

UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO

PROGRAMA DE MAESTRÍA Y DOCTORADO EN CIENCIAS QUÍMICAS

COEFICIENTES DE ACTIVIDAD A DILUCIÓN INFINITA DE TENSOACTIVOS, POLÍMEROS Y PROTEÍNAS.

TESIS PARA OPTAR POR EL GRADO DE

DOCTORA EN CIENCIAS

PRESENTA

M. en C. JOSEFINA ESPERANZA VIADES TREJO

TUTOR: DR. JESÚS GRACIA FADRIQUE AÑO: 2008

Universidad Nacional Autónoma de México

UNAM – Dirección General de Bibliotecas Tesis Digitales Restricciones de uso

DERECHOS RESERVADOS © PROHIBIDA SU REPRODUCCIÓN TOTAL O PARCIAL

Todo el material contenido en esta tesis esta protegido por la Ley Federal del Derecho de Autor (LFDA) de los Estados Unidos Mexicanos (México).

El uso de imágenes, fragmentos de videos, y demás material que sea objeto de protección de los derechos de autor, será exclusivamente para fines educativos e informativos y deberá citar la fuente donde la obtuvo mencionando el autor o autores. Cualquier uso distinto como el lucro, reproducción, edición o modificación, será perseguido y sancionado por el respectivo titular de los Derechos de Autor.

JURADO ASIGNADO SEGÚN EL TEMA:

PRESIDENTE: PRIMER VOCAL: SEGUNDO VOCAL: TERCER VOCAL: SECRETARIO: PRIMER SUPLENTE: SEGUNDO SUPLENTE:

DR. RICARDO VERA GRAZIANO DR. OREST PIZIO DRA. JACQUELINE QUINTANA HINOJOSA DR. ALBERTO ROJAS HERNÁNDEZ DRA. SILVIA DEL SOCORRO PÉREZ CASAS. DR. JORGE PEÓN PERALTA DR. ÁNGEL PIÑEIRO GUILLÉN

CANDIDATA AL GRADO:

Josefina Viades Trejo

Dr. Jesús Gracia Fadrique.

ASESOR:

AGRADECIMIENTOS.

A mi Tutor Jesús Gracia por su apoyo, su confianza y amistad y por haber compartido conmigo su experiencia y conocimientos.

A los miembros del jurado por la revisión de este manuscrito.

A la DGAPA por el apoyo dentro del Programa de Apoyo a la Superación del Personal Académico (PASPA) que me concedió durante los tres años de duración del Programa de Doctorado.

Al PADEP por el apoyo económico otorgado a través del fondo del presupuesto PAEP 2005 (partida 411) para la compra de diversos materiales utilizados durante la realización de esta investigación doctoral.

DEDICATORIAS.

A mis Padres a quienes debo lo que soy, con todo mi amor, gratitud y respeto. A mis hermanas por su apoyo y cariño incondicional. A mi cuñado y sobrinos con todo mi cariño y gratitud.

SITIO DONDE SE DESARROLLÓ EL TEMA:

Laboratorio de Superficies. Departamento de Fisicoquímica. División de Estudios de Posgrado. Facultad de Química, U.N.A.M. JURADO ASIGNADO SEGÚN EL TEMA:

PRESIDENTE:	DR. RICARDO VERA GRAZIANO
PRIMER VOCAL:	DR. OREST PIZIO
SEGUNDO VOCAL:	DRA. JACQUELINE QUINTANA HINOJOSA
TERCER VOCAL:	DR. ALBERTO ROJAS HERNÁNDEZ
SECRETARIO:	DRA. SILVIA DEL SOCORRO PÉREZ CASAS.
PRIMER SUPLENTE:	DR. JORGE PEÓN PERALTA
SEGUNDO SUPLENTE:	DR. ÁNGEL PIÑEIRO GUILLÉN

CANDIDATA AL GRADO:

M. en C. Josefina Viades Trejo

ASESOR:

Dr. Jesús Gracia Fadrique.

Índice.

Página

Resumen

I. Termodinámica del equilibrio de fases.I.1. Introducción.I.2. Fugacidad y coeficiente de actividad.			
		I.3. Disolución líquida ideal y funciones de exceso.	6
		I. 3.1. Disolución líquida ideal.	6
I. 3.2. Funciones de exceso.	7		
II. Coeficiente de actividad a dilución infinita de materiales tensoactivos.	13		
II.1. Introducción			
II.2. Termodinámica de superficies			
II.3. Coeficiente de actividad a dilución infinita por equilibrio seno de la disolución-			
superficie.	16		
II.3.1. Materiales tensoactivos de bajo peso molecular.	16		
II.3.2. Materiales tensoactivos de alto peso molecular.	21		
III. Medición de tensión superficial dinámica y en el equilibrio.	28		
III.1. Introducción.			
III.2. Método de la gota pendiente.	29		
IV. Metodología experimental.	36		
IV.1. Equipo.	36		
IV.2. Materiales.	37		
IV.3. Metodología experimental.	39		

V. Metodología de cálculo y análisis de datos experimentales.	
V.1. Metodología de cálculo del coeficiente de actividad a dilución infinita.	
V.1.1. Determinación de las presiones superficiales en el equilibrio y de	
saturación.	40
V.1.2. cálculo del coeficiente de actividad a dilución infinita.	
V.2. Determinación de la concentración micelar crítica	
V.3. Cálculo del factor superficial de compresibilidad	
V.4. Cálculo de las contribuciones hidrófilas-lipófilas	
V.5. Análisis de datos experimentales	
Conclusiones	
Anexos.	
Anexo A. Datos experimentales	56
Anexo B. Publicaciones.	83
Bibliografía.	
Glosario símbolos	110

Resumen.

Los conceptos de actividad y coeficiente de actividad tienen su origen en las ideas de Lewis sobre el concepto fundamental del equilibrio químico en términos de fugacidad. La manera más frecuente de determinar coeficientes de actividad es recurrir al equilibrio líquido-vapor y con menor frecuencia, al equilibrio líquido-líquido. Una tercera alternativa propuesta recientemente, contempla el equilibrio solución-superficie.

El objetivo de este trabajo fue extender esta tercera alternativa para el cálculo de coeficientes de actividad de materiales con baja presión de vapor y elevada actividad superficial, es decir, materiales anfifilos de altos pesos moleculares como son los tensoactivos. Las determinaciones se hicieron a partir de datos experimentales de tensión superficial en función de la composición de soluciones acuosas de estos materiales, basados en el trabajo previo para el caso de tensoactivos de bajo peso molecular. La alternativa consistió en el acoplamiento de la ecuación de adsorción de Gibbs y la ecuación superficial de estado de Volmer, de donde se derivó el potencial químico de la fase superficial bajo la convención simétrica de coeficientes de actividad, y el mismo estado de referencia para el seno de la fase líquida y la superficie.

Se presenta una nueva alternativa para la determinación del coeficiente de actividad a dilución infinita de materiales superficialmente activos como tensoactivos, polímeros y proteínas a partir de datos experimentales de tensión superficial en función de composición, basados en el modelo desarrollado en un trabajo previo [Gracia, 2002] para el caso de líquidos ordinarios a través del acoplamiento de la ecuación de adsorción de Gibbs y la ecuación superficial de estado de Volmer para derivar la expresión del potencial químico superficial bajo la convención simétrica de coeficientes de actividad y la elección del mismo estado de referencia para el bulto y la superficie.

Los tensoactivos estudiados en esta investigación, cumplen con el modelo de Volmer en el intervalo de concentraciones que comprende desde la región diluida hasta la concentración micelar crítica. Para estos sistemas la presión superficial de referencia corresponde a la presión de saturación o máxima. Los coeficientes de actividad calculados con el modelo, muestran valores del orden de decenas de miles a millones. Los valores de concentración micelar crítica predichos mediante la igualdad entre el coeficiente a dilución infinita y el recíproco de la concentración micelar crítica, demostrada en este trabajo, coinciden con los valores experimentales obtenidos con el método tradicional.

Se midió la tensión superficial dinámica por el método de gota pendiente para de aquí obtener la tensión superficial al equilibrio, de soluciones acuosas de seis derivados oxietilénicos del mono octadecil éter ($C_{18}E_m$), con un número de unidades de óxido de etileno (*m*) igual a: 4, 6, 8, 10 y 100 unidades. El método experimental desarrollado en esta investigación, consistió en el seguimiento con el tiempo de imágenes del perfil de gotas de las soluciones de estos materiales. La tensión superficial dinámica se calculó mediante el ajuste de la curvatura de la gota con la ecuación de Young-Laplace a través de un programa de computadora.

A partir de la evidencia experimental y de la igualdad del potencial químico del seno de la disolución con el potencial superficial de Volmer, se obtuvo una ecuación de estado para la superficie con dos parámetros termodinámicos: el factor de compresibilidad superficial y la concentración micelar crítica. La ecuación de estado pone en evidencia el significado físico del coeficiente de actividad a dilución infinita, a través de su relación con estos factores. Los tensoactivos estudiados mostraron una dependencia del valor del factor de compresibilidad con el número de carbonos en la cadena de hidrocarburo para un número dado de unidades de óxido de etileno que constituyen las porciones hidrófoba e hidrófila de estos materiales respectivamente.

Se calcularon las contribuciones hidrófilas-lipófilas al coeficiente de actividad a dilución infinita para soluciones acuosas de los tensoactivos bajo estudio, así como para datos experimentales de alta calidad (coeficiente de correlación R \geq 0.99) reportados en la literatura, únicamente se requirió del análisis de los coeficientes de actividad a dilución infinita y/o las concentraciones micelares críticas en función tanto del número

de átomos de carbono en la porción hidrófoba, como del número de unidades de óxido de etileno de la porción hidrófila. En todas las series homólogas, excepto la serie C_nE_3 , la contribución hidrófoba cumple con la constante de Traube (contribución de 1.1 por cada grupo metileno en la cadena). La contribución hidrófila en cambio, presenta mayor incertidumbre debido a la variabilidad en la distribución de unidades de óxido de etileno, los valores obtenidos se encuentran en el intervalo 0.04 a 0.05 por cada unidad presente.

Las relaciones empíricas entre la concentración micelar crítica y el número de carbones y óxidos de etileno, en familias homólogas de tensoactivos fueron reinterpretadas como contribuciones lipofilicas e hidrofilicas al coeficiente de actividad a dilución infinita. Se demostró que las energías estándar de adsorción y micelización presentan la contribución individual del grupo metileno en la cadena de hidrocarburo (ln3~ 1.1) originado en la Regla de Traube. La contribución hidrófoba, para el caso de tensoactivos fenólicos, debe incluir a la contribución aromática, si bien el grupo fenólico no forma micelas, sí se asocia y contribuye al descenso de la tensión superficial, de manera que al logaritmo natural del coeficiente de actividad a dilución infinita del fenol debe considerársele como un "núcleo" al que habrá que sumarle la contribución de cada grupo metileno para el cálculo de la contribución hidrófoba total.

Abstract.

The concepts of activity and activity coefficient come from the ideas of Gilbert Newton Lewis about chemical equilibrium expressed in terms of the concept of fugacity. The most common method for activity coefficients determination is through liquid-vapour equilibrium methods and in a lesser extent thorough liquid-liquid equilibrium methods. A third alternative based on bulk-surface equilibrium has been proposed recently.

The purpose of this work was to extend the third alternative to the calculus of activity coefficients of low vapour pressure high surface activity materials, *i.e.*, high molecular weight anphiphillic materials, such as surfactants. The determinations were performed via surface tension experimental data as a function of the composition of aqueous solutions of these materials, based on a previous work for low molecular weight surfactants. The alternative method consists on the combination of Gibbs adsorption equation and Volmer's surface equation of state from which the surface chemical potential was derived under the symmetric activity coefficients convention and the choice of the same reference state for the bulk and the surface phases.

The surfactants under investigation follow Volmer's model from the diluted region until the critical micelar concentration. For these systems the reference surface pressure corresponds to the maximum surface pressure *i.e.*, at saturation conditions. The activity coefficients calculated with the model are in the range from tenths of thousands to millions. Critical micellar concentration values predicted by the equality between the activity coefficient at infinite dilution and the inverse of the critical micellar concentration, which was demonstrated in this work, are in good agreement with experimental values obtained by the traditional method.

The equilibrium surface tension was estimated from dynamic surface tension data measured by the pendant drop method for aqueous solution of six mono octadecyl ether oxyethylenic derivatives ($C_{18}E_m$), with *m* values equal to 4, 6, 8, 10, 20, and 100

oxyethylenic units. The experimental methodology developed in this work, consisted in taking drop images at different times. The dynamic surface tension was calculated by curve fitting to the Young-Laplace equation with a software programme.

From the experimental evidence and the equality of the bulk chemical potential and the Volmer's surface chemical potential, a new surface equation of state was derived, the equation contains two thermodynamic parameters: the surface compressibility factor and the critical micelar concentration. The equation of state reveals the physical meaning of the activity coefficient through its relation with these factors. The surface compressibility factor of the surfactants under study showed dependence with the number of carbon atoms in the hydrophobic part of the molecule for a given number of oxyethylenic units in the hydrophilic part.

The hydrophilic-lipophillic contributions to the activity coefficient at infinite dilution of aqueous solutions of the surfactants studied and for high quality experimental data reported in the literature, were calculated by analyzing the activity coefficients at infinite dilution and/or the critical micellar concentrations in terms of the number of carbon atoms in the hydrophobic portion and the number of oxyethylenic units in the hydrophilic portion of the molecule. For all the homologous series, except CnE₃, the hydrophobic contribution follows Traube's rule (a 1.1 contribution for each methylene group in the chain). On the other hand, the hydrophilic contribution shows a greater uncertainty due to the variability in the number of oxyethylenic units, the values lie in the interval 0.04 to 0.05 for each unit present.

Empirical relations between the critical micellar concentration and the number of carbon atoms and the number of oxyethylenic units for homologous series of surfactants, were reinterpreted as hydrophilic-lipophillic contributions to the activity coefficient at infinite dilution. It was demonstrated that the standard free energies of adsorption and micellization show the methylene individual contribution in the hydrocarbon chain ($ln_3 \sim 1.1$) from Traube's rule. For phenolic surfactants the hydrophobic contribution should include the aromatic contribution, though the phenolic group does not aggregate, it associates and contributes to surface tension diminution,

thus, the natural logarithm of phenol's the activity coefficient at infinite dilution most be regarded as a "nucleous" to which each methylene contribution should be added for the total hydrophobic contribution calculation.

Capítulo I.

Termodinámica del equilibrio de fases

I. 1. Introducción.

La transferencia de uno o más sustancias entre fases es un fenómeno implicado en procesos industriales como la lixiviación, la extracción, la destilación y la adsorción; en procesos fisiológicos como la respiración y la digestión e incluso en actividades cotidianas como la preparación del café o el lavado de ropa. En 1875 Josiah Willard Gibbs al definir al potencial químico hizo posible la aplicación de los métodos termodinámicos a los sistemas multicomponentes y con ello el desarrollo de la termodinámica del equilibrio de fases.

La termodinámica del equilibrio de fases describe cuantitativamente la distribución en el equilibrio de cada componente entre las fases presentes, el potencial químico es un concepto abstracto que puede relacionarse mediante ecuaciones diferenciales con variables susceptibles de ser medidas como la temperatura, la presión y la composición, por lo que no es posible calcular su valor absoluto sino solamente los cambios de potencial, el cual puede expresarse en términos del concepto de fugacidad introducido por Gilbert Newton Lewis como una función auxiliar que puede relacionarse fácilmente con la realidad física.

La aproximación al conocimiento del comportamiento de los fluidos reales, es posible gracias a la transición desde la termodinámica clásica, a través de los conceptos de fugacidad, actividad y coeficiente de actividad, hacia la teoría de las fuerzas intermoleculares. Ejemplos de la importancia de estas propiedades son: el modelado de la desnaturalización de proteínas en algunos disolventes, usando solubilidades calculadas a partir de coeficientes de actividad a dilución infinita [Hovorka, 2200 y Dohnal, 2001]; la selección de solventes para la extracción en fase líquida o bien, para la destilación extractiva o azeotrópica; basada en el conocimiento de la relación de

coeficientes de actividad a dilución infinita de los componentes principales en el disolvente elegido [Gmehling, 1994].

I. 2. Fugacidad y coeficiente de actividad.

La termodinámica del equilibrio de fases, describe y permite la identificación de las condiciones al equilibrio y sus consecuencias a primeros principios en un sistema abierto formado por dos o más fases homogéneas, que intercambian libremente materia y energía. La definición de la función potencial químico (μ) y la relación de igualdad del potencial químico de cada componente en las diferentes fases en equilibrio, permite el análisis termodinámico de sistemas multicomponentes bajo relaciones cuantitativas entre las propiedades: presión, temperatura y composición.

La transferencia de material entre dos o más fases en contacto procede hasta alcanzar una composición constante en cada fase. Las composiciones de cada componente al equilibrio, frecuentemente son diferentes entre fases y dependen de la temperatura, la presión, la naturaleza química y las concentraciones de los componentes en la mezcla. El equilibrio de fases implica el equilibrio térmico (T constante), mecánico (P constante) y químico (μ constante). Sean los potenciales termodinámicos para un sistema abierto homogéneo [Prausnitz, 2000]

$$dU = TdS - PdV + \sum_{i} \mu_{i} dn_{i}$$
(I.1)

$$dH = TdS + VdP + \sum_{i} \mu_{i} dn_{i}$$
(I.2)

$$dA = -SdT - PdV + \sum_{i} \mu_{i} dn_{i}$$
(I.3)

$$dG = -SdT + VdP + \sum_{i} \mu_{i} dn_{i}$$
(I.4)

donde dU, dS, dV, dn_i , dH, dP, dA, dT, y dG son los cambios diferenciales en la energía interna, entropía, volumen, número de moles del componente *i*, entalpía, presión, energía de Helmholtz, temperatura y energía de Gibbs respectivamente y μ_i el potencial químico del componente *i*. Para un sistema cerrado de un solo componente y dos fases en coexistencia, la energía Gibbs por mol corresponde al potencial químico

$$d\mu = -sdT + vdP \tag{I.5}$$

donde *s* representa la entropía por mol y *v* el volumen molar correspondiente. En condiciones isotérmicas y para un gas ideal (v = RT/P), la ecuación anterior toma la forma

$$d\mu = RT\frac{dP}{P} = RTd\ln P \tag{I.6}$$

de donde se obtiene la forma integral de la ecuación (I.6)

$$\mu - \mu^0 = RT \ln \frac{P}{P^0} \tag{I.7}$$

donde μ^{0} representa el potencial químico de referencia correspondiente a una presión de conveniencia P^{0} , la expresión (I.7) es válida únicamente para gases ideales puros. En una mezcla P^{0} corresponde a la presión de vapor del componente puro p^{0} y la presión total P es la suma de las presiones parciales (Dalton), la contribución en el vapor de cada componente es $p^{0}x_{i}$ (Raoult). Bajo estos considerandos de gas ideal, aditividad de las presiones parciales y disolución ideal, la ecuación anterior toma la forma más común expresada en la literatura

$$\mu_i = \mu_i^0 + RT \ln x_i \tag{I.8}$$

La ecuación anterior resulta insuficiente para la descripción del equilibrio termodinámico en una mezcla. Los conceptos de fugacidad, actividad y coeficiente de actividad introducidos por G. N. Lewis [Lewis, 1923] proporcionan una medida de la no idealidad que puede ser interpretada mediante consideraciones moleculares y permiten la interpretación correcta de la igualdad de potenciales en el equilibrio de fases. El coeficiente de actividad corrige los considerandos de idealidad para introducirnos al mundo de las mezclas reales. Mediante la nueva función fugacidad (f) el potencial químico del componente i es expresado como

$$\mu_{i} - \mu_{i}^{0} = RT \ln \frac{f_{i}}{f_{i}^{0}}$$
(I.9)

donde f_i y f_i^0 corresponden a la fugacidad del componente *i* en la mezcla y en el estado de referencia respectivamente. La expresión (I.9) es válida para representar la variación isotérmica de cualquier sistema sea éste ideal o real, puro o mezclado o bien constituido por un sólido, un líquido o un gas; de modo que cuando esta expresión es aplicada a la descripción de las condiciones de equilibrio entre las fases α y β señala que la fugacidad del componente *i* entre fases es idéntica

$$f_i^{\alpha} = f_i^{\beta} \tag{I.10}$$

Para la distribución al equilibrio de un componente entre la fase líquida y la fase vapor en un sistema binario donde ambas fases son disoluciones ideales para las que a T y P constantes, las fugacidades del componente en cada fase están dadas por las siguientes expresiones

$$f_i^V = y_i f_i^V_{puro} \tag{I.11}$$

$$f_i^L = x_i f_i^L_{puro} \tag{I.12}$$

A pesar de que estas expresiones son válidas sólo en condiciones limitadas, proporcionan aproximaciones útiles para mezclas de componentes similares; así la ecuación (I.10) adquiere la forma

$$y_i f_i^V{}_{puro} = x_i f_i^L{}_{puro}$$
(I.13)

La expresión (I.13) puede simplificarse a través de dos postulados adicionales: Primero, asumiendo que el componente *i* puro en estado de vapor es un gas ideal a la temperatura *T* y la presión *P* de modo que $f_i^V{}_{puro} = P$, y que a presiones moderadas el efecto de la presión sobre la fugacidad en una fase condensada es despreciable. Segundo, el vapor en equilibrio con el líquido *i* puro a la temperatura *T* es un gas ideal de modo que $f_i^L{}_{puro} = p_1^0$; tomando en cuenta estos postulados se tiene que

$$y_i P = x_i p_i^0 \tag{I.14}$$

De esta manera, el coeficiente de actividad (γ_i) se define como el cociente de la composición en el vapor, veces la presión total en relación a la presión de saturación veces su composición en el líquido (I.15). En el caso de que el coeficiente de actividad sea igual a la unidad se cumple con la ecuación (I.12); cuando la relación es diferente de uno se indica explícitamente la magnitud de la desviación respecto al comportamiento ideal.

$$\gamma_i = \frac{P y_i}{p_i^0 x_i} \tag{I.15}$$

I. 3. Disolución líquida ideal y funciones de exceso.

I. 3.1. Disolución líquida ideal.

El cálculo de fugacidades en mezclas líquidas requiere que las desviaciones del comportamiento ideal se expresen mediante la definición de disolución líquida ideal y de las funciones en exceso, estas últimas proporcionan los coeficientes de actividad que constituyen una medida cuantitativa de dichas desviaciones; así, la fugacidad del componente *i* en función de su fracción molar es

$$f_i^L = \gamma_i x_i f_i^0 \tag{I.16}$$

Donde f_i^0 es la fugacidad en el estado de referencia. Conviene escoger f_i^0 de manera que γ_i sea cercano a la unidad, el valor numérico de f_i^0 debe especificarse de no ser así, el coeficiente de actividad no tiene significado. Una disolución líquida es ideal si la fugacidad de cualquier componente a T y P constantes es proporcional a su fracción molar

$$f_i^L = \Re_i x_i \tag{I.17}$$

La constante de proporcionalidad \Re_i es dependiente de T y P e independiente de x_i . Si se asume $f_i^0 = \Re_i$ la combinación de (I.16) y (I.17) conduce a $\gamma_i = 1$. De acuerdo con Raoult la disolución es ideal cuando se cumple la ecuación (I.17) en todo el intervalo de composición de modo que cuando $x_i = 1$, \Re_i es igual a la fugacidad del líquido puro a la T de la disolución y las fugacidades corresponden a las presiones parciales. Por otro lado cuando la ecuación (I.17) se cumple para valores de x_i cercanos a cero, la disolución es ideal sin identificar \Re_i con la fugacidad del líquido puro. Estas disoluciones se conocen como disolución diluida ideal en el sentido de la ley de Henry. Una disolución ideal en el sentido estricto del término, es aquella que cumple con la ecuación (I.17) tanto a la T y P de interés como en sus vecindades, es válida para cualquier T, P y en todo el intervalo de composición.

$$f_i(T, P, x) = f_{ipuro}(T, P)x_i \tag{I.18}$$

Sean las siguientes relaciones termodinámicas exactas

$$\left(\frac{\partial \ln f_i}{\partial T}\right)_{P,x} = -\frac{\overline{h_i} - h_{ipuro}^+}{RT^2} \qquad \left(\frac{\partial \ln f_{ipuro}}{\partial T}\right)_P = -\frac{h_{ipuro} - h_{ipuro}^+}{RT^2} \qquad (I.19)$$

$$\left(\frac{\partial \ln f_i}{\partial P}\right)_{T,x} = -\frac{\overline{v}_i}{RT} \qquad \left(\frac{\partial \ln f_{ipuro}}{\partial P}\right)_T = -\frac{v_{ipuro}}{RT} \qquad (I.20)$$

Donde \overline{h}_i es la entalpía molar parcial de *i* en la fase líquida, h_{ipuro} y h_{ipuro}^+ las entalpías del componente *i* puro en la fase líquida y en el estado de gas ideal respectivamente, \overline{v}_i el volumen molar parcial de *i* y v_{ipuro} el volumen molar de *i* puro ambos en fase líquida. La igualdad de fugacidades establecida en la expresión (I.16) indica que en una disolución ideal $\overline{h}_i = h_{ipuro}$ y $\overline{v_i} = v_{ipuro}$, por tanto la formación de una disolución ideal ocurre sin absorción ni liberación de calor (atérmica) así como a volumen constante.

I. 3.2. Funciones de exceso.

Las diferencias entre el valor de una propiedad termodinámica para una disolución real y para una disolución ideal (o diluida ideal) a la misma T, P y composición, se denominan funciones de exceso. Las funciones termodinámicas de exceso y sus correspondientes funciones molares parciales, se definen, relacionan entre sí y derivan

parcialmente de manera análoga a las funciones termodinámicas totales. Sea M^E una propiedad termodinámica extensiva de exceso definida como

$$M^{E} \equiv \left(M_{real}\right)_{T,P,x} - \left(M_{ideal}\right)_{T,P,x} \tag{I.21}$$

La correspondiente propiedad molar parcial de M^{E} respecto a la cantidad de sustancia componente iésimo es

$$\overline{m_i^E} = \left(\frac{\partial M^E}{\partial n_i}\right)_{T,P,n_j}$$
(I.22)

La propiedad termodinámica extensiva de exceso M^E es una propiedad aditiva que puede expresarse como

$$M^{E} = \sum_{i} n_{i} \overline{m_{i}^{E}}$$
(I.23)

Las desviaciones de la idealidad en una disolución pueden ser positivas o negativas, por tanto las funciones de exceso también pueden serlo. La función de exceso de mayor utilidad en el campo del equilibrio de fases es la energía de Gibbs molar parcial que relaciona directamente al coeficiente de actividad con la función fugacidad, de modo que la expresión para energía Gibbs molar parcial en exceso es

$$\overline{g}_{i}^{E} = \overline{g}_{i(real)} - \overline{g}_{i(ideal)} = RT \ln \frac{f_{i(real)}}{f_{i(ideal)}}$$
(I.24)

Para una disolución líquida ideal cuya fugacidad es proporcional a su fracción molar (ecuación (I.17)), la energía Gibbs molar parcial en exceso en función de la composición del componente i es

$$\overline{g}_i^E = RT \ln \frac{f_i}{\Re x_i} \tag{I.25}$$

Si la disolución es ideal en todo el intervalo de composición cumple la ley de Raoult, entonces es posible identificar $\Re_i \operatorname{con} f_i^0$ y la actividad puede expresarse como

$$a_i = \gamma_i x_i = \frac{f_i}{\Re_i} \tag{I.26}$$

La energía de Gibbs molar parcial en exceso de una disolución ideal, es el resultado de la combinación de las ecuaciones (I.25) y (I.26)

$$\overline{g}_i^E = RT \ln \gamma_i \tag{I.27}$$

Y por lo tanto la energía Gibbs molar de exceso es

$$g^{E} = RT \sum_{i} x_{i} \ln \gamma_{i}$$
(I.28)

Para el caso de reparto y equilibrio entre fases, cuando la fase líquida es una solución ideal en el sentido de Raoult, entonces para que $\gamma_i \rightarrow 1$ cuando $x_i \rightarrow 1$, es obligado recurrir al criterio de normalización simétrica de coeficientes de actividad [Prausnitz, 2000] representado en la Figura 1. Las coordenadas naturales a la frontera del coeficiente de actividad (I.15) son

$$x_i \to 0;$$
 $P \to p_j^{\ 0};$ $\gamma_i^{\infty} \to \frac{p_j^0}{p_i^0} \left(\frac{y_i}{x_i}\right)_{x_i \to 0}$ (I.29)

 $x_i \rightarrow 1; \qquad P \rightarrow p_i^{\ 0}; \qquad \gamma \rightarrow 1$

Figura 1. Criterio de normalización simétrica de coeficientes de actividad.

$$\gamma_i \to \gamma_i^{\infty}$$
 $x_i \to 0;$
 $\gamma_i \to 1$ $x_i \to 1$ $i = 1,2,...$
(I.30)

La expresión de la energía Gibbs de exceso (g^E) en mezclas binarias a *T* constante y *P* bajas o moderadas depende solamente de la composición de la mezcla. Para una mezcla cuyas propiedades de exceso se toman con referencia a una disolución ideal con estados estándar de líquidos puros a la *T* y *P* de la mezcla cualquier expresión de g^E debe obedecer las siguientes condiciones de frontera

$$g^E = 0$$
 cuando $x_1 = 0$

$$g^E = 0 \qquad \text{cuando} \qquad x_2 = 0 \tag{I.31}$$

La literatura [Prausnitz, 2000, Walas, 1985] reporta diversas expresiones para la energía Gibbs de exceso que satisfacen las condiciones de frontera, la más sencilla es la ecuación de Margules con dos sufijos que proporciona una buena representación para g^E de mezclas líquidas simples de moléculas de tamaño, forma y naturaleza química

semejantes. La ecuación de Margules requiere una generalización como la propuesta por Redlich-Kister, consistente en un desarrollo en serie para representar adecuadamente la energía Gibbs de mezclas binarias más complejas, que deben obedecer las condiciones de frontera (I.31). El desarrollo de Redlich-Kister, es una expresión flexible que describe la energía de Gibbs de exceso de una mezcla líquida y proporciona un método conveniente de representación de los coeficientes de actividad de la fase líquida. Generalmente se aplica a datos isotérmicos pero pueden también aplicarse a isobáricos. Para mezclas más complejas donde los tamaños moleculares de los componentes afectan a la representación de los coeficientes de actividad, el desarrollo de Wohl permite asignar significado físico a los parámetros que aparecen en las ecuaciones. Además este desarrollo puede generalizarse sistemáticamente a disoluciones multicomponentes cuyos elementos pueden existir como líquidos puros a la T de la disolución. La ecuación de Van Laar se aplica a sistemas de dos componentes de tamaños moleculares distintos, pero que no son químicamente diferentes entre sí, así como a disoluciones de líquidos simples no polares, sin embargo hay evidencia empírica de su capacidad de predecir coeficientes de actividad de mezclas complejas. La ecuación de Margules con tres sufijos es otra ecuación que puede deducirse a partir del desarrollo de Wohl truncado después de los términos cúbicos, es especialmente útil para mezclas de dos componentes de tamaños moleculares semejantes, las ecuaciones de Margules y la de Van Laar permiten representar los coeficientes de actividad experimentales con solo dos constantes.

La teoría cuasi química universal surge en 1975 cuando se extiende la teoría cuasi química de Guggenheim para mezclas no al azar a disoluciones que contienen moléculas de diferente tamaño. Así la ecuación UNIQUAC (universal quasi chemical) es el resultado de la necesidad de deducir una ecuación de dos parámetros para la energía de Gibbs de exceso que no esté restringida a mezclas totalmente miscibles. La ecuación consta de dos partes: una combinatorial que pretende describir la contribución entrópica dominante determinada solamente por la composición de la mezcla así como por la forma y tamaño de las moléculas y la parte residual debida a las fuerzas intermoleculares responsables de la entropía de mezcla y que contiene los dos parámetros ajustables de la ecuación. La ecuación UNIQUAC es una expresión

relativamente simple que contiene sólo dos parámetros ajustables. Es aplicable a un gran número de mezclas líquidas de no electrolitos formados por fluidos tanto polares como no polares.

No todas las ecuaciones propuestas para representar las relaciones entre el coeficiente de actividad y la fracción molar pueden deducirse a partir del desarrollo de Wohl, como es el caso de las ecuaciones de Wilson, NRTL [Prausnitz, 200, Walas, 1985] y UNIQUAC. La primera basada en el concepto de composición local expresa la energía Gibbs de exceso en función de dos parámetros ajustables Λ_{12} y Λ_{21} relacionados con los volúmenes molares de los componentes puros, la capacidad representativa de la relación entre coeficiente de actividad y fracción molar de la ecuación de Wilson no supera a las de Margules y Van Laar pero es igualmente útil. Su principal desventaja es que no predice la miscibilidad limitada. La ecuación NRTL (non ramdon two liquids ó dos líquidos no al azar) propuesta por Renon bajo el mismo principio de composición local predice tanto la miscibilidad total como la parcial y es especialmente útil para sistemas alejados de la idealidad.

Capítulo II.

Coeficiente de actividad a dilución infinita de materiales tensoactivos.

II. 1. Introducción.

Debemos a Josiah Willard Gibbs, la extensión de los principios de la termodinámica a fluidos multicomponentes y su distribución entre diversas fases. La expresión de la energía libre que lleva su nombre, establece además del equilibrio térmico y mecánico, el concepto y la definición del equilibrio químico. Su cuantificación y su aplicación tecnológica adquieren relevancia bajo las ideas de Gilbert Newton Lewis de fugacidad, actividad y coeficiente de actividad. Es fundamentalmente sobre el equilibrio líquidovapor y en menor grado en el equilibrio líquido-líquido que su producción científica ha sido reportada en los últimos setenta años.

Es en fechas recientes que se presenta una nueva alternativa para la determinación de coeficientes de actividad mediante el equilibrio seno de la disolución-superficie [Gracia, 2002]. Es sobre estas bases, que el actual trabajo presenta la determinación de coeficientes de actividad a dilución infinita para materiales con alto peso molecular, elevada actividad superficial y presión de vapor baja, donde las técnicas tradicionales son inoperantes y de aquí su inexistencia en la literatura de equilibrios termodinámicos.

En primer término se muestra que materiales diversos en cuanto a estructura química y actividad superficial, es decir, anfífilos de alto peso molecular que forman micelas, obedecen a la ecuación de estado superficial propuesta por Volmer y que la formación de micelas es el resultado de la aparición de fuerzas atractivas en la superficie. Con este modelo y la igualdad de los potenciales químicos correspondientes, es que se hace realidad el cálculo del coeficiente de actividad a dilución infinita por esta nueva vía. El mismo modelo muestra la correspondencia entre el coeficiente de actividad a formación micelar crítica. Finalmente, el coeficiente de actividad a

dilución infinita queda físicamente identificado como el balance y resultado de los efectos hidrófobos e hidrófilos presentes en una molécula frente a su entorno.

II. 2. Termodinámica de superficies.

El postulado fundamental de la termodinámica de superficies considera que la interfase es una región de transición con características propias, que justifican su tratamiento como una fase adicional para la que los principios de la termodinámica y sus potenciales son los mismos; de modo que los potenciales termodinámicos en la superficie considerada como un sistema abierto y homogéneo corresponden a las ecuaciones (I.1 a I.4) presentadas en el Capítulo I. El carácter interfacial de las propiedades termodinámicas U, S, V, H, A y G y del número de moles n_i se indica con el superíndice (^S). La ecuación para la energía interna (I.1), más el término de energía superficial (σdA) es entonces

$$dU^{S} = TdS^{S} - PdV^{S} + \sigma dA + \sum \mu_{i} dn_{i}$$
(II.1)

donde σ es la tensión superficial y *A* es el área de la interfase. La integración de la ecuación (II.1) a *T*, *P* y composición constantes da por resultado

$$U^{s} = TS^{s} - PV^{s} + \sigma A + \sum_{i} \mu_{i} n_{i}^{s}$$
(II.2)

La forma diferencial de (II.2) provee una expresión general, que con la ecuación (II.1) conduce a la ecuación de Gibbs-Duhem para la fase superficial

$$S^{s}dT - V^{s}dP + Ad\sigma + \sum_{i} n_{i}^{s}d\mu_{i} = 0$$
(II.3)

La expresión (II.3) a *T* constante, considerando la primera convención de Gibbs $V^{S} = 0$ [¹Gibbs, 1958] e incorporando la definición de la concentración superficial del iésimo componente ($\Gamma_{i} = n_{i}$ /*A*) corresponde a la ecuación de adsorción de Gibbs, que para el caso de la región superficial constituye la relación fundamental entre tensión superficial, concentración en la superficie y potencial químico. La ecuación de adsorción de Gibbs para un sistema binario, soluto (2), disolvente (1) es

$$d\pi = \Gamma_1 d\mu_1 + \Gamma_2 d\mu_2 \tag{II.4}$$

donde π es la presión superficial definida como la diferencia entre la tensión superficial del disolvente puro (σ_0) y la de la solución (σ), *i.e.*, $\pi = (\sigma_0 - \sigma)$, Γ_1 y Γ_2 las concentraciones superficiales de los componentes. La ecuación de Gibbs-Duhem para el seno de la solución a *T* y *P* constantes es

$$x_1 d\mu_1 + x_2 d\mu_2 = 0 \tag{II.5}$$

La ecuación de adsorción de Gibbs queda expresada en términos del potencial químico del componente 2, mediante la combinación de (II.4) y (II.5)

$$d\pi = \left[\Gamma_2 - \frac{x_2}{x_1}\Gamma_1\right]d\mu_2 \tag{II.6}$$

En la región a dilución infinita $x_2 \rightarrow 0$, desde este momento, el uso de subíndices resulta innecesario, la ecuación (II.6) es para el soluto con actividad superficial y se reduce a

$$d\pi = \Gamma d\mu \tag{II.7}$$

¹ J.W. Gibbs, "The Scientific Papers of J. Willard Gibbs", Vol 1 Thermodynamics, Dover Publications Inc., N.Y., 1961

La ecuación de adsorción de Gibbs permite evaluar el potencial químico de superficie bajo el conocimiento de diferentes ecuaciones de estado bidimensionales, con el propósito de obtener una expresión para el cálculo de coeficientes de actividad a dilución infinita a partir de datos experimentales de tensión superficial, tanto para el caso de materiales tensoactivos de bajo peso molecular [Gracia, 2002] como para materiales no volátiles superficialmente activos [Viades, 2006].

II. 3. Coeficiente de actividad a dilución infinita por equilibrio seno de la disoluciónsuperficie.

II. 3. 1. Materiales tensoactivos de bajo peso molecular.

El potencial químico de superficie para materiales anfífilos (tensoactivos) de bajo peso molecular, puede estimarse mediante la isoterma de adsorción de Gibbs y la ecuación bidimensional del gas ideal

$$\pi A = RT \tag{II.8}$$

donde *A* es el área por mol de soluto en la superficie, *R* la constante de los gases y *T* la temperatura absoluta. El potencial químico superficial ideal se obtiene de la combinación de la isoterma (II.7) y la ecuación ideal de estado (II.8)

$$\mu^{S} = \mu^{0S} + RT \ln \pi^{*}$$
(II.9)

La ecuación (II.9) contiene al potencial superficial de referencia μ^{0S} y a la presión superficial reducida π^* definida como $\pi^* = \pi / \pi_0$ en la que π_0 es la presión superficial de referencia que corresponde a la diferencia entre las tensiones superficiales de los componentes puros $\pi_0 = (\sigma_0^1 - \sigma_0^2)$.

En el equilibrio de fases la región a dilución infinita es la zona de máxima rapidez de cambio de la presión superficial con la composición y por ende, pone en evidencia las interacciones soluto-disolvente. En la región a dilución infinita el potencial químico del seno de la disolución contiene sólo una constante: el coeficiente de actividad a dilución infinita, que afecta a la composición y que corresponde a un máximo según la convención simétrica para coeficientes de actividad ($\gamma_i \rightarrow 1$ cuando $x_i \rightarrow 1$ i = 1, 2).

$$\mu_{x \to 0}^{b} = \mu^{0b} + RT \ln \gamma^{\infty} x \tag{II.10}$$

donde μ^{0b} es el potencial químico de referencia en el seno, x la fracción mol del soluto y γ^{∞} el coeficiente de actividad a dilución infinita. En equilibrio bajo el mismo estado de referencia, para el seno de la disolución (x = 1) y para la superficie ($\pi = \pi_0$), $\mu^{0b} = \mu^{0S}$ y bajo la convención simétrica de coeficientes de actividad de (II.9) y (II.10) se tiene que

$$\gamma^{\infty} = \left(\frac{\pi^*}{x}\right)_{x \to 0} \tag{II.11}$$

La expresión (II.11) [Gracia, 2002] predice un valor unitario del coeficiente de actividad para mezclas binarias que obedecen la ley de Raoult, donde π es una función lineal de x en todo el intervalo de concentración. En su trabajo, Gracia *et al* [Gracia, 2002] probaron la capacidad predictiva de (II.11), mediante la comparación de los valores de γ^{∞} en mezclas binarias no ideales de 1-alcoholes en agua, con los reportados en la literatura determinados por el método de equilibrio líquido-vapor. A pesar de que los coeficientes de actividad obtenidos por equilibrio solución-superficie, muestran una relación lineal entre γ^{∞} y (π^* / x), la ecuación no se cumple, por lo que la hipótesis de idealidad fue rechazada.

Las interfases no ideales requieren para su correcta descripción de ecuaciones de estado bidimensionales no ideales. La más simple es la propuesta por Volmer [Volmer, 1925], es una expresión tipo van der Waals que no incluye al término interactivo. La expresión de Volmer vincula al área por mol de soluto en la superficie ($A = \Gamma^{-1}$) con la presión superficial (π)

$$\pi \left(A - A_m \right) = \pi \left(\frac{1}{\Gamma} - \frac{1}{\Gamma_m} \right) = RT \tag{II.12}$$

Donde A_m es el término de corrección bidimensional análogo al factor tridimensional *b* en la ecuación de van der Waals, que corresponde al área límite del soluto en la superficie y $\Gamma_m^{-1} = A_m$ es la concentración superficial máxima en condiciones de saturación. Así como b = v cuando la $P \rightarrow \infty$ y $T \rightarrow 0$ [Castellan, 1987]; $A_m = A$ y por ende $\Gamma_m = \Gamma$ cuando $T \rightarrow 0$. De la combinación de la isoterma de Gibbs (II.7) y la ecuación de estado de Volmer (II.12) se tiene

$$d\mu^{S} = RTd\ln\pi + \frac{d\pi}{\Gamma_{m}}$$
(II.13)

La integración de (II.13) permite obtener el potencial superficial de Volmer

$$\mu^{S} = \mu^{0S} + RT \ln \frac{\pi}{\pi_{0}} + \frac{\pi - \pi_{0}}{\Gamma_{m}}$$
(II.14)

El potencial superficial de Volmer en (II.14) a dilución infinita y con la presión superficial reducida es

$$\mu_{\pi \to 0}^{S} = \mu^{0S} + RT \ln \pi^{*} - \frac{\pi_{0}}{\Gamma_{m}}$$
(II.15)

En equilibrio, la igualdad de potenciales químicos del seno de la disolución (II.10) y superficie (II.15) bajo el mismo estado de referencia, provee la siguiente expresión para el coeficiente de actividad a dilución infinita [Gracia, 2002]

$$\ln \gamma^{\infty} = \ln \left(\frac{\pi^*}{x}\right)_{x \to 0} - \frac{\pi_0}{\Gamma_m RT}$$
(II.16)

Los parámetros requeridos para el cálculo del coeficiente de actividad en (II.16) se obtienen a partir de la igualdad de potenciales: el potencial químico en el seno de la disolución $(d\mu^b = RTd \ln x)$ [Laidler y Meiser, 1997] y el potencial superficial de Volmer (II.15), así

$$d\ln\left(\frac{\pi}{x}\right) = -\frac{d\pi}{\Gamma_m RT} \tag{II.17}$$

La integración de la ecuación (II.17) bajo presión reducida, conduce a la versión integral de la ecuación de Volmer y proporciona los parámetros requeridos para resolver la ecuación (II.16) [Gracia, 2002].

$$\ln\left(\frac{\pi^*}{x}\right) = \ln\left(\frac{\pi^*}{x}\right)_{x \to 0} - \frac{\pi_0}{\Gamma_m RT} \pi^*$$
(II.18)

La aplicación de (II.17) para el sistema etanol-agua a 25[°]C [Strey, 1999] se presenta en la Figura 1, se observa que la ecuación presenta un comportamiento lineal en la región diluida (zona **a**) y predice la ausencia de fuerza intermoleculares en la superficie y por tanto un valor para $\pi_0 > (\sigma_0^1 - \sigma_0^2)$ en la zona **d**, los valores experimentales muestran un cambio en la pendiente en la a una composición característica (punto **c**) al incrementarse la concentración originando la zona **b** que termina en un valor de $\pi_0 =$ $(\sigma_0^1 - \sigma_0^2)$. El punto de inflexión **c** señala el inicio de las fuerzas de atracción en la superficie que se manifiestan como una reducción en la presión superficial y por tanto en un valor de la presión superficial de referencia igual a la diferencia entre las tensiones superficiales de los componentes puros.

Figura 1. Ecuación integral de Volmer para el sistema etanol-agua a 25° C [Strey, 1999]. (**•**) valores experimentales. (+) Valores de π predichos con la ecuación (II.18). Zona (**a**) espacio de Volmer, (**b**) valores experimentales de π después del punto de inflexión, (**c**) punto de inflexión. (**d**) valores predichos de π después del punto de inflexión.

En general, de la igualdad de los potenciales químicos en el seno de la disolución y en la superficie, puede derivarse una ecuación superficial de estado, en el caso de líquidos ordinarios [Brocos, 2007] se obtuvo a partir de la igualdad entre el potencial superficial de Volmer y el potencial químico en el seno de la solución, aplicando una función de la fracción mol del soluto, como la ecuación de Margules tres sufijos, para el cálculo de los coeficientes de actividad de ambos componentes. En la integración de (II.13) entre π_0 y π , para obtener el potencial superficial en (II.14) implícitamente se asume que la ecuación de Volmer describe correctamente la mezcla a cualquier concentración, de modo que el potencial superficial queda expresado como

$$\mu_2^S = \mu_2^{0S} + RT \ln \pi^* + \frac{\pi - \pi_0}{\Gamma_m} \qquad 0 \le \pi^* \le 1$$
(II.19)

El potencial químico correspondiente en el seno de la disolución es

$$\mu_2^b = \mu_2^{0b} + RT \ln(\gamma_2 x_2) \tag{II.20}$$

En equilibrio bajo el mismo estado de referencia para ambas fases, sustituyendo el $ln\gamma_2$ por una función de x_2 como la ecuación de Margules tres sufijos y en términos de la presión superficial reducida, el $\ln(\pi^*/x)$ se expresa como

$$\ln\left(\frac{\pi^*}{x}\right) = \frac{\pi_0}{\Gamma_m RT} \left(1 - \pi^*\right) + \ln \gamma^{\infty}$$
(II.21)

donde el efecto hidrófobo definido como la tendencia del tensoactivo de ir hacia la superficie de la solución acuosa, queda físicamente revelado en el parámetro $\ln(\pi^* / x)$. En las condiciones límite cuando $x \rightarrow 0$ y $\pi^* \rightarrow 0$, la expresión (II.21) [Brocos, 2007] coincide con el modelo de Volmer a dilución infinita (II.16). El primer término en la ecuación (II.21) corresponde al factor de compresibilidad en dos dimensiones (z^0)

$$z^{0} = \left(\frac{\pi_{0}}{\Gamma_{m}RT}\right)$$
(II.22)

La ecuación de estado para la superficie con el factor de compresibilidad se obtiene introduciendo (II.22) en (II.21)

$$\ln\left(\frac{\pi^{*}}{x}\right) = z^{0}(1-\pi^{*}) + \ln\gamma^{\infty}, \qquad 0 \le \pi^{*} \le 1$$
(II.23)

La ecuación (II.23) [Brocos, 2007] es válida para materiales anfífilos de bajo peso molecular en la región diluida, contiene dos parámetros: el factor de compresibilidad en dos dimensiones y el coeficiente de actividad a dilución infinita.

II. 3. 2. Materiales tensoactivos de alto peso molecular.

Para extender la aplicación de la ecuación (II.16) a materiales tensoactivos de alto peso molecular, deben considerarse que para estos sistemas no es posible la

determinación de la tensión superficial del tensoactivo puro debido a su naturaleza (sólidos, semisólidos o líquidos altamente viscosos) por tanto no puede escogerse la presión superficial de referencia como $\pi_0 = (\sigma_0^1 - \sigma_0^2)$. Aparentemente la presión superficial alcanza su valor máximo en la concentración micelar crítica, así, para estos sistemas π_0 es la presión en condiciones de saturación de la superficie (π_m)

La evidencia experimental [²Viades, 2006] muestra que el modelo de Volmer (II.16) es válido en la región diluida hasta la concentración micelar crítica *i.e.*, $x \le x_{cmc}$ $(0 \le \pi^* \le 1)$ de manera que su propio potencial superficial es válido en el mismo intervalo. Para tensoactivos de bajo peso molecular, el parámetro π_0 en las ecuaciones (II.16 y II.18) es la presión superficial de referencia alcanzada cuando $x \rightarrow 1$, en tanto que para tensoactivos de alto peso molecular, π_0 corresponde a la presión superficial en condiciones de saturación (π_m) *i.e.* $\pi = \pi_0 = \pi_m \forall x \ge x_{cmc}$, así, el potencial superficial de Volmer para estos tensoactivos es

$$\mu^{S} = \mu^{0S} + RT \ln \pi^{*} + \frac{\pi - \pi_{m}}{\Gamma_{m}} \qquad 0 \le \pi^{*} \le 1$$
(II.24)

El potencial químico en el seno de la disolución, correspondiente al intervalo $x \le x_{cmc}$ en el que el coeficiente de actividad es constante ($\gamma = \gamma^{\infty}$), se expresa como

$$\mu^{b} = \mu^{0b} + RT \ln \gamma^{\infty} x \qquad \qquad x \le x_{cmc}$$
(II.25)

De la igualdad de potenciales y bajo el mismo estado de referencia, para el seno de la disolución ($x = x_{cmc}$) y la superficie ($\pi = \pi_m$), $\mu^{0b} = \mu^{0S}$, se obtiene la expresión para el cálculo del coeficiente de actividad a dilución infinita para materiales anfifilicos de alto peso molecular

² El artículo se incluye en el Anexo B.
$$\ln \gamma^{\infty} = \ln \left(\frac{\pi^*}{x}\right)_{x \to 0} - \frac{\pi_m}{\Gamma_m RT}$$
(II.26)

Los parámetros necesarios para el cálculo de γ^{∞} , se obtienen con la ecuación (II.18) expresada en función de la presión superficial de saturación (π_m). La expresión (II.18) cuando $x = x_{cmc}$, $\pi = \pi_m$ y $\pi^* = 1$ se expresa como

$$-\ln x_{cmc} = \ln \left(\frac{\pi^*}{x}\right)_{x \to 0} - \frac{\pi_m}{\Gamma_m RT}$$
(II.27)

Los tensoactivos de alto peso molecular presentan el cambio de pendiente (punto c) en la concentración micelar crítica (Figura 2), a partir de este momento, la presión superficial se mantiene constante y alcanza su valor máximo.

Figura 2. Ecuación integral de Volmer (II.18) para el sistema $C_{18}E_{20}$ a 25⁰C [Viades, 2006]. Los datos experimentales siguen el modelo en la región diluida $0 < x < x_{cmc}$ (zona **a**), **b** región de valores constantes de π , punto **c** presenta las coordenadas (ln (π^*/x_{cmc}), π_{cmc}).

La comparación de (II.26) y (II.27) conduce a

$$\gamma^{\infty} = (x_{cmc})^{-1} \tag{II.28}$$

La igualdad entre el coeficiente de actividad a dilución infinita y el recíproco de la concentración micelar crítica en (II.28) fue derivada por Cheng [2005] mediante un modelo de energía de Gibbs en exceso, en este trabajo la igualdad se derivó a través del equilibrio seno de la disolución-superficie bajo la convención simétrica de coeficientes de actividad en la concentración micelar crítica cuando el seno de la solución es diluido y la superficie está saturada. Sean $x \ y \ X$ las fracciones molares del tensoactivo en el seno de la disolución y la superficie respectivamente y $\gamma \ y \ \Lambda$ los correspondientes coeficientes de actividad, entonces $x \rightarrow x_{cmc}$ $\gamma \rightarrow \gamma_{cmc}$ en tanto que para la superficie $X \rightarrow 1$ $\Lambda \rightarrow 1$. Los potenciales químicos se expresan de la siguiente manera

$$\mu^{b} = \mu^{0b} + RT \ln(\gamma x)_{cmc}$$
(II.29)

$$\mu^{s} = \mu^{0s} + RT \ln(\Lambda X)_{cmc} \tag{II.30}$$

En el equilibrio para el mismo estado de referencia en ambas fases se obtiene la siguiente expresión (II.31) de la que también se deriva la ecuación (II.28).

$$\ln(\gamma_{cmc} x_{cmc}) = 0 \tag{II.31}$$

El tratamiento termodinámico y la ecuación de Volmer sugieren que en estos sistemas como resultado de la saturación de la superficie las fuerzas intermoleculares se invierten en la formación de micelas y su posterior transferencia al seno de la disolución (Figura 3), de tal manera que es posible que la formación de micelas sea un proceso superficial y no solamente un proceso espontáneo en el seno de la fase líquida.

Figura 3 Proceso de formación de micelas en la interfase resultante de las fuerzas intermoleculares en la superficie saturada [Viades, 2006]

En el caso de materiales tensoactivos de alto peso molecular, la ecuación de estado (II.23) se obtiene sin recurrir a Margules tres sufijos o cualquier otra expresión empírica basados en la evidencia experimental, el equilibrio entre la disolución en la región diluida (II.25) con la superficie en los alrededores de la saturación (II.24) y bajo la convención simétrica de coeficientes de actividad. La ecuación (II.32) a diferencia de la expresión (II.23), contiene dos parámetros no empíricos o termodinámicos: el factor de compresibilidad superficial (z_m) en condiciones de saturación y el coeficiente de actividad a dilución infinita. [Viades, 2008].

$$\ln\left(\frac{\pi^*}{x}\right) = \left(\frac{\pi_m}{\Gamma_m RT}\right) (1 - \pi^*) + \ln \gamma^\infty = z_m (1 - \pi^*) + \ln \gamma^\infty$$
(II.32)

La nueva ecuación de estado para la superficie en el caso de tensoactivos de alto peso molecular que contiene a la concentración micelar crítica, se obtiene de (II.32) a través de la igualdad entre el coeficiente de actividad a dilución infinita y el recíproco de la concentración micelar crítica ($\gamma^{\infty} = x_{cmc}^{-1}$) [Cheng, 2005, Viades, 2006].

$$\ln\left(\frac{\pi^{*}}{x}\right) = z_{m}(1 - \pi^{*}) - \ln x_{cmc}, \qquad x \le x_{cmc}$$
(II.33)

La nueva ecuación de estado para materiales superficialmente activos solamente requiere para la descripción completa del sistema dos parámetros de ajuste: el factor superficial de compresibilidad (z_m) y el coeficiente de actividad a dilución infinita (γ^{∞}) (II.32) o bien la concentración micelar crítica (x_{cmc}) (II.33). La ecuación de estado se comporta linealmente en el intervalo $x \le x_{cmc}$ entre el $\ln(\pi * / x)_{x\to 0}$ y $-\ln x_{cmc}$ (región de Volmer) lo que permite la determinación directa de los parámetros de ajuste a partir de la curva $\ln(\pi^* / x)$ vs. (1 - π^*) cuya pendiente corresponde a z_m y la ordenada al origen proporciona el $\ln \gamma^{\infty} = -\ln x_{cmc}$ [Viades, 2008]

La nueva ecuación de estado permite analizar al coeficiente de actividad a dilución infinita a través del efecto hidrófobo y el factor de compresibilidad superficial. [Viades, 2008]. La expresión (II.33) veces *RT* cuando $x \rightarrow 0$ y $\pi^* \rightarrow 0$, contiene las expresiones de las energías estándar de adsorción y micelización

$$RT\ln\left(\frac{\pi^*}{x}\right)_{x\to 0} + RT\ln x_{cmc} = -\Delta G^0_{ads} + \Delta G^0_{mic} = z_m RT$$
(II.34)

La hipótesis de formación de micelas en la superficie saturada (Figura 3) y su posterior transferencia hacia el seno de la disolución [Viades, 2006] queda confirmado por el hecho de que $(-\Delta G^{0}_{ads} + \Delta G^{0}_{mic})$ en (II.34) es positivo, más aún, (II.34) también incluye la región de Volmer que corresponde al intervalo $0 \le \pi^* \le 1$ y permite el cálculo de ΔG^{0}_{ads} y ΔG^{0}_{mic} , a partir de la intercepción y la pendiente de la curva $\ln(\pi^*/x)$ vs. (1 - π^*) respectivamente.

Las contribuciones por grupo a la *cmc* y por tanto al γ^{∞} pueden calcularse sin recurrir a modelos predictivos como NRTL, UNIQUAC, etc. mediante contribuciones hidrofílicas-lipofílicas que pueden considerarse propiedades aditivas [Rosen, 1989, Huibers, 1996 y Gracia, 1999]

$$\ln x_{cmc} = n\chi_{hphobic} + m\chi_{hphillic} \tag{II.35}$$

Donde $\chi_{hphobic}$ y $\chi_{hphillic}$ son las contribuciones hidrofóbica e hidrofílica respectivamente. La expresión (II.35) es válida exclusivamente para soluciones acuosas, $\chi_{hphobic}$ incluye dos contribuciones hidrofóbicas (alifática y aromática) [Gracia, 1999]

$$\ln x_{cmc} = \chi_{aromatic} + n\chi_{aliphatic} + m\chi_{hphillic}$$
(II.36)

Donde *n* es el número de carbonos en la cadena de hidrocarburo y *m* el número de grupos hidrofilicos. La inclusión de la contribución aromática es indispensable en tensoactivos fenólicos, si bien el grupo fenólico no forma micelas sí se asocia y contribuye al descenso de la tensión superficial, de manera que al $\ln \gamma^{\infty}$ del fenol debe considerársele como un "núcleo" al que habrá que sumarle la contribución de cada – CH₂- para el cálculo.

Por la relación $\ln \gamma^{\infty} = -\ln x_{cmc}$ las curvas $\ln \gamma^{\infty}$ vs. n y $-\ln x_{cmc}$ vs. n tienen el mismo perfil y en ambos casos la pendiente es ~ $\ln 3$ (~1.1) como lo predice la regla de Traube [Traube, 1891]. En la Tabla V.10 (Capítulo V), se muestran valores de contribuciones hidrófobas de varios tensoactivos que confirman la aseveración anterior. Por otro lado, las definiciones de las energías estándar de adsorción y micelización y la relación entre ellas (II.29) muestran que la dependencia con el número de carbonos en la cadena también es lineal.

Capítulo III.

Medición de la tensión superficial dinámica y en el equilibrio.

III. 1. Introducción.

La tensión superficial puede determinarse por métodos basados en el desprendimiento de un sólido de una superficie líquida, o bien por métodos basados en la forma de gotas o burbujas estáticas [Adamson, 1997] que representan la última generación de métodos instrumentales. En los métodos de desprendimiento, la medición requiere la extensión y rompimiento de la superficie como en los métodos del anillo, placa y peso de la gota, en los que el proceso de medición introduce errores como el efecto del observador y la perturbación del sistema que debido a que no se conoce el tiempo requerido para que la superficie alcance el equilibrio, resulta difícil de medir. En los métodos basados en el perfil de gotas o burbujas, la forma de una superficie permite mediante imágenes conocer los valores de tensión superficial e interfacial entre fases fluidas y determinan las propiedades superficiales al equilibrio, a partir de las dimensiones medidas sobre la imágenes de la gota [Adamson, 1997]. La curvatura de una superficie es una variable termodinámica relevante que proporciona una explicación básica de las formas que diferentes sistemas adquieren en la naturaleza [⁵Viades, 2007].

La obtención de datos de tensión superficial de alta calidad demanda recurrir a métodos instrumentales basados en la forma de la interfase que constituyen la última generación para estas mediciones, ya que el seguimiento de imágenes con el tiempo permite identificar la lejanía o cercanía de las condiciones al equilibrio en soluciones de materiales superficialmente activos, especialmente en la región diluida donde los efectos cinéticos requieren una gran inversión de tiempo. El método de la gota pendiente [Andreas, 1938] resulta particularmente adecuado para estos fines, sobre todo cuando se pretende medir en ámbitos de presión superficial menores a los 20 mN/m.

⁵ Josefina Viades Trejo, Jesús Gracia Fadrique, Curvatura y Termodinámica, Educación Química, 18, 2, (2007), 122-126. El artículo se incluye en el Anexo B

III. 2. Método de la gota pendiente.

El método de la gota pendiente, propuesto en 1881 por Worthington y mejorado por Andreas [Andreas, 1938], se basa en el perfil de una gota o burbuja estática formada bajo condiciones que garanticen la ausencia de perturbaciones, con el tiempo la gota sufre una alargamiento producido por la variación de la presión hidrostática que eventualmente será comparable a la presión ejercida en su ápice, hasta alcanzar una forma al equilibrio.

El método presenta ventajas que lo hacen especialmente útil para los propósitos de el trabajo experimental que se presenta: Requiere muestras pequeñas, mide tensiones superficiales e interfaciales de magnitudes desde 0.3 hasta 370 mN/m en sistemas donde al menos un líquido sea transparente y los fluidos tengan diferentes densidades; es posible tener un control eficiente de la temperatura de trabajo; puede ser sujeto a un análisis matemático completo de las imágenes registradas que constituyen un registro permanente de las mediciones; se obtienen resultados independientes del ángulo de contacto entre el fluido y el aparato; no presenta efectos viscosos por ser un método estático; las mediciones son instantáneas y pueden hacerse sucesivamente sin perturbar a la superficie.

Las gotas tienden a la esfericidad debido a las fuerzas de tensión superficial que dependen del área, la cual decrece en forma proporcional al cuadrado de las dimensiones lineales, mientras que el efecto del campo gravitacional responsable de la deformación de la gota, disminuye en forma proporcional al cubo de dichas dimensiones [Adamson, 1997], de modo que cuando ambos efectos están en equilibrio la tensión superficial se puede determinar mediante el análisis automatizado de imágenes digitales del perfil de la gota. El tratamiento está basado en la ecuación de Young-Laplace, que describe el equilibrio mecánico entre dos fases separadas por una superficie curva y relaciona a la diferencia de presión en fases fluidas con la curvatura y la tensión superficial. En ausencia de campos externos, (eléctricos, magnéticos,

centrífugos o gravitacionales) la condición esférica es la forma geométrica adoptada espontáneamente por las superficies curvas

$$\Delta P = \frac{2\sigma}{R_0} \tag{III.1}$$

Donde ΔP es la diferencia de presiones entre las fases, σ la tensión superficial o interfacial y R_0 el radio de la esfera. La descripción de una superficie curva no esférica requiere al menos de dos radios de curvatura, de aquí que los conceptos de curvatura, radio de curvatura y radio máximo de curvatura constituyan los elementos indispensables para construir la ecuación general de Young-Laplace en sus formas ordinaria y diferencial.

$$\Delta P = \sigma \left(\frac{1}{R_1} + \frac{1}{R_2} \right) \tag{III.2}$$

La expresión (III.2) corresponde a la ecuación general de Young-Laplace en su forma ordinaria. Donde R_1 y R_2 son los radios máximos de curvatura en planos ortogonales. La curvatura (K) de una sección de arco en un punto arbitrario (P) (Figura 1), se define como el límite de la razón del ángulo (ϕ) de la tangente en el punto (P), respecto a la longitud del segmento de arco (Δ S) [Ayres, 2001] donde y' y y'' corresponden a la primera y segunda derivadas respectivamente.

$$K = \lim_{\Delta S \to 0} \frac{\Delta \phi}{\Delta S} = \frac{y''}{\left(1 + {y'}^2\right)^{3/2}} \qquad \qquad R = \frac{1}{K}$$
(III.3)

Figura 1. Curvatura de una sección de arco.

Bajo la influencia de un campo externo se pierde la condición esférica, como en el caso de la gota pendiente mostrada en la Figura 2 [Zappieri, 2001], en el ápice de la gota (y = 0) el radio de curvatura corresponde al de una esfera de radio (R_o); a partir de ese punto la curvatura y los radios de curvatura cambian punto a punto con la presión hidrostática, así la condición no esférica (NE) se construye a partir de la condición esférica (E) sometida al campo externo (F) responsable de la deformación

$$NE = E + F \tag{III.4}$$

Figura 2. Gota pendiente de una boquilla [Zappieri, 2001].

La expresión (III.4) relaciona ΔP para una superficie esférica (III.1) con ΔP para una superficie curva no esférica (III.2)

$$\sigma\left(\frac{1}{R_1} + \frac{1}{R_2}\right) = \frac{2\sigma}{R_0} + \Delta\rho gy \tag{III.5}$$

La expresión (III.5) es la ecuación de Young-Laplace para una superficie curva bajo campo gravitacional, donde g es la constante gravitacional, "y" la altura hidrostática medida desde el ápice de la gota hacia arriba (Figura 2) y $\Delta \rho$ la diferencia de densidades entre las fases. El primer término a la derecha en la ecuación (III.5) se refiere a la contribución por curvatura (esférica) a la diferencia de presión, mientras que el segundo término representa la contribución debida a la deformación de la condición esférica por la presión hidrostática provocada por el campo externo. Debido al cambio de los radios de curvatura con la posición hidrostática, la ecuación (III.5) requiere necesariamente de su forma diferencial, para lo cual las expresiones de los radios de curvatura pueden obtenerse mediante las definiciones de curvatura y radio de curvatura aplicadas a una sección de arco en el perfil de la gota como se muestra en la Figura 1.

$$\sigma \left[\frac{y''}{\left(1 + {y'}^2\right)^{\frac{3}{2}}} + \frac{y'}{x\left(1 + {y'}^2\right)^{\frac{1}{2}}} \right] = \frac{2\sigma}{R_0} + \Delta\rho gy$$
(III.6)

La expresión (III.6) se aplica a todo tipo de superficies curvas: meniscos, gotas, burbujas y al ángulo de contacto de una fase fluida sobre una superficie. La solución de la ecuación (III.6) requiere necesariamente de métodos numéricos o su reducción a casos particulares como es el caso de la gota rotatoria [⁶Viades, 2007]. El trabajo pionero de Bashforth y Adams ha servido como base para los métodos numéricos relacionados con la forma de la superficie. Diversos autores han definido parámetros de forma que generalmente se expresan en términos de la diferencia de densidades entre las fases, la tensión interfacial, la fuerza del campo externo, el radio y una distancia. Los

⁶ J. Viades-Trejo, J. Gracia Fadrique, Colloids and Surfaces A: Physicochem. Eng. Aspects, 302 (2007) 549-552. El artículo se incluye en el Anexo B.

primeros parámetros de forma fueron propuestos por Andreas, Hauser y Tucker [Andreas, 1938] para el método de la gota pendiente, para el que no se ha encontrado una solución no numérica y por Princen, Zia y Mason [Princen, 1967] para el método de la gota rotatoria, para el que sí se ha encontrado la solución analítica [⁷Viades, 2007] mediante la definición de un parámetro de forma que depende únicamente del factor de reducción (*n*) del radio de la gota esférica a través de la reducción de la ecuación diferencial (III.4) al caso de un cilindro para el cual a una velocidad angular suficientemente alta los radios de curvatura $R_2 \rightarrow R$ y $R_1 \rightarrow \infty$. La solución analítica para el método de la gota rotatoria [⁷Viades, 2007], permite la determinación de la tensión interfacial, midiendo el radio del cilindro R a diferentes velocidades angulares ω , conociendo R, el radio de la gota esférica R_0 , la diferencia de densidades entre fases $\Delta \rho$, y ω .

La solución de la ecuación (III.6) para el cálculo de la tensión superficial y/o interfacial de fases fluidas en el método de la gota pendiente se obtiene mediante el análisis del perfil de la gota axisimétrica⁸. La Figura 3 muestra la geometría de la gota en términos de las coordenadas cartesianas (x, z), donde S es la longitud del arco y ϕ el ángulo tangente a la superficie de la gota. El perfil de la gota queda descrito por tres ecuaciones diferenciales derivadas por Bashforth y Adams [Anastasiadis, 1987, Song, 1996, Dingle, 2005].

⁷ J. Viades-Trejo, J. Gracia Fadrique, Colloids and Surfaces A: Physicochem. Eng. Aspects, 302 (2007) 549-552. El artículo se incluye en el Anexo B.

⁸ Gota axisimétrica es aquella que presenta simetría respecto al eje longitudinal ver Fig. 2.

Figura 3. Geometría de la gota pendiente, con la definición del sistema de coordenadas cartesianas usadas en el análisis numérico de Bashforth-Adams.

$$\frac{d\phi}{dS'} = 2 \pm \beta Z - \frac{sen\phi}{X} \tag{III.7}$$

$$\frac{dX}{dS'} = \cos\phi \tag{III.8}$$

$$\frac{dZ}{dS'} = sen\phi \tag{III.9}$$

Donde las variables *S*, *x* y *z* se normalizan en términos del radio de curvatura en el ápice de la gota (R_0) para definir las variables adimensionales $S' = S/R_0$, $X = x/R_0$ y $Z = z/R_0$; el parámetro β es el número de Bond y está dado por

$$\beta = \frac{\Delta \rho g R_0^2}{\sigma} \tag{III.10}$$

La magnitud adimensional β es pequeña cuando las fuerzas intermoleculares en el seno de la disolución son débiles y las fuerzas de tensión superficial son fuertes. El número de Bond es un parámetro relacionado también con la forma de la superficie, es

positivo para formas de revolución como los oblatos, o sea, gotas sésiles, una burbuja sobre una placa y un menisco en un capilar en las que el vector gravitacional se dirige en el sentido positivo del eje coordenado z y es negativo para prolatos como son las gotas pendientes o burbujas colgantes con el vector gravitacional dirigido en el sentido negativo del eje z.

Las aplicaciones del método de la gota pendiente son muy variadas, se ha usado en sistemas líquido-vapor, líquido-líquido, materiales orgánicos, materiales fundidos y sales, así como en compuestos puros y soluciones concentradas. Las mediciones pueden realizarse en condiciones normales de temperatura y presión, así como en el vacío y a altas presiones.

Capítulo IV.

Metodología Experimental.

IV. 1. Equipo.

Las tensiones superficiales se determinaron con un tensiómetro de gota pendiente y ángulo de contacto KSV CAM200 (Figuras 1 y 2), el equipo básico consta de los siguientes elementos: Unidad de interfase CAM200, fuente de luz monocromática estroboscópica (LED), plataforma y soporte para dispensador de muestra ajustables, video cámara CCD constituida por el módulo Jai CV-M50 de video cámara monocromática, sensor CCD de imagen de estado sólido, lente objetivo telecéntrico con 55 *mm* de longitud de foco, capturador de imágenes (frame grabber) Matrox Meteor II, resolución 512 x 512 pixeles y el software CAM200. El equipo fue complementado con la unidad de control de temperatura OMRON E5GN, una micro jeringa Hamilton de $10\mu L$ con aguja de acero inoxidable y punta roma usada como dispensador manual y una PC para la captura de datos.

El aparato se encuentra instalado sobre un sistema antivibratorio constituido por una placa de poli estireno expandido con recubrimiento de corcho entre dos capas de hule vulcanizado y reticulado en un cuarto construido a nivel de planta baja con el propósito de reducir los efectos de vibración del suelo, sin ventanas para controlar el grado de iluminación y evitar corrientes de aire.

Los materiales bajo estudio se pesaron en una balanza analítica digital Ohaus Explorer Pro, equipada con el software Rev. 1.20, con capacidad de pesada máxima: 200 g y sensibilidad: 1 mg.

Figura 1. Hardware básico y descripción física del equipo CAM200

IV. 2. Materiales.

Seis miembros de la serie homóloga del poli oxietilén mono octadecil éter (C₁₈E_m), con m = 4, 6, 8, 10, 20 y 100. Los tres primeros se adquirieron en la casa Fluka Bio Chemika: i) polioxietilén (4) mono octadecil éter (C₁₈H₃₇(OCH₂CH₂)₄OH), FW 446.70, mp = 44-46 ^{0}C , WGK 3, pureza > 99% (GC), ii) polioxietilén (6) mono octadecil éter (C₁₈H₃₇(OCH₂CH₂)₆OH), FW 534.81, mp = 45-50 ^{0}C , F: 3, WGK 3, pureza > 99% (TLC), iii) polioxietilén (8) mono octadecil éter (C₁₈H₃₇(OCH₂CH₂)₈OH), FW 622.91, mp = 47-49 ^{0}C , F: 3, WGK 3, pureza > 98% (TLC). Los otros tres son tensoactivos comerciales de la marca ICI American Inc., distribuidos por Sigma-Aldrich Chemicals, con las siguientes

especificaciones: iv) Brij 76 ($C_{18}H_{37}(OCH_2CH_2)_nOH$), $n \sim 10$, polioxietilén (10) mono octadecil éter, $M_n \sim 711$, $\rho = 0.964$ g/mL a $25^{\circ}C$, mp = $37 \cdot 39^{\circ}C$, HLB 12, Fp = $110^{\circ}C$, v) Brij 78 ($C_{18}H_{37}(OCH_2CH_2)_nOH$), $n \sim 20$, polioxietilén (20) mono octadecil éter, mp = $44 \cdot 46^{\circ}C$, HLB 15, Fp = $110^{\circ}C$ y vi) Brij 700 ($C_{18}H_{37}(OCH_2CH_2)_nOH$), $n \sim 100$, polioxietilén (100) mono octadecil éter, $M_n \sim 4670$, $\rho = 1.1$ g/mL a $25^{\circ}C$, mp = $51 \cdot 54^{\circ}C$, HLB 18, Fp = $150^{\circ}C$. Todos los tensoactivos fueron utilizados sin ningún tratamiento posterior. En la preparación de las soluciones de tensoactivos, se usó agua destilada producida en un destilador Barnstead / Thermoline Mega Pure System MP 1 (Modelo A440266) de 1 L/H de capacidad, la tensión superficial a $25 \pm 1^{\circ}C$ determinada con el equipo de trabajo fue de 71.97 mN/m.

Figura 2. Tensiómetro de gota pendiente KSV CAM 200

IV. 3. Metodología experimental.

Se prepararon soluciones acuosas de todos los tensoactivos de concentración 1 g/L a temperatura ambiente excepto para el $C_{18}E_6$ y el $C_{18}E_4$ los cuales se disolvieron calentando ligeramente la solución. Partiendo de estas soluciones iniciales, se prepararon diluciones en el intervalo: 1 x 10⁻⁵ $\leq C \leq 1$ g/L (10⁻⁸ a 10⁻⁴ *M*). La muestra contenida en la micro jeringa se colocó en el soporte introduciendo la aguja en la celda de la unidad de control de temperatura colocada sobre la plataforma ajustable, la temperatura se controló a 25 $\pm 1^{0}C$. Las gotas se formaron manualmente, sus tamaños fueron controlados mediante el dispositivo para definición de área incluido en el software. Para evitar la evaporación, se colocó en la cámara papel tisú impregnado con la solución bajo estudio. El seguimiento por imágenes con el tiempo, se efectuó por triplicado sobre las soluciones recién preparadas a intervalos entre 80 *ms* y 300 *s* programados con el software durante periodos de tiempo entre 37 *min.* y 7 *hs.* según la muestra estudiada. El cálculo de la tensión superficial dinámica se efectuó con el software CAM200, mediante el ajuste de la curvatura con la ecuación de Young-Laplace.

Capítulo V.

Metodología de Cálculo y Análisis de Datos Experimentales.

V. 1. Metodología de cálculo del coeficiente de actividad a dilución infinita.

En este capítulo se explica detalladamente el proceso de obtención de los coeficientes de actividad a dilución infinita y de las concentraciones micelares críticas de los tensoactivos estudiados y se muestran en tablas los valores obtenidos con el modelo desarrollado. Se describe también la obtención del coeficiente superficial de compresibilidad a partir de la nueva ecuación de estado, así como el cálculo de las contribuciones hidrófilas-lipófilas al coeficiente de actividad a dilución infinita y a la concentración micelar crítica.

V.1.1. Determinación de las presiones superficiales en el equilibrio y de saturación.

Las imágenes registradas con la cámara de video permiten el cálculo de los valores de tensión superficial dinámica ($\sigma(t)$) mediante el software CAM200, (Tablas.1 y 2 Anexo A) y con éstas la presión superficial dinámica ($\pi(t)$) con la ecuación (V.1)

$$\pi(t) = \sigma_0 - \sigma(t) \tag{V.1}$$

Donde σ_o es la tensión superficial del agua pura y $\sigma(t)$ la tensión superficial dinámica de la solución en el tiempo *t*, ambas a la temperatura de trabajo. La relación de $\pi(t)$ vs. *t* es una función monótona creciente. De la región asintótica de la función se estima el valor de la presión superficial al equilibrio (π_{eq}) para tres muestras de cada solución (Figura 1).

Figura 1. Curvas $\pi(t) - t$ de tres muestras de la solución de 1 g/L del poli oxietilén (100) mono octadecil éter (Brij 700) a 25^oC [Viades, 2006].

Tabla V.1. Polioxietilén (4) mono octadecil éter
--

C (g/L)	C x 10 ⁴ (M)	Fracción mol	Presión superficial al equilibrio (π_{eq}) (mN/m)
		$(x) \ge 10^6$	(promedio de tres muestras)
1	22.4	40.4	35.0 ± 0.03
0.5	11.2	20.2	35.4 ± 0.6
0.25	5.61	10.1	35.6 ± 0.1
0.1	2.24	4.04	34.5 ± 0.05
0.05	1.12	2.02	34.6 ± 0.3
0.025	0.56	1.01	35.3 ± 0.06
0.01	0.224	0.404	24.1 ± 0.04
0.005	0.112	0.202	15.9 ± 0.05
0.0025	0.056	0.101	10.2 ± 0.4
0.0001	0.0224	0.0404	6.4 ± 0.4

Presión	super	ficial	al	equi	li	bri	0

C (g/L)	$C \ge 10^4 (M)$	Fracción mol	Presión superficial al equilibrio (π_{eq}) (mN/m)
		$(x) \ge 10^6$	(promedio de tres muestras)
1	18.7	33.7	37.4 ± 0.3
0.5	9.36	16.9	37.8 ± 0.3
0.25	4.68	8.43	37.6 ± 0.01
0.1	1.87	3.37	37.4 ± 0.04
0.075	1.40	2.53	37.0 ± 0.3
0.05	0.936	1.69	36.2 ± 0.06
0.025	0.468	0.843	33.0 ± 0.4
0.01	0.187	0.337	29.4 ± 0.7
0.005	0.0936	0.169	26.2 ± 0.4

Tabla V.2. Polioxietilén (6) mono octadecil éter

Identificación de condiciones al equilibrio

Tabla V.3. Polioxietilén (8) mono octadecil éter

C (g/L)	$C \ge 10^4 (M)$	Fracción mol	Presión superficial al equilibrio (π_{eq}) (mN/m)
		$(x) \ge 10^6$	(promedio de tres muestras)
1	16.1	28.98	39.3 ± 0.3
0.5	8.04	14.47	39.3 ± 0.2
0.25	4.02	7.24	39.2 ± 0.2
0.125	2.01	3.62	39.2 ± 0.03
0.10	1.61	2.898	39.1 ± 0.08
0.05	0.804	1.447	37.5 ± 0.06
0.025	0.402	0.724	37.0 ± 0.06
0.0125	0.201	0.362	35.1 ± 0.4
0.01	0.161	0.2898	34.3 ± 0.2
0.005	0.0804	0.1447	33.2 ± 0.08
0.0025	0.0402	0.0724	31.9 ± 0.03

Identificación de condiciones al equilibrio

Tabla V.4. Polioxietilén (10) mono octadecil éter (Brij 76)

Identificación de condiciones al equilibrio

C (g/L)	C x 10 ⁴ (M)	Fracción mol (x) x 10^6	Presión superficial al equilibrio (π_{eq}) (mN/m) (promedio de tres muestras)
1	8.70	15.66	37.2 ± 0.2
0.5	4.40	7.92	37.6 ± 0.3
0.25	2.20	3.96	36.9 ± 0.1
0.10	0.87	1.566	37.2 ± 0.1
0.05	0.44	0.792	35.7 ± 0.2
0.025	0.22	0.396	36.7 ± 0.08
0.01	0.087	0.1566	28.8 ± 0.2
0.005	0.044	0.0792	19.4 ± 0.2
0.0025	0.022	0.0396	18.0 ± 0.1
0.001	0.0087	0.01566	12.1 ± 0.3
0.0005	0.0044	0.00792	7.3 ± 0.04

C (g/L)	$C \ge 10^4 (M)$	Fracción mol	Presión superficial al equilibrio (π_{eq}) (mN/m)
		$(x) \ge 10^{\circ}$	(promedio de tres muestras)
1	8.70	15.66	30.8 ± 0.06
0.5	4.40	7.92	30.7 ± 0.04
0.25	2.20	3.96	31.0 ± 0.1
0.10	0.87	1.566	30.1 ± 0.3
0.05	0.44	0.792	30.0 ± 0.3
0.025	0.22	0.396	29.4 ± 0.08
0.01	0.087	0.1566	27.9 ± 0.4
0.005	0.044	0.0792	23.7 ± 0.1
0.0025	0.022	0.0396	18.2 ± 0.2
0.001	0.0087	0.01566	12.3 ± 0.08
0.0005	0.0044	0.00792	8.8 ± 0.03
0.00025	0.0022	0.00396	3.3 ± 0.009

Tabla V.5. Polioxietilén (20) mono octadecil éter (Brij 78)

Identificación de condiciones al equilibrio

Tabla V.6. Polioxietilén (100) mono octadecil éter (Brij 700)

C (g/L)	C x 10 ⁴ (M)	Fracción mol	Presión superficial al equilibrio (π_{eq}) (mN/m)
		$(x) \ge 10^6$	(promedio de tres muestras)
1	2.14	3.85	23.8 ± 0.08
0.5	1.07	1.93	22.9 ± 0.1
0.25	0.535	0.964	22.9 ± 0.08
0.125	0.268	0.482	23.0 ± 0.03
0.10	0.214	0.385	23.7 ± 0.2
0.05	0.107	0.193	22.2 ± 0.09
0.025	0.0535	0.0964	19.1 ± 0.4
0.0125	0.0268	0.0482	19.6 ± 0.2
0.01	0.0214	0.0385	18.8 ± 0.2
0.005	0.0107	0.0193	12.6 ± 0.7
0.0025	0.00535	0.00964	10.1 ± 0.03
0.001	0.00214	0.00385	6.9 ± 0.03
0.0005	0.00107	0.00193	4.4 ± 0.04
0.0001	0.000214	0.000385	2.1 ± 0.02
0.00005	0.000107	0.000193	0.8 ± 0.05

Identificación de condiciones al equilibrio

La relación entre la presión superficial de equilibrio (π_{eq}) y la fracción mol (x) es una función monótona estrictamente creciente. La región asintótica señala el valor de la presión superficial de saturación de la superficie (π_m) (Figura 2), con la cual se define la presión superficial reducida (π^*) mediante la expresión (V.2)

Figura 2. Curva $\pi_{eq} - x$ para el sistema poli oxietilén (100) mono octadecil éter a 25^oC [Viades, 2006]

V.1.2. Cálculo del coeficiente de actividad a dilución infinita.

La presión superficial reducida permite representar la relación $\ln(\pi */x) - \pi_{eq}$ (Figura 3) contenida en la ecuación de Volmer (V.3); partiendo de la región lineal de esta relación, es posible el cálculo de la concentración superficial de saturación (Γ_m) y del ln ($\pi */x$)_{$x\to 0$} mediante el recíproco de la pendiente y la ordenada al origen respectivamente (Tabla V.7).

$$\ln\left(\frac{\pi^*}{x}\right) = \ln\left(\frac{\pi^*}{x}\right)_{x \to 0} - \frac{\pi_{eq}}{\Gamma_m RT}$$
(V.3)

Parametros de la forma integral de la ecuación de estado de Volmer (V.3).						
Compuesto	Intervalo de π^1	$ln(\pi^*/x)_{x\to 0}$	$\Gamma_m RT$	π_m^2		
No Iónicos						
C ₁₈ E ₄ [Viades, 2006]	10.2-35.3	15.30 ± 0.05	23.810 ± 0.002	35.07 ± 0.18		
C ₁₈ E ₆ [Viades, 2006]	26.2-37	20.5 ± 0.2	5.000 ± 0.005	37.70 ± 0.13		
C ₁₈ E ₈ [Viades, 2006]	31.9-39.2	32.0 ± 0.4	2.00 ± 0.01	39.30 ± 0.03		
C ₁₈ E ₁₀ [Viades, 2006]	7.3-34	17.6 ± 0.2	10.100 ± 0.004	37.6 ± 0.2		
C ₁₈ E ₂₀ [Viades, 2006]	10.7-28	19.1 ± 0.2	8.33 ± 0.01	30.6 ± 0.2		
C ₁₈ E ₁₀₀ [Viades, 2006]	0.8-22.0	19.2 ± 0.08	6 ± 0.006	23.3 ± 0.2		
NF 6 [Ortega, 2000]	18.5-41.3	21.83 ± 0.04	11.000 ± 0.001	42.73 ± 0.02		
NF10.5 [Ortega, 2000]	18.1-41.3	18.6 ± 0.1	8.90 ± 0.04	42.11 ± 0.07		
NF 12 [Ortega, 2000]	17.7-27.5	13.38 ± 0.02	12.500 ± 0.001	27.40 ± 0.36		
NF17.5 [Ortega, 2000]	15-32.1	18.80 ± 0.07	8.130 ± 0.003	33.200 ± 0.096		
NFSS 10.5 [Ortega, 2000]	19.6-35.5	17.06 ± 0.03	12.500 ± 0.001	41.3 ± 0.1		
Iónicos						
DSS [Castro, 2001]	19.5-33.6	10.003 ± 0.045	21.280 ± 0.003	34.6 ± 0.2		
L pH 1.2 [Martínez, 2002]	40.7-47.6	22.4 ± 0.3	4.810 ± 0.007	47.60 ± 0.04		
L pH 3.2 [Martínez, 2002]	37.3-42.8	19.2 ± 0.2	6.700 ± 0.004	46.53 ± 0.04		
L pH 5.8 [Martínez, 2002]	39.6-46.4	19.2 ± 0.3	6.900 ± 0.008	46.70 ± 0.04		
L pH 7.4 [Martínez, 2002]	35.5-46.3	18.7 ± 0.2	7.040 ± 0.006	46.700 ± 0.035		
L pH 10 [Martínez, 2002]	33.9-46.3	18.2 ± 0.3	7.760 ± 0.008	46.55 ± 0.03		
DSS nH 4 [Hernaínz 2006]	3 8-35 5	128 ± 02	9.090 ± 0.007	35.25 ± 0.09		
DSS pH 6 [Hernaínz, 2006]	1 5-33 2	12.0 ± 0.2 10.87 ± 0.08	18500 ± 0.007	35.23 ± 0.09 35.020 ± 0.063		
DSS pH 8 [Hernaínz, 2006]	2 7-34 2	10.07 ± 0.00 11.3 ± 0.1	15600 ± 0.004	33.92 ± 0.003		
DSS pH 0 [Hernaínz, 2000]	3 0-32 9	11.3 ± 0.1 11.4 ± 0.1	14300 ± 0.000	33.2 ± 0.12		
	5.0 52.9	11.1 = 0.1	11.500 ± 0.005	$\frac{55.2 \pm 0.1}{1}$		

Tabla V.7 Parámetros de la forma integral de la ecuación de estado de Volmer (V 3)

 C_{18} Ei = polietilén glicol mono octadecil eter NP = nonil fenol, NPSS = nonilil fenol sulfato sódico, DSS = dodecil sulfato sódico, L = lecitina, DSS = 1-dodecan sulfonato sódico

1 Intervalo de π = espacio de Volmer 2 Valores de π de la región de π constante en la gráfica π vs. x.

Los parámetros (Γ_m) y ln (π^*/x)_{$x\to 0$}., se utilizan para el cálculo del coeficiente de actividad a dilución infinita con la ecuación (V.4) (Tabla V.8).

$$\ln \gamma^{\infty} = \ln \left(\frac{\pi^*}{x}\right)_{x \to 0} - \frac{\pi_m}{\Gamma_m RT}$$
(V.4)

Figura 3. Determinación de los parámetros de la ecuación (V.3) requeridos para el cálculo del coeficiente de actividad a dilución infinita n (V.4). Sistema poli oxietilén (100) mono octadecil éter a 25^oC [Viades, 2006]

V. 2. Determinación de la concentración micelar crítica.

Mediante la ecuación (V.5) se obtiene la fracción mol correspondiente a la concentración micelar crítica (x_{cmc}). Adicionalmente con el objeto de probar la capacidad predictiva de la ecuación, la x_{cmc} se determina a partir de la isoterma de Gibbs por el método tradicional (cambio de régimen en la curva σ vs ln x) (Tabla V.8), un ejemplo se muestra en la Figura 4.

$$\gamma^{\infty} = (x_{cmc})^{-1} \tag{V.5}$$

Figura 4. Determinación de la concentración micelar crítica mediante la isoterma de Gibbs. Sistema poli oxietilén (100) mono octadecil éter a 25⁰C [Viades, 2006]

A partir de datos experimentales de tensión superficial de la literatura [Castro, 2001, Martínez, 2002, Ortega, 2000, Hernaínz, 2006], se calcularon los coeficientes de actividad a dilución infinita de tensoactivos no iónicos (nonil fenoles) y dos tipos de tensoactivos iónicos: zwitteriónicos (lecitinas) y aniónicos (dodecil sulfato sódico y dodecansulfonato sódico). Los tensoactivos iónicos se incluyeron con el propósito de determinar si la presencia de los grupos iónicos resulta en desviaciones respecto al comportamiento predicho por la ecuación superficial de estado de Volmer, las lecitinas adicionalmente proporcionan información sobre la influencia del pH en el coeficiente de actividad a dilución infinita (Tablas V.7 y V.8).

		$x_{cmc} \ge 10^8$		
Compuesto ¹	$\gamma^{\infty} \ge 10^{-4}$ Eq. (V.4)	Ecuación (V.5)	σ vs lnx	
No iónicos				
C ₁₈ E ₄ [Viades, 2006]	101.2 ± 2.5	99.8 ± 3.3	99.5	
C ₁₈ E ₆ [Viades, 2006]	43.0 ± 4.5	235 ± 42	231	
C ₁₈ E ₈ [Viades, 2006]	24.0 ± 2.8	420 ± 140	382	
C ₁₈ E ₁₀ [Viades, 2006]	106 ± 5	94.0 ± 7.1	107	
C ₁₈ E ₂₀ [Viades, 2006]	482 ± 50	22.0 ± 3.7	25.1	
C18E100 [Viades, 2006]	450.0 ± 5.3	22.20 ± 0.42	28.4	
		1 (10 - 0 00)	1.04	
NF 6 [Ortega, 2000]	6200 ± 140	1.610 ± 0.006	1.84	
NF10.5 [Ortega, 2000]	106.0 ± 5.8	95.0 ± 8.3	88	
NF 12 [Ortega, 2000]	7.23 ± 0.036	$1\ 380\pm 2.9$	1 500	
NF17.5 [Ortega, 2000]	246.0 ± 8.4	40.6 ± 2.2	44.3	
NFSS 10.5 [Ortega, 2000]	94.2 ± 1.2	106.0 ± 2.2	128	
Iónicos				
DSS [Castro, 2001]	0.593 ± 0.013	$16\ 800 \pm 403$	16 818	
L pH 1.2 [Martínez, 2002]	27.0 ± 2.3	371 ± 87	436	
L pH 3.2 [Martínez, 2002]	21.0 ± 2.4	476 ± 93	511	
L pH 5.8 [Martínez, 2002]	25.1 ± 3.7	399 ± 100	519	
L pH 7.4 [Martínez, 2002]	17.30 ± 0.98	577 ± 52	610	
L pH 10 [Martínez, 2002]	19.8 ± 3.4	503 ± 34	516	
DSS pH 4 [Hamaing 2006]	0.76 ± 0.84	$14,000 \pm 2,500$	20.000	
DSS pH 4 [Hernalinz, 2006]	0.70 ± 0.04	14000 ± 2300 11 400 ± 920	20 000	
DSS pH 0 [Hernainz, 2006]	0.09 ± 0.04	11400 ± 830 11000 + 040	14 000	
DSS pH 8 [Hernainz, 2006]	0.93 ± 0.05	11000 ± 940	13 900	
DSS pH 10 [Hernainz, 2006]	$0.8 / / \pm 0.04 /$	11600 ± 1000	14 100	

Tabla V.8 Coeficientes de actividad a dilución infinita, comparación de concentraciones micelares críticas predichas con la ecuación (V.5) y experimentales

 C_{18} Ei = polietilén glicol mono octadecil eter, NP = nonil fenol, NPSS = nonil fenol sulfato sódico, DSS = dodecil sulfato sódico, L = lecihina, DSS = 1-dodecan sulfonato sódico.

V. 3. Cálculo del factor superficial de compresibilidad.

Los factores de compresibilidad superficiales en la nueva ecuación de estado (II.24) (Tabla V.9), para líquidos ordinarios [Gracia, 2002 y Granados, 2006] y tensoactivos oxietilénicos [Crook, 1963; Meguro, 1981; Rosen, 1976 y Schick, 1962] se calcularon con la ecuación (V.6)

$$z_m = \left(\frac{\pi_m}{\Gamma_m RT}\right) \tag{V.6}$$

Tab	ıla 9.
Factor superficial de compresibilidad a partir d	e la ecuación (V.6) a 25ºC, para alcoholes y
ácidos carboxílicos normales y para tensoacti	vos etoxilados con número de unidades de
óxido de etileno (m) y número de át	tomos de carbono (<i>n</i>) constantes.
~	-

2m				2_m			
п	R-OH	R-COOH	п	C _n E ₆	п	C _n E ₈	
	[Gracia, 2002]	[Granados, 2006]		[Rosen, 1967]		[Meguro, 1981]	
1	1.90	2.5	6	6.0	10	6.4	
2	2.17	3.3	10	5.7	13	5.5	
3	2.00	2.7	12	4.5	14	4.5	
4	1.99	2.4	16	3.7	15	4.3	
		-	т	NP	т	ptOPE	
				[Schick, 1962]		[Crook, 1963]	
		-	10	5.7	7	5.9	
			15	6.0	8	6.2	
			30	6.6	9	6.2	
					10	6.8	

NP = nonil fenoles; ptOPE = para ter octil fenoles

V. 4. Cálculo de las contribuciones hidrófilas-lipófilas.

Se calcularon las contribuciones hidrófilas-lipófilas al coeficiente de actividad a dilución infinita y a la concentración micelar crítica, de datos experimentales de alta calidad (coeficiente de correlación $R \ge 0.99$) reportados en la literatura, únicamente se requirió del análisis de los coeficientes de actividad a dilución infinita y/o las concentraciones micelares críticas en función tanto del número de átomos de carbono en la porción hidrófoba (Tabla V.10), como del número de unidades de óxido de etileno de la porción hidrófila (Tabla V.11).

Contribuciones nidroiobicas-nidroinicas a partir de las curvas in x_{cmc} vs. <i>n</i>											
Cor	npuesto	$\chi_{hphobic}$ = pendiente	$\chi_{hphilic} = $ Intercep / m	R							
formula	n										
C _n E ₃ [van Os, 1993]	6, 8, 10	1.279 ± 0.009	0.5 ± 0.02	0.999							
C _n E ₆ [van Os, 1993]	8, 10, 12, 14, 16	1.1 ± 0.01	0.08 ± 0.02	0.999							
C _n E ₆ [Chen, 1996]	4, 6, 8, 10, 12, 14, 16	1.13 ± 0.02	0.05 ± 0.02	0.999							
C _n E ₈ [van Os, 1993]	9, 10, 11, 12, 13, 14, 15	1.15 ± 0.02	0.06 ± 0.01	0.999							
C _n E ₈ [Chen, 1996]	9, 10, 11, 12, 13, 14, 15	1.15 ± 0.03	0.05 ± 0.03	0.998							
C _n E ₈ [Meguro, 1981]	10, 11, 12, 13, 14, 15	1.13 ± 0.04	0.04 ± 0.04	0.998							
R. coeficiente de regresión lineal											

Tabla V.10. Contribuciones hidroféhices hidrofilices a partir de les ourves la v

Tabla V.11.											
Contribuciones hidrofóbicas-hidrofílicas a partir de las curvas ln x _{cmc} vs. m											
Compuesto		$\chi_{hphobic}^*$ = Intercep / n	$\chi_{hphilic}$ = pendiente	R.							
formula	т										
$C_9H_{19}C_6H_4E_m$ [Dai, 2003]	7.5, 8, 9.3, 9.8,	1.097 ± 0.003	0.051 ± 0.002	0.993							
	12, 15, 30, 41										
C ₈ H ₁₇ C ₆ H ₄ E _m [Dai, 2003]	7.5, 9.5, 12, 16,	1.056 ± 0.005	0.054 ± 0.003	0.993							
	30, 35										
C ₈ H ₁₇ C ₆ H ₄ E _m [Crook, 1963]	3, 5, 9, 10	1.12 ± 0.0005	0.08 ± 0.0009	0.999							
$C_8H_{17}C_6H_4E_m$ [Nemethy, 1971]	10, 12, 30	1.630 ± 0.004	0.06 ± 0.003	0.999							

 $C_9H_{19}C_6H_4E_m$ = nonil fenoles; $C_8H_{17}C_6H_4E_m$ = para ter octil fenoles

*χ_{hphobic} =(Intercepción - 4.16) [Gracia, 1986], R. coeficiente de regresión lineal

V. 5. Análisis de datos experimentales.

Los datos de tensión superficial dinámica $\sigma(t)$ (Figura 1.), muestran una disminución de la tensión superficial con el tiempo hasta alcanzar un valor de equilibrio, como se esperaba dada la tendencia de estos materiales a concentrarse en la interfase a consecuencia de su naturaleza anfifilica, (Tablas 1 y 2 Anexo A). La función $\pi(t)$ es monótona creciente para todas las soluciones de los tensoactivos bajo estudio, como se observa en las gráficas de $\pi(t)$ vs. t (Anexo A). Las presiones superficiales equilibrio (π_{eq}) promedio de cada solución se incrementan al aumentar la concentración de las soluciones de tensoactivo (Tablas V.1 a V.6), hasta la concentración micelar crítica, a partir de la cual la π_{eq} es independiente de la concentración y alcanza su valor de saturación superficial (π_m)

Para todos los tensoactivos estudiados, la ecuación (V.3), se cumple en el espacio de Volmer: $0 \le \pi \le \pi_m$ ($0 \le x \le x_{cmc}$) (Figura 3) que incluye a la presión superficial de saturación, donde se inicia una caída drástica del ln (π^*/x) que corresponde al momento en que se alcanza la saturación de la superficie, indicando que las fuerzas atractivas se utilizan en la formación de micelas (x_{cmc}). El cambio drástico en la pendiente a una composición característica, corresponde al punto con las coordenadas; $-\ln x_{cmc}$, π_{cmc} en la curva $\ln(\pi^*/x)$ vs. π .

La concentración superficial máxima (Γ_m), el ln (π^*/x)_{$x\to0$}, el espacio de Volmer y la presión superficial de saturación (π_m) (Tabla V.7) de los tensoactivos bajo estudio [Viades, 2006], permiten analizar el efecto del número de unidades oxietilénicas (E) de la porción hidrófila de la molécula en las propiedades superficiales; se observa un incremento de π_m a menor E para los tensoactivos con E 8 al 100; Γ_m y el espacio de Volmer siguen la misma tendencia, sin embargo, los resultados no presentan continuidad en el incremento de estos parámetros, sino que se dividen en dos grupos: $10 \le E \le 100$ y $4 \le E \le 8$.

Los valores de los coeficientes de actividad a dilución infinita (Tabla V.8), calculados con la ecuación (V.4) muestran órdenes de magnitud de 10^4 a 10^6 en concordancia con la naturaleza anfifilica de estos materiales. Las concentraciones micelares críticas predichas con la ecuación (V.5), presentan valores muy semejantes a los determinados a partir de las curvas σ vs *lnx* (Tabla V.8), lo que demuestra la validez de la aplicación del modelo de Volmer para el cálculo de estos parámetros.

Los valores del factor superficial de compresibilidad (z_m) determinados con la ecuación de estado en soluciones de series homólogas de anfífilos, muestran una disminución de z_m con el incremento del número de átomos de carbono (n) cuando se mantiene constante el número de unidades de óxido de etileno (m); en tanto que para un número de átomos de carbono fijo, z_m parece ser independiente del número de unidades de óxido de etileno. En todas las series homólogas, excepto la serie C_nE_3 , la contribución hidrófoba cumple con la constante de Traube (contribución de 1.1 por cada grupo metileno en la cadena). La contribución hidrófila en cambio, presenta más incertidumbre debido a la variabilidad en la distribución de unidades de óxido de etileno, los valores obtenidos se encuentran en el intervalo 0.04 a 0.05 por cada unidad presente.

Conclusiones.

La determinación de coeficientes de actividad a dilución infinita, mediante el equilibrio seno de la disolución – superficie, que constituye una alternativa reciente a los métodos de equilibrio líquido-vapor, desarrollada en un trabajo previo para el caso de líquidos ordinarios se extendió exitosamente a materiales con actividad superficial y baja presión de vapor como tensoactivos, polímeros y proteínas. La alternativa consiste en el acoplamiento de la ecuación de adsorción de Gibbs y la ecuación superficial de estado de Volmer, de donde se obtiene el potencial químico superficial bajo la convención simétrica de coeficientes de actividad y bajo el mismo estado de referencia para el seno de la disolución y la superficie.

Los tensoactivos bajo estudio, cumplen con el modelo de Volmer en la región diluida hasta la concentración micelar crítica ($0 \le x \le x_{cm}$), denominada espacio o región de Volmer, en la que se incluye la presión de saturación o máxima, que para estos sistemas corresponde a la presión superficial de referencia. A partir de la concentración micelar crítica la presión superficial se mantiene constante indicando que la superficie está saturada y que las fuerzas atractivas se invierten en la formación de micelas.

Los coeficientes de actividad a dilución infinita, calculados con el modelo de Volmer, presentan órdenes de magnitud entre decenas de miles y millones. Los valores calculados fueron verificados mediante la relación entre el coeficiente de actividad a dilución infinita y el recíproco de la concentración micelar crítica, obtenida en esta investigación mediante la convención simétrica de coeficientes de actividad, para la que la igualdad entre los potenciales químicos en la disolución y en la superficie cumple con la condición de una solución altamente diluida y una superficie altamente saturada. Los valores de concentración micelar crítica, predichos por la relación, $\ln \gamma^{\infty} = -\ln x_{cmc}$, coinciden con los valores experimentales.

A consecuencia de la evidencia experimental y del equilibrio entre la solución en la región diluida con la superficie en las vecindades de la saturación, surge una ecuación de estado para

la superficie con dos parámetros termodinámicos: el factor superficial de compresibilidad y la concentración micelar crítica, que pone en evidencia el significado físico del coeficiente de actividad a dilución infinita, a través de su relación con estos factores.

Los valores del factor superficial de compresibilidad (z_m) determinados con la ecuación de estado en soluciones de series homólogas de anfífilos, muestran una disminución con el incremento del número de átomos de carbono (n) cuando se mantiene constante el número de unidades de óxido de etileno (m); en tanto, que para un número de átomos de carbono fijo, parece ser independiente del número de unidades de óxido de etileno.

La relación entre las energías estándar de adsorción y micelización, queda contenida en las condiciones a la frontera de la ecuación de estado. La ecuación permite el cálculo de los potenciales químicos no ideales, del coeficiente de distribución seno de la disolución-superficie y del factor superficial de compresibilidad a partir de datos experimentales de tensión superficial.

Las relaciones empíricas entre la concentración micelar crítica con el número de carbones y óxidos de etileno, en familias homólogas, fueron reinterpretadas como contribuciones lipofílicas e hidrofílicas al coeficiente de actividad a dilución infinita. De esta visión surge el cálculo de las contribuciones hidrófílas-lipófilas al coeficiente de actividad a dilución infinita, para soluciones acuosas de tensoactivos, de una manera sencilla sin recurrir al uso de modelos como NRTL, UNIQUAC.

Se demuestra que ambas energías de adsorción y micelización presentan la contribución individual del grupo metileno (ln 3 ~ 1.1), valor constante originado en la regla de Traube. Se analizaron datos experimentales de alta calidad reportados en la literatura; en todas las series homólogas seleccionadas la contribución hidrófoba cumple con la constante de Traube excepto la serie C_nE_3 . La contribución hidrófila, en cambio, presenta una mayor incertidumbre debido a la variabilidad en la distribución de unidades de óxido de etileno, los valores obtenidos varían entre $0.04 \le \chi_{filica} \le 0.05$. La contribución hidrófoba, para el caso de

tensoactivos fenólicos, debe incluir a la contribución aromática, si bien el grupo fenólico no forma micelas, si se asocia y contribuye al descenso de la tensión superficial, de manera que el $\ln \gamma^{\infty}$ del fenol fue considerado como un "núcleo" al que habrá que sumarle las diferentes contribuciones.

Anexo A.

Datos de tensión superficial ($\sigma(t)$) y tiempo para la estimación de la presión superficial al equilibrio.

	$C \ 1 \ g/L \sim 8.7 \ x \ 10^{-4} \ M$															
	t	$\sigma(t)$	t	$\sigma(t)$	t	$\sigma(t)$	t	$\sigma(t)$	t	$\sigma(t)$	t	$\sigma(t)$	t	$\sigma(t)$	t	$\sigma(t)$
M # 1	0	71,97	15,59	44,68	70,68	42,48	125,72	41,88	397,87	40,99	1057,86	40,67	2079,14	40,72	3399,05	41,21
	6,27	47,54	20,59	44,20	75,68	42,45	126,54	41,81	457,90	40,86	1117,83	40,61	2199,15	40,83	3519,01	41,87
	6,67	47,20	25,59	43,88	80,68	42,35	156,58	41,65	517,83	40,82	1177,81	40,56	2319,11	40,79	3639,02	41,66
	7,07	46,94	30,64	43,61	85,67	42,21	186,63	41,45	577,86	40,72	1237,85	40,59	2439,12	40,70	3759,04	41,66
	7,47	46,89	35,64	43,33	90,67	42,16	216,62	41,31	637,90	40,70	1239,05	40,59	2559,13	40,87	3878,99	41,37
	7,87	46,63	40,64	43,13	95,67	42,14	246,66	41,43	697,82	40,71	1359,07	40,66	2679,09	41,03	3999,01	41,65
	8,27	46,38	45,63	43,00	100,67	42,09	276,65	41,31	757,85	40,67	1479,08	40,62	2799,10	41,19	4118,96	41,88
	8,67	46,28	50,69	42,88	105,72	41,99	306,69	41,26	817,83	40,62	1599,09	40,63	2919,06	41,07	4238,98	40,98
	9,07	45,66	55,69	42,74	110,72	42,03	336,74	41,17	877,86	40,62	1719,10	40,64	3039,07	41,41	4358,99	41,94
	9,47	46,02	60,68	42,56	115,72	42,02	366,78	41,08	937,84	40,56	1839,12	40,66	3159,03	41,13	4479,00	41,86
	9,66	45,79	65,68	42,56	120,72	41,95	396,77	40,99	997,82	40,61	1959,07	40,77	3279,04	40,99	4598,96	41,97
	0	71,97	35,83	42,396	105,86	41,481	397,07	40,39	878,61	40,181	1718,53	40,285	2558,50	40,6	3339,76	40,785
	6,25	45,33	40,83	42,518	110,86	41,44	427,12	40,284	938,59	40,184	1778,56	40,329	2618,48	40,782	3429,79	42,005
	6,65	44,975	45,83	42,437	115,86	41,391	457,16	40,218	998,56	40,044	1838,54	40,316	2678,46	40,619	3519,81	41,328
	7,05	44,874	50,82	42,291	120,85	41,33	487,15	40,223	1058,60	40,077	1898,52	40,147	2738,49	40,518	3609,83	41,192
	7,45	44,771	55,82	42,183	125,85	41,29	517,20	40,304	1118,58	40,123	1958,55	40,288	2798,47	41,007	3699,85	41,473
	7,85	44,597	60,82	42,1	126,84	41,288	547,24	40,237	1178,61	40,134	2018,53	40,39	2858,45	41,139	3789,82	41,33
M # 2	8,25	44,521	65,82	42,028	156,89	41,134	577,23	40,243	1238,59	40,124	2078,51	40,52	2918,48	41,275	3879,90	41,326
	8,65	44,382	70,82	41,888	186,93	40,978	607,27	40,203	1298,57	40,203	2138,54	40,608	2978,46	41,346	3969,92	41,558
	9,05	44,262	75,82	41,831	216,97	40,802	637,26	40,252	1358,60	40,136	2198,52	40,497	3038,50	41,459	4059,95	41,558
	9,45	44,178	80,81	41,733	246,96	40,72	667,31	40,19	1418,52	40,176	2258,50	40,275	3098,42	41,314	4149,91	42,055
	9,63	44,138	85,87	41,68	277,01	40,638	697,35	40,174	1478,56	40,243	2318,48	40,338	3158,45	41,276	4239,99	41,534
	15,78	43,191	90,87	41,323	307,00	40,535	698,56	40,225	1538,54	40,171	2378,51	40,315	3218,43	41,214	4329,96	41,759
	20,78	42,825	95,86	41,575	337,04	40,449	758,54	40,208	1598,57	40,243	2438,49	40,525	3278,41	41,583	4419,98	41,567
	25,78	42,576	100,86	41,478	367,03	40,429	818,57	40,226	1658,55	40,269	2498,47	40,472	3338,44	41,801	4510,01	41,507
	30,83	42,375														

Tabla 1. Polioxietilén (20) mono octadecil éter (Brij 78) $M_n \sim 1150$ $25^{\theta}C$ t (s) $\sigma(t)$ (mN/m)

$C 1 g/L \sim 8.7 x 10^{-4} M$																
	t	$\sigma(t)$	t	$\sigma(t)$	t	$\sigma(t)$	t	$\sigma(t)$	t	$\sigma(t)$	t	$\sigma(t)$	t	$\sigma(t)$	t	$\sigma(t)$
	0	71,97	28,49	43,58	98,57	42,20	364,96	41,39	820,24	40,93	1660,1	41,07	2500,1	41,37	3340,0	41,70
	5,12	47,79	33,54	43,36	103,57	42,11	395,01	41,41	880,22	41,05	1720,1	41,21	2560,1	41,55	3342,0	41,38
	5,32	47,83	38,54	43,34	108,57	42,13	425,00	41,29	940,20	41,01	1780,1	40,96	2620,0	41,50	3612,1	41,82
	5,52	47,39	43,54	42,98	113,57	42,03	455,04	41,28	1000,2	41,19	1840,1	41,08	2680,1	41,61	3702,1	41,77
	5,72	47,29	48,54	43,02	118,57	42,06	485,03	41,24	1060,2	41,00	1900,1	41,52	2740,1	41,65	3792,2	41,67
	5,92	47,19	53,53	42,81	123,56	41,92	515,07	41,24	1120,1	40,82	1960,1	40,99	2800,0	41,44	3882,2	41,78
M # 3	6,12	47,10	58,53	42,59	124,77	41,95	545,12	41,21	1180,2	40,99	2020,1	41,59	2860,1	41,55	4062,2	41,81
	6,32	46,96	63,53	42,26	154,82	41,76	575,11	41,11	1240,2	41,04	2080,1	41,55	2920,1	41,47	4152,2	41,70
	6,52	46,58	68,53	42,49	184,81	41,67	605,15	41,13	1300,1	41,08	2140,1	41,39	2980,0	41,62	4242,3	41,61
	6,72	46,65	73,53	42,45	214,85	41,45	635,20	41,05	1360,1	40,93	2200,1	41,59	3040,0	41,66	4332,5	41,56
	6,90	46,53	78,53	42,49	244,84	41,69	665,24	41,07	1420,1	41,16	2260,1	41,14	3100,0	41,43	4602,4	41,56
	13,49	44,41	83,52	42,27	274,88	41,63	695,23	40,99	1480,2	41,10	2320,0	41,13	3160,0	41,62		
	18,49	44,45	88,52	42,31	304,87	41,58	700,23	41,02	1540,1	40,92	2380,1	41,41	3220,0	41,49		
	23,49	43,82	93,58	42,18	334,92	41,48	760,21	40,90	1600,1	41,13	2440,1	41,40	3280,0	41,62		
	C 0.5 g/L ~ 4.4 x 10 ⁻⁴ M															
	0	71,97	8,51	45,04	21,59	42,73	51,63	42,56	81,68	42,08	116,67	41,63	217,62	41,17	397,78	40,96
	6,51	46,93	8,91	44,96	26,59	42,79	56,63	42,48	86,68	41,97	121,66	41,67	247,66	41,04	427,82	40,90
M # 1	6,91	46,50	9,31	44,67	31,59	42,64	61,63	42,42	91,68	41,86	126,66	41,52	277,65	40,92	457,81	40,86
101 // 1	7,31	46,02	9,71	44,70	36,59	42,41	66,63	42,23	96,67	41,86	127,60	41,62	307,70	40,87	487,85	40,83
	7,71	45,63	9,95	44,07	41,58	42,70	71,63	42,20	101,67	41,82	157,59	40,84	337,74	40,85	517,84	40,85
	8,11	44,88	16,54	43,38	46,58	42,68	76,63	42,13	111,67	41,27	187,63	41,25	367,79	40,83	547,89	40,87
	0	71,97	8,21	45,27	25,56	42,74	55,60	42,17	85,65	41,75	115,69	41,57	216,64	41,16	396,80	40,84
	5,81	48,18	8,61	44,73	30,56	42,68	60,60	42,06	90,65	41,80	120,69	41,49	246,63	41,12	426,84	40,88
M # 2	6,21	47,22	9,01	44,90	35,61	42,56	65,60	41,94	95,64	41,71	125,69	41,47	276,68	40,93	456,83	40,82
	6,61	46,52	9,25	44,68	40,61	42,44	70,65	41,58	100,64	41,69	126,57	41,18	306,67	40,90	486,88	40,85
	7,01	46,14	15,56	43,51	45,61	42,27	75,65	41,85	105,70	41,63	156,61	41,37	336,77	40,88	516,87	40,83
	7,41	45,63	20,56	43,01	50,60	42,28	80,65	41,86	110,69	41,59	186,60	41,23	366,76	40,79	546,91	40,82
	7,81	45,56	0.40	1776	41 11	44.20	01.15	12 15	101.10	42.97	296.24	41 (2	52(12	40.00	7(((0	40.27
	0	/1,9/	9,49	4/,/6	41,11	44,20	81,15	43,45	121,19	42,87	286,24	41,63	526,43	40,96	/66,68	40,37
	6,69	49,43	9,89	47,56	46,11	44,46	86,15	43,30	126,19	42,79	316,23	41,44	506,48	40,96	/96,6/	40,32
M # 3	7,09	48,88	10,13	4/,58	51,11	44,23	91,15	43,37	131,19	42,74	340,28	41,55	580,47	40,83	820,/1	40,24
	7,49	49,11	10,12	45,81	50,11	44,12	90,15	43,27	130,08	42,09	370,32	41,28	646.50	40,75		
	7,89	40,64	21,12	43,/1	66.16	43,91	101,14	43,10	100,12	42,49	400,31	41,09	676.54	40,65		
	8,29	48,20	20,12	44,90	00,10	43,80	100,20	43,13	226.16	42,22	430,33	41,00	0/0,54	40,55		
	8,09	48,15	31,11	44,00	71,10	43,/1	111,20	42,98	220,10	42,02	400,54	41,08	700,59	40,47		
	9,09	4/,//	30,11	44,05	/0,15	43,39	110,19	42,97	230,20	41,8/	490,44	41,13	/30,03	40,40		

Tabla 1. Polioxietilén (20) mono octadecil éter (continuación)

	$C 0.25 \text{ g/L} \sim 2.2 \text{ x } 10^4 \text{ M}$															
	t	$\sigma(t)$	t	$\sigma(t)$	t	$\sigma(t)$	t	$\sigma(t)$	t	$\sigma(t)$	t	$\sigma(t)$	t	$\sigma(t)$	t	$\sigma(t)$
M # 1	0	71,97	11,68	51,785	33,52	45,78	68,51	44,138	103,55	43,448	159,52	42,702	369,72	41,671	701,1	41,406
	10,48	54,697	11,88	51,387	38,52	45,448	73,51	44,047	108,55	43,318	189,56	42,477	399,71	41,588	761,1	41,45
	10,68	53,977	12,08	51,113	43,52	45,167	78,50	43,876	113,55	43,256	219,55	42,256	401,14	41,597	821,1	41,416
	10,88	53,533	12,32	50,743	48,51	44,899	83,50	43,789	118,54	43,226	249,60	42,078	461,17	41,545	881,1	41,429
	11,08	53,085	18,41	46,98	53,51	44,718	88,55	43,696	123,54	43,117	279,59	41,982	521,15	41,439		
	11,28	52,583	23,47	46,105	58,51	44,51	93,55	43,574	128,54	43,046	309,63	41,863	581,13	41,378		
	11,48	52,244	28,47	45,489	63,51	44,331	98,55	43,51	129,53	43,043	339,67	41,765	641,16	41,428		
	0	71,97	20,75	46,33	75,79	44,04	130,82	42,69	403,64	41,18	1123,6	40,36	1965,5	40,12	2955,	40,12
	12,38	48,81	25,75	45,68	80,79	43,93	132,20	42,70	463,67	41,07	1183,5	40,36	2055,6	40,15	3045,	40,08
	12,58	48,70	30,75	45,22	85,78	43,82	162,24	42,05	523,65	40,96	1243,6	40,40	2145,6	40,27	3135,	40,06
	12,78	48,69	35,75	44,83	90,78	43,76	192,23	41,92	643,61	40,80	1245,4	40,38	2235,6	40,27	3225,	40,15
M # 2	12,98	48,48	40,74	44,66	95,78	43,64	222,27	41,77	703,64	40,71	1335,4	40,00	2325,6	40,21	3315,	40,23
	13,18	48,43	45,74	44,82	100,78	43,57	252,32	41,64	763,62	40,68	1425,4	40,23	2415,7	39,93	3405,	40,25
	13,38	48,33	50,74	44,66	105,78	42,95	282,36	41,54	823,60	40,56	1515,4	40,24	2505,6	40,15	3495,	40,32
	13,58	48,20	55,74	44,35	110,83	42,88	312,35	41,41	883,63	40,44	1605,4	40,21	2595,7	40,18	3585,	40,29
	13,78	48,12	60,74	44,38	115,83	42,56	342,40	41,27	943,61	40,39	1695,5	40,19	2685,7	40,20	3675,	40,19
	13,98	48,01	65,74	44,23	120,83	42,81	372,38	41,23	1003,5	40,37	1785,5	40,13	2775,7	40,28	3765,	40,24
	14,16	47,88	70,79	44,10	125,82	42,77	402,43	41,18	1063,6	40,38	1875,5	40,11	2865,7	40,28	3856,	40,08
	0	71,970	36,596	46,138	106,62	44,427	398,00	42,582	818,29	41,297	1419,6	41,223	2259,5	40,763	3099,	40,776
	8,176	53,104	41,596	45,446	111,62	44,048	427,99	42,761	848,34	41,360	1479,6	41,045	2319,6	40,975	3159,	40,622
	8,376	53,898	46,596	46,393	116,62	44,400	458,04	42,367	878,38	41,571	1539,6	41,127	2379,6	40,569	3219,	40,830
	8,576	52,933	51,596	45,675	121,62	43,915	488,08	42,366	908,43	41,140	1599,6	40,979	2439,5	40,569	3279,	40,689
	8,776	53,358	56,596	45,032	126,67	44,296	518,07	42,401	938,47	41,461	1659,6	41,018	2499,6	40,902	3339,	40,681
	8,976	54,545	61,596	45,363	127,77	44,139	548,12	42,222	968,46	41,257	1719,6	41,004	2559,6	40,653	3399,	40,705
M # 3	9,176	53,671	66,586	44,955	157,81	43,672	578,10	42,161	998,50	41,366	1779,6	40,830	2619,5	40,825	3459,	40,734
	9,376	50,654	71,646	44,994	187,80	43,653	608,15	41,676	999,71	41,401	1839,6	40,765	2679,6	40,723	3519,	40,805
	9,576	50,165	76,636	44,592	217,85	43,343	638,19	41,822	1059,6	41,231	1899,6	40,703	2739,5	40,674	3579,	40,665
	9,776	52,587	81,636	45,336	247,84	43,130	668,24	41,996	1119,6	41,218	1959,5	40,657	2799,5	40,842	3639,	40,819
	16,556	48,161	86,636	44,498	277,88	42,994	698,23	41,944	1179,7	41,107	2019,6	40,685	2859,5	40,774		
	21,606	48,016	91,636	44,342	307,87	42,697	728,27	41,783	1239,6	41,153	2079,6	40,833	2919,5	40,592		
	26,606	47,063	96,636	44,339	337,92	43,169	758,26	41,802	1299,7	41,257	2139,5	40,823	2979,5	40,714		
	31,606	46,494	101,63	44,350	367,96	42,596	788,30	41,405	1359,6	41,051	2199,6	40,861	3039,5	40,722		

Tabla 1 Poliovietilén	(20)	mono octadecil	éter	/continuaciór	1)											
rabia i. ronoxietnen	(20)	mono octaacen	CICI	Continuation	•											
							С 0.	1 g/L ~ 0.87	7 x 10 ⁻⁵ M							
---------	-------	-------------	--------	-------------	--------	-------------	---------	--------------	------------------------	-------------	---------	-------------	---------	-------------	---------	-------------
	t	$\sigma(t)$	t	$\sigma(t)$	t	$\sigma(t)$	t	$\sigma(t)$	t	$\sigma(t)$	t	$\sigma(t)$	t	$\sigma(t)$	t	$\sigma(t)$
	0	71,97	8,041	57,707	40,061	44,56	80,101	43,583	120,141	43,35	306,671	42,383	637,761	41,092	3040,2	40,47
	6,641	61,015	8,241	57,515	45,061	44,361	85,101	43,543	125,141	43,304	336,661	42,251	697,791	40,908	3130,28	40,35
M # 1	6,841	60,346	8,481	57,233	50,051	44,199	90,091	43,53	126,511	43,291	366,701	42,118	757,771	40,732	3220,3	40,63
IVI # 1	7,041	60,265	15,011	49,322	55,111	44,085	95,091	43,57	156,551	43,066	396,741	41,975	817,751	39,752	3310,27	41,15
	7,241	59,593	20,011	46,561	60,111	43,984	100,151	43,54	186,541	41,917	397,791	41,985	877,731	40,373	3400,29	41,51
	7,441	59,125	25,011	45,377	65,101	43,87	105,141	43,489	216,591	42,799	457,771	41,722	937,761	40,25	3490,37	42,33
	7,641	58,675	30,061	44,745	70,101	43,759	110,141	43,428	246,631	42,658	517,801	41,493	997,741	40,085	3580,39	42,76
	7,841	58,123	35,061	44,865	75,101	42,823	115,141	43,39	276,621	42,519	577,721	41,291	2950,18	40,25		
	0	71,97	10,74	55,048	23,26	48,597	59,51	44,322	124,60	44,537	356,27	42,783	976,49	43,321	1696,46	41,46
	4,86	63,179	11,78	54,863	24,36	48,506	64,51	45,334	129,60	44,641	386,32	42,958	1036,47	43,452	1756,43	41,443
	4,94	62,211	12,88	53,658	25,35	48,133	69,51	46,936	134,59	45,131	416,31	44,069	1096,50	42,889	1816,41	41,667
	5,02	62,742	13,87	52,982	26,45	47,856	79,50	56,292	139,59	44,63	436,47	43,246	1156,48	42,944	1876,45	41,517
	5,10	63,032	15,08	51,776	27,44	47,998	84,50	45,069	144,59	44,444	496,55	43,007	1216,46	42,927	1936,43	41,283
M # 2	5,18	62,016	15,96	51,372	28,48	47,807	89,50	45,085	146,07	44,625	556,53	43,367	1276,50	43,137	2242,85	41,494
	5,26	62,463	17,00	50,376	29,47	47,747	94,50	45,3	176,12	44,439	616,51	43,135	1336,47	42,75	2302,83	37,474
	5,34	61,954	18,04	49,286	34,47	47,516	99,55	45,559	206,16	44,159	676,54	43,191	1396,45	43	2422,85	38,274
	5,42	62,931	19,09	49,365	39,46	47,397	104,55	45,515	236,21	44,013	736,47	42,942	1456,49	43,065		
	5,50	61,124	20,18	49,766	44,46	46,499	109,55	45,355	266,25	43,876	796,50	43,028	1516,47	42,957		
	5,68	61,395	21,17	49,06	49,46	47,158	114,55	44,86	296,24	44,178	856,48	43,191	1576,44	42,416		
	9,75	56,839	22,27	48,889	54,46	46,958	119,55	44,596	326,28	44,127	916,51	43,01	1636,42	41,955		
	0	71,97	39,56	50,498	99,59	45,523	305,84	43,822	877,12	42,367	1597,03	41,316	2316,99	41,715	3096,93	42,306
	7,21	63,38	44,56	48,555	104,65	44,887	335,88	43,604	937,04	42,178	1657,06	41,537	2376,97	42,306	3156,96	42,456
	7,29	63,208	49,61	47,58	109,64	45,248	365,87	43,352	997,07	42,309	1717,04	41,912	2496,98	41,942	3216,89	42,701
	7,45	63,42	54,61	46,994	114,64	44,794	395,92	43,266	1057,05	42,213	1777,02	41,943	2556,96	43,335	3276,92	42,598
	7,53	63,02	59,61	46,624	119,64	44,902	397,07	43,188	1117,09	42,047	1837,00	41,651	2616,94	42,399	3396,88	42,934
M # 3	7,77	62,879	64,60	46,318	124,64	44,652	457,10	43,041	1177,07	42,245	1897,03	41,379	2676,97	40,88	3456,91	41,881
	8,03	63,232	69,60	46,14	125,68	44,832	517,14	43,12	1237,04	41,867	1957,01	42,171	2736,95	39,53	3576,93	41,87
	14,57	62,946	74,60	46,121	155,73	44,476	577,11	42,946	1297,08	41,78	2016,99	41,675	2796,93	40,811	3636,90	43,555
	19,57	62,622	79,60	45,805	185,72	44,496	637,09	42,908	1357,06	41,56	2077,02	41,729	2856,96	43,221		
	24,56	62,903	84,60	45,66	215,76	44,46	697,13	43,215	1417,03	41,987	2137,00	41,868	2916,94	42,116		
	29,56	62,274	89,60	45,512	245,80	44,362	757,11	42,572	1477,07	42,118	2196,98	41,65	2976,92	41,457		
	34,56	54,768	94,59	45,091	275,85	44,181	817,08	42,38	1537,05	41,8	2257,01	42,081	3036,95	42,888		

Tabla 1 Poliovietilén	(20)) mono octadecil	éter	<i>(</i> continuación)
rabia i. i onoxictiten	(20)	mono octaacen	CICI	(continuation)	,

							C 0.	05 g/L ~ 0.4	44 x 10 ⁻⁵ M							
	t	$\sigma(t)$	t	$\sigma(t)$	t	$\sigma(t)$	t	$\sigma(t)$	t	$\sigma(t)$	t	$\sigma(t)$	t	$\sigma(t)$	t	$\sigma(t)$
	0	71,97	6,444	63,159	28,234	52,852	63,224	46,566	98,264	45,314	154,234	44,277	364,374	42,867	695,304	42,42
	5,724	63,331	6,564	62,708	33,234	51,388	68,214	46,24	103,314	45,059	184,224	43,937	394,424	42,76	755,224	43,023
N # 1	5,844	63,367	6,684	62,705	38,224	49,928	73,214	46,106	108,314	44,911	214,264	43,546	395,304	42,727	815,264	43,035
IVI # 1	5,964	62,807	6,864	62,653	43,224	48,76	78,274	45,871	113,314	44,817	244,254	43,427	455,274	42,58	875,294	43,173
	6,084	62,822	13,184	58,278	48,224	48,231	83,264	45,708	118,314	44,897	274,294	43,339	515,314	42,548	935,214	43,434
	6,204	62,723	18,184	56,217	53,224	47,341	88,264	45,528	123,304	44,643	304,284	43,082	575,294	42,585	995,254	43,643
	6,324	62,686	23,174	54,614	58,224	46,993	93,264	45,369	124,184	44,736	334,334	42,945	635,264	41,979	1055,224	43,78
	0	71,97	16,90	58,44	71,94	46,66	122,86	45,21	313,89	43,70	614,11	42,64	914,39	42,04	1335,61	42,42
	4,17	69,38	21,90	55,85	76,94	46,52	132,91	45,15	343,93	43,60	644,15	42,83	944,43	42,40	1395,59	42,18
	4,29	68,70	26,90	54,92	81,94	46,05	142,90	44,64	373,92	43,11	674,20	42,71	974,48	42,56	1455,57	42,29
	4,53	68,48	31,90	52,37	86,93	46,07	152,95	45,20	403,96	43,35	704,24	42,55	1004,46	41,63	1515,55	41,87
	4,65	68,18	36,90	50,82	91,93	45,68	162,95	44,50	434,01	43,31	734,29	42,73	1034,51	41,25	1575,58	41,87
M # 2	4,77	69,35	41,90	50,32	96,93	45,55	163,78	44,37	464,05	42,83	764,28	42,64	1035,61	41,92	1635,56	41,84
	4,89	67,60	46,89	49,03	101,93	45,44	193,82	44,19	494,04	42,96	794,32	42,50	1095,59	43,67	1695,54	41,79
	5,01	68,90	51,89	48,02	106,93	51,05	223,81	43,86	524,09	42,88	824,31	42,10	1155,62	41,66	1755,57	42,10
	5,13	69,77	56,89	47,56	111,93	45,14	253,85	43,98	554,08	42,91	854,35	42,31	1215,60	41,69	1815,55	41,69
	5,31	67,14	61,94	47,20	116,98	45,36	283,90	43,77	584,12	42,51	884,34	42,17	1275,58	42,27	1875,53	41,51
	11,91	63,15	66,94	46,76	121,98	45,04										
	0	71,97	32,95	49,541	92,99	44,72	199,1	43,812	559,47	42,056	919,73	41,059	1280,0	40,394	1640,3	40,34
	20,5	53,406	37,95	48,27	97,99	44,645	229,15	43,636	589,46	41,952	949,77	40,96	1310,0	40,374	1670,3	40,342
	20,62	53,393	42,95	47,357	102,98	44,58	259,19	43,455	619,5	41,867	979,82	40,917	1340,1	40,354	1700,3	40,421
	20,74	53,314	47,95	46,633	107,98	44,518	289,24	43,31	649,49	41,679	1009,8	40,858	1370,1	40,335	1730,4	40,354
	20,86	53,266	52,95	46,141	112,98	44,452	319,23	43,13	679,54	41,683	1039,9	40,783	1400,1	40,285	1760,4	40,41
M # 3	20,98	53,26	57,95	45,748	118,03	44,398	349,27	43,006	709,58	41,601	1069,8	40,717	1430,1	40,325	1790,5	40,394
	21,1	53,229	63	45,497	123,03	44,37	379,26	42,819	739,63	41,534	1099,8	40,069	1460,1	40,288	1820,5	40,517
	21,22	53,204	68	45,299	128,03	44,313	409,3	42,682	769,62	41,453	1129,9	40,652	1490,2	40,245	1850,5	40,7
	21,34	53,19	73	45,122	133,03	44,273	439,29	42,545	799,66	41,357	1159,9	40,564	1520,2	40,213	1880,5	40,778
	21,46	53,123	77,99	44,997	138,03	44,225	469,34	42,401	829,65	41,279	1189,9	40,543	1550,2	40,218	1910,5	40,814
	21,64	53,09	82,99	44,879	139,07	44,233	499,38	41,391	859,69	41,159	1219,9	40,467	1580,3	40,233	1911,6	40,86
	27,96	50,971	87,99	44,792	169,12	43,996	529,43	42,171	889,68	41,095	1250,0	40,413	1610,3	40,265	1971,6	40,905

Tabla 1. Polioxietilén (20) mono octadecil éter (continuación)

							(C 0.025	5 g/L ~ 0.22	2 x 10 ⁻⁵ M								
	t	$\sigma(t)$	t	$\sigma(t)$	t	$\sigma(t)$		t	$\sigma(t)$	t	$\sigma(t)$	t	$\sigma(t)$	t		$\sigma(t)$	t	$\sigma(t)$
	0	71,97	41,824	60,448	96,864	52,061		272,95	45,341	579,54	43,951	1092,874	4 43,28	6 1752	2,8	42,801	2392,3	42,513
	4,834	70,921	46,824	59,381	101,85	51,621		302,99	44,909	609,59	43,914	1152,854	4 43,07	6 1812	2,8	42,761	2482,3	42,326
	5,434	71,835	51,874	58,304	106,91	51,017		333,04	45,028	639,63	43,972	1212,894	4 43,07	1 1872	2,8	42,707	2572,4	42,243
	6,034	71,142	56,874	57,335	111,91	50,404		363,08	44,723	669,62	43,901	1272,924	4 43,09	5 1932	2,8	42,533	2662,3	42,36
M # 1	6,564	71,016	61,874	56,401	116,90	49,823		393,07	44,612	672,91	43,765	1332,844	4 43,05	2 1992	2,8	42,597	2752,4	42,36
	11,834	67,89	66,874	55,781	121,90	49,523		399,3	44,588	732,89	43,669	1392,884	4 42,82	2 2052	2,8	42,638	2842,4	42,151
	16,834	64,294	71,864	55,333	122,84	49,34		429,43	44,454	792,93	43,628	1452,864	4 42,88	7 2112	2,8	42,571	2932,4	42,109
	21,834	63,262	76,864	54,597	152,88	47,93		459,42	44,323	852,91	43,442	1512,834	4 42,86	7 2122	2,2	42,469	3022,4	42,174
	26,834	62,275	81,864	53,69	182,87	46,803		489,46	44,184	912,88	43,433	1572,874	4 42,70	2 2212	2,3	42,336	3112,5	41,561
	31,824	60,922	86,864	53,29	212,91	46,128		519,45	44,139	972,92	43,409	1632,854	4 42,83	2302	2,2	42,315		
	36,824	60,535	91,864	52,55	242,90	45,67		549,50	44,06	1032,9	43,309	1692,884	4 42,74	4				
	0	71,97	22,13	63,01	87,16	53,04		273,19	45,27	874,29	43,53	1654,24	42,59	2588	3,3	42,49	3668,5	42,17
	3,92	71,56	27,12	62,18	92,16	51,79		303,23	45,13	934,33	43,26	1714,27	42,98	2678	3,3	42,22	3758,6	42,63
	4,12	72,38	32,12	60,74	97,15	51,38		333,22	44,95	994,31	43,40	1774,25	42,47	2768	3,4	42,22	3848,6	42,45
	4,32	71,54	37,12	59,39	102,15	50,55		363,27	44,67	1054,2	43,10	1834,23	42,48	2858	3,3	42,13	3938,6	42,42
	4,52	70,67	42,12	58,72	107,15	50,28		393,26	44,51	1114,2	43,09	1894,21	42,08	2948	3,3	42,29	4028,6	42,57
	4,72	69,58	47,12	57,59	112,15	49,46		394,30	44,33	1174,3	43,12	1954,24	42,30	3038	3,4	41,79	4118,6	43,36
M # 2	4,92	69,75	52,11	57,28	117,15	49,06		454,33	44,05	1234,2	42,96	2074,20	41,32	3128	3,4	42,29	4388,7	42,07
	5,12	69,82	57,11	56,75	122,14	48,71		514,31	43,96	1294,2	42,81	2134,23	41,70	3218	3,4	41,99	4478,7	42,35
	5,32	72,06	62,11	56,02	123,08	48,51		574,35	43,82	1354,2	42,66	2138,24	41,95	3308	3,4	42,21	4568,8	42,03
	5,52	70,70	67,11	55,06	153,07	47,95		634,32	43,71	1414,2	42,69	2228,26	41,96	3398	3,5	42,06	2768,4	42,22
	5,70	70,30	72,16	53,62	183,11	46,71		694,30	43,50	1474,2	42,73	2318,29	41,93	3488	3,5	42,59	4658,8	41,55
	12,13	66,68	77,16	54,16	213,16	45,90		754,34	43,63	1534,2	42,84	2408,31	42,49	3578	3,5	42,67	4748,8	42,33
	17,13	64,24	82,16	53,18	243,15	45,57		814,26	43,52	1594,2	43,01	2498,33	42,32					
	0	71,97	67,83	57,27	123,74	49,85	514,	,86	44,39	1294,86	43,59	2014,77	43,06	2946,14	•	42,70	100 4 10	10.51
	12,7	68,33	72,82	56,48	153,73	47,84	574,	,90	44,26	1354,84	43,54	20/4,80	43,12	3036,16)	42,45	4026,42	42,54
	1/,/	66,80	//,88	55,41	183,//	46,75	634,	,88	44,16	1414,82	43,47	2134,73	42,96	3126,13)	42,50	4116,44	42,29
	22,7	65,12	82,88	54,90	213,76	46,03	694,	,86	43,92	14/4,85	43,28	2135,94	43,08	3216,16)	42,35	4206,46	42,79
N/ # 2	27,7	63,97	87,87	54,86	243,81	45,82	754,	,83	43,95	1534,78	43,31	2225,96	42,78	3306,23	5	42,42	4296,48	42,61
M # 3	32,7	63,66	92,87	53,57	2/3,85	45,55	8/4,	,85	43,90	1594,81	43,20	2315,98	42,74	3396,20)	42,58	4386,51	42,49
	37,8	61,81	97,87	52,70	303,90	45,31	934,	,82	43,73	1654,79	43,01	2406,00	42,92	3486,22		42,81	4476,53	42,20
	42,8	60,85	102,87	51,65	333,89	45,17	994,	,86	43,98	1/14,//	43,23	2495,97	42,64	35/6,25	,	42,28	4366,33	43,20
	4/,8	00,62	10/,8/	51,65	363,93	44,96	1054	4,84	45,68	1//4,80	42,90	2586,05	42,55	3666,27	-	42,45	4030,38	43,19
	52,8	59,55	112,92	50,76	393,97	44,73	1112	4,82	43,70	1834,78	43,04	26/6,07	42,59	3/56,35	<u>}</u>	42,48	4/46,60	43,02
	57,8	59,11	117,92	50,57	394,85	44,84	117/4	4,85	45,54	1894,81	43,22	2766,10	42,66	3846,32	-	42,38		
	62,8	57,74	122,92	49,86	454,89	44,67	1234	4,83	43,40	1954,79	42,88	2856,06	42,68	3936,45)	42,63		

Tabla 1. Polioxiet	tilén (20) mono	octadecil éter	(continuación)
I WOIM IT I OHOMIC	men (av) mono	occuracen ever	continuation

	$\begin{array}{c c c c c c c c c c c c c c c c c c c $															
	t	$\sigma(t)$	t	$\sigma(t)$	t	$\sigma(t)$	t	$\sigma(t)$	t	$\sigma(t)$	t	$\sigma(t)$	t	$\sigma(t)$	t	$\sigma(t)$
	0	71,97	117,81	68,665	335,15	59,71	605,38	51,551	875,62	47,015	1116,74	45,853	1386,92	45,044	1657,15	44,768
	77,7	71,769	122,81	69,025	365,14	58,688	635,43	51,135	905,61	46,962	1146,73	45,726	1416,96	44,948	1687,2	45,11
	82,7	71,389	124,95	68,725	395,18	57,83	665,42	49,948	935,65	46,809	1176,77	45,774	1447,01	44,695	1717,24	45,138
	87,7	70,848	155	66,664	425,23	56,991	695,46	49,415	965,7	46,47	1206,82	45,643	1477,05	45,001	1747,29	44,756
M # 1	92,7	70,854	185,04	65,641	455,22	56,148	725,45	48,93	995,69	46,903	1236,86	45,436	1507,1	45,15	1777,28	44,864
	97,7	70,21	215,03	64,43	485,26	54,971	755,5	48,545	996,67	46,797	1266,85	45,372	1537,09	44,81	1807,32	44,863
	102,	69,671	245,07	63,055	515,25	53,969	785,49	47,933	1026,66	46,46	1296,9	45,305	1567,13	45,224	1837,36	45,096
	107,	69,389	275,06	62,684	545,3	53,236	815,53	47,6	1056,71	46,509	1326,89	45,364	1597,12	44,934	1867,35	44,94
	112,	68,888	305,11	61,928	575,34	52,083	845,57	47,326	1086,7	46,211	1356,93	45,008	1627,16	45,109		
	0	71,97	118,834	66,761	485,514	55,877	875,824	48,016	1266,17	44,895	1656,53	43,597	2046,83	43,23	2437,18	42,951
	43,	69,715	125,204	65,481	515,564	55,519	905,864	47,429	1296,21	44,666	1686,57	43,626	2076,87	43,115	2467,23	42,45
M # 2	53,8	70,62	155,254	65,002	545,554	54,7	935,904	47,133	1326,20	44,606	1716,56	43,341	2106,86	42,61	2497,22	42,932
IVI # 2	58,8	68,64	185,294	64,407	575,594	53,417	965,954	46,668	1356,25	44,485	1746,60	43,87	2136,90	43,432	2527,26	43,291
	63,8	69,414	215,284	62,752	605,584	52,672	995,944	46,579	1386,29	44,38	1776,59	43,381	2166,89	43,349	2557,25	43,259
	68,8	68,912	245,334	61,776	635,634	52,407	1025,98	46,108	1416,28	44,366	1806,64	43,618	2196,94	43,282	2587,29	42,759
	73,8	68,623	43,754	69,715	665,674	51,902	1055,97	45,939	1446,33	44,213	1836,63	43,459	2226,98	42,374	2617,28	42,861
							C 0.0	05 g/L ~ 0.0	0044 x 10 ⁻⁶							
	0	71,97	118,834	66,761	485,514	55,877	875,824	48,016	1266,17	44,895	1656,53	43,597	2046,83	43,23	2437,18	42,951
	43,	69,715	125,204	65,481	515,564	55,519	905,864	47,429	1296,21	44,666	1686,57	43,626	2076,87	43,115	2467,23	42,45
N # 1	53,8	70,62	155,254	65,002	545,554	54,7	935,904	47,133	1326,20	44,606	1716,56	43,341	2106,86	42,61	2497,22	42,932
IVI # 1	58,8	68,64	185,294	64,407	575,594	53,417	965,954	46,668	1356,25	44,485	1746,60	43,87	2136,90	43,432	2527,26	43,291
	63,8	69,414	215,284	62,752	605,584	52,672	995,944	46,579	1386,29	44,38	1776,59	43,381	2166,89	43,349	2557,25	43,259
	68,8	68,912	245,334	61,776	635,634	52,407	1025,98	46,108	1416,28	44,366	1806,64	43,618	2196,94	43,282	2587,29	42,759
	73,8	68,623	43,754	69,715	665,674	51,902	1055,97	45,939	1446,33	44,213	1836,63	43,459	2226,98	42,374	2617,28	42,861
	0	71,97	96,419	64,536	302,499	61,298	842,969	59,991	1234,69	57,813	1834,7	55,008	2434,65	52,291	2974,62	49,778
	31,3	69,991	106,419	64,321	332,549	60,914	873,009	59,714	1294,72	57,493	1894,67	54,671	2494,62	51,98	3034,60	49,494
	36,3	66,075	116,419	64,015	362,589	60,515	902,999	59,618	1354,76	57,208	1954,71	54,467	2554,66	51,848	3094,58	49,327
	41,4	65,704	122,399	63,853	392,579	60,258	933,049	59,273	1414,68	56,91	2014,69	54,202	2614,58	51,416	3154,61	49,057
M#2	51,4	65,582	152,389	63,194	692,859	60,91	963,089	59,192	1474,71	56,681	2134,70	53,546	2674,62	51,165	3214,59	48,741
	66,4	65,397	182,379	63,216	722,849	60,764	994,729	59	1534,69	56,35	2194,62	53,339	2734,6	50,984	3274,57	48,498
	71,4	64,979	212,429	62,796	752,889	60,583	1054,75	58,673	1594,67	56,146	2254,6	53,171	2794,57	50,677	3334,60	48,175
	81,4	64,711	242,469	62,454	782,939	60,298	1114,73	58,43	1654,70	55,83	2314,63	52,811	2854,61	50,345	3394,58	47,991
	91,4	64,658	272,459	61,727	812,979	60,152	1174,71	58,051	1714,68	54,997	2374,61	52,577	2914,64	50,095	3454,56	47,658

Tabla 1 Poliovietilén	(20)	mono octadecil	ótor	<i>(</i> continuación	
I abia 1. I Unoxicului	(20)	mono octaucch	uu	(continuación	1

	$\begin{array}{c c c c c c c c c c c c c c c c c c c $															
	t	$\sigma(t)$	t	$\sigma(t)$	t	$\sigma(t)$	t	$\sigma(t)$	t	$\sigma(t)$	t	$\sigma(t)$	t	$\sigma(t)$	t	$\sigma(t)$
	0	71,97	85,562	67,79	267,202	65,885	539,572	63,057	1139,5	59,331	1859,5	59,061	2554	57,493	3364,2	54,643
	5,592	69,564	95,552	67,666	297,242	65,337	599,552	62,77	1199,6	59,085	1919,5	58,819	2644	57,254	3454,2	53,983
	15,532	69,151	105,60	67,672	327,282	65,274	719,562	61,793	1259,5	59,929	2039,5	58,401	2734,0	56,995	3544,2	53,817
	25,522	68,834	115,60	67,555	357,272	64,878	779,542	61,372	1319,5	60,09	2159,4	58,418	2824,0	56,977	3634,2	53,484
M # 1	35,522	68,538	117,08	67,61	387,322	64,207	839,572	60,98	1379,5	60,105	2219,5	58,153	2914,1	56,788		
	45,572	68,508	147,13	67,206	417,312	64,245	899,552	60,766	1559,5	59,661	2279,5	57,952	3004,1	56,573		
	55,572	68,409	177,12	67,159	447,352	63,585	959,532	60,417	1619,5	59,528	2284	57,907	3094,1	55,986		
	65,562	68,082	207,16	66,294	477,342	63,473	1019,562	60,051	1679,5	59,465	2373,9	57,676	3184,1	55,345		
	75,562	68,036	237,15	66,112	507,382	63,414	1079,542	59,682	1739,5	59,4	2463,9	57,512	3274,2	55,086		
							C 0.001 g/L	~ 0.087 x 1	0 ⁻⁷ M							
	0	71,97	662,11	66,604	993,922	64,224	1713,882	61,829	2433,8	60,788	3213,8	60,202	3993,7	59,458	4773,7	59,133
	331,85	71,918	692,10	66,171	1053,952	63,948	1773,862	61,604	2553,9	60,654	3273,8	59,565	4053,7	59,685	5073,6	59,696
	361,89	71,294	722,15	66,065	1113,932	63,827	1833,892	61,47	2613,8	60,717	3333,8	60,541	4113,7	59,892	5193,6	58,897
	391,88	70,928	752,19	65,837	1173,912	63,305	1893,872	61,576	2673,8	60,424	3393,7	59,508	4173,7	59,115	5253,6	59,416
	421,92	70,367	782,24	65,511	1233,892	63,224	1953,852	61,452	2733,8	60,672	3453,8	59,901	4233,7	59,734	5433,6	59,119
M # 1	451,91	69,69	812,28	65,392	1293,922	63,1	2013,832	61,637	2793,8	60,413	3513,7	60,286	4293,7	59,701	5553,6	59,796
	481,96	69,311	842,27	65,038	1353,952	62,779	2073,862	61,257	2853,8	60,511	3573,8	60,073	4353,7	59,27	5853,6	59,705
	512,00	68,616	872,31	64,903	1413,882	62,527	2133,842	61,267	2913,8	60,098	3633,8	59,532	4413,7	59,672	6153,6	59,228
	542,05	68,044	902,30	64,731	1473,912	62,433	2193,822	61,193	2973,8	60,452	3693,7	60,202	4473,7	59,353	6273,6	59,142
	572,04	67,651	932,35	64,517	1533,892	62,346	2253,852	60,971	3033,8	59,918	3813,7	58,835	4593,7	60,01		
	602,08	67,416	962,34	64,26	1593,872	62,245	2313,832	60,395	3093,8	60,496	3873,7	60,254	4653,7	58,633		
	632,07	66,779	992,38	64,247	1653,902	61,879	2373,812	60,727	3153,8	59,83	3933,8	59,782	4713,7	60,248		
							C 0.0005 g/	L ~ 0.0044	x 10							
M # 1	0	71,97	4172,7 97	72,359	4412,767	71,024	4652,737	70,95	4892,7	70,119	5132,7	71,091	5432,7	68,503		
IVI # 1	3992,8 07	72,043	4232,7	71,926	4472,747	71,494	4712,717	71,263	4952,7	70,339	5192,7	70,003	5492,7	65,923		
	4052.7	72 158	4292.7	71 388	4532 727	71 204	4772 747	71.039	5012.7	71.056	5252.8	70 363	5552.7	63 187		
	87	72,100	57	, 1,500	1002,727	/1,201	1772,717	, 1,000	5012,7	/1,000	5252,0	10,505	5552,7	05,107		
	4112.7	71.637	4352.7	71.75	4592,757	71.464	4832.787	71.276	5072.7	70.11	5312.7	69.603	6523.4	63.123		
	67	,	87	,	,	, .,	,	,	,	, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	,	.,	,.	,		
				10 10-		(0 0 - ·	C 0.00025 g	/L ~ 0.0022	x 10	10 1-1		(0 ==)				
	0	71,97	50,085	69,407	150,875	68,976	541,225	68,712	962,79	68,658	1323,1	68,774			L	
M # 1	5,105	70,337	95,125	69,269	180,915	69,208	571,275	68,835	1007,8	68,703						
	20,045	70,02	110,12	68,713	210,905	68,986	631,305	68,689	1142,9	68,701						
	35,095	69,506	120,89	69,24	240,955	68,701	661,295	68,741	1233,0	68,771						

Tabla 1. Polioxietilén (20) mono octadecil éter (Brij 78) (continuación)

Poli oxietilén (20) mono octadecil éter. (C₁₈E₂₀) Brij 78 Gráficas $\pi(t) - t$ para la estimación de la presión superficial de equilibrio (π_{eq}) de cada concentración del tensoactivo.

Tabla 2. Polioxietilé	n (100) m	ono octad	ecil éter (Brij 700)
$M_n \sim 4670$	$25^{\theta}C$	<i>t</i> (s)	$\sigma(t) (mN/m)$

	$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$															
	t	$\sigma(t)$	t	$\sigma(t)$	t	$\sigma(t)$	t	$\sigma(t)$	t	$\sigma(t)$	t	$\sigma(t)$	t	$\sigma(t)$	t	$\sigma(t)$
	0	71,97	7,905	61,521	49,065	53,713	94,105	52,221	215,54	50,369	520,60	47,944	1120,6	48,057	1667,1	48,971
	4,705	75,111	8,145	61,582	54,065	53,086	99,105	52,05	245,53	50,038	580,57	47,578	1180,5	48,062	1787,0	48,731
	5,105	62,747	14,025	59,413	59,065	53,598	104,10	51,947	275,57	49,582	640,61	47,912	1240,5	48,361	1907,0	49,98
	5,505	61,772	19,025	59,203	64,065	54,94	109,09	51,898	305,62	49,383	700,59	47,464	1300,5	48,934	2027,0	48,423
M # 1	5,905	63,673	24,075	58,237	69,055	52,657	119,09	51,728	335,61	49,022	760,57	47,343	1360,5	48,924		
	6,305	61,144	29,075	57,82	74,055	52,479	124,09	51,271	365,65	49,112	880,58	47,735	1420,5	49,263		
	6,705	63,02	34,075	56,857	79,105	52,849	125,41	51,326	395,64	48,97	940,56	47,496	1480,5	48,798		
	7,105	61,186	39,065	54,168	84,105	52,225	155,45	50,868	400,64	48,79	1000,5	47,984	1540,5	48,421		
	7,505	62,872	44,065	54,052	89,105	52,485	185,50	50,623	460,62	48,232	1060,5	47,955	1547,0	50,112		
	0	71,97	10,13	55,058	61,49	52,677	107,5	51,994	304,8	50,446	756,2	49,295	1361,0	48,703	2561,0	48,474
	6,692	55,45	16,45	54,417	66,48	52,693	112,5	51,864	334,9	50,292	816,2	49,202	1481,0	48,568	2680,0	48,365
	7,092	55,47	21,45	54,067	67,53	52,593	117,5	51,772	364,9	50,193	876,2	49,101	1601,0	48,604	2801,0	48,297
	7,492	55,73	26,50	53,896	72,53	52,552	122,5	51,703	394,9	50,093	936,2	49,034	1721,0	48,511	2921,0	48,365
	7,892	55,497	31,50	53,546	77,58	52,418	124,7	51,809	396,2	50,05	996,2	48,944	1841,0	48,543	3040,0	48,399
M # 2	8,292	55,248	36,50	53,392	82,58	52,411	154,8	51,35	456,2	49,842	1056,0	48,883	1961,0	48,488		
	8,692	55,262	41,49	53,251	87,58	52,212	184,7	51,141	516,2	49,729	1116,0	48,865	2081,0	48,535		
	9,092	55,296	46,49	53,063	92,57	52,133	214,8	50,961	576,2	49,58	1176,0	48,752	2201,0	48,547		
	9,492	55,189	51,49	52,934	97,57	52,024	244,8	50,76	636,2	49,468	1236,0	48,813	2321,0	48,489		
	9,892	55,091	56,49	52,888	102,5	52,014	274,8	50,576	696,2	49,362	1241,0	48,349	2441,0	48,375		
	0	71,97	9,231	54,632	60,701	52,479	110,7	51,646	306,9	50,252	758,3	49,209	1364,0	48,553	2563,9	48,033
	5,791	55,307	15,661	54,056	65,701	52,436	115,7	51,557	337,0	50,166	818,3	48,161	1484,0	48,46	2683,9	48,021
	6,191	55,137	20,661	53,696	70,691	52,333	120,7	51,566	367,07	50,017	878,3	49,037	1603,9	48,432	2804,0	48,002
	6,591	54,983	25,661	53,5	75,691	52,226	125,7	51,471	397,0	49,954	938,3	48,965	1724,0	48,351	2923,9	47,873
M # 3	6,991	54,736	30,651	53,376	80,691	52,089	126,8	51,463	398,3	49,96	998,3	48,846	1844,0	48,352	3043,9	47,844
	7,391	54,697	35,651	53,171	85,691	52,035	156,8	51,141	458,3	49,784	1058,	48,828	1964,0	48,271	3163,9	47,895
	7,791	54,807	40,651	52,987	90,691	51,895	186,9	50,877	518,3	49,605	1118,	48,802	2083,9	48,242	3283,9	47,873
	8,191	54,812	45,701	52,796	95,691	51,865	216,9	50,706	578,3	49,486	1178,	48,652	2203,9	48,206	3403,9	47,732
	8,591	54,721	50,701	52,741	100,7	51,8	246,9	50,518	638,3	49,376	1238,	48,658	2323,9	48,163	3523,9	47,793
	8,991	54,565	55,701	52,645	105,7	51,725	276,9	50,359	698,2	49,316	1244,0	48,574	2443,9	48,086		

			-				C 0.	5 g/L ~ 1.0	7 x 10 ⁻⁴ M		-				-	
	t	$\sigma(t)$	t	$\sigma(t)$	t	$\sigma(t)$	t	$\sigma(t)$	t	$\sigma(t)$	t	$\sigma(t)$	t	$\sigma(t)$	t	$\sigma(t)$
	0	71,97	8,405	57,258	40,415	55,388	80,455	54,313	120,495	53,587	306,745	51,507	638,005	49,64	1117,995	48,367
	5,61	58,019	8,805	57,192	45,405	55,171	85,455	54,195	125,495	53,431	336,735	51,288	697,975	49,388		
	6,01	58,142	9,045	57,175	50,405	55,002	90,505	54,15	126,535	53,503	366,775	51,082	758,015	49,18		
M # 1	6,41	58,094	15,365	56,516	55,405	54,984	95,505	54,012	156,575	52,977	396,825	50,937	817,995	48,976		
141 // 1	6,81	57,944	20,365	56,168	60,455	54,701	100,495	53,85	186,675	52,592	397,975	50,948	877,975	48,823		
	7,21	57,657	25,415	55,895	65,455	54,612	105,495	53,818	216,665	52,289	458,005	50,539	938,005	48,862		
	7,61	57,445	30,415	55,73	70,455	54,523	110,495	53,766	246,715	52,007	517,985	50,211	997,985	48,679		
	8,01	57,339	35,415	55,515	75,455	54,362	115,495	53,671	276,705	51,685	578,025	49,918	1058,015	48,516		
	0	71.97	24.92	54.444	89.95	53.387	276.58	51,798	877.8	50.137	1657.74	49.601	2618.94	49.332	4178.82	49.535
	5	56.407	29.91	54,741	94.95	53.287	306.63	51.597	937.83	50.066	1717.77	49.584	2738.95	49.226	4298.83	49.638
	5,4	56,291	34,91	54,58	99,94	53,314	336,62	51,458	997,81	49,922	1777,75	49,524	2858,96	49,001	4418,85	49,755
	5,8	55,991	39,91	54,393	104,94	53,175	366,66	51,317	1057,79	49,916	1837,73	49,468	2978,92	49,271	4538,8	50,046
	6,2	56,301	44,91	54,293	109,94	53,177	396,65	51,257	1117,82	49,85	1897,77	49,173	3098,88	49,073	4658,82	49,842
	6,6	55,941	49,91	54,12	114,94	53,047	397,81	51,156	1177,75	49,811	1957,69	49,437	3218,89	49,341	4778,77	49,473
M # 2	7	56,153	54,91	53,548	119,94	52,952	457,84	50,974	1237,78	49,791	2017,72	49,448	3338,9	49,34	4898,84	49,256
	7,4	55,813	59,9	53,949	124,94	52,892	517,87	50,783	1297,81	49,839	2077,7	49,443	3458,91	49,31	5018,8	49,708
	7,8	55,94	64,9	53,776	126,47	52,91	577,8	50,63	1357,74	49,84	2137,74	49,406	3578,87	49,5	5138,75	50,105
	8,2	55,808	69,9	53,685	156,46	52,625	637,83	50,541	1417,77	49,726	2139	49,316	3698,88	49,391	5258,77	48,832
	8,44	55,715	74,9	53,63	186,51	52,355	697,81	50,37	1477,75	49,696	2259,01	49,393	3818,84	49,927	5378,72	50,196
	14,9	55,333	79,95	53,557	216,55	52,146	757,79	50,278	1537,78	49,666	2378,97	49,325	3938,85	49,96	5498,74	50,412
	19,9	55,103	84,95	53,454	246,6	51,938	817,82	50,187	1597,76	49,643	2498,93	49,308	4058,86	49,821	5618,75	49,015
	0	71,97	34,782	56,341	109,862	54,758	458,592	52,066	1358,592	49,865	2259,652	48,96	4059,502	48,524	6081,692	48,677
	4,92	58,897	39,782	56,236	114,862	54,549	518,622	51,804	1418,632	49,79	2379,662	49,007	4179,512	48,427	6201,652	48,394
	5,32	59,173	44,782	56,092	119,862	54,518	578,602	51,466	1478,612	49,668	2499,622	48,946	4299,532	48,586	6321,662	48,914
	5,72	58,364	49,782	55,874	124,862	54,414	638,582	51,282	1538,592	49,562	2619,632	48,893	4419,542	48,393	6441,672	48,95
	6,12	58,66	54,832	55,892	127,062	54,435	698,612	51,024	1598,622	49,589	2739,642	48,822	4539,492	48,589	6561,632	48,662
	6,52	58,36	59,832	55,627	157,042	53,553	758,592	50,785	1658,652	49,514	2859,602	48,749	4659,512	48,446	6681,642	48,803
	6,92	58,283	64,822	55,504	187,032	53,515	818,622	50,611	1718,632	49,394	2979,612	48,803	4779,462	48,38	6801,662	48,585
M # 3	7,32	58,155	69,822	55,482	217,082	53,306	878,602	50,444	1778,662	49,5	3099,572	48,657	4899,482	48,448	6921,612	48,939
IVI # J	7,72	58,234	74,822	55,254	247,122	52,934	938,582	50,371	1838,642	49,304	3219,582	48,779	5019,492	48,563	7041,632	48,687
	8,12	58,006	79,822	55,06	277,172	52,719	998,612	50,212	1898,622	49,381	3339,592	48,651	5139,452	48,421	7161,582	48,707
	8,36	57,857	84,822	55,04	307,212	52,528	1058,592	50,125	1958,662	49,326	3459,552	48,567	5259,462	48,427		
	14,8	57,237	89,822	54,871	337,202	52,2	1118,572	50,15	2018,582	49,249	3579,562	48,221	5379,422	48,369		1
	19,8	57,389	94,812	54,85	367,242	52,125	1178,602	49,991	2078,612	49,257	3699,572	48,558	5499,432	48,381		
	24,8	56,626	99,872	54,825	397,232	52,352	1238,532	49,898	2138,652	49,095	3819,532	48,59	5619,442	49,106		
	29,8	56,608	104,87	54,638	398,612	52,363	1298,562	49,834	2139,642	49,121	3939,542	48,661	5961,682	48,417		

							C 0.2	5 g/L ~ 4.2	8 x 10 ⁻⁵ M							
	t	$\sigma(t)$	t	$\sigma(t)$	t	$\sigma(t)$	t	$\sigma(t)$	t	$\sigma(t)$	t	$\sigma(t)$	t	$\sigma(t)$	t	$\sigma(t)$
	0	71,97	33,058	62,606	83,098	59,304	123,14	58,255	364,258	53,229	819,32	50,109	1299,258	49,003	1779,2	49,293
	3,308	67,073	38,058	62,235	88,098	59,937	154,06	57,885	394,248	52,926	879,24	49,535	1359,238	49,346	1959,2	50,053
	3,708	67,55	53,048	62,833	93,148	59,381	184,05	57,69	399,298	52,959	939,3	49,654	1419,268	49,343		
M # 1	4,908	66,368	58,048	61,483	98,148	59,399	214,1	57,698	459,278	52,708	999,25	49,515	1479,248	49,404		
141 // 1	6,108	66,499	63,098	61,699	103,15	59,279	244,14	54,57	579,288	52,249	1059,3	49,387	1539,228	49,361		
	6,508	66,492	68,098	59,875	108,14	59,945	274,13	54	639,328	51,721	1119,3	49,613	1599,208	50,061		
	6,748	66,562	73,098	58,819	113,14	58,934	304,17	54,048	699,308	51,364	1179,3	49,777	1659,238	49,758		
	13,008	66,378	78,098	59,347	118,14	58,507	334,22	53,729	759,288	51,117	1239,3	48,872	1719,218	50,08		
	0	71,97	6,859	59,994	57,999	55,379	108,04	52,339	364,039	49,71	875,02	46,443	1474,969	44,761	2135	44,851
	3,419	65,186	12,959	59,811	62,999	53,849	113,03	51,629	394,089	48,776	935,05	46,345	1534,999	44,844	2275,7	45,988
	3,819	62,554	17,959	57,871	67,999	52,891	118,03	51,88	395,019	49,179	995,03	46,245	1594,979	44,854	2395,7	46,517
2000	4,219	60,197	22,959	56,949	72,989	53,488	123,03	51,89	455,059	48,575	1055,0	45,749	1654,959	44,674	2515,7	47,018
M#2	4,619	57,438	27,949	57,067	77,989	53,962	123,8	51,258	515,089	48,853	1115,0	45,355	1714,989	44,836	2635,7	48,146
	5,019	59,631	32,949	56,958	82,989	52,179	153,84	51,127	575,009	48,219	1175,0	45,563	1774,969	44,542	2755,7	46,604
	5,419	60,179	37,949	56,021	87,989	52,283	183,89	50,273	635,049	47,894	1235	45,312	1834,949	45,009	2875,7	46,389
	5,819	58,261	42,949	57,173	92,989	53,519	213,93	49,836	695,079	47,407	1295,0	45,132	1954,959	44,725	2995,7	47,587
	6,219	59,286	47,999	56,166	97,979	53,355	304,01	49,762	754,999	46,769	1355,1	44,869	2014,939	45,218	3115,7	47,122
	6,619	58,915	52,999	53,813	103,04	52,254	334	49,992	815,039	46,672	1415	44,992	2074,969	44,657	3235,7	46,472
	0	71,97	16,082	52,858	71,112	51,137	126,21	50,408	398,422	48,573	1058,4	46,622	2079,912	45,656	3466	43,328
	4,612	54,711	21,082	52,804	76,112	50,472	127,08	50,032	458,392	48,443	1118,4	60,812	2199,922	45,008	3645,9	43,101
	5,212	56,44	26,082	51,773	81,112	50,742	157,07	49,886	518,432	48,165	1178,4	46,408	2319,872	44,797	3825,9	43,32
	5,812	82,984	31,072	51,87	86,162	50,387	187,12	49,724	578,462	47,906	1238,4	46,761	2439,892	44,315	4005,9	43,484
	6,412	54,158	36,072	51,865	91,162	73,077	217,16	49,729	638,442	47,932	1240	46,337	2559,902	44,438	4185,9	43,994
M # 3	7,012	55,711	41,072	51,81	96,162	51,119	247,15	49,358	698,422	45,887	1360,0	46,166	2679,862	44,514	4365,9	44,298
	7,612	55,664	46,072	51,525	101,16	72,835	277,20	49,309	758,402	47,314	1480	46,055	2799,872	44,284	4545,8	44,349
	8,212	53,822	51,122	50,869	106,16	50,074	307,18	49,177	818,432	47,16	1600	46,089	2919,882	43,963		
	8,812	53,898	56,122	51,436	111,16	50,636	337,23	48,853	878,412	64,722	1719,9	45,818	2925,922	43,829		
	9,412	53,682	61,122	51,163	116,15	50,317	367,27	48,948	938,392	47,245	1839,9	45,408	3105,972	43,941		
	9,652	52,694	66,122	51,334	121,21	50,234	397,32	48,904	998,422	45,084	1960	45,187	3285,962	43,623		

							C 0.1	125 g/L ~ 4	.28 x 10 ⁻⁵ M							
	t	$\sigma(t)$	t	$\sigma(t)$	t	$\sigma(t)$	t	$\sigma(t)$	t	$\sigma(t)$	t	$\sigma(t)$	t	$\sigma(t)$	t	$\sigma(t)$
	0	71,97	8,404	57,607	69,994	51,485	181,104	50,287	392,234	49,678	872,284	48,89	1352,284	49,518		
	4,20	55,33	9,004	57,809	80,044	51,335	211,144	50,246	452,324	49,624	932,324	48,645	1472,234	49,472		
	4,80	61,256	9,184	57,502	90,034	51,008	241,134	50,235	512,304	49,58	992,244	48,9	1655,904	49,785		
M # 1	5,40	60,962	20,00	54,681	100,034	51,062	271,184	49,841	572,284	49,172	1052,274	48,755	1775,924	49,896		
	6,00	64,181	30,00	52,774	110,034	50,824	301,174	49,872	632,314	49,343	1112,254	48,921	2135,904	48,707		
	6,60	59,486	40,00	52,431	120,024	50,816	331,214	49,864	692,294	49,345	1172,234	48,621	2375,874	47,957		
	7,20	59,202	49,9	51,898	121,014	50,897	361,204	49,823	752,274	48,967	1232,264	48,81	2495,834	48,423		
	7,80	59,082	59,99	51,847	151,064	50,665	391,254	49,505	812,304	48,854	1292,244	48,426	2735,794	49,819		
	0	71,97	8,738	55,577	50,058	50,636	95,098	50,136	186,108	49,332	577,288	48,278	1177,298	47,079	2078,348	46,267
	3,94	58,56	8,978	53,924	55,058	50,444	100,148	49,88	216,098	49,158	637,268	47,948	1237,328	47,44	2198,358	45,898
	4,54	58,742	15,02	52,346	60,058	50,472	105,148	49,981	246,138	48,949	697,298	47,712	1238,368	47,185	2318,318	46,089
M#2	5,14	57,694	20,07	51,946	65,058	50,376	110,148	49,921	276,128	49,1	757,278	47,899	1358,388	46,799		
IVI # 2	5,74	57,285	25,07	51,319	70,108	50,527	115,148	49,796	306,178	48,875	877,348	47,376	1478,398	46,822		
	6,34	56,759	30,07	51,284	75,108	50,218	120,148	49,958	336,218	48,666	937,328	47,609	1598,408	47,257		
	6,94	56,117	35,07	51,09	80,098	50,161	125,138	49,703	396,258	48,835	997,308	47,356	1718,368	47,011		
	7,54	55,664	40,06	51,148	85,098	50,331	126,018	49,446	397,298	48,594	1057,338	47,582	1838,318	47,129		
	8,14	55,446	45,06	50,678	90,098	49,869	156,068	49,817	517,308	48,337	1117,318	47,592	1958,338	46,959		
	0	71,97	8,848	55,406	50,778	52,099	95,768	51,756	217,258	50,911	758,438	49,579	1360,638	48,954	2560,548	50,446
	4,05	59,62	9,088	55,321	55,778	52,036	100,758	51,748	247,248	50,745	878,398	49,463	1480,598	49,065	2680,558	50,527
	4,65	58,784	15,74	53,481	60,778	52,042	105,818	51,618	337,378	50,5	938,378	49,359	1600,668	48,916	2800,568	50,653
	5,25	58,854	20,74	52,942	65,778	51,956	110,808	51,59	367,428	50,423	998,408	49,263	1720,628	48,95	2920,528	50,195
M # 3	5,85	56,998	25,74	52,88	70,768	52,046	115,808	51,489	398,348	50,157	1058,438	49,089	1840,638	48,869	3040,538	51,165
	6,45	57,572	30,73	52,637	75,768	51,945	120,808	51,361	458,438	50,197	1118,418	49,085	1960,598	48,824	3280,508	50,851
	7,05	56,539	35,73	52,564	80,768	51,83	125,808	51,471	578,398	49,865	1178,458	48,865	2080,608	48,955	3400,518	50,594
	7,65	56,367	40,73	52,48	85,768	51,683	157,228	51,148	638,428	49,836	1238,378	49,185	2200,558	48,809	3520,528	51,833
	8,25	55,718	45,73	52,311	90,768	51,626	187,218	51,058	699,178	49,436	1240,628	49,218	2440,588	50,285		

	C 0.1 g/L \sim 2.14 x 10 ⁻⁵ M															
	t	$\sigma(t)$	t	$\sigma(t)$	t	$\sigma(t)$	t	$\sigma(t)$	t	$\sigma(t)$	t	$\sigma(t)$	t	$\sigma(t)$	t	$\sigma(t)$
	0	71,97	7,369	59,332	11,369	57,837	13,899	56,772	54,329	54,246	669,389	51,745	1869,339	50,312	3069,249	48,667
M # 1	4,169	60,85	8,169	59,015	12,169	57,495	24,279	55,142	64,319	54,153	969,389	51,327	2169,289	49,806	3369,249	48,066
1 1 1 1 1	4,969	60,804	8,969	58,702	12,969	57,294	34,279	54,671	69,489	54,074	1269,339	50,922	2469,299	49,313	3609,25	48,402
	5,769	60,151	9,769	58,458	13,769	56,691	44,329	54,373	369,44	52,482	1569,339	50,469	2769,239	49,527	3909,15	49,421
	6,569	59,886	10,569	58,001												
	0	71,97	8,153	65,209	31,553	57,649	91,593	53,394	182,60	51,796	362,753	50,084	634,203	49,032	1114,193	47,922
	5,153	66,964	8,753	64,095	41,553	55,514	101,58	53,316	212,59	51,399	392,743	49,982	694,173	48,762	1174,113	47,761
N # 2	5,753	66,117	9,353	63,632	51,553	54,765	111,58	53,216	242,63	51,412	394,173	49,746	754,153	48,622	1234,153	47,636
IVI # 2	6,353	66,094	9,953	64,517	61,543	55,026	121,58	52,962	272,68	51,032	454,203	49,755	874,163	48,331	1294,123	47,515
	6,953	65,76	10,133	63,127	71,543	54,159	122,56	52,753	302,72	50,483	514,243	49,45	934,203	48,195	1354,163	47,428
	7,553	65,383	21,503	58,619	81,533	53,97	152,55	52,14	332,71	50,648	574,163	49,218	994,183	48,056		
	0	71,97	14,134	54,833	68,636	52,968	608,67	50,966	1148,6	49,361	1688,556	48,978	2228,526	48,715	3008,466	48,222
	6,134	57,881	14,934	54,714	128,68	52,513	668,6	50,527	1208,6	49,754	1748,536	49,321	2288,506	48,251	3128,426	47,446
	6,934	57,545	15,734	54,513	188,65	52,085	728,63	50,468	1268,6	48,953	1808,566	48,213	2348,486	47,848		
M # 3	7,734	57,022	15,914	54,477	248,63	51,908	788,61	50,569	1328,6	49,397	1868,546	48,727	2408,516	48,042		
	8,534	56,55	26,244	53,503	308,67	51,706	848,64	50,507	1388,6	49,325	1928,526	48,605	2468,496	47,287		
	9,334	56,488	36,294	53,259	368,65	51,477	908,62	50,296	1448,6	49,305	1988,506	48,222	2528,476	47,702		
	10,134	56,124	46,294	53,211	428,68	51,442	968,6	50,114	1508,6	49,075	2048,536	48,293	2588,506	47,503		
	12,534	55,315	56,284	53,088	488,6	51,073	1028,6	49,968	1568,6	48,944	2108,516	48,204	2648,486	47,299		
	13,334	55,09	66,284	53,017	548,64	51,024	1088,6	49,85	1628,6	48,91	2168,496	48,218	2828,476	47,196		
							C 0.0	5 g/L ~ 1.07	7 x 10 ⁻⁵ M							
M # 1	0	71,97	6,982	66,518	21,862	60,764	61,902	54,529	101,94	52,51	152,862	51,888	272,932	50,76	393,102	50,182
	5,182	67,94	8,182	65,35	31,862	58,391	71,902	53,845	112,00	52,386	182,902	51,271	302,972	50,591	394,202	50,162
	5,782	67,603	8,782	65,226	41,862	56,13	81,902	53,183	121,99	52,122	212,892	51,009	333,022	50,361	454,242	49,907
	6,382	67,638	9,982	64,398	51,912	55,017	91,952	52,955	122,87	52,025	242,942	50,834	363,062	50,251	514,212	49,783
	0	71,97	8,603	61,425	12,603	60,871	54,043	63,364	104,02	55,155	346,618	53,643	646,618	52,699	1849,098	50,947
M # 2	5,403	62,215	9,403	61,413	12,843	60,778	64,033	55,983	106,76	55,027	406,588	53,414	649,198	52,644	2149,048	50,222
	6,203	61,615	10,203	61,142	23,993	59,253	74,033	55,756	166,63	54,492	466,628	53,323	949,148	52,407	2449,048	49,302
	7,003	62,246	11,003	61,133	33,993	58,015	84,033	55,499	226,66	54,204	526,608	53,184	1249,098	51,805	2749,058	49,367
	7,803	62,172	11,803	61,036	43,993	57,157	94,023	55,191	286,58	53,841	586,588	53,057	1549,098	53,965	1 (71 451	40 (05
	0	/1,9/	16,403	56,967	40,113	54,546	100,14	52,466	411,52	51,167	891,511	50,36	1311,471	49,932	16/1,451	49,625
	12,403	57,406	17,203	56,84	50,103	53,459	110,19	52,236	4/1,55	50,942	1011,471	50,227	13/1,511	49,777	1731,431	49,544
M # 3	13,203	57,333	18,003	56,703	60,103	52,025	171,55	51,885	551,55	50,885	10/1,501	50,13	1431,431	49,771	1/91,4/1	49,472
1	14,003	57,283	18,803	56,632	/0,153	53,035	251,53	51,586	/11,52	50,595	1151,481	50,081	1491,461	49,77	1851,501	49,585
	14,803	57,274	19,733	55,425	80,153	52,113	291,56	51,404	//1,55	50,481	1191,511	49,988	1551,441	49,733	1854,528	49,499
	15,603	57,033	30,113	55,412	90,143	52,057	331,34	51,248	851,48	50,396	1251,491	49,922	1611,471	49,368	2154,418	49,094

							C 0.025 g	g/L ~ 5.35 x	10 ⁻⁶ M							
	t	$\sigma(t)$	t	$\sigma(t)$	t	$\sigma(t)$	t	$\sigma(t)$	t	$\sigma(t)$	t	$\sigma(t)$	t	$\sigma(t)$	t	$\sigma(t)$
	0	71,97	80,434	64,689	151,45	60,575	361,65	55,923	632,814	54,759	992,80	54,439	1352,8	54,426	1895,8	53,827
	30,394	70,381	90,424	63,697	181,44	57,133	391,64	55,857	692,854	54,657	1052,8	54,377	1412,8	53,939	2015,8	54,486
M # 1	40,394	67,788	100,42	63,531	211,48	57,581	392,84	55,632	752,834	54,581	1112,8	54,141	1472,8	53,85	2135,8	54,202
IVI # 1	50,444	66,883	110,47	62,962	241,47	56,759	452,82	55,473	812,804	54,507	1172,8	54,147	1532,8	53,905		
	60,444	66,13	120,47	62,225	271,51	56,624	512,86	55,039	872,784	54,246	1232,8	54,208	1655,8	53,971		
	70,434	65,28	121,40	61,62	331,60	56,052	572,84	54,838	932,824	54,505	1292,8	54,433	1775,9	54,123		
	0	71,97	70,822	61,933	121,79	57,884	361,98	54,553	635,562	53,145	995,54	52,721	1355,5	52,26	1778,2	52,421
M#2	20,782	67,682	80,872	61,588	151,78	57,314	392,02	54,16	695,542	53,249	1055,5	52,686	1415,5	52,469	1898,3	52,539
	30,782	65,604	90,872	60,776	181,82	56,361	395,54	54,134	755,522	53,14	1115,6	52,602	1475,5	52,666	2018,2	52,413
IVI # 2	40,832	65,149	100,86	60,312	211,81	55,907	455,57	53,632	815,552	52,809	1175,5	52,795	1535,5	52,523	2138,2	52,573
	50,832	63,971	110,91	59,004	241,86	55,173	515,55	53,647	875,532	52,827	1235,5	52,527	1538,2	52,515	2258,2	52,503
	60,822	62,809	120,91	58,033	331,93	54,691	575,53	53,591	935,512	53,185	1295,6	52,487	1658,2	52,335	2378,2	52,941
	0	71,97	42,935	64,859	123,07	59,463	334,15	54,492	755,205	53,271	1295,2	52,166	1898,1	51,612	2978,1	51,668
	8,825	71,448	52,985	63,753	123,95	59,365	364,2	53,972	815,185	52,502	1355,2	51,995	2018,1	51,805		
M # 2	10,625	71,139	62,975	63,213	154	58,392	395,23	54,232	875,215	52,906	1415,2	52,003	2138,1	51,695		
IVI # 3	11,225	70,435	72,975	62,41	184,04	57,483	455,26	53,756	935,255	52,419	1475,2	51,6	2258,1	52,14		
	11,825	70,005	82,975	62,177	214,08	56,872	515,24	53,432	995,175	52,132	1535,2	51,671	2378,1	52,034		
	12,065	69,778	93,025	60,886	244,07	55,302	575,22	53,44	1115,185	51,909	1538,1	51,886	2498,1	52,019		
	22,935	67,165	103,03	60,521	274,12	54,858	635,25	52,859	1175,165	52,11	1658,1	51,749	2738,0	51,583		
	32,935	65,526	113,02	60,1	304,11	54,929	695,23	52,896	1235,195	51,925	1778,1	51,726	2858,0	51,973		

Tabla 2. Polioxietilén (100) mono octadecil éter (continuación)

							C 0.0	125 g/L ~ 2	2.68 x 10 ⁻⁶ M							
	t	$\sigma(t)$	t	$\sigma(t)$	t	$\sigma(t)$	t	$\sigma(t)$	t	$\sigma(t)$	t	$\sigma(t)$	t	$\sigma(t)$	t	$\sigma(t)$
	0	71,97	81,245	63,604	242,175	58,84	414,915	57,122	494,935	56,308	565,025	55,581	886,065	53,987	1306,025	51,723
	21,2	68,39	101,235	62,438	302,205	58,406	424,905	56,765	504,995	56,318	575,025	55,659	946,045	53,691	1366,005	51,86
N # 1	31,2	66,83	111,225	62,163	332,245	57,116	434,905	56,772	514,985	56,203	585,015	55,769	1006,025	53,219	1126,085	52,912
IVI # 1	4125	65,73	121,225	61,455	362,235	57,47	444,955	56,583	524,985	56,107	586,065	55,574	1066,055	53,032	1186,015	52,486
	51,2	65,46	152,095	60,407	392,285	57,097	454,955	56,584	534,975	55,897	706,075	54,808	1126,085	52,912	1246,045	52,409
	61,2	64,46	182,085	59,974	394,865	57,127	474,945	56,366	544,975	55,764	766,055	54,591	1186,015	52,486	1306,025	51,723
	71,2	63,53	212,125	59,009	404,915	56,885	484,945	56,426	555,025	55,768	826,085	54,34	1246,045	52,409	1366,005	51,86
	0	71,97	8,421	69,365	70,111	60,761	271,471	57,296	573,391	55,25	1053,391	53,322	1533,381	52,339	2378,911	51,719
	4,22	72,61	9,021	68,754	80,111	60,429	301,511	56,967	633,371	54,942	1113,371	53,222	1538,931	52,405	2498,861	51,993
N/#O	4,82	71,86	9,251	68,808	90,111	60,146	331,561	56,801	693,411	54,669	1173,401	53,043	1658,941	52,15	2618,871	51,912
M # 2	5,42	71,22	20,081	65,469	100,101	59,488	361,551	56,487	753,391	54,411	1233,381	52,859	1778,951	51,936		
	6,02	71,03	30,071	63,872	110,151	59,536	391,591	56,539	813,361	54,254	1293,411	52,784	1898,911	51,784		
	6,62	70,74	40,071	63,916	151,401	58,913	393,401	56,339	873,401	53,978	1353,391	52,646	2018,871	51,816		
	7,22	70,41	50,061	62,373	181,451	58,231	453,441	55,952	933,381	53,831	1413,371	52,521	2138,881	51,763		
	7,82	69,74	60,061	61,326	211,441	57,803	513,361	55,497	993,351	53,608	1473,401	52,421	2258,891	51,665		
	0	71,97	40,805	63,784	121,985	60,934	362,175	57,461	753,355	54,824	1353,305	53,292	2016,425	52,75	2976,355	53,101
	6,6	71,95	50,805	63,523	151,975	59,542	392,225	57,054	813,395	55,569	1413,345	53,205	2136,435	52,646	3096,365	53,03
N # 2	7,79	70,89	60,805	63,209	182,025	59,228	393,435	56,933	873,375	54,573	1473,325	53,286	2256,395	53,029	3216,385	54,001
IVI # 3	8,39	70,29	70,795	62,517	212,015	59,216	453,415	56,776	933,345	54,169	1533,305	53,152	2376,405	52,883		
	8,99	70,75	80,855	62,279	242,055	58,724	513,385	56,458	1053,365	55,176	1536,435	53,167	2496,415	53,993		
	9,18	68,93	90,845	61,905	272,105	58,376	573,365	56,153	1113,335	54,119	1656,445	52,991	2616,375	53,73		
1	20,8	66,39	110,835	60,642	302,095	57,511	633,405	55,789	1173,375	53,78	1776,455	53,023	2736,385	52,888		
	30,8	65,29	120,835	60,438	332,185	57,631	693,375	55,725	1293,385	53,663	1896,465	52,833	2856,345	53,543		

Tabla 2. Polioxietilén (100) mono octadecil éter (continuación)

							C 0.01	g/L ~ 2.14	x 10							
	t	$\sigma(t)$	t	$\sigma(t)$	t	$\sigma(t)$	t	$\sigma(t)$	t	$\sigma(t)$	t	$\sigma(t)$	t	$\sigma(t)$	t	$\sigma(t)$
	0	71,97	99,914	64,756	270,95	59,572	573,974	57,024	1053,9	55,16	1533,904	54,222	2376,8	53,003	3336,8	53,314
	29,884	70,293	109,904	63,906	300,99	59,209	633,954	56,716	1113,9	55,013	1536,924	54,174	2496,9	53,012	3456,8	53,497
	39,874	69,312	119,904	63,28	330,98	58,906	693,984	56,37	1173,9	54,838	1656,934	53,918	2616,8	53,039		
N <i>II</i>	49,874	67,799	120,834	63,236	361,02	58,543	753,904	56,191	1233,9	54,606	1776,894	53,855	2736,8	53,096		
M #	59,874	67,107	150,824	62,331	391,01	58,341	813,944	55,998	1293,9	54,671	1896,904	53,663	2856,8	52,998		
1	69,864	66,304	180,874	61,427	393,92	58,277	873,924	55,819	1353,9	54,508	2016,864	53,476	2976,8	52,945		
	79,914	65,949	210,914	61,463	453,96	57,795	933,954	55,602	1413,9	54,412	2136,874	53,426	3096,8	52,822		
	89,914	65,177	240,964	60,048	513,99	57,379	993,934	55,313	1473,9	54,307	2256,894	53,09	3216,8	53,175		
	0	71,97	13,405	66,721	47,995	63,402	128,075	61,414	250,07	59,559	730,055	55,99	1210	53,839	1689,9	53,01
	7,005	69,728	14,205	66,418	58,045	63,255	138,065	61,201	310,04	58,911	789,975	55,678	1270	53,739	1750	51,773
	7,805	68,876	15,005	65,893	68,035	62,781	148,065	60,965	370,02	58,207	850,015	55,289	1330,1	53,471	18105	52,332
	8,605	68,577	15,805	65,988	78,035	62,834	158,115	60,825	430,06	57,985	910,045	55,151	1390	53,108	1869,9	52,063
M #	10,205	68,259	16,605	65,698	88,035	62,444	168,115	60,597	490,04	57,318	969,965	54,309	1450	52,725	19305	52,084
2	11,005	67,189	16,735	65,366	98,025	62,079	178,105	60,38	550,01	56,875	1030,005	53,769	1510	53,254	1931,8	51,903
	11,805	66,382	27,995	64,523	108,08	62,099	188,105	60,17	610,05	56,503	1089,985	54,172	1570	52,874		
	12,605	66,9	37,995	63,89	118,08	61,655	190,085	60,289	670,03	55,931	1150,015	55,364	1630	52,513		
	0	71,97	49,13	64,784	250,93	60,909	1090,845	57,046	1990,8	55,638	2590,745	55,249	3250,7	54,572	3850,6	54,108
	9,25	70,237	69,18	64,266	370,89	60,034	1210,805	56,722	2050,8	55,576	2650,725	55,133	3310,7	54,938	3910,7	54,101
	10,85	69,935	79,18	63,847	430,92	59,632	1330,815	56,486	2110,8	55,575	2710,705	55,14	3370,7	54,831	3970,7	54,536
	12,45	69,463	99,17	63,471	550,88	58,964	1390,795	56,421	2170,8	55,489	2770,745	55,2	3430,7	54,905	4030,7	54,374
	14,05	68,891	109,16	63,201	610,91	58,645	1450,825	56,265	2230,8	55,437	2830,715	55,102	3490,7	54,841	4090,6	54,217
M #	16,45	68,162	129,21	62,886	730,92	58,296	1510,805	56,1	2290,8	55,542	2890,695	55,078	3550,7	54,741	4150,6	54,123
3	18,05	67,97	149,21	62,398	169,25	62,001	1570,785	56,084	2350,8	55,378	2950,735	55,026	3610,7	54,609	4210,7	54,166
	18,98	67,567	169,25	62,001	790,85	57,999	1750,825	55,895	2410,8	55,293	3010,705	54,958	3670,6	54,419		
	29,14	66,034	179,25	61,876	910,86	57,664	1810,755	55,749	2470,7	55,265	3070,685	54,939	3730,7	54,165		
	39,13	65,282	190,885	61,718	1030,9	57,241	1930,765	55,715	2530,8	55,319	3190,705	54,889	3790,7	54,989		

Tabla 2. Polioxietilén (100) mono octadecil éter (continuación)

							C).005 g/L ~	• 1.07 x 10							
	t	$\sigma(t)$	t	$\sigma(t)$	t	$\sigma(t)$	t	$\sigma(t)$	t	$\sigma(t)$	t	$\sigma(t)$	t	$\sigma(t)$	t	$\sigma(t)$
	0	71,97	6,887	81,963	30,347	76,925	90,387	70,829	381,377	65,309	1031,367	62,723	1535,367	62,116	2135,317	61,454
	3,89	83,285	7,487	81,069	40,347	75,94	100,377	70,442	511,387	65,19	1161,377	62,412	1655,317	62,864	2375,287	62,197
N # 1	4,49	80,779	8,087	81,165	50,347	73,676	110,377	70,335	641,397	64,856	1291,387	62,198	1775,337	62,299	2495,297	61,923
IM # 1	5,09	81,047	8,687	80,907	60,337	73,795	120,427	69,763	771,407	63,455	1295,337	62,675	1895,347	62,427	2615,257	62,112
	5,69	81,484	8,927	80,958	70,387	72,123	121,357	68,987	901,417	62,986	1415,347	62,029	2015,307	61,423		
	6,29	81,318	20,357	78,796	80,387	71,461	251,427	66,647								
	0	71,97	12,577	69,707	47,907	67,339	127,98	64,566	251,12	63,073	731,11	60,231	1211,0	59,124	1691,0	57,551
	6,98	70,766	13,377	69,672	57,897	66,858	137,97	64,511	311,15	62,547	791,14	59,955	1271,0	58,6	1751,0	57,89
	7,78	70,476	14,977	69,554	67,897	66,329	148,03	64,156	371,13	61,91	851,12	59,448	1331,0	57,557	1811,0	57,522
25.00	8,58	69,811	15,777	69,593	77,897	65,898	158,02	64,207	431,11	61,6	911,10	59,841	1391,	58,329	1871,0	58,013
M#2	9,38	69,582	16,577	69,499	87,947	65,65	168,02	63,989	491,14	61,039	971,14	59,455	1451,0	58,196	2111,0	57,642
	10,2	69,917	16,707	69,341	97,937	65,268	178,01	63,803	551,12	60,84	1031,0	65,185	1511,0	58,475	2350,9	58,259
	11	70,104	27,907	68,678	107,93	64,904	188,01	63,597	611,10	60,627	1091,0	59,252	1571,0	58,294		
	11,8	69,851	37,907	68,034	117,98	64,799	191,19	63,719	671,13	60,242	1151,0	59,021	1631,0	58,021		
	0	71,97	12,614	70,226	56,364	67,064	156,49	64,196	547,94	61,202	1087,9	59,685	1627,8	59,064	2834,6	58,063
	6,21	70,356	13,414	69,964	66,414	66,578	166,49	63,963	607,92	60,93	1147,9	59,706	1687,8	59,047	3134,6	57,853
	7,01	70,713	14,214	70,093	76,414	66,088	176,48	63,848	667,96	60,66	1207,8	59,605	1747,8	58,863	3434,6	57,7
26.00	7,81	74,939	15,014	69,847	86,414	65,722	186,48	63,686	727,94	60,614	1267,9	59,522	1807,8	58,894		
M # 3	8,61	70,525	15,814	69,97	96,464	65,39	187,96	63,608	787,91	60,407	1327,8	59,446	1867,8	58,902		
	9,41	70,215	15,944	69,824	106,45	65,052	307,97	62,496	847,95	60,278	1387,9	59,344	1927,8	58,854		
1	10,2	70,289	26,324	68,943	116,45	64,537	367,95	62,222	907,93	60,131	1447,8	59,303	1933,4	58,826		
	11,0	70,257	36,374	68,036	126,45	64,562	427,93	61,834	967,96	60,041	1507,8	59,235	2234,7	58,459		
	11,8	71,381	46,364	67,493	146,44	64,252	487,97	61,449	1027,8	59,886	1567,9	59,201	2534,6	58,392		

Tabla 2. Polioxietilén (100) mono octadecil éter (continuación)

							C 0.0025	g/L ~ 5.35	x 10 ⁻⁷ M							
	t	$\sigma(t)$	t	$\sigma(t)$	t	$\sigma(t)$	t	$\sigma(t)$	t	$\sigma(t)$	t	$\sigma(t)$	t	$\sigma(t)$	t	$\sigma(t)$
	0	81,2	7,905	80,101	60,155	76,467	121,005	76,024	331,21	73,581	686,745	71,887	1106,7	70,8	1466,685	71,581
	3,705	79,19	8,505	80,532	70,145	77,037	150,995	75,898	361,2	73,374	806,695	71,53	1166,7	71,4	1526,665	71,961
M # 1	4,305	81,153	8,745	79,352	80,145	76,892	181,045	75,65	391,25	72,898	866,735	71,75	1226,7	71,4	1586,645	70,756
1 V1 # 1	4,905	80,761	20,115	78,901	90,195	76,329	211,085	75,356	446,72	72,393	926,655	70,862	1286,7	71,5	1590,485	70,934
	6,105	81,087	30,105	78,744	100,2	76,188	241,135	74,045	506,7	72,157	986,685	71,581	1346,7	7,31	1710,495	70,051
	6,705	80,413	40,105	77,026	110,2	77,349	271,175	73,67	566,73	72,314	1046,665	70,49	1406,7	71,3	1830,455	71,611
	7,305	79,612	50,155	77,98	120,2	75,58	301,165	73,513	626,71	72,003						
	0	80,3	63,926	79,872	174,55	77,338	354,646	74,059	534,86	72,135	684,966	70,617	1076,2	70	1526,316	70,182
M # 2	4,006	80,255	78,976	79,466	204,59	76,74	414,736	73,502	564,85	71,922	715,016	70,332	1166,2	70,1	1616,286	70,363
101 // 2	18,886	80,823	93,966	79,358	234,58	76,371	444,776	72,919	594,89	71,562	716,056	70,518	1256,2	70,1	1706,306	70,392
	33,886	80,206	109,02	78,77	264,63	75,307	474,826	72,62	624,88	71,473	896,156	70,229	1346,2	70,3	1796,326	70,201
	48,926	80,041	144,51	78,555	324,66	74,237	504,816	72,347	654,93	70,712	986,126	70,144	1436,2	70,2	1886,356	70,282
	C 0.001 g/L ~ 2.14 x 10															
	0	0	11,025	4,248	16,625	4,295	77,235	4,342	137,27	4,593	191,501	4,942	491,50	5,74	791,451	6,787
	7,025	4,554	12,625	4,486	16,755	4,288	87,225	4,322	147,27	4,675	251,531	5,027	551,48	5,86	851,481	6,946
M # 1	7,825	4,156	13,425	4,39	27,195	4,335	97,225	4,523	157,23	4,723	311,511	5,354	611,51	6,25	911,461	6,968
1 V1 # 1	8,625	4,169	14,225	4,196	47,185	4,249	107,275	4,578	167,31	4,77	371,491	5,364	671,49	6,34	971,441	6,683
	9,425	4,558	15,025	4,424	57,235	4,226	117,275	4,628	177,31	4,818	431,521	5,721	731,47	6,87		
	10,225	4,557	15,825	4,359	67,235	4,381	127,265	4,484	187,31	4,808						
	0	71,97	17,432	71,569	117,96	71,464	209,701	70,713	809,65	67,058	1409,601	66,078	1949,6	65,4	2489,551	64,997
	7,832	71,873	27,892	71,765	127,96	71,443	269,731	70,01	869,68	66,86	1469,641	65,969	2009,6	65,2	2549,581	65
	9,432	71,881	37,882	71,793	138,01	71,38	329,661	69,426	929,66	66,634	1529,611	65,89	2069,6	65,1	2609,561	64,929
	11,032	71,663	47,882	71,733	148,01	71,264	389,691	68,868	989,64	66,631	1589,591	65,771	2129,6	64,9	2669,541	65,163
M#2	12,632	71,635	57,932	71,766	158,00	71,155	449,721	68,298	1049,7	66,564	1649,631	65,633	2189,5	65,3	2729,571	64,676
	13,432	71,536	67,932	71,593	168,00	71,134	509,651	67,875	1109,7	66,441	1709,601	65,599	2249,6	65,1	2789,491	65,185
	14,232	71,598	77,922	71,611	178,00	70,963	569,681	67,711	1169,6	66,403	1769,581	65,577	2309,6	65,1	2849,531	65,14
	15,032	71,618	87,972	71,676	188,05	70,895	629,661	67,397	1229,6	66,292	1829,621	65,511	2369,5	65,2	2851,781	64,686
	15,832	71,737	97,972	71,602	198,04	70,715	689,691	67,342	1289,6	66,187	1889,601	65,415	2429,6	65,1	3151,781	64,931
	16,632	71,642	107,97	71,489	208,04	70,643	749,671	67,164	1349,6	66,05						

Tabla 2. Polioxietilén (100) mono octadecil éter (continuación)

C 0.0005 g/L $\sim 1.07 \text{ x } 10^{-7} \text{ M}$																
	t	$\sigma(t)$	t	$\sigma(t)$	t	$\sigma(t)$	t	$\sigma(t)$	t	$\sigma(t)$	t	$\sigma(t)$	t	$\sigma(t)$	t	$\sigma(t)$
	0	71,97	13,6	68,939	17,622	69,024	68,122	68,783	128,152	68,529	190,222	68,479	490,172	68,177	850,202	67,688
M # 1	10,42	69,01	14,4	68,909	28,082	68,871	78,122	68,71	138,152	68,541	250,252	68,426	550,202	68,013	910,132	67,519
1 1 1 1	11,22	68,97	15,2	68,95	38,132	68,873	88,172	68,536	158,202	68,468	310,182	68,325	610,182	67,937	970,162	67,628
	12,02	68,99	16,0	69,047	48,132	68,84	108,162	68,631	168,192	68,402	370,212	68,17	670,212	67,886	1030,142	67,434
	12,82	68,99	16,8	68,882	58,122	68,744	118,162	68,66	178,252	68,462	430,192	68,017	790,172	67,647	1038,006	67,546
C 0.0001 g/L $\sim 2.14 \times 10^8$ M																
_	0	71,97	40,0	70,223	101,191	69,978	222,301	70,022	462,321	69,846	942,321	69,973	1242,321	69,834	1542,271	69,749
M # 1	9,96	70,28	50,0	70,229	121,181	70,002	282,331	69,954	582,281	69,956	1002,351	69,801	1302,301	69,943	1602,301	69,772
IVI <i>π</i> I	19,95	70,21	61,1	70,254	141,231	69,976	342,311	69,845	762,331	70,018	1122,311	69,807	1362,281	69,811	1662,281	69,837
	29,95	70,19	81,1	70,071	162,321	69,963	402,291	69,861	882,341	69,967	1182,291	69,891	1422,311	69,749	1782,291	69,867
	$C 0.00005 \text{ g/L} \sim 1.07 \text{ x } 10^{-8} \text{ M}$															
	0	71,97	1322	71,411	2646,936	71,768	2886,906	71,784	3126,876	71,458	3306,866	71,365	3486,856	71,365	3666,846	71,247
M # 1	5,076	71,97	2107	72,057	2706,916	71,839	2946,936	71,689	3186,906	71,383	3366,896	71,447	3546,886	71,292	3786,856	71,085
191 77 1	168,14	71,754	2527	71,939	2766,946	71,82	3006,916	71,585	3246,886	71,589	3426,876	71,398	3606,866	71,262	3846,836	71,079
	1052,0	71,588	2587	71,914	2826,926	71,75	3066,896	71,667								

Tabla 2. Polioxietilén (100) mono octadecil éter (continuación)

Gráficas $\ln(\pi * / x)$ - π_{eq} para el cálculo del coeficiente de actividad a dilución infinita.

Gráficas $\ln(\pi * / x)$ - π_{eq} para el cálculo del coeficiente de actividad a dilución infinita.

Gráficas $\ln(\pi * / x)$ - π_{eq} para el cálculo del coeficiente de actividad a dilución infinita.

ANEXO B.

PUBLICACIONES.

Available online at www.sciencedirect.com

Fluid Phase Equilibria 250 (2006) 158-164

www.elsevier.com/locate/fluid

Activity coefficients at infinite dilution for surfactants

Josefina Viades-Trejo^a, Alfredo Amigo^b, J. Gracia-Fadrique^{a,*}

^a Departamento de Fisicoquímica, Facultad de Química, UNAM, Ciudad Universitaria, Coyoacán, D.F. 04510, Mexico ^b Departamento de Física Aplicada, Facultad de Física, Universidad de Santiago de Compostela,

Santiago de Compostela, Spain

Received 5 April 2006; received in revised form 13 October 2006; accepted 16 October 2006 Available online 27 October 2006

Abstract

A new alternative is presented for activity coefficients at infinite dilution determination via surface tension data of low vapour pressure substances. It was found that experimental data for surfactants follows Volmer's surface equation of state behaviour over the diluted region until the critical micelle concentration. The key operations are: the choice of the same standard conditions for the bulk and the surface phases, the combination of Gibbs and Volmer equations and the use of the symmetric activity coefficients convention. An exact relation between the activity coefficient at infinite dilution and the reciprocal of the critical micelle mole fraction was found which allowed us the verification of the model. © 2006 Elsevier B.V. All rights reserved.

Keywords: Activity coefficient; Infinite dilution; Volmer equation; Gibbs equation; Critical micelle mole fraction

1. Introduction

The determination of activity coefficients at infinite dilution (γ^{∞}) is of great importance in a variety of industrial and research areas. The methods that have hitherto been used for this purpose, based on liquid-vapour equilibrium, do not consider the group of non-volatile substances such as surfactants, polymers and proteins. The use of activity coefficients in the ordinary liquids¹ ambit is a common practice, however the subject is new in colloids and surface science field; in 1999 Strey et al. [1] pointed out "The following question is justified: Why, with the exception of electromotive force measurements for a limited number of ionic surfactants, have there been no attempts to measure activity coefficients of genuine surfactants? The answer lies presumably in the fact that the determination of activity coefficients of such molecules is rather difficult. The

E-mail addresses: josefina@servidor.unam.mx (J. Viades-Trejo),

famigo@usc.es (A. Amigo), jgraciaf@servidor.unam.mx (J. Gracia-Fadrique). ¹ For the purpose of this paper, ordinary liquids are non-electrolytes with molar vapour pressure is low and the direct determination by vapour pressure measurements becomes imprecise. At low concentrations other techniques such as freezing point depression and osmotic pressure are, in general, insensitive. Therefore precise measurements of activity coefficients of surfactants are urgently needed".

In a previous paper [2] a method to calculate activity coefficients at infinite dilution (γ^{∞}) of ordinary liquids from surface tension data was presented. The method combines the Volmer's surface equation of state (SEOS) and the Gibbs adsorption equation to derive an expression for the surface chemical potential under the symmetric activity coefficient convention ($\gamma_i \rightarrow 1$, $x_i \rightarrow 1$) and entails choosing the same reference state for both the surface and the bulk.

The aim of this paper is to extend the aforementioned method, to the calculation of activity coefficient at infinite dilution (γ^{∞}) of non-volatile surface active materials [1,3,4] such as surfactants, polymers and proteins from surface tension data, and to find the means to verify the validity of the calculated values. Activity coefficients at infinite dilution via surface tension data are an alternative for the understanding of the interfacial structure and the related forces; they present a physical interpretation of the hydrophobic effect and a new and relevant contribution in the enlightening of the structure and conformation of the surface.

^{*} Corresponding author at: Laboratorio de Superficies, Departamento de Fisicoquímica, Facultad de Química, UNAM, Ciudad Universitaria, Coyoacán, D.F. 04510, Mexico. Tel.: +52 55 56223525; fax: +52 55 56162010.

volumes comparable to that of water, do not aggregate and present moderate to high vapour pressures.

2. Theory

2.1. Activity coefficient at infinite dilution of ordinary liquids

The Gibbs adsorption isotherm [2,5,6] relates the variation of the chemical potential to the surface pressure and the surface concentration (number of molecules per unit area):

$$d\pi = \left[\Gamma_2 - \frac{x_2}{x_1}\Gamma_1\right] d\mu_2 \tag{1}$$

where μ_2 is the chemical potential of the surface active solute, π the surface pressure ($\pi = \sigma_0 - \sigma$), i.e. the difference in the surface tension of the pure solvent and that of the solution, Γ_1 and Γ_2 , x_1 and x_2 are the surface concentrations² and the mole fractions of components 1 (solvent) and 2 (solute), respectively. At infinite dilution $x_2 \rightarrow 0$ thus the use of subscripts in Eq. (1) becomes unnecessary, so it reduces to

$$d\pi = \Gamma \, \mathrm{d}\mu \tag{2}$$

On the other hand the Volmer SEOS [7] assuming that the molecular interactions between adsorbed molecules is negligible, connects the area per mole of solute at the surface $(A = \Gamma^{-1})$ to the surface pressure taking the molecular size into account:

$$\pi(A - A_{\rm m}) = \pi \left(\frac{1}{\Gamma} - \frac{1}{\Gamma_{\rm m}}\right) = RT \tag{3}$$

where *A* is the area per mole of solute at the surface, A_m the two dimensional correction term analogous to the three dimensional factor *b* in the van der Waals equation, interpreted as the cross-sectional area of the solute at the surface, $\Gamma_m^{-1} = A_m$ the maximum surface concentration at saturation conditions, *R* the gas constant and *T* is the absolute temperature. Volmer's chemical potential for the surface region comes from the combination of Eqs. (2) and (3):

$$d\mu^{S} = RT \, d\ln \pi + \frac{d\pi}{\Gamma_{m}} \tag{4}$$

The integration of Eq. (4) provides the corresponding surface chemical potential:

$$\mu^{\rm S} = \mu^{0\rm S} + RT \ln \frac{\pi}{\pi^0} + \frac{\pi - \pi^0}{\Gamma_{\rm m}}$$
(5)

where μ^{S} is the surface chemical potential at a given π value, μ^{0S} the reference surface chemical potential and π^{0} is the surface pressure at the reference state; when the reference state is chosen as the mole fraction x = 1 the constrained reference surface pressure is $\pi^{0} = (\sigma_{1}^{0} - \sigma_{2}^{0})$ (i.e. the difference between the surface tensions of the pure components). At infinite dilution the surface chemical potential becomes

$$\lim_{\pi \to 0} \mu^{S} = \mu^{0S} + RT \ln \pi^{*} - \frac{\pi^{0}}{\Gamma_{m}}$$
(6)

where $\pi^* = \pi/\pi^0$ is the reduced surface pressure. Under the symmetric activity coefficients convention $(\gamma_i \rightarrow \gamma^{\infty}, x_i \rightarrow 0)$, the bulk chemical potential at infinite dilution is

$$\lim_{x \to 0} \mu^{b} = \mu^{0b} + RT \ln(\gamma^{\infty} x)$$
(7)

where μ^{b} is the bulk chemical potential at a given *x* value, μ^{0b} the reference bulk chemical potential at *x* = 1 and γ^{∞} is the activity coefficient at infinite dilution. The $\ln \gamma^{\infty}$ value is attainable through the combination of Eqs. (6) and (7) under the same reference state for both the surface and the bulk ($\mu^{0b} = \mu^{0S}$; $\pi(x=1) = \pi^{0}$):

$$\ln \gamma^{\infty} = \ln \left(\frac{\pi^*}{x}\right)_{x \to 0} - \frac{\pi^0}{\Gamma_{\rm m} R T} \tag{8}$$

The parameters $\ln(\pi^*/x)_{x\to 0}$ and $\Gamma_m RT$ of Eq. (8) required for the γ^{∞} calculation, are attainable through the equality of both chemical potentials:

$$d\mu^{b} = d\mu^{S} \tag{9}$$

From the differential forms of (6) and (7) expression (9) leads to

$$d\ln\left(\frac{\pi}{x}\right) = -\frac{d\pi}{\Gamma_{\rm m}RT} \tag{10}$$

The integration of Eq. (10) leads to the integral version of the Volmer SEOS:

$$\ln\left(\frac{\pi}{x}\right) = \ln\left(\frac{\pi}{x}\right)_{x \to 0} - \frac{\pi}{\Gamma_{\rm m}RT} \tag{11}$$

Fig. 1. Volmer's representation for ethanol–water at 25 °C: (**■**) experimental behaviour and π data predicted by Eq. (12). Zones: (a) Volmer's region; (b) experimental π values after the inflexion point; (c) inflexion point; (d) predicted π values after the inflexion point. Data reference: [1].

² Throughout this paper the interface is regarded as a separate phase of an arbitrary thickness (not less than one molecular diameter) for which all the thermodynamic functions and number of moles in the thermodynamic expressions are total quantities, thus Γ_i is not Gibbs's surface excess concentration but the surface concentration.

Fig. 2. Reduced surface pressure (π^*) vs. mole fraction (x) plot for ethanol–water at 25 °C. (\blacksquare) Experimental curve $\pi_m = \pi^0$ and (+) predicted by Volmer's SEOS $\pi_m > \pi^0$. Data reference: [1].

Eq. (11) can be expressed in terms of the reduced surface pressure (π^*) as follows:

$$\ln\left(\frac{\pi^*}{x}\right) = \ln\left(\frac{\pi^*}{x}\right)_{x \to 0} - \frac{\pi}{\Gamma_{\rm m}RT}$$
(12)

The parameters required for the calculation of γ^{∞} in Eq. (8) may be obtained by using Volmer's equation (12), as an example the system ethanol-water is presented in Fig. 1; the equation predicts a linear behaviour at least in the diluted region (zone a) the parameter $(\Gamma_m RT)^{-1}$ being its slope and its intercept the value of $\ln(\pi^*/x)$ at infinite dilution. This equation for ordinary liquids, is valid at the concentration range where the activity coefficient can be assured as constant, the $\ln(\pi^*/x)$ versus π curve exhibits a sharp change in slope at a characteristic composition (point c) as the concentration increases, corresponding to the onset of attractive forces at the surface which manifest themselves as a π reduction and hence a π^0 value equal to the difference between the surface tensions of pure components (Fig. 1).

Two plots of π^* versus *x* values are shown in Fig. 2. The curve with the marker (\blacksquare) shows experimental data in which it may be observed that for ordinary liquids the reference surface pressure marks the maximum value that the experimental surface pressure at saturation conditions may reach, namely, $\pi_m = \pi^0$ thus $\pi^* = 1$ when x = 1. The curve with the marker (+) represents data predicted by Eq. (12) which follow the same pattern observed in Fig. 1, $\pi_m > \pi^0$ thus $\pi^* > 1$ when x = 1.

2.2. Activity coefficient at infinite dilution of non-volatile substances

To extend the application of Eq. (8) to surface active nonvolatile substances, some considerations need to be made: (i) for these systems the determination of the surface tension value of the pure surfactants is not possible due to their nature (solids, semi-solids or highly viscous liquids) so the reference surface pressure cannot be taken as $\pi^0 = (\sigma_1^0 - \sigma_2^0)$ and (ii) presumably

Fig. 3. Reduced surface pressure (π^*) vs. mole fraction (*x*) for C₁₈E₂₀ at 25 °C, π_m is the reference surface pressure reached as $x \to x_{cmc}$. Data from this work.

the surface pressure reaches its maximum at the cmc, thus while for ordinary liquids π^0 is the reference surface pressure reached as $x \to 1$ (Fig. 2), for surfactants, as is shown in Fig. 3, it corresponds to the surface pressure under saturation conditions π_m , i.e. $\pi = \pi_m \forall x \ge x_{cmc}$. For surfactants (8) becomes

$$\ln \gamma^{\infty} = \ln \left(\frac{\pi^*}{x}\right)_{x \to 0} - \frac{\pi_{\rm m}}{\Gamma_{\rm m} R T}$$
(13)

In Fig. 4 the $\ln(\pi^*/x)$ versus π curve for surfactants, presents the sharp change in slope at the cmc (point c), thus these systems follow the Volmer's SEOS behaviour over the region $0 < x < x_{cmc}$ (zone a) in which the π_m value is included, moreover it is worth noting that π no longer increases (region b) after the cmc meaning that intermolecular forces are used in micelle formation. The thermodynamic treatment and Volmer's equation suggest that for surfactants intermolecular forces are invested in the micellization process which favours a model of micelle formation as a consequence of surface saturation followed by their posterior

Fig. 4. Volmer's representation for $C_{18}E_{20}$ at 25 °C. Experimental data follows Eq. (12) over the region $0 < x < x_{cmc}$ (zone a), b: π constant region, point c has the $(\ln(\pi^*/x_{cmc}), \pi_{cmc})$ coordinates. Data from this work.

Fig. 5. Micelle formation at the interface as a consequence of intermolecular forces at the saturated surface.

transfer to the bulk (Fig. 5), that is, the micellization could also be a superficial and ordained process and not exclusively a bulk spontaneous process.

The evaluation of Eq. (12) for a surfactant in solution when $x = x_{\text{cmc}}$, $\pi = \pi_{\text{m}}$ and $\pi^* = 1$ reduces to

$$-\ln x_{\rm cmc} = \ln \left(\frac{\pi^*}{x}\right)_{x \to 0} - \frac{\pi_{\rm m}}{\Gamma_{\rm m} R T}$$
(14)

Table 1

Data from Volmer's SEOS integral version Eq. (12)

Comparing Eqs. (13) and (14), it may be said that

$$\gamma^{\infty} = (x_{\rm cmc})^{-1} \tag{15}$$

A validation of the new alternative for γ^{∞} calculus from Eq. (12) is provided by Eq. (15). The same expression as (15) was derived by Cheng and Chen [3] by means of a modified Gibbs excess energy model. For ordinary liquids the abundance of reported data made the validation simple; on the other hand,

Component	π range ^a	$\ln(\pi^*/x)_{x\to 0}$	$\Gamma_{\rm m} RT$	$\pi_{m}{}^{b}$
Non-ionic				
C ₁₈ E ₄ (this work)	10.2–35.3	15.30 ± 0.05	23.810 ± 0.002	35.07 ± 0.18
C ₁₈ E ₆ (this work)	26.2–37	20.5 ± 0.2	5.000 ± 0.005	37.70 ± 0.13
C ₁₈ E ₈ (this work)	31.9–39.2	32.0 ± 0.4	2.00 ± 0.01	39.30 ± 0.03
C ₁₈ E ₁₀ (this work)	7.3–34	17.6 ± 0.2	10.100 ± 0.004	37.6 ± 0.2
C ₁₈ E ₂₀ (this work)	10.7–28	19.1 ± 0.2	8.33 ± 0.01	30.6 ± 0.2
C ₁₈ E ₁₀₀ (this work)	0.8-22.0	19.2 ± 0.08	6 ± 0.006	23.3 ± 0.2
NP 6 [10]	18.5-41.3	21.83 ± 0.04	11.000 ± 0.001	42.73 ± 0.02
NP10.5 [10]	18.1-41.3	18.6 ± 0.1	8.90 ± 0.04	42.11 ± 0.07
NP 12 [10]	17.7–27.5	13.38 ± 0.02	12.500 ± 0.001	27.40 ± 0.36
NP17.5 [10]	15-32.1	18.80 ± 0.07	8.130 ± 0.003	33.200 ± 0.096
NPSS 10.5 [10]	19.6–35.5	17.06 ± 0.03	12.500 ± 0.001	41.3 ± 0.1
Ionic				
SDS [8]	19.5–33.6	10.003 ± 0.045	21.280 ± 0.003	34.6 ± 0.2
L pH 1.2 [9]	40.7-47.6	22.4 ± 0.3	4.810 ± 0.007	47.60 ± 0.04
L pH 3.2 [9]	37.3-42.8	19.2 ± 0.2	6.700 ± 0.004	46.53 ± 0.04
L pH 5.8 [9]	39.6-46.4	19.2 ± 0.3	6.900 ± 0.008	46.70 ± 0.04
L pH 7.4 [9]	35.5-46.3	18.7 ± 0.2	7.040 ± 0.006	46.700 ± 0.035
L pH 10 [9]	33.9–46.3	18.2 ± 0.3	7.760 ± 0.008	46.55 ± 0.03
DSS pH 4[14]	3.8-35.5	12.8 ± 0.2	9.090 ± 0.007	35.25 ± 0.09
DSS pH 6[14]	1.5-33.2	10.87 ± 0.08	$18\ 500\ \pm\ 0.004$	35.020 ± 0.063
DSS pH 8[14]	2.7-34.2	11.3 ± 0.1	15.600 ± 0.006	33.92 ± 0.12
DSS pH 10[14]	3.0-32.9	11.4 ± 0.1	14.300 ± 0.005	33.2 ± 0.1

 $C_{18}Ei =$ polyethylene glycol mono octadecyl ether; NP = nonyl phenol; NPSS = nonyl phenol sodium sulphate; SDS = sodium dodecyl sulphate; L = lecithin; DSS = sodium 1-dodecan sulphonate.

^a π range from zone "a" in Fig. 3.

^b π^0 values from the surface pressure constant region in the π vs. x plot.

Fig. 6. Determination of γ^{∞} (Eq. (13)) and x_{cmc} (Eq. (15)). Data reference: (\blacksquare) octa ethylene glycol mono octadecyl ether (C₁₈E₈) this work, (\bullet) lecithin pH 3.2 [9] and (\blacktriangle) nonyl phenol 6 [10].

for non-volatile substances the only way to assess the accuracy of the calculated γ^{∞} was to find its relation with a parameter already reported in the literature such as the *x*_{cmc}.

Additionally expression (15) may also be obtained under the symmetrical convention, at the critical micelle concentration (cmc); when the surface is saturated while the bulk is diluted. The mole fractions x (in the bulk) and X (at the surface), and the activity coefficients γ and Λ in the bulk and at the surface,

respectively, are

$$x \to x_{\rm cmc}, \qquad \gamma \to \gamma_{\rm cmc}, \qquad X \to 1, \qquad \Lambda \to 1$$

Thus the corresponding bulk and surface chemical potentials may be written as

$$\mu^{\rm b} = \mu^{0\rm b} + RT \ln(\gamma x)_{\rm cmc} \tag{16}$$

$$\mu^{\rm S} = \mu^{\rm 0S} + RT \ln(\Lambda X)_{\rm cmc} \tag{17}$$

At equilibrium $\mu^{b} = \mu^{S}$, choosing the same standard conditions for the bulk and the surface:

$$\ln(\gamma_{\rm cmc} x_{\rm cmc}) = 0 \tag{18}$$

From expression (18) it follows that

$$\ln \gamma_{\rm cmc} = -\ln x_{\rm cmc} \tag{19}$$

Introducing (19) in (14):

$$\ln \gamma_{\rm cmc} = \ln \left(\frac{\pi^*}{x}\right)_{x \to 0} - \frac{\pi_{\rm m}}{\Gamma_{\rm m} R T}$$
(20)

Comparing expressions (20) and (13) Eq. (15) is readily obtained:

$$\gamma_{\rm cmc} = (x_{\rm cmc})^{-1} = \gamma^{\infty} \tag{21}$$

Eq. (21) not only confirms Eq. (15) but also provides the relation among γ^{∞} , $\gamma_{\rm cmc}$ and $(x_{\rm cmc})^{-1}$.

Table 2

Activity coefficients at infinite dilution, comparison of predicted and experimental cmc mole fractions

Component	$\gamma^{\infty} \times 10^{-4}$ (Eq. (13))	$x_{\rm cmc} \times 10^8$	
		Predicted (Eq. (15))	Experimental (σ vs. ln x)
Non-ionic			
C ₁₈ E ₄ (this work)	101.2 ± 2.5	99.8 ± 3.3	99.5
$C_{18}E_6$ (this work)	43.0 ± 4.5	235 ± 42	231
C ₁₈ E ₈ (this work)	24.0 ± 2.8	420 ± 140	382
$C_{18}E_{10}$ (this work)	106 ± 5	94.0 ± 7.1	107
C ₁₈ E ₂₀ (this work)	482 ± 50	22.0 ± 3.7	25.1
C ₁₈ E ₁₀₀ (this work)	450.0 ± 5.3	22.20 ± 0.42	28.4
NP 6 [10]	6200 ± 140	1.610 ± 0.006	1.84
NP10.5 [10]	106.0 ± 5.8	95.0 ± 8.3	88
NP12 [10]	7.23 ± 0.036	1380 ± 2.9	1500
NP17.5 [10]	246.0 ± 8.4	40.6 ± 2.2	44.3
NPSS 10.5 [10]	94.2 ± 1.2	106.0 ± 2.2	128
Ionic			
SDS [8]	0.593 ± 0.013	16800 ± 403	16,818
L pH 1.2 [9]	27.0 ± 2.3	371 ± 87	436
L pH 3.2 [9]	21.0 ± 2.4	476 ± 93	511
L pH 5.8 [9]	25.1 ± 3.7	399 ± 100	519
L pH 7.4 [9]	17.30 ± 0.98	577 ± 52	610
L pH 10 [9]	19.8 ± 3.4	503 ± 34	516
DSS pH 4 [14]	0.76 ± 0.84	14000 ± 2500	20,000
DSS pH 6 [14]	0.89 ± 0.04	11400 ± 830	14,000
DSS pH 8 [14]	0.93 ± 0.05	11000 ± 940	13,900
DSS pH 10 [14]	0.877 ± 0.047	11600 ± 1000	14,100

 $C_{18}Ei = polyethylene glycol mono octadecyl ether; NP = nonyl phenol; NPSS = nonyl phenol sodium sulphate; SDS = sodium dodecyl sulphate; L = lecithin; DSS = sodium 1-dodecanesulphonate.$

3. Materials and methods

Surface tension data used for the γ^{∞} calculus presented in this paper, come from two sources: literature and our experimental work. Data from literature includes non-ionic surfactants (nonyl phenols) and two kinds of ionic surfactants: zwitterionic (lecithins) and anionic (sodium dodecyl sulphate and sodium 1dodecanesulphonate). Ionic surfactants were included to test if they follow Volmer's SEOS just as the non-ionic surfactants, or if the presence of the ionic head groups could cause deviations in their behaviour, lecithins were chosen because as zwitterions charge depends on the pH (charge near to zero at pH 7).

Experimental surface tension data were determined with the KSV CAM 200 pendant drop tensiometer fitted with a CCD video camera with telecentric optics, a frame grabber and a strobed monochromatic LED light source. Temperature was kept at 25 ± 1 °C using the KSV Thermo Control Unit. The materials used consisted in a homologous series of polyethylene glycol mono octadecyl ethers: (C₁₈Ei), C₁₈E₁₀₀ (Brij 700), C₁₈E₂₀ (Brij 78) and C₁₈E₁₀ (Brij 76) from Sigma–Aldrich Chemicals; C₁₈E₈, C₁₈E₆ and C₁₈E₄ (purity > 98% TLC) from Fluka BioChemika.

Sets of solutions from 1 to 1×10^{-5} g/l (10^{-4} to 10^{-8} M) of the surfactants were prepared in distilled water, drop images were taken with the CCD camera at time intervals programmed by the CAM 200 software. Surface tension values were calculated by curve fitting to the Young–Laplace equation, this method is also incorporated in the CAM 200 software. All measurements were performed in triplicate.

Surface pressure values for the surfactants, were calculated from experimental surface tension data taken from the literature [8–10,14] and from our experimental work. The values of π_m come from the equilibrium zone (i.e. when π becomes constant) in the π versus *x* curves and were used to obtain the values of π^* for each surfactant.

The values of $\ln(\pi^*/x)_{x\to 0}$ and $\Gamma_m RT$ in Table 1, were obtained from the $\ln(\pi^*/x)$ versus π curves (Eq. (12)) which predicts a linear behaviour in the diluted region, the first parameter being its intercept and the second one the inverse of the slope. Some examples are shown in Fig. 6. Activity coefficients at infinite dilution were calculated with Eq. (13), using the parameters, $\ln(\pi^*/x)_{x\to 0}$ and $\Gamma_m RT$, from Table 1. The critical micelle mole fractions for each surface active substance were determined by the Gibbs equation in the traditional way [11–13] from the break in the σ versus ln *x* curves (instead of σ versus log *c* curves).

To check the predictive ability of Eq. (13) for these systems, mole fractions at the cmc were also calculated by means of Eq. (15) and compared with experimental values. The results are shown in Table 2.

4. Results and conclusions

For all the surface active substances studied, it was found that Volmer's equation (12) is valid for the region $0 \le x \le x_{cmc}$ (zone a in Fig. 4) in which the π_m value is included: thus Eq. (12) allows the determination of the activity coefficient at infinite dilution for these substances. The sharp change in slope at a characteristic

composition in the $\ln(\pi^*/x)$ versus π curve corresponds to the $(-\ln x_{\rm cmc}, \pi_{\rm cmc})$ coordinates (point c in Fig. 4). The reference surface pressure corresponds to that at saturation conditions, i.e. the maximum surface pressure $(\pi_{\rm m})$. As is observed in Fig. 4, π no longer increases after the cmc (region b) meaning that the surface is saturated and the attractive forces are invested in micelle formation.

Ordinary liquids follow Volmer's SEOS in a characteristic interval (zone a in Fig. 1) in which the π^0 value is not included. The change in slope in the $\ln(\pi^*/x)$ versus π curve is due to the emergence of attractive forces between molecules at the surface, leading to a surface pressure which is lower than expected (zone b in Fig. 1).

Activity coefficient at infinite dilution data were verified through Eq. (15), this exact relation was confirmed for surfactants in this work by means of the symmetrical convention where the equality between bulk and surface chemical potentials accomplish the highly diluted condition in the bulk and the highly concentrated condition at the surface.

As is shown in Table 2, activity coefficients at infinite dilution values are in the range from 10^4 to 10^6 , as would be expected given the amphipathic nature of surfactants, the predicted mole fractions at the cmc from (Eq. (15) in Section 2.2) are in good agreement with experimental values, which validates the application to the systems under study of (Eq. (8) in Section 2.1) previously reported for ordinary liquids.

The thermodynamic treatment and Volmer's equation suggest that in ordinary liquids molecular attractive forces at the surface manifest themselves as a surface pressure reduction while for surfactants these forces are invested in the micellization process which favours the hypothesis that micelle formation could occur at the surface followed by their posterior transfer to the bulk.

List of symbols

Α	area per mole of solute at the surface (m ² /mol)
$A_{\rm m}$	area/mole solute at the surface (saturation conditions)
cmc	critical micelar concentration
R	gas constant (J/mol K)
Т	absolute temperature
x	mole fraction at the bulk
$x_{\rm cmc}$	mole fraction at the cmc
X	mole fraction at the surface.
Greek s	ymbols
γ	activity coefficient
γ^{∞}	activity coefficient at infinite dilution
	c (1)

- Γ surface concentration (mol/m²)
- $\Gamma_{\rm m}$ surface concentration at saturation conditions
- Λ activity coefficient at the surface
- $\mu^{\rm b}$ bulk chemical potential
- $\mu^{\rm S}$ surface chemical potential
- π surface pressure (mN/m)
- $\pi_{\rm cmc}$ surface pressure at the cmc (mN/m)
- $\pi_{\rm m}$ maximum surface pressure (at saturation conditions)
- π^0 reference surface pressure $(\pi^0 = \sigma_1^0 \sigma_2^0)$
- π^* reduced surface pressure

- σ surface tension (mN/m)
- σ_i^0 surface tension of the pure component (*i* = 1, 2, ...)

References

- R. Strey, Y. Viisanen, M. Aratono, J.P. Kratohvil, Q. Yin, S.E. Friberg, J. Phys. Chem. B 103 (1999) 9112–9116.
- [2] J. Gracia-Fadrique, P. Brocos, A. Piñeiro, A. Amigo, Langmuir 18 (2002) 3604–3608.
- [3] J.S. Cheng, Y.P. Chen, Fluid Phase Equilib. 232 (2005) 37-43.
- [4] E. Hernández-Baltazar, G.A. Reyes-Sandoval, J. Gracia-Fadrique, Colloids Surf. A: Physicochem. Eng. Aspects 238 (2004) 113–122.
- [5] R. Aveyard, D.A. Haydon, An Introduction to the Principles of Surface Chemistry, 1st ed., Cambridge University Press, Great Britain, 1993.

- [6] S. Ross, E.S. Chen, Chemistry and Physics of Interfaces, ACS Pubs., USA, 1965, pp. 43–56.
- [7] M. Volmer, Z. Phys. Chem. 115 (1925) 253-260.
- [8] M.J.L. Castro, H. Ritacco, J. Kovensky, A. Fernández-Cirelli, J. Chem. Ed. 78 (3) (2001) 347–348.
- [9] P. Martínez-Landeira, J.M. Russo, G. Prieto, F. Sarmiento, J. Chem. Eng. Data 17 (2002) 1017–1021.
- [10] A. Ortega, M. Coronado, O. Torreblanca, J. Gracia, Memorias XV Congreso Nacional de Termodinámica, 2000, pp. 40–43.
- [11] M.J. Rosen, Surfactants and Interfacial Phenomena, 2nd ed., Wiley–Interscience, New York, 1989.
- [12] M.J. Rosen, A.W. Cohen, M.D. Dahanayake, X. Hua, J. Phys. Chem. 86 (4) (1982) 541–545.
- [13] J. Schick, J. Colloid Sci. 17 (1962) 801-813.
- [14] F. Hernaínz, M. Calero, G. Blázquez, A. Caro, J. Chem. Eng. Data 51 (2006) 1216–1219.

Available online at www.sciencedirect.com

Colloids and Surfaces A: Physicochem. Eng. Aspects 302 (2007) 549-552

www.elsevier.com/locate/colsurfa

Spinning drop method From Young–Laplace to Vonnegut

Josefina Viades-Trejo, Jesús Gracia-Fadrique*

Departamento de Fisicoquímica, Facultad de Química, UNAM, Ciudad Universitaria Coyoacán, D.F. México 04510, Mexico

Received 19 August 2006; received in revised form 16 February 2007; accepted 16 March 2007 Available online 23 March 2007

Abstract

The Young–Laplace general equation for curved surfaces under the influence of a centrifugal field and its relation with the spinning drop method is discussed. It was found that Vonnegut's expression may be regarded as a particular case of the general curvature equation and that the spinning drop method may be solved defining the relation between the radius of the sphere to the radius of the cylinder avoiding the use of differential equations and numerical solutions.

© 2007 Elsevier B.V. All rights reserved.

Keywords: Spinning drop; Vonnegut; External field; Rotating force; Gravitational force; Shape factor

1. Introduction

The measurement of ultra low (less than 10^{-2} mN/m) interfacial tensions is possible using the spinning drop, the sessile drop and the micro pendent drop methods. Probably the simplest to operate and construct is the first one [1], which has been widely used in studying many systems such as crude oil to measure the interfacial tension associated with micellar flow [2], polymer blends, bitumen, organic solvents [3–5], ultra thin amino methacrylate membranes [6], non spherical organosiloxane capsules [7].

There are many papers discussing the spinning drop method focused on different aspects [1-12]. Rosenthal [8] in 1962 discussed about the shape and stability of the bubble at the axis of a rotating liquid without any reference to Vonnegut, later Princen et al. [9] made a thorough analysis of the shape of the drop by using elliptic integrals, they used the length and the volume of the drop for surface tension calculations. Cayias et al. [10] show that the measurement of the drop's width and length is a more accurate method for low interfacial tension determinations. Elliott et al. [11], in 1996 reported a method for predicting the

jgraciaf@servidor.unam.mx (J. Gracia-Fadrique).

shape of a bubble in a two phase isothermal constant-volume, constant-mass rotating fluid system using the thermodynamic concept. The aim of this paper is to show that the spinning drop method may be solved by the application of the general curvature equation proposed by Young–Laplace which in a particular situation is in agreement with Vonnegut's equation, the common expression used for interfacial tension determinations with the spinning drop method.

2. Theory

2.1. The spinning drop method

Bernard Vonnegut [13] in 1942 proposed the rotating bubble (spinning drop) method for surface and interfacial tension determinations. In this method a small bubble of an immiscible liquid or gas "A" suspended in a liquid "B" is put under rotation about a horizontal axis (Fig. 1), because of the centrifugal forces "A" to find an equilibrium position will migrate to the centre forming a drop astride the spinning axis. As the centrifugal force increases to a sufficiently high value, the drop changes to a cylindrical shape [2,13,14].

The surface or interfacial tensions are calculated using Eq. (1) suggested by Vonnegut under the following considerations [13]. The elongation of the bubble stops when the centrifugal forces are balanced by the surface tension forces, assuming that the

^{*} Corresponding author. Tel.: +52 55 56223525; fax: +52 55 56162010. *E-mail addresses:* josefina@servidor.unam.mx (J. Viades-Trejo),

^{0927-7757/\$ –} see front matter @ 2007 Elsevier B.V. All rights reserved. doi:10.1016/j.colsurfa.2007.03.033

Nomenclature								
Ε	spherical conditions							
f(n)	function of n (15)							
F	external field force							
g	gravity constant							
g^*	acceleration due to the rotational field							
n	reduction factor (12)							
NE	non spherical conditions							
ΔP	pressure difference between phases							
R	radius of the cylinder							
R_0	sphere radius							
R_i	maximum curvature radii $(i = 1, 2)$							
у	liquid column height relative to the sphere							
Greek l	etters							
$\Delta \rho$	density difference between phases							
α	shape parameter [9]							
λ	potential distance							
σ	interfacial tension							
ω	angular velocity							

length of the bubble is large compared with the radius $(L \gg R)$ so it can be treated like a circular cylinder with hemispherical ends and a negligible effect of gravity at increased speeds of rotation, then it is possible to write an expression for the total energy of the bubble and solve it for the equilibrium shape with the minimum energy.

$$\sigma = \frac{\Delta \rho \omega^2}{4} R^3 \tag{1}$$

where σ is the interfacial tension, $\Delta \rho$ the density difference between phases, ω the angular velocity and *R* is the cylinder radius.

2.2. The Young–Laplace equation for non spherical surfaces under an external field

The Young–Laplace equation rules the relation among curvature, surface energy and pressure difference between two phases; it has been used to describe spherical and non spherical shapes either in the absence or under the influence of an external field. The general expression for the mechanical equilibrium between phases separated by a spherical surface is

$$\Delta P = \frac{2\sigma}{R_0} \tag{2}$$

where R_0 is the sphere radius and ΔP is the pressure difference between phases. Expression (2), which corresponds to the Young–Laplace equation in its simplest form, describes the spherical condition. Any non spherical surface requires at least two orthogonal maximum curvature radii R_i (*i* = 1, 2) for its description, thus Eq. (2) becomes

$$\Delta P = \sigma \left(\frac{1}{R_1} + \frac{1}{R_2} \right) \tag{3}$$

In the absence of any external field (gravitational, electrical, magnetic or centrifugal), the sphere is the geometrical shape. The spherical condition is lost under the influence of an external field:

$$NE = E + F \tag{4}$$

where NE is referred to the non spherical condition, E to the spherical condition and F represents the external field responsible for the deformation. The deformation of curved surfaces subject to a uniform gravitational field is also considered by Young–Laplace, linking Eqs. (2) and (3) by expression (4):

$$\sigma\left(\frac{1}{R_1} + \frac{1}{R_2}\right) = \frac{2\sigma}{R_0} + \Delta\rho gy \tag{5}$$

where g is the gravity constant and "y" is the liquid column height relative to the sphere. The first term on the right of Eq. (5), stands for the spherical condition while the second one represents the

Fig. 1. Spinning drop method.

deformation and the additional variation in the hydrostatic pressure caused by the gravitational field effect. If an additional centrifugal field is present, this expression should be extended:

$$\sigma\left(\frac{1}{R_1} + \frac{1}{R_2}\right) = \frac{2\sigma}{R_0} + \Delta\rho gy + \Delta\rho g^*\lambda \tag{6}$$

where $g^* = \omega^2 \lambda$ is the acceleration due to the rotational field, λ is the potential distance, i.e. the drop's displacement from the axis of rotation caused by the gravitational field [11]. In the spinning drop method the rotational field acceleration is higher than the gravity acceleration $(g^* \gg g)$ thus the effects of gravity are negligible and the formed drop will be centred at the spinning axis, then Eq. (6) is reduced to:

$$\sigma\left(\frac{1}{R_1} + \frac{1}{R_2}\right) = \frac{2\sigma}{R_0} + \Delta\rho\omega^2\lambda^2 \tag{7}$$

The centrifugal force $(\Delta \rho \omega^2 \lambda)$ on a volume element becomes zero when both ω and λ simultaneously go to zero, thus the spherical condition is constrained:

$$\begin{array}{ll}
\omega \to 0 & \lambda \to 0 \\
\omega \to 0 & R_2 \to R_0
\end{array} \tag{8}$$

The accomplishment of these initial conditions requires defining the potential distance as $\lambda = R_0 - R_2$ thus the rotational force on a volume element under the above initial conditions is:

$$\Delta \rho \omega^2 \lambda = \Delta \rho \omega^2 (R_0 - R_2) \tag{9}$$

where R_0 is radius of the drop when $\omega = 0$ (spherical drop) and R_2 represents the elliptic radius of the drop in the rotating direction. On the other hand at sufficiently high speed revolutions the drop approximates to an elongated cylinder with radius R (Fig. 1c)

$$\omega \gg 0 \qquad R_2 \to R \qquad R_1 \to \infty \tag{10}$$

Under the boundary conditions Eqs. (7) and (9) take the form:

$$\frac{1}{R} = \frac{2}{R_0} - \frac{\Delta \rho \omega^2}{\sigma} (R_0 - R)^2$$
(11)

Eq. (11) describes the cylindrical condition of the drop at a sufficiently high angular velocity. The first term to the right is related to the spherical condition, the minus sign in the second term corresponds to the decrease in the hydrostatic column caused by the centrifugal field effect. The cylinder radius is always lower than the original sphere radius by a reduction factor *n*. For n > 1 the radius of the spherical drop in Eq. (11) is:

$$R_0 = nR \tag{12}$$

If (12) is introduced in (11) the boundary conditions will be expressed in terms of the radius of the cylinder exclusively:

$$\frac{1}{R} = \frac{2}{nR} - \frac{\Delta\rho\omega^2}{\sigma}(nR - R)^2$$
(13)

On arrangement:

$$\left(\frac{2-n}{n}\right)\frac{1}{(n-1)^2} = \frac{\Delta\rho\omega^2}{\sigma}R^3$$
(14)

Vonnegut's Eq. (1) is suitable for interfacial tension calculations, provided that the ratio length/width of the drop is above a value near to 4 [2-4]. Eq. (14) is the Young–Laplace expression for a centrifugal field when $\omega \rightarrow \infty$, provided the cylindrical condition is achieved and for a ratio length/width not necessarily above 4. Fig. 2 shows the dependence of f(n) (the left term in (14)) on *n* for 1 < n < 2. As $n \to 1$ $f(n) \to \infty$, while as $n \to 2$ $f(n) \rightarrow 0$. Vonnegut's equation comes from (14) if the proper value of *n* is chosen, for $n \approx 1.3478$, the term in the left side is:

$$f(n) = \left(\frac{2-n}{n}\right) \frac{1}{(n-1)^2} \approx 4.0003$$
(15)

Equating expressions (14) and (15) the known Vonnegut's expression is obtained, furthermore for the linear region in the f(n) versus n curve (Fig. 2) it may be written in terms of f(n)instead of the usual constant value.

$$\sigma = (n-1)^2 \left(\frac{n}{2-n}\right) \Delta \rho \omega^2 R^3 \tag{16}$$

The seminal work of Bashforth and Adams [15] has been the basis for the solution of the methods related to the shape of the surface, many authors have defined their own shape parameters for different purposes, the pioneers were Andreas et al. [16] for the pendant drop method and Princen et al. [9] for the rotating drop method. Shape parameters usually are expressed in terms of density difference between phases, interfacial tension, external force, radius and a distance, in the present work the shape parameter is only dependant on the reduction factor (n). The differential equation usually produced when the expressions for the curvature radii are introduced is reduced to the case of a cylinder for which at sufficient high ω the curvature radii are $R_2 \rightarrow R$ and $R_1 \rightarrow \infty$ leading to Eq. (11) to describe the cylindrical condition, avoiding the necessity of numerical solutions. For the experimental work it is only necessary to know R, R_0 , $\Delta \rho$, and ω ; interfacial tension determinations may be performed by measuring R at different ω and σ should be constant. Since that $f(n) \to \infty$ as $n \to 1$ in Eq. (11) in the vicinity of $n \approx 1$ the cylindrical condition is not accomplished. The work of Prin-

Fig. 3. Linear region in the f(n) vs. α^{-1} curve. Shape factor α from Ref. [9].

cen allows the determination of the application interval of (11) through the comparison of the shape parameter α with the f(n) in this work. The f(n) versus α^{-1} curve (Fig. 3) shows a linear region which corresponds to the intervals: 2.24 < f(n) < 80 and $0.500 < \alpha < 0.592$ it may be noticed that the value $f(n) \approx 4.0003$ is included in the linear region. The deformation undergone by the drop in the linear intervals may also be estimated, for $f(n) \approx 77.4$ corresponding to a value of $n \approx 1.1$, the drop has undergone a deformation of about a 10% while for $f(n) \approx 2.24$ and $n \approx 1.42$ the deformation is about 42%.

3. Conclusion

The Young–Laplace equation for fluid surfaces under a rotational field allows the solution of the spinning drop method. The boundary conditions for it are the spherical shape ($\omega \rightarrow 0$), that is, the Young–Laplace expression turns to its simplest form, and the cylindrical shape $(\omega \to \infty)$ for which the expression for a value of $f(n) \sim 4$ becomes Vonnegut's equation, thus this expression is a particular case of the modified Young–Laplace equation for the cylindrical condition. The reduction of (7) to case of a cylinder for which at sufficiently high ω the curvature radii are $R_2 \to R$ and $R_1 \to \infty$ along with the definition of the potential distance as $\lambda = (R_0-R)$ allowed us to describe the cylindrical condition of the drop by Eq. (11) avoiding the use of first and second derivatives and numerical solutions to write Vonnegut's equation.

References

- [1] J.C. Slattery, J.D. Chen, J. Colloid Interface Sci. 64 (2) (1978) 371-373.
- [2] M. Princen, J. Colloid Interface Sci. 169 (1995) 241–243.
- [3] H.H. Hu, D.D. Joseph, J. Colloid Interface Sci. 162 (1994) 331–339.
- [4] C.C.V. Chan, J.A.W. Elliot, M.C. Williams, J. Colloid Interface Sci. 260 (2003) 211–218.
- [5] C. Verdier, H.T.M. Vinagre, M. Piau, D.D. Joseph, Polymer 41 (2000) 6683–6689.
- [6] G. Pieper, H. Rehage, D. Barthés-Biesel, J. Colloid Interface Sci. 202 (1998) 293–300.
- [7] M. Husmann, H. Rehage, E. Dhenin, D. Barthés-Biesel, J. Colloid Interface Sci. 282 (2005) 109–119.
- [8] D.K. Rosenthal, J. Fluid Mech. 12 (1962) 358-366.
- [9] H.M. Princen, I.Y.Z. Zia, S.G. Mason, J. Colloid Interface Sci. 23 (1967) 99–107.
- [10] J.L. Cayias, R.S. Schechter, W.H. Wade, Adsorption at Interfaces, in: K.L. Mittal (Ed.), ACS Symposium Series 8, paper 17, ACS Washington, 1975, pp. 234–247.
- [11] J.A.W. Elliott, C.A. Ward, D. Yee, J. Fluid Mech. 319 (1996) 1-23.
- [12] D.D. Joseph, M. Arney, G. Ma, J. Colloid Interface Sci. 148 (January (1)) (1992) 291–294.
- [13] B. Vonnegut, Rev. Sci. Instrum. 13 (6) (1942) 6-9.
- [14] W.A. Adamson, A.P. Gast, Physical Chemistry of Surfaces, vol. 10–14, sixth ed., Wiley Interscience, New York, 1997, pp. 30–31.
- [15] F. Bashforth, J.C. Adams, An Attempt to Test the Theories of Capillary Action, University Press, Cambridge, England, 1883.
- [16] J.M. Andreas, E.A. Hauser, W.B. Tucker, J. Phys. Chem. 42 (1938) 1001.
CURVATURA Y TERMODINÁMICA.

Josefina Viades-Trejo¹ y Jesús Gracia-Fadrique¹.

Abstract. (Curvature and Thermodynamics)

The concept of curvature of a fluid phase and its relation with the surface tension and pressure difference between phases is presented in the thermodynamics context, from the simplest situation of the spherical condition, to the more general case of surfaces under the influence of an external field and their corresponding differential form of the Young-Laplace equation.

Introducción.

La ecuación de Young-Laplace establece la relación entre curvatura, tensión superficial y la diferencia de presiones en fases fluidas, resultado de la competencia entre los trabajos volumétrico y superficial. La forma de una superficie depende de la diferencia de presiones entre las fases que la conforman.

La descripción de una superficie curva requiere al menos de dos radios de curvatura, de aquí el requisito de los conceptos de curvatura, radio de curvatura y radio máximo de curvatura, que constituyen los elementos indispensables para construir la ecuación de Young-Laplace en sus formas ordinaria y diferencial.

¹ Facultad de Química, Universidad Nacional Autónoma de México, México 04510, D.F. **Correo electrónico**:, <u>josefina@servidor.unam.mx</u>, jgraciaf@servidor.unam.mx

El concepto de curvatura de una superficie, puede abordarse a través de diferentes disciplinas, a saber: la geometría analítica, el cálculo diferencial y la termodinámica que permite describir el fenómeno de formación de superficies curvas partiendo de primeros principios en base a la variación de la energía libre de Helmholtz asociada a la tensión superficial y la diferencia de presiones entre fases.

Objetivo.

Presentar el concepto de curvatura en el ámbito de la termodinámica, su relación con la tensión superficial y la diferencia de presión, desde el caso más simple, el de la condición esférica, hasta el caso general de superficies sometidas a campos externos y su correspondiente expresión diferencial.

Superficies curvas esféricas.

Una pompa de jabón, una burbuja de vapor en un líquido en ebullición o las gotas de aceite emulsificado en agua; existen gracias a la diferencia de presiones interna y externa y a la tensión superficial del líquido (Figura 1).

Figura 1. Interfase curva separando las fases α y β .

En la expansión o contracción de la superficie esférica en una fase fluida, se encuentran involucrados dos trabajos: el de la fase volumétrica y el de la superficie. La ecuación general de Young-Laplace para un sistema de dos fases y un solo componente, puede construirse a partir de la energía libre de Helmholtz que contiene los trabajos de superficie (σdA) y de volumen (PdV):

$$dF = -SdT - P^{\alpha}dV^{\alpha} - P^{\beta}dV^{\beta} + \sigma dA$$
(1)

Donde dF es la variación de energía libre de Helmholtz, S la entropía, T la temperatura absoluta, P^{α} y P^{β} las presiones en cada fase, dV^{α} y dV^{β} los cambios de volumen, σ la tensión superficial y dA la variación de área superficial. En equilibrio dF=0, y bajo condiciones isotérmicas dT=0:

$$-P^{\alpha} dV^{\alpha} - P^{\beta} dV^{\beta} + \sigma dA = 0$$
⁽²⁾

$$P^{\alpha} dV^{\alpha} + P^{\beta} dV^{\beta} = \sigma dA \tag{3}$$

El incremento de volumen de una fase se efectúa a expensas del decremento del volumen de la otra, de modo que:

$$-dV^{\alpha} = dV^{\beta} \tag{4}$$

Sustituyendo (4) en (3) y simplificando:

$$\left(P^{\alpha} - P^{\beta}\right)dV = \Delta P dV = \sigma dA \tag{5}$$

$$\Delta P = \sigma \frac{dA}{dV} \tag{6}$$

El incremento de volumen producido por la expansión, ocurre simultáneamente con el aumento de área, de modo que en equilibrio y para el caso de una esfera de radio (*R*) donde los cambios de volumen y de área están dados por $dV=4\pi R^2 dR$ y $dA=8\pi R dR$, la diferencia de presiones es:

$$\Delta P = \frac{2\sigma}{R} \tag{7}$$

La expresión anterior corresponde a la ecuación general de Young-Laplace para la condición esférica, indica que la diferencia de presión a través de una superficie

depende de la tensión superficial de la película y del radio de la esfera. Para extender la ecuación de Young-Laplace a otras formas geométricas, es necesario recurrir a los conceptos de curvatura, radio máximo de curvatura y campo externo.

Curvatura y radio de curvatura.

La curvatura (K) de una sección de arco en un punto arbitrario (P) (figura 2), se define como el límite de la razón del ángulo (\$) de la tangente en (P), respecto a la longitud del arco (S) (Ayres, 2001, Taylor HE & Wade TL, 1971).

Figura 2. Curvatura de una sección de arco.

$$K = \lim_{\Delta S \to 0} \frac{\Delta \phi}{\Delta S} = \frac{y''}{(1 + {y'}^2)^{3/2}}$$
(8)

Donde y' y y'' corresponden a la primera y segunda derivadas respectivamente. El radio máximo de curvatura (R) en el punto P se define como el recíproco de la curvatura:

$$R = \frac{1}{K} \tag{9}$$

Superficies curvas no esféricas.

La ecuación general de Young-Laplace puede extenderse a superficies curvas no esféricas (Figura 3), considerando que éstas requieren dos radios máximos de curvatura para su correcta descripción.

Figura 3. Superficie curva no esférica con los radios de curvatura en planos ortogonales
AB y CD, donde R₁ corresponde a la curvatura en AB y R₂ a la curvatura en CD.
De acuerdo con la ecuación (7) la diferencia de presión en cada plano es:

$$\Delta P_1 = \frac{2\sigma}{R_1} \tag{10}$$

$$\Delta P_2 = \frac{2\sigma}{R_2} \tag{11}$$

La diferencia de presión es igual en toda la superficie de modo que:

$$\Delta P = \Delta P_1 + \Delta P_2 = 2\Delta P_1 \tag{12}$$

Sustituyendo (10) y (11) en (12):

$$2\Delta P = \frac{2\sigma}{R_1} + \frac{2\sigma}{R_2}$$
(13)

Simplificando términos en (13) se obtiene la ecuación general de Young-Laplace para superficies curvas no esféricas:

$$\Delta P = \sigma \left(\frac{1}{R_1} + \frac{1}{R_2} \right) \tag{14}$$

La ecuación (14) es aplicable a superficies no esféricas en ausencia de campo externo como por ejemplo los cristales líquidos y micelas no esféricas.

Nótese que si $R_1 = R_2$ la ecuación (14) toma la forma esférica de la ecuación (7). Una superficie plana se caracteriza por $R_1 = R_2 = \infty$, por tanto la presión en ambos lados de la superficie es igual de modo que ΔP es nula.

Figura 4. Superficie plana

Dado que el radio del cuerpo (R_2) es infinito, la ΔP en un cilindro (Figura 5) depende únicamente del radio de curvatura (R_c) de la sección transversal que corresponde a R_1 , así ΔP en la ecuación (7) está dada por:

$$\Delta P = \frac{\sigma}{R_c} \tag{15}$$

Figura 5 Cilindro

Para el catenoide (Figura 6) uno de los radios (R_2) describe la curvatura exterior, mientras que (R_1) describe la curvatura interior, ambos radios son de igual magnitud pero de sentidos opuestos resultando en un ΔP nulo.

Figura 6. Catenoide.

Es interesante notar, que si bien la existencia de la diferencia de presiones implica curvatura, la curvatura en cambio no produce necesariamente una diferencia de presión entre las fases.

Ecuación de Young-Laplace bajo campos externos.

En ausencia de campos externos, las superficies adquieren la forma esférica, mientras que bajo la influencia de un campo, como por ejemplo el gravitacional, una superficie esférica sufre deformación. Tomemos el caso de una gota pendiente de una boquilla como la que se representa en la Figura 7.

Figura 7. Gota pendiente de una boquilla. (Zappieri, 2001)

En el ápice (y = 0) el radio de curvatura es el de una esfera de radio (R_o) (Zappieri 2001); a partir de ese punto la curvatura y los radios de curvatura cambian punto a punto con la presión hidrostática. La diferencia de presiones es:

$$\Delta P = \frac{2\sigma}{R_0} + \Delta \rho g y \tag{16}$$

Donde: $\Delta \rho$ es la diferencia de densidades entre la fase líquida y gaseosa y g la aceleración de la gravedad. El primer término a la derecha en la ecuación (16), se refiere a la contribución por curvatura (esférica) a la diferencia de presión, mientras que el segundo término representa la contribución y deformación de la condición esférica por la presión hidrostática provocada por el campo externo, en este caso, gravitacional; así la condición no esférica, se construye a partir de la condición esférica sometida al campo externo, combinando las ecuaciones (14) y (16):

$$\sigma\left(\frac{1}{R_1} + \frac{1}{R_2}\right) = \frac{2\sigma}{R_0} + \Delta\rho gy \tag{17}$$

Si se elimina el campo externo o la diferencia de densidades $\Delta \rho \rightarrow 0$, la superficie adquiere la forma esférica. Una gota puede adoptar diversos tamaños sin embargo la tensión superficial y la diferencia de densidades son independientes del tamaño de la gota. La ecuación (17) puede ser normalizada en términos de R_0 :

$$\frac{1}{R_1^*} + \frac{1}{R_2^*} = 2 + \frac{\Delta \rho g R_0^2}{\sigma} Y \qquad \qquad R_i^* = \frac{R_0}{R_i} \qquad i = 1,2$$
(18)

Donde la altura normalizada es *Y* En la expresión (18) el segundo término a la derecha $(\Delta \rho g/\sigma)$ reúne las propiedades del fluido y corresponde al parámetro de forma representado por β .

$$\frac{1}{R_1^*} + \frac{1}{R_2^*} = 2 + \beta Y \tag{19}$$

Ecuación diferencial de Young-Laplace.

Cuando los radios de curvatura cambian punto a punto con la posición hidrostática, la ecuación (19) requiere necesariamente de su forma diferencial.

En lugar del método tradicional (Figura 2 y ecuación 8), para la construcción de la definición de radio de curvatura considere una sección de arco cualquiera y un conjunto de circunferencias tangentes a un punto (P) (Figura 8) con centro en el origen y radio R cuya ecuación es.

$$x^2 + y^2 = R^2$$
(20)

La tangente en el punto (P) de cualquiera de estas circunferencias corresponde a la primera derivada de la ecuación (20) y produce un número infinito de circunferencias tangentes en el punto (P).

Figura 8. Modelo de las circunferencias tangentes.

La primera derivada implícita de la ecuación (20) respecto a x es:

$$2x + 2yy' = 0 (21)$$

De donde:

$$x = -yy' \tag{22}$$

Sustituyendo en la ecuación (20),

$$y^{2}(1+{y'}^{2}) = R^{2}$$
(23)

Sustituyendo (22) en (23) el primer radio de curvatura es:

$$\frac{1}{R_1} = \frac{y'}{x(1+{y'}^2)^{1/2}}$$
(24)

Solamente una de las circunferencias en la figura 8, posee el radio máximo de curvatura que se obtiene con la segunda derivada de la ecuación (20):

$$1 + yy'' + {y'}^2 = 0 (25)$$

Despejando y:

$$y = \pm \frac{1 + {y'}^2}{y''}$$
(26)

Sustituyendo en (23):

$$\frac{1}{R_2} = \frac{y''}{\left(1 + {y'}^2\right)^{\frac{3}{2}}}$$
(27)

La ecuación de curvatura para superficies bajo campo externo, requiere de su forma diferencial que se construye introduciendo (24) y (28) en (19):

$$\left(\frac{y''}{\left(1+{y'}^{2}\right)^{3/2}}+\frac{y'}{X\left(1+{y'}^{2}\right)^{1/2}}\right)=2+\beta Y$$
(28)

Otras ecuaciones que involucran radios de curvatura.

La importancia de las interfases curvas, se extiende a áreas como la estabilidad de espumas (Rosen 1989), donde la redistribución de tamaño de las burbujas (que es una consecuencia de la presión interna de la burbuja) depende de la curvatura de sus paredes (Bikerman 1965), son también importantes en el efecto de la curvatura sobre la energía libre molar de una sustancia y su presión de vapor (Adamson 1997 y Hammel 1958), así la ecuación que muestra este efecto, se construye a partir de la influencia de la variación de la presión sobre la energía libre:

$$\Delta G = \int V dP \tag{29}$$

Si el volumen molar (V) es constante y se sustituye ΔP de la ecuación (7):

$$\Delta G = \frac{2\sigma V}{R_0} \tag{30}$$

Si se considera que el vapor es ideal, la relación entre la energía libre y la presión de vapor es:

$$G = G^0 + RT \ln P \tag{31}$$

Combinando (30) y (31) se construye la ecuación de Kelvin (Adamson 1997) de gran relevancia en la química de superficies.

$$RT\ln\frac{P}{P^0} = \frac{2\sigma V}{R_0}$$
(32)

Donde P⁰ es la presión normal de vapor del líquido, P es la presión sobre la superficie curva. De la ecuación de Kelvin (32) indica que la presión de vapor depende del radio de la esfera, así para una gota $P > P^0$ en tanto que para una burbuja $P < P^0$.

La expresión de la primera ley de la termodinámica puede extenderse al tratamiento de las interfases curvas (Adamson 1997):

$$dU = TdS - P^{\alpha}dV^{\alpha} - P^{\beta}dV^{\beta} + \sum_{i}\mu_{i}dn_{i} + \sigma dA + C_{1}d\left(\frac{1}{R_{1}}\right) + C_{2}d\left(\frac{1}{R_{2}}\right)$$
(33)

Donde los superíndices se refieren a las fases α y β , C₁ y C₂ son constantes, los tres últimos términos en (33) corresponden al efecto de la variación de área y curvatura sobre la energía interna del sistema.

Conclusiones.

La curvatura de una superficie es una variable termodinámica relevante que proporciona una explicación básica de las formas que diferentes sistemas adquieren en la naturaleza. Desde el punto de vista tecnológico, la forma de una superficie permite mediante imágenes conocer los valores de tensión superficial e interfacial entre fases fluidas, estos métodos constituyen la última generación para las mediciones de tensión superficial.

Bibliografía.

- Adamson, W.A., & Gast, A.P., *Physical Chemistry of Surfaces*, Wiley Interscience, New York, 6^a edition 1997, p. 6-10; 53-54, 58-60
- Ayres F & Mendelson E, *Cálculo*, Mc Graw Hill, Nueva York, 4^a edición, 2001, p 352-353.
- Bikerman, J.J., Foams and Emulsions. Formation, Properties and Breakdown; en Chemistry and Physics of Interfaces, American Chemical Society Publications, Washington, 1965, Ross, S. editor, p 57-64.
- Hammel, E.F., The Vapor Pressure of Curved Surfaces, *J. Chem. Educ*, **.35**[1], p 28-29, 1958.
- Hernández-Baltazar E. & Gracia-Fadrique J., Elliptic Solution to the Young-Laplace Equation, J. Coll. Int. Sci., 2005, 287, 213-216.
- Liger-Belair G, The Science of, Scientific American, January, 68-73, 2003.
- Myers, D., *Surfaces, Interfaces and Colloids Principles and Applications*, Wiley-VCH, New York, 2^a edition 1999, p. 144.
- Rosen, M.J., *Surfactants and Interfacial Phenomena*, John Wiley & Sons, New York, 2^a edition 1989, p276-278.

- Taylor HE & Wade TL, Cálculo Diferencial e Integral, Limusa Wiley, México, 1971, p 435-437.
- Zappieri, S., Rodríguez J & López de Ramos A.L., Interfacial Tension of Alkane + Water Systems; *J. Chem. Eng. Data*, 2001, 46, 1086-1088.

Provided for non-commercial research and education use. Not for reproduction, distribution or commercial use.

This article was published in an Elsevier journal. The attached copy is furnished to the author for non-commercial research and education use, including for instruction at the author's institution, sharing with colleagues and providing to institution administration.

Other uses, including reproduction and distribution, or selling or licensing copies, or posting to personal, institutional or third party websites are prohibited.

In most cases authors are permitted to post their version of the article (e.g. in Word or Tex form) to their personal website or institutional repository. Authors requiring further information regarding Elsevier's archiving and manuscript policies are encouraged to visit:

http://www.elsevier.com/copyright

J. Viades-Trejo, J. Gracia-Fadrique / Fluid Phase Equilibria 264 (2008) 12-17

χ_{aromatic} aromatic contribution t	$0 \chi_{phobic}$
--	-------------------

- $\chi_{hphilic}$ hydrophilic contribution
- $\chi_{hphobic}$ hydrophobic contribution
- γ^{∞} activity coefficient at infinite dilution
- $\mu^{\rm b}_{\rm 0b}$ bulk chemical potential
- μ_{a}^{Ub} reference bulk chemical potential.
- $\mu^{\rm S}_{\rm os}$ surface chemical potential
- μ^{0S} reference surface chemical potential
- π surface pressure (mN/m)
- $\pi_{\rm cmc}$ surface pressure at the $x_{\rm cmc}$ (mN/m)
- $\pi_{\rm m}$ maximum surface pressure (at saturation conditions)
- π^* reduced surface pressure
- θ surface fraction covered
- σ surface tension (mN/m)
- σ_0 surface tension of the pure solvent

References

- [1] R. Strey, Y. Viisanen, M. Aratono, J.P. Kratohvil, Q. Yin, S.E. Friberg, J. Phys. Chem. B 103 (1999) 9112–9116.
- [2] J. Gracia-Fadrique, P. Brocos, A. Piñeiro, A. Amigo, Langmuir 18 (2002) 3604–3608.
- [3] P. Brocos, A. Piñeiro, A. Amigo, J. Gracia-Fadrique, Fluid Phase Equilib. 260 (2007) 343–353.
- [4] J. Viades-Trejo, A. Amigo, J. Gracia-Fadrique, Fluid Phase Equilib. 250 (2006) 158–164.
- [5] Ch. Ch. Chen, AIchE J. 42 (11) (1996) 3231-3240.
- [6] J.S. Cheng, Y.P. Chen, Fluid Phase Equilib. 232 (2005) 37-43.
- [7] M. Volmer, Z. Phys. Chem. 115 (1925) 253–260.
- [8] M.J. Rosen, S. Aronson, Colloids Surf. 3 (1981) 201-208.
- [9] M.J. Rosen, Surfactants and Interfacial Phenomena, second ed., Wiley Interscience, New York, 1989.
- [10] D. Myers, Surfaces, Interfaces, and Colloids. Principles and Applications, second ed., Wiley-VCH, USA, 1999.

- [11] C.A. Miller, P. Neogi, Interfacial Phenomena. Equilibrium and Dynamic Effects, Surfactant Science Series, 17, Marcel Dekker Inc., New York, 1985 (Chapter 4).
- [12] A.W. Adamson, A.P. Gast, Physical Cemistry of Surfaces, sixth ed., John Wiley and Sons Inc., United States of America, 1997.
- [13] D.J. Shaw, Introducción a la Química de Coloides y Superficies, Segunda edición, Editorial Alambra, Madrid, 1977.
- [14] I. Langmuir, J. Am. Chem. Soc. 39 (9) (1917) 1848-1906.
- [15] S. Ross, E.S. Chen, Chemistry and Physics of Interfaces, ACS Publications, USA, 1965, pp. 44–56.
- [16] G.J. Pierotti, C.H. Deal, E.L. Derr, Ind. Eng. Chem. 51 (1) (1959) 95-102.
- [17] J.S. Cheng, M. Tang, Y.P. Chen, Fluid Phase Equilib. 217 (2004) 205-216.
- [18] H. Cheng, G.M. Kontogeorgis, E.H. Stenby, Ind. Eng. Chem. Res. 41 (2002) 892–898.
- [19] J.E. Carless, R.A. Challis, B.A. Mulley, J. Colloid Sci. 19 (1964) 201-212.
- [20] P.D.T. Huibers, V.S. Lobanov, A.R. Katritzky, D.O. Shah, M. Karelson, Langmuir 12 (1996) 1462–1470.
- [21] E.H. Crook, D.B. Fordyce, G.F. Trebbi, J. Phys. Chem. 67 (1963) 1987–1994.
- [22] K. Meguro, Y. Takasawa, N. Kawahashi, Y. Tabata, M. Ueno, J. Colloid Interface Sci. 83 (1) (1981) 50–56.
- [23] J. Gracia-Fadrique, Langmuir 15 (1999) 3279-3282.
- [24] J. Gracia, J.G. Llañes, A. Robledo, J. Phys. Chem. 90 (1986) 1350-1353.
- [25] J. Traube, Ann. Chem. Liebigs 365 (1891) 27-55.
- [26] K. Granados, J. Gracia-Fadrique, A. Amigo, R. Bravo, J. Chem. Eng. Data 51 (2006) 1356–1360.
- [27] M.J. Rosen, J. Colloid Interface Sci. 56 (2) (1976) 320-327.
- [28] A. Ortega, M. Coronado, O. Torreblanca, J. Gracia, Memorias XV Congreso Nacional de Termodinámica, 2000, pp. 40–42.
- [29] M.J. Schick, S.M. Atlas, F.R. Eirich, J. Phys. Chem. 66 (7) (1962) 1326–1333.
- [30] N.M. van Os, J.R. Haak, L.A.M. Rupert, Physico-chemical Properties of Selected Anionic, Cationic and Nonionic Surfactants, Elsevier Science Publishers, Amsterdam, 1993.
- [31] S. Dai, K.C. Tam, Colloids Surf. A: Physicochem. Eng. Aspects 229 (2003) 157–168.
- [32] G. Nemethy, R. Ashoka, J. Phys. Chem. 75 (6) (1971) 809-815.

Bibligrafía

- Adamson, W.A., & Gast, A.P., *Physical Chemistry of Surfaces*, Wiley Interscience, New York, 6^a edition 1997, p. 6-10; 53-54, 58-60.
- 2. Anastasiadis S.H., Chen J.K, Koberstein J.T, Siegel A.F., Sohn J.E., Emerson J.A., J. of Colloid and Interface Science, 119, 1, (1987), 55-66.
- 3. Andreas, J.M., Hauser E.A., Tucker W.B., J. Phys. Chem., 42, (1938), 1001.F.
- 4. Aveyard, R.,. Haydon D.A, An introduction to the principles of surface chemistry, first ed., Cambridge University Press, Great Britain, 1993.
- Ayres F. & Mendelson E, Cálculo, Mc Graw Hill, Nueva York, 4^a edición, 2001, p 352-353.
- Bikerman, J.J., Foams and Emulsions. Formation, Properties and Breakdown; en Chemistry and Physics of Interfaces, American Chemical Society Publications, Washington, 1965, Ross, S. editor, p 57-64.
- Brocos, P., Piñeiro A., Amigo A., Gracia-Fadrique J., Fluid Phase Equilib., 260 (2007) 343-353.
- Carless, J.E., Challis R.A., & Mulley B.A., J. Colloid Science, 19 (1964) 201 - 212.
- Castellan, G.W., *Fisicoquímica*, Addison-Wesley Iberoamericana, México, 2^a edición, 1987, p. 34-39.
- Castro, M.J.L., Ritacco H., Kovensky J., Fernández-Cirelli A., J. Chem. Ed. 78, 3 (2001) 347-348.
- Cayias, J.L., Schechter R.S, Wade W.H., in Adsorption at Interfaces (editor K.L. Mittal), ACS Symposium Series 8, paper 17, ACS Washington, (1975), 234-247.
- Crook, E.H., Fordyce D.B., Trebbi G.F., J. Phys. Chem., 67 (1963) 1987
 1994.
- Chan, C.C.V., Elliot J.A.W., Williams M.C., J. Colloid Interface Sci., 260, (2003), 211-218.
- 14. Chen, Ch., AIchE J. 42 11 (1996) 3231- 3240.

- Cheng, H., Kontogeorgis G.M., Stenby E.H., Ind. Eng. Chem. Res., 41 (2002) 892 - 898.
- Cheng, J.S., Tang M., Chen Y.P., Fluid Phase Equilib., 217 (2004) 205 -216.
- 17. Cheng, J.S., Chen Y.P., Fluid Phase Equilib., 232 (2005) 37 43.
- Dai, S., Tam K.C., Colloids and Surfaces A: Physicochem. Eng. Aspects, 229 (2003) 157 - 168.
- 19. Dingle N.M., Tjiptowidjojo K., Basaran O.A, Harris M.T., J. of Colloid and Interface Science, 286, (2005), 647-660.
- 20. Dohnal, V., Costas, M., Carrillo-Nava, E., Hovorka, S., Biophysics Chem., 90, (2001), 183-202
- 21. Elliott, J.A.W., Ward C.A., Yee D., J. fluid Mech., 319, (1996), 1-23.
- Gmehling, J., Menke, J., Schiller, M., Chemistry Data Series; Dechema, IX, (1994) part 3.
- Gracia-Fadrique J., Llañes J.G, Robledo A., J. Phys. Chem., 90 (1986)
 1350 1353.
- 24. Gracia-Fadrique, J., Langmuir, 15 (1999) 3279 3282.
- Gracia-Fadrique, J., Brocos P., Piñeiro A., Amigo A., Langmuir 18 9 (2002) 3604-3608.
- Granados, K., Gracia-Fadrique J., Amigo A., Bravo R., J. Chem. Eng. Data, 51 (2006) 1356 - 1360.
- 27. Hammel, E.F., J. Chem. Educ., 35[1], p 28-29, 1958.
- Hernaínz, F., Calero M., Blázquez G., Caro A., J. Chem. Eng. Data, 2006, 51, 1216-1219
- Hernández-Baltazar E. & Gracia-Fadrique J., J. Coll. Int. Sci., 2005, 287, 213-216.
- Hovorka, S., Dohnal, V., Carrillo-Nava, E., Costas, M., J. Chem. Thermodyn., 32, (2000), 1683-1705.
- 31. Hu, H.H., Joseph D.D., J. Colloid Interface Sci., 162, (1994), 331-339.
- Huibers, P.D.T, Lobanov V.S., Katritzky A.R., Shah D.O., Karelson M., Langmuir, 12 (1996) 1462 - 1470.

- Husmann, M, Rehage H., Dhenin E., Barthés-Biesel D., J. Colloid Interface Sci., 282, (2005), 109-119.
- Joseph, D.D., Arney M., Ma G., J. Colloid Interface Sci., 148 (1) January 1992, 291-294.
- 35. Langmuir, I., J. Am. Chem. Soc., 39 9 (1917) 1848- 1906.
- Lewis, G.N. & Randall M., Thermodynamics and the free energy of chemical substances, 1st edition, Mc Graw – Hill Book Company, 1923.
- 37. Liger-Belair G, Scientific American, January, 68-73, 2003.
- Martínez-Landeira, P., Russo J.M., Prieto G., Sarmiento F., J. Chem. Eng. Data 17 (2002) 1017-1021.
- Meguro, K., Takasawa Y., Kawahashi N., Tabata Y., Ueno M., J. Coll. Int. Sci., 83 1 (1981) 50 - 56.
- Miller, C.A. & Neogi P., Interfacial Phenomena. Equilibrium and Dynamic Effects, Surfactant Science Series, V 17, Chap 4, Marcel Dekker Inc., New York, 1985.
- Myers, D., Surfaces, Interfaces, and Colloids. Principles and Applications, second edition, Wiley-VCH, USA, 1999.
- 42. Nemethy, G., Ashoka R., J. Phys. Chem., 75 6 (1971) 809 815.
- Ortega, A., Coronado M., Torreblanca O., Gracia J., Memorias XV Congreso Nacional de Termodinámica (2000) 40 - 42. Sin publicar
- Pieper, G., Rehage H., Barthés-Biesel D., J. Colloid Interface Sci., 202, (1998), 293-300.
- 45. Pierotti, G.J., Deal C.H.,. Derr E.L, Industrial and Engineering Chemistry, 51 1 (1959) 95 - 102.
- Prausnitz, J.M, Lichtenthaler, R.N & Gomes de Azevedo, E., Termodinámica molecular de los equilibrios de fases, 3^ª edición, Prentice Hall, 2000.
- Princen, H.M. Zia., I.Y.Z, Mason S.G., J. Colloid Interface Sci., 23 (1967) 99-107.
- 48. Princen, H.M., J. Colloid Interface Sci., 169, (1995), 241-243.
- 49. Rosen, M.J., J. Colloid Interface Sci, 56 2 (1976) 320 327.
- 50. Rosen, M.J., Aronson S., Colloids and Surfaces, 3 (1981) 201-208.

- Rosen, M.J., Cohen A.W., Dahanayake M.D., Hua X., J. Phys. Chem. 86, 4 (1982) 541- 545
- Rosen, M.J., Surfactants and Interfacial Phenomena, second edition, Wiley Interscience, New York, 1989.
- 53. Rosenthal, D.K., J. fluid Mech., 12, (1962), 358-366.
- Ross, S., Chen E.S., in Chemistry and Physics of Interfaces, ACS Pubs., USA, 1965, 44 - 56.
- Schick, M.J., Atlas S.M., Eirich F.R., J. Phys. Chem., 66 7 (1962) 1326-1333.
- 56. Schick, M.J., J. Colloid Science 17, (1962) 801-813.
- Shaw, D.J., Introducción a la Química de Coloides y Superficies, Segunda edición, Editorial Alambra, Madrid, (1977).
- 58. Slattery, J.C., Chen J.D., J. Colloid Interface Sci., 64, 2, (1978), 371-373.
- Song B., Springer J., J. of Colloid and Interface Science, 184, (1996), 64-76.
- Strey, R., Viisanen Y., Aratono M., Kratohvil J.P., Yin Q., Friberg S.E., J. Phys. Chem. B, 103 (1999) 9112-9116.
- Taylor HE & Wade TL, Cálculo Diferencial e Integral, Limusa Wiley, México, 1971, p 435-437.
- 62. Traube, J., Ann. Chem. Liebigs., 265 (1891) 27 55
- van Os, N.M., Haak J.R., Rupert L.A.M, Physico-Chemical Properties of Selected Anionic, Cationic and Nonionic Surfactants, Elsevier Science Publishers, Amsterdam, 1993.
- 64. Verdier, C., Vinagre H.T.M., Piau M., Joseph D.D, Polymer, 41, (2000) 6683-6689.
- Viades-Trejo, J., Amigo A., Gracia-Fadrique J., Fluid Phase Equilib., 250 (2006) 158 - 164.
- 66. Viades-Trejo, J., Gracia Fadrique, Educación Química, 18, 2, (2007) 122-126.
- Viades-Trejo, J., Gracia Fadrique J., Colloids and Surfaces A: Physicochem. Eng. Aspects, 302 (2007) 549-552

- Viades-Trejo, J., Gracia-Fadrique J., Fluid Phase Equilib., 264 / 1-2, (2008), 12-17 (en prensa).
- 69. Volmer, M., Z.Phys Chem, 115 (1925) 253-260.
- 70. Vonnegut, B., Rev. Sci. Instrum., 13, 6 (1942), 6-9.
- Walas, S.M., Phase equilibria in chemical engineering, 1st edition, Butterworth Publishers,
- Zappieri, S., Rodríguez J & López de Ramos A.L., J. Chem. Eng. Data, 2001, 46, 1086-1088.

Glosario de Símbolos

a	Actividad del soluto
A	Área / mol de soluto en la superficie (m^2/mol)
A_m	Área / mol de soluto en la superficie en condiciones de saturación)
A	Área de la interfase
γ	Coeficiente de actividad del soluto
γ^{∞}	Coeficiente de actividad a dilución infinita del soluto
cmc	Concentración micelar crítica del tensoactivo (soluto)
Γ	Concentración superficial del tensoactivo (mol $/m^2$)
Γ_m	Concentración superficial del tensoactivo en condiciones de saturación.
R	Constante de Raoult
R	Constante universal de los gases (<i>J/molK</i>)
g	Constante gravitacional
Xaromatica	Contribución aromática
Xalifatica	Contribución de la cadena alifática de hidrocarburo.
Xhfilicac	Contribución hidrofílica
Xhfóbica	Contribución hidrofóbica
Κ	Curvatura de una sección de arco
$\Delta \rho$	Diferencia de densidades entre las fases
ΔP	Diferencia de presiones entre las fases
U	Energía interna del sistema
U^{s}	Energía interna de la interfase
G	Energía de Gibbs del sistema
ΔG°_{ads}	Energía estándar de adsorción
ΔG°_{mic}	Energía estándar de micelización
g^{E}	Energía de Gibbs molar en exceso
$\overline{g}_{i}^{\scriptscriptstyle E}$	Energía de Gibbs molar parcial en exceso
$\overline{g}_{i(real)}$	Energía de Gibbs molar parcial en exceso en la disolución real
$\overline{g}_{i(ideal)}$	Energía de Gibbs molar parcial en exceso en la disolución ideal
Α	Energía de Helmholtz
Н	Entalpía del sistema
hipuro	Entalpía del componente <i>i</i> puro en la fase líquida
h_{ipuro}^{+}	Entalpía del componente <i>i</i> puro en el estado de gas ideal
\bar{h}_i	Entalpía molar parcial del componente <i>i</i> en la fase líquida.
S	Entropía del sistema
S^{S}	Entropía en la interfase
S_i	Entropía por mol del componente <i>i</i>
z^{o}	Factor de compresibilidad superficial para tensoactivos
	de bajo peso molecular.
Z_m	Factor de compresibilidad superficial para tensoactivos de
	alto peso molecular.
x	r raccion moi dei soluto en el seno de la disolucion

x_{cmc}	Fracción mol del soluto en el seno de la disolución correspondiente
	a la <i>cmc</i> (fracción mol micelar crítica)
\mathcal{Y}_i	Fracción mol del componente <i>i</i> en la fase vapor
f	Fugacidad
f_{i}	Fugacidad del componente <i>i</i>
f_i^o	Fugacidad del componente <i>i</i> en el estado de referencia.
f_i^{α}	Fugacidad del componente <i>i</i> en la fase α
$f_{i_{\perp}}^{\beta}$	Fugacidad del componente <i>i</i> en la fase β
$f_{i_{}}^V$	Fugacidad del componente <i>i</i> en la fase vapor
$f_{i_{_{_{_{_{_{_{_{_{_{_{_{_{_{_{_{}}}}}}}}$	Fugacidad del componente <i>i</i> puro en la fase vapor
$f_{i_{\perp}}^{L}$	Fugacidad del componente <i>i</i> en la fase líquida
$f_{i \ puro}^{L}$	Fugacidad del componente <i>i</i> puro en la fase líquida
n	Número de moles del soluto
n_i^{S}	Número de moles del soluto en la interfase
n	Número de átomos de carbono en la cadena de hidrocarburo
т	Número de unidades de óxido de etileno
μ^{b}	Potencial químico en el seno de la disolución
μ^{0b}	Potencial químico de referencia en el seno de la disolución
$\mu^{b}_{x \to 0}$	Potencial químico a dilución infinita en el seno de la disolución
μ^{S}	Potencial químico en la superficie
$\mu^{S}_{x \to 0}$	Potencial químico a dilución infinita en la superficie
μ^{oS}	Potencial químico de referencia en la superficie
, P	Presión
$P^{ heta}$	Presión de referencia
p^{0}	Presión de vapor del componente puro
π	Presión superficial (mN/m)
π_{cmc}	Presión superficial en la <i>cmc</i> (mN/m)
π_0	Presión superficial de referencia ($\pi_0 = \sigma_1^0 - \sigma_2^0$)
π_m	Presión superficial máxima (en condiciones de saturación)
π^*	Presión superficial reducida
M^{E}	Propiedad termodinámica extensiva en exceso
M_{real}	Propiedad termodinámica extensiva de la disolución real
Mideal	Propiedad termodinámica extensiva de la disolución ideal
$\overline{m_{i}^{E}}$	Propiedad termodinámica extensiva molar parcial de M^E
D	Padia da aurriatura da una superficia esférica
	Radio de curvatura de una superfície esterica Radios de curvatura en planos ortegonalos en una superfício no
$\mathbf{K}_1 \mathbf{K}_2$	estórion
T	Esterica. Tomporatura absoluta $\binom{\theta}{K}$
1	Temperatura absoluta (\mathbf{K}) Tempión superficiel (\mathbf{w})/(\mathbf{w})
σ_0	Tension superficial $(m//m)$
σ_i	Tension superficial del componente puro ($i = 1, 2,$)
V LS	volumen Valumen da la interface
V	volumen de la interfase
v_i	volumen molar del componente i
${\cal V}_i$	Volumen molar parcial del componente <i>i</i>