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Resumen

En este trabajo se estudia el ascenso libre de burbujas de aire en un
polimero asociativo hidrofébicamente modificado soluble en un medio acu-
oso y alcalino. Las propiedades reoldgicas de la disolucion estan determinadas
por los grupos hidrofébicos: a moderadas rapideces de deformacién el sistema
se estructura, la viscosidad se incrementa y aparecen los esfuerzos normales.
Para rapideces de deformacién mayores el sistema se alinea y la viscosidad
disminuye. Estos fluidos presentan un comportamiento casi newtoniano para
pequenas rapideces de deformacion, pero se comportan como viscoelasticos
para deformaciones mayores. Experimentalmente se observa la presencia de
una discontinuidad a un volumen critico, para la curva velocidad vs volumen.
Esta discontinuidad se asocia con un cambio de la forma de la burbuja, a
volumenes por debajo del critico las burbujas son esferoidales y a volimenes
por arriba del critico presentan la formacién de una cola. La aparicién de la
cola esta asociada a la formacion de un punto de inflexion en la superficie de
la burbuja y se asocia con el momento en que la elasticidad del fluido se man-
ifiesta. Se propone un ntmero adimensional que relaciona la elasticidad y la
tensién superficial, a un valor critico este niimero se presenta la aparicion de
la discontinuidad. Este criterio se prueba para varios liquidos con diferentes
propiedades reoldgicas y funciona para todos los casos. También se presenta
un estudio de la contribucién de los diferentes parametros involucrados en la
magnitud de la discontinuidad. Finalmente, se muestran fotografias de colas

de burbujas con formas peculiares.



0.1 Objetivo

Determinar las condiciones a las que se presenta la discontinuidad en la veloci-

dad terminal de una burbuja ascendiendo libremente en fluidos viscoelasticos.

0.2 Introduccion

El movimiento de burbujas en liquidos es de particular interés debido a su
importancia en procesos quimicos y fisicos, como por ejemplo, tratamiento de
aguas residuales y la extraccién de petrdleo. En el caso de burbujas ascendi-
endo libremente en fluidos no newtonianos, se observan diversos fenémenos,
uno de ellos, es la llamada discontinuidad de la velocidad terminal de la bur-
buja. Esta discontinuidad se presenta cuando a un ligero incremento de volu-
men, la velocidad terminal aumenta abruptamente. En 1965 Astarita y Apuzzo
fueron los primeros en reportar este comportamiento, seguidos de diferentes
autores que lo confirman (Barnett, Humphrey y Litt, 1966; Calderbank, John-
son y Loudon, 1970; Leal, Skoog y Acrivos, 1971; Zana y Leal, 1978; Rodrigue,
De Kee y Chan Man Fong, 1996; Rodrigue, De Kee y Chan Man Fong, 1998;
Herrera-Velarde et al., 2003; Pilz et al., 2007). La discontinuidad se presenta a
un volumen critico. El incremento en la velocidad terminal antes del volumen
critico, en relacién a la velocidad después de este valor, varia entre 2 y 6.
Astarita et al. (1965) atribuyeron la aparicién de la discontinuidad al cam-
bio en la condicién de frontera de rigida a libre. Liu et al. (1995) propusieron
que la discontinuidad se debe a la reduccion del arrastre debido al cambio de
forma de la burbuja antes y después del volumen critico. Rodrigue et al. (1998)
atribuyen este comportamiento a un balance de la elasticidad y las inestabili-
dades de Marangoni. Por otro lado Herrera-Velarde et al. (2003) sugieren una
fuerte relacion de la discontinuidad con la formacién de una cauda negativa

en la parte posterior de la burbuja. Aubry (2007) no sélo apoya el argumento



anterior, sino que sostiene que la caudad negativa impulsa a la burbuja.

En este trabajo, se propone una nueva explicacion para predecir bajo que
condiciones se presenta la discontinuidad para el caso de un polimero asociativo
tipo HASE y la comparacién con varios liquidos reportados en la literatura.
Se propone una andélisis dimensional entre las fuerzas inerciales, viscosas, de
superficie y elasticas. La elasticidad del material tiene un papel preponder-
ante en la aparicion de la discontinuidad. También se realizaron simulaciones
en elemento finito para evaluar la contribucién de los diferentes parametros
involucrados en la magnitud de la discontinuidad. Finalmente se presenta un
estudio fotografico de la formacién de caudas no axisimétricas, que no han sido

observadas para este tipo de fluidos con anterioridad.
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Figure 1: Dispositivo experimental
0.3 Materiales y Métodos

El dispositivo experimental (ver fig. 1) utilizado consiste de un cilindro vertical,
con una campana en el fondo, inmerso en una caja de seccién cuadrada, ambas
partes se llenan con el mismo liquido para disminuir los efectos reflexion.

En la campana se atrapa una burbuja de aire, al girar la campana se libera
la burbuja en el seno del liquido. La velocidad, volumen y morfologia de la
burbuja se obtienen por medio de video de alta velocidad y fotografias. Se
utilizo Primal TT-935 que es un polimero asociativo hidrofébicamente modifi-
cado soluble en un medio acuoso y alcalino conocido como HASE por sus siglas
en inglés. Como agente alcalinizante se utilizo amino-metilpropanol (AMP),
el pH de trabajo se ajusto a 9. Las soluciones polimericas se prepararon en
agua destilada y dejando un lapso de al menos 48 horas antes de realizar los

experimentos.
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Figure 2: Viscosidad cortante (simbolos vacios) y primer diferencia de esfuerzos
normales (simbolos rellenos) como funcién de la rapidez de deformacién para
diferentes concentraciones de HASE. (o) 1.2 %; (O) 1.5 %; (¢) 1.7 %. La linea
continua representa la predicciéon de modelo de Bautista-Manero model para

HASE al 1.7 % (Bautista, 1999).
0.4 Resultados Experimentales

La figura 2 muestra la viscosidad y primer diferencia de esfuerzos normales
como funcién de la rapidez de deformacién. Se presenta los datos de flujo cor-
tante simple para tres diferentes concentraciones de HASE en medio acuoso
con un pH = 9. Se observa que a bajas rapideces de deformacién la viscosi-
dad permanece casi constante, en ese mismo intervalo la primer diferencia de
esfuerzos normales empieza a adquirir valores considerables. A esas mismas
rapideces de deformacién se mueven las burbujas liberadas en este caso y se
presenta la discontinuidad, esto permite separar los efectos de reduccién en la
viscosidad y los efectos elasticos.

En la figura 3 se presenta la curva velocidad contra volumen para una
disolucion de HASE al 1.2%. Se observa que a un volumen critico se presenta la
discontinuidad (V. = 65mm?), se prestan las predicciones para la ley de Stokes

y el regimen de Hadamard, usando la viscosidad de flujo cortante simple y
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Figure 3: Velocidad de burbujas como funcién de volumen para HASE al 1.2%.
Las lineas son las predicciones tedricas de Stokes (lineas continuas)y Hadamard
(lineas discontinuas): (lineas delgadas) p = fireometro; (lineas gruesas) u =
Hbola-

la determinada por el método de caida de la bola. Debido a que el flujo
alrededor de una burbuja no es homogéneo, la viscosidad seleccionada para
hacer los célculos fue la del método de la caida de la bola.

Las burbujas pequenas (con volimenes debajo del critico) tienen forma es-
feroidal y las burbujas con voliimenes mayores al critico presentan la formacién
de una cola larga, como ejemplo de ello se presentan algunas burbujas para el
caso del HASE al 1.2% (ver figura 4).

Siempre que se presenta la discontinuidad se observa que la parte posterior
de la burbuja cambia de forma, de convexa a concava. Para resaltar este hecho
se presenta la superposicion de los perfiles de un par de burbujas, una con un
volumen menor al critico y otra con un volumen mayor (ver figura 5). Estas

observaciones y la presencia de una cauda negativa en la parte posterior de



V*=0.19 V*=0.46 V*=0.76

V*=1.04 V*=1.67 V*=2.94

Figure 4: Burbujas para diferentes valores del volumen adimensional V* =
V/V, para HASE al 1.2 %, con V., = 65mm3. La escala representa 2 mm.

la burbuja, indican que la elasticidad esta relacionada con la aparicién de la

discontinuidad. En la siguiente seccion se presenta una discusién al respecto.
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Figure 5: Comparacién del perfil de burbujas antes (linea continua) y de-
spués (linea discontinua) de la discontinuidad. (Vipenor = 49.2mm?; Viyayor =
61.2mm?>; 1.5%HASFE)

0.5 Analisis dimensional

Se ha encontrado que la discontinuidad siempre esta asociada a un cambio de
forma en la burbuja, de ahi que se plantea considerar las fuerzas que pueden
modificar dicha forma. Para fluidos no newtonianos las fuerzas involucradas

SOI:

Fuerzas inerciales: pU?d?

Fuerzas viscosas: pUd

Fuerzas eldsticas: Nid? (flujo cortante)

Fuerzas de superficie: od

donde p es la densidad del liquido, U la velocidad de la burbuja, d el
didmetro equivalente de la burbuja, p la viscosidad del liquido, N; la primer
diferencia de esfuerzos normales y o la tensién superficial. La forma de la

burbuja depende de un balance entre las fuerzas mencionadas y las fuerzas



de superficie (estas mantienen la forma esférica de la burbuja). Para fluidos
newtonianos, la deformacion de la burbuja esta dada por la competencia de las
fueras inerciales y viscosas con la fuerza de superficie. Los niimeros de Weber

y capilar dan estas relaciones y estan definidos como:

2 .72
e - U (1)
ag
Ca = % @)

Si cualquiera de los dos nimeros es mayor a uno, la burbuja es deformada.
Para el caso de fluidos viscoeslasticos es necesario considerar la relacion entre
las fuerzas elasticas y las fuerzas de superficie, esta relacion se identifica con

el simbolo II y se define como:

=% (3)

Este nimero II puede expresarse como el producto del niimero de Deborah
y el nimero Capilar: IT ~ De x Cla. El nimero de Deborah se define como la
relacién entre un tiempo caracteristico de material ¢, y un tiempo caracteristico
de observacion t,:

De = — (4)

Cuando una burbuja se mueve en un medio viscoelastico la elasticidad se man-
ifiesta como una fuerza normal capaz de deformar a la burbuja, siempre y
cuando el niimero II sea mayor a uno. Este comportamiento se muestra en la
figura 6, donde se observa que el nimero II tiene un incremento més réapido
que los niimeros Ca y We. Ademaés justo en el valor del volumen critico el
niumero II adquiere un valor mayor uno, mientras que los otros dos nimeros
siempre son menores a II, esto indica que los efectos elasticos dominan. Los

nimeros C'a y We adquieren valores mayores a uno a ciertos volimenes, que
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Figure 6: Grafico del volumen de burbuja vs ntiimeros adimensionales para un
fluido HASE al 1.2% (¢ nimero II, O ntimero Capilar (Ca) y o nimero de
Weber (We)).(V. = 65mm?)

podrian estar relacionados con cambios en la morfologia de las burbujas. En
este caso la magnitud de la discontinuidad es pequena, debido a la falta de
efectos adelgazantes y por lo tanto no existe una disminucién en el arrastre
por dicho efecto.

Definiendo el coeficiente de arrastre adimensional: C;/Cy0, donde Cyg es
el coeficiente de arrastre de Stokes (Cyo = 24/Re), se tiene que para burbu-
jas pequenas (con volimenes menores al critico), el coeficiente adimensional es
cercano a 1. Para burbujas con volumen mayor al critico, la velocidad aumenta
y por lo tanto el coeficiente de arrastre disminuye, entonces el coeficiente adi-
mensional es menor a 1. En la figura 7 se muestran el grafico del coeficiente de
arrastre adimensional contra el niamero II, es claro que los valores se agrupan
en dos zonas; la primera cuando el valor de II es menor a uno y como era
de esperarse el coeficiente es mayor a la unidad, la segunda donde el valor de
IT es mayor a 1 y el coeficiente adimensional es menor a 1. De esta manera
es posible predecir la aparicién de la discontinuidad cuando el ntmero II es

mayor a uno.
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Figure 7: Coeficiente de arrastre adimensional como funcién del ntmero II
para fluidos del tipo HASE: (o) 1.2%; (O) 1.5%; (¢) 1.7%.

Se realiz6 una comparacién con datos experimentales propios y reportados
en la literatura (ver figura 8), de tal manera que para todos los casos se observo
el mismo comportamiento que para los fluidos del tipo HASE, lo que indica
que el numero II sirve de criterio general para predecir la apariciéon de la

discontinuidad en la velocidad terminal.
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Figure 8: Numero Il como una funciéon del nimero de Weber para diferentes
fluidos: (o) viscoeldstico medio acuoso, ((J) fluido de Boger, (+) HASE al 1.5%,
(¢) glicerina agua y dodecilsulfonato de sodio en medio acuoso, Rodrigue, De
Kee y Chan Man Fong (1996); Rodrigue, De Kee and Chan Man Fong (1998);
Rodrigue and De Kee, (1999), (x) agua 80wt.% , glicerina 20wt.% y 0.5wt.%
de poli(acrilamida) y dodecilsulfato de sodio, Rodrigue and Blanchet (2002).

0.6 Magnitud de la discontinuidad

En la tabla 1 se presentan los principales factores involucrados en la magnitud
de la discontinuidad. Para evaluar el efecto de cada uno de ellos se realizaron
simulaciones numéricas en elemento finito y se compararon con los resulta-
dos experimentales. Experimentalmente se puede obtener la reduccion en el

arrastre por medio de la relacion:

Cdy dy Vi,
cd = (5)

donde Cjy es el coeficiente de arrastre, V' la velocidad terminal de la burbuja
y d el didmetro equivalente de la burbuja. Los subindices 2 y 1 se refieren a
las burbujas con volumen por arriba y debajo del critico respectivamente. El

coeficiente de arrastre se puede calcular con la fuerza neta sobre la superficie

en la direccién de flujo Fy, de tal manera que se puede determinar por medio



Table 1: Principales contribuciones a la discontinuidad para el experimento y
la simulacion.

Experimento Simulacién

Viscosidad Viscosidad

Velocidad de burbuja Velocidad de burbuja

Forma de burbuja Forma de burbuja

Condicién de frontera Condicién de frontera (con o sin
deslizamiento)

Elasticidad

de la ecuacion:

2F,
e AECIE )

En la simulacion se utilizé el perfil correspondiente y las propiedades del fluido
bajo las condiciones del experimento. Para la simulacién, la condicion de
frontera se consideré rigida para burbujas con volumen menor al critico y

movil para burbujas con volumen mayor.

. . . Cd 2414
De la simulaciones se obtuvo que la reduccién en el arrastre es % =
,Inonslip

Cd,s
Cd,

0.446, mientras que experimentalmente es = 0.412. Dado que la reducciéon
en el arrastre es mayor en el caso experimental, donde todos los efectos estan
incluidos, y que la tinica contribucién importante no considera en la simulaciéon
es la elasticidad del fluido, se dice que esta propiedad es muy importante para

la aparicion de la discontinuidad. Lo mismo ocurre para los diversos casos

probados en esta seccion.
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Figure 9: Velocidad como funcién del volumen para HASE al 1.5%. (o) bur-
bujas esferoidales; (4) cola axisimétrica (tip streaming); (OJ) cola 2D tipo
cuchilla; (¢) doblecola 2D tipo cuchilla.

0.7 Burbujas no axisimétricas

Se presentan diversas formas para las burbujas en un amplio intervalo de
volumenes. La figura 9 muestra la velocidad como funcién del volumen y
las diversas formas encontradas. Se observa que existen ciertas regiones en las
que las burbujas adquieren una forma especifica, aparentemente se tiene un
volumen critico para cada caso. Sin embargo, hasta ahora no se cuenta con
alguna explicacién y no se tiene idea de que estas observaciones hayan sido

reportadas con anterioridad.

700



Conclusiones

La discontinuidad esta relacionada con las propiedades reoldgicas del los flu-
idos. El cambio de forma en la burbuja de convexa a concava se asocia a
la discontinuidad, junto con la formacién de la cauda negativa. Se presenta
un criterio (I > 1) capaz de predecir la aparicién de la discontinuidad y
se aplicd a diversos fluidos reportados en la literatura corroborando su fun-
cionalidad. Para evaluar las principales contribuciones en la magnitud de la
discontinuidad se realizaron simulaciones numéricas, como resultado se obtuvo
que la elasticidad contribuye de manera importante. También se presenta un
estudio fotografico de la forma de burbujas con voliimenes mayores al critico
y se presentan formas peculiares, que aparecen a ciertos volimenes, para las

cuales no se cuenta con explicacién, pero que no han sido reportadas hasta la

fecha.
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0.1 Abstract

The motion of air bubbles in aqueous solutions of a hydrophobic alkali-
swellable associative polymer is studied in this work. The associative nature of
these polymer systems dictates their rheological properties: for moderate val-
ues of the shear rate, the formation of structure can lead to a shear-thickening
behavior and to the appearance of first normal stress difference. For larger
shear rates, the polymer associations can be broken, leading to shear thin-
ning. In general, these fluids show a Newtonian behavior for small values of
the shear rate, but behave as viscoelastic liquids for large shear rates. Ex-
perimental results show the appearance of a critical bubble volume at which
a discontinuity in the relation velocity-volume occurs; however, the velocity
increase found in this case is not as large as that previously reported for the
case of shear-thinning viscoelastic fluids. The discontinuity is associated with a
significant change of the bubble shape: before the critical volume, the bubbles
are convex spheroids, while past the critical volume a sharp cusped end ap-
pears. The appearance of the tail is also associated with the appearance of an
inflection point (change of curvature) on the bubble surface. Moreover, since
the rheology of the liquids is measured it was found that the discontinuity, and
hence the change of shape, occurs when the elastic nature of the liquid first
manifests itself (appearance of a first normal stress difference). A comparison
of the measured velocities for small bubbles with predictions from a Stokes-
Hadamard law shows a discrepancy. The Newtonian viscosity measured in a
viscometric flow was smaller than that determined from a falling-ball arrange-
ment. Considering the viscosity measured under this nonviscometric flow, the
comparison between theory and experiments was very good for bubbles having
volumes lower than the critical one. Moreover, due to the importance of the
elasticity, and due to the change of the shape of the bubble, a dimensionless

number formed as the ratio of elastic to surface tension forces clearly defines



the change of the behavior for the bubbles rising in these fluids. Furthermore,
such criterion was tested for several classes of fluids (viscoelastic, shear thin-
ning inelastic and constant viscosity elastic liquids). A study of the magnitude
of the different contributions leading to the bubble velocity discontinuity is also
presented. Finally, a photographic study of the peculiar shapes of the bubble
tails, tip-, and edge-streaming phenomena is presented. To our knowledge,

experiments in this class of fluids have not been reported to date.



0.2 Objective

Determine the flow conditions and viscoelastic properties of fluids necessary for

a rising bubble to exhibit the bubble velocity discontinuity in complex fluids.

0.3 Originality

The flow of non-Newtonian fluids is a relevant due to the fact that most of
real materials show this behavior. In particular, the motion of bubbles in
non-Newtonian fluids is important for several industrial applications: waste
water treatment, handling and processing of fermentations broths, polymer
devolatization, bubble column, metallurgy, plastic foam processing and all
processes where multiphasic flow is involved. An extensive work on this
issue has been carried out(Chhabra, 1993 and 2006, Kee, 2002); however, the

phenomena is not well understood.

At this moment there is a lack of a complete theoretical study of bubble
phenomena due to its complexity. For this, the starting point is the sim-
plest case, an isolated bubble freely rising in a liquid. The non-Newtonian
properties of a liquid are responsable of some peculiar observations, such
as the negative wake and the bubble velocity discontinuity. In this work, a
detailed experimental study is presented to analize the competition among
the different forces involved in the bubble phenomena and a criterion for the

apparition of the bubble velocity discontinuity is presented.



0.4 Introduction

The study of the motion of air bubbles in liquids has received considerable
attention because of its fundamental and practical importance. For the case of
Newtonian liquids, there is a vast collection of investigations reporting a wide
range of behaviors in many regimes (Clift, Grace & Weber, 1978). The general
understanding of such a system is not complete but its state of the art can be
considered relatively advanced.

For the case of the motion of gas bubbles in non-Newtonian liquids, there are
several unexpected phenomena that are not yet fully understood (Chhabra,
1993; Funschfilling & Li, 2001). Among the peculiar phenomena observed
in the case of non-Newtonian liquids, of particular interest is the so-called
bubble velocity discontinuity. In a Newtonian fluid, the magnitude of the
rising velocity of a gas bubble is proportional to the bubble size and the relation
velocity-volume is monotonically increasing. For the case of non-Newtonian
liquids, many authors (Astarita & Apuzzo, 1965; Barnett, Humphrey & Litt,
1966; Calderbank, Johnson & Loudon, 1970; Leal, Skoog & Acrivos, 1971;
Zana & Leal, 1978; Rodrigue, De Kee & Chan Man Fong, 1996; Rodrigue, De
Kee & Chan Man Fong, 1998; Herrera-Velarde et al., 2003; Soto et al., 2006;
Pilz et al., 2007) have reported the existence of a critical value of the bubble
volume for which a discontinuity of the velocity occurs: the bubble velocity
increases abruptly for a small increase of the bubble volume.

Astarita & Apuzzo (1965) were the first ones to report that the ratio of the
velocity after and before the jump ranged from 2 to 6, depending on the
polymer solution. They argued that this discontinuity of the velocity could be
the result of a transition from a Stokes regime to a Hadamard regime (a change
from a rigid to a free interface). However, it can be shown that the velocity
increase resulting from such a change of the boundary conditions would be

equal to 1.5. Due to the fact that no discontinuity of the velocity has been



observed for the case of falling spheres, some authors (Barnett, Humphrey &
Litt, 1966; Calderbank, Johnson & Loudon, 1970; Leal, Skoog & Acrivos, 1971)
have supported this argument, even though it does not predict correctly the
increase of the velocity. Astarita & Apuzzo (1965) also pointed out that the
shape of the bubbles changed before and after the velocity discontinuity. Liu et
al. argued the discontinuity appears due to the drag reduction involved in such
change in shape. Rodrigue, De Kee & Chan Man Fong (1998) proposed an
explanation for the discontinuity. They argued that it results from a balance
between elastic and Marangoni instabilities providing another major difference
between Newtonian and non-Newtonian hydrodynamics. In a related study,
Rodrigue, De Kee & Chan Man Fong (1996) reported the effect of surfactants
in the liquid and concluded that surface active agents as well as elastic forces
must be simultaneously present in order to generate a sudden jump in velocity.
Herrera-Velarde et al. (2003) showed that the appearance of the jump was
related to the appearance of the so-called negative wake behind the bubble.
Aubry et al (2007) proposed that the negative wake not only coincides with
the appearance of a cusp-like trailing end of the rising bubble but also propels
the bubble.

In this work, a simple and yet new explanation for the discontinuity is
proposed, with a criterion to determine whether or not the bubble veloc-
ity discontinuity occurs for the case of air bubbles moving an associative
polymer (HASE) and the comparison with several non-Newtonian liquids.
A dimensionless analysis of the different forces (inertia, viscous, surface,
elastic) shows that the discontinuity occurs when the elastic forces dominate
the flow. Although there are numerous experimental results reporting this
phenomenon, in most cases not all the properties are reported; hence a proper
reexamination of all the existent data is not possible. To comprehensively

study this phenomenon, we have carried out an extensive experimental study



of the subject.

In Chapter 1, background, a brief introduction of the fundamental concepts
are shown. In Chapter 2, Methods and materials, the experimental meth-
ods and fluids properties are presented. The experimental results for single
air bubbles rising in five different types of liquids: aqueous associative poly-
mer(HASE), aqueous shear thinning viscoelastic liquids, non-aqueous shear
thinning viscoelastic liquids, Boger fluids (elastic liquids with a constant vis-
cosity), and shear thinning liquids are included in Chapter 3, Experimental
evidence. Chapter 4, Dimensionless analysis, presents a discussion of the
experimental results and an explanation for the discontinuity of the velocity
based on a dimensionless analysis proposing the idea that elasticity dominates
the equilibrium forces . Finally, in the Chapter 5, Velocity discontinuity mag-
nitude, an examination of the bubble drag coefficient, shapes of bubbles and
the rheological properties of the fluids are evaluated using finite element New-

tonian simulations.



Chapter 1

Background

In this chapter the basic concepts are discussed. In the first section, the
essential information about flow of fluids around spheres in Newtonian and
non-Newtonian fluids is presented. Thereafter, a review of the bubble velocity
discontinuity state of art is discussed. In the second part, we deal with the
fluids properties, the non-Newtonian character of polymeric liquids and their
structural composition. Finally, some remarks about the air-liquid interface

are included.

1.1 Flow around bubbles

The molecules that constitute a liquid tend to assemble together to minimize
the total energy of the system, so the liquids drops tend to adopt shapes
that minimize their surface area. The sphere is the geometrical shape with
the smallest surface-volume ratio and therefore liquids droplets are spherical.
However, there may be other forces in competition against the tendency to
adopt the spherical shape; for example, the gravity may flatten spheres into

puddles(Atkins, 2002).

In our case, a bubble can be thought as a drop of air surrounded by liquid.
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Figure 1.1: Inhomogeneous flow around a sphere. Left: Velocity field around
a sphere and magnification of the frontal profile (Re << 1). Right: Schematic
representation of the different homogeneous flows presented.

The figure 1.1 shows the velocity field around a spherical object in steady
state. It can be seen that the flow is complex and not homogeneous, this
being the reason why flow around objects is not easy to understand for every
condition. Some analytical solutions are available for the flow around spheres;
however, they are limited to slow flows. Other important parameter is the
boundary condition that can be rigid or mobile; in the first case the boundary
is considered as a fixed surface and in the second one the boundary moves with

the film of liquid aside it.

1.1.1 Creeping flow around a sphere

One of the classical problems in fluid dynamics is the small Reynolds number
flow past an sphere; known as creeping flow. The Reynolds number is a balance

between inertial and viscous forces, defined as:

inertial forces  pd U Ud,
viscous forces  pu U

(1.1)

e =



mg

Figure 1.2: Free body diagram of a sphere. Buoyancy force (F}), drag force
(Fy and weight (mg).
where p is the fluid density, d. is the sphere equivalent diameter, U is the
velocity, p is the liquid viscosity and v is the cinematic viscosity. Then, a
small Reynolds number implies that the flow is slow and laminar. Under such
flow conditions there is no wake and the flow is smooth without instabilities.
The forces acting on the sphere, as it falls or ascends into the fluid, are
shown in figure 1.2. These forces are the buoyancy (F}), the drag (F,;) and
the weight (mg). The first two forces act upwards, and the third one acts

downwards. Then, the following balance equation can be written,
F,+ F;=mg (1.2)
The buoyancy force is simply the weight of displaced fluid:
4 3
Fy =mgg = §7TR Pfluidd (1.3)

where mg is the mass of displaced fluid, R is the sphere radius and pyq is



the fluid density.

Stokes’s flow

In a rigid sphere, the non-slip boundary condition of the velocity field (v g =

Usphere|r=r) 1s considered at the sphere surface and v, tends to v, at a large

distance from the sphere. To calculate the total force acting perpendicularly

to the surface, in the motion direction, the pressure —pcosf is considered.

Multiplying the pressure on the sphere by the total area R?sinfdfd¢, the

surface integral for the normal component of the forces is given:

2 s
F, = / / (—ply=r cos 0) R? sin 0dfd¢
o Jo
where R is the sphere radius and p at the surface given by:
Voo

3
—plr=r = po — pgR cos b — 5% cos 6

where v, is the translation sphere velocity. This integral gives:
4 s
F, = gwR pg + 2mpRus
The tangential contribution is given by:
2 ™
F, = / / (+7v9|r—p sin 0) R? sin §dOd¢
o Jo

where 7,4 is the shear stress at the sphere surface, expressed as

| 3 MWso . 0
Trglr=r = =———sin
r=RT9R
Evaluating the integral

F, =4mpRus

10

(1.4)

(1.5)

(1.6)

(1.7)



Recalling 1.2, the total force balance is
4 3
F = gwR pg + 2T R + AT Rvse (1.10)

The first term is the buoyancy force, and the other two are referred to the
drag force. Then, the second term is the form contribution and the third is
the contribution of friction between the sphere and the fluid. Finally, balance
is written

4

mg = 37TR3pg + 67 Rpg (1.11)

It can be seen that the buoyancy forces act at any moment (even at rest) and
the drag forces depend on fluid motion, related to the kinetic contribution.
The drag force

Fy = 6muRus (1.12)

is known as Stokes’ law (Stokes, 1880 and Schlichting, 1964). This formula
is used to determine settling velocities under gravitational forces through the
next relation

R*(ps — p)g

o= WP T P 1.13
v 18/ (1.13)

where pg is the sphere density. Such relation is useful to calculate falling bead
viscosities (which will be described in detail in the experimental Chapter).
This equation is valid only for Re smaller than 1 and for rigid boundary
conditions.

The drag can be expressed in dimensionless form as:

2Fy

= (&)

(1.14)
From Egs. 1.14, 1.1 and 1.12, the drag coefficient in Stokes’s flow is given by:

Cy = 24/Re (1.15)

11



Hadamard’s flow

In this case, the sphere is itself composed of fluid susceptible to generate an
internal circulation that affects the overall drag. It is assumed that the two
liquids are immiscible, and that surface tension at the interface is strong enough
to keep the drop spherical. Then, the velocity of the interface is equal to the
velocity of the external fluid at the interface, v, = vy = v, and again v,
tends to v far from the sphere. The Re number inside and outside the drop
should be smaller than unity. Motion equations for this conditions were solved
analytically by Hadamard (1911) and Rybczynski (1911). In this case, the
drag force is given by

Fy=4mpuRuy (1.16)

The terminal velocity of the drop is given by

2, _
v = Flps = p)g (1.17)
121

and in the same way as in Stokes’s flow using Eqs. 1.14, 1.1 and 1.16, the

Hadamard drag coefficient is given by

Cd: 16/R€ (1.18)

1.1.2 Bubbles in Newtonian fluids

For the motion of air bubbles in Newtonian liquids there is a vast number of
investigations reporting a wide range of behaviors. Most of this information is
summarized in the book Bubbles, drops and Particles by R. Clift, J. R. Grace
& M. E. Weber, 1978. This book provides an excellent review. However, the
general understanding of such systems is not complete.

In this book, drops and bubbles rising freely in a media are grouped in the

following three types:
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a) Spherical: In general, bubbles and drops are approximated by spheres if
interfacial tension and/or viscous forces are much more important than
inertia forces. A particle is termed spherical if the minor to major axis

lies within 10% of unity.

b) Ellipsoidal: This term is used to name bubbles and drops which are
oblate with convex interface around the entire surface. Frequently such
bubbles or drops are not matched exactly with true ellipsoids and sym-
metry must not be assumed. Moreover, ellipsoidal bubbles and drops
commonly undergo periodic deformations and shake which complicate

shape characterization.

c) Spherical-cap or ellipsoidal-cap: Large bubbles and drops tend to adopt
flat or indented bases and without symmetry. They look like segments of
cut spheres. If an indentation at the rear of the particle is presented, it
is said to be dimpled. Large spherical-cap may also trail thin envelopes

of dispersed fluid referred as skirts.

For bubbles and drops rising or falling freely in infinite media it is possible

to construct a generalized graphical correlation in terms of the dimensionless

numbers:
Apd?
B, =920 (1.19)
g
4
g Ap
M= pone (1.20)
Re — P2V (1.21)
0

where FE, is the E6tvos number, M the Morton number and Re the Reynolds
number. The resulting plot shown in Fig. 1.3 does not apply to extreme values
of density ratio, (p,/p), or viscosity ratio, (u,/u), where the subindex refers
to the disperse phase. The plot in Fig. 1.3 considers a broad range of fluid

properties and particle volumes. Since Re contains the terminal velocity, it
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may be used to estimate terminal velocities as well as shape, although in more
recent works this plot is a very valuable reference. Something remarkable
is that the disperse phase viscosity seems not to play an important role in
determining terminal velocities and shapes regimes since it does not appear in

any of the three numbers.
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Figure 1.3: Shape regimes for bubbles and drops unhindered gravitational
motion through liquids. Taken from Clif,1978.

Free rise of bubbles

The qualitative behavior of a bubble rising freely under gravity in a Newto-

nian liquid is presented in Fig. 1.4. Additionally, Stokes’s law and Hadamard
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Figure 1.4: Terminal velocity as function of volume. Idealized real fluid (dotted
line), Stokes’s law (Solid line) and Hadamard’s prediction (dashed line).

solutions are presented. For small bubble volumes, the terminal velocity fol-
lows Stokes’s, even though the interface is free, because of contamination of
the water interface. It implies that the flow around the bubbles is not strong
enough to deform the interface and it behaves like a rigid particle. This as-
sumption is supported by some experiments showing that inside the bubble,
under this conditions, no recirculations occur. When the volumen is increased,
the terminal velocity increases monotonically and lies between both regimes
until it reaches Hadamard’s solution. At some volume, the velocity falls below
the Hadamard’s value and for higher volumes, it falls below Stokes’s solution.
This is attributed to the appearance of inertial effects. Finally, for very large
volumes, an instability is observed in the terminal velocity due to turbulence.

The bubbles become oblate which leads to an increase of drag.
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1.1.3 Bubbles in non-Newtonian fluids and Bubble Ve-
locity Discontinuity

The study of the behavior of bubbles rising freely in non-Newtonian fluids is
not fully understood. This is a consequence of the fluids structure, that, in
general, is composed of large molecules. More details about the chemical nature
of large molecules will be given in later sections. The size, shape and flexibility
of this molecules lead the fluids to exhibit some 'odd’ properties in comparison
whit those observed for Newtonian liquids (constituted by small molecules).
Among these differences, change in shape, velocity and mass transfer could be
observed. The main topic of this work is the so-called jump discontinuity, this
is a sudden increase in velocity resulting from a small change in volume. This

issue is discussed in detail in the next section.

Bubble velocity discontinuity
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Figure 1.5: Velocity discontinuity plot for an aqueous solution of HASE at 1.5
wt%. Terminal velocity as function of volumen. As increasing the volume the
velocity increases monotonically until a critical volume, where the discontinuity
appears.
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Table 1.1: Magnitude of the discontinuity, ratio of the velocity past the dis-
continuity and the velocity prior the discontinuity.

Author System Yo

Vi
Astarita & Apuzzo 1965 Air/polyacrylamide ET-497 and J-100 2.22—b5.86
Zana and Leal 1978 Air/poliacrylamide AP-30 4-5
Rodrigue et al 1998 Air/poliacrylamide AP-30/sodium do- 1.6-5
decyl sulfate
Herrera-Velarde, et al., 2003 | Air/water/ glicerol/poliacrylamide 1.63-2.45

Figure 1.5 shows a typical plot of terminal velocity versus volume, in this
case for an aqueous solution of 1.5 HASE wt%. It is clear that there is a critical
volume at which an small increment in volume implies a sudden increase in
the terminal velocity. This behavior has been reported extensively by several
authors in different non-Newtonian liquids. Chhabra (2006) provides a recent
summary of previos investigations on that subject. Others important reviews
are available in the literature; Chhabra (1993), Kee & Chhabra (2002) and
Caswell et al. (2004).

In Table 1.1, some experiment that report the velocity discontinuity are
shown. Also shown is the ratio between the velocity past and prior the discon-
tinuity.

The appearance of the discontinuity is related to the non-Newtonian
properties of the solutions. In Table 1.2 a summary of the explanations on
the origin of the discontinuity are given. The first explanation is based on the
well known fact that small bubbles behave like rigid spheres, whereas large
bubbles present a mobile interface. However, this explanation is not sufficient
to explain discontinuities higher than a 50% increase in velocity, even for
Newtonian liquids, since Newtonian liquids do not exhibit this behavior. The
second explanation is about the change in shape of the bubble (see Figure
1.6a), several experimental observations are in agreement that the formation

of a cusp in the trail end of the bubble coincides with the critical volume.
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Table 1.2: Summary the explanations given for the discontinuity.

Author Conclusions

Astarita & Apuzzo, 1965 Discontinuity is due to transition from stokes
to Hadamard regime.

Lui, et al., 1995 Sharp reduction in the drag due to cusping.

Belmonte, 2000 Discontinuity coincides with cusp formation.

Herrera-Velarde, et al., 2003 | The discontinuity appears only for volumes
greater than the critical and always is related
with the presence of the negative wake.

|

Motion
Direction
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Newtonian Non-Newtonian /@il i©\
4 Ll N
'

a) Change in shape B) Negative wake

Figure 1.6: a) Comparison of the shapes of a bubble moving in a Newtonian
liquid and one moving in a non-Newtonian fluid. b) Sketch of the velocity
vectors in the negative wake of a bubble rising in a non-Newtonian fluid.

Finally, a key experimental observation is the formation of the negative wake
(see Figure 1.6b). In a region, the velocity vectors are in the direction of the
motion of the bubble. Directly below the trailing end and close to the vertical
axis of the rising bubble, the velocity vectors are in the direction of the motion
of the bubble, but at a short distance behind the trailing end, the velocity is
in the opposite direction (Sigli, 1977, and Herrera-Velarde, 2003). The fact
that both phenomena have been associated and have been observed only in
elastic fluids, is a strong evidence that the elasticity plays an important role

in the velocity discontinuity.
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Wall effects

At small Re, the perturbation around a body is of long-range interaction.
Hence, the walls may have importance on the falling objects terminal velocity.
In the case of spheres in Newtonian liquids, the drag correction factor due to
walls can be calculated with the Faxén correction (Happel, 1973), which is

commonly expressed in the form

Kn(R/r) = 1= fl(R/r) = US;}"““ (1.22)

with

f(R/r) = 2.10444(R/r) — 2.08877(R/r)* + 0.94813(R/r)°

+ 1.372(R/7)® — 3.87(R/r)® + 4.19(R/r)"* +---  (1.23)

where R is the radius of the sphere and r is the container radius. This relation
is only valid for Reynolds number smaller than 1. When (R/r) decreases, the
wall effects decrease too. Then, it is possible to minimize wall effects keeping
(R/r) as small as it can be. It has been shown that for viscoelastic fluids, wall
effects appear to be less important than in the motion of Newtonian fluids
(Chhabra, 1981). Moreover, the wall correction factor for elastic constant
viscosity fluids is given by f(R/r) =1 — 0.17R/r for Deborah numbers larger
than 0.2 (Chhabra, 1988).
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Figure 1.7: Viscous, viscoelastic and elastic behavior of materials.

1.2 Rheology

Rheology is the study of the deformation and flow of matter under the
influence of an applied stress. The term was coined by Eugene Bingham, a
professor at Lehigh University, in 1920, from a suggestion by a colleague,
Markus Reiner. The term was inspired by Heraclitus’s famous expression
panta rei (everything flows). It is possible to define two kinds of matter: fluid
(liquid or gas) and solid. When a weak continuos constant stress is applied,
the fluid matter flows and the solid matter resist. As an example, figure 1.7
illustrates these behaviors. The water fills the glass adopting the shape of the
container, the applied stress is dissipated, then the material is viscous. The
stainless steel ball, falling from a certain height and impacting against a hard
surface, bounces very close to the original height; it means that the applied
stress is stored, then the material is elastic. The rubber ball performance is
between both behaviors. When the rubber ball impacts against the surface,
it deforms with a loss of energy, then the bounce height is smaller than the

initial height. This behavior is called viscoelastic.

Materials which are pure solids o pure liquids, are just unusual exceptions.

Real materials exhibit a combination of both properties and show a strong
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Figure 1.8: Comparison between Newtonian and Non-Newtonian behavior for
classical flow conditions. Tubeless siphon, die swell, rod climbing and sudden
contraction.

dependence with the deformation rate. In general, as the time scale increases
the material changes from elastic to viscous, then a relevant time scale can be
defined as a relaxation time. Correspondingly, the ratio of the relaxation time

of a material to the timescale of a deformation is called Deborah number.

relaxation time for the fluid
De =

= 1.24
time scale of the deformation ( )

Small Deborah numbers correspond to situations where the material has time
to relax (and behaves in a viscous manner), while large Deborah numbers

correspond to situations where the material behaves rather elastically.

Within all the materials that exhibit viscoelasticity, this work focusing in
polymeric fluids. Several interesting phenomena are shown by this fluids, some

of them are presented in Figure 1.8. A brief explanation is in followed:

Tubeless Siphon For a Newtonian liquid the siphon is created by the dif-

ference of pressure between the entrance of the tube and the exit, the
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atmospheric pressure pushes the liquid through line; when the tube is
moved upwards the contact with the liquid is broken and the fluid emp-
ties the tube. When the liquid contains large molecules, the molecules
align in the direction of stretching resulting in an increase in extensional
viscosity. A structure is induced by flow and the fluid behaves like solid
in the direction of flow and allows the formation of the tubeless effect.
A high ratio of extensional viscosity to shear viscosity is a requirement

for the open-siphon experiment.

Die Swell For fully developed flow of a viscoelastic fluid in the tube, a ten-
sion along the streamlines associated with the normal stresses is present.
When the fluid passes through the exit of the tube into the atmosphere,
it will relax the tension along the streamlines by contracting in a lon-
gitudinal direction. For an incompressible liquid, this results in lateral
expansion of the liquid, giving rise to the die-swell phenomenon. Due
to the lack of normal stresses the Newtonian liquids do not show this

behavior.

Rod Climbing In the Newtonian liquid, a rotating rod pushes the liquid
outward by centrifugal forces, and a downward vortex is generated. On
the other hand, for non-Newtonian liquids and for high enough rotational
speeds, the fluid moves toward the rod and climbs it. In the case of
polymeric liquids it can be argued that the long polymeric chains wrap

onto the rod and creep upwards.

Sudden contraction In the case of a Newtonian fluid straight flow in line
directly towards the contraction. For the non-Newtonian case not all
the fluid lines move directly toward the exit; part of it is trapped in a
recirculating region. There are some explanations about the origin of

this behavior, but a general criteria is not still accepted. One possible
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Figure 1.9: Shear stress and viscosity dependence upon shear rate. Newtonian,
shear thickening, shear thinning and viscoplastic fluids
explanation is that near the contraction, where the velocity increases
and the pressure decreases, the normal stresses relax and promote the

formation of a vortex.

1.2.1 Non-Newtonian fluids

The non-Newtonian fluids can be divided in different ways depending on their
response when they are deformed. These types of fluids are illustrated in
Figure 1.9. The Newtonian behavior is characterized by a linear dependence
between shear rate and shear stress, as a consequence its viscosity remains
constant for any rate of deformation. Shear thinning and shear thickening
fluids are characterized by a non-linear dependence of the shear stress and
shear rate. For the first, the slope of the curve shear stress-shear rate
decreases, and is reflected in a decrease of viscosity with increasing shear
rate. Such behavior is attributed to the alinement and slip of the molecular
components of the fluid. In the second fluid, the slope of the curve shear
stress-shear rate increases and the viscosity increases with increasing the

shear rate. This is believed to the result of assemble of molecular components
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under flow generating new structures. Another fluid shown in figure 1.9 is the
viscoplastic; this fluid has an initially ordered structure that must be broken
before the fluid moves; the stress necessary to brake such structure is known

as yield stress.

Due to the characteristic structural conformation of non-Newtonian liquids
a great variety of fluid behaviors can be observed. An interesting phenomena
is the time dependence of some fluids called thizotropy, in which the struc-
tural arrangement is able to acquire different arrays in time for the same flow

conditions (Bird, 1976, 2002, Harris, 1997 and Morrison, 2001).

Polymeric solutions and associative polymers

A polymer is a substance composed of molecules with large molecular
mass constituted of repeating structural units, or monomers, connected by
covalent chemical bonds. A simple model for a polymer considers a set
of entangled chains. Then, when a deformation is applied, the chains slip
one on top of the other and create an aligned field. This peculiar structure

leads to a several interesting and useful mechanical properties (Callister, 1994).

The structural properties of a polymer relate to the physical arrangement
of monomers along the backbone of the chain. Structure has a strong influence
on the other properties of a polymer. For example, a linear chain polymer may
be soluble or insoluble in water depending on whether it is composed of polar
monomers (such as polyacrylamide, (—CH;CHCON Hy—),,) or non-polar
monomers (such as styrene). In solution the polymers tend to modify the
rheological behavior of the solvent, for this reason they are extensively used
in industrial applications as rheology modifiers, for example in coating, oil

extraction and transportation, food processing, cosmetics and more.

24



a b c d

Figure 1.10: Linear polymer swelling in solution. a) Polymer in a bulk, b)
Polymer swelling, ¢) Single chain complete hydrated and d) Single hydrated
chains entangled among themselves.

The process of disolving a polymer in a solvent is carried out in various
steps; dispersion, swelling and solution. In figure 1.10 a sketch of this steps
is shown. The pure polymer must be dispersed in the solvent, avoiding the
formation of clusters. Omnce the polymer is dispersed, the solvent migrates
slowly inside the bulk, until the chains are totally surrounded by solvent.
Then, the chains are able to move freely in the solution. If the concentration
of polymer is high enough, the possibility that two chains enter in contact
and interact increase; then they form a network that modify the rheological
behavior of the solvent which is observed by a change in viscosity (increase or
reduction) and the presence of elasticity. The forces involved in the interaction

of such chains are just dispersion forces that are usually weak.

One way to increase the interaction forces among the polymeric chains is by
grafting hydrophobic groups in their backbone. The hydrophobic groups stick
together and form clusters that increase the total joints in the solution and
the contribution to the final rheological behavior. This kind of polymers are
called associative polymers and are widely used because are able to modified
the rheological behavior of the solutions at smaller concentrations than typical

soluble polymers(Kastner,2001).
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Figure 1.11: Schematic representation of a linear polymer grafted with hy-
drophobic groups.

1.3 Surface properties

Previous sections of this thesis dealt with macroscopic properties through a
continuum approach. However, it is important to recognize that such behavior
is a consequence of the materials microscopic nature. In nature it is possible to
find four distinct forces. Two of them are strong and weak interactions that act
among elementary particles such as neutrons, protons, electrons and others.
The other two forces are electromagnetic and gravitational interactions that
act among atoms, molecules and elementary particles. The first pair of forces
are a short range interactions, less than 10~ nm. The second pair are effective
over a larger range of distances, from subatomic to astronomical distances, and
are responsable of the macroscopic behavior of matter.

It is possible to explain the properties of solids, liquids and gases through
electromagnetic interactions. Astronomical behavior and tidal motion can be
explained with gravitational forces. When these two forces work simultane-
ously are the cause of several phenomena, for example, liquid rising between
nearly closed walls or in small capillaries.

In this section a brief explanation about surface tension, interfacial ten-
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sion and some surface chemistry is presented. These issues will be relevant
to explain the terminal velocity discontinuity in the terminal rising bubble

problem.

1.3.1 Surface energy or surface tension

In nature, stable forms are those with minimal energy, for example, liquids tend
to adopt shapes that minimize their surface area, keeping the minimum number
of molecules at the surface. Sphere is the geometry with less surface-volume
ratio, for this reason, bubbles and droplets tend to be spherical. However,
there may be other forces that modify this ideal shape, for example, gravity
flatten spheres into spheroidal shapes.

From a thermodynamical point of view, the free energy change to separate
unit areas between two media (1 and 2) from contact to infinity (in vacuum)
is called work of cohesion Wiy; when both media are identical and work of
adhesion Wi, when those media are different.

Surface energy or surface tension -y is the free energy change when a surface
area of a medium is increased by an unit area. Such process is equivalent to

separating to half-unit areas from contact, so surface tension is given by

1
Y1 = §W11 (125)

7 is given in units of energy per unit area and is commonly given in Jm 2.

However, in the case of liquids 7, is given in units of tension per unit length
Nm~!. In the Table 1.3, values of the surface tension for some liquids is pre-
sented.

The intermolecular forces responsable of surface tension are the same as those
that determine latent heat and boiling point. Figure 1.12 shows the decreasing
of surface tension in water with temperature. It is important to mention that

impurities tend to reduce surface tension. Actually, this property is used to
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Figure 1.12: The variation of the surface tension of water with temperature

Table 1.3: Surface and interfacial energies (mN m™!)

Liquid Surface energy Liquid-liquid interface Interface Energy
At Y12
Chloroform 27 chloroform-water 28
Octane 21.8 Octane-water 51
Ethylene glycol 48 Ethylene glycol-tetradecane 20
Water 72 Tetradecane-water 53
Mercury 472

characterized water purity. When surface tension is determined in a foreign

vapor, the effect is lowering v from its value in vacuum. For example, when

mica is cleaved in high vacuum the surface energy is around 3500mJm =}, but

when cleaved in humid laboratory air it falls to 300m.Jm™!. This is the prin-

cipal reason of the different behavior of bubbles in clean and in contaminated

water.

There are several techniques to determine surface tension. A universal

method especially suited to check surface tension over long time intervals is

the Wilhelmy plate method. A vertical plate of known perimeter is attached to

a balance, and the force due to wetting is measured.
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1.3.2 Interfacial energy or Interfacial tension

Recall from the previous section where interactions between molecules inside
each fluid resulted in a given viscosity. Now, consider two immiscible lig-
uids. At the interface between the liquids there will be interactions between
molecules of different type and the interfacial tension arises due to the at-
tractive forces between the molecules in the different fluids. Generally, the
interfacial tension of a given liquid surface is measured by finding the force
across any line on the surface divided by the length of the line segment. Thus,
the interfacial tension becomes a force per unit length which is equal to the

energy per surface area ;5. This property can be calculated with the equation:

1 1
Y12 = §W11 + §W22 —Wia =+ 7 —wl2 (1.26)

where Wi, and Wa, are the cohesion works for each liquid, and Wi, is the
adhesion work, defined as the reversible work required, per square centimeter,

to separate both liquids.
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Chapter 2

Methods and materials

In this chapter the basic techniques, methods and materials are described.

2.1 Equipment and characterization

The experiments were conducted in a cylindrical setup with a proper arrange-
ment to release freely bubbles. Video and photographs were acquired with
a high speed camera (Kodak Motion Corder Model 1000) and with a digital
camera (Fuji FinePix S1Pro, 6 Megapixels). Bubble velocities, volume and ge-
ometrical parameters were determined through digital image processing. The
rheological properties were measured in a cone and plate rheometer (Rheolyst
AR-1000N by TA Intruments). The velocity fields were measured using a
standard particle image velocimetry technique (Dantec Dynamics, PIV), with
fluorescent particles. Surface tension was measured by a Wilhelmy scale with a
DuNouy ring model 700 (Sigma). A description and details of this techniques

are given below.

2.1.1 Experimental device

To analyze the motion of air bubbles in a liquid, the experimental device

presented in figure 2.1 was used. A certain known volume of air was placed in
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Figure 2.1: Experimental device to study the motion of air bubbles rising
freely in a liquid. A square shell filled with the inner liquid is used to avoid
reflections. Two cameras (a high speed one and a high resolution one) are
included.

a hemispherical glass cap with a syringe; by turning the cap, the bubble was
released to move upwards in the test section. The test section is a cylindrical
tube with an internal diameter of 9cm and a length of 60cm. The width
of the tube was large enough to neglect wall effects and its length was long
enough to let the bubbles reach their terminal velocity. The cylindrical tube
was placed inside a squared container. To reduce the refraction effects, the
cylinder and the square section were filled with the test fluid. Different fluids
were tested and their rheological properties are shown below. It has been
suggested that the velocity of the bubbles can be dependent on the injection
frequency (Rodrigue,De Kee and Chan Man Fong, 1996); therefore, at least
a five minutes interval was left between two consecutive bubbles to avoid this

effect.
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2.1.2 Viscosity

In general, viscosity is a measure of the resistance of a fluid to deform under
stress. The viscosity depends on flow characteristics. The measured viscosity
can be apparent and viscometric. The apparent viscosity is measured under
inhomogeneous flow (where the shear rate is not constant). It implies that the
flow is complex and the value of viscosity is not always reproducible. How-
ever, due to their practicality and simplicity a wide variety of arrangements
producing inhomogeneous flows are used. They are useful reference or control
values. In this work, the fall of bead arrangement was used. Viscometric mea-
surements are carried out under homogeneous flow conditions (constant shear
rate), which are confident and reproducible; one example is the shear viscosity.

Experimental details of both methods are presented in the next sections.

Fall of bead viscosity

When a spherical particle falls or rises freely in a liquid, it reaches a steady
state in which the sum of all the forces involved in the movement is zero. Then
is easy to determine the fall of bead viscosity. The viscosity is given by the

expression:
R?(ps — p)g

2.1
18v4 (2.1)

/"L:

where R is the sphere radius, p is liquid density, ps is sphere density and
Uso 18 the terminal velocity. This equation is only valid for small Reynolds
numbers (Re < 1) and small ratios between sphere and container diameter

(Ds/D. < 0.1).

Couette flow and simple shear

This type of flow is characterized by the action of boundaries with relative
motion. The classical example of this flow is that between two infinite and

parallel planes, one of which remains motionless and the other moves shearing

32



Angular velocity

Measured Torque

Cone
\/X Angle
— Plate
I Fix diameter

Figure 2.2: Cone and plate geometry.

the fluid. This is called plane couette flow. Some approximations to Couette
flow are available and widely used, among those, coazial cylinders, parallel

plate and cone and plate are found.

In this work a cone and plate geometry was used as it produces a nearly
homogenous flow in the test section. Figure 2.2 shows a schematic represen-
tation of this geometry. The correspondent shear rate -, shear stress 715 and

viscosity p are given by the relations;

. Q)
=Y 2.2
7= (2.2)
3T«
= — 2.
T12 on 3 (2.3)
T12 3o
== =— 2.4
= = R (24)

where « is the cone angle, () is the angular velocity, R is the radius of the
geometry and T is the applied torque.
With this geometry is also possible to determine the first normal stress

difference by the equation:

2Fthrust
N1 = 7TR2 (25)

where Fjp..s is the total thrust the fluid applies vertically on the plate. The
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shear rates which are accesible to this geometry are between 10~* to 102, at

higher rates some instabilities appear and the flow becomes inhomogeneous.
For all the experiments a 40mm 1°59'14” steel cone with a truncation

gap of 46pum and a plate fixture with a Peltier temperature-control system

was used.

2.1.3 Surface tension

The surface tension o was measured with a Du Noiiy ring setup coupled with
a Wilhelmy fixture. Wetting properties of the surface or interface have little
influence on this measuring technique. Maximum pull exerted on the ring by
the surface is measured. All determinations were carried out at room temper-
ature and repeated three times, the error among the several determinations

was less than 3%. The values were given in mNm.

2.1.4 Visualization techniques

From flow visualization several properties of motion of bubbles can be obtained.
In this section, the conditions and digital treatment to determine wvelocity,

volume, morphology and flow field are described.

Velocity determination

The bubble velocity was measured with a high speed camera. The camera
records up to 4000 frames/s, and follows the motion of bubbles. In figure
2.3 two images taken at various times are shown. The time between images
is known and the displacement can be measured determining the change in
position of the bubble and with the equivalence between pixels and millimeters.
To guarantee that the bubble has reached its terminal velocity an space-time
diagram was generated. In figure 2.3, two of this diagrams are presented. The

first one is for a bubble moving steadily; there the position-time line is straight
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Figure 2.3: Space-time diagrams. From left to right: bubble at time 1 (the
line shows the column of pixels selected to created the diagram), bubble at the
final stage, space-time diagram for a bubble terminal velocity and space-time
diagram for a transient motion.
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Figure 2.4: Volume digital determination. From left to right: Photograph of
a bubble in RGB format, black and white image converted from the RGB and
image result from a threshold applied.

and the velocity can be obtained measuring the slope. The second diagram
is for a bubble in a transient state (start-off). It is possible, in this case, to
obtain the velocity calculating the slope at every position. The calibration

was carried out setting a sphere in the bubbles path. Then, the pixels by unit

length are measured.

Volume and morphology

When a bubble is released in a fluid, it is important to control its volume.
However, its not practical to inject a known air volume in the experimental
device, because the bubble can be broken into small bubbles. Then, an approx-
imated volume was injected and the volume was calculated by a subsequent
digital analysis of a bubble image. This method is described in Figure 2.4. To
obtain this images, a back light illumination was used; it traces the outline
of the bubble. Such picture was converted into a black and white format and
a proper threshold analysis was applied. Then, a bidimensional and axisym-

metric bubble was generated. The centroid and area of this half bubble were
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RGB 8-bit (red) Threshold BW

Figure 2.5: Bubble profile digital process. From left to right: RGB picture,
8-bit picture (red) and bubble profile after threshold processing.

calculted. The volumen was found using Pappu ‘s centroid theorem given by

V =24,d, (2.6)

where V' is the bubble volume, A,, is the area of the middle bubble and d. is
the distance from the simmetry axis to the centroid of the middle area.

The morphology of a bubble can be studied obtaining the coordinates of
its profile. The general steps to acquire such profile are shown in figure 2.5.
From a RGB picture a 8-bit image was splitted. In general, the red component
has the best definition due to the light source. Then, a threshold analysis was
applied and the contour was defined. Finally, the coordinates of the contour

were obtained.

Velocity field

A particle image velocimetry (PIV) system with two 532nm lasers and one
CCD camera (Dantec Dynamics) was used to measure the flow field around a
bubble. Figure 2.6 (left) shows the experimental setup. The fluid is seeded with
fluorescent particles, which, for the purposes of PIV, are generally assumed to
faithfully follow the flow dynamics. It is the motion of these seeding particles
that is used to calculate the velocity field. When the laser sheet illuminates

the testing area, the particles scatter the light revealing their position and a
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Figure 2.6: Experimental device and PIV arrangement (left). Typical seeding
field of view for a bubble moving in a HASE fluid (right)

first photograph was taken (figure 2.6 right). After a period of time, a second
photograph was taken. In this study, this time delay was 20,000us. The
flow field is determined from the two images and the domain is divided in
several interrogations areas. The spatial fields were transformed to Fourier
space and the correlation function is evaluated. Then, considering the spatial
field and the time between photographs, an average vector is built for each
section. Finally, the complete vector field is obtained, as seen in Figure 2.7.
This method allows to determine the complete velocity field for a 2D region

without disturbing the flow.

2.2 Materials

Although the principal fluid are a HASE-type (see next section), several others
with widely different properties were considered. All solutions were prepared
at room temperature. Samples where left to settle 48hrs to guarantee the
complete solubility and swelling. Thereafter, surface tension and rheological

characterization were performed.

The fluids used are summarized in the Table 2.1, disclosing rheological

data. In the following sections a complete description and liquid properties
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Figure 2.7: An schematic representation of the PIV procedure. From left

to right: Two images taken at different times of the seeding field divided
in interrogation areas, position of particles for a selected interrogation area,
superposition of both interrogation areas with the resulting velocity vector and
the final velocity field.

Table 2.1: Fluids summary

Fluid Description Rheological behavior

caption

FluidH | Associative polymer in water so- | Shear thinning, but with a re-

lution gion of constant viscosity where

the normal stresses are important

Fluidl | Aqueous viscoelastic fluid Shear thinning and elastic

Fluid2 | Non-aqueous viscoelastic fluids Viscoelastic

Fluid3 | Constant viscoelastic fluids Constant viscosity and normal
stresses

Fluid4 | Shear thinning inelastic fluids Shear thinning and inelastic
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Figure 2.8: Shear viscosity (empty symbols) and first normal stress difference
(filled symbols) as a function of the shear rate for different concentrations of
HASE. (o) 1.2 %; (O) 1.5 %; (¢) 1.7 %. The bold lines show predictions of the
Bautista-Manero model for 1.7 % of HASE (Bautista, 1999).

are shown.

For the case of viscoelastic fluids, the measured first normal stress difference
and shear viscosity were fit to a power law: N; = a’®, n = m4™. The values
of the coefficients a, b, m and n, as well as their range of validity and surface
tension are also reported in Tables 2.2, 2.3, 2.4, 2.5 and 2.6. All fluids were
chosen such that their shear viscosity would be of the same order of magnitude
as those fluids in which the bubble velocity discontinuity had previously been

observed.

2.2.1 HASE fluids

HASE (hydrophobic alkali swellable emulsion)Primal TT-935 is supplied by
Rohm and Haas. It is an associative polymer obtained in a suspension, 30%
wt. at a pH of 3. Aqueous solution in distilled water were prepared at 1.2,
1.5, and 1.7% by weight. At low pH HASE is not soluble, becoming soluble

for a pH higher than 6. If the pH is increased hydrophobic interactions are
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Table 2.2: Properties of the HASE aqueous solutions: viscosity u, surface
tension o, and coefficients a and b in the expression of the first normal stress
difference, N; = a?®.

Fluid | WHASE | pu a b range o d(mm) | 5
Pas 571 mNm™! mm s71
H-1 1.2 0.22 ] 0.2078 | 1.3097 | 0.1-100 38.41 0.3-9.4 | 1-42
H-2 1.5 1.14 | 1.1449 | 1.3192 | 0.1-100 36.93 3.3-7.6 | 2-16
H-3 1.7 3.34 | 2.3728 | 1.3289 | 0.1-50 59.95 2.5-8.7 | 1-10

increased too. Consequently the viscosity increases up to a pH about 9 at
which the viscosity reaches its maximum. Above this pH value the viscosity
levels-off or decreases. To adjust the pH to 9 an alkaline 0.5 M solution of
2-amino,2-methyl propanol (AMP supplied by Aldrich) was used.

Once the solutions were left free of bubbles, the rheological behavior and sur-
face tension properties were determined (Table 2.2). Figure 2.8 shows the
rheological behavior of HASE solutions under shear flow. The HASE solutions
tested behave as Newtonian fluids at small shear rates. Viscosity remains
constant and normal stresses are negligible. From 0.1 to 50 s~!, the normal
stresses are measurable while the viscosity remains almost constant. For all
concentrations, a slight shear thickening behavior can be observed for small

ranges of shear rate. For large shear rates and depending on the concentration,

the fluids exhibit a shear-thinning behavior.

2.2.2 Other fluids

Aqueous viscoelastic fluids

These liquids are aqueous polyacrylamide (PAA) solutions. They were pre-
pared slowly mixing of an aumonunt of PAA in a mixture of 50 wt.% water
and 50 wt.% glycerin. Different percentages of PAA were studied: 0.05wt.%,
0.1wt.%, 0.15wt.% and 0.2wt.%. As can be seen in figure 2.9, the PAA solu-
tions are both shear thinning and viscoelastic. The viscosity and the first nor-

mal stress difference increase with PAA content. The surface tension decreases
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Figure 2.9: Shear viscosity (empty symbols) and first normal stress difference
(filled symbols) as a function of the shear rate for different liquids: (o) fluid 2:
aqueous viscoelastic fluid ( PAA = 0.2%), (O) fluid 3: non-aqueous viscoelastic
fluid (PAA = 0.1%), (¢) fluid 4: Boger fluid (PAA =0.1%), fluid 4: shear
thinning fluids ( 0.1 wt. % Carbopol and 0.08 wt.% of triethylamine). The
lines represent the power law fit given by the tables 1.3, 1.4, 1.5 and 1.6.

Table 2.3: Properties of solution 1 (50 wt.% of water + 50 wt.% of glycerine
+0.05-0.2 % of PAA).

Fluid

PAA

a b m n range of o d A

% ¥s7t | (mNm_y) | (mm) | s7!
1-1 0.2 | 1.6390 | 0.805 | 1.7666 | -0.5156 | 0.1-200 58.81 2.5-6.1 | 2-30
1-2 | 0.15 | 1.6192 | 0.7683 | 0.5625 | -0.4571 | 0.1-80 92.6 2-25 | 3-35
1-3 0.1 1.771 | 0.6712 | 0.3993 | -0.4523 1-80 101.58 3-5.7 | 9-50
1-4 | 0.05 | 1.7296 | 0.5967 | 0.201 | -0.3475 | 10-100 113.16 | 2.6-6.7 | 22-71

slightly with an increase in PAA content. This liquid was chosen because sev-

eral authors have reported the appearance of the velocity discontinuity (Leal,

Skoog and Acrivos, 1971; Rodrigue, De Kee and Chan Man Fong, 1996; Ro-

drigue, De Kee and Chan Man Fong, 1998; Rodrigue and Blanchet, 2002;

Herrera-Velarde et al., 2003). The properties of this fluid are shown in the

Table 2.3.
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Table 2.4: Properties of solution 2 (ethyleneglycol + 0.05-0.3 % of PAA).

Fluid | PAA a b m n range of o d A
% yst | (mNm_y) | (mm) | st
2-1 0.3 | 0.2101 | 1.5003 | 1.6644 | -0.4655 | 0.1-100 48.19 2-6.3 | 0.8-11
2-2 0.15 | 0.1248 | 1.3188 | 0.7032 | -0.4127 1-100 86.41 2.4-74 | 8-27.6
2-3 0.1 ] 0.2352 | 1.2882 | 0.4125 | -0.3751 5-100 85.23 2.8-83 | 11-34
2-4 | 0.05 | 0.2560 | 1.0675 | 0.1691 | -0.2915 | 5-100 87.85 3-10.5 | 14-44

Non-aqueous viscoelastic fluids

To test if the bubble velocity discontinuity can be observed also for non-
aqueous viscoelastic solutions, several runs were performed using ethyleneg-
lycol as the base for the solution. These solutions are mixtures of ethylene-
glycol and PAA. Different PAA contents were studied: 0.05 wt.%, 0.1 wt.%,
0.15 wt.% and 0.3 wt.%. As can be seen in figure 2.9, the PAA solutions are
viscoelastic. The viscosity and the first normal stress difference increase with

PAA content, but the surface tension decreases (Table 2.4).

Constant viscosity fluids

To investigate if the phenomenon of the bubble velocity discontinuity could
be observed in the absence of shear thinning effects, a series of fluids of the
Boger type (elastic with constant viscosity) were tested. These solutions were
composed of glycerol (Drogeria Cosmopolitan) and small quantities of PAA
(0.05 wt.%, 0.1 wt.%, 0.2 wt. %). As presented in Figure 2.9, these fluids are
viscoelastic, but the viscosity is not strictly a constant with the shear rate.
The viscosity and the first normal stress difference increase with PAA content,
and the surface tension slightly decreases (Table 2.5). It was not possible to

obtain a low viscosity Boger fluid with the materials considered in this study.

Shear thinning inelastic fluids

To complete our parametric study, we consider the case of fluids in which

elastic effects are absent but shear thinning effects are important. These flu-
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Table 2.5: Properties of solution 3 (glycerine 4+ 0.05-0.2 % of PAA).

Fluid | PAA a b m n range of o d
% ¥ st | (mNm_;) | (mm) ¥
3-1 0.2 | 6.8058 | 0.7023 | 1.1407 | -0.0362 | 0.1-100 108.33 5-10.5 1-3
3-2 0.1 |26.988 | 0.2952 | 1.0232 | -0.0081 | 0.1-100 111.44 | 5.7-19.7 | 2.6-8
3-3 | 0.05 | 17.186 | 0.208 | 0.9717 | -0.0092 | 0.1-100 112.74 | 5.7-19.6 | 4.3-14
Table 2.6: Properties of solution 4 (ethylenglycol + carbool + triethylamine).
Fluid | C'arbopol | triethyl— m n range of o d i
wt.% | aminewt.% 4 s | (mNm_y) | (mm) s!
4-1 1 0 2.8462 | -0.5771 | 0.1-100 90 4.2-19.7 | 3.8-27.8
4-2 0.1 0.08 0.7635 | -0.3198 | 0.1-100 86.51 4.2-19.7 | 22.6-34.3
4-3 0.1 0.1 1.4179 | -0.4392 | 0.1-100 86.51 4.2-24.3 | 9.4-31.7

ids were obtained mixing ethylenglycol with Carbopol (Polygel CA supplied

by 3V). Different concentrations of Carbopol were studied: 1 wt.% and 0.1

wt.%. Due to the fact that the Carbopol is not complete soluble at low pH

in ethylenglycol, some drops of triethylamine were added to increase the pH

level and to dissolve the Carbopol. These liquids behave essentially as power

law fluids (Fig. 2.9). The viscosity level increases with the concentration of

Carbopol and with triethylamine. The surface tension increases with Carbopol

content, but is not affected by the presence of triethylamine (Table 2.6).
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Chapter 3

Experimental Results

In this chapter the experimental measurements of bubble velocity, size
and shape are presented, first for the HASE fluids and then for the other
fluids. The velocity discontinuity is not observed in all the examined
fluids. Furthermore, some comments and observations are given to present
the experimental results analyzed in the following Chapter. The chapter

dealt with methods and materials. A list of the liquids is presented in Table 2.1.

The liquids named HASE fluids show an interesting rheological behavior.
Their viscosity remains constant for the rates of deformation at which the
bubbles rise, and exhibit considerable normal stresses in this region. Then,
it is possible to isolate the presence of normal stresses and the change in
viscosity separately. This behavior is the key of the proposed explanation
for the necessary conditions to observe the velocity discontinuity. Besides the
volume-velocity dependence and the morphology of the bubbles, the velocity
fields around the bubbles are shown for this fluid. For the others fluids, the

flow fields are similar, and hence they are omitted.
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3.1 Falling bead or shear viscosity

Recalling the solutions for a Stokes and Hadamard regimes shown in chapter

1, the equations for the terminal velocity for both conditions are:

R*(ps — p)g
= Y 1
Voo 1/ (3.1)
20, _
o — R*(ps — p)g (3.2)
12p

It is relevant to figure out the correct viscosity to calculate the terminal ve-
locity in Hadamard and Stokes regime. For this, experimental determinations
of both viscosities are compared. It has been shown (McKinley, 2002) that for
moderate Deborah Numbers (De), wall effects appear to be less important than
in the motion of the corresponding Newtonian fluid. In our experiments, the
Deborah number lies between 0.5 and 1.6, implying that the drag correction
factor is smaller than the one calculated in the case of a Newtonian fluid

(Chhabra,1981). In these HASE solutions, a % value of 0.07 corresponds to

o=

Kn(%) = 1.16. It implies a viscosity increase of 1.16. Moreover, the wall
correction factor for elastic, constant-viscosity fluids (Chhabra,1988) is given
by f(%) =1—0.17% for Deborah numbers larger than 0.2, which corresponds
in our case to Ky(f) = 1.006. The wall effect contributes to a small increase

in viscosity obtained from falling-bead experiments over that obtained in

simple shear.

In the background section, a discussion on the flow around a sphere was
presented. In summary, the fluid domain can be divided in three regions: a
simple shear region at the equator, a simple extensional region at the rear,
and a biaxial extensional region at the front of the bubble. The extensional

components lead to extra stresses that slow down the sphere motion, and
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Table 3.1: Viscosity measurements for different solutions with two methods:
Irheometer 1S the viscosity measured in a cone-plane rheometer under simple
shear, p.u is the viscosity calculated from falling-bead experiments. The
ratio of the viscosity a decreases with increasing HASE concentration

Fluid | HASE | trheometer M fall Viscosity ratio
% Pas Pas «
1 1.2 0.22 0.49+0.01 2.23
2 1.5 1.14 1.5840.04 1.39
3 1.7 3.34 4.08+0.23 1.22
4 2.1 12.5 13.23+0.4 1.06

this extensional flow depends on the Reynolds number. For large values of
the Reynolds number, the extensional components will be more important;
as a consequence, the difference between the two viscosities will increase.
So, in addition to the wall effects, which decrease the terminal velocity and
hence increase the viscosity, it is necessary to include the extensional flow
contributions. The ratio of the viscosity estimated from falling-bead data to
the viscometric viscosity decreases with HASE concentration (3.1). Under
extensional flow, models (Manero et al, 2002, Belmonte, 2002, & Boek et
al, 2005) predict a region of extensional thickening at extension rates of the
order of the inverse of the main relaxation time. This region coincides with
the onset for measurable normal stresses in shear flow, closely related to the

appearance of the velocity discontinuity.

The extensional flow contribution further retards the motion of the falling
bead, increasing the mentioned viscosity ratio. The experimental and theo-
retical results obtained with the two viscosity measurements are compared,
and results are presented in Figure 3.1. For small bubbles that are almost
spheroidal, the experimental measurements lie between the two limiting cases
of Hadamard and Stokes laws with a viscosity calculated from the falling-bead
experiments. Therefore, the bubble interface can be considered neither fully

contaminated nor clean. We note that the comparison is good for bubbles
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Figure 3.1: Bubble velocity as a function of bubble volume, 1.2 % HASE.
The lines are the theoretical predictions obtained from the Stokes (continuous
lines) and Hadamard (dashed lines) laws: (thin lines) pu = frheometer; (thick
lines) p1 = pfan-
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with volumes smaller than the critical volume V.. The results for the other
fluids and their comparison with the theory are not presented here, but the
agreement between theory and experiments is equally good. Contrary to the
measurement of the viscosity by falling-bead experiments, the simple shear
rheological measurements do not take into account the uniaxial and biaxial
deformations. This explains why the behavior of small bubbles rising in a
viscoelastic fluid is better described using a falling-sphere measurement of the

viscosity.

3.2 Terminal velocity and Morphology for

HASE fluids

In this section a discussion on the terminal velocity, velocity discontinuity, flow
field around bubbles and shape of the bubbles is presented for HASE fluids.
HASE solutions behave as Newtonian fluids at small shear rates, viscosity
remains constant and normal stresses are negligible. For large shear rates and
depending on the concentration, the fluids exhibit a shear-thinning behavior:
the viscosity decreases with the shear rate and the first normal stress difference
increases with the shear rate. In general, for a given shear rate, the viscosity
and the first normal stress difference increase with HASE concentration, and
the critical value of the shear rate at which normal stresses appear decreases

with increasing HASE concentration.

Shape and critical volume

Figure 3.1 shows the plot terminal velocity versus volume for a HASE solution
1.2wt%. It is clear that a discontinuity is observed a some critical volume
(V. ~ 65mm3). The correspondent shape of bubbles for selected volumes are

presented in the Figure 3.2. A characteristic behavior can be described as
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V*=0.19 V*=0.46 V*=0.76

V*=1.04 V*=1.67 V*=2.94

Figure 3.2: Bubble shapes for different values of the dimensionless volume
V* = V/V, for HASE =1.2 %, with V. = 65mm?. The small bubbles are
almost spherical. For larger volumes (for V% > 1), the shape of the bubbles
is concave with a very thin and long tail at the rear part of the bubble. The
scale represents 2 mm.

a function of V.. For bubbles with a volume much smaller than the critical
volume Ve, the shape is spheroidal. With a small increase in volume, a slight
deformation on the rear part of the bubble is observed. In all cases, for volumes
smaller than Ve, the shape of the bubbles is convex all around, whereas for
bubbles with a volume larger than the critical volume, the shape is concave in
the trailing end: the shape presents an inflection point.

Figure 3.3 shows a comparison of the shape of a bubble before and after
the jump. The shape in the front region is nearly the same, whereas it changes
significantly in the back region. Moreover, the formation of a sharp cusp can
be clearly observed. At the tip of the cusp, a long (few centimeters) and very
thin (tens of micrometers) tail forms in all cases. Using two cameras acting
simultaneously, it was possible to obtain a view of the tail from two sides. The
cusps and tails immediately after Vc are axisymmetric. However, for volumes

larger than Vc, this is no longer the case. Nonaxisymmetric tails are shown

and discussed later.
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Figure 3.3: Bubble shapes before (continuous line) and after (dashed line)
the discontinuity. The shape does not change in the front part of the
bubble, whereas it changes in its back part (Vicfore = 49.2mm3;Vaft€T =
61.2mm?;1.5% HASE)

The plots terminal velocity versus volume for the three HASE fluids are
shown in Figure 3.4. The general observations and remarks are the same for

the different concentrations. Furthermore, the bubble shapes for 1.5 and 1.7%
of HASE are presented in Figures 3.5 and 3.6

Shear rate and discontinuity

It is possible to link this behavior with the rheological properties of the
fluid. For this, the mean shear rate (defined as 4 = U/r)at which the normal
stresses are measurable and at which the discontinuity of the velocity occurs,

is determined. Figure 3.7 shows the calculated 7 for the three tested liquids.

From this plot, the value of the shear rate corresponding to the critical
volume can be determined and is approximately the same as the shear rate

at which the elastic nature of the fluid begins to manifest itself (N; becomes
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Figure 3.4: Bubble velocity as a function of bubble volume for different HASE
contents: o 1.2 %; O 1.5 %; ¢ 1.7 %. There is a discontinuity of the bubble
velocity for volumes equal to V.( 1.2% : V. ~65 mm?; 1.5% : V. ~60 mm?;
1.7% : V. ~50 mm?). The critical volume decreases with an increase in HASE

concentration.
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V*=(0.32 V*=0.55 V*=(.82

V*=1.02 V*=1.56 V*=2.66

Figure 3.5: Bubble shapes for different values of the dimensionless volume
V* =V/V, for HASE =1.5 %, with V. = 60mm?. The scale represents 2 mm.
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Figure 3.6: Bubble shapes for different values of the dimensionless volume
V* =V/V, for HASE =1.7 %, with V. = 50mm?. The scale represents 2 mm.
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Figure 3.7: Mean shear rates ¥ as a function of volume for various HASE
contents: o 1.2 %; [0 1.5 %; ¢ 1.7 %. The dashed lines represent, for each HASE
concentration, the shear rate at which the normal stresses are measurable.
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measurable). Therefore, the bubble velocity discontinuity is a direct result of
the appearance of elastic stresses. For negligible normal stresses, the bubbles
are spheroidal and their velocities agree reasonable well with the Stokes and
Hadamard laws. For significant normal stresses, the velocity is larger than
that predicted by Stokes and Hadamard law, and the bubbles are concave,
presenting a tail at their rear part. The immediate consequence of the presence
of normal stresses in the liquid is a change in the bubble shape, which evidently
leads to a drag reduction and, hence, a rapid increase of velocity. A particular
bubble shape is then related to its rising velocity. This important evidence

will be recalled in the chapter of dimensionless analysis.

Negative wake contribution

Flow visualization around bubbles before and after the discontinuity using the
PIV technique are presented in Figures 3.8 and 3.9. For air bubbles with vol-
umes smaller than the critical one, the fluid at the front and at the rear of
the bubble is moving in the same direction of the bubble (see figure 3.8). For
bubbles with a volume larger than the critical one, the flow around the bubble
is drastically different (figure 3.9). The flow at the front of the bubble is in
the same direction of the bubble motion. At the rear of the bubble, the fluid
is moving in the opposite direction of the bubble motion. This phenomenon
is called negative wake and was previously reported elsewhere (Funfschilling,
2001, Hassagar, 1979, Bisgaard et al, 1982, and Li et al, 2001). More recently
Herrera et al, 2003 propuse that the negative wake is a manifestation of impor-
tance of the elastic effects in the bubble motion and found that the appearance
of the negative wake is related with the discontinuity. It is important to remark
that the elasticity of the liquid is an important factor for the discontinuity to

appear. This argument will be further discussed later.
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Figure 3.8: Flow around a rising bubble with volume below the critical one

(

Figure 3.9: Flow around a rising bubble with volume above the critical one.
a) Flow around the bubble. The flow is very similar to the flow observed for a

At the rear part of the bubble, the

)

negative wake can be seen. V = 239mm3; U = 54.6mms~'; HASE 1.5 %.

bubble with a volume smaller than V.. b
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In the next sections, a similar presentation of results for the other liquids
is shown, in order to gather all the experimental evidence for the further di-

mensionless analysis.

3.3 Other Fluids

3.3.1 Aqueous Viscoelastic Fluids

The fluid composed of 50wt.% of water and 50wt.% of glycerol and PAA
is viscoelastic. The relation velocity-volume for a concentration of PAA
equal to 0.15wt.% 1is presented in Figure 3.10. There is a critical value of
the volume (V. & 68.5mm?) for which the velocity discontinuity occurs. For
this fluid, whatever the concentration of PAA (from 0.05wt.% to 0.2wt.%),
a critical value of the volume for which a velocity discontinuity occurs
exists (figure 3.11). For all PAA concentrations and for small bubbles
(with a volume smaller than the critical one), the terminal velocity lies
between the two limiting cases of Hadamard and Stokes laws. For per-
centages of PAA between 0.1wt.% and 0.2wt.%, the value of this critical
volume decreases with PAA concentration. For small percentages of PAA
(0.05wt.% and 0.1wt.%) the critical volume increases with a decrease of PAA.
Furthermore and for percentages of PAA larger than 0.1wt.%, the slope of

the velocity versus volume relation is larger after the discontinuity than before.

It is also possible to relate the discontinuity with the shape of the bubbles.
Figure 3.12 shows the bubble shapes corresponding to the terminal velocities,
for the case of 1.5wt.% PAA, shown in Figure 3.11. For bubbles with a volume
smaller than the critical volume V., the bubble shape evolves from spherical
to tear-like as the volume increases. It is important to note that, in this case,

the bubble shape remains convex (Astarita & Apuzzo, 1965; Zana & Leal,
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Figure 3.10: Velocity of the bubble as a function of volume. A discontinuity of
the velocity can be observed at a volume of Ve = 68.5mm?3. The lines are the
theoretical predictions obtained from Stokes (continuous line) and Hadamard
(dashed line) laws (¢ = fifau), (50wt.% water, 50wt.% glycerol and 0.15wt.%
PAA).

1978). For large bubbles, with a volume larger than V¢, the shape changes
from convex to concave. The presence of an inflection point at the rear part of
the bubbles can be observed. Also a small cusped “tail” appears. A zoom of
the shape of rear part of the bubble at the transition point is shown in Figure
3.13. As the volume of the bubble increases (for sizes larger than 200mm?),
the shape becomes oblate (horizontal axis larger than the vertical one), but it

retains the convex shape with a rear tail. The velocity of bubbles of such large

sizes continues to increase monotonically with volume.
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Figure 3.11: Velocity of the bubble as a function of volume for different per-
centages of PAA : (o) %WPAA = 0.2, () %WPAA = 0.15, (¢) WPAA = 0.1,
(+) %BPAA = 0.05 (50wt.% water and 50wt.% glycerol)

3.3.2 Non-aqueous Viscoelastic Fluids

The fluid composed of ethylene-glycol and PAA is clearly viscoelastic. The
relation velocity-volume for a concentration of PAA equal to 0.1wt.% is shown
in Figure 3.14. Contrary to the previous case, there is no critical value of the
volume for which a discontinuity occurs. For bubbles with a volume larger
than 90mm? there is a reduction of the slope of the velocity-volume relation.
For all the volumes studied the velocity of the bubble lies between the two
limiting cases of Stokes and Hadamard. The reduction of the slope for the
velocity-volume relation can be associated to the shape of the bubbles. In
Figure 3.15, the bubble shapes for this particular experiment are shown. In
this case, the bubble shape evolves from spherical to teardrop shape but for

nearly all cases the convexity of the shape is retained. For very large bubbles

59



Figure 3.12: Shape of the bubbles as a function of the dimensionless volume
(V/V, with V. = 68.5mm?3). The small bubbles (V/V,. < 1), the shape of the
bubble is convex. The shape of large bubbles is concave. For large volumes,
there is a strong increase of the horizontal diameter (50wt.% water, 50wt.%
glycerin and 0.15wt.%PAA)

V/V.=0.72 V/V=1.01

Figure 3.13: Zoom of the rear part of the bubble. The circles show the location
of the inflection point where the curvature changes sign (50wt.% water, 50wt.%
glycerin and 0.15wt.%PAA).
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Figure 3.14: Velocity of the bubble as a function of volume. The lines are the
theoretical predictions obtained from Stokes (continuous line) and Hadamard
(dashed line) laws (= piau), (ethylene-glycol at 0.1wt.%PAA).

©c 0009

V=12 mm’ V=22 mm’ V=30 mm’ V=51 mm’ V=69 mm’

00009

V=81 mm’ V=91 mm’ V=106 mm’ V=150 mm’ V=168 mm’

Figure 3.15: Shape of the bubbles as a function of volume. For small bubbles
are convex and for large bubbles present an inflection point and we can also
notice an increase of the horizontal radius of the bubble with the volume
(ethylene-glycol with 0.1wt.%PAA).
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Figure 3.16: Velocity of the bubble as a function of the volume for a Boger fluid.
The lines are the theoretical predictions obtained from Stokes (continuous line)
and Hadamard (dashed line) laws (with u = prau), (glycerol + 0.1wt.% PAA).
(V' > 150mm?), a change of curvature on the rear of the bubble is observed. It
must be noted that this convex shape is observed when the bubble shape also
became oblate. A cusped tail is not observed in any of the bubbles studied. For
other liquids of the same type, similar behavior is observed: no discontinuity
of the terminal velocity appears although above certain volume, the slope of
the relation velocity-volume decreases significantly. The volume for which the

decrease of the slope occurs increases as concentration of PAA decreases.

3.3.3 Boger Fluids

The fluid composed of glycerol and PAA is approximately a Boger fluid: it
shows elastic effects with a nearly constant viscosity. The velocity-volume
relation for a concentration of PAA equal to 0.1wt.% is shown in Figure 3.16.

There is no critical value of the volume for which a discontinuity of the
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Figure 3.17: Shape of the bubbles as a function of volume. Whatever the
value of the volume, all the bubbles are concave (presence of a tail and of an
inflection point) (glycerol + 0.1wt.% PAA).
velocity occurs; there is also no significant change of the slope in the relation
velocity-volume for large volumes, as seen in the previous cases. The velocity
does not lie between the two limiting cases for all volumes studied: the velocity
is larger than that predicted by the laws of Stokes and Hadamard. Whatever
the bubble volume, the bubble shape does not change significantly: the bubble
is concave, there is an inflection point and formation of a tail at the rear part
of the bubble, as shown in Figure 3.17. The shape of the tail, however, changes
with the bubble volume: for small volumes, the tail is very thin (few microns)
and long (few centimeters); for larger volumes, the width of the tail abruptly
increases from few microns to few millimeters and may loose its axi-symmetric
shape.

For percentages of PAA smaller than 0.2wt.%, the behavior is the same:
there is no discontinuity of the velocity and no change of the slope for the
relation velocity-volume relation. For a percentage of PAA of 0.2wt.%, the
bubble velocity discontinuity occurs at a volume (V, & 350mm?) but the data,

shown in Figure 3.18, are not very conclusive. For this particular case, very few
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Figure 3.18: Velocity of the bubble as a function of the volume for a Boger fluid.
The lines are the theoretical predictions obtained from Stokes (continuous line)
and Hadamard (dashed line) laws (with p = pran), (glycerol + 0.1wt.% PAA).
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V=79.1 mm' V=1583 mm’ V=300 mm'

V=400 mm’ = V=500 mm’ V=600 mm’
Figure 3.19: Shape of the bubbles as a function of volume. Whatever the
value of the volume, all the bubbles are concave (presence of a tail and of an
inflection point) (glycerol + 0.1wt.% PAA).
measurements were possible. Also, the liquid was not very transparent; hence
the images are not very clear. For small volumes, the velocity of the bubble
lies between the two limiting cases of Stokes and Hadamard. The experimental
velocities of bubbles larger than 350mm? are higher than those predicted by
the H-R law. In Figure 3.19, the shapes of the bubbles are shown. Although
the images are not as clear as in the previous cases, the transition from convex

to concave can be observed at the critical volume.

3.3.4 Shear Thinning inelastic fluid

The fluid composed of ethylene-glycol and Carbopol is shear thinning and
inelastic. The velocity-volume relation for a concentration of Carbopol equal

to 0.1wt.% and 0.08wt.% of triethylamine is presented in Figure 3.20.

Clearly, no discontinuity of the velocity-volume relation is observed. For
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Figure 3.20: Velocity of the bubble as a function of the volume. The lines
are the theoretical predictions obtained from Stokes (continuous line) and
Hadamard (dashed line) laws (with p = prall). The dotted line is the theoret-
ical results obtained by Joseph (2003) (ethylene-glycol + 0.1wt.% Carbopol +
0.08wt.% of triethylamine).

V=d0mp o - V=120mm | E oo V-300mmt ] | V=400 mm

V=500 mm’ V=800 mm’ V=1000 mm’ V=1400 mm’ V=4000 mm’

Figure 3.21: Shape of the bubbles as a function of volume. For small bubbles,
the shape is spheroidal-convex. The large bubbles are oblate bubbles and a flat
part at the rear part appears (ethylene-glycol + 0.1wt.% Carbopol + 0.08wt.%
of triethylamine).
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volumes larger than 200mm?, a decrease of the slope of the relation velocity-
volume occurs. For small volumes, the velocity lies between the two limiting
cases of Stokes and Hadamard. For large volumes, the velocity is well-described
by the theoretical predictions of Joseph (2003). For this class of fluids, there is
a value of the volume for which there is a decrease of the slope of the velocity-
volume relation. The value of this volume decreases with the percentage of
Carbopol and increases with the concentration of triethylamine. As shown in
Figure 3.21, for small bubbles, the bubble shapes are spheroidal-convex. As
the volume increases, the bubble deforms initially into an oblate shape and
then, for very large volumes, into a spherical cap. For all the fluids in this
class, the same changes of the shapes are observed. The decrease of the slope

of the velocity-volume relationship is clearly related to the change of shape.

3.3.5 Results summary

In conclusion, the experimental results show a wide range of behaviors for
bubbles rising in non-Newtonian liquids. A summary of all results is presented
here. A velocity discontinuity occurs for aqueous shear thinning viscoelastic
liquids, as observed by many authors, and also in Boger fluids for large PAA
concentrations. For these two cases, the velocity discontinuity can be related
to the change of the bubble shapes from spheroidal-convex to concave with a
cusped tail at their rear part. For Boger fluids, with concentration of PAA
smaller than 0.2wt.%, no discontinuity and no change of the slope occurs. But
for this case, all the bubbles, irrespectively of volume, are concave and already
show a tail at the rear. For non-aqueous shear thinning viscoelastic liquids
and inelastic shear thinning liquids, no discontinuity of the velocity is found.
Moreover, the slope of the velocity-volume relationship decreases after a critical
value of the volume. This behavior can be related to the change of bubble

shape from spheroidal-convex to oblate bubbles or spherical cap (in the case
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of a shear thinning inelastic fluid). At this point, the raw experimental data
have not provided a sufficient understanding of the phenomenon of the velocity
discontinuity. In the following Chapter, a dimensionless analysis approach will

be considered for this purpose.
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Chapter 4

Dimensionless analysis

The evolution of the bubble shape and the change of the velocity-volume rela-
tion whether as a sudden increase (discontinuity) or as a progressive decrease,
can be related to the rheological properties of the liquid. In what follows, we
analyze the different observed behaviors (velocity discontinuity, decrease of the
slope of the velocity-volume relation) in terms of the different forces affecting
the bubble motion (viscous, inertia, surface tension and elastic).

One significant characteristic observed at the discontinuity is a change of
shape. Hence, let us consider the force ratios affecting the bubble shape. For
the case of an air bubble moving in a non-Newtonian liquid, the characteristic

forces that will influence the shape are:
e Inertial forces: pUZ2d?
e Viscous forces: pUd
e Elastic forces: Nyd? (from shear flow)
e Surface forces: od

where p is the density of the liquid, U is the velocity of the bubble, d is
the equivalent diameter of the bubble, u is the viscosity of the liquid, N; is

the first normal stress difference and o is the surface tension. In section 2.3,
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we discussed that the characteristic magnitude of the elastic forces for a given
experiment could be determined from the rheological characterization of the
fluid. The mean shear rate over the bubble 7 is used to determine N; (7). The
shape of the bubbles will be determined by the balance between surface tension
forces (those that keep the bubble in a spherical shape) and other hydrody-
namic forces. For Newtonian fluids, the bubble deformation is determined by
the competition between viscous or inertial forces with surface tension forces.
If either the Weber number or the Capillary numbers are greater than one,
the bubble can be deformed by either inertial or viscous forces respectively.
The Weber number is defined as We = @ and the Capillary number as
Ca= % The Weber number measures the importance of inertial forces with
respect to surface forces. The Capillary number compares viscous forces with
surface forces. For the case of viscoelastic fluids, an additional force has to
be considered. Since the liquid is deformed as it passes over the bubble, the
elasticity manifest itself as a normal stress difference. Hence, we can argue
that if elastic effects are present, the shape of the bubble can deviate from
spherical if the relation between elastic and surface forces is greater than 1:
Nyd

M=—>1 4.1
. (1)

The IT number can be expressed as the product of the Deborah number and
the Capillary numbers: II ~ De x C'a. The Deborah number is usually defined
as the ratio of the characteristic time of the fluid ¢, to the characteristic time
of the flow t,:

We can, however, reinterpret this dimensionless parameter as the ratio of

elastic to viscous forces:

De~ — = — (4'3)
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For all the experiments, the first normal stress difference N; and the vis-
cosity p are known from the rheometric measurements and the mean shear
rate is defined by 4 = U/r. The surface tension is considered constant for each
case. Now, the experimental results for each fluid class will be interpreted in

terms of these three characteristic dimensionless numbers.
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Figure 4.1: Dimensionless numbers: ¢ II number, [0 Capillary number (Ca)
and o Weber number (We) (HASE fluid 1.2wt.%). V. ~ 65mm?

4.1 HASE fluids

The Figures 4.1,4.2 and 4.3 show the values of the dimensionless numbers: Ca,
We and I, as a function of the bubble volumen. As the volumen increases the
dimensionless numbers increases too. So, the surface tension is overcome and
the bubbles can be deformed from the spherical shape.

For the HASE fluids 1.2%, 1.5% and 1.7% the II number increases faster
than C'a and We. For the three cases, the discontinuity appears when the
IT number is larger than the unit, i.e., the elastic forces are larger than the
surface tension forces. Moreover, for volumes larger than the critical one,
the II number is larger than the others numbers (We and Ca). Obviously
elastic effects are dominant. The volume at which they become important
corresponds exactly to the volume for which the velocity discontinuity occurs.
For the other liquids in this class, the same conclusion applies. The magnitude
of the discontinuity is small for this liquids, due to there is not shear thinning.

Then, the drag is not decreased by the viscosity reduction.
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Figure 4.3: Dimensionless numbers: ¢ II number, [J Capillary number (Ca)
and o Weber number (We) (HASE fluid 1.7wt.%). V. ~ 50mm?
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Figure 4.4: Dimensionless drag as a function of Deborah number for HASE
Fluids: (o) 1.2% HASE; (O) 1.5% HASE; (¢) 1.7% HASE.

We can define a normalized drag coefficient, which is equal to Cy/Clyy,
where Cyq is the Stokes drag coeflicient (Cyo = 24/Re). For small bubbles
(with a volume smaller than the critical one), the normalized drag coefficient
will be close to 1. For large bubbles, there is an increase of the velocity. And
so, for a decrease of the drag coefficient, the normalized drag coefficient will
be smaller than 1.

The normalized drag coefficient is shown in Figures 4.4 and 4.5 as a
function of the two dimensionless numbers previously defined. Clearly, for
small De, the bubbles are spherical and Cy/Cyy is around 1. After a certain
critical De, the normalized drag coefficient decays abruptly, corresponding to
the point for which the discontinuity occurs. This behavior can be observed
in the three solutions. However, the value of the critical De for which the
discontinuity occurs is not unique, as it depends on the percentage of HASE.
A similar trend can be observed for the capillary number: at a critical value
of Cla, the normalized drag drops abruptly, but this critical value is different
for each liquid. Hence, neither De nor Ca can be used to capture a generally

valid condition for the jump to occur. There are two main conclusions from
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Figure 4.5: Dimensionless drag as a function of Capillary number for HASE
Fluids: (o) 1.2% HASE; (O) 1.5% HASE; (¢) 1.7% HASE.

the results of this analysis: (1) the discontinuity appears when the elastic
properties manifest themselves and (2) there is a significant change in the

shape associated with the bubble velocity increase.

It is then appropriate to use the proposal dimensionless group Pi. This
number would be large if elastic effects dominate over surface tension effects
and vice versa. Figure 4.6 shows the normalized drag coefficient as a function
of the dimensionless group II. For this case, the transition from high to low
drag appears to be the same for all the liquids: there is a critical value of
IT ~ 1 that determines the conditions for the bubble velocity discontinuity to
appear for all the HASE fluids. The tail at the rear part of the bubble leads
to a decrease of the drag coefficient and consequently to a rapid increase of
the velocity. Since the tail shape can also influence the flow behavior of the
bubble, the tail shape can be related to the bubble velocity. A similar analysis

is performed for the others liquids tested in the next sections.
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Figure 4.6: Dimensionless drag as a function of Il = C'a x De for HASE Fluids:
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4.2 Others fluids

4.2.1 Aqueous viscoelastic fluids

For this case, we have shown the existence of a critical volume for which a
velocity discontinuity occurs. Figure 4.7 shows the values of the three charac-
teristic dimensionless numbers as a function of bubble volume for a fluid with
0.15wt.% of PAA. The different dimensionless numbers increase with the bub-
ble volume. At the critical value of the volume, the II number becomes larger
than 1. Moreover, for volumes larger than the critical one, the II number is
larger than the others numbers (We and Ca). Obviously elastic effects are
dominant. The volume at which they become important corresponds exactly
to the volume for which the velocity discontinuity occurs. For the other lig-
uids in this class, the same conclusion applies. In the above case, the velocity
discontinuity occurs when the II number is larger than 1. It is also important
to note that the II number is also larger than the other dimensionless numbers

(IT > We,II > Ca) for the whole range of volumes studied.
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Figure 4.7: Dimensionless numbers: ¢ II number, [J Capillary number (Ca)
and o Weber number (We) (50wt.% water, 50wt.% glycerin and 0.15wt.%
PAA).

4.2.2 Non-aqueous viscoelastic fluids

For these experiments, we have shown that no velocity discontinuity occurs;
however, we found that for a certain value of the volume there is a reduction
of the slope of the velocity-volume relation. Figure 4.8 shows the values of
the three characteristic dimensionless numbers as a function of the bubble
volume for a fluid with 0.1wt.% of PAA. For small bubble volume, all the
dimensionless numbers are smaller than 1. At a certain value of the volume
(V = 100mm?), both II and We become larger than 1. For larger volumes,
the inertia forces are larger than the normal forces (We > II ). In this range of
volumes, the bubbles are oblate and the reduction of the slope in the velocity-
volume relation is observed. In this case, since inertial effects are dominant,
no jump discontinuity appears. For polymer concentrations less than or equal
to 0.1wt.%, the same conclusions are valid: the reduction of the slope of the

velocity-volume relation is observed when the inertia forces are dominating.
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Figure 4.8: Dimensionless numbers: ¢ II number, [J Capillary number (Ca)
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Figure 4.9: Dimensionless numbers: ¢ II number, [J Capillary number (Ca)
and o Weber number (We) (glycerol and 0.2wt.% PAA).
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4.2.3 Constant viscosity elastic fluids

For this type of fluids, in low concentrations of PAA, no discontinuity and no
change of the slope of the velocity-volume relation was observed. However, at
large PAA concentrations, a sudden increase of velocity, indicative of a dis-
continuity, is observed. For this particular experiment it is not possible to
determine clearly whether or not a jump in velocity was present. If we ex-
amine the experimental data in dimensionless terms, the results become clear.
Figure 4.9 shows the dimensionless numbers We, Ca and II as a function of
the bubble volume for a concentration of PAA equal to 0.2wt.%. For small
bubble volumes, all the dimensionless numbers are smaller than 1. At the
critical value of the volume of approximately V = 350mm?, the II number be-
comes greater than 1 and larger than the other dimensionless numbers. This
implies that the shape of the bubbles is determined mainly by elastic forces.
The velocity increase occurs precisely when the elastic forces are larger than
the other forces. This is in agreement with the results obtained in the case of
aqueous viscoelastic fluids (section 4.2.1). However, in this case, the disconti-
nuity is not as large as in the previous case. In the next chapter a discussion
on the nature of the magnitude of the discontinuity is held. In addition to the
change of shape that leads to a drag reduction, the shear thinning property of
the fluid also plays an important role. Hence, for this liquid of near constant
viscosity, the velocity discontinuity is not as large as in the other cases.

For smaller percentages of PAA (0.1wt.% of PAA), for all volumes tested,
the IT number is always larger than 1, and larger than the other dimensionless
numbers, which are smaller than 1, as shown in Figure 4.10. Again, the elastic
forces dominate the flow, but no discontinuity of the velocity was found. For
this particular case, the discontinuity of the velocity must have occurred at

bubble volumes smaller than those tested here.
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Figure 4.10: Dimensionless numbers: ¢ IT number, O Capillary number (Ca)

and o Weber number (We) (glycerol and 0.1wt.% PAA).

4.2.4 Shear thinning inelastic fluids

For these experiments, we have shown that no discontinuity of the velocity
occurs. However, for large volumes, a reduction of the slope of the velocity-
volume relation is observed. The analysis of the dimensionless parameters for
a concentration of 0.1wt.% of Carbopol and with 0.08wt.% of triethylamine
is presented in Figure 4.11. For small bubble volumes, both We and Ca are
smaller than 1. The II number is of course zero for this fluids. Above a certain
volume, the Weber number becomes larger than 1 whilst the Capillary number
remains less than unity. The decrease of the slope of the velocity-volume
relation occurs for the bubble volume for which inertia forces are dominant,
that is for We > 1, We > Ca and We > II. In fact, inertial effects cause
the bubble to become oblate, leading to an increase in the form drag. The

conclusions are the same for all experiments involving inelastic fluids.
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Figure 4.11: Dimensionless numbers: ¢ IT number, O Capillary number (Ca)
and o Weber number (We) (ethylene-glycol, 0.1wt.% Carbopol and 0.08wt.%
triethylenamine).

4.3 Dimensionless summarize

We may summarize the above results as follows: the velocity discontinuity ap-
pears only when the elastic forces are able to deform the bubble in a significant
manner. Once the elastic forces have overcome the surface tension forces, the
shape of the bubble changes from a spheroidal-convex to a concave shape with
a tail appearing in the downstream section of the bubble. The change of the
slope for the velocity-volume relation is due to inertia effects which are now
dominant. This change is also linked to the change in shape of the bubble
from a spheroidal-convex to an oblate shape. In some cases, the inertial and
elastic effects may be important, that is when II > 1 and We > 1. When
We > 1I > 1, the shape of the bubbles is oblate but shows a concave shape
and a cusped tail in the downstream region. The velocity discontinuity does

not occur under these conditions.
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Figure 4.12: Shapes of the bubbles for different configurations (a) the bubble is
spherical or spheroidal-convex, (b) the bubble presents a tail at the rear part
and an inflection point, the bubble is concave, (c) the bubble is a spherical

cap, (d) the bubble is oblate, (e) the bubble is oblate, but with a very small
tail, or inflexion point at the rear part of the bubble.

4.4 Drag Coefficient

In order to quantify the changes in velocity of the bubbles, the drag coeffi-
cient may be examined. In particular, a normalized drag coefficient will be

considered, an follows:

Cq
cr— S
4T Cho

(4.4)

where Cj is the drag coefficient corresponding to the experimental mea-
surements and Cy is the Stokes drag coefficient for a spherical particle with
the same diameter. An increase of the normalized drag coefficient indicates a
reduction of the velocity.

From experimental observations, the bubble shapes may be grouped in four

types:
e spherical bubbles or spheroidal-convex bubbles (fig. 4.12 a)

e concave spherical bubbles with a tail (fig. 4.12 b)
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Figure 4.13: Normalized drag coefficient as a function of the IT number for
different bubble shapes (o): fluid 1 (50wt.% of water, 50wt.% of glycerol and
PAA), (O): fluid 2 (ethylene-glycol and PAA) ,(¢): fluid 3, Boger fluid (glycerol
and PAA).

e oblate bubbles and spherical cap (fig. 4.12 ¢, d)

e oblate bubbles with a tail (fig. 4.12 e)

Figure 4.13 shows the normalized drag as a function of the dimensionless
parameter Il for all the experimental results in this investigation, whit the
exception of HASE fluids. The data are classified for the four types of fluids
used in the experiments. It can be observed that when II < 1, the normalized
coefficient is approximately unity for all cases. It is important to note that all
bubbles in this regime have spheroidal-convex shapes (Fig. 4.12 a). When the
IT number becomes greater than 1, two distinct behaviors may be identified.
For some cases, the normalized drag is smaller than 1, that is, a drag reduc-
tion is observed. The shape of the bubbles that experience a drag reduction
is always concave with a tail (Fig. 4.12 b). On the other hand, when the nor-
malized drag increases, when II > 1, the shape of the bubbles is oblate (Fig.
4.12 e). Note that in this case, the data from the inelastic liquids is not shown

(IT = 0). In order to determine what causes drag reduction or enhancement,
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Figure 4.14: Normalized drag coeflicient as a function of the Weber number
for different experiments (o): fluid 1 (50wt.% of water, 50wt.% of glycerol and
PAA), (O): fluid 2 (ethylene-glycol and PAA) ,(¢): fluid 3, Boger fluid (glycerin
and PAA) | (+): fluid 4 (ethylene-glycol, carbopol and triethylamine).

the normalized drag coefficient is shown as a function of the Weber number in
Figure 4.14.

When We < 1, the data are separated into two groups: experiments for
which the drag is close to that calculated from Stokes-Hadamard law and
experiments in which drag reduction is observed. If the data from figures
4.13 and 4.14 are replotted, classifying the experimental results according
to the shape of the bubbles (fig. 4.15), it can be clearly observed that
when the normalized drag is approximately 1 and We < 1, the shape of
the bubbles is spherical or spheroidal-convex. When the normalized drag
is less than unity and We < 1, the bubbles are concave with a tail. For
bubbles, in which We > 1, generally a drag enhancement is observed.
These bubbles are oblate (fig. 4.12 ¢, d and e). In a few cases, a modest
drag reduction is observed. Bubbles in this regime are oblate but show the
formation of a concave end as well as showing a tail. Finally, it is possible
to plot the results as a diagram showing the II number as a function of the

Weber number (We) for all the experiments. This can be seen in Figure
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Figure 4.15: Normalized drag coefficient as a function of the Weber number
for various shapes (o): spherical or spheroidal convex bubbles (fig. 4.12 a) (O):
concave bubbles (fig. 4.12 b) ,(¢): oblate bubbles (fig. 4.12 ¢, d, e).

Figure 4.16: Map of II number as a function of the Weber number for the
different experiments: (o): fluid 1 (50wt.% of water, 50wt.% of glycerin and
PAA), (O): fluid 2 (ethylene-glycol and PAA), (¢): fluid 3, Boger fluid (glycerin
and PAA). Inset, same results by differentiating the shapes of the bubbles: (o):
spherical or spheroidal convex bubbles (fig. 4.12 a) (OJ): concave bubbles with
a tail (fig. 4.12 b), (¢): oblate bubbles (fig. 4.12 ¢, d, e).
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4.16. Spherical bubbles are observed when both II and Weber numbers are
smaller than 1: the surface tension effects dominate. Oblate bubbles and
spherical caps are observed for Weber numbers larger than 1, and II number
small or equal to 0 (the experimental results for inelastic fluids have been
omitted in Figure 4.16). Bubbles with a tail appear for IT number larger
than 1. Also, if I > We, the bubbles are spheroidal-concave with a thin
and long tail; for We > II , the bubbles are oblate-concave with a small tail.

The drag reduction is observed for the region that satisfies Il > 1 and IT > We.

Summarizing, the velocity discontinuity occurs when the elastic effects
dominate. In this case, the shapes of the bubbles change from spherical to
concave with a thin and long tail. The decrease of the slope of the velocity-
volume relation occurs if the inertia effects dominate the flow. The shape of
the bubble changes from spherical to oblate or to a spherical cap. In the case,
when both inertia and elastic effects are predominant, the jump discontinuity
only occurs when the elastic effects are larger than inertia and surface tension.
If inertia effects are larger than the other two, a decrease of the slope of the

velocity-volume relation appears.

4.5 Comparison with experimental results of
other authors

To corroborate the fact that the velocity discontinuity appears when elastic
normal forces are larger than the other forces, that is for II > 1, we now
analyze the experiments of other author for which the velocity discontinuity
is observed. The data available for comparison and analysis is limited. Only
in few cases, the authors report all physical properties. We have considered

the experimental results of Rodrigue, De Kee and Chan Man Fong (1996),
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Figure 4.17: Map of II number as a function of the Weber number (We) for
different fluids: (o) fluid 1, (O0) Boger fluid, (+) HASE fluid Soto et al. (2006),
(¢) water and glycerin PAA and SDS, Rodrigue, De Kee & Chan Man Fong
(1996); Rodrigue, De Kee and Chan Man Fong (1998); Rodrigue and De Kee,
(1999), (x) 80wt.% of water, 20wt.% of glycerol and 0.5wt.% of PAA and SDS,
Rodrigue and Blanchet (2002).

Rodrigue, De Kee and Chan Man Fong (1998) and Rodrigue and De Kee,
1999, who used 50 — 50wt.% water-glycerol mixtures and PAA and a range of
small amounts of sodium dodecyl sulfate (SDS) to adjust the surface tension.
We have also included the data of Rodrigue and Blanchet (2002) who used
80 — 20wt.% water-glycerol mixtures and PAA and SDS. The results from Soto
et al. (2006) for the case of HASE-type liquids are also included. Figure 4.17
shows the dimensionless drag as a function of II number for all the experimental
data mentioned above, along with our measurements for the case of the fluid
1 and fluid 3. It may be seen that in the region where II is less than one, the
normalized drag coefficient is approximately 1 and therefore no drag reduction

nor a jump discontinuity appears. If, however, II is greater than one, drag

reduction is evident and the jump discontinuity occurs.

87



Chapter 5

Velocity Discontinuity

Magnitude

In this chapter, a discussion about the magnitude of the discontinuity is pre-
sented. The main idea is to consider the effect of the different parameters
involved in the problem. A commercial finite element software (FEMLAB)

was used to evaluate the drag on the bubble surface.

5.1 The magnitude of the discontinuity

Form the vast experimental evidence presented here, it can be concluded
that the physical process which determines the appearance of the jump
discontinuity in velocity is the following: as the bubble volume increases,
the resulting mean shear rate on the surface also increases. As a result, the
elastic forces on the surface of the bubble become large. The shape of the
bubble slowly changes from spherical to teardrop shape. At a given shear
rate, and its corresponding bubble volume, elastic forces overcome the surface
tension forces that tend to maintain the spherical form of the surface. At
this point the dimensionless number II becomes greater than one; the shape

changes drastically from convex to concave with the formation of a sharp
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Table 5.1: Magnitude of the velocity discontinuity. The velocities ratio for two
bubbles, one just below and other just above the critical volume (¥).

Wy
Author %‘;
Astarita and Apuzzo (1965) 2.22-5.86
Zana and Leal (1978) 4-5
Rodrigue (1998) 1.65-5
Herrera et al (2003) 1.8-2.4
HASE Fluids 1.63-2.45

cusp. This new shape has a more hydrodynamic form and the corresponding
drag coefficient becomes much smaller with the corresponding increase in
bubble velocity. This in turn, gives rise to an increase in the mean shear rate
at the surface which causes the viscosity of the fluid to drop further if the fluid
is shear thinning. The reduction of viscosity causes an additional reduction
of the drag, leading to a significant increase of velocity. Moreover, it has been

shown that elastic effects are also drag-reducing (Leal, Skoog & Acrivos, 1971).

Therefore, a further reduction of the drag on the bubble can be expected
in this case. Furthermore, it is also possible that the increase in velocity may
cause a change of the boundary condition on the bubble (Blanco & Mag-
naudet, 1995) since the surface is in most cases dirty for small slow bubbles;
hence, if the bubble moves faster, the surface may become cleaner and mobile,
which would also result in an additional reduction of the drag. All these effects
are the contributions that lead to the phenomena of the jump discontinuity.
The magnitude of the velocity discontinuity for selected fluids is presented in
the Table 5.1 from several authors. In all cases the velocities ratio is larger
than 1.5, the maximum possible value for a complete change in boundary
condition, from non-slip to slip. Through computer simulations it is pos-

sible to isolate the contributions involved in the magnitude of the discontinuity.
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Table 5.2: Velocity discontinuity principal contributions. A comparison be-
tween the experimental conditions and the parameters used in simulations.

Experimental Simulation

Viscosity Viscosity

Bubble velocity Bubble velocity

Bubble shape Bubble shape

Boundary condition Boundary condition (slip or non-
slip)

Elasticity

In the Table 5.2 the experimental variables and those considered in the
simulation are shown. All conditions can be included in the simulation, except
the elasticity.From experimental parameters es possible to obtain the ratio of
drag coefficients for a bubble with volumen just below the critical and a bubble

with volumen just above the critical. This is calculated by the equation:

Cdy  dy (vl)
Cd;,  d,1'V,

(5.1)

where Cy is the drag coefficient, V' the terminal velocity of the bubble, d the
bubble equivalent diameter and the subindexes, 2 and 1, refer to the bubble
just above the critical volume and to the bubble just below the critical volume,
respectively. For the simulations, the drag coefficient is determined with the
equation:

2Fy

Ca= W (5.2)

where p is the fluid density, V' is the bubble velocity and Fj is the total force at
the bubble surface in the motion direction. Note that in all these simulations

the bubble shape is assumed to remain fixed.
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Figure 5.1: Idealization of the problem in a two dimension sketch and boundary
conditions.

5.2 Computational Space

The computer simulations were performed considering a Newtonian fluid and
a 2D axi-symmetric flow. Figure 5.1 shows the boundary conditions imposed
on the simulations. The shape of bubbles were obtained by a digital image
processing (describe in a previous chapter), from photographs of real bubbles.
Typical bubble shapes with their correspondent mesh are shown in Figure 5.2.

In order to evaluate the relative importance of the relevant effects, we
performed simulations to determine the drag coefficient for bubbles just after
and just before the discontinuity. These simulations were done for liquids 1-2
and 1-4 ( 50wt.% of water, 50wt.% of glycerol, and 0.15wt.% PAA or 0.05wt.%
PAA) and for two HASE fluids (properties shown in Table 5.3).

With these simulations, we aim to evaluate the effects of the change of
shape, reduction of viscosity and change in boundary conditions by considering
shape fixed bubbles. The terminal velocity and shape are taken from the

experiments. The drag force is determined for the flow around bubble with a
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fixed shape. The shape is that obtained from the experiment for cases either
before or after the velocity discontinuity. For each case, we consider the value of
the viscosity to be the one corresponding to each experimental condition using
the mean shear rate as defined previously (see Table ??7). It is important to
remark that our calculation scheme does not include the effect of the elasticity
of the fluid.

Table 5.3: Experimental properties of the selected bubbles to performed nu-

merical simulations, for bubbles formed just before and after the critical vol-
ume.

Bubble deg(mm) | Vol(mm?) | Vel (mm/s) | u(Pas) |~ Re
1-2 (before) 3.28 18.6 77.5 0.128 11.8 | 2.23
1-2 (after) 4.06 35.1 165.1 0.108 | 20.32 | 7.03
1-4 (before) 4.94 63.2 33.2 0.702 | 3.36 | 0.264
1-4 (after) 5.12 69.7 81.28 0.462 7.96 | 1.01
HASE (1.2%) (before) |  4.55 19.33 29.8 0.22 | 321 | 0.606
HASE (1.2%) (after) |  5.05 67.6 50.5 022 | 4.99 | 1.61
HASE (1.5%) (before) | 4.54 19.2 9.02 1.14 | 0.992 | 0.036
HASE (1.5%) (after) | 4.8 61.2 14.7 114 | 1.51 |0.063

For this study cases two boundary conditions are considered. For bubbles
before the velocity discontinuity, the condition at the interface is taken to be
non-slip (rigid surface). Conversely, for bubbles moving after the discontinuity,
a clean free slip condition at the surface is considered. With this set of condi-
tions, we can evaluate whether or not the magnitude of the jump is only the
result of the change of shape along with a change of surface boundary condi-
tions. It must be emphasized that this drastic change of boundary conditions
is most likely an extreme condition; in an experiment, the surface of the bubble
is under ordinary laboratory conditions, neither clean nor fully contaminated.
Table 5.4: Calculated drag coefficients for two bubbles one before and another

after the critical volume with slip or non-slip boundary condition. HASE at
1.5wt. %

non-slip | slip
Bubble before 685.3 556.9
Bubble after 385.3 305.7
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Table 5.5: Comparison of the effect of shape and boundary condition on the
calculated drag coefficient. Bubbles just before and just after the discontinuity
moving in HASE at 1.5wt.%

non-slip slip
Bubble before 685.3 556.9 okt — ().813
Bubble after 385.3 305.7 ot — (). 794
Cd 2nonslip __ Cd,2s W C}d’,n;:iépzp —
Cd:lnonsiip _ 0547 Cd 1s§ip B 0594 Cd,lnorltslip B 0446

The drag coefficients obtained from simulations, for the HASE fluid at
1.5 %, are shown in Table 5.4. It is possible to compare the drag for the
same shape, but with different boundary condition. The reduction in drag is

evaluated with the drag coefficients ratio:

Od,lslip

——— =0.813 5.3
Od,lnonslip ( )

the subindex 1 refers to a bubble before the discontinuity and the subindex 2
refers to a bubble after the discontinuity. This value is higher than 0.66, the
expected ratio for an sphere. Similary, for the bubble after the discontinuity

the ratio is:
Cd,Qslip

——— =0.794 5.4
Cd,Qnonslip ( )

as in the previos case, the drag reduction is higher than 0.66, it implies that
the contribution of the change in boundary condition for spheroidal bubbles
is not as important as in the spherical case. The reduction in the drag due to

the change in shape, without consider the change in boundary condition;

Cd 2nonslip
—— = 0.547 5.5
Cd,lnonslip ( )
cd 2slip
: = 0.594 5.6
Od,lslip ( )

is smaller than 0.66. Then, the change in shape is the more important factor

for the drag reduction. It is important to recall that the viscosity of the HASE
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liquids remains nearly constant for mean shear rate near the jump. Finally,
considering the ratio between the drag coefficients of a bubble right after the

critical volume and a bubble right before the critical volume, the following:

Cd,Qslip

——— =0.446 5.7
Cd,lnonslip ( )

From the experimental data is possible to determine de drag coefficient
ratio for the same two bubbles near the discontinuity, one before and the other

one after.

Cd,
Cd,

= 0.412 (5.8)

Experimentally, obviously all the contributions to the drag are included.
This drag ratio is smaller than that obtained from the simulation. It means
that the difference between the two measures represents all the effects not
considered in the simulation. Hence, it could be concluded that the magnitude
of the discontinuity is also strongly affected by the elasticity of the fluid.

Results from simulations, along with the experimental values are shown
in Table 5.6. The drag coefficients just after the discontinuity, C'd » and just
before the discontinuity C'd ; allow to determine the magnitude of the discon-
tinuity, i. e., the ratio of these drag coefficients. For all experiments, this
ratio Cd»/Cd; is smaller than 1. Moreover, the ratio obtained with the sim-
ulations is larger than that obtained in the experiments. This implies that
the velocity discontinuity is larger in the experiments than that predicted by
the simulations. Hence, the elastic effects must also be taken into account to
appropriately evaluate the magnitude of the discontinuity. These results show
that the amplitude of the discontinuity can not be fully determined with only a
change of the boundary condition from non-slip to slip as proposed by Astarita
& Apuzzo (1965), Barnett, Humphrey & Litt (1966), Calderbank, Johnson &
Loudon (1970), Leal, Skoog & Acrivos (1971)).

95



Table 5.6: Drag coefficient ratio defined as the drag coefficient of the bubble
just after the discontinuity (indexed 2) divided by the drag coefficient of the
bubble just before the discontinuity (indexed 1). This ratio is determined with
the experiments (indexed exp) and also with the simulations (indexed sim).

. c c (Zld—*Q)ezp

Pluid | (82).0) | (82)m | o
Cqa '™

1-2 0.273 0.307 1.127

1-4 0.173 0.218 1.2
HASE 1.2% | 0.373 0.453 1.216
HASE 1.5% 0.403 0.446 1.106

Experiments on the sphere translation in constant viscosity elastic fluids
(Boger fluids) have been reported by Chhabra, Uhller & Boger (1980) and
Mena, Manero & Leal (1987). Chhabra, Uhller & Boger (1980) observed a
decrease in the drag coefficient ratio Cy/Cysiores from one to approximatively
0.75, as the Weissenberg number (Wi, or Deborah number) increased from 0
to 1. For Weissenberg numbers larger than one, the drag ratio was found to be
independent of the Weissenberg number. Chmielewski, Nichols & Jayaraman
(1990) studied the influence of the elasticity on the drag coefficient for different
types of Boger fluids. In the case of a non-aqueous Boger fluid, Stokes law was
obeyed for Weissenberg numbers up to 0.3 and then increased with the Weis-
senberg number. In the case of an aqueous Boger fluid, Stokes law was obeyed
up to Weissenberg numbers equal to 0.1, but then decreased with increasing
Weissenberg number. These results are in qualitative agreement with those of
Tirtaatmadja, Uhlherr & Sridhar (1990). For our experiments, the liquids in
which the discontinuity is observed are aqueous viscoelastic solutions. In all
cases, the Weissenberg number increases with the volume of the bubble, and is
smaller than 1. Hence, from other results in the literature an elastic reduction

of the drag can also be expected, and its magnitude is of the correct order.
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Chapter 6

Nonaxisymmetric Cusps

Furthermore, a morphological description related to the formation of non-
axisymmetric cusps at the rear of the bubble is presented.

Lastly, a photographic study of the peculiar shapes of the bubble tails that
appear after the bubble velocity discontinuity is presented. Figure 6.1 shows
the terminal velocity of bubbles as a function of volume. The symbols denote
the different tail shapes observed experimentally. The 2D cusp does not have a
preferential orientation. Hence, several experiments were performed to obtain
a frontal views. Note that these experiments are performed in a cylindrical
tank with control temperature (to avoid temperature gradients) and enough
time was elapsed to avoid fluid memory effects.

Previously, it was observed that a long, thin axisymmetric tail appears on
the rear part of bubbles immediately after the critical volume (this case is
shown in Figure 6.2 a). The thickness of the tail can be of the order of a few
microns, while its length amounts to a few centimeters. The tail eventually
breaks into micron-sized bubbles. This behavior resembles the so-called
tip-streaming phenomena, when daughter drops are ejected from a thin thread
at the tip of a highly stretched drop. The tip-streaming behavior was first
reported by Taylor (1964) and since then has been studied by many authors.

To our knowledge, tip streaming has not been reported to date for the case
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Figure 6.1: Velocity as a function of the bubble volume for 1.5% HASE. Dif-
ferent critical volumes for the different bubble shapes: (o) spheroidal bubbles;
(+) axisymmetric tail (tip streaming); () 2D edged tail (fish-bone streaming);
(¢) 2D edged tail (two-thread streaming).
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of air bubbles moving in complex non-Newtonian liquids. For larger bubble
sizes, the cusped tip transforms into a “blade-edge” tip (two—dimensional

cusp, figure 6.2 b and c).

For volumes smaller than 280mm? (corresponding to shear rates smaller
than 15s7!), the tail is axisymmetric, very thin, and long. For larger volumes,

a 2D cusp appears. For volumes between 280 and 350 mm?

(corresponding
to shear rates between 15 and 18 s7!), only fish-bone streaming is observed.
For volumes larger than 350 mm? (corresponding to shear rates larger than
18 s71) both two-thread and fish-bone formations can be observed. Although
the influence of the type of 2D tail on the terminal velocity of the bubble
(drag coefficient) is not significant, we observe that when the two types of
edge-streaming appear, a larger scatter of data of bubble velocity is observed.
The different shapes of tails reported in this section have never been observed
for rising bubbles in either polymeric or worm-like micellar fluids. The 2D
cusp does not have a preferential orientation. Note that these experiments

are performed in a cylindrical tank with control temperature (to avoid tem-

perature gradients) and enough time was elapsed to avoid fluid memory effects.

The 2D cusped end was observed from simultaneous tail images taken at
perpendicular views. Several experiments are necessary to obtain images in
which the edge of the tail is parallel to the photo plane (images shown in
Figure 6.2 b and ¢). The appearance of such shapes has also been previously
observed by Liu et al, 1995. Moreover, the streaming behavior can also be
observed in 2D cusps; the so-called “edge streaming.” We have observed that
the 2D cusped tail can break into different manners for the same nominal
experimental conditions. To further investigate the conditions for which the

2D cusps appear, additional series of experiments were performed for such
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(a) (b)

Figure 6.2: Various tail shapes for bubbles moving in a 1.5% HASE solution:
(a) tip streaming: bubble with filament tail and zoom of the tail instability; (b)
edge streaming: bubble with knife-edge tail and breakdown process of the tail
edge; (c) edge streaming: bubble with knife-edge tail and breakdown process
of the tail edge; the volume is larger than that shown in (b).

Figure 6.3: Two perpendicular views (a) and (b) of the tail; the tail breaks
into two different threads (V' = 824mm3,1.5% HASE).

100



@ (b) (©)

Figure 6.4: Two perpendicular views (a) and (b) of the tail. (c¢) The tail
collapses into a single thread with perpendicular filaments that resemble a
“fish backbone” (V' = 391mm?,1.5% HASE)

large bubbles. The terminal velocities were measured for increasing bubble

volumes, and the shape of the tails was also identified.

In some cases, the tail breaks into two different threads (Figures 6.2 and
6.3). The two threads extend for some distance, but eventually each one breaks
into microbubbles. In other cases, the 2D tails collapse into a single thread with
perpendicular filaments that resemble a “fish backbone” (Figures 6.2 and 6.4).
All these fine threads eventually break into small bubbles. Edge streaming has
not been previously reported for these fluids. Clearly, the viscoelastic nature
of the HASE solutions is responsible for the formation of the cusped and edged
tips at the back of the bubbles. However, the basic mechanism for the cusp-
to-edge transition is not known. Tip streaming phenomenon is an indication
that, near the cusp, high levels of fluid stretching are present. There is also
a possibility that the surface active ingredients are being convected along the
bubble surface, inducing surface tension gradients, hence, enhancing the tip

streaming. The formation of these different shapes may be, in fact, a result

101



of the specific properties of the associative polymer fluid. Clearly, further
experiments are needed to understand the formation process of a particular
tail shape. With the present experimental setup, it is difficult to determine
precisely the critical volume from which the tail changes from axisymmetric

to two dimensional (either two threaded or fish backbone).
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Chapter 7

Conclusions

We have shown that for bubbles rising in an associative polymer solution,
as the bubble volume increases, a discontinuity of the velocity occurs. This
discontinuity in the velocity is smaller than that observed for aqueous
shearthinning viscoelastic liquids. A more distinctive feature for this case
is that the slope of the relation velocity-volume increases significantly past
the discontinuity. This particular behavior was studied for various HASE
concentrations. It was possible to relate this discontinuity with the rheological
properties of the fluid. In fact, the shear rates for which the discontinuity
occurs correspond to those for which the normal stresses appear. It is
important to note that the critical shear rates also correspond to the point at
which the shear thickening appears in some solutions, which may contribute
to reducing the strength of the velocity jump. The discontinuity can also be
related to the bubble shape and to the flow around the bubble. For volumes
smaller than the critical volume, the bubbles are spherical or spheroidal and
the flow around the bubble is similar to that of a Newtonian liquid. For
volumes larger than the critical one, the rear of the bubble is concave and
presents a tail at their rear part. The flow around the bubble is more complex,

and the presence of a negative wake can be observed.
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This study provides a criterion for the determination of a critical volume
at which the bubble velocity discontinuity occurs. Due to the importance
of the elasticity and the surface tension, a dimensionless number defined as
II = Nyd/o is proposed to determine the jump conditions. The disconti-
nuity occurs for Il..;; =~ 1. For the case of small bubbles, we found good
agreement between experiments and predictions for the velocities according
Stokes-Hadamard laws. For small bubbles, the shear rate is small, and
consequently, the liquid can be considered as Newtonian. The viscosity for
this case had to be obtained with a falling-bead technique. In agreement
with previous investigations, we found that the viscosity determined in this
manner was larger than that obtained under simple-shear viscometric flow.
From the present results, we have determined that the appearance of the
discontinuity results from a balance between elastic and surface tension forces.
Furthermore, such criterion was successfully tested for several classes of fluids
(viscoelastic, shear thinning inelastic and constant viscosity elastic liquids),

and a comparison with experimental results from literature was carried out.

We have shown with simulations that the magnitude of the discontinuity is
caused by a combination of the change of shape, the reduction of the viscosity,
the elastic effects and also, perhaps, the change of boundary conditions on the
bubble surface. With simple Newtonian calculations, the simulation results
could not predict the magnitude of the discontinuity as measured experimen-
tally. Therefore, we conclude that elastic effects also provide an important
contribution to the total magnitude of the drag reduction of viscoelastic flu-
ids around moving bubbles. Finally, for large bubble volumes, a photographic
study for the bubble shapes and the particularly the tail shapes was presented.
Different kinds of tails can be observed. The influence of the extensional

stresses at the rear of the bubbles, seems to be responsible of the formation of
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a long and thin tail. As increasing the volume, the velocity increases and the
tail breaks up. For larger volumes a formation of 2D tails was observed, and
eventually such tails breakup in a multithread pattern. The basic mechanism
of for the cusp-to-edge transition is not know. However, there is a possibil-
ity that the surface activity of the HASE fluids and their peculiar chemical

structure are responsables of this behavior.
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A study of velocity discontinuity for single air bubbles
rising in an associative polymer
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The motion of air bubbles in aqueous solutions of a hydrophobic alkali-swellable associative
polymer is studied in this work. The associative nature of these polymer systems dictates their
rtheological properties: for moderate values of the shear rate, the formation of structure can lead to
a shear-thickening behavior and to the appearance of first normal stress difference. For larger shear
rates, the polymer associations can be broken, leading to shear thinning. In general, these fluids
show a Newtonian behavior for small values of the shear rate, but behave as viscoelastic liquids for
large shear rates. Experimental results show the appearance of a critical bubble volume at which a
discontinuity in the relation velocity-volume occurs; however, the velocity increase found in this
case is not as large as that previously reported for the case of shear-thinning viscoelastic fluids. The
discontinuity is associated with a significant change of the bubble shape: before the critical volume,
the bubbles are convex spheroids, while past the critical volume a sharp cusped end appears. The
appearance of the tail is also associated with the appearance.of an inflection point (change of
curvature) on the bubble surface. Moreover, since the rheology of the liquids is measured it was
found that the discontinuity, and hence the change of shape, occurs when the elastic nature of-the
liquid first manifests itself (appearance of a first normal stress difference). A comparison of the
measured velocities for small bubbles with predictions from a Stokes-Hadamard law shows a
discrepancy. The Newtonian viscosity measured in a viscometric flow was smaller than that
determined from a falling-ball arrangement. Considering the viscosity measured under this
nonviscometric flow, the comparison between theory and experiments was very good for bubbles
having volumes lower than the critical one. Moreover, due to the importance of the elasticity,-and
due to the change of the shape of the bubble, a dimensionless number formed as the ratio of elastic
to surface tension forces clearly defines the change of the behavior for the bubbles rising in these
fluids. Finally, a photographic study of the peculiar shapes of the bubble tails, tip-, and
edge-streaming phenomena is presented. To our knowledge, experiments in this class of fluids have

not been reported to date. © 2006 American Institute of Physics. [DOL: 10.1063/1.2397011]

I. INTRODUCTION

The study of the motion of air bubbles in liquids has
. received much attention because of its fundamental and prac-
tical importance. For the case of Newtonian liquids, there is
a vast collection of investigations that report interesting be-
haviors in many regimes.' The understanding of such a sys-
tem is quite complete. For the case of the motion of gas
bubbles in non-Newtonian liquids, there are several unex-
pected phenomena that remain to be fully understood. ™
Among the peculiar phenomena observed in the case of
non-Newtonian liquids, of particular interest is the so-called
bubble velocity discontinuity. In a Newtonian fluid, the mag-
~nitude of the rising velocity of a gas bubble is proportional to
the bubble size and the relation velocity-volume is mono-
tonically increasing. For the case of non-Newtonian liquids,
many authors™™'" have reported that there exists a critical
value of the volume of the bubble for which a discontinuity
of the velocity occurs: the bubble velocity increases mono-
tonically as the bubble size increases, but once a critical
volume is reached, the bubble velocity increases in a discon-
tinuous manner. In other words, the bubble velocity can in-
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crease many times for a slight increase of the bubble volume.
Astarita and Apuzzo® were the first to report that the ratio of
the velocity after and before the jump ranged from 2 to 6,
depending on the polymer present in the solution. They ar-
gued that this discontinuity of the velocity was a result of a
transition from the Stokes regime to the Hadamard regime (a
change from a rigid to a free interface). However, it can be
shown that the velocity increase resulting from such a
change of the boundary conditions would be equal to 1.5.
Due to the fact that no discontinuity of the velocity has been
reported to occur for the case of falling spheres, some
authors™ have supported this argument, even though it does
not predict correctly the increase of velocity. Astarita and
Apuzzo® also pointed out that the shape of the bubbles
changed before and after the velocity discontinuity.
Rodrigue et al.® proposed an explanation for the discon-
tinuity. They argued that it results from a balance between
elastic and Marangoni instabilities, providing another major
difference between Newtonian and non-Newtonian hydrody-
namics. They have also studied the effect of surfactants in
the 1iquid,9 and concluded that surface active agents as well

© 2006 American Institute of Physics
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as elastic forces must be simultaneously present in order to
generate a sudden jump in velocity.

Recently, Herrera-Velarde et al.'® studied the velocity
field around bubbles before and after the critical volume by
means of a particle image velocimetry (PIV) technique. They
reported that the appearance of the velocity discontinuity is
associated with the presence of the so-called negative wake:

for small bubbles (with a volume smaller than the critical-

volume) the flow is similar to that of a bubble moving in a
Newtonian liquid; for large bubbles (with a volume larger
than the critical volume), the flow is strongly different and a
negative wake is present. The wake is called “negative” be-
cause the velocity, very close to the trailing end, is in the

direction of the motion of the bubbles; a short distance away

from the trailing end, the velocity reverses direction. For a
bubble rising in a Newtonian liquid, the wake is normal, as
the velocity in the wake is in the same direction as the mo-
tion of the bubble. Hassagaf” was the first to observe this
behavior for bubbles and coined the term “negative wake.”
Negative wakes have also been observed for spheres falling
in viscoelastic liquids‘[2 Many explanations have been pro-
posed to explain the appearance of this discontinuity; how-
ever, a complete self-consistent explanation is not yet avail-
able.

In order to acquire certain desired rheological character-
istics in commercial products, rheology modifiers are used,
ie., surfactants (worm-like micellar systems), polymers
(cellulose derivates), and hydrophobically modified or
associative polymers (hydrophobically modified
hy.droxyethylcellulose).‘5 /16 In particular, surfactants and as-
sociative polymers are formed by two main parts: one hydro-
phobic and the other hydrophilic. In aqueous solutions, the
hydrophilic part is surrounded by water while the hydropho-

" bic parts associate themselves with forming agglomerates
called micelles. The formation and rupture of these structures
- dictate the rheological behavior of these solutions. In gen-
eral, for associative polymers and surfactants, modifications
of rheological properties can be accomplished with smaller
concentrations, compared to those needed for ordinary poly-
mers, hence reducing the amount of residual products.

In this investigation, experiments to determine the termi-
nal velocity of air bubbles in solutions of a hydrophobically
modified alkali soluble polymer (HASE) were conducted.
HASE is an associative polymer formed by a hydrophilic
principal backbone and some pendant hydrophobic groups in
a comb-like arrange:me:nt.'s’l6 HASE solutions display com-
plex rheological properties because they exhibit a shear
thickening and/or thinning in addition to viscoelasticity. At
some specific concentrations HASE solutions have a region
of constant viscosity, but with the presence of elasticity, it is
possible to isolate elastic and shear-thinning effects. Another
advantage of using these liquids is that they serve as model
systems.”"‘q

To our knowledge, experiments to determine terminal
velocities of gas bubbles on HASE-type fluids bave not been
reported to date. Belmonte'” reported experimental results of
gas bubbles rising in worm-like micellar liquids, which share
a similar complex rheology as the HASE system presented
here. For these solutions, the bubbles develop a cusped edge

Phys. Fluids 18, 121510 (2006)
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FIG. 1. Experimental device to study the motion of air bubbles in'a liquid.
Two cameras (one high speed and one high resolution) allow us to determine
the velocity and shape of the bubble. -

and, for some conditions, self-trajectory oscillations ap-
peared. Some authors?*~* reported that the motion of settling
spheres in micellar-type fluids also shows trajectory oscilla-
tions. ‘

In this paper, we present experimental results for single
bubbles rising in a HASE associative polymer. In Sec. II, the
experimental methods are presented. The theory concerning
bubbles moving in a Newtonian liquid at low Re is briefly
summarized (Sec. III). After presenting the experiniental re-
sults (Sec. IV) and their comparison with the theory (Sec. V),
we present an explanation of the discontinuity of the velocity
based on the rheological properties of the liquid. In the last
section (Sec. VI), we present a short study of the shape of
bubble tails that appears after the discontinuity.

Il. EXPERIMENTAL METHODS

A. Materials and experimental setup

To analyze the motion of air bubbles in a liquid, the
experimental device, presented in Fig. 1, was used. A certain
volume was placed in a cap with a syringe, and by turning
the cap, the bubble was released to move upwards in the
inner tube. The width of the inner tube (D=9 cm) was
enough to minimize wall effects. In all cases, the ratio be-
tween the diameter of the bubble and the diameter of the
inner tube was smaller than 0.1. The inner tube length
{L=60 cm) was long enough for the bubbles to reach a stable
terminal velocity. In the outer square tube, a liquid with the
same refraction index as the solution present in the inner
tube was placed to reduce the refraction effects. Several
HASE concentrations were tested and their theological char-
acterization is presented in the next part. Since, it has been
shown that the velocity of the bubbles can be dependent on
the injection frc&:quency,9 a 5-min interval was left between
two consecutive bubbles to avoid this effect.

Downloaded 22 Feb 2007 to 132.248.12.201. Redistribution subject to AIP license or copyright, see http://pof.aip.org/poflcopyright jsp
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TABLE I. Properties of the bubbles (diameter 4 and equivalent shear rate
y= U/ r) in different solutions.

Fluid n° % HASE d {mm) y(s™h
1 1.2% 0.3-9.4 1-42
2 1.5% 33-7.6 2-16
3 1.7% *2.5-8.7 1-10

HASE (Primal TT-935) is supplied by Rohm and Haas.
Aqueous solutions were prepared at 1.2, 1.5, and 1.7% by

weight in distilled water and left to rest for 48 h. A 0.5-M

solution of 2-amino,2-methyl propanol (AMP), supplied by
Aldrich, was used to adjust the pH to 9.0, at which the vis-
cosity is a function of pH peaks. Once the solutions were free
of bubbles, the rheological and surface tension properties
were determined.

B. Measurement methods
1. Bubble shape and velocity

The bubble terminal velocity and shape were determined
using two cameras. The first one was a high-speed camera
(RedLake MotionScope Model 1000), which measures the
velocity of the bubble using spatiotemporal diagrams. The
error in the bubble velocity determination was smaller than
1.5 mm/s. The second one was a high-resolution camera
(6 megapixels, Fuji FinePix Slpro), which determines the
bubble’s geometric characteristics (shape and volume) by
image analysis. The bubble volume was determined assum-
ing axial symmetry. Comparing the value of a known in-
jected volume with that obtained by image analysis, the error
is smaller than 2%. An average shear rate y was defined to
characterize the rheological properties of the fluid as the ratio
of the terminal velocity U of the bubble to its spherical
equivalent radius r: y=U/r. As shown elsewhere, the mean
value of the shear rate ¥ can be given by U/r for the flow

u (Pa.s)
N, (Pa)

A CH)

FIG. 2. Shear viscosity u (empty symbols) and first normal stress difference
N, (solid symbols) as a function of the shear rate for different percentages of
HASE () 1.2%; ((J) 1.5%; (<) 1.7%. The bold lines show predictions of
the Bautista-Manero model for 1.7% of HASE (Ref. 13).

Phys. Fluids 18, 121510 (2006)

TABLE II. Properties of the solutions: viscosity w, surface tension @, and
coefficients ¢ and b in the expression of the first normal stress difference,

Ny=a+.
Fluid % “ o Range of
n’ HASE (Pas) (mN m) a b ¥

i 1.2% 022+0009 3841034 02078 13097 0.1-100
2 1.5% 1.14+0.005 36.93£0.23 11449 13192 0.1-100
3 1.7% 3.34x0.04  55.55+038 23728 13289 0.1-50

around a spherical bubble at low Reynolds number. ™" The
experimental range of the bubbles diameter and mean shear
rates are presented in Table I.

The flow field around the bubble on the symmetry plane
was determined using PIV, with a commercial device pro-
vided by Dantec Dynamics. The light source was a 532-nm
laser; fluorescent seeding and filters were used to avoid re-
flections within the air-liquid interface. More details about
this technique can be found in Ref. 10.

2. Rheological properties

The rheological properties of the HASE solutions under
simple shear were determined in a stress-controlled rheom-
eter (TA Instruments), using a 40-mm 1°59' cone and plate
fixture with a Peltier temperature-control system.

The HASE solutions tested behave as Newtonian fluids
(at small shear rates, viscosity remains constant and normal

stresses are negligible; Fig. 2). From 0.1 to 50 57, the nor-

mal stresses are measurable while the viscosity remains
almost constant. For all concentrations, a slight shear-
thickening behavior can be observed for small ranges of
shear rate (for 1.2% HASE, 6<<y<36; for 1.5% HASE,
2<y<12; for 1.7% HASE, 1<<y<3.7). For large shear
rates and depending on the concentration, the fluids exhibit a
shear-thinning behavior: the viscosity decreases with the

10%}
T, <
g
=]
fal
'S 10"t e
> =
e

. O
10 ' '
10' 10° 10°

Volume (mm‘“)

FIG. 3. Bubble velocity as a function of bubble volume for different per-
centages of HASE: (o) 1.2%; (3) 1.5%; (¢) 1.7%. There is a discontinuity
of the bubble velocity for volumes equal to V, (1.2%: V. =65 mm?; 1.5%:
¥, =60 mm*; 1.7%: V.=50 mm?). The critical volume decreases with an
increase in HASE concentration.
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shear rate and the first normal stress difference increases
with the shear rate. In general, for a given shear rate, the
viscosity and the first normal stress difference increase with
HASE concentration, and the critical value of the shear rate
at which normal stresses appear decreases with increasing
HASE concentration.

For the first normal stress difference, it is possible to fit
the data to a power law, N,=a’. The coefficients a and b,
and the range of shear rate for which this assumption is
valid, are reported in Table II. The predictions of the model
by Bautista et al. '8 are shown with experimental data for the
1.7% HASE solution (Fig. 2). As analyzed elsewhere,” this
model accounts for the breakage-reformation process of the
structure of associative polymers under flow. The model pre-
dicts a maximum in the extensional viscosity at a strain rate
corresponding to that of the onset of normal stresses and the
shear-thinning region of the shear viscosity.

The surface tension of these liquids was measured with
a Wilhelmy balance (Sigma 700) using a DuNouy ring
(Table TI). '

24/Re, rigid interface, Stokes drag
d=

Hence, the terminal velocity for each case is

PE
UStokes= IS/J,dZ’ (D
Pg
UHadamard = 12#d27 (2)

where d is the equivalent diameter of the bubbles (m), p is
the density of the liquid (kg m™), g is the gravitational con-
stant (g=9.81 ms™?), and u is the viscosity of the liquid
(Pas).

In the case of very small bubbles rising in the HASE
solution, the shear rate is very small, and then the liquid can
be considered as Newtonian: there are no normal stresses and
the viscosity is constant. However, it is very difficult to de-
termine the surface boundary condition (rigid or free). As an
example, a “dirty” bubble will not have a free or a rigid
interface; hence, one would expect to observe a behavior
between the two regimes.

IV. EXPERIMENTAL RESULTS
A. Bubble terminal velocity and velocity field

Measurements of the terminal velocity for the three
HASE solutions are presented in Fig. 3. There is a critical
volume V. for which a velocity discontinuity appears. The
value of this critical volume decreases with an increase in
HASE concentration. These results are in agreement with
those obtained by Herrera-Velarde et al’ In all cases, the

Phys. Fluids 18, 121510 (2006)

ill. THEORY FOR SPHERICAL BUBBLES

A brief summary of the theory for Newtonian flow
around spherical bubbles is presented. In general, the motion
of a gas bubble is mainly determined by the hydrodynamic
conditions (properties of the liquid, diameter of the bubble)
and by the boundary condition on the bubble surface.

At very low Reynolds numbers (creeping flow), the flow
is dominated by viscous effects. The equations of motion
can, in principle, be solved rigorously and hence the drag can
be calculated. By equating the drag and the buoyancy, the
velocity-volume relationship can be obtained. The interface
of a gas bubble may be considered between the two extreme
cases of a free and a rigid interface.”®>” If the gas is assumed
to be inviscid, the tangential stress 7 is zero at the free inter-
face. For a rigid interface, the velocity of the interface is
equal to the velocity of the center of gravity of the bubble. In
other words, the no-slip boundary condition holds at the
bubble surface. For either case, the drag force on a spherical
bubble in creeping flow can be calculated™™! according to

16/Re, free interface, Hadamard-Rybczynski drag

slope of the velocity-volume relation is larger for large
bubbles (for V>V,) than for small bubbles (for V<V,).
Moreover, for a given volume, the terminal velocity de-
creases with an increase of HASE concentration (due to the
increase of viscosity). It is important to observe that the in-
crease in velocity after the discontinuity is significantly
lower than that reported previously for aqueous shear-
thinning viscoelastic liquids.’ 13 A distinctive feature of the
discontinuity of the velocity-volume relation, for the HASE
solutions, is that the slope of the curve, defined by dU/dV
(where U is the velocity and V is the volume), increases
significantly past the critical volume. Clearly, the value of
dU/dV at the discontinuity is larger than the values corre-
sponding for the nonjump condition (Table I11). Moreover,
the amplitude of the discontinuity decreases as the percent-
age of HASE increases.

Flow visualization around bubbles before and after the
discontinuity using the PIV technique are presented in Figs.
4 and 5. For air bubbles with volumes smaller than the criti-

TABLE IIL Velocity increase, dU/dV, at the volume for which the discon-
tinuity occurs. dU/dVigygamaa and dU/dVg, are calculated from Egs. (1)
and (2).

% HASE duldv AU AV g4amara AU/ dVgopes
1.2% 252 043 0.28
1.5% . 0.55 ) 0.14 0.09
1.7% 0.188 0.06 0.04
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FIG. 4. Flow around a rising bubble with volume below the critical one
(V=42 mm?® U=1.] mms™'; HASE 1.5%).

cal one, V., the fluid at the front and at the rear of the bubble
is moving in the same direction of the bubble (Fig. 4). For
bubbles with a volume lfarger than the critical one, V,, the
flow around the bubble is drastically different (Fig. 5). The
flow at the front of the bubble is in the same direction of the
bubble motion. At the rear of the bubble, the fluid is moving
in the opposite direction of the bubble motion. This phenom-
enon is called negative wake and was previously reported
elsewhere”' '*****_ and more recently in Ref. 10. The negative
wake is a manifestation of importance of the elastic effects in
the bubble motion. Presumably, the elasticity of the liquid is
an important factor for the discontinuity to appear. This ar-
gument will be further discussed later.

x/d

(@)

FIG. 5. Flow around a rising bubble with volume above the critical one. (a) Flow around the bubble. The flow is very similar to the flow observed for a bubble

with a volumie smaller than V,. (b) At the rear part of the bubble, the negative wake can be seen (V=

Phys. Fluids 18, 121510 (2006)

B. Bubble shape

The velocity discontinuity can be related to the bubble
shape. Figures 6--8 show bubbles for the three solutions with
volumes smaller and larger than the critical one V... Clearly,
there is a very significant change of the shape related to the
appearance of the velocity jump.

For bubbles with a volume much smaller than the critical
volume V,, the shape is nearly spherical. With a small in-
crease in volume, a slight deformation on the rear part of the
bubble is observed. In all cases, for volumes smatller than V,,
the shape of the bubbles is convex all around, whereas for
bubbles with a volume larger than the critical volume V., the
shape is concave in the trailing end: the shape presents an
inflection point. Figure 9 shows a comparison of the shape of
a bubble before and after the jump. The shape in the front
region is nearly the same, whereas it changes significantly in
the back region. Moreover, the formation of a sharp cusp can
be clearly observed. At the tip of the cusp, a long (few cen-
timeters) and very thin (tens of micrometers) tail forms in all
cases. Using two cameras acting simultaneously, it was pos-
sible to obtain a view of the tail from two sides. The cusps
and tails immediately after V, are axisymmetric. However,
for volumes larger than V., this is no longer the case. Non-
axisymmetric tails are shown and discussed in Sec. VIL

V. COMPARISON OF EXPERIMENTS AND THEORY
FOR SMALL BUBBLES: TERMINAL VELOCITY

The viscosity of the HASE solutions displays a Newton-
ian region at small shear rates y. For small Reynolds num-
bers, one can attempt to compare the measured terminal ve-
locities with those predicted for the Stokes-Hadamard drag
[Eqs. (1) and {2)}.

Figure 10 shows a comparison of experimental results
obtained for fluid 1 (1.2% HASE). The predictions [Egs. (1)
and (2)] consider the measured zero shear-rate viscosity.

(b)

239 mm>; U=54.6 mms™'; HASE 1.5%).
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V*#=0.32 V*=0.55 V*=(.82

V#=1.04 V*=1.67 V*=2.94

FIG. 6. Bubble shapes for different values of the dimensionless volume
V' =VIV, for ZHASE=1.2, with V=65 mm?. The small bubbles are almost
spherical. For larger volumes (for V*>1), the shape of the bubbles is con-
cave with a very thin and long tail at the rear part of the bubble. The scale
represents 2 mm.

Clearly, the disagreement among the two sets of data is ap-
parent. The rheometric flow (simple shear), in which the vis-
cosity was measured, confrasts that of the flow around the
bubble. To improve the predictions, the viscosity of the lig-
uid was obtained from a simple falling-bead setup. The ef-
fective viscosity in this case inferred from

2 r*Apg

#=9 u

3

where 7 is the bead radius {m), Ap=pyead—Piiquia 18 the den-
sity difference between bead and liquid (kgm™), g is the
gravitational constant (g=981m s2), and U is the terminal
settling velocity of the sphere m s7h

The experiments are conducted by varying the diameter
of the glass beads from 3 to 6 mm. In all the cases, the
Reynolds number is smaller than 1. The shear rate is also

small, corresponding to shear rates within the Newtonian re-

s

V*=2.66

V#=1.02 V*=1.56

FIG. 7. Bubble shapes for different values of the dimensionless volume
V*=V/V, for %HASE=L.5, with V=60 mm?’. The scale represents 2 mum.

gion of the rheometric flow curve. In addition, the ratio d,/D
is smaller than 0.07 (d, is the diameter of the bead and D is
the diameter of the test section). The viscosity obtained from
these experiments is constant for shear rates between 0.2 and
10 s~!. The results are presented in Table IV. The viscosity
obtained from falling-bead experiments is in all cases larger
than that obtained under simple shear. The ratio of these
viscosities (a) as a function of HASE percentage is shown in
Table [V. This ratio decreases with HASE concentration.
This behavior can be explained by two reasons.

First, in these experiments, wall effects are present. For
Newtonian fluids, the drag correction factor reduces to the
well-known Faxén correction,33 which is commonly ex-
pressed in the form

- USmkes (3)

1
KR =1"70m = v

with
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1 i 1
V=024  V*=061  V*=08I

i [
V#=1.21 V*=1.84 V*=3.61

FIG. 8. Bubble shapes for different values of the dimensionless volume
Vi=V/IV, for %GHASE=1.7, with V=50 mm?’. The scale represents 2 mm.

F(rIR) =2.104 44(r/R) — 2.088 T7(rIRY
+0.948 13(/R)’ + 1.372(r/R)® — 3.87(r/R)*
F419(/R) O+ -, 4

where r is the radius of the falling bead and R is the con-
tainer radius. This relation is only valid in the case of a
Newtonian fluid for Reynolds number smaller than 1. It has
been shown™ that “for moderate Deborah Numbers De, wall
effects appear to be less important than in the motion of the
corresponding Newtonian fluid.” In our experiments, the
Deborah number lies between 0.5 and 1.6, implying that the
drag correction factor is smaller than the one calculated in
the case of a Newtonian fluid.”” In these HASE solutions, a
r/ R value of 0.07 corresponds to Kp(r/R)=1.16. It implies a
viscosity increase of 1.16. Moreover, the wall correction fac-
tor for elastic, constant-viscosity fluids™ is given by f(r/R)
=1-0.17r/R for Deborah numbers larger than 0.2, which
corresponds in our case to Ky(riR)=1.006. The wall effect
contributes to a small increase in viscosity obtained from

Phys. Fluids 18, 121510 (2006)

y/R &

—————> x/R

FIG. 9. Bubble shapes before (continuous line) and after (dashed line) the
jump. The shape does not change in the front part of the bubble, whereas it
changes in its back part (Vyerore=49-2 mm3; Vi, =61.2 mm>; 1.5% HASE).

falling-bead experiments over that obtained in simple shear.
However, the difference between the two viscosities is within
a factor of 2.

The second reason is that, conceptually, the flow around
a bubble can be divided into three regions: a simple shear
region at the equator, a simple extensional region at the rear,
and a biaxial extensional region at the front. The extensional
components lead to extra stresses that slow the sphere mo-
tion down. But this extensional flow depends on the Rey-
nolds number. For large values of the Reynolds number
the extensional components will be more important; as a
consequence, the difference between the two viscosities will
increase.

The ratio of the viscosity estimated from falling-bead
data to the viscometric viscosity decreases with HASE con-
centration (Table 1V). In addition to the wall effects, which
decrease the terminal velocity and hence increase the ViSCos-
ity. it is necessary to include the extensional flow contribu-
tions. Under extensional flow, models' ™' predict a region
of extensional thickening at extension rates of the order of
the inverse of the main relaxation time. This region coincides
with the onset for measurable normal stresses in shear flow,
closely related to the appearance of the velocity discontinu-
ity. The extensional flow contribution further retards the mo-
tion of the falling bead, increasing the mentioned viscosity
ratio.

The experimental and theoretical results obtained with
the two viscosity measurements are compared. The results
are presented in Fig. 10. For small bubbles that are almost
spherical, the experimental measurements lie between the
two limiting cases of Hadamard and Stokes laws with a vis-
cosity calculated from the falling-bead experiments. There-
fore, the bubble interface can neither be considered fully
contaminated nor clean. We note that the comparison is good
for bubbles with volumes smaller than the critical volume V..
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FIG. 10. Bubble velocity as a function of bubble volume, 1.2% HASE. The
fines are the theoretical predictions obtained from the Stokes {continuous
lines) and Hadamard (dashed lines) laws: (thin lines) u=thncometcrs (thick
lines) p= pgqy-

Above V,, the bubbles are no longer spheroidal and develop
a long tail. The results for the other fluids and their compari-
son with the theory are not presented here, but the agreement
between theory and experiments is equally good. Contrary to
the measurement of the viscosity by falliag-bead experi-
ments, the simple shear rheological measurements do not
take into account the uniaxial and biaxial deformations. This
explains why the behavior of small bubbles rising in a vis-
coelastic fluid is better described using a falling-sphere mea-
surement of the viscosity.

VI. INTERPRETATION

In the case of bubbles rising in an associative polymer, it
has been shown that there is a critical value of the volume at
which a discontinuity in the velocity-volume curve occurs.
The analysis of the bubble shape shows that for small
bubbles (with a volume smaller than the critical value), the
shapes of the bubbles are convex: the bubbles are spherical
or spheroidal. For volumes larger than the critical value, the
shape of the bubbles is completely different: the bubbles are
concave, there is an inflection point, and a very thin, long tail
appears at the rear part of the bubble. Moreover, the velocity
field around the bubbles also changes significantly for ex-
periments below and above the critical volume. In particular,

TABLE IV. Viscosity measurements for different solutions with two meth-
ods: fpeometer 18 the viscosity measured in a cone-plane rheometer under
simple shear, ey is the viscosity calculated from falling-bead experiments.
The ratio of the viscosity « decreases with increasing HASE concentration.

Fluid . %o Lhcheometer Ll Viscosity ratio
n° HASE (Pas) (Pas) @

1 1.2 0.22 0.49+£0.01 223

2 {5 1.14 1.58+0.04 1.39

3 1.7 3.34 4.08+£0.23 1.22

4 (Ref. 34) 2.1 12.5 13.23£0.4 1.06

Phys. Fluids 18, 121510 (2006)

107 . : _

Volume (mm3 )

FIG. 11. Mean shear rates ;/ as a function of the volume for different
percentages of HASE: ¢ 1.2%; 0 1.5%; ¢ 1.7%. The dashed lines repre-
sent, for each percentage of HASE, the shear rate for which the normal
stresses are measurable.

for bubbles with volumes above the critical value, the pres-
ence of the so-called negative wake can be observed.

It is possible to link this behavior with the rheological
properties of the fluid. For this, the mean shear rate (defined

as 37/: U/r) at which the normal stresses are measurable and
at which the discontinuity of the velocity occurs, is deter-

mined. Figure 11 shows the calculated )T/for the three tested
liquids. From this plot, the value of the shear rate corre-
sponding to the critical volume can be determined and is
approximately the same as the shear rate at which the elastic
nature of the fluid begins to manifest itself (V| becomes mea-
surable). Therefore, it can be said that the bubble velocity
discontinuity is a direct result of the appearance of elastic
stresses.

For negligible normal stresses, the bubbles are almost
spherical and their velocities are governed by the Stokes and
Hadamard laws. For significant normal stresses, the velocity
is larger than the velocity predicted by Stokes and Hadamard
law, and the bubbles are concave, presenting a tail at their
rear part.

The immediate consequence of the presence of normal
stresses in the liquid is a change in the bubble shape, which.
evidently leads to a drag reduction and, hence, a rapid in-
crease of velocity. A particular bubble shape is then related to
its rising velocity.

We have shown before that the elasticity of the liquid
plays an important role, because the discontinuity of the ve-
locity occurs when the normal stress appears in the liquid.
Consequently, we can consider that the Deborah number, de-
fined by the ratio of the first normal stress difference N| and
two times the tangential stress 7=, can be considered to
determine when the discontinuity occurs;
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FIG. 12. (a) C,/Cyy as a function of the Capillary number, (b) C4/C,q as a function of the Deborah number, for different percentages of HASE: ()} 1.2%
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()

HASE; (O) 1.5% HASE; (©) 1.7% HASE. The critical value of these dimensionless numbers for which the discontinuity of the velocity occurs depends on

the percentage of HASE.

Since there is a strong change of the shape of the bubble
before and after the discontinuity, this implies that the sur-
face tension will also play an important role. Since the dis-
continuity of the velocity occurs for Reynolds number
smaller than 1, the capillary number, defined by the ratio of
the viscous forces and the surface forces, Ca=pul// o can also
be considered to be an important parameter to the problem.
We can define a normalized drag coefficient, which is equal
to Cy/Cqg. where Cyg is the Hadamard drag coefficient
(C40=16/Re). For small bubbles {with a volume smaller
than the critical one), the normalized drag coefficient will be
close to 1. For large bubbles, there is an increase of the
velocity. And so, for a decrease of the drag coefficient, the
normalized drag coefficient will be smaller than 1. The nor-
malized drag coefficient is shown in Fig. 12 as a function of
the two dimensionless numbers previously defined. Clearly,
for small De, the bubbles are spherical and C,;/ C,q is around
1. After a certain critical De, the normalized drag coefficient
decays abruptly, corresponding to the point for which the
discontinuity occurs. This behavior can be observed in the

1.5 T T j

C([/Crl.()

0.51

0 : 1
-2 -1 0 1

10 10 10 10
[I=Cax De

FIG. 13. Normalized drag coefficient as a function of T1=CaX De for: {°)
1.2% HASE: () 1.5% HASE; (©) 1.7% HASE. For all the percentages of
HASE, the discontinuity occurs for the same value of T (IT=0.25).

three solutions. However, the value of the critical De for
which the discontinuity occurs is not unique, as it depends on
the percentage of HASE. A similar trend can be observed for
the capillary number: at a critical value of Ca, the normalized
drag drops abruptly, but this critical value is different for
each liquid. Hence, neither De nor Ca can be used to capture
a generally valid condition for the jump to occur. There are
two main conclusions from the results of this analysis: (1)
the discontinuity appears when the elastic properties mani-
fest themselves and (2) there is a significant change in the
shape associated with the bubble velocity increase. It is then
appropriate to form a dimensionless group that compares
elastic forces to capillary forces,

m=2¢

o
This number would be large if elastic effects dominate over
surface tension effects and vice versa. In fact, this number
could be interpreted as I1=4CaXDe.

Figure 13 shows the normalized drag coefficient as a
function of the dimensionless group IT. For this case, the
transition from high to low drag appears to be the same for
all the liquids: there is a critical value of IT (I1,4=0.25) that
determines the conditions for the bubble velocity discontinu-
ity to appear for all the liquids tested.

The tail at the rear part of the bubble leads to a decrease
of the drag coefficient and consequently to a rapid increase
of the velocity. Since the tail shape can also influence the
flow behavior of the bubble, the tail shape can be related to
the bubble velocity. This aspect is further discussed in the
next section.

Vil. SHAPES OF THE TAILS

Lastly, we present a photographic study of the peculiar
shapes of the bubble tails that appear after the bubble veloc-
ity discontinuity. Previously, it was observed that a long, thin
axisymmetric tail appears on the rear part of bubbles imme-
diately after the critical volume {this case is shown in Fig.
14(a)]. The thickness of the tail can be of the order of a few
microns, while its length amounts to a few centimeters. The
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4 mm 4 mm

(a) (b)

FIG. 14. Two perpendicular views (a) and (b) of the tail: the

tail eventually breaks into micron-sized bubbles. This behav-
ior resembles the so-called tip-streaming phenomena, when
daughter drops are ejected from a thin thread at the tip of a
highly stretched drop. The tip-streaming behavior was first
reported by Taylor“l” and since then has been studied by
many authors. To our knowledge, tip streaming has not been
reported to date for the case of air bubbles moving in com-
plex non-Newtonian liquids.

For larger bubble sizes, the cusped tip transforms into a
“blade-edge” tip [two—dimensional (2D) cusp] [Figs. 14(b)
and 14{c)]. The 2D cusped end was observed from simulta-
neous tail images taken at perpendicular views. Several ex-
periments are necessary to obtain images in which the edge
of the tail is parallel to the photo plane [images shown in
Figs. 14(b) and 14(c)]). The appearance of such shapes has
also been previously observed." The 2D cusp does not have
a preferential orientation. Note that these experiments are
performed in a cylindrical tank.

Moreover, the streaming behavior can also be observed
in 2D cusps; the so-called “edge streaming.” We have ob-
served that the 2D cusped tail can break into different man-
ners for the same nominal experimental conditions. In some
cases, the tail breaks into two different threads [Figs. 14(b)
and 15]. The two threads extend for some distance, but even-
tually each one breaks into microbubbles. In some other
cases, the 2D tails collapse into a single thread with perpen-
dicular filaments that resemble a “fish backbone” {Figs. t4(c}
and 16]. All these fine threads eventually break into small
bubbles. Edge streaming has also not been previously re-
ported for these fluids.

Clearly, the viscoelastic nature of the HASE solutions is
responsible for the formation of the cusped and edged tips at
the back of the air bubbles. However, the basic mechanism
for the cusp-to-edge transition is not known. Tip streaming
phenomenon is an indication that, near the cusp, high levels
of fluid stretching are present. There is also a possibility that
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2 mm . 0.5 mm

(c)

tail breaks into two different threads (V=824 mm’, 1.5% HASE).

the surface active ingredients are being convected along the
bubble surface, inducing surface tension gradients, hence,
enhancing the tip streaming.

To further investigate the conditions for which the 2D
cusps appear, additional series of experiments were per-
formed for such large bubbles. The terminal velocities were
measured for increasing bubble volumes, and the shape of
the tails was also identified. Figure 17 shows the terminal
velocity of bubbles as a function of volume. The symbols
denote different tail shapes observed experimentalily. With
the present experimental setup, it is difficult to determine
precisely the critical volume from which the tail changes

(a) (b)
FIG. 15. Various tail shapes for bubbles moving in a 1.5% solution of
HASE: {a) tip streaming: bubble with filament tail and zoom of the tail
instability: (b) edge streaming: bubble with knife-edge tail and breakdown
process of the tail edge; (c) edge streaming: bubble with knife-edge tail [the

volume is larger than that shown in ()] and breakdown process of the tail
edge.
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FIG. 16. Two perpendicular views (a) and (b) of the tail. (c) The tail col-
lapses into a single thread with perpendicular filaments that resemble a “fish
backbone” (V=391 mm’, 1.5% HASE).

from axisymmetric to two dimensional {either two threaded
or fish backbone).

For volumes smaller than 280 mm® (corresponding to
shear rates smaller than 15 s71), the tail is axisymmetric,
very thin, and long. For larger volumes, the 2D cusp appears.
For volumes between 280 and 350 mm® (corresponding to
shear rates between 15 and 18 s™' ), only fish-bone streaming
is observed. For volumes larger than 350 mm? {correspond-
ing to shear rates larger than 18 s7!) both two-thread and

120 . . . . . .
100}
',‘A 80
g
I T
= 60} + &
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= +
Y 40} N
+

200 300 400 500 600 700
volume (n1n13)

FIG. 17. Velocity as a function of the bubble volume for {.5% HASE.
Different critical values of the volume for the different bubble shapes: ()
spheroidal bubbles; (+) axisymmetric tail (tip streamting); () 2D edged tail
(fish-bone streaming); {O) 2D edged tail (two-thread streaming).

Phys. Fluids 18, 121510 (2006)

fish-bone formations can be observed. Although the influ-
ence of the type of 2D tail on the terminal velocity of the
bubble (drag coefficient) is not significant, we observed that
when the two types of edge-streaming appear, & larger scatter
of data of bubble velocity is observed.

The different shapes of tails reported in this section have
never been observed for rising bubbles in either polymeric or
worm_like micellar fluids. The formation of these different
shapes may be, in fact, a result of the specific properties of
the associative polymer fluid. Clearly, further experiments
are needed to understand the formation process of a particu-
lar tail shape.

V. SUMMARY AND CONCLUSIONS

We have shown that for bubbles rising in an associative
polymer solution, as the bubble volume increases, a discon-
tinuity of the velocity occurs. This discontinuity in the ve-
locity is smaller than that observed for aqueous shear-
thinning viscoetastic liquids. A more distinctive feature for
this case is that the slope of the relation velocity-volume
increases significantly past the discontinuity. This particular
behavior was studied for various HASE concentrations. It
was possible to relate this discontinuity with the rheological
properties of the fluid. In fact, the shear rates for which the
discontinuity occurs correspond to those for which the nor-
mal stresses appear. It is important to note that the critical
shear rates also correspond to the point at which the shear
thickening appears in some solutions, which may contribute
to reducing the strength of the velocity jump.

The discontinuity can also be related to the bubble shape
and to the flow around the bubble. For volumes smaller than
the critical volume, the bubbles are spherical or spheroidal
and the flow around the bubble is similar to that of a New-
tonian liquid. For volumes larger than the critical one, the
rear of the bubble is concave and presents a tail at their rear
part. The flow around the bubble is more complex, and the
presence of a negative wake can be observed.

This study provides a criterion for the determination of a
critical volume. Due to the importance of the elasticity and
the surface temsion, a dimensionless number defined as
[1=N,d/ o is proposed to determine the jump conditions. The
discontinuity occurs for Il =0.25.

For the case of small bubbles, we found good agreement
between experiments and predictions for the velocities ac-
cording Stokes-Hadamard laws. For small bubbles, the shear
rate is small, and consequently, the liquid can be considered
as Newtonian. For this agreement, the viscosity had to be
obtained with a falling-bead technique. In agreement with
previous investigations, we found that the viscosity deter-
mined in this manner was larger than that obtained under
simple-shear viscometric flow.

For large bubble volumes, we presented a photographic
study of the bubble shapes and particularly the tail shapes.
Different kinds of tails can be observed. ’

From the present results, we have determined that the
appearance of the discontinuity results from a balance be-
tween elastic and surface tension forces. We are currently
conducting additional experiments with other non-
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Newtonian liquids (Boger, inelastic, etc.) to further corrobo-
rate the appropriateness of the I group to describe the con-
ditions of the bubble velocity discontinuity. These results
will be reported in a future communication.
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17:15
KK 1 Dynamical slowdown of polymers in laminar and ran-
dom flow DARIO VINCENZI, EBERHARD BODENSCHATZ,
Max Planck Institute for Dynamics and Selforganization, Goettin-
gen, Germany ALBERTO PULIAFITO; ANTONIO CELANI,
INLN, Nice, France The dynamics of an isolated polymer in a flow
. field forms the basis of constitutive models for dilute polymer
solutions. We investigate the influence of an external flow on the
relaxation dynamics of a single polymer theoretically and numeri-
cally. We show that a pronounced dynamical slowdown occurs in
- the vicinity of the coil-stretch transition, especially when-the de-
pendence on polymer conformation of the drag is accounted for.
. For the elongational flow, relaxation times are.exceedingly larger
than the Zimm relaxation time, resulting in the observation' of
conformation hysteresis. For random smooth flows hysteresis is
- not present. Yet, relaxation dynamics is significantly slowed down
because of the large variety of accessible polymer configurations.
: - In both.cases, the dependence of the drag force on the polymer
conﬁguration plays a prominent role. This suggests the necessity
of improving .current models of polymer solunons in turbulem
flows to account for such effect.

17:28
KK2 Transport properties of a flexible fiber in cellular ﬂows
MICHAEL SHELLEY, Coiirant Institute, New York University

YUAN-NAN YOUNG, Department of Mathematical Sciences,

New Jersey Institute of Technology Recent experiments by V.
Steinberg and his collaborators have used ‘‘low Reynolds turbu-
lence” in elastic flows to demonstrate -coil-stretch transitions of
fluorescently labelled DNA molecules. With this as motivation,
we consider the much simpler problem of an elastic fiber that
moves in a periodic cellular flow. Our numerical simulations show
that such a fiber can act as a spatially extended test particle whose
internal dynamics can lead to complex transport properties across
space. In some parameter regimes, we find that space can be di-
vided into regions of fiber entrapment and fiber transport, with
fibers either trapped near elliptic points, or being transported along
the connecting manifolds of the hyperbolic points. We also find
that fiber buckling near hyperbolic points can yield random walk

behavior over long. times, with the effective diffusivity showing

little dependence on the effective ngxdlty of the fiber.

17: 41

KK 3 Microfluidic bubble trains in non-Newtonian fluids
MATTHEW SULLIVAN, Division of Engineering and Applied
Sciences, Harvard University / Schlumberger-Doll Research KA-
RINA MOORE, Norfolk State University HOWARD STONE, Di-
vision of Engineering and Applied Sciences, Harvard University
-We present studies of bubble formation and propagation in non-
Newtonian fluids using a microfluidic flow-focusing device. Under
certain conditions, monodisperse bubble trains can be formed. The

bubble size .énd shape at formation are measured as.a funclion of

fluid flow rate and gas pressure and compared to bubble ‘generation
in a Newtonian fluid. We also observe two instabilities in non-
Newtonian bubble propagationdrifting toward the channel wall

and drifting towards neighboring bubbles in the bubble train even -

at large initial bubble separations. This behavior is in contrast to a
Newtonian fluid where bubbles occupy a stable position along the

- channel centerline and maintain their initial separation.

17:54 o
KK 4 Computatlon of the Kmfe-Edge Cusp of a Rlsmg Bubble
in a Viscoelastic Fluid* RUOBO YOU, HOSSEIN HAJ-
HARIR], University of Virginia We consider the buoyant rise of -

. an originally-spherical bubble through a viscoelastic fluid. Experi-

ments have demonstrated that the sharp trailing edge could de-

" velop a three dimensional cusp of *‘knife-like’” shape under cer-

tain conditions (high capillary number, large drop size). In order to
understand the complex physics of this phenomenon, we have

"conducted a linear, three-dimensional temporal stability -analysis
"of a computationally-obtained axisymmétric cusped bubble. The
~in-house time-accurate code is control-volume based and uses a

body-fitted grid. Flux-difference splitting is employed to handle

- large Deborah numbers. Artificial compressibility is used for time

marching. - The resulting eigenanalysis shows. the only linearly-
unstable mode to be the one with azimuthal wavenumber of 2. The
eigenvalue is real and the nature of instability is an exchange of
stability. Thus an axisymmetric cusp can indeed develop into a
knife-like shape. An investigation of the energy production and
dissipation for the disturbances shows that the normal. pressure

. gradient of the base-state along the free surface plays an 1mportant

role in the evolution of the instability. -

“#supported by NASA Grant NAG3-2760; R. Balésubr_amaniam.

18:07

KK 5 Influence of shape and boundary condition on the drag
on bubbles moving in non Newtonian liquids E. SOTO, C. -
GOUIJON, R. ZENIT, Inst. Inv. Materiales, Universidad Nacional
Autonoma de Mexico Bubbles moving in non Newtonian fluid
exhibit a peculiar behavior: the -terminal velocity - increases
abruptly for a critical value of the volume. There has been a long

" debate on the nature of this phenomenon, one of which assumes -

that the boundary condition on the surface of the bubble changes
from non-slip to slip. To investigate this claim we have performed
an axi-symmetric 2D simulation to determine the drag on a bubble

.moving in a container. The parameters used are those correspond-

ing to bubbles in which the bubble velocity discontinuity appears.
From experiments, the exact shape of bubbles is obtained by a
digital analysis. The profile is then feed into a fixed shape Navier-
Stokes solver. The viscosity and rise velocity are also taken from
the experiments. Then the boundary condition on the surface is
chosen to either be slip or non-slip. The drag coefficient can be
calculated for each case. We tested cases corresponding to bubbles
in non-Newtonian liquids right before and after the velocity dis-
continuity. Bubbles below this critical volume are spheroidal con-
sidering a rigid interface. Bubbles above this value have a tear like




* curvature and the lamellar length are of the same order of magni-
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shape, with or without a tail, and a free interface. Our results show
that the drag reduction associated with the bubble velocity discon-
tinuity is not as lasge as that observed experimentally. Hence, the

change of shape and boundary conditions cannot fully explain the b

namre of this phenomenon.

18:20 ' ‘
KK 6 Thinning of Lamella in a Non-Newtoman Foam LUCIEN

BRUSH, University of Washington STEVEN ROPER, Northwest-
. ern University Consider a surfactant-free lamella in an evolving

foam. Asymptotic analysis in small capillary number is used to

 assess the effects of non-Newtonian properties of the liquid using
power-law and Ellis models of viscosity, principally present in the .

transition region. For a foam in which the Plateau border radius of

tude, the shear rate dependence of the viscosity changes the time

| ‘scale for thinning but not the power law behavior of the thinning
. rate compared to Newtonian fluids. For a foam in which the area
. of fluid in the Plateau border and in the lamellar region are of the
; same order 1mt1ally the effects of the non-Newtonian viscosity
- appear explicitly in the integrated form of the lamellar thinning

law. Comparisons are made between a number of shear-thinning
fluids, a shear-thickening fluid and a Newtonian fluid.

18:33

KK 7 Modelling persnstent holes in complex ﬂuids ROBERT D. .
.DEEGAN, RICHARD R. KERSWELL, University - of Bristol

Mekr et al. (PRL 184501 98, (2004)) discovered that vertically
vibrated shear thickening fluids can support stable vertical inter-

‘faces. These stable structures take the form of holes, voids that

span the. fluid layer which can last indefinitely, or of fingers,

" columnar-type protrusions which: persist for thousands of cycles.

We show that the stability of the holes can be understood in terms
of a hysteretic rheology model, and confirm the existence of this
hysteresis in rtheological measurements of a mixture of comstarch
and water. -

18:46 ‘ ¥
KK 8 Viscoelastic bells LUC LEBON JEAN-SEBASTIEN

"ROCHE, LAURENT LIMAT, PMMH - ESPCI/CNRS ANDREW

BELMONTE, Penn State University We performed experiments

on liquid bells resulting from the impact of a viscoelastic fluid on

a circular obstacle larger than the jet-diameter, in the way of water
bells by Savart!. We used polymer solutions or giant-micelle so-
lutions as viscoelastic fluid. In the regime of closed bell, we ob-

. served a particular shape of bells, very different from the shape of
.water bells as observed and predicted by Clanet. The bells shape

is essentially controled here by the viscoelastic theology. It ap-
pears also very sensitive to the pressure gap through the liquid
film. For higher flow rate, the bells do not close anymore and form

" liquid sheets. Their desintegration is very different from the one

observed for Newtonian liquid : filaments structure extends the
sheet without any drops formation. An original behaviour of
growth of circular holes with a thick rim is also observed.

- g, Savart, Ann. Chim. 54 (1833)

2C. Clanet, J. Fluid Mech. 430 (2001)

17:15 . ' )

KL 1 Zero Pressure Gradient Flat Plate Boundary Layer Ex- .
periments Using Synchronized PIV and a Hot Wire Anemom-:
etry Rake* M.  TUTKUN, P.B.V. JOHANSSON, WK.
GEORGE, Chalmers University of Technology, Dept. of Applied
Mechanics, 412 96 Goteborg Sweden M.  STANISLAS, JM.
FOUCAUT, J. KOSTAS, S. COUDERT, Laboratoire de Meca-

. -nique de Lille, UMR CNRS 8107, 59655 Villeneuve d’Ascq France.
- .J. DELVILLE, Laboratoire d’Etudes Aerodynamlques :UMR

CNRS 6609, 86036 Poitiers France Zero pressure gradient flat -
plate boundary layer experiments have been performed in the 20-

* . meter long test section of the Laboratoire de Mécanique de Lille,

LML, wind tunnel. Measurements were carried out at Re; =10
000 and Re, = 20 000 using synchronized PIV and a hot wire
anemometry rake. The boundary layer thickness at the measure-

ment location was about 30 cm. A hot wire rake of 143 probes was
placed in the test section of the wind tunnel to provide the time
history of the boundary layer.-2 stereo PIV systems in the

wallnormal-spanwise (YZ) ‘plane, and 1 stereo. PIV system to. -
record in the streamwise-wallnormal (XY) were used. One high- .
" repetition PIV system was used in streamwise-spanwise (XZ)

* plane. The sampling frequency. of the XZ PIV system was 3000

VFis at Re, = 20 000 and 1500 VF/s at Re, = 10 000:

*This work™ has been performed under the WALLTURB project.
WALLTURB (A European synergy for the assessment of wall
turbulence) is funded by the CEC under the 6th framework pro-
gram (CONTRACT N: AST4-CT-2005-516008) - - ‘

17:28 '

KL 2 Adverse Pr&ssure Gradient Boundary Layer Expen- .
ments Using Synchronized PIV and a Hot Wire Anemometry . -
Rake* P.B.V. JOHANSSON, M. TUTKUN, W.K. GEORGE,
Chalmers University of Technology, Dept. of Applied Mechanics,
412 96 Goteborg Sweden M. STANISLAS, J.M. FOUCAUT, J.
KOSTAS, S. COUDERT, Laboratoire dé¢ Mecanique de-Lille,
UMR CNRS 8107, 59655 Villeneuve d’Ascq -France J.
DELVILLE, Laboratoire d’Etudes Aerodynamiques, UMR CNRS
6609, 86036 Poitiers France This is the first report of an adverse
pressure gradient turbulent boundary layer experiment performed
in Laboratoire de Mécanique de Lille, LML, wind tunnel which is
of 20 meter in length. The adverse pressure gradient was created
by means of a bump of 30 cm height. The thickness of the bound-
ary layer was about 30 cm and Reynolds number based on mo-
mentum thickness, Re,, was 30 000 for 10 m/s external free
stream velocity. A hot wire rake of 143 probes synchronized and
simultaneously sampled together with 2 stereo PIV systems in the’
wallnormal-spanwise (YZ) plane, 1 cm upstream of the wires
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for presemmg data produced by experiinent and sxmulatlon inthis’
“talk we discuss the key changes in the force network for a granular

- material in an inclined bed. We nse particle dynamics to model the

- granular -material as’a two-dimensional system "of polydisperse
 disks, and study the evolution of forces, contact angles and net-
*work topology as thé system approaches the onset of flow. By

- applying novel network analysis techniques, we -gain insight into

. ~+How granular materials orgamze, restructure, and ultimately fail

.under shear

Co1s9 .
HJ 4 Twisted SandpxleS° A, Structural Sngnature of Jammmg _

in Granular Materials ERIC CORWIN, HEINRICH JAEGER,

. SIDNEY.NAGEL, The James Franck Institute and Department of

Physics,The University of Chicago When the temperature is in-
creased, a glass loses its rigidity and begins to flow. If sufficient

" shear stress is applied to a.granular material, it too will lose its. -
-rigidity and flow. There is no ambiguity between the rigid and
- flowing phases in both cases. However glasses and liqiids have

pearly identical structure. Are jammed states and flowing states in
a granular system structurally different? And if so is there a mea-

" surement which would yield a signature of this difference? We
- have created an experimental technique that measures the contact-
force distribution during shearing flow to address these questions.. . .

The distribution. of forces is sensitive to minute variations in par-

ticle to particle distances. As. such, it provides a microscopic view
. of the nearest-neighbor position correlations. At the onset of jam-

ming we find a qualitative change in the force dlstnbutlon This, in
turn, hints that there may be a ‘similar structural signature in

glasses. Further, we also measure a new granu]ar témperature in

granular systems ‘which may be analogous to the glass—transmon
temperature in. hqmds N

14 12

_ HJ 5 Cage. Dynamlcs ina Umformly Heated Granular Fluid ~
- . PEDRO REIS, ROHIT INGALE, MARK SHATTUCK, Levich

Institute, City College of New York We report a novel experimen- .
. tal investigation of the dynamics of a uniformly heated, horizontal

and quasi-2D granular fluid. Our study is done as a function of -

filling fraction, ¢, in the region prior to crystalhzanon ‘which we

observe at ¢, = 0.719 £ 0.007. We perform a statistical analysis
based on two quantmes that are typically employed in colloidal/ -
. molecular systems: the Mean Square Displacement (MSD) and the

Self Intermediate Scattering Function (SISF). These are calculated

from the -trajectories obtained by tracking all particles inside a -

representative imaging window of the full system. At low ¢ the
classic diffusive behavior of a disordered fluid is observed. As the

- filling fraction is increased towards ¢, , the MSD (or SISF) de-

velops a two-step increase (or decrease) analogous to what is com-
monly observed in glassy systems. This plateau at intermediate
timescales is a signature of the slowing down of the motion of
particles_due to temporary. trapping inside the cages formed by

. their neighbors. This caging is-increasingly more. pronounced as

¢, is approached from below. For ¢ > ¢, each particle becomes
fully arrested by its six neighbors, for the whole time accessible
experimentally. Moreover, the relaxation time extracted from the
SISF, as a function of ¢, is well described by the Vogel-Fulchers
law. Our results are an important step in strengthening the analogy
-between colloidal/molecular glassy systems and dense granular
materials under uniform thermalization.

HK1 A contintam model w1th mlcrostructural evolutxon for

" special case of the *‘thixotropic” fluid proposed several years ago
‘by this author (J. NonNewtonian Fluid Mech. 14 141-160,1984) is

" mation history is described by the ‘shear-induced evolution of -

'viscous model predicts qualitatively most of the time-dependent
. viscous shear-stress and normal-stress effects observed exper-
_mentally in Stokesian suspensions. - The addition of plastic terms

static deformation of dry granular media. Addition of viscous ef-
- fects to the latter provides a generalization of models currently

_ relevant microstructural time scale .is. associated  with “granular :

" bubble volume; however, a sudden increase of the bubble velocity
“is observed as the bubble volume reaches a critical value. This -
. phenomena, known as the bubble; velocity discontinuity, has been -
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13.20

Stokesian suspensions, viscoplastic dispersions and granular
media JOE GODDARD, Untversuy of California, San Diego A
explored as a plausible model for the flow of homogeneous par-

ticle suspensions and dense granular media. The effect of defor-

second-rank ‘‘fabric” tensor, which serves to define -a:pair of ;
non-negative fourth-rank tensors for viscosity and plasticity. The

allows for yield stress arising from mechanical contact between
particles, and the purely plastic form provides a model for quasi-

being employed to describe dense, rapid granular flows, where the

micro-inertia. A brief c0n51derat10n is given to non-homogeneous -
(Acrivos-Leighton) models, of a type that allow for partlcle seg-
reganon and p0551bly for matenal mstablhty

13:33
HK 2 The rise velocity and shape of an air bubble movmg in"
HASE fluid E. SOTO, C. GOUION, T. BEHAGHEL, R. ZENIT, .|
IIM-UNAM, Mexico Experiments were conducted to determine the

shape. and the rise velocity of an air bubble moving in a HASE
fluid. These type of nion Newtonian materials can be classified as
associative fluids, because their internal structure is formed by -
hydrophobic molecules which associate or dissociate as a result of
flow. In particular, the liquid used in this investigation has a nearly *
constant shear viscosity for a wide range of shear rates but shows:
significant elasticity above a certain critical shear rate. Millimetric
size bubbles were released from rest in a tall cylindrical container.
Two types of images were obtained: high resolution photographs,
from which the bubble shape and volume were obtained; and, low -
resolution high speed videos were used to measure the bubble -
velocxty We found that the bubble velocity increases- with the

observed in other non' Newtonian fluids-but, to our knowledge, has
never been reported. for associative fluids. Additionally, we iden-
tified that a significant change of the bubble shape occurs along
with the appearance of the velocity discontinuity. Moreover, by
performing PIV measurements we are able to relate the appear-
ance of the velocity jump with values of the local shear rate at
which the elasticity of the fluid becomes important. "
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