

Universidad Nacional Autónoma de México

FACULTAD DE CIENCIAS

LA FECUNDIDAD POR ORDEN DE NACIMIENTO EN EL II CONTEO DE POBLACIÓN Y VIVIENDA 2005 Y SU EFECTO EN EL REEMPLAZO DE POBLACIÓN.

T E S I S

QUE PARA OBTENER EL TÍTULO DE:

ACTUARIO

PRESENTA:

NIDYA VELASCO ROLDÁN

M. EN D. ALEJANDRO MINA VALDÉZ

2007

FACULTAD DE CIENCIAS UNAM

UNAM – Dirección General de Bibliotecas Tesis Digitales Restricciones de uso

DERECHOS RESERVADOS © PROHIBIDA SU REPRODUCCIÓN TOTAL O PARCIAL

Todo el material contenido en esta tesis esta protegido por la Ley Federal del Derecho de Autor (LFDA) de los Estados Unidos Mexicanos (México).

El uso de imágenes, fragmentos de videos, y demás material que sea objeto de protección de los derechos de autor, será exclusivamente para fines educativos e informativos y deberá citar la fuente donde la obtuvo mencionando el autor o autores. Cualquier uso distinto como el lucro, reproducción, edición o modificación, será perseguido y sancionado por el respectivo titular de los Derechos de Autor.

1. Datos de la alumna

Velasco

Roldán

Nidya

56 75 45 02

Universidad Nacional Autónoma de México

Facultad de Ciencias

Actuaría

099336332

2. Datos del tutor

M. en D.

Alejandro

Mina

Valdés

3. Sinodal 1

Dra.

María Edith

Pacheco

Gómez-Muñoz

4. Sinodal 2

M. en C.

Virginia

Abrín

Batule

5. Sinodal 3

Mat.

Margarita Elvira

Chávez

Cano

6. Sinodal 4

Luisa

Benítez

Loveman

7. Datos del trabajo escrito

La fecundidad por orden de nacimiento en el II Conteo de Población y Vivienda 2005 y su efecto en el reemplazo de la población.

156 p

2007

A mi Dios porque me dio todo lo necesario para no detenerme

A las nenas porque al nacer me dieron la vida.

A mis padres porque han sido mi sostén tanto en lo emocional como en lo físico.

Al amor, porque siempre ha estado conmigo en diferentes formas y me ha hecho inmensamente feliz.

[&]quot;Jengo una gran ambición de morir exhausta en vez de aburrida"

Universidad Nacional Autónoma de México

FACULTAD DE CIENCIAS

LA FECUNDIDAD POR ORDEN DE NACIMIENTO EN EL II CONTEO DE POBLACIÓN Y VIVIENDA 2005 Y SU EFECTO EN EL REEMPLAZO DE POBLACIÓN.

T E S I S

QUE PARA OBTENER EL TÍTULO DE:

ACTUARIO

PRESENTA:

NIDYA VELASCO ROLDÁN

M. EN D. ALEJANDRO MINA VALDÉZ

2007

1. Datos de la alumna

Velasco

Roldán

Nidya

56 75 45 02

Universidad Nacional Autónoma de México

Facultad de Ciencias

Actuaría

099336332

2. Datos del tutor

M. en D.

Alejandro

Mina

Valdés

3. Sinodal 1

Dra.

María Edith

Pacheco

Gómez-Muñoz

4. Sinodal 2

M. en C.

Virginia

Abrín

Batule

5. Sinodal 3

Mat.

Margarita Elvira

Chávez

Cano

6. Sinodal 4

Luisa

Benítez

Loveman

7. Datos del trabajo escrito

La fecundidad por orden de nacimiento en el II Conteo de Población y Vivienda 2005 y su efecto en el reemplazo de la población.

156 p

2007

A mi Dios porque me dio todo lo necesario para no detenerme

A las nenas porque al nacer me dieron la vida.

A mis padres porque han sido mi sostén tanto en lo emocional como en lo físico.

Al amor, porque siempre ha estado conmigo en diferentes formas y me ha hecho inmensamente feliz.

[&]quot;Jengo una gran ambición de morir exhausta en vez de aburrida"

INDICE

INTRODUC	CION	1
1. LA FECU	NDIDAD EN MEXICO ANTES DEL SIGLO XXI	4
1.1	Participación económica	7
1.2	Nivel de instrucción	
1.3	Urbanización	
1.4	Planificación Familiar	
2. EL CONTR	OL DE NATALIDAD DE LAS PAREJAS MEXICANAS EN LA ACTUALIDAI	D13
2.1	Población femenina según deseo de tener hijos	14
2.2	Número ideal de hijos de la población femenina	
2.3	Conocimiento de métodos anticonceptivos de la población femenina	
2.4	Usuarias de métodos anticonceptivos	
3. LA FECUN	DIDAD DE MÉXICO EN EL II CONTEO DE POBLACIÓN Y VIVIENDA	
2005		18
3.1	Población femenina	
	3.1.1 Población femenina en edad fértil	18
	3.1.2 Población femenina en edad fértil por entidad federativa y	
	Grupos quinquenales de edad	
	3.1.3 Promedio de hijos nacidos vivos por entidad federativa	23
	3.1.4 Promedio de hijos nacidos vivos por grupos quinquenales	
	de edad y tamaño de localidad	
3.2	Tasa global de fecundidad	
	3.2.1 Tasa global de fecundidad en la actualidad	
2.2	3.2.2 Tasa global de fecundidad por entidad federativa	
3.3	Nacimientos registrados	2/
4. METODOL	OGIA	31
4.1	Tasa bruta de natalidad	31
4.2	Tasa general de fecundidad	
4.3	Tasas específicas de fecundidad	
4.4	Tasa global de fecundidad	32
4.5	Tasa bruta y neta de reproducción	
4.6	Indicadores de fecundidad	
4.7	Fecundidad por orden de nacimiento	35
5. FUNCIONE	S GOMPERTZ Y MAKEHAM	38
6. INTERPOL	ACIÓN	56

6.1	6.1.1 6.1.2	olación polinomial Interpolación linea Interpolación de La Interpolación de N	l agrange			.57 .58
		DE LOS DATOS OBT				
USANDO LA F	UNCIÓ	LAS TASAS ACUMU N DE GOMPERTZ Y IÓN Y VIVIENDA	MAKEHAM CO	N BASE EN LO	S DATOS DEI	L II
USASNDO IN	ΓΕΡΟLΑ	AS PROBABILIDAD CION DE NEWTON IÓN Y VIVIENDA	EN BASE A LOS	S DATOS OBTE	NIDOS EN EL	
CONCLUSION	ES					.96
GRUPOS QUI	NQUEN	N FEMENINA DE 12 ALES DE EDAD SEG ACIÓN Y VIVIENDA	ÚN NUMERO D	E HIJOS NACII	OOS VIVOS EN	EL
ORDEN DE N	IACIMIE	DE ESTIMACIÓN INTO MEDIANTE LA DE LOS ESTADOS UI	A FUNCIÓN DE	MAKEHAM, E	N CADA REGI	ÓΝ
METODOLOG	IA DE	O DE LOS POLINO NEWTON PARA S FAMILIAS A NIVE	PROYECTAR	LAS PROB	ABILIDADES	DE
BIBLIOGRAFÍ	A				1	74

INTRODUCCION

En el presente trabajo, se trata un tema muy importante para la sociedad: la FECUNDIDAD. Entre 1910 y 1960 la población de México se duplicó de 15 a 35 millones y durante las siguientes dos décadas se dio uno de los crecimientos más acelerados en la historia del país al duplicarse el monto de la población a más de 70 millones, el componente que más influyó para que se diera este crecimiento de la fecundidad es por eso que ahora la fecundidad es la que se ubica como la principal causante de los cambios demográficos. La instrumentación de la política de población durante esta década impulsó la puesta en marcha de programas de planificación familiar que sensibilizaron a la población sobre las ventajas que en términos de salud y bienestar conllevaría el hecho de espaciar y limitar el tamaño de su descendencia (INEGI, 2000).

La disminución de la fecundidad en México esta relacionada además de los programas de planificación familiar con todas las transformaciones culturales y sociales a las que nos enfrentamos, afectando directa e indirectamente a las mujeres que se encuentran en edad reproductiva. Entre las principales destacan una mayor cobertura educativa y una creciente participación de la población femenina en las actividades económicas, las causas secundarias se relacionan con la postergación del inicio de vida en pareja, el cambio en los ideales reproductivos relacionados con el número y espaciamiento de los hijos, así como los roles socialmente asignados a hombres y mujeres en la familia y la sociedad (INEGI, 2000).

En la actualidad el descenso de la fecundidad ha contribuido a que las mujeres se desarrollen en tareas que abarcan los más amplios sectores sociales, impulsando con su participación los diversos ámbitos de desarrollo de la vida nacional, por ejemplo: en la producción, los servicios y la actividad política. El cambio en las preferencias e ideales reproductivos se manifiesta porque las mujeres buscan tener familias pequeñas e hijos cada vez más espaciados, esto gracias al mayor conocimiento de los métodos anticonceptivos. Para algunas mujeres el tener menos hijos y mayores ingresos (en su mayoría ambos integrantes de unión conyugal laboran y aportan ingresos a la familia) les garantiza bienestar y salud.

El descenso de la fecundidad puede clasificarse en dos etapas según su evolución, la primera incluye al grupo de mujeres metropolitanas nacidas después de 1941, que se casaron en unión legal después de los 20 años, que tenían una escolaridad equivalente a la primaria completa y con un cónyuge profesional o de nivel afín (Juárez y Quilodrán, 1996). La segunda etapa comienza cuando inicia el programa de planificación familiar y donde las transformaciones de orden socioeconómico se hacen más palpables. Es importante señalar que durante esta etapa la tasa global de fecundidad mostró la reducción más acelerada; de 1976 a 1987 la tasa disminuyó en casi dos hijos, colocándose en 3.8 hijos por mujer, después de este periodo los cambios han sido poco significativos después del año 2000.

Como se ha mencionado, en la reducción de la fecundidad estuvieron implicadas profundas transformaciones que nuestro país experimentó en materia social, política, económica y cultural. Lo importante ahora es pensar en que pasará en un futuro con el reemplazo de la población y con los niveles de fecundidad.

En la primera parte se presentarán todos los antecedentes de la fecundidad nacional de acuerdo con diferentes artículos de Carlos Welti, y la bibliografía principalmente de Julieta Quilodrán, María Eugenia Zavala de Cosío, y Alejandro Mina Valdés. En esta parte se tratará como a través de los años la fecundidad ha cambiado gracias diferentes circunstancias directas e indirectas.

La segunda parte será para definir los índices que se utilizaran para el análisis como son la tasa global de fecundidad, la tasa bruta de natalidad, etc., y evidentemente el apartado que da título a la tesis: la fecundidad por orden de nacimiento. En este mismo capítulo se presentan tablas y gráficas basadas en estos índices asociados a los datos del II Conteo de Población y vivienda 2005, además se harán algunas comparaciones con años anteriores.

En la tercera fase de la tesis se presenta toda la teoría matemática correspondiente a la Función de Makeham y a la Interpolación de Newton, que son los métodos utilizados para ajustar y proyectar las tasas acumuladas de fecundidad y las probabilidades de crecimiento de las familias respectivamente.

Se presenta paso a paso, la forma en que se ajustan tanto las tasas acumuladas de fecundidad como las probabilidades de crecimiento de las familias a nivel nacional. En esta cuarta parte también están contenidos los resultados correspondientes al resto de la República Mexicana.

Finalmente se presentan los datos más importantes de la proyección. Esta información es muy importante pues nos muestra cual es el comportamiento de la población dentro de 5 y 15 años, así sabremos que tan fuerte será el cambio demográfico en nuestro país.

En este proyecto el objetivo será saber que es lo que pasará en algunos años con la fecundidad y el reemplazo de la población empleando la información del II Conteo de Población y Vivienda 2005 que es la información mas actualizada de los habitantes de México.

1. LA FECUNDIDAD EN MEXICO ANTES DEL SIGLO XXI

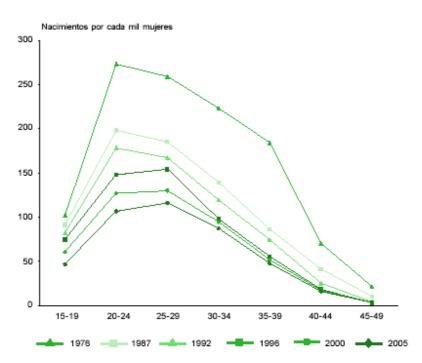
La fecundidad constituye el punto de articulación de las relaciones entre la sociedad y la reproducción. De la fecundidad depende en gran medida el volumen de la población, por lo que las modificaciones que se introduzcan en esta inciden de manera directa –a mediano o largo plazo- en los efectivos poblacionales (INEGI, 1999).

La fecundidad de la población mexicana se mantuvo aproximadamente constante según la Tasa Global de Fecundidad (TGF) en alrededor de 6.5 hijos por mujer entre 1930 y 1955 (Gómez de León, 1996); aumentó ligeramente a casi 7 hijos en los inicios de los sesenta y descendió paulatinamente hasta alcanzar 2.9 hijos por mujer en 1996. No obstante, esta disminución no fue uniforme en ese periodo entre 1963 y 1972, la TGF disminuyó lentamente, con un decremento medio anual de sólo 0.07 hijos; entre 1972 y 1984 se experimentaron acelerados descensos con un decremento medio anual de 0.19 hijos; finalmente, entre 1984 y 1996 se aprecia un freno en el ritmo de descenso, con una reducción media anual de 0.12 hijos (CONAPO, 1996), hasta alcanzar en 1999 2.7 hijos por mujer.

Gráfico 1.1

FUENTE: Para 1976: SPP-IISUNAM. Encuesta Mexicana de Fecundidad, 1976. México, D.F., 1979.

Para 1981: CONAPO. Encuesta Nacional Demográfica, 1982. México, D.F., 1985.


Para 1987: SSA. Encuesta Nacional sobre Fecundidad y Salud, 1987. México, D.F., 1989.

Para la tasa de fecundidad en el periodo comprendido entre 1976 y 1992, el punto máximo de la fecundidad se ubica en el grupo de mujeres de 20 a 24 años de edad. A partir de 1996 se observa que la tasa de fecundidad más alta se encuentra en las mujeres de 25 a 29 años.

En todos los periodos el comportamiento está acompañado de disminuciones substanciales en la fecundidad que se producen después de los 35 años, y más recientemente, en las mujeres de 30 a 34 años. La fecundidad de las adolescentes de 15 a 19 años se redujo de 102 nacimientos por cada mil mujeres en 1976 a 46.4 nacimientos en el año 2005, lo cual representa una disminución de 54.5 por ciento; mientras que para las mujeres que se agrupan en edades de 25 a 29 años, la reducción supera el 55.3%, y llega a ser de 85.2% entre las mujeres de 45 a 49 años de edad.

Gráfico 1.2

Tasa de fecundidad por grupos quinquenales de edad 1976-2005

FUENTE: SPP, IISUNAM. Encuesta Mexicana de Fecundidad, 1976. SSA. Encuesta Nacional sobre Fecundidad y Salud, 1987. INEGI. Encuesta Nacional de la Dinámica Demográfica, 1992. — Encuesta Nacional de la Dinámica Demográfica, 1997. CONAPO. Población de México en citras. www.conapo.gob.mx. La pregunta es: ¿Cuáles son las causas directas e indirectas que han propiciado la disminución de la fecundidad en México? A esta pregunta se le atribuyen a los factores socioeconómicos y las variables intermedias.

Se ha documentado como principal determinante del descenso de la fecundidad el progreso social, sobre todo, en lo que respecta a los logros en la incorporación de la mujer al trabajo, el mayor acceso a los servicios de salud y a la escolarización de la población, particularmente de las mujeres en edad fértil, "...ya que una mayor educación le facilita el acceso no sólo a la información sobre la manera de llevar a la práctica el control de su fecundidad, sino que se asocia con mejores condiciones de salud para ella y sus hijos, además que le permite incorporarse en mejores condiciones al sector productivo" (Paz, 1995). No obstante, el acelerado proceso de urbanización ha tenido, sin duda, un fuerte impacto; así como las crisis económicas que se han vivido en México.

La incipiente disminución de la fecundidad entre 1963 y 1972 parece asociarse con tres hechos fundamentales. En primer lugar el proceso de urbanización acelerado a partir de 1950, año en que el 43% de la población mexicana residía en localidades urbanas, 51% en 1960, 59% en 1970, 66% en 1980, 71% en 1990, 74% en 1995 y actualmente tres cuartas partes viven en ellas. En segundo término, la mejora en la escolarización, que se inició desde la década de los treinta; al respecto las encuestas sociodemográficas muestran un incremento consistente de la escolaridad de la población femenina en edad fértil, así por ejemplo, mientras en 1976 una de cada cinco mujeres no había asistido a la escuela y proporción igual contaba con al menos un, grado de secundaria, en los años recientes, la proporción que no asistió a la escuela es de una de cada 20 y aquella que cursó al menos un grado de secundaria rebasa el 50%. Finalmente, la participación de la mujer en el trabajo se incrementó desde 1960, principalmente en la década de los setenta con las cifras siguientes: 14.3% en 1960, 15.2% en 1970, 27.5% en 1980, 29.2% en 1990 (Espinosa, 1994), 31.5% en 1991 y 33% en 1993 (García, 1994), es decir, en los últimos años la participación de la mujer en el trabajo se ha duplicado según lo ocurrido en los años sesenta y setenta. En el año 2005 un 18.6% de la población femenina cursa un nivel medio superior, rebasando además a la población masculina en este rubro.

1.1 Participación económica

La participación económica de la población femenina y su nivel de fecundidad son factores que están relacionados. Dado que en general las mujeres requieren combinar su trabajo extradoméstico con las tareas vinculadas a la crianza de los hijos y a la organización del entorno doméstico, es más común que las que tienen un menor número de hijos se inserten al mercado de trabajo que aquellas con alta fecundidad. Lo anterior se corrobora con el promedio de hijos de las mujeres por condición de actividad; así las mujeres que participan en el mercado de trabajo presentan una TGF significativamente inferior a la que alcanzan las mujeres que no son económicamente activas.

En 1974 la diferencia en la TGF por condición de actividad económica es de 3.1 hijos, mientras que en 1996 disminuye a 1.4 hijos. Es preciso mencionar que las mujeres no económicamente activas redujeron en mayor medida su fecundidad: entre 1974 y 1996 se observa una disminución de 3.5 hijos por mujer, mientras que para las mujeres insertas en el mercado laboral esta reducción es de 1.8 hijos por mujer.

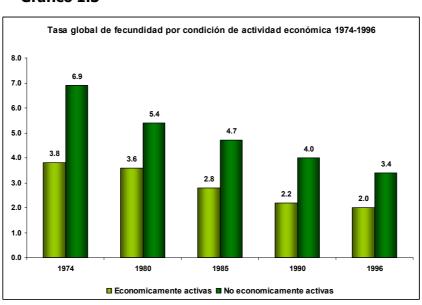


Gráfico 1.3

FUENTE: CONAPO. La Situación Demográfica de México, 1999.

1.2 Nivel de instrucción

La TGF de las mujeres en edad fértil, de acuerdo con su nivel de escolaridad, presenta notables diferencias. En 1974 la TGF de las mujeres sin instrucción (7.8 hijos por mujer) era un poco más del doble que la tasa observada para el grupo de mujeres con secundaria o más (3.5 hijos por mujer). Los resultados de la Encuesta Nacional de la Dinámica Demográfica de 1997 (ENADID 97), muestran que la fecundidad sigue descendiendo; sin embargo, continúa y se mantiene la diferencia entre las mujeres sin escolaridad respecto de las que alcanzaron algún año de secundaria o más, en 1996 la TGF de las mujeres sin instrucción (4.7 hijos por mujer) es un poco más del doble en relación con la de las mujeres que contaban con un nivel de secundaria o más (2.2 hijos por mujer).

Es importante señalar que en los últimos decenios se observa un descenso de la fecundidad para todos los niveles de instrucción. Aunque las mujeres con menor escolaridad conservan los mayores niveles de fecundidad, su cambio fue más pronunciado, de manera que la diferencia en la tasa global de fecundidad entre 1974 y 1996 supera los 3 hijos por mujer.

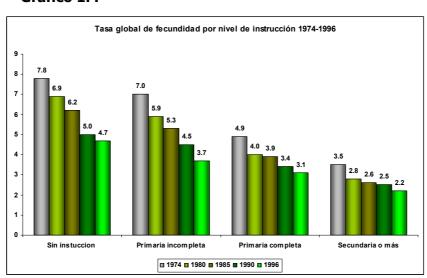
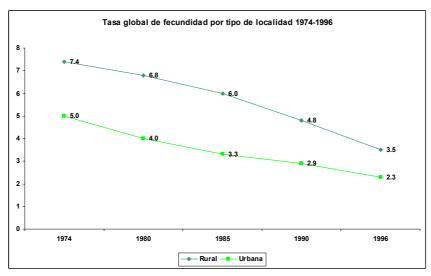


Gráfico 1.4


FUENTE: CONAPO. La Situación Demográfica de México, 1999.

1.3 Urbanización

La TGF permite apreciar las diferencias en los niveles que alcanza la fecundidad entre las mujeres que residen en las localidades urbanas y rurales, así como su tendencia en el tiempo. En el periodo de 1974 a 1996, la fecundidad descendió de 7.4 a 3.5 hijos entre las mujeres que viven en las localidades rurales, y de 5 a 2.3 entre las mujeres que habitan en las localidades urbanas. Se observa que este cambio en los patrones reproductivos operó más pronto y con mayor intensidad en las localidades urbanas que en las rurales.

En el último año del periodo, las mujeres urbanas están cerca del nivel de reemplazo, es decir, promedian sólo el número de hijos necesarios que permite reemplazar a ambos padres en la población. La brecha entre la fecundidad de las mujeres urbanas y rurales ha disminuido a la mitad; en 1974, la diferencia en la TGF entre las mujeres que vivían en localidades de menos de 2 500 habitantes y las que residían en localidades de 2 500 habitantes fue de 2.4 hijos, en 1996 esta diferencia es de 1.2 hijos por mujer.

Gráfico 1.5

FUENTE: CONAPO. La Situación Demográfica de México, 1999.

1.4 Planificación familiar

Aunado a estos procesos, el efecto diferencial ampliamente conocido de estas variables –menor fecundidad en mujeres urbanas, con mayor escolaridad o que trabajan (Welti y Paz, 1990; y Paz, 1995), motivó el descenso en la TGF. Sin embargo, la mejora en el acceso a los servicios de salud, en particular, el inicio de los programas de planificación familiar en las instituciones públicas de salud a partir de 1973 y la formulación del Programa Nacional de Planificación Familiar en 1997, aceleraron, sin duda, la reducción de la fecundidad, tanto en las áreas urbanas como en las rurales; generando incluso una modificación en el calendario de la fecundidad, rejuveneciéndolo (Welti, 1997).

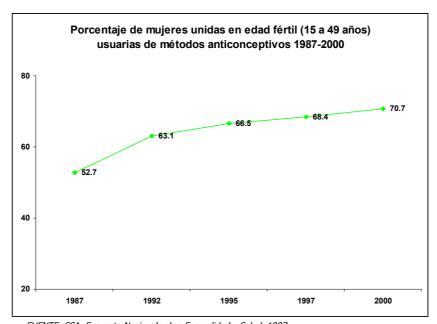
Estos factores socioeconómicos influyen sobre la fecundidad a través de las variables intermedias, que se presentan como determinantes principales: la proporción de mujeres unidas (casadas o en unión consensual), la anticoncepción, el aborto inducido y la duración del periodo post-parto, no susceptible de embarazo por efecto de la lactancia (INEGI, 1999).

Entre 1976 y 1997 el porcentaje de mujeres en edad fértil que conocen al menos un método anticonceptivo aumentó de 89% a 96.6%. El grupo que muestra un mayor crecimiento es el de 15 a 19 años, entre uno y otro año, el porcentaje de este grupo aumentó en casi 14 puntos porcentuales. Una dinámica muy similar presentan las mujeres de 40 a 44 años cuyo incremento es de poco más de 11 puntos porcentuales.

Es importante señalar que a pesar de este notable crecimiento el grupo más joven sigue mostrando el menor nivel relativo en el conocimiento de métodos anticonceptivos, lo cual es preocupante si se considera que dicho grupo de mujeres enfrentan un alto riesgo asociado a su salud materno-infantil.

Cuadro 1.1

Porcentaje de mujeres en edad fértil (15 a 49 años) que conoce al menos un método anticonceptivo por grupos quinquenales de edad, 1976-1997


Grupos quinquenales de edad	1976	1987	1992	1997
Total	89.0	92.9	94.9	96.6
15-19	79.8	89.8	90.9	93.4
20-24	88.8	94.0	96.1	96.8
25-29	93.1	95.2	97.1	98.1
30-34	91.3	94.3	97.5	97.9
35-39	89.7	92.6	95.9	97.3
40-44	86.1	93.3	95.4	97.4
45-49	85.9	92.5	93.1	95.7

FUENTE: SPP, IISUNAM. Encuesta Mexicana de Fecundidad, 1976. SSA, Encuesta Nacional sobre Fecundidad y Salud, 1987. INEGI, Encuesta Nacional de la Dinámica Demográfica, 1992. ------ Encuesta Nacional de la Dinámica Demográfica, 1997.

Desde mediados de la década de los setenta, la difusión, oferta y otorgamiento de los servicios de planificación familiar en las instituciones de salud y asistencia social, han propiciado un mayor uso de métodos anticonceptivos entre la población femenina, como medio para espaciar o limitar el tamaño de su descendencia.

En 1987, poco más de la mitad de la población femenina unida (52.7%) de 15 a 49 años de edad usaba algún método de control natal. Desde entonces, la proporción de usuarias ha ido en aumento, experimentando al principio un incremento acelerado (en promedio más de 2 puntos porcentuales cada año entre 1987 y 1992), para mantener después un aumento más gradual: de 1 punto porcentual anual entre 1992 y 1997 y de solamente 0.77 entre 1997 y el año 2000. Al final de la década de los noventa, siete de cada diez mujeres unidas en edad fértil eran usuarias de algún método para controlar su fecundidad.

Gráfico 1.6

FUENTE: SSA. Encuesta Nacional sobre Fecundidad y Salud, 1997. CONAPO. Encuesta Nacional de Planificación Familiar, 1995. Síntesis de resultados (mimeo).

------ Población de México en cifras. <u>www.conapo.gob.mx</u> **INEGI.** Encuesta Nacional de la Dinámica Demográfica, 1992.
----- Encuesta Nacional de la Dinámica Demográfica, 1997.

Algunos de los factores responsables de los cambios de la fecundidad en México son de manera directa la incorporación de la mujeres en la vida económicamente activa, la urbanización, principalmente en las áreas metropolitanas en las cuales la fecundidad es mucho menor, y la educación la cual si bien no ha crecido potencialmente, en las mujeres si ha sido mayor y ha colaborado en tomar mejores decisiones en cuanto a su reproducción. Precisamente este último rubro, el de la educación ha sido fundamental en el conocimiento del uso de métodos anticonceptivos, así como las instituciones de salud que han dado un enorme apoyo a los programas de planificación familiar e incluso han sido intransigentes con respecto a la decisión que debería ser netamente de la mujer, pues en muchos casos la pregunta de realizarse la operación o no era planteada en un momento adecuado.

Ahora pasaremos a analizar cuales son las nuevas tendencias de reproducción de las parejas mexicanas, cuál es su mentalidad, y cuáles son las razones que han propiciado dicho cambio.

2. EL CONTROL DE NATALIDAD DE LAS PAREJAS MEXICANAS EN LA ACTUALIDAD

El hecho de tener el número de hijos deseados en el momento en que se desea tenerlos de acuerdo con las posibilidades, condiciones y preferencias personales, depende del conocimiento que tenga la pareja acerca de los métodos de control de fecundidad. Para poder hacer uso de los métodos anticonceptivos es necesario un cambio en la mentalidad de la pareja para disminuir sus expectativas reproductivas, este cambio llega cuando la pareja se convence de las ventajas que implica el tener una menor cantidad de hijos y un mayor espaciamiento entre ellos, el número ideal de hijos por cada pareja son 2, pues esto garantiza el reemplazo de la población (INEGI, 1999).

En México existen diversos factores que han facilitado la modificación de las preferencias reproductivas, los sociales, culturales y económicos. La mayoría de estos factores han estado apoyados por el gobierno al ofrecer mejores condiciones de salud a mas población pues brindan servios de salud reproductiva, y por otro lado están las oportunidades educativas que a su vez fomentan a las mujeres a insertarse en el proceso de igualdad que tienen con los hombres.

Los indicadores usados para el análisis serán la población femenina, tomando en cuenta característica como el deseo o no deseo de tener hijos, el numero ideal de hijos (por nivel de instrucción y tamaño de la localidad), el conocimiento de métodos anticonceptivos y a las usuarias de dichos métodos.

La información utilizada en este apartado así como sus gráficos ha sido recabada de un cuadernillo del INEGI llamado "Mujeres y Hombres x 2" escrito en 1999, esto es debido a que la anticoncepción es parte fundamental de los nuevos niveles de fecundidad, pero desafortunadamente el II Conteo de Población y Vivienda no cuenta con la información de anticoncepción.

2.1 Población femenina según deseo de tener hijos

Para las mujeres mexicanas este nuevo conocimiento de poder ejercer un control sobre el número y espaciamiento de los hijos son básicos en las nuevas tendencias reproductivas. El deseo o no de tener hijos responde a factores como el nivel de escolaridad, la situación conyugal, la edad, su situación económica y el hecho de ya tener uno o varios hijos y de manera indirecta también influye el acceso a los servicios de salud que le proporcionen bienestar.

Según datos de la Encuesta Nacional de la Dinámica Demográfica 1997, entre la generación de 15-29 años de edad que son catalogadas como las propicias para tener hijos, el 90.9% desea tener hijos sin haber tenido alguno antes y solo el 2.8% está indecisa. Pero, sin embargo, de las mujeres de 30 a 49 años de edad que no han tenido hijos aún más de la mitad desea tener otro, ellas pertenecen a una generación anterior a la del otro grupo.

Cuadro 2.1Distrubución porcentual de la población femenina en edad fértil (15 a 49 años) según deseo de tener hijos para cada grupo de edad y número de hijos nacidos vivos

Grupos de edad y número de hijos	Total	Si desea	No desea	Indecisas
15-29	100.0	75.8	21.6	2.6
Sin hijos	100.0	90.9	6.3	2.8
Con 1 hijo	100.0	77.3	21.0	1.7
Con 2 hijos	100.0	46.8	50.5	2.7
Con 3 hijos	100.0	29.5	68.2	2.3
Con 4 y más hijos	100.0	21.8	74.6	3.6
30-49	100.0	21.5	77.0	1.5
Sin hijos	100.0	57.8	37.3	4.9
Con 1 hijo	100.0	47.1	51.5	1.4
Con 2 hijos	100.0	23.6	74.9	1.5
Con 3 hijos	100.0	15.5	83.8	0.7
Con 4 y más hijos	100.0	10.9	88.1	1.0

FUENTE: INEGI. Encuesta Nacional de la Dinámica Demográfica, 1997. Base de datos.

2.2 Numero ideal de hijos de la población femenina

Para una mujer, el número ideal de hijos es una cifra subjetiva que depende de las experiencias previas que ha vivido, sobre todo de si han tenido un hijo antes y de su experiencia familiar (INEGI, 1999). Es poco común que las mujeres declaren que su número ideal de hijos sea menor al que ya tienen, regularmente es mayor o igual a éste, y hoy en día, la respuesta más frecuente entre ellas es de 2 hijos.

Más de la mitad de las mujeres jóvenes que no han tenido hijos declararon que el número ideal de hijos que les gustaría tener son 2, un 10% más que las mujeres de 30 a 49 años además, 1 de cada 5 mujeres de esta misma generación que ya tienen 4 hijos declararon que hubiese sido mejor tener 2 hijos. Por otro lado, el número ideal de hijos ha cambiado en todos los niveles de instrucción, como ejemplo a las mujeres que tienen un nivel de secundaria o superior en 1976 declaraban como número ideal de hijos 3.4, y en 1997 declararon 2.7 en promedio.

Cuadro 2.2

Distribución porcentual de la población femenina en edad fértil (15 a 49 años) según número ideal de hijos para cada grupo de edad y número de hijos nacidos vivos, 1997

Grupo de edad y número de hijos	Total	Ningun hijo 1 hijo 2 hi		2 hijos	3 hijos	4 hijos y más	Otras respuestas	
15-29	100.0	2.5	8.4	47.0	25.2	14.9	2.0	
Sin hijos	100.0	3.5	9.4	52.1	21.5	11.3	2.2	
Con 1 hijo	100.0	1.0	11.1	50.3	27.6	9.0	1.0	
Con 2 hijos	100.0	1.1	4.5	41.7	33.4	17.8	1.5	
Con 3 hijos	100.0	1.3	4.4	18.9	39.6	33.0	2.8	
Con 4 y más hijos	100.0	2.0	2.1	22.0	15.4	53.1	5.4	
30-49	100.0	3.3	5.9	30.5	24.4	32.1	3.8	
Sin hijos	100.0	17.3	17.8	40.2	11.8	6.9	6.0	
Con 1 hijo	100.0	2.6	23.2	44.0	20.0	8.5	1.7	
Con 2 hijos	100.0	1.5	3.0	55.8	23.0	15.7	1.0	
Con 3 hijos	100.0	1.6	4.3	17.6	50.3	24.4	1.8	
Con 4 y más hijos	100.0	2.0	2.0	20.6	15.6	53.9	5.9	

FUENTE: INEGI. Encuesta Nacional de la Dinámica Demográfica, 1997. Base de Datos.

2.3 Conocimiento de métodos anticonceptivos de la población femenina

Como primer requisito para el control de un embarazo no deseado, está el conocimiento de los métodos anticonceptivos y el uso de éstos. Afortunadamente, en todos los grupos de población en edad fértil hay un incremento en el conocimiento de dichos métodos.

Desde 1976 y hasta 1997 las mujeres entre 25 y 29 años son las que muestran tener un mayor conocimiento de al menos un método anticonceptivo, mientras que las menos informadas han sido las más jóvenes que son las que se encuentran de 15 a 19 años de edad. Además, el método anticonceptivo mas usado son las pastillas anticonceptivas con 9 de cada 10 mujeres, y la mitad de las mujeres acostumbran usar el retiro (coito interrumpido).

Porcentaje de mujeres en edad fértil que conocen métodos anticonceptivos por tipo de método, 1997. Otros Norplant 14.8 Retiro Espermaticida 59.0 68.6 Ritmo Vasectomia Inyecciones OTB 89.4 DIU 89.7 Preservativos Pastillas 93.6 30.0 90.0 100.0 0.0 20.0 40.0 50.0 60.0 70.0 80.0

Gráfico 2.1

FUENTE: INEGI. Encuesta Nacional de la Dinámica Demográfica, 1997.

Hasta el año de 1997 una de cada 2 mujeres de la generación de 30 a 49 años se realiza la operación femenina que es un método anticonceptivo definitivo, otro método que tiene un porcentaje alto de usuarias de esta generación es el DIU.

Por otro lado las mujeres más jóvenes, que apenas inician su etapa reproductiva (15 a 29 años) utilizan la operación femenina sólo en alrededor de un 15%. El método anticonceptivo DIU, es utilizado por alrededor de 1 de cada 3 mujeres entre estas edades, seguido por las pastillas anticonceptivas.

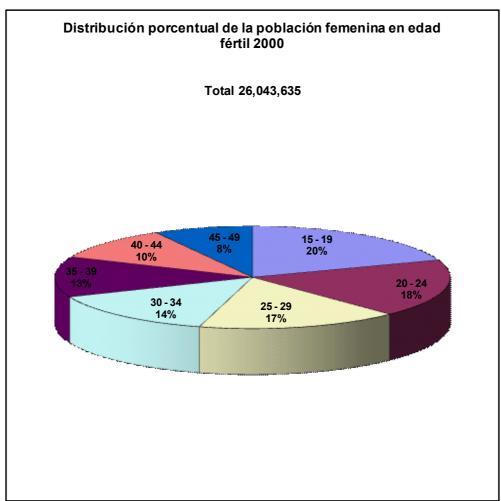
3. LA FECUNDIDAD DE MÉXICO EN EL II CONTEO DE POBLACION Y VIVIENDA 2005

En este capítulo se realiza un análisis de la fecundidad en México tomando como fuente de información el II Conteo de Población y Vivienda 2005. La forma de realizar este análisis será catalogando la información en diferentes indicadores desagregados por grupos de edad, por estado civil y por escolaridad, también se presentan las diferencias por entidad federativa y por tipo de localidad. De esta manera se visualizarán las diferencias existentes entre los grupos de mujeres que en la actualidad mantienen distintos niveles de fecundidad.

3.1 Población femenina

El descenso de la fecundidad en el país trajo como consecuencia volúmenes cada vez más reducidos de nacimientos; sin embargo, las cohortes femeninas aún son numerosas. El Conteo de Población y Vivienda 2005 captó en el año 2000 a más de 27 millones de mujeres de 15 a 49 años de edad, que son consideradas la población femenina en edad reproductiva para cuestiones de análisis.

Para poder analizar la fecundidad de las mujeres mexicanas primero hay que definir cual es la población con la que se trabaja y cuáles son sus características por entidad federativa y grupos quinquenales de edad. También se presenta el producto de dicha fecundidad como son el promedio de hijos nacidos vivos.


3.1.1 Población femenina en edad fértil

La población femenina en edad fértil, representa el 70.82% de la población femenina del país. Las generaciones de 20 a 29 años de edad en el 2005 eran poblaciones que representaban el 32.38% de la población de las mujeres en edad fértil, un poco más de 2% menor al tamaño que tenía en el 2000. En estructuras de este tipo donde la mayoría de las mujeres se concentra alrededor de los 20 años de edad, favorece a una mayor frecuencia de nacimientos, ya que la mayor fecundidad se presenta en mujeres alrededor

esta edad, así que al ser menor en el 2005 que en el 2000 apunta a generar una menor fecundidad.

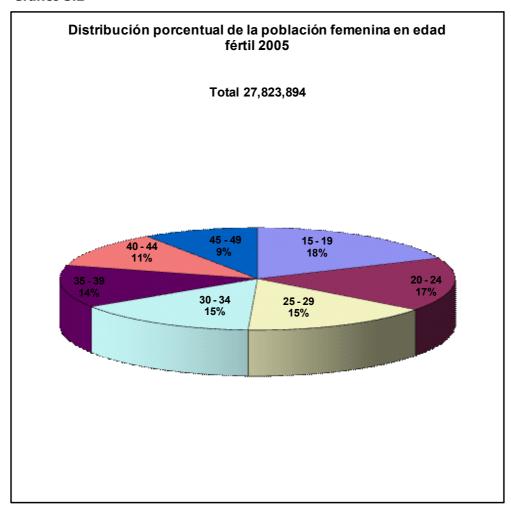

Mientras tanto, en la generación de 45 a 49 años de edad, representan el 9.44% de la población, 1% más que en el 2000.

Grafico 3.1

FUENTE: INEGI. XII Censo de Población y Vivienda 2000. Tabulados básicos.

Gráfico 3.2

FUENTE: INEGI. II Conteo de Población y Vivienda 2005. Tabulados básicos.

3.1.2 Población femenina en edad fértil por entidad federativa y grupos quinquenales de edad

En el año 2000 el número de mujeres de 15 a 49 años equivale al 52.2% del total de la población femenina, aproximadamente veinte puntos porcentuales menos que lo que registra el Conteo 2005, para este año una de cada dos mujeres mexicanas esta en etapa de fecundar.

Cuadro 3.1

Cuadro 3.1				1.67.411				
Distribución porcentu	•		na en eda	id fértil p	or entida	d federat	iva	
según grupos quinque	enales de edad 20	000						
	TOTAL	15 - 19	20 - 24	25 - 29	30 - 34	35 - 39	40 - 44	45 - 49
Estados Unidos Mexicanos	100.00%	19.52%	18.31%	16.50%	14.41%	12.78%	10.37%	8.12%
Aguascalientes	100.00	19.84	18.34	16.68	14.78	12.53	10.14	7.68
Baja California	100.00	17.32	18.52	18.21	15.47	12.98	10.04	7.46
Baja California Sur	100.00	17.70	18.12	17.22	15.21	13.42	10.64	7.70
Campeche	100.00	20.26	18.87	16.39	14.00	12.68	9.87	7.93
Coahuila de Zaragoza	100.00	18.01	18.24	16.95	14.97	13.07	10.62	8.14
Colima	100.00	19.56	18.19	16.14	14.25	13.04	10.68	8.15
Chiapas	100.00	22.84	19.62	15.98	13.00	12.13	9.04	7.38
Chihuahua	100.00	17.96	17.61	17.32	15.46	13.28	10.47	7.90
Distrito Federal	100.00	16.03	16.95	17.17	15.10	13.69	11.69	9.37
Durango	100.00	20.34	18.20	16.07	14.30	12.78	10.31	8.02
Guanajuato	100.00	21.06	19.26	16.36	14.00	12.09	9.74	7.49
Guerrero	100.00	22.57	18.75	15.23	13.16	12.40	9.80	8.09
Hidalgo	100.00	20.41	18.02	15.90	14.18	12.91	10.33	8.24
Jalisco	100.00	20.07	18.40	16.48	14.16	12.39	10.33	8.16
México	100.00	18.67	18.32	17.05	14.88	13.02	10.29	7.77
Michoacán de Ocampo	100.00	22.00	19.06	15.57	13.48	12.11	9.97	7.79
Morelos	100.00	19.41	17.99	16.15	14.25	13.03	10.78	8.39
Nayarit	100.00	20.56	18.00	15.81	13.69	12.54	10.77	8.62
Nuevo León	100.00	17.46	18.29	17.38	15.30	12.86	10.68	8.05
Oaxaca	100.00	21.80	18.25	15.15	13.44	12.43	10.32	8.61
Puebla	100.00	21.06	19.00	15.87	13.80	12.26	9.94	8.07
Querétaro de Arteaga	100.00	20.60	19.15	16.56	14.47	12.31	9.72	7.20
Quintana Roo	100.00	18.28	19.59	18.83	15.84	12.46	8.75	6.25
San Luis Potosí	100.00	21.05	18.13	15.88	14.16	12.54	10.20	8.04
Sinaloa	100.00	19.77	18.17	16.24	14.08	12.78	10.74	8.22
Sonora	100.00	18.17	17.80	16.61	14.76	13.18	11.10	8.37
Tabasco	100.00	21.16	19.26	16.44	13.77	12.59	9.45	7.33
Tamaulipas	100.00	18.01	18.42	17.19	15.13	12.91	10.45	7.88
Tlaxcala	100.00	20.76	19.34	16.16	14.29	12.42	9.78	7.26
Veracruz Llave	100.00	19.57	17.34	15.76	14.44	13.18	10.83	8.88
Yucatán	100.00	20.14	18.73	16.13	13.59	12.35	10.24	8.81
Zacatecas	100.00	21.69	18.90	15.77	14.11	12.16	9.74	7.62

FUENTE: INEGI. II Conteo de población y Vivienda 2005. Tabulados básicos

Como ya vimos, el 70.82% de la población femenina está en edad reproductiva, lo que quiere decir que casi un tercio de la población está en etapa de concebir. De acuerdo con el patón en que se distribuye la población por entidad federativa, las que representan los mayores montos de mujeres en edad fértil son el Estado de México con 3.8 millones y el Distrito Federal con 2.5 millones; mientras que en Baja California Sur este indicador no alcanza el monto de 150 mil mujeres.

Las jóvenes que comienzan su vida reproductiva, es decir de 15 a 19 años de edad que residen en Chiapas, Guerrero Michoacán y Puebla no supera el 20%. Por otro lado, la proporción de mujeres que ya están terminando con su ciclo reproductivo es mayor en el Distrito Federal y Nuevo León, en contraste con Chiapas y San Luís Potosí con una tasa porcentual menor al 8.5%.

Cuadro 3.2

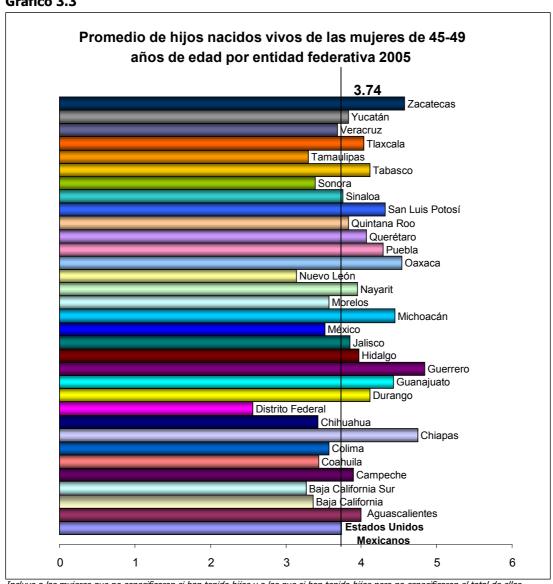
Distribución porcentu	al de la població	n femeni	na en eda	d fértil p	or entida	d federat	iva	
según grupos quinqu	-			•				
	TOTAL	15 - 19	20 - 24	25 - 29	30 - 34	35 - 39	40 - 44	45 - 49
Estados Unidos Mexicanos	100.00%	18.38%	16.93%	15.45%	15.05%	13.45%	11.31%	9.44%
Aguascalientes	100.00	18.70	17.04	15.39	15.26	13.42	11.21	8.99
Baja California	100.00	17.12	16.73	16.51	16.15	13.77	10.98	8.74
Baja California Sur	100.00	16.62	16.55	16.64	15.80	13.78	11.50	9.12
Campeche	100.00	18.82	17.68	15.86	15.04	13.08	10.71	8.81
Coahuila de Zaragoza	100.00	17.13	16.03	15.74	15.81	13.87	11.72	9.70
Colima	100.00	18.44	16.79	15.22	14.86	13.45	11.66	9.59
Chiapas	100.00	21.85	18.52	15.76	13.65	12.31	9.77	8.14
Chihuahua	100.00	17.74	16.02	15.14	15.61	14.18	11.81	9.51
Distrito Federal	100.00	14.90	15.72	15.30	15.84	14.39	12.73	11.13
Durango	100.00	19.83	16.53	14.93	14.69	13.26	11.41	9.36
Guanajuato	100.00	19.55	17.60	15.61	14.73	12.99	10.80	8.73
Guerrero	100.00	21.76	17.49	14.75	13.64	12.48	10.77	9.12
Hidalgo	100.00	19.06	16.88	15.15	14.81	13.38	11.21	9.51
Jalisco	100.00	18.74	17.47	15.34	14.88	13.12	11.11	9.36
México	100.00	17.39	16.83	15.72	15.69	13.81	11.32	9.24
Michoacán de Ocampo	100.00	20.80	17.42	14.90	14.06	12.71	10.94	9.16
Morelos	100.00	18.17	16.68	15.08	14.87	13.58	11.61	10.01
Nayarit	100.00	19.59	16.72	14.84	14.56	13.10	11.32	9.87
Nuevo León	100.00	16.09	16.45	15.90	16.09	14.14	11.63	9.70
Oaxaca	100.00	20.85	17.08	14.93	13.98	12.64	10.97	9.56
Puebla	100.00	19.58	17.90	15.61	14.48	12.83	10.55	9.04
Querétaro de Arteaga	100.00	18.80	17.72	15.87	15.16	13.12	10.77	8.58
Quintana Roo	100.00	17.57	17.96	17.07	16.26	13.50	10.19	7.45
San Luis Potosí	100.00	19.83	16.96	14.90	14.56	13.13	11.24	9.38
Sinaloa	100.00	18.68	16.45	14.92	14.89	13.40	11.73	9.94
Sonora	100.00	17.42	16.07	15.37	15.39	13.77	11.87	10.12
Tabasco	100.00	19.13	18.00	16.13	14.61	12.98	10.62	8.53
Tamaulipas	100.00	16.66	16.71	15.97	15.66	13.99	11.55	9.47
Tlaxcala	100.00	18.40	18.01	16.22	14.93	13.09	10.62	8.73
Veracruz Llave	100.00	18.61	16.23	14.78	14.63	13.83	11.85	10.06
Yucatán	100.00	18.87	17.92	15.57	14.85	12.57	10.97	9.25
Zacatecas	100.00	20.50	17.00	15.04	14.28	13.08	11.00	9.10

FUENTE: INEGI. II Conteo de población y Vivienda 2005. Tabulados básicos

La disminución de la población femenina a través de estos 5 años comparando en Censo del 2000 con el Conteo del 2005 es muy significativa tomando en cuenta el corto tiempo trascurrido. Esto se debe a que la población de la última generación que salió de la etapa reproductiva no está siendo sustituida por la generación entrante que son las mujeres de 15 a 19 años de edad, en cada estado podemos ver que la población femenina en esta edad es menor en el 2005 que en el 2000.

Ahora, haciendo una comparación estado por estado nos encontramos con que durante la edad de 15 a 21 años que es cuando las mujeres son mas propicias a procrear en el estado de Chiapas tanto en el 2000 como en el 2005 se encuentra el porcentaje mas alto con respecto a las demás entidades federativas.

Por otro lado existe una concentración más grande de mujeres al final de su etapa reproductiva en el 2005 que en el 2000, de hecho, mientras que la concentración más baja de todas las mujeres de edad fértil se encontraba en Quintana Roo con 6.25% en el 2005 continua siendo la más baja pero con 7.45% de la población femenina. En contraste con estas cifras el nivel de concentración más alto, se localiza en Chiapas como se había mencionado antes.


Finalmente, en todas las entidades federativas se presenta una disminución en el número de mujeres en edad fértil en el año 2005 con respecto al 2000 en las edades de 15 a 29 años mientras que en las edades de la generación de 30 a 49 años de edad, el número de mujeres en edad fértil es superior. Esto significa que al existir en el 2005 una mayor concentración de mujeres con bajos niveles de fecundidad y una menor en las que están en la etapa mas alta de reproducción, se espera que para el siguiente Censo del 2010 el número de hijos nacidos vivos sea menor, y el reemplazo de la población se vea cada vez más afectado.

3.1.3 Promedio de hijos nacidos vivos (PHNV) por entidad federativa

Los resultados del II Conteo de Población y Vivienda 2005 muestran que el promedio de hijos nacidos vivos (PHNV) de las mujeres en edad fértil (15 a 49 años) es de

2.47 hijos por mujer. El PHNV por mujer es significativamente pequeño en los grupos de mujeres jóvenes, muestra incrementos conforme aumenta la edad y llega a superar los 4 hijos al final de su vida reproductiva. Lo anterior es reflejo de los distintos momentos por los que atraviesan las mujeres en su ciclo reproductivo, y del cambio generacional en cuanto a los ideales y las conductas reproductivas de la población. El menor promedio de hijos nacidos vivos de las mujeres que se encuentran al final de su ciclo reproductivo se da en el Distrito Federal y Nuevo León con 2.56 y 3.14 hijos por mujer, respectivamente. Mientras que en Guerrero es de 4.84 hijos por mujer, en el Censo de Población y Vivienda 2000 esta cifra era de 5.20 hijos por mujer.

Gráfico 3.3

Incluye a las mujeres que no especificaron si han tenido hijos y a las que si han tenido hijos pero no especificaron el total de ellos. FUENTE: II Conteo de Población y Vivienda 2005. Tabulados básicos.

3.1.4 Promedio de hijos nacidos vivos por grupos quinquenales de edad y tamaño de localidad

El PHNV de las mujeres varía según el lugar de residencia. Dicho indicador es mayor en las localidades rurales (menos de 2 500 habitantes) y disminuye a medida que aumenta el tamaño de la localidad. Estas diferencias se derivan de las disparidades en las preferencias reproductivas de las parejas, de su nivel educativo, de su cultura, de su incorporación a la vida económica, y del acceso a la información y a los servicios de salud reproductiva.

En el año 2005, las mujeres residentes en las áreas rurales tienen en promedio 3.13 hijos, mientras que en localidades de tamaño mayor a 100 000 habitantes la mujeres tienen 2.12 hijos en promedio. La mayor diferencia en el número de hijos de mujeres que se encuentran al final de su ciclo reproductivo tomando el tamaño de la localidad en que residen es de 2.21 hijos por mujer y la menor diferencia se encuentra en la generación de 15 a 19 años, pero ellas aun no han terminado su ciclo reproductivo. Sin embargo, las cifras más relevantes son las de aquellas mujeres que han concluido su vida fértil donde en promedio han tenido 4 hijos en estas localidades.

Cuadro 3.3

Promedio de hijos nacidos vivos de mujeres en edad fertil por grupos quinquenales de edad según tamaño de localidad 2005

Grupos quinquenales de edad	Total	15 - 19	20 - 24	25 - 29	30 - 34	35 - 39	40 - 44	45 - 49
Total	2.47	0.15	0.8	1.55	2.23	2.79	3.28	3.74
1 a 2,499 habitantes	3.13	0.18	1.03	2.02	2.92	3.75	4.54	5.25
2,500 a 14,999 habitantes	2.69	0.16	0.88	1.72	2.46	3.08	3.69	4.28
15,000 a 99,999 habitantes	2.41	0.15	0.8	1.55	2.21	2.73	3.22	3.69
100,000 a 999,999 habitantes	2.12	0.13	0.67	1.3	1.91	2.36	2.72	3.04
1,000,000 y más habitantes	2.19	0.14	0.68	1.31	1.92	2.37	2.77	3.13

FUENTE: II Conteo de Población y Vivienda 2005

Incluye a las mujeres que no especificaron si han tenido hijos y a las que si han tenido hijos pero no especificaron el total de ellos

3.2 Tasa Global de Fecundidad

La Tasa Global de Fecundidad (TGF) o descendencia final es una medida resumen que indica el promedio de hijos nacidos vivos que tendría una mujer durante su vida reproductiva, si estuviera sujeta a las tasas de fecundidad por edad observadas en un periodo determinado.

3.2.1 Tasa Global de Fecundidad en la actualidad

Como se ha mencionado durante el siglo pasado los niveles de fecundidad descendieron abruptamente durante la segunda mitad de la década de los setenta hasta la cual habían sido elevados pues TGF era de aproximadamente 6 hijos por mujer. Después de 10 años la tasa se redujo hasta alcanzar a 3.8 hijos por mujer. Este descenso se le atribuye a la puesta en marcha de los programas de planificación familiar, ayudando a las mujeres a elegir métodos que les ayudaran a tener una menor cantidad de hijos y un mayor espaciamiento entre ellos.

A partir de 1990 los cambios en la TGF no han sido tan grandes, sin embargo el descenso continuo.

3.2.2 Tasa Global de Fecundidad por entidad federativa

El descenso de la fecundidad se ha registrado en todas las entidades federativas del país, pero en algunas esta tendencia se inició más tarde o ha sido menos pronunciada, esta el la razón por la cual al comparar la TGF a nivel estatal, las diferencias son significativas.

Las entidades que presentan una más alta fecundidad son Guerrero con 2.6 hijos por mujer; Chiapas con 2.5; Aguascalientes, Durango, San Luís Potosí y Puebla con 2.4

hijos por mujer. Mientras tanto el Distrito Federal muestra una fecundidad correspondiente a 1.6 hijos por mujer, siendo este estado el único que esta por debajo de los 2 hijos, esto significa que en este estado la fecundidad esta por abajo del nivel necesario para que la descendencia sustituya a sus padres en la población.

Tasa global de fecundidad por entidad federativa 2005 Zacatecas Yucatán Veracruz Tlaxcala Tamaulipas Tabasco Sonora Sinaloa San Luis Potosí Quintana Roo Querétaro Puebla Oaxaca Nuevo León Nayarit Morelos Michoacán México Jalisco Hidalgo Guerrero Guanajuato Durango Distrito Federal Chihuahua Chiapas Colima Coahuila Campeche Baja California Sur Baja California Aguas calientes stados Unidos Mexicanos 0.5 1.5 2 2.5 3

Gráfico 3.4

FUENTE: CONAPO, INEGI y COLMEX. Conciliación demográfica 2000-2005. www.conapo.gob.mx y www.inegi.gob.mx (22 de septiembre de 2006).

3.3 Nacimientos registrados

Pese al avance en la reducción en los niveles de fecundidad en México, en los últimos años, el elevado monto de mujeres en edad de procrear ha propiciado un alto número de nacimientos en el país; a este fenómeno se le conoce como inercia

demográfica. Los nacimientos registrados se refieren al total de población inscrita en el Registro Civil en un año determinado.

En el país en los últimos 16 años, el volumen promedio anual de registros de nacimientos ha sido de alrededor de 2.7 millones de personas. La forma de analizar este indicador será catalogando a las mujeres según su nivel de instrucción y su actividad económica.

Cuadro 3.4

Distribución porcentual de los nacimientos registrados según escolaridad de la madre, 1990 a 2005

Año	Nacimientos registrados	Sin escolaridad	Primaria incompleta	Primaria completa	Secundaria equivalente	o Bachillerato equivalente	0	Profesional
1990	2,735,312	14.7	22.1	28.6	21.6	6.8		6.1
1991	2,756,447	14.8	21.2	28.3	22.3	7.2		6.2
1992	2,797,397	14.3	20.2	28.1	23.4	7.7		6.3
1993	2,839,686	14.1	19.3	27.8	24.3	8.2		6.3
1994	2,904,389	13.2	18.5	28	25.1	8.8		6.4
1995	2,750,444	11.8	16.9	28.7	26.1	9.9		6.8
1996	2,707,718	10.8	16.5	28.6	26.6	10.5		7
1997	2,698,425	10.4	15.8	28.5	27.5	10.9		6.9
1998	2,668,428	9.4	14.4	28.7	28.5	11.6		7.4
1999	2,769,089	9.1	14.1	29.1	29	11.5		7.2
2000	2,798,339	9	13.4	28.3	29.8	12		7.5
2001	2,767,610	9	12.4	27.7	30.4	12.6		7.9
2002	2,699,084	8.2	12.1	27.6	30.8	13.1		8.2
2003	2,655,894	7.4	11.4	27.5	31.3	13.8		8.6
2004	2,625,056	6.5	10.3	27	32.8	14.5		8.8
2005	2,567,906	6.2	9.8	26.3	33.5	15.3		8.9

NOTA: El rubro de No especificado se prorrateó entre las categorías que componen el indicador.

FUENTE: INEGI. Estadísticas de Natalidad.

Las diferencias entre la proporción de nacimientos de las mujeres sin escolaridad con respecto a las que son ya profesionistas es enorme, para el año 1990 y hasta 1997las mujeres que no han recibido instrucción presentan casi el doble de nacimientos con respecto a aquellas que se encuentran en el nivel medio superior o en el nivel superior, sin embargo en los últimos dos años de la década de los 90's las diferencias son cada vez menos significativas.

Como podemos notar el mayor número de nacimientos registrados se presenta en las mujeres que declararon tener la primaria completa y en aquellas que declararon haber concluido la secundaria.

Esto nos hace notar que aún hace falta mucho por hacer con respecto a la información proporcionada acerca del control de la natalidad en estos sectores ya que desgraciadamente la mayor parte de los nacimientos están concentrados en las adolescentes de nuestro país.

Cuadro 3.5

Distribución porcentual de los nacimientos registrados según condición de actividad económica de la madre, 1990 a 2005

Año	Nacimientos registrados	Económicamente activas	No económicamente activas
1990	2,735,312	15.2	84.8
1991	2,756,447	15	85
1992	2,797,397	14.8	85.3
1993	2,839,686	15.3	84.7
1994	2,904,389	17.1	82.9
1995	2,750,444	17.7	82.3
1996	2,707,718	17.6	82.4
1997	2,698,425	16.4	83.6
1998	2,668,428	16.6	83.4
1999	2,769,089	16.7	83.3
2000	2,798,339	17.3	82.7
2001	2,767,610	18.2	81.8
2002	2,699,084	18.4	81.6
2003	2,655,894	17.7	82.3
2004	2,625,056	19.3	80.7
2005	2,567,906	20.8	79.2

NOTA: Para el cálculo se excluye la condición de actividad económica de la madre no especificada.

FUENTE: INEGI. Estadísticas de Natalidad.

El comportamiento de los nacimientos en las mujeres respecto a su actividad no varia significativamente a través de los años, la mayoría de los nacimientos son de las mujeres que no son económicamente activas.

Como vimos en el capítulo anterior en el Distrito Federal en el 2005 el conteo muestra que cada mujer tiene 1.6 hijos, esto es grave, pues debemos caer en la cuenta de que no solo es importante concientizar a la población sobre el tener menos hijos, sino que también es necesario hacerles saber que existe un número ideal de hijos para la conservación de la humanidad. Esta situación se revisará mas claramente en el siguiente capitulo.

4. METODOLOGÍA

La fecundidad se define como el estudio cuantitativo de los fenómenos relacionados con la procreación humana, es decir con los nacimientos vivos. Con este fenómeno esta relacionada directamente la natalidad que puede tomarse desde los individuos que nacen, o de las madres o de las parejas que procrean, en los capítulos anteriores todos los análisis se hicieron desde el punto de vista de las mujeres tanto en el rubro de la fecundidad como de la natalidad.

La natalidad a su vez se utiliza para designar la frecuencia de los nacimientos en las poblaciones y no de las subpoblaciones, esto significa que la natalidad abarca todos los nacimientos de las mujeres, mientras que para el caso específico de la población en edad fértil se utiliza el término de fecundidad.

4.1 Tasa bruta de natalidad

La tasa bruta de natalidad (TBN) nos dice por cada mil mujeres cuantos nacimientos han sido registrados en un año calendario. Sea TNac^{R.t} el total de nacimientos registrados en el año calendario t y sea PT^{30-06-t} la población total a la mitad del año t, entonces

$$TBN = \frac{TNac^{Rt}}{PT^{30-06-t}} * 1000$$

4.2 Tasa General de Fecundidad

La tasa general de fecundidad nos dice de cada mil mujeres en edad reproductiva cuantos nacimientos se registran. Sea TNac^{R.t} el total de nacimientos registrados en el año calendario t y sea $PT_{15-49}^{30-06-t}$ la población en edad fértil a la mitad del año t, entonces:

$$TF = \frac{TNac^{Rt}}{PT_{15-49}^{30-06-t}} * 1000$$

También definimos a la tasa general de fecundidad femenina que equivale a la TGF multiplicada por un factor de feminidad. De modo que:

$$TGF^f = 4878 * TGF$$

4.3 Tasas específicas de fecundidad

Cuando los nacimientos se clasifican según sus características socioeconómicas y demográficas y se relaciona con éstas, son llamadas tasas específicas de fecundidad. Las clasificaciones más comunes son con respecto al orden de nacimiento, estado civil y edad de las mujeres.

Llamemos B a los nacimientos de hijos cuyas madres tenían en el momento de dar a luz la edad j o su edad estaba entre el grupo de edad j (generalmente quinquenal). También sea P_j^f la población femenina con edad o en el grupo de edad j, entonces la tasa específica de fecundidad por edad es:

$$f_j = \frac{B_j}{P_j^f} * K$$

cuando el cálculo se hace con los nacimientos anuales y la población de mitad de año, los resultados se conocen con el nombre de tasas centrales (Mina, 2005). Generalmente la tasa específica de fecundidad es representada por $_{\bf n}{\bf f}_{\bf x}$.

4.4 Tasa Global de Fecundidad

También llamada descendencia final, es el promedio de hijos que tiene una mujer a través de su vida reproductiva, este promedio se calcula bajo la hipótesis de estabilidad de la fecundidad con mujeres entre 15 y 49 años. Así, si una mujer estuviera expuesta a la fecundidad de la serie $\{f_j\}$ de tasas específicas de fecundidad por edad, o grupo de edad j, el número de hijos que tendría al final de su vida reproductiva vendría dado por la tasa global de fecundidad por (Mina 2005):

$$TGF = c \sum_{j=a}^{b} f_j$$

4.5 Tasa bruta y neta de reproducción

La tasa bruta de reproducción (TBR) da respuesta al promedio de hijas que tendría una mujer al final de su vida reproductiva en ausencia del fenómeno mortalidad. De manera que si una mujer estuviera expuesta a la fecundidad de la serie $\{f_u\}$ de tasas específicas de fecundidad por edad, o grupo de edad u, el número de hijas que tendría estaría dado por:

$$TBR = fa \sum_{\alpha=4}^{\beta} f_u$$

donde f es la tasa de feminidad al nacimiento, tasa que no se suele apartar significativamente de 0.488, α el primer grupo fecundo y β el último, a es la amplitud del grupo 4.

Si se representa como f_x la tasa específica de fecundidad a la edad x, y $f_{x,x+4}$ la tasa específica de fecundidad del grupo de edades cumplidas (x,x+4), se tiene:

$$TBR = 0.488(f_{15} + \dots + f_{49})$$

 $TBR = 0.488 * 5(f_{15-19} + \dots + f_{45-49})$

Haciendo entrar en juego la mortalidad de esa generación de mujeres, se llega a la tasa neta de reproducción (TNR) que representa el número de hijas que tendría una mujer a lo largo de su vida fértil si estuviera expuesta a la mortalidad. Así pues, se tendría

$$TNR = fa \sum_{u=\alpha}^{\infty} f_u P_u$$

donde la serie {P_u} es la de supervivencia de las mujeres a la edad u (Mina 2005).

En indicador que asegura el reemplazo de la generación es TNR la cual debe ser igual a 1 para tener el reemplazo necesario y no tener excedentes.

4.6 Indicadores de fecundidad

Para asegurar el reemplazo de la población se considera como indicador que la TNR \geq 1 o que la TGF \geq 2.1, para el año 2005 la TGF fue de 2.2 estando muy cerca del límite, pero lo realmente preocupante es que en el Distrito Federal, este indicador es de 1.6 (Mina, 2005).

Ahora, a través de las tasas específicas de fecundidad es posible analizar dos variables: la edad cúspide y el grado de concentración. La edad cúspide se considera temprana si el máximo valor se encuentra en el grupo quinquenal de 20 a 24 años; tardía si esta en el de 25 a 29 años; y dilatada si los valores máximos de las dos anteriores son semejantes.

En la variable grado de concentración la ONU tomó tres grupos para el análisis de ésta el factor a analizar es $_{n}f_{x}$ / $\Sigma_{n}f_{x}$, que es una distribución de las tasas especificas de fecundidad con respecto al total. Definimos A, como los países de alta fecundidad y B como los de baja fecundidad, entonces, si:

	Α	В
15 - 19	Mayor a 10	Menor a 10
20 - 34	Menor a 75	Mayor a 75
35 - 49	Mayor a 15	Menor a 15

Existen diversos factores que inciden en la forma de la curva de la fecundidad, entre ellos están los factores relacionados con el estado civil en los cuales influyen: la edad al casarse o unirse (según el nivel de mortalidad de los países) y el porcentaje de mujeres que enviudan en el periodo fértil. También están los factores relacionados con la fecundidad matrimonial por edad: el grado en que están extendidas las prácticas anticonceptivas; la amplitud del intervalo protogenésico (entre matrimonios y el primer hijo) e intergenesico (entre hijos); la frecuencia de embarazos mal logrados tanto abortos espontáneos como inducidos; y la incidencia de esterilidad de hombres y mujeres.

4.7 Fecundidad por orden de nacimiento

Para poder estudiar la fecundidad por orden de nacimiento (1º, 2º,...,) se supone que se conoce para los nacimientos de un orden dado, su distribución según el tiempo y el tiempo que ha transcurrido desde los nacimientos del orden anterior. Para poder interpretar dichas probabilidades hay que definir lo que es orden de nacimiento.

La probabilidad de orden de nacimiento, considera a una cohorte de matrimonios. Pueden tomarse a las mujeres según su estado civil o no. El hecho de que las familias se completen hijo tras hijo es una aseveración obvia, por este motivo es que el estudio del orden de nacimiento es fundamental para conocer el futuro reemplazo de la población. Se verá el concepto de probabilidad de crecimiento como intensidad demográfica.

Para el estudio de la fecundidad por orden de nacimiento en el II Conteo de Población y Vivienda 2005 se toma como cohorte al número de hijos nacidos vivos de las mujeres en edad de procrear unidas o no por cualquier causa, pues ese es el único dato que nos arroja el Conteo.

Entonces sea M la cohorte que representa al total de mujeres de 15 a 49 años, que en el 2005 fue de 27, 823,894. De esa cohorte de M mujeres, M_o , representa a las mujeres que no han tenido hijos, M_1 , a las mujeres que han tenido 1 hijo, así sucesivamente, hasta M_n tomando a n como la cantidad de hijos registrada más alta.

También definimos a m como la proporción de las mujeres en edad fértil según el número de hijos nacidos vivos así, m_o, \ldots, m_r serán las proporciones de las mujeres que han tenido de 0 a r hijos, así como m_{1+}, \ldots, m_{r+} representará a las proporciones de mujeres que han tenido 1 o más, hasta r o más. De modo que de forma matemática quedan definidos como sigue:

$$m_0 = M_0 / M = > m_{1+} = (M - M_0) / M = > m_{1+} = 1 - m_0$$

$$m_1 = M_1 / M = M_{2+} = [M - (M_0 + M_1)] / M = M_{2+} = 1 - (m_0 + m_1)$$

•

.

•

$$m_r = M_r / M => m_{r+} = [M - (M_0 + + M_{r-1})] / M => m_{1+} = 1 - (m_0 + + m_{r-1})$$

De tal manera que la probabilidad de que una mujer de la población en edad fértil haya tenido al menos 1 hijo estará dada por:

$$h_0 = m_{1+}$$

la probabilidad de que una mujer que ya tuvo un hijo tenga al menos otro será:

$$h_1 = m_{2+} / m_{1+}$$

y así sucesivamente de modo que

$$h_r = m_{r+1} / m_{r+1}$$

Gracias a esto podemos definir a la serie h_0, \dots, h_r como las probabilidades de crecimiento de las familias. De estas relaciones deducimos que

definiendo a ω como la mayor dimensión de familia que alcanza la población de mujeres en edad fértil.

Como en este caso (como se mencionó antes) se consideraron a las mujeres en edad fértil y no a los matrimonios, se puede decir que la probabilidad de crecimiento de las familias es en realidad la probabilidad de que una mujer en edad fértil desee tener un hijo, dado que no tiene ninguno, o la probabilidad de que una mujer que tiene un hijo desee tener otro y así sucesivamente, de forma análoga a como se describe para el caso de los matrimonios.

En el capítulo 9 se aplicará este método paso a paso a la información que tenemos del II Conteo de Población y Vivienda y la compararemos con la información recabada en el Censo de 1990 y del 2000.

5. FUNCIONES GOMPERTZ Y MAKEHAM

En este capítulo el objetivo será establecer un método para proyectar las tasas específicas de fecundidad en la población en edad fértil por entidad federativa y grupos quinquenales de edad, para dicha proyección el método utilizado será la función de Makeham, presentando las proyecciones hacia el 2010, 2015 y 2020.

La importancia de establecer dichas funciones que describen los fenómenos demográficos se ve representada en los trabajos realizados por Gompertz y Makeham. Gompertz desarrolló una ley matemática, la cual describe la mortalidad experimentada por una población dada; Gompertz en su ley supone que la resistencia del hombre a la muerte decrece a una tasa proporcional a sí misma (Mina, 1982) y que las causas de muerte pueden agruparse en dos categorías las cuales son:

- a) aquéllas que son independientes de la edad
- b) aquéllas en las que el organismo ofrece una resistencia que se va perdiendo con el tiempo.

Gompertz al establecer su ley, se basa únicamente en las causas de muerte dependientes de la edad, para lo cual define la tasa instantánea de mortalidad (M_x) a la cuál siempre está sujeta la población y la cual representa la susceptibilidad del hombre a la muerte, así como el recíproco de dicha tasa como la resistencia del hombre a la muerte. Sea $1/M_x$ el recíproco de la Tasa Instantánea de Mortalidad (M_x) y h la tasa a la cual decrece la resistencia del hombre a la muerte, entonces bajo estos supuestos la Ley de Gompertz puede definirse como:

$$\frac{d}{d_x} \left(\frac{1}{M_x} \right) = -h \left(\frac{1}{M_x} \right) \tag{1}$$

Para desarrollar la expresión anterior, se consideran los siguientes incisos:

Se dividen ambos lados de la igualdad entre el recíproco de la tasa instantánea de mortalidad y se integran con respecto a *x*, después se resuelve la integral.

$$\int \frac{d\left(\frac{1}{M_{\lambda}}\right)}{\frac{1}{M_{\lambda}}} dx = -h \int dx$$

$$\ln\left(\frac{1}{M_{\lambda}}\right) + \ln B = -hx$$

Al ocupar las leyes de los logaritmos obtendremos:

$$\ln \frac{B}{M_x} = -hx$$

Ahora aplicando la exponencial en ambos lados de la desigualdad de la expresión (4), el resultado es:

$$\frac{B}{M_{\star}} = e^{-hx}$$

Multiplico los lados derecho e izquierdo de la igualdad por sus inversos, es decir, por M_x y e^{hx} , respectivamente:

$$M_r = Be^{hx}$$

 $M_{\rm X}=Be^{h{\rm X}}$ Haciendo un simple cambio de variable, sea e^b=C, entonces (6) quedará expresada como:

$$M_{r} = BC^{\alpha} \tag{2}$$

Esta es la expresión que deseábamos encontrar para la tasa instantánea de mortalidad, empleando los supuestos de Gompertz. Ahora, recordemos la definición de $M_{\scriptscriptstyle X}$ como la susceptibilidad del hombre a la muerte, lo que gueremos analizar es el cambio que tienen los sobrevivientes de una población /(x) hasta que queda el último sobreviviente. Para esto lo necesario es encontrar el límite cuando h tiende a cero, entonces:

$$M_x = \lim_{h \to 0} \frac{l(x) - l(x+h)}{hl(x)}$$
(3)

$$Mx = \frac{-1}{l(x)} \lim_{h \to 0} \frac{l(x+h)-l(x)}{h}$$

Haciendo uso del concepto de derivada:

$$Mx = \frac{-1}{l(x)} \frac{d}{dx} l(x)$$

$$Mx = -\frac{d}{dx} \ln l(x)$$
(4)

Ya que se ha logrado expresar la tasa instantánea de mortalidad como la derivada con respecto a x de la función l(x), que representa a los sobrevivientes de una población, entonces lo que ahora se necesita es encontrar una forma de expresión para l(x), para lograr esto el proceso será integrar y evaluar la expresión (4):

$$\int_{0}^{x} Mx \ dy = \int_{0}^{x} \frac{d}{dy} \ln l(y) \ dy$$

$$= -\lceil \ln l(x) - \ln(0) \rceil$$

Al aplicar de nuevo leyes de los logaritmos:

$$\int_{0}^{x} My \ dy = -\ln \frac{l(x)}{l(0)}$$

$$(-1) \left[\int_{0}^{x} My dy = -\ln \frac{l(x)}{l(0)} \right]$$

$$\ln \frac{l(x)}{l(0)} = -\int_{0}^{x} My \ dy \tag{5}$$

Para poder eliminar el logaritmo del primer lado de la igualdad, es necesario aplicar la exponencial de ambos lados, después simplemente se despeja l(x) con lo que se obtiene:

$$l(x)l(0) = e^{-\int\limits_{0}^{x} My dy}$$

$$l(x) = l(0)e^{-\int\limits_{0}^{x} My dy}$$

$$\int_{-\infty}^{x} Mydy$$

$$l(x) = l(0)e^{-0}$$
(6)

Esta es la expresión que buscábamos de l(x), ésta nos será necesaria para poder establecer el modelo matemático que se utilizará.

Con todo lo anterior hemos definido claramente la función de Gompertz, ahora lo que hace falta es establecer los supuestos que Makeham considero después en su ley. Lo que Makeham propone es integrar en el modelo de Gompertz supuestos que éste no consideró.

Como podemos recodar Gompertz no tomó en cuenta las causas de muerte independientes de la edad, por lo cual Makeham hace una corrección considerándolas e incluyéndolas en el siguiente modelo matemático.

Sea M_x la tasa instantánea de mortalidad bajo los supuestos de Makeham; sea A, el parámetro asociado al efecto de las causas de muerte independientes de la edad que no fueron considerados en la Ley de Gompertz; y sea BC^x la expresión que se define en la Ley de Gompertz, es decir, donde se consideran las causas dependientes de la edad. Por tanto la expresión que define la Ley de Makeham es:

$$Mx = A + BC^{\alpha} \tag{7}$$

Se integran ambos lados de la expresión anterior en el intervalo (0,x), se resolverán y evaluarán en el intervalo descrito:

$$\int_{0}^{x} My \, dy = \int_{0}^{x} (A + BC^{y}) dy$$

$$\int_{0}^{x} My \, dy = \int_{0}^{x} A \, dy + \int_{0}^{x} BC^{y} \, dy$$

$$\int_{0}^{x} My \, dy = Ax + \frac{BC^{x}}{\ln C} - \frac{B}{\ln C}$$

Al simplificar la expresión anterior y multiplicarla por (-1) lo que resulta es:

$$-\int_{0}^{x} My \ dy = -Ax - \frac{B}{\ln C}(c^{x} - 1)$$
 (8)

Entonces, redefiniendo los términos de la expresión anterior, sea $-A=\ln S$ y $-B/\ln C$ $=\ln g$, y además se simplificará utilizando leyes de logaritmos, de manera que la expresión (8) quedará expresada como:

$$-\int_{0}^{x} My \, dy = x \ln S + (C^{\alpha} - 1) \ln g$$

$$-\int_{0}^{x} My \, dy = \ln S^{\alpha} + \ln g^{(C^{\alpha} - 1)}$$

$$-\int_{0}^{x} My \, dy = \ln S^{\alpha} g^{(C^{\alpha} - 1)}$$
(9)

La expresión anterior nos será de gran utilidad pues le dará una nueva definición a la expresión (6), en la cual se sustituirá la expresión (9), entonces:

$$l(x) = l(0)e^{-0}$$

Y sustituyendo la expresión (9) obtenemos:

$$l(x) = l(0)e^{\ln S^{\alpha}g^{\{C^{\alpha}-1\}}}$$

$$l(x) = l(0)(S^{\alpha}g^{\{C^{\alpha}-1\}})$$

$$l(x) = l(0)(S^{\alpha}g^{C^{\alpha}}g^{-1})$$

$$l(x) = \frac{l(0)}{g}S^{\alpha}g^{C^{\alpha}}$$
(10)

De nuevo hacemos un cambio de variable, sea K = I(0)/g, por lo tanto la expresión (10) se denota ahora como:

$$l(x) = KS^{\alpha}g^{C^{\alpha}} \tag{11}$$

La expresión anterior es la que define a la Ley de Makeham, por lo cual la función de Makeham es la siguiente:

$$Y(x) = Ka^{x}b^{d^{x}} (12)$$

La Ley de Makeham fue utilizada en un principio para describir el cambio relativo de la línea l(x) de supervivientes en una tabla de mortalidad, la cual supone que podría ser descrita por una función de la forma $M_x = A + BC^x$ (Bocaz,1974).

Estos aspectos descritos por Bocaz son los que nos hacen suponer que la función de Makeham es la que permite obtener el modelo matemático que describirá satisfactoriamente el comportamiento de las tasas específicas por edad, este mismo mecanismo puede utilizarse para las tasa por orden de nacimiento, pero como en el II Conteo de Población y Vivienda no se proporciona este dato, el método más preciso será el de interpolación que es el que se describe en el siguiente capítulo.

5.1 Determinación de los parámetros de la Función de Makeham

Ahora es necesario hacer una descripción de como se determinaran los parámetros K, a, b y d de la función de Makeham, para ello se utilizará el método de los **grupos no superpuestos** (Bocaz, 1974); en el cual se definen las siguientes condiciones:

- Los datos se dividirán en cuatro grupos de observaciones sucesivas y_x
- Cada grupo debe de tener el mismo número de valores observados, m. De manera que para aplicar dicho método la forma de conformar los grupos será la siguiente:

```
1<sup>er</sup> Grupo:
```

$$x : 0 \quad 1 \quad 2 \quad 3 \quad \dots \quad (m-1)$$

 $y_x : y_0 \quad y_1 \quad y_2 \quad y_3 \quad \dots \quad y_{(m-1)}$

2° Grupo:

$$x : m \quad (m+1) \quad (m+2) \quad (m+3) \quad \dots \quad (2m-1)$$

 $y_x : y_m \quad y_{(m+1)} \quad y_{(m+2)} \quad y_{(m+3)} \quad \dots \quad y_{(2m-1)}$

3^{er} Grupo:

$$x : 2m (2m+1) (2m+2) (2m+3) ... (3m-1)$$

 $y_x : y_{2m} y_{(2m+1)} y_{(2m+2)} y_{(2m+3)} ... y_{(3m-1)}$

4° Grupo:

$$x : 3m \quad (3m+1) \quad (3m+2) \quad (3m+3) \quad \dots \quad (4m-1)$$

 $y_x : y_{3m} \quad y_{(3m+1)} \quad y_{(3m+2)} \quad y_{(3m+3)} \quad \dots \quad y_{(4m-1)}$

• Ahora para linealizar la expresión (12) del apartado anterior, se calcularan los logaritmos base diez de las y_x 's definidas en cada uno de los cuatro grupos anteriormente definidos, entonces:

$$\log y_i = \log K a^i b^{d^i}$$
 $i = 0, 1, 2, ..., (4m-1)$
$$\log y_i = \log K + i \log a + d^i \log b$$
 $i = 0, 1, 2, ..., (4m-1)$

• Enseguida, se calcularan las sumas de los logaritmos correspondientes a cada grupo, la forma de denotar las sumas será S_0 , para el primer grupo, S_1 , para el segundo y así sucesivamente hasta S_3 para el cuarto grupo, entonces:

1^{er} Grupo:

$$S_0 = \sum \log y_i = \sum \log K + \sum i \log a + \sum d^i \log b$$

 $i = 0, 1, 2, ..., (m-1) \dots (13)$

Al desarrollar cada término del lado derecho obtenemos:

a)
$$\sum \log K = m \log K$$

b)
$$\sum i \log a = \frac{m(m-1)}{2\log a}$$
 para toda i

donde Σ i es una progresión aritmética donde el primer término de la sucesión es 0, la diferencia común es 1 y el número de observaciones es m.

c)
$$\sum d^{i} \log b = \frac{d^{0}(d^{m}-1)}{d-1} \log a = \frac{d^{m}-1}{d-1} \log a$$

donde Σd^i es una progresión geométrica donde el primer término de la sucesión es d^0 , la razón común es d y el número de observaciones es m.

Por lo tanto para el 1^{er} grupo de observaciones la suma es:

$$S_0 = m \log K + \frac{m(m-1)}{2} \log a + \frac{d^{m-1}}{d-1} \log b$$
 (14)

y de forma equivalente al proceso anterior, se deduce la suma de los siguientes tres grupos de observaciones, por lo que:

$$S_1 = m \log K + \left[m^2 + \frac{m(m-1)}{2} \right] \log a + d^m \frac{d^m - 1}{d - 1} \log b$$
 (15)

$$S_2 = m \log K + \left[2m^2 + \frac{m(m-1)}{2} \right] \log a + d^{2m} \frac{d^m - 1}{d-1} \log b$$
 (16)

$$S_3 = m \log K + \left[3m^2 + \frac{m(m-1)}{2} \right] \log a + d^{3m} \frac{d^{m-1}}{d-1} \log b$$
 (17)

• Lo que sigue es calcular las primeras diferencias de las sumas S_0 , S_1 , S_2 , S_3 . La forma en que se denotaran las diferencias será ΔS_0 , ΔS_1 y ΔS_2 , entonces sea:

$$\Delta S_o = S_1 - S_0$$

$$\Delta S_o = \left[m \log K + \left[m^2 + \frac{m(m-1)}{2} \right] \log a + d^m \frac{d^m - 1}{d - 1} \log b \right] - \left[m \log K + \frac{m(m-1)}{2} \log a + \frac{d^m - 1}{d - 1} \log b \right]$$

La expresión anterior pude reducirse a la siguiente:

$$\Delta S_o = m^2 \log a + \frac{d^m - 1}{d - 1} (d^m - 1) \log b$$

$$\Delta S_o = m^2 \log a + \frac{(d^m - 1)^2}{d - 1} \log b$$
(18)

$$\Delta S_{1} = S_{2} - S_{1}$$

$$\Delta S_{1} = \left[m \log K + \left[2m^{2} + \frac{m(m-1)}{2} \right] \log a + d^{2m} \frac{d^{m}-1}{d-1} \log b \right] - \left[m \log K + \left[m^{2} + \frac{m(m-1)}{2} \right] \log a + d^{m} \frac{d^{m}-1}{d-1} \log b \right]$$

$$\Delta S_{1} = m^{2} \log a + \frac{d^{m}-1}{d-1} (d^{2m} - d^{m}) \log b$$

$$\Delta S_{1} = m^{2} \log a + \frac{d^{m}-1}{d-1} (d^{m} - 1) d^{m} \log b$$

$$\Delta S_{1} = m^{2} \log a + d^{m} \frac{(d^{m}-1)^{2}}{d-1} \log b$$
(19)

$$\Delta S_{2} = S_{3} - S_{2}$$

$$\Delta S_{2} = \left[m \log K + \left[3m^{2} + \frac{m(m-1)}{2} \right] \log a + d^{3m} \frac{d^{m}-1}{d-1} \log b \right] - \left[m \log K + \left[2m^{2} + \frac{m(m-1)}{2} \right] \log a + d^{2m} \frac{d^{m}-1}{d-1} \log b \right]$$

$$\Delta S_{2} = m^{2} \log a + \frac{d^{m}-1}{d-1} (d^{3m} - d^{2m}) \log b$$

$$\Delta S_{2} = m^{2} \log a + \frac{d^{m}-1}{d-1} (d^{m} - 1) d^{2m} \log b$$

$$\Delta S_{2} = m^{2} \log a + d^{2m} \frac{(d^{m}-1)^{2}}{d-1} \log b$$
(20)

• De forma análoga a la anterior se calcularán ahora las segundas diferencias, la cuales quedarán denotadas como $\Delta^2 S_0$ y $\Delta^2 S_1$. Entonces:

$$\triangle^{2} S_{0} = \triangle S_{1} - \triangle S_{0}$$

$$\triangle^{2} S_{0} = \left[m^{2} \log a + d^{m} \frac{(d^{m}-1)^{2}}{d-1} \log b \right] - \left[m^{2} \log a + \frac{(d^{m}-1)^{2}}{d-1} \log b \right]$$

$$\triangle^{2} S_{0} = \frac{(d^{m}-1)^{2}}{d-1} (d^{m}-1) \log b$$

$$\triangle^{2} S_{0} = \frac{(d^{m}-1)^{3}}{d-1} \log b$$
(21)

$$\Delta^{2} S_{1} = \Delta S_{2} - \Delta S_{1}$$

$$\Delta^{2} S_{1} = \left[m^{2} \log a + d^{2m} \frac{(d^{m}-1)^{2}}{d-1} \log b \right] - \left[m^{2} \log a + d^{m} \frac{(d^{m}-1)^{2}}{d-1} \log b \right]$$

$$\Delta^{2} S_{1} = \frac{(d^{m}-1)^{2}}{d-1} (d^{2m} - d^{m}) \log b$$

$$\Delta^{2} S_{1} = d^{m} \frac{(d^{m}-1)^{3}}{d-1} \log b$$

• Con base en los valores obtenidos del apartado anterior, se encontrarán las expresiones para los parámetros a, b y d.

Para encontrar el parámetro d se utilizarán los resultados de las expresiones (21) y (22).

$$\triangle^2 S_1 = d^m \frac{(d^m - 1)^3}{d - 1} \log b$$

$$\triangle^2 S_1 = d^m \triangle^2 S_0$$

despejando d^m y calculando la raíz m-ésima, expresamos d como sigue:

$$d^m = \frac{\Delta^2 S_1}{\Delta^2 S_0}$$

(22)

$$d = \left(\frac{\Delta^2 S_1}{\Delta^2 S_0}\right)^{\frac{1}{m}}$$
(23)

Para encontrar el parámetro b la expresión a utilizar será la obtenida en el inciso (21). Se despeja el logaritmo de b y después se aplica la exponencial, de esta manera se obtendrá b, entonces:

$$\triangle^{2} S_{0} = \frac{(a^{m}-1)^{3}}{d-1} \log b$$

$$\triangle^{2} S_{0} \frac{d-1}{(a^{m}-1)^{3}} = \log b$$

$$\operatorname{Antilog}(\log b) = \operatorname{Antilog}\left[\frac{d-1}{(a^{m}-1)^{3}} \triangle^{2} S_{0}\right]$$

$$b = \operatorname{Antilog}\left[\frac{d-1}{(a^{m}-1)^{3}} \triangle^{2} S_{0}\right]$$
(24)

Para encontrar el parámetro *a* se utilizarán las expresiones (18) y (21), de manera que:

$$\triangle S_0 = m^2 \log a + \frac{(a^{m}-1)^2}{d-1} \log b$$

ahora, se expresa log b en términos de (21), entonces:

$$\triangle S_0 = m^2 \log a + \frac{(dm-1)^2}{d-1} \frac{d-1}{(d^m-1)^3} \triangle^2 S_0$$

se despeja el loga y se aplica la exponencial:

$$\log a = \frac{1}{m^2} \left(\triangle S_0 - \frac{\triangle^2 S_0}{d^{m-1}} \right)$$

Antilog
$$a = \text{Antilog}\left[\frac{1}{m^2}\left(\triangle S_0 - \frac{\triangle^2 S_0}{d^m-1}\right)\right]$$

$$a = \text{Antilog}\left[\frac{1}{m^2}\left(\triangle S_0 - \frac{\triangle^2 S_0}{d^m-1}\right)\right]$$
(25)

Finalmente para obtener el parámetro K se utilizará la condición de mínimos cuadrados, es decir, si:

$$y_x = Ka^x b^{d^x}$$
 $\forall x = 0, 1, 2, ..., (4m-1)$

Se minimiza:

$$\sum_{x=0}^{4m-1} (y_x - Ka^x b^{d^x})^2 = 0$$

$$\forall x = 0, 1, 2, ..., (4m-1)$$

simplificando la expresión anterior, sea $V_x=a^xb^{dx}$, por lo tanto, quedará como:

$$\sum_{x=0}^{4m-1} (y_x - Ka^x b^{d^x})^2 = 0$$
(26)

al desarrollar $(y_x - KV_x)^2$ obtenemos:

$$(y_x - KV_x)^2 = y_x^2 - 2Ky_xV_x + K^2V_x^2$$
$$= y_x^2 - 2y_x^2 + K^2V_x^2$$
$$= K^2V_x^2 \cdot F_x^2$$

gracias a este resultado podemos expresar (26) como:

$$\sum_{0}^{4m-1} (K^{2}V_{x}^{2} - y_{x}^{2}) = 0$$

$$\sum_{0}^{4m-1} K^{2}V_{x}^{2} = \sum_{0}^{4m-1} y_{x}^{2}$$
(27)

de la expresión anterior se despeja K^2 , después para eliminar el cuadrado de la expresión (26) se sabe que $y_x = KV_x$, por lo cual se puede determinar una nueva expresión para K^2 :

$$K^{2} = \frac{\sum_{0}^{4m-1} y_{x}^{2}}{\sum_{0}^{4m-1} V_{x}^{2}}$$
$$K^{2} = \frac{\sum_{0}^{4m-1} y_{x}KV_{x}}{\sum_{0}^{4m-1} V_{x}^{2}}$$

a partir de la expresión anterior es posible estimar K como sigue:

$$K = \frac{\sum_{0}^{4m-1} y_{x} V_{x}}{\sum_{0}^{4m-1} V_{x}^{2}}$$

(28)

Por lo tanto los valores estimados de los parámetros de la Función de Makeham son:

$$d = \left(\frac{\Delta^2 S_1}{\Delta^2 S_0}\right)^{\frac{1}{m}}$$

$$b = \text{Antilog}\left[\frac{d-1}{(d^m-1)^3} \Delta^2 S_0\right]$$

$$a = \text{Antilog}\left[\frac{1}{m^2}\left(\Delta S_0 - \frac{\Delta^2 S_0}{d^m-1}\right)\right]$$

$$K = \frac{\sum_{0}^{4m-1} y_x V_x}{\sum_{0}^{4m-1} V_x^2}$$

5.1.1 Método de corrección de los valores estimados de los parámetros de la función de Makeham.

Con el fin de obtener una mejor aproximación a los valores observados pueden realizarse pequeñas variaciones en los parámetros K, a, b, d de la función de Makeham. El proceso para la obtención de dichos cambios se hará como sigue:

$$y_x = Ka^x b^{d^x}$$
 $\forall x = 0, 1, 2, ..., (4m-1)$
(29)

se obtiene el logaritmo natural de la función (29):

$$\ln y_x = \ln(Ka^x b^{d^x})$$

$$= \ln K + \ln a^x + \ln b^{d^x}$$

$$= \ln K + x \ln a + d^x \ln b$$

(30)

ahora se estimará la derivada de la expresión anterior:

$$\frac{d}{dy_x} \ln y_x = \frac{d}{du} (\ln K + x \ln a + d^x \ln b)$$
(31)

al calcular la derivada, se considera que el miembro del lado izquierdo es:

$$\frac{d}{dy_x} \ln y_x = \frac{1}{y_x} dy_x$$

mientras que la derivada del miembro derecho se puede expresar como:

$$\frac{d}{dy_x} \ln y_x = \frac{d}{dK} \ln K + \frac{d}{da} x \ln a + \frac{d}{db} d^x \ln b + \frac{d}{dd} d^x \ln b$$
$$= \frac{1}{K} dK + \frac{x}{a} da + \frac{d^x}{b} db + \ln b \frac{d}{dd} d^x$$

el último término de la expresión (32) se puede presentar usando las leyes de los logaritmos y derivando como sigue:

$$\ln d^{x} = x \ln d$$

$$\frac{d}{d(d)} \ln d^{x} = \frac{d}{d(d)} x \ln d$$
$$\frac{1}{d^{x}} d(d^{x}) = \frac{x}{d} d(d)$$

por tanto, al resolver la derivada de dx con respecto a d es:

$$d(d^{x}) = xd^{x} \frac{d(d)}{d}$$

dado esto, la expresión (32) puede reescribirse como:

$$\frac{1}{y_x}dy_x = \frac{1}{K}dK + \frac{x}{a}da + \frac{d^x}{b}db + xd^x \ln b \frac{d(d)}{d}$$

(32)

de tal manera que la derivada de y_x es:

$$dy_{x} = \frac{y_{x}}{K}dK + \frac{xy_{x}}{a}da + \frac{d^{n}y_{x}}{b}db + xd^{n}y_{x}\ln b \frac{d(d)}{d}$$
(33)

Ahora, se calcularán los valores de los parámetros de la función de Makeham en términos de la expresión (33), para ello antes es necesario linealizar dicha expresión, entonces se tiene la siguiente notación:

$$x_1 = dy_x$$
 $x_2 = y_x$ $x_3 = x(x_2)$ $x_4 = x_2 d^x$ $x_5 = x_3 d^x$
 $c_2 = \frac{dK}{d}$ $c_3 = \frac{da}{a}$ $c_4 = \frac{db}{b}$ $c_5 = \ln b \frac{d(d)}{d}$

se sustituyen en (32) estas variables, por lo cual puede expresarse la variable x_i , como una combinación lineal del resto de la x's tal como a continuación se presenta:

$$x_1 = c_2x_2 + c_3x_3 + c_4x_4 + c_5x_5$$

Ahora, se denotarán las diferencias entre los valores observados y los estimados como dy_x , de tal manera que sea posible calcular los coeficientes de la regresión c_2 , c_3 , c_4 y c_5 , a través de las siguientes ecuaciones normales:

$$\sum x_1 x_2 = c_2 \sum x_2^2 + c_3 \sum x_2 x_3 + c_4 \sum x_2 x_4 + c_5 \sum x_2 x_5$$

$$\sum x_1 x_3 = c_2 \sum x_2 x_3 + c_3 \sum x_3^2 + c_4 \sum x_3 x_4 + c_5 \sum x_3 x_5$$

$$\sum x_1 x_4 = c_2 \sum x_2 x_4 + c_3 \sum x_3 x_4 + c_4 \sum x_4^2 + c_5 \sum x_4 x_5$$

$$\sum x_1 x_5 = c_2 \sum x_2 x_5 + c_3 \sum x_3 x_5 + c_4 \sum x_4 x_5 + c_5 \sum x_5^2$$

Este sistema de ecuaciones lineales simultáneas de 4 incógnitas puede resolverse mediante matrices, donde es necesario conocer la matriz de coeficientes de la regresión para poder encontrar la solución. La forma matricial en que se presentan las ecuaciones normales es:

$$A = \begin{vmatrix} c_2 \sum x_2^2 + c_3 \sum x_2 x_3 + c_4 \sum x_2 x_4 + c_5 \sum x_2 x_5 \\ c_2 \sum x_2 x_3 + c_3 \sum x_3^2 + c_4 \sum x_3 x_4 + c_5 \sum x_3 x_5 \\ c_2 \sum x_2 x_4 + c_3 \sum x_3 x_4 + c_4 \sum x_4^2 + c_5 \sum x_4 x_5 \\ c_2 \sum x_2 x_5 + c_3 \sum x_3 x_5 + c_4 \sum x_4 x_5 + c_5 \sum x_5^2 \end{vmatrix}$$

$$V = \begin{vmatrix} c_2 \\ c_3 \\ c_4 \\ c_5 \end{vmatrix} \qquad G = \begin{vmatrix} \sum x_1 x_2 \\ \sum x_1 x_3 \\ \sum x_1 x_4 \\ \sum x_1 x_5 \end{vmatrix}$$

Para encontrar los coeficientes de la matriz V, se define:

$$V = A^{-1}G$$
 donde A^{-1} es la matriz inversa de A

De esta manera se calculan los valores de las c_j y por consiguiente las primeras correcciones a los parámetros K, a, b y d de la función de Makeham. Estas correcciones permiten obtener nuevas aproximaciones para los parámetros. A partir de esos valores se obtendrán otros, así sucesivamente de forma iterativa, de manera que las aproximaciones sean cada vez más precisas.

$$K_1 = K(1 + c_2)$$

$$a_1 = a(1 + c_3)$$

$$b_1 = b(1 + c_4)$$

$$d_1 = d\left(1 + \frac{c_5}{\ln b}\right)$$

En general se observa que si K_i , a_i , b_i , y d_i son valores de la iteración i, los valores de estos parámetros a la iteración i+1 serán

$$K_{i+1} = K_i(1+c_{2i+1})$$

$$a_{i+1}=a_i(1+c_{3i+1})$$

$$b_{i+1} = b_i(1+c_{4i+1})$$

$$d_{i+1} = d_i \left(1 + \frac{c_{5i+1}}{\ln b} \right)$$

6. INTERPOLACION

Para términos de la proyección de los hijos nacidos vivos por orden de nacimiento de las mujeres mexicanas en edad fértil utilizando como datos los recabados en el II Conteo de Población y Vivienda, se utiliza como método el de interpolación. Pero para poder llegar a la forma de interpolación que se utilizará es necesario tener un panorama de lo que es la interpolación paso a paso, empezando por interpolación lineal, pasando por la de Lagrange y hasta llegar a la de Newton.

Primero supongamos que tenemos una tabla de valores numéricos de una función:

X	X ₀	X ₁	 X _n
Y	Y 0	Y ₁	 y _n

El primer problema que se plantea es el siguiente: ¿Es posible encontrar una fórmula simple y conveniente para reproducir los puntos siguientes de forma exacta?

El segundo problema es similar, pero en este caso suponemos que la tabla de valores numéricos esta contaminada por errores, como en los datos de experimentos, en este caso la pregunta es: ¿Es posible representar los datos (aproximados) y es posible filtrar los errores?

El tercer problema toma a una función dada f, tal vez en la forma de un procedimiento computacional, pero es una función muy difícil de evaluar por su costo en cuestión de tiempo. En este caso la opción es encontrar una función g que se aproxime a la función f pero que sea más simple de trabajar.

Para todos estos problemas existe una solución, una función simple que se denota por p que puede se obtenida al representar o aproximar la tabla dada de la función f. La función p puede ser tomada como un polinomio en todos los casos. Los polinomios son las funciones mas simples de analizar, por ejemplo si tuviera que resolver una integral de la función f, se representa con un polinomio p que se aproxime y la integral resultará ser mucho más sencilla.

6.1 Interpolación polinomial

Iniciamos suponiendo que tengo los valores de la tabla:

Х	X ₀	X ₁	 X _n
У	У 0	y_1	 y _n

y suponiendo que $x_0 \neq x_1 \neq ... \neq x_n$, de modo que tenemos un conjunto de n+1 puntos todos distintos. La tabla representa n+1 puntos en el plano cartesiano, lo que nosotros queremos es encontrar un polinomio que pasea a través de todos los puntos. De modo que, nosotros determinaremos un polinomio definido para toda x_i , que toma los correspondientes valores de y_i en cada una de n+1 distintos puntos x_i 's de la tabla. Un polinomio p tal que $p(x_i) = y_i$ cuando $0 \leq i \leq n$, a este proceso se le llama interpolación de la tabla. Los puntos x_i son llamados nodos, y generalmente dependiendo de la dimensión de la tabla será el polinomio requerido, entonces la decisión del polinomio dependerá de n. La forma general de un polinomio de grado n es:

$$p_n(x) = a_0 + a_1 x + a_2 x^2 + \dots + a_n x^n$$

6.1.1 Interpolación lineal

Suponiendo el caso mas simple, es decir cuando n=0, aquí una función constante resuelve el problema. En otras palabras, el polinomio p de grado 0 es definido por la ecuación $p_0(x) = y_0$ la cual reproduce un solo nodo.

El siguiente caso es cuando n = 1. Para este caso una línea recta pude pasar a través de dos puntos, la función lineal es capaz de de resolver el problema, de forma explicita, el polinomio p está definido por:

$$p_{1}(x) = \left(\frac{x - x_{1}}{x_{0} - x_{1}}\right) y_{0} + \left(\frac{x - x_{0}}{x_{1} - x_{0}}\right) y_{1}$$

$$= y_{0} + \left(\frac{y_{1} - y_{0}}{x_{1} - x_{0}}\right) (x - x_{0}) \tag{1}$$

esta representación de *p* es llamada interpolación lineal.

6.1.2 Interpolación de Lagrange

Supongamos que deseamos interpolar funciones arbitrarias de un sistema de nodos x_0 , x_1 , ..., x_n . Primero definiremos un sistema de n+1 polinomios especiales de grado n conocidos como funciones cardinales en teoría de interpolación. Estos son denotados por I_0 , I_1 , ..., I_n y tienen la siguiente propiedad:

$$l_i(x_j) = d_{ij} = \begin{cases} 0 \text{ if } i \neq j \\ 1 \text{ if } i = j \end{cases}$$
 (2)

Una vez que esto se cumpla, nosotros podremos interpolar cualquier función *f* por la forma de interpolación polinomial de Lagrange:

$$p_n(x) = \sum_{i=0}^n l_i(x) f(x_i)$$
(3)

Esta función p_n , es desde el principio una combinación lineal de los polinomios l_i , es por si misma un polinomio de grado menor o igual a n. Ahora, cuando evaluamos p_n en el nodo x_j , lo que obtenemos es $f(x_j)$:

$$p_n(x_j) = \sum_{i=0}^n l_i(x_j) f(x_i) = l_j(x_j) f(x_j) = f(x_j)$$
(4)

Entonces, $p_n(x)$ es la interpolación polinomial para la función f que pasa por los nodos x_0 , x_1 , ..., x_n . Ahora lo que sigue es reescribir la fórmula anterior para I_i en término de productos, por lo cual la fórmula queda como:

$$l_{i}(x) = \prod_{\substack{j \neq i \\ j \neq 0}}^{n} \left(\frac{x - x_{j}}{x_{i} - x_{j}} \right) \qquad (0 \le i \le n)$$
(5)

Esta fórmula indica que $I_i(x)$ es el producto de n factores lineales:

$$l_i(x) = \left(\frac{x - x_0}{x_i - x_0}\right) \left(\frac{x - x_1}{x_i - x_1}\right) \cdots \left(\frac{x - x_{i-1}}{x_i - x_{i-1}}\right) \left(\frac{x - x_{i+1}}{x_i - x_{i+1}}\right) \cdots \left(\frac{x - x_n}{x_i - x_n}\right)$$

Los denominadores son simplemente números, la variable x, aparece solo en los numeradores. Entonces, l_i es un polinomio de grado n. Hay que notar que cuando $l_i(x)$ es evaluado en $x=x_i$, cada factor de la ecuación anterior se convierte en 1, es decir $l_i(xi) = 1$. Pero cuando se evalúa cualquier otro nodo, alguno de los factores de la ecuación será 0, y $l_i(x_i) = 0$, para toda $i \neq j$.

6.1.3 Interpolación de Newton (forma general).

La forma general de interpolación de Newton tiene como base la interpolación de Lagrange, solo que realiza correcciones que hacen más económicos los cálculos. Como ejemplo se escribe la forma general de un polinomio de interpolación de Newton de grado 2.

$$p_2(x) = a_0 + a_1(x - x_0) + a_2(x - x_0)(x - x_1)$$
 (6)

La forma general se obtiene por la expansión y factorización de los polinomios originales. Para describir esta forma del polinomio de interpolación de Newton de grado n, lo describiré como sigue:

$$p_n(x) = a_0 + a_1[(x - x_0)] + a_2[(x - x_0)(x - x_1)] + \cdots + a_n[(x - x_0)(x - x_1) \cdots (x - x_{n-1})]$$

La fórmula anterior puede escribirse de la siguiente manera:

$$p_n(x) = a_0 + \sum_{i=1}^n a_i \left[\prod_{j=0}^{i-1} (x - x_j) \right]$$
 (7)

Ahora, ya sabemos cuál es el procedimiento para encontrar un polinomio que se aproxime a f(x), sin embargo, no conocemos cuáles son los coeficientes a_i que hacen que el polinomio se aproxime de forma correcta. Para encontrar dichos coeficientes existe un método llamado diferencias divididas que se explicará a continuación.

6.1.3.1 Cálculo de los coeficientes ai usando diferencias divididas.

Para determinar los coeficientes a_0 , a_1 , . . . , a_n eficientemente, de nuevo iniciaremos tomando la tabla de valores de la función f:

Х	X ₀	X ₁	 X _n
f(x)	$f(x_0)$	$f(x_1)$	 $f(x_n)$

Asumiremos que los puntos x_0 , x_1 , . . . , x_n son distintos, pero no daremos por hecho que los puntos se encuentran sobre una línea. Hemos establecido que para cada n = 0, 1, ..., existe un único polinomio p_n tal que:

- El grado de p_n es a lo más n.
- $p_n(x_i) = f(x_i)$ para i = 0, 1, ..., n.

Lo anterior demuestra que el polinomio p_n puede ser expresado en la forma general compacta de Newton

$$p_n(x) = a_0 + \sum_{i=1}^n a_i \left[\prod_{j=0}^{i-1} (x - x_j) \right]$$

en la cual, $\Pi^{-1}{}_{j=0}$ $(x-x_j)=1$. Una observación crucial en el polinomio p_n es que los coeficientes a_0, a_1, \ldots no dependen de n. En otras palabras, p_n es obtenida de p_{n-1} adicionando un término mas, sin alterar los coeficientes todavía presentes en p_{n-1} . Esto sucede debido a que comenzamos con la suposición que p_n podía expresarse en la forma

$$p_n(x) = p_{n-1}(x) + a_n(x - x_0) \cdots (x - x_{n-1})$$
 (8)

y descubrimos que eso es verdaderamente posible.

Una manera de determinar sistemáticamente los coeficientes no conocidos a_0 , a_1 , a_n es el conjunto x en términos de x_0 , x_1 , . . . , x_n en la ecuación (11) y escribiéndola bajo las ecuaciones resultantes:

$$\begin{cases}
f(x_0) = a_0 \\
f(x_1) = a_0 + a_1(x_1 - x_0) \\
f(x_2) = a_0 + a_1(x_1 - x_0) + a_2(x_2 - x_0)(x_2 - x_1) \\
etc.
\end{cases}$$
(9)

la forma compacta de escribir el sistema anterior de ecuaciones es:

$$f(x_k) = \sum_{i=0}^k a_i \prod_{j=0}^{i-1} (x_k - x_j)$$
 (0 \le k \le n)

La ecuación (12) puede resolverse para las a_i 's empezando con a_0 . Después veremos que a_0 depende de $f(x_0)$, a_1 depende de $f(x_0)$ y $f(x_1)$, y así sucesivamente. En general a_k depende de $f(x_0)$, $f(x_1)$, . . . , $f(x_k)$. En otras palabras, a_k depende de los valores de f para los nodos x_0, x_1, \ldots, x_k . La forma más tradicional de representarlo es:

$$a_k = f[x_0, x_1, ... x_k]$$
 (11)

Esta ecuación define $f[x_0, x_1, \ldots, x_k]$. La cantidad $f[x_0, x_1, \ldots, x_k]$ es llamada la **diferencia dividida de orden k** para f. Cabe señalar que los coeficientes a_0, a_1, \ldots

... a_n son determinados únicamente por el sistema (13), de manera que no es posible elegir una a_0 distinta a que esta dada por éste sistema igualmente sucede con a_1 y con el resto de las a_i 's. Usando la ecuación (12) podemos encontrar las primeras diferencias divididas:

$$a_0 = f(x_0)$$

$$a_1 = \frac{f(x_1) - a_0}{x_1 - x_0} = \frac{f(x_1) - f(x_0)}{x_1 - x_0}$$

$$a_2 = \frac{f(x_2) - a_0 - a_1(x_2 - x_0)}{(x_2 - x_0)(x_2 - x_1)} = \frac{\frac{f(x_1) - f(x_0)}{x_1 - x_0} - \frac{f(x_2) - f(x_1)}{x_2 - x_0}}{x_2 - x_0}$$

con esta nueva notación de las a_i 's, la forma general de interpolación de Newton toma la siguiente forma:

$$p_n(x) = \sum_{i=0}^n \left\{ f[x_0, x_1, \dots, x_i] \prod_{j=0}^{i-1} (x - x_j) \right\}$$
 (12)

Tomando de nuevo la suposición de que $\Pi^{-1}_{j=0}(x-x_j)=1$, podemos subrayar que el coeficiente x^n en p_n es $f[x_0, x_1, \ldots, x_n]$ porque el término x^n sucede solo en $\Pi^{n-1}_{j=0}(x-x_j)$ esto demuestra que si f es un polinomio de grado menor o igual a n-1, entonces $f[x_0, x_1, \ldots, x_n] = 0$.

Para poder resolver las diferencias divididas de forma recursiva, simplemente resolveremos la ecuación (10) como sigue:

$$f(x_k) = a_k \prod_{j=0}^{k-1} (x_k - x_j) + \sum_{i=0}^{k-1} a_i \prod_{j=0}^{i-1} (x_k - x_j)$$

despejando a_k de la ecuación anterior, obtenemos:

$$a_k = \frac{f(x_k) - \sum_{i=0}^{k-1} a_i \prod_{j=0}^{i-1} (x_k - x_j)}{\prod_{j=0}^{k-1} (x_k - x_j)}$$

finalmente, usando la ecuación (11), tenemos que:

$$f[x_0, x_1, \dots, x_k] = \frac{f(x_k) - \sum_{i=0}^{k-1} f[x_0, x_1, \dots, x_i] \prod_{j=0}^{i-1} (x_k - x_j)}{\prod_{j=0}^{k-1} (x_k - x_j)}$$

$$j = 0$$
(13)

Ahora, voy a presentar las primeras 4 diferencias divididas finitas, resueltas usando el algoritmo de la ecuación (13):

$$f[x_0] = f(x_0)$$

$$f[x_0, x_1] = \frac{f(x_1) - f[x_0]}{x_1 - x_0}$$

$$f[x_0, x_1, x_2] = \frac{f(x_2) - f[x_0] - f[x_0, x_1](x_2 - x_0)}{(x_2 - x_0)(x_2 - x_1)}$$

$$f[x_0, x_1, x_2, x_3] = \frac{f(x_3) - f[x_0] - f[x_0, x_1](x_3 - x_0) - f[x_0, x_1, x_2](x_3 - x_0)(x_3 - x_1)}{(x_3 - x_0)(x_3 - x_1)(x_3 - x_2)}$$

Para proyectar a los hijos nacidos vivos por orden de nacimiento el de las mujeres en edad fértil el método de interpolación empleado será el de la forma general de interpolación de Newton.

En los capítulos 7 y 8, se proyectarán las tasas específicas de fecundidad usando la función de Gompertz y Makeham, y la información por orden de nacimiento usando la forma general de interpolación de Newton, respectivamente.

7. DETERMINACIÓN DE LOS DATOS OBTENIDOS EN EL 11 CONTEO DE POBLACIÓN Y VIVIENDA 2005.

El objetivo de esta parte es extraer la información del II Conteo de Población y Vivienda 2005, clasificarla y corregirla de forma que sea útil para su análisis.

Como se vio en los primeros apartados del presente trabajo, la edad a la cual las mujeres se consideran en etapa fértil es de 15 a 50 años, considerando 15 años como la edad de ingreso a la edad fértil. Es importante aclarar que los datos censales se presenten en grupos quinquenales de edad, de manera que las edades representativas del intervalo fértil de nuestra población son 15, 20, 25, ... ,50 años, entonces sea x la que represente dichas edades definida como:

$$x = \left(\frac{\text{Edad de la madre - Edad de ingreso a la edad fértil}}{\text{La diferencia entre las edades sucesivas}}\right)$$

$$x = \frac{\text{(Edad de la madre-15)}}{5}$$

Por lo tanto el conjunto de valores definido para x será x=0, 1, 2, 3, 4, 5.

Los datos a utilizar serán el número de hijos nacidos vivos que han tenido las mujeres en edad fértil clasificadas por grupos quinquenales de edad. Además se consideraran a las mujeres que han tenido de 1 a 5 hijos, así como a las que no han tenido hijos aun, a nivel nacional y clasificadas por regiones según la ubicación de la entidad federativa. Las regiones a considerar son : Región Norte, Región Pacífico Norte, Región Pacífico Sur, Región Sur, Región Golfo, Región Centro Periférico y la Región Centro.

Para obtener los datos de cada región se sumó el número de hijos nacidos vivos de las mujeres de 15 a 50 años de edad por grupos quinquenales de edad de los estados considerados para cada región.

La información necesaria a nivel nacional es la que esta contenida en el siguiente cuadro:

Cuadro 7.1

	ESTADOS UNIDOS MEXICANOS								
	es Población femenina		Núm	ero de hijos	nacidos viv	os			
de edad	de 15 a 54 años	Sin hijos	1 hijo	2 hijos	3 hijos	4 hijos	5 hijos		
15 - 19 años	4660022	4075558	475471	94457	11806	1602	463		
20 - 24 años	4456946	2274105	1194580	700708	222887	50724	10552		
25 - 29 años	4147867	1132283	980654	1132963	603565	204014	65923		
30 - 34 años	4066177	610118	659241	1210294	939411	386041	157850		
35 - 39 años	3592563	354273	400362	968849	969537	478112	231806		
40 - 44 años	2948204	227919	261146	681988	801013	467537	260396		
45 - 49 años	2376389	165421	187857	470074	600238	412192	259684		
50 - 54 años	2130930	133184	137112	309150	405568	324418	233546		
TOTAL	28379098	8972861	4296423	5568483	4554025	2324640	1220220		

FUENTE: INEGI. IIConteo de Población y Vivienda 2005. Tabulados básicos

• Región Norte

En la Región Norte están considerados los estados ubicados en la frontera norte de nuestro país: Baja California, Sonora, Chihuahua, Coahuila, Nuevo León y Tamaulipas.

Cuadro 7.2

	REGION NORTE									
	quenales Población femenina		Número de hijos nacidos vivos							
de edad	de 15 a 54 años	Sin hijos	1 hijo	2 hijos	3 hijos	4 hijos	5 hijos			
15 - 19 años	723615	616821	88090	16407	1921	237	56			
20 - 24 años	737585	349429	220652	123044	35923	6870	1286			
25 - 29 años	731884	175649	189373	215982	110666	30264	7439			
30 - 34 años	742647	92226	122244	240104	194282	65096	19818			
35 - 39 años	657072	53575	69620	187567	210385	86610	31561			
40 - 44 años	541332	35837	44942	128338	175445	90289	39599			

FUENTE: INEGI. IIConteo de Población y Vivienda 2005. Tabulados básicos

Región Pacífico Norte

45 - 49 años

50 - 54 años

TOTAL

En esta región se concentran los estados suyas costas están en el Océano Pacifico al norte del país: Baja California, Sonora, Chihuahua, Coahuila, Nuevo León y Tamaulipas. Cuadro 7.3

REGIÓN PACÍFICO NORTE Grupos quinquenales Población Número de hijos nacidos vivos de edad de 15 a 54 años Sin hijos 1 hijo 2 hijos 3 hijos 4 hijos 5 hijos 15 - 19 años 20 - 24 años 25 - 29 años 30 - 34 años 35 - 39 años 40 - 44 años 45 - 49 años 50 - 54 años **TOTAL**

FUENTE: INEGI. IIConteo de Población y Vivienda 2005. Tabulados básicos

• Región Pacífico Sur

Para esta región se tomaron los estados que tienen sus costas en el Océano Pacífico pero que se encuentran al sur de la Republica Mexicana, los cuales son: Colima, Guerrero, Jalisco, Michoacán y Oaxaca.

Cuadro 7.4

REGIÓN PACÍFICO SUR

	es Población femenina	Número de hijos nacidos vivos						
de edad	de 15 a 54 años	Sin hijos	1 hijo	2 hijos	3 hijos	4 hijos	5 hijos	
15 - 19 años	873250	770456	82610	17267	2336	350	105	
20 - 24 años	779579	411243	192918	119681	41838	10657	2447	
25 - 29 años	687604	192165	148557	176568	105747	42272	15243	
30 - 34 años	654085	100571	92275	170683	152992	75827	35961	
35 - 39 años	574310	61346	53903	126813	148147	88890	49544	
40 - 44 años	471740	41014	35543	85487	116549	81699	52961	
45 - 49 años	376559	31237	25601	57694	82786	67464	49268	
50 - 54 años	291350	26457	19439	38157	54980	50692	41436	
TOTAL	4708477	1634489	650846	792350	705375	417851	246965	

FUENTE: INEGI. IIConteo de Población y Vivienda 2005. Tabulados básicos

Región Sur

Esta región esta integrada por los dos estados ubicados al sur de México: Chiapas y Quintana Roo.

Cuadro 7.5

	REGIÓN SUR							
Grupos	quinquenale	_		Núme	ero de hijos	nacidos vivo	os	
de edad		de 15 a 54 años	Sin hijos	1 hijo	2 hijos	3 hijos	4 hijos	5 hijos
15	- 19 años	268938	227551	31096	8527	1445	211	63
20	- 24 años	243750	109540	61260	44684	19776	6350	1577
25	- 29 años	215322	49412	43907	56012	36008	17679	7814
30	- 34 años	189067	23531	25973	50465	42278	22626	12317
35	- 39 años	160734	13393	15446	37436	38885	24212	14594
40	- 44 años	120206	7848	9104	24027	28404	20439	13545
45	- 49 años	91470	5483	6358	14786	19892	16114	12159
50	- 54 años	66530	3941	4486	9440	12775	11610	9745
1	TOTAL	1356017	440699	197630	245377	199463	119241	71814

FUENTE: INEGI. IIConteo de Población y Vivienda 2005. Tabulados básicos

• Región Golfo

Aquellos estados que tienen sus costas en el Golfo de México son los que integran la región del Golfo: Veracruz, Tabasco, Campeche y Yucatán.

Cuadro 7.6

			REGIÓN (GOLFO				
•	quinquenales		Número de hijos nacidos vivos					
de edad	de 15 a 54 años	Sin hijos	1 hijo	2 hijos	3 hijos	4 hijos	5 hijos	
15 -	19 años	553481	483721	55986	11852	1600	202	60
20 -	24 años	513223	260683	135365	81512	27253	6546	1433
25 -	29 años	470182	123960	112322	129912	67997	23888	8327
30 -	34 años	455156	65012	77236	141874	98200	41263	18462
35 -	39 años	410510	38494	48177	119800	102012	50977	26816
40 -	44 años	339319	25167	31754	85212	86644	50087	29738
45 -	49 años	274126	18320	23030	57921	66853	44546	29440
50 -	54 años	217826	14919	16931	38600	47239	36828	27222
Т	OTAL	3233823	1030276	500801	666683	497798	254337	141498

FUENTE: INEGI. IIConteo de Población y Vivienda 2005. Tabulados básicos

Región Centro Periférico

A los estados que rodean la zona central de la Republica Mexicana y que no colindan con ninguna costa son los considerados para esta región: Aguascalientes, Durango, Guanajuato, Hidalgo, Querétaro, San Luís Potosí, Tlaxcala y Zacatecas.

Cuadro 7.7

	REGIÓN CENTRO PERIFÉRICO								
	enales Población	femenina		Núme	ero de hijos	nacidos vivo	os		
de edad	de 15 a 54 a	de 15 a 54 años	Sin hijos	1 hijo	2 hijos	3 hijos	4 hijos	5 hijos	
15 - 19 año	os 7791	43	689037	74270	13959	1490	202	68	
20 - 24 año	os 7191	18	368295	192884	113818	34662	7564	1454	
25 - 29 año	os 6551	28	171749	148237	181549	102293	35577	11193	
30 - 34 año	os 6326	603	90367	89478	175074	154721	72475	30853	
35 - 39 año	s 5538	341	53858	51308	125725	149341	87113	47049	
40 - 44 año	s 4450	74	34717	32273	83208	113259	78585	50310	
45 - 49 año	s 3444	104	25854	22871	54253	77192	62148	45429	
50 - 54 año	s 2528	87	21188	16637	33976	47924	43985	36115	
TOTAL	4382	198	1455065	627958	781562	680882	387649	222471	

FUENTE: INEGI. IIConteo de Población y Vivienda 2005. Tabulados básicos

• Región Centro

Para esta región se consideró al Distrito Federal y a los estados colindantes con éste: Puebla, Morelos y Estado de México.

Cuadro 7.8

			REGIÓN (CENTRO				
Grupos	quinquenales F	_		Núm	ero de hijos	nacidos vivo	os	
de edad		de 15 a 54 años	Sin hijos	1 hijo	2 hijos	3 hijos	4 hijos	5 hijos
15	- 19 años	1282888	1134745	121973	22869	2651	345	93
20 -	- 24 años	1298768	696797	341416	190957	55632	11190	2083
25 -	- 29 años	1232613	386083	298854	324966	155747	47493	14044
30 -	- 34 años	1237807	222749	228568	382239	253351	93761	35636
35 -	- 39 años	1097666	124768	149119	334675	274386	119840	54141
40 -	- 44 años	912076	77377	99248	251289	242062	124151	63551
45	- 49 años	753520	54387	71162	182189	196135	118010	67106
50 -	- 54 años	596521	42524	51942	124591	142548	100119	64935
1	ΓΟΤΑL	8411859	2739430	1362282	1813775	1322512	614909	301589

FUENTE: INEGI. IIConteo de Población y Vivienda 2005. Tabulados básicos

8. PROYECCIÓN DE LAS TASAS ACUMULADAS POR EDAD Y ORDEN DE NACIMIENTO USANDO LA FUNCIÓN DE GOMPERTZ Y MAKEHAM CON BASE EN LOS DATOS DEL II CONTEO DE POBLACIÓN Y VIVIENDA.

En este capítulo se presentará paso a paso el cálculo de la proyección de las tasas acumuladas por edad y orden de nacimiento de los datos recabados en el II Conteo de Población y Vivienda 2005. Es proceso se aplicará a la información a nivel nacional paso a paso y finalmente se presentaran los resultados obtenidos de cada región así como los gráficos correspondientes a estos.

Lo primero que se estima son las Tasas Específicas por edad y orden de nacimiento, con base en la información presentada en el capítulo 4, inciso 4.3 de esta tesis.

Cuadro 8.1

	Tasas Específicas de Fecundidad por edad y orden de nacimiento Estados Unidos Mexicanos							
Х	Sin hijos	1 hijo	2 hijos	3 hijos	4 hijos	5 hijos		
0	87.46%	10.20%	2.03%	0.25%	0.03%	0.01%		
i	51.02%	26.80%	15.72%	5.00%	1.14%	0.24%		
2	27.30%	23.64%	27.31%	14.55%	4.92%	1.59%		
3	15.00%	16.21%	29.76%	23.10%	9.49%	3.88%		
4	9.86%	11.14%	26.97%	26.99%	13.31%	6.45%		
5	7.73%	8.86%	23.13%	27.17%	15.86%	8.83%		
6	6.96%	7.91%	19.78%	25.26%	17.35%	10.93%		
7	6.25%	6.43%	14.51%	19.03%	15.22%	10.96%		

FUENTE: INEGI. IIConteo de Población y Vivienda 2005. Tabulados básicos

Lo que sigue es estimar las tasas acumuladas de fecundidad por edad y orden de nacimiento.

Cuadro 8.2

	Tasas Acumuladas de Fecundidad por edad y orden de nacimiento Estados Unidos Mexicanos						
Х	Sin hijos	1 hijo	2 hijos	3 hijos	4 hijos	5 hijos	
0	87.46%	10.20%	2.03%	0.25%	0.03%	0.01%	
1	138.48%	37.01%	17.75%	5.25%	1.17%	0.25%	
2	165.78%	60.65%	45.06%	19.81%	6.09%	1.84%	
3	180.78%	76.86%	74.83%	42.91%	15.58%	5.72%	
4	190.65%	88.01%	101.80%	69.90%	28.89%	12.17%	
5	198.38%	96.86%	124.93%	97.07%	44.75%	21.00%	
6	205.34%	104.77%	144.71%	122.32%	62.10%	31.93%	
7	211.59%	111.20%	159.22%	141.36%	77.32%	42.89%	

FUENTE: INEGI. IIConteo de Población y Vivienda 2005. Tabulados básicos

Una vez estimadas las tasas acumuladas por edad y orden de nacimiento para los Estados Unidos Mexicanos, se determinarán los parámetros de la función de Makeham que describirán la tendencia que seguirán las tasas.

Para hacer el cálculo de la función de Makeham para las tasas acumuladas por edad y orden de nacimiento, se tomaron los datos primero para los de orden 0, luego para los de orden 1, y así sucesivamente hasta los de orden n. Recordemos que la función de Makeham es la definida por:

$$Y(x) = Ka^{x}b^{d^{x}}$$

y para estimar los parámetros *K, a, b,* y *d* se utiliza el Método de los grupos no superpuesto, el cual se describió en el capítulo 5.1. Entonces.

Estimación de parámetros y Función de Makeham para mujeres sin hijos

• Se dividen los datos en 4 grupos del mismo número de valores observados, en este caso x = 0, ..., 7, por lo cual cada grupo tiene 2 elementos por lo cual m = 2. Esto

justifica el porqué se anexó al estudio el grupo de edad de 50 a 54 años. De esta manera no se rompe con esta condición.

Grupo	Edad x	ух
1	0 1	87.46% 138.48%
2	2 3	165.78% 180.78%
3	4 5	190.65% 198.38%
4	6 7	205.34% 211.59%

 $\bullet \quad$ Se calcula el logaritmo decimal de las $y_x{}'\!s$

Grupo	Edad x	ух	log yx
1	0	87.46%	1.94180
	1	138.48%	2.14139
2	2 3	165.78% 180.78%	2.21953 2.25716
3	4	190.65%	2.28023
	5	198.38%	2.29749
4	6	205.34%	2.31247
	7	211.59%	2.32549

• Se estiman las sumas de los logaritmos de cada uno de los grupos denominadas S_0 , S_1 , S_2 , y S_3 respectivamente:

Grupo	Edad x	ух	log yx	s
1	0 1	87.46% 138.48%		4.08319
2	2 3	165.78% 180.78%		4.47669
3	4 5	190.65% 198.38%		4.57772
4	6 7	205.34% 211.59%		4.63796

• Se calculan las primeras diferencias de las sumas llamadas S, que se denotan como ΔS_0 , ΔS_1 y ΔS_2 .

$$\Delta S_0 = 4.47669 - 4.08319$$
 $\Delta S_1 = 4.57772 - 4.47669$ $\Delta S_2 = 4.63796 - 4.57772$

$$\Delta S_1 = 4.57772 - 4.47669$$

$$\Lambda$$
S₂ = 4.63796-4.57772

$$\Delta S_0 = 0.39350$$

$$\Delta S_1 = 0.10102$$

$$\Delta S_2 = 0.06024$$

Grupo	Edad x	ух	log yx	S	ΔS
1	0 1	87.46% 138.48%		4.08319	
2	2 3	165.78% 180.78%	2.21953 2.25716	4.47669	0.39350
3	4 5	190.65% 198.38%	2.28023 2.29749	4.57772	0.10102
4	6 7	205.34% 211.59%	2.31247 2.32549	4.63796	0.06024

• Se calculan también las segundas diferencias, llamadas $\Delta^2 S_0$ y $\Delta^2 S_1$.

$$\Delta^2$$
S₀ = 0.10102-0.39350

$$\Delta^2 \mathbf{S_1} = 0.06024 - 0.10102$$

$$\Delta^2 S_0 = -0.29248$$

$$\Delta^2 S_1 = -0.04078$$

Grupo	Edad x	ух	log yx	S	ΔS	Δ2 \$
1	0 1	87.46% 138.48%				
2	2 3	165.78% 180.78%			0.39350	
3	4 5	190.65% 198.38%			0.10102	-0.29248
4	6 7	205.34% 211.59%		4.63796	0.06024	-0.04078

 Una vez estimados los resultados anteriores, lo que sigue es obtener los parámetros de la función de Makeham.

Parámetro d. Usando la función (23) del capítulo 5.1.

$$d = \left(\frac{\Delta^2 S_1}{\Delta^2 S_0}\right)^{\frac{1}{m}}$$

$$d = (-0.04078/-0.29248)^{1/2}$$

$$d = (0.13944285)^{1/2}$$

d = 0.139442852; Error! Vínculo no válido. Parámetro b. Usando la función (24) del capítulo 5.1.

$$b = \text{Antilog} \left[\frac{d-1}{(d^{m}-1)^{3}} \triangle^{2} S_{0} \right]$$

$$b = \text{Antilog}[(0.37342048-1) / (0.13944285-1)^{3} * (-0.29248)]$$

b = Antilog(-0.62657952)*(0.18639546); Error! Vínculo no válido. <math>b = -3.361558; Error! Vínculo no válido. **Parámetro a**. Usando la función (25) del capítulo 5.1.

$$a = \text{Antilog}\left[\frac{1}{m^2}\left(\triangle S_0 - \frac{\triangle^2 S_0}{d^m - 1}\right)\right]$$

$$a = Antilog[(1/2^2) * (0.39350-(-0.29248/(0.13944285-1)))]$$

a = Antilog[0.01340817]

a = 1.03135497

Parámetro K. Usando la función (28) del capítulo 5.1.

$$K = \frac{\sum_{0}^{4m-1} y_{x} V_{x}}{\sum_{0}^{4m-1} V_{x}^{2}}$$

Primero, es necesario encontrar los valores para $V_{\boldsymbol{x}}$ que se obtienen a partir de:

$$V_x = a^x b^{d^x} \qquad para \ x = 0, 1, \dots, 7$$

y dado que los valores para a, b, d son valores conocidos se pueden calcular los valores para V_x .

х	a^x	d^x	b^d^x	Vx	Vx^2	ух	yxVx
0	1.00000	1.00000	0.51575	0.51575	0.26600	87.45791	45.10659
1	1.03135	0.37342	0.78094	0.80543	0.64872	138.48175	111.53734
2	1.06369	0.13944	0.91180	0.96988	0.94067	165.77971	160.78653
3	1.09705	0.05207	0.96611	1.05987	1.12332	180.78442	191.60731
4	1.13144	0.01944	0.98721	1.11697	1.24762	190.64571	212.94543
5	1.16692	0.00726	0.99520	1.16132	1.34867	198.37648	230.37910
6	1.20351	0.00271	0.99821	1.20135	1.44324	205.33751	246.68208
7	1.24124	0.00101	0.99933	1.24041	1.53862	211.58755	262.45577
					8.55686		1461.50015

$$\Sigma y_x V_x = 1461.50015$$

$$\Sigma V_x^2 = 8.55686$$

K = 1461.50015/8.55686

K = 170.798733

 Con esto, es posible construir la Función de Makeham y calcular las Tasas Acumuladas por edad y orden de nacimiento cero, es decir, las mujeres en edad fértil que no han tenido hijos.

$$Y(x) = Ka^{x}b^{d^{x}}$$
 para x=0,1,...,7

$$Y(x) = 170.798733 (1.03135497)^{x} (-0.28755909)^{0.37342048^{x}}$$

Y con esta función se calculan los valores estimados para las Tasas Acumuladas por edad y orden de nacimiento igual a un hijo para los Estados Unidos Mexicanos en el 2005:

	Tasas	yx
х	Observadas	estimadas
0	87.45791	88.08979
1	138.48175	137.56640
2	165.77971	165.65438
3	180.78442	181.02381
4	190.64571	190.77696
5	198.37648	198.35244
6	205.33751	205.18895
7	211.58755	211.86083

Análogamente, se calcularon las funciones de Makeham que describen el comportamiento de las Tasas Acumuladas por Edad y Orden de Nacimiento correspondientes a 1, 2, 3, 4, 5, 6 y 7 hijos, en el anexo se encuentran los cuadros de los cálculos para cada orden de nacimiento, así como los cuadros de los resultados obtenidos para cada uno de los estados de la República Mexicana, a continuación se presentan solo los de los Estados Unidos Mexicanos.

Orden de nacimiento igual a 1 hijo.

La Función de Makeham que describe el comportamiento de las Tasas Acumuladas por Edad y por Orden de nacimiento igual a <u>un hijo</u> es:

 $Y(X) = 71.1078052 (1.06716403)^{X} (0.14777591)^{0.39048889^{X}}$ para x=1,2,...7

	Tasas	yx
x	Observadas	estimadas
0	10.20319	10.50802
1	37.00585	35.96565
2	60.64822	60.50057
3	76.86102	77.12001
4	88.00520	88.21344
5	96.86300	96.72392
6	104.76815	104.31826
7	111.20252	111.78562

Orden de nacimiento igual a 2 hijos.

Para el Orden de nacimiento igual a <u>2 hijos</u> es la Función de Makeham que describe el comportamiento de las Tasas Acumuladas por edad es:

 $Y(X) = 84.8190651 (1.09897495)^{X} (0.02598918)^{0.47769689^{X}}$ para x=1,2,...7

	Tasas	ух
x	Observadas	estimadas
_		
0	2.02696	2.20438
1	17.74867	16.30169
2	45.06302	44.53831
3	74.82794	75.62354
4	101.79612	102.30543
5	124.92844	124.16537
6	144.70946	143.08158
7	159.21721	160.84586

Orden de nacimiento igual a 3 hijos.

La Función de Makeham que describe el comportamiento de las Tasas Acumulas por Edad y por Orden de nacimiento igual a <u>3 hijos</u> es:

 $Y(X) = 59.2528781 (1.14258231)^{X} (0.0049629)^{0.51047833^{X}}$ para x=1,2,...7

	Tasas	ух
X	Observadas	estimadas
•	0.05005	0.00.107
0	0.25335	0.29407
1	5.25424	4.51149
2	19.80545	19.40978
3	42.90850	43.63632
4	69.89584	70.43454
5	97.06536	95.99983
6	122.32377	120.02155
7	141.35621	143.58434

Orden de nacimiento igual a 4 hijos.

La Función de Makeham que describe el comportamiento de las Tasas Acumulas por Edad y por Orden de nacimiento igual a <u>4 hijos</u> es:

 $Y(X) = 17.9735406 (1.24405857)^{X} (0.00216707)^{0.5022293^{X}}$ para x=1,2,...7

	Tasas	ух
х	Observadas	estimadas
0	0.03438	0.03895
1	1.17247	1.02677
2	6.09099	5.92013
3	15.58495	15.90985
4	28.89333	29.14067
5	44.75170	44.02620
6	62.09701	60.38451
7	77.32125	78.89466

Orden de nacimiento igual a 5 hijos.

La Función de Makeham que describe el comportamiento de las Tasas Acumulas por Edad y por Orden de nacimiento igual a <u>5 hijos</u> es:

 $Y(X) = 59.2528781 (1.30072257)^{X} (0.00122103)^{0.54113018^{X}}$ para x=1,2,...7

х	Tasas Observadas	yx estimadas
0	0.00994	0.00927
1	0.24669	0.26175
2	1.83601	1.80079
3	5.71804	5.76893
4	12.17042	12.22094
5	21.00278	20.69730
6	31.93045	31.05455
7	42.89027	43.63896

Si se quisieran corregir los valores estimados de las Tasas Acumuladas por edad y orden de nacimiento para la función de Makeham, se utilizaría el Método descrito en el capítulo 5.

En palabras sencillas, el proceso se reduce a realizar el mismo proceso aplicado a las Tasas Acumulas por edad y orden de nacimiento pero ahora tomando como y_x a las tasas estimadas, entonces, se haría una nueva estimación sobre las tasas ya corregidas. En este caso se tomará como estimación la que ya hemos encontrado, puesto que al iterar, la y ajustada la función no prácticamente se mantiene igual.

Proyección

Para proyectar las Tasas acumuladas por edad y orden de nacimiento que es lo que nos concierne en este capítulo, lo único que se hace es suponer que el crecimiento será lineal. Entonces sea

$$K_P = K + \frac{1}{2}$$

donde K es la que hemos obtenido previamente a nivel nacional y regional.

Tomando esto, los resultados obtenidos a nivel nacional para el año 2010 son:

PROYECCION AL 2010 DE LOS ESTADOS UNIDOS MEXICANOS								
Grupos quinquenales Tasas Acumuladas de Fecundidad y orden de nacimiento de edad								
-	Sin hijos 1 hijo 2 hijos 3 hijos 4 hijos 5 hijos							
15 - 19 años	88.35%	10.58%	2.22%	0.30%	0.04%	0.01%		
20 - 24 años	137.97%	36.22%	16.40%	4.55%	1.06%	0.28%		
25 - 29 años	166.14%	60.93%	44.80%	19.57%	6.08%	1.92%		
30 - 34 años	181.55%	77.66%	76.07%	44.00%	16.35%	6.15%		
35 - 39 años	191.34%	88.83%	102.91%	71.03%	29.95%	13.03%		
40 - 44 años	198.93%	97.40%	124.90%	96.81%	45.25%	22.06%		
45 - 49 años	205.79%	105.05%	143.93%	121.03%	62.06%	33.10%		
50 - 54 años	212.48%	112.57%	161.79%	144.80%	81.09%	46.51%		

El crecimiento de las tasas acumuladas por edad a nivel nacional esperado para el 2010, es mínimo, pero se refleja en mayor magnitud en las mujeres que deciden tener menor cantidad de hijos o simplemente no tenerlos. Es importante mencionar que como se dijo antes las nuevas tendencias reproductivas nos dicen que el tener una menor cantidad de hijos es lo más favorable para las autoridades, pese a que existe un crecimiento en la proporción de mujeres que han decidido tener a lo más 2 hijos, también se muestra que dicho crecimiento es cada vez menos acelerado.

9. PROYECCIÓN DE LAS PROBABILIDADES DE CRECIMIENTO DE LAS FAMILIAS USANDO INTERPOLACIÓN DE NEWTON CON BASE EN LOS DATOS OBTENIDOS EN EL II CONTEO DE POBLACIÓN Y VIVIENDA 2005.

En el capítulo anterior se utilizaron los datos clasificándolos por regiones, para este capítulo no es necesario, así que la información empleada será el número de hijos nacidos vivos de las mujeres en edad fértil (entre 15 y 49 años), es muy importante respetar esta condición puesto que el no tomar la muestra correcta, nos arrojaría errores catastróficos en los ajustes de las probabilidades de crecimiento y en las proyecciones. La información se clasificará también a nivel nacional y estatal.

Cuadro 9.1

NÚMERO DE HIJOS NACIDOS VIVOS							
ESTADO	0	1	2	3	4	5	TOTAL
Estados Unidos Mexicanos	8839677	4159311	5259333	4148457	2000222	986674	26248168
Aguascalientes	92608	38908	49515	43746	23188	11895	270228
Baja California	201494	121579	153734	122943	53173	22662	690908
Baja California Sur	36543	23091	30240	23748	9425	3530	128746
Campeche	66834	30749	40082	31965	14974	7471	198645
Chiapas	353381	143964	176897	144227	88782	52868	1019603
Chihuahua	211923	132868	182765	151555	64719	26429	788976
Coahuila de Zaragoza	187982	100584	134573	129481	56971	22473	645560
Colima	46828	24254	30657	25099	10592	4826	145935
Distrito Federal	920277	441023	547400	323860	112047	39998	2406799
Durango	117449	55455	70493	65941	35160	17789	377000
Guanajuato	467870	176216	208753	180542	100333	56827	1246371
Guerrero	241977	104598	118520	102231	64218	40217	716834
Hidalgo	189791	93609	124209	98261	49704	25913	604909
Jalisco	646202	240036	293178	264330	140618	70241	1713165
México	1170380	600469	804538	595020	265136	119537	3644850
Michoacán	379888	138696	164462	142533	81886	47272	1000888
Morelos	137059	64684	88391	66126	30584	14690	413348
Nayarit	75024	38403	47272	41008	20269	9944	239670
Nuevo León	347329	182016	232912	202439	79586	27032	1085897
Oaxaca	293137	123823	147376	116202	69845	42973	840305
Puebla	469190	204164	248855	194958	107023	62429	1350341
Querétaro	149434	64563	78158	60840	30515	15903	414320
Quintana Roo	83377	49180	59040	42461	18849	9201	269884
San Luis Potosí	199753	88986	103372	87075	50881	28956	587488
Sinaloa	187876	100109	127876	124404	57094	24495	639464
Sonora	170969	95964	127264	118496	50867	20699	597183
Tabasco	171205	80230	101732	80896	41627	21546	516917
Tamaulipas	229607	134615	167714	133819	57365	24526	764504
Tlaxcala	93137	44213	55360	45190	23441	11959	283146
Veracruz	605200	304830	400537	266900	128752	68692	1839635
Yucatán	172118	68061	85732	70798	32156	16567	460800
Zacatecas	123835	49371	57726	51363	30442	17114	345849

Entonces, primeramente utilizando la metodología descrita en el apartado 4.7 se estimarán las probabilidades de crecimiento de las familias. Antes de realizar los cálculos, es importante mencionar algunos detalles, en teoría la muestra a considerar son los matrimonios, pero dado que en el II Conteo de Población y Vivienda no se cuenta con ninguna pregunta que nos proporcione ese dato, se tomarán a las mujeres en edad reproductiva. Para realizar los cálculos se consideraron a las mujeres que han tenido entre 0 y 7 hijos, sin embargo se presentarán solo las que han tenido entre 0 y 5, esto es para hacer más práctico el proceso.

- En primer lugar se estiman las tasas específicas de fecundidad a nivel nacional y estatal de la población femenina en edad fértil con 0, 1, 2, 3, 4 y 5 hijos en el apartado 4.7 son llamadas m.
- Lo que sigue es encontrar las llamadas *m*+ que son la proporción de mujeres que han tenido 1 o más, 2 o más, etc., hijos. En forma coloquial, si se quiere estimar la proporción de mujeres que han tenido 1 o más hijos, se tomará el complemento de las que han tenido exactamente 1; si se desea la de 2 o más hijos, se tomará el complemento de las que han tenido exactamente 1 y exactamente 2; y así sucesivamente.
- Finalmente, para obtener las probabilidades de crecimiento, se tomará el cociente de la proporción de mujeres que han tenido i o más hijos (i=1,...5). Por ejemplo, si se quiere estimar la probabilidad de que una mujer que ha tenido un hijo tenga al menos otro, se tomará el cociente de las que han tenido 2 o más hijos y las que han tenido 1 o más hijos.

Una vez explicado el proceso mediante el cual se obtuvieron las probabilidades de crecimiento de las familias, en el siguiente cuadro están contenidas éstas a nivel nacional y estatal para el año 2005.

Cuadro 9.2

PROBABILIDAD DE CRECIMIENTO DE LAS FAMILIAS 2005								
	Número de hijos de mujeres en edad fértil							
	1	2	3	4	5			
Estados Unidos Mexicanos	0.6632	0.7611	0.6030	0.4808	0.4793			
Aguascalientes	0.6573	0.7809	0.6430	0.5096	0.4898			
Baja California	0.7084	0.7516	0.5821	0.4258	0.4167			
Baja California Sur	0.7162	0.7496	0.5624	0.3891	0.3768			
Campeche	0.6636	0.7667	0.6034	0.4758	0.4839			
Chiapas	0.6534	0.7839	0.6613	0.5824	0.5586			
Chihuahua	0.7314	0.7697	0.5885	0.4203	0.4109			
Coahuila de Zaragoza	0.7088	0.7802	0.6230	0.4179	0.3870			
Colima	0.6791	0.7553	0.5904	0.4321	0.4454			
Distrito Federal	0.6176	0.7033	0.4764	0.3498	0.3569			
Durango	0.6885	0.7863	0.6546	0.5064	0.4804			
Guanajuato	0.6246	0.7736	0.6534	0.5412	0.5289			
Guerrero	0.6624	0.7797	0.6799	0.5939	0.5705			
Hidalgo	0.6862	0.7745	0.6137	0.5020	0.4981			
Jalisco	0.6228	0.7750	0.6455	0.5048	0.4781			
México	0.6789	0.7573	0.5707	0.4436	0.4412			
Michoacán	0.6204	0.7767	0.6590	0.5516	0.5329			
Morelos	0.6684	0.7659	0.5823	0.4633	0.4643			
Nayarit	0.6870	0.7668	0.6255	0.4807	0.4661			
Nuevo León	0.6801	0.7536	0.5815	0.3745	0.3434			
Oaxaca	0.6512	0.7737	0.6519	0.5789	0.5628			
Puebla	0.6525	0.7683	0.6324	0.5446	0.5410			
Querétaro	0.6393	0.7563	0.6098	0.5020	0.5024			
Quintana Roo	0.6911	0.7363	0.5701	0.4576	0.4739			
San Luis Potosí	0.6600	0.7705	0.6540	0.5543	0.5302			
Sinaloa	0.7062	0.7783	0.6362	0.4436	0.4244			
Sonora	0.7137	0.7748	0.6146	0.4162	0.3980			
Tabasco	0.6688	0.7679	0.6168	0.5060	0.4976			
Tamaulipas	0.6997	0.7483	0.5810	0.4246	0.4191			
Tlaxcala	0.6711	0.7673	0.6203	0.5003	0.4819			
Veracruz	0.6710	0.7531	0.5691	0.4955	0.5089			
Yucatán	0.6265	0.7642	0.6114	0.4751	0.4983			
Zacatecas	0.6419	0.7776	0.6656	0.5530	0.5210			

Ahora, mediante Interpolación de Newton como se describe en el capítulo 6.1.3 usando como función las probabilidades de crecimiento de las familias primero se realizará un ajuste a las probabilidades de crecimiento de las familias, y bajo esta misma idea se realizará la proyección de dichas probabilidades hacia el 2010 y 2020.

De manera análoga al capítulo anterior, se presentará la metodología paso a paso a nivel nacional y al final se presentarán los resultados a nivel nacional y estatal.

Primero se obtienen las diferencias divididas

Х	f(x)
1	0.6632
2	0.7611
3	0.6030
4	0.4808
5	0.4793

$$f(x_1, x_0) = [f(x_1) - f(x_0)] / (x_1 - x_0) = 0.0978$$

$$f(x_2, x_1) = [f(x_2) - f(x_1)] / (x_2 - x_1) = -0.1580$$

$$f(x_3, x_2) = [f(x_3) - f(x_2)] / (x_3 - x_2) = -0.1223$$

$$f(x_4, x_3) = [f(x_4) - f(x_3)] / (x_4 - x_3) = -0.0015$$

$$\begin{split} f(x_2\,,\,x_1\,,\,x_0) &= \left[f(x_2\,,\,x_1) - f(x_1\,,\,x_0)\right] \,/\,\,(x_2 - x_0) = \textbf{-0.1279} \\ f(x_3\,,\,x_2\,,\,x_1) &= \left[f(x_3\,,\,x_2) - f(x_2\,,\,x_1)\right] \,/\,\,(x_3 - x_1) = \ 0.0179 \\ f(x_4\,,\,x_3\,,\,x_2) &= \left[f(x_4\,,\,x_3) - f(x_3\,,\,x_2)\right] \,/\,\,(x_4 - x_2) = \ 0.0604 \end{split}$$

$$f(x_3, x_2, x_1, x_0) = [f(x_3, x_2, x_1) - f(x_2, x_1, x_0)] / (x_3 - x_0) = \mathbf{0.0486}$$

$$f(x_4, x_3, x_2, x_1) = [f(x_4, x_3, x_2) - f(x_3, x_2, x_1)] / (x_4 - x_1) = 1.0142$$

$$f(x_4, x_3, x_2, x_1, x_0) = [f(x_4, x_3, x_2, x_1) - f(x_3, x_2, x_1, x_0)] / (x_4 - x_0) = -0.0086$$

■ Entonces los coeficientes asociados al polinomio de interpolación, llamados b_0 , $b_1, ...$ b_4 son: $b_0 = 0.6632$

 $b_1 = 0.0978$

 $b_2 = -0.1279$

 $b_3 = 0.0486$

 $b_4 = -0.0086$

Por lo que el polinomio de interpolación de Newton de grado 4 que describe el comportamiento de las probabilidades de crecimiento a nivel nacional para el 2005 es:

$$P_4(x_{2005}) = 0.6632 + 0.0978(x-1) - 0.1279(x-1)(x-2) + 0.4086(x-1)(x-2)(x-3) - 0.0086(x-1)(x-2)(x-3)(x-4)$$

$$P_4(x_{2005}) = -0.1888 + 1.4469x - 0.7209x^2 + 0.1347x^3 - 0.0086x^4$$

De manera similar, con los datos del Censo de 1990 y del 2000, se obtuvieron los polinomios de interpolación de Newton:

$$P_4(x_{1990}) = -0.6890 + 2.0832x - 1.0002x^2 + 0.2003x^3 - 0.6890x^4$$

$$P_4(x_{2000}) = -0.2344 + 1.4708x - 0.7258x^2 + 0.1388x^3 - 0.0093x^4$$

A continuación se presenta una tabla comparando los valores reales de la función probabilidad de crecimiento de las familias y de los valores estimados mediante la interpolación a nivel nacional.

х	f(x)	f*(x)
1	0.6632	0.6632
2	0.7611	0.7611
3	0.6030	0.6030
4	0.4808	0.4808
5	0.4793	0.4793

Como se puede ver en la tabla, el polinomio de interpolación explica de manera idéntica las probabilidades de crecimiento, por lo tanto es un polinomio confiable para poder emplearlo en la proyección.

Proyección

La forma en que se estimaron los polinomios de Interpolación de Newton para realizar la proyección hacia el 2010 y 2020, fue realizando una diferencia entre los polinomios del 2000 y 2005 para el caso de la proyección al 2010; y entre los de 1990 y 2005 para la del 2020. Es muy importante decir que el principal supuesto para realizar la proyección es el de linealidad como en el caso del capítulo anterior, es decir, se supone que el crecimiento de las probabilidades de crecimiento de las familias será constante respecto a los años de los cuales tenemos datos.

Para ejemplificar mejor como se realizó la proyección, se mostrarán los polinomios de interpolación de Newton de grado 4 correspondientes a la proyección del 2010 y 2020 a nivel nacional, respectivamente.

$$P_4(x_{2010}) = -0.1797 + 1.4421x - 0.7200x^2 + 0.1339x^3 - 0.0085x^4$$

$$P_4(x_{2020}) = -0.1221 + 1.3620x - 0.6837x^2 + 0.1260x^3 - 0.0078x^4$$

Si comparamos de manera burda los polinomios de interpolación de 1990 con el de 2005 podemos notar que el decrecimiento de los coeficientes de dicho polinomio es de aproximadamente cinco puntos decimales, sin embargo, al comparar la proyección al 2010 con la del 2020, notamos que el decrecimiento es mucho mas lento, tomando en cuenta los años transcurridos.

Pero, para ver y describir de manera más didáctica como ha sido el cambio en las probabilidades de crecimiento en los últimos quince años, a continuación se muestran gráficas del dicho comportamiento a nivel nacional y estatal de las probabilidades de crecimiento con respecto al número de hijos nacidos vivos ajustadas para los años 1990, 2000 y 2005, así como las proyectadas para los años 2010 y 2020 usando Interpolación de Newton.

Antes de esto también se muestra un cuadro con las probabilidades de crecimiento ajustadas mediante la interpolación obtenidas del número de hijos nacidos vivos de las mujeres entre 15 y 49 años en el II Conteo de Población y Vivienda 2005, así como las proyecciones de éstas hacia el 2010 y 2020 para la Republica Mexicana y para cada uno de sus Estados.

Cuadro 9.3

Cuadro 9.3 PROYECCION Y AJUSTE* DE LAS PROBABILIDADES DE CRECIMIENTO DE LAS FAMILIAS							
		Número de hijos					
Estado	Año	1	2	3	4	5	
	2005	0.6632	0.7611	0.6030	0.4808	0.4793	
Estados Unidos Mexicanos	2010	0.6679	0.7601	0.5953	0.4679	0.4692	
	2020	0.6743	0.7492	0.5759	0.4392	0.4357	
Aguascalientes	2005	0.6573	0.7809	0.6430	0.5096	0.4898	
	2010	0.6669	0.7809	0.6393	0.4983	0.4796	
	2020	0.6637	0.7809	0.6406	0.5021	0.4830	
	2005	0.7084	0.7516	0.5821	0.4258	0.4167	
Baja California	2010	0.7109	0.7508	0.5768	0.4145	0.4070	
	2020	0.7101	0.7510	0.5786	0.4182	0.4103	
Daia California Com	2005	0.7162	0.7496	0.5624	0.3891	0.3768	
Baja California Sur	2010	0.7162	0.7490	0.5535	0.3738	0.3633	
	2020	0.7162	0.7492	0.5565	0.3789	0.3678	
Campachs	2005	0.6636	0.7667	0.6034 0.5930	0.4758 0.4623	0.4839	
Campeche	2010	0.6642	0.7646			0.4732	
	2020	0.6640	0.7653	0.5965	0.4668	0.4768	
Chiapas	2005 2010	0.6534 0.6521	0.7839 0.7888	0.6613 0.6675	0.5824 0.6076	0.5586 0.5856	
Ciliapas	2010	0.6525	0.7872	0.6654	0.5076	0.5766	
Chihuahua	2005	0.0323	0.7672	0.5885	0.3992	0.3700	
	2010	0.7314	0.7097	0.5791	0.4203	0.4109	
	2020	0.7414	0.7712	0.5822	0.4068	0.3980	
	2005	0.7088	0.7707	0.6230	0.4179	0.3870	
Coahuila	2010	0.7209	0.7788	0.6083	0.3751	0.3470	
Countaina	2020	0.7169	0.7793	0.6132	0.3893	0.3603	
	2005	0.6791	0.7553	0.5904	0.4321	0.4454	
Colima	2010	0.6742	0.7546	0.5868	0.4215	0.4397	
	2020	0.6758	0.7548	0.5880	0.4250	0.4416	
	2005	0.6176	0.7033	0.4764	0.3498	0.3569	
Distrito Federal	2010	0.6205	0.7006	0.4660	0.3353	0.3446	
	2020	0.6196	0.7015	0.4695	0.3401	0.3487	
	2005	0.6885	0.7863	0.6546	0.5064	0.4804	
Durango	2010	0.6932	0.7870	0.6494	0.4930	0.4678	
_	2020	0.6916	0.7868	0.6511	0.4975	0.4720	
	2005	0.6246	0.7736	0.6534	0.5412	0.5289	
Guanajuato	2010	0.6301	0.7724	0.6466	0.5286	0.5184	
	2020	0.6283	0.7728	0.6488	0.5328	0.5219	
	2005	0.6624	0.7797	0.6799	0.5939	0.5705	
Guerrero	2010	0.6707	0.7809	0.6785	0.5895	0.5685	
	2020	0.6680	0.7805	0.6790	0.5909	0.5692	
	2005	0.6862	0.7745	0.6137	0.5020	0.4981	
Hidalgo	2010	0.6913	0.7731	0.6039	0.4868	0.4859	
	2020	0.6896	0.7736	0.6071	0.4918	0.4900	
	2005	0.6228	0.7750	0.6455	0.5048	0.4781	
Jalisco	2010	0.6279	0.7745	0.6399	0.4928	0.4665	
	2020	0.6262	0.7746	0.6417	0.4968	0.4703	
México	2005	0.6789	0.7573	0.5707	0.4436	0.4412	
	2010	0.6840	0.7563	0.5610	0.4292	0.4297	
	2020	0.6823	0.7567	0.5643	0.4340	0.4335	
Michagaán	2005	0.6204	0.7767	0.6590	0.5516	0.5329	
Michoacán	2010	0.6236	0.7757	0.6521	0.5393	0.5228	
	2020	0.6226	0.7760	0.6544	0.5434	0.5262	

Continua...

PROYECCION Y AJUSTE* DE LAS PROBABILIDADES DE CRECIMIENTO DE LAS FAMILIAS						
			Nú	mero de hi	ios	
Estado	Año	1	2	3	4	5
	2005	0.6801	0.7536	0.5815	0.3745	0.3434
Nuevo León	2010	0.6883	0.7529	0.5733	0.3582	0.3270
	2020	0.6856	0.7531	0.5761	0.3636	0.3325
	2005	0.6512	0.7737	0.6519	0.5789	0.5628
Oaxaca	2010	0.6546	0.7721	0.6428	0.5672	0.5552
	2020	0.6534	0.7726	0.6458	0.5711	0.5578
	2005	0.6525	0.7683	0.6324	0.5446	0.5410
Puebla	2010	0.6581	0.7673	0.6242	0.5331	0.5319
	2020	0.6562	0.7676	0.6269	0.5370	0.5349
	2005	0.6393	0.7563	0.6098	0.5020	0.5024
Querétaro	2010	0.6461	0.7534	0.6012	0.4895	0.4923
	2020	0.6438	0.7544	0.6041	0.4936	0.4957
	2005	0.6911	0.7363	0.5701	0.4576	0.4739
Quintana Roo	2010	0.6956	0.7348	0.5619	0.4448	0.4657
	2020	0.6941	0.7353	0.5646	0.4491	0.4684
	2005	0.6600	0.7705	0.6540	0.5543	0.5302
San Luis Potosí	2010	0.6662	0.7690	0.6474	0.5435	0.5198
	2020	0.6641	0.7695	0.6496	0.5471	0.5233
	2005	0.7062	0.7783	0.6362	0.4436	0.4244
Sinaloa	2010	0.7086	0.7789	0.6295	0.4268	0.4098
	2020	0.7078	0.7787	0.6317	0.4324	0.4147
	2005	0.7137	0.7748	0.6146	0.4162	0.3980
Sonora	2010	0.7175	0.7752	0.6083	0.4019	0.3861
	2020	0.7162	0.7751	0.6104	0.4067	0.3901
	2005	0.6688	0.7679	0.6168	0.5060	0.4976
Tabasco	2010	0.6742	0.7664	0.6075	0.4931	0.4879
	2020	0.6724	0.7669	0.6106	0.4974	0.4911
	2005	0.6997	0.7483	0.5810	0.4246	0.4191
Tamaulipas	2010	0.7087	0.7475	0.5738	0.4112	0.4065
	2020	0.7057	0.7478	0.5762	0.4156	0.4107
	2005	0.6711	0.7673	0.6203	0.5003	0.4819
Tlaxcala	2010	0.6775	0.7659	0.6105	0.4842	0.4689
Tiuxcuiu	2020	0.6753	0.7664	0.6137	0.4896	0.4732
Veracruz	2005	0.6710	0.7531	0.5691	0.4955	0.5089
	2010	0.6742	0.7511	0.5586	0.4832	0.5003
	2020	0.6731	0.7518	0.5621	0.4873	0.5032
Yucatán	2005	0.6265	0.7642	0.6114	0.4751	0.4983
	2010	0.6303	0.7611	0.6003	0.4601	0.4882
	2020	0.6290	0.7622	0.6040	0.4651	0.4916
	2005	0.6419	0.7776	0.6656	0.5530	0.5210
Zacatecas	2010	0.6489	0.7783	0.6603	0.5406	0.5090
Zudutodas	2020	0.6466	0.7781	0.6621	0.5448	0.5130

^{*}El ajuste se hizo mediante Interpolación de Newton a año 2005 mientras

FUENTE: INEGI. II Conteo de Población y Vivienda 2005. Tabulados basicos.

En lo que respecta a la República Mexicana, en el 2010 se muestra un crecimiento en la proporción de mujeres sin hijos, que les gustaría tener a lo más un hijo, con respecto a la del 2005 sin embargo esta proporción disminuye para el 2020, lo mismo sucede para aquellas que ya tienen un hijo, pero desean tener uno más. Al comparar la probabilidad de tener cada vez más hijos, podemos notar como mientras las mujeres que desean tener 1 hijo crece, aquellas que desean tener más de 2 siempre decrece de manera abrupta (Cuadro 9.3). Esto confirma la idea de que conforme pasen los años, la mayoría de las mujeres desearán tener cada vez menos hijos. Ahora se analizarán algunos estados.

En estados como Baja California, Baja California Sur, Chihuahua, Coahuila, Nuevo León, Sinaloa y Sonora, el deseo de tener a lo más un hijo está muy por encima del resto de los Estados, y además la proporción de mujeres con más de 2 hijos es mucho más pequeña. Por otro lado, dado que se muestran más mujeres con deseos de tener solo un hijo, desde el 2005, el crecimiento de esta proporción a través de los años es menos notoria.

Por otro lado, hay estados en los cuales existe un índice alto con respecto al resto de las entidades federativas de mujeres con deseos de tener 3 o 4 hijos, además el crecimiento a través de los años es muy lento, casi imperceptible, esto puede deberse a que son estados con poca población y alejados de las grandes urbes en algunos casos como: Aguascalientes, Quintana Roo, Guanajuato, Michoacán, Puebla, Querétaro, San Luís Potosí, Veracruz, Zacatecas en otros puede atribuirse al alto nivel de analfabetismo y a la poca información de planificación familiar así como servicios de salud que pueden recibir, entre estos estados se encuentran, Chiapas, Oaxaca, Guerrero y Tlaxcala.

En otra categoría se encuentran también aquellas entidades federativas altamente urbanizadas, en éstas la proporción de mujeres con deseo de tener cualquier número de hijos está por debajo del resto de los estados, además el deseo de tener tres o más hijos decrece de manera importante con respecto a aquéllas que desean tener a lo más dos, este comportamiento puede deberse a que son lugares donde la mayor parte del día la gente se encuentra fuera de sus hogares debido al trabajo, la educación es de un mejor

nivel así como las condiciones de salud, la mezcla de todo ello nos da como resultado mujeres que tienen mas deseos de estudiar para después trabajar, que mujeres con ganas de formar una familia.

En este tipo de estados la mayoría de las mujeres tienen un alto conocimiento de las medidas anticonceptivas lo cual les proporciona un control superior a las que habitan en otras entidades federativas de su fecundidad. Los estados con este comportamiento son el Distrito Federal, Nuevo León y Jalisco.

A continuación, se presentan las gráficas a nivel nacional y de algún estado perteneciente a las categorías antes mencionadas, estas confirman lo antes mencionado y se harán algunas acotaciones, que son más perceptibles visualmente mediante las gráficas.

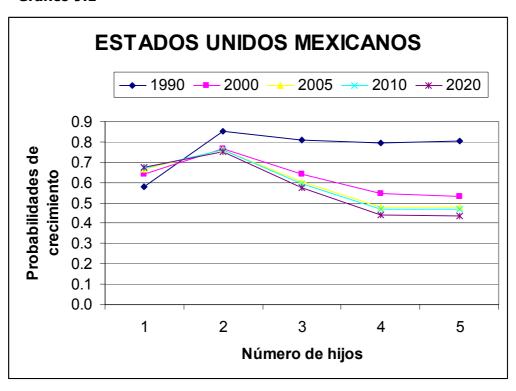


Gráfico 9.1

FUENTE: INEGI. II Conteo de Población y Vivienda 2005. Tabulados básicos

Como se puede ver el comportamiento que muestra la gráfica es el de un cambio en la pendiente, lo que muestra el cambio en las pautas reproductivas: las mujeres de hoy en día buscan familias más pequeñas. Por otro lado, la proporción de mujeres con deseos de tener más de 2 hijos decrece de manera cada vez mas lenta a través de los años, y aunque la de tener uno o dos hijos crece, no lo hace significativamente.

BAJA CALIFORNIA SUR - 1990 ___ 2000 2005 2010 - 2020 8.0 0.7 Probabilidad de 0.6 crecimiento 0.5 0.4 0.3 0.2 0.1 0.0 1 2 3 4 5 Número de hijos

Gráfico 9.2

FUENTE: INEGI. II Conteo de Población y Vivienda 2005. Tabulados básicos

La gráfica nos muestra como el comportamiento desde 1990 y hasta la proyección del 2020 en este estado es prácticamente constante, sobre todo en lo que respecta a la población femenina que tiene uno o dos hijos. Es importante hacer énfasis que en estados como éste, la cantidad de mujeres que desean tener 2 hijos no es significativamente superior a aquéllas que desean tener solo uno, contrario a lo que pasa en la mayoría de las entidades federativas en las cuales la tendencia reproductiva tiende a la indicada por el slogan de planificación familiar, es decir, el de tener 2 hijos.

En lo particular, el comportamiento de estados como este me parece asombroso y no se a que atribuírselo, puesto que están adelantados al resto de los estados en cuanto al cambio en las condiciones de reproducción, mientras que la mayoría de ellos presentan marcadas diferencias en el transcurso de los años con respecto al deseo de tener un número grande de hijos, la tendencia de estas entidades federativas ha sido prácticamente constante.

Para ejemplificar a la categoría de estados con comportamiento constante respecto a las dos variables que se están manejando (decrecimiento a través de los años y respecto al número de hijos), se seleccionan dos estados con diferentes condiciones que provoque dicho hecho.

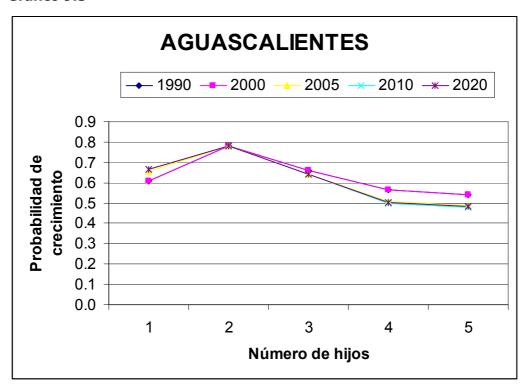


Gráfico 9.3

FUENTE: INEGI. II Conteo de Población y Vivienda 2005. Tabulados básicos

Aguascalientes, es el claro ejemplo de un estado con buenas condiciones de vida: servicios de salud, educación, economía, etc., son entidades con un número pequeño de habitantes por lo cual la gran mayoría tiene un trabajo estable y servicios de salud adecuados y fuera del ajetreo de las grandes ciudades. El tener esas condiciones de vida,

hace suponer que no les ha sido necesario cambiar sus tendencias reproductivas pues no han sido un problema.

Es claro que al igual que en todos los estados, la tendencia es la de tener 2 hijos, sin embargo, el índice de mujeres que desean tener 1 hijo es cercano al de aquellas que desean tener 3 y éste no esta tan alejado de las que desean tener 4.

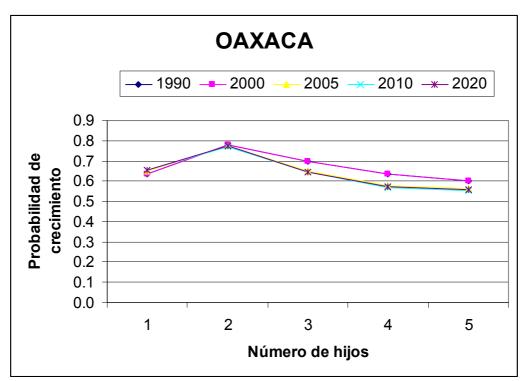


Gráfico 9.4

FUENTE: INEGI. II Conteo de Población y Vivienda 2005. Tabulados básicos

El estado de Oaxaca por su parte, pese a que presenta un comportamiento muy similar con respecto a la probabilidad de crecimiento de la familia, no tiene la misma similitud en cuanto a las condiciones de vida. La mayor parte de los habitantes de estados como este, viven en áreas rurales donde como es sabido no cuentan ni siquiera con los servicios básicos, como agua potable o luz eléctrica.

De modo que esto los ha llevado a continuar con las mismas tendencias de reproducción, pues les es prácticamente desconocida cualquier otra, además en caso de tener conocimiento de estas como podría pasar con las generaciones mas jóvenes, no tienen los medios necesarios para sustentar de manera económica un control de su natalidad.

DISTRITO FEDERAL 1990 2000 2005 2010 --- 2020 8.0 0.7 Probabilidad de 0.6 crecimiento 0.5 0.4 0.3 0.2 0.1 0.0 1 2 3 4 5 Número de hijos

Gráfico 9.5

FUENTE: INEGI. II Conteo de Población y Vivienda 2005. Tabulados básicos

La ciudad más grande del mundo, el Distrito Federal, como podemos ver, es de las primeras en adoptar el sistema de planificación familiar como en el caso de Baja California Sur, sin embargo, a diferencia de éste, la mayor parte de las mujeres en el Distrito Federal desean tener a lo más 2 hijos.

El comportamiento de esta ciudad es de esperar, pues como se mencionó antes, la mayor parte de los habitantes tienen empleos que les absorben la mayor parte del tiempo, por otro lado el número de mujeres en la planta laboral crece constantemente. Desde mi punto de vista, para las personas que viven en el Distrito Federal y aun mas para las generaciones más jóvenes, lo más importante es tener un trabajo estable lo suficientemente remunerado como para tener un lugar donde vivir y algo para comer así

como para esparcirse, por lo cual la idea de tener una gran familia (en cuanto al número de integrantes) queda de lado. Aunque éste pensamiento no es el mismo para todos y existe un gran número de personas que tienen grandes carencias, es importante mencionarlo.

Cabe mencionar que en todos los estados, sin excepción en los datos que estime y en aquellos que se ajustan, la proporción más alta de mujeres está dentro de las que desean tener a lo mas 2 hijos, sin embargo todo apunta a que en no mucho tiempo, la pendiente de la gráficas cambie por completo y el deseo de no tener hijos prevalezca sobre todos los demás patrones.

Tal vez suene brusco o exagerado, pero recordemos que hace aproximadamente 30 años entraron en marcha las nuevas políticas de población y los cambios han sido notorios, como puede verse en cualquiera de los estados de la Republica Mexicana donde el deseo de tener dos hijos es el mas alto.

CONCLUSIONES

En primer término tratando lo que se refiere a los métodos utilizados para el ajuste y proyección de las Tasas Acumuladas por Número de hijos vivos y Orden de Nacimiento, y a las Probabilidades de Crecimiento de las Familias, pude constatar que el Método de Interpolación de Newton arroja ajustes mas certeros además de ser un proceso mas corto y concreto. Mientras que la Función de Makeham además de ser un proceso difícil de entender en la cuestión teórica, en la práctica es un método muy laborioso que requiere de procesos más lentos.

Quiero mencionar que se dijo que la información ofrecida por el II Conteo de Población y Vivienda 2005 no era confiable, pero en comparación con los datos arrojados por el conteo hecho en 1995 en lo referente al número de hijos nacidos que son los datos que empleé para la elaboración de este proyecto, la información del conteo 2005 fue información bastante útil, además de acercarse mucho a las proyecciones estimadas para este año.

Como se pudo ver por medio de este trabajo de tesis, existe un cambio real en la tendencias reproductivas, las nuevas generaciones ya no desean familias grandes, de hecho cada vez existen más parejas que no desean hijos pues además de la responsabilidad de educarlos, está la carga económica y la falta de dedicación que se les tendría debido a la poca disposición de tiempo ya que las mujeres a las que se les atribuía el cuidado de ellos, ahora son personas que trabajan.

Desafortunadamente es difícil juzgar si esta es la forma correcta de pensar, podría decirse que el no tener hijos trae consigo una mayor estabilidad económica, así como más tiempo libre para disfrutar, sin embargo, no pensamos en el futuro, que pasará en cien o dos cientos de años, ¿existirá alguien que quiera tener hijos? Creo que los programas de planificación familiar hasta hoy en día han cumplido con el propósito de que la mayor parte de las personas tengan familias pequeñas, y aunque aun existen rezagos en zonas rurales donde la información no llega, así como en las adolescentes con una educación deficiente, existe una enorme posibilidad de que dichos programas alcancen la cobertura deseada. Pero, al final de todo, puede acarrear otro problema, que las personas comiencen a confundir el hecho de tener una

fertilidad controlada con el hecho de ser infértiles, siendo realista es un pronóstico muy a futuro, pero finalmente probable.

En las gráficas que describen las tendencias en los próximos años según mis cálculos y según los datos arrojados de años anteriores la transición demográfica más intensa se presentó en los años setenta tras la puesta en marcha de las políticas de población con la instalación de los programas de planificación familiar, pero a pesar de que el descenso será menos significativo, no dejará de ser un decrecimiento tal vez imposible de detener, esto puede sonar muy drástico, pero siendo objetiva, con el envejecimiento acelerado de nuestra población (un tema que por si solo puede tratarse en otra tesis) y la baja en la fecundidad hace pensar cosas desastrosas para el futuro.

Desde mi punto de vista, para la mujer es muy importante el tener un amplio control del número de hijos que desea tener, y decidir en qué momento quiere tenerlos. Como lo dije antes para mi es difícil decidir si la políticas de población fueron adecuadas o no, pero lo que es un hecho es que el cambio en las pautas reproductivas que se está sufriendo en México es algo irreversible, es decir, es prácticamente improbable que en muchos años cuando ya casi nadie quiera tener hijos, se implemente un programa para tenerlos, eso no funcionaría.

Existen autores que afirman que la sobrepoblación está acabando con todo siendo la principal fuente de contaminación y por ende del agujero en la capa de ozono, el hecho es que el problema no está en el número de personas, sino en cómo producimos nuestros recursos y en cómo los distribuimos por lo cual la inexistencia del reemplazo para la población no es la solución.

Como puede verse en el caso México, existen entidades federativas con un número impresionante de habitantes, tantos, que el empleo, los servicios de salud, las viviendas son insuficientes; sin embargo, existen otros que por la carencia en esos mismos rubros están deshabitados. En estados como estos, las mujeres aun tienen un número grande de hijos, pues no cuentan con los medios para poder controlar su fertilidad.

ANEXO II. CALCULO DE ESTIMACIÓN DE LAS TASAS ACUMULADAS POR EDAD Y ORDEN DE NACIMIENTO MEDIANTE LA FUNCIÓN DE MAKEHAM, EN CADA REGIÓN DEFINIDA DENTRO DE LOS ESTADOS UNIDOS MEXICANOS Y A NIVEL NACIONAL.

Estados Unidos Mexicanos

	Tasas Específicas de Fecundidad por edad y orden de nacimiento Estados Unidos Mexicanos								
Х	Sin hijos	1 hijo	2 hijos	3 hijos	4 hijos	5 hijos			
0	87.46%	10.20%	2.03%	0.25%	0.03%	0.01%			
1	51.02%	26.80%	15.72%	5.00%	1.14%	0.24%			
2	27.30%	23.64%	27.31%	14.55%	4.92%	1.59%			
3	15.00%	16.21%	29.76%	23.10%	9.49%	3.88%			
4	9.86%	11.14%	26.97%	26.99%	13.31%	6.45%			
5	7.73%	8.86%	23.13%	27.17%	15.86%	8.83%			
6	6.96%	7.91%	19.78%	25.26%	17.35%	10.93%			
7	6.25%	6.43%	14.51%	19.03%	15.22%	10.96%			

FUENTE: INEGI. IIConteo de Población y Vivienda 2005. Tabulados básicos

	Tasas Acumu		or edad y or s Mexicanos		miento	
Х	Sin hijos	1 hijo	2 hijos	3 hijos	4 hijos	5 hijos
0	87.46%	10.20%	2.03%	0.25%	0.03%	0.01%
1	138.48%	37.01%	17.75%	5.25%	1.17%	0.25%
2	165.78%	60.65%	45.06%	19.81%	6.09%	1.84%
3	180.78%	76.86%	74.83%	42.91%	15.58%	5.72%
4	190.65%	88.01%	101.80%	69.90%	28.89%	12.17%
5	198.38%	96.86%	124.93%	97.07%	44.75%	21.00%
6	205.34%	104.77%	144.71%	122.32%	62.10%	31.93%
7	211.59%	111.20%	159.22%	141.36%	77.32%	42.89%
7	211.59%	111.20%	159.22%	141.36%	77.32%	4:

FUENTE: INEGI. IIConteo de Población y Vivienda 2005. Tabulados básicos

• Orden de nacimiento igual a 1 hijo

Grupo	Edad x	ух	log yx	S	ΔS	Δ2 S
1	0 1	10.20% 37.01%		2.57701		
2	2 3	60.65% 76.86%		3.66852	1.09152	
3	4 5	88.01% 96.86%		3.93067	0.26214	-0.82938
4	6 7	104.77% 111.20%		4.06634	0.13568	-0.12646

х	a^x	d^x	b^d^x	Vx	Vx^2	ух	yxVx
0	1.00000	1.00000	0.14778	0.14778	0.02184	10.20319	1.50779
1	1.06716	0.39049	0.47396	0.50579	0.25582	37.00585	18.71721
2	1.13884	0.15248	0.74710	0.85083	0.72391	60.64822	51.60126
3	1.21533	0.05954	0.89239	1.08455	1.17625	76.86102	83.35965
4	1.29695	0.02325	0.95652	1.24056	1.53899	88.00520	109.17566
5	1.38406	0.00908	0.98279	1.36024	1.85026	96.86300	131.75726
6	1.47702	0.00355	0.99324	1.46704	2.15222	104.76815	153.69946
7	1.57623	0.00138	0.99736	1.57206	2.47137	111.20252	174.81685
					10.19066		724.63514

	Tasas	yx
x	Observadas	estimadas
0	10.20319	10.50802
1	37.00585	35.96565
2	60.64822	60.50057
3	76.86102	77.12001
4	88.00520	88.21344
5	96.86300	96.72392
6	104.76815	104.31826
7	111.20252	111.78562

 $Y(X) = 71.1078 (1.0672)^{X} (0.1478)^{0.3905^{X}}$ para x=1,2,...7

• Orden de nacimiento igual a 2 hijos

Grupo	Edad x	ух	log yx	S	ΔS	Δ2 S
1	0 1	2.03% 17.75%		1.55601		
2	2 3	45.06% 74.83%			1.97187	
3	4 5	101.80% 124.93%			0.57651	-1.39536
4	6 7	144.71% 159.22%			0.25809	-0.31841

х	a^x	d^x	b^d^x	Vx	Vx^2	ух	yxVx
0	1.00000	1.00000	0.02599	0.02599	0.00068	2.02696	0.05268
1	1.09897	0.47770	0.17488	0.19219	0.03694	17.74867	3.41118
2	1.20775	0.22819	0.43478	0.52510	0.27573	45.06302	23.66250
3	1.32728	0.10901	0.67174	0.89159	0.79493	74.82794	66.71559
4	1.45865	0.05207	0.82690	1.20616	1.45482	101.79612	122.78249
5	1.60302	0.02487	0.91320	1.46389	2.14296	124.92844	182.88090
6	1.76168	0.01188	0.95755	1.68690	2.84564	144.70946	244.11090
7	1.93604	0.00568	0.97949	1.89634	3.59611	159.21721	301.93010
					11.14780		945.54633

	Tasas	yx
x	Observadas	estimadas
0	2.02696	2.20438
1	17.74867	16.30169
2	45.06302	44.53831
3	74.82794	75.62354
4	101.79612	102.30543
5	124.92844	124.16537
6	144.70946	143.08158
7	159.21721	160.84586

• Orden de nacimiento igual a 3 hijos

Grupo	Edad x	ух	log yx	S	ΔS	Δ2 \$
1	0 1	0.25% 5.25%				
2	2 3	19.81% 42.91%			2.80510	
3	4 5	69.90% 97.07%			0.90219	-1.90292
4	6 7	122.32% 141.36%		4.23783	0.40631	-0.49588

х	a^x	d^x	b^d^x	Vx	Vx^2	ух	yxVx
0	1.00000	1.00000	0.00496	0.00496	0.00002	0.25335	0.00126
1	1.14258	0.51048	0.06664	0.07614	0.00580	5.25424	0.40006
2	1.30549	0.26059	0.25092	0.32758	0.10731	19.80545	6.48778
3	1.49163	0.13302	0.49371	0.73644	0.54235	42.90850	31.59963
4	1.70432	0.06791	0.69747	1.18871	1.41303	69.89584	83.08594
5	1.94732	0.03466	0.83200	1.62017	2.62496	97.06536	157.26254
6	2.22497	0.01770	0.91038	2.02558	4.10298	122.32377	247.77679
7	2.54222	0.00903	0.95320	2.42325	5.87212	141.35621	342.54096
					14.66857		869.15495

	Tasas	ух
х	Observadas	estimadas
0	0.25335	0.29407
1	5.25424	4.51149
2	19.80545	19.40978
3	42.90850	43.63632
4	69.89584	70.43454
5	97.06536	95.99983
6	122.32377	120.02155
7	141.35621	143.58434

• Orden de nacimiento igual a 4 hijos

Grupo	Edad x	ух	log yx	S	ΔS	Δ2 \$
1	0 1	0.03% 1.17%				
2	2 3	6.09% 15.58%			3.37202	
3	4 5	28.89% 44.75%		3.11161	1.13421	-2.23781
4	6 7	62.10% 77.32%			0.56976	-0.56445

x	a^x	d^x	b^d^x	Vx	Vx^2	ух	yxVx
0	1.00000	1.00000	0.00217	0.00217	0.00000	0.03438	0.00007
1	1.24406	0.50223	0.04592	0.05713	0.00326	1.17247	0.06698
2	1.54768	0.25223	0.21282	0.32938	0.10849	6.09099	2.00625
3	1.92541	0.12668	0.45974	0.88518	0.78355	15.58495	13.79551
4	2.39532	0.06362	0.67687	1.62131	2.62864	28.89333	46.84503
5	2.97992	0.03195	0.82200	2.44950	6.00005	44.75170	109.61931
6	3.70719	0.01605	0.90625	3.35963	11.28714	62.09701	208.62318
7	4.61196	0.00806	0.95176	4.38949	19.26761	77.32125	339.40077
					40.07875		720.35711

	Tasas	yx
x	Observadas	estimadas
0	0.03438	0.03895
1	1.17247	1.02677
2	6.09099	5.92013
3	15.58495	15.90985
4	28.89333	29.14067
5	44.75170	44.02620
6	62.09701	60.38451
7	77.32125	78.89466

 $Y(X) = 17.9735 (1.2441)^{X} (0.0022)^{0.5022^{X}}$ para x=1,2,...7

• Orden de nacimiento igual a 5 hijos

Grupo	Edad x	ух	log yx	S	ΔS	Δ2 S
1	0 1	0.01% 0.25%		-2.61066		
2	2 3	1.84% 5.72%			3.63178	
3	4 5	12.17% 21.00%		2.40758	1.38646	-2.24532
4	6 7	31.93% 42.89%		3.13656	0.72898	-0.65748

x	a^x	d^x	b^d^x	Vx	Vx^2	ух	yxVx
0	1.00000	1.00000	0.00122	0.00122	0.00000	0.00994	0.00001
1	1.30072	0.54113	0.02652	0.03449	0.00119	0.24669	0.00851
2	1.69188	0.29282	0.14026	0.23730	0.05631	1.83601	0.43569
3	2.20067	0.15845	0.34544	0.76021	0.57792	5.71804	4.34690
4	2.86246	0.08574	0.56260	1.61043	2.59348	12.17042	19.59958
5	3.72326	0.04640	0.73253	2.72741	7.43877	21.00278	57.28320
6	4.84293	0.02511	0.84499	4.09225	16.74649	31.93045	130.66733
7	6.29931	0.01359	0.91289	5.75057	33.06909	42.89027	246.64364
					60.48324		458.98486

	Tasas	yx
х	Observadas	estimadas
0	0.00994	0.00927
1	0.24669	0.26175
2	1.83601	1.80079
3	5.71804	5.76893
4	12.17042	12.22094
5	21.00278	20.69730
6	31.93045	31.05455
7	42.89027	43.63896

Región Norte

	Tasas Específicas de Fecundidad por edad y orden de nacimiento Región Norte								
Х	Sin hijos	1 hijo	2 hijos	3 hijos	4 hijos	5 hijos			
0	85.24%	12.17%	2.27%	0.27%	0.03%	0.01%			
1	47.37%	29.92%	16.68%	4.87%	0.93%	0.17%			
2	24.00%	25.87%	29.51%	15.12%	4.14%	1.02%			
3	12.42%	16.46%	32.33%	26.16%	8.77%	2.67%			
4	8.15%	10.60%	28.55%	32.02%	13.18%	4.80%			
5	6.62%	8.30%	23.71%	32.41%	16.68%	7.32%			
6	5.87%	7.45%	19.94%	29.65%	18.98%	10.04%			
7	6.14%	6.99%	16.39%	25.11%	19.63%	12.75%			
il									

FUENTE: INEGI. IIConteo de Población y Vivienda 2005. Tabulados básicos

	Tasas Acumuladas de Fecundidad por edad y orden de nacimiento Región Norte									
Х	Sin hijos	1 hijo	2 hijos	3 hijos	4 hijos	5 hijos				
0	85.24%	12.17%	2.27%	0.27%	0.03%	0.01%				
1	132.62%	42.09%	18.95%	5.14%	0.96%	0.18%				
2	156.62%	67.96%	48.46%	20.26%	5.10%	1.20%				
3	169.03%	84.42%	80.79%	46.42%	13.86%	3.87%				
4	177.19%	95.02%	109.34%	78.44%	27.05%	8.67%				
5	183.81%	103.32%	133.04%	110.85%	43.72%	15.99%				
6	189.68%	110.77%	152.99%	140.49%	62.71%	26.02%				
7	195.82%	117.76%	169.38%	165.60%	82.34%	38.78%				

FUENTE: INEGI. IIConteo de Población y Vivienda 2005. Tabulados básicos

• Orden de nacimiento igual a 1 hijo

Grupo	Edad x	ух	log yx	S	ΔS	Δ2 S
1	0 1	12.17% 42.09%				
2	2 3	67.96% 84.42%			1.04916	
3	4 5	95.02% 103.32%		3.99201	0.23326	-0.81590
4	6 7	110.77% 117.76%			0.12344	-0.10982

х	a^x	d^x	b^d^x	Vx	Vx^2	ух	yxVx
0	1.00000	1.00000	0.15958	0.15958	0.02546	12.17360	1.94263
1	1.06314	0.36689	0.51001	0.54221	0.29399	42.08907	22.82122
2	1.13026	0.13461	0.78112	0.88286	0.77945	67.96380	60.00264
3	1.20162	0.04939	0.91335	1.09750	1.20451	84.42438	92.65583
4	1.27748	0.01812	0.96729	1.23570	1.52696	95.01987	117.41626
5	1.35814	0.00665	0.98787	1.34167	1.80008	103.32198	138.62393
6	1.44388	0.00244	0.99553	1.43744	2.06622	110.77368	159.23012
7	1.53505	0.00089	0.99836	1.53253	2.34864	117.76274	180.47455
					10.04531		773.16718

	Tasas	ух
х	Observadas	estimadas
0	12.17360	12.28234
1	42.08907	41.73299
2	67.96380	67.95209
3	84.42438	84.47242
4	95.01987	95.10950
5	103.32198	103.26556
6	110.77368	110.63656
7	117.76274	117.95547

 $Y(X) = 76.9680 (1.0631)^{X} (0.1596)^{0.3669^{x}}$ para x=1,2,...7

• Orden de nacimiento igual a 2 hijos

Grupo	Edad x	ух	log yx	S	ΔS	Δ2 S
1	0 1	2.27% 18.95%				
2	2 3	48.46% 80.79%			1.95963	
3	4 5	109.34% 133.04%		4.16276	0.57002	-1.38961
4	6 7	152.99% 169.38%			0.25075	-0.31927

х	a^x	d^x	b^d^x	Vx	Vx^2	ух	yxVx
0	1.00000	1.00000	0.02610	0.02610	0.00068	2.26737	0.05918
1	1.09365	0.47933	0.17421	0.19052	0.03630	18.94938	3.61025
2	1.19607	0.22976	0.43273	0.51758	0.26789	48.45979	25.08173
3	1.30808	0.11013	0.66931	0.87552	0.76653	80.79063	70.73341
4	1.43058	0.05279	0.82493	1.18013	1.39272	109.33651	129.03171
5	1.56455	0.02530	0.91188	1.42668	2.03542	133.04433	189.81203
6	1.71107	0.01213	0.95675	1.63706	2.67997	152.98541	250.44647
7	1.87131	0.00581	0.97903	1.83207	3.35647	169.37892	310.31364
					10.53597		979.08842

	Tasas	yx
х	Observadas	estimadas
0	2.26737	2.42560
1	18.94938	17.70474
2	48.45979	48.09757
3	80.79063	81.35999
4	109.33651	109.66764
5	133.04433	132.57896
6	152.98541	152.12905
7	169.37892	170.25064

 $Y(X) = 92.9281 (1.0936)^{X} (0.0261)^{0.4793^{X}}$ para x=1,2,...7

• Orden de nacimiento igual a 3 hijos

Grupo	Edad x	ух	log yx	S	ΔS	Δ2 S
1	0 1	0.27% 5.14%				
2	2 3	20.26% 46.42%		2.97324	2.83861	
3	4 5	78.44% 110.85%		3.93923	0.96599	-1.87263
4	6 7	140.49% 165.60%			0.42748	-0.53850

a^x	d^x	b^d^x	Vx	Vx^2	ух	yxVx
1.00000	1.00000	0.00397	0.00397	0.00002	0.26547	0.00105
1.12858	0.53625	0.05154	0.05817	0.00338	5.13583	0.29873
1.27368	0.28757	0.20388	0.25968	0.06744	20.25653	5.26028
1.43745	0.15421	0.42624	0.61270	0.37540	46.41728	28.43984
1.62227	0.08269	0.63300	1.02689	1.05451	78.43584	80.54518
1.83086	0.04435	0.78253	1.43270	2.05263	110.84571	158.80870
2.06626	0.02378	0.87678	1.81165	3.28208	140.49097	254.52078
2.33193	0.01275	0.93191	2.17315	4.72260	165.60358	359.88197
				11.55805		887.75654
=	1.12858 1.27368 1.43745 1.62227 1.83086 2.06626	1.12858 0.53625 1.27368 0.28757 1.43745 0.15421 1.62227 0.08269 1.83086 0.04435 2.06626 0.02378	1.12858 0.53625 0.05154 1.27368 0.28757 0.20388 1.43745 0.15421 0.42624 1.62227 0.08269 0.63300 1.83086 0.04435 0.78253 2.06626 0.02378 0.87678	1.12858 0.53625 0.05154 0.05817 1.27368 0.28757 0.20388 0.25968 1.43745 0.15421 0.42624 0.61270 1.62227 0.08269 0.63300 1.02689 1.83086 0.04435 0.78253 1.43270 2.06626 0.02378 0.87678 1.81165	1.12858 0.53625 0.05154 0.05817 0.00338 1.27368 0.28757 0.20388 0.25968 0.06744 1.43745 0.15421 0.42624 0.61270 0.37540 1.62227 0.08269 0.63300 1.02689 1.05451 1.83086 0.04435 0.78253 1.43270 2.05263 2.06626 0.02378 0.87678 1.81165 3.28208 2.33193 0.01275 0.93191 2.17315 4.72260	1.12858 0.53625 0.05154 0.05817 0.00338 5.13583 1.27368 0.28757 0.20388 0.25968 0.06744 20.25653 1.43745 0.15421 0.42624 0.61270 0.37540 46.41728 1.62227 0.08269 0.63300 1.02689 1.05451 78.43584 1.83086 0.04435 0.78253 1.43270 2.05263 110.84571 2.06626 0.02378 0.87678 1.81165 3.28208 140.49097 2.33193 0.01275 0.93191 2.17315 4.72260 165.60358

	Tasas	ух
x	Observadas	estimadas
0	0.26547	0.30466
1	5.13583	4.46766
2	20.25653	19.94589
3	46.41728	47.06051
4	78.43584	78.87407
5	110.84571	110.04355
6	140.49097	139.15025
7	165.60358	166.91661

• Orden de nacimiento igual a 4 hijos

Grupo	Edad x	ух	log yx	S	ΔS	Δ2 \$
1	0 1	0.03% 0.96%				
2	2 3	5.10% 13.86%		1.84942	3.35002	
3	4 5	27.05% 43.72%			1.22341	-2.12661
4	6 7	62.71% 82.34%			0.64011	-0.58331

х	a^x	d^x	b^d^x	Vx	Vx^2	ух	yxVx
0	1.00000	1.00000	0.00224	0.00224	0.00001	0.03275	0.00007
1	1.27324	0.52373	0.04094	0.05212	0.00272	0.96417	0.05025
2	1.62114	0.27429	0.18755	0.30405	0.09244	5.09925	1.55041
3	2.06410	0.14365	0.41621	0.85910	0.73806	13.86465	11.91117
4	2.62810	0.07523	0.63187	1.66061	2.75761	27.04586	44.91250
5	3.34620	0.03940	0.78629	2.63108	6.92259	43.72490	115.04376
6	4.26052	0.02064	0.88168	3.75644	14.11083	62.70789	235.55836
7	5.42467	0.01081	0.93618	5.07847	25.79082	82.34090	418.16553
					50.41508		827.19206
					50.41508		

	Tasas	yx
х	Observadas	estimadas
0	0.03275	0.03673
1	0.96417	0.85518
2	5.09925	4.98870
3	13.86465	14.09585
4	27.04586	27.24661
5	43.72490	43.16981
6	62.70789	61.63427
7	82.34090	83.32561

 $Y(X) = 16.4076 (1.2732)^{X} (0.0022)^{0.5237^{x}}$ para x=1,2,...7

• Orden de nacimiento igual a 5 hijos

Grupo	Edad x	ух	log yx	S	ΔS	Δ2 S
1	0 1	0.01% 0.18%				
2	2 3	1.20% 3.87%			3.51705	
3	4 5	8.67% 15.99%			1.47574	-2.04132
4	6 7	26.02% 38.78%			0.86218	-0.61356

x	a^x	d^x	b^d^x	Vx	Vx^2	ух	yxVx
0	1.00000	1.00000	0.00202	0.00202	0.00000	0.00774	0.00002
1	1.41133	0.54824	0.00202	0.00202	0.00221	0.18209	0.00856
2	1.99186	0.30057	0.15486	0.30845	0.09514	1.19851	0.36968
3	2.81118	0.16478	0.35965	1.01105	1.02222	3.86707	3.90980
4	3.96751	0.09034	0.57084	2.26483	5.12944	8.67035	19.63684
5	5.59947	0.04953	0.73538	4.11775	16.95585	15.98546	65.82408
6	7.90272	0.02715	0.84492	6.67718	44.58478	26.02480	173.77240
7	11.15337	0.01489	0.91175	10.16913	103.41128	38.77545	394.31269
					171.20092		657.83406

х	Tasas Observadas	yx estimadas
	0.00774	0.00775
0	0.00774 0.18209	0.00775 0.18057
2	1.19851	1.18521
3	3.86707	3.88492
4	8.67035	8.70252
5	15.98546	15.82232
6	26.02480	25.65686
7	38.77545	39.07457

 $Y(X) = 3.8425 (1.4113)^{X} (0.0020)^{0.5482^{X}}$ para x=1,2,...7

Región Periférico Norte

	Tasas Específicas de Fecundidad por edad y orden de nacimiento Región Periférico Norte							
Х	Sin hijos	1 hijo	2 hijos	3 hijos	4 hijos	5 hijos		
0	85.74%	12.00%	2.00%	0.20%	0.03%	0.01%		
1	47.37%	30.37%	16.38%	4.73%	0.94%	0.16%		
2	21.44%	25.40%	30.92%	16.18%	4.41%	1.20%		
3	10.12%	15.16%	32.20%	28.15%	9.68%	3.10%		
4	6.39%	9.24%	26.61%	33.51%	14.79%	5.85%		
5	5.03%	6.99%	20.62%	32.63%	18.81%	9.03%		
6	4.49%	6.29%	16.13%	27.99%	21.14%	12.54%		
7	4.92%	5.84%	12.99%	21.87%	21.02%	15.49%		

FUENTE: INEGI. IIConteo de Población y Vivienda 2005. Tabulados básicos

	Tasas Acumuladas de Fecundidad por edad y orden de nacimiento Región Periférico Norte								
Х	Sin hijos	1 hijo	2 hijos	3 hijos	4 hijos	5 hijos			
0	85.74%	12.00%	2.00%	0.20%	0.03%	0.01%			
1	133.11%	42.37%	18.38%	4.93%	0.97%	0.01%			
2	154.55%	67.77%	49.30%	21.12%	5.38%	1.38%			
3	164.67%	82.93%	81.51%	49.27%	15.06%	4.48%			
4	171.05%	92.17%	108.12%	82.78%	29.85%	10.33%			
5	176.08%	99.16%	128.74%	115.41%	48.66%	19.36%			
6	180.57%	105.45%	144.86%	143.40%	69.81%	31.90%			
7	185.49%	111.29%	157.85%	165.27%	90.83%	47.39%			

FUENTE: INEGI. IIConteo de Población y Vivienda 2005. Tabulados básicos

• Orden de nacimiento igual a 1 hijo

Grupo	Edad x	ух	log yx	S	ΔS	Δ2 S
1	0 1	12.00% 42.37%				
2	2 3	67.77% 82.93%			1.04348	
3	4 5	92.17% 99.16%		3.96090	0.21117	-0.83231
4	6 7	105.45% 111.29%			0.10862	-0.10255

х	a^x	d^x	b^d^x	Vx	Vx^2	ух	yxVx
0	1.00000	1.00000	0.15799	0.15799	0.02496	12.00065	1.89598
1	1.05573	0.35101	0.52325	0.55241	0.30516	42.36937	23.40530
2	1.11456	0.12321	0.79664	0.88791	0.78838	67.76934	60.17300
3	1.17667	0.04325	0.92330	1.08642	1.18032	82.92773	90.09461
4	1.24225	0.01518	0.97238	1.20793	1.45911	92.16633	111.33091
5	1.31148	0.00533	0.99022	1.29865	1.68648	99.15790	128.77096
6	1.38456	0.00187	0.99655	1.37979	1.90383	105.45044	145.49979
7	1.46172	0.00066	0.99879	1.45995	2.13146	111.29356	162.48337
					9.47969		723.65392

х	Tasas Observadas	yx estimadas
0	12.00065	12.06051
1	42.36937	42.16953
2	67.76934	67.78054
3	82.92773	82.93458
4	92.16633	92.21043
5	99.15790	99.13504
6	105.45044	105.32963
7	111.29356	111.44881

 $Y(X) = 76.3363 (1.0557)^{X} (0.1580)^{0.3510^{x}}$ para x=1,2,...7

• Orden de nacimiento igual a 2 hijos

Grupo	Edad x	ух	log yx	S	ΔS	Δ2 S
1	0 1	2.00% 18.38%				
2	2 3	49.30% 81.51%			2.03849	
3	4 5	108.12% 128.74%			0.53951	-1.49898
4	6 7	144.86% 157.85%			0.21563	-0.32388

х	a^x	d^x	b^d^x	Vx	Vx^2	ух	yxVx
0	1.00000	1.00000	0.02162	0.02162	0.00047	2.00104	0.04326
1	1.07545	0.46483	0.16826	0.02102	0.03275	18.37959	3.32598
2	1.15659	0.21607	0.43673	0.50512	0.25515	49.30383	24.90456
3	1.24386	0.10043	0.68040	0.84632	0.71625	81.50740	68.98106
4	1.33771	0.04669	0.83611	1.11847	1.25097	108.11507	120.92323
5	1.43864	0.02170	0.92016	1.32378	1.75240	128.73606	170.41840
6	1.54718	0.01009	0.96206	1.48849	2.21559	144.86363	215.62741
7	1.66392	0.00469	0.98218	1.63427	2.67084	157.85403	257.97606
					8.89441		862.19995

	Tasas	ух
x	Observadas	estimadas
0	2.00104	2.09581
1	18.37959	17.54179
2	49.30383	48.96537
3	81.50740	82.03962
4	108.11507	108.42123
5	128.73606	128.32377
6	144.86363	144.28974
7	157.85403	158.42167

 $Y(X) = 96.9363 (1.0754)^{X} (1.0216)^{0.4648^{X}}$ para x=1,2,...7

• Orden de nacimiento igual a 3 hijos

Grupo	Edad x	ух	log yx	S	ΔS	Δ2 S
1	0 1	0.20% 4.93%				
2	2 3	21.12% 49.27%			3.01627	
3	4 5	82.78% 115.41%			0.96287	-2.05340
4	6 7	143.40% 165.27%			0.39460	-0.56827

х	a^x	d^x	b^d^x	Vx	Vx^2	ух	yxVx
0	1.00000	1.00000	0.00268	0.00268	0.00001	0.20313	0.00054
1	1.10736	0.52607	0.04434	0.04910	0.00241	4.93442	0.24228
2	1.22624	0.27675	0.19414	0.23807	0.05668	21.11850	5.02764
3	1.35789	0.14559	0.42219	0.57328	0.32865	49.27329	28.24757
4	1.50367	0.07659	0.63532	0.95531	0.91261	82.77831	79.07859
5	1.66510	0.04029	0.78770	1.31159	1.72028	115.40619	151.36606
6	1.84386	0.02120	0.88202	1.62632	2.64491	143.39822	233.21130
7	2.04181	0.01115	0.93609	1.91132	3.65314	165.27205	315.88779
					9.31870		813.06178

х	Tasas Observadas	yx estimadas
0	0.20313	0.23360
1	4.93442	4.28407
2	21.11850	20.77159
3	49.27329	50.01933
4	82.77831	83.35099
5	115.40619	114.43736
6	143.39822	141.89734
7	165.27205	166.76383

 $Y(X) = 87.2506 (1.1074)^{X} (0.0027)^{0.5261^{x}}$ para x=1,2,...7

• Orden de nacimiento igual a 4 hijos

Grupo	Edad x	ух	log yx	S	ΔS	Δ2 S
1	0 1	0.03% 0.97%				
2	2 3	5.38% 15.06%			3.43413	
3	4 5	29.85% 48.66%			1.25359	-2.18054
4	6 7	69.81% 90.83%			0.63996	-0.61363

х	a^x	d^x	b^d^x	Vx	Vx^2	ух	yxVx
	4 00000	1.00000	0.00174	0.00474	0.00000	0.02070	0.00005
0	1.00000			0.00174		0.03078	0.00005
1	1.25867	0.53048	0.03438	0.04327	0.00187	0.96879	0.04192
2	1.58426	0.28141	0.16732	0.26508	0.07027	5.37853	1.42572
3	1.99406	0.14928	0.38735	0.77240	0.59660	15.06318	11.63482
4	2.50987	0.07919	0.60464	1.51757	2.30301	29.85043	45.30007
5	3.15910	0.04201	0.76575	2.41909	5.85200	48.66486	117.72468
6	3.97628	0.02229	0.86798	3.45134	11.91174	69.80593	240.92388
7	5.00483	0.01182	0.92764	4.64270	21.55466	90.83046	421.69849
					42.29015		838.74964

	Tasas	ух
x	Observadas	estimadas
0	0.03078	0.03453
•	0.000.0	0.00.00
1	0.96879	0.85828
2	5.37853	5.25731
3	15.06318	15.31921
4	29.85043	30.09826
5	48.66486	47.97834
6	69.80593	68.45114
7	90.83046	92.07965

 $Y(X) = 19.8332 (1.2587)^{X} (0.0017)^{0.5305^{x}}$ para x=1,2,...7

• Orden de nacimiento igual a 5 hijos

Grupo	Edad x	ух	log yx	S	ΔS	Δ2 S
1	0 1	0.01% 0.17%		-2.75384		
2	2 3	1.38% 4.48%			3.54354	
3	4 5	10.33% 19.36%			1.51124	-2.03230
4	6 7	31.90% 47.39%			0.87854	-0.63270

х	a^x	d^x	b^d^x	Vx	Vx^2	ух	yxVx
0	1.00000	1.00000	0.00178	0.00178	0.00000	0.01007	0.00002
1	1.40648	0.55796	0.02920	0.04107	0.00169	0.17500	0.00719
2	1.97818	0.31132	0.13923	0.27543	0.07586	1.37590	0.37896
3	2.78227	0.17370	0.33285	0.92607	0.85760	4.47837	4.14728
4	3.91320	0.09692	0.54129	2.11818	4.48670	10.33042	21.88174
5	5.50384	0.05408	0.71001	3.90779	15.27080	19.35648	75.64102
6	7.74103	0.03017	0.82606	6.39456	40.89041	31.90049	203.98967
7	10.88760	0.01684	0.89887	9.78651	95.77581	47.39049	463.78755
					157.35889		769.83342

х	Tasas Observadas	yx estimadas
0	0.01007	0.00869
1	0.17500	0.20092
2	1.37590	1.34746
3 4	4.47837 10.33042	4.53053 10.36261
5	19.35648	19.11773
6	31.90049	31.28356
7	47.39049	47.87771

 $Y(X) = 4.8922 (1.4065)^{X} (0.0018)^{0.5580^{X}}$ para x=1,2,...7

Región Pacífico Sur

	Tasas Específicas de Fecundidad por edad y orden de nacimiento Región Pacífico Sur								
Х	Sin hijos	1 hijo	2 hijos	3 hijos	4 hijos	5 hijos			
0	88.23%	9.46%	1.98%	0.27%	0.04%	0.01%			
1	52.75%	24.75%	15.35%	5.37%	1.37%	0.31%			
2	27.95%	21.61%	25.68%	15.38%	6.15%	2.22%			
3	15.38%	14.11%	26.09%	23.39%	11.59%	5.50%			
4	10.68%	9.39%	22.08%	25.80%	15.48%	8.63%			
5	8.69%	7.53%	18.12%	24.71%	17.32%	11.23%			
6	8.30%	6.80%	15.32%	21.98%	17.92%	13.08%			
7	9.08%	6.67%	13.10%	18.87%	17.40%	14.22%			

FUENTE: INEGI. IIConteo de Población y Vivienda 2005. Tabulados básicos

	Tasas Acumuladas de Fecundidad por edad y orden de nacimiento Región Pacífico Sur								
Х	Sin hijos	1 hijo	2 hijos	3 hijos	4 hijos	5 hijos			
0	88.23%	9.46%	1.98%	0.27%	0.04%	0.01%			
1	140.98%	34.21%	17.33%	5.63%	1.41%	0.33%			
2	168.93%	55.81%	43.01%	21.01%	7.55%	2.54%			
3	184.30%	69.92%	69.10%	44.40%	19.15%	8.04%			
4	194.99%	79.30%	91.18%	70.20%	34.63%	16.67%			
5	203.68%	86.84%	109.31%	94.91%	51.94%	27.89%			
6	211.97%	93.64%	124.63%	116.89%	69.86%	40.98%			
7	221.06%	100.31%	137.72%	135.76%	87.26%	55.20%			

FUENTE: INEGI. IIConteo de Población y Vivienda 2005. Tabulados básicos

• Orden de nacimiento igual a 1 hijo

Grupo	Edad x	ух	log yx	S	ΔS	Δ2 \$
1	0 1	9.46% 34.21%				
2	2 3	55.81% 69.92%			1.08132	
3	4 5	79.30% 86.84%			0.24670	-0.83462
4	6 7	93.64% 100.31%			0.13478	-0.11192

х	a^x	d^x	b^d^x	Vx	Vx^2	ух	yxVx
0	1.00000	1.00000	0.15319	0.15319	0.02347	9.46006	1.44918
1	1.06995	0.36618	0.50309	0.53828	0.28974	34.20650	18.41259
2	1.14479	0.13409	0.77758	0.89017	0.79240	55.81152	49.68158
3	1.22486	0.04910	0.91200	1.11707	1.24785	69.91901	78.10445
4	1.31054	0.01798	0.96683	1.26707	1.60546	79.30471	100.48445
5	1.40221	0.00658	0.98772	1.38499	1.91821	86.83916	120.27164
6	1.50029	0.00241	0.99549	1.49352	2.23059	93.63783	139.84969
7	1.60523	0.00088	0.99835	1.60257	2.56824	100.30987	160.75385
					10.67595		669.00744

	Tasas	ух
х	Observadas	estimadas
0	9.46006	9.59961
1	34.20650	33.73111
2	55.81152	55.78223
3	69.91901	70.00109
4	79.30471	79.40067
5	86.83916	86.79045
6	93.63783	93.59109
7	100.30987	100.42504

 $Y(X) = 62.6649 (1.0699)^{X} (01532)^{0.3662^{X}}$ para x=1,2,...7

• Orden de nacimiento igual a 2 hijos

Grupo	Edad x	ух	log yx	S	ΔS	Δ2 S
1	0 1	1.98% 17.33%				
2	2 3	43.01% 69.10%			1.93819	
3	4 5	91.18% 109.31%			0.52551	-1.41267
4	6 7	124.63% 137.72%		4.23462	0.23606	-0.28945

х	a^x	d^x	b^d^x	Vx	Vx^2	ух	yxVx
0	1.00000	1.00000	0.02896	0.02896	0.00084	1.97733	0.05725
1	1.09740	0.45266	0.20123	0.22083	0.04877	17.32933	3.82683
2	1.20430	0.20490	0.48396	0.58283	0.33969	43.00806	25.06653
3	1.32160	0.09275	0.71999	0.95154	0.90543	69.10299	65.75436
4	1.45033	0.04198	0.86182	1.24993	1.56232	91.18392	113.97342
5	1.59160	0.01900	0.93490	1.48799	2.21412	109.30556	162.64573
6	1.74663	0.00860	0.96999	1.69421	2.87036	124.62693	211.14449
7	1.91676	0.00389	0.98630	1.89050	3.57400	137.72355	260.36683
					11.51553		842.83544

х	Tasas Observadas	yx estimadas
0	1.97733	2.11927
1	17.32933	16.16279
2	43.00806	42.65826
3	69.10299	69.64446
4	91.18392	91.48380
5	109.30556	108.90788
6	124.62693	124.00145
7	137.72355	138.36821

 $Y(X) = 73.1912 (1.0974)^{X} (0.0290)^{0.4527^{x}}$ para x=1,2,...7

• Orden de nacimiento igual a 3 hijos

Grupo	Edad x	ух	log yx	S	ΔS	Δ2 S
1	0 1	0.27% 5.63%				
2	2 3	21.01% 44.40%			2.79174	
3	4 5	70.20% 94.91%			0.85371	-1.93803
4	6 7	116.89% 135.76%			0.37693	-0.47678

х	a^x	d^x	b^d^x	Vx	Vx^2	ух	yxVx
0	1.00000	1.00000	0.00526	0.00526	0.00003	0.26751	0.00141
1	1.13590	0.49600	0.07409	0.08415	0.00708	5.63425	0.47414
2	1.29028	0.24601	0.27504	0.35487	0.12594	21.01330	7.45707
3	1.46563	0.12202	0.52716	0.77262	0.59694	44.40354	34.30688
4	1.66481	0.06052	0.72792	1.21185	1.46858	70.19919	85.07076
5	1.89107	0.03002	0.85427	1.61547	2.60976	94.90538	153.31724
6	2.14807	0.01489	0.92485	1.98664	3.94673	116.89025	232.21849
7	2.44000	0.00739	0.96199	2.34726	5.50961	135.76102	318.66579
					14.26465		831.51178

Tasas	ух
Observadas	estimadas
0.26751	0.30678
5.63425	4.90548
21.01330	20.68621
44.40354	45.03716
70.19919	70.64079
94.90538	94.16889
116.89025	115.80461
135.76102	136.82569
	0.26751 5.63425 21.01330 44.40354 70.19919 94.90538 116.89025

• Orden de nacimiento igual a 4 hijos

Grupo	Edad x	ух	log yx	S	ΔS	Δ2 \$
1	0 1	0.04% 1.41%		-1.24875		
2	2 3	7.55% 19.15%			3.40909	
3	4 5	34.63% 51.94%			1.09459	-2.31450
4	6 7	69.86% 87.26%			0.53011	-0.56448

x	a^x	d^x	b^d^x	Vx	Vx^2	ух	yxVx
	4 00000	4.00000	0.00405	0.00405	0.00000	0.04000	0.00000
0	1.00000	1.00000	0.00195	0.00195	0.00000	0.04008	0.00008
1	1.22182	0.49385	0.04588	0.05606	0.00314	1.40710	0.07888
2	1.49285	0.24389	0.21830	0.32588	0.10620	7.55482	2.46198
3	1.82399	0.12045	0.47161	0.86022	0.73998	19.14766	16.47117
4	2.22859	0.05948	0.68992	1.53755	2.36407	34.62536	53.23832
5	2.72294	0.02938	0.83251	2.26688	5.13875	51.94401	117.75087
6	3.32694	0.01451	0.91345	3.03900	9.23549	69.85993	212.30402
7	4.06493	0.00716	0.95628	3.88720	15.11032	87.25894	339.19286
					32.69795		741.49819

	Tasas	yx
х	Observadas	estimadas
0	0.04008	0.04421
1	1.40710	1.27125
2	7.55482	7.39009
3	19.14766	19.50735
4	34.62536	34.86740
5	51.94401	51.40652
6	69.85993	68.91594
7	87.25894	88.15083

 $Y(X) = 22.6762 (1.2218)^{X} (0.0019)^{.4939^{x}}$ para x=1,2,...7

• Orden de nacimiento igual a 5 hijos

Grupo	Edad x	ух	log yx	S	ΔS	Δ2 \$
1	0 1	0.01% 0.33%				
2	2 3	2.54% 8.04%			3.71744	
3	4 5	16.67% 27.89%		2.66738	1.35679	-2.36066
4	6 7	40.98% 55.20%			0.68711	-0.66968

x	a^x	d^x	b^d^x	Vx	Vx^2	ух	yxVx
0	1.00000	1.00000	0.00100	0.00100	0.00000	0.01202	0.00001
1	1.27489	0.53262	0.02519	0.03211	0.00103	0.32591	0.01046
2	1.62536	0.28368	0.14074	0.22876	0.05233	2.54274	0.58168
3	2.07216	0.15109	0.35192	0.72922	0.53177	8.04065	5.86343
4	2.64178	0.08048	0.57336	1.51468	2.29426	16.66735	25.24573
5	3.36799	0.04286	0.74359	2.50440	6.27202	27.89408	69.85793
6	4.29384	0.02283	0.85402	3.66703	13.44712	40.97782	150.26698
7	5.47419	0.01216	0.91939	5.03291	25.33015	55.19989	277.81593
					47.92868		529.64216

	Tasas	ух
x	Observadas	estimadas
0	0.01202	0.01100
1	0.32591	0.35483
2	2.54274	2.52793
3	8.04065	8.05838
4	16.66735	16.73819
5	27.89408	27.67519
6	40.97782	40.52301
7	55.19989	55.61679

 $Y(X) = 11.0506 (1.2749)^{X} (0.0010)^{.5326^{X}}$ para x=1,2,...7

Región Sur

Tasas Específicas de Fecundidad por edad y orden de nacim Región Sur								
Х	Sin hijos	1 hijo	2 hijos	3 hijos	4 hijos	5 hijos		
0	84.61%	11.56%	3.17%	0.54%	0.08%	0.02%		
1	44.94%	25.13%	18.33%	8.11%	2.61%	0.65%		
2	22.95%	20.39%	26.01%	16.72%	8.21%	3.63%		
3	12.45%	13.74%	26.69%	22.36%	11.97%	6.51%		
4	8.33%	9.61%	23.29%	24.19%	15.06%	9.08%		
5	6.53%	7.57%	19.99%	23.63%	17.00%	11.27%		
6	5.99%	6.95%	16.16%	21.75%	17.62%	13.29%		
7	5.92%	6.74%	14.19%	19.20%	17.45%	14.65%		

FUENTE: INEGI. IIConteo de Población y Vivienda 2005. Tabulados básicos

	Tasas Acu	ımuladas de	Fecundidad Región		orden de naci	imiento
X	Sin hijos	1 hijo	2 hijos	3 hijos	4 hijos	5 hijos
0	84.61%	11.56%	3.17%	0.54%	0.08%	0.02%
1	129.55%	36.69%	21.50%	8.65%	2.68%	0.02 %
2	152.50%	57.09%	47.52%	25.37%	10.89%	4.30%
3	164.94%	70.82%	74.21%	47.73%	22.86%	10.81%
4	173.28%	80.43%	97.50%	71.93%	37.92%	19.89%
5	179.81%	88.01%	117.49%	95.56%	54.93%	31.16%
6	185.80%	94.96%	133.65%	117.30%	72.54%	44.45%
7	191.72%	101.70%	147.84%	136.51%	90.00%	59.10%

FUENTE: INEGI. IIConteo de Población y Vivienda 2005. Tabulados básicos

• Orden de nacimiento igual a 1 hijo

Grupo	Edad x	ух	log yx	S	ΔS	Δ2 S
1	0 1	11.56% 36.69%				
2	2 3	57.09% 70.82%			0.97905	
3	4 5	80.43% 88.01%			0.24324	-0.73581
4	6 7	94.96% 101.70%			0.13490	-0.10834

х	a^x	d^x	b^d^x	Vx	Vx^2	ух	yxVx
0	1.00000	1.00000	0.18567	0.18567	0.03448	11.56252	2.14687
1	1.06917	0.38372	0.52409	0.56034	0.31398	36.69482	20.56168
2	1.14314	0.14724	0.78042	0.89213	0.79589	57.08614	50.92816
3	1.22221	0.05650	0.90925	1.11130	1.23499	70.82360	78.70621
4	1.30676	0.02168	0.96415	1.25992	1.58739	80.43327	101.33915
5	1.39715	0.00832	0.98609	1.37772	1.89811	88.00693	121.24880
6	1.49380	0.00319	0.99464	1.48579	2.20758	94.95785	141.08774
7	1.59713	0.00122	0.99794	1.59384	2.54034	101.70067	162.09499
					10.61275		678.11360

х	Tasas Observadas	yx estimadas
0	11.56252	11.86389
1	36.69482	35.80371
2	57.08614	57.00351
3	70.82360	71.00768
4	80.43327	80.50371
5	88.00693	88.03085
6	94.95785	94.93639
7	101.70067	101.84040

 $Y(X) = 63.8961 (1.0692)^{X} (0.1857)^{0.3837^{x}}$ para x=1,2,...7

• Orden de nacimiento igual a 2 hijos

Grupo	Edad x	ух	log yx	S	ΔS	Δ2 S
1	0 1	3.17% 21.50%				
2	2 3	47.52% 74.21%			1.71365	
3	4 5	97.50% 117.49%		4.05898	0.51170	-1.20195
4	6 7	133.65% 147.84%		4.29576	0.23678	-0.27492

х	a^x	d^x	b^d^x	Vx	Vx^2	ух	yxVx
0	1.00000	1.00000	0.04297	0.04297	0.00185	3.17062	0.13624
1	1.09349	0.47825	0.22197	0.24273	0.05892	21.50252	5.21922
2	1.19571	0.22873	0.48682	0.58210	0.33884	47.51565	27.65871
3	1.30750	0.10939	0.70873	0.92667	0.85871	74.20725	68.76547
4	1.42973	0.05232	0.84819	1.21268	1.47060	97.49790	118.23423
5	1.56339	0.02502	0.92428	1.44501	2.08805	117.48609	169.76830
6	1.70955	0.01197	0.96304	1.64637	2.71053	133.65095	220.03855
7	1.86937	0.00572	0.98215	1.83600	3.37091	147.84004	271.43501
					10.89840		881.25572

x	Tasas Observadas	yx estimadas
^	ODSCI Vadas	estimadas
0	3.17062	3.47450
1	21.50252	19.62707
2	47.51565	47.06894
3	74.20725	74.93129
4	97.49790	98.05891
5	117.48609	116.84476
6	133.65095	133.12690
7	147.84004	148.46118

• Orden de nacimiento igual a 3 hijos

Grupo	Edad x	ух	log yx	S	ΔS	Δ2 S
1	0 1	0.54% 8.65%				
2	2 3	25.37% 47.73%			2.41596	
3	4 5	71.93% 95.56%			0.75394	-1.66202
4	6 7	117.30% 136.51%		4.20446	0.36731	-0.38663

х	a^x	d^x	b^d^x	Vx	Vx^2	ух	yxVx
0	1.00000	1.00000	0.01247	0.01247	0.00016	0.53730	0.00670
1	1.15485	0.48231	0.12068	0.13937	0.01942	8.65053	1.20563
2	1.33368	0.23263	0.36063	0.48097	0.23133	25.37339	12.20380
3	1.54020	0.11220	0.61146	0.94177	0.88693	47.73478	44.95512
4	1.77870	0.05411	0.78879	1.40303	1.96848	71.92692	100.91528
5	2.05414	0.02610	0.89187	1.83203	3.35634	95.55636	175.06228
6	2.37222	0.01259	0.94630	2.24484	5.03933	117.30338	263.32788
7	2.73957	0.00607	0.97373	2.66760	7.11610	136.50524	364.14158
					18.61808		961.81827

х	Tasas Observadas	yx estimadas
0	0.53730	0.64431
1	8.65053	7.19993
2	25.37339	24.84704
3	47.73478	48.65217
4	71.92692	72.48089
5	95.55636	94.64355
6	117.30338	115.96965
7	136.50524	137.80944

 $Y(X) = 51.6604 (1.1549)^{X} (0.0125)^{0.4823^{X}}$ para x=1,2,...7

• Orden de nacimiento igual a 4 hijos

Grupo	Edad x	ух	log yx	S	ΔS	Δ2 \$
1	0 1	0.08% 2.68%		-0.67665		
2	2 3	10.89% 22.86%			3.07295	
3	4 5	37.92% 54.93%			0.92242	-2.15052
4	6 7	72.54% 90.00%			0.49611	-0.42631

x	a^x	d^x	b^d^x	Vx	Vx^2	ух	yxVx
0	1.00000	1.00000	0.00484	0.00484	0.00002	0.07846	0.00038
1	1.25221	0.44524	0.09319	0.11669	0.01362	2.68358	0.31315
2	1.56802	0.19824	0.34763	0.54510	0.29713	10.89408	5.93832
3	1.96349	0.08826	0.62473	1.22664	1.50465	22.86127	28.04255
4	2.45869	0.03930	0.81102	1.99405	3.97625	37.92466	75.62382
5	3.07879	0.01750	0.91096	2.80464	7.86603	54.92797	154.05345
6	3.85528	0.00779	0.95933	3.69848	13.67872	72.54468	268.30474
7	4.82761	0.00347	0.98168	4.73918	22.45979	89.99545	426.50427
					49.79621		958.78069

х	Tasas Observadas	yx estimadas
0	0.07846	0.09327
1	2.68358	2.24679
2	10.89408	10.49533
3	22.86127	23.61784
4	37.92466	38.39369
5	54.92797	54.00088
6	72.54468	71.21078
7	89.99545	91.24851

 $Y(X) = 19.2541 (1.2522)^{X} (0.0048)^{0.4452^{x}}$ para x=1,2,...7

• Orden de nacimiento igual a 5 hijos

Grupo	Edad x	ух	log yx	S	ΔS	Δ2 S
1	0 1	0.02% 0.67%		-1.80398		
2	2 3	4.30% 10.81%		1.66739	3.47137	
3	4 5	19.89% 31.16%		2.79234	1.12494	-2.34643
4	6 7	44.45% 59.10%			0.62719	-0.49776

x	a^x	d^x	b^d^x	Vx	Vx^2	ух	yxVx
0	1.00000	1.00000	0.00258	0.00258	0.00001	0.02343	0.00006
1	1.32828	0.46058	0.06427	0.08536	0.00729	0.67040	0.05723
2	1.76434	0.21213	0.28248	0.49838	0.24838	4.29938	2.14273
3	2.34354	0.09770	0.55864	1.30920	1.71399	10.81401	14.15765
4	3.11289	0.04500	0.76478	2.38066	5.66754	19.89360	47.35989
5	4.13479	0.02073	0.88381	3.65437	13.35439	31.16176	113.87647
6	5.49218	0.00955	0.94470	5.18846	26.92009	44.45464	230.65103
7	7.29517	0.00440	0.97414	7.10651	50.50244	59.10217	420.00996
					98.41413		828.25503

	Tasas	yx
x	Observadas	estimadas
0	0.02343	0.02173
1	0.67040	0.71842
2	4.29938	4.19439
3	10.81401	11.01822
4	19.89360	20.03567
5	31.16176	30.75521
6	44.45464	43.66615
7	59.10217	59.80848

 $Y(X) = 8.4160 (1.3283)^{X} (0.0026)^{0.4606^{X}}$ para x=1,2,...7

Región Golfo

	Tasas Específicas de Fecundidad por edad y orden de nacimiento Región Golfo						
Х	Sin hijos	1 hijo	2 hijos	3 hijos	4 hijos	5 hijos	
0 1 2 3 4 5 6	87.40% 50.79% 26.36% 14.28% 9.38% 7.42% 6.68% 6.85%	10.12% 26.38% 23.89% 16.97% 11.74% 9.36% 8.40% 7.77%	2.14% 15.88% 27.63% 31.17% 29.18% 25.11% 21.13% 17.72%	0.29% 5.31% 14.46% 21.58% 24.85% 25.53% 24.39% 21.69%	0.04% 1.28% 5.08% 9.07% 12.42% 14.76% 16.25%	0.01% 0.28% 1.77% 4.06% 6.53% 8.76% 10.74% 12.50%	

FUENTE: INEGI. IIConteo de Población y Vivienda 2005. Tabulados básicos

	Tasas Acumuladas de Fecundidad por edad y orden de nacimien Región Golfo					
Х	Sin hijos	1 hijo	2 hijos	3 hijos	4 hijos	5 hijos
0	87.40%	10.12%	2.14%	0.29%	0.04%	0.01%
1	138.19%	36.49%	18.02%	5.60%	1.31%	0.01%
2	164.55%	60.38%	45.65%	20.06%	6.39%	2.06%
3	178.84%	77.35%	76.82%	41.64%	15.46%	6.12%
4	188.21%	89.08%	106.01%	66.49%	27.88%	12.65%
5	195.63%	98.44%	131.12%	92.02%	42.64%	21.41%
6	202.31%	106.84%	152.25%	116.41%	58.89%	32.15%
7	209.16%	114.62%	169.97%	138.10%	75.79%	44.65%

FUENTE: INEGI. IIConteo de Población y Vivienda 2005. Tabulados básicos

• Orden de nacimiento igual a 1 hijo

Grupo	Edad x	ух	log yx	S	ΔS	Δ2 S
1	0 1	10.12% 36.49%				
2	2 3	60.38% 77.35%			1.10219	
3	4 5	89.08% 98.44%			0.27364	-0.82854
4	6 7	106.84% 114.62%			0.14501	-0.12863

х	a^x	d^x	b^d^x	Vx	Vx^2	ух	yxVx
0	1.00000	1.00000	0.14693	0.14693	0.02159	10.11525	1.48621
1	1.07237	0.39402	0.46970	0.50370	0.25371	36.49073	18.38020
2	1.14997	0.15525	0.74249	0.85384	0.72905	60.37977	51.55497
3	1.23319	0.06117	0.88931	1.09668	1.20270	77.34890	84.82691
4	1.32243	0.02410	0.95483	1.26269	1.59439	89.08479	112.48644
5	1.41812	0.00950	0.98195	1.39253	1.93914	98.44295	137.08472
6	1.52075	0.00374	0.99285	1.50987	2.27972	106.84419	161.32120
7	1.63080	0.00147	0.99718	1.62619	2.64450	114.61691	186.38918
					10.66480		753.52984

х	Tasas Observadas	yx estimadas
0	10.11525	10.38131
1	36.49073	35.58898
2	60.37977	60.32911
3	77.34890	77.48674
4	89.08479	89.21636
5	98.44295	98.39031
6	106.84419	106.68132
7	114.61691	114.89996

 $Y(X) = 70.6558 (1.0724)^{X} (0.1469)^{0.3940^{x}}$ para x=1,2,...7

• Orden de nacimiento igual a 2 hijos

Grupo	Edad x	ух	log yx	S	ΔS	Δ2 S
1	0 1	2.14% 18.02%				
2	2 3	45.65% 76.82%			1.95844	
3	4 5	106.01% 131.12%		4.14301	0.59803	-1.36041
4	6 7	152.25% 169.97%			0.26992	-0.32811

х	a^x	d^x	b^d^x	Vx	Vx^2	ух	yxVx
0	1.00000	1.00000	0.02603	0.02603	0.00068	2.14136	0.05574
1	1.10004	0.49110	0.16667	0.18334	0.03361	18.02373	3.30452
2	1.21009	0.24118	0.41481	0.50196	0.25196	45.65388	22.91639
3	1.33115	0.11845	0.64912	0.86408	0.74663	76.82429	66.38210
4	1.46432	0.05817	0.80878	1.18432	1.40261	106.00751	125.54673
5	1.61082	0.02857	0.90102	1.45138	2.10651	131.12016	190.30548
6	1.77196	0.01403	0.95010	1.68355	2.83434	152.24949	256.31941
7	1.94923	0.00689	0.97518	1.90085	3.61322	169.97006	323.08709
					10.98956		987.91747

х	Tasas Observadas	yx estimadas
0	2.14136	2.34021
1	18.02373	16.48176
2	45.65388	45.12411
3	76.82429	77.67704
4	106.00751	106.46554
5	131.12016	130.47344
6	152.24949	151.34424
7	169.97006	170.87851

• Orden de nacimiento igual a 3 hijos

Grupo	Edad x	ух	log yx	S	ΔS	Δ2 S
1	0 1	0.29% 5.60%				
2	2 3	20.06% 41.64%			2.71268	
3	4 5	66.49% 92.02%			0.86479	-1.84789
4	6 7	116.41% 138.10%			0.41955	-0.44525

х	a^x	d^x	b^d^x	Vx	Vx^2	ух	yxVx
0	1.00000	1.00000	0.00706	0.00706	0.00005	0.28908	0.00204
1	1.17369	0.49087	0.08791	0.10317	0.01064	5.59925	0.57769
2	1.37754	0.24095	0.30315	0.41760	0.17439	20.06109	8.37743
3	1.61680	0.11827	0.55662	0.89995	0.80990	41.63611	37.47027
4	1.89762	0.05806	0.75007	1.42335	2.02593	66.48618	94.63326
5	2.22721	0.02850	0.86835	1.93399	3.74030	92.02085	177.96695
6	2.61404	0.01399	0.93305	2.43904	5.94891	116.40854	283.92494
7	3.06806	0.00687	0.96656	2.96546	8.79397	138.09512	409.51586
					21.50409		1012.46843

	Tasas	ух
х	Observadas	estimadas
0	0.28908	0.33235
1	5.59925	4.85765
2	20.06109	19.66149
3	41.63611	42.37181
4	66.48618	67.01513
5	92.02085	91.05704
6	116.40854	114.83628
7	138.09512	139.62167

 $Y(X) = 47.0826 (1.1737)^{X} (0.0071)^{0.4909^{X}}$ para x=1,2,...7

• Orden de nacimiento igual a 4 hijos

Grupo	Edad x	ух	log yx	S	ΔS	Δ2 \$
1	0 1	0.04% 1.31%				
2	2 3	6.39% 15.46%		1.99483	3.31466	
3	4 5	27.88% 42.64%			1.08019	-2.23447
4	6 7	58.89% 75.79%			0.57464	-0.50555

x	a^x	d^x	b^d^x	Vx	Vx^2	yx	yxVx
0	1.00000	1.00000	0.00296	0.00296	0.00001	0.03650	0.00011
1	1.27851	0.47566	0.06265	0.08010	0.00642	1.31197	0.10509
2	1.63458	0.22625	0.26777	0.43769	0.19157	6.39255	2.79794
3	2.08982	0.10762	0.53433	1.11665	1.24691	15.45823	17.26144
4	2.67184	0.05119	0.74222	1.98308	3.93262	27.87620	55.28082
5	3.41596	0.02435	0.86779	2.96435	8.78739	42.63724	126.39182
6	4.36733	0.01158	0.93478	4.08247	16.66658	58.88743	240.40629
7	5.58365	0.00551	0.96843	5.40736	29.23953	75.79450	409.84807
					60.07102		852.09160

	Tasas	yx
x	Observadas	estimadas
0	0.03650	0.04194
1	1.31197	1.13625
2	6.39255	6.20849
3	15.45823	15.83939
4	27.87620	28.12951
5	42.63724	42.04857
6	58.88743	57.90879
7	75.79450	76.70196

 $Y(X) = 14.1847 (1.2785)^{X} (0.0030)^{0.4757^{x}}$ para x=1,2,...7

• Orden de nacimiento igual a 5 hijos

Grupo	Edad x	ух	log yx	S	ΔS	Δ2 \$
1	0 1	0.01% 0.29%				
2	2 3	2.06% 6.12%			3.60312	
3	4 5	12.65% 21.41%			1.33212	-2.27100
4	6 7	32.15% 44.65%			0.72428	-0.60784

x	a^x	d^x	b^d^x	Vx	Vx^2	yx	yxVx
0	1.00000	1.00000	0.00162	0.00162	0.00000	0.01084	0.00002
1	1.33516	0.51735	0.03600	0.04806	0.00231	0.29006	0.01394
2	1.78266	0.26765	0.17910	0.31927	0.10194	2.06107	0.65805
3	2.38014	0.13847	0.41076	0.97767	0.95583	6.11726	5.98064
4	3.17787	0.07164	0.63109	2.00551	4.02208	12.64963	25.36899
5	4.24296	0.03706	0.78809	3.34384	11.18129	21.41365	71.60389
6	5.66504	0.01917	0.88408	5.00838	25.08385	32.15324	161.03556
7	7.56375	0.00992	0.93825	7.09669	50.36298	44.65037	316.86972
					91.71027		581.53081

	Tasas	ух
х	Observadas	estimadas
0	0.04004	0.04027
0	0.01084	0.01027
1	0.29006	0.30477
2	2.06107	2.02450
3	6.11726	6.19934
4	12.64963	12.71687
5	21.41365	21.20316
6	32.15324	31.75790
7	44.65037	44.99978

 $Y(X) = 6.3410 (1.3352)^{X} (0.0016)^{0.5174^{X}}$ para x=1,2,...7

Región Centro Periférico

	Tasas Específicas de Fecundidad por edad y orden de nacimiento Región Centro Periférico									
Х	Sin hijos	1 hijo	2 hijos	3 hijos	4 hijos	5 hijos				
0	88.44%	9.53%	1.79%	0.19%	0.03%	0.01%				
1	51.21%	26.82%	15.83%	4.82%	1.05%	0.20%				
2	26.22%	22.63%	27.71%	15.61%	5.43%	1.71%				
3	14.28%	14.14%	27.68%	24.46%	11.46%	4.88%				
4	9.72%	9.26%	22.70%	26.96%	15.73%	8.50%				
5	7.80%	7.25%	18.70%	25.45%	17.66%	11.30%				
6	7.51%	6.64%	15.75%	22.41%	18.05%	13.19%				
7	8.38%	6.58%	13.44%	18.95%	17.39%	14.28%				

FUENTE: INEGI. IIConteo de Población y Vivienda 2005. Tabulados básicos

	Tasas Acumuladas de Fecundidad por edad y orden de nacimiento Región Centro Periférico									
Х	Sin hijos	1 hijo	2 hijos	3 hijos	4 hijos	5 hijos				
0	88.44%	9.53%	1.79%	0.19%	0.03%	0.01%				
ĭ	139.65%	36.35%	17.62%	5.01%	1.08%	0.21%				
2	165.87%	58.98%	45.33%	20.63%	6.51%	1.92%				
3	180.15%	73.13%	73.01%	45.08%	17.96%	6.80%				
4	189.88%	82.39%	95.71%	72.05%	33.69%	15.29%				
5	197.68%	89.64%	114.40%	97.50%	51.35%	26.60%				
6	205.18%	96.28%	130.15%	119.91%	69.40%	39.79%				
7	213.56%	102.86%	143.59%	138.86%	86.79%	54.07%				

FUENTE: INEGI. IIConteo de Población y Vivienda 2005. Tabulados básicos

• Orden de nacimiento igual a 1 hijo

Grupo	Edad x	ух	log yx	S	ΔS	Δ2 \$
1	0 1	9.53% 36.35%				
2	2 3	58.98% 73.13%			1.09504	
3	4 5	82.39% 89.64%			0.23359	-0.86144
4	6 7	96.28% 102.86%			0.12741	-0.10618

a^x	d^x	b^d^x	Vx	Vx^2	ух	yxVx
1.00000	1.00000	0.14809	0.14809	0.02193	9.53227	1,41164
						19.83651
1.13826	0.12326	0.79024	0.89950	0.80910	58.98175	53.05408
1.21440	0.04327	0.92067	1.11807	1.25007	73.12617	81.75997
1.29564	0.01519	0.97140	1.25858	1.58403	82.39020	103.69490
1.38231	0.00533	0.98986	1.36830	1.87224	89.64135	122.65607
1.47478	0.00187	0.99643	1.46951	2.15946	96.28210	141.48758
1.57343	0.00066	0.99875	1.57145	2.46947	102.86093	161.64126
				10.46403		685.54201
	1.00000 1.06689 1.13826 1.21440 1.29564 1.38231 1.47478	1.00000 1.00000 1.06689 0.35108 1.13826 0.12326 1.21440 0.04327 1.29564 0.01519 1.38231 0.00533 1.47478 0.00187	1.00000 1.00000 0.14809 1.06689 0.35108 0.51143 1.13826 0.12326 0.79024 1.21440 0.04327 0.92067 1.29564 0.01519 0.97140 1.38231 0.00533 0.98986 1.47478 0.00187 0.99643	1.00000 1.00000 0.14809 0.14809 1.06689 0.35108 0.51143 0.54564 1.13826 0.12326 0.79024 0.89950 1.21440 0.04327 0.92067 1.11807 1.29564 0.01519 0.97140 1.25858 1.38231 0.00533 0.98986 1.36830 1.47478 0.00187 0.99643 1.46951	1.00000 1.00000 0.14809 0.14809 0.02193 1.06689 0.35108 0.51143 0.54564 0.29772 1.13826 0.12326 0.79024 0.89950 0.80910 1.21440 0.04327 0.92067 1.11807 1.25007 1.29564 0.01519 0.97140 1.25858 1.58403 1.38231 0.00533 0.98986 1.36830 1.87224 1.47478 0.00187 0.99643 1.46951 2.15946 1.57343 0.00066 0.99875 1.57145 2.46947	1.00000 1.00000 0.14809 0.14809 0.02193 9.53227 1.06689 0.35108 0.51143 0.54564 0.29772 36.35457 1.13826 0.12326 0.79024 0.89950 0.80910 58.98175 1.21440 0.04327 0.92067 1.11807 1.25007 73.12617 1.29564 0.01519 0.97140 1.25858 1.58403 82.39020 1.38231 0.00533 0.98986 1.36830 1.87224 89.64135 1.47478 0.00187 0.99643 1.46951 2.15946 96.28210 1.57343 0.00066 0.99875 1.57145 2.46947 102.86093

х	Tasas Observadas	yx estimadas
	0.50007	0.70000
0	9.53227	9.70203
1	36.35457	35.74715
2	58.98175	58.92998
3	73.12617	73.24922
4	82.39020	82.45500
5	89.64135	89.64288
6	96.28210	96.27375
7	102.86093	102.95250

 $Y(X) = 65.5142 (1.0669)^{X} (0.1481)^{0.3511^{x}}$ para x=1,2,...7

• Orden de nacimiento igual a 2 hijos

Grupo	Edad x	ух	log yx	s	ΔS	Δ2 \$
1	0 1	1.79% 17.62%				
2	2 3	45.33% 73.01%			2.02054	
3	4 5	95.71% 114.40%			0.51962	-1.50091
4	6 7	130.15% 143.59%			0.23221	-0.28741

x	a^x	d^x	b^d^x	Vx	Vx^2	ух	yxVx
0	1.00000	1.00000	0.02528	0.02528	0.00064	1.79158	0.04530
1	1.09909	0.43760	0.20002	0.21985	0.04833	17.61903	3.87346
2	1.20800	0.19149	0.49449	0.59734	0.35682	45.33102	27.07812
3	1.32770	0.08380	0.73479	0.97558	0.95176	73.00619	71.22364
4	1.45927	0.03667	0.87384	1.27517	1.62606	95.70675	122.04248
5	1.60387	0.01605	0.94270	1.51196	2.28602	114.40207	172.97137
6	1.76280	0.00702	0.97451	1.71786	2.95104	130.15479	223.58773
7	1.93748	0.00307	0.98876	1.91571	3.66993	143.59004	275.07639
					11.89061		895.89850

	Tasas	yx
х	Observadas	estimadas
0	1.79158	1.90497
1	17.61903	16.56425
2	45.33102	45.00675
3	73.00619	73.50537
4	95.70675	96.07780
5	114.40207	113.91868
6	130.15479	129.43222
7	143.59004	144.33897

 $Y(X) = 75.3450 (1.0991)^{X} (0.0253)^{0.4376^{X}}$ para x=1,2,...7

• Orden de nacimiento igual a 3 hijos

Grupo	Edad x	ух	log yx	S	ΔS	Δ2 \$
1	0 1	0.19% 5.01%				
2	2 3	20.63% 45.08%		2.96842	2.98690	
3	4 5	72.05% 97.50%		3.84660	0.87818	-2.10872
4	6 7	119.91% 138.86%		4.22142	0.37482	-0.50336

х	a^x	d^x	b^d^x	Vx	Vx^2	ух	yxVx
0	1.00000	1.00000	0.00360	0.00360	0.00001	0.19124	0.00069
1	1.13304	0.48858	0.06394	0.07245	0.00525	5.01131	0.36308
2	1.28379	0.23871	0.26094	0.33500	0.11222	20.62551	6.90945
3	1.45459	0.11663	0.51873	0.75453	0.56932	45.08334	34.01687
4	1.64811	0.05698	0.72565	1.19595	1.43029	72.04794	86.16569
5	1.86739	0.02784	0.85498	1.59657	2.54904	97.49517	155.65787
6	2.11583	0.01360	0.92631	1.95991	3.84123	119.90838	235.00918
7	2.39733	0.00665	0.96329	2.30932	5.33298	138.85914	320.67069
					13.84034		838.79351

х	Tasas Observadas	yx estimadas
0	0.19124	0.21791
1	5.01131	4.39097
2	20.62551	20.30237
3	45.08334	45.72845
4	72.04794	72.48047
5	97.49517	96.76007
6	119.90838	118.78005
7	138.85914	139.95648

 $Y(X) = 60.6050 (1.1330)^{X} (0.0036)^{0.4886^{X}}$ para x=1,2,...7

• Orden de nacimiento igual a 4 hijos

Grupo	Edad x	ух	log yx	S	ΔS	Δ2 \$
1	0 1	0.03% 1.08%		-1.55374		
2	2 3	6.51% 17.96%		2.06789	3.62163	
3	4 5	33.69% 51.35%			1.17020	-2.45143
4	6 7	69.40% 86.79%			0.54170	-0.62850

x	a^x	d^x	b^d^x	Vx	Vx^2	yx	yxVx
0	1.00000	1.00000	0.00114	0.00114	0.00000	0.02593	0.00003
1	1.20574	0.50634	0.03235	0.03900	0.00152	1.07777	0.04203
2	1.45380	0.25638	0.17598	0.25584	0.06545	6.50831	1.66508
3	1.75290	0.12982	0.41490	0.72728	0.52894	17.96494	13.06561
4	2.11353	0.06573	0.64055	1.35382	1.83282	33.69383	45.61532
5	2.54837	0.03328	0.79808	2.03381	4.13639	51.35044	104.43711
6	3.07266	0.01685	0.89208	2.74105	7.51337	69.39553	190.21683
7	3.70481	0.00853	0.94382	3.49666	12.22664	86.78867	303.47063
					26.30515		658.51266

х	Tasas Observadas	yx estimadas
0	0.02593	0.02854
1	1.07777	0.97633
2	6.50831	6.40457
3	17.96494	18.20654
4	33.69383	33.89096
5	51.35044	50.91363
6	69.39553	68.61844
7	86.78867	87.53405

 $Y(X) = 25.0336 (1.2057)^{X} (0.0011)^{0.5063^{x}}$ para x=1,2,...7

• Orden de nacimiento igual a 5 hijos

Grupo	Edad x	ух	log yx	S	: \$	□ □\$
1	0 1	0.01% 0.21%				
2	2 3	1.92% 6.80%		1.11547	3.85046	
3	4 5	15.29% 26.60%		2.60926	1.49379	-2.35666
4	6 7	39.79% 54.07%			0.72340	-0.77039

x	a^x	d^x	b^d^x	Vx	Vx^2	ух	yxVx
0	1.00000	1.00000	0.00049	0.00049	0.00000	0.00873	0.00000
1	1.22268	0.57175	0.01282	0.01567	0.00025	0.21092	0.00331
2	1.49495	0.32690	0.08282	0.12382	0.01533	1.91944	0.23766
3	1.82785	0.18690	0.24069	0.43994	0.19355	6.79659	2.99009
4	2.23488	0.10686	0.44294	0.98992	0.97994	15.29163	15.13744
5	2.73255	0.06110	0.62777	1.71540	2.94259	26.59537	45.62166
6	3.34104	0.03493	0.76629	2.56019	6.55456	39.78598	101.85959
7	4.08503	0.01997	0.85882	3.50829	12.30808	54.06706	189.68279
					22.99429		355.53253

Observadas	estimadas
0.00873	0.00758
0.000.0	0.00738
1.91944	1.91442
6.79659	6.80224
15.29163	15.30587
26.59537	26.52310
39.78598	39.58504
54.06706	54.24434
	6.79659 15.29163 26.59537 39.78598

 $Y(X) = 15.4618 (1.2227)^{X} (0.0005)^{0.5718^{X}}$ para x=1,2,...7

Región Centro

	Tasas Específicas de Fecundidad por edad y orden de nacimiento Región Centro								
Х	Sin hijos	1 hijo	2 hijos	3 hijos	4 hijos	5 hijos			
0	88.45%	9.51%	1.78%	0.21%	0.03%	0.01%			
	53.65%	26.29%	14.70%	4.28%	0.86%	0.16%			
2	31.32%	24.25%	26.36%	12.64%	3.85%	1.14%			
	18.00%	18.47%	30.88%	20.47%	7.57%	2.88%			
4	11.37%	13.59%	30.49%	25.00%	10.92%	4.93%			
5	8.48%	10.88%	27.55%	26.54%	13.61%	6.97%			
6	7.22%	9.44%	24.18%	26.03%	15.66%	8.91%			
7	7.13%	8.71%	20.89%	23.90%	16.78%	10.89%			

FUENTE: INEGI. IIConteo de Población y Vivienda 2005. Tabulados básicos

	Tasas Acui	muladas de	Fecundidad Región (orden de na	cimiento
Х	Sin hijos	1 hijo	2 hijos	3 hijos	4 hijos	5 hijos
0	88.45%	9.51%	1.78%	0.21%	0.03%	0.01%
1	142.10%	35.80%	16.49%	4.49%	0.89%	0.17%
2	173.43%	60.04%	42.85%	17.13%	4.74%	1.31%
3	191.42%	78.51%	73.73%	37.59%	12.32%	4.19%
4	202.79%	92.09%	104.22%	62.59%	23.23%	9.12%
5	211.27%	102.97%	131.77%	89.13%	36.85%	16.09%
6	218.49%	112.42%	155.95%	115.16%	52.51%	24.99%
7	225.62%	121.12%	176.84%	139.06%	69.29%	35.88%

FUENTE: INEGI. IIConteo de Población y Vivienda 2005. Tabulados básicos

• Orden de nacimiento igual a 1 hijos

Grupo	Edad x	ух	log yx	S	ΔS	Δ2 \$
1	0 1	9.51% 35.80%		2.53190		
2	2 3	60.04% 78.51%		3.67335	1.14145	
3	4 5	92.09% 102.97%		3.97694	0.30359	-0.83786
4	6 7	112.42% 121.12%		4.13406	0.15712	-0.14647

х	a^x	d^x	b^d^x	Vx	Vx^2	ух	yxVx
0	1.00000	1.00000	0.13562	0.13562	0.01839	9.50769	1.28942
1	1.07528	0.41811	0.43373	0.46638	0.21751	35.79537	16.69420
2	1.15623	0.17481	0.70521	0.81538	0.66485	60.04094	48.95645
3	1.24328	0.07309	0.86413	1.07436	1.15424	78.50650	84.34395
4	1.33688	0.03056	0.94077	1.25769	1.58179	92.09160	115.82295
5	1.43752	0.01278	0.97479	1.40129	1.96361	102.97314	144.29492
6	1.54574	0.00534	0.98938	1.52933	2.33885	112.41709	171.92279
7	1.66211	0.00223	0.99555	1.65471	2.73806	121.12458	200.42574
					10.67730		783.75042

	Tasas	yx
х	Observadas	estimadas
0	9.50769	9.95491
1	35.79537	34.23381
2	60.04094	59.85203
3	78.50650	78.86145
4	92.09160	92.31899
5	102.97314	102.85929
6	112.41709	112.25807
7	121.12458	121.46122

 $Y(X) = 73.4034 (1.0753)^{X} (0.1356)^{0.4181x}$ para x=1,2,...7

• Orden de nacimiento igual a 2 hijos

Grupo	Edad x	ух	log yx	S	ΔS	Δ2 S
1	0 1	1.78% 16.49%				
2	2 3	42.85% 73.73%			2.03143	
3	4 5	104.22% 131.77%			0.63818	-1.39325
4	6 7	155.95% 176.84%			0.30278	-0.33539

х	a^x	d^x	b^d^x	Vx	Vx^2	ух	yxVx
0	1.00000	1.00000	0.02392	0.02392	0.00057	1.78262	0.04263
1	1.11973	0.49064	0.16015	0.17932	0.03216	16.48555	2.95626
2	1.25379	0.24073	0.40711	0.51042	0.26053	42.84955	21.87146
3	1.40390	0.11811	0.64344	0.90332	0.81599	73.72988	66.60170
4	1.57198	0.05795	0.80546	1.26617	1.60319	104.21958	131.95974
5	1.76018	0.02843	0.89929	1.58292	2.50565	131.77090	208.58342
6	1.97092	0.01395	0.94925	1.87091	3.50029	155.94929	291.76666
7	2.20689	0.00684	0.97477	2.15122	4.62774	176.83556	380.41176
					13.34612		1104.19363

	Tasas	ух
x	Observadas	estimadas
0	1.78262	1.97878
1	16.48555	14.83641
2	42.84955	42.23007
3	73.72988	74.73637
4	104.21958	104.75684
5	131.77090	130.96357
6	155.94929	154.78986
7	176.83556	177.98138

 $Y(X) = 82.7352 (1.1197)^{X} (0.0239)^{0.4906^{X}}$ para x=1,2,...7

• Orden de nacimiento igual a 3 hijos

Grupo	Edad x	ух	log yx	S	ΔS	Δ2 S
1	0 1	0.21% 4.49%				
2	2 3	17.13% 37.59%			2.84128	
3	4 5	62.59% 89.13%		3.74653	0.93778	-1.90350
4	6 7	115.16% 139.06%			0.45796	-0.47982

х	a^x	d^x	b^d^x	Vx	Vx^2	ух	yxVx
0	1.00000	1.00000	0.00543	0.00543	0.00003	0.20664	0.00112
1	1.18593	0.50207	0.07288	0.08643	0.00747	4.49009	0.38808
2	1.40644	0.25207	0.26851	0.37764	0.14261	17.12560	6.46725
3	1.66794	0.12656	0.51677	0.86194	0.74294	37.59333	32.40312
4	1.97807	0.06354	0.71788	1.42002	2.01647	62.59055	88.88010
5	2.34586	0.03190	0.84670	1.98624	3.94514	89.13023	177.03375
6	2.78203	0.01602	0.91985	2.55904	6.54869	115.15940	294.69755
7	3.29930	0.00804	0.95892	3.16377	10.00944	139.05596	439.94096
					23.41277		1039.81193

Tasas Observadas	yx estimadas
ODSel Vadas	estilladas
0.20664	0.24105
4.49009	3.83861
17.12560	16.77164
37.59333	38.28053
62.59055	63.06634
89.13023	88.21307
115.15940	113.65251
139.05596	140.50983
	0.20664 4.49009 17.12560 37.59333 62.59055 89.13023 115.15940

 $Y(X) = 44.4122 (1.1859)^{X} (0.0054)^{0.5021^{x}}$ para x=1,2,...7

• Orden de nacimiento igual a 4 hijos

Grupo	Edad x	ух	log yx	S	ΔS	Δ2 \$
1	0 1	0.03% 0.89%				
2	2 3	4.74% 12.32%			3.38812	
3	4 5	23.23% 36.85%			1.16612	-2.22200
4	6 7	52.51% 69.29%			0.62838	-0.53774

x	a^x	d^x	b^d^x	Vx	Vx^2	ух	yxVx
0	1.00000	1.00000	0.00256	0.00256	0.00001	0.02689	0.00007
1	1.30069	0.49194	0.05307	0.06902	0.00476	0.88848	0.06133
2	1.69180	0.24200	0.23588	0.39906	0.15925	4.74151	1.89213
3	2.20051	0.11905	0.49136	1.08124	1.16908	12.31628	13.31687
4	2.86219	0.05857	0.70500	2.01783	4.07164	23.23399	46.88228
5	3.72282	0.02881	0.84201	3.13465	9.82605	36.84590	115.49916
6	4.84225	0.01417	0.91888	4.44946	19.79771	52.50707	233.62820
7	6.29827	0.00697	0.95924	6.04154	36.50024	69.29089	418.62388
					71.52876		829.90393

х	Tasas Observadas	yx estimadas
0	0.02689	0.02968
1	0.88848	0.80083
2	4.74151	4.63001
3	12.31628	12.54498
4	23.23399	23.41165
5	36.84590	36.36945
6	52.50707	51.62436
7	69.29089	70.09629

 $Y(X) = 11.6024 (1.3007)^{X} (0.0026)^{0.4919^{X}}$ para x=1,2,...7

• Orden de nacimiento igual a 5 hijos

Grupo	Edad x	ух	log yx	s	ΔS	Δ2 \$
1	0 1	0.01% 0.17%		-2.91535		
2	2 3	1.31% 4.19%		0.73807	3.65342	
3	4 5	9.12% 16.09%		2.16637	1.42829	-2.22513
4	6 7	24.99% 35.88%		2.95262	0.78625	-0.64204

x	a^x	d^x	b^d^x	Vx	Vx^2	ух	yxVx
0	1.00000	1.00000	0.00138	0.00138	0.00000	0.00725	0.00001
1	1.35352	0.53716	0.02910	0.03938	0.00155	0.16763	0.00660
2	1.83202	0.28854	0.14956	0.27400	0.07508	1.30700	0.35812
3	2.47968	0.15499	0.36037	0.89360	0.79852	4.18596	3.74057
4	3.35630	0.08326	0.57796	1.93982	3.76292	9.11834	17.68797
5	4.54283	0.04472	0.74491	3.38399	11.45137	16.08607	54.43504
6	6.14881	0.02402	0.85369	5.24916	27.55366	24.99174	131.18559
7	8.32255	0.01290	0.91854	7.64456	58.43932	35.87736	274.26666
					102.08242		481.68056

	Tasas	ух
x	Observadas	estimadas
0	0.00725	0.00652
1	0.16763	0.18582
2	1.30700	1.29289
3	4.18596	4.21649
4	9.11834	9.15315
5	16.08607	15.96750
6	24.99174	24.76839
7	35.87736	36.07121

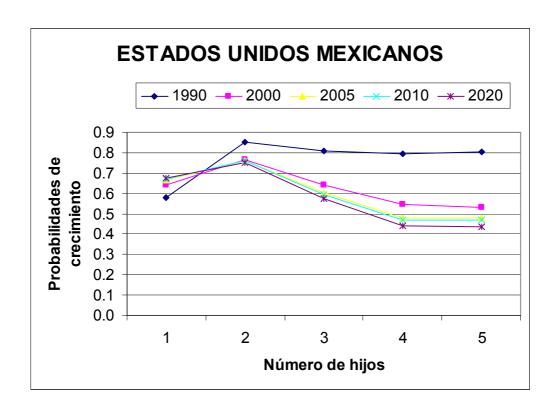
 $Y(X) = 4.7185 (1.3535)^{X} (0.0014)^{0.5372^{X}}$ para x=1,2,...7

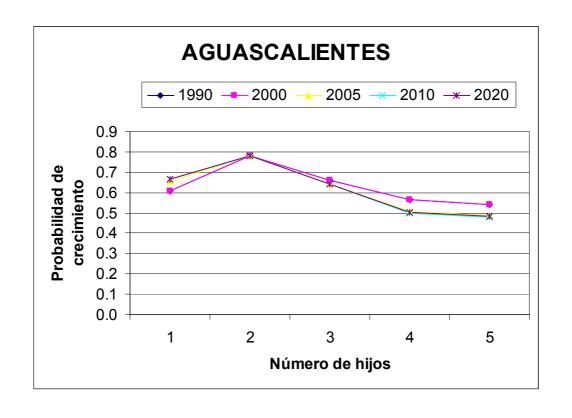
ANEXO III. CALCULO DE LOS POLINOMIOS DE INTERPOLACIÓN UTILIZANDO LA METODOLOGIA DE NEWTON PARA PROYECTAR LAS PROBABILIDADES DE CRECIMIENTO DE LAS FAMILIAS A NIVEL NACIONAL Y ESTATAL.

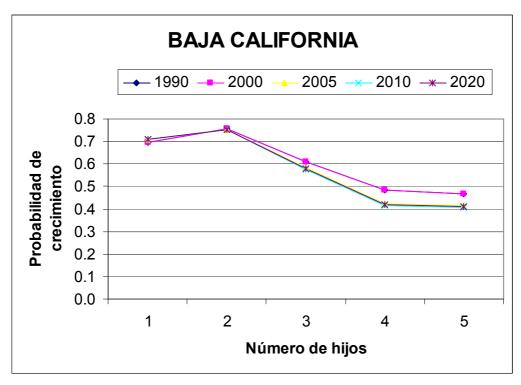
Aquí se muestran los cuadros con los polinomios de Interpolación correspondientes a los Estados Unidos Mexicanos y a nivel estatal

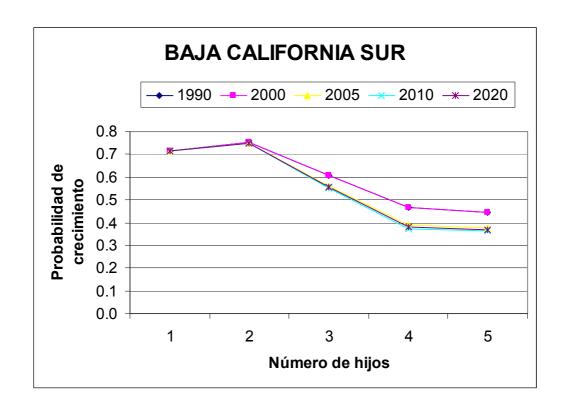
Estado/Pais	Polinomio de Interpolación 2005
Estados Unidos Mexicanos	-0.1888+1.4469x-0.7209x^2+0.1347x^3-0.0086x^4
Aguascalientes	-0.1506+1.3301x-0.6253x^2+0.1096x^3-0.0065x^4
Baja California	0.1344+0.9683x-0.4665x^2+0.076x^3-0.0038x^4
Baja California Sur	0.1411+0.9746x-0.4712x^2+0.0752x^3-0.0036x^4
Campeche	-0.2107+1.4785x-0.7305x^2+0.1347x^3-0.0084x^4
Chiapas	-0.3125+1.6492x-0.8397x^2+0.1684x^3-0.0119x^4
Chihuahua	0.1545+0.9741x-0.4684x^2+0.0748x^3-0.0036x^4
Coahuila de Zaragoza	0.2703+0.6577x-0.2336x^2+0.0126x^30.0017x^4
Colima	0.0321+1.063x-0.4881x^2+0.0756x^3-0.0034x^4
Distrito Federal	-0.5729+2.1019x-1.1225x^2+0.2269x^3-0.0158x^4
Durango	0.0731+0.9887x-0.4369x^2+0.0666x^3-0.0031x^4
Guanajuato	-0.2566+1.448x-0.6826x^2+0.1235x^3-0.0077x^4
Guerrero	-0.0851+1.246x-0.6052x^2+0.1144x^3-0.0076x^4
Hidalgo	-0.1888+1.5075x-0.772x^2+0.1495x^3-0.01x^4
Jalisco	-0.2274+1.3744x-0.6238x^2+0.1058x^3-0.0061x^4
México	-0.249+1.6123x-0.8359x^2+0.1623x^3-0.0108x^4
Michoacán	-0.2991+1.5158x-0.7206x^2+0.133x^3-0.0086x^4
Morelos	-0.3463+1.758x-0.9098x^2+0.1786x^3-0.0121x^4
Nayarit	0.0853+0.9839x-0.4497x^2+0.071x^3-0.0035x^4
Nuevo León	0.1512+0.8267x-0.3327x^2+0.0349x^30x^4
Oaxaca	-0.2943+1.6211x-0.8315x^2+0.1677x^3-0.0119x^4
Puebla	-0.2783+1.5922x-0.8102x^2+0.1598x^3-0.011x^4
Querétaro	-0.2751+1.5493x-0.7722x^2+0.1471x^3-0.0097x^4
Quintana Roo	-0.0213+1.2453x-0.6486x^2+0.1235x^3-0.0079x^4
San Luis Potosí	-0.1066+1.284x-0.6275x^2+0.1178x^3-0.0077x^4
Sinaloa	0.3158+0.5692x-0.1837x^2+0.0024x^3+0.0025x^4
Sonora	0.2833+0.6556x-0.2425x^2+0.0159x^3+0.0015x^4
Tabasco	-0.1996+1.4831x-0.7488x^2+0.1436x^3-0.0095x^4
Tamaulipas	0.1212+0.9698x-0.4617x^2+0.074x^3-0.0036x^4
Tlaxcala	-0.1345+1.3645x-0.6774x^2+0.1266x^3-0.0082x^4
Veracruz	-0.4529+2.0035x-1.0921x^2+0.2292x^3-0.0167x^4
Yucatán	-0.2733+1.479x-0.6921x^2+0.1197x^3-0.0068x^4
Zacatecas	-0.1544+1.3058x-0.6129x^2+0.1103x^3-0.0069x^4

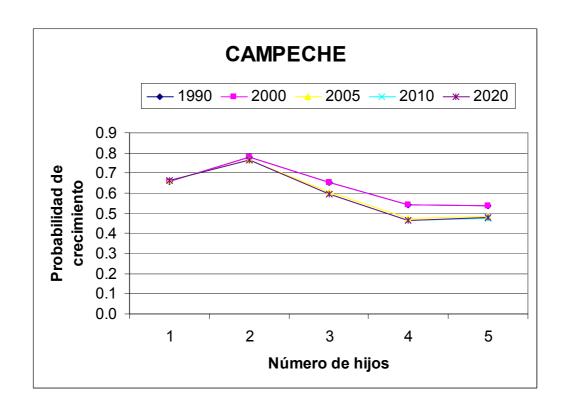
FUENTE: INEGI. Estimaciones propias

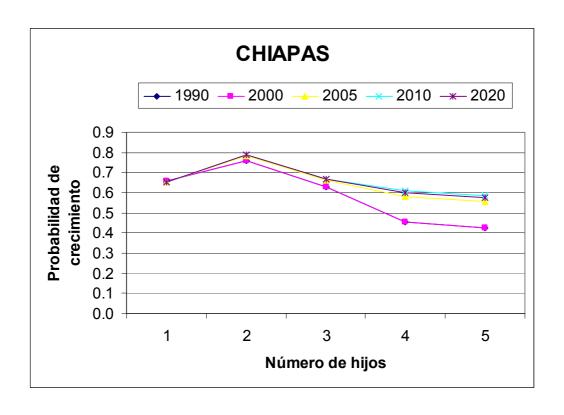

Estado/Pais	Polinomio de Interpolación 2010
Estados Unidos Mexicanos	-0.1797+1.4421x-0.72x^2+0.1339x^3-0.0085x^4
Aguascalientes	-0.0933+1.2471x-0.58x^2+0.0987x^3-0.0056x^4
Baja California	0.1501+0.9443x-0.4517x^2+0.0717x^3-0.0034x^4
Baja California Sur	0.1196+1.013x-0.4913x^2+0.0787x^3-0.0038x^4
Campeche	-0.2325+1.5226x-0.7574x^2+0.1403x^3-0.0088x^4
Chiapas	-0.4046+1.8231x-0.9481x^2+0.196x^3-0.0143x^4
Chihuahua	0.2017+0.9237x-0.4447x^2+0.0687x^3-0.003x^4
Coahuila de Zaragoza	0.3704+0.4926x-0.1315x^2+-0.0148x^30.0042x^4
Colima	0.0253+1.0573x-0.4763x^2+0.0708x^3-0.0029x^4
Distrito Federal	-0.5759+2.1174x-1.1343x^2+0.2293x^3-0.0159x^4
Durango	0.0929+0.961x-0.4195x^2+0.0615x^3-0.0026x^4
Guanajuato	-0.2322+1.417x-0.6667x^2+0.1193x^3-0.0073x^4
Guerrero	-0.0495+1.2006x-0.5823x^2+0.1091x^3-0.0071x^4
Hidalgo	-0.1842+1.5129x-0.7777x^2+0.1502x^3-0.01x^4
Jalisco	-0.2034+1.3421x-0.6062x^2+0.1011x^3-0.0056x^4
México	-0.2495+1.6275x-0.8476x^2+0.1645x^3-0.0109x^4
Michoacán	-0.2918+1.5099x-0.7177x^2+0.1316x^3-0.0084x^4
Morelos	-0.3464+1.765x-0.9142x^2+0.1788x^3-0.012x^4
Nayarit	0.085+0.9862x-0.4484x^2+0.0692x^3-0.0032x^4
Nuevo León	0.1822+0.7898x-0.3143x^2+0.0301x^30.0005x^4
Oaxaca	-0.3014+1.6451x-0.8483x^2+0.1713x^3-0.0121x^4
Puebla	-0.2742+1.6007x-0.8191x^2+0.1618x^3-0.0111x^4
Querétaro	-0.2474+1.5186x-0.76x^2+0.1443x^3-0.0094x^4
Quintana Roo	-0.0086+1.2341x-0.644x^2+0.1218x^3-0.0077x^4
San Luis Potosí	-0.0822+1.2564x-0.6156x^2+0.115x^3-0.0075x^4
Sinaloa	0.3253+0.5529x-0.17x^2+-0.0026x^30.003x^4
Sonora	0.295+0.6406x-0.232x^2+0.0122x^30.0019x^4
Tabasco	-0.1955+1.4917x-0.7578x^2+0.1454x^3-0.0096x^4
Tamaulipas	0.1577+0.9263x-0.4412x^2+0.0691x^3-0.0032x^4
Tlaxcala	-0.1196+1.3542x-0.6745x^2+0.1254x^3-0.008x^4
Veracruz	-0.4702+2.0468x-1.1211x^2+0.2358x^3-0.0171x^4
Yucatán	-0.2693+1.4841x-0.6984x^2+0.1207x^3-0.0069x^4
Zacatecas	-0.1298+1.2765x-0.5972x^2+0.106x^3-0.0065x^4

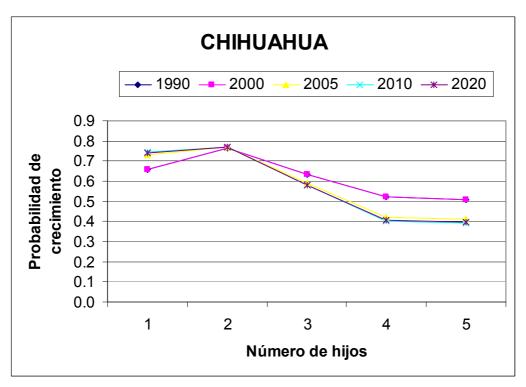

FUENTE: Estimaciones propias

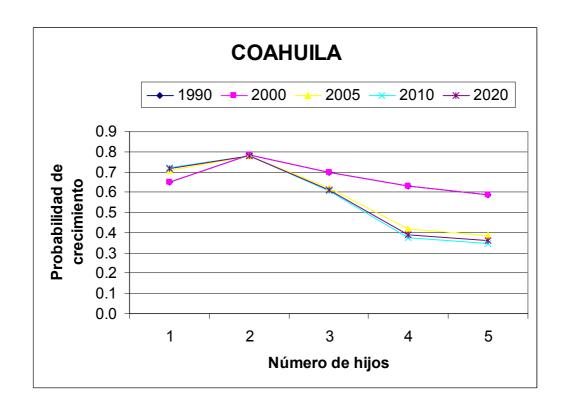

Estado/Pais	Polinomio de Interpolación 2020
Estados Unidos Mexicanos	-0.1221+1.362x-0.6837x^2+0.126x^3-0.0078x^4
Aguascalientes	-0.1124+1.2748x-0.5951x^2+0.1023x^3-0.0059x^4
Baja California	0.1449+0.9523x-0.4567x^2+0.0731x^3-0.0036x^4
Baja California Sur	0.1268+1.0002x-0.4846x^2+0.0775x^3-0.0037x^4
Campeche	-0.2252+1.5079x-0.7484x^2+0.1384x^3-0.0087x^4
Chiapas	-0.3739+1.7651x-0.912x^2+0.1868x^3-0.0135x^4
Chihuahua	0.186+0.9405x-0.4526x^2+0.0707x^3-0.0032x^4
Coahuila de Zaragoza	0.3371+0.5476x-0.1656x^2+-0.0057x^30.0034x^4
Colima	0.0276+1.0592x-0.4802x^2+0.0724x^3-0.0031x^4
Distrito Federal	-0.5749+2.1122x-1.1304x^2+0.2285x^3-0.0159x^4
Durango	0.0863+0.9702x-0.4253x^2+0.0632x^3-0.0028x^4
Guanajuato	-0.2404+1.4274x-0.672x^2+0.1207x^3-0.0075x^4
Guerrero	-0.0614+1.2157x-0.59x^2+0.1109x^3-0.0073x^4
Hidalgo	-0.1857+1.5111x-0.7758x^2+0.15x^3-0.01x^4
Jalisco	-0.2114+1.3528x-0.6121x^2+0.1026x^3-0.0058x^4
México	-0.2494+1.6224x-0.8437x^2+0.1638x^3-0.0109x^4
Michoacán	-0.2942+1.5119x-0.7187x^2+0.132x^3-0.0084x^4
Morelos	-0.3464+1.7626x-0.9127x^2+0.1787x^3-0.0121x^4
Nayarit	0.0851+0.9854x-0.4489x^2+0.0698x^3-0.0033x^4
Nuevo León	0.1719+0.8021x-0.3204x^2+0.0317x^30.0003x^4
Oaxaca	-0.2991+1.6371x-0.8427x^2+0.1701x^3-0.012x^4
Puebla	-0.2756+1.5979x-0.8161x^2+0.1611x^3-0.0111x^4
Querétaro	-0.2566+1.5288x-0.7641x^2+0.1452x^3-0.0095x^4
Quintana Roo	-0.0128+1.2378x-0.6455x^2+0.1224x^3-0.0078x^4
San Luis Potosí	-0.0903+1.2656x-0.6196x^2+0.116x^3-0.0076x^4
Sinaloa	0.3221+0.5583x-0.1745x^2+-0.001x^30.0029x^4
Sonora	0.2911+0.6456x-0.2355x^2+0.0134x^30.0017x^4
Tabasco	-0.1969+1.4889x-0.7548x^2+0.1448x^3-0.0096x^4
Tamaulipas	0.1455+0.9408x-0.448x^2+0.0707x^3-0.0033x^4
Tlaxcala	-0.1246+1.3577x-0.6755x^2+0.1258x^3-0.008x^4
Veracruz	-0.4644+2.0323x-1.1114x^2+0.2336x^3-0.017x^4
Yucatán	-0.2707+1.4824x-0.6963x^2+0.1203x^3-0.0069x^4
Zacatecas	-0.138+1.2863x-0.6024x^2+0.1075x^3-0.0066x^4

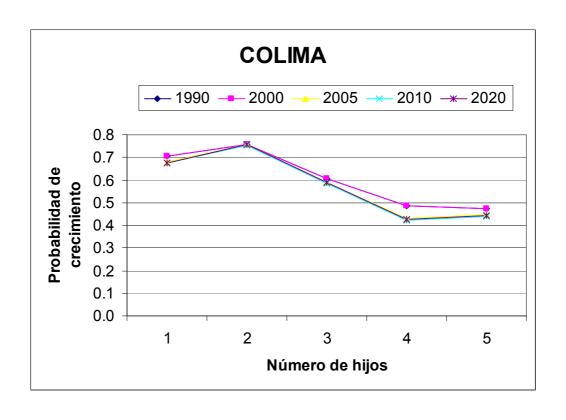

FUENTE: Estimaciones propias

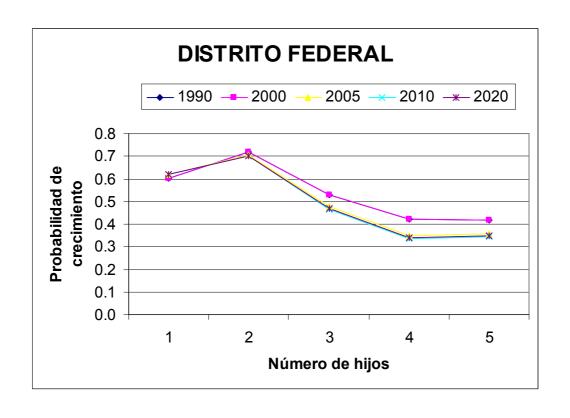

Con base en estos polinomios se estimaron las probabilidades de crecimiento ajustadas para el caso del año 2005 y las probabilidades de crecimiento proyectadas para los años 2010 y 2020, que se presentan en el Cuadro 9.2 del capítulo 9, y con las cuales me es posible graficar las siguientes comparaciones entre las probabilidades de crecimiento 2005, 2010 y 2020 a nivel nacional y estatal.

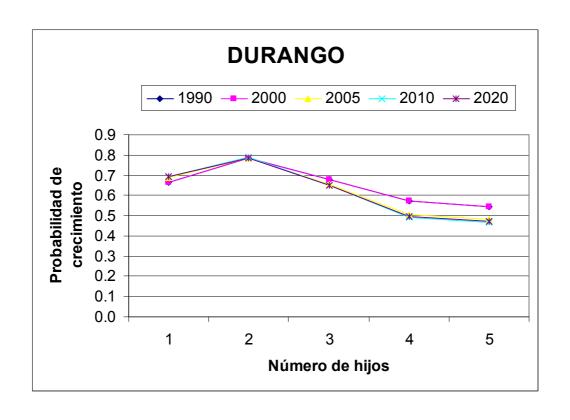


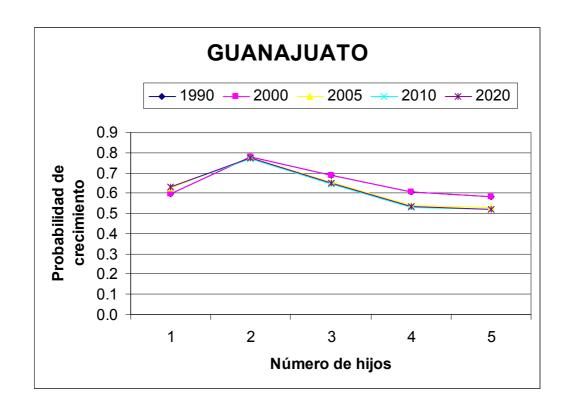


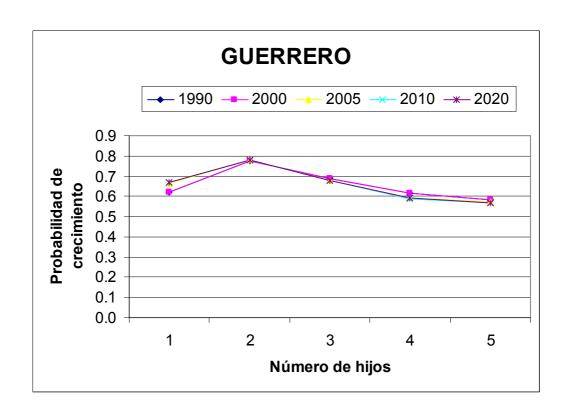


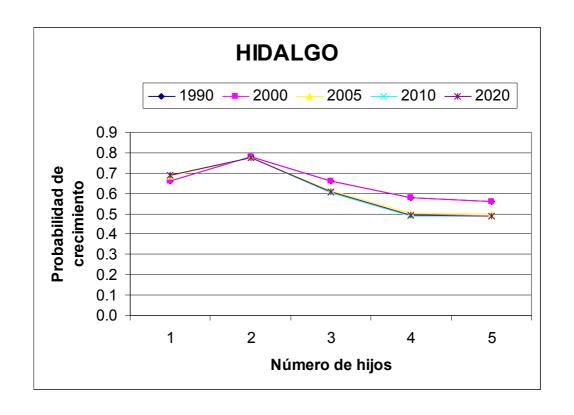


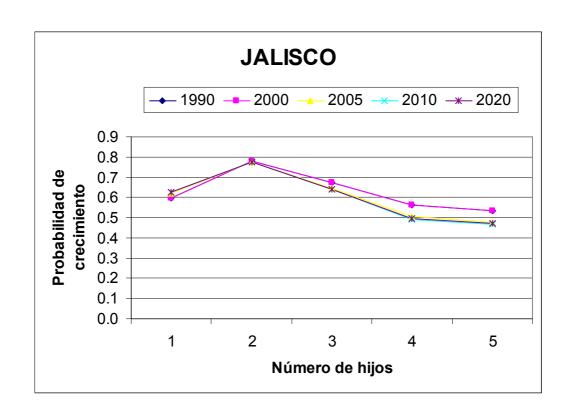


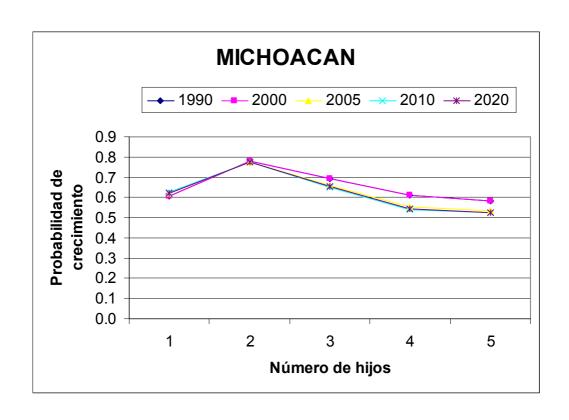


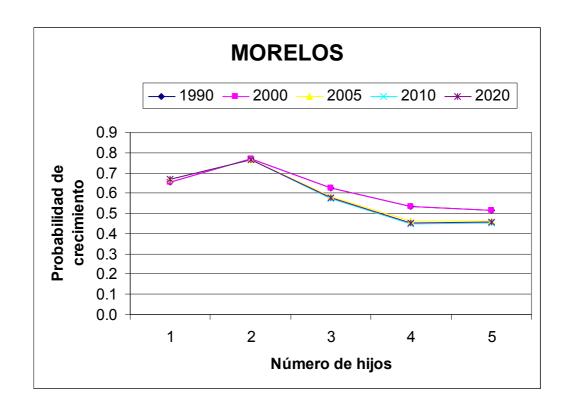


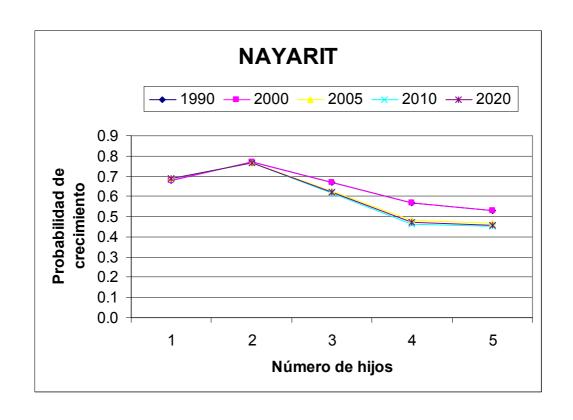


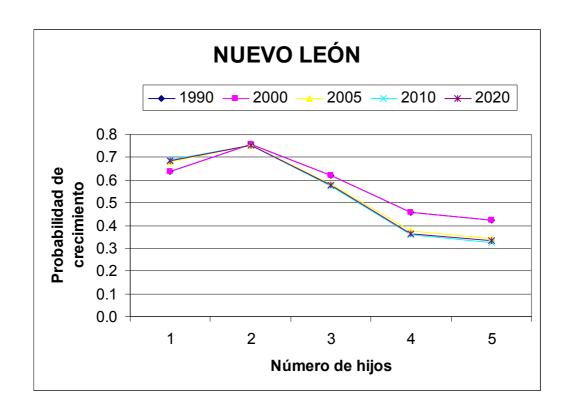


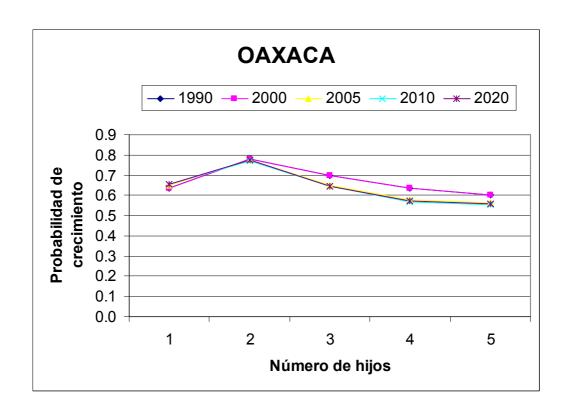


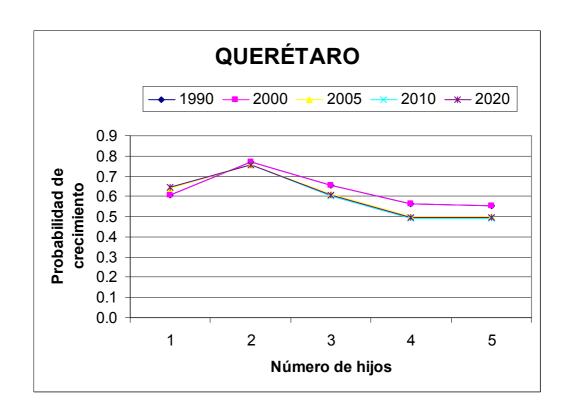


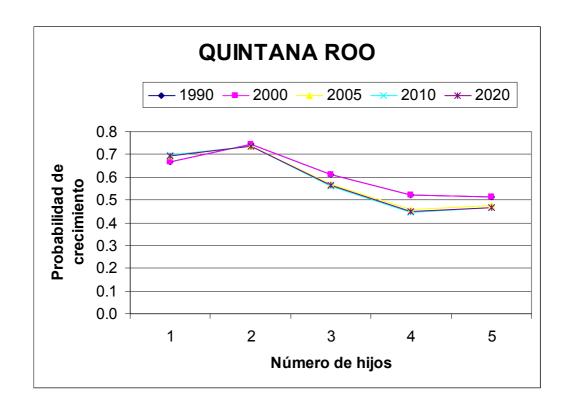


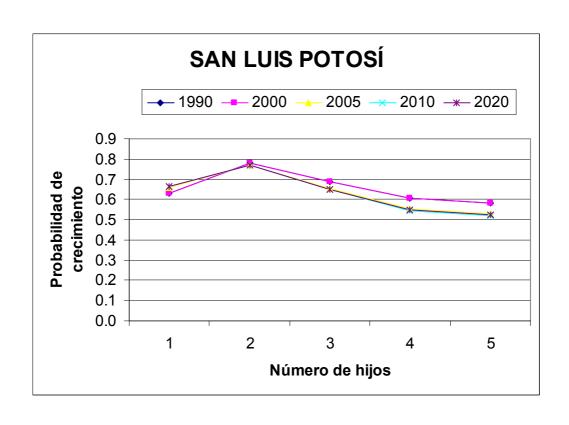


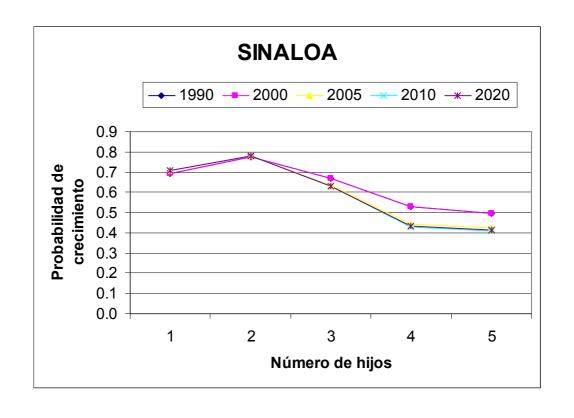


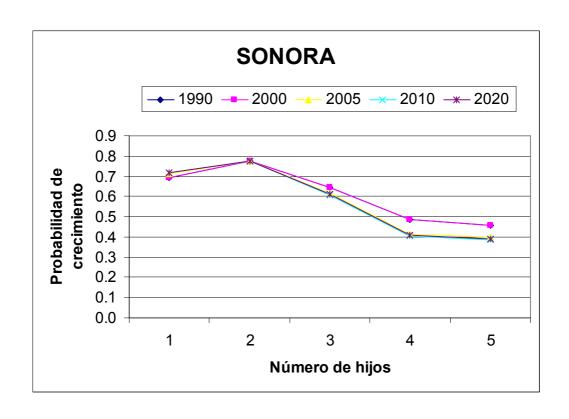


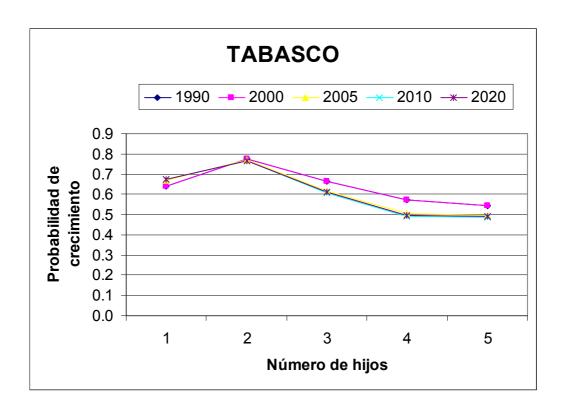


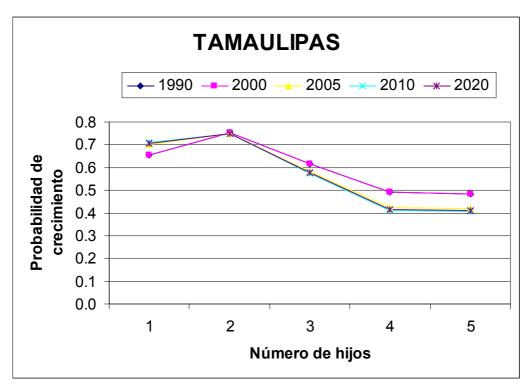


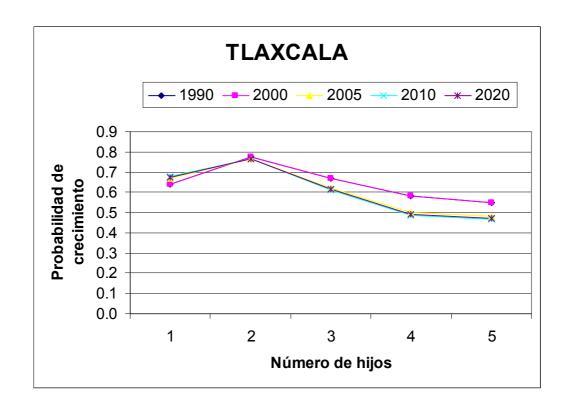


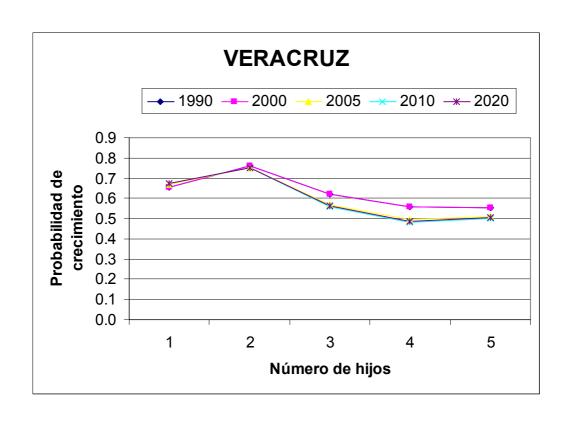


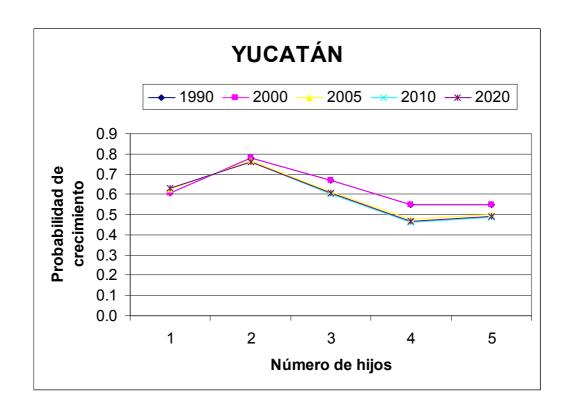


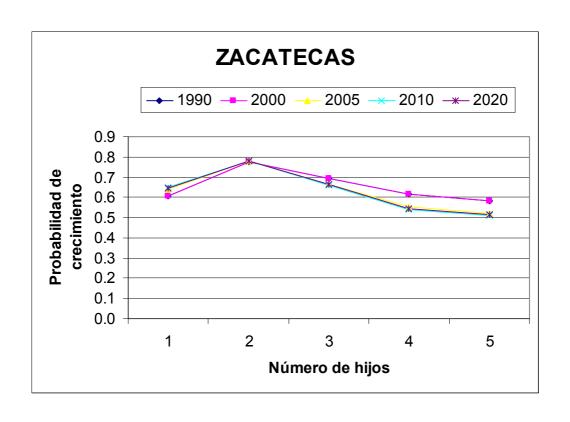












Al agrupar estas gráficas según cierta tendencia que observe pude describirlas dentro del capítulo 9, marcando los puntos mas importantes de éstas.

Todas las graficas están en base a los datos recabados del II Conteo de Población y Vivienda 2005, representados mediante los cálculos que estime de las probabilidades de crecimiento de las familias mexicanas a nivel nacional y por entidad federativa.

BIBLIOGRAFIA

Zavala de Cosío, M. E. 1984. *Niveles y tendencias de la fecundidad en México, 1960-1980*. Centro de Estudios Demográficos y de Desarrollo Urbano, El Colegio de México.

Rubín, Jane R. 1989. Los determinantes socioeconómicos de la fecundidad en México: cambios y perspectivas: una revisión de la literatura. Centro de Estudios Demográficos y de Desarrollo Urbano, El Colegio de México.

Welti Chanes, Carlos. 1984. *La investigación del efecto de la anticoncepción sobre la fecundidad en México*. Centro de Estudios Demográficos y de Desarrollo Urbano, El Colegio de México.

Juárez, Quilodrán, Zavala de Cosío. 1996. *Nuevas pautas reproductivas en México*. Centro de Estudios Demográficos y de Desarrollo Urbano, El Colegio de México.

Camposortega Cruz, Sergio. 1984. *Las proyecciones de la fecundidad en México*. Centro de Estudios Demográficos y de Desarrollo Urbano, El Colegio de México.

Arriaga, Eduardo E. 1989. *Comentarios sobre algunas predicciones de la fecundidad mexicana*. Centro de Estudios Demográficos y de Desarrollo Urbano, El Colegio de México.

Zavala de Cosío, M.E. 1992. *Cambios de fecundidad en México y políticas de población.* Centro de Estudios Demográficos y de Desarrollo Urbano, El Colegio de México.

Mina Valdés, Alejandro. 2005. *Curso básico de demografía*. Vínculos Matemáticos, Publicaciones del Departamento de Matemáticas, Facultad de Ciencias, UNAM.

Figueroa Campos, Beatriz. 1989. *La fecundidad en México: cambios y perspectivas.* Centro de Estudios Demográficos y de Desarrollo Urbano, El Colegio de México.

Mina Valdés, Alejandro. 1980. *Ajuste de la estructura de la fecundidad por edades mediante la función de Gompertz linealizada*. Centro de Estudios Económicos y Demográficos, El Colegio de México.

Naciones Unidas. 1959. *Diccionario Demográfico Plurilingüe.* Departamento de Asuntos Económicos y Sociales.

Cheney, Kincaid. 2004. *Numerical Mathematics and Computing*. Thompson Editorial.

http://docentes.uacj.mx/gtapia/AN/Unidad6/Contenido4.htm

http://www.inegi.gob.mx

http://www.conapo.gob.mx

http://www.cepep.org.py/endssr2004/informe_final/resumen_esp.htm