

UNIVERSIDAD NACIONAL AUTONOMA DE MÉXICO Facultad de Química

RECOPILACIÓN DE LA COMPOSICIÓN NUTRIMENTAL DE MATERIAS PRIMAS REMITIDAS AL DEPARTAMENTO DE NUTRICIÓN ANIMAL Y BIOQUÍMICA DE LA FMVZ

T E S I S

QUE PARA OBTENER EL TITULO DE

QUIMICO DE ALIMENTOS

P R E S E N T A:

SERGIO MAURICIO MAGOS NAVARRO

México, D. F.

2007

UNAM – Dirección General de Bibliotecas Tesis Digitales Restricciones de uso

DERECHOS RESERVADOS © PROHIBIDA SU REPRODUCCIÓN TOTAL O PARCIAL

Todo el material contenido en esta tesis esta protegido por la Ley Federal del Derecho de Autor (LFDA) de los Estados Unidos Mexicanos (México).

El uso de imágenes, fragmentos de videos, y demás material que sea objeto de protección de los derechos de autor, será exclusivamente para fines educativos e informativos y deberá citar la fuente donde la obtuvo mencionando el autor o autores. Cualquier uso distinto como el lucro, reproducción, edición o modificación, será perseguido y sancionado por el respectivo titular de los Derechos de Autor.

Jurado asignado:

Presidente Prof. Hermilo Leal Lara

Vocal Prof. Lucía Cornejo Barrera

Secretario Prof. Águeda García Pérez

1er. Suplente Prof. Luz Sandra Sánchez del Ángel

2°. Suplente Prof. Rosa María Argote Espinosa

Sitio donde se desarrolló el tema:

• Departamento de Nutrición Animal y Bioquímica, FMVZ, UNAM.

 Departamento de Programas Audiovisuales (DePA), Facultad de Química, UNAM.

> QA. Águeda García Pérez Asesor

> > .

MVZ Sergio C. Ángeles Campos Supervisor Técnico

Sergio Mauricio Magos Navarro Sustentante

Agradecimientos

Ante todo agradezco al equipo que conforma el Departamento de Programas Audiovisuales (DePA) de la Facultad de Química por todas las facilidades otorgadas y todos los recursos computacionales para elaborar este proyecto. Por siempre será "mi depa".

En lo particular al Dr. Jesús Gracia Mora, Jefe del DePA, porque sin su apoyo, la realización del presente proyecto no hubiera sido posible. Gracias "Chucho".

E Iliana Zaldivar Coria, Subjefe del DePA, por la amistad que tenemos desde hace ya cinco años, por la vigilancia constante sobre los avances de este proyecto y la valiosa asesoría técnica que me prestó continuamente.

A Lucy Cornejo por jugar un papel fundamental en la consumación de este proyecto, que no habría sido posible sin su asesoría comprometida y total entrega. Gracias Lucy por apoyarme de tal manera y escucharme.

Hubo alguien, hace tiempo, que se encargó de devolverme la motivación que suele uno perder a lo largo de la carrera cuando nada de lo que se estudia parece hacernos felices, cuando la Facultad premia tu esfuerzo con enfermedades y tristeza. En ese momento apareció el Maestro Blas Flores Pérez. A quien continúo agradeciéndole por devolverme la ilusión por mi carrera, por mostrarme la manera "correcta" de hacer Química Orgánica y compartir conmigo mi primera experiencia docente en nuestra facultad. Gracias... ¡Totales!

Especialmente a la plantilla docente de la Facultad, Profesores increíbles muchos de ellos y modelos ejemplares para mi. Mirna Carrillo, Dr. Homero Hernández Montes, Bernardo Lucas, Ruth Martín, Blas, Aunque a estas alturas no logro comprender del todo si ha sido esto un proceso de-formación... (mal chiste, pero ameritaba).

Un reconocimiento especial a todos los trabajadores del Edificio B que invertían con sacrificio total sus horas de trabajo platicando conmigo en esas noches de trabajo y desvelos, en especial a Sara y Jorge por cuidarme cuando sólo restábamos ellos y yo en la facultad.

Vivo agradecido con mi querida y cada vez más importante Universidad Nacional Autónoma de México. Fue en CU donde reconstruí mi vida y conocí ese "algo" que no termino por comprender y no busco más hacerlo, pero que necesitamos los seres humanos para sentir que en la vida hemos trascendido y dejado huella.

No habría de faltar, sería un atropello a la razón. Mi Facultad. Si contigo hablara mediante estas líneas de la misma forma en que acostumbro hablarte cuando la soledad de los pasillos nos acerca, perdería sabor nuestra charla. Un encuentro providencial. Te quedas con ocho de mis mejores años y vivencias, años de amores y desencuentros, de risa y cientos de horas-humo; contigo se quedan mis parrandas, mis amigos, la piedra, el pasto, los coches, el acetato de etilo, mi DePA 8 y DePA 1, mis neuronas, mis mp3, mi insensatez –no, no lo creo- y todo lo que me hizo sentir vivo.

Y tras leer esto, un mórbido sentimiento me dice que te hablo como si fueras mi futura ex-esposa...

Dedicatorias

Dedico este proyecto a Dios Padre, Todopoderoso. Ha sido Él quien me levantó del polvo, quien consumió con fuego mi pasado y ha bendecido mi presente. Tras un re-encuentro muchas veces rehusado por mi, compartió conmigo las más amargas de mis horas, oyó mi llanto y escuchó mi clamor. Gracias Señor por Restituirme, por Reinventarme.

A mi Papá, porque todo lo sufrido y llorado, ha sido recompensado con experiencia invaluable, con risas y con entendimiento y paciencia honorable. Porque todas tus palabras las he escuchado, a veces con *delay* pero escuchadas al fin. El amor que me tienes ha sido mi mejor aliciente. De ti, Papi aprendí la lección de vida más importante: "Audacia es el Juego".

A Mamá, porque nadie como Tu para escuchar y entender lo inexplicable, por hallar razón en mi mente atribulada y exaltar siempre mi talento. Porque has sido cómplice y guía, has sido mi amiga y un soporte que llena mis días de alegría y coraje. A ustedes dos por forjarme y no permitirme el auto-sabotaje.

David, mi hermano y compañerito, quien dio luz a mi infancia y de quien aprendí el arte de jugar. Porque me motivas día tras día para ser ejemplo —por torcido que éste fuera- para ser triunfador y no desagradarte. Tu Davis, mi mejor ejemplo de valor y voluntad, pero más satisfactorio es el honor de ser tu hermano mayor.

Susana, difícil y muy singular etapa te ha tocado vivir conmigo... Pero tal como hablamos hace poco te vuelvo a decir que ha sido muy grato ser acompañado por ti durante este viaje de casi dos años. Al fin verás consumado el esfuerzo y participarás de esta alegría. "¿Quién dice que no se puede?" [R. Madrazo].

Mis Yorkinos y Escoceses, a ustedes les debo las experiencias de juventud, las horas de guitarra, de piano, de cantar por la calle, de desayunar cereal y preparar expressos en parrilla eléctrica durante las clases, los mejores campamentos, subir la Malinche, caminar por Guanajuato, subir a la changuera y disertar por horas dando "la vuelta al día en ochenta mundos" [J.Cortázar]. Leonardo "Dr. Muerte", Karla, Frank, Verónica, Omar, Santoyo, Piedra, Dudú, Dr. Zeus, Gerardo '98, Toño. Ya son once años...

Leonardo, eres testigo de esta trayectoria Hermano, eres tu quien podría afirmar o negar las versiones extraoficiales. Mi amigo del alma, ¿quién como tú para ejemplificar Lealtad y Compromiso casi Marcial? ... Esto es un refrendo.

Maribel y Youssef, ustedes Hermanos compartieron el trance de ser universitario, mis amigos, mis confidentes, mi apoyo cuando todo caía a pedazos. Una vuelta más, pero aun no me bajo de la montaña rusa. Tampoco lo hagan ustedes, aun nos falta. Todo es cuestión de esperar...

Equipo Multidisciplinario de FQ y amigos entrañables, Lala "Barbacho", Luis Fernando "Tour-Key" y Maytonce, Tania D., Pablito.

Y a quienes decidieron bajarse del bus pero gratos recuerdos atesoraré: "Nena Gil", Tino, Paola "FlacaSuprema" Caballero.

AGLM: A ti que viniste cuando menos esperaba y corriste cuando más falta me hacías, dedico también a ti este esfuerzo: "...No por nada seguimos comulgando a la distancia. Hay que completar el Truco". ¿Recuerdas?

Y a todos los acompañantes en esta parte del viaje, que han contribuido con experiencias académicas y profesionales. A todos los que contribuyeron a que mi hígado y mis pulmones resintieran los efectos del estrés y las horas libres, a quienes me regalaron una sonrisa o aceptaron de mi un consejo nunca solicitado. Este proyecto es consecuencia de todos nosotros.

	Índice
1. Introducción	1
2. Antecedentes	
2.1 Importancia de la Nutrición	3
2.1.1 Nutrición Humana	3
2.1.2 Nutrición Animal	4
2.2 Clasificación de los Alimentos para Animales	7
2.3 El Panorama de la Nutrición Animal en México	8
2.4 Importancia del Análisis de los Alimentos	10
2.5 El Papel en la Dieta de los Nutrimentos Cuantificados por el AQP	11
2.6 La Propuesta del DNAB	13
3. Objetivos	
3.1 Objetivo General	16
3.2 Objetivos Particulares	16
4. Hipótesis	18
5. Parte Experimental	
5.1 Materiales	19
5.2 Metodología	19
6. Resultados y Discusión	
6.1 La cantidad de muestras y de ejemplares	28
6.2 Factores que suponen influencia en los parámetros estadísticos	29
6.3 La comparación entre los valores obtenidos y las tablas nutrimentale	es
De uso frecuente	29
6.4 Los resultados obtenidos y la perspectiva a corto y mediano plazo	32
6.5 Cuadros Individuales de Composición Nutrimental	33
6.6 Cuadro General de Composición Nutrimental	46
7. Conclusiones	48
8. Recomendaciones	50
9. Bibliografía	53
10. Apéndice	57

1. Introducción

El presente proyecto propone generar información bibliográfica sobre la composición nutrimental de alimentos para animales en México que sirva como apoyo para los productores de animales y alimentos, especialistas en nutrición animal, académicos e investigadores y alumnos, pero que a la par contribuya con valores de referencia para los análisis químicos que se realizan diariamente dentro del Laboratorio de Bromatología del Departamento de Nutrición Animal y Bioquímica (DNAB) de la FMVZ, UNAM, que ofrece servicios de análisis bromatológicos a investigadores, académicos y público en general.

La información referida sobre composición nutrimental de materias primas de otros países se ha empleado debido a que no existen datos confiables del valor nutrimental de alimentos utilizados para animales en México, además de la escasez de investigaciones que proporcionen información sobre la composición química de los alimentos para animales. Sin embargo, sería conveniente contar con valores de referencia de ingredientes o materias primas existentes en México, pues esta información nutrimental se apegaría al contexto en que se llevan a cabo las investigaciones y análisis así como al tipo de muestras analizadas, facilitando así la formulación de alimentos procesados y la comparación de resultados obtenidos experimentalmente por industriales, investigadores, académicos, etc.

Con base en estos elementos, el DNAB recabó toda la información existente en los archivos de análisis del propio Laboratorio de Bromatología durante el período comprendido entre 1998 y 2006 para elaborar, con estos resultados, un **cuadro de composición nutrimental** para las distintas materias primas y alimentos que usualmente son remitidos para análisis.

Tras la revisión archivos e informes, se procedió a clasificar las muestras remitidas y se descartaron aquellas que procedieran de alguna marca comercial y fueron incluidas

1

aquellas con resultados completos –o la mayor parte- del Análisis Químico Proximal (AQP) y uno o más de los siguientes análisis: Fracciones de la Fibra (por el método de Van Soest) y determinación de minerales como calcio y fósforo. Una vez recopilada toda la información de interés se capturó en hojas de cálculo. Para la gran mayoría de las muestras involucradas fue necesario efectuar los cálculos para determinar el Total de Nutrimentos Digestibles (TND), Energía Metabolizable (EM) y Energía Digestible (ED) partiendo de los datos completos del AQP.

Al término de esta fase, fueron agrupadas las muestras y sus respectivos valores de composición en cada uno de los ocho grupos de alimentos empleando la clasificación propuesta por el **Consejo Nacional para la Investigación** de los EE.UU. (NRC, por sus siglas en inglés) en forrajes secos, forrajes verdes, ensilados, alimentos energéticos, complementos proteínicos y complementos minerales.

Con todas las materias primas y alimentos se utilizó estadística descriptiva para obtener valores de composición promediados para el total de ejemplares de cada muestra analizados durante el período que comprende la presente recopilación. Como resultado se obtuvieron *cuadros individuales de composición nutrimental* para cada una de las materias incluidas en cada uno de los distintos grupos de alimentos y un *cuadro general de composición nutrimental* que engloba todos los alimentos y materias de los cuadros individuales. Los valores promedio para cada fracción de análisis se expresan en base húmeda (BH) y base seca (BS) para facilitar su uso en cálculos posteriores y análisis comparativos.

2. Antecedentes

2.1 Importancia de la Nutrición

2.1.1 Nutrición Humana

La población humana crece con gran rapidez y esto significa un desafío importante para la agricultura y todos los sectores de la sociedad. El suministro adecuado de alimentos depende de los buenos resultados continuos de la investigación en las ciencias químicas, agrícolas y las disciplinas relacionadas, así como de la aplicación de nuevos conocimientos a la solución de los problemas relacionados con la producción de alimento seguro, sano y nutritivo.

Durante siglos los productos de origen animal han sido constituyentes de la alimentación humana porque aumentan las probabilidades de que haya una ingestión adecuada de nutrimentos en forma muy abundante desde el punto de vista biológico. Aunque de ningún modo la eliminación de productos de origen animal de la dieta es incompatible con la existencia humana (muchas personas viven con base en una dieta vegetariana por razones personales, religiosas, económicas o de otra clase) [25].

En la actualidad se tiene muy bien estudiado lo referente a alimentación humana y las distintas variables que intervienen en el complejo proceso de la nutrición [Apéndice I]. Organismos dedicados a este estudio surgen en todos los países y se tiene especial interés en las regiones menos favorecidas económicamente donde experimentan gran desabastecimiento de alimentos, así como también interesan aquellas que rebasan la producción necesaria para satisfacer las necesidades de su propia población; porque tanto en uno como en otro caso es común que se presenten desequilibrios tanto por la carencia de nutrimentos en la dieta (desnutrición) como por el exceso de éstos en la dieta (mal nutrición).

Incluso con el conocimiento relativamente avanzado sobre nutrición humana con que se cuenta, la desnutrición continúa siendo un problema muy importante en los países subdesarrollados y entre la gente pobre de los países industrializados. El número de personas con desnutrición crónica en el mundo se estima en más de 775 millones, que

representan al 15% de la población mundial. Según cifras reportadas por la FAO (*Food and Agriculture Organization*), en África y algunas regiones de Asia más de un tercio de la población se halla desnutrida [12].

En México existen instituciones dedicadas a la investigación de este fenómeno y al estudio de la composición de los distintos alimentos que se consumen dentro del territorio nacional, abarcando desde aquellos de naturaleza simple o con menor grado de procesamiento, hasta las matrices alimentarias de composición variada y compleja. El Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán (INNSZ) es quizá la más importante y también quien mayor cantidad de publicaciones genera a este respecto. Dicho instituto tiene muy bien documentada la Composición de Alimentos Mexicanos [3] en un compendio de tablas nutrimentales **para humanos** que el propio INNSZ ha puesto a disposición del público en general y que tanto los estudiantes como académicos de Química de Alimentos y Medicina Veterinaria y Zootecnia emplean frecuentemente, así también el resto de las Ciencias Químico-Biológicas y de la Salud.

2.1.2 Nutrición Animal

Hoy en día se reconoce que más de 40 nutrimentos son necesarios en la dieta de un animal (el número depende de la especie en cuestión), en contraste con las tres clases de nutrimentos que se aceptaban en el siglo diecinueve, siendo éstas las grasas, los hidratos de carbono y las proteínas. Todavía existe cierta duda sobre ciertos elementos minerales y algunos nutricionistas creen que se descubrirá la necesidad de otras vitaminas. Por supuesto, los nutrimentos cuyos requerimientos aun se desconocen deben necesitarse en cantidades muy pequeñas, ya que los animales domésticos pueden mantenerse a lo largo de un ciclo reproductivo completo con dietas purificadas que contienen todos los nutrimentos que se sabe requieren [31].

Todas las especies -incluyendo la humana- se alimentan de formas muy diversas, es decir que obtienen sus alimentos de fuentes diferentes y así también lo es la cantidad que consumen de éstos y por tal motivo es de suponerse que el total de nutrimentos ingeridos se encuentra en función de la cantidad y valor nutricional de los alimentos que se

consumen. Este hecho es fundamental puesto que el organismo del que se trate ha de desarrollarse en función de la calidad y cantidad de los nutrimentos que se le suministren.

Así también sucederá con los animales en producción pues en función de los alimentos que ingieran se verá afectada su morfología y estado de salud, repercutiendo en la composición de los productos que se obtengan a partir de éstos.

Hablar de alimentación animal es abordar el rubro más costoso de la industria pecuaria. Las cifras indican que representa entre el 70 y el 85% del costo en la producción de ciertas especies como cerdos y aves [1, 30, 31]. Con respecto a los alimentos, la calidad nutrimental de los diversos productos y subproductos de origen animal, vegetal y mineral, es el que mayor interés e importancia tiene ya que es con base en ella que se fija su precio de adquisición en el mercado e incluso dentro de la ración, la productividad de los animales que la consumen y sobre todo, la confiabilidad de la empresa o la persona responsable de la elaboración del alimento [5, 6, 30, 33, 38]. Conocer la composición de los insumos empleados en alimentación animal así como su calidad nutrimental es una de las prioridades para el productor de animales y para el fabricante de dichas materias primas, así como también un extenso campo de investigación de particular interés para el químico de alimentos.

Elaborar un alimento balanceado o formular una ración que satisfaga las necesidades productivas de determinada especie animal resulta fácil y rentable, siempre y cuando se consideren dos aspectos muy importantes: en primer lugar los relativos a la especie animal de que se trate y al tipo de explotación a la que será sometida; y en segundo lugar los relativos a los tipos de alimentos disponibles en la zona y al conocimiento de sus valores nutricios.

Tanto el químico de alimentos como el productor de animales y el fabricante de alimentos balanceados, manejan ingredientes alimenticios que tienen una mayor o menor concentración de algún nutrimento en específico, ya sea proteína, energía, calcio, etc. Sin embargo, el nutricionista debe reconocer todos los nutrimentos encontrados dentro de

cada alimento dado, así como las interacciones y posibles efectos tanto sinérgicos como antagónicos entre diversos alimentos y sus nutrimentos [34].

Los avances de la biología molecular han permitido aplicar la ingeniería genética a las plantas a fin de obtener resistencia a plagas y enfermedades y cambiar la composición química de aquellas para que den cabida a los cambios deseados en el contenido de nutrimentos del alimento para los seres humanos y animales [20]. El empleo de variedades de semillas obtenidas por las técnicas generales de fitomejoramiento, han hecho a las plantas más productivas y resistentes a insectos, enfermedades, heladas y sequías, complementando esto con fertilizantes y pesticidas biodegradables o de menor impacto sobre el medio ambiente [31]. Gracias al desarrollo acelerado de nuevas alternativas para alimentación ha sido posible emplear recursos que aportan nutrimentos de buena calidad y excelente valor biológico con relativo bajo costo; esto se ha logrado aprovechando al máximo los subproductos de la industria agrícola y alimentaria en general así como materiales que produce la misma industria pecuaria que anteriormente se consideraban como desecho. Ejemplos de estos subproductos son las pastas de oleaginosas, los ensilados de excretas y fracciones de la caña de azúcar y el maíz con alto contenido de fibra.

Con técnicas tales como la fermentación controlada o el cultivo de células microbianas productoras de proteína unicelular a gran escala se ha obtenido mayor rendimiento y menores costos que por los métodos agrícolas tradicionales. Mucho ha contribuido también el empleo de diversos productos antimicrobianos (antibióticos, sulfas, etc.) en el alimento pues esto ha repercutido en el adecuado desarrollo y reproducción del ganado, así como también compuestos químicos denominados promotores de crecimiento [25, 31].

No obstante la tecnificación de muchos procesos y los adelantos en ciencia de alimentos y ciencia producción animal, es importante contar con literatura que sustente toda esta generación de conocimiento y sirva como apoyo a la docencia, aprendizaje e investigación en las áreas de Nutrición y Producción Animal, así como también a quienes tienen por objetivo formular nuevos productos e innovar en el área de alimentos para animales.

2.2 Clasificación de los Alimentos para Animales

La clasificación propuesta por el Consejo Nacional de Investigación de los EE.UU. National Research Council (NRC) [20, 21, 34] divide a los materiales empleados en alimentación animal en ocho grupos diferentes:

- 1. Forrajes Secos y Alimentos Toscos: Son los productos que en estado seco contienen más del 18% de Fibra Cruda (FC). Como ejemplos citamos a los henos (leguminosas y gramíneas), pajas, rastrojos (parte aérea sin espiga, cáscaras y panículas), cáscaras de semillas y cualquier otro producto que contenga más del 18% de fibra cruda. Este grupo incluye todos los pastos y forrajes no cultivados, cortados y secados al sol. Estos forrajes son bajos en energía neta por unidad de peso, generalmente debidos al alto contenido de fibra o bien de humedad.
- 2. Forrajes verdes y frescos: Se consideran en este grupo aquellos forrajes que son consumidos frescos ya sea cortados para ser ofrecidos al animal o pastoreados. Estos pueden ser forrajes cultivados y forrajes nativos.
- 3. Ensilados: Son los productos obtenidos por la fermentación de un cultivo con alto contenido de humedad. Ensilaje es el proceso de fermentación anaerobia, silo es el recipiente o construcción donde el cultivo se procesa y el producto final se llama ensilado y estos pueden ser de gramíneas o de leguminosas.
- 4. Alimentos Energéticos: Se llama así a aquellas materias primas o ingredientes que contienen elevados porcentajes de almidón, hidratos de carbono solubles o grasas. En este grupo se incluyen los granos de cereales y sus subproductos, los cuales pueden ser tanto de alto como de bajo contenido de FC.; las melazas, las frutas las raíces y los tubérculos. Se incluye en este grupo a cualquier producto con menos del 20% de proteína cruda (PC) y menos del 18% de FC.
- 5. Complementos Proteínicos: Son aquellos alimentos que contienen 20% o más de PC, estos pueden ser de origen animal o vegetal. Las fuentes de nitrógeno no proteínico podrían incluirse en este grupo dado que los rumiantes las pueden emplear para la síntesis de proteína microbiana.
- 6. Complementos Minerales: Estos pueden ser de origen animal o propiamente de origen mineral. La harina de hueso y la roca fosfórica son ejemplos de esto.

- 7. Complementos Vitamínicos: Son compuestos orgánicos indispensables para las funciones vitales del animal y se administran mediante la dieta en pequeñas cantidades.
- 8. Aditivos: Dentro de este grupo se consideran todos aquellos ingredientes o compuestos que se agregan a los alimentos para modificar alguna característica al ingrediente o al producto final. Ningún aditivo es considerado un alimento en si, pues carecen de valor nutrimental y son dispensables en la dieta. Como aditivos frecuentemente empleados podemos encontrar: aglutinantes, pigmentos, saborizantes, aromatizantes, enzimas, hormonas, antimicóticos, parasiticidas, y coccidiostatos, quelantes ionóforos y otros manipuladores de la fermentación rumial [8, 14, 30, 32, 35].

2.3 El Panorama de la Nutrición Animal en México

En el ámbito de los alimentos para animales la información con que se cuenta en México actualmente es escasa y poco apegada al contexto del lugar en que se desarrolla la investigación o el nuevo producto, pues generalmente los cuadros o tablas de composición nutrimental han sido tomados de países distintos al nuestro, en su mayoría norteamericanos y europeos pues es en estos lugares donde se desarrollan y recopilan la mayoría de las investigaciones en este rubro [30]. Ejemplos de estos cuadros de composición nutrimental son: Valor Nutritivo de los alimentos empleados para Centro América y Panamá, 1971; Latin American Tables of Feed Composition, 1974; Análisis Bromatológicos de alimentos como ingredientes en nutrición Animal, 1977; US Canadian Tables of feed Compositicon, 1982; Nutrient Requirements of Dairy Cattle, 2001; y Typical Composition of Commonly Used Feeds for Sheep and Cattle, 2007; etc., (Estas Tablas Nutrimentales indican la composición proximal de los alimentos, algunos incluyen también aminoácidos, minerales, vitaminas e incluso pruebas con modelos animales) [28,34,37,22].

La información de estos cuadros ha sido utilizada por los especialistas en nutrición humana y animal en México, sin embargo es natural suponer que al extrapolar estos

valores a regiones donde se practican técnicas diferentes de cultivo y producción e industrialización distintos, o bien la condición climática y geográfica son distintas y

alejadas de dicho ámbito, el trabajo desempeñado será poco exacto; por otra parte estos cuadros de composición nutrimental sólo indican los promedios, por lo que no es posible extrapolar o tomar como válidos los análisis de alimentos que se llevan a cabo sobre ellos, no pudiendo verse así reflejada la realidad de las condiciones de trabajo [11,29, 30, 33, 37].

Haciendo énfasis en la composición de los alimentos existe una razón de peso por la que se debería exigir información actualizada y mucho más dirigida al país y la región donde se esté elaborando la investigación o el nuevo desarrollo y esa razón es la siguiente: las materias primas de origen vegetal están sujetas a cambios en su composición y experimentan variabilidad entre muestras de las misma especie. Este fenómeno ocurre también para aquellas materias primas de origen mineral puesto que varían en función de la fuente de la que se obtengan.

Existen factores de naturaleza física y química que afectan su composición nutrimental; estos factores pueden ser climáticos, región donde se cultive, estado de madurez de la planta, técnicas de cultivo, ejemplares mejorados genéticamente, nutrimentos presentes en el suelo, agua de riego, fertilizantes, pesticidas, etc. [34], originando así mayor cantidad de variables a estudiar en un mismo alimento [*Apéndice II*].

Es por las razones anteriormente expuestas que los cuadros de composición nutrimental de alimentos basados en los resultados del AQP que se reportan en la literatura son, sin duda, regionales y apegados únicamente al contexto del lugar donde se elaboran.

Si bien no es el objetivo de este proyecto dar explicación a la falta de material bibliográfico en materia de alimentos para animales en México, una posible razón de esto es que en Norteamérica y Europa los países cuentan con mayores recursos tecnológicos y estructurales derivados de políticas agropecuarias mucho más interesadas en desarrollar recursos propios en contraste con aquellas políticas y prácticas gubernamentales

persistentes en el territorio nacional. A este hecho se suman tanto la complejidad que representa la recopilación de una extensa variedad de alimentos, como tener actualizadas las bases de datos, puesto que experimentan variación año tras año.

2.4 Importancia del Análisis de los Alimentos

La evaluación de la calidad nutricional de materias agroalimentarias es indispensable para las industrias de producción y transformación de alimentos, ya que partiendo de éste conocimiento es posible, por ejemplo: formular alimentos balanceados y dietas equilibradas enfocadas para alimentación tanto humana como animal.

En un principio las técnicas para la realización de estos controles se basaban únicamente en la determinación de ciertos componentes por la vía del análisis químico proximal (AQP). Se entiende por análisis químico proximal al conjunto de métodos que determinan seis grupos de compuestos químicos que conforman la composición proximal o aproximada del alimento: Humedad, Proteína Bruta, Extracto Etéreo, Cenizas, Fibra Bruta y por diferencia Extracto Libre de Nitrógeno.

Aunque la creciente capacidad de producción alimentaria y la complejidad de los productos modernos requieren el desarrollo y la implementación de técnicas analíticas adecuadas para un rápido control y evaluación de la calidad [24]. Ejemplos de estas técnicas son: cromatografía de gases (CG), cromatografía de líquidos de alta eficiencia (HPLC), espectrometría de masas, espectrofotometría de ultravioleta o de infrarrojo.

Los alimentos procesados se elaboran dentro de los límites establecidos en las fórmulas de fabricación, satisfaciendo también requerimientos legales y otros requisitos establecidos, de manera semejante sucede con las materias primas o insumos agropecuarios. Esto se logra mediante la estandarización del proceso en cada una de las siguientes etapas: la zona de cultivo, materia prima, proceso de elaboración y por último, el producto terminado y su almacenamiento posterior. El conocimiento de los constituyentes presentes aun en pequeñas cantidades en los alimentos ha mejorado en forma notable debido particularmente a que se utilizan nuevas técnicas de separación, identificación y medición [16].

Existen varios organismos reconocidos internacionalmente como La ISO (*International Organization for Standarization*), La IUPAC (*International Union for Pure and Applied Chemistry*), El Codex Alimentarius y La AOAC Internacional (antes: *Association of Oficial Analytical Chemists*) han publicado diferentes procedimientos de referencia para realizar los análisis composicionales de los alimentos [16]. La adulteración de productos alimentarios y la evaluación nutrimental de los mismos son algunas de las preocupaciones de estos organismos internacionales.

Sin duda ha sido fundamental el papel que ha jugado la instrumentación química en el área de investigación y análisis, pues ha sido factible cuantificar gran cantidad de minerales y elucidar el destino de las moléculas que ingresan al organismo mediante técnicas tales como el marcaje isotópico. Este hecho repercute en un conocimiento mucho más amplio del papel de los nutrimentos dentro del metabolismo sabiendo cuál es el mecanismo mediante el cual ingresan a la célula y se transforman, su importancia biológica y ha facilitado el estudio de valores tales como la ingesta diaria recomendada (IDR) de muchos nutrimentos indispensables para humanos.

2.5 El Papel en la Dieta de los Nutrimentos Cuantificados por el AQP

Si bien el AQP cuantifica componentes macromoleculares que solemos interpretar como nutrimentos es pertinente hacer la aclaración de que cada uno de estos componentes representa una combinación de sustancias, algunas de las cuales son nutrimentos o combinaciones de éstos, y otras carecen de valor nutricio para algunas especies como la humana.

Tanto las proteínas como los hidratos de carbono en forma de polisacáridos o los triacilgliceroles no representan un nutrimento para el organismo ya que por su forma polimérica no pueden ingresar a la célula para posteriormente ser transportados por el torrente sanguíneo, esto se logra únicamente al hidrolizar las moléculas en sus componentes o monómeros tales como aminoácidos, monosacáridos y ácidos grasos. El papel general que juegan cada uno de los componentes determinados mediante el AQP en el contexto de alimentación animal son los siguientes:

■ Materia Seca: Es una prueba fundamental y la razón de esto es que los vegetales, los tejidos animales u otras muestras de interés tienen un contenido de agua variable, y si se han de comparar datos analíticos de diferentes alimentos se debe conocer la cantidad de agua presente en éstos. Cuando se compra o suministra un grano o algún forraje fresco es obvio que su costo no será el mismo cuando presenta Humedad de 14% a cuando su Humedad a cuando sea de 10%, de igual manera la cantidad porcentual de los nutrimentos se verá afectada en proporción con el contenido de agua.

Después de practicar el análisis la composición nutrimental se expresa en una base carente de agua o base seca para conocer "realmente" la cantidad de nutrimentos que se están administrando mediante la dieta.

- □ Proteína Cruda: Desde el punto de vista nutricional, la información obtenida de esta determinación es válida para los rumiantes pues son mamíferos capaces de utilizar en forma eficaz casi todas las formas de N, pero la información puede tener muy poco valor para las especies monogástricas (como los seres humanos, cerdos y aves de corral). Las especies monogástricas tienen necesidades específicas de varios aminoácidos y no emplean en forma eficaz los compuestos de N no proteínico, como amidas, sales de amonio y urea. Y debido a que el método no diferencia una forma de nitrógeno de otra, es imposible conocer si el alimento es rico en Urea o en proteína de alta calidad como el suero de leche.
- □ Extracto Etéreo: Las sustancias solubles en disolventes orgánicos como el éter etílico incluyen una gran variedad de compuestos, de los cuales sólo algunos tienen valor nutritivo. Los que tienen importancia cuantitativa incluyen a las grasas verdaderas y los ésteres de los ácidos grasos (triacilgliceroles o derivados del ácido fosfatídico como la lecitina y la fosfatidilcolina), ya que algunos lípidos compuestos y las vitaminas o pro-vitaminas liposolubles como los carotenoides carecen de valor energético. La principal razón para obtener el EE es tratar de aislar una fracción de los forrajes que tenga un elevado contenido calórico. Si el extracto contiene altas concentraciones de ceras vegetales, aceites esenciales, resinas o pigmentos esta determinación no ofrecerá información importante pues estos compuestos son de muy poco valor nutritivo para los animales.

- □ Cenizas: El valor de cenizas tiene poca importancia nutricional pues se encuentran en porcentaje muy pequeño, sin embargo su utilidad radica en que al encontrar valores de cenizas altos se puede sospechar de adulteraciones del alimento con sales minerales o roca caliza, así como contaminación con suelo u otro material. Además de que el valor porcentual de Cenizas es importante para efectuar otros cálculos dentro del AQP.
- □ Fibra Cruda: La fibra cruda está compuesta por hidratos de carbono estructurales como celulosa y hemicelulosa, pero también contiene algo de lignina, que es una sustancia muy poco digerible presente en la porción fibrosa de los tejidos vegetales. Para las especies monogástricas la FC tiene un valor energético mínimo y se asocia con la correcta eliminación de compuestos tóxicos y material de desecho en la materia fecal por su alta capacidad de retener agua; pero en el caso de los rumiantes, si bien tiene un valor energético variable, éstos la utilizan mucho más como fuente de energía.
- □ Extracto Libre de Nitrógeno: El ELN está formado por hidratos de carbono fácilmente aprovechables como almidón y azúcar o monosacáridos como glucosa, fructosa y galactosa. Pero también puede contener hidratos de carbono estructurales como hemicelulosa y lignina, sobretodo en el caso de alimentos como el heno y la paja. La fracción del ELN de los granos se utiliza en un alto grado por todas las especies animales, pero el ELN del heno y la paja se utiliza mucho menos, puesto que a medida que el cultivo madura, estos hidratos de carbono de la pared vegetal se depositan en mayor cantidad en forma de fibra cruda, disminuyendo así el aporte energético del ELN [31].

2.6 La Propuesta del DNAB

Durante varias décadas el Laboratorio de Bromatología del Departamento de Nutrición Animal y Bioquímica de la FMVZ ha ofrecido diferentes servicios de análisis físicos, químicos y toxicológicos tanto al interior de la UNAM en sus distintas Facultades e Institutos de Investigación como al público. Este hecho ha provisto al Departamento de Nutrición Animal y Bioquímica de una extensa variedad de muestras de naturaleza

heterogénea, realizando dos formas de registro entre ellas según la forma en que fueron remitidas al Laboratorio para su análisis: Muestras Provenientes del Área de Servicio al Público y Muestras Provenientes del Área de Investigación. Esta variedad de muestras comprende en su mayoría alimentos complejos, materias primas empleadas en alimentación animal, insumos para la industria pecuaria, industria agroalimentaria y gran variedad de productos de marcas comerciales.

Algunos de los análisis practicados con mayor frecuencia a las muestras mencionadas son: Análisis Químico Proximal (AQP), cálculo del Total de Nutrimentos Digestibles y cálculo de la Energía Digestible y Energía Metabolizable, análisis de las Fracciones de la Fibra por el método de Van Soest y cuantificación de minerales tales como sodio, potasio, calcio, magnesio, y fósforo. Así como una gran variedad de análisis especiales de tipo microscópico, espectroscópico, cromatográfico y toxicológico. Todos los análisis se efectúan de acuerdo con la metodología referida e implementada en el DNAB [19] diseñadas con base en las metodologías propuestas por la AOAC *International* (antes *Association Of Official Analytical Chemists*, 1990) [2].

Es importante hacer énfasis en que todos los análisis practicados se efectúan en función de lo que solicita el remitente de las muestras, por lo que no todos los alimentos y materias primas son analizados de manera estandarizada y suelen diferir en el número de fracciones de análisis.

Con base en la escasa información nutrimental generada en México sobre alimentos para animales y la necesidad de emplear valores de referencia regionales, el presente trabajo tiene la finalidad de aportar información sobre la composición química de los alimentos y materias primas utilizados en la alimentación animal para conformar una base de datos en forma de **Cuadros de Composición Nutrimental** empleando la información que el Laboratorio de Bromatología del DNAB ha generado mediante los informes de análisis que se encuentran en los archivos del departamento.

Para hacer factible esta propuesta se recopilaron todos los informes de análisis de muestras ingresadas y analizadas en el Laboratorio de Bromatología de la FMVZ durante el período comprendido entre Enero de 1998 y Diciembre de 2006 y se incluyeron sólo aquellos alimentos y materias primas no pertenecientes a marcas comerciales cuyos respectivos informes muestren los resultados del AQP y cálculo de energía, así como los resultados de aquellas muestras donde se determinaron las fracciones de la fibra por el método de Van Soest y se cuantificaron los elementos minerales calcio y fósforo.

La alimentación y nutrición animal es ofrece un campo de acción muy basto, pero sub-explotado por los Químicos de Alimentos, quienes en los últimos años han encaminado sus investigaciones hacia el desarrollo de diversos productos alimenticios para humanos, con cierta tendencia a eliminar de la dieta los productos de origen animal por considerárseles fuente abundante de "grasa saturada" o por temor a consumir también compuestos químicos administrados a estos animales durante su desarrollo, tales como hormonas y promotores de crecimiento.. Sin embargo, la correcta aplicación y manejo de sus conocimientos beneficiaría en gran medida la producción de alimento más sano y nutritivo para los animales de engorda y ganado lechero, reflejándose en un beneficio para quienes consumen alimentos de origen animal con regularidad.

Esta información nutrimental se pondrá a disposición de todo aquel investigador, académico, productor de animales y de materias primas y especialistas de la nutrición, con el fin de apoyar tanto a la labor docente como comercial, porque ofrece valores de referencia que se apegan mucho más a las condiciones de cultivo, recolección y producción dentro del territorio nacional. Así también los cuadros de composición nutrimental se utilizarán para efectuar comparaciones con análisis futuros, investigaciones, etc., que el propio DNAB realiza de manera cotidiana y asimismo subsanar en cierta medida la escasez de información generada en México sobre el valor nutrimental de alimentos para animales.

3. Objetivos

3.1 Objetivo General

Recabar los resultados existentes en los informes de análisis bromatológicos practicados a todas las muestras no comerciales remitidas al Laboratorio de Bromatología que, solicitados a juicio del interesado, manifiesten los valores experimentales del AQP y también de análisis tales como fracciones de la fibra y cuantificación de calcio y fósforo. Y elaborar con dicha información un *Cuadro de Composición Nutrimental* que será puesto a disposición del DNAB y de todos los interesados en alimentación y producción animal, investigación y docencia, pero así también para ser utilizado como referencia en futuros análisis dentro del propio Laboratorio de Bromatología y contribuir a la generación de recursos bibliográficos dentro del territorio mexicano.

3.2 Objetivos Particulares

- φ Efectuar la recopilación de los informes de análisis bromatológicos practicados a todas las muestras remitidas al Laboratorio de Bromatología del DNAB de la FMVZ.
- φ Recabar todos aquellos informes de muestras remitidas para análisis que no pertenezcan a marcas comerciales y que a juicio del solicitante presenten los valores del Análisis Químico Proximal (AQP) y preferentemente aquellas que también incluyan datos experimentales completos del análisis de fracciones de la fibra y cuantificación de minerales como calcio y fósforo.
- Efectuar los cálculos necesarios para determinar ELN, TND, EM y ED en aquellas muestras cuyos informes no los presenten, utilizando los valores del AQP respectivo.

- φ Agrupar los alimentos y materias primas según su naturaleza y composición nutrimental siguiendo la clasificación propuesta por el NRC.
- Φ Ordenar mediante cuadros individuales de composición los valores promedio y parámetros estadísticos para las distintas muestras y los distintos grupos nutrimentales.
- φ Elaborar, con toda la base de datos, un **cuadro general de composición nutrimental** en términos porcentuales y comparar los valores obtenidos con la información referida en tablas nutrimentales de uso frecuente en alimentación animal.
- Φ Ofrecer toda la información presente en el cuadro general de composición nutrimental como un apoyo para los interesados en producción y alimentación animal, así como para la investigación y docencia. Y a su vez utilizarlo como referencia para futuros análisis dentro del Laboratorio de Bromatología del DNAB.

4. Hipótesis

"Si se recaba toda la información obtenida de análisis realizados a muestras que han sido remitidas al Laboratorio de Bromatología durante el período comprendido entre 1998 y 2006 y se agrupan en función de su naturaleza según la clasificación que propone el NRC, aunado al adecuado tratamiento estadístico, será posible obtener valores promedio de la composición nutrimental y energética, y desglosar la información obtenida en un Cuadro de Composición Nutrimental, de tal manera que sea utilizado como herramienta de apoyo bibliográfico para establecer valores de referencia"

5. Parte experimental

5.1 Materiales

- φ Archivos de análisis del período comprendido entre el mes de Enero de 1998 y Diciembre de 2006 del Laboratorio de Bromatología del DNAB, de la FMVZ.
- φ El programa Microsoft Excel de Microsoft Office 2003.

5.2 Metodología

1. Revisión de registros de muestras para seleccionar los alimentos y materias primas remitidos al laboratorio para análisis de las siguientes fracciones de interés:

Analisis Químico Proximal (AQP):				
		Materia Seca (MS)		
		Humedad (H)		
		Proteína Cruda (PC)		
		Extracto Etéreo (EE)		
		Cenizas (C)		
		Fibra Cruda (FC)		
		Extracto Libre de Nitrógeno (ELN)		
Energía:				
		Total de Nutrimentos Digestibles (TND)		
		Energía Digestible (ED)		
		Energía Metabolizable (EM)		
Elementos Minerales:				
		Calcio (Ca)		
		Fósforo (P)		
Fracciones de la Fibra (método de Van Soest):				
		Paredes Celulares (FDN)		
		Contenido Celular		
		Fibra Ácido Detergente (FAD)		
		Lignina		

- □ Celulosa
- ☐ Hemicelulosa
- 2. De un total de más de 8mil registros de muestras, se descartaron las remitidas para análisis microscópicos, espectroscópicos, cromatográficos y toxicológicos. También se descartaron las muestras que no mostraban las fracciones de análisis de interés y todos aquellos productos procedentes de alguna marca comercial.
- 3. Finalizada la revisión de registros se agruparon 1581 muestras remitidas por el área de investigación y 2415 muestras remitidas por servicio al público. Una revisión posterior permitió descartar las muestras de composición compleja (concentrados para cerdos y ganado lechero, gran variedad de forrajes y ensilados) que no especificaban los ingredientes que los conformaban. Dentro de estos productos pueden encontrarse mezclas de pastas de oleaginosas, harinas de cereales y complementos minerales y vitamínicos —en el caso de los concentrados- y mezclas de granos o pastos en el caso de forrajes y ensilados.
- 4. Tras la última selección de muestras se obtuvo un total de 744 muestras del área de investigación y 559 del área de servicio al público para figurar dentro de la recopilación. Se revisaron los archivos de informes para efectuar la captura en hojas de cálculo de los valores numéricos de todas las fracciones de análisis de interés.
- 5. Durante la revisión y captura de datos no se encontraron archivados algunos informes de análisis y fue necesario descartar dichas muestras. Por otra parte se encontró una cantidad considerable de informes que no mostraban todos los valores numéricos de las fracciones de análisis de interés que señalaban los registros. Algunos de estos informes mostraban algunas fracciones del AQP o no mostraban los resultados completos del cálculo de energía o de análisis especiales.

- 6. Se decidió no descartar todas las muestras con informes incompletos debido a la manera en que se redujo el número de muestras iniciales, pero también a la influencia del número de datos en términos estadísticos sobre el valor promedio, donde es sabido que mientras más elementos o repeticiones conformen una muestra ésta será más representativa de la población total.
- 7. El número total de informes capturados fue de: 623 del área de Investigación y 494 de Servicio al Público. En esta fase se agruparon todos los informes para trabajar con ellos sin hacer distinción entre ambas áreas de estudio.
- 8. En los informes incompletos fue indispensable efectuar los cálculos [Anexo IV] para obtener los valores de ELN, TND, ED y EM –según fuera el caso- y expresar los resultados de las fracciones de análisis del AQP y energía tanto en base húmeda como en base seca y los valores de minerales y fracciones de la fibra solamente en base seca.
- 9. Con todos los valores existentes para cada fracción de análisis se clasificaron todas las muestras según los criterios establecidos por el NRC [20, 21, 34] relativos a la naturaleza del alimento y su composición proximal. Esta clasificación puede contemplar a un mismo alimento o materia prima en más de un grupo. Únicamente se encontraron muestras clasificables en los seis primeros grupos de alimentos. A continuación se muestran de manera general, así como las fracciones de análisis que se les practican regularmente:
 - 9.1 Forrajes Secos y Alimentos Toscos (cuadros 1 a 22). Se clasificaron en función de la materia seca puesto que en estos el contenido de agua es relativamente bajo y el porcentaje de fibra bruta que debe ser elevado (> 18%) ya que son el aporte principal de fibra en la dieta. En estos casos es común encontrar el análisis de fracciones de la fibra ya que actualmente es necesario obtener los resultados de la relación hemicelulosa, celulosa y lignina. Es importante conocer el aporte energético de estos forrajes ya que en algunas situaciones se consumen como el único alimento en la dieta.

- 9.2 Forrajes Frescos o Verdes (cuadros 23 a 31). También se clasificaron en función de la MS porque, a diferencia de los forrajes secos, el contenido de agua es mucho mayor, sin embargo el porcentaje de FC en BS debe ser alto. Para este grupo de alimentos es común practicar el AQP y muchas ocasiones interesa también determinar las fracciones de la fibra. De igual manera que los forrajes secos y alimentos toscos es importante conocer su aporte energético.
- 9.3 Ensilados (cuadros 32 a 36). Este grupo de alimentos fermentados se caracteriza por el método de producción (ensilaje). En ellos es común practicar el AQP y calcular lo relativo a Energía, los minerales y en algunos casos las Fracciones de la Fibra.
- 9.4 <u>Alimentos Energéticos (cuadros 37 a 56).</u> Agrupa todas aquellas muestras con alto porcentaje hidratos de carbono (ELN) o alto porcentaje de grasa (EE). Su elevado contenido calórico los convierte en el mejor aporte energético en la alimentación, y por esta razón se solicita efectuar el AQP y lo relativo a Energía.
- 9.5 Complementos Proteínicos (cuadros 57 a 73). Representan la mejor fuente de nitrógeno en la dieta, por lo que interesa conocer en especial el contenido de PC. Además, las proteínas son el componente que fija el precio comercial de la materia prima o alimento, de tal manera que es muy necesario verificar que el contenido de PC sea el reportado. Este grupo involucra las pastas de oleaginosas, productos cárnicos, especies marinas y leguminosas, entre otros. No fue sencillo obtener de éstos todos los valores promedio para cada una de las fracciones de análisis de interés, debido a que los informes carecían de uno o más elementos de AQP que impedían el cálculo de ELN, y por consecuencia de TND, ED y EM.
- 9.6 Complementos Minerales (cuadros 74 y 75). Son compuestos químicos de pureza intermedia o alta y carecen de otros nutrimentos por ello no es común determinar en ellos los componentes del AQP. Su porcentaje de MS es considerable, en muchos casos estos minerales contiene más de un elemento como el ortofosfato de calcio como fuente tanto de calcio como de fósforo.

10. Las muestras clasificadas y el número de ejemplares de cada alimento o materia prima fueron las siguientes:

1.- Forrajes Secos Y Alimentos Toscos

Alimento o Materia Prima	No. de Ejemplares (N)
Alfalfa achicalada	26
Alfalfa, heno	19
Alfalfa seca	43
Arroz, cascarilla	5
Avena forrajera	2
Avena, heno	19
Avena, paja	11
Avena seca	22
Bagazo de caña	3
Bagazo de cervecería	3
Cacahuate, cascarilla	2
Cachaza seca	4
Cebada, cascarilla	3
Caña de azúcar molida	14
Maíz, pericarpio	12
Maíz, rastrojo	9
Maíz, salvado	2
Maíz, tamo	9
Soya, cascarilla	7
Trigo, paja	3
Trigo, salvado	27
Zacate Estrella	2
orrajes Verdes	

2.- Foi

Alimento o Materia Prima	No. de Ejemplares (N)
Alfalfa verde	3
Bagazo de cervecería	6

Cachaza fresca	4
Caña de azúcar fresca	12
Ebo	15
Maíz verde para ensilar	5
Pasto Estrella Africana	5
Pasto Insurgente	2
Pasto Rhodes	2
3 Ensilados	
Alimento o Materia Prima	No. de Ejemplares (N)
Alfalfa, ensilado	4
Avena, ensilado	2
Maíz, ensilado	41
Rye Grass, ensilado	4
Sorgo, ensilado	2
4 Alimentos Energéticos	
_	
Alimento o Materia Prima	No. de Ejemplares (N)
	No. de Ejemplares (N) 4
Alimento o Materia Prima	
Alimento o Materia Prima Algodón, semilla	4
Alimento o Materia Prima Algodón, semilla Arroz, harina	4 2
Alimento o Materia Prima Algodón, semilla Arroz, harina Arroz, puliduras	4 2 5
Alimento o Materia Prima Algodón, semilla Arroz, harina Arroz, puliduras Avena, grano	4 2 5 40
Alimento o Materia Prima Algodón, semilla Arroz, harina Arroz, puliduras Avena, grano Avena, greña	4 2 5 40 5
Alimento o Materia Prima Algodón, semilla Arroz, harina Arroz, puliduras Avena, grano Avena, greña Avena rolada	4 2 5 40 5 3
Alimento o Materia Prima Algodón, semilla Arroz, harina Arroz, puliduras Avena, grano Avena, greña Avena rolada Cebada, grano	4 2 5 40 5 3 9
Alimento o Materia Prima Algodón, semilla Arroz, harina Arroz, puliduras Avena, grano Avena, greña Avena rolada Cebada, grano Cebada, raicilla	4 2 5 40 5 3 9
Alimento o Materia Prima Algodón, semilla Arroz, harina Arroz, puliduras Avena, grano Avena, greña Avena rolada Cebada, grano Cebada, raicilla Frijol, harina	4 2 5 40 5 3 9 3 7
Alimento o Materia Prima Algodón, semilla Arroz, harina Arroz, puliduras Avena, grano Avena, greña Avena rolada Cebada, grano Cebada, raicilla Frijol, harina Grasa de sobrepaso	4 2 5 40 5 3 9 3 7 4
Alimento o Materia Prima Algodón, semilla Arroz, harina Arroz, puliduras Avena, grano Avena, greña Avena rolada Cebada, grano Cebada, raicilla Frijol, harina Grasa de sobrepaso Jitomate (pellet)	4 2 5 40 5 3 9 3 7 4 24

Maíz rolodo	7	
Maíz rolado	7	
Maíz, tortilla	3	
Melaza de caña	6	
Miel de abeja	2	
Saccharina	4	
Sorgo, grano	57	
5 Complementos Proteínicos		
Alimento o Materia Prima	No. de Ejemplares (N)	
Arenque	3	
Calamar	5	
Canola	4	
Capelín	3	
Carne de cerdo	79	
Carne de res	59	
Carne, harina	5	
Carne machaca	2	
Cártamo, pasta	3	
Coco, pasta	7	
Girasol, pasta	4	
Harinolina	5	
Maíz, gluten	3	
Pescado, harina	9	
Soya, frijol	5	
Soya, harina	2	
Soya, pasta	58	
6 Complementos Minerales		
Alimento o Materia Prima	No. de Ejemplares (N)	
Carbonato de calcio	6	
Ortofosfato de calcio	2	

- 11. Todos los ejemplares de cada muestra se agruparon para efectuar sobre cada fracción de análisis los cálculos estadísticos de Valor Promedio, Número de Ejemplares (N), Desviación Estándar, Mediana, Valor Máximo y Valor Mínimo [34]. Se excluyeron los valores muy alejados del rango empleando los parámetros estadísticos, pues estos valores suelen originarse en la muestra por adulteración, contaminación o tratamientos especiales durante el cultivo, recolección o procesamiento.
- 12. La información total se recopiló en forma de cuadros para cada una de las muestras. En cada cuadro se expresa el número de ejemplares que figuraron en los cálculos de los parámetros estadísticos porque el número de ejemplares suele variar para cada fracción de análisis dentro de una misma muestra en función de lo hallado en sus informes. La fracción de análisis con mayor cantidad de ejemplares es la materia seca. Se muestran casillas carente de valor numérico mediante el símbolo "@" en los casos donde no se encontraron ejemplares suficientes para promediar. A estos cuadros se les denominó Cuadros Individuales de Composición Nutrimental (Cuadros 1 a 75).
- 13. Los valores promedio expresados en los cuadros individuales de composición nutrimental se recopilaron en un nuevo cuadro donde figuran en orden alfabético todos los alimentos y materias primas estudiados. A esta última agrupación se le denominó Cuadro General de Composición Nutrimental (Cuadro 76).
- 14. El cuadro general de composición nutrimental es la herramienta que el DNAB propone como material bibliográfico para investigadores, académicos, alumnos, productores pecuarios, industriales y personas u organismos interesados en la formulación, elaboración y análisis de alimentos para animales; contribuyendo con esta información nutrimental a la producción en México de recursos bibliográficos y ofrecer así también al Laboratorio de Bromatología y al DNAB en general valores de referencia para futuros análisis e investigaciones.

- 15. Como actividad complementaria se efectuó la comparación de los valores obtenidos en el cuadro general de composición nutrimental con los valores encontrados en algunas tablas nutrimentales de origen extranjero pero de uso frecuente (United States-Canadian Tables of Feed Composition, 1982; Nutrient Requirements of Dairy Cattle, 1989; y Typical Composition of Commonly Used Feeds for Sheep and Cattle, 2007) [22, 28, 31].
- 16. Llevar a cabo la comparación eficaz entre valores mostró ciertas limitantes técnicas debido a que no todas las tablas nutrimentales incluyen el total de las fracciones de análisis que se evaluaron en este proyecto. Es común no encontrar valores para ELN o ED, y algunas otras sólo informan los valores de MS, PC, TND y EM. A todo esto, se añade la limitante de que ciertos alimentos o materias primas remitidas al Laboratorio de Bromatología no se encuentran en la literatura, bien porque son muy regionales o típicos como algunos pastos, las tortillas de maíz o la carne machaca; o bien porque son materiales forman parte de una investigación del DNAB como en el caso de la cachaza fresca y seca, las carne de res y de cerdo, el arenque, calamar y capelín o la saccharina, las cuales se utilizan para elaborar alimento balanceado para mascotas, delfines y cerdos.
- 17. Como última etapa, los Cuadros Individuales y el Cuadro General de Composición Nutrimental se pusieron a disposición del DNAB como material bibliográfico en materia de nutrición y alimentación animal, y como herramienta de apoyo para el Laboratorio de Bromatología. Esta propuesta sentará las bases para continuar la recopilación de informes de análisis de todas las muestras que sean remitidas a mediano y largo plazo, de tal manera que las bases de datos se actualicen continuamente y crezcan en número de ejemplares y de muestras para incrementar la representabilidad estadística de los valores promedio. La propuesta puede eventualmente extenderse a otras instituciones interesadas en contribuir con información que beneficie al desarrollo de cuadro general de composición nutrimental.

6. Resultados y Discusión

6.1 La cantidad de muestras y de ejemplares

- 1. Desde la revisión de archivos se esperaba contar con un gran número de muestras, tanto en variedad como en número de ejemplares o repeticiones para cada una, pero tras las diferentes etapas de depuración de informes de análisis la cantidad de muestras disminuyó considerablemente puesto que se descartaron los productos comerciales, los alimentos cuya composición no estaba especificada y las muestras registradas que carecían de informe de análisis en los archivos.
- 2. Las muestras incluidas dentro de cada cuadro individual de composición varían no solamente en el número de ejemplares, sino también en el número de análisis que se les efectuaron. Algunas razones para explicar este hecho son: a) porque dicho alimento o materia prima no es considerada como fuente abundante de algún(os) nutrimento(s) tales como proteína, minerales o fibra bruta, y por tal razón se excluyen estas fracciones de análisis al momento de ingresar las muestras. b) los análisis efectuados a las muestras son solicitados por el remitente en función de sus intereses y necesidades particulares así como del costo de los análisis, pues éste aumenta a medida que se analizan mayor número de fracciones.
- 3. El análisis que más se efectúa es el de materia seca porque se emplea muestra deshidratada para realizar el resto de las fracciones del AQP y los análisis especiales. Y porque el valor de MS se utiliza para los cálculos de AQP, análisis especiales y de energía.
- 4. Comparando entre muestras, la cantidad de ejemplares computados es muy variable. Ejemplos de esto son, por una parte, muestras tales como la pasta de soya, el sorgo, el ensilado de maíz y el maíz amarillo que cuentan con mayor número de ejemplares con respecto a las cascarillas de arroz y cacahuate y

ensilados como el de sorgo y alfalfa y los complementos minerales, que presentan muy pocos ejemplares.

6.2 Factores que suponen influencia en los parámetros estadísticos

- 5. El hecho de no contar con una misma cantidad de ejemplares para todas las muestras nos impide corroborar la consideración estadística de que mientras mayor sea el número de ejemplares de una muestra, el valor promedio de los datos será más representativo de la población total pues disminuye la dispersión de los valores. La representabilidad de una muestra estadística puede verse afectada por el número de elementos -o ejemplares en este caso- que la conformen. Si se contara con un mismo número de ejemplares para cada muestra sería mucho más factible estudiar la influencia que tienen en los valores promedio calculados tanto el número de ejemplares como el número de fracciones de análisis. La información con que cuenta el presente proyecto es insuficiente por el momento para efectuar dicho estudio.
- 6. Las muestras remitidas al Laboratorio de Bromatología son registradas y analizadas, pero en la mayoría de casos desconocemos su origen, los tratamientos que se les han efectuado, los métodos de cultivo y recolección, e inclusive los procesos industriales, es decir que existe en ellas una serie de factores no precisados. Sin embargo todas se analizaron mediante las mismas metodologías, y fueron remitidas por una "cartera de clientes" e investigadores bien conocidos y constantes, por lo que el porcentaje de error estadístico que suponen todos los factores no precisados debe ser constante también.

6.3 La comparación entre los valores obtenidos y las tablas nutrimentales de uso frecuente

7. Se esperaba que los valores obtenidos en esta recopilación fueran distintos de los reportados en tablas nutrimentales elaboradas en Canadá y en EE.UU [20, 21, 26,

- 28] ya que esta recopilación incluye alimentos y materias primas apegadas al contexto mexicano. La comparación de valores se realizó para verificar esta suposición.
- 8. El resultado de esta comparación no es del todo determinante, ya que existen tanto similitudes como diferencias entre los valores obtenidos y los referidos en la literatura; por otro lado, la cantidad de ejemplares en cada muestra es variable, y para el total de las muestras recopiladas no se cuenta con valores numéricos de todas las fracciones de análisis de interés. Lo anterior dificultó la comparación íntegra de los valores obtenidos con respecto a la literatura.
- 9. Derivados de la comparación de valores se obtuvieron los resultados que a continuación se discuten en forma general por cada grupo de alimentos:
 - 9.1 Forrajes secos y alimentos toscos (Grupo 1, cuadros 1 a 22). La comparación nos señala que existe similitud entre los valores obtenidos para MS y H y lo referido en las tablas, para la gran mayoría de estos alimentos, pero la variación entre componentes tales como PC, EE, FC y C suele ser mayor en casos como las cascarillas, los pericarpios y el salvado de ciertos alimentos. Muy probablemente esto se debe a los procesos de obtención de dichos materiales y la eficiencia de separación de los componentes o fracciones del alimento. La menor similitud se puede encontrar en lo referente a TND y EM. Esta diferencia puede deberse a muchos factores, como edad a la cosecha, tratamientos, tipo de sales fertilizantes, etc. Aunado a que dicha determinación es un valor calculado matemáticamente, para lo cual existen diferentes ecuaciones, por lo que los valores pueden variar.
 - 9.2 Forrajes frescos o verdes (Grupo 2, cuadros 23 a 31). En su mayoría las muestras que componen este grupo son difíciles de comparar contra lo referido en la literatura porque algunos pastos no figuran en tablas nutrimentales. La caña de azúcar tiene un contenido de materia seca mayor al referido en tablas, quizá por la edad en la que se cosechó, el manejo durante su transporte o al

- tiempo de almacenamiento; y por el contrario, el maíz verde tiene un alto contenido de humedad. Sin embargo los valores obtenidos para TND y EM de estas muestras no difieren mucho de lo encontrado en la literatura, por lo que se sugiere seguir investigando.
- 9.3 Ensilados (Grupo 3, cuadros 32 a 36). Se encontró poca semejanza entre valores de AQP, destacando los porcentajes de MS y Cenizas. Sin embargo, los valores de Energía concuerdan en mayor medida. Los métodos del proceso de ensilaje y el número de muestras remitidas de esta naturaleza son, posiblemente, la principal causa de variación.
- 9.4 Alimentos energéticos (Grupo 4, cuadros 37 a 56). Se encontró mucha semejanza entre los valores obtenidos en la presente investigación y lo referido en la literatura, los cereales como el maíz, avena y sorgo destacan por este hecho. Las variaciones se encuentran más en la semilla de algodón y la grasa de sobrepaso, que son los alimentos con más alto porcentaje de EE dentro del grupo y la poca semejanza respecto a la literatura puede deberse a los procesos de extracción de la grasa y a los valores de MS.
- 9.5 Complementos proteínicos (Grupo 5, cuadros 57 a 73). Las tablas nutrimentales consultadas no incluyen información al respecto de la gran mayoría de los productos cárnicos, sin embargo para las fracciones de análisis que cuentan con valores calculados para estos alimentos se halló poca dispersión entre los datos de una misma muestra. Mientras que en el resto de los alimentos proteínicos los valores obtenidos se asemejan a los encontrados en la literatura. La situación más deseable sería contar con los valores completos de AQP para todos los ingredientes considerados en esta recopilación.
- 9.6 Complementos minerales (Grupo 6, cuadros 74 y 75). En esta investigación se recopiló únicamente información para carbonato y ortofosfato de calcio y de estos se obtuvieron valores porcentuales para calcio y fósforo que al ser comparados con la literatura son muy similares.

6.4 Los resultados obtenidos y la perspectiva a corto y mediano plazo

- 10. La información bibliográfica estará disponible dentro del DNAB para todo especialista en nutrición que no cuente con recursos bibliográficos o económicos suficientes para elaborar formulaciones. Así también para investigadores, académicos y alumnos de la propia FMVZ, Facultad de Química y demás facultades y escuelas dentro de la UNAM u otras instituciones.
- 11. Tanto los cuadros individuales como el cuadro general de composición nutrimental se pondrán a disposición del Laboratorio de Bromatología para ser utilizados como patrón de referencia. Esta acción no ha sido posible debido a obras de remodelación dentro del DNAB que han desprovisto al laboratorio de condiciones que permitan realizar todos los análisis bromatológicos de rutina y que son indispensables para evaluar todos los factores expuestos durante el desarrollo de esta discusión.
- 12. Con esta propuesta, el DNAB comenzará una nueva fase de investigación, donde todas las muestras remitidas en lo futuro se recopilen de manera semejante a la mostrada en este proyecto para incrementar la cantidad de ejemplares de alimentos para animales y materias primas, actualizando así las bases de datos y hacer del cuadro general de composición nutrimental una herramienta de consulta bibliográfica dinámica y confiable en México.
- 13. Preferentemente, la elaboración de Tablas Nutrimentales no debe ser tarea que desempeñe una sola institución [26]. Son necesarias gran diversidad y cantidad muestras y materiales, si se pretende englobar a la gran mayoría de los alimentos y materias primas empleadas en alimentación y producción animal –esta situación se extiende al ámbito de alimentación y nutrición humana- influyendo positivamente en la cantidad y calidad de los alimentos y materias primas que se verán representadas de manera fidedigna dentro de la tabla nutrimental.

Cuadros Individuales de Composición Nutrimental

									Gua	iaros i	naiviau	iales de	Comp	osicion	Nutrin	nentai										
											Forraje	s Secos y	/ Alimento	os Toscos												
Alfalfa Achicalada					Ar	nálisis Qu	uímico Pro	oximal (%)	ij						Energía	(Kcal/Kg)			Mineral	les(%BS)	Fra	acciones	de la Fib	ra (Van S	Soest)(%B	3S)
Análisis	MS	Н	PC (BH)	PC(BS)	EE (BH)	EE (BS)	C (BH)	C (BS)	FC (BH)	FC (BS)	ELN (BH)	ELN (BS)	TND (BH)	TND (BS)	E.D.(BH)	E.D.(BS)	E.M.(BH)	E.M.(BS)	Ca	Р	FND	Cont.Cel.	FAD	Lignina	Celulosa	Hemicel
N	26	26	26	26	26	26	26	26	26	26	26	26	26	26	26	26	26	26	6	1	8	8	8	8	8	8
Promedio	90.21	9.80	16.22	18.01	2.60	2.89	10.11	11.20	21.98	24.34	39.32	43.58	57.92	64.23	2553.36	2831.68	2093.68	2321.90	1.21	0.15	43.24	56.77	30.18	7.95	23.01	11.80
Desv. Estándar	4.04	4.04	1.70	2.04	1.04	1.18	1.31	1.38	4.66	4.92	4.50	4.43	2.98	2.47	131.76	109.38	107.64	89.29	0.13	@	3.29	3.27	4.85	1.22	2.99	3.93
Mediana	90.59	9.41	15.65	17.67	2.69	2.99	9.79	10.88	20.77	23.06	39.51	44.44	58.28	64.45	2569.46	2841.72	2106.74	2329.96	1.18	0.15	42.59	57.41	30.44	7.83	22.37	11.74
Valor Máximo	96.63	16.64	20.03	23.54	4.37	5.11	12.81	14.93	34.29	37.18	45.47	50.32	63.33	68.69	2792.19	3028.64	2289.35	2483.22	1.42	0.15	49.40	59.81	36.36	9.65	28.10	18.08
Valor Mínimo	83.36	3.37	13.67	14.48	0.35	0.40	8.33	9.71	15.62	18.36	27.78	31.50	50.05	58.68	2202.86	2581.58	1809.85	2121.00	1.04	0.15	40.19	50.66	21.32	6.34	20.02	3.92
											С	UAE	RO	1												
Alfalfa, heno					Ar	nálisis Qu	uímico Pro	oximal (%)	ji						Energía	(Kcal/Kg)			Mineral	les(%BS)	F	raccione	de la Fi	ibra (Van	Soest)(%	6)
Análisis	MS	H	PC (BH)	PC(BS)	EE (BH)	EE (BS)	Cen (BH)	Cen (BS)	FC (BH)	FC (BS)	ELN (BH)	ELN (BS)	TND (BH)	TND (BS)	E.D.(BH)	E.D.(BS)	E.M.(BH)	E.M.(BS)	Ca	Р	P.Cel.	Cont.Cel.	FAD	Lignina	Celulosa	Hemicel.
N	19	19	19	19	19	19	19	19	18	18	18	18	18	18	18	18	18	18	2	2	5	5	5	5	5	5
Promedio	87.91	12.09	16.72	18.96	2.96	3.37	10.49	11.88	22.60	25.71	34.87	39.82	56.93	64.80	2509.67	2856.47	2057.95	2342.31	2.16	0.29	44.85	55.13	29.39	6.65	22.43	15.57
Desv. Estándar	5.60	5.60	3.69	3.67	1.03	1.18	3.40	3.33	7.28	7.63	7.92	8.72	6.15	5.23	271.02	230.75	222.32	189.15	0.23	0.11	5.21	5.46	5.77	2.41	5.82	2.34
Mediana	88.83	11.17	15.81	18.32	3.09	3.52	9.70	10.85	22.10	25.41	37.96	41.74	57.12	64.71	2518.31	2853.23	2064.79	2339.40	2.16	0.29	46.28	53.73	31.88	6.04	21.44	14.40
Valor Máximo	97.20	23.72	25.95	27.40	4.88	5.67	23.99	24.68	45.33	46.64	43.86	47.57	70.20	76.14	3095.16	3357.01	2537.77	2752.46	2.32	0.36	50.37	61.68	35.86	9.84	31.66	18.34
Valor Mínimo	76.28	2.80	10.35	13.56	0.86	1.12	8.16	9.30	14.18	15.38	10.33	10.63	45.86	50.08	2021.91	2207.90	1657.79	1810.29	2.00	0.21	38.68	49.13	22.34	4.04	17.06	13.00
											С	UAE	RO	2												
Alfalfa seca					Α	nálisis Qu	uímico Pro	oximal (%)	6						Energía	(Kcal/Kg)			Mineral	les(%BS)	Fra	acciones	de la Fib	ra (Van S	Soest)(%B	3S)
Análisis	MS	Н	PC (BH)	PC(BS)	EE (BH)	EE (BS)	Cen (BH)		FC (BH)	FC (BS)	ELN (BH)	ELN (BS)	TND (BH)	TND (BS)	E.D.(BH)	E.D.(BS)	E.M.(BH)	E.M.(BS)	Ca	P	FND	Cont.Cel.	FAD	Lignina	Celulosa	Hemicel.
N	43	43	39	39	33	33	33	33	32	32	32	32	32	32	32	32	32	32	8	8	20	20	20	20	20	20
Promedio	90.54	9.43	15.93	17.77	3.12	3.46	9.93	11.05	21.06	23.39	39.76	44.18	59.70	66.29	2816.54	3137.91	2158.06	2405.82	1.62	0.29	45.06	54.94	32.77	8.40	22.90	12.29
Desv. Estándar	3.75	3.74	2.07	2.38	1.56	1.81	0.93	0.98	4.72	4.99	3.92	4.25	3.98	4.92	759.44	834.91	143.74	172.35	0.58	0.10	7.87	7.87	5.13	2.19	4.67	4.58
Mediana	91.10	8.90	15.86	17.51	2.74	3.13	9.85	10.91	20.79	23.34	39.01	43.63	58.86	64.98	2595.25	2869.32	2127.88	2352.59	1.48	0.31	46.07	53.93	33.39	9.00	22.26	12.35
Valor Máximo	97.33	20.79	21.41	22.79	8.42	9.98	12.32	13.34	31.74	33.26	49.19	56.19	70.14	83.17	5828.00	6361.06	2535.43	3006.56	2.76	0.43	56.29	69.67	42.17	11.23	30.77	24.52
Valor Mínimo	79.21	2.67	11.09	12.34	1.13	1.30	8.06	9.19	12.25	15.46	31.69	34.21	52.07	59.41	2295.91	2637.16	1882.45	2162.24	1.04	0.13	30.33	43.71	24.12	3.20	15.72	5.68
											С	UAC	RO	3												
Arroz, cascarilla					Α	nálisis Qu	uímico Pro	oximal (%)	1						Energía	(Kcal/Kg)			Mineral	les(%BS)	Fra	acciones	de la Fib	ra (Van S	Soest)(%B	3S)
Análisis	MS	Н	PC (BH)	PC(BS)	EE (BH)	EE (BS)	C (BH)	C (BS)	FC (BH)	FC (BS)	ELN (BH)	ELN (BS)	TND (BH)	TND (BS)	E.D.(BH)	E.D.(BS)	E.M.(BH)	E.M.(BS)	Ca	P	FND	Cont.Cel.	FAD	Lignina	Celulosa	
N	5	5	2	2	5	5	5	5	5	5	5	5	5	5	5	5	5	5	(a)	a	3	3	3	3	3	3
Promedio	92.84	7.16	2.28	2.49	2.68	2.87	17.22	18.54	34.22	36.86	37.81	40.72	51.58	55,54	2273.12	2447.76	1864.49	2007.75	a a	a	74.04	25,96	57.59	9.86	42.94	16.45
Desv. Estándar	1.11	1.11	0.55	0.62	1.64	1.73	1.28	1.28	3.40	3.69	3.45	3.63	3,41	3.29	150.96	145.46	123.19	118.84	a a	a	0.87	0.87	9.07	1.64	15.27	8.36
Mediana	93.15	6.85	2.28	2.49	2.34	2.50	16.45	18.03	33.80	36.06	38.14	41,38	50.42	54.19	2223.00	2386.35	1822.66	1958.82	a a	a a	73.76	26.24	60.55	9.85	50.38	13,21
Valor Máximo	93.88	8.74	2.67	2.93	5.41	5.76	18.80	20.06	39.57	42.48	41,98	44.72	57.60	61.36	2539.60	2705.15	2082.25	2217.99	a a	a a	75.02	26.65	64.82	11.50	53.06	25.94
Valor Mínimo	91.26	6.12	1.89	2.05	1,21	1.33	16.17	17.22	30.32	32.30	32.41	34.79	49.45	53.33	2175.80	2351.54	1787.62	1928.06	a a	a a	73.35	24.98	47.41	8.22	25.37	10.20
	7140	1 27.00	. nee	2.00	, ,,,,,,	,,,,,,	1									,		1								

CHADRO 4

Avena, forrajera					An	álisis Qu	ímico Pro	ximal (%)	ı						Energía ((Kcal/Kg)			Mineral	es(%BS)	Fr	acciones	de la Fib	ra (Van f	Soest)(%	BS)
Análisis	MS	Н	PC (BH)	PC(BS)	EE (BH)	EE (BS)	C (BH)	C (BS)	FC (BH)	FC (BS)	ELN (BH)	ELN (BS)	TND (BH)	TND (BS)	E.D.(BH)	E.D.(BS)	E.M.(BH)	E.M.(BS)	Ca	Р	FND	Cont.Cel.	FAD	Lignina	Celulosa	Hemicel.
N	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	@	@	@	@	@	@	@	@
Promedio	88.43	11.58	6.05	6.87	3.22	3.61	6.62	7.52	30.41	34.45	42.13	47.54	57.86	64.95	2562.07	2893.85	2091.52	2362.58	@	@	@	@	@	@	@	@
Desv. Estándar	2.79	2.79	1.56	1.99	1.94	2.08	1.30	1.72	2.01	3.36	5.73	5.01	6.04	4.19	282.22	227.76	218.45	172.42	@	@	@	@	@	@	@	@
Mediana	88.43	11.58	6.05	6.87	3.22	3.61	6.62	7.52	30.41	34.45	42.13	47.54	57.86	64.95	2562.07	2893.85	2091.52	2362.58	(a)	@	@	@	@	@	@	@
Valor Máximo	90.40	13.55	7.15	8.27	4.59	5.08	7.54	8.73	31.83	36.82	46.18	51.08	62.13	67.91	2761.63	3054.90	2245.99	2484.50	(a)	(a)	@	(a)	@	(a)	(a)	(a)
Valor Mínimo	86.45	9.60	4.94	5.46	1.85	2.14	5.70	6.30	28.99	32.07	38.08	44.00	53.58	61.98	2362.51	2732.80	1937.05	2240.66	@	(a)	(a)	(a)	(a)	(a)	(a)	(a)
											C	ПΔГ) P ()	5												

11 12 13 14 15 15 15 15 15 15 15	5.03 90.64 94.40 74.14 MS 11 91.11 2.58 91.15 94.90	H 19 10.66 4.29 9.36 20.86 5.60 H 11 8.89 2.58 8.85 12.76 5.10	PC (BH) 19 5.79 2.16 4.79 10.60 2.48 PC (BH) 11 6.38 2.06 5.64 9.50 4.03	PC(BS) 19 6.47 2.28 5.38 11.66 2.94 PC(BS) 11 6.99 2.21 6.04 10.41	EE (BH) 19 3.39 1.14 3.28 6.31 1.71 An EE (BH) 11 4.48	19 3.83 1.34 3.65 6.89 1.88	C (BH) 19 6.12 1.36 5.99 9.38 4.42	C (BS) 19 6.87 1.40 6.70 10.13 4.69	FC (BH) 19 28.43 4.28 28.69 38.81 20.40	FC (BS) 19 31.94 4.63 31.50 42.37 25.23	19 45.60 3.98 44.78 50.90	19 51.25 4.15	TND (BH) 19 59.63	TND (BS) 19 66,42	Energía (E.D.(BH) 19	E.D.(BS)	E.M.(BH) 19	E.M.(BS) 19	Ca 4	es(%BS)	FND 3	Cont.Cel.	FAD 3	Lignina 3	Celulosa 3	Hemic 3
Description 19	MS 11 91.11 2.58 91.15 94.90	H 11 8.89 2.58 8.85 12.76	5.79 2.16 4.79 10.60 2.48 PC (BH) 11 6.38 2.06 5.64 9.50	6.47 2.28 5.38 11.66 2.94 PC(BS) 11 6.98 2.21 6.04 10.41	3.39 1.14 3.28 6.31 1.71 An EE (BH) 11 4.48	3.83 1.34 3.65 6.89 1.88	6.12 1.36 5.99 9.38 4.42	6.87 1.40 6.70 10.13 4.69	28.43 4.28 28.69 38.81	31.94 4.63 31.50 42.37	45.60 3.98 44.78	51.25 4.15			19	19	19	19	4	4	3	3				3
v. Estándar 5.4 Jana 90. or Máximo 94. or Mínimo 74. Avena, paja lisis M medio 91. v. Estándar 2.2. liana 91. or Máximo 94. or Mínimo 87.	5.03 90.64 94.40 74.14 MS 11 91.11 2.58 91.15 94.90	H 11 8.89 2.58 8.85 12.76	2.16 4.79 10.60 2.48 PC (BH) 11 6.38 2.06 5.64 9.50	2.28 5.38 11.66 2.94 PC(BS) 11 6.98 2.21 6.04 10.41	1.14 3.28 6.31 1.71 Ar EE (BH) 11 4.48	1.34 3.65 6.89 1.88	1.36 5.99 9.38 4.42 ímico Pro	1.40 6.70 10.13 4.69	4.28 28.69 38.81	4.63 31.50 42.37	3.98 44.78	4.15	59.63								20.00	00.77	00.50			
Isina 90.	MS 11 91.11 2.58 91.15 94.90	9.36 20.86 5.60 H 11 8.89 2.58 8.85 12.76	4.79 10.60 2.48 PC (BH) 11 6.38 2.06 5.64 9.50	5.38 11.66 2.94 PC(BS) 11 6.98 2.21 6.04 10.41	3.28 6.31 1.71 Ar EE (BH) 11 4.48	3.65 6.89 1.88 nálisis Qu	5.99 9.38 4.42 Ímico Pro	6.70 10.13 4.69	28.69 38.81	31.50 42.37	44.78		3.11	3.66	2629.13 137.17	2954.70 123.36	2155.66 112.47	2422.60 101.14	0.96	0.26 0.06	63.23 2.82	36.77 2.81	38.52 2.36	7.50 3.00	30.32	24.7
Avena, paja Avena, paja Avena, paja III III III III III III III	MS 11 91.11 2.58 91.15 94.90	H 11 8.89 2.58 8.85 12.76	PC (BH) 11 6.38 2.06 5.64 9.50	PC(BS) 11 6.98 2.21 6.04 10.41	1.71 An EE (BH) 11 4.48	1.88 nálisis Qu	4.42 ímico Pro	4.69			50.90	51.36	60.13	66.75	2650.93	2947.10	2173.54	2416.37	0.81	0.27	64.18	35.82	39.62	5.91	28.56	24.5
Avena, paja álisis M 1 omedio 91. sv. Estándar 2.4 diana 91. lor Máximo 94. lor Mínimo 87.	MS 11 91.11 2.58 91.15 94.90	H 11 8.89 2.58 8.85	PC (BH) 11 6.38 2.06 5.64 9.50	PC(BS) 11 6.98 2.21 6.04 10.41	Ar EE (BH) 11 4.48	nálisis Qu	ímico Pro		20.40	25.23		57.80	63.55	76.18	2801.85	3358.67	2297.28	2753.82	1.76	0.31	65.45	39.93	40.13	10.96	34.05	25.3
álisis M omedio 91. sv. Estándar 2.5. diana 91. lor Máximo 94. lor Mínimo 87.	11 91.11 2.58 91.15 94.90	11 8.89 2.58 8.85 12.76	11 6.38 2.06 5.64 9.50	11 6.98 2.21 6.04 10.41	EE (BH) 11 4.48	EE (BS)				1	37.49	40.93	52.76	56.66	2326.34	2756.33	1907.40	2259.95	0.46	0.19	60.06	34.55	35.82	5.64	28.36	24.2
Minimedio 91.	11 91.11 2.58 91.15 94.90	11 8.89 2.58 8.85 12.76	11 6.38 2.06 5.64 9.50	11 6.98 2.21 6.04 10.41	EE (BH) 11 4.48	EE (BS)					С	UAE	RO	6												
1 1 1 1 1 1 1 1 1 1	11 91.11 2.58 91.15 94.90	11 8.89 2.58 8.85 12.76	11 6.38 2.06 5.64 9.50	11 6.98 2.21 6.04 10.41	11 4.48					FC (DC)	FIN (DID	ELM (DC)	THE COUR	THE (DC)	Energía (F M (DIR	F M (DC)		es(%BS)		acciones				
omedio 91. sv. Estindar 2.2. didina 91. lor Máximo 94. lor Mínimo 87.	91.11 2.58 91.15 94.90	8.89 2.58 8.85 12.76	2.06 5.64 9.50	6.98 2.21 6.04 10.41	4.48	11	C (BH)	C (BS)	FC (BH)	FC (BS)	ELN (BH) 10	ELN (BS) 10	TND (BH)	TND (BS)	E.D.(BH) 10	E.D.(BS) 10	E.M.(BH) 10	E.M.(BS) 10	Ca 1	2	FND 2	Cont.Cel.	FAD 2	Lignina 2	Celulosa 2	Hemi 2
ediana 91. olor Máximo 94. olor Mínimo 87.	91.15 94.90	8.85 12.76	5.64 9.50	6.04 10.41		4.90	6.53	7.16	30.15	33.03	43.22	47.40	61.69	67.77	2719.93	2980.46	2230.11	2443.72	0.58	0.26	67.09	32.92	43.96	8.47	34.29	23.1
olor Máximo 94.	94.90	12.76	9.50	10.41	1.07	1.12	1.80	1.95	4.64	4.87	4.26	4.89	2.70	1.99	119.18	87.17	97.72	71.47	@	0.15	9.16	9.16	10.59	4.24	5.25	1.4
slor Mínimo 87.					4.17 5.75	4.76 6.33	5.77 9.99	6.61 10.91	29.65 36.90	33.13 39.47	42.18 50.58	45.47 55.61	61.75 66.17	67.78 71.41	2722.52 2917.60	2975.53 3148.50	2232.24 2392.18	2439.68 2581.50	0.58 0.58	0.26 0.36	67.09 73.56	32.92 39.39	43.96 51.44	8.47 11.46	34.29 38.00	23.1
Avena seca				4.49	2.59	2.89	4.74	5.31	22.89	25.11	38.28	42.11	57.22	64.93	2522.93	2862.72	2068.58	2347.18	0.58	0.15	60.61	26.44	36.47	5.47	30.58	22.1
Avena seca											С	UAE	RO	7												
					An	nálisis Qu	ímico Pro	oximal (%)	ii						Energía (Kcal/Kg)			Mineral	es(%BS)	Fr	acciones	de la Fib	ra (Van s	Soest)(%l	BS)
nálisis M:	MS		PC (BH)	PC(BS)	EE (BH)	EE (BS)	C (BH)	C (BS)	FC (BH)	FC (BS)	ELN (BH)	ELN (BS)	TND (BH)	TND (BS)	E.D.(BH)	E.D.(BS)	E.M.(BH)	E.M.(BS)	Ca	Р	FND	Cont.Cel.	FAD	Lignina	Celulosa	Hemi
		22 5.79	21	21 7.87	4	6.58	19	19 6,58	40.44	20,97	5 58.83	5 63,50	5 73.95	5 80.07	3245.02	4 2540.20	4 2636.04	2005 44	0.40	0.22	17 65.14	17	17	7.44	17 30,23	17
		2.33	7.42 3.51	3.61	6.03 4.05	4.38	6.22 1.83	1.89	19.11	15.60	58.83 15.36	15.19	14.27	15.05	3215.02 716.86	3519.20 765.52	2636.U4 587.76	2885.44 627.66	0.4U @	@	6.97	34.86 6.97	39.82 3.66	1.21	30.23	25.3 5.9
ediana 94.	94.43	5.57	6.81	7.30	5.79	6.39	6.41	6.77	21.39	23.60	56.73	61.16	78.08	81.07	3213.78	3479.35	2635.02	2852.76	0.40	0.22	63.81	36.19	39.25	7.27	29.88	24.0
		10.28	19.33	19.68	10.13	10.92	8.73	9.03	31.57	34.39	80.30	83.37	88.05	96.97	3882.03	4275.36	3182.93	3505.43	0.40	0.22	78.50	46.83	48.76	9.50	38.56	39.2
alor Mínimo 89.	39.72	1.78	3.56	3.88	2.39	2.60	1.20	1.32	2.10	2.31	41.21	45.93	57.85	64.48	2550.51	2842.74	2091.20	2330.80	0.40	0.22	53.17	21.50	33.54	5.46	24.44	16.3
000											С	UAE	RO	8	-											
Bagazo de caña	MS		DC (DIR	PC(BS)		nálisis Qu	ÍMICO Pro	oximal (%)		FC (BS)	ELN (BH)	ELN (BS)	TND (BH)	TND (BS)	Energía (Kcal/Kg) E.D.(BS)	E.M.(BH)	E.M.(BS)	Minerale	es(%BS)	Fra	Cont.Cel.	de la Fib	ra (Van S		BS)
ranoro	3	3	PC (BH)	3	EE (BH)	3	3	3	FC (BH)	3	3	3	3	3	3	3	3 3	3	@	a P	2	2	2	2 Lightha	2	nemii 2
romedio 63J	63.85	36.14	1.03	1.60	0.85	1.35	2.07	3.18	27.48	42.48	32.42	51.39	40.55	63.71	1787.79	2808.81	1465.84	2302.98	@	ē	71.88	28.12	49.35	10.27	37.82	22.5
		7.71	0.20	0.13	0.17	0.32	0.74	0.80	7.57	7.07	1.78	7.87	3.40	2.53	149.83	111.77	122.84	91.64	@	@	11.62	11.62	1.63	0.95	0.03	13.2
		33.36 44.86	1.12	1.66 1.68	0.89 1.00	1.43	2.17	3.26 3.94	28.68 34.38	43.04 49.26	32.76 34.01	51.04 59.42	42.02 42.96	63.06 66.50	1852.84 1894.11	2780.37 2932.05	1519.17 1553.00	2279.66 2404.03	@	@	71.88 80.10	28.12 36.34	49.35 50.50	10.27 10.94	37.82 37.84	22.5 31.9
		30.21	0.80	1.45	0.66	0.99	1.29	2.34	19.38	35.15	30.50	43.70	36.66	61.56	1616.44	2714.01	1325.34	2225.25	(a)	<u>a</u>	63.66	19.90	48.20	9.60	37.80	13.1
											С	UAE	RO	9												
Bagazo de cervecería					Δr	nálisis Qu	ímico Pro	oximal (%)							Energía (Kcal/Kn)			Mineral	es(%BS)	Fr	acciones	de la Fih	ra (Van s	Snest)(%)	RS)
nálisis M	MS	Н	PC (BH)	PC(BS)	EE (BH)	EE (BS)	C (BH)	C (BS)	FC (BH)	FC (BS)	ELN (BH)	ELN (BS)	TND (BH)	TND (BS)	E.D.(BH)	E.D.(BS)	E.M.(BH)	E.M.(BS)	Ca	P	FND	Cont.Cel.	FAD	Lignina		Hemi
	3	3	3	3	1 0 40	1 620	3	3	1 22.04	1 22.74	1 67.40	1 50.07	74.07	1 72.22	1 2422.40	1 2222 72	1 2500 40	1 2050 55	@	@	@	@	@	@	@	@
		6.90 3.32	15.07 8.05	16.40 9.05	6.10	6.29 @	4.52 0.32	4.85 0.18	23.01	23.74 @	57.16	58.97 @	71.07 @	73.32 @	3133.48 @	3232.72 @	2569.18 @	2650.55 @	@	@	@	@ @	@	@	@ @	@
		8.71	19.18	21.01	6.10	6.29	4.44	4.86	23.01	23.74	57.16	58.97	71.07	73.32	3133.48	3232.72	2569.18	2650.55	@	@	@	<u>e</u>	@	@	<u>e</u>	@
alor Máximo 96.	96.93	8.91	20.24	22.22	6.10	6.29	4.87	5.02	23.01	23.74	57.16	58.97	71.07	73.32	3133.48	3232.72	2569.18	2650.55	@	œ.	@	@	@	@	@	@
alor Mínimo 91.	91.09	3.07	5.79	5.97	6.10	6.29	4.25	4.67	23.01	23.74	57.16	58.97	71.07	73.32	3133.48	3232.72	2569.18	2650.55	@	@	@	@	@	@	@	@
						12860 00 10	Dr. 100 10-07	D 2.00***			С	UAD	R O	10	25-20 20	500 MONTH AN			7000	3 80 800 000 000			2 2 20	100000	01 2012	
Cacahuate, cascarilla	MC		DC /PIN	DC/DC				oximal (%)		FC 700	FI M (DIR	ELN (DO)	THE PUR	THE CO.	Energía (F M /DIR	F M (DO)		es(%BS)		acciones				
	MS 2	H 2	PC (BH)	PC(BS)	EE (BH)	EE (BS)	C (BH)	C (BS)	FC (BH)	FC (BS)	ELN (BH)	ELN (BS)	TND (BH)	TND (BS)	E.D.(BH)	E.D.(BS)	E.M.(BH)	E.M.(BS)	Ca 0	P	FND 1	Cont.Cel.	FAD 1	Lignina 1	Celulosa 1	Hemi-
omedio 91.	91.51	8.49	5.24	3.52	4.28	25.88	2.76	2.98	69.41	74.89	12.58	13.57	55.24	59.60	2435.47	2627.82	1996.87	2154.59	e e	e e	62.70	37.30	58.90	10.49	47.37	3.80
		1.65	1.90	0.96	0.34	30.44	@	@	@	@	@	@	@	@	@	@	@	@	@	œ.	@	@	@	@	@	@
		8.49	5.24 6.58	3.52	4.28 4.52	25.88	2.76 2.76	2.98 2.98	69.41	74.89 74.89	12.58 12.58	13.57 13.57	55.24	59.60 59.60	2435.47 2435.47	2627.82	1996.87 1996.87	2154.59	@	@	62.70 62.70	37.30 37.30	58.90 58.90	10.49 10.49	47.37 47.37	3.8
		9.66 7.32	3.89	4.20 2.84	4.04	47.41 4.36	2.76	2.98	69.41 69.41	74.89	12.58	13.57	55.24 55.24	59.60	2435.47	2627.82 2627.82	1996.87	2154.59 2154.59	0.00	0.00	62.70	37.30	58.90	10.49	47.37	3.8
30.												UAD		11		2221102		2.2.00				2.100	22.00			

											Forraje	s Secos y	Alimento	s Toscos												
Cachaza seca					Ar	nálisis Qu	ímico Pro	oximal (%)						Energía ((Kcal/Kg)			Minera	les(%BS)	Fr	acciones	de la Fib	ra (Van s	Soest)(%E	BS)
Análisis	MS 4	H 4	PC (BH)	PC(BS)	EE (BH)	EE (BS)	C (BH)	C (BS)	FC (BH)	FC (BS)	ELN (BH)	ELN (BS)	TND (BH)	TND (BS)	E.D.(BH)	E.D.(BS)	E.M.(BH)	E.M.(BS)	Ca @	P @	FND 4	Cont.Cel.	FAD 4	Lignina	Celulosa	Hemic 4
romedio	90.79	9.21	12.27	13.51	4.65	5.12	25.61	28.20	15.24	16.78	33.03	36.38	55.96	61.64	2467.36	2717.68	2023.03	2228.27	@	@	56.91	43.14	35.66	10.60	24.87	21.25
Desv. Estándar Mediana	90.76	9.25	0.39 12.39	0.49 13.66	0.91 4.39	1.01 4.84	1.01 25.42	1.07 28.08	0.24 15.21	0.30 16.73	1.02 32.94	1.00 36.24	1.64 55.70	1.89 61.44	72.48 2455.99	83.45 2709.05	59.43 2013.70	68.42 2221.19	@	@	0.85 57.05	0.86 43.05	2.00 36.34	1.67	2.97 24.52	1.33
/alor Máximo	91.25		12.57	13.87	5.95	6.56	26.89	29.46	15.52	17.16	34.10	37.51	57.95	63.95	2554.94	2819.71	2013.70	2311.92	@	@	57.78	44.24	37.12	11.68	28.76	22.92
falor Mínimo	90.41	8.75	11.72	12.84	3.87	4.24	24.71	27.18	15.02	16.51	32.14	35.51	54.49	59.72	2402.54	2632.92	1969.88	2158.77	@	@	55.76	42.22	32.84	8.12	21.66	19.8
											С	UAD	R O	12												
Caña azúcar molida					Δr	nálisis Qu	ímico Pro	vimal (%	١						Energía ((Kcal/Kn)			Minera	les(%BS)	Fr	acciones	de la Fib	ra (Van s	Soest)(%E	BS)
Análisis	MS	Н	PC (BH)	PC(BS)	EE (BH)	EE (BS)	C (BH)	C (BS)	FC (BH)	FC (BS)	ELN (BH)	ELN (BS)	TND (BH)	TND (BS)	E.D.(BH)	E.D.(BS)	E.M.(BH)	E.M.(BS)	Ca	P	FND	Cont.Cel.	FAD		Celulosa	Hemic
leamadia	94.17	14 5.83	14 3.00	14 3.18	2.04	2.16	14 3.75	14 3.98	14 22.59	14 24.02	14 62.79	14 66.66	14 64.77	14 68.77	14 2855.51	14 3031.95	14 2341.27	14 2485.94	@	@	14 57.99	14 44.66	14 31.01	7.94	14 24.82	24.26
Promedio Desv. Estándar	2.05	2.05	0.77	0.81	1.02	1.07	0.84	0.91	3.37	3.78	4.99	4.81	2.55	1.97	112.35	86.89	92.12	71.24	@	@	12.14	8.89	6.72	1.76	4.67	7.51
dediana (-la-Mássissa	94.06	5.94	2.85	2.95	1.97	2.11	3.48	3.69	21.60	23.24	63.39	67.45	64.92	68.85	2862.50	3035.70	2347.01	2489.02	@	@	58.36 89.22	42.22	32.87	7.37	24.58 38.72	24.9
falor Máximo falor Mínimo	96.57 91.09		4.13 2.00	4.46 2.14	3.48 0.62	3.71 0.64	5.27 2.73	5.79 2.96	31.39 18.85	34.46 19.95	70.33 48.47	72.93 53.21	68.28 58.94	71.34 64.71	3010.43 2598.66	3145.33 2852.85	2468.29 2130.68	2578.90 2339.09	@	@	36.24	63.76 31.08	37.66 10.78	12.70 6.06	38.72 18.08	36.44 11.33
											С	UAD	R O	13												
Cebada, cascarilla					Δr	nálicie Ou	ímico Pro	vimal (%							Energía ((Kcal/Kn)			Minera	les(%BS)	Fr	acciones	de la Fih	ra (Van (Soest)(%E	86)
inálisis	MS	Н	PC (BH)	PC(BS)	EE (BH)	EE (BS)	C (BH)	C (BS)	FC (BH)	FC (BS)	ELN (BH)	ELN (BS)	TND (BH)	TND (BS)	E.D.(BH)	E.D.(BS)	E.M.(BH)	E.M.(BS)	Ca	P P	FND	Cont.Cel.	FAD		Celulosa	Hemi
	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	1	1	1	1	1	1	1	1
romedio Jesv. Estándar	92.49	7.51 1.75	12.50 6.06	13.46 6.44	3.12 0.87	3.39 1.01	6.93 2.28	7.50 2.49	19.58 7.60	21.22 8.40	50.35 4.93	54.43 5.06	66.05 8.60	71.40 9.07	2912.09 379.36	3148.10 399.96	2387.74 310.97	2581.26 327.87	0.42 @	0.52 @	35.78 @	64.04 @	14.45 @	3.12	21.33 @	10.93
lediana	92.81	7.19	12.61	13.41	3.09	3.33	8.20	8.82	22.33	23.74	48.55	51.62	61.63	66.84	2717.34	2946.63	2227.99	2416.24	0.42	0.52	35.78	64.04	14.45	3.12	21.33	10.93
/alor Máximo /alor Mínimo	94.06		18.50 6.39	19.93 7.05	4.01 2.27	4.43 2.41	8.30 4.30	9.05 4.63	25.43 10.99	28.07 11.84	55.93 46.57	60.26 51.40	75.96 60.56	81.85 65.52	3349.26 2669.65	3608.73 2888.95	2746.11 2189.11	2958.85 2368.69	0.42	0.52 0.52	35.78 35.78	64.04 64.04	14.45 14.45	3.12 3.12	21.33 21.33	10.93
		1			1			,,,,,,,,	, ,,,,,			UAD		14												
Maíz, pericarpio					Ar	sálicic Ou	ímico Pro	vimal /0/				<u> </u>	K U	17	Energía ((Koal(Ka)			Minora	les(%BS)	Er	accionac	do la Eih	ura Man (Soest)(%E	96/
Análisis	MS	Н	PC (BH)	PC(BS)	EE (BH)	EE (BS)	C (BH)	C (BS)	FC (BH)	FC (BS)	ELN (BH)	ELN (BS)	TND (BH)	TND (BS)	E.D.(BH)	E.D.(BS)	E.M.(BH)	E.M.(BS)	Ca	P P	FND	Cont.Cel.	FAD		Celulosa	Hemic
· ·	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	5	5	3	3	3	3	3	3
Promedio Desv. Estándar	91.87	8.13 1.91	5.89 1.39	6.42 1.56	3.23 1.32	3.51 1.41	1.91 0.41	2.09 0.47	12.43	13.50 2.74	68.41 1.95	74.48 2.25	78.74 2.26	85.71 1.83	3470.63 100.84	3777.69 81.04	2845.29 82.96	3097.03 67.25	1.16 0.70	0.20	46.97 11.01	53.03 11.01	15.43 2.55	3.23 0.66	10.15 1.35	33.41
Mediana	91.92	8.09	5.73	6.16	2.87	3.12	2.02	2.14	13.37	14.29	68.21	74.36	78.17	84.87	3446.53	3742.14	2822.80	3067.02	1.16	0.19	41.06	58.94	15.35	3.54	10.36	27.16
Valor Máximo Valor Mínimo	94.36 87.99	12.01 5.64	9.31 4.40	10.25 4.72	6.60 1.72	7.00 1.87	2.61 1.06	2.97	15.37 5.60	16.30 6.17	71.55 65.05	78.80 69.53	83.56 76.23	89.01 83.43	3684.27 3361.16	3924.37 3670.90	3020.78 2755.86	3217.65 3015.98	2.24 0.50	0.29 0.15	59.68 40.18	59.82 40.32	18.02 12.92	3.68 2.48	11.38 8.70	47.36 25.71
Valor Millimo	01.00	3.04	4.40	4.12	1.72	1.01	1.00	1.11	3.00	0.11					3301.10	3010.30	2133.00	3013.50	0.30	0.13	40.10	40.32	ILIVE	2,40	0.70	23.1
	T										Ü	UAD	R O	15					T							
Maíz, rastrojo	***		DO DU	no-no-			ímico Pro			F0 000	ELM IDIR	EL N. IDO	THE INTE	THE OC	Energía		5 M (DIII)	F 11 (DC)		les(%BS)					Soest)(%E	
Análisis N	MS 9	9 9	PC (BH)	PC(BS)	EE (BH)	EE (BS)	C (BH)	C (BS)	FC (BH)	FC (BS)	ELN (BH)	ELN (BS)	TND (BH)	TND (BS)	E.D.(BH) 9	E.D.(BS) 9	E.M.(BH) 9	E.M.(BS) 9	Ca 2	P 2	FND 4	Cont.Cel.	FAD 4	Lignina 4	Celulosa 4	Hemic 4
Promedio	90.49	9.52	4.27	4.67	2.17	2.43	7.65	8.50	33.03	36.33	43.36	48.06	56.63	62.63	2496.78	2761.50	2047.15	2264.20	0.98	0.23	68.51	31.52	45.21	9.42	35.71	23.30
Desv. Estándar Mediana	7.24 92.33	7.26	1.77 4.40	1.88 4.59	1.26 2.05	1.42 2.38	2.72 7.11	3.10 7.67	6.82	5.74 34.84	6.41 45.15	6.87 47.90	5.19 57.03	3.81 63.59	228.65 2514.62	167.86 2803.53	187.47 2061.77	137.63 2298.66	0.14	0.13 0.23	3.00 68.66	2.97 31.34	5.89 45.28	2.82 9.06	3.85 36.83	4.75
/alor Máximo	96.74	27.08	7.13	7.72	4.78	5.05	11.82	13.10	47.29	49.35	50.95	55.51	63.17	66.82	2785.03	2946.19	2283.49	2415.62	1.08	0.32	71.80	35.10	52.04	13.00	39.00	29.18
/alor Mínimo	72.98	3.26	1.56	2.14	0.46	0.50	4.52	4.98	24.07	30.60	31.47	32.84	45.03	55.96	1985.56	2467.23	1627.99	2022.92	0.88	0.14	64.90	28.28	38.24	6.56	30.16	17.86
											С	UAD	R O	16												
Maíz, salvado							ímico Pro								Energía					les(%BS)					Soest)(%E	
inálisis I	MS 2	H 2	PC (BH)	PC(BS)	EE (BH)	EE (BS)	C (BH)	C (BS)	FC (BH)	FC (BS)	ELN (BH)	ELN (BS)	TND (BH)	TND (BS)	E.D.(BH)	E.D.(BS)	E.M.(BH) 2	E.M.(BS)	Ca @	P @	FND @	Cont.Cel.	FAD @	Lignina @	Celulosa @	Hemic @
romedio	94.01	5.99	18.77	19.97	3.45	3.60	7.46	7.90	12.97	13.74	42.63	45.20	65.90	69.82	2905.58	3078.58	2382.33	2524.17	@	@	@	@	@	@	e e	@
Desv. Estándar Mediana	3.97 94.01	3.97 5.99	0.54 18.77	0.27 19.97	2.89 3.45	2.93 3.60	1.91 7.46	1.70 7.90	2.84 12.97	2.44 13.74	8.15 42.63	6.76 45.20	15.02 65.90	13.02 69.82	662.16 2905.58	574.22 3078.58	542.92 2382.33	470.81 2524.17	@	@	@	@	@	@	@	@
vegrana /alor Máximo	96.82	8.80	19.15	20.16	5.49	5.67	8.81	9.10	14.98	15.47	48.39	49.98	76.52	79.03	3373.80	3484.61	2766.23	2857.08	@	@	@	@	@	@	@	@
falor Mínimo	91.20	3.18	18.39	19.78	1.40	1.53	6.11	6.70	10.96	12.02	36.86	40.42	55.28	60.62	2437.36	2672.55	1998.43	2191.26	@	@	@	@	@	@	@	æ
										1						1										

Maíz, tamo					Δn	álisis Ou	ímico Pro	ximal (%)							Energía ((Kcal/Kn)			Minera	les(%BS)	Fr	acciones	de la Fih	ra (Van	Soest)(%	BS)
isis	MS	Н	PC (BH)	PC(BS)	EE (BH)	EE (BS)	C (BH)	C (BS)	FC (BH)	FC (BS)	ELN (BH)	ELN (BS)	TND (BH)	TND (BS)	E.D.(BH)	E.D.(BS)	E.M.(BH)	E.M.(BS)	Ca	Р	FND	Cont.Cel.	FAD		Celulosa	
edio	91.45	9 8,55	9 8.78	9.61	9 4.96	9 5.44	3.79	9 4.12	9 10,59	11.49	63.32	69.35	9 78.01	9 85.40	9 3439.58	9 3765.49	9 2820.16	9 3087.38	@	@	@	@	@	@	@	@ @
stándar	2.25	2.25	0.82	0.92	1.09	1.24	2.08	2.17	4.65	4.84	4.14	5.76	5.49	7.00	241.88	308.83	198.32	253.21	<u>e</u>	- e	@	· @	@	@	· @	a
na	92.61	7.39	8.75	9.71	4.74	5.43	3.06	3.30	11.99	12.91	62.72	68.80	79.73	87.25	3515.25	3846.66	2882.20	3153.93	@	@	@	@	@	@	@	(0
Máximo Mínimo	93.87 87.31	12.69 6.13	9.76 7.23	10.76 7.76	6.79 3.43	7.55 3.67	9.15 2.44	9.75 2.79	17.47 4.85	18.61 5.40	69.42 54.80	77.36 58.38	81.76 64.06	90.71 68.24	3604.78 2824.22	3999.53 3008.65	2955.61 2315.62	3279.27 2466.83	@	@ @	@	@	@	@	@	(6
Millitto	07.51	0.13	7.23	7.70	3.43	3.07	2.44	2.73	4.03	3.40					2024.22	3000.03	2313.02	2400.03								
	_					2					·	UAD	R O	18	9											
Soya, cascarilla	MS	Н	PC (BH)	DC/DC\		álisis Qu EE (BS)		ximal (%)	EC (DID	CC (DC)	ELM (DID	ELN (BS)	THE COLIN	THE (DC)	Energía ((Kcal/Kg) E.D.(BS)	E.M.(BH)	E.M.(BS)	Minera	les(%BS)	FND	acciones	de la Fib		Soest)(% Celulosa	
sis	7 7	7	4 PC (BH)	PC(BS)	EE (BH)	6	C (BH)	C (BS)	FC (BH)	FC (BS)	ELN (BH)	3	TND (BH)	TND (BS)	3	3	3 3	3	@	@	3	Cont.Cel.	3	Lignina 3	Celulosa 3	Hemi
nedio	91.90	8.10	12.45	13.70	6.31	6.81	4.60	4.97	32.68	35.27	38.12	41.46	65.48	71.16	2886.89	3137.53	2367.00	2572.50	@	@	70.49	29.51	46.63	5.45	41.07	23.7
. Estándar ana	2.37 92.17	7.82	3.28 11.51	3.60 12.85	3.09 5.96	3.32 6.50	0.29 4.66	0.30 5.04	2.87 33.21	2.75 36.00	5.60 37.33	6.32	4.93 65.41	5.07 70.73	217.34 2883.71	223.22 3118.53	178.20 2364.39	183.02 2556.93	@	@ @	13.23 75.85	13.23 24.15	5.71 48.30	0.93 5.52	5.16 41.98	7.4
r Máximo	95.12	12.32	16.85	18.28	10.31	11.00	4.84	5.25	36.61	38.49	44.08	48.26	70.44	76.43	3105.80	3369.64	2546.49	2762.82	<u>e</u>	- œ	80.20	44.57	51.32	6.34	45.72	28.8
r Mínimo	87.68	4.88	9.91	10.80	2.27	2.48	4.09	4.48	28.14	30.53	32.96	35.76	60.58	66.31	2671.16	2924.41	2190.12	2397.77	æ	@	55.43	19.80	40.27	4.49	35.52	15.
											С	UAD	R O	19												
Trigo, paja					An	álisis Qu	ímico Pro	ximal (%)							Energía ((Kcal/Kg)			Minera	les(%BS)	Fr	acciones	de la Fib	ra (Van	Soest)(%	BS)
lisis	MS	Н	PC (BH)	PC(BS)	EE (BH)	EE (BS)	C (BH)	C (BS)	FC (BH)	FC (BS)	ELN (BH)	ELN (BS)	TND (BH)	TND (BS)	E.D.(BH)	E.D.(BS)	E.M.(BH)	E.M.(BS)	Ca	P	FND	Cont.Cel.	FAD		Celulosa	
nedio	95.26	4.74	3.55	3.72	3.49	3.68	7.10	7.45	39,23	41.17	3 41.89	3 43.98	60.76	63.81	2679.04	3 2813.23	3 2196.59	2306.60	@ @	@	84.01	15,99	62.08	13.26	43.64	21.9
r. Estándar	1.22	1.22	1.43	1.46	1.52	1.63	0.84	0.85	4.26	4.39	1.86	2.08	1.89	2.67	83.52	117.77	68.48	96.56	e e	e e	@	@	@	@	@	@
liana	94.88	5.12	3.40	3.61	3.28	3.46	7.41	7.86	39.42	40.80	42.32	43.79	59.88 62.94	63.11	2640.20	2782.67	2164.73	2281.55	@	@	84.01	15.99	62.08	13.26	43.64	21.9
r Máximo r Mínimo	96.62 94.28	5.72 3.38	5.05 2.20	5.23 2.32	5.10 2.09	5.41 2.17	7.74 6.15	8.02 6.48	43.39 34.87	45.73 36.98	43.50 39.86	46.15 42.01	59.47	66.76 61.55	2774.91 2622.02	2943.27 2713.75	2275.19 2149.83	2413.23 2225.04	@	@	84.01 84.01	15.99 15.99	62.08 62.08	13.26 13.26	43.64 43.64	21.9
		,										UAD		20										, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		
Tring ashrada						رو مامالک	ímica Dua	ina a 1 (0/)				0 7 5	K 0	20	En avería i	(/			Minava	I(0/ DO)	F.		da la Fila	us Man	Baaa4) (0/)	DO)
Trigo, salvado	MS	Н	PC (BH)	PC(BS)	EE (BH)	EE (BS)	C (BH)	ximal (%)	FC (BH)	FC (BS)	ELN (BH)	ELN (BS)	TND (BH)	TND (BS)	Energía (E.D.(BS)	E.M.(BH)	E.M.(BS)	Ca	les(%BS)	FND	Cont.Cel.	FAD		Celulosa	
11010	27	27	24	24	26	26	24	24	24	24	21	21	21	21	21	21	21	21	3	3	4	4	4	4	4	4
medio v. Estándar	91.19	8.81 2.39	15.04 1.07	16.47	4.25 1.44	4.67 1.61	5.55 2.31	6.17 2.36	11.14 3.77	13.93 7.28	56.32 4.19	60.52 6.29	74.31 4.36	82.63 3.24	3317.17 122.48	3593.81 286.54	2721.08 99.31	2987.06 117.17	0.21 0.15	0.71	50.45 8.58	43.77 20.00	19.87 11.46	14.98 22.72	9.03	26.3
v. Estanuai liana	90.63	9.37	14.78	16.20	3.90	4.33	4.94	5.61	10.17	11.20	56.54	62.57	74.37	82.58	3278.98	3635.33	2688.48	2985.35	0.13	0.33	47.36	52.65	14.42	3.92	9.96	31.
or Máximo	97.91	13.04	17.42	18.72	7.57	8.48	14.26	14.66	21.36	39.47	62.14	67.32	82.04	88.45	3617.11	3899.85	2965.72	3197.54	0.36	1.02	62.96	55.88	37.04	49.04	11.36	34.
or Mínimo	86.96	2.09	13.01	14.40	2.19	2.45	3.38	3.64	6.49	7.00	43.19	43.60	63.17	72.82	3117.00	2504.95	2560.87	2632.47	0.06	0.27	44.12	13.92	13.62	3.02	4.82	8.9
	_										С	UAD	R O	21												
Zacate estrella					An	álisis Qu	ímico Pro	ximal (%)							Energía ((Kcal/Kg)			Minera	les(%BS)	Fr	acciones				
lisis	MS 2	H 2	PC (BH)	PC(BS)	EE (BH)	EE (BS)	C (BH)	C (BS)	FC (BH)	FC (BS)	ELN (BH)	ELN (BS)	TND (BH)	TND (BS)	E.D.(BH)	E.D.(BS)	E.M.(BH) 2	E.M.(BS)	Ca	P	FND @	Cont.Cel.	FAD @		Celulosa	
nedio	31.82	68.18	3.83	12.37	1.41	4.31	2.63	8.42	10.00	31.16	13.96	43.73	21.19	66.38	934.33	2926.56	766.07	2399.53	@	@	@	@ @	@	@	@	@ @
v. Estándar	4.44	4.44	1.01	4.91	0.75	1.75	0.41	2.44	2.55	3.67	2.56	1.95	3.96	3.17	174.40	139.67	142.99	114.52	ē	@	ē	œ.	æ	æ	@	a
diana or Máximo	31.82 34.96	68.18 71.32	3.83 4.54	12.37 15.84	1.41	4.31 5.55	2.63	8.42 10.15	10.00 11.80	31.16 33.75	13.96 15.77	43.73 45.11	21.19	66.38 68.62	934.33 1057.65	2926.56 3025.32	766.07 867.18	2399.53 2480.50	@	@ @	@	@	@	@ @	@	a a
r Mínimo	28.68	65.04	3.11	8.90	0.88	3.07	2.34	6.69	8.19	28.56	12.15	42.35	18.39	64.14	811.01	2827.80	664.96	2318.55	<u>@</u>	@	@	@	@	@	@	a
											С	UAD	R O	22												
Alfalfa verde					Δn	álicie Ou	ímico Dro	ximal (%)							Energía ((Kcal/Kn)			Minera	les(%BS)	Fr	acciones	de la Fih	ra (Van	Sneet)(%	RS)
lisis	MS	Н	PC (BH)	PC(BS)	EE (BH)	EE (BS)	C (BH)	C (BS)	FC (BH)	FC (BS)	ELN (BH)	ELN (BS)	TND (BH)	TND (BS)	E.D.(BH)	E.D.(BS)	E.M.(BH)	E.M.(BS)	Ca	Р	FND	Cont.Cel.	FAD	Lignina	Celulosa	Hemi
nedio	23.42	76.58	3 5.44	23.14	0.97	3 4.03	3.29	3 14.07	3 4.59	19.77	9.12	38,99	3 15.68	66.54	691.00	3 2931.56	3 566.91	3 2571.81	1.91	0.29	3 49.48	50.52	3 38.54	3 13.83	23.65	10.9
negio v. Estándar	23.42	2.65	0.97	1.52	0.63	2.20	0.37	0.51	0.19	2.64	1.04	2.49	3.30	6.55	145.71	2931.36	119.21	228.98	0.61	0.29	9.80	9.80	11.75	14.64	7.79	3.2
liana	22.79	77.21	5.06	22.33	0.80	3.78	3.34	13.83	4.58	19.31	9.54	37.56	14.06	63.88	618.86	2816.63	508.45	2675.02	1.77	0.29	50.38	49.62	36.27	7.40	20.40	11.
or Máximo or Mínimo	26.32 21.14	78.86 73.68	6.55 4.72	24.89	1.67 0.45	6.34 1.97	3.64 2.90	14.66 13.72	4.78 4.40	22.61 17.40	9.88 7.94	41.86 37.54	19.48 13.51	74.00 61.74	858.71 595.44	3262.57 2715.49	704.07 488.21	2731.02 2309.39	2.76 1.32	0.34 0.25	58.80 39.26	60.74 41.20	51.26 28.10	30.58 3.50	32.54 18.00	7.5
i mining	21.14	73.00	4.72	22.20	0.43	1.37	2.30	13.72	4.40	17.40					353.44	27 13.49	400.21	2303.33	1.32	0.23	33.20	41.20	20.10	3.30	10.00	1.6
										1	_	UAD		23												

											Fo	rrajes Vei	rdes o Fre	scos												
Bagazo de cervecería					А	nálisis Qu	uímico Pr	oximal (%)	(,	Energía ((cal/Kg)			Mineral	les(%BS)	Fr	acciones	de la Fib	ora (Van	Soest)(%	BS)
ilisis	MS	H	PC (BH)	PC(BS)	EE (BH)	EE (BS)	C (BH)	C (BS)	FC (BH)	FC (BS)	ELN (BH)	ELN (BS)	TND (BH)	TND (BS)	E.D.(BH)	E.D.(BS)	E.M.(BH)	E.M.(BS)	Ca	P 1	FND	Cont.Cel.	FAD		Celulosa	Hemi
nedio	17.94	6 82.07	4.01	22.37	1.48	8.21	0.95	5.35	3.03	6 17.14	6 8.46	6 46.93	6 14.58	6 80.91	642.94	6 3567.14	6 527.15	6 2924.75	0.64	0.52	@	@ @	@	@	@	a a
v. Estándar	1.96	1.96	0.50	1.17	0.42	1.93	0.16	1.16	0.55	3.72	1.50	3.95	2.45	5.95	108.21	262.24	88.72	215.01	@	@	ē	ē	e e	e e	i e	a a
diana	18.67	81.34	4.13	21.99	1.52	8.60	0.95	5.24	3.10	18.85	8.75	45.73	14.91	79.53	657.40	3505.92	539.01	2874.55	0.64	0.52	@	@	@	@	@	a
lor Máximo Ior Mínimo	19.92 15.48	84.52 80.08	4.68 3.32	24.45	2.05 1.00	10.71 5.50	1.15 0.76	7.40 3.97	3.83 2.21	20.14	10.74 6.75	53.92 43.41	17.19 11.33	89.17 72.88	758.05 499.67	3931.30 3213.32	621.54 409.69	3223.33 2634.65	0.64	0.52 0.52	@	@	@	@	@	<u>a</u>
ior minimo	13.40	00.00	3.32	21.44	1.00	3.30	0.76	3.91	2.21	11.09				24	499.07	3213.32	409.09	2034.03	0.04	0.32	<u>a</u>	@	<u> </u>	a a	ı œ	@
0						(II A.	.(t	!1 (0/)			·	UAD	RO	24	=	1/1/\			N#:	I (0/ B A)	_		d - 1 - 1 10	0 (1	9 4) (0/	
Cachaza fresca	MS	Н	PC (BH)	PC(BS)	EE (BH)		C (BH)	oximal (%)	FC (BH)	FC (BS)	ELN (BH)	ELN (BS)	TND (BH)	TND (BS)	Energía (E.D.(BH)	E.D.(BS)	E.M.(BH)	E.M.(BS)	Ca	les(%BS)	FND	acciones Cont.Cel.	FAD	Lignina		Hemi
	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	@	@	4	4	4	4	4	4
omedio esv. Estándar	30.44	69.57 3.67	3.86 0.77	12.62	3.43 0.82	11.27	5.71 1.29	18.65	4.50 0.72	14.81 1.96	12.93	42.63 3.16	23.73	71.67 3.44	1046.34 116.70	3442.67	857.91 95.69	2822.69 120.73	@	@	55.22 0.86	44.79 0.85	32.10 0.81	9.73 0.97	22.26 0.67	23.0
ediana	28.87	71.14	3.81	13.26	3.59	2.41	5.61	2.55 19.53	4.64	14.58	13.09	42.65	2.65 22.84	72.63	1006.99	147.25 3466.96	825.65	2842.61	@	@	55.43	44.59	32.23	9.67	22.11	22.9
alor Máximo	35.89	71.88	4.86	13.54	4.22	13.72	7.39	20.59	5.17	17.40	14.25	45.53	27.60	74.34	1216.91	3578.13	997.76	2933.76	@	- œ	56.00	45.98	32.80	10.94	23.12	24.
alor Mínimo	28.12	64.11	2.97	10.44	2.33	7.95	4.25	14.94	3.56	12.66	11.28	39.69	21.65	67.10	954.45	3258.62	782.57	2671.79	ē	ē	54.02	44.00	31.12	8.62	21.68	22.2
											С	UAD	RO	25												
Caña de azúcar					А	nálisis Qu	uímico Pr	oximal (%)	i .						Energía ((cal/Kg)			Mineral	les(%BS)	Fr	acciones	de la Fib	ora (Van	Soest)(%	BS)
nálisis	MS	Н	PC (BH)	PC(BS)	EE (BH)	EE (BS)	C (BH)	C (BS)	FC (BH)	FC (BS)	ELN (BH)	ELN (BS)	TND (BH)	TND (BS)	E.D.(BH)	E.D.(BS)	E.M.(BH)	E.M.(BS)	Ca	P	FND	Cont.Cel.	FAD	Lignina	Celulosa	Hemi
	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	1	1	8	8	8	8	8	8
romedio	30.85	69.08	0.84	2.70	1.26	3.99	1.91	6.33	7.93	25.88	18.90	61.06	21.33	68.83	940.38	3034.99	771.44	2490.37	1.12	0.10	68.01	31.74	42.25	9.08	32.63	26.0
esv. Estándar ediana	6.51	6.56	0.33	0.81 2.81	0.66 1.16	1.83 3.82	0.45 1.79	1.49 6.32	7.93	2.95 26.13	4.43 20.55	3.76 60.39	4.95 23.16	3.04 68.82	218.21 1021.05	134.11 3034.11	178.26 837.18	108.54 2487.71	1.12	0.10	5.24 69.50	5.71 30.50	1.70 41.93	0.53 9.01	1.95	5.3 26.
alor Máximo	38.98	81.39	1.40	4.06	2.42	7.02	2.63	8.57	10.22	31.81	24.06	70.85	26.98	74.15	1189.61	3269.10	975.38	2680.38	1.12	0.10	76.26	39.84	44.94	9.72	35.04	37.0
alor Mínimo	18.61		0.40	1.52	0.09	0.39	1.44	4.25	5.13	20.61	10.81	55.19	12.59	62.68	555.20	2763.45	455.22	2265.79	1.12	0.10	60.16	21.74	39.74	8.24	29.48	20.4
											С	UAD	RO	26												
Ebo					А		uímico Pr	oximal (%)	8						Energía (Mineral	les(%BS)	Fr	acciones	de la Fib			
nálisis	MS	H	PC (BH)	PC(BS)	EE (BH)	EE (BS)	C (BH)	C (BS)	FC (BH)	FC (BS)	ELN (BH)	ELN (BS)	TND (BH)	TND (BS)	E.D.(BH)	E.D.(BS)	E.M.(BH)	E.M.(BS)	Ca	Р	FND	Cont.Cel.	FAD	Lignina		Hemi
romedio	95.13	15	15	15	@	@	7.49	7.87	@	@	@	@	@	@	@	@	@	<u>@</u>	@	@	15 52.85	15 47.03	15 32.26	9.65	15 22.03	20.6
		4 00			a a	@ @	1.49	1.52	@ @	@ @		<u>a</u>		@ @	a a	<u>@</u>	@ @	<u>a</u>	@	<u>a</u>	8.86	9.04	4.25	0.97	3.95	7.1
		4.88	16.63										(2)													20.9
lesv. Estándar Mediana	1.70 95.40	4.88 1.71 4.60	16.63 3.67 17.62	3.81 18.54	- œ	ã	7.45		a	a a	@		@ @	ā	a a	a			a	(a)	52.54	47.46	31.88	9.77	22.12	
lediana	1.70 95.40 97.93	1.71 4.60 7.52	3.67	3.81	0.00	0.00	7.45 10.91	7.65 11.39	@		@ @	0	-			@	@	@	@	@	52.54 72.78	47.46 59.12			22.12 26.38	34.3
lediana alor Máximo	1.70 95.40	1.71	3.67 17.62	3.81 18.54	e e	e e		7.65		e e	@ @ @	@ @ @	@ @ @	@ @ @	@		e e	@				47.46	31.88	9.77		
lediana 'alor Máximo	1.70 95.40 97.93	1.71 4.60 7.52	3.67 17.62 20.92	3.81 18.54 22.18	0.00	0.00	10.91	7.65 11.39	@	@	@ @ @	@	@ @ @	@	@	œ.	e e	@ @	œ.	œ.	72.78 40.88	47.46 59.12 27.22	31.88 38.46 21.41	9.77 12.22 8.07	26.38 11.48	34.3 9.7
lediana alor Máximo	1.70 95.40 97.93	1.71 4.60 7.52	3.67 17.62 20.92	3.81 18.54 22.18 8.34	0.00 0.00	0.00 0.00 nálisis Qu	10.91 4.72 uímico Pr	7.65 11.39	@	@	@ @ @	@ @ @	@ @ @ D R O	@ @ @	@ @ @ Energía (@ @ Kcal/Kg)	e e	@ @	<u>@</u>	œ.	72.78 40.88	47.46 59.12 27.22 acciones	31.88 38.46 21.41 de la Fib	9.77 12.22 8.07	26.38 11.48 Soest)(%	34.3 9.7
lediana alor Máximo alor Mínimo Maíz verde p/ensilar	1.70 95.40 97.93 92.48	1.71 4.60 7.52 2.07	3.67 17.62 20.92 8.17	3.81 18.54 22.18 8.34 PC(BS)	@ 0.00 0.00 A	0.00 0.00 nálisis Qu	10.91 4.72 Jímico Pr	7.65 11.39 4.89 oximal (%)	@ @ FC (BH)	@ @ @	@ @ C	@ @ @ U A D	@ @ @ @ @ D R O TND (BH)	@ @ @ 27	@ @ @ Energía (@ @ Kcal/Kg) E.D.(BS)	@ @ @	@ @ @ E.M.(BS)	@ @ Mineral	@ @ les(%BS)	72.78 40.88 Fr	47.46 59.12 27.22 acciones	31.88 38.46 21.41 de la Fib	9.77 12.22 8.07 Dra (Van	26.38 11.48 Soest)(% Celulosa	34.3 9.7
lediana alor Māximo alor Minimo Maíz verde p/ensilar nālisis	1.70 95.40 97.93 92.48	1.71 4.60 7.52 2.07	3.67 17.62 20.92 8.17 PC (BH)	3.81 18.54 22.18 8.34 PC(BS)	@ 0.00 0.00 A EE (BH) 5	0.00 0.00 0.00 nálisis Qu EE (BS)	10.91 4.72 uímico Pr	7.65 11.39 4.89 oximal (%) C (BS) 5	@ @ FC (BH) 5	@ @ @ @ FC (BS) 5	© @ @ C C ELN (BH) 5	U A D	@ @ @ @ @ @ D R O TND (BH) 5	@ @ @ @ 27 TND (BS) 5	@ @ @ Energía (E.D.(BH)	@ @ Kcal/Kg) E.D.(BS)	@ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @	@ @ @ E.M.(BS)	@ @ Mineral	@ @ les(%BS) P @	72.78 40.88 Fr FND	47.46 59.12 27.22 acciones Cont.Cel.	31.88 38.46 21.41 de la Fib FAD	9.77 12.22 8.07 Dra (Van S Lignina	26.38 11.48 Soest)(% Celulosa	34.3 9.7 BS) Hemi
lediana alor Máximo alor Mínimo Maíz verde p/ensilar nálisis	1.70 95.40 97.93 92.48 MS 5 25.56	1.71 4.60 7.52 2.07	3.67 17.62 20.92 8.17 PC (BH) 5	3.81 18.54 22.18 8.34 PC(BS) 5	@ 0.00 0.00	@ 0.00 0.00 0.00 nálisis Qu EE (BS) 5 4.52	10.91 4.72 4.72 4.72 4.72 6.08H) 5 1.45	7.65 11.39 4.89 0ximal (%) C (BS) 5	@ @ FC (BH) 5 5.72	@ @ @ @ FC (BS) 5 22.14	@ @ @ C C ELN (BH) 5 15.81	@ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @	@ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @	@ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @	@ @ @ Energía (E.D.(BH) 5 797.56	@ @ (Cal/Kg) E.D.(BS) 5 3128.82	E.M.(BH) 5 653.93	@ @ @ E.M.(BS) 5 2565.36	Mineral	es(%BS)	72.78 40.88 Fr FND @	47.46 59.12 27.22 acciones Cont.Cel.	31.88 38.46 21.41 de la Fib FAD @	9.77 12.22 8.07 Dra (Van S Lignina @	26.38 11.48 Soest)(% Celulosa @	34.3 9.7 BS) Hemi
lediana alor Máximo alor Mínimo Maiz verde p/ensilar nálisis romedio esv. Estándar	1.70 95.40 97.93 92.48	1.71 4.60 7.52 2.07	3.67 17.62 20.92 8.17 PC (BH)	3.81 18.54 22.18 8.34 PC(BS)	© 0.00 0.00 0.00 EE (BH) 5 1.13 0.29	@ 0.00 0.00 0.00 eEE (BS) 5 4.52 1.46	10.91 4.72 4.72 4.72 4.72 4.72 6.8H) 5 1.45 0.17	7.65 11.39 4.89 Oximal (%) C (BS) 5 5.68 0.17	© (BH) 5 5.72 1.36	@ @ @ @ FC (BS) 5	© © © C C ELN (BH) 5 15.81 1.48	@ @ @ U A D D ELN (BS) 5 61.95 2.37	@ @ @ @ @ @ D R O TND (BH) 5	© @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @	@ @ @ Energía (E.D.(BH)	@ @ Kcal/Kg) E.D.(BS)	@ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @	@ @ @ E.M.(BS) 5 2565.36 90.26	Mineral Ca @	es(%BS) P e e	72.78 40.88 Fr FND @ @	47.46 59.12 27.22 acciones Cont.Cel. @ @	31.88 38.46 21.41 de la Fib FAD @	9.77 12.22 8.07 Dra (Van 9 Lignina @ @	26.38 11.48 Soest)(% Celulosa @ @	34.: 9.7 BS) Hemi @ @
lediana alor Māximo alor Minimo Maíz verde p/ensilar nálisis romedio eev. Estándar	1.70 95.40 97.93 92.48 MS 5 25.56 2.62	1.71 4.60 7.52 2.07 H 5 74.44 2.62	3.67 17.62 20.92 8.17 PC (BH) 5 1.44 0.13	3.81 18.54 22.18 8.34 PC(BS) 5 5.70 0.88	@ 0.00 0.00	@ 0.00 0.00 0.00 nálisis Qu EE (BS) 5 4.52	10.91 4.72 4.72 4.72 4.72 6.08H) 5 1.45	7.65 11.39 4.89 0ximal (%) C (BS) 5	@ @ FC (BH) 5 5.72	© @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @	@ @ @ C C ELN (BH) 5 15.81	@ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @	@ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @	@ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @	@ @ @ Energía (E.D.(BH) 5 797.56 57.09	@ @ @ (Cal/Kg) E.D.(BS) 5 3128.82 110.08	E.M.(BH) 5 653.93 46.81	@ @ @ E.M.(BS) 5 2565.36	Mineral	es(%BS)	72.78 40.88 Fr FND @	47.46 59.12 27.22 acciones Cont.Cel.	31.88 38.46 21.41 de la Fib FAD @	9.77 12.22 8.07 Dra (Van S Lignina @	26.38 11.48 Soest)(% Celulosa @	34.: 9.7 BS) Hemi @ @
lediana falor Máximo falor Mínimo	1.70 95.40 97.93 92.48 MS 5 25.56 2.62 26.93	1.71 4.60 7.52 2.07 H 5 74.44 2.62 73.07	3.67 17.62 20.92 8.17 PC (BH) 5 1.44 0.13	3.81 18.54 22.18 8.34 PC(BS) 5.70 0.88 5.80	© 0.00 0.00 0.00 EE (BH) 5 1.13 0.29 1.20	© 0.00 0.00 0.00 EE (BS) 4.52 1.46 4.51	10.91 4.72 1/mico Pr C (BH) 5 1.45 0.17 1.50	7.65 11.39 4.89 oximal (%) C (BS) 5.68 0.17 5.65	© (BH) 5 5.72 1.36 6.59	© @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @	© C C ELN (BH) 5 15.81 1.48 15.93 18.00 14.38	© @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @	@ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @	@ @ @ @ 27 TND (BS) 5 70.96 2.50 70.25 74.17 67.68	@ @ @ Energía (E.D.(BH) 5 797.56 57.09 832.75	@ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @	@ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @	@ @ @ E.M.(BS) 5 2565.36 90.26 2539.62	Mineral Ca @ @	es(%BS) P @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @	72.78 40.88 Fr FND @ @ @	47.46 59.12 27.22 acciones Cont.Cel. @ @	31.88 38.46 21.41 de la Fib FAD @ @	9.77 12.22 8.07 Dra (Van 9 Lignina @ @ @	26.38 11.48 Soest)(% Celulosa @ @ @	34.: 9.7 BS) Hemi @ @
lediana alor Máximo alor Mínimo Maíz verde p/ensilar nálisis romedio esv. Estándar lediana alor Máximo	1.70 95.40 97.93 92.48 MS 5 25.56 2.62 26.93 28.15	H 5 7.444 2.62 73.07 77.33	3.67 17.62 20.92 8.17 PC (BH) 5 1.44 0.13 1.44 1.58	3.81 18.54 22.18 8.34 PC(BS) 5 5.70 0.88 5.80 6.63	© 0.00 0.00 0.00 EE (BH) 5 1.13 0.29 1.20 1.41	© 0.00 0.00 0.00 EE (BS) 4.52 1.46 4.51 6.22	10.91 4.72 4.72 4.72 4.72 6.8H) 5 1.45 0.17 1.50 1.62	7.65 11.39 4.89 0ximal (%) C (BS) 5 5.68 0.17 5.65 5.94	© (BH) 5 5 5.72 1.36 6.59 6.86	© @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @	© C C ELN (BH) 5 15.81 1.48 15.93 18.00 14.38	@ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @	@ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @	@ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @	@ @ @ E.D.(BH) 5 797.56 57.09 832.75 844.36	@ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @	E.M.(BH) 5 653.93 46.81 682.78 692.30	@ @ @ E.M.(BS) 5 2565.36 90.26 2539.62 2681.39	Mineral Ca @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @	@ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @	72.78 40.88 Fr FND @ @ @ @	47.46 59.12 27.22 acciones Cont.Cel. @ @ @	31.88 38.46 21.41 de la Fib FAD @ @ @	9.77 12.22 8.07 Dra (Van Lignina @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @	26.38 11.48 Soest)(% Celulosa @ @ @ @ @	34.3 9.7 BS) Hemi @ @ @ @
ediana alor Māximo alor Mínimo Maíz verde p/ensilar nálisis comedio esex. Estándar ediana alor Máximo alor Mínimo Pasto Estrella Africana	1.70 95.40 97.93 92.48 MS 5 25.56 2.62 26.93 28.15 22.67	1.71 4.60 7.52 2.07 H 5 74.44 2.62 73.07 77.33 71.85	3.67 17.62 20.92 8.17 PC (BH) 5 1.44 0.13 1.44 1.58 1.24	3.81 18.54 22.18 8.34 PC(BS) 5 5.70 0.88 5.80 6.63 4.40	© 0.00 0.00 0.00 0.00 1.13 0.29 1.20 1.41 0.63	0.00 0.00 0.00 EE (BS) 5 4.52 1.46 4.51 6.22 2.24	10.91 4.72 LÍMICO PT C (BH) 5 1.45 0.17 1.50 1.62 1.25	7.65 11.39 4.89 oximal (%) C (8S) 5 5.68 0.17 5.65 5.94 5.51	FC (BH) 5 5.72 1.36 6.59 6.86 4.19	© @ @ @ @ FC (BS) 5 5 22.14 3.25 23.77 25.47 18.48	© © © © C C ELN (BH) 5 15.81 1.48 15.93 18.00 C C	ELN (BS) 5 61.95 2.37 63.43 63.94 59.15 U A D	TND (8H) 5 18.09 1.29 18.89 19.15 16.54 R O	© @ @ @ @ 27 TND (BS) 5 5 70.96 2.50 70.25 74.17 67.68 28	Energía (1 E.D.(BH) 5 797.56 57.09 832.75 844.36 729.34	@ @ @ @ E.D.(BS) 5 3128.82 110.08 3097.43 3270.33 2983.83 Kcal/Kg)	@ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @	@ @ @ @ @	Mineral Ca @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @	@ @ @	72.78 40.88 Fr FND @ @ @ @	47.46 59.12 27.22 acciones Cont.Cel. @ @ @ @	31.88 38.46 21.41 de la Fib FAD @ @ @ @	9.77 12.22 8.07 Dra (Van 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	26.38 11.48 Soest)(% Celulosa @ @ @ @	34.3 9.7 BS) Hemi @ @ @ @
ediana alor Māximo alor Minimo Maíz verde p/ensilar nálisis romedio esv. Estándar ediana alor Máximo alor Mínimo Pasto Estrella Africana	1.70 95.49 97.93 92.48 MS 5 25.56 2.62 26.93 28.15 22.67	1.71 4.60 7.52 2.07 H 5 74.44 2.62 73.07 77.33 71.85	3.67 17.62 20.92 8.17 PC (BH) 5 1.44 0.13 1.44 1.58 1.24	3.81 18.5.4 22.18 8.34 PC(BS) 5 5.70 0.88 5.80 6.63 4.40	© 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.	0.00 0.00 0.00 málisis Qu EE (BS) 5 4.52 4.51 6.22 2.24 málisis Qu EE (BS)	10.91 4.72 LÍMICO PT C (BH) 1.45 0.17 1.50 1.62 1.25	7.65 11.39 4.89 oximal (%) C (85) 5.68 0.17 5.65 5.94 5.51	© @ @ FC (BH) 5 5.72 1.36 6.59 6.86 4.19	FC (BS) 5 22.14 3.25 23.77 25.47 18.48	© C C ELN (BH) 5 15.81 1.48 15.93 18.00 14.38 C C	© U A D ELN (BS) 5 61.95 2.37 2.37 59.15 U A D	© @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @	© @ @ @ @ @ 27 TND (BS) 5 70.96 2.50 70.25 74.17 67.68 28	© @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @	@ @ @ E.D.(8S) 5 3128.82 110.08 3097.42 3270.33 2983.83 (Ccal/Kg) E.D.(8S)	@ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @	© @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @	Mineral Ca @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ Mineral Ca	@ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @	72.78 40.88 Fr FND @ @ @ @	acciones Cont.Cel. @ @ @ @ acciones Cont.Cel. @ acciones	31.88 38.46 21.41 de la Fili FAD @ @ @ @ de la Fili FAD	9.77 12.22 8.07 Dra (Van Lignina @ @ @ @ @ @ Dra (Van Lignina	26.38 11.48 Soest)(% Celulosa @ @ @ @ @ @ @ Soest)(% Celulosa	34.3 9.7 BS) Hemi @ @ @
ediana alor Māximo alor Minimo Maiz verde p/ensilar nālisis romedio esv. Estándar ediana alor Māximo alor Māximo Pasto Estrella Africana	1.70 95.40 97.93 92.48 MS 5 25.56 2.62 26.93 28.15 22.67	1.71 4.60 7.52 2.07 H 5 74.44 2.62 73.07 77.33 71.85	3.67 17.62 20.92 8.17 PC (BH) 5 1.44 1.58 1.24 PC (BH) 5	3.81 16.54 22.18 8.34 PC(BS) 5 5.70 0.88 5.80 6.63 4.40	© 0.00 0.00 0.00 0.00 A EE (BH) 5 1.13 0.63 1.20 1.41 0.63	0.00 0.00 0.00 nálisis Qu EE (85) 5 1.46 4.51 6.22 2.24 nálisis Qu EE (85) 5	10.91 4.72 Límico Pr C (BH) 5 1.45 0.17 1.50 1.62 1.25	7.65 11.39 4.89 oximal (%) C (8S) 5.68 0.17 5.65 5.94 5.51	© @ @ FC (BH) 5 5.72 1.36 6.59 6.86 4.19	© @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @	© © © C C ELN (BH) 5 15.81 1.48 15.93 14.38 C C	© U A D ELN (BS) 5 5 61.95 2.37 63.43 59.15 U A D	P C C C C C C C C C C C C C C C C C C C	© @ @ @ @ @ 27 27 TND (BS) 5 5 70.96 2.50 70.25 74.17 67.68 28	Energía (f E.D.(BH) 5 57.99 832.75 844.36 729.34 Energía (f E.D.(BH) 5	@ @ @ E.D.(BS) 5 3128.82 110.08 3097.42 3270.33 2983.83 Ccal/Kg) E.D.(BS) 5	E.M.(BH) 5 5 653.93 46.81 682.78 692.30 597.99	© © © E.M.(BS) 5 5 2565.36 2539.62 2681.39 2446.48 E.M.(BS) 5	Mineral Ca @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @	es(%BS)	72.78 40.88 Frr FND @ @ @ @ @	47.46 59.12 27.22 acciones Cont.Cel. @ @ @ @ @ @ Cont.Cel. @ @ Cont.Cel.	31.88 38.46 21.41 de la Filb FAD @ @ @ @ @ @	9.77 12.22 8.07 Pra (Van Selection of Control of Contr	26.38 11.48 Soest)(% Celulosa @ @ @ @ @ @ @ @ Celulosa @ Celulosa @	34.3 9.7 9.7 Hemi @ @ @ @ @
ediana alor Máximo alor Mínimo Maíz verde p/ensilar málisis romedio sev. Estándar ediana alor Máximo alor Mínimo Pasto Estrella Africana nálisis	1.70 95.49 97.93 92.48 MS 5 25.56 2.62 26.93 28.15 22.67	1.71 4.60 7.52 2.07 H 5 74.44 2.62 73.07 77.33 71.85	3.67 17.62 20.92 8.17 PC (BH) 5 1.44 0.13 1.44 1.58 1.24	3.81 18.5.4 22.18 8.34 PC(BS) 5 5.70 0.88 5.80 6.63 4.40	© 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.	0.00 0.00 0.00 málisis Qu EE (BS) 5 4.52 4.51 6.22 2.24 málisis Qu EE (BS)	10.91 4.72 LÍMICO PT C (BH) 1.45 0.17 1.50 1.62 1.25	7.65 11.39 4.89 oximal (%) C (85) 5.68 0.17 5.65 5.94 5.51	© @ @ FC (BH) 5 5.72 1.36 6.59 6.86 4.19	FC (BS) 5 22.14 3.25 23.77 25.47 18.48	© C C ELN (BH) 5 15.81 1.48 15.93 18.00 14.38 C C	© U A D ELN (BS) 5 61.95 2.37 2.37 59.15 U A D	© @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @	© @ @ @ @ @ 27 TND (BS) 5 70.96 2.50 70.25 74.17 67.68 28	© @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @	@ @ @ E.D.(8S) 5 3128.82 110.08 3097.42 3270.33 2983.83 (Ccal/Kg) E.D.(8S)	@ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @	© @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @	Mineral Ca @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ Mineral Ca	@ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @	72.78 40.88 Fr FND @ @ @ @	acciones Cont.Cel. @ @ @ @ acciones Cont.Cel. @ acciones	31.88 38.46 21.41 de la Fili FAD @ @ @ @ de la Fili FAD	9.77 12.22 8.07 Dra (Van Lignina @ @ @ @ @ @ Dra (Van Lignina	26.38 11.48 Soest)(% Celulosa @ @ @ @ @ @ @ Soest)(% Celulosa	34.3 9.7 BS) Hemi @ @ @
lediana alor Máximo alor Mínimo Maíz verde p/ensilar nálisis romedio esv. Estándar ediana alor Máximo alor Mínimo Pasto Estrella Africana nálisis romedio esv. Estándar ediana alor Mínimo	1.70 95.40 97.93 92.48 MS 5 25.56 2.62 26.93 28.15 22.67 MS 5 36.63 37.34	1.71 4.60 7.52 2.07 H 5 74.44 2.62 73.07 77.33 71.85 H 5 63.33 12.56 62.66	3.67 17.62 20.92 8.17 PC (BH) 5 1.44 0.13 1.44 1.58 1.24 PC (BH) 5 2.84 0.92 2.60	3.81 18.54 22.18 8.34 PC(BS) 5 5.70 0.88 5.80 6.63 4.40 PC(BS) 5 8.02 1.67 7.50	A EE (BH)	© 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.	10.91 4.72 Limico Pr C (BH) 5 1.45 0.17 1.50 1.62 1.25 Limico Pr C (BH) 5 2.41 2.41 0.74 2.41	7.65 11.39 4.89 oximal (%) C (BS) 5 5.68 0.17 5.65 5.94 5.51 oximal (%) C (BS) 5 6.61 3.12	FC (BH) 5 5.72 1.36 6.59 6.86 4.19 FC (BH) 5 11.02 5.82	© @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @	© C C C ELN (BH) 5 15.81 14.38 C C ELN (BH) 5 18.00 14.38 C	ELN (BS) 5 61.95 2.37 63.43 63.94 59.15 U A D ELN (BS) 5 48.93 3.23 48.90	P C C C C C C C C C C C C C C C C C C C	© @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @	Energía (E.D.(BH) 5 79.95 832.75 844.36 729.34 Energía (E.D.(BH) 5 1029.28 354.93	@ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @	E.M.(BH) 5 5 653.93 46.81 662.78 692.30 597.99	E.M.(BS) 5 2565.36 90.26 2539.62 2681.39 2446.48 E.M.(BS) 5 2314.18 49.16 2326.24	@ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @	@ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @	72.78 40.88 Fr FND @ @ @ @ @ @ @ @	acciones Cont.Cel. @ @ @ @ Cont.Cel. @ @ @ @ @ @ @ Cont.Cel. @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @	31.88 38.46 21.41 de la Fib FAD @ @ @ @ @ @	9.77 12.22 8.07 Pra (Van Selection of Control of Contr	26.38 11.48 Soest)(% Celulosa @ @ @ @ @ @ @ Celulosa @ Celulosa @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @	34.: 9.7 BS) Hemi @ @ @ @ @ BS) Hemi @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @
ediana alor Máximo alor Mínimo Maíz verde p/ensilar málisis romedio ssv. Estándar ediana alor Máximo alor Mínimo Pasto Estrella Africana nálisis romedio ssv. Estándar ediana alor Máximo alor Máximo alor Máximo alor Máximo alor Máximo	1.70 95.40 97.93 92.48 MS 5 25.62 26.93 28.15 22.67 MS 5 36.67 12.56 37.34 51.23	1.71 4.60 7.52 2.07 H 5 74.44 2.62 73.07 71.85 H 5 63.33 12.56 62.49	3.67 17.62 20.92 8.17 PC (BH) 5 1.44 1.58 1.24 PC (BH) 5 2.84 0.92 2.60 4.36	PC(BS) 5 5.70 0.88 5.80 4.40 PC(BS) 1 6.63 4.75 1 7.50 10.68	A EE (BH) 5 1.13 0.29 1.20 1.41 0.63 A EE (BH) 5 6.48	0.00 0.00 0.00 0.00 málisis Qt EE (BS) 5 4.52 1.46 6.22 2.24 málisis Qt EE (BS) 5 1.69 0.58 1.81 2.34	10.91 4.72 Limico Pr C (8H) 5 1.45 0.17 1.50 1.62 1.25 Limico Pr C (8H) 5 2.41 0.74 2.12 3.71	7.65 11.39 4.89 oximal (%) C (BS) 5 5.68 0.17 5.85 5.94 5.51 oximal (%) C (BS) 5 5.61 3.12 6.24 11.08	FC (BH) 5.72 1.36 6.59 6.86 4.19 FC (BH) 5 11.02 5.82 11.23 18.76	FC (BS) 5 22.14 3.25 23.77 25.47 18.48 FC (BS) 5 30.07 9.05 33.05 36.61	© C ELN (BH) 5 15.81 1.48 15.93 18.00 14.38 C	ELN (BS) 5 61.95 63.94 59.15 U A D ELN (BS) 5 61.95 63.94 59.15 U A D ELN (BS) 5 48.93 3.23 48.93 52.57	R O TND (BH) 5 18.09 1.29 18.89 19.15 16.54 R O TND (BH) 5 25.50 10.49 24.41 38.42	© © © © 27 TND (BS) 5 5 70.96 2.50 70.25 74.17 67.68 28 TND (BS) 5 63.53 1.16 63.74 65.10	Energía (t E.D.(BH) 5 797.56 832.75 844.36 729.34 Energía (t E.D.(BH) 5 354.93 1053.30	© (Ccal/Kg) E.D.(RS) 5 3128.82 110.08 3097.42 3270.33 2983.83 (Ccal/Kg) E.D.(RS) 5 5 2800.89 51.11 2809.97 2870.06	E.M.(BH) 5 653.93 46.81 682.78 692.30 597.99	E.M.(BS) 5 52565.36 90.26 2881.39 2446.48 E.M.(BS) 5 2314.18 49.16 2326.24	Mineral Ca @ @ @ @ @ @ @ Mineral Ca @ @ @ 0 0 14 0.02 0.14 0.17	Res Res	72.78 40.88 Fr FND @ @ @ @ @ Fr FND @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @	47.46 59.12 27.22 acciones Cont.Cel. @ @ @ @ @ Cont.Cel. @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @	31.88 38.46 21.41 de la Filt FAD @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @	9.77 12.22 8.07 Dra (Van 9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	26.38 11.48 Soest)(% Celulosa @ @ @ @ @ @ Celulosa @ @ @ Celulosa @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @	BS) Hemi @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @
ediana alor Máximo alor Mínimo Maíz verde p/ensilar nálisis romedio esv. Estándar ediana alor Máximo alor Mínimo Pasto Estrella Africana nálisis romedio esv. Estándar	1.70 95.40 97.93 92.48 MS 5 25.56 2.62 26.93 28.15 22.67 MS 5 36.63 37.34	1.71 4.60 7.52 2.07 H 5 74.44 2.62 73.07 77.33 71.85 H 5 63.33 12.56 62.66	3.67 17.62 20.92 8.17 PC (BH) 5 1.44 0.13 1.44 1.58 1.24 PC (BH) 5 2.84 0.92 2.60	3.81 18.54 22.18 8.34 PC(BS) 5 5.70 0.88 5.80 6.63 4.40 PC(BS) 5 8.02 1.67 7.50	EE (BH) 1.13 0.29 1.20 1.41 0.63 A EE (BH) 1.81 2.81 2.81 2.81	© 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.	10.91 4.72 Limico Pr C (BH) 5 1.45 0.17 1.50 1.62 1.25 Limico Pr C (BH) 5 2.41 2.41 0.74 2.41	7.65 11.39 4.89 oximal (%) C (BS) 5 5.68 0.17 5.65 5.94 5.51 oximal (%) C (BS) 5 6.61 3.12	FC (BH) 5 5.72 1.36 6.59 6.86 4.19 FC (BH) 5 11.02 5.82	© @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @	© C C C ELN (BH) 5 15.81 14.38 C C ELN (BH) 5 18.00 14.38 C	ELN (BS) 5 61.95 2.37 63.43 63.94 59.15 U A D ELN (BS) 5 48.93 3.23 48.90	P C C C C C C C C C C C C C C C C C C C	© @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @	Energía (E.D.(BH) 5 79.95 832.75 844.36 729.34 Energía (E.D.(BH) 5 1029.28 354.93	@ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @	E.M.(BH) 5 5 653.93 46.81 662.78 692.30 597.99	E.M.(BS) 5 2565.36 90.26 2539.62 2681.39 2446.48 E.M.(BS) 5 2314.18 49.16 2326.24	@ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @	@ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @	72.78 40.88 Fr FND @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @	47.46 99.12 27.22 acciones Cont.Cel. @ @ @ @ @ Cont.Cel. @ @ @ @ @ @ Cont.Cel. @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @	31.88 38.46 21.41 de la Fib FAD @ @ @ @ @ @	9.77 12.22 8.07 Dra (Van Series (Van Seri	26.38 11.48 Soest)(% Celulosa @ @ @ @ @ @ Celulosa @ @ @ @ Celulosa @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @	34.3 9.7 Hemi @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @

											Fo	rrajes Ver	des o Fre	scos												
Pasto Insurgente					A	nálisis Qu	ıímico Pro	oximal (%)						Energía	(Kcal/Kg)			Minera	les(%BS)	F	racciones	de la Fit	ora (Van S	Soest)(%E	3S)
Análisis	MS	Н	PC (BH)	PC(BS)	EE (BH)	EE (BS)	C (BH)	C (BS)	FC (BH)	FC (BS)	ELN (BH)	ELN (BS)	TND (BH)	TND (BS)	E.D.(BH)	E.D.(BS)	E.M.(BH)	E.M.(BS)	Ca	P	FND	Cont.Cel.	FAD	Lignina	Celulosa	Hemicel.
N	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	@	(a)	(a)	(a)	(a)	(a)	(a)	(a)
Promedio	22.22	77.78	1.94	9.28	0.84	3.71	2.39	11.13	6.40	28.75	10.65	47.12	14.34	64.20	632.40	2830.63	518.52	2320.87	@	@	@	@	@	@	@	@
Desv. Estándar	8.03	8.03	0.06	3.12	0.38	0.38	0.44	2.05	2.38	0.30	4.78	4.48	5.59	1.94	246.40	85.62	202.03	70.20	@	@	@	@	@	@	@	@
Mediana	22.22	77.78	1.94	9.28	0.84	3.71	2.39	11.13	6.40	28.75	10.65	47.12	14.34	64.20	632.40	2830.63	518.52	2320.87	@	@	@	@	@	@	@	@
Valor Máximo	27.90	83.46	1.98	11.49	1.11	3.98	2.70	12.58	8.08	28.96	14.03	50.29	18.30	65.57	806.64	2891.17	661.37	2370.51	@	@	@	@	@	@	@	@
Valor Mínimo	16.54	72.10	1.90	7.08	0.57	3.45	2.08	9.68	4.72	28.54	7.27	43.95	10.39	62.83	458.17	2770.09	375.66	2271.23	@	@	@	@	@	@	@	@
											С	UAD	R O	30												
Pasto Rhodes					А	nálisis Qu	ímico Pro	oximal (%	7)						Energía	(Kcal/Kg)			Minera	les(%BS)	F	racciones	de la Fit	ora (Van S	Soest)(%E	3S)
Análisis	MS	H	PC (BH)	PC(BS)	EE (BH)	EE (BS)	C (BH)	C (BS)	FC (BH)	FC (BS)	ELN (BH)	ELN (BS)	TND (BH)	TND (BS)	E.D.(BH)	E.D.(BS)	E.M.(BH)	E.M.(BS)	Ca	P	FND	Cont.Cel.	FAD	Lignina	Celulosa	Hemicel.
N	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	1.00	1.00	(a)	(a)	@	(a)	(a)	(a)
Promedio	66.78	33.23	5.78	8.83	2.30	3.41	8.95	14.12	18.72	27.67	31.04	45.96	41.63	61.85	1835.30	2726.94	1504.79	2235.85	0.60	0.43	@	(a)	@	(a)	(a)	@
Desv. Estándar	36.95	36.95	2.84	0.63	1.33	0.10	3.47	2.61	11.08	1.28	18.22	1.86	24.03	1.77	1059.51	77.89	868.71	63.86	@	@	@	@	@	@	@	e e
Mediana	66.78	33.23	5.78	8.83	2.30	3.41	8.95	14.12	18.72	27.67	31.04	45.96	41.63	61.85	1835.30	2726.94	1504.79	2235.85	0.60	0.43	@	@	@	@	@	@
Valor Máximo	92.90	59.35	7.79	9.27	3.24	3.48	11.40	15.97	26.55	28.58	43.92	47.28	58.62	63.10	2584.49	2782.01	2119.06	2281.01	0.60	0.43	@	@	@	@	@	@
Valor Mínimo	40.65	7.10	3.77	8.38	1.36	3.35	6.49	12.27	10.88	26.77	18.15	44.65	24.63	60.60	1086.11	2671.86	890.52	2190.70	0.60	0.43	@	@	@	@	(a)	@
												Ens	ilados		: : :											
Alfalfa, ensilado						nálisis Qu									Energía					les(%BS)		racciones			11	
Análisis	MS	H	PC (BH)	PC(BS)	EE (BH)	EE (BS)	C (BH)	C (BS)	FC (BH)	FC (BS)	ELN (BH)	ELN (BS)	TND (BH)	TND (BS)	E.D.(BH)	E.D.(BS)	E.M.(BH)	E.M.(BS)	Ca	P	FND	Cont.Cel.	FAD	Lignina		Hemicel.
N Dramadia	47.81	52,20	10.68	22.44	1.97	4	5.28	4 44 45	8.87	18.37	21.00	43.92	33.83	70.87	1491,49	3124.47	1222,89	2561.79	@	@	@ @	@	@ @	@	@	<u>@</u>
Promedio Desv. Estándar	47.81	4.22	1.30	22.41	0.64	1.35	1.65	11.15 3.71	2.95	4.85	3.41	5.90	33.83	5.95	1491.49	262.10	1222.89	214.90	@ @	@	<u>@</u>	@	@	@ @	@	@
Mediana	47.63	52.38	10.15	22,30	2.07	4.39	5.90	12.04	8.02	17.88	20.16	41.90	33.26	69.69	1466.51	3072,77	1202.41	2519.41	@ @	(a)	@	a a	a a	@ @	<u>a</u>	<u>e</u>
Valor Máximo	52.95	56.98	12.62	25.73	2.60	5.43	6.45	14.62	12.85	24.27	25.79	52.58	38.32	78.12	1689.53	3444.50	1385.27	2824.20	@	- @	@	a a	a a	a a	a l	@
Valor Mínimo	43.02	47.05	9.81	19.32	1.16	2.36	2.89	5.89	6.59	13.44	17.90	39.32	30.47	65.95	1343.41	2907.82	1101.48	2384.16	- œ	- œ	@	a	- œ	@	a l	- œ
Valor millino	43.02	41.03	5.01	10.02	1.10	2.50	2.00	3.00	0.33	13.44		UAD		32	1545.41	2301.02	1101.40	2304.10								
Avena, ensilado					A	nálisis Qu	ıímico Pro	oximal (%	7						Energía	(Kcal/Kg)			Minera	les(%BS)	F	racciones	de la Fil	ora (Van S	Soest)(%E	3S)
Análisis	MS	H	PC (BH)	PC(BS)	EE (BH)	EE (BS)	C (BH)	C (BS)	FC (BH)	FC (BS)	ELN (BH)	ELN (BS)	TND (BH)	TND (BS)	E.D.(BH)	E.D.(BS)	E.M.(BH)	E.M.(BS)	Ca	P	FND	Cont.Cel.			Celulosa	
N	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	@	(a)	1	1	1	1	1	1
Promedio	21.84	78.16	2.12	10.23	1.31	6.72	2.82	11.97	6.97	30.99	8.64	40.09	14.19	70.56	653.58	3111.21	535.18	2546.79	e e	e e	48	52	36	7	18	22
Desv. Estándar	201	6.84	0.06	3.49	0.57	4.73	2.10	5.86	3.41	5.89	1.97	3.53	1.98	17.17	47.62	757.02	40.04	614.85	@	œ l	@	(a)	@	@	@	@
	6.84																									
Mediana	21.84	78.16	2.12	10.23	1.31	6.72	2.82	11.97	6.97	30.99	8.64	40.09	14.19	70.56	653.58	3111.21	535.18	2546.79	@	@	48	52	36	7	18	22
										30.99 35.16 26.82	8.64 10.03 7.24	40.09 42.59 37.59	14.19 15.59 12.79	70.56 82.70 58.42	653.58 687.25 619.91	3111.21 3646.50 2575.91	535.18 563.49 506.87	2546.79 2981.55 2112.02	@	@	48 48 48	52 52 52	36 36 36	7	18 18	22 22 22

Avena, ensilado					ıΑ	nálisis Qu	ıímico Pro	oximal (%)	ij.						Energía	(Kcal/Kg)			Minera	les(%BS)	Fr	acciones	de la Fib	ra (Van s	Soest)(%F	3S)
Análisis	MS	Н	PC (BH)	PC(BS)	EE (BH)	EE (BS)	C (BH)	C (BS)	FC (BH)	FC (BS)	ELN (BH)	ELN (BS)	TND (BH)	TND (BS)	E.D.(BH)	E.D.(BS)	E.M.(BH)	E.M.(BS)	Ca	Р	FND	Cont.Cel.	FAD	Lignina	Celulosa	Hemicel.
N	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	@	@	1	1	1	1	1	1
Promedio	21.84	78.16	2.12	10.23	1.31	6.72	2.82	11.97	6.97	30.99	8.64	40.09	14.19	70.56	653.58	3111.21	535.18	2546.79	@	@	48	52	36	7	18	22
Desv. Estándar	6.84	6.84	0.06	3.49	0.57	4.73	2.10	5.86	3.41	5.89	1.97	3.53	1.98	17.17	47.62	757.02	40.04	614.85	@	@	@	(a)	@	(a)	@	(a)
Mediana	21.84	78.16	2.12	10.23	1.31	6.72	2.82	11.97	6.97	30.99	8.64	40.09	14.19	70.56	653.58	3111.21	535.18	2546.79	@	@	48	52	36	7	18	22
Valor Máximo	26.68	83.00	2.16	12.70	1.71	10.06	4.30	16.12	9.38	35.16	10.03	42.59	15.59	82.70	687.25	3646.50	563.49	2981.55	(a)	(a)	48	52	36	7	18	22
Valor Mínimo	17.00	73.32	2.07	7.76	0.90	3.37	1.33	7.82	4.56	26.82	7.24	37.59	12.79	58.42	619.91	2575.91	506.87	2112.02	@	(a)	48	52	36	7	18	22
7								•												1.7	•					

Mediana	21.84	78.16	2.12	10.23	1.31	6.72	2.82	11.97	6.97	30.99	8.64	40.09	14.19	70.56	653.58	3111.21	535.18	2546.79	@	@	48	52	36	7	18	22
Valor Máximo	26.68	83.00	2.16	12.70	1.71	10.06	4.30	16.12	9.38	35.16	10.03	42.59	15.59	82.70	687.25	3646.50	563.49	2981.55	@	@	48	52	36	7	18	22
Valor Mínimo	17.00	73.32	2.07	7.76	0.90	3.37	1.33	7.82	4.56	26.82	7.24	37.59	12.79	58.42	619.91	2575.91	506.87	2112.02	@	@	48	52	36	7	18	22
					:						С	UAD	R O	33						352						
Maíz, ensilado					ΙA	nálisis Qu	ímico Pro	oximal (%)							Energía	(Kcal/Kg)			Minerale	es(%BS)	Fr	acciones	de la Fib	ra (Van S	Soest)(%l	BS)
Análisis	MS	Н	PC (BH)	PC(BS)	EE (BH)	EE (BS)	C (BH)	C (BS)	FC (BH)	FC (BS)	ELN (BH)	ELN (BS)	TND (BH)	TND (BS)	E.D.(BH)	E.D.(BS)	E.M.(BH)	E.M.(BS)	Ca	Р	FND	Cont.Cel.	FAD	Lignina	Celulosa	Hemicel.
N	41	41	41	41	41	41	41	41	40	40	40	40	40	40	40	40	40	40	7	7	12	12	11	11	11	11
Promedio	29.17	70.83	2.30	7.88	1.48	5.09	2.54	8.84	8.08	28.13	14.85	50.44	20.03	68.21	877.66	3006.99	719.92	2466.16	0.80	0.22	63.41	36.56	34.64	6.65	26.04	28.45
Desv. Estándar	7.77	7.77	1.02	2.28	0.75	2.32	1.16	3.63	2.99	8.58	5.23	9.42	5.88	5.30	258.94	233.91	212.98	192.00	0.76	0.05	6.72	6.78	4.36	2.27	3.40	8.05
Mediana	27.32	72.68	2.03	7.73	1.33	4.80	2.18	7.56	7.36	26.84	13.65	52.15	18.73	68.21	811.79	3007.56	665.59	2465.94	0.44	0.21	63.40	36.61	32.88	5.69	24.26	27.92
Valor Máximo	46.86	82.28	7.29	18.62	3.22	11.20	7.04	24.04	17.20	65.29	29.36	69.34	33.51	78.40	1477.37	3456.77	1211.31	2834.26	2.46	0.29	73.27	46.65	40.68	11.28	30.96	39.40
Valor Mínimo	17.72	53.14	1.28	4.59	0.07	0.30	1.00	4.42	3.19	13.27	2.31	13.04	10.14	54.83	447.22	2417.57	366.68	1982.20	0.32	0.16	53.35	26.30	28.87	4.25	21.69	17.22
											С	UAD	R O	34												
																7,										
ယ္သ																										

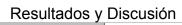
												EilS	lados													
Rye Grass, ensilado					Aı	nálisis Qu	uímico Pro	oximal (%)						Energía (Kcal/Kg)			Mineral	es(%BS)	Fr	acciones	de la Fib	ra (Van S	Soest)(%E	BS)
álisis	MS	Н	PC (BH)	PC(BS)	EE (BH)	EE (BS)	C (BH)	C (BS)	FC (BH)	FC (BS)	ELN (BH)	ELN (BS)	TND (BH)	TND (BS)	E.D.(BH)	E.D.(BS)	E.M.(BH)	E.M.(BS)	Ca	P	FND	Cont.Cel.	FAD	Lignina		Hemice
medio	48,18	51.82	7.49	15.67	3,49	7.33	8.89	4 18.55	8.82	18,31	19.49	40.15	32.34	67.17	1425.78	4 2961.42	1169.02	2428.11	@	@	2 50,56	49.44	32.65	2.88	24.02	17,91
w. Estándar	3.79	3.79	1.47	3.51	0.56	1.60	2.36	5.11	1.33	2.30	5.13	7.72	2.94	4.11	129.79	181.08	106.41	148.47	- @	(a)	2.94	2.94	0.30	0.37	0.82	2.64
diana	47.76	52.25	7.69	16.68	3.51	7.29	8.88	19.00	8.93	19.16	17.19	37.63	31.99	68.79	1410.63	3032.93	1156.60	2486.74	@	@	50.56	49.44	32.65	2.88	24.02	17.91
lor Máximo	53.20	56.00	8.80	18.50	4.00	8.98	11.03	23.18	10.32	19.98	27.14	51.02	36.03	69.89	1588.63	3081.67	1302.54	2526.70	@	@	52.64	51.52	32.86	3.14	24.60	19.78
elor Mínimo	44.00	46.80	5.76	10.83	2.96	5.75	6.78	13.01	7.10	14.92	16.45	34.32	29.33	61.20	1293.23	2698.16	1060.33	2212.25	@	@	48.48	47.36	32.44	2.62	23.44	16.04
							2				С	UAD	R O	35												
Sorgo, ensilado	MS	Н	PC (BH)	PC(BS)	EE (BH)	nálisis Qu EE (BS)	LÍMICO Pro	oximal (%)	FC (BH)	FC (BS)	ELN (BH)	ELN (BS)	TND (BH)	TND (BS)	Energía (Kcal/Kg) E.D.(BS)	E.M.(BH)	E.M.(BS)	Mineral	es(%BS)	FND	Cont.Cel.	de la Fib	ra (Van S Lignina		BS) Hemic
	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	1	1	@	@	@	@	@	@
omedio	26.24	73.77	2.08	5.57	1.37	5.46	2.21	9.03	6.86	27.81	13.73	49.63	18.06	68.30	796.04	3008.46	653.15	2469.11	1.40	0.29	æ	@	@	@	@	@
sv. Estándar	9.99	9.99	0.59	4.37	0.21	1.27	0.04	3.31	0.46	8.84	8.70	14.26	7.62	2.97	336.12	135.45	274.93	107.62	@	@	<u>@</u>	@	<u>@</u>	@	@	@
diana Ior Máximo	26.24 33.30	73.77 80.83	2.08 2.49	5.57 8.66	1.37	5.46 6.36	2.21	9.03 11.37	6.86 7.18	27.81 34.06	13.73 19.88	49.63 59.71	18.06 23.45	68.30 70.41	796.04 1033.71	3008.46 3104.24	653.15 847.55	2469.11 2545.21	1.40	0.29	@	@	@	@	@	@
lor Mínimo	19.17		1.66	2.48	1.32	4.56	2.23	6.69	6.53	21.56	7.58	39.54	12.67	66.20	558.36	2912.68	458.74	2393.01	1.40	0.29	<u>@</u>	@	@ @	@	@	@
	10111	00.10	1100	Lito	TILL	4100	Lilo	0.00	0.00	21100		UAD		36	000100	EUIEIOU	100111	Locolot	1110	VILO				-		
Algodón, semilla					Δι	nálicic Oı	uímico Pro	vimal (%	١			•	κ •	- 00	Energía (Kcal/Kn)			Mineral	es(%BS)	Fr	acciones	de la Fih	ra (Van S	Coect)/0/F	RC)
nálisis	MS	Н	PC (BH)	PC(BS)	EE (BH)	EE (BS)	C (BH)	C (BS)	FC (BH)	FC (BS)	ELN (BH)	ELN (BS)	TND (BH)	TND (BS)	E.D.(BH)	E.D.(BS)	E.M.(BH)	E.M.(BS)	Ca	Р	FND	Cont.Cel.	FAD	Lignina	Celulosa	Hemice
	4	4	40.42	40.00	19.68	4 20.74	4	4	4 20.52	4	4	20.55	4 07.04	4	4 2027 74	4	4	4 2242 70	1 0.42	1 0.52	3	3	3 40.01	3	3	3
omedio sv. Estándar	94.96	5.04 1.15	18.12 1.60	19.09	19.68	20.71	3.53 0.21	3.72 0.23	26.52 2.93	27.93 3.16	27.12 1.90	28.55 1.78	87.04 3.40	91.64 2.59	3837.71 149.78	4040.41 114.04	3146.59 122.81	3312.78 93.50	0.42 @	0.53 @	52.39 2.35	47.61 2.35	4.62	12.24	27.66 2.84	12.04
sv. Estativat diana	95.26	4.74	17.73	18,59	19.89	20.88	3.60	3.76	26.93	28.46	26.95	28.48	87.09	91.43	3839.90	4030.96	3148.38	3305.04	0.42	0.53	52.63	47.37	41.93	11.82	27.61	12.68
lor Máximo	95.91	6.58	20.27	21.70	21.66	22.58	3.68	3.94	29.50	31.14	29.50	30.76	91.12	95.01	4017.55	4188.87	3294.04	3434.51	0.42	0.53	54.61	50.08	43.37	14.20	30.53	14.18
lor Mínimo	93.42		16.76	17.50	17.29	18.51	3.23	3.41	22.70	23.67	25.08	26.47	82.86	88.70	3653.51	3910.84	2995.56	3206.55	0.42	0.53	49.92	45.39	34.74	10.69	24.85	9.26
											С	UAD	R O	37												
Arroz, harina					Aı	nálisis Qu	uímico Pro	oximal (%))						Energía (Kcal/Kg)			Mineral	es(%BS)	Fra	acciones	de la Fib	ra (Van S	Soest)(%E	BS)
nálisis	MS	Н	PC (BH)	PC(BS)	EE (BH)	EE (BS)	C (BH)	C (BS)	FC (BH)	FC (BS)	ELN (BH)	ELN (BS)	TND (BH)	TND (BS)	E.D.(BH)	E.D.(BS)	E.M.(BH)	E.M.(BS)	Ca	P	FND	Cont.Cel.	FAD		Celulosa	Hemic
am adda	91.30	8.70	12.01	13.16	14.64	16.04	6.72	7.36	3.91	4.28	54.02	59.16	89.23	97.73	2 3934.00	2 4308.98	2 3225.54	2 3532.99	@	@	@ @	@	@	@	@	@
romedio esv. Estándar	0.55	0.55	0.89	1.06	0.69	0.86	0.25	0.32	0.75	0.80	1.64	1.44	0.22	0.83	9.71	36.67	7.96	30.06	@	@	@	@	@	@	@	@
ediana	91.30	8.70	12.01	13.16	14.64	16.04	6.72	7.36	3.91	4.28	54.02	59.16	89.23	97.73	3934.00	4308.98	3225.54	3532.99	e e	a a	a a	e e	e e	a a	æ	a a
alor Máximo	91.69	9.09	12.64	13.90	15.13	16.64	6.90	7.59	4.44	4.84	55.18	60.18	89.38	98.32	3940.86	4334.91	3231.17	3554.25	e e	œ.	œ.	@	œ.	œ.	œ.	@
alor Mínimo	90.91	8.31	11.38	12.41	14.15	15.43	6.54	7.13	3.38	3.72	52.86	58.15	89.07	97.14	3927.13	4283.05	3219.91	3511.73	@	@	@	@	@	@	@	@
											С	UAD	R O	38												
Arroz, puliduras							uímico Pro								Energía (es(%BS)		acciones				
iálisis	MS	H	PC (BH)	PC(BS)	EE (BH)	EE (BS)	C (BH)	C (BS)	FC (BH)	FC (BS)	ELN (BH)	ELN (BS)	TND (BH)	TND (BS)	E.D.(BH)	E.D.(BS)	E.M.(BH)	E.M.(BS)	Ca	P	FND	Cont.Cel.	FAD		Celulosa	
omedio	92.16	7.84	5 11.85	12.91	16.94	18.40	9.11	10.02	6.31	6.94	47.40	52.15	87.02	95.67	3 3831.50	3 4215.74	3143.33	3458.56	@	@	@	@	@	@ @	@	@
esv. Estándar	1.86	1.86	1.55	1.74	2.52	2.37	1.88	2.05	1.53	1.67	1.51	1.56	1.85	2.38	86.06	106.68	69.49	86.16	@	a a	@	<u>a</u>	a a	a a	@	(a)
ediana	91.08	8.92	12.16	13.36	16.48	18.15	8.12	8.96	5.92	6.53	46.71	51.33	86.17	94.62	3791.74	4163.09	3115.26	3420.36	e e	e e	e e	e e	e e	e e	ē	a a
alor Máximo	94.94	9.41	13.13	14.44	20.36	21.44	11.27	12.38	8.00	8.78	49.14	53.95	89.14	98.40	3930.26	4338.51	3222.47	3557.21	@	œ.	œ.	œ.	@	œ.	@	@
alor Mínimo	90.59	5.06	9.35	10.03	14.46	15.88	7.93	8.71	5.02	5.52	46.36	51.18	85.75	94.00	3772.51	4145.62	3092.27	3398.10	æ	@	@	@	@	@	@	@
											С	UAD	R O	39												
Avena, grano					-		uímico Pro								Energía (es(%BS)	Fr	acciones				
nálisis	MS	H	PC (BH)	PC(BS)	EE (BH)	EE (BS)	C (BH)	C (BS)	FC (BH)	FC (BS)	ELN (BH)	ELN (BS)	TND (BH)	TND (BS)	E.D.(BH)	E.D.(BS)	E.M.(BH)	E.M.(BS)	Ca	P	FND	Cont.Cel.	FAD	Lignina	Celulosa	Hemic
runsis	91,33	8.67	40 8.71	9.51	37 5.83	6.37	37 4.14	37 4.51	30 12.24	30 13.34	30 59.65	30 64.95	30 80.07	30 87.22	30 3530.33	30 3845.53	30 2894.56	30 3153.00	0.56	6 0.34	3 56.37	3 40.29	33.61	6.29	3 26.46	22.77
romodio	2.14	2.14	2.37	2.49	2.24	2.47	2.08	2.24	2.25	2.48	4.00	3.95	3.82	4.15	168.40	182.77	138.07	149.86	0.19	0.34	17.72	21.12	16.09	2.24	13.17	2.10
		8.39	9.09	9.78	5.29	5.84	3.33	3.67	12.40	13.43	58.62	64.61	80.20	86.68	3536.07	3821.79	2899.28	3133.54	0.15	0.35	66.26	33.06	41.28	6.92	33.47	22.52
esv. Estándar	91.61		12.69	13,47	10.12	11.28	10.48	11.23	18.76	20.49	66.86	72.78	88.30	93.61	3893.04	4127.44	3191.95	3384.14	0.88	0.47	66.94	64.08	44.42	8.14	34.64	24.98
esv. Estándar ediana alor Máximo	94.58	15.88															2535.28	2768.68	0.33	0.00						
romedio esv. Estándar lediana alor Máximo (alor Mínimo			4.42	5.11	1.87	1.99	2.19	2.38	8.72	9.49	51.77	56.54	70.13	76.59	3092.13	3376.79	2333.26	2/00.00	0.33	0.22	35.92	23.74	15.12	3.80	11.26	20.80
esv. Estándar ediana alor Máximo	94.58			5.11	1.87	1.99	2.19	2.38	8.72	9.49		U A D		76.59	3092.13	3376.79	2333.20	2/00.00	0.33	0.22	35.92	23.74	15.12	3.80	11.26	20.80

											Ells	ilados													
Avena en greña				A	nálisis Qu	ıímico Pro	oximal (%))						Energía ((Kcal/Kg)			Mineral	es(%BS)	Fr	acciones	s de la Fib	ora (Van	Soest)(%l	BS)
nálisis	MS	H PC	7	EE (BH)	EE (BS)	C (BH)	C (BS)	FC (BH)	FC (BS)	ELN (BH)	ELN (BS)	TND (BH)	TND (BS)	E.D.(BH)	E.D.(BS)	E.M.(BH)	E.M.(BS)	Ca	P	FND	Cont.Cel.	7.7.50		Celulosa	100000000000000000000000000000000000000
romedio	93.12	5 5 6.88 6.4	6.91	5 3.40	3.66	7.13	5 7.63	31.79	5 34.14	5 44.34	5 47.66	5 60.88	5 65.41	5 2684.38	5 2884.02	5 2200.96	5 2364.65	@	@	@	@	@	@	@	(a
umeulu isv. Estándar	2.18	2.18 2.1		1.26	1.38	1.88	1.82	4.16	4.37	2.15	3.15	2.63	3.26	115.76	143.87	94,91	117.96	@	@	@	@	@	@	@	(a
ediana	93.25	6.75 5.4		3.48	3.73	6.34	6.82	32.08	35.35	44.16	48.33	61.14	65.16	2695.75	2873.10	2210.28	2355.69	<u>a</u>	@	<u>a</u>	(a)	a a	<u>@</u>	@	6
alor Máximo	96.42	9.24 9.3		5.15	5.62	10.35	10.73	36.61	39.13	47.56	51.92	64.69	70.62	2852.13	3113.68	2338.50	2552.95	a a	a a	a a	a a	a a	a a	a a	(a
lor Mínimo	90.76	3.59 4.4	4.77	1.68	1.79	5.63	6.15	25.42	27.75	42.02	43.58	57.81	61.78	2548.93	2724.09	2089.90	2233.52	@	@	@	@	@	@	œ.	(6
										С	U A D	R O	41												
Avena rolada				A	nálisis Qu	ıímico Pro	oximal (%))						Energía ((Kcal/Kg)			Mineral	es(%BS)	Fr	acciones	s de la Fib	ora (Van	Soest)(%l	BS)
nálisis	MS	H PC	1	EE (BH)	EE (BS)	C (BH)	C (BS)	FC (BH)	FC (BS)	ELN (BH)	ELN (BS)	TND (BH)	TND (BS)	E.D.(BH)	E.D.(BS)	E.M.(BH)	E.M.(BS)	Ca	Р	FND	Cont.Cel.		Lignina		Hem
ramadia	91.02	3 3 8.98 7.9	8.72	7.33	8.05	2.83	3.11	11,21	3	61.72	67.81	3 81.94	90.03	3 3612.80	3969.42	3 2962.19	3 3254.58	@	@	@	@	@	@	@	6
romedio Jesv. Estándar	0.75	0.75 0.0		0.91	1.00	0.41	0.43	1.14	12.31	1.05	0.67	1.42	1.45	62.82	3969.4Z 64.09	51.51	3254.58 52.55	@	@	@ @	@ @	@	@ @	@	(0
lediana	90.75	9.25 7.0		7.16	7.79	2.98	3.28	11.31	12.31	61.79	68.09	82.25	89.54	3626.45	3947.80	2973.37	3236.85	@ @	a a	@	(a)	(a)	@ @	a a	6
/alor Máximo	91.86	9.56 8.0		8.31	9.16	3.14	3.42	12.29	13.59	62.73	68.29	83.19	91.67	3667.68	4041.52	3007.18	3313.70	(a)	@	@	(a)	(a)	@	- @	6
alor Mínimo	90.44	8.14 7.5		6.52	7.21	2.37	2.62	10.02	11.04	60.63	67.04	80.39	88.88	3544.28	3918.94	2906.01	3213.19	ē	ē	ē	e e	e e	e e	ē	(
										С	UAD	R O	42											-	
									_																
										ļ	Alimentos	Energeti	cos												
Cebada, grano				Δ	nálisis Qu	ıímico Pro	oximal (%)	1		1	Alimentos	Energeti	cos	Energía	(Kcal/Kg)			Mineral	es(%BS)	Fr	acciones	s de la Fil	ora (Van	Soest)(%	BS)
Cebada, grano	MS	H PC	-h PC(BS)	A EE (BH)	nálisis Qu	ıímico Pro	1.0		FC (BS)	ELN (BH)	Alimentos	Energeti		Energía	(Kcal/Kg)	E.M.(BH)	E.M.(BS)	Mineral	les(%BS)	Fr FND	acciones	s de la Fil	ora (Van	11	
	9	9 9	9	EE (BH)	EE (BS)	C (BH)	C (BS)	FC (BH)	g '	ELN (BH)	ELN (BS)	TND (BH)	TND (BS)	E.D.(BH)	E.D.(BS)	9	9	Ca 4	P 4	_	Cont.Cel.	FAD 1	Lignina 1	Celulosa 1	Hem 1
nálisis romedio	9 91.34	9 9 8.66 9.5	9 10.92	9 3.38	9 3.70	C (BH) 9 3.04	C (BS) 9 3.33	FC (BH) 9 6.92	9 7.57	ELN (BH) 9 68.02	ELN (BS) 9 74.48	TND (BH) 9 79.00	TND (BS) 9 86.50	E.D.(BH) 9 3483.22	E.D.(BS) 9 3813.88	9 2855.94	9 3127.05	Ca 4 0.41	P 4 0.32	FND 1 22.66	Cont.Cel. 1 77.34	FAD 1 7.30	Lignina 1 3.38	Celulosa 1 3.88	Hem 15
inálisis Promedio Jesv. Estándar	9 91.34 2.22	9 9 8.66 9.5 2.22 2.5	9 10.92 2.40	9 3.38 1.17	9 3.70 1.29	C (BH) 9 3.04 1.94	C (BS) 9 3.33 2.09	FC (BH) 9 6.92 3.88	9 7.57 4.17	ELN (BH) 9 68.02 4.71	ELN (BS) 9 74.48 4.96	TND (BH) 9 79.00 3.38	TND (BS) 9 86.50 3.24	E.D.(BH) 9 3483.22 149.06	E.D.(BS) 9 3813.88 142.88	9 2855.94 122.22	9 3127.05 117.15	Ca 4 0.41 0.31	P 4 0.32 0.10	FND 1 22.66	Cont.Cel. 1 77.34 @	FAD 1 7.30 @	Lignina 1 3.38 @	Celulosa 1 3.88 @	Hem 1 15.
málisis I Promedio Jesv. Estándar Iediana	9 91.34 2.22 90.98	9 9 8.66 9.5 2.22 2.3 9.02 9.6	9 10.92 2.40 11.11	9 3.38 1.17 3.85	9 3.70 1.29 4.04	9 3.04 1.94 2.45	9 3.33 2.09 2.66	FC (BH) 9 6.92 3.88 5.98	9 7.57 4.17 6.60	9 68.02 4.71 69.02	9 74.48 4.96 74.83	TND (BH) 9 79.00 3.38 78.42	TND (BS) 9 86.50 3.24 85.92	E.D.(BH) 9 3483.22 149.06 3457.39	E.D.(BS) 9 3813.88 142.88 3788.18	9 2855.94 122.22 2834.77	9 3127.05 117.15 3105.98	Ca 4 0.41 0.31 0.36	P 4 0.32 0.10 0.30	FND 1 22.66 @ 22.66	77.34 @ 77.34	7.30 @ 7.30	1 3.38 @ 3.38	Celulosa 1 3.88 @ 3.88	Hem 1 15. @
nálisis romedio esv. Estándar ediana alor Máximo	9 91.34 2.22 90.98 95.36	9 9 8.66 9.1 2.22 2.3 9.02 9.1 12.66 12.	9 10.92 2.40 11.11 13.43	9 3.38 1.17 3.85 5.06	9 3.70 1.29 4.04 5.56	C (BH) 9 3.04 1.94 2.45 8.04	C (BS) 9 3.33 2.09 2.66 8.71	FC (BH) 9 6.92 3.88 5.98 15.49	9 7.57 4.17 6.60 16.77	9 68.02 4.71 69.02 75.20	ELN (BS) 9 74.48 4.96 74.83 79.69	TND (BH) 9 79.00 3.38 78.42 85.50	TND (BS) 9 86.50 3.24 85.92 90.77	E.D.(BH) 9 3483.22 149.06 3457.39 3769.64	E.D.(BS) 9 3813.88 142.88 3788.18 4001.93	9 2855.94 122.22 2834.77 3090.78	9 3127.05 117.15 3105.98 3281.23	Ca 4 0.41 0.31 0.36 0.78	P 4 0.32 0.10 0.30 0.45	FND 1 22.66 @ 22.66 22.66	Cont.Cel. 1 77.34 @ 77.34 77.34	7.30 @ 7.30 7.30 7.30	Lignina 1 3.38 @ 3.38 3.38 3.38	Celulosa 1 3.88 @ 3.88 3.88 3.88	Hem 15. 6 15.
nálisis romedio esv. Estándar ediana alor Máximo	9 91.34 2.22 90.98	9 9 8.66 9.5 2.22 2.3 9.02 9.6	9 10.92 2.40 11.11 13.43	9 3.38 1.17 3.85	9 3.70 1.29 4.04	9 3.04 1.94 2.45	9 3.33 2.09 2.66	FC (BH) 9 6.92 3.88 5.98	9 7.57 4.17 6.60	9 68.02 4.71 69.02 75.20 59.84	9 74.48 4.96 74.83 79.69 64.80	TND (BH) 9 79.00 3.38 78.42 85.50 73.59	TND (BS) 9 86.50 3.24 85.92 90.77 79.70	E.D.(BH) 9 3483.22 149.06 3457.39	E.D.(BS) 9 3813.88 142.88 3788.18	9 2855.94 122.22 2834.77	9 3127.05 117.15 3105.98	Ca 4 0.41 0.31 0.36	P 4 0.32 0.10 0.30	FND 1 22.66 @ 22.66	77.34 @ 77.34	7.30 @ 7.30	1 3.38 @ 3.38	Celulosa 1 3.88 @ 3.88	Hem 1 15.
nálisis romedio esv. Estándar ediana alor Máximo alor Mínimo	9 91.34 2.22 90.98 95.36	9 9 8.66 9.1 2.22 2.3 9.02 9.1 12.66 12.	9 10.92 2.40 11.11 13.43	9 3.38 1.17 3.85 5.06 1.70	9 3.70 1.29 4.04 5.56 1.88	C (BH) 9 3.04 1.94 2.45 8.04 1.87	C (BS) 9 3.33 2.09 2.66 8.71 2.08	FC (BH) 9 6.92 3.88 5.98 15.49 2.90	9 7.57 4.17 6.60 16.77	9 68.02 4.71 69.02 75.20 59.84	ELN (BS) 9 74.48 4.96 74.83 79.69	TND (BH) 9 79.00 3.38 78.42 85.50 73.59	TND (BS) 9 86.50 3.24 85.92 90.77	E.D.(BH) 9 3483.22 149.06 3457.39 3769.64 3244.77	E.D.(BS) 9 3813.88 142.88 3788.18 4001.93 3513.94	9 2855.94 122.22 2834.77 3090.78	9 3127.05 117.15 3105.98 3281.23	Ca 4 0.41 0.31 0.36 0.78 0.14	P 4 0.32 0.10 0.30 0.45 0.22	FND 1 22.66 @ 22.66 22.66 22.66	Cont.Cel. 1 77.34 @ 77.34 77.34 77.34 77.34	FAD 1 7.30 @ 7.30 7.30 7.30	Lignina 1 3.38 @ 3.38 3.38 3.38 3.38	Celulosa 1 3.88 @ 3.88 3.88 3.88 3.88	Hem 15. 6 15. 15.
nálisis romedio ssv. Estándar ediana ediana alor Máximo alor Mínimo Cebada, raicilla	9 91.34 2.22 90.98 95.36 87.34	9 9 8.66 9 2.22 2 9.02 9 12.66 12 4.64 4	9 10.92 2.40 11.11 13.43 5.24	9 3.38 1.17 3.85 5.06 1.70	9 3.70 1.29 4.04 5.56 1.88	C (BH) 9 3.04 1.94 2.45 8.04 1.87	C (BS) 9 3.33 2.09 2.66 8.71 2.08	FC (BH) 9 6.92 3.88 5.98 15.49 2.90	9 7.57 4.17 6.60 16.77 3.04	ELN (BH) 9 68.02 4.71 69.02 75.20 59.84	ELN (BS) 9 74.48 4.96 74.83 79.69 64.80 U A D	TND (BH) 9 79.00 3.38 78.42 85.50 73.59	TND (8S) 9 86.50 3.24 85.92 90.77 79.70 43	E.D.(BH) 9 3483.22 149.06 3457.39 3769.64 3244.77	E.D.(BS) 9 3813.88 142.88 3788.18 4001.93 3513.94 (Kcal/Kg)	9 2855.94 122.22 2834.77 3090.78 2660.43	9 3127.05 117.15 3105.98 3281.23 2881.13	Ca 4 0.41 0.31 0.36 0.78 0.14	P 4 0.32 0.10 0.30 0.45	FND 1 22.66 @ 22.66 22.66 22.66	Cont.Cel. 1 77.34 @ 77.34 77.34 77.34 77.34	7.30 @ 7.30 7.30 7.30 7.30 7.30	Lignina 1 3.38 @ 3.38 3.38 3.38 3.38	Celulosa 1 3.88 @ 3.88 3.88 3.88 3.88	Hem 15. 6 15. 15. 15.
nálisis romedio esv. Estándar ediana alor Máximo alor Mínimo	9 91.34 2.22 90.98 95.36	9 9 8.66 9.1 2.22 2.3 9.02 9.1 12.66 12.	9 10.92 2.40 11.11 13.43 5.24	EE (BH) 9 3.38 1.17 3.85 5.06 1.70	9 3.70 1.29 4.04 5.56 1.88	C (BH) 9 3.04 1.94 2.45 8.04 1.87	C (BS) 9 3.33 2.09 2.66 8.71 2.08	FC (BH) 9 6.92 3.88 5.98 15.49 2.90	9 7.57 4.17 6.60 16.77	ELN (BH) 9 68.02 4.71 69.02 75.20 59.84 C	ELN (BS) 9 74.48 4.96 74.83 79.69 64.80 U A D	TND (BH) 9 79.00 3.38 78.42 85.50 73.59 R O	TND (BS) 9 86.50 3.24 85.92 90.77 79.70	E.D.(BH) 9 3483.22 149.06 3457.39 3769.64 3244.77	E.D.(BS) 9 3813.88 142.88 3788.18 4001.93 3513.94	9 2855.94 122.22 2834.77 3090.78	9 3127.05 117.15 3105.98 3281.23 2881.13	Ca 4 0.41 0.31 0.36 0.78 0.14	P 4 0.32 0.10 0.30 0.45 0.22	FND 1 22.66 @ 22.66 22.66 22.66 Fr	Cont.Cel. 1 77.34 @ 77.34 77.34 77.34 77.34 Cont.Cel.	FAD 1 7.30 @ 7.30 7.30 7.30 7.30 7.30 7.30 FAD	Lignina 1 3.38 @ 3.38 3.38 3.38 3.38 3.38 Lignina	Celulosa 1 3.88 @ 3.88 3.88 3.88 3.88 Celulosa	Hem 1 15. 6 15. 15. 15.
nálisis romedio esv. Estándar ediana alor Máximo alor Mínimo Cebada, raicilla nálisis	9 91.34 2.22 90.98 95.36 87.34	9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	9 10.92 2.40 11.11 1 13.43 5.24 H) PC(BS) 2	9 3.38 1.17 3.85 5.06 1.70	9 3,70 1,29 4,04 5,56 1,88	C (BH) 9 3.04 1.94 2.45 8.04 1.87	C (BS) 9 3.33 2.09 2.66 8.71 2.08 Dximal (%) C (BS)	FC (BH) 9 6.92 3.88 5.98 15.49 2.90 FC (BH)	9 7.57 4.17 6.60 16.77 3.04	ELN (BH) 9 68.02 4.71 69.02 75.20 59.84	ELN (BS) 9 74.48 4.96 74.83 79.69 64.80 U A D	TND (BH) 9 79.00 3.38 78.42 85.50 73.59	TND (8S) 9 86.50 3.24 85.92 90.77 79.70 43	E.D.(BH) 9 3483.22 149.06 3457.39 3769.64 3244.77 Energía (E.D.(BH)	E.D.(BS) 9 3813.88 142.88 3788.18 4001.93 3513.94 (Kcal/Kg) E.D.(BS)	9 2855.94 122.22 2834.77 3090.78 2660.43	9 3127.05 117.15 3105.98 3281.23 2881.13	Ca 4 0.41 0.31 0.36 0.78 0.14 Mineral	P 4 0.32 0.10 0.30 0.45 0.22	FND 1 22.66 @ 22.66 22.66 22.66	Cont.Cel. 1 77.34 @ 77.34 77.34 77.34 77.34	7.30 @ 7.30 7.30 7.30 7.30 7.30	Lignina 1 3.38 @ 3.38 3.38 3.38 3.38	Celulosa 1 3.88 @ 3.88 3.88 3.88 3.88	Hem 15. 6 15. 15. 15.
nálisis romedio esv. Estándar lediana alor Máximo alor Mínimo Cebada, raicilla nálisis romedio esv. Estándar	9 91.34 2.22 90.98 95.36 87.34 MS 3 91.59 2.51	9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	9 10.92 2.40 11.11 1 13.43 5.24 PC(BS) 2 1 16.60 8.38	EE (BH) 9 3.38 1.17 3.85 5.06 1.70 AI EE (BH) 9 3.38 1.07 3.05 5.06 1.70	EE (BS) 9 3.70 1.29 4.04 5.56 1.88 nálisis Qu EE (BS) 3 3.34 1.21	C (BH) 9 3.04 1.94 2.45 8.04 1.87 simico Pro C (BH) 3 6.08 0.96	C (BS) 9 3.33 2.09 2.66 8.71 2.08 DXIMAI (%) C (BS) 3 6.66 1.22	FC (BH) 9 6.92 3.88 5.98 15.49 2.90 FC (BH) 3 17.23 1.59	9 7.57 4.17 6.60 16.77 3.04 FC (BS) 3 18.83 1.93	ELN (BH) 9 68.02 75.20 59.84 C	ELN (BS) 9 74.48 4.96 74.83 79.69 64.80 U A D ELN (BS) 2 54.11 3.44	TND (BH) 9 79.00 3.38 85.50 73.59 R O TND (BH) 2 66.81 6.59	TND (BS) 9 86.59 90.77 79.70 43	E.D.(BH) 9 3483.22 149.06 3457.39 3769.64 3244.77 Energía (E.D.(BH) 2 2945.56 290.44	E.D.(BS) 9 3813.88 142.88 3788.18 4001.93 3513.94 KCal/Kg) E.D.(BS) 2 3241.80 215.69	9 2855.94 122.22 2834.77 3090.78 2660.43 E.M.(BH) 2 2415.11 238.13	9 3127.05 117.15 3105.98 3281.23 2881.13 E.M.(BS) 2 2657.99 176.84	Ca 4 0.41 0.31 0.36 0.78 0.14 Mineral Ca 1 0.80 @	P 4 0.32 0.10 0.30 0.45 0.22 es(%BS) P 1 0.11	FND 1 22.66 @ 22.66 22.66 22.66 Fr	Cont.Cel. 1 77.34 @ 77.34 77.34 77.34 77.34 77.34 Cont.Cel. @	FAD 1 7.30 @ 7.30 7.30 7.30 7.30 7.30 7.30 FAD 6 FAD 6	Lignina 1 3.38 @ 3.38 @ 3.38 3.38 3.38 Dra (Van Lignina @ @ @	Celulosa 1 3.88 @ 3.88 3.88 3.88 Celulosa Celulosa @ @ @ @ @	Hem 1 15. 6 15. 15. 15. 15. 15. 15. 15. 16. 16. 16. 16. 16. 16. 16. 16. 16. 16
nálisis romedio esv. Estándar ediana alor Máximo alor Mínimo Cebada, raicilla nálisis romedio esv. Estándar ediana	9 91.34 2.22 90.98 95.36 87.34 MS 3 91.59 2.51 92.83	9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	9 10.92 2.40 11.11 13.43 5.24 1) PC(BS) 2 1 16.60 8.38	EE (BH) 9 3.38 1.17 3.85 5.06 1.70 A EE (BH) 1.01 2.49	EE (BS) 9 3.70 1.29 4.04 5.56 1.88 nálisis Qu EE (BS) 3 3.34 1.21 2.67	C (BH) 9 3.04 1.94 2.45 8.04 1.87 símico Pro C (BH) 3 6.08 0.96 6.11	C (BS) 9 3.33 2.09 2.66 8.71 2.08 Dximal (%) C (BS) 3 6.66 1.22 6.58	FC (BH) 9 6.92 3.88 5.98 15.49 2.90 FC (BH) 3 17.23 1.59 17.86	9 7.57 4.17 6.60 16.77 3.04 FC (BS) 18.83 1.93 19.75	ELN (BH) 9 68.02 4.71 69.02 75.20 59.84 C ELN (BH) 2 49.06 1.54 49.06	ELN (BS) 9 74.48 4.96 74.83 79.69 64.80 U A D ELN (BS) 2 54.11 3.44 54.11	TND (BH) 9 79.00 3.38 78.42 85.50 73.59 R O TND (BH) 2 66.81 6.59 66.81	TND (BS) 9 86.50 3.24 85.92 90.77 79.70 43	E.D.(BH) 9 3483.22 149.06 3457.39 3769.64 3244.77 Energía (E.D.(BH) 2 2945.56	E.D.(8S) 9 3813.88 142.88 142.89 4001.93 3513.94 (KCal/Kg) E.D.(8S) 2 3241.80	9 2855.94 122.22 2834.77 3090.78 2660.43 E.M.(BH) 2 2415.11 238.13 2415.11	9 3127.05 117.15 3105.98 3281.23 2881.13 E.M.(BS) 2 2657.99 176.84 2657.99	Ca 4 0.41 0.31 0.36 0.78 0.14 Mineral Ca 1 0.80 @ 0.80	P 4 0.32 0.10 0.30 0.45 0.22 es(%BS) P 1 0.11	FND 1 22.66 @ 22.66 22.66 22.66 FF	Cont.Cel. 1 77.34 @ 77.34 77.34 77.34 77.34 Cont.Cel. @ @	FAD 1 7.30 @ 7.30 7.30 7.30 7.30 7.30 7.30 7.30 7.30	Lignina 1 3.38 @ 3.38 3.38 3.38 3.38 Dra (Van Lignina @ @ @ @ @	Celulosa 1 3.88 @ 3.88 3.88 3.88 3.88 Celulosa @ Celulosa @ @	Hem 15 15 15 15 15 15 15 15 15 15 15 15 15
nálisis omedio ssv. Estándar ediana slor Máximo alor Mínimo Cebada, raicilla nálisis omedio ssv. Estándar ediana alor Mínimo	9 91.34 2.22 90.98 95.36 87.34 MS 3 91.59 2.51 92.83 93.23	9	9 10.92 2.40 11.11 13.43 5.24 10.60 8.38 16.60 22.53	EE (BH) 9 3.38 1.17 3.85 5.06 1.70 A EE (BH) 3 3.04 1.01 2.49 4.20	EE (BS) 9 3.70 1.29 4.04 5.56 1.88 nálisis Qu EE (BS) 3 3.34 1.21 2.67 4.74	C (BH) 9 3.04 1.94 2.45 8.04 1.87 Limico Pro C (BH) 3 6.08 0.96 6.11 7.02	C (BS) 9 3.33 2.09 2.66 8.71 2.08 DXIMAI (%) C (BS) 3 6.66 1.22 6.58 7.91	FC (BH) 9 6.92 3.88 5.98 15.49 2.90 FC (BH) 3 17.23 1.59 17.86 18.41	9 7.57 4.17 6.60 16.77 3.04 FC (BS) 3 1.93 19.75 20.14	ELN (BH) 9 68.02 4.71 69.02 75.20 59.84 C ELN (BH) 2 49.06 1.54 49.06 50.15	ELN (8S) 9 74.48 4.96 74.83 79.69 64.80 U A D ELN (8S) 2 54.11 3.44 56.54	TND (BH) 9 79.00 3.38 78.42 65.50 73.59 R O TND (BH) 2 66.81 6.59	TND (BS) 9 86.50 3.24 85.92 99.77 79.70 43 TND (BS) 2 73.53 4.89 75.99	E.D.(BH) 9 3483.29 149.96 3457.39 3769.64 3244.77 Energía (E.D.(BH) 2 2945.56 290.44 3150.94	E.D.(BS) 9 3813.88 142.88 3788.18 4001.93 3513.94 (KCal/Kg) E.D.(BS) 2 3241.80 215.89 3241.80 3394.31	9 2855.94 122.22 2855.94 122.22 2860.43 2660.43 E.M.(BH) 2 2415.11 2415.11 2583.50	9 3127.05 117.15 3105.93 3281.23 2881.13 E.M.(BS) 2 2657.99 2783.04	Ca 4 0.41 0.31 0.36 0.78 0.14 Mineral Ca 1 0.80 0.80 0.80 0.80	P 4 0.32 0.10 0.30 0.45 0.22 es(%BS) P 1 0.11 @0.11 0.11	FND 1 22.66 @ 22.66 22.66 22.66 PF FND @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @	Cont.Cel. 1 77.34 @ 77.34 77.34 77.34 77.34 Cont.Cel. @ @ @ @ @ @	FAD 1 7.30 @ 7.30 7.30 7.30 7.30 7.30 7.30 6 de la Fit FAD @ @ @ @ @ @ @	Lignina 1 3.38 @ 3.38 3.38 3.38 3.38 Lignina @ Lignina @ @ @ @ @	Celulosa 1 3.88 @ 3.88 3.88 3.88 3.88 Celulosa @ Celulosa @ @ @ @ @	Hem (6) (6) (6) (6) (6) (6) (6) (6) (6) (6)
nálisis omedio ssv. Estándar ediana slor Máximo alor Mínimo Cebada, raicilla nálisis omedio ssv. Estándar ediana alor Mínimo	9 91.34 2.22 90.98 95.36 87.34 MS 3 91.59 2.51 92.83	9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	9 10.92 2.40 11.11 13.43 5.24 1 16.60 16.60 22.53	EE (BH) 9 3.38 1.17 3.85 5.06 1.70 A EE (BH) 1.01 2.49	EE (BS) 9 3.70 1.29 4.04 5.56 1.88 nálisis Qu EE (BS) 3 3.34 1.21 2.67	C (BH) 9 3.04 1.94 2.45 8.04 1.87 símico Pro C (BH) 3 6.08 0.96 6.11	C (BS) 9 3.33 2.09 2.66 8.71 2.08 Dximal (%) C (BS) 3 6.66 1.22 6.58	FC (BH) 9 6.92 3.88 5.98 15.49 2.90 FC (BH) 3 17.23 1.59 17.86	9 7.57 4.17 6.60 16.77 3.04 FC (BS) 18.83 1.93 19.75	ELN (BH) 9 68.02 4.71 69.02 75.20 59.84 C ELN (BH) 2 49.06 1.54 49.06 50.15	ELN (8S) 9 74.48 4.96 74.83 79.69 64.80 U A D ELN (8S) 2 54.11 3.44 56.54 51.68	TND (BH) 9 79.00 3.38 78.42 85.59 R O TND (BH) 2 66.81 6.59 66.81 71.47 62.15	TND (BS) 9 86.50 3.24 85.92 90.77 79.70 43 TND (BS) 2 73.53 4.89 73.53 76.99 70.07	E.D.(BH) 9 3483.22 149.06 3457.39 3769.64 3244.77 Energía (E.D.(BH) 2 2945.56	E.D.(8S) 9 3813.88 142.88 142.89 4001.93 3513.94 (KCal/Kg) E.D.(8S) 2 3241.80	9 2855.94 122.22 2834.77 3090.78 2660.43 E.M.(BH) 2 2415.11 238.13 2415.11	9 3127.05 117.15 3105.98 3281.23 2881.13 E.M.(BS) 2 2657.99 176.84 2657.99	Ca 4 0.41 0.31 0.36 0.78 0.14 Mineral Ca 1 0.80 @ 0.80	P 4 0.32 0.10 0.30 0.45 0.22 es(%BS) P 1 0.11 @ 0.11	FND 1 22.66 @ 22.66 22.66 22.66 22.66 PFr FND @ @ @ @ @ @ @ @	Cont.Cel. 1 77.34 @ 77.34 77.34 77.34 77.34 Cont.Cel. @ @ @ @	FAD 1 7.30 @ 7.30 7.30 7.30 7.30 7.30 7.30 8 de la Fit	Lignina 1 3.38 @ 3.38 3.38 3.38 3.38 Dra (Van Lignina @ @ @ @ @	Celulosa 1 3.88 @ 3.88 3.88 3.88 3.88 Celulosa @ @ @ @ @ @ @	Hem (6) (6) (6) (6) (6) (6) (6) (6) (6) (6)
nálisis romedio esv. Estándar ediana alor Máximo alor Mínimo Cebada, raicilla nálisis romedio esv. Estándar ediana alor Máximo alor Mínimo	9 91.34 2.22 90.98 95.36 87.34 MS 3 91.59 2.51 92.83 93.23	9	9 10.92 2.40 11.11 13.43 5.24 10.60 8.38 16.60 22.53	EE (BH) 9 3.38 1.17 3.85 5.06 1.70 A EEE (BH) 3.04 1.01 2.49 4.20 2.42	EE (BS) 9 3.70 1.29 4.04 5.56 1.88 nálisis QU EE (BS) 3 3.34 1.21 2.67 4.74 2.61	C (BH) 9 3.04 1.94 2.45 8.04 1.87 Limico Pro C (BH) 3 6.08 0.96 6.11 7.02 5.11	C (BS) 9 3.33 2.09 2.66 8.71 2.08 DXIMAI (%) C (BS) 3 6.66 1.22 6.58 7.91 5.48	FC (BH) 9 6.92 3.88 5.98 15.49 2.90 FC (BH) 3 17.23 1.59 17.86 18.41 15.42	9 7.57 4.17 6.60 16.77 3.04 FC (BS) 3 1.93 19.75 20.14	ELN (BH) 9 68.02 4.71 69.02 75.20 59.84 C ELN (BH) 2 49.06 1.54 49.06 50.15	ELN (8S) 9 74.48 4.96 74.83 79.69 64.80 U A D ELN (8S) 2 54.11 3.44 56.54	TND (BH) 9 79.00 3.38 78.42 85.59 R O TND (BH) 2 66.81 6.59 66.81 71.47 62.15	TND (BS) 9 86.50 3.24 85.92 99.77 79.70 43 TND (BS) 2 73.53 4.89 75.99	E.D.(BH) 9 3483.25 149.96 3457.39 3789.64 3244.77 Energía (E.D.(BH) 2 2945.56 290.44 2945.56 3150.94 2740.19	E.D.(BS) 9 3813.88 142.88 3788.18 4001.93 3513.94 KCal/Kg) E.D.(BS) 2 3241.80 215.69 3241.80 3394.31 3089.28	9 2855.94 122.22 2855.94 122.22 2860.43 2660.43 E.M.(BH) 2 2415.11 2415.11 2583.50	9 3127.05 117.15 3105.93 3281.23 2881.13 E.M.(BS) 2 2657.99 2783.04	Ca 4 0.41 0.31 0.36 0.78 0.14 Mineral Ca 1 0.80 0.80 0.80	P 4 0.32 0.10 0.30 0.45 0.22 P 1 0.11 @ 0.11 0.11 0.11	FND 1 22.66 22.66 22.66 22.66 22.66 22.66 22.66 22.66 22.66 22.66 22.66	Cont.Cel. 1 77.34 77.34 77.34 77.34 77.34 Cont.Cel. @ @ @ @ @ @ @ @	FAD 1 7.30 0 7.30 7.30 7.30 7.30 7.30 8 de la Fit	Lignina 1 3.38	Celulosa 1 3.88 @ 3.88 3.88 3.88 Celulosa @ @ @ @ @ @ @ @	Hem 1 15. 6 15. 15. 15. 15. 15. 15. 16. 6 6 6 6 6 6 6 6 6 6 6
válisis omedio esv. Estándar ediana olor Máximo elor Mínimo Cebada, raicilla tálisis omedio esv. Estándar ediana alor Máximo esv. Estándar ediana elor Mínimo Frijol, harina	9 91.34 2.22 90.98 95.36 67.34 MS 3 91.59 2.51 92.83 93.23 88.70	9 \$ \$ \$ 8.66 9.9.2 8.86 9.9.2 9.0.2 9.0.2 9.0.2 9.0.2 9.0.4 4.64 4.1 4.1 4.1 4.1 4.1 4.1 4.1 4.1 4.1 4.	9 10.92 2.40 11.11 13.43 5.24 1) PC(BS) 2 16.60 16.60 16.60 22.53 10.68	EE (BH) 9 3.38 1.17 3.85 5.06 1.70 A EE (BH) 3 3.04 1.01 2.49 4.20 2.42	EE (BS) 9 3.70 1.29 4.04 5.56 1.88 nálisis Qu EE (BS) 3 3.34 1.267 4.74 2.61	C (BH) 9 3.04 1.94 2.45 8.04 1.87	C (BS) 9 3.33 2.09 2.66 8.71 2.08 DXIMAI (%) C (BS) 3 6.66 1.22 6.58 7.91 5.48	FC (BH) 9 6.92 3.88 5.98 15.49 2.90 FC (BH) 3 17.23 1.59 17.86 18.41 15.42	9 7.57 4.17 6.60 16.77 3.04 FC (BS) 3 18.83 1.93 19.75 20.14 16.61	ELN (BH) 9 4.71 69.02 4.71 69.02 75.20 59.84 C ELN (BH) 2 49.06 50.15 47.97 C	ELN (8S) 9 74.48 4.96 74.89 64.80 U A D ELN (8S) 2 54.11 3.44 54.11 56.54 51.68 U A D	TND (8H) 9 79.00 3.38 78.42 85.50 87.59 R O TND (8H) 2 66.81 6.59 66.81 71.47 62.15	TND (BS) 9 86.50 3.24 85.92 90.77 79.70 43 TND (BS) 2 73.53 4.89 73.53 76.99 70.07	E.O.(6H) 9 149.06 3483.22 149.06 3457.39 3769.54 3244.77 Energía E.O.(6H) 2 249.55 3150.94 2740.19 Energía	E.D.(6S) 9 3813.88 142.88 3788.18 4001.93 3513.94 Kcal/Kg) E.D.(6S) 2 3241.80 2245.89 3241.80 3394.31 3089.28 Kcal/Kg)	95.94 2855.94 122.22 2834.77 3090.78 2660.43 E.M.(BH) 2 2415.11 238.13 2415.11 2583.50 2246.72	9 3127.05 117.15 3105.98 3281.23 2881.13 E.M.(BS) 2 2657.99 176.84 2657.99 2783.04 2532.95	Ca 4 0.41 0.31 0.36 0.78 0.14 Mineral Ca 1 0.80 0.80 0.80 Mineral	P 4 0.32 0.10 0.30 0.45 0.22 es(%BS) P 1 0.11 @0.11 0.11	FND 1 22.66	Cont.Cel. 1 34	FAD 1 7.30 2 7.30 7.30 7.30 7.30 7.30 8 de la Fit	Lignina 1 3.8	Celulosa 1 3.88 2 3.88 3.88 3.88 Celulosa 2 2 2 2 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3	Hem 15 15 15 15 15 15 15 15 15 15 15 15 15
válisis medio ssv. Estándar didana lotor Máximo lor Mínimo Cebada, raicilla dálisis medio ssv. Estándar didana lor Máximo stándar didana lor Máximo lor Mínimo Frijol, harina	9 91.34 2.22 90.98 95.36 87.34 MS 3 91.59 2.51 92.83 93.23	9	9 10.92 2.40 11.11 13.43 5.24 1) PC(BS) 2 2.60 18.38 11.6.60 22.53 10.68	EE (BH) 9 3.38 1.17 3.85 5.06 1.70 A EEE (BH) 3.04 1.01 2.49 4.20 2.42	EE (BS) 9 3.70 1.29 4.04 5.56 1.88 nálisis QU EE (BS) 3 3.34 1.21 2.67 4.74 2.61	C (BH) 9 3.04 1.94 2.45 8.04 1.87 Limico Pro C (BH) 3 6.08 0.96 6.11 7.02 5.11	C (BS) 9 3.33 2.09 2.66 8.71 2.08 DXIMAI (%) C (BS) 3 6.66 1.22 6.58 7.91 5.48	FC (BH) 9 6.92 3.88 5.98 15.49 2.90 FC (BH) 3 17.23 1.59 17.86 18.41 15.42	9 7.57 4.17 6.60 16.77 3.04 FC (BS) 3 1.93 19.75 20.14	ELN (BH) 9 68.02 4.71 69.02 75.20 59.84 C ELN (BH) 2 49.06 1.54 49.06 50.15	ELN (8S) 9 74.48 4.96 74.83 79.69 64.80 U A D ELN (8S) 2 54.11 3.44 56.54 51.68	TND (BH) 9 79.00 3.38 78.42 85.59 R O TND (BH) 2 66.81 6.59 66.81 71.47 62.15	TND (BS) 9 86.50 3.24 85.92 90.77 79.70 43 TND (BS) 2 73.53 4.89 73.53 76.99 70.07	E.D.(BH) 9 3483.25 149.96 3457.39 3789.64 3244.77 Energía (E.D.(BH) 2 2945.56 290.44 2945.56 3150.94 2740.19	E.D.(BS) 9 3813.88 142.88 3788.18 4001.93 3513.94 KCal/Kg) E.D.(BS) 2 3241.80 215.69 3241.80 3394.31 3089.28	9 2855.94 122.22 2855.94 122.22 2860.43 2660.43 E.M.(BH) 2 2415.11 2415.11 2583.50	9 3127.05 117.15 3105.93 3281.23 2881.13 E.M.(BS) 2 2657.99 2783.04	Ca 4 0.41 0.31 0.36 0.78 0.14 Mineral 1 0.80 0.80 0.80 0.80 0.80 Mineral Ca	P 4 0.32 0.10 0.30 0.45 0.22 les(%BS) P 1 0.11 0.11 0.11 0.11 0.11	FND 1 22.66	Cont.Cel. 1 77.34 77.34 77.34 77.34 77.34 Cont.Cel. @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @	FAD 1 7.30 7.30 7.30 7.30 7.30 7.30 7.30 8 de la Fit FAD 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Lignina 1 3.38 @ 3.38 3.38 3.38 Cora (Van Lignina @ @ @ @ Dra (Van Lignina	Celulosa 1 3.88 2 3.88 3.88 3.88 3.88 Celulosa 2 2 2 2 2 2 Celulosa 2 2 2 2 Celulosa Celulosa Celulosa Celulosa Celulosa	Hem 1 1 15. 6 15. 15. 15. 15. 15. 15. 15. 15. 15. 15.
nálisis romedio sew. Estándar ediana alor Máximo alor Mínimo Cebada, raicilla nálisis romedio sew. Estándar ediana alor Máximo alor Mínimo	9 91.34 2.22 90.98 95.36 87.34 MS 3 91.59 2.51 92.83 93.23 88.70	9 \$ \$ \$ 8.66 9.1 9.1 9.1 9.1 9.1 9.1 9.1 9.1 9.1 9.1	9 10.92 2.40 11.11 13.43 5.24 19 PC(BS) 2.54 10.68 10.68	EE (BH) 9 9 3.38 1.17 3.85 5.06 1.70 A EE (BH) 3 3.04 1.01 2.49 4.20 2.42 A	EE (BS) 9 3.70 1.29 4.04 5.56 1.88 nálisis Qu EE (BS) 3 3.34 1.267 4.74 2.61	C (BH) 9 3.04 1.94 2.45 8.04 1.87	C (BS) 9 3.33 2.09 2.66 8.71 2.08 DXIMAI (%) C (BS) 3 6.66 1.22 6.58 7.91 5.48	FC (BH) 9 6.92 3.88 5.98 15.49 2.90 FC (BH) 3 17.23 1.59 18.41 15.42	9 7.57 4.17 6.60 16.77 3.04 FC (BS) 3 18.83 1.93 19.75 20.14 16.61	ELN (BH) 9 4.71 69.02 4.71 69.02 75.20 59.84 C ELN (BH) 2 49.06 50.15 47.97 C	ELN (8S) 9 74.48 4.96 74.83 79.69 64.80 U A D ELN (8S) 2 54.11 3.44 54.11 56.54 51.68 U A D	TND (8H) 9 79.00 3.38 78.42 85.50 87.59 R O TND (8H) 2 66.81 6.59 66.81 71.47 62.15	TND (BS) 9 86.50 3.24 85.92 90.77 79.70 43 TND (BS) 2 73.53 4.89 73.53 76.99 70.07	E.D.(BH) 9 3483.22 149.06 3497.39 3769.64 3244.77 Energía E.D.(BH) 2 2945.56 290.44 2740.19 Energía E.D.(BH)	E.D.(6S) 9 142.86 3813.88 142.86 3788.18 4001.93 3513.94 (Kcal/Kg) E.D.(6S) 2 3241.80 3241.80 3394.31 3069.28 (Kcal/Kg) E.D.(6S)	95.94 2855.94 122.22 2834.77 3090.78 2660.43 E.M.(BH) 2 2415.11 238.13 2415.11 2583.50 2246.72	9 3127.05 117.15 3105.98 3281.23 2881.13 E.M.(BS) 2 2657.99 176.84 2657.99 2783.04 2532.95	Ca 4 0.41 0.31 0.36 0.78 0.14 Mineral Ca 1 0.80 0.80 0.80 Mineral	P 4 0.32 0.10 0.30 0.45 0.22 P 1 0.11 @ 0.11 0.11 0.11	FND 1 22.66	Cont.Cel. 1 34	FAD 1 7.30 2 7.30 7.30 7.30 7.30 7.30 8 de la Fit	Lignina 1 3.38	Celulosa 1 3.88 2 3.88 3.88 3.88 Celulosa 2 2 2 2 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3	15 15 15 15 15 15 Herr
nálisis romedio esv. Estándar ediana alor Máximo alor Mínimo Cebada, raicilla nálisis romedio esv. Estándar ediana alor Máximo alor Mínimo	9 91.34 2.22 90.98 95.36 87.34 MS 3 91.59 2.51 92.83 93.23 68.70	9 \$ \$ \$ 8.66 \$ 9.9.2 \$ 2.22 \$ 2.22 \$ 2.2 \$ 9.00 \$ 9.9.2 \$ 9.12 \$ 9.02 \$	9 10.92 2.40 11.11 13.43 5.24 15 16.60 8.38 16.60 22.53 10.68 17.50 17.50 17.50 17.50 17.50 17.50 17.50 18.90 19.90 17.50 17.50 17.50 19.9	EE (BH) 9 3.338 1.17 3.85 5.06 1.70 A EE (BH) 3 3.04 1.01 2.49 4.20 2.42 A EE (BH) 7 2.68 1.74	EE (BS) 9 3.70 1.29 4.04 5.56 1.88 málisis Qu EE (BS) 3.34 1.21 2.67 4.74 2.61	C (BH) 9 3.04 1.94 2.45 8.04 1.87 simico Pro C (BH) 3 6.08 0.96 6.11 7.02 5.11	C (BS) 9 3.33 2.09 2.66 8.71 2.08 Dximal (%) C (BS) 6.66 1.22 6.58 7.91 5.48	FC (BH) 9 6.92 3.88 5.98 15.49 2.90 FC (BH) 7 5.55 1.51	9 7.57 4.17 6.60 16.77 3.04 FC (BS) 3 19.75 19.75 19.75 19.75 6.61 FC (BS) 7 6.01 1.59	ELN (BH) 9 68.02 4.71 69.02 752.0 59.84 C ELN (BH) 2 49.06 1.54 49.06 50.15 47.97 C	ELN (8S) 9 74.48 4.96 74.83 79.69 64.80 U A D ELN (8S) 2 54.11 3.44 54.11 36.54 51.68 U A D	TND (BH) 9 79.00 3.38 78.42 85.50 73.59 R O TND (BH) 2 66.81 6.59 66.81 6.59 73.59 TND (BH) 7	TND (BS) 9 86.50 3.24 85.92 90.77 79.70 43 TND (BS) 2 73.53 4.89 70.07 44	E.D.(BH) 9 3483.29 149.06 3457.39 3769.64 3244.77 Energía (E.D.(BH) 2 2945.56 290.44 2945.56 291.49 2740.19 Energía (E.D.(BH) 7	E.D.(BS) 9 3813.88 142.88 3788.18 4001.93 3513.94 (Kcal/Kg) E.D.(BS) 2 3241.80 215.69 3241.83 3089.28 (Kcal/Kg) E.D.(BS) 7	9 2855.94 172.22 2834.77 3090.78 2660.43 E.M.(BH) 2 2415.11 2381.30 2246.72 E.M.(BH) 7 2791.42 60.25	9 3127.05 117.15 3105.98 3281.23 2881.13 E.M.(BS) 2 2657.99 176.84 2657.99 2763.04 2532.95	Ca 4 0.41 0.31 0.36 0.78 0.14 Mineral Ca 1 0.80 @ 0.80 0.80 Mineral Ca 2 0.80 0.80	P 4 0.32 0.10 0.30 0.45 0.22 les(%BS) P 1 0.11 0.11 0.11 0.11 0.11 0.11	FND 1 22.66 @ 22.66 22.66 22.66 22.66 22.66 @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @	Cont.Cel. 1 1 71.34	FAD 1 7.30 7.30 7.30 7.30 7.30 7.30 6 de la Fit FAD 2 2 2 2 3 6 de la Fit FAD 2 2 2 3 6 de la Fit FAD 2 2 3 6 de la Fit	Lignina 1 3.38 2 3.38 3.38 3.38 3.38 Dra (Van Lignina 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	Celulosa 1 3.88 @ 3.88 3.88 3.88 Celulosa @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @	Hen 155 155 155 156 157 158 Hen (6) (6) (6) Hen (6) (6) (7)
válisis omedio esv. Estándar ediana olor Máximo elor Mínimo Cebada, raicilla tálisis omedio esv. Estándar ediana alor Máximo elor Mínimo Frijol, harina tálisis omedio	9 91.34 2.22 90.98 95.36 87.34 MS 3 91.59 2.51 92.83 93.23 88.70	9 \$ \$ \$ 8.66 \$ 9.9.2 \$ 9.02 \$	9 10.92 2.40 11.11 13.43 5.24 16.60 8.38 16.60 12.53 10.68 17 17.50 17.5	EE (BH) 9 1.17 3.85 5.06 1.70 A EE (BH) 2.49 4.20 2.42 A EE (BH) 7 2.68	EE (BS) 9 3.70 1.29 4.04 5.56 5.88 nálisis Qu EE (BS) 3 3.34 1.2.67 4.74 2.61	C (BH) 9 3.04 1.94 2.45 8.04 1.87	C (BS) 9 2.09 2.66 8.71 2.08 DXIMAI (%) C (BS) 3 6.66 1.22 6.58 7.91 5.48 DXIMAI (%) C (BS) 7.91	FC (BH) 9 6.92 3.88 5.98 15.49 2.90 FC (BH) 3 17.23 17.26 18.41 15.42	9 7.57 4.17 6.60 16.77 3.04 FC (BS) 3 18.83 1.93 19.75 20.14 16.61	ELN (BH) 9 68.02 4.71 69.02 75.20 59.84 C ELN (BH) 2 49.06 50.15 47.97 C	ELN (8S) 9 74.48 4.96 74.89 64.90 U A D ELN (8S) 2 54.11 56.54 51.68 U A D	TND (BH) 9 79.00 3.38 78.42 85.50 73.59 R O TND (BH) 2 66.81 6.59 66.81 71.47 62.15 R O	TND (BS) 9 86.50 3.24 85.92 90.77 79.70 43 TND (BS) 2 73.53 76.99 70.07 44	E.O.(BH) 9 149.06 3483.22 149.06 3457.39 3769.54 3244.77 Energía E.O.(BH) 2 2945.56 3150.94 2740.19 Energía (E.O.(BH) 7 3404.53	E.D.(6S) 9 142.88 3813.88 142.88 3788.18 4001.93 3513.94 KCal/Kg) E.D.(6S) 2 3241.80 215.68 3241.80 3394.31 3089.28 KCal/Kg) E.D.(6S) 7 3890.06	9 9 2655.24 122.22 2834.77 3090.78 2660.43 E.M.(8H) 2 2415.11 238.13 2415.11 2583.50 2246.72 E.M.(8H) 7 2 2791.42	9 3127.05 117.15 3105.98 3281.23 2881.13 E.M.(BS) 2 2657.99 176.84 2657.99 2783.04 2532.95	Ca 4 0.41 0.31 0.36 0.78 0.14 Mineral Ca 0.80 0.80 0.80 Mineral Ca @ @	P 4 0.32 0.10 0.30 0.45 0.22 0.22 0.11 0.11 0.11 0.11 0.11 0.11	FND 1 22.66 @ 22.66 22.66 22.66 PFr FND @ @ @ @ @ @ @ @ @ Fr FND @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @	Cont.Cel. 1 77.34 20 77.34 77.34 77.34 77.34 77.34 77.34 Cont.Cel. 20 20 20 20 20 20 20 20 20 20 20 20 20	FAD 1 7.30	Lignina 1 3.38 2 3.38 3.38 3.38 3.38 Dra (Van Lignina 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	Celulosa 1 3.88 2 3.88 3.88 3.88 3.88 Celulosa 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	Herr 15 15 15 15 15 Herr (6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6
Adisis medio ssv. Estándar didana lor Máximo lor Mínimo Cebada, raicilla dálisis medio ssv. Estándar didana lor Máximo lor Mínimo Frijol, harina adisis medio ssv. Estándar didana lor Máximo lor Mínimo	9 91.34 2.22 90.98 95.36 87.34 MS 3 91.59 2.51 92.83 93.23 88.70 MS 7 92.30 2.07 92.30 2.07 95.20	9	9 10.92 2.40 11.11 13.43 5.24 11.16 16.60 8.38 16.60 22.53 10.68 17.50 0.37 17.55 17.56 17.56	EE (BH) 9 1.17 3.85 5.06 1.70 A EE (BH) 2.49 4.20 2.42 A EE (BH) 1.74 1.91 1.98	EE (BS) 9 3.70 1.29 4.04 5.56 5.68 1.88 málisis Qu EE (BS) 3 3.34 1.2.67 4.74 2.61 málisis Qu EE (BS) 7 7 7 2.93 1.96 2.13 5.70	C (BH) 9 3.04 1.94 2.45 8.04 1.87	C (BS) 9 3.33 2.09 2.66 8.71 2.08 DXIMAI (%) C (BS) 3 6.66 1.22 6.58 7.91 5.48 DXIMAI (%) C (BS) 7.91 5.48	FC (BH) 9 6.92 3.88 5.98 15.49 2.90 FC (BH) 3 17.23 17.23 17.86 18.41 15.42	9 7.57 4.17 6.60 16.77 3.04 FC (BS) 3 19.83 1.93 19.75 20.14 16.61 FC (BS) 7	ELN (BH) 9 68.02 4.71 69.02 75.20 59.84 C ELN (BH) 2 49.06 50.15 47.97 C	ELN (8S) 9 74.48 4.96 74.89 64.90 U A D ELN (8S) 2 54.11 3.44 54.11 56.54 51.68 U A D	TND (BH) 9 79.00 3.38 78.42 85.50 73.59 R O TND (BH) 2 66.81 6.59 66.81 71.47 62.15 R O TND (BH) 7 77.22 1.67 76.68 79.72	TND (BS) 9 86.50 3.24 85.92 90.77 79.70 43 TND (BS) 2 73.53 76.99 70.07 44 TND (BS) 7 83.69 2.55 82.61 87.36	E.O.(BH) 9 149.06 3483.22 149.06 3457.39 3769.54 3244.77 Energía (E.O.(BH) 2945.56 3150.94 2740.19 Energía (E.O.(BH) 7 3404.53 73.49 3804.53 3514.88	E.D.(6S) 9 3813.88 142.88 3788.18 44001.93 3513.94 KCal/Kg) E.D.(6S) 2 3241.80 215.68 3241.80 3394.31 3089.28 KCal/Kg) E.D.(6S) 7 3690.66 112.33 3642.19 3851.85	9 9 9 12625 9 17222 2 2834.77 3090.78 2660.43 2 2415.11 238.13 2415.11 2583.50 2246.72 E.M.(BH) 7 2791.42 60.25 2771.93 2881.90	9 3127.05 117.15 3105.98 3281.23 2881.13 E.M.(BS) 2 2657.99 176.84 2657.99 2783.04 2532.95	Ca 4 0.41 0.31 0.36 0.78 0.14 0.14 Mineral Ca 1 0.80 0.80 0.80 Mineral Ca @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @	P 4 0.32 0.10 0.30 0.45 0.22 0.22 0.10 0.30 0.45 0.22 0.22 0.22 0.22 0.22 0.22 0.22 0.2	FND 1 22.66 @ 22.66 22.66 22.66 22.66 22.66 22.66 Pr FND @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @	Cont.Cel. 1 77.34 77.34 77.34 77.34 77.34 77.34 77.34 Cont.Cel. @ @ @ @ Cont.Cel. @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @	FAD 1 7.30 7.30 7.30 7.30 7.30 8 de la Fit FAD @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @	Lignina 1 3.38 2 3.38 3.38 3.38 3.38 Dra (Van Lignina 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	Celulosa 1 3.88 2 3.88 3.88 3.88 3.88 Celulosa 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	Herr 15 15 15 15 15 15 15 15 15 15 15 15 15
válisis omedio ssv. Estándar dilana olor Máximo lor Minimo Cebada, raicilla tálisis omedio ssv. Estándar dilana olor Máximo lor Mínimo Frijol, harina tálisis omedio ssv. Estándar	9 91.34 2.22 90.98 95.36 87.34 MS 3 91.59 2.51 92.83 93.23 88.70 MS 7 92.30 2.07 93.31	9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	9 10.92 2.40 11.11 13.43 5.24 11.16 16.60 8.38 16.60 22.53 10.68 17.50 0.37 17.55 17.56 17.56	EE (BH) 9 1.17 3.85 5.06 1.70 A EE (BH) 3 3.04 1.01 2.49 2.42 A EE (BH) 7 2.68 FE (BH) 1.74 1.98	EE (BS) 9 3.70 1.29 4.04 5.56 1.88 málisis Qu EE (BS) 3 3.34 1.21 2.61 málisis Qu EE (BS) 7 2.93 2.93 2.13	C (BH) 9 3.04 1.94 2.45 8.04 1.87 simico Pro C (BH) 3 6.08 0.96 6.11 7.02 5.11 simico Pro C (BH) 4.99 4.69 0.85 4.39	C (BS) 9 2.66 8.71 2.08 Oximal (%) C (BS) 3 6.66 1.22 6.58 7.91 5.48 Oximal (%) C (BS) 6.66 1.22 6.58 7.91 5.48	FC (BH) 9 6.92 3.88 5.98 15.49 2.90 FC (BH) 3 17.23 1.59 17.86 18.41 15.42	9 7.57 4.17 6.60 16.77 3.04 FC (BS) 3 19.83 1.93 19.75 20.14 16.61 FC (BS) 7 6.01 1.59 6.00	ELN (BH) 9 68.02 4.71 69.02 75.20 59.84 C ELN (BH) 2 49.06 1.54 49.06 1.54 49.06 1.54 49.06 1.54 49.06 30.15 47.97	ELN (8S) 9 74.48 4.96 74.83 79.69 64.80 U A D ELN (8S) 2 54.11 3.44 54.11 36.54 51.68 U A D	TND (BH) 9 79.00 3.38 78.42 85.50 73.59 R O TND (BH) 2 66.81 6.59 66.81 67.147 62.15 R O	TND (BS) 9 86.50 3.24 85.92 90.77 79.70 43 TND (BS) 2 73.53 4.89 73.53 76.99 70.07 44	E.D.(BH) 9 3483.29 149.06 3497.39 3769.64 3244.77 Energía (E.D.(BH) 245.56 290.44 2945.56 290.44 2945.56 290.44 2945.66 290.49 2740.19	E.D.(BS) 9 3813.88 142.88 3788.18 4001.93 3513.94 (KCal/Kg) E.D.(BS) 22 3241.80 215.89 3394.31 3089.26 (KCal/Kg) E.D.(BS) 7 3690.06 112.33 3642.19	9 2855.94 172.22 2834.77 3090.78 2660.43 E.M.(BH) 2415.11 238.13 2415.11 2563.50 2246.72	9 3127.05 117.15 3105.98 3281.23 2881.13 E.M.(BS) 2 2657.99 176.84 2657.99 176.84 2532.95	Ca 4 0.41 0.31 0.36 0.78 0.14 Mineral Ca 1 0.80 0.80 0.80 Mineral Ca 0.80 0.80 0.80	P 4 0.32 0.10 0.30 0.45 0.22 les(%BS) P 1 0.11 0.11 0.11 0.11 0.11 0.11 0.11 0.	FND 1 22.66 @ 22.66 22.66 22.66 22.66 22.66 @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @	Cont.Cel. 1 71.34 77.34 77.34 77.34 77.34 Cont.Cel. @ @ Cont.Cel. @ @ Cont.Cel. @ @ Cont.Cel. @ @ Cont.Cel. @ Cont.Cel. @ Cont.Cel. @ Cont.Cel.	FAD 1 7.30 7.30 7.30 7.30 7.30 7.30 8 de la Fit FAD 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Lignina 1 3.38 2 3.38 3.38 3.38 3.38 Dra (Van Lignina 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	Celulosa 1 3.88 2 3.88 3.88 3.88 Celulosa 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	Hem 15 15 15 15 15 15 15 15 15 15 15 15 15

													Energéti													
Grasa sobrepaso					Ar	nálisis Qu	ímico Pro	oximal (%)						Energía	(Kcal/Kg)			Mineral	es(%BS)	Fr	acciones	de la Fib	ora (Van	Soest)(%	BS)
álisis	MS	Н	PC (BH)	PC(BS)	EE (BH)	EE (BS)		C (BS)	FC (BH)	FC (BS)	ELN (BH)	ELN (BS)	TND (BH)	TND (BS)	E.D.(BH)	E.D.(BS)	E.M.(BH)	E.M.(BS)	Ca	P		Cont.Cel.			Celulosa	
and a	97.73	2.26	0.05	0.05	21.19	21,51	16.39	16.63	1,37	1,39	59.25	60.18	96,92	98.43	5509.98	5602.68	3503.72	2 3558.40	6.79	@	@ @	@	<u>@</u>	@	@	@ @
omedio sv. Estándar	0.95	0.91	(a)	(a)	1.82	1.69	2.97	2.89	0.08	0.09	3.64	4.15	0.34	0.40	1734.12	1803.40	12.17	14.47	1.10	@	<u>e</u>	@ @	@	@ @	@	(a)
diana	97.48	2.48	0.05	0.05	21.19	21.51	16.39	16.63	1.37	1.39	59.25	60.18	96.92	98.43	5509.98	5602.68	3503.72	3558.40	6.60	e e	<u>@</u>	a a	a a	a a	e e	- a
alor Máximo	98.99	3.03	0.05	0.05	22.47	22.71	18.49	18.68	1.42	1.45	61.82	63.12	97.16	98.72	6736.19	6877.87	3512.32	3568.63	7.98	@	@	@	œ.	@	@	(a)
alor Mínimo	96.97	1.06	0.05	0.05	19.90	20.32	14.29	14.59	1.31	1.32	56.67	57.25	96.68	98.15	4283.77	4327.48	3495.12	3548.16	5.80	@	@	@	@	@	@	@
											С	UAD	R O	46												
Jitomate pelletizado					Ar	nálisis Qu	iímico Pro	oximal (%)						Energía	(Kcal/Kg)			Mineral	es(%BS)	Fr	acciones	de la Fib	ora (Van	Soest)(%	BS)
álisis	MS 24	H 24	PC (BH)	PC(BS)	EE (BH)	EE (BS)	C (BH)	C (BS)	FC (BH)	FC (BS)	ELN (BH)	ELN (BS)	TND (BH) 24	TND (BS)	E.D.(BH) 24	E.D.(BS) 24	E.M.(BH) 24	E.M.(BS) 24	N	la 24	FND @	Cont.Cel.	FAD @	Lignina @	Celulosa	Hemi
omedio	97.18	2.82	17.86	18.37	2.78	2.87	12.85	13.22	13.52	13.90	50.18	51.65	69.82	71.88	3078.32	3169.14	2523.96	2598.43		.02	<u>e</u>	@ @	@	a a	@	- @
esv. Estándar	2.64	2.64	1.55	1.46	1.07	1.10	2.03	1.99	4.11	4.13	4.20	4.28	4.54	4.76	200.22	209.69	164.17	171.93		.71	a a	(a)	a a	a a	a a	a
ediana	97.79	2.21	17.56	18.10	2.87	2.92	12.29	12.81	11.75	12.10	51.06	51.70	70.92	72.62	3126.66	3201.99	2563.60	2625.36	3.	.76	œ.	@	@	@	@	@
alor Máximo	99.32	14.35	21.62	22.04	4.46	4.52	17.88	18.23	23.32	23.62	56.45	58.03	76.53	77.45	3374.34	3414.98	2766.67	2799.99		.64	@	@	@	@	@	a a
alor Mínimo	85.65	0.68	15.43	15.88	1.18	1.22	10.39	10.84	8.31	8.41	43.45	44.33	59.77	60.18	2635.20	2653.25	2160.64	2175.43	3.	.25	@	@	@	@	@	@
											С	UAD	R O	47												
Maíz amarillo, grano					An	nálisis Qu	iímico Pro	oximal (%)						Energía	(Kcal/Kg)			Mineral	es(%BS)	Fr	acciones		ora (Van	Soest)(%	BS)
nálisis	MS	Н	PC (BH)	PC(BS)	EE (BH)	EE (BS)		C (BS)	FC (BH)	FC (BS)	ELN (BH)	ELN (BS)	TND (BH)	TND (BS)	E.D.(BH)	E.D.(BS)	E.M.(BH)	E.M.(BS)	Ca	P	FND	Cont.Cel.			Celulosa	
	35	35	35	35	35	35	35	35	35	35	35	35	35	35	35	35	35	35	1	1	@	@	@	@	@	@
omedio	90.67	9.34	7.46	8.23	4.72 1.49	5.20	1.18	1.31	1.87	2.07	75.44	83.20	83.98	92.62	3702.47	4083.48	3035.70	3348.10	0.26	0.23	@	@	@	@	@	@
esv. Estándar ediana	1.38 90.62	1.38 9.38	0.53 7.39	0.58 8.21	1.49 4.57	1.62 4.94	0.24 1.16	0.27 1.28	0.96 1.73	1.05	2.21 75.21	2.17 82.95	2.19 83.37	1.84 92.24	96.63 3675.57	81.20 4066.69	79.23 3013.65	66.57 3334.33	0.26	0.23	@	@	@	@	@	@
ediana alor Máximo	93.90	9.38	9.01	10.00	7.83	8.53	1.16	1.28	5.52	5.98	82.63	82.95	88.91	92.24	3920.25	4257.86	3013.63	3491.08	0.26	0.23	<u>@</u>	@ @	@ @	@	@	<u>a</u>
alor Mínimo	88.19		6.51	7.12	1.37	1.49	0.25	0.27	0.75	0.83	70.80	79.51	80.13	87.07	3532.80	3839.10	2896.59	3147.73	0.26	0.23	<u>a</u>	@	<u>@</u>	@ @	0	@ @
	55.15	, 0.10	0.01			1 1110	Julio	J. J.		0.00		UAD		48	DODELOG	55557.10	LOVOIOV		- OILO	JILO .						
Maíz amarillo, molido					Δr	nálicie Ou	iímico Pr	oximal (%	١	1		- 7 0			Energía	(Kcal/Kn)			Mineral	es(%RS)	Fr	acciones	de la Fih	nra (Van	Snest)/º/	RS)
nálisis	MS	Н	PC (BH)	PC(BS)	EE (BH)	EE (BS)	C (BH)	C (BS)	FC (BH)	FC (BS)	ELN (BH)	ELN (BS)	TND (BH)	TND (BS)	E.D.(BH)	E.D.(BS)	E.M.(BH)	E.M.(BS)	Ca	P	FND	Cont.Cel.	FAD	Lignina	Celulosa	Hemi
	11	11	10	10	9	9	9	9	9	9	9	9	9	9	9	9	9	9	1	1	1	1	1	1	1	1
romedio	90.97	9.03	7.85	8.62	4.40	4.82	1.84	2.00	2.57	2.81	74.61	81.70	83.27	91.19	3809.92	4173.45	3012.24	3298.47	3.64	0.26	81.70	18.30	5.36	1.82	2.44	76.3
esv. Estándar lediana	2.08 90.55	2.08	1.01 7.47	1.21 8.19	1.02 4.17	1.10 4.61	0.84 1.48	0.89 1.56	0.99	1.05 2.92	2.67 74.57	2.17 81.96	2.09 82.96	1.23 91.13	418.13 3678.23	466.26 4017.91	83.11 2998.90	45.10 3298.80	3.64	0.26	@ 81.70	18.30	@ 5.36	1.82	2.44	76.2
alor Máximo	95.18	9.45	9.67	10.73	5.70	6.05	3.83	4.06	2.66 4.23	4.44	78.86	85.66	86.03	93.77	4897.00	5408.06	3139.95	3389.75	3.64	0.26	81.70	18.30	5.36	1.82	2.44	76.3 76.3
alor Mínimo	88.60	4.83	6.32	6.86	2.92	3.18	1.11	1.22	1.01	1.12	71.15	78.95	80.21	89.97	3536.37	3958.72	2899.52	3238.95	3.64	0.26	81.70	18.30	5.36	1.82	2.44	76.3
											С	UAD	R O	49												
Maíz blanco, quebrado					Δr	nálisis Qu	iímico Pro	oximal (%	1						Energía	(Kcal/Kg)			Mineral	es(%BS)	Fr	acciones	de la Fih	ora (Van	Snest)(%	BS)
nálisis	MS	Н	PC (BH)	PC(BS)	EE (BH)	EE (BS)	C (BH)	C (BS)	FC (BH)	FC (BS)	ELN (BH)	ELN (BS)	TND (BH)	TND (BS)	E.D.(BH)	E.D.(BS)	E.M.(BH)	E.M.(BS)	Ca	P	FND	Cont.Cel.	FAD	Lignina	71	
	15	15	15	15	15	15	15	15	15	15	15	15	15	15	15	15	15	15	2	2	1	1	1	1	1	1
romedio	90.41	9.59	7.84	8.67	4.64	5.11	1.49	1.65	2.92	3.23	73.52	81.34	82.89	91.68	3654.24	4041.49	2996.00	3313.49	0.88	0.16	58.88	41.12	10.32	2.06	7.75	48.5
esv. Estándar	1.59	1.59	0.61	0.65	1.44	1.53	0.45	0.49	0.83	0.91	1.84	2.42	2.56	1.70	113.48	75.76	92.67	60.76	0.06	0.04	@	@	@	@	@	@
ediana	90.38	9.62	7.98	8.69	4.41	4.86	1.33	1.47	2.82	3.12	73.40	81.47	82.45	92.14	3635.36	4062.31	2980.68	3330.74	0.88	0.16	58.88	41.12	10.32	2.06	7.75	48.5
alor Máximo alor Mínimo	94.39 87.61	12.39 5.61	9.17 7.11	10.15 7.83	8.11 2.15	8.59 2.34	2.59	2.87 1.15	4.34 0.99	4.80 1.12	76.03 69.68	86.08 77.10	89.89 80.14	95.24 88.99	3963.39 3533.20	4198.95 3923.47	3249.64 2896.92	3442.78 3216.91	0.92	0.19 0.13	58.88 58.88	41.12	10.32 10.32	2.06	7.75	48.5
ator millillio	10.10	3.01	611	1.03	2,13	2.34	1.04	1.13	0.33	1.12		U A D		50	3333.20	3523.41	2030.32	JZ 10.91	0.04	0.13	30,00	41.12	10.32	2.00	1.13	40.3
Maín valada						Allala C	úmila a Pr	i 1 .0/			· ·	UAD	R O	30	Fu aug!-	0(10()			Minarel	(0/ DC)	-		da la Pil-	0/	04/0/	DO)
Maíz rolado nálisis	MS	Н	DC /DU	DC/DC	EE (BH)	TAIISIS QU EE (BS)	IIMICO Pro	oximal (%		EC /BS	ELM (DIR	ELN (BS)	TND (BH)	TND (BS)	Energia E.D.(BH)	(Kcal/Kg) E.D.(BS)	E.M.(BH)	E.M.(BS)	Mineral	es(%BS)	FND	acciones Cont.Cel.	de la Fib		Soest)(% Celulosa	
alisis	7 MS	7	PC (BH)	PC(BS)	5 EE (BH)	5 EE (BS)	C (BH)	C (BS)	FC (BH)	FC (BS)	ELN (BH)	5 ELN (BS)	IND (BH)	1ND (BS)	E.D.(BH)	5 E.D.(BS)	E.M.(BH)	5 E.M.(BS)	2 Ca	2	ENU @	Cont.Cel.	(a)	Lignina @	Celulosa	Hemi
omedio	88.85	11.15	7.12	8.01	4.36	4.86	1.07	1.20	3.40	3.81	73.18	82.15	81.72	91.67	3603.09	4041.57	2954.22	3313.74	0.35	0.25	<u>a</u>	a a	a a	a a	<u>@</u>	- @
esv. Estándar	1.34	1.34	0.51	0.68	2.65	2.90	0.36	0.40	2.49	2.78	3.15	4.01	4.24	3.32	187.10	146.22	153.41	119.89	0.48	0.02	<u>@</u>	@	@	@ @	@	- @
ediana	88.33	11.67	7.15	8.07	5.33	5.96	1.10	1.23	2.43	2.68	73.81	83.12	81.31	90.95	3584.88	4009.93	2939.29	3287.80	0.35	0.25	e e	e e	ē	e e	e e	e e
alor Máximo	90.71	13.11	7.87	9.06	7.34	8.13	1.61	1.78	7.80	8.72	76.22	86.31	86.22	95.54	3801.55	4212.24	3116.94	3453.68	0.69	0.26	œ.	e e	œ.	@	e e	ē
olor Mínimo	86.89	9.29	6.30	6.95	1.25	1.42	0.61	0.67	1.79	1.98	68.25	76.34	77.32	88.17	3409.03	3887.61	2795.11	3187.50	0.01	0.23	æ	@	@	@	œ.	ı @
												UAD		51												

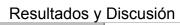
												Alimentos	Energéti	cos												
Maíz, tortilla de					Ar	nálisis Qu	ıímico Pro	oximal (%)	n						Energía	(Kcal/Kg)			Minera	les(%BS)	Fr	acciones	de la Fib	ora (Van S	Soest)(%I	BS)
Análisis	MS	Н	PC (BH)	PC(BS)	EE (BH)	EE (BS)		C (BS)	FC (BH)	FC (BS)	ELN (BH)	ELN (BS)	TND (BH)	TND (BS)	E.D.(BH)	E.D.(BS)	E.M.(BH)	E.M.(BS)	Ca	P	FND	Cont.Cel.		Lignina		
	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	2	@	@	@	@	@	1
omedio sv. Estándar	58.05 2.49	41.95 2.49	6.14 1.21	10.52 1.62	2.42 0.16	4.17 0.21	0.37	2.42 0.52	2.14	3.63	45.94 1.67	79.26 4.99	51.92 1.40	89.48 1.74	2289.24 61.59	3945.29 76.63	1876.98 50.50	3234.79 62.83	0.49	0.37 0.06	<u>@</u>	@	@	@	@	9
ediana	57.86	42.14	5.97	10.32	2.40	4.27	1.26	2.18	1.65	2.96	45.45	81.64	52.37	90.45	2309.18	3988.06	1893.33	3269.86	0.62	0.37	@	@ @	a a	a a	<u>a</u>	
lor Máximo	60.63	44.33	7.42	12.24	2.59	4.31	1.83	3.02	4.21	6.94	47.80	82.61	53.04	90.52	2338.39	3990.98	1917.28	3272.26	0.62	0.41	œ.	e e	œ.	e e	œ.	9
or Mínimo	55.67	39.37	5.02	9.02	2.27	3.92	1.15	2.07	0.56	0.97	44.58	73.53	50.36	87.48	2220.15	3856.82	1820.33	3162.26	0.24	0.32	@	@	@	@	@	(
											c	UAD	R O	52												
Melaza de caña					۸۰	nálicie ∩ı	iímico Dr	oximal (%)	r:						Energía	(Kcal/Kg)			Minera	les(%BS)	Er	acciones	de la Fil	ra Man G	Spect)(%	BG)
ilisis	MS	Н	PC (BH)	PC(BS)	EE (BH)	EE (BS)	C (BH)	C (BS)	FC (BH)	FC (BS)	ELN (BH)	ELN (BS)	TND (BH)	TND (BS)	E.D.(BH)	E.D.(BS)	E.M.(BH)	E.M.(BS)	Ca	P	FND	Cont.Cel.	FAD		Celulosa	
	6	6	5	5	5	5	6	6	4	4	4	4	4	4	4	4	4	4	4	4	@	@	@	@	@	(6
medio	80.63	19.37	7.20	8.65	2.67	3.20	8.37	10.58	1.67	1.98	61.95	75.05	69.30	83.72	3360.10	4080.69	2505.17	3026.43	2.21	0.20	@	@	@	@	@	(
ev. Estándar diana	4.28 80.50	4.28 19.50	5.51 4.20	6.41 5.37	2.03	2.32	4.39 10.25	5.71 13.36	2.03	2.44 1.33	4.28 61.92	4.83 75.01	8.45 68.56	6.83 83.04	434.95 3345.38	629.43 3940.36	305.59 2478.31	246.90 3001.97	1.87	0.14 0.16	@	@	@	@	@	1
diana Ior Máximo	87.01	25.15	13.66	16.52	5.56	6.39	12.64	16.16	4.30	5.20	66.68	80.90	79.75	91.65	3879.00	4959.09	2882.89	3313.29	4.72	0.16	<u>@</u>	@	@	@	@	-
or Mínimo	74.85		2.61	3.32	0.63	0.80	2.24	2.57	0.06	0.08	57.30	69.30	60.34	77.14	2870.63	3482.93	2181.17	2788.51	0.72	0.08	@	@	@	@ @	@	6
												UAD		53												
Miel de abeia					Ar	nálisis Qu	ıímico Pro	oximal (%)	is						Energía	(Kcal/Kg)			Minera	les(%BS)	Fr	acciones	de la Fit	ora (Van S	Soest)(%I	BS)
álisis	MS	Н	PC (BH)	PC(BS)	EE (BH)	EE (BS)	C (BH)	C (BS)	FC (BH)	FC (BS)	ELN (BH)	ELN (BS)	TND (BH)	TND (BS)	E.D.(BH)	E.D.(BS)	E.M.(BH)	E.M.(BS)	Ca	Р	FND	Cont.Cel.	FAD	Lignina	Celulosa	Hen
	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	@	@	@	@	@	@	@	(
nedio v. Estándar	79.82 1.89	20.19	0.35 0.01	0.43	0.17	0.18	0.21	0.26 0.04	0.00	0.00	79.10 1.87	99.14 0.04	71.79 1.75	89.94 0.06	3165.15 77.11	3965.58	2595.15 63.23	3251.43	<u>@</u>	<u>@</u>	<u>@</u>	<u>@</u>	<u>@</u>	@	@	6
v. Estandar liana	79.82	20.19	0.01	0.00	0.03	0.18	0.02	0.04	0.00	0.00	79.10	99.14	71.79	89.94	3165.15	2.81 3965.58	2595.15	2.31 3251.43	@	@	<u>@</u>	@	@	@	@	1
			0.35	0.43	0.19	0.23	0.22	0.28	0.00	0.00	80.42	99.17	73.03	89.99	3219.68	3967.57	2639.86			<u>@</u>	<u>@</u>	@	a a	<u>e</u>	<u>@</u>	1
er maximo	81.15												73.03	03.33		3907.37	2039.00	3253.07	(a)							
	78.48			0.43	0.15	0.12	0.19	0.23	0.00	0.00	77.77	99.11	70.55	89.90	3110.63	3963.59	2550.45	3249.80	@	@	@	@	@	e e	e e	(
											77.77		70.55													(0
lor Mínimo Saccharina				0.43	0.15	0.12 nálisis Qu	0.19 Iímico Pro	0.23 oximal (%)	0.00	0.00	<i>n.n</i>	99.11 U A D	70.55 R O	89.90 54	3110.63 Energía	3963.59 (Kcal/Kg)	2550.45	3249.80	@ Minera	@ les(%BS)	@ Fr	@ acciones	@ de la Fib	@ ora (Van S	© Soest)(%I	BS)
or Mínimo Saccharina	78.48 MS	18.85	0.34 PC (BH)	0.43	0.15 Ar EE (BH)	0.12 nálisis Qu	0.19 Iímico Pro	0.23 oximal (%) C (BS)	0.00 FC (BH)	0.00 FC (BS)	77.77 C	99.11 U A D	70.55 R O	89.90 54 TND (BS)	3110.63 Energía E.D.(BH)	3963.59 (Kcal/Kg) E.D.(BS)	2550.45 E.M.(BH)	3249.80 E.M.(BS)	@ Minera	les(%BS)	@ Fr	acciones Cont.Cel.	@ de la Fib	@ ora (Van S Lignina	© Soest)(%l	BS)
or Mínimo Saccharina álisis	78.48 MS 4	18.85	0.34 PC (BH)	0.43 PC(BS)	0.15 Ar EE (BH) 4	0.12 nálisis Qu	0.19 límico Pro C (BH) 4	0.23 oximal (%) C (BS) 4	0.00 FC (BH)	0.00 FC (BS)	77.77 C ELN (BH) 4	99.11 U A D	70.55 R O	54 TND (BS)	Energía E.D.(BH)	3963.59 (Kcal/Kg) E.D.(BS) 4	2550.45 E.M.(BH)	3249.80 E.M.(BS)	Minera Ca @	les(%BS)	@ Fr FND @	acciones Cont.Cel.	de la Fib	@ ora (Van S	© Soest)(%I Celulosa @	Hem
or Minimo Saccharina Slisis	78.48 MS 4 94.95	18.85 H 4 5.05	0.34 PC (BH) 4 8.86	PC(BS) 4 9.36	0.15 Ar EE (BH) 4 2.28	0.12 nálisis Qu EE (BS) 4 2.39	0.19 uímico Pro C (BH) 4 4.31	0.23 oximal (%) C (BS) 4 4.52	0.00 FC (BH) 4 27.18	0.00 FC (BS) 4 28.57	77.77 C ELN (BH) 4 52.34	99.11 U A D	70.55 R O TND (BH) 4 64.10	89.90 54 TND (BS) 4 67.51	3110.63 Energía E.D.(BH) 4 2821.35	3963.59 (Kcal/Kg) E.D.(BS) 4 2972.15	E.M.(BH) 4 2309.61	3249.80 E.M.(BS) 4 2433.08	Minera Ca @	les(%BS)	Fr FND @	acciones Cont.Cel.	de la Fili	@ Ora (Van S Lignina @ @	© Soest)(%I Celulosa @	BS)
Saccharina Silisis umedio sv. Eständar	78.48 MS 4	18.85	0.34 PC (BH)	0.43 PC(BS)	0.15 Ar EE (BH) 4	0.12 nálisis Qu	0.19 límico Pro C (BH) 4	0.23 oximal (%) C (BS) 4	0.00 FC (BH)	0.00 FC (BS)	77.77 C ELN (BH) 4	99.11 U A D	70.55 R O	54 TND (BS)	Energía E.D.(BH)	3963.59 (Kcal/Kg) E.D.(BS) 4	2550.45 E.M.(BH)	3249.80 E.M.(BS)	Minera Ca @	les(%BS)	@ Fr FND @	acciones Cont.Cel.	de la Fib	@ ora (Van S	© Soest)(%I Celulosa @	BS) Hem
Saccharina Silisis omedio ov. Estándar diana	MS 4 94.95 2.22 94.53 97.79	H 4 5.05 2.22 5.48 7.03	0.34 PC (BH) 4 8.86 3.17 7.65 13.54	PC(BS) 4 9.36 3.50 7.90 14.56	0.15 Ar EE (BH) 4 2.28 0.94 2.58 2.98	0.12 nálisis Qu EE (BS) 4 2.39 0.99 2.67 3.19	0.19 nímico Pro C (BH) 4 4.31 1.21 4.76 5.20	0.23 Oximal (%) C (BS) 4 4.52 1.22 5.03 5.32	0.00 FC (BH) 4 27.18 6.34 28.45 33.44	0.00 FC (BS) 4 28.57 6.43 29.78 34.97	77.77 C ELN (BH) 4 52.34 4.61 52.35 57.58	99.11 U A D ELN (BS) 4 55.16 5.27 54.73 61.93	70.55 R O TND (BH) 4 64.10 0.96 64.02 65.23	89.90 54 TND (BS) 4 67.51 1.33 67.12 69.38	3110.63 Energía E.D.(BH) 4 2821.35 43.00 2819.66 2869.68	3963.59 (Kcal/Kg) E.D.(BS) 4 2972.15 61.50 2953.09 3059.05	2550.45 E.M.(BH) 4 2309.61 36.12 2309.46 2347.92	3249.80 E.M.(BS) 4 2433.08 52.82 2416.16 2508.16	Minera Ca @ @ @ @ @ @ @ @ @ @ @	@ les(%BS) P @ @ @	Fr FND @ @ @	acciones Cont.Cel. @ @ @ @ @	de la Fili	Pra (Van S	© Soest)(%I Celulosa @ @ @ @ @	BS) Hem
Saccharina Silisis medio v. Estándar diana	MS 4 94.95 2.22 94.53	H 4 5.05 2.22 5.48	0.34 PC (BH) 4 8.86 3.17 7.65	PC(BS) 4 9.36 3.50 7.90	0.15 Ar EE (BH) 4 2.28 0.94 2.58	0.12 nálisis Qu EE (BS) 4 2.39 0.99 2.67	0.19 1/mico Pro C (BH) 4 4.31 1.21 4.76	0.23 Oximal (%) C (BS) 4 4.52 1.22 5.03	0.00 FC (BH) 4 27.18 6.34 28.45	0.00 FC (BS) 4 28.57 6.43 29.78	77.77 C ELN (BH) 4 52.34 4.61 52.35	99.11 U A D ELN (BS) 4 55.16 5.27 54.73	70.55 R O TND (BH) 4 64.10 0.96 64.02	54 TND (BS) 4 67.51 1.33 67.12	3110.63 Energía E.D.(BH) 4 2821.35 43.00 2819.66	3963.59 (Kcal/Kg) E.D.(BS) 4 2972.15 61.50 2953.09	2550.45 E.M.(BH) 4 2309.61 36.12 2309.46	3249.80 E.M.(BS) 4 2433.08 52.82 2416.16	Minera Ca @ @ @ @ @ @ @ @ @	@ les(%BS) P @ @	Fr FND @ @ @	acciones Cont.Cel. @ @ @	de la Fili	Pra (Van S	Celulosa @ @ @ @ @ @ @ @ @ @	BS) Hem
Saccharina álisis omedio sv. Estándar diana	MS 4 94.95 2.22 94.53 97.79	H 4 5.05 2.22 5.48 7.03	0.34 PC (BH) 4 8.86 3.17 7.65 13.54	PC(BS) 4 9.36 3.50 7.90 14.56	0.15 Ar EE (BH) 4 2.28 0.94 2.58 2.98	0.12 nálisis Qu EE (BS) 4 2.39 0.99 2.67 3.19	0.19 nímico Pro C (BH) 4 4.31 1.21 4.76 5.20	0.23 Oximal (%) C (BS) 4 4.52 1.22 5.03 5.32	0.00 FC (BH) 4 27.18 6.34 28.45 33.44	0.00 FC (BS) 4 28.57 6.43 29.78 34.97	77.77 C ELN (BH) 4 52.34 4.61 52.35 57.58 47.07	99.11 U A D ELN (BS) 4 55.16 5.27 54.73 61.93	70.55 R O TND (BH) 4 64.10 0.96 64.02 65.23 63.11	89.90 54 TND (BS) 4 67.51 1.33 67.12 69.38	3110.63 Energía E.D.(BH) 4 2821.35 43.00 2819.66 2869.68	3963.59 (Kcal/Kg) E.D.(BS) 4 2972.15 61.50 2953.09 3059.05	2550.45 E.M.(BH) 4 2309.61 36.12 2309.46 2347.92	3249.80 E.M.(BS) 4 2433.08 52.82 2416.16 2508.16	Minera Ca @ @ @ @ @ @ @ @ @ @ @	@ les(%BS) P @ @ @	Fr FND @ @ @	acciones Cont.Cel. @ @ @ @ @	de la Fili	Pra (Van S	© Soest)(%I Celulosa @ @ @ @ @	BS) Hem
Saccharina álisis omedio sv. Estándar diana lor Máximo Sorgo, grano	78.48 MS 4 94.95 2.22 94.53 97.79 92.97	18.85 H 4 5.05 2.22 5.48 7.03 2.21	PC (BH) 4 8.86 3.17 7.65 13.54 6.60	PC(BS) 4 9.36 3.59 14.56 7.06	0.15 Ar EE (BH) 4 2.28 0.94 2.58 2.98 0.98	0.12 nálisis Qu EE (BS) 4 2.39 2.67 3.19 1.05	0.19 ifmico Pro C (BH) 4 4.31 1.21 4.76 5.20 2.51	0.23 oximal (%) C (BS) 4 4.52 1.22 5.03 5.32 2.70 oximal (%)	FC (BH) 4 27.18 6.34 28.45 33.44 18.36	0.00 FC (BS) 4 28.57 6.43 29.78 34.97 19.75	77.77 C ELN (BH) 4 52.35 57.58 47.07 C	99.11 U A D ELN (8S) 4 55.16 5.27 54.73 61.93 49.23 U A D	70.55 R O TND (BH) 4 64.10 0.96 64.02 65.23 63.11 R O	54 TND (BS) 4 67.51 1.33 67.12 69.38 66.44 55	3110.63 Energía E.D.(BH) 4 2821.35 43.00 2819.66 2869.68 2776.40 Energía	3963.59 (Kcal/Kg) E.0.(BS) 4 2972.15 61.50 2953.09 3059.05 2923.36 (Kcal/Kg)	E.M.(BH) 4 2309.61 36.12 2309.46 2347.92 2271.60	3249.80 E.M.(BS) 4 2433.08 52.82 2416.16 2508.16 2391.84	Minera Ca @ @ @ @ @ @ @ Minera	Es(%BS)	Fr FND @ @ @ @	acciones Cont.Cel. @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @	de la Fik	ora (Van S Lignina @ @ @ @ @	Soest)(% Celulosa @ @ @ @ @ @ @	BS) Hem @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @
Saccharina Silisis medio ». Estándar didiana on Máximo or Minimo Sorgo, grano	78.48 MS 4 94.95 2.22 94.53 97.79 92.97	18.85 H 4 5.05 2.22 5.48 7.03 2.21	PC (BH) 4 8.86 3.17 7.65 13.54 6.60	PC(BS) 4 9.36 3.50 7.90 14.56 7.06	0.15 Ar EE (BH) 4 2.28 0.94 2.58 2.98 0.98	0.12 málisis QU EE (8S) 4 2.39 0.99 2.67 3.19 1.05	0.19 símico Pro C (8H) 4 4.31 1.21 4.76 5.20 2.51 símico Pro C (8H)	0.23 Oximal (%)	FC (BH) 4 27.18 6.34 23.34 18.36	0.00 FC (BS) 4 28.57 6.43 29.78 34.97 19.75	77.77 C ELN (BH) 4 4.61 52.35 57.58 47.07 C	99.11 U A D ELN (BS) 4 55.16 5.27 54.73 61.93 49.23 U A D	70.55 R O TND (BH) 4 64.10 0.96 64.02 65.23 63.11 R O	54 TND (8S) 4 67.51 1.33 67.12 69.38 66.44 55	Energía E.O.(BH) 4 2821.35 43.00 2819.66 2869.68 2776.40 Energía E.D.(BH)	(Kcal/Kg) E.D.(BS) 4 2972.15 61.50 2953.09 3059.05 2923.36 (Kcal/Kg) E.D.(BS)	E.M.(8H) 4 2309.61 36.12 2309.46 2347.92 2271.60	E.M.(BS) 4 2433.08 52.02 2416.16 2500.16 2391.84	Minera Ca @ @ @ @ @ Minera Ca	les(%BS) P @ @ @ @ @ @ @ @ @ les(%BS)	Fr FND @ @ @ @ @ Fr FND	acciones Cont.Cel. @ @ @ @ @ @ @ @ acciones	de la Fik FAD @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @	e Cora (Van S	© Soest){% Celulosa @ @ @ @ @ @ @ Coest){% Celulosa	BS) Hem 6 6 6 6 8 BS)
Saccharina Saccharina álisis omedio sv. Estándar diana lor Máximo lor Mínimo Sorgo, grano álisis	78.48 MS 4 94.95 2.22 94.53 97.79 92.97	18.85 H 4 5.05 2.22 5.48 7.03 2.21	PC (BH) 4 8.86 3.17 7.65 13.54 6.60	PC(BS) 4 9.36 3.59 14.56 7.06	0.15 Ar EE (BH) 4 2.28 0.94 2.58 2.98 0.98	0.12 nálisis Qu EE (BS) 4 2.39 2.67 3.19 1.05	0.19 ifmico Pro C (BH) 4 4.31 1.21 4.76 5.20 2.51	0.23 oximal (%) C (BS) 4 4.52 1.22 5.03 5.32 2.70 oximal (%)	FC (BH) 4 27.18 6.34 28.45 33.44 18.36	0.00 FC (BS) 4 28.57 6.43 29.78 34.97 19.75	77.77 C ELN (BH) 4 52.35 57.58 47.07 C	99.11 U A D ELN (8S) 4 55.16 5.27 54.73 61.93 49.23 U A D	70.55 R O TND (BH) 4 64.10 0.96 64.02 65.23 63.11 R O	54 TND (BS) 4 67.51 1.33 67.12 69.38 66.44 55	3110.63 Energía E.D.(BH) 4 2821.35 43.00 2819.66 2869.68 2776.40 Energía	3963.59 (Kcal/Kg) E.0.(BS) 4 2972.15 61.50 2953.09 3059.05 2923.36 (Kcal/Kg)	E.M.(BH) 4 2309.61 36.12 2309.46 2347.92 2271.60	3249.80 E.M.(BS) 4 2433.08 52.82 2416.16 2508.16 2391.84	Minera Ca @ @ @ @ @ @ @ Minera	Es(%BS)	Fr FND @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @	acciones Cont.Cel. @ @ @ @ @ @ @ @ @ Cont.Cel. @ @ @ @ @ @ @ @ @ Cont.Cel.	de la Fik FAD @ @ @ @ @ @ @ @ de la Fik FAD	ora (Van S Lignina @ @ @ @ @	© Soest){% Celulosa @ @ @ @ @ @ @ @ Celulosa @	BS) Hem 6 6 6 8 8 Hem 6 6
Saccharina Sitisis medio v. Estándar diana or Miximo for Minimo Sorgo, grano áltisis	78.48 MS 4 94.95 2.22 94.53 97.79 92.97	18.85 H 4 5.05 2.22 5.48 7.03 2.21	PC (BH) 4 8.86 3.17 7.65 13.54 6.60	PC(BS) 4 9.36 3.50 7.96 7.96	0.15 AI EE (BH) 4 2.28 0.94 2.58 2.98 0.98 AI EE (BH) 53	0.12 málisis QU EE (BS) 4 2.39 2.67 3.19 1.05	0.19 símico Pro C (BH) 4 4.31 1.21 4.76 5.20 2.51 símico Pro C (BH) 53	0.23 oximal (%) C (BS) 4 4.52 1.22 5.03 5.32 2.70 oximal (%) C (BS) 53	0.00 FC (BH) 4 27.18 6.34 28.45 33.44 18.36	FC (BS) 4 28.57 6.43 29.78 34.97 19.75	77.77 C ELN (BH) 4 52.34 4.61 57.58 47.07 C	99.11 U A D ELN (BS) 4 55.16 5.27 5.16 5.27 49.23 U A D	70.55 R O TND (BH) 4 64.10 0.96 65.23 63.11 R O	89.90 54 TND (BS) 4 67.51 1.33 67.12 69.38 66.44 55	Energía E.D.(BH) 4 2821.35 43.00 2819.68 2776.40 Energía E.D.(BH) 52	(Kcal/Kg) E.D.(BS) 4 2972.15 61.50 2923.36 (Kcal/Kg) E.D.(BS) 52	E.M.(BH) 4 2309.61 36.12 2309.45 2304.59 2271.60	E.M.(BS) 4 2433.08 52.82 2508.16 2508.16 2391.84	Mineral Ca @ @ @ @ @ @ @ @ @ Mineral Ca 4	es(%BS)	Fr FND @ @ @ @ @ Fr FND	acciones Cont.Cel. @ @ @ @ @ @ @ @ acciones	de la Fik FAD @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @	e Cora (Van S	© Soest){% Celulosa @ @ @ @ @ @ @ Coest){% Celulosa	BS) Hem BS) Hem
Saccharina Saccharina ilisis medio W. Estándar diana or Máximo or Mínimo Sorgo, grano ilisis medio W. Estándar diana	78.48 MS 4 94.95 2.22 94.53 97.79 92.97 MS 57 90.39 90.25	H 4 5.05 2.22 5.48 7.03 2.21 H 57 9.61 1.59 9.75	PC (BH) 4 8.86 3.17 7.65 13.54 6.60 PC (BH) 54 8.22 0.97 8.19	PC(BS) 4 9.36 7.90 14.56 7.06 PC(BS) 54 9.09 1.04	0.15 Ar EE (BH) 4 2.28 0.94 2.58 2.98 0.98 Ar EE (BH) 53 3.84 1.83 3.41	0.12 nálisis Qu EE (BS) 4 2.39 0.99 2.67 3.19 1.05 álisis Qu EE (BS) 53 4.24 1.95	0.19 umico Pro C (BH) 4 4.31 1.21 4.76 5.20 2.51 umico Pro C (BH) 53 1.88 1.88 1.88 1.88 1.38	0.23 DXimal (%) C (BS) 4 4.52 5.03 5.32 2.70 DXimal (%) C (BS) 53 1.87 1.35	FC (BH) 4 27.18 6.34 28.45 33.44 18.36 FC (BH) 53 2.72 0.92 2.53	FC (BS) 4 28.57 6.43 29.78 34.97 19.75 FC (BS) 53 3.01 1.03 2.83	77.77 C ELN (BH) 4 52.35 57.58 47.07 C ELN (BH) 52.35 71.28 47.07 C	99.11 U A D ELN (BS) 4 55.16 52.7 54.73 49.23 U A D ELN (BS) 52 81.69 3.09 82.37	70.55 R O TND (BH) 4 64.10 0.96 64.02 65.23 63.11 R O TND (BH) 52 81.46 2.85	89.90 54 TND (BS) 4 67.51 1.33 67.12 69.38 66.44 55 TND (BS) 52 90.14 2.50 90.07	Energía E.D.(BH) 4 2821.35 43.90 2819.66 2069.68 2776.40 Energía E.D.(BH) 52 3591.41 125.33 3579.94	(Kcal/Kg) E.0.(BS) 4 2972.16 61.50 2953.09 3059.05 2923.36 (Kcal/Kg) 52 3973.89 110.33 3970.77	E.M.(BH) 4 239.46 2347.92 2271.60 E.M.(BH) 52 2944.88 102.85 2935.50	E.M.(BS) 4 243.08 52.02 2416.16 2500.16 2391.84 E.M.(BS) 52 3258.51 90.44	@ Mineral Ca @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @	les(%BS) P @ @ @ @ @ @ @ p p p p p p p p p p p p	Fr FND @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @	acciones Cont.Cel. @ @ @ @ @ @ @ Cont.Cel. @ @ @ @ @ @ @ Cont.Cel. @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @	de la Fik FAD @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @	ora (Van S Lignina @ @ @ @ @ @ @ @ Dra (Van S Lignina @	© Soest)(%) Celulosa @ @ @ @ @ @ @ Celulosa @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @	BS) Hem 6 6 6 6 8 BS) Hem 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6
Saccharina slisis medio w. Estándar diana or Minimo Sorgo, grano slisis medio w. Estándar diana or Minimo	78.48 MS 4 94.95 2.22 94.53 97.79 92.97 MS 57 90.39 1.59 90.25 94.14	H 4 5.05 2.25 5.48 7.03 2.21 H 57 9.61 1.59 9.75 12.99	PC (BH) 4 8.86 3.17 7.65 13.54 6.60 PC (BH) 54 8.22 0.97 8.19 11.25	PC(BS) 4 9.36 3.50 7.90 14.56 7.06 PC(BS) 54 9.09 1.04 9.10 9.10 9.10 9.10 9.10	0.15 Ar EE (BH) 4 2.28 2.98 2.98 0.98 Ar EE (BH) 53 3.84 1.83 3.41 11.34	0.12 Adisis Qu EE (8S) 4 2.39 2.67 3.19 1.05 Adisis Qu EE (8S) 53 4.24 1.95 3.81 12.11	0.19 Limico Pro C (BH) 4 4.31 1.21 4.76 5.20 2.51 Limico Pro C (BH) 53 1.88 1.80 1.30 1.130	0.23 Dximal (%) C (BS) 4 4.52 1.22 5.03 5.32 2.70 Dximal (%) C (BS) 1.87 1.35 1.51 8.39	FC (BH) 4 27.18 6.34 28.45 18.36 FC (BH) 53 2.72 0.92 2.53 6.24	FC (BS) 4 28.57 6.43 29.78 34.97 19.75 FC (BS) 53 3.01 1.03 2.83 7.10	77.77 C ELN (BH) 4 52.34 4.61 52.35 57.58 47.07 C ELN (BH) 52 73.81 2.75 74.22 77.51	99.11 U A D ELN (BS) 4 55.16 5.27 54.73 61.93 49.23 U A D ELN (BS) 52 81.69 3.09 62.37 85.02	70.55 R O TND (BH) 4 64.10 0.96 64.02 65.23 63.11 R O TND (BH) 52 81.46 2.85 81.20 90.68	89.90 54 TND (BS) 4 67.51 1.33 67.12 69.38 66.44 55 TND (BS) 52 90.14 2.50 90.07 96.61	Energía E.D.(BH) 4 2821-35 43.00 2819-36 2776.40 Energía E.D.(BH) 52 3591-41 125-53 3579.94	(Kcal/Kg) E.D.(BS) 4 2972.15 61.50 2953.09 3059.05 2923.36 (Kcal/Kg) E.D.(BS) 52 3973.89 110.33 3970.77 4259.66	E.M.(BH) 4 2309.61 36.12 2309.61 36.12 2307.60 2247.60 E.M.(BH) 52 294.88 102.85 293.50 293.50	E.M.(BS) 4 52.82 2416.16 2391.84 E.M.(BS) 52.82 3258.51 90.44 3256.02 3492.55	Mineral Ca @ @ @ @ @ Mineral Ca 4 0.33 0.48 0.13 1.04	@	Fr FND @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @	acciones Cont.Cel. acciones Cont.Cel. acciones Cont.Cel. acciones	de la Fik FAD @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @	Pora (Van S Lignina @ @ @ @ @ @ @ @ @ @ @ @ @ @ @	© Soest)(% Celulosa @ @ @ @ @ @ Celulosa @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @	BS) Hem 6 6 6 6 8 BS) Hem 6 6 6 6 6 6 6 6 6 6 6 6 6 6
álisis omedio sv. Estándar ediana olor Máximo Oor Mínimo	78.48 MS 4 94.95 2.22 94.53 97.79 92.97 MS 57 90.39 90.25	H 4 5.05 2.25 5.48 7.03 2.21 H 57 9.61 1.59 9.75 12.99	PC (BH) 4 8.86 3.17 7.65 13.54 6.60 PC (BH) 54 8.22 0.97 8.19	PC(BS) 4 9.36 7.90 14.56 7.06 PC(BS) 54 9.09 1.04	0.15 Ar EE (BH) 4 2.28 0.94 2.58 2.98 0.98 Ar EE (BH) 53 3.84 1.83 3.41	0.12 nálisis Qu EE (BS) 4 2.39 0.99 2.67 3.19 1.05 álisis Qu EE (BS) 53 4.24 1.95	0.19 umico Pro C (BH) 4 4.31 1.21 4.76 5.20 2.51 umico Pro C (BH) 53 1.88 1.88 1.88 1.88 1.38	0.23 DXimal (%) C (BS) 4 4.52 5.03 5.32 2.70 DXimal (%) C (BS) 53 1.87 1.35	FC (BH) 4 27.18 6.34 28.45 33.44 18.36 FC (BH) 53 2.72 0.92 2.53	FC (BS) 4 28.57 6.43 29.78 34.97 19.75 FC (BS) 53 3.01 1.03 2.83	77.77 C ELN (BH) 4 52.35 57.58 47.07 C ELN (BH) 52.35 71.28 47.07 C	99.11 U A D ELN (BS) 4 55.16 52.7 54.73 49.23 U A D ELN (BS) 52 81.69 3.09 82.37	70.55 R O TND (BH) 4 64.10 0.96 64.02 65.23 63.11 R O TND (BH) 52 81.46 2.85	89.90 54 TND (BS) 4 67.51 1.33 67.12 69.38 66.44 55 TND (BS) 52 90.14 2.50 90.07	Energía E.D.(BH) 4 2821.35 43.90 2819.66 2069.68 2776.40 Energía E.D.(BH) 52 3591.41 125.33 3579.94	(Kcal/Kg) E.0.(BS) 4 2972.16 61.50 2953.09 3059.05 2923.36 (Kcal/Kg) 52 3973.89 110.33 3970.77	E.M.(BH) 4 239.46 2347.92 2271.60 E.M.(BH) 52 2944.88 102.85 2935.50	E.M.(BS) 4 243.08 52.02 2416.16 2500.16 2391.84 E.M.(BS) 52 3258.51 90.44	@ Mineral Ca @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @	les(%BS) P @ @ @ @ @ @ @ p p p p p p p p p p p p	Fr FND @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @	acciones Cont.Cel. @ @ @ @ @ @ @ Cont.Cel. @ @ @ @ @ @ @ Cont.Cel. @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @	de la Fik FAD @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @	ora (Van S Lignina @ @ @ @ @ @ @ @ Dra (Van S Lignina @	© Soest)(%) Celulosa @ @ @ @ @ @ @ Celulosa @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @	BS) Hem @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @

Arenque					Ar	álicie Ou	ímico Dr	ximal (%)							Energía (Kcal/Kn)			Mineral	es(%BS)	F.	racciones	de la Eile	ra Man G	Coect\(0/	BS)
ilisis	MS	Н	PC (BH)	PC(BS)	EE (BH)	EE (BS)	C (BH)	C (BS)	FC (BH)	FC (BS)	ELN (BH)	ELN (BS)	TND (BH)	TND (BS)	E.D.(BH)	E.D.(BS)	E.M.(BH)	E.M.(BS)	Ca	p p	FND	Cont.Cel.		Lignina		
	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	@	@	@	@	@	@	@	(0
nedio r. Estándar	28.26	71.74 0.90	16.57 2.05	58.51 5.39	8.14 0.43	28.86	2.30 0.34	8.16 1.47	0.26 0.13	0.93 0.48	1.00 0.27	3.55 1.07	29.94 0.38	105.98 2.07	1320.15 16.84	4672.84 91.22	1082.41 13.81	3831.33 74.80	@	@	@	@	@	@ @	@	6
iana	28.40	71.60	16.74	58.96	8.12	28.58	2.21	7.78	0.32	1.13	1.01	3.56	30.07	105.87	1325.65	4667.80	1086.92	3827.19	e e	e	e e	e e	e e	<u> </u>	ē	6
or Máximo	29.09	72.70	18.52	63.66	8.58	31.42	2.67	9.78	0.35	1.28	1.26	4.62	30.25	108.11	1333.56	4766.48	1093.40	3908.11	@	@	@	@	@	@	@	(0
or Mínimo	27.30	70.91	14.44	52.91	7.73	26.57	2.01	6.91	0.11	0.38	0.72	2.48	29.51	103.97	1301.25	4584.25	1066.91	3758.69	@	@	@	@	@	@	@	(0
	_										С	UAD	R O	57					1							
Calamar	МС	Н	DC /DIB	DC/DC				oximal (%)		FC (DC)	ELN (BH)	FIN (DC)	TND (BH)	THE (DC)	Energía (Kcal/Kg) E.D.(BS)	E.M.(BH)	L M (DC)		es(%BS)		racciones Cont.Cel.	de la Fibi			
ilisis	MS 5	5 5	PC (BH)	PC(BS)	EE (BH)	EE (BS)	C (BH)	C (BS)	FC (BH)	FC (BS)	ELN (BH)	ELN (BS)	1 NU (BH)	TND (BS)	E.U.(BH)	5	E.M.(BH)	E.M.(BS)	Ca @	a a	FND @	© Cont.Cel.	(a)	Lignina @	Celulosa @	Hem
medio	22.87	77.12	15.87	69.42	2.46	10.72	1.68	7.34	0.10	0.42	2.77	12.11	19.42	84.88	856.39	3742.53	702.17	3068.55	@	e e	œ.	ē	œ.	œ.	@	(0
v. Estándar	0.91	0.90	0.52	2.42	0.31	0.97	0.14	0.52	0.08	0.33	0.34	1.35	1.01	1.21	44.67	53.19	36.62	43.61	@	@	@	@	@	@	@	(6
diana or Máximo	22.88	77.12 78.22	15.94 16.65	68.73 73.25	2.58	11.26 11.65	1.76 1.80	7.27 8.02	0.10 0.18	0.46	2.81 3.15	11.76 13.65	19.64 20.82	85.47 85.95	865.84 917.82	3768.57 3789.52	709.91 752.53	3089.90 3107.08	@	@	@	@	@	@ @	@	6
or Mínimo	21.76	75.78	15.39	66.68	2.04	9.38	1.46	6.71	0.01	0.04	2.24	10.29	18.15	83.42	800.32	3677.95	656.19	3015.60	a a	a a	<u>@</u>	- @	a l	<u>@</u>	@	6
												UAD		58												
Canola					Δr	álicic Ou	ímico Dr	oximal (%)	r.			• A D	K U		Energía (Keal/Ka)			Mineral	es(%BS)	F	racciones	de la Fibi	ra (Van S	Coact)(0/	BC)
ilisis	MS	Н	PC (BH)	PC(BS)	EE (BH)	EE (BS)		C (BS)	FC (BH)	FC (BS)	ELN (BH)	ELN (BS)	TND (BH)	TND (BS)	E.D.(BH)	E.D.(BS)	E.M.(BH)	E.M.(BS)	Ca	P	FND	Cont.Cel.	FAD		Celulosa	
	4	4	4	4	3	3	3	3	3	3	3	3	3	3	3	3	3	3	1	1	@	@	@	@	@	(0
medio v. Estándar	93.41	6.59 2.24	36.39 4.71	38.92 4.62	3.48 2.09	3.76 2.35	7.24 0.96	7.76 0.83	12.96 0.91	13.95	35.30 2.86	37.89 2.24	70.88 1.79	76.18 2.60	3125.21 78.91	3358.66 114.77	2562.40 64.70	2753.81 94.10	0.86 @	1.43	@	@	@	@	@	6
diana	93.72	6.29	34.94	37.02	3.25	3.39	6.81	7.32	13.11	14.09	36.87	38.69	71.53	75.47	3153.96	3327.46	2585.97	2728.23	0.86	1.43	@	@ @	a a	@	@	6
or Máximo	95.74	9.52	43.23	45.80	5.68	6.28	8.34	8.72	13.79	15.24	37.04	39.62	72.25	79.06	3185.71	3485.80	2612.01	2858.06	0.86	1.43	e e	ē	e e	e e	e e	(6
or Mínimo	90.48	4.26	32.45	35.86	1.51	1.62	6.56	7.25	11.98	12.51	32.00	35.37	68.86	74.00	3035.96	3262.72	2489.23	2675.15	0.86	1.43	@	@	@	@	æ	(0
											С	UAD	R O	59												
Capelín					Ar	álisis Qu	ímico Pro	oximal (%)							Energía (Kcal/Kg)			Mineral	es(%BS)	Fi	racciones		ra (Van S	Soest)(%	BS)
ilisis	MS	H	PC (BH)	PC(BS)	EE (BH)	EE (BS)	C (BH)	C (BS)	FC (BH)	FC (BS)	ELN (BH)	ELN (BS)	TND (BH)	TND (BS)	E.D.(BH)	E.D.(BS)	E.M.(BH)	E.M.(BS)	Ca	P	FND @	Cont.Cel.	FAD		Celulosa	
medio	23,39	76.61	13.08	3 55,91	6.41	27,44	2.10	3 8.96	0.12	0.53	3 1.68	7.15	24.37	3 104,21	3 1074.37	3 4594.81	3 880.89	3767.35	@	@	@	@	@	@ @	@	6
v. Estándar	0.38	0.38	1.19	4.69	1.07	4.80	0.22	0.92	0.05	0.20	0.50	2.04	1.46	6.81	64.20	300.43	52.64	246.33	e e	ē	e e	e e	e e	<u>e</u>	ē	6
diana	23.55	76.45	12.54	53.39	6.88	29.08	2.03	8.84	0.15	0.64	1.43	6.07	25.00	107.34	1102.44	4732.69	903.90	3880.40	@	@	@	@	@	@	@	(0
or Máximo or Mínimo	23.66	77.04	14.44 12.26	61.32 53.02	7.17 5.19	31.21 22.04	2.34 1.92	9.94 8.11	0.15 0.07	0.65	2.25 1.35	9.51 5.88	25.40 22.70	108.90 96.40	1119.75 1000.92	4801.56 4250.19	918.10 820.67	3936.86 3484.79	@	@	@	@	@	@ @	@	6
or minimo	22.50	70.34	12.20	33.02	3.13	22.04	1.02	0.11	0.07	0.30		UAD		60	1000.32	4230.13	020.07	3404.73		<u> </u>	<u>u</u>		w I	w_	<u> </u>	
0	1					48-1- 0	B					UAD	K U	00	F	 / ///\			N4:	(0/ DO)	_		d. I. Fil.	01 6	N = = = 4\ (0/	
Carne cerdo	MS	Н	PC (BH)	PC(BS)	EE (BH)	EE (BS)	C (BH)	oximal (%)	FC (BH)	FC (BS)	ELN (BH)	ELN (BS)	TND (BH)	TND (BS)	Energía (E.D.(BH)	E.D.(BS)	E.M.(BH)	E.M.(BS)	Ca	es(%BS)	FND	Cont.Cel.	FAD		Celulosa	
	79	79	79	79	79	79	@	@	@	@	@	@	@	@	@	@	@	@	@	@	@	@	@	@	@	(0
medio	25.78	74.18	20.20	78.51	2.68	10.25	@	@	@	@	@	@	@	@	<u>@</u>	@	@	@	@	@	@	@	@	@	@	(6
v. Estándar diana	1.70 25.62	1.70 74.33	1.13 20.25	4.31 78.82	1.23 2.32	4.15 9.05	@	@ @	@	@	@	@	@	@	<u>@</u>	@	@	@	@	@	@	@	@	@	@	(0
or Máximo	29.54	77.47	24.01	84.54	6.39	21.68	@	@	<u>e</u>	· e	e e	e e	@	@	<u>e</u>	@	e e	@	e e	· @	@	- œ	<u>e</u>	@	@	(6
or Mínimo	22.53	70.28	17.73	63.18	1.05	4.10	œ.	@	e e	@	œ.	@	æ	œ.	@	@	@	@	œ.	œ.	œ.	@	e e	@	e e	(0
	i										С	U A D	R O	61					ï		1					
Carne res	N.C.		D.C. (D/11)	DOD-				oximal (%)		FO (DC)	ELN (DI	EL N (DG)	THE CH	THE SEC	Energía (E M (DIF	F.H. OF		es(%BS)		racciones				
ilisis	MS 59	59	PC (BH) 59	PC(BS)	EE (BH)	EE (BS)	C (BH)	C (BS)	FC (BH)	FC (BS)	ELN (BH)	ELN (BS)	TND (BH)	TND (BS)	E.D.(BH)	E.D.(BS)	E.M.(BH)	E.M.(BS)	Ca @	P @	FND @	Cont.Cel.	FAD @	Lignina @	Celulosa @	Hem
medio	27.73	72.27	20.45	73.93	4.04	14.41	1.06	4.32	0.03	0.12	1.50	6.11	19.90	81.01	877.18	3571.59	719.21	2928.39	@	@	@	- @	@	@	@	(6
v. Estándar	2.52	2.52	1.71	4.09	1.50	4.51	@	@	@	@	@	@	@	@	@	@	@	@	œ.	œ.	œ.	e e	œ.	œ.	@	(0
diana or Máximo	27.93	72.07	20.42	74.47	3.91	14.62	1.06	4.32	0.03	0.12	1.50	6.11	19.90	81.01 81.01	877.18	3571.59	719.21	2928.39	@	@	@	@	@	@	@	(0
or Maximo or Mínimo	32.31 12.95	87.05 67.69	23.35	82.90 62.77	7.96	24.64 6.56	1.06 1.06	4.32 4.32	0.03	0.12 0.12	1.50 1.50	6.11	19.90 19.90	81.01 81.01	877.18 877.18	3571.59 3571.59	719.21 719.21	2928.39 2928.39	@	@	@	@ @	@ @	@ @	@	6
	initial		.5101	, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,					1 2100			UAD		62	2			22200								



Carne, harina					An		mico Pro		li .						Energía				Minerale	es(%BS)					Soest)(%l	
álisis	MS	Н	PC (BH)	PC(BS)	EE (BH)	EE (BS)	C (BH)	C (BS)	FC (BH)	FC (BS)	ELN (BH)	ELN (BS)	TND (BH)	TND (BS)	E.D.(BH)	E.D.(BS)	E.M.(BH)	E.M.(BS)	Ca	Р		Cont.Cel.			Celulosa	
	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	4	4	@	@	@	@	@	@
nedio	95.21	4.59	36.78	38.64	12.96	13.57	37.84 3.82	39.70	3.21	3.35	4.62	4.93	59.60	62.49	2626.50	2754.02	2154.40	2259.03	10.57	5.43	<u>@</u>	@	@	<u>@</u>	<u>@</u>	@
v. Estándar liana	2.70 95.31	2.32 4.69	2.94 37.09	3.08 37.99	1.50 12.07	1.37 13.12	39.31	3.21 41.39	1.63 2.75	1.69 2.89	3.26 4.43	3.57 4.66	3.43 59.30	3.86 60.25	150.78 2614.35	168.61 2656.59	124.03 2143.54	139.39 2178.17	6.23 13.18	3.17 6.51	@	@	@	@	@	@
nana or Máximo	93.31	7.99	41.22	42.79	14.94	15.12	42.19	41.39	5.51	5.80	8.73	9.59	64.71	67.17	2853.09	2636.39	2339.28	2428.16	13.18	7.82	<u>@</u>	@	@	@	@	@
or Mínimo	91.01		34.03	35.83	11.70	12.32	32.62	35.84	1.50	1.65	0.42	0.43	55.96	58.91	2467.14	2597.54	2022.85	2129.76	1.28	0.87	@	@	@	@	@	@
or willing	31,01	1.33	34.03	33.03	11.70	12.32	J2.02	33.04	1.30	1.03					2407.14	2337.34	2022.03	2123.70	1.20	0.07		e	· · · ·	w w	<u> </u>	<u> </u>
											U	UAD	R O	63												
Carne machaca	MS	Н	PC (BH)	PC(BS)	EE (BH)	álisis Qu	mico Pro			FC (BS)	ELN (BH)	ELN (BS)	TND (BH)	TND (BS)	Energía E.D.(BH)	(Kcal/Kg) E.D.(BS)	E.M.(BH)	E.M.(BS)	Minerale	es(%BS)	FND	Cont.Cel.	de la Fil		Soest)(%l	
alisis	MS 2	2	2 PC (BH)	2	2	2	2	C (BS)	FC (BH)	2	ELN (BH)	2 ELN (BS)	2 (BH)	2	2	2	2	2	Ca @	@	@	@	(a)	Lignina @	(a)	Hemic @
medio	87,39	12.62	58.89	67.35	18.53	21.22	8.26	9.47	0.39	0.44	1.33	1.52	83.07	95.08	3662.40	4192.00	3002.85	3437.08	<u>a</u>	a a	<u>@</u>	- œ	<u>a</u>	@ @	· @	- œ
v. Estándar	1.52	1.52	4.46	3.93	2.09	2.76	1.19	1.52	0.05	0.05	0.28	0.30	0.60	2.34	26.38	103.12	21.63	84.55	e e	e e	a a	e e	a a	a a	ē	e e
diana	87.39	12.62	58.89	67.35	18.53	21,22	8.26	9.47	0.39	0.44	1.33	1.52	83.07	95.08	3662.40	4192.00	3002.85	3437.08	a a	e e	<u>@</u>	a a	e e	a a	e e	a a
or Máximo	88.46	13.69	62.04	70.13	20.00	23.17	9.10	10.54	0.42	0.47	1.53	1.73	83.49	96.73	3681.05	4264.92	3018.15	3496.87	a	œ.	a a	a a	a	a	e e	a
or Mínimo	86.31		55.73	64.57	17.05	19.27	7.42	8.39	0.35	0.41	1.13	1.31	82.64	93.42	3643.74	4119.08	2987.55	3377.29	a a	œ	œ .	a a	a a	a a	a a	a a
												UAD	R O	64												
• '						/m-1		-111				0 7 0	K 0	04		04 104 ->				(0/ 5 4)				0.1	•	5.61
Cártamo, pasta		1					mico Pro								Energía				Minerale	s(%BS)					Soest)(%l	
álisis	MS	H	PC (BH)	PC(BS)	EE (BH)	EE (BS)	C (BH)	C (BS)	FC (BH)	FC (BS)	ELN (BH)	ELN (BS)	TND (BH)	TND (BS)	E.D.(BH)	E.D.(BS)	E.M.(BH)	E.M.(BS)	Ca	P	FND	Cont.Cel.	FAD		Celulosa	Hemic
orania (Pou	3	3	@	@	3	3	3	3	3	3	@	@	@	@	@	@	@	@	@	@	3	3	3	3	3	3
omedio	94.00	6.00	@	@	3.12	3.33	5.00	5.32	35.24	37.48	@	@	@	<u>@</u>	@	@	@	@	@	@	61.15	36.69	43.92	8.82	34.90	17.23
sv. Estándar	0.66	0.66	@	@	1.09	1.18	0.62	0.69	3.58	3.70	@	@	@	<u>@</u>	@	@	<u>@</u>	<u>@</u>	@	@	9.14	11.90	7.91	0.61	7.50	6.85
diana	94.02	5.98	<u>@</u>	@	3.63	3.86	5.34	5.68	35.60	38.14	<u>@</u>	@	@	@	@	<u>@</u>	<u>@</u>	@	@	@	64.76	35.24	39.82	8.92	30.66	14.90
or Máximo	94.65	6.67	@	<u>@</u>	3.87	4.15	5.37	5.75	38.63	40.81	@	<u>@</u>	@	@	@	@	<u>@</u>	<u>@</u>	@	<u>@</u>	67.94	49.24	53.04	9.38	43.56	24.94
or Mínimo	93.33	5.35	@	@	1.87	1.98	4.28	4.52	31.49	33.49	@	@	@	@	@	@	@	@	@	@	50.76	25.58	38.90	8.17	30.49	11.86
											С	UAD	R O	65												
Coco, pasta					An	álisis Qui	mico Pro	ximal (%)							Energía	(Kcal/Kg)			Minerale	es(%BS)	Fra	acciones	de la Fit	ora (Van	Soest)(%l	BS)
álisis	MS	Н	PC (BH)	PC(BS)	EE (BH)	EE (BS)	C (BH)	C (BS)	FC (BH)	FC (BS)	ELN (BH)	ELN (BS)	TND (BH)	TND (BS)	E.D.(BH)	E.D.(BS)	E.M.(BH)	E.M.(BS)	Ca	P	END	Cont.Cel.	FAD		Celulosa	Hemic
uniois	7	7	5	5	5	5	5	5	4	4	4	4	4	4	4	4	4	4	1	1	1	1	1	1	1	1
omedio	96.50	3.50	21,39	22.21	9.14	9.48	6.85	7.11	17.31	17.94	39.81	41.35	80.46	83.56	3547.47	3684.23	2908.62	3020.75	0.40	0.67	63.83	36.17	33.84	6.59	27.09	29.99
sv. Estándar	0.83	0.83	1.51	1.68	3.22	3.33	0.68	0.71	3.57	3.49	2.87	3.33	3.56	4.29	157.00	188.95	128.72	154.92	@	@	@	(a)	@	@	@	(a)
diana	96.39	3.61	22.11	23.04	8.61	9.03	6.55	6.87	16.01	16.74	40.07	41.70	79.83	83.39	3519.76	3676.49	2885.90	3014.41	0.40	0.67	63.83	36.17	33.84	6.59	27.09	29.99
lor Máximo	97.83	4.71	22.74	23.64	13.01	13.56	8.04	8.36	22.53	23.03	42.31	44.41	85.35	88.95	3763.25	3921.68	3085.54	3215.44	0.40	0.67	63.83	36.17	33.84	6.59	27.09	29.99
lor Mínimo	95.29		19.08	19.79	4.45	4.62	6.34	6.61	14.68	15.26	36.77	37.59	76.82	78.53	3387.10	3462.23	2777.13	2838.73	0.40	0.67	63.83	36.17	33.84	6.59	27.09	29.99
											С	UAD	R O	66												
Girasol, pasta					Δn	álisis Oui	mico Pro	vimal (%)	is .						Energía	(Kcal/Kn)			Minerale	es(%BS)	Fr	acciones	de la Fil	nra (Van	Soest)(%l	RS)
	140	Н	PC (BH)	PC(BS)	EE (BH)	EE (BS)	C (BH)	C (BS)	FC (BH)	FC (BS)	ELN (BH)	ELN (BS)	TND (BH)	TND (BS)	E.D.(BH)	E.D.(BS)	E.M.(BH)	E.M.(BS)	Ca	Р	FND	Cont.Cel.	FAD	Lignina	Celulosa	
álisis	MS	-	-				4	4	4	4	2	2			2	2	2	2	@	@	63.80	2	37.77	2	2	2
	4	4	2	2	4	4			00.70		00.00		2	2			0015.07			(a)		36.21				25.96
omedio	94.47	5.53	2 25.42	26.81	3.22	3.41	5.74	6.08	29.76	31.54	29.88	31.52	62.11	65.58	2738.54	2891.21	2245.37	2370.54	@					10.63	26.97	
medio sv. Estándar	94.47 0.92	4 5.53 0.92	2 25.42 3.83	3.61	3.22 0.99	3.41 1.05	5.74 0.22	6.08 0.26	5.20	5.77	5.25	31.52 5.03	3.81	65.58 2.96	2738.54 168.04	2891.21 130.62	137.78	107.10	œ.	œ.	0.30	0.30	0.69	0.21	0.06	0.28
medio sv. Estándar diana	4 94.47 0.92 94.26	5.53 0.92 5.75	2 25.42 3.83 25.42	3.61 26.81	3.22 0.99 3.20	3.41 1.05 3.36	5.74 0.22 5.68	6.08 0.26 6.04	5.20 28.17	5.77 29.88	5.25 29.88	31.52 5.03 31.52	3.81 62.11	65.58 2.96 65.58	2738.54 168.04 2738.54	2891.21 130.62 2891.21	137.78 2245.37	107.10 2370.54	@	@	0.30 63.80	0.30 36.21	0.69 37.77	0.21 10.63	0.06 26.97	25.96
medio sv. Estándar diana or Máximo	94.47 0.92 94.26 95.77	5.53 0.92 5.75 6.40	2 25.42 3.83 25.42 28.12	3.61 26.81 29.36	3.22 0.99 3.20 4.38	3.41 1.05 3.36 4.65	5.74 0.22 5.68 6.05	6.08 0.26 6.04 6.43	5.20 28.17 37.01	5.77 29.88 39.54	5.25 29.88 33.59	31.52 5.03 31.52 35.07	3.81 62.11 64.81	65.58 2.96 65.58 67.67	2738.54 168.04 2738.54 2857.36	2891.21 130.62 2891.21 2983.57	137.78 2245.37 2342.79	107.10 2370.54 2446.27	@	@ @ @	0.30 63.80 64.01	0.30 36.21 36.42	0.69 37.77 38.25	0.21 10.63 10.77	0.06 26.97 27.01	25.96 26.16
medio sv. Estándar diana or Máximo	4 94.47 0.92 94.26	5.53 0.92 5.75	2 25.42 3.83 25.42	3.61 26.81	3.22 0.99 3.20	3.41 1.05 3.36	5.74 0.22 5.68	6.08 0.26 6.04	5.20 28.17	5.77 29.88	5.25 29.88 33.59 26.17	31.52 5.03 31.52 35.07 27.96	3.81 62.11 64.81 59.42	65.58 2.96 65.58 67.67 63.48	2738.54 168.04 2738.54	2891.21 130.62 2891.21	137.78 2245.37	107.10 2370.54	@	@	0.30 63.80	0.30 36.21	0.69 37.77	0.21 10.63	0.06 26.97	25.96
omedio sv. Estándar diana or Máximo lor Mínimo	94.47 0.92 94.26 95.77	5.53 0.92 5.75 6.40	2 25.42 3.83 25.42 28.12	3.61 26.81 29.36	3.22 0.99 3.20 4.38 2.10	3.41 1.05 3.36 4.65 2.24	5.74 0.22 5.68 6.05 5.55	6.08 0.26 6.04 6.43 5.80	5.20 28.17 37.01 25.71	5.77 29.88 39.54	5.25 29.88 33.59 26.17	31.52 5.03 31.52 35.07	3.81 62.11 64.81 59.42	65.58 2.96 65.58 67.67	2738.54 168.04 2738.54 2857.36 2619.72	2891.21 130.62 2891.21 2983.57 2798.84	137.78 2245.37 2342.79	107.10 2370.54 2446.27	@ @ @	@ @ @	0.30 63.80 64.01 63.58	0.30 36.21 36.42 35.99	0.69 37.77 38.25 37.28	0.21 10.63 10.77 10.48	0.06 26.97 27.01 26.92	25.96 26.16 25.76
medio v. Estándar díana or Máximo or Mínimo Harinolina	4 94.47 0.92 94.26 95.77 93.60	5.53 0.92 5.75 6.40 4.23	2 25.42 3.83 25.42 28.12 22.71	3.61 26.81 29.36 24.26	3.22 0.99 3.20 4.38 2.10	3.41 1.05 3.36 4.65 2.24	5.74 0.22 5.68 6.05 5.55	6.08 0.26 6.04 6.43 5.80 ximal (%)	5.20 28.17 37.01 25.71	5.77 29.88 39.54 26.85	5.25 29.88 33.59 26.17	31.52 5.03 31.52 35.07 27.96 U A D	3.81 62.11 64.81 59.42 R O	65.58 2.96 65.58 67.67 63.48	2738.54 168.04 2738.54 2857.36 2619.72	2891.21 130.62 2891.21 2983.57 2798.84 (Kcal/Kg)	137.78 2245.37 2342.79 2147.94	107.10 2370.54 2446.27 2294.81	@ @ @ @ Minerale	@ @ @	0.30 63.80 64.01 63.58	0.30 36.21 36.42 35.99	0.69 37.77 38.25 37.28 de la Fit	0.21 10.63 10.77 10.48	0.06 26.97 27.01 26.92 Soest)(%	25.96 26.16 25.76
omedio sv. Eståndar diana or Máximo lor Mínimo Harinolina	4 94.47 0.92 94.26 95.77 93.60	4 5.53 0.92 5.75 6.40 4.23	2 25.42 3.83 25.42 28.12 22.71	3.61 26.81 29.36 24.26	3.22 0.99 3.20 4.38 2.10	3.41 1.05 3.36 4.65 2.24 álisis Qui	5.74 0.22 5.68 6.05 5.55	6.08 0.26 6.04 6.43 5.80 ximal (%)	5.20 28.17 37.01 25.71	5.77 29.88 39.54 26.85	5.25 29.88 33.59 26.17 C	31.52 5.03 31.52 35.07 27.96 U A D	3.81 62.11 64.81 59.42 R O	65.58 2.96 65.58 67.67 63.48 67	2738.54 168.04 2738.54 2857.36 2619.72 Energía E.D.(BH)	2891.21 130.62 2891.21 2983.57 2798.84 (Kcal/Kg) E.D.(8S)	137.78 2245.37 2342.79 2147.94	107.10 2370.54 2446.27 2294.81 E.M.(BS)	@ @ @ @ Minerald	@ @ @ @ es(%BS)	0.30 63.80 64.01 63.58	0.30 36.21 36.42 35.99 acciones	0.69 37.77 38.25 37.28 de la Fik	0.21 10.63 10.77 10.48 Dra (Van	0.06 26.97 27.01 26.92 Soest)(%	25.96 26.16 25.76 BS)
medio xv. Estándar diana or Máximo or Minimo Harinolina	4 94.47 0.92 94.26 95.77 93.60 MS	4 5.53 0.92 5.75 6.40 4.23	2 25.42 3.83 25.42 28.12 22.71 PC (BH) 5	3.61 26.81 29.36 24.26 PC(BS) 5	3.22 0.99 3.20 4.38 2.10 An	3.41 1.05 3.36 4.65 2.24 álisis Qui EE (BS) 5	5.74 0.22 5.68 6.05 5.55 (mico Pro	6.08 0.26 6.04 6.43 5.80 ximal (%) C (BS)	5.20 28.17 37.01 25.71 FC (BH)	5.77 29.88 39.54 26.85 FC (BS)	5.25 29.88 33.59 26.17 C	31.52 5.03 31.52 35.07 27.96 U A D	3.81 62.11 64.81 59.42 R O	65.58 2.96 65.58 67.67 63.48 67	2738.54 168.04 2738.54 2857.36 2619.72 Energía E.D.(BH) 5	2891.21 130.62 2891.21 2983.57 2798.84 (Kcal/Kg) E.D.(BS)	137.78 2245.37 2342.79 2147.94 E.M.(BH)	107.10 2370.54 2446.27 2294.81 E.M.(BS)	@ @ @ @ @ Minerale	@ @ @ @ @ es(%BS)	0.30 63.80 64.01 63.58 Fra	0.30 36.21 36.42 35.99 acciones Cont.Cel.	0.69 37.77 38.25 37.28 de la Fit	0.21 10.63 10.77 10.48 Dra (Van Lignina @	0.06 26.97 27.01 26.92 Soest)(% Celulosa	25.96 26.16 25.76 BS) Hemic
medio v. Estándar diana or Máximo or Mínimo Harinolina disis medio	4 94.47 0.92 94.26 95.77 93.60 MS 5	4 5.53 0.92 5.75 6.40 4.23	2 25.42 3.83 25.42 28.12 22.71 PC (BH) 5 28.19	3.61 26.81 29.36 24.26 PC(BS) 5 30.80	3.22 0.99 3.20 4.38 2.10 An EE (BH) 5	3.41 1.05 3.36 4.65 2.24 álisis Qui EE (BS) 5 6.19	5.74 0.22 5.68 6.05 5.55 mico Pro C (BH) 5 8.48	6.08 0.26 6.04 6.43 5.80 ximal (%) C (BS) 5 9.28	5.20 28.17 37.01 25.71 FC (BH) 5	5.77 29.88 39.54 26.85 FC (BS) 5 20.26	5.25 29.88 33.59 26.17 C ELN (BH) 5 30.63	31.52 5.03 31.52 35.07 27.96 U A D	3.81 62.11 64.81 59.42 R O	65.58 2.96 65.58 67.67 63.48 67	2738.54 168.04 2738.54 2857.36 2619.72 Energía E.D.(BH) 5	2891.21 130.62 2891.21 2983.57 2798.84 (Kcal/Kg) E.D.(8S) 5 3170.16	137.78 2245.37 2342.79 2147.94 E.M.(BH) 5	107.10 2370.54 2446.27 2294.81 E.M.(BS) 5 2599.26	Minerale Ca 1 0.23	@ @ @ @ @ P 1 0.82	0.30 63.80 64.01 63.58 From END	0.30 36.21 36.42 35.99 acciones Cont.Cel.	0.69 37.77 38.25 37.28 de la Fit FAD @	0.21 10.63 10.77 10.48 Dra (Van Lignina @	0.06 26.97 27.01 26.92 Soest)(% Celulosa @	25.96 26.16 25.76 BS) Hemic @
medio v. Estándar diana or Máximo or Minimo Harinolina silisis medio v. Estándar	4 94.47 0.92 94.26 95.77 93.60 MS 5 91.52	4 5.53 0.92 5.75 6.40 4.23 H 5 8.48 1.55	2 25.42 3.83 25.42 28.12 22.71 PC (BH) 5 28.19 4.65	3.61 26.81 29.36 24.26 PC(BS) 5 30.80 5.06	3.22 0.99 3.20 4.38 2.10 An EE (BH) 5.65 2.23	3.41 1.05 3.36 4.65 2.24 álisis Qu EE (BS) 5 6.19 2.49	5.74 0.22 5.68 6.05 5.55 mico Pro C (BH) 5 8.48 2.63	6.08 0.26 6.04 6.43 5.80 ximal (%) C (BS) 5 9.28 2.94	5.20 28.17 37.01 25.71 FC (BH) 5 18.56 4.66	5.77 29.88 39.54 26.85 FC (BS) 5 20.26 4.91	5.25 29.88 33.59 26.17 C ELN (BH) 5 30.63 1.66	31.52 5.03 31.52 35.07 27.96 U A D ELN (BS) 5 33.47 1.70	3.81 62.11 64.81 59.42 R O TND (BH) 5 65.78 5.76	65.58 2.96 65.58 67.67 63.48 67 TND (8S) 5 71.90 6.49	2738.54 168.04 2738.54 2857.36 2619.72 Energía E.D.(BH) 5 2900.38 254.12	2891.21 130.62 2891.21 2983.57 2798.84 (Kcal/Kg) E.D.(BS) 3170.16 286.27	137.78 2245.37 2342.79 2147.94 E.M.(BH) 5 2378.06 208.36	107.10 2370.54 2446.27 2294.81 E.M.(BS) 5 2599.26 234.71	Minerale Ca 1 0.23	@ @ @ @ @ @ P 1 0.82 @	0.30 63.80 64.01 63.58 From FND @ @	0.30 36.21 36.42 35.99 acciones Cont.Cel.	0.69 37.77 38.25 37.28 de la Fit FAD @	0.21 10.63 10.77 10.48 Dra (Van Lignina @ @	0.06 26.97 27.01 26.92 Soest)(%l Celulosa @ @	25.96 26.16 25.76 BS) Hemic @ @
omedio sv. Eståndar diana or Máximo or Mínimo Harinolina álisis omedio sv. Eståndar diana	4 94.47 0.92 94.26 95.77 93.60 MS 5 91.52 1.55	4 5.53 0.92 5.75 6.40 4.23 H 5 8.48 1.55 9.10	2 25.42 3.83 25.42 28.12 22.71 PC (BH) 5 28.19 4.65 25.77	3.61 26.81 29.36 24.26 PC(BS) 5 30.80 5.06 28.53	3.22 0.99 3.20 4.38 2.10 An EE (BH) 5 5.65 2.23 6.21	3.41 1.05 3.36 4.65 2.24 álisis Qui EE (BS) 5 6.19 2.49 6.81	5.74 0.22 5.68 6.05 5.55 (MICO Pro C (BH) 5 8.48 2.63 7.33	6.08 0.26 6.04 6.43 5.80 ximal (%) C (BS) 5 9.28 2.94 8.06	5.20 28.17 37.01 25.71 FC (BH) 5 18.56 4.66 19.63	5.77 29.88 39.54 26.85 FC (BS) 5 20.26 4.91 21.73	5.25 29.88 33.59 26.17 C ELN (BH) 5 30.63 1.66 31.23	31.52 5.03 31.52 35.07 27.96 U A D ELN (BS) 5 33.47 1.70 33.26	3.81 62.11 64.81 59.42 R O TND (BH) 5 65.78 5.76 65.56	65.58 2.96 65.58 67.67 63.48 67 TND (8S) 5 71.90 6.49 72.57	2738.54 168.04 2738.54 2857.36 2619.72 Energía E.D.(BH) 5 2900.38 254.12 2890.35	2891.21 130.62 2891.21 2983.57 2798.84 (Kcal/Kg) E.D.(8S) 5 3170.16 286.27 3199.77	137.78 2245.37 2342.79 2147.94 E.M.(BH) 5 2378.06 208.36 2369.84	107.10 2370.54 2446.27 2294.81 E.M.(BS) 5 5 2599.26 234.71 2623.54	@ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @	@ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @	0.30 63.80 64.01 63.58 Fra FND @ @	0.30 36.21 36.42 35.99 acciones Cont.Cel.	0.69 37.77 38.25 37.28 de la Fit FAD @ @	0.21 10.63 10.77 10.48 Dra (Van Lignina @ @ @	0.06 26.97 27.01 26.92 Soest)(% Celulosa @ @	25.96 26.16 25.76 BS) Hemic @ @
omedio sv. Estándar diana lor Máximo lor Mínimo Harinolina álisis omedio sv. Estándar diana lor Máximo	4 94.47 0.92 94.26 95.77 93.60 MS 5 91.52 1.55 90.90 94.23	4 5.53 0.92 5.75 6.40 4.23 H 5 8.48 1.55 9.10 9.67	2 25.42 3.83 25.42 28.12 22.71 PC (BH) 5 28.19 4.65 25.77 36.27	3.61 26.81 29.36 24.26 PC(BS) 5 30.80 28.53 39.75	3.22 0.99 3.20 4.38 2.10 An EE (BH) 5 5.65 2.23 6.21 7.73	3.41 1.05 3.36 4.65 2.24 álisis Qu EE (8S) 5 6.19 2.49 6.81 8.50	5.74 0.22 5.68 6.05 5.55 (mico Pro C (BH) 5 8.48 2.63 7.33 12.63	6.08 0.26 6.04 6.43 5.80 Ximal (%) C (BS) 5 9.28 2.94 8.06 13.90	5.20 28.17 37.01 25.71 FC (BH) 5 18.56 19.63 23.89	5.77 29.88 39.54 26.85 FC (BS) 5 20.26 4.91 21.73 25.35	5.25 29.88 33.59 26.17 C ELN (BH) 5 30.63 1.66 31.23 32.18	31.52 5.03 31.52 35.07 27.96 U A D ELN (BS) 5 33.47 1.70 33.26 35.41	3.81 62.11 64.81 59.42 R O TND (BH) 5 65.78 5.76 65.56 73.84	65.58 2.96 65.58 67.67 63.48 67 TND (8S) 5 71.90 6.49 72.57 80.92	2738.54 168.04 2738.54 2857.36 2619.72 Energía E.D.(BH) 5 2900.38 254.12 2890.35 3255.59	2891.21 130.62 2891.21 2983.57 2798.84 (Kcal/Kg) E.D.(8S) 5 3170.16 206.27 3199.77	137.78 2245.37 2342.79 2147.94 E.M.(BH) 5 2378.06 208.36 2369.84 2669.31	107.10 2370.54 2446.27 2294.81 E.M.(BS) 5 2599.26 234.71 2623.54 2925.27	@ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @	@ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @	0.30 63.80 64.01 63.58 From the control of the cont	0.30 36.21 36.42 35.99 acciones Cont.Cel.	0.69 37.77 38.25 37.28 de la Fit FAD @ @ @	0.21 10.63 10.77 10.48 Dra (Van Lignina @ @ @ @	0.06 26.97 27.01 26.92 Soest)(% Celulosa @ @ @	25.96 26.16 25.76 BS) Hemic @ @ @ @
medio v. Estándar diana or Máximo or Mínimo Harinolina disis medio v. Estándar diana or Máximo	4 94.47 0.92 94.26 95.77 93.60 MS 5 91.52 1.55	4 5.53 0.92 5.75 6.40 4.23 H 5 8.48 1.55 9.10 9.67	2 25.42 3.83 25.42 28.12 22.71 PC (BH) 5 28.19 4.65 25.77	3.61 26.81 29.36 24.26 PC(BS) 5 30.80 5.06 28.53	3.22 0.99 3.20 4.38 2.10 An EE (BH) 5 5.65 2.23 6.21	3.41 1.05 3.36 4.65 2.24 álisis Qui EE (BS) 5 6.19 2.49 6.81	5.74 0.22 5.68 6.05 5.55 (MICO Pro C (BH) 5 8.48 2.63 7.33	6.08 0.26 6.04 6.43 5.80 ximal (%) C (BS) 5 9.28 2.94 8.06	5.20 28.17 37.01 25.71 FC (BH) 5 18.56 4.66 19.63	5.77 29.88 39.54 26.85 FC (BS) 5 20.26 4.91 21.73	5.25 29.88 33.59 26.17 C ELN (BH) 5 30.63 1.66 31.23	31.52 5.03 31.52 35.07 27.96 U A D ELN (BS) 5 33.47 1.70 33.26	3.81 62.11 64.81 59.42 R O TND (BH) 5 65.78 5.76 65.56	65.58 2.96 65.58 67.67 63.48 67 TND (8S) 5 71.90 6.49 72.57	2738.54 168.04 2738.54 2857.36 2619.72 Energía E.D.(BH) 5 2900.38 254.12 2890.35	2891.21 130.62 2891.21 2983.57 2798.84 (Kcal/Kg) E.D.(8S) 5 3170.16 286.27 3199.77	137.78 2245.37 2342.79 2147.94 E.M.(BH) 5 2378.06 208.36 2369.84	107.10 2370.54 2446.27 2294.81 E.M.(BS) 5 5 2599.26 234.71 2623.54	@ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @	@ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @	0.30 63.80 64.01 63.58 Fra FND @ @	0.30 36.21 36.42 35.99 acciones Cont.Cel.	0.69 37.77 38.25 37.28 de la Fit FAD @ @	0.21 10.63 10.77 10.48 Dra (Van Lignina @ @ @	0.06 26.97 27.01 26.92 Soest)(% Celulosa @ @	25.96 26.16 25.76 BS) Hemic @ @
aálisis omedio sv. Estándar didiana lor Máximo lor Mínimo Harinolina álisis omedio sv. Estándar didiana lor Mínimo	4 94.47 0.92 94.26 95.77 93.60 MS 5 91.52 1.55 90.90 94.23	4 5.53 0.92 5.75 6.40 4.23 H 5 8.48 1.55 9.10 9.67	2 25.42 3.83 25.42 28.12 22.71 PC (BH) 5 28.19 4.65 25.77 36.27	3.61 26.81 29.36 24.26 PC(BS) 5 30.80 28.53 39.75	3.22 0.99 3.20 4.38 2.10 An EE (BH) 5 5.65 2.23 6.21 7.73	3.41 1.05 3.36 4.65 2.24 álisis Qu EE (8S) 5 6.19 2.49 6.81 8.50	5.74 0.22 5.68 6.05 5.55 (mico Pro C (BH) 5 8.48 2.63 7.33 12.63	6.08 0.26 6.04 6.43 5.80 Ximal (%) C (BS) 5 9.28 2.94 8.06 13.90	5.20 28.17 37.01 25.71 FC (BH) 5 18.56 19.63 23.89	5.77 29.88 39.54 26.85 FC (BS) 5 20.26 4.91 21.73 25.35	5.25 29.88 33.59 26.17 C ELN (BH) 5 30.63 1.66 31.23 32.18 27.95	31.52 5.03 31.52 35.07 27.96 U A D ELN (BS) 5 33.47 1.70 33.26 35.41	3.81 62.11 64.81 59.42 R O TND (BH) 5 65.78 5.76 65.56 73.84 57.86	65.58 2.96 65.58 67.67 63.48 67 TND (8S) 5 71.90 6.49 72.57 80.92	2738.54 168.04 2738.54 2857.36 2619.72 Energía E.D.(BH) 5 2900.38 254.12 2890.35 3255.59	2891.21 130.62 2891.21 2983.57 2798.84 (Kcal/Kg) E.D.(8S) 5 3170.16 206.27 3199.77	137.78 2245.37 2342.79 2147.94 E.M.(BH) 5 2378.06 208.36 2369.84 2669.31	107.10 2370.54 2446.27 2294.81 E.M.(BS) 5 2599.26 234.71 2623.54 2925.27	@ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @	@ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @	0.30 63.80 64.01 63.58 From the control of the cont	0.30 36.21 36.42 35.99 acciones Cont.Cel.	0.69 37.77 38.25 37.28 de la Fit FAD @ @ @	0.21 10.63 10.77 10.48 Dra (Van Lignina @ @ @ @	0.06 26.97 27.01 26.92 Soest)(% Celulosa @ @ @	25.96 26.16 25.76 BS) Hemic @ @ @ @

Complementos Proteínicos


											Co	mplement	os Proteí	nicos												
Maíz, gluten	MS		(BH) I	PC(BS)	An EE (BH)	nálisis Qu	ímico Pro	ximal (%)	FC (BH)	FC (BS)	ELN (BH)	ELN (BS)	TND (BH)	TND (BS)	Energía (Kcal/Kg) E.D.(BS)	E.M.(BH)	E.M.(BS)	Mineral	es(%BS)		cciones Cont.Cel.			Soest)(%E	Hemic
medio v. Estándar				63.93 0.17	3 2.83 1.87	2.97 1.93	1.56 0.26	1.65 0.31	0.58 0.21	0.61 0.23	29.15 1.54	3 30.83 1.74	77.59 3.65	82.02 2.40	3 3421.10 160.82	3 3616.42 105.64	3 2805.01 131.86	3 2965.15 86.62	@	@	@	@	@	@	@ @ @	@
liana or Máximo	95.86	7.72 6	1.19	63.83 64.13	2.03 4.97	2.12 5.18	1.48 1.85	1.55 2.00	0.69 0.71	0.72 0.77	29.05 30.73	31.48 32.15	77.68 81.20	81.28 84.70	3425.03 3579.92	3583.79 3734.53	2808.23 2935.23	2938.40 3061.99	œ œ	@	@	@	@	@	@	@
or Mínimo	92.28	4.14 5	9.18	63.83	1.49	1.61	1.35	1.41	0.33	0.35	27.66 C	U A D	73.90 R O	80.08 69	3258.35	3530.94	2671.57	2895.07	_ @	(a)	æ	@	æ	<u>@</u>	(a)	@
Pescado, harina							ímico Pro								Energía (es(%BS)	Fra	cciones	de la Fib	ra (Van S	Soest)(%E	BS)
ilisis	9	9	8	PC(BS) 8 59.54	EE (BH) 4 13.48	EE (BS) 4 15,13	7 16,40	7 18.08	4 0.62	FC (BS) 4 0.72	5 9.50	5 10.60	TND (BH) 5 70.28	TND (BS) 5 78.35	E.D.(BH) 5 3098.85	E.D.(BS) 5 3454.26	E.M.(BH) 5 2540.79	E.M.(BS) 5 2832.20	Ca 1 9,36	1 5.62	@ @	@ @	@ @	Lignina @	Celulosa @	Hemici @
v. Estándar diana	4.47 92.97	4.47 8 7.03 5	3.00 5.59	7.04 57.68	4.96 13.05	5.33 15.39	3.05 16.95	3.60 20.28	0.57 0.51	0.69 0.57	5.11 9.00	5.56 9.56	7.33 68.56	7.24 79.76	323.33 3022.73	319.41 3516.44	265.10 2478.38	261.89 2883.18	@ 9.36	@ 5.62	@	@ @	@	@	@	@
or Máximo or Mínimo	97.44 83.59			68.69 51.62	19.93 7.88	21.37 8.37	19.78 12.53	22.02 13.32	0.05	1.69 0.05	17.76 3.90	19.34 4.18	81.45 61.82	87.36 67.31	3591.16 2725.49	3851.53 2967.65	2944.44 2234.67	3157.92 2433.22	9.36 9.36	5.62 5.62	@	@	@	@	@	@
						· · · · ·	,				С	UAD	R O	70		14 - 144 - 1				(0/ 5-5)						
Soya, frijol	MS 5		(BH) I	PC(BS)	EE (BH)	EE (BS)	ímico Pro	C (BS)	FC (BH)	FC (BS)	ELN (BH)	ELN (BS)	TND (BH)	TND (BS)	Energía (E.D.(BS)	E.M.(BH)	E.M.(BS)	Ca	es(%BS)					Soest)(%E	
medio v. Estándar	90.62	9.38 4		48.31 1.18	2.52	2.78	6.06	6.68	4.39 1.45	4.84 1.57	33.18 2.27	36.59 2.53	70.79 2.70	78.10 3.13	3121.08 118.91	3441.26 137.45	2559.01 97.50	2821.53 112.70	0.47	0.87	@	@	@	@	@	@
diana or Máximo	90.72 91.24	10.18 4	4.91	48.34 50.00	2.05 6.04	2.25 6.66	6.00 6.61	6.59 7.26	4.12 6.61	4.53 7.24	33.66 35.36	37.18 38.84	70.12 74.61	77.55 82.24	3091.41 3289.44	3415.13 3625.93	2534.69 2697.06	2800.11 2972.95	0.47	0.87 0.87	@	@	@	@	@	@
or Mínimo	89.82	8.76 4	2.37	46.94	0.57	0.63	5.62	6.26	2.85	3.17	30.06	33.13 U A D	68.32 R O	75.05 71	3012.04	3308.84	2469.61	2712.97	0.47	0.87	æ	@	æ	@	@	<u>@</u>
Soya, harina							ímico Pro	ximal (%)							Energía (Mineral	es(%BS)					Soest)(%E	
medio		2	2	PC(BS) 2 48.34	EE (BH) 1 3.00	EE (BS) 1 3,21	C (BH) 1 6.12	C (BS) 1 6,55	FC (BH) 1 2.38	FC (BS) 1 2,55	ELN (BH) 1 36.41	ELN (BS) 1 38,96	TND (BH) 1 74.20	TND (BS) 1 79.39	E.D.(BH) 1 3271.32	E.D.(BS) 1 3500.24	E.M.(BH) 1 2682.20	E.M.(BS) 1 2869.89	@	@	@ @	@ @	@ @	Lignina @	Celulosa @	Hemici @
v. Estándar diana	1.50 92.40	1.50 f	1.24 4.68	0.56 48.34	@ 3.00	@ 3.21	@ 6.12	@ 6.55	@ 2.38	@ 2.55	@ 36.41	@ 38.96	@ 74.20	@ 79.39	@ 3271.32	@ 3500.24	@ 2682.20	@ 2869.89	@	@	@	@	@	@	@	@
or Máximo or Mínimo				48.74 47.95	3.00 3.00	3.21 3.21	6.12 6.12	6.55 6.55	2.38	2.55 2.55	36.41 36.41	38.96 38.96	74.20 74.20	79.39 79.39	3271.32 3271.32	3500.24 3500.24	2682.20 2682.20	2869.89 2869.89	@	@	@	@ @	@	@ @	@	@
						- 411-1- 0-	(t				С	UAD	R O	72		151015>				(0/ D.O)			.i. i. =11	01 1	D 4) (0/ F	20)
Soya, pasta	MS 58		C (BH) F	PC(BS)	EE (BH) 52	EE (BS)	ímico Pro C (BH)	C (BS)	FC (BH)	FC (BS)	ELN (BH) 51	ELN (BS)	TND (BH)	TND (BS)	Energía (E.D.(BH) 49	E.D.(BS) 49	E.M.(BH) 49	E.M.(BS) 49	Ca	es(%BS)		Cont.Cel.			Celulosa	
medio v. Estándar	91.77 2.05	8.24 4 2.05	4.98 1.90	49.03 2.39	1.96 1.41	2.13 1.51	6.17 0.93	6.76 1.05	5.73 2.54	6.24 2.74	33.03 2.98	35.97 3.02	70.10 3.05	76.02 3.28	3077.22 167.46	3351.24 146.63	2523.07 137.57	2747.74 120.62	0.89 0.42	0.72 0.10	16.78 1.32	83.23 1.32	11.06 0.77	2.41 1.03	8.64 0.22	5.72 2.09
diana or Máximo or Mínimo		14.37 4	9.68	48.81 54.65 43.86	1.65 7.27 0.27	1.81 8.00 0.30	6.40 8.75 3.05	6.95 9.61 3.20	5.54 15.61 1.90	5.97 16.34 2.03	33.39 39.30 25.18	36.52 42.95 28.52	69.50 82.48 65.81	75.60 86.66 59.62	3053.70 3636.53 2408.56	3329.93 3820.69 2623.42	2503.77 2981.64 1970.64	2730.26 3132.64 2146.43	0.72 1.58 0.48	0.75 0.86 0.54	16.78 17.71 15.84	83.23 84.16 82.29	11.06 11.60 10.51	2.41 3.14 1.68	8.64 8.79 8.48	5.72 7.20
n minino	65.65	3.70 4	1.00	43.00	0.27	0.30	3.03	3.20	1.50	2.03		U A D		73	2400.30	2023.42	1370.04	2140.43	0.40	0.34	13.04	02.23	10.51	1.00	0.40	4.24
											Co	omplemer	tos Minei	ales												
Carbonato de calcio							ímico Pro					1			Energía (Kcal/Kg)				es(%BS)	Fra	cciones	de la Fib	ra (Van S	Soest)(%E	BS)
IISIS		e PC	@ BH) I	PC(BS) @ @	@ @	@ @	C (BH) @	@ @	FC (BH)	@	ELN (BH) @	ELN (BS)	TND (BH)	TND (BS)	E.D.(BH)	E.D.(BS) @	E.M.(BH) @	E.M.(BS)	6 35	@	@ @	@ @	@ @	@ @	Celulosa @	@ @
medio		@	ē	@	@ @	@	@	œ œ	@	@	@	@	@	@	@	œ œ	@	@	2 35	@	@	@	@	@	@	@
v. Estándar diana	@	@	œ .	@	- 4		-							(a)	@	@	@	<u>@</u>	37	@	@	@	æ	@	@	@
v. Estándar			@ @ @	@	@	@	e e	@	@	@	@	<u>e</u>	œ.	æ	@	@	æ	@	33	æ	æ	æ	@	@		æ
v. Estándar diana or Máximo or Mínimo	@	@	@ @ @	@ @	@	@ @	@ @	@ @	@	@	@ C	U A D	R O	@ 74	@ Energia (œ I	@		@	@ F	e e e e e e e e e e e e e e e e e e e	do lo Fil-	e ro Mor f		BC/
v. Estándar diana or Máximo	@ @ @ @ @ MS	@ @ @ @ ##############################	@	<u>e</u>	@ @ An		(mico Pro		FC (BH)	æ.		@ U A D			Energía (Kcal/Kg)	E.M.(BH)	E.M.(BS)		es(%BS)					Soest)(%E	
v. Estándar dilana or Maximo or Minimo Ortofosfato de calcio illisis v. Estándar	MS @ @ @ @ @ @	H PC	@	<u>e</u>	@ @ An				© FC (BH)	@ FC (BS)						Kcal/Kg)	E.M.(BH) @ @	E.M.(BS) @ @	Mineral Ca 2 14 3	P 5 20.22 1.80			FAD @ @ @		Soest)(%E Celulosa @ @	
w. Estándar diana or Máximo or Minimo Ortofosfato de calcio ilisis medio w. Estándar diana or Máximo	MS @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @	H P(@	<u>e</u>	@ @ An				© FC (BH)	@ FC (BS)				TND (BS) @ @ @ @ @ @ @		Kcal/Kg) E.D.(BS) @ @ @ @ @ @	E.M.(BH) @ @ @	E.M.(BS) @ @ @ @ @ @ @	Mineral Ca 2 14 3 14 16	P 5 20.22 1.80 20.43 22.28				Lignina @ @	Soest)(%E Celulosa @	
w. Estándar ilána or Máximo Ortofosfato de calcio ilisis medio w. Estándar ilána	MS @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @	(R)	@ @	PC(BS)	An EE (BH) @ @	@ @ @ @ @	© (BH) @ @ @ @	C (BS) @ @ @	FC (BH)	FC (BS)	ELN (BH) @ @ @ @ @ @ @	ELN (BS) @ @ @ @	TND (BH) @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @	TND (BS) @ @ @ @ @ @	E.D.(BH) @ @ @	Kcal/Kg) E.D.(BS) @ @ @ @	@ @ @	@ @ @	Mineral Ca 2 14 3 14	P 5 20.22 1.80 20.43	FND @ @ @	Cont.Cel. @ @ @ @ @ @	FAD @ @ @ @	Lignina @ @ @ @	Soest)(%E	Hemica @ @ @ @
w. Estándar diana or Máximo or Minimo Ortofosfato de calcio ilisis medio w. Estándar diana or Máximo	MS @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @	H P(@ @	PC(BS)	An EE (BH) @ @	@ @ @ @ @	© (BH) @ @ @ @	C (BS) @ @ @	FC (BH)	FC (BS)	ELN (BH) @ @ @ @ @ @ @	ELN (BS) @ @ @ @ @ @ @ @ @ @ @ @ @	TND (BH) @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @	TND (BS) @ @ @ @ @ @ @ @ @ @ @ @ @ @	E.D.(BH) @ @ @	Kcal/Kg) E.D.(BS) @ @ @ @ @ @	@ @ @	@ @ @	Mineral Ca 2 14 3 14 16	P 5 20.22 1.80 20.43 22.28	FND @ @ @	Cont.Cel. @ @ @ @ @ @	FAD @ @ @ @	Lignina @ @ @ @	Soest)(%E	Hemica @ @ @ @

Cuadro General de Composición Nutrimental

Muestra						Δ	nálisis O	uímico P	roximal (%)			
macsuu	Grupo	MS	Н	PC (BH)	PC(BS)	EE (BH)	EE (BS)	C (BH)	C (BS)	FC (BH)	FC (BS)	ELN (BH)	ELN (BS)
Alfalfa Achicalada	1	90.2	9.8	16.2	18.0	2.6	2.9	10.1	11.2	22.0	24.3	39.3	43.6
Alfalfa Verde Alfalfa, Ensilado	3	23.4 47.8	76.6 52.2	5.4 10.7	23.1 22.4	1.0 2.0	4.0 4.1	3.3 5.3	14.1	4.6 8.9	19.8 18.4	9.1 21.0	39.0 43.9
Alfalfa, Heno	1	87.9	12.1	16.7	19.0	3.0	3.4	10.5	11.9	22.6	25.7	34.9	39.8
Alfalfa, Seca	1	90.5	9.4	15.9	17.8	3.1	3.5	9.9	11.0	21.1	23.4	39.8	44.2
Algodón, Semilla	4	95.0	5.0	18.1	19.1	19.7	20.7	3.5	3.7	26.5	27.9	27.1	28.5
Arenque	5	28.3	71.7	16.6	58.5	8.1	28.9	2.3	8.2	0.3	0.9	1.0	3.5
Arroz, Cascarilla	1 1	92.8	7.2	2.3	2.5	2.7	2.9	17.2	18.5	34.2	36.9	37.8	40.7
Arroz, Harina Arroz, Puliduras	4	91.3	8.7 7.8	12.0 11.9	13.2 12.9	14.6 16.9	16.0 18.4	6.7 9.1	7.4 10.0	3.9 6.3	4.3 6.9	54.0 47.4	59.2 52.2
Avena en Greña	4	93.1	6.9	6.5	6.9	3.4	3.7	7.1	7.6	31.8	34.1	44.3	47.7
Avena Forrajera	1	88.4	11.6	6.0	6.9	3.2	3.6	6.6	7.5	30.4	34.4	42.1	47.5
Avena Rolada	4	91.0	9.0	7.9	8.7	7.3	8.1	2.8	3.1	11.2	12.3	61.7	67.8
Avena Seca	1	94.2	5.8	7.4	7.9	6.0	6.6	6.2	6.6	19.1	21.0	58.8	63.5
Avena, Ensilado	3	21.8	78.2	2.1	10.2	1.3	6.7	2.8	12.0	7.0	31.0	8.6	40.1
Avena, Grano	4	91.3	8.7	8.7	9.5	5.8	6.4	4.1	4.5	12.2	13.3	59.6	65.0
Avena, Heno Avena, Paja	1	89.1 91.1	10.7 8.9	5.8 6.4	6.5 7.0	3.4 4.5	3.8 4.9	6.1 6.5	6.9 7.2	28.4 30.2	31.9 33.0	45.6 43.2	51.3 47.4
Bagazo de Caña	1	63.9	36.1	1.0	1.6	0.9	1.3	2.1	3.2	27.5	42.5	32.4	51.4
Bagazo de Cervecería	1	93.1	6.9	15.1	16.4	510		4.5	4.9	23.0	23.7	57.2	59.0
Bagazo de Cervecería	2	17.9	82.1	4.0	22.4	1.5	8.2	0.9	5.3	3.0	17.1	8.5	46.9
Cacahuate, Cascarilla	1	91.5	8.5	5.2	3.5	4.3	25.9						
Cachaza Fresca	2	30.4	69.6	3.9	12.6	3.4	11.3	5.7	18.6	4.5	14.8	12.9	42.6
Cachaza Seca	1	90.8	9.2	12.3	13.5	4.7	5.1	25.6	28.2	15.2	16.8	33.0	36.4
Calamar Canola	5	22.9 93.4	77.1 6.6	15.9 36.4	69.4 38.9	2.5 3.5	10.7 3.8	7.2	7.3	0.1 13.0	0.4 13.9	2.8 35.3	12.1 37.9
Cañola Caña de Azúcar	2	30.8	69.1	0.8	2.7	1.3	4.0	1.9	6.3	7.9	25.9	18.9	61.1
Caña de Azúcar Molida	1	94.2	5.8	3.0	3.2	2.0	2.2	3.7	4.0	22.6	24.0	62.8	66.7
Capelín Capelín	5	23.4	76.6	13.1	55.9	6.4	27.4	2.1	9.0	0.1	0.5	1.7	7.2
Carbonato de Calcio	6												
Carne de Cerdo	5	25.8	74.2	20.2	78.5	2.7	10.3						
Carne de Res	5	27.7	72.3	20.5	73.9	4.0	14.4		1 1 1			1 1 1	1 1 1
Carne Machaca	5	87.4	12.6	58.9	67.4	18.5	21.2	8.3	9.5	0.4	0.4	1.3	1.5
Carne, Harina	5	95.2	4.6	36.8	38.6	13.0	13.6	37.8	39.7	3.2	3.4	4.6	4.9
Cártamo, Pasta Cebada, Cascarilla	5	94.0	6.0 7.5	12.5	13.5	3.1 3.1	3.3	5.0 6.9	5.3 7.5	35.2 19.6	37.5 21.2	50.4	54.4
Cebada, Grano	4	91.3	8.7	10.0	10.9	3.4	3.7	3.0	3.3	6.9	7.6	68.0	74.5
Cebada, Raicilla	4	91.6	8.4	15.2	16.6	3.0	3.3	6.1	6.7	17.2	18.8	49.1	54.1
Coco, Pasta	5	96.5	3.5	21.4	22.2	9.1	9.5	6.8	7.1	17.3	17.9	39.8	41.4
Ebo	2	95.1	4.9	16.6	17.5			7.5	7.9				
Frijol, Harina	4	92.3	7.7	16.1	17.5	2.7	2.9	4.7	5.1	5.6	6.0	63.2	68.5
Girasol, Pasta	5	94.5	5.5	25.4	26.8	3.2	3.4	5.7	6.1	29.8	31.5	29.9	31.5
Grasa de Sobrepaso	5	97.7	2.3	20.2	20.0	21.2	21.5	16.4	16.6	1.4	1.4	59.2	60.2
Harinolina Jitomate, Pellet	4	91.5 97.2	8.5 2.8	28.2 17.9	30.8 18.4	5.6 2.8	6.2 2.9	8.5 12.8	9.3 13.2	18.6 13.5	20.3 13.9	30.6 50.2	33.5 51.6
Maíz Amarillo Molido	4	91.0	9.0	7.9	8.6	4.4	4.8	1.8	2.0	2.6	2.8	74.6	81.7
Maíz Amarillo, Grano	4	90.7	9.3	7.5	8.2	4.7	5.2	1.2	1.3	1.9	2.1	75.4	83.2
Maíz Blanco Quebrado	4	90.4	9.6	7.8	8.7	4.6	5.1	1.5	1.6	2.9	3.2	73.5	81.3
Maíz Rolado	4	88.88	11.2	7.1	8.0	4.4	4.9	1.1	1.2	3.4	3.8	73.2	82.1
Maíz Verde p/Ensilar	2	25.6	74.4	1.4	5.7	1.1	4.5	1.5	5.7	5.7	22.1	15.8	61.9
Maíz, Ensilado Maíz, Clutan	3	29.2	70.8	2.3	7.9	1.5	5.1	2.5	8.8	8.1	28.1	14.8	50.4
Maíz, Gluten Maíz, Pericarpio	5	94.6 91.9	5.4 8.1	60.5 5.9	63.9 6.4	2.8 3.2	3.0 3.5	1.6	1.7 2.1	0.6 12.4	0.6 13.5	29.1 68.4	30.8 74.5
Maíz, Rastrojo	1	90.5	9.5	4.3	4.7	2.2	2.4	7.7	8.5	33.0	36.3	43.4	48.1
Maíz, Kasado Maíz, Salvado	1	94.0	6.0	18.8	20.0	3.4	3.6	7.5	7.9	13.0	13.7	42.6	45.2
Maíz, Tamo	1	91.5	8.5	8.8	9.6	5.0	5.4	3.8	4.1	10.6	11.5	63.3	69.3
Maíz, Tortilla	4	58.1	41.9	6.1	10.5	2.4	4.2	1.4	2.4	2.1	3.6	45.9	79.3
Melaza de Caña	4	80.6	19.4	7.2	8.6	2.7	3.2	8.4	10.6	1.7	2.0	62.0	75.1
Miel de Abeja	4	79.8	20.2	0.3	0.4	0.2	0.2	0.2	0.3			79.1	99.1
Ortofosfato de Calcio	6	20.7	62.2	2.0	0.0	4.0	4.7	2.4		44.0	20.4	40.0	10.0
Pasto Estrella Africana Pasto Insurgente	2 2	36.7	63.3 77.8	2.8 1.9	8.0 9.3	1.8 0.8	1.7 3.7	2.4	6.6 11.1	11.0 6.4	30.1 28.7	18.0 10.7	48.9 47.1
Pasto Insurgente Pasto Rhodes	2	66.8	33.2	5.8	8.8	2.3	3.4	8.9	14.1	18.7	27.7	31.0	46.0
Pescado, Harina	5	91.5	8.5	54.8	59.5	13.5	15.1	16.4	18.1	0.6	0.7	9.5	10.6
Rye Grass, Ensilado	3	48.2	51.8	7.5	15.7	3.5	7.3	8.9	18.5	8.8	18.3	19.5	40.2
Sacharina	4	95.0	5.0	8.9	9.4	2.3	2.4	4.3	4.5	27.2	28.6	52.3	55.2
Sorgo, Ensilado	3	26.2	73.8	2.1	5.6	1.4	5.5	2.2	9.0	6.9	27.8	13.7	49.6
Sorgo, Grano	4	90.4	9.6	8.2	9.1	3.8	4.2	1.9	1.9	2.7	3.0	73.8	81.7
Soya, Cascarilla	1 7	91.9	8.1	12.4	13.7	6.3	6.8	4.6	5.0	32.7	35.3	38.1	41.5
Soya, Frijol	5	90.6	9.4	43.8	48.3	2.5	2.8	6.1	6.7	4.4	4.8	33.2	36.6
Soya, Harina Soya, Pasta	5	92.4 91.8	7.6 8.2	44.7 45.0	48.3 49.0	2.0	2.4	6.2	6.0	5.7	6.2	33.0	36.6
Soya, Pasta Trigo, Paja	1	91.8	4.7	3.6	3.7	3.5	2.1 3.7	7.1	6.8 7.5	39.2	41.2	41.9	36.0 44.0
Trigo, Paja Trigo, Salvado	1	91.2	8.8	15.0	16.5	4.2	4.7	5.6	6.2	11.1	13.9	56.3	60.5
Zacate Estrella	1	31.8	68.2	3.8	12.4	1.4	4.7	2.6	8.4	10.0	31.2	14.0	43.7

Cuadro General de Composición Nutrimental (cont.)

		Energía ((kcal/Kg)			Minerale	s(%BS)	Frac	cciones d	le la F	ibra (Va	n Soest)	(%BS)
TND (BH)	TND (BS)	E.D.(BH)	E.D.(BS)	E.M.(BH)	E.M.(BS)	Ca	Р	FND	Cont.Cel.	FAD	Lignina	Celulosa	Hemicel.
57.9 15.7	64.2	2553.4	2831.7	2093.7	2321.9	1.2	0.3	43.2 49.5	56.8 50.5	30.2 38.5	7.9 13.8	23.0 23.6	11.8 10.9
33.8	66.5 70.9	691.0 1491.5	2931.6 3124.5	566.9 1222.9	2571.8 2561.8	1.9	0.3	49.3	30.3	30.3	13.0	23.0	10.9
56.9	64.8	2509.7	2856.5	2057.9	2342.3	2.2	0.3	44.8	55.1	29.4	6.7	22.4	15.6
59.7	66.3	2816.5	3137.9	2158.1	2405.8	1.6	0.3	45.1	54.9	32.8	8.4	22.9	12.3
87.0 29.9	91.6 106.0	3837.7 1320.2	4040.4 4672.8	3146.6 1082.4	3312.8 3831.3			52.4	47.6	40.0	12.2	27.7	12.0
51.6	55.5	2273.1	2447.8	1864.5	2007.8			74.0	26.0	57.6	9.9	42.9	16.5
89.2	97.7	3934.0	4309.0	3225.5	3533.0			1410	2010	0110	0.0	42.0	10.0
87.0	95.7	3831.5	4215.7	3143.3	3458.6								
60.9	65.4	2684.4	2884.0	2201.0	2364.7								
57.9 81.9	64.9 90.0	2562.1 3612.8	2893.9 3969.4	2091.5 2962.2	2362.6 3254.6								
74.0	80.1	3215.0	3519.2	2636.0	2885.4			65.1	34.9	39.8	7.4	30.2	25.3
14.2	70.6	653.6	3111.2	535.2	2546.8			47.6	52.4	35.8	7.2	18.3	21.7
80.1	87.2	3530.3	3845.5	2894.6	3153.0	0.6	0.3	56.4	40.3	33.6	6.3	26.5	22.8
59.6 61.7	66.4 67.8	2629.1 2719.9	2954.7 2980.5	2155.7 2230.1	2422.6 2443.7	1.0	0.3	63.2 67.1	36.8 32.9	38.5 44.0	7.5 8.5	30.3 34.3	24.7 23.2
40.5	63.7	1787.8	2808.8	1465.8	2303.0		0.0	71.9	28.1	49.4	10.3	37.8	22.5
71.1	73.3	3133.5	3232.7	2569.2	2650.6			1110	2011	10.11	1010	0110	EETO
14.6	80.9	642.9	3567.1	527.2	2924.7								
22.2	74.7	4040.0	21/27	067.0	2022.7			EE 2	44.0	22.4	0.7	22.2	22.4
23.7 56.0	71.7 61.6	1046.3 2467.4	3442.7 2717.7	857.9 2023.0	2822.7 2228.3			55.2 56.9	44.8 43.1	32.1	9.7 10.6	22.3 24.9	23.1 21.3
19.4	84.9	856.4	3742.5	702.2	3068.6			30.9	43.1	33.7	10.0	24.3	21.3
70.9	76.2	3125.2	3358.7	2562.4	2753.8								
21.3	68.8	940.4	3035.0	771.4	2490.4			68.0	31.7	42.2	9.1	32.6	26.0
64.8	68.8	2855.5	3031.9 4594.8	2341.3	2485.9			58.0	44.7	31.0	7.9	24.8	24.3
24.4	104.2	1074.4	4394.0	880.9	3767.3	34.8							
						34,0							
							1 1 1 1			1 1			
83.1	95.1	3662.4	4192.0	3002.8	3437.1	40.0							
59.6	62.5	2626.5	2754.0	2154.4	2259.0	10.6	5.4	61.2	36.7	43.9	8.8	34.9	17.2
66.1	71.4	2912.1	3148.1	2387.7	2581.3			01.2	30.7	43.3	0.0	34.3	17.2
79.0	86.5	3483.2	3813.9	2855.9	3127.1	0.4	0.3						
66.8	73.5	2945.6	3241.8	2415.1	2658.0	0.8	0.1						
80.5	83.6	3547.5	3684.2	2908.6	3020.7			52.9	47.0	32.3	9.7	22.0	20.6
77.2	83.7	3404.5	3690.1	2791.4	3025.5			32.3	47.0	JZ.J	3.1	22.0	20.0
62.1	65.6	2738.5	2891.2	2245.4	2370.5			63.8	36.2	37.8	10.6	27.0	26.0
96.9	98.4	5510.0	5602.7	3503.7	3558.4	6.8							
65.8 69.8	71.9 71.9	2900.4 3078.3	3170.2 3169.1	2378.1 2524.0	2599.3 2598.4	*4.02							
83.3	91.2	3809.9	4173.5	3012.2	3298.5	4.02							
84.0	92.6	3702.5	4083.5	3035.7	3348.1								
82.9	91.7	3654.2	4041.5	2996.0	3313.5	0.9	0.2						
81.7	91.7	3603.1	4041.6	2954.2	3313.7	0.4	0.2						
18.1 20.0	71.0 68.2	797.6 877.7	3128.8 3007.0	653.9 719.9	2565.4 2466.2	0.8	0.2	63.4	36.6	34.6	6.7	26.0	28.5
77.6	82.0	3421.1	3616.4	2805.0	2965.2	0.0	0.2	30.7	55.5	34.0	0.1	20.0	20.0
78.7	85.7	3470.6	3777.7	2845.3	3097.0	1.2	0.2	47.0	53.0	15.4	3.2	10.1	33.4
56.6	62.6	2496.8	2761.5	2047.1	2264.2	1.0	0.2	68.5	31.5	45.2	9.4	35.7	23.3
65.9 78.0	69.8 85.4	2905.6 3439.6	3078.6 3765.5	2382.3 2820.2	2524.2 3087.4		3 4 4 4						
51.9	89.5	2289.2	3945.3	1877.0	3234.8	0.5	0.4						
69.3	83.7	3360.1	4080.7	2505.2	3026.4	2.2	0.2						
71.8	89.9	3165.2	3965.6	2595.2	3251.4	41.0	20.0						
25.5	63.5	1029.3	2800.9	851.3	2314.2	14.3 0.1	20.2 0.2						
14.3	64.2	632.4	2830.6	518.5	2320.9	0.1	0.2						
41.6	61.9	1835.3	2726.9	1504.8	2235.9								
70.3	78.3	3098.9	3454.3	2540.8	2832.2		1 1 1 1	-		-			
32.3 64.1	67.2 67.5	1425.8 2821.4	2961.4 2972.1	1169.0 2309.6	2428.1 2433.1			50.6	49.4	32.7	2.9	24.0	17.9
18.1	68.3	796.0	3008.5	653.1	2469.1	1.4	0.3						
81.5	90.1	3591.4	3973.9	2944.9	3258.5	0.3	0.3						
65.5	71.2	2886.9	3137.5	2367.0	2572.5			70.5	29.5	46.6	5.5	41.1	23.8
70.8	78.1	3121.1	3441.3	2559.0	2821.5								
70.1	76.0	3077.2	3351.2	2523.1	2747.7	0.9	0.7	16.8	83.2	11.1	2.4	8.6	4.7
60.8	63.8	2679.0	2813.2	2196.6	2306.6		0	1010	UUIL			0.0	J.,
74.3	82.6	3317.2	3593.8	2721.1	2987.1	0.2	0.7	50.4	43.8	19.9	15.0	9.0	26.3
21.2	66.4	934.3	2926.6	766.1	2399.5								

7. Conclusiones

- φ Mediante la información que ofrece el Cuadro General de Composición Nutrimental todos los especialistas en nutrición animal y estudiantes de ciencia de alimentos, contarán con valores de referencia apegados al contexto del país, eliminando así la desventaja que representa la utilización de información extranjera.
- φ Este proyecto abre nuevas posibilidades para los Químicos de Alimentos en materia académica y laboral, pues propone una línea de investigación dentro de las Facultades de Química y Medicina Veterinaria y Zootecnia para el trabajo multidisciplinario y la complementación de ambas carreras.
- Φ Habiéndose obtenido el Cuadro General de Composición Nutrimental, el Departamento de Nutrición Animal y Bioquímica de la FMVZ comienza una nueva etapa de investigación científica dentro de esta institución, sentando las bases para futuras recopilaciones y estudios sobre composición nutrimental de alimentos para animales.
- φ Los cuadros de composición se encuentran disponibles en el DNAB para ser empleados por el Laboratorio de Bromatología en cuanto las obras de remodelación de instalaciones permitían volver a efectuar los análisis bromatológicos de rutina y así verificar los resultados obtenidos generados mediante el trabajo experimental.
- La información con que cuenta el Laboratorio de Bromatología dentro de sus archivos de informes es muy extensa, sin embargo no todos contaban con la información completa para ser clasificados. Es conveniente efectuar una revisión de los métodos de registro de muestras para eliminar este inconveniente en una posterior recopilación.

- φ Al final de la investigación y recopilación de valores experimentales y haber efectuado con ellos los cálculos restantes para las fracciones de análisis ELN, TND, ED y EM más el posterior cálculo de parámetros estadísticos se llegó a la conclusión de que hace falta contar con un mayor número de ejemplares de cada tipo de materia prima y de alimento, pero más aun en lo referente a ensilados y complementos minerales.
- φ Es importante conocer si existe -y en que grado- una influencia directa del número de ejemplares contabilizados para cada muestra en el cálculo de los valores de composición nutrimental promedio. De esta manera, verificar si la cantidad de ejemplares influye en la similitud o discrepancia de los valores que se obtuvieron con respecto a los reportados en la literatura. Tal estudio sólo es posible si se cuenta con mayor cantidad de informes de análisis con información más completa, así como un registro de ingreso preciso y bien desglosado. De esta manera, la clasificación de las muestras se facilitaría conociendo la procedencia exacta y tratamientos a los que fue sometida previamente cada una.

8. Recomendaciones

Para efectuar una futura recopilación de informes es necesario agrupar todas las muestras en estudio según los siguientes requisitos mínimos: en el caso de las muestras vegetales para comenzar deben ordenarse por género y especie y tras ello por estado de madurez de la planta y porciones de la planta estudiadas (raíz, tallo, hojas, flor o frutos) y diferenciar aquellas que han perdido frescura de aquellas que se analizan en estado fresco y en estado seco. El caso de los ensilados es más difícil pues los tiempos de fermentación para elaborarlos suelen ser muy variados y en función de éstos la cantidad de materia seca e hidratos de carbono principalmente. Los alimentos energéticos y complementos proteínicos deberán ordenase también por género y especie si se trata de materias primas o alimentos de origen vegetal (por ejemplo el maíz, la avena y el arroz, así como oleaginosas y leguminosas), separarlos según su frescura y estado de madurez y, preferentemente conocer los métodos de recolección y procesamiento a los que estuvieron sujetos, tal es el caso de las harinas, las tortillas y las pastas de oleaginosas.

En el caso de productos de origen animal especificar la especie, de qué porción del animal proviene la carne y la edad del espécimen.

Los complementos Minerales suelen variar en su composición en función del yacimiento de donde se obtienen, sería benéfico conocer el origen y prestar especial atención al analizarlos pues muchos de ellos suelen adulterarse.

Tomando todos los elementos anteriores se sugiere al Laboratorio de Bromatología llevar un control de ingreso y registro de muestras para análisis mucho más estricto donde se exija a la persona o institución que solicita los análisis que declare la naturaleza de la muestra, que defina la región o el país de donde proviene, que manifieste el proceso por el cuál se obtuvo el alimento (cultivo, uso y tipo de

fertilizantes, recolección, estado de madurez de la planta, porción del vegetal que ha de analizarse, condiciones de almacenamiento, tratamientos posteriores a la recolección, tipo de extracción, disolventes empleados, etc.); y en especial hacer la aclaración pertinente sobre la sospecha de adulteraciones y manipulación dudosa del alimento. De solicitarse al interesado toda la información anterior favorecería en gran medida el estudio de los resultados experimentales obtenidos, sea para efectos de una recopilación como la del presente proyecto o bien para ofrecer al solicitante una opinión científica al respecto de su materia prima o alimento.

- Aunque las estimaciones logradas mediante métodos matemáticos son confiables es preferible que las fracciones de análisis referentes a energía digestible y metabolizable se determinen experimentalmente porque ofrecerían resultados más exactos. No hay que olvidar que las estimaciones o cálculos del valor teórico siempre se obtienen de factores de conversión y valores de TND, que a su vez proviene del AQP y sus elementos susceptibles de subestimación o sobreestimación. Este hecho promovería a su vez un cálculo incorrecto del valor para Energía.
- La base de datos generada por este proyecto debe actualizarse y complementarse en lo futuro. Son necesarias muchas más muestras, tanto en variedad como en número de ejemplares o repeticiones, para aumentar la representabilidad de los valores promedio.
- Con los elementos presentes en esta recopilación no ha sido posible definir un comportamiento estadístico acerca de la influencia del número de ejemplares sobre el valor promedio calculado y la semejanza de éste con lo referido en las tablas nutrimentales, puesto que no existe igualdad de cantidades en el número de ejemplares para todas las muestras. Se juzga conveniente investigar a fondo a este respecto como uno de los objetivos de un siguiente proyecto.

- φ Tomando como base lo recomendado en la literatura, se sugiere que deben ser varias instituciones educativas, productores pecuarios, empresas relacionadas con la producción de alimentos, así como laboratorios particulares quienes colaboren en un mismo proyecto [22] aportando en conjunto una extensa cantidad de muestras para generar con ellas un banco de datos mucho más amplio, con diversos ejemplares para cada alimento y materia prima y que además se conozca de todos ellos la información fundamental completa para su clasificación y ordenamiento.
- Para una colaboración entre diversas instituciones de investigación y docencia, productores, industriales del ramo, laboratorios particulares, etc., que tenga por objetivo generar tablas nutrimentales no debe perderse de vista que las metodologías de análisis empleadas deben ser preferentemente las que proponen las Asociaciones y Consejos internacionales tales como la AOAC Internacional o bien aquellas que señalan las Normas Mexicanas y Normas Oficiales Mexicanas.

9. Bibliografía

- 1. Ávila, E.: Alimentación de Aves. División del Sistema de Universidad Abierta de la FMVZ. Universidad Nacional Autónoma de México. México, DF, 1982. •
- 2. Association of Official Analytical Chemists, Official Methods of Analysis, 15a. ed., Washington, 1990. →
- 3. Bourges, R.H., Morales de León, J.: Composición de Alimentos Mexicanos. Instituto Nacional de la Nutrición Salvador Zubirán. México, Enero 1999.
- 4. Camacho, M.J.: Contribución al estudio de la composición química de las rocas fosfóricas de México, utilizadas como fuentes de minerales en la nutrición animal. Tesis de Licenciatura. FMVZ. Universidad Nacional Autónoma de México. México, DF, 1979.
- 5. Church, D.C.: Livestock Feed and Feeding. 4th ed. O&B Books, Inc. Corvallis, Oregon. 1979. **♦**
- 7. Comité on calorie requirements. Calorie Requirements. FAO: nutritional studies No. 15, pp. 4-66. Rome, 1965.
- 8. Crampton, E.W.: Nutrición Animal Aplicada. 2da ed. Acribia. Zaragoza, España, 1974.
- 9. Cullison, E.: Alimentos y Alimentación del ganado. 2da ed. Diana. México, DF. 1980. 3
- 10. Daniel, W.W.: Bioestadística. Base para el análisis de las ciencias de la salud. Limusa. México, DF, 1980.
- 11. Escamilla, G.I.: Valor nutritivo de los forrajes tropicales (Consumo, digestibilidad, proteínas). Memorias del curso sobre la producción y utilización de forrajes tropicales. Martínez de la Torre, Ver., 1981. Pp. 53-58. FMVZ, Universidad Nacional Autónoma de México, DF, 1981.

 ♣
- 12. FAO. Food, Nutrition, and Agriculture. International Conference on Nutrition, Food and Agriculture Organization, Rome, Italy (64 pp.).

 ⋉
- 13. Flores, J.A.: Bromatología Animal. 3a ed. Limusa. México, DF. 1984.

- 14. Flores, R.F.: Fertilización de praderas tropicales, métodos de aplicación del fertilizante, fertilización nitrogenada vs. Leguminosas en praderas tropicales. Martínez de la Torre, Ver. 1981. Pp. 18-29. FMVZ. Universidad Nacional Autónoma de México. México, DF. 1980.

 □
- 15. Hernández, M., Chávez, A y Bourges, H.: Valor Nutritivo de los alimentos mexicanos. Tablas de uso práctico. Instituto Nacional de la Nutrición. México, DF. 1980. ■
- 16. Howard, E., et al: Química de los Alimentos de Pearson. Ed, CECSA. Pp. 1-29. México, 1997.
- 17. McIlroy, R.J.: Introducción al cultivo de los pastos tropicales. Limusa. México, D.F. 1980.

 □
- 18. McDowell, et al.: Latin American Tables of Feed Composition. University of Florida. Gainesville, Florida. USA. 1974. ■
- 19. Metodologías Analíticas del Departamento de Nutrición Animal y Bioquímica. FMVZ, Universidad Nacional Autónoma de México. México DF, 2003.
- 20. National Research Council. Designing Foods: Animal Product Options in the Marketplace. National Academy Press, Washington, DC. 367 pp. → ☑
- 21. National Research Council, Nutritional Energetics of Domestic Animals and Glossary of Energy terms, Nacional Academy Press, Washington, DC. 1981. →
- 22. National Research Council, Nutrient Requirements Of Dairy Cattle, Nacional Academy Press, Washington, DC. 1989.
- 23. National Research Council, Nutrient Requirements Of Dairy Cattle, Nacional Academy Press, Washington, DC. 2001.
- 24. Nutriciero, Ediciones Pecuarias Mexicanas, 1(2):40-44, México, DF. 2003
- 25. Pond, W.G., et al. Fundamentos de Nutrición y Alimentación Para Animales, 2da ed. Limusa-Wiley, Capítulos 1 a 3, pp. 11-33. México, DF. 2006.
- 26. Preston, R.L.: Typical composition of commonly used feeds for sheep and cattle. http://images.beef-mag.com/files/13/feedcomp2002.pdf , February, 2002.
- 27. Preston, R.L.: Typical composition of commonly used feeds for sheep and cattle. http://beef-mag.com/mag/beef_feed_composition_tables/, Abril 1, 2005.

- 28. Preston, R.L.: Typical composition of commonly used feeds for sheep and cattle. http://beef-mag.com/mag/beef feed composition tables 2/, Marzo 1, 2006.
- 29. Rojas, H.R.: Evaluación de la digestibilidad in Vitro de diversas fuentes de fosfatos comerciales en México. Tesis de Licenciatura. FMVZ. Universidad Nacional Autónoma de México. México, DF. 1977.
- 30. Shimada, M.A., Troncoso, A.H.: Estudio preliminar sobre el valor nutritivo del triticale, composición proximal, aminoácidos esenciales y valor alimenticio para el cerdo en finalización. Tec.Pec.Méx., Vol. 17:54. México, DF. 1971.

 □
- 31. Shimada, M.A.: Nutrición Animal. Capítulos 1-2, pp. 15-63. Ed. Trillas, México, Enero 2003
- 32. Sosa de Pro, E.: Manual de procedimientos analíticos para alimentos de consumo animal. Universidad Nacional Autónoma de Chapingo. Chapingo, Edo. Méx., 1981.
- 33. Spross, S.K.: Evaluación de Ca, P y F en alfalfa y maíz del Valle de México y en suplementos comerciales. Tesis de Licenciatura. FMVZ. Universidad Nacional Autónoma de México, DF. 1979.

 ◆
- 34. Taylor, B.E.: Evaluación de las Características Nutricias de los Alimentos más comúnmente empleados en Alimentación Animal en México. Tesis de Licenciatura. FMVZ. Universidad Nacional Autónoma de México. México, DF. 1988.
- 35. Tejada, H.I., Berruecos, J.M. y Merino, H.: Análisis bromatológicos de alimentos empleados como ingredientes en nutrición animal. Tec. Pec. Méx., Suplemento 5. México, DF. 1979.

 □
- 36. Tejada, H.I.: Control de Calidad y Análisis de Alimentos para Animales. Sistema de Educación Continua en Producción Animal en México. México, 1992.
- 37. Tejada, H.I.:Manual de laboratorio para análisis de ingredientes utilizados en la alimentación animal. Patronato de apoyo a la investigación y Experimentación Pecuaria en México, A.C. Instituto Nacional de Investigaciones Pecuarias. SARH. México, DF. 1983.
- 38. Tellez, L.G.: Contribución al estudio de la calidad de la harina de pescado mexicana comercial. Tesis de Licenciatura. Facultad de Química. Universidad Nacional Autónoma de México, DF. 1978.

 ◆

- 39. Troncoso, A.H. y Rivera, M.A.: Factores Edafológicos que influencian el valor nutricio de los alimentos. Apuntes mimeografiados de la clase de posgrado sobre Forrajes y Concentrados. FMVZ. Universidad Nacional Autónoma de México. México, DF. 1985. ♣
- 40. United States-Canadian Tables of Feed Composition: Nutritional Data For United States, Canadian Feeds, Nacional Academy Press, Washington, DC. 1982.
- 41. Valles de la Mora, B.: Fertilización de praderas. Memorias sobre el curso de producción de leche en el trópico. Martínez de la Torre, ver., 1981. Pp. 213-224. FMVZ. Universidad Nacional Autónoma de México. México, DF. 1981.

 □
- 42. Zorrilla, R.J. Valor nutritivo de pajas y rastrojos para rumiantes. Segundo congreso nacional de la A.M.E.N.A. Alimentación pecuaria en base a esquilmos agrícolas, subproductos agroindustriales, forrajes de corte y fuentes alternas de energía de energía y proteínas. Veracruz, Ver. 1981. S.A.R.H. S.A.M. México, DF. 1981. ■

Notas:

- ⇒: Citado por Taylor, B.E. en: Evaluación de las Características Nutricias de los Alimentos más comúnmente empleados en Alimentación Animal en México. Tesis de Licenciatura. FMVZ. Universidad Nacional Autónoma de México. México, DF. 1988.
- →: Citado por Shimada, M.A. en: Nutrición Animal. Capítulos 1-3. Ed. Trillas, México, Enero 2003.

10. Apéndices

10.1 Apéndice I

Conceptos Importantes en Materia de Nutrición [25, 31]

Es importante definir bien algunos conceptos de uso frecuente en materia de nutrición puesto que suelen generar controversias una vez que son empleadas indistintamente:

- φ Alimento: es aquella materia comestible que proporciona nutrimentos.
- φ Alimentación: es el proceso de ingerir alimentos y el comienzo del proceso conocido como nutrición.
- Φ Digestibilidad: es el porcentaje de nutrimentos que el organismo puede extraer
 del alimento y aprovecharlos mediante el proceso de la digestión.
- φ Especies monogástricas: se refiere a los animales de estómago simple o no rumiantes tales como los humanos, caballos, cerdos, aves de corral (gallinas, pavos, patos y gansos), especies pequeñas como mascotas (perros y gatos), peces y otras especies acuáticas, animales de laboratorio (por ejemplo: ratas, ratones, cobayos y monos) o animales en cautiverio dentro de zoológicos.
- φ Especies Rumiantes: Son aquellas especies cuyo estómago está dividido en cuatro cavidades. Por ejemplo las cabras, ovejas, especies silvestres o en cautiverio, ganado lechero y ganado para carne.

procesos metabólicos. Tomando como base que la nutrición es el proceso de ingresar a la célula los nutrimentos obtenidos de los alimentos y es un proceso complejo de tipo fisiológico, alimentario, ambiental, psicológico y social inclusive, la propuesta en años recientes ha sido cambiar el término por Nutriología, asignándole correctamente el grado de ciencia que estudia los procesos de la nutrición.

- Nutrimento: Es cualquier elemento o compuesto químico de la dieta que sostiene la reproducción, el crecimiento y la lactancia normales o el mantenimiento de los procesos vitales interviniendo directa o indirectamente en alguna de las rutas metabólicas.
- φ Valor Nutricio (o calidad nutrimental): es la proporción que guardan entre si los nutrimentos presentes en los alimentos.
- Ψ Valor Biológico (VB): Es el término que se emplea para expresar la calidad nutritiva o nutricia de los alimentos, muy en particular de aquellos con alto contenido de proteínas. El Valor Biológico consiste en medir la proporción de la proteína absorbida que se utiliza.

10.2 Apéndice II

Factores que Influencian la Composición de los Alimentos

La composición de los alimentos está sujeta a variaciones debidas principalmente a los siguientes factores:

- a). Diferencias debidas a factores genéticos: Tenemos como ejemplo al grano de maíz que se distingue entre maíz blanco, amarillo, rojo y azul; de éstos el maíz amarillo es el más utilizado en alimentación animal. El maíz amarillo contiene un precursor (criptoxantina) de la vitamina A, pero además contiene pigmentos como las Xantofilas (luteína), lo que es muy buscado en la industria avícola, ya que imparte a las aves una coloración amarilla a la yema de huevo, tejido adiposo, tarsos y piel de los pollos de engorda. El maíz opaco-2 llega a tener hasta 12% de PC, pero además un alto contenido de lisina superior al del maíz normal [1, 14].
- b). Diferencias debidas a la maduración de a planta: Se ha observado que a medida que envejece la planta el contenido de fibra aumenta y disminuye el contenido de energía de un mismo género vegetal [37, 38], ya que conforme la planta madura se observa un movimiento de proteínas de las partes vegetativas hacia la semilla, para proveerle los nutrimentos necesarios para el crecimiento durante la germinación. Así, a la madurez la semilla, contiene mayor porcentaje de proteína que el resto de la planta [17]. Además no sólo aumenta la fibra de la planta sino que hay mayor lignificación de la misma; por lo tanto, a mayor madurez, mayor cantidad de lignina y menor digestibilidad de la planta. En los pastos tropicales estos fenómenos son todavía más acentuados por el crecimiento más rápido que en las tierras templadas, y la tendencia a formar tallos más altos que requieren mayor cantidad de lignina para mantenerse erectos [11].
- c). <u>Diferencias debidas a la sección de la planta que se utilice</u>: La proteína es principalmente un constituyente de los tejidos activos, por tanto, las hojas son

más ricas en este componente que los tallos, como es el caso de la alfalfa. El contenido de lípidos también es más elevado en las hojas que en los tallos y por lo general es mayor en las semillas donde actúa como una reserva de energía para la germinación posterior. En la mayoría de las semillas, la principal reserva energética son los hidratos de carbono, pero las semillas de oleaginosas como la soya, el algodón, el girasol y el cártamo, tienen esta energía en forma de grasa. Las semillas de oleaginosas también son ricas en proteínas.

En todos los productos vegetales con excepción de las semillas de oleaginosas, los componentes principales son los hidratos de carbono, pero la naturaleza de éstos difiere marcadamente, según se encuentre como reserva o elemento estructural. En las semillas se encuentran principalmente como almidón, mientras que en los tallos y en menor cantidad en las hojas, una considerable porción se encuentra en forma de hidratos de carbono estructurales.

El calcio está asociado principalmente a la parte vegetativa de la planta y, la hoja es más rica en este elemento que el tallo. Las semillas tienen menor cantidad de calcio que el resto de la planta, mientras que el fósforo se encuentra en mayor proporción en las semillas que en otras partes de la planta, y las hojas son más ricas que los tallos en este elemento [17].

d). Diferencias debidas a condiciones ambientales (temperatura, humedad y luz): En general las estaciones del año, pero particularmente las fluctuaciones de las condiciones climatológicas, pueden tener una marcada influencia sobre la composición y condición de los forrajes. La respuesta marcada de los forrajes a los factores climáticos explica el hecho de que las especies se distribuyan en diferentes zonas del país. El crecimiento, la latencia y la germinación, están correlacionados con los factores climáticos. La intensidad lumínica y la longitud del día estimulan el desarrollo y florecimiento. Los forrajes de clima templado pueden acumular cantidades de hidratos de carbono solubles a temperaturas inferiores; aparentemente esto no ocurre con los forrajes tropicales. La acumulación de estos hidratos de carbono tiene efecto sobre el nivel de crecimiento de los forrajes.

El incremento de la temperatura ambiental genera una disminución de la digestibilidad de los forrajes de clima templado ya que se ven aumentados los componentes de las paredes celulares (celulosa, hemicelulosa y lignina). En los forrajes tropicales el aumento de la temperatura ambiental genera una disminución de la digestibilidad, relacionándose la lignina con la hemicelulosa, en contraste con los forrajes de clima templado en donde se relaciona con un incremento de la celulosa.

En los forrajes de clima templado, la estación del año influye sobre el contenido de nutrimentos, por ejemplo el contenido de PC y la digestibilidad en primavera son altos; sin embargo, decrecen durante el invierno, lo mismo se ha observado con los minerales (Ca, P, Mg, Mn, K y Fe). Se informa también que el contenido de paredes celulares es más alto en invierno que en el verano [11, 13, 18, 42].

e). <u>Diferencias debidas a factores edafofológicos</u>: El suelo es la parte de la corteza terrestre en la cual crecen las plantas; se puede definir como una mezcla dinámica de materiales inorgánicos, orgánicos, aire y agua. Para que un suelo sea altamente productivo (fértil) debe contemplar un pH adecuado, una cantidad adecuada y constante de nitrógeno total, una adecuada concentración de materia orgánica, buena capacidad de intercambio de cationes y fósforo aprovechable [41].

La mayor influencia del suelo y la fertilidad es sobre los rendimientos del forraje; su composición es afectada en muchas ocasiones más por limitaciones del suelo, una vez que se satisfacen los niveles mínimos para crecimiento. Así, por ejemplo en el trópico uno de los principales problemas es la diferencia de elementos mayores, tales como N y P, aunque debido al constante lavado y erosión de los suelos por el exceso y la intensidad de las lluvias, el contenido de elementos como el K, Ca y Mg, también puede estar disminuido. Además cuando se implantan leguminosas en la explotación el contenido de Cu, Zn y Mo en el suelo puede ser limitativo para el crecimiento de otras especies vegetales [15].

El pH y el N del suelo están altamente relacionados con la digestibilidad *in vitro* y el contenido de proteína en el forraje. Tanto el suelo como los factores climáticos

actúan con un 58 y 47% de la variación en el contenido total de paredes celulares respectivamente [13].

En el caso de algunos complementos minerales como la roca fosfórica, su contenido de calcio y fósforo varía dependiendo del yacimiento del cual fueron recolectados [4, 29].

f). Deficiencias debidas a las prácticas de manejo: Rendimientos máximos de materia seca se obtienen cuando se cosechan los forrajes en el momento de la madurez o cerca de ella, sin embargo, el valor nutricio y la digestibilidad del forraje, en esa etapa avanzada, son bajos. Los pastos jóvenes con una proporción elevada de hojas sobre tallos son los de mejor calidad, con un contenido máximo de proteínas y mínimo de fibra; por lo que la cosecha debe controlarse para evitar que la mayor parte de las plantas florezcan y maduren, de tal manera que el pastoreo debe efectuarse en el momento idóneo y si esto no puede lograrse mediante el pastoreo y deban emplearse forrajes de corte es necesario determinar perfectamente el momento de cosecha [18]. Los forrajes jóvenes acuosos por condiciones de alta fertilidad, cuando se someten a un pastoreo intenso pueden producir meteorismo y diarreas en el ganado. El nitrógeno no proteínico de los forrajes jóvenes puede sobrepasar el 50% de N total.

Un pastoreo excesivo debilita y produce disminución del valor nutricio de los forrajes; ya que las plantas no encuentran oportunidad de desarrollar su parte aérea y el constante pastoreo las perjudica. El efecto de la frecuencia del corte sobre la digestibilidad y el consumo voluntario ha tenido diferentes efectos en forrajes tropicales como en los de clima templado. En los forrajes tropicales, el incremento del intervalo entre cortes ha provocado una disminución en el consumo de materia seca; no obstante, el contenido de N digestible, es más alto conforme más frecuentes son los cortes.

Las prácticas de fertilización tienen un efecto directo sobre el valor nutricio de los forrajes. Cuando los fertilizantes corrigen las deficiencias de nutrimentos y las condiciones del clima son adecuadas para el desarrollo de las plantas, estas

responden, en general, incrementando la producción y calidad del forraje. Cuando los forrajes son fertilizados con nitrógeno, la PC aumenta llegando a cubrir las necesidades del animal en este nutrimento. Aparentemente se mejora la digestibilidad de los forrajes al aumentar el nitrógeno en la fertilización. Se ha informado que al incrementar el nitrógeno en la fertilización se reduce la cantidad de hidratos de carbono solubles en los forrajes de clima templado, este efecto puede verse influido por el mayor crecimiento de los pastos. También el tipo de fertilizante tiene influencia; el Rye Grass perenne y el pasto Timothy disminuyen en menor proporción la cantidad de hidratos de carbono solubles con el empleo de urea, en comparación con el nitrato o el amoniaco anhidro. En los pastos tropicales el efecto de aplicar nitrógeno ha tenido poco detrimento sobre el contenido de hidratos de carbono solubles. En los pastos de clima templado, el nitrógeno de la fertilización tiene más efecto como promotor del crecimiento que como mejora de la cantidad de proteína del forraje, esto quizá sea debido a que generalmente se explotan bajo condiciones adecuadas de disponibilidad de agua de riego [9, 13, 42].

g). <u>Diferencias debidas a los procesos industriales empleados</u>: Esto es de especial interés en el caso de los productos o subproductos industriales derivados del procesamiento de diversos elementos vegetales, como las semillas o bien, derivadas del procesamiento de productos animales como por ejemplo la harina de pescado, de carne, de hueso, etc. Conocer el proceso de fabricación de estos subproductos y las partes de donde se originan, resulta muy valioso para inferir sobre su composición y valor nutricio [10, 14, 17].

En las semillas de los cereales, el endospermo está compuesto en su mayoría por almidón, que es un material de reserva y contiene muy poca cantidad de hidratos de carbono menos digestibles. En contraste, la cubierta de las semillas está caracterizada por un alto contenido de celulosa. Además, las envolturas son también más abundantes en proteínas, vitaminas del complejo B, lípidos y elementos minerales que el endospermo o la semilla en conjunto. El embrión es muy rico en proteínas y grasas. La mayoría del contenido vitamínico del grano se

encuentra en los tegumentos de la semilla y en el embrión. Así, la molienda del trigo proporciona un alimento más rico en proteínas, grasa, minerales y vitaminas que el grano completo, pero menos digestibles por su alto contenido de hidratos de carbono estructurales. El salvado de avena, que es el residuo de la producción de harina de avena, contiene menos de la cantidad de proteínas y más del doble de fibra que la semilla, ya que está formado en su mayoría por la cáscara y por lo tanto es de menor digestibilidad y valor nutricional [17].

Las pastas de oleaginosas como la pasta de soya, girasol, cártamo, algodón, lino, etc; son derivados o subproductos que se obtiene después de la extracción del aceite y tienen especial valor por su contenido proteínico [10, 14, 17]. Sin embargo este valor dependerá del método empleado para la extracción de aceites; si dicho método es deficiente, la pasta obtenida contendrá un porcentaje menor de proteínas aumentando la proporción de grasas [29]. Además, el contenido de fibra aumentará en función del grado de descascarillado de la semilla.

Con respecto a los subproductos de origen animal, este grupo es el que proporciona en términos generales, la mayor cantidad de proteína del más alto valor biológico. En el caso de la harina de carne, por ejemplo, su valor nutrimental dependerá del método utilizado en su elaboración; así, la harina obtenida por el método húmedo contiene mayor riqueza en proteínas que la obtenida por el método seco. Sin embargo, la proteína de la harina de carne obtenida por el método seco tiene un mayor valor biológico, probablemente por haberse sometido a temperaturas menos elevadas. Además, su valor también depende del origen de la harina y de la cantidad de hueso incluido, pues a mayor cantidad de éste último aumentará el porcentaje de cenizas y disminuirá el de proteínas [10, 14].

En el caso de la harina de pescado, cuanto mayor sea la cantidad de espinas, cabezas y escamas transformados en harina, afectará la calidad de ésta, por su alto contenido de minerales. Por el contrario, cuanto más abundante la parte muscular, la harina obtenida será de mejor calidad y más rica en proteínas [14, 39].

h). <u>Diferencias causadas por adulteraciones</u>: Es importante señalar que se deberían utilizar y comercializar las materias primas en forma inalterable, pero esto resultaría en un alto costo. Por esta razón es usual encontrar productos de menor calidad combinados con la materia prima y de distinta naturaleza. Este hecho es muy común puesto que las normas y especificaciones comerciales los contemplan dentro del intervalo de valores mínimos y máximos tolerables de estas sustancias. Cuando esos productos se hallan presentes en exceso o se les agrega en mayor cantidad a la permitida se les considera como adulterantes de la materia prima [33, 39].

Estos adulterantes pueden provenir de orígenes diversos (animal, vegetal, mineral o algún compuesto químico) y su finalidad puede ser la de aumentar el volumen de la cantidad de la materia prima, el peso real del mismo, o la calidad nutricia del producto. Pero el fin real es vender un producto de mala calidad y poco peso a un precio elevado [30, 37, 38, 39].

Entre los productos más conocidos para adulterar tenemos los salvados, los salvadillos o raspaduras de los cereales que se emplean básicamente para dar volumen ya sea a la materia prima o al alimento ya terminado; productos minerales como el polvo de mármol, la cal o la simple tierra o arena para darle peso a productos como las harinas de los cereales. Otros como proteínas de mala calidad o la urea para sustituir con ella cantidades de otras proteínas de mejor calidad. De estos dos la urea es el más común y barato.

Existen otros como el pelo, cuero, la sangre, las escamas, espinas, huesos, pajas, cascarillas y otras, que sin ser extrañas al producto pero se hallan en exceso, provocan que la materia prima se devalúe tanto nutritiva como comercialmente [4, 11, 30, 39].

La harina de pescado de origen nacional, es el producto que más problemas ofrece en cuanto a su calidad, debido a que el mayor porcentaje de harina de pescado ofrecida proviene de varias especies marinas generalmente mezcladas con los desperdicios de las empacadoras. Estas mezclas contiene sólo de un 30 a un 40% de harina de pescado y se adulteran usualmente con harinas de carne y huesos, harina de pastas de oleaginosas y en ocasiones urea [39].

10.3 Apéndice III

Análisis Químico Proximal [14, 20, 27]

El análisis químico proximal (AQP) se compone de una secuencia de análisis individuales a una muestra, de él se obtiene información "aproximada" de la composición nutrimental del ingrediente o materia prima en cuestión. La información que aporta el AQP es de suma importancia, sin embargo existen ciertas desventajas en la metodología que repercuten en la exactitud de los resultados. Los compuestos de interés para esta determinación son los siguientes:

Humedad (H)

El porcentaje de humedad en los alimentos se determina por la pérdida de peso, debido a la evaporación del agua libre en el punto de ebullición o a temperaturas cercanas a éste, al usar métodos de secado tradicionales como la utilización de estufa de aire forzado, la cual debe estar a 70-100°C. La pérdida en peso también depende de otros factores incluyendo el tamaño de partícula y el peso de la muestra, variaciones de temperatura del equipo. La determinación tiene la desventaja de sobreestimar el valor de humedad porque a las temperaturas de trabajo algunos de los compuestos volátiles distintos al agua como los ácidos orgánicos (presentes en los ensilados) también se eliminan, originando la sobreestimación del contenido de agua (o su equivalente, que es subestimar la materia seca).

Proteína Cruda (PC)

El contenido total de proteínas en los alimentos puede ser determinado conociendo el contenido de nitrógeno orgánico, mediante el método de Kjeldahl; este determina el contenido de nitrógeno orgánico en forma de ión amonio. La determinación no ofrece el resultado porcentual de manera directa, sino que se emplea un factor de conversión que contempla que la mayoría de las proteínas se componen de 16g de nitrógeno por cada 100 de proteína. Sin embargo, al no identificar si se trata de nitrógeno proveniente de aminoácidos o de otro tipo de fuente no proteínica como la urea, vitaminas o ácidos nucléicos, el porcentaje de proteína será erróneo en la medida que aumente el porcentaje de nitrógeno no proteico, ya que las aves y los cerdos no pueden aprovechar

éste tipo de nitrógeno, y los mismos rumiantes tiene ciertos límites para su utilización óptima en función de su propia flora bacteriana. Además no todas las proteínas (como las de la leche y del trigo) tienen 16g de nitrógeno por cada 100g de proteína.

Grasa total (Extracto etéreo, EE)

Dicha determinación se fundamenta en la solubilidad de los lípidos en disolventes orgánicos poco polares como el éter etílico, éter de petróleo, hexano, etc. La técnica de Söxhlet permite la extracción de la grasa o fracción lipídica del alimento por el arrastre de ésta con un disolvente de manera intermitente. Esta técnica requiere de ciertos cuidados en la manipulación para evitar la sobreestimación del contenido de grasa por rehidratación de los cartuchos de celulosa o de la propia muestra, así como también la subestimación del contenido de grasa por tamaño de partícula muy grande. El extracto etéreo se subestima, por ejemplo en los ensilajes, al perderse los ácidos grasos volátiles durante la desecación de la muestra. Por otro lado, durante el arrastre con el disolvente se extrae todo el material liposoluble, incluyendo vitaminas y aditivos tales como las ceras de muy baja digestibilidad y pigmentos.

Cenizas totales (C)

La ceniza de un producto alimentario es el residuo inorgánico resultante de calcinar la materia orgánica a temperaturas superiores a 500 °C. Es importante mencionar que el valor de cenizas es un indicativo de calidad, ya que un valor alto de cenizas se interpreta como la presencia de algún adulterante inorgánico. Esta determinación no es cualitativa pues no es posible identificar los elementos inorgánicos que la componen; tampoco es indicativa de la disponibilidad digestiva de tales minerales. Como ejemplo, la cascarilla de arroz contiene 15% de materia mineral, sin embargo 85% de dichas cenizas se componen de silicio, que no sólo es un elemento innecesario para el animal, sino que su presencia reduce la digestibilidad de los nutrimentos. Si posteriormente se desea cuantificar minerales en específico mediante otras técnicas, se debe calcinar la muestra a 550 °C, ya que a temperaturas mayores se corre el riesgo de perderlos por volatilización.

Fibra cruda (fibra bruta, FC)

La fibra cruda es el residuo orgánico insoluble y comestible (celulosa, lignina y hemicelulosa) resultante después de someter la muestra a una digestión ácida y a una digestión alcalina. Sin embargo, el parámetro de FC está subestimado, ya que parte de la hemicelulosa, celulosa y lignina se disuelve en las digestiones ácida y alcalina. Además no distingue entre los tres compuestos, que aun en rumiantes tienen diferente grado de aprovechamiento.

Hidratos de carbono (Extracto Libre de Nitrógeno, ELN)

Los hidratos de carbono son la materia orgánica carente de nitrógeno de naturaleza no lipídica. El término "extracto" deriva de una mala traducción del inglés, puesto que estos componentes no se obtienen experimentalmente por algún proceso de extracción con disolventes; por este motivo suele emplearse el término Elementos Libres de Nitrógeno en vez de Extracto. Una vez que han sido cuantificados cada uno de los nutrimentos expresados en porcentaje, la diferencia aritmética entre el 100 por ciento y la suma del resto de los porcentajes nos da como resultado el valor para ELN (hidratos de carbono solubles). No obstante, el valor de ELN puede estar sobreestimando dichos nutrimentos como consecuencia de las desventajas de todas las demás determinaciones. Además, algunas sustancias que están en esta fracción como las pectinas, no son tan aprovechables por las especies monogástricas como por los rumiantes [25].

Una vez reconocidos los alcances del AQP en materia de Nutrición es comprensible la necesidad de complementarlo con métodos analíticos con mayor especificidad para cada tipo de alimento, tal es el caso de las técnicas que a continuación se mencionan: proteína verdadera, proteína digestible, urea cualitativa, urea cuantitativa, nitratos y nitritos cualitativos y cuantitativos, digestibilidad *in Vitro*, índice de yodo, índice de acidez, índice de peróxidos, índice de saponificación, índice de refracción, ácido cianhídrico, azúcares parciales y totales, azúcares reductores, carotenos, vitaminas específicas, aminoácidos específicos, determinación de humedad por destilación

azeotrópica o por arrastre de tolueno para ensilados, actividad ureásica, micotoxinas, ácidos grasos volátiles totales o específicos en ensilados, minerales específicos, etc. [34].

Las técnicas modernas permiten efectuar análisis químicos e instrumentales complementarios mayor exactitud al cuantificar los nutrimentos y caracterizarlos (métodos cualitativos), algunos de éstos son menos costosos o menos agresivos contra el medio ambiente que la mayoría de las determinaciones antes mencionadas, las cuales generan una cantidad considerable de residuos químicos tóxicos, gran consumo de electricidad y desperdicio de agua.

Una técnica analítica alternativa es la de NIRS (Espectroscopia de Reflectancia en el Infrarrojo Cercano) que se ha utilizado con mayor frecuencia tanto por las industrias como por los investigadores, quienes efectúan el monitoreo de calidad en materia prima o producto terminado pues es una técnica no destructiva para la muestra, de rapidez en la entrega de resultados y no genera residuos. Sin embargo se fundamenta también en los resultados del AQP (con las limitantes que observa) para generar una base de datos con las muestras analizadas anteriormente para con éstas hacer el cálculo matemático y así interpolar en dicha base los espectros de infrarrojo cercano de la muestra desconocida y así inferir en la composición proximal.

7.4 Apéndice IV

Análisis y Cálculos

Total de Nutrimentos Digestibles (TND)

Es un método matemático para el cálculo aproximado de la energía que libera un ingrediente dado. El método consiste en tomar los valores de los componentes del AQP (a excepción de las cenizas) y multiplicarlos por su digestibilidad respectiva. El TND para rumiantes involucra también el componente FC.

Aunque existen diversas fórmulas para calcular el TND [23], para esta recopilación se emplearon las fórmulas de Crampton y Harris [7, 8, 34, 36] donde se indica que el valor de extracto etéreo se multiplica a su vez por 2.25, pues se considera que las grasas en promedio liberan esa cantidad de veces más energía que los hidratos de carbono y proteínas. El resultado se expresa como porcentaje pues los valores de digestibilidad expresados en las fórmulas como decimales proviene de la división entre 100. La siguiente fórmula permite calcular el TND para rumiantes:

$$TND = Pd + ELNd + FCd + (2.25 * EEd)$$

Donde:

TND: Total de nutrimentos digestibles

P: Proteína cruda

ELN: Elementos libres de nitrógeno

FC: Fibra cruda EE: Extracto etéreo

d: factor de digestibilidad

Empleando para Alimentos Concentrados (FC < 18%) los factores de digestibilidad para cada fracción de análisis son los siguientes:

$$TND = (PC * 0.75) + (ELN * 0.9) + (FC * 0.5) + (EE * 2.25 * 0.9)$$

Y para Forrajes (FC > 18%) los factores de digestibilidad para cada fracción de análisis son los siguientes:

$$TND = (PC * 0.75) + (ELN * 0.75) + (FC * 0.5) + (EE * 2.25 * 0.9)$$

El total de nutrimentos digestibles de un alimento es una medida aproximada de su digestibilidad, por lo que a mayor TND, teóricamente será mejor el valor nutritivo de dicho alimento. Desafortunadamente este parámetro proviene de una técnica analítica (AQP), que como ya hemos mencionado inexacta [*Anexo III*].

Energía Bruta (EB)

Se entiende por energía bruta o gruesa al calor de combustión total de alimentos, la combustión se lleva a cabo bajo una atmósfera rica en oxígeno y el calor producido se mide como la diferencia en la temperatura antes y después de realizar la combustión por medio de una bomba calorimétrica [36]. Se obtiene en forma rápida y no se requieren animales para el efectuar el estudio aunque tiene la desventaja de que no indica la disponibilidad o el aprovechamiento de la energía por parte del animal. En general se estima que las proteínas, los hidratos de carbono y los lípidos liberan 5.8, 4.2 y 9.5 Kcal/g, respectivamente, al oxidarse en la bomba [31].

Energía Digestible (ED)

Una vez que el alimento se consume y se somete a los procesos de degradación gastrointestinal, el remanente se expulsa en las heces. Si al valor de EB se le resta la energía contenida en la materia fecal, se obtiene el parámetro llamado energía digestible, que es indicativo de la energía disponible para el animal.

Puede considerarse que los valores de ED y TND son equivalentes pues para el TND se han multiplicado los componentes proximales orgánicos por su digestibilidad, y en el caso de los lípidos posteriormente por 2.25 (ya que 9.5Kcal/g es 2.25 veces más que 4.2Kcal/g). Aunque el valor de energía bruta de las proteínas es de 5.8 Kcal/g, pues al hidrolizarse las proteínas se generan metabolitos que se eliminan al llevarse a cabo el ciclo de la urea y por esta razón se reduce este valor a 4.2Kcal/g que es igual al de los hidratos de carbono [7, 31, 36].

La conversión de ED a TND se hace considerando 4.4Kcal de ED por gramo de TND. De esta manera podemos calcular ED al multiplicar el valor de TND por un factor de 44.09 y expresando el resultado en Kcal/g de muestra [7]:

ED = TND * (44.09)

Donde:

ED: energía digestible (expresada en Kcal/ g)

TND: Total de nutrimentos digestibles (expresado en %) 44.09: factor de conversión equivalente a 4.4Kcal/g TND

Energía Metabolizable (EM)

Es la relación existente entre la energía bruta y la energía no aprovechada por el organismo y que está presente en las heces (E. Heces), en la orina y los gases de digestión. Si se supone que la proteína del tejido al oxidarse, para propósitos de energía, se convierte en ácido úrico como el único producto de excreción urinaria, se asigna a éste un valor de 8.22 que corresponde a la energía combustible o bruta del ácido úrico por gramo de nitrógeno. Así mismo la energía que se pierde en los gases es significativa sólo en el caso de los rumiantes y se estima en 8% de la EB que consume el animal [31, 35]. Con esta corrección podemos expresar que la EM se calcula como:

EM = E bruta - E heces - 8.22N

Donde:

EM: energía metabolizable E bruta: energía bruta

E heces: energía contenida en las heces

8.22: energía bruta del ácido úrico/ g de nitrógeno

N: gramos de nitrógeno

Una buena aproximación para el cálculo de EM es multiplicar el valor de TND por un factor de 36.15 y expresando el resultado en Kcal/g de muestra [19]:

EM = TND * (36.15)

Donde:

EM: energía metabolizable

TND: total de nutrimentos digestibles

36.15: Factor que considera la pérdida de energía bruta en las heces

Determinación de Calcio

Este método cuantifica por titulación el contenido de calcio en alimentos tales como: harina de hueso, carbonato de calcio, fosfatos de sodio y calcio, etc. Para ello se emplea el residuo inorgánico de la calcinación de la materia orgánica mediante el AQP (cenizas) que será tratado con ácido clorhídrico para eliminar todos los minerales distintos del calcio que conforman las cenizas. El calcio se cuantifica tras la formación de oxalatos y finalmente titulando con permanganato de potasio 0.1N. El resultado porcentual se expresa en base seca [19, 36].

Determinación de Fósforo

Este método determina por espectrofotometría de UV el contenido de fósforo total en alimentos y fuentes de este elemento tales como roca fosfórica, fosfatos de sodio y calcio, etc. Al igual que en el caso del calcio, puede emplearse el residuo inorgánico de la incineración de la muestra. No es aplicable a premezclas minerales. El procedimiento de digestión seca que acondiciona la muestra, no es aplicable a alimentos o mezclas minerales que contienen fosfato monobásico de calcio.

Se requiere elaborar una curva de calibración donde interpolar las lecturas de densidad óptica en espectrofotómetro.

Ambos minerales, así como muchos otros, son cuantificables por Absorción Atómica, el DNAB realiza ambos procedimientos [19, 36].

Fracciones de la Fibra (método de Van Soest)

En términos de valor nutricional de un alimento para animales la FC se entiende como la cantidad de material fibroso que químicamente está formado por celulosa, hemicelulosa y lignina. Los métodos sugeridos para su cuantificación miden el residuo de la digestión ácida y alcalina [2] o empleando enzimas como pepsina, pancreatina y amilasas. Estos métodos tienen algunas desventajas como son que el tratamiento con álcali disuelve hasta el 80% de las hemicelulosas, 50-90% de lignina; por su parte del 20-50% de las celulosas son disueltas por la combinación de las digestiones ácida y alcalina. Las enzimas por su parte no digieren algunos compuestos, como método alterno, la muestra es digerida con pepsina y después con pancreatina, sin embargo

mediante esta técnica no había una completa hidrólisis de las proteínas y éstas permanecían en el residuo.

En los años sesenta Van Soest desarrollo unos métodos para cuantificar la fibra utilizando detergentes en soluciones neutra y ácida. En el primer caso la muestra es tratada con una solución de lauril sulfato de sodio en amortiguador a pH neutro y al residuo lo llamó fibra detergente neutra (FDN) o paredes celulares. Aparentemente divide la materia seca al punto de que separa los constituyentes nutricionales solubles y accesibles de aquellos que no son totalmente aprovechables o que dependen de la fermentación microbiana para su aprovechamiento. Este método no puede emplearse en alimentos que tienen un contenido alto de proteína y bajo de fibra, como en el caso del grupo 5 según el NRC. El pH neutro disminuyó particularmente las pérdidas de la hemicelulosa y la lignina como sucediera a pH ácido o alcalino. La FDN no es fisiológica, sin embargo se ha demostrado experimentalmente que corresponde bien con lo que se define como fibra en la dieta.

La FDN representa la matriz insoluble de la pared celular, sustancias unidas por enlaces covalentes, puentes de hidrógeno, redes cristalinas u otra interacción molecular que les confiere resistencia a soluciones con concentraciones fisiológicas. El reactivo DN no hidroliza la mayor parte de esas uniones, pero sí a las pectinas, por ello puede decirse que la FDN no representa el total de las paredes celulares de la planta, aunque sí representa un residuo de significado nutricional ya que retiene la matriz lignificada indisponible y las estructuras físicamente insolubles. De tal manera que la FDN se correlaciona mejor con rumiación, eficiencia y consumo de alimento.

El método de la fibra detergente ácida (FDA) determina el complejo lignina-celulosa y silicio, mediante la digestión de la muestra seca con un detergente (bromuro de cetiltrimetilamonio) en un amortiguador ácido. Los procedimientos de la FDA y lignina fueron originalmente desarrollados para sustituir al procedimiento de la fibra cruda y las desventajas que presenta. Actualmente se emplea como un paso preliminar para la determinación de lignina. La diferencia entre las paredes celulares (FDN) y la FDA es una estimación del valor de la hemicelulosa, ya que esta diferencia también incluye una fracción de proteína adherida a las paredes celulares. El detergente ácido elimina la

proteína y otro material ácido soluble que interfiere con la determinación de lignina. El residuo FDA consiste en celulosa, lignina, cutina y cenizas ácido insolubles (principalmente silicio). La FDA se correlaciona mejor con la digestibilidad de una forraje. Existen dos métodos para determinar lignina, en ambos casos se utiliza el residuo de la FDA. En el primero se emplea ácido sulfúrico para la digestión y el segundo es una determinación indirecta de la lignina por medio del permanganato, este método permite la determinación de celulosa y silicio [36].