"tesis" — 2007/3/29 — 9:05 — page 1 — #3

 \oplus

 \oplus

 \oplus

 \oplus

Universidad Nacional Autónoma de México

UNAM – Dirección General de Bibliotecas Tesis Digitales Restricciones de uso

DERECHOS RESERVADOS © PROHIBIDA SU REPRODUCCIÓN TOTAL O PARCIAL

Todo el material contenido en esta tesis esta protegido por la Ley Federal del Derecho de Autor (LFDA) de los Estados Unidos Mexicanos (México).

El uso de imágenes, fragmentos de videos, y demás material que sea objeto de protección de los derechos de autor, será exclusivamente para fines educativos e informativos y deberá citar la fuente donde la obtuvo mencionando el autor o autores. Cualquier uso distinto como el lucro, reproducción, edición o modificación, será perseguido y sancionado por el respectivo titular de los Derechos de Autor. Π

Hoja de Datos del Jurado

Datos del alumno 1. Apellido paterno: Apellido materno: Nombre(s): Teléfono: Universidad: Facultad: Carrera: Número de cuenta: 2. Datos del tutor Grado: Nombre(s):Apellido paterno: Apellido materno: Datos del sinodal 1 3. Grado: Nombre(s):Apellido paterno: Apellido materno: 4. Datos del sinodal 2 Grado: Nombre(s):Apellido paterno: Apellido materno: 5.Datos del sinodal 3 Grado: Nombre(s): Apellido paterno: Apellido materno: 6. Datos del sinodal 4 Grado: Nombre(s): Apellido paterno: Apellido materno: Datos del sinodal 5 7. Grado:

Nombre(s): Apellido paterno: Apellido materno:

 \oplus

Barrios Vargas José Eduardo 53 79 04 72 Universidad Nacional Autónoma de México Facultad de Ciencias Física 300288065 Dr César Treviño Treviño Dr Rosalío Fernando Rodríguez Zepeda Dr César Treviño Treviño Dra Catalina Elizabeth Stern Forgach Dr Federico Méndez Lavielle Dr Erick Emanuel

Luna Rojero

"tesis" — 2007/3/29 — 9:05 — page III — #5

 \oplus

 \oplus

 \oplus

œ

FACULTAD DE CIENCIAS División de Estudios Profesionales AVTONOMA DE MEXIÇO ACT. MAURICIO AGUILAR GONZÁLEZ Jefe de la División de Estudios Profesionales Facultad de Ciencias P r e s en t e . Por este medio hacemos de su conocimiento que hemos revisado el trabajo escrito titulado: "El proceso de extinción para una llama premezclada laminar en una tubería" realizado por Barrios Vargas José Eduardo, con número de cuenta 30028806-5, quien opta por titularse en la opción Tesis en la licenciatura en Física. Dicho trabajo cuenta con nuestro voto aprobatorio. Frodinging It Rosalío Fernando Rodríguez Zepeda Dr. Propietario Tutor(a) Propietario César Treviño Treviño Dr. Catalina Elizabeth Stern Forgach Catalina Catalina Propietario Dra. Feal Suplente Dr. Federico Méndez Lavielle Erick Emanuel Luna Rojero Erick E. Luna & Suplente Dr. A ten ta mente "POR MI RAZA HABIARĂ EL ESPÍRITU" Ciudad Universitaria, D.F., 8 16 de febrero del 2007. LA COORDINADORA DEL COMITÉ DE TITULACIÓN DE LA LICENCIATURA EN FÍSICA accontrategio de portas a Deces M. EN C. ALICIA ZARZOSA PÉREZ Señor sinodal: antes de firmar este documento, solicite al estudiante que le muestre la versión digital de su trabajo y verifique que la misma incluya todas las observaciones y correcciones que usted hizo sobre el mismo.

III

 \oplus

 $_{\rm IV}$

 \oplus

Agradecimientos

A mis padres que me han apoyado y brindado consejos (con la esperanza de que los siguiera).

Al Dr. César Treviño por todo su apoyo y respaldo a través del desarrollo de este trabajo. Gracias por brindarme esa confianza, resulta para mí, invaluable.

A la Dra. Catalina Stern, al Dr. Rosalio Rodríguez, al Dr. Federico Méndez y al Dr. Erick Luna por tomarse el tiempo de leer la tesis y sus comentarios que ayudaron a mejorar el formato final.

A mi hermano por todo lo que me ha enseñado y su ayuda incondicional.

A mi hermana por todo su cariño, en verdad te aprecio mucho *minimorra*. Al Dr. Pepe por todo su tiempo y paciencia ante mis dudas. Al (*quasi*) Dr. Lorenzo por toda su inyección de motivación. A Jorge por su apoyo y amistad desde mis incios en el grupo del Dr. César.

A todos mis amigos, con los cuales sé que puedo contar (espero toda la vida). En especial quisiera mencionar a Cecilia (Rebeca), Cajas, Heinrich (Fiden...) y Radillo.

Agradezco a la **UNAM** por haberme brindado la posibilidad de pertenecer a esta magnínifica institución.

Æ

 \oplus

Ð

 \oplus

Índice general

 \bigoplus

 \oplus

 \oplus

 \oplus

Nomeclatura VII	
Resumen xi	
1. Introducción 1	
1.1. Antecedentes $\ldots \ldots 2$	
1.2. Objetivos $\ldots \ldots 5$	
1.3. Estructura de Tesis $\ldots \ldots $	
2. Planteamiento del problema 7	
2.1. Análisis de escalas	
2.2. Ecuaciones adimensionales	
2.3. Límites as intóticos $\dots \dots \dots$	
3 Llama laminar plana unidimensional 15	
3.1 Una región de reacción 17	
3.1.1 Zona evterna 17	
$3.12 \text{Zona interna} \qquad \qquad 18$	
3.2 Solución numérica 20	
3.2.1 Exacto 20	
$3.2.1$ Exacta \ldots 20	
3.3 Regultedoe 20	
5.5. Insultados	
4. Resultados numéricos 23	
4.1. Método de resolución $\ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots 23$	
4.2. $V = V(L_F, L_R, a, Ze, \gamma, \alpha_w/\alpha, \beta, K)$	
4.2.1. Campo de temperatura, concentración de combustible	
y radicales. \ldots 24	
4.2.2. El papel del espesor de la pared y el radio del conducto 26	

\mathbf{V}

"tesis" — 2007/3/29 — 9:53 — page v
I — #8

 \bigoplus

 \oplus

 \oplus

 \oplus

 \oplus

 \oplus

VI Í	ndice general
5. Conclusiones	39
Bibliografía	41
Apéndice A - Revisión de la llama plana premezclada	43
Apéndice B - Programas en Fortran 90	47

Nomeclatura

- a radio adimensional R/δ_T
- B_1 factor pre-exponencial de Arrhenius para el consumo de combustible
- B_2 factor pre-exponencial de Arrhenius para la producción de radicales
- c_p calor específico a presión constante de la mezcla
- $c_w \qquad$ calor específico a presión constante de la pared
- D_F coeficiente de difusión másica del combustible
- D_R coeficiente de difusión másica del radical
- G_0 velocidad de la llama premezclada unidimensional con una cinética química de dos pasos.
- h espesor del tubo adimensional H/δ_T
- H espesor del tubo dimensional
- K parámetro cinético $\rho Y_{F0} \exp[T_a/T_e]B_2/B_1$
- L_F número de Lewis del combustible α/D_F
- L_R número de Lewis del radical α/D_R
- Nu número de Nusselt.
- Q calor liberado por unidad de masa de combustible
- r' coordenada radial dimensional
- r coordenada radial adimensional r'/δ_T
- R radio del tubo dimensional y como subíndice radicales
- t' tiempo dimensional
- t_d tiempo de difusión transversal
- t_r tiempo de residencia
- S_L velocidad de llama adiabática plana
- T temperatura dimensional
- T_0 temperatura inicial
- T_a temperatura de activación de la reacción producida por el radical
- T_e temperatura adiabática de llama $T_0 + QY_{F0}/c_p$
- T_f temperatura en el centro del tubo en el frente de llama
- T_{wf} temperatura de la pared en el frente de llama

"tesis" — 2007/3/29 — 9:53 — page VIII — #10

NOMECLATURA

 \oplus

 \oplus

- T_{∞} temperatura ambiente
- u_p Ucociente velocidad de llama adiabática plana y su límite cuando $Ze\gg 1$
- velocidad de la llama dimensional relativa a la pared
- Vvelocidad de la llama adimensional relativa a la pare
d U/S_L
- x'coordenada longitudinal dimensional
- xcoordenada longitudinal adimensional x'/δ_T
- Yconcentración de combustible adimensional Y_F/Y_{F0}
- Y_F concentración de combustible dimensional
- concentración de combustible en la mezcla sin quemar Y_{F0}
- $Y_{F\infty}$ concentración de combustible en la mezcla quemada
- Y_r concentración de radicales adimensional Y_R/Y_{F0}
- Y_R concentración de radicales dimensional
- Zenúmero de Zeldovich $T_a(T_e - T_0)/T_e^2$

VIII

 \oplus

 \oplus

Resumen

 \oplus

En este trabajo se estudia la propagación de una llama premezclada laminar a través de un conducto circular bajo el modelo termo-difusivo. Se tomaron en cuenta las pérdidas de calor por conducción a las paredes en el régimen de pared térmicamente delgada. También se consideró la relación entre las dimensiones del conducto (ancho de pared y radio) con la velocidad de propagación, determinando así las condiciones de extinción en función del parámetro de pérdida de calor.

El modelo matématico emplea las ecuaciones de energía y especies. La cinética química utilizada es de dos pasos, tipo Arrhenius, una producción de radicales energéticamente neutra seguida por una recombinación de radicales exotérmica. Para valores grandes del parámetro de pérdida de calor ocurre una extinción local de la llama cerca a las paredes. En cambio para valores pequeños se encuentra un mecanismo de retroalimentación realizado por transferencia de calor de la pared al gas combustible sin quemar. En este límite se observa un comportamiento similar al de una llama plana.

XI

Capítulo 1

Introducción

El problema central en combustión corresponde a una consideración simultánea del fenómeno de transporte y de la cinética química; suposición en el estudio de llamas laminares, o deflagración. El desarrollo de la teoría de llamas laminares desprende conceptos escenciales para otras ramas de la combustión, como es el caso de la velocidad de llama. Su valor resultará autovalor de las ecuaciones de conservación de temperatura y especies, y dará el criterio de extinción.

En las últimas décadas los estudios de propagación de llamas laminares ha tomado un gran auge, principalmente en tuberías cilíndricas y rectangulares, motivadas por su aplicación en la industría petroquímica. Dada la complejidad de las ecuaciones, frecuentemente se recurre a resoluciones numéricas que pueden llegar a ser muy robustas y, por tanto, el tiempo a para obtener resultados es inapropiado.

En este marco es donde entran de manera satisfactoria las aproximaciones asintóticas del problema dadas las altas energías de activación. Una consecuencia de los métodos asintóticos es la división de la región a estudiar en dos partes, la zona de convección-difusión (externa) y la zona de reacción-difusión (interna). En la zona de reacción, el gradiente de temperatura es significativo, y por tanto, los cambios en la densidad no son despreciables, pero el ancho de esta zona comparado con la externa es pequeño. Es aquí donde el modelo termo-difusivo, que considera a la densidad constante, puede hasta cierto punto ser justificable.

"tesis" — 2007/3/29 — 9:53 — page 2 — #16

CAPÍTULO 1. INTRODUCCIÓN

Por otra parte, la propagación de llamas laminares tiene una velocidad del orden de metros/seg, lo cual corresponde a un número de Mach pequeño. Considerando esto, las variaciones en la presión son pequeñas comparadas con la presión misma y, por tanto, despreciables, i.e. la presión es considerada una constante espacial.

1.1. Antecedentes

Resulta importante situar el problema a abordar en su contexto histórico, de acuerdo con la literatura, por lo cual se realizará una revisión somera de problemas anteriores con objetivos similares al de este estudio.

Una medición experimental de la velocidad de llama laminar en una bomba esférica de combustión, la cual mantenía un volumen constante, bajo condiciones de temperatura y presión similares a las encontradas en el motor de combustión interna, fue realizada por Metghalchi y Keck [MK80]. Utilizando un análisis termodinámico calcularon la velocidad de llama laminar como función de la presión, obteniendo así exelentes correlaciones con las mediciones aprovechando leyes de potencias y expresiones exponenciales en las velocidades. Un año después Zeldovich [Zel81], realizó una revisión de las teorías termo-difusivas e hidrodinámica de llamas incluyendo la estabilidad en llamas esféricas. Encontró que la forma convexa de la propagación en llama dentro de un tubo en ausencia de gravitación es una manifestación de la inestabilidad hidrodinámica de Landau, y que el desarrollo de perturbaciones con longitudes de onda pequeñas en la llama convexa, es mucho más complicada que en una llama plana, además determinó que la llama convexa es estable para valores relativamente grandes del número de Reynolds.

Posteriormente Aly y Hermance [AH81], investigaron la extinción de la llama laminar en dos dimensiones cartesianas usando ecuaciones diferenciales parciales de conservación de energía y de combustible; donde la llama se propaga libremente entre planos paralelos fríos, considerando la presión constante y usando una reacción de un paso con la ley de Arrhenius. Así se obtuvo la separación entre los planos correspondiente a la extinción, obtuvieron la velocidad de quemado y la estructura de la llama en el límite de extinción. Los resultados muestran que reduciendo la concentración de combustible el número de Peclet de extinción se incrementó, y que la reducción de presión y la difusión axial de las especies no afectan el número de Peclet de extinción.

Iniciando los estudios de retroalimentación en conductos circulares Lee y T'ien [LT82], analizaron la propagación y estructura de la llama laminar

"tesis" — 2007/3/29 - 9:53 — page 3 — #17

3

1.1. ANTECEDENTES

premezclada con un flujo de combustible opuesto a la propagación de la llama. Su modelo matemático incluye las ecuaciones de Navier-Stokes de energía y especies, con una reacción química global de un paso y cinética química de tipo Arrhenius. La propagación se examina como función de los perfiles de velocidad de entrada, gradientes de velocidad en las paredes y radio del tubo, observando el fenómeno de retroalimentación debido a la baja velocidad del contraflujo. La estructura de la llama en el límite de propagación indica una naturaleza multidimensional del fenómeno de propagación, i.e. no es posible reducir el problema al de una llama plana unidimensional. Dunn-Rankin et al. [DRS86], usando anemometría laser Doppler (Laser Doppler Anemometry - LDA) junto con simulaciones numéricas del campo de velocidades generado durante la propagación de la llama laminar premezclada en conductos cerrados, explicaron el proceso físico que causa la llama con estructura de tulipán. Por medio de la comparación de los experimentos y el modelo numérico, encontraron que la hidrodinámica de la combustión generada por el flujo es suficiente para producir dicha estructura.

Benkhaldoun et al. [BLD89] examinaron la propagación del frente de una llama premezclada curva a través de un conducto rectangular no adiabático, e investigaron los límites de propagación de llama, usando un modelo termo-difusivo bidimensional. Los resultados muestran una analogía con la extinción de la llama plana, particularmente con la variación del límite de extinción con los parámetros de pérdida de calor como función de la energía de activación. Farmer and Ronney [FR90], usando un modelo numérico de propagación de llama no adiabática, examinaron las propiedades de la llama premezclada en los límites de porpagación de llama en geometría plana y esférica, encontrando que la propagación de esas llamas es controlada por el mecanismo termo-difusivo y por pérdidas de calor por radiación. González et al. [GBS92] investigaron numéricamente la propagación de un frente de llama en un tubo cerrado encendido en el extremo final. Usaron un proceso basado en el método de volumen finito con una reacción global de un solo paso para el proceso químico, siguiendo la ley de Arrhenius para el consumo de combustible. La inestabilidad de Darrieus-Landau fue analizada para un frente de llama plana con una perturbación inicial en un tubo cerrado por un extremo, mientras el lado opuesto se matiene abierto con la llama encendida. Simularon la extinción de la llama con forma de tulipan en tubos y coincidieron con algunos resultados experimentales. Mcgreevy y Matalon [MM92] estudiaron la evolución de una llama premezclada plana bajo condiciones de confinamiento, basando su análisis en un modelo hidrodinámico en el cual la llama es tratada como una superficie discontinua. El modelo resuelve el campo térmico, el flujo en la llama y determina la localización

CAPÍTULO 1. INTRODUCCIÓN

instantánea del frente de llama hasta su llegada al final del tubo. Los resultados indican que, cualitativamente, diferentes comportamientos son posibles para mezclas dependiendo de su número de Lewis (Le) mayor o menor a la unidad. Para Le > 1, la velocidad de quemado siempre se incrementa conforme la llama viaja de un extremo a otro. Mientras que para Le < 1, la evolución es extremadamente sensible a la condición inicial.

Lee y Tsai [LT94] investigaron numéricamente la propagación estacionaria de una llama laminar premezclada en tubos circulares con pared adiabática y pared isotérmica fría. Consideraron que el flujo es simétrico con respecto al centro del tubo y la química de la llama fue modelada por medio de una reacción global de un paso simple, simulando la reacción de una mezcla pobre de aire-metano. Los resultados numéricos muestran que la propagación de la llama estacionaria en un tubo puede tomar dos formas distintas: la forma de tulipán y la de hongo. Los autores encontraron que en un tubo adiabático, la estructura de llama de tulipán es más común que la estructura de llama de hongo, siendo ésta el modo primario de las soluciones. El resultado opuesto fue obtenido en un tubo con paredes isotérmicas. Kurdyumov et al. [KFLn00] estudiaron numéricamente la propagación de la llama premezclada a través de la región de baja velocidad cerca de la pared en la base de una capa de frontera laminar para una mezcla reactiva. El análisis fue realizado usando la aproximación de densidad constante y una reacción global de un paso del tipo de Arrhenius, tomando en cuenta los efectos del número de Lewis para el combustible. El frente de velocidad fue calculado en los casos límite de paredes adiabáticas e isotérmicas. El frente de velocidad cambia de negativo a positivo cuando el número de Karlovitz se encuentra por abajo de un valor crítico. Este valor crítico, que decrece cuando el número de Lewis del combustible incrementa, es menor para paredes isotérmicas que para adiabáticas.

Daou y Matalon [DM01] describen la prorpagación a través de un canal sujeto a un flujo de Poiseuille, empleando un enfoque termo-difusivo en un contexto adiabático. El frente de la llama bidimensional es opuesto al flujo. Determinaron la tasa de quemado en función de la intensidad del flujo y el ancho de la llama. Sus resultados permiten identificar un criterio simple para la retroalimentación de la llama, justificado por la velocidad de propagación negativa, i.e. cuando la velocidad de propagación de la llama es mayor a la velocidad del flujo. En trabajos posteriores [DM02] consideraron la influencia de las pérdidas de calor por conducción normal a las paredes en la propagación de la llama. Encontraron que dependiendo del ancho del canal, existen dos tipos de extinción: la extinción de la llama en canales estrechos (dada por una excesiva pérdida de calor) y la extinción cerca de

1.2. OBJETIVOS

las paredes en canales anchos. Kurdyumov y Liñán [KLn02] estudiaron la propagación de llamas premezcladas a contraflujo o realimentación de una mezcla reactiva debida a la región de baja velocidad cerca de una pared fría. Encontraron que el frente de propagación y retroalimetación solo es posible para valores de gradientes de velocidad en la pared por debajo de cierto valor crítico y que la propagación de la llama es caótica para pequeños valores del número de Lewis.

Kurdyumov y Fernández-Tarrazo [KFT02], numéricamente investigaron la propagación de una llama laminar premezclada en conductos circulares abiertos con diferentes números de Lewis, usando el modelo termo-difusivo con una reacción química total de Arrhenius. Consideraron las paredes adiabáticas e isotérmicas. Los autores demostraron la existencia de soluciones múltiples en el caso de una pared isotérmica y determinaron el radio de extinción del conducto. Cuando el número de Lewis es menor a la unidad, la velocidad de la llama en ductos con pared isotérmica puede ser menor que con una pared adiabática del mismo diámetro debido a la aparición de estructuras celulares, las cuales incrementan el efecto de curvatura por la condición de frontera en la pared.

Después de dar una revisión en las investigaciones realizadas en las últimas décadas es importante mencionar el objetivo a seguir. El objetivo de este trabajo es determinar el radio del conducto crítico para la no propagación (extinción) de la llama como función del parámetro de pérdida de calor β (que se definirá posteriormente) y que depende fuertemente del espesor de la tubería H. Las principales contribuciones de la tesis resultan de la cinética química de dos pasos, la cual incluye la influencia de radicales, y la conducción de calor a través de las paredes de forma longitudinal, forma de conducción en tuberías no estudiada hasta ahora.

1.2. Objetivos

Los objetivos principales del trabajo son los siguientes:

- Determinar el radio de extinción para la llama premezclada laminar dentro de una tubería.
- Estudiar la dependencia del radio de extinción al variar el parámetro de pérdidas de calor.
- Analizar los campos de temperatura y concentraciones del radical y del combustible, en el frente de llama para distinguir su forma.

"tesis" — 2007/3/29 - 9:53 — page 6 — #20

CAPÍTULO 1. INTRODUCCIÓN

- Calcular la eficiencia de consumo de combustible en función de la pérdidas de calor.
- Señalar la correspondencia del límite de bajas pérdidas de calor con la llama premezclada plana.

1.3. Estructura de Tesis

En el Capítulo 2 se encuentra el planteamiento del problema, así como las ecuaciones dimensionales y adimensionales a resolver para la llama premezclada laminar en un conducto circular. En ese mismo capítulo se definen y analizan los valores asintóticos del parámetro de pérdidas de calor, β .

En el Capítulo 3 se presenta el planteamiento y solución de la llama plana laminar premezclada, para el límite $\beta \to 0$. Se calcula la velocidad de propagación como función de la raíz del cociente entre el número de Zeldovich y el parámetro cinético, $\varepsilon = \sqrt{Ze/K}$, la cual se plantea en el capítulo anterior.

La forma numérica de resolución y los resultados se muestran en el Capítulo 4 con su respectiva discusión. En especial se presentan en este capítulo los gráficos correspondientes a los campos de temperatura y concentraciones de radical y combustible, resultado visual para el análisis del frente de llama. Además, se observa el mecanismo de retroalimentación; debido al calentamiento por conducción de la mezcla sin quemar a través de la pared, la cual previamente es calentada por los gases producto de la combustión.

El presente trabajo se envió a la revista *Combustión Theory and Modelling* bajo el título **The role of duct thickness on the quenching process of premixed flame propagation** con autores E. Barrios, J.C. Prince y C. Treviño, el cual se encuentra en revisión.

Capítulo 2

 \oplus

Planteamiento del problema

La deducción de las ecuaciones de conservación de la energía y conservación de especies puede encontrarse en detalle en [Wil85] y [BL82] junto con las discusiones de las aproximaciones usuales en combustión. Se toma un modelo de reacción química irreversible de dos pasos, el primero es energéticamente neutro, y representa la oxidación del combustible que produce radicales y el segundo considera la combinación de radicales y libera energía:

$$\begin{split} F + O &\rightarrow P_1 + 2R \\ R + R &\rightarrow P_2 + Q \,, \end{split}$$

donde F denota al combustible, O al oxidante, P_1 , P_2 son los productos, y R representa el radical principal. Q es el calor liberado por la reacción química por unidad de masa de combustible consumido.

Se considera la propagación de una llama premezclada laminar a través de un conducto circular, con simetría azimutal tomando como eje el centro del tubo (Figura 2.1), en la aproximación termo-difusiva, las ecuaciones dimensionales de energía, concentración de combustible y radicales, con densidad de la mezcla ρ y capacidad calorífica c_p , se escriben como

7

Figura 2.1: Gráfico de la tubería.

$$\begin{aligned} \rho c_p \frac{\partial T}{\partial t'} &= \lambda \triangle' T + \Omega_2 Q \\ \rho \frac{\partial Y_F}{\partial t'} &= \rho D_F \triangle' Y_F - \Omega_1 \\ \rho \frac{\partial Y_R}{\partial t'} &= \rho D_R \triangle' Y_R - 2(\Omega_2 - \Omega_1) . \end{aligned}$$

ŀ

 \oplus

donde T, Y_F y Y_R representan la temperatura, la concentración de combustible y la concentración de radicales, respectivamente. D_F es la difusión másica del combustible y D_R la del radical, y λ corresponde a la conductividad térmica. El operador Laplaciano en coordenadas cilíndricas se representa por $\Delta' = \partial^2/\partial x'^2 + 1/r'\partial/\partial r'(r'\partial/\partial r')$. Nótese que las variables espaciales con dimensiones llevan una prima a un lado. Las tasas de reacción Ω_1 y Ω_2 en masa de combustible por unidad de tiempo y volumen son de la forma, siguiendo la ley de Arrhenius, y considerando la producción de radicales energéticamente neutra

$$\begin{aligned} \Omega_1 &= \rho B_1 Y_F \exp[-T_a/T] \\ \Omega_2 &= \rho^2 B_2 Y_R^2 \,, \end{aligned}$$

donde B_1 y B_2 representan los factores pre-exponenciales de las reacciones químicas y T_a es la temperatura de activación de la reacción que produce los radicales.

Se denota con R el radio de la tubería y H como su espesor. La pared tiene una densidad ρ_w , una difusividad térmica α_w y una capacidad calorífica

"tesis" — 2007/3/29 — 9:53 — page 9 — #23

 c_w . La mezcla sin quemar tiene una temperatura $T = T_0$ y una fracción de combustible $Y_F = Y_{F0}$.

2.1. Análisis de escalas

Tomando a la parte exterior de la pared como adiabática y usando un análisis de órdenes de magnitud, la temperatura final del gas, T_{∞} puede ser estimada por la ecuación de balance de energía

$$\rho U\pi R^2 Y_{F0} Q\eta_c = \rho U\pi R^2 c_p (T_\infty - T_0) + 2\rho_w U\pi R H (1 + H/2R) c_w (T_\infty - T_0) , (2.1)$$

donde U es la velocidad de propagación de la llama y η_c es la eficiencia de consumo de combustible, $\eta_c = (Y_{F0} - Y_{F\infty})/Y_{F0}$ con $Y_{F\infty}$ la concentración de masa lejos del frente de la llama. El lado izquierdo de la ecuación (2.1) corresponde a la energía total liberada por la reacción química por unidad de tiempo. Parte de esta energía es necesaria para calentar la mezcla de combustible, mientras que la fracción restante se emplea para calentar la pared del tubo. Definiendo $\theta_{\infty} = (T_{\infty} - T_0)/(T_e - T_0)$, donde T_e es la temperatura adiabática de la llama; la cual resulta de calcular la reacción química sin pérdidas de calor y consumiendose totalmente el combustible $T_e = T_0 + QY_{F0}/c_p$. La forma adimensional de la ecuación (2.1) queda como

$$\theta_{\infty} = \frac{\eta_c}{1 + 2\beta/a} \,,$$

donde β corresponde al parámetro de la pérdida de calor definido por

$$\beta = \frac{\rho_w c_w}{\rho c_p} h(1 + h/2a) \,. \tag{2.2}$$

Aquí $a = R/\delta_T$ es el radio del tubo escalado con el ancho de la región de precalentamiento de la llama $\delta_T = \alpha/S_L$, donde S_L es la velocidad de propagación para la llama plana laminar adiabática, h corresponde al ancho del tubo también escalado con δ_T , $h = H/\delta_T$.

La temperatura en el centro de la tubería en la posición del frente de llama se denota como T_f y la temperatura de la pared en la misma posición como T_{fw} . El calor transferido de la llama al gas premezclado es de orden $\lambda \pi R^2 (T_f - T_0)/\delta_T$, el cual es menor que la energía generada por la reacción química $\lambda \pi R^2 (T_e - T_0) \eta_c / \delta_T$. El calor cedido en la región de precalentamiento, de ancho δ_T , a la pared del tubo puede estimarse por $2\lambda \pi \delta_T (T_f - T_w f)$. Comparando el calor perdido con el calor generado, se obtiene la siguiente

"tesis" — 2007/3/29 — 9:53 — page 10 - #24

CAPÍTULO 2. PLANTEAMIENTO DEL PROBLEMA

relación entre la temperatura de la llama y la temperatura de la pared en la posición del frente de la llama

$$\theta_f \sim \frac{2\theta_{wf} + a^2 \eta_c}{2 + a^2} \,. \tag{2.3}$$

Por otro lado, el calor cedido a la pared del tubo se transfiere logitudinalmente a lo largo del tubo esta dado por $2\lambda_w \pi RH(1+H/2R)(T_{wf}-T_0)/\delta_{wT}$, donde $\delta_{wT} \sim \delta_T \alpha_w/\alpha$ es la zona de precalentamiento en la pared dada. Después de igualar ambas relaciones del calor cedido a la pared de la tubería se obtiene la siguiente relación entre θ_f y θ_{wf}

$$\theta_f \sim \theta_{wf} (1 + a\beta) \,. \tag{2.4}$$

Por lo tanto, usando las relaciones (2.3) y (2.4), la temperatura de la llama adimensional debe ser del orden

$$\theta_f \sim \frac{\eta_c(a\beta+1)}{a\beta+1+2\beta/a},$$

y la temperatura adimensional en la pared del tubo en la posición del frente de llama es

$$\theta_{wf} \sim \frac{\eta_c}{a\beta + 1 + 2\beta/a} \,.$$

En general, los valores de β son muy grandes comparados con la unidad dado el gran valor del cociente entre la densidad del sólido y la del gas. Por lo tanto, la temperatura de la pared en el frente de llama debe ser cercana a la temperatura de la mezcla sin quemar. Nótese que la eficiencia de conversión η_c es una función del parámetro de transferencia de calor y el radio adimensional del conducto a.

2.2. Ecuaciones adimensionales

Se introducen las siguientes variables adimensionales

$$x = \frac{x'}{\delta_T}, \ r = \frac{r'}{\delta_T}, \ V = \frac{U}{S_L},$$
$$Y = \frac{Y_F}{Y_{F0}}, \ Y_r = \frac{Y_R}{Y_{F0}}, \ \theta = \frac{T - T_0}{T_e - T_0},$$

y se definen los parámetros adimensionales

$$\delta_T = \frac{\alpha}{S_L}, \ L_F = \frac{\alpha}{D_F}, \ L_R = \frac{\alpha}{D_R}, \ \alpha = \frac{\lambda}{\rho c_p},$$

"tesis" — 2007/3/29 — 9:53 — page 11 - #25

2.2. ECUACIONES ADIMENSIONALES

Con lo cual, las ecuaciones adimensionales que gobiernan el caso estacionario bidimensional, referidas al centro del conducto para energía, fracción de combustible y fracción de radical, usando el marco de referencia del movimiento de la propagación de la llama estacionaria U, estan dadas por

$$V\frac{\partial\theta}{\partial x} = \frac{\partial^2\theta}{\partial x^2} + \frac{1}{r}\frac{\partial}{\partial r}\left[r\frac{\partial\theta}{\partial r}\right] + \omega_2$$
(2.5)

11

$$V\frac{\partial Y}{\partial x} = \frac{1}{L_F} \left\{ \frac{\partial^2 Y}{\partial x^2} + \frac{1}{r} \frac{\partial}{\partial r} \left[r \frac{\partial Y}{\partial r} \right] \right\} - \omega_1$$
(2.6)

$$V\frac{\partial Y_r}{\partial x} = \frac{1}{L_R} \left\{ \frac{\partial^2 Y_r}{\partial x^2} + \frac{1}{r} \frac{\partial}{\partial r} \left[r \frac{\partial Y_r}{\partial r} \right] \right\} - 2(\omega_2 - \omega_1), \qquad (2.7)$$

donde L_F y L_R son los números de Lewis del combustible y radical, respectivamente. V es la velocidad de propagación de la llama adimensional, autovalor de las ecuaciones a obtenerse en el análisis. ω_1 y ω_2 son las tasa de reacción adimensional de la forma

$$\omega_1 = \frac{Ze^2}{2L_F u_P^2} Y \exp\left[\frac{Ze(\theta-1)}{1+\gamma(\theta-1)}\right]$$
(2.8)

$$\omega_2 = \frac{KZe^2}{2L_F u_P^2} Y_r^2 , \qquad (2.9)$$

donde Ze es el número de Zeldovich, Ze = $T_a(T_e - T_0)/T_e^2$, γ es el parámetro del calor liberado en la reacción $\gamma = (T_e - T_0)/T_e$ y K es el parámetro cinético escrito como $K = \rho Y_{F0} \exp[T_a/T_e]B_2/B_1$. u_p donota el cociente de la velocidad de la llama plana premezclada con la obtenida en el límite $Ze \rightarrow \infty \ (u_p = S_L/\sqrt{2B_1L_FZe^{-2}\alpha} \exp[-T_a/2T_e])$.

El parámetro cinético K corresponde a un cociente entre los parámetros cinéticos de ambas reacciones, lo cual da indicios de la rapidez de reacción de la recombinación de radicales con respecto a la producción de estos. Nótese que cuando $K \to \infty$ se tiene una recombinación de radicales *instatánea*, i.e. una sola reacción.

La ecuación de energía adimensional para la pared del tubo está dada por

$$V\frac{\partial\theta_w}{\partial x} = \frac{\alpha_w}{\alpha} \left\{ \frac{\partial^2\theta_w}{\partial x^2} + \frac{1}{r}\frac{\partial}{\partial r} \left[r\frac{\partial\theta_w}{\partial r} \right] \right\}, \qquad (2.10)$$

donde $\theta_w = (T_w - T_0)/(T_e - T_0)$ es la temperatura de la pared adimensional a ser obtenida como parte de la solución. Suponiendo que el espesor del tubo es pequeño comparado con el radio interno del ducto, la aproximación de pared térmicamente delgada puede emplearse. Entonces las variaciones de

"tesis" — 2007/3/29 — 9:53 — page 12 — #26

CAPÍTULO 2. PLANTEAMIENTO DEL PROBLEMA

la temperatura en la pared en la dirección radial son despreciables. Nótese que usando esta aproximación, solo las variaciones en la dirección radial son despreciables, mas no sus gradientes. Integrando (2.10) en la dirección radial de a a a + h en la forma $\int_{a}^{a+h} []rdr$, se obtiene

$$V\frac{d\theta_w}{dx} = \frac{\alpha_w}{\alpha}\frac{d^2\theta_w}{dx^2} - \frac{1}{\beta}\frac{\partial\theta}{\partial r}\Big|_{r=a} - \frac{1}{\beta L_R}\frac{\partial Y_r}{\partial r}\Big|_{r=a},$$
(2.11)

donde se aplica la ecuación de continuidad del flujo de calor en la interface del gas-sólido. El último término surge del comportamiento del radical en la superficie. Las correspondientes condiciones de frontera adimensionales son

$$\frac{\partial Y}{\partial r} = \frac{\partial Y_r}{\partial r} = \theta - \theta_w = 0 \qquad \text{en } r = a \qquad (2.12)$$

$$\frac{\partial Y}{\partial r} = \frac{\partial Y_r}{\partial r} = \frac{\partial \theta}{\partial r} = 0 \qquad \text{en } r = 0 \qquad (2.13)$$

$$Y - 1 = Y_r = \theta = \theta_w = 0$$
 para $x \to -\infty$ (2.14)

$$\frac{\partial^2 Y}{\partial x^2} = \frac{\partial^2 Y_r}{\partial r^2} = \frac{\partial^2 \theta}{\partial x^2} = \frac{d^2 \theta_w}{dx^2} = 0 \qquad \text{para } x \to \infty \tag{2.15}$$

Se utilizan las segundas derivadas como condiciones de frontera en $x \to \infty$ dado que son menos restrictivas que las de primer orden ya que, como veremos en los resultados, existen pequeños gradientes de temperatura al final de la malla computacional.

La transferencia de calor adimensional del fluido a la pared del tubo está dada por

$$Nu = \frac{Q\delta_T}{\lambda(T_e - T_0)} = \frac{\partial\theta}{\partial r}\Big|_{r=a}.$$
(2.16)

2.3. Límites asintóticos

Para grandes valores de β comparados con la unidad ($\beta \gg 1$) la correspondiente condición de frontera debe ser $\theta_w \sim (a\beta)^{-1}$, la cual coincide con la condición de pared isotérmica empleada en [KFT02]. Por otro lado, para valores de β del orden unidad, la condición de frontera apropiada es entonces la condición de frontera adiabática $\partial \theta / \partial r|_{r=a} = 0$.

El límite de valores grandes de K comparados con la unidad, corresponde con asumir la reacción de la especie radical en un estado estacionario, llegando a $\omega_2 = \omega_1$. Para valores pequeños de la pérdida de calor β , es de

"tesis" — 2007/3/29 — 9:53 — page 13 - #27

2.3. LÍMITES ASINTÓTICOS

esperarse que el radio de extinción a^* , el cual corresponde al valor mínimo del radio del tubo adimensional para el cual la llama premezclada no se propaga, es más o menos cercano a la unidad. En este régimen, el cociente del tiempo de difusión transversal con el tiempo de residencia está dado por $t_d/t_r \sim V^2 a^2$, y puede ser muy pequeño comparado con la unidad, justificando el uso de la aproximación unidimensional por lo que las ecuaciones de energía (2.5) y (2.11) adimensionales se transforman en

$$V\left[1+\frac{2\beta}{a}\right]\frac{d\theta}{dx} = \left[1+\frac{2\beta}{a}\frac{\alpha_w}{\alpha}\right]\frac{d^2\theta}{dx^2} + \omega_2\,.$$

El problema se reduce a la propagación de la llama plana premezclada adimensional, reescalando la temperatura con el factor $(1+2\beta/a)$. Obteniendo así una velocidad de propagación de la llama dada por, para grandes valores de Ze

$$V = \frac{\left[1 + \frac{2\beta}{a} \frac{\alpha_w}{\alpha}\right] \left[1 + \frac{2\beta}{a} (1 - \gamma)\right]}{\left[1 + \frac{2\beta}{a}\right]} \left\{ \exp\left[-\frac{Ze\beta}{a + 2\beta(1 - \gamma)}\right] \right\} G_0(\varepsilon) \,.$$

La función $G_0(\varepsilon)$ representa la función de la velocidad de la llama premezclada unidimensional. Resulta por tanto útil analizar el caso de llama premezclada plana con la misma cinética química (*véase* Capítulo 3). En este régimen no se muestra ningún proceso de no propagación debido a la disminución monótona de la velocidad de la llama con el radio del ducto para valores pequeños del parametro de transferencia de calor β .

Capítulo 3

Llama laminar plana unidimensional con cinética química de dos pasos

El fenómeno de propagación de una llama premezclada es considerado uno de los problemas clásicos en combustión y fue resuelto de manera asintótica primero por Bush y Fendell [BF70] en 1970 para el caso simple de una reacción de un paso de tipo Arrhenius (véase Apéndice A). En este capítulo se considera una reacción de dos pasos, problema resultante de asumir las hipótesis siguientes:

- 1. Un flujo estacionario, plano, y unidimensional.
- 2. El calor transferido por radiación es despreciable.
- 3. Los efectos de Soret (flujos ddifusivos debidos a gradientes de temperatura) y Dufor (flujo de calor debido a gradientes de concentración) son despreciables.
- 4. La difusión causada por gradientes de presión son despreciables.
- 5. Fuerzas externas son despreciables.

 \oplus

15

"tesis" — 2007/3/29 — 9:53 — page 16 — #30

16 CAPÍTULO 3. LLAMA LAMINAR PLANA UNIDIMENSIONAL

6. La mezcla de gas es ideal.

7. Todas las especies son consideradas con la misma capacidad calorífica.

Se utiliza el modelo de combustión de dos pasos exotérmico formado por reacciones irreversibles

$$\begin{split} \mathbf{F} + \mathbf{O} &\rightarrow \mathbf{P}_1 + 2\mathbf{R} \\ \mathbf{R} + \mathbf{R} &\rightarrow \mathbf{P}_2 + \mathbf{Q} \,. \end{split}$$

Escribimos las ecuaciones adimensionales de energía, de fracción de combustible y radicales para una llama plana utilizando como sistema de referencia la llama estacionaria propagándose a una velocidad V

$$V \frac{d\theta}{dx} = \frac{d^2\theta}{dx^2} + \omega_2 ,$$

$$V \frac{dY_F}{dx} = \frac{1}{L_F} \frac{d^2Y_F}{dx^2} - \omega_1 ,$$

$$V \frac{dY_R}{dx} = \frac{1}{L_R} \frac{d^2Y_R}{dx^2} - 2(\omega_2 - \omega_1) ,$$

donde las tasas de reacción adimensionales estan dadas por

$$\omega_1 = \frac{Ze^2}{2L_F} Y_F \exp\left[-\frac{Ze(1-\theta)}{1-\gamma(1-\theta)}\right],$$

$$\omega_2 = \frac{KZe^2}{2L_F} Y_R^2.$$

Sea s = Vx, entonces las ecuaciones se transforman

 \oplus

$$\frac{d\theta}{ds} = \frac{d^2\theta}{ds^2} + \frac{KZe^2}{2L_FV^2}Y_R^2, \qquad (3.1)$$

$$\frac{dY_F}{ds} = \frac{1}{L_F} \frac{d^2 Y_F}{ds^2} - \frac{Ze^2}{2L_F V^2} Y_F \exp\left[-\frac{Ze(1-\theta)}{1-\gamma(1-\theta)}\right],$$
(3.2)

$$\frac{dY_R}{ds} = \frac{1}{L_R} \frac{d^2 Y_R}{ds^2} + \frac{Ze^2}{L_F V^2} \left\{ Y_F \exp\left[-\frac{Ze(1-\theta)}{1-\gamma(1-\theta)}\right] - KY_R^2 \right\}$$
(3.3)

 \oplus

De la ecuación de concentración de radicales (3.3) podemos ver que para valores de $K \to \infty$, dado que Y_R y sus derivadas son finitas,

$$Y_R = \frac{1}{\sqrt{K}} \sqrt{Y_F} \exp\left[-\frac{Ze(1-\theta)}{2(1-\gamma(1-\theta))}\right] \,.$$

"tesis" — 2007/3/29 — 9:53 — page 17 — #31

Ð

 \oplus

17

3.1. UNA REGIÓN DE REACCIÓN

Las condiciones de frontera bajo las cuales se deben resolver las ecuaciones son

$$\begin{split} Y_F - 1 &= \theta = Y_R = 0, \qquad \text{para, } s \to -\infty \\ Y \to 0, \ \theta \to 1, \ Y_R \to 0, \qquad \text{para, } s \to +\infty \end{split}$$

lo cual resulta solo posible para un valor dado de V (autovalor). Definimos

$$\Delta = \frac{Ze^2}{2L_F V^2}, \ g = 1 - \theta, \ y_R = \sqrt{K}Y_R,$$

permitiéndonos escribir las ecuaciones como

$$\frac{dg}{ds} = \frac{d^2g}{ds^2} - \Delta y_R^2 \tag{3.4}$$

$$\frac{dY_F}{ds} = \frac{1}{L_F} \frac{d^2 Y_F}{ds^2} - \Delta Y_F \exp\left[-\frac{Zeg}{1-\gamma g}\right]$$
(3.5)

$$\frac{dy_R}{ds} = \frac{1}{L_R} \frac{d^2 y_R}{ds^2} + 2\sqrt{K}\Delta \left\{ Y_F \exp\left[-\frac{Zeg}{1-\gamma g}\right] - y_R^2 \right\}.$$
 (3.6)

3.1. Una región de reacción

Bajo la suposición de $L_F=L_R=1,\,y_R=2\sqrt{K}(Y-g).$ Las ecuaciones (3.4) a (3.6) toman la forma

$$\frac{dg}{ds} = \frac{d^2g}{ds^2} - 2\Delta K(Y-g)^2$$
$$\frac{dY}{ds} = \frac{d^2Y}{ds^2} - \Delta Y \exp\left[-\frac{Zeg}{1-\gamma g}\right]$$

En el caso general, típicamente, se divide la estructura en dos zonas

3.1.1. Zona externa

En la estructura externa, no hay reacciones químicas, dando por solución

$$Y_R = 0, Y = 1 - \exp(L_F s), \theta = \exp(s).$$

"tesis" — 2007/3/29 — 9:53 — page 18 — #32

18 CAPÍTULO 3. LLAMA LAMINAR PLANA UNIDIMENSIONAL

3.1.2. Zona interna

En la zona interna de orden $s\sim 1/Ze,$ con $Ze\rightarrow\infty,$ la ecuaciones de gobierno estan dadas por

$$\frac{d^2\varphi}{d\xi^2} = \frac{1}{2L_F V^2} \zeta^2 \tag{3.7}$$

 \oplus

 \oplus

$$\frac{d^2\phi}{d\xi^2} = \frac{1}{2V^2}\phi\exp[-\varphi]$$
(3.8)

$$\frac{d^2\zeta}{d\xi^2} = \frac{L_R}{L_F V^2} \frac{1}{\varepsilon} \left\{ \zeta^2 - \phi \exp[-\varphi] \right\}, \qquad (3.9)$$

donde

 \oplus

 \oplus

 \oplus

$$\zeta = \sqrt{KZe}Y_R, \ \varphi = Ze(1-\theta), \ , \phi = ZeY, \ \xi = Zes, \ \varepsilon = \sqrt{Ze/K}$$

Ecuaciones a resolver con las condiciones de frontera

$$\frac{d\varphi}{d\xi} + 1 = \frac{d\phi}{d\xi} + L_F = \zeta = 0, \text{ para } \xi \to \infty$$
(3.10)

$$\varphi = \phi = \zeta = 0, \text{ para } \xi \to \infty$$
 (3.11)

Una cantidad conservada surgida de la adición de las ecuaciones $(3.7)\mathchar`-(3.9)$ es

$$\varphi - \phi/L_F - \varepsilon \zeta/2L_R = 0 \,,$$

esto es

$$\phi = L_F \left(\varphi - \frac{\varepsilon \zeta}{2L_R} \right) \,. \tag{3.12}$$

Asumimos una solución de la forma

$$\phi = L_F \varphi_0 + \varepsilon \phi_1 + \dots$$

$$\varphi = \varphi_0 + \varepsilon \varphi_1 + \dots$$

$$\zeta = \zeta_0 + \varepsilon \zeta_1 + \dots$$

$$V = 1 + \varepsilon V_1 + \dots$$

expansión útil para la reacción química de dos pasos ya que contiene la información de la energía liberada y el parámetro cinético de la misma, ambas cantidades expresadas en ε . El límite $\varepsilon \to 0$ corresponde a tener

"tesis" — 2007/3/29 — 9:53 — page 19 — #33

3.1. UNA REGIÓN DE REACCIÓN

 \oplus

una reacción de un solo paso, dado que la recombinación de radicales es instantánea.

Las funciones φ_0 y ζ_0 pueden obtenerse despues de resolver las ecuaciones

$$\frac{d^2\varphi_0}{d\xi^2} = \frac{1}{2}\varphi_0 \exp[-\varphi_0] \tag{3.13}$$

$$\zeta_0 = \sqrt{L_F \varphi_0} \exp(-\varphi_0/2), \qquad (3.14)$$

para las condiciones de frontera

$$\left. \frac{d\varphi_0}{d\xi} \right|_{\xi \to -\infty} = -1, \left. \frac{d_0^{\varphi}}{d\xi} \right|_{\xi \to \infty} = \varphi_0 \left|_{\xi \to \infty} = 0 \right.$$

Usando la cantidad conservada (3.12) para la ecuación de ϕ_1 se puede escribir

$$\frac{d^2\phi_1}{d\xi^2} + \frac{1}{2}(\varphi_0 - 1)\exp[-\varphi_0]\phi_1 = -\zeta_0^2 \left(\frac{\zeta_0}{4L_R} + V_1\right), \qquad (3.15)$$

para ser resuelta con las condiciones de frontera

$$\left. \frac{d\phi_1}{d\xi} \right|_{\xi \to -\infty} = \frac{d\phi_1}{d\xi} \right|_{\xi \to \infty} = \phi_1 \left|_{\xi \to \infty} = 0, \right.$$

donde V_1 corresponde a la primera corrección de V. Entonces

$$\varphi_1 = \frac{\phi_1}{L_F} + \frac{\zeta_0}{2L_R} \,.$$

La primera corrección para la concentración de radical puede ser obtenida después de resolver la ecuación

$$\zeta_1 = \frac{L_F}{\zeta_0} \frac{d^2 \varphi_1}{d\xi^2} + V_1 \zeta_0 \,.$$

La ecuación para obtener V_2 es

$$\frac{d^2\phi_2}{d\xi^2} + \frac{1}{2}(\varphi_0 - 1)\exp[-\varphi_0]\phi_2 = -\zeta_0^2 \left(\frac{\zeta_1}{4L_R} + V_2 - \frac{3}{2}V_1^2 - \frac{\varphi_1^2}{4} - V_1\varphi_1\right) - \frac{\exp[-\varphi_0]\phi_1}{2}(2V_1 + \varphi_1)(3.16)$$

y sus condiciones de frontera

$$\left. \frac{d\phi_2}{d\xi} \right|_{\xi \to -\infty} = \frac{d\phi_2}{d\xi} \bigg|_{\xi \to \infty} = \phi_2 \bigg|_{\xi \to \infty} = 0 \,.$$

19

 \oplus

"tesis" — 2007/3/29 — 9:53 — page 20 — #34

20 CAPÍTULO 3. LLAMA LAMINAR PLANA UNIDIMENSIONAL

3.2. Solución numérica

3.2.1. Exacta

El autovalor $V = G_0(\varepsilon)$ se obtiene al resolver las ecuaciones (3.7), (3.8) y (3.9) bajo las condiciones (3.10) y (3.11). Se empleó un método de solución tipo tridiagonal con una malla uniforma en ξ , obtenido al discretizar las ecuaciones con las segundas derivadas centradas con tres puntos. El esquema de solución sigue los siguientes pasos.

- Calcula una solución inicial al resolver la ecuación (3.13), con lo cual calcula (3.14) y $\phi = L_F \varphi_0$.
- Se realiza un ciclo de corrección donde se resuleven de manera acoplada (3.7) y (3.8), y ζ se calcula utilizando el resultado de la cantidad conservada. En cada iteración se corrige V, dependiendo de la derivada de ϕ en $\xi \to -\infty$, tomando incrementos dV cada vez más refinados. El criterio de convergencia para finalizar el ciclo es cuando

$$|V_{nueva} - V_{anterior}| \le 10^{-6}$$

3.2.2. Expansión asintótica

De acuerdo con nuestro análisis anterior es posible obtener una aproximación del autovalor, además de la forma exacta, utilizando una expansión asintótica en órdenes de ε . Esto con el fin de determinar el orden de la dependencia de la solución en el orden de ε , además las ecuaciones a resolver para el primer orden (3.15) y segundo orden (3.16) son lineales. Resulta importante de comentar que para $\varepsilon = 0$ se obtiene el valor bien conocido de la llama plana con una cinética química de un paso tipo Arrhenius, V = 1. La resolución de las ecuaciones se da resolviendo en forma ordenada orden ε^0 , ε^1 y ε^2 , corrigiendo en cada paso V_0 , V_1 y V_2 , respectivamente, para cumplir las tres condiciones de frontera correspondientes.

3.3. Resultados

En la Figura 3.1 se muestra gráficamente el comportamiento de las correcciones de primer y segundo orden para la velocidad en función de ε comparadas con la solución exacta. Podemos observar un comportamiento dominante lineal en ε .

3.3. RESULTADOS

 \oplus

 \oplus

 \oplus

 \oplus

Figura 3.1: Función $G_0(\varepsilon)$.

 \oplus

 \oplus

Capítulo 4

Resultados numéricos

4.1. Método de resolución

Utilizando una malla rectángular uniforme tanto en la coordenada longitudinal como en la radial, se resolvieron las ecuaciones para la conservación de la energía (2.5), la conservación de combustible (2.6) y la conservación de radical(2.7), de manera acoplada con la ecuación de la pared (2.10), con las condiciones de frontera (2.12), (2.13), (2.14) y (2.15) de forma numérica para obtener el autovalor $V = V(L_F, L_R, a, Ze, \gamma, \alpha_w/\alpha, \beta, K)$ junto con los campos escalares de temperatura, concentración de combustible y radicales. Las ecuaciones fueron integradas usando diferencias finitas de segundo orden con derivadas en tres puntos. Se utilizó un seudo-tiempo para resolver el problema de la convergencia. La malla computacional se forma de 450 puntos en la dirección longitudinal y 300 en la dirección radial. El código numérico es igual al utilizado por Kurdyumov [KFT02] simplemente modificado para una cinética química de dos pasos.

Para determinar el valor de a^* se siguió el siguiente procedimiento. Se iniciaba el cálculo con un valor mayor de a y se encontraba su correspondiente velocidad de propagación V. El valor de a se reducía en una cantidad Δa y se repetía el proceso, hasta que se alcanzaba un valor de a tal que después de un gran número de iteraciones (1×10^8) no se encontraba convergencia. En tal caso, el cálculo de V disminuía a cero conforme aumentaban las iteraciones. El siguiente paso era disminuir el valor de Δa diez veces, del último valor de a donde se encontraba convergencia, se repetía el procedimiento. Las disminuciones de Δa se realizaron tres veces para obtener el valor de a^* con una resolución de tres dígitos.

"tesis" — 2007/3/29 — 9:53 — page 24 — #38

CAPÍTULO 4. RESULTADOS NUMÉRICOS

4.2.
$$V = V(L_F, L_R, a, Ze, \gamma, \alpha_w / \alpha, \beta, K)$$

El problema de determinar la velocidad como un autovalor, como se observa claramente en las ecuaciones, se encuentra caracterizado por una gran cantidad de parámetros adimensionales. Para no perderse en las grandes posibilidades que esto implicaría se tomaron algunos valores característicos. En el caso de un conducto de aluminio $\rho c_p / \rho_w c_w = 5 \cdot 10^{-4}$ y $\alpha_w / \alpha \simeq 3,83$. Además, se fijó el número de Lewis del combustible a la unidad ($L_F = 1$) y el número de Zeldovich a un valor de 15.

4.2.1. Campo de temperatura, concentración de combustible y radicales.

Antes de comenzar a caracterizar la dependencia del autovalor para distintas variaciones de parámetros resulta importante observar los campos de temperatura, concentración de combustible y radicales ya que proporcionan información sobre la *forma* del frente de la llama.

En la Figura 4.1 observamos el frente de la llama caracterizado por los tres campos escalares para un valor del parámetro de pérdida de calor de $\beta = 2000$, utilizando un valor del parámetro cinético K = 100 ($\varepsilon = 0.387$). La temperatura, para valores de β grandes, resultante en las paredes es cercana a la de la mezcla sin quemar, lo cual nos da indicios de una extinción de la llama cerca de las paredes consecuencia, clara, de una gran pérdida de calor. La forma del frente de reacción es como una bola de fuego, como resulta para perfiles con concentración de radicales. La concentración de radicales es extremadamente baja cerca de las paredes del conducto, en cambio se encuentran grandes catidades combustible como se esperaba.

4.2. $V = V(L_F, L_R, A, ZE, \gamma, \alpha_W/\alpha, \beta, K)$

 \oplus

 \oplus

 \oplus

 \oplus

Figura 4.1: Campos escalares de temperatura, concentración de combustible y radicales para un valor de $\beta = 2000$.

Por otro lado, en la Figura 4.2 muestra los campos para un valor de $\beta = 1$ también con parámetro cinético K = 100. Aquí vemos una drástica reducción en la concentración de radicales cerca de las paredes del tubo. Por tanto los radicales tienen una gran importancia en el proceso de extinción en el límite inferior de β . Una observación cuidadosa de las isotermas muestra un mecanismo de calentamiento de los gases sin quemar por la conducción de calor longitudinal en la pared debida al calor cedido por los gases quemados. Este mecanismo de calentamiento no se encuentra para el límite de altas pérdidas de calor.

25

 \oplus

 \oplus

 \oplus

Đ

"tesis" — 2007/3/29 — 9:53 — page 26 — #40

 \oplus

 \oplus

 \oplus

 \oplus

 \oplus

 \oplus

 \oplus

Figura 4.2: Campos escalares de temperatura, concentración de combustible y radicales para un valor de $\beta = 1$.

4.2.2. El papel del espesor de la pared y el radio del conducto

En la Figura 4.3 se observa la velocidad de propagación de la llama premezclada normalizada por la velocidad de la llama plana S_L como función del radio del tubo normalizada por ancho de la zona de precalentamiento δ_T , para diferentes valores de del parámetro de pérdidas de calor β suponiendo un tubo de aluminio con un gran valor del parámetro cinético, $K \to \infty$. De la figura podemos observar el radio mínimo al cual la llama se propaga y como conforme se disminuye el parámetro de pérdidas de calor el radio de extinción disminuye y la velocidad aumenta. En el gráfico solo se muestra la parte estable de la típica curva en forma de S. "tesis" — 2007/3/29 — 9:53 — page 27 — #41

4.2. $V = V(L_F, L_R, A, ZE, \gamma, \alpha_W/\alpha, \beta, K)$

 \oplus

 \oplus

 \oplus

 \oplus

Figura 4.3: Velocidad de propagación adimensional como función del radio adimensional para diferentes valores de β en el límite $K \to \infty$.

La influencia de los cambios en el parámetro cinético K para un parámetro de pérdidas de calor, $\beta = 2000$, en la velocidad normalizada como función del radio se muestra en la Figura 4.4. Esta gráfica da información sobre el peso de la cinética química en la extinción. Conforme K disminuye el radio de extinción aumenta lo cual se puede observar más claramente en la Figura 4.5. La curva muestra un radio límite el cual corresponde a una producción de radicales *instantánea*

27

Ð

CAPÍTULO 4. RESULTADOS NUMÉRICOS

Ð

 \oplus

 \oplus

Œ

Figura 4.4: Velocidad de propagación adimensional como función del radio adimensional para diferentes valores de K, con el valor de $\beta = 2000$.

 \oplus

 \oplus

 \oplus
"tesis" — 2007/3/29 — 9:53 — page 29 — #43

4.2. $V = V(L_F, L_R, A, ZE, \gamma, \alpha_W/\alpha, \beta, K)$

 \oplus

 \oplus

 \oplus

 \oplus

Figura 4.5: Radio de extinción adimensional como función del parámetro cinético K, con el valor de $\beta = 2000$.

Los efectos del número de Lewis correspondiente al radical en el proceso de extinción es despreciable para valores grandes del parámetro de pérdidas de calor como se muestra en la Figura 4.6, en el límite $K \to \infty$, i.e. la difusión de radicales no es un factor principal en el proceso de extinción para grandes pérdidas de calor.

29

 \oplus

Figura 4.6: Velocidad de propagación de la llama como función del radio adimensional para diferentes valores del número de Lewis del radical, para $\beta = 2000y \ K = 100.$

Las Figuras 4.7-4.9 muestran la temperatura adimensional, concentraciones de radical y combustible adimensionales, respectivamete, para distintos valores de β como función de la coordenada longitudinal. Los perfiles se obtuvieron numéricamente cerca del valor crítico $a = a^*$. Los símbolos llenos corresponden a la coordenada radial r = 0 y los símbolos vacíos muestran el perfil en cerca de la pared.

Para $\beta = 2000$, los símbolos cuadrados, la temperatura casi alcanza la temperatura adiabática de llama en el centro del conducto en la posición de la llama mientras la temperatura cerca a la pared decrece a un valor cercano al de la mezcla sin quemar. Conforme el valor de β disminuye, la temperatura de la pared se incrementa y la de la llama disminuye. Cuando los valores de β son pequeños, representados por rombos ($\beta = 0,2$) la temperatura en la pared y en el centro son casi las mismas, mostrando solo pequeñas variacio-

 \oplus

30

 \oplus

"tesis" —
$$2007/3/29$$
 — $9:53$ — page 31 — $\#45$

4.2.
$$V = V(L_F, L_R, A, ZE, \gamma, \alpha_W/\alpha, \beta, K)$$
 31

nes en el frente de la llama. Un comportamiento de frente de llama plana es esperado para pequeños valores de β .

Figura 4.7: Temperatura adimensional en el centro del tubo (r = 0) y en la pared (r = a) como función de la corrdenada longitudinal para diferentes valores del parámetro β y K = 100, en la condición de extinción $(a = a^*)$.

La concentración de radicales tiene dos picos relativamente grandes en el centro del tubo para valores de β grandes de acuerdo a la Figura 4.8, esos dos picos desaparecen para pequeños valores de β , como se muestra para valores de $\beta = 0,2$. La razón de la aparición de esos picos es por la difusión de los radicales al borde de la llama. El valor máximo de concentración de radicales no cambia significativamente con el valor de β , excepto para pequeños valores. Las concentraciones cerca de las paredes se incrementa conforme los valores de β decrecen. Una vez más, para valores pequeños del parámetro de pérdidas de calor la concentración de radicales en la pared y en el centro son casi idénticas mostrando la formación de un frente de llama

 \oplus

Đ

Ð

 \oplus

plana.

Figura 4.8: Concentración de radicales en el centro del tubo (r = 0) y en la pared (r = a) como función de la corrdenada longitudinal para diferentes valores del parámetro β y K = 100, en la condición de extinción $(a = a^*)$.

La concentración de combustible como función de la coordenada longitudinal para distintos valores de β se muestran en la Figura 4.9. Para valores de β comparados con la unidad, hay una fuga de combustible en regiones cercanas a la pared, debido a la relativamente baja temperatura. Está fuga desaparece para valores de pérdidas de calor de orden unidad.

32

 \oplus

 \oplus

 \oplus

"tesis" — 2007/3/29 — 9:53 — page 33 — #47

4.2. $V = V(L_F, L_R, A, ZE, \gamma, \alpha_W/\alpha, \beta, K)$

Figura 4.9: Concentración de combustible en el centro del tubo (r = 0) y en la pared (r = a) como función de la corrdenada longitudinal para diferentes valores del parámetro β y K = 100, en la condición de extinción $(a = a^*)$.

En la Figura 4.10 se observa el número de Nusselt en la pared, definido por la ecuación (2.16) como función de la coordenada longitudinal para distintos valores del parámetro de pérdidas de calor β , por su rango de valores, menores a la unidad, la transferencia de calor dominante es por conducción. Valores positivos del número de Nusselt corresponden a la transferencia de calor del gas a la pared. Para valores de β comparados con la unidad, solo mayores valores a la unidad se observan solo valores positivos del número de Nusselt. En cambio para valores de orden unidad hay un mecanismo de retroalimentación en el tubo, como se notó en las isotermas anteriormente. En la parte posterior al frente de la llama el calor se transfiere a la pared, en cambio en la parte frontal es la pared la que cede calor a la mezcla combustible.

 \oplus

 \oplus

33

Figura 4.10: Número de Nusselt, Nu, como función de la coordenada longitudinal para diferentes valores del parámetro β y K = 100 en la condición de $a = a^*$.

La Figura 4.11 corresponde a un gráfico del radio de extinción como función del parámetro de pérdidas de calor β para valores de K = 100 y $K \to \infty$. Para valores de β mayores que 2000, la temperatura de la pared es prácticamente la misma que la temperatura inicial de la mezcla de combustible y el radio de extinción tiene una mayor dependencia del valor de β . El límite coincide con la suposición de temperatura constante en la pared, pared isotérmica $T_w = T_0$. Para bajos valores del parámetro de pérdidas de calor β , el radio de extinción se reduce monótonamente conforme decrecen los valores de β . Para valores de β menores a 0.1, no se detectó numéricamente condición de extinción.

 \oplus

34

Ð

 \oplus

 \oplus

"tesis" — 2007/3/29 — 9:53 — page 35 — #49

4.2.
$$V = V(L_F, L_R, A, ZE, \gamma, \alpha_W/\alpha, \beta, K)$$

 \oplus

 \oplus

 \oplus

 \oplus

Figura 4.11: Radio de extinción adimensional como función de las pérdidas de calor β para dos distintos valores del parámetro cinético, $K = 100, K \rightarrow \infty$.

La eficiencia de conversión η_c como función del parámetro de pérdidas de calor β se representa en la Figura 4.12 cerca de la condición crítica $a = a^*$ para valores de K = 100 y $K \to \infty$. El límite de pérdidas de calor grandes corresponde a un valor de mínima eficiencia de 0.813, que se incrementa conforme decrece el valor de β . Al llegar a valores de orden unidad de β la eficiencia alcanza el valor unitario. La eficiencia de conversión se incrementa conforme decrecen los valores de K.

35

 \oplus

CAPÍTULO 4. RESULTADOS NUMÉRICOS

 \oplus

 \oplus

 \oplus

Figura 4.12: Eficiencia de consumo de combustible, η_c , como función del parámetro de pérdidas de calor, β , para dos valores del parámetro cinético, $K = 100, K \rightarrow \infty$.

En la Figura 4.13 se muestra la curvatura de la llama obtenida en la condición de extinción para diferentes valores del parámetro de pérdidas de calor β . Sorpresivamente, la curvatura cerca de la condición de extinción es la misma para todos los valores de β considerados.

36

 \oplus

 \oplus

 \oplus

"tesis" — 2007/3/29 — 9:53 — page 37 — #51

φ

37

 \oplus

 \oplus

4.2.
$$V = V(L_F, L_R, A, ZE, \gamma, \alpha_W/\alpha, \beta, K)$$

 \oplus

 \oplus

 \oplus

Figura 4.13: Forma del frente de llama en la condición de extinción para diferentes valores del parámetro β y K=100.

Capítulo 5

Conclusiones

Utilizando el modelo termo-difusivo se resolvieron las ecuaciones de energía y conservación de especies obteniendo así la velocidad, V, como autovalor de las mismas. En el caso de un modelo cinético de dos pasos tipo Arrhenius, donde el consumo de combustible tiene una gran energía de activación y la otra reacción de consumo de radical; se determinó numéricamente el radio de extinción de la llama premezclada en un conducto cilíndrico, imponiendo la parte externa de este adiabática.

El calor cedido de los gases quemados a la pared resulta importante en la extinción debido al gran valor del cociente entre la densidad de la pared y la del gas. En este marco se introduce el parámetro de pérdidas de calor β el cual depende de las características del tubo.

Para valores de $\beta > 200$, la temperatura de la pared en el frente de la llama es prácticamente idéntica a la mezcla combustible sin quemar. La extinción es producida principalmente por el calor cedido a la pared, y la influencia de los radicales en este proceso es despreciable.

Conforme el valor de β disminuye, el radio de extinción también decrece y las diferencias de temperatura entre el centro y la pared disminuyen. Para valores de β comparados con la unidad, la llama recupera la forma de llama plana y en este caso se mantiene un mecanismo de retroalimentación a lo largo del tubo, confirmado por las variaciones de signo en el número de Nusselt a lo largo de la coordenada longitudinal. La influencia de los radicales en el proceso de extinción resultan despreciables comparados con la pérdidas de calor.

Es de recalcar el resultado de una mínima eficiencia de consumo η_c , tanto para el límite de $K \to \infty$ y K = 100.

39

Ð

Bibliografía

- [AH81] S.L. Aly and C.E. Hermance. A two-dimensional theory of laminar quenching. *Combustion and Flame*, 40:173–185, 1981.
- [BF70] William B. Bush and Francis E. Fendell. Asymptotic analysis of laminar flame propagation for general lewis numbers. *Combus*tion Science and Technology, 1:421–428, 1970.
- [BL82] J.D. Buckmaster and G.S.S. Ludford. Theory of Laminar Flames. Cambridge Monographs on Mechanics and Applied Mathematics, 1982.
- [BLD89] F. Benkhaldoun, B. Larrouturou, and B. Denet. Numerical investigation of the extinction limit of curved flames. *Combus. Sci.* and Tech., 64:187–198, 1989.
- [DM01] J. Daou and M. Matalon. Flame propagation in poiseuille flow under adiabatic condition. *Combustion and Flame*, 124:337–349, 2001.
- [DM02] J. Daou and Matalon M. Infuence of conductive heat-losses on the propagation of premixed flames in channels. *Combustion and Flame*, 128:321–329, 2002.
- [DRS86] P.K. Dunn-Rankin, D.and Barr and R.F. Sawyer. Numerical and experimental study of 'tulip' flame formation in a closed vessel. Twenty-first Sympusium (International) on Combustion/The Combustion Institute, pages 1291–1301, 1986.
- [FR90] R.J. Farmer and P.D. Ronney. A numerical study of unsteady non-adiabatic flames. Combus. Sci. and Tech, 73:555–574, 1990.

"tesis" — 2007/3/29 — 9:53 — page 42 — #56

Bibliografía

- [GBS92] M. Gonzalez, R. Borghi, and A. Saouab. Interaction of a flame front with its self-generated flow in a enclosure: the 'tulip' flame' phenomenon. *Combustion and Flame*, 88:201–220, 1992.
- [KFLn00] V.N. Kurdyumov, E. Fernández, and A. Liñán. Flame flashback and propagation of premixed flames near a wall. Proceedings of the Combustion Institute/The Combustion Institute, 28:1883– 1889, 2000.
- [KFT02] V.N. Kurdyumov and E. Fernández-Tarrazo. Lewis number effect on the propagation of premixed laminar flames in narrow open ducts. *Combustion and Flame*, 128:382–394, 2002.
- [KLn02] V.N. Kurdyumov and A. Liñán. Structure of flame front propagating against the flow near a cold wall. International Journal of Bifurcation and Chaos, 12:2547–2555, 2002.
- [LT82] S.T. Lee and J.S. T'ien. A numerical analysis of flame flashback in a premixed laminar system. *Combustion and Flame*, 48:273– 285, 1982.
- [LT94] S.T. Lee and C.H. Tsai. Numerical investigation of steady laminar flame propagation in a circular tube. Twenty-fifth Symposium (International) on Combustion/The Combustion Institute, pages 484–490, 1994.
- [MK80] M. Metghalchi and J.C. Keck. Laminar burning velocity of propane-air mixtures at hight temperature and pressure. Combustion and Flame, 38:143–154, 1980.
- [MM92] J.L. McGreevy and M Matalon. Lewis number effect on the propagation of premixed flames in closed tubes. *Combustion and Flame*, 91:213–225, 1992.
- [Wil85] Forman A. Williams. Combustion Theory the Fundamental Theory of Chemically Reacting Flow System. Addison Wesley Publishing Company, 1985.
- [Zel81] Ya.B. Zeldovich. Structure and stability of steady laminar flame at moderately large reynolds numbers. *Combustion and Flame*, 40:225–234, 1981.

Apéndice A - Revisión de la llama plana premezclada

En este apéndice se realiza una revisión al fenómeno de propagación de una llama premezclada con una reacción química de un paso, la cual fue resuelta de manera asintótica por Bush y Fendell [BF70]. La forma de solucionar este problema será distinta a la empleada por los autores antes mencionados, de forma que el desarrollo y estudio sea consistente con el trabajo presentado en la tesis. Se toman las siguientes suposiciones sobre el problema:

- 1. Un flujo estacionario, plano, y unidimensional.
- 2. El calor transferido por radiación es despreciable.
- 3. Los efectos de Soret y Dufor son despreciables.
- 4. La difusión causada por gradientes de presión son despreciables.
- 5. Fuerzas externas son despreciables.
- 6. La mezcla de gas es ideal.
- 7. Todas las especies son consideradas con la misma capacidad calorífica.
- 8. El gas es una mezcla binaria en la cual la reacción unimolecular F \longrightarrow P+Q ocurre.

43

"tesis" — 2007/3/29 — 9:53 — page 44 — #58

44APÉNDICE A - REVISIÓN DE LA LLAMA PLANA PREMEZCLADA

Dichas hipótesis permiten escribir las ecuaciones dimensionales de energía y fracción de combustible para la llama plana

$$\rho c_p \frac{dT}{dt'} = \lambda \frac{d^2 T}{dx'^2} + \Omega Q$$
$$\rho \frac{dY_F}{dt'} = \rho D \frac{d^2 Y_F}{dx'^2} - \Omega$$

donde la tasa de reacción con dimensiones esta dada por

$$\Omega = \rho B_1 Y_F \exp[-T_a/T]$$

Utilizando como sistema de referencia la llama estacionaria propagandose a velocidad U, es posible cambiar nuestra variable temporal por t' = x'/U. Ahora, introduciendo las siguientes variables adimensionales

$$x = \frac{x'}{\delta_T}, V = \frac{U}{S_L}, \theta = \frac{T - T_0}{T_e - T_0}, Y = \frac{Y_F}{Y_{F0}}$$

y definiendo las siguientes cantidades

 \oplus

$$\delta_T = \frac{\alpha}{S_L}, \ L_F = \frac{\alpha}{D}, \ \alpha = \frac{\lambda}{\rho c_p}$$

Las ecuaciones adimensionales correspondientes a la energía y fracción de combustible son

$$V\frac{d\theta}{dx} = \frac{d^2\theta}{dx^2} + \omega$$
$$V\frac{dY}{dx} = \frac{1}{L_F}\frac{d^2Y}{dx^2} - \omega$$

donde la tasa de reacción adimensional esta dad por

$$\omega = \frac{Ze^2}{2L_F}Y \exp\left[-\frac{Ze(1-\theta)}{1-\gamma(1-\theta)}\right]$$

Sea s = Vx, entonces las ecuaciones se transforman

$$\frac{d\theta}{ds} = \frac{d^2\theta}{ds^2} + \frac{Ze^2}{2L_F V^2} Y \exp\left[-\frac{Ze(1-\theta)}{1-\gamma(1-\theta)}\right]$$
$$\frac{dY}{ds} = \frac{1}{L_F} \frac{d^2Y}{ds^2} - \frac{Ze^2}{2L_F V^2} Y \exp\left[-\frac{Ze(1-\theta)}{1-\gamma(1-\theta)}\right]$$

"tesis" —
$$2007/3/29$$
 — $9:53$ — page 45 — $\#59$

45

 \oplus

las cuales deben cumplir las condiciones de frontera

$\theta=0,$	Y = 1	en $s \to -\infty$
$\theta = 1,$	Y = 0	en $s \to \infty$

es posible dar solución a estas ecuaciones para un autovalor, V. Para resolver este problema dividimos la región espacial en dos zonas

Zona externa

4

Se considera la zona externa donde no se encuentra reacción química, i.e. $\omega=0.$ Entonces las ecuaciones se ven como

$$\frac{d\theta}{ds} = \frac{d^2\theta}{ds^2}$$
$$\frac{dY}{ds} = \frac{1}{L_E}\frac{d^2Y}{ds^2}$$

con las condiciones de frontera

 $\begin{aligned} \theta &= 1, \; Y = 0 \qquad & \text{en} \; s \to -\infty \\ \theta &= 1, \; Y = 0 \qquad & \text{en} \; s = 0 \end{aligned}$

Se resuleven estas de manera exacta, dando por solución

$$\theta = \exp[s], \ Y = 1 - \exp[L_F s]$$

Zona interna

En la zona interna $s \sim 1/Ze$, con $Ze \gg 1$. Introduciendo las variables

$$\varphi = Ze(1-\theta), \ \phi = ZeY, \xi = Zes$$

y despreciando los términos de orden Ze^{-1} se obtienen las ecuaciones

$$\frac{d^2\varphi}{d\xi^2} = \frac{1}{2L_F V^2} \phi \exp[-\varphi] \tag{1}$$

$$\frac{d^2\phi}{d\xi^2} = \frac{1}{2V^2}\phi\exp[-\varphi] \tag{2}$$

"tesis" — 2007/3/29 — 9:53 — page 46 — #60

46APÉNDICE A - REVISIÓN DE LA LLAMA PLANA PREMEZCLADA

con las condiciones de frontera

 \oplus

 \oplus

$$\varphi = \phi = 1 \qquad \text{en } \xi \to -\infty$$
 (3)

 \oplus

 \oplus

$$=\phi = 0 \qquad \text{en } \xi \to \infty \tag{4}$$

$$\left. \frac{d\varphi}{d\xi} \right|_{\xi \to -\infty} = \frac{1}{L_F} \frac{d\phi}{d\xi} \right|_{\xi \to -\infty} = -1 \tag{5}$$

Al sumar las ecuaciones (1) y (2) se tiene una cantidad conservada, la cual resulta en una igualdad entre las variables φ y ϕ de la forma

$$\varphi = \frac{1}{L_F} \phi$$

Por tanto la ecuación (1) se escribe como

 φ

$$\frac{d^2\varphi}{d\xi^2} = \frac{1}{2V^2}\varphi\exp[-\varphi]$$

la misma ecuación (3.13) correspondiente a orden ε^0 del Capítulo 3 con las mismas condiciones de frontera. El autovalor para esta ecuación es por tanto V = 1.

Apéndice B - Programas en Fortran 90

En este apéndice se encuentran los programas utilizados para la resolución tanto en la llama plana como en la propagación de la llama premezclada laminar a través del conducto circular.

El siguiente programa determina el valor de la velocidad de propagación para la llama plana con dos pasos de reacción.

```
program flamevel
implicit none
integer :: i,j,m
integer, parameter :: n=10001
double precision :: K, Ze, LF, LR, eps
double precision :: varphi0(n), varphi(n), phi0(n), phi(n), zeta0(n), zeta(n)
double precision :: a(n),b(n),c(n),u(n),r(n)
double precision :: xi,dxi,dxi2
double precision :: V,Va,dV,Vt
double precision :: f1,f2,f3,fac
double precision :: der
double precision :: dervarphi,dervarphi1,dervarphi0,ddvp,derphi,derphi1,derphi0,ddph
double precision, parameter :: rel=1.d0, rel2=0.1d0
double precision :: xil=-10.d0, xir=10.d0
open(21,file='salida0.dat')
      format(10e15.5)
100
dxi=(xir-xil)/dfloat(n-1)
dxi2=dxi*dxi
LF=1.0d0
LR=1.0d0
Ze=15.d0
```

```
47
```

"tesis" — 2007/3/29 — 9:53 — page 48 — #62

 \oplus

 \oplus

Ð

48

APÉNDICE B - PROGRAMAS EN FORTRAN 90

```
K=100.d0
eps=dsqrt(Ze/K)
!open(102,file='veleps.dat')
!epsilon: do m=1,1000
!eps=1.d0-dfloat(m-1)/1000.d0
! Calculo de VO
V=1.15d0
Va=V
dV=.1d0
inicial: do j=1,n
  xi=xil+dfloat(j-1)*dxi
  varphi0(j)=-xi
  if(varphi(j) <= 0.d0) varphi0(j)=0.d0</pre>
end do inicial
der=0.d0
calvarphi0: do while (dabs(der+1.d0) > 1.d-6)
  V=Va
  loopcorrec: do i=0,4
     c(1) = 0.d0
     b(1)=1.d0
     r(1)=xir
     a(n)=0.d0
     b(n)=1.d0
     r(n)=0.d0
     mattrid: do j=2,n-1
        f1=.5d0*dxi2*dexp(-varphi0(j))*(1.d0-varphi0(j))/V**2.d0
        f2=.5d0*dxi2*dexp(-varphi0(j))*varphi0(j)**2.d0/V**2.d0
        a(j)=1.d0
        b(j)=-2.d0-f1
        c(j)=1.d0
        r(j)=f2
     end do mattrid
     call tri(a,b,c,r,u,n)
     assignval: do j=1,n
        varphi(j)=(1.d0-rel)*varphi0(j)+rel*u(j)
        if (varphi(j) < 0.d0) varphi(j)=0.d0</pre>
        varphi0(j)=varphi(j)
     end do assignval
```

"tesis" — 2007/3/29 — 9:53 — page 49 — #63

 \oplus

 \oplus

 \oplus

```
end do loopcorrec
  der=(varphi(2)-varphi(1))/dxi
  if(dabs(der)>1.d0) then
     Va=V+dV
     dV=dV/10.d0
  end if
  if(dabs(der)<1.d0) then
     Va=V-dV
  end if
end do calvarphi0
!write(6,*) 'Valor de VO', V
phi0=varphi0*LF
zeta0=dsqrt(LF*varphi0)*dexp(-.5d0*varphi0)
do j=1,n
  xi=xil+dfloat(j-1)*dxi
  write(21,100) xi,varphi0(j),phi0(j),zeta0(j)
end do
close(21)
! Calculo de V
Va=V
varphi=varphi0
phi=phi0
zeta=zeta0
loopv: do while ( dV > 1.d-10 )
  dV=0.1d0
  Vt=V
  derphi=0.d0
  loopphi: do while ( dabs(derphi+LF) > 1.d-7 )
     V=Va
     ddph=1.d0
     loop1: do while ( ddph > 1.d-6 )
       c(1)=0.d0
       b(1)=1.d0
       r(1)=LF*xir
       a(n)=0.d0
       b(n)=1.d0
       r(n)=0.d0
```

mattriph: do j=2,n-1

49

Ð

"tesis" — 2007/3/29 — 9:53 — page 50 — #64

50

ļ

APÉNDICE B - PROGRAMAS EN FORTRAN 90

```
f3=dexp(-0.5d0*eps*zeta(j)/LR)
         f1=0.5d0*dxi2*dexp(-phi(j)/LF)*(1.d0-phi(j)/LF)*f3/V**2.d0
         f2=0.5d0*dxi2*dexp(-phi(j)/LF)*phi(j)**2.d0*f3/(LF*LF*V**2.d0)
         a(j)=1.d0
         b(j) = -2.d0 - f1
         c(j)=1.d0
        r(j)=f2
      end do mattriph
      call tri(a,b,c,r,u,n)
      derphi0=(phi(2)-phi(1))/dxi
      assignph: do j=1,n
         phi(j)=(1.d0-rel)*phi(j)+rel*u(j)
         if (phi(j) < 0.d0) phi(j)=0.d0
      end do assignph
      derphi1=(phi(2)-phi(1))/dxi
      ddph=dabs((derphi1-derphi0)/derphi1)
      !write(6,*) ddph
   end do loop1
  derphi=(phi(2)-phi(1))/dxi
   write(6,*) '*', derphi, V, dV
   if (dabs(derphi) > LF) then
      Va=V+dV
      dV=dV/10.d0
   end if
   if (dabs(derphi) < LF) Va=V-dV
end do loopphi
fac=4.d0*LR*LR/(eps*eps*LF)
dervarphi=0.d0
ddvp=1.d0
loopvarphi: do while ( ddvp > 1.d-7 )
   loop2: do i=0,4
     c(1)=0.d0
      b(1)=1.d0
      r(1)=xir
      a(n)=0.d0
      b(n)=1.d0
      r(n)=0.d0
      mattrivp: do j=2,n-1
        f3=varphi(j)-phi(j)/LF
         f1=0.5d0*dxi2*fac*(f3+dabs(f3))/V**2.d0
```

"tesis" — 2007/3/29 — 9:53 — page 51 — #65

```
f2=0.5d0*dxi2*fac*(f3*f3-(f3+dabs(f3))*varphi(j))/V**2.d0
          a(j)=1.d0
          b(j) = -2.d0 - f1
          c(j)=1.d0
          r(j)=f2
       end do mattrivp
       call tri(a,b,c,r,u,n)
       dervarphi0=(varphi(2)-varphi(1))/dxi
       assignvp: do j=1,n
          varphi(j)=(1.d0-rel)*varphi(j)+rel*u(j)
          if (varphi(j) < 0.d0) varphi(j)=0.d0</pre>
       end do assignvp
       dervarphi1=(varphi(2)-varphi(1))/dxi
       ddvp=dabs((dervarphi1-dervarphi0)/dervarphi1)
     end do loop2
     dervarphi=(varphi(2)-varphi(1))/dxi
     !write(6,*) dervarphi,V,ddvp
  end do loopvarphi
  zeta=2.d0*LR*(varphi-phi/LF)/eps
  dV=dabs(V-Vt)
  write(6,*) V,Vt,dV
!write(102,100) eps,V
write(6,*) 'dervarphi', dervarphi
write(6,*) 'derphi', derphi
write(6,*) 'Epsilon:', eps, 'V=', V
write(6,*) 'LF=', LF
!end do epsilon
! Escritura final
```

!

end do loopv

close(102)

do j=1,N

end do close(10)

do j=1,N

open (10,file='salida.dat')

xi=xil+dfloat(j-1)*dxi

open (12,file='out.dat')

write(10,*) xi,varphi(j),phi(j),zeta(j)

51

Ð

"tesis" — 2007/3/29 — 9:53 — page 52 — #66

APÉNDICE B - PROGRAMAS EN FORTRAN 90

```
xi=xil+dfloat(j-1)*dxi
  write(12,*) xi/Ze,1-varphi(j)/Ze,phi(j)/Ze,zeta(j)/dsqrt(K*Ze)
end do
close(12)
write(6,*) ' Fin del programa'
end program flamevel
! Subroutine
subroutine tri(a,b,c,r,u,n)
implicit none
integer, intent(in) :: n
double precision, intent(in) :: a(n),c(n)
double precision, intent(inout) :: b(n),r(n)
double precision, intent(inout) :: u(n)
integer :: i
u=0.d0
gausselim: do i=2,n
 r(i)=r(i)-(a(i)/b(i-1))*r(i-1)
 b(i)=b(i)-(a(i)/b(i-1))*c(i-1)
end do gausselim
! solucion para u
u(n)=r(n)/b(n)
sustatras: do i=n-1,1,-1
 u(i)=(r(i)-c(i)*u(i+1))/b(i)
end do sustatras
end subroutine tri
```

El programa siguiente determina las correcciones a la velocidad de propagación para la llama premezclada laminar hasta segundo orden en ε .

```
52
```

"tesis" — 2007/3/29 — 9:53 — page 53 - #67

 \oplus

Ð

```
double precision :: varphi1(n),phi1(N),V1,V1a,dV1,u1(N)
double precision :: phi2(n),V2,V2a,dV2,u2(n)
double precision :: zeta0zeta1(n)
double precision :: V,Va,dV
double precision :: f1,f2,f3
double precision :: pia,pi,der,dpi,dvarphi1
double precision, parameter :: xil=-60.d0, xir=60.d0
open(21, file='salida0.dat')
100 format(10e15.5)
dxi=(xir-xil)/dfloat(n-1)
dxi2=dxi*dxi
LF=1.0d0
LR=1.0d0
Ze=15.d0
K=100.d0
eps=dsqrt(Ze/K)
!open(102,file='vel2eps.dat')
!epscal: do m=1,1000
!eps=1.d0-(m-1.d0)/1000.d0
! Calculo de VO
V=1.5d0
Va=V
dV=.1d0
inicial: do j=1,N
  xi=xil+dfloat(j-1)*dxi
  varphi0(j)=-xi
  if(varphi(j) <= 0.d0) varphi0(j)=0.d0</pre>
end do inicial
pia=varphi0(n)
calvarphi0: do while ( dabs(der+1.d0) > 1.d-7)
  V=Va
  loopcorrec: do i=0,4
    c(1)=0.d0
    b(1)=1.d0
    r(1)=xir
    a(n)=0.d0
    b(n)=1.d0
    r(n)=0.d0
```

53

 \oplus

54

Ð

APÉNDICE B - PROGRAMAS EN FORTRAN 90

```
mattrid: do j=2,n-1
       f1=.5d0*dxi2*dexp(-varphi0(j))*(1.d0-varphi0(j))/V**2.d0
       f2=.5d0*dxi2*dexp(-varphi0(j))*varphi0(j)**2.d0/V**2.d0
       a(j)=1.d0
       b(j) = -2.d0 - f1
       c(j)=1.d0
       r(j)=f2
    end do mattrid
    call tri(a,b,c,r,u,n)
    assign: do j=1,N
       varphi(j)=(1.d0-rel)*varphi0(j)+rel*u(j)
       if(varphi(j) < 1.d-8) varphi(j)=0.d0</pre>
       varphi0(j)=varphi(j)
    end do assign
  end do loopcorrec
  der=(varphi(2)-varphi(1))/dxi
  if(dabs(der)>1.d0) then
     Va=V+dV
     dv=dv/10.d0
  end if
  if(dabs(der)<1.d0) Va=V-dV
end do calvarphi0
!write(6,*) 'Valor de VO', V
do j=1,N
  xi=xil+dfloat(j-1)*dxi
  phi0(j)=varphi0(j)*LF
  zeta0(j)=dsqrt(LF*varphi0(j))*dexp(-0.5d0*varphi0(j))
  write(21,*) xi,varphi0(j),phi0(j),zeta0(j)
end do
close(21)
! Calculo de V1
initialphi1s1: do j=1,(N-1)/2
  xi=xil+dfloat(j-1)*dxi
  phi1(j)=xi+20.d0
end do initialphi1s1
initialphi1s2: do j=(N-1)/2,N
  xi=xil+dfloat(j-1)*dxi
  phi1(j)=20.d0-xi
```

"tesis" — 2007/3/29 — 9:53 — page 55 — #69

 \oplus

 \oplus

 \oplus

 \oplus

```
end do initialphi1s2
V1=-0.2d0
V1a=V1
dV1=0.1d0
der=1.d0
calphi1: do while (dabs(der)>1e-8)
  V1=V1a
  loopcorreci: do i=0,7
    a(1)=1.d0
    b(1) = -1.d0
    r(1)=0.d0
    c(N) = -1.d0
    b(N)=1.d0
    r(N)=0.d0
    mattrid1: do j=2,N-1
      f1=0.5d0*dxi2*(varphi0(j)-1.d0)*dexp(-varphi0(j))
      f2=dxi2*zeta0(j)**2.d0*(0.25d0*zeta0(j)/LR+V1)
       a(j)=1.d0
      b(j)=-2.d0+f1
      c(j)=1.d0
      r(j)=-f2
    end do mattrid1
    call tri(a,b,c,r,u1,n)
    assign1: do j=1,N
       xi=xil+dfloat(j-1)*dxi
       phi1(j)=(1.d0-rel1)*phi1(j)+rel1*u1(j)
    end do assign1
   end do loopcorreci
   der=(phi1(2)-phi1(1))/dxi
   if (der<0.d0) then
     V1a=V1+dV1
     dV1=dV1/10.d0
   end if
   if (der>0.d0) V1a=V1-dV1
end do calphi1
varphi1=0.d0
zeta1=0.d0
varphi1=phi1/LF+0.5d0*zeta0/LR
do j=3,n-2
  xi=xil+dfloat(j-1)*dxi
```

55

 \oplus

"tesis" — 2007/3/29 — 9:53 — page 56 — #70

APÉNDICE B - PROGRAMAS EN FORTRAN 90

Ð

 \oplus

```
dvarphi1=(varphi1(j+2)+varphi1(j+1)-4.d0*varphi1(j)+varphi1(j-1)+varphi1(j-2))/(dxi2)
  zeta0zeta1(j)=(LF*dvarphi1+V1*zeta0(j)**2.d0)
end do
! Calculo de V2
phi2=phi1
V2=0.1d0
V2a=V2
dV2=0.1d0
der=1.d0
calphi2: do while (dabs(der)>1e-8)
  do i=0,4
     V2=V2a
     a(1)=1.d0
     b(1) = -1.d0
     r(1)=0.d0
     c(n) = -1.d0
     b(n)=1.d0
     r(n)=0.d0
     mattrid2: do j=2,N-1
        f1=0.5d0*dxi2*(varphi0(j)-1.d0)*dexp(-varphi0(j))
        f2=V2-1.5d0*V1*V1-0.25*varphi1(j)**2.d0-V1*varphi1(j)
        f2=dxi2*zeta0(j)**2.d0*f2+0.25d0*dxi2*zeta0(j)*zeta0zeta1(j)/LR
        f3=2.d0*V1+varphi1(j)
        f3=dxi2*0.5d0*dexp(-varphi0(j))*phi1(j)*f3
        a(j)=1.d0
        b(j) = -2.d0 + f1
        c(j)=1.d0
        r(j)=-f2-f3
  end do mattrid2
  call tri(a,b,c,r,u2,n)
  assign2: do j=1,N
     xi=xil+dfloat(j-1)*dxi
     phi2(j)=(1.d0-rel)*phi2(j)+rel*u2(j)
  end do assign2
 end do
  der=(phi2(2)-phi2(1))/dxi
  if (der<0.d0) then
     V2a=V2+dV2
```

56

"tesis" — 2007/3/29 — 9:53 — page 57 — #71

```
dV2=dV2/10.d0
  end if
  if (der>0.d0) V2a=V2-dV2
end do calphi2
!write(6,*) 'Valor de V2', V2
write(6,*) 'vel=', 1.d0+eps*v1+eps*eps*v2,'eps=',eps
!write(102,100) eps, 1.d0+eps*v1, 1.d0+eps*v1+eps*eps*v2
!end do epscal
!close(102)
end program flame
! Subroutine tri
subroutine tri(a,b,c,r,u,n)
implicit none
integer, intent(in) :: n
double precision, intent(in) :: a(n),c(n)
double precision, intent(inout) :: b(n),r(n)
double precision, intent(inout) :: u(n)
integer :: i
u=0.d0
gausselim: do i=2,n
 r(i)=r(i)-(a(i)/b(i-1))*r(i-1)
 b(i)=b(i)-(a(i)/b(i-1))*c(i-1)
end do gausselim
! solucion para u
u(n)=r(n)/b(n)
sustatras: do i=n-1,1,-1
 u(i)=(r(i)-c(i)*u(i+1))/b(i)
end do sustatras
end subroutine tri
```

El siguiente programa fue utilizado para los calculos generales de la velocidad de propagación y la determinación del valor de a^* para diferentes valores de β obtenidos al variar tanto $a \operatorname{como} h$.

```
program newtubeflame
implicit none
! Variables de datos.dat
integer :: icont, nmax, jb, isys, ical
```

57

"tesis" — 2007/3/29 — 9:53 — page 58 — #72

APÉNDICE B - PROGRAMAS EN FORTRAN 90

Ð

```
double precision :: w0,dw,Ze,LF,a,up,tu,xmin,xmax,dr,tz,drz,eps_u,bb,rel,ralfa,param,h,
! End variables de datos.dat
integer :: jk,jj,jz,iz,i,j,l
integer :: ja,mile,cent,dece,unid,cond41
integer, parameter :: mx=451,mr1=302,mr=301 !OBS:mr1=mr+1
double precision :: x(mx),r(mr1),hx,hr, c
double precision :: t1(mx,mr1),y1(mx,mr1),yr1(mx,mr1)
double precision :: t2(mx,mr1),y2(mx,mr1),yr2(mx,mr1)
double precision :: w1(mx,mr1),w2(mx,mr1),nu(mx)
double precision :: v,v_old, t1_old, time
double precision :: xrmax,wmax
double precision :: ddd,dd1,dd2,dtdx, wm, xz
character*13 f1
character*4 filenum
character*1 num
dimension num(0:9)
! Lectura de datos.dat
open(1,file='datos.dat',status='old')
read(1,*) icont
read(1,*) w0,dw
read(1,*) Ze,LF
read(1,*) a
read(1,*) up
read(1,*) v_start
read(1,*) tu
read(1,*) xmin, xmax
read(1,*) dr
read(1,*) nmax
read(1,*) jb
read(1,*) tz
read(1,*) drz
read(1,*) eps_u
read(1,*) bb
read(1,*) isys
read(1,*) rel
read(1,*) ralfa
read(1,*) param
read(1,*) h
read(1,*) K
read(1,*) LR
```

```
58
```

"tesis" — 2007/3/29 — 9:53 — page 59 — #73

```
59
```

 \oplus

```
read(1,*) ical
close(1)
! End lectura de datos.dat
! Asignamos la condicion de frontera adiabatica y geometria cilindrica
write(6,*) 'Pared adiabatica'
write(6,*) 'Geometria cilindrica'
open(20,file='velos.dat',status='unknown')
a=w0
jk=0
do while (jk>2)
a=a-dw
dr=a
jj=0
call grid(x,r,mx,mr1,xmin,xmax,dr,a,hx,hr,h) ! Generacion de la malla uniforme
write(6,150) r(1),r(mr),r(mr1)
jz=(dr-drz)/hr+1
if(jz <= 1) jz=2
write(6,*) 'jz=',jz
c=2.d0*tz-1.d0
xz=(bb/2.d0)*dlog((1.d0+c)/(1.d0-c))
iz=1+(xz-xmin)/hx
write(6,*) 'iz=',iz
call start(v,t1,y1,yr1,x,mx,mr,icont,Ze,K) ! Condiciones iniciales
write(6,40) t1(iz,jz),x(iz),r(jz)
write(6,45) ralfa,param,h
write(6,30) v,Ze,LF,up,a
if(icont==0) v=v_start
v_old=v
t1_old=1.d0
 cond41=0
do while (dd2<=eps_u .or. cond41==0)</pre>
jj=jj+1
1::!
call chem(w1,w2,t1,y1,yr1,Ze,up,K,LF)
```

)

"tesis" — 2007/3/29 — 9:53 — page 60 - #74

 \oplus

 \oplus

60

APÉNDICE B - PROGRAMAS EN FORTRAN 90

 \oplus

```
call velos(v,mx,mr,w2,t1,r,hx,hr,iz,jz)
call temp(t2,mx,mr,t1,r,hx,hr,v,tu,w2,ralfa,param,h,a)
call conc(y2,mx,mr,y1,r,hx,hr,v,LF,w1,tu)
call concr(yr2,mx,mr,yr1,r,hx,hr,v,LR,tu,w1,w2)
1::1
t1=t1*rel+t2*(1.d0-rel)
y1=y1*rel+y2*(1.d0-rel)
yr1=yr1*rel+yr2*(1.d0-rel)
if (jj>=nmax+1) then
a=a+dw
dw=dw/10.d0
jk=jk+1
cond41=1
end if
if ((jj/jb)*jb==jj) then
time=tu*jj
call wwmax(w1,x,mx,mr,jz,wmax,xrmax)
ddd=dabs((v_old-v)/v)
dd1=dabs((t1(iz,mr)-t1_old)/t1(iz,mr))
dtdx=(t1(iz+1,jz)-t1(iz-1,jz))/(2.d0*hx)
write(6,10) time,v,wmax,ddd,dd1,t1(iz,jz),dtdx
dd2=ddd
if(dd1>ddd) dd2=dd1
if (dd2>10.d0 .or. v<0.d0 .or. v>10.d0) then
a=a+dw
dw=dw/10.d0
jk=jk+1
cond41=1
end if
v_old=v
t1_old=t1(iz,mr)
end if
end do
if (dd2<=eps_u) then
! Escritura
ja=int(100.1d0*a)
```

"tesis" — 2007/3/29 — 9:53 — page 61 — #75

```
mile = int(ja/1000.)
cent = int((ja - mile*1000)/100.)
dece = int((ja - mile*1000 - cent*100)/10.)
unid = int((ja - mile*1000 - cent*100 - dece*10))
filenum = num(mile)//num(cent)//num(dece)//num(unid)
f1='tyw1a'//filenum//'.dat'
! Valores en la pared
do i=1,mx
t1(i,mr1)=t1(i,mr)
w1(i,mr1)=0.d0
w2(i,mr1)=0.d0
y1(i,mr1)=y1(i,mr)
yr1(i,mr1)=yr1(i,mr)
end do
! End Valores en la pared
open(3,file=f1,status='unknown')
write(3,*) 'VARIABLES = "X", "r", "T", "YF"," YR","W1","W2" '
write(3,*) 'ZONE I=',mr1,' J=',mx,' F=POINT, DT=(DOUBLE)'
do i=1,mx
do j=1,mr1
write(3,10) x(i),r(j),t1(i,j),y1(i,j),yr1(i,j),w1(i,j),w2(i,j)
end do
end do
close(3)
f1='tyw2a'//filenum//'.dat'
open(3,file=f1,status='unknown')
write(3,*) 'VARIABLES = "X", "r", "T", "YF"," YR","W1","W2" '
write(3,*) 'ZONE I=',2*mr1,' J=',mx,' F=POINT, DT=(DOUBLE)'
do i=1,mx
do j=mr1,1,-1
write(3,10) x(i),r(j),t1(i,j),y1(i,j),yr1(i,j),w1(i,j),w2(i,j)
end do
do j=1,mr1
write(3,10) x(i),-r(j),t1(i,j),y1(i,j),yr1(i,j),w1(i,j),w2(i,j)
end do
end do
close(3)
```

61

"tesis" — 2007/3/29 — 9:53 — page 62 — #76

APÉNDICE B - PROGRAMAS EN FORTRAN 90

Ð

 \oplus

```
dr=r(mr1-1)-r(mr1-2)
f1='Nussa'//filenum//'.dat'
open(8,file=f1,status='unknown')
do i=1,mx
nu(i) =(-3.d0*t1(i,mr1-1)+4.d0*t1(i,mr1-2)-t1(i,mr1-3))/(2.d0*dr) ! calculo nusselt
end do
write(8,*) ' x
                   Nu TO
                             Ta y0 ya yr0 yra'
do i=1,mx
write(8,15) x(i),nu(i),T1(i,1),t1(i,mr),y1(i,1),y1(i,mr),yr1(i,1),yr1(i,mr)
end do
close(8)
if(ical==0) stop
write(6,*) ' ddd=',ddd
open(2,file='total.d',status='unknown',form='unformatted')
write(2) v,((t1(i,j),y1(i,j),yr1(i,j),i=1,mx),j=1,mr)
close(2)
write(20,200) a,v,h
open(2,file='res.dat',status='unknown')
do l=1,10000
read(2,*,end=60)
end do
60 continue
if(isys.eq.1) backspace(2)
write(2,20) a,v,Ze,LF,ddd,up
close(2)
! End Escritura
do j=2,mr-1
wm=0.d0
do i=2,mx-1
if(w1(i,j)>=wm) wm=w1(i,j)
end do
```

62

 \oplus

end do

```
63
```

```
do j=1,mr
w1(mx,j)=w1(mx-1,j)
w1(1,j)=0.d0
w2(mx,j)=w2(mx-1,j)
w2(1,j)=0.
end do
do i=1,mx
w1(i,1)=w1(i,2)
w1(i,mr)=w1(i,mr-1)
w2(i,1)=w2(i,2)
w2(i,mr)=w2(i,mr-1)
end do
end if
end do
close(20)
stop
! Formatos de escritura
10 format(9(1x,e10.4))
15 format(9(1x,e12.4))
20 format(1x,i3,1x,e11.5)
30 format(' v=',e11.5,' Ze=',e11.5,' LF=',e11.5,' up=',e12.5,' a=',e11.5)
40 format(' tz=',e11.5,' x(iz)=',e11.5,' r(jz)=',e11.5)
45 format(' ralfa=',e11.5,' param=',e11.5,' H/delta=',e11.5)
150 format(' r(1)=',e11.5,' r(mr)=',e11.5,' r(mr1)=',e11.5)
200 format(4e13.5)
end program newtubeflame
|-----
! Subrutinas
!-----
subroutine grid(x,r,mx,mr1,xmin,xmax,dr,a,hx,hr,h)
implicit none
integer :: i,j
integer, intent(in) :: mx,mr1
double precision, intent(in) :: xmin,xmax,dr,a,h
double precision, intent(out) :: x(mx),r(mr1),hx,hr
hx=(xmax-xmin)/(mx-1)
```

"tesis" — 2007/3/29 — 9:53 — page 64 — #78

APÉNDICE B - PROGRAMAS EN FORTRAN 90

```
hr=dr/(mr1-2) !OBS: dr=a ... siempre?
do i=1,mx
x(i)=xmin+hx*(i-1)
end do
do j=1,mr1-1
r(j)=(a-dr)+hr*(j-1) !OBS: dr=a ... siempre?
end do
r(mr1)=r(mr1-1)+h
write(6,10) hx,hr
10 format(' hx=',e11.5,' hr=',e11.5)
end subroutine grid
!-----
                  _____
subroutine start(v,t1,y1,yr1,x,mx,mr,icont,Ze,K)
implicit none
integer :: i,j
integer, intent(in) :: icont,mx,mr
double precision, intent(in) :: x(mx),Ze,K
double precision, intent(out) :: y1(mx,mr),yr1(mx,mr),t1(mx,mr),v
double precision :: tp
if (icont==0) then
write(6,*) ' Nuevas condiciones iniciales'
do i=1,mx
do j=1,mr
t1(i,j)=0.5d0*dexp(x(i))
tp=t1(i,j)
if(tp>1.d0) t1(i,j)=1.d0
end do
end do
y1=1.d0-t1
yr1=dsqrt(y1*dexp(Ze*(t1-1.d0))/K)
do i=1,mx
y1(i,1)=0.d0
end do
else
    write(6,*) 'Viejas condiciones iniciales'
    open(2,file='total.d',status='unknown',form='unformatted')
    read(2) v,((t1(i,j),y1(i,j),yr1(i,j),i=1,mx),j=1,mr)
    close(2)
end if
end subroutine start
```

```
!-----
subroutine chem(w1,w2,mx,mr,t1,y1,yr1,Ze,up,K,LF)
implicit none
integer, intent(in) :: mx,mr
double precision, intent(in) :: t1(mx,mr),y1(mx,mr),yr1(mx,mr),Ze,up,K,LF
double precision, intent(out) :: w1(mx,mr),w2(mx,mr)
w1=(0.5d0/up**2.d0)*(Ze**2.d0/LF)*y1*dexp(Ze*(t1-1.d0))
w2=(0.5d0*K/up**2.d0)*(Ze**2.d0/LF)*yr1*yr1
end subroutine chem
l------
subroutine velos(v,mx,mr,w2,t1,r,hx,hr,iz,jz)
implicit none
integer, intent(in) :: mx,mr,iz,jz
double precision, intent(in) :: w2(mx,mr),t1(mx,mr),r(mr),hx,hr
double precision, intent(out) :: v
double precision :: dx,dxx,drr
dx=(t1(iz+1,jz)-t1(iz-1,jz))/(2.d0*hx)
dxx=(t1(iz-1,jz)-2.d0*t1(iz,jz)+t1(iz+1,jz))/hx**2.d0
drr=(t1(iz,jz-1)-2.d0*t1(iz,jz)+t1(iz,jz+1))/hr**2.d0 + (t1(iz,jz+1)-t1(iz,jz-1))/(2.d0*hr*r
v=(dxx+drr+w2(iz,jz))/dx
end subroutine velos
I-----
subroutine temp(t2,mx,mr,t1,r,hx,hr,v,tu,w2,ralfa,param,h,a)
implicit none
integer :: i,j
integer, intent(in) :: mx,mr
double precision, intent(in) :: t1(mx,mr),r(mr),hx,hr,v,tu,w2(mx,mr),ralfa,param,h,a
double precision, intent(out) :: t2(mx,mr)
double precision :: rl,rc,rg
do i=1, mx-1
do j=1,mr-1
rl=(t1(i-1,j)-2.d0*t1(i,j)+t1(i+1,j))/hx**2.d0
rl=rl+(t1(i,j-1)-2.d0*t1(i,j)+t1(i,j+1))/hr**2.d0
rl=rl+(t1(i,j+1)-t1(i,j-1))/(2.d0*r(j)*hr)
rc=v*(t1(i+1,j)-t1(i-1,j))/(2.d0*hx)
t2(i,j)=t1(i,j)+tu*(rl-rc+w2(i,j))
end do
end do
do i=2,mx-1
t2(i,1)=(4.d0*t2(i,2)-t2(i,3))/3.d0
```

"tesis" — 2007/3/29 — 9:53 — page 66 — #80

APÉNDICE B - PROGRAMAS EN FORTRAN 90

```
rl=ralfa*(t1(i-1,mr)-2.d0*t1(i,mr)+t1(i+1,mr))/hx**2.d0
rc=v*(t1(i+1,mr)-t1(i-1,mr))/(2.d0*hx)
rg=param*(3.d0*t1(i,mr)-4.d0*t1(i,mr-1)+t1(i,mr-2))/(2.d0*hr*h*(1.d0+h*.5d0/a))
t2(i,mr)=t1(i,mr)+tu*(rl-rc-rg)
end do
do j=1,mr
t2(1,j)=0.d0
t2(mx,j)=2.d0*t2(mx-1,j)-t2(mx-2,j)
end do
end subroutine temp
l------
subroutine conc(y2,mx,mr,y1,r,hx,hr,v,LF,w1,tu)
implicit none
integer :: i,j
integer, intent(in) :: mx,mr
double precision, intent(in) :: y1(mx,mr),r(mr),hx,hr,v,LF,w1(mx,mr),tu
double precision, intent(out) :: y2(mx,mr)
double precision :: rl,rc
do i=2,mx-1
do j=2,mr-1
rl=(y1(i-1,j)-2.d0*y1(i,j)+y1(i+1,j))/hx**2.d0
rl=rl+(y1(i,j-1)-2.d0*y1(i,j)+y1(i,j+1))/hr**2.d0
rl=rl+(y1(i,j+1)-y1(i,j-1))/(2.d0*r(j)*hr)
rc=v*(y1(i+1,j)-y1(i-1,j))/(2.d0*hx)
y2(i,j)=y1(i,j)+tu*(rl/LF-rc-w1(i,j))
end do
end do
do i=1,mx
y2(i,1)=(4.d0*y2(i,2)-y2(i,3))/3.d0
y2(i,mr)=(4.d0*y2(i,mr-1)-y2(i,mr-2))/3.d0
end do
do j=2,mr-1
y2(1,j)=1.d0
y2(mx,j)=2.d0*y2(mx-1,j)-y2(mx-2,j)
end do
end subroutine conc
|-----
subroutine concr(yr2,mx,mr,yr1,r,hx,hr,v,LR,tu,w1,w2)
implicit none
integer :: i,j
```

 \oplus
```
67
```

 \oplus

```
integer, intent(in) :: mx,mr
double precision, intent(in) :: yr1(mx,mr),r(mr),hx,hr,v,LR,tu,w1(mx,mr),w2(mx,mr)
double precision, intent(out) :: yr2(mx,mr)
double precision :: rl,rc
do i=2,mx-1
do j=2,mr-1
rl=(yr1(i-1,j)-2.d0*yr1(i,j)+yr1(i+1,j))/hx**2.d0
rl=rl+(yr1(i,j-1)-2.d0*yr1(i,j)+yr1(i,j+1))/hr**2.d0
rl=rl+(yr1(i,j+1)-yr1(i,j-1))/(2.d0*r(j)*hr)
rc=v*(yr1(i+1,j)-yr1(i-1,j))/(2.d0*hx)
yr2(i,j)=yr1(i,j)+tu*(rl/LR-rc-2.d0*(w2(i,j)-w1(i,j)))
end do
end do
do i=1,mx
yr2(i,1)=(4.d0*yr2(i,2)-yr2(i,3))/3.d0
yr2(i,mr)=(4.d0*yr2(i,mr-1)-yr2(i,mr-2))/3.d0
end do
do j=2,mr-1
yr2(1,j)=0.d0
yr2(mx,j)=2.d0*yr2(mx-1,j)-yr2(mx-2,j)
end do
end subroutine concr
|-----
subroutine wwmax(w,x,mx,mr,jz,wmax,xrmax)
implicit none
integer :: i
integer, intent(in) :: mx,mr,jz
double precision, intent(in) :: w(mx,mr),x(mx)
double precision, intent(out) :: wmax,xrmax
wmax=0.d0
do i=1,mx
if(w(i,jz).ge.wmax) then
wmax=w(i,jz)
xrmax= x(i)
end if
end do
end subroutine wwmax
l------
! End Subrutinas
l------
```