

UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO

FACULTAD DE QUÍMICA

"GUÍA PARA LA EVALUACIÓN TÉCNICA DE TORRES DE ENFRIAMIENTO EN OPERACIÓN"

T E S I S
PARA OBTENER EL TÍTULO DE
INGENIERO QUÍMICO
PRESENTA:
JORGE CRUZ MENDIOLA

UNAM – Dirección General de Bibliotecas Tesis Digitales Restricciones de uso

DERECHOS RESERVADOS © PROHIBIDA SU REPRODUCCIÓN TOTAL O PARCIAL

Todo el material contenido en esta tesis esta protegido por la Ley Federal del Derecho de Autor (LFDA) de los Estados Unidos Mexicanos (México).

El uso de imágenes, fragmentos de videos, y demás material que sea objeto de protección de los derechos de autor, será exclusivamente para fines educativos e informativos y deberá citar la fuente donde la obtuvo mencionando el autor o autores. Cualquier uso distinto como el lucro, reproducción, edición o modificación, será perseguido y sancionado por el respectivo titular de los Derechos de Autor.

Jurado asignado:			
Presidente	Prof. Rodolfo Torres Barrera		
Vocal	Prof. José Sabino Samano Castillo		
Secretario	Prof. Alfonso Durán Moreno		
1er. Suplente	Prof. Baldomero Pérez Gabriel		
2º. Suplente	Prof. Fulvio Mendoza Rosas		
Torre de Ingeniería, cuarto piso ala Norte. Ciudad Universitaria. Facultad de Química, UNAM			
Asesor del tema:			
Dr. Alfonso Durán M	oreno		

Sustentante:

Jorge Cruz Mendiola

AGRADECIMIENTOS

ESTO NO ES PARA MÍ NI PARA NADIE MÁS, ESTO ES EL SUEÑO DE DOS PERSONAS QUE DARÍAN TODO POR SU FAMILIA MIL GRACIAS...

LIVA Y GUICHO, LOS AMO ESTO ES PARA USTEDES DOS.

A MIS CINCO CARNALES MICK, CHARLY, PICHI, CAPU, Y MOSCA TENGO ALGO DE CADA UNO DE USTEDES, SON UN MOTOR DETRÁS DE MI.

A ESTAS PERSONITAS QUE SON EL SUEÑO DE UNA FAMILIA KARLITA, SAMY, MARI, CHARRO, AXEL, MICHELLE, ITZEL, REGINA, Y LOS QUE FALTEN.

CC BONITA QUE TE PUEDO DECIR SABES TODO DE MI, ME AYUDAS EN TODO. SIEMPRE VAS A ESTAR EN MI CORAZÓN ESO TE LO <u>JURO</u>.

PRIMAS QUERIDAS ANITA, CECI, LIZ GRACIAS POR CUIDARME LAS QUIERO UN BUEN.

A MI FAMILIA Y CLARO NO SE ME OLVIDAN LOS BOCA SECA iiiSALUD!!!

A LOS DONEROS: PABLITO, CHUY, DANY, DULCE, YAMILETH, JEBUS, MICK, COMPITA, QUIQUE, QUE MÁS QUE UN TACO TE INVITAN UNA CHELA Y TE COMPARTEN UNA PARTE DE ELLOS.

AL DOCTOR ALFONSO POR DARME UNA OPORTUNIDAD Y CREER EN ÉSTE TRABAJO, BRINDÁNDOME TODO SU APOYO PARA LA REALIZACIÓN DE ÉSTE.

A MIS NUEVOS CUATES EL CHULO DEL RULO Y A MI AMIGUITA PAM SIGAMOS EN CONTACTO OK.

LA FELICIDAD ES LA SUMA DE MOMENTOS EN NUESTRAS VIDAS, UNO DE ESOS MOMENTOS PARA MI FUE CUANDO ME ACEPTARON EN LA UNAM GRACIAS.

"POR MI RAZA HABLARA EL ESPÍRITU"

Índice General

Nomenclatura		iv
Objetivos		
Introducción		. Vii
1 Generali	dades	1
1.1 Prin	cipios de Enfriamiento	1
1.2 Torr	es de Enfriamiento	3
1.2.1	Componentes estructurales	4
1.2.2	Componentes mecánicos de una torre	5
1.2.3	Componentes eléctricos de una torre	
1.3 Clas	sificación de torres de enfriamiento	7
1.3.1	Torres de tiro atmosférico	
1.3.2	Torres de tiro natural	
1.3.3	Torres de tiro mecánico.	
1.3.3.1		
	Torres de tiro inducido	
	tico mecánico	
	etivo:	
	ince:	
	lidas básicas para trabajos de campo	
2.3.1	Equipo de protección personal	
_	ección visual de los componentes externos de una torre	
·	·	
2.4.1	Limpiazo de los Terros	
2.4.1	Limpieza de las Torres Pared externa de la torre de enfriamiento	
2.4.3	Accesos a la torre de enfriamiento	
2.4.4	Estructura	
2.4.5	Persianas	
2.4.6	Escalera	
2.4.7	Barandales.	
2.4.8	Pasillos.	
2.4.9	Bacín de agua fría	
2.4.10	Bombas de suministro de agua	
•	ección visual de los componentes internos de una torre	
enfriamiento		
2.5.1	Plataforma de ventilador	22
2.5.2	Bacín de agua caliente	22
2.5.3	Tuberías	
2.5.4	Válvulas de control de flujo	23
2.5.5	Boquillas de distribución	
2.5.6	Relleno.	
2.5.7	Eliminadores de niebla	25
2.5.8	Polea y banda de transmisión de potencia	
2.5.9	Reductor de velocidad	
2.5.10	Flecha de transmisión.	
2.5.11	Ventilador	
2.5.12	Cono venturi.	
2.5.12	Soportes del equipo mecánico.	
2.5.14	Válvula de agua de repuesto	
_	eba de comportamiento de una torre de enfriamiento	
2.0 i luc	sou de comportamiente de una torre de enmanilente	20

	2.6.1	Medición de temperatura del agua	29
	2.6.2	Medición de la temperatura de agua caliente	29
	2.6.3	Medición de la temperatura de agua fría	29
	2.6.4	Medición de la temperatura de bulbo húmedo del aire	
	entrada		
	2.6.5	Potencia del ventilador	
	2.6.6	Medición de flujo en tuberías	
3	Métodos	para evaluar la capacidad de enfriamiento en torres	32
		etivo	
		ance	
	3.3 Mét	odo de curvas de comportamiento	
	3.3.1	Cálculo de la potencia al freno de prueba del ventilador (I	ЗНР
	•	n)	
	3.3.2 diseño)	Cálculo de la potencia al freno de diseño del ventilador (BHI	
	3.3.3	Datos requeridos por el fabricante, en la hoja de simulación	n de
	la torre de	enfriamiento	
	3.3.4	Porciento de flujo de prueba	34
	3.3.5	Porciento de flujo esperado	34
	3.4 Mét	odo de Curvas Características (criterio de Merkel)	36
	3.4.1	Cálculo del (L / G) _{prueba}	
	3.4.2	Cálculo de la potencia al freno del ventilador (BHP) de pruel	
			37
	3.4.3	Cálculo de la potencia al freno de diseño del ventilador (BHI	
	diseño)		
	3.4.4	Datos requeridos por el fabricante, en la hoja de simulación	
		e enfriamiento.	
	3.4.5	Información necesaria de prueba y diseño para el Método	
		Prueba para una celda)	
	3.4.6	Cálculo del (KaV/L) _{prueba}	
	3.4.6.1	·	
	3.4.6.2	1	
	3.4.6.3	ones del perfil de temperaturas	
	3.4.0.3	Cálculo de la entalpía del aire: Obtención gráfica del (L/G) ₀	
4		as de cálculo para determinar la eficiencia térmica de torres	
4		etivo	
		ance	
		cripción de la memoria de cálculo.	
		noria de cálculo para el método de curvas de comportamient	
	1.1 101		
	4.5 Mer	noria de cálculo para el método de curvas características	
5		iones	
6		afía	
	9.0		
۸.	4 - 1	as de la hastaria Lagianalla musuraankila	
		os de la bacteria Legionella pneumophila	
		vas de comportamiento a 90, 100 y 110 % de flujo y c	
	racterística	nías do la mozela airo-agua	
		pías de la mezcla aire-aguas de inspección de torres de enfriamiento	
\neg I	i c ao. 4 nojas	s de mopección de torres de enmaniento	<i>i</i> 3

Índice de Tablas

indice de Tablas					
	Desviaciones permitidas por el Cooling Technology Institute (CTI). Datos de operación y diseño de una torre de enfriamiento				
Tabla. Z.	Datos de operación y diseño de dna torre de enmannento	44			
Índice de Figuras					
Figura 1. flujo	Relación de agua, aire y potencial impulsor en una torre de con				
	Esquema de una torre de tiro atmosférico				
Figura 3.	Esquema de una torre de tiro natural	9			
	Esquema de una torre de enfriamiento de tiro forzado				
Figura 5.	Torre de flujo a contracorriente y tiro inducido	12			
•	Torre de flujo cruzado tiro inducido				
•	Componentes estructurales de una torre de enfriamiento a con				
flujo.					
	Pasillo interno sin protección				
•	Pasillo interno con protección				
_	.Componentes internos de una torre a contra flujo				
	. Inyector para torres a contra flujo				
	.Boquilla para torres a flujo cruzado				
	.Partes internas de una torre de enfriamiento de paquete				
•	.Curva de comportamiento de una torre de enfriamiento				
•	.Curva para determinar la Temperatura de Agua Fría				
Figura 16	.Curva para determinar el % de flujo esperado	36			

Nomenclatura

- % de capacidad = Es el porciento de capacidad de la torre, en (%).
- Δh1 = Diferencia de entalpías para el punto 1, entre la entalpía de la mezcla de agua – aire y la entalpía del aire, en Btu / lb aire.
- Δh2 = Diferencia de entalpías para el punto 2, entre la entalpía de la mezcla de agua – aire y la entalpía del aire, en Btu / lb aire.
- Δh3 = Diferencia de entalpías para el punto 3, entre la entalpía de la mezcla de agua – aire y la entalpía del aire, en Btu / lb aire.
- Δh4 = Diferencia de entalpías para el punto 4, entre la entalpía de la mezcla de agua – aire y la entalpía del aire, en Btu / lb aire.
- (L/G)_{diseño} = Relación de diseño del flujo de agua con respecto al flujo de aire seco, en lb agua / lb de aire seco.
- (L/G)_o = Relación corregida del flujo de agua con respecto al flujo de aire seco, este valor se determina en una gráfica, con los valores de (L/G) y (Ka V / L) de diseño y prueba (lb agua / lb de aire seco).
- (L/G)_{prueba} = Relación de diseño de flujo de agua con respecto al flujo de aire seco (lb agua / lb aire seco).
- A = Amperaje del motor del ventilador, en Ampere.
- ACFM = Cantidad de aire actual incluyendo agua evaporada, en (ft³/min).
- BHP diseño = Es la potencia al freno del ventilador de diseño, proporcionada por el fabricante, o calculada a partir de datos de diseño o nominal, en (HP).
- BHP prueba = Es la potencia al freno del ventilador de prueba, determinada a partir del voltaje, amperaje y factor de potencia, en (H.p.).
- Flujo de diseño = Flujo de diseño de la torre, obtenido de la hoja de datos de la torre, en GPM.
- Flujo de prueba = Flujo medido del agua que entra a la celda, en GPM.
- FP. = Factor de potencia del motor del ventilador, valor adimensional.
- ha1 = Entalpía del aire en el punto 1, en Btu / lb aire seco.
- ha2 = Entalpía del aire en el punto 2, en Btu / lb aire seco.
- ha3 = Entalpía del aire en el punto 3, en Btu / lb aire seco.

- ha4 = Entalpía del aire en el punto 4, en Btu / lb aire seco.
- hg2 = Entalpía del aire, en Btu / lb aire seco.
- hgi = Entalpía de la mezcla aire agua a TBH, en Btu / lb aire seco.
- hw1 = Entalpía de la mezcla aire agua a T1*, en Btu / lb aire seco.
- hw2 = Entalpía de la mezcla aire agua a T2*, en Btu / lb aire seco.
- hw3 = Entalpía de la mezcla aire agua a T3*, en Btu / lb aire seco.
- hw4 = Entalpía de la mezcla aire agua a T4*, en Btu / lb aire seco.
- L_{diseño} = Flujo de agua de diseño, en GPM.
- L_{prueba} = Flujo de agua de prueba, en GPM.
- ΔP_{Total} = Caída de presión total que tiene que vencer el ventilador. Es decir, incluye la presión estática total (pérdidas a través de la torre, más la presión de velocidad), en in de H₂O.
- η_{red} = Eficiencia del reductor de velocidad, en porcentaje (%).
- T1* = Temperatura estimada en el punto 1, en grados Fahrenheit.
- T2* = Temperatura estimada en el punto 2, en grados Fahrenheit.
- T3* = Temperatura estimada en el punto 3, en grados Fahrenheit.
- T4* = Temperatura estimada en el punto 4, en grados Fahrenheit.
- TAC = Temperatura de agua caliente, en °F.
- TAF = Temperatura de agua fría, en °F.
- V = Voltaje del motor del ventilador, en Volts.
- η_{vent.} = Eficiencia del ventilador, en porcentaje (%).

Objetivos

OBJETIVO GENERAL

 Proponer criterios y procedimientos para evaluar técnicamente torres de enfriamiento considerando su estado físico y su capacidad térmica.

OBJETIVOS PARTICULARES

- Reconocer e identificar los diferentes tipos de torres de enfriamiento que se utilizan en la industria estatal y privada.
- Identificar las partes que conforman las torres de enfriamiento así como describir el principal funcionamiento de los componentes para poder evaluar técnicamente los equipos ya instalados en una industria.
- Plantear los métodos avalados por el Cooling Technology Institute (CTI),
 para evaluar la capacidad de enfriamiento en torres.
- Desarrollar las memorias de cálculo para evaluar la capacidad de enfriamiento de torres, empleando los dos métodos avalados por el Coling Technology Institute (CTI).

Introducción

Actualmente los equipos con más de 20 años de operación registran excesivos consumos de energía y recursos naturales para operar adecuadamente. La demanda de productos y servicios ha dado pie a nuevas formas de administrar los energéticos y recursos naturales, dando origen al desarrollo sustentable, para el bien en común de las naciones.

De los principales equipos dentro de la industria que requieren grandes consumos de químicos, energéticos y agua, están las torres de enfriamiento. La capacidad típica de celda de una torre de enfriamiento de una industria grande como una refinería es de 1000 GPM por celda teniendo torres con 10 celdas en promedio, hay torres que por las condiciones y el tiempo de operación están en malas condiciones, esto hace que los consumos y los costos de operación vayan en aumento.

Los problemas que se generan a causa de los altos consumos de recursos es la contaminación ambiental, sobre explotación de recursos naturales y baja eficiencia de los equipos, por consiguiente los costos de operación aumentan considerablemente. Los problemas en una torre de enfriamiento no se limitan a los componentes estructurales de la torre, el tratamiento químico del agua y las prácticas operativas son fundamentales para que una torre funcione adecuadamente.

Para hacer un diagnóstico completo de una torre de enfriamiento y proponer tecnologías para la modernización de los equipos es necesario comenzar con una evaluación técnica, determinando el estado en el que opera la torre y la eficiencia térmica, para ello es necesario saber el funcionamiento de cada una de las partes que conforman la torre, otro aspecto importante dentro de la evaluación técnica es el cálculo de la eficiencia térmica. Con base en lo anterior se desarrolló este trabajo incluyendo los aspectos mínimos para evaluar una torre de enfriamiento, tanto en su estado físico como en su desempeño térmico.

El trabajo consta principalmente de cuatro partes las cuales se describen brevemente a continuación:

En la primera parte se describen las partes, funcionamiento, tipos y clasificaciones de torres de enfriamiento, esto con la finalidad de reconocer los componentes que la conforman. Como segunda parte se describen los detalles que se tienen que tomar en cuenta para realizar la inspección visual de las torres. Estos dos primeros capítulos se desarrollaron con la finalidad de hacer una inspección física, junto con la prueba de comportamiento donde se recopilan los parámetros de operación y de diseño, para determinar el estado en el que operan actualmente los equipos.

En la tercera parte de la tesis se describen dos métodos avalados por el CTI para determinar la eficiencia térmica, con la finalidad de desarrollar las memorias de cálculo usando métodos internacionalmente aprobados, generándose así la cuarta parte de este trabajo. Estos dos últimos capítulos tienen la finalidad de determinar la eficiencia térmica en torres de enfriamiento.

1 Generalidades

1.1 Principios de Enfriamiento

El proceso de transferencia de calor en una torre de enfriamiento comprende:

- La transferencia de calor latente debido a la evaporación de una porción pequeña de agua.
- La transferencia de calor sensible debido a la diferencia de temperatura entre el agua y el aire.

La posible eliminación teórica de calor por m³ de aire circulado en una torre de enfriamiento depende de la temperatura y el contenido de humedad del aire. La temperatura de bulbo húmedo (TBH) es un indicador del contenido de humedad del aire. Por tanto, la TBH es la temperatura teórica más baja a la que puede enfriarse el agua.

La teoría del proceso de transferencia de calor en una torre de enfriamiento, es la que desarrolló Merkel. Este análisis se basa en la diferencia del potencial de entalpía como fuerza impulsora. Cada partícula de agua está rodeada por una película de aire y que la diferencia de entalpía entre la misma y el aire circundante proporciona la fuerza impulsora para el proceso de enfriamiento.

En la Figura 1 se ilustran las relaciones del agua, el aire y el potencial impulsor que existe en una torre de contra flujo, donde el aire fluye en sentido paralelo, pero siguiendo una dirección opuesta al flujo del agua.

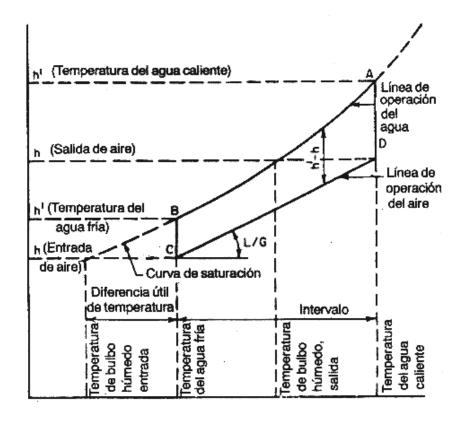


Figura 1. Relación de agua, aire y potencial impulsor en una torre de contra flujo¹

La línea de operación del agua está representada por la línea AB y se especifica por medio de las temperaturas del agua de la torre en la entrada y salida. La línea de operación del aire principia en C, verticalmente por debajo de B, y en un punto que tiene una entalpía correspondiente a la temperatura de entrada de bulbo húmedo. La línea BC, representa la fuerza impulsora inicial (h'- h). El aire que sale de la torre se representa por medio del punto D y la gama de enfriamiento es la longitud proyectada de la línea CD sobre la escala de temperaturas.

El fabricante de las torres de flujo transversal puede reducir con eficacia el valor característico de la torre (KaV/L) a acercamientos muy bajos incrementando la cantidad de aire para proporcionar una razón L/G más baja. El aumento en el flujo de aire no se logra necesariamente incrementando la

2

¹Perry, H. Robert. 1992, p. 12-14

velocidad del mismo, principalmente se logra alargando la torre para aumentar el área de corte transversal para el flujo de aire.

El tiempo de contacto entre el agua y el aire se dictamina en mayor grado por el tiempo necesario para que el agua se descargue por las boquillas y caiga a través de la torre hasta el depósito.

Si el tiempo de contacto es insuficiente, ningún incremento en la relación aire agua generará el enfriamiento deseado.

El proceso de enfriamiento de cualquier torre que tiene una profundidad dada, varía con la concentración del agua. El problema de calcular el tamaño de una torre de enfriamiento, consiste en determinar la concentración apropiada de agua que se necesita para alcanzar los resultados deseados. Después de determinar la concentración de agua necesaria, el área de la torre se calcula dividiendo los GPM que circulan, entre la concentración del agua expresada en GPM/ft².

1.2 Torres de Enfriamiento

Las torres de enfriamiento regulan el proceso de enfriamiento mediante la evaporación controlada, reduciendo así la cantidad de agua consumida. Esto se logra cuando a la gota que se pone en contacto con el aire, se le evapora la película exterior, requiriendo para este proceso de absorber calor, el cual se toma de la propia gota, enfriándola consecuentemente. Es decir, el enfriamiento se realiza tanto por calor sensible (cambio de temperatura) como por calor latente (cambio de estado físico).

El objeto que se persigue en la torre es que la gota esté el mayor tiempo posible en contacto con el aire, lo cual se logra con la altura de la misma y además interponiendo obstáculos, el relleno, que le va deteniendo y al mismo tiempo van fragmentando la gota facilitando más el proceso evaporativo. En nuevos sistemas el relleno en lugar de romper la gota hace que se forme una película en donde se lleva a cabo el mismo proceso.

En términos generales se puede decir que la capacidad de enfriamiento de una torre es la combinación de todas las variables involucradas en el diseño de la misma e indica la cantidad de agua que enfría en condiciones de operación comparadas con las condiciones de diseño, esto es entonces el equivalente de la eficiencia térmica.

1.2.1 Componentes estructurales

La estructura de una torre de enfriamiento debe incluir las cargas muertas de duración larga impuestas por el peso de los componentes de la torre, del agua en circulación, de la nieve y del hielo; cargas a corto plazo causadas por el viento, el mantenimiento y, en algunas áreas la actividad sísmica. Debe mantener su integridad a través de una variedad de condiciones externas e internas.

Bacín de agua fría.- Tiene dos funciones fundamentales dentro del proceso que son; 1) colectar el agua que circula por la torre y 2) actúa como los cimientos primarios de la torre.

Marco.- Es el esqueleto que soporta a la torre de enfriamiento, que comprende las diagonales y trabes que mantienen la torre vertical.

Sistema de distribución de agua.- La distribución de agua se lleva a cabo por medio de un cabezal de distribución el cual tiene sus ramales (bastones) esto va a depender del tipo de torre, cada ramal tiene un sistema de boquillas encargada de distribuir el agua dentro de la torre.

Piso de cono venturi.- Sirve de base para el cono venturi y por medio de unos registros da acceso a los internos de la parte superior de la torre.

Cono Venturi.- Afecta directamente al flujo que circula por la torre y a la eficiencia del ventilador, además de proteger al trabajador de las aspas del ventilador.

Soportes de equipo mecánico.- Debido a las grandes fuerzas de torsión es necesario que los soportes del equipo mecánico sean soldados a la estructura de la torre para lograr que los equipos se encuentren perfectamente alineados.

Empaque.- Promueve un mayor tiempo de contacto y un área de contacto mayor entre el aire y el agua caliente, logrando la transferencia de calor con mayor eficiencia.

Eliminadores de niebla.- Evitan pérdidas de agua como vapor por el arrastre en la salida del aire.

Recubrimiento.- Contiene el agua dentro de la torre, para este caso de estudio serían las paredes de las torres.

Persianas.- Uno de los propósitos de las persianas es el de mantener el agua de circulación dentro de los limites de la torre y el de regular la cantidad de aire que entra en contacto con el agua, esto es para las torres de flujo cruzado.

Accesos y consideraciones de seguridad.- Se tienen puertas, escaleras y registros para el acceso a los diferentes componentes de la torre, se tiene una serie de barandales y rejas de seguridad pero principalmente se tienen las recomendaciones de seguridad del fabricante.

Barandales.- Elemento estructural localizado a lo largo de un acceso o en el extremo de una plataforma. Usualmente con una altura de 1.07 m arriba del nivel del piso o del pasillo.

1.2.2 Componentes mecánicos de una torre

El equipo mecánico opera dentro de una atmósfera corrosiva y con alta humedad, por lo que las empresas dedicadas a la construcción de torres se vieron obligadas a construir y diseñar partes especificas ya que las existentes en el mercado no cumplían con los requerimientos por lo que su tiempo de vida era corto.

Ventilador.- Los ventiladores deben mover grandes volúmenes de aire eficientemente, y con la menor vibración. Los materiales de la fabricación deben ser compatibles con el diseño y ser capaces de soportar los efectos corrosivos del ambiente en el cual el ventilador va a operar.

Reductor de velocidad.- Además de reducir apropiadamente la velocidad del motor al ventilador (sin perder la potencia disponible), debe proporcionar soporte al ventilador, resistencia al desgaste, a la corrosión en tiempos de operación largos y contribuir lo menos posible al nivel de ruidos.

Flecha de transmisión.- Trasmite el torque del motor al reductor de velocidad esta debe tener gran resistencia a la corrosión debido a que opera dentro de atmósferas altamente corrosivas.

Válvulas.- Son usadas para regular el flujo de agua, las aplicaciones de las válvulas utilizadas en una torre varían por ejemplo; válvulas de corte, de control de flujo y para regular el agua de repuesto.

Bombeo.- Otro factor importante en el análisis de la torre de enfriamiento, en especial para torres de tamaño mediano y grande, es la parte de la potencia de la bomba atribuida directamente a la torre de enfriamiento. Cuando se trata de torres de enfriamiento con boquillas de aspersión, la carga estática de bombeo será igual a la ascensión estática más la pérdida de presión de las boquillas.

1.2.3 Componentes eléctricos de una torre

Motor.- Los motores eléctricos se utilizan para operar los ventiladores y bombas, diseñados para operar bajo condiciones altamente corrosivas, se tienen diferentes tipos de motores como: cerrados, abiertos, de velocidad variable, etc.

Controles de Motor.- Los controles sirven para arrancar, y parar el motor proporcionando protección contra la falta de alimentación o una sobrecarga, asegurando la operación continua de éstos.

Diseño de cableado.- El diseño del cableado de motores y controles es responsabilidad de los ingenieros, los conductores de los motores deben diseñarse para el 125 % de la corriente completa del motor y para la caída de voltaje.

1.3 Clasificación de torres de enfriamiento

Una forma usual de clasificar las torres de enfriamiento es según la forma en que se mueve el aire a través de éstas. Según este criterio, existen torres de circulación natural y torres de tiro mecánico. En las torres de tiro natural, el movimiento del aire sólo depende de las condiciones climáticas y ambientales. Las torres de tiro mecánico utilizan ventiladores para mover el aire a través del relleno.

1.3.1 Torres de tiro atmosférico

No se tiene registro alguno de este tipo de torres en México, no obstante se menciona para tener en cuenta el tipo de torre y su forma de operar. Estas torres utilizan las corrientes de aire en la atmósfera, el aire se mueve en forma horizontal y el agua cae verticalmente (flujo cruzado figura 2).

Son torres de gran altura y pequeña sección transversal. Deben instalarse en lugares muy despejados de forma que ningún obstáculo pueda impedir la libre circulación de aire a través de la torre. Tienen un costo inicial alto debido a su gran tamaño; pero el costo de mantenimiento es reducido al no existir partes mecánicas movibles. Una torre de este tipo puede ser una solución muy económica para determinadas necesidades de refrigeración, si se puede garantizar que funcionará habitualmente expuesta a vientos de velocidades

iguales o superiores a los 8 km/h. Si la velocidad promedio del viento es baja, los costos fijos y de bombeo aumentan mucho en relación a una torre de tiro mecánico y no compensan el ahorro del costo de ventilación. Emplea varias boquillas para rociar el agua y establecer contacto entre ésta y el aire del ambiente. Una boquilla de rocío bien diseñada debe suministrar gotas finas de agua, pero sin producir un rocío que el viento arrastre con facilidad, ya que esto equivale a una pérdida excesiva de flujo.

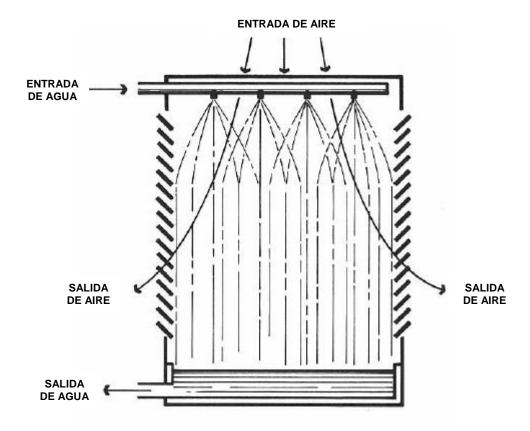


Figura 2. Esquema de una torre de tiro atmosférico²

1.3.2 Torres de tiro natural

Las torres de tiro natural son apropiadas para cantidades muy grandes de enfriamiento, las estructuras de concreto reforzado que se acostumbra utilizar llegan a tener diámetros del orden de 80 m y alturas de 100 m.

-

² Hensley, John C, 2006, p. 8

El aire es inducido por una gran chimenea situada sobre el relleno (figura 3), la diferencia de densidades entre el aire húmedo caliente y el aire atmosférico es el principal motivo por el cual se crea el tiro de aire a través de la torre. La diferencia de velocidades entre el viento circulante a nivel del suelo y el viento que circula por la parte superior de la chimenea también ayuda a establecer el fluio de aire. Por ambos motivos, las torres de tiro natural han de ser altas y. además, deben tener una sección transversal grande para facilitar el movimiento del aire ascendente. Estas torres tienen bajos costos de mantenimiento y son muy indicadas para enfriar grandes caudales de agua. Al igual que las torres atmosféricas, no tienen partes mecánicas. La velocidad media del aire a través de la torre suele estar comprendida entre 1 y 2 m/s. Las torres de tiro natural no son adecuadas cuando la temperatura del aire es elevada, ya que ésta debe ser siempre inferior a la del agua caliente. No es posible conseguir un valor de acercamiento pequeño y es muy difícil controlar exactamente la temperatura del agua. En las torres de tiro natural no se pueden utilizar rellenos de gran capacidad, debido a que la resistencia al flujo de aire debe ser lo más pequeña posible. Al igual que las torres de tiro atmosférico en México no se utilizan, pocas veces son aplicables a plantas industriales debido a la fuerte inversión inicial.

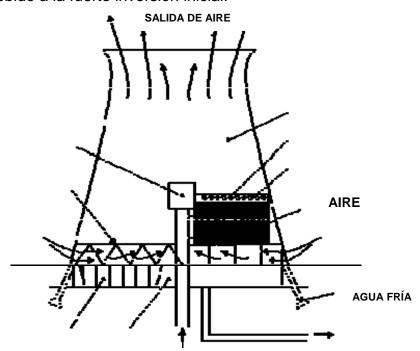


Figura 3. Esquema de una torre de tiro natural.³

_

³ Millán, A. José. 2007, p. 3

1.3.3 Torres de tiro mecánico

Las torres de tiro mecánico proporcionan un control total sobre el caudal de aire suministrado. Se trata de torres compactas, con una sección transversal y una altura de bombeo pequeñas en comparación con las torres de tiro natural. En estas torres se puede controlar de forma precisa la temperatura de agua de salida, y se pueden lograr valores de acercamiento muy pequeños.

En la actualidad hay dos tipos de torres de tiro mecánico, se clasifican en torres de tiro forzado y torres de tiro inducido.

1.3.3.1 Torres de tiro forzado

Si el ventilador se encuentra situado en la entrada de aire, el tiro es forzado (figura 4) y descarga el aire a baja velocidad, una ventaja de situar el ventilador fuera de la torre es que se evitan problemas de corrosión. Regularmente estas torres son de flujo a contra corriente. Son más eficientes que las torres de tiro inducido, puesto que la presión dinámica convertida a estática realiza un trabajo útil. El aire que se mueve es aire frío de mayor densidad en el caso de tiro inducido, ya que el ventilador trabaja con aire frío, no saturado, menos corrosivo y saturado que el aire caliente de salida.

Como inconveniente debe mencionarse la posibilidad de que exista recirculación del aire de salida hacia la zona de baja presión, creada por el ventilador en la entrada de aire.

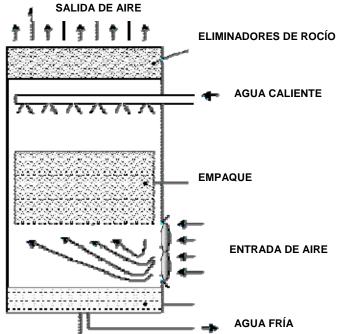


Figura 4. Esquema de una torre de enfriamiento de tiro forzado.4

1.3.3.2 Torres de tiro inducido

Las torres de tiro inducido pueden ser de flujo a contracorriente o de flujo cruzado.

Torres de tiro inducido a contra flujo

Cuando el ventilador se ubica en la zona de descarga del aire, el tiro es inducido. El flujo a contracorriente significa que el aire se mueve verticalmente a través del relleno de manera que los flujos de agua y aire tienen la misma dirección pero sentido opuesto (figura 5). La ventaja que tienen este tipo de torres es que el agua más fría se pone en contacto con el aire más seco, lográndose un máximo rendimiento, el aire puede entrar en una o más paredes de la torre, con lo cual se consigue reducir en gran medida la altura de la entrada de aire. Además la elevada velocidad con la que entra el aire hace que exista riesgo de arrastre de suciedad y sólidos extraños dentro de la torre. La

4

⁴ Millán, A. José, 2007, p. 4

resistencia del aire que asciende contra el agua que cae se traduce en una gran pérdida de presión estática y un aumento de la potencia de ventilación en comparación con las torres de flujo cruzado.

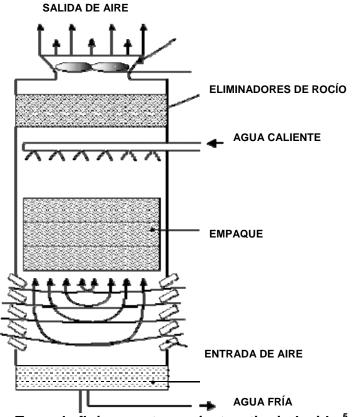


Figura 5. Torre de flujo a contracorriente y tiro inducido.⁵

Torres de tiro inducido a flujo cruzado

En las torres de flujo cruzado, el aire circula en dirección perpendicular respecto al flujo del agua que desciende (figura 6). Estas torres tienen una altura menor que las torres de flujo a contra corriente, ya que la altura total de la torre es prácticamente igual a la de relleno. El mantenimiento de estas torres es menos complicado que en el caso de las torres a contracorriente, debido a la facilidad con la que se pueden inspeccionar los distintos componentes internos de la torre. La principal desventaja de estas torres es que no son recomendables para aquellos casos en los que se requiera un gran salto térmico y un valor de acercamiento pequeño, puesto que ello significará más superficie transversal y más potencia de ventilación.

-

⁵ Millán, A. José, 2007, p. 4

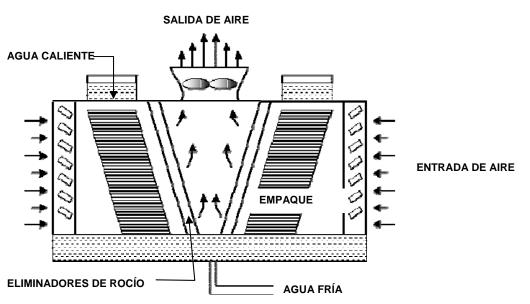


Figura 6. Torre de flujo cruzado tiro inducido.⁶

13

⁶ Millán, A. José, 2007, p.5

2 Diagnóstico mecánico

2.1 Objetivo

Establecer una guía básica para la inspección de los principales componentes de una torre de enfriamiento y realizar una prueba de comportamiento.

2.2 Alcance

Evaluar el estado en el que opera una torre de enfriamiento, mediante un listado de componentes estructurales, mecánicos y eléctricos de una torre.

2.3 Medidas básicas para trabajos de campo

Es importante considerar la seguridad en la inspección en torres de enfriamiento hay equipos que no cuentan con las protecciones necesarias o por los daños estructurales es riesgoso trabajar en ellas. Es importante identificar todos los peligros potenciales asociados al trabajo y como planear las actividades para eliminar o controlar las situaciones de riesgo.

Al plantear al trabajador los peligros potenciales en el trabajo es necesario tomar las acciones preventivas necesarias para realizar dichos trabajos con seguridad, tomar en cuenta las recomendaciones e indicaciones del personal de seguridad de la planta así como de los operadores del equipo, estas indicaciones ayudan a identificar los riesgos ya que conocen los detalles del equipo. Mantener informado al personal operativo de la planta y operadores de los trabajos que se van a realizar.

2.3.1 Equipo de protección personal

Dependiendo de las tareas a realizar será necesario equipo de protección más especializado, hay que seguir las recomendaciones de seguridad y de la salud con respecto al equipo de protección personal (EPP). Usar casco de seguridad, googles, guantes de trabajo, botas de trabajo con casquillo y suela antiderrapante. Cuando se requiera subir a una torre de enfriamiento, deben ser equipados con arnés, amortiguador de impacto y línea de vida.

En caso de requerir equipo de respiración autónoma el personal debe ser capacitado para su uso, incluyendo una prueba de función pulmonar y una evaluación médica para determinar la capacidad de utilizar dichos equipos.

2.4 Inspección visual de los componentes externos de una torre de enfriamiento

Partiendo de lo general a lo específico se deben examinar cada una de las partes de una torre de enfriamiento, lo que se busca es que el operador y/o técnico tenga una herramienta de apoyo en la inspección de los equipos, ya que por tiempos o espacios se dificultan los trabajos en campo y por medio de la guía lograr que el trabajo sea más eficiente sin olvidar detalles importantes para la evaluación del equipo.

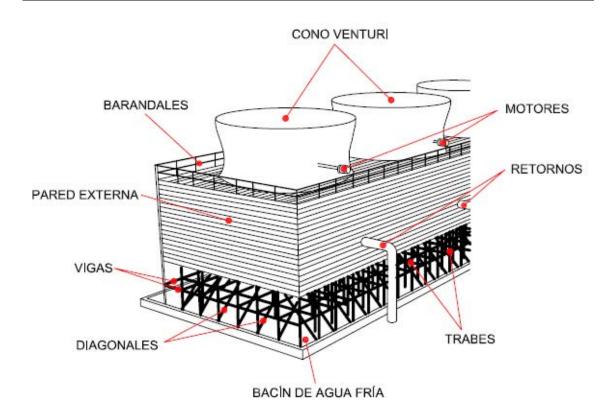


Figura 1. Componentes estructurales de una torre de enfriamiento a contra flujo.¹

En la Figura 7 se muestran los componentes estructurales externos de una torre de enfriamiento que se deben revisar para el buen funcionamiento del equipo, los detalles estructurales pueden ir desde grietas hasta el desprendimiento de algunas partes de la torre por lo que hay que tener especial cuidado con los trabajos debido al desprendimiento de materiales.

Preferentemente revisar aquellos componentes que se vean directamente involucrados en la eficiencia del equipo y que presenten daños que pongan en riesgo la seguridad de los operadores tales como las persianas, aspas de ventiladores, barandales, rejillas, etc. y protecciones del equipo dinámico.

_

¹ SPX Cooling Technologies, 2005, p 3

2.4.1 Limpieza de las Torres

Una torre sucia puede ser un foco de infección puede contener agentes biológicos. Es importante examinar periódicamente el agua de la torre para saber si hay un buen tratamiento biológico. La inspección debe incluir, una evaluación visual de la condición del agua, del bacín de agua fría y del cárcamo de distribución.

Un control biológico bueno se puede detectar por el agua limpia, clara y sin algas. Un control pobre es detectado por el agua sucia y maloliente. Si las condiciones observadas indican un control biológico pobre, se debe limpiar el bacín de agua fría y el sistema de tratamiento de aguas debe ser evaluado.

2.4.2 Pared externa de la torre de enfriamiento

Buscar fugas de agua, grietas, agujeros o deterioro general, incluyendo fugas de aire entre los paneles que conforman las paredes. Cerciorándose de que la tornillería que une los paneles a la estructura de la torre esté en buenas condiciones.

Examinar según sea el caso de los materiales de la cubierta señas de corrosión en el acero, putrefacción, delaminación y decaimiento de madera. Buscar grietas en las cubiertas de fibra de vidrio.

2.4.3 Accesos a la torre de enfriamiento

Revisar que las puertas de acceso funcionen adecuadamente, buscar indicadores de corrosión, pérdida de partes, acumulación de basura que impida el libre acceso y por último asegurarse que las puertas estén cerradas si la torre se encuentra en operación.

2.4.4 Estructura

La estructura comprende: diagonales, trabes, vigas y soportes. De estas hay que examinar los componentes de acero, para saber si hay evidencia de corrosión y pérdida de metal. Revisar la tensión de las juntas, observar de cerca la soldadura de los empalmes de acero galvanizado buscando presencia de corrosión.

En el caso de torres de madera buscar muestras de deterioro, incluyendo grietas, fracturas, pudrimiento en todos los elementos de madera, golpear ligeramente con un martillo la madera y si se detecta un sonido grave indica suavidad en la madera, mientras que un sonido agudo es indicativo de madera sólida. Revisar con atención la madera alrededor de las juntas y conectores de acero o de hierro fundido, así como el fondo de las columnas, buscando evidencia de corrosión u otras muestras de deterioro en los materiales.

Revisar los acoplamientos montados de una torre de fibra de vidrio para asegurar que la tornillería esté apretada y en buenas condiciones. Buscar evidencia de rasgado o de grietas en la estructura de fibra de vidrio.

2.4.5 Persianas

Revisar que las persianas estén debidamente colocadas en los soportes, buscar cualquier daño en las persianas como; corrosión, putrefacción en madera (en caso de que las persianas estén echas de madera) o pérdida de metal. Observar si hay crecimiento biológico excesivo. Revisar los soportes de las persianas y conexiones a la misma torre. En caso de requerir repuestos observar el arreglo, y anotar el espaciamiento vertical de las persianas.

2.4.6 Escalera

Dependiendo del material con que está hecha la escalera se revisará en busca de corrosión en el acero de barandales o soportes, en las partes de madera buscar indicativos de pudrición, delaminación y/o decaimiento, en el caso del concreto buscar fracturas y desprendimiento de material.

En general comprobar si hay escalones, barandales, o largueros flojos y deteriorados. Cerciorase de que todas las conexiones estén apretadas y que la tornillería esté en buenas condiciones.

2.4.7 Barandales

Revisar principalmente las conexiones entre el barandal y la torre, éstas deben estar apretadas y en buenas condiciones, buscar indicativos de corrosión o pérdida de metal, revisar las condiciones generales del material. Revisar la soldadura en barandales de acero y aluminio.

2.4.8 Pasillos

Las torres de enfriamiento cuentan con pasillos, descansos y andadores para el acceso a los diferentes componentes que la conforman. Hay torres que no cuentan con las protecciones necesarias en los pasillos por lo que todo tipo de trabajos deben ser suspendidos para disminuir los riesgos.

Buscar daños y fracturas en los andadores y pasillos. Examinar los pasos de acero para saber si hay evidencia de corrosión. Prestar atención a daños que comprometan la seguridad de los operadores.

Figura 2. Pasillo interno sin protección

Figura 3. Pasillo interno con protección

2.4.9 Bacín de agua fría

Revisar si hay acumulación de lodo y escombro ya que proporciona un ambiente ideal para el crecimiento de bacterias. Ver las condiciones generales del cárcamo de bombeo y reja del cárcamo de bombeo la cual debe estar libre de sólidos. Observar cualquier índice de corrosión o pérdida de metal en componentes del bacín de agua fría. Inspeccionar la madera, el acero y la fibra de vidrio cuidadosamente para ver cualquier seña de fugas o fracturas en los materiales.

2.4.10 Bombas de suministro de agua

Los principales problemas en las bombas verticales, se encuentran en la succión, algunos de éstos son:

- Entradas de aire, por debajo del nivel de espejo de agua.
- Obstrucciones o incrustaciones en la rejilla de succión, en bombas viejas las rejillas pueden estar corroídas.
- Claro excesivo, si cuenta con impulsores cerrados.
- Claro excesivo contra su cubierta inferior, si tiene los impulsores semiabiertos.
- Desgaste excesivo en las orillas de los impulsores.

Las recomendaciones para evitar la cavitación de las bombas son:

- Cada fabricante de bombas da el nivel de agua al que deberá estar sumergidos los tazones, un valor práctico será que el impulsor más alto, deberá quedar sumergido 4 veces el diámetro del tubo de succión.
- Deberá tener una presión de succión (Ps) lo más grande posible y la altura de succión, no deberá ser más grande que la indicada por el fabricante.
- No trabajar con temperaturas de líquido mayores a las del diseño original del sistema y si fuera estrictamente necesario trabajar con altas temperaturas, se deberá colocar la bomba lo más abajo posible del tanque o cárcamo de succión, y usar acero inoxidable en impulsores y anillos de desgaste.
- No operar la bomba a velocidades más altas que las recomendadas por el fabricante.
- No operar la bomba a una capacidad mayor que la indicada por el fabricante.
- Revisar que las tuberías no tengan obstrucciones internas.

2.5 Inspección visual de los componentes internos de una torre de enfriamiento

Los componentes internos de las torres son más difíciles de evaluar debido al acceso. Por condiciones de proceso no es posible parar los equipos para hacer una evaluación a fondo, por lo que en su mayoría se evaluarán los componentes internos por su estado en general.

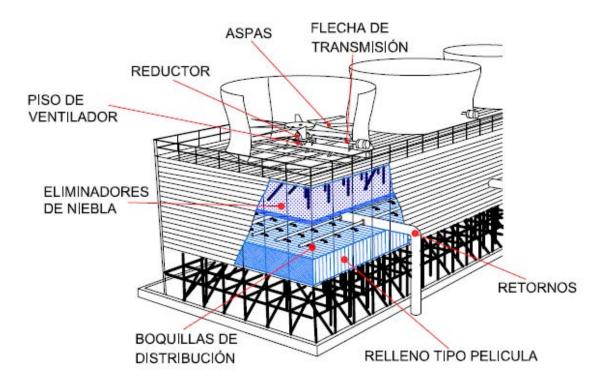


Figura 4. Componentes internos de una torre a contra flujo²

2.5.1 Plataforma de ventilador

Revisar las condiciones generales de la plataforma del ventilador, observando cualquier decaimiento o corrosión en el acero, observar si hay daños en los componentes de madera. Revisar que los soportes del ventilador estén en buenas condiciones, que las conexiones y tornillería entre la cubierta del ventilador y soportes estén apretados. Buscar fugas de aire entre los paneles colindantes a la plataforma del ventilador.

2.5.2 Bacín de agua caliente

Dependiendo el tipo de torre de enfriamiento puede tener un bacín o una red de distribución de agua, observar el daño en las partes de madera y acero, revisar el deterioro y saber si hay decaimiento o corrosión. Buscar fugas entre las tinas

_

 $^{^{\}rm 2}$ SPX Cooling Technologies, 2005, p. 3

colindantes. Examinar detenidamente el estado de los soportes y juntas del acero o fibra de vidrio.

2.5.3 Tuberías

Examinar las tuberías para ver señas de corrosión, fracturas, fugas y falta de recubrimiento, revisar los soportes, para asegurar que el equipo trabaje continuamente. Buscar fugas en bridas e instrumentos, daños en tuberías de PVC o de la fibra de vidrio.

2.5.4 Válvulas de control de flujo

Por lo general se tiene una válvula de control por cada celda de éstas, se examinan los componentes para saber si hay corrosión o muestras de desgaste, finalmente buscar fugas en las bridas. Operar las válvulas manualmente al 100% de apertura y reajustar para balancear el flujo en cada celda de la torre.

2.5.5 Boquillas de distribución

Ya sean boquillas o inyector (figuras 11 y 12) comprobar que no se encuentren tapados y que no muestren desgaste en la parte interna, en caso de requerirse desmontar la boquilla o inyector temporalmente para buscar obstáculos en su interior. Buscar cualquier pérdida de material resultando de la corrosión o de la erosión. Comprobar que las boquillas estén correctamente ensambladas al bacín de agua caliente para evitar que el agua pase en chorros.

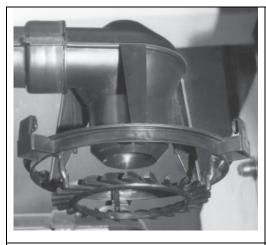


Figura 5. Inyector para torres a contra flujo

Figura 6. Boquilla para torres a flujo cruzado

2.5.6 Relleno

En general hay dos tipos de relleno, de salpiqueo y de película. El relleno de salpiqueo consiste en barras de madera o PVC en varios arreglos, soportadas en espacios y orientaciones fijas, generalmente en rejillas del alambre o de fibra de vidrio. El relleno de película está constituido de múltiples hojas paralelas colgadas de soportes fijos a la torre.

Para rellenos de tipo salpiqueo revisar la caída de agua si es tipo lluvia o en chorros, buscar piezas pandeadas, rotas o piezas que tengan diferente tamaño con respecto a las demás, buscar también piezas caídas o mal colocadas. Revisar el estado de las mallas de acero, buscar indicios de corrosión y que la soldadura esté en buen estado. Si una sección de la malla muestra daño excesivo, debe ser sustituido. Revisar también, los soportes donde se sostiene la malla.

Para el relleno tipo película, revisar si hay acumulación de algas u otro tipo de contaminantes en la superficie de las hojas que conforman el relleno. También observar si hay erosión, hojas combas, rasgadas o con evidencia de daño por hielo. Revisar el estado de los soportes del empaque.

En caso de necesitar piezas o de querer reemplazar el relleno por uno de alta eficiencia. Para el relleno tipo película anotar la distancia que hay entre las hojas. Para el relleno tipo salpiqueo anotar la distancia que hay horizontal y

vertical entre dos barras adyacentes del relleno, anotar la forma, tamaño y el tipo de empaque.

2.5.7 Eliminadores de niebla

La limpieza y efectividad de los eliminadores de niebla previene la propagación de la bacteria Legionella pneumophila (Anexo 1).

Asegurarse que todas las salidas de aire estén libres de basura y limpias como sea posible. Revisar que el eliminador esté correctamente instalado. Revisar el estado del sello para evitar que pase el agua a través de los eliminadores y evitar la pérdida o deterioro de los sellos. En caso de que los marcos y eliminadores estén sujetos a condiciones de operación severas, verificar el estado de putrefacción y decaimiento de los materiales.

En caso de necesitar reparar o reemplazar piezas del eliminador, anotar el material y configuración de los eliminadores. Los materiales más comunes de eliminadores son: hojas de madera, hojas plásticas, y configuraciones celulares de PVC.

2.5.8 Polea y banda de transmisión de potencia

En el caso de torres de paquete generalmente se tienen una polea y una banda de transmisión de potencia, en este caso revisar el estado de las poleas, buscando corrosión o pérdida de metal en los surcos de la polea. Cerciorarse de que los bujes que sostienen las poleas en los ejes estén apretadas y en buenas condiciones. Comprobar la tensión en la banda y que la alineación sea apropiada. Buscar signos de desgaste, que indiquen el cambio de las bandas. Revisar el lubricante del cojinete de eje del ventilador, y re-lubricarlo en caso de necesitarlo. Verificar que los ejes y sellos estén en buenas condiciones. Buscar evidencia de corrosión en los soportes, asegurarse de que todas las conexiones entre la cubierta del cojinete, soportes y estructura de la torre estén apretadas y en buenas condiciones.

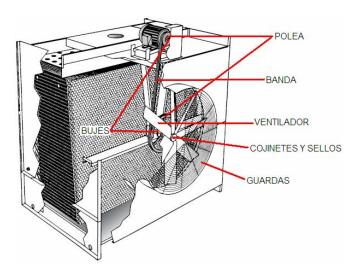


Figura 7. Partes internas de una torre de enfriamiento de paquete.³

2.5.9 Reductor de velocidad

Con el ventilador apagado revisar el nivel de aceite. Tomar una muestra de aceite y buscar evidencia de agua, residuos de metal o lodo. Revisar los sellos para saber si hay fugas de aceite (particularmente los sellos del piñón). Revisar el juego de la flecha moviéndola verticalmente de atrás hacia adelante, observando el movimiento libre que se tiene. Observar también el juego lateral levantando la flecha. Tomar la punta de un aspa del ventilador y mover verticalmente el aspa para observar el juego de la flecha de salida del reductor. El reductor tiene un juego en las flechas y engranajes para que funcione adecuadamente. Verificar que la carcasa esté libre de incrustaciones que inhiban el enfriamiento del reductor. Revisar que la tornillería se encuentre en buenas condiciones y apretada.

2.5.10 Flecha de transmisión

Comprobar la alineación de la flecha usando cualquier método aprobado, como un indicador o dispositivo óptico. Buscar señas de corrosión o daños en el tubo, particularmente cerca de la soldadura. Revisar todas las conexiones entre el

-

³ SPX Cooling Technologies, 2005, p. 2

tubo y los elementos flexibles, buscando signos de corrosión y fatigas en los elementos metálicos flexibles.

La mayoría de los ejes de transmisión consisten en una sola pieza. Sin embargo, hay algunos que todavía incluyen dos ejes con una chumacera entre los ejes. En el caso de tener este tipo de flechas revisar que estén debidamente alineadas, que la tornillería esté apretada y que la chumacera esté bien lubricada. En caso de sustituir la flecha buscar opciones tecnológicas para reemplazarla por una flecha de una sola pieza esto reduce los costos de mantenimiento

2.5.11 Ventilador

Para torres con ventiladores centrífugos, revisar que no tenga aspas rotas o fracturadas, buscar señales de corrosión o erosión en las láminas, particularmente cerca de la soldadura, revisar las condiciones generales de las guardas y del buje que se encuentra entre la carcasa y la flecha.

Para ventiladores de aspas con ángulo fijo revisar si hay corrosión o erosión en las aspas. Examinar cuidadosamente las conexiones entre las aspas y la maza. Revisar el buje que hay entre la maza y la flecha del reductor.

En los ventiladores de aspas ajustables revisar las condiciones generales buscar señas de corrosión, de erosión, o incrustamiento. Medir cuidadosamente el ángulo de cada aspa, y reajustarlas al ángulo recomendado por el fabricante dentro +1/2°. Revisar la tornillería que hay entre las aspas y la maza. Apretar la tornillería cuanto sea necesario usando el procedimiento recomendado por el fabricante.

2.5.12 Cono venturi

Revisar las condiciones generales del material, particularmente en las partes de acero y soldaduras del cono, revisar las condiciones y esfuerzos de los ensamblajes y tornillería que sujeta al cono con la torre. Buscar cualquier fuga de aire entre las piezas que conforman el cono.

2.5.13 Soportes del equipo mecánico

Examinar todos los componentes de acero buscando corrosión o pérdida de metal, particularmente cerca de las superficies con soldaduras. Comprobar la tensión de las conexiones entre el equipo mecánico y los soportes, entre los soportes y la estructura de la torre. Revisar el estado general de la tornillería. En las torres de madera, buscar evidencia de putrefacción de la estructura en contacto con las partes de acero, delaminación y fractura en los soportes.

2.5.14 Válvula de agua de repuesto

Revisar las bridas y los componentes de la válvula buscando fugas de agua o señales de corrosión. Operar la válvula de agua de repuesto o el interruptor del flotador manualmente al 100% de apertura y reajustar el flujo para cerciorarse de que la válvula opere correctamente.

2.6 Prueba de comportamiento de una torre de enfriamiento

Para determinar la capacidad de una torre de enfriamiento es necesario tener los parámetros de operación de diseño y los de operación actual, para lo cual es necesario desarrollar diferentes actividades para obtener los parámetros de operación del equipo.

Las diferentes herramientas para efectuar la prueba de comportamiento son: a) termómetros, b) psicrómetro, c) recipiente con línea flexible para contener agua, d) medidor de flujo, e) Tubo pitot, y f) cámara fotográfica como apoyo de la inspección de la estructura de la torre de enfriamiento.

2.6.1 Medición de temperatura del agua

La medición de la temperatura del agua podrá efectuarse con cualquier instrumento de medición (termómetro de cristal con mercurio). Los instrumentos deberán de tener o registrar una aproximación mínima de 0.2 °F (0.36 °C). Los elementos sensitivos de temperatura deberán ser localizados cuidadosamente donde el agua esté completamente mezclada.

2.6.2 Medición de la temperatura de agua caliente

La medición de la temperatura de agua caliente (TAC) deberá de realizarse en el tubo de alimentación de agua de la torre o en los testigos de corrosión, o a la descarga del agua del tubo de alimentación, en el bacín de agua caliente.

Para una torre multicelda la medición se realizará en el bacín de la primera calda. Si el agua de alimentación es una mezcla de dos o más corrientes de diferentes temperaturas, esta corriente debe estar completamente mezclada para asegurar una correcta lectura de la temperatura de agua caliente.

2.6.3 Medición de la temperatura de agua fría

La medición de temperatura de agua fría (TAF) debe de realizarse preferentemente adentro de la celda, o para la primera y última celda de la torre en el depósito de agua fría.

2.6.4 Medición de la temperatura de bulbo húmedo del aire de entrada

La medición de la temperatura de bulbo húmedo (TBH) del aire de entrada, podrá medirse utilizando, higrómetros o psicrómetros de aspiración mecánica que cumplan con los siguientes requerimientos:

- El indicador deberá de estar graduado en incrementos de no más de 0.2
 °F (0.36 °C)
- La sensibilidad de temperatura del elemento deberá fijarse a \pm 0.1 °F (0.18 °C)
- La temperatura del elemento sensitivo deberá de protegerse de la acción directa de la luz del sol o de otras fuentes que irradien calor.
- La temperatura del elemento sensitivo deberá de estar cubierta con una mecha y deberá estar continuamente alimentado el depósito de agua destilada.
- La temperatura del agua destilada utilizada para humedecer el elemento sensitivo deberá de ser similar a la temperatura del bulbo húmedo a medir.
- La mecha debe de cubrir el sensor al menos en 2 cm.

De preferencia tomar las lecturas de TBH a 4 pies (1.20 metros) de la celda, colocando dos psicrómetros, uno a cada lado de la entrada de la celda para estimar un mejor perfil de temperaturas, el promedio aritmético de las TBH tomadas en los dos lados de las celdas se considera la temperatura de TBH de prueba.

2.6.5 Potencia del ventilador

Para torres de tiro mecánico, deberá ser tomada como la potencia de salida del motor o de la transmisión y no la potencia del ventilador.

En el caso de motores eléctricos, la potencia de prueba del ventilador deberá ser determinada utilizando algún dispositivo de medición de voltaje y amperaje, considerando el factor de potencia o midiendo de manera directa el consumo de kilowatts.

Las lecturas de flujo, TAC, TAF, voltaje y amperaje deberán de realizarse siempre y cuando se cumpla con las desviaciones marcadas por el Cooling Technology Istitute (CTI), indicadas en la Tabla 1.

2.6.6 Medición de flujo en tuberías

Dichas mediciones se pueden efectuar con diferentes equipos o instrumentos de medición, como son los tubos pitot, medidores de placa de orifico, de propela, ultrasónicos, etc. Con las exigencias de operación y de producción es difícil que se pare un equipo para instalar instrumentos que serán utilizados para el monitoreo y evaluación de las torres, por lo que se recomienda utilizar instrumentos que no intervengan en el proceso.

La opción más accesible es la de utilizar un equipo de medición ultrasónico, ya que por su principio de operación no es necesario interferir en el proceso, pudiéndose tomar lecturas de flujo por días obteniendo un perfil de flujos aceptable.

Dependiendo de la calidad de agua a medir se utilizan equipos con diferente principio de operación. El más utilizado es de efecto Doppler debido a la calidad del agua en torres de enfriamiento, debido al tiempo de operación de éstas que va de los 5 hasta 35 años aproximadamente, por lo que es difícil mantener un agua libre de sólidos suspendidos totales.

La Comisión Nacional para el Ahorro de Energía (CONAE), y el Cooling Technology Istitute (CTI), proponen una serie de hojas técnicas para recabar información de la inspección visual, datos de las pruebas de comportamiento y datos de diseño de los equipos que conforman la torre de enfriamiento (Anexo 4). Dichas hojas pueden modificarse para adecuarlas a las necesidades del equipo que se vaya a evaluar.

3 Métodos para evaluar la capacidad de enfriamiento en torres

3.1 Objetivo

Desarrollar los métodos de cálculo permitidos por el CTI – ACT - 105 (Cooling Technology Institute), para determinar la capacidad de enfriamiento de torres de enfriamiento.

3.2 Alcance

Proporcionar una herramienta para hacer un análisis energético de torres de enfriamiento en operación.

3.3 Método de curvas de comportamiento

Con los valores obtenidos en la prueba de comportamiento se procede al cálculo del porciento de capacidad de la torre.

El porciento de capacidad para la torre de enfriamiento por el método de curvas de comportamiento, está dado por la ecuación 3.1.

$$\%.de.capacidad = \frac{\%.de.flujo.de.prueba}{\%.de.flujo.esperado} * \left| \frac{BHP.diseño}{BHP.prueba} \right|^{0.333} *100$$
 (3.1)

A continuación se desarrolla la memoria de cálculo para determinar el porciento de capacidad de la torre de enfriamiento de agua, por el método de curvas.

3.3.1 Cálculo de la potencia al freno de prueba del ventilador (BHP de prueba)

La potencia al freno de prueba en ventiladores (BHP), se estima dependiendo de las fases del motor usando una de las dos ecuaciones siguientes:

Para motores trifásicos:

$$BHP.de.prueba = \frac{\sqrt{3} *V *A *F.P}{0.7457 *1000} = [Hp]$$
 (3.2)

Para motores monofásicos:

$$BHP.de.prueba = \frac{V * A * F.P}{0.7457 * 1000} = [Hp]$$
 (3.3)

3.3.2 Cálculo de la potencia al freno de diseño del ventilador (BHP de diseño)

En caso de no contar con el BHP del fabricante, o con los valores requeridos de la hoja de simulación del fabricante de la torre de enfriamiento, se puede obtener un valor preliminar del BHP de diseño, utilizando la potencia nominal del motor del ventilador.

El BHP de diseño se obtiene de la hoja de datos de la torre. En caso de que no se cuente con este valor se deberá calcular mediante la ecuación 3.4.

$$BHP.dise\tilde{n}o = \frac{ACFM * \Delta P_{Total}}{6356 * \eta_{red} * \eta_{vent.}} = [Hp]$$
(3.4)

3.3.3 Datos requeridos por el fabricante, en la hoja de simulación de la torre de enfriamiento

- η_{rec} = Eficiencia de recuperación en la chimenea, en porcentaje (%).
- η_{red} = Eficiencia del reductor de velocidad, en porcentaje (%).
- η_{vent} = Eficiencia del ventilador, en porcentaje (%).
- ACFM = Cantidad de aire real incluyendo agua, en ft³/min.
- P.est.tot. = Caída de presión total que tiene que vencer el ventilador.
 Incluye la presión estática total (pérdidas a través de la torre, más la presión de velocidad), en in de H₂0.

- Vg = Velocidad del aire, en ft/s.
- ρ = Densidad del aire saliente, en lb/ft³.
- Ds = Diámetro de la chimenea en la parte superior, en ft.

3.3.4 Porciento de flujo de prueba

El % de flujo de prueba es el porcentaje de flujo de agua de prueba con respecto al flujo de diseño, y se determina mediante la ecuación 3.5.

$$\%.de.flujo.de.prueba = \frac{flujo.de.prueba}{flujo.de.diseño} *100$$
(3.5)

3.3.5 Porciento de flujo esperado

Para calcular el porciento (%) de flujo esperado son necesarias tres curvas de comportamiento a tres rangos distintos de la torre de enfriamiento.

La secuencia de cálculo para determinar el % de flujo esperado de la torre se cuenta con 2 grupos de información:

- Curvas de comportamiento a tres porcientos de flujo, 90%, 100% y 110%. (Anexo 2)
- Datos de diseño y datos de la prueba para incorporar en la ecuación 3.1 (% de capacidad), en esta ecuación sólo falta el porciento de flujo esperado que se determina mediante el siguiente procedimiento:
 - -Con las tres curvas de comportamiento (90%, 100%, y 110% de flujo) de temperatura de bulbo húmedo (TBH) vs temperaturas de agua fría (TAF) en º F a diferentes rangos (figura 14), situarse con la TBH de prueba e interceptar los distintos rangos y leer las tres TAF para cada curva de comportamiento.

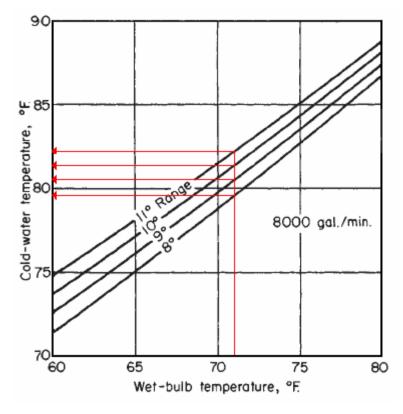


Figura 1. Curva de comportamiento de una torre de enfriamiento

 Con las temperaturas de agua fría se obtiene la gráfica, de Rango vs TAF, obteniéndose tres curvas, una para cada flujo de agua (90%,100%,110%). En dicha gráfica se localiza el rango de prueba y se obtienen las TAF esperadas para cada % de flujo.

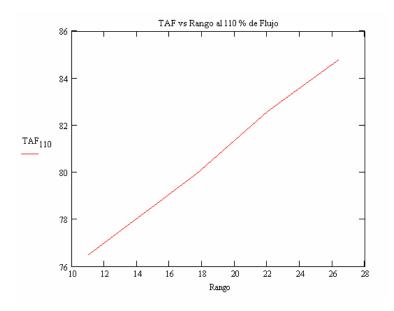


Figura 2. Curva para determinar la Temperatura de Agua Fría

 Con las temperaturas de agua fría esperadas para cada % de flujo hacer la gráfica, de TAF esperado vs % de flujo de agua (GPM), trazar la recta correspondiente a la TAF de prueba y encontrar el % de flujo esperado.

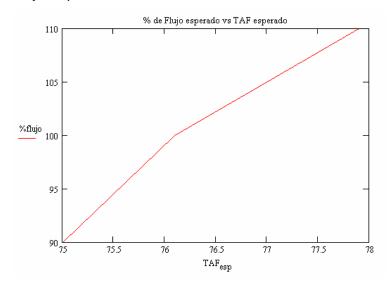


Figura 3. Curva para determinar el % de flujo esperado

Ya con todos los valores se procede a calcular el % de capacidad de la torre de enfriamiento.

3.4 Método de Curvas Características (criterio de Merkel)

Previamente al seguimiento de este método, se debe de haber realizado la prueba de comportamiento para obtener los parámetros de operación y diseño.

Este Método de Curvas, es uno de los dos métodos aprobados por el Código CTI TAC- 105 (Cooling Technology Institute).

El porciento de capacidad para la torre de enfriamiento por el método de curvas características (por el criterio de Merkel), está dado por la ecuación 3.6.

$$\%.de.capacidad = \frac{\left(\frac{L}{G}\right)_{0}}{\left(\frac{L}{G}\right)_{DISE\tilde{N}O}} *100 = [\%]$$
(3.6)

- (L / G) diseño = Proporcionado por el fabricante.
- $(L/G)_o$ = función $(L/G)_{prueba}$ y $(KaV/L)_{prueba}$ (evaluada gráficamente) = [lb agua/ lb aire seco]

A continuación se desarrolla la memoria de cálculo para determinar el porciento de capacidad de la torre de enfriamiento de agua, por el método de curvas características por el criterio de Merkel.

3.4.1 Cálculo del (L / G)_{prueba}

El cálculo del (L / G) prueba se determina mediante la ecuación 3.7.

$$\left(\frac{L}{G}\right)_{PRUEBA} = \left(\frac{L_{PRUEBA}}{L_{DISE\tilde{N}O}}\right) * \left(\frac{BHP_{DISE\tilde{N}O}}{BHP_{PRUEBA}}\right)^{\frac{1}{3}} * \left(\frac{L}{G}\right)_{DISE\tilde{N}O}$$

$$\left(\frac{L}{G}\right)_{PRUEBA} = \left[\frac{lb_{agua}}{lb_{aire, seco}}\right]$$
(3.7)

$$\left(\frac{L}{G}\right)_{PRUEBA} = \left[\frac{lb_{agua}}{lb_{aire.seco}}\right]$$
(3.8)

3.4.2 Cálculo de la potencia al freno del ventilador (BHP) de prueba

La potencia al freno del ventilador (BHP) de prueba se calcula mediante la ecuación 3.9 o 3.10 dependiendo del tipo de motor.

Para motores trifásicos:

$$BHP.de.prueba = \frac{\sqrt{3} *V *A *F.P}{0.7457 *1000} = [Hp]$$
 (3.9)

Para motores monofásicos:

$$BHP.de.prueba = \frac{V * A * F.P}{0.7457 * 1000} = [Hp]$$
 (3.10)

3.4.3 Cálculo de la potencia al freno de diseño del ventilador (BHP de diseño)

En caso de no contar con el BHP del fabricante, o con los valores requeridos de la hoja de simulación del fabricante de la torre de enfriamiento, se puede obtener un valor preliminar del BHP de diseño, utilizando la potencia nominal del motor del ventilador.

El BHP de diseño se obtiene de la hoja de datos de la torre. En caso de que no se cuente con este valor se deberá calcular mediante la ecuación 3.11.

$$BHP.dise\tilde{n}o = \frac{ACFM * \Delta P_{Total}}{6356 * \eta_{red} * \eta_{vent}} = [Hp]$$
(3.11)

3.4.4 Datos requeridos por el fabricante, en la hoja de simulación de la torre de enfriamiento

- η_{rec} = Eficiencia de recuperación en la chimenea, en porcentaje (%).
- η_{red} = Eficiencia del reductor de velocidad, en porcentaje (%).
- η_{vent} = Eficiencia del ventilador, en porcentaje (%).
- ACFM = Cantidad de aire real incluyendo agua, en ft³/min.
- P.est.tot. = Caída de presión total que tiene que vencer el ventilador.
 Incluye la presión estática total (pérdidas a través de la torre, más la presión de velocidad), en in de H₂0.
- Vg = Velocidad del aire, en ft/s.
- ρ = Densidad del aire saliente, en lb/ft³.
- Ds = Diámetro de la chimenea en la parte superior, en ft.

3.4.5 Información necesaria de prueba y diseño para el Método de Merkel, (Prueba para una celda)

- Flujo de agua.
- Temperatura de agua caliente.
- Temperatura de agua fría.
- Temperatura de bulbo húmedo.
- Rango de enfriamiento (TAC-TAF).
- Aproximación (TAF -TBH).
- Potencia al freno del ventilador.
- Relación característica de la torre.
- Relación de flujo.

Tabla. 1. Desviaciones permitidas por el Cooling Technology Institute (CTI).¹

Variable	Desviación permitida por código CTI
ТВН	+- 15 °F
Rango	+- 20 %
Flujo	+- 10 %

En la Tabla 1, se muestran los limites permitidos por el CTI en los valores de TBH, rango y flujo de agua, la diferencia entre los datos de diseño y prueba deben estar dentro de estos limites para que la prueba de comportamiento sea valida y seguir con los cálculos para determinar el % de capacidad.

3.4.6 Cálculo del (KaV/L)_{prueba}

El calculo del valor característico de prueba de la torre se determina mediante la ecuación 3.12.

-

¹ Hensley, John C, 2006, p. 99

$$\left(\frac{KaV}{L}\right)_{PRUEBA} = \int_{TAF}^{TAC} \frac{dt}{h_W - h_a} \tag{3.12}$$

$$\left(\frac{L}{L}\right)_{PRUEBA} = \frac{TAC - TAF}{4} * \left(\frac{1}{\Delta h_1} + \frac{1}{\Delta h_2} + \frac{1}{\Delta h_3} + \frac{1}{\Delta h_4}\right)$$
(3.13)

Donde:

- $\left(\frac{KaV}{L}\right)_{PRIJERA}$ = Valor característico de la torre, (adimensional)
- $\int_{TAF}^{TAC} \frac{dt}{h_W h_a}$ = Representa el perfil de temperaturas, en la torre para calcular la transferencia de calor. La integral se resuelve por el criterio de Merkel, evaluando por incrementos, y se estiman cuatro temperaturas en la torre; a éstas temperaturas se calcula la entalpía de la mezcla de aire agua y posteriormente se calcula la entalpía de la corriente de aire, evaluando así la integral.

3.4.6.1 Determinación del perfil de las cuatro temperaturas

$$T1^* = TAF + 0.1*(TAC - TAF)$$
 (3.14)

$$T2^* = TAF + 0.4*(TAC - TAF)$$
 (3.15)

$$T3^* = TAC - 0.4*(TAC - TAF)$$
 (3.16)

$$T4^* = TAC - 0.1*(TAC - TAF)$$
 (3.17)

3.4.6.2 Determinación de las entalpías de la mezcla de aire-agua a condiciones del perfil de temperaturas

Las entalpías de la mezcla aire-agua se obtienen de tablas reportadas en la literatura a diferentes alturas y temperaturas, dichas tablas se pueden consultar en el Anexo 3.

También se determina la entalpía de la mezcla aire – agua, para la temperatura de bulbo húmedo de prueba (TBH), en °F.

3.4.6.3 Cálculo de la entalpía del aire

La entalpía del aire se determina mediante la ecuación 3.23.

$$hg2 = \left(\frac{L}{G}\right)_{PRUEBA} * (TAC - TAF) + hgi = \left[\frac{Btu}{lb.aire.húmedo}\right]$$
(3.23)

También se calcula el perfil de entalpías del aire en cuatro puntos de la torre (Criterio de Merkel), mediante las ecuaciones 3.24, 3.25, 3.26 y 3.27.

$$ha1 = hgi + 0.1 (TAC - TAF) * (L/G)_{prueba}$$
 (3.24)

$$ha2 = hgi + 0.4 (TAC - TAF) * (L/G)_{prueba}$$
 (3.25)

$$ha3 = hg2 - 0.4 (TAC - TAF) * (L/G)_{prueba}$$
 (3.26)

$$ha4 = hg2 - 0.1 (TAC - TAF) * (L/G)_{prueba}$$
 (3.27)

Se sustituyen los valores obtenidos y se evalúan las ecuaciones para obtener la entalpía del aire y las entalpías en cuatro puntos de la torre.

Se calcula la diferencia de entalpía de la mezcla aire – agua y la entalpía del aire, mediante las ecuaciones 3.28, 3.29, 3.30 y 3.31.

$$\Delta h1 = hw1 - ha1$$
 (3.28)

$$\Delta h2 = hw2 - ha2 \tag{3.29}$$

$$\Delta h3 = hw3 - ha3 \tag{3.30}$$

$$\Delta h4 = hw4 - ha4 \tag{3.31}$$

Finalmente se evalúa el valor característico de la torre (KaV/L)_{prueba}, sustituyendo las diferencias de entalpía aire – agua y las temperaturas de agua fría y caliente.

$$\left(\frac{KaV}{L}\right)_{PRUFBA} = \frac{TAC - TAF}{4} * \left(\frac{1}{\Delta h 1} + \frac{1}{\Delta h 2} + \frac{1}{\Delta h 3} + \frac{1}{\Delta h 4}\right)$$
(3.32)

3.4.7 Obtención gráfica del (L/G)_o

En caso de no tener el (L/G)_{diseño} ó el (KaV/L)_{diseño} se puede utilizar lo siguiente:

- En lugar del (KaV/L)_{diseño} se puede usar la aproximación de diseño para la lectura de la curva característica.
- El (L/G)_{diseño} se puede obtener dividiendo el flujo de agua de diseño por celda, entre el flujo de aire de diseño para una celda.

La obtención del (L/G)_o, se hace gráficamente, mediante el uso de la curva característica de la torre de enfriamiento (Anexo 2), la cual se presentan en dos curvas, una para obtener los datos en general y otra para cálculos posteriores.

Con los valores obtenidos de (L/G)_{diseño} y con cualquiera de los dos siguientes datos (KaV/L)_{diseño} o la aproximación de diseño, con el (L/G)_{prueba} y (KaV/L)_{prueba} se sigue el procedimiento, en la curva característica.

- Localizar en la curva característica (L/G)_{diseño} y con (KaV/L)_{diseño} o la curva característica con la aproximación de diseño, con esto se localiza el punto de diseño, se traza una tangente al punto con pendiente -0.6.
- Con los valores de (L/G)_{prueba} y (Ka*V/L)_{prueba}, se localiza el punto de prueba, se traza una tangente al punto de prueba, paralela a la curva con pendiente -0.6 del punto de diseño.
- Moverse sobre esta tangente, hasta interceptar a la curva característica con la aproximación de diseño, localizando el punto corregido de la torre.
- Moverse del punto corregido perpendicularmente al eje (L/G) localizando el punto correspondiente al valor corregido (L/G)_O.

4 Memorias de cálculo para determinar la eficiencia térmica de torres.

4.1 Objetivo

Evaluar la capacidad de enfriamiento de una torre, por los dos métodos aceptados por CTI, desarrollando una memoria de cálculo en Mathcad.

4.2 Alcance

Desarrollar las memorias de cálculo para determinar la capacidad de enfriamiento en torres.

4.3 Descripción de la memoria de cálculo

El trabajo en Mathcad es por niveles, primero se alimentan los valores que serán utilizados por las formulas, los valores calculados que se utilizan posteriormente el programa los reconoce sólo con el hecho de respetar la simbología usada sin ser necesario referenciar o vincular los datos. Finalmente se termina por declarar las expresiones que determinan el parámetro que necesitamos.

En el caso para determinar la capacidad de enfriamiento de una torre primero se alimentan los valores requeridos por el método de cálculo que son:

- Temperatura de diseño y prueba de agua de suministro a plantas, en °F.
- Temperatura de diseño y prueba de agua de retorno a plantas, en °F.
- Temperatura de diseño y prueba de bulbo húmedo, en °F.
- La potencia al freno de diseño, en HP.
- Relación de diseño del flujo de agua con respecto al flujo de aire seco (L/G)_{diseño}, en (Ib_{aqua}/Ib_{aire seco}).
- Valor característico de la torre (KaV/L)_{diseño}, adimensional.
- Voltaje del motor del ventilador, en Volts.
- Amperaje del motor del ventilador, en Ampers.

- Factor de potencia del motor del ventilador, adimensional.
- Curvas de comportamiento de la torre de enfriamiento.

Dependiendo del método utilizado se requerirá de las curvas de comportamiento o de valores característicos de la torre de enfriamiento.

En general los campos que se encuentran en gris son los datos mínimos para que la memoria trabaje correctamente, los campos en amarillo son aquellos que serán utilizados en los diferentes tipos de gráficas ya sea para determinar el (L/G)_o, o el % de flujo esperado. La eficiencia térmica de la torre se presenta al final de cada una de las memorias de cálculo.

Para desarrollar las memorias de cálculo se evaluó una torre de enfriamiento de flujo cruzado, obteniendo de ésta los datos de diseño y curvas de comportamiento (Anexo 2) para determinar la capacidad de enfriamiento.

Tabla. 1. Datos de operación y diseño de una torre de enfriamiento.

PARÁMETRO	UNIDADES	DISEÑO	PRUEBA
Flujo	GPM	10,000	9,133
Temperatura de agua caliente (TAC)	°F	112	96.5
Temperatura de agua fría (TAF)	°F	90	84.7
Temperatura de bulbo húmedo (TBH)	°F	77.9	74
Potencia al freno (BHP)	HP	100	-
Relación de diseño del flujo de agua	Lb _{AGUA} /Lb _{AIRE}	1.479	-
con respecto al flujo de aire seco (L/G)	SECO		
Valor característico de la torre (KaV/L)	-	1.253	1
Voltaje del motor ventilador	V	460	1
Amperaje del motor del ventilador	Amp	62	-
Factor de potencia (FP)	-	1	-

En la Tabla 2 se describen los datos obtenidos de la prueba de comportamiento y de diseño de una torre de enfriamiento, para el cálculo de la capacidad de enfriamiento.

4.4 Memoria de cálculo para el método de curvas de comportamiento

Datos necesarios para determinar el porciento de capacidad de torres de enfriamiento.

$$TAF_{dise\tilde{n}o} := 90$$
 Temperatura de agua fría de diseño, en °F.

$$TBH_{dise\tilde{n}o} := 77.9$$
 Temperatura de bulbo húmedo de diseño, en °F.

$$TAC_{prueba} := 96.5$$
 Temperatura de agua caliente de prueba, en °F.

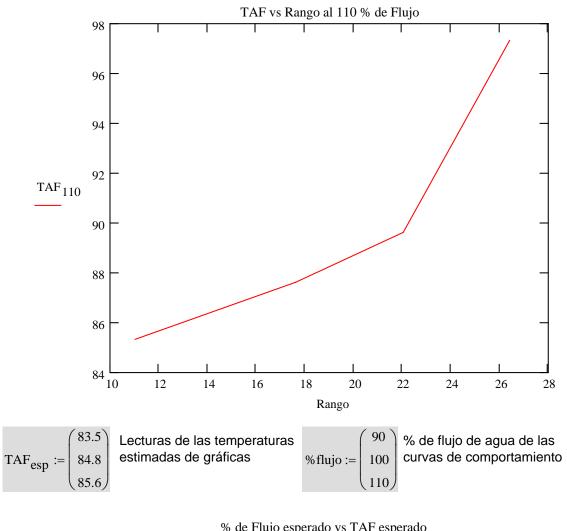
$$Flujo_{prueba} := 9133$$
 Flujo de agua de suministro de prueba, en GPM.

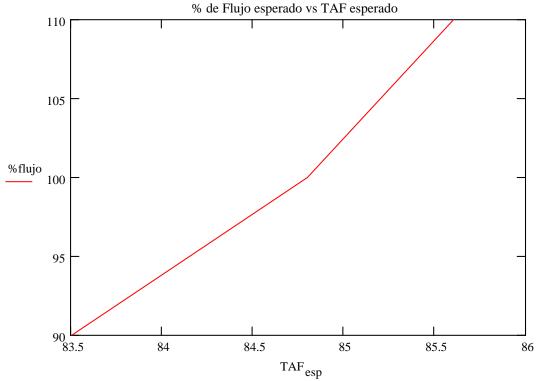
$$Flujo_{dise\~no} := 10000$$
 Flujo de agua de suministro de dise $\~no$, en GPM.

$$A := 62$$
 Amperaje del motor del ventilador, en Ampers.

$$R_{enf} := TAC_{prueba} - TAF_{prueba}$$
 Rango de enfriamiento, en °F.

$$R_{enf} = 11.8$$


Desviaciones permitidas por el CTI. Desviaciones calculadas de datos de prueba.


TBH +/- 15 °F
$$\frac{\text{TBH}_{\text{dise}\tilde{n}o} - \text{TBH}_{\text{prueba}}}{\text{TBH}_{\text{dise}\tilde{n}o}} \cdot 100 = 5.006$$

RANGO +/- 20 %
$$\frac{\text{TAF}_{dise\~no} - \text{TAF}_{prueba}}{\text{TAF}_{dise\~no}} \cdot 100 = 5.889$$

FLUJO +/- 10 %
$$\frac{\text{Flujo}_{dise\~no} - \text{Flujo}_{prueba}}{\text{Flujo}_{dise\~no}} \cdot 100 = 8.67$$

Curvas de temperatura de agua fría vs Rango construidas a partir de las curvas de comportamiento (Anexo 2).

Cálculo del porciento del flujo de prueba.

$$\%$$
 flujo_{prueba} := $\frac{\text{Flujo}_{\text{prueba}}}{\text{Flujo}_{\text{diseño}}} \cdot 100$

Potencia al freno de prueba del ventilador para motor trifásico.

Potencia al freno de prueba del ventilador para motor monofásico.

$$BHP_{prueba3f} := \frac{\sqrt{3} \cdot V \cdot A \cdot FP}{0.74571000}$$

$$BHP_{prueba} := \frac{V \cdot A \cdot FP}{0.74571000}$$

% flujo_{esperado} := 98.7

Valor estimado de la curva de % de flujo vs TAFesperado a temperatura de agua fría de prueba.

Cálculo del % de capacidad de la torre de enfriamiento.

$$\% decapacidad := \frac{\% flujo_{prueba}}{\% flujo_{esperado}} \cdot \left(\frac{BHP_{dise\~no}}{BHP_{prueba3f}}\right)^{\frac{1}{3}} \cdot 100$$

% decapacidad = 106.149

Para una torre que maneja 9,133 GPM de agua a una temperatura de entrada de 96.5 °F, descargando a una temperatura de 84.7 °F, con 74 °F de bulbo húmedo, su capacidad de enfriamiento es del 106%.

El flujo y disposición de información para evaluar los equipos en ocasiones no es el adecuado, por lo que se desarrolló la memoria de cálculo por el criterio de Merkel (curvas características) que usa diferentes parámetros para determinar la eficiencia térmica.

4.5 Memoria de cálculo para el método de curvas características

Datos para alimentar y determinar el porciento de capacidad de torres de enfriamiento.

$TAF_{dise\tilde{n}o} := 90$	Temperatura de agua fría de diseño, en °F.
$TBH_{dise\tilde{n}o} := 77.9$	Temperatura de bulbo húmedo de diseño, en °F.
Flujo _{diseño} := 10000	Flujo de agua de suministro de diseño, en GPM.
$TAF_{prueba} := 84.7$	Temperatura de agua fría de prueba, en °F.
$TAC_{prueba} := 96.5$	Temperatura de agua caliente de prueba, en °F.
$TBH_{prueba} := 74$	Temperatura de bulbo húmedo de prueba, en °F.
Flujo _{prueba} := 9133	Flujo de agua de suministro de prueba, en GPM.
V := 460	Voltaje del motor del ventilador, en Volts.
A := 62	Amperaje del motor del ventilador, en Ampers.
$BHP_{dise\tilde{n}o} := 100$	Potencia al freno de diseño del ventilador, en HP.
FP := 1	Factor de potencia del motor del ventilador.
$R_{enf} := TAC_{prueba} - TAF_{prueba}$ $R_{enf} = 11.8$	Rango de enfriamiento, en °F.
$Aprox := TAF_{dise\tilde{n}o} - TBH_{dise\tilde{n}o}$	Aproximación.
Aprox = 12.1	
$\left(\frac{L}{G}\right)$ diseño := LGdiseño $LG_{diseño} := 1.479$	Relación de diseño del flujo de agua con respecto al flujo de aire seco, en (lb de agua / libra de aire seco), se cambió de variable para que el Mathcad reconozca el (L/G) de diseño.

diseño := 1.253

Valor característico de la torre de enfriamiento.

Desviaciones permitidas por el CTI Desviaciones calculadas de datos de prueba

TBH +/- 15 °F
$$\frac{TBH_{dise\tilde{n}o} - TBH_{prueba}}{TBH_{dise\tilde{n}o}} \cdot 100 = 5.006$$
RANGO +/- 20 %
$$\frac{TAF_{dise\tilde{n}o} - TAF_{prueba}}{TAF_{dise\tilde{n}o}} \cdot 100 = 5.889$$
FLUJO +/- 10 %
$$\frac{Flujo_{dise\tilde{n}o} - Flujo_{prueba}}{Flujo_{dise\tilde{n}o}} \cdot 100 = 8.67$$

Potencia al freno de prueba del ventilador para motor trifásico

Potencia al freno de prueba del ventilador para motor monofásico

$$BHP_{prueba3f} := \frac{\sqrt{3} \cdot V \cdot A \cdot FP}{0.74571000}$$

$$BHP_{prueba} := \frac{V \cdot A \cdot FP}{0.74571000}$$

Cálculo de (L/G) de prueba

$$\left(\frac{KaV}{L}\right) prueba := \int_{TAF}^{TAC} \frac{1}{hw - ha} dt$$

Solución de la integral por criterio de Merkel

Perfil de temperaturas utilizadas para leer de tablas las entalpías de la mezcla aire-agua

$$T1 := TAF_{prueba} + 0.1(TAC_{prueba} - TAF_{prueba})$$

$$T1 = 85.88$$

$$T2 := TAF_{prueba} + 0.4(TAC_{prueba} - TAF_{prueba})$$

$$T2 = 89.42$$

$$T3 := TAC_{prueba} - 0.4(TAC_{prueba} - TAF_{prueba})$$

$$T3 = 91.78$$

$$T4 := TAC_{prueba} - 0.1(TAC_{prueba} - TAF_{prueba})$$

$$T4 = 95.32$$

Entalpías de aire-agua tomadas de tablas (Anexo 3)

hw1 := 50.53	Entalpía aire-agua @ T1
hw2 := 55.09	Entalpía aire-agua @ T2
hw3 := 58.48	Entalpía aire-agua @ T3
hw4 := 63.79	Entalpía aire-agua @ T4
hgi := 37.66	Entalpía aire-agua @ TBH

Cálculo de la entalpía del aire

$$hg2 := (LG_{prueba}) \cdot (TAC_{prueba} - TAF_{prueba}) + hgi$$

Perfil de entalpías de aire

$$\begin{split} &\text{ha1} := \text{hgi} + 0.1 \big(\text{TAC}_{\text{prueba}} - \text{TAF}_{\text{prueba}} \big) \cdot \big(\text{LG}_{\text{prueba}} \big) \\ &\text{ha2} := \text{hgi} + 0.4 \big(\text{TAC}_{\text{prueba}} - \text{TAF}_{\text{prueba}} \big) \cdot \big(\text{LG}_{\text{prueba}} \big) \\ &\text{ha3} := \text{hg2} - 0.4 \big(\text{TAC}_{\text{prueba}} - \text{TAF}_{\text{prueba}} \big) \cdot \big(\text{LG}_{\text{prueba}} \big) \\ &\text{ha4} := \text{hg2} - 0.1 \big(\text{TAC}_{\text{prueba}} - \text{TAF}_{\text{prueba}} \big) \cdot \big(\text{LG}_{\text{prueba}} \big) \end{split}$$

Diferencia de entalpías de aire-agua

$$\Delta h1 := hw1 - ha1$$

$$\Delta h2 := hw2 - ha2$$

$$\Delta h3 := hw3 - ha3$$

$$\Delta h4 := hw4 - ha4$$

$$\left(\frac{Ka\cdot V}{L}\right)\!prueba:=K_{prueba} \qquad \text{Cambio de variable del valor característico de la torre para que Mathcad reconozca las variables}$$

$$K_{prueba} := \frac{TAC_{prueba} - TAF_{prueba}}{4} \cdot \left(\frac{1}{\Delta h1} + \frac{1}{\Delta h2} + \frac{1}{\Delta h3} + \frac{1}{\Delta h4}\right) \qquad K_{prueba} = 1.163$$

Con el valor característico (KaV/L) de prueba y el (L/G) de prueba se estima el (L/G) corregido. En el Punto 3.4.7 se describe más a detalle el procedimiento para estimar este valor.

$$\left(\frac{L}{G}\right)$$
o := LG_0

Relación corregida del flujo de agua con respecto al flujo de aire seco, en (lb de agua / libra aire seco), se cambió de variable para que el Mathcad reconozca el (L/G) de diseño.

$$LG_0 := 1.5$$

$$\% \, \text{decapacidad} \, := \frac{LG_0}{LG_{\!\!\!dise\tilde{n}o}} \cdot 100$$

$$\%$$
 decapacidad = 101.42

Para una torre que maneja 9,133 GPM de agua a una temperatura de entrada de 96.5 °F, descargando a una temperatura de 84.7 °F, con 74 °F de bulbo húmedo, su capacidad de enfriamiento es del 101%.

5 Conclusiones

Para hacer un correcto diagnóstico de Torres de Enfriamientos deben realizarse, tanto inspecciones físicas como cálculos de capacidad térmica, para ello es importante saber el principal funcionamiento de los componentes estructurales, mecánicos y eléctricos que conforman la torre, revisando los daños que afecten directamente la función principal de los componentes.

Los criterios de inspección y la prueba de comportamiento pueden variar dependiendo del proceso y del tipo de la torre, por lo que se deben adecuar los métodos y procedimientos para la evaluación de los equipos.

Los métodos aceptados por el CTI son los más usados en México, otros métodos avalados y utilizados son:

- ASME PTC-23: "Power Test Code for Atmospheric Water Cooling Equipment"
- En Europa, el BS 4485-2 "Water cooling towers. Methods for performance testing"

Los cálculos se basaron el los métodos avalados por el CTI, por la facilidad al acceso de información y versatilidad de los métodos.

Las eficiencias térmicas obtenidas con las memorias de cálculo son similares, el error entre ambos métodos es bajo, obteniendo para curvas de comportamiento una eficiencia del 106% y con las curvas características se obtuvo el 101%, existiendo una diferencia entre ambos métodos del 4.8 %. La disponibilidad de información de las torres será un factor importante para saber que método utilizar.

Con el cálculo de la capacidad de enfriamiento y la inspección visual, se puede saber si los equipos están trabajando debidamente, de esta forma se dispone de más bases técnicas para plantear y decidir las medidas de modernizar o mantenimiento preventivo a los componentes de la torre de enfriamiento.

Las opciones de modernización y de mantenimiento, van a depender tanto del presupuesto de la compañía como del estado de los equipos por lo que esta tesis queda en la etapa de evaluación física y térmica. Ahora bien para determinar si un equipo está trabajando en su totalidad de manera adecuada se tiene que evaluar el equipo dinámico junto con el tratamiento de agua, que son factores importantes en la operación de una torre de enfriamiento.

Este trabajo puede ser usado para iniciar una primera etapa en la evaluación de torres, determinando el estado físico de los componentes, realizando una prueba de comportamiento para determinar la eficiencia térmica, y determinar el estado en el que opera finalmente la torre de enfriamiento.

6 Bibliografía

Libros

- Perry, H. Robert. Manual del Ingeniero Químico. 6ª Ed. Mc Graw Hill,
 México, 1992.
- Himmelblau, David M. Principios Básicos y Cálculos en Ingeniería
 Química. 6ª Ed. Prentice Hall, México 1997.

Artículos.

- SPX Cooling Technologies. (2006). Cooling Tower Inspection Tips., Inc. Kansas USA.
- Hensley, John C. (2006). Cooling Tower Fundamentals. (2006). 2^a Ed.
 SPX Cooling Technologies, Inc. Kansas USA.
- Craig, Meyer W. (2000). Legionella: Minimizing risks. Water Engineering
 & Management, 147(8): 24-26, August.
- Barmu P.C. Zingoni A. (2005). Damage, deterioration and the long-term structural performance of cooling-tower shells: A survey of developments over the past 50 years. ELSEVIER, 27: 1794-1800, June.
- Bilal A, Qureshi and M. Syed, Zubair. (20006). A complete model of wet cooling towers with fouling in fills. ELSEVIER, 26: 1982-1989, March.
- Londoño Marcos J. Parra y C. Contreras, Mirenchu Cordero. Evaluación de una torre de enfriamiento de tiro inducido.
- SPX Cooling Technologies. (2005). Marley Class F400 Counterflow Cooling Tower. Kansas USA.
- SPX Cooling Technologies. Glossary of Cooling Tower Terms. Kansas USA.

SPX Cooling Technologies. (2005). Marley Aquatower Cooling Tower.
 Kansas USA.

Manuales.

- CMIC. Seguridad e Higiene en las Instalaciones de PEMEX-REFINACIÓN en las que Labora Personal de Contratistas. México, 1998.
- Morales, Gonzalo Meléndez. Capacitación Mecánica Industrial, Bombas Hidráulicas, Vol. 3. México, 1992.
- Morales, Gonzalo Meléndez. Capacitación Mecánica Industrial, Elementos de Transmisión Vol. 8. México, 1992.
- CONAE [CD-ROM]. Programa de Eficiencia Energética. Información Técnica. México, 2005.

Páginas Web.

- Millán, A. Jose. Torre de refrigeración. [on-line] (Donostia-San Sebastián, Spain): Escuela Universitaria Politécnica; [ref. 30 de Mayo de 2007]. Disponible en web http://www.sc.ehu.es/nmwmigaj/Torre.htm
- SPX Cooling Technologies. [en línea] (Kansas USA); [ref. 01 de Junio de 2007]. Disponible en web <http://spxcooling.com/en/>
- Mandina, Jorge y Jiménez, Melky. Neumopatías Inflamatorias Agudas no Tuberculosas [en línea] (Mayo del 2007). Disponible en web http://www.ilustrados.com/documentos/eb-neumopatiasinflamatagudas.ppt#257,2,CONCEPTO

Guía r	oara la	evaluación	técnica de	Torres de	Enfriamiento	en operación
--------	---------	------------	------------	-----------	---------------------	--------------

Anexo. 1 Efectos de la bacteria Legionella pneumophila

NEUMOPATIAS INFLAMATORIAS AGUDAS NO TUBERCULOSAS

Como neumopatias inflamatorias agudas (NIA) no tuberculosas, se designa una serie de procesos inflamatorios del pulmón (vías respiratorias terminales, espacios alveolares e intersticio) ocasionados en más del 90% de los casos, por microorganismos patógenos (bacterias, virus, hongos, parásitos, rickettsias, micoplasma, clamidias, etc) y el 10% por agentes físicos, químicos y otros.

GÉRMENES CAUSANTES DE NEUMONÍA

Extra-hospitalarias:

Streptococcus pneumoniae.

Mycoplasma pneumoniae.

Haemophilus influenzae.

Chlamydia pneumoniae.

Legionella pneumophila.

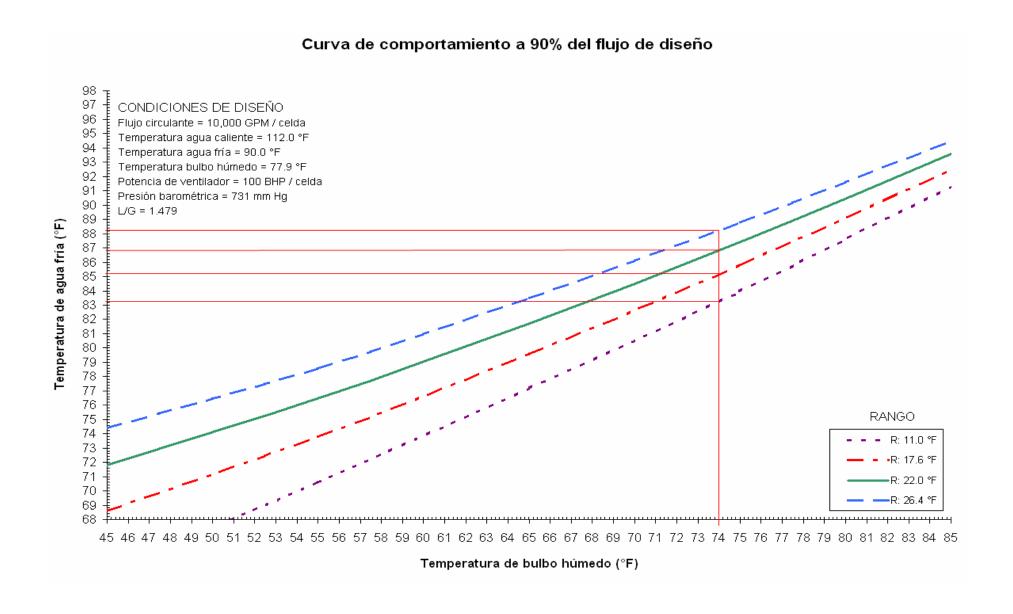
Anaerobios orales.

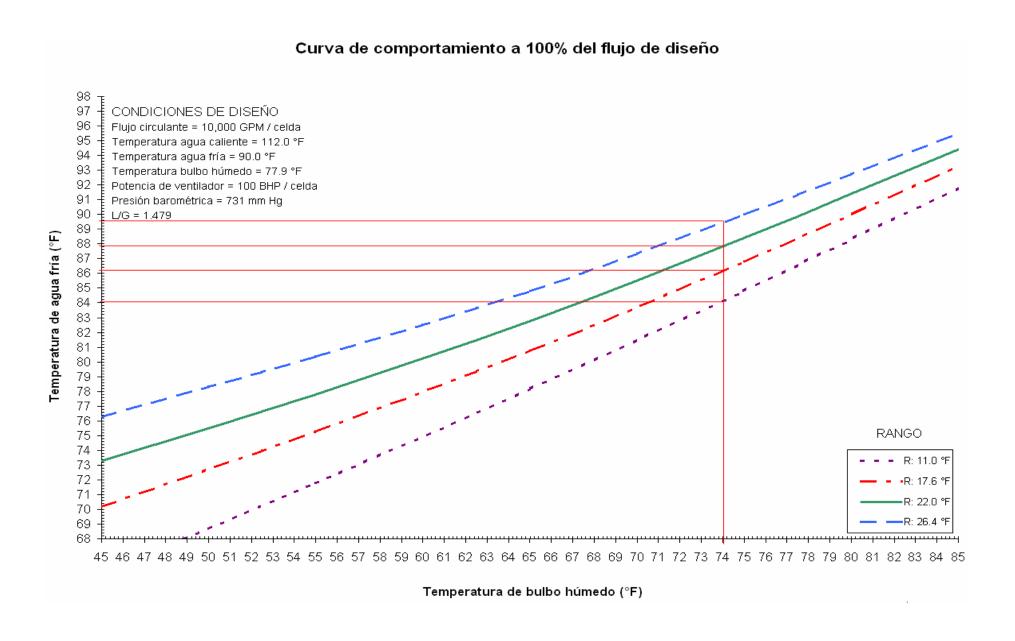
Moraxella catarrhalis.

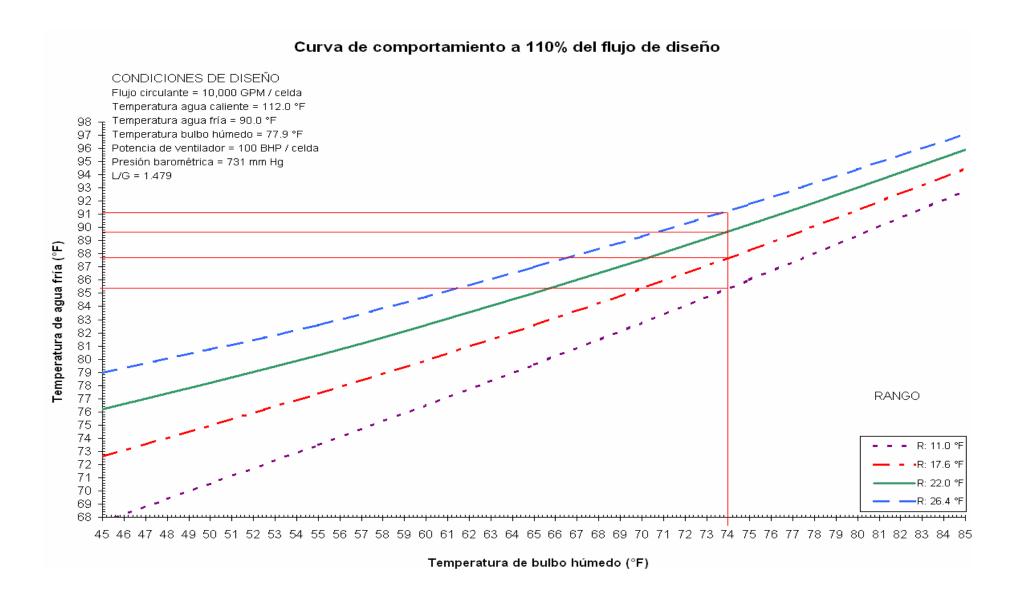
Staphylococus aureus.

Especies de nocardia.

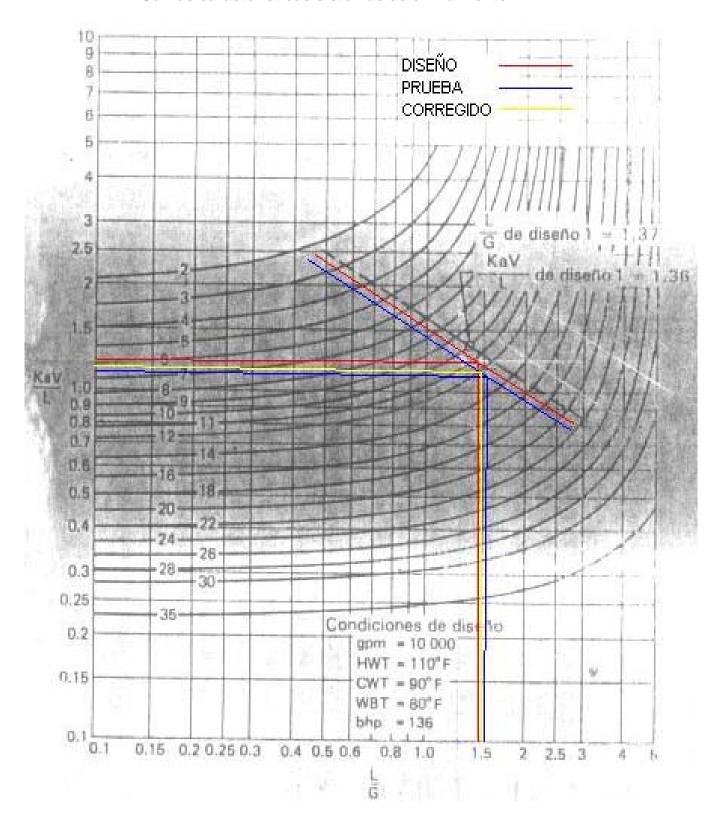
Virus.


Hongos.


ENTRADA DE MICRORGANISMOS


- Inhalación de aerosoles con gérmenes patógenos.
- Aspiración directa de secreciones orofaringeas o gástricas.
- Extensión directa a partir de un foco contiguo.
- Diseminación hematógena a partir de un foco séptico distante.

Cuía nara	la avaluación	táppion do	Tarras da	Enfriomiente	on operación
Guia para	la evaluacion	tecnica de	Lorres de	Enfriamiento	en operacion


Anexo. 2 Curvas de comportamiento a 90, 100 y 110 % de flujo y curva característica

Curvas características sistemas de enfriamiento

Anexo. 3 Entalpías de la mezcla aire-agua	

Guía para la evaluación técnica de Torres de Enfriamiento en operación

Entalpía de la mezcla de agua - aire en BTU /Ibaire seco (a 29.21 pulgadas de mercurio)

°F	0.0	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9
0	0.835	0.863	0.892	0.920	0.949	0.977	1.006	1.034	1.063	1.091
1	1.12	1.149	1.777	1.206	1.235	1.264	1.293	1.321	1.350	1.379
2	1.408	1.437	1.466	1.495	1.524	1.553	1.582	1.611	1.640	1.669
3	1.698	1.727	1.756	1.786	1.815	1.884	1.874	1.903	1.932	1.962
4	1.991	2.020	2.050	2.079	2.109	2.138	2.168	2.197	2.227	2.256
5	2.286	2.316	2.345	2.375	2.405	2.434	2.464	2.494	2.523	2.553
6	2.583	2.613	2.643	2.673	2.703	2.732	2.763	2.793	2.823	2.853
7	2.883	2.913	2.944	2.974	3.005	3.035	3.066	3.096	3.127	3.157
8	3.188	3.219	3.249	3.280	3.310	3.341	3.371	3.402	3.433	3.463
9	3.494	3.525	3.556	3.586	3.617	3.648	3.679	3.710	3.741	3.772
10	3.803	3.834	3.865	3.897	3.928	3.959	3.990	4.022	4.053	4.085
11	4.116	4.147	4.179	4.210	4.242	4.273	4.305	4.337	4.368	4.400
12	4.432	4.464	4.496	4.528	4.560	4.592	4.624	4.656	4.689	4.721
13	4.753	4.785	4.817	4.850	4.882	4.914	4.946	4.979	5.011	5.044
14	5.076	5.109	5.141	5.174	5.206	5.239	5.272	5.304	5.337	5.370
15	5.403	5.436	5.469	5.502	5.535	5.568	5.602	5.635	5.668	5.702
16	5.735	5.768	5.802	5.835	5.869	5.902	5.936	5.970	6.003	6.037
17	6.071	6.105	6.139	6.173	6.207	6.241	6.275	6.309	6.343	6.378
18	6.412	6.446	6.480	6.515	6.549	6.583	6.618	6.652	6.687	6.721
19	6.756	6.791	6.826	6.860	6.895	6.930	6.965	7.000	7.036	7.071
20	7.106	7.141	7.176	7.212	7.247	7.282	7.318	7.353	7.389	7.424
21	7.460	7.496	7.532	7.567	7.603	7.639	7.675	7.711	7.748	7.784
22	7.820	7.856	7.893	7.929	7.966	8.002	8.039	8.076	8.112	8.149
23	8.186	8.223	8.260	8.297	8.334	8.371	8.408	8.445	8.482	8.520
24	8.557	8.594	8.632	8.669	8.707	8.745	8.782	8.820	8.858	8.896
25	8.934	8.972	9.010	9.048	9.086	9.125	9.163	9.201	9.240	9.278
26	9.317	9.356	9.394	9.433	9.472	9.511	9.550	9.589	9.628	9.667
27	9.706	9.745	9.785	9.824	9.864	9.904	9.943	9.983	10.023	10.063
28	10.103	10.143	10.183	10.223	10.263	10.304	10.344	10.384	10.425	10.465
29	10.506	10.547	10.587	10.628	10.669	10.710	10.750	10.791	10.833	10.874
30	10.915	10.956	10.998	11.040	11.081	11.123	11.165	11.207	11.249	11.291
31	11.333	11.376	11.418	11.461	11.503	11.546	11.589	11.631	11.673	11.716
32	11.758	11.799	11.841	11.882	11.923	11.964	12.005	12.046	12.087	12.128
33	12.169	12.21			12.335	12.376	12.418		12.501	12.543
34	12.585	12.627	12.669			12.796	12.838	12.880	12.923	12.965
35	13.008	13.051	13.093		13.179	13.222	13.265		13.351	13.395
36	13.438	13.481	13.525		13.612	13.655	13.699	13.742		13.830
37	13.874	13.918	13.962		14.051	14.095	14.140	14.185		14.274
38	14.319	14.364	14.409		14.499	14.544	14.589	14.635		14.725
39	14.771	14.817	14.862		14.954	15.000	15.045	15.092		15.184
40	15.230	15.276	15.323			15.462	15.509			15.650
41	15.697	15.744	15.791		15.886	15.933	15.981	16.029	16.076	16.124
42	16.172	16.22	16.268	16.317	16.365	16.413	16.462	16.511	16.559	16.608
43	16.657	16.706	16.755	16.804	16.853	16.902	16.951	17.001	17.050	17.099
44	17.149	17.199	17.248		17.348	17.398	17.448	17.499	17.549	17.599
45	17.650	17.701	17.751		17.853	17.904	17.956		18.058	18.110
46	18.161	18.212	18.264		18.367	18.419	18.471	18.523		18.628
47	18.860	18.733			18.891	18.944	18.997		19.104	19.157
48	19.211	19.265	19.318	19.372	19.426	19.480	19.534	19.588	19.642	19.697

°F	0.0	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9
49	19.751	19.806	19.860	19.915	19.970	20.025	20.080	20.135	20.190	20.246
50	20.300	20.36	20.410	20.470	20.530	20.580	20.640	20.700	20.750	20.810
51	20.86	20.92	20.97	21.03	21.09	21.14	21.20	21.26	21.32	21.37
52	21.43	21.49	21.55	21.60	21.66	21.72	21.78	21.84	21.90	21.96
53	22.02	22.07	22.13	22.19	22.25	22.31	22.37	22.43	22.49	22.55
54	22.61	22.67	22.73	22.79	22.85	22.91	22.97	23.03	23.09	23.16
55	23.22	23.28	23.34	23.40	23.46	23.53	23.59	23.65	23.71	23.78
56	23.84	23.90	23.96	24.03	24.09	24.16	24.22	24.28	24.35	24.41
57	24.48	24.54	24.60	24.67	24.73	24.80	24.86	24.92	24.99	25.05
58	25.12	25.18	25.25	25.31	25.38	25.45	25.51	25.58	25.65	25.71
59	25.78	25.85	25.91	25.98	26.05	26.12	26.18	26.25	26.32	26.39
60	26.46	26.53	26.60	26.67	26.74	26.80	26.87	26.94	27.01	27.08
61	27.15	27.22	27.29	27.36	27.43	27.50	27.57	27.64	27.71	27.78
62	27.85	27.92	27.99	28.06	28.13	28.21	28.28	28.35	28.42	28.50
63	28.57	28.64	28.72	28.79	28.86	28.94	29.01	29.09	29.16	29.24
64	29.31	29.38	29.46	29.53	29.61	29.68	29.76	29.83	29.91	29.98
65	30.06	30.13	30.20	30.28	30.36	30.44	30.51	30.59	30.67	30.75
66	30.83	30.90	30.98	31.06	31.14	31.22	31.30	31.38	31.46	31.54
67	31.62	31.70	31.78	31.86	31.94	32.02	32.10	32.18	32.26	32.34
68	32.42	32.50	32.59	32.67	32.75	32.83	32.92	33.00	33.08	33.17
69	33.25	33.33	33.41	33.50	33.58	33.66	33.74	33.83	33.91	34.00
70	34.09	34.17	34.25	34.34	34.43	34.51	34.60	34.69	34.78	34.87
71	34.95	35.04	35.13	35.22	35.30	35.39	35.48	35.57	35.66	35.75
72	35.83	35.92	36.01	36.10	36.19	36.28	36.37	36.46	36.56	36.65
73	36.74	36.83	36.92	37.01	37.10	37.20	37.29	37.38	37.48	37.57
74	37.66	37.76	37.85	37.94	38.04	38.13	38.23	38.32	38.41	38.51
75	38.61	38.70	38.80	38.89	38.98	39.08	39.18	39.27	39.37	39.47
76	39.57	39.67	39.77	39.87	39.97	40.07	40.17	40.27	40.37	40.47
77	40.57	40.67	40.77	40.87	40.97	41.07	41.17	41.27	41.37	41.48
78	41.58	41.68	41.78	41.88	41.99	42.10	42.20	42.30	42.41	42.52
79	42.62	42.73	42.84	42.94	43.05	43.16	43.26	43.37	43.47	43.58
80	43.69	43.80	43.91	44.01	44.12	44.23	44.34	44.45	44.56	44.67
81	44.78	44.89	45.00	45.11	45.22	45.34	45.45	45.56	45.67	45.78
82	45.90	46.01	46.12	46.23	46.35	46.46	46.58	46.70	46.81	46.92
83	47.04	47.15	47.27	47.39	47.51	47.63	47.74	47.86	47.98	48.10
84	48.22	48.34	48.46	48.58	48.70	48.82	48.94	49.06	49.18	49.30
85	49.43	49.55	49.67	49.79	49.91	50.03	50.15	50.28	50.40	50.53
86	50.66	50.78	50.90	51.03	51.16	51.28	51.41	51.54	51.67	51.80
87	51.93	52.06	52.19	52.32	52.45	52.58	52.71	52.84	52.97	53.10
88	53.23	53.36	53.49	53.62	53.75	53.88	54.02	54.15	54.28	54.42
89	54.56	54.69	54.82	54.96	55.09	55.23	55.37	55.51	55.65	55.79
90	55.93	56.07	56.21	56.35	56.49	56.63	56.77	56.91	57.05	57.19
91	57.33	57.47	57.61	57.76	57.90	58.05	58.19	58.34	58.48	58.63
92	58.78	58.92	59.07	59.21	59.36	59.50	59.65	59.80	59.95	60.10
93	60.25	60.40	60.55	60.70	60.85	61.00	61.15	61.31	61.46	61.61
94	61.77	61.92	62.07	62.23	62.38	62.54	62.69	62.85	63.00	63.16
95	63.32	63.48	63.63	63.79	63.95	64.11	64.27	64.44	64.60	64.76
96	64.92	65.08	65.25	65.41	65.58	65.74	65.90	66.06	66.23	66.39
97	66.55	66.72	66.88	67.05	67.22	67.39	67.56	67.73	67.90	68.07
98	68.23	68.40	68.57	68.74	68.91	69.08	69.26	69.43	69.61	69.78
99	69.96	70.14	70.32	70.50	70.67	70.85	71.02	71.20	71.38	71.55
100	71.73	71.91	72.09	72.27	72.45	72.63	72.82	73.00	73.19	73.57
101	73.55	73.73	73.92	74.11	74.29	74.48	74.67	74.86	75.04	75.23

°F	0.0	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9
102	75.42	75.62	75.82	76.01	76.20	76.39	76.58	76.77	76.96	77.15
103	77.34	77.54	77.73	77.93	78.12	78.32	78.52	78.72	78.92	79.12
103	79.32	79.52	79.72	79.92	80.12	80.32	80.52	80.72	80.93	81.13
105	81.34	81.54	81.75	81.95	82.16	82.37	82.58	82.79	83.00	83.21
106	83.42	83.63	83.34	84.05	84.26	84.48	84.69	84.91	85.12	85.34
107	85.56	85.77	85.99	86.21	86.43	86.65	86.87	87.10	87.32	87.54
108	87.86	87.99	88.22	88.44	88.67	88.89	89.11	89.34	89.57	89.80
109	90.03	90.25	90.48	90.71	90.94	91.97	91.40	91.64	91.87	92.10
110	92.34	92.57	92.81	93.05	93.29	93.52	93.76	94.00	94.24	94.48
111	94.72	94.96	95.21	95.45	95.70	95.94	96.19	96.44	96.68	96.93
112	97.18	97.43	97.68	97.93	98.18	98.43	98.68	98.94	99.19	99.45
113	99.71	99.96	100.22	100.48	100.74	101.00	101.26	101.52	101.78	102.05
114	102.31	102.58	102.84	103.10	103.37	103.63	103.90	104.17	104.44	104.71
115	104.98	105.25	105.52	105.79	106.06	106.34	106.61	106.89	107.17	107.45
116	107.73	108.10	108.29	108.57	108.85	109.13	109.41	109.70	109.98	110.27
117	110.55	110.84	111.13	111.42	111.71	112.00	112.29	112.58	112.87	113.16
118	113.46	113.75	114.05	114.35	114.65	114.95	115.25	115.55	115.86	116.16
119	116.46	116.77	117.07		117.69	118.00	118.30	118.61	118.92	119.23
120	119.54	119.85	120.17	120.48	120.80	121.12	121.44	121.76	122.08	122.40
121	122.72	123.04	123.36	123.68	124.01	124.34	124.67	125.00	125.33	125.65
122	125.98	126.04	126.64	126.98	127.31	127.65	127.99	128.00	128.67	129.01
123	129.35	129.69	130.03	130.37	130.72	131.06	131.41	131.75	132.10	132.45
124	132.80	133.15	133.50	133.85	134.21	134.57	134.93	135.29	135.66	136.03
125	136.40	136.70	137.10	137.50	137.80	138.20	138.60	139.00	139.30	139.70
126	140.1	140.5	140.8	141.2	141.6	142.0	142.3	142.7	143.1	143.5
127	143.9	144.3	144.7	145.1	145.5	145.9	146.3	146.7	147.1	147.4
128	147.8	148.2	148.6	149.0	149.4	149.8	150.2	150.6	151.0	151.4
129	151.8	152.2	152.6	153.0	153.4	153.8	154.2	154.6	155.1	155.5
130	155.9	156.3	156.8	157.2	157.6	158.0	158.5	158.9	159.4	159.8
131	160.3	160.7	161.2	161.6	162.0	162.5	162.9	163.4	163.8	164.2
132	164.7	165.1	165.6	166.0	166.5	167.0	167.4	167.9	168.3	168.8
133	169.3	169.7	170.2	170.7	171.1	171.6	172.1	172.6	173.0	173.5
134	169.3	174.5	175.0	175.4	175.9	176.4	176.9	177.4	177.9	178.4
135	178.9	179.4	179.9	180.4	180.9	181.4	181.9	182.4	182.9	183.4
136	183.9	184.4	184.9	185.4	185.9	186.4	186.9	187.4	188.0	188.5
137	189.0	189.5	190.0	190.6	191.1	191.6	192.2	192.7	193.3	193.8
138	194.4	194.9	195.5	196.0	196.6	197.1	197.6	198.2	198.8	199.4
139	199.9	200.5	201.1	201.7	202.2	202.8	203.4	204.0	204.5	205.1
140	205.7	206.3	206.9	207.5	208.1	208.7	209.3	209.9	210.4	211.0
141	211.6	212.2	212.8	213.4	214.0	214.6	215.2	215.8	216.4	217.0
142	217.7	218.3	218.9	219.5	220.2	220.8	221.2	222.1	222.7	223.4
143	224.1	224.7	225.3	226.0	226.6	227.3	228.0	228.6	229.3	229.9
144	230.6	231.3	232.0	232.6	233.3	234.0	234.7	235.3	236.0	236.7
145	237.4	238.1	238.8	239.5	240.2	240.9	241.6	242.3	243.0	243.7
146	244.4	245.1	245.8	246.5	247.2	248.0	248.7	249.5	250.2	250.9
147	251.7	252.4	253.2	254.5	254.7	255.5	256.2	257.0	257.7	258.5
148	259.3	260.0	260.8	261.6	262.4	263.2	263.9	264.7	265.5	266.3
149	267.1	267.9	268.7	269.5	270.3	271.1	271.9	272.7	273.5	274.4
150	275.3	276.1	276.9	277.7	278.5	279.4	280.2	281.1	281.9	282.8
151	283.6	284.5	285.3	286.2	287.1	287.9	288.8	289.7	290.6	291.5
152	292.4	293.3	294.2	295.1	296.0	296.9	297.8	298.7	299.7	300.6
153	301.5	302.4	303.3	304.3	305.2	306.1	307.1	308.0	309.7	309.9
154	310.9	311.9	312.8	313.8	314.8	315.8	316.8	317.8	318.8	319.8

°F	0.0	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9
155	320.8	321.8	322.8	323.8	324.8	325.8	326.9	327.9	328.9	330.0
156	331.0	332.1	333.1	334.2	335.2	336.3	337.4	338.4	339.5	340.6
157	341.7	342.8	343.9	345.0	346.1	347.1	348.3	349.4	350.5	351.6
158	352.7	353.8	355.0	356.1	357.2	358.4	359.5	360.7	361.9	363.0
159	364.2	365.4	366.6	367.8	369.0	370.2	371.4	372.6	373.8	375.1
160	376.3	377.5	378.8	380.0	381.2	382.5	383.7	385.0	386.3	387.5
161	388.8	390.1	391.4	392.7	394.0	395.3	396.6	398.0	399.3	400.7
162	402.0	403.3	404.7	406.1	407.4	408.8	410.2	411.5	412.9	414.3
163	415.7	417.1	418.7	419.9	421.3	422.7	424.1	425.6	427.0	428.4
164	429.9	431.4	432.9	434.3	435.8	437.4	438.9	440.4	441.9	443.5
165	445.0	446.5	448.1	449.6	451.2	452.8	454.3	455.9	457.5	459.1
166	460.7	462.3	463.9	465.6	467.2	468.9	470.5	472.2	473.8	475.5
167	477.2	478.9	480.6	482.3	484.0	485.7	487.4	489.2	490.9	492.6
168	494.4	496.2	497.9	499.7	501.5	503.3	505.1	506.9	508.7	510.6
169	512.4	514.3	516.1	518.0	519.9	521.8	523.7	525.7	527.6	529.5
170	531.5	533.5	535.4	537.4	539.4	541.4	543.4	545.4	547.4	549.5
171	551.5	553.6	555.6	557.7	559.8	562.0	564.1	566.2	568.4	570.5
172	572.7	574.9	577.1	579.2	581.4	583.7	585.9	588.1	590.4	592.6
173	594.9	597.2	599.5	601.8	604.1	606.4	608.8	611.1	613.5	615.9
174	618.3	620.7	623.2	625.6	628.1	630.6	633.1	635.6	638.1	640.6
175	643.2	645.8	648.3	650.9	653.5	656.1	658.7	661.4	664.0	666.7
176	669.4	672.1	674.8	677.6	680.4	683.1	685.9	668.8	691.6	694.4
177	697.3	700.2	703.1	706.0	708.9	711.9	714.8	717.8	720.8	723.9
178	726.9	730.0	733.0	736.1	739.2	742.4	745.5	748.7	751.9	755.1
179	758.3	761.6	764.8	768.1	771.4	774.8	778.1	781.5	784.9	788.4
180	791.8	795.3	798.7	802.2	805.8	809.3	812.9	816.5	820.1	823.7
181	827.4	831.1	834.8	838.6	842.4	846.2	850.1	853.9	857.8	861.8
182	865.7	869.7	873.6	877.6	881.7	885.7	889.8	894.0	898.1	902.3
183	906.5	910.8	915.0	919.4	923.7	928.1	932.5	937.0	941.4	946.0
184	950.5	955.1	959.7	964.3	968.9	973.6	978.4	983.1	988.0	992.8
185 186	998.0 1049	1003.0 1054	1008.0 1060	1013.0 1065	1018.0 1070	1023.0 1076	1028.0 1081	1033.0 1087	1038.0	1044.0 1098
187	11049	1110	1116	1121	1127	1133	1139	1145	1152	1158
188	1164	1170	1177	1183	1189	1196	1202	1209	1216	1222
189	1229	1236	1243	1250	1257	1264	1271	1279	1286	1294
190	1301	1308	1316	1323	1331	1339	1346	1354	1362	1370
191	1378	1386	1394	1403	1411	1420	1429	1437	1446	1455
192	1464	1473	1482	1491	1501	1510	1520	1529	1539	1549
193	1559	1569	1579	1590	1600	1611	1622	1633	1644	1655
194	1666	1677	1689	1700	1712	1723	1735	1747	1759	1772
195	1784	1797	1809	1822	1836	1849	1862	1876	1890	1904
196	1918	1932	1947	1961	1976	1991	2006	2022	2037	2053
197	2069	2085	2102	2119	2136	2153	2170	2188	2206	2224
198	2243	2262	2281	2300	2319	2339	2359	2380	2401	2422
199	2443	2465	2487	2509	2532	2559	2579	2603	2627	2652
200	2677	2702	2728	2755	2781	2809	2836	2864	2893	2922

ENTALPÍA DE LA MEZCLA DE AGUA - AIRE EN BTU /Ibaire seco (a DIFERENTES ALTITUDES) ALTURA EN PIES

		NIVEL								
°F	-1000	MAR	1000	2000	3000	4000	5000	6000	7000	8000
0	0.801	0.835	0.871	0.907	0.946	0.985	1.026	1.069	1.113	1.159
1	1.084	1.120	1.158	1.196	1.236	1.278	1.321	1.365	1.411	1.459
2	1.370	1.408	1.447	1.487	1.529	1.573	1.618	1.664	1.713	1.763
3	1.659	1.698	1.739	1.781	1.825	1.870	1.918	1.967	2.018	2.071
4	1.949	1.991	2.033	2.078	2.123	2.171	2.221	2.272	2.325	2.381
5	2.242	2.286	2.330	2.377	2.425	2.475	2.527	2.580	2.636	2.695
6	2.538	2.583	2.630	2.679	2.729	2.781	2.836	2.892	2.951	3.012
7	2.837	2.884	2.933	2.984	3.036	3.091	3.148	3.208	3.269	3.333
8	3.138	3.187	3.239	3.292	3.347	3.405	3.464	3.526	3.591	3.659
9	3.442	3.494	3.547	3.603	3.661	3.721	3.784	3.849	3.917	3.988
10	3.749	3.803	3.859	3.918	3.979	4.042	4.108	4.176	4.247	4.321
11	4.059	4.116	4.175	4.236	4.300	4.366	4.435	4.507	4.581	4.659
12	4.373	4.432	4.494	4.558	4.625	4.694	4.767	4.842	4.920	5.002
13	4.690	4.752	4.817	4.884	4.954	5.027	5.103	5.181	5.264	5.349
14	5.011	5.070	5.144	5.214	5.287	5.364	5.443	5.526	5.612	5.702
15	5.335	5.404	5.475	5.548	5.625	5.705	5.788	5.875	5.965	6.060
16	5.664	5.735	5.810	5.887	5.967	6.051	6.138	6.229	6.324	6.423
17	5.996	6.071	6.149	6.230	6.314	6.402	6.494	6.589	6.688	6.792
18	6.333	6.412	6.493	6.578	6.666	6.758	6.854	6.954	7.058	7.167
19	6.674	6.757	6.842	6.931	7.023	7.120	7.220	7.325	7.434	7.548
20	7.020	7.106	7.196	7.289	7.386	7.487	7.592	7.702	7.817	7.936
21	7.371	7.461	7.555	7.652	7.754	7.860	7.970	8.085	8.205	8.331
22	7.727	7.821	7.919	8.021	8.128	8.239	8.354	8.475	8.601	8.732
23	8.088	8.186	8.289	8.396	8.508	8.624	8.745	8.871	9.003	9.141
24	8.454	8.557	8.665	8.777	8.894	9.015	9.142	9.275	9.413	9.558
25	8.826	8.934	9.047	9.164	9.287	9.414	9.547	9.686	9.831	9.982
26	9.204	9.317	9.435	9.558	9.686	9.820	9.959	10.105	10.256	10.415
27	9.588	9.707	9.830	9.959	10.093	10.233	10.379	10.531	10.690	10.857
28	9.978	10.103	10.232	10.367	10.507	10.654	10.806	10.966	11.133	11.307
29	10.376	10.506	10.641	10.782	10.929	11.082	11.242	11.410	11.584	11.767
30	10.780	10.916	11.058	11.205	11.359	11.520	11.687	11.862	12.045	12.236
31	11.191	11.334	11.482	11.636	11.797	11.965	12.141	12.324	12.516	12.716
32	11.610	11.759	11.914	12.075	12.244	12.420	12.603	12.795	12.996	13.205
33	12.014	12.169	12.331	12.499	12.674	12.858	13.049	13.249	13.458	13.676
34	12.425	12.586	12.754	12.929	13.112	13.302	13.501	13.710	13.927	14.154
35	12.842	13.009	13.184	13.366	13.556	13.755	13.962	14.179	14.405	14.642
36	13.265	13.439	13.621	13.810	14.008	14.215	14.431	14.656	14.892	15.138
37	13.695	13.876	14.065	14.722	14.468	14.683	14.908	15.143	15.388	15.644
38	14.132	14.320	14.517	14.722	14.936	15.160	15.394	15.638	15.893	16.160
39	14.576	14.772	14.976	15.190	15.413	15.645	15.889	16.143	16.408	16.686
40	15.027	15.231	15.444	15.666	15.898	16.140	16.393	16.657	16.934	17.223
41	15.486	15.698	15.920	16.151	16.392	16.643	16.907	17.182	17.469	17.770
42	15.953	16.174	16.404	16.644	16.895	17.157	17.430	17.716	18.015	18.328
43	16.428	16.658	16.897	17.146	17.407	17.679	17.964	18.262	18.573	18.898
44	16.912	17.150	17.399	14.658	17.929	18.213	18.508	18.818	19.141	19.480
45	17.404	17.652	17.910	18.810	18.462	18.756	19.064	19.385	19.722	20.074
46	17.905	18.162	18.431	18.711	19.004	19.310	19.630	19.665	20.315	20.681

°F	-1000	NIVEL MAR	1000	2000	3000	4000	5000	6000	7000	8000
47	18.415	18.683	18.962	19.253	19.558	19.876	20.208	20.556	20.920	21.301
48	18.935	19.213	19.503	19.806	20.122	20.453	20.200	21.160	21.538	21.934
49	19.465	19.753	20.055	20.369	20.698	21.042	21.401	21.776	22.169	22.581
50	20.004	20.304	20.617	20.944	21.286	21.642	22.016	22.406	22.815	23.242
51	20.554	20.866	21.191	21.530	21.885	22.256	22.644	23.049	23.474	23.918
52	21.115	21.438	21.776	22.129	22.497	22.883	23.285	23.707	24.148	24.610
53	21.687	22.023	22.373	22.740	23.122	23.523	23.941	24.379	24.837	25.317
54	22.270	22.619	22.983	23.363	23.761	24.176	24.611	25.066	25.542	26.040
55	22.865	23.227	23.605	24.000	24.413	24.844	25.296	25.768	26.263	26.780
56	23.472	23.848	24.240	24.650	25.079	25.527	25.996	26.486	27.000	27.538
57	24.091	24.481	24.889	25.315	25.760	26.225	26.712	27.221	27.754	28.313
58	24.723	25.128	25.551	25.993	26.455	26.938	27.444	27.972	28.528	29.106
59	25.369	25.789	26.228	26.667	27.166	27.668	28.192	28.741	29.316	29.919
60	26.028	26.464	26.920	27.396	27.893	28.414	28.958	29.528	30.125	30.751
61	26.701	27.154	27.626	28.120	28.637	29.177	29.742	30.334	30.954	31.603
62	27.389	27.858	28.348	28.861	29.397	29.957	30.544	31.158	31.802	32.476
63	28.091	28.578	29.087	29.169	30.175	30.756	31.365	32.003	32.670	33.370
64	28.809	29.314	29.842	30.393	30.970	31.574	32.206	32.867	33.560	34.286
65	29.542	30.066	30.614	31.186	31.784	32.411	33.066	33.752	34.472	35.225
66	30.292	30.835	31.403	31.997	32.618	33.267	33.947	34.659	35.406	36.188
67	31.059	31.622	32.211	32.827	33.470	34.144	34.850	35.589	36.363	37.174
68	31.843	32.427	33.037	33.676	34.343	35.042	35.744	36.541	37.344	38.186
69	32.644	33.250	33.883	34.545	35.237	35.962	36.721	37.516	38.350	39.223
70	33.464	34.092	34.748	35.435	36.153	36.904	37.692	38.516	39.381	40.287
71	34.303	34.954	35.634	36.346	37.090	37.870	38.686	39.541	40.438	41.378
72	35.161	35.835	36.541	37.278	38.051	38.859	39.705	40.592	41.522	42.498
73	36.039	36.738	37.469	38.234	39.034	39.872	40.750	41.670	42.634	43.646
74	36.937	37.662	38.420	39.212	40.042	40.911	41.821	42.775	43.775	44.824
75	87.857	38.608	39.393	40.215	41.075	41.976	42.919	43.908	44.946	46.034
76	38.799	39.577	40.390	41.242	42.134	43.067	44.045	45.071	46.146	47.275
77	39.762	40.569	41.412	42.295	43.218	44.186	45.200	46.264	47.379	48.549
78	40.750	41.585	42.459	43.373	44.331	45.334	46.385	47.487	48.643	49.857
79	41.760	42.626	43.531	44.479	45.471	46.511	47.600	48.743	49.941	51.200
80	42.796	43.692	44.630	45.612	46.640	47.718	48.847	50.031	51.274	52.579
81	43.856	44.785	45.756	46.774	47.839	48.956	50.126	51.354	52.642	53.995
82	44.942	45.904	46.911	47.965	49.069	50.226	51.439	52.711	54.047	55.449
83	46.056	47.052	48.095	47.965	50.330	51.529	52.786	54.105	55.489	56.943
84	47.196	48.228	49.308	49.186	51.624	52.866	54.169	55.536	56.971	58.478
85	48.365	49.434	50.552	51.724	52.952	54.239	55.589	57.005	58.493	60.055
86	49.563	50.670	51.828	53.042	54.314	55.647	57.046	58.514	60.056	61.676
87	50.792	51.937	53.137	54.394	55.712	57.093	58.543	60.064	61.056	63.341
88	52.051	53.237	54.480	55.782	57.146	58.578	60.080	61.656	63.312	65.053
89	53.342	54.570	55.857	57.205	58.619	60.102	61.658	63.292	65.008	66.813
90	54.665	55.937	57.270	58.666	60.131	61.667	63.279	64.972	66.751	68.622
91	56.023	57.340	58.720	60.166	61.683	63.274	64.944	66.699	68.543	70.481
92	57.415	58.779	60.208	61.705	63.276	64.925	66.655	68.473	70.384	72.394
93	58.844	60.255	61.735	63.286	64.913	66.620	68.413	70.297	72.278	74.361
94	60.309	61.770	63.302	64.908	66.593	68.362	70.220	72.172	74.224	76.384
95	61.812	63.325	64.911	66.574	68.319	70.151	72.076	74.099	76.226	78.465
96	63.354	64.920	66.562	68.285	70.092	71.990	73.984	76.080	78.285	80.606
97	64.937	66.558	68.258	70.042	71.914	73.880	75.946	78.118	80.403	82.809
98	66.561	68.240	70.000	71.847	73.785	75.822	77.962	80.213	82.582	85.076

۰.	4000	NIVEL	1000	2222	2222	1000	5000	2222	7000	2222
°F	-1000	MAR	1000	2000	3000	4000	5000	6000	7000	8000
99	68.229	69.966	71.788	73.701	75.709	77.818	80.036	82.368	84.824	87.409
100	69.940	71.739	73.625	75.606	77.685	78.870	82.168	84.585	87.130	89.811
101	71.697	73.559	75.512	77.563	79.717	81.980	84.361	86.866	89.504	92.283
102	73.501	75.428	77.451	79.574	81.805	84.150	86.617	89.213	91.947	94.829
103	75.354	77.348	79.442	81.641	83.952	86.381	88.937	91.628	94.462	97.450
104	77.256	79.321	81.489	83.766	86.159	88.676	91.324	94.113	97.051	100.150
105	79.210	81.347	83.592	85.950	88.429	91.036	93.781	96.671	99.718	102.931
106	81.217	83.430	85.754	88.196	90.763	93.465	96.309	99.305	102.464	105.796
107	83.279	85.569	87.976	90.505	93.164	95.963	98.910	102.016	105.292	108.748
108	85.397	87.768	90.260	92.879	95.634	98.534	101.589	104.809	108.205	111.790
109	87.574	90.029	92.609	95.321	98.175	101.180	104.347	107.685	111.207	114.926
110	89.810	92.352	95.024	97.833	100.790	103.904	107.186	110.647	114.300	118.159
111	92.109	94.741	97.507	100.418	103.481	106.708	110.110	113.699	117.488	121.492
112	94.473	97.197	100.062	103.077	106.251	109.596	113.122	116.844	120.774	124.929
113	96.902	99.723	102.690	105.813	109.102	112.569	116.225	120.085	124.163	128.474
114	99.400	102.310	105.394	108.630	112.038	115.631	119.423	123.426	127.656	132.131
115	101.969	104.993	108.177	111.529	115.061	118.786	122.717	126.870	131.260	135.905
116	104.610	107.743	111.040	114.513	118.174	122.036	126.113	130.421	134.977	139.799
117	107.327	110.572	113.987	117.586	121.381	125.385	129.614	134.084	138.812	143.820
118	110.122	113.483	117.021	120.751	124.684	128.837	133.223	137.862	142.770	147.971
119	112.998	116.479	120.145	124.010	128.089	132.395	136.946	141.759	146.856	152.257
120	115.958	119.563	123.362	127.368	131.597	136.063	140.785	145.782	151.074	156.685
121	119.003	122.738	126.675	130.828	135.213	139.846	144.746	149.933	155.430	161.260
122	122.138	126.008	130.088	134.394	138.941	143.748	148.833	154.219	159.929	165.260
123	125.365	129.375	133.604	138.069	142.785	147.773	153.052	158.645	164.577	170.874
124	128.689	132.844	137.228	141.857	146.750	151.928	157.407	163.216	169.380	175.927
125	132.110	136.417	140.962	145.764	150.840	156.213	161.904	167.939	174.345	181.153
126	135.636	140.099	144.812	149.792	155.060	160.637	166.548	172.819	179.479	186.560
127	139.267	143.894	148.781	153.948	159.415	165.206	171.346	177.863	184.788	192.155
128	143.008	147.806	152.875	158.236	163.911	169.924	176.303	193.078	190.280	197.947
129	146.864	151.839	157.097	162.660	168.552	174.799	181.428	188.471	195.964	203.944
130	150.839	155.998	161.453	167.228	173.346	179.835	186.725	194.051	201.847	210.156
131	154.936	160.288	165.949	171.943	178.297	185.041	192.204	199.824	207.939	216.593
132	163.520	164.713	170.588	176.813	183.414	190.422	197.872	205.800	214.249	223.265
133	163.520	169.280	175.379	181.843	188.701	195.987	203.736	211.988	220.788	230.184
134	168.015	173.993	180.325	187.040	194.168	201.744	209.807	218.398	227.565	237.380
135	172.654	178.859	185.435	192.411	199.821	207.701	216.092	225.039	234.592	244.808
136	177.442	183.884	190.714	197.964	205.669	213.867	222.602	231.923	241.881	252.539
137	182.385	189.074	196.170	203.706	211.719	220.251	229.348	239.060	249.445	260.568
138	187.489	194.436	201.810	209.645	217.982	226.864 233.715	236.340	246.464	257.298	268.912
139	192.761	199.976	207.642	215.791	224.466		243.590	254.147 262.124	265.454	277.584
140 141	198.207 203.835	205.706	213.674 219.916	222.152 228.738	231.183 238.142	240.817 248.181	251.110 258.914	270.480	273.929 282.738	286.605
141		211.630					267.015		282.738	295.990
142	209.653	217.757 224.096	226.377	235.569 242.627	245.355	255.819 263.745	275.430	279.016	301.435	305.762
143	215.670		233.066		252.834			287.964	311.361	315.941
	221.893	230.658	239.994	249.953	260.592	271.974	284.173	297.271		326.549
145	228.331	237.452	247.173	257.549	268.643	280.521	293.263	306.956	321.701	337.613
146	234.995	244.488	254.613	265.429	277.011	289.402	302.717 312.555	317.040	332.479	349.158
147 148	241.895 249.041	251.779 259.336	262.329 270.332	273.606 282.096	285.682 294.703	298.635	312.555	327.544 338.494	343.719 355.499	349.158
						308.239				361.158
149	256.446	267.172	278.637	290.914	304.082	318.233	333.470	349.913	367.698	386.982
150	264.121	275.300	287.260	300.077	313.837	328.639	344.594	361.831	380.498	400.766

°F	4000	NIVEL	4000	2000	2000	4000	F000	C000	7000	2000
	-1000 272.079	MAR	1000	2000	3000	4000	5000 256 407	6000 374.278	7000	8000
151		283.736	296.216	309.603	323.989	339.480	356.197		393.884	415.201
152	280.335	292.494	305.524	319.513	334.561	350.782	368.306	387.285	407.891	430.330
153	288.903	301.591	315.201	329.826	345.575	362.570	380.953	400.887	422.562	446.200
154	297.798	311.045	325.267	340.566	357.057	374.874	394.170	415.124	437.940	462.863
155	307.039	320.875	335.744	351.755	369.034	387.725	407.994	407.994	454.074	480.375
156	316.641	331.100	346.654	363.421	381.537	401.157	422.464	422.464	471.015	498.798
157	326.626	341.743	358.022	375.591	394.596	415.206	437.621	437.621	488.821	518.198
158	337.014	352.827	369.875	388.295	408.246	429.913	453.511	453.511	507.555	538.652
159	347.826	364.377	382.240	401.565	422.525	445.320	470.186	470.186	527.286	560.240
160	359.086	376.420	395.150	415.438	437.473	461.474	487.669	516.451	548.092	583.055
161	370.821	388.984	408.636	429.951	453.134	478.427	506.110	536.521	570.056	607.197
162	383.057	402.102	422.734	445.145	469.558	496.235	525.488	557.686	593.271	632.778
163	395.824	415.808	437.485	461.145	486.795	514.960	545.903	580.033	617.841	659.926
164	409.154	430.137	452.930	477.763	504.903	534.668	567.436	603.657	643.882	688.799
165	423.082	445.130	469.116	495.290	523.947	555.436	590.174	628.666	671.523	719.497
166	437.646	460.831	486.092	513.705	543.994	577.343	614.218	655.177	700.908	752.258
167	452.887	477.286	503.914	533.074	565.121	600.483	639.674	683.323	732.200	787.263
168	468.847	494.547	522.643	553.466	587.412	624.954	666.666	713.252	765.581	824.741
169	485.577	512.670	542.343	574.961	610.960	650.889	695.330	745.132	801.260	864.954
170	503.128	531.718	563.088	597.644	635.869	678.353	725.816	779.150	839.472	908.202
171	521.599	551.757	584.958	621.610	662.254	707.546	758.299	815.521	880.487	954.829
172	540.932	572.861	608.041	646.966	690.241	738.604	792.970	854.487	924.614	1005.235
173	561.316	595.114	632.435	673.830	719.976	771.704	830.050	896.325	972.207	1059.884
174	582.789	618.606	658.249	702.334	751.619	807.045	869.790	941.355	1023.681	1119.322
175	605.433	643.437	685.603	732.624	785.352	844.853	912.474	989.944	1079.516	1184.190
176	629.342	669.718	714.634	764.866	821.380	885.387	958.433	1042.518	1140.276	1255.250
177	654.619	697.575	745.492	799.248	859.935	928.942	1008.046	1099.575	1206.624	1333.414
178	681.379	727.146	778.349	835.980	901.285	975.856	1061.753	1161.697	1279.352	1419.780
179	709.749	758.586	813.395	875.303	945.734	1026.523	1120.069	1229.575	1359.407	1515.688
180	739.872	792.072	850.850	917.490	993.631	1081.397	1183.598	1304.028	1447.933	1622.784
181	771.909	827.800	890.960	962.857	1045.382	1141.011	1253.055	1386.041	1546.324	1743.118
182	806.039	865.996	934.009	1011.765	1101.458	1205.992	1329.292	1476.804	1656.300	1879.273
183	842.467	906.914	980.320	1064.632	1162.411	1277.080	1413.333	1577.773	1780.005	2034.548
184	881.423	950.847	1030.267	1121.947	1228.890	1355.163	1506.417	1690.744	1920.146	2213.231
185	923.171	998.128	1084.284	1184.281	1301.665	1441.303	1610.063	1817.960	2080.192	2420.995
186	968.012	1049.145	1142.875	1252.307	1381.656	1536.794	1726.148	1962.262	2264.665	2665.507
187	1016.291	1104.345	1206.633	1326.824	1469.971	1643.220	1857.023	2127.301	2479.563	2957.390
188	1068.408	1164.252			1567.959	1762.545		2317.847		3311.796
189	1124.827		1352.574	1499.359	1677.274				3036.394	3751.114
190	1186.089		1436.584				2372.856			4309.869
191	1252.831		1529.488				2603.165			5044.238
192	1325.806		1632.755						4453.466	6052.185
193	1405.912		1748.193							
194	1494.228		1878.060							
195	1592.063				2736.106					-
196	1701.019				3030.767	3715.212		6581.381		_
197	1823.079		2387.087			4246.060				_
198	1960.727		2612.901						_	_
199	2117.118		2879.358					-	_	_
200	2296.321		3198.425				-	-	-	-
200	ZZ3U.JZ1	2010.401	0190.420	U-30.31Z	0110.137	1 131.000				

Guía na	ra la avalue	ación tácni	ca do Tori	ros do Enfr	riamiento en	onoración
Guia ba	ira ia evaiua	acion techi	ca de Tori	res de Entr	riamiento en	oberacion

Anexo. 4 Hojas de inspección de torres de enfriamiento.

HOJAS DE INSPECCIÓN PROPUESTA POR EL CTI

Biological Fouling

Use this space to list specific items needing attention:

≜ Marley	Cooling Tower Inspection Checkli	ist								
Tower Location	Date Inspected									
Owner/Company	Inspected by									
Company Contact	Inspector									
Signature	Signature									
Owner's Tower Designation										
Tower Manufacturer	Model No. Serial No.									
Process Served by Tower	Operation: Continuous 🗆 Intermittent 🗀 Seasonal									
Design Conditions: GPM HW	°F CW°F WB°F									
Cell No. Number of Fan Cells Date Tower was installed	Tower Type: Crossflow Counterflow									
Condition: 1-Good 2-Keep	an eye on it 3-Needs immediate attention									
Standard	T Z S COMMISSION	_								
Structure										
Casing Material										
Structural Material										
Fan Deck Material		_								
Stairway D Material		_								
Ladder Material										
Handrail Material		_								
Interior Walkway Material		_								
Cold Water Basin Material		_								
Silt, Debris Buildup		_								
Water Distribution System										
Open Basin System										
Distribution Basin Material										
Inlet Pipe Material										
Inlet Manifold Material										
Flow Control Valves Size										
Nozzles-Orifice Diameter Size										
Silt, Algae, Debris										
Spray Type System										
Header Pipe Material										
Branch Pipe Material										
Nozzles-Orifice Diameter Size										
Up spray Down spray										
Heat Transfer System		_								
Fill-Type & Material										
Eliminators-Type & Material		_								
Louvers-Type & Material										

Condition: 1-Good 2-Keep an eye on it 3-Needs immediate attention

Mechanical Equipment	1	2	3	Comments
Speed Reducer Type: Belt □ Gear □ Di	irect [Drive	e C	1
Belt Drive Unit				
Belt Designation				
Fan Sheave Designation	П	\neg		
Motor Sheave Designation	П	\neg		
Gear Drive Unit				
Manufacturer Mode	el .			Ratio
Oil Level: Full Add Immediately				
Oil Condition: Good 🗅 Contains Water				-
Oil Type Used				_
Seals		П		
Backlash	П	\neg		
Fan Shaft Endplay	П	\neg		
	Acti	ion I	Red	quired
Drive Shaft				·
Manufacturer Material				
Fan				
Fan Type: Propeller ☐ Blower ☐				
Manufacturer	Fi	ixed	Pi	ch □ Adjustable Pitch □
Diameter	N	umb	er	of Blades
Blade Material				
Hub Material	Ш			
Hub Cover Material	Ш			
Blade Assembly Hardware	Ш			
Tip Clearance" min" max				
Vibration Level	Ш			
Fan Cylinder Height				
Mechanical Equipment Support	Ш	\perp		
Oil Fill and Drain Line	Ш			
Oil Level Sight Glass	Ш			
Vibration Limit Switch	Ш			
Motor				
Manufacturer				
Name Plate Data: HP	RF	PM_		Phase Hz Volts
F L Amps Frame				S F Special Info
Last Lubrication - Date				
Grease Used — Type				
Unusual Noises? No □	Y	es		Action Required
Unusual Vibration? No □	Y	es	ū	Action Required
Unusual Heat Build-up? No □	Υ	es		Action Required
Make-up Valve				
Other Component	\square	\prod		
Other Component				

HOJAS DE INSPECCIÓN PROPUESTA POR CONAE

Propietario:				_	_	Fecha de inspec	ción:	-		
Planta:						Inspeccionada p				
Ubicación:			-			Torre marca :				
	re por el usuario :		-			Fecha de instala	ición:			
	niento de agua :					Fabricante y mo				
Temp	o (GPM): o. Agua Fría (°F):			Ter	mp. l	Agua Caliente (°F) Bulbo Húmedo (°I		<u> </u>		
	ctual: 1. Bueno. 2. Re		iae a	la cc	Murc	non actual				
	3. Mal		1	2	3			1	2	3
D. t. store ovter	•		┼			Eina magánia		1		<u> </u>
Estructura exter 1. Paredes ex	ior : xteriores y puertas de a		┼	Т	Τ	Equipo mecánico 21. Flecha de tr		+	-	
1. Pareues Ca	steriores y puertas de a	icceso.			į	(tipo):	ansimsion			
2. Persianas (m	aterial) :		+	 		22. Reductor de	velocidad:	+		
· · · · · · · · · · · · · · · · · · ·	rsianas y paredes :		+	 		Serie rel. v		\top		1
	acceso al piso del vent.	:	1			Nivel de ac		1		
5. Piso del vent			1			Sellos de ac		1		
	piso del ventilador :		1			Ventila:		1		
7. Barandales:	*		1				lecha piñón:	1		
8. Escaleras y p			†				lecha vent.:	1		
9. Sistema de d			†				oio de aceite:	<u> </u>		
Cabezales			<u> </u>			Aceite u		<u> </u>	_	
	de control de flujo :					23. Ventilador:		<u> </u>	_	
	(medida) :					Diámetro		T_	_	
	ocío y toberas:					Maza :		T_		$\Gamma_{\underline{}}$
11. Cilindro del	•					Aspas :		T		
ESTRUCTURA INTERIOR:				_		•	de la maza :	T		
12. Relleno (tipo					$\prod_{i=1}^{n}$		on (Si/No):	Τ	_	_
13 Columnas :						Componentes ad	icionales:	Τ	Γ_	Γ_
14. Mallas:						Guarda fleo		T		Γ_
15. Diagonales	:					Líneas y niv		T		
16. Particiones y	y puertas :					Switch de v		T		Γ_
17. Eliminadore	es (tipo, material):					Otros:		Τ		Γ_
18. Pasillo :						24. Motor (Marc		\top		
	agua fría (tipo) :						Datos de Placa HP/RPM:		_	_
20. Soporte del equipo mecánico (tipo) :						_Fases/Ciclos/Vo	olts :	L	_	_
<u> </u>						Amperes/Carca	za :			
		Partes de	remp	plazo	reqi	ueridas :				
Cantidad:		Descripe	ción	ción:			Fecha Req	uerida	ι:	
										_

Trabajos de mantenimiento requeridos:					
DESCRIPCIÓN :	NOTAS :				

Características original / Actual de diseño					
Marca y tipo :					
Modelo:					
	Unidades	Celdas	Celdas		
		originales	Adicionales		
Flujo circulante total:	[GPM]				
Flujo por celda:	[GPM]				
Temperatura agua caliente:	[°F]				
Temperatura agua fría:	[°F]				
Temperatura bulbo húmedo:	[°F]				
Rango de enfriamiento:	[°F]				
Aproximación :	[°F]				
Carga estática:					
BHP ventiladores:	HP				
Pérdida de evaporación:	%				
Pérdida por arrastre :	%				
Elevación sobre el nivel del mar :	ft				
Exposición de la torre :					
Valor característico de torre (Kav/L) :	-				
Relación de flujo de agua /aire (L/G) :	lb _{agua} /lb _{aire}				

Detalles estructurales :				
No. de celdas :				
Ventilador por celda :				
No. total de ventiladores :				
Dimensiones (I x w x h) totales :	[ft]			
Relleno (l x w x h) (por celda) :	[ft]			
Altura chimenea :	[ft]			