

UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO

POSGRADO EN CIENCIAS BIOLÓGICAS FACULTAD DE CIENCIAS

BIOLOGÍA Y PESQUERÍA DE LA LANGOSTA Panulirus gracilis STREETS 1871 EN EL SUR DE SINALOA, MÉXICO

T E S I S

QUE PARA OBTENER EL GRADO ACADÉMICO DE

DOCTOR EN CIENCIAS (BIOLOGÍA)

P R E S E N T A

RAÚL PÉREZ GONZÁLEZ

DIRECTOR DE TESIS: DR. MICHEL E. HENDRICKX RENERS

MÉXICO, D.F.

MAYO 2008

UNAM – Dirección General de Bibliotecas Tesis Digitales Restricciones de uso

DERECHOS RESERVADOS © PROHIBIDA SU REPRODUCCIÓN TOTAL O PARCIAL

Todo el material contenido en esta tesis esta protegido por la Ley Federal del Derecho de Autor (LFDA) de los Estados Unidos Mexicanos (México).

El uso de imágenes, fragmentos de videos, y demás material que sea objeto de protección de los derechos de autor, será exclusivamente para fines educativos e informativos y deberá citar la fuente donde la obtuvo mencionando el autor o autores. Cualquier uso distinto como el lucro, reproducción, edición o modificación, será perseguido y sancionado por el respectivo titular de los Derechos de Autor.

DEDICATORIA

A mi esposa Irma Laura e hijos Raúl Gamaliel y Horacio

A mis padres Refugio y Estela

Agradecimientos

Al Dr. Michel E. Hendrickx Reners por el apoyo brindado durante mi formación académica y por su acertada dirección de la presente tesis. También agradezco de manera especial al comité tutorial de doctorado inicial, el cual incluye al Dr. Oscar Sosa Nishizaki. El manuscrito final se enriqueció y mejoró por los comentarios y correcciones del jurado de tesis: director y los Drs. Enrique Lozano Álvarez, Adolfo Fernando Álvarez Noquera, Gasca, José Villalobos Hiriart, Sergio Cházaro Olvera e Isaías Salgado Ugarte.

La ayuda técnica en el campo y laboratorio fue fundamental, por lo que se agradece de manera particular a Luis M. Valadez Manzano y Arturo Nuñez Pastén por su ayuda durante ese proceso, así como a todo el apoyo bibliográfico brindado por María Clara Ramírez Jaúregui. Además, cabe destacar que los datos obtenidos fue a través del apoyo incondicional brindado por los pescadores cooperativas de producción pesquera Punta Tiburón y José María Canizalez y el financiamiento fue otorgado por la Dirección General de Investigación Científica y Superación Académica de la Secretaría de Educación Pública.

Se agradece el apoyo económico brindado por el Consejo Nacional de Ciencia y Tecnología a través de una beca de posgrado y al Programa de Mejoramiento del Profesorado de la Secretaría de Educación Pública.

El procesamiento de los datos se realizó en los laboratorios del 'Programa Langosta' de la Facultad de Ciencias del Mar de la Universidad Autónoma de Sinaloa y de 'Invertebrados Bentónicos' del Instituto de Ciencias del Mar y Limnología-Unidad Académica Mazatlán de la Universidad Nacional Autónoma de México.

CONTENIDO

Resumen.
Abstract.
Lista de figuras.
Lista de tablas.

1	Introducción	1
2	Antecedentes	4
3	Objetivos	10
4	Área de estudio	11
5	Material y métodos	15
	Variables hidrográficas. - Temperatura. - Salinidad. - Oxígeno disuelto. - Profundidad. Parámetros biológicos. - Información de campo. - Identificación. - Sexo. - Actividad reproductiva en las hembras. - Longitud del cefalotórax (LC). - Longitud total (LT). - Anchura del cefalotórax. - Peso total (PT). - Captura y esfuerzo pesquero. Actividades de laboratorio y de gabinete. - Relación peso (PT)-longitud del cefalotórax (LC). - Estructura poblacional. - Crecimiento. - Aspectos de la reproducción. - Fecundidad. - Captura, esfuerzo pesquero y captura por unidad de esfuerzo (CPUE).	15 16 16 17 17 19 19 20 20 20 21 22 23 24 25 27

6	Resultados	30
	Variables hidrológicas Variaciones diurnas Aspectos biológicos - Relaciones biométricas - Relación PT vs LC - Estructura de la población - Parámetros estadísticos básicos - Distribución de tallas - Proporción de sexos - Crecimiento - Temperatura del agua y su relación con el	30 32 40 40 41 52 52 55 64
	crecimiento y composición de la población	69 74
	 Proporción temporal de las fases de madurez sexual	74 78 78 78 87 93 93 100 100 104 111
	unidad de esfuerzo (CPUE)	111 111 115
7	Discusión	121
	- Hidrología	121 123 123 126

	Pag	J •
	- Crecimiento	134 137 139
	(CPUE)	143
	Conclusiones	147
8	Literatura citada	151
	Anándices	172

RESUMEN

La presente investigación aporta información sobre poblacionales básicas, características reproductiva y principales datos pesqueros de la langosta espinosa Panulirus gracilis en la costa sur de Sinaloa. Las medias mensuales de la longitud del cefalotórax (LC) de los organismos se presentaron entre 63.95 y 81.90 mm, excepto un valor de 87.39 mm en los machos durante mayo de 1989, con la mayoría de los ejemplares entre 70.0 y 75.0 mm. La pendiente de la relación peso total con la longitud del cefalotórax (PT-LC) indicó un crecimiento isométrico para sexos considerados en forma conjunta y para hembras; mientras que la ordenada al origen (factor condición) mostró un patrón temporal con los valores más elevados al final de verano y durante el otoño. proporción de sexos presentó un comportamiento temporal, con los menores porcentajes de hembras durante verano y otoño. Los valores de la longitud asintótica (L∞) y tasa de crecimiento (K) fueron mayores en los machos, con medias de 135.0 mm de LC y 0.38, respectivamente; mientras que en las hembras fueron de 128.0 mm y 0.33. K fue mayor durante los meses cálidos (mayo-noviembre) cuando la temperatura del agua fue más elevada. Durante el período de estudio se encontraron hembras en todas las fases de madurez sexual, aunque con una proporción de hembras ovígeras notablemente mayor en verano e inicio del otoño. La talla de primera madurez sexual fue de 74.6 mm de LC en 1990 y de 74.5 mm en 1991 y 1990-1991 cuando se consideraron a las fases sexuales 2-6 como hembras maduras, y de 73.4 mm en 1990, 74.4 mm en 1991 y 74.2 mm en 1990-1991 cuando se tomó como hembras maduras a las fases 2-5. El número de huevecillos por desove varió entre 76,727 para una hembra con 60.0 mm de LC (250 g de PT) a 1,115,060 para una hembra con 80.0 mm (510 g de PT). La fecundidad media varió en función de la época del año, encontrándose diferencias significativas entre las cuatro épocas, con el menor valor durante el invierno. La captura (C), el esfuerzo pesquero (f) y la captura por unidad de esfuerzo (CPUE) fueron más elevados al inicio de cada temporada de pesca, disminuyeron entre diciembre y enero para nuevamente aumentar, pero en menor proporción que al comienzo de la temporada. La CPUE varió entre 1.32 y 12.72 kg/embarcación/mes, con el mínimo en diciembre de 1990 y el máximo en septiembre de 1989. La relación C-f presentó el mayor valor en el factor determinación (R^2 = 0.4728), mientras que en las relaciones entre C-CPUE (0.1947) y CPUE-f (-0.0401) fue muy bajo. Sin embargo, se observó una relación directa entre C y CPUE, es decir, que al aumentar la C también se incrementa la CPUE y viceversa.

Biology and fishery of the lobster *Panulirus gracilis*Streets 1871 in southern Sinaloa, Mexico

ABSTRACT

This study concerns on the biology, population dynamics and fishery of the spiny lobster Panulirus gracilis in southern Sinaloa, focusing mainly on its population characteristics, reproductive biology and fishery. The monthly means of carapace length (CL) ranged between 63.95 and 81.90 mm, except in May 1989 for the males (87.39 mm CL). The CL of most of individuals ranged from 70.0 to 75.0 mm CL. The slope of the regression equation between total weight (TW) and CL indicated isometric growth for the females and when The considering jointly females and males. intercept (condition factor) showed a seasonal trend, with the higher values during late summer through autumn and the lower in winter, spring and early summer. Also the sex ratio of the lobsters landed showed a seasonal trend: males consistently more abundant in summer and autumn females, which were more abundant in spring. Males had higher values of asymptotic length (L_{∞}) and the growth coefficient (K) (135.0 mm CL and 0.38, respectively); while those of females were 128.0 mm and 0.33. K was higher during the warmer months (May-November), when temperature was higher. Females were found year-around in all stages of sexual maturity, but ovigerous females were more abundant in summer and early autumn. Considering as mature females those of the stages 2-6, the size at the onset of maturity (SOM) was 74.6 mm CL in 1990 and 74.5 mm in 1991 and 1990-1991; whereas considering stages 2-5 SOM was 73.4 mm CL in 1990, 74.4 mm in 1991 and 74.2 mm in 1990-1991. The number of eggs in a brood ranged from 76,727 for a 60.0 mm CL (250 g TW) female to 1,115,060 for a 80 mm CL (510 g TW) female. The regression slopes of brood size TWfor the four seasons were significantly versus different, indicating that the mean brood size of female P. gracilis changes as function of season. Catch per unit of effort (CPUE) ranged from 1.32 to 12.72 kg/boat/month, with the lower and higher values in December 1990 and September 1989, respectively. The catch (C)-effort (f) relationship showed the higher value of the determination coefficient $(R^2 = 0.4728)$, those of C-f $(R^2 = 0.1947)$ and CPUE-f $(R^2 = -1.1947)$ 0.0401) were by far lower.

Lista de figuras

		Pag.	,
Figura Figura		Localización del área de estudio Localización de las estaciones de muestreo	14
		donde se monitorearon las variaciones diurnas de la temperatura, la salinidad y la	
		concentración del oxígeno disuelto (1989 y 1990), en la bahía de Mazatlán, Sinaloa	16
Figura	3.	Red de enmalle conocida como 'chinchorro langostero' utilizada en la región del sur de Sinaloa en la pesca de langosta. Se observa	
Figura	1	una langosta <i>Panulirus gracilis</i> enmallada Trampa de madera tipo californiana utilizada	18
rigura	4.	en la pesca de langosta en el sur de Sinaloa. En la fotografía se observa la trampa en	
Figura	E	recuperación Medidas tomadas a la langosta espinosa	18
Figura	5.	Panulirus gracilis. AC= ancho del cefalotórax; LC= longitud del cefalotórax;	
 '	_	LT= longitud total	21
Figura	6.	Variación de la temperatura del agua de la superficie y del fondo, entre febrero de 1989 y enero de 1992 en la costa del sur de	
n!	7	Sinaloa	31
Figura	/ .	Variación de la salinidad de la superficie y del fondo, entre febrero de 1989 y agosto de 1991 en la costa del sur de Sinaloa	31
Figura	8.	Variación de la temperatura del ambiente y del agua medida en la superficie y en el	31
		fondo por época del año durante ciclos de 24 horas en 1989, en la costa del sur de	
		Sinaloa. Invierno: 28-29 de febrero, primavera: 12-13 de mayo, verano: 14-15 de	
Figura	9	septiembre y otoño: 28-29 de noviembre Variación de la salinidad en la superficie y	33
rrgara	·	en el fondo del agua por época del año durante ciclos de 24 horas en 1989, en la	
		costa del sur de Sinaloa. Invierno: 28-29 de febrero, primavera: 12-13 de mayo, verano:	
		14-15 de septiembre y otoño: 28-29 de	2.4
Figura	10.	noviembre Variación de la concentración del oxígeno	34
		disuelto del agua en la superficie y en el fondo por época del año durante ciclos de 24	
		horas en 1989, en la costa del sur de	
		Sinaloa. Invierno: 28-29 de febrero, primavera: 12-13 de mayo, verano: 14-15 de septiembre y otoño: 28-29 de noviembre	35
Figura	11.	Variación de la temperatura del ambiente v	

		del agua medida en la superficie y en el fondo por época del año durante ciclos de 24 horas en 1990, en la costa del sur de Sinaloa. Estación 1= isla Lobos	27
Figura	12.	Variación de la temperatura del ambiente y del agua medida en la superficie y en el fondo por época del año durante ciclos de 24 horas en 1990, en la costa del sur de Sinaloa. Estación 2= entre la isla Lobos y	
Figura	13.	punta Chile	37
Figura	14.	Lobos	38
Figura	15.	Variación de la concentración del oxígeno disuelto del agua en la superficie y en el fondo por época del año durante ciclos de 24 horas en 1990, en la costa del sur de Sinaloa. Estación 1= isla Lobos	39
Figura	16.	Variación de la concentración del oxígeno disuelto del agua en la superficie y en el fondo por época del año durante ciclos de 24 horas en 1990, en la costa del sur de Sinaloa. Estación 2= entre isla Lobos y punta Chile	39
Figura	17.	Relación entre la longitud total y la longitud del cefalotórax de <i>Panulirus gracilis</i> en la costa sur de Sinaloa. a) machos y hembras juntos; b) machos; c) hembras	42
Figura	18.		43
Figura	19.	Relación entre el peso total y el ancho del cefalotórax de <i>Panulirus gracilis</i> en la costa sur de Sinaloa. a) machos y hembras juntos;	4.4
Figura	20.	b) machos; c) hembras	44

Figura	21.	Relación entre el peso total (PT) y la longitud del cefalotórax (LC) de <i>Panulirus gracilis</i> por sexos combinados y por separado, durante los períodos de septiembre-diciembre de 1989, enero-diciembre de 1991 y enero-noviembre de 1991, en las costas del sur de Sinaloa.	46
Figura	22.	Relación mensual entre el peso total y la longitud del cefalotórax de <i>Panulirus gracilis</i> por sexos combinados y por separado, durante septiembre-diciembre de 1989 para las costas del sur de Sinaloa	48
Figura	23.	Relación mensual entre el peso total y la longitud del cefalotórax de <i>Panulirus gracilis</i> por sexos combinados y por separado, durante 1990 para las costas del sur de Sinaloa	49
Figura	24.	Relación mensual entre el peso total y la longitud del cefalotórax de <i>Panulirus gracilis</i> por sexos combinados y por separado, durante 1991 para las costas del sur de Sinaloa	50
Figura	25.	Variación mensual del factor de condición por sexos combinados y por separado de <i>Panulirus gracilis</i> entre septiembre de 1989 y noviembre de 1991, en las costas de Sinaloa	51
Figura	26.	Distribución de tallas de <i>Panulirus gracilis</i> por sexos combinados durante 1989 en el sur de Sinaloa	59
Figura	27.	Distribución de tallas de <i>Panulirus gracilis</i> durante 1989 en el sur de Sinaloa. a) machos; b) hembras.	59
Figura	28.	Distribución de tallas de <i>Panulirus gracilis</i> por sexos combinados durante 1990 en el sur de Sinaloa	60
Figura	29.	Distribución de tallas de <i>Panulirus gracilis</i> durante 1990 en el sur de Sinaloa. a) machos; b) hembras	60
Figura	30.	Distribución de tallas de <i>Panulirus gracilis</i> por sexos combinados durante 1991 en el sur de Sinaloa	61
Figura	31.	Distribución de tallas de <i>Panulirus gracilis</i> durante 1991 en el sur de Sinaloa. a) machos; b) hembras	61
Figura	32.	Distribución mensual de las tallas de Panulirus gracilis durante 1989 en la parte sur de Sinaloa	62
Figura	33.	Distribución mensual de las tallas de Panulirus gracilis durante 1989 en la parte norte (Punta-Cerritos-Punta Piaxtla) de	~ -

Figura	34.	Sinaloa Distribución mensual de las tallas de Panulirus gracilis durante 1990 en la parte norte (Punta-Cerritos-Punta Piaxtla) de	63
Figura	35.	Sinaloa	
Figura	36.	Proporción de hembras y machos en los muestreos mensuales de la población de Panulirus gracilis durante 1989, en la parte del área de estudio en Sinaloa	
Figura	37.	Variación de la proporción (%) mensual de sexos de <i>Panulirus gracilis</i> de septiembre de 1989 a noviembre de 1991, en la parte norte del área de estudio en Sinaloa	
Figura	38.	Curvas de crecimiento de obtenidas para hembras de <i>Panulirus gracilis</i> con el modelo estacionalizado de von Bertalanffy para el sur de Sinaloa. a) Abril 1996-marzo 1997, b) abril 1997-marzo 1998; c) abril 1996-marzo	
Figura	39.	de <i>Panulirus gracilis</i> con el modelo estacionalizado de von Bertalanffy para el sur de Sinaloa. a) Abril 1996-marzo 1997, b) abril 1997-marzo 1998; c) abril 1996-marzo	71
Figura	40.	1998 Variación de la temperatura del agua de fondo de abril de 1996 a marzo de 1998 en la costa del sur de Sinaloa	72 73
Figura	41.	Variación de la proporción mensual de las fases sexuales en las hembras de <i>Panulirus gracilis</i> de septiembre de 1989 a noviembre de 1991 en el sur de Sinaloa	75
Figura	42.	Variación de la proporción mensual de hembras ovígeras y no ovígeras de <i>Panulirus gracilis</i> de septiembre de 1989 a noviembre de 1991 en el sur de Sinaloa	76
Figura	43.	Variación de la proporción mensual de hembras con y sin actividad reproductiva de <i>Panulirus gracilis</i> de septiembre de 1989 a noviembre de 1991 en el sur de Sinaloa. Reproductivas= fases sexuales 2-5; no reproductivas= fases	
Figura	44.	sexuales 1 y 6	76

		gracilis durante las épocas de veda de 1990 y	
		1991 por separado y juntos en el sur de	
		Sinaloa	77
Figura	45.	_	
		del cefalotórax de Panulirus gracilis durante	
		la veda de 1990, en el sur de Sinaloa. a)	
		machos y hembras, b) hembras; c) machos	81
Figura	46.	Distribución de frecuencias de la longitud	
		del cefalotórax de Panulirus gracilis durante	
		la veda de 1991 en el sur de Sinaloa. a)	
		<pre>machos y hembras; b) hembras; c) machos</pre>	82
Figura	47.	Distribución de frecuencias de la longitud	
		del cefalotórax de Panulirus gracilis durante	
		las vedas 1990-1991, en el sur de Sinaloa. a)	
		machos y hembras, b) hembras; c) machos	83
Figura	48.	Distribución de frecuencias del peso total de	
		Panulirus gracilis durante la veda de 1990,	
		en el sur de Sinaloa. a) machos y hembras; b)	
		hembras; c) machos	84
Figura	49.	Distribución de frecuencias del peso total de	
		Panulirus gracilis durante la veda de 1991, en	
		el sur de Sinaloa. a) machos y hembras; b)	
		hembras; c) machos	85
Figura	50.	Distribución de frecuencias del peso total de	
		Panulirus gracilis durante las vedas 1990-	
		1991, en el sur de Sinaloa. a) machos y	
		hembras; b) hembras; c) machos	86
Figura	51.	Distribución de frecuencia de la longitud del	
		cefalotórax de las hembras en actividad	
		reproductiva de Panulirus gracilis durante	
		las vedas de 1990 (a) y 1991 (b) en el sur de	
		Sinaloa. Hembras reproductivas= fases	
		sexuales 2-6	88
Figura	52.	Distribución de frecuencias de la longitud	
		del cefalotórax de las hembras en actividad	
		reproductiva de Panulirus gracilis durante	
		las vedas de 1990 (a) y 1991 (b) en el sur de	
		Sinaloa. Hembras reproductivas= fases	
		sexuales 2-5	89
Figura	53.	Distribución de las tallas en longitud del	
		cefalotórax (LC) de las hembras con y sin	
		actividad reproductiva de Panulirus gracilis,	
		durante las vedas de 1990 (a) y 1991 (b), así	
		como los dos períodos juntos (c) en el sur de	
		Sinaloa. Hembras reproductivas= fases 2-6;	
		hembras no reproductivas= fase sexual 1	91
Figura	54.	Distribución de las tallas en longitud del	
		cefalotórax (LC) de las hembras con y sin	
		actividad reproductiva de Panulirus gracilis,	
		durante las vedas de 1990 (a) y 1991 (b), así	
		como los dos períodos juntos (c) en el sur de	

		Sinaloa. Hembras reproductivas= fases	
		sexuales 2-5; hembras no reproductivas= fases	
		sexuales 1 y 6	92
Figura	55.	Relación entre la longitud del cefalotórax	
		(LC) y la fecuencia acumulada (en%) de la	
		población de hembras de Panulirus gracilis en	
		etapas de madurez sexual de la 2 a la 6	
		durante las vedas de 1990 (a) y 1991 (b), y	
		en los dos períodos juntos (c) en el sur de	
		Sinaloa	96
Figura	56.	Relación entre la longitud del cefalotórax	
5		(LC) y la frecuencia acumulada (en %) de la	
		población de hembras de <i>Panulirus gracilis</i> en	
		etapas de madurez sexual de la 2 a la 5	
		durante las vedas de 1990 (a) y 1991 (b), y	
		en los dos períodos juntos (c) en el sur de	
		Sinaloa	97
Figura	57	Comparación entre las muestras de <i>Panulirus</i>	<i>)</i>
rigura	57.	gracilis obtenidas a partir de la población	
		natural y de las capturas comerciales	
		considerando la frecuencia acumulada, la LC	
		(a) y el PT (b), en la costa de Sinaloa. En	
		(a) La línea vertical continua indica la	
		talla mínima legal de captura (82.5 mm de LC)	
		y la línea discontínua señala la talla mínima	
		de captura propuesta (70.0 mm de LC); en (b) la línea vertical indica el PT mínimo legal	
		_	
		• • • • • • • • • • • • • • • • • • • •	0.0
m.:	Ε0	tradicionalmente	99
Figura	58.	Comparación de las pendientes de la relación	
		fecundidad (F) vs peso total (PT) estacional	
		de Panulirus gracilis, así como con la	
		variación de la temperatura por época del año	
		entre abril de 1993 y marzo de 1994, en el	1.00
	5 0	sur de Sinaloa	108
Figura	59.	Relaciones entre la fecundidad y la longitud	
		del cefalotórax (a) y el peso total (b) de	110
	60	Panulirus gracilis en el sur de Sinaloa	110
Figura	60.	Relación entre la fecundidad relativa y el	
		peso total de <i>Panulirus gracilis</i> en el sur de	
•		Sinaloa	112
Figura	61.	Frecuencia de aparición de hembras ovígeras	
		de Panulirus gracilis por intervalo de talla	
		en el sur de Sinaloa	113
Figura	62.	Variación de la proporción mensual (%) de	
		Panulirus inflatus y P. gracilis en los	
		muestreos mensuales realizados en 1989 en la	
		parte sur del área de estudio en Sinaloa	114
Figura	63.	Variación de la proporción mensual (%) de	
		Panulirus inflatus y P. gracilis de	
		septiembre de 1989 a noviembre de 1991, en la	

Figura 64.	parte norte del área de estudio en de Sinaloa Captura (C, en kg), esfuerzo pesquero (f, en número de embarcaciones/mes) y captura por unidad de esfuerzo (CPUE, en kg/embarcación/mes) mensual en la pesca de las langostas Panulirus spp. en el sur de Sinaloa, septiembre de 1989 a noviembre de 1991	
Figura 65.	Relaciones entre la captura y el esfuerzo pesquero (a), captura vs captura por unidad de esfuerzo (b) y captura por unidad de esfuerzo vs esfuerzo pesquero (c) en la pesca de las langostas <i>Panulirus</i> spp. en el sur de Sinaloa, septiembre de 1989 a noviembre de 1991	120

\mathbf{T}	_		
Р	а	a	

Tabla	1.	Características de la distintas fases sexuales en las hembras de las langostas del género	
Tabla	2.	Relaciones morfométricas de <i>Panulirus gracilis</i> obtenidas de agosto de 2001 a agosto de 2002 en la costa de Sinaloa. R^2 = coeficiente de	20
Tabla	3.	determinación; y n= número de organismos. Valores de los máximos, mínimos, medias, modas, desviación estándar (Desv. est.), coeficientes de variación (C.V.) y el número de organismos analizados (No.) de Panulirus gracilis por sexos combinados y separados, durante 1989 en la parte más al sur del área de estudio en la	40
Tabla	4.	costa de Sinaloa	53
Tabla	5.	la costa de Sinaloa	
Tabla	6.	Valores de los máximos, mínimos, medias, modas, desviación estándar (Desv. est.), coeficientes de variación (C.V.) y el número de organismos analizados (No.) de <i>Panulirus gracilis</i> por sexos combinados y separados, durante 1991 en	56 57
Tabla	7.	Valores de la longitud asintótica alcanzada (L^{∞} , mm), tasa de crecimiento (k), amplitud (C), punto de invierno (Wp), índice de corrrelación (Rn) y tiempo cero (to), del modelo de crecimiento estacionalizado de von Bertalanffy, obtenidos por el progama ELEFAN, y peso asintótico alcanzado (P^{∞} , g) para hembras y machos de <i>Panulirus gracilis</i> , durante dos	3,
Tabla	8.	ciclos anuales, en las costas de Sinaloa Longitud cefalotorácica (mm) para cada edad estimada por el programa ELEFAN para hembras y machos de <i>Panulirus gracilis</i> , durante dos	70
Tabla	9.	ciclos anuales en la costa de Sinaloa Longitud del cefalotórax (LC en mm) de la hembra en actividad reproductiva más pequeña de	70

		Panulirus gracilis, considerando el criterio de hembra reproductiva en las fases sexuales 3-5,	
		2-6 o 2-5, durante 1990 y 1991 en el sur de	
		Sinaloa. El valor entre paréntesis indica la	
		fase sexual del organismo, de acuerdo a la clasificación de Weinborn (1977), modificado	
		por Briones et al. (1981)	9.0
Tabla	10.	Número (No.) y porcentaje (%) de hembras con y	70
2 31.0 2 31	_ , ,	sin actividad reproductiva de <i>Panulirus</i>	
		gracilis por intervalo de talla (2.0 mm de LC)	
		durante 1990, 1991 y 1990-1991, en las costas	
		del sur de Sinaloa. Hembras reproductivas=	
		fases sexuales 2-6, hembras no reproductivas=	0.4
Tabla	11	fase sexual 1	94
Iabia	⊥⊥.	Número (No.) y porcentaje (%) de hembras con y sin actividad reproductiva de <i>Panulirus</i>	
		gracilis por intervalo de talla (2.0 mm de LC)	
		durante 1990, 1991 y 1990-1991, en las costas	
		del sur de Sinaloa. Hembras reproductivas=	
		fases sexuales 2-5, hembras no reproductivas=	
		fases sexuales 1 y 6	95
Tabla	12.	Valores de la longitud total (LT), longitud	
		cefalotoráxica (LC), peso total (PT), peso total de la masa ovígera seca (PGS), media del	
		número de huevecillos de la submuestra, y	
		fecundidad individual observada (Fec. Ind.	
		Obs.) de <i>Panulirus gracilis</i> durante la	
		primavera	101
Tabla	13.	Valores de la longitud total (LT), longitud	
		cefalotoráxica (LC), peso total (PT), peso total de la masa ovígera seca (PGS), media del	
		número de huevecillos de la submuestra, y	
		fecundidad individual observada (Fec. Ind.	
		Obs.) de Panulirus gracilis durante el verano	102
Tabla	14.	Valores de la longitud total (LT), longitud	
		cefalotoráxica (LC), peso total (PT), peso	
		total de la masa ovígera seca (PGS), media del número de huevecillos de la submuestra, y	
		fecundidad individual observada (Fec. Ind.	
		Obs.) de Panulirus gracilis durante el otoño	103
Tabla	15.	Valores de la longitud total (LT), longitud	
		cefalotoráxica (LC), peso total (PT), peso	
		total de la masa ovígera seca (PGS), media del	
		número de huevecillos de la submuestra, y fecundidad individual observada (Fec. Ind.	
		Obs.) de <i>Panulirus gracilis</i> durante el	
		invierno	105
Tabla	16.	Número de organismos (N), ecuaciones de las	
		relaciones fecundidad (F) vs longitud del	
		cefalotórax (LC) y peso total (PT), y	
		coeficiente de regresión (R ²) por época del año	

		de hembras de <i>Panulirus gracilis</i> en el sur de Sinaloa	107
Tabla	17.	Resultados de los cálculos del análisis de	107
2 0110 2 01		covarianza para determinar la hipótesis de	
		diferencias significativas de la fecundidad en	
		Panulirus gracilis, entre las diferentes épocas	
		del año	109
Tabla	18.		
		Panulirus inflatus y P. gracilis durante 1989	
		en la parte sur del área de estudio en Sinaloa.	114
Tabla	19.	Número de organismos y porcentajes mensuales de	
		Panulirus inflatus y P. gracilis, de septiembre	
		de 1989 a noviembre de 1991, en la parte norte	
		del área de estudio en Sinaloa	117
Tabla	20.	Captura, esfuerzo pesquero y captura por unidad	
		de esfuerzo (CPUE) obtenidos en la pesca de	
		langosta en el sur de Sinaloa durante	
		septiembre de 1989 a noviembre de 1991	118
Tabla	21.	Comparación de la fecundidad media entre las	
		especies de <i>Panulirus</i> que habitan en aguas	
		mexicnas, en relación con la longitud del	
		cefalotórax (LC	146

INTRODUCCIÓN

Las pesquerías de crustáceos satisfacen en gran parte la necesidad de proteínas para la población humana; embargo, su principal importancia está en el económico, ya que entre los productos marinos son de los más generan ingresos. En muchos países costeros tropicales los recursos de los camarones peneidos y las langostas espinosas son fundamentales para la economía debido a que, a través de sus exportaciones, ingresan a estos estados importantes divisas. Estos ingresos pueden ser permanentes a través de los años sólo si las pesquerías son manejadas sobre la base de un entendimiento de la dinámica poblacional de estos crustáceos características del sector encargado de su explotación. Por lo tanto, el objetivo del manejo de las pesquerías permitir la explotación del stock para un beneficio económico y social, mientras se mantenga su capacidad reproductiva en niveles que provean un reclutamiento adecuado a la pesquería cada año (Chubb, 1994, 2000).

La producción total anual de 21.2x10⁴ t de langostas palinúridas, nefrópidas, homáridas y sciláridas representa aproximadamente el 4% de la captura anual mundial de crustáceos marinos, la cual está constituida por cangrejos, langostas, galateidos, camarones, krill y otras especies (Lipcius y Eggleston, 2000). Del grupo de las langostas, las principales especies explotadas son las langostas americana Homarus americanus, noruega Nephrops norvegicus y espinosa del Caribe Panulirus argus.

Las langostas de la familia Palinuridae sostienen grandes pesquerías comerciales, así como también simultáneamente soportan una explotación local a pequeña escala en costas localizadas en zonas remotas e islas. La captura anual de palinúridos promedió 74,817 t de 1991 a 1995 (con un valor aproximado de 500 millones de dólares, el cual constituyó el 35.2% del valor de la captura mundial de las langostas) y entre 1993 y 2003 fue de 62,483 t, con un valor similar (FAO, 2004; Phillips y Melville-Smith, 2006). La mayor producción de langostas palinúridas se origina en Australia, Nueva Zelandia, Sudáfrica, Cuba, Brasil, México

y Estados Unidos de Norte América; con más del 70% de la captura proveniente del Caribe, la región sureste Atlántico y el este del océano Índico. El valor de langostas espinosas en los mercados mundiales general, los stocks en son У, explotados. Entonces, se necesitan decisiones acertadas de efectividad y su depende de un conocimiento detallado de la pesquería (pescadores, técnicas y patrones de pesca, etc.) y la biología de los organismos (Chubb, 1994, 2000; Phillips y Melville-Smith, 2006).

Las langostas espinosas o langostas de roca, como también son conocidas, son ecológicamente importantes debido a su tamaño, abundancia y posición en la cadena alimentaria. Además, langostas también sirven como las organismos 'modelo' excepcionales para el estudio de pesqueros en general. Su abundancia, baja movilidad y robustez facilita la realización de investigaciones en estos animales para responder a muchas interrogantes de la ciencia pesquera (Butler, 2001).

En México existen siete especies de langostas espinosas (Apéndice A), aunque sólo cuatro son importantes comercialmente (P. interruptus, P. argus, P. inflatus y P. gracilis). Entre 1985 y 2004, la captura total de estos crustáceos osciló alrededor de las 2,200 t por año, de las cuales aproximadamente el 80% correspondió a P. interruptus y P. argus durante el período 1990-2004, mientras que el resto de las capturas estuvo compuesta por P. inflatus y P. gracilis (Anónimo, 2004).

Panulirus gracilis y P. inflatus co-existen en una amplia zona de las costas mexicanas del Pacífico y del golfo de California, la cual se extiende desde Mazatlán, Sinaloa, hasta el litoral más al sur en el estado de Chiapas. Sin embargo, la distribución de P. gracilis es mucho más amplia, abarcando a partir de la parte media-baja del Golfo de California hasta Paita, Perú, y habita en áreas arenosas con cascajo o rocas de tamaño chico o mediano (Holthuis y Villalobos, 1961; Chapa, 1964; Gracia y Kensler, 1980; Pérez-González et al., 2002).

De acuerdo a las estadísticas oficiales, la producción de P. gracilis y P. inflatus ha variado entre las 50 y 250 t, 1989 у 2004 (Anónimo, 2004). Sin embargo, Vega-Velázquez (1993) señala que estas especies también son capturadas, junto con P. interruptus, en la parte sur de la Baja California, península de incluyendo el Golfo California, y que su proporción puede ser entre el 10 y lo tanto, incluyendo esta proporción, Por producción anual de P. gracilis y P. inflatus en nuestro país podría ser estimada alrededor de las 500-650 t (Pérez-González et al., 1997a). Esta producción es significativa, ya que podría igualar o superar en algunas temporadas a la de P. argus del litoral mexicano del Caribe.

En el litoral mexicano del Pacífico, la langosta se captura por medio de diversos artes de pesca. La captura Michoacán, Guerrero y Oaxaca se realiza por buceo libre, semiautónomo y autónomo, por 10 que ésta se únicamente en este recurso. Sin embargo, en Sinaloa se utilizan tradicionalmente redes de enmalle (conocidas como chinchorros langosteros) y en ocasiones trampas de madera tipo californiano. El uso de redes ocasiona que pesquería de este crustáceo sea aún más interesante en esta región, debido a que la langosta es capturada junto con otras especies de organismos, como peces, otros crustáceos y moluscos.

El estado de Sinaloa tiene una producción oficial anual de langosta que oscila entre las 31 y 48 t (Anónimo, 2004), lo que contribuye con el 2.7% de la captura nacional, y está compuesta por *P. gracilis* y *P. inflatus* (Pérez-González *et al.*, 1992a, 2002). No obstante, esta producción es muy importante a nivel regional. Además, existe la posibilidad de que aumente si se implementa un buen manejo del recurso y se aplica la reglamentación estrictamente. La captura de langosta constituye una fuente de ingresos importante para los pescadores de este estado, ya que es altamente cotizada en el mercado local, nacional e internacional.

Los estudios publicados de *Panulirus gracilis* sobre su biología, ecología, fisiología etología, dinámica de poblaciones y pesquería son muy escasos, incluyendo los efectuados en México (Pérez-González *et al.*, 2002). Además,

las investigaciones realizadas en nuestro país sobre esa especie, siempre se han efectuado junto con *P. inflatus*, debido a que son capturadas simultáneamente. Por lo tanto, es necesario definir un manejo sistemático y planificado de este recurso en el sur de Sinaloa, en particular de la especie objeto de este estudio, sobre la base de investigaciones sobre su biología, ecología y pesquería.

Panulirus gracilis fue seleccionada para la presente investigación debido a que, por un lado, puede representar entre el 30 y 80% de la captura de langosta en el sur de Sinaloa, con variaciones a lo largo del año y entre diferentes temporadas de pesca (Pérez-González, 1986, 2002, 2003; Flores-Campaña et al., 1993; Suárez, 1995; Arzola-González et al., 2007) y, por otro lado, a pesar de que se distribuye en gran parte del litoral del Pacífico, incluyendo varios países centro y sudamericanos, es muy escaso el conocimiento que existe sobre esta especie.

ANTECEDENTES

La demanda de las langostas espinosas se ha incrementado significativamente durante las últimas tres décadas, lo cual ha estimulado la necesidad de implementar un mejor manejo de sus pesquerías, lo que ha originado que se desarrollen numerosas investigaciones sobre la biología, ecología, dinámica poblacional, fisiología, etología y pesquería de estos crustáceos. Los estudios sobre las especies que aportan la mayor producción a nivel mundial son numerosas y están orientadas hacia los distintos aspectos biológicos, ecológicos y pesqueros.

La dinámica de poblaciones ha sido estudiada en muchas de las especies de langostas espinosas, sobre todo en la etapa adulta, Algunos de estos trabajos son los que se han realizado en Jasus edwardsii (Hodbay y Punt, 2001), en Panulirus marginatus (Polovina, 1989), Jasus tristani (Pollock, 1991a; Breen, 1994), P. argus (Cruz et al., 1981; Phillips et al., 1992; León et al., 1994, 1995; Matthews, 2001), P. cygnus (Phillips y Melville-Smith, 2005; Wright et al., 2006), P. gutattus (Robertson y Butler, 2003) y Palinurus elephas (Goñi et al., 2001; Goñi y Latrouite, 2005; Follesa et al., 2003).

Por otro lado, sobre aspectos reproductivos se han escrito numerosas publicaciones con el objetivo de definir tallas de primera madurez sexual y de primera captura, así como para determinar los períodos de veda, los cuales son factores determinantes para el adecuado manejo de pesquerías. Entre los más importantes destacan los trabajos de Chubb (2000) y MacDiarmid y Sainte-Marie (2006) quienes realizaron una revisión sobre los aspectos señalados y otros relacionados a ellos. Otros estudios más específicos sobre la biología reproductiva se han realizado en especies de langostas espinosas como Panulirus japonicus, P. argus, J. edwardsii, J. lalandii, J. frontalis, P. penicillatus, interruptus, P. cygnus, P. guttatus, P. marginatus, Palinurus elephas. Éstos Palinurus homarus y aspectos como los anotados anteriormente y el análisis histológico de la gónada de las hembras para observar las distintas etapas de desarrollo de los huevecillos,

fecundidad e índices de potencial reproductivo, (Minagawa, 1997; Minagawa y Sano, 1997; Hodbay y Ryan, 1997; Mohan, 1997; Elorza y Dupre, 2000; Bertelsen y Matthews, 2001; Losada-Tosteson et al., 2001; Annala y Bycroft, 1987; Beyers y Goosen, 1987; Cruz y León, 1991; Juinio, 1987; Pollock y Goosen, 1991; Vega, 1991; Vega-Velázquez, 2003; Melville-Smith y de Lestang, 2005; De Martini et al., 2005; Goñi et al., 2003; Kirubagaran et al., 2005).

Los estudios sobre las predicciones de capturas comerciales a partir de evaluaciones del reclutamiento de puérulos y juveniles son fundamentales para un manejo adecuado del recurso. Entre los más importantes están los efectuados en P. cygnus y Jasus verreauxi en Australia (Phillips, 1986; Caputi y Brown, Caputi *et al.*, 1986; 1995a, Montgomery et al., 2005); en P. cygnus y P. ornatus en el oeste y Torres Strait en Australia, respectivamente; Jasus edwardsii en Nueva Zelandia y en P. argus en las costas de Cuba y en la península de Florida en Estados Unidos (Cruz y Adriano, 2001; Cruz et al., 1995a, 1995b, 2001; Phillips et al., 2000, 2005; Melville-Smith et al., 2004).

En las costas del Pacífico mexicano son pocos los trabajos publicados sobre la biología, la ecología y la pesquería de P. gracilis y la mayoría anotan información de esta especie junto con P. inflatus. Las primeras investigaciones tratan sobre la taxonomía, el hábitat У algunos aspectos biológicos y pesqueros de estas especies para toda la costa mexicana del Pacífico (Holthuis y Villalobos, 1961; Chapa, 1964; Gracia y Kensler 1980). Posteriormente se tienen los trabajos de Weinborn (1977) y Briones et al. (1981), en los cuales se analizan las capturas en el estado de Guerrero, información sobre la estructura poblacional, anotando algunos aspectos reproductivos y la pesquería. Para esta misma región, Briones-Fourzán y Lozano-Álvarez indican que los períodos de mayor actividad reproductiva se presentan durante verano-otoño y que las hembras con un mayor índice de potencial reproductivo correspondieron a los intervalos de talla de 86-88 mm de longitud del cefalotórax, con dos y tres desoves por año ambas especies. Lozano-Álvarez y Briones-Fourzán (2003) señalan que los factores que afectan el crecimiento son la temperatura y la

densidad y Lozano-Álvarez y Aramoni-Serrano (1996) indican que la alimentación de *P. gracilis* y *P. inflatus* está constituída pricipalmente por crustáceos y que durante el otoño los organismos se encuentran en la mejor condición.

Después de que se realizaron los trabajos anteriores, los se efectuaron en las costas de Sinaloa y siquientes abordaron aspectos biológicos, ecológicos y pesqueros de P. gracilis y P. inflatus. Los estudios referentes a la fase (filosoma) informan sobre su distribución abundancia y la relación que existe con las variables de la temperatura y salinidad, así como con las fases lunares, en la bahía de Mazatlán, indicando que las mayores abundancias de las filosomas se presentan entre julio y octubre durante lunar de cuarto creciente y que densidades están relacionadas con las elevadas temperaturas de ese período (Muñoz, 1992, 1997, 2000a, 2000b, 2004). Puga-López (1999) realiza experimentación con varios tipos de colectores para capturar la fase de puérulo, en la misma zona y reporta que hay diferencias en la eficiencia de esos distintos dispositivos y que las mayores densidades de estos estadíos se encontraron en abril-mayo y noviembre, todos perteneciendo a P. inflatus.

Los primeros estudios para la etapa de juvenil y preadulto fueron realizados por Robles-Cruz (2000), quien informa sobre la estructura poblacional y algunos aspectos de la actividad reproductiva de P. gracilis y P. inflatus; Pérezaspectos González et al. (2007) señalan alimentación, destacando que su dieta está constituida básicamente por moluscos y crustáceos, así como de otros organismos como algas, esponjas, sipuncúlidos equinodermos; y Camacho-Montoya et al. (2007) reportan a los moluscos que habitan en las áreas de crianza de P. inflatus y P. gracilis en la bahía de Mazatlán. Para la fase adulta se han realizado un mayor número de trabajos finalidad de obtener información biológica pesquera para plantear la forma de manejo del recurso más adecuada, en la parte sur de la costa de Sinaloa. Entre los trabajos sobre la estructura de la población, la biometría de algunos aspectos la dinámica de poblaciones y pesquería de estas especies se encuentran los de Pérez-González (1986), Pérez-González et al. (1992a), QuinteroMontoya (1999), Arzola-González (2001) y Arzola-González et al. (2007), quienes señalan que las modas en las distribuciones de talla se encuentran entre 75 y 85 mm de longitud del cefalotórax, así como que los machos en ambas especies alcanzan tallas y pesos mayores, con una tasa de crecimiento más elevada que las hembras.

Elconocimiento de la biología reproductiva de langostas es esencial para definir la talla de primera captura a partir de la talla de primera madurez sexual y establecer el período de veda con el análisis de las épocas con mayor o menor actividad información de reproductiva. Pérez-González et al. (1992b) informan que en Sinaloa el período costa de de mayor actividad reproductiva, tanto para P. gracilis como para P. inflatus, se presenta durante el verano y a principios de otoño, con un segundo pulso durante la primavera para la primera especie. En los últimos años se ha generado información sobre algunos aspectos de la reproducción de estas especies en la costa de Nayarit, estado vecino de Sinaloa, con la finalidad de ratificar o modificar el período de veda y la talla de primera madurez sexual actuales. Para P. gracilis, Vizcarra-Reyes (2005) estimó una fecundidad entre 14,5818 y 70,4054 huevecillos para hembras con 62.0 y 84.5 mm de longitud del cefalotórax (LC), respectivamente, y señala que los intervalos de talla con mayores proporciones de hembras ovígeras se encuentran entre 68 y 82 mm de LC. García-Contreras (2004) determinó que las hembras entre 76 y 84 mm de LC presentan el mayor índice de potencial reproductivo, pero que la más alta productividad huevecillos se encuentra entre el intervalo de 80-88 mm de LC. Puga-López (2004) y Muñoz-Rojas (2006) concluyen que los valores más elevados del índice gonadosomático obtienen en enero, febrero, junio y julio, con mayores porcentajes de hembras ovígeras en enero, junio y julio, y determinaron siete fases de madurez de la gónada. Asimismo, estos mismos autores determinaron tallas de primera madurez sexual de 71.8 y 68 0 mm de LC, respectivamente, a partir de observaciones microscópicas del desarrollo histológico de los ovarios.

Las estadísticas pesqueras de captura, esfuerzo pesquero y captura por unidad de esfuerzo (cpue) se usan para definir

esfuerzo y captura óptimos, por lo que se requiere información confiable para estimarlos. En la costa de Sinaloa, Juárez (1995), Torrescano y Leyva (1996) y Salazar-Navarro (2000) analizaron la captura, el esfuerzo y la cpue con las distintas redes utilizadas para la captura de langosta, con base en una longitud media de estas artes de pesca, y esos autores y Pérez-González et al. (2001, 2007) determinaron la selectividad y eficiencia de las redes, así como sus características tecnológicas. Carrillo-Sandoval (2000) también analizó las estadísticas pesqueras y las relaciona con la estructura de la población en la región del sur de Sinaloa.

Los trabajos sobre P. gracilis abarcan varios aspectos, pero aún son escasos. Los antecedentes muestran un número limitado de investigaciones y en la mayoría de los casos son realizados junto con P. inflatus. Por lo tanto, presente trabajo está realizado sólo para P. gracilis y trata sobre aspectos tan importantes como su estructura y dinámica poblacionales, actividad reproductiva estadísticas pesqueras básicas, con el objetivo de integrar esta información У definir las principales características de la pesquería de este crustáceo, con el subsecuente impacto en la reglamentación pesquera a partir de propuestas con fundamentos científicos.

La reglamentación para P. gracilis no ha cambiado desde hace muchos años en esta región de la costa de Sinaloa, a pesar de que se han realizado algunas propuestas en cuanto a la disminución de la talla mínima de primera captura, ya que la actual fue establecida con base a la definida para P. interruptus, la cual es una especie que alcanza tallas mucho mayores y que presenta otro patrón de comportamiento y habita en áreas con distintas condiciones ambientales y fisiográficas. Además, es relevante analizar las capturas con redes de enmalle, debido a que son artes de pesca totalmente diferentes а las trampas utilizadas península de Baja California, para la explotación de P. interruptus. Esta especie habita en profundidades mayores a los 15 m, incluyendo hasta los 70 m, por lo que las trampas se colocan a estas profundidades, mientras que P. gracilis habita entre los 5 y 30 m de profundidad, en áreas de alta energía, por lo que con estas características las redes tienen una mayor capacidad de operación y presentan una mayor durabilidad que las trampas.

OBJETIVOS

Objetivo general

Aportar información sobre la biología, la dinámica poblacional y la pesquería de *Panulirus gracilis* en la costa del sur de Sinaloa, México.

Objetivos específicos

- 1.- Caracterizar las condiciones ambientales en las que habita P. gracilis, analizando las variaciones de la temperatura, salinidad y concentración del oxígeno disuelto del agua.
- 2.- Describir la relación entre las distintas medidas biométricas de *P. gracilis* (longitud total, largo y ancho del cefalotórax, y peso total), por sexo y totales.
- 3.- Determinar las características poblacionales básicas de la langosta *P. gracilis*, analizando la estructura de su población mediante la determinación del patrón de tallas y de la proporción de sexos a través del año, así como a través de las estimaciones del tipo de crecimiento y el modelo de crecimiento de von Bertalanffy.
- 4.- Determinar la biología reproductiva de *P. gracilis*, analizando en las hembras la madurez sexual, la talla mínima de primera madurez sexual y la fecundidad anual y estacional, así como el o los períodos de reproducción.
- 5.- Analizar los principales datos pesqueros de la pesquería de *P. gracilis* (captura, esfuerzo y captura por unidad de esfuerzo) con la finalidad de caracterizar su patrón de comportamiento conforme avanza la temporada de pesca, así como las posibles relaciones que podrían existir entre dichas variables.

ÁREA DE ESTUDIO

El área de estudio se encuentra localizada dentro de la gran subregión pesquera del Pacífico centro-oriental, en la Provincia de Cortés (Hendrickx, 1995). Esta subregión comprende aproximadamente 9,975 km de costas continentales, desde bahía Magdalena en la península de Baja California en México, incluyendo hasta el extremo norte del golfo de California, hasta el límite sur de Colombia de acuerdo con los criterios de la F.A.O. (Hendrickx, 1995). Asimismo, la zona queda comprendida en el bloque central de tropicales-subtropicales de la gran región zoogeográfica del Pacífico oriental, que se extiende desde Punta Barrow, Alaska, hasta el estrecho de Magallanes, a lo largo de la costa occidental de América. Las condiciones ambientales de bloque están directamente relacionadas con patrones climáticos locales y las corrientes oceánicas costeras. Dentro de esta gran región se encuentra distribución de P. gracilis, por lo tanto, esta especie habita en las condiciones ambientales propias de esta gran área y las cuales están descritas detalladamente por Hendrickx (1995).

California Elgolfo de es un mar extenso นาท considerable interés oceanográfico, meteorológico biológico, debido sus diferentes а características climáticas. hidrográficas У Con base en estas características, Brusca et al. (2005), Lluch-Cota et al. (2007) y Aragón-Noriega et al. (2007) lo han dividido en las regiones norte, central y sur. La circulación es influenciada por los cambios estacionales semianual, así como por los ciclos de mareas semidiurno y quincenales. Herguera-García et al. (2003) reconstruyeron una serie de temperatura superficial del agua >200 años y concluyeron que en períodos de escala de interanual a decadal la variabilidad de la temperatura de invierno es modulada por el fenómeno de 'El Niño'.

Entre las características más relevantes de la circulación del golfo de California está la formación de giros anticiclónicos en la zona de Cabo Corrientes-islas Marías (entrada o boca del golfo), en la costa oeste de México,

los cuales varían interanualmente: aumentan su número durante los años en que se presenta el fenómeno de 'El Niño' y disminuyen durante 'La Niña' (Zamudio et al., 2007). En el norte también ha sido reportado la formación de giros, pero éstos se presentan inversos estacionalmente (ciclónicos de junio a septiembre y anticiclónicos de noviembre a abril) (Lavín et al., 1997; Carrillo et al., 2002; Palacios-Hernández et al., 2002).

La región sur del golfo es una extensión del océano Pacífico tropical con una estructura hidrográfica compleja como una consecuencia de la confluencia de diferentes masas de agua (Aragón-Noriega et al., 2007). La circulación estacional en la boca del golfo es dominada por la influencia del océano Pacífico (Castro et al., 1994; Ripa, 1997; Luch-Cota et al., 2007).

El área de estudio está ubicada en la entrada del golfo, la cual está caracterizada como una mezcla de aguas de varios orígenes (Brusca *et al.*, 2005):

- 1) Agua fría (<22°C) y bajas salinidades (≤de 34.6%) de la corriente de California que bordea la punta de la península de Baja California.
- 2) Agua caliente (>25°C) y baja salinidad (34.6-34.9%) del Pacífico oriental tropical que se mueve hacia el noroeste y por su menor salinidad se encuentra por encima del agua del golfo, por lo que penetra a su interior.
- 3) Agua caliente y de alta salinidad (\geq 34.9) del golfo de California que se encuentra ubicada entre los paralelos 26.5° 24.5° N y fluye hacia el sur. Su penetración y extensión dentro del golfo depende de la época del año.

Por debajo se encuentran agua sub-superficial ecuatorial (tropical), agua intermedia antártica y agua del fondo del océano Pacífico (Brusca et al., 2005). La formación de frentes en la entrada del golfo es una característica muy particular de la región, la cual ha atraído la atención de numerosas pesquerías comerciales, artesanales y deportivas que soportan industrias y proveen subsistencia a asentamientos costeros.

De acuerdo a la fauna que habita en el golfo de California, el área de estudio del presente trabajo se ubica en la región sur, la cual se extiende desde Punta Coyote (Baja California Sur, nor-noreste de La Paz) hasta Cabo Corrientes, Jalisco (el límite sur de Bahía de Banderas) en la parte continental y hasta Cabo San Lucas en la península de Baja California (Brusca et al., 2005).

La zona de estudio objeto de esta investigación se localiza en la parte sureste del golfo de California, en la plataforma continental frente al sur de Sinaloa, desde Punta Piaxtla hasta la bahía de Mazatlán. Las coordenadas de esta área son 23°10′-23°48′ N y 106°24′-106°54′ (Fig. 1).

El norte del área de estudio presenta el clima más seco de los áridos, con régimen de lluvias en verano, temperatura media anual de 27°C y con una precipitación media anual de 502.8 mm. En la parte sur el clima es cálido subhúmedo, con lluvias en verano, siendo el más seco de los subhúmedos, con una temperatura media anual de 28°C y una precipitación media anual entre 800 y 1000 mm (García, 1973; Brusca et al., 2005).

La temperatura media del aire es menor que la del agua de mar durante todo el año y las estaciones del año no están bien diferenciadas, presentándose dos épocas: una con baja (noviembre-junio) precipitación pluvial У otra precipitación pluvial alta (julio-octubre). Durante octubre, el área es afectada У por perturbaciones atmosféricas, como por ejemplo tormentas y huracanes que se forman en el Pacífico nororiental (Anónimo, 1974; Salinas-Zavala et al., 1992). Los vientos dominantes son del oeste-noroeste, con una velocidad media anual de 3.4 m/s (Anónimo, 1974). Las olas más fuertes provienen del noroeste y norte en el período de invierno y generalmente producen una deriva litoral hacia el sur; mientras que durante el verano el oleaje proviene del sur y produce una deriva litoral hacia el norte (Peraza-Vizcarra, 1986).

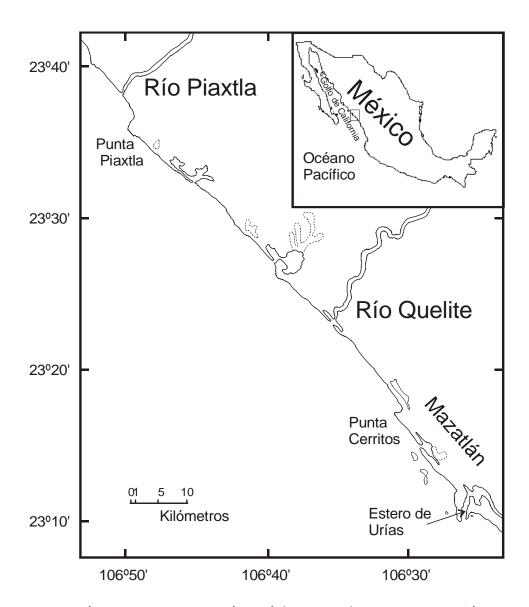


Figura 1.- Localización del área de estudio.

El litoral presenta diversos accidentes geográficos, entre los que se distinguen varias puntas, bahías pequeñas y acantilados. El fondo está constituido de sustratos rocosos y arenosos. La plataforma continental del sur de Sinaloa se acorta hacia el norte hasta el río Piaxtla, donde nuevamente se ensancha.

MATERIAL Y MÉTODOS

La información utilizada para la elaboración del presente estudio procede de los datos obtenidos por el Programa Langosta, a través del proyecto de investigación 'Biología y pesquería de las langostas Panulirus gracilis y inflatus en las costas de Mazatlán y Barras de Piaxtla, Sinaloa, México', financiado entre 1989 y 1991 por Dirección General de Investigación Científica y Superación Académica, Secretaría de Educación Pública, México. Otros datos complementarios para cumplir con todos los objetivos planteados en este trabajo se obtuvieron de los proyectos 'Estrategia para la explotación y manejo de la pesquería de la langosta en el sur de Sinaloa, México', financiado por el Consejo Nacional de Ciencia y Tecnología entre 1994 y 1997, y 'Diagnóstico y perspectivas de aprovechamiento del langosta en la costa centro-sur de Nayarit', recurso financiado entre febrero del 2001 y octubre del 2002 por la Secretaría de Desarrollo Rural, gobierno del estado de Nayarit, y por las cooperativas dedicadas a la explotación de este recurso en esta región.

Los muestreos hidrobiológicos se realizaron de 1989 a 1991 a bordo de una lancha de fibra de vidrio de 6 m de eslora y 2 m de manga, con motor fuera de borda de 70 HP.

VARIABLES HIDROGRÁFICAS

Para la obtención de las variables hidrológicas se efectuaron salidas semanales. Además, con el fin de observar la variación de las variables durante ciclos de 24 horas, se realizó un muestreo para cada época del año en dos localidades de la bahía de Mazatlán, con registros cada 3 horas, en la parte sur del área de estudio (Fig. 2).

Temperatura

La temperatura se midió con un termómetro de cubeta, graduado de -1.0 a +51°C, con una precisión de ±0.1 °C. La medida de la temperatura de la superficie se obtuvo directamente en el agua.

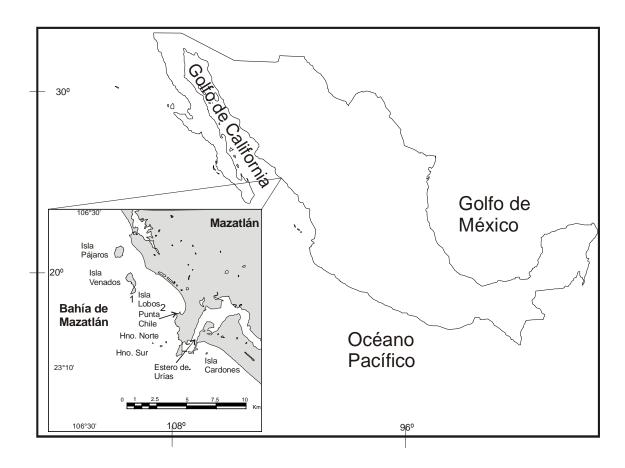


Figura 2.- Localización de las estaciones de muestreo donde se monitorearon las variaciones diurnas de la temperatura, la salinidad y la concentración del oxígeno disuelto (1989 y 1990), en la bahía de Mazatlán, Sinaloa.

Salinidad

Para medir la salinidad, las muestras de agua se recolectaron en botellas cristalinas con capacidad de 300 ml. Se obtuvieron los valores de conductividad en el laboratorio, con un salinómetro de inducción Beckman Industrial, modelo RS-10, con una precisión de ±0.003 ppm y su equivalencia de salinidad se determinó con las tablas correspondientes.

Oxígeno disuelto

La concentración del oxígeno disuelto se analizó con el método de Winkler, modificado por Strikland y Parsons (1977).

La colecta de las muestras de agua para medir la temperatura, la salinidad y el oxígeno disuelto a nivel del fondo, se realizó por medio de una botella hidrográfica tipo van Dorn, con 3.0 litros de capacidad.

Profundidad

La profundidad se determinó con una sondaleza manual, elaborada con una plomada de aproximadamente 2.0 kg de peso, amarrada a un cabo de seda de 20.0 m de longitud, marcado cada 0.5 m.

PARÁMETROS BIOLÓGICOS

Los muestreos biológicos se realizaron dos veces por semana. Los organismos se capturaron con las artes de pesca utilizados por los pescadores en la zona de estudio, las cuales consistieron en redes de enmalle (denominadas 'chinchorros langosteros') (Fig. 3) y trampas de madera tipo californiano (Fig. 4). Las embarcaciones utilizadas son de madera revestidas de fibra de vidrio, con una eslora de 6.0 m, con motores fuera de borda de entre 25 y 75 HP.

Las redes tienen una longitud que varía entre 75 y 200 m, con un promedio de 137.5 m y la altura efectiva de trabajo varía entre 0.9 y 1.8 m. El tipo de material de los paños de la red es la poliamida, que consiste en multifilamento torsionado sin tratamiento o en monofilamento en color azul-verde. La longitud de las mallas varía entre 101.6 mm (4.0 pulgadas), 114.3 mm (4.5 pulgadas) y 125.0 mm (5.0 pulgadas) y el diámetro de los hilos es invariablemente de 0.40 mm para monofilamentos y de 0.69 mm para multifilamentos.

Las trampas langosteras son de madera y consisten en estructuras en forma de pirámides truncadas, construídas con tiras de madera sobre un armazón del mismo material pero de mayor grosor, en el cual se colocan bloques de cuatro esquinas cemento en las de la base para Su hundimiento У tienen una entrada (matadero) receptáculo (buchaca) para poner la carnada (Fig. 4). Estas artes de pesca son construídas por los propios pescadores, por lo que las variaciones en el diseño son

Figura 3.- Red de enmalle conocida como 'chinchorro langostero' utilizada en la región del sur de Sinaloa en la pesca de langosta. Se observa una langosta *Panulirus gracilis* enmallada.

Figura 4.- Trampa de madera tipo californiana utilizada en la pesca de langosta en el sur de Sinaloa. En la fotografía se observa la trampa en recuperación.

comunes, pero de manera general todas conservan características muy similares. Para la operación de las trampas se utiliza carnada, la cual consiste principalmente de trozos de pescado fresco o enteros (de preferencia Mugil conocida trampas como lisa). Las regularmente en líneas paralelas a la costa, profundidad muy somera entre 3-4 y 15-20 m.

Las variables abióticas y los aspectos biológicos que se efectuaron en las muestras de los organismos recolectados fueron las mencionadas en los dos siguientes apartados:

Información de campo

Identificación

La identificación de *Panulirus gracilis* se hizo de acuerdo a los trabajos de Holthuis (1991) y Hendrickx (1995).

Sexo

Los sexos se diferenciaron fácilmente por el dimorfismo sexual que presentan estos crustáceos: en las hembras las aberturas genitales se encuentran en la base del tercer par de pereiópodos o patas caminadoras y en los machos en la base del quinto par; en el abdomen los machos poseen los pleópodos monorrámeos y pequeños, mientras que en las hembras son birrámeos y de gran tamaño, en las hembras maduras los endopoditos presentan filamentos en los cuales se adhieren los huevecillos.

Actividad reproductiva en las hembras

La actividad reproductiva de las hembras fue determinada según la tabla propuesta por Weinborn (1977) y modificada por Briones *et al.* (1981) (Tabla 1).

Tabla 1.- Características de las distintas fases sexuales en las hembras de las langostas del género Panulirus en las costas de México.

FASE SEXUAL	CARACTERÍSTICAS							
1	Sin espermatóforo ni huevos externos.							
2	Con espermatóforo, sin huevos externos.							
3	Con huevos externos color naranja claro.							
4	Con huevos externos color naranja oscuro.							
5	Con huevos externos color café.							
6	Sin huevos externos, con restos de							
	espermatóforo y/o huevos.							

Las distintas medidas de longitud se tomaron en el laboratorio con un vernier digital 'Mitutoyo' de 305 mm de largo (± 0.01 mm) y están citadas en mm.

Longitud del cefalotórax (LC)

Se tomó como la distancia desde el margen anterior del cefalotórax, entre las espinas rostrales, hasta el margen posterior (Fig. 5).

Longitud total (LT)

Se tomó como la distancia que hay entre el margen anterior del cefalotórax, entre las espinas rostrales, y el extremo posterior del telson (Fig. 5).

Anchura del cefalotórax (AC)

Se midió la distancia máxima entre los costados del cefalotórax (Fig. 5).

Peso total (PT)

El peso de cada organismo se tomó en fresco con una balanza electrónica OHAUS modelo Adventurer, con capacidad de 4100 g (± 0.1 g). En el campo los organismos fueron pesados individualmente con una balanza granataria Yamato, con capacidad de 2 kg y precisión de ± 10.0 g

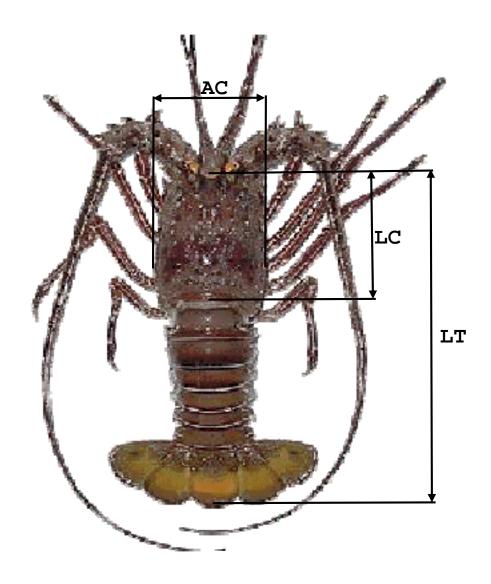


Figura 5.- Medidas tomadas a la langosta espinosa *Panulirus* gracilis. AC= ancho del cefalotórax; LC= longitud del cefalotórax; LT= longitud total.

Captura y esfuerzo pesquero

Los datos de captura y el esfuerzo pesquero se obtuvieron en las propias cooperativas dedicadas a la pesca de langosta en esta región (Punta Tiburón, José María Canizalez y Tres Islas), así como directamente en el lugar donde los pescadores arriban con el producto. Los pescadores proporcionaban el área de pesca y la profundidad de captura. Con esta información, primero se analizó la unidad más apropiada del esfuerzo y se estandarizó;

posteriormente, se analizó mensualmente la captura, el esfuerzo y la captura por unidad de esfuerzo.

Actividades de laboratorio y de gabinete

Relación peso (PT)-longitud del cefalotórax (LC)

A partir de los datos de talla y peso se analizó la relación PT-LC tanto para hembras y machos por separado como combinando ambos sexos, tomando en cuenta los siguientes aspectos: a) un análisis global, es decir, utilizando el total de datos obtenidos de las mediciones de la LC y el PT; b) un análisis mensual con el objetivo de detectar posibles variaciones mensuales. De acuerdo a Ricker (1975), la ecuación que relaciona a estos parámetros es:

PT= aLC^b

Para calcular las constantes 'a' y 'b' es necesario aplicar una transformación logarítmica a esa ecuación y así se obtiene una regresión de tipo lineal:

ln PT= ln a + b ln LC

donde PT= peso total, a= ordenada al origen, LC= longitud del cefalotórax y b= pendiente. La ordenada 'a' se utilizó como el factor de condición (Ricker, 1975), analizando los datos por mes y 'b' representó el tipo de crecimiento de los organismos, el cual puede ser isométrico si es igual a 3.0 o alométrico si es diferente de 3.0. Para definir el tipo de crecimiento se aplicó una prueba de significancia del coeficiente de regresión (ts):

$$ts=b_{PT}$$
 LC-3/Sb

donde b= coeficiente de regresión (pendiente) y Sb= error típico del coeficiente de regresión;

$$b_{PT LC} = \sum LC PT/\sum LC^2 y Sb = \sqrt{S_{PT LC}^2/\sum PT^2}$$

También se calcularon las ecuaciones entre las dos mediciones biométricas.

Con los datos de las mediciones anteriores y de la LT y AC se obtuvieron las relaciones biométricas LC vs LT, LC vs PT, AC vs PT y LC vs AC. Las mediciones se realizaron en el laboratorio con ejemplares recolectados entre agosto del 2001 y agosto del 2002. Se utilizó el método de mínimos cuadrados (Zar, 1984) para calcular las constantes 'a' y 'b' de las siguientes ecuaciones:

a) relaciones de tipo lineal:

$$LT = b LC + a$$

$$AC = b LC + a$$

b) relaciones de tipo potencial:

Estructura poblacional

La estructura poblacional se caracterizó a través de la distribución de tallas y pesos y de la proporción de sexos (total y mensual), tanto para la población total como por sexo. La distribución de frecuencias de tallas se realizó a través de histogramas de cada 5 mm. La proporción de sexos se refiere al cociente del número total de machos entre el tamaño de la muestra (Pianka, 1982). Se aplicó una prueba binomial (Zar, 1999) para determinar la probabilidad de que el número de machos y hembras observado cumpliera con la hipótesis de proporción 1:1.

Según Sparre y Venema (1995), la metodología de análisis de frecuencias de tallas se basa, entre otros aspectos, en los supuestos siguientes: a) el reclutamiento es estacional, con uno o cuando más dos máximos anuales y b) las muestras cubren un intervalo completo de tallas, pues surgen a menudo problemas con las clases de tallas menores, como

efecto de la selectividad en la herramienta de muestreo que se emplea, mientras que en otras ocasiones faltan ciertos grupos de tallas en las muestras debido a la migración de la población fuera del área de estudio.

Crecimiento

En este capítulo se examina el proceso de crecimiento en longitud y peso de *P. gracilis*, con datos obtenidos directamente en las zonas de pesca comercial, en el sur de Sinaloa. Estos datos se obtuvieron de los muestreos quincenales de abril de 1996 a marzo de 1998.

La determinación y el análisis del modelo de crecimiento se realizaron a través del paquete de computación THE COMPLEAT ELEFAN (Gayanilo et al., 1989) (ELEFAN= Electronic Length Frequency Analysis). Este programa utiliza los datos de frecuencia de tallas para estimar los parámetros de crecimiento. Es una modificación del modelo de von Bertalanffy propuesta por Pauly y Gaschutz (1979), tanto para peces como para crustáceos, y es conocida como el modelo de crecimiento de oscilación estacional. La ecuación es la siguiente:

Lt=
$$L_{\infty}[1-e^{-[K(t-to)+CK/2pi \text{ sen }(2pi(t-ts))]}]$$

donde Lt= longitud total promedio de un a clase de edad, L∞= longitud promedio máxima que puede alcanzar organismo, e= base de los logaritmos naturales, K= tasa de crecimiento, t= tiempo y to= tiempo hipotético al cual la longitud total es igual a cero; C= amplitud de oscilación del crecimiento (0<C<1), si C= 0 la ecuación es una función de la del crecimiento de von Bertalanffy, por implica que la tasa de crecimiento no tiene estacionalidad, mientras que cuando más alto sea el valor de C, más pronunciadas serán las oscilaciones estacionales, y si C= 1, la tasa de crecimiento K será igual a cero en el punto de invierno; WP (punto de invierno) = período del año en que el crecimiento es más lento; y ts= WP+0.5, es el inicio de las oscilaciones del crecimiento sinoidal, con respecto a 'to' (Pauly, 1984).

Para la estimación de la citada ecuación por medio del programa ELEFAN se consideran los siguientes supuestos:

- Las muestras utilizadas son representativas de la población.
- Las distintas tallas que se presentan corresponden a diferentes edades.
- 3.- El crecimiento es similar en cada ciclo anual, esto es, no hay factores que provoquen cambios bruscos en la talla entre uno y otro año.
- 4.- La ecuación de crecimiento con oscilación estacional de von Bertalanffy proporciona una aproximación apropiada del crecimiento de peces e invertebrados.

Aspectos de la reproducción

La información utilizada para determinar los porcentajes mensuales de hembras ovígeras y no ovígeras, así como las proporciones de hembras maduras e inmaduras (de acuerdo a la fase de madurez sexual) y la talla de primera madurez sexual se obtuvo durante los períodos de veda (junio-septiembre) de los años 1990 y 1991, en las costas del sur de Sinaloa. Estos períodos han sido determinados como los de mayor actividad reproductiva (Pérez-González et al., 1992b; Briones-Fourzán y Lozano-Álvarez, 1992). Los organismos fueron recolectados con el equipo de pesca de los pescadores de las cooperativas, el cual consiste en redes agalleras.

Se determinó la relación entre el peso total y la longitud del cefalotórax de las hembras durante su actividad reproductiva. Esta relación fue descrita anteriormente. Asimismo, se construyeron histogramas de frecuencia de tallas y pesos con el objetivo de definir los intervalos que se presentan con mayor frecuencia durante este período reproductivo así como la talla y pesos medios y las modas

principales. Los intervalos de clase para la LC fueron cada 2 mm y para el PT cada 20 g.

Para definir el período de mayor actividad reproductiva se analizaron los porcentajes mensuales de las distintas fases sexuales de las hembras (Tabla 1), así como la variación mensual de la proporción de las hembras ovígeras y no ovígeras. Además, para definir dicha actividad con mayor precisión se analizaron también los porcentajes de las hembras en actividad reproductiva y en descanso de esa actividad. Para esto las muestras se analizaron de dos maneras: a) tomando a las hembras maduras como aquéllas que se encontraron en las fases sexuales 2-5 y a las inmaduras como aquéllas en las fases 1 y 6, y b) tomando a las primeras como aquéllas en las fases 2-5 y las segundas como aquéllas en la fase 1.

Para estimar la talla de primera madurez sexual se consideró el intervalo en el cual el 50% de las hembras se encuentran maduras (MacDiarmid, 1989; Goñi et al., 2003). Asimismo, se detectaron las hembras más pequeñas con huevecillos retenidos en el abdomen, en cualquier fase de desarrollo, así como con espermatóforo, restos de éste o restos de huevecillos.

Por último, se comparó la estructura de las muestras totales de la población natural y la de las capturas comerciales, utilizando curvas de frecuencia acumulativa de las hembras de *P. gracilis*. Esto se realizó con el objetivo de definir la parte de la población que se aprovecharía, ya sea con la talla mínima legal actual (82.5 mm de LC) o con la que se propone en este estudio, a partir de la estimación de la talla de primera madurez sexual.

Fecundidad

La fecundidad fue estimada con 259 hembras con huevecillos externos, las cuales fueron recolectadas entre abril de 1993 y marzo de 1994, cubriéndose un amplio intervalo de tallas y las cuatro estaciones del año.

En el campo, todos los pleópodos con huevecillos adheridos fueron separados del abdomen de las hembras y fijados en formaldehído al 5%. Posteriormente, las masas ovígeras fueron lavadas en el laboratorio y conservadas en alcohol al 70%.

huevecillos fueron removidos de los pleópodos, colocados en tamices el tiempo necesario para eliminar el exceso de conservador y secados en una estufa durante 24 a 48 horas a una temperatura de entre 60 y 70°C. Para obtener un secado uniforme y evitar la formación de grumos, los huevecillos se dispersaban cada 4-6 horas. Posteriormente los huevecillos fueron limpiados de los restos de otras partículas y tamizados en mallas de 200 y 345 μ . La masa total obtenida se pesó en una balanza Sartorius (0.001 g). A partir de esta masa seca se separaron 5 submuestras de 0.01 g y se contaron con la ayuda de un microscopio estereoscópico Carl Zeiss.

La fecundidad individual se determinó con la siguiente relación:

F = Gn/g

donde F= fecundidad individual, G= peso de la gónada seca, n= promedio de huevecillos de las 5 submuestras y g= peso de la submuestra.

Para determinar las relaciones estacionales entre la fecundidad y la LC y el PT de los organismos, éstos fueron separados por estación del año: para la primavera 59 individuos, para el verano 49, para el otoño 60 y para el invierno 91.

La fecundidad individual se relacionó con los datos biométricos, ajustándose por el método de mínimos cuadrados con el PT (relación lineal) y con la LC (relación potencial). De esta forma se calcularon los valores de las constantes 'a' y 'b' de las siguientes ecuaciones:

F=a+bPT

 $F = a LC^b$

Se realizó un análisis de covarianza (ANCOVA) para comparar las pendientes de la relación F-PT entre las épocas del año. Con esta prueba estadística se determinó si había diferencias en la fecundidad individual entre las distintas épocas del año.

La pérdida de huevecillos durante su incubación fue estimada como las diferencias en la fecundidad entre hembras con huevecillos en diferentes fases de desarrollo.

Captura, esfuerzo pesquero y captura por unidad de esfuerzo (CPUE)

Se efectuó un análisis de la captura, esfuerzo pesquero y CPUE durante el período de estudio. La CPUE se estimó de la siguiente manera:

CPUE= captura/ esfuerzo

La CPUE se tomó como un índice de abundancia de la población de *P. gracilis* en la región del sur de Sinaloa. El esfuerzo pesquero se definió como el número de embarcaciones que trabajaron por mes. Además, se describió la relación entre CPUE, captura y esfuerzo.

RESULTADOS

Variables hidrológicas

La variación mensual de la temperatura del aqua presentó un patrón bien definido durante los tres años de muestreo, con dos épocas bien marcadas: una cálida, con temperaturas de 28.8-30.9°C en superficie y de 24.1-30.2°C en el fondo; y otra fría, con temperaturas de 17.9-27.8°C en superficie y de 17.9-27.6°C en el fondo (Fig. 6), correspondientes a los períodos de lluvias y secas, respectivamente. El primero abarca de junio a octubre y las temperaturas de la superficie oscilaron de 28.8 a 30.4°C en 1989, de 30.2 a 30.9°C en 1990 y de 27.8 a 30.2°C en 1991; mientras que las del fondo variaron de 25.9 a 30.0°C en 1989, de 29.0 a 30.2°C en 1990 y de 24.1 a 29.8°C en 1991. Las mediciones indican que durante 1990 se presentaron temperaturas medias más elevadas que en los otros dos años y que las del fondo fueron ligeramente menores a las de la superficie en los tres años. El período de secas comprende de noviembre a mayo y en éste se registraron temperaturas en la superficie entre 17.9 (febrero) y 26.3°C (mayo) en 1989, de 20.1 (febrero) a 27.8°C (noviembre) en 1990 y de 21.0 (abril) a 26.7°C (noviembre) en 1991; mientras que las del fondo fluctuaron de 17.9 (febrero) a 25.5°C (noviembre) en 1989, de 19.6 (febrero) a 27.6°C en 1990 y de 19.2 (abril) a 26.7°C (noviembre) en 1991. En este caso también se observó que durante 1990 se registraron los valores de temperatura más altos y que los del fondo fueron menores que los de la superficie.

Los valores medios mensuales de la salinidad estuvieron entre 34.0 y 35.0% (Fig. 7). Sin embargo, analizando la salinidad dentro de este intervalo, se observó que los registro más altos se obtuvieron durante la época de secas y los más bajos en el período de lluvias, tanto en la superficie como en el fondo. Además, se observó una disminución de esta variable entre julio y octubre de 1990, tanto en la superficie como en el fondo, con valores por debajo de 34.0% en la superficie (Fig. 7). Los promedios mensuales mínimos fueron de 34.11% en agosto de 1989, 33.67% en octubre de 1990 y 34.25% en agosto de 1991; mientras

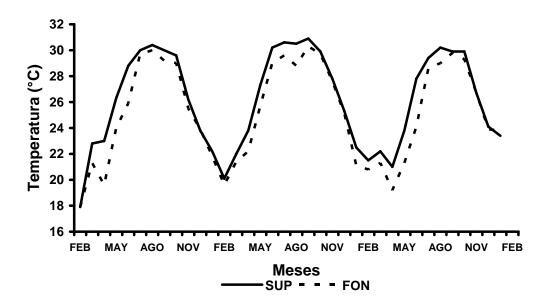


Figura 6.- Variación de la temperatura del agua de la superficie y del fondo, entre febrero de 1989 y enero de 1992 en la costa del sur de Sinaloa.

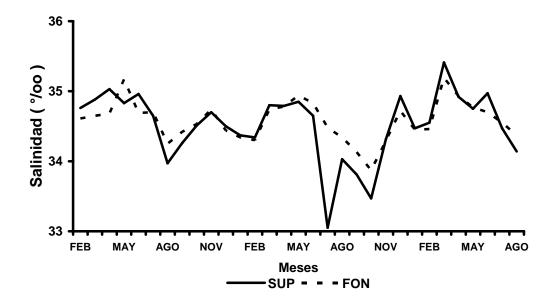


Figura 7.- Variación de la salinidad de la superficie y del fondo, entre febrero de 1989 y agosto de 1991 en la costa del sur de Sinaloa.

que los máximos se registraron en mayo de 1989 y 1990 y en marzo de 1991, con valores de 35.00, 34.9 y 35.3%, respectivamente.

Durante el período de estudio las lluvias se presentaron entre julio y diciembre en 1989 y 1991 y de junio a octubre en 1990. Los meses de máxima precipitación fueron en agosto de 1989 y 1991, con mediciones de 439.8 y 332.2 mm, respectivamente, y en julio de 1990, con una medición de 364.6 mm (fuente: Comisión Nacional de Agua de Mazatlán, Sinaloa).

Variaciones diurnas

Las medición de las variaciones diurnas de las condiciones de temperatura, salinidad y concentración del oxígeno disuelto de la superficie y del fondo del agua, se tomaron durante un ciclo de 24 h en las cuatro estaciones del año durante 1989 y 1990. En 1989 las mediciones se realizaron en la estación de muestreo 1, mientras que durante 1990 se efectuaron tanto en la 1 como en la 2 (véase Fig. 2).

En la figura 8 se aprecian las tendencias de las temperaturas ambiente y de la superficie y fondo del agua para la estación única de muestreo durante 1989, notándose que las mayores se registraron durante el verano, las intermedias en primavera y otoño y las mínimas en invierno. Los valores de la temperatura del medio ambiente siempre fueron menores que las del aqua, excepto entre las 09:23 y 15:13 horas del invierno y primavera. Los valores máximos de la temperatura del agua se midieron durante el verano, con 30.3°C en la superficie y 29.5°C en el fondo, y los mínimos se registraron en invierno, con 21.5°C en la superficie y 20.8°C en el fondo (ver Apéndice B). Las temperaturas de superficie y fondo fueron similares durante el transcurso del día y la noche en cada una de las épocas del año, excepto durante las 12:50 y 17:00 horas, donde la de superficie fue mayor de hasta con una diferencia de 4°C (Fig. 8).

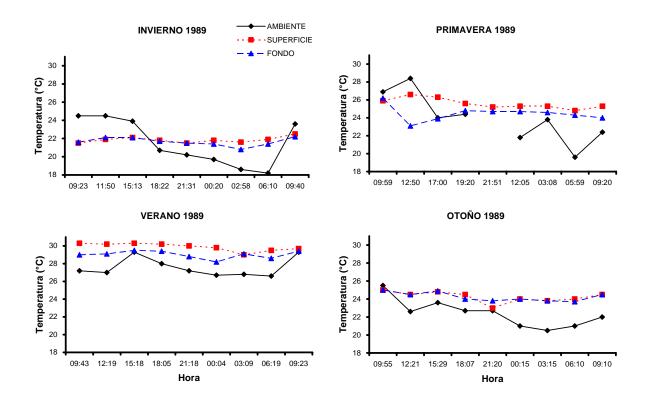


Figura 8.- Variación de la temperatura del ambiente y del agua medida en la superficie y en el fondo por época del año durante ciclos de 24 horas en 1989, en la costa del sur de Sinaloa. Invierno: 28-29 de febrero, primavera: 12-13 de mayo, verano: 14-15 de septiembre y otoño: 28-29 de noviembre.

La salinidad varió entre 33.63 y 37.09% en la superficie y de 34.50 a 35.28% en el fondo (Apéndice B), con las mayores diferencias entre la superficie y el fondo durante el invierno, primavera y verano (Fig. 9). Las más altas salinidades se registraron durante la primavera en la superficie del agua, con valores de 37.07 y 37.09% y un solo registro de 37.01% en invierno; mientras que los menores se midieron en el fondo durante el verano, con valores de entre 33.63 y 33.93% (Fig. 9). La menor variación entre las salinidades de superficie y fondo se obtuvo durante el otoño, siendo los valores prácticamente iguales (alrededor de 34.5%).

Las concentraciones del oxígeno disuelto fueron muy variables tanto entre las épocas del año como durante las distintas horas

del día y de la noche (Fig. 10). Únicamente en verano las mediciones de esta variable mantuvieron concentraciones constantes durante la variación diurna y similares entre la superficie y el fondo, con valores alrededor de 4.0 y 4.9 ml/l (Apéndice B). Sin embargo, durante la primavera se presentó la mayor variación de la concentración del oxígeno durante la variación diurna, con los menores valores en la superficie del aqua entre las 17:00 y 21:51 horas (Fig. 10). La máxima concentración de esta variable se registró en invierno, con 6.78 y 6.22 ml/l en la superficie y fondo, respectivamente, y la menor concentración se midió en primavera, con valores de 0.87 y 0.58 ml/l en la superficie y fondo, respectivamente (Apéndice B).

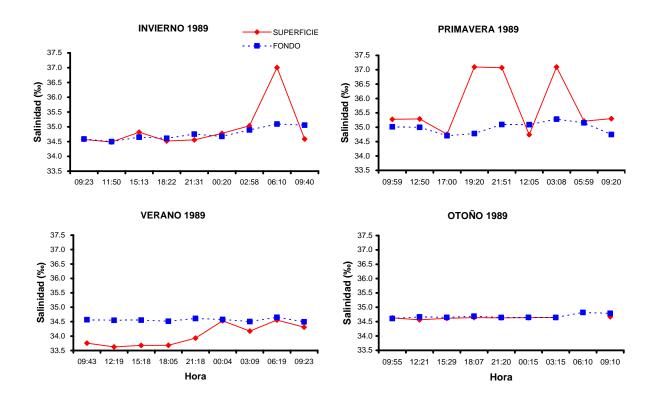


Figura 9.- Variación de la salinidad en la superficie y en el fondo del agua por época del año durante ciclos de 24 horas en 1989, en la costa del sur de Sinaloa. Invierno: 28-29 de febrero, primavera: 12-13 de mayo, verano: 14-15 de septiembre y otoño: 28-29 de noviembre.

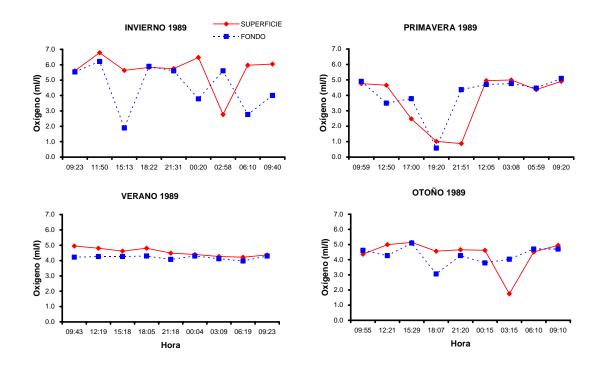


Figura 10.- Variación de la concentración del oxígeno disuelto del agua en la superficie y en el fondo por época del año durante ciclos de 24 horas en 1989, en la costa del sur de Sinaloa. Invierno: 28-29 de febrero, primavera: 12-13 de mayo, verano: 14-15 de septiembre y otoño: 28-29 de noviembre.

Las variaciones de temperatura, salinidad y oxígeno disuelto observadas en los ciclos de 24 horas durante 1990 se presentan en las figuras 11-16. Las tendencias de la temperatura del aire y en la superficie y fondo del agua se muestran en las figuras 11 y 12, para las estaciones 1 y 2, respectivamente. Se observa que las mayores temperaturas se registraron durante el verano, las intermedias en primavera y otoño y las mínimas en invierno. En la estación 1, en todas las épocas y durante el transcurso del día y en la noche, los valores de las temperaturas fueron similares, con excepción del otoño, cuando se aprecia que las del aire fueron ligeramente menores que las de la superficie y del fondo. Los valores máximos se registraron en verano, con 31.1°C en la superficie y 30.3°C en el fondo, y los mínimos se obtuvieron en invierno, con 19.5 y 19.2°C en la superficie y (Apéndice C). Sin embargo, fondo, respectivamente estación 2 se observa una mayor variación de las temperaturas del aire y del fondo, siendo menos marcada durante el invierno.

La temperatura del aire disminuye a partir de las 18:00, se mantiene hasta las 06:00 horas y empieza a incrementarse a partir de las 09:00 horas (Fig. 12). Se observó que la mayor diferencia entre las temperaturas de la superficie y del fondo se presentó en primavera, en la estación 2 (Fig. 12).

La salinidad varió entre 32.54 (primavera, estación 2) y 38.79% (otoño, estación 1) en la superficie y de 32.51 (primavera, estación 2) a 39.19% (verano, estación 1) en el fondo (Apéndice C), con las mayores diferencias entre la superficie y el fondo durante la primavera y otoño en ambas estaciones (Figs. 13 y 14). Las más altas salinidades se registraron durante el verano en el fondo del agua en la estación 1, con valores entre 38.02 y 39.19%, y durante el otoño en ambas estaciones, con valores que oscilaron alrededor de 38.5%. Las salinidades fueron prácticamente iguales entre la superficie y el fondo durante el invierno y muy similares en verano en la estación 2, variando sus valores alrededor de 34.3% para la primera época y de 34.0 a 34.8% para la segunda (Apéndice C).

Las concentraciones del oxígeno disuelto no presentaron gran variación en la estación 1 durante las cuatro épocas del año (Fig. 15) y en invierno y otoño en la estación 2 (Fig. 16), con valores que fluctuaron alrededor de 3.82 y 6.22 ml/l (Apéndice C). La mayor diferencia en las concentraciones de esta variable se midieron durante la primavera, en la estación 2 (Fig. 16), con valores en la superficie que variaron entre 5.05 y 5.74 ml/l y en el fondo oscilaron de 1.91 a 3.21 ml/l (Apéndice C). Éstos últimos fueron los menores valores registrados, excepto uno que se observó durante el verano en la estación 2 por debajo de la unidad (0.54 ml/l a las 00:29 horas).

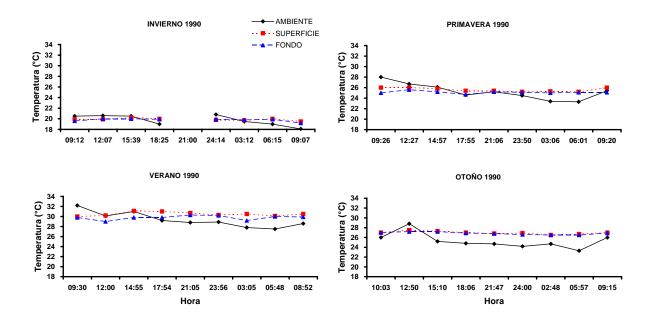


Figura 11.- Variación de la temperatura del ambiente y del agua medida en la superficie y en el fondo por época del año durante ciclos de 24 horas en 1990, en la costa del sur de Sinaloa. Estación 1= isla Lobos.

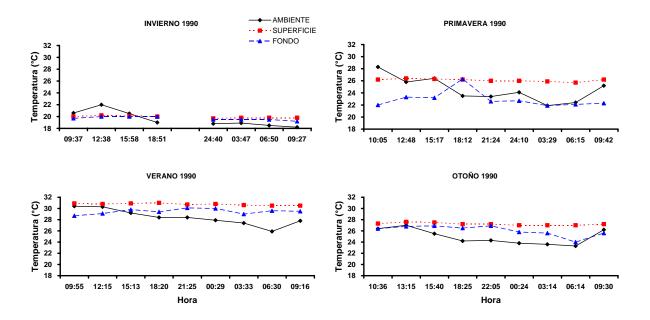


Figura 12.- Variación de la temperatura del ambiente y del agua medida en la superficie y en el fondo por época del año durante ciclos de 24 horas en 1990, en la costa del sur de Sinaloa. Estación 2= entre la isla Lobos y punta Chile.

Figura 13.- Variación de la salinidad en la superficie y en el fondo del agua por época del año durante ciclos de 24 horas en 1990, en la costa del sur de Sinaloa. Estación 1= isla Lobos.

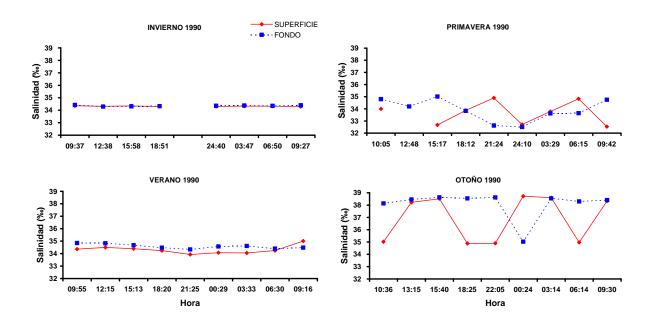


Figura 14.- Variación de la salinidad en la superficie y en el fondo del agua por época del año durante ciclos de 24 horas en 1990, en la costa del sur de Sinaloa. Estación 2= entre la isla Lobos y punta Chile.

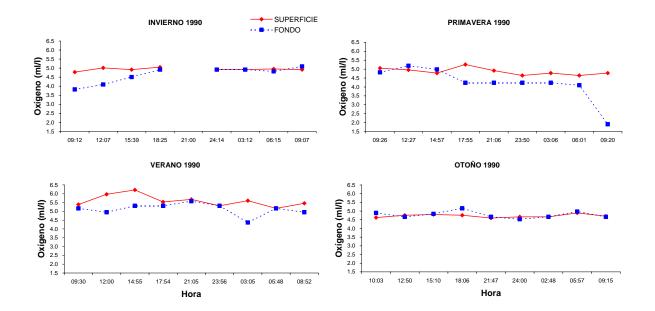


Figura 15.- Variación de la concentración del oxígeno disuelto del agua en la superficie y en el fondo por época del año durante ciclos de 24 horas en 1990, en la costa del sur de Sinaloa. Estación 1= isla Lobos.

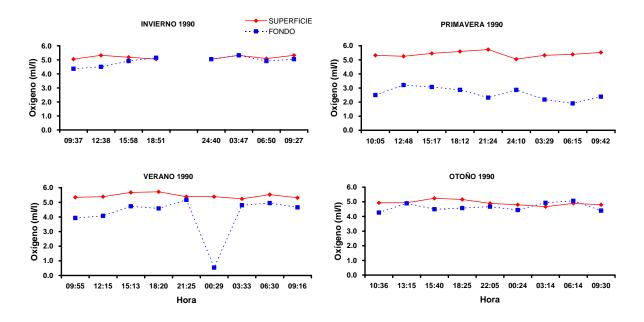


Figura 16.- Variación de la concentración del oxígeno disuelto del agua en la superficie y en el fondo por época del año durante ciclos de 24 horas en 1990, en la costa del sur de Sinaloa. Estación 2= entre isla Lobos y punta Chile.

Aspectos biológicos

Relaciones biométricas

Las ecuaciones de las relaciones morfométricas por sexo y ambos sexos juntos, así como el número de organismos con el que se calcularon y el factor de determinación \mathbb{R}^2 , se presentan en la tabla 2.

Tabla 2.- Relaciones morfométricas de *Panulirus gracilis* obtenidas de agosto de 2001 a agosto de 2002 en la costa de Sinaloa. R²= coeficiente de determinación; y n= número de organismos.

Relación	Ecuación	R ²	n	
	Machos + Hembras			
LT vs. LC	LT= 2.5027 LC + 16.036	0.8978	271	
PT vs. LC	PT= 0.0017 LC ^{2.8321}	0.8863	279	
PT vs. AC	PT= 0.0017 AC ^{2.973}	0.8864	271	
AC vs. LC	AC= 0.7458 LC + 4.271	0.9302	271	
	Machos			
LT vs. LC	LT= 2.3714 LC + 22.037	0.8978	159	
PT vs. LC	PT= 0.0021 LC ^{2.7689}	0.8883	159	
PT vs. AC	PT= 0.002 AC ^{2.9241}	0.8896	159	
AC vs. LC	AC= 0.7403 LC + 4.4196	0.9299	159	
	_			
	Hembras			
LT vs. LC	LT= 2.8109 LC + 0.0933	0.9494	112	
PT vs. LC	PT= 0.0009 LC 3.0038	0.9221	120	
PT vs. AC	$PT = 0.0012 AC^{3.0784}$	0.8963	112	
AC vs. LC	AC = 0.7616 LC + 3.57	0.9342	112	

En todos los casos, se obtuvieron R^2 > a 0.88, lo cual indica una buena correlación entre las distintas mediciones que se relacionaron (P<0.05). Los valores más altos fueron para las relaciones entre AC vs. LC, tanto para los sexos juntos (0.9302) como separados (machos= 0.9299; hembras= 0.9342), y

para LT vs. LC (0.9494) y Pt vs. Lc (0.9221) en las hembras (Tabla 2).

Las líneas de tendencia, con sus puntos de dispersión, de la relación LT vs. LC (Fig. 17), permiten observar la estrecha relación de tipo lineal que tienen esas dos variables, tanto para ambos sexos juntos (Fig. 17a) como para los machos (Fig. 17b) y hembras (Fig. 17c) por separado ($\mathbb{R}^2 > a 0.89$).

Se observa también que en las líneas de tendencia para las relaciones del PT vs. LC (Fig. 18) y del PT vs. AC (relaciones potenciales) (Fig. 19) la mayoría de los puntos graficados presentan un buen ajuste (P<0.05), manifestándose en los elevados valores de R^2 (R^2 > a 0.88) en todos los casos: sexos juntos (Figs. 18a y 19a), machos (Figs. 18b y 19b) y hembras (Figs. 18c y 18c). Para la relación entre AC vs. LC también se obtuvo una estrecha relación entre estas variables, tanto para los sexos juntos (Fig. 20a) como para los machos (Fig. 20b) y hembras (Fig. 20c), observándose también que la R^2 tiene valores elevados (R^2 > a 0.92).

Relación PT vs LC

Esta relación fue calculada por año así como por mes. En este último caso, el cálculo fue realizado para observar los cambios temporales de la constante 'a', la cual fue tomada como el factor de condición.

Para todos los años (1989, 1990 y 1991) se observa la típica relación potencial, con un buen ajuste ($R^2 > 0.87$) entre ambas variables (P < 0.05), tanto para sexos combinados como por separado (Fig. 21). Asimismo, esta misma relación se obtuvo en los cálculos de las ecuaciones mensuales para cada año; sin embargo, se observa una mayor variación en el R^2 , debido a que para cada mes se tienen diferentes números de organismos, los cuales tienen distintos intervalos de tallas, lo que se manifiesta en esas variaciones en el R^2 , y en las constantes 'a' y 'b'. Las curvas mensuales, las ecuaciones, R^2 y el número de organismos (n) tanto para los sexos combinados como por

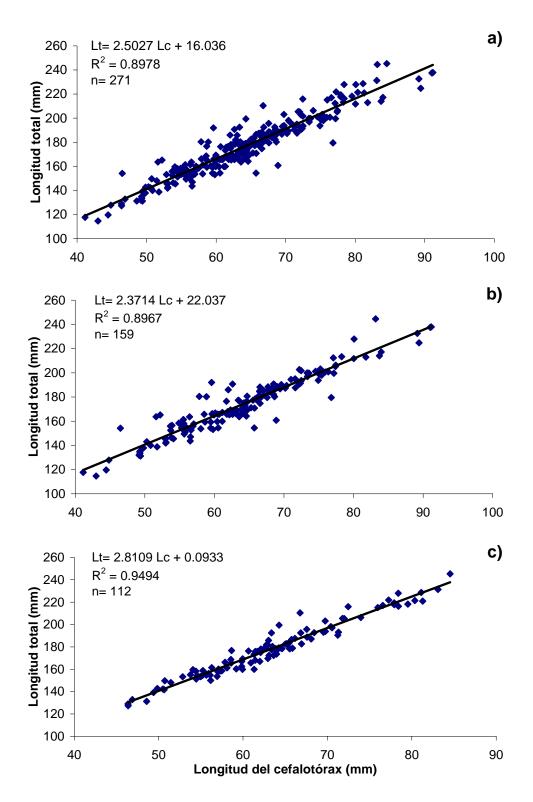


Figura 17.- Relación entre la longitud total y la longitud del cefalotórax de *Panulirus gracilis* en la costa sur de Sinaloa. a) machos y hembras juntos; b) machos; c) hembras.

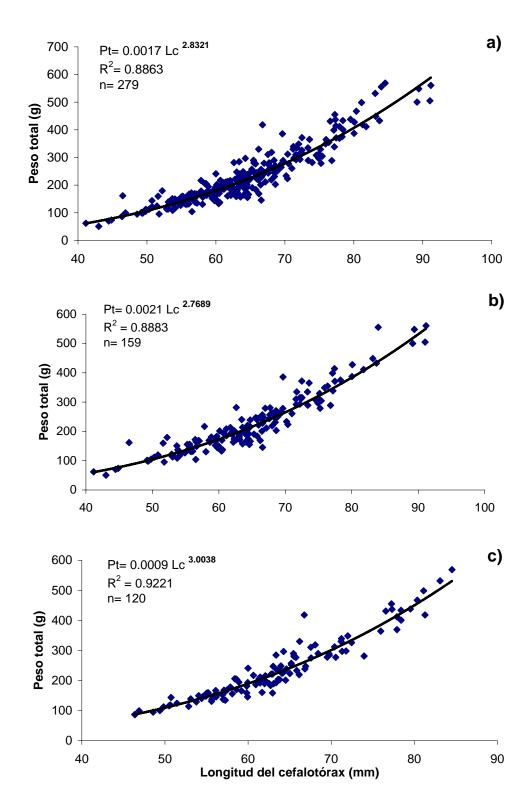


Figura 18.- Relación entre el peso total y la longitud del cefalotórax de *Panulirus gracilis* en la costa sur de Sinaloa. a) machos y hembras juntos; b) machos; c) hembras.

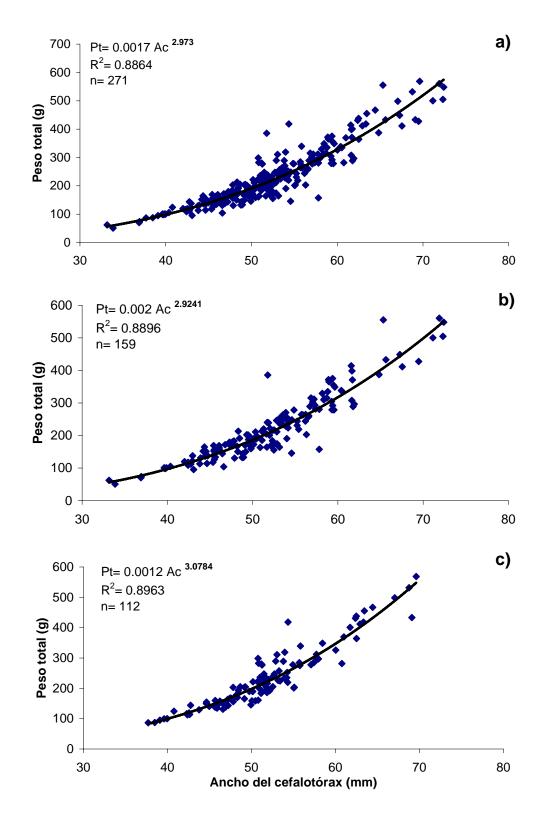


Figura 19.- Relación entre el peso total y el ancho del cefalotórax de Panulirus gracilis en la costa sur de Sinaloa. a) machos y hembras juntos; b) machos; c) hembras.

I

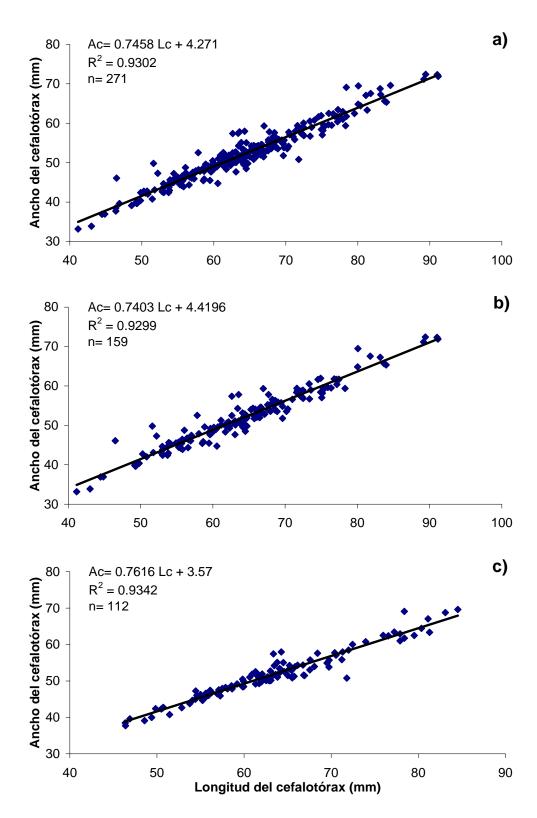


Figura 20.- Relación entre el ancho y largo del cefalotórax de Panulirus gracilis en la costa sur de Sinaloa. a) machos y hembras juntos; b) machos; c) hembras.

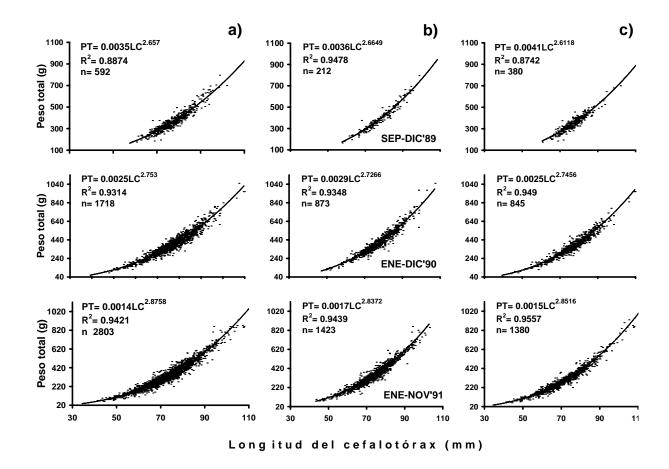


Figura 21.- Relación entre el peso total (PT) y la longitud del cefalotórax (LC) de Panulirus gracilis por sexos combinados (a), hembras (b) y machos (c) durante los períodos de septiembre-diciembre de 1989, enero-diciembre de 1990 y enero-noviembre de 1991, en las costas del sur de Sinaloa.

separado se muestran en las figuras 22 (para 1989), 23 (para 1990) y 24 (para 1991).

El factor de condición varió mensualmente. Para la población total (sexos combinados) los valores mayores se obtuvieron entre septiembre de 1989 a mayo de 1990, excepto en enero; en agosto y entre octubre y diciembre de 1990 y en diciembre de 1991 (Fig. 25a). Estos resultados muestran un patrón temporal, con los valores más elevados a finales del verano y durante el otoño; mientras que los valores menores se observan durante el resto del año y corresponden al período final de la primavera y al verano. Sin embargo, este análisis también se efectuó por cada sexo con la finalidad de observar la variación de este factor principalmente en las hembras, ya que en éstas los cambios se manifiestan con más claridad, de acuerdo a su mayor o menor actividad reproductiva. Durante la mayor actividad reproductiva de P. gracilis las hembras presentan gónadas grandes y ocupan un considerable volumen de la cefalotorácica y/o llevan la masa ovígera adherida al abdómen, lo cual se manifiesta con valores más altos en el factor de condición que cuando no se encuentran en reproducción. En las hembras los valores mayores del factor de condición obtuvieron entre septiembre y noviembre de 1989, marzo y agosto de 1990, de octubre a diciembre de 1990 y en septiembre de 1991, mientras que los valores menores se calcularon para el resto del período, correspondiendo a diciembre y enero de 1989, abril-septiembre de 1990 (excepto agosto) y enero-agosto de 1991, excepto marzo (Fig. 25b). En los machos se observa un patrón similar, con los valores mayores del factor de condición entre septiembre y diciembre de 1989, de agosto a diciembre de 1990, y en noviembre de 1991 (Fig. 25c). Tanto en hembras como en machos se aprecia un patrón temporal, con los valores mayores entre fines del verano y todo el otoño y con los valores más bajos durante el invierno y la primavera.

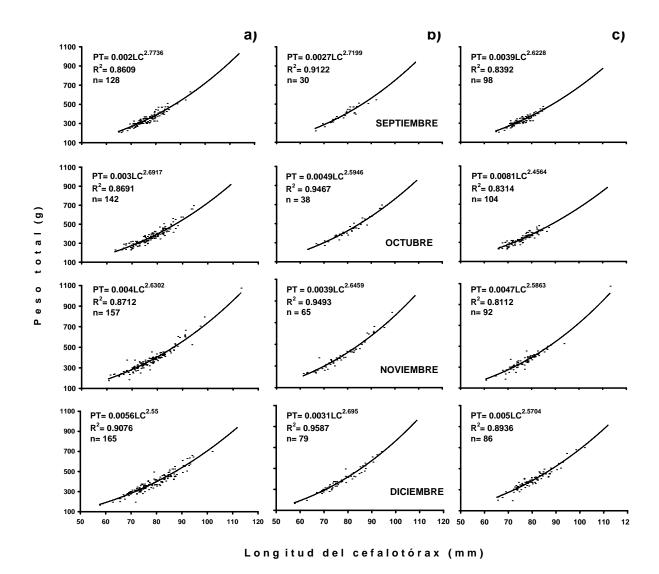


Figura 22.- Relación mensual entre el peso total y la longitud del cefalotórax de Panulirus gracilis por sexos combinados (a), hembras (b) y machos (c) de septiembre a diciembre de 1989, en las costas del sur de Sinaloa.

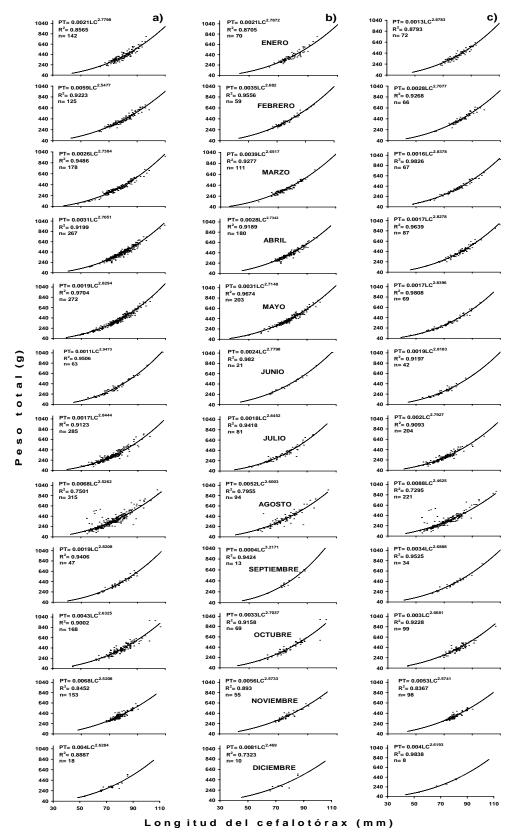


Figura 23.- Relación mensual entre el peso total y la longitud del cefalotórax de Panulirus gracilis por sexos combinados (a), hembras (b) y machos (c) durante 1990 para la costa del sur de Sinaloa.

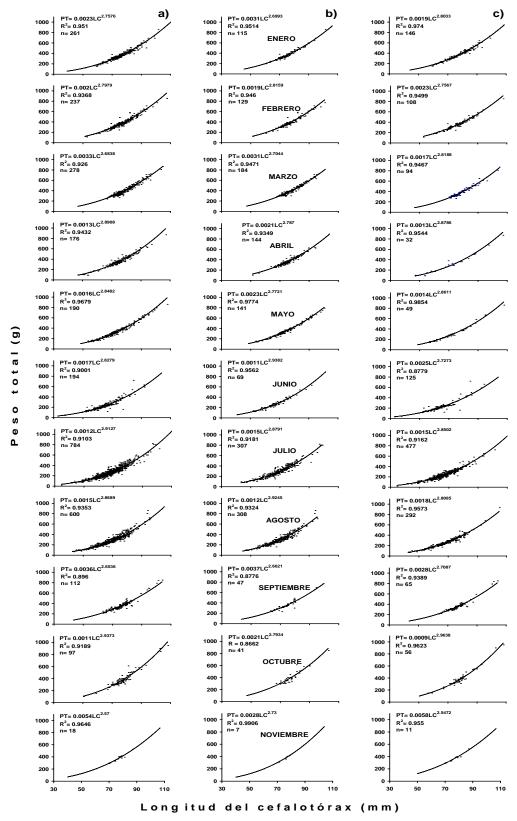


Figura 24.- Relación mensual entre el peso total y la longitud del cefalotórax de *Panulirus gracilis* por sexos combinados (a), hembras (b) y machos (c) durante 1991 para la costa del sur de Sinaloa.

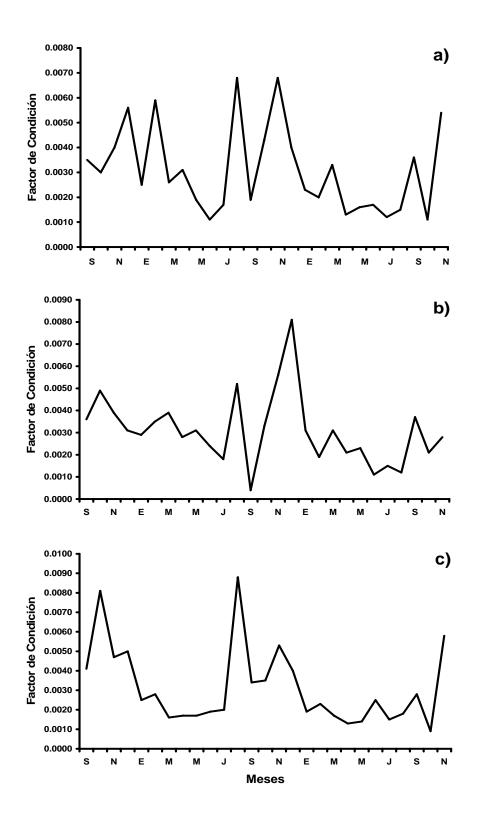


Figura 25.- Variación mensual del factor de condición por sexos combinados y por separado de *Panulirus gracilis* entre septiembre de 1989 y noviembre de 1991, en las costas de Sinaloa. a) machos+hembras, b) hembras y c) machos.

Estructura de la población

Parámetros estadísticos básicos

Las medidas se tomaron mensualmente en 1989, 1990 y 1991. Éstas fueron la longitud del cefalotórax (LC), la longitud total (LT) y el peso total (PT), con un número variable de organismos. Para 1989, en la parte sur del área de estudio (Playa Sur), en las hembras las medias de LC oscilaron de 68.93 a 81.90 mm, las de LT entre 190.0 y 224.3 mm, y las de PT de 290.31 a 473.65 g; mientras que en los machos las medias de LC se encontraron entre 66.981 y 87.39 mm, las de LT de 165.00 y 227.59 mm, y las de PT de 253.89 a 520.87 g (Tabla 3). Los coeficientes de variación (C.V.) presentaron valores bajos en las medidas de LC y LT. En las hembras éstos tuvieron valores entre 7.92 y 18.70 y de 7.12 a 25.06 para la LC y LT, respectivamente; mientras que en los machos fueron de 9.23 a 13.46 y entre 6.53 y 11.23, respectivamente. Sin embargo, este coeficiente presentó valores más elevados en la medida del PT, oscilando entre 22.33 y 56.13 y de 24.81 a 44.74 en hembras y machos, respectivamente (Tabla 3).

En 1989, en la parte norte del área de estudio (punta Cerritosparámetros estadísticos punta Piaxtla) los básicos calcularon de septiembre a diciembre. En las hembras las medias de LC fluctuaron de 76.19 a 80.28 mm, las de LT variaron entre 210.24 y 220.58 mm, y las del PT oscilaron entre 396.60 y 437.76 g; y en los machos las medias de LC fueron de 75.90 a 79.06 mm, las de LT estuvieron entre 193.98 y 202.26 mm, y las de PT se calcularon entre 338.19 y 394.16 q (Tabla 4). Los C.V. tuvieron valores por debajo de 11.33 en las medidas de longitud tanto en las hembras como en los machos, siendo éstos para las primeras de 0.97 a 11.33 y entre 1.02 y 11.24 para LC y LT, respectivamente; mientras que para los segundos los valores fluctuaron de 1.0 a 8.75 en la LC y entre 0.81 y 7.72 en la LT. Para la medida del PT el C.V. fue más alto que en las medidas de longitud, variando entre 3.16 y 32.15 y de 2.65 a 28.33 en hembras y machos, respectivamente (Tabla 4).

Tabla 3.- Valores de los máximos, mínimos, medias, modas, desviación estándar (Desv. est.), coeficientes de variación (C.V.) y el número de organismos analizados (No.) de Panulirus gracilis por sexos combinados y separados, durante 1989 en la parte más al sur del área de estudio en la costa de Sinaloa (entre punta Cerritos y punta Piaxtla). Todas las medidas son en milímetros.

			TOTAL			IEMBRA			MACHOS	
	Máximo	LC 100.00	LT 177.00	PT 850	LC 100.00	LT 300.00	PT 850	LC 100.00	LT 260.00	PT 740
ENE	Mínimo	69.00	300.00	290	70.00	177.00	290	69.00	178.00	300
	Media	80.86	220.90	431.88	79.36	224.27	417.12	82.39	217.47	446.90
	Moda	80.00	210.00	420	80.00	240.00	420	75.00	210.00	310
	Desv est. C.V.	7.44 9.21	22.31 0.43	113.80 26.35	7.02 8.85	2.35 1.05	101.52 24.34	7.61 9.23	2.07 0.95	124.14 27.78
	No.	117	117	117	59	59	59	58	58	58
FEB	Máximo	105.00	276.00	810	103.00		810	105.00	257.00	770
	Mínimo	68.00	177.00	250	68.00	190.00	260	69.00	177.00	250
	Media	80.49	216.50	421.48	78.58	217.80	408.92	83.97	214.13	
	Moda Desv est.	75.00 7.40	1.76	450 105.01	75.00 6.33	230.00 1.76	350 94.47	80.00 7.97	210.00 1.75	450 119.05
	C.V.	9.20	0.81	24.91	8.05	0.81	23.10	9.49	0.82	26.78
	No.	300	300	300	194	194	194	106	106	106
	Máximo	110.00		900	101.00		840	110.00	290.00	900
	Mínimo Media	60.00 79.82	185.00 217.65	250 424.73	60.00 77.93	186.00 217.35	250 404.46	70.00 83.58	185.00 218.24	
MAR	Moda	80.00	200.00	400	80.00	200.00	400	75.00	205.00	320
	Desv est.	7.82	19.81	116.11	6.17	18.34	90.26	9.31	22.58	147.86
	C.V.	9.80	9.10	27.34	7.92	8.44	22.32	11.14	10.34	31.80
	No. Máximo	221 110.00	221 290.00	221 1000	147 110.00	147 290.00	147 1000	74 107	74 266	74 890
	Mínimo	69.00	179.00	250	70.00	185.00	263	69	266 179	250
	Media	82.12	220.34	439.18	80.49	220.32	425.58	85.852	220.37	470.28
ABR	Moda	80.00	220.00	400	80.00	210.00	400	90	220	410
	Desv est.	7.76	18.54	115.21	6.70	17.95	103.74 24.38	8.7047	19.913	133.3
	C.V. No.	9.45 355	8.41 355	26.23 355	8.32 247	8.15 247	24.38	10.14 108	9.04 108	28.34 108
	Máximo	124.00		1125	100.00		750	124.00	289.00	1125
	Mínimo	69.00	185.00	270	69.00	185.00	270	75.00	190.00	310
MAY	Media Moda	82.38 80.00	224.97	465.75 500	81.11 80.00	224.33 220.00	451.81 430	87.39	227.52 220.00	520.87 320
IVIA 1	Desv est.	8.24	220.00 20.58	135.91	6.59	19.24	106.44	85.00 11.77	25.55	211.07
	C.V.	10.01	91.50	29.18	8.12	8.58	23.56	13.46	11.23	40.52
	No.	114	114	114	91	91	91	23	23	23
	Máximo	100.00		740 120	100.00		740 120	90.00		520 140
	Mínimo Media	55.00 68.36		274.84	55.00 70.00		290.31	55.00 66.81		258.33
JUN	Moda	60.00		200	60.00		240	65.00		200
	Desv est.	9.16		125.76	10.44		134.58	7.57		115.58
	C.V. No.	13.40 70		45.76 62	14.92 34		46.36 32	11.34 36		44.74 30
	Máximo	100.00	250.00	780	100.00	250.00	780	100.00	224.00	730
	Mínimo	55.00	178.00	160	55.00	205.00	160	60.00	178.00	170
	Media	74.33	205.95	336.63	74.90	218.29	366.38	74.00	198.75	319.71
JUL	Moda	70.00	224.00	300	70.00	45.50	300	70.00	200.00	300 109.22
	Desv est. C.V.	9.35 12.58	16.64 8.08	126.52 37.58	10.83 14.47	15.53 7.12	149.74 40.87	8.50 11.48	12.97 6.53	34.16
	No.	80	19	80	29	7	29	51	12	51
	Máximo	90.00	260.00	620	90.00		620	80.00	165.00	
	Mínimo Media	55.00	160.00 185.00	130 274.06	55.00	160.00	130	55.00	165.00	150
AGO	Moda	68.75 65.00	160.00	274.06	68.93 60.00	190.00 160.00	300.00 200	68.61 75.00	165.00	253.89 290
	Desv est.	10.00	42.72	122.68	12.89	47.61	168.39	7.44		69.12
	C.V.	14.55	23.09	44.76	18.70	25.06	56.13	10.84		27.23
	No.	110.00	5	32	104.00	4	14 860	110.00	1	18
	Máximo Mínimo	110.00 60.00		930 180	104.00 61.00		250	110.00 60.00		930 180
	Media	80.02		414.46	81.90		473.65	79.11		385.99
SEP	Moda	80.00		400	95.00		450	80.00		400
	Desv est. C.V.	8.87 11.09		124.09 29.94	10.74 13.11		153.09 32.32	7.70 9.73		95.75 24.81
	No.	194		194	63		63	131		131
	Máximo		276.00	1110		276.00	850	110.00	272.00	1110
	Mínimo	55.00		155	62.00		220	55.00	102.00	
OCT	Media Moda	79.74 75.00		430.58 350	79.07 75.00		445.28 350	80.12 80.00	205.16 200.00	
ост	Desv est.	8.48	22.50	119.09	8.46	22.39	114.34	8.48	21.33	
	C.V.	10.63	10.73	27.66	10.70	10.29	25.68	10.59	10.40	28.70
	No.	346	346	346	126	126	126	220	220	220
	Máximo	100.00		800		280.00	800	100.00	260.00	
	Mínimo Media	51.00 79.88	148.00 210.17	120 434.01	54.00 80.00	150.00 218.08	150 451.10	51.00 79.80	148.00 204.59	120 421.81
NOV	Moda	80.00	210.17	454.01	80.00	200.00	340	80.00	210.00	450
	Desv est.	9.08	24.79	115.66	9.26	26.74	128.90	9.00	21.76	
	C.V.	11.37	11.79	26.65	11.57	12.26	28.57	11.27	10.63	
	No.	186	186	185	77	77	77	109	109	108

Tabla 4.- Valores de los máximos, mínimos, medias, modas, desviación estándar (Desv. est.), coeficientes de variación (C.V.) y el número de organismos analizados (No.) de *Panulirus gracilis* por sexos combinados y separados, durante 1989 en la parte norte del área de estudio en la costa de Sinaloa (entre punta Cerritos y punta Piaxtla). Todas las medidas son en milímetros.

		TOTAL			Н	EMBRA	S	MACHOS		
		LC	LT	PT	LC	LT	PT	LC	LT	PT
	Máximo	99.06	260	780	93.75	260	630	99.06	237	780
	Mínimo	64.14	109	205	64.14	185	220	64.80	109	205
	Media	76.38	199.64	354.98	77.86	217.31	407.44	75.90	193.98	338.19
SEP	Moda	74.73	195	300	74.73	217	470	74.73	195	300
	Desv est.	5.48	18.10	85.08	6.91	17.91	97.30	4.88	14.14	73.76
	C.V.	7.17	9.07	23.97	8.87	8.24	23.88	6.43	7.29	21.81
	No.	132	132	132	32	32	32	100	100	100
	Máximo	94.23	258	695	94.23	258	695	87.07	230	590
	Mínimo	63.14	169	230	63.14	172	230	65.81	169	230
	Media	77.19	201.90	369.72	80.28	220.58	437.76	76.06	195.14	345.10
OCT	Moda	69.60	196	370	#N/A	227	575	69.60	196	350
	Desv est.	5.96	18.46	87.34	7.5258	21.49	109.91	4.86	11.29	61.75
	C.V.	7.72	9.14	23.62	9.37	9.74	25.11	6.39	5.79	17.89
	No.	143	143	143	38	38	38	105	105	105
	Máximo	113.08	275	1075	98.55	268	795	113.08	275	1075
	Mínimo	60.58	155	175	61.21	169	230	60.58	155	175
	Media	76.96	202	377.41	77.35	211.63	399.92	76.69	195.27	361.67
NOV	Moda	78.11	191	300	66.42	202	455	74.75	191	300
	Desv est.	7.60	20.72	115.11	8.7601	23.80	128.59	6.71	15.08	102.47
	C.V.	9.88	10.26	30.50	11.33	11.24	32.15	8.75	7.72	28.33
	No.	158	158	158	65	65	65	93	93	93
	Máximo	101.83	270	755	93.88	270	700	101.83	250	755
	Mínimo	53.09	159	165	57.53	159	165	53.09	168	195
	Media	77.68	206.11	395.29	76.19	210.24	396.60	79.06	202.26	394.16
DIC	Moda	75.18	208	370	75.18	208	360	73.91	198	370
	Desv est.	7.76	19.44	114.29	7.38	21.55	125.34	7.88	16.45	104.48
	C.V.	1.00	0.94	2.89	0.97	1.02	3.16	1.00	0.81	2.65
	No.	174	174	168	84	84	78	90	90	90

Durante 1990 y 1991 los parámetros estadísticos básicos se calcularon entre enero y diciembre. Para el primer año, en las hembras las medias de LC oscilaron de 71.27 a 78.62 mm, las de LT entre 195.0 y 214.1 mm, y las de PT de 344.06 a 462.0 g; mientras que en los machos las medias de LC se encontraron entre 69.25 y 81.11 mm, las de LT de 181.8 y 206.0 mm, y las de PT de 287.60 a 427.63 g (Tabla 5). Los coeficientes de variación (C.V.) presentaron valores bajos en las medidas de LC y LT. En las hembras éstos tuvieron valores entre 8.26 y 13.84 y de 8.19 a 14.06 para la LC y LT, respectivamente; mientras que en los machos fueron de 5.62 a 16.73 y entre 4.90 y 14.86, respectivamente. Sin embargo, este coeficiente presentó valores más elevados en la medida del PT, oscilando entre 23.67 y 41.28 y de 16.12 a 44.94 en hembras y machos, respectivamente (Tabla 5). Durante 1991, en las hembras las medias de LC fluctuaron de 66.14 a 77.43 mm, las de LT variaron entre 183.3 y 216.6 mm, y las del PT oscilaron entre 265.94 y 409.4 g; y en los machos las medias de LC fueron de 63.95 a 79.30 mm, las de LT estuvieron entre 168.1 y 205.3 mm, y las de PT entre 225.58 y 401.86 g (Tabla 6). Los C.V. tuvieron valores por debajo de 19.11 en las medidas de longitud tanto en las hembras como en los machos, siendo éstos para las primeras de 8.57 a 13.42 y entre 8.37 y 14.30 para LC y LT, respectivamente; mientras que para los segundos los valores fluctuaron de 6.53 a 19.11 en la LC y entre 5.39 y 17.02 en la LT. Para la medida del PT, el C.V. fue más alto que en las medidas de longitud, variando entre 23.14 y 40.24 y de 18.01 a 53.85 en hembras y machos, respectivamente (Tabla 6).

Distribución de tallas

Se analizó un total de 7292 ejemplares, de los cuales 2106 se recolectaron en la bahía de Mazatlán y 5186 en punta Cerritospunta Piaxtla. El intervalo de tallas de los ejemplares durante el período de estudio varió desde los 35 hasta los 125 mm de LC. En ambas zonas el comportamiento fue similar. En la primera, la mayoría de los organismos se encontró en el intervalo de tallas de 70-90 mm, con una moda de 80 mm, tanto para el total de individuos (Fig. 26) como para machos y

Tabla 5.- Valores de los máximos, mínimos, medias, modas, desviación estándar (Desv. est.), coeficientes de variación (C.V.) y el número de organismos analizados (No.) de *Panulirus gracilis* por sexos combinados y separados, durante 1990 en la parte norte del área de estudio en la costa de Sinaloa (entre punta Cerritos y punta Piaxtla). Todas las medidas son en milímetros.

		1	TOTAL		HEMBRAS MACHOS						
		LC	LT	PT	LC	LT	PT	LC .	LT	PT	
	Máximo	95.96	261.00	790		261.00	790	93.193			
ENE	Mínimo	63.50	172.00	200	63.50	172.00	200	67.97	175.00	220	
	Media	79.39	208.27	405.48	78.62	214.13	408.61	80.145	202.57		
	Moda Desv est.	84.51 6.52	205.00 17.61	395 102.74	84.25 6.78	205.00 18.67	395 111.40	85.27 6.21	209.00 14.51	320 94.25	
	C.V.	8.21	8.46	25.34	8.62	8.72	27.26	7.75	7.16	23.42	
	No.	142	142	142	70	70	70	7.73	7.10	72	
	Máximo	98.22	253.00	695	95.50		695	98.222	249.00	655	
	Mínimo	62.74	161.00	205	63.07	170.00	220	62.738	161.00	205	
	Media	78.69	206.83	410.40	75.98	207.81	391.02	81.106	205.95	427.73	
FEB	Moda	79.65	198.00	400	#N/A	198.00	335.00	#N/A	198	400	
	Desv est.	7.56	17.68	106.04	7.5414	20.02	111.44	6.7599	15.39	98.61	
	C.V. No.	9.61 125	8.55 125	25.84 125	9.93 59	9.63 59	28.50 59	8.33 66	7.47 66	23.05 66	
	Máximo	109.68	262.00	960	95.02	260.00	720	109.68		960	
	Mínimo	47.60	125.00	84	56.03	150.00	135	47.60	125.00	84	
	Media	76.03	203.01	378.19	75.06	205.98	371.86	77.637	198.09	388.69	
MAR	Moda	77.01	214.00	335	77.01	195.00	370	72.822	214.00	400	
	Desv est.	8.75	21.47	116.54	6.51	17.59	90.151	11.437	26.09	150.65	
	C.V.	11.51	10.58	30.81	8.67	8.54	24.24	14.73	13.17	38.76	
	No. Máximo	178 109.25	178 267.00	178 960	96.34	111 264	111 735	67 109.25	67 267	67 960	
	Mínimo	55.83	152.00	150	65.18	<u>∠64</u> 179	230	55.83	152	150	
	Media	78.17	209.37	414.29	77.14	211.88	408.44	80.31	204.17	426.38	
ABR	Moda	81.33	210.00	390	65.28	216.00	390	84.71	207.00	440	
	Desv est.	7.53	18.79	113.39	6.37	17.36	98.451	9.16	20.61	139.18	
	C.V.	9.63	8.98	27.37	8.26	8.19	24.10	11.41	10.09	32.64	
	No.	267	267	267	180	180	180	87	87	87	
MAY	Máximo Mínimo	99.95 39.22	269.00 104.00	840 47	99.95 46.99	269.00 135.00	840 105	95.33 39.22	243.00 104.00	730 47	
	Media	75.17	204.58	396.61	76.87	212.03	423.57	70.18			
	Moda	78.23	225.00	390	78.23	225.00	400	#N/A	189.00	375	
	Desv est.	10.25	28.04	139.82	9.11	24.22	128.46	11.74	27.13	142.59	
	C.V.	13.63	13.71	35.25	11.86	11.42	30.33	16.73	14.86	44.94	
	No.	272	272	272	203	203	203	69	69	69	
	Máximo	107.16	286.00	1050	107.16	286.00	1050	90.70	230.00 144.00	625	
	Mínimo Media	54.31 72.63	144.00 192.92	172 356.19	64.24 78.31	174.00 213.59	234 462	54.31 69.58	181.83	172 299.41	
JUN	Moda	65.94	176.00	250	#N/A	176.00	250	72.49	185.00	300	
	Desv est.	9.61	27.11	156.95	10.84	30.04	190.72	7.36	17.44	98.10	
	C.V.	13.23	14.05	44.06	13.84	14.06	41.28	10.58	9.59	32.77	
	No.	63	63	63	22	22	22	41	41	41	
	Máximo	98.171	259.00	750	93.83		750	98.17	269.00	700	
	Mínimo	49.86	140.00	115	49.86	140.00	115	51.38	155.00	120	
JUL	Media Moda	69.827 61.519	184.64 182.00	303.93	71.27 77.95	194.98 188.00	344.06 230	69.25 65.94	198.97 205.00	287.62 300	
002	Desv est.	7.9175	21.09	107.89	9.63	26.94	136.78	7.07	18.60	89.04	
	C.V.	11.34	11.42	35.50	13.51	13.82	39.75	10.21	9.35	30.96	
	No.	285	285	270	81	81	78	204	202	192	
	Máximo	106.68	275.00	950	104.06	275.00	950	106.68	262.00	910	
	Mínimo	52.53	138.00	100	55.50	152.00	140	52.53	138.00	100	
AGO	Media Moda	71.89 69.22	191.54 205.00	349.62 400	73.39 64.29	202.03 195.00	383.46 350	71.25 69.22	187.06 205.00	335.23 250	
	Desv est.	9.33	23.84	134.76	9.30	25.37	141.44	9.29	21.72	<u>∠50</u> 129.49	
	C.V.	12.98	12.45	38.55	12.67	12.56	36.89	13.04	11.61	38.63	
	No.	314	314	315	94	94	94	220	220	221	
	Máximo	96.93	245.00	780		242.00	650	96.93	-	780	
	Mínimo	60.20	160.00	200	60.20		205	61.34		200	
SEP	Media Moda		201.89 192.00	413.48		211.92	431.67 360	76.73 81.10	198.35 192.00		
OL.	Desv est.	7.94		119.46				7.78			
	C.V.	10.39	9.80	28.89	11.40		31.52	10.15	8.97		
	No.	47	46	46	13	12	12	34	34	34	
	Máximo		285.00	975	102.64		975		270.00		
	Mínimo	43.866	123.00	75	56.90	158	175	43.87			
ост	Media Moda	78.219 78.461		421.35 400	76.93 70.82	213.7 204	427.10 350	79.12	123.00 203.77	417.33 400	
	Desv est.	8.2568	21.21					78.46		105.71	
	C.V.	10.56	10.20	29.24	11.49	11.52	34.01	9.79			
	No.	168	167	168	69	69	69	99		7	
	Máximo	98.43	270.00	725	98.43	270.00	725	90.07			
	Mínimo	67.56		270		188.00	270	68.91			
1000	Media		205.07			212.35	396		200.99		
NOV	Moda Desv. est	74.52 5.17	202.00 14.19	350 75.05	74.52 6.35	195.00 17.56	390 93.726	73.58 4.35	202.00 9.85	350 62.55	
	Desv est. C.V.	6.72	6.92	19.20		8.27	23.67	5.62	4.90		
	No.	153	153	153		55	55	98	98		
	-										

Tabla 6.- Valores de los máximos, mínimos, medias, modas, desviación estándar (Desv. est.), coeficientes de variación (C.V.) y el número de organismos analizados (No.) de *Panulirus gracilis* por sexos combinados y separados, durante 1991 en la parte norte del área de estudio en la costa de Sinaloa (entre punta Cerritos y punta Piaxtla). Todas las medidas son en milímetros.

	TOTAL				Η Ε	IEMBRA	S	MACHOS		
		LC	LT	PT	LC	LT	PT	LC	LT	PT
	Máximo	101.37	277.00	860	101.37	277.00	860	98.81		730
	Mínimo	49.02 75.70	131.00 202.40	105 365.06	60.528 75.19	167.00 208.97	195 371.09	49.02 76.11	131.00 197.22	105 360.31
ENE	Media Moda	76.94	210.00	320	76.937	205.00	371.09	74.42	206.00	360.31
	Desv est.	7.86	20.36	106.20		18.23	99.028	8.70	20.50	111.64
	C.V.	10.39	10.06	29.09	8.84	8.73	26.69	11.43	10.39	30.98
	No.	261	261	261	115	115	115	146	146	146
	Máximo	107.37	278.00	850	100.63		770	107.37	273	850
	Mínimo Media	51.31 76.25	138.00 207.36	110 377.76	51.31 76.49	142.00 213.98	120 391.86	52.55 75.95	138 199.46	110 360.93
FEB	Moda	76.96	210.00	340	73.58	210.00	340	76.66	196	320
	Desv est.	7.87	22.30	112.39	7.43	21.15	112.48	8.40	21.12	110.46
	C.V.	10.33	10.75	29.75	9.72	9.88	28.70	11.05	10.59	30.60
	No.	237	237	237	129	129	129	108	108	108
	Máximo Mínimo	104.55 66.42	269.00 178.00	870 240	96.16 67.11	269.00 190.00	725 270	104.55 66.42		870 240
	Media	77.93		400.74	77.23	216.57	400.17	79.30		401.86
MAR	Moda	75.16	200.00	340	75.16	200.00	340	74.98	192.00	330
	Desv est.	6.80	18.11	104.58	6.62	18.12	101.51	6.99	15.68	110.90
	C.V.	8.73	8.51	26.10	8.57	8.37	25.37	8.81	7.64	27.60
	No.	278	278	278	184	184	184	94	94	94
	Máximo	106.98		870	94.08		640	106.98		870
	Mínimo Media	46.84 74.82	127.00 207.73	90 364.52	51.13 75.59	144.00 211.73	100 374.83	46.84 71.38	127.00 189.13	90 318.13
ABR	Moda	73.63	225.00	364.52	73.63	225.00	374.83	#N/A	215.00	360
1	Desv est.	8.43	22.83	110.69	6.59	18.05	89.68	13.64	32.18	171.32
	C.V.	11.27	10.99	30.37	8.71	8.52	23.93	19.11	17.02	53.85
	No.	176	175	176	144	144	144	32	31	32
	Máximo	107.65	278.00	860	100.25	278.00	790	107.65		860
	Mínimo	53.39	132.00	130	53.39	151.00	140	53.49	-	130
MAY	Media Moda	72.96 70.79		340.97 310	73.60 70.79	206.51	355.00 310	71.09 59.87	185.90 190.00	300.61 260
WA I	Desv est.	9.65	26.95	133.13	8.95	24.73	124.12	11.31	27.45	150.38
	C.V.	13.22	13.39	39.05	12.16	11.98	34.96	15.91	14.76	50.02
	No.	190	190	190	141	141	141	49	49	49
	Máximo	93.98		719	91.67	262.00	630	93.98		719
	Mínimo	32.69	92.00	30	40.80	111.00	60	32.69		30
JUN	Media Moda	64.73 65.25	173.46 157.00	239.94 250	66.14 63.65	183.26 182.00	265.94 320	63.95 65.25	168.06 172.00	225.58 250
3074	Desv est.	8.99	24.63	105.64	8.88	26.21	107.01	9.00	22.02	102.49
	C.V.	13.90	14.20	44.03	13.42	14.30	40.24	14.08	13.10	45.43
	No.	193	194	194	69	69	69	124	125	125
	Máximo	123.49		1100	98.93		820	123.49		1100
	Mínimo	34.44	93.00	20	43.30	121.00	80	34.44	93.00	20
JUL	Media Moda	66.89 66.00	178.74 175.00	262.07 200	68.62 65.30	188.54 175.00	296.81 250	65.78 60.00	-	239.66 180
JOL	Desv est.	8.97	24.31	110.12	9.09	25.73	119.09	8.72	20.95	97.684
	C.V.	13.40	13.60	42.02	13.25	13.64	40.12	13.25	12.16	40.76
	No.	781	742	783	306	296	307	475	446	476
	Máximo	105.00		930	95.55	271.00	860	105	267	930
	Mínimo	42.58	115.00	65	44.40	120.00	80	42.58	115	65
AGO	Media	68.60	181.62	283.89	68.65	184.97				271.47
460	Moda Desv est.	75.00 8.84	170.00 23.87	300 110.22	60.00 8.68	182.00 25.04	300 116.27	75 9.0227	200 22.06	300 102.22
	C.V.	12.89	13.14	38.83	12.64	13.54	39.32	13.16	12.39	37.65
	No.	594	597	595	304	307	305	290	290	290
	Máximo	104.00		850	94.90		695	104.00		850
	Mínimo	63.22		210	63.22	172.00	230	63.42		210
SEP	Media	75.99		360.81 300	75.04 79.40		368.19 330			357.74 300
J_F	Moda Desv est.	6.52	210.00 17.32	99.75	6.94	207.00 21.34		6.34	203.00 14.58	97.624
ĺ	C.V.	8.58	8.58	27.65	9.25	10.23	28.63	8.30	7.32	27.29
	No.	161	161	160	46	47	47	115		113
	Máximo		267.00	950		252	850		267.00	950
ĺ	Mínimo	50.29	135.00	100	66.98	179	290	50.29		100
ост	Media Moda	77.18 77.50		389.48		215.02		76.99 77.50		374.91 380
1	Desv est.	8.05	22.19	380 131.15	73.2 6.7101	205 18.684	300 115.01	8.96	203.00	141.04
ĺ	C.V.	10.43	10.68	33.67	8.67	8.69	28.09	11.64	11.46	37.62
ĺ	No.	97	96	97	41	41	41	56		56
	Máximo	86.80		525	79.00	221.00	420	86.80	222.00	525
ĺ	Mínimo	60.08		200	60.08	168.00	200	69.90		290
1	Media	74.88		356.11	72.95	202.71		76.11	198.45	364.09
NOV	Moda Desv est.	#N/A	209.00	330	#N/A	#N/A	#N/A	#N/A	193.00 10.69	330
	C.V.	5.72 7.64	13.80 6.90	69.759 19.59	6.66 9.13	18.34 9.05	79.515 23.14	4.97 6.53	5.39	65.567 18.01
	No.	18		18.39	7	7	7	11		13.01
	_						·			

hembras (Fig. 27). A partir de los 100 mm se capturó un mayor número de machos (talla máxima: 125 mm de LC) que de hembras.

De punta Cerritos a punta Piaxtla, la mayoría de los organismos presentaron una LC de entre 65 y 90 mm, con una moda de 75 mm, tanto para el total de ejemplares (Figs. 28 y 30) como para machos y hembras (Figs. 29 y 31). Asimismo, se observa un mayor número de machos en la clase de talla de 110 mm en 1990 y uno en la de 125 mm en 1991. Aunque fueron pocos los machos recolectados en tallas grandes, se aprecia que estos alcanzan tallas mayores que las hembras.

Para la parte sur del área de estudio, en la distribución mensual de tallas de 1989, para los sexos combinados, observa una moda en el intervalo de 80 mm de LC, excepto los meses de junio a agosto, en los cuales modas de 60 y 70 mm en junio presentaron respectivamente, y en agosto no se observó ninguna moda en particular (Fig. 32). Sin embargo, en la distribución de tallas por sexo se distinguen modas en varios intervalos. En las hembras se presentaron modas de 80 mm de LC en los meses de enero a mayo, julio, noviembre y diciembre; de 60 mm durante junio; bimodales en agosto (60 y 85-90 mm de LC) y septiembre (70 y 90 mm de LC); y en octubre se observó una moda de 70 mm de LC; mientras que en los machos se observan modas de 80 mm de LC en febrero, septiembre, octubre y diciembre; de 70 mm en marzo, julio y agosto; bimodal durante abril (80 y 90 mm de LC); y una menor en junio con 65 mm (Fig. 32).

En la parte norte del área de estudio (punta Cerritos-punta Piaxtla) se analizaron las distribuciones de tallas durante 1989, 1990 y 1991. En el primer año se examinó de septiembre a diciembre, observándose que para los sexos combinados las modas regularmente estuvieron entre 75 y 80 mm de LC; en las hembras las modas oscilaron entre 75 mm (noviembre y diciembre) y 80-85 mm (septiembre y octubre); y en los machos fueron de 80 mm en octubre y diciembre y de 75 mm en noviembre (Fig. 33). En 1990 las modas fueron invariablemente entre 75 y 80 mm de LC para los sexos combinados, excepto durante junio, mes en el que no hay una moda en particular, y julio con una moda de 65 mm;

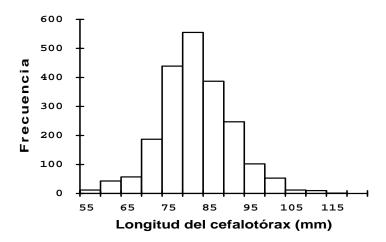


Figura 26.- Distribución de tallas de Panulirus gracilis por sexos combinados durante 1989 en el sur de Sinaloa.

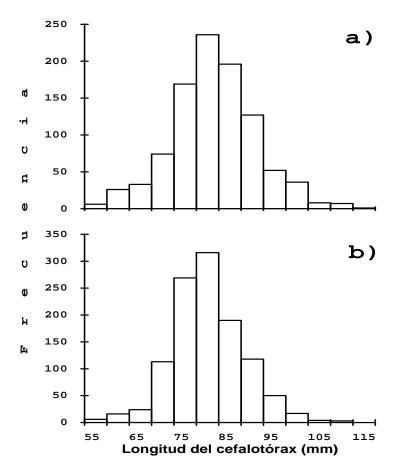


Figura 27.- Distribución de tallas de Panulirus gracilis durante 1989 en el sur de Sinaloa. a) machos; b) hembras.

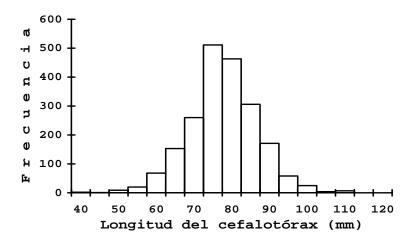


Figura 28.- Distribución de tallas de Panulirus gracilis por sexos combinados durante 1990 en el sur de Sinaloa.

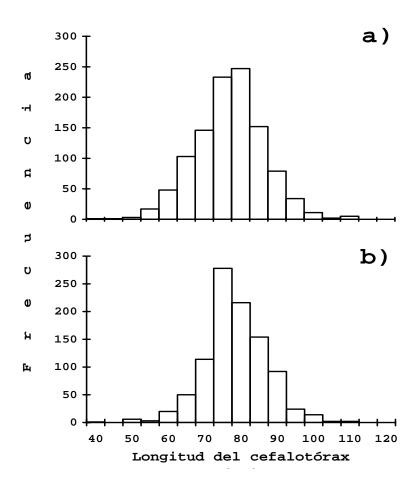


Figura 29.- Distribución de tallas de Panulirus gracilis durante 1990 en el sur de Sinaloa. a) machos; b) hembras.

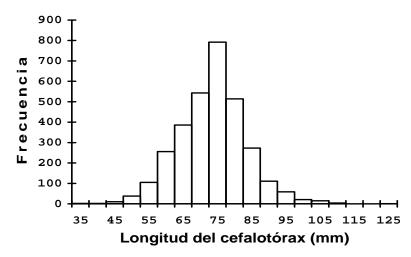


Figura 30.- Distribución de tallas de Panulirus gracilis por sexos combinados durante 1991 en el sur de Sinaloa.

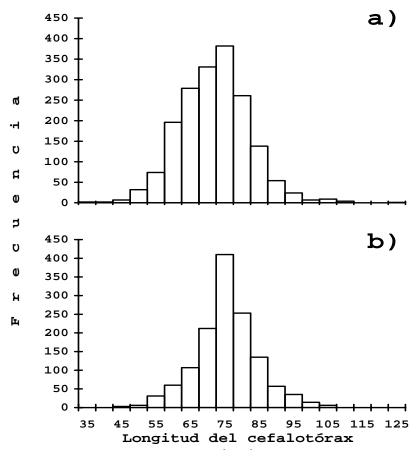


Figura 31.- Distribución de tallas de Panulirus gracilis durante 1991 en el sur de Sinaloa. a) machos; b) hembras.

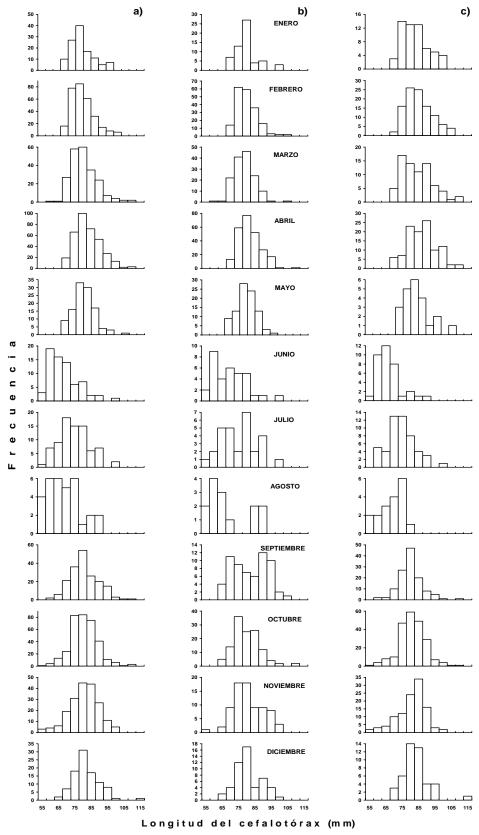


Figura 32.- Distribución mensual de las tallas de *Panulirus gracilis* durante 1989 en la parte sur de Sinaloa. a) hembras + machos, b) hembras y c) machos.

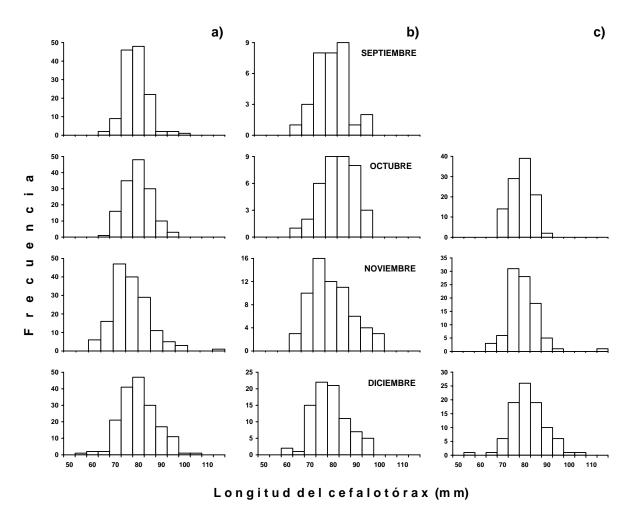


Figura 33.- Distribución mensual de las tallas de *Panulirus gracilis* durante 1989 en la parte norte de Sinaloa (punta Cerritos-punta Piaxtla). a) hembras + machos, b) hembras y c) machos.

mientras que en las hembras en la mayoría de los meses se presentaron modas de 75 mm (de enero a abril y de agosto a diciembre), y en el resto del período se observaron modas de 80 mm (mayo) y 65 mm (julio) y únicamente en junio no se observó una moda específica; y en los machos las modas fueron de 70 mm de LC en agosto, 75 mm de mayo a julio, 80 mm en enero-febrero y de septiembre a noviembre, 85 mm en marzo-abril, y sin una moda específica en diciembre (Fig. 34). Para el año de 1991, el análisis de la distribución de tallas en los sexos combinados mostró que las modas estuvieron en los intervalos de los 75 mm de LC de enero a mayo, 65 mm en junio, 70 mm en julio y agosto, y 80 mm de septiembre a noviembre; mientras que en las hembras las modas variaron entre 75 mm de LC (de enero a mayo y septiembre -octubre) y 70 mm (de junio a agosto); y en los machos se observaron modas de 75 mm de LC en enero, marzo y noviembre, de 80 mm en febrero y septiembre-octubre, 70 mm en abril-mayo y agosto, y de 60-65 mm durante junio (Fig. 35).

En la distribución de tallas se observa que durante todo el período de estudio las modas dominantes se encuentran en el intervalo de los 75 mm de LC y en menor proporción en el de los 80 mm. Las modas menores de 65 y 70 mm obtenidas entre junio y agosto podrían indicar un reclutamiento a la población vulnerable a las artes de pesca durante este período.

Proporción de sexos

La proporción de sexos varió con un patrón definido en la parte sur del área de estudio (bahía de Mazatlán). Los mayores porcentajes de hembras se observaron entre febrero y mayo y en diciembre, mientras que las menores proporciones se encontraron de julio a noviembre (Fig. 36). La proporción de hembras y machos fue del 50% (1:1; P>0.05) durante enero y junio. En la región norte del área de estudio (punta Cerritos-punta Piaxtla), se observó un patrón muy similar a la de la parte sur, con las mayores proporciones de hembras entre marzo (1.7:1; P<0.05) y mayo (2.9:1; P<0.05) de 1990 y de febrero (1.7:1; P<0.05) a mayo (2.9:1; P<0.05) de 1991, mientras que sus menores porcentajes fueron de septiembre (1:3.1; P<0.05) a noviembre (1:1.4; P<0.05) de 1989 y de junio (1990 y 1991=1:1.8)

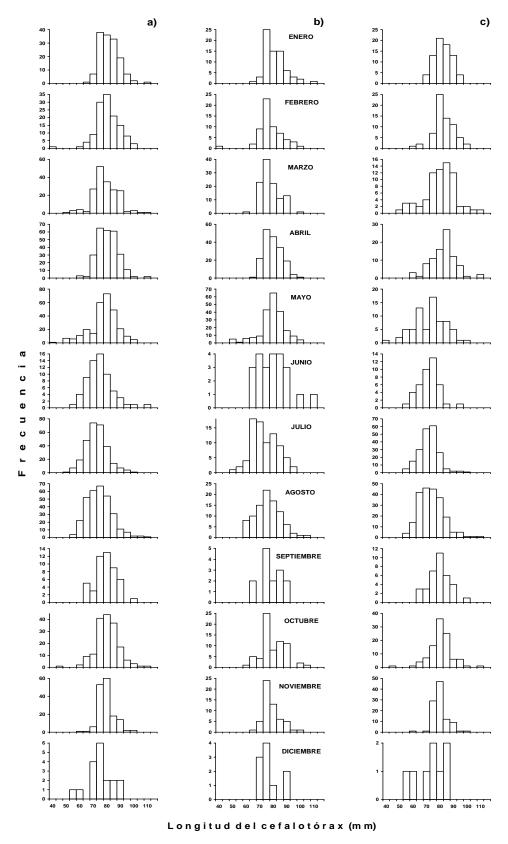


Figura 34.- Distribución mensual de las tallas de *Panulirus gracilis* durante 1990 en la parte norte de Sinaloa (punta Cerritos-punta Piaxtla). a) hembras + machos, b) hembras y c) machos.

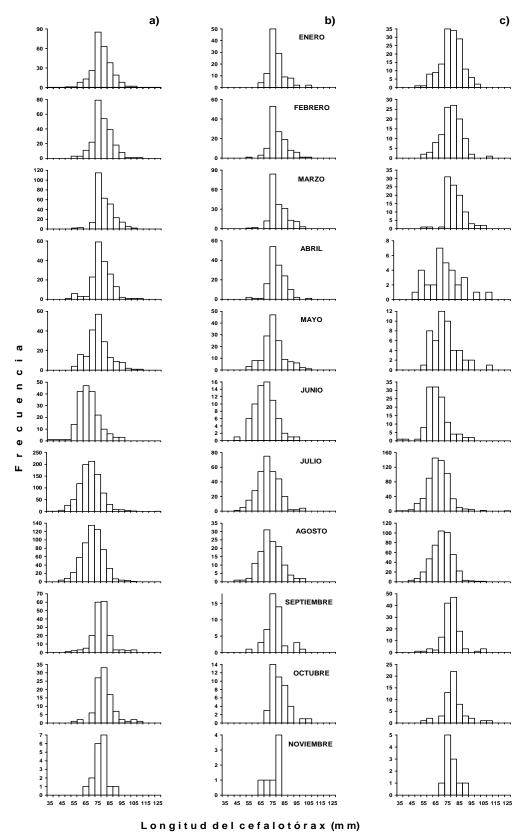


Figura 35.- Distribución mensual de las tallas de *Panulirus gracilis* durante 1991 en la parte norte de Sinaloa (punta Cerritos-punta Piaxtla). a) hembras + machos, b) hembras y c) machos.

P<0.05) a noviembre (1990= 1:1.8; P<0.05; 1991= 1:1.6; P<0.05) (Fig. 37). La proporción de hembras y machos fue de alrededor de 50% (1:1; P>0.05) durante diciembre 1989-enero-febrero de 1990 y en diciembre y enero de 1991. Lo anterior muestra que las variaciones mensuales en las proporción de sexos en P. gracilis presentan un patrón de comportamiento temporal específico: los porcentajes de las hembras disminuyen durante el verano y otoño y a partir del invierno se presenta un aumento gradual de su proporción, para nuevamente decrecer a fines de la primavera.

Crecimiento

Los parámetros L_{∞} y K del modelo de crecimiento estacionalizado de von Bertalanffy, así como los valores calculados de 'to' y Pt_{∞} se presentan por sexo en la tabla 7, tanto para los ciclos anuales 1996-97 y 1997-98 como para los dos años juntos (1996-98). Además, se indican los valores de C, WP y Rn, de los cuales el último indica la bondad de ajuste de la curva de crecimiento, es decir, es la forma de medir que tan cerca está la curva del mejor ajuste posible. Los valores de L_{∞} y K fueron mayores en los machos, con medias de 135.0 mm y 0.38, respectivamente; mientras que en las hembras fueron de 128.0 mm y 0.33. Esto se reflejó también en el P_{∞} , con valores medios de 1769.36 g para los machos y de 1706.96 g para las hembras.

Para 'to' los valores fueron similares cuando los datos fueron analizados para los dos años juntos, pero cuando se examinaron por separado, así como los promedios, fueron más elevados en los machos.

Los valores asignados para 'C' y 'Wp' fueron prácticamente constantes, mientras que los calculados de 'Rn' variaron entre 0.193 y 0.289, siendo éstos elevados, lo que nos indica un buen ajuste de los datos, es decir, las curvas obtenidas se proyectan por las principales modas de las distribuciones de frecuencias de tallas (Figs. 38 y 39).

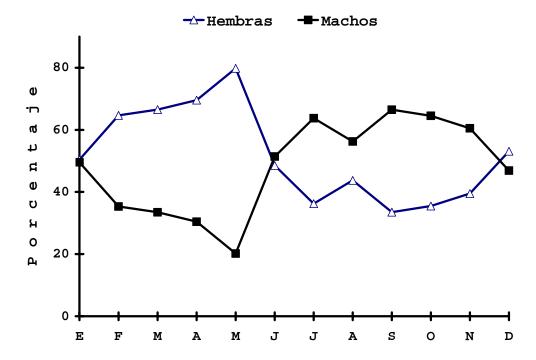


Figura 36.- Variación de la proporción (%) mensual de sexos de *Panulirus gracilis* durante 1989, en la parte sur del área de estudio en Sinaloa.

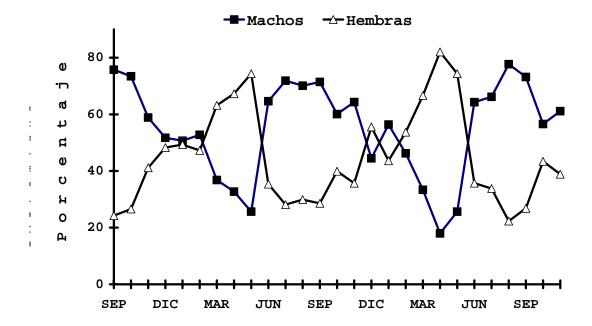


Figura 37.- Variación de la proporción (%) mensual de sexos de *Panulirus gracilis* de septiembre de 1989 a noviembre de 1991, en la parte norte del área de estudio en Sinaloa.

Para las hembras se determinaron cinco grupos de edad bien definidos durante el ciclo 1996-1997 (Tabla 8, Fig. 38a) y para los dos años juntos (1996-1998) (Tabla 8, Fig. 38c), y cuatro para el ciclo 1997-1998 (Tabla 8, Fig. 38b); mientras que para los machos se observaron cuatro grupos de edad bien definidos, tanto por ciclo anual como para los dos años juntos (Tabla 8, Fig. 39a, b y c). En las figuras 38 y 39 se observa que las curvas centrales pasan por las modas más notorias, lo cual se manifiesta en el Rn elevado, para cada uno de los casos (Tabla 7).

En las curvas de crecimiento se observan claramente los grupos de edad determinados; sin embargo, en todos los casos se encontraron un número mayor de cohortes, observándose seis por año (1996-97 y 1997-98), tanto para hembras (Fig. 38a y b) como para machos (Fig. 39a y b), y siete para los dos años juntos (Figs. 38c y 39c).

Temperatura del agua y su relación con el crecimiento y composición de la población

Debido a que las langostas son de hábitos bentónicos, se analizó la temperatura del agua del fondo de abril de 1996 a marzo de 1998 en el área de estudio. Lo anterior también se fundamenta en que otros autores como Muñoz-García (1992) no encontraron diferencias significativas entre esa y la de superficie, en esta misma región. La temperatura del fondo fluctuó de 18.71 a 30.86°C durante el período de estudio, siendo las temperaturas más bajas en febrero, marzo y abril (18.71, 18.99 y 20.81°C) y las más elevadas en agosto y septiembre de 1997 (30.51 y 30.86°C) (Fig. 40), con un promedio anual de 25.4°C.

El aumento y la disminución de la temperatura durante el período de estudio coincidieron con el incremento y el decremento de la tasa de crecimiento, respectivamente, es decir, en todos los casos se encontró que el crecimiento fue mayor durante la temporada cálida (mayo-noviembre) y disminuyó a partir de diciembre hasta abril, para incrementarse nuevamente en mayo.

Tabla 7.- Valores de la longitud asintótica alcanzada (L_{∞} , mm), tasa de crecimiento (k), amplitud (C), punto de invierno (Wp), índice de corrrelación (Rn) y tiempo cero (to) del modelo de crecimiento estacionalizado de von Bertalanffy, obtenidos con el progama ELEFAN (Gayanilo *et al*. 1989), y peso asintótico alcanzado (P_{∞} , g) para hembras y machos de *Panulirus gracilis*, durante dos ciclos anuales, en las costas de Sinaloa.

		Hembras			Machos					
	1996-1997	1997-1998	1996-1998	promedio	1996-1997	1997-1998	1996-1998	promedio		
L∞	128	129	129	128	135	136	135	135		
K	0.32	0.37	0.31	0.33	0.36	0.385	0.39	0.38		
С	0.5	0.5	0.5	0.5	0.5	0.5	0.45	0.48		
Wp	0.22	0.22	0.22	0.22	0.22	0.18	0.2	0.2		
Rn	0.214	0.289	0.235	0.246	0.202	0.209	0.193	0.201		
to	0.0056	0.0103	0.2387	0.0848	0.1471	0.1139	0.2344	0.1651		
P∞	1646.37	1729.39	1745.14	1706.96	1809.29	1747.87	1750.93	1769.36		

Tabla 8.- Longitud cefalotorácica (mm) para cada edad estimada por el programa ELEFAN para hembras y machos de *Panulirus gracilis*, durante dos ciclos anuales en la costa de Sinaloa.

		Hem	Machos					
Edad	1996-1997	1997-1998	1996-1998	Promedio	1996-1997	1997-1998	1996-1998	Promedio
T1	38	43	36	39	46	46	45	46
T2	61	69	59	63	74	74	74	74
T3	81	87	77	82	94	94	94	94
T4	95	99	90	95	106	103	110	106
T5	98	*	100	99	*	*	*	*

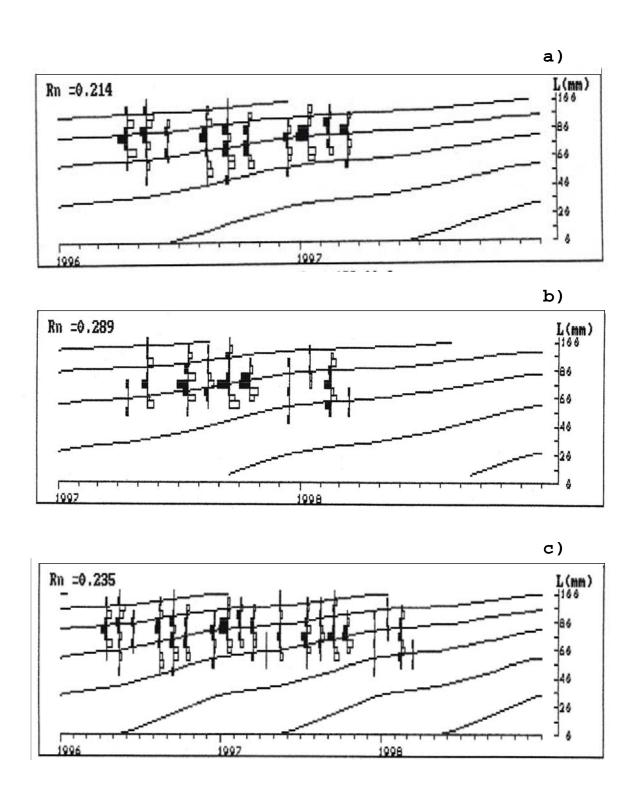


Figura 38.- Curvas de crecimiento obtenidas para hembras de Panulirus gracilis con el modelo estacionalizado de von Bertalanffy para el sur de Sinaloa. a) Abril 1996-marzo 1997, b) abril 1997-marzo 1998; c) abril 1996-marzo 1998.

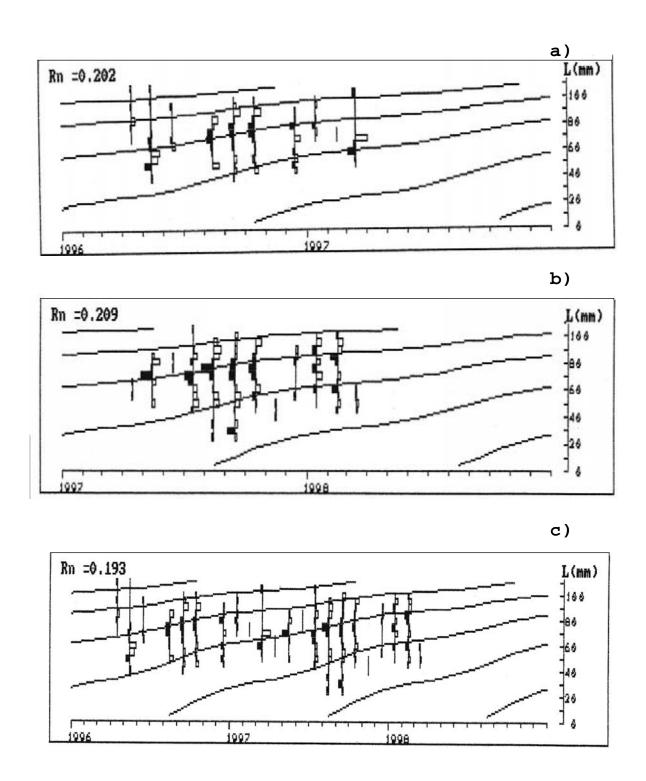


Figura 39.- Curvas de crecimiento obtenidas para machos de Panulirus gracilis con el modelo estacionalizado de von Bertalanffy para el sur de Sinaloa. a) Abril 1996-marzo 1997, b) abril 1997-marzo 1998; c) abril 1996-marzo 1998.

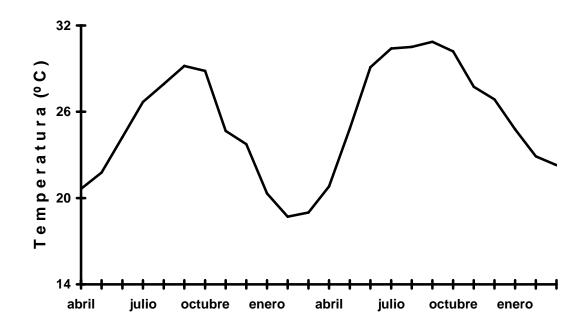


Figura 40.- Variación de la temperatura del agua de fondo de abril de 1996 a marzo de 1998 en la costa del sur de Sinaloa.

Aspectos sobre la reproducción

Para determinar el período de reproducción en las langostas espinosas, se consideró el análisis de la proporción de sexos, variación temporal de los porcentajes de las distintas fases sexuales, de la presencia de hembras con y sin huevecillos (ovígeras y no ovígeras) y de los cambios del factor de condición a través del año (Pérez-González et al., 1992b; Pérez-González y Flores Campaña, 1996).

Proporción temporal de las fases de madurez sexual

Para la zona de punta Cerritos-punta Piaxtla se aprecia que el mayor número de hembras se encontró en la fase 1 y el menor en la 5 (Fig. 41). Esto probablemente indica que esta última etapa es la de menor duración, ya que en todo el período de estudio se obtuvieron pocos individuos mensualmente. Los porcentajes de las diferentes fases sexuales variaron por mes (Fig. 41), siendo generalmente las más elevadas la 1 y la 3. Para apreciar mejor los valores de los porcentajes de hembras en actividad reproductiva, los datos se presentan como hembras ovígeras y no ovígeras. En la figura 42 se observa la variación de esa proporción, destacando que el patrón general es de que en verano y principios de otoño se presenta el mayor porcentaje de hembras ovígeras.

Al adicionar la fase 2 (hembras parchadas) como actividad reproductiva, los porcentajes de las hembras en dicha actividad aumentan, aunque el comportamiento es similar que cuando no se incluye esta fase (Fig. 43).

En la región de Sinaloa, para establecer adecuadamente el período de veda se tiene que tomar en cuenta la actividad reproductiva de ambas especies y en particular de la que predomina regularmente en las capturas (*P. inflatus*), que presenta su mayor actividad de julio a octubre. Por lo tanto, dicho período fue propuesto y modificado del 1º de julio al 30 de octubre, a partir de 1996. Estos resultados coinciden con los de Pérez-González y Flores-Campaña (1996).

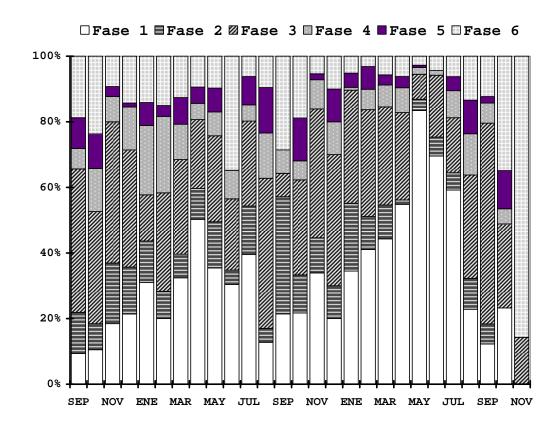


Figura 41.- Variación de la proporción mensual de las fases sexuales en las hembras de *Panulirus gracilis* de septiembre de 1989 a noviembre de 1991 en el sur de Sinaloa.

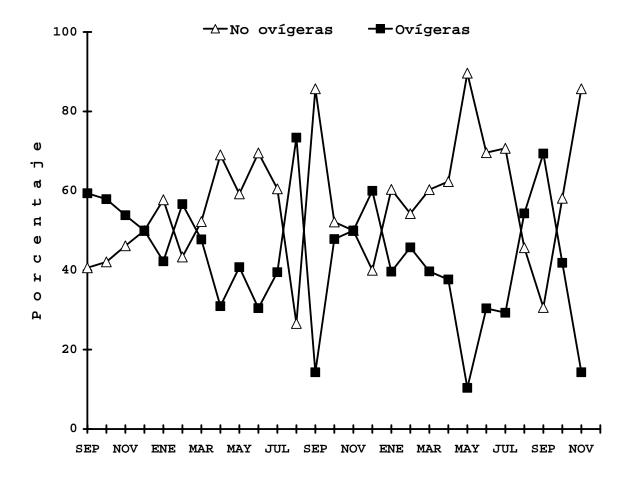


Figura 42.- Variación de la proporción mensual de hembras ovígeras y no ovígeras de *Panulirus gracilis* de septiembre de 1989 a noviembre de 1991 en el sur de Sinaloa.

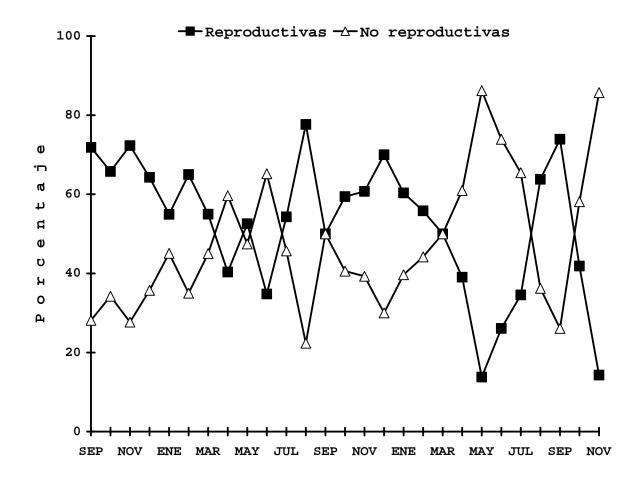


Figura 43.- Variación de la proporción mensual de hembras con y sin actividad reproductiva de *Panulirus gracilis* de septiembre de 1989 a noviembre de 1991 en el sur de Sinaloa. Reproductivas= fases sexuales 2-5; no reproductivas= fases 1 y 6.

Talla de primera madurez sexual (TMS)

Se analizó un total de 2232 organismos de *P. gracilis*, 1522 machos y 710 hembras. De éstos, 714 ejemplares (502 machos y 212 hembras) se obtuvieron durante el período de veda de 1990 y 1518 (1020 machos y 498 hembras) durante el de 1991.

Relación peso-longitud del cefalotórax

En esta relación se presentan los resultados obtenidos sólo para las hembras, con la finalidad de determinar si había diferencias entre los períodos de veda de 1990 y 1991. observa que no hubo diferencias entre las épocas de veda, ni analizaron en conjunto, siendo similares constantes calculadas 'a' y 'b' (Fig. 44). Para todos los casos (1990, 1991 y 1990-1991) las relaciones peso total-longitud del cefalotórax ajustaron ecuaciones potenciales. se a coeficientes de determinación (R2) fueron elevados, siendo éstos de 0.9268, 0.9280 y 0.9276 para 1990 (Fig.44a), 1991 44b) y 1990-1991 (Fig.44c), respectivamente. importante anotar que los organismos que tienen PT de alrededor de 300 g les corresponden una LC de 62.0 a 75.0 mm. Esta correspondencia de PT-LC se indica debido a que en esta región de las costas de Sinaloa las langostas se comercializan a partir de los 300 g de PT.

Distribución de tallas y pesos

La distribución de frecuencia de tallas y pesos se presenta para toda la población de langostas de *P. gracilis* con la finalidad de definir los intervalos de clases en que se encuentran la mayoría de los individuos y si son distintos para cada sexo.

Durante 1990, el intervalo de tallas varió entre 50.0 y 108.0 mm de LC, tanto para los dos sexos juntos como por separado, con la mayoría de organismos entre 62.0 y 80.0 mm (Fig. 45). Las modas correspondieron a las clases de tallas de 70.0-72.0 mm de LC para ambos sexos (Fig. 45a), 70.0 mm para las hembras

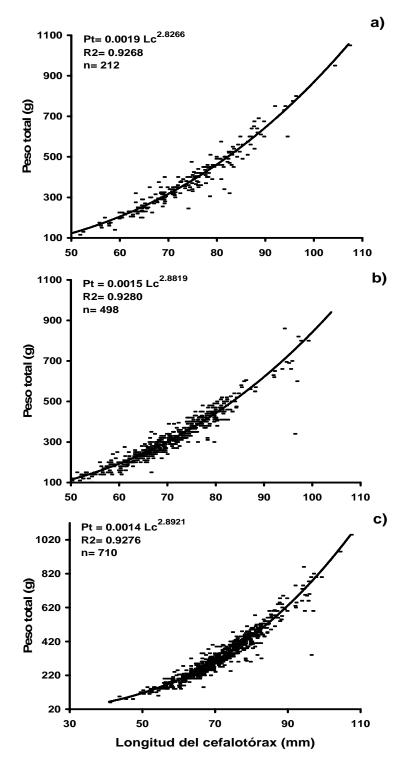


Figura 44.- Relación peso total (PT)-longitud del cefalotórax (LC) de las hembras de *Panulirus gracilis* durante las épocas de veda de 1990 (a) y 1991 (b) por separado y juntas (c) en el sur de Sinaloa.

(Fig. 45b) y 72.0 mm para los machos (Fig. 45c); mientras que para 1991, los intervalos variaron desde 34.0 a 106 mm de LC en ambos sexos en conjunto (Fig. 46a) y los machos (Fig. 46c) y de 42.0 a 100.0 mm en las hembras (Fig. 46b), con la mayoría de los organismos entre 60.0 y 80.0 mm. En todos los casos fueron notorias 2 modas, correspondiendo a 66.0 y 74.0 mm para los sexos juntos (Fig. 46a), 66.0 y 72.0 mm en las hembras (Fig. 46b) y 66.0 y 74.0 mm en los machos (Fig. 46c), coincidiendo la de 66.0 mm en los tres casos. Al analizar las dos temporadas juntas (1990-1991), se encontró que el intervalo de tallas fue de 34.0 a 108.0 mm de LC, con la mayoría de los ejemplares entre 64.0 y 80.0 mm (Fig. 47), sin una moda notoria, ya que las frecuencias más elevadas se observaron entre 66.0 y 74.0 mm en ambos sexos juntos (Fig. 47a), de 66.0 a 76 mm en hembras (Fig. 47b) y de 66.0 a 74.0 mm en los machos (Fig. 47c).

Con respecto al intervalo de peso, durante 1990 para los dos sexos en conjunto se encontró de 100 a 1060 g, con la mayoría de los organismos entre 200 y 400 g y una moda de 300 g (Fig. 48a); en las hembras fue de 110 a 1060, con la mayoría de individuos de 240 a 500 g, con 4 modas muy notorias (240, 320, 360 y 460 g) (Fig. 48b); y en los machos fluctuó entre 100 y 920 g, con la mayoría de ejemplares de 200 a 400 g y una moda 300 g (Fig. 48c). En 1991, para los sexos juntos el intervalo se presentó de 20 a 1100 g, con la mayoría de los individuos de 160 a 360 g y una moda de 300 g (Fig. 49a); en las hembras varió entre 60 y 860 g, con la mayoría de ejemplares incluidos en el intervalo de 200 a 420 g y con una moda de 260 g (Fig. 49b); y en los machos el intervalo fue de 20 a 1100 q, con la mayoría de los organismos entre 160 y 360 q y una moda 300 g (Fig. 49c). Al juntar las dos temporadas, se observó que para los dos sexos juntos el intervalo fue de 20 a 1100 g, con la mayoría de los ejemplares incluidos entre 160 y 400 g y una moda de 300 g (Fig. 50a); en las hembras fluctuó de 60 a 1060 g, con la mayoría de individuos entre 200 y 460 g y dos modas muy notorias (240-260 y 320 g) (Fig. 50b); y en los machos el intervalo varió de 20 a 1100 g, con la mayoría de ejemplares entre 160 y 360 g y una moda de 300 g (Fig. 50c). Cabe destacar que se observa una mayor frecuencia de hembras en el intervalo de 420 a 500 g.

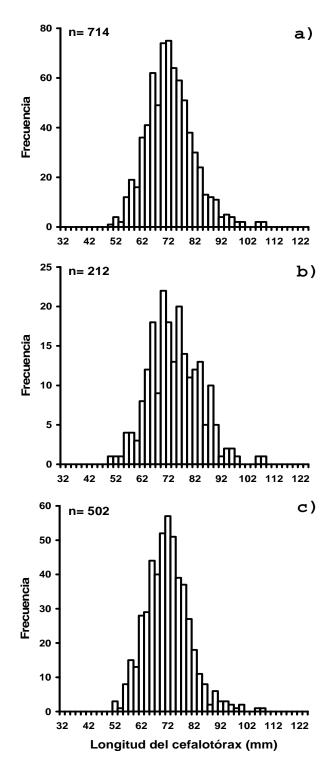


Figura 45.- Distribución de frecuencias de la longitud del cefalotórax de *Panulirus gracilis* durante la veda de 1990, en el sur de Sinaloa. a) machos y hembras, b) hembras; c) machos.

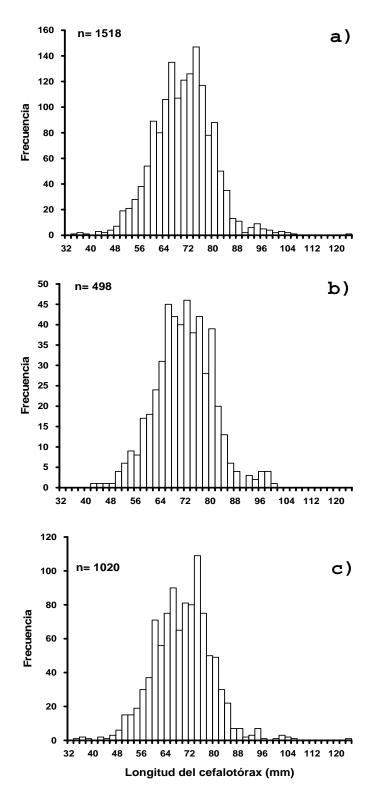


Figura 46.- Distribución de frecuencias de la longitud del cefalotórax de *Panulirus gracilis* durante la veda de 1991 en el sur de Sinaloa. a) machos y hembras; b) hembras; c) machos.

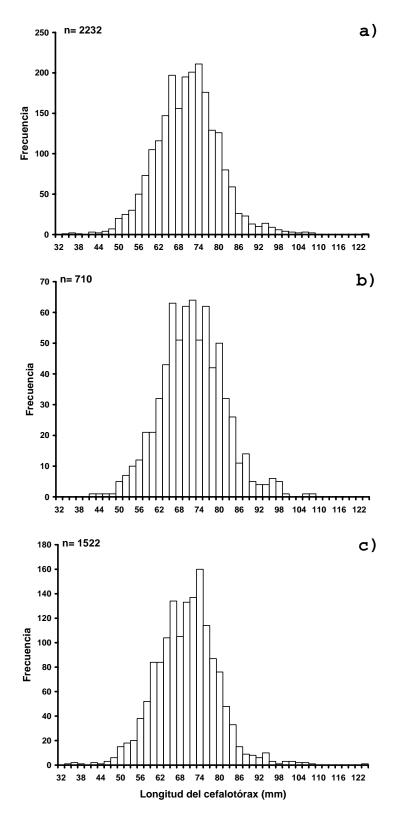


Figura 47.- Distribución de frecuencias de la longitud del cefalotórax de Panulirus gracilis durante las vedas 1990-1991, en el sur de Sinaloa. a) machos y hembras, b) hembras; c) machos.

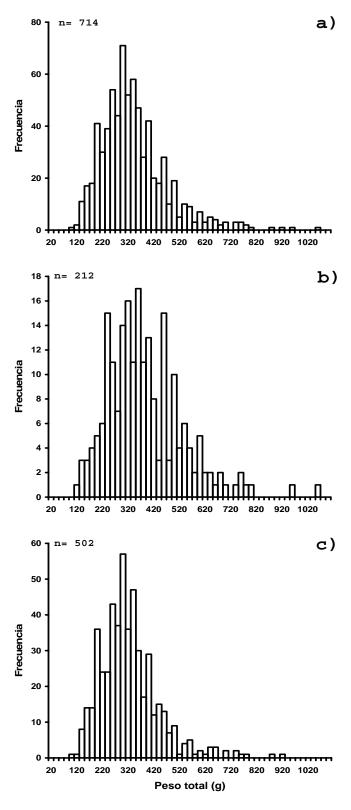


Figura 48.- Distribución de frecuencias del peso total de Panulirus gracilis durante la veda de 1990, en el sur de Sinaloa. a) machos y hembras; b) hembras; c) machos.

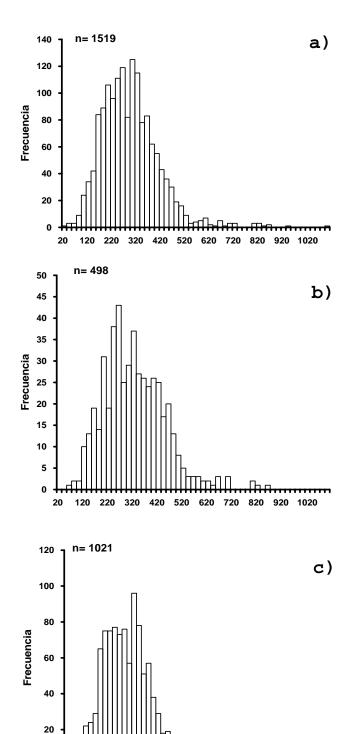


Figura 49.- Distribución de frecuencias del peso total de Panulirus gracilis durante la veda de 1991,en el sur de Sinaloa. a) machos y hembras; b) hembras; c) machos.

20 120 220 320 420 520 620 720 820 920 1020 Peso total (g)

......

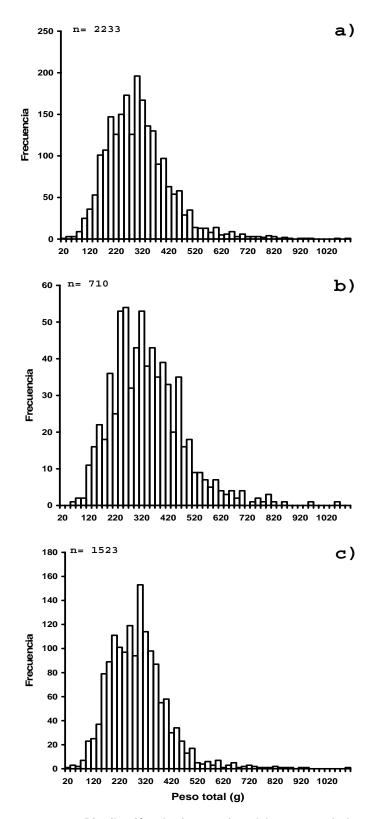


Figura 50.- Distribución de frecuencias del peso total de Panulirus gracilis durante las vedas 1990-1991, en el sur de Sinaloa. a) machos y hembras; b) hembras; c) machos.

Proporción de hembras en actividad reproductiva/hembras sin actividad reproductiva en relación a LC y PT

Las hembras fueron agrupadas en intervalos de talla de 2.0 mm de LC. Las figuras 51 y 52 muestran la distribución de tallas de las hembras en actividad reproductiva por año y considerando en esta etapa a las hembras que se encuentran tanto de la fase 2 a la 6 (Fig. 51) como de la 2 a la 5 (Fig. 52). En ambos casos se encontró una distribución similar, con una amplitud del intervalo de talla entre 54.0 y 100.0 mm de LC, con la mayoría de los organismos incluidos entre 66.0 y 84.0 mm.

Al agrupar a las hembras con y sin actividad reproductiva se observó que desde tallas muy pequeñas las hembras de P. gracilis maduran sexualmente. El ejemplar más pequeño en esta etapa de madurez midió 50.0 mm de LC durante 1991; mientras que en 1990 presentó una talla de 55.0 mm (Tabla 9). Tomando en cuenta a las hembras con actividad reproductiva de la fase 2 a la 6, se aprecia que durante 1990 se presentaron hembras en esta etapa a partir de los 56.0 mm de LC, con altos porcentajes desde los 58.0 mm (Fig. 53a); mientras que en 1991 los altas hembras en actividad proporciones de reproductiva presentaron a partir de los 66.0 mm, aunque durante este año se encontraron desde el intervalo de 52.0 mm (Fig. 53b). Αl analizar los dos años en conjunto se aprecia que las hembras en actividad reproductiva se presentan a partir de los 52.0 mm de LC, con un incremento paulatino de éstas, hasta alcanzar proporciones por encima del 50% a partir del intervalo de 70.0 mm y cercanas al 100% desde los 78.0 mm (Fig. 53c).

Al considerar a las hembras en actividad reproductiva de la fase 2 a la 5 se observó un comportamiento similar al anterior, con porcentajes elevados de las hembras en esta etapa desde los 58.0 mm de LC, durante 1991 (Fig. 54a) y, a partir de los 66.0 mm, durante 1991, con un aumento paulatino hasta alcanzar las proporciones de hembras maduras por encima del 50% a partir de 72.0 mm (Fig. 54b). Para los dos períodos juntos también se observó un incremento paulatino de las hembras en actividad

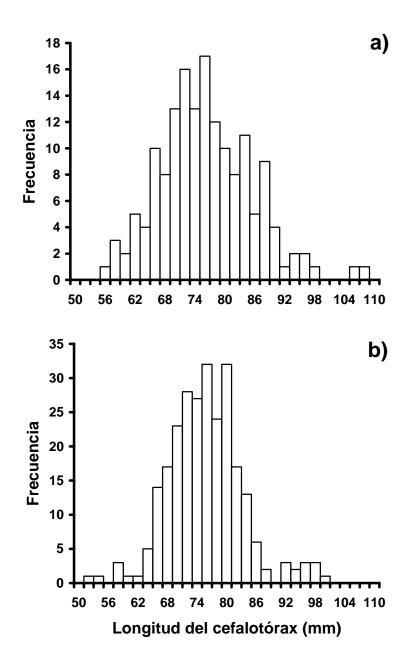


Figura 51.- Distribución de frecuencia de la longitud del cefalotórax de las hembras en actividad reproductiva de *Panulirus gracilis* durante las vedas de 1990 (a) y 1991 (b) en el sur de Sinaloa. Hembras reproductivas= fases sexuales 2-6.

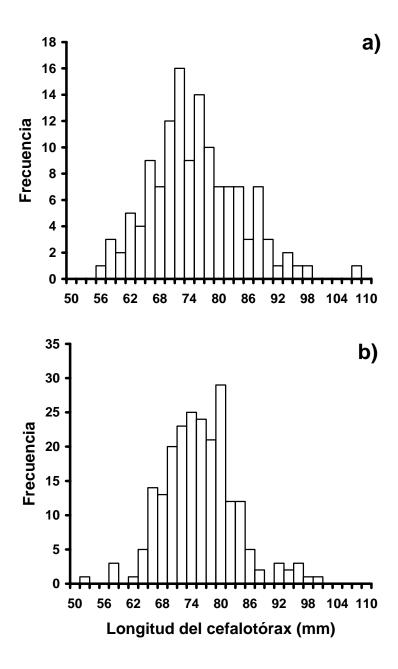


Figura 52.- Distribución de frecuencias de la longitud del cefalotórax de las hembras en actividad reproductiva de *Panulirus gracilis* durante las vedas de 1990 (a) y 1991 (b) en el sur de Sinaloa. Hembras reproductivas= fases sexuales 2-5.

Tabla 9.- Longitud del cefalotórax (LC en mm) de la hembra en actividad reproductiva más pequeña de *Panulirus gracilis*, considerando el criterio de hembra reproductiva en las fases sexuales 3-5, 2-6 o 2-5, durante 1990 y 1991 en el sur de Sinaloa. El valor entre paréntesis indica la fase sexual del organismo, de acuerdo a la clasificación de Weinborn (1977), modificado por Briones *et al*. (1981).

	Panulirus gracilis											
		1990 1991										
	JUN	JUL	AGO	SEP	JUN	JUL	AGO	SEP	CRITERIO			
LC	72(3)	57(3)	55(3)	73(3)	58(3)	50(5)	66(3)	61(3)	(FASES 3 A 5)			
LC	72(3)	57(3)	(FASES 2 A 6)									
LC	72(3)	57(3)	55(3)	60(2)	58(3)	50(5)	66(3)	61(3)	(FASES 2 A 5)			

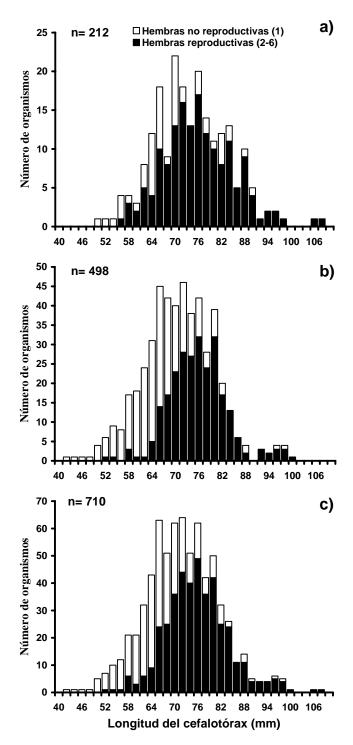


Figura 53.- Distribución de las tallas en longitud del cefalotórax (LC) de las hembras con y sin actividad reproductiva de *Panulirus gracilis* durante las vedas de 1990 (a) y 1991 (b), así como los dos períodos juntos (c) en el sur de Sinaloa. Hembras reproductivas= fases sexuales 2-6; hembras no reproductivas= fase sexual 1.

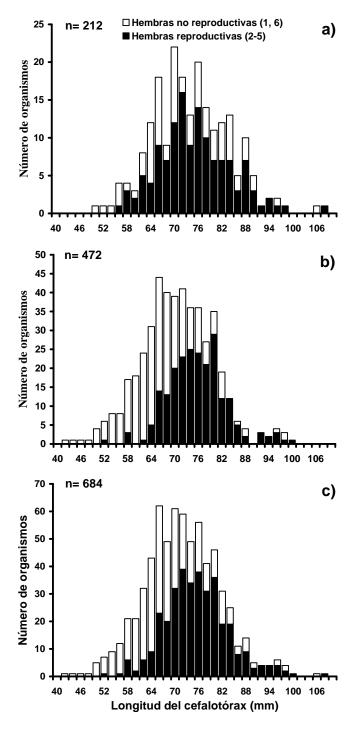


Figura 54.- Distribución de las tallas en longitud del cefalotórax (LC) de las hembras con y sin actividad reproductiva de *Panulirus gracilis* durante las vedas de 1990 (a) y 1991 (b), así como los dos períodos juntos (c) en el sur de Sinaloa. Hembras reproductivas= fases sexuales 2-5; hembras no reproductivas= fases sexuales 1 y 6.

reproductiva desde los 58.0 mm hasta llegar a elevados porcentajes a partir de los 72.0 mm (Fig. 54c).

Incidencia de hembras con y sin actividad reproductiva por intervalo de talla

En las tablas 10 y 11 se muestran el número y el porcentaje de hembras con y sin actividad reproductiva por intervalo de talla. Las mayores proporciones de hembras en actividad reproductiva se encuentran en el intervalo de talla de 70.0 a 80.0 mm de LC, ya sea considerándolas tanto de la fase 2 a la 6 (Tabla 10) como de la 2 a la 5 (Tabla 11). Para los dos casos, los porcentajes obtenidos al sumar las proporciones calculadas para las clases de tallas comprendidas entre 70.0 y 80.0, siempre están por encima del 50%, i.e., 51.0, 64.2 y 59.0% durante 1990, 1991 y 1990-1991, respectivamente en el primer caso, y de 51.5, 64.6 y 59.7% en el segundo.

Talla de primera madurez sexual

Para el análisis de la talla de primera madurez sexual, al considerar como hembras maduras a aquéllas que se encontraron de la fase 2 a la 6, se examinaron 159 y 259 ejemplares durante 1990 y 1991, respectivamente; mientras que al considerarlas de la fase 2 a la 5 se analizaron 132 y 220 organismos, respectivamente. En ambos casos se encontró que la relación entre LC y el porcentaje acumulado de hembras maduras se incrementa notoriamente a partir del intervalo de 68.0 mm, tanto para 1990 (Figs. 55a y 56a) como para 1991 (Figs. 55b y 56b) y 1990-1991 (Figs. 55c y 56c). Asimismo, en los dos casos los resultados de la talla de primera madurez sexual fueron similares, siendo éstos de 74.6 mm de LC durante 1990 y de 74.5 en 1991 y 1990-1991 en el primer caso, y de 73.4, 74.4 y 74.2 mm de LC en 1990, 1991 y 1990-1991, respectivamente, en el segundo caso.

Tabla 10.- Número (No.) y porcentaje (%) de hembras con y sin actividad reproductiva de *Panulirus gracilis* por intervalo de talla (2.0 mm de LC) durante 1990, 1991 y 1990-1991, en la costa del sur de Sinaloa. Hembras reproductivas= fases sexuales 2-6, hembras no reproductivas= fase sexual 1.

MARCA DE	HEMBRAS MADURAS							HEMBRAS INMADURAS					
CLASE	19	990	19	91	1990	-1991	19	990	19	91	1990	-1991	
	No.	%	No.	%	No.	%	No.	%	No.	%	No.	%	
40.0-41.9	0	0.0	0	0.0	0	0.0	0	0.0	0	0.0	0	0.0	
42.0-43.9	0	0.0	0	0.0	0	0.0	0	0.0	1	0.4	1	0.3	
44.0-45.9	0	0.0	0	0.0	0	0.0	0	0.0	1	0.4	1	0.3	
46.0-47.9	0	0.0	0	0.0	0	0.0	0	0.0	1	0.4	1	0.3	
48.0-49.9	0	0.0	0	0.0	0	0.0	0	0.0	1	0.4	1	0.3	
50.0-51.9	0	0.0	0	0.0	0	0.0	1	1.9	4	1.7	5	1.7	
52.0-53.9	0	0.0	1	0.4	1	0.2	1	1.9	5	2.1	6	2.1	
54.0-55.9	0	0.0	1	0.4	1	0.2	1	1.9	8	3.3	9	3.1	
56.0-57.9	1	0.6	0	0.0	1	0.2	3	5.7	8	3.3	11	3.8	
58.0-59.9	3	1.9	3	1.2	6	1.4	1	1.9	14	5.9	15	5.1	
60.0-61.9	2	1.3	1	0.4	3	0.7	1	1.9	17	7.1	18	6.2	
62.0-63.9	5	3.1	1	0.4	6	1.4	3	5.7	23	9.6	26	8.9	
64.0-65.9	4	2.5	5	1.9	9	2.2	8	15.1	26	10.9	34	11.6	
66.0-67.9	10	6.3	14	5.4	24	5.7	8	15.1	31	13.0	39	13.4	
68.0-69.9	8	5.0	17	6.6	25	6.0	1	1.9	25	10.5	26	8.9	
70.0-71.9	13	8.2	23	8.9	36	8.6	9	17.0	17	7.1	26	8.9	
72.0-73.9	16	10.1	28	10.8	44	10.5	2	3.8	18	7.5	20	6.8	
74.0-75.9	13	8.2	27	10.4	40	9.6	0	0.0	11	4.6	11	3.8	
76.0-77.9	17	10.7	32	12.4	49	11.7	3	5.7	10	4.2	13	4.5	
78.0-79.9	12	7.5	24	9.3	36	8.6	2	3.8	4	1.7	6	2.1	
80.0-81.9	10	6.3	32	12.4	42	10.0	1	1.9	7	2.9	8	2.7	
82.0-83.9	8	5.0	17	6.6	25	6.0	4	7.5	3	1.3	7	2.4	
84.0-85.9	11	6.9	13	5.0	24	5.7	2	3.8	0	0.0	2	0.7	
86.0-87.9	5	3.1	6	2.3	11	2.6	0	0.0	0	0.0	0	0.0	
88.0-89.9	9	5.7	2	0.8	11	2.6	1	1.9	2	0.8	3	1.0	
90.0-91.9	4	2.5	0	0.0	4	1.0	1	1.9	0	0.0	1	0.3	
92.0-93.9	1	0.6	3	1.2	4	1.0	0	0.0	0	0.0	0	0.0	
94.0-95.9	2	1.3	2	0.8	4	1.0	0	0.0	0	0.0	0	0.0	
96.0-97.9	2	1.3	3	1.2	5	1.2	0	0.0	1	0.4	1	0.3	
98.0-99.9	1	0.6	3	1.2	4	1.0	0	0.0	1	0.4	1	0.3	
100.0-101.9	0	0.0	1	0.4	1	0.2	0	0.0	0	0.0	0	0.0	
102.0-103.9	0	0.0	0	0.0	0	0.0	0	0.0	0	0.0	0	0.0	
104.0-105.9	0	0.0	0	0.0	0	0.0	0	0.0	0	0.0	0	0.0	
106.0-107.9	1	0.6	0	0.0	1	0.2	0	0.0	0	0.0	0	0.0	
108.0-109.9	1	0.6	0	0.0	1	0.2	0	0.0	0	0.0	0	0.0	
110.0 - >	0	0.0	0	0.0	0	0.0	0	0.0	0	0.0	0	0.0	
Total	159		259		418		53		239		292		

Tabla 11.- Número (No.) y porcentaje (%) de hembras con y sin actividad reproductiva de *Panulirus gracilis* por intervalo de talla (2.0 mm de LC) durante 1990, 1991 y 1990 1991, en la costa del sur de Sinaloa. Hembras reproductivas= fases sexuales 2-5, hembras no reproductivas= fases sexuales 1 y 6.

MARCA DE			MBRAS MAD						BRAS INMAD			
CLASE		90		91		-1991		990		91		-1991
	No.	%	No.	%	No.	%	No.	%	No.	%	No.	%
40.0-41.9	0	0.0	0	0.0	0	0.0	0	0.0	0	0.0	0	0.0
42.0-43.9	0	0.0	0	0.0	0	0.0	0	0.0	1	0.4	1	0.3
44.0-45.9	0	0.0	0	0.0	0	0.0	0	0.0	1	0.4	1	0.3
46.0-47.9	0	0.0	0	0.0	0	0.0	0	0.0	1	0.4	1	0.3
48.0-49.9	0	0.0	0	0.0	0	0.0	0	0.0	1	0.4	1	0.3
50.0-51.9	0	0.0	0	0.0	0	0.0	1	1.3	4	1.6	5	1.5
52.0-53.9	0	0.0	1	0.5	1	0.3	1	1.3	5	2.0	6	1.8
54.0-55.9	0	0.0	0	0.0	0	0.0	1	1.3	8	3.2	9	2.7
56.0-57.9	1	8.0	0	0.0	1	0.3	3	3.8	8	3.2	11	3.3
58.0-59.9	3	2.3	3	1.4	6	1.7	1	1.3	14	5.6	15	4.5
60.0-61.9	2	1.5	0	0.0	2	0.6	1	1.3	18	7.1	19	5.7
62.0-63.9	5	3.8	1	0.5	6	1.7	3	3.8	23	9.1	26	7.8
64.0-65.9	4	3.0	5	2.3	9	2.6	8	10.0	26	10.3	34	10.2
66.0-67.9	9	6.8	14	6.4	23	6.5	9	11.3	30	11.9	39	11.7
68.0-69.9	7	5.3	13	5.9	20	5.7	2	2.5	27	10.7	29	8.7
70.0-71.9	12	9.1	20	9.1	32	9.1	10	12.5	19	7.5	29	8.7
72.0-73.9	16	12.1	23	10.5	39	11.1	2	2.5	18	7.1	20	6.0
74.0-75.9	9	6.8	25	11.4	34	9.7	4	5.0	11	4.4	15	4.5
76.0-77.9	14	10.6	24	10.9	38	10.8	6	7.5	12	4.8	18	5.4
78.0-79.9	10	7.6	21	9.5	31	8.8	4	5.0	6	2.4	10	3.0
80.0-81.9	7	5.3	29	13.2	36	10.2	4	5.0	6	2.4	10	3.0
82.0-83.9	7	5.3	12	5.5	19	5.4	5	6.3	7	2.8	12	3.6
84.0-85.9	7	5.3	12	5.5	19	5.4	6	7.5	0	0.0	6	1.8
86.0-87.9	3	2.3	5	2.3	8	2.3	2	2.5	1	0.4	3	0.9
88.0-89.9	7	5.3	2	0.9	9	2.6	3	3.8	2	0.8	5	1.5
90.0-91.9	3	2.3	0	0.0	3	0.9	2	2.5	0	0.0	2	0.6
92.0-93.9	1	0.8	3	1.4	4	1.1	0	0.0	0	0.0	0	0.0
94.0-95.9	2	1.5	2	0.9	4	1.1	0	0.0	0	0.0	0	0.0
96.0-97.9	1	0.8	3	1.4	4	1.1	1	1.3	1	0.4	2	0.6
98.0-99.9	1	0.8	1	0.5	2	0.6	0	0.0	2	0.8	2	0.6
100.0-101.9	0	0.0	1	0.5	1	0.3	0	0.0	0	0.0	0	0.0
102.0-103.9	0	0.0	0	0.0	0	0.0	0	0.0	0	0.0	0	0.0
104.0-105.9	0	0.0	0	0.0	0	0.0	0	0.0	0	0.0	0	0.0
106.0-107.9	0	0.0	0	0.0	0	0.0	1	1.3	0	0.0	1	0.3
108.0-109.9	1	0.8	0	0.0	1	0.3	0	0.0	0	0.0	0	0.0
110.0 - >	0	0.0	0	0.0	0	0.0	0	0.0	0	0.0	0	0.0
Total	132		220		352		80		252		332	

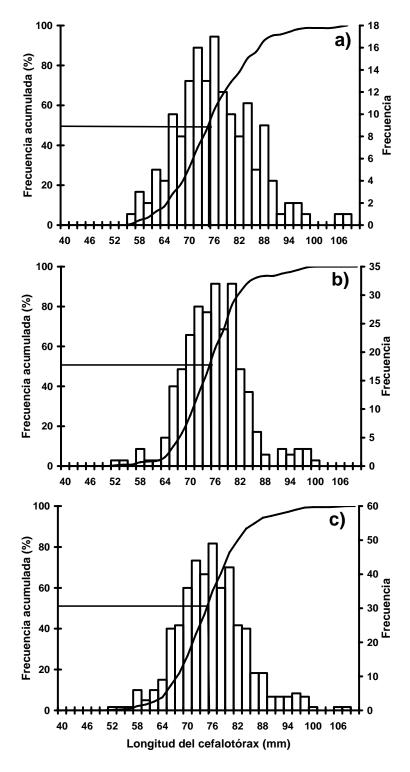


Figura 55.- Relación entre la longitud del cefalotórax y la fecuencia acumulada de la población de hembras de *Panulirus gracilis* en etapas de madurez sexual de la 2 a la 6 durante los períodos de veda de 1990 (a) y 1991 (b), y en los dos períodos juntos (c) en el sur de Sinaloa.

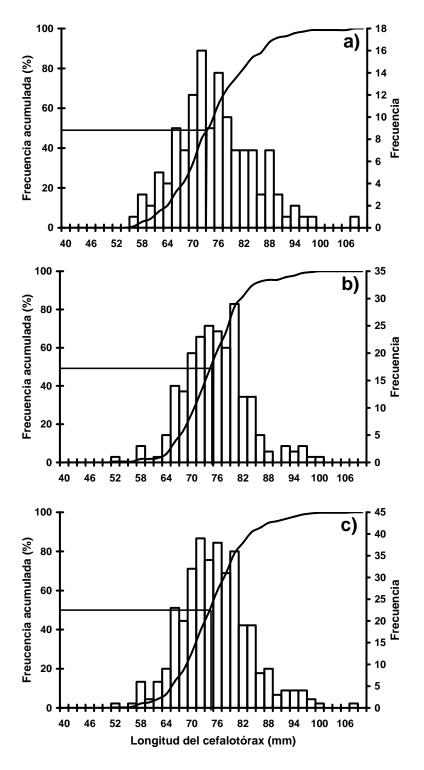


Figura 56.- Relación entre la longitud del cefalotórax y la frecuencia acumulada de la población de hembras de *Panulirus gracilis* en etapas de madurez sexual de la 2 a la 5 durante los períodos de veda de 1990 (a) y 1991 (b), y en los dos períodos juntos (c) en el sur de Sinaloa.

Comparación entre la población natural y las capturas comerciales

Para comparar la estructura de las muestras totales tomadas de la población natural y la de las capturas comerciales, elaboró la figura 57, la cual representa curvas de frecuencia acumulada. En esta comparación se aprecia la diferencia de la composición por tallas de los dos tipos de muestreo y observa que las capturas comerciales se realizan sobre las tallas medianas y grandes de la población. La línea vertical continua señala la talla mínima legal de captura oficial (82.5 mm de LC); el cruce de esta línea con las dos curvas indica que alrededor del 85% de las capturas comerciales corresponde a tallas ilegales y que únicamente alrededor del 8% de población natural se encuentra por encima de esta talla (Fig. 57a). También se anota la línea correspondiente a la talla propuesta como la mínima de captura de 70.0 mm de LC (Pérez-González, 2004, Puga-López, 2004); al cruce con las dos curvas se observa que con esta talla se estarían capturando menos del 10% de langostas por debajo de esa talla y se aprovecharía aproximadamente el 50% de la población (Fig. 57a).

Además, se realizó un análisis con la frecuencia acumulada del PT, encontrándose que las capturas comerciales se dirigen hacia los organismos de la población con los pesos medianos y los más elevados (Fig. 57b). Debido a que en esta región, desde los inicios de esta pesquería, se maneja tradicionalmente 300 g de PT como el peso mínimo legal de captura, se anotó una línea discontinua en el lugar correspondiente a ese PT y se puede apreciar que únicamente alrededor del 11-12% de las capturas comerciales organismos ilegales corresponde а aproximadamente el 45% de la población natural está por encima de ese peso. Para este peso de 300.0 g corresponden los ejemplares con tallas entre los 62.0 y 75 mm de LC (Fig. 44).

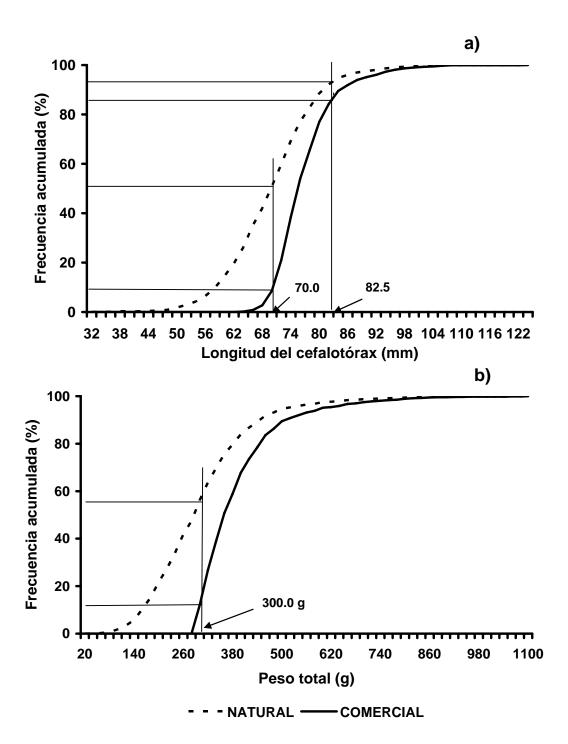


Figura 57.- Comparación entre las muestras de *Panulirus gracilis* obtenidas a partir de la población natural y de las capturas comerciales considerando la frecuencia acumulada, la longitud del cefalotórax (LC; a) y el peso total (PT; b), en la costa de Sinaloa. En (a) la línea vertical continua indica la talla mínima legal de captura (82.5 mm de LC) y la línea discontínua señala la talla mínima de captura propuesta (70.0 mm de LC); en (b) la línea vertical indica el PT mínimo legal de captura (300.0 g) utilizado tradicionalmente.

Fecundidad

Fecundidad total

Las 259 hembras ovígeras analizadas se encontraron en el intervalo de talla de 50.3 (130 g de PT) a 93.0 mm de LC (750 g de PT). El número de huevos por desove varió entre 76,727 para una hembra con 60.0 mm de LC (250 g de PT) a 1'115,060 para una hembra de 80.0 mm (510 g de PT).

Fecundidad por época del año

El número de los ejemplares examinados por época del año fueron de 59, 49, 60 y 91 para la primavera, verano, otoño e invierno, respectivamente.

En la primavera los 59 organismos analizados presentaron un intervalo entre 60 y 86 mm de LC y la fecundidad estimada varió de 136,108 huevos para un especimen con 65 mm de LC (300 g de PT) a 745,736 para un individuo con 86 mm (600 g de PT) (Tabla 12).

Las 49 hembras recolectadas en verano presentaron una LC de entre 56 y 90 mm. La fecundidad observada varió entre 76,727 huevos para un ejemplar con 60 mm (250 g de PT) y 786,947 para un organismo con 88 mm (560 g de PT) (Tabla 13). La fecundidad del primer organismo fue la menor obtenida durante todo el período de estudio, observándose que no fue en el individuo con la talla y peso más pequeños.

Durante el otoño se capturaron 60 ejemplares que se encontraron en un intervalo de talla de 51 a 93 mm de LC (Tabla 14). En este período el número de huevos varió de 179,607 (65 mm de LC y 230 g de PT) a 1'115,060 huevos (80 mm de LC y 510 g de PT). Este último número de huevos fue el mayor estimado de todo el período de estudio; sin embargo, no correspondió al ejemplar con la mayor talla.

En invierno los 91 organismos recolectados se encontraron en el intervalo de talla de 50.3 a 90.0 mm de LC (Tabla 15). El

Tabla 12.- Valores de la longitud total (LT), longitud cefalotoráxica (LC), peso total (PT), peso total de la masa ovígera seca (PGS), media del número de huevecillos de la submuestra, y fecundidad individual observada (Fec. Ind. Obs.) de Panulirus gracilis durante la primavera.

No. de org.	LT (mm)	LC (mm)	PT (g)	PGS (g)	Media	Fec. Ind. Obs.
1	230	81	490	9.943	438.8	436,298.8
2	185	67	270	7.902	491.2	388,146.2
3	196	72	340	9.532	495.2	472,024.6
4	168	61	210	6.436	512.4	329,780.6
5	195	70	310	7.199	453.4	326,402.7
6	179	65	280	4.099	636.8	261,024.3
7	187	68	300	8.074	438.2	353,802.7
8	213	75	450	10.902	432.6	471,620.5
9	205	72	400	7.326	489.2	358,387.9
10	206	72	350	4.975	558.6	277,903.5
11	185	63	270	5.274	495.2	261,168.5
12	182	64	280	5.898	473.0	278,975.4
13	194	67	320	8.285	483.2	400,331.2
14	192	67	320	5.807	616.8	358,175.8
15	192	67	300	6.777	500.6	339,256.6
16	213	77	440	6.770	546.6	370,048.2
17	205	72	470	8.040	469.0	377,076.0
18	187	70	290	6.018	561.4	337,850.5
19	207	73	410	9.225	497.2	458,667.0
20	185	65	290	4.489	575.0	258,117.5
21	184	65	280	7.470	450.4	336,448.8
22	181	65	300	2.891	470.8	136,108.3
23	237	86	600	15.376	485.0	745,736.0
24	204	74	410	6.155	613.8	377,793.9
25	203	70	380	10.309	462.6	476,894.3
26	170	61	240	4.354	543.6	236,683.4
27	215	76	420	10.021	527.0	528,106.7
28	196	71	310	5.482	518.4	284,186.9
29	191	67	300	7.122	476.2	339,149.6
30	244	85	610	17.786	539.6	959,732.6
31	185	67	270	7.902	491.2	388,146.2
32	196	72	340	9.531	495.2	471,975.1
33	168	61	210	6.436	512.4	329,780.6
34	195	70	310	7.199	453.4	326,402.7
35	179	65	280	4.099	636.8	261,024.3
36	165	61	230	4.906	510.6	250,500.4
37	170	65	290	5.860	455.6	266,981.6
38	206	75	450	10.442	552.0	576,398.4
39	178	66	300	6.195	495.0	306,652.5
40	173	64	270	4.487	533.4	239,336.6
41	171	61	250	3.109	523.0	162,600.7
42	181	66	260	5.531	512.2	283,297.8
43	187	69	320	7.782	454.4	353,614.1
44	215	79	440	8.762	507.2	444,408.6
45	195	71	360	13.259	469.0	621,847.1
46	191	69	310	7.216	554.8	400,343.7
47	189	69	350	8.347	516.4	431,039.1
48	196	70	340	8.101	517.6	419,307.8
49	198	70	350	8.721	561.4	489,596.9
50	175	62	260	5.025	591.8	297,379.5
51	203	78	300	3.721	532.6	198,180.5
52	193	72	380	4.662	490.2	228,531.2
53	200	73	370	7.533	508.0	382,676.4
54	211	75	410	9.502	450.8	428,350.2
55	187	68	290	10.929	428.6	468,416.9
56	181	65	280	5.592	365.4	204,331.7
57	166	60	230	4.922	489.6	240,981.1
58	180	65	280	6.353	528.4	335,692.5

Tabla 13.- Valores de la longitud total (LT), longitud cefalotoráxica (LC), peso total (PT), peso total de la masa ovígera seca (PGS), media del número de huevecillos de la submuestra, y fecundidad individual observada (Fec. Ind. Obs.) de Panulirus gracilis durante el verano.

No. de org.	LT (mm)	LC (mm)	PT (g)	PGS (g)	Media	Fec. Ind. Obs.
1	199	68	340	5.861	592.4	347,205.6
2	177	62	240	4.483	686.4	307,713.1
3	157	56	170	3.328	601.4	200,145.9
4	173	61	250	1.855	667.6	123,839.8
5	182	62	230	3.306	655.4	216,675.2
6	195	68	340	5.185	678.8	351,957.8
7	155	70	150	2.181	739.2	161,219.5
8	209	75	320	2.930	672.4	197,013.2
9	247	90	650	11.283	621.5	701,238.5
10	205	70	360	4.154	633.0	262,948.2
11	240	75	400	6.771	840.0	568,764.0
12	167	61	250	2.370	689.6	163,435.2
13	164	60	250	1.392	551.2	76,727.0
14	172	66	260	2.991	645.4	193,039.1
15	170	59	240	3.107	665.2	206,677.6
16	197	70	350	4.879	785.2	383,099.1
17	190	70	320	4.756	587.6	279,462.6
18	210	76	210	6.902	566.0	390,653.2
19	230	82	550	10.718	595.4	638,149.7
20	195	70	230	6.662	730.8	486,859.0
21	221	83	520	10.043	668.2	671,073.3
22	196	73	350	7.702	685.4	527,895.1
23	234	88	560	12.531	628.0	786,946.8
24	172	66	260	3.256	734.0	238,990.4
25	210	77	410	9.286	657.8	610,833.1
26	215	80	480	10.299	630.8	649,660.9
27	205	74	390	8.592	657.6	565,009.9
28	206	75	420	5.863	888.2	520,751.7
29	187	68	300	6.271	677.6	424,923.0
30	172	66	250	4.771	623.6	297,519.6
31	170	62	240	2.792	720.8	201,247.4
32	175	62	230	3.485	623.4	217,254.9
33	168	61	220	7.735	673.8	521,184.3
34	209	73	400	8.008	760.6	609,088.5
35	198	72	430	5.279	623.6	329,198.4
36	194	70	350	5.077	640.2	325,029.5
37	204	70	340	4.629	647.0	299,496.3
38	224	80	500	12.062	613.2	739,641.8
39	167	60	220	1.963	752.2	147,656.9
40	181	67	280	2.934	620.2	181,966.7
41	199	70	350	1.986	605.2	120,192.7
42	201	72	200	8.704	616.0	536,166.4
43	195	70	400	8.335	634.6	528,939.1
44	193	67	300	5.438	675.2	367,173.8
45	161	67	300	4.386	665.0	291,669.0
46	231	80	520	12.166	633.8	771,081.1
47	229	80	500	8.879	569.4	505,570.3

Tabla 14.- Valores de la longitud total (LT), longitud cefalotoráxica (LC), peso total (PT), peso total de la masa ovígera seca (PGS), media del número de huevecillos de la submuestra, y fecundidad individual observada (Fec. Ind. Obs.) de Panulirus gracilis durante el otoño.

No. de org.	LT (mm)	LC (mm)	PT (g)	PGS (g)	Media	Fec. Ind. Obs.
1	190	66	300	3.213	636.8	204,603.8
2	195	70	300	7.257	635.8	461,400.1
3	209	73	400	6.790	718.8	488,065.2
4	209	77	330	10.049	538.0	540,636.2
5	193	68	300	6.396	597.0	381,841.2
6	182	65	250	5.215	609.6	317,906.4
7	170	61	200	4.409	571.0	251,753.9
8	265	93	750	18.253	605.4	1,105,036.6
9	194	67	300	7.414	622.6	461,595.6
10	205	70	380	7.848	609.6	478,414.1
11	185	62	290	5.539	650.8	360,478.1
12	208	72	410	9.600	551.2	529,152.0
13	168	57	200	3.737	616.0	230,199.2
14	186	65	280	4.659	529.4	246,647.5
15	170	60	200	4.332	558.8	242,072.2
16	218	76	420	7.718	693.8	535,474.8
17	188				634.8	
		68 71	300	8.135		516,409.8
18	200	71 65	350	4.790	684.0	327,636.0
19	178	65	230	3.213	559.0	179,606.7
20	169	63	230	3.396	729.2	247,636.3
21	198	74	390	15.109	578.6	874,206.7
22	195	67	320	7.817	551.8	431,342.1
23	228	80	500	9.685	630.0	610,155.0
24	232	78	450	9.762	639.0	623,791.8
25	205	73	380	6.567	549.4	360,791.0
26	185	65	300	5.707	549.6	313,656.7
27	246	86	600	13.344	535.0	713,904.0
28	195	70	350	6.183	562.8	347,979.2
29	214	80	480	9.976	545.0	543,692.0
30	225	80	510	14.769	755.0	1,115,059.5
31	200	72	350	8.512	600.0	510,720.0
32	160	51	200	3.381	589.8	199,411.4
33	196	71	330	8.484	621.2	527,026.1
34	245	88	600	11.407	650.2	741,683.1
35	222	79	400	5.440	690.0	375,360.0
36	235	85	500	7.910	665.8	526,647.8
37	216	76	400	5.516	595.6	328,533.0
38	214	88	430	13.090	614.2	803,987.8
39	182	56	280	3.825	489.8	187,348.5
40	180	66	250	4.588	725.6	332,905.3
41	188	70	300	6.272	648.4	406,676.5
42	200	70	320	7.985	578.0	461,533.0
43	180	66	250	5.630	647.8	364,711.4
44	220	85	450	8.999	592.6	533,280.7
45	231	81	490	12.191	612.8	747,064.5
46	212	73	440	7.049	672.2	473,833.8
47	261	90	690	12.558	632.8	794,670.2
48	236	81	570	9.343	737.6	689,139.7
49	206	78	440	5.246	750.6	393,764.8
50 51	216	77 71	440	6.548	639.6	418,810.1
51	203	71	370	5.756	602.4	346,741.4
52	217	75	460	8.857	641.4	568,088.0
53	220	77	490	7.171	821.6	589,169.4
54	210	74	420	9.820	630.6	619,249.2
55	230	80	520	8.695	674.2	586,216.9
56	225	82	510	9.616	625.6	601,577.0
57	180	63	250	4.867	612.2	297,957.7
58	235	83	600	17.140	548.4	939,957.6
59	230	81	500	8.498	570.6	484,895.9
60	229	82	500	13.058	509.8	665,696.8

número de huevos observados varió entre 95,862 para un ejemplar con 50.3 mm (130 g de PT) y 788,862 para un especimen con 84.0 mm (550 g de PT) (Tabla 15). En esta época se recolectó la hembra con la talla más pequeña; sin embargo, no fue la que presentó la menor fecundidad.

Relaciones de la fecundidad (F) con LC y PT

Las regresiones de las relaciones F-PT y F-CL muestran que hubo correlaciones linear y potencial, respectivamente, entre estas medidas. Las ecuaciones y el coeficiente de determinación (R^2) de estas relaciones para las épocas del año se presentan en la tabla 16.

Las pendientes de las relaciones F-PT para las cuatro épocas fueron significativamente diferentes (F= 3.876, g.l.=3, 251, P<0.01), indicando que la fecundidad media en las hembras de P. gracilis varía en función de la época del año. Por otro lado, diferencias significativas fueron encontradas entre las pendientes de las regresiones de las relaciones F-PT del otoño y el invierno (F= 11.477, g.l.= 1, 147, P<0.01) (Fig. 58, Tabla 17). La temperatura del agua es más elevada durante el verano-otoño y las langostas incrementan su actividad reproductiva, particularmente en otoño.

La fecundidad estimada varió de acuerdo con la talla y el peso de los organismos. Las ecuaciones que representan esta variación son:

$$F = 0.5573 LC^{3.1572}$$
; (R²= 0.5654) (Fig. 59a)

$$F = 1236.7 PT - 35548.9 ; (R^2 = 0.5781) (Fig. 59b)$$

El número mayor de organismos se encontró en la fase de madurez sexual 3, mientras que los individuos más escasos tenían la fase 5.

Tabla 15.- Valores de la longitud total (LT), longitud cefalotoráxica (LC), peso total (PT), peso total de la masa ovígera seca (PGS), media del número de huevecillos de la submuestra, y fecundidad individual observada (Fec. Ind. Obs.) de Panulirus gracilis durante el invierno.

No. de org.	LT (mm)	LC (mm)	PT (g)	PGS (g)	Media	Fec. Ind. Obs.
1	203	71	340	7.762	509.2	395,241.0
2	196	73	360	5.380	482.0	259,316.0
3	175	65	250	4.721	569.0	268,624.9
4	173	64	250	5.398	607.2	327,766.6
5	195	71	330	6.530	559.6	365,418.8
6	210	76	400	8.620	501.8	432,551.6
7	180	67	270	6.050	568.2	343,761.0
8	195	71	330	7.914	553.4	437,960.8
9	197	75	360	7.268	551.4	400,757.5
10	172	63	250	4.280	614.8	263,134.4
11	180	64	240	4.155	545.8	226,779.9
12	175	64	250	4.721	593.2	280,049.7
13	178	62	240	3.862	637.6	246,241.1
14	205	75	400	6.038	600.2	362,400.8
15	246	82	670	4.287	542.2	232,441.1
16	163	60	220	1.663	646.0	107,429.8
17	178	66	200	10.521	525.0	552,352.5
18	215	79	480	12.499	561.8	702,193.8
19	234	84	550	7.005	546.0	382,473.0
20	198	68	290	4.166	643.8	268,207.1
21	185	68	300	5.287	532.8	281,691.4
22	185	66	280	5.574	551.8	307,573.3
23	175	65	260	5.248	537.8	282,237.4
24	182	67	300	5.055	726.4	367,195.2
25	183	67	300	4.944	628.0	310,483.2
26	219	79	480	5.893	546.0	321,757.8
27	215	76	470	7.250	665.4	482,415.0
28	212	75	140	8.407	512.6	430,942.8
29	195	69	350	8.205	509.4	417,962.7
30	237	84	530	13.376	533.4	713,475.8
31	185	68	280	5.721	541.6	309,849.4
32	217	75 65	390	5.803	629.2	365,124.8
33 34	185 200	65 73	290 360	5.812 8.374	457.8 549.2	266,073.4 459,900.1
35	190	73 68	300	4.694	729.8	459,900.1 342,568.1
36	212	68 77	440	7.293	729.8 594.2	433,350.1
37	212	64	650	14.803	461.2	682,714.4
38	180	64	280	3.882	678.2	263,277.2
39	214	75	410	6.210	761.8	473,077.8
40	214	77	500	8.775	618.4	542,646.0
41	195	70	350	4.126	687.6	283,703.8
42	200	71	350	8.849	518.4	458,732.2
43	212	75	390	3.192	528.0	168,537.6
44	235	84	550	12.911	611.0	788,862.1
45	213	75	420	8.979	594.8	534,070.9
46	195	63	330	5.361	592.6	317,692.9

Tabla 15.- Continuación.....

No. de org.	LT (mm)	LC (mm)	PT (g)	PGS (g)	Media	Fec. Ind. Obs.
47	175	63	230	5.031	600.0	301,860.0
48	205	74	380	6.646	567.2	376,961.1
49	179	65	280	2.611	542.8	141,725.1
50	199	73	360	4.219	591.8	249,680.4
51	196	69	310	8.024	559.8	449,183.5
52	196	72	330	2.193	528.0	115,790.4
53	185	67	300	4.969	464.2	230,661.0
54	195	70	340	5.286	605.4	320,014.4
55	185	67	300	3.748	689.8	258,537.0
56	250	90	680	14.798	517.8	766,240.4
57	184	66	230	3.727	565.4	210,724.6
58	210	76	400	5.662	528.0	298,953.6
59	234	83	450	9.909	489.2	484,748.3
60	184	68	280	5.854	600.6	351,591.2
61	196	70	300	7.353	536.4	394,414.9
62	186	67	300	6.424	508.2	326,467.7
63	189	67	300	6.510	528.4	343,988.4
64	193	68	310	6.582	546.0	359,377.2
65	191	69	310	6.067	546.0	331,258.2
66	141	50	130	2.161	443.6	95,862.0
67	192	70	440	7.465	549.8	410,425.7
68	190	71	420	5.999	553.8	332,224.6
69	200	73	430	7.317	522.4	382,240.1
70	185	65	380	4.778	539.4	257,725.3
71	147	58	260	3.398	547.8	186,142.4
72	182	66	290	6.033	521.0	314,319.3
73	165	59	200	4.038	563.6	227,581.7
74	197	71	350	7.833	590.4	462,460.3
75	206	75	400	7.587	622.6	472,366.6
76	216	78	440	13.562	448.2	607,848.8
77	198	70	325	6.986	486.2	339,659.3
78	191	67	300	3.387	670.4	227,064.5
79	218	79	440	7.019	682.2	478,836.2
80	176	64	220	3.723	585.6	218,018.9
81	202	74	400	10.819	450.0	486,855.0
82	222	80	480	6.700	683.4	457,878.0
83	171	62	220	4.370	550.2	240,437.4
84	169	61	220	3.350	645.4	216,209.0
85	182	65	270	6.024	590.2	355,536.5
86	191	68	300	4.073	543.4	221,326.8
87	192	71	340	7.251	593.8	430,564.4
88	193	68	310	6.055	554.4	335,689.2
89	162	58	200	3.798	547.8	208,054.4
90	183	66	275	6.734	553.2	372,524.9
91	168	60	210	4.434	612.2	271,449.5

Tabla 16.- Número de organismos (N), ecuaciones de las relaciones fecundidad (F) vs longitud del cefalotórax (LC) y peso total (PT), y coeficiente de regresión (R²) por época del año de hembras de *Panulirus gracilis* en el sur de Sinaloa.

Período	N	Ecuación	R²
Primavera	59	F= 1.3227 * LC ^{2.9518}	0.48
Verano	49	F= 0.2629 * LC ^{3.3279}	0.54
Otoño	60	F= 1.7771 * LC ^{2.9104}	0.64
Invierno	91	F= 5.0908 * LC ^{2.6223}	0.44

Período	N	Ecuación	R ²
Primavera	59	F= -29724.81 + PT 1184.98	0.56
Verano	49	F= -19413.60 + PT 1199.20	0.49
Otoño	60	F= -48340.46 + PT 1384.15	0.67
Invierno	91	F= 71367.92 + PT 834.56	0.42

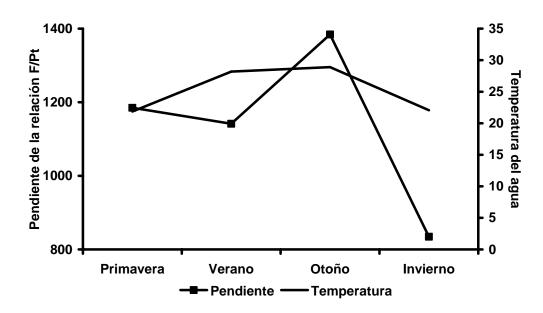
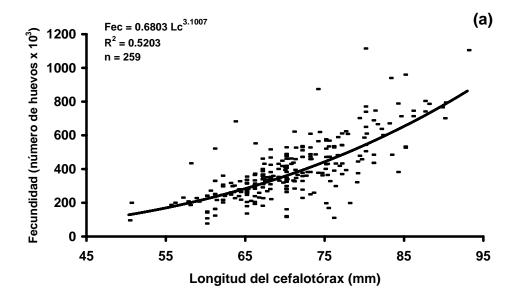



Figura 58.- Comparación de las pendientes obtenidas a partir de la relación fecundidad (F) vs peso total (PT) de *Panulirus gracilis* y de la temperatura del agua para cada período del año (abril de 1993 a marzo de 1994) en el sur de Sinaloa.

Tabla 17. Resultados de los cálculos del análisis de covarianza para determinar la hipótesis de diferencias significativas de la fecundidad en *Panulirus gracilis*, entre las diferentes épocas del año.

SAMA-1 1980 2779662 2797662 197062 1	CARACT	Х	Υ	x i^2	Y^2	VV.	ΧY	х	Y	X^2	Y^2	VV.	ΧY
PROM. 30.0107 30050 415													
PROM. 386.00 379000 379000 379000 379000 379000000 37900000 37900000000 379000000 3790000000 379000000 379000000 379000000000000000000000000000000000000				423322.0333	1.0742LT12					033303.0733	1.00307 LT12	702109055.2	702043309.9
Comparation				375625 0327			FROW=	333.9163073	303410.337	COM	PARACION PE	NMAVERA - VER	PANO
Section 1184 MIZE Section 1284 MIZE 1283 MIZ			37 3023.0327	010020.0021	(SvA2 v)n -	13715354549		n -	40	<u>001111</u>	AIGAOIOITT	UIIIA VEIVA - VEI	ANO
							•			!	D- SE A	CEPTA Ho	
HISA 0827								intersecc(a)=		į	N= SE A	CEFTA HO.	
Section Sect	_							[=					
SIMAS 1880 217799229 A29222353 07426-17 20440140 60087227 2440 2967781 97465.3332 258076-17 120090400 3056407				. (0)									
SIAMS 1880 177999 28 28982 2039 10742E+12 509450168 60987272 2480 28957811 017453333 28007E+12 209864689 196044677 1960446				tx(2),									
PROM 306 5077 309152-4112	DF=	5/			DC =	1193.461462		DF=	47				
PROM 306 5077 309152-4112	0,114.0	40000	04770000 00	400000 0000	4 07405 40	500450404	000070070	20.450	00557004.0	047450 0000	0.000075 40	4000000400	4000045070
PROM 36,9450 PROM 43,9410,0290 SP-24,0 117,2577,7550 PROM 43,9410,0290 SP-24,0 SP-24,0				429922.0339	1.0742E+12	509450164				917458.3333	2.63607E+12	1269896488	1368645878
Comparation Section				404 440 0000			PROIVI=	390.8333333	492630.021	001	IDADACION D	DMAN/EDA OT	oño.
Product 1948,9827			PROM y =	431410.0296	(CuA2 v)n	11720477125			60	COIN	PARACION PI	RIMAVERA - UT	<u>JNO</u>
Intersection C2724431													
1988 1888 1888							•			•	D CE A	CERTA Ha	
State Stat											K= SE A	CEPTA HO.	
SSE A700E+11 No. 170992-26 2-0902-0039 10742E+12 1320597135 DF 59 50 50 50 50 50 50 50													
SUMAS 19800 21775992.25 42922.0390 10742E+12 509450164 475261826.8 31020 32382485 1020379.67 1.7013E+12 85156686.1 883722830.4 PROM 306.61107 309152.4112 145400.7846													
SUMAS 1980 2177992 28 42902 0308 1.0742E+12 508450164 475261826 8 31020 32382495 1020079 67 1.7013E+12 861568685.1 883722830.4 PPROM 308.01017 366152.4112 FPROM 340.0791209 355851.839 PPROM 330.0 3276487 FPROM 340.0791209 355851.839 PPROM 330.0 3276487 FPROM 340.0791209 355851.839 PPROM 330.0 3276487 FPROM 340.079467 7376719 740.00000000000000000000000000000000000				tx(2),									
PROM 38 61017 389152412 PROM 40 8791200 35881.593 COMPARACION FRIMA VERA - INVIERNO PROM 1 154 508 748 PROM 1 155 508 508 PROM 1 150 508 508 1.593 PROM 1 150 508 508 508 508 508 508 508 508 508 5	DF=	57			bc =	1320.597135		DF=	58				
PROM 38 61017 389152412 PROM 40 8791200 35881.593 COMPARACION FRIMA VERA - INVIERNO PROM 1 154 508 748 PROM 1 155 508 508 PROM 1 150 508 508 1.593 PROM 1 150 508 508 508 508 508 508 508 508 508 5	CHAAC	40000	24770000 00	420000 0000	1.07405 : 40	E00450404	475064000.0	04000	22202405	1000070.07	1 70105 : 40	054500050 4	000700000 1
PROM S 339 PROM				429922.0339	1.0742E+12	509450164				1020379.67	1.7013E+12	851566858.1	883122830.4
S				1/5/06 7/04			PKUM=	340.0791209	300001.593	COM	ARACION DO	IMAVEDA INIT	ERNO.
Post			PROW y =	143406.7464	(C) (A2 v)n	10007043351	,		01	COMP	ARACIONER	IIWAVERA - INVII	EKNO
Intersect(a) -29724.81	_												
The content of the	 						•			•	D_ SE A	CEDTA Ha	
SS										į	N= SE A	CEFTA HO.	
SS							•						
SUMAS 16460 16787511.27 635583.6735 1.8699E+12 762189835.2 449893736.4 23450 29557801.3 917458.3333 2.63607E+12 1269896488 1743955746				£.(0)			•						
SUMAS = 16460 18787511.27 635583.6735 1.8699E+12 762189835.2 449893736.4 2450 29557801.3 917458.3333 2.63607E+12 1269896488 1743955746 PROM ≈ 365.14679 PROM y = 172577.6263 PROM y = 17458682644				IX(Z),									
PROM = 385,91837 383418.5973 PROM 172577.6263 PROM 172577.6263		ŭ.											
PROM = 385,91837 383418.5973 PROM 172577.6263 PROM 172577.6263					DC =	930.437 1007		DF=	89				
PROM x = 366.14679 PROM y = 172577.6263 (S)*2.xjp = 1746882644 n = 60 pendient (b)= 1199.1967	SUMAS =	16460	18787511.27	635583.6735			449893736.4			917458.3333	2.63607E+12	1269896488	1743955746
Pendient (b)			1	635583.6735				23450	29557801.3	917458.3333	2.63607E+12	1269896488	1743955746
Intersect(a)	PROM=	335.91837	383418.5973					23450	29557801.3				
The content of the	PROM= PROM x =	335.91837 366.14679	383418.5973		1.8699E+12	762189835.2		23450 390.8333333	29557801.3 492630.021				
Description	PROM= PROM x = n =	335.91837 366.14679 49	383418.5973		1.8699E+12 (Sy^2.x)p =	762189835.2 17468682644		23450 390.8333333 n =	29557801.3 492630.021				
Description	PROM= PROM x = n = pendient (b)=	335.91837 366.14679 49 1199.1967	383418.5973	172577.6263	1.8699E+12 (Sy^2.x)p = Sb1-b2 =	762189835.2 17468682644 46524.77433		23450 390.8333333 n = pendient (b)=	29557801.3 492630.021 60 1384.14622		MPARACION	VERANO - OTOI	
SS	PROM= PROM x = n = pendient (b)= intersecc(a)=	335.91837 366.14679 49 1199.1967 -19413.596	383418.5973	172577.6263	1.8699E+12 (Sy^2.x)p = Sb1-b2 = raiz Sb1-b2 =	762189835.2 17468682644 46524.77433 215.696023		23450 390.8333333 n = pendient (b)= intersecc(a)=	29557801.3 492630.021 60 1384.14622 -48340.4618		MPARACION	VERANO - OTOI	
SUMAS 16460 18787511.27 635583.6735 1.8699E+12 762189835.2 722847753.5 31020 32382495 1020379.67 1.7013E+12 851566858.1 886553353.2	PROM= PROM x = n = pendient (b)= intersecc(a)= r=	335.91837 366.14679 49 1199.1967 -19413.596 0.6991502	383418.5973	172577.6263	1.8699E+12 (Sy^2.x)p = Sb1-b2 = raiz Sb1-b2 = t =	762189835.2 17468682644 46524.77433 215.696023 -0.857454559		23450 390.8333333 n = pendient (b)= intersecc(a)= r=	29557801.3 492630.021 60 1384.14622 -48340.4618 0.81657539		MPARACION	VERANO - OTOI	
SUMAS = 16460 18787511.27 635583.6735 1.8699E+12 762189835.2 722847753.5 31020 32382495 1020379.67 1.7013E+12 851566858.1 886553353.2 PROM	PROM= PROM x = n = pendient (b)= intersecc(a)= r= b=	335.91837 366.14679 49 1199.1967 -19413.596 0.6991502 1199.1967	383418.5973	172577.6263	1.8699E+12 (Sy^2.x)p = Sb1-b2 = raiz Sb1-b2 = t = v =	762189835.2 17468682644 46524.77433 215.696023 -0.857454559		23450 390.8333333 n = pendient (b)= intersecc(a)= r= b=	29557801.3 492630.021 60 1384.14622 -48340.4618 0.81657539 1384.14622		MPARACION	VERANO - OTOI	
PROM 335.91837 383418.5973	PROM= PROM x = n = pendient (b)= intersecc(a)= r= b= SS=	335.91837 366.14679 49 1199.1967 -19413.596 0.6991502 1199.1967 9.559E+11	383418.5973	172577.6263	1.8699E+12 (Sy^2.x)p = Sb1-b2 = raiz Sb1-b2 = t = v = 105	762189835.2 17468682644 46524.77433 215.696023 -0.857454559 105 1.982816684		23450 390.8333333 n = pendient (b)= intersecc(a)= r= b= SS=	29557801.3 492630.021 60 1384.14622 -48340.4618 0.81657539 1384.14622 8.7835E+11		MPARACION	VERANO - OTOI	
PROM x = 339.14286 PROM y = 134418.0805	PROM= PROM x = n = pendient (b)= intersecc(a)= r= b= SS=	335.91837 366.14679 49 1199.1967 -19413.596 0.6991502 1199.1967 9.559E+11	383418.5973	172577.6263	1.8699E+12 (Sy^2.x)p = Sb1-b2 = raiz Sb1-b2 = t = v = 105	762189835.2 17468682644 46524.77433 215.696023 -0.857454559 105 1.982816684		23450 390.8333333 n = pendient (b)= intersecc(a)= r= b= SS=	29557801.3 492630.021 60 1384.14622 -48340.4618 0.81657539 1384.14622 8.7835E+11		MPARACION	VERANO - OTOI	
n = 49	PROM= PROM x = n = pendient (b)= intersecc(a)= r= b= SS= DF=	335.91837 366.14679 49 1199.1967 -19413.596 0.6991502 1199.1967 9.559E+11	383418.5973 PROM y =	172577.6263	1.8699E+12 (Sy^2.x)p = Sb1-b2 = raiz Sb1-b2 = v = 105 bc =	762189835.2 17468682644 46524.77433 215.696023 -0.857454559 105 1.982816684 1308.455479	PROM=	23450 390.8333333 n = pendient (b)= intersecc(a)= r= b= SS= DF=	29557801.3 492630.021 60 1384.14622 -48340.4618 0.81657539 1384.14622 8.7835E+11 58	co	MPARACION R= SE AG	VERANO - OTOI	ÑΩ
Pendient (b)	PROM= PROM x = n = pendient (b)= intersecc(a)= r= b= SS= DF= SUMAS =	335.91837 366.14679 49 1199.1967 -19413.596 0.6991502 1199.1967 9.559E+11 47	383418.5973 PROM y =	172577.6263	1.8699E+12 (Sy^2.x)p = Sb1-b2 = raiz Sb1-b2 = v = 105 bc =	762189835.2 17468682644 46524.77433 215.696023 -0.857454559 105 1.982816684 1308.455479	PROM=	23450 390.8333333 n = pendient (b)= intersecc(a)= r= b= SS= DF=	29557801.3 492630.021 60 1384.14622 -48340.4618 0.81657539 1384.14622 8.7835E+11 58	co	MPARACION R= SE AG	VERANO - OTOI	ÑΩ
intersecc(a) = -19413.596	PROM= PROM x = n = pendient (b)= intersecc(a)= b= SS= DF= SUMAS = PROM=	335.91837 366.14679 49 1199.1967 -19413.596 0.6991502 1199.1967 9.559E+11 47	383418.5973 PROM y = 18787511.27 383418.5973	172577.6263 tx(2),	1.8699E+12 (Sy^2.x)p = Sb1-b2 = raiz Sb1-b2 = v = 105 bc =	762189835.2 17468682644 46524.77433 215.696023 -0.857454559 105 1.982816684 1308.455479	PROM=	23450 390.8333333 n = pendient (b)= intersecc(a)= r= b= SS= DF=	29557801.3 492630.021 60 1384.14622 -48340.4618 0.81657539 1384.14622 8.7835E+11 58	1020379.67	R= SE A0	VERANO - OTO! CEPTA Ho. 851566858.1	VO 886553353.2
r= 0.6991502	PROM = PROM x = pendient (b)= intersecc(a)= b= SS= DF= SUMAS = PROM = PROM x =	335.91837 366.14679 49 1199.1967 -19413.596 0.6991502 1199.1967 9.559E+11 47 16460 335.91837 339.14286	383418.5973 PROM y = 18787511.27 383418.5973	172577.6263 tx(2),	1.8699E+12 (Sy^2.x)p = Sb1+b2 = raiz Sb1-b2 = t = v = 105 bc = 1.8699E+12	762189835.2 17468682644 46524.77433 215.696023 -0.857454559 105 1.982816684 1308.455479 762189835.2	PROM=	23450 390.8333333 n = pendient (b)= intersecc(a)= r= b= SS= DF= 31020 340.8791209	29557801.3 492630.021 60 1384.14622 -48340.4618 0.81657539 1384.14622 8.7835E+11 58 32382495 355851.593	1020379.67	R= SE A0	VERANO - OTO! CEPTA Ho. 851566858.1	VO 886553353.2
b= 1199.1967	PROM= PROM x = n = pendient (b)= intersecc(a)= b= SS= DF= SUMAS = PROM= PROM x = n =	335.91837 366.14679 49 1199.1967 -19413.596 0.6991502 1199.1967 9.559E+11 47 16460 335.91837 339.14286	383418.5973 PROM y = 18787511.27 383418.5973	172577.6263 tx(2),	1.8699E+12 (Sy^2.x)p = (Sy^2.x)p = 105 Sb1-b2 = 105 t = 105 bc = 1.8699E+12	762189835.2 17468682644 46524.77433 215.696023 -0.857454559 105 1.982816684 1308.455479 762189835.2	PROM=	23450 390.8333333 n = pendient (b)= intersecc(a)= f= b= SS= DF= 31020 340.8791209	29557801.3 492630.021 60 1384.14622 -48340.4618 0.81657539 1384.14622 8.7835E+11 58 32382495 355851.593	1020379.67	R= SE A0	VERANO - OTO! CEPTA Ho. 851566858.1	VO 886553353.2
b= 1199.1967	PROM= PROM x = n = pendient (b)= intersecc(a)= S= DF= SUMAS = PROM= PROM x = n = pendient (b)=	335.91837 366.14679 49 1199.1967 -19413.596 0.6991502 1199.1967 9.559E+11 47 16460 335.91837 339.14286 49 1199.1967	383418.5973 PROM y = 18787511.27 383418.5973	172577.6263 bx(2), 635583.6735 134418.0805	1.8699E+12 (Sy^2.x)p = Sb1-b2 = raiz Sb1-b2 = v = 105 bc = 1.8699E+12 (Sy^2.x)p = Sb1-b2 =	762189835.2 17468682644 46524.77433 215.696023 -0.857454559 105 1.982816684 1308.455479 762189835.2 14312364131 36544.96631	PROM=	23450 390.8333333 n = pendient (b) = intersecc(a) =	29557801.3 492630.021 60 1384.14622 -48340.4618 0.81657539 1384.14622 8.7835E+11 58 32382495 355851.593	1020379.67	R= SE AG 1.7013E+12	VERANO - OTOI CEPTA Ho. 851566858.1	VO 886553353.2
DF= 47 bc = 974.512328 DF= 89 SUMAS = 23450 29557801.26 917458.3333 2.6361E+12 1269896488 1805782615 31020 32382495 1020379.67 1.7013E+12 851566858.1 562742427.7 562742427.7 PROM= 390.83333 492630.021	PROM= PROM x = n = pendient (b)= intersecc(a)= SS= DF= SUMAS = PROM= PROM x = n = pendient (b)= intersecc(a)=	335.91837 366.14679 49 1199.1967 -19413.596 0.6991502 1199.1967 9.559E+11 47 16460 335.91837 339.14286 49 1199.1967 -19413.596	383418.5973 PROM y = 18787511.27 383418.5973	172577.6263 bx(2), 635583.6735 134418.0805	1.8699E+12 (Sy^2.x)p = Sb1-b2 = raiz Sb1-b2 = v = 105 bc = 1.8699E+12 (Sy^2.x)p = Sb1-b2 = raiz S	762189835.2 17468682644 46524.77433 215.696023 -0.857454559 105 1.982816684 1308.455479 762189835.2 14312364131 36544.96631 191.1673777	PROM=	23450 390.8333333 n = pendient (b)= intersecc(a)= SS= DF= 31020 340.8791209 n = pendient (b)= intersecc(a)=	29557801.3 492630.021 60 1384.14622 -8340.4618 0.81657539 1384.14622 8.7835E+11 58 32382495 355851.593 91 834.558824 71367.915	1020379.67	R= SE AG 1.7013E+12	VERANO - OTOI CEPTA Ho. 851566858.1	VO 886553353.2
SUMAS = 23450 29557801.26 917458.3333 2.6361E+12 1269896488 1805782615 31020 32382495 1020379.67 1.7013E+12 851566858.1 562742427.7 PROM- 390.8333 492630.021 PROM 9 195952.4587 PROM- 340.8791209 355851.593 COMPARACION OTOÑO - INVIERNO n = 60 Sb1-b2 = 12714112375 n = 91 91 PROM- 1384.1462 PROM- 263185 PROM- 91 12714112375 PROM- 91	PROM= PROM x = n = pendient (b)= intersecc(a)= SS= SS= DF= SUMAS = PROM x = PROM x = pendient (b)= intersecc(a)= r=	335.91837 366.14679 49 1199.1967 -19413.596 0.6991502 1199.1967 9.559E+11 47 16460 335.91837 339.14266 49 1199.1967 -19413.596 0.6991502	383418.5973 PROM y = 18787511.27 383418.5973	172577.6263 bx(2), 635583.6735 134418.0805	1.8699E+12 (Sy^2.x)p = Sb1-b2 = raiz Sb1-b2 = t = 05 bc = 1.8699E+12 (Sy^2.x)p = Sb1-b2 = raiz Sb1-b2 = t =	762189835.2 17468682644 46524.77433 215.696023 -0.857454559 105 1.982816684 1308.455479 762189835.2 14312364131 36544.96631 191.1673777 1.907427231	PROM=	23450 390.8333333 n = pendient (b)= intersecc(a)= SS= DF= 31020 340.8791209 n = pendient (b)= intersecc(a)= r=	29557801.3 492630.021 60 1384.14622 -48340.4618 0.81657539 1384.14622 8.7835E+11 58 32382495 355851.593 91 834.558824 71367.915 0.6463188	1020379.67	R= SE AG 1.7013E+12	VERANO - OTOI CEPTA Ho. 851566858.1	VO 886553353.2
PROM 390.8333 492630.021 PROM 340.8791209 355851.593 PROM x = 360.72848 PROM y = 195952.4587 (Sy^2.x)p = 12714112375 n = 91 pendient (b)= 1384.1462 Sb1-b2 = 26318.15058 pendient (b)= 834.558824 intersecc(a)= -48340.462 raiz Sb1-b2 = 162.2286984 intersecc(a)= 71367.915 R= SE RECHAZA Ho. pendient (b)= 1384.1462 v = 147 b = 834.558824 SS= 8.784E+11 bt(2), 147 1.976231943 SS= 9.9062E+11	PROM= PROM x = n = pendient (b)= intersecc(a)= SS= DF= SUMAS = PROM = PROM x = pendient (b)= intersecc(a)= r= pendient (b)= intersecc(a)= b=	335.91837 366.14679 49 1199.1967 -19413.596 0.6991502 1199.1967 9.559E+11 47 16460 335.91837 339.14286 49 1199.1967 -19413.596 0.6991502 1199.1967	383418.5973 PROM y = 18787511.27 383418.5973	172577.6263 bx(2), 635583.6735 134418.0805	1.8699E+12 (Sy^2.x)p = Sb1-b2 = raiz Sb1-b2 = 105 bc = 11.8699E+12 (Sy^2.x)p = Sb1-b2 = raiz Sb1-b2 = raiz Sb1-b2 = v = v = v = v = v = v = v = v = v =	762189835.2 17468682644 46524.77433 215.696023 -0.857454559 1.982816684 1308.455479 762189835.2 14312364131 36544.96631 191.1673777 1.907427231	PROM=	23450 390.8333333 n = pendient (b)= intersecc(a)=	29557801.3 492630.021 60 1384.14622 -48340.4618 0.81657539 1384.14622 8.7835E+11 58 32382495 355851.593 91 834.558824 71367.915 0.6463188 834.558824	1020379.67	R= SE AG 1.7013E+12	VERANO - OTOI CEPTA Ho. 851566858.1	VO 886553353.2
PROM 390.8333 492630.021 PROM 340.8791209 355851.593 PROM x = 360.72848 PROM y = 195952.4587 (Sy^2.x)p = 12714112375 n = 91 pendient (b)= 1384.1462 Sb1-b2 = 26318.15058 pendient (b)= 834.558824 intersecc(a)= -48340.462 raiz Sb1-b2 = 162.2286984 intersecc(a)= 71367.915 R= SE RECHAZA Ho. pendient (b)= 1384.1462 v = 147 b = 834.558824 SS= 8.784E+11 bt(2), 147 1.976231943 SS= 9.9062E+11	PROM= PROM x = n = pendient (b)= intersecc(a)= r= SS= DF= SUMAS = PROM= PROM x = n = pendient (b)= intersecc(a)= r= b= SS=	335.91837 366.14679 49 1199.1967 -19413.596 0.6991502 1199.1967 9.559E+11 47 16460 335.91837 339.14286 49 1199.1967 -19413.596 0.6991502 1199.1967 9.559E+11	383418.5973 PROM y = 18787511.27 383418.5973	172577.6263 bx(2), 635583.6735 134418.0805	1.8699E+12 (Sy^2.x)p = Sb1-b2 = raiz Sb1-b2 = 105 bc = 1.8699E+12 (Sy^2.x)p = Sb1-b2 = raiz Sb1-b2 = t = v = 136	762189835.2 17468682644 46524.77433 215.696023 -0.857454559 105 1.982816684 1308.455479 762189835.2 14312364131 36544.96631 191.1673777 1.907427231 1.907427231 1.9077559805	PROM=	23450 390.8333333 n = pendient (b)= intersecc(a)= SS= DF= 31020 340.8791209 n = pendient (b)= intersecc(a)= r= b= SS=	29557801.3 492630.021 60 1384.14622 -48340.4618 0.81657539 1384.14622 8.7835E+11 58 32382495 355851.593 91 834.558824 71367.915 0.6463188 834.558824 9.9062E+11	1020379.67	R= SE AG 1.7013E+12	VERANO - OTOI CEPTA Ho. 851566858.1	VO 886553353.2
PROM x = 360.72848 PROM y = 195952.4587 n = 60	PROM= PROM x = n = pendient (b)= intersecc(a)= r= SS= DF= SUMAS = PROM= PROM x = n = pendient (b)= intersecc(a)= r= b= SS=	335.91837 366.14679 49 1199.1967 -19413.596 0.6991502 1199.1967 9.559E+11 47 16460 335.91837 339.14286 49 1199.1967 -19413.596 0.6991502 1199.1967 9.559E+11	383418.5973 PROM y = 18787511.27 383418.5973	172577.6263 bx(2), 635583.6735 134418.0805	1.8699E+12 (Sy^2.x)p = Sb1-b2 = raiz Sb1-b2 = 105 bc = 1.8699E+12 (Sy^2.x)p = Sb1-b2 = raiz Sb1-b2 = t = v = 136	762189835.2 17468682644 46524.77433 215.696023 -0.857454559 105 1.982816684 1308.455479 762189835.2 14312364131 36544.96631 191.1673777 1.907427231 1.907427231 1.9077559805	PROM=	23450 390.8333333 n = pendient (b)= intersecc(a)= SS= DF= 31020 340.8791209 n = pendient (b)= intersecc(a)= r= b= SS=	29557801.3 492630.021 60 1384.14622 -48340.4618 0.81657539 1384.14622 8.7835E+11 58 32382495 355851.593 91 834.558824 71367.915 0.6463188 834.558824 9.9062E+11	1020379.67	R= SE AG 1.7013E+12	VERANO - OTOI CEPTA Ho. 851566858.1	VO 886553353.2
n = 60 (Sy^2.x)p = 12714112375 n = 91 pendient (b) = 1384.1462 Sb1-b2 = 26318.15058 pendient (b) = 834.558824 intersecc(a) = -48340.462 raiz Sb1-b2 = 162.2286984 intersecc(a) = 71367.915 R= SE RECHAZA Ho. re 0.8165754 t = 3.387732292 r = 0.6463188 b = 1384.1462 v = 147 b = 834.558824 SS= 8.784E+11 bz(2), 147 1.976231943 SS= 9.9062E+11	PROM= PROM x = n = pendient (b)= intersecc(a)= SS= DF= SUMAS = PROM = PROM x = n = pendient (b)= intersecc(a)= r= b= SS= DF=	335.91837 366.14679 49 1199.1967 -19413.596 0.6991502 1199.1967 9.559E+11 47 335.91837 339.14286 49 1199.1967 -19413.596 0.6991502 1199.1967 9.559E+11 47	383418.5973 PROM y = 18787511.27 383418.5973 PROM y =	172577.6263 tx(2), 635583.6735 134418.0805	1.8699E+12 (Sy^2.x)p = Sb1-b2 = raiz Sb1-b2 = v = 105 bc = 1.8699E+12 (Sy^2.x)p = Sb1-b2 = raiz Sb1-b2 = v = 136 bc = 136	762189835.2 17468682644 46524.77433 215.696023 -0.857454559 105 1.982816684 1308.455479 762189835.2 14312364131 36544.96631 191.1673777 1.907427231 1.907427231 1.907427231 974.512328	PROM= 722847753.5 PROM=	23450 390.8333333 n = pendient (b)= intersecc(a)= SS= DF= 31020 340.8791209 n = pendient (b)= intersecc(a)= r= b= SS= DF=	29557801.3 492630.021 60 1384.14622 -48340.4618 0.81657539 1384.14622 8.7835E+11 58 32382495 355851.593 91 834.558824 71367.915 0.6463188 834.558824 9.9062E+11	1020379.67	R= SE AG	VERANO - OTOI CEPTA Ho. 851566858.1 VERANO - INVIER	886553353.2
pendient (b)= 1384.1462 Sb1-b2 = 26318.15058 pendient (b)= 834.558824 intersecc(a)= -48340.462 raiz Sb1-b2 = 162.2286984 intersecc(a)= 71367.915 R= SE RECHAZA Ho. r= 0.8165754 t= 3.387732292 r= 0.6463188 b= 1384.1462 v= 147 b= 834.558824 SS= 8.784E+11 b(2), 147 1.976231943 SS= 9.9062E+11	PROM= PROM x = n = pendient (b)= intersecc(a)= SS= DF= SUMAS = PROM x = pendient (b)= intersecc(a)= f= b= SS= DF=	335.91837 366.14679 49 1199.1967 -19413.596 0.6991502 1199.1967 9.559E+11 47 335.91837 339.14286 49 1199.1967 -19413.596 0.6991502 1199.1967 9.559E+11 47	383418.5973 PROM y = 18787511.27 383418.5973 PROM y = 29557801.26 492630.021	172577.6263 tx(2), 635583.6735 134418.0805 tx(2),	1.8699E+12 (Sy^2.x)p = Sb1-b2 = raiz Sb1-b2 = v = 105 bc = 1.8699E+12 (Sy^2.x)p = Sb1-b2 = raiz Sb1-b2 = v = 136 bc = 136	762189835.2 17468682644 46524.77433 215.696023 -0.857454559 105 1.982816684 1308.455479 762189835.2 14312364131 36544.96631 191.1673777 1.907427231 1.907427231 1.907427231 974.512328	PROM= 722847753.5 PROM=	23450 390.8333333 n = pendient (b)= intersecc(a)= SS= DF= 31020 340.8791209 n = pendient (b)= intersecc(a)= r= b= SS= DF= SS= DF= SS= DF= SS= DF= SS= DF= SS= DF= SS= SS= DF= SS= SS= SS= SS= SS= SS= SS= SS= SS= S	29557801.3 492630.021 60 1384.14622 -48340.4618 0.81657539 1384.14622 8.7835E+11 58 32382495 355851.593 91 834.558824 71367.915 0.6463188 834.558824 9.9062E+11 89	1020379.67	1.7013E+12 MPARACION V R= SE A0	VERANO - OTO! CEPTA Ho. 851566858.1 ERANO - INVIER CEPTA Ho.	886553353.2 RNO
intersecc(a)= -48340.462 raiz Sb1-b2 = 162.2286984 intersecc(a)= 71367.915 R= SE RECHAZA Ho. r= 0.8165754 t = 3.387732292 r= 0.6463188 b= 1384.1462 v = 147 b= 834.558824 SS= 8.784E+11 b(2), 147 1.976231943 SS= 9.9062E+11	PROM= PROM x = n = pendient (b)= intersecc(a)= SS= DF= SUMAS = PROM x = pendient (b)= intersecc(a)= r= b= SS= DF=	335.91837 366.14679 49 1199.1967 -19413.596 0.6991502 1199.1967 9.559E+11 47 335.91826 49 1199.1967 -19413.596 0.6991502 1199.1967 9.559E+11 47 23450 390.83333	383418.5973 PROM y = 18787511.27 383418.5973 PROM y = 29557801.26 492630.021	172577.6263 tx(2), 635583.6735 134418.0805 tx(2),	1.8699E+12 (Sy^2.x)p = Sb1-b2 = raiz Sb1-b2 = v = 105 bc = 1.8699E+12 (Sy^2.x)p = Sb1-b2 = raiz Sb1-b2 = v = 136 bc = 136	762189835.2 17468682644 46524.77433 215.696023 -0.857454559 1.982816684 1308.455479 762189835.2 14312364131 36544.96631 191.1673777 1.907427231 136 1.977559805 974.512328	PROM= 722847753.5 PROM=	23450 390.8333333 n = pendient (b)= intersecc(a)= SS= DF= 31020 340.8791209 n = pendient (b)= intersecc(a)= r= b= SS= DF= SS= DF= SS= DF= SS= DF= SS= DF= SS= DF= SS= SS= DF= SS= SS= SS= SS= SS= SS= SS= SS= SS= S	29557801.3 492630.021 60 1384.14622 -48340.4618 0.81657539 1384.14622 8.7835E+11 58 32382495 355851.593 91 834.558824 71367.915 0.6463188 834.558824 9.9062E+11 89	1020379.67	1.7013E+12 MPARACION V R= SE A0	VERANO - OTO! CEPTA Ho. 851566858.1 ERANO - INVIER CEPTA Ho.	886553353.2 RNO
r= 0.8165754	PROM= PROM x =	335.91837 366.14679 49 1199.1967 -19413.596 0.6991502 1199.1967 9.559E+11 47 335.91837 339.14286 49 1199.1967 -19413.596 0.6991502 1199.1967 9.559E+11 47 23450 390.83333 360.72848 60	383418.5973 PROM y = 18787511.27 383418.5973 PROM y = 29557801.26 492630.021	172577.6263 tx(2), 635583.6735 134418.0805 tx(2),	1.8699E+12 (Sy^2.x)p = Sb1-b2 = raiz Sb1-b2 = 105 bc = 11.8699E+12 (Sy^2.x)p = Sb1-b2 = raiz Sb1-b2 = t = v = 136 bc = 2.6361E+12 (Sy^2.x)p = (Sy^2.x)p = 136	762189835.2 17468682644 46524.77433 215.696023 -0.857454559 1.982816684 1308.455479 762189835.2 14312364131 36544.96631 191.1673777 1.907427231 136 1.977559805 974.512328 1269896488	PROM= 722847753.5 PROM=	23450 390.8333333 n = pendient (b)= intersecc(a)= SS= DF= 31020 340.8791209 n = b= SS= DF= 31020 340.8791209	29557801.3 492630.021 60 1384.14622 -48340.4618 0.81657539 1384.14622 8.7835E+11 58 32382495 355851.593 91 834.558824 71367.915 0.6463188 834.558824 9.9062E+11 89 32382495 355851.593	1020379.67	1.7013E+12 MPARACION V R= SE A0	VERANO - OTO! CEPTA Ho. 851566858.1 ERANO - INVIER CEPTA Ho.	886553353.2 RNO
b= 1384.1462 v= 147 b= 834.558824 SS= 8.784E+11 bx(2), 147 1.976231943 SS= 9.9062E+11	PROM= PROM x =	335.91837 366.14679 49 1199.1967 -19413.596 0.6991502 1199.1967 9.559E+11 47 335.91837 339.14286 49 1199.1967 -19413.596 0.6991502 1199.1967 9.559E+11 47 23450 390.83333 360.72848 60	383418.5973 PROM y = 18787511.27 383418.5973 PROM y = 29557801.26 492630.021	172577.6263 tx(2), 635583.6735 134418.0805 tx(2),	1.8699E+12 (Sy^2.x)p = Sb1-b2 = raiz Sb1-b2 = 105 bc = 11.8699E+12 (Sy^2.x)p = Sb1-b2 = raiz Sb1-b2 = t = v = 136 bc = 2.6361E+12 (Sy^2.x)p = (Sy^2.x)p = 136	762189835.2 17468682644 46524.77433 215.696023 -0.857454559 1.982816684 1308.455479 762189835.2 14312364131 36544.96631 191.1673777 1.907427231 136 1.977559805 974.512328 1269896488	PROM= 722847753.5 PROM=	23450 390.8333333 n = pendient (b)= intersecc(a)= SS= DF= 31020 340.8791209 n = b= SS= DF= 31020 340.8791209	29557801.3 492630.021 60 1384.14622 -48340.4618 0.81657539 1384.14622 8.7835E+11 58 32382495 355851.593 91 834.558824 71367.915 0.6463188 834.558824 9.9062E+11 89 32382495 355851.593	1020379.67	R= SE AG 1.7013E+12 MPARACION V 1.7013E+12	VERANO - OTOI CEPTA Ho. 851566858.1 CEPTA Ho. 851566858.1 OTOÑO - INVIER	886553353.2 RNO
SS= 8.784E+11 tx(2), 147 1.976231943 SS= 9.9062E+11	PROMs = pendient (b)= intersecc(a)= SS= DF= SUMAS = PROMs = pendient (b)= intersecc(a)= PROM x = pendient (b)= pendient	335.91837 366.14679 49 1199.1967 -19413.596 0.6991502 1199.1967 9.559E+11 47 339.14286 49 1199.1967 -19413.596 0.6991502 1199.1967 9.559E+11 47 23450 390.83333 360.72848 60 1384.1462	383418.5973 PROM y = 18787511.27 383418.5973 PROM y = 29557801.26 492630.021	172577.6263 bx(2), 635583.6735 134418.0805 bx(2), 917458.3333	1.8699E+12 (Sy^2.x)p = Sb1-b2 = raiz Sb1-b2 = 105 bc = 105 bc = Sb1-b2 = raiz Sb1-b2 = raiz Sb1-b2 = raiz Sb1-b2 = raiz Sb1-b2 = 136 bc = 136 bc = 136 bc = Sb1-b2 = Sb1-b2 = Sb1-b2 = 136	762189835.2 17468682644 46524.77433 215.696023 -0.857454559 105 1.982816684 1308.455479 762189835.2 14312364131 36544.96631 191.1673777 1.907427231 1.907427231 1.907427231 1.269896488	PROM= 722847753.5 PROM=	23450 390.8333333 90.83333333 90.83333333 90.83333333 90.83333333 90.83333333 90.833333333 90.83333333333 90.833333333333 90.83391209 90.83333333333333 90.8333333333333 90.8333333333333 90.8333333333333 90.8333333333333	29557801.3 492630.021 60 1384.14622 -48340.4618 0.81657539 1384.14622 8.7835E+11 58 32382495 355851.593 91 834.558824 71367.915 0.6463188 834.558824 9.9062E+11 89 32382495 355851.593	1020379.67	R= SE AG 1.7013E+12 MPARACION V 1.7013E+12	VERANO - OTOI CEPTA Ho. 851566858.1 CEPTA Ho. 851566858.1 OTOÑO - INVIER	886553353.2 RNO
	PROM= PROM x = n = pendient (b)= intersecc(a)= r= b= SS= DF= SUMAS = PROM= PROM x = pendient (b)= intersecc(a)= b= SS= DF=	335.91837 366.14679 49 1199.1967 -19413.596 0.6991502 1199.1967 335.91837 339.14286 49 1199.1967 -19413.596 0.6991502 1199.1967 9.559E+11 47 23450 390.83333 360.72848 60 1384.1462 -48340.462	383418.5973 PROM y = 18787511.27 383418.5973 PROM y = 29557801.26 492630.021	172577.6263 bx(2), 635583.6735 134418.0805 bx(2), 917458.3333	1.8699E+12 (Sy^2.x)p = Sb1-b2 = raiz Sb1-b2 = 105 bc = 11.8699E+12 (Sy^2.x)p = Sb1-b2 = raiz Sb1-b2 = raiz Sb1-b2 = 136 bc = 136 bc = 2.6361E+12 (Sy^2.x)p = Sb1-b2 = raiz Sb1-b2 = r	762189835.2 17468682644 46524.77433 215.696023 -0.857454559 105 1.982816684 1308.455479 762189835.2 14312364131 36544.96631 191.1673777 1.907427231 61.977559805 974.512328 1269896488 12714112375 26318.15058 162.2286984	PROM= 722847753.5 PROM=	23450 390.8333333 n = pendient (b)= intersecc(a)= SS= DF= 31020 340.8791209 n = pendient (b)= intersecc(a)= SS= DF= 31020 340.8791209 n = pendient (b)= intersecc(a)= DF= DF= DF= DF= DF= DF= DF= DF= DF= DF	29557801.3 492630.021 60 1384.14622 -48340.4618 0.81657539 1384.14622 8.7835E+11 58 32382495 355851.593 91 834.558824 71367.915	1020379.67	R= SE AG 1.7013E+12 MPARACION V 1.7013E+12	VERANO - OTOI CEPTA Ho. 851566858.1 CEPTA Ho. 851566858.1 OTOÑO - INVIER	886553353.2 RNO
DF= 58 bc = 1094.75784 DF= 89	PROM= PROM x = n = pendient (b)= intersecc(a)= SS= DF= SUMAS = PROM= PROM x = pendient (b)= intersecc(a)= f= SS= DF= SUMAS = PROM= PROM x = pendient (b)= intersecc(a)= r= pendient (b)= intersecc(a)= r= prom x = pendient (b)= intersecc(a)= r= prom x = pendient (b)= intersecc(a)= r= pendient (b)= intersecc(a)= r=	335.91837 366.14679 49 1199.1967 -19413.596 0.6991502 1199.1967 335.91837 339.14286 49 1199.1967 -19413.596 0.6991502 1199.967 -39413.596 390.83333 360.72848 60 1384.1462 -48340.462 0.8165754	383418.5973 PROM y = 18787511.27 383418.5973 PROM y = 29557801.26 492630.021	172577.6263 bx(2), 635583.6735 134418.0805 bx(2), 917458.3333	1.8699E+12 (Sy^2.x)p = Sb1-b2 = raiz Sb1-b2 = 105 bc = 11.8699E+12 (Sy^2.x)p = Sb1-b2 = raiz Sb1-b2 = 136 bc = 2.6361E+12 (Sy^2.x)p = Sb1-b2 = raiz Sb1-b2 = t =	762189835.2 17468682644 46524.77433 215.696023 -0.857454559 105 1.982816684 1308.455479 762189835.2 14312364131 36544.96631 191.1673777 1.907427231 1.907427231 269896488 12714112375 26318.15058 162.2286984 3.387732292	PROM= 722847753.5 PROM=	23450 390.8333333 n = pendient (b)= intersecc(a)= SS= DF= 31020 340.8791209 n = pendient (b)= intersecc(a)= SS= DF= 31020 340.8791209 n = pendient (b)= intersecc(a)= CSS= DF= DF= CSS= DF= DF= DF= DF= DF= DF= DF= DF= DF= DF	29557801.3 492630.021 60 1384.14622 -48340.4618 0.81657539 1384.14622 8.7835E+11 58 32382495 355851.593 91 834.558824 71367.915 0.6463188 91 834.558824 9.9062E+11 89	1020379.67	R= SE AG 1.7013E+12 MPARACION V 1.7013E+12	VERANO - OTOI CEPTA Ho. 851566858.1 CEPTA Ho. 851566858.1 OTOÑO - INVIER	886553353.2 RNO
	PROM= PROM x = n = pendient (b)= intersecc(a)= SUMAS = PROM x = PROM x = pendient (b)= intersecc(a)= F= B= SUMAS = PROM x = PROM x = pendient (b)= intersecc(a)= F= b= SUMAS = PROM x = PROM	335.91837 366.14679 49 1199.1967 -19413.596 0.6991502 1199.1967 9.559E+11 47 339.14286 49 1199.1967 -19413.596 0.6991502 1199.1967 9.559E+11 47 23450 390.83333 360.72848 60 1384.1462 -48340.462 0.8165754	383418.5973 PROM y = 18787511.27 383418.5973 PROM y = 29557801.26 492630.021	172577.6263 tx(2), 635583.6735 134418.0805 tx(2), 917458.3333	1.8699E+12 (Sy^2.x)p = Sb1-b2 = raiz Sb1-b2 = 105 bc = 105 bc = 11.8699E+12 (Sy^2.x)p = Sb1-b2 = raiz Sb1-b2 = raiz Sb1-b2 = 136 bc = 12.6361E+12 (Sy^2.x)p = Sb1-b2 = raiz Sb1-b2 =	762189835.2 17468682644 46524.77433 215.696023 -0.857454559 105 1.982816684 1308.455479 762189835.2 14312364131 36544.96631 191.1673777 1.907427231 136 1.977559805 974.512328 1269896488 12714112375 26318.15058 162.2286984 3.387732292	PROM= 722847753.5 PROM=	23450 390.8333333 n = pendient (b) = SS= DF= 31020 340.8791209 n = pendient (b)= intersecc(a)= b= SS= DF= 31020 340.8791209 n = pendient (b)= intersecc(a)= c = pendient (b)= intersecc(a)= pendient (b)= intersecc(a)=	29557801.3 492630.021 60 1384.14622 -48340.4618 0.81657539 1384.14622 8.7835E+11 58 32382495 355851.593 91 834.558824 71367.915 0.6463188 834.558824 9.9062E+11 89 32382495 355851.593	1020379.67	R= SE AG 1.7013E+12 MPARACION V 1.7013E+12	VERANO - OTOI CEPTA Ho. 851566858.1 CEPTA Ho. 851566858.1 OTOÑO - INVIER	886553353.2 RNO

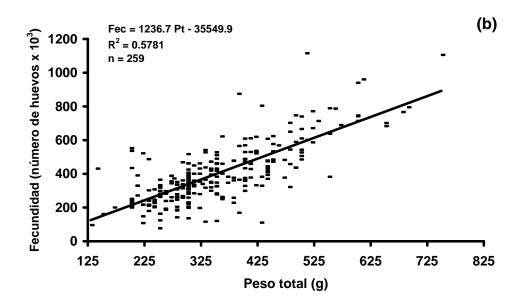


Figura 59.- Relaciones entre la fecundidad y la longitud del cefalotórax (a) y el peso total (b) de *Panulirus gracilis* en el sur de Sinaloa.

Fecundidad relativa

La fecundidad relativa no presentó correlación con el PT de las langostas (Fig. 60). El valor del coeficiente de determinación (R²) de esta relación fue muy bajo y la pendiente fue positiva y cercana a cero. El número de huevos por gramo del peso total del organismo osciló entre 257 y 3,078. La estimación de la pérdida de huevos fue del 7.9% desde la fase de madurez sexual 3 a la 5.

El intervalo de talla correspondiente al mayor número de hembras ovígeras fue 65-80 mm de LC y la clase de talla que aportó el mayor porcentaje (30%) fue de 70 mm (Fig. 61).

Captura (C), esfuerzo pesquero (f) y captura por unidad de esfuerzo (cpue)

La composición específica de los desembarques y comercialización de la langosta en las costas de Sinaloa está constituída por *P. gracilis* y *P. inflatus*, sin que los pescadores o distribuidores hagan distinción por especie. A continuación se presenta la composición específica que se obtuvo durante el período de estudio, entre 1989 y 1991, con el objetivo de determinar la proporción temporal que le corresponde a *P. gracilis*.

Composición de la captura

Las capturas de langosta en el sur de Sinaloa están compuestas por Panulirus gracilis y P. inflatus. Su análisis en la parte más al sur del área de estudio, en la bahía de Mazatlán, muestra que durante 1989 predominó la segunda especie (60%), con algunas variaciones mensuales (Tabla 18). P. gracilis alcanzó su mayor proporción durante abril (47%) (Fig. 62). Este aumento posiblemente se debió a una migración periódica durante los meses fríos del año, lo cual ha sido señalado por Pérez-González et al. (1992a).

En el norte de la región, de Punta Cerritos a Punta Piaxtla (Fig. 1), de septiembre de 1989 a septiembre de 1990 también

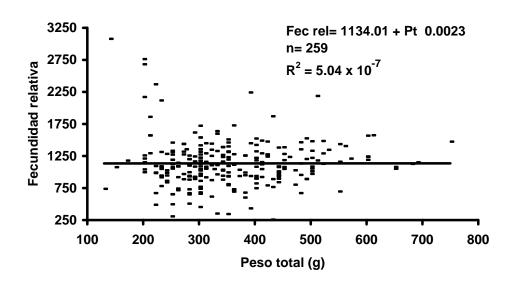


Figura 60.- Relación entre la fecundidad relativa y el peso total de *Panulirus gracilis* en el sur de Sinaloa.

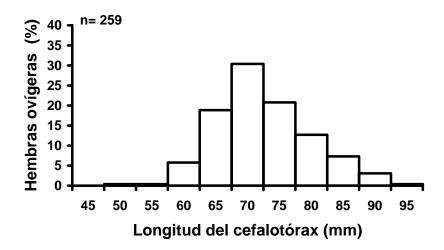


Figura 61.- Frecuencia de aparición de hembras ovígeras de *Panulirus gracilis* por intervalo de talla en el sur de Sinaloa.

Tabla 18.- Número de organismos y porcentajes mensuales de Panulirus inflatus y P. gracilis durante 1989 en la parte sur del área de estudio en Sinaloa.

	P. inflatus		P. gra	cilis	
MES	No.	%	No.	%	TOTAL
ENE	259	68.9	117	31.1	376
FEB	539	64.2	300	35.8	839
MAR	487	68.8	221	31.2	708
ABR	399	52.9	355	47.1	754
MAY	359	75.9	114	24.1	473
JUN	137	66.2	70	33.8	207
JUL	193	70.7	80	29.3	273
AGO	79	71.2	32	28.8	111
SEP	551	74.9	185	25.1	736
OCT	938	73.2	344	26.8	1282
NOV	847	81.3	195	18.7	1042
DIC	325	77.2	96	22.8	421
TOTAL	5113		2109		7222

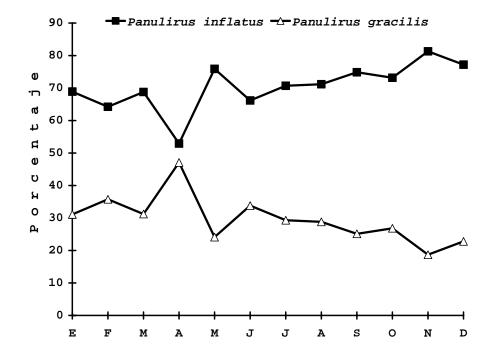


Figura 62.- Variación de la proporción mensual (%) de *Panulirus inflatus y P. gracilis* en los muestreos mensuales realizados en 1989 en la parte sur del área de estudio en Sinaloa.

predominó *P. inflatus*; sin embargo, a partir de octubre de ese año hasta noviembre de 1991, la proporción de especies fue inversa, excepto en febrero y octubre, donde *P. gracilis* fue menos abundante (Tabla 19, Fig. 63). La mayor abundancia de esta especie encontrada durante ese lapso, no coincide con la información de otros años y de otras áreas, en los cuales se encuentra en menor proporción con respecto a *P. inflatus*, tanto en las costas de Guerrero (Weinborn, 1977; Briones *et al.*, 1981) como en el litoral de Sinaloa (Pérez-González, 1986; Flores-Campaña *et al.*, 1993).

Variación temporal de la C, f y cpue

El esfuerzo pesquero se tomó como el número de embarcaciones que trabajaron por mes (No. lanchas/mes). Los datos pesqueros de C, f y cpue presentaron un patrón muy particular durante la temporada de pesca (durante el período de estudio estuvo entre el 15 de septiembre al 31 de mayo), con los valores más altos al inicio de este período, disminuyen entre diciembre y enero para nuevamente aumentar, pero en menor proporción que al comienzo de la temporada (Tabla 20, Fig. 64). Los valores de la cpue oscilaron entre 1.32 y 12.72 kg/lancha, con el mínimo en diciembre de 1990 y el máximo en septiembre de 1989; y las mayores capturas se obtuvieron en septiembre, octubre y abril de cada año, con el valor máximo en octubre de 1989 (451.45 kg) y el mínimo en diciembre de 1990 (7.89 kg) (Tabla 20). Cabe señalar que las capturas elevadas durante el período de veda se debieron a que se realizaron muestreos intensivos entre 15 y 20 días por mes (entre julio y la primera quincena de septiembre), varias embarcaciones, por lo que se registraba producción total; sin embargo, durante la temporada de pesca se tomaron censos semanales. Lo interesante de esto es que se observa una mayor o menor relación entre las tres variables (C, f y cpue), siendo la más estrecha entre la C y f. Sparre y Venema (1995) indican a C/f como el rendimiento en los modelos de producción excedentaria de Shcaefer y Fox, que en este estudio se representa como cpue. Aunque la R^2 (0.4728) es baja en la regresión que se calculó entre estas dos variables, se observa que conforme se incrementa el esfuerzo pesquero también aumenta la captura (Fig. 65a). Los datos de C vs cpue y cpue vs

f (Figs 65b y 65c) permiten observar que éstos tienen una relación mucho menor que la que se encontró entre C y f, con valores de R^2 de 0.1947 y 0.0401, respectivamente. Sin embargo, de acuerdo a la línea de tendencia de esas relaciones, se observa que al aumentar la C también se incrementa la cpue (Fig. 65b), mientras que si el f aumenta la cpue disminuye, indicando la tendencia negativa de dicha relación (Fig. 65c).

Tabla 19.- Número de organismos y porcentajes mensuales de *Panulirus inflatus* y *P. gracilis*, de septiembre de 1989 a noviembre de 1991, en la parte norte del área de estudio en Sinaloa.

		Panulirus	inflatus	Panulirus	gracilis
		No. org.	%	No. org.	- %
1989	SEP	349	72.6	132	27.4
	OCT	553	79.5	143	20.5
	NOV	235	59.8	158	40.2
	DIC	447	72.0	174	28.0
1990	ENE	577	80.0	144	20.0
	FEB	407	76.2	127	23.8
	MAR	374	67.1	182	32.9
	ABR	342	56.0	269	44.0
	MAY	524	65.4	277	34.6
	JUN	87	57.2	65	42.8
	JUL	646	69.5	285	30.5
	AGO	661	67.8	314	32.2
	SEP	221	81.9	49	18.1
	OCT	117	41.5	173	58.5
	NOV	92	36.9	157	63.1
	DIC	6	25.0	18	75.0
1991	ENE	119	30.9	266	69.1
	FEB	292	54.9	240	45.1
	MAR	156	34.9	291	65.1
	ABR	158	47.0	178	53.0
	MAY	144	42.5	195	57.5
	JUN	50	20.5	193	79.5
	JUL	812	47.4	900	52.6
	AGO	317	35.8	569	64.2
	SEP	148	44.7	183	55.3
	OCT	196	66.4	99	33.6
	NOV	5	21.7	18	78.3
TOTAL		8035		5799	
TOTAL		6033		3/99	

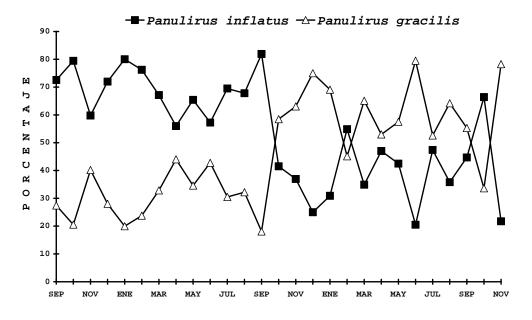


Figura 63.- Variación de la proporción mensual (%) de Panulirus inflatus y P. gracilis de septiembre de 1989 a noviembre de 1991 en la parte norte del área de estudio en Sinaloa.

Tabla 20.- Captura, esfuerzo pesquero y captura por unidad de esfuerzo (cpue) obtenidos en la pesca de langosta (*Panulirus gracilis* y *P. inflatus*) en el sur de Sinaloa durante septiembre de 1989 a noviembre de 1991.

MES	CAPTURA (kg)	ESFUERZO # LANCHAS	CPUE
SEP	330.652	26	12.72
OCT	451.447	39	11.58
NOV	72.335	18	4.02
DIC	166.950	33	5.06
ENE	175.595	30	5.85
FEB	198.510	32	6.20
MAR	147.875	20	7.39
ABR	237.875	35	6.80
MAY	124.367	29	4.29
JUN	35.589	3	11.86
JUL	109.930	9	12.21
AGO	97.655	9	10.85
SEP	359.030	34	10.56
OCT	311.081	30	10.37
NOV	131.425	26	5.05
DIC	7.890	6	1.32
ENE	95.865	39	2.46
FEB	151.670	36	4.21
MAR	129.871	32	4.06
ABR	362.890	71	5.11
MAY	174.000	49	3.55
JUN	29.735	4	7.43
JUL	164.020	14	11.72
AGO	80.297	12	6.69
SEP	170.720	26	6.57
OCT	119.370	22	5.43
NOV	8.200	5	1.64
MAX	451.447	71	12.72
MIN	7.890	3	1.32

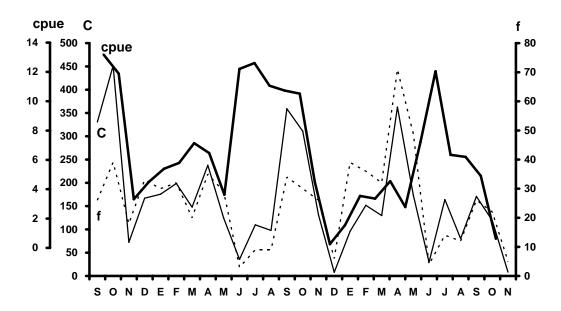
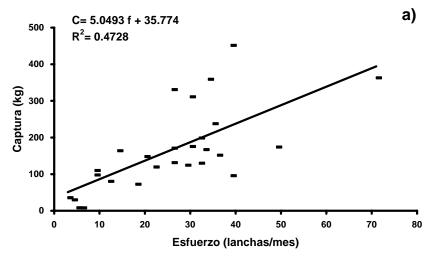
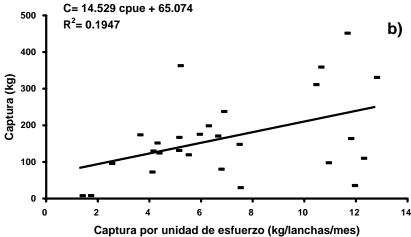




Figura 64.- Captura (C, en kg), esfuerzo pesquero (f, en número de embarcaciones/mes) y captura por unidad de esfuerzo (cpue, en kg/embarcación/mes) mensual en la pesca de las langostas *Panulirus* spp. en el sur de Sinaloa, septiembre de 1989 a noviembre de 1991.

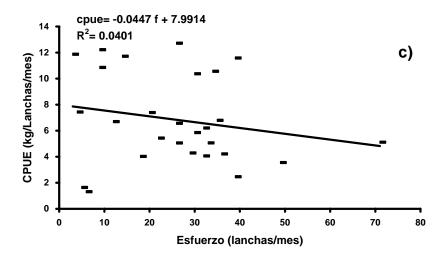


Figura 65.- Relaciones entre la captura y el esfuerzo pesquero (a), captura vs captura por unidad de esfuerzo (b) y captura por unidad de esfuerzo vs esfuerzo pesquero (c) en la pesca de las langostas *Panulirus* spp. en el sur de Sinaloa, septiembre de 1989 a noviembre de 1991.

DISCUSIÓN

Hidrología

La parte sur del Golfo de California es una gran área con cuencas profundas y es la zona más próxima a las aguas del océano Pacífico, por lo que está fuertemente influenciada por esa masa de agua que le proporciona características medio-ambientales estables tropicales durante todo el año (Brusca et al., 2005). En esta zona se presentan temperaturas superficiales de 4.0 y 5.0°C más elevadas que en las regiones central y norte, respectivamente (Aragón-Noriega, 2007).

Sin embargo, ésta región del golfo presenta variaciones muy particulares en sus variables físicas. En el área de estudio los menores valores de salinidad obtenidos durante el período de lluvias en la estación de muestreo ubicada en la entrada al puerto de Mazatlán y al estero de Urías (véase Fig. 1), se debieron a que esta zona recibe mayores aportes de agua dulce en el citado período, por lo que la salinidad disminuye más en esta localidad que en las otras donde se obtuvieron los demás registros. De tal manera que, en esta área durante julio de 1990 se encontraron los valores más bajos en superficie (28.70 y 25.278%), coincidiendo con uno de los meses con mayor precipitación.

Garduño-Argueta (1989), Garduño-Argueta y Calderón-Pérez (1995) y Villareal-Flores (1989) caracterizaron las condiciones fisico-químicas del aqua de la región comprendida entre Punta Piaxtla y la boca de Teacapán, en el sur del estado de Sinaloa, y señalan que las temperaturas epibentónicas más bajas en el fondo se presentan durante el invierno (en las isobatas de los 40 y 80 m) y primavera (en la isobata de los 10 m), destacando la intrusión de una masa de aqua fría durante la primavera. Por otro lado, estos mismos autores observan valores de salinidad de 33.7 a 35.5% (con excepción de un registro de 29.4% en el verano) frente a la desembocadura del río Piaxtla; valores de temperatura y de salinidad son similares a los reportados en este estudio, inclusive ese último registro de salinidad está por debajo a los encontrados en este trabajo en la entrada al sistema de Urías.

intrusión de agua fría también se manifiesta en resultados obtenidos a partir de los muestreos realizados durante el seguimiento de las variaciones diurnas estacionales. En la primavera se obtuvieron los valores de concentración del oxígeno disuelto más bajos, lo cual es característico de estas masas de agua fría. Esta condición durante la primavera, también fue observada por Hendrickx (2001), Hendrickx et al. (1984), Garduño-Argueta (1989), Garduño-Argueta y Calderón-Pérez (1995), Villareal-Flores (1989) y Pérez-González (1995), lo cual indica que esta intrusión de agua fría se presenta cada año en esta región del sureste del golfo de California, durante esta época, la cual penetra hasta casi alcanzar la isobata de los 10 m. Bray y Robles (1991) indican que la entrada de agua fría de profundidad en la parte sur del golfo acarrea nutrientes hacia su interior, pero que no es muy claro el límite de su penetración hacia el norte.

Pérez-González (1995), Hendrickx (2001) y Hendrickx y Brusca (2003) reportan valores críticos en la concentración del oxígeno disuelto de hasta 0.4 y 1.0 ml/l hacia el sur del área de estudio del presente estudio en las desembocaduras de los ríos Presidio y Baluarte, respectivamente. Hendrickx et al. (1984) y Plascencia-González (1993) encontraron condiciones de oxigenación similares durante la primavera y el verano.

La intrusión de la masa de aqua fría durante el inviernoprimavera también se manifiesta por la presencia de organismos de aguas más profundas que toleran bajas temperaturas y niveles críticos de oxígeno en zonas costeras someras, como por ejemplo camarón Penaeus brevirostris (Garduño-Argueta, Garduño-Argueta y Calderón-Pérez, 1995), el cangrejo araña Maiopsis panamensis (Hendrickx et al., 1992), otros crustáceos (Hendrickx, 2001) У los peces Paralychthys Epinephelus acanthistius y Paralabrax loro (van der Heiden, comunicación personal). Asimismo, Castro-Aguirre et al. (1993) sugieren una tendencia al seguimiento de isotermas preferenciales de Raja binoculata. En esta zona del sureste de Sinaloa, la presencia de estos organismos de aguas profundas en áreas costeras en la primavera se debe a las surgencias que se presentan en sitios relativamente someros en la costa este del Golfo de California (Roden y Groves, 1959; Hendrickx, 1995; Brusca et al., 2005; Lluch-Cota et al., 2007). En lo que se refiere a las langostas que habitan en esta región, Pérez-González et al. (1992a) reportan una arribazón de P. gracilis y P. inflatus al final del invierno y en parte de la primavera, que probablemente es consecuencia de la intrusión de la masa de agua fría en este período, que ocasiona cambios de las variables ambientales como la temperatura y la concentración del oxígeno disuelto a nivel del fondo, por lo que posiblemente los organismos se acercan a aguas someras huyendo de las zonas más profundas con baja concentración de oxígeno.

Aspectos biológicos

- Relaciones biométricas

Las relaciones que principalmente se han estudiado para P. gracilis son las que incluyen las mediciones de la Lt, Lc y Pt, que permiten establecer ecuaciones de tipo lineal (Lc vs. Lt) y potencial (Pt vs. Lt y Pt vs. Lc) presentadas por Pérez-González (1986), Quintero-Montoya (1999), Robles-Cruz (2000), Arzola-González (2001) y Muñoz-Rojas (2006) para las costas de Sinaloa y Nayarit. Las variaciones que se presentan en los valores de la ordenada al origen 'a', pendiente 'b' y coeficiente de determinación 'R2' entre los distintos autores que los han calculado, únicamente depende del número de organismos medidos, del intervalo de tallas considerado y/o de la época de muestreo. En efecto, si se tienen pocos ejemplares y/o intervalos de tallas limitados (sólo población comercial con adultos o sólo los juveniles), las estimaciones de los valores no son adecuadas y se obtienen resultados distintos a lo que se observa cuando se cuenta con un intervalo de tallas más amplio, con un gran número de individuos. Por otro lado, las relaciones entre Pt y las longitudes cambian en las distintas épocas del año, así como a través de los años, ya que las condiciones ambientales siempre están variando e influyen en la disponibilidad de alimento y en las relaciones intra e interespecíficas.

El ancho del cefalotórax se tomó considerando que es una medida que puede ser de utilidad para distinguir fácilmente entre esta especie y P. inflatus. Se ha observado que ésta última presenta un cefalotórax más largo y más ancho y con espinas prominentes y numerosas. Lo anterior ha sido señalado por Pérez-González (1986), Pérez-González et al. (1992a) y Suárez (1995); sin embargo, estos autores sólo lo anotan como una observación muy notoria, ya que ellos no efectuaron ninguna relación entre las distintas mediciones de longitud y peso con el ancho del cefalotórax. Cabe recordar que hasta antes de 1961 inflatus y P. gracilis eran consideradas como una sola especie, partir de ese año fueron redescritas pero а detalladamente y consideradas como especies distintas por Holthuis y Villalobos (1961).

En la evaluación de los recursos pesqueros es usual utilizar las capturas comerciales para determinar la estructura de tallas y edades de las poblaciones explotadas (Sparre y Venema, 1995; Hilborn y Walters, 1992). En ocasiones los datos que se obtienen durante los muestreos son sólo algunas mediciones, por lo que es necesario calcular las tallas o pesos de organismos completos mediante las relaciones morfométricas previamente establecidas. Por ejemplo, en el litoral del Caribe mexicano P. argus se comercializa como cola de langosta (abdómen de los organismos), por lo que la información más abundante sobre capturas se encuentra como biomasa o talla de la parte corporal citada. En sus investigaciones sobre la dinámica de poblaciones de P. argus, Lozano-Álvarez (1992) tuvo transformaciones correspondientes. las recomienda analizar la estructura de las poblaciones langostas, así como otros aspectos relacionados a considerando la longitud del cefalotórax (Hepper, Briones-Fourzán et al., 2000), debido a que el cefalotórax es una estructura rígida, mientras que el abdómen es muy flexible y, hasta cierto punto, compresible por estar compuesto de varios somites articulados y su medición está sujeta a más errores.

La relación PT-LC para el total de la población se ajustó a una ecuación potencial, con valores elevados de R^2 tanto para sexos juntos (R^2 = 0.8978) como para machos (R^2 = 0.8967) y hembras (R^2 = 0.9494) por separado, indicando un buen ajuste en la relación entre ambas variables. Los valores de 'b' (tipo de crecimiento) fueron diferentes para machos y hembras, indicándonos que para los primeros se obtuvo un crecimiento alométrico (P>0.05), mientras que para las hembras fue isométrico (P<0.05). Sin embargo, Pérez-González (1986), Quintero-Montoya (1999) y Ortega-Guzmán (2004) señalan un crecimiento isométrico para ambos sexos.

patrón de variación temporal del factor de condición Elobservado en este estudio fue similar al que encontró Pérez-González (2003) en las costas del centro y sur del estado de Nayarit, durante el 2001 y parte del 2002; mientras que fue opuesto al que encontraron Pérez-González (1992b) y Quintero-Montoya (1999) en la costa sur de Sinaloa. Estos autores han relacionado el factor de condición la actividad con reproductiva de P. gracilis y P inflatus. En la presente investigación, los valores mayores del factor de condición están relacionados con la mayor actividad reproductiva de los decir, la mayoría se encuentran organismos, es sexualmente, con las gónadas de gran tamaño y con una masa que abarca gran parte de la cavidad cefalotorácica, incluyendo a las hembras ovígeras con su masa ovígera adherida en el abdómen. Los pulsos más notorios presentaron se septiembre y diciembre de 1989 y de agosto a diciembre de 1990 y están relacionados con los meses en que la mayoría de las hembras se encuentran con la masa ovígera en el abdomen (ver Tabla 19 y Fig. 42); por el contrario, el decremento de los valores del factor de condición se relaciona con la disminución de la proporción de hembras ovígeras. Los períodos con mayor y menor número de hembras ovígeras también han sido reportados por Pérez-González et al. (1992b), Briones-Fourzán y Lozano-Álvarez (1992), Salazar-Navarro (2000), Robles-Cruz (2000); Pérez-González (2003) y Arzola-González et al. (2007).

La ventaja del cálculo del factor de condición a partir de la ecuación de Ricker (1975) es que no es necesario sacrificar a los animales y se puede obtener información valiosa cuando la muestra es representativa. Otros índices del estado nutricional langostas han sido estimados, pero implican sacrificio de los organismos, ya que están basados en condición que presenta el hepatopáncreas en relación al peso total; sin embargo, se ha encontrado que este órgano sufre degeneración en el epitelio cuando las langostas pasan por una hambruna prolongada (Stewart et al., 1967; Dall, 1974, 1975; Lozano-Álvarez y Aramoni-Serrano, 1996). Castañeda-Fernándezde-Lara et al. (2005) observaron que el valor más bajo del índice nutricional en juveniles de P. interruptus se presentó en primavera, coincidiendo con el mayor número de organismos con los estómagos vacíos. Las trampas con carnada promueven la captura de individuos hambrientos (Dall, 1975), lo cual está falta de disponibilidad de relacionado con la alimento (Chittleborough, 1975; Colinas-Sánchez y Briones-Fourzán, 1990; Castañeda-Fernández-de-Lara et al., 2005).

Estructura de la población

De acuerdo a los resultados obtenidos de las medias de la LC, de manera general estos valores oscilaron entre 63.95 y 81.90 mm, excepto un valor de 87.39 mm en los machos durante mayo de 1989 en la parte más al sur del área de estudio; sin embargo, la mayoría varió alrededor de 70.0 y 75.0 mm. Asimismo, las modas se encontraron entre 75.0 y 80.0 mm de LC. Con estos valores se observa que las medias y las modas obtenidas para P. gracilis se encuentran por debajo de la talla mínima legal que rige para esta región (82.5 mm de LC), la cual ha sido considerada excesiva desde hace muchos años por investigadores como Briones et al. (1981),Pérez-González (1986, 2003), Pérez-González et al. (1992a, b), Arzola-González (2001), Arzola-González et al. (2007) y Valadez-Manzano et al. (2003). Lo anterior es debido a que las langostas P. gracilis y inflatus se rigen con la misma normatividad interruptus que habita la costa occidental de la península de Baja California, la cual alcanza tallas mayores que esas especies.

Al analizar los valores de las medias obtenidas por otros autores y en distintas temporadas de pesca, se observa una disminución en esa variable a lo largo de los años. ejemplo, Wiedfeldt (1997) reporta tallas medias por encima de la talla mínima legal durante la temporada de 1977 (82.8 mm de LC), Pérez-González (1986) y Borrego et al. (1992) encontraron medias de 72.0 mm y 68.0 mm de LC durante 1983-1984 y 1989, respectivamente, Arzola-González (2001) y Arzola-González et al. (2007) registran una media de 71.7 mm de LC en el período 1995-1997 y Quintero-Montoya (1999) encontró tallas medias alrededor de 70.0 mm de LC durante 1997-1998, incluyendo valores entre 60.0 y 68.0 mm en algunos meses. Aparentemente existe un decremento en la media de la población de P. gracilis en la costa sur del estado de Sinaloa, lo cual podría deberse a varios factores. Entre éstos, se puede destacar el aumento paulatino en el esfuerzo pesquero por el incremento del número pescadores furtivos, lo que ha ocasionado una explotación del recurso y, como consecuencia, una disminución las capturas y esto ocasiona que no se respete la reglamentación implementada para la conservación del recurso (Pérez-González et al., 2002): no se regresan al mar hembras ovígeras ni los organismos por debajo de los 300.0 g de PT (peso mínimo legal en esta región) y, durante la época de veda, se capturan langostas de manera furtiva. Para las costas de Nayarit, Pérez-González (2003) y Valadez-Manzano et al. (2003) citan una talla media de 70.0 mm de LC para P. gracilis y P. inflatus; sin embargo, señalan que aún se encuentran numerosos organismos con tallas y pesos por encima de 90.0 mm de LC y de 1000 q de PT, respectivamente, como resultado de las regulaciones pesqueras establecidas para respetar el recurso.

Cabe destacar que para *P. gracilis* y *P. inflatus* las medias y modas son similares, por lo que para fines de regulación pesquera se puede aplicar la misma talla mínima de primera captura, sin que afecte a ninguna de las poblaciones (Pérez-González *et al.*, 1997b). Sin embargo, es importante señalar que en el análisis de las poblaciones también influye el tamaño del intervalo de clase que se utilice. Por ejemplo, Robles-Cruz

(2000) y Pérez-González (2003) utilizaron un intervalo de talla de 2.0 mm de LC y obtuvieron medias de 72.0 mm para P. gracilis en las costas de Sinaloa y Nayarit; mientras que cuando se usan clases de tallas de 5.0 mm o mayores, se obtiene tamaños medios y modas más elevados, de entre 75.0 y 80.0, inclusive de 85.0 mm (Pérez-González et al., 1992a; Salazar-Navarro, 2000; Arzola-González, 2001; Salazar-Navarro et al., 2003; Arzola-González et al., 2007). Estas diferencias podrían significar sesgos importantes al momento de elaborar propuestas sobre las tallas mínimas legales de primera captura, por lo que además de considerar estos aspectos, se deben agregar otros como la talla de primera madurez sexual y las tallas predominantes de hembras maduras y con huevecillos en la población.

El análisis de la variación de las proporciones de machos y hembras indica que la encontrada en el presente estudio fue similar a lo que se ha reportado para P. gracilis en las costas mexicanas del Pacífico, en particular para esta misma zona de estudio. Los menores porcentajes de hembras fueron observados el verano y parte del otoño y los mayores encontraron el resto del año. Este patrón también ha sido informado por Pérez-González et al. (1992a, 1997b), Briones-Fourzán y Lozano-Álvarez (1992), Carrillo-Sandoval (2000), Salazar-Navarro (2003) y Arzola-González et al. (2007) y lo han relacionado con la actividad reproductiva de P. gracilis. Gregory et al. (1982) señalan que la variación en la proporción en P. argus parece estar relacionada reproducción. Kanciruk y Herrnkind (1976) informan que hembras ovígeras de P. argus y las que están desovando son menos abundantes en las capturas que los machos y las hembras Por 10 tanto, los resultados ovígeras. pueden subestimados en la proporción de hembras ovígeras presentes en las áreas de pesca durante el período de reproducción. Algunos autores como Dawson e Idyll (1951), Davis (1977) y Lozano-Álvarez et al. (1991) indican que durante la reproducción las langostas hembras son menos abundantes en comparación con los machos, debido a que las primeras son menos activas durante la incubación de los huevecillos y no están accesibles en las áreas de pesca o porque se desplazan hacia aguas más profundas. Este patrón de movimiento de las hembras ha sido observado en P. argus en el norte del mar Caribe y Bahamas (Herrnkind, 1980, 1985; Kanciruk, 1980), sur de Florida (Gregory y Labisky, 1986), en la plataforma continental de Quintana Roo, México (Lozano-Álvarez et al., 1991) y en el noroeste de las islas del archipiélago Cabo Verde (Atlántico centro-oriental) (Freitas y Castro, 2005); en P. ornatus en el golfo de Papua (Bell et al., 1987; Pitcher et al., 1992); en P. guttatus en las costas mexicanas del mar Caribe (Padilla-Ramos y Briones-Fourzán, 1997; Briones-Fourzán y Contreras-Ortíz, 1999), y en Palinurus elephas en el mar Mediterráneo occidental (Goñi et al., 2001).

Panulirus inflatus presenta un patrón similar en la actividad reproductiva y en los movimientos de los machos y hembras relacionados con los desoves, desarrollo embrionario y eclosión de los huevecillos (Pérez-González et al., 1992b; Briones-Fourzán y Lozano-Álvarez, 1992; Arzola-González et al. 2007). Esta especie co-existe con P. gracilis a lo largo de la costa mexicanas del Pacífico y la parte baja del golfo de California.

Generalmente, la proporción global entre machos y hembras es de 1:1, con algunos períodos de dominancia de los machos (3:1), sobre todo cuando se presentan anomalías térmicas en el agua, como fue el caso durante el evento de 'El Niño' durante 1997-1998, el cual ha sido uno de los más intensos entre las décadas de los 70's y 90's (Zamudio et al., 2007), ocasionando un aumento en la temperatura del agua y, por consiguiente, también actividad reproductiva de P. gracilis y comportamiento, lo que dio como resultado una disminución de los porcentajes de hembras en las capturas (Quintero-Montoya, 1999; Robles-Cruz, 2000). Sin embargo, en varias especies de palinúridos la desproporción sexual se debe a que los machos presentan una mayor capturabilidad que las hembras y, además, los de mayor tamaño se capturan en porcentajes más elevados que los de tallas menores (Tremblay y Smith, 2001; Ziegler et al., 2002). La proporción 1:1 (hembras:machos) o un mayor número de machos en las poblaciones de las langostas aumenta probabilidad de que más hembras sean copuladas, conlleva al incremento en la producción de larvas, disminución de lesiones fisiológicas (atrofia de ovarios) en las hembras sin copular o daño/muerte cuando las hembras dependen de los

machos para su protección durante la muda y la cópula MacDiarmid y Sainte-Marie, 2006).

Crecimiento

El estudio del crecimiento en los organismos y de los eventos relacionados al mismo (i.e., maduración sexual, migraciones y alimentación) resulta muy importante para el conocimiento de su biología pesquera. Además del reclutamiento, el crecimiento individual de los organismos constituye, precisamente y año tras año, la fuente de suministro de las capturas extraídas por una pesquería (Pitcher y Hart, 1982; Pauly, 1983; Sparre y 1995). Varios métodos han sido desarrollados para los parámetros del modelo de crecimiento de von estimar Bertalanffy; sin embargo, la aplicación del programa ELEFAN se ha generalizado en los últimos años, por la facilidad de uso y la buena aproximación que proporcionan los cálculos a través de un análisis de frecuencia, en particular cuando se utiliza con organismos tropicales (Pérez-González, 1995). Los resultados obtenidos por medio del citado programa proporcionan información relevante que por primera vez se presenta por sexos para P. gracilis.

Con respecto a la L_{∞} , los valores obtenidos son similares a las medidas máximas de LC observadas en los muestreos, aunque los organismos con mayores tallas actualmente son muy escasos, debido a que no se respetan las regulaciones pesqueras, en particular aquéllas que ocasionan que las tallas medias y máximas disminuyan, tales como la explotación de organismos por debajo de la talla mínima legal y de las hembras ovígeras. Sin embargo, Pérez-González (1986) y Wiedfeldt (1997) señalan una mayor abundancia de organismos con tallas medias cercanas a los valores de L∞ estimados en este trabajo y, aunque el primer autor no separó los sexos, indica valores cercanos a los de este estudio y señala que P. inflatus alcanza tallas más grandes y que, tanto en esta especie como en P. gracilis, los machos alcanzan tamaños mayores. Este último resultado también fue obtenido por Briones-Fourzán y Lozano-Álvarez (2003) para esas dos especies y es una característica general de las langostas espinosas (Morgan, 1980; Kanciruk,

1980; León et al., 1995; Wahle y Fogarty, 2006). Pérez-González (2003) reporta tallas mayores en la costa de Nayarit (L_{∞} medias de 120.0-140.0 mm de LC) que, aunque son más grandes que en la costa de Sinaloa, no alcanzan los tamaños de P. interruptus (190.0-200.0 mm de LC) en la costa occidental de la península de Baja California y de P. argus (L_{∞} = entre 178.0 y 289.0 mm de LC en los machos y de 139.4 a 209.0 mm en las hembras) en la costa del mar Caribe cubano y la península de Florida (Baisre, 2000).

Pérez-González (2003) y Juárez-Carrillo et al. (2006) señalan que las tallas medias más elevadas que alcanzan P. gracilis y inflatus en las costas de Nayarit y Jalisco relacionadas con el hecho que este recurso no es explotado con la misma intensidad que en Sinaloa, por lo que las poblaciones de ambas especies tienen períodos mayores para su crecimiento y su recuperación. Además, el primer autor indica que durante las capturas del recurso los pescadores regresan al mar organismos por debajo del peso mínimo legal permitido (300.0 g) y el período que utilizan a través del año para su pesca es menor que en las costas de Sinaloa, ya que, por un lado, en la zona centro de Nayarit las langostas son capturadas con redes cuando el turbia, agalleras solo agua está comportamiento de estos crustáceos y, por otro lado, en la parte sur de ese mismo estado el método de pesca es por buceo autónomo y únicamente se realiza cuando el aqua presenta buena visibilidad, aunado al hecho de que entre diciembre y abril el descenso de la temperatura del aqua impide que los buzos se dediquen a esta actividad.

La tasa de crecimiento mayor que se observa en los machos, en especial a partir de que alcanzan la madurez sexual, se debe a que las hembras utilizan una proporción mayor de energía después de que llegan a la etapa de madurez de la gónada para la producción, el acarreo y el cuidado de los huevecillos y para mantener movimientos constantes de los pleópodos para asegurar una buena oxigenación de la masa de huevecillos. En las hembras la maduración de los ovarios y los desoves inhiben el crecimiento (Zoetendyke, 1990; Tuck et al., 1997; Rosa y Nunez, 2002) y prolongan el período de intermuda, especialmente

en especies con desoves continuos que no necesariamente mudan entre los desoves (Quankenbush, 1994), tal como *P. gracilis* que puede producir de 4 a 5 desoves por año (Briones-Fourzán y Lozano-Álvarez, 1992; Pérez-González *et al.*, 1992b; Puga-López, 2004; Muñoz-Rojas, 2006).

En P. argus se ha encontrado que la tasa de crecimiento (K) puede ser mayor ya sea en los machos o en las hembras (de León, 1995). Por ejemplo valores superiores de K en las hembras han sido calculados por Lozano et al. (1991), Phillips et al. (1992) y León et al. (1995) o, por otro lado, valores más elevados de K en los machos que en las hembras han sido determinados por Clairovin (1980), Waugh (1980) y León et al. (1994). Las diferencias observadas por esos autores quizás fueron consecuencia de las frecuencias de tallas utilizadas. Sin embargo, lo más común es lo señalado por Kanciruck (1980) y León (1995), quienes afirman que los machos de P. argus (así como la mayoría de las especies de la familia Palinuridae) alcanzan mayor talla y más rápidamente que las hembras, debido a que éstas últimas requieren dividir su energía metabólica entre su crecimiento y la reproducción (Zoetendyke, 1990; Tuck et al., 1997; Rosa y Nunez, 2002). Sin embargo, Arzola-González (2001) encontró valores similares de 'K' para las hembras y los machos (entre 0.31 y 0.32), tanto para P. gracilis como para P. inflatus, en la misma región del presente estudio, pero durante 1995, 1996 y 1997. Posiblemente lo anterior se debió a las condiciones ambientales que prevalecieron durante esos años o a variables biológicas específicas, las cuales permitieron una tasa de crecimiento similar para ambos sexos. Entre estas variables podrían haber jugado un papel importante temperatura del agua y el fotoperíodo (véase Briones-Fourzán y Lozano-Álvarez, 2003).

El crecimiento de la langosta espinosa es una función de dos procesos: la frecuencia de la muda y el aumento en talla durante la muda. La temperatura es el factor extrínseco más importante que afecta la duración de la intermuda (Aiken, 1980; Hartnoll, 1982; Wahle y Fogarty, 2006). Por lo tanto, la manera en la cual la temperatura del agua influye en la tasa de crecimiento dependerá de cómo esta variable afecta al cambio de

talla durante la muda y el período de intermuda. El efecto general es que un aumento de la temperatura del agua acorta marcadamente el período de intermuda. Los estudios involucran el efecto de la temperatura sobre el crecimiento son de dos tipos. El primero relaciona las poblaciones que están geográficamente separadas y, por lo tanto, bajo diferentes regímenes de temperatura; el segundo involucra la respuesta de una población en particular. En el caso de este estudio le corresponde el segundo efecto, ya que se observó una variación de la tasa de crecimiento en la población de P. gracilis en relación a los cambios mensuales de la temperatura en un área determinada (sureste del Golfo de California).

Se observó que durante los meses fríos del año (diciembreabril, ver Fig. 6) la tasa de crecimiento disminuye; mientras que a partir de mayo, cuando empieza a aumentar marcadamente la temperatura del aqua, dicha tasa se incrementa. temperatura es el factor ambiental crustáceos, la importante que afecta el crecimiento, debido a que un aumento esta variable acorta marcadamente la duración intermuda, por lo que los organismos presentan mudas frecuentes y, consecuentemente, el crecimiento llega a ser más rápido en más altas temperaturas (Hartnoll, 1982, 2001; Hunt y Lyons, 1986; Forcucci et al., 1994). Panulirus gracilis es una especie de aquas tropicales, por lo tanto, las temperaturas medias de su hábitat son elevadas y su crecimiento es más acelerado, aunque no alcanza las tallas medias máximas de las especies que se encuentran en aguas templadas y frías. tallas pequeñas que alcanzan los organismos en aquas tropicales repercuten en su biomasa. En pesquerías son muy importantes los efectos de la temperatura sobre las tasas de crecimiento (incremento en biomasa), desarrollo (progresión a través de las etapas del ciclo de vida) y sobre el tamaño final del cuerpo, debido a que tienden a impulsar las actividades ecológicas esenciales de sobrevivencia, reproducción y movimiento (Begon et al., 2006). Las tasas de crecimiento y desarrollo juntas determinan el tamaño final de un organismo. temperatura media anual del agua es alta en el sur de Sinaloa, hay variación a través del año con valores elevados entre mayo y noviembre y bajos entre diciembre y abril, manifestándose en un mayor y menor crecimiento en *P. gracilis*, respectivamente.

Entre otros factores que afectan la tasa de crecimiento de las langostas espinosas, se puede destacar la estacionalidad (Munro, 1974; Davis, 1981; Hunt y Lyons, 1986; Forcucci et al., 1994; Briones-Fourzán y Lozano-Álvarez, 2003), los daños corporales (pérdida de apéndices o antenas) (Davis, 1981; Hunt y Lyons, 1986; Brown y Caputi, 1985), la disponibilidad de alimento y la densidad de langostas en relación al alimento disponible (Newman y Pollock, 1974; Chittleborough, 1976; Barkai y Branch, 1988; Pollock, 1986, 1991b; Edgar, 1990; Melville-Smith y Goosen, 1995; Lozano-Álvarez, 1996; Booth y Kittaka, 2000; Hazell et al., 2002; León et al., 2005).

Es importante señalar que muchos de los estudios que se han realizado en otras especies de palinúridos han carecido de datos acerca de las tallas más chicas (juveniles y subadultos), por lo que los cálculos de los parámetros de crecimiento han sido determinados con organismos adultos (tallas comerciales). En el presente estudio se abarcó la mayor parte de la población con individuos desde el intervalo de 25.0-30.0 mm de LC (juveniles) hasta 130.0-135.0 mm (adultos con las mayores), lo que sugiere que el amplio intervalo de tallas utilizado es adecuado para suponer que las estimaciones están dentro de un intervalo de talla confiable crustáceos. Sin embargo, es evidente que se tiene que continuar realizando estimaciones de los parámetros de crecimiento de P. gracilis para compararlos con este estudio, ya sea con el método usado en la presente investigación o con otros que impliquen tratamientos distintos, para así conseguir el modelo crecimiento adecuado, con más su consiguiente aplicación dentro de la regulación pesquera del recurso.

Reproducción

Los aspectos de la biología reproductiva tales como épocas de desove, talla de primera madurez sexual y fecundidad son parámetros biológicos claves que se utilizan para evaluar la producción de huevecillos y la aplicabilidad de tallas límites

en una pesquería y, por consiguiente, para un buen manejo del stock (Hodbay y Ryan, 1997; Quackenbush, 1994; Chubb, 2000; MacDiarmid y Sainte-Marie, 2006). En este estudio se incluye el análisis de la variación temporal de las fases sexuales en las hembras de *P. gracilis*.

Durante todo el período de estudio se observaron hembras en todas las fases sexuales, lo que indica que en cualquier época del año existen hembras en reposo y en actividad reproductiva. Sin embargo, se presentaron períodos con mayores proporciones de hembras en fase de reproducción. En general, P. gracilis presentó una mayor proporción de hembras reproductivas durante el verano y a principio del otoño (ver Tabla 19 y Fig. 42). Weinborn (1977) y Gregory et al. (1982) toman en cuenta también fase 2 (hembras parchadas) para definir el período de reproducción de P. gracilis y P. inflatus, y P. respectivamente. Al adicionar esta fase sexual como parte de la actividad reproductiva, los porcentajes de las hembras en dicha actividad aumentan (ver Tabla 20), aunque el comportamiento es similar que cuando no se incluye esta etapa (ver Fig. 43). Briones et al. (1981), Pérez-González (1986, 2003), Pérez-González et al. (1992b), Briones-Fourzán y Lozano-Álvarez (1992), Juárez-Carrillo et al. (2006) y Arzola-González et al. (2007) señalan la reproducción de P. gracilis y P. inflatus durante todo el año, con una mayor actividad de julio a octubre. Además, P. gracilis presenta otro pulso menor en la primavera.

El período de reproducción definido en este estudio se pudiera confirmar al comparar las proporciones de hembras ovígeras con las densidades temporales de las larvas filosomas en los primeros estadíos de desarrollo, obtenidas por Muñoz-García et al. (2000a, 2002, 2004), coincidiendo los meses de mayor abundancia de larvas con los mayores porcentajes de hembras con huevecillos. El período con más altas abundancias de larvas es un indicador de los desoves masivos de las langostas en el sur de Sinaloa. Sin embargo, durante el pulso detectado durante la primavera (altos porcentajes de hembras ovígeras de P. gracilis), no se observaron las altas densidades de larvas filosomas esperadas, lo cual posiblemente se debe a que, por un

lado, la eclosión de las larvas en esta época se lleva a cabo en otras zonas donde la temperatura es mayor o, por otro lado, que los cambios en las corrientes de agua las desplazan a zonas más oceánicas donde no se han realizado muestreos del zooplancton.

Aunado a lo anterior, la relación que existe entre la menor proporción de hembras y los valores elevados del factor de condición con los mayores porcentajes de hembras ovígeras confirman el período de mayor actividad reproductiva de P. gracilis durante el verano y parte del otoño. Se ha observado que durante la reproducción de las langostas se encuentran porcentajes de hembras muy bajos con respecto a la proporción de machos (Pérez-González et al., 1992b; Briones-Fourzán y Lozano-Álvarez, 1992; Salazar-Navarro, 2000; Arzola-González, 2001; Juárez-Carrillo et al., 2006; Arzola-González et al., 2007), debido a que las primeras son menos activas durante la incubación de los huevecillos, por lo que no están accesibles en las áreas de pesca o porque se desplazan hacia aquas más profundas (Dawson e Idyll, 1951; Davis, 1977; Lozano-Álvarez et al., 1991; Gregory y Labisky, 1986; Goñi et al., 2001; Freitas y Castro, 2005). Asimismo, los valores más elevados del factor de condición coinciden con el período de reproducción, tal y como lo señalan Quintero-Montoya (1999), Pérez-González (2003), Puga-López (2004) y Muñoz-Rojas (2006).

De acuerdo con los resultados anteriores y la comparación con otros análisis de los porcentajes de hembras ovígeras, de la abundancia de larvas filosomas, de la proporción de hembras y del factor de condición, se observa que el período de mayor actividad reproductiva coincide con la época de veda (julio-octubre) aplicada en la reglamentación actual para P. gracilis y P. inflatus; sin embargo, se recomienda efectuar monitoreos constantes y más intensos durante dicho período de veda, incluyendo la cuantificación de larvas filosomas, con la finalidad de ratificarlo o modificarlo, debido a que durante algunos años se ha encontrado que en julio más del 50.0% de las hembras aún no están en actividad reproductiva y que existe un alto porcentaje de hembras en la población (Pérez-González et

al., 1992b; Salazar-Navarro, 2000; Salazar-Navarro et al., 2003, Arzola-González et al., 2007).

- Talla de primera madurez sexual

La talla de primera madurez sexual (TMS) regularmente se estima en las hembras y para el caso de las langostas espinosas se realiza mediante observaciones externas o internas. En el presente estudio se tomaron en cuenta características visibles del desarrollo sexual, tales como los huevecillos con embriones en proceso de desarrollo en el abdómen y la presencia de espermatóforo en el esternum de las hembras.

La TMS, junto con otros parámetros tales como la talla media y la moda de LC, es determinante para definir la talla de primera captura (TPC). En este caso, la TMS de P. gracilis fue de 74.2 mm de LC; sin embargo, hay que tomar en cuenta que su estimación se obtuvo con el análisis de características externas que denotan a las hembras maduras sexualmente. Se ha observado que hay hembras que no muestran indicios de madurez sexual, pero al disectarlas las gónadas están completamente maduras. Por lo tanto, al analizar sólo las hembras ovígeras o con espermatóforo se puede sobre-estimar los cálculos de la TMS. Puga-López (2004) y Pérez-González (2003) determinaron la TMS por medio de análisis histológicos de la gónada de P. gracilis, encontrando una talla menor (71.8 mm de LC) a la observada en este estudio. Es importante señalar que dichos autores encontraron también una diferencia marcada en la talla registrada por ambos métodos para P. inflatus.

En la determinación de la TMS, es conveniente analizar un amplio intervalo de tallas con el objetivo de no tener sesgos en el cálculo de esta talla. Evans et al. (1995) sobrestimaron la TMS de P. guttatus (69.0 mm de LC) debido a que la mayoría de las hembras que analizaron se encontraban en actividad reproductiva. Sharp et al. (1997) calcularon una TMS más apropiada para esa misma especie (48.0 mm de LC) al examinar un intervalo de tallas más amplio. Para P. gracilis y P. inflatus, también se han presentado sesgos en la estimación de la TMS. Salazar-Navarro (2000) obtuvo una TMS sobrestimada para las dos

especies, pero sobre todo para *P. inflatus* (72.0 mm de LC), debido a que sus muestras carecieron de individuos pequeños y a que sus cálculos fueron realizados únicamente con hembras ovígeras. Robles-Cruz (2000) subestimó la TMS de *P. gracilis* (64.0 mm de LC) y de *P. inflatus* (62.0 mm de LC) porque sólo analizó la parte de la población juvenil y subadulta.

Para definir la talla de primera captura de P. gracilis en la región del sur de Sinaloa, es necesario considerar a la otra especie que co-existe con ella, ya que sus capturas y comercialización se realizan sin separarlas. Asimismo, estas especies alcanzan tallas máximas similares, incluyendo la media moda de sus poblaciones, y presentan patrones comportamiento semejantes por lo que, de acuerdo resultados de los estadísticos básicos, tallas y pesos máximos y la TMS, la talla de primera captura propuesta es de 70.0 mm de LC para las dos especies, la cual asegura un aprovechamiento alrededor del 50.0% de sus poblaciones y capturas de organismos ilegales de entre 10.0 y 28.0% para P. gracilis y P. inflatus, respectivamente. González-Moreno (2002) propone una talla de primera captura para P. inflatus de 70.0 mm de LC. Además, al realizar el análisis de la frecuencia acumulada del PT, se encontró que las capturas comerciales se dirigen hacia los ejemplares de la población con pesos medianos y las tallas más grandes y que al considerar 300.0 g como el peso de primera captura, el 45.0% de la población natural está por encima de ese peso y sólo alrededor del 11-12% de las capturas comerciales corresponde a organismos ilegales (ver Fig. 57b).

Por otro lado, cabe señalar la importancia de relacionar la relación PT-LC con la TMS, debido a que con las ecuaciones obtenidas (Tabla 5) así como con las gráficas por año y en conjunto los dos años 1990 y 1991 (Fig. 44), se puede calcular las tallas o pesos en los cuales los ejemplares de *P. gracilis* alcanzan la TMS. Para la zona del sur de Sinaloa, casi desde los inicios de la pesca del recurso langosta a fines de la década de 1950 e inicios de la de 1960, se maneja como peso mínimo de primera captura 300.0 g, el cual corresponde aproximadamente a tallas de entre 62.0 y 75.0 mm de LC.

En este contexto, también es fundamental anotar que estos crustáceos alcanzan la madurez sexual en tamaños muy pequeños. Se han reportado hembras ovígeras de *P. gracilis* y *P. inflatus* desde los 45.0 mm de LC (Weinborn, 1977). En otras especies del género *Panulirus* se han encontrado hembras ovígeras de tallas menores, como por ejemplo para *P. guttatus* (36.0 mm de LC; Chitty, 1973), *P. longipes longipes* (41.0 mm; Gómez et al., 1994), *P. inflatus* (44.8 mm; Arzola-González et al., 2007) y *P. penicillatus* (40.8-50.0 mm; Juinio, 1987; Plaut, 1993).

- Fecundidad

La fecundidad equivale al total de huevos producidos por una hembra o el número de huevos producidos de varios desoves por una hembra durante el período de reproducción. Para *P. gracilis* la producción anual de huevecillos correspondió al número de huevos producidos por una hembra en varios desoves.

Según este estudio, *Panulirus gracilis* presenta una elevada fecundidad. Los resultados obtenidos muestran que la hembra más pequeña no presentó la más baja fecundidad individual, así como tampoco la más grande tuvo la más elevada.

La fecundidad varía ampliamente entre las distintas especies y dentro de una misma especie es diferente según los intervalos de talla considerados. En este caso, se puede señalar que P. gracilis produce un número mayor de huevecillos que otras especies del mismo género, tales como P. interruptus, inflatus, P. argus y P. penicillatus para intervalos de tallas similares (60, 70 y 80 mm de LC) (Tabla 21). Además, esta comparación muestra también que el aumento de la fecundidad con el incremento relativo de la talla es mayor en P. gracilis que otras especies. Por ejemplo, una hembra P . penicillatus produciría adicionalmente 114,000 huevos con el incremento de la LC de 60 a 80 mm, mientras que un aumento similar en la LC de una hembra de P. gracilis produciría 376,270 huevos adicionales. Sin embargo, es importante señalar que las hembras de P. argus y P. interruptus alcanzan tallas medias más grandes que las de P. gracilis y P. inflatus; por ejemplo, *P. argus* en las costas mexicanas del Caribe empieza a reproducirse cuando las hembras alcanzan entre 75.0 y 80.0 mm de Lc (Fonseca-Larios y Briones-Fourzán, 1998); mientras que P. penicillatus comienza entre 55 (Plaut y Fishelson, 1991) y 62 mm de Lc (Ebert y Ford, 1986). Por otro lado, se aprecia también una variación en el número de huevos por intervalo de talla para *P. gracilis* entre los resultados de la presente investigación y los de Borrego et al. (1992) (véase Tabla 21). Posiblemente esto se debe al hecho de que estos autores analizaron únicamente 28 hembras ovígeras recolectadas durante un corto período, en una zona limitada de la bahía de Mazatlán, Sinaloa, la cual podría presentar condiciones diferentes tales como la disponibilidad de alimento, la densidad poblacional y la temperatura del agua.

La producción de huevos por desove de P. gracilis es elevada (Tabla 21). Además, la producción total anual se incrementa dos o cuatro veces más debido a que esta especie presenta 2-4 desoves durante cada ciclo de actividad reproductiva (Briones-Fourzán y Lozano-Álvarez, 1992). Chubb (2000) señala que dentro del mismo período de reproducción otras especies de langostas espinosas pueden producir uno o hasta cuatro desoves. ejemplo, todas la especies de Jasus tienen un solo desove durante la época de reproducción (Pollock, 1991), mientras que las hembras de P. homarus, P. inflatus y P. ornatus presentan de tres a cuatro desoves durante el período de reproducción 1971; MacFarlane y More, 1986; Briones-Fourzán y Lozano-Álvarez, 1992). La mayoría de los estudios de langostas palinúridas de aquas tropicales indican que los desoves repetitivos de las hembras son comunes, incluyendo 5 o más por año (Berry, 1971; MacDonald, 1979; Juinio, MacDiarmid, 1989; Briones-Fourzán y Lozano-Álvarez, Melville-Smith y de Lestang, 2005; Senthil-Murugan et al., 2005).

Panulirus gracilis habita en aguas someras (Pérez-González et al., 2002) y Pollock (1995) indica que una de las más importantes adaptaciones para sobrevivir en ambientes de aguas someras es incrementar la producción de huevos y hacer más eficiente la reproducción. La producción de huevos de las

especies de los géneros Jasus y Panulirus durante su vida es elevada en comparación con las especies del género Palinurus que habita en aguas más profundas (Pollock, 1997); aquellas especies han logrado desoves con elevado número de huevos en parte como consecuencia de la selección natural de tener huevos de tamaño más pequeño (Pollock, 1995).

En el presente estudio se encontró que la producción de huevos de P. gracilis es más alta durante el otoño, lo que coincide con la más elevada incidencia de hembras ovígeras (Pérez-González et al., 1992b; Briones-Fourzán y Lozano-Álvarez, 1992; Salazar-Navarro, 2000; Pérez-González, 2003) y las densidades los primeros estadíos de filosomas son también los más elevados durante esta época (Muñoz-García et al., 2000, 2002, 2004). Aramoni (1982) y Lozano-Álvarez y Aramoni-Serrano (1996) mencionan que la materia orgánica, el peso de los moluscos (principal componente de la dieta) y la densidad de langostas son más altos en otoño, lo cual indica que condiciones ambientales son óptimas en este período reproducción para P. gracilis. Sin embargo, Annala (1991) reporta que la fecundidad y la producción de huevos podrían ser afectadas por otros factores biológicos (por ejemplo, características del abdomen, mortalidad de los huevos, disponibilidad del alimento, etc.) y ambientales.

Gracia (1985) anota que las causas por la que la fecundidad se incrementa en P. inflatus podrían ser la diferencia del peso entre los especímenes recolectados en dos estaciones del año (primavera y otoño), las distintas temperaturas del aqua y los cambios en las corrientes marinas. Estos tres factores pueden sobre el comportamiento reproductivo Ρ. interactuar gracilis. Las altas temperaturas aumentan el metabolismo y, consecuentemente, facilitan el incremento del peso de organismos, ya que hay bastante alimento disponible. Lozano-Álvarez y Aramoni-Serrano (1996) indican que la materia orgánica y el peso de los moluscos se incrementan durante el verano y el otoño. Los moluscos constituyen uno de en principales componentes la dieta de las langostas, incluyendo a P. gracilis (Pérez-González et al., 2007), y su mayor abundancia aumenta la disponibilidad de alimento para estos crustáceos.

El número de huevos que eclosionan depende de la pérdida de huevos durante su período de incubación. La pérdida de huevos para P. gracilis se estimó en 7.9%, la cual es similar a la cifra obtenida por Gracia (1985) para P. inflatus (7.2%). Pérdidas de huevos entre 20 y 30% han sido observadas para P. P. inflatus por Pérez-González publicados). La pérdida de huevos en diferentes especies de decápodos ha sido relacionada con factores tales como pérdida de huevos que no se fertilizaron o que no pudieron adherirse a los pleópodos durante el desove, la presencia de huevos infértiles, la abrasión mecánica, la depredación y el parasitismo (Farmer, 1974; Kuris, 1991; Chubb, 2000; Tuck et MacDiarmid y 2000; Sainte-Marie, 2006). investigación se analizaron únicamente hembras ovígeras, por lo tanto, la posible pérdida de huevos en P. gracilis se debió a la abrasión mecánica, depredación o el parasitismo. La pérdida de huevos ha sido estimada en un 36% en Homarus americanus (Perkins, 1971), 44% durante la incubación en norvegicus (Fariña et al., 1999), 26% en Palinurus elephas (Goñi et al., 2003) y 10% por mes (6-10 meses de incubación) en N. norvegicus (Farmer, 1974); una pérdida de huevos muy pequeña ha sido observada durante el período de incubación en P. cygnus 1972). La pérdida de huevos es aproximadamente proporcional a la talla del organismo, entonces el número absoluto de huevos desovados podría ser usado para evaluar el potencial reproductivo relativo de distintos intervalos de tallas de las hembras de langostas espinosas y calcular índices anuales de la producción de huevos de la población (Chubb, 2000).

Cuando la distribución de tallas de la frecuencia anual de las hembras ovígeras es considerada, aproximadamente el 30% de la producción total de huevos en *P. gracilis* corresponde al intervalo de talla de 70 mm de LC; sin embargo, la más alta contribución relativa del total de huevos se encontró entre 65 y 80 mm de LC. Gracia (1985) concluye que en *P. inflatus* el intervalo de talla que contribuye con el más elevado porcentaje

(15%) del potencial reproductivo de la población se encuentra entre 68-70 mm de LC, el cual es similar para P. gracilis. Además, el mismo autor encontró que en P. inflatus las tallas que contribuyen con el más elevado número de huevos cambian en primavera (70-72 mm de LC) y otoño (74-76 mm de LC), aunque las clases por debajo de 78 mm de LC constituyen en las dos épocas entre 70 y 85% del potencial reproductivo de la población. Chubb (2000) indica que para no tener sesgos en los cálculos de la fecundidad en poblaciones de langostas tropicales que tienen varios desoves durante un amplio período de desove, se debe considerar las variaciones estacionales del número huevecillos desovados.

Captura, esfuerzo y captura por unidad de esfuerzo (CPUE)

La relación entre el esfuerzo y la captura durante temporadas de pesca 1989-90 y 1990-91 fue positiva (Fig. 65a), lo que sugiere que los pescadores aumentan su esfuerzo cuando langostas son más abundantes. Cuando la abundancia disminuye, cambian a otras actividades (Lozano-Álvarez, 1992; al., Pérez-González 1992b). Por experiencia et pescadores y observaciones propias se puede señalar también que durante la temporada de pesca las capturas más altas se obtienen cuando el aqua es turbia, lo cual se presenta durante y después de períodos de mal tiempo, el cual sin ser tan intenso como el que se puede encontrar en las épocas de veda, origina marejada por varios días que producen en las langostas un aumento en su actividad o que se muevan hacia la costa. En estos días es cuando el esfuerzo es mayor, debido a que se obtendrán buenas capturas. Por el contrario, durante los períodos de calma, las capturas son notablemente menores, por lo que los pescadores disminuyen el esfuerzo hasta que se a presentar marejadas originadas por tropicales durante el verano o por fuerte vientos del noroeste durante el otoño-invierno.

Es importante señalar que las altas capturas que se obtuvieron durante la época de veda, a pesar del mínimo esfuerzo aplicado, se deben a las condiciones meteorológicas que se presentan de julio a octubre (período de tormentas y huracanes; Anónimo,

1974, Salinas-Zavala et al., 1992) en las costas mexicanas del Pacífico, incluyendo la parte sur de Sinaloa. Estas condiciones provocan fuertes marejadas que coincidieron con los muestreos realizados durante la época de veda. En esta época, importante para la recuperación de la población interrumpirse el esfuerzo de pesca durante cuatro meses, se presenta un aumento en la actividad de las langostas, que probablemente tienden a agregarse. Por consiguiente, obtienen capturas mayores en sólo dos o tres embarcaciones. Esto coincide con el aumento de la captura por unidad de esfuerzo en comparación con lo observado durante la temporada de pesca (Tabla 32, fig. 64).

Baisre (2000) y Cruz y Phillips (2000) señalan que en la pesquería de la langosta P. argus en el archipiélago cubano resulta difícil obtener índices precisos del esfuerzo, por la diversidad de artes y técnicas de captura existentes. Esto también ocurre para la región del sur de Sinaloa donde, aunque se utilizan principalmente las redes de enmalle, las artes son muy variadas y construidas empíricamente por los pescadores sin regulación pesquera, por lo que tienen muchas ninguna deficiencias técnicas (Juárez-Rosales et al., 1994; Juárez-Rosales, 1995; Pérez-González et al., 2001, 2007). Por lo tanto, en este estudio se tomó el esfuerzo pesquero en número de embarcaciones por mes. Así, la captura por unidad de esfuerzo quedó como la captura en kg por embarcación/mes (Tabla varió entre 1.32 (diciembre de 1990) kg/embarcación/mes (septiembre de 1989). Estos resultados son similares a los obtenidos por Pérez-González et al. (1992a), Carrillo-Sandoval (2000), Valadez-Manzano et al. (2002) y Pérez-González (2003), manifestándose una relación directamente proporcional entre la captura, el esfuerzo y la CPUE, aunque al graficarlos o relacionarlos por separado, se observa una estrecha relación entre el esfuerzo y la captura, esto es, al aumentar uno de ellos se incrementa el otro (Fig. 65a). Lo anterior también es señalado por Lozano-Álvarez (1992) y Cruz y (2000). Dependiendo de la medida de esfuerzo seleccionada, la CPUE puede o no reflejar la abundancia de un recurso (MacCall, 1983; Hilborn y Walters, 1992).

Juárez-Rosales (1995) y Salazar-Navarro (2000) estandarizaron a la CPUE como la captura en gramos/(60 m² de la red)(hora)(por lance) y obtuvieron resultados entre 44.4 y 0.69 m²)(h)(lance) en el sur de Sinaloa, según las características de las redes. Ambos autores concluyen que las diferencias en su eficiencia de deben a los criterios de construcción que adoptan los pescadores, así como a los distintos materiales utilizados para su armado. Cabe señalar que la red de enmalle es un arte de pesca prohibido en la pesca de langosta; sin embargo, en la sur de Sinaloa ha sido utilizado de manera tradicional durante décadas con muy buenos resultados. A pesar de las deficiencias de las redes, los pescadores prefieren utilizarlas en lugar de las trampas de madera permitidas para explotación del recurso, argumentando que son eficientes e inoperantes en sus áreas de pesca que son de baja profundidad (0.5-30.0 m) y de alta energía. Además, las trampas son mucho más costosas. Esta experiencia adquirida por los pescadores de las costas de Sinaloa a lo largo de varias décadas también ha sido expresada en otras regiones del mundo que presentan condiciones fisiográficas e hidro-meteorológicas similares a las de las costas mexicanas del Pacífico y del golfo de California. En las costas europeas y norte de África del Atlántico, del mar Mediterráneo, de Brasil, Nicaragua, y Japón se utilizan las redes de enmalle como método de pesca en las pesquerías de langostas. Éstas han sido perfeccionadas sobre la base de estudios científicos, debido a que han demostrado que son altamente eficientes en aguas de baja profundidad y alta energía y tienen costos operacionales más bajos en viajes de pesca más cortos en aquas costeras donde pueden ser colocadas adecuadamente en el sustrato (Paiva et al., 1973; Fonteles-Filho, 2000; Ehrhardt, 2000; Ceccaldi y Latrouite, 2000; Nonaka et al., 2000; Goñi y Latrouite, 2005). Por lo tanto, en el sur de Sinaloa se deben probar redes que ya han sido recomendadas por Juárez-Rosales (1995) y Salazar-Navarro (2000) y otras más con el objetivo de estandarizar a estas artes de pesca y así mejorar el manejo del recurso y facilitar su evaluación con mejores cálculos de la CPUE. Esto facilitaría estimaciones posteriores del rendimiento máximo sostenible de la población de P. gracilis, junto con la de P. inflatus.

Tabla 21.- Comparación de la fecundidad media entre las especies de

Panulirus que habitan en aguas mexicnas, en relación con la
longitud del cefalotórax (LC.

Especie	LC (mm)			Autor
	60	70	80	
P. gracilis	242072	406767	618342	Este estudio
P. gracilis	295736	265638	411292	Borrego et al. (1992)
P. interruptus		221750	309900	Pineda <i>et al.</i> (1981)
P. inflatus	198158	287188	387631	Gracia (1985)
P. inflatus	170023	246181	421301	Borrego et al. (1992)
P. argus	120564	190000	280000	Cruz et al. (1987)
P. penicillatus	73000	121000	187000	Juinio (1987)

CONCLUSIONES

- 1. Los valores medios mensuales de la temperatura del agua mostraron un patrón bien definido con dos épocas bien marcadas: una cálida con 28.8-30.9°C en la superficie y 24.1-30.2°C en el fondo y otra fría con 17.9-27.8°C en la superficie y 17.9-27.6°C en el fondo. La salinidad presentó valores medios entre 34.0 y 35.0 ppm, con una disminución entre julio y octubre de 1990 tanto en la superficie como en el fondo, con mediciones por debajo de 34.0 ppm, en la superficie.
- 2. Con los resultados de las variaciones diurnas por época del año se observó que las temperaturas mayores se presentaron durante el verano, las intermedias en la primavera y el otoño y las menores en el invierno; las salinidades más elevadas se obtuvieron en la superficie del agua durante la primavera de 1989 (37.07-37.09 ppm) y en el fondo durante el verano de 1990 (38.02-39.19 ppm); mientras que en el caso de las concentraciones del oxígeno disuelto, se observó una mayor variación tanto entre las épocas del año como entre el día y la noche, con los valores más altos observados durante el invierno de 1989 (6.78 ml/l en la superficie y 6.22 ml/l en el fondo) y los menores durante la primavera de ambos años (0.87 ml/l en la superficie y 0.58 ml/l en el fondo en 1989; 1.91 ml/l en la superficie y 3.21 ml/l en el fondo en 1990).
- 3. Las relaciones entre LT-LC y AC-LC se ajustaron a ecuaciones lineales, mientras que PT-LC y PT-AC se ajustaron a ecuaciones potenciales con R² por encima de 0.88, tanto para los sexos juntos como por separado. Las pendientes de la relación PT-LC indican un crecimiento isométrico para los sexos juntos y para las hembras de *P. gracilis*.
- 4. El factor de condición varió mensualmente, mostrando un patrón temporal con los valores más elevados al final del verano y durante el otoño y los menores durante el resto

- del año, los cuales corresponden al período final de la primavera y al inicio del verano.
- 5. Las medias de la LC oscilaron entre 63.95 y 81.90 mm, excepto un valor de 87.39 mm en los machos durante mayo de 1989, con la mayoría de los ejemplares entre 70.0 y 75.0 mm. Las modas se encontraron entre 75.0 y 80.0 mm de LC, todas por debajo de la talla mínima de primera captura (82.5 mm de LC). La mayoría de los organismos capturados se encontró dentro del intervalo de tallas de 65-90 mm de LC.
- 6. La proporción de sexos presentó un comportamiento temporal definido. Los porcentajes de las hembras fueron menores que el de los machos durante el verano y el otoño y a partir del invierno su proporción aumentó gradualmente hasta principios de la primavera y nuevamente decrecer a fines de de esta época. La proporción de hembras y machos fue del 50% durante enero y junio de 1989 y cercano a ese mismo porcentaje durante diciembre de 1989, enero y febrero de 1990 y en diciembre y enero de 1990.
- 7. Los valores de L_{∞} y K fueron mayores en los machos, con medias de 135.0 mm de LC y 0.38, respectivamente; mientras que en las hembras fueron de de 128.0 mm y 0.33, reflejándose también en el P_{∞} , con valores medios de 1769.36 g para los machos y de 1706.96 g para las hembras. Además, se observó que la tasa de crecimiento (K) es mayor durante los meses cálidos (mayo-noviembre) cuando la temperatura del agua fue más elevada, y disminuyó durante los meses más fríos (diciembre-abril) cuando la temperatura del agua presentó los valores más bajos.
- 8. Para las hembras se determinaron cinco grupos de edad bien definidos durante el ciclo anual 1996-1997 y para los dos años 1996-1998 juntos, y cuatro para el ciclo 1997-1998; mientras que para los machos se observaron cuatro grupos de edad, tanto por ciclo anual como para los dos años juntos.

- 9. Durante el período de estudio se encontraron hembras en todas las fases sexuales, pero con una notoria mayor proporción de hembras ovígeras en el verano y al principio del otoño. Se observó una evidente menor proporción durante la primavera. Los mayores porcentajes de hembras se encontraron en la fase 1 y los menores en la 5. Cuando las hembras están en la mayor actividad reproductiva, de las fases que presentan huevecillos visibles (3-5) la que se encontró en menor proporción fue la 5, indicando que esta última etapa es la de menor duración.
- 10. El intervalo de tallas de las hembras maduras varió entre 54.0 y 100.0 mm de LC, con la mayoría de los organismos de 66.0 a 84.0 mm y alcanzando proporciones por encima del 50% a partir del intervalo de 70.0 mm y cercanas al 100% desde 78.0 mm.
- 11. La talla de primera madurez sexual fue de 74.6 mm de LC en 1990 y de 74.5 mm en 1990 y 1990-1991 cuando se consideró a las fases sexuales 2-6 como hembras maduras, y de 73.4 mm en 1990, 74.4 mm en 1990 y 74.2 mm en 1990-1991 cuando se consideraron a las fases 2-5 como hembras maduras. Combinando los resultados de las medias, las modas y de los intervalos de tallas en que se encontraron la mayoría de las hembras, así como comparando la talla de primera madurez sexual encontrada por otros autores a través de análisis histológicos tanto para P. gracilis como para P. inflatus, se propone una talla de primera captura de 70.0 mm de LC.
- 12. Con la talla de primera captura propuesta se capturaría menos del 10% de organismos ilegales en la captura comercial y se aprovecharía aproximadamente el 50% de la población.
- 13. El número de huevecillos por desove varió entre 76,727 para una hembra con 60.0 mm de LC (250 g de PT) a 1'115,060 para una hembra con 80.0 mm (510 g de PT). Al organismo más pequeño recolectado no le correspondió la menor fecundidad,

así como tampoco el ejemplar con mayor talla presentó la más elevada.

- 14. La fecundidad media varió en función de la época del año y se encontraron diferencias significativas entre las cuatro épocas (F= 3.876, g.l.= 3, 251, P<0.01), con el menor valor durante el invierno. Además, al analizar entre que épocas en particular existían esas diferencias significativas, éstas se presentaron entre las pendientes de las relaciones Fec-PT del otoño y el invierno (F= 11.477, g.l.= 1, 147, P=<0.01), con el valor de la pendiente más alto durante el otoño.
- 15. La captura (C), el esfuerzo pesquero (f) y la captura por unidad de esfuerzo (CPUE) fueron más elevados el inicio de cada temporada de pesca, disminuyeron entre diciembre y enero para nuevamente aumentar, pero en menor proporción que al comienzo de la temporada. La CPUE varió entre 1.32 y 12.72 kg/ embarcación/mes, con el mínimo en diciembre de 1990 y el máximo en septiembre de 1989.
- 16. La relación C-f presentó el mayor valor en el factor de determinación (R^2 = 0.4728), mientras que en las relaciones entre C- CPUE y CPUE-f el R^2 fue muy bajo, con valores de 0.1947 y -0.0401, respectivamente. Sin embargo, para C-CPUE se observó una relación directamente proporcional, es decir, que al aumentar la C también se incrementa la CPUE y viceversa.

LITERATURA CITADA

- Abundes-Velasco, M. E., 1981. Diagnosis de la pesquería de las langostas *Panulirus gracilis* y *P. inflatus*, en bahía de Zihuatanejo e Isla Ixtapa, Guerrero, México. Tesis de Licenciatura. Facultad de Ciencias, Universidad Nacional Autónoma de México.
- Aiken, D. E., 1980. Molting and growth. Pp. 91-163. *En*: Cobb, J. S. y B. F. Phillips (eds.). The biology and management of lobsters. Vol. I: Physiology and behavior. Academic Press, New York.
- Annala, J. H., 1991. Factors influencing fecundity and population egg production of *Jasus* species. Pp. 301-315. *En*: Wenner, A. y A. Kuris (eds.). Crustacean egg production. Balkema, Rotterdam/Brookfield.
- Annala, J. H. y B. L. Bycroft, 1987. Fecundity of the New Zealand rock lobster, *Jasus edwardsii*. *N. Z. J. Mar. Freshwater Res.*, 21: 445-455.
- Anónimo, 1974. Estudio geográfico de la región de Mazatlán, Sinaloa. Dir. Gral. Oceanogr. Señal. Marít. Sría de Marina.
- Anónimo, 2004. Anuario Estadístico de Pesca 2004. SAGARPA, México.
- Aragón-Noriega, E. A., 2007. Cupling the reproductive period of blue shrimp *Litopenaeus stylirostris* Stimpson, 1874 (Decapoda: Penaeidae) and sea surface temperature in the Gulf of California. *Rev. Biol. Mar. Oceanogr.*, 42(2): 167-175.
- Aramoni, G, P., 1982. Alimentación de las langostas *Panulirus inflatus* (Bouvier) y *P. gracilis* Streets en Zihuatanejo, Guerrero, y su relación con el bentos. Tesis de Licenciatura. Facultad de Ciencias, Universidad Nacional Autónoma de México.
- Arzola-González, J. F., 2001, Biometría y crecimiento de las langostas *Panulirus inflatus* (Bouvier, 1895) y *P. gracilis* Streets 1871, en el sur de Sinaloa. Tesis de Maestría. Facultad de Ciencias del Mar, Universidad Autónoma de Sinaloa.
- Arzola-González, J. F.; Flores-Campaña, L. M.; Ortiz-Arellano, M. A.; Gutiérrez-Rubio, Y. 2007: Captura y aspectos reproductivos de la pesquería de las langostas *Panulirus inflatus* y *P. gracilis* (Crustacea: Decapoda) en el sur de Sinaloa, México. *Ciencia y Mar, XI*(31): 15-22.
- Baisre, J. A., 2000. The Cuban spiny lobster fishery. Pp. 135-152. En: Phillips B. F. y J Kittaka (eds.). Spiny lobsters. Fisheries and culture. Second edition. Fishing News Books. London, UK.
- Barkai, A. y G. M. Branch, 1988. Energy requirements for a dense population of rock lobsters *Jasus lalandii*: novel importance of unorthodox food resources. *Mar. Ecol. Prog. Ser.*, 50: 83-96.

- Begon, M., C. R. Townsend y J. L. Harper, 2006. Ecology. From individuals to ecosystems. Fourth edition. Blackwell Publishing. Malden, MA, USA. 738 p.
- Bell, R. S., P. W. Channells, J. W. MacFarlane, R. Moore y B. F. Phillips, 1987. Movements and breeding of the ornate rock lobster, in Torres Strait and the northeast coast of Queensland. Aust. J. Mar. Freshwater Res., 38: 197-210.
- Berry, P. F., 1971. The biology of the spiny lobster *Panulirus homarus* (Linnaeus) off the east coast of southern Africa. Oceanographic Research Institute Investigational Report No. 28.
- Bertelsen, R. D. y T. R. Matthews, 2001. Fecundity dynamics of female spiny lobster (*Panulirus argus*) in a south Florida fishery and Dry Tortugas National Park lobster sanctuary. *Mar. Freshwater Res.*, 52: 1559-1565.
- Beyers, C. J. de B. y P. C. Goosen, 1987. Variations in fecundity and size at sexual maturity of female rock lobster *Jasus lalandii* in the Benguela ecosystem. *En*: Payne, A. I. L., J. A. Gulland y K. H. Brink (eds.). *S. Afr. J. Mar. Sci.*, 5: 513-521.
- Booth, J. D. y J. Kittaka, 2000. Spiny lobster growout. Pp. 556-585. *En*: B. F. Phillips y J. Kittaka (eds.). Spiny lobsters: fisheries and culture. Fishing News Books, Oxford.
- Borrego, M. I., G. García y H. Trillo, 1992. Algunos aspectos biológicos de las langostas *Panulirus inflatus* y *P. gracilis* en la Playa Sur, Mazatlán, Sinaloa, México. Tesis de Licenciatura. Escuela de Ciencias del Mar, Universidad Autónoma de Sinaloa.
- Bray, N. A. y J. M. Robles, 1991. Physical oceanography of the Gulf of California. Pp. 511-553. *En*: Dauphin, J. P. y B. R. T. Simoneit (eds.). The Gulf and Peninsular Province of the Californias. American Association of Petroleum Geologists, Memoir 47.
- Breen, P. A., 1994. Population dynamics and stock assessment of lobsters: a review. *Crustaceana*, 67(2): 239-255.
- Briones-Fourzán, P. y E. Álvarez-Lozano, 1992. Aspects of the reproduction of *Panulirus inflatus* (Bouvier) and *P. gracilis* Streets (Decapoda: Palinuridae) from the Pacific coast of Mexico. *J. Crust. Biol.*, 12: 41-50.
- Briones-Fourzán, P. y E. Lozano-Álvarez, 2003. Factors affecting growth of the spiny lobsters *Panulirus gracilis* and *Panulirus inflatus* (Decapoda: Palinuridae) in Guerrero, México. *Rev. Biol. Trop.*, 51(1): 165-174.
- Briones-Fourzán, P. y G. Contreras-Ortiz, 1999. Reproduction of the spiny lobster, *Panulirus guttatus* (Decapoda: Palinuridae), on the Caribbean coast of Mexico. *J. Crust. Biol.*, 19: 171-179.

- Briones, P., E. Lozano, A. Martínez y A. S. Cortés, 1981. Aspectos generales de la biología y pesca de las langostas en Zihuatanejo, Gro. México (Crustacea: Palinuridae). An. Inst. Cienc. del Mar y Limnol. Univ. Nal. Autón. México, 8(1): 79-101.
- Briones-Fourzán, P., E. Lozano-Álvarez y D. B. Eggleston, 2000. The use of artificial shelters (casitas) in research and harvesting of Caribbean spiny lobsters in Mexico. Pp. 420-446. En: Phillips B. F. y J Kittaka (eds.). Spiny lobsters. Fisheries and culture. Second edition. Fishing News Books. London, UK.
- Briones-Fourzán, P., V. Castañeda-Fernández-de-Lara, E. Lozano-Álvarez y J. Estrada-Olivo, 2003. Feeding ecology of the three juvenile phases of the spiny lobster *Panulirus argus* in a tropical reef lagoon. *Mar. Biol.*, 142: 855-865.
- Brown, R. S. y N. Caputi, 1985. Factors affecting the growth of undersize western rock lobster, *Panulirus cygnus* George, returned by fishermen to the sea. *Fish. Bull.*, 83: 567-574.
- Brusca, R. C., L. T. Findley, P. H. Hastings, M. E. Hendrickx, J. T. Cosio y A. M. van der Heiden, 2005. Macrofaunal diversity in the Gulf of California. Pp. 179-202. En: Cartorn, J. L. E., G. Ceballos y R. S. Felger (eds.). Biodiversity, ecosystems, and conservation in northern Mexico. Oxford University Press New York, U.S.A.
- Butler, M. J., IV, 2001. The 6th International Conference and Workshop on Lobster Biology and Management: an introduction. *Mar. Freshwater Res.*, 52: 1033-1035.
- Camacho-Montoya, C., M. C. Valdez-Pineda, R. Pérez-González y R. E. Rodríguez-Negrete, 2007. Moluscos en un área de crianza de las langostas *Panulirus inflatus* y *P. gracilis* (Decapoda: Palinuridae) en la bahía de Mazatlán, Sinaloa. Pp. 65-67. *En*: Estudios sobre la malacología y conquiliología en México. Rios-Jara, E., M. C. Esqueda-González y C. M. Galván-Villa (eds.). Universidad de Guadalajara. México.
- Caputi, N. y R. S. Brown, 1986. Prediction of recruitment in the western rock lobster (*Panulirus cygnus*) fishery based on indices of juvenile abundance. *Can. J. Fish. Aquat. Sci., 43*: 2131-2139.
- Caputi, N., R. S. Brown y C. F. Chubb, 1995a. Regional prediction of the western rock lobster (*Panulirus cygnus*) catch in western Australia. *Crustaceana*, 68: 227-237.
- Caputi, N., R. S. Brown y B. F. Phillips, 1995b. Prediction of catches of the western rock lobster (*Panulirus cygnus*) based on indices of puerulus and juvenile abundance. *ICES Mar. Sci. Symp.*, 199: 287-293.
- Carrillo-Sandoval, C. O., 2000. Captura, esfuerzo y análisis de la estructura poblacional en la pesquería de langosta

- Panulirus spp. White 1847 en el sur de Sinaloa, durante 1997-1999. Tesis de Licenciatura. Facultad de Ciencias del Mar, Universidad Autónoma de Sinaloa.
- Carrillo, L. E., M. F. Lavín y E. Palacios-Hernández, 2002. Seasonal evolution of the geostrophic circulation in the northern Gulf of California. *Est.*, *Coast. Shelf Sci.*, *54*: 154-173.
- Castañeda-Fernández-de-Lara, V., E. Serviere-Zaragoza, S. Hernández-Vázquez y M. J. Butler IV, 2005. Feeding ecology of juvenile lobster, *Panulirus interruptus*, on the Pacific coast of Baja California Sur, Mexico. N. Z. J. Mar. Freshwater Res., 39: 425-435.
- Castro-Aguirre, J. L., J. J. Schmitter-Soto, E. F. Balart y R. Torres-Orozco, 1993. Sobre la distribución geográfica de algunos peces bentónicos de la costa oeste de Baja California Sur, México, con consideraciones ecológicas y evolutivas. An. Esc. Nac. Cienc. Biol., Méx., 38: 75-102.
- Castro, R., M. F. Lavín y P. Ripa, 1994. Seasonal heat balance in the Gulf of California. *J. Geophys. Res.*, 99: 3249-3261.
- Ceccaldi, H. J. y D. Latrouite, 2000. The French fisheries for the European spiny lobster *Palinurus elephas*. Pp. 200-209. *En*: Phillips B. F. y J Kittaka (eds.). Spiny lobsters. Fisheries and culture. Second edition. Fishing News Books. London, UK.
- Chapa, H., 1964. Contribución al conocimiento de las langostas del Pacífico mexicano y sus pesquerías. Inst. Nal. Inv. Biol. y Pesq., Sría. Ind. y Com. 68 p.
- Chittleborough, R. G., 1975. Environmental factors affecting growth and survival of juvenile western rock lobster *Panulirus longipes* (Milne-Edwards). *Aust. J. Mar. Freshwater Res., 26*: 177-196.
- Chittleborough, R. G., 1976. Growth of juvenile western rock lobsters *Panulirus longipes cygnus* George on coastal reefs compared with those reared under optimal environmental conditions. *Aust. J. Mar. Freshwater Res.*, 27: 279-295.
- Chitty, N., 1973. Aspects of the reproductive biology of the spiny lobster *P. guttatus* Latreille. M. S. Thesis, University of Miami.
- Chubb, C. F., 1994. Reproductive biology: issues for management. Pp. 181-212. *En*: Phillips B. F., J. S. Cobb y J Kittaka (eds.). Spiny lobsters.Management. Fishing News Books. London, UK.
- Chubb, C. F., 2000. Reproductive biology: issues for management. Pp. 245-275. *En*: Phillips B. F. y J Kittaka (eds.). Spiny lobsters. Fisheries and culture. Second edition. Fishing News Books. London, UK.

- Clairovin, N., 1980. Contribution a l'etude du stock de langouste *Panulirus argus* en Martinique. *Science et Peche Bull. Peches Marit.*, 300: 7-18.
- Colinas-Sánchez, F. y P. Briones-Fourzán, 1990. Alimentación de las langostas *Panulirus argus* y *P. guttatus* (Latreille 1804) en el Caribe mexicano. *An. Inst. Cienc. del Mar y Limnol., Univ. Nal. Autón. México, 17: 89-109.*
- Cruz, R. y B. F. Phillips, 2000. The artificial shelters (pesqueros) used for the spiny lobster (panulirus argus) fisheries in Cuba. Pp. 400-419. *En*: Phillips B. F. y J Kittaka (eds.). Spiny lobsters. Fisheries and culture. Second edition. Fishing News Books. London, UK.
- Cruz, R. y M. E. León de, 1991. Dinámica reproductiva de la langosta (*Panulirus argus*) en el archipiélago cubano. *Rev. Invs. Mar.*, 12: 234-245.
- Cruz, R. y R. Adriano, 2001. Regional and seasonal prediction of the Caribbean lobster (*Panulirus argus*) commercial catch in Cuba. *Mar. Freshwater Res.*, 52: 1633-1640.
- Cruz, R., R. Coyula y A. T. Ramírez, 1981. Crecimiento y mortalidad de la langosta espinosa (*Panulirus argus*) en la plataforma suroccidental de Cuba. *Rev. Cubana Invs. Pesq.*, 6(4): 89-119.
- Cruz, R., León, M. E. de y R. Puga, 1995a. Prediction of commercial catches of the spiny lobster *Panulirus argus* in the Gulf of Batabanó, Cuba. *Crustaceana*, 68: 238-244.
- Cruz, R., León M. E. de y R. Puga, 1995b. Pronóstico de la captura de langosta (*Panulirus argus*) por regiones de pesca. *Rev. Cubana Invs. Pesq.*, 19(1): 51-58.
- Cruz, R., E. Díaz, M. Báez y R. Adriano, 2001. Variability in recruitment of multiple life stages of the Caribbean spiny lobster, *Panulirus argus*, in the Gulf of Batabanó, Cuba. *Mar. Freshwater Res.*, 52: 1263-1270.
- Cruz, R., Baisre, J. A., E. Díaz, R. Brito, C. García, W. Blanco and C. Carrodegas, 1987. Atlas biológico-pesquero de la langosta en el archipiélago cubano. La Habana, Cuba.
- Dall, W., 1974. Indices of nutritional state in the western rock lobster, *Panulirus longipes* (Milne-Edwards). I.- Blood and tissue constituents and water contents. *J. Exp. Mar. Biol. Ecol.*, 16: 167-180.
- Dall, W., 1975. Indices of nutritional state in the western rock lobster, *Panulirus longipes* (Milne-Edwards). II.- Gastric fluid constituents. *J. Exp. Mar. Biol. Ecol.*, 18: 1-18.
- Davis, G. E., 1977. Effects of recreational harvest on a spiny lobster *Panulirus argus* population. *Bull. Mar. Sci.*, 27(2): 223-236.

- Davis, G. E., 1981. Effect of injuries on spiny lobster, Panulirus argus, and implications for fishery management. Fish. Bull., 78: 979-984.
- Dawson, C. E., Jr., y C. P. Idyll, 1951. Investigations on the Florida spiny lobster, *Panulirus argus* Latreille. *Fla. State Bd. Conserv.*, *Tech. Ser.*, 2: 1-39.
- DeMartini, E. E., M. L. McCracken, R. B. Moffitt y J. A. Wetherall, 2005. Relative pleopod length as an indicator of size at sexual maturity in slipper (*Scyllarides squammosus*) and spiny Hawaiian (*Panulirus marginatus*) lobsters. *Fish. Bull.*, 103: 23-33.
- Ebert, T. A. y R. F. Ford, 1986. Population ecology and fishery potential of the spiny lobster *Panulirus penicillatus* at Enewetak Atoll, Marshall Islands. *Bull. Mar. Sci.*, 38: 56-67.
- Edgar, G. J., 1990. Predator-prey interaction in seagrass beds. I. The influence of macrofaunal abundance and size-structure on the diet and growth of the western rock lobster *Panulirus cygnus* George. J. Exp. Mar. Biol. Ecol., 139: 1-22.
- Ehrhardt, N. M., 2000. The Atlantic spiny lobster resources of Central America. Pp. 153-168. *En*: Phillips B. F. y J Kittaka (eds.). Spiny lobsters. Fisheries and culture. Second edition. Fishing News Books. London, UK.
- Elorza, A. y E. Dupre, 2000. Arquitectura del ovario de la langosta de Juan Fernández, Jasus frontalis. Invs. Mar., Valparaíso, 28: 175-194.
- Evans, C. R., A. P. M. Lockwood, A. J. Evans y E. Free, 1995. Field studies of the reproductive biology of the spiny lobsters *Panulirus argus* (Latreille) and *P. guttatus* (Latreille) at Bermuda. *J. Shellfish Res.*, 14: 371-381.
- FAO, 2004. Fishery statistics. Capture production 2003. FAO Yearbook, 94/1. FAO Rome.
- Fariña, A. C., J. Freire y E. González-Gurriarán, 1999. Fecundity of the Norway lobster *Nephrops norvegicus* in Galicia (NW Spain) and a review of geographical patterns. *Ophelia*, 50(3): 177-189.
- Farmer, A. S. D., 1974. Reproduction in *Nephrops norvegicus* (Decapoda: Nephropidae). *J. Zool.* (London), 174: 161-183.
- Flores-Campaña, L. M., R. Pérez-González y A. Nuñez-Pasten, 1993. La pesquería de las langostas *Panulirus inflatus* (Bouvier) y *P. gracilis* Streets en la costa sureste del golfo de California. Pp. 113-121. *En*: González-Cano, J. M. y R. Cruz-Izquierdo (eds.). La utilización de refugios artificiales en las pesquerías de langosta: sus implicaiones en la dinámica y manejo del recurso. Mem. Taller Binacional Progr. Colab. México-Cuba. Inst. Nal. de la Pesca/Centro Inv. Pesq., Cuba.
- Follesa, M. C., D. Cuccu, F. Bamele, A. Sabatini y A. Cau, 2003. Evaluations of *Palinurus elephas* (Fabri. 1787) growth

- with tagging-recapture experiments in Sardinian Seas. *Biol. Mar. Mediterranea*, 10: 253-256.
- Fonseca-Larios, M. E. y P. Briones-Fourzán, 1998. Fecundity of the spiny lobster *Panulirus argus* (Latreille, 1804) in the Caribbean coast of Mexico. *Bull. Mar. Sci.*, 63(1): 21-32.
- Fonteles-Filho, A. A., 2000. The state of the lobster fishery in north-east Brazil. Pp. 121-134. *En*: Phillips B. F. y J Kittaka (eds.). Spiny lobsters. Fisheries and culture. Second edition. Fishing News Books. London, UK.
- Forcucci, D., M. J. Butler IV y J. H. Hunt, 1994. Population dynamics of juvenile Caribbean spiny lobster, *Panulirus argus*, in Florida Bay, Florida. *Bull. Mar. Sci.*, 54: 805-818.
- Freitas, R. y M. Castro, 2005. Occurrence of *Panulirus argus* (Latreille, 1804) (Decapoda, Palinuridae) in the northwest Islands of the Cape Verde Archipelago (central-east Atlantic). *Crustaceana*, 78(10): 1191-1201.
- García, E., 1973. Modificaciones al sistema de clasificación climática de Kopen (adaptación a condiciones de la República Mexicana). Inst. de Geogr. Univ. Nal. Autón. México.
- García-Contreras, H. A., 2004. Índice de potencial reproductivo de la langosta *Panulirus gracilis* (Decapoda: Palinuridae) en la costa centro-sur de Nayarit. Tesis de Licenciatura. Facultad de Ciencias del Mar, Universidad Autónoma de Sinaloa.
- Garduño-Argueta, H., 1989. Algunos aspectos de la biología pesquera del camarón rojo *Penaeus brevirostris* (Kingsley, 1878) (Crustacea: Decapoda: Penaeidae) de la plataforma continental del sur de Sinaloa, México. Tesis de Doctorado. Instituto de Ciencias del Mar y Limnología, Universidad Nacional Autónoma de México.
- Garduño-Argueta, H. y A. Calderón-Pérez, 1995. Seasonal depth distribution of the crystal shrimp, *Penaeus brevirostris* (Crustacea, Decapoda, Penaeidae), and its possible relation to temperature y O_2 concentration off southern Sinaloa, Mexico. *Fish. Bull.*, 93(2): 397-402.
- Gayanilo, F. C., Jr., M. Soriano y D. Pauly, 1989. A draft guide to the Compleat ELEFAN. ICLARM, Manila, Philippines.
- Gomez, E. D., M. A. R. Juinio y N. A. Bermas, 1994. Reproduction of *Panulirus longipes longipes* in Calatagan, Batangas, Philippines. *Crustaceana*, 67(1): 110-120.
- González-Moreno, B. R., 2002. Madurez sexual durante la actividad reproductiva de la langosta *Panulirus inflatus* (Bouvier) en las costas de Sinaloa, México (1990-1991). Tesis de Licenciatura. Facultad de Ciencias del Mar, Universidad Autónoma de Sinaloa.
- Goñi, R. y D. Latrouite, 2005. Review of the biology, ecology and fisheries of *Palinurus* species of European waters:

- Palinurus elephas (Fabricius, 1787) and Palinurus mauritanicus (Gruvel, 1911). Cah. Biol. Mar., 46: 127-142.
- Goñi, R., A. Quetglas y O. Reñones, 2003. Size at maturity, fecundity and reproductive potential of a protected population of the spiny lobster *Palinurus elephas* (Fabricius, 1787) from the western Mediterranean. *Mar. Biol.*, 143: 583-592.
- Goñi, R., O. Reñones y A. Quetglas, 2001. Dynamics of a protected western Mediterranean population of the European spiny lobster *Palinurus elephas* (Fabricius, 1787) assessed by trap surveys. *Mar. Freshwater Res.*, 52: 1577-1587.
- Gracia, A., 1985. Variación estacional de la fecundidad de la langosta *Panulirus inflatus* (Bouvier, 1895) (Crustacea: Decapoda: Palinuridae). *Cienc. Mar.*, 2(1): 7-27.
- Gracia, A. y C. B. Kensler, 1980. Las langostas de México: su biología y pesquería. An. Inst. Cienc. del Mar y Limnol. Univ. Nal. Autón. México, 7(2): 111-127.
- Gregory, D. R. y R. F. Labisky, 1986. Movements of the spiny lobster *Panulirus argus* in south Florida. *Can. J. Fish. Aquat. Sci., 43*: 2228-2234.
- Gregory, D. R., Jr., R. F. Labisky y C. L. Combs, 1982. Reproductive dynamics of the spiny lobster *Panulirus argus* in South Florida. *Trans. A. Fish. Soc.*, 111: 575-584.
- Herguera-García, J. C., G. R. Bernal-Franco y A. Molina-Cruz, 2003. Decadal surface ocean variability in the lower Gulf of California: records for the past 300 years. *Geofís. Internac.*, 42: 397-406.
- Hartnoll, R. G., 1982. Growth. Pp. 111-196. En: Bliss, D. E. (ed.). The Biology of Crustacea. Vol. 2. Embryology, morphology, and genetics. Academic Press, New York.
- Hartnoll, R. G., 2001. Growth in Crustacea -twenty years on. *Hydrobiologia*, 449: 111-122.
- Hazell, R. W. A., D. S. Schoeman y M. N. Noffke, 2002. Do fluctuations in the somatic growth rate of rock lobster (*Jasus lalandii*) encompass all size classes. A re-assessment of juvenile growth. *Fish. Bull.*, 100(3): 510-518.
- Hendrickx, M. E., 1995a. Introducción. Pp. 1-7. En: W. Fischer, F. Krupp, W. Schneider, C. Sommer, K. E. Carpenter y V. H. Niem (eds.). Guía FAO para la identificación de especies para los fines de la pesca. Vol. I Plantas e invertebrados.
- Hendrickx, M. E., 1995b. Langostas (langostas espinosas, bogavantes, cigarras y zapateras, langostas de lodo, etc.).
 Pp. 383-415. En: W. Fischer, F. Krupp, W. Schneider, C. Sommer, K. E. Carpenter y V. H. Niem (eds.). Guía FAO para la identificación de especies para los fines de la pesca. Vol. I Plantas e invertebrados.
- Hendrickx, M. E., 2001. Occurrence of a continental slope deepwater decapod crustacean community along the edge of the

- minimum oxygen zone in the southeastern Gulf of California, Mexico. Belgian J. Zool., 131: 71-86.
- Hendrickx, M. E. y R. C. Brusca, 2003. Biodiversidad de los invertebrados marinos de Sinaloa. Pp. 141-163. *En*: Cifuentes-Lemus, J. L. y J. Gaxiola-López (eds.). Atlas de Sinaloa. Vol. XX. Colegio de Ciencias de Sinaloa, México.
- Hendrickx, M. E., A. M. van der Heiden y A. Toledano-Granados, 1984. Resultados de las campañas SIPCP (Sur de Sinaloa, México) a bordo del B/O 'El Puma'. Hidrología y composición de las capturas efectuadas en los arrastres. An. Inst. Cienc. del Mar y Limnol. Univ. Nal. Autón. México, 11(1): 107-122.
- Hendrickx, M. E., R. Pérez-González y L. M. Flores-Campaña, 1992. Identificación y colectas del cangrejo araña *Maiopsis panamensis* Faxon, 1895 (Brachyura: Majidae) en el Pacífico este tropical. *Ciencias del Mar*, 12: 31-34.
- Hepper, B. T., 1966. Measurement of carapace length and total length in the crawfish, *Panulirus vulgaris*. J. Cons. Perm. Int. Explor. Mer, 30(3): 316-323.
- Herrnkind, W. F., 1980. Spiny lobster: patterns of movement. Pp. 349-407. En: Cobb, J. S. y B. F. Phillips (eds.). The biology and management of lobsters. Vol. I: Physiology and behavior. Academic Press, New York.
- Herrnkind, W. F., 1985. Evolution and mechanisms of mass single-file migration in spiny lobster: synopsis. Contr. Mar. Sci. (Spec. Symp. Vol.), Univ. Texas, 27: 197-211.
- Hilborn, R. y C. J. Walters, 1992. Quantitative fisheries stock assessment. Chapman and Hall, Inc. USA.
- Hobday, D. K. y T. J. Ryan, 1997. Contrasting sizes at sexual maturity of southern rock lobsters (*Jasus edwardsii*) in the two Victorian fishing zones: implications for total egg production and management. *Mar. Freshwater Res.*, 48: 1009-1014.
- Hobday D. y Punt, A., 2001. Size-structured population modelling and risk assessment of the Victorian southern rock lobster, *Jasus edwardsii*, fishery. *Mar. Freshwater Res.*, 52: 1495-1507.
- Holthuis, L. B., 1991. FAO species catalogue. Marine lobsters of the world. An annotated and illustrated catalogue of species of interest to fisheries known to date. FAO Fisheries Synopsis, 13(125): 1-292.
- Holthuis, L. B. y A. Villalobos, 1961. *Panulirus gracilis* Streets y *P. inflatus* (Bouvier), dos especies de langostas (Crustacea: Decapoda) de la costa del Pacífico de América. *An. Inst. Biol. Univ. Nal. Autón. México*, 32 (1-2): 251-276.
- Hunt, J. H. y W. G. Lyons, 1986. Factors affecting growth and maturation of spiny lobsters, *Panulirus argus*, in the Florida Keys. *Can. J. Fish. Aquat. Sci.*, 43: 2243-2247.

- Juárez-Carrillo, E, E. Ríos-Jara, E. López-Uriarte, J. L. Gómez-Márquez y E. Espino-Barr, 2006. Biología y pesca de la langosta azul *Panulirus inflatus* en la costa central de Jalisco, México. Pp. 448-460. *En*: Jiménez-Quiroz M. C. y E. Espino-Barr (eds.). Los recursos pesqueros y acuícolas de Jalisco, Colima y Michoacán. SAGARPA/CRIP-Manzanillo, INP.
- Juárez-Rosales, J., 1995. Eficiencia y desarrollo tecnológico de las redes de enmalle para la pesca de la langosta en el sur de Sinaloa, México. Tesis de Maestría. Instituto Tecnológico del Mar, Secretaría de Educación Pública, México.
- Juárez-Rosales, J., L. M. Flores-Campaña y R. Pérez-González, 1994. La investigación tecnológica en la pesca artesanal: la pesquería de la langosta en el sur de Sinaloa. En: Resúmenes del I Congreso Nacional sobre la 'Situación actual y expectativas de desarrollo pesquero nacional'. Colegio de Profesionales de la Pesca, A. C., Nuevo Vallarta, Nayarit, México. 12-14 de mayo de 1994.
- Juinio, M. A., 1987. Some aspects of the reproduction of *Panulirus penicillatus* (Decapoda: Palinuriudae). *Bull. Mar. Sci.*, 41: 242-252.
- Kanciruk, P., 1980. Ecology of juvenile and adult Palinuridae (spiny lobster). Pp. 59-96. *En*: Cobb, J. S. y B. F. Phillips (eds.). The biology and management of lobster. Vol. II: Ecology and management. Academic Press. New York, U.S.A.
- Kanciruk, P. y W. F. Herrnkind, 1976. Autumnal reproduction in *P. argus* at Bimini, Bahamas. *Bull. Mar. Sci., 26*: 417-432.
- Kirubagaran, R., D. M. Peter, G. Dharani, N. V. Vinithkumar, G. Sreeraj y M. Ravindran, 2005. Changes in vertebrate-type steroids and 5-hydroxytryptamine during ovarian recrudescence in the Indian spiny lobster, *Panulirus homarus*. N. Z. J. Mar. Freshwater Res., 39: 527-537.
- Kuris, A. M., 1991. A review of patterns and causes of crustacean brood mortality. Pp. 117-141. En: Schram, E. R. (ed.). Crustacean egg production. Balkema, Rotterdam, The Netherlands.
- Lavín, M. F., R. Durazo, E. Palacios, M. L. Argote y L. Carrillo, 1997. Lagrangian observations of the circulation in the northern Gulf of California. *J. Phys. Oceanogr.*, 27: 2298-2305.
- León, M. E. de, R. Puga y R. Cruz, 1994. Estimación de los parámetros de crecimiento de *Panulirus argus* del golfo de Batabanó. *Rev. Cubana Invs. Pesq.*, 18(2): 3-8.
- León, M. E. de, R. Cruz y R. Puga, 1995. Actualización de la edad y el crecimiento de la langosta espinosa (*Panulirus argus*). Rev. Cubana Invs. Pesq., 19(1): 9-12.
- León, M. E. de, J. López-Martínez, D. Lluch-Cota, S. Hernández-Vázquez y R. Puga, 2005. Decadal variability in growth of the

- Caribbean spiny lobster *Panulirus argus* (Decapoda: Palinuridae) in Cuban waters. *Rev. Biol. Trop.*, 53(3-4): 475-486.
- Lipcius, R. N. y D. B. Eggleston, 2000. Ecology and fishery biology of spiny lobster. Pp. 1-41. En: B. F. Phillips y J. Kittaka (eds.). Spiny lobster: fisheries and culture. 2nd. edition. Fishing News Books, Oxford.
- Lluch-Cota, S. E., E. A. Aragón-Noriega, F. Arreguín-Sánchez, D. Aurioles-Gamboa, J. J. Bautista-Romero, R. C. Brusca, R. Cervantes-Duarte, R. Cortés-Altamirano, P. del Monte-Luna, A. Esquivel-Herrera, G. Fernández, M. E. Hendrickx, S. Hernández-Vázquez, H. Herrera-Cervantes, M. Kahru, M. Lavín, D. Lluch-Belda, D. B. Lluch-Cota, J. López-Martínez, S. G. Marinone, M. O. Nevárez-Martínez, S. Ortega-García, E. Palacios-Castro, A. Parés-Sierra, G. Ponce-Díaz, M. Ramírez-Rodríguez, C. A. Salinas-Zavala, R. A. Schwartzlose y A. P. Sierra-Beltrán, 2007. The Gulf of California: review of ecosystem status and sustainability challenges. *Progr. Oceanogr.*, 73: 1-26.
- Losada-Tosteson, V., J. M. Posada y F. Losada, 2001. Size and reproductive status of foshed spotted spiny lobster, *Panulirus guttatus*, in Morrocoy National Park, Venezuela: a preliminary report. *Mar. Freshwater Res.*, 52: 1599-1603.
- Lozano-Álvarez, E., 1992. Pesquería, dinámica poblacional y manejo de la langosta *Panulirus argus* (Latreille, 1804) en la bahía de la Ascensión, Q. R., México. Tesis de Doctorado. Facultad de Ciencias, Universidad Nacional Autónoma de México.
- Lozano-Álvarez, E., 1996. Ongrowing of juvenile spiny lobster, Panulirus argus (Latreille, 1804) (Decapoda: Palinuridae), in portable sea enclosures. Crustaceana, 69: 958-973.
- Lozano-Álvarez E. y G. Aramoni-Serrano, 1996. Alimentación y estado nutricional de las langostas *Panulirus inflatus* y *Panulirus gracilis* (Decapoda: Palinuridae) en Guerrero, México. *Rev. Biol. Trop.*, 44: 453-461.
- Lozano-Álvarez, E., P. Briones-Fourzán y B. F. Phillips, 1991. Fishery characteristics, growth, and movements of the spiny lobster *Panulirus argus* in Bahia de la Ascención, México. *Fish. Bull.*, 89: 79-89.
- Lozano-Álvarez, E., P. Briones-Fourzán, L. Santarelli y A. Gracia, 1982. Densidad poblacional de *Panulirus gracilis* Streets y *P. inflatus* (Bouvier) (Crustacea: Palinuridae) en dos áreas cercanas a Zihuatanejo, Gro., México. *Ciencia Pesquera*, *Inst. Nal. de la Pesca*, *Sría. de Pesca*, *México*, (3): 61-73.
- MacDiarmid, A. B., 1989. Size at onset of maturity and size-dependent reproductive output of female and male spiny lobsters Jasus edwardsii in northern New Zealand. J. Exp. Mar. Biol. Ecol., 127: 229-243.

- MacDiarmid, A. B. y B. Sainte-Marie, 2006. Reproduction. Pp. 45-77. En: Phillips, B. F. (ed.). Lobster: biology, management, aquaculture and fisheries. Blackwell Publishing, Ames, Iowa, USA.
- MacDonald, C. D., 1979. Management aspects of the biology of the spiny lobsters, *P. marginatus*, *P. penicillatus*, *P. versicolor* and *P. longipes* femoristriga in Hawaii and the western Pacific (Final Report). Western Pacific Regional Fishery Management Council Report.
- MacFarlane, J. W. y R. Moore, 1986. Reproduction of the ornate rock lobster, *Panulirus ornatus* (Fabricius), in Papua New Guinea. *Aust. J. Mar. Freshwater Res.*, 37: 55-65.
- Matthews, T. R., 2001. Trap-induced mortality of the spiny lobster, *Panulirus argus*, in Florida, USA. *Mar. Freshwater Res.*, 52: 1509-1516.
- Melville-Smith, R. y P. C. Goosen, 1995. The spiny lobster *Jasus lalandii* (H. Milne-Edwards, 1837) off the South African coast: inter-annual variability in male growth and female fecundity. *Crustaceana*, 68: 174-183.
- Melville-Smith, R. y S. de Lestang, 2005. Visual assessment of the reproductive condition of female western rock lobsters (Panulirus cygnus). N. Z. J. Mar. Freshwater Res., 39: 557-562.
- Melville-Smith, R., A. W. Thomson y N. Caputi, 2004. Improved forecasts of recreational western rock lobster (*Panulirus cygnus*) catches in western Australia, by predicting license usage. *Fish. Res.*, 68: 203-208.
- Minagawa, M., 1997. Reproductive cycle and size-dependent spawning of female spiny lobsters (*Panulirus japonicus*) off Oshima Island, Tokyo, Japan. *Mar. Freshwater Res.*, 48: 869-874.
- Minagawa, M. y M. Sano, 1997. Oogenesis and overian development cycle of the spiny lobster Panulirus japonicus (Decapoda: Palinuridae). *Mar. Freshwater Res., 48*: 875-887.
- Mohan, R., 1997. Size structure and reproductive variation of the spiny lobster *Panulirus homarus* over a relatively small geographic range along the Dhofar coast in the Sultanate of Oman. *Mar. Freshwater Res.*, 48: 1085-1091.
- Montgomery, S. S. y J. R. Craig, 2005. Distribution and abundance of recruits of the eastern rock lobster (*Jasus verreauxi*) along the coast of New South Wales, Australia. *N. Z. J. Mar. Freshwater Res.*, 39: 619-628.
- Morgan, C. R., 1972. Fecundity in the western rock lobster Panulirus longipes cygnus (George) (Crustacea: Decapoda: Palinuridae). Aust. J. Mar. Freshwater Res., 23: 133-141.

- Morgan, G. R., 1980. Population dynamics of spiny lobsters. Pp. 189-217. En: Cobb, J. S. y B. F. Phillips (eds.). The biology and management of lobsters, Vol. 2. Academic Press, New York.
- Munro, J. L., 1974. The biology, ecology, exploitation, and management of Caribbean reef fishes. Part V. 1. The biology, ecology and bionomics of Caribbean reef fishes: crustaceans (spiny lobsters and crabs). Univ. West Indies Zool. Dep. Res. Rep., 3: 1-57.
- Muñoz, I. R., 1992. Distribución y abundancia de larvas filosomas del género *Panulirus* spp. (Crustacea: Decapoda: Palinuridae) durante 1989 en la bahía de Mazatlán, Sinaloa, México. Tesis de Licenciatura. Facultad de Ciencias, Universidad Nacional Autónoma de México.
- Muñoz, I. R., 1997. Abundancia y dispersión de filosomas de *Panulirus* (Decapoda: Palinuridae) en 1989-1992, en la bahía de Mazatlán, Sinaloa. Tesis de Maestría. Facultad de Ciencias del Mar, Universidad Autónoma de Sinaloa.
- Muñoz, I. R., R. Pérez-González, L. M. Flores-Campaña y M. I. Borrego, 2000a. Distribución y abundancia de filosomas de *Panulirus* (Decapoda: Palinuridae) en el sureste del golfo de California, México. *Rev. Biol. Trop.*, 48(1): 157-165.
- Muñoz, I. R., R. Pérez-González, M. I. Borrego, L. M. Valadez y L. M. Flores, 2000b. Effect of moon phase on the abundance of phyllosoma of *Panulirus* White 1847 (Decapoda: Palinuridae) at Mazatlan Bay, Sinaloa, México. Pp. 61-62. *En*: Ríos-Jara, E., E. Juárez-Carrillo, M. Pérez-Peña, E. López-Uriarte, E. G. Robles-Jarero, D. U. Hernández-Becerril y M. Silva-Briano (eds.). Estudios sobre plankton en México y el Caribe. Sociedad Mexicana de Planctología y Universidad de Guadalajara.
- Muñoz-García, I. R., R. Pérez-González, L. M. Valadez-Manzano y M. I. Borrego, 2002. Patrones de distribución y abundancia de larvas filosomas de Panulirus spp. (Decapoda: Palinuridae) en el sur de Sinaloa (1989-1992). Proc. Third Binat Workshop Mexico-Cuba'97 on the Spiny Lobsters of America. Ciencias del Mar, UAS, 16: 6-12.
- Muñoz, I. R., A. Nuñez-Pasten, R. Pérez-González, M. I. Borrego y L. M. Valadez, 2004. Estado actual del conocimiento sobre larvas filosomas de *Panulirus inflatus y P. gracilis* en las costas mexicanas del Pacífico y en el golfo de California. Pp. 213-234. *En*: Hendrickx, M. (ed.). Contributions to the study of east Pacific crustaceans 3. Instituto de Ciencias del Mar y Limnología, Universidad Nacional Autónoma de México.
- Muñoz-Rojas, A., 2006. Análisis del desarrollo gonadal en la langosta verde *Panulirus gracilis* Streets 1871 (Decapoda: Palinuridae) en la costa centro-sur de Nayarit, México. Tesis

- de Licenciatura. Facultad de Ciencias del Mar, Universidad Autónoma de Sinaloa.
- Newman, G. G. y D. E. Pollock, 1974. Growth of the rock lobster *Jasus lalandii* and its relationship to benthos. *Mar. Biol.*, 24: 339-346.
- Nonaka, M. H. Fushimi y T. Yamakawa, 2000. The spiny lobster fishery in Japan and restocking. Pp.221-242. En: Phillips B. F. y J Kittaka (eds.). Spiny lobsters. Fisheries and culture. Second edition. Fishing News Books. London, UK.
- Ortega-Guzmán, L., 2004. Madurez gonádica de la langosta espinosa *Panulirus inflatus* (Decapoda: Palinuridae) en las costas de Nayarit. Tesis de Licenciatura. Facultad de Ciencias del Mar, Universidad Autónoma de Sinaloa.
- Padilla-Ramos, S. y P. Briones-Fourzán, 1997. Biological characteristics of the spiny lobsters (*Panulirus* spp.) from the commercial catch in Puerto Morelos, Quintana Roo, Mexico. *Cienc. Mar.*, 23(2): 175-193.
- Paiva, M. P., P. Alcántara-Filho, H. R. Matthews, A. L. L. Mesquita, C. T. C. Ivo y R. S. Costa, 1973. Pescarias experimentais de lagostas com redes-de-espera, no Estado do Ceará (Brasil). Arq. Cienc. Mar., 13: 121-134.
- Palacios-Hernández, E., E. Beier, M. F. Lavín y P. Ripa, 2002. The effect of the seasonal variation of stratification on the circulation of the northern Gulf of California. *J. Phys. Oceanogr.*, 32: 705-728.
- Pauly, D., 1983. Algunos métodos simples para la evaluación de recursos pesqueros tropicales. FAO Doc. Téc. Pesca, 234: 1-49.
- Pauly, D., 1984. Fish population dynamics in tropical waters: a manual for use with programmable calculators. ICLARM, Manila, Philippines.
- Pauly, D. y G. Gaschutz, 1979. A simple method for fitting oscillating length growth data, with a program for pocket calculators. I.C.E.S.C.M. 1979/G: 24. Demersal Fish. Cttee.
- Peraza-Vizcarra, R., 1986. Las playas y la deriva litoral de la arena en las playas de la costa sur de Sinaloa. Rev. Ciencias del Mar, UAS, 8: 50-52.
- Pérez-González, R., 1986. Aspectos generales de la biología y la pesquería de las langostas *Panulirus inflatus* y *P. gracilis* en la bahía de Mazatlán, Sinaloa, México. Tesis de Licenciatura. ENEP-Iztacala, Universidad Nacional Autónoma de México.
- Pérez-González, R., 1995. Crecimiento, alimentación y desarrollo gonadal de dos especies de peces demersales dominantes en la plataforma continental del sur de Sinaloa, México: *Prionotus stephanophrys* (Triglidae) y *Pomadasys panamensis* (Haemulidae). Tesis de Maestría. Instituto de

- Ciencias del Mar y Limnología, Universidad Nacional Autónoma de México.
- Pérez-González, R., 2002. Evaluación de la pesquería de langosta en Sinaloa para actualizar las medidas de regulación. Informe Final. Facultad de Ciencias del Mar, Universidad Autónoma de Sinaloa.
- Pérez-González, R., 2003. Diagnóstico y perspectivas de aprovechamiento del recurso langosta en la costa centro-sur de Nayarit. Informe Final. Facultad de Ciencias del Mar, Universidad Autónoma de Sinaloa/Secretaría de Desarrollo Rural, Gobierno del Estado de Nayarit.
- 2004. Pérez-González, R., Evaluación de la pesquería langosta en Sinaloa para actualizar las de regulación. Informe Técnico Final. Universidad Autónoma de Sinaloa.
- Pérez-González, R. y L. M. Flores-Campaña, 1996. Population structure of *Panulirus gracilis* and *P. inflatus* and its fishing regulation in the southeastern Gulf of California, Mexico. Abstracts of the Workshop 1996 Assessment of Tropical Crustacean Fisheries. EPOMEX, Univ. Autón. Campeche/University of Miami. Campeche, México. August 29-31, 1996.
- Pérez-González, R., C. Camacho-Montoya y M. C. Valdez-Pineda, 2007. Los moluscos en la dieta de juveniles de las langostas Panulirus inflatus y P. gracilis (Decapoda: Palinuridae). Pp. 77-79. En: Estudios sobre la malacología y conquiliología en México. Rios-Jara, E., M. C. Esqueda-González y C. M. Galván-Villa (eds.). Universidad de Guadalajara. México.
- Pérez-González, R., J. Juárez-Rosales y C. G. Torrescano-Castro, 2007. Eficiencia de las redes utilizadas en la pesca de langosta *Panulirus* spp. (Decapoda: Palinuridae) en la parte baja del golfo de California. Memorias del XII Congresso Latino-Americano de Ciências do Mar. Associação Brasileira de Oceanografía. Florianópolis, SC, Brasil. Abril 15-19 del 2007.
- Pérez-González, R., L. M. Flores-Campaña y A. Nuñez-Pasten, 1992a. Análisis de la distribución de tallas, captura y esfuerzo en la pesquería de las langostas *Panulirus inflatus* (Bouvier, 1895) y *P. gracilis* Streets 1871 (Decapoda: Palinuridae) en las costas de Sinaloa, México. *Proc. San Diego Soc. Natl His.*, 15: 1-5.
- Pérez-González, R., L. M. Flores-Campaña, A. Nuñez-Pasten y A. A. Ortega-Salas, 1992b. Algunos aspectos de la reproducción en *Panulirus inflatus* (Bouvier) y *P. gracilis* Streets (Decapoda: Palinuridae) en el sureste del golfo de California, México. *Inv. Mar. CICIMAR*, 7(1): 25-33.
- Pérez-González, R., L. M. Flores-Campaña, L. M. Valadez-Manzano y M. I. Borrego, 1997a. Analysis of *Panulirus inflatus* and *P.*

- gracilis lobster catches on the Mexican Pacific coast. Pp. 45-46. En: Abstracts of the Third Binational Workshop on the Spiny Lobster of America, México-Cuba'97. Mazatlán, México. 27-31 de octubre de 1997.
- Pérez-González, R., L. M. Flores-Campaña, M. A. Ortiz, J. F. Arzola, L. M. Valadez y M. I. Borrego, 1997b. Análisis de la estructura poblacional, biometría y actividad reproductiva de Panulirus inflatus y P. gracilis (Decapoda: Palinuridae) en el sur de Sinaloa. En: Flores-Campaña, L. M., R. Pérez-González y M. Hendrickx (coords.). Sección uno: Biología y pesquería, Cap. 1.1 Estrategía para la explotación y manejo de la pesquería de la langosta en el sur de Sinaloa. Informe Técnico Final abril 1994-marzo 1997. Consejo Nacional de Ciencia y tecnología (Proyecto 0948-N9111).
- Pérez-González, R., J. Juárez, C. Torrescano, L. Valadez, I. Muñoz y M. Borrego, 2001. Técnicas y tácticas utilizadas en la pesca de las langostas *Panulirus inflatus* and *P. gracilis* (Decapoda: Palinuridae) en el sureste del golfo de California. Memorias del Noveno Congreso Latinoamericano sobre Ciencias del Mar. San Andrés isla, Colombia. Septiembre 16-20 del 2001.
- Pérez-González, R., I. R. Muñoz-García, L. M. Valadez-Manzano y M. I. Borrego, 2002. The current status for the spiny lobsters *Panulirus inflatus y P. gracilis* in the Mexican Pacific coast. Pp. 227-347. *En*: Hendrickx, M. (ed.). Contributions to the study of east Pacific crustaceans 1. Instituto de Ciencias del Mar y Limnología, Universidad Nacional Autónoma de México.
- Perkins, H. C., 1971. Egg loss during incubation from offshore northern lobsters (Decapoda: Homaridae). Fish. Bull., 69: 451-453.
- Phillips, B. F., 1986. Predictions of commercial catches of western rock lobsters, *Panulirus cygnus* George. *Can. J. Fish. Aquat. Sci.*, 43: 2126-2130.
- Phillips, B. F. y R. Melville-Smith, 2005. Sustainability of the western rock lobster fishery: a review of past progress and future challenges. *Bull. Mar. Sci.*, 76(2): 484-500.
- Phillips, B. F. y R. Melville-Smith, 2006. *Panulirus* species. Pp. 359-384. *En*: Phillips, B. F. (ed.). Lobsters. Biology, management, aquaculture and fisheries. Blackwell Publishing, Ames, Iowa.
- Phillips, B. F., M. J. Palmer, R. Cruz y J. T. Trendall, 1992. Estimating growth of the spiny lobsters *Panulirus cygnus*, *P. argus* and *P. ornatus*. *Aust. J. Mar. Freshwater Res.*, 43: 1177-1188.
- Phillips, B. F., R. Cruz, N. Caputi y R. S. Brown, 2000. Predicting the catch of spiny lobster fisheries. Pp. 357-375. En: B. F. Phillips y J. Kittaka (eds.). Spiny lobsters: fisheries and culture. Fishing News Books, Oxford.

- Phillips, B. F., Y. W. Cheng, C. Cox, J. Hunt, N. K. Jue y R. Melville-Smith, 2005. Comparison of catches on two types of collector of recently settled stages of the spiny lobster (Panulirus argus), Florida, United States. N. Z. J. Mar. Freshwater Res., 39: 715-722.
- Pianka, E., 1982. Ecología evolutiva. Omega. Barcelona.
- Pineda, J., A. J. Díaz de León y F. Uribe. 1981. Fecundidad de la langosta roja *Panulirus interruptus* (Randall, 1842) en Baja California. *Ciencia Pesquera. Inst. Nal Pesca. Depto. Pesca, México I*(1): 99-118.
- Pitcher, T. J. y P. J. B. Hart, 1982. Fisheries ecology. Croom Helm, London.
- Pitcher, C. R., T. D. Skewes y D. M. Dennis, 1992. Research for management of the ornate rock lobster, *Panulirus ornatus*, fishery in Torres Strait. Report on CSIRO research, 1987-1990. CSIRO, Australia.
- Plascencia-González, H. G., 1993. Contribución al conocimiento de las comunidades de peces asociados a los fondos blandos de la plataforma continental del sur de Sinaloa (Proyecto SIPCO). Tesis de Licenciatura. Facultad de Ciencias, Universidad Nacional Autónoma de México.
- Plaut, I., 1993. Sexual maturity, reproductive season and fecundity of the spiny lobster *Panulirus penicillatus* from the Gulf of Eilat (Aqaba), Red Sea. *Aust. J. Mar. Freshwater Sci.*, 44: 527-535.
- Plaut, I. y L. Fishelson, 1991. Population structure and growth in captivity of the spiny lobster *Panulirus penicillatus* from Dahab, Gulf of Aqaba, Red Sea. *Mar. Biol.*, 111: 467-472.
- Pollock, D. E., 1986. Review of the fishery for and biology of the Cape rock lobster *Jasus lalandii* with notes on larval recruitment. *Can. J. Fish. Aquat. Sci.*, 43: 2107-2117.
- Pollock, D. E., 1991a. Spiny lobsters at Tristan da Cunha, South Atlantic: inter-island variations in growth and population structure. S. Afr. J. Mar. Sci., 10: 1-12.
- Pollock, D. Ε., 1991b. Population regulation and stockin crayfish and recruitment relationship some lobster population. Pp. 247-66. En: Wenner, A. y A Kuris (eds.). Crustacean Issues 7. Crustacean Egg Production. Balkema, Rotterdam/Brookfield.
- Pollock, D. E., 1995. Changes in maturation ages and sizes in crustacean and fish populations. S. Afr. J. Mar. Sci., 15: 99-103.
- Pollock, D. E., 1997. Egg production and life history strategies in some clawed and spiny lobster populations. *Bull. Mar. Sci.*, 61: 97-109.

- Pollock, D. E. y P. C. Goosen, 1991. Reproductive dynamics of two *Jasus* species in the south Atlantic region. *S. Afr. J. Mar. Sci.*, 10: 141-147.
- Polovina, J. J., 1989. Density dependence in spiny lobster, Panulirus marginatus, in the northwestern Hawaiian islands. Can. J. Fish. Aquat. Sci., 46(4): 660-665.
- Puga-López, D., 1999. Asentamiento de larvas puerulos y postpuerulos de las langostas *Panulirus* spp. en las Tres Islas de la bahía de Mazatlán, Sinaloa. Tesis de Licenciatura. Facultad de Ciencias del Mar, Universidad Autónoma de Sinaloa.
- Puga-López, D., 2004. Análisis de la madurez gonádica, desarrollo embrionario y desove en cautiverio de las langostas espinosas *Panulirus inflatus* (Bouvier, 1895) y *Panulirus gracilis* Streets, 1871. Tesis de Maestría. Departamento de Investigaciones Científicas y Tecnológicas, Universidad de Sonora.
- Quackenbush, L. S., 1994. Lobster reproduction: a review. Crustaceana, 67: 82-94.
- Quintero-Montoya, R., 1999. Estructura de la población y crecimiento de las langostas *Panulirus inflatus* (Bouvier) y *P. gracilis* Streets en las costas de Sinaloa. Tesis de Licenciatura. Facultad de Ciencias del Mar, Universidad Autónoma de Sinaloa.
- Ricker, W. E., 1975. Computation and interpretation of biological statistics of fish populations. *Bull. Fish. Res. Bd. Canada*, 191: 1-382.
- Ripa, P., 1997. Towards a physical explanation of the seasonal dynamics and thermodynamics of the Gulf of California. *J. Phys. Oceanogr.*, 2: 177-183.
- Robertson, D. N. y M. J. Butler, 2003. Growth and size at maturity in the spotted spiny lobster, *Panulirus gutattus. J. Crust. Biol.*, 23(2): 265-272.
- Robles-Cruz, G., 2000. Estructura de la población de juveniles y su incidencia en la pesquería de las langostas *Panulirus inflatus* (Bouvier) y *P. gracilis* Streets en el sur de Sinaloa. Tesis de Licenciatura. Facultad de Ciencias del Mar, Universidad Autónoma de Sinaloa.
- Roden, G. I. y G. W. Groves, 1959. Recent oceanographic investigations in the Gulf of California. *J. Mar. Res.*, 18(1): 10-35.
- Rosa, R. y M. L. Nunes, 2002. Changes in the organ indices and lipid dynamics during the reproductive cycle of Aristeus antennatus, Parapaenaeus longirostris y Nephrops norvegicus (Decapoda) from the Portuguese south coast. Crustaceana, 75: 1095-1105.
- Salazar-Navarro, I., 2000. Estructura poblacional y eficiencia de las redes de enmalle utilizadas para la captura de langosta

- (*Panulirus inflatus* y *P. gracilis*) en las costas del sur de Sinaloa, México. Tesis de Maestría. Facultad de Ciencias del Mar, Universidad Autónoma de Sinaloa.
- Salazar-Navarro, I., V. Macías, J, Singh, A. Ramos, J. A. Virgen y L. E. Esparza, 2003. La pesquería ribereña de langosta *Panulirus inflatus* y *P. gracilis* en las costas de Sinaloa, México. Memorias del II Foro Estatal de Ciencia y Tecnología. Sinaloa, competitividad para el desarrollo sustentable. Gobierno de Sinaloa/Consejo Estatal de Ciencia y Tecnología. Culiacán, Sinaloa. Noviembre 21 y 22 del 2003.
- Salinas-Zavala, C. A., D. B. Lluch-Cota, S. Hernández-Vázquez y D. Lluch-Cota, 1992. Anomalías de precipitación en Baja California Sur durante 1990: posibles causas. *Atmósfera*, 5: 79-93.
- Senthil Murugan, T., M. C. Remany, T Mary Leema, J. Dilip Kumar, J. Santhanakumar, M. Vijayakumaran, R. Venkatesan y M. Ravindran, 2005. Growth, repetitive breeding, and aquaculture potential of the spiny lobster, *Panulirus ornatus*. N. Z. J. Mar. Freshwater Res., 39: 311-316.
- Sharp, W., J. Hunt y W. Lyons, 1997. Life history of the spotted spiny lobster, *Panulirus guttatus*, an obligate reefdweller. *Mar. Freshwater Res.*, 48: 687-698.
- Sparre, P. y S. V. Venema, 1995. Introducción a la evaluación de recursos pesqueros tropicales. Parte I. FAO Fishery Technical Paper, No. 306/1.
- Stewart, J. E., J. W. Cornick, D. M. Foley, M. F. Li y C. M. Bishop, 1967. Muscle weight relationship to serum proteins, hemocytes, and hepatopancreas in the lobster *Homarus americanus*. J. Fish. Res. Bd. Canada, 24: 2339-2354.
- Suárez, J. M., 1995. Análisis de la pesquería de langostas espinosas *Panulirus inflatus* (Bouvier, 1895) y *P gracilis* Streets 1871 (Crustacea: Decapoda: Palinuridae) en el sureste del golfo de California. Tesis de Licenciatura. Facultad de Ciencias del Mar, Universidad Autónoma de Sinaloa.
- Torrescano, C. G. y H. Leyva, 1996. Eficiencia en redes de enmalle y nasas para la pesca de langosta *Panulirus* White 1847, en el sur de Sinaloa, México. Tesis de Licenciatura. Facultad de Ciencias del Mar, Universidad Autónoma de Sinaloa.
- Tremblay, M. J. y S. J. Smith, 2001. Lobster (Homarus americanus) catchability in different habitats in late spring and early fall. Mar. Freshwater Res., 52: 1321-1331.
- Tuck, I. D., C. J. Chapman y R. J. A. Atkinson, 1997. Population biology of the Norway lobster, *Nephrops norvegicus* (L.) in the Firth of Clyde, Scotland I: growth and density. *ICES J. Mar. Sci.*, 54: 125-135.
- Tuck, I. D., R. J. A. Atkinson y C. J. Chapman, 2000. Population biology of the Norway lobster, *Nephrops norvegicus*

- (L.) in the Firth of Clyde, Scotland. II. Fecundity and size at onset of sexual maturity. *ICES J. Mar. Sci*, 57: 1227-1239.
- Valadez-Manzano, L. M., J. F. Arzola-González y R. Pérez-González, 2002. Captura, esfuerzo y captura por unidad de esfuerzo en la pesquería de langosta (Panulirus spp.) en el sur de Sinaloa, México. Proc. Third Binat. Workshop Mexico-Cuba'97 on the Spiny Lobsters of America. Ciencias del Mar, UAS, 16: 1-6.
- Valadez-Manzano, L. M., R. Pérez-González y A. Flores-Reyes, 2003. Length and weight distributions of *Panulirus inflatus* and *P. gracilis* (Decapoda: Palinuridae) in the lower portion of Gulf of California. *Nauplius*, 11(2): 107-113.
- Vega, A., 1991. Reproductive pattern of the spiny lobster (*Panulirus interruptus* Randall 1840) on the west coast of the Baja California Peninsula and the variations of it in space and time in relation to the regulation of the exploitation of it (closed season). Sría. Pesca, Inst. Nal. Pesca, CRIP La Paz. Internal Document.
- Vega-Velázquez, A., 1993. Selectividad y eficiencia de la pesca de langosta (Panulirus spp.) con trampas y resultados preliminares de pesca experimental con pesqueros levables en el oeste de Baja California Sur. Pp. 122-132. En: González-Cano, J. M. y R. Cruz-Izquierdo (eds.). La utilización de refugios artificiales en las pesquerías de langosta: sus implicaciones en la dinámica y manejo del recurso. Mem. Taller Binacional Progr. Colab. México-Cuba. Inst. Nal. Pesca/Centro Inv. Pesq., Cuba.
- Vega-Velázquez, A., 2003. Reproductive strategies of the spiny lobster *Panulirus interruptus* related to the marine environmental variability off central Baja California, Mexico: management implications. *Fish. Res.* 65: 123-135.
- Villareal-Flores, D., 1989. Estudio de la distribución y abundancia de postlarvas de *Penaeus* (Crustacea: Decapoda: Penaeidae) en la plataforma continental del estado de Sinaloa, México. Tesis de Licenciatura. Facultad de Ciencias Biológicas, Universidad Autónoma de Nuevo León.
- Vizcarra-Reyes, A. I., 2005. Variación estacional de la fecundidad de la langosta espinosa *Panulirus gracilis* Streets en el litoral centro-sur de Nayarit, México. Tesis de Licenciatura. Facultad de Ciencias del Mar, Universidad Autónoma de Sinaloa.
- Wahle, R. A. y M. J. Fogarty, 2006. Growth and development: understanding and modelling growth variability in lobsters. Pp. 1-44. En: Phillips, B. F. (ed.). Lobster: biology, management, aquaculture and fisheries. Blackwell Publishing, Ames, Iowa, USA.

- Waugh, G. T., 1980. Population dynamics of juvenile spiny lobster, *Panulirus argus*. Thesis Faculty of the University of Miami.
- Weinborn, J. A., 1977. Estudio preliminar de la biología y semicultivo de los Palinúridos de Zihuatanejo, Gro., México. Panulirus gracilis Streets y Panulirus inflatus (Bouvier). An. Centro Cienc. Del Mar y Limnol. Univ. Nal. Autón. Meéxico, 4(1): 27-77.
- Wiedfeldt, T. J., 1997. Características hidrológicas (temperatura, salinidad y turbidez) de la bahía de Mazatlán de mayo a septiembre de 1997 y estructura poblacional de Panulirus inflatus (Bouvier, 1895) y P. gracilis Streets 1871 durante marzo a octubre de 1977. Tesis de Licenciatura. Centro Interdisciplinario de Ciencias Marinas, Instituto Politécnico Nacional.
- Wright, I., N. Caputi y J. Penn, 2006. Depletion based population estimates for western rock lobster fishery. N. Z. J. Mar. Freshwater Res., 40: 107-122.
- Zamudio, L., H. E. Hurlburt, E. J. Metzger y C. E. Tilburg, 2007. Tropical wave-induced oceanic eddies at Cabo Corrientes and the María Islands, Mexico. *J. Geophys. Res.*, 112: 1-17.
- Zar, J. H., 1999. Biostatistical analysis. Fourth edition. Prentice Hall. New Jersey, USA.
- Ziegler, P. E., S. D. Frusher, C. R. Johnson y C. Gardner, 2002. Catchability of the southern rock lobster *Jasus edwardsii*. I. effects of sex, season and catch history. *Mar. Freshwater Res.*, 53: 1143-1148.
- Zoetendyke, P., 1990. Gonad output in terms of carbon and nitrogen by the cape lobster *Jasus edwardsii* (H. Milne-Edwards, 1837) (Decapoda, Palinuridae). *Crustaceana*, 59: 180-192.

Apéndices

Apéndice A.- Especies de langostas espinosas (*Panulirus*) que se encuentran en las costas de México. (Holthius, 1991; Hendrickx, 1995).

Especie	Distribución	Hábitat	Pesca		
P. interruptus	De Bahía San Luis Obispo, California, EUA, a la costa occidental de Baja California, México.	Zonas rocosas circumlitorales (hasta 70 m de profundidad).	Especie con las mayor producción, por lo que es la más importante comercialmente.		
P. gracilis	De la parte media del golfo de California a Paita, Perú.	Áreas con fondos de tipo mixto (grava- arena), entre 8-35 m de profundidad.	de enmalle a lo largo		
P. inflatus	Desde Bahía Magdalena en la costa occidental de Baja California Sur hasta Oaxaca.	Preferentemente habita fondos rocosos, desde aguas someras hasta 25-30 m de profundidad.	Se captura con redes de enmalle y buceo.		
P. penicillatus	Océanos Índico y Pacífico occidental; y algunas islas de la costa occidental de América (Clipperton y Cocos, archipiélagos Revillagigedo y Galápagos). En México incluye algunas localidades cercanas a la costa continental de Sinaloa, Nayarit y Guerrero.	circumlitorales y en	En su distribución indo- pacífico occidental representa una pesquería, pero en el Pacífico centro-oriental su abundancia es baja, por lo que no tiene importancia comercial. En México solo algunos ejemplares se capturan anualmente.		

Apéndice A.- continuación...

Especie	Distribución	Hábitat	Pesca			
P. argus	Desde Carolina del Norte, EUA, a Brasil, incluyendo el Golfo de México y Mar Caribe.	Habita aguas someras, entre rocas, arrecifes y pastos marinos.	Es la especie palinúrida más importante comercialmente en aguas americanas. En México se pesca por buceo y ocupa el segundo lugar en producción.			
P. guttatus	Parte central del Atlántico occidental. En México se capturan pocos organismos en las costas de Quintana Roo.	Áreas rocosas someras, principalmente en grietas.	No existe una pesquería (se capturan algunos ejemplares con <i>P. argus</i>)			
P. laevicauda	Atlántico occidental: Bermuda y Florida hasta Brasil, incluyendo Yucatán, Quintana Roo y el Mar Caribe.	Aguas costeras con con fondo rocoso o con corales.	Se captura a lo largo de su distribución, pero no hay una pesquería particular (se capturan pocos ejemplares con <i>P. argus</i>).			

APÉNDICE B.- Valores de las variables hidrológicas registradas durante las variaciones diurnas, en la estación 1 de muestreo (zona representativa donde habita *Panulirus gracilis*). Los valores se presentan por época del año en 1989 en la bahía de Mazatlán, Sinaloa. Se indica la profundidad de muestreo. (PROF, profundidad; AMB, ambiental; SUP, superficie; FON, fondo).

			TEMP	ERATURA	(°C)	SALINID	AD (%)	OXÍGENO	(ml/l)
FECHA	HORA	PROF (m)	AMB	SUP	FON	SUP	FON	SUP	FON
				ΙN	VIER	N O			
ISLA LO	BOS (ESI	CACIÓN 1)							
28/FEB/89	09:23	16.5	24.5	21.5	21.6	34.572	34.588	5.61	5.53
	11:50	13.0	24.5	21.9	22.1	34.486	34.497	6.78	6.22
	15:13	11.5	23.9	22.1	22.1	34.816	34.651	5.63	1.89
	18:22	11.0	20.7	21.8	21.7	34.521	34.611	5.82	5.90
	21:31	16.0	20.2	21.5	21.5	34.556	34.753	5.75	5.61
	00:20	15.0	19.7	21.8	21.4	34.776	34.674	6.48	3.79
	02:58	14.5	18.6	21.6	20.8	35.035	34.894	2.77	5.61
	06:10	15.5	18.2	21.9	21.4	37.006	35.094	5.97	2.77
	09:40	9.5	23.6	22.5	22.2	34.588	35.055	6.04	4.00
MÍNIMO			18.2	21.5	20.8	34.486	34.497	2.77	1.89
MÁXIMO			24.5	22.5	22.2	37.006	35.094	6.78	6.22
PROMEDIO			21.5	21.8	21.6	34.928	34.757	5.65	4.59
				PRI	MAVE	ERA			
TGI 3 TO	00d (Edm	ACIÓN 1)							
ISLA LOI	ca (Esi	ACION I)							
12/MAY/89	09:59	6.0	26.9	25.9	26.2	35.276	35.016	4.76	4.91
	12:50	9.0	28.4	26.6	23.1	35.291	34.997	4.66	3.49
	17:00	11.0	24.0	26.3	23.9	34.757	34.706	2.48	3.79
	19:20	15.0	24.4	25.6	24.8	37.094	34.780	1.02	0.58
	21:51	6.5		25.2	24.7	37.070	35.094	0.87	4.37
	12:05	6.5	21.8	25.3	24.7	34.741	35.091	4.95	4.70
	03:08	7.0	23.8	25.3	24.6	37.094	35.283	4.99	4.76
	05:59	7.0	19.6	24.8	24.3	35.213	35.154	4.37	4.47
	09:20	7.1	22.4	25.3	24.0	35.299	34.749	4.91	5.10
MÍNIMO			19.6	24.8	23.1	34.741	34.706	0.87	0.58
MÁXIMO			28.4	26.6	26.2	37.094	35.283	4.99	5.10
PROMEDIO			23.9	25.6	24.5	35.759	34.986	3.67	4.02

APÉNDICE B.- Continuación..

			TEMP	ERATURA	(°C)	SALINIDA	D (‰)	OXÍGENO	(ml/l)	
FECHA	HORA	PROF (m)	AMB	SUP	FON	SUP	FON	SUP	FON	
				v	ERAN	0				
ISLA LO	3OS (EST	ACIÓN 1)								
14/SEP/89	09:43	18.0	27.2	30.3	29.0	33.754	34.568	4.95	4.22	
	12:19	16.0	27.0	30.2	29.1	33.625	34.549	4.80	4.27	
	15:18	15.0	29.3	30.3	29.5	33.675	34.553	4.62	4.2	
	18:05	14.0	28.0	30.2	29.4	33.679	34.517	4.80	4.3	
	21:18	17.8	27.2	30.0	28.8	33.930	34.611	4.48	4.0	
	00:04	16.0	26.7	29.8	28.2	34.533	34.576	4.40	4.3	
	03:09	15.0	26.8	29.0	29.1	34.172	34.505	4.27	4.1	
	06:19	13.8	26.6	29.5	28.6	34.556	34.651	4.22	3.9	
	09:23	9.8	29.3	29.7	29.4	34.309	34.497	4.37	4.3	
MÍNIMO			26.6	29.0	28.2	33.625	34.497	4.22	3.9	
MÁXIMO			29.3	30.3	29.5	34.556	34.651	4.95	4.3	
PROMEDIO			27.6	29.9	29.0	34.026	34.559	4.55	4.2	
				0	тойс)				
ISLA LO	BOS (EST	ACIÓN 1)								
28/NOV/89	09:55	10.3	25.5	25.0	25.0	34.631	34.608	4.37	4.6	
20,1101,03	12:21	9.0	22.6	24.5	24.5	34.564	34.666	4.99	4.2	
	15:29	7.0	23.6	24.8	24.9	34.615	34.647	5.14	5.1	
	18:07	15.0	22.7	24.5	24.0	34.639	34.690	4.56	3.0	
	21:20	9.0	22.7	23.0	23.8	34.631	34.643	4.66	4.2	
	00:15	9.0	21.0	24.0	24.0	34.639	34.647	4.62	3.7	
	03:15	8.5	20.5	23.8	23.8	34.643	34.643	1.75	4.0	
	06:10	8.5	21.0	24.0	23.7	-	34.820	4.51	4.7	
	09:10	9.8	22.0	24.5	24.5	34.670	34.788	4.95	4.7	
MÍNIMO			20.5	23.0	23.7	34.564	34.608	1.747	3.05	
MÁXIMO			25.5	25.0	25.0	34.670	34.820	5.140	5.09	
PROMEDIO			22.4	24.2	24.2	34.629	34.684	4.394	4.28	

APÉNDICE C.- Valores de las variables hidrológicas registradas durante las variaciones diurnas en dos estaciones de muestreo en donde habita Panulirus gracilis. Los valores se presentan por época del año en 1990 en la bahía de Mazatlán, Sinaloa. Se indica la profundidad de muestreo (PROF, profundidad; AMB, ambiental; SUP, superficie; FON, fondo.

			TEMP	TEMPERATURA (°C)		SALINI	DAD (‰)	OXÍGENO	(ml/1)	
FECHA	HORA	PROF (m)	AMB	SUP	FON	SUP	FON	SUP	FON	
			I N	VIER	N O					
ISLA LO	BOS (es	stación 1)								
00 EED 60	00.10	15.5	00.5	100	10.6	24.200	24.000	4.70	2.00	
08/FEB/90	09:12	15.5	20.5	19.9	19.6	34.329	34 298	4.78	3.82	
	12:07	10.0	20.6 20.5	19.9	20.0	34.313	34.309	5.01	4.10	
	15:39 18:25	11.5 11.3	19.0	20.2 20.0	20.0 19.9	34 353 34 345	34 349 34 302	4.92 5.05	4.51 4.92	
	21:00	11.3	19.0	20.0	19.9	34.345	34.302	5.05	4.92	
09/FEB/90	24:14	13.5	20.8	19.8	19.9	34 325	34.372	4.92	4.92	
09/1.619/90	03:12	11.5	19.5	19.7	19.9	34.439	34 290	4.92	4.92	
	06:15	13.5	19.0	20.0	19.9	34.306	34.337	4.96	4.82	
	09:07	14.5	18.1	19.5	19.2	34.403	34.302	4.92	5.09	
	05.07	11.5	10.1	17.5	102	31.103	34502	1.52	5.05	
M ÍN IM O			18.1	19.5	19.2	34.306	34 290	4.78	3 .82	
MÁXIMO			20.8	20.2	20.0	34.439	34.372	5.05	5.09	
PROMEDIO			19.8	19.9	19.8	34.352	34 320	4.93	4 .64	
ENTRE IS	LA LOBO	OS Y PUNTA	CHILE (e	stación 2)						
08/FEB/90	09:37	14.5	20.6	20.0	19.7	34.364	34 423	5.05	4.37	
00/122/30	12:38	14.0	22.0	20.2	20.0	34.317	34 290	5.33	4.51	
	15:58	13.0	20.5	20.1	20.0	34.345	34 313	5.19	4.92	
	18.51	12.5	19.0	20.0	20.0	34.302	34.329	5.05	5.15	
09/FEB/90	24:40	13.5	18.8	19.7	19.5	34.309	34 360	5.05	5.05	
	03:47	15.5	18.9	19.8	19.5	34.333	34 376	5.33	5.33	
	06 50	14.5	18.5	19.8	19.5	34.329	34.353	5.09	4.92	
	0927	14.5	18.2	19.8	19.2	34 298	34.400	5.33	5.05	
M ÍN IM O			18.2	19.7	19.2	34 298	34 290	5.05	4.37	
ΜÁΧIΜΟ			22.0	20.2	20.0	34.364	34.423	5.33	5.33	
PROMEDIO			19.6	19.9	19.7	34.325	34 356	5.18	4.91	

APÉNDICE C.- Continuación...

			TEMP	TEMPERATURA (°C)			DAD (‰)	OXÍGENO (ml/l	
FECHA	HORA	PROF (m)	AMB	SUP	FON	SUP	FON	SUP	FON
			P R	IMAV	ERA				
ISLA LO	BOS (es	stación 1)							
08/MAY/90	0926	9.0	28.0	26.0	25.0	35.079	32.631	5.05	4.82
	12:27	0.8	26.7	26.0	25.6	34.914	34 914	4.96	5.19
	14:57	6.7	26.1	25.8	25.2	33.883	32.751	4.78	4.99
	17:55	0.8	24.6	25.4	24.7	33.965	33.890	5.26	4.23
	21:06	7.8	25.2	25 <i>.</i> 4	25.2	32.670	35.083	4.92	4.23
	23 50	5.3	24.5	25.2	25.1	32.635	32.646	4.64	4.23
09/MAY/90	03:06	5.8	23.4	25.3	25.0	35.118	34.792	4.78	4.23
	06:01	7.0	23.3	25.2	25.1	33.906	32.712	4.64	4.10
	0920	6.2	25.4	26.0	25.1	33.777	33 589	4.78	1.91
M ÍN IM O			23.3	25.2	24.7	32.635	32.631	4.64	1.91
ΜÁΧΙΜΟ			28.0	26.0	25.6	35.118	35.083	5.26	5.19
PROMEDIO			25.2	25.6	25.1	33.994	33.668	4.87	4.22
ENTRE IS	LA LOB	OS Y PUNTA	A CHILE (e	estación 2)					
08/MAY/90	10:05	14.3	28.3	26.2	22.0	33.996	34.800	5.33	2.50
	12:48	13.3	25.8	26.4	23.3		34.196	5.26	3.21
	15:17	14.0	26.4	26.3	23.2	32.673	35.012	5.46	3.07
	18:12	14.3	23.5	26.2	26.3	33.867	33.836	5.60	2.87
	21:24	16.0	23.4	26.0	22.6	34.902	32.627	5.74	2.32
09/MAY/90	24:10	13.3	24.1	26.0	22.7	32.712	32.506	5.05	2.87
	03:29	13.5	21.9	25.9	21.9	33.781	33.625	5.33	2.19
	06:15	14.0	22.4	25.7	22.1	34.831	33.644	5.40	1.91
	09 42	13.0	25.2	26.2	22.3	32.537	34.749	5.53	2.39
M ÍN IM O			21.9	25.7	21.9	32.537	32.506	5.05	1.91
ΜÁΧIΜΟ			28.3	26.4	26.3	34.902	35.012	5.74	3 21
PROMED TO			24.6	26.1	22.9	33.662	33.888	5.41	2.59

APÉNDICE C.- Continuación...

			TEMP	ERATURA	(°C)	SALINI	DAD (‰)	OXÍGEN	O (ml/l)
FECHA	HORA	PROF (m)	AMB	SUP	FON	SUP	FON	SUP	FON
			v	ERAN	0				
ISLA LO	BOS (es	stación 1)							
24 AGO /90	0930	14.0	32.2	30.0	29.8	34.608	38.835	5.39	5.17
	12:00	14.3	30.1	30.2	29.0	34.415	34.816	5.97	4.95
	14 55	13.0	31.0	31.1	29.8	34.333	34.541	6.22	5.31
	17:54	13.5	29.2	31.0	29.8	34.376	34.600	5.53	5.31
	21:05	15.0	28.8	30.7	30.3	34 270	34 251	5.68	5.58
	23 56	15.0	28.9	30.3	30.2	34 243	34.345	5.31	5.31
25/AGO/90	03:05	14.0	27.8	30.5	29.2	35 244	35.725	5.61	4.37
	05 48	10.0	27.5	30.1	30.0	34.176	38.016	5.17	5.17
	08 52	11.0	28.6	30.5	29.9	34.427	39.187	5.46	4.95
M ÍN IM O			27.5	30.0	29.0	34.176	34 251	5.17	4.37
ΜÁΧIMΟ			32.2	31.1	30.3	35.244	39.187	6.22	5.58
PROMEDIO			29.3	30.5	29.8	34.455	36.035	5.59	5.13
ENTRE IS	LA LOBO	OS Y PUNTA	CHILE (e	stación 2)					
24 AGO /90	09:55	14.0	30 <i>.</i> 4	30.9	28.7	34.364	34.851	5.34	3.93
	12:15	13.0	30.3	30.8	29.1	34.497	34.831	5.39	4.08
	15:13	12.8	29.2	30.9	29.8	34.392	34.678	5.68	4.73
	1820	12.0	28.4	31.0	29.4	34 235	34.478	5.72	4.59
	21:25	14.0	28.4	30.7	30.1	33.930	34.337	5.39	5.17
25/AGO/90	0029	13.0	27.9	30.8	30.0	34.070	34.572	5.39	0.54
	03:33	13.0	27.4	30.6	29.0	34.051	34.615	5.24	4.80
	06:30	13.0	25.9	30.5	29.6	34 243	34.396	5.53	4.95
	09:16	13.0	27.8	30.5	29.5	35.008	34.482	5.31	4 .66
M ÍN IM O			25.9	30.5	28.7	33.930	34 337	5.24	0.54
ΜÁΧIΜΟ			30.4	31.0	30.1	35.008	34.851	5.72	5.17
PROMEDIO			28.4	30.7	29.5	34.310	34 582	5.44	4.16

APÉNDICE C.- Continuación...

			TEMP	ERATURA	(°C)	SALINI	DAD (‰)	OXÍGEN	O (ml/l)
FECHA	HORA	PROF (m)	AMB	SUP	FON	SUP	FON	SUP	FON
			(отой	0				
חכיד זי ד	BOC 6	stación 1)							
DIA IIO	DOD (Ca	stactor 17							
29/NOV/90	10:03	4.0	26.0	27.0	27.0	38.791	38.507	4.63	4.89
	12:50	6.5	28.8	27.5	27.2	38.639	38.627	4.76	4.67
	15:10	4.8	25.2	27.3	27.2	34.831	38.587	4.80	4.84
	18:06	7.0	24.8	27.0	26.9	38.615	38.607	4.76	5.16
	21:47	4.5	24.7	26.8	26.8	38.375	34.733	4.60	4.67
	24:00	11.6	24.2	26.9	26.6	38.511	38.613	4.67	4.53
30/NOV/90	02:48	5.3	24.7	26.5	26.5	38.559	38.583	4.67	4.67
	05 57	5.6	23.3	26.7	26.5	38.611	38.279	4.89	4.97
	09:15	0. 6	26.0	27.0	26.9	38.603	38.427	4.71	4.67
M ÍN IM O			23.3	26.5	26.5	34.831	34 .733	4.60	4.53
ΜÁΧIΜΟ			28.8	27.5	27.2	38.791	38.627	4.89	5.16
PROMEDIO			25.3	27.0	26.8	38.171	38 107	4.72	4.79
ENTRE IS	LA LOB	OS Y PUNTA	CHILE (e	estación 2)					
29/NOV/90	10:36	12.5	26.4	27.3	26.4	35.020	38.136	4.93	4.27
	13:15	12.0	27.0	27.6	26.8	38.223	38.459	4.93	4.89
	15 40	13.0	25.5	27.5	26.9	38.515	38.627	5.24	4.49
	18:25	14.0	24.2	27.2	26.5	34.886	38.547	5.16	4.57
	22:05	12.5	24.3	27.2	26.9	34.898	38.623	4.89	4.67
30/NOV/90	0024	12.5	23.8	27.0	25.8	38.723	35.028	4.80	4.44
	03:14	13.0	23.6	27.0	25.6	38.595	38.547	4.67	4.93
	06:14	14.8	23.3	27.0	24.0	34.969	38 299	4.89	5.07
	0930	12.0	26.2	27.2	25.6	38.327	38.407	4.80	4.40
M ÍN IM O			23.3	27.0	24.0	34.886	35.028	4.67	4.27
ΜÁΧIMΟ			27.0	27.6	26.9	38.723	38.627	5.24	5.07
PROMEDIO			24.9	27.2	26.1	36.906	38.075	4.92	4.64