UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO

FACULTAD DE QUÍMICA

TÍTULO DE LA TESIS

INDICADORES GEOQUÍMICOS DE CONDICIONES PALEOHIDROLÓGICAS Y PALEOCLIMÁTICAS EN UNA ESTALAGMITA DESARROLLADA DURANTE EL ÚLTIMO MÁXIMO GLACIAL.

QUE PARA OBTENER EL TÍTULO DE QUÍMICO

PRESENTA

Hernández Mendiola Ernesto

Universidad Nacional Autónoma de México

UNAM – Dirección General de Bibliotecas Tesis Digitales Restricciones de uso

DERECHOS RESERVADOS © PROHIBIDA SU REPRODUCCIÓN TOTAL O PARCIAL

Todo el material contenido en esta tesis esta protegido por la Ley Federal del Derecho de Autor (LFDA) de los Estados Unidos Mexicanos (México).

El uso de imágenes, fragmentos de videos, y demás material que sea objeto de protección de los derechos de autor, será exclusivamente para fines educativos e informativos y deberá citar la fuente donde la obtuvo mencionando el autor o autores. Cualquier uso distinto como el lucro, reproducción, edición o modificación, será perseguido y sancionado por el respectivo titular de los Derechos de Autor. MÉXICO, D.F.

2008

JURADO ASIGNADO:

Presidente Prof. Dra. JOSEFINA DE GYVES MARCINIAK
Vocal Prof. M. en C. CIRO ELISEO MÁRQUEZ HERRERA
Secretario Prof. Dr. JUAN PABLO BERNAL URUCHURTU
1er. Suplente Prof. M. en C. GUILLERMINA GONZÁLEZ MANCERA
2do. Suplente Prof. Dr. JOSÉ DE JESÚS GARCÍA VALDÉS

SITIO DONDE SE DESARROLLÓ EL TEMA:

INSTITUTO DE GEOLOGÍA, UNAM

ASESOR:

DR. JUAN PABLO BERNAL URUCHURTU.

SUSTENTANTE:

ERNESTO HERNÁNDEZ MENDIOLA.

AGRADECIMIENTOS

En primer lugar, agradezco a la UNAM por brindarme los elementos necesarios para formarme como persona y como profesionista, en particular a la Facultad de Química en donde adquirí los conocimientos y habilidades que me permitieron desarrollar este trabajo.

Al Instituto de Geología por el apoyo económico otorgado para la realización de mi trabajo de tesis.

Al CONACyT por apoyarme económicamente y por el financiamiento otorgado durante la realización de este trabajo, como parte del proyecto "Estalagmitas cálcicas como archivos geoquímicos de cambio climático durante los últimos 50,000 años" (número 44016).

Al PAPIIT por el financiamiento otorgado para la realización del trabajo de campo dentro del proyecto "Registros ambientales del Cuaternario tardío de estalagmitas cálcicas:: un intento multidisciplinario" (número IN116906).

A la Presidencia Municipal de Cuetzalan, Puebla, por su consentimiento y apoyo para el desarrollo del trabajo de campo.

A la organización Xochiquetzal del Muncipio de Cuetzalan por su apoyo y asesoria durante el trabajo de campo.

A los integrantes del H. Jurado por el tiempo invertido en sus observaciones y comentarios para mejorar el trabajo de tesis.

Un especial agradecimiento a mi asesor, el Dr. Juan Pablo Bernal Uruchurtu por el tiempo, paciencia, apoyo y enseñanzas dedicados para la realización de este trabajo.

Al personal del Instituto de Geología, el investigador M. en C. Pedro Morales Puente; los técnicos, M. en C. Elena Lounejeva Baturina, M. en C. Edith Cienfuegos Alvarado y Q. Francisco Otero.

A Malcolm McCulloch de la Universidad Nacional de Australia por su apoyo en la realización de los fechamientos utilizados en el presente trabajo.

A mi familia por su apoyo, comprensión y cariño.

Índice

		Pág
Capítulo I	Introducción	 1-4
Capítulo II	Antecedentes	 5-26
Capítulo III	Objetivos	 27
Capítulo IV	Metodología	 28-40
Capítulo V	Resultados y discusión	 41-54
Capítulo VI	Conclusiones	 55-56
Capítulo VII	Referencias	 57-61
Capítulo VIII	Apéndices	 62-85

Introducción.

1. INTRODUCCIÓN.

Actualmente, el entendimiento de los patrones climáticos terrestres pasados es uno de los mayores retos de la ciencia. A pesar de que se pueden conocer los patrones climáticos actuales, es relativamente difícil comprender como han evolucionado hasta el presente, y consecuentemente, es extremadamente delicado pronosticar hacia donde se dirigen.

Recientemente se ha demostrado que el florecimiento y/o caída de distintas civilizaciones prehispánicas están íntimamente ligados a las condiciones climáticas predominantes (Brenner et al., 2001; Polyak y Asmerom, 2001; Pope et al., 2001; Haug et al., 2003), a partir de lo cual se desprende la importancia del conocimiento sobre la interacción humano-clima. Un factor aparentemente determinante en la transformación del paisaje y ambiente actual es la actividad humana; un ejemplo de esto es el incremento en la temperatura promedio global como resultado del incremento en la concentración de gases de efecto invernadero, debido al uso indiscriminado de combustibles fósiles (IPCC, 2001), proceso comúnmente conocido como "el calentamiento global". De esta manera, en los últimos años ha adquirido gran importancia la comprensión de los procesos que generan la variabilidad climática, así como el impacto de las actividades antrópicas sobre el ambiente, y las consecuencias socioeconómicas implicadas. Lo anterior genera la necesidad de concebir modelos que permitan prever el efecto de posibles escenarios de cambio climático en la Tierra. Tales modelos requieren de manera imperativa conocer las consecuencias de la variabilidad climática pasada registrada a lo largo de la historia geológica terrestre.

Es complicado conocer la variabilidad climática a escalas de tiempo como cientos de años, milenios o millones de años, debido a que los archivos climáticos instrumentales continuos abarcan, en los mejores casos, sólo los últimos 200 años. Es por esto que es necesario recurrir a los archivos geológicos (tales como anillos de árboles, sedimentos marinos y lacustres, suelos, corales, núcleos de hielos, estalagmitas, entre otros). Estos representan

Introducción.

la única herramienta disponible para esclarecer la evolución climática de la Tierra tanto en ambientes oceánicos como continentales.

Los archivos geológicos estudiados hasta la actualidad permiten tener evidencia de que el clima terrestre ha variado sustancialmente a lo largo de la historia geológica reciente (Williams *et al.*, 1998), y han permitido variaciones climáticas en diferentes escalas de tiempo (milenaria, centenaria, decadal y semidecadal, etc.). Por ejemplo, mediante el estudio de diferentes archivos geológicos se han podido identificar las etapas frías y cálidas del periodo Cuaternario o Neógeno superior, el cual abarca aproximadamente 2,588,000 años A.P. ("años antes del presente")(Williams, 1998). Este tipo de variabilidad climática consiste en la periodicidad de etapas frías, conocidas como glaciaciones, alternadas con periodos interglaciales (etapas cálidas), ambos con duración de decenas de miles de años (±120,000 años). No obstante el conocimiento de la existencia de estos tipos de variaciones climáticas, aún se sigue discutiendo sobre la estructura general de estos eventos, por ejemplo su origen y cronología.

El estudio de los archivos geológicos ha permitido identificar una variabilidad climática conocida como el Último Máximo Glacial (UMG), el cual ocurrió aproximadamente a los 18,000 años A.P. en México. Este evento se interpreta, de manera generalizada, como un periodo extremadamente frío en la historia de la Tierra, durante el cual los casquetes polares se extendieron hasta latitudes cercanas a los 40° N. Sin embargo, a más de tres décadas de estudios intensos sobre este tema basados en registros marinos y continentales (Williams *et al.*, 1998), aún no se tienen conclusiones contundentes sobre las consecuencias de este fenómeno, así como su distribución geográfica, en particular en regiones tropicales y subtropicales como el centro y sur de la República Mexicana. Debido a esto, en los últimos años ha crecido la necesidad de desarrollar estudios interdisciplinarios (palinología, paleomagnetismo, limnología, paleopedología, entre otros), que permitan elucidar las condiciones que imperaban en el territorio mexicano durante dicho periodo (Metcalfe *et al.*, 2000).

Introducción.

A pesar de que el estudio de núcleos de sedimentos marinos y lacustres ha permitido generar un escenario paleoclimático para México (Bradbury, 1997; Metcalfe *et al.*, 2000), aún hace falta integrar el estudio de espeleotemas cálcicas (estalactitas, estalagmitas, coladas fluidas, etc.) a dichas investigaciones, ya que éstas pueden aportar información paleoclimática de mayor resolución temporal y, muy importante, libres de afectación antropogénica.

Los estudios paleoclimáticos basados en estalagmitas comenzaron en la década de los 70' (Hendy, 1971), sin embargo el escaso progreso en el análisis instrumental que permitiera fechamientos con mayor precisión impidió un rápido desarrollo del estudio de estos indicadores paleoclimáticos. Convenientemente, en las últimas décadas, el avance científico y tecnológico han permitido el fechamiento de especímenes pequeños de calcita (Edwards *et al.*, 1986; Shen *et al.*, 2002), abriendo la puerta para realizar investigaciones con mayor resolución, precisión y exactitud, con lo cual se ha incrementado el estudio sobre este tipo de archivos paleoclimáticos, en particular de estalagmitas (Fairchild *et al.*, 2006).

Las ventajas que ofrecen las estalagmitas sobre otros registros (como núcleos de sedimentos lacustres, marinos, paleosuelos o anillos de árboles), radican en que éstas se desarrollan en el interior de cuevas, por lo que están protegidas contra posibles procesos de alteración naturales (erosión, disolución, diagénesis, etc.) y/o antropogénicas. Además, este tipo de archivos comúnmente crecen bajo condiciones cercanas al de un sistema cerrado, por lo que el fechamiento basado en el desequilibrio en la cadena de decaimiento radioactivo de las series de uranio es muy robusto (van Calsteren y Thomas, 2006b).

La naturaleza de las estalagmitas puede ser vista como un experimento químico-geológico, el cual cuenta la historia de las interacciones entre la litósfera, atmósfera, hidrósfera y biósfera. Esta interacción y evolución queda archivada durante el desarrollo de la estalagmita, y es así como la información recabada de ésta provee ideas sólidas sobre la evolución de dichas variables.

Introducción.

En la actualidad, el uso de estalagmitas como archivos paleoclimáticos enfoca sus estudios al análisis de diversos indicadores geoquímicos como la composición isotópica de C y O (expresada como δ^{13} C y δ^{18} O), las relaciones molares (Mg/Ca, Sr/Ca, Ba/Ca y U/Ca), entre otros, los cuales son contrastados con registros paleoclimáticos globales, tales como núcleos de hielo (GRIP -Greenland Ice core Project, GISP2 - Greenland Ice Sheet Project Two) (Petit *et al.*, 1999) o, sedimentos marinos (Imbrie, 1993). Sin embargo, hasta el momento no existen trabajos que expongan una comparación entre los diferentes indicadores geoquímicos provenientes de una misma estalagmita, lo cual no sólo permitiría evaluar su sensibilidad y confiabilidad, sino también reforzar las interpretaciones paleoclimáticas.

A pesar del potencial que poseen las estalagmitas y, en particular, las provenientes de localidades mexicanas, aún no se cuenta con estudios suficientes que permitan ayudar a precisar los modelos hasta ahora derivados con otros registros geológicos de baja resolución (núcleos de sedimentos lacustres y marinos, paleosuelos, etc.) para el periodo comprendido entre el Pleistoceno superior al Holoceno en México. De esta manera, en el presente trabajo se muestra la utilidad de un novedoso y robusto registro paleoambiental en México, fundamentado en el análisis de los diferentes indicadores geoquímicos de condiciones paleohidrológicas y paleoambientales comúnmente analizados en estalagmitas. Dicho estudio permitirá evaluar la sensibilidad y capacidad de respuesta de los diferentes indicadores en una estalagmita desarrollada hacia el comienzo del Último Máximo Glacial en México. Además, se realiza una comparación con otros registros geológicos paleoambientales contemporáneos, así como con registros instrumentales actuales.

2. ANTECEDENTES

2.1 Panorama climático actual de México.

México está ubicado en los trópicos en el hemisferio norte, extendiéndose desde 16° a 32°N y 82° a 115°O como límites máximos. Dentro sus fronteras existe una gran diversidad de ambientes, desde los bosques tropicales en la parte sur, hasta desiertos en la parte norte, pasando por bosques de pinos y de coníferas en las tierras altas y por algunos volcanes cubiertos de hielos estacionales a lo largo del Cinturón Volcánico Trans-Mexicano (CVTM) (Figura 1).

Antecedentes.

La altitud y el relieve, así como la influencia de las latitudes juegan un papel significativo en la presencia de esta diversidad de ambientes. Existen tres características determinantes de la circulación atmosférica que influencian el clima actual de México: los vientos Alisios, el cinturón subtropical de alta presión y los vientos del Noroeste. En invierno, los vientos del Noroeste traen condiciones secas a la mayor parte del territorio, excepto a Baja California, la cual experimenta una máxima precipitación en invierno (Metcalfe *et al.*, 2000), (Figura 2a).

Los vientos del Este dominan durante el verano trayendo humedad desde el Golfo de México y del Pacífico (Figura 2b), aumentado por el efecto de los ciclones tropicales, particularmente en septiembre. Esta reversibilidad estacional en la dirección de los vientos ha llevado al uso del término "monzón" Mexicano o monzón Norteamericano, y cuyos efectos se extienden hasta Nuevo México y Arizona en los EUA (Douglas *et al.*, 1993). A grandes rasgos, en México, el patrón monzónico transporta humedad desde el Pacífico hacia el Este y desde el Golfo hacia el Oeste. Estos patrones monzónicos son discutidos más a fondo en Tang (1984).

El flujo del Noreste proveniente de latitudes medias puede extenderse hacia el Sur hasta los 19°N (latitud de la ciudad de México) durante el invierno. La elevada altitud de esta parte del país provoca que las tierras altas intercepten la parte superior de los vientos del Noreste trayendo condiciones frías y ocasionalmente nevadas en altitudes más altas. Durante el invierno ocurre también la entrada de aires fríos polares llamados "nortes", los cuales están confinados a los márgenes de la costa este de México por la Sierra Madre Oriental (Figura 1) y que pueden traer lluvia pesada (con elevadas proporciones de ¹⁸O) a las pendientes Este de las montañas de Chiapas y Oaxaca (Metcalfe *et al.*, 2000).

Durante el verano del Hemisferio norte, la zona intertropical de convergencia (ZITC) se mueve hacia posiciones más al Norte. Por otro lado, el cinturón de alta

presión durante esta temporada, está alrededor de los 35°N y los vientos alisios traen un intenso flujo sobre la mayor parte de México. Los alisios soplan a lo largo del lado Sur del sistema de alta presión sobre las Bermudas (sistema al sureste de México cerca del Archipiélago de Portugal), creando una corriente de chorro que desplaza aire húmedo desde el Sureste al Noroeste del país.

Antecedentes.

Los efectos combinados de latitud, topografía y la distribución de tierra y mar, producen un complejo panorama que, en general, acentúa la diferencia en la cantidad de lluvia en las tierras altas del Sur (donde la lluvia generalmente excede los 2000 mm/año) a los desiertos del Norte del interior del territorio y el área alrededor del Norte del Mar de Cortés (Golfo de California) con lluvias menores a los 400 mm/año. Aunado a lo anterior, los efectos de la topografía local pueden causar marcadas variaciones locales.

2.2 Escenario paleoambiental del Cuaternario o Neógeno tardío.

Se sabe que el panorama ambiental es una combinación de los procesos que actúan hoy en la Tierra, pero también una consecuencia de aquéllos que imperaron en el pasado y que dejaron en él huellas relativamente duraderas. Dichas "huellas" están presentes en mayor o menor grado en diversos elementos del paisaje y es necesario detectarlas si se quiere establecer con precisión la importancia de los procesos hoy vigentes (Vázquez Selem, 2003).

El Neógeno tardío o Cuaternario se distingue de otros periodos de la escala geológica, por sus significativas variaciones en el clima. La reconstrucción de ambientes climáticos del Neógeno tardío (últimos 2 Ma A.P.) ha sido posible gracias al estudio de diversos archivos geológicos, entre los que se encuentran, núcleos de sedimentos marinos y lacustres, perfiles de suelos, anillos de árboles, núcleos de hielo de glaciares de los polos y estalagmitas, entre otros. Las primeras observaciones que se hicieron sobre el cambio en el clima fueron hechas con base en el conocimiento geológico clásico (observaciones de fósiles), los cuales posteriormente fueron relacionados con cambios en la posición y movimiento de la Tierra. Las primeras propuestas de que las variaciones climáticas podían ser causadas por cambios en los movimientos orbitales, los cuales afectaban la cantidad de radiación solar incidente, fueron hechas en 1842 por el matemático Joseph Adhémar en Francia y después

Antecedentes.

desarrolladas por el escocés James Croll (Williams *et al.*, 1998). Croll (1886), señaló que la variación del flujo de energía solar anual dependía sólo de la excentricidad terrestre, y concluyó que la influencia de estas variaciones fue probablemente muy pequeña como para ser detectada. Sin embargo, argumentó que las variaciones del flujo solar estacional (las cuales se decía que estaban en función de los tres elementos orbitales: excentricidad, oblicuidad y la órbita terrestre) fueron lo suficientemente importantes como para desencadenar una respuesta climática importante, conocida como el ciclo de las eras de hielo del Pleistoceno (Imbrie, 1980).

Entre las décadas de 1920 y 1930, el astrónomo yugoslavo Milutin Milankovitch transformó el argumento semicuantitativo de Croll en una estructura matemática que representaba una teoría astronómica que determinaba el clima en la Tierra (Milankovitch, 1941). Milankovitch calculó que las variaciones en la insolación son resultado de los cambios en los movimientos de traslación y rotación de la Tierra, y propuso un mecanismo astronómico para explicar los ciclos glaciales-interglaciales. Este mecanismo constaba de tres factores:

- La inclinación del eje de rotación terrestre. Actualmente desviado unos 23.44° respecto a la vertical, fluctúa desde 21.5° hasta 24.5° en un periodo de 41,000 años. Al aumentar la inclinación, resultan más extremas las estaciones en ambos hemisferios, los veranos se hacen más cálidos y los inviernos más fríos. Por el contrario, cuando la inclinación es mínima, los veranos son poco cálidos y los inviernos poco fríos.
- 2. La forma de la órbita terrestre. Con un periodo de aproximadamente 100,000 años, la órbita se elonga y acorta, provocando que su movimiento elíptico sea más excéntrico y posteriormente retorne a un recorrido más circular. Cuando la elipse alcanza su máxima excentricidad, en un hemisferio se intensifican las estaciones y se moderan en el otro.
- 3. *Precesión o bamboleo del eje de rotación de la Tierra.* Este movimiento describe una circunferencia completa aproximadamente cada 23,000

Antecedentes.

años. La precesión determina si el verano en un hemisferio cae en un punto de la órbita cercano o lejano al Sol, lo que produce un refuerzo en las estaciones.

Además, Milankovitch incorporó una idea del ruso Wladimir Köppen a su teoría astronómica, sugiriendo que la causa inmediata de una glaciación se debe a la reducción de la radiación solar en verano, con la consiguiente disminución en la fusión de los hielos formados en el invierno, y no a una sucesión de inviernos rigurosos. Finalmente, Milankovitch concluyó que esos tres factores actúan en conjunto, y calculó que éstos pueden modular hasta en un 20% la radiación solar recibida en altas latitudes septentrionales durante el verano, lo que, según argumentaba, bastaba para permitir que las grandes masas de hielo se extendieran sobre los continentes.

Posteriormente, los ciclos previstos por la teoría de Milankovitch fueron confirmados experimentalmente (Emiliani, 1954), a partir de la estimación de temperaturas del océano durante el último millón de años, en función de la composición isotópica del oxígeno presente en el caparazón de microfósiles depositados en sedimentos marinos.

Con base en el trabajo de Emiliani (1954) se concluyó que durante el Neógeno tardío se originaron diecisiete ciclos glaciales-interglaciales y en total veinte en los últimos dos millones de años. Además, se descubrió que dentro de estos ciclos se encuentran etapas calurosas, sin llegar a los niveles de los periodos interglaciales, los cuales se denominan interestadiales y avances de glaciaciones menores denominados estadiales. Desde entonces, los núcleos de sedimentos marinos se han enfocado al estudio de microfósiles, así como a las propiedades magnéticas, químicas y mineralógicas de los sedimentos, los cuales permiten observar fluctuaciones y cambios en los patrones de la circulación oceánica, así como temperatura y salinidad en el fondo y/o la superficie marina.

Uno de los principales archivos marinos de cambio climático proviene de un conjunto de núcleos extraídos del Océano Indico (Imbrie, 1993) y que permiten

Antecedentes.

establecer, por primera vez para el tercer ciclo glacial (con duración de 100,000 años), que además de la insolación recibida derivada del movimiento de precesión y de oblicuidad de la Tierra, existen otros factores no lineales (un sistema aire-océano-hielo) que actúan como amplificadores y amortiguadores de las respuestas derivadas de los movimientos celestes.

Por otro lado, los registros lacustres de ambientes continentales, pueden aportar información sobre los cambios en la flora y fauna permitiendo reconstruir fluctuaciones en la temperatura y en la precipitación meteórica. En los últimos años, el análisis de núcleos de sedimentos lacustres (p. ej: Caballero *et al.*, 1999; Caballero *et al.*, 2002; Lozano-García *et al.*, 2002), paleosuelos (p. ej. Sedov *et al.*, 2001) y estudios dendrocronológicos (p. ej. Esper *et al.*, 2002) han permitido inferir acerca de las consecuencias del cambio climático global sobre dichos ambientes y en particular el territorio Mexicano. Por ejemplo, a partir del análisis de polen en sedimentos (palinología) se pueden evidenciar cambios en la vegetación como resultado de eventos climáticos y/o influencias antrópicas. Lo anterior tiene el potencial de mostrar cambios en el clima a nivel regional, debido a que éste responde rápidamente a agentes externos de su hábitat.

Además de los sedimentos lacustres y marinos, actualmente se cuenta con archivos derivados de los grandes glaciares. El estudio de la composición isotópica de oxígeno de gases encerrados en núcleos de hielo ha permitido estimar cambios atmosféricos (temperatura y humedad) a nivel global (Petit *et al.*, 1999).

De manera general, en la Tabla 1 se presentan algunos registros utilizados en reconstrucciones paleoclimáticas así como sus principales características.

REGISTRO	MÍNIMO INTERVALO	ALCANCE	POTENCIAL DE LA		
	DE MUESTREO	TEMPORAL	INFORMACIÓN DERIVADA		
		(año)			
Registros	Día/hora	~ 10 ²	T,P,B,V,M,N,S		
históricos					
Anillos de árbol	Año/temporada	~ 104	T,P,B,V,M,S		
Sedimentos	Año (varvas) a 20 años	~ 10 ⁴ - 10 ⁶	T,P,B,V,M,C _w		
lacustres					
Corales	Año	~ 10 ⁵	Cw, N,T,P		
Núcleos de	Año	~ 5x10⁵	T,P,B,V,M,S,Ca		
hielo					
Polen	20 años	~ 10 ⁵	T,P,B		
Espeleotemas	Anual/estacional	~ 10 ⁶	T,P,B,M,N,S,C _w		
Paleosuelos	100 años	~ 10 ⁶	T,P,B		
Loess	100 años	~ 10 ⁶	P,B,M		
Evidencias	100 años	~ 10 ⁶	T,P,V,N,P		
geomorfológicas					
Sedimentos	500 años ¹	~ 10 ⁷	T,P,B,M,N,C _w		
marinos					
T = temperatura.					
P = precipitación, humedad o balance de agua.					
C = composición química del aire (Ca) o agua (Cw).					
B = información de biomasa y patrones de vegetación.					
V = erupciones volcánicas.					
M = variaciones del campo magnético.					
N = nivel del mar.					
S = actividad solar.					
¹ En raras circunstancias (sedimentos varvados) ≤ 10 años.					
Tabla 1. Características de diferentes registros para reconstrucciones paleoclimáticas del					

 Tabla 1. Características de diferentes registros para reconstrucciones paleoclimáticas del Cuaternario. Modificado de Bradley, (1999).

No obstante los avances en el estudio del clima descritos con anterioridad, aún hacían falta registros independientes procedentes de ambientes continentales que permitieran verificar las hipótesis de Milankovitch.

No fue sino hasta la década de 1990 que se utilizó un novedoso registro continental para poner a prueba la hipótesis basada en la mecánica celeste para los ciclos glaciales. Estudios de la composición isotópica de oxígeno en un núcleo de calcita, extraído de una veta calcítica proveniente de la Cueva del Diablo ubicada en el sur-centro de Nevada, E.U. (Winograd *et al.*, 1992), indica

Antecedentes.

que desde hace 500,000 años se han presentado ciclos alternados que van de condiciones cálidas (interglaciales) a frías (glaciales), en concordancia con lo observado en núcleos marinos (Imbrie, 1993). Sin embargo, también permitió establecer que entre el Pleistoceno medio y tardío, la duración de los cuatro últimos ciclos glaciales se ha incrementado de 80,000 a 130,000 años, sugiriendo que los mayores cambios ambientales fueron aperiódicos, mostrando una estructura climática global diferente a la observada en los registros marinos. Winograd *et al.* (1992) concluyen acerca del ritmo de estos eventos climáticos en específico, e indican que la variación en la insolación solar no fue la causa más importante para el desencadenamiento de las deglaciaciones y que los periodos interglaciales tienen una duración de 20,000 años aproximadamente según sus resultados.

Conjuntamente, las observaciones descritas con anterioridad son inconsistentes con la hipótesis de Milankovitch para el origen de los ciclos glaciales del Pleistoceno. Sin embargo, las pruebas obtenidas de Devils Hole o Cueva del Diablo, concuerdan con la hipótesis de que los ciclos glaciales son originados por diversos factores, entre ellos, la cantidad de radiación solar recibida como menciona Milankovitch, pero que el factor principal son las *"respuestas terrestres internas no lineales"* provocadas por la interacción del sistema atmósfera–casquetes polares–océano (Winograd *et al.*, 1992).

2.3 El Último Máximo Glacial (UMG)

Se ha discutido sobre los ciclos glaciales-interglaciales y como fueron identificados y establecidos. Dentro de estos, uno de los eventos que ha sido foco de intensos estudios es el Último Máximo Glacial (UMG). Durante este evento, la temperatura promedio llegó a ser unos 7° C inferior a la temperatura actual, aunque la magnitud del enfriamiento fue muy diferente dependiendo de la latitud. El descenso térmico fue mucho mayor en latitudes altas que en las bajas, siendo también mayor en el interior de los continentes que en las costas. Así, en

Antecedentes.

muchas partes del planeta, como en Europa central, la temperatura media descendió más de 15° C. En las zonas tropicales la disminución de la temperatura media fue menor aunque también considerable, aproximadamente de 5° C. De igual forma, durante este evento se presentaron cambios en el balance hídrico y en el paisaje; las precipitaciones meteóricas disminuyeron considerablemente y vastas extensiones de selva fueron sustituidas por sabana (Bond, 1993; Ivanovich, 2004).

Durante este evento, a medida que aumentaba el hielo en los continentes, se sustraía agua de los océanos, lo cual provocó un descenso en el nivel del mar. Cuando la acumulación de hielo continental fue máxima, el nivel de los océanos quedó entre 120 y 140 metros por debajo de su cota actual. De este modo, grandes extensiones de las plataformas continentales que actualmente están sumergidas, durante el UMG se encontraban expuestas.

En el Hemisferio Norte, el UMG supuso un enorme cambio paisajístico. Los casquetes de hielo ocupaban de forma perenne aproximadamente 27 millones de Km², es decir, un 40% de las áreas continentales de Norteamérica y Eurasia. En el Hemisferio Sur, la extensión de los hielos no fue tan importante como en el Norte, pues el mar impedía su expansión. En la propia Antártica, el volumen de hielo parece que era poco diferente al actual. En Sudamérica (los Andes y la Patagonia), así como en las montañas de Nueva Zelanda, la línea de las nieves descendió unos 1000 metros (Bond, 1993; Ivanovich, 2004; Mark, 2005).

Las condiciones del máximo enfriamiento del UMG terminaron alrededor de los 14,500 años A.P., registrándose un rápido incremento en la temperatura y mayor humedad en regiones como el Pacífico Este, China Central, Siberia Occidental y el Mar Arábigo, con lo cual inició el actual periodo interglacial, periodo denominado como Holoceno.

Antecedentes.

2.4 Las estalagmitas como herramientas de reconstrucción paleoambiental y los indicadores geoquímicos.

Se han mencionado los diferentes tipos de registros paleoambientales, así como de sus principales características, las cuales son utilizadas como herramientas para el establecimiento de modelos paleoclimáticos y con lo cual es posible determinar las posibles variaciones climáticas y/o las causas probables por las cuales estos indicadores fueron incorporados siguiendo los modelos establecidos.

Con el fin de que estos registros puedan ofrecer información confiable, un requerimiento esencial es que no hayan sufrido alteraciones (diagénesis, bioturbación, intemperismo, erosión, etc.), las cuales puedan haber modificado la información paleoclimática contenida en ellos. Sin embargo, las características intrínsecas de la mayor parte de los archivos paleoclimáticos utilizados hasta el momento hacen que, en muchos casos, no sea posible garantizar dichas condiciones de "alteración nula", restando cierta confiabilidad a la información paleoclimática presente, en particular, la geocronología y resolución de los eventos registrados.

De tal forma, desde hace poco más de tres décadas (Hendy y Wilson, 1968), se ha comenzado a emplear espeleotemas cálcicas y en particular estalagmitas como una herramienta de reconstrucción paleoclimática, debido a que son materiales relativamente fáciles de fechar, además de que, al desarrollarse en el interior de cuevas, se encuentran protegidas contra posibles procesos de alteración y, una vez que las diferentes señales o indicadores se han incorporado en la estructura de la calcita de la estalagmita, muy pocos procesos pueden afectar esta información.

Las estalagmitas son formaciones de calcita secundaria que se desarrollan a partir de la disolución de la roca caliza por agua meteórica. El mecanismo de formación (Figura 4) comienza cuando el agua meteórica, equilibrada con el CO₂

Antecedentes.

atmosférico, adquiere un carácter ligeramente ácido según las reacciones 1 y 2 (pH ~5.2).

$$H_2O_{(1)} + CO_{2(g)} \Leftrightarrow H_2CO_{3(ac)} \dots \dots (1)$$
$$H_2CO_{3(ac)} \Leftrightarrow H^+(ac) + HCO^-_{3(ac)} \dots \dots (2)$$

Al encontrarse en equilibrio con el CO_2 atmosférico, el agua meteórica estará saturada de HCO_3^- . Sin embargo, al entrar en contacto con suelos de terrenos kársticos con niveles altos de CO_2 , se lleva a cabo el siguiente equilibrio (3):

$$HCO^{-}_{3(ac)} + H^{+}_{(ac)} + CaCO_{3(s)} \Leftrightarrow 2HCO^{-}_{3(ac)} + Ca^{2+}_{(ac)} \dots (3)$$

Lo anterior puede ser ilustrado a partir de la Figura 3, la cual muestra que la concentración de Ca^{2+} en función de la presión parcial de CO_2 (P_{CO2}) no sigue una relación lineal. De esta manera, cuando se mezcla agua meteórica (baja en Ca^{2+} y P_{CO2}) con el agua del suelo kárstico (alto en Ca^{2+} y P_{CO2}), ambas saturadas en HCO_3^- se tendrá como resultado una disolución no saturada con respecto a calcita (4), promoviendo la reacción de disolución (5), la cual se llevará hasta alcanzar de nuevo las condiciones de saturación con respecto al $CaCO_3$.

$$HCO_{3}^{-}(ac) + Ca^{2+}(ac) \qquad DISOLUCIÓN^{1}$$

$$+ \qquad \qquad \Leftrightarrow \qquad 2HCO_{3}^{-}(ac) - Ca^{2+}(ac) + H^{+}(ac) \qquad \dots \qquad (4)$$

$$H^{+}(ac) + HCO_{3}^{-}(ac) - DISOLUCIÓN^{2}$$

$$2HCO_{3}(ac) + H^{+}(ac) + CaCO_{3(s)} \Leftrightarrow 3HCO_{3}(ac) + Ca^{2+}(ac) \dots (5)$$

Esta serie de reacciones ocurrirán continuamente, exacerbando fisuras en el terreno ocasionadas por otros eventos geológicos (fallamiento, plegado, etc.) lo que facilitará que el agua calcárea se infiltre. Durante su trayecto, el agua de percolación viajará a través del epikarst¹ hasta llegar a la **zona de precipitación** (Figura 4b). Cuando la disolución saturada en CaCO₃ y con una composición química derivada de la interacción con los diferentes componentes del epikarst, llega al interior de la cueva, ocurre un proceso de desgasificación desencadenado por la diferencia de presiones parciales de CO₂ entre el ambiente de la cueva (baja P_{CO2}) y la disolución saturada (alta P_{CO2}) de acuerdo con la reacción (6), obteniéndose productos termodinámicamente más estables bajo las condiciones de temperatura, presión y humedad que prevalecen en la cueva.

$$2\text{HCO}_{3}(ac) + Ca^{2+}(ac) \Leftrightarrow CaCO_{3(s)} \downarrow + H_2O_{(1)} + CO_{2(g)} \uparrow \dots (6)$$

¹ Zona constituida por el techo y el terreno en la parte superior de la cueva.

Figura 4. El escenario de las espeleotemas y su derivación geoquímica a lo largo del tiempo. (a) Relación entre el escenario espeleotemático y los controladores ambientales externos. (b) Régimen de disolución y precipitación del sistema kárstico. (c) Ambiente interno de la cueva. (d) Estratigrafía común de una estalagmita. Modificado de Fairchild *et al.* (2006).

El goteo y la precipitación posterior de CaCO₃ aunado con la temporalidad de este proceso, hacen posible que las estalagmitas crezcan en forma de bandas a lo largo de un eje de crecimiento (Figura 4d). La composición final de las estalagmitas se encuentra influenciada por diferentes factores ambientales

Antecedentes.

externos e internos a la cueva, predominantes durante el proceso de formación (Figura 4a).

Por ejemplo, se ha demostrado que la composición isotópica de O y C (expresada en notación delta², δ), en el carbonato de las espeleotemas puede reflejar la composición isotópica del agua meteórica percolada a partir de la cual precipitó (Hendy y Wilson, 1968), la cual puede conservarse intacta aún después de 500,000 años de la precipitación de CaCO₃ (Ludwig *et al.*, 1992; Coplen *et al.*, 1994). Igualmente se ha demostrado que la composición de elementos mayoritarios y traza responde también a factores ambientales, tales como la humedad disponible (Fairchild *et al.*, 2000; Huang y Fairchild, 2001) y los procesos pedológicos que suceden en el epikarst (Treble *et al.*, 2003).

La composición isotópica del oxígeno (δ^{18} O) y carbono (δ^{13} C), junto con otros indicadores tales como las variaciones en las proporciones molares de Mg/Ca, Sr/Ca, Ba/Ca, U/Ca, la relación de actividad [234 U/ 238 U] de isótopos de uranio³, así como las variaciones en las concentraciones de algunos elementos traza (Ba, La, Ce, Eu, Th, U, etc.) en estalagmitas han sido utilizados recientemente como herramientas en reconstrucciones paleoclimáticas (Rosenthal *et al.*, 1999; Hellstrom y McCulloch, 2000; Treble *et al.*, 2005; Cruz *et al.*, 2007). Estos indicadores son altamente sensibles a variaciones climáticas y responden a diferentes mecanismos de incorporación; sin embargo, las respuestas de estos indicadores pueden estar influenciadas por aspectos climáticos, físicos (por ejemplo, fraccionamiento isotópico debido a la temperatura y/o humedad relativa en el interior de la cueva) y/o por aspectos bio-geoquímicos (por ejemplo,

$${}^{2}\boldsymbol{\delta} = \left[\frac{\binom{n}{E} \binom{n-1}{E}_{muestra}}{\binom{n}{E} \binom{n-1}{E}_{STD}} - 1\right] \times 1000$$

$${}^{3}\left[\mathbb{U}^{238}\right] = \boldsymbol{\eta}_{\mathbb{U}^{238}} \times \boldsymbol{\lambda}_{\mathbb{U}^{238}}; \text{ donde } _ = \# \text{ átomos y } _ = \text{Constante de decaimiento.}$$

aspectos composicionales del terreno), por lo que su interpretación debe ser cuidadosa.

• δ¹⁸Ο

El oxígeno es uno de los elementos más abundantes en la Tierra; se encuentra como gas (O₂) y en compuestos (gaseosos, líquidos y sólidos), muchos de los cuales son estables en un intervalo amplio de temperatura. Sus propiedades hacen al oxígeno uno de los elementos más interesantes en el estudio isotópico. Debido a su abundancia (¹⁶O \approx 99.763 %, ¹⁷O \approx 0.0375 % y ¹⁸O \approx 0.1995 %) y a la gran diferencia relativa entre las masas atómicas (>10%), la proporción ¹⁸O/¹⁶O puede variar alrededor del 10% en muestras naturales (Hoefs, 2004).

Existen muchos factores que determinan el fraccionamiento isotópico del oxígeno en la naturaleza. Uno de los factores de mayor importancia es la temperatura, debido a la diferencia en puntos de ebullición entre H₂¹⁶O y H₂¹⁸O (100 °C y 101.42 °C, respectivamente). Dicho fraccionamiento isotópico asociado a cambios en la temperatura también puede ocurrir dentro de una cueva, lo cual re-homogeneizaría las proporciones isotópicas en el CaCO₃ de la estalagmita, sin embargo, se han desarrollado modelos que permiten identificar dicho fraccionamiento, además de que se ha establecido que éste tiene un valor de - 0.23‰/°C (Friedman, 1977).

Por otro lado, el fraccionamiento de oxígeno en el sistema $CO_2 - H_2O$ también es de gran importancia en la naturaleza. Dentro de este sistema, ocurre un fraccionamiento isotópico causado mayoritariamente por el intercambio de oxígeno entre el CO_2 y el H_2O , y de manera menos significativa, el que ocurre entre el CO_2 disuelto y el CO_2 gaseoso.

Con respecto a la precipitación meteórica (Iluvia), cuando el agua de la superficie de los océanos se evapora, el vapor de agua se encuentra enriquecido en H y ¹⁶O debido a que el H₂¹⁶O tiene mayor presión de vapor que HDO y H₂¹⁸O

Antecedentes.

(donde D = deuterio). Después de que el vapor de agua asciende desde la superficie del océano, el ascenso lo enfría hasta que se condensa en grandes masas de aire. Cuando ocurre la salida de lluvia desde las grandes masas de aire, el vapor de lluvia residual queda empobrecido en ¹⁸O debido a que la lluvia que sale del sistema se encuentra enriquecida en ¹⁸O y D. Conforme estas masas de aire se mueven hacia los continentes, las lluvias posteriores estarán más empobrecidas en ¹⁸O que la lluvia inicial. Esta relación se muestra esquemáticamente en la Figura 5.

Debido a que el grado de empobrecimiento de ¹⁸O en las masas de aire residuales estará directamente relacionado con la cantidad de precipitación pluvial, es entonces de esperarse que la composición isotópica de oxígeno en la lluvia sea proporcional a la cantidad de ésta. Dicho efecto es denominado "efecto de cantidad" y se observa principalmente en zonas tropicales donde la precipitación pluvial tiene un solo origen (Dansgaard, 1964).

Existen otros factores de fraccionamiento isotópico, aunque de menor importancia, por ejemplo efectos salinos e interacciones agua-roca. Sin embargo,

Antecedentes.

estos dos últimos mecanismos de fraccionamiento isotópico son de menor importancia en aguas meteóricas.

Con base en lo antes mencionado, se ha reconocido que el δ^{18} O en el CaCO₃ de la estalagmita puede reflejar la señal combinada de dos procesos de fraccionamiento isotópico: el δ^{18} O generado por el transporte en la atmósfera y el fraccionamiento debido a la temperatura promedio en el interior de la cueva. Existen métodos que permiten separar estas dos señales, como el análisis de inclusiones fluidas que constituyen el agua de goteo original. Sin embargo, estos tipos de análisis son complicados y la metodología de rutina no ha sido perfeccionada (McDermott, 2004). No obstante, trabajos recientes han demostrado que la señal δ^{18} O en el CaCO₃ de la estalagmita se debe, en mayor proporción, al fraccionamiento isotópico debido a la precipitación meteórica con respecto al fraccionamiento debido a la temperatura (Treble *et al.*, 2005).

• δ¹³C

El carbono se encuentra en una gran variedad de compuestos en la Tierra, desde los altamente reducidos (como los compuestos orgánicos), hasta los fuertemente oxidados (como el CO₂ y los carbonatos). El carbono tiene dos isótopos estables: el ¹²C \approx 98.89 % y el ¹³C \approx 1.11%. En la naturaleza, existen dos grandes reservorios de estos dos isótopos de carbono, la materia orgánica y los carbonatos sedimentarios inorgánicos (Albarede, 2003). Ambos presentan características isotópicas distintas debido a que se pueden originar por diferentes mecanismos de reacción:

En primer lugar, las reacciones de intercambio isotópico entre el sistema de carbono inorgánico "CO₂ atmosférico – bicarbonato disuelto – carbonatos sólidos", conllevan comúnmente a un enriquecimiento de ¹³C en los carbonatos.

Segundo, existe un mecanismo que involucra efectos cinéticos durante la fotosíntesis, concentrando el isótopo ligero (¹²C) en la síntesis de material orgánico, aunque normalmente depende del tipo de vegetación presente. Por

Antecedentes.

ejemplo, el C producido por plantas de tipo C₃ (principalmente arbóreas) tiene un valor promedio de δ^{13} C de –27 ± 5‰, mientras que el carbono producido por las plantas de tipo C₄ (hierbas y pastos) tiene un valor promedio de δ^{13} C de –11.4 ± 5‰, influenciado por los efectos ambientales que actúan sobre la fotosíntesis.

Por último, las interacciones entre el reservorio del carbono inorgánico de los carbonatos y el reservorio del carbono orgánico, también fraccionan la composición isotópica de C.

Con base en lo anterior, se sabe que la señal de δ^{13} C analizada en el CaCO₃ de la estalagmita, también es una señal compuesta, la cual puede reflejar el fraccionamiento biogénico del carbón en la superficie terrestre, la disolución de la caliza bajo condiciones de sistema abierto o cerrado, la precipitación previa en el techo de la cueva y, las proporciones de desgasificación de CO₂ de la gota de agua sobre la superficie de la estalagmita. Aunque se sabe que estos procesos fraccionan la composición isotópica del carbono, es difícil establecer con precisión para aguas subterráneas y de percolación, cuales son los factores principales que constituyen la mayor parte de la señal δ^{13} C; sin embargo en trabajos recientes, se considera que la mayor parte de la señal está asociada a los procesos de fraccionamiento biogénicos y a la dinámica edáfica⁴.

• δ^{18} O y δ^{13} C en una estalagmita.

Al analizar una estalagmita por isótopos estables de C y O, un factor crítico en la interpretación de las señales δ^{13} C y δ^{18} O es la discriminación de un posible fraccionamiento isotópico cinético, el cual puede ser causado por la evaporación de agua, inducida por variaciones significativas en la temperatura y humedad relativa dentro de la cueva, y que tiene como consecuencia la alteración las posibles señales climáticas de estos indicadores (Hendy, 1971). Para identificar este proceso, comúnmente se realizan pruebas de equilibrio isotópico, como el análisis de la correlación entre los valores δ^{18} O y δ^{13} C a lo largo del eje de

⁴ Dinámica del suelo.

Antecedentes.

crecimiento (Wang *et al.*, 2006). Esto se debe a que el δ^{13} C y δ^{18} O se ven afectados simultáneamente cuando se induce la evaporación de agua por efectos de temperatura y condiciones de baja humedad relativa; dicho proceso implica que los átomos más ligeros (¹⁶O y ¹²C) se moverán con mayor facilidad con respecto a los pesados (¹⁸O y ¹³C) (Treble *et al.*, 2005), observándose una correlación entre ambas señales. Los estudios de variabilidad climática basados en abundancias relativas de isótopos de C y O requieren forzosamente demostrar que las variaciones en composición isotópica observadas no son debidas a procesos de fraccionamiento cinético y/o cambios en la temperatura de la cueva.

• Mg/Ca, Sr/Ca, Ba/Ca, U/Ca y elementos traza.

En general, se sabe que los elementos traza pueden ser incorporados en los depósitos de CaCO₃ mediante diferentes formas, pero en general se consideran tres como los principales mecanismos: Inclusión de detritos en los intersticios del cristal en crecimiento; adsorción sobre la superficie del cristal en crecimiento; y sustitución isomórfica de Ca²⁺ por otros iones (Mg²⁺, Sr²⁺ Ba²⁺, UO₂²⁺, etc.), (Gascoyne, 1983). Asimismo, la incorporación de los elementos traza en aguas de cuevas carbonatadas está controlada por cuatro factores principales: (1) mayor velocidad de disolución de la calcita en comparación con la dolomita, lo cual en la mayoría de los casos, permite que la proporción Mg/Ca aumente cuando el tiempo de contacto roca-agua (tiempo de residencia del fluido en la roca) se incrementa debido a condiciones de baja humedad; (2) precipitación previa de calcita a lo largo de la trayectoria del flujo de percolación, el cual es un poderoso mecanismo que genera un enriquecimiento en las proporciones Mg/Ca, Sr/Ca y Ba, debido a que la calcita precipita más fácilmente que la dolomita, (3) la disolución incongruente⁵ de la dolomita, proceso que retira preferentemente los iones Ca²⁺ en comparación con los demás, de la superficie de la dolomita; y por último, (4) la

⁵ Se habla de disolución incongruente cuando al disolver un mineral, este produce un residuo sólido, como algún mineral secundario.

Antecedentes.

lixiviación preferente de Mg y Sr con respecto al Ca, la cual puede ocurrir cuando el Ca²⁺ es secuestrado en el carbonato reprecipitado si hay derivación de exceso de Sr o Mg desde minerales no carbonatados (Fairchild *et al.*, 2000).

• Fraccionamiento isotópico U y [²³⁴U/²³⁸U].

El U es un elemento que puede encontrarse en concentraciones de 2 µg/g en rocas sedimentarias y de 4 a 10 µg/g en granitos, mientras que en rocas basálticas puede estar de 2 – 3 órdenes de magnitud abajo en comparación con las demás. La concentración de uranio en suelos es generalmente menor que en la roca fuente, aunque también depende del tipo de suelo y del desarrollo de éste. En los suelos, el principal agente que afecta el transporte de uranio es la P_{02} y P_{C02} , debido a que el uranio oxidado (U⁶⁺) es más fácil de transportar como el complejo $UO_2(CO_3)_3^-$ y en otros compuestos iónicos. Después de ser transportado, el uranio se puede incorporar en la estructura del mineral (principalmente en calcita y en aragonita, ambas en forma de CaCO₃), por simple co-precipitación o por regresar a su estado de oxidación U⁴⁺, en el cual es menos soluble (van Calsteren y Thomas, 2006). Entonces, el uranio puede ser un indicador de la madurez de los suelos así como de condiciones de óxido-reducción. Asimismo, el U forma complejos solubles con HPO_4^{2-} , por lo que la abundancia de U en las aguas de percolación puede estar modulada por la concentración de fosfatos disueltos. los cuales a su vez pueden responder a la cantidad de materia orgánica generada por la vegetación (Treble *et al.*, 2003)

Por otra parte, el ²³⁴U se encuentra enriquecido en aguas naturales con respecto a ²³⁸U debido al carácter radiogénico del primero. Se ha reportado que el principal proceso que afecta la composición isotópica de uranio es la pérdida por disolución en la fase mineral (van Calsteren y Thomas, 2006). Esta pérdida por disolución selectiva de ²³⁴U, se debe al daño producido al cristal debido al decaimiento del núcleo radioactivo padre ²³⁸U. Cuando ²³⁸U experimenta una reacción de decaimiento emite una partícula α , y por acción de la conservación del *momentum* lineal, el átomo hijo (²³⁴Th) es desplazado en dirección contraria, ocasionando un daño a la estructura cristalina (Figura 6), lo que se conoce como **retroceso-** α . Este desplazamiento genera un "canal" en el cristal de entre 10 - 110 nm, también conocido como traza de fisión (van Calsteren y Thomas, 2006), al final del cual se localizará el ²³⁴Th. Este último forma ²³⁴U por medio de un decaimiento α de mucho menor energía que el α , de manera que este último isótopo se localizará en la traza de fisión, la cual al ser un sitio de fácil acceso para los fluidos, permitirá que el ²³⁴U sea movilizado por disolución con mayor facilidad que ²³⁸U, el cual se encuentra protegido por la estructura cristalina del mineral.

Debido a la ocurrencia del mecanismo antes mencionado, la proporción ²³⁴U/²³⁸U puede disminuir en la fase mineral y, al contrario, en las aguas de percolación la proporción ²³⁴U/²³⁸U puede aumentar, lo cual finalmente se podrá ver reflejado en el carbonato de la estalagmita.

Es así como el fraccionamiento isotópico debido al retroceso- α en uranio ha sido utilizado para inferir el desarrollo en las extensiones de los bosques, además de ser vinculado con aumentos en la cantidad de precipitación y tasas de intemperismo (Hellstrom y McCulloch, 2000; Zhou *et al.*, 2005).

3. OBJETIVOS.

Realizar el análisis de los diferentes indicadores geoquímicos utilizados comúnmente en estalagmitas, tales como δ^{13} C y δ^{18} O, Mg/Ca, Sr/Ca, Ba/Ca y U/Ca, y [²³⁴U/²³⁸U], aplicando rutinariamente la metodología requerida para dichos análisis.

Evidenciar posibles correlaciones, anticorrelaciones, conexiones, variaciones que permitan evaluar la sensibilidad y resolución y capacidad de los diferentes indicadores arriba mencionados.

Aportar conocimientos sobre los cambios ambientales producidos durante el Neógeno en México, derivados de un novedoso y robusto registro paleoambiental, para realizar correlaciones a escala global y para complementar los registros paleoclimáticos de México.

4. METODOLOGÍA.

4.1 Sitio de estudio y geología del terreno.

En la parte noroeste del estado de Puebla, entre los paralelos 19° 57' y 20° 05' N, los meridianos 97° 24' y 97° 34' W (Figura 7), y con una superficie de 735 km², se localiza el municipio de **Cuetzalan del Progreso**. Limita al norte con el Municipio de Jonotla, al sur con el Municipio de Tlatlauquitepec, al este con el Municipio de Ayotoxco, al poniente con el Municipio de Zoquiapan, al noroeste con el Municipio de Tenanpulco, al suroeste con los Municipios de Zacapoaxtla y Nauzontla.

En el municipio de Cuetzalan, a 998 msnm (metros sobre el nivel del mar), y con coordenadas 20° 00' N, 97° 32' W se ubica la cueva Coyozochico (Figura 8).

El terreno sobre la cueva está constituido de calizas y lutitas del Cretácico inferior–Jurásico superior y, debido a la humedad que distingue esta zona, el lugar presenta un aspecto clásico de terrenos kársticos.

4.2 Clima.

Por su posición geográfica, Cuetzalan es una zona de alta sensibilidad climática influenciada por la zona de la ZITC (Zona Inter-Tropical de Convergencia), por los vientos fríos del Norte que penetran por la vertiente del Golfo de México, los vientos Alisios y los vientos del Noroeste (Capítulo 2.1). Este tipo de clima ocasiona que esta parte de la Sierra Madre Oriental presente abundante vegetación la mayor parte del año (Figura 9) la cual se puede observar durante el recorrido a lo largo de la montaña hasta la entrada de la cueva Coyozochico.

Figura 3. Se muestra la abundancia de la vegetación en los alrededores de la cueva, aún durante los periodos de menor humedad. Enero de 2006.

Actualmente, el municipio de Cuetzalan presenta dos regímenes de precipitación: uno cálido-húmedo con lluvias principalmente en los meses de mayo a noviembre provenientes del mar Caribe transportada por el sistema de alta presión de las Bermudas, y empobrecidas en ¹⁸O debido a su paso previo sobre la península de Yucatán, y otro semi-cálido a frío con menor cantidad de precipitación meteórica en los meses de diciembre hasta abril y generada por la convergencia de la humedad del Golfo de México con los vientos fríos y secos

Metodología.

provenientes del Polo Norte; trayendo una lluvia con menor grado de empobrecimiento en ¹⁸O.

La Figura 10 muestra los registros de precipitación promedio mensual de las dos estaciones meteorológicas más cercanas: Veracruz (19°12'N, 96°7'48"W) para el periodo 1962-1988, así como para Tuxpan durante el periodo 2000–2007 (20°57'36"N, 97°25'01"W). Asimismo, se muestra la composición isotópica promedio para la primera de ellas, donde se ilustra claramente el efecto de los dos regímenes de precipitación sobre la composición isotópica del agua de lluvia.

Figura 4. Registro de precipitación y composición isotópica registrada en la estación de la ciudad de Veracruz. IAEA (2004). Isotope Hydrology Information System. The ISOHIS Database se encuentra disponible en: http://isohis.iaea.org. Abajo, promedio mensual para el periodo 2000 – 2007. Datos tomados de la estación meteorológica colocada por la CONAGUA.
4.3 Fisiografía de la Cueva Coyozochico.

En la Figura 11 se muestra el esquema de la cueva Coyozochico; la cueva se encuentra adornada con gran cantidad de formaciones de calcita secundaria, presenta goteo y espeleogénesis a lo largo del año. Asimismo, presenta gran cantidad de material derrumbado, sugiriendo el efecto de actividad tectónica.

En el esquema de la cueva también se señala el sitio donde se colocó un registrador de temperatura y humedad relativa en el interior de la cueva durante el periodo 2006-2007. El registro indica que a lo largo del año se mantuvieron las condiciones de humedad relativa por arriba del 98% (Figura 6), mientras que la temperatura promedio anual fue de 18.4 ± 0.8 °C, presentando los valores más altos en los meses de marzo, abril y mayo. Lo anterior evidencia que el ambiente

interno de la cueva está efectivamente aislado del ambiente externo, por lo que es de esperar efectos mínimos de la variación de la temperatura sobre la composición elemental e isotópica de la estalagmita.

4.4. Estalagmita Coyo-01 y fechamiento.

La Figura 11 muestra el sitio de recolección de una estalagmita fracturada de 33 cm de largo –"Coyo 01"–, la cual no presentaba espeleogénesis y estaba separada tanto de la punta como de la base. La muestra fue seccionada por la mitad a lo largo del eje de crecimiento y de una de las partes obtenidas se cortó un perfil de aproximadamente 3 cm de grosor (Figura 13). El perfil de trabajo fue fechado mediante la serie de decaimiento radioactivo ²³⁸U – ²³⁰Th en la Universidad Nacional de Australia, siguiendo la metodología reportada por Mortimer *et al.* (2002). Cabe señalar que esta metodología no fue realizada por el sustentante, por lo cual no será tema de discusión en el presente trabajo.

La Tabla 2 muestra los resultados de las mediciones de las abundancias de ²³⁸U, ²³⁴U y ²³⁰Th, así como la relación isotópica ²³⁴U/²³⁸U. También en la Tabla 2, se presenta la edad calculada para cada muestra, las cuales serán utilizadas para

establecer el modelo de edades para Coyo 01, (Capítulo 4.1). El cálculo de las edades de cada muestra se realiza empleando la siguiente ecuación de manera iterativa¹:

¹ Donde $\lambda_{230} = 9.12 \text{ x } 10^{-6} \text{ a}^{-1} \text{ y } \lambda_{234} = 2.83 \text{ x } 10^{-6} \text{a}^{-1}$. (Cheng *et al.*, 2000)

	Distancia								
	desde la					Edad			
	base	[²³⁰ Th/ ²³⁸ U]	±2σ	$[^{234}U/^{238}U]$	±2σ	(10 ³	±2σ	[²³⁴ U/ ²³⁸ Uo]	±2σ
Muestra	(mm)					años)			
101	3.98	0.2769	0.0013	1.382	0.002	24.15	0.19	1.410	0.008
103	45.206	0.2769	0.0013	1.380	0.001	24.11	0.19	1.407	0.007
100	114.29	0.2559	0.0021	1.327	0.003	23.19	0.25	1.349	0.008
3	198.44	0.2560	0.0012	1.327	0.002	23.10	0.18	1.349	0.007
4	241.42	0.2527	0.0012	1.328	0.002	22.84	0.18	1.350	0.007
1	278.55	0.2513	0.0009	1.323	0.002	22.79	0.17	1.345	0.007
6	303.11	0.2475	0.0014	1.326	0.002	22.27	0.19	1.348	0.007
5	318.64	0.2487	0.0013	1.322	0.002	22.56	0.18	1.343	0.007

Tabla 1. Análisis isotópico de U–Th, el cual fue realizado en la Universidad Nacional de Australia en 2005. 2σ corresponde al error asignado a la medición, expresado en 2 desviaciones estándar, las actividades se representan por $[^{n-x}E/^{n}E]$.

4.5. Muestreos de CaCO₃ en la estalagmita.

Con el fin de analizar los diversos indicadores geoquímicos, se realizaron 151 muestreos a lo largo del eje de crecimiento de la estalagmita Coyo 01, espaciados alrededor de 1 - 1.5 mm y con una profundidad aproximada de 0.5 mm, de manera que se minimiza la posibilidad de colectar muestras procedentes de estratos distintos por efectos de la curvatura estructural de la estalagmita.

Cada muestreo consta de una alícuota de aproximadamente 2 mg de polvo de CaCO₃, extraído con un taladro DREMEL Multi Pro[®] (velocidad 5,000 – 35,000 RPM) modelo 395, colocado en un soporte DREMEL modelo 212 Tipo II y, una fresa con punta de diamante marca LOT de 0.5 mm de diámetro; el CaCO₃ extraído se colocó cuidadosamente en tubos eppendorf de 1.5 ml de capacidad previamente lavados y enjuagados. Para cada muestra, se destinaron ~0.8 mg de calcita para análisis de δ^{18} O y δ^{13} C; el resto de calcita previamente pesado fue preparado para las mediciones de las proporciones molares E/Ca.

Con base en el modelo de edades establecido mediante los análisis de ²³⁸U-²³⁰Th (ver Capítulo 4.1) e interpolando la distancia desde la base de cada

Metodología.

muestreo, se asignaron edades a cada punto de muestreo, obteniéndose una resolución promedio menor a 5 años entre cada muestra.

4.6 Composición isotópica de (δ^{18} O) y (δ^{13} C).

El análisis de las variaciones en la composición isotópica de O y C se realizó siguiendo la metodología reportada por Kinga y Landwehr (2002), la cual se describe a continuación:

Las alícuotas de CaCO₃ extraídas de Coyo 01 se colocan en una estufa a 90°C por 24 hrs, para eliminar los posibles residuos de humedad presentes en las muestras. Después del proceso de secado, 800 µg de cada muestra fueron pesados en una microbalanza, sobre recipientes de aluminio y, posteriormente, transferidos cuantitativamente a recipientes de cuarzo los cuales fueron sellados con un septo que permite adicionar substancias al interior del tubo impidiendo el intercambio con el exterior.

Posteriormente un conjunto de muestras², se coloca en el automuestreador del espectrómetro, en donde cada tubo es sometido a un flujo de He con la finalidad de remplazar el aire atmosférico contenido en ellos³. Una vez que la muestra se encuentra en una atmósfera de He, se inyecta 0.1 mL de ácido fosfórico (H₃PO₄) con la finalidad de que disolver el CaCO₃. El ácido utilizado, H₃PO₄ al 100% (1.906 g/mL), evita el intercambio de átomos de oxigeno provenientes de moléculas de agua con el CO₂ generado a partir de la reacción del CaCO₃ con el ácido.

Las muestras reaccionan con el ácido y el CO₂ generado se homogeniza con la atmósfera de He por 54 horas, tras los cuales el gas generado se analiza en grupos de 7, utilizando un espectrómetro de masas Thermo MAT 253, acoplado a un cromatógrafo de gases como sistema de introducción de muestra, midiendo al principio y al final de cada grupo de muestras los estándares VSMOW (estándar

 $^{^{2}}$ El cual consta de un conjunto de 94 tubos de cuarzo que contienen el CaCO $_{3}$ y 2 materiales de referencia, VSMOW y VPDB.

³ He es el gas portador para el cromatógrafo de gases, además por ser inerte no reacciona con la muestra o con el espectrómetro de masas. El He tiene una masa conocida de 4 uma muy diferente a la del CO_2 (44).

de Viena que representa la composición del agua oceánica) y VPDB (estándar de Viena que consta de Belemnite del Cretácico proveniente de la formación Pee Dee), cuyos valores se presentan en la Tabla 2. Dichos análisis se llevaron a cabo en el Laboratorio Universitario de Geoquímica Isotópica (LUGIS), ubicado en la planta baja del Instituto de Geología por la M en C. Edith Cienfuegos Alvarado. Los valores δ^{18} O y δ^{13} C se reportan como la diferencia en partes por mil (‰) con respecto al estándar VPDB (ver Apéndice).

Estándar	Proporción	Valor aceptado (x10 ⁶) (con 95% intervalo de confianza)							
	19 - 16-	00111120)							
V SMOW	1°O/100	$2,005.20 \pm 0.43$							
V PDB	¹³ C/ ¹² C	-11,237.1 ± 2.9							
	¹⁸ O/ ¹⁶ 0	2,067.1 ± 2.1							
Tabla 2. Valores de ¹⁸ O/ ¹⁶ O y ¹³ C/ ¹² C de los estándares utilizados. Tomado de Hoefs, J., (2004).									

4.7 Medición de las proporciones Mg/Ca, Sr/Ca, Ba/Ca y U/Ca.

4.7.1 Preparación de muestras y estándares.

Las muestras y estándares fueron preparados con agua destilada y des-ionizada (mQH₂O, 18.2 M_) y HNO₃ 16N ultra puro. Todos los recipientes fueron lavados en HCl 1N a 60 °C por 12 h y enjuagados 5 veces con mQH₂O.

El estándar primario (sol-P), se prepara estableciendo gravimétricamente las relaciones E/Ca de los elementos de interés en una matriz de HNO₃ al 3% (v/v) a partir de estándares gravimétricos y, con proporciones similares a las esperadas en las muestras de la estalagmita. De manera adicional también se analizó el material de referencia "in-house" IGLES 36-1, el cual es un homogeneizado de estalagmitas que fue disuelto en HNO₃, al 3% (v/v), utilizando un factor de dilución semejante al de las muestras (~1000:1 disolvente:muestra).

4.7.2 Medición.

La medición de las proporciones molares de E/Ca (donde E= Mg, Ba, Sr y U), se realizó siguiendo la metodología descrita por Rosenthal *et al.* (1999), adaptada para el análisis por Q-ICPMS utilizando un detector de rango lineal amplio (modos pulso y análogo). El sistema de introducción de muestra consiste en un automuestreador (ASX100) unido a un nebulizador microconcéntrico, acoplado a una cámara de nebulización tipo "Scott" enfriada a 2°C. El consumo de muestra es de aproximadamente 400 μ L min⁻¹. Las condiciones de operación se concentran en Tabla 3.

Potencia (W)		1350							
Plasma		Flujo (L/min) 15 1							
Nobulizador	microconcóntrico	0.5							
	Consumo de	0.4 mL/min							
	muestra								
Tabla 3. Características instrumentales de operación.									

Debido a que el Ca es un componente mayoritario, se midieron los dos isótopos de menor abundancia de Ca (⁴³Ca y ⁴⁶Ca, 0.145% y 0.0033%, respectivamente), mientras que para los otros elementos se midieron ²⁶Mg, ⁸⁸Sr, ¹³⁷Ba, ²³⁸U. Las muestras se midieron en grupos de 9; al inicio y final de cada grupo se midió el estándar gravimétrico (SOL-P), así como el estándar "in-house" IGLES-36 (ver Apéndice). La incertidumbre en la relación elemental corresponde a la calculada tras la medición de esta muestra en 21 ocasiones (Figura 8). Dicha incertidumbre depende de la concentración de cada elemento y, por lo general es menor al 10%, limitada por estadística de conteo del aparato.

Las intensidades de cada elemento (I_E) en la SOL-P fueron relacionadas a las de Ca (I_{Ca}), y, a partir de éstas y la relación E/Ca establecida gravimétricamente, se determinó el Factor $F_{E/Ca}$ (Ecuación 1).

Metodología.

Las relaciones E/Ca de cada muestra fueron determinadas utilizando la Ecuación 2.

 $\binom{[E]}{[Ca]}_{Muestra} = \left(F_{E/Ca}\right)_{INTERPOLADO} \times \binom{I_{E}}{I_{Ca}}_{MUESTRA}$ Ecuación 2. Donde $F_{E/Ca}$ es el factor de discriminación por masa; [E] es la concentración del elemento en la muestra; I_E es la intensidad del elemento en la muestra.

Para cada muestra, F fue calculado a partir de una interpolación lineal en función del tiempo, entre los valores medidos en las SOL-P al principio y final del grupo correspondiente (ver Apéndice). Lo anterior permite corregir por la discriminación de masa intrínseca a la medición, así como la deriva instrumental.

4.8 Análisis estadístico de las señales.

Los resultados obtenidos de las mediciones instrumentales, se analizaron estadísticamente con un promedio móvil con una ventana de 5 elementos.

Este tipo de análisis estadístico se aplica comúnmente a señales de series de tiempo para eliminar fluctuaciones de corto plazo que impidan visualizar con mayor facilidad las anomalías o tendencias presentes en el registro (Chou, 1975).

El cálculo del promedio móvil se realiza con ayuda del siguiente algoritmo:

$$X_{\rm M}^{\delta^{13}\rm C} = \frac{\sum_{\rm M-2}^{\rm M+2} (\delta^{13}\rm C)_{\rm M}}{5}$$

Donde:

X = Indica el promedio móvil

resultante;

M = Es la muestra M;

 δ^{13} C = El tipo de señal analizada.

5. Resultados y discusión.

5.1 Fechamiento y Modelo de edades.

El modelo de edades para Coyo 01 se desarrolló utilizando sólo 5 de los 8 fechamientos disponibles: ATPH 101, ATPH 100, ATPH 4, ATPH 1 y ATPH 5 (Tabla 1). La razón de no utilizar todos los datos obtenidos es que, cuando se considera la incertidumbre de las muestras, se observa que algunas se traslapan entre si debido a que en esos periodos el crecimiento de la estalagmita fue muy rápido. Por lo tanto, las muestras 103, 3, 6 (en la **Error! Reference source not found.**, Capítulo 4.4), no se tomaron en cuenta para establecer el modelo de edades de este estudio, todo esto bajo la consideración de que la muestra inmediata anterior representa de manera más fidedigna la edad máxima de los estratos.

	Distancia								
	desde la					Edad			
	base	[²³⁰ Th/ ²³⁸ U]	±2σ	[²³⁴ U/ ²³⁸ U]	±2σ	(10 ³	±2σ	[²³⁴ U/ ²³⁸ Uo]	±2σ
Muestra	(mm)					años)			
101	3.98	0.2769	0.0013	1.382	0.002	24.15	0.19	1.410	0.008
100	114.29	0.2559	0.0021	1.327	0.003	23.19	0.25	1.349	0.008
4	241.42	0.2527	0.0012	1.328	0.002	22.84	0.18	1.350	0.007
1	278.55	0.2513	0.0009	1.323	0.002	22.79	0.17	1.345	0.007
5	318.64	0.2487	0.0013	1.322	0.002	22.56	0.18	1.343	0.007

Tabla 1. Edades utilizadas para establecer el modelo de edades de Coyo 01, las muestras omitidas en el modelo son: 103, 3 y 6.

Por otro lado, se utiliza un modelo de edades de regresión lineal y no uno polinomial, debido a que el utilizar otro tipo de modelo no aporta mayor información en sentido físico y, a que por principio de superposición el estrato superior debe ser necesariamente más joven que el estrato inferior, lo cual se satisface con un modelo lineal.

De los resultados de la Tabla 1 se puede observar que la edad más antigua que se obtuvo es de 24.15 \pm 0.19 Ka A.P. que corresponde a la muestra ATPH 101 a

una distancia de 3.98 mm desde la base, la edad más joven es de 22.56 ± 0.18 Ka A.P. que corresponde a la muestra ATPH 5 la cual está a una distancia desde la base de 318.64 mm. Lo anterior indica que los 323 mm que mide el perfil obtenido de la estalagmita se desarrollaron en un periodo de aproximadamente 2000 años.

En la Figura 1b se muestran las posiciones de los fechamientos a lo largo del eje de crecimiento, mientras que la Figura 1c presenta el modelo de edades de la estalagmita, el cual se obtuvo interpolando y extrapolando las distancias desde la base de los micromuestreos entre los valores de las edades calculadas por series

Capítulo V

Resultados y discusión.

de uranio, como se mencionó con anterioridad y, la tasa de crecimiento (velocidad de crecimiento) representa la proporción de crecimiento en mm por año transcurrido, derivado del modelo de crecimiento (Figura 1c). Aunque no se cuenta con la cantidad de fechamientos como para establecer un modelo más exacto, se tiene la evidencia (experimento automatizado Capítulo 4.3) de que las condiciones en el interior de la cueva son lo suficientemente invariables como para asumir que la tasa de crecimiento puede tener un comportamiento constante entre cada estrato fechado.

De tal forma, en la Figura 1d se observa cuatro secciones que presentan diferentes tasas de crecimiento. Por ejemplo, con ayuda de la Figura 1c y 14d se puede apreciar que para que Coyo 01 creciera desde 0 hasta 114.29 mm, tuvieron que pasar aproximadamente 1000 años, creciendo a una velocidad de 0.12 mm/año; así mismo, para que creciera de 114.29 mm hasta 241.42 ($\Delta x = 127.13$ mm) sólo transcurrieron 340 años, desarrollándose a una velocidad de 0.36 mm/año. Se observa también que para que creciera de 241 hasta 278.55 mm ($\Delta x = 37.13$ mm), transcurrieron 50 años a una velocidad de 0.78 mm/año. Por último, se observa que para que la estalagmita creciera de 278.55 hasta 318.64 mm ($\Delta x = 40.09$ mm) transcurrieron 230 años a una velocidad de crecimiento de 0.22 mm/año.

Se sabe que el principal factor que afecta la tasa de crecimiento de la estalagmita es la disponibilidad de humedad durante la espeleogénesis, es decir, la tasa de precipitación del CaCO₃ es proporcional a la cantidad de humedad disponible. De esta manera, en el registro que aquí se presenta, las tasas más altas de crecimiento (0.7 mm/año) ocurrieron entre los 23.2 y 22.8 Ka A.P., mientras que la menor tasa (0.12 mm/año) se observa que entre los 24.18 a los 23.2 Ka A.P. Lo anterior indica que, durante el periodo de espeleogénesis, hubo cambios significativos en la humedad disponible en el interior de la cueva, posiblemente asociados con cambios en la precipitación meteórica, sin embargo este tema se discutirá más a fondo en el Capítulo 5.6.

5.2 Composición isotópica de O.

Entender lo que representan las señales de las proporciones isotópicas de C y O es una tarea crítica, debido a que, como se mencionó en la sección 2.6, diversos procesos, además del clima, pueden contribuir a la señal de _18O y de _13C observada en la estalagmita. Por esto, antes de realizar las interpretaciones de los valores de _18O en términos de alguna señal climática, se debe evaluar si existen condiciones de equilibrio durante la precipitación de la calcita.

La prueba más utilizada para identificar condiciones de fraccionamiento isotópico cinético es la prueba de correlación entre las señales de _18O y _13C medidas en una estalagmita, también conocida como prueba Hendy (1971).

La Figura 2 muestra que la señal δ^{13} C no está acoplada a la de δ^{18} O. El coeficiente de correlación entre ambas variables es R² = 0.2134, es decir, no existe una correlación, lo que sugiere que los procesos de fraccionamiento

isotópico cinético (por ejemplo, evaporación) no contribuyeron de manera importante en el proceso de precipitación de la calcita.

Por otro lado, la Figura 3 muestra la serie de tiempo de la composición isotópica de oxígeno en la estalagmita, en esta figura se observa que la señal δ^{18} O presenta variaciones en promedio de 1.5 ‰ a lo largo del registro.

Figura 17. Perfil δ¹⁸O para la estalgmita Coyo 01. Los valores de las proporciones isotópicas de oxígeno están expresadas en notación δ relativa al estándar VPDB. El recuadro en color indica un aumento significativo en la señal δ¹⁸O a los 24 Ka A.P., este aumento concuerda con el evento Heinrich 2, el cual es un enfriamiento intenso debido a la inclusión de agua fría y dulce proveniente de los polos. Por otro lado, representan los fechamientos, en los cuales no se cuenta con análisis de los indicadores.

Capítulo V

Como se comentó en el Capítulo 4.4, se sabe que el fraccionamiento de los isótopos de O generado por la temperatura, causa variaciones en $\delta^{18}O - 0.23\%/°C$ (Friedman, 1977). Si las variaciones observadas en la Figura 16 son el resultado de cambios de la temperatura en el interior de la cueva, implicarían variaciones de hasta 6° C. Sin embargo, en el capítulo 4.3 se mostró evidencia de que la temperatura de la cueva no presenta variaciones mayores a ± 1 °C (Capítulo 4.3). De esta manera, es posible asumir que las variaciones en $\delta^{18}O$ que se muestran en la Figura 16, por efecto de la temperatura son insignificantes. Por consiguiente, las variaciones de $\delta^{18}O$ derivadas de Coyo 01 serán interpretadas solamente como variaciones en la composición isotópica de la precipitación meteórica (Iluvia) del sitio de estudio, asociadas tanto a la cantidad, como a su origen.

De tal forma, en la Figura 3 se pueden diferenciar tres anomalías significativas, a los 24 ka A.P, 23.26 ka A.P. y a los 22.85 ka A.P. (Figura 3), las cuales son interpretadas como resultado de la variación en la cantidad de lluvia y/o su origen.

Un evento marcadamente importante que se observa alrededor de los 24,000 años A.P. (ver Figura 3), el cual se observa como un pico en la señal δ^{18} O que se extiende aproximadamente 140 años y, que puede ser asociado a condiciones de baja humedad y/o a cambios en el patrón de la precipitación meteórica a nivel regional. Con base en lo presentado en el capítulo 2.6, se puede afirmar que durante este periodo se tuvieron aportes de precipitación meteórica con abundante ¹⁸O (Iluvia pesada), lo que para nuestro sitio de estudio significaría mayor aporte de lluvias cercanas a la fuente, posiblemente provenientes del Golfo de México. La excursión en δ^{18} O puede asociarse con el evento Heinrich 2 (H2), el cual ha sido observado en diferentes partes del mundo a una edad aproximada de 24 Ka, y se explica como una inclusión de agua fría y dulce como resultado de la expulsión de grandes icebergs de la capa glaciar Lauréntida (Scourse *et al.*, 2000).

Por otro lado, las dos anomalías siguientes, a los 23.26 ka A.P. y 22.85 ka A.P. (Figura 3), se interpretan como un mayor aporte de lluvias ligeras provenientes del Mar Caribe y del sistema de alta presión proveniente de las Bermudas.

Dichas conclusiones preliminares, junto con las que se deriven de los otros indicadores, serán ensambladas y discutidas posteriormente con mayor profundidad.

5.3 Composición isotópica de C.

Como se explicó con anterioridad, la señal de δ^{13} C es una señal influenciada por diversas variables (Johnson *et al.*, 2006) y, actualmente es difícil identificar un sólo proceso dominante en el fraccionamiento isotópico (Capítulo 2.6). En la Figura 4 se presenta el perfil de δ^{13} C para Coyo 01.

En general se puede observar que la composición isotópica de C presenta variaciones significativas a lo largo del crecimiento sin exhibir ninguna tendencia clara, aunque se pueden identificar 3 cambios abruptos: el primero concuerda con el H2 alrededor de los 24 Ka A. P., en donde las proporciones isotópicas de carbono se empobrecen en isótopos ligeros (δ^{13} C cercanos a 0). Posterior a este cambio, hay una tendencia hacia valores más negativos en δ^{13} C, que abarca de los 23.9 hasta 23.35 Ka A. P. y representa un enriquecimiento de isótopos ligeros; sin embargo, dentro de esta tendencia se observa un segundo cambio abrupto alrededor de los 23.68 Ka A. P., en donde los valores δ^{13} C se hacen más negativos con respecto al valor δ^{13} C esperado en la tendencia de la gráfica.

A partir de los 23.35 y hasta los 23.05 Ka A. P. se presenta una tendencia hacia valores más negativos, lo que significa un empobrecimiento significativo en isótopos ligeros para este periodo, con un mínimo de los valores de δ^{13} C para todo el registro alrededor de los 23.2 Ka A. P.

A partir de esta edad, la señal δ^{13} C presenta mayor variabilidad y no se observan tendencias muy claras, sin embargo, una tendencia hacia valores menos negativos (un enriquecimiento de isótopos ligeros) de al señal δ^{13} C puede visualizarse de los 23.1 Ka A.P: hasta el final del registro y, dentro de esta tendencia se logra observar el tercer cambio abrupto para δ^{13} C alrededor de los 22.7 Ka A. P., donde los valores δ^{13} C al contrario de la tendencia para este

periodo, se empobrecen en isótopos ligeros excursionándose a valores más negativos de δ^{13} C.

La variabilidad observada en el registro de δ^{13} C puede relacionarse con variaciones en la vegetación y la dinámica de suelo; sin embargo, se puede señalar que las excursiones hacia valores más negativos de δ^{13} C representan mayor aporte de fuentes de carbono orgánico y valores menos negativos de δ^{13} C hablan de mayor aporte de fuentes de carbono inorgánico.

No obstante, estas observaciones preliminares se necesitan constatar con otros indicadores de actividad vegetal como U/Ca.

5.4 Relaciones molares de E/Ca

En la Figura 5 se muestra el comportamiento de las proporciones molares E/Ca a lo largo del eje de crecimiento de la estalagmita. En el registro de estas señales se observan dos periodos diferentes: el primero de 24.18 a 23.2 Ka A.P. (1000 años aproximadamente), en el cual el registro es relativamente estable, y el segundo de los 23.2 hasta los 22.5 Ka A.P., (aproximadamente 1200 años), en el cual se observa mayor variabilidad.

En la relación Mg/Ca (Figura 5a), se puede observar que ésta no varía significativamente a lo largo del primer periodo, definido en el párrafo anterior, con excepción de un decremento abrupto alrededor de los 24 Ka A. P., indicando que en dicho periodo se incorporó menor cantidad de Mg en la calcita de la estalagmita, y que coincide con el evento Heinrich-2. Como se detalló en el Capítulo 2.6, los descensos en la relación Mg/Ca pueden interpretarse como un tiempo de residencia menor del fluido de percolación en la roca que se está disolviendo, por lo tanto, el descenso a los 24 Ka A. P. en Mg/Ca indica que durante este intervalo de tiempo existió un mayor aporte de humedad (Iluvia) en la región.

Durante el segundo periodo, la relación Mg/Ca, presenta una tendencia a valores más altos, lo que se relaciona con una mayor incorporación de Mg en la calcita de la estalagmita debido a un menor tiempo de residencia del fluido en la roca, y que puede asociarse con menor humedad (lluvia) disponible en la región. Sin embargo, lo errático de la señal, sugiere cierta inestabilidad en cuanto a la disponibilidad de humedad. Otros descensos importantes en Mg/Ca se observan a los 22.8 y 22.7 Ka A. P. y que aparentemente responden a cambios en la cantidad de precipitación meteórica evidenciados por excursiones hacia valores más negativos en δ^{18} O.

Figura 19. Relaciones molares E/Ca (mol/mol) a lo largo del eje de crecimiento de Coyo 01. La incertidumbre de la medición 20, representada por **I**, fue determinada utilizando el estándar IGLES-36-1. Por otro lado, representa los fechamientos, en los cuales no se cuenta con análisis de indicadores. La zona obscurecida de color verde, delimita dos periodos, el primero de 24.2 a 23.2 Ka y el segundo de 23.2 a 22.5 Ka. El recuadro en la gráfica a los 24 Ka A.P., concuerda con el evento Heinrich 2.

Por otro lado, en la Figura 5b y Figura 5c se puede observar que las relaciones Ba/Ca y Sr/Ca se encuentran correlacionadas a lo largo de la serie de tiempo ($R^2 = 0.7980$, n = 151, p < 0.001) y también que presentan el comportamiento general para los dos periodos explicados anteriormente. De nueva cuenta se observa un

Capítulo V

marcado incremento de la señal alrededor de los 24 Ka A. P., el cual coincide con el evento H2. Este incremento en la incorporación de Ba y Sr en la calcita de la estalagmita puede deberse a un incremento en la disolución de material edáfico (materia orgánica del suelo). Durante el segundo periodo identificado (23.2 a 22.5 Ka A.P.), Ba/Ca y Sr/Ca aumentan de manera significativa, al igual que Mg. Sin embargo, no se considera que dicho aumento esté asociado con cambios en la humedad disponible, pero si se puede observar una coincidencia con cambios texturales del carbonato de la estalagmita (**Error! Reference source not found.**) y que pueden deberse a cambios en las condiciones de percolación del agua en el epikarst. Cabe mencionar, sin embargo, que el Mg se encuentra anticorrelacionado con Ba y Sr, y que dicha anticorrelación se mantiene durante eventos climáticos significativos, como por ejemplo el H2.

Por último, la relación U/Ca presenta diversos aumentos durante el primer periodo, uno de ellos asociado con H2 alrededor de los 24 Ka. A. P., y que se correlaciona con los incrementos observados en Sr/Ca y Ba/Ca, así como anticorrelacionado con Mg/Ca. Otros incrementos en U/Ca ocurren alrededor de los 23.7 Ka hasta los 23.48 Ka A. P. Aunado a esto, se puede observar también que durante el segundo periodo, la señal U/Ca presenta una marcada disminución alrededor de los 22.95 Ka A. P., lo cual coincide con condiciones de menor humedad identificadas con Mg/Ca, Ba/Ca y Sr/Ca.

Como se comentó en el Capítulo 2.6, la incorporación de U está asociado con la actividad vegetal y la descomposición de materia orgánica en suelos. De esta manera, el aumento en la proporción U/Ca anticorrelacionados con la señal Mg/Ca, puede indicar mayor transporte de material orgánico previamente generado y acumulado en periodos menos húmedos. Sin embargo, la presencia de picos en la señal de U/Ca no asociados con variaciones en Mg/Ca indica la existencia de otros mecanismos regulando la incorporación de U en la calcita.

Con base en lo discutido en los párrafos anteriores, se puede señalar que las variaciones observadas en las señales E/Ca, en particular Mg/Ca, pueden estar

respondiendo a cambios en las condiciones y cantidad de la infiltración de agua meteórica, incluyendo tiempo de residencia, condiciones de desarrollo de los suelos, así como condiciones de precipitación del CaCO₃ en la estalagmita. Sin embargo, estas afirmaciones serán discutidas en un contexto general más adelante.

5.5 Comparación de los diferentes indicadores.

En la Figura 6 se presenta una comparación de los indicadores de paleohumedad más significativos que se obtuvieron de Coyo 01. La señal correspondiente a la tasa de crecimiento (mm/año) es la razón de la distancia entre cada fechamiento (en mm) y los años que transcurrieron para que esa distancia se desarrollara.

Cabe señalar que el modelo establecido en el Capítulo 5.1 asume un crecimiento constante entre cada par de fechamientos y a un ritmo correspondiente a la tasa de crecimiento. Sin embargo, la tasa de crecimiento es un indicador de baja resolución debido a que no se cuenta con suficientes fechamientos que permitan establecer con mayor certeza el ritmo al cual creció Coyo 01.

Como se ha discutido con anterioridad, la tasa de crecimiento es un indicador de la humedad (lluvia) disponible al momento de la precipitación de la calcita. Sin embargo, entre 24.2 y 23.2 Ka A. P. no se cuentan con suficientes elementos para evaluar los cambios en la tasa de crecimiento contra otros indicadores de humedad. (Figura 6). No obstante, a partir de 23.2 y hasta 22.9 Ka A. P. se observa un aumento significativo en la tasa de crecimiento, el cual esta asociado a un aumento en Mg/Ca. Dicho resultado, sin embargo, no se asocia con un cambio en las condiciones climáticas del área, sino con cambios en las condiciones de percolación en el epikarst que, posiblemente, permitieron mayor flujo de agua hacia el interior de la cueva. De lo contrario, un aumento de tal magnitud en la

 δ^{18} O, la cual no se observa, soportando la hipótesis que dicho cambio en la tasa de crecimiento no tienen significado climático. Este no es el caso del aumento que se observa entre 22.85 y 22.79, en donde el aumento en la tasa de crecimiento va asociado con una disminución en Mg/Ca y una excursión en δ^{18} O hacia valores más negativos, ambos indicando aumento en la cantidad de lluvia, posiblemente predominante en el verano.

Finalmente, la disminución en la tasa de crecimiento observado en la parte más joven de la estalagmita, no se presenta ninguna correlación con aumentos en Mg/Ca y/o con δ^{18} O. Sin embargo, no es claro si esta discrepancia es debida a la baja resolución de la tasa de crecimiento en esta sección de la estalagmita.

Capítulo V

Por otro lado, en la Figura 19 se observa que [²³⁴U/²³⁸U] presenta valores de alrededor de 1.382 ± 0.0025 en la parte baja de la estalagmita, mientras que en la parte alta, presenta valores de $[^{234}U/^{238}U] = 1.3235 \pm 0.0024$ después de los 23.2 Ka A. P. Con base en lo presentado en el capítulo 2.6, se sabe que valores altos de [²³⁴U/²³⁸U] se asocian con ambientes de baja humedad, mientras que valores de [²³⁴U/²³⁸U] cercanos a 1.0 son el resultado de ambientes de alta humedad, por lo que es de esperar que [²³⁴U/²³⁸U] esté correlacionado con la tasa de crecimiento, así como Mg/Ca y δ^{18} O. Sin embargo, no es posible correlacionar estos dos últimos a todo lo largo del registro con la composición isotópica de U (debido a la resolución espacial con la que se realizaron los respectivos muestreos). No obstante, en la Figura 19 se puede que valores altos de [²³⁴U/²³⁸U] están asociados con tasas de crecimiento bajas en la estalagmita, mientras que los valores más bajos de [²³⁴U/²³⁸U] se presentan asociados a las tasas de crecimiento más altas. Sin embargo, esto no puede asociarse completamente a las condiciones climáticas regionales, debido a que anteriormente se observaron cambios en la tasa de crecimiento asociados a procesos no climáticos.

6. CONCLUSIONES.

En el presente trabajo se han aplicado exitosamente las metodologías requeridas para el análisis de los diferentes indicadores geoquímicos comúnmente utilizados en estalagmitas, lo cual permitió evaluar la resolución y confiabilidad de los resultados obtenidos permitiéndonos realizar interpretaciones paleoambientales sólidas a partir de la integración de los diversos indicadores de paleohumedad en una estalagmita (Coyo 01) procedente del norte del estado de Puebla.

Coyo 01 representa uno de los primeros registros continentales de un evento Heinrich procedentes de latitudes tropicales. Con base en los resultados de la composición isotópica de O en el carbonato ($\delta^{18}O_{VPDB}$), la velocidad de crecimiento y las proporciones Mg/Ca, Sr/Ca y Ba/Ca, se sugiere que durante el evento Heinrich 2, aproximadamente hace 24 Ka A.P., prevalecían condiciones de mayor humedad y de diferente origen. A diferencia de registros anteriores (Grimm *et al.*, 2006), el registro que aquí se presenta sugiere mayor abundancia de lluvia de invierno sobre la de verano, lo cual coincide con las interpretaciones iniciales de Grimm (1993). No obstante, Coyo 01 sólo cubre parcialmente el periodo de ocurrencia de este evento. Por lo tanto hace falta un estudio que abarque este periodo de tiempo en su totalidad.

Por otro lado, Coyo 01 esboza el comienzo del UMG, indicado por un aumento en los valores de $\delta^{18}O_{VPDB}$, una disminución en la velocidad de crecimiento y la proporción más baja de [²³⁴U/²³⁸U]. A pesar de la coincidencia de todos estos indicadores en este periodo en especial, aún hace falta corroborar estas conclusiones con un registro que tenga mayor alcance temporal, el cual incluya más allá del UMG.

Nuestro trabajo, además de ser uno de los pocos estudios realizados hasta el momento en México basado en análisis geoquímicos de estalagmitas, ha permitido obtener información confiable sobre las condiciones paleoclimáticas y,

en particular, condiciones de paleohumedad para el periodo comprendido entre 24.2 a 22.5 Ka A.P.

7. REFERENCIAS.

- Albarede, F. 2003. Geochemistry, an Introduction. Cambridge University Press. 248 pp.
- Bond, G. B.; S. Johnsen; J. McManus; L. Laberyrie; J. Jouzel; y G. Bonani. 1993. Correlations between climate records from North Atlantic sediments and Greenland ice. Nature. 365: 143-147.
- Bradbury, J. P. 1997. Sources of glacial moisture in Mesoamerica. Quaternary International. 43(4): 97-110.
- Brenner, M.; D. A. Hodell; J. H. Curtis; M. F. Rosenmeier; M. W. Binford y B. A.M. 2001. Abrupt climate change and pre-columbian cultural collapse. En: Vera, M. (ed.). Interhemispheric climate linkages. Academic Press. San Diego. 87-101 pp.
- Caballero, M.; S. Lozano; B. Ortega; J. Urrutia y J. L. Macías. 1999. Environmental Characteristics of Lake Tecocomulco, northern basin of Mexico, for the last 50,000 years. Journal of Paleolimnology. 22(4): 399-411.
- Caballero, M.; B. Ortega; F. Valadez; S. Metcalfe; J. L. Macías y Y. Sugiura. 2002. Sta. Cruz Atizapan: a 22 ka lake level record and climatic implications for the late Holocene human occupation in the Upper Lerma Basin, Central Mexico. Palaeogeography Palaeoclimatology Palaeoecology. 186(3-4): 217-235.
- Cheng, H.; R. L. Edwards; J. Hoff; C. D. Gallup; D. A. Richards y Y. Asmerom. 2000. The half-lives of uranium-234 and thorium-230. Chemical Geology. 169:17-33.
- Chou, Y. 1975. Statistical Analysis. Holt, Rinehart and Winston. United States of America. pp 707 720.
- Coplen, T. B.; I. J. Winograd; J. M. Landwehr y A. C. Riggs. 1994. 500,000- Year stable Carbon Isotopic Record from Devils-Hole, Nevada. Science. 263(5145): 361-365.
- Croll, J. 1886. Review: Croll's Climate and Cosmology. The American Naturalist. 20(4): 359-361.
- Cruz, J.; W. Francisco; S. J. Burns; M. Jercinovic; I. Karmann; W. D. Sharp y M. Vuille. 2007. Evidence of rainfall variations in Southern Brazil from trace element ratios (Mg/Ca and Sr/Ca) in a Late Pleistocene stalagmite. Geochimica et Cosmochimica Acta. 71(9): 2250-2263.
- Dansgaard, W. 1964. Stable isotopes in precipitation. Tellus B. 16: 436-468.
- Davis, N. 1974. A preliminary report on the Zacapoaxtla-Cuetzalan area, Northern Puebla, Mexico. Association for Mexican Cave Studies. Newsletter. 4 (5-6): 153-184.
- Douglas, M.W.; R. A. Maddox; K. Howard y S. Reyes. 1993. The Mexican Monsoon. Journal of Climate. 6(8): 1665-1677.
- Edwards, R.L.; J. H. Chen y G. J. Wasserburg. 1986. ²³⁸U, ²³⁴U, ²³⁰Th-²³²Th systematics and the precise measurement of time over the past 500000 years. Earth & Planetary Science Letters. 81: 175-192.

- Emiliani, C. 1954. Temperatures of pacific bottoms waters and polar superficial waters during the Tertiary. Science. 111(3103): 853-855.
- Esper, J.; E. R. Cook y F. H. Schweingruber. 2002. Low-Frequency Signals in Long Tree-Ring Chronologies for Reconstructing Past Temperature Variability. Science. 295(5563): 2250-2253.
- Fairchild, I. J.; A. Borsato; A. F. Tooth; S. Frisia; C. J. Hawkesworth; Y. Huang; F. McDermott y B. Spiro. 2000. Controls on trace element (Sr-Mg) compositions of carbonate cave waters: implications for speleothem climatic records. Chemical Geology. 166(3-4): 255-269.
- Fairchild, I. J.; C. L. Smith; A. Baker; L. Fuller; C. Spötl; D. Mattey; F. McDermott y
 E. I. M. F. 2006. Modification and preservation of environmental signals in speleothems. Earth-Science Reviews. 75(1-4): 105-153.
- Fleischer, R. L. 1988. Alpha-recoil damage: Relation to isotopic disequilibrium and leaching of radionuclides. Geochimica et Cosmochimica Acta. 52: 1459-1466.
- Friedman, I. y J. R. O'Neil. 1977. En: Fleischer, E.M. (ed.). Data of Geochemistry. United States Geological Survey Professional Paper. Washington, D.C. 440 pp.
- Gascoyne, M. 1983. Trace-element partition coefficients in the calcite-water system and their paleoclimatic significance in cave studies. Journal of Hydrology. 61(1-3): 213-222.
- Grimm, E. C.; G. L. Jacobson; W. A. Watts; B. C. S. Hansen y K. A. Maasch. 1993. A 50,000-Year Record of Climate Oscillations from Florida and Its Temporal Correlation with the Heinrich Events. Science. 261(5118): 198-200.
- Grimm, E. C.; W. A. Watts; J. Jacobson; L. George; B. C. S. Hansen; H. R. Almquist y A: C. Dieffenbacher-Krall. 2006. Evidence for warm wet Heinrich events in Florida. Quaternary Science Reviews. 25(17-18): 2197-2211.
- Haug, G. H.; D. Gunther; L. C. Peterson; D. M. Sigman; K. A. Hughen y B. Aeschlimann. 2003. Climate and the Collapse of Maya Civilization. Science. 299(5613): 1731-1735.
- Hellstrom, J. C. y M. T. McCulloch. 2000. Multi-proxy constraints on the climatic significance of trace element records from a New Zealand speleothem. Earth & Planetary Science Letters. 179(2): 287-297.
- Hendy, C. H. y W. T. Wilson. 1968. Palaeoclimatic Data from Speleothems. Nature. 219(5149): 48-51.
- Hendy, C. H. 1971. The isotopic geochemistry of speleothems--I. The calculation of the effects of different modes of formation on the isotopic composition of speleothems and their applicability as palaeoclimatic indicators. Geochimica et Cosmochimica Acta. 35(8): 801-824.
- Hoefs, J. 2004. Stable Isotope Geochemistry. Springer. Nueva York. 244 pp.
- Huang, Y. e I. J. Fairchild. 2001. Partitioning of Sr²⁺ and Mg²⁺ into calcite under karst-analogue experimental conditions. Geochimica et Cosmochimica Acta. 65(1): 47-62.

- Imbrie, J. B.; E. A. Boyle; S. C. Clemens y A. Duffy. 1993. On the structure and origin of major glaciation cycles 2. The 100,000-year cycle. Paleoceanography. 8(6): 699-735.
- Imbrie, J. I. y Z. John. 1980. Modeling the Climate Response to Orbital Variations. Science. 207(4434): 943-953.
- IPCC, 2001. IPCC Third Assessment Report: Climate Change 2001: The Scientific Basis.
- Ivanovich, M. 2004. Uranium-series Disequilibrium. Applications to Earth Marine, and Environmental Sciences. Oxford Science Publications. Oxford. Pp. 50-60.
- Johnson, K.R.; C. Hu; N. S. Belshaw y G. M. Henderson. 2006. Seasonal traceelement and stable-isotope variations in a Chinese speleothem: The potential for high-resolution paleomonsoon reconstruction. Earth and Planetary Science Letters. 244(1-2): 394-407.
- Kinga M. y J. M. L. Révész. 2002. δ^{13} C and δ^{18} O isotopic composition of CaCO₃ measured by continuous flow isotope ratio mass spectrometry: statistical evaluation and verification by application to Devils Hole core DH-11 calcite. Rapid Communications in Mass Spectrometry. 16(22): 2102-2114.
- Lozano-García, M. S.; B. Ortega-Guerrero y S. Sosa-Nájera. 2002. Mid- to late-Wisconsin pollen record of San Felipe basin, Baja California. Quaternary Research. 58(1): 84-92.
- Ludwig, K. R.; K. R. Simmons; B. J. Szabo; I. J. Winograd; J. M. Landwehr; A. C. Riggs y R. J. Hoffman. 1992. Spectrometric-spectrometric ²³⁰Th-²³⁴U-²³⁸U dating of the Devils Hole Calcite Vein. Science. 258(5080): 284-287.
- Mark, B. G. y K. F. Helmens. 2005. Reconstruction of glacier equilibrium-line altitudes for the Last Glacial Maximum on the High Plain of Bogotá, Eastern Cordilleras, Colombia: climatic and topographic implications. Journal of Quaternary Science. 20(7-8): 789-800.
- McDermott, F. 2004. Palaeo-climate reconstruction from stable isotope variations in speleothems: a review. Quaternary Science Reviews. 23(7-8): 901-918.
- Metcalfe, S. E.; S. L. O'Hara; M. Caballero y S. J. Davies. 2000. Records of Late Pleistocene-Holocene climatic change in Mexico - a review. Quaternary Science Reviews. 19(7): 699-721.
- Milankovitch, M. 1941. Canon of insolation and the ice age problem. Royal Serbian Academy. Special Publication. (132).
- Mortimer, G.E.; M. T. McCulloch; L. P. J. Kinsley y T. M. Esat. 2002. High precision ²³⁴U-²³⁰Th dating using MC-ICP-MS. Geochimica et Cosmochimica Acta. 66: A527 (Abstract).
- Petit, J. R.; J. Jouzel; D. Raynaud; N. I. Barkov; J. M. Barnola; I. Basile; M. Bender;
 J. Chappellaz; M. Davis; G. Delaygue; M. Delmotte; V. M. Kotlyakov; M. Legrand; V. Y. Lipenkov; C. Lorius; L. Pepin; C. Ritz; E. Saltzman y M. Stievenard. 1999. Climate and atmospheric history of the past 420,000 years from the Vostok ice core, Antarctica. Nature. 399(6735): 429-436.

- Polyak, V. J. y. Asmerom. 2001. Late Holocene Climate and Cultural Changes in the Southwestern United States. Science. 294(5540): 148-151.
- Pope, K. O.; M. E. D. Pohl; J. G. Jones; D. L. Lentz; C. von Nagy; F. J. Vega e I. R. Quitmyer. 2001. Origin and Environmental Setting of Ancient Agriculture in the Lowlands of Mesoamerica. Science. 292(5520): 1370-1373.
- Rosenthal, Y.; M. P. Field y R. M. Sherrell. 1999. Precise Determination of Element/Calcium Ratios in Calcareous Samples Using Sector Field Inductively Coupled Plasma Mass Spectrometry. Analytical Chemistry. 71(15): 3248-3253.
- Scourse, J. D.; I. R. Hall; I. N. McCave; J. R. Young y C. Sugdon. 2000. The origin of Heinrich layers: evidence from H2 for European precursor events. Earth and Planetary Science Letters. 182(2): 187-195.
- Sedov, S.; E. Solleiro-Rebolledo; J. E. Gama-Castro; E. Vallejo-Gómez y A. González-Velázquez. 2001. Buried paleosols of the Nevado de Toluca: an alternative record of Late Quaternary environmental change in central Mexico. Journal of Quaternary Science. 16(4). 375-389.
- Shen, C. C.; R. Lawrence Edwards; H. Cheng; J. A. Dorale; R. B. Thomas; S. Bradley Moran; S. E. Weinstein y H. N. Edmonds. 2002. Uranium and thorium isotopic and concentration measurements by magnetic sector inductively coupled plasma mass spectrometry. Chemical Geology. 185(3-4): 165-178.
- Tang, M. y E. R. Retier. 1984. Plateau monsoon of the northern hemisphere, a comparison between North America and Tibet. Monthly Weather Review. 112: 617-637.
- Treble, P.; J. M. G. Shelley y J. Chappell. 2003. Comparison of high resolution sub-annual records of trace elements in a modern (1911-1992) speleothem with instrumental climate data from southwest Australia. Earth and Planetary Science Letters. 216(1-2): 141-153.
- Treble, P.C.; J. Chappell; M. K. Gagan; K. D. McKeegan y T. M. Harrison. 2005. In situ measurement of seasonal δ^{18} O variations and analysis of isotopic trends in a modern speleothem from southwest Australia. Earth and Planetary Science Letters. 233(1-2): 17-32.
- Van Calsteren, P. y L. Thomas. 2006. Uranium-series dating applications in natural environmental science. Earth-Science Reviews. 75(1-4): 155-175.
- Vázquez-Selem, L. 2003. El escenario paleoambiental de la región. Investigación participativa para el manejo de recursos naturales. Las enseñanzas de San Juan. Instituto Nacional de Ecología, SEMARNAT. México. 79-93 pp.
- Williams, M.; D. Dunkerley; P. De Deckker; A. P. Kershaw y J. Chappell. 1998. Quaternary Environments. Oxford University Press, London. 329 pp.
- Winograd, I. J.; T. B. Coplen; J. M. Landwehr; A. C. Riggs; K. R. Ludwig; B. J. Szabo; P. T. Kolesar y K. M. Revesz. 1992. Continuous 500,000-year climate record from vein calcite in Devils-Hole, Nevada. Science. 258(5080): 255-260.

Zhou, J. Z.; C. C. Lundstrom; B. Fouke; S. Panno; K. Hackley y B. Curry. 2005. Geochemistry of speleothem records from southern Illinois: Development of (U-234)/(U-238) as a proxy for paleoprecipitation. Chemical Geology. 221(1-2): 1-20.

8. Apéndice.

En esta sección se presentan tablas que concentran los resultados de los diferentes análisis.

8.1 Datos de δ^{18} O y δ^{13} C.

Como se comentó en el capítulo 3.5, los análisis de la composición isotópica de oxígeno y carbono se llevaron a cabo en el LUGIS del Instituto de Geología. La etapa de secado, pesado y transferencia cuantitativa de la calcita a los tubos con tapa hermética fue realizada por el sustentante y, el análisis instrumental fue realizado por la M. en C. Edith Cienfuegos Alvarado. Los resultados de $\delta^{13}C_{VPDB}$ y $\delta^{18}O_{VPDB}$, fueron analizados con un *promedio móvil centrado* en una ventana de 5 elementos.

La fórmula del promedio móvil centrado para $\delta^{13}C_{VPDB}$ obtenido para la muestra M es:

$$X_{M}^{\delta^{13}C} = \frac{\sum_{M=2}^{M+2} (\delta^{13}C)_{M}}{5}$$

Los resultados se presentan en la Tabla 1.

	Tabla 1.											
	Resultade	os crudos	Resultad con pro	os analizados medio móvil								
Muestra	$\delta^{13}C_{VPDB}$	$\delta^{18}O_{VPDB}$	$\delta^{13}C_{VPDB}$	$\delta^{18}O_{VPDB}$	Años A.P.	Distancia desde la base (mm)						
1	-7.37	-4.04	-7.37	-4.04	22537.1	323.10						
2	-6.72	-3.72	-6.72	-3.72	22599.9	312.30						
3	-6.31	-3.73	-6.72	-3.86	22615.2	309.65						
4	-6.5	-3.84	-6.61	-4.20	22627.0	307.62						
5	-6.71	-3.96	-6.68	-4.30	22639.1	305.55						
6	-6.8	-5.76	-6.85	-4.35	22649.6	303.74						
7	-7.07	-4.21	-7.01	-4.40	22683.7	297.88						
8	-7.19	-3.99	-7.16	-4.44	22699.8	295.10						
9	-7.27	-4.09	-7.18	-4.05	22717.2	292.10						
10	-7.46	-4.17	-7.05	-4.48	22731.3	289.68						

11-6.33-3.79-6.79-4.3922746.7287.0312-6.39-6.35-6.69-4.3522769.0284.9113-5.92-3.56-6.49-4.3222771.8282.7214-6.73-3.89-6.36-4.3022789.4279.6815-6.5-3.99-6.29-3.8022804.7271.8316-6.28-3.71-6.40-3.8722810.2267.5517-6.03-3.84-6.34-3.8822814.0264.6418-6.47-3.91-6.30-3.8222817.7261.7319-6.43-3.97-6.23-3.892282.6259.4020-6.29-3.68-6.45-3.9422828.7253.2721-5.92-4.07-6.41-4.1122828.7253.2723-6.29-4.76-6.65-4.3022836.2247.4424-7.03-4.91-6.75-4.2222842.1242.9025-6.87-3.67-6.43-4.1222851.4234.0426-6.42-3.69-6.40-3.9022859.4235.7627-5.56-3.56-6.19-3.8622864.1234.0428-6.11-3.75-5.93-3.5722873.5230.6030-6.09-3.44-6.26-3.5322875.8229.0131-5.9-3.44-6.26-3.5322886.4227.25 <td< th=""><th></th><th></th><th></th><th></th><th></th><th></th><th></th></td<>							
12-6.39-6.35-6.69-4.3522759.0284.9113-5.92-3.56-6.49-4.3222771.8282.7214-6.733.89-6.29-3.8022804.7271.8316-6.28-3.71-6.40-3.8722804.7271.8316-6.28-3.71-6.40-3.8722810.2267.5517-6.03-3.84-6.34-3.8822814.0264.6418-6.47-3.91-6.30-3.8222817.7261.7319-6.43-3.97-6.23-3.8922820.8259.4020-6.29-3.68-6.45-3.942282.7253.5721-5.92-4.07-6.41-4.1122828.7253.2722-7.13-4.09-6.55-4.3022836.6247.4424-7.03-4.91-6.75-4.222284.1242.9025-6.87-3.67-6.43-4.1222851.5238.6726-6.42-3.69-6.40-3.9022854.4235.7627-5.56-3.56-6.19-3.6622864.1234.0428-6.11-3.65-6.04-3.622286.6232.3629-6.01-3.75-5.93-3.572287.3230.6030-6.09-3.44-6.26-3.532287.8229.0131-5.9-3.44-6.26-3.532286.4225.8432 </td <td>11</td> <td>-6.93</td> <td>-3.79</td> <td>-6.79</td> <td>-4.39</td> <td>22746.7</td> <td>287.03</td>	11	-6.93	-3.79	-6.79	-4.39	22746.7	287.03
13 -5.92 -3.56 -6.49 -4.32 22771.8 282.72 14 -6.73 -3.89 -6.38 22804.7 271.83 15 -6.5 -3.99 -6.29 -3.80 22804.7 271.83 16 -6.28 -3.71 -6.40 -3.87 22810.2 267.55 17 -6.03 -3.84 -6.34 -3.88 22811.7 261.73 19 -6.43 -3.97 -6.23 -3.89 22820.8 259.40 20 -6.29 -3.68 -6.45 -3.94 22824.7 255.35 21 -5.92 -4.07 -6.41 -4.11 22828.7 225.327 22 -7.13 -4.09 -6.53 -4.30 22836.2 247.44 24 -7.03 -4.01 -6.75 -4.22 22842.1 242.90 25 -6.87 -3.67 -6.43 -4.12 2285.5 238.67 26 -6.42 -3.69 -6.40 -3.90 22859.4 235.76 27 -5.56 -3.56 -6.19 -3.66 22866.1 234.04 28 -6.11 -3.75 -5.93 -3.57 2287.5 230.60 30 -6.09 -3.44 -6.14 -3.55 2287.8 227.25 32 -6.57 -3.45 -6.44 -3.51 22886.6 227.25 33 -6.73 -3.57 -6.59 -3.48 2289.7 224.65 34 -6.89 <td< td=""><td>12</td><td>-6.39</td><td>-6.35</td><td>-6.69</td><td>-4.35</td><td>22759.0</td><td>284.91</td></td<>	12	-6.39	-6.35	-6.69	-4.35	22759.0	284.91
14 -6.73 -3.89 -6.36 -4.30 22789.4 279.68 15 -6.5 -3.99 -6.29 -3.80 22804.7 271.83 16 -6.28 3.71 -6.40 -3.87 22810.2 287.55 17 -6.03 -3.84 -6.34 -3.88 22814.0 264.64 18 -6.47 -3.91 -6.30 -3.82 22817.7 2261.73 20 -6.29 -3.68 -6.45 -3.94 22824.7 256.35 21 -5.92 -4.07 -6.41 -4.11 22828.7 2253.27 22 -7.13 4.09 -6.53 -4.30 22836.2 247.44 23 -6.29 -4.76 -6.65 -4.30 22836.2 247.44 24 -7.03 -4.91 -6.75 -4.22 22842.1 242.90 25 -6.87 -3.67 -6.43 -4.12 22861.5 238.67 26 -6.42 -3.66 -3.362 22869.4 235.76 27 -5.56 -3.56 -6.19 -3.66 22861.1 234.04 28 -6.11 -3.65 -6.04 -3.62 22881.5 223.060 30 -6.09 -3.44 -6.26 -3.53 22882.6 227.25 32 -6.57 -3.57 -6.44 -3.57 22887.5 $223.0.60$ 33 -6.73 -5.64 -3.36 22886.5 222.13 34 -6.89 -3.66 <	13	-5.92	-3.56	-6.49	-4.32	22771.8	282.72
15 -6.5 -3.99 -6.29 -3.80 22804.7 271.83 16 -6.28 -3.71 -6.40 -3.87 22810.2 267.55 17 -6.03 -3.84 -6.34 -3.88 22814.0 2264.64 18 -6.47 -3.91 -6.30 -3.82 22817.7 2261.73 19 -6.43 -3.97 -6.23 -3.89 22820.8 259.40 20 -6.29 -3.66 -6.45 -3.94 2283.67 256.35 21 -5.92 -4.07 -6.41 -4.11 22283.62 247.44 23 -6.29 -4.76 -6.65 -4.30 22836.2 247.44 24 -7.03 -4.91 -6.75 -4.22 22842.1 242.90 25 -6.87 -3.67 -6.43 -4.12 22851.5 238.67 26 -6.42 -3.69 -6.40 -3.90 22859.4 223.76 27 -5.56 -3.56 -6.19 -3.62 22864.1 234.04 28 -6.11 -3.65 -6.44 -3.62 22863.6 232.36 29 -6.01 -3.75 -5.93 -3.57 2287.8 229.01 31 -5.9 -3.44 -6.14 -3.55 2287.8 229.01 31 -5.9 -3.44 -6.14 -3.51 22886.4 225.84 33 -6.73 -3.57 -6.50 -3.48 2289.7 221.257 35<	14	-6.73	-3.89	-6.36	-4.30	22789.4	279.68
16-6.28 $\cdot 3.71$ -6.40 $\cdot 3.87$ $\cdot 22810.2$ 267.55 17-6.03 $\cdot 3.84$ -6.34 $\cdot 3.88$ $\cdot 22814.0$ $\cdot 264.64$ 18-6.47 $\cdot 3.91$ $\cdot 6.33$ $\cdot 3.89$ $\cdot 2282.7$ $\cdot 261.73$ 19-6.43 $\cdot 3.97$ -6.23 $\cdot 3.89$ $\cdot 2282.4.7$ $\cdot 256.35$ 21-5.92 $\cdot 4.07$ $\cdot 6.41$ $\cdot 4.11$ $\cdot 2282.7$ $\cdot 253.27$ 22 $\cdot 7.13$ $\cdot 4.09$ $\cdot 6.53$ $\cdot 4.30$ $\cdot 22836.2$ $\cdot 247.44$ 23 $\cdot 6.29$ $\cdot 4.76$ $\cdot 6.65$ $\cdot 4.30$ $\cdot 22836.2$ $\cdot 247.44$ 24 $\cdot 7.03$ $\cdot 4.91$ $\cdot 6.75$ $\cdot 4.22$ $\cdot 2284.21$ $\cdot 242.90$ 25 $\cdot 6.67$ $\cdot 3.67$ $\cdot 6.43$ $\cdot 4.12$ $\cdot 22851.5$ $\cdot 238.67$ 26 -6.42 $\cdot 3.69$ -6.40 $\cdot 3.90$ $\cdot 22861.4$ $\cdot 233.76$ 27 $\cdot 5.56$ $\cdot 3.56$ -6.19 $\cdot 3.66$ $\cdot 22861.4$ $\cdot 234.04$ 28 -6.11 $\cdot 3.65$ -6.04 $\cdot 3.62$ $\cdot 2286.6$ $\cdot 222.37$ 30 -6.09 $\cdot 3.44$ -6.26 $\cdot 3.53$ $\cdot 22887.8$ $\cdot 229.01$ 31 $\cdot 5.9$ $\cdot 3.44$ -6.26 $\cdot 3.53$ $\cdot 2288.4$ $\cdot 227.25$ 32 -6.57 $\cdot 3.44$ -6.26 $\cdot 3.53$ $\cdot 2288.4$ $\cdot 227.25$ 33 -6.77 $\cdot 3.45$ -6.44 $\cdot 3.51$ $\cdot 2288.4$ $\cdot 227.465$ 34 -6.89 $\cdot 3.66$	15	-6.5	-3.99	-6.29	-3.80	22804.7	271.83
17 -6.03 -3.84 -6.34 -3.88 22814.0 264.64 18 -6.47 -3.91 -6.30 -3.82 22817.7 261.73 19 -6.43 -3.97 -6.23 -3.89 2282.8 259.40 20 -6.29 -3.68 -6.45 -3.94 2282.7 256.35 21 -5.92 -4.07 -6.41 -4.11 22836.2 249.47 23 -6.29 -4.76 -6.65 -4.30 22836.2 247.44 24 -7.03 -4.91 -6.75 -4.22 22842.1 242.90 25 -6.87 -3.67 -6.43 -4.12 2285.4 235.76 26 -6.42 -3.69 -6.40 -3.90 2285.4 235.76 27 -5.56 -3.56 -6.19 -3.66 22864.1 234.04 28 -6.11 -3.85 -6.04 -3.62 22866.6 232.36 29 -6.01 -3.75 -5.93 -3.57 2287.5 230.60 30 -6.97 -3.45 -6.44 -3.55 2287.8 229.01 31 -5.9 -3.44 -6.26 -3.53 22882.6 227.25 32 -6.57 -3.45 -6.44 -3.51 2289.5 222.13 35 -6.4 -3.3 -6.72 -3.58 2289.5 222.13 36 -7.2 -3.95 -6.49 -3.48 22904.7 219.13 38 -5.6 <	16	-6.28	-3.71	-6.40	-3.87	22810.2	267.55
18 -6.47 -3.91 -6.30 -3.82 22817.7 261.73 19 -6.43 -3.97 -6.23 -3.89 22820.8 259.40 20 -6.29 -3.68 -6.45 -3.94 2282.7 256.35 21 -5.92 -4.07 -6.41 -4.11 22828.7 253.27 22 -7.13 -4.09 -6.53 -4.30 22833.6 249.47 23 -6.29 -4.76 -6.65 -4.30 22836.2 247.44 24 -7.03 -4.91 -6.75 -4.22 2284.1 242.90 25 -6.87 -3.67 -6.43 -4.12 22851.5 238.67 26 -6.42 -3.69 -6.40 -3.90 22859.4 223.76 27 -5.56 -3.56 -6.19 -3.66 22864.1 234.04 28 -6.11 -3.75 -5.93 -3.57 22873.5 230.60 30 -6.09 -3.44 -6.14 -3.55 2287.78 229.01 31 -5.9 -3.44 -6.14 -3.51 22886.4 225.84 33 -6.73 -3.67 -6.50 -3.48 2289.7 224.65 34 -6.89 -3.66 -6.76 -3.59 2289.5 222.13 36 -7.2 -3.95 -6.49 -3.49 22900.6 220.63 37 -6.37 -3.44 -6.31 -3.46 $2290.4.7$ 219.13 36	17	-6.03	-3.84	-6.34	-3.88	22814.0	264.64
19 -6.43 -3.97 -6.23 -3.89 22820.8 259.40 20 -6.29 -3.68 -6.45 -3.94 22824.7 2263.5 21 -5.92 -4.07 -6.41 -4.11 22828.7 2253.27 22 -7.13 -4.09 -6.53 -4.30 22833.6 249.47 23 -6.29 -4.76 -6.65 -4.30 22836.2 247.44 24 -7.03 -4.91 -6.75 -4.22 22842.1 242.90 25 -6.87 -3.67 -6.43 -4.12 22851.5 238.67 26 -6.42 -3.69 -6.40 -3.90 22859.4 235.76 27 -5.56 -3.56 -6.19 -3.66 22864.1 234.04 28 -6.11 -3.65 -6.04 -3.62 22868.6 232.36 29 -6.01 -3.75 -5.93 -3.57 22877.8 229.01 31 -5.9 -3.44 -6.26 -3.53 22887.5 223.06 32 -6.57 -3.45 -6.44 -3.51 22886.4 225.84 33 -6.73 -3.67 -3.48 2289.7 224.65 34 -6.89 -3.66 -3.78 2290.6 222.57 35 -6.4 -3.3 -6.72 -3.58 2294.7 219.13 36 -7.2 -3.56 -3.34 2290.6 222.63 37 -6.56 -3.13 -6.31 $-$	18	-6.47	-3.91	-6.30	-3.82	22817.7	261.73
20 -6.29 -3.68 -6.45 -3.94 22824.7 256.35 21 -5.92 -4.07 -6.41 -4.11 22283.6 249.47 22 -7.13 -4.09 -6.53 4.30 22836.2 247.44 23 -6.29 -4.76 -6.65 -4.30 22836.2 247.44 24 -7.03 -4.91 -6.75 -4.22 22842.1 242.90 25 -6.87 -3.67 -6.43 -4.12 22859.4 235.76 26 -6.42 -3.69 -6.40 -3.90 22859.4 235.76 27 -5.56 -3.56 -6.19 -3.66 22864.1 234.04 28 -6.11 -3.65 -6.04 -3.62 22868.6 232.36 29 -6.01 -3.75 -5.93 -3.57 22877.8 229.01 31 -5.9 -3.44 -6.26 -3.53 22882.6 227.25 32 -6.57 -3.45 -6.44 -3.51 22886.4 225.84 33 -6.73 -3.57 -6.50 -3.48 22895.3 222.57 35 -6.4 -3.3 -6.72 -3.58 22896.5 222.13 36 -7.2 -3.95 -6.49 -3.49 2290.6 220.63 37 -6.37 -3.46 -3.33 2291.7 219.13 38 -5.6 -3.15 -6.86 -3.33 2291.57 211.42 44 -7.11 -3	19	-6.43	-3.97	-6.23	-3.89	22820.8	259.40
21 -5.92 -4.07 -6.41 -4.11 22828.7 253.27 22 -7.13 -4.09 -6.53 -4.30 22836.2 247.44 23 -6.29 -4.76 -6.65 -4.30 22836.2 247.44 24 -7.03 -4.91 -6.75 -4.22 22842.1 242.90 25 -6.87 -3.67 -6.43 -4.12 22851.5 238.67 26 -6.42 -3.69 -6.40 -3.90 22859.4 235.76 27 -5.56 -3.56 -6.19 -3.66 22864.1 234.04 28 -6.11 -3.75 -5.93 -3.57 2287.5 230.60 30 -6.09 -3.44 -6.14 -3.55 $2287.7.8$ 229.01 31 -5.9 -3.44 -6.14 -3.55 $2288.6.6$ 227.25 32 -6.57 -3.45 -6.44 -3.51 22886.4 225.84 33 -6.73 -3.57 -6.50 -3.48 22880.7 224.65 34 -6.89 -3.66 -6.76 -3.59 22895.3 222.57 35 -6.4 -3.3 -6.72 -3.58 22890.7 224.65 34 -6.89 -3.66 -3.63 2290.7 219.13 36 -7.2 -3.95 -6.43 -3.44 22890.7 220.63 37 -6.37 -3.46 -3.33 2290.7 219.13 38 -5.6 -3.13	20	-6.29	-3.68	-6.45	-3.94	22824.7	256.35
22-7.13-4.09-6.53-4.302283.6249.4723-6.29-4.76-6.65-4.302283.6247.4424-7.03-4.91-6.75-4.2222842.1242.9025-6.87-3.67-6.43-4.1222851.5238.6726-6.42-3.69-6.40-3.9022859.4235.7627-5.56-3.56-6.19-3.6622861.1234.0428-6.11-3.65-6.04-3.6222863.6232.3629-6.01-3.75-5.93-3.572287.3230.6030-6.09-3.44-6.14-3.552287.3229.0131-5.9-3.44-6.26-3.5322882.6227.2532-6.57-3.45-6.44-3.5122869.7224.6534-6.89-3.66-6.76-3.592289.3222.5735-6.4-3.3-6.72-3.582289.5222.1336-7.2-3.95-6.49-3.492290.620.6337-6.37-3.4-6.43-3.442290.7219.1338-5.6-3.13-6.31-3.472209.3217.4139-6.56-3.55-6.08-3.332291.5215.8740-5.82-3.38-6.14-3.392292.7211.4241-6.04-3.22-6.36-3.382291.8212.8342-6	21	-5.92	-4.07	-6.41	-4.11	22828.7	253.27
23 -6.29 -4.76 -6.65 -4.30 22836.2 247.44 24 -7.03 -4.91 -6.75 -4.22 22842.1 242.90 25 -6.87 -3.67 -6.43 -4.12 22851.4 238.67 26 -6.42 -3.69 -6.40 -3.90 22859.4 235.76 27 -5.56 -3.56 -6.19 -3.66 22864.1 234.04 28 -6.11 -3.65 -6.04 -3.62 22868.6 232.36 29 -6.01 -3.75 -5.93 -3.57 22873.5 230.60 30 -6.09 -3.44 -6.26 -3.53 22882.6 227.25 32 -6.57 -3.45 -6.44 -3.51 22886.4 225.84 33 -6.73 -3.57 -6.50 -3.48 2289.7 224.65 34 -6.89 -3.66 -6.76 -3.59 22895.3 222.57 35 -6.4 -3.3 -6.72 -3.58 22896.5 222.13 36 -7.2 -3.95 -6.49 -3.49 2290.6 220.63 37 -6.37 -3.44 -6.43 -3.46 2290.47 219.13 38 -5.6 -3.13 -6.15 -3.34 2290.3 217.41 39 -6.56 -3.56 -3.38 2291.8 214.02 41 -6.04 -3.22 -6.36 -3.38 2291.57 211.42 43 -6.61 -3	22	-7.13	-4.09	-6.53	-4.30	22833.6	249.47
24 -7.03 -4.91 -6.75 -4.22 22842.1 242.90 25 -6.87 -3.67 -6.43 -4.12 22851.5 238.67 26 -6.42 -3.69 -6.40 -3.90 22859.4 235.76 27 -5.56 -3.56 -6.19 -3.66 22864.1 234.04 28 -6.11 -3.65 -6.04 -3.62 22873.5 230.60 30 -6.09 -3.44 -6.14 -3.55 22877.8 229.01 31 -5.9 -3.44 -6.26 -3.53 22886.4 225.84 32 -6.57 -3.45 -6.44 -3.51 22886.4 225.84 33 -6.73 -3.57 -6.50 -3.48 2289.7 224.65 34 -6.89 -3.66 -6.76 -3.59 22895.3 222.57 35 -6.4 -3.3 -6.72 -3.58 22896.5 222.13 36 -7.2 -3.95 -6.49 -3.49 22900.6 220.63 37 -6.37 -3.4 -6.43 -3.46 2290.7 211.41 39 -6.56 -3.55 -6.49 -3.33 2291.5 215.87 40 -5.82 -3.38 -6.15 -3.34 2290.6 214.02 41 -6.04 -3.22 -6.36 -3.38 2291.8 214.02 41 -6.04 -3.22 -6.36 -3.38 22921.8 214.02	23	-6.29	-4.76	-6.65	-4.30	22836.2	247.44
25 -6.87 -3.67 -6.43 -4.12 22851.5 238.67 26 -6.42 -3.69 -6.40 -3.90 22859.4 235.76 27 -5.56 -3.56 -6.19 -3.66 22864.1 234.04 28 -6.11 -3.65 -6.04 -3.62 22868.6 232.36 29 -6.01 -3.75 -5.93 -3.57 22873.5 230.60 30 -6.09 -3.44 -6.14 -3.55 2287.8 229.01 31 -5.9 -3.44 -6.26 -3.53 22882.6 227.25 32 -6.57 -3.45 -6.44 -3.51 2288.7 224.65 34 -6.89 -3.66 -6.76 -3.59 2290.5 222.57 35 -6.4 -3.3 -6.72 -3.58 22896.5 222.13 36 -7.2 -3.95 -6.49 -3.49 22900.6 220.63 37 -6.36 -3.33 </td <td>24</td> <td>-7.03</td> <td>-4.91</td> <td>-6.75</td> <td>-4.22</td> <td>22842.1</td> <td>242.90</td>	24	-7.03	-4.91	-6.75	-4.22	22842.1	242.90
26 -6.42 -3.69 -6.40 -3.90 22859.4 235.76 27 -5.56 -3.56 -6.19 -3.66 22864.1 234.04 28 -6.11 -3.65 -6.04 -3.62 22873.5 230.60 30 -6.09 -3.44 -6.14 -3.55 22877.8 229.01 31 -5.9 -3.44 -6.26 -3.53 22886.4 225.84 33 -6.73 -3.57 -6.50 -3.48 2289.7 224.65 34 -6.89 -3.66 -6.76 -3.59 22895.3 222.57 35 -6.4 -3.3 -6.72 -3.58 22890.6 220.63 37 -6.37 -3.4 -6.49 -3.49 2290.6 220.63 38 -5.6 -3.13 -6.31 -3.47 2290.3 217.41 39 -6.56 -3.5 -6.08 -3.33 2291.8 214.02 41 -6.04 -3.22	25	-6.87	-3.67	-6.43	-4.12	22851.5	238.67
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	26	-6.42	-3.69	-6.40	-3.90	22859.4	235.76
28 -6.11 -3.65 -6.04 -3.62 22868.6 232.36 29 -6.01 -3.75 -5.93 -3.57 22873.5 230.60 30 -6.09 -3.44 -6.14 -3.55 22877.8 229.11 31 -5.9 -3.44 -6.26 -3.53 22882.6 227.25 32 -6.57 -3.45 -6.44 -3.51 22886.4 225.84 33 -6.73 -3.57 -6.60 -3.59 22895.3 222.57 35 -6.4 -3.3 -6.72 -3.58 22896.5 222.13 36 -7.2 -3.95 -6.49 -3.49 22900.6 220.63 37 -6.37 -3.4 -6.43 -3.46 2294.7 219.13 38 -5.6 -3.13 -6.61 -3.33 2217.41 239.6 214.02 41 -6.04 -3.22 -6.36 -3.38 2291.8 212.83 42 -6.75 <td>27</td> <td>-5.56</td> <td>-3.56</td> <td>-6.19</td> <td>-3.66</td> <td>22864.1</td> <td>234.04</td>	27	-5.56	-3.56	-6.19	-3.66	22864.1	234.04
29 -6.01 -3.75 -5.93 -3.57 22873.5 230.60 30 -6.09 -3.44 -6.14 -3.55 22877.8 229.01 31 -5.9 -3.44 -6.26 -3.53 22882.6 227.25 32 -6.57 -3.45 -6.44 -3.51 22886.4 225.84 33 -6.73 -3.57 -6.50 -3.48 2289.7 224.65 34 -6.89 -3.66 -6.76 -3.59 22895.3 222.57 35 -6.4 -3.3 -6.72 -3.58 22896.5 222.13 36 -7.2 -3.95 -6.49 -3.49 2200.6 220.63 37 -6.37 -3.4 -6.43 -3.46 2294.7 219.13 38 -5.6 -3.13 -6.31 -3.47 22909.3 217.41 39 -6.56 -3.5 -6.08 -3.33 22913.5 215.87 40 -5.82 -3.38	28	-6.11	-3.65	-6.04	-3.62	22868.6	232.36
30 -6.09 -3.44 -6.14 -3.55 22877.8 229.01 31 -5.9 -3.44 -6.26 -3.53 22882.6 227.25 32 -6.57 -3.45 -6.44 -3.51 22886.4 225.84 33 -6.73 -3.57 -6.50 -3.48 2289.7 224.65 34 -6.89 -3.66 -6.76 -3.59 22895.3 222.57 35 -6.4 -3.3 -6.72 -3.58 22890.6 222.63 36 -7.2 -3.95 -6.49 -3.49 22900.6 220.63 37 -6.37 -3.4 -6.43 -3.46 22904.7 219.13 38 -5.6 -3.13 -6.31 -3.47 2290.3 217.41 39 -6.56 -3.5 -6.08 -3.33 2291.5 215.87 40 -5.82 -3.38 -6.15 -3.34 2291.8 214.02 41 -6.04 -3.22 -6.36 -3.38 22925.7 211.42 41 -6.04 -3.22 -6.36 -3.38 22925.7 211.42 44 -7.11 -3.58 -6.92 -3.51 2293.15 207.05 44 -7.11 -3.59 -7.07 -3.59 2294.2 205.33 47 -7.08 -3.53 -7.08 -3.60 22947.5 203.39 48 -7.02 -3.64 -6.96 -3.58 2297.4 193.60 <td>29</td> <td>-6.01</td> <td>-3.75</td> <td>-5.93</td> <td>-3.57</td> <td>22873.5</td> <td>230.60</td>	29	-6.01	-3.75	-5.93	-3.57	22873.5	230.60
31 -5.9 -3.44 -6.26 -3.53 22882.6 227.25 32 -6.57 -3.45 -6.44 -3.51 22886.4 225.84 33 -6.73 -3.57 -6.50 -3.48 22897.7 224.65 34 -6.89 -3.66 -6.76 -3.59 22895.3 222.57 35 -6.4 -3.3 -6.72 -3.58 22896.5 222.13 36 -7.2 -3.95 -6.49 -3.49 2290.6 220.63 37 -6.37 -3.4 -6.43 -3.46 2290.7 219.13 38 -5.6 -3.13 -6.13 -3.47 2290.6 221.63 39 -6.56 -3.5 -6.08 -3.33 2291.5 215.87 40 -5.82 -3.38 -6.15 -3.34 22918.6 214.02 41 -6.04 -3.22 -6.36 -3.38 22921.8 212.83 42 -6.75 -3.46 -6.47 -3.39 22925.7 211.42 43 -6.61 -3.33 -6.71 -3.44 2293.1 209.79 44 -7.11 -3.58 -6.92 -3.51 22934.9 208.02 45 -7.03 -3.6 -6.99 -3.53 22942.2 205.33 47 -7.08 -3.53 -7.07 -3.59 22942.2 205.33 47 -7.08 -3.53 -7.08 -3.64 2297.7 201.95 <td>30</td> <td>-6.09</td> <td>-3.44</td> <td>-6.14</td> <td>-3.55</td> <td>22877.8</td> <td>229.01</td>	30	-6.09	-3.44	-6.14	-3.55	22877.8	229.01
32 -6.57 -3.45 -6.44 -3.51 22886.4 225.84 33 -6.73 -3.57 -6.50 -3.48 22889.7 224.65 34 -6.89 -3.66 -6.76 -3.59 22895.3 222.57 35 -6.4 -3.3 -6.72 -3.58 22896.5 222.13 36 -7.2 -3.95 -6.49 -3.49 2290.6 220.63 37 -6.37 -3.4 -6.43 -3.46 2290.7 219.13 38 -5.6 -3.13 -6.31 -3.47 2290.6 221.63 39 -6.56 -3.5 -6.08 -3.33 2291.5 215.87 40 -5.82 -3.38 -6.15 -3.34 22918.6 214.02 41 -6.04 -3.22 -6.36 -3.38 22921.8 212.83 42 -6.75 -3.46 -6.47 -3.39 22925.7 211.42 43 -6.61 -3.33 -6.71 -3.44 2293.01 209.79 44 -7.11 -3.58 -6.92 -3.51 $2293.4.9$ 208.02 45 -7.03 -3.6 -6.99 -3.53 $2293.7.5$ 207.05 46 -7.1 -3.59 -7.07 -3.59 22942.2 205.33 47 -7.08 -3.53 -7.08 -3.61 2297.7 202.20 49 -7.15 -3.65 -6.93 -3.61 2297.7 202.20 </td <td>31</td> <td>-5.9</td> <td>-3.44</td> <td>-6.26</td> <td>-3.53</td> <td>22882.6</td> <td>227.25</td>	31	-5.9	-3.44	-6.26	-3.53	22882.6	227.25
33-6.73-3.57-6.50-3.4822889.7224.6534-6.89-3.66-6.76-3.5922895.3222.5735-6.4-3.3-6.72-3.5822896.5222.1336-7.2-3.95-6.49-3.4922900.6220.6337-6.37-3.4-6.43-3.4622904.7219.1338-5.6-3.13-6.31-3.4722909.3217.4139-6.56-3.5-6.08-3.3322913.5215.8740-5.82-3.38-6.15-3.3422918.6214.0241-6.04-3.22-6.36-3.3822921.8212.8342-6.75-3.46-6.47-3.3922925.7211.4243-6.61-3.33-6.71-3.4422930.1209.7944-7.11-3.58-6.92-3.5122937.5207.0546-7.1-3.59-7.07-3.5922942.2205.3347-7.08-3.53-7.08-3.6022947.5203.3948-7.02-3.64-6.96-3.582295.7202.2049-7.15-3.65-6.93-3.6122942.2205.3347-7.08-3.53-7.07-3.5922942.2205.3347-7.08-3.51-7.01-3.6422974.1193.6051-6.95-3.7-6.94-3.6122975.4200.4850 <td>32</td> <td>-6.57</td> <td>-3.45</td> <td>-6.44</td> <td>-3.51</td> <td>22886.4</td> <td>225.84</td>	32	-6.57	-3.45	-6.44	-3.51	22886.4	225.84
34 -6.89 -3.66 -6.76 -3.59 22895.3 222.57 35 -6.4 -3.3 -6.72 -3.58 22896.5 222.13 36 -7.2 -3.95 -6.49 -3.49 22900.6 220.63 37 -6.37 -3.4 -6.43 -3.46 22904.7 219.13 38 -5.6 -3.13 -6.31 -3.47 22909.3 217.41 39 -6.56 -3.5 -6.08 -3.33 22913.5 215.87 40 -5.82 -3.38 -6.15 -3.34 22918.6 214.02 41 -6.04 -3.22 -6.36 -3.38 22921.8 212.83 42 -6.75 -3.46 -6.47 -3.39 22925.7 211.42 43 -6.61 -3.33 -6.71 -3.44 22930.1 209.79 44 -7.11 -3.58 -6.92 -3.51 2293.1 208.02 45 -7.03 -3.6 -6.99 -3.53 2293.75 207.05 46 -7.1 -3.59 -7.07 -3.59 22942.2 205.33 47 -7.08 -3.65 -6.93 -3.61 2295.7 202.20 49 -7.15 -3.65 -6.93 -3.61 2294.2 205.33 47 -7.08 -3.53 -7.08 -3.60 2294.7 200.48 50 -6.47 -3.51 -7.04 -3.66 2296.7 202.20 <td>33</td> <td>-6.73</td> <td>-3.57</td> <td>-6.50</td> <td>-3.48</td> <td>22889.7</td> <td>224.65</td>	33	-6.73	-3.57	-6.50	-3.48	22889.7	224.65
35 -6.4 -3.3 -6.72 -3.58 22896.5 222.13 36 -7.2 -3.95 -6.49 -3.49 22900.6 220.63 37 -6.37 -3.4 -6.43 -3.46 22904.7 219.13 38 -5.6 -3.13 -6.31 -3.47 22909.3 217.41 39 -6.56 -3.5 -6.08 -3.33 22913.5 215.87 40 -5.82 -3.38 -6.15 -3.34 22918.6 214.02 41 -6.04 -3.22 -6.36 -3.38 22921.8 212.83 42 -6.75 -3.46 -6.47 -3.39 22925.7 211.42 43 -6.61 -3.33 -6.71 -3.44 22930.1 209.79 44 -7.11 -3.58 -6.92 -3.51 22934.9 208.02 45 -7.03 -3.6 -6.99 -3.53 22937.5 207.05 46 -7.1 -3.59 -7.07 -3.59 22942.2 205.33 47 -7.08 -3.53 -7.08 -3.60 2295.7 202.20 49 -7.15 -3.65 -6.93 -3.61 2297.5 203.39 48 -7.02 -3.64 -6.96 -3.58 22950.7 202.20 49 -7.15 -3.65 -6.93 -3.61 $2297.4.1$ 193.60 51 -6.95 -3.7 -6.94 -3.61 2297.7 191.93 <	34	-6.89	-3.66	-6.76	-3.59	22895.3	222.57
36 -7.2 -3.95 -6.49 -3.49 2290.6 220.63 37 -6.37 -3.4 -6.43 -3.46 22904.7 219.13 38 -5.6 -3.13 -6.31 -3.47 2290.3 217.41 39 -6.56 -3.5 -6.08 -3.33 2291.5 215.87 40 -5.82 -3.38 -6.15 -3.34 2291.6 214.02 41 -6.04 -3.22 -6.36 -3.38 22921.8 212.83 42 -6.75 -3.46 -6.47 -3.39 22925.7 211.42 43 -6.61 -3.33 -6.71 -3.44 22930.1 209.79 44 -7.11 -3.58 -6.92 -3.51 22934.9 208.02 45 -7.03 -3.6 -6.99 -3.53 2294.2 205.33 46 -7.1 -3.59 -7.07 -3.59 2294.2 205.33 47 -7.08 -3.53 -7.08 -3.60 22947.5 203.39 48 -7.02 -3.64 -6.96 -3.58 2295.7 202.20 49 -7.15 -3.65 -6.93 -3.61 2294.2 205.33 50 -6.47 -3.51 -7.01 -3.64 2294.1 193.60 51 -6.95 -3.7 -6.94 -3.61 2297.7 191.93 52 -7.44 -3.69 -6.84 -3.54 2298.7 188.27 <td>35</td> <td>-6.4</td> <td>-3.3</td> <td>-6.72</td> <td>-3.58</td> <td>22896.5</td> <td>222.13</td>	35	-6.4	-3.3	-6.72	-3.58	22896.5	222.13
37 -6.37 -3.4 -6.43 -3.46 22904.7 219.13 38 -5.6 -3.13 -6.31 -3.47 22909.3 217.41 39 -6.56 -3.5 -6.08 -3.33 22913.5 215.87 40 -5.82 -3.38 -6.15 -3.34 22918.6 214.02 41 -6.04 -3.22 -6.36 -3.38 22921.8 212.83 42 -6.75 -3.46 -6.47 -3.39 22925.7 211.42 43 -6.61 -3.33 -6.71 -3.44 22930.1 209.79 44 -7.11 -3.58 -6.92 -3.51 22934.9 208.02 45 -7.03 -3.6 -6.99 -3.53 22937.5 207.05 46 -7.1 -3.59 -7.07 -3.59 22942.2 205.33 47 -7.08 -3.53 -7.08 -3.60 22947.5 203.39 48 -7.02 -3.64 -6.96 -3.58 22950.7 202.20 49 -7.15 -3.65 -6.93 -3.61 22974.1 193.60 51 -6.95 -3.7 -6.94 -3.61 22978.7 191.93 52 -7.44 -3.69 -6.84 -3.54 22984.2 189.90 53 -6.69 -3.33 -6.70 -3.53 2294.1 198.27 54 -6.65 -3.33 -6.70 -3.53 22994.1 $186.$	36	-7.2	-3.95	-6.49	-3.49	22900.6	220.63
38-5.6-3.13-6.31-3.4722909.3217.4139-6.56-3.5-6.08-3.3322913.5215.8740-5.82-3.38-6.15-3.3422918.6214.0241-6.04-3.22-6.36-3.3822921.8212.8342-6.75-3.46-6.47-3.3922925.7211.4243-6.61-3.33-6.71-3.4422930.1209.7944-7.11-3.58-6.92-3.5122934.9208.0245-7.03-3.6-6.99-3.5322937.5207.0546-7.1-3.59-7.07-3.5922942.2205.3347-7.08-3.53-7.08-3.6022947.5203.9948-7.02-3.64-6.96-3.5822950.7202.2049-7.15-3.65-6.93-3.6122954.4200.4850-6.47-3.51-7.01-3.6422974.1193.6051-6.95-3.7-6.94-3.6122978.7191.9352-7.44-3.69-6.84-3.5422984.2189.9053-6.69-3.33-6.70-3.532294.1186.2855-6.29-3.49-6.85-3.512298.5184.65	37	-6.37	-3.4	-6.43	-3.46	22904.7	219.13
39-6.56-3.5-6.08-3.3322913.5215.8740-5.82-3.38-6.15-3.3422918.6214.0241-6.04-3.22-6.36-3.3822921.8212.8342-6.75-3.46-6.47-3.3922925.7211.4243-6.61-3.33-6.71-3.4422930.1209.7944-7.11-3.58-6.92-3.5122934.9208.0245-7.03-3.6-6.99-3.5322937.5207.0546-7.1-3.59-7.07-3.5922942.2205.3347-7.08-3.53-7.08-3.6022947.5203.3948-7.02-3.64-6.96-3.5822950.7202.2049-7.15-3.65-6.93-3.6122974.1193.6050-6.47-3.51-7.01-3.6422974.1193.6051-6.95-3.7-6.94-3.6122978.7191.9352-7.44-3.69-6.84-3.5422984.2189.9053-6.69-3.33-6.70-3.5322984.1186.2855-6.29-3.49-6.55-3.512298.5184.65	38	-5.6	-3.13	-6.31	-3.47	22909.3	217.41
40-5.82-3.38-6.15-3.3422918.6214.0241-6.04-3.22-6.36-3.3822921.8212.8342-6.75-3.46-6.47-3.3922925.7211.4243-6.61-3.33-6.71-3.4422930.1209.7944-7.11-3.58-6.92-3.5122934.9208.0245-7.03-3.6-6.99-3.5322937.5207.0546-7.1-3.59-7.07-3.5922942.2205.3347-7.08-3.53-7.08-3.6022947.5203.3948-7.02-3.64-6.96-3.5822950.7202.2049-7.15-3.65-6.93-3.6122974.1193.6050-6.47-3.51-7.01-3.6422974.1193.6051-6.95-3.7-6.94-3.6122978.7191.9352-7.44-3.69-6.84-3.5422984.2189.9053-6.69-3.33-6.70-3.5322994.1186.2855-6.29-3.49-6.55-3.5122998.5184.65	39	-6.56	-3.5	-6.08	-3.33	22913.5	215.87
41-6.04-3.22-6.36-3.3822921.8212.8342-6.75-3.46-6.47-3.3922925.7211.4243-6.61-3.33-6.71-3.4422930.1209.7944-7.11-3.58-6.92-3.5122934.9208.0245-7.03-3.6-6.99-3.5322937.5207.0546-7.1-3.59-7.07-3.5922942.2205.3347-7.08-3.53-7.08-3.6022947.5203.3948-7.02-3.64-6.96-3.5822950.7202.2049-7.15-3.65-6.93-3.6122955.4200.4850-6.47-3.51-7.01-3.6422974.1193.6051-6.95-3.7-6.94-3.6122978.7191.9352-7.44-3.69-6.84-3.5422984.2189.9053-6.69-3.33-6.70-3.5322941.1186.2855-6.29-3.49-6.55-3.512298.5184.65	40	-5.82	-3.38	-6.15	-3.34	22918.6	214.02
42-6.75-3.46-6.47-3.3922925.7211.4243-6.61-3.33-6.71-3.4422930.1209.7944-7.11-3.58-6.92-3.5122934.9208.0245-7.03-3.6-6.99-3.5322937.5207.0546-7.1-3.59-7.07-3.5922942.2205.3347-7.08-3.53-7.08-3.6022947.5203.3948-7.02-3.64-6.96-3.5822950.7202.2049-7.15-3.65-6.93-3.612295.4200.4850-6.47-3.51-7.01-3.6422974.1193.6051-6.95-3.7-6.94-3.6122978.7191.9352-7.44-3.69-6.84-3.5422984.2189.9053-6.69-3.33-6.70-3.5322994.1186.2855-6.29-3.49-6.55-3.512298.5184.65	41	-6.04	-3.22	-6.36	-3.38	22921.8	212.83
43-6.61-3.33-6.71-3.4422930.1209.7944-7.11-3.58-6.92-3.5122934.9208.0245-7.03-3.6-6.99-3.5322937.5207.0546-7.1-3.59-7.07-3.5922942.2205.3347-7.08-3.53-7.08-3.6022947.5203.3948-7.02-3.64-6.96-3.5822950.7202.2049-7.15-3.65-6.93-3.6122955.4200.4850-6.47-3.51-7.01-3.6422974.1193.6051-6.95-3.7-6.94-3.6122978.7191.9352-7.44-3.69-6.84-3.5422984.2189.9053-6.69-3.33-6.70-3.5322994.1186.2855-6.29-3.49-6.55-3.512298.5184.65	42	-6.75	-3.46	-6.47	-3.39	22925.7	211.42
44-7.11-3.58-6.92-3.5122934.9208.0245-7.03-3.6-6.99-3.5322937.5207.0546-7.1-3.59-7.07-3.5922942.2205.3347-7.08-3.53-7.08-3.6022947.5203.3948-7.02-3.64-6.96-3.5822950.7202.2049-7.15-3.65-6.93-3.6122955.4200.4850-6.47-3.51-7.01-3.6422974.1193.6051-6.95-3.7-6.94-3.6122978.7191.9352-7.44-3.69-6.84-3.5422984.2189.9053-6.69-3.33-6.70-3.5322994.1186.2854-6.65-3.33-6.70-3.512298.5184.65	43	-6.61	-3.33	-6.71	-3.44	22930.1	209.79
45-7.03-3.6-6.99-3.5322937.5207.0546-7.1-3.59-7.07-3.5922942.2205.3347-7.08-3.53-7.08-3.6022947.5203.3948-7.02-3.64-6.96-3.5822950.7202.2049-7.15-3.65-6.93-3.6122955.4200.4850-6.47-3.51-7.01-3.6422974.1193.6051-6.95-3.7-6.94-3.6122978.7191.9352-7.44-3.69-6.84-3.5422984.2189.9053-6.69-3.33-6.70-3.5322994.1186.2854-6.65-3.33-6.70-3.512298.5184.65	44	-7.11	-3.58	-6.92	-3.51	22934.9	208.02
46-7.1-3.59-7.07-3.5922942.2205.3347-7.08-3.53-7.08-3.6022947.5203.3948-7.02-3.64-6.96-3.5822950.7202.2049-7.15-3.65-6.93-3.6122955.4200.4850-6.47-3.51-7.01-3.6422974.1193.6051-6.95-3.7-6.94-3.6122978.7191.9352-7.44-3.69-6.84-3.5422984.2189.9053-6.69-3.33-6.70-3.5322994.1186.2854-6.65-3.33-6.70-3.512298.5184.65	45	-7.03	-3.6	-6.99	-3.53	22937.5	207.05
47-7.08-3.53-7.08-3.6022947.5203.3948-7.02-3.64-6.96-3.5822950.7202.2049-7.15-3.65-6.93-3.6122955.4200.4850-6.47-3.51-7.01-3.6422974.1193.6051-6.95-3.7-6.94-3.6122978.7191.9352-7.44-3.69-6.84-3.5422984.2189.9053-6.69-3.33-6.70-3.5322994.1186.2854-6.65-3.33-6.70-3.512298.5184.65	46	-7.1	-3.59	-7.07	-3.59	22942.2	205.33
48-7.02-3.64-6.96-3.5822950.7202.2049-7.15-3.65-6.93-3.6122955.4200.4850-6.47-3.51-7.01-3.6422974.1193.6051-6.95-3.7-6.94-3.6122978.7191.9352-7.44-3.69-6.84-3.5422984.2189.9053-6.69-3.49-6.80-3.5422988.7188.2754-6.65-3.33-6.70-3.5322994.1186.2855-6.29-3.49-6.55-3.512298.5184.65	47	-7.08	-3.53	-7.08	-3.60	22947.5	203.39
49-7.15-3.65-6.93-3.6122955.4200.4850-6.47-3.51-7.01-3.6422974.1193.6051-6.95-3.7-6.94-3.6122978.7191.9352-7.44-3.69-6.84-3.5422984.2189.9053-6.69-3.49-6.80-3.5422988.7188.2754-6.65-3.33-6.70-3.5322994.1186.2855-6.29-3.49-6.55-3.5122988.5184.65	48	-7.02	-3.64	-6.96	-3.58	22950.7	202.20
50-6.47-3.51-7.01-3.6422974.1193.6051-6.95-3.7-6.94-3.6122978.7191.9352-7.44-3.69-6.84-3.5422984.2189.9053-6.69-3.49-6.80-3.5422988.7188.2754-6.65-3.33-6.70-3.5322994.1186.2855-6.29-3.49-6.55-3.512298.5184.65	49	-7.15	-3.65	-6.93	-3.61	22955.4	200.48
51-6.95-3.7-6.94-3.6122978.7191.9352-7.44-3.69-6.84-3.5422984.2189.9053-6.69-3.49-6.80-3.5422988.7188.2754-6.65-3.33-6.70-3.5322994.1186.2855-6.29-3.49-6.55-3.5122988.5184.65	50	-6.47	-3.51	-7.01	-3.64	22974.1	193.60
52 -7.44 -3.69 -6.84 -3.54 22984.2 189.90 53 -6.69 -3.49 -6.80 -3.54 22988.7 188.27 54 -6.65 -3.33 -6.70 -3.53 22994.1 186.28 55 -6.29 -3.49 -6.55 -3.51 22988.5 184.65	51	-6.95	-3.7	-6.94	-3.61	22978.7	191.93
53 -6.69 -3.49 -6.80 -3.54 22988.7 188.27 54 -6.65 -3.33 -6.70 -3.53 22994.1 186.28 55 -6.29 -3.49 -6.55 -3.51 22998.5 184.65	52	-7.44	-3.69	-6.84	-3.54	22984.2	189.90
54 -6.65 -3.33 -6.70 -3.53 22994.1 186.28 55 -6.29 -3.49 -6.55 -3.51 22998.5 184.65	53	-6.69	-3.49	-6.80	-3.54	22988.7	188.27
55 -6.29 -3.49 -6.55 -3.51 22998.5 184.65	54	-6.65	-3.33	-6.70	-3.53	22994.1	186.28
	55	-6.29	-3.49	-6.55	-3.51	22998.5	184.65

56 -6.44 -3.65 -6.57 -3.54 23007.0 181.52 57 -6.7 -3.6 -6.63 -3.59 23011.9 179.71 58 -6.78 -3.62 -6.63 -3.62 23020.7 176.49 60 -7.03 -3.64 -6.85 -3.64 23025.9 174.60 61 -6.63 -3.64 -6.83 -3.64 23037.4 170.36 62 -6.61 -3.7 -6.78 -3.66 23037.4 170.36 63 -6.67 -3.63 -6.58 -3.67 23043.0 168.29 64 -6.67 -3.67 -6.58 -3.67 23072.9 157.31 67 -6.84 -3.68 -6.73 -3.70 23077.2 155.72 68 -7.01 -3.88 -6.96 -3.69 23080.0 154.71 69 -7.09 -3.56 -7.16 -3.73 23084.0 153.25 70 -7.17 -3							
57-6.7-3.6-6.63-3.5923011.9179.7158-6.78-3.62-3.61-6.87-3.6223020.7176.4960-7.03-3.64-6.85-3.6423025.9174.6061-6.93-3.64-6.85-3.6423025.9174.6061-6.93-3.64-6.85-3.642303.8172.7962-6.61-3.7-6.78-3.6623037.4170.3663-6.67-3.67-6.58-3.6723043.0168.2964-6.67-3.67-6.58-3.6723093.1158.7266-6.69-3.67-6.64-3.7223072.9157.3167-6.84-3.68-6.73-3.7023077.2155.7268-7.09-3.56-7.06-3.7323084.0153.2570-7.17-3.65-7.11-3.7423095.6148.9871-7.19-3.89-7.30-3.7723164.7145.6273-7.94-3.72-7.39-3.7723114.7145.6273-7.94-3.72-7.39-3.7723114.7143.6274-7.54-3.8-7.48-3.7723114.4138.9976-7.65-3.91-7.42-3.8323129.4138.6376-7.65-3.91-7.42-3.8323129.2136.6378-7.25-3.72-7.28-3.8523133.6133.00	56	-6.44	-3.65	-6.57	-3.54	23007.0	181.52
58 -6.78 -3.62 -23016.0 178.21 59 -6.92 -3.61 -6.87 -3.62 23020.7 176.49 60 -7.03 -3.64 -6.85 -3.64 23025.9 174.60 61 -6.93 -3.64 -6.83 -3.64 23030.8 172.79 62 -6.61 -3.7 -6.78 -3.66 23037.4 170.36 63 -6.67 -3.63 -6.58 -3.67 23043.0 168.29 64 -6.67 -3.67 -6.53 -3.68 23066.8 159.56 65 -6.01 -3.72 -6.58 -3.67 23080.0 154.71 68 -7.01 -3.88 -6.96 -3.69 23080.0 154.71 69 -7.09 -3.56 -7.06 -3.73 23084.0 153.25 70 -7.11 -3.7 -7.39 -3.75 23104.7 145.62 71 -7.19 -3.89 -7.30 -	57	-6.7	-3.6	-6.63	-3.59	23011.9	179.71
59-6.92-3.61-6.87-3.6223020.7176.4960-7.03-3.64-6.85-3.6423025.9174.6061-6.93-3.64-6.85-3.642303.8172.7962-6.61-3.7-6.78-3.6623037.4170.3663-6.67-3.63-6.53-3.6723043.0168.2964-6.67-3.67-6.53-3.682306.8159.5665-6.01-3.72-6.58-3.6723069.1158.7266-6.69-3.67-6.64-3.7223072.9155.7268-7.01-3.88-6.96-3.6923080.0154.7169-7.09-3.56-7.06-3.7323098.6148.9870-7.17-3.65-7.11-3.7423095.6148.9871-7.19-3.89-7.39-3.7523104.7145.6273-7.94-3.72-7.39-3.7723111.3143.2074-7.54-3.87-7.42-3.832312.0.4139.8576-7.65-3.91-7.42-3.832312.4138.5976-7.65-3.72-7.28-3.852313.6135.0079-7.09-3.87-7.13-3.802313.6135.0079-7.09-3.87-7.13-3.802314.6130.5980-6.91-3.72-7.28-3.852313.6135.0079<	58	-6.78	-3.62	-6.77	-3.62	23016.0	178.21
60-7.03-3.64-6.85-3.6423025.9174.6061-6.93-3.64-6.83-3.6423030.8172.7962-6.61-3.7-6.78-3.6623037.4170.3663-6.67-3.63-6.58-3.6723066.8159.5665-6.01-3.72-6.58-3.6723069.1158.7266-6.69-3.67-6.64-3.7223072.9157.3167-6.84-3.68-6.73-3.7023077.2155.7268-7.01-3.88-6.96-3.6923080.0153.2570-7.17-3.65-7.06-3.7323084.0153.2570-7.17-3.65-7.11-3.7423095.6148.9871-7.19-3.89-7.30-3.7023014.7145.6273-7.94-3.72-7.39-3.7723111.3143.2074-7.54-3.8-7.48-3.7723115.4141.7075-7.15-3.71-7.28-3.8523120.4138.3977-7.5-4-7.33-3.8523124.4138.3977-7.5-4-7.33-3.852313.6133.0380-6.91-3.75-7.06-3.7623141.3132.1781-6.9-3.68-7.04-3.7823145.6130.5982-7.13-3.86-7.04-3.772316.6128.7883	59	-6.92	-3.61	-6.87	-3.62	23020.7	176.49
61 -6.93 -3.64 -6.83 -3.64 23030.8 172.79 62 -6.61 -3.7 -6.78 -3.66 23037.4 170.36 63 -6.67 -3.63 -6.58 -3.67 23043.0 188.29 64 -6.67 -3.67 -6.53 -3.67 23069.1 158.72 66 -6.69 -3.72 -6.58 -3.67 23072.9 157.31 67 -6.84 -3.72 23072.9 157.31 67 -6.84 -3.68 -23080.0 154.71 69 -7.09 -3.56 -7.06 -3.73 23084.0 153.25 70 -7.17 -3.65 -7.10 -3.89 -7.30 -3.70 23098.8 147.79 72 -7.11 -3.7 -7.39 -3.77 23104.7 148.98 71 -7.19 -3.89 -7.30 -3.70 23098.8 147.79 72 -7.11 -3.7 -7.39 -3.77 23114.7 145.62 73 -7.54 -3.84 -3.77 23115.4 141.70 75 -7.15 -7.48 -3.77 23115.4 148.98 77 -7.55 -3.81 -7.48 -3.77 23115.4 138.39 77 -7.55 -3.72 -7.28 -3.85 23129.2 136.63 78 -7.25 -3.72 -7.28 -3.85 23133.6 135.00 79 -7.09 -3.87 </td <td>60</td> <td>-7.03</td> <td>-3.64</td> <td>-6.85</td> <td>-3.64</td> <td>23025.9</td> <td>174.60</td>	60	-7.03	-3.64	-6.85	-3.64	23025.9	174.60
62-6.61-3.7-6.78-3.6623037.4170.36 63 -6.67-3.63-6.58-3.6723043.0168.29 64 -6.67-3.67-6.53-3.6823066.8159.56 65 -6.01-3.72-6.58-3.6723067.2157.31 67 -6.84-3.68-6.64-3.7223077.2155.72 68 -7.01-3.88-6.96-3.6923080.0154.71 69 -7.09-3.56-7.06-3.7323084.0153.25 70 -7.17-3.65-7.11-3.7023098.8147.79 72 -7.11-3.7-7.39-3.7023098.8147.79 72 -7.11-3.7-7.39-3.7723114.3143.20 74 -7.54-3.8-7.48-3.7723114.4143.80 74 -7.54-3.81-7.48-3.7223.8323120.4139.85 76 -7.65-3.91-7.42-3.8323120.4139.85135.00 79 -7.09-3.87-7.13-3.802313.6135.00 79 -7.09-3.87-7.13-3.862314.3132.17 81 -6.9-3.68-7.04-3.782314.6133.23 80 -6.91-3.75-7.06-3.7623141.3132.17 81 -6.9-3.68-7.04-3.7823150.6128.78 83 -7.18-3.99-7.70<	61	-6.93	-3.64	-6.83	-3.64	23030.8	172.79
63 -6.67 -3.63 -6.58 -3.67 23043.0 168.29 64 -6.67 -3.67 -6.53 -3.68 23066.8 159.56 65 -6.01 -3.72 -6.58 -3.67 23069.1 158.72 66 -6.69 -3.67 -6.64 -3.72 23072.9 157.31 67 -6.84 -3.88 -6.73 -3.70 23084.0 153.25 70 -7.17 -3.65 -7.11 -3.74 23084.0 153.25 70 -7.17 -3.65 -7.11 -3.74 23095.6 148.98 71 -7.19 -3.89 -7.30 -3.77 23114.7 145.62 73 -7.54 -3.8 -7.48 -3.77 23115.4 141.70 75 -7.15 -3.73 -7.56 -3.83 23120.4 139.85 76 -7.65 -3.91 -7.42 -3.83 23120.4 138.39 77 -7.5 -4	62	-6.61	-3.7	-6.78	-3.66	23037.4	170.36
64 -6.67 -3.67 -6.53 -3.68 23066.8 159.56 65 -6.01 -3.72 -6.58 -3.67 23069.1 158.72 66 -6.69 -3.67 -6.64 -3.72 23077.2 157.31 67 -6.84 -3.68 -6.73 -3.70 23077.2 155.72 68 -7.01 -3.88 -6.96 -3.69 23080.0 153.25 70 -7.17 -3.56 -7.06 -3.73 23084.0 153.25 70 -7.17 -3.65 -7.11 -3.74 23095.6 148.98 71 -7.19 -3.89 -7.30 -3.70 23098.8 147.79 72 -7.11 -3.72 -7.39 -3.77 23115.4 143.20 74 -7.54 -3.8 -7.48 -3.77 23115.4 141.70 75 -7.15 -3.73 -7.56 -3.83 23120.4 139.85 76 -7.65 -3.91 -7.42 -3.85 2313.6 135.00 79 -7.09 -3.87 -7.13 -3.85 2313.6 135.00 79 -7.09 -3.87 -7.16 -3.76 23141.3 132.17 81 -6.91 -3.75 -7.06 -3.76 23145.6 130.59 82 -7.13 -3.8 -7.08 -3.77 23156.6 128.78 83 -7.18 -3.99 -7.16 -3.76 23169.2 1	63	-6.67	-3.63	-6.58	-3.67	23043.0	168.29
65 -6.01 -3.72 -6.58 -3.67 23069.1 158.72 66 -6.69 -3.67 -6.64 -3.72 23072.9 157.31 67 -6.84 -3.68 -6.73 -3.70 23072.2 155.72 68 -7.01 -3.88 -6.96 -3.69 23080.0 154.71 69 -7.09 -3.56 -7.06 -3.73 23094.0 153.25 70 -7.17 -3.65 -7.11 -3.74 23095.6 148.98 71 -7.19 -3.89 -7.30 -3.70 23098.8 147.79 72 -7.11 -3.7 -7.39 -3.75 23104.7 145.62 73 -7.94 -3.72 -7.39 -3.77 23115.4 141.70 75 -7.15 -3.87 -7.39 -3.77 23115.4 141.70 75 -7.15 -3.73 -7.66 -3.83 23120.4 139.85 76 -7.65 -3.91 -7.42 -3.83 23124.4 138.39 77 -7.5 -4 -7.33 -3.85 23138.4 133.23 80 -6.91 -3.75 -7.06 -3.76 23141.3 132.17 81 -6.9 -3.68 -7.04 -3.78 23141.3 132.17 81 -6.9 -3.68 -7.04 -3.76 23141.3 132.17 81 -6.9 -3.68 -7.04 -3.76 23141.3 132.1	64	-6.67	-3.67	-6.53	-3.68	23066.8	159.56
66 -6.69 -3.67 -6.64 -3.72 23072.9 157.31 67 -6.84 -3.68 -6.73 -3.70 23077.2 155.72 68 -7.01 -3.88 -6.66 -3.69 23080.0 154.71 69 -7.09 -3.56 -7.06 -3.73 23084.0 153.25 70 -7.17 -3.65 -7.11 -3.74 23095.6 148.98 71 -7.19 -3.89 -7.30 -3.70 23098.8 147.79 72 -7.11 -3.7 -7.39 -3.77 23104.7 145.62 73 -7.94 -3.72 -7.39 -3.77 23111.3 143.200 74 -7.54 -3.8 -7.48 -3.77 23115.4 141.70 75 -7.15 -3.73 -7.56 -3.83 23120.4 139.85 76 -7.65 -3.91 -7.42 -3.83 23124.4 138.39 77 -7.5 -4 -7.33 -3.85 2313.6 135.00 79 -7.09 -3.87 -7.13 -3.80 23138.4 133.23 80 -6.91 -3.75 -7.06 -3.76 23141.3 132.17 81 -6.9 -3.68 -7.04 -3.78 23145.6 130.59 82 -7.13 -3.85 -7.22 -3.86 23160.3 125.21 83 -7.18 -3.79 -7.15 -3.79 23155.2 $127.$	65	-6.01	-3.72	-6.58	-3.67	23069.1	158.72
67 -6.84 -3.68 -6.73 -3.70 23077.2 155.72 68 -7.01 -3.88 -6.96 -3.69 23080.0 154.71 69 -7.09 -3.56 -7.06 -3.73 23084.0 153.25 70 -7.17 -3.65 -7.11 -3.74 23095.6 148.98 71 -7.19 -3.89 -7.30 -3.70 23095.6 148.98 71 -7.19 -3.89 -7.30 -3.77 23104.7 145.62 73 -7.94 -3.72 -7.39 -3.77 23115.4 141.70 75 -7.15 -3.73 -7.56 -3.83 23120.4 139.85 76 -7.65 -3.91 -7.42 -3.83 23124.4 138.39 77 -7.5 -4 -7.33 -3.85 23129.2 136.63 78 -7.25 -3.72 -7.28 -3.85 2313.6 135.00 79 -7.09 -3.87 -7.13 -3.80 23138.4 133.23 80 -6.91 -3.75 -7.06 -3.76 23141.3 132.17 81 -6.9 -3.68 -7.04 -3.78 23145.6 130.59 82 -7.13 -3.87 -7.39 23150.6 128.78 83 -7.18 -3.79 -7.15 -3.79 23160.6 128.78 84 -7.3 -3.85 -7.24 -3.84 23160.3 125.21 <tr< td=""><td>66</td><td>-6.69</td><td>-3.67</td><td>-6.64</td><td>-3.72</td><td>23072.9</td><td>157.31</td></tr<>	66	-6.69	-3.67	-6.64	-3.72	23072.9	157.31
68 -7.01 -3.88 -6.96 -3.69 23080.0 154.71 69 -7.09 -3.56 -7.06 -3.73 23084.0 153.25 70 -7.17 -3.65 -7.11 -3.74 23095.6 148.98 711 -7.19 -3.89 -7.30 -3.70 23098.8 147.79 72 -7.11 -3.7 -7.39 -3.75 23104.7 145.62 73 -7.94 -3.72 -7.39 -3.77 23111.3 143.20 74 -7.54 -3.8 -7.48 -3.77 23115.4 141.70 75 -7.15 -3.73 -7.66 -3.83 23120.4 138.89 76 -7.65 -3.91 -7.42 -3.83 23124.4 138.39 77 -7.5 -4 -7.33 -3.85 23132.6 135.00 78 -7.25 -3.72 -7.28 -3.85 23133.6 135.00 79 -7.09 -3.87 -7.13 -3.80 23138.4 133.23 80 -6.91 -3.75 -7.06 -3.76 23141.3 132.17 81 -6.9 -3.68 -7.04 -3.78 23145.6 130.59 82 -7.13 -3.86 -7.04 -3.78 23145.6 130.59 84 -7.3 -3.85 -7.22 -3.86 23160.3 125.21 83 -7.18 -7.24 -3.84 -7.39 23164.6 $123.$	67	-6.84	-3.68	-6.73	-3.70	23077.2	155.72
69-7.09-3.56-7.06-3.7323084.0153.2570-7.17-3.65-7.11-3.7423095.6148.9871-7.19-3.89-7.30-3.7023098.8147.7972-7.11-3.72-7.39-3.7523104.7145.6273-7.94-3.72-7.39-3.7723111.3143.2074-7.54-3.8-7.48-3.7723115.4141.7075-7.15-3.73-7.56-3.8323120.4139.8576-7.65-3.91-7.42-3.8323124.4138.3977-7.5-4-7.33-3.8523132.6135.0079-7.09-3.87-7.13-3.8023138.4133.2380-6.91-3.75-7.06-3.7623141.3132.1781-6.9-3.68-7.04-3.7823145.6130.5982-7.13-3.85-7.22-3.8623160.3125.2184-7.3-3.85-7.22-3.8623160.3125.2185-7.24-3.84-7.34-3.9223164.6123.6286-7.27-4.01-7.46-3.9623179.6118.1189-7.713-3.807-7.84-3.942318.9114.7190-7.996-3.914-7.52-4.2423259.8106.2994-7.996-3.914-7.52-4.2423259.8106.29	68	-7.01	-3.88	-6.96	-3.69	23080.0	154.71
70 -7.17 -3.65 -7.11 -3.74 23095.6 148.98 71 -7.19 -3.89 -7.30 -3.70 23098.8 147.79 72 -7.11 -3.7 -7.39 -3.75 23104.7 145.62 73 -7.94 -3.72 -7.39 -3.77 23111.3 143.20 74 -7.54 -3.8 -7.48 -3.77 23115.4 141.70 75 -7.15 -3.73 -7.56 -3.83 23120.4 139.85 76 -7.65 -3.91 -7.42 -3.83 2312.4 138.39 77 -7.5 -4 -7.33 -3.85 2313.6 135.00 79 -7.09 -3.87 -7.13 -3.80 2313.4 133.23 80 -6.91 -3.75 -7.06 -3.76 23141.3 132.17 81 -6.9 -3.68 -7.04 -3.78 23145.6 130.59 82 -7.13 -3.85 -7.22 -3.86 130.59 82 -7.13 -3.85 -7.22 -3.86 23160.3 125.21 84 -7.3 -3.85 -7.22 -3.86 23160.2 121.94 87 -7.69 -4.1 -7.44 -3.92 23164.6 123.62 86 -7.27 -4.01 -7.46 -3.96 23169.2 121.94 87 -7.69 -4.1 -7.54 -3.95 23174.5 120.00 88	69	-7.09	-3.56	-7.06	-3.73	23084.0	153.25
71 -7.19 -3.89 -7.30 -3.70 23098.8 147.79 72 -7.11 -3.7 -7.39 -3.75 23104.7 145.62 73 -7.94 -3.72 -7.39 -3.77 23115.4 141.70 74 -7.54 -3.8 -7.48 -3.77 23115.4 141.70 75 -7.15 -3.73 -7.56 -3.83 23120.4 139.85 76 -7.65 -3.91 -7.42 -3.83 23124.4 138.39 77 -7.5 -4 -7.33 -3.85 2313.6 135.00 79 -7.09 -3.87 -7.13 -3.80 2314.4 133.23 80 -6.91 -3.75 -7.06 -3.76 23141.3 132.17 81 -6.9 -3.68 -7.04 -3.78 23145.6 130.59 82 -7.13 -3.8 -7.08 -3.77 23150.6 128.78 83 -7.18 -3.79 -7.15 -3.79 23155.2 127.06 84 -7.3 -3.85 -7.22 -3.86 23160.3 125.21 85 -7.24 -3.84 -7.34 -3.92 23164.6 123.62 86 -7.27 -4.01 -7.46 -3.96 23169.2 121.94 87 -7.99 -4.1 -7.54 -3.95 23174.5 120.00 88 -7.81 -3.99 -7.16 -3.96 2316.6 108.6 <td>70</td> <td>-7.17</td> <td>-3.65</td> <td>-7.11</td> <td>-3.74</td> <td>23095.6</td> <td>148.98</td>	70	-7.17	-3.65	-7.11	-3.74	23095.6	148.98
72 -7.11 -3.7 -7.39 -3.75 23104.7 145.62 73 -7.94 -3.72 -7.39 -3.77 23111.3 143.20 74 -7.54 -3.8 -7.48 -3.77 23115.4 141.70 75 -7.15 -3.73 -7.56 -3.83 23120.4 139.85 76 -7.65 -3.91 -7.42 -3.83 23124.4 138.39 77 -7.5 -4 -7.33 -3.85 23129.2 136.63 78 -7.25 -3.72 -7.28 -3.85 2313.6 135.00 79 -7.09 -3.87 -7.13 -3.80 23138.4 133.23 80 -6.91 -3.75 -7.06 -3.76 23141.3 132.17 81 -6.9 -3.68 -7.04 -3.78 23145.6 130.59 82 -7.13 -3.85 -7.22 -3.86 23145.6 130.59 82 -7.13 -3.85 -7.22 -3.86 23160.3 125.21 84 -7.3 -3.85 -7.22 -3.86 23160.3 125.21 86 -7.27 -4.01 -7.46 -3.96 23169.2 121.94 87 -7.69 -4.1 -7.54 -3.95 23174.5 120.00 86 -7.27 -4.01 -7.46 -3.96 23179.6 118.11 89 -7.713 -3.807 -7.84 -3.94 23188.9 114.7	71	-7.19	-3.89	-7.30	-3.70	23098.8	147.79
73 -7.94 -3.72 -7.39 -3.77 23111.3 143.20 74 -7.54 -3.8 -7.48 -3.77 23115.4 141.70 75 -7.15 -3.73 -7.56 -3.83 23120.4 139.85 76 -7.65 -3.91 -7.42 -3.83 23124.4 138.39 77 -7.55 -4 -7.33 -3.85 23129.2 136.63 78 -7.25 -3.72 -7.28 -3.85 23133.6 135.00 79 -7.09 -3.87 -7.13 -3.80 23138.4 133.23 80 -6.91 -3.75 -7.06 -3.76 23141.3 132.17 81 -6.9 -3.68 -7.04 -3.78 23145.6 130.59 82 -7.13 -3.8 -7.08 -3.77 23150.6 128.78 83 -7.18 -3.79 -7.15 -3.79 2315.2 127.06 84 -7.3 -3.85 -7.22 -3.86 23160.3 125.21 85 -7.24 -3.84 -7.34 -3.92 23164.6 123.62 86 -7.27 -4.01 -7.46 -3.96 23179.6 118.11 89 -7.13 -3.807 -7.84 -3.94 23188.9 114.71 90 -7.996 -3.914 -7.84 -3.94 23188.9 114.71 90 -7.942 -4.681 -7.86 -4.27 2324.5 1	72	-7.11	-3.7	-7.39	-3.75	23104.7	145.62
74 -7.54 -3.8 -7.48 -3.77 23115.4 141.70 75 -7.15 -3.73 -7.56 -3.83 23120.4 139.85 76 -7.65 -3.91 -7.42 -3.83 23124.4 138.39 77 -7.5 -4 -7.33 -3.85 23129.2 136.63 78 -7.25 -3.72 -7.28 -3.85 23133.6 135.00 79 -7.09 -3.87 -7.13 -3.80 23138.4 133.23 80 -6.91 -3.75 -7.06 -3.76 23141.3 132.17 81 -6.9 -3.68 -7.04 -3.78 23145.6 130.59 82 -7.13 -3.8 -7.08 -3.77 23150.6 128.78 83 -7.18 -3.79 -7.15 -3.79 23152.2 127.06 84 -7.3 -3.85 -7.22 -3.86 23160.3 125.21 85 -7.24 -3.84 -7.34 -3.92 23164.6 123.62 86 -7.27 -4.01 -7.46 -3.96 23169.2 121.94 87 -7.69 -4.1 -7.54 -3.96 23174.5 120.00 88 -7.81 -3.99 -7.70 -3.96 23174.5 120.00 88 -7.81 -3.99 -7.62 -4.24 2328.6 109.86 92 -7.942 -4.681 -7.84 -3.94 2318.9 114.71	73	-7.94	-3.72	-7.39	-3.77	23111.3	143.20
75 -7.15 -3.73 -7.56 -3.83 23120.4 139.85 76 -7.65 -3.91 -7.42 -3.83 23124.4 138.39 77 -7.5 -4 -7.33 -3.85 23129.2 136.63 78 -7.25 -3.72 -7.28 -3.85 2313.6 135.00 79 -7.09 -3.72 -7.28 -3.85 2313.6 135.00 79 -7.09 -3.87 -7.13 -3.80 2313.4 133.23 80 -6.91 -3.75 -7.06 -3.76 23141.3 132.17 81 -6.9 -3.68 -7.04 -3.78 23145.6 130.59 82 -7.13 -3.8 -7.06 -3.77 2315.2 127.06 84 -7.3 -3.85 -7.22 -3.86 23160.3 125.21 85 -7.24 -3.84 -7.34 -3.92 23164.6 123.62 86 -7.27 -4.01 -7.46 -3.96 23169.2 121.94 87 -7.69 -4.1 -7.54 -3.94 2318.9 114.71 89 -7.713 -3.807 -7.84 -3.94 2318.9 114.71 90 -7.996 -3.914 -7.89 -4.06 23215.2 111.40 91 -8.012 -3.908 -7.81 -4.18 23228.6 109.86 92 -7.942 -4.681 -7.86 -4.27 23242.5 108	74	-7.54	-3.8	-7.48	-3.77	23115.4	141.70
76 -7.65 -3.91 -7.42 -3.83 23124.4 138.39 77 -7.5 -4 -7.33 -3.85 23129.2 136.63 78 -7.25 -3.72 -7.28 -3.85 23133.6 135.00 79 -7.09 -3.87 -7.13 -3.80 23138.4 133.23 80 -6.91 -3.75 -7.06 -3.76 23141.3 132.17 81 -6.9 -3.68 -7.04 -3.78 23145.6 130.59 82 -7.13 -3.8 -7.08 -3.77 23150.6 128.78 83 -7.18 -3.79 -7.15 -3.79 23155.2 127.06 84 -7.3 -3.85 -7.22 -3.86 23160.3 125.21 85 -7.24 -3.84 -7.34 -3.92 23164.6 123.62 86 -7.27 -4.01 -7.46 -3.96 23169.2 121.94 87 -7.69 -4.1 -7.54 -3.96 23179.6 118.11 89 -7.713 -3.807 -7.84 -3.94 23188.9 114.71 90 -7.996 -3.914 -7.89 -4.06 23215.2 111.40 91 -8.012 -3.908 -7.81 -4.18 23228.6 109.86 92 -7.942 -4.681 -7.86 -4.27 23242.5 108.27 93 -7.405 -4.24 -7.52 -4.24 23274.0 <	75	-7.15	-3.73	-7.56	-3.83	23120.4	139.85
77 -7.5 -4 -7.33 -3.85 23129.2 136.63 78 -7.25 -3.72 -7.28 -3.85 2313.6 135.00 79 -7.09 -3.87 -7.13 -3.80 23138.4 133.23 80 -6.91 -3.75 -7.06 -3.76 23141.3 132.17 81 -6.9 -3.68 -7.04 -3.78 23145.6 130.59 82 -7.13 -3.8 -7.08 -3.77 23150.6 128.78 83 -7.18 -3.79 -7.15 -3.79 23155.2 127.06 84 -7.3 -3.85 -7.22 -3.86 23160.3 125.21 85 -7.24 -3.84 -7.34 -3.92 23164.6 123.62 86 -7.27 -4.01 -7.46 -3.96 23169.2 121.94 87 -7.69 -4.1 -7.54 -3.95 23174.5 120.00 88 -7.81 -3.99 -7.70 -3.96 23179.6 118.11 89 -7.713 -3.807 -7.84 -3.94 2318.9 114.71 90 -7.996 -3.914 -7.89 -4.06 23215.2 111.40 91 -8.012 -3.908 -7.81 -4.18 23228.6 109.86 92 -7.942 -4.681 -7.86 -4.27 23242.5 108.27 93 -7.405 -4.24 -7.26 -4.24 23259.8 <td< td=""><td>76</td><td>-7.65</td><td>-3.91</td><td>-7.42</td><td>-3.83</td><td>23124.4</td><td>138.39</td></td<>	76	-7.65	-3.91	-7.42	-3.83	23124.4	138.39
78 -7.25 -3.72 -7.28 -3.85 23133.6 135.00 79 -7.09 -3.87 -7.13 -3.80 23138.4 133.23 80 -6.91 -3.75 -7.06 -3.76 23141.3 132.17 81 -6.9 -3.68 -7.04 -3.78 23145.6 130.59 82 -7.13 -3.8 -7.08 -3.77 23150.6 128.78 83 -7.18 -3.79 -7.15 -3.79 23155.2 127.06 84 -7.3 -3.85 -7.22 -3.86 23160.3 125.21 85 -7.24 -3.84 -7.34 -3.92 23164.6 123.62 86 -7.27 -4.01 -7.46 -3.96 23169.2 121.94 87 -7.69 -4.1 -7.54 -3.95 23174.5 120.00 88 -7.81 -3.99 -7.70 -3.96 23169.2 114.71 90 -7.996 -3.914 -7.89 -4.06 23215.2 111.40 91 -8.012 -3.908 -7.81 -4.18 23228.6 109.86 92 -7.942 -4.681 -7.86 -4.27 23242.5 108.27 93 -7.405 -4.24 -7.52 -4.24 23259.8 106.29 94 -7.962 -4.284 -7.52 -4.24 23259.8 106.29 94 -7.962 -4.284 -7.52 -4.24 2320.2 <	77	-7.5	-4	-7.33	-3.85	23129.2	136.63
79 -7.09 -3.87 -7.13 -3.80 23138.4 133.23 80 -6.91 -3.75 -7.06 -3.76 23141.3 132.17 81 -6.9 -3.68 -7.04 -3.78 23145.6 130.59 82 -7.13 -3.8 -7.08 -3.77 23150.6 128.78 83 -7.18 -3.79 -7.15 -3.79 23155.2 127.06 84 -7.3 -3.85 -7.22 -3.86 23160.3 125.21 85 -7.24 -3.84 -7.34 -3.92 23164.6 123.62 86 -7.27 -4.01 -7.46 -3.96 23169.2 121.94 87 -7.69 -4.1 -7.54 -3.95 23174.5 120.00 88 -7.81 -3.99 -7.70 -3.96 23179.6 118.11 89 -7.713 -3.807 -7.84 -3.94 23188.9 114.71 90 -7.996 -3.914 -7.89 -4.06 23215.2 111.40 91 -8.012 -3.908 -7.81 -4.18 23228.6 109.86 92 -7.942 -4.681 -7.62 -4.24 23274.0 104.66 95 -6.773 -3.748 -7.48 -4.11 23285.5 103.34 96 -7.511 -3.894 -7.27 -3.88 23315.2 99.94 98 -7.074 -3.803 -7.27 -3.84 2330.5 98.18 <td< td=""><td>78</td><td>-7.25</td><td>-3.72</td><td>-7.28</td><td>-3.85</td><td>23133.6</td><td>135.00</td></td<>	78	-7.25	-3.72	-7.28	-3.85	23133.6	135.00
80-6.91-3.75-7.06-3.7623141.3132.17 81 -6.9-3.68-7.04-3.7823145.6130.59 82 -7.13-3.8-7.08-3.7723150.6128.78 83 -7.18-3.79-7.15-3.7923155.2127.06 84 -7.3-3.85-7.22-3.8623160.3125.21 85 -7.24-3.84-7.34-3.9223164.6123.62 86 -7.27-4.01-7.46-3.9623169.2121.94 87 -7.69-4.1-7.54-3.9523174.5120.00 88 -7.81-3.99-7.70-3.9623179.6118.11 89 -7.713-3.807-7.84-3.9423188.9114.71 90 -7.996-3.914-7.89-4.0623215.2111.40 91 -8.012-3.908-7.81-4.1823228.6109.86 92 -7.942-4.681-7.62-4.2423259.8106.29 94 -7.962-4.284-7.52-4.2423274.0104.66 95 -6.773-3.748-7.41-3.9623300.2101.66 97 -7.743-4.053-7.27-3.8823315.299.94 98 -7.074-3.803-7.23-3.842330.598.18 99 -7.244-3.891-7.13-3.822334.096.63 100 -6.567-3.554-7.08	79	-7.09	-3.87	-7.13	-3.80	23138.4	133.23
81-6.9-3.68-7.04-3.7823145.6130.59 82 -7.13-3.8-7.08-3.7723150.6128.78 83 -7.18-3.79-7.15-3.7923155.2127.06 84 -7.3-3.85-7.22-3.8623160.3125.21 85 -7.24-3.84-7.34-3.9223164.6123.62 86 -7.27-4.01-7.46-3.9623169.2121.94 87 -7.69-4.1-7.54-3.9523174.5120.00 88 -7.81-3.99-7.70-3.9623179.6118.11 89 -7.713-3.807-7.84-3.9423188.9114.71 90 -7.996-3.914-7.89-4.0623215.2111.40 91 -8.012-3.908-7.81-4.1823228.6109.86 92 -7.942-4.681-7.62-4.2423259.8106.29 94 -7.962-4.284-7.52-4.2423274.0104.66 95 -6.773-3.748-7.41-3.9623300.2101.66 97 -7.743-4.053-7.27-3.8823315.299.94 98 -7.074-3.803-7.23-3.842330.598.18 99 -7.244-3.891-7.13-3.8223344.096.63 100 -6.567-3.554-7.08-3.7923359.494.87	80	-6.91	-3.75	-7.06	-3.76	23141.3	132.17
82-7.13-3.8-7.08-3.7723150.6128.78 83 -7.18-3.79-7.15-3.7923155.2127.06 84 -7.3-3.85-7.22-3.8623160.3125.21 85 -7.24-3.84-7.34-3.9223164.6123.62 86 -7.27-4.01-7.46-3.9623169.2121.94 87 -7.69-4.1-7.54-3.9523174.5120.00 88 -7.81-3.99-7.70-3.9623179.6118.11 89 -7.713-3.807-7.84-3.9423188.9114.71 90 -7.996-3.914-7.89-4.0623215.2111.40 91 -8.012-3.908-7.81-4.1823228.6109.86 92 -7.942-4.681-7.86-4.2723242.5108.27 93 -7.405-4.569-7.62-4.2423259.8106.29 94 -7.962-4.284-7.52-4.2423274.0104.66 95 -6.773-3.748-7.48-4.1123285.5103.34 96 -7.511-3.894-7.27-3.8823315.299.94 98 -7.074-3.803-7.23-3.8423330.598.18 99 -7.244-3.891-7.13-3.8223344.096.63 100 -6.567-3.554-7.08-3.7923359.494.87	81	-6.9	-3.68	-7.04	-3.78	23145.6	130.59
83 -7.18 -3.79 -7.15 -3.79 23155.2 127.06 84 -7.3 -3.85 -7.22 -3.86 23160.3 125.21 85 -7.24 -3.84 -7.34 -3.92 23164.6 123.62 86 -7.27 -4.01 -7.46 -3.96 23169.2 121.94 87 -7.69 -4.1 -7.54 -3.95 23174.5 120.00 88 -7.81 -3.99 -7.70 -3.96 23179.6 118.11 89 -7.713 -3.807 -7.84 -3.94 23188.9 114.71 90 -7.996 -3.914 -7.89 -4.06 23215.2 111.40 91 -8.012 -3.908 -7.81 -4.18 23228.6 109.86 92 -7.942 -4.681 -7.86 -4.27 23242.5 108.27 93 -7.405 -4.569 -7.62 -4.24 23259.8 106.29 94 -7.962 -4.284 -7.52 -4.24 23274.0 104.66 95 -6.773 -3.748 -7.41 -3.96 23300.2 101.66 97 -7.743 -4.053 -7.27 -3.88 23315.2 99.94 98 -7.074 -3.803 -7.23 -3.84 23330.5 98.18 99 -7.244 -3.891 -7.13 -3.82 23344.0 96.63 100 -6.567 -3.554 -7.08 -3.79 <t< td=""><td>82</td><td>-7.13</td><td>-3.8</td><td>-7.08</td><td>-3.77</td><td>23150.6</td><td>128.78</td></t<>	82	-7.13	-3.8	-7.08	-3.77	23150.6	128.78
84-7.3-3.85-7.22-3.8623160.3125.2185-7.24-3.84-7.34-3.9223164.6123.6286-7.27-4.01-7.46-3.9623169.2121.9487-7.69-4.1-7.54-3.9523174.5120.0088-7.81-3.99-7.70-3.9623179.6118.1189-7.713-3.807-7.84-3.9423188.9114.7190-7.996-3.914-7.89-4.0623215.2111.4091-8.012-3.908-7.81-4.1823228.6109.8692-7.942-4.681-7.86-4.2723242.5108.2793-7.405-4.569-7.62-4.2423259.8106.2994-7.962-4.284-7.52-4.2423274.0104.6695-6.773-3.748-7.41-3.9623300.2101.6697-7.743-4.053-7.27-3.8823315.299.9498-7.074-3.803-7.23-3.842330.598.1899-7.244-3.891-7.13-3.8223344.096.63100-6.567-3.554-7.08-3.7923359.494.87	83	-7.18	-3.79	-7.15	-3.79	23155.2	127.06
85-7.24-3.84-7.34-3.9223164.6123.6286-7.27-4.01-7.46-3.9623169.2121.9487-7.69-4.1-7.54-3.9523174.5120.0088-7.81-3.99-7.70-3.9623179.6118.1189-7.713-3.807-7.84-3.9423188.9114.7190-7.996-3.914-7.89-4.0623215.2111.4091-8.012-3.908-7.81-4.1823228.6109.8692-7.942-4.681-7.86-4.2723242.5108.2793-7.405-4.569-7.62-4.2423259.8106.2994-7.962-4.284-7.52-4.2423274.0104.6695-6.773-3.748-7.41-3.9623300.2101.6697-7.743-4.053-7.27-3.8823315.299.9498-7.074-3.803-7.23-3.8423330.598.1899-7.244-3.891-7.13-3.8223344.096.63100-6.567-3.554-7.08-3.7923359.494.87	84	-7.3	-3.85	-7.22	-3.86	23160.3	125.21
86-7.27-4.01-7.46-3.9623169.2121.9487-7.69-4.1-7.54-3.9523174.5120.0088-7.81-3.99-7.70-3.9623179.6118.1189-7.713-3.807-7.84-3.9423188.9114.7190-7.996-3.914-7.89-4.0623215.2111.4091-8.012-3.908-7.81-4.1823228.6109.8692-7.942-4.681-7.86-4.2723242.5108.2793-7.405-4.569-7.62-4.2423259.8106.2994-7.962-4.284-7.52-4.2423274.0104.6695-6.773-3.748-7.41-3.9623300.2101.6697-7.743-4.053-7.27-3.8823315.299.9498-7.074-3.803-7.23-3.8423330.598.1899-7.244-3.891-7.13-3.8223344.096.63100-6.567-3.554-7.08-3.7923359.494.87	85	-7.24	-3.84	-7.34	-3.92	23164.6	123.62
87-7.69-4.1-7.54-3.9523174.5120.0088-7.81-3.99-7.70-3.9623179.6118.1189-7.713-3.807-7.84-3.9423188.9114.7190-7.996-3.914-7.89-4.0623215.2111.4091-8.012-3.908-7.81-4.1823228.6109.8692-7.942-4.681-7.86-4.2723242.5108.2793-7.405-4.569-7.62-4.2423259.8106.2994-7.962-4.284-7.52-4.2423274.0104.6695-6.773-3.748-7.41-3.9623300.2101.6697-7.743-4.053-7.27-3.8823315.299.9498-7.074-3.803-7.23-3.842330.598.1899-7.244-3.891-7.13-3.8223344.096.63100-6.567-3.554-7.08-3.7923359.494.87	86	-7.27	-4.01	-7.46	-3.96	23169.2	121.94
88-7.81-3.99-7.70-3.9623179.6118.1189-7.713-3.807-7.84-3.9423188.9114.7190-7.996-3.914-7.89-4.0623215.2111.4091-8.012-3.908-7.81-4.1823228.6109.8692-7.942-4.681-7.86-4.2723242.5108.2793-7.405-4.569-7.62-4.2423259.8106.2994-7.962-4.284-7.52-4.2423274.0104.6695-6.773-3.748-7.48-4.1123285.5103.3496-7.511-3.894-7.41-3.9623300.2101.6697-7.743-4.053-7.27-3.8823315.299.9498-7.074-3.803-7.23-3.8423330.598.1899-7.244-3.891-7.13-3.8223344.096.63100-6.567-3.554-7.08-3.7923359.494.87	87	-7.69	-4.1	-7.54	-3.95	23174.5	120.00
89-7.713-3.807-7.84-3.9423188.9114.7190-7.996-3.914-7.89-4.0623215.2111.4091-8.012-3.908-7.81-4.1823228.6109.8692-7.942-4.681-7.86-4.2723242.5108.2793-7.405-4.569-7.62-4.2423259.8106.2994-7.962-4.284-7.52-4.2423274.0104.6695-6.773-3.748-7.48-4.1123285.5103.3496-7.511-3.894-7.41-3.9623300.2101.6697-7.743-4.053-7.27-3.8823315.299.9498-7.074-3.803-7.23-3.8423330.598.1899-7.244-3.891-7.13-3.8223344.096.63100-6.567-3.554-7.08-3.7923359.494.87	88	-7.81	-3.99	-7.70	-3.96	23179.6	118.11
90-7.996-3.914-7.89-4.0623215.2111.4091-8.012-3.908-7.81-4.1823228.6109.8692-7.942-4.681-7.86-4.2723242.5108.2793-7.405-4.569-7.62-4.2423259.8106.2994-7.962-4.284-7.52-4.2423274.0104.6695-6.773-3.748-7.48-4.1123285.5103.3496-7.511-3.894-7.41-3.9623300.2101.6697-7.743-4.053-7.27-3.8823315.299.9498-7.074-3.803-7.23-3.8423330.598.1899-7.244-3.891-7.13-3.8223344.096.63100-6.567-3.554-7.08-3.7923359.494.87	89	-7.713	-3.807	-7.84	-3.94	23188.9	114.71
91-8.012-3.908-7.81-4.1823228.6109.8692-7.942-4.681-7.86-4.2723242.5108.2793-7.405-4.569-7.62-4.2423259.8106.2994-7.962-4.284-7.52-4.2423274.0104.6695-6.773-3.748-7.48-4.1123285.5103.3496-7.511-3.894-7.41-3.9623300.2101.6697-7.743-4.053-7.27-3.8823315.299.9498-7.074-3.803-7.23-3.8423330.598.1899-7.244-3.891-7.13-3.8223344.096.63100-6.567-3.554-7.08-3.7923359.494.87	90	-7.996	-3.914	-7.89	-4.06	23215.2	111.40
92-7.942-4.681-7.86-4.2723242.5108.2793-7.405-4.569-7.62-4.2423259.8106.2994-7.962-4.284-7.52-4.2423274.0104.6695-6.773-3.748-7.48-4.1123285.5103.3496-7.511-3.894-7.41-3.9623300.2101.6697-7.743-4.053-7.27-3.8823315.299.9498-7.074-3.803-7.23-3.8423330.598.1899-7.244-3.891-7.13-3.8223344.096.63100-6.567-3.554-7.08-3.7923359.494.87	91	-8.012	-3.908	-7.81	-4.18	23228.6	109.86
93-7.405-4.569-7.62-4.2423259.8106.2994-7.962-4.284-7.52-4.2423274.0104.6695-6.773-3.748-7.48-4.1123285.5103.3496-7.511-3.894-7.41-3.9623300.2101.6697-7.743-4.053-7.27-3.8823315.299.9498-7.074-3.803-7.23-3.8423330.598.1899-7.244-3.891-7.13-3.8223344.096.63100-6.567-3.554-7.08-3.7923359.494.87	92	-7.942	-4.681	-7.86	-4.27	23242.5	108.27
94-7.962-4.284-7.52-4.2423274.0104.6695-6.773-3.748-7.48-4.1123285.5103.3496-7.511-3.894-7.41-3.9623300.2101.6697-7.743-4.053-7.27-3.8823315.299.9498-7.074-3.803-7.23-3.8423330.598.1899-7.244-3.891-7.13-3.8223344.096.63100-6.567-3.554-7.08-3.7923359.494.87	93	-7.405	-4.569	-7.62	-4.24	23259.8	106.29
95-6.773-3.748-7.48-4.1123285.5103.3496-7.511-3.894-7.41-3.9623300.2101.6697-7.743-4.053-7.27-3.8823315.299.9498-7.074-3.803-7.23-3.8423330.598.1899-7.244-3.891-7.13-3.8223344.096.63100-6.567-3.554-7.08-3.7923359.494.87	94	-7.962	-4.284	-7.52	-4.24	23274.0	104.66
96-7.511-3.894-7.41-3.9623300.2101.6697-7.743-4.053-7.27-3.8823315.299.9498-7.074-3.803-7.23-3.8423330.598.1899-7.244-3.891-7.13-3.8223344.096.63100-6.567-3.554-7.08-3.7923359.494.87	95	-6.773	-3.748	-7.48	-4.11	23285.5	103.34
97-7.743-4.053-7.27-3.8823315.299.9498-7.074-3.803-7.23-3.8423330.598.1899-7.244-3.891-7.13-3.8223344.096.63100-6.567-3.554-7.08-3.7923359.494.87	96	-7.511	-3.894	-7.41	-3.96	23300.2	101.66
98 -7.074 -3.803 -7.23 -3.84 23330.5 98.18 99 -7.244 -3.891 -7.13 -3.82 23344.0 96.63 100 -6.567 -3.554 -7.08 -3.79 23359.4 94.87	97	-7.743	-4.053	-7.27	-3.88	23315.2	99.94
99 -7.244 -3.891 -7.13 -3.82 23344.0 96.63 100 -6.567 -3.554 -7.08 -3.79 23359.4 94.87	98	-7.074	-3.803	-7.23	-3.84	23330.5	98.18
100 -6.567 -3.554 -7.08 -3.79 23359.4 94.87	99	-7.244	-3.891	-7.13	-3.82	23344.0	96.63
	100	-6.567	-3.554	-7.08	-3.79	23359.4	94.87

						1
101	-7.021	-3.819	-7.09	-3.75	23406.3	89.49
102	-7.51	-3.9	-6.99	-3.69	23415.1	88.47
103	-7.09	-3.59	-7.04	-3.69	23428.6	86.93
104	-6.75	-3.61	-6.89	-3.58	23444.8	85.08
105	-6.84	-3.53	-6.76	-3.49	23460.9	83.23
106	-6.27	-3.26	-6.67	-3.50	23520.9	76.35
107	-6.83	-3.44	-6.70	-3.50	23538.2	74.36
108	-6.68	-3.67	-6.66	-3.52	23551.3	72.86
109	-6.88	-3.61	-6.76	-3.60	23563.2	71.50
110	-6.65	-3.64	-6.64	-3.59	23577.4	69.87
111	-6.75	-3.66	-6.63	-3.58	23589.7	68.45
112	-6.26	-3.39	-6.56	-3.57	23605.9	66.60
113	-6.62	-3.6	-6.55	-3.55	23619.7	65.01
114	-6.51	-3.54	-6.69	-3.56	23631.3	63.69
115	-6.59	-3.54	-6.88	-3.61	23650.5	61.49
116	-7.47	-3.73	-6.86	-3.59	23662.4	60.12
117	-7.22	-3.63	-7.09	-3.60	23675.9	58.58
118	-6.5	-3.49	-7.10	-3.63	23689.3	57.03
119	-7.65	-3.62	-6.91	-3.61	23703.9	55.36
120	-6.68	-3.66	-6.89	-3.65	23715.9	53.99
121	-6.5	-3.64	-6.90	-3.64	23727.0	52.71
122	-7.14	-3.84	-6.56	-3.58	23737.4	51.52
123	-6.52	-3.45	-6.70	-3.57	23752.0	49.85
124	-5.98	-3.3	-6.77	-3.58	23763.9	48.48
125	-7.35	-3.62	-6.73	-3.49	23812.8	42.88
126	-6.84	-3.67	-6.77	-3.47	23829.7	40.94
127	-6.96	-3.43	-6.94	-3.48	23850.1	38.60
128	-6.71	-3.35	-6.95	-3.50	23863.2	37.10
129	-6.85	-3.35	-7.11	-3.53	23878.5	35.34
130	-7.39	-3.72	-7.27	-3.60	23895.5	33.40
131	-7.63	-3.8	-7.39	-3.68	23908.2	31.94
132	-7.79	-3.76	-7.39	-3.69	23926.2	29.87
133	-7.3	-3.75	-7.17	-3.59	23942.0	28.06
134	-6.84	-3.44	-6.95	-3.51	23954.9	26.58
135	-6.27	-3.18	-6.68	-3.42	23967.8	25.11
136	-6.57	-3.41	-6.69	-3.35	23979.0	23.81
137	-6.44	-3.33	-6.77	-3.32	23991.4	22.40
138	-7.32	-3.39	-7.07	-3.45	24003.7	20.99
139	-7.27	-3.29	-7.28	-3.50	24014.4	19.76
140	-7.77	-3.82	-7.32	-3.55	24028.8	18.11
141	-7.62	-3.65	-7.13	-3.55	24045.7	16.17
142	-6.63	-3.6	-7.05	-3.62	24059.6	14.58
143	-6.36	-3.37	-6.88	-3.57	24073.4	12.99
144	-6.86	-3.68	-6.74	-3.49	24084.7	11.70
145	-6.91	-3.53	-6.86	-3.52	24095.4	10.47

146	-6.94	-3.29	-6.98	-3.57	24107.8	9.05
147	-7.24	-3.71	-6.82	-3.49	24120.6	7.59
148	-6.933	-3.639	-6.63	-3.47	24134.4	6.00
149	-6.063	-3.268	-6.51	-3.53	24149.8	4.23
150	-5.972	-3.427	-5.97	-3.43	24166.7	2.29
151	-6.322	-3.616	-6.32	-3.62	24180.0	0.76

9. Datos obtenidos de las mediciones E/Ca.

9.1 Estándar primario "Sol P".

Los valores obtenidos para las mediciones del estándar "Sol P" se presentan en las siguientes tablas:

Concentraciones establecidas gravimétricamente (mmol/g).										
²⁶ Mg	¹³⁷ Ba	²³⁸ U								
0.260995	15.29208	15.29208	15.29208	4.24E-03	5.01E-04	1.07E-04				
Relación de concentraciones (mmol/mmol)										
²⁶ Mg/	⁴³ Ca	⁸⁸ Sr/ ⁴³ Ca	¹³⁷ Ba	l∕ ⁴⁶ Ca	²³⁸ U/ ⁴⁶ Ca					
0.0170673		0.0002773	0.000	00327	0.0000070					

			IN	TENSIDADE	S		
Número de medición	²⁶ Mg	⁴³ Ca	⁴⁴ Ca	⁴⁶ Ca	⁸⁸ Sr	¹³⁷ Ba	²³⁸ U
SOLP01	15510890	29403400	4.69E+08	881699.5	60821620	989100.1	2366253
SOLP02	12723850	24750870	4.04E+08	744626.6	54277050	870375.3	1935903
SOLP03	15460300	29838420	4.62E+08	881318.3	59821040	967435.6	1690362
SOLP04	14510000	27121740	4.3E+08	828195.4	54024860	827055.1	1710737
SOLP05	16130640	29474270	4.6E+08	869036.5	57395840	881824.5	1765091
SOLP06	15664150	28388630	4.58E+08	854681.9	55974000	860579	1686609
SOLP07	13729720	25230820	4E+08	748060.6	49273400	758078.9	1489541
SOLP08	13292990	24018820	3.75E+08	743363.1	48149000	733623.1	1423663
SOLP09	13244340	24698530	3.8E+08	707523.2	48348300	746479.3	1436660
SOLP10	11476280	20882560	3.27E+08	652208	41658900	653041.8	1227989
SOLP11	11704390	21252710	3.34E+08	703753.7	43946640	686015.3	1274126
SOLP12	11406310	20696290	3.18E+08	637545.3	40940200	653971	1231549
SOLP13	9330090	16293910	2.62E+08	516553.6	31497250	521570.2	998434.3
SOLP14	5386605	9728523	1.54E+08	314453.1	18900710	308498.6	616004.6
SOLP15	2322391	4440810	69410140	145283.7	9163749	150614.3	288228.9
SOLP16	1200902	2392532	37464470	86422.79	5305075	86035.88	160070.9
SOLP17	613995.4	1199068	18310130	42308.56	2806588	47035.2	79773.92

SOLP18	394542.7	777652.8	12032630	32222.43	1858161	31208.16	51071.25
SOLP19	10201910	21014600	331286100	782983	45065900	957960	2166273
SOLP20	8259991	17326110	273310800	636987	37273020	807574	1841170
SOLP21	7107446	14891020	237768300	567615	32694800	712404	1557281

	RELACIÓN DE INTENSIDADES			
Número de medición	²⁶ Mg/ ⁴³ Ca	⁸⁸ Sr/ ⁴³ Ca	¹³⁷ Ba/ ⁴⁶ Ca	²³⁸ U/ ⁴⁶ Ca
SOLP01	15510890	29403400	4.69E+08	881699.5
SOLP02	12723850	24750870	4.04E+08	744626.6
SOLP03	15460300	29838420	4.62E+08	881318.3
SOLP04	14510000	27121740	4.3E+08	828195.4
SOLP05	16130640	29474270	4.6E+08	869036.5
SOLP06	15664150	28388630	4.58E+08	854681.9
SOLP07	13729720	25230820	4E+08	748060.6
SOLP08	13292990	24018820	3.75E+08	743363.1
SOLP09	13244340	24698530	3.8E+08	707523.2
SOLP10	11476280	20882560	3.27E+08	652208
SOLP11	11704390	21252710	3.34E+08	703753.7
SOLP12	11406310	20696290	3.18E+08	637545.3
SOLP13	9330090	16293910	2.62E+08	516553.6
SOLP14	5386605	9728523	1.54E+08	314453.1
SOLP15	2322391	4440810	69410140	145283.7
SOLP16	1200902	2392532	37464470	86422.79
SOLP17	613995.4	1199068	18310130	42308.56
SOLP18	394542.7	777652.8	12032630	32222.43
SOLP19	0.4854677	2.1445043	1.2234754	2.7666940
SOLP20	0.4767366	2.1512630	1.2678038	2.8904367
SOLP21	0.4772975	2.1956051	1.2550819	2.7435496
σ	0.019743	0.137980	0.056960	0.256232

Factor de discriminación por masa (FE/Ca) = $\begin{pmatrix} (IE]_{ICa} \end{pmatrix}_{Estándar}$								
	Posición en							
	la							
	secuencia		F _{Sr/Ca}	F _{Ba/Ca}	Fulca			
Numero de medicion	de medición							
SOLP01	1	0.032354	0.000134	2.91928E-05	2.61E-06			
SOLP02	10	0.0332	0.000126	2.80173E-05	2.69E-06			
SOLP03	19	0.03294	0.000138	2.98336E-05	3.65E-06			
SOLP04	28	0.031902	0.000139	3.27939E-05	3.39E-06			
SOLP05	37	0.031186	0.000142	3.22738E-05	3.45E-06			
SOLP06	46	0.030932	0.000141	3.25243E-05	3.55E-06			
SOLP07	55	0.031364	0.000142	3.2316E-05	3.52E-06			
SOLP08	64	0.030839	0.000138	3.31835E-05	3.66E-06			
SOLP09	73	0.031828	0.000142	3.10397E-05	3.45E-06			
SOLP10	82	0.031056	0.000139	3.27069E-05	3.72E-06			
SOLP11	91	0.030991	0.000134	3.35955E-05	3.87E-06			
SOLP12	100	0.030968	0.00014	3.19262E-05	3.63E-06			
SOLP13	109	0.029806	0.000143	3.24338E-05	3.62E-06			
SOLP14	118	0.030825	0.000143	3.33808E-05	3.58E-06			
SOLP15	127	0.032636	0.000134	3.15897E-05	3.53E-06			
SOLP16	136	0.034003	0.000125	3.2896E-05	3.78E-06			
SOLP17	145	0.033331	0.000118	2.94578E-05	3.72E-06			
SOLP18	154	0.03364	0.000116	3.38131E-05	4.42E-06			
SOLP19	161	0.0351564	0.0001293	0.0000268	0.0000025			
SOLP20	168	0.0358003	0.0001289	0.0000258	0.0000024			

SOLP21	176	0.0357582	0.0001263	0.0000261	0.0000026
	σ	0.001184	8.39E-06	1.66623E-06	3.96E-07
	%RSD	3.7%	6.2%	5.2%	11.2%

9.2 Muestras extraídas de Coyo 01.

Lugar en la				INTENS	IDADES			
secuencia de		26	430	46	880	137 D	238	
medicion	Muestras	^{-°} Mg	^{1°} Ca	"Ca	°°Sr	Ba	-•••U	
1		SOLP01						
2	1	4458265	77873560	2254809	43674300	2854723	1468309	
3	2	2806499	56733370	1643450	33832800	2444754	1275615	
4	3	4059129	74736300	2061424	43487700	3011414	1759387	
5	4	2334757	45112220	1267810	23243520	1534733	804499.5	
6	5	2605916	57746480	1596758	31160230	2237509	1130444	
7	6	2489950	48540520	1430736	24157590	1690018	892711.5	
8	7	2685007	56194220	1633300	30336380	1942191	1062936	
9	8	4417983	96109030	2620103	58177480	4126706	2009632	
10				SOLP02				
11	9	4346283	87706730	2419795	49258060	3579263	1909216	
12	10	2523146	47653180	1383740	24504500	1700083	984054.4	
13	11	1971046	39749410	1166070	19718230	1269917	811516.9	
14	12	2832479	56267300	1551883	28910150	1929412	1193314	
15	13	2362028	50631040	1393985	25652540	1739067	1103007	
16	14	2259654	44178270	1285601	22550160	1421316	845907	
17	15	2038801	40654580	1142102	20681190	1435352	924707.9	
18				SOLP03				

20	16	3772386	73009310	2020624	29126410	1784369	1764569		
21	17	1018084	22642360	729326.1	12477450	960872.1	600656.4		
22	18	1524699	32882530	955435.1	16184400	1054503	692109.4		
23	19	1244769	29735190	860033.8	16126560	1231532	699445.8		
25	20	1098031	23128030	681327.5	11858260	762545.1	451434.8		
27	21	1192772	23859810	767920.3	11064240	693241.5	461764.8		
28				SOLP04		•			
29	22	1147518	26475530	754059	14897680	1076264	577990.8		
30	23	832757.1	16918650	520404.1	8379212	579600.5	351937.3		
31	24	925844.4	20100030	594088.3	10822620	732288.5	436089.1		
32	25	1200938	26859590	774336.6	15112970	1112058	586759.2		
33	26	803337.1	17384850	522452.2	9746854	700145.9	410936.7		
34	27	541945.8	11930940	372043.4	6770947	493721	272862.3		
35	28	456995.3	9283270	289499.7	5035493	341421.4	183926.4		
36	29	299240.3	7003817	219592.8	4402236	308057.4	163384.8		
37		SOLP05							
38	30	240926.9	5441414	175558.9	3168821	235074.6	130067.5		
39	31	276176.3	6542081	207112.6	3375815	235569.3	153743.5		
40	32	231932.3	5910503	185574.4	3168792	204630.5	140814		
41	33	304290.1	7581610	235714.4	3939296	256884.9	168544.9		
42	34	186437.6	4400604	143855.1	2083031	126473.2	99833.25		
43	35	242819.2	4815398	158969.1	2101288	124307.4	98202.83		
44	36	204366	4042177	136396.3	1781272	100143.3	79425.46		
45	37	290371.5	6001861	188661.4	2543743	140164.8	116635.8		
46			•	SOLP06					
47	38	181005.6	3772252	125011	1691996	96822.74	73979.77		
48	39	180450.6	3722621	123667.3	1589502	88709.45	73181.88		
49	40	186895.1	4141284	133769.6	1921606	129592.2	103557.4		
50	41	4808981	95418750	2612014	36729140	2182114	2324898		
51	42	3413914	68629000	1924612	27066720	1518482	1645655		
52	43	3627002	80506310	2289112	31497690	1588170	1756091		
53	44	2585861	54512300	1526934	20785690	1101749	1141189		
54	45	1509250	30012620	859712	11095210	540568.9	588841.3		
55				SOLP07					
56	46	3049334	63880040	1796297	24543340	1431219	1634548		
57	47	3769457	78606320	2286388	30974290	1688401	1746959		
58	48	1720787	37005680	1047182	14470620	925249.8	768944.7		
59	49	2926787	64177480	1797031	26442950	1445155	1214814		
60	50	5300794	1.21E+08	3404586	50411120	2656827	1623999		
61	51	1949381	39387700	1128943	14948540	780602	680841.9		
62	52	3821774	85917430	2464404	35332680	1795943	1573982		
63	53	2697994	57615580	1640816	22706060	1174886	1154951		
64				SOLP08					
65	54	1953873	41547340	1266615	16808160	904738.7	889671.4		
66	55	1817749	39729800	1117709	15110580	880514.8	1026519		

67	56	2046992	43397640	1314970	14965900	818053.1	1002965
68	57	2322169	49059260	1388494	17121160	930278.1	813894.1
69	58	558171.8	10530640	352716.3	3901760	223571.3	200531.3
70	59	2115344	43695100	1311062	16598730	888477	811782.5
71	60	5285498	1.13E+08	3154782	44655760	2239762	1715730
72	61	4504799	1.07E+08	2924218	41559700	2200315	1885733
73				SOLP09			
74	62	3579498	74874600	2166991	27828980	1437896	1288282
75	63	3638375	67017820	1876888	23228280	1105318	966103.3
76	64	3864020	81530980	2185387	29861420	1594080	1305227
77	65	3677569	73029140	1998748	27922560	1461181	1060568
78	66	2736031	57017740	1626662	20898350	1107733	963124.3
79	67	3099926	64272000	1821017	24727170	1266186	1074856
80	68	3071550	65219260	1817874	25389400	1312339	1144252
81	69	3951319	88159300	2509391	34723920	1976111	1534217
82		•	•	SOLP10		•	
83	70	4033748	91284190	2489329	33447940	1854679	1513518
84	71	2716420	60734540	1764377	22052060	1221619	925956.3
85	72	1882665	37476340	1070562	13885970	794141.1	551688.3
86	73	3481079	76263560	2138814	29165570	1591861	1108219
87	74	2992696	55240520	1519906	19451670	914902.6	836567.5
88	75	2369620	47895220	1465788	18341260	958532.2	837085.3
89	76	2437351	50979560	1515799	20652410	1101940	899159.4
90	77	1810360	43179660	1218990	18384550	1071211	882219.4
91				SOLP11			
92	78	2208516	50424070	1498388	21235850	1242105	1059072
93	79	2210748	51472210	1535739	21063870	1359413	1237803
94	80	2884714	68784390	1957405	28786970	1800666	1572515
95	81	2811741	57942660	1632979	23045160	1226954	1056086
96	82	1459285	27244960	816330.9	10493600	512147	450159.7
97	83	1997406	42726360	1230754	16318830	849037.1	679459.5
98	84	1506859	30591150	916822.9	11554160	601345.9	483998.3
99	85	1086351	22984580	731245.9	8823822	445307.3	342047.3
100				SOLP12			
101	86	1766058	38253450	1166295	14376500	752413.7	591420.9
102	87	2398862	54805720	1537835	23229400	1331025	975661.6
103	88	1871059	37473730	1117420	14844230	833031.2	676843.5
104	89	1525582	33308490	987852.9	13412770	722921.2	574343.4
105	90	2037932	40920470	1231010	15748820	837569.1	713717.3
106	91	2451681	48423880	1397762	17796830	942143.4	792920.6
107	92	2127124	42437880	1292907	16280940	863940.6	738194.1
108	93	1672771	35601310	1049305	14477330	769627.4	601225.1
109				SOLP13			
110	94	2026877	40760950	1210087	15486200	802283.1	715504.4
111	95	1781677	34239880	1084121	12899810	663338.8	572678.9

	1	1	1			-		
112	96	2733652	53619780	1509397	19744490	978325.3	914489.7	
113	97	2790793	53521430	1598859	19493900	1027937	932545.8	
114	98	2569896	49739460	1453348	19830380	1125526	934852.5	
115	99	2286898	44502400	1283211	17427930	1016850	852428.1	
116	100	1693868	30931900	953680.7	12539470	697563.4	581756.5	
117	101	3619862	67164260	1895962	25466130	1474019	1210969	
118				SOLP14				
119	102	2515619	46471960	1330113	16532190	961424.7	889429.5	
120	103	3715943	82236740	2304379	37985900	2121364	1656918	
121	104	3363060	76014670	2153408	38052560	2253666	1543605	
122	105	1894540	35285670	1063508	17086100	1042619	711377.2	
123	106	1297025	23920670	729937.9	11094400	672387.3	501304.4	
124	107	1221820	22317320	685831.3	12403180	926218.5	452337.7	
125	108	878028.5	15176750	507596.9	8492749	612725.7	311681.3	
126	109	3376181	78616620	2145740	46247220	3138695	1610328	
127		SOLP15						
128	110	1477175	27863250	838375.4	15163350	930277.3	573389	
129	111	1068689	20425320	656096.5	8665104	492470.8	359860.3	
130	112	1459287	32844280	971882.1	18605170	1242046	687019.1	
131	113	1843034	40814030	1202522	20618130	1338026	836071.7	
132	114	1436981	31574660	939016.8	15335760	909588.4	648548.4	
133	115	1413915	29622640	872000.3	14902180	948466.3	623559.6	
134	116	1611363	31611190	959740.4	17118890	1234992	621659.4	
135	117	977637	18985720	605477.9	9728432	628672.4	400471.1	
136				SOLP16				
137	118	2448166	58445200	1598035	31704960	2020845	1221613	
138	119	1419484	31923620	996398.4	17704550	1149938	630482.8	
140	120	1476609	28642780	847125.4	15447760	1098784	614657.4	
141	121	1038805	19371840	625438.1	9919376	656636.5	432319	
142	122	1084187	22425040	696059.8	11749010	751786.8	517792	
143	123	1447296	30183400	917314.1	14864210	991411.7	698847.8	
144	124	2643540	57623620	1673472	31008690	2154415	1269463	
145				SOLP17				
146	125	2402749	48573030	1395695	26365110	1864282	1051402	
147	126	2981971	63728400	1873544	32460660	2298368	1612899	
148	127	2736065	55002600	1586725	28286120	1872439	1290583	
149	128	2220698	41776750	1252405	18174300	1166508	1018394	
150	129	2173391	42486360	1270156	19585820	1252766	1049674	
151	130	3787000	80948660	2352930	37962540	2424892	2014721	
152	131	3728572	87925770	2444851	44439200	2717189	2191041	
153	132	2907736	58186360	1664858	30226260	1879619	1422576	
154				SOLP18				
155	133	3494319	73833560	2102955	37505130	2335465	1719434	
156	134	3187916	61457390	1705671	34724640	2208010	1357233	
157	135	5652115	1.46E+08	4240505	60964590	3586801	3858136	

158	136	4853143	1.25E+08	3655276	55283180	3619253	3285662
159	137	3378919	81884740	2363175	34480600	2152266	2203619
160	138	3730434	86513400	2498319	34806900	1966059	2179961
161				SOLP19			
162	139	4119127	1.08E+08	3183779	45508420	2626459	2783985
163	140	2772910	77849160	2279943	35439990	2198786	2145131
164	141	2458907	60644380	1827986	28897410	1804868	1667980
165	142	4132141	1.04E+08	2968004	43257630	2681996	2791266
166	143	4193918	1.02E+08	2893854	39685480	2179002	2511733
167	144	4457417	1.17E+08	3439135	49602220	2764116	2947926
168				SOLP20			
169	145	2916396	73860590	2307810	29135140	1610605	2127884
170	146	3960184	1.03E+08	2946680	44237950	2479461	2996119
171	147	4786327	1.13E+08	3326926	44004540	2339520	2974300
172	148	3153264	75583930	2290579	31053610	1746798	1885069
173	149	3236738	74794200	2152977	29880730	1667761	1829873
174	150	3816628	81461040	2489516	30045860	1522927	1910749
175	151	3975131	96149300	2807788	39139410	2187320	2336631
176	SOLP21						

		REL	ACIÓN DE		DADES
Muestra	Lugar	²⁶ Mg/ ⁴³ Ca	⁸⁸ Sr/ ⁴³ Ca	¹³⁷ Ba/ ⁴⁶ Ca	²³⁸ U/ ⁴⁶ Ca
1	2	0.05725	0.560836	1.26606	0.651189968
2	3	0.049468	0.596347	1.487574	0.776181204
3	4	0.054313	0.581882	1.460842	0.85348138
4	5	0.051754	0.515238	1.210539	0.634558412
5	6	0.045127	0.539604	1.401282	0.707962008
6	7	0.051296	0.497679	1.181223	0.623952637
7	8	0.047781	0.539849	1.189121	0.650790424
8	9	0.045968	0.605328	1.575017	0.767004961
9	11	0.049555	0.561622	1.47916	0.788999068
10	12	0.052948	0.514226	1.228614	0.711155564
11	13	0.049587	0.496063	1.089057	0.695941839
12	14	0.05034	0.5138	1.243272	0.768945855
13	15	0.046652	0.506656	1.247551	0.791261742
14	16	0.051149	0.510436	1.105565	0.657985643
15	17	0.050149	0.508705	1.256763	0.809654392
16	20	0.05167	0.398941	0.883078	0.873279244
17	21	0.044964	0.551067	1.317479	0.823577272
18	22	0.046368	0.492188	1.103689	0.72439185
19	23	0.041862	0.542339	1.431958	0.813277106
20	25	0.047476	0.512722	1.119205	0.662581211
21	27	0.049991	0.463719	0.902752	0.601318652
22	29	0.043343	0.562696	1.427294	0.766506069

23	30	0.049221	0.495265	1.113751	0.676276955
24	31	0.046062	0.538438	1.232626	0.734047615
25	32	0.044712	0.562666	1.436143	0.757757285
26	33	0.046209	0.560652	1.340115	0.786553679
27	34	0.045424	0.567512	1.327052	0.733415241
28	35	0.049228	0.542427	1.17935	0.635325011
29	36	0.042725	0.628548	1.402857	0.744035324
30	38	0.044277	0.582352	1.339007	0.740876709
31	39	0.042215	0.516015	1.137397	0.74231843
32	40	0.039241	0.536129	1.102687	0.758800783
33	41	0.040135	0.519586	1.089814	0.715038623
34	42	0.042366	0.473351	0.879171	0.693984781
35	43	0.050426	0.436368	0.78196	0.617747915
36	44	0.050558	0.440671	0.734208	0.58231389
37	45	0.04838	0.423826	0.742944	0.618228212
38	47	0.047983	0.448537	0.774514	0.591786083
39	48	0.048474	0.426985	0.717323	0.591764193
40	49	0.04513	0.464012	0.968772	0.774147489
41	50	0.050399	0.384926	0.835414	0.89007869
42	51	0.049744	0.394392	0.788981	0.855058058
43	52	0.045052	0.391245	0.693793	0.767149445
44	53	0.047436	0.381303	0.721543	0.74737284
45	54	0.050287	0.369685	0.628779	0.684928557
46	56	0.047735	0.38421	0.796761	0.9099542
47	57	0.047954	0.394043	0.738458	0.764069353
48	58	0.046501	0.391038	0.883562	0.734299004
49	59	0.045605	0.412028	0.80419	0.67601171
50	60	0.043833	0.416857	0.780367	0.477003371
51	61	0.049492	0.379523	0.691445	0.603079075
52	62	0.044482	0.41124	0.728753	0.638686676
53	63	0.046828	0.394096	0.716038	0.703888187
54	65	0.047028	0.404554	0.714297	0.702400808
55	66	0.045753	0.380334	0.787785	0.918413469
56	67	0.047168	0.344855	0.622108	0.762728427
57	68	0.047334	0.348989	0.669991	0.586170412
58	69	0.053005	0.370515	0.633856	0.568534258
59	70	0.048411	0.379876	0.677677	0.619179337
60	71	0.046692	0.394484	0.709958	0.543850574
61	72	0.04219	0.389233	0.752446	0.644867448
62	74	0.047807	0.371675	0.663545	0.5945027
63	75	0.05429	0.346599	0.58891	0.514736788
64	76	0.047393	0.366259	0.729427	0.597252111
65	77	0.050358	0.382348	0.731048	0.530616166
66	78	0.047986	0.366524	0.680985	0.592086309
67	79	0.048231	0.384727	0.695318	0.590250393

68	80	0.047096	0.389293	0.721909	0.629445165
69	81	0.04482	0.393877	0.787486	0.611390174
70	83	0.044189	0.366415	0.745052	0.608002397
71	84	0.044726	0.363089	0.69238	0.524806376
72	85	0.050236	0.370526	0.741798	0.515325876
73	86	0.045645	0.382431	0.744273	0.518146505
74	87	0.054176	0.352127	0.601947	0.550407394
75	88	0.049475	0.382946	0.653936	0.571082107
76	89	0.04781	0.405112	0.72697	0.593191709
77	90	0.041926	0.425769	0.878769	0.723729809
78	92	0.043799	0.421145	0.828961	0.706807583
79	93	0.04295	0.409228	0.885185	0.805998285
80	94	0.041938	0.41851	0.919925	0.803367213
81	95	0.048526	0.397724	0.751359	0.646723565
82	96	0.053562	0.385157	0.627377	0.551442681
83	97	0.046749	0.381938	0.689851	0.552067676
84	98	0.049258	0.377696	0.655902	0.527908171
85	99	0.047264	0.383902	0.608971	0.467759614
86	101	0.046167	0.375822	0.645132	0.507093746
87	102	0.04377	0.42385	0.865519	0.634438415
88	103	0.04993	0.396124	0.745495	0.605719873
89	104	0.045802	0.402683	0.731811	0.581405794
90	105	0.049802	0.384864	0.680392	0.579781886
91	106	0.05063	0.367522	0.674037	0.567278693
92	107	0.050123	0.383642	0.668216	0.570956844
93	108	0.046986	0.406652	0.733464	0.572974588
94	110	0.049726	0.379927	0.662996	0.591283437
95	111	0.052035	0.376748	0.611868	0.528242604
96	112	0.050982	0.368231	0.648156	0.605864262
97	113	0.052143	0.364226	0.642919	0.58325706
98	114	0.051667	0.398685	0.774437	0.643240642
99	115	0.051388	0.391618	0.792426	0.664293012
100	116	0.054761	0.40539	0.731443	0.610011821
101	117	0.053896	0.379162	0.777452	0.638709531
102	119	0.054132	0.355745	0.722814	0.668687172
103	120	0.045186	0.461909	0.920579	0.71903016
104	121	0.044242	0.500595	1.046558	0.716819572
105	122	0.053691	0.484222	0.980358	0.668896896
106	123	0.054222	0.4638	0.921157	0.686776779
107	124	0.054748	0.555765	1.350505	0.659546597
108	125	0.057854	0.559589	1.207111	0.614033104
109	126	0.042945	0.588263	1.462756	0.750476759
110	128	0.053015	0.544206	1.109619	0.683928703
111	129	0.052322	0.424233	0.750607	0.548486846
112	130	0.04443	0.566466	1.27798	0.706895517

113	131	0.045157	0.505173	1.112683	0.695265201
114	132	0.045511	0.485698	0.96866	0.690667515
115	133	0.047731	0.503067	1.08769	0.715091038
116	134	0.050974	0.541545	1.286798	0.647737034
117	135	0.051493	0.512408	1.038308	0.661413241
118	137	0.041888	0.542473	1.264581	0.764446961
119	138	0.044465	0.554591	1.154095	0.632761755
120	140	0.051553	0.539325	1.297074	0.72558018
121	141	0.053624	0.512051	1.049882	0.691225878
122	142	0.048347	0.523924	1.080061	0.743890108
123	143	0.04795	0.492463	1.080777	0.761841337
124	144	0.045876	0.538125	1.287392	0.758580365
125	146	0.049467	0.542793	1.335737	0.753317881
126	147	0.046792	0.509359	1.226749	0.860881303
127	148	0.049744	0.514269	1.180065	0.813362744
128	149	0.053156	0.435034	0.931414	0.813150698
129	150	0.051155	0.460991	0.986309	0.826413448
130	151	0.046783	0.468971	1.030584	0.856260492
131	152	0.042406	0.505417	1.111392	0.896185903
132	153	0.049973	0.519473	1.128997	0.854472874
133	155	0.047327	0.507969	1.110563	0.817627576
134	156	0.051872	0.56502	1.294511	0.795717932
135	157	0.03864	0.416778	0.845843	0.909829372
136	158	0.038903	0.443156	0.990145	0.898882054
137	159	0.041264	0.421087	0.910752	0.93248236
138	160	0.04312	0.40233	0.786953	0.872571117
139	162	0.037999	0.419813	0.82495	0.874427842
140	163	0.035619	0.455239	0.964404	0.940870452
141	164	0.040546	0.476506	0.987353	0.912468695
142	165	0.039729	0.415908	0.903636	0.940452237
143	166	0.04113	0.389196	0.752976	0.867954292
144	167	0.037983	0.422674	0.803724	0.857170771
145	169	0.039485	0.394461	0.697893	0.922036043
146	170	0.038507	0.430152	0.841442	1.016777865
147	171	0.042425	0.390046	0.703208	0.894008463
148	172	0.041719	0.410849	0.762601	0.822966158
149	173	0.043275	0.399506	0.77463	0.849926869
150	174	0.046852	0.368837	0.611736	0.767518265
151	175	0.041343	0.407069	0.779019	0.832196377

Muestra	F _{мg/Ca} * (²⁶ Mg/ ⁴³ Ca)	F _{Sr/Ca} * (⁸⁸ Sr/ ⁴³ Ca)	F _{Ba/Ca} * (¹³⁷ Ba/ ⁴⁶ Ca)	F _{U/Ca} * (²³⁸ U/ ⁴⁶ Ca)	Años A.P.
1	0.00140244	0.00006547	0.00003144	0.00000274	22537.1
2	0.00150404	0.00006018	0.00002330	0.00000210	22599.9
3	0.00148651	0.00006315	0.00002517	0.00000210	22615.2

r				1	
4	0.00149785	0.00005969	0.00002414	0.00000219	22627.0
5	0.00156671	0.00006215	0.00002384	0.00000205	22639.1
6	0.00156402	0.00006163	0.00002537	0.00000217	22649.6
7	0.00131525	0.00006695	0.00002850	0.00000243	22683.7
8	0.00124712	0.00007359	0.00003529	0.00000250	22699.8
9	0.00122043	0.00007604	0.00003568	0.00000264	22717.2
10	0.00131413	0.00007329	0.00003677	0.00000258	22731.3
11	0.00137955	0.00008282	0.00004325	0.00000256	22746.7
12	0.00133582	0.00008929	0.00004536	0.00000256	22759.0
13	0.00154304	0.00007686	0.00003820	0.00000218	22771.8
14	0.00142741	0.00008022	0.00004306	0.00000252	22789.4
15	0.00145577	0.00007905	0.00004356	0.00000269	22804.7
16	0.00141215	0.00007913	0.00004676	0.00000259	22810.2
17	0.00145846	0.00007554	0.00004021	0.00000250	22814.0
18	0.00156241	0.00006930	0.00003640	0.00000230	22817.7
19	0.00137926	0.00007854	0.00004672	0.00000260	22820.8
20	0.00160056	0.00006451	0.00002931	0.00000206	22824.7
21	0.00153101	0.00007123	0.00003560	0.00000230	22828.7
22	0.00135961	0.00007524	0.00004460	0.0000288	22833.6
23	0.00151132	0.00006823	0.00003402	0.00000258	22836.2
24	0.00147073	0.00007634	0.00004017	0.00000296	22842.1
25	0.00169605	0.00005522	0.00002664	0.00000316	22851.5
26	0.00165481	0.00006903	0.00003699	0.00000278	22859.4
27	0.00168926	0.00006859	0.00003231	0.00000219	22864.1
28	0.00154210	0.00006741	0.00003621	0.00000255	22868.6
29	0.00166546	0.00006769	0.00003584	0.00000240	22873.5
30	0.00164198	0.00006470	0.00003117	0.00000210	22877.8
31	0.00175481	0.00006639	0.00003492	0.00000207	22882.6
32	0.00164378	0.00007176	0.00004174	0.00000221	22886.4
33	0.00152183	0.00007706	0.00004433	0.00000206	22889.7
34	0.00157734	0.00006918	0.00003363	0.00000174	22895.3
35	0.00168857	0.00006420	0.00003356	0.00000166	22896.5
36	0.00148124	0.00007006	0.00003999	0.00000188	22900.6
37	0.00169392	0.00006734	0.00003471	0.00000168	22904.7
38	0.00177254	0.00007654	0.00004207	0.00000225	22909.3
39	0.00160979	0.00007894	0.00004304	0.00000204	22913.5
40	0.00185764	0.00007472	0.00003679	0.00000171	22918.6
41	0.00174854	0.00006527	0.00004502	0.00000364	22921.8
42	0.00159371	0.00005882	0.00003809	0.00000368	22925.7
43	0.00167937	0.00006043	0.00003763	0.00000371	22930.1
44	0.00142362	0.00005893	0.00003650	0.00000382	22934.9
45	0.00156895	0.00005481	0.00003335	0.00000358	22937.5
46	0.00171382	0.00005400	0.00003144	0.00000339	22942.2
47	0.00177904	0.00005108	0.00002924	0.00000328	22947.5
48	0.00166314	0.00006052	0.00003648	0.00000321	22950.7

49	0.00156282	0.00006008	0.00003732	0.00000333	22955.4
50	0.00165046	0.00006416	0.00003999	0.00000286	22974.1
51	0.00153250	0.00006415	0.00003842	0.00000282	22978.7
52	0.00160537	0.00005907	0.00003266	0.00000284	22984.2
53	0.00162228	0.00006323	0.00003305	0.00000278	22988.7
54	0.00180336	0.00006217	0.00003253	0.00000259	22994.1
55	0.00173753	0.00006587	0.00004069	0.00000272	22998.5
56	0.00150529	0.00006855	0.00003708	0.0000238	23007.0
57	0.00142119	0.00006745	0.00004112	0.00000289	23011.9
58	0.00174310	0.00006462	0.00003401	0.00000248	23016.0
59	0.00171779	0.00006885	0.00004196	0.00000241	23020.7
60	0.00160123	0.00006448	0.00003531	0.00000264	23025.9
61	0.00151983	0.00006276	0.00003130	0.00000254	23030.8
62	0.00150116	0.00006580	0.00003580	0.00000253	23037.4
63	0.00147027	0.00007437	0.00004093	0.00000256	23043.0
64	0.00172345	0.00005613	0.00002393	0.00000197	23066.8
65	0.00173824	0.00007257	0.00003521	0.00000243	23069.1
66	0.00139289	0.00007960	0.00004650	0.00000265	23072.9
67	0.00186480	0.00007624	0.00003861	0.00000217	23077.2
68	0.00175367	0.00007624	0.00004347	0.00000234	23080.0
69	0.00172592	0.00006405	0.00002983	0.00000244	23084.0
70	0.00169823	0.00006732	0.00003194	0.0000238	23095.6
71	0.00139046	0.00007006	0.00003431	0.00000255	23098.8
72	0.00141102	0.00006508	0.00003036	0.00000256	23104.7
73	0.00167949	0.00005045	0.00002398	0.0000239	23111.3
74	0.00165521	0.00005415	0.00002587	0.00000229	23115.4
75	0.00167560	0.00005793	0.00002426	0.00000219	23120.4
76	0.00156657	0.00005599	0.00002620	0.00000239	23124.4
77	0.00156923	0.00005704	0.00002553	0.00000231	23129.2
78	0.00157780	0.00005214	0.00002112	0.00000210	23133.6
79	0.00153689	0.00005274	0.00002123	0.00000219	23138.4
80	0.00156274	0.00005399	0.00001997	0.00000191	23141.3
81	0.00148776	0.00005447	0.00002157	0.00000214	23145.6
82	0.00140654	0.00005819	0.00002375	0.00000208	23150.6
83	0.00150692	0.00005476	0.00002160	0.00000207	23155.2
84	0.00152868	0.00005233	0.00002175	0.00000206	23160.3
85	0.00151013	0.00005465	0.00002191	0.00000210	23164.6
86	0.00139473	0.00005704	0.00002353	0.00000211	23169.2
87	0.00152689	0.00005597	0.00002393	0.00000220	23174.5
88	0.00134417	0.00005973	0.00002773	0.0000230	23179.6
89	0.00136411	0.00005617	0.00002706	0.00000270	23188.9
90	0.00151749	0.00005100	0.00002318	0.00000224	23215.2
91	0.00173574	0.00004814	0.00001949	0.00000198	23228.6
92	0.00153175	0.00005211	0.00002392	0.00000234	23242.5
93	0.00144099	0.00005337	0.00002153	0.00000212	23259.8

94	0.00137363	0.00005836	0.00002825	0.00000227	23274.0
95	0.00139429	0.00006588	0.00003248	0.00000227	23285.5
96	0.00146855	0.00005700	0.00002507	0.00000220	23300.2
97	0.00139442	0.00005318	0.00002245	0.00000220	23315.2
98	0.00152722	0.00005131	0.00002021	0.00000216	23330.5
99	0.00135653	0.00005186	0.00002080	0.00000226	23344.0
100	0.00140779	0.00005394	0.00002026	0.00000230	23359.4
101	0.00158555	0.00005152	0.00002116	0.00000240	23406.3
102	0.00156860	0.00005437	0.00002709	0.00000315	23415.1
103	0.00155063	0.00005577	0.00002557	0.00000302	23428.6
104	0.00140654	0.00005538	0.00002247	0.00000271	23444.8
105	0.00148324	0.00005403	0.00002335	0.00000263	23460.9
106	0.00157480	0.00005244	0.00002033	0.00000241	23520.9
107	0.00149439	0.00005440	0.00002582	0.00000322	23538.2
108	0.00149843	0.00005564	0.00002401	0.00000271	23551.3
109	0.00145031	0.00005505	0.00002881	0.00000262	23563.2
110	0.00141970	0.00005784	0.00002630	0.00000242	23577.4
111	0.00136199	0.00005835	0.00002559	0.00000172	23589.7
112	0.00153494	0.00005297	0.00002274	0.00000218	23605.9
113	0.00137695	0.00005723	0.00002404	0.00000232	23619.7
114	0.00144683	0.00005468	0.00002369	0.00000256	23631.3
115	0.00145543	0.00005612	0.00002353	0.00000255	23650.5
116	0.00142101	0.00005290	0.00002577	0.00000332	23662.4
117	0.00147015	0.00004809	0.00002020	0.00000274	23675.9
118	0.00148052	0.00004880	0.00002159	0.00000209	23689.3
119	0.00166371	0.00005194	0.00002028	0.00000201	23703.9
120	0.00152486	0.00005340	0.00002152	0.00000218	23715.9
121	0.00147582	0.00005559	0.00002238	0.00000190	23727.0
122	0.00133818	0.00005500	0.00002353	0.00000224	23737.4
123	0.00151748	0.00005255	0.00002072	0.00000207	23752.0
124	0.00171861	0.00004890	0.00001850	0.00000181	23763.9
125	0.00149623	0.00005156	0.00002305	0.00000211	23812.8
126	0.00158550	0.00005372	0.00002323	0.00000189	23829.7
127	0.00150670	0.00005138	0.00002177	0.00000213	23850.1
128	0.00151029	0.00005382	0.00002236	0.00000214	23863.2
129	0.00147069	0.00005435	0.00002334	0.00000230	23878.5
130	0.00139579	0.00005487	0.00002561	0.00000226	23895.5
131	0.00137202	0.00005074	0.00002444	0.00000227	23908.2
132	0.00138837	0.00005008	0.00002278	0.00000197	23926.2
133	0.00155904	0.00005090	0.00002448	0.00000194	23942.0
134	0.00141624	0.00005233	0.00002464	0.00000196	23954.9
135	0.00168052	0.00004799	0.00001999	0.00000209	23967.8
136	0.00153435	0.00005198	0.00002178	0.00000218	23979.0
137	0.00148237	0.00005477	0.00002428	0.00000228	23991.4
138	0.00129963	0.00005733	0.00002944	0.00000279	24003.7

139	0.00135724	0.00005677	0.00002770	0.00000272	24014.4
140	0.00133084	0.00005544	0.00002941	0.00000308	24028.8
141	0.00129938	0.00005698	0.00003039	0.00000304	24045.7
142	0.00150337	0.00005441	0.00002468	0.00000243	24059.6
143	0.00165923	0.00005296	0.00002050	0.00000206	24073.4
144	0.00144807	0.00005277	0.00002241	0.00000205	24084.7
145	0.00152567	0.00005244	0.00002118	0.00000194	24095.4
146	0.00146380	0.00005356	0.00001956	0.00000171	24107.8
147	0.00142375	0.00005282	0.00002063	0.00000184	24120.6
148	0.00146083	0.00005359	0.00002283	0.00000201	24134.4
149	0.00154054	0.00005192	0.00001993	0.00000186	24149.8
150	0.00162618	0.00005093	0.00001962	0.00000190	24166.7
151	0.00146438	0.00005324	0.00002074	0.00000183	24180.0

	Señal E/Ca (r	nmol/mmol) ar				
						Distancia desde
Muestra	Mg/Ca	Sr/Ca	Ba/Ca	U/Ca	Años A.P.	la base (mm)
1	0,001402444	6,54732E-05	3,14414E-05	2,73988E-06	22537.1	323.10
2	0,001504042	6,01843E-05	2,32973E-05	2,09648E-06	22599.9	312.30
3	0,00149151	0,00006213	0,00002558	0,00000224	22615.2	309.65
4	0,00152382	0,00006136	0,00002436	0,00000212	22627.0	307.62
5	0,00148607	0,00006272	0,00002540	0,00000219	22639.1	305.55
6	0,00143819	0,00006480	0,00002743	0,00000227	22649.6	303.74
7	0,00138270	0,00006807	0,00002974	0,00000236	22683.7	297.88
8	0,00133219	0,00007030	0,00003232	0,00000246	22699.8	295.10
9	0,00129529	0,00007454	0,00003590	0,00000254	22717.2	292.10
10	0,00129941	0,00007900	0,00003927	0,00000257	22731.3	289.68
11	0,00135859	0,00007966	0,00003985	0,00000251	22746.7	287.03
12	0,00139999	0,00008050	0,00004133	0,00000248	22759.0	284.91
13	0,00142832	0,00008165	0,00004269	0,00000250	22771.8	282.72
14	0,00143484	0,00008091	0,00004339	0,00000251	22789.4	279.68
15	0,00145937	0,00007816	0,00004236	0,00000250	22804.7	271.83
16	0,00146324	0,00007665	0,00004200	0,00000252	22810.2	267.55
17	0,00145361	0,00007631	0,00004273	0,00000254	22814.0	264.64
18	0,00148257	0,00007340	0,00003988	0,00000241	22817.7	261.73
19	0,00150634	0,00007182	0,00003765	0,00000235	22820.8	259.40
20	0,00148657	0,00007176	0,00003853	0,00000243	22824.7	256.35
21	0,00147635	0,00007155	0,00003805	0,00000248	22828.7	253.27
22	0,00149464	0,00007111	0,00003674	0,00000256	22833.6	249.47
23	0,00151374	0,00006925	0,00003621	0,00000278	22836.2	247.44
24	0,00153850	0,00006881	0,00003648	0,0000287	22842.1	242.90
25	0,00160443	0,00006748	0,00003402	0,00000274	22851.5	238.67
26	0,00161059	0,00006732	0,00003446	0,00000273	22859.4	235.76

27	0,00164954	0,00006559	0,00003360	0,00000262	22864.1	234.04
28	0,00163872	0,00006748	0,00003450	0,00000241	22868.6	232.36
29	0,00165872	0,00006695	0,00003409	0,00000226	22873.5	230.60
30	0,00164963	0,00006759	0,00003598	0,00000227	22877.8	229.01
31	0,00164557	0,00006952	0,00003760	0,00000217	22882.6	227.25
32	0,00162795	0,00006982	0,00003716	0,00000204	22886.4	225.84
33	0,00163726	0,00006972	0,00003764	0,00000195	22889.7	224.65
34	0,00158255	0,00007045	0,00003865	0,00000191	22895.3	222.57
35	0,00159258	0,00006957	0,00003724	0,00000181	22896.5	222.13
36	0,00164272	0,00006946	0,00003679	0,00000184	22900.6	220.63
37	0,00164921	0,00007142	0,00003867	0,00000190	22904.7	219.13
38	0,00168302	0,00007352	0,00003932	0,00000191	22909.3	217.41
39	0,00173649	0,00007256	0,00004033	0,00000226	22913.5	215.87
40	0,00171644	0,00007086	0,00004100	0,00000266	22918.6	214.02
41	0,00169781	0,00006764	0,00004011	0,00000296	22921.8	212.83
42	0,00166058	0,00006363	0,00003881	0,00000331	22925.7	211.42
43	0,00160284	0,00005965	0,00003812	0,00000369	22930.1	209.79
44	0,00159589	0,00005740	0,00003540	0,00000364	22934.9	208.02
45	0,00163296	0,00005585	0,00003363	0,00000356	22937.5	207.05
46	0,00162972	0,00005587	0,00003340	0,00000346	22942.2	205.33
47	0,00165756	0,00005609	0,00003357	0,00000336	22947.5	203.39
48	0,00167386	0,00005797	0,00003490	0,00000321	22950.7	202.20
49	0,00163759	0,00006000	0,00003629	0,00000310	22955.4	200.48
50	0,00160286	0,00006160	0,00003697	0,00000301	22974.1	193.60
51	0,00159469	0,00006214	0,00003629	0,00000293	22978.7	191.93
52	0,00164279	0,00006256	0,00003533	0,00000278	22984.2	189.90
53	0,00166021	0,00006290	0,00003547	0,00000275	22988.7	188.27
54	0,00165477	0,00006378	0,00003520	0,00000266	22994.1	186.28
55	0,00161793	0,00006545	0,00003689	0,00000267	22998.5	184.65
56	0,00164209	0,00006573	0,00003708	0,00000261	23007.0	181.52
57	0,00162498	0,00006707	0,00003897	0,00000258	23011.9	179.71
58	0,00159772	0,00006679	0,00003789	0,00000256	23016.0	178.21
59	0,00160063	0,00006563	0,00003674	0,00000259	23020.7	176.49
60	0,00161662	0,00006530	0,00003567	0,00000252	23025.9	174.60
61	0,00156206	0,00006725	0,00003706	0,00000254	23030.8	172.79
62	0,00156319	0,00006471	0,00003345	0,00000245	23037.4	170.36
63	0,00159059	0,00006633	0,00003343	0,00000240	23043.0	168.29
64	0,00156520	0,00006970	0,00003647	0,00000243	23066.8	159.56
65	0,00163793	0,00007178	0,00003704	0,0000236	23069.1	158.72
66	0,00169461	0,00007216	0,00003754	0,0000231	23072.9	157.31
67	0,00169510	0,00007374	0,00003873	0,0000241	23077.2	155.72
68	0,00168710	0,00007269	0,00003807	0,0000240	23080.0	154.71
69	0,00168662	0,00007078	0,00003563	0,00000238	23084.0	153.25
70	0,00159586	0,00006855	0,00003398	0,00000245	23095.6	148.98

71 0.00158102 0.00006339 0.0000246 23098.8 147.79 72 0.00156285 0.0000577 0.0000243 23104.7 145.62 73 0.00156255 0.00002577 0.0000236 23115.4 141.70 74 0.00158758 0.00005511 0.00002261 2.0000262 23124.4 138.39 76 0.00168852 0.00005438 0.00002281 0.0000224 2313.6 135.60 78 0.00156252 0.00005438 0.0000218 2313.4 133.23 80 0.00151434 0.00005483 0.0000218 23141.3 132.17 81 0.00150485 0.0000248 0.0000208 23145.6 130.59 82 0.00148800 0.00005483 0.00002025 23155.2 127.06 84 0.00148940 0.00005539 0.00002251 0.0000208 2316.3 128.71 85 0.00148940 0.00005541 0.0000228 23174.5 120.00 84 0.00148965 0.00005240 <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th>							
72 0.00156888 0.00006141 0.00002929 0.0000240 23104.7 145.62 73 0.00159758 0.0000571 0.00002612 23111.3 143.20 74 0.00159758 0.00005511 0.00002216 23120.4 139.85 76 0.0016888 0.00005545 0.00002246 0.0000224 23122.2 136.63 77 0.00156264 0.00005438 0.0000218 23133.6 135.00 79 0.00156264 0.00005438 0.00002188 0.0000208 23141.3 132.17 80 0.00150017 0.00005435 0.00002152 23150.6 128.78 83 0.00149840 0.00005485 0.0000225 2315.2 127.06 84 0.00149840 0.00005594 0.0000228 2316.2 121.94 85 0.00149347 0.00005594 0.0000228 2316.2 121.94 87 0.00148940 0.00005594 0.0000228 2317.5 120.00 88 0.00149565 0.00002259 <td>71</td> <td>0,00158102</td> <td>0,00006339</td> <td>0,00003009</td> <td>0,00000246</td> <td>23098.8</td> <td>147.79</td>	71	0,00158102	0,00006339	0,00003009	0,00000246	23098.8	147.79
73 0,00156235 0,000025672 0,00002261 23111.3 143.20 74 0,00159758 0,00005672 0,00002261 23112.4 139.85 76 0,00162922 0,00005517 0,00002262 23124.4 138.39 77 0,00158522 0,00005545 0,00002367 0,0000218 23129.2 138.63 78 0,00154688 0,00005481 0,0000218 2313.4 133.23 80 0,00154688 0,00005483 0,0000218 23141.3 132.17 81 0,0015408 0,00005483 0,00002162 0,0000208 23145.6 130.59 82 0,00148800 0,00005485 0,0000217 0,0000205 23150.5 127.06 84 0,00148940 0,00005539 0,00002217 0,00000211 23164.6 123.62 85 0,00148940 0,00005598 0,00002212 23160.2 121.44 87 0,00142801 0,00005598 0,0000228 2318.4 114.71 90 0,001498	72	0,00156688	0,00006141	0,00002929	0,00000243	23104.7	145.62
74 0.00159758 0.00006672 0.00002514 0.0000236 23115.4 141.70 75 0.0016982 0.00005517 0.0000226 23124.4 138.39 77 0.00158522 0.00005438 0.00002246 23129.2 136.63 78 0.00156264 0.00005438 0.0000218 23138.4 133.23 80 0.00151434 0.00002433 0.0000208 23141.3 132.17 81 0.00151434 0.00005433 0.00002152 0.0000208 23145.6 128.78 82 0.00148803 0.00002162 0.0000009 23150.6 128.78 83 0.00148940 0.00002548 0.00002254 0.0000208 2316.3 125.21 84 0.00146940 0.00005594 0.00002264 23169.2 121.94 87 0.00142021 0.00005594 0.0000228 23174.5 120.00 88 0.00142024 0.00005284 0.00000228 23174.5 120.00 88 0.00149584 0.0000224	73	0,00156235	0,00005953	0,00002776	0,00000240	23111.3	143.20
75 0,00162922 0,00005545 0,0000261 23120.4 139.85 76 0,0016882 0,0000545 0,0000224 23129.2 136.63 77 0,00156264 0,00005438 0,0000218 23133.6 135.00 79 0,00156264 0,00005438 0,0000218 23138.4 133.23 80 0,0015017 0,00005431 0,0000218 23145.6 130.59 82 0,00149853 0,00005488 0,00002173 0,0000208 23145.6 130.59 83 0,00149800 0,0000539 0,00002251 0,00000208 2315.2 127.06 84 0,00146940 0,0000548 0,00002254 0,00000218 23160.3 125.21 85 0,00149247 0,00005495 0,0000215 23169.2 121.94 87 0,00149240 0,00005243 0,00002213 23174.5 120.01 88 0,00149246 0,00005242 0,00002213 23174.5 1114.71 90 0,00149768 0,00002263<	74	0,00159758	0,00005672	0,00002614	0,00000236	23115.4	141.70
76 0,00160888 0,00005545 0,00002260 23124.4 138.39 77 0,001562822 0,00005517 0,00002367 0,0000218 23133.6 135.00 78 0,00156264 0,00005438 0,0000218 0,0000218 23133.6 133.23 80 0,00151434 0,00005433 0,0000213 23134.4 133.23 80 0,00156488 0,0000213 0,0000208 23141.3 132.17 81 0,00148803 0,00002488 0,0000208 23150.6 128.78 83 0,00148940 0,00005594 0,00002261 0,0000208 23160.3 125.21 85 0,00146940 0,00005594 0,0000227 0,0000228 23169.2 121.94 86 0,00142948 0,00005594 0,0000228 23174.5 120.00 88 0,00149865 0,00005420 0,0000228 2318.9 114.71 90 0,00149865 0,0000237 0,0000228 2328.6 109.86 90.00149865 0,000	75	0,00162922	0,00005511	0,00002517	0,00000231	23120.4	139.85
77 0,00158522 0,00005437 0,00002281 0,00002241 23129.2 136.63 78 0,00156264 0,00005438 0,0000218 23138.4 133.23 79 0,00154688 0,00002431 0,0000208 23141.3 132.17 81 0,0015017 0,00005431 0,0000208 23145.6 130.59 82 0,00148953 0,00005475 0,0000208 23145.6 128.78 83 0,00148940 0,0000539 0,0002212 0,0000209 23150.5 127.06 84 0,00148940 0,0000539 0,0002254 0,0000201 23169.2 121.94 85 0,00148941 0,00005495 0,00002248 23174.5 120.00 86 0,00142948 0,00005433 0,00002248 23174.5 120.00 87 0,00148965 0,0000243 0,0000224 23174.5 120.00 88 0,00149458 0,00005434 0,00002248 2318.9 114.71 90 0,001490548 0,00002244 </td <td>76</td> <td>0,00160888</td> <td>0,00005545</td> <td>0,00002460</td> <td>0,00000226</td> <td>23124.4</td> <td>138.39</td>	76	0,00160888	0,00005545	0,00002460	0,00000226	23124.4	138.39
78 0,00156264 0,00005438 0,0000218 23133.6 135.00 79 0,00154688 0,00005483 0,00002183 23138.4 133.23 80 0,00151434 0,0005433 0,00002162 0,0000208 23141.3 132.17 81 0,0015017 0,0005483 0,0002162 0,0000208 23145.6 130.59 82 0,00149853 0,00005483 0,0002212 0,0000208 23160.3 125.21 84 0,00146940 0,00005539 0,0002254 0,0000208 23164.6 123.62 85 0,00146092 0,0000574 0,0000228 23174.5 120.00 86 0,00142801 0,0000574 0,0000228 2318.9 114.71 90 0,0014968 0,00005240 0,0000221 2328.6 109.86 91 0,00149650 0,00002575 0,0000221 2328.5 108.27 93 0,00149863 0,00005756 0,0000221 2328.5 108.27 93 0,00149382	77	0,00158522	0,00005517	0,00002367	0,00000224	23129.2	136.63
79 0,00154688 0,00005408 0,00002188 0,0000213 23138.4 133.23 80 0,00151434 0,00005431 0,00002153 0,0000208 23145.6 130.59 81 0,00149853 0,00005483 0,00002173 0,0000208 23150.6 128.78 83 0,00148800 0,00005539 0,00002173 0,0000208 23160.3 125.21 84 0,00146940 0,00005539 0,0000215 23169.2 121.94 85 0,00146942 0,00005549 0,0000215 23169.2 121.94 86 0,00142948 0,00005671 0,0000228 23174.5 120.00 88 0,00142948 0,00005430 0,0000228 2318.9 114.71 90 0,0014965 0,00002430 0,0000228 2328.5 108.27 91 0,0014965 0,0000557 0,0000228 2328.5 108.27 92 0,00151802 0,00005756 0,0000224 2327.0 104.66 92 0,001414184	78	0,00156264	0,00005438	0,00002281	0,00000218	23133.6	135.00
80 0,00151434 0,00005431 0,00002163 0,0000208 23141.3 132.17 81 0,00150017 0,00005475 0,0000208 2315.6 130.59 82 0,00148800 0,00005475 0,00002173 0,0000205 2315.6 128.78 83 0,00148900 0,0000539 0,0000212 0,0000208 23160.3 125.21 84 0,00146920 0,00005594 0,00002254 0,0000215 23169.2 121.94 85 0,00142948 0,00005598 0,0000228 23174.5 120.00 86 0,00142948 0,00005598 0,0000228 0,0000228 23188.9 114.71 90 0,00149768 0,00005240 0,00002248 0,0000228 2328.6 109.86 92 0,00151902 0,00005240 0,00002248 0,0000224 2327.4 104.66 93 0,00149268 0,00005240 0,0000224 2327.4 104.66 94 0,00143162 0,00005754 0,00002256 0,00002224	79	0,00154688	0,00005408	0,00002188	0,00000213	23138.4	133.23
81 0,00150017 0,00005483 0,00002162 0,0000208 23145.6 130.59 82 0,00148953 0,00005475 0,0000205 23150.6 128.78 83 0,00148940 0,00005495 0,00002212 0,0000209 23155.2 127.06 84 0,00149347 0,00005495 0,00002214 0,0000215 23160.6 123.62 86 0,00142804 0,00005495 0,0000228 23174.5 120.00 88 0,00142948 0,00005420 0,0000228 23189.9 114.71 90 0,00149766 0,00005420 0,0000228 23228.6 109.86 91 0,00149768 0,00005420 0,0000219 23242.5 108.27 93 0,00149865 0,0000557 0,0000219 23242.5 108.27 93 0,00144184 0,00005754 0,0000224 23274.0 104.66 95 0,00144184 0,00005755 0,0000222 2330.2 101.66 97 0,00143162 0,00005756 </td <td>80</td> <td>0,00151434</td> <td>0,00005431</td> <td>0,00002153</td> <td>0,00000208</td> <td>23141.3</td> <td>132.17</td>	80	0,00151434	0,00005431	0,00002153	0,00000208	23141.3	132.17
82 0,00149853 0,00005475 0,00002173 0,0000205 23150.6 128.78 83 0,00148800 0,00005498 0,00002212 0,0000209 23155.2 127.06 84 0,00146940 0,00005395 0,00002215 0,0000208 23160.3 122.52.1 85 0,00143947 0,00005594 0,00002215 20000211 23169.2 121.94 87 0,00142941 0,00005598 0,0000228 23174.5 120.00 88 0,00142948 0,00005433 0,0000228 2318.9 111.47 90 0,00149665 0,00002343 0,0000228 2328.6 109.86 91 0,00149520 0,00002343 0,0000228 2328.6 108.27 93 0,00149528 0,00002576 0,0000221 2328.5 108.27 93 0,00144184 0,00005756 0,0000222 2330.2 104.66 94 0,00144184 0,00005756 0,0000222 2334.5 99.94 96 0,0144438	81	0,00150017	0,00005483	0,00002162	0,00000208	23145.6	130.59
83 0,00148800 0,00005488 0,0002212 0,0000209 23155.2 127.06 84 0,00146940 0,00005539 0,00002254 0,0000208 23160.3 125.21 85 0,00149347 0,00005594 0,00002277 0,0000215 23169.2 121.94 86 0,001429481 0,00005594 0,0000228 23174.5 120.00 87 0,00142948 0,00005598 0,00002248 0,0000228 23188.9 118.11 89 0,00149768 0,00005420 0,00002142 0,0000228 2328.6 109.86 91 0,00149865 0,00005260 0,0000231 0,000219 2324.5 108.27 93 0,00149528 0,0005576 0,0000219 2325.8 106.29 94 0,00141438 0,0005756 0,0000222 2330.2 101.66 95 0,00143162 0,0005555 0,0000223 0,000.23 9.94 96 0,00143000 0,0005236 0,0000223 23330.5 98.18 <tr< td=""><td>82</td><td>0,00149853</td><td>0,00005475</td><td>0,00002173</td><td>0,00000205</td><td>23150.6</td><td>128.78</td></tr<>	82	0,00149853	0,00005475	0,00002173	0,00000205	23150.6	128.78
84 0,00146940 0,00005539 0,0002251 0,0000208 23160.3 125.21 85 0,00149347 0,00005495 0,00002254 0,0000211 23164.6 123.62 86 0,00146092 0,00005594 0,00002377 0,0000215 23174.5 120.00 87 0,00142948 0,00005420 0,00002428 0,0000228 2318.9 114.71 90 0,00149768 0,00005216 0,00002327 0,0000228 2328.6 109.86 91 0,00151802 0,00005260 0,00002327 0,0000219 23242.5 108.27 93 0,00149528 0,00005577 0,00002513 0,0000214 23274.0 104.66 95 0,00141438 0,00005756 0,0000221 2328.5 103.34 96 0,00143162 0,0005535 0,0000221 2330.2 101.66 97 0,00143020 0,0005260 0,0000222 2330.5 98.18 99 0,00143020 0,00005260 0,00002262 23406.3 <	83	0,00148800	0,00005488	0,00002212	0,00000209	23155.2	127.06
85 0,00149347 0,00005495 0,0000254 0,0000211 23164.6 123.62 86 0,00146092 0,00005594 0,00002377 0,0000208 23174.5 120.00 87 0,00142801 0,00005671 0,00002309 0,0000231 23179.6 118.11 89 0,00142948 0,00005343 0,00002428 0,0000231 23179.6 118.11 90 0,00149865 0,00005343 0,00002428 0,0000231 23215.2 111.40 91 0,00151802 0,0005577 0,0000219 23242.5 108.27 93 0,00149528 0,000557 0,00002513 0,0000214 23259.8 106.29 94 0,0014148 0,0005756 0,0000224 23274.0 104.66 95 0,00143162 0,00005755 0,0000224 2330.2 101.66 97 0,00143162 0,0005756 0,0000225 2330.2 101.66 97 0,00143030 0,0005256 0,0000226 23344.0 96.63 <t< td=""><td>84</td><td>0,00146940</td><td>0,00005539</td><td>0,00002251</td><td>0,00000208</td><td>23160.3</td><td>125.21</td></t<>	84	0,00146940	0,00005539	0,00002251	0,00000208	23160.3	125.21
86 0,00146092 0,00005594 0,00002377 0,0000215 23169.2 121.94 87 0,00142801 0,00005671 0,00002483 0,0000228 23174.5 120.00 88 0,00142948 0,00005598 0,0000220 0,0000021 23179.6 118.11 89 0,00149768 0,00005420 0,00002428 0,0000231 23179.6 118.11 90 0,00151802 0,00005420 0,00002428 0,2318.9 114.71 91 0,00151802 0,00005260 0,00002327 0,0000218 23228.6 109.86 92 0,00149528 0,0005575 0,0000213 0,2324.5 106.29 93 0,00144184 0,0005756 0,0000224 23274.0 104.66 95 0,00143162 0,00005756 0,0000222 2330.2 101.66 97 0,0014320 0,0005736 0,0000222 2334.0 96.63 90 0,0014320 0,0005236 0,0000223 2334.0 96.63 98	85	0,00149347	0,00005495	0,00002254	0,00000211	23164.6	123.62
87 0,00142801 0,00005671 0,00002483 0,0000228 23174.5 120.00 88 0,00142948 0,00005598 0,00002428 0,0000221 23179.6 118.11 89 0,00149768 0,00005420 0,00002428 0,0000221 23188.9 114.71 90 0,00149865 0,00005343 0,00002248 0,0000211 23215.2 111.40 91 0,00151802 0,00005560 0,00002347 0,0000219 23242.5 108.27 93 0,00149528 0,0005570 0,00002513 0,0000221 23255.5 103.34 95 0,00141438 0,0005756 0,0000226 0,0000222 2330.2 101.66 97 0,00143162 0,0005365 0,0000226 0,0000223 2333.5 98.18 99 0,00142820 0,00005366 0,0000223 2330.5 98.18 99 0,00148914 0,0005260 0,0000226 23344.0 96.63 100 0,00148914 0,0005260 0,0000278 <t< td=""><td>86</td><td>0,00146092</td><td>0,00005594</td><td>0,00002377</td><td>0,00000215</td><td>23169.2</td><td>121.94</td></t<>	86	0,00146092	0,00005594	0,00002377	0,00000215	23169.2	121.94
88 0,00142948 0,00005598 0,0002509 0,0000231 23179.6 118.11 89 0,00149768 0,00005420 0,00002428 0,0000228 23188.9 114.71 90 0,00149865 0,00005343 0,0000234 0,0000231 23215.2 111.40 91 0,00151802 0,00005260 0,0000237 0,0000218 23228.6 109.86 92 0,00151992 0,0000557 0,0000213 0,000219 2324.5 108.27 93 0,00144184 0,00005576 0,0000224 2327.40 104.66 95 0,00141148 0,00005756 0,0000222 2330.2 101.66 95 0,00143162 0,00005585 0,0000223 2330.5 98.18 96 0,0014309 0,00005346 0,0000224 2334.0 96.63 100 0,0014820 0,00005346 0,0000224 2334.0 98.48 99 0,00148314 0,00005420 0,0000233 0,304.3 94.87 101 <	87	0,00142801	0,00005671	0,00002483	0,00000228	23174.5	120.00
89 0,00149768 0,00005420 0,00002428 0,0000228 23188.9 114.71 90 0,00149865 0,00005343 0,0000234 0,0000231 23215.2 111.40 91 0,00151802 0,00005260 0,0000237 0,0000219 23242.5 108.27 93 0,00149528 0,00005557 0,0000251 0,0000224 23274.0 104.66 95 0,00141184 0,0005734 0,0000256 0,0000221 23285.5 103.34 96 0,00143162 0,0005756 0,0000226 2330.2 101.66 97 0,00142820 0,0005346 0,0000226 2330.2 101.66 97 0,0014280 0,0005346 0,00002176 0,0000222 23315.2 99.94 98 0,0014309 0,0005260 0,0000228 0,2034.0 96.63 100 0,00148914 0,00005260 0,0000228 23344.0 96.63 101 0,00149382 0,00002331 0,0000245 23344.8 85.08	88	0,00142948	0,00005598	0,00002509	0,00000231	23179.6	118.11
900,001498650,000053430,000024280,000023123215.2111.40910,001518020,000052160,000023040,000022823228.6109.86920,001519920,00055570,00002170,000021923242.5108.27930,001495280,00055570,000025130,000021923259.8106.29940,0014141840,00057340,00002560,000022423274.0104.66950,001414380,00057560,00002560,000022223300.2101.66970,001428200,00055850,00002260,000022223315.299.94980,00143000,00052360,00002160,000022323330.598.18990,001443030,00052360,00002160,000022423359.494.871010,001439300,00053490,00022980,000026223340.096.631000,001489140,00054200,0002310,00002742359.494.871010,001493820,00054200,00023310,000027823446.389.491020,001518910,00054220,00023310,00002782344.885.081040,001516760,00005410,000023760,00002742352.976.351050,001541920,0005410,000023510,00002742352.976.351060,001491480,00055770,00002540,00002742356.371.501050,001450730,0005577	89	0,00149768	0,00005420	0,00002428	0,00000228	23188.9	114.71
91 0,00151802 0,00005216 0,00002304 0,0000228 23228.6 109.86 92 0,00151992 0,00005500 0,00002327 0,0000219 23242.5 108.27 93 0,00149528 0,00005557 0,0000213 2,00000224 23274.0 104.66 95 0,00144184 0,00005756 0,00002596 0,00000222 23300.2 101.66 97 0,00142820 0,00005585 0,00002260 0,0000222 23315.2 99.94 98 0,00143090 0,00005346 0,00002176 0,0000223 23330.5 98.18 99 0,00148010 0,00005346 0,00002190 0,0000226 23344.0 96.63 100 0,00148914 0,00005260 0,00002190 0,0000224 23406.3 89.49 102 0,0015382 0,00005349 0,0000233 0,0000278 23428.6 86.93 104 0,0015481 0,00005422 0,0000278 23444.8 85.08 105 0,00150192 0,0005441	90	0,00149865	0,00005343	0,00002428	0,00000231	23215.2	111.40
92 0,00151992 0,00005260 0,00002327 0,0000219 23242.5 108.27 93 0,00149528 0,00005577 0,0000213 0,0000214 23259.8 106.29 94 0,00144184 0,00005734 0,00002596 0,0000224 23274.0 104.66 95 0,00141438 0,00005756 0,00002596 0,0000222 23300.2 101.66 97 0,00142820 0,00005585 0,00002176 0,0000223 23330.5 98.18 99 0,00145430 0,00005236 0,00002190 0,0000226 23344.0 96.63 100 0,00148914 0,00005260 0,00002190 0,0000225 23346.3 89.49 101 0,00148914 0,00005240 0,0000231 0,0000271 23415.1 88.47 103 0,00150382 0,00005420 0,0000278 23428.6 86.93 104 0,00151891 0,0005422 0,0000278 23444.8 85.08 105 0,00150192 0,0005441 0,0000274	91	0,00151802	0,00005216	0,00002304	0,00000228	23228.6	109.86
930,001495280,000055570,000025130,000021923259.8106.29940,001441840,00057340,000026250,000022423274.0104.66950,001414380,00057560,000025960,00002222330.2101.66970,001428200,00005850,00002400,000022223315.299.94980,001430900,00053460,00021760,000022323330.598.18990,001454300,00052600,00021900,000024523344.096.631000,001489140,00052600,00021900,00002622344.094.871010,001493820,00053490,00022980,000027423415.188.471020,001503820,00054200,00023310,00002782344.885.081040,001516760,00054400,00023760,00002782344.885.081050,001501920,00054310,00023760,000027423520.976.351070,001501320,00054310,00025450,00002742352.374.361080,001487530,000054760,000025423563.271.501100,001448760,00055970,000025423563.271.501110,001447050,00055970,00002542358.768.451120,001428780,00055870,00002542358.966.601130,001435230,00055870,000024470,00002472361.365.01 <td< td=""><td>92</td><td>0,00151992</td><td>0,00005260</td><td>0,00002327</td><td>0,00000219</td><td>23242.5</td><td>108.27</td></td<>	92	0,00151992	0,00005260	0,00002327	0,00000219	23242.5	108.27
940,001441840,00057340,00026250,000022423274.0104.66950,001414380,00057560,00025960,000022123285.5103.34960,001431620,00057150,00025690,00002222330.2101.66970,001428200,00055850,00024200,000022223315.299.94980,001430900,00053460,00021760,00002232333.598.18990,001454300,00052360,00021900,00002452334.096.631000,001489140,00052600,00021900,00002452334.394.871010,001493820,00054200,00023310,000027123415.188.471020,001503820,00054200,00023310,00002782344.885.081030,001516760,00054400,00023760,00002782344.885.081040,001516760,00054310,00023760,00002742352.976.351070,001501920,00054310,00023500,00002742358.274.361080,001487530,00055070,00025450,000025423551.372.861090,001444960,00056260,00002542358.271.501100,001428780,00056290,00002542359.768.451110,001428780,00056290,00002542359.768.451120,00142880,00056270,00002242360.966.60113 <t< td=""><td>93</td><td>0,00149528</td><td>0,00005557</td><td>0,00002513</td><td>0,00000219</td><td>23259.8</td><td>106.29</td></t<>	93	0,00149528	0,00005557	0,00002513	0,00000219	23259.8	106.29
950,001414380,00057560,00025960,000022123285.5103.34960,001431620,00057150,00025690,00002222330.2101.66970,001428200,00055850,00024200,000022223315.299.94980,001430900,00053460,00021760,000022323330.598.18990,001454300,00052600,00021900,000024523344.096.631000,001489140,00052600,00021900,000024523359.494.871010,001493820,00054200,00022980,000026223406.389.491020,001503820,00054200,00023310,000027123415.188.471030,001518910,00054220,00023760,000027823428.686.931040,001516760,00054400,00023760,00002782344.885.081050,001501920,00054380,0002310,000027423520.976.351070,00150230,00054310,00025050,000027223538.274.361080,001487530,00055070,00025050,000026823551.372.861090,001483070,00055970,00025490,000023323577.469.871110,001428780,00056290,00025500,00002252358.768.451120,001428080,00056210,000254723605.966.601130,001447030,00058770,00023920,000	94	0,00144184	0,00005734	0,00002625	0,00000224	23274.0	104.66
960,001431620,000057150,000025690,000002222330.2101.66970,001428200,000058550,000024200,000022223315.299.94980,001430900,000053460,000021760,000022323330.598.18990,001454300,00052360,000021900,000024523359.494.871010,001489140,00052600,00023310,000024523406.389.491020,001503820,00054200,00023310,000027123415.188.471030,001518910,00054220,00023310,000027823428.686.931040,001516760,00054400,00023760,00002782344.885.081050,001501920,00054380,00023160,000027423520.976.351060,001491480,00054380,00023050,000027423520.974.361080,001487530,00055070,00025050,000026823551.372.861090,001487530,00055970,00025050,000026823551.372.861090,001487630,00056260,00025050,000023323577.469.871110,001428780,00056290,00025500,00002252358.768.451120,001428080,00056210,00024470,000022423605.966.601130,001435230,00055870,00023920,00002252361.363.69	95	0,00141438	0,00005756	0,00002596	0,00000221	23285.5	103.34
970,001428200,000055850,000024200,000022223315.299.94980,001430900,000053460,000021760,000022323330.598.18990,001454300,000052360,000020980,000024523344.096.631000,001489140,000052600,000021900,000024523359.494.871010,001493820,000054200,00002310,000027123416.188.471020,001503820,000054200,000023310,000027123415.188.471030,001518910,00054220,000023310,000027823428.686.931040,001516760,000054400,00023760,000027823444.885.081050,001501920,000054410,00023200,000027423520.976.351060,001491480,00054380,00023050,00002742358.274.361080,001487530,00055070,00025050,000025423563.271.501100,001443070,00055970,00025490,000025423563.271.501110,001428780,00056260,00025500,000023323577.469.871110,001428780,00056270,000025423605.966.601130,001435230,00055870,000023920,000022723619.765.011140,001447030,000054780,0000239223631.363.69	96	0,00143162	0,00005715	0,00002569	0,00000222	23300.2	101.66
980,001430900,000053460,000021760,000022323330.598.18990,001454300,000052360,000020980,000022623344.096.631000,001489140,00052600,000021900,000024523359.494.871010,001493820,000053490,000023310,000026223406.389.491020,001503820,00054200,00023310,000027123415.188.471030,001518910,00054220,00023330,000027823428.686.931040,001516760,00054400,00023760,000027823444.885.081050,001501920,00054410,00023760,000027823460.983.231060,001491480,00054380,00023020,000027423520.976.351070,001500230,00055070,00025050,000026823551.372.861080,001487530,00055070,00025050,000023323577.469.871100,001428780,00056260,00025050,000022323589.768.451120,001428080,00056210,00024470,000022423605.966.601130,001435230,00055870,000023920,000022723619.765.011140,001447030,00054780,000023960,000025923631.363.69	97	0,00142820	0,00005585	0,00002420	0,00000222	23315.2	99.94
990,001454300,000052360,000020980,000022623344.096.631000,001489140,000052600,000021900,000024523359.494.871010,001493820,000053490,000022980,000026223406.389.491020,001503820,000054200,000023310,000027123415.188.471030,001518910,000054220,000023930,000027823428.686.931040,001516760,000054400,000023760,000027823444.885.081050,001501920,000054410,00023510,000027423520.976.351060,001491480,000054380,00002300,000027223538.274.361080,001487530,000055070,000025050,000026823551.372.861090,001448760,000056260,000025423563.271.501100,001428780,000056290,000025050,000023323577.469.871110,001428780,000056290,0000250523689.768.451120,001428080,000056210,000025023605.966.601130,001447030,000054780,000023920,000022723611.363.69	98	0,00143090	0,00005346	0,00002176	0,00000223	23330.5	98.18
1000,001489140,000052600,000021900,000024523359.494.871010,001493820,000053490,00002980,000026223406.389.491020,001503820,000054200,00002310,000027123415.188.471030,001518910,000054220,000023930,000027823428.686.931040,001516760,000054400,000023760,000027823444.885.081050,001501920,00054410,00023510,000027423520.983.231060,001491480,00054380,00023020,000027423520.976.351070,001500230,00054310,00025050,000027223538.274.361080,001487530,00055070,00025050,000026823551.372.861090,001443070,00055970,00025490,000023323577.469.871110,001428780,00056290,00025500,000022523589.768.451120,001428080,00056210,00023920,000022423605.966.601130,001435230,00055870,00023920,000022723619.765.011140,001447030,00054780,00023960,000025923631.363.69	99	0,00145430	0,00005236	0,00002098	0,00000226	23344.0	96.63
1010,001493820,000053490,000022980,000026223406.389.491020,001503820,000054200,000023310,000027123415.188.471030,001518910,000054220,000023930,000027823428.686.931040,001516760,000054400,000023760,000027823444.885.081050,001501920,000054410,00023510,000028023460.983.231060,001491480,00054380,00023200,000027423520.976.351070,001500230,000054310,00024460,000027223538.274.361080,001487530,000055070,00025050,000026823551.372.861090,00144960,000056260,000025423563.271.501100,001428780,000056270,00025490,000023323577.469.871110,001428780,000056210,000025423605.966.601130,001435230,00005870,00023920,000022723619.765.011140,001447030,000054780,000023960,000025923631.363.69	100	0,00148914	0,00005260	0,00002190	0,00000245	23359.4	94.87
1020,001503820,000054200,000023310,000027123415.188.471030,001518910,000054220,000023930,000027823428.686.931040,001516760,000054400,000023760,000027823444.885.081050,001501920,000054410,000023510,000028023460.983.231060,001491480,000054380,00002300,000027423520.976.351070,001500230,000054310,000024460,000027223538.274.361080,001487530,00005070,000025050,000026823551.372.861090,001444960,000056260,000026110,000025423563.271.501100,001428780,000056290,000025500,000022323577.469.871110,001428780,000056210,000024470,000022423605.966.601130,001435230,00005870,00023920,000022723619.765.011140,001447030,000054780,000023960,000025923631.363.69	101	0,00149382	0,00005349	0,00002298	0,00000262	23406.3	89.49
1030,001518910,000054220,000023930,0000027823428.686.931040,001516760,000054400,000023760,0000027823444.885.081050,001501920,000054410,000023510,000028023460.983.231060,001491480,000054380,000023200,000027423520.976.351070,001500230,000054310,000024460,000027223538.274.361080,001487530,000055070,000025050,000026823551.372.861090,001444960,000056260,000026110,000025423563.271.501100,001453070,000055970,000025050,000023323577.469.871110,001428780,000056290,00002500,000022423605.968.451120,001428080,000056210,000023920,000022723619.765.011130,001447030,000054780,000023960,000025923631.363.69	102	0,00150382	0,00005420	0,00002331	0,00000271	23415.1	88.47
1040,001516760,000054400,000023760,0000027823444.885.081050,001501920,000054410,000023510,000028023460.983.231060,001491480,000054380,000023200,0000027423520.976.351070,001500230,000054310,000024460,000027223538.274.361080,001487530,000055070,000025050,000026823551.372.861090,001444960,000056260,000026110,000025423563.271.501100,001428070,000055970,000025050,000023323577.469.871110,001428780,000056290,000025050,000022523589.768.451120,001428080,000056210,000024470,000022423605.966.601130,001435230,000058770,000023920,000022723619.765.011140,001447030,000054780,000023960,000025923631.363.69	103	0,00151891	0,00005422	0,00002393	0,00000278	23428.6	86.93
1050,001501920,000054410,000023510,0000028023460.983.231060,001491480,000054380,000023200,000027423520.976.351070,001500230,000054310,000024460,000027223538.274.361080,001487530,000055070,000025050,0000026823551.372.861090,001444960,00056260,000026110,000025423563.271.501100,001453070,000055970,000025490,000023323577.469.871110,001428780,000056290,000025050,000022523589.768.451120,001428080,00056210,000024470,000022423605.966.601130,001435230,000058770,000023920,000022723619.765.011140,001447030,000054780,000023960,000025923631.363.69	104	0,00151676	0,00005440	0,00002376	0,00000278	23444.8	85.08
1060,001491480,000054380,000023200,0000027423520.976.351070,001500230,000054310,000024460,000027223538.274.361080,001487530,000055070,000025050,000026823551.372.861090,001444960,000056260,000026110,000025423563.271.501100,001453070,000055970,000025490,000023323577.469.871110,001428780,000056290,000025500,000022523589.768.451120,001428080,000056210,000024470,000022423605.966.601130,001435230,000058770,000023920,000022723619.765.011140,001447030,000054780,000023960,000025923631.363.69	105	0,00150192	0,00005441	0,00002351	0,00000280	23460.9	83.23
1070,001500230,000054310,000024460,0000027223538.274.361080,001487530,000055070,000025050,0000026823551.372.861090,001444960,000056260,000026110,000025423563.271.501100,001453070,000055970,000025490,000023323577.469.871110,001428780,000056290,000025000,000022523589.768.451120,001428080,000056210,000024470,0000022423605.966.601130,001435230,000058770,000023920,000022723619.765.011140,001447030,000054780,000023960,000025923631.363.69	106	0,00149148	0,00005438	0,00002320	0,00000274	23520.9	76.35
1080,001487530,000055070,000025050,0000026823551.372.861090,001444960,000056260,000026110,000025423563.271.501100,001453070,000055970,000025490,0000023323577.469.871110,001428780,000056290,000025050,0000022523589.768.451120,001428080,000056210,000024470,0000022423605.966.601130,001435230,000055870,000023920,000022723619.765.011140,001447030,000054780,000023960,000025923631.363.69	107	0,00150023	0,00005431	0,00002446	0,00000272	23538.2	74.36
1090,001444960,000056260,000026110,000025423563.271.501100,001453070,000055970,000025490,0000023323577.469.871110,001428780,000056290,000025500,0000022523589.768.451120,001428080,000056210,000024470,0000022423605.966.601130,001435230,000055870,000023920,0000022723619.765.011140,001447030,000054780,000023960,000025923631.363.69	108	0,00148753	0,00005507	0,00002505	0,00000268	23551.3	72.86
1100,001453070,000055970,000025490,000023323577.469.871110,001428780,000056290,00002500,0000022523589.768.451120,001428080,000056210,000024470,0000022423605.966.601130,001435230,00005870,000023920,0000022723619.765.011140,001447030,000054780,000023960,0000025923631.363.69	109	0,00144496	0,00005626	0,00002611	0,00000254	23563.2	71.50
1110,001428780,000056290,000025500,0000022523589.768.451120,001428080,000056210,000024470,0000022423605.966.601130,001435230,000055870,000023920,000022723619.765.011140,001447030,000054780,000023960,000025923631.363.69	110	0,00145307	0,00005597	0,00002549	0,0000233	23577.4	69.87
1120,001428080,000056210,000024470,0000022423605.966.601130,001435230,000055870,000023920,0000022723619.765.011140,001447030,000054780,000023960,0000025923631.363.69	111	0,00142878	0,00005629	0,00002550	0,00000225	23589.7	68.45
1130,001435230,000055870,000023920,0000022723619.765.011140,001447030,000054780,000023960,0000025923631.363.69	112	0,00142808	0,00005621	0,00002447	0,00000224	23605.9	66.60
114 0,00144703 0,00005478 0,00002396 0,0000259 23631.3 63.69	113	0,00143523	0,00005587	0,00002392	0,00000227	23619.7	65.01
	114	0,00144703	0,00005478	0,00002396	0,0000259	23631.3	63.69

115	0,00143408	0,00005380	0,00002345	0,00000270	23650.5	61.49
116	0,00145479	0,00005212	0,00002296	0,00000265	23662.4	60.12
117	0,00149817	0,00005157	0,00002227	0,00000254	23675.9	58.58
118	0,00151205	0,00005102	0,00002187	0,00000247	23689.3	57.03
119	0,00152301	0,00005156	0,00002119	0,00000218	23703.9	55.36
120	0,00149662	0,00005295	0,00002186	0,00000208	23715.9	53.99
121	0,00150401	0,00005370	0,00002169	0,00000208	23727.0	52.71
122	0,00151499	0,00005309	0,00002133	0,00000204	23737.4	51.52
123	0,00150926	0,00005272	0,00002163	0,00000203	23752.0	49.85
124	0,00153120	0,00005234	0,00002181	0,00000202	23763.9	48.48
125	0,00156490	0,00005162	0,00002145	0,00000200	23812.8	42.88
126	0,00156347	0,00005188	0,00002178	0,00000202	23829.7	40.94
127	0,00151388	0,00005297	0,00002275	0,00000212	23850.1	38.60
128	0,00149379	0,00005363	0,00002326	0,00000215	23863.2	37.10
129	0,00145110	0,00005303	0,00002350	0,00000222	23878.5	35.34
130	0,00142743	0,00005277	0,00002371	0,00000219	23895.5	33.40
131	0,00143718	0,00005219	0,00002413	0,00000215	23908.2	31.94
132	0,00142629	0,00005178	0,00002439	0,00000208	23926.2	29.87
133	0,00148324	0,00005041	0,00002327	0,00000205	23942.0	28.06
134	0,00151570	0,00005066	0,00002273	0,00000203	23954.9	26.58
135	0,00153450	0,00005160	0,00002303	0,00000209	23967.8	25.11
136	0,00148262	0,00005288	0,00002402	0,00000226	23979.0	23.81
137	0,00147082	0,00005377	0,00002463	0,00000241	23991.4	22.40
138	0,00140089	0,00005526	0,00002652	0,00000261	24003.7	20.99
139	0,00135389	0,00005626	0,00002824	0,00000278	24014.4	19.76
140	0,00135809	0,00005619	0,00002832	0,00000281	24028.8	18.11
141	0,00143001	0,00005531	0,00002654	0,00000267	24045.7	16.17
142	0,00144818	0,00005451	0,00002548	0,00000253	24059.6	14.58
143	0,00148714	0,00005391	0,00002383	0,00000230	24073.4	12.99
144	0,00152003	0,00005323	0,00002167	0,00000204	24084.7	11.70
145	0,00150410	0,00005291	0,00002086	0,00000192	24095.4	10.47
146	0,00146442	0,00005304	0,00002132	0,00000191	24107.8	9.05
147	0,00148292	0,00005287	0,00002083	0,0000187	24120.6	7.59
148	0,00150302	0,00005256	0,00002051	0,00000186	24134.4	6.00
149	0,00150314	0,00005250	0,00002075	0,00000189	24149.8	4.23
150	0,001626181	5,0929E-05	1,96187E-05	1,90051E-06	24166.7	2.29
151	0,001464378	5,32353E-05	2,07394E-05	1,82514E-06	24180.0	0.76

9.3 Estándar IGLES 36.

	RELACIÓN DE INTENSIDADES					
Número de medición	²⁶ Mg/ ⁴³ Ca	⁸⁸ Sr/ ⁴³ Ca	¹³⁷ Ba/ ⁴⁶ Ca	²³⁸ U/ ⁴⁶ Ca		
IGLES 36-01	0.023433	0.000184	5.74E-05	5.99643E-08		
IGLES 36-02	0.023223	0.000183	5.72E-05	6.0297E-08		
IGLES 36-03	0.023013	0.000183	5.71E-05	6.06297E-08		
IGLES 36-04	0.023083	0.000183	5.79E-05	6.31502E-08		
IGLES 36-05	0.023118	0.000184	5.84E-05	6.44104E-08		
IGLES 36-06	0.023152	0.000184	5.88E-05	6.56707E-08		
IGLES 36-07	0.023137	0.000184	5.87E-05	6.56109E-08		
IGLES 36-08	0.02313	0.000184	5.86E-05	6.5581E-08		
IGLES 36-09	0.023122	0.000184	5.86E-05	6.55511E-08		
IGLES 36-10	0.023233	0.000189	6.11E-05	7.03541E-08		
IGLES 36-11	0.023289	0.000191	6.24E-05	7.27557E-08		
IGLES 36-12	0.023344	0.000193	6.37E-05	7.51572E-08		
IGLES 36-13	0.02319	0.000194	6.27E-05	7.37024E-08		
IGLES 36-14	0.023113	0.000195	6.23E-05	7.2975E-08		
IGLES 36-15	0.023036	0.000195	6.18E-05	7.22476E-08		
IGLES 36-16	0.023	0.000192	6.12E-05	7.19628E-08		
IGLES 36-17	0.022982	0.00019	6.09E-05	7.18204E-08		
IGLES 36-18	0.022964	0.000188	6.05E-05	7.1678E-08		
IGLES 36-19	0.022899	0.00019	6.07E-05	7.29599E-08		
IGLES 36-20	0.022866	0.000191	6.08E-05	7.36009E-08		
IGLES 36-21	0.022833	0.000192	6.08E-05	7.42419E-08		
2σ	0.000308	8.62E-06	3.93E-06	1.01822E-08		
%RSD	1.33%	4.58%	6.54%	14.80%		

10. Tasa de crecimiento.

Muestra	Distancia desde la base (mm)	Años A.P.	$ \begin{array}{c} \textbf{Tasa de} \\ \textbf{crecimiento} \\ \left(\frac{\Delta Dis \tan cia(mm)}{\Delta E dad(a \tilde{n} os)} \right) \end{array} \end{array} $
101	3.98	24152	0.115
100	114.29	23190	0.115
	114.29		0.367
4	241.42	22844	0.367
	241.42		0.774

1	278.55	22796	0.774			
	278.55		0.172			
5	318.64	22563	0.172			

11. Composición isotópica de Uranio [²³⁴U/²³⁸U].

Muestra	[²³⁴ U/ ²³⁸ U]	Años A.P.
101	1.382	24152
100	1.327	23190
4	1.328	22844
1	1.323	22796
5	1.322	22563