág. 84).

(a)

(b)

Figura 8.31. Las imágenes de las fotografías muestran el destilador expuesto a la radiación solar, en la imagen (a) se puede apreciar el señalamiento de los tubos de nivel, en la imagen (b) se indican las válvulas que regulan dichos tubos.

Experimento XVII

Analizamos los resultados obtenidos en el experimento XVI. Procedimos a realizar adecuaciones al modelo cuatro. Retiramos los niveles y cubrimos con fibra de vidrio todos los elementos que estaban sin forrar y con el mismo procedimiento realizamos un segundo intento (cf. fig. 8.32).

Figura 8.32. Montaje del destilador utilizando el modelo cuatro de la cámara focal ya sin los niveles.

Con las adecuaciones realizadas solo se logran acumular 12 ml de agua condensada durante cuatro horas, considerando que es una producción pequeña de volumen. Pudiendo concluir que el tamaño de la trampa de vapor afecta la producción de vapor y a pesar de esto decidimos desechar el modelo cuatro de camara focal (cf. tabla EXP XVII pág. 84).

8.8. Montaje del destilador solar aplicando el modelo tres de la cámara focal, acoplado con una bomba eléctrica (Experimentos XVIII y XIX)

Experimento XVIII

Considerando los resultados obtenidos en los experimentos anteriores, decidimos regresar al modelo tres haciéndole algunas modificaciones. Acoplar una la bomba eléctrica desde el contenedor hasta la entrada del tanque de alivio, regulando la inyección con una válvula de paso (cf. fig. 8.33). conviene notar que esta cámara focal tiene una capacidad de 370 ml de agua.

Figura 8.33. Montaje experimental correspondiente al modelo tres modificado. El flujo de agua hacia la cámara se muestra por medio de flechas en el interior de los tubos que la conforman; la trampa de vapor incluye un tubo en la parte superior, conectado con un cilindro que envuelve el tubo de alimentación y que termina en la probeta graduada. La bomba eléctrica B, regulada por una válvula, inyecta agua a la cámara conforme se acumula en la probeta.

Este experimento no produce mucho agua, ya que solo se acumulan 6 ml de agua destilada en 2.16 horas. Como puede verse con detalle en la tabla EXP XVIII de la página 85. Procedimos a desconectar el tubo de realimentación y al abrir la válvula de paso acoplada al tanque de alivio y que es la misma que controla el llenado de la cámara, salió agua caliente, este fenómeno muestra que el tanque de alivio se encontraba lleno durante el experimento.

Experimento XIX

Para resolver el problema anterior, volvemos a utilizar el modelo tres de la cámara focal modificado y en previsión de que el tanque de alivio se encuentre vació, vaciamos este tan pronto comprobamos que la misma cámara estuviera llena. Esto se puede lograr confirmando el nivel de agua al abrir la válvula de paso que regula la inyección (cf. fig. 8.34). En este nuevo experimento observamos una destilación continua, acumulando un total de 65.5 ml en 2.83 horas. Los detalles están registrados en la tabla EXP XIX (a) de la página 58.

(a)

(b)

(c)

Figura 8.34. Las imágenes de las fotografías (a, b), muestran los instrumentos que registran las temperaturas acoplados al concentrador; la imagen (c) presenta un costado del concentrador suspendiendo un matraz con el condensado acumulado; la imagen (d) exhibe el destilador solar.

9. EVALUACIÓN ENERGÉTICA DEL DESTILADOR Tablas EXP XIX (a, b y c)

Tablas Experimento XIX

Considerando las definiciones realizadas en el capitulo 7, realizamos el balance energético del experimento XIX con el destilador solar.

Los datos del experimento se muestran en las tablas EXP XIX (a, b, c, pág. 58,59, 60). En la tabla (a) puede notarse que hay ocho columnas de temperatura, la columna cero con el tiempo. En seguida vienen las columnas de radiación solar, potencia incidente, velocidad del viento y el volumen por acumular. Todos son de tipo real, excepto la columna del tiempo que es numérica.

Todas las temperaturas están en grados centígrados, el tiempo en segundos, la radiación solar en watts/m², la potencia incidente en watts, la velocidad del viento en m/s y el volumen por acumular en m³.

	TEMPERATURA °C								DADIACIÓN	DOTENCIA			
TIEMPO	CÁMARA				ARA	CONCENTRADOR		MEDIO	SOLAR	INCIDENTE	VELOCIDAD DEL	VOLUMEN	
	INTERIOR			DR	BORDE L. F.	SUP.	AIRE	AMBIENTE	Is	Qs	VIENTO	ACOMOLADO	
S	$\mathbf{T}_1 \mathbf{T}_2 \mathbf{T}_3 \mathbf{T}_4$		T ₄	T ₅	T ₆	T ₇	T ₈	W/m ²	W	m/s	m ³		
0	24	37	45	28	95	35	25	22	920.93	198	1.62	0	
600	25	40	90	36	104	36	31	23	953.49	205	1.14	0(Inicia goteo)	
1200	26	59	91	54	104	36	22	23	944.19	203	1.72	0	
1800	27	69	91	66	105	39	33	22	934.88	201	1.24	0	
2400	28	83	93	89	104	40	31	23	934.88	201	1.61	2 E-6 *	
3000	29	84	94	90	104	41	30	24	934.88	201	1.24	9 E-6	
3600	29	82	90	90	115	43	38	24	930.23	200	1.39	2.5 E-6	
4200	30	85	90	92	126	41	33	24	953.49	205	2.06	6 E-6	
4800	31	84	86	91	118	39	32	25	934.88	201	2.21	4.5 E-6	
5400	32	84	86	91	128	42	32	26	930.23	200	2.06	6.5 E-6	
6000	33	84	86	93	129	41	31	27	934.88	201	2.12	6 E-6	
6600	33	84	88	92	121	45	32	27	939.53	202	1.64	3.5 E-6	
7200	33	84	87	91	115	37	31	26	930.23	200	1.76	5 E-6	
7800	34	81	86	89	120	43	31	26	934.88	201	1.57	2 E-6	
8400	34	84	92	88	126	48	32	26	925.58	199	1.61	3.5 E-6	
9000	34	84	88	91	120	45	32	26	930.23	200	1.18	4 E-6	
9600	34	84	89	95	124	47	32	26	948.84	204	1.22	6 E-6	
10200	35	84	88	92	119	48	32	27	967.44	208	1.27	5 E-6	
* E-6 =	-6										65.5 E-6		

Tabla EXP XIX (a)

Los datos de las potencias obtenidas en el concentrador se encuentran en la tabla EXP XIX (b). Pueden notarse siete columnas de potencia en watts; en la columna dos se presenta la potencia incidente afectada por el factor reflectivo de la superficie, la potencia que radia el concentrador de acuerdo a la ecuación de stefan-Boltzmann se muestra en la columna tres, la potencia que absorbe el concentrador en la columna cuatro. Las columnas cinco, seis y siete, muestran la potencia que emite el concentrador, en la columna ocho se muestra la potencia que refleja a la cámara focal y en la columna nueve la eficiencia del concentrador.

	CONCENTRADOR										
TIEMPO	POTENCIA W										
	INCIDENTE	DE RADIACIÓN	INTERNA	EMITE = QC		TOTAL		EFICIENCIA			
S	Qs P_R		$\Delta U = mc \Delta T / \Delta t$	AIRE	M. A.	CONSUME	REFLEJA	η%			
0	132	91	0	9	12	21	70	53			
600	137	92	1	5	12	18	74	54			
1200	136	91	0	13	12	25	66	48			
1800	134	95	2	6	16	24	71	53			
2400	134	92	1	9	16	26	66	49			
3000	134	92	1	11	16	28	64	48			
3600	134	93	1	5	18	24	69	52			
4200	137	89	0	8	16	24	65	47			
4800	134	89	0	7	13	20	76	57			
5400	134	95	2	10	15	27	68	51			
6000	134	90	0	10	13	23	74	55			
6600	135	96	2	13	17	32	64	47			
7200	134	85	0	6	10	16	88	66			
7800	134	99	4	12	16	32	67	50			
8400	133	97	3	16	21	40	57	43			
9000	134	89	0	13	18	31	64	48			
9600	136	93	1	15	20	36	57	42			
10200	139	92	1	16	21	38	54	39			

Tabla EXP XIX (b)

Los datos de las potencias obtenidas en la cámara se encuentran en la tabla EXP XIX (c). Pueden notarse nueve columnas de potencia en watts; Las columnas dos, tres, cuatro y cinco, muestran la potencia que emite la cámara, las potencia que absorbe la cámara se presenta en las columnas seis, siete, ocho y nueve; la potencia total que se consume en la cámara se muestra en la columna diez y la eficiencia se muestra en la columna once.

CÁMARA												
TIEMDO	POTENCIA W											
TIEMPO		EMIT	Е	ABSORBE					η			
s	Aire	M.A.	P_R	Q_e	Cu	Agua	V. P.	Q_a	Q_{cn}			
0	0.11	0.13	0.49	0.73	9	22	0	31	32	46		
600	0.42	0.46	0.83	1.71	5	11	0	16	19	26		
1200	0.48	0.47	0.84	1.79	8	15	0	23	27	41		
1800	0.42	0.48	0.84	1.73	7	12	0	19	22	32		
2400	0.45	0.49	0.86	1.80	11	20	0	31	35	53		
3000	0.46	0.49	0.87	1.82	11	20	3	34	38	60		
3600	0.38	0.46	0.83	1.67	13	24	1	38	41	59		
4200	0.41	0.46	0.83	1.70	14	22	2	38	42	64		
4800	0.38	0.42	0.79	1.59	14	21	2	37	40	52		
5400	0.38	0.41	0.79	1.58	12	21	2	35	39	57		
6000	0.39	0.41	0.79	1.58	13	26	2	41	45	60		
6600	0.40	0.42	0.81	1.63	13	24	1	38	41	64		
7200	0.39	0.42	0.80	1.62	12	21	2	35	38	43		
7800	0.39	0.41	0.79	1.59	12	24	1	37	40	60		
8400	0.43	0.47	0.85	1.75	9	15	1	25	29	51		
9000	0.40	0.43	0.81	1.64	12	21	1	34	37	58		
9600	0.41	0.44	0.82	1.66	14	30	2	46	50	87		
10200	0.40	0.42	0.81	1.63	12	24	2	38	41	76		

Tabla EXP XIX (c)

9.1. Curvas de la evaluación energética del destilador

Las curvas de temperatura, radiación solar, potencia incidente, velocidad del viento y el volumen acumulado del experimento XIX se muestran a continuación (cf. fig. páginas 61 a 65).

Termómetro T₂ Interior cámara

Termómetro T₆ superficie reflejante concentrador

Termómetro T7 Temperatura aire entre el concentrador y la cámara

Termómetro T₈ Temperatura del medio ambiente

Radiación solar W/m² de la estación meteorológica

Potencia incidente W

Volumen Acumulado

9.2. Curvas de la evaluación energética del concentrador

Las curvas de las potencias y eficiencia del concentrador en el experimento XIX se muestran a continuación (cf. fig. páginas 66 a 69).

Potencia incidente afectada por el factor de reflejancia de la superficie del concentrador

Potencia de radiación con la Ec. Stefan-Boltzmann afectada por la relfejancia del concentrador

Potencia que absorbe la superficie del concentrador

Potencia que emite al aire el concentrador

Potencia que consume el concentrador

Potencia que refleja el concentrador a la cámara

Eficiencia del concentrador

9.3. Curvas de la evaluación energética de la cámara focal

Las curvas de las potencias y eficiencia de la cámara en el experimento XIX se muestran a continuación (cf. fig. páginas 70 a 74).

Potencia que emite al medio ambiente la cámara

Potencia de radiación con la Ec. Stefan-Boltzmann afectada por la reflejancia de la cámara

Potencia total que emite la cámara

Potencia que absorbe el material de la cámara

Potencia que absorbe el agua en la cámara

Potencia que absorbe el volumen procesado por la cámara

Potencia que total que absorbe la cámara

Potencia total que consume la cámara

Eficiencia de la cámara

9.4. Curvas del destilador

La imagen (a) muestra las curvas que representan las potencias tanto del concentrador, como de la cámara; en la parte superior el trazo más grueso es la potencia total emitida por el concentrador a la cámara; en la parte inferior se aprecia un trazo más tenue representando la potencia que consume la cámara. La imagen (b) muestra la curva de la eficiencia del destilador.

b) Eficiencia del destilador

10. TABLAS EXPERIMENTOS

10.1. Tablas Calentamiento Solar (Experimentos V,VI,VII y VIII)

					TEM	PERATURA °C					
TIEMPO			C	ám a	RA	CONCENTRADOR		MEDIO	RADIACION SOLAR	POTENCIA	VOLUMEN
	11	NTE	rio	R	EXTERIOR	SUPERFICIE	AIRE	AMBIENTE		INCIDENTE	ACUMULADO
S	T ₁	T_2	T_3	T ₄	T₅	T ₆	T ₇	T ₈	W/m ²	W	m³
0	25	28	29	26	26	25	27	21	781.85	168.0978	0
900	26	30	33	28	26	34	31	22	801.94	172.4171	0
1800	27	31	25	33	34	40	36	23	807.46	173.6039	0
2700	29	39	90	63	90	40	38	23	815.15	175.2573	0.001
3600	30	48	90	82	102	39	36	23	790.12	169.8758	0.0033
4500	30	48	86	76	90	39	35	23	788.55	169.5383	0.0057
5400	30	47	95	79	95	40	35	23	776.92	167.0378	0.006
6300	30	47	92	80	95	45	39	23	749.34	161.1081	0.006
7200	30	47	95	88	103	38	37	24	732.78	157.5477	0.006
8100	30	47	99	86	107	45	39	24	717.22	154.2023	0.004
9000	30	49	99	90	93	44	38	23	689.63	148.2705	0.003
9900	31	47	98	85	99	44	37	24	653.57	140.5176	0.0024
										TOTAL	0.0374

Tabla EXP \mathbf{V}

Tabla EXP VI

					TE	MPERATURA °C					
TIEMPO			С	ÁМ	ARA	CONCENTRADOR		MEDIO	RADIACION SOLAR	INCIDENTE	
	IN	ITE	RIC	DR	EXTERIOR	SUPERFICIE	AINE	AMBIENTE			
S	T ₁	T ₂	T ₃	T ₄	T ₅	T ₆	T ₉	T ₁₀	W/m ²	W	m ³
0	22	23	23	25	21	21	20	19	679.19	146.03	0
900	23	25	26	29	64	29	20	20	707.17	152.04	0.00187
1800	24	26	27	33	77	26	21	21	723.92	155.64	0.00172
2700	25	28	27	33	80	29	21	21	747.56	160.73	0.00168
3600	25	32	27	31	105	31	22	21	702.44	151.02	0.00181
4500	25	32	28	29	91	33	22	22	773.57	166.32	0.00186
5400	26	34	29	31	101	34	23	22	784.8	168.73	0.00188
6300	26	35	29	30	87	35	23	23	749.35	161.11	0.00179
7200	27	37	30	31	102	35	24	24	786.18	169.03	0.00188
8100	27	37	31	33	100	37	26	23	777.91	167.25	0.00189
9000	28	42	30	31	106	38	26	25	777.51	167.16	0.0019
9900	28	43	31	31	90	33	26	24	761.16	163.65	0.00184
<u></u>	-		•		•				•	TOTAL	0.02011

							TEMP	ERATURA °C						
ΤΙΕΜΡΟ				C	ÁМ	AR	A	CONCENTRADOR		MEDIO	RADIACION SOLAR	POTENCIA INCIDENTE	VELOCIDAD VIENTO	ACUMULADO
		IN	TE	RIC	DR		EXTERIOR	SUPERFICIE	/\	AMBIENTE				
s	T ₁	T2	T ₃	T ₄	T ₅	T ₆	T ₇	Т8	Т9	T10	W/m2	W	m/s	m ³
0	27	29	29	30	31	31	31	29	30	24	787.38	169.29	1.21	0
900	27	30	31	31	34	35	53	34	31	23	752.49	161.79	2.22	0.00162
1800	28	31	33	35	37	38	76	32	31	24	769.83	165.51	1.43	0.00172
2700	28	31	33	34	35	36	61	37	37	24	788.94	169.62	1.7	0.00181
3600	29	32	34	35	35	37	58	32	34	24	778.5	167.38	1.99	0.00172
4500	29	32	33	35	35	36	68	37	37	24	794.06	170.72	1.6	0.0014
5400	29	32	33	35	36	37	60	35	38	25	777.12	167.08	1.48	0.001945
6300	30	33	34	34	35	36	63	37	37	25	766.87	164.88	1.6	0.0026
7200	30	32	33	35	35	35	69	41	36	25	740.67	159.24	1.82	0.002
8100	30	33	34	36	36	36	72	40	38	25	744.02	159.96	2.09	0.002
9000	30	33	34	36	36	36	76	42	37	25	709.53	152.55	2.33	0.002035
9900	31	34	35	37	37	38	76	44	38	26	693.77	149.16	1.56	0.00195
10800	31	34	35	35	36	37	70	41	36	26	659.49	141.79	1.73	0.00107
11700	31	34	34	34	34	35	73	42	39	26	652.19	140.22	2.08	0.0033
12600	31	34	35	35	35	35	71	42	39	27	612	131.58	1.9	0.002575
13500	32	35	35	35	35	35	78	39	39	27	581.65	125.05	1.96	0.003005
14400	32	34	34	34	35	35	74	38	35	28	547.17	117.64	1.03	0.00293
													TOTAL	0.03368

Tablas EXP VII (a,b)

r

(a)

		TEMPERATURA °C						ERATURA °C						
TIEMPO				C	ÁМ	AR	A	CONCENTRADOR		MEDIO	RADIACIÓN SOLAR	POTENCIA INCIDENTE	VELOCIDAD VIENTO	VOLUMEN ACUMULADO
		IN	ITE	RIC	DR		EXTERIOR	SUPERFICIE	AIRE	AMBIENTE				
s	T₁	T ₂	T ₃	T ₄	T 5	T ₆	T ₇	T ₈	T9	T ₁₀	W/m ²	W	m/s	m ³
0	27	27	27	27	28	28	28	29	28	24	727.27	156.36	1.42	0
900	28	30	31	31	34	35	60	38	40	24	757.41	162.84	2.13	0.00207
1800	29	31	32	32	35	36	60	39	41	24	752.88	161.87	2.23	0.00224
2700	30	32	33	34	35	36	60	39	39	24	779.48	167.59	1.49	0.002035
3600	30	32	33	34	35	35	59	41	43	24	771.21	165.81	1.83	0.00221
4500	30	32	33	34	34	35	62	39	39	25	765.89	164.67	1.92	0.002215
5400	30	32	33	34	34	35	65	42	38	25	765.69	164.62	2.23	0.00222
6300	30	34	35	36	36	37	69	41	35	26	762.93	164.03	2.14	0.002025
7200	31	33	34	35	35	36	72	42	38	25	755.25	162.38	2.18	0.002225
8100	31	34	34	35	36	37	67	43	39	26	731.6	157.29	1.99	0.002035
9000	31	34	35	36	37	37	61	43	38	26	732.78	157.55	2.07	0.002125
9900	31	34	35	36	36	36	60	41	35	26	724.51	155.77	2.09	0.001965
10800	31	34	35	36	36	37	64	44	40	26	697.71	150.01	2.39	0.002
11700	32	34	35	36	36	36	72	42	37	27	671.31	144.33	2.07	0.0018
12600	32	35	35	36	37	37	87	39	38	28	662.05	142.34	1.36	0.001915
13500	32	35	36	38	38	38	85	42	39	27	676.63	145.48	1.6	0.00181
14400	32	35	35	36	36	37	90	40	40	27	599.39	128.87	2.23	0.001865
													TOTAL	0.032755

		TEMPERATURA °C									DOTENCIA			
TIEMPO				C	ÁМ	AR	A	SUPERFICIE		MEDIO	SOI AR	INCIDENTE		ACUMULADO
		IN	ΤE	RIC	DR		EXTERIOR	CONCENTRADOR		AMBIENTE	001/41		1121110	/10011102/120
s	T₁	T ₂	T ₃	T4	T 5	T ₆	T ₇	T ₈	T۹	T ₁₀	W/m ²	W	m/s	m ³
0	32	34	40	42	42	44	72	46	39	27	524.51	112.77	1.9	0
900	33	34	35	35	35	36	72	42	37	26.5	430.13	92.48	2.56	0.00315
1800	33	34	35	35	35	35	72	45	37	26.9	461.66	99.26	4	0.003315
2700	33	35	35	38	39	39	91	44	39	26.7	404.32	86.93	3.53	0.003555
3600	35	35	35	37	38	38	94	40	35	26.6	373.38	80.28	3.89	0.0024
4500	33	35	35	38	38	38	82	38	34	26.8	331.02	71.17	3.55	0.0028
5400	33	34	35	36	38	38	72	36	33	26.6	285.5	61.38	3.47	0.0028
6300	33	34	35	36	37	38	75	38	33	26.4	238.61	51.3	3.46	0.00215
7200	32	33	35	36	37	37	74	37	34	26.1	196.05	42.15	4.06	0.0022
8100	31	31	32	32	33	34	30	25	26	25.5	114.87	24.69	4.45	0.00207
9000	30	29	30	28	31	32	30	24	24	25.1	37.73	8.11	4.13	0.00202
9900	29	29	30	29	31	31	39	28	26	24.2	29.35	6.31	4.33	0.00195
10800	28	29	30	29	31	31	42	28	27	24.3	22.06	4.74	4.3	0.00175
11700	26	26	26	24	30	30	24	23	27	23.5	1.57	0.34	3.36	0.0019
12600	26	26	26	23	29	30	24	22	23	23.2	0	0	2.91	0.0016
13500	25	24	25	22	27	27	24	22	22	22.7	0	0	2.78	0.00167
14400	23	24	25	21	25	26	23	22	21	22.4	1.37	0.29	1.87	0.0015
													TOTAL	0.03683

Tablas EXP VII (c,d)

(C)

	TEM						TEMP	ERATURA °C			<i>.</i>			
ΤΙΕΜΡΟ				C	ÁМ	AR	Α	SUPERFICIE		MEDIO	RADIACION SOLAR	POTENCIA INCIDENTE	VELOCIDAD VIENTO	VOLUMEN ACUMULADO
		IN	ITE	RIC	DR		EXTERIOR	EXTERIOR CONCENTRADOR AIRE A		AMBIENTE				
s	T₁	T ₂	T ₃	T ₄	T ₅	T ₆	T ₇	T ₈	T ₉	T ₁₀	W/m ²	W	m/s	m³
0	25	27	30	30	30	30	43	30	30	22.6	784.8	168.732	1.88	0
900	26	27	27	29	30	30	46	33	32	23.3	783.42	168.4353	1.44	0.004815
1800	26	27	28	31	30	31	50	37	34	24	545.99	117.38785	1.97	0.00477
2700	27	28	28	32	33	33	41	28	28	23.9	798.99	171.78285	2.56	0.0044
3600	27	28	29	33	33	33	57	37	34	24.5	787.36	169.2824	2.53	0.004265
4500	28	29	30	35	35	35	47	31	30	24.8	780.86	167.8849	2.11	0.004
5400	29	30	31	35	35	35	58	39	38	25	769.43	165.42745	2.84	0.00385
6300	30	31	31	37	37	37	50	32	34	24.9	748.74	160.9791	3	0.00365
7200	30	31	32	35	35	35	54	34	36	25.3	750.91	161.44565	3.56	0.0035
8100	30	31	32	37	37	37	63	36	36	24.9	725.89	156.06635	3.73	0.00335
9000	31	32	32	35	35	35	60	30	30	25.2	723.92	155.6428	4.23	0.00325
9900	31	32	33	35	35	36	66	36	35	25.8	796.43	171.23245	3.36	0.00306
10800	31	32	32	35	37	38	35	28	27	25	299.3	64.3495	3.22	0.00275
11700	31	32	34	37	39	39	70	33	35	25.9	689.83	148.31345	3.86	0.0022
12600	30	31	31	31	35	36	35	29	28	25.7	356.44	76.6346	4.14	0.00192
13500	30	32	33	35	39	40	54	34	33	25.5	711.9	153.0585	3.63	0.001675
14400	30	30	30	31	35	35	63	32	29	26.5	604.71	130.01265	3.5	0.00145
													TOTAL	0.052905

	т		TEI	MPERATURA °C								
TIEMPO			С	ÁМ	ARA	SUPERFICIE		MEDIO	RADIACION SOLAR	POTENCIA INCIDENTE	VELOCIDAD VIENTO	VOLUMEN ACUMULADO
	IN	TE	RIC	DR	EXTERIOR	CONCENTRADOR	AIRE	AMBIENTE				
S	T₁	T ₂	T ₃	T ₄	T 5	T ₆	T ₇	T ₈	W/m ²	W	m/s	m ³
0	22	23	21	21	21	21	21	18	710.32	152.72	2.36	0
900	23	23	23	25	22	22	22	19	748.55	160.94	1.99	0
1800	25	26	31	29	25	25	26	19	762.54	163.95	2	0
2700	25	26	35	26	101	28	24	19	793.27	170.55	2.55	0
3600	25	30	54	32	109	32	30	20	792.68	170.43	2.13	0
4500	26	34	68	37	126	32	32	20	172.8	37.15	1.92	0
5400	26	42	97	72	112	32	32	21	844.31	181.53	2.14	-
6300	26	56	90	53	122	33	31	21	795.44	171.02	1.46	-
7200	26	46	83	47	123	32	32	21	792.68	170.43	2.51	-
8100	26	55	86	55	123	35	34	21	528.65	113.66	1.65	-
9000	27	62	90	56	135	37	35	21	768.84	165.3	2.11	-
9900	27	57	88	52	133	37	34	21	336.14	72.27	1.32	-
10800	28	57	90	53	136	37	34	22	287.28	61.77	2.04	-
11700	29	70	76	47	128	35	39	22	713.08	153.31	2.01	-
12600	29	60	84	56	130	40	37	22	602.74	129.59	2.04	-
13500	30	59	90	57	131	40	37	23	688.65	148.06	2.02	-
14400	31	50	88	54	131	37	40	23	642.54	138.15	2.64	-
15300	31	50	84	44	127	40	38	22	670.52	144.16	2.67	-
16200	31	67	90	66	134	38	35	23	365.11	78.5	3.35	-
17100	32	60	88	58	125	35	37	21	76.84	16.52	4.22	-
18000	32	58	85	56	108	37	39	20	54.18	11.65	4.91	-
											TOTAL	0.001275

Tabla EXP VIII

10.2. Tablas calentamiento aprovechando la combustión de gas LP (Experimentos XI, XII, XIII, XIV y XV)

Tabla EXP XI									
TIEMPO	TEMP	ERATU	RA⁰C	PRESIÓN					
s	T ₁	T ₂	T ₃	KG/cm ²					
0	15	15	19	0					
30	15	15	22	0					
60	15	15	27	0					
90	15	15	35	0					
120	15	15	42	0					
150	15	15	50	0					
180	15	15	57	0					
210	15	16	63	0					
240	15	16	69	0					
270	15	17	75	0					
300	15	21	82	0					
330	15	23	89	0.1750					
360	15	37	91	0.1750					
390	15	46	91	0.1750					
420	15	58	92	0.1875					
450	16	67	92	0.2000					
480	16	94	92	0.2000					
510	15	93	91	0.1750					
540	15	93	91	0.2000					
570	15	92	91	0.2000					
600	16	93	92	0.2000					
630	16	94	92	0.2000					
660	16	94	92	0.2000					
690	16	94	92	0.2000					
720	16	94	92	0.2250					
750	16	94	92	0.2250					
780	16	94	92	0.2375					
810	16	95	93	0.2375					
840	16	94	92	0.2000					
870	16	93	91	0.2250					
900	16	94	92	0.2250					
		(a)							

TIEMPO	TEMP	ERATU	PRESIÓN	
S	T ₁	T ₂	T ₃	KG/cm ²
930	16	93	91	0.2250
960	16	93	91	0.2500
990	16	94	92	0.2625
1020	16	95	93	0.2750
1050	16	94	93	0.2500
1080	16	92	91	0.2000
1110	16	92	91	0.2000
1140	16	92	91	0.2000
1170	16	91	90	0.2000
1200	16	92	91	0.2000
1230	16	92	91	0.2000
1260	16	92	91	0.2250
1290	16	92	91	0.2250
1320	16	91	91	0.2250
1350	16	91	91	0.2250
1380	16	92	91	0.2250
1410	16	93	92	0.2375
1440	16	93	92	0.2375
1470	16	94	92	0.2375
1500	16	94	92	0.2500
1530	16	93	91	0.2375
1560	16	94	92	0.2500
1590	16	94	92	0.2500
1620	16	94	92	0.2500
1650	16	94	92	0.2500
1680	16	93	92	0.2500
1710	16	93	92	0.2500
1740	16	92	91	0.2375
1770	16	92	91	0.2000
1800	16	96	90	0.2000

(b)

Tabla EXP XII										
TIEMPO	TEMP	ERATU	RA⁰C	PRESION						
s	T ₁	T ₂	T₃	KG/cm ²						
0	14	18	19	0						
30	14	21	29	0						
60	14	23	35	0						
90	14	43	41	0						
120	14	41	45	0						
150	14	40	49	0						
180	14	54	54	0						
210	14	55	60	0						
240	14	57	64	0						
270	14	80	67	0						
300	14	87	73	0.175						
330	14	91	78	0.175						
360	14	57	87	0						
390	14	58	89	0						
420	14	42	90	0						
450	14	68	92	0						
480	14	29	91	0						
510	14	43	91	0						
540	14	41	91	0						
570	14	40	90	0						
600	14	54	90	0						
630	14	55	89	0						
660	14	57	88	0						
690	14	80	52	0						
720	14	88	86	0.175						

(a)

TIEMPO	TEMP	ERATU	RA⁰C	PRESION
S	T ₁	T ₂	T ₃	KG/cm ²
750	16	88	90	0.175
780	16	88	85	0.175
810	16	87	82	0.175
840	16	20	90	0
870	16	24	90	0
900	16	86	90	0.175
930	16	89	90	0.175
960	16	20	67	0
990	16	20	44	0
1020	16	87	56	0.175
1050	16	88	65	0.175
1080	16	22	84	0
1110	16	38	94	0
1140	16	88	94	0.175
1170	17	91	96	0.175
1200	18	92	96	0.200
1230	18	89	90	0.250
1260	18	91	90	0.250
1290	18	95	96	0.200
1320	18	95	96	0.200
1350	18	89	89	0.175
1380	18	56	78	0
1410	18	48	67	0
1440	18	42	55	0
1470	18	29	49	0
		(b)		

Tabla EXP XIII

TIEMPO	TEMF	PERATU	RA⁰C	PRESIÓN			
S	T ₁	T ₂	T ₃	KG/cm ²			
0	13	22	20	0			
30	13	22	21	0			
60	13	22	22	0			
90	13	22	24	0			
120	13	22	26	0			
150	13	22	27	0			
180	13	22	20	0			
210	13	23	31	0			
240	13	24	32	0			
270	13	25	33	0			
300	13	26	34	0			
330	13	28	36	0			
360	1/	30	37	0			
300	14	37	30	0			
420	14	12	11	0			
420	14	<u>42</u> 51	41	0			
400	14	52	4Z 42	0			
<u>400</u> 510	14	52	43	0			
510	14	52	40	0			
540	14	52	48	0			
570	14	52	51	0			
600	14	52	53	0			
630	14	51	55	0			
660	14	51	57	0			
690	14	64	59	0			
720	14	86	62	0			
750	14	77	65	0			
780	14	85	69	0			
810	14	79	73	0			
840	14	68	74	0			
870	14	74	78	0			
900	14	75	83	0.300			
930	14	74	85	0.300			
960	14	73	87	0.300			
990	15	75	88	0.300			
1020	15	74	91	0.300			
1050	15	80	92	0.300			
1080	15	85	92	0.300			
1110	15	84	93	0.300			
1140	15	88	91	0.300			
1170	15	92	92	0			
1200	14	45	92	0			
1230	14	22	<u>م</u> م	0			
1260	1/	20	00 00	0			
1200	14	23	00	0			
1230	12	26	01	0			
1250	10	20	01	0			
1330	10	20	01	0			
1300	10	24	91	0			
1410	13	23	91	0			
1440	13	23	91	<u> </u>			
1470	13	23	91	0			
1500	13	22	91	0			

TIEMPO	TEMP	PRESIÓN		
s	T ₁	T ₂	T ₃	KG/cm ²
1530	13	43	91	0
1560	13	81	91	0.200
1590	13	90	91	0.200
1620	13	90	92	0.200
1650	13	88	93	0.200
1680	13	90	92	0.200
1710	13	92	92	0.200
1740	13	92	92	0.200
1770	13	92	92	0.200
1800	13	92	92	0.200
1830	13	92	92	0.200
1860	13	92	92	0.200
1890	13	92	92	0.175
1920	13	78	92	0.175
1950	13	84	92	0.175
1980	13	86	92	0.200
2010	13	87	92	0.200
2010	13	88	92	0.200
2040	13	88	02	0.200
2100	13	88	02	0.200
2130	13	88	02	0.200
2160	12	00	02	0.175
2100	13	88	92	0.175
2190	12	00	92	0.175
2220	10	00	92	0.175
2230	12	00	92	0.175
2200	12	00	92	0.175
2310	10	00	92	0.175
2340	12	00	92	0.175
2400	12	00	92	0.175
2400	10	00	92	0.175
2430	10	00	91	0.200
2400	10	00	91	0.200
2490	10	00	91	0.200
2520	10	00	92	0.200
2550	10	00 50	91	0
2000	10	20	91	0
2010	10	30	92	0
2640	10	20	00	0
2070	10	20	0/	0
2700	10	27	00	0
2730	13	49	00	0
2760	13	51	90	0
2790	13	79	91	0.200
2820	13	90	91	0.200
2850	13	91	91	0.200
2880	13	91	91	0.200
2910	13	90	92	0.200
2940	13	92	92	0.200
2970	13	92	92	0.200
3000	13	92	92	0.200
3030	13	92	92	0.200

(a)

(b)

Tabla EXP XIII

TIEMPO	TEMPERATURA ºC		PRESIÓN TIEMPO		TEMP	PRESIÓN				
S	T₁	T ₂	T ₃	KG/cm ²		s	T₁	T ₂	T ₃	KG/cm ²
3060	13	92	92	0.200		4530	13	82	91	0.200
3090	13	02	02	0.200		4560	13	82	01	0.200
3120	13	92	92	0.200		4500	13	85	01	0.200
3150	13	02	02	0.200		4620	13	87	01	0.175
3130	12	92	92	0.200		4020	12	07	91	0.175
3210	13	92	01	0.200		4030	13	88	01	0.175
3240	13	02	01	0.200		4000	13	88	01	0.175
3270	13	92	91	0.200		4740	13	88	Q1	0.175
3300	13	92	91	0.200		4770	13	89	91	0.175
3330	13	03	91	0.200		4800	13	87	90	0.175
3360	13	03	91	0.200		4830	14	88	95	0.175
3390	13	93	91	0.200		4860	14	90	91	0.175
3420	13	92	91	0.200		4890	14	86	91	0.200
3450	13	92	91	0.200		4920	14	87	91	0.200
3480	13	92	91	0.200		4950	14	88	90	0.200
3510	13	92	91	0.200		4980	14	88	89	0.200
3540	13	92	91	0.200		5010	14	70	90	0
3570	13	92	91	0.200		5040	14	32	90	0
3600	13	93	91	0.200		5070	14	40	92	0
3630	13	92	91	0.175		5100	14	45	91	0
3660	13	92	91	0.175		5130	14	60	91	0
3690	13	92	91	0.175		5160	14	89	92	0.300
3720	13	92	91	0.175		5190	14	90	92	0.300
3750	13	91	91	0.175		5220	14	87	92	0.300
3780	13	88	91	0.175		5250	14	86	91	0.300
3810	13	87	91	0.175		5280	14	91	91	0.300
3840	13	87	91	0.200		5310	14	91	92	0.300
3870	13	91	91	0.200		5340	14	91	92	0.300
3900	13	92	91	0.200		5370	14	92	91	0.300
3930	13	92	91	0.200		5400	14	91	91	0.300
3960	13	92	91	0.200		5430	14	92	91	0.300
3990	13	92	91	0.200		5460	14	92	91	0.300
4020	13	91	91	0.200		5490	14	91	91	0.300
4050	13	88	91	0.200		5520	14	92	91	0.300
4080	13	85	91	0.200		5550	14	91	91	0.300
4110	13	83	91	0.200		5580	14	92	92	0.300
4140	13	82	91	0.200		5610	14	91	91	0.300
4170	13	82	91	0.200		5640	14	92	92	0.300
4200	13	82	91	0.200		5670	14	92	91	0.300
4230	13	82	91	0.200		5700	14	92	91	0.300
4260	13	82	91	0.200		5730	14	92	91	0.250
4290	13	82	91	0.200		5760	14	92	92	0.250
4320	13	82	91	0.200		5790	14	92	91	0.300
4350	13	82	91	0.200		5820	14	92	91	0.300
4380	13	82	91	0.200		5850	14	92	91	0.300
4410	13	81	91	0.200		5880	14	92	92	0.300
4440	13	82	91	0.200		5910	14	92	91	0.300
4470	13	82	91	0.200		5940	14	92	92	0.300
4500	13	82	91	0.200		5970	14	92	91	0.300

(C)

(d)

Tabla EXP XIV

TIEMPO	TEMP	ERATU	JRA ⁰C	VOLUMEN	OBSERVACIONES		
S	T ₁	T ₂	T ₃	ml	OBSERVACIONES		
0	14	16	21	0			
60	14	16	32	0			
120	14	16	39	0			
180	14	17	55	0			
240	14	18	68	0			
300	14	18	79	0			
330	14	19	82	+	(°)		
360	14	19	89	+			
420	14	20	93	+	(00)		
480	14	22	94	+			
510	14	24	94	+			
540	14	25	94	+			
600	14	40	94	8.2	(*)(+)		
660	14	35	94	+	(*)(+)		
780	14	46	94	26	(*)(+)		
900	14	51	94	+	(*)(+)		
960	14	30	94	22.5	(*)(+)		
1140	15	50	94	26	(*)(+)		
1200	15	37	92	+	(*)(+)		
1260	15	20	93	+	(*)(+)		
1320	15	21	93	2	(*)(+)		
1500	15	45	93	6.5	(*)(+)		
1560	15	35	93	+	(**)		
1680	15	39	93	22	(+)		
1800	15	45	93	+	(*)		
1860	15	29	93	15	(**)(+)		
TOTAL				128.2	(+)		

Tabla EXP XV

TIEMPO	TEMP	ERATU	JRA ºC	VOLUMEN		
S	T ₁	T ₂	T ₃	ml	OBSERVACIONES	
0	16	29	93	0		
180	16	45	93	17.5	(+)	
300	16	50	93	+	(*)	
360	16	27	92	27	(**)	
540	16	40	93	6	(+)	
600	17	35	92	+	(*)	
660	17	23	93	+	(**)	
720	17	27	93	8	(+)	
900	17	52	93	30	(*)(+)	
960	17	32	93	+	(**)	
1080	17	46	93	23	(+)	
1200	17	51	93	+	(*)	
1260	17	39	92	25	(**)(+)	
1440	18	54	92	32.5	(+)	
1500	18	56	92	+	(*)	
1560	18	33	92	+	(**)	
1620	18	44	92	26	(+)	
1800	18	55	92	28	(+)	
Total				223	(+)	
(*)	Arranc	lue de	la bom	ba		
	(**) Par	o de la	bomba	a		
(+)	Medio	ción de	volum	en	1	
(°) Inic	ia conc	lensac	ión tub	o salida	1	
(00)	Inicia d	ioteo a	al recip	iente	1	
· · /					J	

10.3. Tablas del Destilador Solar (experimentos XVI, XVII y XVIII)

					TEMPERATURA °C	2	RADIACIÓN	POTENCIA	VELOCIDAD		
TIEMPO		CÁMARA			CONCENTRADOR		MEDIO	SOLAR	INCIDENTE	VIENTO	ACUM.
	INT	ERI	OR	EXT.	SUPERFICIE		AMBIENTE				
S	T ₁	T_2	T₃	T ₄	T ₅	T ₆	T ₇	W/m ²	W	m/s	m³
0	23	29	40	75	29	26	23	921	198	1.53	0.00
600	23	31	46	87	31	32	23	935	201	1.40	0.00
1200	24	33	50	111	35	33	20	935	201	1.79	0.00
1800	25	34	56	108	30	29	22	949	204	1.76	0.00
2400	25	36	60	122	38	36	24	935	201	1.70	0.00
3000	26	36	64	111	32	30	24	944	203	1.79	0.00
3600	26	38	75	116	35	33	24	921	198	1.63	0.00
4200	27	38	72	113	42	39	24	953	205	1.42	0.00
4800	27	39	75	128	43	44	24	944	203	1.70	0.00
5400	28	39	70	114	34	44	25	935	201	1.81	0.00
6000	29	38	60	110	34	34	25	935	201	1.61	0.00
										TOTAL	0.00

Tabla EXP XVI

Tabla EXP XVII

					TEMPERATURA °C	2	BADIACIÓN	DOTENCIA			
TIEMPO		CÁ	MA	RA	CONCENTRADOR		MEDIO	SOI AR	INCIDENTE	VIENTO	
	INT	FER	IOR	EXT.	SUPERFICIE		AMBIENTE	001/11		1.2.110	
s	T ₁	T ₂	T_3	T ₄	T ₅	T ₆	T ₇	W/m ²	W	m/s	m³
0	24	32	59	86	26	27	22	920.93	198	1.43	0.00
600	24	33	63	100	30	34	22	916.28	197	1.36	0.00
1200	25	35	71	100	32	33	22	911.63	196	1.56	0.00
1800	26	36	74	93	31	28	23	920.93	198	1.62	0.00
2400	27	36	70	92	31	35	23	920.93	198	1.64	0.00
3000	28	36	72	83	35	39	20	925.58	199	1.37	0.00
3600	28	37	77	77	30	38	22	925.58	199	1.42	0.00
4200	28	38	72	86	37	42	24	897.67	193	1.40	0.00
4800	30	39	74	78	35	40	24	916.28	197	1.60	0.00
5400	30	39	72	81	31	39	24	916.28	197	1.70	0.00
6000	31	41	76	117	37	42	24	934.88	201	1.64	0.00
6600	31	41	78	117	33	39	24	916.28	197	2.21	0.00
7200	31	41	78	117	36	41	25	934.88	201	2.05	0.00
7800	31	42	79	117	38	36	25	916.28	197	2.06	0.00
8400	31	42	81	114	35	30	25	916.28	197	2.16	0.00
9000	32	44	83	115	40	31	24	906.98	195	1.87	Inicia goteo
9600	33	47	85	112	34	29	24	916.28	197	2.12	0.0000025
10200	33	49	87	116	34	29	24	920.93	198	1.69	0.0000040
10800	33	50	84	112	36	28	25	930.23	200	1.76	0.0000050
11400	33	49	74	110	33	26	25	939.53	202	1.34	0.0000060
12000	33	48	60	128	37	27	24	916.28	197	1.56	0.0000065
12600	34	50	67	130	34	33	24	897.67	193	1.39	0.0000075
13200	34	69	69	122	35	33	24	925.58	199	1.68	0.0000085
13800	34	55	78	110	39	41	24	934.88	201	1.79	0.0000105
14400	34	51	72	109	35	31	24	916.28	197	1.67	0.0000120
										TOTAL	0 0000400

TOTAL 0.0000120

Tabla EXP XVIII

						TEMPERATURA	°C		POTENCIA			
TIEMPO		С	:ÁN	IAR	A	CONCENTRADOR		MEDIO		INCIDENTE	VIENTO	
	IN	ITE	RIC	DR	EXT.	SUPERFICIE		AMBIENTE	002/41			
S	T ₁	T ₂	T ₃	T ₄	T ₅	T ₆	T ₇	T ₈	W/m ²	W	m/s	m ³
0	25	28	36	24	70	34	28	19	917.76	197	1.32	0
600	24	33	52	33	83	34	34	20	911.63	196	1.26	0
1200	25	35	59	35	122	39	30	20	916.28	197	1.58	0
1800	27	38	91	35	122	39	29	20	911.63	196	1.49	0
2400	28	42	63	39	107	39	31	21	920.93	198	2.05	2 E-6
3000	28	49	87	45	93	39	30	22	911.63	196	2.13	-
3600	30	51	74	48	114	42	30	22	920.93	198	2.08	4 E-6
4200	31	57	85	47	115	40	30	22	916.28	197	1.57	-
4800	32	53	88	45	111	38	30	22	911.63	196	1.65	-
5400	32	60	88	54	112	40	30	23	920.93	198	1.49	-
6000	34	72	86	69	117	40	30	23	920.93	198	1.38	-
6600	33	75	78	63	128	40	31	22	925.58	199	1.24	-
7200	35	78	87	78	111	42	31	23	925.58	199	1.36	-
7800	36	80	86	83	102	44	31	24	897.67	193	1.28	-
											TOTAL	6 F-6

11. CONCLUSIONES

Con la creación del concentrador solar de superficie parabólica reglada para un destilador de agua, obtuvimos una importante experiencia, en el diseño, la selección de materiales y las aplicaciones técnicas constructivas en general.

La versatilidad del modelo lo hacen de fácil operación y bajo mantenimiento. El diseño incluye el desarrollo de un sistema para la alineación del concentrador con los demás elementos del destilador, consistente de bastidor estructural y un medio de fijación para la cámara, capaz de nivelar y compensar la variación de la latitud del lugar donde se utilice, permitiendo colocar la imagen del sol, en todo momento, sobre la cresta del tubo focal. El diseño geométrico del concentrador permitió la construcción de varios modelos que fueron de gran utilidad para llegar a un diseño final. Este último esta formado de un molde sólido, de superficie lisa y homogénea, provisto de una lámina reflejante de acero inoxidable, que producía una imagen lineal del Sol, libre de aberraciones.

La necesidad de mejorar aun más la concentración solar nos llevó a aplicar una película de mylar sobre la superficie metálica del molde. Esto nos permitió observar una imagen regular proyectada sobre toda la longitud del tubo absorbedor de la cámara focal, de mayor nitidez y con un espesor constante de 2 mm en toda su proyección, produciendo una temperatura exterior a lo largo de la cresta focal por arriba de los 100 °C. Al final de este periodo de investigación obtenemos que la energía total reflejada a la cámara es de 67 W cuando la energía incidente es del orden de 135 W. Presentando el modelo perdidas aproximadamente del 50 %.

El buen funcionamiento de nuestro concentrador ha quedado establecido en el seguimiento de todas y cada una de las cámaras focales ensayadas, tanto las que sólo tenían por objeto el calentamiento del agua, como en las que el objetivo era la producción de agua destilada.

Respecto de la continuación de esta investigación:

El bajo costo de las modificaciones anteriores nos motiva a seguir investigando para perfeccionar el diseño probado y, con el propósito de hacer un proyecto funcional y vanguardista, proponemos modificar el peso del concentrador, desarrollando un molde a base de fibra de vidrio, donde solo aplicaremos la película reflejante de mylar sobre la superficie cóncava, adecuaciones que permitirán obtener un modelo aislante, ligero, resistente y de fácil operatividad.

Las modificaciones y consideraciones que a continuación se mencionan, mejoran el prototipo exhibido: la alineación correcta del sistema, la aplicación de la película reflejante (mylar) en el concentrador y el correcto movimiento controlado del helióstato por medio de un pequeño motor que permita un mejor seguimiento del Sol a lo largo del día.

Proponemos el montaje de una cubierta de vidrio sobre los bordes del modelo, cubriendo el área de concentración y el total del tubo absorbedor, para obtener un solo elemento (concentradorcámara). Estas adecuaciones permitirían disminuir los fenómenos del medio ambiente y a la vez aprovechar el efecto invernadero en el aumento de la eficiencia y por consiguiente la posibilidad de utilizar más la energía captada en la destilación.

Si queremos tener éxito es necesario rediseñar el sistema, de manera que los cambios en las temperaturas sean pequeños, minimizando así las correspondientes pérdidas por diferencia de temperatura.

El ahorro de recursos no renovables, el bajo costo en la aplicación de nuevas tecnologías y el diseño de cada uno de los elementos que componen el destilador, hacen de éste un proyecto versátil y de gran interés para su estudio; factible para trabajar en escalas superiores.

12. BIBLIOGRAFÍA

- "Limitations and Possibilities for improvement of Photovoltaic Solar Energy Converters". M. WOLF. SOLAR CELLS. Editedd by Charles E. Backus. IEEE. New York. 1960.
- "Photovoltaic materials and devices for terrestrial solar energy applications." Harold J. NOVEL. SOLAR ENERGY MATERIALS 2(1980). Ed. North-Holland.
- 3. "Possibilities of New Materials for Solar Photovoltaic cells". Mauricio SCHOIJET. SOLAR ENERGY MATERIALS 1(1979). Ed. North-Holland.
- 4. "Recent Developments in Amorphous Silicon Solar Cells". D.E. CARLSON. SOLAR ENERGY MATERIALS 3 (1980).
- 5. "Electrónica Integrada". MILLMAN y HALKIAS. Ed. Hispano-europea. Barcelona 1980.
- 6. BRI Solar Hot Box cooker, Mod. C-7, Julio de 1996.
- Buigues Nollens A. F. y Rojos E. O. (1995). Desarrollo y Construcción de Sistemas Alternativos de Cocción - 1ª Etapa Cocinas Solares. ASADES 18, T. II, (7.19-7.26).
- 8. Durán E., et al. (1991). Adopción de Cocinas Solares. Motivando a la Comunidad. Resúmenes de ASADES 14, 103-104.
- Durán M. (1979) La Cocina Solar y su Difusión en la Población Rural de Ayacucho. En Atas do 2ª Congreso Latino-americano de Energía Solar, Vol. II, Universidad de Federal da Paraíba, pp. 397-409, Joao Pessoa, Brasil.
- 10. Echazú R. y Saravia L. (1985) Experiencias con una Cocina Solar (inédito).
- 11. Esteves A. (1994). Concurso de Diseño de Cocinas Solares. ASADES 17, T. I, (33-38).
- 12. Esteves A. (1996a). Cocina Solar Abierta de Reflector Plano. ASADES 19, T. II, (7.9-7.12).
- 13. Esteves A. (1996b). Manual de Autoconstrucción de Cocinas y Hornos Solares. ASADES 19, T. II, (12.13-12.15).
- 14. European Committee for Solar Cooking Research (1994). Second International Solar Cooker Test. ECSCR, pp. 1-21, Lodève, Francia.

- 15.FAO (1990). How to build and use a solar box cooker, Solar Box Cookers International, Sacramento, California.
- 16. Guzmán M. T., et al. (1991). Cocinas Solares. Un Programa para su adopción. Resúmenes de ASADES 14, 105-106.
- 17.Brunet E., Fernández C. y Caso R. (1995). Cocina Solar de tipo Caja. Proyecto CIDA. INENCO.
- 18. Juri G., et al. (1991). Cocinas Solares en Villaseca, IV Región de Chile. ¿Una Realidad? Resúmenes de ASADES 14, 101-102.
- 19. Kammen D. M. (1995). Cookstoves for the Developing World. Scientific American, July, pp. 72-75.
- 20. Meinel A. B. y Meinel M. P. (1977). Applied Solar Energy. An Introduction, 3a. impresión, pp. 3-13. Addison-Wesley, Londres.
- 21. Moura Bezerra A. (1979) Desenvolvimento de um Protótipo de Fogao Solar Desmontável destinado ao esporte de "Camping". En Atas do 2ª Congresso Latino-americano de Energía Solar, Vol. II, Universidad Federal da Paraíba, pp. 371-395, Joao Pessoa, Brasil.
- 22. Nandwani S. S. (1993) Design, Construction and Experimental Study of a Domestic Solar Oven cum Drier in the Climate of Costa Rica. En ISES Solar World Congress, L. Imre y A. Bitai (Editores), pp. 91-96, Budapest, Hungría.
- 23. Nandwani S. S. (1986) Estudio Experimental y Teórico de un Horno Solar Práctico en el Clima de Costa Rica. En Memoria Técnica del V Congreso Latinoamericano de Energía Solar, A. Arata (Editor), pp. E177-189, Valparaíso, Chile.
- 24. Quast D. G (1976) Calculo da intensidade de esterilizao e de cozimento de alimentos, Instituto de Tecnología de Alimentos, ITAL, Campinas, Brasil.
- 25. Serrano P. (1986) Transferencia de Tecnologías Socialmente Apropiadas con Energía Solar. En Memoria Técnica del V Congreso Latinoamericano de Energía Solar, A. Arata (Editor), pp. G1-14, Valparaíso, Chile.
- 26. Serrano P. (1989) La Experiencia Chilena en Energía Solar con Tecnologías Socialmente Apropiadas. En VI Congreso Latinoamericano y III Iberoamericano de Energía Solar, H. Rodríguez (Editor), pp. G28-34, Cartagena, Colombia.

- 27. Sujarta H. y Fachrudin D. (1993) Solar Oven, the Alternative Solution of Fuelwood Shortage for Cooking in Remote and Barren Areas in Indonesia. En ISES Solar World Congress, L. Imre y A. Bitai (Editores), pp. 405-411, Budapest, Hungría.
- 28. Xiping W., Shugin H., Yongling S. y Zude L. (1994). Nueva cocina solar de caja. Segundo Congreso Mundial sobre Estufas Solares, Universidad Nacional, Heredia, Costa Rica.
- 29. Las Energías Renovables en Aragón, elaborado por los técnicos del Instituto para la Diversificación y Ahorro de la Energía (IDAE) y del Gobierno de Aragón, Zaragoza, 1997.
- 30. El Libro de las Energías Renovables, Nicolás Elortegui Escartín, colección ERA-SOLAR.
- 31. Manuales de las Energías Renovables, Biblioteca CINCO DIAS, elaborado por los técnicos del Instituto para la Diversificación y Ahorro de la Energía (IDAE).
- 32. Proyecto PyMenergy; adaptación de las Pymes a las tecnologías de ahorro y Energías Renovables.
- 33. Acosta Rubio, José. Energía solar: utilización y aprovechamiento. Madrid: Editorial Paraninfo, 1983. Obra de carácter divulgativo; incluye bibliografía.
- 34. Centro de Estudios de la Energía. El sol, un viejo conocido: introducción a la energía solar. Madrid: Centro de Estudios de la Energía, 1982. Manual breve sobre algunas aspectos de la energía solar.
- 35. Centro de Estudios de la Energía Solar. La energía solar: aplicaciones prácticas. Sevilla: Promotora General de Estudios, 1993. Obra sobre las distintas aplicaciones de la energía solar.
- 36. Dickson, D. Tecnología alternativa. Barcelona: Editorial Blume, 1980. Obra sobre el uso pasado y presente de las tecnologías alternativas.
- 37. "Energía Solar Diseño y Dimensiones de Instalaciones". Adolfo de Francisco y Manuel Castillo. (1985). Publicaciones del Monte de Piedad y Caja de Ahorros de Córdoba.
- 38. "Fundamentos, Dimensionamiento y Aplicaciones de la Energía Solar Fotovoltaíca". Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT). Ministerio de Industria y Energía. (1992). Editorial CIEMAT.

- "La Energía: Tema Interdisciplinar para la Educación Ambiental". J.B. Deleage y C. Souchon. (1991). Ministerio de Obras Públicas y Transportes.
- 40. "Comportamiento Energético de Edificios Solares Pasivos". Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT). (1990). Editorial CIEMAT.
- 41. "Tecnología de las Energías: Solar, Hidráulica, Geotérmica y Combustibles Químicos". VV.AA. (1989). Publicaciones Marcombo, S. A.
- 42. "Habitat y Energía". Adriano Cornoldi y Sergio Los. (1982). Editorial Gustavo Gili.
- 43. "La Ruta de la Energía". Josep Puig y Joaquín Corominas. (1990). Editorial Anthropos.
- 44. "Manual de Arquitectura Solar". VV.AA. (1990). Editorial Trillas.
- 45. "Energía Solar Aplicaciones Prácticas". VV.AA. (1987). Progensa (Promotora general de estudios, S.A.).
- 46. "Energy Conscious Design". VV.AA. (1993). Comisión de las Comunidades Europeas.
- 47. "La energía solar". Ente Vasco de la Energía. (en prensa).
- 48. "Ingenios Solares". Jiménez B.J.M. España – Pamplona (2002).
- 49. "Energía Renovable". Jennifer Charles. Edamex.
- 50. "Energía Solar". Hans Rau. Bioxareu Editores
- 51. "Ingeniería de la Energía Solar". Rafael Almanza S. El Colegio Nacional.