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RESUMEN 
 
Esta investigación se propuso analizar el efecto de la segmentación de 
imágenes en la exactitud de la clasificación por objetos, y demuestra con varias 
aplicaciones como la segmentación de imágenes y la clasificación basada en 
objetos obtienen mejores resultados que los métodos basados en clasificación 
por pixeles, aplicando diferentes métodos de clasificación por objetos sobre 
imágenes de diferentes resoluciones. El nuevo algoritmo SEaTH, que calcula 
semi-automáticamente los parámetros y umbrales óptimos para la 
diferenciación de clases de cobertura, fue probado en la creación de cartografía 
de cobertura del suelo, y el Índice de Vegetación Mejorado (IVM) del sensor 
MODIS fue utilizado para examinar su contribución a la clasificación de 
imágenes basada en objetos. 
 
El concepto principal de la clasificación de imágenes por objetos radica en que 
la información necesaria para interpretar una imagen no está contenida en un 
solo píxel, sino en los objetos presentes en la imagen, y en las relaciones entre 
los objetos. Dos motivos principales impulsan el desarrollo del análisis de 
imágenes por objetos: 1) Imágenes de alta resolución espacial ya están 
disponibles y las herramientas de computación están constantemente 
mejorando; 2) El análisis de la imagen basado en píxeles es limitado. 
 
La segmentación de imágenes delinea los objetos de la imagen y es el paso 
inicial en el análisis de imágenes basado en objetos. Sólo hasta hace poco 
tiempo la segmentación de imágenes se empezó a realizar con un alto nivel de 
precisión y rapidez de ejecución, lo cual ha impactado en el desarrollo del 
análisis de imágenes basado en objetos. El análisis de la imagen por objetos 
está mucho más cerca de la percepción/visión humana y los resultados de la 
clasificación muestran una alta exactitud, y permiten leyendas más detalladas. 
 
El proceso de segmentación divide la imagen en objetos homogéneos espectral 
y espacialmente. La evaluación de los resultados de varias segmentaciones de 
la imagen antes de realizar la clasificación de la misma asegura que el mejor 
resultado de segmentación se utiliza en la clasificación. Al realizar y evaluar 
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múltiples segmentaciones de una imagen Landsat_7 ETM+ con diferentes 
parámetros, el resultado de segmentación óptimo puede ser identificado.  Los 
resultados de la segmentation se evalúan con una función objetiva y la 
segmentación con óptimo resultado es señalada. Mediante la clasificación de la 
imagen con el resultado de diferentes segmentaciones y la evaluación de su 
exactitud, se comprueba que la mejor segmentación, en términos de la función 
objetiva, también dio lugar a la clasificación con la más alta exactitud, y la 
distribución de los valores de exactitud de las clasificaciones presentan 
similares tendencia con respecto a los valores de la función objetiva de las 
segmentaciones.  
 
El desempeño de la clasificación de las imágenes basado en píxeles y basado 
en objetos se comparó usando imágenes de satélite con diferentes resoluciones 
espaciales: 10m, 30m, 100m y 250m. Los resultados mostraron que con el 
misma información de entrenamiento y referencia, el análisis de imágenes 
basado en objetos ha obtenido mayor exactitud que los métodos basados en 
píxeles con las imágenes de mayor resolución espacial (10m y 30m), mientras 
que, con la reducción de resolución espacial, la clasificación de imágenes 
basada en objetos no mostraron mayor exactitud. Este experimento parece 
sugerir que el analysis de imágenes basado en objetos tiene ventajas sobre el 
basado en píxeles. Si bien en el aspecto de la exactitud de la clasificación, la 
ventaja sólo es válida para imágenes con altas resoluciones espaciales.  
 
Los objetos de la imagen pueden ser diferenciados por una variedad de 
características: espectral, espacial, de textura, y del contexto. Un análisis 
completo de dichas características es esencial para trabajar con los objetos de la 
imagen, y el proceso de prueba y error de búsqueda de las características 
adecuadas podría dificultar significativamente la utilización de las bondades 
del análisis de imagenes basado en objetos. El algoritmo  SEaTH  o 
“SEperability & THreshold”, es capaz de evaluar estadísticamente un número 
determinado de características de los objetos para cualquier número de clases 
de interés. Este experimento con SEaTH muestra que el análisis de imágenes 
basado en objetos realizado con las características y umbrales identificados por 
el algoritmo SEaTH produjo buenos resultados de clasificación. Con SEaTH, el 
tiempo de prueba y error para buscar las características y umbrales adecuados 
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se puede evitar. El algoritmo SEaTH también ayudó a reducir al mínimo la 
participación humana en los pasos de clasificación y acelerar el proceso de 
clasificación cuando se utilizan imágenes de gran tamaño.  
 
Como último punto, se investigó la contribución del IVM del sensor MODIS 
para mejorar el desempeño del análisis de imágenes basado en objetos. Este 
resultado pone de manifiesto que el suministro la información proporcionada 
por el IVM MODIS no sólo es importante para monitorear la fenología de los 
tipos de cobertura, sino también para diferenciar los tipos de cobertura que son 
difíciles de distinguir utilizando imágenes multiespectrales de una sola fecha.  
 
El analysis de imágenes por objetos es visto como el nuevo paradigma para el 
análisis digital de imágenes. Sin embargo, no es perfecto. Todavía hay muchos 
aspectos que necesitan mayor desarrollo, entre ellos, la parametrización de la 
segmentación de imágenes y la evaluación de la exactitud de los resultados del 
análisis de imágenes basado en objetos, siendo dos temas importantes para su 
posterior estudio. 
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ABSTRACT 
 
This research set out to discuss the effect of image segmentation to the 
classification accuracy and demonstrates through several applications how 
segmentation and object-based classification improve on pixel-based image 
classification methods, using different object-based classification methods over 
images of different spatial resolutions. A new algorithm SEaTH, which semi-
automatically calculates the optimal features and thresholds for class 
differentiation, was tested in the land cover mapping and the MODIS Enhanced 
Vegetation Index (EVI) data was applied to test its contribution to the object-
based image classification.   
 
The core concept of object-based image analysis is that the important 
information necessary to interpret an image is not represented in single pixels, 
but in meaningful image objects and their mutual relationships. Two main 
reasons drive the development of object-based image analysis: available high 
spatial resolution imagery and improved computing tools; pixel based image 
analysis is limited.  
 
Image segmentation creates image objects and it is the initial step in object-
based image analysis. Only until recently image segmentation is implemented 
with a high level of precision and fast performance, which resulted in the 
development of object-based image analysis. By analyzing image objects, 
object-based image analysis is much closer to human vision and the 
classification results show both higher accuracy values and allow more detailed 
legends.  
 
Image segmentation divides images into spectrally and spatially homogeneous 
objects. Evaluation of image segmentations before performing image 
classification ensures that the best segmentation result is used. By performing 
and evaluating several image segmentations with different parameter settings 
on Landsat-7 ETM+ imagery, the optimal segmentation result can be decided. 
By classifying the image with different segmentation results and evaluating the 
accuracies, it is found that best segmentations, in terms of objective function 
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rating, also led to the classifications with the highest accuracies, and, the 
accuracy values presented similar distribution as the objective function values 
in the function of the segmentations.  
 
The performance of pixel-based and object-based image analysis was then 
compared over satellite images with different spatial resolutions: 10m, 30m, 
100m, and 250m. Results showed that with the same training and reference 
data, object based image analysis obtained higher accuracy than that by pixel 
based methods with higher spatial resolution images among the test ones (10m 
and 30m); while, with the decreasing of spatial resolution, object-based image 
classification did not show higher accuracy. This experiment seems to suggest 
that object based image analysis has many advantages over the pixel-based one. 
While in the aspect of accuracy rating, the advantage only holds true for images 
with higher spatial resolutions.  
 
Image objects can be characterized by a variety of spectral, spatial, texture, and 
contextual features. A comprehensive feature analysis is essential to work with 
image objects, and the trial and error process of searching proper features could 
hinder the utilization of the strength of object based image analysis. 
‘SEperability and THreshold’ (SEaTH) algorithm is able to evaluate 
statistically any number of given features for any number of object classes of 
interest. This experiment with SEaTH algorithm shows that object based image 
analysis with features and thresholds identified by SEaTH algorithm produced 
a good classification result. With SEaTH, the time-consuming trial and error 
practice for seeking significant features and proper thresholds can be avoided, 
and thus SEaTH algorithm helped to minimize human involvement in 
classification steps and speed up the process of classification when huge 
datasets are to be dealt with. 
 
As the last point, the contribution of MODIS EVI data to the improvement of 
OBIA with MODIS imagery was investigated. This result shows that the 
MODIS EVI data supply important information not only to monitor the 
phenology of the land cover types, but to differentiate land cover types which 
were difficult to be differentiated using multispectral image from a single date. 
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Object based image analysis is seen as the new paradigm for image analysis. 
However, it is by no means perfect. There are still many aspects that need 
further development, among them, image segmentation parameterization, and 
accuracy assessment for object based image analysis results, are two main 
topics for further study.  
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论文摘要 
 
这项研究的目的是讨论影像分割对影像分类精度的影响，并且通过多种实验证明

建立在影像分割的基础上的基于对象的影像分类比基于像素的图像分类有更多的

优越性和准确性; 这些实验是使用多种基于像素和基于对象的分类方法并且使

用有不同空间分辨率的影像。此外，这项研究也测试了一种新的算法 SEaTH 以
及它对基于对象分类的贡献;这个算法可以半自动地计算出基于对象分类的最优

FEATURE 和阈值。同时，强化的植物指数 EVI 也用于基于对象的分类中来观察

它 对 于 基 于 对 象 的 图 像 分 类 中 分 类 精 度 提 高 的 贡 献 。  
 
基于对象的图像分析以对象为分类单元。对于基于对象的图像分析来说,其核心

概念是: 重要的影像分析信息是不代表在单一像素中的，而是代表在有意义的

图像对象及其相互关系中。驱动基于对象的图像分析的发展有两个主要原因: 
1)：高空间分辨率航空影像逐渐变得普及, 可利用增强的计算工具;2) 基于像

素的图像分析能力是有限的. 
 
影像对象通常由图像分割产生，而且它是基于对象的图像分类的第一步。直到最

近, 图像分割才得以准确和快速地实施，而这推动了基于对象的图像分析的进

一步开发。通过分析图像对象，更接近人类视觉观察, 并且基于对象的图像分

析结果即有较高的精度值又允许产生更详细的类别.  
 
图像分割将影像分割成光谱上和空间上均匀的物体。在进行图像分类前, 评价

图像分割的精度能够确保最佳的图像分割结果的运用。通过评价运用不同的参数

设置的对 LANDSAT-7 ETM+ 图像进行分割的结果，可以选出最优影像分割结

果。对影像的评价是基于客观方程的结果。通过对这些分割的影像进行分类和对

分类结果的精度评价，发现最好的影像分割结果，根据客观方程的评价结果，也

导致具有最高精度的影像分类结果，而且影像分类结果的精度值的分布和影像分

割的客观方程值的分布相似.  
 
运用具有不同空间分辨率的航空影像, 其空间分辨率是 10 米， 30 米， 100
米 和 250 米, 基于像素的影像分类和基于对象的影像分类结果进行了对比。结

果表明，运用相同的训练和参考数据，对于具有较高的空间分辨率的影像（10
米 和 30 米）, 基于对象的图像分析获得比基于像素的分类方法更高的精度，

而随着空间分辨率的下降，和基于像素的影像分类相比, 基于对象的影像分类

并没有显示在精度上的优越性。这个实验似乎显示基于对象的影像分类有很多优

势超基于像素的影像分类的优势。而在分类精度等级方面，这种优势仅适用于具

有高空间分辨率的影像.  
 
图像对象具有多种光谱，空间，质感，和上下文特征。为了确保影像分析结果的

精度, 对于影像多种特征的全面分析和正确选择最有效的影像特征进行影像分
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类是至关重要的，而寻找适当的影像特征的过程中可能会阻碍基于对象的影像分

类的正确利用。在这一点上, 建立在统计学的基础上, SEaTH 算法能够用于评

价任何数目的影像特征并且计算出其域值。这个 SEaTH 算法能够利用广泛的对

象特征因而为一个成功的影像分类提供了基础。这个基于对象的分类使用了由

SEaTH 算法计算出的对象特征和域值,并产生了很好的分类结果。使用 SEaTH 
算法，可以避免因反复寻找合适的对象特征和正确的域值而延误的时间, 
SEaTH 算法，也有助于尽量减少在影像分类中人为的参与，并有助于在需要对

庞大的数据加以处理时提高分类的速度和效率.  
 
论文的最后一点，实验并讨论了增强的植物指数对使用 MODIS 数据的基于对象

的分类的贡献。结果表明，增强的植物指数不但对监测物候的土地覆盖类型提供

了重要信息，而且有助于区分那些用单日期多光谱影像的光谱信息难加以区分的

土地覆盖类型.  
 
基于对象的图像分析，被视为图像分析的新的范例。不过，目前它还处在发展中

的阶段，有许多方面仍需要进一步发展。其中，图像分割参数的选取和图像分析

结果精度评估是基于对象的影像分析中需要作进一步研究的两个主要议题。 
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CHAPTER 1 
 
INTRODUCTION 
 
 
1.1. Problem formulation 
 
Image analysis by visual interpretation of aerial photos or satellite imagery, can 
produce detailed land-cover thematic maps with higher accuracy than digital 
image classification (Mas et al. 1996, Sader 1992). However, this method is 
slow, expensive (in terms of time expenditure and expertise requirements) and 
subjective (since the performance of visual interpretation depends on the 
experience and knowledge of individual interpreters). Pixel-based digital image 
classification uses spectral information of single pixels which can lead to very 
sophisticated and detailed classification results if all classes of interest can be 
described unambiguously using spectral information only. However, for most 
applications this precondition is not given. Classification using pixel-based 
approaches very often shows the speckled appearance, which not only reduces 
the classification accuracy, but also complicates the further processing of 
classification results in a geographic information system (GIS) if applicable, 
since an even higher number of polygons (sometimes at the size of single 
pixels) is resulting from a very heterogeneous classification result (Ebert 2006).  
 
Pixel-based digital image classification approaches use mainly spectral 
information of single pixels and sometimes texture information in certain 
environments (3*3 or 5*5 pixels, etc.), but not information related to shape 
(such as area, length, perimeter, etc.) of objects which corresponds to the 
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objects of interest, texture within the objects, neighbourhood, context, and 
levels. In most cases, information important for the understanding of an image 
is not represented in single pixels but in meaningful image objects and their 
mutual relations (Blaschke 2003). Human interpreters derive less information 
from the brightness of individual pixels than they do from the context and the 
patterns of brightness, of groups of pixels, and from the sizes, shapes, and 
arrangements of parcels of adjacent pixels (Campbell 2002, Lang et al. 2006). 
One way to make use of this additional information in digital image 
classification is to organize the image into objects that represent regions of 
similar pixels prior to the classification. 

 
Image segmentation delineates units according to a certain criteria of 
homogeneity and, at the same time, requires spatial contingency (Lang et al. 
2006). It is appealing for remote sensing applications because human vision 
tends to generalize images into homogeneous areas. Research into image 
segmentation is not new and several methods exist. They can be broadly 
categorized into measurement-space-guided spatial clustering, single-linkage 
region growing, spatial clustering, hybrid-linkage region growing, centroid-
linkage region growing, and split-and-merge methods (Haralick and Shapiro 
1985), or more simply, into edge-based and region-based algorithms (Blaschke 
and Strobl 2001). No matter which method is applied, segmentation provides 
building blocks for object-based image analysis. Image segmentation 
evaluation is a key issue, due to that segmentation produces the primitives of 
object-based image analysis and segmentation result has a direct effect on the 
following object-based image analysis. Image segmentation parameterization is 
still a topic under research. In this research, image segmentation, segmentation 
evaluation, and the effect of image segmentation to the image classification 
accuracy is one of the main topics.  
 
Within an image object all kind of statistics based on single input layers or 
combinations within the input image layer stack can be computed such as 
spectral related information, texture within objects, shape, etc. Using image 
objects to calculate the statistics instead of pixels in a certain window improves 
the reliability of statistic without smearing edges, since objects do not exceed 
edges. Advantages of object-based analysis are meaningful statistic and texture 
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calculation, an increased uncorrelated feature space using shape and 
topological features, and the close relation between real-world objects and 
image objects. This relation improves the value of the final classification and 
can not be fulfilled by common, pixel-based approaches (Benz et al. 2004). 
 
Object-based image analysis has the potential to use not only the spectral 
information, but the information regarding to the objects’ shape, size, form, 
texture, and relations to the other objects from the super-and sub- levels, if a 
multi-spectral image segmentation and hierarchical classification is used. This 
extra information makes it a promising method for image analysis. This 
research carries out a comparative study between object-based and pixel-based 
image classification to fully explore the potential of object based classification 
approach in image analysis.  Topics about the performance of OBIA such as 
with different spatial resolutions, using the nearest neighbour classifier and 
membership functions, using the semi-automatic feature extraction algorithm 
SEparability and Threshold (SEaTH, proposed by Nussbaum et al. 2006), and 
the contribution of Moderate spatial resolution Imaging Spectrometer (MODIS) 
Enhanced Vegetation Index (EVI) data will be covered in this research.    
 
1.2 Hypothesis 
 
The hypothesis of this thesis is that object based image analysis has advantage 
over pixel based one, and based on this, various researches were carried out to 
demonstrate how and on which grounds this advantage is based.    

 
1.3 Research Questions 
 
(1) What is image segmentation? How to evaluate image segmentation result?  
(2) What is object-based image analysis? 
(3) What is the impact of image segmentation to object-based image analysis? 
How to define the segmentation parameters to enable an object-based image 
analysis over-performs a conventional pixel-based one? 
(4) How is the performance of object-based image analysis comparing to pixel-
based image analysis? How object-based image analysis works with multi-
spectral remote sensing images regarding to images with various spatial 
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resolutions? 
(5) How object based image analysis result can be improved by semi-automatic 
feature extraction algorithm-SEparability and THreshold (SEaTH)?  
 
1.4 Research Objectives 
 
The objective of this research is to evaluate the contribution of image 
segmentation and object-based image analysis to land-cover classification 
using remote sensing images.  
 
Based on a review of: image segmentation and segmentation result evaluation; 
object-based image analysis in land-cover classification in a forest area using 
remote sensing images; a comparison with conventional pixel-based image 
analysis if needs be, which supply the important antecedents for the thesis, the 
objective can be reached through the following sub-objectives: 
(1) Research on segmentation optimization and its effect to object-based image 
analysis.  
(2) Research on comparison of pixel-based and object-based image analysis 
over images with different spatial resolutions. 
(3) Research on the object-based image analysis using a semi-automatic feature 
extraction algorithm SEaTH (proposed by Nussbaum et al. 2006). 
(4) Research on the contribution of MODIS EVI data to the feature extraction 
with object based image analysis. 
 
1.5 The outline of the thesis:  
 
This thesis includes seven chapters, chapter 1, an introduction is given to this 
research, including the motivation, problem formulation, research questions 
and the objectives; chapter 2, theoretical background; chapter 3, Optimized 
image segmentation and its effect on classification accuracy; chapter 4, A 
comparison of the performance of pixel-based and object-based classifications 
over images with various spatial resolutions; chapter 5, A semi-automatic 
feature extraction algorithm and hierarchical network structure for object based 
image analysis; chapter 6, MODIS EVI data as an ancillary data for an object 
based land cover classification with MODIS data; chapter 7, conclusions.  
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CHAPTER 2 
 
OBJECT-BASED IMAGE ANALYSIS 
 
 
The purpose of this chapter is to give an introduction to the emerging field of 
object-based image analysis and to provide a comprehensive overview of 
methods involved and the respective background. Here I acknowledge the work 
of Lang et al. (2006), OBIA-Tutorial – Introduction to Object-based Image 
analysis, which provides the base for this chapter.  
 
When performing digital image classification, our knowledge is often involved 
in the process and we want the computer imitate certain characteristics of the 
human way of image interpretation. In this aspect, in particular when going 
beyond spectral values of land cover classes, a pixel-based classification 
approach is limited, while an object-based approach supports considering 
spatial characteristics explicitly and addressing form-related as well as scale-
related characteristics (Lang et al. 2006). However, the object-based approach 
also has its limitations and the human perception is still an ultimate benchmark, 
undefeated in analyzing complex scene contents with ease.  
 
2.1. Image interpretation and perception 
 
Human vision is well adapted for complex image interpretation tasks. We can 
hardly describe exactly what really happens if we look at an image and 
suddenly ‘see’ something. But indeed we notice that we do any kind of pattern 
recognition without major effort (Eysenck and Keane 1995, Lang et al. 2006). 
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However, human vision is challenged when dealing with remote sensing 
imagery (Lang 2005). There are three issues distinguishing interpretation of 
remote sensing imagery from interpretation conducted in everyday experience: 
1) remote sensing images usually portray an unfamiliar perspective. 2) Many 
remote sensing images use radiation outside the visible portion of the spectrum. 
3) Remote sensing images also portray the surface of the earth at unfamiliar 
scales and resolutions (Lang 2006). Experience is an important prerequisite for 
skillful and successful interpretation. Though through training, we can match 
imagery displayed in the false colour composite with natural phenomena and 
understand certain texture or structures and the imaged features, it does not 
prevent us from facing ambiguity when features are very like in structure or 
colour (Lang 2006). In this case, knowledge such as shape of and the spatial 
relations between the image regions may help in image interpretation (Blaschke 
2003).  
 
As shown in figure 2-1, we can distinguish the ‘river’ from ‘lake’ by its form, 
though they share similar spectral values. As for the ‘municipal park’, although 
it is spectrally similar to ‘grassland’, we can identify the parks using spatial 
form and context that are placed inside urban areas.  
 

 
 
Figure 2-1: Example of the way human interprets images using not only 
spectral features but form, shape, and context features. Source: Lang et al. 
2006. 
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2.1.1. Image data structure  
 
A digital image is usually composed of many pixels which represent the 
brightness of regions on the earth’s surface recorded digitally as numeric 
values (Campbell 2002). No matter which resolution, a pixel is always an 
averaged signal reflected or emitted by the observed underlying features.  
 
Digital data stored in the remote sensing image can be viewed as a matrix. In 
the simplest case, the scene X can be described in the form of a 
matrix ijxX )(= , where i = 1,…n; i is the image row dimension and j = 1,…m; 

i is the image column dimension. The pixel value in the image data is often 
referred as digital number (DN) and it is derived according to the spectral value 
reflected or emitted from the corresponding earth surface, and it is normally in 
the range of DN  = 0, 1,…255 (in the case of 8 bit radiometric resolution, 
which is explained in section 2.1.2.3). Value 0 indicates the ‘black’ pixels 
meaning no reflected/emitted value, and the maximum absorption; value ‘255’ 
indicates the white area in the image meaning maximum reflection and no 
absorption.  
 
Multispectral image data with N spectral bands in the form of a matrix can be 
explained as ijnxX )(= , with n=1, …, N spectral bands. One pixel in the 

multispectral N-dimensional image data can be described as  

 
),...,,( 21 nij DNDNDNx =  

 

In which is the digital value in the number-n spectral band.  nDN
 
2.1.2. The four dimensions of imagery 
 
Imagery can be expressed in four dimensions: spatial, spectral, radiometric, and 
temporal. The following is the introduction of these aspects and the importance 
of each of the dimensions on information extraction from a scene.  
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2.1.2.1 Spatial resolution.  
 
Spatial resolution is often expressed in terms of ground sampling distance 
(GSD) and refers to the area covered on the ground by a single pixel. Spatial 
resolution is based on various factors, such as the sensor field of view (FOV), 
altitude at which the sensor is flown, and the number of detectors in the sensor, 
etc. Furthermore, the spatial resolution of the sensors varies with the off-nadir 
angle and is also influenced by the terrain on the ground. Spatial resolution of 
satellite images is mainly influenced by the terrain differences and off-nadir 
viewing angles, as satellites usually have fixed orbit and a fixed spatial 
resolution at nadir. Table 2-1 summarizes the orbital height and associated 
spatial resolutions for some satellite images.  
 
Table 2-1.  
Spatial resolution of satellite sensor comparison 
 
Satellite Orbit height (km) Spatial resolution 
Landsat 700 30m MS, 15m PAN 
SPOT 2, 4 832 20m MS, 10m PAN 
SPOT 5 832 10m (VNIR), 20m SWIR, 2.5m PAN 
IKONOS 681 4m MS, 1m PAN 
Quickbird 450 2.44m MS, 0.61m PAN 
 
As the spatial resolution increases, the associated file size increases. Table 2.2 
shows the uncompressed file sizes of 4-band 8-bit imagery at various 
resolutions for a 1 km2 area. Also the spatial resolution is related to swath 
width; the higher the resolution, the smaller the swath width of the image.  
 
Table 2-2. 
Spatial resolution versus file size 
 

Spatial resolution (m) 30 15 10 5 2.5 1 

File size (kb) 4 17 39 156 625 3906 
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2.1.2.2 Spectral resolution.  
 
It refers to the number of spectral bands on a given sensor. Most of the aerial 
and satellite sensors take image in the visible and infrared regions of 
electromagnetic (EM) spectrum.  
 
2.1.2.3 Radiometric resolution.  
 
It is defined as the number of gray levels that can be recorded for a given pixel. 
A radiometric resolution of 8 bit will result in pixel values ranging from 0-255 
and an 11 bit radiometric resolution can capture DN values ranging from 0-
2047. The value range can be computed using the equation N = 2R,, where N is 
the range and R is the radiometric depth.  
 
2.1.2.4 Temporal resolution.  
 
It refers to the time frequency when the same area of interest (AOI) is covered 
by the sensors. Image satellites are typically launched in a sun-synchronous 
orbit that results in the satellite revisiting a given spot on the earth at the same 
solar time. Further, sensors, such as IKONOS and Quickbird have the 
flexibility to take images off-nadir, increasing the frequency of the revisit. Also, 
at the higher latitudes, the frequency of revisits increases as compared to the 
equator.  
 
2.1.3. Multi-spectral image analysis 

 
The overall objective of image classification procedure is to automatically 
categorize all pixels in an image into land-cover classes or themes. Normally, 
multispectral data are used to perform the classification and the spectral pattern 
present within the data for each pixel is used as the numerical basis for 
categorization. That is to say, different feature type manifests different 
combinations of digital numbers (DNs) based on their inherent spectral 
reflectance and emittance properties. A spectral “pattern” is a kind of spectral 
signature (SS), the better SS the higher spectral resolution and in this sense it is 
not at all geometric in character. Multispectral classification has found a great 
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deal of applications in agricultural assessment, forest management, urban 
planning, ecological monitoring, and water resources information collection. 
Several processing algorithms have been developed to perform this 
classification. In general, classification algorithms can be subdivided in two 
classes: (1) the parametric or statistical algorithms which assume a particular 
statistical distribution for each element to be classified and estimate the 
parameters of this distribution, such as mean vectors and covariance matrix, to 
be used in classification algorithms, and (2) the non-parametric algorithms, 
which are used when objects in the scene have reasonably distinct signatures. 
Nearest neighbour (NN) classifier is non-parametric which does not require the 
normal distribution of the sample pixels. While for other supervised 
classifications such as maximum likelihood (MLC) and minimum distance 
(MD) the distribution is assumed to be normal. The NN rule assigns an 
unclassified pixel to the same class as the nearest of n correctly classified 
samples. That is to say, given a collection of n reference points (in our case 
reflectance values of the pixel in each band), each classified by some external 
source, a new point is assigned to the same class as its nearest neighbour. 
 
2.1.4. Pixel-based method 
 
Typical pixel-based image classification classifies pixels. The classification 
feature is the spectral signature of the pixels represented by DN values (Figure 
2-2). 
 

 
Raw image 

 

Feature space (Source: 
Jensen 2005).  

 

 
Classified image 

Figure 2-2: Pixel-based classification process. 
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By comparing pixels to those of known identity (training samples), it is 
possible to assemble groups of similar pixels into information classes. These 
classes form regions on a map or an image, and they are, in theory, 
homogeneous: pixels within classes are spectrally more similar to one another 
than they are to pixels in other classes. In practice, each class displays diversity, 
as each scene exhibits some variability within classes (Campbell 2002, Lang et 
al. 2006). Spectral values belonging to more than one information class causes 
problem. The traditional pixel-based method assumes that pixels in the same 
land cover class have similar digital values and being close in spectral feature 
space. This does not hold true for complex environments and their respective 
classifications (Burnett and Blaschke 2003). Pixel-based analysis considers 
spectral reflectance values and texture in certain environment, but not 
information related to shape, neighbourhood, context, and levels. In most cases, 
information important for the understanding of an image is not represented in 
single pixels but in meaningful image objects and their mutual relations 
(Blaschke 2003). Human interpreters derive less information from the 
brightness of individual pixels than they do from the context and the patterns of 
brightness, of groups of pixels, and from the sizes, shapes, and arrangements of 
parcels of adjacent pixels (Campbell 2002, Lang et al. 2006). One way to make 
use of this additional information is to organize the image into objects that 
represent regions of similar pixels prior to the classification.  
 
2.1.5. Object-based image analysis 
 
Object-based image analysis classifies image objects. The basic elements of an 
object-based approach are image objects which are contiguous regions in an 
image and they are usually produced by image segmentation. The generation of 
image objects is suitable for textured or low-contrast image data. Image object 
primitives and objects of interest are different. Object primitives are usually the 
necessary intermediate step before objects of interest can be found by 
segmentation and classification process and only objects of interest match real-
world objects. The smallest image object is one pixel. Image objects can be 
linked to a hierarchical network, where they are attributed with a high-
dimensional feature space. Within an image object all kind of statistics based 
on single input layers or combinations within the input image layer stack can 
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be computed such as spectral related information, texture within objects, shape, 
etc. Using image objects to calculate the statistics instead of boxes of pixels 
improves the reliability of statistic without smearing edges, since objects do not 
exceed edges. Advantages of object-based analysis are meaningful statistic and 
texture calculation, an increased uncorrelated feature space using shape and 
topological features, and the close relation between real-world objects and 
image objects. This relation improves the value of the final classification and 
can not be fulfilled by common, pixel-based approaches (Benz et al. 2004). 
 
Figure 2-3 illustrates the object-based classification results comparing with 
those by manual delineation and pixel-based classification. For many 
applications, e.g. land cover mapping, generalization is intrinsically required to 
produce tangible target objects of the same class which are relatively 
homogeneous according to the class definition (Blaschke 2003). The salt and 
pepper effect occurs if there are many pixels classified differently but actually 
belonging to the same land cover type, which produces an unnecessarily 
detailed classification of the land surface, and it can be overcome by object-
based classification (Lang et al. 2006).  
 

 
Original Landsat image 

 
Pixel-based classification 

 
Object-based 
classification 

Figure 2-3: A comparison of a Landsat image by pixel-based and object-based 
classifications. 
 
To extract objects of interest, the statistical analysis of pixels exclusively based 
on their spectral statistic may not be sufficient. The advent of higher resolution 
image data increased the need for more efficient methods more than ever. 
Generally, for high resolution data, segmentation as a pre-classification step is 
preferred over pixel-based classification because the resulting division of space 
tends to involve fewer and more compact sub-regions (Blaschke 2003). 
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Segmentation approaches are generally more suitable for high resolution data, 
where pixels tend to be spatially clumped (Blaschke 2003). For example, in a 
1.0 m resolution image of a forest canopy, where each tree crown exhibits a 10 
m diameter, each crown will be composed of many pixels. In this situation each 
1.0 m pixel will be part of an individual crown. As a result, an image object 
tends to be composed of spatially clustered pixels that exhibit high spectral 
autocorrelation because they are all part of the same object. Consequently they 
have similar gray values. These characteristics correspond to Tobler’s first law 
of Geography where ‘objects are related to all other objects, but proximal 
objects are more likely to be related to each other’ (Lang et al. 2006). In an 
image object, this relationship is both spectral and spatial (Hay et al. 2003). 
 
2.2. Image segmentation 
 
This part discusses segmentation algorithms to extract objects from imagery. 
The history of image segmentation is concisely introduced focusing on 
applications in remote sensing. The concept of image segmentation is also 
delivered highlighting the importance of homogeneity as a key criterion of the 
extracted objects. The practical aim of image segmentation is to find an 
optimum match between image objects and real world objects.  
 
Segmentation algorithms may be categorized broadly into histogram-based, 
edge-based, and region-based. Histogram-based approaches perform 
segmentation within the feature space ignoring the spatial dimension in real 
world. It is a kind of unsupervised classification leading to classes but not to 
spatial space. Region-based algorithms deliver regions. They can be 
differentiated into region growing, region merging and splitting techniques and 
various derivations or combinations. Region growing starts with a set of seed 
pixels from which regions grow by adding neighbouring pixels as long as a 
“homogeneity criterion” applies. Here, the “homogeneity criterion” varies in 
different programs to perform image segmentation, and it can be calculated for 
example by the Euclidian distance. Region-merging starts with initial regions 
(single pixels) and merges them together until a scale-dependent threshold in 
size is reached. The splitting algorithms divide an image into regular sub-
regions which again will be divided until a certain level of homogeneity is 
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reached. The combination of split and merge is realized in the split-and-merge 
algorithm, by which the image is subdivided into squares of a fixed size. 
Heterogeneous squares are subdivided again and homogeneous squares can be 
merged together. Edge-based algorithms search for edges that occur between 
homogeneous areas which usually includes filtering and enhancement of the 
image prior to the detection of the edges. The detected edges (groups of pixels) 
need to be combined in order to form a boundary (Lang et al. 2006).  
 
2.2.1 The development of image segmentation 
 
Although image segmentation techniques are well known in some areas of 
machine vision (Fu and Mui 1981, Haralick and Shapiro 1985) they are rarely 
used for the classification of earth observation data. One of the main reasons is 
that most of these algorithms were developed for the analysis of patterns, the 
delineation of discontinuities on materials or artificial surfaces, and quality 
control products. While the discrimination of earth observation imagery aims at 
the generation of spectrally homogeneous segments, which show the inherent 
dimensions/objects of the images (Blaschke et al. 2004). Common approaches 
use region growing or thresholding algorithms, but many derivatives for 
specific applications such as grey scale, hyper spectral images or data fusion of 
different sensors exist (Burnett and Blaschke 2003). As stated above, the idea 
of segmentation is not new but it is becoming widespread within the earth 
observation community recently. While the foundations of the basic principles 
were laid out in the 80ies (Haralick and Shapiro 1985) and various applications 
demonstrated the potential in the following years for environmental 
applications (Lobo et al. 1997), mainly the availability in commercial software 
packages catalyzed a boost of applications more recently (Blaschke et al. 2004).  
 
2.2.2. Definition 
 
Image segmentation divides images into homogeneous regions regarding to a 
certain criteria of homogeneity, and at the same time, requires spatial 
contingency (there are no space between two neighbouring objects) (Lang et al. 
2006). Image segmentation is a preliminary step in object-based image analysis. 
By image segmentation, image is divided into homogeneous, continuous, and 
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contiguous objects. Image segmentation has been studied for a long time in the 
area of image analysis (Rosenfeld and Kak, 1976; Manjunath and Chellappa, 
1991; Mao and Jain, 1992; Panjwani and Healey, 1995). But only recently, 
image segmentation and object-based image analysis are used in remote 
sensing image classification.  
 
Pal and Pal (1993) defined image segmentation as a process of partitioning the 
image into some non-intersecting regions such that each region is 
homogeneous and the union of no two adjacent regions is homogeneous (Pal 
and Pal 1993). Formally it can be defined as follows: if F is the set of all pixels 
and P() is a uniformity (homogeneity) predicate defined on groups of 
connected pixels, then segmentation is a portioning of the set F into a set of 
connected subsets or regions (S1, S2, …, Sn) such that 
 

FSi

n

i
=∪

=1
 with jiSS ji ≠Φ=∩ ,       (2.1) 

 
The uniformity predicate true for all regions and =)( iSP )( iS

=∪ )( ji SSP false, when is adjacent to . Note that this definition is 

applicable to all types of images. 
iS jS

 
There are hundreds or even more of the segmentation algorithms present in the 
literature, but there is no single method which can be considered good for all 
images, nor are all methods equally good for a particular image. Moreover, 
algorithms developed for one class of image may not always be applied to 
other classes of images. However, most of the segmentation methods 
developed for one class of images can be easily applied/extended to another 
class of images. Segments can be extracted in a variety of ways.  
 
Image analysis implies to deal with image semantics (Lang et al. 2006). In 
most cases, important semantic information to understand an image is not 
represented in single pixels but in meaningful image objects and their mutual 
relations. Furthermore many types of image data are more or less textured. 
Airborne data, radar or very high resolution satellite data are playing an 
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increasing role in remote sensing. Analyzing such textured data can only be 
successful when they are segmented into meaningful homogeneous areas 
(Baatz and Schape 2000). Segmentation is the division of an image into 
spatially continuous, disjoint, and homogeneous regions. It is important that the 
internal heterogeneity of a segment under consideration is lower than that 
compared with its neighbouring areas (Blaschke et al. 2004).  
 
2.2.3. Image segmentation methods 
 
Image segmentation methods are commonly divided into three approaches: 
pixel-, edge-, and region-based (Pal and Pal 1993). Pixel-based methods 
include image thresholding and segmentation in the feature space. Edge based 
segmentation methods aim to find edges between regions and determine the 
segments as regions between the edges. Region based segmentation algorithms 
include region growing, splitting and merging techniques and their 
combinations (Blaschke et al. 2004). In this thesis, the segmentation methods 
used is region based.  
 
1) Thresholding.  

 
Some of the simplest approaches are all types of global thresholding. The 
spectral feature space is separated into subdivisions, and pixels of the same 
subdivision are merged when locally adjacent in the image data. Typically, this 
method leads to results of relatively limited quality. Over-segmentation and 
under-segmentation – i.e., separating into units which are too small or merging 
regions that do not belong to each other- take place easily without good control 
of meaningful thresholds. Local contrasts are not considered or not represented 
in a consistent way and the resulting regions can widely differ in size 
(Definiens 2004). Common alternatives are knowledge-based approaches, 
which incorporate knowledge derived from training areas or other sources into 
the segmentation process (Gorte 1998). These approaches mostly perform a 
pixel-based classification, based on clustering in a global feature space. 
Segments are produced implicitly after classification, simply by merging all 
adjacent pixels of the same class. In doing so, these approaches are typically 
not able to separate different units or objects of interest of the same 
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classification. Furthermore, the information on which classification can act 
typically is limited to spectral and filter-derivates (Definiens 2004).  
 
2) Region growing 
 
Region merging - ECHO (extraction and classification of homogeneous objects, 
after Kettig and Landgrebe, 1975) searches for spectrally similar neighbouring 
pixels and enlarges these groups to include adjacent pixels that have spectral 
values that resemble those of the core group (Lang et al. 2006). For example, 
the algorithm can first search for neighbourhoods of four contiguous pixels. For 
each group, it then tests members for homogeneity and pixels that are not 
similar to their neighbours are rejected from the group. Each of the 
homogeneous patches is then compared to each of its neighbours. If similar 
patches border each other, they are merged to form a larger patch. Patches are 
allowed to grow until they meet the edges of contrasting patches; when all 
patches reach their maximum extent within the constraints defined by the 
operator, the growing process stops. ECHO is a good example of a classifier 
that operates on fields of pixels rather than on each pixel in isolation. However, 
it performs the classification upon the average brightness of each patch, so it 
does not attempt to use image texture (Campbell 2002). Figure 2-4 is an 
example of region growing segmentation. 
 

  
 
Figure 2-4: Illustration of region growing image segmentation. Seed cells are 
distributed over image and 4-or 8-neighbourhood are included into region, if 
they do not belong to another region yet and if the homogeneity criterion 
applies; two neighbouring regions are unified if homogeneous criterion applies. 
Source: Campbell 2002, Lang et al. 2006.  
 
Region based segmentation starts from a set of given seed points and 
sometimes it suffers from lacking control over the breaking-off criterion for the 
growth of a region. Common applications of region based segmentation are 
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different types of texture segmentation algorithms (Gorte 1998, Blaschke et al. 
2004, Lang et al. 2006).  
 
3) Split and merge  
 
Split and merge is one type of region-based segmentation. Quadtree is an 
example: initially image is seen as one object, then it is divided into 4 parts if 
homogeneity criterion does not apply, resulting in quadtree structure; then the 
homogeneous quadtree areas are merged.  
 

 
Figure 2-5: Quadtree segmentation. Source Lang et al. 2006. 

 
In region splitting and merging techniques the image is divided into sub-
regions and these regions are merged or split based on their properties. In 
region merging the basic idea is to merge segments starting with initial regions. 
These initial regions may be single pixels or objects determined with help of 
any segmentation technique. In region splitting methods the input usually 
consists of large segments and these segments are divided into smaller units if 
the segments are not homogeneous enough. In an extreme case region splitting 
starts with the original image and proceeds by splitting it into n rectangular 
sub-images. The homogeneity of these rectangles is evaluated and each 
rectangle is subsequently divided into smaller regions until the homogeneity 
requirement is fulfilled. In both region merging and splitting techniques, the 
process is based on a high member of “pairwise” merges or splits. The 
segmentation process can be seen as a crystallization process with a big number 
of crystallization seeds. The requirement for the maintenance of a similar 
size/scale of all segments in a scene is to let segments grow in a simultaneous 
or simultaneous-like way (Blaschke et al. 2004, Lang et al. 2006).  
Region based segmentation makes sense when images are composed of large, 
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compact and coherent objects and edge-based segmentation is better fitted for 
elongated structures (Lang et al. 2006). Here the edge signifies boundaries 
between homogeneous areas.  
 
4) Edge based segmentation 
  
Edge based segmentation is to partition an image based on abrupt changes-
discontinuity- in gray level. An edge, in the image analysis literature, is a jump 
in intensity. The cross section of a so-called ideal edge has the shape of a ramp: 
infinite slope and flat portions on either side of the discontinuity (Wang 2005). 
To perform edge based segmentation, first, edges need to be detected, which 
generally involves process of filtering, enhancement, and detection. By filtering, 
image is smoothed and the noise in the image is decreased; by enhancement, 
local changes in intensities are revealed; and by detection, edge pixels are 
selected, for example choosing gaps by thresholding and combining and 
extending lines. After this first step, the detected edge pixels are linked to form 
the region boundaries.  
 
Segmentation by representative measures is edge based and was proposed by 
Hoffman & Bohmer, 1999 (Lang et al. 2006). This method calculates a 
representative measure of each pixel for its neighbours, which forms the base 
of the algorithm. The values are calculated by a harmonic analysis of the 
spectral values for each spectral channel. The minima in the matrix of 
representative measure - typically arranged in pixel lineaments – represent 
spatial unsteadiness in the digital numbers. For the image segmentation, the 
vectorized minima of the representative measures delimit areas consisting of 
pixels with similar spectra properties (spatial segments) (Blaschke et al. 2004, 
Lang et al. 2006). 
 
5) Watershed segmentation 
 
A further relatively common procedure is watershed segmentation (Wegner et 
al. 1997). The name comes from the manner in which the algorithm segments 
regions into catchments basins. Typically, the procedure first transforms the 
original data into a gradient image, which can be considered as a topographic 
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surface. If this surface is flooded from its minima and if it is prevented the 
merging of the water coming from different sources, the image is partitioned 
into two different sets: the catchments basin and the watershed lines, and the 
catchments basin should theoretically correspond to the homogeneous grey 
level regions of this image. This method works for separating essentially 
convex and relatively smooth objects of interest that even may touch slightly in 
relatively homogeneous image data. When it works, it is convenient, fast and 
powerful. However, for remote sensing data, which typically contain a certain 
noise and not always strong contrasts, this method is typically not able to 
achieve appropriate results (Lang et al. 2006).  
 
In Haris (1998), it is argued that watershed segmentation is a segmentation 
method with a high intuitive character and transparency. Spectral reflectance is 
modelled as height values and segments are built at gradient magnitudes along 
similar altitude levels, just in analogy of water flowing into valleys between 
watersheds. Region growing stops when neighbouring flooding regions meet 
each other. Higher scale segmentation is achieved by decreasing the number of 
local minima. One problem of watershed segmentation is that in an initial stage 
the algorithm leads to over-segmentation (Lang et al. 2006), and in many cases 
it has to be actively controlled by users. As the segmentation is only depending 
on spectral likeness, produced objects may vary significantly in size (Lang 
2005).  
 
6) Multi-resolution segmentation 
 
Multi-resolution segmentation is the segmentation algorithm implemented in 
eCognition program (Definiens 2006). The design of multi-resolution 
segmentation is try to produce the segmentation results with strictly 
hierarchical multiple resolution, which convince the human perception and is 
reproducible. The segmentation speed should be satisfying (Lang et al. 2006).   
 
Multi-resolution segmentation is based on region merging technique, and its 
homogeneity criterion includes both colour homogeneity and shape 
homogeneity. The shape homogeneity is represented by two more criteria of 
objects: compactness and smoothness.  
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The bottom up region merging technique starts with each pixel being a region. 
A pair of regions is merged into one region and each merging obeys a certain 
degree of fitting. Objects are merged into bigger objects as long as the merging 
is below a “least degree of fitting” (scale parameter) or as long as the merging 
fulfills the homogeneity criterion. The starting points for merging distributed 
with maximum distance and pairwise clustering process considers smallest 
growth of heterogeneity. The segmentation levels are established on several 
scales using different scale parameters (2th level is based on the 1th level, larger 
scale parameter results in larger image objects consisting of the objects of the 
lower level).  
 
Image segmentation needs to address a certain scale parameter. However, most 
segmentation approaches do not allow the user to specify a certain scale of 
consideration and a level of detail or generalization, accordingly (Blaschke 
2003). For example, the user does not usually specify information such as 
information of single bushes or trees or information of land cover units such as 
orchards. The flexibility in performing scale specific segmentation has led to a 
growing interest from landscape ecological applications of this multi-resolution 
segmentation (Lang et al. 2006). The hierarchical representation of process-
relevant spatial units in various scale domains is one of the fundamental pillars 
within landscape ecology (Wu 1999, Lang et al. 2006). Image segmentation 
can be used to provide a consistent set of image primitives to be used as 
landscape objects (Burnett and Blaschke 2003, Lang and Langanke 2005).  
 
About the decision heuristics of multi-resolution image segmentation, in the 
case of finding an adjacent object B to merge with an arbitrary object A, there 
are different degrees of fitting: 1) fitting: when the homogeneity criterion is 
fulfilled; 2) best fitting: when the homogeneity criterion is fulfilled, and the 
merge between B and A produces the best degree of fitting compared to the 
merge between A and any other adjacent object of A; 3) local mutually best 
fitting: find the best fitting object B for the object A, then find the best fitting 
object C for the object B. confirm that object C is the object A, otherwise take 
B for A and C for B and repeat the procedure (find the best fitting pair of 
objects in the local vicinity of A following the gradient of homogeneity); 4) 
global mutually best fitting: merge the pair of objects for which the 
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homogeneity criterion is fulfilled best in the whole image. 5) Distributed 
treatment order: use starting points with maximum distance to all other points 
treated before (treatment order defined over pixels or segments). 6) find the 
best fitting object B for the object A and confirm that the best fitting object C 
for the object B is indeed the object A (homogeneity criterion is fulfilled 
mutually). If not, take B for A and C for B and try again. The more detailed 
explanation about decision heuristics of multi-resolution image segmentation 
sees Lang et al. 2006.  
 
In the definition of the degree of fitting, both colour and shape homogeneity are 
weighted against each other, and compactness and smoothness make up the 
shape homogeneity and are weighted against each other.  
 
Colour homogeneity depicts the similarity between two objects in a certain 
feature space. As for the shape homogeneity, the criterion compactness: 

n
Lh scompactnes =  depicts the relation between boundary length L of the object 

and the square root of the number n of the pixels of the object (square root of n 
equals the side of a square with n pixels). In the case of the ideal compact form 
of objects, objects do not become lengthy. The smoothness criterion:  

b
Lhsmoothness =  depicts the relation between boundary length L of the object 

and the perimeter of the bounding box of the object (bounding box: shortest 
possible boundary length), and in the case of ideal smoothness the boundaries 
of the edges do not become fringed (Lang et al. 2006). 
 
2.2.4. Image segmentation evaluation 
 
Image segmentation is the preliminary and critical step in object based image 
analysis, and its proper evaluation ensures that the best segmentation result is 
used in the classification.  
 
Overall visual survey is a commonly used method to evaluate the segmentation 
result. This step focuses on some general criterions, like the delineation of 
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varying land cover types (meadow/forest, agriculture/meadow, etc.), the 
segmentation of linear objects, the occurrence of faulty segmentations and a 
description of the overall segmentation quality.  
 
Furthermore, detailed comparison based on visual delineated and clearly 
definable reference areas can also be carried out. Usually, different areas 
(varying in location, form, area, texture, contrast, land cover type etc.) are 
selected and each of them is visually and geometrically compared with the 
related part in the segmented image. The geometrical comparison is a 
combination of morphological features (area Ai, perimeter Pi, and shape Index 
SIi) of the region i and the number of segments or partial segments in the case 
of over-segmentation (Neubert et al. 2006). 
 

i

i
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the Shape Index comes from landscape ecology and address the polygon form. 
For all features the variances to the reference values can be calculated. For 
example, all polygons with at least 50% area in the reference object are counted 
in the case of partial segments.  
 
Additionally, the quality of the objects can be visually rated (0 poor, 1 medium, 
2 good). A good segmentation quality is reached when the overall differences 
of all criteria between the segmentation results and the associated reference 
objects are as low as possible.  
 
2.3. Object-based image analysis 
 
In this part, we introduce object-based image analysis. Since objects are 
aggregated by n-pixels we can use any feature statistical derivatives like mean, 
standard deviation, ratio, etc. Besides, there are a variety of geometrical 
features can be used such as shape, texture, etc. In addition, when working with 
hierarchical representations, there are features which characterize the 
relationships among objects on different hierarchical levels. All these features 
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can be used for classification. Using shape information, we can for example 
differentiate between grassland and a football ground. Using size information, 
we can tell small from big football grounds. Using spatial context information 
we can distinguish a big football ground within a city from a big football 
ground in the countryside. As this process has a strong modeling component, 
working with samples alone may be limited. Therefore it is recommended to 
focus on formulating rule sets and perform rule-based classification.  
 
2.3.1. Definitions of object-based image analysis 
 
Object-based image analysis is a sub-discipline of GIS science devoted to 
partitioning remote sensing imagery into meaningful image-objects, and 
assessing their characteristics through spatial, spectral and temporal scales. At 
the most fundamental level, object based image analysis requires image 
segmentation, attribution, classification and the ability to query and link 
individual objects in space and time. In order to achieve this, it incorporates 
knowledge from a vast array of discipline involved in the generation and use of 
geographic information (Hay and Castilla 2006). 
 
By object-based image analysis, a number of objects are assigned to a certain 
class according to the class’s description which describes the typical properties 
or conditions the desired classes have. The objects then become assigned 
according to whether they have or have not met these properties/conditions 
(Definiens 2004, Lang et al. 2006). When considering image objects instead of 
pixels, a wealth of additional features can be used for characterization. Both 
statistically aggregated spectral features and geometrical and neighbourhood-
related features can be used, by which the dimensionality of the resulting 
feature space is getting significantly higher and rises to virtually limitless 
extent (Lang et al. 2006). If still a network of image objects is created, vertical 
relationships between super-objects and sub-objects in the object hierarchy can 
be used to expand the feature space even further (Lang 2005, Lang et al. 2006).  
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2.3.2. Sample- vs. rule-based classification 
 
Image objects can be classified either by classifiers based on samples or using 
prior external knowledge stored in rule bases. By sample based classification, 
class membership of objects is defined by comparing similarity to selected 
samples. Samples are representative for their classes and the classification uses 
features which clearly distinguish the sampled class from other classes. Rather 
than delineating training areas, sample objects are iteratively selected. To 
ensure the accuracy of the classified images, these sample objects should have 
the most representative and clearly distinguished features (Lang 2005). In 
comparison to pixel - based training, the object - based approach of the nearest 
neighbour classifier requires less training samples/objects because one sample 
object already covers many typical pixel samples and their variations 
(Definiens 2004). Nearest neighbour classifier is sample-based by which object 
is assigned to the class whose sample objects are closest to it in the feature 
space.  
 
Rule - based classification defines a class by rule(s)/membership functions 
using one feature or several features. The rule definition can be either fuzzy or 
crisp using object features or class-related features. Here the object features 
could be spectral related features such as mean, standard deviation, ratio, etc; 
shape features such as length, area, etc; texture features such as values of Grey 
Level Co-occurrence Matrix (GLCM). The class-related features could be 
features related to the neighbour objects or objects from the upper or lower 
level. Compared to sample-based classification, the rule - based classification 
can incorporate expert knowledge in the classification and formulate complex 
class descriptions. The classification process is also more transparent and the 
rule base is transferable (Lang et al. 2006). Integrating knowledge is a way to 
overcome the spectral similarity of different geographical features. Rules can 
use any of the spectral, spatial or hierarchical object features. Because of the 
enormous range of potential features, a rule-based approach needs formalized 
representation of the target class system and the way to interpret them 
beforehand (Lang 2005).  
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2.3.3. Fuzzy classification 
 
Fuzzy set classification logic takes into account the heterogeneous and 
imprecise nature of the real world (Jensen 2005, p. 389). Fuzzy classification is 
a very powerful soft classifier which is used in neural networks (Gopal and 
Woodcock 1996) and probabilistic approaches (Curlander and Kober 1992, 
Lang et al. 2006). Avoiding arbitrary sharp thresholds, fuzzy logic is able to 
approximate real world in its complexity much better than the simplifying 
Boolean systems do. Fuzzy logic can model imprecise human thinking and 
represent linguistic rules (Benz et al. 2004). With fuzzy logic, it is possible to 
express each object’s membership in more than just one class or the probability 
of belonging to other classes, with different degrees of membership or 
probabilities (Definiens 2004, Foody 2000, and Jensen 2005).  
 
Fuzzy logic is a multi-valued logic quantifying uncertain statements (Lang et al. 
2006). The basic idea is to replace the two boolean logical statements “true” 
and “false” by the continuous range of (0, 1) where 0 means “false” and 1 
means “true” and all values between 0 and 1 represent a transition between true 
and false (Benz et al. 2004). “If - then” sentence is a common fuzzy rule to 
assign the objects into land cover class. If feature x (of the object) is member of 
the fuzzy set (associated with the class forest), the image object is a member of 
land-cover forest. The fuzzy sets can be combined to create the advanced fuzzy 
rules using operator “AND”- minimum operation; “OR”- maximum operation; 
“NOT”- inversion of a fuzzy value. Fuzzy rule-base (combination of the fuzzy 
rules of all classes) delivers a fuzzy classification. Every object has a set of 
values assigned to it with the degrees of membership to each class/degrees of 
class assignment. Since these values are possibilities to belong to a class, they 
don’t have to add up to 1 (unlike probabilities). To produce results like maps 
for standard land - cover and land - use applications, the fuzzy results have to 
be translated back to a crisp value. To this end, the maximum membership 
degree of the fuzzy classification is used as crisp class assignment. This 
process is a typical approach for “de-fuzzification” of fuzzy classification 
results. If the maximum membership degree of a class is below a threshold, no 
classification is performed to ensure minimum reliability. As this output 
removes the rich measures of uncertainty of the fuzzy classification, this step 
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should be only performed if necessary and as late as possible in the whole 
information extraction process (Lang et al. 2006).  
 
2.3.4. The strength of object-based image analysis  
 
By object-based image analysis, additional information objects such as shape, 
texture, and relationship to other objects/semantic information can be used in 
the classification. By generating objects, the signal/noise ratio is increased and 
the number of units to be classified is decreased. By image segmentation, 
image resolution becomes adaptable. Since the classification is based on 
objects, the classification can be as simple as “click and classify”. The object-
based classification is a data base query. Any step and setting during the entire 
classification process is documented, and can be assessed and adopted if 
needed. Although the result is not necessarily more accurate-with higher 
accuracy, it can be reproduced and the process is to a high degree 
comprehensible. The formalized approach of analysis (the class definitions and 
composition and the documentation of the workflow and settings in the semi-
automated process) technically allows for a transfer of the classification to 
other scenes (Lang and Langanke 2004, Benz et al. 2004, Lang and Langanke 
2006, Lang et al. 2006).  
 
2.4. Accuracy assessment 
 
Accuracy assessment is an important part in image analysis, in order to have at 
hand an evaluation about the level of potential confusion, the reliability of the 
class assignments and the overall quality of the results. Here we discuss 
different approaches to accuracy assessment, starting with non-site-specific 
map comparison, then more advanced site-specific approaches with the error 
matrix as a core element, including overall accuracy, user’s- and producer’s 
accuracy as well as kappa statistic. Here we also elaborate on some problems 
related to the use of error matrix and problems that explicitly apply to object-
based accuracy assessment. Especially the spatial geometrical characteristics of 
the extracted objects need to be evaluated which is a challenging task and 
which is still an open field of research.  
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2.4.1. Definitions 
 
Remote sensing image classification accuracy can be defined as degree to 
which the derived image classification agrees with reality or conforms to the 
“truth” (reference map, assumed to be accurate, standard for the comparison); 
the error is the discrepancy between the situation depicted on the classified 
image and reality (Campbell 2002, Foody 2002). Accuracy assessment is 
important since it evaluates the usefulness of classified images/thematic maps 
for land management or the validity of maps for scientific investigations.  
 
It is important that the quality of thematic maps derived from remote sensing 
data be assessed and expressed in a meaningful way, which not only provides a 
guide to the quality of a map and its fitness for a particular purpose, but also 
helps to understand error and its likely implications, especially if allowed to 
propagate through analyses linking the map to other data sets (Foody 2002). 
Remote sensing-derived thematic maps should normally be subjected to a 
thorough accuracy assessment before being used in scientific investigations and 
policy decisions (Stehman and Czaplewski 1998, Campbell 2002, Jensen 2005, 
Lang et al. 2006).  
 
To correctly perform a classification accuracy assessment, it is necessary to 
systematically compare pixel or polygons in a remote sensing-derived 
classification map and ground reference information (which may in fact contain 
error) (Jensen 2005). 
 
2.4.2. Non-site/site specific assessment and error matrix 
 
Non-site specific accuracy assessment was based on comparisons of the areal 
extent of the classes in the derived thematic map relative to their extent in 
reference data set. A major problem is that the apparent and quantified 
accuracy of the map would hide its real quality (Foody 2002). This method is 
inaccurate in itself due to the possibility of compensating errors that don’t show 
up and only overall figures of the two images are compared (Campbell 2002, 
Lang et al. 2006).  
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The standard form for reporting site-specific error is the error matrix, 
sometimes referred to as the confusion matrix because it identifies not only 
overall errors for each category but also misclassifications by category. 
Compilation of an error matrix is required for any serious study of accuracy. 
The error matrix consists of an n x n array, where n represents the number of 
categories (Campbell 2002). The intersection of the rows and columns 
summarize the number of sample units (pixels, clusters of pixels, or polygons) 
assigned to a particular category relative to the actual category as verified in the 
field. The diagonal of the matrix summarizes those pixels or polygons that 
were assigned to the correct class. Every error in the remote sensing 
classification relative to the ground reference information is summarized in the 
off-diagonal cells of the matrix. Each error is both an omission from the correct 
category and a commission to the wrong category. The column and row totals 
around the margin of the matrix (referred to as marginal) are used to compute 
errors of inclusion (commission errors) and errors of exclusion (omission 
errors). The outer row and column totals are used to compute the producer’s 
and user’s accuracy. Some recommend that the error matrix contain 
proportions rather than individual counts (Stehman and Czaplewski 1998, 
Jensen 2005, Lang et al. 2006). Presently, the error matrix is at the core of 
accuracy assessment but there is much scope to extend the analysis beyond it 
(Congalton 1994, Congalton and Green 1999, Foody 2002).  
 
Table 2-3:  
An example of a simple error matrix  
 

Reference data Classification 
data Class 1 Class 2 Class 3 total 

Class 1 6 2 1 9 

Class 2 3 7 2 12 
Class 3 0 1 8 9 
total 9 10 11 30 

 
The overall accuracy of the classification map is determined by dividing the 
total correct pixels (sum of the major diagonal) by the total number of pixels in 
the error matrix. It summarizes the total agreement between the classified 
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image and the reference image and only incorporates the major diagonal and 
excludes the omission and commission errors. In table 2-3, the overall accuracy: 
(6+7+8) / 30 = 70% 
 
Producer’s accuracy (Omission error) indicates the probability of a reference 
pixel being correctly classified. It is calculated by dividing the total number of 
pixels in that class with the number of correctly classified pixels. In table 2-3, 
the producer’s accuracy of class 1: 6 / 9 = 67% 
 
User’s accuracy (Commission error) is the probability that a pixel classified on 
the map actually represents that category on the reference image. It is measured 
by dividing the total number of pixels that were actually classified in a class 
with the total number of correct pixels in that class.  In table 2-3, the user’s 
accuracy of class2: 7 / 12 = 58%. 
 
2.4.3. Limitations of the error matrix and specifics of object-based 
accuracy assessment 
 
For accuracy assessment, there is no single universally acceptable accuracy 
measure but instead a variety of indices, each sensitive to different features 
(Stehman 1997a). The design of an accuracy assessment has several essential 
elements including the definition of an appropriate sample size and sampling 
design. The sample size, for example, must be selected with care and be 
sufficient to provide a representative and meaningful basis for accuracy 
assessment (Hay 1979). If a probability-based measure of classification 
accuracy is to be used, it is essential that the reference data were acquired 
according to an appropriate sampling design (Hay 1979, Stehman 1997a, 
Stehman 1999b).  
 
A variety of errors, due to for example the spectral similarity of land cover 
classes, are encountered in an image classification and interests are typically 
focused on accuracy of derived thematic map/classified image (Lang et al. 
2006). Normally, information of the misclassified classes can be obtained from 
the error matrix. However, unfortunately other sources of error contribute to 
the pattern of misclassification depicted in the confusion matrix. Non-thematic 
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errors can be large and particular concern is the error due to mis-registration of 
the classified image with the reference data (Canters 1997, Czaplewski 1992, 
Muller et al. 1998, Stehman 1997a, Todd et al. 1980). In fact, the reference 
data are just another classification which may also contain error (Congalton 
and Green 1999, Khorram 1999, Lang et al. 2006). Problems with the accuracy 
of reference data may be particularly severe if a remote sensing data set is used 
as the reference data.  
 
The erroneous allocations made by a classification are typically not randomly 
distributed over the region (Congalton 1988). Unfortunately, however, the 
confusion matrix and the accuracy indices derived from it provide no 
information on the spatial distribution of error. In classical accuracy 
assessments all misallocations are often equally weighted, while some errors 
are more important or damaging than others (Forbes 1995, Naesset 1996, 
Stehman 1999a). In many cases, the errors observed in a classification are 
between relatively similar classes and sometimes they may be important while 
other errors may be highly significant (Felix and Binney 1989, Foody 2000a, 
Steele et al. 1998, Townsend 2000). A further source of error associated with 
the use of a hard classifier that allocates each pixel to a single class is the 
assumption that the image is composed of pure pixels (Foody 1996).  
 
Using an object-based classification approach requires to adapt existing 
accuracy assessment methods and develop new algorithms that evaluate the 
accuracy of object-related features explicitly. In Lang and Langanke (2006) it 
was proposed to generate random points within objects and check the labels 
against a ground data layer to assess the accuracy of a thematic layer generated 
by object based image analysis. A set of objects can be selected prior to the 
training process to be used as reference information as an alternative (Lang et 
al. 2006). In the case of smaller test areas with a limited number of larger 
objects, every single object could be assessed in terms of its label (Lang and 
Langanke 2006). However, by far, geometrical accuracy is harder to evaluate. 
Regarding to geometrical accuracy, classified image objects can be visually 
checked against manual delineation (Koch et al. 2003), but a quantitative 
assessment requires GIS overlay techniques.  
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There are difficulties in performing object-based accuracy assessment, which 
satisfies the needs/requirements as being discussed by Congalton and Green 
(1999). Two main reasons explain this: a) 100% geometrical fit between 
thematic image which is produced by object-based image analysis and 
reference data is usually not given due to different segmentation algorithms and 
other ways of feature delineation; b) the thematic classes are not mutually 
exclusive when using rule bases based on fuzzy logic, such as classifiers of 
nearest neighbour or membership function. In this sense, the accuracy 
assessment for object based image analysis is a matter of evaluation of both 
geometrical agreement and semantic agreement (Lang 2005, Lang et al. 2006).  
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CHAPTER 3 
 
OPTIMIZED IMAGE SEGMENTATION AND 
ITS EFFECT ON CLASSIFICATION 
ACCURACY1 
 
 
Abstract. Image segmentation is a preliminary and critical step in object based 
image analysis (OBIA). Its proper evaluation ensures that the best 
segmentation result is used in image classification. In this paper, image 
segmentations with nine different parameter settings were carried out with a 
multi-spectral Landsat imagery and the results were evaluated with an objective 
function that aims at maximizing homogeneity within segments and 
separability between neighbouring segments. The segmented images were 
classified into eight land cover classes by Maximum Likelihood Classifier 
(MLC) and the classification results were evaluated with independent ground 
data comprising 600 randomly distributed points. The accuracy assessment 

                                                 
1  Based on the study of this chapter, the article “Optimal region growing 
segmentation and its effect on classification accuracy” with the authors: Yan Gao, 
Jean F. Mas, Norman Kerle, and Antonio Navarrete is in review process for 
publication in International Journal of Remote Sensing.  
 
The content of this chapter was also presented as poster titled “Optimised image 
segmentation and its effects to the classification accuracy” in 5th International 
Symposium Spatial Data Quality 2007-modelling qualities in space and time, 13-
15, June, 2007, ITC, Enschede, the Netherlands. This poster won the best poster 
prize.  
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results for the classifications based on the nine segmented images presented 
similar distribution as that of the objective function values for the nine 
segmentations; the optimal segmentations, i.e. with the highest objective 
function values, also resulted in the highest classification accuracies. This 
result shows that segmentation result has a direct effect on the classification 
accuracy and the objective function, not only worked on single band image as 
proved by Espindola et al. (2006) but also on multi-spectral imagery as tested 
in this paper, is indeed an effective way to determine the optimal segmentation 
parameters for the following classification. Pixel-based MLC was also carried 
out to compare with the segment-based classifications. The test of McNemar 
(z2 = 3.96) showed that accuracy for the optimal- segmentation-led 
classification is significantly different than that obtained by the pixel based 
MLC result, with p= 0.05. This result shows that the classification based on the 
optimal segmentation obtained accuracy that is significantly higher than that of 
the pixel based classification. 
 
Key words: Image segmentation, Objective function, Object based 
classification 
 
3.1. Introduction 
 
Land-cover mapping by visual interpretation of aerial photos or satellite 
imagery can produce detailed land-cover thematic maps with better accuracy 
than digital image classification (Sader and Winne 1992, Mas and Ramirez 
1996). However, the method is slow, expensive (in terms of time expenditure 
and expertise requirements) and to some extent subjective. Pixel-based digital 
image classification uses spectral information of single pixels which can lead to 
very sophisticated and detailed classification results if all classes can be 
described unambiguously using spectral properties only. However, for most 
applications this precondition is not given. Classification using pixel-based 
approach very often shows the salt and pepper effect, which not only reduces 
the classification accuracy, but also complicates the further processing of 
classification results in a geographic information system (GIS) if applicable, 
since an even higher number of polygons (sometimes at the size of single 
pixels) is resulting from a very heterogeneous classification result (Ebert 2006). 
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Pixel-based digital image classification considers spectral reflectance values 
and texture in certain environment, but not information related to shape, 
neighbourhood, context, and levels. In most cases, information important for 
the understanding of an image is not represented in single pixels but in 
meaningful image objects and their mutual relations (Blaschke 2003). Human 
interpreters derive less information from the brightness of individual pixels 
than they do from the context and the patterns of brightness, of groups of pixels, 
and from the sizes, shapes, and arrangements of parcels of adjacent pixels 
(Campbell 2002, Lang et al. 2006). One way to make use of this additional 
information in digital image classification is to organize the image into objects 
that represent regions of similar pixels prior to the classification.   
 
Image segmentation is a crucial initial step in object-based image classification, 
the assumption being that results directly affecting the performance of the 
subsequent classification. One principal point of concern here is the selection 
of segmentation parameters, which has conventionally been based on trial-and-
error approaches (Flanders et al. 2003, Giada et al. 2003, Gitas et al. 2004). In 
literature on segmentation or object based image classification very little 
attention is paid to optimal object definition. Object definition by segmentation 
comprises both the choice of spectral bands to be considered and the setting of 
a heterogeneity threshold. The optimal object definition is here defined as the 
level of segmentation that results in the highest classification accuracy.  
Espindola et al. (2006) recently proposed an objective function to decide which 
parameter settings generate the best segmentation results, based on 
intrasegment homogeneity and intersegment separability. The method is robust 
as it utilizes the inherent characteristics of images: variance and spatial 
autocorrelation, which have not been considered in image segmentation 
evaluation before (Pal and Pal 1993, Evans et al. 2002, Benz 2004). Evaluation 
of image segmentation results with this objective function before performing 
image classification ensures that the best segmentation result is used.   
 
In this paper, image segmentation was performed with the software SPRING 
(Câmara et al. 1996) with various parameter settings, and segmentation results 
were evaluated with this objective function to determine the optimal parameters. 
The ultimate aim is not so much segmentation optimization per se, but rather to 
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assess its actual benefit on the resulting classification. A multi-spectral 
Landsat-7 ETM+ image covering an area of 3,634 km2 and including multiple 
land-cover types, such as irrigated and rain-fed agricultures, grassland, tropical 
dry forest, temperate forest, lava flow and urban area, was used. Segmented 
images were classified in order to test the hypothesis that the best 
segmentations also lead to the classifications with the highest accuracy. Since 
Espindola et al. 2006 tested the objective function with only a single band 
while multi-spectral images are often used to carry out the segmentation and 
classification, this paper intends to find out how the objective function works 
on multi-spectral image, and to guide future users of SPRING and similar 
packages in achieving optimal segmentation results that demonstrably lead to 
improved classification accuracies. 
 
3.2. Study Area and data 
3.2.1 Study area 
 
The study area is located in Michoacán state, central west of México, covering 
an area of approximately 58*60 km , within the longitude of 19° 02’ N and 
19° 36’ N, and latitude of 102° 00’ W and 102° 32’ W (figure 3-1). Due to the 
mountainous landscape, the altitude variations and the climate conditions, the 
predominant vegetation on and around the Tancítaro Mountain are dry shrubs, 
temperate sub-humid forests, cold mountainous shrubs, and mountainous 
grasslands. Pine, oak and fir are dominant forest species (Velazquez 1997). In 
the surroundings, there are avocado and rain-fed agriculture fields. Except 
avocado, the main perennial crops are apple, peach and pear. The main types of 
rain-fed agriculture are maize, beans, red and green tomatoes, potatoes, chili 
pepper, and sugar cane. Besides traditional agriculture activities, there are 
extensive cattle grazing and forest management (Pulido and Bocco 2003). This 
area belongs to one of the most important hydrologic systems of México 
known as “Balsas” basin (Fuentes-Junco, 2000). There are 14 catchments of 
hydrological system distributed in a centripetal radial pattern from the summit 
to the lowlands (Fuentes-Junco 2000). The predominant soil types are Ochric 
and Humic Andosols together with the Leptosols and Regosols (INEGI soil 
map, 1983). 

2
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Figure 3-1: The study area. Left side of the figure are two sketch maps 
indicating Mexico and Michoacán state where the study area is locating; right 
side is the false colour composite of Landsat image with red, green, and blue 
bands of 4, 5, and 7. The small box in the south-east corner indicates the area 
in figure 3-3. 
 
3.2.2. Land cover classes 
 
There are eight land cover classes in the classification and they are defined in 
table 3-1. The rationale behind the development of the classes was: the classes 
are well adapted to the type of landscapes existent in regions with 
characteristics similar to the Mexican mainland; they are compatible with 
established ones (e.g, land use/cover map (2000) from forest inventory of 
México) in order to make it possible the comparison between our results and 
others using different land cover class nomenclatures; and the class definition 
matches the spatial resolution of used satellite imagery. In addition, the 
development of the land cover classes attended to the suggestion endorsed by 
Loveland et al. (2000), i.e. each vegetated land cover class represents relatively 
homogeneous land cover characteristics (e.g. similar floristic and 
physiognomic characteristics), that exhibit distinctive phenology (i.e. onset, 
peak and seasonal duration of greenness) and have comparable levels of 
relative primary production (Carrao et al. 2007). 
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Table 3-1: 
Land-cover classes description and representative number of collected samples. 
 
Class Description Number 

of samples 
Human 
Settlement 

Built-up areas and transport network.  59 

Irrigated 
Agriculture 

Agricultural areas irrigated artificially and periodically. 58 

Rainfed 
Agriculture 

Agricultural areas that are not artificially irrigated and 
consequently do not present vigorous vegetation during 
dry season. 

41 

Temperate 
Forest 

Wooded areas where pine, oak, fir, cedar, etc. species 
predominate, which presents vigorous vegetation even 
during day season.  

183 

Tropical Dry 
Forest 

Perennial and sub-perennial tropical forests including 
tropica evergreen and sub-evergreen forest from 
medium height to low height. It does not present 
vigorous vegetation during dry season. 

131 

Grassland Natural or artificially areas with herbaceous vegetation. 32 
Orchards Artificially irrigated agricultural areas with mainly 

avocado trees.  
42 

Lava flow Natural areas covered with lavas from the 1946 
volcanic exploration of volcano Paricutin.   

54 

 
*Referenced on the classification scheme of the INEGI land use and vegetation 
cartography for natural land cover categories; there is no water bodies in the study 
area. 
 
3.2.3 Earth Observation data 
 
The available data comprise of a Landsat ETM+ image obtained on 16 
February 2003 during the dry season, containing 6 bands with a spatial 
resolution of 30m; a mosaic of 25 ortho-corrected photographs taken in 1995 
with 2 meters spatial resolution from Instituto Nacional de Estadística 
Geografía e Informática (INEGI), and a land-cover map generated from a 
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project “National Forest Inventory of México” in 2000.  
 
Landsat-7 ETM+ data is the main source of remote sensing information used in 
this chapter (thesis). Reasons for this are its the broad spatial coverage, the 
sensors spatial resolution of up to 15 meters and its multiple spectral channels, 
including a panchromatic band. Although spectral bands are not overwhelming 
in number they are evenly distributed and well studied. The long term 
acquisition plan of the Landsat program predestines Landsat data for long term 
monitoring. The recording of land- and water surfaces started in 1972 with 
Landsat-1, therefore offering now 30 years of coverage (Arvidson et al. 2001, 
Goward et al. 2001, Flynn et al. 2001).  
 
Landsat-7 was launched on April 15, 1999. The earth observing instrument 
onboard this spacecraft is ETM+ (Lillesand and Kiefer, 2000). ETM+ is a 
passive sensor that measures the solar radiation that reflected or emitted from 
earth surface. Landsat-7 collects data from nominal 705 kilometers altitude and 
183 kilometers of swath with a repeat cycle of 16 days. The platform on 
Landsat-7 ETM+ is near-polar orbiting system sensor, its latitude cover is: 81 
degrees north to 81 degrees south; its longitude cover is: 180 degrees east and 
west. Landsat-7 ETM+ data are recorded in 7 bands with spatial resolution of 
15meters, 30 meters and 60 meters. The ETM+ instrument on the Landsat-7 
spacecraft contains sensors to detect earth scene radiation in three specific 
bands: visible and near infrared (VNIR) bands - bands 1 (blue), 2 (green), 3 
(red), 4 (near infrared), and 8 (Panchromatic) with a spectral range between 0.4 
and 1.0 micrometer (um); short wavelength infrared (SWIR) bands - bands 5 
and 7 with a spectral range between 1.0 and 3.0 um; and thermal long 
wavelength infrared (LWIR) band - band 6 with a spectral range between 8.0 
and 12.0 μm. 
 
Landsat-7 ETM+ imagery was geometrically corrected by 86 evenly distributed 
ground control points (GCPs) extracted from a mosaic of ortho-photographs 
with 2m spatial resolutions. The rectification was carried out in a sub-pixel 
level and the Root Mean Square (RMS) error was less than a pixel (16.8m). 
The image was re-sampled by Nearest Neighbour and was geo-referenced to 
UTM zone 13, with the spheroid and datum in WGS 84. 
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3.3. Methods 
3.3.1. Image segmentation and region growing in SPRING 
 
Image segmentation divides images into continuous and contiguous 
homogeneous regions. Such techniques can be grouped into three main types: 
thresholding/clustering, region based, and edge based. More information can be 
found in Fu and Mui (1981), Haralick and Shapiro (1985), and Pal and Pal 
(1993). Region growing techniques are being widely used for remote sensing 
applications and they guarantee creating closed regions (Espindola et al. 2006). 
In region growing, segments are formed starting from suitable initial pixels 
(seeds) by iteratively augmenting them with neighbouring pixels that satisfy a 
chosen homogeneity criteria. There are different ways to initiate the region 
growing process, for example using seed pixels (Stuckens 2000), seed areas 
(Adams and Bischof 1984), or initial edge detection-based segmentations 
(Egawa and Kusaka 1988). The process stops when all pixels are segmented 
into objects. Every image pixel is assigned to a segment and the image is 
completely filled with objects.  
 
SPRING, a non-commercial programme, uses a region growing segmentation 
algorithm, which ranked second in segmentation quality among seven 
algorithms tested by Meinel and Neubert (2004). In their research, the 
commercial software eCognition obtained the best result. eCognition can derive 
a large number of particularly geometrical segment attributes, and thus shows a 
great advantage over traditional spectral-information based methods, mainly 
because of the integrated classification that takes advantage of those 
attributes. However, it is also expensive, in terms of licensing costs, hardware 
requirements and high user knowledge level, and is not affordable for many 
institutions.  Thus substantial research has been focusing on the use of freely 
accessible software, such as SPRING.  
 
The segmentation algorithm in SPRING uses region growing segmentation 
method which starts from suitable initial pixels (seeds) and augments them 
iteratively with neighbouring pixels that satisfy some homogeneity criteria. 
SPRING allows two algorithms for segmentation: "Region growing" and 
"basin detection". The first is a pixel merging technique, second a watershed 
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algorithm (edge detection, based on a Sobel-Filter, 3x3 Pixel Kernel). By 
testing both algorithms, "basin detection" leads to very poor results. “Region 
growing” algorithm in SPRING is based on the traditional region growing 
technique, with modifications which partially solve the problem of the 
dependence on the order of the merges (Bins et al. 1996). Image segmentation 
in SPRING uses two parameters: a similarity threshold and an area threshold to 
guide the segmentation procedure. “Similarity” is a threshold value that 
determines if two neighbouring pixels (objects) are grouped, while the “area” 
threshold is used to filter out the objects smaller than this value. It starts by 
comparing neighbouring pixels and merging them into regions if they are 
similar. The regions then try iteratively to merge the resulting regions. Two 
neighbouring regions,  and  are merged if they satisfy the following 

conditions:  
iR jR

 
(1) Threshold condition: TRRdist ji ≤),(  

(2) Neighbourhood condition 1: )( ij RNR ∈  and 

)(),,()( , ikikij RNRRRdistRRdist ∈≤  

(3) Neighbourhood condition 2: )( ji RNR ∈  and 

)(),,()( , jkjkjj RNRRRdistRRdist ∈≤  

 
In the above, T  is the chosen similarity threshold, )( , ji RRdist is the Euclidian 

distance between the mean grey levels of the regions and )(RN is the set of 

neighbouring regions of region R . In addition, regions smaller than the chosen 
area threshold are removed by merging them with their most similar neighbour 
(Bins et al. 1996, Espindola et al. 2006).  
 
Only very similar regions are merged first. The similarity threshold value must 
be manually provided by the user and, therefore, a tradeoff is inevitable: if it is 
set too low the growing process will generate over-segmented regions, 
otherwise segments representing different land-cover will be incorrectly 
merged together. The choice of this threshold value as well as the area 
threshold will greatly depend on the specific application and data (Câmara et al. 
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1996, Bins et al.1996, and Espindola et al. 2006). SPRING uses two 
parameters, “similarity” and “area”, to guide the segmentation procedure. 
“Similarity” is a threshold value that determines if two neighbouring pixels 
(objects) are grouped, while the “area” threshold is used to filter out the objects 
smaller than this value. Segmentation results in SPRING depend on these two 
threshold parameters, and vary with the number of spectral bands utilized. Low 
values of similarity and area threshold result in excessive partitioning and over-
segmentation, while high values force the union of spectrally distinct regions 
and result in under-segmentation. The same similarity threshold value results in 
larger segments for single spectral band images than for multiple band data, 
since the similarity threshold is based on the Euclidean Distance, which is 
calculated by the following equation: 
 

∑
=

−=
n

i
ii qpD

1

2)(      (3.1) 

 
where  is the distance between two points D p  and , and i  is the dimension 
ranging from 1 to n . Euclidean Distance is larger in multiple dimensions than 
in one dimension. Thus, for a certain similarity threshold there are fewer pixels 
(objects) that can be merged, and thus the produced objects are smaller in 
multiple band image segmentation. However, multiple band images are also 
better able to differentiate objects, as different spectral bands complement one 
another in segmentation.  

q

 
The mapping standard from National Cartographic Center of México (INEGE) 
can be a reference to define segmentation parameters. According to INEGE, the 
minimum mapping unit is 2*2 mm on the map, taking the most commonly used 
map scale of 1:100000, the minimum mapping unit in reality is 200m * 200m, 
by which in Landsat-7 ETM+ images (with 30 meters resolution), is 
approximately 6*6 = 36 pixels. So if the minimum area parameter in the 
segmentation is smaller than 36 pixels, this area won’t be presented in a land-
cover thematic map in a scale of 1:100000. While, from another point of view, 
if the parameter of “area” is given big value, then in the segmentation, two 
different land-cover types in small area can actually be grouped together in an 
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object, whose spectral information does not represent neither of the two land-
cover types. In order to keep the pure spectral information from segmentation, 
the parameter “area” can first be set to a small value, and after the object-based 
image classification, the results can be processed with a kind of filter, for 
example, to make sure the minimum objects can have an area equal or more 
than 6*6pixels. 

 
3.3.2. Evaluation of segmentation quality 
 
The accuracy of segmentation directly affects the performance of object based 
image analysis. Only good segmentation result can lead OBIA over-perform 
pixel based classification. Pal and Pal (1993) claimed that a human being is the 
best judge to evaluate the segmentation output. In Benz 2004, human 
interpretation and correction was also listed as a method of validation of 
segmentation result. However, some attempts were made for quantitative 
evaluation. A two dimensional distance was used to measure the difference 
between a human being proposed segmentation and a segmentation done by an 
algorithm. Some performance parameters were also defined, such as region 
uniformity, region contrast, line contrast, etc. Details are in Pal and Pal (1993). 
In Evans et al. 2002, segmentation result was evaluated by quantifying the 
discrepancy between the segmentation result and the “ideal segmentation” 
which was produced manually. Methods were given to measure the degree of 
over-and under-segmentation of regions, and to measure the discrepancy 
between the positions of the region boundaries. Recently, Espindola et al. 2006 
proposed an objective function to evaluate the segmentation results and 
experiment results showed that it is an effective method to decide the optimal 
segmentation for the following object based image analysis.  

 
 The function aims at maximizing homogeneity within segments and 
separability between neighbouring segments, and is thus based on two 
corresponding parameters employing variance and spatial autocorrelation. 
Intrasegment homogeneity is measured by calculating the variance of the 
regions produced by a segmentation algorithm, by the formula:  
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where  is the variance of a segment and  is its area. The intrasegment 

variance v  is an average weighted by the area of each region, which puts more 
weight on larger regions, avoiding possible instabilities caused by smaller ones.  

iv ia

 
Spatial autocorrelation is a well-known property of spatial data. Similar values 
for a variable tend to occur in nearby locations, leading to spatial clusters. By 
measuring spatial association, intersegment heterogeneity can be assessed. 
Moran’s I autocorrelation index measures the degree of spatial association as 
reflected in the data set as a whole. The algorithm for computing Moran’s I 
index (the spatial autocorrelation of a segment) uses the fact that region-
growing algorithms generate closed regions. For each region, the algorithm 
calculates its mean grey value and determines the autocorrelation for all 
adjacent regions. In this case, Moran’s I is expressed as: 
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 where n is the total number of regions,  is a measure of the spatial 

proximity, is the mean grey value of region , and 

ijw

iy iR y  is the mean grey 

value of the image. Each weight  is a measure of the spatial adjacency of 

regions  and . If regions  and  are adjacent,  = 1. Otherwise,  

= 0. Thus, Moran’s I applied to segmented images will capture how, on average, 
the mean values of each region differs from the mean values of its neighbours. 
Small values of Moran’s I indicate low spatial autocorrelation, in which case 
the neighbouring regions are statistically different. Local minima of this index 
correspond to locations of large intersegment heterogeneity. Such minima are 

ijw

iR jR iR jR ijw ijw
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associated with segmentation results that show clear boundaries between 
regions. In the case of multi-spectral images, the Moran’s I was calculated by 
averaging the values obtained for each band. 
 
The proper choice of segmentation parameters combines a low intersegment 
Moran’s I index (adjacent regions are dissimilar) with a low intrasegment 
variance (each region is homogeneous). The proposed objective function 
combines the variance measure and the autocorrelation measure in an objective 
function given by: 
 

)()(),( IFvFIvF +=               (3.4) 
 
Function  and  are normalized functions, given by: )(vF )(IF
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Here,  and  are the largest and smallest variance values in a group of 

experimented segmentations, respectively, and v  is the variance value of the 
segmentation in evaluation.  and  are the largest and smallest Moran’s 

I index values, respectively, in the group of experimented segmentations; 

maxv minv

maxI minI
I  is 

the Moran’s I index of the segmentation in evaluation. By these two functions, 
the normalized variance  and Moran’s I index  are in the range of 

(0, 1), and consequently, the objective function  is in the range of (0, 2).  

)(vF )(IF
),(F Iv

 
To calculate the intrasegment variance index, segments of each image were 
first exported as shapefiles from SPRING to Arc/info, where the variance of 
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each segment was calculated. For the spatial autocorrelation index, the mean 
grey values of each segment and the complete image were also obtained 
through calculations in Arc/info. 

 
3.3.3. Segmentation-based classification, accuracy assessment, and the test 
of McNemar 
 
After segmentation, the average spectral response of each segment was 
calculated and a supervised image classification was performed to those 
homogeneous regions. In Maximum Likelihood Classification (MLC) the 
assumption is that the training samples for each land-cover class are normally 
distributed. We put mean spectral information in the segments to form 
segmented images in which pixels in each segment have the same spectral 
information. A method is utilized that allows MLC to be used to classify both 
pixel-based and segmented images (figure 3-2). The basic approach is to 
generate training data based on the pixel-based image to take into account the 
variability of the spectral response of each land-cover class, based on the 
statistic value of the generated training samples, the original pixel-based image 
and the segmented images are classified by MLC.  
 
For each of the eight land cover classes, representative ground reference data 
were collected and used for training and testing purpose of the study. 
Homogeneous sample units, each corresponding to a Landsat pixel area, were 
selected for each land cover class using land use map (2000) as strata. High 
spatial resolution earth observation data, namely ortho-corrected aerial 
photographs from 1995, covering the whole study area, were used as the base 
data source to recheck reference land cover classification of sample units. 
Reference information for each sample unit was derived by visual 
interpretation of high resolution earth observation data overlaid with a co-
registered 30m data grid corresponding to the Landsat imagery. In the sample 
data collection process, we spread as much as possible each class samples over 
the entire study area, in order to take into account possible regional differences,  
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Figure 3-2: illustration of proposed segment based image classification 
procedure. 
 
and to prevent geographic correlation due to adjacent pixels (Hammond and 
Verbyla 1996). Although it is open to debate the appropriate number of sample 
units per class that are needed to train a supervised classifier, the minimum 
sample units are related to the used algorithm itself; to the feature space 
dimension; to the sample selection method, and to the size and spatial 
variability of the study area (Carrao et al. 2007, Foody and Mathur 2006, 
Foody et al. 2006, Huang et al. 2002, Jensen 1996, Mather 2004). However, 
certain classification problems have non-zero Bayes error, no matter the sample 
size or the feature space dimension (Ho and Basu 2002). 
 
Accuracy assessment was carried out using 600 stratified random points. 75 
random points were put to each of the eight classes of interest in a land 
use/cover map (2000). These points were interpreted based on the ortho-
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corrected photographs, land use map 2000, data from field survey, and 
Landsat-7 ETM+ image. Error matrices were generated and standard accuracy 
indices such as the Overall accuracy, User’s and Producer’s accuracy were 
calculated (Boschetti et al. 2004).  
 
Map accuracy statements are often compared to evaluate the relative suitability 
of different classification techniques for mapping. Accuracy statements should 
be compared in a statistically rigorous fashion to provide a more objective basis 
for comment and interpretation (Foody 2004). In many remote sensing studies, 
the same set of ground data are used in the assessment of the accuracy of the 
thematic maps to be compared. For related samples, the statistical significance 
of the difference between two accuracy statements maybe evaluated using tests 
that take into account the lack of independence such as The test of McNemar. It 
is a non-parametric test that is based on confusion matrixes that are 2 by 2 in 
dimension (table 3-2).  

 
Table 3-2: 
The definition of Matrix Elements used in Equation 3.7.  
 

classification 1 
Allocation correct incorrect 

classification 2   
correct 

11f  12f  
incorrect 

21f  22f  

 

The attention is focused on the binary distinction between correct and incorrect 
class allocations. The McNemar test equation can be expressed as  

 

2112

2
21122 )(
ff

ffZ
+
−

=                                (3.7) 

 
In which indicates the frequency of verification samples lying in confusion ijf
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matrix element i  and j .  and are the number of pixels that with one 
method were correctly classified, while with the other one were incorrectly 
classified. Z2 follows a chi-squared distribution with one degree of freedom 
(Agresti 1996). The statistical significance can be obtained with the derived z2 

compared against tabulated chi-square values. For example, with one degree of 
freedom, when the calculated z2 >= 3.84, the two classifications are 
significantly different at 0.05% level; when z2 >= 6.64, the two classifications 
are significantly different at 0.01% level; when z2 >= 10.83, the two 
classification are significantly different at 0.001% level; and when z2 < 3.84, 
the two classifications are not significantly different. 

12f 21f

 
3.4. Results and Discussions 
3.4.1. Image segmentation results 
 
The Landsat-7 ETM+ image was segmented, whereby experiments showed that 
for this imagery, in this study area, and for the expected land cover types, 
segmentation results varies more significantly with varying “similarity” 
threshold than with varying “area” threshold, and thus it appears that the 
“similarity” threshold has a more significant influence on the segmentation 
results than “area” threshold. Nine segmentations were generated with various 
parameter settings. The tested parameter settings use “similarity” thresholds 
ranging from 19 to 59* in intervals of 5. The selecting of “similarity” threshold 
was based on visual evaluation of the segmentation results. With value 19, it 
appeared that the image was over-segmented and with value 59 under-
segmented (Figure 3-3). So the tested “similarity” value was set between 19 
and 59. The “area” threshold was kept at a constant 22 in accordance with 
recommendations by Espindola et al. (2006) who used a Landsat image and 
found optimal segmentation results with this “area” threshold. The 
segmentation results are presented in figure 3-3, which shows that the bigger 
the “similarity” value, the larger the generated segments are. Note that for large 
images, the segmentation procedure can be time-consuming. 
 

                                                 
* Here the values are chosen based on trial and error practices, the higher this 
similarity value, the bigger the generated objects.  
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Figure 3-3: Segmentations with “similarity” threshold from 19 to 59 with 
intervals of 5, and a constant “area” threshold of 22. 
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 59, 22 

 

 
Figure 3-3 (continuation): Segmentations with “similarity” threshold from 19 
to 59 with intervals of 5, and a constant “area” threshold of 22. 
 
3.4.2. Evaluation of segmentations with objective function 
3.4.2.1 Calculation of variance and spatial autocorrelation of segmented 
images.  
 
For the nine segmentations, the variance and Moran’s I were calculated and 
represented using the averaging values of those from each band (table 3-3). 
With the “similarity” threshold increasing from 19 to 59, the intrasegment 
variance increased from 325.684 to 559.811, and the intersegment spatial 
autocorrelation between neighbouring segments by  Moran’s I index decreased 
from 0.642 to 0.383. With a constant “area” threshold of 22, the larger the 
“similarity” threshold value the larger the generated segments, the higher the 
variance indexes, and the lower the intersegment autocorrelations are.  
 
Table 3-3: 
Variance (v) and Moran’s I (I) indices of segmentations with experimented 

similarity and a constant area threshold (22). 
 
Similarity 19 24 29 34 39 44 49 54 59 

v 
I 

325.7 
0.642 

333.2 
0.616 

345.3 
0.581 

363.2 
0.549 

387.9 
0.516 

419.9 
0.475 

463.1 
0.449 

509.7 
0.425 

559.8 
0.383 
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3.4.2.2 Evaluation of segmented images by the Objective Function.  
 
The variance and autocorrelation indices of the nine segmentations were 
normalized, resulting in each of the indices whose values range between 0 and 
1. The objective function for the segmentation of each band was calculated 
based on equation (1), and the obtained results are presented in figure 3-4.  
 

Objective function values for segmentations in 
different bands
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Figure 3-4: Objective function values for segmentations with varying “similarity” 
threshold, and a constant “area” threshold from each band of Landsat image. 
 
The objective function values for bands 1, 2, 3, 5, and 6 present very similar 
distribution: from segmentation based on parameters (19, 22) the value starts to 
rise until it reaches its maximum at parameters (34, 22) and (39, 22), then the 
value started to go down until (44, 22) as the lowest then rise again and peaked 
at segmentation with parameters (49, 22), and (54, 22) then it goes down again. 
For band 4, first, the objective function values are higher than all those 
corresponding values from the other bands, and if deriving the objective 
function value by averaging the values from individual band, values from band 
4 have bigger influence to the final result; second, it presents a bell-shaped 
distribution, it also peaks at segmentation (34, 22) (39, 22), and even (44, 22) 
then the value keeps going down until it reaches (59, 22). As a Near-Infrared 
band, band 4 is more sensitive to the changes of the spectral information from 
different vegetation types and allows better separability between classes of 
interest in this forest area, and it appears more sensitive to the segmentation 
parameter changes (table 3-4 and figure 3-4). 
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Table 3-4: 
Normalized variance F(v) and Moran’s I F(I) indices of segmentations by 
experimented “similarity” and a constant “area” threshold(22). 

 
Similarity 19 24 29 34 39 44 49 54 59 
F(v) 
F(I) 
F(v, I) 

1.00 
0.00 
1.00 

0.97 
0.10 
1.07 

0.92 
0.21 
1.13 

0.84 
0.33 
1.17 

0.73 
0.45 
1.18 

0.60 
0.52 
1.11 

0.41 
0.70 
1.11 

0.21 
0.86 
1.08 

0.00 
1.00 
1.00 

 
Figure 3-4 presented the calculated objective function values for each spectral 
band of Landsat image. The figure shows that except band 4 (near infrared 
band), the objective function of other spectral bands presents similar patterns 
and they are similar to the pattern presents by the accuracy assessment results. 
In order to observe the objective function of the entire multi-spectral image, 
two methods were used to “average” the objective function values of individual 
spectral bands. The first one is a simple average method, mean values were 
calculated and all the spectral bands were given the same weight and the result 
was presented in figure 3-5 the data series represented by pink line; the second 
way considered the possibly different influence of spectral bands in the 
contribution of the final result, based on the separability of the spectral bands to 
the classes of interest (figure3-6). Thus firstly the separability of the spectral 
bands to the classes of interest was calculated and presented in figure 3-6. The 
values were normalized into data range of 0-1, and the final objective function 
value for the entire multispectral image was calculated by adding those 
calculated weights to each bands. The final result was presented in figure 3-5.  
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Figure 3-6: Normalized separability for the 
spectral bands of Landsat image. 
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Figure 3-5: Objective function values for 
the segmented images. 

 
Figure 3-5 shows that there is little, if any, difference between the objective 
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function values obtained using these two methods. The objective function 
values show that among the nine experimented segmentations, segmentations 
with parameters (34, 22), and (39, 22) obtained the highest values meaning that 
they are the best segmentations among all the tested ones. 
     
To obtain the best segmentation result, the choice of parameters depends on the 
data type, the land-cover type, and which and how many spectral bands are 
used in image segmentation. Espindola et al. (2006) tested 2500 combinations 
of similarity (1-50) and area (1-50) on a single band of Landsat image in a 
small area to find the optimal combination of both parameters. In practice, 
multi-spectral data of large areas are typically used; thus for the selection of 
segmentation parameters visual inspection and objective function should be 
combined. Visual inspection can be used to rule out some results that are 
evidently over-or under-segmented. The objective function can then be used to 
determine the parameters for the best segmentation results.  
 
3.4.3. Pixel and segment based classifications and accuracy assessment 
 
To test the hypothesis that best segmentation results, according to the objective 
function, also yield the best classification results, the segmented images were 
classified by MLC. Eight land cover types are to be classified: irrigated 
agriculture, rain fed agriculture, temperate forest, orchards, grassland, tropical 
dry forest, lava flow, and human settlement. The classified images were 
evaluated by independent ground data which comprised of 600 randomly 
distributed points. The obtained accuracy assessment results were compared 
and listed in table 3-5 and figure 3-7. 
 
Table 3-5: 
Pixel-based and segment-based images classification accuracies (%). 
 
Pixel 19,22 24,22 29,22 34,22 39,22 44,22 49,22 54,22 59,22 
68.7 70.2 70.7 71 71.3 70.5 69.8 70.3 69.8 67.2 
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Figure 3-7: Accuracies of pixel-based and segment based classifications, 
corresponding to table 3-5. 
 
The accuracy results presented very similar distribution as that of the objective 
function values. The accuracy starts to rise from segmentation (19, 22), until it 
reaches its highest value at segmentation (34, 22), the optimal segmentation 
with the highest objective function value, suggesting that the best 
segmentations indeed result in highest classification accuracies; the accuracy 
presents a low value at segmentation (44, 22) which also corresponds to a low 
objective function value. This close correspondence between the accuracy 
values and objective function values shows that the segmentation result has a 
direct influence to the classification result and the objective function seems 
effective to decide the optimal segmentation to carry out the object based 
classification. The segmentations on the left side were mostly over-, and on the 
right under-segmented. In the classification stage, the segments in the over-
segmented images could still be allocated to their proper class, and more 
serious over-segmentation approximates pixel-based image classification. On 
the other hand, we do not know classification programs that can separate land-
cover types which are grouped in one segment, i.e. deal with under-
segmentation. Segmentation using (34, 22) obtained the highest object function 
value resulting in classification accuracy 4.1% higher than that obtained by the 
segmentation with the lowest objective function value. The test of McNemar 
(z2 = 4.01) indicates that the difference between these two classification 
accuracies is significant with p= 0.05, p is the significance level, which shows 
that the classification based on the optimal segmentation is significantly better 
than that from the segmentation with a low objective function value, showing 
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that the objective function is indeed an effective way to determine the 
segmentations to carry out the classifications. 
 
The entire experimented segment based classifications obtained higher 
accuracy than that by pixel based MLC, which showed that the segment based 
classification has advantage over the pixel based one. The classification based 
on the optimal segmentation (segmentation with the highest objective function 
value) and the pixel based MLC classification was compared. Based on table 3-
1, among 600 ground data points, 384 points were classified correctly by both 
methods; 143 points were classified wrongly by both methods; 28 points were 
classified correctly by the pixel based MLC while incorrectly by the segment 
based method, and 45 points were classified correctly by the segment based 
method while incorrectly by the pixel based MLC. Based on equation 4, we 
calculated the chi-square statistic (z2 = 3.96). Comparing the Chi-square 
distribution table we concluded that the segment based classification obtained 
accuracy that is significantly different from that obtained by pixel based MLC, 
with the significance level p = 0.05. 
 
This study shows that the different levels of segmentation result in different 
accuracy values for land cover mapping. Segmentation compared to the one-
pixel situation shows that segmentation indeed does provide better estimates, 
i.e., object based parameter estimation performs better than per-pixel 
estimation. By segmenting the images, information is lost. Up to a certain level, 
this is expected to be noise stemming either from spectral noise or spatial 
mismatch. Spectral noise can stem from sensor noise, atmospheric influences, 
or the effects of the point-spread function (Schowengerdt 1997). At a certain 
aggregation level, the lost information might turn out to be relevant. This 
would show in worse results, in our case the misclassifications. Both situations 
can be observed in the accuracy curve for the different scale parameters. This 
study does not aim at determining the exact scale parameters that yield optimal 
segmentation and then the highest classification accuracy, but merely at 
showing that different heterogeneity values yield different results. The optimal 
scale of observation (i.e., object size with object based image classification) 
depends on: (a) the scale of the phenomenon of interest, the process which are 
responsible for it and how they can be scaled up, and (b) on the spatial 
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heterogeneity of the landscape. The setting of the “area” parameter for the 
segmentation was held constant in this study by using “22” for all 
segmentations. However, different “area” parameters produce segmentation 
with different spatial variances. A combination of different “similarity” and 
“area” threshold was not considered but will be a future research topic. 

 
3.5. Conclusions 
 
Image segmentation is a preliminary and critical step in OBIA. Evaluating and 
optimizing segmentation results prior to proceeding to any further analysis 
ensures the most suitable input for the image classification. In this paper, a test 
study using medium-resolution Landsat ETM+ image was carried out. The 
segmentation package SPRING, previously identified as the best non-
commercial segmentation program, was chosen for the image segmentation. 
Nine segmentations with “similarity” thresholds ranging from 19 to 59 in 
intervals of 5, and an “area” threshold of 22 were performed, and the results 
evaluated with an objective function (Espindola et al. 2006). Results show that 
intrasegment variance increased and intersegment autocorrelation decreased 
with an increasing segment size. The evaluation results by the objective 
function for the nine segmentations peaked at (34, 22) and (39, 22), which 
show a good balance of intrasegment variance and intersegment correlation. 
The segmented images were subsequently classified with MLC, and the results 
evaluated. The best segmentations, in terms of objective function rating, also 
led to the most accurate classification, and, the accuracy values presented 
similar distribution as the objective function values in the function of the 
segmentations. Results also showed that although neither over-nor under-
segmentation are desirable and show low objective function values, in the 
classification stage, over-segmented images obtained better results than under-
segmented images. Although neither over- or under-segmentations are 
desirable, comparatively, over-segmentation is a less significant problem in the 
resulting classification, as the segments can still be allocated to their accurate 
land-cover types. However, under-segmentation is a more serious problem 
since we are not aware of any programs that are able to separate different land-
cover types from one segment. The test of McNemar showed that classification 
based on the optimal segmentation is significantly better than from the 
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segmentation with the lowest objective function value. This result showed that 
the objective function is indeed an effective way to evaluate the segmentation 
result in order to select the optimal image segmentation for the region based 
image classification. Classification based on the optimal segmentation is 
significantly different from that of the pixel based MLC result, which showed 
that the OBIA has advantage over the pixel based classification and is able to 
obtain higher classification accuracy.  
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CHAPTER 4 

 
 

A COMPARISON OF THE PERFORMANCE OF 
PIXEL-BASED AND OBJECT-BASED 
CLASSIFICATIONS OVER IMAGES WITH 
VARIOUS SPATIAL RESOLUTIONS1 
 
 
Abstract: In the last two decades, advances in computer technology, earth 
observation sensors and GIS science, led to the development of “Object-based 
Image Analysis (OBIA)” as an alternative to the traditional pixel-based image 
analysis method. It was recognized that traditional pixel-based image analysis 

                                                 
1  Based on the contents of this chapter, the article “A comparison of the 
performance of pixel based and object based classifications over images with 
various spatial resolutions” with the authors: Yan Gao and Jean F. Mas is 
published in Online Journal of Earth Sciences, in 2008, volume 2 (1), pp. 27-35. 
ISSN: 1991-7708.  
 
Another article “Comparison of pixel-based and object-oriented image 
classification approaches - a case study in a coal fire area, Wuda, Inner Mongolia, 
China.” With authors Yan Gao, Mas, J. F., Maathuis, B. H. P., Zhang, X. M., and 
Van Dijk, P. M., is published in International Journal of Remote Sensing, in 2006, 
Volume 27, pp. 4039-4051. 
 
Based on the content of this chapter, a paper titled “A comparison of the 
performance of pixel-based and object-based classifications over images with 
various spatial resolutions” was presented in the conference GEOBIA 2008, 6-7, 
August, 2008, Calgary, Canada.  
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is limited because of the following reasons: image pixels are not true 
geographical objects and the pixel topology is limited; pixel based image 
analysis largely neglects the spatial photo-interpretive elements such as texture, 
context, and shape; the increased variability implicit within high spatial 
resolution imagery confuses traditional pixel-based classifiers resulting in 
lower classification accuracies (Hay and Castilla 2006). Different from pixel-
based method, OBIA works on (homogeneous) objects produced by image 
segmentation and more elements can be used in the classification. As an object 
is a group of pixels, object characteristics such as mean value, standard 
deviation, ratio, etc can be calculated; besides there are shape and texture 
features of the objects available which can be used to differentiate land cover 
classes with similar spectral information. These extra types of information give 
OBIA the potential to produce land cover thematic maps with higher accuracies 
than those produced by traditional pixel-based method. In this chapter, the 
performance of OBIA with different spatial resolution satellite images was 
studied. By comparing the object based classification result with that produced 
by the pixel based one, this work intends to find out how spatial resolution of 
satellite images influences the performance of OBIA. Experiment results 
showed that with the two sets of images of four different spatial resolutions, 
object based image analysis obtained higher accuracies than those of the pixel 
based ones; with the increasing of the spatial resolution, the difference in 
accuracy values between object based and pixel based is decreasing. This paper 
showed that the object-based image analysis has advantage over the pixel-
based one, and in accuracy rating, the advantage was better represented by 
higher spatial resolution satellite images. 
 
Key words: Pixel-based image analysis; Object-based image analysis; 
accuracy assessment; simulated images. 
 
4.1. Introduction 
 
There is a steadily increasing need for timely and accurate geo-spatial 
information. The automatic classification of remotely sensed data is an 
essential action within the process of generating or updating GIS databases. 
Remote sensing image classification is a commonly adopted method to obtain 
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land cover information from Satellite images and many classification 
algorithms have been extensively applied to (Ouattara 2004, Borak et al. 1999, 
Chintan et al. 2004, Casals-Carrasco et al. 2000). Since remote sensing images 
consist of rows and columns of pixels, naturally conventional land cover 
mapping has been based on single pixels (Dean et al. 2003). Pixel based image 
classification utilizes spectral information-digital values (DNs) stored in the 
image and classifies images by considering the spectral similarities with the 
pre-defined land cover classes (Casals-Carrasco et al. 2000). Although the 
techniques are well developed and have sophisticated variations such as soft 
classifiers, sub-pixel classifiers and spectral un-mixing techniques, it is argued 
that it does not make use of the spatial concept (Blaschke et al. 2000). For 
example Zhou (2001), Pizzolato et al. (2003), Dean (2003) claimed that 
Maximum likelihood classifier (MLC) was limited by utilizing spectral 
information only without considering contexture information. And texture 
information was ultimately necessary if one is to obtain accurate image 
classifications (Zhou 2001). 
  
The concept of OBIA as an alternative to pixel based analysis was introduced 
in 1970s (de Kok et al. 1999). The initial practical application was towards 
automation of linear feature extraction (Flanders et al. 2003). In addition to the 
limitation from hardware, software, poor resolution of images and 
interpretation theories, the early application of object based image analysis 
faced obstacles in information fusing, classification validation, reasonable 
efficiency attaining, and analysis automation (Flanders et al. 2003). Since mid-
1990s, hardware capability has increased dramatically and high spatial 
resolution images with increased spectral variability became available. Pixel 
based image classification encountered serious problem in dealing with high 
spatial resolution images and thus the demand for OBIA has increased (de Kok 
et al. 1999). OBIA works on objects instead of single pixels. The idea to 
classify objects stems from the fact that most image data exhibit characteristic 
texture features which are neglected in conventional classifications (Blaschke 
et al. 2001). In the early development stage of OBIA, objects were extracted 
from pre-defined boundaries, and the following classifications based on those 
extracted objects exhibited results with higher accuracy, comparing with those 
by pixel based methods (Smith et al. 2001, Dean et al. 2003, de Wit et al. 

 67 



 
Image Segmentation and Object Based Image Analysis Using Remote Sensing Images 

 

2004). This technique - classifying objects extracted from predefined 
boundaries - is applicable for agriculture plots or other land cover classes with 
clear boundaries, while it is not suitable to the areas with no boundaries readily 
available, such as semi-natural areas. Image segmentation is the solution for 
obtaining objects in areas without pre-defined boundaries. It is a preliminary 
step in object-based image analysis. By image segmentation, image is divided 
into homogeneous, continuous, and contiguous objects. Image segmentation is 
a kind of regionalization which is to divide the image regarding to a certain 
criteria of homogeneity, and at the same time, requires spatial contingency. 
There are many techniques to perform image segmentation and those 
techniques can be categorized into three classes: thresholding/clustering, region 
based, and edge based (Fu and Mui 1981, Haralick and Shapiro 1985). Image 
segmentation is analogous to the common multi-spectral clustering of 
individual pixels but with grouping taking place in the spatial domain in 
addition to the multispectral domain (Lobo 1997). A more detailed description 
and evaluation of segmentation is in methodology part. Based on image 
segmentation, OBIA uses information from spectral, textural and contextual, 
and spatial domain. Particularly, image objects allow shape characteristics and 
neighbourhood relationships to be used for the object’s classification.  
 
Due to the problems encountered in thematic mapping, much work has been 
done to increase the accuracy of thematic maps which are derived from remote 
sensing data (Foody 2004). Thus, much work has been done to compare 
different classification techniques for example between pixel based and object 
based classifications (Dean 2003), and in those studies, the key focus is on the 
difference among the estimated classification accuracies.  
 
This paper looks at the performance of OBIA with different spatial resolution 
satellite images; comparing the classification results with those produced by the 
pixel-based method, it intends to find out how spatial resolution of satellite 
images influences the performance of OBIA. Images with four spatial 
resolutions were used: 10m, 30m, 100m, and 250m; the coarse spatial 
resolution images were generated from a SPOT-5 image with 10 m spatial 
resolution, one set by mean filtering, and another using a method simulating the 
real response of a satellite sensor moving across the scene, which was based on 

 68



 
Chapter 4: A Comparison of the Performance of Pixel-based and Object-based 
Classifications over Images with Various Spatial Resolutions 

the algorithm designed by Justice et al. (1989).  
 
4.2. The study area and Data  
4.2.1 The study area 
 
It is located at south-east of Tancítaro mountain peak. It covers approximately 
27*28 km2, ranging in latitude from approximately 19º 02’ to 19º 17’ N and in 
longitude 102º 00’ to 102º 16’W (figure 4-1). The dominant land cover types 
are: irrigated agriculture, grassland, tropical dry forest, human settlement, 
orchards, and temperate forest.  
 

 
 
Figure 4-1: The study area. The satellite image was presented with false 
colour composite of RGB bands with near infrared, red, and green.  
 
4.2.2 Data: There are three types of images used in this research: SPOT-5, 
obtained on 2004, 13, March; Landsat-7 Enhanced Thematic Mapper plus 
(ETM+) image obtained on 16 February 2003; and Moderate Resolution 
Imaging Spectro-radiometer (MODIS) image obtained March 2005.  
 
The orbital type of SPOT-5 is sun-synchronous, with orbital altitude of 822 km. 
The sensor has a swatch width of 60 km and the acquired data is 8 bit per pixel. 
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The panchromatic sensor takes the image in one channel within spectral range 
of 0.51-0.73 μm and it has spatial resolution of 5m / 2.5m. The characteristics 
of multi-spectral sensor of SPOT-5 are presented in table 4-1.  
 
Table 4-1: 
The characteristics of SPOT-5 Imagery. 
 
Spectrum bands Width (μm) Spatial resolution Depth (bit) 
1 visible (green) 0.50 – 0.59 10 m 8 
2 visible (red) 0.61 – 0.68 10 m 8 
3 visible (NIR) 0.78 – 0.89 10 m 8 
4 near infrared (NIR) 1.58 – 1.75 20 m 8 
 
Table 4-2: 
The characteristics of Landsat-7 ETM Imagery. 
 
Spectrum bands Width (μm) Spatial resolution Depth (bit) 
1 visible (blue) 0.45 – 0.51 30 m 8 
2 visible (green) 0.52 – 0.60 30 m 8 
3 visible (red) 0.63 – 0.69 30 m 8 
4 near infrared (NIR) 0.75 – 0.90 30 m 8 
5 middle Infrared (NIR2) 1.55 – 1.75 30 m 8 
6 thermal Infrared (TIR) 10.40 – 12.50 30 m 8 
7 middle Infrared (MIR) 2.09 – 2.35 30 m 8 
8 panchromatic (PAN) 0.52 – 0.90 15 m 8 
 
(MODIS) is a key instrument aboard the Terra (EOS AM) and Aqua (EOS PM) 
satellites. Terra’s orbit around the Earth is timed so that it passes from north to 
south across the equator in the morning, while Aqua passes south to north over 
the equator in the afternoon. Terra MODIS and Aqua MODIS are viewing the 
entire Earth’s surface every 1 to 2 days, acquiring data in 36 spectral channels. 
These data can be used to research global dynamics and processes occurring on 
the land, in the oceans, and in the lower atmosphere. The altitude of its 
operating orbit is 705km, 10:30 am is the descending node for Terra and 1:30 
pm is ascending node for Agua. The orbit is sun synchronous, near polar 
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circular. The instrument scan the data in a cross track way and the swath 
dimensions are 2330km across track and 10km along track at nadir. The image 
data recorded by MODIS is 12 bits per pixel. The spatial resolution ranges 
from 250m to 500m and to 1000m. The designed life for MODIS is 6 years. 
For mapping land use and land cover, MODIS spectral bands 1-7 are closely 
related. The characteristics of the first seven bands of MODIS are presented in 
table 4-3.  
 
Table 4-3:  
The characteristics of MODIS imagery (the first seven bands). 
 
Spectrum bands Width (μm) Spatial resolution Depth (bit) 
1 visible (red) 0.62 – 0.67 250 m 12 
2 visible (NIR) 0.841 – 0.876 250 m 12 
3 visible (blue) 0.459 – 0.479 500 m 12 
4 near infrared (green) 0.545 – 0.565 500 m 12 
5 middle Infrared (MIR) 1.23 – 1.25 500 m 12 
6 thermal Infrared (MIR) 1.628 – 1.652 500 m 12 
7 middle Infrared (MIR) 2.105 – 2.155 500 m 12 
 
Spectral bands 8-36 are not closely related to this research, and their primary 
use is summarized relatively simple. Bands 8-16 are mainly used in Ocean 
Colour/Phytoplankton/Biogeochemistry monitoring; bands 17-19 are mainly 
used in Atmospheric/Water Vapor mapping; bands 20-23 are mainly used in 
Surface/Cloud temperature mapping; bands 24-25 are used for mapping 
atmospheric temperature; bands 26-28 are used for mapping Cirrus Clouds and 
water vapor monitoring; band 29 is used for mapping cloud properties and band 
30 is used for mapping ozone; bands 31-32 are used for mapping surface/cloud 
temperature and bands 33-36 are used to mapping cloud top altitude 
(http://modis.gsfc.nasa.gov/data/dataprod/index.php, accessed on 22 January 
2008). Pixel based image classification was carried out in ILWIS (ILWIS 
2005), and OBIA was carried out in eCognition (Definiens, 2006).  
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4.3. Methods 
4.3.1. Image pre-processing 
 
The SPOT-5 image was corrected geometrically: 28 evenly distributed Ground 
Control Points (GCPs) were collected from ortho-corrected photographs, which 
have spatial resolution of 2m. SPOT-5 image was registered to the UTM Zone 
13, WGS84 coordinate system. After the correction, image fit was considered 
acceptable and the RMS error was smaller than one pixel size. 
 
Landsat-7 ETM+ image was geometrically corrected by 86 evenly distributed 
ground control points (GCPs) extracted from a mosaic of ortho-photographs. 
The rectification was carried out in a sub-pixel level and the ERM error was 
less than a pixel (16.8m). The image was re-sampled by Nearest Neighbour and 
was geo-referenced to UTM zone 13, with the spheroid and datum in WGS 84.  
 
4.3.2. Generating the multi-spectral images with coarser spatial resolutions 
 
The original four bands of SPOT-5 imagery were filtered into a range of 
resolutions, using two different methods. The first method was a simple mean 
filter which assigned the mean reflectance value of a user-defined window of 
pixels to a single pixel covering the whole area of the window. The second 
method attempted to simulate more accurately the real response of a satellite 
sensor moving across the scene, which was based on the algorithm designed by 
Justice et al. (1989) to approximate Multi-Spectral Scanner (MSS) sampling. 
Justice et al. (1989) used this filter to achieve a range of resolutions by 
successively filtering an image, adding noise based on the original variance of 
the data, and then re-filtering with the same kernel. However, for this study, it 
was decided to interpolate between the original kernel values to generate 
kernels ranging from 3*3 to 25*25, so that a single filtering operation would be 
sufficient to produce each coarser image. As with the mean filter, this filter 
calculated one value for each window of cells, and created a coarser cell 
containing this value (Bastin 1997).  
 
The mean filter tended to smooth the image, while cubic filtering retained 
differences between the resulting pixels, in other words, retained the local 
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contrast (figure 4-2). When local image variance was calculated for these 
filtered images it was higher at any point in the cubic filtered image than in the 
corresponding mean filtered image. This effect is particularly relevant to 
analysis which searches for edges and patterns in an image, such as the use of 
split moving windows (Cornelius and Reynolds 1991) to look for 
discontinuities in a scene’s reflectance values. Figure 4-2 showed that by 
degrading SPOT imagery, images with coarser spatial resolutions were 
produced. With the increasing of the pixel size, more and more mixed pixels-
pixels with spectral information coming from different land cover types-were 
generated. In the simulated images with pixel size of 250m, the images are 
composed mainly of mixed pixels.  
 

 
SPOT-5 

 
Sim30av 

 
Sim30j 

sim100av 
 

sim100j 
 

sim250av 
Figure 4-2: The simulated images by mean-filtering (av) and by cubic-filtering 
(j). For example, sim100av means simulated image generated by mean filtering 
with 100 m spatial resolution; sim100j means simulated image generated by 
cubic-filtering with 100m spatial resolution. 
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sim250j 

  

Figure 4-2 (continuation): The simulated images by mean-filtering (av) and by 
cubic-filtering (j). For example, sim100av means simulated image generated by 
mean filtering with 100 m spatial resolution; sim100j means simulated image 
generated by cubic-filtering with 100m spatial resolution.   
 
 
4.3.3. Pixel-based image classification 
     
Classical pixel-based image classification automatically categorizes all pixels 
in an image into land cover classes or themes in a pixel by pixel manner. 
Usually, multispectral data are used to perform the classification and the 
spectral pattern present within the data for each pixel is used as the numerical 
basis for categorization. That is, different feature types manifest different 
combinations of digital numbers based on their inherent spectral reflectance 
and emittance properties. In this point of view, a spectral “pattern” is not 
geometric in character but refers to the set of radiance measurements obtained 
in the various wavelength bands for each pixel. The classical pixel-based 
methods are minimum-distance/nearest neighbour, parallelepiped and 
maximum likelihood classifiers (MLC), whose detailed information can be 
found in Lillesand and Kiefer (1994). In land cover classification through the 
satellite sensor data, pixel-based supervised MLC is the most popular statistical 
algorithm and is widely accepted as a standard approach (Emrahoglu et al. 
2003). It allocates a pixel to the class with which it has the highest probability 
of membership where the likelihood  that a pixel )(xLi x  is a member of class 

 is given by equation 1: i
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i
n eV −−−= π             (4.1)  

in which  is the covariance matrix of class i ,  is the number of spectral 

bands, and y  is the Mahalanobis distance. The rescaling of  between 0 

and 1 yields the MLC a posteriori probability  (Dean et al. 2003).   
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4.3.4. Object-based image analysis 
 
OBIA does not operate directly on single pixels, but on objects consisting of 
many pixels, that have been grouped together in a meaningful way by image 
segmentation. The accuracy of segmentation directly affects the performance of 
OBIA. Recently, Espindola et al. (2006) proposed an objective function to 
evaluate the segmentation results and experiment results showed that it is an 
effective method to decide the optimal segmentation for the following OBIA 
(see chapter 3). In this chapter, objective function is not used to evaluate the 
segmentation as the classification is based on a multi-resolution segmentation 
by which the same image was segmented into objects in different scales and 
represented in different levels.   
 
OBIA in eCognition comprises two parts: 1) (multi-resolution) image 
segmentation and 2) classification based on objects’ features in spectral and 
spatial domains. Image segmentation is a kind of regionalization, which 
delineates objects according to a certain homogeneity criteria and at the same 
time requiring spatial contingency (Lang et al. 2006). Multi-resolution 
segmentation segments image objects in multiple scales. Ideally, the generated 
contiguous image segments represent real world objects on different levels of 
scale. In Definiens Professional 5, the created segments are embedded into a 
hierarchical network in which each object knows its neighbouring objects in 
horizontal and vertical direction (Baatz and Schape 1999, Hofmann 2001a). 
The structure of multi-resolution segmentation is shown in figure 4-3.  
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Pixel level

Object level

Object level
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Figure 4-3: Structure of multi-resolution segmentation. Objects generated 
from different scales have topological relations between them, so each object 
knows its super- and sub- and neighbouring objects. This topological 
relationship allows objects to be defined not only with spectral, shape, texture 
information, but with this semantic information (relations) between objects. 
 
The lowest level in the image object is the pixel level. After defining various 
parameters, such as the relative average segment size, compactness, 
smoothness and the influence of spectral properties, small segments are created 
in the second image level during a segmentation run. Once the first image level 
with small image objects is created, the objects are further aggregated in higher 
image levels. The original segment outlines remain but are aggregated in higher 
image levels. The way of fusing the small segments to bigger segments 
depends on the choice of segmentation parameters (average segment size, 
spectral and shape properties) that have to be specified individually for every 
image level. 
 
There are several parameters to guide the segmentation result. Scale parameter 
is an abstract term which determines the maximum allowed heterogeneity for 
the resulting image objects. Colour criterion defines the weight the spectral 
values of the image layers contribute to image segmentation, as opposed to the 
weight of the shape criterion. There is the relation between colour and shape 
criteria: colour + shape = 1. Maximum colour criterion 1.0 results in objects 
spectrally most homogeneous; while with a value less than 0.1, the created 
objects would not be related to the spectral information at all. Smoothness is to 
optimize image objects with regard to smooth borders, and compactness is to 
optimize image objects with regard to compactness (Baatz et al. 2004). The 
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resulting objects also depends on the image data, for a given set of 
segmentation parameters, heterogeneous image data result in smaller image 
objects than homogeneous image data.  
 
The potential of the multi-resolution segmentation is that, depending on the 
image resolution, the smallest objects that can be identified in the image can be 
classified using small image objects generated using a small scale value. Larger 
homogeneous areas can be classified using larger image objects on a higher 
image level with a bigger scale value. A hierarchical network of image objects 
is constructed where the resulting objects know their sub- super- and 
neighbour-objects. Based on this, relations between different classes in 
different image levels can be used as a criterion for the class description. 
 
Another advantage of the multi-resolution segmentation is the introduction of 
image levels with thematic information that can be referred to. That is similar 
to the overlay algorithms as used in a Geographic Information System (GIS). 
For this study for instance, the settlement has been digitized manually and its 
existence has been included in the image analysis as thematic information. To 
avoid confusion and to reduce the error, the implementation of additional 
knowledge yields more accurate results.  
 
Once the segmentation is completed, the created image objects can then be 
described and classified by an extensive variety of features that include colour-, 
texture-, form-, and context properties in several forms. This can be done using 
two classifiers, a (standard) nearest neighbour classifier (NN) and fuzzy 
membership functions, or a combination of both. The first describes the class 
by user-defined sample objects, while the second classifier describes intervals 
of feature characteristics (Hofmann 2001b). The variety of object features can 
be used either to describe fuzzy membership functions, or to determine the 
feature space for NN. There are many object features available including 
spectral related such as mean layer values, standard deviation, ratio, etc, and 
spatial related information such as objects’ size, shape, texture. More 
importantly, there is semantic information available between objects in the 
same level and objects of its super- and sub-objects in one or more than one 
upper or lower levels. To fully apply the available information, the knowledge 
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to the study area or the interested objects is critical. More detailed description 
of image segmentation and classification can be found in Definiens 
Professional 5, Hofmann (2001a), and Gao et al. (2006).  

 
4.3.5. Accuracy assessment of the classification results 
 
Accuracy assessment quantifies data quality so that map users may evaluate the 
utility of a thematic map for their intended applications (Stehman and 
Czaplewski 1998). The land cover classifications from the map are compared 
to the reference classifications, and the extent to which these two classifications 
agree is defined as map accuracy. To perform a statistically rigorous accuracy 
assessment, it is required a probability sampling design and statistically 
consistent estimators of accuracy parameters, along with a response design 
determined in accordance with features of the mapping and classification 
process such as the land-cover classification scheme, minimum mapping unit, 
and spatial scale of the mapping (Stehman and Czaplewski 1998). The 
reference or “true” classification is obtained for each sampling unit based on 
interpreting aerial photography, field survey, the opinion of experts, or a 
combination of these sources. This process is called reference design. The 
reference classification is composed of the sampling units which provide the 
link between a spatial location on the map and the corresponding spatial 
location on the Earth. There are two types of sampling units: points or area 
units. Pixels and polygons are examples of area sampling units that are directly 
associated with mapped land cover features. Janssen and van der Wel (1994 p. 
422) and Franklin et al. (1991) advocate using pixels as the basis of an 
accuracy assessment, the former arguing that “remote sensing data should be 
considered to be point-sampled data, in which the points possess a certain 
spatial extent”. Janssen and van der Wel (1994) further state that individual 
pixels are the most appropriate sampling unit for a pixel-based classification. 
Restricting the assessment to homogeneous areas can avoid the confounding of 
classification and location error but it is not a recommended strategy because of 
the optimistic accuracy results that typically arise (Hammond and Verbyla 
1996).  
 
Error matrix is a two-dimensional matrix formed by land cover classification 
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and reference classification/ground data. It effectively summarizes the key 
information obtained from the sampling and response designs and it has been 
widely used in the image classification accuracy assessment (Smits et al. 1999, 
Tarmo et al. 2002, Foody 2004). The error matrix represents a contingency 
table in which the diagonal entries represent correct classifications, or 
agreement between the map and reference data, and the off-diagonal entries 
represent misclassifications, or lack of agreement between the map and 
reference data. Various summary measures are derived from the error matrix to 
describe accuracy. A core set of accuracy parameters that can be interpreted as 
probabilities defined for the map being assessed includes the following: overall 
accuracy describes the overall proportion of area correctly classified which 
represents the probability that a randomly selected point location is classified 
correctly by the map, user’s accuracy describes the conditional probability that 
a randomly selected point classified as category I by the map is classified as 
category I by the reference data, producer’s accuracy describes the conditional 
probability that a randomly selected point classified as category j by the 
reference data is classified as category j by the map.    

 
Omission Error and Commission Error are also common in evaluating the 
accuracy of a thematic map. The Commission Error can be seen as the 
probability that, given a generic pixel of the thematic product, it does not 
belong to the same class in the reference data, and the Omission Error is the 
probability that, given a pixel of the reference data, it has not been correctly 
classified in the thematic product. Commission and Omission Error are linked 
to User’s Accuracy (Ua) and Producer’s Accuracy by the simple relationship: 
Commission Error = 1 - User’s accuracy; Omission Error = 1 - Producer’s 
accuracy (Boschetti et al. 2004). 
 
Both pixel-based and object-based image analysis results were evaluated with 
independent reference data which were generated by interpreting in total 420 
points generated with a stratified random sampling method. Based on the land 
use map, 60 random points were put in each of the 7 classes of interest. The 
properties of these points were interpreted based on the information from 
photographs, land use map from year 2000, and satellite images. In the study, 
classifications were performed to images with four different types of 
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resolutions: 10m, 30m, 100m, and 250m. With the increasing of the spatial 
resolution, reference data for images with 10m spatial resolution may not 
represent the property of images with 100m and 250m spatial resolution. In 
order to evaluate the classifications of the images with different spatial 
resolution, the same number of reference data in the same location was 
interpreted for images with 10m, 30m, 100m, 250m spatial resolutions, also for 
images of Landsat-7 ETM+ and MODIS. So altogether there are six sets of 
reference data to evaluate the accuracy of the classifications. 
 
4.4. Results and discussion 
4.4.1 Spectral separability analysis of land-cover classes 
 
Figure 4-4 shows the scatter plots of SPOT-5 image four spectral band 
combinations of green, red, near infrared, and mid-infrared. 

  
 
Figure 4-4: Feature space for spectral bands combinations of green, near 
infrared and red, near infrared, in the example of SPOT-5 image 
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Figure 4-4 (continuation): Feature space for spectral bands combinations of 
green, near infrared and red, near infrared, in the example of SPOT-5 image.  
 
Altogether there are seven land cover types present in the study area: ‘irrigated 
agriculture’, ‘rain fed agriculture’, ‘grassland’, ‘tropical dry forest’, ‘human 
settlement’, and ‘orchards’. Figure 4-4 shows that there is overlapping in 
different extent between land cover classes in all the combinations of spectral 
feature space. There are three types of irrigated agriculture which appear 
distinctively in the image: agriculture fields with crops, dry agriculture fields 
without crops, and wet agriculture fields without crops. One type of irrigated 
agriculture-wet fields without crops-significantly overlap with tropical dry 
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forest due to that they share very similar spectral signature in most of the 
spectral bands. Also, class ‘rain fed agriculture’ and ‘grassland’ overlap 
evidently and both of them overlap with the class human settlement which is a 
spectrally very heterogeneous land cover class and in this study area some part 
of it is constructed from natural materials, causing substantial problems in 
spectral detection. Figure 4-4 showed that the near infrared band is important in 
distinguishing most of the land cover types, for example, in all the spectral 
feature combinations with near infrared band, the two classes irrigated 
agriculture and orchards are distinguishable, while they are not distinguishable 
when the near infrared band is not present.  
 
4.4.2 Pixel-based classification results  
 
The SPOT-5 image and the simulated images were classified with both pixel 
based MLC and pixel based NN classifiers, based on the selected training 
samples for the seven interested land cover classes. The classified images were 
firstly evaluated visually and it revealed that for the original SPOT-5 image 
with 10 meter spatial resolution, the classification has a strongly speckled result 
which gives it a “blurred” appearance. The class human settlement was mis-
classified seriously although its training samples were greatly reduced to only 
one sample. Results show that with the increasing of the spatial resolution, the 
speckled-appearance problem is becoming less serious. Although the accuracy 
is decreasing, since in the very coarse spatial resolution image, the mixed 
pixels were the majority in the image and some classes, for example rain fed 
agriculture, orchards, and human settlement, having small areas in the image 
and thus are wrongly presented by the coarse spatial resolution image. Images 
generated by mean filtering method produced more homogeneous appearance 
in the classified images.  
 
4.4.3 OBIA results 
 
OBIA was carried out for the SPOT-5 image, two sets of simulated images, 
Landsat-7 ETM+, and MODIS image. Firstly, image segmentation was 
performed. The parameters to guide the segmentation process were explained 
in method section 3.4. For SPOT-5, the segmentation parameters were: scale 
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factor 20, colour factor 0.8, and smoothness 0.5 and it resulted in 23759 objects. 
For the two simulated images of 30m spatial resolution and Landsat-7 ETM+, 
the segmentation parameters settings were: scale factor 10, colour factor 0.8 
and smoothness 0.5; it resulted in 10814 objects for the one by mean-filtering 
and 11721 objects for the one by cubic-filtering, and 7209 objects for Landsat-
7 ETM+ image. For the two simulated images of 100m spatial resolution, the 
parameters for segmentation were: scale factor 5, colour 0.8 and smoothness 
0.5; it resulted in 4696 objects for the one by mean-filtering and 5388 objects 
for the one by cubic-filtering. And for the two images with 250m spatial 
resolution and MODIS image, the parameter settings for image segmentation 
were: scale factor 3, colour 0.8 and smoothness 0.5; it resulted in 2265 and 
3532 objects for the one by mean-filtering and the one by cubic-filtering, 
respectively, and 3075 object for MODIS image. Those parameter settings 
were decided based on visual checking that the produced segments represent 
optimally the primitive earth objects. The segmentation results showed that 
with the same parameter settings, simulated image by cubic-filtering produced 
more objects than those of images generated by mean-filtering, due to that the 
cubic-filtering retains the local contrast in the image while mean-filtering 
smoothes the contrast. The segmented images are classified by standard NN 
classifier using the same set of training samples as were used for pixel-based 
classification.  
 
4.4.4 The comparison of pixel-based and OBIA results 
 
Both pixel-based and OBIA results were evaluated with independent ground 
data which were generated by interpreting total 420 randomly distributed points. 
With the increasing of the spatial resolution (pixel size), ground data for 10m 
pixel may not be “true” for the property of the larger sized pixels. In order to 
evaluate the classifications of the images with different spatial resolution, the 
same number of ground data in the same location was interpreted for images 
with 10m, 30m, 100m, 250m spatial resolution, also for images of Landsat-7 
ETM+ and MODIS. So altogether there are six sets of ground data to evaluate 
the accuracy of the classifications. The accuracies of the classification results 
were presented in figure 4-6 and 4-7. 
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result by pixel-based 
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Figure 4-5: Pixel-based and object-based classifications to a simulated image 
with 30m resolution. It showed that the object-based image analysis obtained 
results more homogeneous and closer to human vision.   
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Figure 4-6: Classification accuracies in function of image spatial resolution. 
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Figure 4-7: Classification accuracies in function of image spatial resolution. 

 
In figure 4-6 and 4-7, the accuracy of the classifications using images produced 
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by cubic-filtering tends to be higher than using images produced by mean-
filtering, except for simulated images with 30m spatial resolution. By 
averaging the pixel values of the windows, the mean-filtering produced images 
that have a smoother appearance than those by cubic-filtering. Images 
produced by cubic-filtering preserved the contrast in the original image and are 
more “heterogeneous” in appearance and in pixel values, and the produced 
images are closer to the images taken by the satellite sensors. If the accuracy is 
evaluated using homogeneous areas, images produced by mean-filtering have 
the tendency of optimizing the results. However, the classification accuracy 
here was evaluated by points and thus the classification results of images by 
mean-filtering did not present higher accuracy, instead, images by cubic-
filtering which preserved the local contrast in the image obtained higher 
accuracy. As for the images with 30m spatial resolution, mean filtering 
clustered the pixels with similar spectral values, removed the spectral noises in 
the high spatial resolution images, while did not remove important local 
spectral contrast in the image, and thus obtained higher accuracy than images 
by cubic-filtering. Further observing figure 4-6 and 4-7, we can see that in the 
case of the two sets of simulated images, classification accuracies by pixel-
based MLC are higher than those produced by pixel-based NN classifier, and 
with SPOT-5 and simulated cubic-filtering image, object-based image analysis 
obtained higher accuracy than those obtained by pixel-based MLC and pixel-
based NN methods. This result showed that first, pixel-based MLC is indeed a 
well established pixel-based method which is able to obtained higher 
classification accuracy; second, for SPOT-5 image, object-based image 
analysis has advantage over pixel-based one regardless of pixel-based 
classification methods used. By classifying object which is a group of 
homogeneous pixels, object-based image analysis produces classification 
results closer to human interpretation results, free of speckled appearance, and 
with comparatively higher accuracies. Results on the simulated images by 
cubic-filtering showed that images with 100m spatial resolution obtained 
higher accuracy than that of the images with higher spatial resolution. This can 
be explained using the finding of Kan et al. (1975), that “theoretical 
justification and experimental verification support the finding that classification 
accuracies for low resolution data could be better than the accuracies for data 
with higher resolution. The increase in accuracy is due to the reduction of scene 
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in homogeneity at lower resolution”. With the increasing of the spatial 
resolution of the images, OBIA obtained lower accuracy than that by pixel-
based methods, which showed that the advantage of OBIA over the pixel-based 
one in classification accuracies is only represented by images with high spatial 
resolutions. Landsat-7 ETM+ and MODIS images were also classified and 
compared with classifications of images with the same spatial resolution. Pixel-
based Landsat image classifications showed that by MLC it obtained an overall 
accuracy 50.1%, and NN obtained accuracy 48.8%. Object-based NN 
classification of Landsat image obtained an accuracy of 51.7% (figure 4-8).  
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Figure 4-8: Comparison of the accuracies of the classifications between original 
Landsat-7 ETM+ image and the simulated images with 30m spatial resolutions. 
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Figure 4-9: Comparison of the accuracies of the classifications between original 

MODIS image and the simulated images with 250m spatial resolutions. 
 
For MODIS image, pixel-based MLC and NN classifiers obtained accuracy of 
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47.6% and 46.1% respectively, and object-based NN classification obtained an 
accuracy of 43.9% (figure 4-9). For Landsat image, object-based image 
analysis still obtained higher accuracy than those by pixel-based MLC and NN 
classifiers, while for MODIS, object-based method obtained accuracy lower 
than those by both pixel-based MLC and NN methods. This result proved again 
that for coarse spatial resolution images, object-based image analysis shows no 
advantage over the pixel-based one.  
 
Figure 4-8 showed that Landsat image obtained results closer to the results of 
the images generated by cubic-filtering. This is because cubic-filtering method 
was developed by simulating the way of Landsat sensor taking the images. For 
the same reason, MODIS image did not present classification accuracy results 
closer to those by cubic-filtering method (figure 4-9).  

 
Comparing with pixel-based image analysis, object-based image analysis has 
many advantages (Hay and Gastilla, 2006), such as: the way it classifies an 
image by partitioning it into objects is similar to the way humans comprehend 
the landscape; image-objects exhibit useful features (shape, texture, context 
relations with other objects) that single pixels lack; image-objects can be more 
readily integrated in vector GIS. This work performed pixel-based and object-
based analysis to images with spatial resolutions from relatively fine to coarse. 
Both pixel-based and object-based image analysis results were evaluated with a 
set of stratified randomly sampled reference data comparing 420 points. Based 
on the result, a general conclusion was drawn that the advantage of object-
based image analysis over the pixel-based one was only represented by images 
with higher spatial resolutions. Increased spectral variability within high 
resolution imagery confuses traditional pixel-based classifiers, while by object-
based method, pixels with similar spectral information are firstly grouped into 
objects then those objects are analyzed. Images with medium to low spatial 
resolution have lower spectral variability and thus are easily handled by pixel-
based method. As for the images with low spatial resolution, such as MODIS, 
by applying object-based image analysis, pixels belonging to different land 
cover types could possibly be grouped together thus are mis-classified and 
produce lower accuracy than that by pixel-based method. As stated before, the 
result drawn from this paper could never be absolute; there are many factors 
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which influence classification accuracy such as image data quality, the 
reliability of training data and testing/reference data, the accuracy assessment 
method adopted, among others. As to the accuracy assessment method, though 
accuracy evaluated by random points (a simple random or stratified random 
points) is generally recognized to be more trustworthy than that evaluated using 
homogenous areas of land cover types, it may not hold true when it comes to 
object-based image analysis results. Due to that single points/pixels are usually 
merged into surroundings by object-based method, and thus evaluated by single 
pixels, the accuracy of object-based image analysis could be under-evaluated, 
which may explain though the object-based image analysis results appear to be 
more appealing (figure 4-5), their accuracy results tend to be low. This is 
proved by checking the classification results of a simulated mean-filtering 
method with 30m spatial resolution (mean-filter30): 5.2% of the wrongly 
classified points for object based classification are coming from those isolated 
pixels. If we add this number to the already obtained object based classification 
accuracy, we get 63.5%, which is higher than those by both pixel based MLC 
and NN classifications of the image “mean-filter30” (figure 4-6).  
 
4.5. Conclusion 
 
In this paper, pixel-based and OBIA was performed on satellite images with 
different spatial resolutions. The coarser spatial resolution images are generated 
by degrading spatial resolution of a multi-spectral SPOT-5 imagery with a 10m 
spatial resolution. Two simulating methods were used: 1) mean-filtering which 
averages the pixel values in a certain sized window (3*3, 10*10, and 25*25) 
and, 2) cubic-filtering which is a modified Justice method that keeps the local 
contrast in the image during the interpolation and produced images closer to the 
“real” images. These two sets of images were classified by pixel-based MLC 
and NN classifier, and object-based NN classifier, respectively. Accuracy 
assessment results showed that for SPOT-5, and a simulated cubic-filtering 
30m spatial resolution images, object-based image analysis obtained higher 
accuracies than those produced by pixel-based MLC and NN classifiers. With 
the increasing of the spatial resolution of the images, object-based image 
analysis did not show more advantage over the pixel-based ones. The 
classifications of the Landsat-7 ETM+ and MODIS images proved again the 

 88



 
Chapter 4: A Comparison of the Performance of Pixel-based and Object-based 
Classifications over Images with Various Spatial Resolutions 

object-based image analysis has advantage over the pixel-based one but the 
advantage represented by classification accuracy is only represented by high 
spatial resolution images.  
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CHAPTER 5 

 

A SEMI-AUTOMATIC FEATURE 
EXTRACTUIB ALGORITHM AND 
HIERARCHICAL NETWORK STRUCTURE 
FOR OBJECT-BASED IMAGE ANALYSIS1 
 
 
Abstract. Object-based image analysis (OBIA) uses object’s spectral and 
spatial information such as size, form, shape and texture information, and 
information pertaining to an object’s sub-or super-objects if a multi-level image 
object hierarchy has been created. With all these available features, it is critical 
the proper selection of features and thresholds to differentiate the classes of 
interest. Separability and Threshold (SEaTH) algorithm is a semi-automatic 
feature extraction algorithm proposed by Nussbaum et al. (2006). It calculates 
the separability and thresholds of object-classes for any number of given 
features based on a statistical approach. With it, the time-consuming trial and 
error practice for seeking significant features and proper thresholds can be 
avoided. SEaTH algorithm can also help to minimize human involvement in 
classification steps and speeds up the classification process when huge data is 
to be dealt with, however, it could be at the expense of accuracy. This paper 
performed land cover classification using object based image analysis on 

                                                 
1 Based on the content of this chapter, a paper titled “object oriented image analysis 
for a forest area land cover mapping” was presented as poster in 5th International 
Symposium Spatial Data Quality 2007-modelling qualities in space and time, 13-
15, June, 2007, ITC, Enschede, the Netherlands. 
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Landsat-7 ETM+ imagery in a mountainous area with complex land cover 
classes. In the definition of the classifiers of the land cover classes, the used 
features and thresholds were calculated by SEaTH algorithm. Eight land cover 
classes were produced: temperate forest, tropical dry forest, orchards, grassland, 
irrigated agriculture, rain-fed agriculture, lava flow, and human settlements. In 
this chapter, it is differentiated between object primitives and object of interest. 
Object primitives are building blocks in object based image analysis and are 
produced by image segmentation; object of interest here corresponds to the 
earth objects. 
 
Key words:  Multi-resolution segmentation, Object-based image analysis, 
Separability and thresholds.  
 
5.1. Introduction 
 
Traditional pixel-based image processing algorithms produce highly freckled 
results in classifying land covers in heterogeneous areas and are limited in 
especially detecting small objects, particularly in analyzing high-resolution 
(HR) imagery such as Quick bird or IKONOS. The resulting thematic maps 
bear either very general land-cover information, or else detailed information 
with limited accuracies (Franklin et al. 2003). OBIA seems to be more precise 
and meaningful. The development of OBIA stems primarily from the desire to 
use the important semantic information necessary to interpret an image, which 
is not presented in single pixels but rather in meaningful objects and their 
mutual relations. In particular in OBIA, homogeneous image objects at a 
chosen resolution are first extracted and subsequently classified. In addition to 
spectral related information, OBIA uses information based on object size, 
shape, and context, and information pertaining to an object’s sub-or super-
objects if a multi-level image object hierarchy has been created (Shackelford 
and Davis 2003). This extra information considerably extends the possibilities 
for image analysis. OBIA intends to do what an image interpreter does: 
recognizing the colour, shapes, textures and coherent regions presented within 
an image and associating meaningful objects and their contextual relations.  
 
A feature represents certain information concerning objects of interest. Feature 
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identification is a critical part of OBIA. It is important to identify the 
characteristic, significant features for objects of interest among the large 
number of possible features. SEparability and Threshold (SEaTH) algorithm 
calculates the separability and thresholds of object-classes for any number of 
given features based on a statistical approach and thus it avoided the time-
consuming trial and error practice for seeking significant features and proper 
thresholds.  
 
This paper investigates the performance of OBIA for mapping land-covers in a 
mountainous forested area. OBIA is performed in eCognition (Definiens, 2006) 
with multi-resolution segmentation, hierarchical network classification with 
membership function as classifier in which the rule-base was constructed with 
objects’ features and thresholds calculated/extracted by SEaTH algorithm.    
 
5.2. Methods 
5.2.1. OBIA in eCognition 
 
OBIA operates on objects created by image segmentation. Image segmentation 
is a kind of regionalization, which delineates objects based on a certain 
homogeneity criteria, and at the same time requires spatial contingency.  
 
OBIA in eCognition (Definiens 2006) comprises two parts: multi-resolution 
segmentation and context-based classification. Multi-resolution segmentation 
allows generating image objects on an arbitrary number of scales taking into 
account criteria of homogeneity in colour and shape. Additionally, the created 
segments/objects are embedded into a hierarchical network in which each 
object knows its neighbouring objects in horizontal and vertical direction 
(figure 5-1) (Baatz and Schape 1999). Classification in eCognition can be 
based on a fuzzy nearest neighbour classifier or membership function. The 
nearest-neighbour (NN) classifier has long been used in pattern recognition, 
exploratory data analysis, and data mining problems (Tahir et al. 2006). A vital 
consideration in obtaining good results with this classifier is the choice of 
distance function, and correspondingly which features to consider when 
computing distances between samples.  
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5.2.1.1. Multi-resolution image segmentation 
 
Image scale is an important concept for meaningful image analysis. Therefore, 
eCognition provides segmentation on multiple scales. Image segmentation in 
eCognition is a multi-resolution, region-merging technique starting with one-
pixel objects. The segmentation procedure can be applied on the pixel level or 
an image object level. Image objects are extracted from the image in a number 
of hierarchical segmentation levels, and each subsequent level yields image 
objects of a larger average size by combining objects from a level below, which 
represents image information on different scales simultaneously (figure 5-1).  
 

 
 
Figure 5-1: Image object hierarchy. Source: Definiens professional 5 user 
guide.  
 
There are several parameters to guide the segmentation result. Scale parameter 
is an abstract term which determines the maximum allowed heterogeneity for 
the resulting image objects. With a certain scale parameter, objects are formed 
based on spectral similarity and shape characteristics of the resulting object. 
Spectral similarity is defined by “colour” criterion and “shape” characteristics 
are represented by both smoothness and compactness criteria.  
 
Colour criterion defines the weight the spectral values of the image layers 
contribute to image segmentation, as opposed to the weight of the shape 
criterion. There is the relation between colour and shape criteria: colour + 
shape = 1. Maximum colour criterion 1.0 results in objects spectrally most 
homogeneous; while with a value less than 0.1, the created objects would not 
be related to the spectral information at all. Smoothness is to optimize image 
objects with regard to smooth borders, and compactness is to optimize image 
objects with regard to compactness (Baatz et al. 2004). The resulting objects 
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also depends on the image data, for a given set of segmentation parameters, 
heterogeneous image data result in smaller image objects than homogeneous 
image data.  

 
5.2.1.2. The fuzzy classifier 
 
Image objects can be described and classified by an extensive variety of 
features that include spectral related information such as mean, standard 
deviation, etc. and texture, form, context properties in several forms. The 
classification can be based on a fuzzy nearest neighbour classifier (NN) or 
fuzzy membership functions, or a combination of both. The variety of object 
features can be used either to describe fuzzy membership functions, or to 
determine the feature space for NN (Baatz and Schape 1999).   
 
Object based NN classifier is based on fuzzy logic. Fuzzy classification is a 
“soft” classifier which takes into account uncertainties in sensor measurements, 
parameter variations due to limited sensor calibration, vague (linguistic) class 
descriptions, and class mixtures due to limited resolution.  
 
Fuzzy classification consists of n-dimensional membership degrees, which 
describes the degree of class assignment of the considered object to the n 
considered classes. 
 

[ ])(),...(),( _2_1_, objobjobjf nclassclassclassobjclass μμμ=           (5.1) 

 
Crisp classification gives only the highest membership degree information, 
whereas the fuzzy classification result contains all information about the 
overall reliability, stability and class mixture. Fuzzy logic replaces the two 
Boolean logical statements “true” and “false” by the continuous range of (0…1) 
where 0 means false and 1 means true and all values between 0 and 1 represent 
a transition between true and false. Avoiding arbitrary shape thresholds, fuzzy 
logic is able to approximate real world in its complexity much better than the 
simplified Boolean systems do. Fuzzy logic can model imprecise human 
thinking and can represent linguistic rules. Hence, fuzzy classification systems 
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are well suited to handle most sources of vagueness in remote sensing 
information extraction. The mentioned parameter and model uncertainties are 
considered by fuzzy sets, which are defined by membership functions. Fuzzy 
classification requires a complete fuzzy system which consists of three main 
steps 1) fuzzification of input variables resulting in fuzzy sets, 2) fuzzy logic 
combinations of these fuzzy sets and 3) de-fuzzification of the fuzzy 
classification result to get the common crisp classification for land-cover land-
use map production.  
 
5.2.1.3. Hierarchical network classifier 
 
Multi-resolution segmentation procedures provided by eCognition operate on 
arbitrary levels in a strong hierarchical network. To guarantee a definite 
hierarchy over the spatial shape of all objects the segmentation procedures 
follow two rules: (1) Object borders must follow borders of objects on the next 
lower level. (2) Segmentation is constrained by the border of the object on the 
next upper level. 
 
Objects created in different scales can be linked together in a hierarchical 
network like the one displayed in figure 5-1. The hierarchy network has several 
advantages for image analysis. Since structures of different scales are 
represented simultaneously and thus can be classified in relation to each other. 
Different hierarchical levels can be segmented based on different data, an upper 
level, for example, can be built based on thematic information, whereas a lower 
layer is segmented using remote sensing data. Classifying the upper level, each 
object can be analyzed based on the composition of its classified sub-objects. 
By means of this technique different data types can be analyzed in relation to 
each other.  
 
5.2.1.4 Important object features 
 
Since regions in the image provide much more information than single pixels, 
there is a large number of different image object features for measuring colour, 
shape, and texture of the associated regions. Even more information may be 
extracted by taking the network structure and the classification of the image 
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objects into account. Important examples of this type of features are the “rel. 
border to neighbouring objects” of a given class and “number of subobjects” of 
a given class. Equation 5.2 gives an example of the ratio of the mean values of 
two input channels A and B.  
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In which n is the number of pixels; x is the object, p(x) is the value of pixel at 
location x. 
 
Besides spectral related features, there is also shape feature. The closer object 
primitives are to objects of interest, the more image-object shape features such 
as size, length or number of edges can be used. Advanced shape features can be 
derived from object polygons and object skeletons. Polygons are vector objects 
which provide new and more detailed information for the characterization of 
image objects by their shape. They are also needed for the visualization and 
export of image object outlines. Skeletons, which describe the inner structure 
of an image object, help to describe an object’s shape more accurately. Since 
these features are independent of sensor characteristics they are robust versus 
sensor calibration and illumination conditions.  
 
As for the texture feature, the Grey Level Co-occurrence Matrix (GLCM) is 
used. GLCM is a tabulation of how often different combinations of pixel 
brightness values (grey levels) occur in an image. It is used for a series of 
“second order” texture calculations. The first order texture measures are 
statistics calculated from the original image values, like variance, and do not 
consider pixel neighbour relationships. The second order measures consider the 
relationship between groups of two (usually neighbouring) pixels in the 
original image. Third and higher order textures (considering the relationships 
among three or more pixels) are theoretically possible but not commonly 
implemented due to calculation time and interpretation difficulty.  
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As for the topological object features, due mainly to the object hierarchical 
network, context features are provided. Within one scale, relations to 
neighbouring objects can be evaluated, whereby the range of the 
neighbourhood can be defined as parameter. Between image scales, 
hierarchical relations can be explored, where the distance of scales can be 
adjusted using distance scale parameter. The object hierarchical network 
provides additional object features and the characterization of an image object 
can be based on its sub-objects using texture and line analysis; class-related 
features can also be used to define the object for example relationships to 
classified sub-objects, such as the relative area of image objects assigned to a 
certain class, e.g. if an urban area on higher level contains many sub-objects 
classified as houses, this urban area can be described as dense vs. less dense 
areas. The characterization of an image object can also be based on its super-
objects, e.g. houses belonging to a super object urban can be classified as urban 
houses, whereas houses belonging to a super objects rural area can be classified 
as cottages or special buildings. 

 
Another very important type of features is semantic features. These higher 
order features are available after a first classification of image objects. They 
allow describing a park as forested region within urban area or shore regions as 
adjacent land regions to water. These semantic features reduce ambiguities, 
allow land-use classification in addition to pure land-cover classification and 
thus lead to a first step of scene understanding. 
 
5.2.2. SEaTH algorithm 
 
Generally, a semantic class can be described by its characteristic features and 
their distribution in the feature space. Using OBIA to analyze an image, there 
are many features available to describe the objects of interest. Therefore it is 
necessary to determine the prominent features for each object class for the 
succeeding image analysis (Nussbaum et al. 2005). Marpu et al. (2006) and 
Nussbaum et al. (2006) proposed a feature analyzing tool SEaTH (SEparability 
and THresholds) which identifies the characteristic features with a statistical 
approach based on training objects. This tool measures the statistical distance 
(Jeffries-Matusita distance), which involves the covariance matrix in the 

 102 



 
Chapter 5: A Semi-automatic Feature Extraction Algorithm and Hierarchical Network 
Structure for Object-based Image Analysis 

comparing of the separability, of the features of two interested classes. The 
measure result is in interval of [0, 2], and J = 0 implies that the two 
distributions are completely correlated and J = 2 implies that the distributions 
are completely uncorrelated. The features which have very high J value are the 
optimum features which characterize the classes (Nussbaum et al. 2006, Marpu 
et al. 2006). By this method, first of all, samples of the interested classes are 
selected in eCognition and the statistics of those samples are exported. The 
separability of the classes represented by features J distance is then calculated. 
Based on the calculated results, the features with the high J distance are 
favorable feature to differentiate between land-cover classes. The selected 
favorable features can then be used to build the rule base for image 
classification in eCognition. For the details of SEaTH algorithm see Nussbaum 
et al. (2006).  
 
By SEaTH algorithm, the aim is to classify the image into the interested land-
cover classes. Because it is a parametric approach, the assumption is that all the 
random variables encountered during the processing can be approximated as 
Gaussian distributions. The image analysis procedure can be summarized in the 
following 5 steps (Marpu et al. 2006, Nussbum et al. 2006): 
 
1) Image preparation/pre-processing. It is an optional step, which is to ensure 
proper segmentation (partition the image into contiguous and continuous 
groups of pixels based on a certain criteria) by means of creating new image 
layers or enhancing existing image layers. Image segmentation delineates 
image objects according to a certain criteria of homogeneity, and at the same 
time, requires spatial contingency (Lang and Blaschke 2006). Segmentation 
provides building blocks of OBIA. Different image scenario requires different 
pre-processing steps. In some cases, using averaging filter on the image can 
help to extract image objects. In analyzing images with land cover types such 
as vegetation, it is beneficial to calculate the Normalized Difference Vegetation 
Index (NDVI) and use it in image segmentation step.  
 
2) Sample collection after segmenting the image into primitive objects. This 
can be done either manually by selecting samples in the image based on human 
interpretation or statistically by selecting specific regions in the concerned 
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image histograms. For example if the objects of class of interest are 
characterized by bright regions compared to other objects in the image, then 2-
5% of the objects in the image histogram which have high mean values can be 
selected as samples for the class of interest, and 2-5% of image objects which 
have low mean values are assigned as samples to the other class.  
 
3) Features are the characteristics defined for an object. For example mean 
value, standard-deviation, length, area, and texture, etc. are all the possible 
features of an object (Baatz et al. 2004). This step is to identify the optimal 
object features in order to separate land cover classes properly. For some 
features, the probability distribution of the object classes has small or large 
overlap, and the object classes have partial separability using these features. 
The features in which the object classes have large overlap are not optimal for 
differentiating them from other classes and it could cause serious 
misclassifications when these features are used in classifying the object classes 
(figure 5-2). Features in which object classes have no overlap are well suited 
for separating these object-classes by supplying complete separability and 
those features are optimal features. The optimal features can be identified 
visually by observing displayed feature values. As image objects can be 
characterized by a large number of features, it is often a laborious task to 
identify them visually. To intuit what features can be possible candidates needs 
a good understanding of the analyzed images and the classes of interest.  
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Figure 5-2: Probability distributions. Source: Nussbaum et al. 2006. 
 
Characteristic features identification is through probability density estimation. 
Based on representative samples for object classes, the probability distribution 
for each class can be estimated and used to calculate the separability between 
two object classes. Under the assumption of normal probability distributions, 
the Bhattacharyya distance B can be used as a suitable separability measure. B 
is justified as a measure of separabillity from the Bayesean decision rule for 
misclassification probability. For the derivation of the Bhattacharyya distance 

 105 



 
Image Segmentation and Object Based Image Analysis Using Remote Sensing Images 

 

sees (Bhattacharyya, 1943), or (Fukunaga 1990). For two classes (c1, c2) and 
one feature Bhattacharya distance is expressed as  
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where  and im iσ , i=1, 2, are the mean value and standard deviation, 

respectively, for the feature distributions of the two classes. If the means 
coincide, the first term in (5.3) vanishes, whereas the second term vanishes if 
the feature distributions of the two classes have equal variances. 
 
And based on this, Jeffries-Matusita distance (Nussbaum et al. 2005) is 
calculated as  
 

)1(2 BeJ −−=                  (5.4) 
 
Using Jeffries-Matusita (J), the optimal features can be identified automatically 
based on the statistical values of the selected object samples. Note: The reason 
to calculate the J distance is that its values are in the range of (0-2). Other 
distance measures may also be used in this step to identify the optimum 
features. 
 

 
 

Figure 5-3: Threshold identification. Source: Nussbaum et al. 2006. 
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4) With respect to the means of the samples of two classes and in the feature 
space defined by the optimal features identified in the previous step, clusters 
are formed using the minimum distance criterion. This clustering is an 
approximation of the desired classification. To represent all the features on a 
common scale, a transformation has to be made on the feature values before 
clustering. This step transforms all the feature values to the range of (0, 1). For 
every object feature value F of a particular feature, 
 

min1 FFF −=                  (5.5) 

max1

1'

F
FF =                      (5.6) 

 

minF  is the minimum of the object feature values of that feature, max1F  is the 

maximum of value 1F obtained in the first step. 'F  is the transformed feature 
value of F .  
 
5) Besides determining the optimal features separating the object-classes, it is 
essential to know the thresholds for the maximum separability to form the rule 
based for the classification. The optimal threshold is also calculated by SEaTH. 
A Gaussian probability mixture model of the form  
 

)()/()()/()( 2211 cpcxpcpcxpxp +=                       (5.7) 
 
is fit to the frequency distribution of a feature for two object classes c1 and c2, 
where p(x/c1) is a normal distribution with mean mc1 and variance 12cσ  and 
similarity for p(x/c2). The decision threshold which minimizes the error 
probability is obtained by solving  
 

)()/()()/( 2211 cpcxpcpcxp =                 (5.8) 
 
for x. Taking logarithms, 
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the final thresholds for features to separate the two classes is then found based 
on Bayes’ conditional probability principle. For classes C1 and C2, the 
threshold can be found as  
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Using formula (5.10), the thresholds of features can be calculated for the 
classes of interest, based on the distribution of objects classified in the previous 
step. Since the distributions are only partially separated, there will be some 
misclassifications when using this feature for classification of unknown object 
classes. Given the validity of the normal approximation assumption, SEaTH 
minimizes the misclassification number.  
 
5.2.3. Image preparation by Principal component analysis (PCA) 
 
PCA is a technique to reduce the spectral redundancy in multispectral data. It is 
often performed as a preprocessing procedure prior to automatic image 
classification. The purpose of this procedure is to compress the information 
contained in an original n-band data set into components or “new bands” fewer 
than n. The PCA data values are simply linear combinations of the original data 
values. The data along the first principal component have a greater variance or 
dynamic range than the data plotted against either of the original axes. For 
channels of multispectral data, the first principal component (PC1) includes the 
largest percentage of the total scene variance and succeeding components (PC2, 
PC3, …PCn) contain a decreasing percentage of the scene variance. 
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Furthermore, because successive components are chosen to be orthogonal to all 
previous ones, they contain uncorrelated data (Lillesand and Kiefer 2001). 
Used in the classification procedure, PCA data are normally treated simply as if 
they were original data. However, the number of components used is normally 
reduced to the intrinsic dimensionality of the data, thereby making the image 
classification process much more efficient by reducing the amount of 
computation required. For example, Landsat-7 ETM+ or TM data can often be 
reduced to just three principal components for classification purposes. PCA is 
particularly appropriate where little prior information concerning a scene is 
available.  
 
5.3. The study area and data 
 
The study area is located in Michoacán state, central west of Mexico, covering 

an area of approximately 58*60 km , within the longitude of 102° 00’ W and 
102° 32’ W, and latitude of 19° 02’ N and 19° 36’ N (figure 5-4).  

2

 

 
 
Figure 5-4: The study area. Left side of the figure are two sketch maps 
indicating Mexico and Michoacán state where the study area is located; right 
side is the false colour composite of Landsat-7 ETM+  image with red, green, 
and blue bands of 4, 5, and 7.  
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The available data are comprised of a Landsat-7 ETM+ image obtained on 16 
February 2003, with 6 bands and a spatial resolution of 30m, a mosaic of 25 
ortho-corrected photos taken in 1995 with 2 meters spatial resolution, and a 
land-cover map from the Forest Inventory generated in the year 2000. Eight 
land-cover types need to be classified: ‘orchards’, ‘temperate forest’, ‘irrigated 
agriculture’, ‘rain-fed agriculture’, ‘lava flow’, ‘tropical dry forest’, ‘grass 
land’, and ‘human settlement’. 
 
5.4. Results and discussion 
 
PCA was carried out to the six Landsat-7 ETM+ spectral bands and three PCA 
bands were generated. NDVI was calculated based on bands 3 (red), and 4 
(near infrared) and its value was calibrated into the range of 0-300. The three 
PCA bands, the calibrated NDVI, and the six Landsat spectral bands were used 
in the OBIA.  
 
Two segmentation levels were created by multi-resolution segmentation using 
different parameter settings. In the first level image was segmented using both 
image layers and one thematic layer which contains ‘human settlement’ 
information. Including the information of a thematic layer in the segmentation 
influences the generation of image objects. In contrast to image layers, 
thematic layers contain discrete information, which means that related layer 
values can carry different information that is defined in the attached attribute 
list. To be able to clearly define the affiliation of an object to a thematic class 
given by the thematic layer, it is not possible to create image objects which 
belong to different thematic classes. To ensure this, the borders separating 
different thematic classes are restrictive for further segmentation whenever a 
thematic layer is used. For this reason, thematic layers can not be given 
different weights but can merely be selected for use or not. In this case, of 
course, the thematic layer which contains the settlements information was 
given the weight one to include it in the segmentation. Meanwhile, the image 
layers can also be given to different weights. If switch the weights for all image 
layers to 0, the produced image objects are based exclusively on thematic layer 
information and the obtained objects do not represent the averaging of layer 
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values. The purpose of the segmentation in this level was to create only 
settlement and non-settlement objects. In order to group all the objects which 
are not the settlement objects into one object for facilitating the object 
allocation, an extremely large scale factor 10000 was used and the 
segmentation created ‘human settlement’ objects and one non-settlement object 
(figure 5-5). This level acted as super level in class hierarchy.  
 

 
Figure 5-5: Segmentation using the thematic layer (level 1) 

 
A second segmentation level was created with the three PCA bands and the 
calibrated NDVI with parameters of scale factor 25, colour factor 0.7, 
compactness 0.5. The selection of appropriate segmentation factors was based 
on trial and error with the segmentation procedure until a satisfactory pattern 
was found. In this case, the produced segments are smaller than the objects of 
interest. The importance of visual inspection in segmentation result evaluation 
was addressed in Pal and Pal (1993) and Benz (2004) and it is still a common 
practice in segmentation parameters selection. The settings of all segmentation 
parameters are very much dependent on the image data, study area, and the 
desired land cover types, which gives the segmentation black box 
characteristics, though several groups are working on approaches to overcome 
this limitation (e.g. Espindola et al. 2006).  
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These two levels were differentiated using hierarchical membership function. 
The second level is the actually classification level (figure 5-6). The smaller 
objects (in level 2) are nested within larger ones (in level 1) and inherit any 
characteristics of a larger image object.  
 

 
Figure 5-6: Segmentation by scale factor 20, colour 0.7, and compactness 0.5 
(level 2). 
 
First the super-level was classified. Two child classes were created in this level: 
‘human settlement’ and ‘non human settlement’. These two classes can be 
classified either manually since there are only a few objects to be defined or by 
NN through defined samples for class human settlement and non-settlement. In 
this chapter, they were classified using NN classifier.  
 
Eight classes were created in the classification level: ‘human settlement’, 
‘irrigated agriculture’, ‘rain-fed agriculture’, ‘grassland’, ‘tropical dry forest’, 
‘orchards’, ‘temperate forest’, and ‘lava flow’. ‘Human settlement’ at this level 
was classified using the classification result from its super level “class related 
features, relation to super class ‘human settlement’. The rest seven class use 
also class related features from the super level class ‘non-settlement’: “class 
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related features, relation to super class ‘non-settlement’. Besides this class 
related feature, other features used were calculated using the SEaTH algorithm. 
For SEaTH analysis about 2-5% sample objects of each land cover class were 
selected as training data. Then 104 characteristic features including spectral 
related, shape, and texture features were selected for the training objects. Based 
on the training objects and selected features, SEaTH tool calculated, for every 
object class combination, the separability and thresholds for each of the 104 
features. Based on the separability value, the “best” among 104 features are 
selected for each object class combination, and the features with maximum 
separability are used for classification. The selected features and thresholds 
based on SEaTH results for the land-cover classes were shown in the figure 5-7. 
 
The calculated features and thresholds are presented in the “class description” 
in eCognition. A class description is composed of expressions which describe a 
class through fuzzy or crisp terms and are connected by logical operators. 
Logical operators are needed because usually there are multidimensional 
dependencies in the feature space and a logical combination of features is used 
to represent this condition. The most common operators are “and (min)” and 
“or (max)” which are used in the following way:  
 
“And (min)”: the membership of the output equals the minimum fulfillment of 
the single statements, which means that out of a number of conditions 
combined by the minimum operator, the lowest membership value is returned. 
“Or (max)”: the membership of the output equals the maximum fulfillment of 
the single statements, which means the highest membership value is returned. 
For the minimum and maximum operators, only one statement determines the 
output, while for all other operators the values of all contained conditions 
contribute to the output. When creating a new class, the minimum operator 
“and (min)” is used by default. In the following, icon “contained” shows the 
classifier description that was inserted directly into the specified land cover 
class, and the icon “inherited” show the inherited classifier description from a 
higher classification level. Below the “contained” icon, logical expression “and 
(min)” is used, which returns the minimum of the fuzzy values.  
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Dry fields without crops  

Fields with crops 

 
Dense temperate forest 

 
Sparse temperate forest 

 
Grassland 

 
Lava flow 

 
Figure 5-7: The calculated features and thresholds for the land cover 
classification by SEaTH algorithm.  
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Orchards 

 
Oyamel pine 

 
Rain fed agriculture 

Settlement 

Shadow 
 

Sparse vegetation 
Figure 5-7 (continuation): The calculated features and thresholds for the land 
cover classification by SEaTH algorithm.  
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Tropical dry forest  

Wet fields without crops 
Figure 5-7 (continuation): The calculated features and thresholds for the land 
cover classification by SEaTH algorithm.  
 
In the classification scheme, class ‘irrigated agriculture’ has three sub-classes 
and ‘temperate forest’ has five sub-classes. Using SEaTH algorithm, the 
training objects were selected for each of the sub-classes and SEaTH calculated 
the features and threshold for the sub-classes. In eCognition, after the 
classification of the sub-classes, they can be grouped together as the classes of 
interest.  
 
The classifier of the land cover classes were then defined with those features 
and thresholds and were classified. Most of the object primitives were 
classified into the designed land cover classes. The classification using the 
features and thresholds calculated by this SEaTH algorithm does not produce 
fuzzy results, and each classified object primitive has the full membership to its 
classified class. Due to the spectral variety of objects of interest, it is possible 
that the selected training samples do not always cover the spectral range and 
represent the characteristics of those objects, and thus there are also objects that 
were not classified in the classification result. Generally speaking, if there are a 
large amount of objects unclassified, the process of selecting the training 
objects and calculating the features and thresholds should be re-done; if there 
are relatively few objects unclassified, the calculated thresholds can be adjusted 
in order that the feature values of those objects are being included and thus they 
can be classified. First it needs to be clear which classes those unclassified 
objects should belong to, and then the object feature values are compared with 
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those desired classes. Although adjusting the calculated threshold could cause 
the mis-classification of other objects and it should be done carefully. When 
there are very few objects remaining unclassified, we can use the manual 
classification to allocate them to the correct classes.  
 
In this case, there were only a reduced number of objects unclassified. By 
observing the characteristics of those objects and comparing them with the 
features and thresholds of the desired classes, the thresholds of the classes were 
adjusted and the objects were re-classified. The classification result is shown in 
Figure 5-8, and the legend of the produced classification is shown in figure 5-9. 
 

 

Figure 5-9: Legend of 

SEaTH classification 

result (level 2) 
 

Figure 5-8: Classification result of level 2.  

 
Accuracy assessment was carried out based on 600 stratified random points. 75 
random points were put to each of the eight classes of interest in a land use map 
(2000). These points were interpreted based on the ortho-corrected photographs, 
land use map 2000, data from field survey, and Landsat-7 ETM+ images. To 
evaluate the accuracy of the object based analysis, error matrix was formed 
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based on the ground data and classification data and it is shown in table 5-1 
(see attached file). Accuracy indices such as producer’s and user’s accuracies 
were calculated and it obtained an overall accuracy 78.7%.  
 
5.5. Conclusions 
 
Image objects can be characterized by a variety of spectral, spatial, texture, and 
contextual features. A comprehensive feature analysis is essential to work with 
image objects and the process of looking for the proper features could hinder 
the proper utilization of the strength of object based image analysis. 
Separability and Threshold (SEaTH) algorithm is able to evaluate statistically 
any number of given features for any number of object classes of interest. It 
utilizes the advantage of a wide feature basis of objects and provides the 
fundament for a successful classification. With the SEaTH algorithm, the 
optimum features which characterize a class can be identified to separate the 
objects of interest. The working process of SEaTH algorithm can be generally 
described as the following: first, training objects for the classes of interest were 
selected. If a class has several sub-classes, training objects should be selected 
for each of the sub-class. Then the feature values of those training objects are 
exported and the desirable features and thresholds are calculated based on the 
separability. For each class, SEaTH compares it to the other classes using each 
of the selected features. The features and thresholds were listed in the sequence 
of the separability values. Based on the calculation, features and thresholds 
with the highest separability-the highest Jeffries-Matusita (J) value, which is in 
the range of (0, 2), are selected for the classification.  
 
The desirable features and thresholds are then put back to the class hierarchy to 
define the classifiers for each of the classes in eCognition. The classification 
with the features and thresholds calculated by this SEaTH algorithm does not 
produce fuzzy results, and each classified object has the full membership to its 
class. SEaTH algorithm calculates the features and thresholds based on the 
selected training objects, which should be representative enough to cover the 
entire spectral range of the class. Usually, the classification using the features 
and thresholds calculated by SEaTH do not classify all the objects due to that 
there are objects with feature values outside of the range of the selected training 
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objects. So, using SEaTH algorithm, there will often be a “back and forth” 
process. After select the training objects, calculate the features and thresholds, 
and classify the image, it is needed to observe which objects are not included 
(classified), and then reselect the training objects again, carefully include those 
objects, and recalculate the features and thresholds, and classify the image 
again. To avoid this back and forth process, based on the observed values of 
those not-classified objects, the thresholds of the calculated features can be 
adjusted in order to include those values, but it is recommended only when the 
missing objects are few, because adjusting the thresholds without recalculating 
can cause the mis-classification of other objects. All in all, the OBIA with 
features and thresholds identified with SEaTH algorithm produced a good 
classification result. With SEaTH, the time-consuming trial and error practice 
for seeking significant features and proper thresholds can be avoided. SEaTH 
algorithm can also help to minimize human involvement in classification steps 
and speeds up the process of classification when huge data is to be dealt with, 
however, it could be at the expense of accuracy. 
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CHAPTER 6 
 
MODIS EVI AS AN ANCILLARY DATA FOR 
AN OBJECT-BASED IMAGE ANALYSIS WITH 
MULTI-SPECTRAL MODIS DATA* 

 
 
Abstract. This paper investigates the contribution of Enhanced Vegetation 
Index (EVI) data to the improvement of object-based image analysis using 
multi-spectral Moderate Resolution Imaging Spectral-radiometer (MODIS) 
imagery. Object-based image analysis classifies objects instead of single pixels. 
The idea to classify objects stems from the fact that most often the important 
information to process an image is not presented in single pixels but in groups 
of pixels (objects) (Blaschke et al. 2001). Based on image segmentation, 
object-based image analysis uses not only spectral related information, but 
spatial, textural and contextual information as well. However, which type of 
information to use depends on the image data and the application, among many 
other factors. Enhanced Vegetation Index (EVI) data are from the MODIS 
sensor aboard Terra spacecraft. EVI improves upon the quality of Normalized 
Difference Vegetation Index (NDVI) product. It corrects for some distortions 
in the reflected light caused by the particles in the air as well as the ground 
cover below the vegetation. The EVI data product also does not become 
saturated as easily as NDVI when viewing rainforests and other area of the 
Earth with large amounts of chlorophyll. In this research, 69 EVI data (scenes) 

                                                 
* Based on the content of this chapter, a paper titled “MODIS EVI as an ancillary 
data for an object-based image analysis with multi-spectral MODIS data” was 
presented in the conference GEOBIA 2008, 6-7, August, 2008, Calgary, Canada.  
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collected during the period of three years (from January of 2001 to December 
of 2003) in a mountainous vegetated area were used to study the correlation 
between EVI and the typical green vegetation growth stages. These data sets 
can also be used to study the phenology of the land cover types. Different land 
cover types show distinct fluctuations over time in EVI values and this 
information might be used to improve land cover classification of this area. 
Object-based image analysis was used to perform the land cover classification: 
one was only with MODIS multispectral data (seven bands), and the other one 
included also the 69 EVI images. Eight land cover types were distinguished 
and they are temperate forest, tropical dry forest, grassland, irrigated 
agriculture, rain-fed agriculture, orchards, lava flows and human settlement. 
The two classifications were evaluated with independent (from the training data) 
verification data, and the results showed that with EVI data, the classification 
accuracy was significantly improved, at 0.01% level, evaluated by the test of 
McNemar.  
 
Key words: Enhanced Vegetation Index (EVI), Moderate Resolution Imaging 
Spectral-radiometer (MODIS), phenology, object-based image analysis  
 
6.1. Introduction 
 
In the last three decades, advances in computer technology, earth observation 
sensors and GIS science, led to the development of “Object-based image 
analysis” as an alternative to the traditional pixel-based image analysis. Many 
studies have shown that traditional pixel-based image analysis is limited 
because basically it uses only spectral information of single pixels and thus 
produces poor results especially with high spatial resolution satellite images. 
By contrast, object-based image analysis (OBIA) works on (homogeneous) 
objects. As an object is a group of pixels, its characteristics such as the mean, 
standard deviation of spectral values, etc. can be calculated and used in the 
classification; besides shape and texture features of the objects can also be 
derived and used to differentiate land cover classes with similar spectral 
information.  
 
Enhanced Vegetation Index (EVI) data were obtained from the MODIS sensor 
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aboard Terra spacecraft. EVI improves upon the quality of NDVI product. It 
corrects for some distortions in the reflected light caused by the particles in the 
air as well as the ground cover below the vegetation. The EVI data product 
does not become saturated as easily as NDVI when viewing rainforests and 
other area of the Earth with large amounts of chlorophyll. The EVI data are 
designed to provide consistent, spatial and temporal comparisons of vegetation 
conditions, and it offers the potential for regional analysis and systematic and 
effective monitoring of the forest area. This paper investigates the contribution 
of EVI data to the improvement of the performance of OBIA with MODIS 
imagery. The 69 EVI data collected during the period 2001 to 2003 were 
plotted to obtain the phenology information of the land covers in the study area.  
 
Phonology is the study of the times of recurring natural phenomena. One of the 
most successful of these approaches is based on tracking the temporal change 
of a Vegetation Index such as NDVI or EVI. The evolution of vegetation index 
exhibits a strong correlation with the typical green vegetation growth stages. 
The results (temporal curves) can be analyzed to obtain useful information such 
as the start/end of vegetation growing season. However, remote sensing based 
phonological analysis results are only an approximation of the true biological 
growth stages. This is mainly due to the limitation of current space based 
remote sensing, especially the spatial resolution, and the nature of vegetation 
index. A pixel in an image does not contain a pure target but a mixture of 
whatever intersected the sensor’s field of view.  
 
Since EVI is a good indicator of the phenology of the land cover types, the 
research tested the contribution of EVI data to the land cover classification. 
OBIA was used to classify the land covers in the study area: one was with 
single date MODIS multi-spectral reflectance data (seven bands), and the other 
one included also the EVI data (69 dates). The classification results were 
evaluated with independent verification data and were compared in order to 
examine the contribution of the EVI data to image classification using object 
based method with MODIS multi-spectral data.  
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6.2. Study are and Data 
6.2.1 The study area 
 
The study area is located in Michoacán state, central west of México, covering 
an area of approximately 58*60 km , within the longitude of 102° 00’ W and 
102° 32’ W, and latitude of 19° 02’ N and 19° 36’ N (figure 6-1). The main 
land cover types in the study area are temperate forest, tropical dry forest, 
orchards, grassland, irrigated agriculture, rain fed agriculture, lava flow, and 
human settlement.   

2

 

 
Figure 6-1: The study area. Left side of the figure are two sketch maps 
indicating México and Michoacán state where the study area is located; right 
side is the false colour composite of MODIS imagery with R, G, B represented 
by bands 2 (near-infrared), band 1 (red), and band 3 (green).  
 
6.2.2 Earth Observation data 
 
Data used in this research were acquired by the MODIS instrument on board 
Terra and Agua satellites from National Aeronautics and Space Administration 
(NASA). Terra MODIS and Agua MODIS take between one and two days to 
cover the entire Earth’s surface, with a complete 16-day repeat cycle. Both 
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sensors acquire data in 36 spectral bands, or groups of wavelengths, and their 
spatial resolution (pixel size at nadir) is 250m for channels 1 and 2 (0.6 μm -0.9 
μm), 500m for channels 3 to 7 (0.4 μm -2.1 μm) and 1000m for channels 8 to 36 
(0.4 μm -14.4 μm). These channels are calibrated on orbit by a solar diffuser 
(SD) and a solar diffuser stability monitor (SDSM) system, which convert the 
Earth surface radiance to radio-metrically and geo-locationally calibrated 
products for each band (Xiong et al. 2003). Although recent evaluations have 
reported a geo-location error of 113m at nadir (Knight et al. 2006), official 
technical specifications warrant 50m geo-location accuracy (Wolfe et al. 2002). 
In both cases, the geo-location is less than half a pixel dimension, and hence 
acceptable for the multi-spectral analysis (Carrao et al. 2007).  
 
The data acquired by the MODIS sensor is used to generate multiple products 
at different pre-processing stages. In this study the MOD09A1 product was 
used, a weekly composite of surface reflectance images, freely available from 
MODIS Data Product website (http://modis.gsfc.nasa.gov). This specific 
product is an estimate of the surface spectral reflectance imaged at a nominal 
spatial resolution of 500m for the first seven bands as it would have been 
measured at ground level if there were no atmospheric scattering or absorption. 
The applied correction scheme compensates for the effects of gaseous and 
aerosol scattering and absorption, for adjacency effects caused by variation of 
land cover, for Bidirectional Reflectance Distribution Function (BRDF), for 
coupling effects, and for contamination by thin cirrus (Vermote and Vermeulen 
1999). Seven first spectral bands (1-7) of MOD09A1 imagery obtained on 08 
March 2007 were used because they are closely related to land cover mapping. 
In addition, a set of 69 MODIS Enhanced Vegetation Index (EVI) images 
covering a full three years observation period, from January 2001 to December 
2003 were also used for image classification. 
 
EVI is an ‘optimized’ index designed to enhance the vegetation signal with 
improved sensitivity in high biomass regions and improved vegetation 
monitoring through a de-coupling of the canopy background signal and a 
reduction in atmosphere influence. EVI is computed following this equation 
(Huete et al. 2002): 
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Where NIR/red/blue are atmospherically corrected or partially atmosphere 
corrected (Rayleigh and ozone absorption) surface reflectance, L is the canopy 
background adjustment that addresses non-linear, differential NIR and red 
radiant transfer through a canopy, and c1, c2 are the coefficients of the aerosol 
resistance term, which uses the blue band to correct for aerosol influence in the 
red band. The coefficients adopted in the MODIS EVI algorithm are: L = 1, c1 
= 6, c2 = 7.5, and G (gain factor) = 2.5. Whereas the NDVI is chlorophyII 
sensitive, the EVI is more responsive to canopy structural variations, including 
leaf area index (LAI), canopy type, plant physiognomy, and canopy 
architecture. The two VIs complement each other in global vegetation studies 
and improve the detection of vegetation changes and extraction of canopy 
biophysical parameters. For this work, OBIA is carried out in an object-based 
image analysis software eCognition (Definiens 2006).  
 
6.3. Methods 
6.3.1 OBIA in eCognition 
 
OBIA in eCognition comprises two parts: multi-resolution image segmentation 
and classification based on objects’ features in spectral, spatial, and textural 
domains. Image segmentation is a kind of regionalization, which delineates 
objects according to a certain homogeneity criteria and at the same time 
requires spatial contingency (Lang et al. 2006). Several parameters are used 
here to guide the segmentation result. The scale parameter determines the 
maximum allowed heterogeneity for the resulting image objects. The colour 
criterion defines the weight with which the spectral values of the image layers 
contribute to image segmentation, as opposed to the weight of the shape 
criterion. The relationship between colour and shape criteria is: colour + shape 
= 1. Maximum colour criterion 1.0 results in objects spectrally homogeneous; 
while with a value of less than 0.1, the created objects would not be related to 
the spectral information at all. Smoothness is used to optimize image objects 
with regard to smooth borders, and compactness allows optimizing image 
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objects with regard to compactness (Baatz et al. 2004). The resulting objects 
also depend on the image data. For a given set of segmentation parameters, 
heterogeneous image data result in smaller image objects than homogeneous 
image data.  
 
The image objects can then be classified either using a (standard) nearest 
neighbour (NN) classifier or fuzzy membership function, or a combination of 
both. The first classifier classifies the object primitives using user-defined 
sample objects, and by comparing the distance between object primitives and 
the training objects, the object primitives are classified into classes with which 
it has the shortest distance. The second classifier describes intervals of feature 
characteristics (Hofmann 2001b). The variety of object features can be used 
either to describe fuzzy membership functions, or to determine the feature 
space for NN. More detailed description of image segmentation and 
classification is given in Hofmann (2001a) and Gao et al. (2006). In this paper, 
the OBIA was performed with a standard NN classifier.  
 
6.3.2. Accuracy assessment 
 
Classification accuracy is used to describe the degree to which the derived 
image classification agrees with reality (Campbell 1996), and a classification 
error is, thus, the discrepancy between thematic map and reality. Accuracy 
assessment result is often represented by a confusion matrix. It is a simple 
cross-tabulation of the mapped class label against that observed one in the 
ground or reference data for a sample of cases at specified locations. The 
confusion matrix provides an obvious foundation for accuracy assessment 
(Campbell 1996, Canters 1997), by providing the basis to both describe 
classification accuracy and characterize errors, which may help to refine the 
classification. Many measures of classification accuracy can be derived from a 
confusion matrix (Stehman 1997). One of the most popular is the percentage of 
cases correctly allocated which is often regarded as overall accuracy, which is 
calculated by dividing the total number of the verification data with the number 
of the correctly classified image data. For the accuracy of individual classes, 
the percentage of cases correctly allocated may be derived from the confusion 
matrix by relating the number of cases correctly allocated to the class to the 
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total number of cases of that class. This can be achieved from two standpoints, 
depending on whether the calculations are based on the matrix’s row (user’s 
accuracy) or column marginal (producer’s accuracy) (Foody 2002). The 
detailed description of the error matrix and the calculation of the measures of 
classification accuracy can be found in the second chapter 2.4.  
 
Image classifications were evaluated with independent reference data which 
comprised of in total 496 points. These points were generated with a stratified 
random sampling method. Based on the land use map from the year 2000, 
random points were extracted from the 8 classes of interest. The properties of 
these points were interpreted based on the information from ortho-corrected 
photographs (1995), land use map from year 2000, and Landsat-7 ETM+ image 
(2003).  
 
6.3.3. Test of McNemar 
 
Map accuracy statements are often compared to evaluate the relative suitability 
of different classification techniques for mapping. Accuracy statements should 
be compared in a statistically rigorous fashion to provide a more objective basis 
for comment and interpretation (Foody 2004). In many remote sensing studies, 
the same set of ground data are used in the assessment of the accuracy of the 
thematic maps to be compared. For related samples, the statistical significance 
of the difference between two accuracy statements maybe evaluated using tests 
that take into account the lack of independence such as Test of McNemar. It is 
a non-parametric test that is based on confusion matrixes that are 2 by 2 in 
dimension. The attention is focused on the binary distinction between correct 
and incorrect class allocations. The McNemar test equation can be expressed as  
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classified. Z2 follows a chi-squared distribution with one degree of freedom 
(Agresti 1996). The statistical significance can be obtained with the derived z2 

compared against tabulated chi-square values. For example, with one degree of 
freedom, when the calculated z2 >= 3.84, the two classifications are 
significantly different at 0.05% level; when z2 >= 6.64, the two classifications 
are significantly different at 0.01% level; when z2 >= 10.83, the two 
classification are significantly different at 0.001% level; and when z2 < 3.84, 
the two classifications are not significantly different.  
 
6.4. Results 
6.4.1. Phenology of the land-cover types 
 
69 EVI images from 2001 to 2003 were used to monitor the phenology of the 
eight land cover types.  
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Figure 6-2: EVI temporal profile of an area with 8 dominant land cover types 
over a period of 3 years (2001-2003), this temporal profile depicts the growing 
season every year as well as changes in this profile from year to year due to 
climate and other constraints. 
 
In figure 6-2, the horizontal axis represents the 69 MODIS EVI data in three 
years from which, each year there are 23 image data. The vertical axis 
represents the EVI values of the land cover types from different time of the 
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year. The 23 images from each year were taken every 16 days. In the example 
of the image data from 2001, roughly, image data 1 and 2 corresponds to data 
from January, 3 and 4 corresponds to February, and so on and so forth. The 
figure shows that for land cover types such as ‘rain fed agriculture’, ‘tropical 
dry forest’ and ‘grassland’, there are big changes in EVI values during different 
seasons in the period of three years; while for ‘lava flow’ and ‘human 
settlement’ the fluctuation of the EVI values during different seasons of the 
year is small. In the example of EVI values of ‘tropical dry forest’, the EVI 
values are low for image data 1 to 11, which corresponds in season to January – 
the end of May, dry season in México. In dry season, ‘tropical dry forest’ loses 
all the leaves and becomes totally dry, causing the rather low EVI values 
during this period. Its EVI values start to rise from data 11 and reach its peak 
on 17/18, which corresponds to the period from the end of May to the end of 
September and which is the rainy season in Mexico. Thus ‘tropical dry forest’ 
has high EVI values because in rainy season it regains its leaves and tends to 
have higher reflection in near infrared band. From data 18 its EVI value starts 
to drop and keeps dropping until data 28 which corresponds to March/April of 
the next year, during which the dry season starts and continues until the 
beginning of the rainy season of the next year. ‘Tropical dry forest’ and 
‘grassland’ show evident seasonal change of EVI data because the growth of 
these two land cover types depends on the water from the natural rain. Other 
land cover types such as ‘lava flow’ and ‘human settlement’, having few 
vegetation cover, do not show much change in EVI values during different 
seasons of the year. Also, their EVI values are rather low among the eight land 
cover types (the EVI value of ‘human settlement’ is even lower than that of the 
‘tropical dry forest’ during the dry season due to little vegetation cover).  
Figure 6-2 also shows that during the dry season, four land cover types 
‘grassland’, ‘human settlement’, ‘rain fed agriculture’, and ‘tropical dry forest’ 
are not separable.  
 
Land cover types such as ‘orchard’, ‘irrigated agriculture’, and ‘temperate 
forest’ show high EVI values during the year and small fluctuations during 
different seasons of the year. These land cover types keep green all the year 
round and show only small difference between dry season and rainy season. 
The sudden drop of the EVI value of data 11 for ‘orchards’ is due to the noise 
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of image data. In rainy season, the constant presence of rain clouds influences 
the image data quality and produce noises. One way to derive the missing value 
at this point is to average data value 10 and 12.  
 
6.4.2 Separability analysis of the land-cover types 
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Figure 6-3: Separability of eight land-cover classes in different combinations 
of the feature space. 
 
Figure 6-3 shows that land cover types are better separated when both near-
infrared and optical spectral bands, or mid-infrared and optical spectral bands 
are present. In the feature spaces composed of only optical bands, or only near-
infrared or mid-infrared bands, the separability between the land cover types 
appears to be low.  
 
6.4.3 OBIA with single date multi-spectral MODIS imagery 
 
First, the multispectral MODIS image was segmented using the following 
parameters: scale factor 20, colour 0.7, shape 0.3, and smoothness 0.5. By 
giving more weights to colour factor, the segmentation procedure considers 
more spectral information. For the shape factor, we gave the same weight to 
smoothness and compactness for the produced objects. The selection of the 
parameters was based on the visual checking. Altogether 3518 objects were 
created. In the class hierarchy, eight land cover classes were created and for 
each of them, the standard nearest neighbour classifier using the mean values 
of the spectral information from the 7 bands of MODIS multispectral image. 
Training samples were defined for each of the seven classes, and the image was 
classified and is presented in figure 6-4. The legend of the produced image is in 
figure 6-6. 
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Figure 6-4: Object-based image analysis with only 
reflectance data 

 
Figure 6-6: 

Legend 

 
The classified image was evaluated with the independent verification data 
which is comprised of 499 stratified random sample points. Error matrix was 
produced and it is shown in table 6-1 (see annex). The classification obtained 
an overall accuracy 57.3%.   
 
6.4.4 OBIA with both spectral reflectance data and multi-date EVI data  
 
OBIA was performed with both single date spectral reflectance data and 69 
dates EVI data. Image was segmented with only 7 spectral reflectance bands 
and with the same parameters in order to obtain the same number of objects as 
the first classification (section 6.4.3). The same class hierarchy and the same 
training samples were used for the eight classes of interest. NN classifier was 
also used here but based not only on the spectral information of the reflectance 
data, but also on the 69 EVI data. The image was classified and shown in 
figures 6-5. And the legend of the classified image was shown in figure 6-6.  
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Figure 6-5: Object-based image analysis with reflectance 
data and multi-date EVI data 

 
Figure 6-6: Legend 

 
In the obtained result, land cover types were visually more homogeneous. The 
classified image was evaluated with the same independent reference data which 
is comprised of 499 stratified random sample points. Error matrix was 
produced and it is shown in table 6-2 (see annex). This classification obtained 
an overall accuracy 62.5%.  
 
6.4.5 Comparison and discussion 
  
The two classifications were compared. The OBIA using both single date 
spectral reflectance data and multiple dates EVI data shows an improvement of 
5.2% in accuracy than that obtained by using only single date spectral 
reflectance data. Test of McNemar was used to evaluate the significance of the 
difference between these two classifications. 249 pixels were correctly 
classified and 150 pixels were wrongly classified by both classifications, 63 
pixels were correctly classified by the classification with both spectral 
reflectance and EVI data, and 37 pixels were correctly classified by the 
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classification using only spectral reflectance data. The calculated chi-square z2 
= 6.76, Checked by the significance table, the two classifications are 
significantly different, at 0.01% level. The result shows that the OBIA with 
both spectral reflectance and EVI data obtained the accuracy significantly 
higher than the classification with only spectral reflectance data. Further 
checking these two classifications shows that the improvement is mainly 
represented by classes ‘tropical dry forest’, ‘lava flow’, ‘orchards’, and 
‘irrigated agriculture’, which contributed 3.8%, 0.8%, 1.0%, and 2.2% to the 
improvement of the accuracy, respectively. As shown in the accuracy 
assessment tables, by adding the EVI data, the spectral confusion between 
‘tropical dry forest’ and ‘rain fed agriculture’ in the MODIS image was 
alleviated and it improved 15.4% the produced accuracy of ‘tropical dry forest’. 
EVI data alleviated the confusion between ‘lava flow’ and ‘tropical dry forest’; 
between ‘irrigated agriculture’, and ‘grassland’; and between ‘orchards’ and 
‘irrigated agriculture’.  
 
The MODIS spectral reflectance data contain information from visible, near 
infrared and mid infrared spectral regions which record the most important 
spectral signature of the classes for land cover mapping. Due to the coarse 
spatial resolution of 250m and 500m, multi-spectral MODIS image was 
composed mostly of mixed pixels, which reduced the spectral separability 
between classes of interest. The multi-date EVI data helped to separate land 
cover classes which were difficult to be differentiated with only single date 
spectral reflectance information. For example the ‘grassland’ showed serious 
spectral confusion with ‘rain fed agriculture’ in the spectral reflectance image; 
also ‘tropical dry forest’ and ‘lava flow’; and ‘rain fed agriculture’ and ‘tropical 
dry forest’. By observing figure 6-2, we can see that these pairs of classes 
exhibit different reflectance values and are separable using EVI data.  
 
6.5 Conclusions 
 
This research investigates the contribution of EVI data to the improvement of 
OBIA with MODIS spectral reflectance data. The evolution of the 69 EVI data 
collected during the period 2001 to 2003 exhibits a strong correlation with the 
phenology of the land cover types. The results (temporal curves) were analyzed 
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and various land cover types show different fluctuations in EVI values, which 
were used to improve the land cover classification. OBIA was carried out for 
land cover classification: one was only with MODIS spectral reflectance data, 
and the other one included also the 69 EVI images. The classifications were 
evaluated with independent verification data, and the results showed that with 
EVI data, the accuracy was significantly improved, at a level of 0.01%, by the 
test of McNemar. This paper shows that the MODIS EVI data supply important 
information not only to monitor the phenology of the land cover types, but to 
differentiate land cover types which were difficult to be differentiated using 
single date spectral reflectance data.  
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CHAPTER 7 
 
CONCLUSIONS 
 
 
7.1. The contribution of the thesis 
 
This research set out to investigate the contribution of image segmentation and 
object based image analysis (OBIA) to land-cover/use classification using 
remote sensing images in a diverse and complex (regarding to the distribution 
of land cover types) study area. Project introduction, motivation, research 
questions, objectives and sub-objectives are summarized in chapter 1. The 
introduction to the theoretic background of OBIA including image 
understanding, image segmentation, fuzzy classification, and accuracy 
assessment is presented in chapter 2. In chapter 3, 4, 5, and 6, several 
experiments focused mainly on the application of image segmentation and 
OBIA were carried out, in comparison to pixel-based image analysis.  
 
7.1.1. The effects of image segmentation to the classification accuracy 
 
Image segmentation is a kind of regionalization, which delineates units 
according to a given criterion of homogeneity, and, at the same time, requires 
spatial contingency (Lang and Blaschke 2006). Image segmentation is a 
preliminary and critical step in OBIA, the assumption being that results directly 
affecting the performance of the object based classification. Image 
segmentation evaluation before the classification ensures that the best 
segmentation result is used in the classification stage. One principal point of 
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concern here is the selection of segmentation parameters, which has 
conventionally been based on trial-and-error approaches. In this part of the 
research, image segmentation was evaluated with an objective function 
proposed by Espíndola et al. (2006).  
 
Landsat-7 ETM+ imagery was segmented with nine different parameter 
settings in the image processing software SPRING (from INPE, Brazil), which 
uses two parameters-a spectral threshold and a spatial/size limit-to guide the 
segmentation results. The segmented images were evaluated by the objective 
function (Espindola et al. 2006) which takes into account of the objects’ 
intrasegment homogeneity and intersegment separability. The segmented 
images were then classified and the classification results were evaluated with 
independent ground data. It is shown that the best segmentations, in terms of 
objective function rating, also led to the classifications with the highest 
accuracies, and, the accuracy values presented similar distribution as the 
objective function values in the function of the segmentations. To be 
comparable, pixel based classification using the same set of training data was 
carried out and its accuracy was evaluated. The test of McNemar shows that the 
difference in accuracies between the pixel-based and OBIA is significant. This 
research shows that the objective function is an effective way to choose the 
optimal segmentation to carry out the classification; OBIA based on the 
optimal segmentation is superior than the pixel based one and it obtained 
accuracy which is significantly higher than that of the pixel based one.   
 
7.1.2. OBIA with different spatial resolution images.  
 
The performance of pixel-based and object-based image analysis was compared 
over satellite images with different spatial resolutions. The coarser spatial 
resolution images were generated by degrading spatial resolution of a multi-
spectral SPOT-5 imagery which has a 10 m spatial resolution. Two simulating 
methods were used: 1) “mean-filtering” which averages the pixel values in a 
certain sized window (3*3, 10*10, 25*25), and 2) “cubic-filtering”, modified 
from Justice et al. (1998), which keeps the local contrast in the image during 
the simulation procedure and produced images closer to the “real” images. 
These two sets of images were classified by both pixel-based maximum 
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likelihood classifier (MLC) and minimum distance classifier, and by object-
based Nearest Neighbour (NN) classifier, respectively. Accuracy assessment 
results showed that for SPOT-5 and a simulated image with 30 m spatial 
resolution generated by cubic-filtering, OBIA obtained higher accuracies than 
those produced by pixel-based MLC and minimum distance classifiers. While, 
with images of further increased spatial resolutions (100m, and 250m), OBIA 
did not obtain higher overall accuracies than the pixel-based ones. This study 
showed that OBIA has advantage over the pixel-based one, but in the rating of 
the obtained accuracies, the advantage only holds true for higher spatial 
resolution images. 
 
Comparing with pixel-based image classification methods, OBIA has many 
advantages: the way it classifies an image by partitioning it into objects is 
similar to the way humans comprehend the landscape; image-objects exhibit 
useful features (shape, texture, context relations with other objects) that single 
pixels lack; image-objects can be more readily integrated in vector GIS, etc. 
Based on this work, a general conclusion was drawn that the advantage of 
OBIA over the pixel-based one, based on classification accuracy rating, was 
only represented by images with higher spatial resolutions (< 30m). This is 
because that increased spectral variability within high spatial resolution 
imagery confuses traditional pixel-based classifiers, while by OBIA, pixels 
with similar spectral information are firstly grouped into objects and then 
classified. This way simplifies the image understanding and minimizes 
speckled effects in the classified images. Images with medium to low spatial 
resolution have lower spectral variability and thus are easily handled by pixel-
based method. As for the images with low spatial resolution, such as MODIS, 
by applying OBIA, pixels belonging to different land cover types could 
possibly be grouped together thus are miss-classified and produce lower 
accuracy than that by pixel-based method. However, as stated before, the 
obtained accuracy values from this part of the research should never be taken in 
an absolute sense; there are too many factors which influence classification 
accuracy such as image data quality, the reliability of training data and 
testing/verification data, the accuracy assessment method adopted, among 
others.  
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As to the accuracy assessment method, though accuracy evaluated by random 
points (simple/stratified random) is generally recognized to be more 
trustworthy than that evaluated using homogenous areas of land cover types, it 
may not hold true when it comes to classification results generated by OBIA. 
Due to that single points/pixels are usually merged into surroundings by object 
based method, and thus, evaluated by single pixels, the accuracy of object-
based image classification could be under-evaluated, which may explain that 
although the object-based classification results appear to be more appealing, 
their accuracy results evaluated with random points tend to be low in the 
experiments.  
 
7.1.3. OBIA with a semi-automatic feature extraction algorithm.  
 
Image objects can be characterized by a variety of spectral, spatial, texture, and 
contextual features. A comprehensive feature analysis is essential to work with 
image objects and the process of looking for the proper features could hinder 
the proper utilization of the strength of image objects. Separability and 
Threshold (SEaTH) algorithm is able to evaluate statistically any number of 
given features for any number of object classes of interest. It utilizes the 
advantage of a wide feature basis of objects and provides the fundament for a 
successful classification. With the SEaTH algorithm, the optimum features 
which characterize a class can be identified to separate the objects of interest. 
The working process of SEaTH algorithm can be generally described as the 
following: first, select training objects for the classes of interest (down to the 
sub-classes level) which should comprise 2-5% of the created objects; then 
export the feature values of the training objects and SEaTH algorithm 
calculates the desirable features and thresholds based on the separability. For 
each class, SEaTH compares it to the other classes using each of the selected 
features. The features and thresholds were listed according to the separability 
values. Based on the calculation, features and thresholds with the highest 
separability-the highest Jeffries-Matusita (J) value, which is in the range of (0, 
2), are selected for the classification.  
 
The desirable features and thresholds are then put back to the class hierarchy to 
define each of the classes in eCognition. The classification with the features 
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and thresholds calculated by this SEaTH algorithm does not produce fuzzy 
results, and each classified object has the full membership to its class. SEaTH 
algorithm calculates the features and thresholds based on the selected training 
objects, which should be representative enough to cover the entire spectral 
range of the class. Usually, the classification using the features and thresholds 
calculated by SEaTH does not classify all the objects due to that there are 
objects with feature values outside of the range of the selected training objects. 
So, using SEaTH algorithm, there will often be a “back and forth” process. 
After selecting the training objects, calculating the features and thresholds, and 
classifying the image, it is needed to observe which objects are not included 
(classified), and then reselect the training objects again, including those objects, 
and recalculate the features and thresholds, and classify the image again. To 
avoid this back and forth process, based on the observed values of those not-
classified objects, the thresholds of the calculated features can be adjusted in 
order to include those values, but it is recommended only when the missing 
objects are few, because adjusting the thresholds without recalculating can 
cause the mis-classification of other objects. All in all, the OBIA with features 
and thresholds identified with SEaTH algorithm produced a good classification 
result. With SEaTH, the time-consuming trial and error practice for seeking 
significant features and proper thresholds can be avoided. SEaTH algorithm 
can also help to minimize human involvement in classification steps and speeds 
up the process of classification when huge data is to be dealt with, however, it 
could be at the expense of accuracy.  
 
7.1.4. MODIS EVI as an ancillary data for an object-based image analysis 
with multi-spectral single date MODIS imagery 
 
This research section works for a project which involves the use of MODIS 
imagery by investigating the contribution of Enhanced Vegetation Index (EVI) 
data to the improvement of OBIA using Moderate Resolution Imaging 
Spectral-radiometer (MODIS) imagery. Experiment shows that the evolution of 
the 69 EVI data collected during the period 2001 to 2003 (23 images for each 
year) exhibits a strong correlation with the typical green vegetation growth 
stages and various land cover types show different fluctuation in EVI values 
over time. This information was used to improve the land cover classification 
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with OBIA. Two experiments with OBIA were carried out: one was only with 
MODIS spectral reflectance data, and the other one included also the 69 EVI 
images. The classifications were evaluated with independent verification data, 
and the results showed that with EVI included in the classification, the 
accuracy was significantly improved, at a level of 0.01%, by the test of 
McNemar. It shows that the multi-temporal MODIS EVI data supply important 
information not only to monitor the phenology of the land cover types, but to 
differentiate land cover types which were difficult to be distinguished using 
single date spectral reflectance data. 
 
7. 2. Further studies 
7.2.1. Image segmentation parameterization.  
 
Segmentation is not new, but only a few of the existing approaches are widely 
available in commercial software packages and lead to qualitatively convincing 
results while being robust and operational (Blaschke 2004). One reason is that 
the segmentation of an image into a given number of regions is a problem with 
a huge number of possible solutions, and experiments show that image 
segmentation has no unique solution (Lang et al. 2006). For example, 
segmentation results differ by changing only the bit depth (8 bit, 11 bit, etc.) of 
the image heterogeneity measure. The high degrees of possibility must be 
reduced to a few which are satisfying the given requirements.  
 
Additionally, segmentation needs to address a certain scale, and to define a 
certain spectral and spatial factor. Up to now, the parameterization of image 
segmentation step is still based on trail and error approach. There is no an 
absolute measure to tell which parameter settings are especially suited for the 
analysis.  
 
7.2.2. Accuracy assessment of OBIA 
 
When performing the comparison between the pixel-based and object-based 
image classifications, in order to make sure the comparison is fare, the same set 
of reference data is often used (as was done in this research). Image 
classification accuracy evaluated by random points (simple random or stratified 
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random points) is generally recognized to be more trustworthy than that 
evaluated using homogenous areas of land cover types. However, this research 
found that the method of using random sampling points does not seem to suit to 
evaluate the results produced by OBIA (chapter 4 of this research). Also in 
Blaschke (2004), it observed that “for the real accuracy assessment - the 
comparison with ground truth, still many problems remain. The comparison 
with the landcover data sets can not be based on pixel statistics any more…” 
 
Due to that single points/pixels are usually merged into surroundings to form 
objects by image segmentation, and thus, evaluated by single pixels, object 
based image analysis results could be under-evaluated. One way to improve 
this point is to generate the ground data not only based on the ground 
survey/interpretation of single pixels, but taking into account the surrounding 
pixels as well.  
 
Generally speaking, the evaluation methods of object based image analysis 
results have not yet been well established. Technically, polygons produced by 
image segmentation/object based image analysis have to be compared with 
polygons of the verification data through various GIS overlay techniques taking 
into account the varying sizes and different degrees of overlap and 
misclassification, respectively (Blaschke 2004). And thus it requires the 
adaptation of the existing accuracy assessment methods and developing proper 
techniques that explicitly assess the accuracy of object-specific features. 
 
7.3. General conclusions 
 
Object-based image analysis (OBIA) is seen as an emerging discipline (Hay 
and Castilla 2006) or a new paradigm in image analysis (Lang and Blaschke 
2006). The main reasons that drive the development of OBIA are (Hay et al. 
2005): 1) A dramatic increase in the number of available high resolution 
remote sensing imagery. 2) An ever-growing user needs and expectations of 
geography information products. 3) Recognition of limitations with pixel-based 
image classification approaches (i.e. pixels are not true geographical objects 
and pixel topology is limited; current remote sensing image analysis largely 
neglects the spatial photo-interpretive elements - texture, context, shape; 
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increased spectral variability within high resolution imagery confuses 
traditional pixel-based classifiers and results in lower classification accuracies). 
4) Awareness that object-based methods can make better use of neglected 
spatial information within remote sensing images, and provide greater 
integration with GIS information.  
 
OBIA partitions imagery into (meaningful) image objects, and assesses the 
objects’ spatial, spectral, and temporal characteristics. The core concept of 
OBIA is that the important information necessary to interpret an image is not 
represented in single pixels, but in meaningful image objects and their mutual 
relationships. Usually image objects are created by image segmentation.  
Existing segmentation techniques vary (a) in their approaches by starting at the 
entire image which is then subdivided, or starting with the individual pixels 
which are then grouped, and (b) in the weight given to the spatial component 
compared to the variables from the feature space (measurement space). In 
general, the more accurate results are obtained with the computationally more 
intensive techniques, i.e., starting with individual pixels and careful selection of 
the merges to be made. Segmentation studies have been performed for several 
decades, but only recently it is implemented with a high level of accuracy and 
fast performance due to the increased computer processing capacity. This 
resulted in the development and rapid expansion of OBIA. Based on image 
segmentation, object-based image analysis is a sub-discipline of GIS science 
devoted to partitioning remote sensing imagery into meaningful image-objects, 
and assessing their characteristics through spatial, spectral and temporal scales.  
 
Instead of analyzing the spectral behavior of individual pixels, neighbouring 
pixels are grouped into objects, which then form the observation units. This 
grouping overcomes the problem of artificial square objects as used in per-
pixel analysis, as long as the objects of interest cover a number of pixels 
allowing a meaningful representation of their shape. In contrast to pixel-based 
procedure, image objects can carry many more attributes than only spectral 
information. When considering image objects instead of pixels, a wealth of 
additional features can be used for characterization. Both statistically 
aggregated spectral features and geometrical and neighbourhood-related 
features can be used, by which the dimensionality of the resulting feature space 
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is getting significantly higher and rises to virtually limitless extent (Lang et al. 
2006). If still a network of image objects is created, vertical relationships 
between super-objects and sub-objects in the object hierarchy can be used to 
expand the feature space even further (Lang 2005, Lang et al. 2006). Regarding 
to the advantages of OBIA, it can be generalized as (Hay and Castilla 2006): 1) 
it analyzes imagery by first partitioning an image into objects and then analyzes 
them. This is similar to the way humans conceptually organize the landscape to 
comprehend it. 2) Image-objects exhibit useful features, for example shape, 
texture, context relations with other objects that single pixels lack. 3) Image-
objects can be more readily integrated in vector GIS than pixel-wise classified 
raster maps. 4) It uses image-object as basic processing units which reduces 
computational classifier load and enables the user to take advantage of non-
parametric classifier. 
 
Object based image analysis supports image understanding. Undoubtedly, 
visual interpreters can benefit from object based image analysis, which “offers 
valuable methodological assets in breaking down scene complexity into 
meaningful image primitives” (Lang and Blaschke 2006), through which an 
image can be analyzed in adaptive scales according to the domain of interest 
(Lang and Blaschke 2006).  
 
Depending upon the scales at which the objects are assessed, humans recognize 
discrete objects, their size, shape, spatial arrangement and context changes 
(Marceau 1999). Performing object based image analysis, a clear understanding 
of the target scale, the target object set, and the target class scheme is a 
prerequisite. When it is clear how target objects are structured by sub-level 
primitives, multi-scale segmentation can help to reduce the complexity in 
images through aggregating information by scaled representations. The 
appropriate segmentation levels helps to match the solid image with the 
abstract reality (Lang 2005). A skilled interpreter who has a better 
understanding of the above mentioned prerequisite can master better the 
available object features and their mutual relationships in looking for the 
interested features. Image is then analyzed by putting expert knowledge into a 
rule system which categorizes the image objects by their spectral and spatial 
properties, and their mutual relationships (Bruce & Green 1990).  
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As the last paragraph of the conclusion part, I would like to add a few more 
words to the contribution of object based image analysis technique to the 
application of land cover mapping in México. As is well known, land cover 
mapping in Mexico has been based on visual interpretation in which 
interpreters utilize the colour, shape, texture information, etc. to deliver the 
mapping results. Visual interpretation of aerial photos or satellite imagery can 
produce detailed land-cover thematic maps with better accuracy than digital 
image classification (Sader and Winne 1992, Mas and Ramirez 1996). However, 
the method is slow, expensive (in terms of time expenditure and expertise 
requirements) and to some extent subjective. Object based image analysis also 
utilizes the colour, shape, texture information, etc, which tries to mimic the 
way humans interprets the image. Image segmentation delineates image objects 
based on colour and shape criteria, which is much fast than the manual 
digitization. At this point, object based image analysis can contribute to land 
cover mapping in Mexico in a positive way. Though, since it is automatic 
digital image classification, the object-based approach has its limitations and 
the human perception is still an ultimate benchmark, undefeated in analyzing 
complex scene contents with ease. 
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