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Abstract

In this paper, it is presented a geometric framework to study invariant sets of
dynamical systems associated with differential equations in R2. This frame-
work is based on extremizing properties of invariant sets for an area func-
tional. By applying of the steepest descent method to this functional it is
obtained its numerical approximation in the cases of heteroclinic orbits and
limit cycles.

1 Introduction

In this work ! consider the area generated by a curve under the action of the
flow defined by an autonomous differential equation in R2.

This approach has been considered by Smith [2] as well as by Li and Mul-
downey [3, 4, 5, 6, 7]. The first author establishes bounds on the Hausdorff
dimension of w-limit sets. The last two authors extend the Bendixson’s crite-
rion for nonexistence of periodic solutions and give stability results for some
periodic orbits based on area functionals.

The main goal of this paper is compute invariant sets considering a functional

Ljointly developed with Pablo Padilla and Ramén Plaza.



that describes the area that generates a curve under a flow and observing
that the functional vanishes in invariant curves and its minimization prop-
erties show that its infimum is attained in some curve that lies in the class
of continuous curves of any fixed length (see Theorem 1). This variational
principle is used in order to obtain a numerical implementation that will give
us an approximation to this curve by employing the steepest descent method,
that which is a method to find a maximum (or minimum) of a function based
in the fact that a function increases most quickly in the direction of its gra-
dient.

This implementation is done in the cases of heteroclinic orbits and limit
cycles.
2 The area functional and invariant sets

Given a dynamical system defined on a set X, its evolution is described by a
monoparametric family of operators {S(t)}+>0, that maps X into itself and
possesses the standard semigroup properties:

S(t+s)=2S5(t)-S(s),¥s,t >0

and

S(0) = 1.

The basic property about this family is: S(t) is a continuous operator ( in
general nonlinear) from X into X.

A set Y C X is positively invariant for S(t) if

St)Y CY,vt>0 (1)
or negatively invariant if

St)Y DYVt >0. (2)

When the set is both, positively and negatively invariant we say that it is an
invariant set.



Thus, a set Y C X is an invariant set for the semigroup {S(t)}:>o if
St)Y =Y,vt > 0. (3)

As the simplest examples of invariant sets are, the equilibrium points, hete-
roclinic orbits and limit cycles.

A heteroclinic orbit is a path in phase space that joins two different equilib-
rium points. One of them it is w-limit set of this orbit and the other it is
a-limit set.

A limit cycle is a closed trajectory in phase space such that any spiral tra-
jectory approaches to it when t(or —t) increases.

In order to describe the characterization of invariant sets through an area
functional, let us consider the case where S(t) is generated by the differential
equation

T = f(x), (4)

where f is a vector field in R2.

Thus, for a curve y(s), where ~ is assumed to be parameterized by arc length
v ¢ [s0,51] — R?, S(t)7v(s), for some fixed ¢t € [0, T] represents the displaced
curve under the flow generated by S at time ¢. Analogously, if we consider
S(t)y(s) for all t € [0,T] and all s € [sg, s1] we obtain a strip on the phase
plane, as shown in figure 1. Approximation, up to first order in t, of the area
generated by this curve under the flow assuming that xy and x; are fixed
points of (4)

(i.e. f(xg) = 0, f(z1) = 0) and v(s) is a continuous curve that joins this
points, with (sg) = o and 7y(s1) = x1. Let I" be the set of this curves.

Thus, the differential element of area, is given by |f(v(s)) x 4(s)|, as shown
in figure 2.

Therefore the area, A;(7y(s)), up to first order in time, ¢, is given by:

A0 = ([ 166D < i ds ) e+ ofe), 5)

50

It is clear that if the curve is invariant then A;(7(s)) = 0. The converse is
also true under appropriate assumptions.



S(t)Y(s)

Figure 1: Strip generate by a curve under a flow.

f(v(s) o)

Figure 2: Differential element for the area functional.

Since the functional is bounded from below (clearly A; > 0), then the natural
way to study invariant sets is through the minimization of A;.

Let be A*(y) = [ |¥ x flds, | fixed and I'; = {y € T|length(y) < [}. If

the infimum of the area functional is zero in ' and equal to infimum in I



then this infimum will be a invariant curve, as established in the following
theorem.

Theorem 1. If there is 1 such that infp A = infr, A* and infr A* = 0, then
infr A* is attained in some ~v* that is invariant, under the flow generated by

(4)-

Remark 1. In general, the equality infp A = infy, A* does not hold, since
I'y € I'. This fact only implies that infpr A < infp, A*.

Remark 2. Consider the phase portrait and in particular the orbits shown
in figure 3. In this case, any curve that joins xy and z; with finite length
generates area. The infimum does not attained in the class of curves with
finite length, and therefore can not be a invariant curve.

Figure 3: Phase portrait of some orbit with that is not an invariant curve.

Proof. Without loss of generality, can work in I';. (I'; is bounded and equicon-
tinuous by hypothesis).
Let v,, be a minimizing sequence in I';. By Arzela - Ascoli’s theorem there is
a subsequence 7, such that ~,; unt] v
By Fatou’s lemma
s s S1

0< [kt = [ ming o, x fon)| < tim [, x 0] =0

S0 S0 S0

Therefore |¥* x f(7v*)] =0, V's € [sg,s1]. This implies that 4* is parallel to
f(v*) and so v* is invariant for the flow generated by (4). O



3 Numerical implementation

Theorem 1 guarantees that the infimum of the area functional is attained at
some curve. However, we do not have an analytic or approximate expression.
In what follows, shows that the variational principle can be used numerically
to approximate this curve.

In order to obtain this approximation, employ the functional
S1
Ao = [ 1766 xS (6)P s, )
S0
because it is convenient from the numerical point of view.
Consider the physical pendulum and it is studied the separatrix curve, i.

e., the two heteroclinic orbits that joins (—m,0) with (7,0) including these
points, in the phase portrait.

The equation reads
¥ =—sinx (7)
or equivalently,

(l’,y) = (y,—SiHSC). (8>

(7) and (8) constitute a conservative system (see [1]), in which the total

energy F given by
1
E= 5332 + U(x)

where

U(z) = / sinndn =1— cosz,
0
is conserved. Its phase portrait is shown in figure 4.

The separatrix, lies on the level curve E = 2 and is given by

1
§y2—cosx—1:0. 9)

Therefore the upper part of (9) is parameterized by

(s,vV/2coss+2), -t <s <. (10)



Figure 4: Phase portrait of the system (8).

Now, suppose that (s,v(s)) is an approximation to (10), which satisfies
v(£m) = 0. Under this assumption, calculate the area functional A given
by (6) generated by the flow (8).

A straightforward calculation gives that A(v(s)) for v(s) = (s, v(s)) is

™

/Nl(fy(s)):/ (sin s + v(s)v'(s))?ds. (11)

—T

Now, we take

v(s) = —(5+7T)(5—7T)Zai5i, (12)
i=0
which clearly satisfies v(£m) = 0.

Note that in (11), the a;’s values mentioned in (12) are taken as wvariables.
For some choice of these values, we obtain a parameterized curve. Thus,
we want to find the choice of these coefficients such that (12) be the best
approximation to the invariant curve.

We need a method in order to obtain them. The steepest descent method
(or gradient method) is one of the simplest and the most useful minimiza-
tion methods for unconstrained optimization, which is based in successive
approximations and consider the gradient of the function, because (its neg-
ative) represents the direction in which the function decreases most quickly.



The iteration reads: )
Tiv1 = Ty — GVA(CI)Z), (13)

where ; is the i-th iteration , € is a small value (we choose it) and VA(z;)
represents the gradient of area functional evaluated in the i-th iteration.

In order to determine the convergence of (13), we use the following criterion:
1. Select an parameter of tolerance d > 0.

2. Calculate ¢ = Vf(z;). If ||| < ¢ then z; it is the sought value, else
repeat until obtain the parameter of tolerance chosen.

For a more detailed description about this method, see for example [8, 9].

Now, we choose n = 2 in (12), due to the symmetry of the separatrix with
respect to y-axis, and consider the initial guess (2.03,0,—0.27) 2 and € =
0.000009.

The following code written in Maple(©) gives the coefficients in (12) such that
(s,v(s)) is the approximation to (10).

> restart;

> v:=—a[0]*s"2-sum(al[k]*s~ (k+2) ,k=1..2)+evalf (Pi~2)*al[0]+
sum(evalf (Pi~2)*al[k]*s"k,k=1..2):

> vprime:=diff(v,s):

> ul:=apply(sin, s):

> u2:=(ul+v*xvprime) * (ul+vxvprime) :

> area:=Int(u2,s=-Pi..Pi):

gradiente:=[seq(diff (area,alk]),k=0..2)]:
iteracion[0]:=[2.03,0,-.27]:

for r from 0 to 2000 do:
B:=seq(a[l]=iteracion[r] [1+1],1=0..2):
C:=subs(B,gradiente):

gradienteevaluado[r] :=[seq(evalf(C[p]),p=1..3)];
iteracion[r+1] :=[seq(iteracion[r] [j]1-0.000009%
gradienteevaluado[r] [j],j=1..3)];

end do:

2Those values were chosen because represent and approximation to exact values in
Taylor expand of (10)



The following code is used in order to obtain a graphical representation of
both the curve obtained by this method and the curve obtained with an
initial guess. This results are shown in figures 5 to 10.

> plot([[x,-sum(iteracion[50] [z+1]*x~ (z+2),2z=0..2)+
sum(evalf (Pi~2)*iteracion[50] [z+1]*x"z,2z=0..2) ,x=-Pi..Pi],
[x,sqrt(2*cos(x)+2) ,x=-Pi..Pi]],color=[red,bluel);

In the application of the above criterion to this example, we choose § =
0.0011 and the corresponding value of the norm in the 2000-th iteration is
0.001055164525. This fact shows convergence of this method according to
the criterion previously established.

Figure 5: Initial curve versus invariant curve.



Figure 6: First iteration versus invariant curve.
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Figure 7: 50-th iteration versus invariant curve.
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Figure 8: 100-th iteration versus invariant curve.

Figure 9: 500-th iteration versus invariant curve.
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Figure 10: 1000-th iteration versus invariant curve.

On other hand, if we consider (clearly it is not satisfies v(£m) = 0)

n

v(s) = Zaksk (14)

k=0

instead of (12), we choose n = 11 (a truncated Taylor series) and the initial
guess:

(2.03,0,—0.27,0,6 x 1073,0, =5 x 107°,0,1.95 x 1077,0, —6 x 107'%) (15)

We fix € = 3 x 1071°. A graphical representation of the initial curve is shown
in figure 11. Then we obtain the curve after 10 iterations and compare it
with the corresponding invariant curve (see figure 12).

If we consider another initial guess, which is slightly further apart from the
invariant curve, in which the coefficients (components of initial guess) are
the following;:

(2.01,0,-0.3,0,6 x 1073,0, -5 x 107°,0,1.95 x 1077,0,—6 x 107'%) (16)

The corresponding graphs after 10 iterations and the initial curve are shown
in the figures 13 and 14, we keep the € value as before.

12



Figure 11: Initial curve versus invariant curve.

Figure 12: Graph of 10-th iteration versus invariant curve.

13



g
3
|

g
o
|

0.5

T A T T T T T T T [ TIOOr [ T T T T [T T T T TTTRTT
- -2 -1 1 2

Figure 13: Initial curve versus invariant curve.

Figure 14: 10-th iteration versus invariant curve.
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We also obtained another results for a small modification of the values of
(16), in which we only take 2.1 in its first component instead of 2.01. The
corresponding iterations are shown in figures 15 and 16.

As expected, when considering (14) - (16), the value of gradient of the area

TT T T T T T T TTo0r
-2 -1

7

TTTTTTTTTTTTTT
1 2

}

Figure 15: Initial curve versus invariant curve.

functional after 10 iterations is 2356.113011. Moreover, in subsequent itera-
tions the convergence criterion does not hold, because the norm of gradient
is big. Similar results are obtained in other cases. This fact shows that it is

not a convenient choose.
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Figure 16: 10-th iteration curve versus invariant curve.

4 Application to limit cycles

In this section we shall see how to extend the above idea in the study of
another invariant sets. The cases in consideration are limit cycles.

Since this sets are closed curves, we use truncated Fourier series instead of
polynomials in order to approximate to them.

T = —T9 + xl(:cf + l’% -1 (17)
Ty = 11 + @y(2} + 23 — 1) (18)

By transformation to polar coordinates, we see that z% + 22 = 1 is a stable
limit cycle (see figure 17).

In order to characterize this limit cycle by minimization of functional A given
by (6), we use the usual parametrization

v(s) = (cos s,sins), 0 < s < 27. (19)

16



Figure 17: Phase portrait of (17) - (18).

Assume that

2 2
u(s) = Zak cos ks + Zbk sin ks, (20)
k=0 k=1
2 2
v(s) = E:CL;C cos ks + sz sin ks, (21)
k=0 k=1

is a finite approximation to (19).

Therefore
A(y(s)) = /0 7r((—v +u(l —u? =) — (u+ov(l —u? —v*))u')ds (22)

We choose ¢ = 0.005 and § = 0.0006 in order to apply steepest descent
method to this functional.

The corresponding initial guess is
(0,1.3,0.1,0.1,0.1,0.1,0.1,0.01, 1.3,0.1). (23)

Since |V A(z110)] < 0.0006, we obtain convergence as shown in figures 18 -
22.
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Figure 18: Initial guess versus stable limit cycle of (17)-(18).

Figure 19: First iteration versus stable limit cycle.
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Figure 20: 10-th iteration versus stable limit cycle.
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Figure 21: 50-th iteration versus stable limit cycle.
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Figure 22: 111-th iteration versus stable limit cycle.

On other hand, if we consider

T =~y + 21 (22 + 235 — 1)? (24)
Ty = a1 + wo(2] + a5 — 1)° (25)

instead of (17) - (18), then z% + x3 = 1 is an unstable limit cycle (see figure
23).

As before, we employ (20) - (21), € = 0.005, 6 = 0.0055 and the initial guess:

(0,1.2,0.1,0.1,0.1,0.1,0.1,0.01,1.1,0.1). (26)

20



Figure 23: Phase portrait of (24) - (25).

Since |V A(z400)| < 0.0055, we obtain convergence as shown in figures 24
to 28.
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Figure 24: Initial guess versus stable limit cycle of (24)-(25).

Figure 25: First iteration.
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Figure 26: 10-th iteration versus stable limit cycle.

Figure 27: 100-th iteration versus unstable limit cycle.
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Figure 28: 110-th iteration versus unstable limit cycle.
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