

UNIVERSIDAD NACIONAL AUTONOMA DE MÉXICO

FACULTAD DE MEDICINA

DIVISIÓN DE ESTUDIOS DE POSTGRADO SECRETARIA DE SALUD HOSPITAL GENERAL "DR. MANUEL GEA GONZALEZ " DIVISIÓN DE ANESTESIOLOGIA

"EFICACIA Y SEGURIDAD DE MORFINA-DEXMEDETOMIDINA VERSUS BUPRENORFINA-DEXMEDETOMINA A DOSIS EQUIPOTENTES, POR VIA SUBCUTÁNEA PARA EL CONTROL DE DOLOR POSTOPERATORIO EN CIRUGÍA COLECISTECTOMIA LAPAROSCOPICA"

TESIS PARA OBTENER EL TITULO DE ESPECIALISTA EN ANESTESIOLOGIA

PRESENTA DRA. KATIA ALEJANDRA GÓMEZ NAVA

> ASESOR DE TESIS: DR. HILARIO GUTIERREZ ACAR

MÉXICO, D. F.

2008

UNAM – Dirección General de Bibliotecas Tesis Digitales Restricciones de uso

DERECHOS RESERVADOS © PROHIBIDA SU REPRODUCCIÓN TOTAL O PARCIAL

Todo el material contenido en esta tesis esta protegido por la Ley Federal del Derecho de Autor (LFDA) de los Estados Unidos Mexicanos (México).

El uso de imágenes, fragmentos de videos, y demás material que sea objeto de protección de los derechos de autor, será exclusivamente para fines educativos e informativos y deberá citar la fuente donde la obtuvo mencionando el autor o autores. Cualquier uso distinto como el lucro, reproducción, edición o modificación, será perseguido y sancionado por el respectivo titular de los Derechos de Autor.

Este trabajo fue realizado en el Hospital General Dr. Manuel Gea González y en la Sección de División

del Servicio de Anestesiología bajo la Dirección del Dr. Hilario Gutierrez Acar.

Este trabajo de Tesis con No. PROT-02-50-2008, presentado por el alumno Dra. Katia Alejandra

Gómez Nava se presenta en forma con visto bueno por la División de Investigación Epidemiológica a

Cargo de el Dr. Victor Noe Garcia Edgar y por el Tutor principal de la Tesis Dr. Hilario Gutiérrez Acar.,

con fecha del 31 de Julio del 2008 para su impresión final.

División de Investigación Epídemilogica

Dr. Victor Noe Garcia Edgar

Tutor principal

Dr. Hilario Gutiérrez Acar

Dr. Alfonso Galván Montaño Dirección de Investigación Hospital General "Dr. Manuel Gea González"

Dr. Octavio Sierra Martínez Director de enseñanza Hospital General "Dr. Manuel Gea González"

Dra. Rita Valenzuela Romero Jefa de la División de Enseñanza de Pregrado Hospital General "Dr. Manuel Gea González"

Dr. Hilario Gutiérrez Acar

Jefe de la División de Anestesiología y Asesor de Tesis

Hospital General "Dr. Manuel Gea González"

"EFICACIA Y SEGURIDAD DE MORFINA-DEXMEDETOMIDINA VERSUS BUPRENORFINA-DEXMEDETOMINA A DOSIS EQUIPOTENTES, POR VIA SUBCUTÁNEA PARA EL CONTROL DE DOLOR POSTOPERATORIO EN CIRUGÍA COLECISTECTOMIA LAPAROSCOPICA"

Colaboradores:
Nombre: _Dr. Hilario Gutiérrez Acar _
Firma:
Nombre:Dra. Katia Alejandra Gómez Nava
Firma:

AGRADECIMIENTOS

A mi esposo: Mi amor eres el regalo más grande que nuestro DIOS y la vida me ha dado, gracias por existir y complementar mi existencia en este tiempo de vida, eres el hombre que siempre le pedía a nuestro DIOS y el Hombre de mi vida, Te Amo, Adoro, Admiro y Respeto. Zinedinin eres una mejor persona que yo en todos los aspectos de la vida, cada día que compartimos juntos aprendo de ti, tus acciones hablan por ti mi vida y eres todo lo que me motiva a ser cada día mejor. Con el inmenso Amor que nos tenemos no existe nada que no podamos lograr juntos, gracias mi alma gemela. Te Amo y Adoro con toda mi alma y ser, hasta la vida Eterna.

A mi familia: Papa, Mamá y Flaquita son todo lo que soy, y mi base para seguir siempre adelante, son mi fortaleza para lograr todo lo que me propongo en la vida, Mami sin ti no fuera la mujer que ahora soy, eres mi fuerza y siempre me recuerdas que tengo muchas metas que lograr en mi vida y que con Amor, Fortaleza y Fé no existe nada que no se pueda lograr en esta vida, gracias por Amarme sin limitación alguna. Mis logros en la vida son también de ustedes. Los adoro con toda mi alma.

Abuelito se que desde el Cielo, junto a nuestro DIOS siempre cuidas nuestras vidas, nos proteges y libras de todo mal, siempre estas pendientes de nosotros y nunca nos abandonas para seguir aprendiendo de la vida, gracias por Amarme tanto y enseñarme tanto en esta vida. Tu ejemplo de vida es lo que siempre deseo seguir, Te adoro viejito.

INDICE

Glosario	VII
Relación de figuras y tablas	VII
Resumen	IX
1. Introducción	10
2. Antecedentes	11
2.1. Generalidades	
2.2. Etc	
3. Justificación	24
4. Hipótesis	25
5. Objetivos	25
5.1. Objetivo General	25
5.2. Objetivos Particulares	25
6. Material y Métodos	25
6.1. Tipo de estudio	
6.2. Ubicación temporal y espacial	
6.3. Criterios de selección de la muestra	
6.4. Variables	
6.5. Tamaño de la muestra	
6.6. Procedimiento	
6.7. Análisis estadístico	
6.8. Descripción operativa del estudio	
7. Resultados	29
8. Discusión	44
9. Conclusiones	45
10. Perspectivas	46
11. Bibliografía	47
12. Anexos	48
12.1. Anexo No. 1	48
12.2 Anovo No. 2	50

RELACION DE FIGURAS Y TABLAS

- 1) En el cuadro No. 1 se observan los parámetros Edad, Peso y ASA de nuestro universo de estudio; pagina (29)
- 2) En el cuadro No. 2 observamos la división de los grupos de Analgesia; pagina (29)
- 3) En las Tablas No. 1 y 2 observamos la TA mmHg de forma consecutiva en nuestro universo de estudio; pagina (30)
- 4) En la tabla No. 3 observamos la FC lpm; pagina (30)
- 5) En la tabla No. 4 valoramos la escala EVA y en la No. 5 la escala de EVERA ambas se comenzaron a valorar al finalizar la cirugía, de forma consecutiva; pagina (31 y 32)

GLOSARIO

Dolor: La sensación dolorosa tiene un importante componente emocional. El dolor producido por lesiones similares varía mucho en diferentes personas y en diferentes situaciones. La sensación dolorosa está influenciada por diversas variables psicológicas, como el miedo, el estrés, el ámbito cultural., que pueden modificar la percepción del dolor

Opiodes: Los términos opiáceo y opioide pueden utilizarse indistintamente, aunque el término opiáceo definía originalmente a las sustancias derivadas del opio: morfina, codeína y otros análogos semisintéticos de la morfina. Posteriormente se denominaron opioides, en sentido genérico, a todas las drogas naturales y sintéticas que se unen a los mismos receptores que la morfina

Alfa 2 agonistas: acción analgésica de los agonistas alfa-2 está mediada por la inhibición de la liberación de neurotransmisores excitadores en la médula espinal, donde existe un gran número de receptores alfa 2. La dexmedetomidina es un isómero de la medetomidina, un agonista adrenérgico altamente selectivo de los receptores alfa 2, con menor actividad sobre los alfa 1 que la clonidina y por tanto con menores efectos cardiovasculares de hipotensión y bradicardia. Estos fármacos se pueden administrar como analgésicos tanto por vía iv como por vía espinal, asociados a opiáceos o a anestésicos locales.

RESUMEN

En nuestro estudio lo culminamos en su primera etapa con 40 pacientes, de los cuales a la mitad de estos se les administro de forma aleatoria Morfina-Dexmedetomidina o Buprenorfina-Dexmedetomidina a dosis equipotentes, por via subcutánea, dividimos los grupos en A y B respectivamente, El objetivo de nuestro estudio es valorar la eficacia de la morfina-dexmedetomidina versus buprenorfina-dexmedetomidina via subcutánea, para el control del dolor postoperatorio en cirugía de colecistectomia laparoscopica.

Y obtuvimos que en ambos grupos de analgesia A y B los pacientes refieren dolor con un EVRA de leve a moderado y un EVA 2 a 4 en su mayoria a la 1 y 2 horas ambos grupos refirieron dolor, podemos observar que es mas frecuente en el grupo B sin un valor estadísticamente significativo. Aun sin un significado estadísticamente demostrado podemos valorar que con el grupo A los paciente mantienen un mejor control del dolor postoperatorio.

1. INTRODUCCIÓN

En nuestro estudio empleamos medicamentos opiodes Morfina o Buprenorfina y un alfa 2 agonistas Dexmedetomidina, para el control del dolor postoperatorio en cirugía de colecistectomia laparoscopia por via subcutánea, los cuales administramos 10 minutos después de haber iniciado la anestesia, monitorizamos los signos vitales de inicio y al terminar la anestesia valoramos la escalas de dolor EVA y EVRA durante 2 horas, junto con los signos vitales FC mmHg y TA lpm de forma continua, nuestro objetivo fue demostrar si los medicamentos utilizados demostraban cambios hemodinamicos en los pacientes y sobre todo conocer cual de los dos medicamentos utilizados nos proporciona mejor control del dolor postoperatorio.

Con respecto a las escalas de dolor EVA esta escala visual de dolor la valoramos de 1 al 10 y en conjunto con EVERA escala verbal le dimos el siguiente significado Sin dolor, Leve del 1 al 3, Moderado 4 al 7 y Severo del 8 al 10. estas escalas fueron las significativas en nuestro estudio para la valoración de dolor del paciente y los signos vitales FC Ipm y TA mmHg deseamos demostrar si a la dosis utilizadas y por la via de administración empleada los pacientes mostraban algunos cambios hemodinámicos propios de los alfa 2 agostas.

Los resultados obtenidos los valoramos estadísticamente y con interpretación clínica de los resultados desde el punto de vista algológico.

2. ANTECEDENTES

MODULACIÓN DE LA TRANSMISIÓN DOLOROSA

La sensación dolorosa tiene un importante componente emocional. El dolor producido por lesiones similares varía mucho en diferentes personas y en diferentes situaciones. La sensación dolorosa está influenciada por diversas variables psicológicas, como el miedo, el estrés, el ámbito cultural, etc., que pueden modificar la percepción del dolor. Esto implica la existencia de circuitos que modulan la actividad de las vías transmisoras del dolor; es decir, que determinados procesos emocionales y cognitivos pueden modificar la intensidad percibida del dolor, mediante sistemas descendentes inhibitorios que conectan los centros superiores del SNC con las astas posteriores de la médula. (12)

Se han formulado diferentes teorías que intentan explicar los mecanismos mediante los cuales se percibe la sensación dolorosa; entre ellas la Teoría de la Especificidad, la Teoría de la Sumación, o la Teoría de la Puerta de Entrada, han sido las más aceptadas. Para controlar el dolor en un paciente postoperados, es necesario recurrir a varias opciones analgésicas de entre las cuales hay que elegir la técnica más conveniente, tomando en cuenta que el dolor postoperatorio puede ser somático, visceral o mixto. La mayor parte de las veces es mixto, sobre todo en el caso de cirugía de tórax y abdomen. Cualquier procedimiento quirúrgico genera una sensación dolorosa que puede ir desde intensa, incapacitante, hasta incluso, ser causa de complicaciones que aumentan la morbimortalidad.

El factor principal que genera el postoperatorio es el daño tisular. Las repercusiones del dolor postoperatorio abarcan a los sistemas cardiovascular, respiratorio, principalmente.

El umbral al dolor es un aspecto importante a considerar en los pacientes postoperados, ya que varía según la edad; siendo diferente en los niños y adultos. La modulación de la transmisión del dolor puede ejercerse en cualquier punto donde exista conexión sináptica.

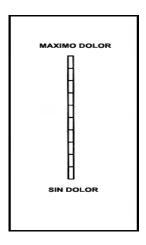
Modulación periférica Durante una lesión o inflamación aguda los tejidos lesionados liberan sustancias algésicas periféricas (potasio, ácido láctico, hidrogeniones, acetilcolina, serotonina, bradicinina, histamina, prostaglandinas, ATP) que actúan solas o de manera sinérgica sobre los nociceptores, activándolos o disminuyendo su umbral de excitación, lo que se denomina sensibilización. La sensibilización de los receptores al dolor da lugar al fenómeno de hiperalgesia, que es un componente importante en el dolor inflamatorio. Actualmente se piensa que existen básicamente dos tipos de mediadores responsables de la hiperalgesia inflamatoria: los derivados del ácido araquidónico y las aminas simpáticomiméticas (dopamina y noradrenalina).

Modulación espinal La modulación a este nivel tiene lugar a partir de mecanismos intraespinales y supraespinales. En el asta posterior de la médula se liberan sustancias neurotransmisoras implicadas en la excitación rápida. Se trata de neuropéptidos entre los que se encuentran: glutamato, aspartato, sustancia P, colecistoquinina, angiotensina II, péptido intestinal vasoactivo, etc. Además de péptidos excitadores, en el asta posterior se liberan péptidos analgésicos como la somatostatina, el péptido relacionado con el gen de la calcitonina y las endorfinas.

Estas incluyen diversas familias de péptidos opiáceos: encefalinas, beta-endorfinas y dinorfinas, de estructura similar a la morfina pero cada una de ellas deriva de un precursor genéticamente distinto y tienen una distribución anatómica característica. Las endorfinas y sus receptores se encuentran a diferentes niveles del

SNC: en el asta posterior (donde inhiben la liberación de la sustancia P), en la sustancia gris periacueductal, en el núcleo del rafe y en estructuras límbicas.

Modulación supraespinal En la formación reticular y la sustancia gris periacueductal del tronco cerebral se originan tractos descendentes inhibitorios (vías opioides y aminérgicas) que desde aquí descienden y hacen sinápsis en el asta posterior. Donde liberan neurotransmisores inhibidores (endorfinas, noradrenalina, serotonina) que regulan la transmisión sináptica entre las neuronas aferentes primarias y secundarias y contribuyen además a la analgesia producida por la morfina.


La corteza cerebral recibe múltiples conexiones desde el tálamo, hipotálamo, sistema límbico, etc. Los estímulos se integran en las diferentes áreas corticales, donde tienen lugar los procesos de discriminación, de atención hacia el estímulo doloroso, la reacción afectiva frente a la experiencia dolorosa, la memorización de dicha experiencia y las respuestas motoras organizadas reactivas al dolor. (12)

La medición del dolor en clínica es muy distinta de lo que ocurre con el dolor experimental. En éste es posible cuantificar la calidad y magnitud del estímulo. En clínica, la mayoría de las veces tanto la naturaleza como la intensidad del estímulo son desconocidos, pudiendo variar ambas cualidades en el tiempo. Los métodos más utilizados son de tres categorías:

- 1. Informes subjetivos de dolor.
- 2. Mediciones y observaciones de conducta dolorosa.
- 3. Correlaciones fisiológicas.

Informes subjetivos de dolor. Son sin duda los métodos más usados en la evaluación clínica y en investigación. Se basan en el informe que el paciente realiza, generalmente de la intensidad del dolor y pueden ser de diferentes tipos:

Escala visual análoga (EVA): consiste en una línea recta, habitualmente de 10 cm de longitud, con las leyendas "SIN DOLOR" y "DOLOR MAXIMO" en cada extremo. El paciente anota en la línea el grado de dolor que siente de acuerdo a su percepción individual, midiendo el dolor en centímetros desde el punto cero (SIN DOLOR). También pueden confrontarse con escalas semejantes que en un extremo tengan "SIN ABOLICION DEL DOLOR" y en el otro"AUSENCIA DE DOLOR" o "MAXIMA ABOLICION". (13)

Diseño estandar de escala visual análoga de 10 cm.

La EVA es hoy de uso universal. Es un método relativamente simple, que ocupa poco tiempo, aun cuando requiere de un cierto grado de comprensión y de colaboración por parte del paciente. Tiene buena correlación con las escalas descriptivas, buena sensibilidad y confiabilidad, es decir, es fácilmente reproducible. El dolor varía de intensidad en el tiempo, de manera que habitualmente se plantea mantener al paciente durante las 24 horas en un rango bajo (p.e. menos de 4 en una escala de 0 a 10) preestablecido. Como eso no es siempre posible, se realizan mediciones a horarios fijos marcando la diferencia entre el dolor inicial y el medido, para luego sumar estas diferencias y obtener un puntaje de 24 horas, que indicará más fielmente cuál fue el grado analgesia logrado en el tiempo (SPID= score pain intensity difference). (13)

Escala descriptiva simple Escalas verbales (EVERA) que clasifican al dolor en 4, 5 o más categorías, como por ejemplo Intenso, Moderado, Leve o Ausente, y que muchas veces se confrontan con otras escalas, también descriptivas, del alivio producido por el tratamiento. En ambos casos el paciente debe responder y ubicarse en categorías preestablecidas. Este es el método que más se acerca a lo cuotidiano, cuando preguntamos a un paciente si tiene dolor. Son escalas fáciles de usar y de comprender por parte de los pacientes, pero tienen un uso limitado en investigación, debido a su baja sensibilidad, es decir al escaso rango de respuestas que ofrecen. En esas condiciones, el paso de una categoría a otra puede representar cosas diferentes y para el análisis estadístico deben utilizarse pruebas no paramétricas, ya que no existe una relación aritmética entre las categorías.

Otra variante de este tipo de escalas categorizan el dolor de acuerdo a la necesidad de analgésicos (sin dolor, dolor que no requiere analgesia, y dolor que requiere analgesia), pero no presentan ventajas o limitaciones en relación a la escala verbal simple. (13)

Diseño de una escala descriptiva simple de dolor:

0	Sin Dolor				
1	Dolor Leve				
2	Dolor Moderado				
3	Dolor Severo				

VIA SUBCUTÁNEA

La vía subcutánea es una de las cuatro vías parenterales que existen para la inyección de medicamentos. Clásicamente, esta vía estaba representada por la administración de insulina, heparina y vacunas. Sin embargo, con la incorporación del cuidado del enfermo terminal, las utilidades del acceso subcutáneo se han ampliado considerablemente en la atención primaria. (7) A la hora de administrar una medicación se debe de actuar sistemáticamente, cumpliendo una serie de pasos: 1) Preparar el material necesario 2) Preparar el medicamento 3) Elegir el lugar de inyección 4) Administrar el medicamento

Las zonas donde se pueden administrar subcutáneamente los medicamentos son las siguientes:

- Tercio medio de la cara externa del muslo
- Tercio medio de la cara externa del brazo
- Cara anterior del abdomen
- Zona superior de la espalda (escapular).
- Otros lugares que también se contemplan, según la bibliografía consultada, son: el flanco del abdomen, la cresta iliaca y la zona superior y lateral de la nalga

Los pasos a seguir a la hora de ejecutar la inyección subcutánea son los siguientes:

- Antes de inyectar el medicamento hay que desinfectar la piel. Para ello se aplica una torunda impregnada de antiséptico en el centro de la zona elegida. Posteriormente y con un movimiento que dibuje una espiral hacia fuera, se abarca un diámetro de unos 5 cm. Con ello "se barren" hacia el exterior los gérmenes de esa zona de la piel, cosa que no se consigue si el movimiento que le imprimimos a la torunda es de derecha a izquierda o de arriba abajo
- Con la mano no dominante, pellizcar la piel del paciente, formando un pliegue de unos 2 cm. Coger la jeringa con el pulgar y el índice de la otra mano
- Colocar la aguja formando un ángulo de 45 grados con la base del pliegue que hemos formado. El bisel debe de mirar hacia arriba
- Clavar la aguja en la base del pliegue e introducirla unos 3-4 mm. Aspirar, para ver si hemos conectado con un vaso. En caso afirmativo, debemos extraer la aguja y pinchar nuevamente en otro lugar.
- Soltar el pliegue e introducir lentamente el medicamento. El fundamento de estas dos acciones es que con ellas se disminuye el dolor que causa el procedimiento.
- Una vez inyectada toda la sustancia, retirar la aguja. No se debe masajear la zona. Se puede dejar una gasa en el lugar de punción, por si refluye algo de líquido. Para evitar ese posible reflujo, a la hora de cargar la medicación en la jeringuilla podemos añadir 0,1 ml de aire y asegurarnos de que éste queda posterior al líquido a administrar. Así, a la hora de realizar la inyección, el aire forma una burbujatapón que impide que salga el medicamento. (8)

OPIACEOS

Los términos opiáceo y opioide pueden utilizarse indistintamente, aunque el término opiáceo definía originalmente a las sustancias derivadas del opio: morfina, codeína y otros análogos semisintéticos de la morfina. Posteriormente se denominaron opioides, en sentido genérico, a todas las drogas naturales y sintéticas que se unen a los mismos receptores que la morfina .

Los analgésicos opiáceos son un grupo de fármacos que se caracterizan por: 1) actúan sobre receptores farmacológicos específicos que se encuentran distribuidos en el SNC y SNP, produciendo analgesia; 2) producen farmacodependencia; 3) producen depresión respiratoria; 4) producen efectos psicológicos subjetivos. (14)

Mecanismo de acción Los opioides ejercen su acción a través de la unión a receptores específicos que se encuentran ampliamente distribuidos en el SNC, así como en el aparato digestivo, sistema cardiovascular, endocrino, etc. Se han descrito cinco tipos diferentes de receptores opioides: mu, kappa, delta, sigma y épsilon; cada uno con diferentes efectos y localizaciones. Generalmente en anestesia y cuidados críticos solo se utilizan algunos de los opioides que actúan fundamentalmente sobre los receptores μ (agonistas puros). Los receptores μ median los efectos clásicos de la morfina; se han descrito dos subtipos: los μ 1 producen analgesia a nivel espinal y supraespinal, sedación, miosis, náuseas y vómitos, estreñimiento, retención urinaria, prurito, tolerancia; y los μ 2 se asocian a la depresión respiratoria y al desarrollo de tolerancia y dependencia física.

Clasificación Existen varias clasificaciones. Clásicamente, los opioides se han clasificado según su origen en tres grupos: 1) Naturales: se obtienen del jugo de la amapola, Papaver somniferum (morfina, codeína, tebaína, papaverina); 2) Semisintéticos: se obtienen a partir de modificaciones en la molécula de la morfina o de la tebaína (heroína, hidromorfina, buprenorfina; 3) Sintéticos, divididos a su vez en 4 grupos: derivados morfinianos (levorfanol), derivados de la difenilpropilamina (metadona, d-propoxifeno), benzomorfanos (pentazocina) y derivados de la fenilpiperidina (meperidina, fentanilo, alfentanilo, sufentanilo).

Una clasificación más útil, es la que divide los opioides funcionalmente, según su comportamiento frente a los distintos tipos de receptores opioides: a) Agonistas puros: se comportan como agonistas totales sobre los receptores μ , mostrando máxima actividad intrínseca (morfina, heroína, meperidina, metadona, fentanilo, sufentanilo). b) Agonistas-antagonistas mixtos: se comportan como agonistas sobre los receptores kappa y como antagonistas sobre los receptores μ (pentazocina, butorfanol). No ofrecen ventajas sobre los agonistas potentes porque tienen un rango de dosis limitado, un efecto analgésico techo y similares efectos secundarios, incluida la capacidad de crear dependencia. c) Agonistas parciales: presentan afinidad por los receptores μ pero su actividad intrínseca es menor que la de los agonistas puros (buprenorfina). d) Antagonistas: tienen afinidad por los receptores opioides pero carecen de actividad intrínseca; desplazan de forma competitiva a los agonistas de sus receptores (naloxona). (15)

En función de su potencia, tomando como referencia a la morfina, los opioides se clasifican en: a) Débiles: codeína, dextropropoxifeno; b) De potencia moderada: tramadol, dihidrocodeína; y c) Potentes: morfina, meperidina, buprenorfina, metadona, fentanilo, sufentanilo, alfentanilo.

Acciones farmacológicas

Efectos sobre el SNC A éste nivel producen fundamentalmente analgesia, alteraciones en el estado mental, miosis, depresión respiratoria, náuseas y vómitos. La analgesia inducida por los opioides se produce sin pérdida de la conciencia y no altera otras modalidades

sensoriales como la vista o el oído. Está mediada por los receptores μ 1. Los opiáceos no solo reducen la sensibilidad al dolor, sino que atenúan su tono desagradable, sustituyéndolo por una sensación de bienestar y euforia. Son más eficaces sobre el dolor sordo continuo que en el dolor agudo intermitente.

Los opioides pueden producir cambios sobre el estado mental como sensación de bienestar y euforia, mediadas por receptores μ ; también pueden provocar síntomas disfóricos (receptores kappa), desorientación e intranquilidad, sobre todo en individuos sin dolor.

Producen sedación , somnolencia y depresión importante del nivel de conciencia cuando se administran dosis altas. Sin embargo la capacidad de producir inconsciencia (anestesia) como agentes únicos dependerá del tipo de pacientes. Estos fármacos deprimen la respiración por efecto sobre los centros respiratorios del tronco del encéfalo, mediado por receptores μ 2.

El mecanismo implica una reducción de la respuesta del centro respiratorio a la hipercapnia y a la hipoxia. Además, actuando sobre centros protuberanciales y bulbares alteran la ritmicidad de la respiración. La profundidad de la depresión respiratoria, el tiempo de aparición y su duración dependen del fármaco y de la dosis y de las concentraciones plasmáticas alcanzadas; también influye la edad del paciente, ciertas patologías como la obesidad o el enfisema, la vía de administración y la presencia o ausencia de dolor: por regla general, mientras exista dolor no se producirá depresión respiratoria.

Por estimulación directa de la zona quimiorreceptora desencadenante del vómito en el área postrema del bulbo raquídeo, la morfina y sus derivados producen nauseas y vómitos. Estos efectos son más frecuentes en ambulatorios, debido potencian por pacientes a que se la estimulación Otros efectos que tiene la administración de opioides sobre el SNC, incluyen la depresión del reflejo tusígeno por acción directa sobre el centro tusígeno del bulbo raquídeo, discreta hipotermia de origen hipotalámico, miosis mediada por receptores μ y kappa. Pueden producir rigidez muscular con hipertonía de los músculos torácicos y abdominales y la consecuente disminución de la compliance pulmonar; es más frecuente con opiáceos potentes administrados a grandes dosis en un corto espacio de tiempo. Son potencialmente convulsivantes a dosis altas, aunque sólo la meperidina se ha asociado con cuadros convulsivos. (14)

Efectos cardiovasculares En pacientes sanos, las dosis terapéuticas de opiáceos no tienen un efecto significativo sobre la presión arterial ni sobre la frecuencia y el ritmo cardiacos. Pueden producir vasodilatación e hipotensión ortostática si los pacientes no se encuentran en decúbito supino.

La administración rápida de grandes dosis de morfina puede ocasionar liberación de histamina, que disminuye las resistencias vasculares periféricas y produce hipotensión. La morfina también atenúa la vasoconstricción refleja causada por el aumento de la PCO2.

En pacientes con cardiopatía isquémica no aguda, dosis terapéuticas de opioides pueden disminuir el consumo de oxígeno, la presión telediastólica del ventrículo izquierdo y el trabajo cardiaco. En pacientes con infarto agudo de miocardio la disminución de la presión arterial en respuesta a la administración de morfina puede ser más intensa que en pacientes sanos. Los opioides han de utilizarse con precaución en situación de hipovolemia, shock séptico o traumatismo espinal ya que pueden agravar el estado cardiovascular en estos pacientes.

Estos fármacos no afectan directamente a la circulación cerebral, pero al producir hipoventilación y retención de CO2 provocan vasodilatación cerebral y aumento de la presión intracraneal. Esto no ocurre cuando la PCO2 se mantiene a niveles normales con ventilación mecánica.

En cualquier caso, los opioides (exceptuando la meperidina, que tiene efecto inotrópico negativo) proporcionan mayor estabilidad cardiovascular aún en altas dosis que la mayoría de los anestésicos, por lo que se emplean para producir anestesia, especialmente en la cirugía cardiaca, en pacientes que no tolerarían la depresión cardiovascular provocada por los anestésicos inhalatorios. (14)

Efectos gastrointestinales y genitourinarios Los opioides retrasan el vaciado gástrico, con lo que aumenta el riesgo de aspiración. Disminuyen la secreción gástrica, biliar y pancreática. Disminuyen el peristaltismo intestinal y aumentan el tono del esfínter anal, produciendo estreñimiento. Aumentan la presión en el tracto biliar con hipertonía del esfínter de Oddi, por lo que pueden exacerbar el dolor en pacientes con cólico biliar.

A dosis terapéuticas aumentan el tono del uréter, músculo detrusor y esfínter vesical. Pueden ocasionar retención urinaria.

Otros efectos. Los opioides atenúan la respuesta endocrina y metabólica producida por el estrés, por lo que son especialmente útiles en el tratamiento del dolor intra y postoperatorio.

Farmacocinética y farmacodinámica

Los opioides se absorben fácilmente por varias vías: tracto gastrointestinal, mucosa nasal, pulmón, por vía transdérmica, subcutánea, intramuscular, intravenosa y espinal. El efecto es menor por vía oral que por vía parenteral debido al metabolismo en el primer paso hepático.

Aproximadamente un tercio de la morfina circulante lo hace unida a proteínas. La concentración de estas drogas es mayor en tejidos más vascularizados, como el hígado, riñón, pulmón y cerebro. El paso a través de la barrera hematoencefálica es limitado, y depende de la liposolubilidad del fármaco. Atraviesan la barrera placentaria.

Se metabolizan en el hígado principalmente se excretan en la orina. Existe una gran variabilidad individual entre las concentraciones plasmáticas alcanzadas y el efecto obtenido. Esto depende de la concentración analgésica mínima efectiva (MEAC) de cada opioide, que varía en cada individuo. Para conseguir una analgesia adecuada, han de alcanzarse concentraciones de fármaco en plasma superiores a la MEAC; sin embargo la ventana terapéutica de los opioides es estrecha, lo que significa que para que aparezcan los mínimos efectos indeseables con un control óptimo del dolor, las concentraciones plasmáticas deben mantenerse justo por encima de la MEAC específica para cada paciente, siendo además preferible que dichas concentraciones sean estables, sin la aparición de picos y valles. Por tanto al administrar opioides es importante individualizar las dosis, y si es posible, administrarlas es sistemas de liberación o de infusión continuas, según la vía. (15)

Efectos adversos

Los opioides ejercen su acción sobre diferentes sistemas, por lo que en ocasiones además del efecto deseado, generalmente una analgesia adecuada, aparecerán efectos indeseables.

Los más frecuentes son la sedación, somnolencia, náuseas, vómitos, depresión respiratoria, tolerancia, dependencia física, prurito, estreñimiento o retención urinaria.

MORFINA

Es el opiáceo de referencia. Actúa como agonista de los receptores μ , kappa y delta. Sus acciones farmacológicas son las descritas anteriormente. Se absorbe bien por todas las vías (oral, sc, im, iv, espinal) excepto la transdérmica. Por vía oral la biodisponibilidad es escasa debido al efecto de primer paso hepático, por lo que se requieren dosis mayores. Se metaboliza en el hígado y se elimina por vía renal en forma de metabolitos activos. La vida media de eliminación es de 2 a 4 horas, según la vía de administración. En la insuficiencia renal los metabolitos pueden acumularse prolongando el efecto de la morfina.

Durante la hemodiálisis disminuyen las concentraciones de morfina y sus metabolitos, pero posteriormente aumentan por redistribución desde otros compartimentos. Con la hemofiltración no se modifican las concentraciones de estas sustancias. Es relativamente poco liposoluble, por lo que tarda más tiempo que otros opiáceos en alcanzar el efecto máximo. Atraviesa lentamente y en pequeñas cantidades la barrera hematoencefálica. Se une a proteínas plasmáticas en un 30%, aunque esta fracción puede aumentar en situaciones de alcalosis. La acidosis metabólica aumenta la fracción libre y el tiempo de eliminación a nivel cerebral.

Además del efecto analgésico, tiene acción antitusígena. Puede ocasionar cuadros de broncoespasmo mediados por la liberación de histamina cuando se administra a dosis altas. Produce vasodilatación, por lo que debe administrarse con precaución en pacientes hipovolémicos, en los que puede provocar hipotensión severa. Asímismo, puede ocasionar disminución de la frecuencia cardiaca a dosis mayores de 0.2 mg/k iv. Es muy útil en el tratamiento del edema agudo de pulmón, gracias a su efecto sobre la disminución de la precarga y la postcarga, la disminución del trabajo respiratorio y de la descarga simpática. También se emplea en pacientes con IAM, como se indicó anteriormente. Es el opiáceo por excelencia en el tratamiento del dolor postoperatorio, administrado tanto por vía intravenosa continua, en régimen de PCA o por vía epidural. Como analgésico iv se suele administrar en bolos de 2 a 5 mg, o bien en perfusión continua de 1 a 10 mg/h tras un bolo inicial. (15)

BUPRENORFINA

La buprenorfina es un derivado de la tebaína. Su efecto analgésico se debe a su actividad de agonista parcial en los __-receptores opioides. Cuando una molécula se une a uno de estos receptores, éste sólo es activado parcialmente, a diferencia del la morfina que es agonista completo. La alta afinidad de la buprenorfina con los __-receptores es tal, que los antagonistas opioides para esos receptores (naloxona), sólo revierte los efectos parcialmente. (1)

Estas propiedades de este medicamento deben ser consideradas muy cuidadosamente por el facultativo, ya que una sobredosis no podría ser revertida fácilmente, aunque la sobredosis es infrecuente en pacientes adictos o con tolerancia a opioides. También debe ser tenido en cuenta su uso en pacientes con dependencia física a opioides agonistas completos podría provocar síndrome de abstinencia, que también sería complicado de revertir y que puede durar hasta 24 horas.

Posee una actividad analgésica muy superior a la de la morfina (0.2 - 0.6 mg IM de buprenorfina, equivalen a 5 - 15 mg IM de morfina). Siendo 30 veces mas potente que la morfina. Además su efecto es más prolongado. La depresión respiratoria es dosis-dependiente y equivalente a la de la morfina. (9)

La buprenorfina es también un antagonista de los *receptores* opioides. La buprenorfina se admnistra por vía intramuscular, intravenoso, sublingual y transdérmica con el uso de parches. Se metaboliza por vía hepática. Su

absorción es lenta, observándose las concentraciones plasmáticas pico a las dos horas de su administración. Los comprimidos sublinguales de este fármaco ofrecen un efecto analgésico de 6 a 8 horas. (2)

Cuando se usan dosis más elevadas para tratar pacientes con dependencia, la buprenorfina se mantiene efectiva en el organismo entre 24 y 48 horas, llegando a darse casos de hasta 72 horas La buprenorfina está indicada en los siguientes casos: 1) En el tratamiento del <u>dolor</u> moderado o severo. 2) Como analgesia pre o post-operatoria. 3) En el manejo de la dependencia a otros opiáceos como la <u>heroína</u>. Los efectos secundarios que más frecuentemente se han observado son: <u>Estreñimiento</u>, <u>Cefalea</u>, <u>Insomnio</u>, <u>Astenia</u>, <u>Somnolencia</u>, <u>Náuseas</u> y vómitos, <u>Lipotimia</u> y <u>vértigo</u>, <u>Hipotensión</u>, <u>Sudoración</u>, <u>Depresión respiratoria</u>, <u>Alucinaciones</u> La aparición de estas manifestaciones dependerá también del tipo de paciente y del nivel de tolerancia con los opioides.

Agonistas alfa-2 adrenérgicos Estos fármacos proporcionan sedación, hipnosis, son ansiolíticos, analgésicos y simpaticolíticos. Además tienen la ventaja de que sus efectos pueden ser revertidos por antagonistas alfa-2 adrenérgicos. Son útiles como coadyuvantes a otros analgésicos. Cuando se utilizan en el perioperatorio disminuyen las necesidades de anestésicos inhalatorios, de opiáceos intra y postoperatorios, atenúan las respuestas hemodinámicas a la intubación y proporcionan mayor estabilidad hemodinámica.

Sin embargo en ocasiones se ha observado bradicardia e hipotensión tras la administración de clonidina. Estos efectos, junto a la posible hipertensión de rebote que puede ocurrir tras su suspensión brusca han limitado su uso. (3)

Al parecer, la acción analgésica de los agonistas alfa-2 está mediada por la inhibición de la liberación de neurotransmisores excitadores en la médula espinal, donde existe un gran número de receptores alfa 2. La dexmedetomidina es un isómero de la medetomidina, un agonista adrenérgico altamente selectivo de los receptores alfa 2, con menor actividad sobre los alfa 1 que la clonidina y por tanto con menores efectos cardiovasculares de hipotensión y bradicardia. Estos fármacos se pueden administrar como analgésicos tanto por vía iv como por vía espinal, asociados a opiáceos o a anestésicos locales. La clonidina por vía iv, intratecal o epidural causa una sedación y analgesia profunda sin depresión respiratoria . (2)

DEXMEDETOMIDINA

Es el d-enantiómero de la medetomidina, un compuesto que se emplea en Estados unidos y Europa como agente sedante/analgésico de uso veterinario. La medetomidina tiene una débil afinidad por el receptor adrenérgico alfa 1 presentando una relación de selectividad relativa con respecto a los receptores alta 2/alfa 1. es un fármaco agonista alfa 2 adrenérgico dereivado imidazólico, de carácter lipofílico, con mayor afinidad, por receptor alfa 2 adrenérgico que le fármaco prototipo de este grupo, clonidina.

Químicamente se trata del clorhidrato de dexmedetomidina, siendo su nombre químico (+)-4-(S)-[-1-(2,3-dimetilfenil)etil]imidazol monoclorhidrato. Su fórmula molecular es C13H16N2HCL, siendo su peso molecular de 236,7. El clorhidrato de dexmedetomidina es un polvo cristalino de color blanco o casi blanco, con un punto de fusión de 157°C.

Es un sustancia soluble en agua, cloroformo, etanol, metanol y ácido clorhídrico 0,1 molar, causando precipitación en presencia de hidróxido sódico 0,1 molar. Cuando el fármaco es envasado en ampollas de cristal (concentración de 200mcg/ml en suero salino0.9%) y conservado a temperatura ambiente 25°C, no se ha observado que se produzca una disminución significativa de su actividad, n ni incremento en su degradación durante un período prolongado de tiempo (5 años), ni cambios significativos en el ingrediente activo (3 años a

5°,25° o 35°C). Hasta enero de 1998 se habían realizado un total de 79 estudios sobre el uso perioperatorio de dexmedetomidina en pacientes sometidos a una amplia variedad de tipos de cirugía general y especialidaza.

Farmacocinética

Se ha estudiado las dosis de administración por vía subcutánea o intramuscular son rápidamente absorbida, habiéndose calculado en voluntarios sanos tras una dosis IV, un volumen de distribución de 300 litros, presentando el fármaco una amplia distribución tisular y ajustándose su cinética a un modelo tricompartimental.

Se administró dexmedetomidina an forma de dosis únicas IM de 0.5, 1 y 1.5 mcg/kg, Schinin et al obtuvieron unos tiempo para lograr la máxima concentración plasmática de 1.6 a 1.7 horas, con una vida media de eliminación de 1.6 a 2.4 horas, un aclaración plasmático total de 0.7 a 0.9 L/H/Kg y un volumen aparente de distribución de 2.1 a 2.6L/Kg. Talke et al estudiaron la farmacocinética de dexmedetomidina en pacientes quirúrgicos a los que se les administró un infusión continua de dexmedetomidina postoperatoria a la dosis necesaria para alcanzar una concentración plasmática de 60º picog/mL. De los resultados del estudio se dedujo que un modelo farmacocinético bicompartimental se ajustaba mejor a las características de dexmedetomidina, sin que la adición de un tercer compartimiento se justificara estadísticamente. Se ha determinado una tasa de unión a proteínas plasmáticas del 94%, uniéndose principalmente a sero-albúmina y alfa 1-glicoproteína ácida. (4)

El metabolismo de la dexmedetomidina es principalmente hepático, mediante reacciones de hidroxilación y N-metilación y tras estos pasos el fármaco es eliminado por via renal en un 95%, en forma de conjugados metil y glururónidos. En el hombre dexmedetomidina es capaz de unirse reversiblemente al grupo heme del citocromo P450. Los dos enanatiómeros de la medetomidina, dexmedetomidad y el L-enentiómero MPV-1441, se comportan como inhibidores in vitro del sistema microsomal P450, pero sólo tienen efectos clínicamente significativos.

El metabolismo de dexmedetomidina se ve seriamente afectado por la insuficiencia hepática. Los pacientes con falla hepática grave a los que se les administró dexmedetomidina, mostraron un significativo aumento del volumen de distribución (3.2 frente a 2.2 L/Kg) y la vida media de eliminación (7.5 frente a 2.6 Horas), junto con una disminución de su aclaración plasmático (0.32 en la insuficiencia hepática frente a 0.64 L/H/kg. por otro lado, en 6 voluntarios con insuficiencia renal la farmacocinética de dexmedetomidad difirió poco de los parámetros hallados en voluntarios sanos, siendo la única diferencia encontrada que la vida media de eliminación se vio acortada en los voluntarios con insuficiencia renal (113,4 \pm 1, 11,3 frente a 136.5 \pm 1 minutos; p <0.05), aunque la sedación se prolongó más en los voluntarios con enfermedad renal. (4)

Venn et al han investigado la farmacocinética de dexmedetomidina administrada en infusión continua en pacientes que requerían de cuidados intensivos postoperatorios. Los principales valores obtenidos fueron: La vida media de distribución duró 8.6 minutos, la vida media terminal fue de 3.14 horas, el Volumen de distribución en estado de equilibrio alcanzó 173 litros y el aclaración medio fue de 48.3 L/Hora, concluyendo los autores que las variables farmacocinéticos de dexmedetomidina observadas en el postoperatorio de pacientes que requieren cuidados intensivos fueron similares a los previemente encontrados en voluntarios, con la excepción del volumen de distribución en estado de equilibrio. A las 2 horas de la administración de una dosis de dexmedetomidina, se encuentra un 12.5% en la circulación fetal, mientras que el 48.1% se encuentra en la placenta.

Administración por via transdérmica presenta uan biodisponibilidad del 51%, con una vida media terminal de 5.6 horas, apreciándose un efecto sedante obvio entre 1 a 2 horas después de su administración.

Mecanismo de acción

Es mediante su unión al receptor alfa 2 adrenérgico. El receptor alfa 2 adrenérgico media sus efectos mediante la activación de proteínas G (proteínas reguladoras fijadoras de nucleótidos de guanina). La activación de las proteínas G se traduce en una serie de acontecimientos que modulan la actividad celular. Estos acontecimientos biológicos comenzarían con la inhibición de la enzima adenil ciclasa, reduciéndose la concentración de 3´-5´adenosin monofosfato ciclico (AMPc). Esta molécula es un importante regulador de muchas funciones celulares, actuando mediante el control del estado de fosforilación de proteínas reguladoras a través de la enzima proteín kinasa. Aunque la inhibición de la adenil ciclasa sería un efecto casi universal de la estimulación del receptor alfa 2, el descenso de la concentración de AMPc, no puede explicar algunos de los efectos fisiológicos observados, por lo que se han propuesto una serie de mecanismos alternativos para explicarlos, entre los que se encontrarían la apertura de canales de calcio dependientes de voltaje, el aumento del intercambio de sodio-hidrogeniones en el interior de las plaquetas y la apertura de diferentes tipo de canales de potasio, hiperpolarización de célula, lo que constituye un medio de suprimir o disminuir la actividad neuronal. Se han realizado numerosos trabajos para dilucidar los mecanismos que explicarían de forma particular las principales acciones farmacológicas de dexmedetomidina. (6)

Acción antinociceptiva Dexmedetomidina ejerce su acción antinociceptiva predominantemente sobre el receptor alfa 2 A adrenérgico de la médula espinal. La administración sistémica de alfa 2 agonistas como clonidina o dexmedetomidina produce efectos antinociceptivos y sedantes, mientras que la administración intratecal de estos agentes solo determina una acción antinociceptiva. Sin embargo, pese al concepto de que la analgesia proporcionada por dexmedetomidina es un efecto espinal, se ha demostrado que la inyección de desmedetomidina en el locus ceruleus produce antinocicepción, que podría ser revertida mediante la administración de antagonistas alfa 2 como atipamezole tanto a nivel del locus ceruleus, como intratecalmente.

Acciones hipnótico-sedantes A dosis sedantes disminuyen de forma dosis-dependiente las concentraciones de GMPc, cerebeloso, siendo este efecto inhibido por el antagonista yohimbina.

A nivel de receptores, dexmedetomidina ejercería su acción hipnótico-sedante a nivel del locus ceruleus mediante su unión a receptores alfa 1 A de este grupo celular, que provocarian una disminución dosis depeniente de la liberación de noradrenalina, siendo este efecto inhibido por el antagonismo selectivo alfa 2 atipamezole.

Al inhibir la liberación de noradrenalina en el locus ceruleus, disminuye la actividad noradrenérgica en la via ascendente hacia el córtex, habiéndose establecido que tanto la disminución de la neurotransmisión noradrenérgica como de la serotoninérgica están asociadas con la transición del estado de vigilia al sueño

Acción anestésica Una de las propiedades farmacológicas de los alfa 2 agonistas es la de disminuir los requerimientos de otros fármacos empleados en la inducción y el mantenimiento anestésico. Al parecer esto estaría en relación y podría ser explicado por el efecto inhibitorio sobre la transmisión central de tipo noradrenérgico, propia de los alfa 2 agonistas, aunque también se ha sugerido que existe un lugar adicional de acción de los alfa 2 agonistas, diferente del receptor presináptico autoinhibidor de las vías noradrenérgicas, que mediaría la acción reductora de la concentración alveolar mínima (CAM) de los anestésicos volátiles. Provocada por los alfa 2 agonistas.

Acciones cardiovasculares Se deben a la estimulación de receptores alfa 2 adrenérgicos a nivel medular y cerebral y también periféricos. El ascenso inicial de presión arterial tras la administración de dexmedetomidina se debería al estímulo de receptores alfa 2 postsinápticos de localización vascular periférica, siendo el descenso de frecuencia cardiaca de origen reflejo por estimulación de los barorreceptores, mientras que la reducción subsiguiente de la frecuencia cardiaca sería debida a una depresión simpática de origen central, que dejaría el tono vagal sin oposición. Para otros autores también podría deberse a una reducción presináptica de la liberación de noradrenalina o a un efecto bagomimético directo.

La hipotensión subsiguiente que sigue a la hipertensión inicial es atribuida por algunos autores a su acción vascular periférica, incluyendo la estimulación de receptores alfa 2 presináticos, mientras que también se explicaría por un supresión de la descarga de los nervios simpáticos. En el caso de dexmedetomidina no se conoce ni la localización, ni el receptor responsable de la acción hipotensiva a nivel central. (5)

Acciones ventilatorias Tienen una escasa implicación en el control central de la respiración. Puesto que el sueño no REM causa un descenso en la pendiente y un desplazamiento a la derecha de 3-5mmHg de la curva de respuesta ventilatoria hipercápnica. (11)

Acciones renales Inducen diuresis posiblemente mediante la atenuación de la secreción de hormona antidiurética o por el bloqueo de su efecto en los túbulos renales

Acciones endocrinas La estimulación de receptores alfa 2 localizados en las células beta del páncreas explicaría la tendencia a la hiperglucemia que provocan al disminuir la secreción de insulina.

Acciones intestinales Disminución del flujo salival se produce por efecto directo de los alfa 2 agonistas sobre los receptores alfa 2 adrenérgicos de las glándulas salivales y por inhibición de la liberación de acetilcolina. Los alfa 2 agonistas disminuyen la secreción gástrica por activación de los alfa 2 adrenoceptores presinápticos de las células apriétales gástricas y por inhibición vagal.

Acciones oculares Descienden la presión intraocular reduciendo la formación de humor acuoso mediante mecanismos central y periférico.

Farmacodinamia

Analgésicas En 1974 Paalzow fue el primero en demostrar el efecto analgésico de los alfa 2 agonistas. Los estudios en humanos han llevado a cabo en voluntarios sanos o pacientes sometidos a diversos tipos de cirugía, a dosis 0.25 a 1 mcg/Kg IV causando un descenso significativo en la puntuación de la escala visual analógica en pruebas de dolor causando por un torniquete. (5)

Administrada a pacintes que se iban a intervenir de histerectomía abdominal, dexmedetomidad fue tan efectiva como fentanilo para lograr un efecto analgésico. En pacientes de cirugía ambulatoria de la mano, la premedicación con 1 mcg/kg causó una disminución significativa de las necesidades de analgésicos opiáceos y en el postoperatorio ningún paciente del grupo tratado requirió analgesia suplementaria.

En el postoperatorio de la cirugía del bloqueo tubárico 0.4mcg/kg IV de dexmedetomidina fueron tan efectivos como una dosis de oxicodona en el alivio del dolor postoperatorio y superiores a diclofenaco, cuasando una disminución de los requerimientos de analgesia opiácea. Paciente postoperados e intubados ingresados en

unidades de cuidados intensivos que recibieron dexmedetomidina o placebo para conseguir la sedación postoperatoria, en consumo de morfina como analgésico fue un 50% menos en los pacientes sedados con dexmedetomidina.

Sedantes e hipnóticas Dexmedetomidina indujo un estado de sedación en voluntarios que fue valorado mediante una escala analógica visual y mediante métodos objetivos, empleando el análisis de los movimientos sacádicos oculares (movimientos oculares rápidos que tienen la finalidad de poder cambiar rápidamente la fijación ocular de un objeto a otro, y que se ven alterados en los estados de sedación), este efecto fue dosis dependiente. En un estudio reciente realizado a 7 voluntarios en los que se administró dexmedetomidina en infusión continua de 50 minutos de duración tras una dosis de carga, se objetivó un claro efecto sedante medido mediante escala visual analógica, descenso de las puntuaciones de la Observer Assesment of Alertness/Sedation de un 31 – 37% y descenso del índice biespectral o BIS de un 31 – 36%. Además, los voluntarios pudieron ser despertados con sus facilidad, volviendo a valores de BIS a sus cifras normales con rapidez.

Comparado con midazolam para lograr sedación y ansiolisis en cirugía superficial 2.5mcg/kg IM de dexmedetomidina, fueron tan efectivos como 0.7 mcg/kg de midazolam, aunque con dexmedetomidina hubo menos trastorno psicomotriz previo y un menor grado de amnesia anterógrada que con midazalam. En este estudio la dexmedetominada atenuó el delirio postanestesico inducido por ketamina.

Cardiovascular voluntarios a los cuales se les administro dexmedetomidina a varias dosis (12.2 -75 mcg < IV) causò un descenso dosis dependiente de las presiones sistòlicas y diastòlicas, observandose una pequeña respuesta inicial hipertensiva tras la inyección de la dosis mas alta, con un descenso de la frecuencia cardìaca

Respiratorias Dexmedetomidina en general tiene un perfil favorable en cuanto a sus efectos sobre la ventilación. En siete voluntarios sanos que recibieron una infusión de 0.2 -0.6mcg por kg por hora por espacio de 50 minutos, no se detectaron cambios significativos en los parámetros respiratorios medidos. (4)

Endocrinometabòlica Dexmedetomidina tiene efecto bifàsico sobre le consumo de oxìgen, con un incremento inicial de hasta el 16%, seguido de un pronunciado descenso que se continùa incluso 1 hora después de acabada la infusión. Tienen acciones relacionadas con la inhibición del flujo simpàtico y el descenso de los niveles plasmàticos de catecolaminas circulantes, se ha demostrado la disminución de hasta 92% de noradrenalina plasmàtica, así como el incremento de los niveles de glucemia tras su administración.

La dosificación de Dexmedetomidina es dosis inicial en carga 1mcg a 6mcg/kg/hora durante 10 minutos seguidos de una infusión de 0.2 a 0.7 mcg/kg/hora por via IV. Fue aprobada por la FDA en diciembre del 1999. En conclusión es un fármaco que ha sido estudiado a nivel preclìnico y clìnico presentando unas interesantes características farmacològicas en cuanto a sus propiedades analgèsicas, disminución de los requerimientos de otros fármacos, sedantes y disminución de la liberación de catecolaminas, con unos efectos adversos relativamente predecibles, derivados de sus acciones como alfa 2 agonistas, todo esto lo convierte en una alternativa para pacientes que requieran analgesia..(5)

3. JUSTIFICACION

EL DOLOR ES UNA COMPLICACIÓN COMUN EN EL POSTOPERATORIO, DESEAMOS ENCONTRAR EL MEJOR MANEJO DE ESTE, CON EL USO DE MORFINA, BUPRENORFINA CON DEXMEDETOMIDINA AMBOS A DOSIS EQUIPOTENTES POR VIA SUBCUTANEA.

El manejo habitual de los pacientes posoperados de Colecistectomia Laparoscopica es TRADOL a dosis 1 a 2mg por kg de peso Y BUPRENORFINA a dosis 200 a 600mcg por kg de peso administrados por IV, y KETOROLACO 60mg o METAMIZOL 2gr administrados IV. Con este estudio deseamos demostrar el manejo de control del DOLOR postoperatorio por administración SC y demostrar la mejoría con cualquier a de dos fármacos que proponemos junto con dexmedetomidina.

Utilizamos la MORFINA a dosis 200 mcg por kg de peso, versus BUPRENORFINA a dosis 5 mcg por kg de peso, a dosis equipolente (relación 40:1), ambos con sinergismo de DEXMEDETOMIDINA a dosis 1 mcg por kg de peso, administrados por via subcutánea. Dentro de los primeros 10 minutos de iniciada la anestesia.

4. HIPOTESIS

La hipótesis de nuestro trabajo fue valorar con cual de los 2 opiodes Morfina o Buprenorfina con el sinergismo de Dexmedetomidina optemos el mejor control del dolor postoperatorio con los mas mínimos cambios hemodinámicos en el paciente al utilizarlos por vía subcutánea.

EL ALIVIO DEL DOLOR EN PACIENTES POSTOPERADOS DE CIRUGÍA DE COLECISTECTOMIA LAPAROSCOPICA TENDRAN MEJOR CONTROL DEL DOLOR UTILIZANDO BUPREFORFINA-DEXMEDETOMIDINA SC QUE LOS PACIENTES QUE UTILIZEN MORFINA-DEXMEDETOMIDINA SC.

5. OBJETIVOS

5.1. OBJETIVO GENERAL:

SE DETERMINO Y VALORO LA EFICACIA Y SEGURIDAD DE LA MORFINA-DEXMEDETOMIDINA VERSUS BUPRENORFINA-DEXMEDETOMIDINA VIA SUBCUTÁNEA, PARA EL CONTROL DEL DOLOR POSTOPERATORIO EN CIRUGÍA DE COLECISTECTOMIA LAPAROSCOPICA

5.2. OBJETIVOS PARTICULARES:

Para este trabajo será necesario aumentar la muestra de pacientes tratados en nuestro universo, para valorar si existe una diferencia estadística significativa y la valoración clínica del dolor.

6. MATERIAL Y METODOS

EN NUESTRO UNIVERSO DE ESTUDIO, LA POBLACIÓN A TRATADA FUERON PACIENTES QUE ACUDIERON CON EL DIAGNOSTICO DE COLECISTITIS CRÓNICA LITIASICA AL SERVICIO DE CIRUGÍA GENERAL LAPAROSCOPICA DEL HOSPITAL GENERAL DR. MANUEL GEA GONZALEZ Y SON PROGRAMADOS PARA CIRUGÍA LAPAROSCOPICA

Y COMO EFICACIA PARA EL ESTUDIO LO ENTENDIMOS COMO UNA ESCALA DE EVA DEL 0 AL 3, EVERA de LEVE, FC 60-80 lpm, TA 110/60 mmHg Y AUSENCIA DE EFECTOS ADVERSOS COMO Nauseas, Vomito y Bradicardia

6.1. Tipo de Estudio

DISEÑO Número de muestras a estudiar

COMPARATIVO Se utilizaron dos opiódes Morfina versus Buprenorfina ambas con Dexmedetomidina

Conocimiento que tienen los investigadores de los factores del estudio.

ABIERTO (todos los investigadores conocían las variables del experimento)

Participación del investigador.

EXPERIMENTAL. Se dividió el grupo de pacientes, en pares y nones al grupo par se les administro Buprenofina-Dexmedetomina SC al grupo non se le administro Morfina-Dexmedetomidina SC.

Tiempo en que suceden los eventos.

PROSPECTIVO los datos obtenidos fueron de eventos que se presentaron en el futuro

ENSAYO CLINICO

DOBLE CIEGO

Relación que quardan entre sí los datos.

LONGITUDINAL. los datos se obtuveron del mismo sujeto en más de una ocasión y se relacionaron entre si

Pruebas de diagnóstico medir sensibilidad y especificidad SE UTILIZO ESTADÍSTICA DESCRIPTIVA, TABLAS, CUADROS Y GRAFICAS

Estudios para medir asociación

UTILIZAMOS PRUEBA HIPÓTESIS E INTERVALOS DE CONFIANZA Y POR TRATARSE DE VARIABLES CUANTITATIVAS CONTINUAS, SE REALIZAMOS CHI CUADRADA Y T DE STUDENT.

6.2. Ubicación Temporal y Espacial

El estudio se realizo en el servicio de División de Anestesiologia, con los pacientes del servicio de Cirugía Laparoscopica, con una recolección de los pacientes durante 2 meses.

6.3. Criterios de Selección de la Muestra

Criterios de Inclusión

- PACIENTES ASA I Y II
- PACIENTES MAYORES DE 18 Años
- PACIENTES CON EL DIAGNOSTICO DE COLECISTITIS CRÓNICA LITIASICA
- PACIENTES PROGRAMADOS PARA CIRUGÍA LAPAROSCOPICA

Criterios de no Inclusión

- PACIENTES CON EL DIAGNOSTICO DE HIPOTENSIÓN ARTERIAL
- PACIENTES CON EL DIAGNOSTICO DE BRADICARDIA SINUSAL
- PACIENTES ADICTOS A CUALQUIER DROGA. O REFIEREN ALGUN TIPO DE ADICCIÓN
- PACIENTES CON GLAUCOMA
- PACIENTES CON INSUFICIENCIA RENAL
- PACIENTES CON INSUFICIENCIA HEPÁTICA
- PACIENTES CON TRASTORNOS NEUROLÓGICOS
- PACIENTES CON ALTERACIONES PSIQUIATRICAS

Criterios de Exclusión

- PACIENTES CON EL DIAGNOSTICO DE HIPOTENSIÓN ARTERIAL
- PACIENTES CON EL DIAGNOSTICO DE BRADICARDIA SINUSAL
- PACIENTES ADICTOS A CUALQUIER DROGA, O REFIEREN ALGUN TIPO DE ADICCIÓN
- PACIENTES CON GLAUCOMA
- PACIENTES CON INSUFICIENCIA RENAL
- PACIENTES CON INSUFICIENCIA HEPÁTICA
- PACIENTES CON TRASTORNOS NEUROLÓGICOS
- PACIENTES CON ALTERACIONES PSIQUIATRICAS.

Criterios de Eliminación

- PACIENTES QUE SE CONOCEN ALÉRGICOS A LOS FÁRMACOS A EMPLEADOS
- PACIENTES ALÉRGICOS A FARMCOS SIMILARES A LOS UTILIZADOS.

6.4. Variables

Independientes. Son cau	ısa de variación de los	Dependientes. Datos que	e son efecto de las	
fenómenos en estudio		variables independientes en estudio		
(CAL	JSA)	(EFE	CTO)	
Variable	Escala (intervalo,	Variable	Escala (intervalo,	
	ordinal, nominal)		ordinal, nominal)	
MORFINA O	Categorías dicotomicas	EVA	Categorías	
BRUPRENORFINA CON		EVRA	Cuantitativa Ordinal	
DEXMEDETOMIDINA		NAUSEAS	Dicotomicas	
SC	Categorías dicotomicas	VOMITO		
ASA		BRADICARDIA		
SEX0	Cuantitativas continuas			
FRECUENCIA				
CARDIACA				
TENSION ARTERIAL				
PESO.				

6.5. Tamaño de la Muestra

Tamaño de la muestra.

Número total de casos del estudio = 50 pacientes

Estudio comparativo, la diferencia que se espera encontrar entre los grupos es de: .50% el rango de variación de ambos casos: 25 Número de grupos 2, número de casos por grupo Con nivel alfa de 5% y potencia de la prueba de 85%

La Forma de asignación de los casos a los grupos de estudio: Será en forma Aleatoria y Secuencial se formaran 2 grupos con pacientes pares y pacientes nones cada grupo estará integrado por 25 pacientes .

Sin embarjo se trabajo con un universo de estudio de 40 pacientes, ya que NO cumplieron con los criterios de Inclusión (4 presentaron Bradicardia Sinusal, 3 tenían el antecedente de adicción a Cocaína y Marihuana, 2 tenían el diagnostico de Esquizofrenia y Un paciente tenía Trastorno Neurológico)

6.6. Análisis Estadístico

El analisis del estudio se realizaron pruebas de diagnostico para medir la sensibilidad y especificidad utilizamos Estadistica descriptiva, Tablas, Cuadros y Graficas. Y con estudios de asociación Hipòtesis e

intervalos de confianza por tratarse de variables cuantitativas continuas utilizando Chi cuadrada y T de Student

6.7. Descripción Operativa del Estudio

7. RESULTADOS

Comenzaremos con los cuadros y tablas que se mencionaron anteriormente

Cuadro No. 1		Edad	Peso	ASA
N	Valid	40	40	40
	Missing	0	0	0
Mean		35.28	66.85	1.30
Media	n	34.50	65.50	1.00
Std. De	eviation	12.387	9.534	0.464
Varian	ce	153.435	90.900	0.215
Minim	um	18	46	1
Maxim	num	63	92	2

Cuadro No. 2 Grupo Analgesia	Frequency	Percent	Cumulative Percent
Valid A	20	50.0	50.0
В	20	50.0	100.0
Total	40	100.0	

Podemos observar los parámetros que valoramos en nuestro estudio, se formaron 2 grupos A y B (A el grupo de Morfina y B el grupo de Buprenorfina) y ha ambos se les tomaron Edad, Peso, ASA, TA M mmHg, FC lpm, así como escala de EVA Y EVRA. En estas tablas podemos observar, el promedio, la media, la desviación estándar, y la variable su minima y máxima de todos los valores estudiados.

Tabla No. 1 y No. 2 TA mmHg y la FC lpm fueron variables consecutivas tomadas al inicio de la cirugía al final de la misma, y cada 15 minutos, 30 minutos y a la 1 y 2 horas de terminada la cirugía

TA Sistolica Inicio Qx	TAS Fin Qx	TAS 15 minutos	TAS 30 minutos	TAS 1 Hora	TAS 2 Horas
40	40	40	40	40	40
0	0	0	0	0	0
122.78	109.58	111.30	109.50	109.13	108.30
124.00	110.00	110.00	108.00	106.00	106.00
17.660	15.016	13.365	12.521	12.896	11.099
311.871	225.481	178.626	156.769	166.317	123.190
88	86	88	89	90	90
162	152	142	145	144	140

TA Diastolica Incio Qx	TAD Fin Qx	TAD 15 minutos	TAD 30 minutos	TAD 1 Hora	TAD 2 Horas
40	40	40	40	40	40
0	0	0	0	0	0
73.53	63.48	61.45	61.10	61.58	61.05
75.00	65.00	61.50	60.00	62.50	61.00
11.810	8.010	9.727	8.274	8.268	7.432
139.487	64.153	94.613	68.451	68.353	55.228
50	45	40	45	44	40
96	83	82	80	81	80

Tabla No. 3 FC Ipm de igual forma tomadas consecutivamente

FC Inicio Qx	FC Fin Qx	FC 15 minutos	FC 30 minutos	FC 1 Hora	FC 2 Horas
40	40	40	40	40	40
0	0	0	0	0	0
77.25	75.93	71.98	72.40	72.03	71.33
76.50	71.00	70.00	70.00	69.50	69.00
15.323	17.433	14.871	13.884	14.224	13.065
234.808	303.917	221.153	192.759	202.333	170.687
47	49	44	47	49	49
115	125	110	111	119	105

Tabla No. 4 Escala de EVA observamos la frecuencia y el porcentaje que manifestó cada paciente al valorarlo

EVA Fin Qx	EVA 15 minutos	EVA 30 minutos	EVA 1 Hora	EVA 2 Horas
40	40	40	40	40
0	0	0	0	0
0.05	0.25	0.68	1.58	2.35
0.00	0.00	0.00	0.00	3.00
0.316	0.927	1.403	1.824	2.119
0.100	0.859	1.969	3.328	4.490
0	0	0	0	0
2	4	4	6	8

EVA Fin Qx

		Frequency	Percent	Cumulative Percent
Valid	0	39	97.5	97.5
	2	1	2.5	100.0
	Total	40	100.0	

EVA 15 minutos

		Frequency	Percent	Cumulative Percent
Valid	0	37	92.5	92.5
	2	1	2.5	95.0
	4	2	5.0	100.0
	Total	40	100.0	

EVA 30 minutos

		Frequency	Percent	Cumulative Percent
Valid	0	32	80.0	80.0
	2	1	2.5	82.5
	3	3	7.5	90.0
	4	4	10.0	100.0
	Total	40	100.0	

EVA 1 Hora

		Frequency	Percent	Cumulative Percent
Valid	0	21	52.5	52.5
	1	1	2.5	55.0
	2	2	5.0	60.0
	3	8	20.0	80.0
	4	7	17.5	97.5
	6	1	2.5	100.0
	Total	40	100.0	

EVA 2 Horas

		Frequency	Percent	Cumulative Percent
Valid	0	13	32.5	32.5
	1	1	2.5	35.0
	2	4	10.0	45.0
	3	14	35.0	80.0
	4	4	10.0	90.0
	5	1	2.5	92.5
	6	1	2.5	95.0
	8	2	5.0	100.0
	Total	40	100.0	

Tabla No. 5 Escala de EVERA de igual forma valoramos su frecuencia, y porcentaje calificado por cada paciente al termino de su cirugía.

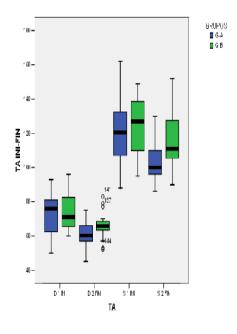
EVERA Fin Qx

		Frequency	Percent	Cumulative Percent
Valid	Ausente	39	97.5	97.5
	Leve	1	2.5	100.0
	Total	40	100.0	

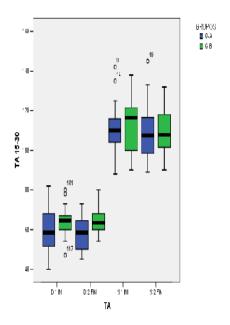
EVERA 15 minutos		Frequency	Percent	Cumulative Percent
Valid	Ausente	37	92.5	92.5
	Leve	2	5.0	97.5
	Moderado	1	2.5	100.0
	Total	40	100.0	

EVERA 30 minutos

		Frequency	Percent	Cumulative Percent
Valid	Ausente	32	80.0	80.0
	Leve	7	17.5	97.5
	Moderado	1	2.5	100.0
	Total	40	100.0	

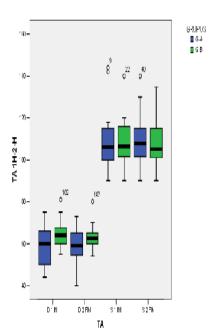

EVERA 1 Hora

		Frequency	Percent	Cumulative Percent
Valid	Ausente	21	52.5	52.5
	Leve	17	42.5	95.0
	Moderado	2	5.0	100.0
	Total	40	100.0	


EVERA 2 Horas

		Frequency	Percent	Cumulative Percent
Valid	Ausente	13	32.5	32.5
	Ausente/Leve	1	2.5	35.0
	Intenso	2	5.0	40.0
	Leve	21	52.5	92.5
	Moderado	3	7.5	100.0
	Total	40	100.0	

En estas graficas podemos observar la TA mmHg al inicio y al fin de la cirugía


Podemos valorar que la TA mmJg en ambos grupos varia en gruo A 120/76mmHg y el grupo B de127 /71mmHg y al final de la cirugia en grupo A 100/60mmHg y grupo B 111/66mmHg y encontramos una diferencia significativa en al TA Sistolica al final de la cirugia entra ambos grupos (observar tabla TA Sistolica y Diastolica)

Graficas observamos TA mmHg de 15 a 30 minutos postcirugia

TA mmHg de 15 a 30 minutos postcirugia fue para el grupo A 110/58mmHg; 107/58 mmHg grupo B 116/64 mmHg; 108/63mmHg (demostrando una diferencia significativa en TAD los 30 minutos en ambos grupos)

En esta grafica se observa la TA mmHg a las 1 y 2 postciguria

En el grupo A fue 106/60 mmHg; 108/59 mmHg y el grupo B 106/64 mmHg; 106/62 mmHg (sin cambios estadísticamente significativos entre ambos grupos

Podemos observar los resultados obtenidos en ambos grupos:

Case Processing Summary

		Cases					
	Included		Excluded		Total		
	N	N Percent		Percent	N	Percent	
Edad * Grupo Analgesia	40	100.0%	0	0.0%	40	100.0%	

Edad y Grupo de Analgesia

Grupo Analgesia	Mean	N	Std. Deviation	Median
A	31.65	20	10.713	31.00
В	38.90	20	13.135	41.00
Total	35.28	40	12.387	34.50

Table(Edad y Grupo analgesia)

		Sum of Squares	df	Mean Square	F	Sig.
Edad * Grupo Analgesia Betwee Groups	` /	525.625	1	525.625	3.659	0.063
With	in Groups	5,458.350	38	143.641		
	Total	5,983.975	39			

Case Processing Summary

		Cases					
		Included	Exclude	Total			
	N	Percent	N	Percent	N	Perc ent	
Peso * Grupo Analgesia	40	100.0%	0	0.0%		100. 0%	

Peso y Grupo de Analgesia

		F = ==================================		
Grupo Analgesia	Mean	N	Std. Deviation	Median
A	64.85	20	11.573	65.00
В	68.85	20	6.651	70.00
Total	66.85	40	9.534	65.50

Table(Grupo Analgesia y Peso)

= J = J = J							
		Sum of	Squares	df	Mean Square	F	Sig.
Peso * Grupo Analgesia	Between Grou	ups (Comb ined)	160.000	1	160.000	1.796	0.188
	Within Groups		3,385.100	38	89.082		
	Total		3,545.100	39			

Measures of Association

	Eta	Eta Squared
Peso * Grupo Analgesia	0.212	0.045

Case Processing Summary

	Ţ ,					
	Cases					
	Included		Excluded	Total		
	N	Percent	N	Percent	N	Percent
ASA * Grupo Analgesia	40	100.0%	0	0.0%	40	100.0%

Table Grupo Analgesia y ASA

Grupo Analgesia			
	A		
	Count		
ASA	15		
	5		

Pearson Chi-Square Tests

		Grupo Analgesia
ASA	Chi-square	0.476
	df	1
	Sig.	0.490

		Grupo	Analgesia
		A	В
Table (Grupo An	algesi y EVA)	Count	Count
EVA Fin Qx	0	20	19
	2	0	1
EVA15 minutos	0	20	17
	2	0	1
	4	0	2
EVA30 minutos	0	17	15
	2	0	1
	3	2	1
	4	1	3
EVA 1 Hora	0	12	9
	1	0	1
	2	1	1
	3	4	4
	4	3	4
	6	0	1
EVA 2 Horas	0	6	7
	1	0	1
	2	2	2
	3	8	6
	4	2	2
	5	1	0
	6	1	0
	8	0	2

Pearson Chi-Square T	ests	Grupo Analgesia
EVA Fin Qx	Chi-square	1.026
	df	1
	Sig.	0.311
EVA 15 minutos	Chi-square	3.243
	df	2
	Sig.	0.198
EVA 30 minutos	Chi-square	2.458
	df	3
	Sig.	0.483
EVA 1 Hora	Chi-square	2.571
	df	5
	Sig.	0.766
EVA 2 Hora	Chi-square	5.363
	df	7
	Sig.	0.616

		Grupo Ana	lgesia
		A	В
EVERA Fin Qx	Ausente	20	19
	Leve	0	1
EVERA15	Ausente	20	17
minutos	Leve	0	2
	Moderado	0	1
EVERA30	Ausente	17	15
minutos	Leve	3	4
	Moderado	0	1
EVERA 1 Hora	Ausente	12	9
	Leve	8	9
	Moderado	0	2
EVERA 2 Horas	Ausente	6	7
	Leve	12	10
	Moderado	2	1
	NIntenso	0	2

Pearson Chi-So	quare Tests	Grupo Analgesia
EVERA FIN Qx	Chi-square	1.026
	df	1
	Sig.	0.311
EVERA 15 minutos	Chi-square	3.243
	df	2
	Sig.	0.198
EVERA30 minutos	Chi-square	1.268
	df	2
	Sig.	0.531
EVERA 1 Hora	Chi-square	2.487
	df	2
	Sig.	0.288
EVERA 2 Horas	Chi-square	2.592
	df	3
	Sig.	0.459

Grupo Analgesia		TA Sistolica Inicio Qx	TAS Fin Qx	TAS 15 minutos	TAS 30 minutos	TAS 1 Hora	TAS 2 Horas
Anargesia	N	20	20	20	20	20	20
	Mean	120.55	103.50	110.45	108.85	108.95	108.70
	Median	120.50	100.00	110.00	107.50	106.00	108.00
	Std. Deviation	18.715	11.954	13.621	14.087	14.281	11.996
	Variance	350.261	142.895	185.524	198.450	203.945	143.905
В	N	20	20	20	20	20	20
	Mean	125.00	115.65	112.15	110.15	109.30	107.90
	Median	127.00	111.00	116.50	108.00	106.50	105.00
	Std. Deviation	16.717	15.564	13.402	11.066	11.721	10.422
	Variance	279.474	242.239	179.608	122.450	137.379	108.621
Total	N	40	40	40	40	40	40
	Mean	122.78	109.58	111.30	109.50	109.13	108.30
	Median	124.00	110.00	110.00	108.00	106.00	106.00
	Std. Deviation	17.660	15.016	13.365	12.521	12.896	11.099
	Variance	311.871	225.481	178.626	156.769	166.317	123.190

Н

			Sum of Squares	df	Mean Square	F	Sig.
TAS Inicio Qx * Grupo Analgesia	Between Groups	(Combined)	198.025	1	198.025	0.629	0.433
	Wit	hin Groups	11,964.950	38	314.867		
		Total	12,162.975	39			
TAS Fin Qx * Grupo Analgesia	Between Groups	(Combined)	1,476.225	1	1,476.225	7.666	0.009
	Wit	hin Groups	7,317.550	38	192.567		
	Total		8,793.775	39			
TAS 15 minutos * Grupo Analgesia	Between Groups	(Combined)	28.900	1	28.900	0.158	0.693
	Wit	hin Groups	6,937.500	38	182.566		
		Total	6,966.400	39			
TAS 30 minutos* Grupo Analgesia	Between Groups	(Combined)	16.900	1	16.900	0.105	0.747
	Wit	hin Groups	6,097.100	38	160.450		
		Total	6,114.000	39			
TAS 1 Hora * Grupo Analgesia	Between Groups	(Combined)	1.225	1	1.225	0.007	0.933
	Wit	hin Groups	6,485.150	38	170.662		
		Total	6,486.375	39			

TAS 2 Horas * Grupo Analgesia	Between Groups	(Combined)	6.400	1	6.400	0.051	0.823
	Wit	hin Groups	4,798.000	38	126.263		
		Total	4,804.400	39			

Grupo Analgesia		TA Diastolica Inicio Qx	TAD Fin Qx	TAD 15minutos	TAD 30 minutos	TAD 1 Hora	TAD 2 Horas
A	N	20	20	20	20	20	20
	Mean	73.05	60.85	59.00	58.10	58.95	58.95
	Median	76.00	60.00	58.50	58.50	60.00	59.00
	Std. Deviation	12.775	7.659	11.002	8.608	9.122	8.243
	Variance	163.208	58.661	121.053	74.095	83.208	67.945
В	N	20	20	20	20	20	20
	Mean	74.00	66.10	63.90	64.10	64.20	63.15
	Median	71.00	66.00	64.50	63.50	64.00	62.50
	Std. Deviation	11.074	7.650	7.779	6.889	6.526	6.011
	Variance	122.632	58.516	60.516	47.463	42.589	36.134
Total	N	40	40	40	40	40	40
	Mean	73.53	63.48	61.45	61.10	61.58	61.05
	Median	75.00	65.00	61.50	60.00	62.50	61.00
	Std. Deviation	11.810	8.010	9.727	8.274	8.268	7.432
	Variance	139.487	64.153	94.613	68.451	68.353	55.228

			Sum of Squares	df	Mean Square	F	Sig.
TAID Inicio Qx * Grupo Analgesia	Between Groups	(Combined)	9.025	1	9.025	0.063	0.803
	Wit	hin Groups	5,430.950	38	142.920		
		Total	5,439.975	39			
TAD Fin Qx * Grupo Analgesia	Between Groups	(Combined)	275.625	1	275.625	4.704	0.036
	Wit	hin Groups	2,226.350	38	58.588		
		Total	2,501.975	39			
TAD 15 minutos * Grupo Analgesia	Between Groups	(Combined)	240.100	1	240.100	2.645	0.112
	Wit	hin Groups	3,449.800	38	90.784		

		Total	3,689.900	39			
TA 30 minutos * Grupo Analgesia	Between Groups	(Combined)	360.000	1	360.000	5.923	0.020
	Wit	hin Groups	2,309.600	38	60.779		
		Total	2,669.600	39			
TAD 1 Hora * Grupo Analgesia	Between Groups	(Combined)	275.625	1	275.625	4.382	0.043
	Within Groups		2,390.150	38	62.899		
	Total		2,665.775	39			
TAD 2 Horas * Grupo Analgesia	Between Groups	(Combined)	176.400	1	176.400	3.390	0.073
	Within Groups		1,977.500	38	52.039		
		Total	2,153.900	39			

Grupo Analgesia		FC Inicio Qx	FC Fin Qx	FC 15 minutos	FC 30 minutos	FC 1 Hora	FC 2 Horas
A	N	20	20	20	20	20	20
	Mean	77.90	73.30	70.45	72.05	71.80	70.85
	Median	78.50	71.00	71.50	70.50	69.00	69.00
	Std. Deviation	13.951	14.172	10.846	12.513	14.285	11.900
	Variance	194.621	200.853	117.629	156.576	204.063	141.608
В	N	20	20	20	20	20	20
	Mean	76.60	78.55	73.50	72.75	72.25	71.80
	Median	73.00	72.50	68.00	69.00	70.00	68.50
	Std. Deviation	16.925	20.211	18.205	15.454	14.531	14.432
	Variance	286.463	408.471	331.421	238.829	211.145	208.274
Total	N	40	40	40	40	40	40
	Mean	77.25	75.93	71.98	72.40	72.03	71.33
	Median	76.50	71.00	70.00	70.00	69.50	69.00
	Std. Deviation	15.323	17.433	14.871	13.884	14.224	13.065
	Variance	234.808	303.917	221.153	192.759	202.333	170.687

			Sum of Squares	df	Mean Square	F	Sig.
FC Inicio Qx* Grupo Analgesia	Between Groups	(Combined)	16.900	1	16.900	0.070	0.792
	Within Groups Total		9,140.600	38	240.542		
			9,157.500	39			
FC Fin Qx* Grupo Analgesia	Between Groups	(Combined)	275.625	1	275.625	0.905	0.348
	Within Groups		11,577.150	38	304.662		

		Total	11,852.775	39			
FC 15 minutos * Grupo Analgesia	Between Groups	(Combined)	93.025	1	93.025	0.414	0.524
	Wit	hin Groups	8,531.950	38	224.525		
		Total	8,624.975	39			
FC 30 minutos* Grupo Analgesia	Between Groups	(Combined)	4.900	1	4.900	0.025	0.876
	Within Groups Total		7,512.700	38	197.703		
			7,517.600	39			
FC 1 Hora * Grupo Analgesia	Between Groups	(Combined)	2.025	1	2.025	0.010	0.922
	Wit	hin Groups	7,888.950	38	207.604		
		Total	7,890.975	39			
FC 2 Horas * Grupo Analgesia	Between Groups	(Combined)	9.025	1	9.025	0.052	0.822
	Wit	hin Groups	6,647.750	38	174.941		
		Total	6,656.775	39			

La interpretación clínica-algológica de los resultados obtenidos en el postoperatorio en el grupo A (Morfina-Dexmedetomidina) y el grupo B (Buprenorfina-Dexmedetomidina) con las escalas EVA Y EVERA es la siguiente:

En el postoperatorio inmediato el grupo A ningún paciente refirió dolor, no así en el grupo B donde un paciente presento dolor leve. A los 15 minutos del postoperatorio la valoración del dolor en el grupo A, fue ausente, y en el grupo B dos pacientes presentaron dolor leve y uno dolor moderado. A los 30 minutos del postoperatorio la valoración del dolor en el grupo A fue que tres pacientes con dolor leve y el grupo B cuatro paciente con dolor leve y uno con dolor moderado. A la hora del postoperatorio la valoración del dolor en el grupo A fue de ocho pacientes con dolor leve y en el grupo B nueve pacientes con dolor leve y dos con dolor moderado.

A las 2 horas del postoperatorio la valoración del dolor en el grupo A fue de doce pacientes con dolor leve y dos pacientes con dolor moderado mientras que en grupo B, diez pacientes con dolor leve, un

paciente con dolor moderado y dos pacientes con dolor intenso. Respecto a los signos vitales TA mmHg y FC lpm, en ambos grupos hubo estabilidad hemodinámica sin repercusión clínica.

La nausea y vomito en el postoperatorio inmediato, a los 15 y 30 minutos, a la Hora y 2 Horas no se presento.

8. DISCUSIÓN

Pudimos observar que la eficacia de morfina (grupo A) respecto a la Buprenorfina (grupo B) a dosis equianalgesica de 1:40 respectivamente resulto con mejor control del dolor en el postoperatorio inmediato, como es bien sabido la morfina es el fármaco de elección en el postoperatorio, aunque la dosis de 1 mcg por kilogramo de peso del alfa 2 agonista Dexmedetomidina por vía subcutánea parece no haber influido con sinergismo al usar con narcoticos; Esto debido a que la dosis de los narcoticos por via subcutanea como sabemos equivale a un efecto menor para conseguir el efecto deseado cuando se administra por via intravenosa.

Ejemplo: 1 mg de Morfina IV equivale a 2 mg por vía subcutánea y a 3 mg por vía intramuscular, esto para conseguir el mismo efecto analgésico. Tomando en cuenta este orden en nuestro estudio el poder aplicar mayor dosis podría prolongar el efecto analgésico en ambos grupos ya que el grupo A cubrió con un buen control del dolor las primeras 2 horas, no así en el grupo B donde su efecto analgésico fue menos prolongado refiriendo el pacientes dolor antes de las 2 horas.

En cuanto a Seguridad de nuestros fármacos y la vía subcutánea a las dosis empleadas no se presentaron efectos adversos con repercusión clínica ni hemodinámicas durante las 2 primeras horas del postoperatorio.

. CONCLUSIONES

- 1). Grupo A (Morfina-Dexmedetomidina) por vía subcutánea a dosis 200 mcg por kilo de peso y 1 mcg por kilo de peso respectivamente, es eficaz y seguro para el control del dolor postoperatorio inmediato dentro de las primeras dos horas en cirugía de Colecistectomía Laparoscópica.
- 2). Grupo B (Buprenorfina-Dexmedetomidina) por vía subcutánea a dosis equianalgesica respecto a la empleada con Morfina, como sabemos es de 1:40; (5mcg 200mcg respectivamente) y Dexmedetomidina a 1 mcg por kilo de peso, es seguro pero no eficaz después de la primer hora del postoperatorio inmediato.
- 3). Sabemos que de los opiáceos el fármaco de elección en el postoperatorio sigue siendo la Morfina y que esta no tiene dosis máxima en 24 horas, la condiciona sus efectos secundarios. Bajo estas condiciones podemos realizar el mismo estudio a dosis mayores ya que nuestros efectos adversos no se manifestaron en los pacientes tratados, esto podría prolongar el control del dolor así como incrementar la dosis de Dexmedetomidina por vía subcutánea, y consiguiendo el sinergismo analgésico.

10. PERSPECTIVAS

Desea aumentar el tamaño de nuestra de nuestro estudio, al aumentar el tamaño de muestra también se realizara la valoración de escala de sedición de los pacientes, por el uso de la Dexmedetomidina, así como evitar el uso de Benzodiacepinas previo la inducción de la Anestesia General Balanceada, con el objetivo de valorar el efecto Sedante y Ansiólico de Dexmedetomida por vía subcutánea.

Podremos utilizar dosis mayores de Opiáceos y Alfa 2 agonistas, ya que las utilizadas en este estudio son bajas, pero pudimos lograr eficacia y seguridad, hasta las 2 horas del postoperatorio, con este nuevo estudio podríamos prolongar el tiempo analgésico cuidando siempre los mínimos efectos secundarios.

12. ANEXOS

Secretaría de Salud. Hospital General "Dr. Manuel Gea González".

CARTA DE CONSENTIMIENTO INFORMADO

Titulo de la investigación: EFICACIA Y SEGURIDAD DE MORFINA-DEXMEDETOMIDINA VERSUS

BUPRENORFINA-DEXMEDETOMIDINA A DOSIS EQUIPOTENTES, POR VIA SUBCUTÁNEA PARA EL

CONTROL DEL DOLOR POSTOPERATORIO EN CIRUGÍA DE COLECISTECTOMIA LAPAROSCOPICA

De acuerdo con los principios de la Declaración de Helsinki y con La ley General de Salud, Título Segundo. De los Aspectos Éticos de la Investigación en Seres Humanos CAPITULO I Disposiciones Comunes. Artículo 13 y 14.- En toda investigación en la que el ser humano sea sujeto de estudio, deberán prevalecer el criterio del respeto a su dignidad y la protección de sus derechos y bienestar. Debido a que esta investigación se consideró como riesgo mínimo o mayor de acuerdo al artículo 17 y en cumplimiento con los siguientes aspectos mencionados con el Artículo 21:

Titulo tercero. De la investigación de nuevos recursos profilácticos de diagnóstico, terapéuticos y de rehabilitación. Capitulo I Articulos 61-64.

Cuando se realice la investigación en seres humanos sobre nuevos (o se modifiquen) recursos profilácticos, dx, terpéuticos o rehabilitación, además deberán solicitar autorización de la Secretaria presentando documentación requeria

Titulo tercero Capítulo II De la investigación farmacológica, Articulos 65-71

La justificación y los objetivos de la investigación.

EL DOLOR ES UNA COMPLICACIÓN FRECUENTE EN EL POSTOPERATORIO, DESEAMOS ENCONTRAR EL MEJOR MANEJO DE ESTE, CON EL USO DE MORFINA, BUPRENORFINA

AMBOS CON DEXMEDETOMIDINA A DOSIS EQUIPOTENTES ADMINISTRADOS VIA SC

- II. Los procedimientos que vayan a usarse y su propósito, incluyendo la identificación de los procedimientos que son experimentales. Si decido participar en este estudio, se me administrara para control de dolor postoperatorio Morfina-Dexmedetomidina o Buprenorfina-Dexmedetomidina vía subcutánea, la administración de uno u otro medicamento, se realizara con base en un sorteo para cualquiera de estas dos formas. El uso de estos fármacos es recomendado ampliamente para el control de dolor, manifestando los pacientes un control adecuado del dolor postoperatorio. Administraremos los fármacos 10 minutos ya iniciada la anestesia con una aguja pequeña en el tercio medio de la cara externa del brazo, similar a la aguja que se utilizan en el paciente que se le inyecta insulina. Al terminar la cirugía estaremos evaluando su escala de dolor y otros datos relacionados con el uso de estos fármacos
- III. Las molestias o los riesgos esperados, cómo y quién las resolverá. Este estudio durara 2 horas aproximadamente, que es el tiempo suficiente para evaluar su respuesta al dolor postoperatorio. Si usted llegara a referir dolor lo controlaremos con una nueva dosis de analgésico o le administraremos Ketorolaco, Metamizol o algún otro fármaco similar a la aspirina.

Existe la posibilidad de presentar como efecto de estos fármacos Nauseas, Vómito, los cuales también se manifiestan en cualquier paciente sometido a una Anestesia General. Y existe el riesgo de debutar como alérgico a algunos de los fármacos, como a cualquier otro fármaco utilizado en la Anestesia. Todo evento que podría presentarse será resuelto con el uso de fármacos.

- IV. Los beneficios que puedan observarse. Cuando me administren estos fármacos se espera que tenga un control mayor y mejor del dolor postoperatorio. Lo cual deseamos demostrar en nuestra población con mínimos efectos que se puedan presentar con las dosis empleada en el estudio.
- V. La garantía de recibir respuesta a cualquier pregunta y aclaración. Puede hacer usted preguntas acerca del estudio en cualquier momento. Si tiene alguna pregunta acerca del estudio, y desea obtener información acerca del tratamiento, por favor póngase en contacto con:

Médico del estudio: Dr. Hilario Gutiérrez Acar Número teléfono: 4000-3000 Ext 3042/3049

Y cualquier queja usted podrá realizarla a: Comisiones de Investigación y Ética del Hospital General "Dr. Manuel Gea González" esta ubicado en: Calzada de Tlalpan 4800 Col. Sección XVI Delg Tlalpan C. P 14080 México D.F

Pida hablar con el Presidente de las Comisiones: Dr. Alfonso Galván Montaño 4000-3040 y 4000 3100

VI. La libertad de retirar su consentimiento en cualquier momento y dejar de participar en el estudio. La participación en este estudio es voluntaria y no está obligado(a) a participar. Usted puede no aceptarlo sin dar explicaciones. Y usted tendrá el manejo de dolor postoperatorio utilizado de forma habitual para su procedimiento quirúrgico, así como el seguimiento estaremos pendiente de su evolución postoperatorio.

He leído este formulario de consentimiento y se me ha permitido hacer preguntas sobre el estudio. El médico o el personal del estudio ha analizado conmigo el estudio, y todas mis preguntas han sido respondidas a mi entera satisfacción.

Doy mi consentimiento voluntario para este estudio de investigación, conforme a lo descrito en este formulario. La información que se obtenga será utilizada solo para fines de esta investigación y en todo momento se guardara el anonimato de mi participación.

Recibiré una copia firmada y fechada de este formulario de consentimiento.

Con fecha,	, habiendo	comprendido	lo anterior	y una vez	que se
me aclararon todas las dudas que surgieron con	respecto	a mi participa	ción en el	proyecto,	acepto
participar en el estudio titulado:					

Titulo del estudio

Nombre y firma del paciente o responsable legal Nombre, y firma del testigo 1	
Dirección	
Relación que guarda con el paciente	
Nombre, y firma del testigo 2	
Dirección	
Relación que guarda con el paciente	
Nombre y firma del Investigador Responsable o Principal Dra. Katia Alejandra Gómez Nava R3A ———————————————————————————————————	

Este documento se extiende por duplicado, quedando un ejemplar en poder del sujeto de investigación o de su representante legal y el otro en poder del investigador.

Para preguntas o comentarios comunicarse con el Dr. Alfonso Galván Montaño, presidente de las Comisiones de Ética y de Investigación al (01 55) 4000 3040.

Hoja de	captura c	le datos.
---------	-----------	-----------

Nombre paciente: No. expediente:

Edad: Años Peso Kg ASA

Grupo Analgesia:

Signos Vitales	TA mmHg	FC Ipm	Escala EVA	Escala EVRA
Inicio Cirugía				
Finales Cirugia				
15 minutos				
30 minutos				
1 hora				
2 horas				

Efectos Adversos:

	SI	NO
Nauseas		
Vomito		
Bradicardia		

11. BIBLIOGRAFIA

- 1) Huang P. et al. (2001): "Comparison of pharmacological activities of buprenorphine and norbuprenorphine is a potent opioid agonist", J. Pharmacol. Exp. Ther. 297(2):688-95. PMID 11303059.
- 2) Joint Formulary Committee. <u>British National Formulary</u>, 47th edition. London: British Medical Association and Royal Pharmaceutical Society of Great Britain; 2004. <u>ISBN 0-85369-584-9</u>.
- 3) Viranen R, Savola JM, Saano V, Nyman L. Characterization of the selectivity, especificity and potency of medetomidine as an alpha 2-adrenoceptor agonista, Eur J Pharmacol 1988; 150: 9-14
- 4) Dyck JB, Shafer SL, Dexmedetomidine pharmacokinetics and pharmacodynamics. Anaest pharmacol Rev 1993; 1: 238-245
- 5) Shceinin H, Karhurvaara S, Olkkola KT, Kallio A. Anttila M. Vuorilehto L et al. Pharmacodynamics and pharmacokinetics of intramuscular dexmedetomidiene. Clin Pharmacol Ther 1992; 52: 537-546
- 6) Khan ZP, Munday IT, Jones RM, Thorthon C, Mant TG, Amin D. Effects of desmedetomidine on isoflurane requirements in healthy volunteers. I Pharmacodynamic and pharmacokinetic interactions. Br J Anaesth 1999; 83: 372 –380.
- 7) Artieda MC. Inyecciones: intradérmica, intramuscular y subcutánea. En: Arribas JM, Caballero F. Manual de Cirugía Menor y otros Procedimientos en la Consulta del Médico de Familia. Madrid: Merck Sharp & Dohme; 1993;p. 381-88.
- 8) Esteve J, Mitjans J. Enfermería. Técnicas clínicas. Madrid: McGraww-Hill Interamericana; 2002.
- 9). Mercadante,. S. Buprenorfina y dolor relacionado con el cancer. Buprenorfina, un analgèsico excepcional. Farmacología y aplicación clìnica. Editorial Keith Budd and robert Raffa. Cap 7.2006
- 10). Budd K Buphrenorphine and The Transdermal System. The ideal match in pain management. Int J Clin Prac 2003; S 133: 9-14.
- 11) Kivisto KT, Kallio A, Neuvonen PJ. Pharmacokinetics and pharmacodynamics of transdermal dexmedetomidene. Eur J Clin Pharmacol 1994; 46: 345-349
- 12) Bilbeny N. Medición del dolor en clínica. En Paeile C, Saavedra A (Eds). El Dolor. Aspectos Básicos y Clínicos. Santiago: Mediterráneo, 1990: 87-101.
- 13) Bugedo G, Dagnino J, Muñoz H, Torregrosa S. Escala visual análoga: Comparación de seis escalas distintas. Rev Chil Anestesia 1989; 18: 132.
- 14) Seidenberg, A., & Honegger, U. (2000). Metadona, Heroína y otros opioides. Granada: Ediciones de Díaz de Santos
- 15) De Leon-Casasola OA, Lema MJ. Posoperative epidural opioid analgesia: what are the choices? Anesth Analg 1996; 83: 867-875.