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Resumen

En este trabajo se estudia el ascenso libre de burbujas de aire en un

poĺımero asociativo hidrofóbicamente modificado soluble en un medio acu-

oso y alcalino. Las propiedades reológicas de la disolución están determinadas

por los grupos hidrofóbicos: a moderadas rapideces de deformación el sistema

se estructura, la viscosidad se incrementa y aparecen los esfuerzos normales.

Para rapideces de deformación mayores el sistema se alinea y la viscosidad

disminuye. Estos fluidos presentan un comportamiento casi newtoniano para

pequeñas rapideces de deformación, pero se comportan como viscoelasticos

para deformaciones mayores. Experimentalmente se observa la presencia de

una discontinuidad a un volumen critico, para la curva velocidad vs volumen.

Esta discontinuidad se asocia con un cambio de la forma de la burbuja, a

volúmenes por debajo del cŕıtico las burbujas son esferoidales y a volúmenes

por arriba del cŕıtico presentan la formación de una cola. La aparición de la

cola esta asociada a la formación de un punto de inflexión en la superficie de

la burbuja y se asocia con el momento en que la elasticidad del fluido se man-

ifiesta. Se propone un número adimensional que relaciona la elasticidad y la

tensión superficial, a un valor cŕıtico este número se presenta la aparición de

la discontinuidad. Este criterio se prueba para varios ĺıquidos con diferentes

propiedades reológicas y funciona para todos los casos. También se presenta

un estudio de la contribución de los diferentes parámetros involucrados en la

magnitud de la discontinuidad. Finalmente, se muestran fotograf́ıas de colas

de burbujas con formas peculiares.



0.1 Objetivo

Determinar las condiciones a las que se presenta la discontinuidad en la veloci-

dad terminal de una burbuja ascendiendo libremente en fluidos viscoelásticos.

0.2 Introducción

El movimiento de burbujas en ĺıquidos es de particular interés debido a su

importancia en procesos qúımicos y f́ısicos, como por ejemplo, tratamiento de

aguas residuales y la extracción de petróleo. En el caso de burbujas ascendi-

endo libremente en fluidos no newtonianos, se observan diversos fenómenos,

uno de ellos, es la llamada discontinuidad de la velocidad terminal de la bur-

buja. Esta discontinuidad se presenta cuando a un ligero incremento de volu-

men, la velocidad terminal aumenta abruptamente. En 1965 Astarita y Apuzzo

fueron los primeros en reportar este comportamiento, seguidos de diferentes

autores que lo confirman (Barnett, Humphrey y Litt, 1966; Calderbank, John-

son y Loudon, 1970; Leal, Skoog y Acrivos, 1971; Zana y Leal, 1978; Rodrigue,

De Kee y Chan Man Fong, 1996; Rodrigue, De Kee y Chan Man Fong, 1998;

Herrera-Velarde et al., 2003; Pilz et al., 2007). La discontinuidad se presenta a

un volumen cŕıtico. El incremento en la velocidad terminal antes del volumen

cŕıtico, en relación a la velocidad después de este valor, varia entre 2 y 6.

Astarita et al. (1965) atribuyeron la aparición de la discontinuidad al cam-

bio en la condición de frontera de ŕıgida a libre. Liu et al. (1995) propusieron

que la discontinuidad se debe a la reducción del arrastre debido al cambio de

forma de la burbuja antes y después del volumen cŕıtico. Rodrigue et al. (1998)

atribuyen este comportamiento a un balance de la elasticidad y las inestabili-

dades de Marangoni. Por otro lado Herrera-Velarde et al. (2003) sugieren una

fuerte relación de la discontinuidad con la formación de una cauda negativa

en la parte posterior de la burbuja. Aubry (2007) no sólo apoya el argumento



anterior, sino que sostiene que la caudad negativa impulsa a la burbuja.

En este trabajo, se propone una nueva explicación para predecir bajo que

condiciones se presenta la discontinuidad para el caso de un poĺımero asociativo

tipo HASE y la comparación con varios ĺıquidos reportados en la literatura.

Se propone una análisis dimensional entre las fuerzas inerciales, viscosas, de

superficie y elásticas. La elasticidad del material tiene un papel preponder-

ante en la aparición de la discontinuidad. También se realizaron simulaciones

en elemento finito para evaluar la contribución de los diferentes parámetros

involucrados en la magnitud de la discontinuidad. Finalmente se presenta un

estudio fotográfico de la formación de caudas no axisimétricas, que no han sido

observadas para este tipo de fluidos con anterioridad.
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Figure 1: Dispositivo experimental

0.3 Materiales y Métodos

El dispositivo experimental (ver fig. 1) utilizado consiste de un cilindro vertical,

con una campana en el fondo, inmerso en una caja de sección cuadrada, ambas

partes se llenan con el mismo ĺıquido para disminuir los efectos reflexión.

En la campana se atrapa una burbuja de aire, al girar la campana se libera

la burbuja en el seno del ĺıquido. La velocidad, volumen y morfoloǵıa de la

burbuja se obtienen por medio de video de alta velocidad y fotograf́ıas. Se

utilizo Primal TT-935 que es un poĺımero asociativo hidrofóbicamente modifi-

cado soluble en un medio acuoso y alcalino conocido como HASE por sus siglas

en inglés. Como agente alcalinizante se utilizo amino-metilpropanol (AMP),

el pH de trabajo se ajusto a 9. Las soluciones poĺımericas se prepararon en

agua destilada y dejando un lapso de al menos 48 horas antes de realizar los

experimentos.
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Figure 2: Viscosidad cortante (śımbolos vaćıos) y primer diferencia de esfuerzos

normales (śımbolos rellenos) como función de la rapidez de deformación para

diferentes concentraciones de HASE. (◦) 1.2 %; (¤) 1.5 %; (¦) 1.7 %. La ĺınea

continua representa la predicción de modelo de Bautista-Manero model para

HASE al 1.7 % (Bautista, 1999).

0.4 Resultados Experimentales

La figura 2 muestra la viscosidad y primer diferencia de esfuerzos normales

como función de la rapidez de deformación. Se presenta los datos de flujo cor-

tante simple para tres diferentes concentraciones de HASE en medio acuoso

con un pH = 9. Se observa que a bajas rapideces de deformación la viscosi-

dad permanece casi constante, en ese mismo intervalo la primer diferencia de

esfuerzos normales empieza a adquirir valores considerables. A esas mismas

rapideces de deformación se mueven las burbujas liberadas en este caso y se

presenta la discontinuidad, esto permite separar los efectos de reducción en la

viscosidad y los efectos elásticos.

En la figura 3 se presenta la curva velocidad contra volumen para una

disolución de HASE al 1.2%. Se observa que a un volumen cŕıtico se presenta la

discontinuidad (Vc = 65mm3), se prestan las predicciones para la ley de Stokes

y el regimen de Hadamard, usando la viscosidad de flujo cortante simple y



Figure 3: Velocidad de burbujas como función de volumen para HASE al 1.2%.

Las ĺıneas son las predicciones teóricas de Stokes (ĺıneas continuas)y Hadamard

(ĺıneas discontinuas): (ĺıneas delgadas) µ = µreometro; (ĺıneas gruesas) µ =

µbola.

la determinada por el método de cáıda de la bola. Debido a que el flujo

alrededor de una burbuja no es homogéneo, la viscosidad seleccionada para

hacer los cálculos fue la del método de la cáıda de la bola.

Las burbujas pequeñas (con volúmenes debajo del cŕıtico) tienen forma es-

feroidal y las burbujas con volúmenes mayores al cŕıtico presentan la formación

de una cola larga, como ejemplo de ello se presentan algunas burbujas para el

caso del HASE al 1.2% (ver figura 4).

Siempre que se presenta la discontinuidad se observa que la parte posterior

de la burbuja cambia de forma, de convexa a cóncava. Para resaltar este hecho

se presenta la superposición de los perfiles de un par de burbujas, una con un

volumen menor al cŕıtico y otra con un volumen mayor (ver figura 5). Estas

observaciones y la presencia de una cauda negativa en la parte posterior de



V*=2.94V*=1.67V*=1.04

V*=0.76V*=0.46V*=0.19

Figure 4: Burbujas para diferentes valores del volumen adimensional V ∗ =

V/Vc para HASE al 1.2 %, con Vc = 65mm3. La escala representa 2 mm.

la burbuja, indican que la elasticidad esta relacionada con la aparición de la

discontinuidad. En la siguiente sección se presenta una discusión al respecto.
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Figure 5: Comparación del perfil de burbujas antes (ĺınea continua) y de-

spués (ĺınea discontinua) de la discontinuidad. (Vmenor = 49.2mm3;Vmayor =

61.2mm3; 1.5%HASE)

0.5 Análisis dimensional

Se ha encontrado que la discontinuidad siempre esta asociada a un cambio de

forma en la burbuja, de ah́ı que se plantea considerar las fuerzas que pueden

modificar dicha forma. Para fluidos no newtonianos las fuerzas involucradas

son:

• Fuerzas inerciales: ρU 2d2

• Fuerzas viscosas: µUd

• Fuerzas elásticas: N1d
2 (flujo cortante)

• Fuerzas de superficie: σd

donde ρ es la densidad del ĺıquido, U la velocidad de la burbuja, d el

diámetro equivalente de la burbuja, µ la viscosidad del ĺıquido, N1 la primer

diferencia de esfuerzos normales y σ la tensión superficial. La forma de la

burbuja depende de un balance entre las fuerzas mencionadas y las fuerzas



de superficie (estas mantienen la forma esférica de la burbuja). Para fluidos

newtonianos, la deformación de la burbuja esta dada por la competencia de las

fueras inerciales y viscosas con la fuerza de superficie. Los números de Weber

y capilar dan estas relaciones y están definidos como:

We =
ρU2d2

σ
(1)

Ca =
µU

σ
(2)

Si cualquiera de los dos números es mayor a uno, la burbuja es deformada.

Para el caso de fluidos viscoeslásticos es necesario considerar la relación entre

las fuerzas elásticas y las fuerzas de superficie, esta relación se identifica con

el śımbolo Π y se define como:

Π =
N1d

σ
(3)

Este número Π puede expresarse como el producto del número de Deborah

y el número Capilar: Π ∼ De× Ca. El número de Deborah se define como la

relación entre un tiempo caracteŕıstico de material tr y un tiempo caracteŕıstico

de observación tv:

De =
tr
tv

(4)

Cuando una burbuja se mueve en un medio viscoelástico la elasticidad se man-

ifiesta como una fuerza normal capaz de deformar a la burbuja, siempre y

cuando el número Π sea mayor a uno. Este comportamiento se muestra en la

figura 6, donde se observa que el número Π tiene un incremento más rápido

que los números Ca y We. Además justo en el valor del volumen cŕıtico el

número Π adquiere un valor mayor uno, mientras que los otros dos números

siempre son menores a Π, esto indica que los efectos elásticos dominan. Los

números Ca y We adquieren valores mayores a uno a ciertos volúmenes, que



Figure 6: Gráfico del volumen de burbuja vs números adimensionales para un

fluido HASE al 1.2% (¦ número Π, ¤ número Capilar (Ca) y ◦ número de

Weber (We)).(Vc = 65mm3)

podŕıan estar relacionados con cambios en la morfoloǵıa de las burbujas. En

este caso la magnitud de la discontinuidad es pequeña, debido a la falta de

efectos adelgazantes y por lo tanto no existe una disminución en el arrastre

por dicho efecto.

Definiendo el coeficiente de arrastre adimensional: Cd/Cd,0, donde Cd,0 es

el coeficiente de arrastre de Stokes (Cd,0 = 24/Re), se tiene que para burbu-

jas pequeñas (con volúmenes menores al cŕıtico), el coeficiente adimensional es

cercano a 1. Para burbujas con volumen mayor al cŕıtico, la velocidad aumenta

y por lo tanto el coeficiente de arrastre disminuye, entonces el coeficiente adi-

mensional es menor a 1. En la figura 7 se muestran el gráfico del coeficiente de

arrastre adimensional contra el número Π, es claro que los valores se agrupan

en dos zonas; la primera cuando el valor de Π es menor a uno y como era

de esperarse el coeficiente es mayor a la unidad, la segunda donde el valor de

Π es mayor a 1 y el coeficiente adimensional es menor a 1. De esta manera

es posible predecir la aparición de la discontinuidad cuando el número Π es

mayor a uno.



Figure 7: Coeficiente de arrastre adimensional como función del número Π

para fluidos del tipo HASE: (◦) 1.2%; (¤) 1.5%; (¦) 1.7%.

Se realizó una comparación con datos experimentales propios y reportados

en la literatura (ver figura 8), de tal manera que para todos los casos se observo

el mismo comportamiento que para los fluidos del tipo HASE, lo que indica

que el número Π sirve de criterio general para predecir la aparición de la

discontinuidad en la velocidad terminal.



Figure 8: Número Π como una función del número de Weber para diferentes

fluidos: (◦) viscoelástico medio acuoso, (¤) fluido de Boger, (+) HASE al 1.5%,

(¦) glicerina agua y dodecilsulfonato de sodio en medio acuoso, Rodrigue, De

Kee y Chan Man Fong (1996); Rodrigue, De Kee and Chan Man Fong (1998);

Rodrigue and De Kee, (1999), (×) agua 80wt.% , glicerina 20wt.% y 0.5wt.%
de poli(acrilamida) y dodecilsulfato de sodio, Rodrigue and Blanchet (2002).

0.6 Magnitud de la discontinuidad

En la tabla 1 se presentan los principales factores involucrados en la magnitud

de la discontinuidad. Para evaluar el efecto de cada uno de ellos se realizaron

simulaciones numéricas en elemento finito y se compararon con los resulta-

dos experimentales. Experimentalmente se puede obtener la reducción en el

arrastre por medio de la relación:

Cd,2

Cd,1

=
d,2

d, 1
(
V,1

V,2

)2 (5)

donde Cd es el coeficiente de arrastre, V la velocidad terminal de la burbuja

y d el diámetro equivalente de la burbuja. Los subindices 2 y 1 se refieren a

las burbujas con volumen por arriba y debajo del cŕıtico respectivamente. El

coeficiente de arrastre se puede calcular con la fuerza neta sobre la superficie

en la dirección de flujo Fd, de tal manera que se puede determinar por medio



Table 1: Principales contribuciones a la discontinuidad para el experimento y

la simulación.
Experimento Simulación

Viscosidad Viscosidad

Velocidad de burbuja Velocidad de burbuja

Forma de burbuja Forma de burbuja

Condición de frontera Condición de frontera (con o sin

deslizamiento)

Elasticidad

de la ecuación:

Cd =
2Fd

πρ(V )2(d
2
)2

(6)

En la simulación se utilizó el perfil correspondiente y las propiedades del fluido

bajo las condiciones del experimento. Para la simulación, la condición de

frontera se consideró ŕıgida para burbujas con volumen menor al cŕıtico y

móvil para burbujas con volumen mayor.

De la simulaciones se obtuvo que la reducción en el arrastre es
Cd,2slip

Cd,1nonslip
=

0.446, mientras que experimentalmente es
Cd,2

Cd,1
= 0.412. Dado que la reducción

en el arrastre es mayor en el caso experimental, donde todos los efectos están

incluidos, y que la única contribución importante no considera en la simulación

es la elasticidad del fluido, se dice que esta propiedad es muy importante para

la aparición de la discontinuidad. Lo mismo ocurre para los diversos casos

probados en esta sección.



Figure 9: Velocidad como función del volumen para HASE al 1.5%. (◦) bur-

bujas esferoidales; (+) cola axisimétrica (tip streaming); (¤) cola 2D tipo

cuchilla; (¦) doblecola 2D tipo cuchilla.

0.7 Burbujas no axisimétricas

Se presentan diversas formas para las burbujas en un amplio intervalo de

volúmenes. La figura 9 muestra la velocidad como función del volumen y

las diversas formas encontradas. Se observa que existen ciertas regiones en las

que las burbujas adquieren una forma especifica, aparentemente se tiene un

volumen cŕıtico para cada caso. Sin embargo, hasta ahora no se cuenta con

alguna explicación y no se tiene idea de que estas observaciones hayan sido

reportadas con anterioridad.



Conclusiones

La discontinuidad esta relacionada con las propiedades reológicas del los flu-

idos. El cambio de forma en la burbuja de convexa a cóncava se asocia a

la discontinuidad, junto con la formación de la cauda negativa. Se presenta

un cŕıterio (Π > 1) capaz de predecir la aparición de la discontinuidad y

se aplicó a diversos fluidos reportados en la literatura corroborando su fun-

cionalidad. Para evaluar las principales contribuciones en la magnitud de la

discontinuidad se realizaron simulaciones numéricas, como resultado se obtuvo

que la elasticidad contribuye de manera importante. También se presenta un

estudio fotográfico de la forma de burbujas con volúmenes mayores al cŕıtico

y se presentan formas peculiares, que aparecen a ciertos volúmenes, para las

cuales no se cuenta con explicación, pero que no han sido reportadas hasta la

fecha.
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0.1 Abstract

The motion of air bubbles in aqueous solutions of a hydrophobic alkali-

swellable associative polymer is studied in this work. The associative nature of

these polymer systems dictates their rheological properties: for moderate val-

ues of the shear rate, the formation of structure can lead to a shear-thickening

behavior and to the appearance of first normal stress difference. For larger

shear rates, the polymer associations can be broken, leading to shear thin-

ning. In general, these fluids show a Newtonian behavior for small values of

the shear rate, but behave as viscoelastic liquids for large shear rates. Ex-

perimental results show the appearance of a critical bubble volume at which

a discontinuity in the relation velocity-volume occurs; however, the velocity

increase found in this case is not as large as that previously reported for the

case of shear-thinning viscoelastic fluids. The discontinuity is associated with a

significant change of the bubble shape: before the critical volume, the bubbles

are convex spheroids, while past the critical volume a sharp cusped end ap-

pears. The appearance of the tail is also associated with the appearance of an

inflection point (change of curvature) on the bubble surface. Moreover, since

the rheology of the liquids is measured it was found that the discontinuity, and

hence the change of shape, occurs when the elastic nature of the liquid first

manifests itself (appearance of a first normal stress difference). A comparison

of the measured velocities for small bubbles with predictions from a Stokes-

Hadamard law shows a discrepancy. The Newtonian viscosity measured in a

viscometric flow was smaller than that determined from a falling-ball arrange-

ment. Considering the viscosity measured under this nonviscometric flow, the

comparison between theory and experiments was very good for bubbles having

volumes lower than the critical one. Moreover, due to the importance of the

elasticity, and due to the change of the shape of the bubble, a dimensionless

number formed as the ratio of elastic to surface tension forces clearly defines

1



the change of the behavior for the bubbles rising in these fluids. Furthermore,

such criterion was tested for several classes of fluids (viscoelastic, shear thin-

ning inelastic and constant viscosity elastic liquids). A study of the magnitude

of the different contributions leading to the bubble velocity discontinuity is also

presented. Finally, a photographic study of the peculiar shapes of the bubble

tails, tip-, and edge-streaming phenomena is presented. To our knowledge,

experiments in this class of fluids have not been reported to date.

2



0.2 Objective

Determine the flow conditions and viscoelastic properties of fluids necessary for

a rising bubble to exhibit the bubble velocity discontinuity in complex fluids.

0.3 Originality

The flow of non-Newtonian fluids is a relevant due to the fact that most of

real materials show this behavior. In particular, the motion of bubbles in

non-Newtonian fluids is important for several industrial applications: waste

water treatment, handling and processing of fermentations broths, polymer

devolatization, bubble column, metallurgy, plastic foam processing and all

processes where multiphasic flow is involved. An extensive work on this

issue has been carried out(Chhabra, 1993 and 2006, Kee, 2002); however, the

phenomena is not well understood.

At this moment there is a lack of a complete theoretical study of bubble

phenomena due to its complexity. For this, the starting point is the sim-

plest case, an isolated bubble freely rising in a liquid. The non-Newtonian

properties of a liquid are responsable of some peculiar observations, such

as the negative wake and the bubble velocity discontinuity. In this work, a

detailed experimental study is presented to analize the competition among

the different forces involved in the bubble phenomena and a criterion for the

apparition of the bubble velocity discontinuity is presented.
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0.4 Introduction

The study of the motion of air bubbles in liquids has received considerable

attention because of its fundamental and practical importance. For the case of

Newtonian liquids, there is a vast collection of investigations reporting a wide

range of behaviors in many regimes (Clift, Grace & Weber, 1978). The general

understanding of such a system is not complete but its state of the art can be

considered relatively advanced.

For the case of the motion of gas bubbles in non-Newtonian liquids, there are

several unexpected phenomena that are not yet fully understood (Chhabra,

1993; Funschfilling & Li, 2001). Among the peculiar phenomena observed

in the case of non-Newtonian liquids, of particular interest is the so-called

bubble velocity discontinuity. In a Newtonian fluid, the magnitude of the

rising velocity of a gas bubble is proportional to the bubble size and the relation

velocity-volume is monotonically increasing. For the case of non-Newtonian

liquids, many authors (Astarita & Apuzzo, 1965; Barnett, Humphrey & Litt,

1966; Calderbank, Johnson & Loudon, 1970; Leal, Skoog & Acrivos, 1971;

Zana & Leal, 1978; Rodrigue, De Kee & Chan Man Fong, 1996; Rodrigue, De

Kee & Chan Man Fong, 1998; Herrera-Velarde et al., 2003; Soto et al., 2006;

Pilz et al., 2007) have reported the existence of a critical value of the bubble

volume for which a discontinuity of the velocity occurs: the bubble velocity

increases abruptly for a small increase of the bubble volume.

Astarita & Apuzzo (1965) were the first ones to report that the ratio of the

velocity after and before the jump ranged from 2 to 6, depending on the

polymer solution. They argued that this discontinuity of the velocity could be

the result of a transition from a Stokes regime to a Hadamard regime (a change

from a rigid to a free interface). However, it can be shown that the velocity

increase resulting from such a change of the boundary conditions would be

equal to 1.5. Due to the fact that no discontinuity of the velocity has been
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observed for the case of falling spheres, some authors (Barnett, Humphrey &

Litt, 1966; Calderbank, Johnson & Loudon, 1970; Leal, Skoog & Acrivos, 1971)

have supported this argument, even though it does not predict correctly the

increase of the velocity. Astarita & Apuzzo (1965) also pointed out that the

shape of the bubbles changed before and after the velocity discontinuity. Liu et

al. argued the discontinuity appears due to the drag reduction involved in such

change in shape. Rodrigue, De Kee & Chan Man Fong (1998) proposed an

explanation for the discontinuity. They argued that it results from a balance

between elastic and Marangoni instabilities providing another major difference

between Newtonian and non-Newtonian hydrodynamics. In a related study,

Rodrigue, De Kee & Chan Man Fong (1996) reported the effect of surfactants

in the liquid and concluded that surface active agents as well as elastic forces

must be simultaneously present in order to generate a sudden jump in velocity.

Herrera-Velarde et al. (2003) showed that the appearance of the jump was

related to the appearance of the so-called negative wake behind the bubble.

Aubry et al (2007) proposed that the negative wake not only coincides with

the appearance of a cusp-like trailing end of the rising bubble but also propels

the bubble.

In this work, a simple and yet new explanation for the discontinuity is

proposed, with a criterion to determine whether or not the bubble veloc-

ity discontinuity occurs for the case of air bubbles moving an associative

polymer (HASE) and the comparison with several non-Newtonian liquids.

A dimensionless analysis of the different forces (inertia, viscous, surface,

elastic) shows that the discontinuity occurs when the elastic forces dominate

the flow. Although there are numerous experimental results reporting this

phenomenon, in most cases not all the properties are reported; hence a proper

reexamination of all the existent data is not possible. To comprehensively

study this phenomenon, we have carried out an extensive experimental study
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of the subject.

In Chapter 1, background, a brief introduction of the fundamental concepts

are shown. In Chapter 2, Methods and materials, the experimental meth-

ods and fluids properties are presented. The experimental results for single

air bubbles rising in five different types of liquids: aqueous associative poly-

mer(HASE), aqueous shear thinning viscoelastic liquids, non-aqueous shear

thinning viscoelastic liquids, Boger fluids (elastic liquids with a constant vis-

cosity), and shear thinning liquids are included in Chapter 3, Experimental

evidence. Chapter 4, Dimensionless analysis, presents a discussion of the

experimental results and an explanation for the discontinuity of the velocity

based on a dimensionless analysis proposing the idea that elasticity dominates

the equilibrium forces . Finally, in the Chapter 5, Velocity discontinuity mag-

nitude, an examination of the bubble drag coefficient, shapes of bubbles and

the rheological properties of the fluids are evaluated using finite element New-

tonian simulations.
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Chapter 1

Background

In this chapter the basic concepts are discussed. In the first section, the

essential information about flow of fluids around spheres in Newtonian and

non-Newtonian fluids is presented. Thereafter, a review of the bubble velocity

discontinuity state of art is discussed. In the second part, we deal with the

fluids properties, the non-Newtonian character of polymeric liquids and their

structural composition. Finally, some remarks about the air-liquid interface

are included.

1.1 Flow around bubbles

The molecules that constitute a liquid tend to assemble together to minimize

the total energy of the system, so the liquids drops tend to adopt shapes

that minimize their surface area. The sphere is the geometrical shape with

the smallest surface-volume ratio and therefore liquids droplets are spherical.

However, there may be other forces in competition against the tendency to

adopt the spherical shape; for example, the gravity may flatten spheres into

puddles(Atkins, 2002).

In our case, a bubble can be thought as a drop of air surrounded by liquid.
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Figure 1.1: Inhomogeneous flow around a sphere. Left: Velocity field around

a sphere and magnification of the frontal profile (Re << 1). Right: Schematic

representation of the different homogeneous flows presented.

The figure 1.1 shows the velocity field around a spherical object in steady

state. It can be seen that the flow is complex and not homogeneous, this

being the reason why flow around objects is not easy to understand for every

condition. Some analytical solutions are available for the flow around spheres;

however, they are limited to slow flows. Other important parameter is the

boundary condition that can be rigid or mobile; in the first case the boundary

is considered as a fixed surface and in the second one the boundary moves with

the film of liquid aside it.

1.1.1 Creeping flow around a sphere

One of the classical problems in fluid dynamics is the small Reynolds number

flow past an sphere; known as creeping flow. The Reynolds number is a balance

between inertial and viscous forces, defined as:

Re =
inertial forces

viscous forces
=

ρdeU

µ
=

Ude

ν
(1.1)
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Figure 1.2: Free body diagram of a sphere. Buoyancy force (Fb), drag force

(Fd and weight (mg).

where ρ is the fluid density, de is the sphere equivalent diameter, U is the

velocity, µ is the liquid viscosity and ν is the cinematic viscosity. Then, a

small Reynolds number implies that the flow is slow and laminar. Under such

flow conditions there is no wake and the flow is smooth without instabilities.

The forces acting on the sphere, as it falls or ascends into the fluid, are

shown in figure 1.2. These forces are the buoyancy (Fb), the drag (Fd) and

the weight (mg). The first two forces act upwards, and the third one acts

downwards. Then, the following balance equation can be written,

Fb + Fd = mg (1.2)

The buoyancy force is simply the weight of displaced fluid:

Fb = mdfg =
4

3
πR3ρfluidg (1.3)

where mdf is the mass of displaced fluid, R is the sphere radius and ρfluid is

9



the fluid density.

Stokes’s flow

In a rigid sphere, the non-slip boundary condition of the velocity field (vfluid =

vsphere|r=R) is considered at the sphere surface and vz tends to v∞ at a large

distance from the sphere. To calculate the total force acting perpendicularly

to the surface, in the motion direction, the pressure −p cos θ is considered.

Multiplying the pressure on the sphere by the total area R2 sin θdθdφ, the

surface integral for the normal component of the forces is given:

Fn =

∫
2π

0

∫ π

0

(−p|r=R cos θ)R2 sin θdθdφ (1.4)

where R is the sphere radius and p at the surface given by:

−p|r=R = p0 − ρgR cos θ −
3

2

µv∞
R

cos θ (1.5)

where v∞ is the translation sphere velocity. This integral gives:

Fn =
4

3
πR3ρg + 2πµRv∞ (1.6)

The tangential contribution is given by:

Ft =

∫
2π

0

∫ π

0

(+τrθ|r=R sin θ)R2 sin θdθdφ (1.7)

where τrθ is the shear stress at the sphere surface, expressed as

τrθ|r=R =
3

2

µv∞
R

sin θ (1.8)

Evaluating the integral

Ft = 4πµRv∞ (1.9)
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Recalling 1.2, the total force balance is

F =
4

3
πR3ρg + 2πµRv∞ + 4πµRv∞ (1.10)

The first term is the buoyancy force, and the other two are referred to the

drag force. Then, the second term is the form contribution and the third is

the contribution of friction between the sphere and the fluid. Finally, balance

is written

mg =
4

3
πR3ρg + 6πRρg (1.11)

It can be seen that the buoyancy forces act at any moment (even at rest) and

the drag forces depend on fluid motion, related to the kinetic contribution.

The drag force

Fd = 6πµRv∞ (1.12)

is known as Stokes’ law (Stokes,1880 and Schlichting, 1964). This formula

is used to determine settling velocities under gravitational forces through the

next relation

v∞ =
R2(ρs − ρ)g

18µ
(1.13)

where ρs is the sphere density. Such relation is useful to calculate falling bead

viscosities (which will be described in detail in the experimental Chapter).

This equation is valid only for Re smaller than 1 and for rigid boundary

conditions.

The drag can be expressed in dimensionless form as:

Cd =
2Fd

πρ(v∞)2(de

2
)2

(1.14)

From Eqs. 1.14, 1.1 and 1.12, the drag coefficient in Stokes’s flow is given by:

Cd = 24/Re (1.15)
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Hadamard’s flow

In this case, the sphere is itself composed of fluid susceptible to generate an

internal circulation that affects the overall drag. It is assumed that the two

liquids are immiscible, and that surface tension at the interface is strong enough

to keep the drop spherical. Then, the velocity of the interface is equal to the

velocity of the external fluid at the interface, vr = vθ = vs and again vz

tends to v∞ far from the sphere. The Re number inside and outside the drop

should be smaller than unity. Motion equations for this conditions were solved

analytically by Hadamard (1911) and Rybczynski (1911). In this case, the

drag force is given by

Fd = 4πµRv∞ (1.16)

The terminal velocity of the drop is given by

v∞ =
R2(ρs − ρ)g

12µ
(1.17)

and in the same way as in Stokes’s flow using Eqs. 1.14, 1.1 and 1.16, the

Hadamard drag coefficient is given by

Cd = 16/Re (1.18)

1.1.2 Bubbles in Newtonian fluids

For the motion of air bubbles in Newtonian liquids there is a vast number of

investigations reporting a wide range of behaviors. Most of this information is

summarized in the book Bubbles, drops and Particles by R. Clift, J. R. Grace

& M. E. Weber, 1978. This book provides an excellent review. However, the

general understanding of such systems is not complete.

In this book, drops and bubbles rising freely in a media are grouped in the

following three types:
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a) Spherical : In general, bubbles and drops are approximated by spheres if

interfacial tension and/or viscous forces are much more important than

inertia forces. A particle is termed spherical if the minor to major axis

lies within 10% of unity.

b) Ellipsoidal : This term is used to name bubbles and drops which are

oblate with convex interface around the entire surface. Frequently such

bubbles or drops are not matched exactly with true ellipsoids and sym-

metry must not be assumed. Moreover, ellipsoidal bubbles and drops

commonly undergo periodic deformations and shake which complicate

shape characterization.

c) Spherical-cap or ellipsoidal-cap: Large bubbles and drops tend to adopt

flat or indented bases and without symmetry. They look like segments of

cut spheres. If an indentation at the rear of the particle is presented, it

is said to be dimpled. Large spherical-cap may also trail thin envelopes

of dispersed fluid referred as skirts.

For bubbles and drops rising or falling freely in infinite media it is possible

to construct a generalized graphical correlation in terms of the dimensionless

numbers:

Eo =
g∆ρd2

e

σ
(1.19)

M =
gµ4∆ρ

ρ2σ3
(1.20)

Re =
ρdeU

µ
(1.21)

where Eo is the Eötvös number, M the Morton number and Re the Reynolds

number. The resulting plot shown in Fig. 1.3 does not apply to extreme values

of density ratio, (ρp/ρ), or viscosity ratio, (µp/µ), where the subindex refers

to the disperse phase. The plot in Fig. 1.3 considers a broad range of fluid

properties and particle volumes. Since Re contains the terminal velocity, it

13



may be used to estimate terminal velocities as well as shape, although in more

recent works this plot is a very valuable reference. Something remarkable

is that the disperse phase viscosity seems not to play an important role in

determining terminal velocities and shapes regimes since it does not appear in

any of the three numbers.

Figure 1.3: Shape regimes for bubbles and drops unhindered gravitational

motion through liquids. Taken from Clif,1978.

Free rise of bubbles

The qualitative behavior of a bubble rising freely under gravity in a Newto-

nian liquid is presented in Fig. 1.4. Additionally, Stokes’s law and Hadamard
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Figure 1.4: Terminal velocity as function of volume. Idealized real fluid (dotted

line), Stokes’s law (Solid line) and Hadamard’s prediction (dashed line).

solutions are presented. For small bubble volumes, the terminal velocity fol-

lows Stokes´s, even though the interface is free, because of contamination of

the water interface. It implies that the flow around the bubbles is not strong

enough to deform the interface and it behaves like a rigid particle. This as-

sumption is supported by some experiments showing that inside the bubble,

under this conditions, no recirculations occur. When the volumen is increased,

the terminal velocity increases monotonically and lies between both regimes

until it reaches Hadamard’s solution. At some volume, the velocity falls below

the Hadamard’s value and for higher volumes, it falls below Stokes’s solution.

This is attributed to the appearance of inertial effects. Finally, for very large

volumes, an instability is observed in the terminal velocity due to turbulence.

The bubbles become oblate which leads to an increase of drag.
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1.1.3 Bubbles in non-Newtonian fluids and Bubble Ve-

locity Discontinuity

The study of the behavior of bubbles rising freely in non-Newtonian fluids is

not fully understood. This is a consequence of the fluids structure, that, in

general, is composed of large molecules. More details about the chemical nature

of large molecules will be given in later sections. The size, shape and flexibility

of this molecules lead the fluids to exhibit some ’odd’ properties in comparison

whit those observed for Newtonian liquids (constituted by small molecules).

Among these differences, change in shape, velocity and mass transfer could be

observed. The main topic of this work is the so-called jump discontinuity, this

is a sudden increase in velocity resulting from a small change in volume. This

issue is discussed in detail in the next section.

Bubble velocity discontinuity

Figure 1.5: Velocity discontinuity plot for an aqueous solution of HASE at 1.5

wt%. Terminal velocity as function of volumen. As increasing the volume the

velocity increases monotonically until a critical volume, where the discontinuity

appears.
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Table 1.1: Magnitude of the discontinuity, ratio of the velocity past the dis-

continuity and the velocity prior the discontinuity.

Author System Va

Vb

Astarita & Apuzzo 1965 Air/polyacrylamide ET-497 and J-100 2.22-5.86

Zana and Leal 1978 Air/poliacrylamide AP-30 4-5

Rodrigue et al 1998 Air/poliacrylamide AP-30/sodium do-

decyl sulfate

1.6-5

Herrera-Velarde, et al., 2003 Air/water/ glicerol/poliacrylamide 1.63-2.45

Figure 1.5 shows a typical plot of terminal velocity versus volume, in this

case for an aqueous solution of 1.5 HASE wt%. It is clear that there is a critical

volume at which an small increment in volume implies a sudden increase in

the terminal velocity. This behavior has been reported extensively by several

authors in different non-Newtonian liquids. Chhabra (2006) provides a recent

summary of previos investigations on that subject. Others important reviews

are available in the literature; Chhabra (1993), Kee & Chhabra (2002) and

Caswell et al. (2004).

In Table 1.1, some experiment that report the velocity discontinuity are

shown. Also shown is the ratio between the velocity past and prior the discon-

tinuity.

The appearance of the discontinuity is related to the non-Newtonian

properties of the solutions. In Table 1.2 a summary of the explanations on

the origin of the discontinuity are given. The first explanation is based on the

well known fact that small bubbles behave like rigid spheres, whereas large

bubbles present a mobile interface. However, this explanation is not sufficient

to explain discontinuities higher than a 50% increase in velocity, even for

Newtonian liquids, since Newtonian liquids do not exhibit this behavior. The

second explanation is about the change in shape of the bubble (see Figure

1.6a), several experimental observations are in agreement that the formation

of a cusp in the trail end of the bubble coincides with the critical volume.
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Table 1.2: Summary the explanations given for the discontinuity.

Author Conclusions

Astarita & Apuzzo, 1965 Discontinuity is due to transition from stokes

to Hadamard regime.

Lui, et al., 1995 Sharp reduction in the drag due to cusping.

Belmonte, 2000 Discontinuity coincides with cusp formation.

Herrera-Velarde, et al., 2003 The discontinuity appears only for volumes

greater than the critical and always is related

with the presence of the negative wake.

Motion
Direction

a) Change in shape B) Negative wake

Newtonian Non-Newtonian

Figure 1.6: a) Comparison of the shapes of a bubble moving in a Newtonian

liquid and one moving in a non-Newtonian fluid. b) Sketch of the velocity

vectors in the negative wake of a bubble rising in a non-Newtonian fluid.

Finally, a key experimental observation is the formation of the negative wake

(see Figure 1.6b). In a region, the velocity vectors are in the direction of the

motion of the bubble. Directly below the trailing end and close to the vertical

axis of the rising bubble, the velocity vectors are in the direction of the motion

of the bubble, but at a short distance behind the trailing end, the velocity is

in the opposite direction (Sigli, 1977, and Herrera-Velarde, 2003). The fact

that both phenomena have been associated and have been observed only in

elastic fluids, is a strong evidence that the elasticity plays an important role

in the velocity discontinuity.
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Wall effects

At small Re, the perturbation around a body is of long-range interaction.

Hence, the walls may have importance on the falling objects terminal velocity.

In the case of spheres in Newtonian liquids, the drag correction factor due to

walls can be calculated with the Faxén correction (Happel, 1973), which is

commonly expressed in the form

KN(R/r) =
1

1− f(R/r)
=

UStokes

U
(1.22)

with

f(R/r) = 2.10444(R/r)− 2.08877(R/r)3 + 0.94813(R/r)5

+ 1.372(R/r)6 − 3.87(R/r)8 + 4.19(R/r)10 + · · · (1.23)

where R is the radius of the sphere and r is the container radius. This relation

is only valid for Reynolds number smaller than 1. When (R/r) decreases, the

wall effects decrease too. Then, it is possible to minimize wall effects keeping

(R/r) as small as it can be. It has been shown that for viscoelastic fluids, wall

effects appear to be less important than in the motion of Newtonian fluids

(Chhabra, 1981). Moreover, the wall correction factor for elastic constant

viscosity fluids is given by f(R/r) = 1− 0.17R/r for Deborah numbers larger

than 0.2 (Chhabra, 1988).
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Figure 1.7: Viscous, viscoelastic and elastic behavior of materials.

1.2 Rheology

Rheology is the study of the deformation and flow of matter under the

influence of an applied stress. The term was coined by Eugene Bingham, a

professor at Lehigh University, in 1920, from a suggestion by a colleague,

Markus Reiner. The term was inspired by Heraclitus’s famous expression

panta rei (everything flows). It is possible to define two kinds of matter: fluid

(liquid or gas) and solid. When a weak continuos constant stress is applied,

the fluid matter flows and the solid matter resist. As an example, figure 1.7

illustrates these behaviors. The water fills the glass adopting the shape of the

container, the applied stress is dissipated, then the material is viscous. The

stainless steel ball, falling from a certain height and impacting against a hard

surface, bounces very close to the original height; it means that the applied

stress is stored, then the material is elastic. The rubber ball performance is

between both behaviors. When the rubber ball impacts against the surface,

it deforms with a loss of energy, then the bounce height is smaller than the

initial height. This behavior is called viscoelastic.

Materials which are pure solids o pure liquids, are just unusual exceptions.

Real materials exhibit a combination of both properties and show a strong
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Figure 1.8: Comparison between Newtonian and Non-Newtonian behavior for

classical flow conditions. Tubeless siphon, die swell, rod climbing and sudden

contraction.

dependence with the deformation rate. In general, as the time scale increases

the material changes from elastic to viscous, then a relevant time scale can be

defined as a relaxation time. Correspondingly, the ratio of the relaxation time

of a material to the timescale of a deformation is called Deborah number.

De =
relaxation time for the fluid

time scale of the deformation
(1.24)

Small Deborah numbers correspond to situations where the material has time

to relax (and behaves in a viscous manner), while large Deborah numbers

correspond to situations where the material behaves rather elastically.

Within all the materials that exhibit viscoelasticity, this work focusing in

polymeric fluids. Several interesting phenomena are shown by this fluids, some

of them are presented in Figure 1.8. A brief explanation is in followed:

Tubeless Siphon For a Newtonian liquid the siphon is created by the dif-

ference of pressure between the entrance of the tube and the exit, the
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atmospheric pressure pushes the liquid through line; when the tube is

moved upwards the contact with the liquid is broken and the fluid emp-

ties the tube. When the liquid contains large molecules, the molecules

align in the direction of stretching resulting in an increase in extensional

viscosity. A structure is induced by flow and the fluid behaves like solid

in the direction of flow and allows the formation of the tubeless effect.

A high ratio of extensional viscosity to shear viscosity is a requirement

for the open-siphon experiment.

Die Swell For fully developed flow of a viscoelastic fluid in the tube, a ten-

sion along the streamlines associated with the normal stresses is present.

When the fluid passes through the exit of the tube into the atmosphere,

it will relax the tension along the streamlines by contracting in a lon-

gitudinal direction. For an incompressible liquid, this results in lateral

expansion of the liquid, giving rise to the die-swell phenomenon. Due

to the lack of normal stresses the Newtonian liquids do not show this

behavior.

Rod Climbing In the Newtonian liquid, a rotating rod pushes the liquid

outward by centrifugal forces, and a downward vortex is generated. On

the other hand, for non-Newtonian liquids and for high enough rotational

speeds, the fluid moves toward the rod and climbs it. In the case of

polymeric liquids it can be argued that the long polymeric chains wrap

onto the rod and creep upwards.

Sudden contraction In the case of a Newtonian fluid straight flow in line

directly towards the contraction. For the non-Newtonian case not all

the fluid lines move directly toward the exit; part of it is trapped in a

recirculating region. There are some explanations about the origin of

this behavior, but a general criteria is not still accepted. One possible
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Figure 1.9: Shear stress and viscosity dependence upon shear rate. Newtonian,

shear thickening, shear thinning and viscoplastic fluids

explanation is that near the contraction, where the velocity increases

and the pressure decreases, the normal stresses relax and promote the

formation of a vortex.

1.2.1 Non-Newtonian fluids

The non-Newtonian fluids can be divided in different ways depending on their

response when they are deformed. These types of fluids are illustrated in

Figure 1.9. The Newtonian behavior is characterized by a linear dependence

between shear rate and shear stress, as a consequence its viscosity remains

constant for any rate of deformation. Shear thinning and shear thickening

fluids are characterized by a non-linear dependence of the shear stress and

shear rate. For the first, the slope of the curve shear stress-shear rate

decreases, and is reflected in a decrease of viscosity with increasing shear

rate. Such behavior is attributed to the alinement and slip of the molecular

components of the fluid. In the second fluid, the slope of the curve shear

stress-shear rate increases and the viscosity increases with increasing the

shear rate. This is believed to the result of assemble of molecular components

23



under flow generating new structures. Another fluid shown in figure 1.9 is the

viscoplastic; this fluid has an initially ordered structure that must be broken

before the fluid moves; the stress necessary to brake such structure is known

as yield stress.

Due to the characteristic structural conformation of non-Newtonian liquids

a great variety of fluid behaviors can be observed. An interesting phenomena

is the time dependence of some fluids called thixotropy, in which the struc-

tural arrangement is able to acquire different arrays in time for the same flow

conditions (Bird, 1976, 2002, Harris, 1997 and Morrison, 2001).

Polymeric solutions and associative polymers

A polymer is a substance composed of molecules with large molecular

mass constituted of repeating structural units, or monomers, connected by

covalent chemical bonds. A simple model for a polymer considers a set

of entangled chains. Then, when a deformation is applied, the chains slip

one on top of the other and create an aligned field. This peculiar structure

leads to a several interesting and useful mechanical properties (Callister, 1994).

The structural properties of a polymer relate to the physical arrangement

of monomers along the backbone of the chain. Structure has a strong influence

on the other properties of a polymer. For example, a linear chain polymer may

be soluble or insoluble in water depending on whether it is composed of polar

monomers (such as polyacrylamide, (−CH2CHCONH2−)n) or non-polar

monomers (such as styrene). In solution the polymers tend to modify the

rheological behavior of the solvent, for this reason they are extensively used

in industrial applications as rheology modifiers, for example in coating, oil

extraction and transportation, food processing, cosmetics and more.
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Figure 1.10: Linear polymer swelling in solution. a) Polymer in a bulk, b)

Polymer swelling, c) Single chain complete hydrated and d) Single hydrated

chains entangled among themselves.

The process of disolving a polymer in a solvent is carried out in various

steps; dispersion, swelling and solution. In figure 1.10 a sketch of this steps

is shown. The pure polymer must be dispersed in the solvent, avoiding the

formation of clusters. Once the polymer is dispersed, the solvent migrates

slowly inside the bulk, until the chains are totally surrounded by solvent.

Then, the chains are able to move freely in the solution. If the concentration

of polymer is high enough, the possibility that two chains enter in contact

and interact increase; then they form a network that modify the rheological

behavior of the solvent which is observed by a change in viscosity (increase or

reduction) and the presence of elasticity. The forces involved in the interaction

of such chains are just dispersion forces that are usually weak.

One way to increase the interaction forces among the polymeric chains is by

grafting hydrophobic groups in their backbone. The hydrophobic groups stick

together and form clusters that increase the total joints in the solution and

the contribution to the final rheological behavior. This kind of polymers are

called associative polymers and are widely used because are able to modified

the rheological behavior of the solutions at smaller concentrations than typical

soluble polymers(Kastner,2001).
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Figure 1.11: Schematic representation of a linear polymer grafted with hy-

drophobic groups.

1.3 Surface properties

Previous sections of this thesis dealt with macroscopic properties through a

continuum approach. However, it is important to recognize that such behavior

is a consequence of the materials microscopic nature. In nature it is possible to

find four distinct forces. Two of them are strong and weak interactions that act

among elementary particles such as neutrons, protons, electrons and others.

The other two forces are electromagnetic and gravitational interactions that

act among atoms, molecules and elementary particles. The first pair of forces

are a short range interactions, less than 10−5 nm. The second pair are effective

over a larger range of distances, from subatomic to astronomical distances, and

are responsable of the macroscopic behavior of matter.

It is possible to explain the properties of solids, liquids and gases through

electromagnetic interactions. Astronomical behavior and tidal motion can be

explained with gravitational forces. When these two forces work simultane-

ously are the cause of several phenomena, for example, liquid rising between

nearly closed walls or in small capillaries.

In this section a brief explanation about surface tension, interfacial ten-
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sion and some surface chemistry is presented. These issues will be relevant

to explain the terminal velocity discontinuity in the terminal rising bubble

problem.

1.3.1 Surface energy or surface tension

In nature, stable forms are those with minimal energy, for example, liquids tend

to adopt shapes that minimize their surface area, keeping the minimum number

of molecules at the surface. Sphere is the geometry with less surface-volume

ratio, for this reason, bubbles and droplets tend to be spherical. However,

there may be other forces that modify this ideal shape, for example, gravity

flatten spheres into spheroidal shapes.

From a thermodynamical point of view, the free energy change to separate

unit areas between two media (1 and 2) from contact to infinity (in vacuum)

is called work of cohesion W11; when both media are identical and work of

adhesion W12 when those media are different.

Surface energy or surface tension γ is the free energy change when a surface

area of a medium is increased by an unit area. Such process is equivalent to

separating to half-unit areas from contact, so surface tension is given by

γ1 =
1

2
W11 (1.25)

γ is given in units of energy per unit area and is commonly given in Jm−2.

However, in the case of liquids γ1 is given in units of tension per unit length

Nm−1. In the Table 1.3, values of the surface tension for some liquids is pre-

sented.

The intermolecular forces responsable of surface tension are the same as those

that determine latent heat and boiling point. Figure 1.12 shows the decreasing

of surface tension in water with temperature. It is important to mention that

impurities tend to reduce surface tension. Actually, this property is used to
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Figure 1.12: The variation of the surface tension of water with temperature

Table 1.3: Surface and interfacial energies (mN m−1)

Liquid Surface energy Liquid-liquid interface Interface Energy

γ1 γ12

Chloroform 27 chloroform-water 28

Octane 21.8 Octane-water 51

Ethylene glycol 48 Ethylene glycol-tetradecane 20

Water 72 Tetradecane-water 53

Mercury 472

characterized water purity. When surface tension is determined in a foreign

vapor, the effect is lowering γ from its value in vacuum. For example, when

mica is cleaved in high vacuum the surface energy is around 3500mJm−1, but

when cleaved in humid laboratory air it falls to 300mJm−1. This is the prin-

cipal reason of the different behavior of bubbles in clean and in contaminated

water.

There are several techniques to determine surface tension. A universal

method especially suited to check surface tension over long time intervals is

the Wilhelmy plate method. A vertical plate of known perimeter is attached to

a balance, and the force due to wetting is measured.
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1.3.2 Interfacial energy or Interfacial tension

Recall from the previous section where interactions between molecules inside

each fluid resulted in a given viscosity. Now, consider two immiscible liq-

uids. At the interface between the liquids there will be interactions between

molecules of different type and the interfacial tension arises due to the at-

tractive forces between the molecules in the different fluids. Generally, the

interfacial tension of a given liquid surface is measured by finding the force

across any line on the surface divided by the length of the line segment. Thus,

the interfacial tension becomes a force per unit length which is equal to the

energy per surface area γ12. This property can be calculated with the equation:

γ12 =
1

2
W11 +

1

2
W22 −W12 = γ1 + γ2 − w12 (1.26)

where W11 and W22 are the cohesion works for each liquid, and W12 is the

adhesion work, defined as the reversible work required, per square centimeter,

to separate both liquids.
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Chapter 2

Methods and materials

In this chapter the basic techniques, methods and materials are described.

2.1 Equipment and characterization

The experiments were conducted in a cylindrical setup with a proper arrange-

ment to release freely bubbles. Video and photographs were acquired with

a high speed camera (Kodak Motion Corder Model 1000) and with a digital

camera (Fuji FinePix S1Pro, 6 Megapixels). Bubble velocities, volume and ge-

ometrical parameters were determined through digital image processing. The

rheological properties were measured in a cone and plate rheometer (Rheolyst

AR-1000N by TA Intruments). The velocity fields were measured using a

standard particle image velocimetry technique (Dantec Dynamics, PIV), with

fluorescent particles. Surface tension was measured by a Wilhelmy scale with a

DuNouy ring model 700 (Sigma). A description and details of this techniques

are given below.

2.1.1 Experimental device

To analyze the motion of air bubbles in a liquid, the experimental device

presented in figure 2.1 was used. A certain known volume of air was placed in
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Figure 2.1: Experimental device to study the motion of air bubbles rising

freely in a liquid. A square shell filled with the inner liquid is used to avoid

reflections. Two cameras (a high speed one and a high resolution one) are

included.

a hemispherical glass cap with a syringe; by turning the cap, the bubble was

released to move upwards in the test section. The test section is a cylindrical

tube with an internal diameter of 9cm and a length of 60cm. The width

of the tube was large enough to neglect wall effects and its length was long

enough to let the bubbles reach their terminal velocity. The cylindrical tube

was placed inside a squared container. To reduce the refraction effects, the

cylinder and the square section were filled with the test fluid. Different fluids

were tested and their rheological properties are shown below. It has been

suggested that the velocity of the bubbles can be dependent on the injection

frequency (Rodrigue,De Kee and Chan Man Fong, 1996); therefore, at least

a five minutes interval was left between two consecutive bubbles to avoid this

effect.
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2.1.2 Viscosity

In general, viscosity is a measure of the resistance of a fluid to deform under

stress. The viscosity depends on flow characteristics. The measured viscosity

can be apparent and viscometric. The apparent viscosity is measured under

inhomogeneous flow (where the shear rate is not constant). It implies that the

flow is complex and the value of viscosity is not always reproducible. How-

ever, due to their practicality and simplicity a wide variety of arrangements

producing inhomogeneous flows are used. They are useful reference or control

values. In this work, the fall of bead arrangement was used. Viscometric mea-

surements are carried out under homogeneous flow conditions (constant shear

rate), which are confident and reproducible; one example is the shear viscosity.

Experimental details of both methods are presented in the next sections.

Fall of bead viscosity

When a spherical particle falls or rises freely in a liquid, it reaches a steady

state in which the sum of all the forces involved in the movement is zero. Then

is easy to determine the fall of bead viscosity. The viscosity is given by the

expression:

µ =
R2(ρs − ρ)g

18v∞
(2.1)

where R is the sphere radius, ρ is liquid density, ρs is sphere density and

v∞ is the terminal velocity. This equation is only valid for small Reynolds

numbers (Re < 1) and small ratios between sphere and container diameter

(Ds/Dc < 0.1).

Couette flow and simple shear

This type of flow is characterized by the action of boundaries with relative

motion. The classical example of this flow is that between two infinite and

parallel planes, one of which remains motionless and the other moves shearing
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Figure 2.2: Cone and plate geometry.

the fluid. This is called plane couette flow. Some approximations to Couette

flow are available and widely used, among those, coaxial cylinders, parallel

plate and cone and plate are found.

In this work a cone and plate geometry was used as it produces a nearly

homogenous flow in the test section. Figure 2.2 shows a schematic represen-

tation of this geometry. The correspondent shear rate γ̇, shear stress τ12 and

viscosity µ are given by the relations;

γ̇ =
Ω(t)

α
(2.2)

τ12 =
3Tα

2πR3
(2.3)

µ =
τ12
γ̇

=
3αT

2πR3Ω
(2.4)

where α is the cone angle, Ω is the angular velocity, R is the radius of the

geometry and T is the applied torque.

With this geometry is also possible to determine the first normal stress

difference by the equation:

N1 =
2Fthrust

πR2
(2.5)

where Fthrust is the total thrust the fluid applies vertically on the plate. The
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shear rates which are accesible to this geometry are between 10−4 to 102, at

higher rates some instabilities appear and the flow becomes inhomogeneous.

For all the experiments a 40mm 1◦59′14′′ steel cone with a truncation

gap of 46µm and a plate fixture with a Peltier temperature-control system

was used.

2.1.3 Surface tension

The surface tension σ was measured with a Du Noüy ring setup coupled with

a Wilhelmy fixture. Wetting properties of the surface or interface have little

influence on this measuring technique. Maximum pull exerted on the ring by

the surface is measured. All determinations were carried out at room temper-

ature and repeated three times, the error among the several determinations

was less than 3%. The values were given in mNm.

2.1.4 Visualization techniques

From flow visualization several properties of motion of bubbles can be obtained.

In this section, the conditions and digital treatment to determine velocity,

volume, morphology and flow field are described.

Velocity determination

The bubble velocity was measured with a high speed camera. The camera

records up to 4000 frames/s, and follows the motion of bubbles. In figure

2.3 two images taken at various times are shown. The time between images

is known and the displacement can be measured determining the change in

position of the bubble and with the equivalence between pixels and millimeters.

To guarantee that the bubble has reached its terminal velocity an space-time

diagram was generated. In figure 2.3, two of this diagrams are presented. The

first one is for a bubble moving steadily; there the position-time line is straight
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Figure 2.3: Space-time diagrams. From left to right: bubble at time 1 (the

line shows the column of pixels selected to created the diagram), bubble at the

final stage, space-time diagram for a bubble terminal velocity and space-time

diagram for a transient motion.
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Figure 2.4: Volume digital determination. From left to right: Photograph of

a bubble in RGB format, black and white image converted from the RGB and

image result from a threshold applied.

and the velocity can be obtained measuring the slope. The second diagram

is for a bubble in a transient state (start-off). It is possible, in this case, to

obtain the velocity calculating the slope at every position. The calibration

was carried out setting a sphere in the bubbles path. Then, the pixels by unit

length are measured.

Volume and morphology

When a bubble is released in a fluid, it is important to control its volume.

However, its not practical to inject a known air volume in the experimental

device, because the bubble can be broken into small bubbles. Then, an approx-

imated volume was injected and the volume was calculated by a subsequent

digital analysis of a bubble image. This method is described in Figure 2.4. To

obtain this images, a back light illumination was used; it traces the outline

of the bubble. Such picture was converted into a black and white format and

a proper threshold analysis was applied. Then, a bidimensional and axisym-

metric bubble was generated. The centroid and area of this half bubble were
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Threshold BWRGB 8-bit (red)

Figure 2.5: Bubble profile digital process. From left to right: RGB picture,

8-bit picture (red) and bubble profile after threshold processing.

calculted. The volumen was found using Pappu´s centroid theorem given by

V = 2Amdc (2.6)

where V is the bubble volume, Am is the area of the middle bubble and dc is

the distance from the simmetry axis to the centroid of the middle area.

The morphology of a bubble can be studied obtaining the coordinates of

its profile. The general steps to acquire such profile are shown in figure 2.5.

From a RGB picture a 8-bit image was splitted. In general, the red component

has the best definition due to the light source. Then, a threshold analysis was

applied and the contour was defined. Finally, the coordinates of the contour

were obtained.

Velocity field

A particle image velocimetry (PIV) system with two 532nm lasers and one

CCD camera (Dantec Dynamics) was used to measure the flow field around a

bubble. Figure 2.6 (left) shows the experimental setup. The fluid is seeded with

fluorescent particles, which, for the purposes of PIV, are generally assumed to

faithfully follow the flow dynamics. It is the motion of these seeding particles

that is used to calculate the velocity field. When the laser sheet illuminates

the testing area, the particles scatter the light revealing their position and a
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Figure 2.6: Experimental device and PIV arrangement (left). Typical seeding

field of view for a bubble moving in a HASE fluid (right)

first photograph was taken (figure 2.6 right). After a period of time, a second

photograph was taken. In this study, this time delay was 20, 000µs. The

flow field is determined from the two images and the domain is divided in

several interrogations areas. The spatial fields were transformed to Fourier

space and the correlation function is evaluated. Then, considering the spatial

field and the time between photographs, an average vector is built for each

section. Finally, the complete vector field is obtained, as seen in Figure 2.7.

This method allows to determine the complete velocity field for a 2D region

without disturbing the flow.

2.2 Materials

Although the principal fluid are a HASE-type (see next section), several others

with widely different properties were considered. All solutions were prepared

at room temperature. Samples where left to settle 48hrs to guarantee the

complete solubility and swelling. Thereafter, surface tension and rheological

characterization were performed.

The fluids used are summarized in the Table 2.1, disclosing rheological

data. In the following sections a complete description and liquid properties
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Image 1, time 1

Image 2, time 2

Particles
Positions

Image 1

Image 2

Correlation

Velocity field

Figure 2.7: An schematic representation of the PIV procedure. From left

to right: Two images taken at different times of the seeding field divided

in interrogation areas, position of particles for a selected interrogation area,

superposition of both interrogation areas with the resulting velocity vector and

the final velocity field.

Table 2.1: Fluids summary
Fluid Description Rheological behavior

caption

FluidH Associative polymer in water so-

lution

Shear thinning, but with a re-

gion of constant viscosity where

the normal stresses are important

Fluid1 Aqueous viscoelastic fluid Shear thinning and elastic

Fluid2 Non-aqueous viscoelastic fluids Viscoelastic

Fluid3 Constant viscoelastic fluids Constant viscosity and normal

stresses

Fluid4 Shear thinning inelastic fluids Shear thinning and inelastic
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Figure 2.8: Shear viscosity (empty symbols) and first normal stress difference

(filled symbols) as a function of the shear rate for different concentrations of

HASE. (◦) 1.2 %; (¤) 1.5 %; (¦) 1.7 %. The bold lines show predictions of the

Bautista-Manero model for 1.7 % of HASE (Bautista, 1999).

are shown.

For the case of viscoelastic fluids, the measured first normal stress difference

and shear viscosity were fit to a power law: N1 = aγ̇b, η = mγ̇n. The values

of the coefficients a, b, m and n, as well as their range of validity and surface

tension are also reported in Tables 2.2, 2.3, 2.4, 2.5 and 2.6. All fluids were

chosen such that their shear viscosity would be of the same order of magnitude

as those fluids in which the bubble velocity discontinuity had previously been

observed.

2.2.1 HASE fluids

HASE (hydrophobic alkali swellable emulsion)Primal TT-935 is supplied by

Rohm and Haas. It is an associative polymer obtained in a suspension, 30%

wt. at a pH of 3. Aqueous solution in distilled water were prepared at 1.2,

1.5, and 1.7% by weight. At low pH HASE is not soluble, becoming soluble

for a pH higher than 6. If the pH is increased hydrophobic interactions are
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Table 2.2: Properties of the HASE aqueous solutions: viscosity µ, surface

tension σ, and coefficients a and b in the expression of the first normal stress

difference, N1 = aγ̇b.

Fluid %HASE µ a b range γ̇ σ d(mm) γ̇
Pas s−1 mNm−1 mm s−1

H-1 1.2 0.22 0.2078 1.3097 0.1-100 38.41 0.3-9.4 1-42

H-2 1.5 1.14 1.1449 1.3192 0.1-100 36.93 3.3-7.6 2-16

H-3 1.7 3.34 2.3728 1.3289 0.1-50 55.55 2.5-8.7 1-10

increased too. Consequently the viscosity increases up to a pH about 9 at

which the viscosity reaches its maximum. Above this pH value the viscosity

levels-off or decreases. To adjust the pH to 9 an alkaline 0.5 M solution of

2-amino,2-methyl propanol (AMP supplied by Aldrich) was used.

Once the solutions were left free of bubbles, the rheological behavior and sur-

face tension properties were determined (Table 2.2). Figure 2.8 shows the

rheological behavior of HASE solutions under shear flow. The HASE solutions

tested behave as Newtonian fluids at small shear rates. Viscosity remains

constant and normal stresses are negligible. From 0.1 to 50 s−1, the normal

stresses are measurable while the viscosity remains almost constant. For all

concentrations, a slight shear thickening behavior can be observed for small

ranges of shear rate. For large shear rates and depending on the concentration,

the fluids exhibit a shear-thinning behavior.

2.2.2 Other fluids

Aqueous viscoelastic fluids

These liquids are aqueous polyacrylamide (PAA) solutions. They were pre-

pared slowly mixing of an aumonunt of PAA in a mixture of 50 wt.% water

and 50 wt.% glycerin. Different percentages of PAA were studied: 0.05wt.%,

0.1wt.%, 0.15wt.% and 0.2wt.%. As can be seen in figure 2.9, the PAA solu-

tions are both shear thinning and viscoelastic. The viscosity and the first nor-

mal stress difference increase with PAA content. The surface tension decreases
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Figure 2.9: Shear viscosity (empty symbols) and first normal stress difference

(filled symbols) as a function of the shear rate for different liquids: (◦) fluid 2:

aqueous viscoelastic fluid ( PAA = 0.2%), (¤) fluid 3: non-aqueous viscoelastic

fluid (PAA = 0.1%), (¦) fluid 4: Boger fluid (PAA =0.1%), fluid 4: shear

thinning fluids ( 0.1 wt. % Carbopol and 0.08 wt.% of triethylamine). The

lines represent the power law fit given by the tables 1.3, 1.4, 1.5 and 1.6.

Table 2.3: Properties of solution 1 (50 wt.% of water + 50 wt.% of glycerine

+ 0.05-0.2 % of PAA).

Fluid PAA a b m n range of σ d γ̇
% γ̇s−1 (mNm−1) (mm) s−1

1-1 0.2 1.6390 0.805 1.7666 -0.5156 0.1-200 58.81 2.5-6.1 2-30

1-2 0.15 1.6192 0.7683 0.5625 -0.4571 0.1-80 92.6 2- 2.5 3-35

1-3 0.1 1.771 0.6712 0.3993 -0.4523 1-80 101.58 3-5.7 9-50

1-4 0.05 1.7296 0.5967 0.201 -0.3475 10-100 113.16 2.6-6.7 22-71

slightly with an increase in PAA content. This liquid was chosen because sev-

eral authors have reported the appearance of the velocity discontinuity (Leal,

Skoog and Acrivos, 1971; Rodrigue, De Kee and Chan Man Fong, 1996; Ro-

drigue, De Kee and Chan Man Fong, 1998; Rodrigue and Blanchet, 2002;

Herrera-Velarde et al., 2003). The properties of this fluid are shown in the

Table 2.3.
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Table 2.4: Properties of solution 2 (ethyleneglycol + 0.05-0.3 % of PAA).

Fluid PAA a b m n range of σ d γ̇
% γ̇ s−1 (mNm−1) (mm) s−1

2-1 0.3 0.2101 1.5003 1.6644 -0.4655 0.1-100 48.19 2-6.3 0.8-11

2-2 0.15 0.1248 1.3188 0.7032 -0.4127 1-100 86.41 2.4-7.4 8-27.6

2-3 0.1 0.2352 1.2882 0.4125 -0.3751 5-100 85.23 2.8-8.3 11-34

2-4 0.05 0.2560 1.0675 0.1691 -0.2915 5-100 87.85 3-10.5 14-44

Non-aqueous viscoelastic fluids

To test if the bubble velocity discontinuity can be observed also for non-

aqueous viscoelastic solutions, several runs were performed using ethyleneg-

lycol as the base for the solution. These solutions are mixtures of ethylene-

glycol and PAA. Different PAA contents were studied: 0.05 wt.%, 0.1 wt.%,

0.15 wt.% and 0.3 wt.%. As can be seen in figure 2.9, the PAA solutions are

viscoelastic. The viscosity and the first normal stress difference increase with

PAA content, but the surface tension decreases (Table 2.4).

Constant viscosity fluids

To investigate if the phenomenon of the bubble velocity discontinuity could

be observed in the absence of shear thinning effects, a series of fluids of the

Boger type (elastic with constant viscosity) were tested. These solutions were

composed of glycerol (Drogeria Cosmopolitan) and small quantities of PAA

(0.05 wt.%, 0.1 wt.%, 0.2 wt. %). As presented in Figure 2.9, these fluids are

viscoelastic, but the viscosity is not strictly a constant with the shear rate.

The viscosity and the first normal stress difference increase with PAA content,

and the surface tension slightly decreases (Table 2.5). It was not possible to

obtain a low viscosity Boger fluid with the materials considered in this study.

Shear thinning inelastic fluids

To complete our parametric study, we consider the case of fluids in which

elastic effects are absent but shear thinning effects are important. These flu-
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Table 2.5: Properties of solution 3 (glycerine + 0.05-0.2 % of PAA).

Fluid PAA a b m n range of σ d

% γ̇ s−1 (mNm−1) (mm) γ̇
3-1 0.2 6.8058 0.7023 1.1407 -0.0362 0.1-100 108.33 5-10.5 1-3

3-2 0.1 26.988 0.2952 1.0232 -0.0081 0.1-100 111.44 5.7-19.7 2.6-8

3-3 0.05 17.186 0.208 0.9717 -0.0092 0.1-100 112.74 5.7-19.6 4.3-14

Table 2.6: Properties of solution 4 (ethylenglycol + carbool + triethylamine).

Fluid Carbopol triethyl− m n range of σ d γ̇
wt.% aminewt.% γ̇ s−1 (mNm−1) (mm) s−1

4-1 1 0 2.8462 -0.5771 0.1-100 90 4.2-19.7 3.8-27.8

4-2 0.1 0.08 0.7635 -0.3198 0.1-100 86.51 4.2-19.7 22.6-34.3

4-3 0.1 0.1 1.4179 -0.4392 0.1-100 86.51 4.2-24.3 9.4-31.7

ids were obtained mixing ethylenglycol with Carbopol (Polygel CA supplied

by 3V). Different concentrations of Carbopol were studied: 1 wt.% and 0.1

wt.%. Due to the fact that the Carbopol is not complete soluble at low pH

in ethylenglycol, some drops of triethylamine were added to increase the pH

level and to dissolve the Carbopol. These liquids behave essentially as power

law fluids (Fig. 2.9). The viscosity level increases with the concentration of

Carbopol and with triethylamine. The surface tension increases with Carbopol

content, but is not affected by the presence of triethylamine (Table 2.6).
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Chapter 3

Experimental Results

In this chapter the experimental measurements of bubble velocity, size

and shape are presented, first for the HASE fluids and then for the other

fluids. The velocity discontinuity is not observed in all the examined

fluids. Furthermore, some comments and observations are given to present

the experimental results analyzed in the following Chapter. The chapter

dealt with methods and materials. A list of the liquids is presented in Table 2.1.

The liquids named HASE fluids show an interesting rheological behavior.

Their viscosity remains constant for the rates of deformation at which the

bubbles rise, and exhibit considerable normal stresses in this region. Then,

it is possible to isolate the presence of normal stresses and the change in

viscosity separately. This behavior is the key of the proposed explanation

for the necessary conditions to observe the velocity discontinuity. Besides the

volume-velocity dependence and the morphology of the bubbles, the velocity

fields around the bubbles are shown for this fluid. For the others fluids, the

flow fields are similar, and hence they are omitted.
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3.1 Falling bead or shear viscosity

Recalling the solutions for a Stokes and Hadamard regimes shown in chapter

1, the equations for the terminal velocity for both conditions are:

v∞ =
R2(ρs − ρ)g

18µ
(3.1)

v∞ =
R2(ρs − ρ)g

12µ
(3.2)

It is relevant to figure out the correct viscosity to calculate the terminal ve-

locity in Hadamard and Stokes regime. For this, experimental determinations

of both viscosities are compared. It has been shown (McKinley, 2002) that for

moderate Deborah Numbers (De), wall effects appear to be less important than

in the motion of the corresponding Newtonian fluid. In our experiments, the

Deborah number lies between 0.5 and 1.6, implying that the drag correction

factor is smaller than the one calculated in the case of a Newtonian fluid

(Chhabra,1981). In these HASE solutions, a r
R

value of 0.07 corresponds to

KN( r
R
) = 1.16. It implies a viscosity increase of 1.16. Moreover, the wall

correction factor for elastic, constant-viscosity fluids (Chhabra,1988) is given

by f( r
R
) = 1− 0.17 r

R
for Deborah numbers larger than 0.2, which corresponds

in our case to KN( r
R
) = 1.006. The wall effect contributes to a small increase

in viscosity obtained from falling-bead experiments over that obtained in

simple shear.

In the background section, a discussion on the flow around a sphere was

presented. In summary, the fluid domain can be divided in three regions: a

simple shear region at the equator, a simple extensional region at the rear,

and a biaxial extensional region at the front of the bubble. The extensional

components lead to extra stresses that slow down the sphere motion, and
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Table 3.1: Viscosity measurements for different solutions with two methods:

µrheometer is the viscosity measured in a cone-plane rheometer under simple

shear, µfall is the viscosity calculated from falling-bead experiments. The

ratio of the viscosity α decreases with increasing HASE concentration
Fluid HASE µrheometer µfall Viscosity ratio

% Pas Pas α
1 1.2 0.22 0.49±0.01 2.23

2 1.5 1.14 1.58±0.04 1.39

3 1.7 3.34 4.08±0.23 1.22

4 2.1 12.5 13.23±0.4 1.06

this extensional flow depends on the Reynolds number. For large values of

the Reynolds number, the extensional components will be more important;

as a consequence, the difference between the two viscosities will increase.

So, in addition to the wall effects, which decrease the terminal velocity and

hence increase the viscosity, it is necessary to include the extensional flow

contributions. The ratio of the viscosity estimated from falling-bead data to

the viscometric viscosity decreases with HASE concentration (3.1). Under

extensional flow, models (Manero et al, 2002, Belmonte, 2002, & Boek et

al, 2005) predict a region of extensional thickening at extension rates of the

order of the inverse of the main relaxation time. This region coincides with

the onset for measurable normal stresses in shear flow, closely related to the

appearance of the velocity discontinuity.

The extensional flow contribution further retards the motion of the falling

bead, increasing the mentioned viscosity ratio. The experimental and theo-

retical results obtained with the two viscosity measurements are compared,

and results are presented in Figure 3.1. For small bubbles that are almost

spheroidal, the experimental measurements lie between the two limiting cases

of Hadamard and Stokes laws with a viscosity calculated from the falling-bead

experiments. Therefore, the bubble interface can be considered neither fully

contaminated nor clean. We note that the comparison is good for bubbles
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Figure 3.1: Bubble velocity as a function of bubble volume, 1.2 % HASE.

The lines are the theoretical predictions obtained from the Stokes (continuous

lines) and Hadamard (dashed lines) laws: (thin lines) µ = µrheometer; (thick

lines) µ = µfall.
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with volumes smaller than the critical volume Vc. The results for the other

fluids and their comparison with the theory are not presented here, but the

agreement between theory and experiments is equally good. Contrary to the

measurement of the viscosity by falling-bead experiments, the simple shear

rheological measurements do not take into account the uniaxial and biaxial

deformations. This explains why the behavior of small bubbles rising in a

viscoelastic fluid is better described using a falling-sphere measurement of the

viscosity.

3.2 Terminal velocity and Morphology for

HASE fluids

In this section a discussion on the terminal velocity, velocity discontinuity, flow

field around bubbles and shape of the bubbles is presented for HASE fluids.

HASE solutions behave as Newtonian fluids at small shear rates, viscosity

remains constant and normal stresses are negligible. For large shear rates and

depending on the concentration, the fluids exhibit a shear-thinning behavior:

the viscosity decreases with the shear rate and the first normal stress difference

increases with the shear rate. In general, for a given shear rate, the viscosity

and the first normal stress difference increase with HASE concentration, and

the critical value of the shear rate at which normal stresses appear decreases

with increasing HASE concentration.

Shape and critical volume

Figure 3.1 shows the plot terminal velocity versus volume for a HASE solution

1.2wt%. It is clear that a discontinuity is observed a some critical volume

(Vc ≈ 65mm3). The correspondent shape of bubbles for selected volumes are

presented in the Figure 3.2. A characteristic behavior can be described as
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V*=2.94V*=1.67V*=1.04

V*=0.76V*=0.46V*=0.19

Figure 3.2: Bubble shapes for different values of the dimensionless volume

V ∗ = V/Vc for HASE =1.2 %, with Vc = 65mm3. The small bubbles are

almost spherical. For larger volumes (for V ∗ > 1), the shape of the bubbles

is concave with a very thin and long tail at the rear part of the bubble. The

scale represents 2 mm.

a function of Vc. For bubbles with a volume much smaller than the critical

volume Vc, the shape is spheroidal. With a small increase in volume, a slight

deformation on the rear part of the bubble is observed. In all cases, for volumes

smaller than Vc, the shape of the bubbles is convex all around, whereas for

bubbles with a volume larger than the critical volume, the shape is concave in

the trailing end: the shape presents an inflection point.

Figure 3.3 shows a comparison of the shape of a bubble before and after

the jump. The shape in the front region is nearly the same, whereas it changes

significantly in the back region. Moreover, the formation of a sharp cusp can

be clearly observed. At the tip of the cusp, a long (few centimeters) and very

thin (tens of micrometers) tail forms in all cases. Using two cameras acting

simultaneously, it was possible to obtain a view of the tail from two sides. The

cusps and tails immediately after Vc are axisymmetric. However, for volumes

larger than Vc, this is no longer the case. Nonaxisymmetric tails are shown

and discussed later.
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Figure 3.3: Bubble shapes before (continuous line) and after (dashed line)

the discontinuity. The shape does not change in the front part of the

bubble, whereas it changes in its back part (Vbefore = 49.2mm3;Vafter =

61.2mm3; 1.5%HASE)

The plots terminal velocity versus volume for the three HASE fluids are

shown in Figure 3.4. The general observations and remarks are the same for

the different concentrations. Furthermore, the bubble shapes for 1.5 and 1.7%

of HASE are presented in Figures 3.5 and 3.6

Shear rate and discontinuity

It is possible to link this behavior with the rheological properties of the

fluid. For this, the mean shear rate (defined as γ̇ = U/r)at which the normal

stresses are measurable and at which the discontinuity of the velocity occurs,

is determined. Figure 3.7 shows the calculated γ̇ for the three tested liquids.

From this plot, the value of the shear rate corresponding to the critical

volume can be determined and is approximately the same as the shear rate

at which the elastic nature of the fluid begins to manifest itself (N1 becomes
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Figure 3.4: Bubble velocity as a function of bubble volume for different HASE

contents: ◦ 1.2 %; ¤ 1.5 %; ¦ 1.7 %. There is a discontinuity of the bubble

velocity for volumes equal to Vc( 1.2% : Vc '65 mm3; 1.5% : Vc '60 mm3;

1.7% : Vc '50 mm3). The critical volume decreases with an increase in HASE

concentration.
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V*=2.66V*=1.56V*=1.02

V*=0.82V*=0.55V*=0.32

Figure 3.5: Bubble shapes for different values of the dimensionless volume

V ∗ = V/Vc for HASE =1.5 %, with Vc = 60mm3. The scale represents 2 mm.

V*=3.61V*=1.84V*=1.21

V*=0.81V*=0.61V*=0.24

Figure 3.6: Bubble shapes for different values of the dimensionless volume

V ∗ = V/Vc for HASE =1.7 %, with Vc = 50mm3. The scale represents 2 mm.
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Figure 3.7: Mean shear rates γ̇ as a function of volume for various HASE

contents: ◦ 1.2 %; ¤ 1.5 %; ¦ 1.7 %. The dashed lines represent, for each HASE

concentration, the shear rate at which the normal stresses are measurable.

54



measurable). Therefore, the bubble velocity discontinuity is a direct result of

the appearance of elastic stresses. For negligible normal stresses, the bubbles

are spheroidal and their velocities agree reasonable well with the Stokes and

Hadamard laws. For significant normal stresses, the velocity is larger than

that predicted by Stokes and Hadamard law, and the bubbles are concave,

presenting a tail at their rear part. The immediate consequence of the presence

of normal stresses in the liquid is a change in the bubble shape, which evidently

leads to a drag reduction and, hence, a rapid increase of velocity. A particular

bubble shape is then related to its rising velocity. This important evidence

will be recalled in the chapter of dimensionless analysis.

Negative wake contribution

Flow visualization around bubbles before and after the discontinuity using the

PIV technique are presented in Figures 3.8 and 3.9. For air bubbles with vol-

umes smaller than the critical one, the fluid at the front and at the rear of

the bubble is moving in the same direction of the bubble (see figure 3.8). For

bubbles with a volume larger than the critical one, the flow around the bubble

is drastically different (figure 3.9). The flow at the front of the bubble is in

the same direction of the bubble motion. At the rear of the bubble, the fluid

is moving in the opposite direction of the bubble motion. This phenomenon

is called negative wake and was previously reported elsewhere (Funfschilling,

2001, Hassagar, 1979, Bisgaard et al, 1982, and Li et al, 2001). More recently

Herrera et al, 2003 propuse that the negative wake is a manifestation of impor-

tance of the elastic effects in the bubble motion and found that the appearance

of the negative wake is related with the discontinuity. It is important to remark

that the elasticity of the liquid is an important factor for the discontinuity to

appear. This argument will be further discussed later.
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Figure 3.8: Flow around a rising bubble with volume below the critical one

(V=4.2 mm3 ; U=1.1 mm s−1 ; HASE 1.5 %)

a)                                                                                 b)

Figure 3.9: Flow around a rising bubble with volume above the critical one.

a) Flow around the bubble. The flow is very similar to the flow observed for a

bubble with a volume smaller than Vc. b) At the rear part of the bubble, the

negative wake can be seen. V = 239mm3; U = 54.6mms−1; HASE 1.5 %.
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In the next sections, a similar presentation of results for the other liquids

is shown, in order to gather all the experimental evidence for the further di-

mensionless analysis.

3.3 Other Fluids

3.3.1 Aqueous Viscoelastic Fluids

The fluid composed of 50wt.% of water and 50wt.% of glycerol and PAA

is viscoelastic. The relation velocity-volume for a concentration of PAA

equal to 0.15wt.% is presented in Figure 3.10. There is a critical value of

the volume (Vc ≈ 68.5mm3) for which the velocity discontinuity occurs. For

this fluid, whatever the concentration of PAA (from 0.05wt.% to 0.2wt.%),

a critical value of the volume for which a velocity discontinuity occurs

exists (figure 3.11). For all PAA concentrations and for small bubbles

(with a volume smaller than the critical one), the terminal velocity lies

between the two limiting cases of Hadamard and Stokes laws. For per-

centages of PAA between 0.1wt.% and 0.2wt.%, the value of this critical

volume decreases with PAA concentration. For small percentages of PAA

(0.05wt.% and 0.1wt.%) the critical volume increases with a decrease of PAA.

Furthermore and for percentages of PAA larger than 0.1wt.%, the slope of

the velocity versus volume relation is larger after the discontinuity than before.

It is also possible to relate the discontinuity with the shape of the bubbles.

Figure 3.12 shows the bubble shapes corresponding to the terminal velocities,

for the case of 1.5wt.% PAA, shown in Figure 3.11. For bubbles with a volume

smaller than the critical volume Vc, the bubble shape evolves from spherical

to tear-like as the volume increases. It is important to note that, in this case,

the bubble shape remains convex (Astarita & Apuzzo, 1965; Zana & Leal,
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Figure 3.10: Velocity of the bubble as a function of volume. A discontinuity of

the velocity can be observed at a volume of V c = 68.5mm3. The lines are the

theoretical predictions obtained from Stokes (continuous line) and Hadamard

(dashed line) laws (µ = µfall), (50wt.% water, 50wt.% glycerol and 0.15wt.%
PAA).

1978). For large bubbles, with a volume larger than Vc, the shape changes

from convex to concave. The presence of an inflection point at the rear part of

the bubbles can be observed. Also a small cusped “tail” appears. A zoom of

the shape of rear part of the bubble at the transition point is shown in Figure

3.13. As the volume of the bubble increases (for sizes larger than 200mm3),

the shape becomes oblate (horizontal axis larger than the vertical one), but it

retains the convex shape with a rear tail. The velocity of bubbles of such large

sizes continues to increase monotonically with volume.
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Figure 3.11: Velocity of the bubble as a function of volume for different per-

centages of PAA : (◦) %PAA = 0.2, (¤) %PAA = 0.15, (¦) %PAA = 0.1,
(+) %PAA = 0.05 (50wt.% water and 50wt.% glycerol)

3.3.2 Non-aqueous Viscoelastic Fluids

The fluid composed of ethylene-glycol and PAA is clearly viscoelastic. The

relation velocity-volume for a concentration of PAA equal to 0.1wt.% is shown

in Figure 3.14. Contrary to the previous case, there is no critical value of the

volume for which a discontinuity occurs. For bubbles with a volume larger

than 90mm3 there is a reduction of the slope of the velocity-volume relation.

For all the volumes studied the velocity of the bubble lies between the two

limiting cases of Stokes and Hadamard. The reduction of the slope for the

velocity-volume relation can be associated to the shape of the bubbles. In

Figure 3.15, the bubble shapes for this particular experiment are shown. In

this case, the bubble shape evolves from spherical to teardrop shape but for

nearly all cases the convexity of the shape is retained. For very large bubbles
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V/V =0.58
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V/V =0.35
c

V/V =0.72
c

V/V =1.01
c

V/V =1.07
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V/V =1.16
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V/V =1.24
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V/V =1.30
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V/V =3.44
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V/V =6.0
c

Figure 3.12: Shape of the bubbles as a function of the dimensionless volume

(V/Vc with Vc = 68.5mm3). The small bubbles (V/Vc < 1), the shape of the

bubble is convex. The shape of large bubbles is concave. For large volumes,

there is a strong increase of the horizontal diameter (50wt.% water, 50wt.%
glycerin and 0.15wt.%PAA)

V/V =1.01
c

V/V =0.72
c

Figure 3.13: Zoom of the rear part of the bubble. The circles show the location

of the inflection point where the curvature changes sign (50wt.% water, 50wt.%
glycerin and 0.15wt.%PAA).
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Figure 3.14: Velocity of the bubble as a function of volume. The lines are the

theoretical predictions obtained from Stokes (continuous line) and Hadamard

(dashed line) laws (µ = µfall), (ethylene-glycol at 0.1wt.%PAA).

V=69 mm
3

V=51 mm
3

V=150 mm
3

V=106 mm
3

V=91 mm
3

V=81 mm
3

V=30 mm
3

V=22 mm
3

V=12 mm
3

V=168 mm
3

Figure 3.15: Shape of the bubbles as a function of volume. For small bubbles

are convex and for large bubbles present an inflection point and we can also

notice an increase of the horizontal radius of the bubble with the volume

(ethylene-glycol with 0.1wt.%PAA).
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Figure 3.16: Velocity of the bubble as a function of the volume for a Boger fluid.

The lines are the theoretical predictions obtained from Stokes (continuous line)

and Hadamard (dashed line) laws (with µ = µfall), (glycerol + 0.1wt.% PAA).

(V > 150mm3), a change of curvature on the rear of the bubble is observed. It

must be noted that this convex shape is observed when the bubble shape also

became oblate. A cusped tail is not observed in any of the bubbles studied. For

other liquids of the same type, similar behavior is observed: no discontinuity

of the terminal velocity appears although above certain volume, the slope of

the relation velocity-volume decreases significantly. The volume for which the

decrease of the slope occurs increases as concentration of PAA decreases.

3.3.3 Boger Fluids

The fluid composed of glycerol and PAA is approximately a Boger fluid: it

shows elastic effects with a nearly constant viscosity. The velocity-volume

relation for a concentration of PAA equal to 0.1wt.% is shown in Figure 3.16.

There is no critical value of the volume for which a discontinuity of the
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Figure 3.17: Shape of the bubbles as a function of volume. Whatever the

value of the volume, all the bubbles are concave (presence of a tail and of an

inflection point) (glycerol + 0.1wt.% PAA).

velocity occurs; there is also no significant change of the slope in the relation

velocity-volume for large volumes, as seen in the previous cases. The velocity

does not lie between the two limiting cases for all volumes studied: the velocity

is larger than that predicted by the laws of Stokes and Hadamard. Whatever

the bubble volume, the bubble shape does not change significantly: the bubble

is concave, there is an inflection point and formation of a tail at the rear part

of the bubble, as shown in Figure 3.17. The shape of the tail, however, changes

with the bubble volume: for small volumes, the tail is very thin (few microns)

and long (few centimeters); for larger volumes, the width of the tail abruptly

increases from few microns to few millimeters and may loose its axi-symmetric

shape.

For percentages of PAA smaller than 0.2wt.%, the behavior is the same:

there is no discontinuity of the velocity and no change of the slope for the

relation velocity-volume relation. For a percentage of PAA of 0.2wt.%, the

bubble velocity discontinuity occurs at a volume (Vc ≈ 350mm3) but the data,

shown in Figure 3.18, are not very conclusive. For this particular case, very few
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Figure 3.18: Velocity of the bubble as a function of the volume for a Boger fluid.

The lines are the theoretical predictions obtained from Stokes (continuous line)

and Hadamard (dashed line) laws (with µ = µfall), (glycerol + 0.1wt.% PAA).
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V=600 mm
3

V=500 mm
3

V=400 mm
3

V=300 mm
3

V=158.3 mm
3

V=79.1 mm
3

Figure 3.19: Shape of the bubbles as a function of volume. Whatever the

value of the volume, all the bubbles are concave (presence of a tail and of an

inflection point) (glycerol + 0.1wt.% PAA).

measurements were possible. Also, the liquid was not very transparent; hence

the images are not very clear. For small volumes, the velocity of the bubble

lies between the two limiting cases of Stokes and Hadamard. The experimental

velocities of bubbles larger than 350mm3 are higher than those predicted by

the H-R law. In Figure 3.19, the shapes of the bubbles are shown. Although

the images are not as clear as in the previous cases, the transition from convex

to concave can be observed at the critical volume.

3.3.4 Shear Thinning inelastic fluid

The fluid composed of ethylene-glycol and Carbopol is shear thinning and

inelastic. The velocity-volume relation for a concentration of Carbopol equal

to 0.1wt.% and 0.08wt.% of triethylamine is presented in Figure 3.20.

Clearly, no discontinuity of the velocity-volume relation is observed. For

65



Figure 3.20: Velocity of the bubble as a function of the volume. The lines

are the theoretical predictions obtained from Stokes (continuous line) and

Hadamard (dashed line) laws (with µ = µfall). The dotted line is the theoret-

ical results obtained by Joseph (2003) (ethylene-glycol + 0.1wt.% Carbopol +

0.08wt.% of triethylamine).
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Figure 3.21: Shape of the bubbles as a function of volume. For small bubbles,

the shape is spheroidal-convex. The large bubbles are oblate bubbles and a flat

part at the rear part appears (ethylene-glycol + 0.1wt.% Carbopol + 0.08wt.%
of triethylamine).
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volumes larger than 200mm3, a decrease of the slope of the relation velocity-

volume occurs. For small volumes, the velocity lies between the two limiting

cases of Stokes and Hadamard. For large volumes, the velocity is well-described

by the theoretical predictions of Joseph (2003). For this class of fluids, there is

a value of the volume for which there is a decrease of the slope of the velocity-

volume relation. The value of this volume decreases with the percentage of

Carbopol and increases with the concentration of triethylamine. As shown in

Figure 3.21, for small bubbles, the bubble shapes are spheroidal-convex. As

the volume increases, the bubble deforms initially into an oblate shape and

then, for very large volumes, into a spherical cap. For all the fluids in this

class, the same changes of the shapes are observed. The decrease of the slope

of the velocity-volume relationship is clearly related to the change of shape.

3.3.5 Results summary

In conclusion, the experimental results show a wide range of behaviors for

bubbles rising in non-Newtonian liquids. A summary of all results is presented

here. A velocity discontinuity occurs for aqueous shear thinning viscoelastic

liquids, as observed by many authors, and also in Boger fluids for large PAA

concentrations. For these two cases, the velocity discontinuity can be related

to the change of the bubble shapes from spheroidal-convex to concave with a

cusped tail at their rear part. For Boger fluids, with concentration of PAA

smaller than 0.2wt.%, no discontinuity and no change of the slope occurs. But

for this case, all the bubbles, irrespectively of volume, are concave and already

show a tail at the rear. For non-aqueous shear thinning viscoelastic liquids

and inelastic shear thinning liquids, no discontinuity of the velocity is found.

Moreover, the slope of the velocity-volume relationship decreases after a critical

value of the volume. This behavior can be related to the change of bubble

shape from spheroidal-convex to oblate bubbles or spherical cap (in the case
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of a shear thinning inelastic fluid). At this point, the raw experimental data

have not provided a sufficient understanding of the phenomenon of the velocity

discontinuity. In the following Chapter, a dimensionless analysis approach will

be considered for this purpose.
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Chapter 4

Dimensionless analysis

The evolution of the bubble shape and the change of the velocity-volume rela-

tion whether as a sudden increase (discontinuity) or as a progressive decrease,

can be related to the rheological properties of the liquid. In what follows, we

analyze the different observed behaviors (velocity discontinuity, decrease of the

slope of the velocity-volume relation) in terms of the different forces affecting

the bubble motion (viscous, inertia, surface tension and elastic).

One significant characteristic observed at the discontinuity is a change of

shape. Hence, let us consider the force ratios affecting the bubble shape. For

the case of an air bubble moving in a non-Newtonian liquid, the characteristic

forces that will influence the shape are:

• Inertial forces: ρU 2d2

• Viscous forces: µUd

• Elastic forces: N1d
2 (from shear flow)

• Surface forces: σd

where ρ is the density of the liquid, U is the velocity of the bubble, d is

the equivalent diameter of the bubble, µ is the viscosity of the liquid, N1 is

the first normal stress difference and σ is the surface tension. In section 2.3,

69



we discussed that the characteristic magnitude of the elastic forces for a given

experiment could be determined from the rheological characterization of the

fluid. The mean shear rate over the bubble ¯̇γ is used to determine N1(¯̇γ). The

shape of the bubbles will be determined by the balance between surface tension

forces (those that keep the bubble in a spherical shape) and other hydrody-

namic forces. For Newtonian fluids, the bubble deformation is determined by

the competition between viscous or inertial forces with surface tension forces.

If either the Weber number or the Capillary numbers are greater than one,

the bubble can be deformed by either inertial or viscous forces respectively.

The Weber number is defined as We = ρU2d2

σ
and the Capillary number as

Ca = µU

σ
. The Weber number measures the importance of inertial forces with

respect to surface forces. The Capillary number compares viscous forces with

surface forces. For the case of viscoelastic fluids, an additional force has to

be considered. Since the liquid is deformed as it passes over the bubble, the

elasticity manifest itself as a normal stress difference. Hence, we can argue

that if elastic effects are present, the shape of the bubble can deviate from

spherical if the relation between elastic and surface forces is greater than 1:

Π =
N1d

σ
> 1 (4.1)

The Π number can be expressed as the product of the Deborah number and

the Capillary numbers: Π ∼ De×Ca. The Deborah number is usually defined

as the ratio of the characteristic time of the fluid tr to the characteristic time

of the flow tv:

De =
tr
tv

(4.2)

We can, however, reinterpret this dimensionless parameter as the ratio of

elastic to viscous forces:

De ∼
N1

µ¯̇γ
=

N1d

µU
(4.3)
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For all the experiments, the first normal stress difference N1 and the vis-

cosity µ are known from the rheometric measurements and the mean shear

rate is defined by ¯̇γ = U/r. The surface tension is considered constant for each

case. Now, the experimental results for each fluid class will be interpreted in

terms of these three characteristic dimensionless numbers.
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Figure 4.1: Dimensionless numbers: ¦ Π number, ¤ Capillary number (Ca)
and ◦ Weber number (We) (HASE fluid 1.2wt.%). Vc ' 65mm3

4.1 HASE fluids

The Figures 4.1,4.2 and 4.3 show the values of the dimensionless numbers: Ca,

We and Π, as a function of the bubble volumen. As the volumen increases the

dimensionless numbers increases too. So, the surface tension is overcome and

the bubbles can be deformed from the spherical shape.

For the HASE fluids 1.2%, 1.5% and 1.7% the Π number increases faster

than Ca and We. For the three cases, the discontinuity appears when the

Π number is larger than the unit, i.e., the elastic forces are larger than the

surface tension forces. Moreover, for volumes larger than the critical one,

the Π number is larger than the others numbers (We and Ca). Obviously

elastic effects are dominant. The volume at which they become important

corresponds exactly to the volume for which the velocity discontinuity occurs.

For the other liquids in this class, the same conclusion applies. The magnitude

of the discontinuity is small for this liquids, due to there is not shear thinning.

Then, the drag is not decreased by the viscosity reduction.
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Figure 4.2: Dimensionless numbers: ¦ Π number, ¤ Capillary number (Ca)
and ◦ Weber number (We) (HASE fluid 1.5wt.%). Vc ' 60mm3

Figure 4.3: Dimensionless numbers: ¦ Π number, ¤ Capillary number (Ca)
and ◦ Weber number (We) (HASE fluid 1.7wt.%). Vc ' 50mm3
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Figure 4.4: Dimensionless drag as a function of Deborah number for HASE

Fluids: (◦) 1.2% HASE; (¤) 1.5% HASE; (¦) 1.7% HASE.

We can define a normalized drag coefficient, which is equal to Cd/Cd,0,

where Cd,0 is the Stokes drag coefficient (Cd,0 = 24/Re). For small bubbles

(with a volume smaller than the critical one), the normalized drag coefficient

will be close to 1. For large bubbles, there is an increase of the velocity. And

so, for a decrease of the drag coefficient, the normalized drag coefficient will

be smaller than 1.

The normalized drag coefficient is shown in Figures 4.4 and 4.5 as a

function of the two dimensionless numbers previously defined. Clearly, for

small De, the bubbles are spherical and Cd/Cd,0 is around 1. After a certain

critical De, the normalized drag coefficient decays abruptly, corresponding to

the point for which the discontinuity occurs. This behavior can be observed

in the three solutions. However, the value of the critical De for which the

discontinuity occurs is not unique, as it depends on the percentage of HASE.

A similar trend can be observed for the capillary number: at a critical value

of Ca, the normalized drag drops abruptly, but this critical value is different

for each liquid. Hence, neither De nor Ca can be used to capture a generally

valid condition for the jump to occur. There are two main conclusions from
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Figure 4.5: Dimensionless drag as a function of Capillary number for HASE

Fluids: (◦) 1.2% HASE; (¤) 1.5% HASE; (¦) 1.7% HASE.

the results of this analysis: (1) the discontinuity appears when the elastic

properties manifest themselves and (2) there is a significant change in the

shape associated with the bubble velocity increase.

It is then appropriate to use the proposal dimensionless group Pi. This

number would be large if elastic effects dominate over surface tension effects

and vice versa. Figure 4.6 shows the normalized drag coefficient as a function

of the dimensionless group Π. For this case, the transition from high to low

drag appears to be the same for all the liquids: there is a critical value of

Π ∼ 1 that determines the conditions for the bubble velocity discontinuity to

appear for all the HASE fluids. The tail at the rear part of the bubble leads

to a decrease of the drag coefficient and consequently to a rapid increase of

the velocity. Since the tail shape can also influence the flow behavior of the

bubble, the tail shape can be related to the bubble velocity. A similar analysis

is performed for the others liquids tested in the next sections.
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Figure 4.6: Dimensionless drag as a function of Π = Ca×De for HASE Fluids:

(◦) 1.2% HASE; (¤) 1.5% HASE; (¦) 1.7% HASE.

4.2 Others fluids

4.2.1 Aqueous viscoelastic fluids

For this case, we have shown the existence of a critical volume for which a

velocity discontinuity occurs. Figure 4.7 shows the values of the three charac-

teristic dimensionless numbers as a function of bubble volume for a fluid with

0.15wt.% of PAA. The different dimensionless numbers increase with the bub-

ble volume. At the critical value of the volume, the Π number becomes larger

than 1. Moreover, for volumes larger than the critical one, the Π number is

larger than the others numbers (We and Ca). Obviously elastic effects are

dominant. The volume at which they become important corresponds exactly

to the volume for which the velocity discontinuity occurs. For the other liq-

uids in this class, the same conclusion applies. In the above case, the velocity

discontinuity occurs when the Π number is larger than 1. It is also important

to note that the Π number is also larger than the other dimensionless numbers

(Π > We,Π > Ca) for the whole range of volumes studied.
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Figure 4.7: Dimensionless numbers: ¦ Π number, ¤ Capillary number (Ca)
and ◦ Weber number (We) (50wt.% water, 50wt.% glycerin and 0.15wt.%
PAA).

4.2.2 Non-aqueous viscoelastic fluids

For these experiments, we have shown that no velocity discontinuity occurs;

however, we found that for a certain value of the volume there is a reduction

of the slope of the velocity-volume relation. Figure 4.8 shows the values of

the three characteristic dimensionless numbers as a function of the bubble

volume for a fluid with 0.1wt.% of PAA. For small bubble volume, all the

dimensionless numbers are smaller than 1. At a certain value of the volume

(V = 100mm3), both Π and We become larger than 1. For larger volumes,

the inertia forces are larger than the normal forces (We > Π ). In this range of

volumes, the bubbles are oblate and the reduction of the slope in the velocity-

volume relation is observed. In this case, since inertial effects are dominant,

no jump discontinuity appears. For polymer concentrations less than or equal

to 0.1wt.%, the same conclusions are valid: the reduction of the slope of the

velocity-volume relation is observed when the inertia forces are dominating.
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Figure 4.8: Dimensionless numbers: ¦ Π number, ¤ Capillary number (Ca)
and ◦ Weber number (We) (Ethylen-glycol and 0.1wt.% PAA).
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Figure 4.9: Dimensionless numbers: ¦ Π number, ¤ Capillary number (Ca)
and ◦ Weber number (We) (glycerol and 0.2wt.% PAA).

78



4.2.3 Constant viscosity elastic fluids

For this type of fluids, in low concentrations of PAA, no discontinuity and no

change of the slope of the velocity-volume relation was observed. However, at

large PAA concentrations, a sudden increase of velocity, indicative of a dis-

continuity, is observed. For this particular experiment it is not possible to

determine clearly whether or not a jump in velocity was present. If we ex-

amine the experimental data in dimensionless terms, the results become clear.

Figure 4.9 shows the dimensionless numbers We, Ca and Π as a function of

the bubble volume for a concentration of PAA equal to 0.2wt.%. For small

bubble volumes, all the dimensionless numbers are smaller than 1. At the

critical value of the volume of approximately V = 350mm3, the Π number be-

comes greater than 1 and larger than the other dimensionless numbers. This

implies that the shape of the bubbles is determined mainly by elastic forces.

The velocity increase occurs precisely when the elastic forces are larger than

the other forces. This is in agreement with the results obtained in the case of

aqueous viscoelastic fluids (section 4.2.1). However, in this case, the disconti-

nuity is not as large as in the previous case. In the next chapter a discussion

on the nature of the magnitude of the discontinuity is held. In addition to the

change of shape that leads to a drag reduction, the shear thinning property of

the fluid also plays an important role. Hence, for this liquid of near constant

viscosity, the velocity discontinuity is not as large as in the other cases.

For smaller percentages of PAA (0.1wt.% of PAA), for all volumes tested,

the Π number is always larger than 1, and larger than the other dimensionless

numbers, which are smaller than 1, as shown in Figure 4.10. Again, the elastic

forces dominate the flow, but no discontinuity of the velocity was found. For

this particular case, the discontinuity of the velocity must have occurred at

bubble volumes smaller than those tested here.
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Figure 4.10: Dimensionless numbers: ¦ Π number, ¤ Capillary number (Ca)
and ◦ Weber number (We) (glycerol and 0.1wt.% PAA).

4.2.4 Shear thinning inelastic fluids

For these experiments, we have shown that no discontinuity of the velocity

occurs. However, for large volumes, a reduction of the slope of the velocity-

volume relation is observed. The analysis of the dimensionless parameters for

a concentration of 0.1wt.% of Carbopol and with 0.08wt.% of triethylamine

is presented in Figure 4.11. For small bubble volumes, both We and Ca are

smaller than 1. The Π number is of course zero for this fluids. Above a certain

volume, the Weber number becomes larger than 1 whilst the Capillary number

remains less than unity. The decrease of the slope of the velocity-volume

relation occurs for the bubble volume for which inertia forces are dominant,

that is for We > 1, We > Ca and We > Π. In fact, inertial effects cause

the bubble to become oblate, leading to an increase in the form drag. The

conclusions are the same for all experiments involving inelastic fluids.
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Figure 4.11: Dimensionless numbers: ¦ Π number, ¤ Capillary number (Ca)
and ◦ Weber number (We) (ethylene-glycol, 0.1wt.% Carbopol and 0.08wt.%
triethylenamine).

4.3 Dimensionless summarize

We may summarize the above results as follows: the velocity discontinuity ap-

pears only when the elastic forces are able to deform the bubble in a significant

manner. Once the elastic forces have overcome the surface tension forces, the

shape of the bubble changes from a spheroidal-convex to a concave shape with

a tail appearing in the downstream section of the bubble. The change of the

slope for the velocity-volume relation is due to inertia effects which are now

dominant. This change is also linked to the change in shape of the bubble

from a spheroidal-convex to an oblate shape. In some cases, the inertial and

elastic effects may be important, that is when Π > 1 and We > 1. When

We > Π > 1, the shape of the bubbles is oblate but shows a concave shape

and a cusped tail in the downstream region. The velocity discontinuity does

not occur under these conditions.
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(a)

(e)

(d)

(c)

(b)

Figure 4.12: Shapes of the bubbles for different configurations (a) the bubble is

spherical or spheroidal-convex, (b) the bubble presents a tail at the rear part

and an inflection point, the bubble is concave, (c) the bubble is a spherical

cap, (d) the bubble is oblate, (e) the bubble is oblate, but with a very small

tail, or inflexion point at the rear part of the bubble.

4.4 Drag Coefficient

In order to quantify the changes in velocity of the bubbles, the drag coeffi-

cient may be examined. In particular, a normalized drag coefficient will be

considered, an follows:

C∗

d =
Cd

Cd,0

(4.4)

where Cd is the drag coefficient corresponding to the experimental mea-

surements and Cd,0 is the Stokes drag coefficient for a spherical particle with

the same diameter. An increase of the normalized drag coefficient indicates a

reduction of the velocity.

From experimental observations, the bubble shapes may be grouped in four

types:

• spherical bubbles or spheroidal-convex bubbles (fig. 4.12 a)

• concave spherical bubbles with a tail (fig. 4.12 b)
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Figure 4.13: Normalized drag coefficient as a function of the Π number for

different bubble shapes (◦): fluid 1 (50wt.% of water, 50wt.% of glycerol and

PAA), (¤): fluid 2 (ethylene-glycol and PAA) ,(¦): fluid 3, Boger fluid (glycerol

and PAA).

• oblate bubbles and spherical cap (fig. 4.12 c, d)

• oblate bubbles with a tail (fig. 4.12 e)

Figure 4.13 shows the normalized drag as a function of the dimensionless

parameter Π for all the experimental results in this investigation, whit the

exception of HASE fluids. The data are classified for the four types of fluids

used in the experiments. It can be observed that when Π < 1 , the normalized

coefficient is approximately unity for all cases. It is important to note that all

bubbles in this regime have spheroidal-convex shapes (Fig. 4.12 a). When the

Π number becomes greater than 1, two distinct behaviors may be identified.

For some cases, the normalized drag is smaller than 1, that is, a drag reduc-

tion is observed. The shape of the bubbles that experience a drag reduction

is always concave with a tail (Fig. 4.12 b). On the other hand, when the nor-

malized drag increases, when Π > 1, the shape of the bubbles is oblate (Fig.

4.12 e). Note that in this case, the data from the inelastic liquids is not shown

(Π = 0). In order to determine what causes drag reduction or enhancement,
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Figure 4.14: Normalized drag coefficient as a function of the Weber number

for different experiments (◦): fluid 1 (50wt.% of water, 50wt.% of glycerol and

PAA), (¤): fluid 2 (ethylene-glycol and PAA) ,(¦): fluid 3, Boger fluid (glycerin

and PAA) , (+): fluid 4 (ethylene-glycol, carbopol and triethylamine).

the normalized drag coefficient is shown as a function of the Weber number in

Figure 4.14.

When We < 1, the data are separated into two groups: experiments for

which the drag is close to that calculated from Stokes-Hadamard law and

experiments in which drag reduction is observed. If the data from figures

4.13 and 4.14 are replotted, classifying the experimental results according

to the shape of the bubbles (fig. 4.15), it can be clearly observed that

when the normalized drag is approximately 1 and We < 1, the shape of

the bubbles is spherical or spheroidal-convex. When the normalized drag

is less than unity and We < 1, the bubbles are concave with a tail. For

bubbles, in which We > 1, generally a drag enhancement is observed.

These bubbles are oblate (fig. 4.12 c, d and e). In a few cases, a modest

drag reduction is observed. Bubbles in this regime are oblate but show the

formation of a concave end as well as showing a tail. Finally, it is possible

to plot the results as a diagram showing the Π number as a function of the

Weber number (We) for all the experiments. This can be seen in Figure
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(a) (b)

Figure 4.15: Normalized drag coefficient as a function of the Weber number

for various shapes (◦): spherical or spheroidal convex bubbles (fig. 4.12 a) (¤):

concave bubbles (fig. 4.12 b) ,(¦): oblate bubbles (fig. 4.12 c, d, e).

Figure 4.16: Map of Π number as a function of the Weber number for the

different experiments: (◦): fluid 1 (50wt.% of water, 50wt.% of glycerin and

PAA), (¤): fluid 2 (ethylene-glycol and PAA), (¦): fluid 3, Boger fluid (glycerin

and PAA). Inset, same results by differentiating the shapes of the bubbles: (◦):

spherical or spheroidal convex bubbles (fig. 4.12 a) (¤): concave bubbles with

a tail (fig. 4.12 b), (¦): oblate bubbles (fig. 4.12 c, d, e).
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4.16. Spherical bubbles are observed when both Π and Weber numbers are

smaller than 1: the surface tension effects dominate. Oblate bubbles and

spherical caps are observed for Weber numbers larger than 1, and Π number

small or equal to 0 (the experimental results for inelastic fluids have been

omitted in Figure 4.16). Bubbles with a tail appear for Π number larger

than 1. Also, if Π > We, the bubbles are spheroidal-concave with a thin

and long tail; for We > Π , the bubbles are oblate-concave with a small tail.

The drag reduction is observed for the region that satisfies Π > 1 and Π > We.

Summarizing, the velocity discontinuity occurs when the elastic effects

dominate. In this case, the shapes of the bubbles change from spherical to

concave with a thin and long tail. The decrease of the slope of the velocity-

volume relation occurs if the inertia effects dominate the flow. The shape of

the bubble changes from spherical to oblate or to a spherical cap. In the case,

when both inertia and elastic effects are predominant, the jump discontinuity

only occurs when the elastic effects are larger than inertia and surface tension.

If inertia effects are larger than the other two, a decrease of the slope of the

velocity-volume relation appears.

4.5 Comparison with experimental results of

other authors

To corroborate the fact that the velocity discontinuity appears when elastic

normal forces are larger than the other forces, that is for Π > 1, we now

analyze the experiments of other author for which the velocity discontinuity

is observed. The data available for comparison and analysis is limited. Only

in few cases, the authors report all physical properties. We have considered

the experimental results of Rodrigue, De Kee and Chan Man Fong (1996),
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Figure 4.17: Map of Π number as a function of the Weber number (We) for

different fluids: (◦) fluid 1, (¤) Boger fluid, (+) HASE fluid Soto et al. (2006),

(¦) water and glycerin PAA and SDS, Rodrigue, De Kee & Chan Man Fong

(1996); Rodrigue, De Kee and Chan Man Fong (1998); Rodrigue and De Kee,

(1999), (×) 80wt.% of water, 20wt.% of glycerol and 0.5wt.% of PAA and SDS,

Rodrigue and Blanchet (2002).

Rodrigue, De Kee and Chan Man Fong (1998) and Rodrigue and De Kee,

1999, who used 50− 50wt.% water-glycerol mixtures and PAA and a range of

small amounts of sodium dodecyl sulfate (SDS) to adjust the surface tension.

We have also included the data of Rodrigue and Blanchet (2002) who used

80−20wt.% water-glycerol mixtures and PAA and SDS. The results from Soto

et al. (2006) for the case of HASE-type liquids are also included. Figure 4.17

shows the dimensionless drag as a function of Π number for all the experimental

data mentioned above, along with our measurements for the case of the fluid

1 and fluid 3. It may be seen that in the region where Π is less than one, the

normalized drag coefficient is approximately 1 and therefore no drag reduction

nor a jump discontinuity appears. If, however, Π is greater than one, drag

reduction is evident and the jump discontinuity occurs.
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Chapter 5

Velocity Discontinuity

Magnitude

In this chapter, a discussion about the magnitude of the discontinuity is pre-

sented. The main idea is to consider the effect of the different parameters

involved in the problem. A commercial finite element software (FEMLAB)

was used to evaluate the drag on the bubble surface.

5.1 The magnitude of the discontinuity

Form the vast experimental evidence presented here, it can be concluded

that the physical process which determines the appearance of the jump

discontinuity in velocity is the following: as the bubble volume increases,

the resulting mean shear rate on the surface also increases. As a result, the

elastic forces on the surface of the bubble become large. The shape of the

bubble slowly changes from spherical to teardrop shape. At a given shear

rate, and its corresponding bubble volume, elastic forces overcome the surface

tension forces that tend to maintain the spherical form of the surface. At

this point the dimensionless number Π becomes greater than one; the shape

changes drastically from convex to concave with the formation of a sharp
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Table 5.1: Magnitude of the velocity discontinuity. The velocities ratio for two

bubbles, one just below and other just above the critical volume ( Va

Vb
).

Author Va

Vb

Astarita and Apuzzo (1965) 2.22-5.86

Zana and Leal (1978) 4-5

Rodrigue (1998) 1.65-5

Herrera et al (2003) 1.8-2.4

HASE Fluids 1.63-2.45

cusp. This new shape has a more hydrodynamic form and the corresponding

drag coefficient becomes much smaller with the corresponding increase in

bubble velocity. This in turn, gives rise to an increase in the mean shear rate

at the surface which causes the viscosity of the fluid to drop further if the fluid

is shear thinning. The reduction of viscosity causes an additional reduction

of the drag, leading to a significant increase of velocity. Moreover, it has been

shown that elastic effects are also drag-reducing (Leal, Skoog & Acrivos, 1971).

Therefore, a further reduction of the drag on the bubble can be expected

in this case. Furthermore, it is also possible that the increase in velocity may

cause a change of the boundary condition on the bubble (Blanco & Mag-

naudet, 1995) since the surface is in most cases dirty for small slow bubbles;

hence, if the bubble moves faster, the surface may become cleaner and mobile,

which would also result in an additional reduction of the drag. All these effects

are the contributions that lead to the phenomena of the jump discontinuity.

The magnitude of the velocity discontinuity for selected fluids is presented in

the Table 5.1 from several authors. In all cases the velocities ratio is larger

than 1.5, the maximum possible value for a complete change in boundary

condition, from non-slip to slip. Through computer simulations it is pos-

sible to isolate the contributions involved in the magnitude of the discontinuity.
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Table 5.2: Velocity discontinuity principal contributions. A comparison be-

tween the experimental conditions and the parameters used in simulations.
Experimental Simulation

Viscosity Viscosity

Bubble velocity Bubble velocity

Bubble shape Bubble shape

Boundary condition Boundary condition (slip or non-

slip)

Elasticity

In the Table 5.2 the experimental variables and those considered in the

simulation are shown. All conditions can be included in the simulation, except

the elasticity.From experimental parameters es possible to obtain the ratio of

drag coefficients for a bubble with volumen just below the critical and a bubble

with volumen just above the critical. This is calculated by the equation:

Cd,2

Cd,1

=
d,2

d, 1
(
V,1

V,2

)2 (5.1)

where Cd is the drag coefficient, V the terminal velocity of the bubble, d the

bubble equivalent diameter and the subindexes, 2 and 1, refer to the bubble

just above the critical volume and to the bubble just below the critical volume,

respectively. For the simulations, the drag coefficient is determined with the

equation:

Cd =
2Fd

πρ(V )2(d
2
)2

(5.2)

where ρ is the fluid density, V is the bubble velocity and Fd is the total force at

the bubble surface in the motion direction. Note that in all these simulations

the bubble shape is assumed to remain fixed.
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Figure 5.1: Idealization of the problem in a two dimension sketch and boundary

conditions.

5.2 Computational Space

The computer simulations were performed considering a Newtonian fluid and

a 2D axi-symmetric flow. Figure 5.1 shows the boundary conditions imposed

on the simulations. The shape of bubbles were obtained by a digital image

processing (describe in a previous chapter), from photographs of real bubbles.

Typical bubble shapes with their correspondent mesh are shown in Figure 5.2.

In order to evaluate the relative importance of the relevant effects, we

performed simulations to determine the drag coefficient for bubbles just after

and just before the discontinuity. These simulations were done for liquids 1-2

and 1-4 ( 50wt.% of water, 50wt.% of glycerol, and 0.15wt.% PAA or 0.05wt.%

PAA) and for two HASE fluids (properties shown in Table 5.3).

With these simulations, we aim to evaluate the effects of the change of

shape, reduction of viscosity and change in boundary conditions by considering

shape fixed bubbles. The terminal velocity and shape are taken from the

experiments. The drag force is determined for the flow around bubble with a
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(a) (b)

Figure 5.2: Shape of the bubble and mesh used for the simulation (a) bubble

just before the discontinuity, (b) bubble just past the discontinuity.
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fixed shape. The shape is that obtained from the experiment for cases either

before or after the velocity discontinuity. For each case, we consider the value of

the viscosity to be the one corresponding to each experimental condition using

the mean shear rate as defined previously (see Table ??). It is important to

remark that our calculation scheme does not include the effect of the elasticity

of the fluid.

Table 5.3: Experimental properties of the selected bubbles to performed nu-

merical simulations, for bubbles formed just before and after the critical vol-

ume.
Bubble deq(mm) V ol(mm3) Vel (mm/s) µ(Pas) γ̇ Re

1-2 (before) 3.28 18.6 77.5 0.128 11.8 2.23

1-2 (after) 4.06 35.1 165.1 0.108 20.32 7.03

1-4 (before) 4.94 63.2 33.2 0.702 3.36 0.264

1-4 (after) 5.12 69.7 81.28 0.462 7.96 1.01

HASE (1.2%) (before) 4.55 49.33 29.8 0.22 3.21 0.606

HASE (1.2%) (after) 5.05 67.6 50.5 0.22 4.99 1.61

HASE (1.5%) (before) 4.54 49.2 9.02 1.14 0.992 0.036

HASE (1.5%) (after) 4.88 61.2 14.7 1.14 1.51 0.063

For this study cases two boundary conditions are considered. For bubbles

before the velocity discontinuity, the condition at the interface is taken to be

non-slip (rigid surface). Conversely, for bubbles moving after the discontinuity,

a clean free slip condition at the surface is considered. With this set of condi-

tions, we can evaluate whether or not the magnitude of the jump is only the

result of the change of shape along with a change of surface boundary condi-

tions. It must be emphasized that this drastic change of boundary conditions

is most likely an extreme condition; in an experiment, the surface of the bubble

is under ordinary laboratory conditions, neither clean nor fully contaminated.

Table 5.4: Calculated drag coefficients for two bubbles one before and another

after the critical volume with slip or non-slip boundary condition. HASE at

1.5wt.%
non-slip slip

Bubble before 685.3 556.9

Bubble after 385.3 305.7
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Table 5.5: Comparison of the effect of shape and boundary condition on the

calculated drag coefficient. Bubbles just before and just after the discontinuity

moving in HASE at 1.5wt.%
non-slip slip

Bubble before 685.3 556.9
Cd,1slip

Cd,1nonslip
= 0.813

Bubble after 385.3 305.7
Cd,2slip

Cd,2nonslip
= 0.794

Cd,2nonslip

Cd,1nonslip
= 0.547

Cd,2slip

Cd,1slip
= 0.594

Cd,2slip

Cd,1nonslip
= 0.446

The drag coefficients obtained from simulations, for the HASE fluid at

1.5 %, are shown in Table 5.4. It is possible to compare the drag for the

same shape, but with different boundary condition. The reduction in drag is

evaluated with the drag coefficients ratio:

Cd,1slip

Cd,1nonslip

= 0.813 (5.3)

the subindex 1 refers to a bubble before the discontinuity and the subindex 2

refers to a bubble after the discontinuity. This value is higher than 0.66, the

expected ratio for an sphere. Similary, for the bubble after the discontinuity

the ratio is:

Cd,2slip

Cd,2nonslip

= 0.794 (5.4)

as in the previos case, the drag reduction is higher than 0.66, it implies that

the contribution of the change in boundary condition for spheroidal bubbles

is not as important as in the spherical case. The reduction in the drag due to

the change in shape, without consider the change in boundary condition;

Cd,2nonslip

Cd,1nonslip

= 0.547 (5.5)

Cd,2slip

Cd,1slip

= 0.594 (5.6)

is smaller than 0.66. Then, the change in shape is the more important factor

for the drag reduction. It is important to recall that the viscosity of the HASE
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liquids remains nearly constant for mean shear rate near the jump. Finally,

considering the ratio between the drag coefficients of a bubble right after the

critical volume and a bubble right before the critical volume, the following:

Cd,2slip

Cd,1nonslip

= 0.446 (5.7)

From the experimental data is possible to determine de drag coefficient

ratio for the same two bubbles near the discontinuity, one before and the other

one after.

Cd,2

Cd,1

= 0.412 (5.8)

Experimentally, obviously all the contributions to the drag are included.

This drag ratio is smaller than that obtained from the simulation. It means

that the difference between the two measures represents all the effects not

considered in the simulation. Hence, it could be concluded that the magnitude

of the discontinuity is also strongly affected by the elasticity of the fluid.

Results from simulations, along with the experimental values are shown

in Table 5.6. The drag coefficients just after the discontinuity, Cd,2 and just

before the discontinuity Cd,1 allow to determine the magnitude of the discon-

tinuity, i. e., the ratio of these drag coefficients. For all experiments, this

ratio Cd,2/Cd,1 is smaller than 1. Moreover, the ratio obtained with the sim-

ulations is larger than that obtained in the experiments. This implies that

the velocity discontinuity is larger in the experiments than that predicted by

the simulations. Hence, the elastic effects must also be taken into account to

appropriately evaluate the magnitude of the discontinuity. These results show

that the amplitude of the discontinuity can not be fully determined with only a

change of the boundary condition from non-slip to slip as proposed by Astarita

& Apuzzo (1965), Barnett, Humphrey & Litt (1966), Calderbank, Johnson &

Loudon (1970), Leal, Skoog & Acrivos (1971)).
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Table 5.6: Drag coefficient ratio defined as the drag coefficient of the bubble

just after the discontinuity (indexed 2) divided by the drag coefficient of the

bubble just before the discontinuity (indexed 1). This ratio is determined with

the experiments (indexed exp) and also with the simulations (indexed sim).

Fluid (
Cd,2

Cd,1
)exp (

Cd,2

Cd,1
)sim

(
Cd,2

Cd,1
)exp

(
Cd,2

Cd,1
)sim

1-2 0.273 0.307 1.127

1-4 0.173 0.218 1.2

HASE 1.2% 0.373 0.453 1.216

HASE 1.5% 0.403 0.446 1.106

Experiments on the sphere translation in constant viscosity elastic fluids

(Boger fluids) have been reported by Chhabra, Uhller & Boger (1980) and

Mena, Manero & Leal (1987). Chhabra, Uhller & Boger (1980) observed a

decrease in the drag coefficient ratio Cd/CdStokes from one to approximatively

0.75, as the Weissenberg number (Wi, or Deborah number) increased from 0

to 1. For Weissenberg numbers larger than one, the drag ratio was found to be

independent of the Weissenberg number. Chmielewski, Nichols & Jayaraman

(1990) studied the influence of the elasticity on the drag coefficient for different

types of Boger fluids. In the case of a non-aqueous Boger fluid, Stokes law was

obeyed for Weissenberg numbers up to 0.3 and then increased with the Weis-

senberg number. In the case of an aqueous Boger fluid, Stokes law was obeyed

up to Weissenberg numbers equal to 0.1, but then decreased with increasing

Weissenberg number. These results are in qualitative agreement with those of

Tirtaatmadja, Uhlherr & Sridhar (1990). For our experiments, the liquids in

which the discontinuity is observed are aqueous viscoelastic solutions. In all

cases, the Weissenberg number increases with the volume of the bubble, and is

smaller than 1. Hence, from other results in the literature an elastic reduction

of the drag can also be expected, and its magnitude is of the correct order.

96



Chapter 6

Nonaxisymmetric Cusps

Furthermore, a morphological description related to the formation of non-

axisymmetric cusps at the rear of the bubble is presented.

Lastly, a photographic study of the peculiar shapes of the bubble tails that

appear after the bubble velocity discontinuity is presented. Figure 6.1 shows

the terminal velocity of bubbles as a function of volume. The symbols denote

the different tail shapes observed experimentally. The 2D cusp does not have a

preferential orientation. Hence, several experiments were performed to obtain

a frontal views. Note that these experiments are performed in a cylindrical

tank with control temperature (to avoid temperature gradients) and enough

time was elapsed to avoid fluid memory effects.

Previously, it was observed that a long, thin axisymmetric tail appears on

the rear part of bubbles immediately after the critical volume (this case is

shown in Figure 6.2 a). The thickness of the tail can be of the order of a few

microns, while its length amounts to a few centimeters. The tail eventually

breaks into micron-sized bubbles. This behavior resembles the so-called

tip-streaming phenomena, when daughter drops are ejected from a thin thread

at the tip of a highly stretched drop. The tip-streaming behavior was first

reported by Taylor (1964) and since then has been studied by many authors.

To our knowledge, tip streaming has not been reported to date for the case
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Figure 6.1: Velocity as a function of the bubble volume for 1.5% HASE. Dif-

ferent critical volumes for the different bubble shapes: (◦) spheroidal bubbles;

(+) axisymmetric tail (tip streaming); (¤) 2D edged tail (fish-bone streaming);

(¦) 2D edged tail (two-thread streaming).
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of air bubbles moving in complex non-Newtonian liquids. For larger bubble

sizes, the cusped tip transforms into a “blade-edge” tip (two–dimensional

cusp, figure 6.2 b and c).

For volumes smaller than 280mm3 (corresponding to shear rates smaller

than 15s−1), the tail is axisymmetric, very thin, and long. For larger volumes,

a 2D cusp appears. For volumes between 280 and 350 mm3 (corresponding

to shear rates between 15 and 18 s−1), only fish-bone streaming is observed.

For volumes larger than 350 mm3 (corresponding to shear rates larger than

18 s−1) both two-thread and fish-bone formations can be observed. Although

the influence of the type of 2D tail on the terminal velocity of the bubble

(drag coefficient) is not significant, we observe that when the two types of

edge-streaming appear, a larger scatter of data of bubble velocity is observed.

The different shapes of tails reported in this section have never been observed

for rising bubbles in either polymeric or worm-like micellar fluids. The 2D

cusp does not have a preferential orientation. Note that these experiments

are performed in a cylindrical tank with control temperature (to avoid tem-

perature gradients) and enough time was elapsed to avoid fluid memory effects.

The 2D cusped end was observed from simultaneous tail images taken at

perpendicular views. Several experiments are necessary to obtain images in

which the edge of the tail is parallel to the photo plane (images shown in

Figure 6.2 b and c). The appearance of such shapes has also been previously

observed by Liu et al, 1995. Moreover, the streaming behavior can also be

observed in 2D cusps; the so-called “edge streaming.” We have observed that

the 2D cusped tail can break into different manners for the same nominal

experimental conditions. To further investigate the conditions for which the

2D cusps appear, additional series of experiments were performed for such
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Figure 6.2: Various tail shapes for bubbles moving in a 1.5% HASE solution:

(a) tip streaming: bubble with filament tail and zoom of the tail instability; (b)

edge streaming: bubble with knife-edge tail and breakdown process of the tail

edge; (c) edge streaming: bubble with knife-edge tail and breakdown process

of the tail edge; the volume is larger than that shown in (b).

Figure 6.3: Two perpendicular views (a) and (b) of the tail; the tail breaks

into two different threads (V = 824mm3, 1.5% HASE).
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(b)(a) (c)

1 mm 1 mm 0.5 mm

Figure 6.4: Two perpendicular views (a) and (b) of the tail. (c) The tail

collapses into a single thread with perpendicular filaments that resemble a

“fish backbone” (V = 391mm3, 1.5% HASE)

large bubbles. The terminal velocities were measured for increasing bubble

volumes, and the shape of the tails was also identified.

In some cases, the tail breaks into two different threads (Figures 6.2 and

6.3). The two threads extend for some distance, but eventually each one breaks

into microbubbles. In other cases, the 2D tails collapse into a single thread with

perpendicular filaments that resemble a “fish backbone” (Figures 6.2 and 6.4).

All these fine threads eventually break into small bubbles. Edge streaming has

not been previously reported for these fluids. Clearly, the viscoelastic nature

of the HASE solutions is responsible for the formation of the cusped and edged

tips at the back of the bubbles. However, the basic mechanism for the cusp-

to-edge transition is not known. Tip streaming phenomenon is an indication

that, near the cusp, high levels of fluid stretching are present. There is also

a possibility that the surface active ingredients are being convected along the

bubble surface, inducing surface tension gradients, hence, enhancing the tip

streaming. The formation of these different shapes may be, in fact, a result

101



of the specific properties of the associative polymer fluid. Clearly, further

experiments are needed to understand the formation process of a particular

tail shape. With the present experimental setup, it is difficult to determine

precisely the critical volume from which the tail changes from axisymmetric

to two dimensional (either two threaded or fish backbone).
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Chapter 7

Conclusions

We have shown that for bubbles rising in an associative polymer solution,

as the bubble volume increases, a discontinuity of the velocity occurs. This

discontinuity in the velocity is smaller than that observed for aqueous

shearthinning viscoelastic liquids. A more distinctive feature for this case

is that the slope of the relation velocity-volume increases significantly past

the discontinuity. This particular behavior was studied for various HASE

concentrations. It was possible to relate this discontinuity with the rheological

properties of the fluid. In fact, the shear rates for which the discontinuity

occurs correspond to those for which the normal stresses appear. It is

important to note that the critical shear rates also correspond to the point at

which the shear thickening appears in some solutions, which may contribute

to reducing the strength of the velocity jump. The discontinuity can also be

related to the bubble shape and to the flow around the bubble. For volumes

smaller than the critical volume, the bubbles are spherical or spheroidal and

the flow around the bubble is similar to that of a Newtonian liquid. For

volumes larger than the critical one, the rear of the bubble is concave and

presents a tail at their rear part. The flow around the bubble is more complex,

and the presence of a negative wake can be observed.
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This study provides a criterion for the determination of a critical volume

at which the bubble velocity discontinuity occurs. Due to the importance

of the elasticity and the surface tension, a dimensionless number defined as

Π = N1d/σ is proposed to determine the jump conditions. The disconti-

nuity occurs for Πcrit ≈ 1. For the case of small bubbles, we found good

agreement between experiments and predictions for the velocities according

Stokes-Hadamard laws. For small bubbles, the shear rate is small, and

consequently, the liquid can be considered as Newtonian. The viscosity for

this case had to be obtained with a falling-bead technique. In agreement

with previous investigations, we found that the viscosity determined in this

manner was larger than that obtained under simple-shear viscometric flow.

From the present results, we have determined that the appearance of the

discontinuity results from a balance between elastic and surface tension forces.

Furthermore, such criterion was successfully tested for several classes of fluids

(viscoelastic, shear thinning inelastic and constant viscosity elastic liquids),

and a comparison with experimental results from literature was carried out.

We have shown with simulations that the magnitude of the discontinuity is

caused by a combination of the change of shape, the reduction of the viscosity,

the elastic effects and also, perhaps, the change of boundary conditions on the

bubble surface. With simple Newtonian calculations, the simulation results

could not predict the magnitude of the discontinuity as measured experimen-

tally. Therefore, we conclude that elastic effects also provide an important

contribution to the total magnitude of the drag reduction of viscoelastic flu-

ids around moving bubbles. Finally, for large bubble volumes, a photographic

study for the bubble shapes and the particularly the tail shapes was presented.

Different kinds of tails can be observed. The influence of the extensional

stresses at the rear of the bubbles, seems to be responsible of the formation of
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a long and thin tail. As increasing the volume, the velocity increases and the

tail breaks up. For larger volumes a formation of 2D tails was observed, and

eventually such tails breakup in a multithread pattern. The basic mechanism

of for the cusp-to-edge transition is not know. However, there is a possibil-

ity that the surface activity of the HASE fluids and their peculiar chemical

structure are responsables of this behavior.
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A study of velocity discontinuity for single air bubbles 
rising in an associative polymer 
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The motion of air bubbles in aqueous solutions of a hydrophobic alkali-swellable associative 
polymer is studied in this work. The associative nature of these polymer systems dictates their 
rheological properties: for moderate values of the shear rate, the formation of structure can lead to 
a shear-thickening behavior and to the appearance of first normal stress difference. For larger shear 
rates, the polymer associations can be broken, leading to shear thinning. In general, these ftuids 
show a Newtonian behavior for small values of the shear rate, but behave as viscoelastic liquids for 
large shear rates. Experimental results show the appearance of a critical bubble volume at which a 
discontinuity in the relation velocity-volume occurs; however, the velocity increase found in this 
case is not as large as that previously reported for the case of shear-thinning viscoelastic fluids. The 
discontinuity is associated with a significant change of the bubble shape: before the critica] volume, 
the bubbles are convex spheroids, while past the critica] volume a sharp cusped end appears. The 
appearance of the tail is also associated with the appearance of an inflection point (change of 
curvature) on the bubble surface. Moreover, since the rheology of the liquids is measured it was 
found that the discontinuity, and hence the change of shape, occurs when the elastic nature ofthe 
liquid first manifests itself (appearance of a first normal stress difference). A comparison of the 
measured velocities for small bubbles with predictions from a Stokes-Hadamard law shows a 
discrepancy. The Newtonian viscosity measured in a viscometric flow was smaller than that 
determined from a falling-ball arrangement. Conside1ing the viscosity measured under this 
nonviscometric flow, the comparison between theory and experiments was very good for bubbles 
having volumes Jower than the critica} one. Moreover, due to the importance of the elasticity, and 
due to the change of the shape of the bubble, a dimensionless number formed as the ratio of. elastic 
to surface tension forces clearly defines the change of the behavior for the bubbles rising in these 
fluids. Finally, a photographic study of the peculiar shapes of the bubble tails, tip-, and 
edge-streaming phenomena is presented. To our knowledge, experiments in this class of fluids have 
not been repmted to date. © 2006 American Institute of Physics. [DOI: 10.1063/1.2397011] 

l. INTRODUCTION 

The study of the motion of air bubbles in Iiquids has 
received much attention because of its fundamental and prac­
tica} importance. For the case of Newtonian liquids, there is 
a vast collection of investigations that report interesting be­
haviors in many regimes. 1 The understanding of such a sys­
tem is quite complete. For the case of the motion of gas 
bubbles in non-Newtonian liquids, there are several unex­
pected phenomena that remain to be fully understood.2

'
3 

Among the peculiar phenomena observed in the case of 
non-Newtonian liquids, of particular interest is the so-called 
bubble velocity discontinuity. In a Newtonian fluid, the mag­
nitude of the rising velocity of a gas bubble is proportional to 
the bubble size and the relation velocity-volume is mono­
tonically increasing. For the case of non-Newtonian liquids, 
many authors4

-
10 have reported that there exists a critica! 

value ofthe volume of the bubble for which a discontinuity 
of the velocity occurs: the bubble velocity increases mono­
tonically as the bubble size increases, but once a critica] 
volume is reached, the bubble velocity increases in a discon­
tinuous manner. In other words, the bubble velocity can in-

crease many times for a slight increase of the bubble volume. 
Astarita and Apuzzo4 were the first to report that the ratio of 
the velocity after and before the jump ranged from 2 to 6, 
depending on the polymer present in the solution. They ar­
gued that this discontinuity of the velocity was a result of a 
transition from the Stokes regime to the Hadamard regime (a 
change from a rigid to a free interface). However, it can be 
shown that the velocity increase resulting from such a 
change of the boundary conditions would be equal to 1.5. 
Due to the fact that no discontinuity of the velocity has been 
repmted to occur for the case of falling spheres, sorne 
authors5

-
7 have supported this argument, even though it does 

not predict correctly the increase of velocity. Astarita and 
Apuzzo4 also pointed out that the shape of the bubbles 
changed before and after the velocity discontinuity. 

Rodrigue et al. 8 proposed an explanation for the discon­
tinuity. They argued that it results from a balance between 
elastic and Marangoni instabilities, providing another major 
difference between Newtonian and non-Newtonian hydrody­
namícs. They have also studied the effect of surfactants in 
the liquid,9 and concluded that surface active agents as well 

1070-6631/2006118(12)/121510/12/$23.00 18, 121510-1 © 2006 American lnstitute of Physics 

Downloaded 22 Feb 2007 to 132.248.12.201. Redistribution subject to AIP license or copyright, see http://pof.aip.org/pof/copyright.jsp 



121510-2 Soto et al. 

as elastic forces must be simultaneously present in order to 
generate a sudden jump in velocity. 

Recently, Herrera-Velarde et al. 10 studied the velocity 
field around bubbles before and after the critical volume by 
means of a particle image velocimetry (PIV) technique. They 
reported that the appearance of the velocity discontinuity is 
associated with the presence of the so-called negative wake: 
for small bubbles (with a volume smaller than the critica} 
volume) the flow is similar to that of a bubble moving in a 
Newtonian liquid; for large bubbles (with a volume Iarger 
than the critical volume), the flow is strongly different and a 
negative wake is present. The wake is called "negative" be­
cause the velocity, very close to the trailing end, is in the 
direction of the motion of the bubbles; a short distance away 
from the trailing end, the velocity reverses direction. Por a 
bubble rising in a Newtonían liquid, the wake is normal, as 
the velocity in the wake is in the same direction as the mo­
tion of the bubble. Hassagar 11 was the first to observe this 
behavior for bubbles and coined the term "negative wake." 
Negative wakes have also been observed for spheres falling 
in viscoelastic liquids. 12 Many explanations have been pro­
posed to explain the appearance of this discontinuity; how­
ever, a complete self-consistent explanation is not yet avail­

able. 
In order to acquire certain desired rheological character­

istics in commercial products, rheology modifiers are used, 
i.e., surfactants (worm-like micellar systems), polymers 
(cellulose derivates), and hydrophobically modified or 
associative polymers (hydrophobically modified 
hydroxyethylcellulose). 15

'
16 In particular, surfactants and as­

sociative polymers are formed by two main parts: one hydro­
phobic and the other hydrophilic. In aqueous solutions, the 
hydrophilic part is surrounded by water while the hydropho-

, bic parts associate themselves with forrning agglomerates 
called micelles. The formation and rupture of these structures 
dictate the rheological behavior of these solutions. In gen­
eral, for associative polymers and surfactants, modifications 
of rheological properties can be accomplished with smaller 
concentrations, compared to those needed for ordinary poly­
mers, hence reducing the amount of residual products. 

In this investigation, experiments to determine the termi­
nal velocity of air bubbles in solutions of a hydrophobically 
modified alkali soluble polymer (HASE) were conducted. 
HASE is an associative polymer formed by a hydrophilic 
principal backbone and sorne pendant hydrophobic groups in 
a comb-like arrangement. 15

•
16 HASE solutions display com­

plex rheological properties because they exhibit a shear 
thickening and/or thinning in addition to viscoelasticity. At 
sorne specific concentrations HASE solutions have a region 
of constant viscosity, but with the presence of elasticity, it is 
possible to isolate elastic and shear-thinning effects. Another 
advantage of using these Jiquids is that they serve as model 
systems. 17

'
18 

To our knowledge, experiments to determine terminal 
velocities of gas bubbles on HASE-type fluids have not been 
reported to date. Belmonte19 reported experimental results of 
gas bubbles rising in worm-like micellar liquids, which share 
a similar complex rheology as the HASE system presented 
here. For these solutions, the bubbles develop a cusped edge 

fluid 

syringe 
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high speed 
camera 

high resolution 
camera 

FIG. J. Experimental device to study the motion of air bubbles in a liquid. 
Two cameras (one high speed and one high resolution) allow us to determine 
the velocity and shape of the bubble. 

and, for sorne conditions, self-trajectory oscillations ap-
20-,,., 

peared. Sorne authors -- reported that the motion of settling 
spheres in micellar-type fluids also shows trajectory oscilla­
tions. 

In this paper, we present experimental results for single 
bubbles rising in a HASE associative polymer. In Sec. II, the 
experimental methods are presented. The theory conceming 
bubbles moving in a Newtonian liquid at Iow Re is briefly 
summarized (Sec. III). After presenting the experimental re­
sults (Sec. IV) and their comparison with the theory (Sec. V), 
we present an explanation of the discontinuity of the velocity 
based on the rheological properties of the liquid. In the last 
section (Sec. VI), we present a short study of the shape of 
bubble tails that appears after the discontinuity. 

11. EXPERIMENTAL METHODS 

A. Materials and experimental setup 

To analyze the motion of air bubbles in a liquid, the 
experimental device, presented in Fig. 1, was used. A certain 
volume was placed in a cap with a syringe, and by tuming 
the cap, the bubble was released to move upwards in the 
inner tube. The width of the inner tube (D=9 cm) was 
enough to minimize wall effects. In ali cases, the ratio be­
tween the diameter of the bubble and the diameter of the 
inner tube was smaller than 0.1. The inner tube length 
(L=60 cm) was long enough for the bubbles to reach a stable 
terminal velocity. In the outer square tube, a liquid with the 
same refraction index as the solution present in the inner 
tube was placed to reduce the refraction effects. Severa! 
HASE concentrations were tested and their rheological char­
acterization is presented in the next part. Since, it has been 
shown that the velocity of the bubbles can be dependent on 
the injection frequency,9 a 5-rnin interval was Ieft between 
two consecutive bubbles to avoid this effect. 
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TABLE L Properties of the bubbles (diameter d and equivalent shear rate 
y= U/ r) in different solutions. 

Fluid 11º % HASE d(mm) Y (s-') 

1.2% ü.3-9.4 1-42 

2 l.5'7c 3.3-7_6 2-16 

3 1.7% . 2.5-8.7 1-10 

HASE (Primal TT-935) is supplied by Rohm and Haas. 
Aqueous solutions were prepared at 1.2, l.5, and 1.7% by 
weight in distilled water and left to rest for 48 h. A 0.5-M 
solution of 2-amino,2-methyl propanol (AMP), supplied by 
Aldrich, was used to adjust the pH to 9.0, at which the vis­
cosity is a function of pH peaks. Once the solutions were free 
of bubbles, the rheological and smiace tension properties 
were determined. 

B. Measurement methods 

1. Bubble shape and velocity 

The bubble terminal velocity and shape were determined 
using two cameras. The first one was a high-speed camera 
(RedLake MotionScope Model lOOO), which measures the 
velocity of the bubble using spatiotemporal diagrams. The 
error in the bubble velocity determination was smaller than 
1.5 mm/s. The second one was a high-resolution camera 
(6 megapixels, Fuji FinePix Slpro), which determines the 
bubble's geometric characteristics (shape and volume) by 
image analysis. The bubble volume was determined assum­
ing axial symmetry. Comparing the value of a known in­
jected volume with that obtained by image analysis, the error 
is smaller than 2%. An average shear rate y was defined to 
characterize the rheological properties of the fluid as the ratio 
of the terminal velocity U of the bubble to its spherical 
equi valent radius r: y= U Ir. As shown elsewhere, the mean 
value of the shear rate y can be given by U Ir for the flow 
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FIG. 2. Shear viscosity µ, (empty sy111bols) and first normal stress dífference 
N 1 (sol id symbols) as a function of the shear rate for different percentages of 
HASE (0 ) 1.2%; (0) 1.5%; (O) 1.7%. The bold lines show predictions of 
the Bautista-Manero model for 1.7% of HASE (Ref. 18). 
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TABLE II. Properties of the solutions: viscosity µ,, surface tension ,,., and 
cocfficients " and h in the eKpression of the first normal stress difference 
N

1
=a/'. ' 

Fluid % µ, (J Range of 

n" HASE (Pas) (mN m) a b y 

1.2% ü.22±0.009 38.41 ±0.34 0.2078 1.3097 0.1-lOO 

2 l.5% 1.14±0.005 36.93±0.23 1.1449 l.3192 0.1-100 

3 1.7% 3.34±0.04 55.55±0.38 2.3728 1.3289 0.1-50 

around a spherical bubble at low Reynolds number. 23
·
24 

The 
experimental range of the bubbles diameter and mean shear 
rates are presented in Table I. 

The flow field around the bubble on the symmetry plane 
was determined using PIV, wíth a commercial device pro­
vided by Dantec Dynamics. The light source was a 532-nm 
laser; fluorescent seeding and filters were used to avoid re­
flectíons within the air-liquid interface. More details about 
this technique can be found in Ref. 1 O. 

2. Rheological properties 

The rheological properties of the HASE solutions under 
simple shear were determined in a stress-controlled rheom­
eter (TA Instruments), using a 40-mm l 0 59' cone and plate 
fixture with a Peltier temperature-control system. 

The HASE solutions tested behave as Newtonian fluids 
(at small shear rates, viscosity remains constant and normal 
stresses are neglígible; Fig. 2). From 0.1 to 50 s-1

, the nor­
mal stresses are measurable while the viscosity remains 
almost constant. For all concentrations, a slight shear­
thickening behavior can be observed for small ranges of 
shear rate (for l.2% HASE, 6 <y< 36; for l.5% HASE, 
2< y< 12; for l.7% HASE, l < y<3.7). For large shear 
rates and depending on the concentration, the fluids exhibit a 
shear-thinning behavior: the viscosity decreases with the 

FIG. 3. Bubble velocity as a function of bubble volume for different per­
centages of HASE: (0 ) 1.2%: (O) l.5%; (O) 1.7%. There is a discontinuity 
of the bubble velocity for volumes equal to V,. (1.2%: Vc=65 mm3

; 1.5%: 
V,=60 1111113; 1.7%: Vc=50 mm3). The critica! volu111e decreases with an 
increase in HASE concentration. 
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shear rate and the first normal stress difference increases 
with the shear rate. In general, for a given shear rate, the 
viscosity and the first normal stress difference increase with 
HASE concentration, and the critical value of the shear rate 
at which normal stresses appear decreases with increasing 
HASE concentration. 

For the first normal stress difference, it is possible to fit 
the data to a power law, N 1=a"/. The coefficients a and b, 
and the range of shear rate for which this assumption is 
valid, are reported in Table II. The predictions of the model 
by Bautista et al. 18 are shown with experimental data for the 
1.7% HASE solution (Fig. 2). As analyzed elsewhere,25 this 
model accounts for the breakage-reformation process of the 
structure of associative polymers under flow. The model pre­
dicts a maximum in the extensional viscosity at a strain rate 
corresponding to that of the onset of normal stresses and the 
shear-thinning region of the shear viscosity. 

The surface tension of these liquids was measured with 
a Wilhelmy balance (Sigma 700) using a DuNouy ring 
(Table TI). 

Ca= {

2. 4/Re, rigid inte1face, Stokes drag 

16/Re, free interface, Hadamard-Rybczynski drag 

Hence, the terminal velocity for each case is 

Ustokes = pg d2
' 

18µ, 

pg o 
UHadamard= 

12
µ,d-, 

(l) 

(2) 

where d is the equivalent diameter of the bubbles (m), p is 
the density of the liquid (kg m-3), g is the gravitational con­
stant (g=9.81 ms-2), and µ, is the viscosity of the liquid 
(Pa s). 

In the case of very small bubbles rising in the HASE 
solution, the shear rate is very small, and then the liquid can 
be considered as Newtonian: there are no normal stresses and 
the viscosity is constant. However, it is very difficult to de­
tennine the surface boundary condition (rigid or free). Asan 
example, a "dirty" bubble will not have a free or a rigid 
interface; hence, one would expect to observe a behavior 
between the two regimes. 

IV. EXPERIMENTAL RESULTS 

A. Bubble terminal velocity and velocity field 

Measurements of the . terminal velocity for the three 
HASE solutions are presented in Fig. 3. There is a critica} 
volume Ve for which a velocity discontinuity appears. The 
value of this critical volume decreases with an increase in 
HASE concentration. These results are in agreement with 
those obtained by Herrera-Velarde et al. 10 In ali cases, the 
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111. THEORY FOR SPHERICAL BUBBLES 

A brief summary of the theory for Newtonian flow 
around spherical bubbles is presented. In general, the motion 
of a gas bubble is mainly determined by the hydrodynamic 
conditions (properties of the liquid, diameter of the bubble) 
and by the boundary condition on the bubble surface. 

At very Iow Reynolds numbers (creeping flow), the ftow 
is dominated by viscous effects. The equations of motion 
can, in principie, be solved rigorously and henee the drag can 
be calculated. By equating the drag and the buoyancy, the 
velocity-volume relationship can be obtained. The interface 
of a gas bubble may be considered between the two extreme 
cases of a free and a rigid interface.26

·
27 If the gas is assumed 

to be inviscid, the tangential stress r is zero at the free inter­
face. For a rigid interface, the velocity of the interface is 
equal to the velocity of the center of gravity of the bubble. In 
other words, the no-slip boundary condition holds at the 
bubble surface. For either case, the drag force on a spherical 
bubble in creeping ftow can be calculated28

-
31 according to 

slope of the velocity-volume relation is Iarger for large 
bubbles (for V> VJ than for small bubbles (for V< VJ. 
Moreover, for a given volume, the terminal velocity de­
creases with an increase of HASE concentration {due to the 
increase of viscosity). It is importan! to observe that the in­
crease in velocity after the discontinuity is significantly 
lower than that reported previously for aqueous shear­
thinning viscoelastic liquids.1º.1 3 A distinctive feature of the 
discontinuity of t!Ie velocity-volume relation, for the HASE 
solutions, is that the slope of the curve, defined by dU / dV 
(where U is the velocity and V is the volume), increases 
significantly past the critica! volume. Clearly, the value of 
d U/ dV at the discontinuity is larger t!Ian the values corre­
sponding for the nonjump condition {Table lll). Moreover, 
the amplitude of the discontinuity decreases as the · percent­
age of HASE increases. 

Flow visualization around bubbles before and after the 
discontinuity using the PIV technique are presented in Figs. 
4 and 5. For air bubbles with volumes smaller than the criti-

TABLE III. Velocity increase, dU!dV, at the volume for which the discon­
tinuity occurs. dU/dVHadamaro and dU/dVStokes are calculated from Eqs. (1) 
and í2J. 

%HASE dU!dV dU / dV H»dama'd dU / dVsiokes 

1.2% 2.52 0.43 0.28 

1.5% 0.55 0.14 0.09 

1.7% 0.188 0.06 0.04 
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FIG. 4. Flow around a rising bubble with volume below the critica! one 
(V=4.2mm3; V=l.l mms-1;HASE 1.5%). 

cal one, Ve, the fluid at the front and at the rear of the bubble 
is moving in the same direction of the bubble (Fig. 4). For 
bubbles with a volume Iarger than the critica! one, Ve, the 
flow around the bubble is drastically different (Fig. 5). The 
ftow at the front of the bubble is in the same direction of the 
bubble motion. At the rear of the bubble, the fluid is moving 
in the opposite direction of the bubble motion. This phenom­
enon is called negative wake and was previously reported 
elsewhere3• 

1 u 2•33• and more recen ti y in Ref. 1 O. The negative 
wake is a manifestation of importance of the elastic effects in 
the bubble motion. Presumably, the elasticity of the liquid is 
an important factor for the discontinuity to appear. This ar­
gument will be further discussed later. 

0.1 

U"' 
'O 

-2 ·1 o 2 

x/d 
(a) 
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B. Bubble shape 

The velocity discontinuity can be related to the bubble 
shape. Figures 6-8 show bubbles for the three solutions with 
volumes smaller and Iarger than the critica! one Ve- Clearly, 
there is a very significant change of the shape related to the 
appearance of the velocity jump. 

For bubbles with a volume much smaller than the critica! 
volume Ve, the shape is nearly sphericaL With a small in­
crease in volume, a slight deformation on the rear part of the 
bubble is observed. In ali cases, for volumes smaller than V,., 
the shape of the bubbles is convex ali around, whereas for 
bubbles with a volume larger than the critica! volume Ve, the 
shape is concave in the trailing end: the shape presents an 
inflection point. Figure 9 shows a comparison of the shape of 
a bubble before and after the jump. The shape in the front 
region is nearly the same, whereas it changes significantly in 
the back region. Moreover, the formation of a sharp cusp can 
be clearly observed. At the tip of the cusp, a long (few cen­
timeters) and very thin (tens of micrometers) tail forms in ali 
cases. Using two cameras acting simultaneously, it was pos­
síble to obtain a view of the tail from two sides. The cusps 
and tails immediately after Ve are axisymmetric. However, 
for volumes larger than Ve, this is no longer the case. Non­
axisymmetric tails are shown and discussed in Sec. VIL 

V. COMPARISON OF EXPERIMENTS ANO THEORY 
FOR SMALL BUBBLES: TERMINAL VELOCITY 

The viscosity of the HASE solutions displays a Newton­
ian region at small shear rates y. Por small Reynolds num­
bers, one can attempt to compare the measured terminal ve­
locities with those predicted for the Stokes-Hadamard drag 
[Eqs. (1) and (2)]. 

Figure 1 O shows a comparison of experimental results 
obtained for fluid 1 (1.2% HASE). The predictions [Eqs. (1) 
and (2)] consider the measured zero shear-rate viscosity. 

0.03 

-2 
0.025 

-3 
0.02 

"O -4 

---->-. 0.015 

-5 0.01 

-6 0.005 

-7 
-2 -1 

x/d 
(b) 

FIG. 5. Flow around a rising bubble with volume above the critica! one. (a) Flow around the bubble. The flow is very similar to the flow observed for a bubble 
with a volume smaller than Ve (b) At the rear part of the bubble, the negative wake can be seen (V=239 mm3; U=54.6 mm s-

1
: HASE 1.5%). 
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• o o 
'~.H' H H 

V*=0.19 V*=0.46 V*=0.76 

• ¡ 
:H 

V*=l.04 V*=l.67 V*=2.94 
FIG. 6. Bubble shapes for different values of the dimensionless volume 
V'= V/V,. for %HASE=l .2, with V,,=65 mm3. The small bubbles are almos! 
spherical. For larger volumes (for V'> 1 ), the shape of the bubbles is con­
cave with a very thin and long tail at the rear part of thc bubble. The scale 

reprcsents 2 mm. 

Clearly, the disagreement among the two sets of data is ap­
parent. The rheometric f\ow (simple shear), in which the vis­
cosity was measured, contrasts that of the ftow around the 
bubble. To improve the predictions, the viscosity of the liq­
uid was obtained from a simple falling-bead setup. The ef­
fective viscosity in this case inferred from 

2 r2L\pg 
µ = 9----¡¡-' 

where r is the bead radius (m), Ll.p= Pbeact-Pliquid is the den­
sity difference between bead and liquid (kg m-3

), g is the 
gravitational constant (g=9.8 l m s-2

), and U is the terminal 
settling velocity of the sphere m s-1

. 

The experiments are conducted by varying the diameter 
of the glass beads from 3 to 6 mm. In all the cases, the 
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o o o 
H H H 

V*=0.32 V*=0.55 V*=0.82 

• 
H H 

V*=l.02 V*=l.56 V*=2.66 

FIG. 7. Bubble shapes for different values of the dimensionless volume 
V'= VI Ve for %HASE=l.5, with Vc=60 mm3 The scale represents 2 mm. 

gion of the rheometric f\ow curve. In addition, the ratio d.J D 
is smaller than 0.07 (d

5 
is the diameter of the bead and D is 

the diameter of the test section). The viscosity obtained from 
these experiments is constant for shear rates between 0.2 and 
lO s- 1• The results are presented in Table IV. The viscosity 
obtained from falling-bead experiments is in ali cases larger 
than that obtained under simple shear. The ratio of these 
viscosities (a) as a function of HASE percentage is shown in 
Table IV. This ratio decreases with HASE concentration. 
This behavior can be explained by two reasons. 

First, in these experiments, wall effects are present. Por 
Newtonian f\uids, the drag correction factor reduces to the 
well-known Faxén correction,35 which is commonly ex­

pressed in the form 

KN(a!R) = 1 = Ustokes 
l - f(r!R) U 

(3) 

Reynolds number is smaller than 1. The shear rate is also 
small, corresponding to shear rates within the Newtonian re- with 
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• o o 

H H H 

V*=0.24 V*=0.61 V*=0.81 

• 
H H H 

V*=l .21 V*=l.84 V*=3.61 

FIG. 8. Bubble shapes for different values of the dimensionless volume 
V'=VIVc for %HASE=L7. wíth Vc=50 111111

3
• The scale represents 2 mm. 

f(r!R) = 2.104 44(r/R) -2.088 77(r/R) 3 

+ 0.948 l 3(r/ R)5 + l.372(r/R)6 
- 3.87(r/R)8 

+4.l9(r/R)'° + · ··. (4) 

where r is the radius of the falling bead and R is the con­
tainer radius. This relation is only valíd in the case of a 
Newtonian fluid for Reynolds number smaller than l. It has 
been shown'i' that "for moderate Deborah Numbers De, wall 
effects appear to be less important than in the motion of the 
corresponding Newtonian fluid." In our experiments, the 
Deborah number lies between 0.5 and l .6, implying that the 
drag correction factor is smaller than the one calculated in 
the case of a Newtonian ftuid. 17 In these HASE solutions, a 
rl R value of 0.07 corresponds to KN(rl R)= Ll6. It implies a 
viscosity increase of l. 16. Moreover, the wall correction fac­
tor for elastic, constant-viscosity ftuids1s is given by f(r! R) 

= l -0. l 7 r/ R for Deborah numbers larger than 0.2, which 
corresponds in our case to KN(r! R)= l.006. The wall effect 
contributes to a small increase in viscosity obtained from 

Phys. Fluíds 18, 121510 (2006) 

y/R 

x/R 

FIG. 9. Bubble shapes befare (continuous line) and after (dashed line) the 
jump. The shape cines not change in the front part of the bubble, whereas it 
changes in its back part (Vb,ioce=49.2 mm'; V,"0,=61.2 mm3; 1.5% HASE). 

falling-bead experiments over that obtained in simple shear. 
However, the difference between the two viscosities is within 

a factor of 2. 
The second reason is that, conceptually, the fiow around 

a bubble can be divided into three regions: a simple shear 
region at the equator, a simple extensional region at the rear, 
and a biaxial extensional region at the front. The extensional 
components lead to extra stresses that slow the sphere mo­
tion down. But this extensional ftow depends on the Rey­
nolds number. For large va!ues of the Reynolds number 
the extensional components will be more important; as a 
consequence, the difference between the two viscosities will 

increase. 
The ratio of the viscosity estirnated from falling-bead 

data to the viscometric viscosity decreases with HASE con­
centration (Table LV). In addition to the wall effects, which 
decrease the terminal velocity and hence increase the viscos­
ity, it is necessary to include the extensional fiow contribu­
tions. Under extensional fiow, models 17

'
18

'
09 

predict a region 
of extensional thickening at extension rates of the order of 
the inverse of the main relaxation time. This region coincides 
with the onset for rneasurable normal stresses in shear ftow, 
closely related to the appearance of the velocity discontinu­
ity. The extensional ftow contribution further retards the mo­
tion of the falling bead, increasing the mentioned viscosity 

ratio. 
The experimental and theoretical results obtained with 

the two viscosity measurements are compared. The results 
are presented in Fig. 1 O. For small bubbles that are ahnost 
spherical, the experimental measurements lie between the 
two limiting cases of Hadamard and Stokes laws with a vis­
cosity calculated from the falling-bead experiments. There­
fore, the bubble interface can neither be considered fully 
contaminated nor clean. We note that the comparison is good 
for bubbles with volumes smaller than the critica! volume Ve 
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FIG. 10. Bubble velocity as a function of bubble volume, l.2% HASE. The 
lines are the theoretical predictions obtained from the Stokes (continuous 
lines) and Hadamard (dashed lines) laws: (thin lines) µ.=µ.,heom'1e•·; (thick 

lines) µ=µ.ra 11 -

Above Ve, the bubbles are no longer spheroidal and develop 
a long tail. The results for the other fluids and their compari­
son with the theory are not presented here, but the agreement 
between theory and experiments is equally good. Contrary to 
the measurement of the viscosity by falling-bead experi­
ments, the simple shear rheological measurements do not 
take into account the uniaxial and biaxial deformations. This 
explains why the behavior of small bubbles rising in a vis­
coelastic fluid is better described using a falling-sphere mea­
surement of the viscosity. 

VI. INTERPRETATION 

In the case of bubbles rising in an associative polymer, it 
has been shown that there is a critica! value of the volume at 
which a discontinuity in the velocity-volume curve occurs. 
The analysis of the bubble shape shows that for small 
bubbles (with a volume smaller than the critical value), the 
shapes of the bubbles are convex: the bubbles are spherical 
or spheroidal. For volumes larger than the critica! value, the 
shape of the bubbles is completely different: the bubbles are 
concave, there is an inflection point, and a very thin, long tail 
appears at the rear patt of the bubble. Moreover, the velocity 
field around the bubbles also changes significantly for ex­
periments below and above the critica! volume. In particular, 

TABLE.IV. Viscosity measurements for different solutions with two meth­
ods: J.lrheomerer is the viscosity measured in a cone-plane rheometer under 
simple shear, µ.ra 11 is the viscosity calculated from falling-bead expetiments. 
The ratio of the viscosíty a decreases with increasing HASE concentration. 

Fluid % µrhoometer J.Lrau Viscosity ratio 

nº HASE (Pas) (Pas) a 

1.2 0.22 0.49±0.01 2.23 

2 1.5 l.14 l.58±0.04 l.39 

3 1.7 3.34 4.08±0.23 l.22 

4 (Ref. 34) 2.1 12.5 13.23±0.4 l.06 
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FIG. l l. Mean shear rates y as a function of the volume for different 
percentages of HASE: 0 l.2%; O l.5%; () 1.7%. The dashed lines repre­
sen!, for each percentage of HASE, the shear rate for which the normal 

stresses are measurable. 

for bubbles with volumes above the critica! value, the pres­
ence of the so-called negative wake can be observed. 

lt is possible to link this behavior with the rheological 
properties of the fluid. For this, the mean shear rate (defined 

as y= U Ir) at which the normal stresses are measurable and 
at which the discontinuity of the velocity occurs, is deter-

mined. Figure 11 shows the calculated y for the three tested 
liquids. From this plot, the value of the shear rate corre­
sponding to the critica! volume can be determined and is 
approximately the same as the shear rate at which the elastic 
nature of the fluid begins to manifest itself (N1 becomes mea­
surable). Therefore, it can be said that the bubble velocity 
discontinuity is a direct result of the appearance of elastic 

stresses. 
For negligible normal stresses, the bubbles are almost 

spherical and their velocities are govemed by the Stokes and 
Hadamard laws. For significant normal stresses, the velocity 
is larger than the velocity predicted by Stokes and Hadamard 
law, and the bubbles are concave, presenting a tail at their 

rear part. 
The immediate consequence of the presence of normal 

stresses in the liquid is a change in the bubble shape, which. 
evidently leads to a drag reduction and, hence, a rapid in­
crease of velocity. A particular bubble shape is then related to 

its rising velocity. 
We have shown befare that the elasticity of the liquid 

plays an important role, because the discontinuity of the ve­
locity occurs when the normal stress appears in the liquid. 
Consequently, we can consider that the Deborah number, de­
fined by the ratio of the first normal stress difference N 1 and 
two times the tangen tia! stress T= µ,y, can be considered to 
determine when the discontinuity occurs; 

N¡ N 1d 
De----­

- 2T - 4µ,U. 
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FIG. 12. (a) C/Cd.o as a function of the Capillary number, (b) Cd/Cd.o as a function of the Deborah number, for different percentages of HASE: (
0

) l.~% 
HASE; (O) l.5% HASE; (O) l.7% HASE. The critica[ value of these dimensionless numbers far which the discontinuity of the velocity occurs depends on 

the percentage of HASE. 

Since there is a strong change of the shape 0f the bubble 
before and after the discontinuity, this implies that the sur­
face tension will also play an important role. Since the dis­
continuity of the velocity occurs for Reynolds number 
smaller than 1, the capillary number, defined by the ratio of 
the viscous forces and the surface forces, Ca= µ,U/ u can al so 
be considered to be an important parameter to the problem. 
We can define a normalized drag coefficient, which is equal 
to Cd/ cd.O' where cd.O is the Hadamard drag coefficient 
( Cd,o= 16/Re). For small bubbles (with a volume smaller 
than the critica! one), the normalized drag coefficient will be 
close to l. For large bubbles, there is an increase of the 
velocity. And so, for a decrease of the drag coefficient, the 
normalized drag coefficient will be smaller than 1. The nor­
malized drag coefficient is shown in Fig. 12 as a function of 
the two dimensionless numbers previously defined. Clearly, 
for small De, the bubbles are spherical and CJ/ Cd,O is around 
l. After a certain critica! De, the normalized drag coefficient 
decays abruptly, corresponding to the point for which the 
discontinuity occurs. This behavior can be observed in the 

0.5 

o 
oL-~~~-~~~~~~~~~~~~~~~~~ 

10·2 10'1 10º 10
1 

n =Ca X De 

FIG. 13. Nonnalized drag coefficient as a function of Il=Ca X De for: (o) 
1.2% HASE: (D) 1.5% HASE; (O) l .7% HASE. For ali the percentages of 
HASE, the discontinuity occnrs far the same value of I1 (Il =0.25). 

three solutions. However, the value of the critica! De for 
which the discontinuity occurs is not unique, as it depends on 
the percentage of HASE. A similar trend can be observed for 
the capillary number: at a critica! value of Ca, the normalized 
drag drops abruptly, but this critica! value is different for 
each liquid. Hence, neither De nor Ca can be used to capture 
a generally valid condition for the jump to occur. There are 
two main conclusions from the results of this analysis: (l) 
the discontinuity appears when the elastic properties mani­
fest themselves and (2) there is a significant change in the 
shape associated with the bubble velocity increase. It is then 
appropriate to form a dimensionless group that compares 
elastic forces to capillary forces, 

II- N 1d 
(J' 

This number would be large if elastic effects domínate over 
surface tension effects and vice versa. In fact, this number 
could be interpreted as II =4Ca X De. 

Figure 13 shows the normalized drag coefficient as a 
function of the dimensionless group II. For this case, the 
transition from high to low drag appears to be the same for 
ali the liquids: there is a critica! value of II (IIcrit = 0.25) that 
determines the conditions for the bubble velocity discontinu­
ity to appear for ali the liquids tested. 

The tail at the rear part of the bubble leads to a decrease 
of the drag coefficient and consequently to a rapid increase 
of the velocity. Since the tail shape can also inftuence the 
ftow behavior of the bubble, the tail shape can be related to 
the bubble velocity. This aspect is further discussed in the 

next section. 

VII. SHAPES OF THE TAILS 

Lastly, we present a photographic study of the peculiar 
shapes of the bubble tails that appear after the bubble veloc­
ity discontinuity. Previously, it was observed that a long, thin 
axisymmetric tail appears on the rear part of bubbles imme­
diately after the critica! volume [this case is shown in Fig. 
14(a)]. The thickness of the tail can be of the order of a few 
microns, while its length amounts to a few centimeters. The 
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FIG. 14. Two perpendicular views (al and (b) of the tail: the tail breaks into two different threads (V=824 mm
3
, 1.5% HASE). 

tail eventually breaks into micron-sized bubbles. This behav­
ior resembles the so-called tip-streaming phenomena, when 
daughter drops are ejected from a thin thread at the tip of a 
highly stretched drop. The típ-streaming behavior was first 
reported by Taylor411 and since then has been studied by 
many authors. To our knowledge, tip streaming has not been 
reported to date for the case of air bubbles moving in com­
plex non-Newtonian liquids. 

For larger bubble sizes, the cusped típ transforms into a 
"blade-edge'' tip [ two-dimensional (20) cusp] [Figs. l 4( b) 
and l4(c)]. The 20 cusped end was observed from simulta­
neous tail images taken at perpendicular views. Severa! ex­
periments are necessary to obtain images in which the edge 
of the tail is parallel to the photo plane [images shown in 
Figs. 14(b) and 14(c)]. The appearance of such shapes has 
also been previously observed. 1

•
1 The 20 cusp does not have 

a preferential orientation. Note that these experiments are 
pe1formed in a cylindrical tank. 

Moreover, the streaming behavior can also be observed 
in 20 cusps; the so-called "edge streaming." We have ob­
served that the 20 cusped tail can break into different man­
ners for the same nominal experimental conditions. In some 
cases, the tail breaks in to two different threads [Figs. l 4(b) 
and 15]. The two threads extend for sorne distance, but even­
tually each one breaks into rnicrobubbles. In sorne other 
cases, the 2D tail.s collapse into a single thread with perpen­
dicular filaments that resemble a "fish backbone" [Figs. 14(c.l 
and 16]. Ali these fine threads eventually break into small 
bubbles. Edge streaming has also not been previously re­
ported for these fluids. 

Clearly, the viscoelastic nature of the HASE solutions is 
responsible for the formatíon of the cusped and edged tips at 
the back of the air bubbles. However, the basic mechanism 
for the cusp-to-edge transition is not known. Tip streaming 
phenomenon is an indication that, near the cusp, high levels 
of fluid stretching are present. There is also a possibility that 

the surface active ingredients are being convected along the 
bubble surface, inducing surface tension gradients, hence, 
enhancing the tip streaming. 

To further investigate the conditions for which the 20 
cusps appear, additional series of experiments were per­
forrned for such large bubbles. The terminal velocities were 
measured for increasing bubble volumes, and the shape of 
the tails was also identífied. Figure 17 shows the terminal 
velocity of bubbles as a functíon of volume. The symbols 
denote different tail shapes observed experimentally. With 
the present experimental setup, it is difficult to determine 
precisely the critica! volume from which the tail changes 

• 

! 
,,_.\ l'rmrn 

(a) (b) 

FIG. 15. Various tail shapes for bubbles moving in a l.5% solution of 
HASE: (a) tip streaming: bubble with filament tail and zoom of the tail 
instability: (b) edge streaming: bubble with knife-edge tail and breakdown 
process of the tail edge; (e) edge streaming: bubble with knife-edge tail [the 
volume is larger than that shown in (b)] and breakdown process of the tail 

edge. 
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(a) (b) (e) 

FIG. 16. Two perpendicular views {a) and (b) of the tail. (e) The tail col­
lapses into a single thread with perpendicular filaments that resemble a "fish 
backbone" (V=39l mm3, l.5% HASE). 

from axisymmetric to two dimensional (either two threaded 

or fish backbone). 
For volumes smaller than 280 mm3 (corresponding to 

shear rates smaller than 15 s- 1), the tail is axisymmetric, 
very thin, and long. For larger volumes, the 2D cusp appears. 
For volumes between 280 and 350 mm3 (corresponding to 
shear rates between 15 and 18 s- 1 

), only fish-bone streaming 
is observed. For volumes larger than 350 mm3 (correspond­
ing to shear rates larger than 18 s-1

) both two-thread and 
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FIG. 17. Velocity as a functíon of the bubble volume for l.5% HASE. 
Oifferent critica! values of the volume for the different bubble shapes: (0

) 

spheroidal bubbles; (+) axisymmetric tail (típ streaming); (O) 20 edged tail 
(fish-bone streaming); (O) 20 edged taíl (two-thread streaming). 
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fish-bone formations can be observed. Although the influ­
ence of the type of 20 tail on the terminal velocity of the 
bubble (drag coefficient) is not significant, we observed that 
when the two types of edge-streaming appear, a !arger scatter 
of data of bubble velocity is observed. 

The different shapes of tails reported in this section have 
never been observed for rising bubbles in either polymeric or 
worm-like micellar fluids. The formation of these different 
shapes may be, in fact, a result of the specific properties of 
the associative polymer fluid. Clearly, further experiments 
are needed to understand the formation process of a particu­

lar tail shape. 

VIII. SUMMARY ANO CONCLUSIONS 

We have shown that for bubbles rising in an associative 
polymer solution, as the bubble volume increases, a discon­
tinuity of the velocity occurs. This discontinuity in the ve­
locity is smaller than that observed for aqueous shear­
thinning viscoelastic liquids. A more distinctive feature for 
this case is that the slope of the relation velocity-volume 
increases significantly past the discontinuity. This particular 
behavior was studied for various HASE concentrations. It 
was possible to relate this discontinuity with the rheological 
properties of the fluid. In fact, the shear rates for which the 
discontinuity occurs correspond to those for which the nor­
mal stresses appear. It is important to note that the critica! 
shear rates also correspond to the point at which the shear 
thickening appears in sorne solutions, which may contribute 
to reducing the strength of the velocity jump. 

The discontinuity can also be related to the bubble shape 
and to the flow around the bubble. For volumes smaller than 
the critica! volume, the bubbles are spherical or spheroidal 
and the flow around the bubble is similar to that of a New­
tonian liquid. For volumes larger than the critica! one, the 
rear of the bubble is concave and presents a tail at their rear 
part. The ftow around the bubble is more complex, and the 
presence of a negative wake can be observed. 

This study provides a criterion for the detennination of a 
critica! volume. Due to the importance of the elasticity and 
the surface tension, a dimensionless number defined as 
11==N

1
d/ u is proposed to determine the jump conditions. The 

discontinuity occurs for llcrit = 0.25. 
For the case of small bubbles, we found good agreement 

between experiments and predictions for the velocities ac­
cording Stokes-Hadamard laws. For small bubbles, the shear 
rate is small, and consequently, the liquid can be considered 
as Newtoniai1. For this agreement, the viscosity had to be 
obtained with a falling-bead technique. In agreement with 
previous investigations, we found that the viscosity deter­
mined in this manner was larger than that obtained under 
simple-shear viscometric flow. 

For large bubble volumes, we presented a photographic 
study of the bubble shapes and particularly the tail _shapes. 
Different kinds of tails can be observed. 

From the present results, we have determined that the 
appearance of the discontinuity results from a balance be­
tween elastic and surface tension forces. We are currently 
conducting additional experiments with other non-
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Newtonian liquids (Boger, inelastic, etc.) to further corrobo­
rate the appropriateness of the n group to describe the con­
ditions of the bubble velocity discontinuity. These results 
will be reported in a future communication. 
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. - .... 4.,. 

Cyprus. , ·- $ • 

- 27. · Virtúál Rheos<;opic Fluids · ·- · 

-- ·F1oriari' Hecht, ·Georg¡a lnstiiute of Te!;linology; 
Peter J. Mucha,· Umversity of North C~rolina:-at. 
Chapel Hill; Greg-Turk, Georgia Institute of Tech-
no.Iogy. . : . , :: ; 

28. Laser-Jnduced Vapqr Bubble in a Liquid /et )~ 

Etienne Robert ·and Peter A; Monkewiti:,'.S . • · _ 
Federal lnstitute of Tech11:0Iogy Lausanne (EPFL). 
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17:15 
KK 1 Dynamical slowdown of polymers in laminar and ran­
dom flow DARIO VINCENZI, EBERHARD BODENSCHA1Z, 
Max Planck Institute for Dynamics and Selforganization, Goéttin­
gen, Germany ALBERTO PULIAFITO; ANTONIO CELANI, 
INLN, Nice, France The dynamics of an isolated polymer in a flow 

. field forms the basis of constitutive models for · dilute polymer 
solutions. We investigate the inftuence of an externa! ftow on the 
relaxation dynamics of a single polymer theoretically and numeri­
cally. W e show that a pronounced dynamical slowdown occurs in 
the vicinity of the coil-stretch transitfon, especially when the de­
pendence on polymer conformation of the drag is accounted for. 
For the elongational ftow, re}axation times are exceedingly larger 
than the Zimm relaxation time, resulting in the observation of 
confonnation · hysteresis. For random smooth flows hysteresis is 
not present. Yet, relaxation dynamics is significantly slowed down 
because of the large variety of accessible polymer configurations. 
In both cases, the dependence of the drag force on the polymer 
configuration plays a prominent role. This suggests the necessity 
of improving current models of . polymer solutions in turbulent 
ftows to account for such effect. · 

17:28 
.KK 2 Transport properties o~ a flexible fiber in cellular ftows 
MICHAEL SHELLEY, Courani.Institute, New York University 
YUAN-NAN YOUNG, Department of Mathematical Sciences, 
New Jersey Institute of Technology Recent experiments by V. 
Steinberg and his collaborators have used "low Reynolds turbu­
lence" in elastic ftows to demonstrate coil-stretch transitions of 
fluorescently labelled DNA molecules. With this as motivation, 
we consider the much simpler problem of an elastic. fiber that 
moves in a periodic cellular ftow. Our numeñcal simulations show 
that such a fiber can act as a spatially extended test particle whose 
intemal dynamics can lead to complex transport properties across 
space. In sorne parameter regime~, we find that space can be di­
vided into regions of fiber entrapment. and fiber transport, with 
fibers either trapped near elliptic points, or being transported along 
the connecting rnanifolds of the hyperbolic points. We also find 
that fiber buckling near hyperbolic points can yield random walk 
behavior over long times, with the effective diffusivity showing . 
little dependence on the effective rigidity of the fiber. 

17:41 
KK 3 Microftwdic 'bubble trains in non-Newtonian ftuids 
MATIHEW SULLIVAN, Division of Engineering and Applied 
Sciences, Harvard University / Schlumberger-Doll Research KA­
RINA MOORE, Norfolk State University HOW ARD STONE, Di­
vision o/ Engineering and Applied Sciences, Harvard University 
We present studies of bubble formation and propagation in non­
Newtonian ftuids using a microfluidic ftow-focusing device. Under 
certain conditions, monodisperse bubble trains can be formed. The 
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,bubble size and shape at formation are measured as a function of 
fluid ftow rate and gas pressure and cornpared to bubblé generation 
in a Newtonian fluid. We also observe two instabilities m non­
Newtonian bubble propagationdrifting toward the channel wall 
and drifting towards neighboring bubbles in the bubble train even 
at large initial bubble separations. This behavior is in contrast to a 
Newtonian fluid wher:e bubbles occupy a stable position along the 
channel centerlµie and maintain their initial separation. 

17:54 
KK 4 Computation ofthe Knife-Edge Cusp of a Rising Bubble 
in a ViScoelastic Fluid* RUOBO YOU, HOSSEIN HAJ­
HARIRI, University of Virginia We consider the buoyant rise of 
an origiÍlally-spherical bubble through·a viscoelastic fluid. Experi­
ments have demonstrated that the sharp trailing edge cóuld de­
velop a three dimensional cusp of "knife-like" shape under cer­
tain conditions (high capillary number, large drop size). In order to 
understand the complex physics of this phenomenon, we have 

-conducted a linear, three-dimensional temporal stability analysis 
of a computationally-obtained axisyrnmétric cusped bubble. The 
in-house time-accurate code is control-volume based and uses a 
body~fitted grid. Flux-difference splitting is employed to handle 
large Deborah numbers. Artificial compressibility is used for time 
marching. The resulting eigenanalysis shows the only linearly­
unstable mode to be the one. with azimuthal wavenumber of 2. The 
eigenvalue is real and the nature of instability is an exchange of 
stability. Thus an axisymmetric cusp can indeed develop into a 
knife-like shape. An investigation of the energy productiori and 
dissipation for the disturbances shows that the normal pressure 
gradient of the base-state along the free surfaee plays an important 
role in the evolution of the instability. 

*supported by NASA Grant NAG3-2760; R. Balasubramaniam. 

18:07 
KK 5 Inftuence of shape and boundary condition on the drag 
on bubbles moving in non Newtonian · liquids E. SOTO, C. 
GOUJON, R. ZENIT, Inst. lnv. Materiales, Universidad Nacional 
Autonoma de Mexico Bubbles moving in non Newtonian fluid 
exhibit a peculiar behavior: the terminal velocity increases 
abruptly for a critical value of the volume. There has bei::n a long 
debate on the nature of this phenomenon, one of which assumes 
that the boundary condition on the surface of the bubble changes 
from non-slip to slip. To investigate this claim we have performed 
an axi-symmetric 20 simulation to determine the drag on a bubble 

. rnoving in a container: The parameters used are tliose correspond­
ing to bubbles in which the bubble velocity discontinuity appears. 
From experiments, the exact shape of bubbles is obtained by a 
digital a~alysis. The profile is then feed into a fixed shape Navier­
Stokes solver. The viscosity and rise velocity are also taken from 
the experiments. Then the boundary condition on the surface is 
chosen to either be slip or non-slip. The drag coefficient can be 
calculated for each case. We tested cases corresponding to bubbles 
in non-Newtonian liquids right before and after the velocity dis­
continuity. Bubbles below this critical volume are spheroidal con­
sidering a ñgid interface. Bubbles above this value have a tear like 
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shape, with or without a tail, and a free interface. Our results show 
that the drag reduction associated with the bubble velocity discon­
tinuity is notas large as that observed experimentally. Hence, the 
change of shape and boundary conditions cannot fully explain the 
nature of this phenomenon. 

18:20 
KK 6 Thinning of Lamella in a Non-NewtonianFoam LUCIEN 
BRUSH, Úniversity of Washington STEVEN ROPER, Northwest­
em University Consider a surfactant-free !amella in an evolving 
foam. Asymptotic analysis in small capillary number is used to 
assess the effects of non-Newtonian properties of the liquid .using 
power-law and Ellis models of viscosity, principally present in the 
transition region. For a foam in which the Plateau border radius of 
curvature and the laniellar length are of the same order of magni-

' tude, the shear rate dependence of the viscosity changes the time 
scale for thinning but not the power law behavior of the thinning 
rate compared to Newtonian fluids. For a foam in which the area 
of fluid in the Plateau border and in the }amellar region are of the 
same order initially _ the effects of the non-Newtonian viscosity 
appear explicitly in the integrated form of the }amellar thinning 
law. Comparisons are made between a· number of shear-thinning 
fluids, a shear-thickening fluid and a Newtonian fluid. 

18:33 
.KK 7 Modelling persistent boles in complex flulds ROBERT D. 

-DEEGAN, RICHARD R. KERSWELL, University of Bristol 
Mekr et al. (PRL 184501 98, (2004)) discovered that vertically 
vibrated shear thickening fluids can support stable vertical inter­
faces. These stable stnictilres take the fonn of boles, voids that 
span the fluid }ayer which can last indefinitely, or of fingers, 
columnar-type protrusions which persist for thousands of cycles. 
We show that the stability of the boles can be understood in terms 
of a hysteretic rheology model, and confirm the existence of this 
hysteresis in rheological measurements of a mixture of comstarch 
and water. 

18:46 
KK 8 Viscoelastic bells LUC LEBON; JEAN-SEBASTIEN 
ROCHE, LAURENT LIMAT, PMMH - ESPCJ/CNRS ANDREW 
BELMONTE, Penn State University We performed expeñnients 
on liquid bells resulting from the impact of a viscoelastic fluid on 
a circular obstacle larger than thejet diameter, in the way of water 
bells by Savart1• We used polymer solutions or giant-micelle so­
lutions as viscoelastic fluid. In the regime of closed bell, we ob­
served a particular shape of bells, very different from the shape of 
_water bells as observed and predicted by Clariet2. The bells shape 
is essentially controled here by the viscoelastic .rheology. It ap­
pears also very sensitive to the pressure gap through the liquid 
film. For higher flow rate, the bells do not close anymore arid form 
liquid sheets. Their desintegratíon is very different from the one 
observed for Newtonian liquid : filaments structure extends the 
sheet without any drops formation. An original behaviour of 
growth of circular boles with a thick rim is also observed. 

1F. Savart, Ann. Chim. 54 (1833) 
2C. Clanet, J. Fluid Mech. 430 (2001) 
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17:15 
KL 1 Zero Pressure Gradient Flat Plate Boundary Layer Ex­
periments Using Syncbronized PIV and a Hot Wire Anemom­
etry Rake* M. TUTKUN, P.B.V. JOHANSSON, W.K. 
GEORGE, Chalmers University of Technology, Dept. of Applied 
Mechanics, 412 96 Goteborg Sweden M. STANISLAS, J.M. 
FOUCAUT, J. KOSTAS, S. COUDERT, Laboratoire de Meca­
nique de Ulle, UMR CNRS 8107, 59655-Villeneuve d'Ascq France, 
J. DELVILLE, Laboratoíre d'Etudes Aá~dyrlamiques, -UMR 
CNRS 6609, 86036 Poitiers France '.lero pressure gradient flat 
plate boundary _ layer expeñments have been performed in the ~O 
meter long test section of the Laboratoire de Mécanique de Lille, 
LML, wind tunnel. Measurements were.carried out at Re8 = 10 
000 and Re11 = 20 000 using synchronized PIV aild a hot wire __ 
anemometry rake. The boundary layer thickñess at the measure­
ment location was about 30 cm. A hot wire" rake of 143 probes was 
placed in the test section of the wind tunnel to provide the time 
history of the boundary layer. - 2 stereo PIV systems üi the 
wallnormal-spanwise (YZ) plane, and 1- stereo PIV system to 
record in the streamwise-wallnorinal (XY) were used. One high 
repetition PIV system was used in streamwise-spanwise (XZ) 
plane. The sarnpling frequency of the XZ PIV system was 3000 · 
VF/s at Re8 = 20 000 and 1500 VF/s at Re8 = lo 000. 

*This work-has been perforrned under the WALLTURB project. 
W ALL TURB (A European synergy for the assessment of wall 
turbulence) is funded by the CEC under the 6th framework pro­
gram (CONTRACT N: AST4-CT-2005-516008) 

17:28 
KL 2 Adverse Pressure Gradient Boundary Layer Experi­
ments Using Synchronized PIV and a Hot Wire Anemometry 
Rake* P.B.V. JOHANSSON, M. TUTKUN, W.K. GEORGE, 
Chalmers University of Technology, Dept. of Applied Mechanics, 
412 96 Goteborg $weden M. STANISLAS, J.M. FOUCAUT, J. 
KOSTAS, S. COUDERT, Laboratoire de Mecanique de Ulle, 
UMR CNRS 8107, 59655 Villeneuve d'Ascq France J. 
DELVll..LE, Laboratoire d'Etudes Aerodynamiques, UMR CNRS 
6609, 86036 Poitiers France This is the first report of an adverse 
pressure gradient turbulent boundary layer experiment performed 
in Laboratoire de Mécanique de Lille, LML, wind tunnel which is 
of 20 meter in length. The adverse pressure gradient was created 
by·means of a bump of 30 cm height. The thickness of the bound­
ary layer was about 30 cm and Reynolds number based on mo­
mentum thickness, Re9 , was 30 000 for l O mis external free 
stream velocity. A hot wire rake of 143 probes synchronized and 
simultaneously sampled together with 2 stereo PIV systems in the 
wallhormal-spanwise (YZ) plane, 1 cm upstream of the wires 
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• ·· .. for presenting data produced by experiment and simulation. in this · · 
· talk we discuss tbe key changes in the force network for a granular 
material in an inclined l?ed. W e use particle dynamics to mooel the 
grarttilar material as a two-dúnensional system of polydisperse 
dÍsks, and study the evolution of forces, contÍlct angles and net-
work topology as thé system approaches the onset of flow. By 
applying novel. network analysis technlques, we gain insight into 
· hów granular materials organize, restructure, and ultimately fail 
. under shear. 

13:59 
IU 4 Twisted Sandpiles,: A. Structural Signature of Jamming 
in Granular Materials ERIC CO.RWIN, HEINRICH JAEGER, 
SIDNEY NAGEL, The James Franck Institute and Department of 
Physics,The Universitj of Chicago When the temperature is in­
creased, a glass loses its rigidity and begins to flow. If sufficient 
shear stress is applied to a. granular material, it too will lose its 
rigidity and flow. There is no ambiguity between the rigid and 
flowing phases in both cases. However glasses and liqúids have 
nearly identical ~tructure. Are jammed states and flowing states in 
a granular system structurally different? And if so is there a mea-

. surement which would yield a signature of this difference? We 
have created an experimentál technique that measures the contact­
force distribution during shearing flow to address these questions. 
The distribution of forces is sensitive to minute variations in par­
ticle to particfe distances. As. such, it provides a rnicroscopic view 
of the nearest-neighbor position correlations. At the onset of jam- . 
ming we find a qualitative change in the force dlstribution. This, in 
tum, hints that there may be a ºsimilar structural signature in 
glasses. Fllrther, we also ineasure .a new granular temperature in 
granular systems which may be analogous to the glass-transition 
temperature in liquids. 

f4:12 
IU 5 Cage DyÜamics in a Uniformly Heated Granular Fluid 
PEDRO REIS, ROHIT INGALE, MARK SHATIUCK, Levich 
lnstitute, City College of New York We reporta novel experimen­
tal invéstigation of the dynarniés of a uniformly heated, horizontal 
and quasi-2D granular fluid. Our stridy is done as a fünction of 
filling fraction, "'· in the region prior to crystallization "which we 
observe at </>, = 0.719 ± 0.007. We perform a statistical analysis 
based on two qu~tities that are typically employed in colloidal/ · 

. moieculai systems: the Mean Square Displace_ment (MSD) and the 
Selflntermediate Scattering Function (SISF). These are calculated 
from the . trajéctories obtained by tracking all. particles inside a . 
representative imaging w.indow of the foil system. At low </> the 
classic diffusive behavior of a disordered flÜid is observed. As the 

. filling fraction is increased towards </>,, the MSD (or SISF) de­
velops a two-step increase (or decrease) analogous to what is com­
monly observed in glassy systerns. This plateau at intermediate 
timescales is a signature of the slowing down of the motion of 
particles due to temporary trapping inside the cages formed by 
. their neighbo~ .. This caging is increasingly more pronounce_d as 
</>,is approached from below. For <f> > </>,, each particle becomes 
fully arrested by its six neighbors, for the whole timé accessible 
experimentally. Moreover, the relaxation time extracted from the 
SISF, as a function of </>, is well described by the Vogel-Fulchers 
law. Our results are an important step in strengthening the analogy 

. between colloidal/molecular glassy systems and dense granular 
materials under uniform thermalization. 
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13:20 
HK 1 A continuum model with microstructural evolÚ.tion for ; 
Stokesian suspensions, ~oplastic dispersions and granular ~ · 
media JOE GODDARD; · University of California,· San Diego A } 
special case of the ''thixotropic" fluid proposed severa! ·years ago ~ .. 
by this author (J. NonNewtonian Fluid Mech.14141-160,1984) is 
explored as a plausible model for tlie flow of homogeneous par­
ticle suspensions and dense granular media. Th¡: effect of defor- .. 
mation history is described by the shear~induced evolution of a · 
second-rank "fabric" tensor, which serves to define a pair of 
non-negative fourth-rank tensors for viscosity and plasticity. The 
'viscous model predicts qualitatively most of the time-dePendent 
viscous shear-stress and normal-stress effects observed experi- · 
mentally in Stokesian suspensions. · The · addition of plastic terms 
allows for -yield stress· arising from mechanical contact between 
particles, and the purely plastic form provides a model for qnasi­
static deformation of dry granular media. Addition of viscous ef- : 
fects to the latter provides a generalization of models currently ~ 
being employed to describe dense, rapid granular flows, where the .. 

. relevant microstructural time scaleº is associated with granular ' 
inicro-inertia. A brief consideration is given to non-homogeneou8 .· 
(Acrivos-Leighton) models, of a type that allow for particle seg­
regation and possibly for materi3;1 instability.- · · 

13:33 
HK 2 The rise· velocity and sbápe of an air bubble moving in .. 
HASE fluid E. SOTO, C. GOUJON, T. BEHAGHEL, R. ZENIT, . 
IIM-UNAM, MeXico Experiments were conducted to deterinine the 
shape and the rise velocity of an air bubble moving in a HASE 
fluid. These type of rion Newtonian materials can be classified as 
assciciative fluids, because their interna! . structure is formed by 
hydrophobic molecules which associate or dissociate as a result of 
flow. In particular, the l~quid used in tlÍis investigation has a nearly · . 
constant shear viscosity for a wide range of shear rates but shows 
significant elasticity above a certain critica! shear rate. Millimetric 
size bubbles were· released from rest in a tall cylindrical container .. 
Two types of irnages were obtained: high resolution photographs, 
from which the bubble shape and vofüme were ol!tained; and, low · 
resolution high · speed videos were used to measure the bubbÍe 
velocity. We found that the bubble velocity increases with the 

· bubble volume; however, a sudden increase of the bubble velocity 
is observed as the bubble volume reaches a critica! value. This 

. phenomena, known as the bubble~ velocity discontinuity, has been . 
observed in other non Newtonian fluids but, to our knowledge, has 
never been reported.for associative fluids. Additionally, we iden­
tified that a significant change of the bubble shape occurs along 
with the appearance of the velocity discontinuity. Moreover, by 
performing PIV measurements we are able to relate the appear­
ance of the velocity jump with values of the local shear rate at 
which the elasticity of the fluid becomes important. · 
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. either cÓmputatiónal or experimental stu~es of flow. Nacional Autonoma de' Mexico, and G.M. Homsy, 
· · · · 1 · d b Univ.eri;ity of Califonia at Santa Barbara. · · ' · . phenomená. The o~tstanding entries~ se ~cte; . Y a .. 

panel of referees for arti~tic content, origmahty, and · 10. Birth of a Bubble-Type Vortex Breakdown: 
abiÍicy ·t() convey infoÍmation,· will be honored during··. ·T.· T. Lim and Y.· D~. Cui, National Uriiversity of 
the meetirig and will appeár in .the ruúiüal Gallery of. Singapore, andJ. M. Lopez, Arizona State.U~versity. 
Fluid Motion article in a future issue of Physics of 11. Two-Dimensional Primary lnstabilities' ofFlow 

Fluids. · · Generated by an Oscillating Circular Cy[fndet. ·. 

· John R. Elston, Monash . University ~ · :0:ügh · M. 
GALLERY OF FLUID l\:19TION Blackburn CSIRO, and John Sheridan, Moriash Uni-
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~ ' . • 1 • 

nell University. ·. · · · . 13. Families of Vortices in an lndetenninate Origin 
2. Interaction of ~ Vortex Ring with a Moving Noule Jet. 

Sphere. 

. Yann Jou~e, Ecole Polytechniquy .de'l'Université 
de Nantes, a:nd James J. Allen, ~ew Mexico State 

Uµiversity. . . . . . . . 
3. TurbuÚnt Spots. and the Mechanlsm of Their O~i.­

gin .in Passin~ Wake Induced Boundary'Layer Transi-

Faiigjun Shu, Michael W. Plesnia~ and. Paul ·E. 
Sojka, Purdue University. · · · · · 

14. Round arid Round it Goes. 

·. Cláudia Ceiiedese,' Woods Role Océanographic In­
stituÜon, and Rachel Bueno de Mesquita, Universitá . 
di 'Roma ''La Sapienza' '. 

tion. · 15. Swirl Gener~ted By Jet Engine Fuel Noule Rig: 
Xiaohua Wu, · Stanford University' · and Paul ·A. Xiaobua Wu,. · Gi~uca Iaccarino · and ParviZ 

' Durbin, Stanford University and Iowa State University .. Moin, Stanforci University. ·. . . 

· 4. Shock Wave lnteraction with Reb~urided Bubbles .J6, Plume St~cture. in High Rayleigh ·Number 
(B~bble Camlies). . . . ... . . Convection. .. . . . . . . 

Georgy N. Sankin, W. Neal. Simmons and Pei Baburaj A. Puthanveettil, Indian Institute of Tech-
Zho~g, Duke University. nology Madr~s, and Jaywant H. Arakeri, lndian In-
. s'. Tip io Edge Streaming in Non-Newfonian Flows. . stitute of Science Bangalore. 

.. ·. Enrique Soto, · Celione GÓujon, .. Thlbauit Bé- 17. ,Virtual Submarine in a Stratified Sea. 

haghel, Roberto Zenit and. Octayio ~anero, Instituto y ako~ D. Af~asyev; _Memori~ University of New.., .. 
de Irivestigaciónes en Materiales; UN.Afv.1, Mexico. · foundland. · · · 

6. Visualization of Vortex Structures_Downstream 0! 18. Rupftt.re of a Magnetic Thin Film in a·Pefpen-
a Circular Lobed Noule!Mixer.. dicular Magrietié Field. 

-H~i Hu, i~wa Stat~ Univérsity, and ToshÍO Koba- · Ching-Yao Chen. and L.-W. Lo, National Y~nlin 
yashi, Japan Automobile Reseatch Institute. . Univ~rsity of Science & Technology. 

7. Thr.ee-Di,,;ensional Wave Í'atie~s in Falling 19.Labyrinthine /nstability of a Miscible Magnetic 
Films. 

Benoit Scheid, Université Libre de Bruxelles. 

· 8. Rivulet lnstability in a Locally Heated Falling 
Film. 

Benoit Scheid, Oleg A. Kabov and Pierre Colinet, 
Université Libre de Bruxelles . 

. 9. lnitiation of the Emulsification of an Oíl-Water. 
Mixture. 

i F. Hernández-Sánchez, R. Zenit, ·Universidad 
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C.-Y. Wen, Da-Yeh University, Ching-Yao Cben . and T.-C. Kuan; National Yunlin University Óf Sci-. 
ence & Technology. 

20. The Fluid-Mechanical Sewing·Machine. 

· Sunny Chiu-Webster ami John Lister, University 
of Cambridge. 

21. The Dynamics of a Closed Flexible Body in ~ 
High-Speed Flow. 
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