

Vniver4dad Nacional AvFnºma de Mexico

PROGRAMA DE MAESTRÍA Y DOCTORADO EN INGENIERÍA

INSTITUTO DE INGENIERÍA

VALIDACIÓN DE UN MODELO CONTINUO SIMPLIFICADO Y ESTUDIO PARAMÉTRICO DE EDIFICIOS INSTRUMENTADOS EN LA CIUDAD DE MÉXICO Y CALIFORNIA SUJETOS A SISMOS

TESIS

QUE PARA OPTAR POR EL GRADO DE:

MAESTRA EN INGENIERÍA

INGENIERÍA CIVIL – ESTRUCTURAS P R E S E N T A :

JULIANA MOSQUERA RIVERA

TUTOR: Dr. EDUARDO REINOSO ANGULO

2007

Universidad Nacional Autónoma de México

UNAM – Dirección General de Bibliotecas Tesis Digitales Restricciones de uso

DERECHOS RESERVADOS © PROHIBIDA SU REPRODUCCIÓN TOTAL O PARCIAL

Todo el material contenido en esta tesis esta protegido por la Ley Federal del Derecho de Autor (LFDA) de los Estados Unidos Mexicanos (México).

El uso de imágenes, fragmentos de videos, y demás material que sea objeto de protección de los derechos de autor, será exclusivamente para fines educativos e informativos y deberá citar la fuente donde la obtuvo mencionando el autor o autores. Cualquier uso distinto como el lucro, reproducción, edición o modificación, será perseguido y sancionado por el respectivo titular de los Derechos de Autor.

JURADO ASIGNADO:

Presidente:	DR. LUIS ESTEVA MARABOTO
Secretario:	DR. FRANCISCO SÁNCHEZ SESMA
Vocal:	DR. EDUARDO REINOSO ANGULO
1 ^{er.} Suplente:	DR. DAVID MURIÀ VILA
2 ^{do.} Suplente:	DR. MARIO ORDAZ SCHROEDER

Lugar donde se realizó la tesis:

INSTITUTO DE INGENIERÍA, UNAM.

TUTOR DE TESIS:

Dr. EDUARDO REINOSO ANGULO

AGRADECIMIENTOS

En estos dos años y un poco más que estuve en México estuve acompañada por personas que hicieron de ésta, una inolvidable experiencia. Quiero agradecerle a todas las personas que me acompañaron en este periodo de formación académica y personal, en especial a:

- Dr. Eduardo Reinoso, por brindarme su apoyo y confianza desde el comienzo, además de las oportunidades para ampliar mis conocimientos y complementar mi formación como profesional.
- Dr. Eduardo Miranda, por su valiosa contribución a este trabajo.
- Los integrantes del jurado: Dr. Luis Esteva, Dr. Francisco Sánchez, Dr. David Murià y Dr. Mario Ordaz, por sus comentarios y sugerencias a esta tesis, además de sus enseñanzas en las materias a las que tuve la oportunidad de asistir.
- Mi familia, por haberme acompañado y apoyado desde lejos. Mi motivación fue volver a tenerlos cerca.
- La Casa del Ritmo: Alejandro Cadena, Carlos Echeverri, Juan Carlos Orozco y Alejandro Garcés, por tantos momentos felices, tristes y comunes y corrientes, pero sobre todo, bien compartidos. Fueron mi casa lejos de casa.
- Mis amigos colombianos: Juliana Zapata, Sergio Hernández, César Arredondo, Catalina Cardona y Germán Rivillas, por su constante compañía y apoyo en todo momento, por cuidarme y ayudarme a estar feliz.
- Mis amigos y compañeros de maestría: Mauricio Zenteno, Luciano Fernández, Eric Vásquez, Iván León y Antonio Taveras, por su alegría, confianza, compañía y ayuda dentro y fuera de clases.
- La UNAM y el Instituto de Ingeniería, por haberme dado la gran oportunidad de estudiar y pertenecer a tan prestigiosas instituciones.

ÍNDICE

RESUMEN	1
ABSTRACT	2
INTRODUCCIÓN	3
CAPÍTULO 1: MODELO MATEMÁTICO	
1.1 Modelo continuo simplificado1.2 Metodología para la identificación de sistemas	4 7
CAPÍTULO 2: ESTUDIO PARAMÉTRICO EN MÉXICO	
 2.1 Sismos empleados 2.2 Edificio PC 2.3 Edificio JAL 2.4 Edificio MJ 2.5 Edificio IMSS 2.6 Edificio IMP 2.7 Edificio SEC3 	12 14 22 28 33 37 41
CAPÍTULO 3: ESTUDIO PARAMÉTRICO EN CALIFORNIA	
3.1 Sismos empleados3.2 Estudio con registro en la base3.3 Estudio con registro de campo libre3.4 Filtrado de señal de campo libre	45 46 56 61
CAPÍTULO 4: ESTUDIO DE VARIACIÓN DEL PERIODO	
4.1 Variación del periodo fundamental4.2 Estimación del periodo fundamental	65 68
CONCLUSIONES	75
ANEXOS	
Anexo A: Edificio PC Anexo B: Edificio JAL Anexo C: Edificio MJ Anexo D: Edificio IMSS Anexo E: Edificio IMP Anexo F: Edificio SEC3 Anexo G: Edificios de California	78 121 159 180 195 248 263
REFERENCIAS	420

RESUMEN

Se presenta la validación del modelo continuo simplificado de Miranda y Taghavi (2005) empleando registros sísmicos obtenidos en 5 edificios instrumentados en la ciudad de México y 20 en el estado de California, Estados Unidos. A diferencia del uso de un sistema de un grado de libertad, con este modelo se logra calcular la respuesta del edificio, ya sea en aceleración o desplazamiento, en diferentes niveles del sistema continuo con tan solo definir tres parámetros: periodo fundamental del edificio, coeficiente de amortiguamiento, y un parámetro adimensional, alfa, que define el grado de participación de las deformaciones a cortante y a flexión en la deformada lateral total del edificio.

Debido al gran número de registros sísmicos en los edificios mexicanos, se presenta un análisis de la variación de sus propiedades en el tiempo y debido a las diferentes intensidades de los movimientos a los que han sido sujetos. En el caso de los edificios de California, donde se tiene un gran número instrumentados, éstos sólo han registrado uno, dos o a lo sumo tres sismos. Con los parámetros obtenidos de la identificación de sistemas se muestra el cambio en las propiedades dinámicas con respecto a la altura y al sistema estructural. La validación también fue hecha empleando registros de campo libre junto a los edificios de California para estudiar el cambio en los parámetros del periodo y fracción de amortiguamiento.

Se muestran las expresiones obtenidas para estimar el periodo de los edificios de concreto estudiados con el modelo continuo, a partir del número de pisos y de su altura en metros. También se presenta la variación del periodo con respecto a la distorsión promedio. Después de haber validado el modelo se proponen algunos usos adicionales que se le pueden dar además del estudio paramétrico de edificios.

ABSTRACT

A validation is presented of the continuum simplified model proposed by Miranda and Taghavi (2005) using seismic recordings obtained from 5 instrumented buildings in Mexico City and 20 in the state of California, USA. As opposed to when using a single degree of freedom system, with this model it is possible to compute the building's response, in acceleration or displacement, in different levels of the continuous system by defining only three parameters: fundamental period of the building, critical damping coefficient, and a non-dimensional parameter, alpha, which defines the degree of participation in the lateral deformed shape of the building of shear and flexural deformations.

Due to the large number of seismic recordings in the Mexican buildings, an analysis of the variation of their properties in time is presented, due to the different intensities of the motions they have been subjected to. In the case of the Californian buildings, where a large number of them are instrumented, they have only recorded one, two, or maximum three earthquakes since their instrumentation. Using the parameters obtained from the system identification, the variation in the dynamic properties with respect to their height and structural system is shown. The validation was also made using free-field recordings which were close to the buildings in California to study the change in the parameters of the building like its period and damping coefficient.

The expressions obtained to estimate the period of the concrete buildings which were analyzed with this model in function of the number of stories and the total height in meters are shown. The variation of the fundamental period with respect to the average drift is also presented. After validating the model, some additional uses for it, besides a parametric study, are proposed.

INTRODUCCIÓN

Los daños en edificios después de un sismo pueden ser de tipo estructural y no estructural. El primer tipo de daño es el que tratamos de evitar en mayor medida, o por lo menos de controlarlo para que se dé en los lugares y de la manera que menos afecte la integridad de la estructura y sobre todo la de sus ocupantes; estos daños son provocados por la distorsión o desplazamiento relativo en los elementos estructurales (vigas, columnas, losas, muros) y no estructurales (plafones, ventanas, cancelería, etc.). El segundo tipo de daño puede ser más fácil de notar y puede provocar cuantiosas pérdidas ya que incluye los contenidos de los edificios tales como equipos, objetos de decoración y muebles entre otros; este daño lo provocan las aceleraciones, velocidades y desplazamientos generados durante el sismo.

Debido a esto es importante poder estimar los niveles de aceleración, velocidad y desplazamiento en edificios existentes y futuros para tener la capacidad de tomar medidas en cuanto a los daños que se pueden presentar. No sólo es útil estimar estos valores en la base y en la azotea del edificio, sino también en los diferentes pisos del mismo para garantizar la comodidad de los ocupantes durante condiciones de servicio y poder evitar daños durante eventos sísmicos.

El modelo continuo simplificado a validar en este trabajo es una respuesta a esta necesidad, ya que permite estimar las aceleraciones en los niveles extremos (base y azotea) y en cuantos niveles intermedios se desee en una estructura, de una manera rápida y sencilla. Éste combina el comportamiento de una viga de corte y otra de flexión para representar todo tipo de estructuras y estimar la respuesta según el sistema estructural. Aunque muchos autores como Newmark, Jennings, Iwan y Rosenblueth entre otros, han empleado vigas de corte o de flexión en sus trabajos para estimar deformaciones, fuerzas cortantes y/o momentos de volteo, el comportamiento de todas las estructuras no se pueden describir adecuadamente con sólo alguno de estos dos modelos. Una ventaja de este modelo continuo es que permite cualquier combinación de corte y flexión para lograr definir los sistemas intermedios entre marcos resistentes a momento y muros de corte. Además se pueden incorporar tantos grados de libertad como se desee sin mucho esfuerzo computacional y de una manera rápida puede calcular las historias de aceleración en cualquier nivel o niveles del sistema.

Aunque modelos detallados y análisis dinámicos paso a paso pueden arrojar muy buenas estimaciones de la respuesta máxima de un edificio sometido a un sismo determinado, no es práctico emplearlos en una fase preliminar de un diseño o cuando se quieren estudiar varios edificios existentes, ya que toma mucho tiempo. Validando este modelo con registros sísmicos obtenidos en diferentes pisos de una estructura se puede ver qué tan aproximadas están las respuestas calculadas a las registradas y así obtener un rango de condiciones bajo las cuales se puede emplear de manera confiable. Aún así, este modelo no reemplaza los análisis más detallados que se deben llevar a cabo en etapas más avanzadas de un proyecto o cuando sólo se quiere estudiar a fondo las propiedades de un edificio existente.

Una vez validado el modelo que estima las demandas de aceleración en los niveles deseados de un edificio, se le puede dar múltiples usos modificándolo de manera tal que pueda entregar otras respuestas calculadas a partir de la aceleración, tales como historias de velocidades, desplazamientos, distorsiones, fuerzas cortantes y momentos de volteo. Tal como se muestra en este trabajo, los resultados obtenidos de la validación pueden servir para un análisis paramétrico de edificios instrumentados y a su vez, los rangos de valores inferidos a partir de este análisis pueden dar pie a estudios estadísticos de la respuesta de una estructura.

CAPÍTULO 1: MODELO MATEMÁTICO

1.1 Modelo continuo simplificado

Para la identificación de sistemas se utilizó un método paramétrico utilizando el modelo propuesto por Miranda y Taghavi (2005) para obtener la respuesta dinámica de un sistema de varios grados de libertad, el cual se encuentra traducido al español en el presente capítulo. El modelo consiste en la combinación de una viga de flexión con una viga de corte, unidas por elementos biarticulados axialmente rígidos, garantizando que a lo largo del sistema la deformación lateral sea la misma en ambas vigas.

Figura 1.1.1. Modelo continuo simplificado para estimar las propiedades dinámicas de un edificio.

Miranda y Taghavi mostraron que aunque la rigidez lateral de los edificios comúnmente disminuye con la altura, muchas de las propiedades dinámicas de la estructura no se ven fuertemente influenciadas y es posible obtener estimaciones relativamente buenas de la respuesta de edificios con comportamiento elástico o prácticamente elástico a partir de las propiedades dinámicas del modelo continuo con rigidez uniforme. Lo mismo se pudo concluir acerca de la variación de la masa en la altura del edificio, por lo que ambas distribuciones se consideran uniformes en el modelo simplificado.

La respuesta del sistema continuo a una excitación horizontal en su base estará dada entonces por la ecuación diferencial parcial:

$$\rho(x)\frac{\partial^2 u(x,t)}{\partial t^2} + c(x)\frac{\partial u(x,t)}{\partial t} + \frac{1}{H^4}\frac{\partial^2}{\partial x^2}\left(EI(x)\frac{\partial^2 u(x,t)}{\partial x^2}\right) -\frac{1}{H^2}\frac{\partial}{\partial x}\left(GA(x)\frac{\partial u(x,t)}{\partial x}\right) = -\rho(x)\frac{\partial^2 u_g(t)}{\partial t^2}$$
(1.1.1)

en donde $\rho(x)$ es la masa por unidad de longitud en el modelo, u(x,t) es el desplazamiento lateral en el momento t del nivel ubicado a una altura adimensional x (relación entre la altura del piso desde el nivel del terreno y la altura total del edificio), c(x) es el coeficiente de amortiguamiento por unidad de longitud, H es la altura total del edificio, EI(x) es la rigidez a

flexión en la altura del edificio, GA(x) es la rigidez a cortante del sistema y $u_g(t)$ es el desplazamiento de la base del edificio en el instante *t*.

Figura 1.1.2. Deformada lateral correspondiente a a) flexión pura ($\alpha = 0$), b) cortante puro ($\alpha \rightarrow \infty$) y c) combinación de flexión y cortante ($0 < \alpha < \infty$).

Para simplificar el modelo, se hacen las siguientes suposiciones: 1) la masa por unidad de longitud es constante e igual a ρ , 2) el coeficiente de amortiguamiento también es constante en la altura y el tiempo, e igual a c, 3) las distribuciones de rigidez a flexión y a cortante se pueden redefinir como el producto entre la rigidez en la base del edificio por una función adimensional S(x) que describe la variación de la rigidez con la altura. Como se mencionó antes, al considerar la rigidez constante en todo el edificio, S(x) es igual a la unidad, simplificando las rigideces de la siguiente manera:

$$EI(x) = EI_0 S(x) = EI_0$$
(1.1.2)

У

$$GA(x) = GA_0 S(x) = GA_0$$
 (1.1.3)

Al incluir estas suposiciones en la ecuación diferencial de la respuesta del sistema, se obtiene:

$$\rho \frac{\partial^2 u(x,t)}{\partial t^2} + c \frac{\partial u(x,t)}{\partial t} + \frac{EI_0}{H^4} \frac{\partial^2}{\partial x^2} \left(\frac{\partial^2 u(x,t)}{\partial x^2} \right) - \frac{GA_0}{H^2} \frac{\partial}{\partial x} \left(\frac{\partial u(x,t)}{\partial x} \right) = -\rho \frac{\partial^2 u_g(t)}{\partial t^2}$$
(1.1.4)

Al dividir la ecuación 1.4 entre EI_0 resulta:

$$\frac{\rho}{EI_{0}} \frac{\partial^{2} u(x,t)}{\partial t^{2}} + \frac{c}{EI_{0}} \frac{\partial u(x,t)}{\partial t} + \frac{1}{H^{4}} \frac{\partial^{2}}{\partial x^{2}} \left(\frac{\partial^{2} u(x,t)}{\partial x^{2}} \right) - \frac{GA_{0}}{EI_{0}H^{2}} \frac{\partial}{\partial x} \left(\frac{\partial u(x,t)}{\partial x} \right) = -\frac{\rho}{EI_{0}} \frac{\partial^{2} u_{g}(t)}{\partial t^{2}}$$
(1.1.5)

Aquí se define el parámetro adimensional α , el cual controla el grado de participación de las deformaciones a cortante y a flexión del sistema en la respuesta total, es decir, controla la forma de la deformación lateral del edificio. La definición matemática está dada por:

$$\alpha = H \left(\frac{GA_0}{EI_0}\right)^{1/2} \tag{1.1.6}$$

Un valor de $\alpha = 0$ representa una deformación de flexión pura y un valor de $\alpha \rightarrow \infty$ define una deformación de corte pura. Valores intermedios de este parámetro combina en diferentes proporciones ambos comportamientos. Para calibrar los valores de α que se ajustan a los sistemas estructurales utilizados en la práctica profesional, Miranda y Reyes (2002), estudiaron la influencia de la relación de rigidez lateral sobre la demanda de deformaciones a nivel de azotea y sobre la historia de distorsiones de entrepiso, en edificios cuya respuesta era regida principalmente por el primer modo de vibración. En edificios en los que el sistema estructural se basa exclusivamente en muros de corte, los valores obtenidos para α están entre 0 y 2. Para estructuras con sistemas duales, es decir, a base de marcos y muros de corte o marcos con arriostramiento, se obtuvieron valores de α entre 1.5 y 6. Los edificios cuyo sistema estructural se basa en marcos resistentes a momento, el rango de valores para α está entre 5 y 20. Debido a que aumentar el valor de α por encima de 30 no produce una diferencia notable en la deformación lateral del modelo, éste es el valor límite con el que se trabaja.

Al reemplazar la expresión 1.1.6 en la 1.1.5 se obtiene la ecuación diferencial que resuelve el modelo:

$$\frac{\rho}{EI_0} \frac{\partial^2 u(x,t)}{\partial t^2} + \frac{c}{EI_0} \frac{\partial u(x,t)}{\partial t} + \frac{1}{H^4} \frac{\partial^2}{\partial x^2} \left(\frac{\partial^2 u(x,t)}{\partial x^2} \right) - \frac{\alpha^2}{H^4} \frac{\partial}{\partial x} \left(\frac{\partial u(x,t)}{\partial x} \right) = -\frac{\rho}{EI_0} \frac{\partial^2 u_g(t)}{\partial t^2}$$
(1.1.7)

Tratándose de un sistema elástico, es posible calcular la respuesta total del modelo simplificado como la superposición de las respuestas para todos sus modos de vibración. Por lo tanto, el desplazamiento del modelo de la figura 1.1.1 a una altura adimensional x, en el instante t, será una combinación lineal de todas sus respuestas modales:

$$u(x,t) = \sum_{i=1}^{\infty} u_i(x,t)$$
(1.1.8)

Siendo $u_i(x,t)$ la respuesta de desplazamiento correspondiente al modo de vibrar *i*, ésta se define como:

$$u_i(x,t) = \Gamma_i \phi_i(x) D_i(t) \tag{1.1.9}$$

donde Γ_i es el factor de participación del modo *i*, $\phi_i(x)$ es la amplitud de la forma modal de vibración a la altura adimensional *x*, y $D_i(t)$ es el desplazamiento de un sistema de un grado de libertad sujeto al movimiento ingresado en su base.

La aceleración absoluta del modelo simplificado, en la posición *j* sobre la altura de éste, está dada entonces por la suma de la aceleración del terreno y la aceleración de los primeros *m* modos de vibración:

$$\mathcal{U}_{cj}(x,t) \cong \mathcal{U}_{g}(t) + \sum_{i=1}^{m} \Gamma_{i} \phi_{ij}(x) \tilde{D}_{ij}(t)$$
(1.1.10)

Al usar un infinito número de modos de vibración, la respuesta calculada se asemejaría en gran medida a la respuesta real del modelo continuo, sin embargo en estudios realizados por Taghavi y Miranda (2005) se ha visto que con tan sólo 3 modos de vibración se puede obtener una buena aproximación a las respuestas medidas en edificios instrumentados. En el programa utilizado para la identificación de sistemas (SystemID) se emplean los primeros 6 modos de vibración.

Al programar estas ecuaciones, los tres parámetros de entrada que definen el modelo son: el periodo fundamental de vibración (*T*), la fracción de amortiguamiento crítico (ξ) y el coeficiente adimensional α . El proceso de identificación de sistemas consiste en variar estos tres parámetros de manera tal que se minimice la función objetivo dada por:

$$Z = \sqrt{\sum_{j=1}^{NS} \int_{0}^{t_{j}} [u_{j}(t) - u_{cj}(t)]^{2} dt}$$
(1.1.11)

En donde $u_j(t)$ es la aceleración registrada en el instante *t* por el sensor *j*, $u_{cj}(t)$ es la aceleración calculada para el mismo instante en la misma posición del sensor *j*, NS es el número de instrumentos que se están utilizando y *tf* es la duración del registro. Esto equivale a minimizar el error en toda la duración del evento y en todos los pisos instrumentados, por el método de mínimos cuadrados.

1.2 Metodología para la identificación de sistemas

La herramienta que se utilizó para realizar el estudio paramétrico fue el programa SystemID, elaborado por Reinoso y Miranda, en dos versiones distintas. La versión 1.8 fue empleada para el estudio de los edificios instrumentados ubicados en ciudad de México y la versión 1.9 fue empleada para el estudio de los edificios californianos. Las versiones difieren en la manera en que leen los registros sísmicos, ya que las bases de datos de donde se obtienen dichos registros tienen formatos diferentes, y en que la segunda versión también calcula historias de desplazamiento relativo.

El primer grupo de información que pide el programa son características generales de la estructura tales como su ubicación (ciudad), uso (comercial, oficinas, hospital, colegio, bodega, residencial), tipo de estructura (marcos en concreto reforzado, marcos en acero, muros de cortante, marcos de concreto reforzado con contraventeos, marcos de concreto reforzado con muros de relleno) y el sismo estudiado. Esta información es de carácter informativo y no influye en la manera cómo el programa calcula los resultados.

El siguiente bloque de información tiene que ver con el formato que se va a leer. La versión 1.8 trae activa la opción de entrar el formato de la SMIS (Sociedad Mexicana de Ingeniería Sísmica), el cual es una sola columna de aceleraciones, y como dato se debe entrar el valor del intervalo de muestreo en la casilla que aparece al lado. En la versión 1.9 está activa la opción del CSMIP (*California Strong Motion Instrumentation Program*), cuyo formato consiste en 45 líneas de texto con información del sismo y de la estación de registro (las cuales no se leen), luego trae los bloques de aceleración, velocidad y desplazamiento, cada uno con un encabezado el cual define el número de datos y el intervalo de muestreo, seguido por los datos respectivos distribuidos en 8 columnas. En la casilla que se encuentra a la derecha de la opción CSMIP se ingresa el código de la estación para que aparezca en el archivo de salida del programa.

En el bloque de Componente se define la dirección del sismo estudiado, ya sea norte-sur (NS) o este-oeste (EW). En los casos en los que los instrumentos no estaban orientados exactamente en estas direcciones, se definió la dirección más cercana al norte-sur como la componente NS y la dirección más cercana al este-oeste como la EW.

Los siguientes datos definen el número de pisos sobre el nivel del terreno del edificio y el número de niveles instrumentados que se tienen. Se asume que la base y la azotea del edificio tienen instrumentos, por lo cual después de haber definido el número de niveles instrumentados, sólo aparecen unas casillas adicionales para establecer los pisos intermedios, cuando hay más de dos niveles instrumentados. En este caso, las casillas de la izquierda son para identificar el nivel instrumentado y en las casillas de la derecha se define la relación entre la altura en la que está ubicado el instrumento y la altura total del edificio (0 < z/H < 1). Una vez se ingresan estos datos aparecen los recuadros en blanco en donde se cargan los registros de cada nivel. En el primer nivel, de abajo hacia arriba, se carga el registro en la base del edificio o de campo libre, según el caso que se esté considerando.

Figura 1.2.1. Pantalla de entrada de datos para el programa SystemIDv1.9, utilizando el ejemplo del edificio de oficinas de 7 pisos en Long Beach, California.

Teniendo las historias de aceleración registradas en los recuadros, aparecen a la derecha de cada nivel los espectros de piso correspondientes, y en la parte superior aparece una gráfica de las amplificaciones máximas de la aceleración en cada nivel con respecto a la máxima registrada en la base. Adicionalmente se activan dos opciones para la obtención de los parámetros T, ξ y α . En la versión 1.8 del SystemID sólo funciona la opción manual, pero en la versión 1.9 se pueden obtener los parámetros de forma manual o automática.

En el modo manual se busca reproducir las historias de aceleración registradas (en color rojo) proponiendo valores para T, $\xi y \alpha$, por medio de prueba y error, hasta que las historias de aceleración, espectros de piso y amplificaciones de aceleración (en color azul) se asemejen en mayor grado. El primer parámetro que se fija es el periodo ya que es el que se puede identificar de manera más sencilla por la ubicación de los picos en los espectros de piso. Para acercarse más al periodo aproximado de la estructura se verifica que las historias de aceleración registradas y calculadas se asemejen en la mayoría de la duración del registro. Una vez que se tiene el periodo definido, se procede a fijar los valores de la fracción de amortiguamiento crítico ξy de α , de manera que las amplitudes de las aceleraciones sean aproximadamente iguales y que la forma de las amplificaciones de la aceleración coincida con las amplificaciones registradas.

En el modo automático se calculan los tres parámetros minimizando la ecuación 1.1.11, pero en ocasiones no entrega los valores que mejor reproducen las historias de aceleración, los espectros de piso y las amplificaciones, y puede dar resultados incoherentes para el periodo y el amortiguamiento. Por lo tanto, la selección de los parámetros es un proceso más visual que matemático, donde se modifican los parámetros de entrada hasta obtener los mejores cálculos posibles.

Una vez que se tienen los tres valores definidos se procede a imprimir los resultados en un libro de Excel, en donde se tiene toda la información registrada y calculada de manera numérica y gráfica.

Figura 1.2.2. Pantalla del SystemIDv1.9 con resultados registrados y calculados para el edificio de oficinas de 7 pisos en Long Beach, California.

Se elaboró un catálogo con los resultados obtenidos para los edificios estudiados en cada sismo. En los anexos A – F que se encuentran en el CD adjunto se incluyen los edificios mexicanos, donde se muestra la hoja del libro de Excel que contiene la misma información que la pantalla del programa (figura 1.2.2), además de una foto y un esquema del edificio. El anexo G, incluye el catálogo de los edificios de California en donde para cada sismo estudiado en el edificio, se muestra la hoja con las historias de aceleración, espectros de piso y amplificaciones, y otra con las historias de desplazamiento relativo con respecto a la base. Las siguientes dos figuras muestran la información del catálogo obtenida para el sismo de Whittier en el edificio de oficinas de 7 pisos, en Long Beach, California, como muestra del formato que se maneja.

Figura 1.2.3. Página 1 de la identificación de sistemas para el edificio de 7 pisos de oficinas en Long Beach, California.

Figura 1.2.4. Página 2 de la identificación de sistemas para el edificio de 7 pisos de oficinas en Long Beach, California.

CAPÍTULO 2: ESTUDIO PARAMÉTRICO EN MÉXICO

2.1 Sismos empleados

La identificación de sistemas en los edificios instrumentados de la ciudad de México se hizo para un conjunto de sismos seleccionados de la Base Mexicana de Datos de Sismos Fuertes. Los 6 edificios con los cuales se trabajó se encuentran descritos detalladamente más adelante en el capítulo 2 y están identificados con los siguientes códigos: IMP, MJ, SEC3, JAL, PC e IMSS. Debido a que cada edificio cuenta con un amplio número de sismos registrados, no se utilizaron todos, sino que se escogieron algunos eventos logrando así incluir sismos de diferentes magnitudes, intensidades y orígenes que permitieran estudiar las propiedades dinámicas de los edificios ante excitaciones con características diferentes.

Figura 2.1.1. Amplificaciones de la aceleración en la azotea con respecto a la aceleración máxima en la base.

En la figura 2.1.1 se muestran los eventos elegidos para el análisis en cada uno de los edificios. Como medida de intensidad de los sismos, se tomó la aceleración pico en la base de la estructura (PBA, siglas en inglés de *peak base acceleration*) y se comparó con la amplificación de ésta en el nivel de azotea PFA/PBA (PFA, siglas en inglés de *peak floor acceleration*). Se tomaron sismos que cubrieran el rango de aceleraciones registradas y que produjeron amplificaciones diferentes.

Los casos extremos o que estuvieran lejos de una tendencia general se omitieron debido a que podrían ser problemas puntuales, como por ejemplo amplificaciones muy grandes de aceleraciones muy pequeñas en las que los registros están escalonados y no representan una historia real de aceleraciones.

En cada edificio, los instrumentos tienen una orientación con respecto al Norte diferente, pero están alineados con las direcciones longitudinal y transversal de los edificios dependiendo de su geometría. En general, la dirección longitudinal se refiere a la dirección más larga de la planta del edificio, y la transversal a la dirección más corta. En la figura 2.1.1, los eventos identificados con un triángulo representan los datos en el sentido longitudinal y los cuadrados representan los del sentido transversal de la estructura. Las figuras grandes y sin relleno son los eventos incluidos en el análisis, mientras que las figuras pequeñas y rellenas son los eventos que no se tomaron en cuenta para éste. En el caso del edificio IMSS dónde sólo se tienen registros de 4 sismos, todos se consideraron. La tabla 2.1.1 contiene los datos correspondientes a los sismos utilizados para cada edificio.

Sieme	N.A.	Distancia a	Profundidad	Origon	Edificios en la ciudad de México						
3151110	IVIW	D.F. [km]	[km]	Ongen	JAL	PC	IMP	IMSS	SEC3	MJ	
14/01/91	5.0	381	25	Sub							
24/11/91	4.8	382	<5	Normal o Intra							
07/06/92	4.8	358	5	Sub						\checkmark	
28/06/92	7.4	2500	1	Normal o Intra							
11/03/93	5.3	309	12	Sub							
15/05/93	5.9	330	15	Sub						\checkmark	
29/07/93	5.0	279	43	Normal							
24/10/93	6.6	320	19	Sub							
23/02/94	5.4	269	5	Normal							
23/05/94	5.6	219	23	Normal							
10/12/94	6.3	307	20	Normal					\checkmark		
14/09/95	7.2	346	22	Sub							
09/10/95	7.3	585	5	Sub						\checkmark	
21/10/95	6.2	648	98	Normal							
15/07/96	6.5	312	20	Sub						\checkmark	
11/01/97	7.1	453	35	Normal						\checkmark	
21/01/97	5.0	346	18	Sub					\checkmark		
08/05/97	5.0	271	12	Sub							
22/05/97	6.0	313	59	Normal						\checkmark	
16/12/97	5.5	409	16	Sub							
22/12/97	5.0	340	5	Sub							
03/02/98	6.2	503	33	Normal					\checkmark		
20/04/98	5.4	254	66	Normal					\checkmark	\checkmark	
11/07/98	4.7	355	5	Sub							
15/06/99	7.0	214	61	Normal					\checkmark	\checkmark	
21/06/99	6.3	324	54	Normal							
30/09/99	7.4	447	47	Normal					\checkmark		
21/07/00	5.9	148	48	Normal							
09/08/00	7.0	412	16	Sub							
08/10/01	6.1	294	16	Normal							
22/01/03	7.6	551	9	Sub							

Tabla 2.1.1. Sismos seleccionados para el análisis de los
edificios instrumentados en la ciudad de México.

Cabe anotar que el sismo registrado en el edificio PC el 28 de junio de 1992, tiene los datos de origen y magnitud correspondientes al sismo de Landers, en California. Por su gran distancia desde la fuente hasta el edificio, se piensa que pudo haber sido algún otro movimiento de origen local que provocó aceleraciones de baja amplitud (menores a 1 cm/s² en todos los instrumentos de la base), y que por haber coincidido con la fecha del sismo en California, se lo atribuyeron a éste. Sin embargo, se hizo la identificación de sistemas para este movimiento ya que se tenían historias de aceleración aceptables en todos los niveles.

Los eventos registrados en los edificios tienen fuentes u orígenes diferentes. De los 31 eventos, 16 son de subducción, 13 son de falla normal y en 2 de ellos no se tiene definido si son de falla normal o intraplaca. En la figura 2.1.2 se muestra la ubicación de los focos de los eventos estudiados. Los sismos de subducción se producen cuando la placa oceánica desciende por debajo de la placa continental, en este caso. También se pueden dar sismos de subducción cuando una placa oceánica se hunde por debajo de otra oceánica, pero en el caso mexicano la placa oceánica de Cocos es la que subduce a la placa continental de Norte América. Los sismos de subducción son los que liberan mayor cantidad de energía y comúnmente producen los sismos de mayor magnitud en el mundo. Los focos de este tipo de fuente se encuentran a poca profundidad cuando se dan cerca de la costa, pero tierra adentro se pueden dar en profundidades intermedias a altas. Los sismos de falla normal se producen debido al desplazamiento en una superficie de falla inclinada que se encuentra sometida a esfuerzos de tensión, produciendo que el bloque superior se deslice hacia abajo con respecto al inferior. Los sismos intraplaca se deben al reacomodamiento de algunas fallas geológicas locales o a movimientos causados por choques entre placas que se dan lejos de los límites de éstas. Generalmente sus focos son superficiales.

Figura 2.1.2. Sismos utilizados en el análisis; los círculos representan sismos de subducción y los rombos representan sismos de falla normal o intraplaca.

2.2 Edificio PC

Este edificio es una estructura de concreto reforzado con 17 niveles por encima del nivel del terreno (Figura 2.2.1). Tiene una ligera irregularidad en altura con un mezanine alto, 8 niveles de estacionamiento y una torre de 12 niveles de oficinas con alturas constantes de entrepiso de 3.15 m. El sótano es un cajón rígido de concreto de 3.28 m de profundidad, formado por muros de corte,

el cual se encuentra sobre 266 pilotes de fricción de 27 m de longitud. Durante el sismo de septiembre 19 de 1985 el edificio sufrió daño estructural entre el nivel de estacionamiento y oficinas; la estructura fue reforzada con muros de corte en toda su altura, paralelos a su lado transversal. Se presenta un cambio importante en las características de la estructura entre los niveles E8 y N1.

El suelo consiste en varios estratos de arcilla volcánica, típica de la zona del lago del centro de México, de 35 m de profundidad. La velocidad de onda de corte es de 60 m/s y el periodo natural del depósito de suelo es de 2.4 s.

El arreglo de acelerómetros, instalados en 1990 por el Instituto de Ingeniería de la UNAM, consiste en 11 equipos tridimensionales: 3 en el sótano, 4 entre los niveles de estacionamiento E7 y E8, 2 en el nivel N6 de la torre y 2 más en la azotea. En 1999 se agregaron dos acelerómetros más; uno en campo libre y otro en la esquina sur del sótano. Se analizaron por separado los registros alineados de manera vertical en el centro del edificio (SC, EC, 6C, AC) y los alineados en la esquina noreste (SE, E7, E8, 6E, AE) (Alcántara et al., 1993a). Se registraron 59 sismos en el edificio desde que fue instrumentado hasta el año 2004.

Figura 2.2.1. Foto y esquema del edificio PC.

El estudio paramétrico se realizó haciendo uso de los sismos señalados en la tabla 2.2.1, aunque algunos se descartaron en una o ambas direcciones ya que los registros en algunos niveles se encontraban cortados justo en la parte intensa del movimiento. Otros sismos se omitieron del catálogo general de la identificación de sistemas debido a que la amplitud del sismo era tan pequeña (menor a 1 cm/s²), que los registros se veían escalonados en los pisos superiores, indicando que el cambio de aceleración entre cada instante era menor que su resolución. Aún así se reprodujeron los movimientos para identificar las propiedades del edifico ante excitaciones de intensidades pequeñas.

En las tablas 2.2.1 a 2.2.4 se detallan los parámetros dinámicos obtenidos de la identificación de sistemas utilizando el SystemIDv1.8 para cada sismo estudiado, introduciendo la señal registrada en la base como entrada del sistema. Se presentan los resultados para los dos arreglos verticales de instrumentos, y para ambas direcciones; el sentido longitudinal se toma en la dirección más larga del edificio y la transversal en la dirección más corta. Además se muestra la intensidad máxima de aceleración en la base de la estructura (PBA) y los niveles de amplificación de ésta en los diferentes niveles instrumentados del edificio, identificados por la relación adimensional entre la altura del entrepiso desde el nivel del terreno y la altura total del edificio, utilizando el desplazamiento total en la azotea y dividiéndolo por la altura total. Las filas sombreadas representan los sismos de subducción y las demás representan sismos de falla normal o de intraplaca.

Arreglo Cent	Arreglo Central - Longitudinal							PFA/PBA (x=z/H)			
Sismo	Μ	T _B [s]	ξ _B [%]	αΒ	PBA	x=0.32	x=0.69	x=1.0	Δ/H		
14/01/91	5.0	2.35	2.5	12	1.41	2.64	3.77	6.49	0.00021		
24/11/91	4.8	2.33	2.5	11	0.96	2.61	4.32	7.33	0.00015		
28/06/92	7.4	2.45	2.5	12	0.60	3.81	7.75	10.86	0.00019		
15/05/93	5.9	2.40	2.5	7	2.87	3.79	3.91	6.63	0.00045		
24/10/93	6.6	2.63	3.0	10	9.70	2.30	3.51	7.21	0.00159		
23/02/94	6.6	2.63	3.0	10	9.70	2.30	3.51	7.21	0.00168		
10/12/94	6.4	2.63	3.2	9	9.10	1.92	3.90	8.00	0.00173		
14/09/95	7.3	2.72	3.0	11	32.45	1.34	2.07	4.52	0.00307		
11/01/97	6.9	2.80	2.0	10	15.33	2.16	4.28	9.62	0.00339		
11/07/98	4.7	2.40	2.0	10	0.84	3.04	6.68	10.82	0.00022		
15/06/99	7.0	2.75	2.6	10	18.68	1.49	2.10	3.85	0.00178		
30/09/99	7.4	2.77	2.5	9	22.51	1.53	2.26	4.94	0.00258		
21/07/00	5.9	2.68	2.5	12	8.64	2.11	1.77	3.60	0.00056		
09/08/00	7.0	2.80	2.0	12	10.65	2.21	4.77	8.50	0.00245		
22/01/03	7.6	2.77	2.0	8	19.88	0.96	1.84	5.27	0.00253		

Tabla 2.2.1. Parámetros dinámicos y características registradas de los sismos estudiados en el arreglo central del edifico PC en el sentido longitudinal.

Tabla 2.2.2. Parámetros dinámicos y características registradas de los sismos estudiados en el arreglo central del edificio PC en el sentido transversal.

Arregro Cent	ral - Tran	sversal			PF	:/H)			
Sismo	Μ	T _B [s]	ξ _B [%]	α _B	PBA	x=0.32	x=0.69	x=1.0	Δ/H
28/06/92	7.4	2.36	3.0	4	0.63	4.74	10.75	16.13	0.00028
15/05/93	5.9	2.50	3.5	3	3.11	1.69	3.57	5.82	0.00043
24/10/93	6.6	2.68	3.5	3	13.29	1.33	1.87	4.04	0.00148
23/02/94	5.4	2.33	2.5	3.5	0.72	1.14	1.14	3.42	0.00004
10/12/94	6.4	2.70	2.0	3.65	15.21	1.10	3.05	5.42	0.00265
14/09/95	7.3	2.80	3.6	3	29.82	1.61	2.38	4.29	0.00377
11/01/97	6.9	2.82	2.5	3.65	16.53	1.68	3.59	6.29	0.00333
15/06/99	7.0	2.75	2.5	4	23.71	0.95	1.84	4.02	0.00234
30/09/99	7.4	2.83	2.0	3.5	27.66	1.07	1.90	4.33	0.00314
21/07/00	5.9	2.67	2.5	3.65	9.32	1.39	2.47	3.91	0.00083
09/08/00	7.0	2.82	2.0	3	18.11	0.80	2.19	5.14	0.00273
22/01/03	7.6	2.80	2.5	3	15.35	0.93	1.90	3.60	0.00177

Se obtuvieron buenos resultados al emplear el modelo continuo simplificado, sobre todo en las historias de aceleración. En algunas ocasiones donde no era posible reproducir las historias de aceleración, los espectros de piso y las amplificaciones de forma adecuada y simultánea, se trató de reproducir lo mejor posible las aceleraciones en el tiempo ya que los espectros registrados pueden contener información de modos de torsión, los cuales no son considerados en el modelo y por lo tanto no se pueden reproducir estos picos en los espectros. La identificación de sistemas para este edificio, correspondiente a los parámetros contenidos en las tablas anteriores, se encuentra en el Anexo A del CD adjunto.

Arreglo Nore	ste - Lon	gitudinal			PF	:/H)			
Sismo	Μ	T _B [s]	ξ _B [%]	αΒ	PBA	x=0.32	x=0.69	x=1.0	Δ/H
28/06/92	7.4	2.28	2.8	10	0.67	3.67	NR	9.61	0.00016
24/10/93	6.6	2.65	2.8	9	9.94	2.39	4.10	7.23	0.00176
10/12/94	6.4	2.50	3.8	10	9.58	1.75	4.75	9.20	0.00191
14/09/95	7.3	2.72	3.0	11	33.53	1.40	1.89	3.77	0.00500
11/01/97	6.9	2.75	2.0	9	14.49	2.78	6.12	11.31	0.00337
11/07/98	4.7	2.43	1.2	10	1.01	1.48	5.83	9.68	0.00023
15/06/99	7.0	2.74	3.0	10	19.16	1.74	1.80	4.50	0.00167
30/09/99	7.4	2.77	2.0	12	23.35	1.67	2.52	4.43	0.00275
21/07/00	5.9	2.57	3.0	12	8.58	2.33	2.01	4.34	0.00051
09/08/00	7.0	2.86	3.5	10	10.37	2.30	5.09	8.71	0.00265
22/01/03	7.6	2.76	2.5	7.5	20.57	0.88	2.31	4.10	0.00245
NR: El instrumen	ito do este n	iso no regist	ró el movim	ionto					

Tabla 2.2.3. Parámetros dinámicos y características registradas de los sismos estudiados en el arreglo noreste del edificio PC en el sentido longitudinal.

Tabla 2.2.4. Parámetros dinámicos y características registradas de los sismos estudia	dos
en el arreglo noreste del edificio PC en el sentido transversal.	

Arreglo Nore	ste - Trar	nsversal			PF	/H)			
Sismo	Μ	T _B [s]	ξ _B [%]	α _B	PBA	x=0.32	x=0.69	x=1.0	Δ/H
28/06/92	7.4	2.33	3.8	2.5	0.61	2.87	NR	10.76	0.00019
24/10/93	6.6	2.21	5.2	4	15.09	1.35	3.94	5.97	0.00184
10/12/94	6.4	2.26	5.0	4	17.24	1.92	6.78	9.84	0.00350
14/09/95	7.3	2.30	5.0	5	34.37	1.16	4.08	5.69	0.00528
11/01/97	6.9	2.32	5.5	4.5	17.96	1.73	4.67	6.29	0.00257
11/07/98	4.7	2.08	2.0	3	0.98	1.53	5.19	7.67	0.00012
15/06/99	7.0	2.42	6.0	4.5	25.99	1.53	3.69	6.38	0.00337
30/09/99	7.4	2.40	3.0	4.5	26.82	1.55	4.98	8.21	0.00443
21/07/00	5.9	2.25	6.0	5	13.47	0.96	2.35	3.41	0.00074
09/08/00	7.0	2.43	5.0	3.5	17.46	1.36	5.51	8.71	0.00370
22/01/03	7.6	2.37	4.5	3.65	17.30	1.25	3.93	5.63	0.00227
NR: El instrumen	to de este p	iso no regist	ró el movimi	iento.					

Se puede apreciar que el periodo del edificio no es el mismo para todos los sismos, e inclusive éste varía entre un arreglo y otro orientados en la misma dirección. La diferencia entre el periodo inferido a partir de los registros del arreglo central y el lateral, puede deberse a los efectos de torsión que son más pronunciados en los extremos del edificio. La variación del periodo con la intensidad del movimiento en la base del edificio se puede ver en la figura 2.2.2, en donde se ve que éste tiene un crecimiento de tipo no lineal.

Los periodos inferidos con el modelo simplificado a partir de los sismos con menores intensidades se comparan con aquellos obtenidos por otros autores (Rodríguez N., 1992; Murià et al., 2000; Arredondo, 2005) en mediciones de vibración ambiental. Se puede ver que el valor de 1.79 s en ambas direcciones, el cual fue calculado en el año 1986, es bastante menor que los valores obtenidos posteriormente en pruebas del mismo tipo y que aquellos resultantes para sismos de bajas intensidades. La diferencia entre los resultados de 1986 y 2000 pueden deberse a una pérdida de rigidez debido a los sismos que afectaron en mayor medida al edificio como fueron los de septiembre de 1995 y 1999. Entre los años 2000 y 2005, fechas de las últimas dos pruebas ambientales, no hubo ningún sismo de magnitud importante que produjera una flexibilización de la estructura. Sin embargo, se encuentran diferencias entre los datos reportados por los autores de dichas pruebas en el sentido longitudinal del edificio. Es importante mencionar que este edificio en particular tiene un muy fuerte acoplamiento de los modos de vibrar (longitudinal, transversal y torsional), lo cual dificulta en gran medida diferenciar la frecuencia fundamental de un modo a otro cuando se estudia mediante análisis espectrales debido a que se identifica una banda ancha de frecuencias en lugar de un pico definido para cada movimiento (Murià et al., 2000, Rodríguez et al., 2001). En un estudio posterior donde se analizó un modelo tridimensional del edificio con técnicas paramétricas empleando ventanas de tiempo, fue posible ver la evolución de las frecuencias de los tres modos fundamentales durante eventos sísmicos, identificando de manera confiable qué frecuencia correspondía a cada modo de vibrar (Correa y Murià, 2005). En ese trabajo se encontró que la frecuencia transversal siempre estuvo por debajo de la longitudinal (periodo transversal mayor que el longitudinal) en todas las ventanas, sugiriendo que sí existe una diferencia entre estos dos valores incluso para amplitudes pequeñas como las registradas al principio y al final de un sismo. Esto sugiere que en las mediciones de vibración ambiental de 1986 y 2005 no se logró identificar adecuadamente los valores propios de las frecuencias longitudinal y transversal.

Figura 2.2.2. Variación del periodo fundamental del edificio PC con la intensidad medida en la base para el arreglo central.

Se compararon los resultados obtenidos por Correa y Murià (2005) para el sismo de 30/09/99 con los inferidos a partir del modelo simplificado. Debido a que los autores mencionados encuentran una frecuencia para cada ventana y no un periodo invariante en el tiempo como el que se propone en esta investigación, se ubicó el valor del periodo estimado con el modelo simplificado dentro de los rangos presentados en su trabajo. Los periodos inferidos en este trabajo a partir del sismo en cuestión, fueron de 2.77 s y 2.83 s para el sentido longitudinal y transversal, respectivamente. Ambos periodos se encuentran dentro de los rangos reportados por los autores y coinciden con los periodos al inicio de la parte intensa del movimiento, mas no con el periodo máximo. Esto indica que el periodo invariante con el que se puede reproducir de manera adecuada el registro sísmico en los diferentes niveles de un edificio, empleando el modelo continuo simplificado, es aquel que ajuste mejor las fases intensas del movimiento registrado y calculado.

Las expresiones presentadas en la figura 2.2.2 de tipo logarítmico tienen coeficientes de determinación de 0.84 y 0.94 para los sentidos longitudinal y transversal, respectivamente, para el arreglo central. Aunque las expresiones no están determinadas para un valor de PBA=0, al entrar valores muy pequeños de la aceleración en la base, como aquellos presentes en una prueba de vibración ambiental, se obtienen periodos muy cercanos a los obtenidos en este tipo de pruebas.

Figura 2.2.3. Valores estimados de α para la dirección longitudinal y transversal en ambos arreglos de instrumentos.

Los valores estimados del parámetro α_B tampoco fueron constantes para todos los sismos y no se halló una tendencia que relacionara claramente este valor con algún otro dato del sismo, como la intensidad o la magnitud, como se puede observar en la figura 2.2.3. En el sentido longitudinal este parámetro varió entre 7 y 12, aunque en algunos casos en donde las amplificaciones en la azotea eran grandes, valores más pequeños de α_B podían reproducirlas mejor. El valor promedio fue de 10.21, con una desviación estándar de 1.46. Para el sentido transversal los valores estimados para α variaron entre 3 y 5, con un promedio de 3.7 y una desviación estándar de 0.77. Si bien este parámetro varió de sismo a sismo y de arreglo a arreglo, se encuentra dentro de los rangos descritos por Miranda y Reyes (2002). En su trabajo, delimitan valores pequeños de α_B para edificios a base de muros, que corresponde a la estructuración del sentido transversal del edificio PC, y delimitan valores más altos de α para edificios estructurados a base de marcos, el cual es el caso del sentido longitudinal.

Los valores estimados del coeficiente de amortiguamiento ξ_B , que reprodujeron de manera aceptable los movimientos variaron entre valores de 1.2 y 3.8 para el sentido longitudinal en ambos arreglos, arrojando un promedio de 2.6 con una variación estándar de 0.55. En el sentido transversal se tuvo una mayor dispersión de los datos con valores en el rango de 2.0 a 6.0, entregando un promedio de 3.6 y una desviación estándar de 1.4. Igual que con el parámetro α_B , no se encontró una tendencia clara que relacionara el amortiguamiento con alguna de las propiedades registradas del sismo. Se puede resaltar el hecho de que el valor promedio del amortiguamiento en ambos sentidos, se encuentra por debajo del 5.0% que comúnmente se utiliza para estructuras de concreto, y sólo se supera en pocos eventos.

Se compararon las aceleraciones máximas registradas con aquellas calculadas en cada nivel del edificio. En los dos niveles intermedios fue posible alcanzar los valores máximos en ambas direcciones, lo que no sucedió con el nivel de azotea. En este piso se observó que en el sentido transversal era posible alcanzar estas intensidades máximas con mayor facilidad que en el longitudinal. Para las aceleraciones registradas que se encontraban por encima de los 70 cm/s², no se alcanzaron estos valores probablemente debido a los efectos de torsión que por cuestiones de geometría afectan en mayor grado a la dirección más larga del edificio, y que no están

considerados en el modelo. Estos efectos tan marcados de torsión ya han sido estudiados en otros trabajos tales como Rodríguez G. et al. (2001) y Rodríguez N. (1992). Además los efectos de chicoteo en el sentido menos flexible, donde están los marcos de concreto, pueden ser más pronunciados, generando niveles de aceleración mayores.

Figura 2.2.4. Valores estimados de ξ para la dirección longitudinal y transversal en ambos arreglos de instrumentos.

Se estudiaron las amplificaciones de la aceleración registrada en ambas direcciones para encontrar en qué casos se amplificaba más la intensidad pico medida en la base del edificio. Éstas se compararon con parámetros como la magnitud del sismo, su origen, la profundidad del foco, la intensidad medida en la base del edificio y la distancia entre el sismo y la ciudad de México, sin encontrar alguna relación clara que explicara porqué unos eventos se amplificaron más que otros. Al comparar las amplificaciones con el último de estos parámetros se pudo ver una tendencia muy sutil en donde a medida que aumentaba la distancia, también lo hacía el nivel de amplificación. Sin

Figura 2.2.5. Comparación de aceleraciones registradas y calculadas en los tres niveles de piso por encima del terreno para el arreglo central (arriba) y el lateral (abajo).

Figura 2.2.6. Amplificaciones de la aceleración máxima registrada en la base del arreglo central, a lo largo de la altura del edificio

embargo la dispersión fue tan grande que no se pudo obtener una conclusión válida de esta comparación. Sin embargo se destaca que las mayores amplificaciones en ambas direcciones se dieron para intensidades pico en la base menores a 1 cm/s². Por lo tanto, una amplificación de 10 y de 16 para el sismo de 28/06/92 en el sentido longitudinal y transversal, respectivamente, no implica que el nivel de aceleraciones en la azotea haya sido desproporcionado. En la figura 2.2.6 se puede apreciar también que el sentido longitudinal del edificio presentó niveles más altos y más dispersos de amplificación que el sentido transversal, probablemente debido a los efectos de torsión mencionados previamente.

Figura 2.2.7. Contribución de modos superiores en la respuesta total del edificio durante los sismos de 15/06/99 (arriba) y 21/07/00 (abajo) en el arreglo central, sentido longitudinal.

En la mayoría de los sismos estudiados se pude ver que el edificio responde en su mayoría al primer modo de vibrar, puesto que en la mayoría de los casos los picos correspondientes a modos

superiores en los espectros de piso no tienen amplitudes importantes comparadas con la amplitud del pico del primer modo. Sin embargo, en algunos sismos de falla normal la contribución del segundo y tercer modo fue igual o más importante que la del primer modo. Esto se vio en ambas componentes durante los mismos sismos, indicando que debido a una mayor cercanía entre la fuente y el edificio, las frecuencias altas aún no se habían filtrado en su recorrido y así los modos superiores se excitaron más que con las ondas provenientes de la costa pacífica donde se originan los sismos de subducción.

2.3 Edificio JAL

El edificio es de concreto reforzado y consiste de 13 pisos sobre el nivel del terreno y un nivel subterráneo en la estructura principal. Tiene un apéndice de 3 niveles de altura que se encuentra separado del cuerpo principal por una junta constructiva de 15 cm. Los primeros tres niveles se usan como estacionamiento y el resto son pisos de oficinas. La estructura es de columnas, tiene una losa aligerada como sistema de piso y muros de mampostería de concreto en toda su altura. La losa tiene un espesor de 45 cm, donde los 5 cm superiores corresponden a la zona de compresión. Este edificio está ubicado en la zona de suelo blando de la ciudad de México, donde el suelo arcilloso tiene un espesor de 30 m y el suelo firme se encuentra a una profundidad de 38.5 m. La cimentación es un cajón de concreto de 3.30 m de altura, con una losa aligerada de 80 cm de espesor. El cajón está apoyado sobre 54 pilotes de fricción triangulares de 28 m de longitud. Además hay 10 pilotes de sección cuadrada de 26 m de longitud que no están contacto directo con el cajón en su extremo superior y se encuentra entre los otros pilotes.

Figura 2.3.1. Foto y esquema del edificio JAL.

Durante los sismos de septiembre de 1985 el edificio sufrió daños estructurales y no estructurales. Los daños sufridos por la estructura se encuentran documentados por Fuentes y Murià (2001) y Murià et al. (2001). Todas las columnas de los primeros 3 niveles presentaron grietas de más de 1 mm de grosor y las columnas de los demás niveles presentaron grietas de menor tamaño. La mayoría de los muros de mampostería se agrietó y las losas quedaron con grietas de 2 mm de espesor, indicando fluencia positiva y negativa. Esto impulsó la primer acción de refuerzo de la estructura la cual consistió en el encamisado con 20 cm de concreto reforzado de algunas columnas de los primeros niveles y todas las columnas interiores en los niveles de oficina. También se construyeron muros de concreto en los vanos extremos del sentido longitudinal.

El sismo del 10 de diciembre de 1994 causó daño no estructural moderado y pequeños daños estructurales. Los sismos que siguieron en 1995, aunque de menor magnitud e intensidad, acentuaron el daño estructural en el edificio, dando paso a otra rehabilitación. Ésta se concentró en el sentido transversal donde se construyeron vigas nuevas en los marcos extremos. Las columnas y vigas (existentes y nuevas) fueron cubiertas con placas de acero en las caras libres y además se instalaron diagonales de acero en los vanos de los bordes del edificio, también en el sentido transversal. Después de esta rehabilitación, el edificio sufrió algunos daños más con los sismos posteriores, en donde aparecieron fisuras por flexión en los elementos adicionados, algunas grietas de corte en dos columnas, y se volvieron a abrir grietas en los muros y columnas de los niveles de estacionamiento.

El edificio JAL fue instrumentado en 1992 con 14 acelerómetros, formando tres arreglos verticales (Meli et al., 1993). Once instrumentos fueron ubicados dentro del edificio, 2 más fueron situados en el terreno a profanidades de 20 y 45 m y uno más en la superficie de campo libre. El estudio paramétrico del edificio se hizo para los arreglos Este (AE, 11E, 6E y SE) y Oeste (AO, 11O, 6O y 11O). El programa de instrumentación del edificio se suspendió en el año 2002, permitiendo que en este tiempo se registraran 26 sismos.

Figura 2.3.2. Historias de aceleración y espectros de piso a nivel de azotea para los sismos 14/09/95 y 21/10/95.

El estudio paramétrico realizado con el modelo simplificado entregó buenos resultados a pesar de su evidente comportamiento no lineal durante algunos eventos. Sin embargo se encontró que para algunos casos en el sentido transversal, las historias de aceleración y espectros de piso calculados eran bastante diferentes a los registrados, y no fue posible obtener el conjunto de parámetros que definieran el sistema en esos casos particulares. La figura 2.3.2 muestra lo que se reprodujo a nivel de azotea en ambos sentidos, en el arreglo Este, para los sismos de 1995, los cuales generaron daños estructurales. Se puede apreciar cómo en el sentido longitudinal de la estructura, las aceleraciones se logran reproducir bien aunque con amplitudes menores, y los espectros de piso logran coincidir incluso en modos superiores. En el caso transversal no fue posible lograr el mismo grado de semejanza entre lo calculado y lo registrado.

Algunos sismos de intensidad muy baja en la base también se reprodujeron relativamente bien, aun cuando los registros en los diferentes niveles de entrepiso se encontraban escalonados por la presencia de aceleraciones menores a la sensibilidad de los instrumentos. La identificación de sistemas para el edificio JAL, cuyos parámetros se resumen en las tablas 2.3.1 a la 2.3.4, se encuentran en el Anexo B. Las tablas muestran la aceleración pico registrada en la base del edificio y las amplificaciones medidas en los diferentes entrepisos instrumentados de la estructura. La última columna muestra un promedio de la distorsión calculada para cada sismo, dividiendo el desplazamiento relativo de la azotea con respecto a la base, entre la altura total del edificio. Es de notar que estas distorsiones no alcanzan los valores conocidos de fluencia para marcos y muros de concreto debido a que el modelo lineal no alcanzó a reproducir el movimiento de manera exacta en los casos donde se presenciaron daños estructurales. La línea interrumpida separa los eventos estudiados antes y después de la segunda rehabilitación del edificio.

Arreglo Este	Arreglo Este - Longitudinal							/H)	
Sismo	Μ	T _B [s]	ξ _B [%]	αΒ	PBA	x=0.37	x=0.76	x=1.0	Δ/H
29/07/93	5.0	1.30	5.0	3	1.60	1.05	1.19	1.95	0.00002
24/10/93	6.6	1.74	5.4	3.5	10.78	2.18	3.73	4.71	0.00134
10/12/94	6.4	1.90	4.5	3	17.72	3.19	5.16	6.68	0.00270
14/09/95	7.3	2.07	6.0	3.5	28.74	1.92	3.33	4.52	0.00326
21/10/95	6.2	1.94	5.0	3.5	2.14	2.47	4.94	6.88	0.00034
16/12/97	5.5	1.23	3.0	3.5	2.35	1.87	3.62	4.48	0.00010
22/12/97	5.0	1.20	3.7	4	1.72	1.97	2.94	3.58	0.00006
15/06/99	7.0	1.62	7.5	6	22.82	2.15	2.90	3.59	0.00127
30/09/99	7.4	1.81	7.0	6	26.89	1.96	3.57	4.24	0.00213
21/07/00	5.9	1.74	6.0	2.5	9.74	1.87	1.97	2.93	0.00045
08/10/01	6.1	1.50	4.0	3	4.87	1.24	1.65	2.51	0.00016

Tabla 2.3.1. Parámetros dinámicos y características registradas de los sismos estudiados en el arreglo Este del edifico JAL en el sentido longitudinal.

Tabla 2.3.2. Parámetros dinámicos y características registradas de los sismos estudiados en el arreglo Este del edifico JAL en el sentido transversal.

Arreglo Este	- Transv	ersal			PF	z/H)			
Sismo	Μ	T _B [s]	ξ _B [%]	α _B	PBA	x=0.37	x=0.76	x=1.0	Δ/H
29/07/93	5.0	2.40	2.0	6	1.34	3.54	2.68	4.81	0.00012
14/09/95	7.3	2.60	4.0	8	28.26	1.73	2.92	4.10	0.00392
21/10/95	6.2	2.43	5.5	10	1.64	2.19	2.89	3.62	0.00095
16/12/97	5.5	1.46	4.0	2	2.88	1.98	3.51	4.83	0.00018
22/12/97	5.0	1.46	3.2	2.5	2.11	2.66	4.41	5.00	0.00015
15/06/99	7.0	1.92	6.5	8	29.72	3.27	6.48	7.58	0.00425
30/09/99	7.4	2.32	5.0	6	41.77	3.17	5.84	7.24	0.00811
21/07/00	5.9	2.02	5.2	5.5	11.76	2.75	2.61	4.73	0.00093
08/10/01	6.1	1.97	4.8	4	5.28	2.94	4.24	6.08	0.00069

Fue posible observar el alargamiento del periodo con respecto al aumento en la aceleración máxima del sismo medida en la base del edificio. Debido a la rehabilitación estructural que se llevó a cabo durante el tiempo en que estuvo instrumentado el edificio, se pudieron observar dos comportamientos diferentes para cada dirección; antes y después de la rehabilitación. En ambos sentidos se puede ver la tendencia no lineal que lleva el periodo del edificio (figura 2.3.3). El triángulo al extremo derecho de la tendencia, muestra el valor del periodo fundamental inferido para el sismo de 14/09/95, que como se expuso anteriormente, causó daño estructural en el edificio. El sismo que le siguió, 21/10/95, aunque registró una intensidad mucho menor que la del sismo anterior (2.14 cm/s² comparado con 28.74 cm/s² en el sentido longitudinal), produjo un periodo fundamental tan solo 7% menor al inferido para el sismo fuerte en ambas direcciones. En la Figura 2.3.3 se destaca este punto (triángulo relleno) permitiendo ver claramente la flexibilización del edificio en el sentido longitudinal. En ambas direcciones el edificio recupera rigidez entre los dos sismos mencionados pero en el sentido longitudinal, no alcanza a regresar a su rigidez original debido a que en esta dirección es donde se encuentra la mayor parte de la mampostería. Se evidencia que las reparaciones de las grietas que han surgido en estos muros debido a sismos anteriores, han sido superficialmente resanadas con yeso y no permiten que se restaure la rigidez lateral del edificio (Murià et al., 2001). Después de la rehabilitación se puede ver cómo el periodo y la tendencia general disminuyeron para los eventos que le siguieron, reflejando que el proceso de rigidización de la estructura se enfocó en el sentido transversal. La evolución del periodo de la estructura en el tiempo se puede ver en la figura 2.3.4.

Arreglo Oest	e - Longi	tudinal			PF	:/H)			
Sismo	Μ	T _B [s]	ξ _B [%]	αΒ	PBA	x=0.37	x=0.76	x=1.0	Δ/H
29/07/93	5.0	1.29	5.0	5	1.42	1.08	1.49	1.92	0.00002
24/10/93	6.6	1.79	5.0	5	9.34	2.46	4.72	6.00	0.00113
10/12/94	6.4	1.94	5.0	4	17.00	3.07	6.00	7.24	0.00293
14/09/95	7.3	2.03	5.0	4.5	26.58	2.16	3.82	4.72	0.00325
21/10/95	6.2	1.94	5.0	4	2.01	2.63	5.21	6.71	0.00095
16/12/97	5.5	1.23	3.0	3	2.25	2.07	4.48	5.34	0.00010
22/12/97	5.0	1.15	4.5	4.5	1.69	2.04	3.12	3.69	0.00005
15/06/99	7.0	1.64	5.5	8	20.20	2.67	3.32	4.18	0.00140
30/09/99	7.4	1.90	5.5	5	24.41	2.66	3.63	4.09	0.00260
21/07/00	5.9	1.72	5.0	1.9	9.58	2.05	1.95	2.90	0.00047
08/10/01	6.1	1.45	4.8	1.5	4.68	1.29	1.87	2.66	0.00014

 Tabla 2.3.3. Parámetros dinámicos y características registradas de los sismos estudiados en el arreglo Oeste del edifico JAL en el sentido longitudinal.

Tabla 2.3.4. Parámetros dinámicos y características registradas de los sismos estudiados en el arreglo Oeste del edifico JAL en el sentido transversal.

Arreglo Oest	e - Trans	versal			PF	A/PBA (x=z	:/H)		
Sismo	Μ	T _B [s]	ξ _B [%]	α _B	PBA	x=0.37	x=0.76	x=1.0	Δ/H
29/07/93	5.0	2.35	3.0	6.5	1.82	2.74	1.76	3.66	0.00010
24/10/93	6.6	2.46	5.2	4.5	11.50	1.29	1.75	2.83	0.00089
10/12/94	6.4	2.45	5.0	4	11.74	2.12	3.26	4.32	0.00174
14/09/95	7.3	3.20	4.0	3.8	31.38	1.66	1.89	2.55	0.00372
21/10/95	6.2	2.40	6.0	10	1.69	1.60	2.72	3.79	0.00095
16/12/97	5.5	1.45	5.0	4	3.05	1.78	3.29	4.20	0.00017
22/12/97	5.0	1.47	4.0	3	2.14	2.31	3.47	4.67	0.00014
15/06/99	7.0	1.90	5.0	6	31.90	3.34	5.53	6.94	0.00511
30/09/99	7.4	1.98	5.5	5	56.60	2.37	3.87	5.01	0.00706
21/07/00	5.9	2.02	5.5	6	13.41	2.44	2.02	3.78	0.00096
08/10/01	6.1	1.99	5.5	5	5.79	2.46	3.77	5.06	0.00065

El periodo del suelo donde se encuentra desplantado el edificio JAL es de 2.0 s. Los periodos inferidos en el sentido longitudinal del edificio se encuentran entre 1.15 y 2.07 s, lo que lo situaban cerca o en resonancia con el suelo antes de que su estructura fuera reforzada. Después de esto, se logra ver que, a no ser que se presente otro daño, el edificio estaría por debajo de un periodo que entre en resonancia con el suelo. En contraste, en el sentido transversal se logró lo opuesto dado que los periodos antes de la rehabilitación de la estructura se encontraban del orden del 25% por encima del periodo del suelo. Después de dicha rehabilitación, la tendencia del periodo del edificio disminuyó de manera tal que los periodos se encontraron alrededor de los 2.0 s, y efectivamente los niveles de aceleración en los niveles de entrepiso aumentaron para los sismos registrados, indicando efectos de resonancia (Murià et al., 2001).

Figura 2.3.3. Variación del periodo fundamental con respecto a la aceleración máxima registrada en la base del edificio.

Se graficaron las aceleración máximas registradas contra aquellas calculadas para cada nivel de entrepiso en ambas direcciones y para ambos arreglos. Se encontró que con el modelo simplificado lineal se pudieron reproducir de muy buena manera estas aceleraciones en todos los niveles, especialmente en el sentido longitudinal. En la figura 2.3.5 se encuentran varios puntos obtenidos en el sentido transversal, por fuera de la línea de 45°, que representa la igualdad entre las dos aceleraciones, para los sismos después de la segunda rehabilitación. Esto reafirma que al haber acercado el periodo del edificio en este sentido al periodo del suelo, los niveles de aceleración registrados aumentaron y no fue posible reproducir con el modelo estos valores. También es posible que al haber tratado de fijar el amortiguamiento del edificio durante estos sismos para alcanzar valores espectrales similares a los registrados, se pudo haber reducido la amplitud de las aceleraciones en alguna o varias partes de la duración del registro.

Figura 2.3.4. Evolución del periodo fundamental del edificio JAL.

Figura 2.3.5. Comparación de aceleraciones registradas y calculadas en los tres niveles de piso por encima del terreno para el arreglo Este (arriba) y el Oeste (abajo).

Los valores de α_B inferidos a partir de la identificación de sistemas del edificio JAL presentaron un rango bastante amplio. Debido a que desde un comienzo el edificio estaba estructurado con base en columnas y muros de mampostería, los valores esperados se podía definir como intermedios según Miranda y Reyes (2002), para sistemas estructurales duales. Después de la segunda rehabilitación del edificio se siguieron presentando estos valores intermedios entre los correspondientes a flexión pura y corte puro, debido a que algunos muros de mampostería fueron reemplazados con muros de concreto y adicionalmente se incorporaron las diagonales metálicas en el sentido transversal. En el sentido longitudinal los valores encontrados variaron entre 1.5 y 8, con un promedio de 4.0 y una desviación estándar de 1.47. En el sentido transversal los valores de α_B estuvieron entre 2 y 10, arrojando un valor promedio de 5.49 y una desviación estándar de 2.22. El valor más alto para este parámetro, se encontró en el sismo del 21/10/95, donde hubo un daño estructural considerable. Al haberse producido los daños vistos en la estructura, es posible que los muros presentes no hayan contribuido de manera importante a la rigidez lateral, haciendo que las columnas trabajaran más, y por lo tanto la deformada lateral del edificio se asemejó más a la de un elemento de corte.

El coeficiente de amortiguamiento crítico obtenido para reproducir las historias de aceleración, los espectros de piso y las amplificaciones de manera más adecuada tuvo valores entre 2.0 y 7.5. Ambos sentidos de la estructura presentaron valores similares; en el sentido longitudinal se obtuvo un promedio de 5.02 con una desviación estándar de 1.07 y en el sentido transversal se obtuvo en promedio un valor de 4.7 con una desviación estándar de 1.04. Se pudo ver que, en general, para los sismos de mayor magnitud y/o que generaron mayores daños en el edificio, el valor de ξ fue más alto. Se compararon estos resultados con aquellos presentados por Zapata y Murià (2002), los cuales fueron obtenidos con métodos no paramétricos y se encontró que en la mayoría de casos los valores de amortiguamiento eran similares, sin embargo en los sismos más fuertes como el de

15/06/99, el valor obtenido en este trabajo estuvo 44% por encima del inferido por los autores mencionados.

Figura 2.3.6. Valores estimados de α para los sismos estudiados en los dos arreglos de instrumentos.

Figura 2.3.7. Valores estimados del amortiguamiento para los sismos estudiados en los dos arreglos de instrumentos.

2.4 Edificio MJ

El edificio MJ es una estructura de concreto reforzado con 6 niveles de piso por encima del terreno y dos sótanos. Tiene 5 marcos en la dirección transversal y 4 en la dirección longitudinal, unidos por una losa reticular de 8 cm. Las fachadas transversales son de mampostería confinada que no se encuentran ligadas a la estructura, mientras que los muros que conforman el foso de elevadores y escaleras sí están ligados a los marcos que los confinan. El edificio tiene un apéndice en la azotea de 6.0 m x 6.30 m que opera como casa de máquinas.

El edificio está ubicado en la zona de suelo blando de la ciudad de México con un periodo de sitio dominante de 2.0 s. La cimentación consiste en un cajón de concreto de 9.0 m de profundidad.

En 1992 el edificio fue reforzado para incrementar su rigidez y resistencia debido a la alta flexibilidad que presentó durante los eventos de 07/06/92. Algunas de las columnas de los niveles bajos se encamisaron, se adicionaron diagonales metálicas en los vanos extremos de las fachadas en el sentido longitudinal, y se construyeron muros de concreto de 15.0 cm de espesor en los vanos extremos transversales, los cuales llegan hasta el nivel de cimentación.

Figura 2.4.1. Foto y esquema del edificio MJ.

El edificio MJ fue instrumentado por el Instituto de Ingeniería de la UNAM en 1990 con 5 acelerógrafos que registraron 19 sismos hasta el año 2000. Se instalaron 2 instrumentos en la azotea, 2 en la base del edificio a nivel de la calle y uno más en el nivel del metro subterráneo. La instrumentación de este edificio se hizo con el fin de evaluar principalmente la variación de la respuesta sísmica debido a su cimentación, y a la vez determinar la interacción de la cimentación con las instalaciones del metro. Se conformaron dos arreglos verticales de instrumentos, el Este y el Central, pero para el análisis paramétrico sólo se tomó en cuenta el Este debido a que se quería evaluar el comportamiento del edificio usando un registro a nivel del terreno.

Figura 2.4.2. Amplificaciones de la aceleración máxima registrada en la base a nivel de azotea, para el arreglo Este.

Las amplificaciones de la aceleración entre la base (BE) y la azotea (AE) fueron ligeramente mayores para intensidades pequeñas que para las mayores. La evolución del periodo fundamental del edificio en el tiempo se puede ver en la figura 2.4.3, donde el cambio de periodo antes y después de la rehabilitación es notorio. Para todas las intensidades que se presentaron después del refuerzo, incluyendo aceleraciones del orden de aquellas registradas en los sismos de 07/06/92, el periodo se redujo aproximadamente un 50% del valor inicial, como lo muestran los resultados de la identificación de sistemas realizada en este trabajo. Este cambio de rigidez

también ha sido estudiado y documentado por Alcántara et al (1993b), justo después de la rehabilitación del edificio.

Figura 2.4.3. Evolución del periodo del edificio MJ inferido a partir del arreglo Este.

El estudio paramétrico del edificio se hizo para 10 de los sismos registrados. Los parámetros obtenidos se encuentran resumidos en las tablas 2.4.1 y 2.4.2, donde se muestran sombreados los sismos de subducción y sin sombrear los sismos de falla normal. El periodo para cada caso tuvo muy pocas variaciones, especialmente en el sentido longitudinal. Aunque se presentaron sismos de mayor magnitud e intensidad, el periodo osciló alrededor de los 0.60 s, con una desviación estándar de 0.02. En el sentido transversal se encontró una dispersión ligeramente mayor para los valores del periodo fundamental y en algunos casos el modelo simplificado no pudo reproducir de buena manera los movimientos. El promedio para este sentido fue de 0.59 s y la desviación estándar fue de 0.06. En los casos donde no se pudo lograr una semejanza aceptable entre las historias y los espectros, se definió el valor del periodo como aquel que reprodujera de mejor manera las aceleraciones en el tiempo, aunque no alcanzara las amplitudes más grandes ni las ordenadas espectrales.

Figura 2.4.4. Efectos de la variación del periodo fundamental en la aproximación de las historias de aceleración y espectros de piso.
En el sismo de 15/07/96 se puede ver claramente que al ajustar el periodo para que coincidan los espectros, se pierde similitud en la historia de aceleraciones. En la figura 2.4.4 se puede ver que la amplitud máxima del espectro de piso a nivel de azotea se presenta para un periodo de 0.60 s. Sin embargo los datos calculados entrando un valor de periodo cercano a éste, logran un espectro de piso similar, pero la historia de aceleraciones sólo coincide de mejor manera en la fase más intensa del movimiento (abajo). Al ingresar un valor de periodo menor, de 0.54 s, se logra reproducir de mejor manera, aunque no exacta, la parte de menor amplitud del registro, mientras el espectro de piso ya no coincide de igual manera. En el caso donde se emplea un periodo menor, no afecta de manera importante el valor de α ya que por ser un periodo que no reproduce bien la fase más intensa del movimiento, la amplificación registrada de la aceleración en la azotea no va a ser alcanzada sin importar el valor utilizado del coeficiente.

Como se puede observar en la última columna de las tablas 2.4.1 y 2.4.2, la distorsión promedio del edificio. calculada como la relación entre la distorsión estimada de la azotea con respecto a la base y la altura por encima del terreno del edificio, es muy pequeña debido a todos los elementos que se adicionaron para rigidizarlo. Las distorsiones mayores se presentan para los sismos de mayor magnitud, pero siguen estando muy por debajo de los valores requeridos para que haya fluencia en los elementos. En el caso del sismo de 07/06/92, donde el edificio demostró tener mucha flexibilidad por su periodo tan elevado, tampoco se vio una distorsión importante. No sobra recordar que los parámetros obtenidos para este sismo en ambas direcciones no son muy confiables debido a que no se pudo reproducir el movimiento de manera adecuada.

Arreglo Este	- Longitu	ıdinal				PFA/PBA				
Sismo	Μ	T _B [s]	ξ _B [%]	α _B	PBA	x=1.0	Δ/H			
07/06/92*	5.0	1.16	4.7	6	1.65	3.97	0.00011			
15/05/93	5.8	0.58	4.0	3.5	6.03	2.86	0.00008			
14/09/95	7.3	0.63	4.5	4	31.66	2.31	0.00036			
09/10/95	7.3	0.60	4.0	4	7.69	1.41	0.00005			
15/07/96*	6.5	0.58	3.0	2	1.09	6.11	0.00003			
11/01/97	6.9	0.60	2.5	4	13.25	1.92	0.00013			
22/05/97	6.0	0.59	3.0	2.5	3.02	3.84	0.00005			
20/04/98	5.9	0.59	2.8	2	2.75	4.65	0.00005			
15/06/99	7.0	0.62	2.0	2.5	21.71	3.49	0.00038			
30/09/99	7.4	0.65	3.2	4	21.20	3.10	0.00036			
* Los parámetros	Los parámetros para este sismo no son confiables.									

Tabla 2.4.1. Parámetros dinámicos y características registradas de los sismos estudiados en el arreglo este del edifico MJ en el sentido longitudinal.

 Tabla 2.4.2.
 Parámetros dinámicos y características registradas de los sismos estudiados
 en el arreglo este del edifico MJ en el sentido transversal.

Arreglo Este	- Transve	ersal				PFA/PBA	
Sismo	Μ	T _B [s]	ξ _B [%]	α _B	PBA	x=1.0	Δ/H
07/06/92*	5.0	1.18	2.7	2	1.49	5.61	0.00014
15/05/93	5.8	0.50	3.0	3	4.23	2.96	0.00004
14/09/95	7.3	0.62	4.0	4	23.15	2.55	0.00027
09/10/95	7.3	0.60	4.0	3.5	9.77	1.15	0.00007
15/07/96*	6.5	0.55	4.5	3.5	0.76	6.49	0.00001
11/01/97	6.9	0.58	2.0	2	16.13	1.93	0.00013
22/05/97	6.0	0.54	4.0	2	4.00	2.62	0.00004
20/04/98	5.9	0.59	3.5	3	2.88	4.67	0.00005
15/06/99	7.0	0.69	3.5	3.5	15.62	4.53	0.00043
30/09/99	7.4	0.67	2.5	3.5	15.83	2.99	0.00024
* Los parámetros	para este s	ismo no son	confiables.				

Debido a que el edificio MJ sólo tenía dos niveles instrumentados en su altura, las amplificaciones de la aceleración máxima registrada en la base a nivel de azotea se podían reproducir de manera más sencilla que en los casos donde se tienen varios niveles instrumentados. Sin embargo, como se puede ver en el anexo C, donde se encuentran los resultados gráficos para cada uno de los sismos, en algunas ocasiones no se alcanzó ese valor máximo en la azotea, debido a que se le dio más prioridad a reproducir la historia de aceleraciones. En la figura 2.4.5 se muestran las aceleraciones máximas registradas a nivel de azotea en cm/s² y las aceleraciones máximas calculadas en este mismo nivel. Los puntos que se encuentran más alejados de la línea a 45°, que indica la igualdad entre las dos aceleraciones, corresponden a sismos analizados en el sentido transversal, el cual presentó más irregularidades que el sentido longitudinal.

Figura 2.4.5. Aceleraciones máximas registradas y calculadas a nivel de azotea.

Debido a que la curva de amplificación de aceleraciones en la altura del edificio sólo estaba definida por dos puntos extremos, los valores empleados para el coeficiente α variaron dentro del rango que se tenía para sistemas estructurales duales ($1.5 < \alpha < 6.0$). El seleccionado para definir cada sistema dependió de qué tan bien reproducía las formas espectrales, aunque por tener un periodo tan corto, los modos superiores no alcanzaban a verse claramente en los espectros. El coeficiente de amortiguamiento varió entre 2.0 y 4.7% en el sentido longitudinal y entre 2.0 y 4.5% en el sentido transversal.

Figura 2.4.6. Valores estimados para el coeficiente de amortiguamiento (izquierda) y para el coeficiente α (derecha).

Al analizar los sismos se encontró que algunos sismos generaron espectros de piso a nivel de azotea muy similares al registrado en la base, donde incluso la amplitud espectral para el periodo de la estructura se confundía entre otros picos hacia su derecha. Un ejemplo claro se puede ver con los sismos de 1995, los cuales fueron ambos de subducción y de igual magnitud.

Figura 2.4.7. Diferencias entre un sismo de subducción más cercano a la ciudad de México (arriba) y otro más lejano (abajo) con igual magnitud.

Sin embargo los espectros registrados y calculados fueron muy diferentes entre sí, probablemente debido a la distancia desde el origen de los sismos hasta el edificio. El sismo de 14/09/95 se dio a una distancia aproximada de 345 km hasta la ciudad de México, mientras que el sismo de 09/10/95 fue un poco más lejano, a 548 km de la ciudad. Esto puede explicar porqué el primero de los sismos sí pudo excitar frecuencias más altas, más cercanas a las frecuencias propias de la estructura y no a las del suelo. En el tipo de sismos lejanos como el de octubre de ese año, donde las frecuencias bajas habían sido filtradas un poco más a lo largo de su trayectoria, fue posible ver cómo la estructura se movía al ritmo del suelo, prácticamente como un cuerpo rígido. Precisamente esta alta rigidez fue una de las razones por las cuales se decidió suspender el programa de instrumentación, debido a que era una estructura inusualmente rígida y no registraba datos que se pudieran extrapolar a otros edificios de la zona.

2.5 Edificio IMSS

El edificio IMSS está conformado por tres cuerpos separados, cada uno de 12 pisos de altura sobre el nivel del terreno. El cuerpo central tiene una forma regular en planta y está compuesto por 14 marcos de concreto reforzado en la dirección longitudinal y 6 marcos en la dirección transversal. Las columnas son rectangulares y circulares y su sección disminuye cada dos niveles. Las vigas disminuyen su dimensión cada dos o tres pisos. El sistema de piso está conformado por losas planas de 10 cm de espesor apoyadas sobre las vigas.

Los dos cuerpos laterales del edificio tienen irregularidades en plata; los conforman 10 marcos de concreto reforzado en la dirección transversal y 7 en la dirección longitudinal. Los primeros 4 niveles tienen áreas de 870 m² mientras el resto de pisos tienen un área reducida de 720 m². Cada cuerpo tiene un apéndice en la azotea donde se encuentra la maquinaria de los elevadores. Las dimensiones de las columnas y de las vigas son similares a las del cuerpo central y también cambian cada dos o tres niveles. El sistema de piso es el mismo en los tres cuerpos.

Figura 2.5.1. Foto y esquema del edificio IMSS.

La estructura original fue construida en la década de 1940 y está basada en marcos de concreto reforzado. Aunque el edificio no sufrió daños importantes durante el sismo de 1985, fue condicionado para que cumpliera con los requisitos del código sísmico de diseño para estructuras de concreto del año 1993. El refuerzo de los tres cuerpos del edificio consistió en instalar ADAS en las "V" invertidas que formaron las vigas de concreto con las diagonales en acero que también fueron adicionadas. La cimentación también pasó por un proceso de mantenimiento y refuerzos locales y los extremos superiores de los pilotes de fricción fueron reforzados.

Arreglo Cent	ral - Long	PFA/PBA	A (x=z/H)					
Sismo	Μ	T _B [s]	ξ _B [%]	α _B	PBA	x=0.38	x=1.0	Δ/H
23/05/94	5.6	1.41	3.5	4	4.94	1.69	3.68	0.00015
10/12/94	6.3	1.44	3.7	5	5.77	2.00	6.04	0.00028
14/09/95	7.3	1.47	5.5	4	19.33	1.61	4.53	0.00078
09/10/95	7.3	1.42	3.5	4	7.08	NR	3.33	0.00019

Tabla 2.5.1. Parámetros dinámicos y características registradas de los sismos estudiados en el arreglo central del edifico IMSS en el sentido longitudinal.

NR: Este instrumento no registró el sismo.

 Tabla 2.5.2. Parámetros dinámicos y características registradas de los sismos estudiados en el arreglo central del edifico IMSS en el sentido transversal.

Arreglo Cent	ral - Tran	sversal	PFA/PBA							
Sismo	Μ	T _B [s]	ξ _B [%]	α _B	PBA	x=0.38	x=1.0	Δ/H		
23/05/94	5.6	1.72	4	1	10.00	1.16	2.63	0.00027		
10/12/94	6.3	1.73	3.5	6	8.64	1.42	3.91	0.00038		
14/09/95	7.3	1.75	3.5	5	24.31	1.34	3.43	0.00096		
09/10/95	7.3	1.74	4.5	2	5.56	NR	4.99	0.00033		
NR: Este instrum	NR: Este instrumento no registró el sismo.									

Durante el proceso de reestructuración el edificio estuvo sujeto a tres de los cuatro sismos que se tuvieron en cuenta en el análisis. Cuando ocurrió el sismo de 23/05/94 aún no se había iniciado el proceso. El programa de refuerzo iba en la mitad del primer piso cuando ocurrió el sismo de

10/12/94. En los dos sismos de 1995 (14/09/95 y 09/10/95) la reestructuración iba en un 60% en el segundo nivel.

El edificio fue instrumentado a principios de 1994 con siete acelerómetros digitales ubicados en el cuerpo central y lateral este, y uno más en el terreno junto al edificio como estación de campo libre. Los parámetros T_B , ξ_B y α_B obtenidos de la identificación de sistemas al ingresar el registro en la base del edificio, se encuentran resumidos en las tablas 2.5.1 a 2.5.4, así cómo algunas características registradas en el edificio para evento. Los resultados obtenidos con el SystemID para el edificio IMSS se encuentran en el Anexo D.

Arreglo Later	ral - Long	itudinal	PFA/PBA	(x=z/H)				
Sismo	Μ	T _B [s]	ξ _B [%]	α _B	PBA	x=0.38	x=1.0	Δ/H
23/05/94	5.6	1.72	3.3	4.5	10.14	1.13	2.48	0.00028
10/12/94	6.3	1.69	3.5	5	9.75	1.30	4.05	0.00039
14/09/95	7.3	1.76	4.0	5	21.67	1.57	3.85	0.00104

Tabla 2.5.3. Parámetros dinámicos y características registradas de los sismos estudiados en el arreglo lateral este del edifico IMSS en el sentido longitudinal.

Tabla 2.5.4. Parámetros dinámicos y características registradas de los sismos estudiados en el arreglo lateral este del edifico IMSS en el sentido transversal.

Arreglo Later	ral - Trans	sversal	PFA/PBA					
Sismo	Μ	T _B [s]	ξ _B [%]	αΒ	PBA	x=0.38	x=1.0	Δ/H
23/05/94	5.6	1.72	3.3	4.5	10.14	1.13	2.48	0.00028
10/12/94	6.3	1.69	3.5	5	9.75	1.30	4.05	0.00039
14/09/95	7.3	1.76	4.0	5	21.67	1.57	3.85	0.00104

Aunque el edificio fue sometido a movimientos de diferentes magnitudes e intensidades, el periodo fundamental de éste no presentó una variación notoria con respecto a estas características, comportamiento que sí se presentó en algunos de los edificios estudiados de México. Esta propiedad del edificio puede estar relacionada con el hecho de que en cada sismo, el proceso de reestructuración había avanzado un poco más y por eso las aceleraciones mayores que se registraron sismo tras sismo, no produjeron un periodo significativamente más largo. En el sentido longitudinal el periodo fundamental de la estructura tuvo un promedio de 1.43 s con una desviación estándar de tan solo 0.02, mientras que en el sentido transversal el periodo promedio fue de 1.73 s con una desviación estándar también de 0.02.

Los valores de α_B con los que se logró reproducir de manera más adecuada las historias de aceleración y espectros de piso, sobre todo a nivel de azotea, estuvieron dentro del rango sugerido para estructuras con sistemas duales ($1.5 < a_B < 6.0$), a excepción del sismo de 23/05/94 medido en el arreglo central, sentido longitudinal, el cual se reprodujo de mejor manera con un valor de 1.0. El valor inferido de α_B se definió de manera tal que los picos de los espectros de piso calculados coincidieran con los modos superiores registrados.

Figura 2.5.2. Resultados obtenidos con SystemIDv1.8 para el sismo 10/12/94 registrado en el arreglo central, sentido longitudinal.

Figura 2.5.3. Aceleraciones máximas registradas y calculadas para los niveles instrumentados en el arreglo central (arriba) y en el lateral este (abajo).

Los coeficientes de amortiguamiento para los cuales el modelo simplificado entregó cálculos semejantes a los registrados oscilaron entre 3.5 y 5.5% para el sentido longitudinal y 3.3 y 4.5% para el sentido transversal. Igual que como sucedió en otros edificios estudiados, estos valores no mostraron tener una tendencia definida al compararlos con la aceleración máxima medida en la base o con la magnitud de los sismos. Para determinar el valor más apropiado se buscó que éste reprodujera una amplitud similar del espectro de piso y de la intensidad máxima en la historia de aceleraciones en el tiempo, lo cual se logró de buena manera, como se muestra en la figura 2.5.3.

2.6 Edificio IMP

El edificio IMP es de 5 pisos de altura y su estructura es de columnas y vigas pre-esforzadas. En el sentido longitudinal tiene 20 pórticos de 3.30 m cada uno, mientras que en el sentido transversal sólo tiene uno de 14.70 m, dándole una relación de aspecto de 4.5. El primer piso tiene una altura de 4.05 m de altura y el resto de los niveles tienen una altura constante de 3.85 m. El edificio descansa sobre una cimentación tipo cajón de 2.0 m de espesor, en la zona de transición al norte de la ciudad de México donde el periodo del terreno es cercano a los 0.90 s.

El edificio fue instrumentado en 1990 por el CENAPRED (Centro Nacional de Prevención de Desastres) con tres acelerógrafos; uno se encuentra en la azotea y otro en la planta baja, formando un arreglo vertical que pasa por el centro del edificio, y otro más en campo libre a unos 20 m de la esquina sur-oriente del edificio. En 1996 se instalaron otros cinco acelerógrafos y la nueva configuración resultó en 3 instrumentos en la azotea formando una diagonal, otros 3 en la planta baja también formando una diagonal, el mismo acelerógrafo en campo libre y uno más en un pozo a 80.0 m de profundidad.

Figura 2.6.1. Foto y esquema del edificio IMP.

En la Base Mexicana de Datos de Sismos Fuertes se encontraron 49 sismos registrados en este edificio desde el año 1990 hasta el 2000. Se seleccionaron 12 eventos que cubrieran las diferentes intensidades y amplificaciones a nivel de azotea que se presentaron, tal como se pudo ver en la sección 2.1. Los tres arreglos verticales de instrumentos se definieron como Oeste (IMP6-azotea e IMP5-planta baja), Centro (IMP4-azotea e IMP3-planta baja) y Este (IMP8-azotea e IMP7-planta baja).

Se lograron reproducir de manera adecuada los sismos registrados en el edificio IMP utilizando el modelo simplificado. Las historias de aceleración calculadas para el nivel de la azotea fueron muy similares a aquellas registradas durante toda la duración del sismo, o por lo menos en sus partes más intensas. Los valores de periodo fundamental que se infirieron por medio de la identificación de sistemas en el sentido longitudinal variaron desde valores de 0.81 s en sismos de intensidades

pequeñas registradas en la base (menores de 2 cm/s²), hasta 1.02 s en los sismos más fuertes. El rango de periodos inferidos para el sentido transversal varió entre 0.47 s para sismos de intensidades pequeñas hasta 0.56 s en sismos mayores. Al tener periodos ante sismos fuertes que superan los periodos para intensidades pequeñas en un 26% para el sentido longitudinal y en un 19% para el sentido transversal, se puede destacar que los periodos obtenidos mediante pruebas de vibración ambiental no son representativos del periodo que se puede presentar durante sismos mayores, tal como lo han señalado otros trabajos (Anderson et al., 2001; Celebi et al., 1993, Durán, 1996 y Murià et al., 1997). Adicionalmente se puede ver cómo este alargamiento del periodo se puede presentar sin que la mayor flexibilidad de la estructura se deba a daños estructurales. En la figura 2.6.2 se puede ver esta variación del periodo con respecto a las diferentes aceleraciones medidas en la base para los tres arreglos verticales de instrumentos, así como una tendencia logarítmica obtenida con el método de mínimos cuadrados. El coeficiente de determinación más pequeño se da para el sentido transversal del arreglo Oeste, el cual es de 0.26, y el más alto se da para el sentido transversal del arreglo Centro, el cual es de 0.83.

Figura 2.6.2. Variación del periodo fundamental estimado con la aceleración máxima registrada en la base del edificio.

Las tablas 2.6.1 a 2.6.6 contienen los parámetros obtenidos de la identificación de sistemas para los sismos estudiados en los tres arreglos del edificio. Además muestran la amplificación registrada en la azotea de la aceleración máxima que se presentó en la base del edificio. La última columna muestra una estimación de la distorsión promedio que pudo haber experimentado el edificio durante los sismos, dividiendo el desplazamiento relativo entre la azotea y la base, entre la altura total del edificio. Los resultados gráficos de este edificio se encuentran en el Anexo E. Las filas sombreadas representan sismos de subducción mientras las filas que no están sombreadas representan sismos de falla normal.

Arreglo Cent	ro - Long	itudinal				PFA/PBA	
Sismo	Μ	T _B [s]	ξ _B [%]	α _B	PBA	x=1.0	Δ/H
11/03/93	4.7	0.82	4.8	8.5	0.82	5.73	0.00004
29/07/93	5.0	0.81	3.0	7	1.95	4.38	0.00007
24/10/93	6.6	0.95	3.5	8	7.39	6.03	0.00049
10/12/94	6.4	0.96	3.0	8	8.42	5.24	0.00049
14/09/95	7.3	1.00	3.0	8	19.32	3.90	0.00094
11/01/97	6.9	0.97	3.0	8	13.26	2.47	0.00038
08/05/97	5.0	0.90	5.0	8	1.12	4.28	0.00005
22/05/97	6.0	0.95	4.5	9	3.49	4.54	0.00019
16/12/97	5.5	0.94	4.5	10	1.80	6.41	0.00013
15/06/99	7.0	1.02	3.0	6	22.39	5.42	0.00161
21/06/99	5.8	1.00	4.5	8	3.57	5.03	0.00022
30/09/99	7.4	1.01	4.0	10	16.60	3.27	0.00072

Tabla 2.6.1. Parámetros dinámicos y características registradas de los sismos estudiados en el arreglo central del edifico IMP en el sentido longitudinal.

Tabla 2.6.2. Parámetros dinámicos y características registradas de los sismos estudiadosen el arreglo central del edificio IMP en el sentido transversal.

Arreglo Cent	ro - Trans	sversal				PFA/PBA	
Sismo	Μ	T _B [s]	ξ _B [%]	α _B	PBA	x=1.0	Δ/H
11/03/93	4.7	0.49	5.0	10	0.98	2.87	0.00001
29/07/93	5.0	0.49	2.5	8	1.92	2.32	0.00001
24/10/93	6.6	0.52	5.5	10	9.34	2.06	0.00007
10/12/94	6.4	0.51	4.0	10	7.17	1.95	0.00005
14/09/95	7.3	0.52	3.0	12	22.86	2.22	0.00019
11/01/97	6.9	0.52	3.0	8	11.51	1.93	0.00008
08/05/97	5.0	0.50	4.5	9	1.15	3.51	0.00001
22/05/97	6.0	0.51	4.0	5	7.12	2.38	0.00006
16/12/97	5.5	0.50	3.5	8	2.56	1.93	0.00002
15/06/99	7.0	0.52	3.5	10	22.91	2.34	0.00019
21/06/99	5.8	0.51	4.0	6	4.73	3.13	0.00005
30/09/99	7.4	0.51	3.5	7	16.15	2.88	0.00016

Las amplificaciones de la aceleración máxima registrada en la base de la estructura a nivel de azotea también se alcanzaron a reproducir de manera eficiente debido a que el edificio sólo tenía dos niveles instrumentados (azotea y base) y al ajustar los valores de α_B y ξ_B que estimaran correctamente las amplitudes espectrales e historias de aceleración en la azotea, los cálculos se acercaban a lo registrado. La identificación de sistemas para este edificio pudo haber sido más

sencilla comparada con otros edificios estudiados, no sólo por contar con apenas dos niveles instrumentados sino también por su ubicación. Dado que el edificio se encuentra en zona de transición donde el suelo es más firme que en los otros casos, puede haber menos efectos de interacción suelo-estructura, los cuales agregan cierta flexibilidad adicional al sistema. Al reducir estos efectos, la estructura se puede asemejar más al modelo de base empotrada, tal como lo es el modelo continuo simplificado empleado en el análisis. Además por ser un edificio de menor altura que los anteriores, puede estar sujeto a menores efectos de chicoteo lo que genera unas aceleraciones mayores en la azotea, las cuales en ocasiones no se pueden alcanzar a reproducir de manera exacta con el modelo.

Arreglo Este	Arreglo Este - Longitudinal									
Sismo	Μ	T _B [s]	ξ _B [%]	αΒ	PBA	x=1.0	Δ/H			
11/01/97	6.9	0.96	3.80	8	13.01	2.46	0.00036			
08/05/97	5.0	0.90	4.50	12	1.10	4.46	0.00005			
22/05/97	6.0	0.94	4.00	12	3.61	4.64	0.00018			
16/12/97	5.5	0.92	4.20	6	1.89	6.40	0.00013			
15/06/99	7.0	1.02	2.80	6	22.58	5.49	0.00167			
21/06/99	5.8	0.99	4.00	5	3.67	5.15	0.00023			
30/09/99	7.4	1.01	3.50	8	15.36	3.96	0.00077			

Tabla 2.6.3. Parámetros dinámicos y características registradas de los sismos estudiadosen el arreglo Este del edifico IMP en el sentido longitudinal.

Tabla 2.6.4. Parámetros dinámicos y características registradas de los sismos estudiadosen el arreglo Este del edifico IMP en el sentido transversal.

Arreglo Este	Arreglo Este - Transversal									
Sismo	Μ	T _B [s]	ξ _B [%]	α _B	PBA	x=1.0	Δ/H			
11/01/97	6.9	0.56	3.50	8	11.71	2.34	0.00012			
08/05/97	5.0	0.54	2.00	7	1.14	4.49	0.00002			
22/05/97	6.0	0.55	4.00	6	6.93	3.57	0.00010			
16/12/97	5.5	0.54	4.00	6	2.48	2.54	0.00003			
15/06/99	7.0	0.56	3.00	6	23.58	2.98	0.00025			
21/06/99	5.8	0.55	3.00	6	4.66	5.33	0.00010			
30/09/99	7.4	0.55	2.20	8	15.21	3.45	0.00018			

 Tabla 2.6.5. Parámetros dinámicos y características registradas de los sismos estudiados en el arreglo Oeste del edifico IMP en el sentido longitudinal.

Arreglo Oest	e - Longit		PFA/PBA				
Sismo	Μ	T _B [s]	ξ _B [%]	α _B	PBA	x=1.0	Δ/H
11/01/97	6.9	0.97	3.00	6	13.46	2.49	0.00038
08/05/97	5.0	0.90	5.20	8	1.09	4.55	0.00005
22/05/97	6.0	0.94	4.30	12	3.54	4.47	0.00018
16/12/97	5.5	0.93	4.00	10	1.83	6.52	0.00013
15/06/99	7.0	1.00	3.50	5	22.61	5.91	0.00152
21/06/99	5.8	1.00	4.00	9	3.67	5.15	0.00024
30/09/99	7.4	1.00	4.50	8	16.27	3.35	0.00068

Arreglo Oest	e - Transv		PFA/PBA				
Sismo	Μ	T _B [s]	ξ _B [%]	α _B	PBA	x=1.0	Δ/H
11/01/97	6.9	0.505	3.50	7	10.66	2.00	0.00007
08/05/97	5.0	0.50	4.50	6	1.13	3.72	0.00001
22/05/97	6.0	0.47	4.50	9	6.55	1.90	0.00004
16/12/97	5.5	0.49	3.50	8	2.61	1.87	0.00002
15/06/99	7.0	0.52	3.50	6	22.65	2.52	0.00021
21/06/99	5.8	0.50	2.50	10	5.37	2.63	0.00005
30/09/99	7.4	0.52	3.20	12	17.38	2.74	0.00018

 Tabla 2.6.6. Parámetros dinámicos y características registradas de los sismos estudiados en el arreglo Oeste del edifico IMP en el sentido transversal.

Los valores del coeficiente α_B que mejor reprodujeron las formas de los espectros de azotea estuvieron en un rango de 5.0 a 12 para ambas direcciones, lo cual era esperado debido a su sistema estructural a base de marcos. Los sismos donde el valor obtenido es de 5.0 sugieren una participación mayor de los muros de relleno, que pueden generar deformadas de flexión y de corte al mismo tiempo. El promedio para este coeficiente fue de 8.0 y 8.21 para los sentidos longitudinal y transversal, respectivamente, con desviaciones estándar de 1.96 y 1.94 en el mismo orden. No existe una tendencia que asocie el valor de α_B con alguna medida de intensidad del sismo dado que este coeficiente simplemente define el sistema estructural del edificio y la distancia entre los modos superiores de vibrar.

Figura 2.6.3. Aceleraciones máximas calculadas en la azotea con respecto a las registradas en los tres arreglos verticales.

El coeficiente de amortiguamiento estuvo entre 2.8 y 5.2 en el sentido longitudinal y entre 2.0 y 5.5 en el sentido perpendicular a éste. Una vez más no se encontró una relación clara entre el valor del amortiguamiento y la intensidad de los movimientos.

2.7 Edificio SEC3

El edificio SEC3 tiene 3 pisos de altura con una estructura a base de columnas y vigas de acero, donde las primeras se encuentran embebidas en concreto reforzado. En la dirección transversal del edificio hay muros de concreto con un espesor de 15 cm. La estructura consta de dos cuerpos separados por una junta de construcción de 10 cm de espesor. La cimentación de cada cuerpo es un cajón rígido de concreto de 2.50 m de profundidad e iguales dimensiones en planta que el cuerpo que soporta (Romo y Bárcena, 1993).

Este edificio está situado en la zona de suelo altamente compresible de la zona del valle de México, donde el espesor de esta capa de suelo es alrededor de 40.0 m y tiene un periodo fundamental de 2.2 s.

La instrumentación del edificio se inició en 1987, la cual estuvo a cargo del CIRES y el Instituto de Ingeniería, UNAM. El arreglo de instrumentos con el cual se trabajó consiste de tres acelerómetros; uno en la azotea del cuerpo B ubicado cerca del centro geométrico, otro en la planta baja ubicado en la mitad del lado largo del cuerpo B (figura 2.7.1) y uno más en campo libre (Murià et al., 1993). Debido a la alta rigidez del edificio y la similitud con el cuerpo A, la información obtenida en uno de ellos puede ser suficiente para predecir el comportamiento del sistema completo. Los instrumentos alcanzaron a registrar 21 sismos desde que fue instrumentado hasta el año 2000, presentando amplificaciones de la aceleración máxima en la base de 1.0 a 1.6 veces, sin alguna tendencia definida.

Figura 2.7.1. Esquema y foto del edificio SEC3.

Debido a la alta rigidez del edificio y el hecho de estar desplantado sobre un suelo sumamente blando, el movimiento registrado en la azotea en los diferentes sismos, fue similar al registrado en la base, indicando un comportamiento muy cercano al de un bloque rígido que se mueve en conjunto con el suelo. Debido a esto el único parámetro que se pudo inferir a partir de la identificación de sistemas fue el periodo fundamental del edificio. Los valores de α_B que se emplearon fueron de 10 en el sentido longitudinal, tal que correspondiera con el comportamiento a cortante que se espera de los marcos que se encuentran en esta dirección. En el sentido perpendicular a éste, el valor de α_B que se utilizó para todas las corridas fue de 5, de tal manera que combinara las deformaciones laterales a flexión, debido a los muros que se concentran en esta dirección del edificio.

La fracción de amortiguamiento también fue fijada a un cierto valor para cada dirección del edificio. En el sentido longitudinal se utilizó un valor de 5.0%, el cual se considera en los reglamentos de diseño como el valor adecuado para estructuras de concreto. Sin embargo, dada la rigidez de la estructura, cualquier valor de este parámetro reproducía bien el movimiento y el espectro de piso en la azotea. En el sentido transversal se trabajó con un valor de amortiguamiento más alto, 12 ó 12.5% para lograr que los picos de los espectros calculados en modos superiores coincidieran con aquellos registrados. En modelos analíticos de este edificio realizados por Murià et al. (1993), los valores de la fracción de amortiguamiento encontrados fueron de 20% y 37% para los sentidos longitudinal y transversal, respectivamente, considerando base flexible. En otro estudio hecho por el mismo autor, Murià et al. (1991a, 1991b), se encontraron fracciones de amortiguamiento para pruebas de vibración forzada de entre 6 y 8% para el sentido longitudinal y de 22-31% para el sentido transversal. Los resultados gráficos de este trabajo se encuentran en el Anexo F.

Arreglo Cuer	PFA/PBA						
Sismo	Μ	T _B [s]	ξ _B [%]	αΒ	PBA	x=1.0	Δ/H
10/12/94	6.4	0.230	5.0	10	16.40	1.10	0.000028
09/10/95	7.3	0.230	5.0	10	10.52	1.28	0.000021
15/07/96	6.5	0.240	5.0	10	7.90	1.44	0.000017
03/02/98	6.0	0.223	5.0	10	3.27	1.07	0.000005
20/04/98	5.4	0.220	5.0	10	4.11	1.15	0.000007
15/06/99	7.0	0.240	5.0	10	27.45	1.39	0.000064
30/09/99	7.4	0.235	5.0	10	25.04	1.14	0.000048

 Tabla 2.7.1. Parámetros dinámicos y características registradas de los sismos estudiados en el cuerpo B del edificio SEC3 en el sentido longitudinal.

Tabla 2.7.2. Parámetros dinámicos y características registradas de los sismos estudiados en el cuerpo B del edificio SEC3 en el sentido transversal.

Arreglo Cuer	PFA/PBA						
Sismo	Μ	T _B [s]	ξ _B [%]	αΒ	PBA	x=1.0	∆/H
10/12/94	6.4	0.240	12.0	5	12.92	1.20	0.000026
09/10/95	7.3	0.225	12.5	5	13.46	0.99	0.000023
15/07/96	6.5	0.235	12.0	5	7.77	1.33	0.000017
03/02/98	6.0	0.220	12.5	5	5.29	1.14	0.000009
20/04/98	5.4	0.220	12.5	5	4.53	1.24	0.000008
15/06/99	7.0	0.240	12.5	5	29.06	1.44	0.000073
30/09/99	7.4	0.230	12.5	5	38.33	1.16	0.000073

El edificio mostró moverse como un bloque rígido sobre el suelo en el que está desplantado, lo que se puede ver con la forma de los espectros de piso, en los cuales las amplitudes mayores se encuentran alrededor del periodo fundamental del suelo. Sólo en los sismos de 15/07/96 y 20/04/98 se obtuvieron espectros de piso donde los máximos se encontraban en los periodos correspondientes al de la estructura.

Figura 2.7.2. Variación del periodo con respecto a la aceleración máxima registrada en la base del edificio.

También se pudo apreciar el cambio en el periodo fundamental inferido de sismo a sismo. Se buscó una tendencia similar a la observada en los otros edificios, de tipo logarítmico, y se logró un ajuste bueno en el sentido longitudinal con un coeficiente de determinación de 0.72, y un ajuste mucho más disperso en la dirección transversal del edificio, con un coeficiente de determinación de 0.45.

En el SEC3 se puede ver de nuevo el cambio del periodo del edificio dentro de un mismo sismo, tal como se muestra en la figura 2.7.3, donde para un periodo de 0.20 s se logra reproducir la primera parte del sismo, mientras que al introducir un periodo de 0.23 s en el modelo simplificado, se logra coincidir con la parte final del registro. Conservando los valores de α_B y ξ_B constantes, los espectros de piso calculados son prácticamente iguales en ambos casos y también muy similares al espectro registrado en la azotea.

Figura 2.7.3. Variación del periodo estructural en el transcurso de un solo evento.

CAPÍTULO 3: ESTUDIO PARAMÉTRICO EN CALIFORNIA

3.1 Sismos empleados

A pesar de estar en una zona en la cual se cree que tiene una alta sismicidad, los 20 edificios de California que fueron estudiados no cuentan con un gran número de registros, o en ocasiones, no fue posible conseguir la información para todos ellos en las bases de datos utilizadas. Aunque han estado instrumentados por más de 15 años, sólo han registrado a lo sumo 4 eventos sísmicos. Para este conjunto de edificios, los registros se obtuvieron de dos bases de datos: CISN Engineering Strong Motion Data Center y COSMOS Virtual Data Center. En la primera fuente se encuentran los datos de los edificios instrumentados por CSMIP (California Strong Motion Instrumentation Program) en formatos que contienen la información procesada. Este procesamiento consiste en una corrección de línea base al acelerograma, seguido por un filtro Butterworth pasa-banda que elimina el ruido en la señal. Las frecuencias de corte son las mismas para todos los registros de un mismo edificio y para el mismo sismo, sin embargo no se especifica el criterio empleado para la selección de ellas. Las frecuencias bajas de corte se encontraron entre 0.10 y 0.6 Hz, mientras que la frecuencia alta de corte fue de 23 Hz. La velocidad y el desplazamiento se obtienen después de integrar una y dos veces, respectivamente, el acelerograma con corrección de línea base y luego ambos resultados son afectados por el mismo filtro pasa-banda. En la segunda base de datos se encuentran los registros de los edificios instrumentados por CSMIP y USGS (United States Geological Survey). Aquí se pueden encontrar los datos sin procesar o con el mismo procesamiento descrito anteriormente. En los casos donde sólo estaba disponible la información sin filtrar, se realizó el procesamiento de la señal aplicando una corrección de línea base de tipo lineal y un filtro Butterworth pasa-banda con frecuencias de corte dentro de los mismos rangos mencionados (Tabla 3.2.1). Los desplazamientos se obtuvieron después de integrar dos veces el acelerograma con corrección de línea base y luego se le aplicó el mismo filtro. La corrección de línea base se hizo en Excel y el filtrado en Degtra.

Figura 3.1.1. Ubicación de los focos de los sismos empleados para el estudio de los edificios de California, Estados Unidos.

Los 5 sismos con los que se trabajó en este caso, presentados en la tabla 3.1.1, se originaron en fallas de transformación, donde los focos se encuentran a profundidades someras. Los sismos de Northridge y Whittier fueron sismos de falla inversa; el desplazamiento se da sobre una superficie de falla oblicua en la que el bloque superior se desliza hacia arriba sobre el bloque inferior, debido a los esfuerzos de compresión a los que está sujeta la zona. Los sismos de Landers, Loma Prieta e Imperial Valley fueron originados por una falla lateral, como lo es la falla de San Andrés; los bloques se desplazan horizontalmente a lo largo de una falla vertical.

				neryville PPP	yward City Hall	yward 13-St School	dmont Jr. HS	chmond City Hall	Centro Imp.Co	ng Beach Har.Ad	ng Beach VA Hospital	7St UCLA	15St Office	19St Office	Hollywood Storage	Wadsworth VA Hospital	wport Beach Hoag Hospital	rwalk 12400 lmp. Hwy.	rwalk 12440 lmp. Hwy.	mona 6St	n Bernardino 5St	n Bernardino Vanir Tower	mar Olive View Med.Center
SISMO	FECHA	Mw	PROF [km]	ΕU	На	На	Pie	Ric	Ē	Lor	Lor	Γ	ΓA	Γ	ΓA	ΓA	Ne	No	No	Po	Sa	Sa	Syl
Imperial Valley	15/10/79	6.5	8.0						\checkmark														
Whittier	01/10/87	6.1	9.5																\checkmark				\checkmark
Loma Prieta	17/10/89	7.1	18.0		\checkmark			\checkmark															
Landers	28/06/92	7.3	1.1																				
Northridge	17/01/94	6.9	19.0																				\checkmark

Tabla 3.1.1. Sismos seleccionados para el análisis de los
edificios instrumentados en California.

Aunque en algunos edificios la estructura tenía registros para más de un sismo, se eligieron los que estuvieran completos tanto en el edificio como en la estación de campo libre, para de esta manera poder realizar un estudio paramétrico considerando los efectos de interacción suelo-estructura.

3.2 Estudio con registro en la base

La cantidad de edificios instrumentados en Estados Unidos es amplia en las zonas de alta sismicidad como lo es el estado de California (Reinoso y Miranda, 2005). Esto permitió que se estudiaran estructuras de diferente tipo en cuanto a su uso, su sistema estructural y su altura, y a la vez validar el modelo continuo simplificado para diferentes geometrías y relaciones de rigidez. La figura 3.2.1 muestra las proporciones de cada tipo de edificio con respecto al total estudiado (Goel y Chopra, 1997; Kim y Stewart, 2003).

Figura 3.2.1. Porcentajes de los diferentes tipos de edificios estudiados en California en cuanto a su sistema estructural (izquierda), uso (medio) y número de pisos (derecha).

Los edificios seleccionados para ser parte de este trabajo han sido estudiados por otros autores debido a que han registrado varios de los sismos más importantes ocurridos en la última mitad del siglo XX en California. La información registrada ha servido para el estudio de sus periodos ante sismos fuertes y en los casos donde la instrumentación ha sido permanente, ha sido posible hacer estudios de vibración ambiental y forzada (Luco et al., 1987b; Ivanovic et al., 2001a; Trifunac et al., 2001a y 2001b). Los valores inferidos en este estudio a partir de la identificación de sistemas para el periodo T_B de los edificios fueron comparados con aquellos obtenidos por Goel y Chopra (1997) y Stewart et al (1999a). Se encontró que en el 60% de los casos estudiados los periodos estimados en este trabajo estuvieron dentro de un rango de ±5% de aquellos calculados por los autores mencionados. En los casos restantes se llegó a obtener valores de periodo hasta 32% mayores que los publicados en sus trabajos. Las fracciones de amortiguamiento crítico ξ_B fueron notablemente mayores en los trabajos previos que en el presente, debido a que se calcularon a partir de un sistema de un grado de libertad mientras que el modelo simplificado empleado en este análisis es un modelo continuo con un número infinito de grados de libertad.

No.	Edificio	No. de pisos	Altura [m]	Sistema Estructural	Código de Edificio	Corte BW	Corte BW Sismo		PGA [cm/s ²]	$T_{B}\left(s\right)$	ξ _B (%)	α _B
						[n2]		NS	173.64	2.45	6.5	25
1	Emeryville PPP	30	91.44	MCR	USGS 1662	ND	Loma Prieta	EW	208.84	3.00	4.0	30
	Havward Citv						0.20-23 Loma Prieta -		53.64	1.15	2.0	25
2	Hall	11		SD	USGS 1129	0.20-23			43.72	0.87	3.0	20
2	Hayward 13-St.	10	61.20	20		0.40.00	Lama Driata	NS	66.53	1.27	2.6	4.8
3	School Bldg.	13	61.30	50	CSIVIIP 58354	0.40-23	Loma Prieta	EW	77.05	1.33	2.2	14
4	Piedmont Jr.	3		MCCR	CSMIP 58334	0 30-23	Loma Prieta	NS (T)	84.84	0.17	4.5	2
	High School			WIGOIX	0000	0.00-20	Lonia i nota	EW(L)	70.59	0.16	4.0	2
5	Richmond City	3	11 43	SD	CSMIP 58503	0.30-23	Lomaprieta	NS (T)	113.59	0.30	6.8	1.3
Ľ	Hall							EW (L)	84.05	0.26	8.0	1.5
6	El Centro Imp.	6	24.89	SD	CSMIP 01260	0.17-23	Imperial Valley	NS (T)	284.03	0.66	9.5	6
<u> </u>	Co. Ser. Bldg.							EVV (L)	324.96	1.60	12.0	4
7	Long Beach Har.	7	31.70	MA	CSMIP 14323	0.50-23	Whittier	NS(L)	32.26	1.13	5.4	3.1
	Au. Blug.							EVV (I)	62.02	0.56	2.0	20
8	Long Beach VA	11	39.62	MCCR	USGS 5106	0.10-23	Northridge		03.0Z /1.83	0.55	2.0	12
<u> </u>									273.40	0.00	7.0	7
9	Blda	7	28.83	SD	CSMIP 24231	0.20-23	Northridge	EW/	214.50	1.09	5.5	8
	Didg.							NS (L)	200.80	3 10	4.5	16.6
	LA 15-St. Office	15	83.52	MA		0.20-23	Northridge	FW (T)	131.21	3 10	6.0	16.6
10	Blda.				CSMIP 24569			NS (L)	31.18	3.11	2.5	30
						0.10-23	Landers	EW (T)	33.57	3.27	3.5	30
4.4	LA 19-St. Office	10	00.70			0.00.00	N I a utila utilation a	NS (L)	243.23	3.47	2.6	4
111	Bldg.	19	88.70	10174	0010111 24043	0.20-23	Northridge	EW (T)	513.31	3.90	2.1	30
		14 4		MCR	CSMIP 24236	0.20-23	Northridge	NS (T)	272.71	2.30	7.5	5
12	LA Hollywood		45 34					EW (L)	202.79	0.81	8.8	8.5
12	Storage Bldg.	17	+0.0+		0010111 24200		Whittier	NS (T)	110.70	1.85	6.9	4.2
						0.10 20	Windor	EW (L)	57.34	0.64	11.0	6.2
13	LA Wadsworth	6		МА	USGS 5082	0.20-23	Northridge	NS	177.88	0.95	2.3	20
	VA Hospital	-					·······	EW	263.53	0.98	4.0	20
14	Newport Beach	11	44.78	MCCR	CSMIP 13589	0.24-23	Northridge	NS (L)	52.11	0.73	2.1	3.7
	Hoag Hospital						Ŭ	EW (I)	75.02	0.82	3.0	10
15	INOFWAIK 12400	7	29.87	MA	USGS 0634	ND	Northridge	INS EW/	201.33	0.52	20.0	10
<u> </u>	Norwalk 12440							EVV NS(T)	56.50	1.32	2.8	10
16	Imp Hwy	7	29.87	MA	USGS 5239	0.10-23	Whittier	FW (L)	48.63	1.32	2.0	10
	Pomona 6-St							NS (L)	67.12	0.86	5.2	13
17	Blda.	6	21.64	MCR	CSMIP 23544	0.40-23	Landers	FW (T)	49.59	1.24	3.5	15
	San Bernardino 5							NS (L)	33.64	0.53	5.5	3
18	St.	5	20.42	MCCR	CSMIP 23285	0.60-23	Northridge	EW (T)	33.93	0.68	4.4	4.1
10	San Bernardino	0	25.04	D.4.0	COMID 00545	0.10.00	L on dans	NS (T)	79.11	2.01	3.1	25
19	Vanir Tower	9	35.84	IVIA	CSIVIIP 23515	0.10-23	Landers	EW (L)	67.00	2.07	4.0	15
						0.20.22	Northridae	NS	782.41	0.37	18.0	3
20	Sylmar Olive	6	29.26	MCCR	CSMIP 24514	0.20-23	ivortnridge	EW	375.52	0.30	18.0	3.5
20	View Med. Cen.	0	23.20	WIGGIN	03IVIIF 24314	0.50-23	Whittier	NS	54.74	0.31	13.0	8.5
				EW 55.94							11.0	8
MCR: MCCI	Marcos en concreto R: Muros de corte en	reforzado concreto i	reforzado		SD: Sistema o MA: Marcos er	dual (marco n acero	os y muros en conc	reto reforzad	o)	ND: Info	rmación no o	disponible

Tabla 3.2.1. Datos generales de los edificios estudiados y parámetros obtenidos de la identificación de sistemas utilizando como entrada el registro en la base del edificio.

El modelo simplificado fue capaz de reproducir en gran medida los movimientos registrados en los edificios a nivel de aceleraciones y desplazamientos. Debido a que en las bases de datos también

se encontraban las historias de velocidad y desplazamiento calculadas a partir de las aceleraciones registradas, se pudo comparar también las historias de distorsión de cada nivel con respecto a la base. En general, los cálculos obtenidos del análisis que considera el sistema empotrado en la base se asemejaron más a los datos observados que lo que se pudo lograr ingresando el registro de campo libre como entrada del sistema. Todos los resultados gráficos arrojados por la identificación de sistemas hecha con el programa SystemIDv1.9 se encuentran en el Anexo G. Los parámetros obtenidos T_B, $\xi_B y \alpha_B$ del análisis utilizando como movimiento de entrada aquel registrado en la base del edificio, y algunas características de éstos se encuentran resumidos en la tabla 3.2.1.

El periodo inferido para los edificios demostró seguir una tendencia conforme a lo esperado al relacionarlo con la altura de los edificios y con su sistema estructural. El patrón general mostró que para alturas mayores, el periodo fue a su vez mayor. En este punto del trabajo no se muestra una expresión para definir el periodo según la altura debido a que se cuenta con pocas muestras para cada tipo de sistema estructural. Sin embargo, después de trazar una tendencia por los puntos de común sistema estructural, se puede apreciar en las pendientes de las líneas punteadas de la figura 3.2.2 que en cuanto a la flexibilidad de los diferentes sistemas estructurales, se mantiene el orden pensado de ésta. Es decir, el sistema más flexible fue el de marcos en acero (MA), le siguió el de marcos en concreto (MCR), después el sistema dual (SD) y finalmente los muros de corte (MCCR).

Figura 3.2.2. Periodo de los edificios con respecto a la altura para los diferentes sistemas estructurales.

Por otro lado, los valores estimados de α_B se encontraron en ocasiones por fuera de los rangos pre-establecidos para cada tipo de estructura, debido a que los valores esperados no reproducían de mejor manera la forma de las amplificaciones de la aceleración máxima registrada en la base, PBA, ni los modos superiores en los espectros de piso. Los sistemas estructurales en los que este parámetro se mantuvo entre los rangos propuestos por Miranda y Reyes (2002) fueron los de marcos, tanto en concreto reforzado como en acero, donde respectivamente en sólo el 37% y 13% de los casos los valores fueron menores de 7. En los edificios de sistema dual, donde los valores sugeridos variarían entre 1.5 y 6, el 60% de los valores se encontraron por fuera del rango. Finalmente, los edificios de muros de corte en concreto reforzado presentaron la mayor anomalía con respecto a lo esperado, ya que sólo el 17% de las veces el parámetro α_B de magnitud pequeña (entre 0 y 1.5) describió de manera adecuada la forma de la distribución lateral de deformaciones correspondientes al sistema estructural. La figura 3.2.3 muestra estos resultados

gráficamente, en donde se encuentra sombreado el rango de valores sugeridos para cada tipo de estructura.

Figura 3.2.3. Valores inferidos de α para los diferentes sistemas estructurales.

De la misma forma como se vio en los edificios de la ciudad de México, no hubo una relación clara entre los niveles de aceleración máxima registrados en la base del edificio con los valores de amortiguamiento inferidos de la identificación de sistemas. De la figura 3.2.4 se podría obtener una tendencia creciente para los valores obtenidos en los edificios a base de sistemas duales, y en alguna medida se podría lograr lo mismo para los edificios de muros de corte. Sin embargo como se puede apreciar, la dispersión sería muy grande para proponer una expresión confiable. Algo semejante pasaría con los valores de amortiguamiento obtenidos para los edificios de marcos en concreto reforzado y en acero, los cuales son los que presentan la mayor dispersión. Sin embargo se puede destacar que a excepción del caso donde para una PBA de 200 cm/s² se obtuvo un amortiguamiento del 20%, los marcos de acero presentaron los menores valores de amortiguamiento, mientras que los edificios a base de muros de corte presentaron los valores más altos.

Figura 3.2.4. Valores inferidos de ξ para los diferentes sistemas estructurales con respecto a la aceleración máxima medida en la base.

Figura 3.2.5. Resultados obtenidos para el edificio Hayward City Hall a nivel de azotea, en el sentido Este-Oeste del edificio.

Detallando en algunos casos particulares de los edificios se puede ver que aún cuando no se contaba con mayor información sobre la geometría del edificio, fue posible obtener resultados muy similares a los registrados en los edificios. Tal es el caso del edificio Hayward City Hall, que aunque los registros se encontraban bajo este nombre, no coincide con el verdadero edificio de gobierno de Hayward, el cual es de 4 niveles, mientras el estudiado es de 11. No fue posible conseguir un plano del edificio ni una foto de éste, sin embargo con tan solo saber a qué porcentajes de la altura estaban ubicados los instrumentos se pudo reproducir de muy buena manera la información concerniente a la aceleración y a los desplazamientos. La historia de aceleración, espectro de piso e historia de distorsión con respecto a la base del nivel de azotea se muestra en la figura 3.2.5.

En otros casos, como en Hayward 13-St School Bldg., LA 15-St Office Bldg. y Norwalk 12440 Imp. Hwy., se encontró que en los espectros de piso calculados, los picos no lograban coincidir precisamente con los picos de los espectros calculados y sin importar los valores de los parámetros elegidos, siempre los calculados se ubicaban ligeramente a un lado de los calculados. Las historias de aceleración en la fase más intensa del movimiento tampoco se lograron obtener, mientras que en la fase final del registro donde las amplitudes eran más pequeñas y armónicas, sí se logró un acercamiento mayor entre lo calculado y lo registrado. A pesar de estas diferencias en las aceleraciones y espectros, las historias de desplazamiento y distorsión sí fueron reproducidas de manera muy cercana. La figura 3.2.6 muestra el ejemplo para el edificio de Hayward antes mencionado a nivel de azotea.

Figura 3.2.6. Resultados obtenidos para el edificio Hayward 13-St School Bldg. a nivel de azotea en el sentido Este-Oeste del edificio.

Lo contrario sucedió en edificios como Piedmont Jr. High School y Richmond City Hall, en donde la página de aceleración y espectros de piso mostró cálculos acertados con respecto a la información observada, mientras que la página de distorsiones no mostraba ninguna semejanza entre los dos grupos de datos. En estas historias de desplazamiento relativo se puede ver que el problema puede deberse a procesos diferentes de filtrado para las aceleraciones y los desplazamientos medidos en el edificio. En el caso del edificio de Piedmont, las distorsiones calculadas son mucho más pequeñas que las registradas (línea continua en la figura 3.2.7). Sin embargo se puede ver que existe una serie de distorsiones con frecuencia más alta y magnitud más pequeña sobre la filtrar estas frecuencias se encontró que aunque se filtrara de nuevo todo el movimiento para estas frecuencias bajas el problema permanecía.

Figura 3.2.7. Historias de distorsión con problema de filtrado para los dos niveles de piso instrumentados por encima del nivel del terreno, en el edificio Piedmont Jr. High School.

El edificio Emeryville Pacific Park Plaza, el cual se encuentra sobre una delgada capa de suelo blando joven de la bahía de San Francisco, se pudo ver diferencias notables en los espectros de piso. Es posible que debido a la característica del suelo, los efectos de la interacción suelo-estructura sean mayores que en otros sitios del estado de California donde el suelo es más firme, introduciendo cabeceo en la estructura e impidiendo que los niveles de desplazamiento calculados alcancen aquellos registrados (Dunand et al., 2004). Además los efectos de torsión que se pueden dar en un edificio con tan alta irregularidad en planta, y que no se toman en cuenta en el modelo simplificado, pueden ser notables y evitar que los parámetros del modelo sean suficientes para reproducirlas. En las figuras 3.2.8 y 3.2.9 se muestran los resultados gráficos obtenidos para este edificio durante el sismo de Loma Prieta.

Figura 3.2.8. Resultados de aceleración para el edificio Emeryville Pacific Park Plaza durante el sismo de Loma Prieta, en el sentido Norte-Sur de la estructura.

Figura 3.2.9. Resultados de distorsiones para el edificio Emeryville Pacific Park Plaza durante el sismo de Loma Prieta, en el sentido Norte-Sur de la estructura.

El edificio Long Beach VA Hospital es una estructura poco dúctil a base de muros de corte, que sufrió daños durante el sismo de Northridge, después del cual fue rehabilitado. Como no se buscaba rigidizar aún más el edificio, lo cual lo hubiera dejado más susceptible a daños mayores y a tiempos de reparación mayores, se llevó a cabo un aislamiento de base después del cual se registraron varios sismos, pero ninguno ha sido de magnitud o intensidad significativa. A pesar de haberse comportado de manera no lineal, el modelo elástico logró reproducir el movimiento tal como se muestra en la figura 3.2.10, probablemente debido a que los daños no se presentaron en los elementos que soportan la carga lateral. Sin embargo los valores de α que lograron minimizar el error entre lo registrado y lo calculado no se encuentran en el rango sugerido para este parámetro cuando se trata de sistemas de muros de corte.

Figura 3.2.10. Resultados de aceleraciones (arriba) y distorsiones con respecto a la base (abajo) del edificio Long Beach VA Hospital.

3.3 Estudio con registro de campo libre

Después de tener el estudio paramétrico de los edificios al introducir la señal registrada en la base, se hizo el mismo estudio pero esta vez utilizando la señal registrada en campo libre (CL) como entrada del sistema. Además de ver la variación que tendrían los parámetros de periodo y fracción de amortiguamiento, se buscaba ver qué tan bien se podían reproducir los registros de aceleración y desplazamiento relativo en los niveles instrumentados utilizando la señal del terreno próximo al edificio.

El primer paso fue encontrar las estaciones más cercanas a cada edificio en caso de que en el arreglo de instrumentos propio de éste no estuviera considerada la estación de campo libre. Se encontraron estos puntos de medición desde distancias de 36 m del edificio hasta 500 m.

No.	Estación	Código CL	Distancia a CL [m]	Sismo	V _s [m/s]	Sentido	Ángulo de giro βº	Coef. de correlación máximo	T _{CL} [s]	ξ _{CL} [%]	α _{CL}	T _{CL} /T _B	ξ _{CL} /ξ _B
1	Emeryville Pacific Pk. Plaza	USGS 1662	128	Loma Prieta	189	NS EW	0	0.57 0.70	2.50 3.08	8.0 4.2	25 30	1.02 1.03	1.23 1.05
2	Hayward City Hall	USGS 1129	143	Loma Prieta	674	NS EW	0	0.64 0.65	1.17 0.88	1.8 2.2	25 20	1.02 1.01	0.90 0.73
3	Hayward 13-St. School Bldg.	CSMIP 58219	384	Loma Prieta	411	NS EW	40-50 130-40	0.43	1.27 1.37	5.0 1.0	5.3 14	1.00 1.03	1.92 0.45
4	Piedmont Jr. High School	CSMIP 58338	36	Loma Prieta	558	NS (T) EW(L)	0	0.91	0.19	4.5 4.0	2	1.12 1.13	1.00
5	Richmond City Hall	CSMIP 58503	198	Loma Prieta	253	NS (T) EW (L)	0	0.78	0.31	8.0 24.0	1.3 1.5	1.03 1.04	1.18 3.00
6	El Centro Imp. Co. Ser. Bldg.	CSMIP 01335	104	Imperial Valley	177	NS (T) EW (L)	2-92 88-2	0.61	0.65	11.5 9.0	6 4	0.98	1.21 0.75
7	Long Beach Har. Ad. Bldg.	CSMIP 14395	61	Whittier	213	NS (L) EW (T)	0	0.80	1.15	5.0 2.8	3.1 18	1.02	0.93
8	Long Beach VA Hospital	USGS 5106	299	Northridge	369	NS (T) EW (L)	0	0.72	0.58	1.8 3.8	30 12	1.04 1.03	0.72
10	LA 15-St. Office Bldg.	CSMIP 24611	229	Landers	360	NS (L) EW (T)	47-137 137-133	0.65 0.69	3.12 3.25	2.0 2.5	30 30	1.00 0.99	0.80
10	LA Hollywood	CSMIP 24303	40	Northridge	000	NS (T) EW (L)	0	0.88	2.32 0.82	9.5 9.0	5 8.5	1.01	1.27
12	Storage Bldg.		43	Whittier	293	NS (T) FW (L)	0	0.77	1.87	9.0	4.2	1.01	1.30
14	Newport Beach Hoag Hospital	CSMIP 13610	198	Northridge	320	NS (L) EW (T)	115-155 25-115	0.66	0.75	3.5	3.7	1.03	1.67
16	Norwalk 12440 Imp. Hwv.	USGS 5239	40	Whittier	305	NS (T) EW (L)	180 0	0.84	1.32	3.2 2.0	10 10	1.00	1.14 0.87
17	Pomona 6-St. Bldg.	CSMIP 23525	294	Landers	381	NS (L) EW (T)	180 180	0.71	0.92	8.5 5.0	13 15	1.07	1.63
19	San Bernardino Vanir Tower	CSMIP 23522	71	Landers	280	NS (T) EW (L)	180 180	0.61	2.03	2.1	25 15	1.01	0.68
20	Sylmar Olive View	CSMIP 24514	138	Northridge	466	NS FW	94-4	0.80	0.38	28.0	3	1.03	1.56

Tabla 3.3.1. Datos de la estación de campo libre y parámetros obtenidos de la identificación de sistemas empleando esta señal como entrada en la base.

El segundo paso consistió en verificar que los instrumentos estuvieran orientados en el mismo sentido tanto en el terreno como en el edificio. En los casos donde la estación de campo libre era parte del arreglo de instrumentos del edificio, donde el edificio y la estación tienen el mismo código, los instrumentos tienen la misma orientación con respecto al norte, coincidiendo con los sentidos longitudinal y transversal del edificio. En las ocasiones en que se tomó el registro de campo libre de un instrumento que no hacía parte del arreglo, se encontró que tienen una orientación Norte-Sur y Este-Oeste. Por lo tanto fue necesario girar las historias de aceleración y desplazamiento registradas en estos equipos el ángulo necesario para hacerlos coincidir con la orientación de los instrumentos del edificio. Se elaboró un programa en Visual Basic.Net en donde se ingresan los registros de campo libre y luego se entra el par de ángulos cuyo coseno traslade el sentido N-S y E-O del terreno al sentido longitudinal del edificio y luego al transversal. Estos pares de ángulos se muestran en la tabla 3.3.1, en la columna "Ángulo de giro β o".

Antes de ingresar estos movimientos al sistema, se calculó la correlación cruzada entre la señal de campo libre, girada cuando fuese necesario, y de la base del edificio con el fin de encontrar si

había un desfasamiento entre el momento en que empezaba a registrarse el movimiento en el terreno y en el edificio. En la figura 3.3.1 se muestra el proceso que se siguió, donde en la parte superior se encuentra el desfasamiento entre ambas señales en el punto donde se maximiza la función de correlación cruzada. Para el ejemplo particular del edificio LA Hollywood Storage, en el sentido Este-Oeste, se obtuvo una correlación cruzada máxima de 0.77 al mover la señal de campo libre 15 intervalos de muestreo, *dt*, con respecto a la del edificio. En la gráfica del medio se muestran las historias de aceleración de la base del edificio y de campo libre donde se puede ver que sí existe un desfasamiento ya que los puntos máximos no coinciden en el tiempo. Finalmente, en la parte inferior de la figura se muestra que al cortar la señal de campo libre 15 intervalos de muestreo, se logra que ambas señales estén en fase.

Figura 3.3.1. Procedimiento para poner en fase los registros de campo libre y de la base del edificio. Máxima correlación entre las dos señales (arriba), señales desfasadas (medio) y señal de campo libre recortada para entrar en fase con la de la base del edificio (abajo).

Además se buscó ver si la señal había sufrido muchos cambios en la distancia que separaba la estación del edificio, sobre todo cuando las estaciones se encontraban más alejadas. La diferencia entre las dos señales no sólo debe ser por los efectos de filtrado que ejerce la cimentación a la señal, sino también la presencia de otras estructuras, en caso de haberlas, en el trayecto entre la estación y el edificio. Debido a las cortas distancias entre ambas estaciones, el filtrado de alta frecuencias por la trayectoria de las ondas no sería importante.

Una vez se encontraba el desfase de tiempo que había entre las dos señales para obtener la correlación máxima entre ellas, se obtuvo que a mayor distancia las correlaciones disminuyen de la forma mostrada en la figura 3.3.2. Las correlaciones que se encuentran por debajo de la línea media a distancias entre 100 y 300 m, corresponden a las estaciones de campo libre en donde fue necesario girar las historias registradas ángulos mayores a 10°. Cuando el giro consistía en invertir el sentido de los instrumentos las correlaciones dieron mayores de 0.80, al igual que en los casos donde el giro era pequeño (menor de 10°). Los registros de campo libre donde las correlaciones resultaron por debajo de 0.60 no fueron utilizados para el análisis.

Figura 3.3.2. Correlación máxima entre la señal de campo libre y base de la estructura con respecto a la distancia entre ellas.

Debido a la interacción inercial suelo-estructura, la cual introduce una flexibilidad adicional al sistema, se esperaba obtener un alargamiento del periodo al emplear el registro de campo libre como entrada del modelo simplificado. Esta disminución en la rigidez se debe a las fuerzas de inercia que se desarrollan en el edificio como consecuencia de la vibración a la que es sometida. Esto a su vez genera fuerzas de corte y momentos flectores en la base, causando un movimiento relativo con respecto a campo libre (Stewart et al., 1998). El efecto inercial de la interacción es más notable en estructuras cuyas cimentaciones consisten en losas de dimensiones pequeñas, flexibles y someras. Por lo tanto es de esperarse que en los edificios altos que comúnmente tienen pilotes en sus fundaciones, este efecto de alargamiento del periodo no sea muy evidente. Debido a que la señal de campo libre tiene un mayor contenido de frecuencias altas, no se iba a lograr reproducir con exactitud las aceleraciones y los espectros de piso. Al ir variando los parámetros del modelo se intentó hacer coincidir el pico del modo fundamental del edificio, así como el resto del espectro en los periodos largos.

En la mayoría de los casos el periodo efectivamente fue mayor que el obtenido del estudio paramétrico previo, salvo dos casos en los que el periodo considerando el efecto de interacción, T_{ISE}, resultó estar 1% y 2% por debajo del periodo considerando una base rígida. Los alargamientos del periodo resultaron ser hasta de 12%, lo cual se observó en el edificio Piedmont Jr. High School, aunque este fue uno de los casos en los que la comparación no se logró hacer de manera adecuada debido a problemas con los filtros de las señales, discutido previamente en el subcapítulo 3.2. Aunque se esperaba tener un efecto más notorio de este tipo de interacción en el suelo más blando (velocidades de corte menores), se encontró una mayor variación en suelos más firmes, tal como se puede ver en la figura 3.3.3. Esto puede estar relacionado con el hecho de que los edificios más altos del estudio se encuentran en terrenos menos firmes, pero a su vez cuentan con cimentaciones profundas que contrarrestan el efecto del alargamiento del periodo. La figura 3.3.4 muestra los valores obtenidos para el estudio con base rígida y considerando ISE para cada

tipo de estructura. El alargamiento más pronunciado se dio en los edificios a base de muros de corte de concreto reforzado.

Figura 3.3.3. Aumento en el periodo fundamental y fracción de amortiguamiento al considerar el registro de campo libre con respecto a la velocidad de onda de corte del terreno.

Figura 3.3.4. Periodos obtenidos con el estudio empleando la señal en la base de la estructura y la de campo libre.

Por otro lado, la fracción de amortiguamiento presentó grandes variaciones hacia arriba y hacia abajo de los valores obtenidos del estudio con el registro en la base, disminuyendo un 65% en el caso del edificio Hayward 13-St. School y triplicándose en el caso de Richmond City Hall. Aunque según la teoría, el amortiguamiento puede disminuir al considerar la ISE, no se esperaban cambios tan bruscos en este parámetro.

Los valores de α empleados fueron los mismos del estudio con la señal de la base de la estructura debido a que se supuso que sin importar cuál registro se utilice, se conserva el mismo

sistema estructural. Si bien al considerar ISE se introduce una flexibilidad adicional al sistema, la relación de rigideces entre los elementos de corte y flexión dentro del edificio se considera constante.

Figura 3.3.5. Resultados obtenidos para el edificio El Centro Imp. Co. Ser. empleando la señal de campo libre como entrada al sistema.

En el edificio El Centro Imp. Co. Ser. se alcanza a ver cómo fue posible reproducir de manera bastante aproximada las historias de aceleración y de distorsión a pesar de no tener espectros de piso idénticos. Los resultados gráficos restantes se incluyen en el Anexo G, después del respectivo estudio con la señal en la base de cada edificio.

3.4 Filtrado de señal de campo libre

Después de haber demostrado que con el modelo continuo simplificado era posible reproducir los sismos registrados en los edificios instrumentados a partir del movimiento en su base, se quiso emplear una función de transferencia conocida de manera que al multiplicarla por la señal del terreno, se obtuviera la de la base del edificio. La motivación surgió del hecho de que no se tienen tantos edificios instrumentados para hacerles un estudio paramétrico como el mostrado en este trabajo. Para tener una idea de la respuesta de algún edificio existente sin que éste se encuentre instrumentado, se podría modelar el edificio partiendo de que se cuenta con los planos de éste y con las propiedades de los materiales. Además se tendrían que hacer varias suposiciones en cuanto a las rigideces y agrietamientos a considerar en los elementos del modelo para obtener una respuesta similar a la real. Algo mucho más sencillo sería obtener la señal de campo libre de algún lugar cercano al edificio, afectarla por la función de transferencia según las dimensiones de la cimentación e ingresarla en el modelo simplificado con los 3 parámetros vistos en capítulos anteriores.

Esta interacción cinemática es el resultado de la presencia de una cimentación rígida sobre o en el suelo, la cual presenta movimientos diferentes a la del campo libre adyacente debido a la incoherencia y ángulo de incidencia de las ondas y a la profundidad hasta la que llegue la cimentación. Esto genera que los desplazamientos en la base se reduzcan con respecto a los de campo libre, y disminuyen a medida aumenta su profundidad. Los espectros de la base y campo libre son diferentes, especialmente en la zona de frecuencias altas (Luco y Wong, 1987a; Stewart et al., 1999b; Avilés et al., 2002).

La función de transferencia que se utilizó fue estudiada en principio por Luco y Wong (1986) quienes presentaron una solución numérica exacta para cimentaciones cuadradas excitadas por ondas de corte verticales e incoherentes. Posteriormente, Veletsos et al (1997) propusieron un método aproximado para estimar las funciones de transferencia en cimentaciones rectangulares definidas para este mismo tipo de ondas, dado por:

$$\sqrt{\frac{S_{ll}}{S_g}} = \sqrt{g_1(dy)g_1(dx)}$$
(3.4.1)

en donde S_{ll} y S_g son los espectros de densidad de potencia del desplazamiento de la base y del movimiento en el terreno, respectivamente. Las funciones $g_1(dy)$ y $g_1(dx)$ están definidas como:

$$g_1(d_x) = \frac{\sqrt{\pi}}{2d_x} \Phi(2d_x) - \frac{1 - \exp(-4d_x^2)}{4d_x^2}$$
(3.4.2)

$$g_1(d_y) = \frac{\sqrt{\pi}}{2d_y} \Phi(2d_y) - \frac{1 - \exp(-4d_y^2)}{4d_y^2}$$
(3.4.3)

 $\Phi(2d_i)$ es la función de error definida entre 0 y $2d_i$, d_y y d_x son parámetros que definen la relación efectiva entre los lados de la cimentación definida como:

$$\varepsilon = \frac{d_x}{d_y} = \frac{\gamma_x a}{\gamma_y b}$$
(3.4.4)

siendo *a* y *b* los semi-lados de la cimentación y γ_x y γ_y parámetros que miden la incoherencia del suelo en ambas direcciones de la cimentación. La medida de la variación espacial del movimiento del terreno está definida por el parámetro $\tilde{\alpha}_0$ como:

$$\widetilde{a}_0 = \sqrt{\gamma_x \gamma_y} \frac{\omega b_e}{v_s}$$
(3.4.5)

Donde ω es la frecuencia circular, V_s es la velocidad de onda de corte del suelo y b_e es el semiancho equivalente a una cimentación cuadrada definido como:

$$b_e = \sqrt{ab} \tag{3.4.6}$$

Con estas expresiones es posible encontrar las funciones de transferencia considerando el tipo de suelo y las dimensiones de la cimentación, en función del parámetro \tilde{a}_0 . En el trabajo de Veletsos se encontró que no importa la relación entre ancho y largo de la cimentación para el filtrado de las frecuencias altas, sino el área total de ésta. En la figura 3.4.1 se muestran los resultados para cimentaciones rectangulares con diferentes relaciones largo-ancho y el caso de la cimentación circular.

Figura 3.4.1. Función de transferencia para cimentaciones rectangulares y circulares. Figura 4 tomada de Veletsos et al (1997).

Más adelante Kim y Stewart (2003) trabajaron con esta teoría obteniendo una simplificación en cuanto a las propiedades del suelo. Los parámetros que miden su incoherencia (γ_x y γ_y) fueron

sustituidos por el parámetro κ_a , también definido previamente por Luco y Wong, que está en función de la velocidad de onda de corte del suelo. De esta manera, la ecuación 3.4.5 para cimentaciones rectangulares sujetas a ondas verticales se re-escribe de la siguiente manera:

$$\widetilde{a}_0 = \kappa \frac{\omega b_e}{v_s} \tag{3.4.7}$$

En el trabajo de Kim y Stewart se hizo una calibración para encontrar la relación entre las dos características, de donde resultó la figura 3.4.2, la cual fue empleada para el presente estudio.

Figura 3.4.2. Valores de κ_a en función de la velocidad de onda de corte del suelo. Figura 6 tomada de Kim y Stewart (2003).

Utilizando esta teoría se definió la función de transferencia para usar en los edificios a partir de las dimensiones de la cimentación y la velocidad de corte del suelo. Como esta función se encuentra en el dominio de la frecuencia, se buscó un filtro equivalente que fuera comúnmente utilizado para poder usar los programas disponibles para el filtrado de señales como el Degtra y el Seismosignal. La forma del filtro teórico de Veletsos se puede alcanzar con cualquiera de los filtros conocidos de pasa-baja como Butterworth, Chebyshev y Bessel, siempre y cuando se utilicen los parámetros correctos en cada uno de ellos que produzcan la misma función de transferencia (Stearns y David, 1988). Se escogió utilizar el filtro Butterworth pasa-baja de orden 1 para todos los casos. Al ejecutar este filtro en ambos programas, se descubrió que había diferencias notables entre las señales filtradas resultantes así que se elaboró un programa en Visual Basic.Net para verificar cuál estaba utilizando las funciones de los filtros correctamente. Las señales filtradas con el programa elaborado para este trabajo entregaron los mismos resultados que el Degtra, por lo que se siguió empleando éste último para el filtrado del resto de los edificios.

Aunque se encontraron los filtros Butterworth que se asemejaban a la función de transferencia teórica, los resultados no fueron los deseados y por lo tanto se realizó el procedimiento con tan solo unos edificios. La figura 3.4.5 muestra los valores obtenidos para el edificio Emeryville Pacific Park Plaza a partir de sus características, la función de transferencia teórica y la equivalente en un filtro Butterworth, y finalmente los espectros de la señal de campo libre antes y después de filtrarla. Se destaca que como la planta de este edificio es irregular, no tiene valores para a y b, y el parámetro b_e fue determinado empleando el área total de la planta. Como se puede ver en este caso, aunque el filtro Butterworth sí se acerca mucho al filtro teórico, la frecuencia de corte no es lo suficientemente baja como para eliminar el contenido de frecuencias altas que están presentes en el terreno y que son filtradas por la cimentación. De esta manera, los parámetros T, ξ y α que reproducirían los datos registrados en el edificio se asemejarían más a aquellos obtenidos para el estudio que consideró ISE que el que sólo consideró la estructura.

Figura 3.4.5. Filtrado de la señal de campo libre Norte-Sur en el edificio Emeryville PPP.

En el edificio Hayward 13-St. School, el cual tiene una planta cuadrada, se obtuvo una frecuencia de corte en el filtro Butterworth de 14.3 Hz, demostrando también que no es una frecuencia los suficientemente baja para eliminar las altas frecuencias que se quieren filtrar para lograr reproducir el espectro registrado en la base del edificio. Teniendo en cuenta la alta dispersión que se tiene para el parámetro κ_{a} se podría aumentar su valor para lograr que la curva teórica redujera su amplitud más drásticamente, y así obtener una frecuencia de corte en el filtro Butterworth menor, pero aún así, ésta no alcanza a ser tan pequeña para lograr una diferencia visible.

Figura 3.4.6. Filtrado de la señal de campo libre Este-Oeste en el edificio Hayward 13-St. School.

CAPÍTULO 4: ESTUDIO DE VARIACIÓN DEL PERIODO

4.1 Variación del periodo fundamental

Existen diferentes trabajos que han documentado que el periodo de vibración durante sismos es por lo general significativamente mayor al medido a partir de pruebas de vibración ambiental o de vibración forzada de pequeñas amplitudes tales como los de Beck y Jennings (1980), Ivanovic et al., 2001b y Luco et al. (1987). Estos estudios han demostrado que aún si la estructura permanece dentro de su rango elástico es posible observar alargamientos importantes del periodo fundamental de vibración. También existen otros autores que han estudiado esta elongación del periodo en uno o varios edificios, ante múltiples sismos registrados empleando modelos de un grado de libertad, análisis espectrales y análisis por ventanas (Miranda, 1991; Celebi et al., 1993; Trifunac et al., 2001b; Clinton, 2006). Estos trabajos han descrito la variación del periodo en función de diferentes niveles de respuesta en la estructura como aceleraciones máximas en la base y desplazamientos máximos de azotea. También se encuentra el estudio de Durán (1996) en donde se reportó un alargamiento cercano al 50% en el periodo fundamental inferido a partir de sismos de intensidad baja y moderada en el edificio IMP, como función de la deformación lateral del edificio.

Aprovechando los valores de periodo fundamental inferidos para diferentes sismos registrados en el mismo edificio, como fue el caso de aquellos que se encontraban en la ciudad de México, fue posible estudiar el cambio de este parámetro en función de la distorsión máxima de azotea alcanzada en cada sismo. La distorsión máxima de azotea está definida como el desplazamiento relativo máximo que presentó ésta con respecto a la base en la duración del sismo, entre la altura total del edificio por encima del nivel del terreno. Esta distorsión representa una medida de la demanda de deformación lateral máxima que promediada en la altura, se dio en el edificio durante el sismo (Miranda, 1999; Miranda y Akkar, 2006).

Figura 4.1.1. Relación lineal entre las distorsiones máximas calculadas a nivel de la azotea y la aceleración máxima registrada en la base del edificio.

Figura 4.1.2. Variación del periodo normalizado con respecto a la distorsión máxima a nivel de azotea en edificios de México.
Se estudió la variación del periodo con respecto a las distorsiones debido a que esta característica proporciona una información más representativa del comportamiento de la estructura y dependiendo de sus valores se puede inferir si se presentan daños o no en la misma. Al comparar las distorsiones y aceleraciones máximas en la base, se encontró una relación cercana a una lineal, sugiriendo que al comparar el periodo fundamental con cada una de ellas se iba a obtener un ajuste del mismo tipo. La figura 4.1.1 muestra la relación entre las aceleraciones máximas registradas en la base y la distorsión máxima calculada entre la azotea y la base del edificio. En 4 de los 6 edificios estudiados de México, se encontró la misma relación entre las dos variables mencionadas para ambos sentidos de análisis. En los edificios IMP y JAL, donde era notorio el cambio de sistema estructural entre una dirección y otra, se encontraron relaciones diferentes para cada dirección, pero manteniendo una tendencia lineal.

Figura 4.1.3. Variación del periodo normalizado con respecto a la distorsión máxima a nivel de azotea para tres edificios de California.

En la figura 4.1.2 se muestra la variación del periodo para los edificios instrumentados en México en la cual se destaca el cambio rápido del mismo para demandas bajas de distorsión y luego tiende a estabilizarse. Los periodos de vibración han sido normalizados con respecto al inferido en el sismo que generó la menor respuesta en ese sentido del edificio, permitiendo observar qué tanto se alarga el periodo en los diferentes edificios. El aumento más pronunciado en las tendencias ocurre en el edificio JAL, donde antes de ser reestructurado, la elongación del periodo alcanzó un valor del 59%. Para el edificio MJ se encuentra un punto en cada dirección que no fue incluido en la regresión ya que son los correspondientes al primer sismo registrado en el edificio, el cual precedió la rehabilitación de la estructura, y que generó un periodo elevado comparado al resultante después de los procesos de refuerzo. El edificio IMSS es el que aparenta tener la menor variación en el periodo, llegando a un 4% en ambos sentidos. Sin embargo, aunque sólo se cuentan con cuatros sismos, esta aparente estabilidad del periodo puede ser debida a que la estructura llevaba más avanzado su proceso de reestructuración en cada sismo.

Los edificios de California que fueron utilizados en esta parte del trabajo fueron aquellos que registraron por lo menos tres sismos para lograr ver alguna tendencia similar o no, a la que se presentó en los edificios de México. Sin embargo los sismos registrados en California han sido de intensidades grandes, por lo cual no se tiene información del periodo para vibraciones de baja magnitud o bien para distorsiones pequeñas (menores a 0.0005). Algunos de los sismos de California empelados en esta parte no se incluyeron en el capítulo 3, sin embargo los resultados también fueron obtenidos con el programa SystemIDv1.9 como parte del trabajo.

Después de normalizar todos los periodos obtenidos para los edificios de México y relacionarlos con las distorsiones de entrepiso se obtuvo una gráfica con todos los puntos, de donde resultó una expresión logarítmica similar a las obtenidas en cada edificio, aunque con un coeficiente de determinación de 0.32. Al hacer la misma relación, pero esta vez con respecto a las frecuencias, también se obtiene una expresión logarítmica con un coeficiente de determinación de 0.34. Los edificios de California no fueron incluidos ya que por no haber registrado sismos de intensidades pequeñas, no se puede determinar cuál periodo es el que se amplifica.

Figura 4.1.4. Elongación del periodo fundamental y reducción de la frecuencia natural de los edificios instrumentados en la ciudad de México.

4.2 Estimación del periodo fundamental

A partir de los resultados obtenidos de la identificación paramétrica de sistemas para todos los sismos registrados en los edificios fue posible estudiar la estimación del periodo a partir de la altura del edificio en metros y del número de pisos. Dado que para cada edificio se tienen dos periodos inferidos, en el sentido longitudinal y transversal, se contó con el doble de puntos que el número de edificios para realizar los ajustes. En el caso de los edificios mexicanos, la estructura principal consiste de marcos en concreto, sin embargo todos tienen algún tipo diferente de reestructuración que los diferencia de los demás. A pesar de esto, siguen la tendencia de incrementar su periodo al incrementarse su altura, o bien su número de pisos, por lo cual se incorporaron todos para obtener una tendencia general, esperando una dispersión mayor.

Aunque muchos reglamentos proponen expresiones de tipo potencial para estimar los periodos a partir de su altura, se quiso obtener expresiones más sencillas de tipo lineal para ver si existe una diferencia importante en el uso de una u otra. También se obtuvieron expresiones potenciales sin restringir ninguno de los coeficientes para ver qué tan lejos o cerca están de lo propuesto en los reglamentos.

Como se vio en el capítulo 2, no había un solo periodo para cada edificio. Tomar el periodo de vibración ambiental o el periodo correspondiente a niveles bajos de aceleración sería estar en el lado de la inseguridad ya que aunque un aumento en el periodo puede disminuir la aceleración espectral según la rama del espectro donde se encuentre, en el espectro de desplazamientos siempre se va a tener una ordenada mayor. Un desplazamiento más grande no necesariamente indica un daño mayor, ya que la fluencia de los elementos ocurre por distorsiones, o sea desplazamientos relativos entre piso y piso, y no desplazamientos absolutos. De cualquier manera es más conservador tomar en cuenta los periodos que generen mayores desplazamientos en caso de que también ocurran mayores distorsiones entre nivel y nivel de la estructura. Por otro lado, como se vio en la sección 4.1, los periodos más largos sí provocan distorsiones promedio (entre azotea y base) mayores. Por lo tanto, el periodo seleccionado para representar el edificio en la gráfica que relaciona el periodo con la altura, fue el correspondiente al valor donde el ajuste logarítmico que relaciona periodos con distorsiones máximas de azotea tiende a estabilizarse. En los edificios que tienen más de un arreglo, se tomó el periodo obtenido del arreglo central debido a que por estar menos influenciado por los efectos de torsión que los arreglos laterales, los parámetros son más confiables. Los valores para los edificios se muestran en la tabla 4.2.1 para ambos sentidos, además de la altura en metros y en pisos de cada uno.

EDIFICIO	H [m]	Nº PISOS	SENTIDO	T [s]
SEC3 0.1 3		L	0.24	
5205	5.1	5	Т	0.235
IMD	10.4	5	L	1.02
IIVIF	19.4	5	Т	0.52
N/L I	MJ 21.2 6	6	L	0.64
1015		0	Т	0.68
101	JAL 39.9	13	L	1.95
JAL		15	Т	2.50
PC	51.4	17	L	2.77
		17	Т	2.80
IMSS	58.0	12	L	1.47
		12	Т	1.75

Tabla 4.2.1. Características de los edificios mexicanos parael estudio de la estimación del periodo.

Al graficar el periodo contra la altura en metros, se obtuvo que la relación lineal y potencial (sin restricción de coeficientes) son muy similares debido a que la potencia del segundo modelo fue de 0.93, lo que lo hace muy cercano a una potencia de 1.0, la cual indicaría una relación lineal. Existe una dispersión notable en ambos casos y efectivamente la diferencia entre un modelo y otro es muy sutil, tal como se muestra en la figura 4.2.1. Al mirar el coeficiente de determinación R², el cual varía de 0.68 en el modelo lineal a 0.69 en el modelo no lineal, se puede concluir que el segundo modelo es tan solo ligeramente superior al primero.

Figura 4.2.1. Modelo lineal y potencial de los periodos de los edificios mexicanos en función de su altura en metros.

Al graficar el periodo de los edificios mexicanos contra el número de pisos se obtuvo una correlación mejor que aquella obtenida a partir de la altura del edificio, lo cual fue un resultado inesperado ya que no todos los edificios tienen alturas de entrepiso iguales y por lo tanto comparar número de pisos entre uno y otro edificio, no necesariamente da una idea directa de su rigidez lateral. Un claro ejemplo se ve entre los edificios IMSS y PC, ya que el primero tiene 58.0 m de altura y consta de 12 pisos, mientras que el segundo tiene una altura de 51.40 m y tiene 17 pisos. En la figura 4.2.2 se muestra el mejor ajuste que hay entre los datos y los modelos. Para este caso ambos modelos presentan el mismo coeficiente de determinación igual a 0.94, y aunque ahora el modelo potencial se distingue más del lineal a simple vista, su potencia sigue siendo cercana a 1.0. Es de destacar que según los edificios estudiados en la ciudad de México, una estimación más adecuada del periodo a partir del número de pisos es de 0.15N, en lugar del tradicional 0.10N que se usa comúnmente, la cual subestima el periodo (y sobreestima la rigidez lateral) en forma muy

Figura 4.2.2. Modelo lineal y potencial de los periodos de los edificios mexicanos en función del número de pisos.

importante. Aún así, cabe recordar que los sistemas estructurales de los 6 edificios nos son iguales y las diferencias y dispersiones se pueden deber a esto.

No.	Ciudad	No. de pisos	H [m]	Sismo	Sentido	Periodo [s]
1	Emerwille	30	91 44	Loma Prieta	Long	2.80
	Enteryvine		01.77	Lonia i neta	Trans	2.80
2	l os Angeles	9	36 58	San Fernando	Long	1.40
	E03 / Ingeles		00.00	Gaint cintando	Trans	1.30
3	l os Angeles	14	18 77	San Fernando	Long	1.80
	E03 / Ingeles	14	40.11	Gaint cintando	Trans	1.60
4	l os Angeles	13	50.60	San Fernando	Long	1.90
			00100		Trans	2.40
5	Los Angeles	10	41 91	San Fernando	Long	1.40
Ŭ	2007 angoloo	10	11.01	Garrienando	Trans	1.60
6	l os Angeles	7	18 59	San Fernando	Long	0.90
	2007 (190100		10.00		Trans	1.20
7	Los Angeles	7	20.73	San Fernando	Long	1.00
	2007 (ingoloo		20.10		Trans	1.00
8	Los Angeles	12	48.46	San Fernando	Trans	1.33
9	Los Angeles	19	59.98	San Fernando	Long	2.15
					Trans	2.22
10	Los Angeles	11	37.80	San Fernando	Long	1.43
					Trans	1.60
11	Los Angeles	22	62.27	San Fernando	Long	1.90
			02.2.1		Trans	2.20
12	Los Angeles	16	46.33	San Fernando	Long	1.10
			10100		Trans	1.80
13	Los Angeles	20	59.98	San Fernando	Long	2.27
			00100		Trans	2.13
14	Los Angeles	22	62.27	San Fernando	Long	1.84
					Trans	2.17
15	San Jose	ose 5	19.81	Morgan Hill	Long	0.83
					Trans	0.83
16	San Jose	10	37.80	Morgan Hill Mount Lewis	Long	0.91
					Long	0.91
17	Sherman Oaks	13	56.24	San Fernando	Long	1.20
					Trans	1.40
	Van Nuys	7	20.03	San Fernando	Long	0.79
18					Trans	0.88
					Whittier	Long

Tabla 4.2.2. Periodos de edificios de marcos en concretoen California inferidos por Goel y Chopra.

En el estudio de los edificios de California, donde la muestra de edificios estudiados fue mucho mayor que la de los edificios mexicanos, también se obtuvieron las tendencias basadas en el modelo lineal y en el no lineal. Algunos de los edificios incluidos en esta sección fueron empleados para la validación del modelo continuo simplificado, en el capítulo 3. Para ampliar el número de edificios de concreto reforzado se emplearon aquellos publicados por Goel y Chopra (1997) como resultado de un análisis espectral, y se analizaron otros más con el SystemIDv1.9. En las tablas 4.2.2 y 4.2.3 se muestran algunas características de los edificios y los periodos estimados para los sismos indicados.

No.	Ciudad	No. de pisos	H [m]	Sismo	Sentido	Periodo [s]
1	San Jose	10	37.80 Loma Prieta		Long	0.99
2	San Bruno	6	23.77	Whittier	Long	0.86
			-		Trans	1.04
				Whittier	Long	0.27
3	Pomona	2	9 14		Trans	0.30
	1 oniona	2	0.111	Unland	Long	0.30
				Opialia	Trans	0.33
				Northridae	Long	0.81
				Northinge	Trans	2.3
		14	12 14	Whittion	Long	0.64
4	LOS Aligeles	14	42.14	vvnituei	Trans	1.85
				Whittier Aft	Long	0.61
				Shock	Trans	1.8
				10/1-1441-1-1	Long	2.57
				vvnittier	Trans	2.48
	Sherman	10	10.00		Long	2.92
5	Oaks	13	49.99	Northridge	Trans	2.6
					Long	2.54
				Landers	Trans	2.78
				Whittier	Trans	0.92
					Long	1.98
	Van Nuys	7		Northridge	Trans	1.6
6			20.03		Long	1 15
				Big Bear	Trans	1 25
					Long	1.20
				Landers	Trans	1 22
				Whittier Northridge	Long	1.22
					Trans	1.02
					Long	1.44
7	Los Angeles	5	36.27		Trans	1.40
				Whittion Aft	Long	1.02
				Shock	Trong	1.20
				Onocik	Long	2.6
	b l = utile			Northridge	Long	2.0
8	Hollywood	20	51.45	-	lians	2.79
				Whittier	Long	1.73
					Irans	2.11
				Landers Northridge Sierra Madre	Long	1.25
	Pasadena	9	35.66		Irans	1.92
					Long	1.29
9					Trans	2.12
					Long	1.31
					Trans	1.97
				Big Bear	Long	1.25
					Trans	1.96
		9	39.01	Northridge	Long	1.04
10	Los Angeles				Trans	1.29
				Landers	Long	0.94
					Trans	1.14

Tabla 4.2.3. Periodos de edificios de marcos en concreto enCalifornia inferidos a partir del SystemIDv1.9.

En los códigos de diseño norteamericanos tales como UBC, ATC y SEAOC, se emplea una expresión de tipo potencial para estimar el periodo a partir de su altura definida como:

$$T = C_t H^{\frac{3}{4}}$$
(4.2.1)

En donde el coeficiente C_t es igual a 0.03 para estructuras de marcos en concreto reforzado y la altura H se encuentra en pies. Para la misma expresión se obtiene un coeficiente C_t de 0.073 para calcular el periodo a partir de una altura en metros. Al graficar la expresión 4.2.1 junto con los puntos obtenidos para los edificios de California se encuentra que subestima el 87% de los periodos inferidos a partir de sismos fuertes y sólo subestima el 13% restante.

Figura 4.2.3. Periodos inferidos para los edificios de California comparados con la expresión propuesta en los códigos norteamericanos de diseño.

Se relacionó el periodo de los edificios con su altura en metros por medio de un ajuste lineal y otro potencial. Aunque la diferencia entre estos dos modelos es más notoria que para el caso mexicano en cuanto a los coeficientes de ambas expresiones, el coeficiente de determinación fue prácticamente igual dado que en el caso lineal fue de 0.53 y para el caso no lineal fue de 0.54. El modelo no lineal que mejor se ajustó al conjunto de puntos tiene una potencia de 0.72, la cual es muy cercana a la potencia propuesta por los reglamentos antes mencionados. Sin embargo el coeficiente C_t de 0.11 es un 53% mayor que el respectivo coeficiente en el sistema métrico, donde de nuevo se demuestra la subestimación que la expresión 4.2.1 puede generar en el periodo ante sismo de un edificio.

Figura 4.2.4. Modelo lineal y potencial para los periodos de los edificios de California a partir de su altura en metros.

Figura 4.2.5. Modelo lineal y potencial para los periodos de los edificios de California a partir del número de pisos.

Al relacionar el periodo con el número de pisos se presentó el aumento esperado en la dispersión de los datos con respecto a los ajustes obtenidos. En este caso el modelo potencial se diferencia bastante del lineal, mostrando que el periodo crece a medida que aumenta el número de pisos del edificio, pero a una menor razón, sobre todo para edificios con más de 20 niveles. Al estimar el periodo a partir de la altura en metros y a partir del número de pisos, se puede concluir que los modelos potenciales se ajustan un poco mejor al conjunto de puntos, sin embargo la mejoría entre este modelo y el lineal no representa un acercamiento tal a lo medido que justifique el uso de una expresión más elaborada. En la tabla 4.2.4 se encuentran resumidas las expresiones a partir de la altura y el número de pisos para los edificios de México y California, así como el error estándar y la correlación obtenida con cada tipo de ajuste.

		Tipo de regresión	Tendencia	S _E	ρ
_	México	Lineal T=0.042H		0.541	0.827
a	IVIEXICO	Potencial	T=0.055H ^{0.93}	0.565	0.831
ltura	California	Lineal	T=0.038H	0.381	0.728
4	California	Potencial	T=0.112H ^{0.72}	0.360	0.732
S	Máxico	Lineal	T=0.15N	0.274	0.970
° de pisc	IVIEXICO	Potencial	T=0.08N ^{1.26}	0.231	0.971
	Colifornio	Lineal	T=0.12N	0.577	0.679
Z	Gamornia	Potencial	T=0.43N ^{0.54}	0.470	0.698

Tabla 4.2.4. Parámetros obtenidos a partir de regresionesy medidas cuantitativas del error.

En general se puede apreciar que los edificios de México tienen un comportamiento similar al de los edificios de California, ubicándose dentro del mismo rango de puntos de estos últimos como se puede ver en la figura 4.2.6. Sin embargo, al graficar las tendencias obtenidas para los dos grupos de edificios se encuentra que aquellos ubicados en la ciudad de México son más flexibles que aquellos de California a pesar de haber sido reforzados y rehabilitados, y teniendo en cuenta que el sistema estructural de los edificios norteamericanos es sólo a base de marcos de concreto reforzado.

Figura 2.4.6. Periodos inferidos para los edificios de California y México con respecto a su altura en metros y al número de pisos.

En la figura 2.4.7 se encuentran graficadas las tendencias obtenidas, en donde las líneas interrumpidas corresponden a los ajustes para los edificios mexicanos y las líneas punteadas a los edificios californianos. A su vez, las tendencias más gruesas representan los modelos lineales y las más delgadas los modelos potenciales. Sobre todo al comparar el periodo con el número de pisos se logra ver una diferencia en rigidez importante entre los dos conjuntos de edificios y recordando que el coeficiente de correlación entre los periodos inferidos a partir de sismos y aquellos estimados con las expresiones para el caso mexicano es de 0.97.

Figura 2.4.7. Modelos lineales y potenciales obtenidos para los edificios de México y California en función de la altura (izquierda) y el número de pisos (derecha).

CONCLUSIONES

Se validó el modelo continuo simplificado propuesto por Miranda y Taghavi (2005), el cual permite reproducir en gran medida la información registrada en los edificios instrumentados que se estudiaron, con tan solo definir tres parámetros: el periodo fundamental del sistema *T*, la fracción de amortiguamiento ξ y el coeficiente adimensional α . A pesar de ser un modelo lineal, se obtuvieron cálculos muy aproximados incluso cuando se tenía conocimiento de que el edificio había sufrido daños estructurales ante un sismo en específico, evidenciando un comportamiento no lineal de los elementos. La validación se realizó comparando historias de aceleración, espectros de piso, amplificaciones de la aceleración máxima registrada en la base con respecto a los niveles instrumentados e historias de distorsión entre cada nivel instrumentado y la base del edificio. La mayor contribución de esta tesis fue precisamente la elaboración del catálogo (Anexos A-G) en el cual se incluyen todos los resultados gráficos obtenidos con el programa SystemID, para los 6 edificios de la ciudad de México y los 20 edificios de California.

Fue posible hacer un estudio paramétrico de los edificios instrumentados, identificando los tres parámetros que mejor definieran el sistema y lograran los cálculos más semejantes a los registrados. Si bien existen otros métodos paramétricos y no paramétricos que a lo mejor pueden llegar a reproducir de mejor manera los registros de aceleraciones en los diferentes entrepisos, la rapidez y el poco esfuerzo computacional que caracteriza este modelo justifica su uso y su nivel de aproximación a los datos observados. El periodo fundamental de los edificios mostró tener una tendencia de tipo logarítmico con respecto a la aceleración máxima registrada en la base o bien con respecto a la distorsión máxima entre la azotea y la base. Sin embargo, no se logró encontrar una correlación clara entre la intensidad del sismo o valores máximos de respuesta del edificio con la fracción de amortiguamiento.

La mayoría de los valores obtenidos para el parámetro α se encontraron dentro de los rangos definidos previamente por Miranda y Reyes (2002) según el sistema estructural empleado, ya fuese de marcos (en concreto o en acero), de muros de corte, un sistema dual de marcos y muros o marcos con diagonales metálicas. En los edificios que tenían un sistema estructural diferente en cada sentido (longitudinal y transversal) fue posible identificar de mejor manera los sistemas variando el valor de este coeficiente de una dirección a otra para lograr un mejor ajuste de los espectros de piso en modos superiores y de las amplificaciones de las aceleraciones en los niveles instrumentados. Aunque cada sistema estructural no presentó un único valor de α , se presentan rangos y variaciones estándar de este parámetro para los diferentes tipos de edificios.

Gracias a la gran cantidad de eventos registrados en los edificios mexicanos, se lograron reproducir los diferentes comportamientos que presentaron los edificios ante sismos de varias magnitudes e intensidades y se pudo identificar de manera muy clara cuándo se había presentado un cambio importante en la rigidez de éstos entre evento y evento, ya fuese debido a un daño en los elementos estructurales del edificio o debido a una reestructuración. También se encontró que el comportamiento de la estructura se veía influenciada por el origen del sismo en cuestión. Los sismos de subducción presentaron una mayor cantidad de energía en periodos largos, logrando que los edificios respondieran principalmente en su modo fundamental de vibración. Por otro lado, algunos sismos de falla normal con focos más cercanos a la ciudad de México mostraron tener una mayor cantidad de energía en periodos cortos, generando una mayor contribución de los modos superiores en la respuesta total que el modo fundamental.

En el caso de los edificios de California, el cual era contrario al caso de los edificios de México, es decir, éstos eran numerosos pero contaban con pocos registros sísmicos, el estudio se enfocó en mirar la variación de los periodos fundamentales en cuanto a los sistemas estructurales. Se encontró una tendencia clara en la cual el periodo estructural aumenta conforme lo hace la aceleración máxima en la base, y a su vez, éste incremento es mayor para edificios de marcos en acero seguidos por edificios de marcos en concreto, sistemas duales y por último edificios con muros de corte. Dado que los registros proporcionados por las bases de datos de California

cuentan con información de desplazamiento registrado (obtenido por medio de la doble integración del acelerograma) también fue posible validar el modelo en cuanto a las historias de distorsión entre los niveles instrumentados y la base del edificio. Si estas historias se aproximan en gran medida a las registradas, se puede deducir que las historias de desplazamiento calculadas también son acertadas.

Se estudió la variación de los parámetros dinámicos de los edificios teniendo en cuenta la interacción suelo-estructura (ISE) por medio de introducir como señal en la base del sistema, aquella registrada en una estación de campo libre cercana al edificio. En las ocasiones en las que esta estación estaba contemplada en el arreglo de instrumentos del edificio fue posible obtener parámetros confiables debido a la similitud entre el registro en terreno y en la base del edificio. En los casos en donde no estaba contemplada esta estación, fue necesario buscar alguna cercana al edificio, encontrando que la correlación entre las señales disminuye con la distancia entre ellas. Otro factor que se encontró influye en la disminución de la correlación entre las señales es el ángulo que hay que girar los registros ortogonales del terreno para hacerlos coincidir con las orientaciones de los instrumentos en el edificio. En general, giros menores a 10° presentaban correlaciones altas mientras que los giros cercanos a 45° mostraban las menores correlaciones.

Los efectos de la interacción inercial, la cual supone un alargamiento del periodo fundamental del sistema con base rígida, se lograron manifestar al introducir la señal de campo libre en el sistema como si fuera la registrada en la base. Sólo hubo dos casos en los que el periodo fundamental considerando ISE fue 1 y 2% menor a aquel obtenido con base rígida, pero en general sí se vio el alargamiento del periodo el cual alcanzó un máximo de 12%. Se esperaba obtener las mayores variaciones del periodo en terrenos más blandos pero debido a que en estos casos las cimentaciones eran profundas, el efecto de ISE se contrarrestaba. Los cambios en la fracción de amortiguamiento fueron más drásticos, presentando disminuciones del 50% de aquel obtenido con base rígida y aumentos hasta de 3 veces el mismo.

Del estudio de la interacción cinemática no se pudo obtener la función de transferencia que al multiplicarla por el espectro de Fourier de la señal de campo libre, se obtuviera la señal medida en la base, o bien una bastante similar. Las frecuencias de corte que hacían que el filtro Butterworth pasa-baja se acercara a la forma del filtro teórico propuesto por Veletsos, no eran suficientemente pequeñas para eliminar las frecuencias altas que de hecho filtra la cimentación. Como ampliación de este trabajo, se recomienda estudiar las funciones de transferencia observadas entre las estaciones de campo libre y las bases de los edificios para encontrar un modelo que pueda determinar de manera adecuada la frecuencia de corte de la cimentación de acuerdo a su tamaño y dependiendo también del tipo de suelo en que se encuentre desplantado el edificio.

El estudio de los periodos de los edificios permitió ver cómo éste varía durante un mismo sismo, donde con un valor determinado se puede reproducir una parte de la historia de aceleraciones registradas, y con otro valor diferente se puede reproducir la parte restante. Si bien el periodo de una estructura no es constante durante un evento, tampoco lo es para diferentes intensidades del movimiento. Se estudió la variación del periodo con respecto a la aceleración máxima medida en la base del edificio y a la distorsión máxima entre la azotea y la base. Ambas relaciones mostraron tener una tendencia logarítmica, donde para valores cercanos a cero de la variable empleada, se encontraron periodos cercanos a aquellos inferidos a partir de pruebas de vibración ambiental. Sin embargo, para valores de aceleraciones o distorsiones un poco mayores, el alargamiento del periodo fundamental creció rápidamente hasta estabilizarse en valores hasta 60% mayores que los periodos para intensidades pequeñas. Esto indica que los periodos para niveles bajos de aceleraciones dicen poco en cuanto al periodo que se puede presentar ante sismos fuertes, los cuales a su vez generan mayores niveles de distorsión en el edificio. Por lo tanto es importante tener en cuenta este alargamiento del periodo fundamental de los edificios en el momento de diseñar ya que los sismos que posiblemente generarán mayores distorsiones están relacionados con periodos a su vez mayores.

Al estudiar la variación del periodo fundamental de los edificios con su altura y el número de pisos, se encontró que para el conjunto de edificios de la ciudad de México analizados es más confiable estimarlos a partir del segundo parámetro ya que se alcanzaron correlaciones de 0.97 entre los datos inferidos y los ajustes. Aunque la altura del edificio puede decir más sobre su rigidez lateral que el número de pisos, ya que la altura de entrepiso puede ser variable entre edificio y edificio e incluso dentro de uno mismo, es posible que debido a la diversidad en los sistemas estructurales se haya presentado un mejor ajuste de los datos empleando el número de niveles. Para el conjunto de edificios de California se encontró una tendencia esperada, en donde sí se cumple que la tendencia a partir de la altura en metros es más acertada que la tendencia a partir del número de niveles. Además, en este caso se cuenta con un buen número de puntos que puede ser más representativo de un mismo sistema estructural que los pocos edificios que se estudiaron de la ciudad de México.

Las expresiones obtenidas para estimar el periodo a partir de la altura se compararon con las sugeridas en los códigos norteamericanos en donde se concluyó que estos reglamentos subestiman el periodo de las estructuras en el 80% de los casos estudiados. También fue posible demostrar que con una expresión lineal, la cual es más fácil de emplear y de recordar en el momento de un diseño, la estimación del periodo es tan cercana a aquella estimada con una expresión potencial, que no se justifica un mayor refinamiento de estas expresiones si no mejoran sustancialmente los resultados.

La expresión que se encontró para estimar los periodos de los edificios de México con respecto al número de pisos de 0.15N, sugiere que se subestima el periodo de la estructura al emplear sin restricción alguna la conocida expresión de 0.10N, la cual es acertada en edificios de marcos de concreto en terreno firme, lo cual no es el caso para estos edificios estudiados. Sin embargo, cabe resaltar que para obtener una tendencia más confiable, es necesario ampliar el número de edificios estudiados que estén ubicados sobre terrenos similares y que tengan sistemas estructurales semejantes cuando no iguales.

Al emplear el modelo continuo simplificado se encontró que se le pueden dar varios usos gracias a su rapidez y poco esfuerzo computacional. En un medio en donde no se conoce con 100% de certeza las propiedades de los materiales con los que se trabaja es común realizar estudios estadísticos a partir de los valores promedio y errores que se obtienen de la práctica. De la misma manera, aprovechando los rangos de valores y desviaciones estándar que puede presentar un edificio particular en cuanto a periodo de vibración, amortiguamiento y relación de rigideces, es posible realizar un estudio estadístico que defina una banda confiable en la que pueda estar la respuesta del edificio ante un sismo de diseño. Conociendo que el modelo calcula de manera muy aproximada las aceleraciones y los desplazamientos registrados en los edificios, se puede modificar para que éste entregue historias de cortante, de momento en la base o bien cualquier otro parámetro que se considere importante para el diseño de un edificio. Así mismo, el hecho de tener historias en el tiempo de las diferentes variables (aceleración, velocidad, desplazamiento, distorsión, etc.) se pueden calcular los valores máximos de ellas de una manera más exacta que con otros métodos modales. Esto puede ser útil para generar espectros de distorsión de entrepiso, lo cual ayudaría a obtener un mejor diseño desde el inicio del proyecto dado que al fin y al cabo, las distorsiones son las que generan los daños en los elementos estructurales y describen de mejor manera la respuesta de una estructura.

ANEXO A: EDIFICIO PC

El anexo contiene los resultados gráficos para el edificio PC obtenidos con el programa SystemIDv1.8, los cuales consisten en una página para cada sismo estudiado, donde se incluye la información general del edificio, una foto y un esquema de éste, las historias de aceleración, espectros de piso y amplificaciones de la aceleración máxima registrada en la base con respecto a cada nivel del edificio.

-						
Sismo	М	M Origen		ξ _B [%]	α _B	Página
28/06/92	7.4	Falla Normal o Intraplaca	2.45	2.5	12	79
15/05/93	5.9	Subducción	2.40	2.5	7	80
24/10/93	6.6	Subducción	2.63	3.0	10	81
10/12/94	6.4	Falla Normal	2.63	3.2	9	82
14/09/95	7.3	Subducción	2.72	3.0	11	83
11/01/97	6.9	Falla Normal	2.80	2.0	10	84
15/06/99	7.0	Falla Normal	2.75	2.6	10	85
30/09/99	7.4	Falla Normal	2.77	2.5	9	86
21/07/00	5.9	Falla Normal	2.68	2.5	12	87
09/08/00	7.0	Subducción	2.80	2.0	12	88
22/01/03	7.6	Subducción	2.77	2.0	8	89
Arreglo Cent	ral - Transver	sal				
Sismo	Μ	Origen	T _B [s]	ξ _B [%]	αΒ	Página
28/06/92	7.4	Falla Normal o Intraplaca	2.36	3.0	4	90
15/05/93	5.9	Subducción	2.50	3.5	3	91
24/10/93	6.6	Subducción	2.68	3.5	3	92
10/12/94	6.4	Falla Normal	2.70	2.0	3.65	93
14/09/95	7.3	Subducción	2.80	3.6	3	94
11/01/97	6.9	Falla Normal	2.82	2.5	3.65	95
15/06/99	7.0	Falla Normal	2.75	2.5	4	96
30/09/99	7.4	Falla Normal	2.83	2.0	3.5	97
21/07/00	5.9	Falla Normal	2.67	2.5	3.65	98
09/08/00	7.0	Subducción	2.82	2.0	3	99
22/01/03	7.6	Subducción	2.80	2.5	3	100
Arreglo Nore	ste - Longitu	dinal				
Sismo	M	Origen	T _B [s]	ξ _B [%]	α _B	Página
28/06/92	7.4	Falla Normal o Intraplaca	2.28	2.8	10	101
24/10/93	6.6	Subducción	2.65	2.8	9	102
10/12/94	6.4	Falla Normal	2.50	3.8	10	103
14/09/95	7.3	Subducción	2.72	3.0	11	104
11/01/97	6.9	Falla Normal	2.75	2.0	9	105
15/06/99	7.0	Falla Normal	2.74	3.0	10	106
30/09/99	7.4	Falla Normal	2.77	2.0	12	107
21/07/00	5.9	Falla Normal	2.57	3.0	12	108
09/08/00	7.0	Subducción	2.86	3.5	10	109
22/01/03	7.6	Subducción	2.76	2.5	7.5	110
Arreglo Nore	ste - Transve	rsal				
Sismo	M	Origen	T _B [s]	ξ _B [%]	α _B	Página
28/06/92	7.4	Falla Normal o Intraplaca	2.33	3.8	2.5	111
24/10/93	6.6	Subducción	2.21	5.2	4	112
10/12/94	6.4	Falla Normal	2.26	5.0	4	113
14/09/95	7.3	Subducción	2.30	5.0	5	114
11/01/97	6.9	Falla Normal	2.32	5.5	4.5	115
15/06/99	7.0	Falla Normal	2.42	6.0	4.5	116
30/09/99	7.4	Falla Normal	2.40	3.0	4.5 E	117
21/07/00	5.9 7.0	Falla Normal	2.20	5.0	35	110
22/01/02	7.6	Subducción	2.40	1.5	3.5	120
ZZ/U1/UJ	1.0	JUDUUUUUU	2.01	1 4.0	0.00	120

Arreglo Central - Longitudinal

1.0 2.0 3.0 4.0 5.0 6.0 PERIOD (6)

[s] awi) 02 09

- 09-

628100(4) 00 40 50 30 40 20 90 =+0

100 (s) 20 80

0.9

05

0P

30

őź

61

0

09-98-

06

			20.0			
9	0.5	4.0	00185		01	00 =+
	4	-l-	1	Y	~	
2			÷	-	÷	- 002
ł	=	-		÷		008
	door pag	nduro ura	64	1 M 1	- N.	1202

DE1

150

OLL

001

051

071

ŝ

[6] amiT [6] amiT

-540

60 00 10 50 40 20 40 20 60 0 Hz

071-

ANEXO B: EDIFICIO JAL

El anexo contiene los resultados gráficos para el edificio JAL obtenidos con el programa SystemIDv1.8, los cuales consisten en una página para cada sismo estudiado, donde se incluye la información general del edificio, una foto y un esquema de éste, las historias de aceleración, espectros de piso y amplificaciones de la aceleración máxima registrada en la base con respecto a cada nivel del edificio.

Allegio Late	- Longituuma					
Sismo	M	Origen	T _B [s]	ξ _B [%]	α _B	Página
29/07/93	5.0	Falla Normal	1.30	5.0	3	122
24/10/93	6.6	Subducción	1.74	5.4	3.5	123
10/12/94	6.4	Falla Normal	1.90	4.5	3	124
14/09/95	7.3	Subducción	2.07	6.0	3.5	125
21/10/95	6.2	Falla Normal	1.94	5.0	3.5	126
16/12/97	5.5	Subducción	1.23	3.0	3.5	127
22/12/97	5.0	Subducción	1.20	3.7	4	128
15/06/99	7.0	Falla Normal	1.62	7.5	6	129
30/09/99	7.4	Falla Normal	1.81	7.0	6	130
21/07/00	5.9	Falla Normal	1.74	6.0	2.5	131
08/10/01	6.1	Falla Normal	1.50	4.0	3	132
Arregio Este - Transversal						
Sismo	Μ	Origen	T _B [s]	ξ _B [%]	α _B	Página
29/07/93	5.0	Falla Normal	2.40	2.0	6	133
14/09/95	7.3	Subducción	2.60	4.0	8	134
21/10/95	6.2	Falla Normal	2.43	5.5	10	135
16/12/97	5.5	Subducción	1.46	4.0	2	136
22/12/97	5.0	Subducción	1.46	3.2	2.5	137
15/06/99	7.0	Falla Normal	1.92	6.5	8	138
30/09/99	7.4	Falla Normal	2.32	5.0	6	139
21/07/00	5.9	Falla Normal	2.02	5.2	5.5	140
08/10/01	6.1	Falla Normal	1.97	4.8	4	141
Arreglo Oeste - Longitudinal						
Sismo	M	Origen	T _B [s]	ξ _B [%]	α _B	Página
29/07/93	5.0	Falla Normal	1.29	5.0	5	142
24/10/93	6.6	Subducción	1.79	5.0	5	143
10/12/94	6.4	Falla Normal	1.94	5.0	4	144
14/09/95	7.3	Subducción	2.03	5.0	4.5	145
21/10/95	6.2	Falla Normal	1.94	5.0	4	146
16/12/97	5.5	Subducción	1.23	3.0	3	147
22/12/97	5.0	Subducción	1.15	4.5	4.5	148
15/06/99	7.0	Falla Normal	1.64	5.5	8	149
30/09/99	7.4	Falla Normal	1.90	5.5	5	150
21/07/00	5.9	Falla Normal	1.72	5.0	1.9	151
08/10/01	6.1	Falla Normal	1.45	4.8	1.5	152
Arregio Oeste - Transversal						
Sismo	Μ	Origen	T _B [s]	ξ _B [%]	α _B	Página
29/07/93	5.0	Falla Normal	2.35	3.0	6.5	153
16/12/97	5.5	Subducción	1.45	5.0	4	154
22/12/97	5.0	Subducción	1.47	4.0	3	155
30/09/99	7.4	Falla Normal	1.98	5.5	5	156
21/07/00	5.9	Falla Normal	2.02	5.5	6	157
08/10/01	6.1	Falla Normal	1.99	5.5	5	158

Arreglo Este - Longitudinal

ANEXO C: EDIFICIO MJ

El anexo contiene los resultados gráficos para el edificio MJ obtenidos con el programa SystemIDv1.8, los cuales consisten en una página para cada sismo estudiado, donde se incluye la información general del edificio, una foto y un esquema de éste, las historias de aceleración, espectros de piso y amplificaciones de la aceleración máxima registrada en la base con respecto a cada nivel del edificio.

Sismo	M	Origen	T _B [s]	ξ _B [%]	α _B	Página
07/06/92*	5.0	Subducción	1.16	4.7	6	160
15/05/93	5.8	Subducción	0.58	4.0	3.5	161
14/09/95	7.3	Subducción	0.63	4.5	4	162
09/10/95	7.3	Subducción	0.60	4.0	4	163
15/07/96*	6.5	Subducción	0.58	3.0	2	164
11/01/97	6.9	Falla Normal	0.60	2.5	4	165
22/05/97	6.0	Falla Normal	0.59	3.0	2.5	166
20/04/98	5.9	Falla Normal	0.59	2.8	2	167
15/06/99	7.0	Falla Normal	0.62	2.0	2.5	168
30/09/99	7.4	Falla Normal	0.65	3.2	4	169
Arreglo Este - Transversal						
Sismo	Μ	Origen	T _B [s]	ξ _B [%]	α _B	Página
07/06/92*	5.0	Subducción	1.18	2.7	2	170
15/05/93	5.8	Subducción	0.50	3.0	3	171
14/09/95	7.3	Subducción	0.62	4.0	4	172
09/10/95	7.3	Subducción	0.60	4.0	3.5	173
15/07/96*	6.5	Subducción	0.55	4.5	3.5	174
11/01/97	6.9	Falla Normal	0.58	2.0	2	175
22/05/97	6.0	Falla Normal	0.54	4.0	2	176
20/04/98	5.9	Falla Normal	0.59	3.5	3	177
15/06/99	7.0	Falla Normal	0.69	3.5	3.5	178
30/09/99	7.4	Falla Normal	0.67	2.5	3.5	179

Arreglo Este - Longitudinal

ANEXO D: EDIFICIO IMSS

El anexo contiene los resultados gráficos para el edificio IMSS obtenidos con el programa SystemIDv1.8, los cuales consisten en una página para cada sismo estudiado, donde se incluye la información general del edificio, una foto y un esquema de éste, las historias de aceleración, espectros de piso y amplificaciones de la aceleración máxima registrada en la base con respecto a cada nivel del edificio.

Sismo	M	Origen	T _B [s]	ξ _в [%]	α _в	Página				
23/05/94	5.6	Falla Normal	1.41	3.5	4	181				
10/12/94	6.3	Falla Normal	1.44	3.7	5	182				
14/09/95	7.3	Subducción	1.47	5.5	4	183				
09/10/95	7.3	Subducción	1.42	3.5	4	184				
Arregio Central - Transversal										
Sismo	Μ	Origen	T _B [s]	ξ _Β [%]	α _B	Página				
23/05/94	5.6	Falla Normal	1.72	4	1	185				
10/12/94	6.3	Falla Normal	1.73	3.5	6	186				
14/09/95	7.3	Subducción	1.75	3.5	5	187				
09/10/95	7.3	Subducción	1.74	4.5	2	188				
Arreglo Lateral - Longitudinal										
Sismo	Μ	Origen	T _B [s]	ξ _B [%]	α _B	Página				
23/05/94	5.6	Falla Normal	1.72	3.3	4.5	189				
10/12/94	6.3	Falla Normal	1.69	3.5	5	190				
14/09/95	7.3	Subducción	1.76	4.0	5	191				
Arreglo Lateral - Transversal										
Sismo	Μ	Origen	T _B [s]	ξ _B [%]	α _B	Página				
23/05/94	5.6	Falla Normal	1.72	3.3	4.5	192				
10/12/94	6.3	Falla Normal	1.69	3.5	5	193				
14/09/95	7.3	Subducción	1.76	4.0	5	194				
		-								

Arreglo Central - Longitudinal

ANEXO E: EDIFICIO IMP

El anexo contiene los resultados gráficos para el edificio IMP obtenidos con el programa SystemIDv1.8, los cuales consisten en una página para cada sismo estudiado, donde se incluye la información general del edificio, una foto y un esquema de éste, las historias de aceleración, espectros de piso y amplificaciones de la aceleración máxima registrada en la base con respecto a cada nivel del edificio.

Arreglo Cent	ro - Longituo	dinal				
Sismo	M	Origen	T _B [s]	ξ _B [%]	α _B	Página
11/03/93	4.7	Subducción	0.82	4.8	8.5	196
29/07/93	5.0	Falla Normal	0.81	3.0	7	197
24/10/93	6.6	Subducción	0.95	3.5	8	198
10/12/94	6.4	Falla Normal	0.96	3.0	8	199
14/09/95	7.3	Subducción	1.00	3.0	8	200
11/01/97	6.9	Falla Normal	0.97	3.0	8	201
08/05/97	5.0	Subducción	0.90	5.0	8	202
22/05/97	6.0	Falla Normal	0.95	4.5	9	203
16/12/97	5.5	Subducción	0.94	4.5	10	204
15/06/99	7.0	Falla Normal	1.02	3.0	6	205
21/06/99	5.8	Falla Normal	1.00	4.5	8	206
30/09/99	7.4	Falla Normal	1.01	4.0	10	207
Arreglo Cent	ro - Transve	rsal				
Sismo	M	Origen	T _B [s]	ξ _B [%]	α _B	Página
11/03/93	4.7	Subducción	0.49	5.0	10	208
29/07/93	5.0	Falla Normal	0.49	2.5	8	209
24/10/93	6.6	Subducción	0.52	5.5	10	210
10/12/94	6.4	Falla Normal	0.51	4.0	10	211
14/09/95	7.3	Subducción	0.52	3.0	12	212
11/01/97	6.9	Falla Normal	0,52	3.0	8	213
08/05/97	5.0	Subducción	0.50	4.5	9	214
22/05/97	6.0	Falla Normal	0.51	4.0	5	215
16/12/97	5.5	Subducción	0.50	3.5	8	216
15/06/99	7.0	Falla Normal	0.52	3.5	10	217
21/06/99	5.8	Falla Normal	0.51	4.0	6	218
30/09/99	7.4	Falla Normal	0.51	3.5	7	219
Arregio Este	- Longitudin	al			ļ	L
Sismo	M	Origen	T _B [s]	ξ _в [%]	α _B	Página
11/01/97	6.9	Falla Normal	0.96	3.80	8	220
08/05/97	5.0	Subducción	0.90	4.50	12	221
22/05/97	6.0	Falla Normal	0.94	4.00	12	222
16/12/97	5.5	Subducción	0.92	4.20	6	223
15/06/99	7.0	Falla Normal	1.02	2.80	6	224
21/06/99	5.8	Falla Normal	0.99	4.00	5	225
30/09/99	7.4	Falla Normal	1.01	3.50	8	226
Arregio Este	- Transversa	al			-	
Sismo	М	Origen	T _B [s]	č _Β [%]	α _B	Página
11/01/97	6.9	Falla Normal	0.56	3.50	8	227
08/05/97	5.0	Subducción	0.54	2.00	7	228
22/05/97	6.0	Falla Normal	0.55	4.00	6	229
16/12/97	5.5	Subducción	0.54	4.00	6	230
15/06/99	7.0	Falla Normal	0.56	3.00	6	231
21/06/99	5.8	Falla Normal	0.55	3.00	6	232
30/09/99	7.4	Falla Normal	0.55	2.20	8	233
Arreglo Oest	e - Longitud	inal			-	
Sismo	M	Origen	T _B [s]	ξ _B [%]	αΒ	Página
11/01/97	6.9	Falla Normal	0.97	3.00	6	234
08/05/97	5.0	Subducción	0.90	5.20	8	235
22/05/97	6.0	Falla Normal	0.94	4,30	12	236
16/12/97	5.5	Subducción	0,93	4,00	10	237
15/06/99	7.0	Falla Normal	1.00	3.50	5	238
21/06/99	5.8	Falla Normal	1.00	4.00	9	239
30/09/99	7.4	Falla Normal	1.00	4,50	8	240
Arregio Oest	e - Transver	sal			-	
Sismo	M	Oriaen	T _B [s]	ξ _B [%]	ΩR	Página
11/01/97	6.9	Falla Normal	0.505	3.50	7	241
08/05/97	5.0	Subducción	0,50	4,50	6	242
22/05/97	6.0	Falla Normal	0.47	4,50	9	243
16/12/97	5.5	Subducción	0.49	3,50	8	244
15/06/99	7.0	Falla Normal	0.52	3.50	6	245
21/06/99	5.8	Falla Normal	0,50	2,50	10	246
30/09/99	7.4	Falla Normal	0,52	3,20	12	247

0.0

Accel. [cm/s2] 250

200

150

100

50

0 -

0.0 1.0

BASE

5.0 6.0

- From recorded resp.

····· From computed resp.

2.0 3.0 4.0 PERIOD [s]

CENAPRE Location: Number o Use/Type	D Station f stories:	IMP L - E Mexico 5 Office Buildir	ng 🕸		Earth Comp Later	iquake: ponent: al Resistin	22/05/97 EWref ig System:	RConcre	te MRF		Building ; T ₁ =	arameters: 0.94	ξ = 0.04	α ₀ = 12	Mail
-147 H.+	80% • 10%5		* ¹⁸⁰⁹⁴ 1893		MPS + MP1 MP1+			4	-				x=z/r 1.0 0.9 0.8 0.7)
	. 895	T.	1VP4 *		IVPS +	1 U							0.6 0.5 0.4 0.3	- 1	
7	+10P5		4 94 93 66 n	775557	MPY-			5				·)	0.2	0 1 2 P	Computed
Accel. [(onvis ²)											ROC	Acce SF [cm/s	4. 2] []	ROOF
20 15 10 5 -5 -10 -15 -20 0	10	20 30	40	50	60 70		90 10	0 110	120	130	140 15	- INFS Computed 	100- 80- 40- 20- 170 0	0 10 20 pr	From recorded resp. From computed resp. 3.0 4.0 5.0 6 RiciD Isi
Accel (icm/s ² 1						2.8.3					BAS	Acce SE fom/s	40 21	DACE
20		1.	Ň.	4	11		_10	i di	Ň	Ň.	11 -	IMP7	120		
10	1923) 1					2212		1222 A		3,553	1	Computed	100 -		···· From computed resp.
5	a dhaan H			lu	n alica di	at I	1				10000		80 -	en in the	a hard hard here
0		New Alsonality		1.11.1	New York	lite shell of	ALL Y ALL ALL ALL ALL ALL ALL ALL ALL AL	ry-service), ed.	Alexandrik for	(pelyheineter	daile regional		60 -		
-10													40 -		1-1-1-1
-15	-		-	-	i per se si se	1.19				-	filles a		20 -	m	JL I h
-20 +0	10	20 30	40	50	60 70	80 Time	90 10 8(6)	0 110	520	130	140 15	0 160		.0 1.0 2.0 Pl	3.0 4.0 5.0 6 RIOD[s]

2.0 3.0 4.0 5.0 6.0 PERIOD[6]

ENAPRE cation: unber c	ED Station of stories:	IMP T - Mexico 5	E			Ea Co La	irthquake: imponent: teral Resistin	22/05/97 NSref g System:	RConc	rete MRI	-	Build	ding para F ₁ = 0.5	meters: 5	ξ=	• 0.04	α ₀ = 6		No. 1
-147 area 7.81	MPS • MPS		County	•IMP4 IMP3		849-8 849-1			7							x=z/H 1.0 0.9 0.8			1
7 ->1 	# IMP6			WP4 *		IMP 1	•	D- Land								0.7		/	
- 17 - 17	elurs.	(X-10) (X-1	5777 6	"86 93	A	MP7							1		1	0.2	1 p	FA/PGA	acorded amputed
Accel.	[cm/s ²]													RO	OF	Accel. [cm/s2]			ROOF
30 20 10			120	6.04		d. al								(P8 amplited		120		From reco	inded resp. puted resp.
0 -		a stad		d public		<u>din 1</u>	اللغل وطعا		ns help	uzyyw		ej-reditret		en e		60 -]	1		
20 -			1				1 1					-jjae	100		-	30-24	La		25 200
.o 0	10	20	7 30	40	r 50	60	70 80 Time	90 90	100	110	120	130	140	150 150	160	0 - 0.0	1.0 2.0 P	3.0 4.0 ERIOD [s]	5.0
Accel.	[cm/s ²]													BA	SE	Accel. [cm/s2]			BAS
30 T			1	2		and los	-le-l	1	Ann			11		MP7		150		From reco	rded resp.
1	8	1						1				100	1	omparted	-1	120		From com	puted resp.
0			1	17-10	, di					n fins	solijas					90 -	1-1-	1	Jac
0	anan tumpin	annun fi	a form	solution in	an the	Markey	Mala Mala	shap-polinely	nhamp	and the second	proceeding of a second	apatryanura	Anjann		and -	60 -		88	8
0			1	10	102	1	1 1	1		10	1	II.	- Hora	1	-		SC I		
																 A state of the sta	- 84		
10	eeljes	6000	400	2925	edia		-decel	27270	n diper	n de la composition de la comp	en gen			des.		30]]	"hand	8 8	

ation: nber of stories:	IMP T - O Mexico 5	27	Earthquake: Component: Lateral Resisti	11/01/97 NSref ng System: RConcret	Buildir T ₁ e MRF	ng parameters: = 0.505	ξ = 0.035 α	o = 7
i and		*1824	84°8 s 188°1				x=2/H 1.0 0.9	
	1	1074 8	APT+	IL A	A R R R R R R R	TETRA	0.6	
1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2			6 3 1 1				0.3	Recorded
Accel. [cm/s ^a]		66 n				ROOF	Accel. [cm/s2]	1 2 3 PFA/PGA R
) D		an an an tart an an tart		ali Daharatan Managiratan		Computed ლექარალისიპიე ჩეირ	60 - VI 60 - VI 40 - VI	www.Phom computed re
			0 70 80 90	100 110 126 1	30 140 150 150		20	2.0 3.0 4.0 5.0
0 10 2	0 30 4	40 50 5	Tim	e [s]	AN DIMES INA STRAT	370 100 3	50 00 1.0	PERIOD [s]
0 10 2 vocel. [om/s ²]	10 30 4	10 50 5	πα	e [s]	20 Dives 200 Lines	BASE	Accel. [cm/s2]	PERIOD [s]
0 10 2	10 30	40 50 5		e[s]		BASE	Accel. (cm/s2)	PERIOD [s] B
0 10 1 0 10 1		10 50 6				IVU IOU BASE	Accel. [cm/s2] 120	PERIOD [s]
(coel. [cm/s ²]			Tin	e [6]		BASE	Accel. [cm:s2] 120 100	PERIOD [8] B From recorded res
vccel. (cm/s ²)						MPS IOU I	Accel. [cm/s2] [120 	PERIOD [8]
0 10 1 ccel. [cm/s ²]				e [s]		BASE	Accel (om/s2) 120 100 80 60 40 - AA	PERIOD [s]
0 10 5 ocel. [om/s ²]						BASE	Accel (om/s2) 120 80 60 20 20	PERIOD [8]

ion: ber of stories: Type:	n: IMP T - O Mexico : 5 Office Building		Ei Ci La	arthquake: omponent: ateral Resistir	16/12/97 NSref ng System:	RConcret	e MRF	8	uilding pa T ₁ = 0	rameters .49	Ş :	0.035	α ⁰ = 8		and a
I MPS	- 4 ⁰⁰	P4 73	MP* MP*	1.		4	-					x=z/H 1.0 0.9 0.8 0.7		1	
e IMP6	I BE	4		4								0.6	7	 	+ + +
alups						Ę.						0.2			ecorded omputed 3
0000-0000020				Constr.								Accel.	- F	TATEGA	
oel. (cm/s ^a)	n i r	, IJ	. ii	1	1	N	N			RC IMPS	OF	Accel. [om/s2] 25	fictor -	-From reco	RO rded resp.
scel. (onvis ^a)				litulu vi	<u>iliniaa tahua</u>	Herdonia	Lity had to physic			RC MPS Computed	IOF	Accel. [om/s2] 25 20 15 10 5		Promiteco	RC rded resp. puted resp
opel. (onvisit)			50	50 TT	90 161 80	90	100	110	120	RC Computed	OF	Accel. [cm/s2] 25 15 10 5 0.0	1.0 20	Promiteco	RC roted resp puted resp stored resp store
cel. [cm/s ⁴]	20 30		50	50 70 Time	0 [6]	90.	100	110	120	RC MPS Computed production 130	140	Accel [cm/s2] 22 15 10 5 0 0 0 Accel [cm/s2]	10 20 p	Promiteco Promiteco	RC rded resp puted resp 5.0
coel. (om/s ^a)	20 30		50	50 70 Time	2 [5] 80	90	100	110	120	RC MPS Computed 130 B/ INPS	NOF 140	Accel [0m/s2] 20 15 10 0 0 Accel [0m/s2] 25 0 0 0 0 0 0 0 0 0 0 0 0 0	10 20 p	Promitreco Promitreco Promitreco Promitreco 3.0 4.0 ERIOD [5] Promitreco	R(rded resp puted resp
cel. (cm/s ²)	20 30		50	50 77	9 [6] 80	90	100	110	120	RC MPS Computed 130 INPS Computed	140	Accel (com/s2) 25 20 15 15 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	10 20 p	Prom reco Prom com Prom com 3.0 4.0 ERIOD [6] Prom reco **** Prom reco	R(rded resp puted res 5.0 El rded resp puted res
cel. (om/s [*])	20 30		50	50 70 Time	111111111111111 2 [5] 80 [11]	90 90	100	110	120	RC Domputed producted 130 INPS Computed	NOF 140	Aocel fom/s2] 20 15 10 0 0 0 Accel fom/s2] 25 20 15 10 15 10 15 10 15 15 10 15 15 15 15 15 15 15 15 15 15		Promitreco Promitreco Promitreco Promitreco 3.0 4.0 ERIOD [6] Promitreco Promitreco	Ri rded resp puted res 5.0 B rded resp puted res
coel. (om/s [*])	20 30		50	50 TIME	9 [6] 80	90	100	110	120	RC IMPS Computed 130 B/ INPS Computed	NOF	Accel 25 20 15 10 0 0 0 0 0 0 0 0 0 0 0 0 0		Promiteco Framicoru Framicoru Altoria Branicoru Branicoru Framiteco Fr	R(rded resp puted res 5.0 B. naeo resp puted res
cel. (cm/s ²)	20 30		50	50 Time	0 [6] 80	90 90	100	110	120	RC imps computed inter- computed computed	NOF 140	Accel [25] 20 15 10 5 20 Accel [com/s2] 20 Accel [com/s2] 20 15 - 0 - - 0 - - 0 - - - 0 - - - 0 - - - - - - - - - - - - -	to 20 p	Promiteco	R(rded resp puted res 5.0 B/ rded resp putes res

ANEXO F: EDIFICIO SEC3

El anexo contiene los resultados gráficos para el edificio SEC3 obtenidos con el programa SystemIDv1.8, los cuales consisten en una página para cada sismo estudiado, donde se incluye la información general del edificio, una foto y un esquema de éste, las historias de aceleración, espectros de piso y amplificaciones de la aceleración máxima registrada en la base con respecto a cada nivel del edificio.

Sismo	Μ	Origen	T _B [s]	ξ _B [%]	α _B	Página
10/12/94	6.4	Falla Normal	0.230	5.0	10	249
09/10/95	7.3	Subducción	0.230	5.0	10	250
15/07/96	6.5	Subducción	0.240	5.0	10	251
03/02/98	6.0	Falla Normal	0.223	5.0	10	252
20/04/98	5.4	Falla Normal	0.220	5.0	10	253
15/06/99	7.0	Falla Normal	0.240	5.0	10	254
30/09/99	7.4	Falla Normal	0.235	5.0	10	255

Arreglo Cuerpo B - Longitudinal

Arreglo Cuerpo B - Transversal

Sismo	M	Origen	T _B [s]	ξ _B [%]	α _B	Página
10/12/94	6.4	Falla Normal	0.240	12.0	5	256
09/10/95	7.3	Subducción	0.225	12.5	5	257
15/07/96	6.5	Subducción	0.235	12.0	5	258
03/02/98	6.0	Falla Normal	0.220	12.5	5	259
20/04/98	5.4	Falla Normal	0.220	12.5	5	260
15/06/99	7.0	Falla Normal	0.240	12.5	5	261
30/09/99	7.4	Falla Normal	0.230	12.5	5	262

ANEXO G: EDIFICIOS DE CALIFORNIA

El anexo contiene los resultados gráficos obtenidos con el programa SystemIDv.1.9 para los edificios estudiados de California, Estados Unidos. Cada sismo analizado arroja dos páginas de resultados. La primera página contiene la información general del edificio, un esquema y una foto de éste (en los casos donde fue posible obtenerlos), las historias de aceleración, espectros de piso y amplificaciones de la aceleración máxima registrada en la base con respecto a cada nivel de piso. La segunda página contiene los datos generales del edificio y las historias de distorsión entre cada nivel de piso y la base. Para todos los edificios, se muestra la identificación de siter y $\alpha_{\rm ISE}$, $\xi_{\rm ISE}$ y $\alpha_{\rm ISE}$.

EDIFICIO	SISMO	ORIENTACIÓN	T _B [s]	ξ _B [%]	α _B	Pág.	T _{CL} [s]	ξ _{CL} [%]	α _{CL}	Pág.
Emeryville Pacific Pk.		NS	2.45	6.5	25	264 - 265	2.5	8.0	25	266 - 267
Plaza	Loma Prieta	EW	3.00	4.0	30	268-269	3.08	4.2	30	270 - 271
	Loma Prieta	NS	1.15	2.0	25	272 - 273	1.17	1.8	25	274 - 275
		EW	0.87	3.0	20	276 - 277	0.88	2.2	20	278 - 279
Hayward 13-St. School	Lomo Drioto	NS	1.27	2.6	4.8	280 - 281	1.27	5.0	5.3	282 - 283
Bldg.	Loma Prieta	EW	1.33	2.2	14	284 - 285	1.37	1.0	14	286 - 287
Piedmont Jr. High	Loma Prieta	NS (T)	0.17	4.5	2	288 - 289	0.19	4.5	2	290 - 291
School	Lonna i neta	EW(L)	0.16	4.0	2	292 - 293	0.18	4.0	2	294 - 295
Richmond City Hall	Loma Prieta	NS (T)	0.30	6.8	1.3	296 - 297	0.31	8.0	1.3	298 - 299
	Lonna i nota	EW (L)	0.26	8.0	1.5	300 - 301	0.27	24.0	1.5	302 - 303
El Centro Imp. Co. Ser.	Imperial	NS (T)	0.66	9.5	6	304 - 305	0.65	11.5	6	306 - 307
Bldg.	Valley	EW (L)	1.60	12.0	4	308 - 309	1.60	9.0	4	310 - 311
Long Beach Har. Ad.	Whittier	NS (L)	1.13	5.4	3.1	312 - 313	1.15	5.0	3.1	314 - 315
Bldg.		EW (T)	1.40	2.8	18	316 - 317	1.41	2.8	18	318 - 319
Long Beach VA Hospital	Northridge	NS (T)	0.56	2.5	30	320 - 321	0.58	1.8	30	322 - 323
Long Deach Withospital	Hortinidge	EW (L)	0.55	3.2	12	324 - 325	0.565	3.8	12	326 - 327
LA 7-St. LICLA Bldg	Northridae	NS	0.60	7.0	7	328 - 329				
	Hortinidge	EW	1.09	5.5	8	330 - 331				
	Northridge	NS (L)	3.10	4.5	16.6	332 - 333				
LA 15-St Office Bldg		EW (T)	3.10	6.0	16.6	334 - 335				
EA TO OL OTHEC Didg.	Landers	NS (L)	3.11	2.5	30	336 - 337	3.12	2.0	30	338 - 339
		EW (T)	3.27	3.5	30	340 - 341	3.25	2.5	30	342 - 343
LA 19-St Office Bldg	Northridge	NS (L)	3.47	2.6	4	344 - 345				
EX 15 OL Office Blog.		EW (T)	3.90	2.1	30	346 - 347				
	Northridae	NS (T)	2.30	7.5	5	348 - 349	2.32	9.5	5	350 - 351
LA Hollywood Storage	Tiortiniage	EW (L)	0.81	8.8	8.5	352 - 353	0.82	9.0	8.5	354 - 355
Bldg.	Whittier	NS (T)	1.85	6.9	4.2	356 - 357	1.87	9.0	4.2	358 - 359
		EW (L)	0.64	11.0	6.2	360 - 361	0.65	16.0	6.2	362 - 363
LA Wadsworth VA	Northridae	NS	0.95	2.3	20	364 - 365				
Hospital	Hortinidge	EW	0.98	4.0	20	366 - 367				
Newport Beach Hoag	Northridge	NS (L)	0.73	2.1	3.7	368 - 369	0.75	3.5	3.7	370 - 371
Hospital	Northindge	EW (T)	0.82	3.0	7	372 - 373	0.88	3.5	7	374 - 375
Norwalk 12400 Imp.	Northridge	NS	0.52	20.0	10	376 - 377				
Hwy.	Hortinidge	EW	0.50	11.0	15	378 - 379				
Norwalk 12440 Imp.	Whittier	NS (T)	1.32	2.8	10	380 - 381	1.32	3.2	10	382 - 383
Hwy.		EW (L)	1.24	2.3	10	384 - 385	1.24	2.0	10	386 - 387
Pomona 6-St. Bldg.	Landers	NS (L)	0.86	5.2	13	388 - 389	0.92	8.5	13	390 - 391
	Landoro	EW (T)	1.24	3.5	15	392 - 393	1.24	5.0	15	394 - 395
San Bernardino 5-St	Northridge	NS (L)	0.53	5.5	3	396 - 397				
	Hortinidge	EW (T)	0.68	4.4	4.1	398 - 399				
San Bernardino Vanir	Landers	NS (T)	2.01	3.1	25	400 - 401	2.03	2.1	25	402 - 403
Tower		EW (L)	2.07	4.0	15	404 - 405	2.08	5.8	15	406 - 407
	Northridge	NS	0.37	18.0	3	408 - 409	0.38	28.0	3	410 - 411
Sylmar Olive View Med.	Tronunuge	EW	0.30	18.0	3.5	412 - 413	0.30	24.0	3.5	414 - 415
Cen.	Whittier	NS	0.31	13.0	8.5	416 - 417				
	v v i i i i i i i i i i i i i i i i i i	FW	0.29	11.0	8	418 - 419				

Time (s) -40

CSMIP Station:	1129	Earthquake: Loma Prieta	Building parameters:			14
Location:	Hayward	Component: EWref	$T_{\gamma} = 0.87$	ξ = 0.03	$a_0 = 20$	
Numer of stories:	11	Lateral Resisting System: MRF winfill walls				
Use/Type:	Office Building					

USGS Station:	1129	Earthquake:	Loma Prieta	Building parameters:			14
Location:	Hayward	Component:	EWret	T ₁ = 0.88	ξ = 0.022	$\alpha_0 = 20$	1.044
Numer of stories:	11	Lateral Resisting	System: MRF winfil wells				
Use/Type:	Office Building						

(alla

	58503	Ea	arthquake: Loma i	Prieta	Building parameters:			
cation:	Richmond	Co	amponent: EWref		$T_1 = 0.26$	ξ = 0.08	α ₀ = 1.5	
mber of stories:	3	La	teral Resisting System:	RConcrete MRF & SW				
е/Туре:	Office Building							
Richmond - 9-story (Govit Office Bidg					Ke7/H		
(2004)P Shaker No. (402	esp SENSOR LC	CATIONS				1.0 -		
						0.9	dana faran har	
		Ê.o	2,			0.8	Jan francisco	
	a Red Roter	Tic	ofPlan	N		0.7		
-	 Bit Ros Bit Ros 			and the other designation in the other designation of the other designa	owners and the owners of the owners	0.6		_
Reconstructors!	CONTRACTORISTICS STATE			TATA OF STREET	COLUMN STATES OF STREET, STREE			
WE E	Elevation 1		The second se		COMPANY OF THE DESIGNATION OF THE OWNER.	0.5	1	
US .	ೆ	En	⁵ f	ALL MAN AND AND A	NAMES IN CA. NO. A DESCRIPTION OF	0.4	1	
15	Baronhare I Briostation	and F	Hoor Plan		Colona -	0.3		
	e					0.2	E Recorde	1
0						0.1	- Compute	ed i
Banary	"T	5	7.	1		0.0	-	
		E410 2nd I	Floor Plan	1		0	1 2 3 PFA/PGA	4
						Accel.		
Accel. [cm/s ⁴]			1.1		ROC)F [cm/s2]	1	ROOF
150					CHAN10	000	From recorded mit	18p.
100					Computed	= 600 - Å	From computed in	\$9 <u>0</u>
50			the address			- 1		
0	WAREL AND THE ARMAN	HALLEN I THE I HALL	THE BALLAND AND AND AND AND AND AND AND AND AND	and a state of the	n- Allowider and	400	4	
-50		- 11/51161	State Brine .	A		- M	A	
100						- 200 - /	1/	
150						*		
200 -	5 10	15	20	25 30	35	40 00	10 20 30	4
-			Time [s]				PERIOD (s)	
Accel, (cm/s ²)					3RD FLOO	Accel.	3	3RD
200						fruitiset.	FL	OOR
					CHANTI	800		
150					CHANTI	800	Fitam recorded no Fitam computed in	192. 1930
150		h:			CHAN11	600	Fitem recorded ren	192. 1935.
150			A A Batalan Marta	A. the second	CHANTI	600 - 1	Fism recorded ret	49. 1492
150 100 50 0 11 <u>11</u> 11 <u>11</u>	(lifectures)erserversersersers)		hlownshew	นี่สูงไหรูปกับรูปกัน เราะ	CHAN11	600 - 1 - 400 - 1	Fibm recorded re-	19). 19().
150 50 0 -50 -50	Himmerson and a start of the		j f florigenstaterio	ปัญวิติรูรูลัยระระจะกระสุขระจะจะจะ	CHAN11	- 600 - 1 - 400 - 1	Fism recorded ne Fism computed is	192. 1932.
150 - 50 - 50 - 50 - 50 - 100 - 100 -	lfforesons on so		jt filosyonatherne	ปัญวัติอาร์กระกระกระก _{ับได้ระ} การก	CHANTI Computed	400	Piter recorded res	np. 10p.
150 - 50 - 50 - 50 - 50 - 50 - 100 - 150 - 150 - 150 -	httprinnersprensersprensersky		j Alerweiddele	ปัญริโตรูสรัญกรรม _อ ารอากุญชัญเทา เหตุ	CHANTI Computed	400	From recorded res From computed is	12.
150	รู้ไปรู้อย่างเขาจากจากจากจากจากจากจากจากจากจากจากจากจาก	A constraint of the second sec	20. 20	1 1 1 1 1 1 2 5 30	CHANTI Computed		From recorded res From computed in From computed in 1.0 2.0 3.0	np. 190.
150	5 10		20 Time [s]	25 30	Chanti Computed		Plan recorded rec Plan computed in	rip. 10p
150 - 50 - -50 - -50 - 100 - 150 - 150 - 0 - Accel. [cm/s ²]) [] 5 10		20 Time [s]	25 30	Chentit Computed Compute	400	T.0 2.0 3.0 PERIOD [1]	4 2ND LOOR
150	\}}	A constraint of the second sec		25 30	CHANTI Computed	400	T.D. 2.0 3.0 PERIOD [1]	4. 2ND LOOR
150	/////////////////////////////////////		1 1 1 1 1 1 1 1 1 1 1 1 1 1	25 30	CHANTI Computed	400 400 400 400 400 400 400 400	From recorded rec From computed in t.0 2.0 3.0 PERIOD [s] FL From recorded me ······	4. 2ND LOOR 100
50	10000000000000000000000000000000000000			25 30	CHAN11 Computed	600 600 400 200 400 200 400 200 40 200 40 200 40 200 40 200 40 200 40 200 40 200 40 200 400 4	Fram recorded ne Fram computed in Fram computed in Fram computed in Pran computed in Pran computed in Fram	4. 2NO LOOR
50	5 10		Allasin Autor	25 30	CHAN11 Computed	BOD B	Fram recorded ne Fram computed in Fram computed in Fram computed in Press computed in Fram computed in Fram computed in Fram computed in Fram computed in	4. 2ND LOOR 199
50 50 50 50 50 50 50 50 50 50	5 10		Allon Windlehold Time [2]	25 30	2ND FLOC	800 600 400 400 400 400 400 400 4	Promineconted me	4 2ND LOOR 100
50	5 10		Allon Marchard	25 30	2ND FLDC	800 600 400 400 400 400 400 400 4	Promineconted res Promineconted res Promineconted in t.0 2.0 3.0 PERIOD [s] Promineconted me 	4 2ND 2ND 2ND 2ND 2ND 2ND 2ND 2ND 2ND 2ND
50	5 10			25 30	2ND FLOC	400 400 400 400 400 400 400 400	Prom recorded res Prom computed in Prom computed in Prom recorded res Prom recorded res Prom recorded res Prom recorded res Prom computed in Prom recorded res	4 2ND LOOR 199
150	5 10		A A A Carl and A A A A A A A A A A A A A A A A A A A	25 30	25 2ND FLOC	800 600 400 400 400 400 400 0.0 Accel. jcmsz] 800 400 400 0.0 Accel. 100 400 400 100 100 100 100 100	Promineconted residence	400
50 50 50 50 50 50 50 50 50 50	5 10 5 10			25 30	CHANTI Computed Computed Computed Computed Chanta SS 2ND FLOC Chanta Computed Chanta SS 2ND FLOC Computed Computed SS 2ND FLOC	800 600 405 405 405 405 405 405 405 4	Promineconted me Promineconted me Promineconted me 1.0 2.0 3.0 PERIOD [s] FL Promineconted me Promineconted me P	4. 4. 4. 2ND LOOR HP
50 50 50 50 50 50 50 50 50 50	5 10 5 10			25 30	2ND FLOC	40 400 400 400 400 400 400 400	The recorded re- Free computed is 1.0 2.0 3.0 PERIOD [s] FL 1.0 2.0 3.0 PERIOD [s]	яр вар 4. 2ND LOOR нр мар
50 50 50 50 50 50 50 50 50 50	5 10 5 10			25 30 25 30	2ND FLOC	800 600 - 400 - - 400 - - 400 - - 400 - - 400 - - 400 - - 400 - - 400 - - 600 - - 400 - - 600 - - 400 - - 200 - - 400 - - 200 - - 400 - - 200 - - 400 - - 500 - - 500 - - 400 - - 500 - - 400 - - 500 - - 400 - -	t.0 2.0 3.0 PERIOD (s)	992 9935 4 2ND LOOR 90 90 90 90 4 4 8 8 40 8
50	5 10 5 10			25 30	2ND FLOC	BOD BOD BOD BOD BOD BOD BOD BOD	Tan recorded ne Fise computed is Fise computed	яр 1995 4 2NO LOOR НФ 100 К 100 4 4 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8
50	5 10 5 10			25 30 25 30	CHAN11 Computed Set of April Set of Apri	BOD BOD BOD BOD BOD BOD BOD BOD		яр 1995 4 2ND LOOR НФ 4 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8
150	5 10 5 10			25 30 25 30	CHAN11 Computed Set of Annual State S	800 600 400 400 400 0 400 0 400 0 400 0 400 0 400 0 400 0 400 0 400 0 400 0 400 0 400 0 400 0 400 0 500	Prom recorded res Prom computed in Prom computed in Prom recorded me Pr	192 1935 4 200 100 194 194 194 194 194 194 194 194 194 194
50	5 10 5 10			25 30 25 30	Снямті Соприйні Заб 2ND FLD0 Соприйні Заб 2ND FLD0 Соприйні Соприйні Заб Соприйні Соприйні Соприйні Соприйні Соприйні	800 600 400 400 400 0.0 400 0.0 0 0.0 0 0.0 400 0.0 0 0.0	Prom recorded res Prom computed is Prom computed is Prom recorded me Prom recorded me Prom recorded me Prom computed is Prom recorded me Prom computed is	1929 1930 4 2000 1949 1949 1949 4 4 8 8 8 8 8 9 1949 194
150 50 50 50 50 50 50 50 50 50	5 10 5 10			25 30 25 30	CHAN11 Computed Solution So	800 600 400 400 400 0.0 400 0.0 200 600 40 0.0 500	Fram recorded residence in the second design of	999 1990 4 2ND LOOR 1990 4 4 8 8 8 8 9 4 4
150 50 50 50 50 50 50 50 50 50	5 10 5 10			25 30 25 30	Chanti	800 600 600 9 400 9 400 0.0 200 0 40 0.0 200 0 400 0.0 200 0 400 0.0 200 0 400 0.0 200 0 400 0.0 300 0 400 0.0 300 0 400 0.0 300 0 400 0.0 300 0 400 0.0 300 0 400 0.0 300 0 400 0.0 400 0.0 400 0.0 400 0.0 400 0.0	t.0 2.0 3.0 PERIOD [s]	ар. 1985 4 2NO LOOR 100 R 4 4. 8 A. 8 A. 8 A. 8 A. 8 4. 8 A. 8 8 4. 8 8 4. 8 8 8 8 8 8 8 8 8 8 8 8
150 50 50 50 50 50 50 50 50 60 60 60 60 60 70 70 70 70 70 70 70 70 70 7	5 10 5 10		And a start of the	25 30 25 30	2ND FLOC	800 600 600 9 400 9 400 0	Fram recorded res Files computed is Files computed is Files computed is Prom recorded me Files computed is Prom recorded me Files computed is	ар. 1985 4. 2NO LOOR 1998 4. 4. 8. 8. 4. 4. 8. 8. 8. 9. 9. 9. 9. 9. 9. 9. 9. 9. 9. 9. 9. 9.

CSMIP Station: 1250	Earthquake:	Imperial Valley	Building parameter	s:		141
Location: El Centro	Component:	NSref	1, = 0.66	ξ = 0.095	a ⁰ = e	1 () () () () () () () () () (
Numer of stories: 6	Lateral Resisting	System: MRF winfil wa	6			
UserType: Office Building						
B Centro - Impartal County Services 8ldg	-	r 11				
SENSOR LOCATIONS	i. 12. 1					
27/14/27 CR07 CR1 Ma	(1) (he) 1		_1			
F	-					
3	Plot Plan					
the second second second	í i					
- and assessed to a state of the same	0.0002		STORES !!			
British British			and a state of the			
			191 Martin			
1 Billion and	4th Ploor Plan	THE PERSON NEEDED	THE PARTY P			
2 P		A NAME AND A DESCRIPTION OF TAXABLE	and the second	8		
2 P () () () ()	21 22 3	171 8 4	1/2	10 C		
P I I I ATA	1 25 1	The second se		9 <u>4</u>		
2 pt				11		
Ground Roor Plan	and Floor Plon	(14)				
Displ. ic=l		1.5		ROOF		
8		10 0		ALC: NOT		
4			An any Computed			
1 20			and the second second			
A DIMALA SALA SALA	e diaman	da		100		
	Constraint of the second	and the second	- and the second states and the second	period of		
2				87.872		
**	3					
0 8 18	24 Time b	6	-48	05		
min had			(1)(2)	0.000		
E g			2001	1.000		
A DESCRIPTION OF THE PROPERTY OF THE		1.000 (N. 2000 (N. 2000)	CHANDE - CH	11348		
		1	Corp.			
2						
0	man and a second					
Cherry Co						
*	1					
4	station and					
-						
0 8 16	24		48	66		
	Time (1 5-020 Es				
Disp. (cm)				BASE		
8		- 10	- CHENIL- CH	aNEE		
Were and the second second second			Computed	100110		
		100 00000000				
0		1				
2	and in the second	the second	constrained and			
Second Second Second						
81 1 1			i i i			
0 8 16	24		48	66		
	(ime)	8				

Time [s] .0

0.0 1.0 2.0 3.0 4.0 5.0 6.0 PERIOD(s)

CSMIP Station: 24236 Location: Los Angeles	Earthquake: Northridge Component: NSref		Building parameters: T ₁ = 2.30	;= 0.075 α ₀ = 5
Number of stories. 14 Lise/Dupa: Watebouse Building	Lateral Resisting System: R	Concrete MRF		
Los Angeles - 14-story Holywood Storage (CBVP Setor No 1438) SENSOR LOC	ATIONS		and the second	
and the second s	10			1.0
and the second state of the second se	ti2 t+11		No.	as
e se Hit Poer	Main Root Plan	11 100		07
W La grant a series of front feel	1	S. 18		0.6
W/E Elevation	12th Fibor Plan			0.4 +
Not A		in the second	and they	0.2
to all all all all all all all all all al	10 L-5	- Townson	Place Inter-	0.1 Recorded Computed
terrent Rectation Basement Plan	8th Floor Plan			0 1 2 3 4
Accel. (cm/s ²)			ROOF	Accel. [cm/s2] Sone
500 375			CHANID	1600 Promissonal resp.
250 125				1200
	for and a second and a second and a second and a second a	-		
250		enierein		400 francisco fr
4500 S 10 15 20	25 30 35	40 45	50 55 6	
	Time (s)		1015 EL 0.0E	PERIOD (s) Accel. 12th
500 375			CHAN07	[cm/s2] FLOOR 1600 Piter recorded resp
250				1200 From computed resp.
	hand a second and a second and a second			800 -
-125		2001 2003 23		400
-375				S Stranger
0 5 10 15 20	25 30 35 Time (s)	40 45	50 55 6	0 0.0 1.0 2.0 3.0 4.0 5.0 5.0 PERIOD[1]
Accel. [cm/s ²] 500		E E	8th FLOOR	[cm/s2] FLCOR
250			Conputed	1200
125	approximation and a			800 MA
-125				
-375				and Providence
0 5 10 15 20	25 20 25	10 10	- A	
Accel. (cm/s ²)	Time [s]	42 48	50 (55) 6	PERIOD (s)
500 -	Time [s]	42 43	BASE	Accel. [Em/s2]
500 375	Time (s)		BASE	Accel. PERIOD (s) [cm/s2] 1600 - From Accorded resp. Prom computed resp.
500 375 280 125 164 164	Time (s)		BASE	Accel. PERIOD (s) (cm/s2) 1500 - From recorded resp. 1200 - From recorded resp.
	Time (s)		BU 55 6 BASE	Accel, PERIOD (s) [cm/s2] 1500 - From //cordyd resp. 1200 - From //cordyd resp. 1200 - From //cordyd resp.
500 375 280 125 0 -125 280 -255	Time (s)		BASE	Accel. PERIOD (s) [cm/s2] 1500 From Hoordyst resp. 1200 800 400

Los Angeles - 14-story Holywood Storage (CSMP Station No. 24239)

	1				CHANI	CHRONE d
2323	- 1		F	 Tr		
		14	1	 	 	

ISGS Station: ocation: lumber of stories: lse/Type:	5082 Los Angeles 6 Hospital	Earthquäke: Component: Lateral Resist	Northrlöge NSref ng System: Shear V	als	Building parameters: T ₁ = 0,95	ξ = 0.023 α,	2 = 20
			1000	2010		3×2/H 1.0	
		- 1				0.9	1
				1	ANR	0.5	1
			E	This was	-	0.5	
			EE.			0.2	Riecorded
		1	Statistical Contra	state of the second	And And		2 3 4 5
Accel, (cm/s ²)		64-			RO	Accel. OF (cm/s2)	ROOF
300		Altri			- CHANS	2000	Prom recorded map.
0 - manifestantes		HAHAA	MAAN	HANNAN AN	ANAN	1500	
-150		11111	N. P.			503	
450	4 5 8	10 12 TP	14 15 18 me (s)	20 22	24 26	28 0.0 1.0	2.0 3.0 4.0 5.0 6.0 PERIOD (s)
Accel (cm/s ²)	177 (12) 132		ilen and a second	We IV.	BA	Accel. SE (cm/s2)	BASE
300				an fearfa	CHSN1 Cemputed	2500	From recorded resp.
150	- alleh ut 102 mil	Hall manus	La Marthan			1500	
-150	an de later de la service de la	A dame with a contract of	am at d			1000	and part part is a
-300					and the second second	- 500 - Marc	
-450 -	1 1 1	<u>, 12 – 12</u>	10 10 1C	- 10 - 10 - 10 - 10 - 10 - 10 - 10 - 10	-i ² -i		1

USGS Station:	5082	Earthquake:	Northridge	Building parameters:			10
Location:	Los Angeles	Component:	NSref	T ₁ = 0.95	ξ = 0.023	$w_0 = 20$	445417
Numer of stories: Use/Type:	6 Hospital	Lateral Resisting	System: Shear Walls				

USGS Station:	5082	Earthquake:	Northridge	Building parameters:			1.0
Location:	Los Angeles	Component:	EWiref	T ₁ = 0.98	$\xi = 0.04$	a ₀ = 20	2444
Numer of slories: Use/Type:	6 Hospital	Lateral Resisting	a System: Shear Walls				
			1000	aller Statis			

CSMP Station:	634	Earthouske	Watter	Building parameters:			11041
Location:	Nonwalk	Component:	NSref	T, = 0.52	ξ= 0.2	$\alpha_0 = 10$	(and)
Numer of stories	8	Lateral Resistin	g System: Steel MRF				
Use/Type:	Office Building						

13						_		_					
~H	CHARS - CHART Computed				ala		-4		ala			100	
		12. J.L.	_1.				-	10	-	موالي			
	Andres	-		مصليمه		And	eaning	asa	Lacka	And	Albert	All	
-					4 * P-			4 8 K 4	Anna	AM.	N 483	· VUU	
			11					Fil				11	
	11	11		- 11	1			10	10		10	Ę	
2	- 28	24	22	20	18	16	Time [s]	12	10	8	6	<u>_</u>	0
DOR	4TH FLO												Nap. Som
15	CINANO - CINAN Completed		-	-de			-	ad de			-		
	and in			a de la		de	-		-		elles		-
	mahar	whe	uh	same.	maha	andres	aning	was.	Banas	adial	20. A.A.	للقام	
				energy (com	*		the second second second		a	14.16.15	25.1 1.18.13	10 31 84	1000000000
	Contraction and the second		and in fact,					- 19.	and the second	10.00	10. 11.1	19.6	
	122.002.0				a fa			-				- 10	1000
1 1 1 1 1	26	24	22	20	18	10	14 Time [s]	12	10	8	6		0
ASE	26 B	24	22	20	18	10	14 Time [st]	12	10		6	- 10	0 Disp. [cm]
ASE	26 Bi CHANI-CHAN Computed	24	22	20	18	10	Time [s]	12	10	*	8		Q Disp. (cm]
ASE	26 B. CHUNI-CHUN Computed	24	22	20	18	10	14 Time [s]	12	10	*	8		0 isp. jcm]
ASE	28 B CHANI-CHAN Computed	24		20	18 18		14 Time (s)		10		6		0 Disp. [cm]
ASE	26 B CHANI-CHAN Computed	24	22	20	18	10	14 Time (s)	12	10	8	8		0 isp. (cm)
ASE	26 B CHANS-CHAN Computed	24	22	20	18	10	Time (s)	12	10		8		0 Imp. (cm)
ASE	206 B Ch4MS - Ch4M Composed	24		20		10	Time (a)	12	10		8		0 Diep. (cm)

CSMIP Station:	534	Earthquake:	Whitter	Building parameters:			(14):
Location:	Norwalk	Component:	EWrel	T ₅ = 0.50	§ = 0.11	$a_0 = 15$	Taken .
Numer of stories:	8	Lateral Resisting	System: Steel MRF				
Line/Typer	Office Suliding						

Disp. (cm)					1	ST FLOOR
harden an harres		nghaaas	2201202	seed toos	CHANA - CHA	100177
and the second second	1.0000	and particular				
						-
C		neel/neere	eest leaves	1000	0.000	-
		and frames		en (pass	ere deres	
	141		19.1	101	U	
0 4	å	12 Time	18	20	5.24	BASE
a é	* 	12 Time	(H) ¹⁸	20	24	BASE
0 4	*	12 Time	94) ¹⁸	20	24 CHANITE C	BASE
0 4	-	12 Time	N 18	20	24 CHANNER Computer	BASE
0 4		12 Time	N) 18	20	Die Criantific - Computer	BASE
0 4		12 Time	N) 19	ж 	Die Cenantifie - C Computed	BASE

in the

R

II Station: Location: Number of stories Use/Type:	24514 Sylmar 6 Hospital		Earthquake: Northr Component: EWref Lateral Resisting System	löge Shear Walls	1	Building parameters: $T_1 = 0.30$	ξ = 0.24	α ₀ = 3.5	W General
Symar - S-study (2 CHART Carrier 5 Martin - S- Chart Carrier - S- WIT Dave WIT Dave WIT Dave WIT Dave WIT Dave Science - S- WIT Dave WIT Dave Science - S- WIT Dave WIT Dave	Suny Bospital due SP Table Biss due biss d		10 10 10 10 10 10 10 10 10 10				x-2/H 1.0		Recorded Computed
Accel. (cm/s ²) 900 300 0 -300 -300 -300 -300		distriction	ng langingen ten sin man	Alfred Topological		CHANTO Computed	Accel. 3000 - 1 2500 - 1 1500 - 1 1500 - 1 000 - 1 0 0 0 0 0 0 0 0 0 0 0 0 0	PFA / PG	A ROOF n recorded ress n consulted ress
NOT SERVICE		10	Time [s]	25	0.300		Accel	PERIOD	(s) 4TH
4000		nghadira-nene		Anno 1997 - 1997		Criabeta	(cm/s2) 3000 2500 2000 1500 500	Proceeding of the second secon	FLOOR nresorted wep n computed wep
-900 0	s.	10	15 20 Time [s]	25	30	35	40 0.0	1.0 2.0 3.0 PERIOD	4.0 5.0 6.0
Accel. [cm/s ²]		-				3RD FLO	OR [cm/s2]		3RD FLOOR
600	HANHA	nin the second		*****		CRANI2	2500 - 2000 - 1500 - j. 1000 - j.		e mean-field mean e comparted resp.
-900				2	1	4			1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-
	5	10	15 20 Time [s]	25	30	35	40 0.0 Accel	1.0 2.0 3.0 PERIOD	4.0 S.0 6.0 (s)
Accel. [cm/s*]		N	U			BA:	SE (cm/s2)	- Fite	BASE misecordad map.
500	allentanere	<u>.</u>				L Computed	2500 2000 1500 1000 500 0 -	No.	n computed seep
19	5	10	15 20 Time [s]	25	30	35	40 0.0	PERIOD	(s) 5.0 6.0

REFERENCIAS

- Alcántara L., Almora D., Quaas R. y Macías M. Instrumentación sísmica de dos edificios en la ciudad de México, X Congreso Nacional de Ingeniería Sísmica, pp. 3-21 a 3-33. Puerto Vallarta, Jalisco. 1993a.
- Alcántara L., Macías M., Almora D. y Castro G. *Historia sísmica en los edificios Plaza Córdoba y Metro Juárez*, X Congreso Nacional de Ingeniería Sísmica, pp. 385-390. Puerto Vallarta, Jalisco. 1993b.
- Anderson J.C., Miranda E. y Bertero V.V. Seismic performance of a thirty story R.C. building, Report No. UCB/EERC-91/16, Earthquake Engineering Research Center, University of California, Berkeley, California. Julio, 2001.
- 4. Arredondo C. Comunicación personal. 2005.
- 5. Avilés J., Suárez M. y Sánchez-Sesma J. *Effects of wave passage on the relevant dynamic properties of structures with flexible foundation*, Earthquake Engineering and Structural Dynamics, Vol. 31, pp. 139-159. 2002.
- 6. Base Mexicana de Datos de Sismos Fuertes. Sociedad Mexicana de Ingeniería Sísmica, Vol. 2. 2000.
- 7. California Strong Motion Instrumentation Program CSMIP. ftp://ftp.consrv.ca.gov/pub/dmg/csmip
- Celebi M., Phan L.T. y Marshall R.D. *Dynamic characteristics of five tall buildings during strong and low amplitude motions*, The Structural Design of Tall Buildings, Vol. 2, pp. 1-15. 1993.
- 9. Centro de Instrumentación y Registro Sísmico, CIRES. http://www.cires.org.mx/
- 10. CISN Engineering Strong Motion Data Center. http://www.quake.ca.gov/cisn-edc/
- Clinton J.F., Bradford S., Heaton T.H. y Favela J. *The observed wander of the natural frequencies in a structure*, Bulletin of the Seismological Society of America, v. 96; no. 1; pp. 237-257. 2006.
- Correa V. y Murià D. Efectos de interacción suelo-estructura de un edificio instrumentado con modos de vibración acoplados, Memorias del XV Congreso Nacional de Ingeniería Sísmica, México D.F., Artículo IV-08, pp. 19. Septiembre, 2005.
- 13. DegtraA4 v5 (XP). Programa elaborado por M. Ordaz y C. Montoya. 1990-2002.
- 14. Dunand F., Rodgers J., Acosta A., Salsman M., Bard P. y Çelebi M. *Ambient vibration and earthquake strong-motion data sets for selected USGS extensively instrumented buildings*, Open-File Report 2004-1375, USGS. 2004.
- 15. Durán R. *Nonstationary seismic response of an instrumented five-story precast reinforced concrete building*, Eleventh World Conference on Earthquake Engineering, Disc 1, Paper No. 63. Acapulco, Guerrero. 1996.
- 16. Fuentes L. y Murià D. *Modelos calibrados de un edificio instrumentado*, Revista Digital Universitaria, Vol. 2, No. 3. 2001.
- 17. Goel R. y Chopra A. *Period formulas for moment-resisting frame buildings*, Journal of Structural Engineering, noviembre, pp.1454-1461. 1997.
- 18. Ivanovic S., Trifunac M., Novikova E., Gladkov A. y Todorovska M. *Ambient vibration tests of a seven-story reinforced concrete building in Van Nuys, California, damaged by*

the 1994 Northridge earthquake, Soil Dynamics and Earthquake Engineering, Vol. 21, Edición 3, pp. 225-236. Abril, 2001.

- Kim S. y Stewart J. *Kinematic soil-structure interaction from strong motion recordings*, Journal of Geotechnical and Geoenvironmental Engineering, Vol.129, No.4, pp. 323-335. Abril, 2003.
- 20. Luco J. y Wong H. *Response of a rigid foundation to a spatially random ground motion*, Earthquake Engineering and Structural Dynamics, Vol. 14, pp. 891-908. 1986.
- 21. Luco J. y Wong H. *Seismic response of foundations embedded in a layered half-space*, Earthquake Engineering and Structural Dynamics, Vol. 15, pp. 233-247. 1987a.
- Luco J., Trifunac M. y Wong H. On the apparent change in dynamic behavior of a ninestory reinforced concrete building, Bulletin of the Seismological Society of America, Vol. 77, No. 6, pp. 1961-1983. Diciembre, 1987b.
- Meli R., Muriá D., Quaas R., Faccioli E. y Paolucci R. Instrumentación sísmica del edificio Jalapa para el estudio de efectos de sitio y de respuesta estructural, Memoria del X Congreso Nacional de Ingeniería Sísmica, pp. 271-279. Puerto Vallarta, Jalisco. 1993.
- 24. Miranda E. Seismic evaluation and upgrading of existing structures, Tesis doctoral, University of California at Berkeley, Berkeley, CA. 1991.
- 25. Miranda E. *Approximate seismic lateral deformation demands in multi-story buildings*, Journal of Structural Engineering, ASCE, Vol. 125, No. 4, pp. 417-425. 1999.
- 26. Miranda E. y Reyes C. *Approximate lateral drift demands in multistory buildings with nonuniform stiffness*, Journal of Structural Engineering, Vol. 128, No. 7, pp. 840-849. Julio 2002.
- Miranda E. y Taghavi S. Approximate floor acceleration demands in multi-story buildings. I: Formulation, Journal of Structural Engineering, Vol. 131, No. 2, pp. 203– 211. 2005.
- 28. Miranda E. y Akkar S. *Generalizad interstory drift spectrum*, Journal of Structural Engineering, Vol. 132, No. 6, pp. 840-852. 2006.
- 29. Murià D., González R. y Sánchez R. *Propiedades dinámicas de una estructura masiva desplantada en suelo blando*, IX Congreso Nacional de Ingeniería Sísmica y VIII Congreso Nacional de Ingeniería Estructural, Vol. 1, pp. 3-34 a 3-43. Manzanillo, Colima. 1991a.
- Murià D., González R. y Espinosa J. Efectos de interacción suelo-estructura en la respuesta sísmica de un edificio instrumentado, IX Congreso Nacional de Ingeniería Sísmica y VIII Congreso Nacional de Ingeniería Estructural, Vol. 1, pp. 3-93 a 3-103. Manzanillo, Colima. 1991b.
- Murià D., Bolio P., González R. y Contreras O. *Respuesta sísmica de un edificio de la secundaria Nº3*, Memoria del X Congreso Nacional de Ingeniería Sísmica, pp. 455-461. Puerto Vallarta, Jalisco. 1993.
- Murià D., Alcántara L., Durán R., Macías M., Maldonado S., Pérez L., Tena A. y Vázquez R. *Capítulo 9 Edificios Instrumentados*, El macrosismo de Manzanillo del 9 de octubre de 1995, pp. 197-232. Colima, México. 1997.
- Murià D., Macías M., Rodríguez G. y Soto U. Análisis de los registros sísmicos obtenidos en el edificio PC de 1990 a 1999, Instituto de Ingeniería, UNAM, Realizado para el gobierno del Distrito Federad, Proyecto 0520, México. 2000.

- Murià D., Rodríguez G., Zapata A. y Toro A. Seismic response of a twice-retroffited building, Journal of Earthquake Technology, Paper No. 412, Vol. 38, No. 2-4, pp. 67-92. 2001.
- Reinoso E., y Miranda E. Estimation of floor acceleration demands in high-rise buildings during earthquakes, Structural Design of Tall and Special Buildings, Vol. 14, pp. 107-130. 2005.
- Rodríguez G., Macías M., Murià D. y Palacios C. Respuesta sísmica de un edificio instrumentado en un periodo de 10 años, Memoria del XIII Congreso Nacional de Ingeniería Sísmica, Guadalajara, Jalisco. 2001.
- 37. Rodríguez N. *Response measurements of a tall building under seismic excitation*, Tenth World Conference on Earthquake Engineering, Rotterdam, pp. 2665-2671. 1992.
- Romo M. y Bárcena A. Interacción dinámica suelo-estructura y su impacto en la ingeniería de cimentaciones, Memoria del X Congreso Nacional de Ingeniería Sísmica, Puerto Vallarta, Jalisco, pp. 338-345. 1993.
- 39. SeismoSignal v3.2. Programa elaborado por SeismoSoft. http://www.seismosoft.com
- 40. Servicio Sismológico Nacional. http://www.ssn.unam.mx/
- 41. Stearns S. y David R. Signal Processing Algorithms, Prentice-Hall. 1988.
- 42. Stewart J., Seed R. y Fenves G. *Empirical evaluation of inertial soil-structure interaction effects*, Pacific Earthquake Engineering Report 1998/07, pp. 233. Noviembre 1998.
- 43. Stewart J., Fenves G. y Seed R. *Seismic soil-structure interaction in buildings. I: Analytical methods*, Journal of Geotechnical and Geoenvironmental Engineering, Vol. 125, No. 1, Paper No. 16525, pp. 26-37. Enero, 1999a.
- 44. Stewart J., Seed R. y Fenves G. Seismic soil-structure interaction in buildings. II: Empirical findings, Journal of Geotechnical and Geoenvironmental Engineering, Vol. 125, No. 1, Paper No. 16526, pp. 38-48. Enero, 1999b.
- 45. SystemID (v1.8 y v1.9). Programa elaborado en Visual Basic.Net por Eduardo Miranda y Eduardo Reinoso. 2004.
- Taghavi S. y Miranda E. Approximate floor acceleration demands in multistory buildings. II: Applications. Journal of Structural Engineering, Vol. 131, No.2, pp. 212-220. 2005.
- 47. Trifunac M., Hao T. y Todorovska M. *Response of a 14-story reinforced concrete structure to nine earthquakes: 61 years of observation in the Hollywood Storage Building*, University of Southern California, Department of Civil Engineering, Report CE 01-02, pp. 95. Mayo, 2001a.
- 48. Trifunac M., Ivanovic S., and Todorovska M. *Apparent periods of a building. Part I: Fourier analysis*, Journal of Structural Engineering, Vol. 127, No. 5, pp. 517-526. May, 2001b.
- 49. United States Geological Survey USGS. http://nsmp.wr.usgs.gov/
- 50. Veletsos A., Prasad A. y Wu W. *Transfer functions for rigid rectangular foundations*, Earthquake Engineering and Structural Dynamics, Vol. 26, pp. 5-17. 1997.

51. Zapata A. y Murià D. *Estimación de los efectos de interacción suelo-estructura de un edificio a partir de registros sísmicos*, Memoria del XIII Congreso Nacional de Ingeniería Estructural, Puebla, México, pp. 623-631. 2002.