

UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO

POSGRADO EN CIENCIAS BIOLÓGICAS

INSTITUTO DE BIOLOGÍA

DIFERENCIACIÓN GENÉTICA Y SISTEMÁTICA DE LAS ESPECIES

Ambystoma altamiranoi, A. leorae, A. rivulare y A. zempoalaense.

TESIS

QUE PARA OBTENER EL GRADO ACADÉMICO DE MAESTRA EN CIENCIAS BIOLÓGICAS (SISTEMÁTICA)

PRESENTA

NOEMÍ MATÍAS FERRER

DIRECTOR DE TESIS: DRA. GABRIELA PARRA OLEA

MÉXICO, D.F. NOVIEMBRE, 2006

UNAM – Dirección General de Bibliotecas Tesis Digitales Restricciones de uso

DERECHOS RESERVADOS © PROHIBIDA SU REPRODUCCIÓN TOTAL O PARCIAL

Todo el material contenido en esta tesis esta protegido por la Ley Federal del Derecho de Autor (LFDA) de los Estados Unidos Mexicanos (México).

El uso de imágenes, fragmentos de videos, y demás material que sea objeto de protección de los derechos de autor, será exclusivamente para fines educativos e informativos y deberá citar la fuente donde la obtuvo mencionando el autor o autores. Cualquier uso distinto como el lucro, reproducción, edición o modificación, será perseguido y sancionado por el respectivo titular de los Derechos de Autor.

Ing. Leopoldo Silva Gutiérrez Director General de Administración Escolar, UNAM Presente

Por medio de la presente me permito informar a usted que en la reunión ordinaria del Comité Académico del Posgrado en Ciencias Biológicas, celebrada el día 19 de junio del 2006, se acordó poner a su consideración el siguiente jurado para el examen de grado de Maestría en Ciencias Biológicas (Sistemática) de la alumna Matías Ferrer Noemí con número de cuenta 504008436 con la tesis titulada: "Diferenciación Genética y Sistemática de la especies *Ambystoma altamiranoi, A. leorae, A rivulare y A. zempoalaense*" bajo la dirección de la Dra. Gabriela Parra Olea.

Presidente: Dr. Oscar Alberto Flores Villela Vocal: Dra. Ella Gloria Vázquez Domínguez

Secretario: Dra. Gabriela Parra Olea
Suplente: M. en C. Luis Canseco Márquez
Suplente: Dra. Virginia León Regagnon

Sin otro particular, quedo de usted.

A tentamente
"POR MI RAZA HABLARA EL ESPIRITU"
Cd. Universitaria, D.F. a, 31 de/octubre del 2006

Dr. Juan Núñez Farfán Coordinagor del Programa

c.c.p. Expediente del interesado

Edif. de Posgrado P. B. (Costado Sur de la Torre II de Humanidades) Ciudad Universitaria C.P. 04510 México, D.F. Tel. 5623-0173 Fax: 5623-0172 http://pcbiol.posgrado.unam.mx

A mis padres, con todo el amor

A mis hermanos

A Noé

Reconocimientos

A la Dra. Gabriela Parra Olea por la dirección y orientación de la presente tesis.

A Diego F. García y Juan Carlos Windfield por todo su apoyo en el trabajo de campo, parte fundamental en el desarrollo de éste proyecto, sin su ayuda no habría sido posible terminarlo. Gracias por todo.

A los miembros del jurado Dr. Oscar Flores Villela, Dra. Virginia León Règanon, Dra. Ella Vázquez y M. en C. Luís Canseco Márquez, cuyas valiosas correcciones y sugerencias dieron forma y sentido a este trabajo.

Al Laboratorio de Cordados Terrestres de la Escuela Nacional de Ciencias Biológicas (IPN) por el apoyo otorgado a través de los proyectos BCC04 y CC002 (CONABIO).

A la M. en C. Laura Márquez encargada del Laboratorio de Biología Molecular del Instituto de Biología, por su ayuda y asesoramiento para la obtención de las secuencias cuyo trabajo fue realizado en dicho laboratorio.

A la Dra. Xóchitl Aguilar, Moisés Kappland, Alberto Mendoza y a la Dra. Dolores Huacúz por las muestras de tejido que amablemente nos proporcionaron.

Se agradece a las siguientes personas e Instituciones por haber permitido la revisión de los ejemplares utilizados en este trabajo.

Al Dr. Oscar Flores Villela curador de la Colección Herpetológica del Museo de Zoología "Alfonso L. Herrera" de la Facultad de Ciencias (UNAM).

Al M. en C. Juan Carlos López Vidal curador de la Colección de Anfibios y Reptiles de la Escuela Nacional de Ciencias Biológicas (IPN).

Al Dr. Víctor Hugo Reynoso curador de la Colección de Anfibios y Reptiles del Instituto de Biología (UNAM).

A la Dirección de Fauna Silvestre por los permisos otorgados para la recolecta de muestras de tejido en las diferentes áreas naturales protegidas.

Al Lic. Miguel Ángel Trejo, director del Corredor Biológico Chichinautzin, Parques Naturales Lagunas de Zempoala y Tepozteco por su autorización y apoyo para la recolecta de las muestras de tejido en el Parque Lagunas de Zempoala, y especialmente al Biól. Francisco Salazar Valerio por las facilidades prestadas para el muestreo y recolecta de ejemplares y por su constante interés en la culminación de ésta tesis.

Agradecimientos

Al Instituto de Biología, por proporcionarme todo lo necesario para lograr que mi estancia fuera satisfactoria.

Al Dr. Ticúl Álvarez†, por estar siempre presente a pesar de las circunstancias y ser una fuente de admiración y respeto influyendo fuertemente en mi formación académica y profesional.

A Gabriela Parra, por su paciencia y por los cumpleaños que han sido de los mejores que he tenido.

A Noé por estar siempre conmigo, por ser la "almohada" constante de consultas y en la que derramé muchas lágrimas. Por compartirme sus sueños, deseos y triunfos y que son motivo de admiración. Por su confianza en mí que muchas veces no entiendo.

A la M. en C. Martha Esteva, por su paciencia y dedicación en las primeras revisiones del manuscrito. Por su amistad y apoyo. Por todas las tardes de café que hecho mucho de menos. Por su aprecio y confianza en mí. Por quererme mucho.

A Laura Márquez por su infinita paciencia, comprensión y disposición para enseñarme todo lo relacionado al trabajo de laboratorio, así como a Erika Díaz y Anny Peralta.

Al Sr. Aurelio Ocaña, por quererme mucho y no olvidarme.

A Diego por estar siempre pendiente de la realización del proyecto de tesis y siempre que lo he necesitado me ha brindado su ayuda a pesar de estar tan lejos y porque su lugar en el campo nunca pudo ser sustituido.

A Juan Carlos Windfield por su cariño y por el entusiasmo y dedicación que pone en las cosas que le interesan y gustan.

A mis compañeros por los buenos y malos momentos que nos han unido, especialmente a Patty por la sonrisa espontánea de todos los días. A Elizabeth por ser la compañera siempre solidaria a lo largo de toooooda la maestría. A Ruth por su optimismo y forma de ver las cosas y los diferentes momentos de la vida. A Edna por su independencia y a Liz por su persistencia. A Rodolfo, por su disposición a escuchar y darme su confianza.

A los compañeros del área de estudiantes y de clases Norberto, Reyna, Rafa, Aníbal, Cristina, por los momentos que pasamos y por estar al pendiente de mí.

A todos los compañeros del Laboratorio de Maztozoología, especialmente a Oscar, Helxine y Lázaro a quiénes después de conocerlos les tengo un profundo cariño. A Julieta Vargas y Yolanda Hortelano por su aprecio.

A Teresa González por su aprecio y ser una fuente de admiración.

A Giselle y Magos por ser mis amigas y quererme como soy.

A mis padres y hermanos por su cariño y apoyarme siempre.

A mis ahijados Fer, Hugo, Ale y Lalo que aunque no los vea mucho siempre están presentes, además de ser un motivo para seguir creciendo.

Por último quiero agradecer a todas aquellas personas que de una u otra forma han contribuido en la realización de la presente tesis y que por mi ya conocida mala memoria olvidé mencionar.

ÍNDICE

			Página
RE	ELACI	ON DE FIGURAS	i
RELACION DE TABLAS RESUMEN		ii	
		iii	
AE	STRA	ACT	v
1		INTRODUCCIÓN	1
2		ANTECEDENTES	3
	2.1	Historia taxonómica de Rhyacosiredon	3
	2.2	Cacaterísticas generales de las especies del género putativo	11
		Rhyacosiredon	
3		JUSTIFICACIÓN	21
4		OBJETIVOS	22
5		ÁREA DE ESTUDIO	23
6		MÉTODOS	25
	6.1	Obtención de muestras	25
		6.1.1 Trabajo de campo	25
		6.1.2 Trabajo de laboratorio	28
	6.2	Análisis de datos	30
		6.2.1 Análisis filogenético	31
		6.2.2 Análisis morfológico	32

7		RESULTADOS	34
	7.1	Análisis de distancia	34
	7.2	Análisis filogenéticos	37
		7.2.1 Máxima Parsimonia	37
		7.2.2 Máxima Verosimilitud	39
		7.2.3 Análisi Bayesiano	41
	7.3	Análisis morfológico	43
		7.3.1 Análisis de discriminantes	43
		7.3.2 Análisis de varianza (ANOVA)	45
		7.3.3 Análisis de distancia morfológica (UPGMA)	46
		7.3.4 Análisis de componentes principales	49
8		DISCUSIÓN	51
	8.1	Diferenciación genética	51
	8.2	Análisis filogenético	52
	8.3	Morfología y clados filogenéticos	55
	8.4	Implicaciones taxonómicas	57
	8.5	Estado de Conservación	58
9		CONCLUSIONES	60
10		LITERATURA CITADA	62
11		APÉNDICES	67

RELACIÓN DE FIGURAS

		Página
Figura 1	Árbol filogenético por el método de Fitch y Margoliash basado en 32 loci electroforéticos (Shaffer, 1984).	9
Figura 2	Clado del Centro y Oeste del altiplano Mexicano de <i>Ambystoma</i> propuesto por Shaffer y McKnight (1996) con el método de Neighborjoining.	10
Figura 3	Mapa de distribución geográfica.	15
Figura 4a	Distribución geográfica de la muestra.	27
Figura 4b	Distribución geográfica de la muestra.	27
Figura 5	Árbol de consenso de mayoría al 50% de 577 árboles igualmente parsimoniosos.	38
Figura 6	Árbol más verosímil obtenido bajo el modelo de seis parámetros GTR+G+I con sitios invariantes y porcentajes de heterogeneidad entre sitios (-lnL=3354.72151).	40
Figura 7	Árbol obtenido del análisis bayesiano a partir del consenso de mayoría al 50% de 9348 árboles.	42
Figura 8a	Análisis de discriminantes de los transformados.	44
Figura 8b	Análisis de discriminantes de los branquiados.	44
Figura 9a	Distancias Euclidianas de los transformados.	47
Figura 9b	Distancias Euclidianas de los branquiados.	48
Figura 10a	Análisis de componentes principales de los transformados.	50
Figura 10b	Análisis de componentes principales de los branquiados.	50

RELACIÓN DE TABLAS

		Página
Tabla 1.	Ejemplares, localidades y muestras utilizadas	26
Tabla 2.	Matriz de distancia de las especies del género putativo <i>Rhyacosiredon</i> , calculada con el algoritmo de Jukes y Cantor (1969).	36
Tabla 3.	Valores de significancia del análisis de discriminantes de los ejemplares transformados y branquiados y variables consideradas en el modelo.	43
Tabla 4	Valores de significancia de la prueba de Tukey (HSD)	45

RESUMEN

Ambystoma altamiranoi, A. leorae, A. rivulare y A. zempoalaense, conocidas como "ajolotes de montaña" o "ajolotes de río" muestran muy poca diferenciación morfológica entre sí, por lo que ha sido cuestionada su validez taxonómica, principalmente de A. zempoalaense. Anteriormente las cuatro especies formaban el género Rhyacosiredon, el cual presenta características morfológicas y ecológicas que lo diferencian de Ambystoma. Sin embargo, el género fue sinonimizado con Ambystoma con base en caracteres morfológicos de la mandíbula.

Los estudios taxonómicos basados en caracteres morfológicos de este grupo de salamandras son escasos, y los estudios moleculares han sido parciales al no incluir a todas las especies del género. Además, las relaciones filogenéticas de este grupo de especies no están completamente resueltas. Por lo anterior, los objetivos de este trabajo fueron: establecer las relaciones filogenéticas entre *Ambystoma altamiranoi*, *A. leorae*, *A. rivulare* y *A. zempoalaense*, y con las demás especies de *Ambystoma*; evaluar la monofilia de *Rhyacosiredon* y la validez del estado taxonómico de las especies mencionadas a partir de la filogenia obtenida y de un análisis morfológico.

Se obtuvieron en total 47 secuencias (1041 pb) de una región mitocondrila (*D-loop*). En el análisis se incluyeron 14 especies mexicanas y *Ambystoma laterale* se utiliza como grupo externo la cual se distribuye fuera del país. Los análisis filogenéticos se realizaron por Máxima Parsimonia (MP) Máxima Verosimilitud (ML) y Análisis Bayesiano (BY). De los dos primeros análisis se obtuvo un solo árbol respectivamente mediante una búsqueda heurística. El soporte de ramas para MP y ML se estimó a través de un análisis de *bootstrap*, mientras que para el BY se consideraron los valores de probabilidades posteriores.

Para el análisis morfológico se evaluaron 27 variables de un total de 143 ejemplares mediante análisis de discriminantes, análisis de varianza (ANOVA) y análisis de

componentes principales (PCA). Los ejemplares branquiados y transformados se analizaron por separado.

La topología del ML y BY fueron las mismas. El árbol de MP presenta algunas diferencias con respecto a ML y BY, sin embargo en todos los análisis *Rhyacosiredon* no es un grupo monofilético, al quedar incluidas *Ambystoma granulosum* y *A. lermaense*, las que presentan una relación estrecha con *Ambystoma altamiranoi*, *A. rivulare* y *A. zempoalaense*. Este grupo fue denominado como Clado A. Las distancias génicas dentro de este clado son bajas (0.41-2.67%). *Ambystoma leorae*, resultó basal al Clado A, manteniendo distancias génicas grandes respecto al mismo (3.47-5.21%).

En el análisis morfológico se encontró que el solapamiento de la variación de cada especie es muy grande, por lo que no se llegan a formar grupos. Las diferencias significativas encontradas son mínimas y se dan en los valores promedio, por lo que dichas diferencias no se pueden considerar de peso para diferenciar a cada especie.

Considerando que las diferencias génicas son bajas dentro del Clado A, y que el mtDNA da soporte al mismo se considera que este clado es un solo linaje por lo que *Ambystoma rivulare*, *A. zempoalaense*, *A. lermaense* y *A. granulosum* deben sinonimizarse con *Ambystoma altamiranoi* que fue la primer especie descrita de las cinco, bajo la consideración que dentro de dicho linaje existen dos morfos, uno que caracteriza a los ajolotes que habitan aguas lóticas y el segundo que habita las lénticas. En cuanto a *Ambystoma leorae*, es posible que se trate de un linaje genéticamente independiente y especie hermana del Clado A, sin embargo los datos moleculares y morfológicos no fueron suficientes para resolver del todo su estado taxonómico y sus relaciones filogenéticas.

ABSTRACT

Ambystoma altamiranoi, A. leorae, A. zempoalaense, A. rivulare and A. zempoalaense, known as "mountain axolotls" or "streams axolotls" show very few morphological differentiation from each other, reason why has been questioned its taxonomic validity, especially of A. zempoalaense. Previously, this four species formed the genus Rhyacosiredon, which displayed morfological and ecological characters that differentiated it from the salamanders of the genus Ambystoma. Nevertheless, the genus was later on considered a synonym of Ambystoma. The are few studies dealing with the taxonomy of this group and molecular studies have been partial by not including all the species of the group. In addition, the phylogenetic relationships of this species group are not completly solved. The aim of this work is: to establish the relationships between Ambystoma altamiranoi, A. leorae, A. rivulare and A. zempoalaense with other Ambystoma species; to asses the Rhyacosiredon monophyly and the validity of that taxa from morphological analyses and a phylogeny obtained based on mitochondrial DNA.

A phylogenetic analysis of 1041 bp of the mitocondial control region (*D-loop*) was performed for 47 individual secuencies. In the analysis 14 mexican *Ambystoma* species were included. Ambystoma laterale was used as an external group. Phylogenetics analysis were conducted by Maximum Parsimony, (MP) Maximum Likelihood (ML) and Bayesian analysis (BY). For the first two analyses, a single tree was obtained through a heuristic search. Branch support was calculated with bootstrap analysis for MP and ML, whereas for the BY the posterior probabilities were considered.

For morphological analyses we included143 specimens. 27 morfological variables were measured. Both univariate (ANOVA) and multivariate analyses (discriminant function analyses, UPGMA and PCA) was performed. Transforming and non-transforming samples were analyzed separately.

ML and BY topology were similar. MP tree displays some differences with respect to ML and BY, nevertheless in all analyses *Rhyacosiredon* is not a monophyletic

group. Ambystoma granulosum and A. lermaense, display a close relationship with A. altamiranoi, A. rivulare and A. zempoalaense (Clade A). The genic distances within this clade are low (0.41-2.67%) A. leorae maintaining larger genic distances (3.47-5.21%) with respect to Clade A and was basal to this group. The morfological variation overlapping between the four species is great. Significant differences are few and only was observed in means values. For this reason, these differences cannot be considered of weight to differentiate between species.

The low levels of genetic differentiation within Clade A and mtDNA suggest this clade must be considered as a single lineage. For this reason, *Ambystoma rivulare*, *A. zempoalaense*, *A. lermaense* and *A. granulosum* are synonymous of *Ambystoma altamiranoi* which is the first species described of the five. A. altamiranoi is formed by two morfological patterns, the first that characterizes the axolotls that inhabit streams and the second that those that inhabit lakes. *A. leorae* will be considered another genetic lineage and sister group of Clade A, but our molecular and morfological data are not enough to resolve to the vality and relationships of this taxon.

1. INTRODUCCIÓN

La escasa diferenciación morfológica que existe en complejos de especies crípticas, ha causado que la taxonomía de dichos taxones sea difícil de discernir y en algunos casos, pueda ser errónea. Por lo tanto, establecer las diferencias entre esas especies adquiere una gran importancia (Dawood *et al.*, 2002). Un ejemplo de ésto son las salamandras de la familia Ambystomatidae, quienes muestran muy pocas diferencias morfológicas por lo que el uso de caracteres moleculares, como las secuencias de DNA mitocondrial (mtDNA), puede ser fuente de información útil para establecer límites entre especies (Clements *et al.*, 2000). El DNA mitocondrial se hereda únicamente por vía materna, por lo que permite reconstruir las historias matrilineales de organismos específicos, carece de intrones y secuencias repetitivas, su arreglo es muy estable entre diferentes Phyla y no se recombina (Nieto y Llorente, 1994).

En general, el genoma mitocondrial evoluciona más rápido que el genoma nuclear. Se ha propuesto una tasa de cambio de aproximadamente 2% de divergencia por millón de años entre pares de linajes, según el gen que se utilice y el grupo taxonómico de que se trate (Avise, 2000). Sin embargo, no todos los genes mitocondriales presentan las mismas tasas de evolución. Moritz *et al.* (1987) señala que la región control (*D-loop*) presenta una evolución rápida, y provee información de eventos evolutivos recientes por lo que ha sido utilizado para estudios a escalas muy finas donde se hace referencia a la microevolución. Por estas características, los genes mitocondriales se convierten en excelentes marcadores

para la reconstrucción de filogenias intra e interespecíficas para develar eventos de flujo génico e historia poblacional a diferentes escalas temporales y espaciales.

En el caso de las salamandras del género *Ambystoma*, se ha propuesto que las especies mexicanas se han diversificado en función de una diferenciación alopátrida determinada por la geología e hidrología del país (Shaffer, 1984). Al menos para el Eje Neovolcánico Transversal, dicha diversificación no ha llevado más de 10 millones de años, por lo que muchas especies son de origen aparentemente reciente.

Considerando lo anterior y las ventajas que tienen los marcadores mitocondriales, en particular la región control al tener tasas de evolución rápida, así como dar buena señal filogenética en eventos evolutivos recientes (Shaffer y McKnight, 1996; Hoelzel et al., 1991), es que se recomienda su uso para establecer las relaciones filogenéticas y los límites entre especies en grupos como el género *Ambystoma*.

2. ANTECEDENTES

La familia Ambystomatidae, está formada por 28 especies de salamandras, de las cuales 17 se distribuyen en el centro y noroeste de México en regiones de mediana a gran altitud (1600 m- 3800 m) (Huacúz-Elias, 2001; Vega-López y Álvarez, 1992). La mayoría de las especies endémicas de México (15 en total) se distribuyen a lo largo del Eje Neovolcánico Transversal (Flores-Villela, 1993). Dentro de este grupo de salamandras se encuentran cuatro especies que hasta 1994 formaban el género *Rhyacosiredon*. Éstas se distribuyen en los estados colindantes a la Ciudad de México, particularmente en los estados de México, Morelos Guerrero y Michoacán. Todas son metamórficas y habitan en las corrientes frías de las partes montañosas de los estados mencionados, por lo que también son conocidas como "ajolotes de río" o "ajolotes de montaña".

2.1. Historia taxonómica de Rhyacosiredon

Para la región de Sierra de las Cruces (Estado de México-Distrito Federal), Dugès (1896) describe a *Ambytsoma altamiranoi* como una nueva especie de ajolote de montaña, tomando como base la persistencia de los dientes vomerianos en hilera en los adultos ya que en otras especies sólo se presentan en larvas. Otra de las características es la parte posterior de la cabeza, la cual se ve modificada por las partes persistentes del hioides. Tomando en cuenta los caracteres anteriores, Dunn (1928) considera que *A*.

altamiranoi es diferente y debe ser ubicada en un nuevo género, que describe como *Rhyacosiredon*, criterio que más tarde es apoyado por Taylor (1938).

Dunn (1928) describe a *Rhyacosiredon* como una salamandra ambistomátida sin branquias en estado adulto, pulmones presentes, hipsiloide bien desarrollado, sin lacrimal libre, nasal presente; el adulto con dientes vomerinos en posición larval, maxila muy pequeña, sin dientes premaxilares o pequeños; las larvas con branquias reducidas y el pliegue dorsal reducido en larvas de gran tamaño.

Otras características que se han utilizado para diferenciar a *Rhyacosiredon* de *Ambystoma* es que son salamandras de cuerpos esbeltos con las extremidades y cola largas; y que generalmente tienden a transformarse. Además, el pliegue caudal en los jóvenes es reducido, o no tan alto como en *Ambystoma*, y los adultos prácticamente no lo presentan (Taylor, 1938). Los dientes, aunque tienen la estructura típica de los transformados de *Ambystoma*, las cúspides linguales son cónicas como los de la larva, un carácter que se considera pedomórfico (Beneski y Larsen, 1989). Las branquias en los juveniles también están reducidas respecto a las de *Ambystoma*. Las características anteriores le han permitido a este grupo de ajolotes adaptarse a las corrientes de agua que habitan, donde las condiciones de oxigenación son altas.

Hasta 1994, *Rhyacosiredon* era un taxón válido, cuando Reilly y Brandon (1994) con base en un análisis morfológico (estructura mandibular) encontraron que muchas de las características que Dunn (1928) y Taylor (1938) consideraron como típicas de

Rhyacosiredon, en realidad no son únicas del género sino que las comparte con otras especies de *Ambystoma*. Tomando en cuenta lo anterior y la información genética existente, sinonimizaron a *Rhyacosiredon* con *Ambystoma*.

Las especies originalmente asignadas al género *Rhyacosiredon* son: *Ambystoma altamiranoi* (Dugès, 1896), *A. leorae* (Taylor, 1943), *A. rivulare* (Taylor, 1940) y *A. zempoalense* (Taylor y Smith, 1945).

Ambystoma altamiranoi fue asignada por Dugès (1896) a los ajolotes de Sierra de las Cruces, Estado de México, al oeste de la Ciudad de México; posteriormente Taylor (1938) dió un registro nuevo para las Lagunas de Zempoala al sur de la localidad tipo entre el Estado de México y Morelos, aspecto que Maldonado-Koerdell (1947) confirma al registrar a esta especie en un arroyo que drena a la quinta Laguna de Zempoala. Por otra parte, Smith y Necker (1943), a partir de los ejemplares tipo hicieron una descripción más detallada, principalmente del patrón de coloración.

Taylor (1940) describió a *Ambystoma rivulare* como una salamandra muy semejante a *A. altamiranoi*, aunque ligeramente más delgada y pequeña, con la cabeza más larga que ancha y la cola más corta. La localidad tipo de esta especie se localiza en el extremo oeste del Estado de México, a 13 km W de Villa Victoria, separado de la Sierra de las Cruces de donde fue descrita *A. altamiranoi* en la cuenca del Lerma. Aunque se consideraba que esta especie sólo se distribuía en el oeste del Estado de México

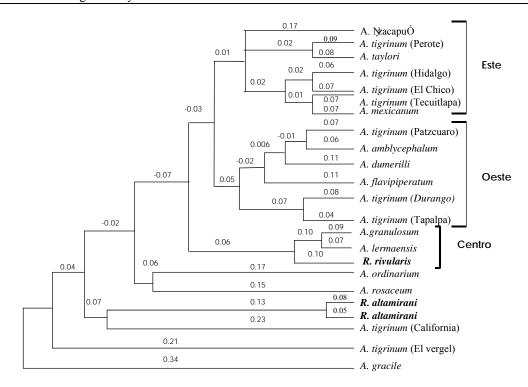
(Huacúz-Elias, 2001), la localidad más sureña se registró en la zona de Tetipac, Guerrero en la cuenca del Balsas (Flores-Villela y Hernández-García, 1989).

La tercer especie descrita fue *Ambystoma leorae* (Taylor, 1943), como una salamandra muy parecida a *A. altamiranoi* al igual que *A. rivulare*, pero mucho más grande y con las extremidades pequeñas. La localidad tipo es Río Frío (Estado de México), localizada al este de la Ciudad de México. Vega-López y Álvarez (1992) consideran la necesidad de realizar un trabajo más a fondo sobre la variación morfológica de esta especie, debido a que en el análisis morfológico que hacen de *Ambystoma leorae*, encontraron discrepancias con respecto a lo registrado por Taylor (1943) y un solapamiento en las medidas y proporciones de esta especie con respecto a *A. altamiranoi*.

Finalmente, *Ambystoma zempoalaense* fue descrita por Taylor y Smith (1945) con base en las características morfológicas de *A. altamiranoi*, pero con las extremidades más esbeltas y las puntas de los labios y dedos de color blanco. Aunque Taylor y Smith (1945) dan como localidad tipo las Lagunas de Zempoala, Morelos-Estado de México, Maldonado-Koerdell (1947) considera que *A. zempoalaense* es exclusiva de la quinta laguna de Zempoala (también conocida como Laguna Quila) y por lo tanto ésta sería su localidad tipo.

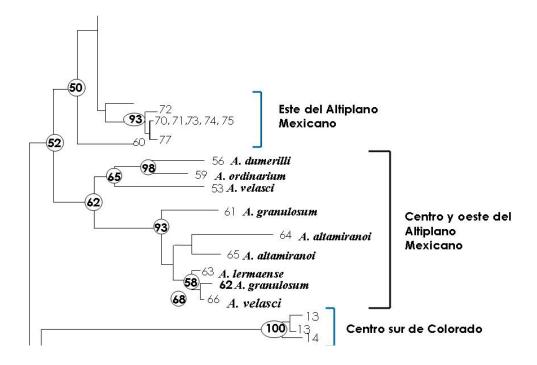
Taylor y Smith (1945) describen a esta especie con base en un adulto transformado y 37 larvas sexualmente maduras, razón por la que se consideraba que era más frecuente la forma neoténica, incluso muchos autores la consideraban como pedomórfica. También

mencionan que a pesar que *Ambystoma altamiranoi* se ha registrado a no más de 400 m de la localidad tipo de *A. zempoalaense*, consideran que las preferencias del hábitat son completamente distintas, punto que Maldonado-Koerdell (1947) confirma al registrar a *A. altamiranoi* de un riachuelo que desemboca en la quinta Laguna de Zempoala. Considerando que mientras *A. altamiranoi* habita en arroyos y riachuelos, *A. zempoalaense* sólo ha sido registrada en la quinta Laguna de Zempoala, la cual, en términos generales, difiere en temperatura y oxigenación. Posteriormente, Uribe-Peña *et al.* (1999) señalan que *A. zempoalaense* no está restringida a la quinta Laguna de Zempoala y que se puede encontrar a esta especie tanto en arroyos como en lagunas. Sin embargo, no proporcionan registros de *A. altamiranoi* para la zona de Zempoala.


Reilly y Brandon (1994) fueron los primeros en cuestionar el estatus taxonómico de *Ambystoma zempoalaense*, considerando que se trata de una especie sinónima de *A. altamiranoi* o alguna otra especie de este género. Sin embargo, varios autores posteriormente consideraron válida a *A. zempoalaense* (Shaffer y McKnight, 1996; Casas-Andreu *et al.*, 1997; Uribe-Peña *et al.*, 1999).

Los estudios sobre la taxonomía de este grupo de especies son escasos. Entre los de tipo morfológico se puede mencionar el de Vega-López y Álvarez (1992) sobre *Ambystoma leorae*, en el que describen de manera general datos sobre variación morfológica de esta especie así como los primeros datos reproductivos, de alimentación y detalles del hábitat y distribución. En este trabajo, no sólo se detallan las diferencias en los

caracteres morfológicos respecto a la descripción original, sino también se describen algunos caracteres para diferenciarla particularmente de *A. altamiranoi*.


Otro de los trabajos que tratan sobre morfología, aunque también muy generales, es el de Uribe-Peña *et al.* (1999) en el que se dan algunos datos sobre la variación morfológica, particularmente de ejemplares transformados de *A. altamiranoi* y *A. zempoalaense*, que al compararlos no se encuentran diferencias.

Los estudios moleculares del género *Ambystoma* sólo han incluido algunas de las especies de este grupo. Shaffer (1984), basado en análisis de enzimas de restricción, en el que utiliza 32 loci, sólo incluye dos muestras de *Ambystoma altamiranoi* y una de *A. rivulare*. En el análisis se encontró que las relaciones filogenéticas de *A. rivulare* son mucho más estrechas con *A. lermaense* y *A. granulosum* formando el clado de la "Mesa Central" (Figura 1), mientras que *Ambystoma altamiranoi* queda fuera de este clado y se mantiene muy distante del resto de las especies mexicanas.

Figura 1. Árbol filogenético por el método de Fitch y Margoliash basado en 32 loci electroforéticos (Shaffer, 1984).

Otro de los estudios genéticos fue el de Shaffer y McKnight (1996), en el que realizaron un análisis de secuencias de mtDNA (1043 pb de gen *D-loop*). En éste, se incluyen dos poblaciones de *Ambystoma altamiranoi*, una de Tres Marías, Morelos, cerca de las Lagunas de Zempoala y otra de Villa del Carbón, Estado de México. Estas poblaciones se mantienen juntas (Figura 2) con una distancia genética de 1.27%, teniendo como grupo hermano con una distancia de 0.51-1.4% al clado formado por *A. lermaese* (muestra 63), *A. granulosum* (muestra 62) y *A. velasci* (muestra 66) (Figura 2). Éstas últimas y las muestras de *A. altamiranoi* quedaron incluidas dentro del clado del "Centro y Oeste del Altiplano Mexicano" (Figura 2). Cabe mencionar que en este estudio no se incluyeron muestras de *A. leorae*, *A. rivulare* o *A. zempoalaense* por lo que se desconocen las relaciones entre estos taxa.

Figura 2. Clado del Centro y Oeste del altiplano Mexicano de *Ambystoma* propuesto por Shaffer y McKnight (1996) con el método de *Neighbor-joining*. Poblaciones: 56 Lago de Pátzcuaro, Mich.; 59 San Gregorio, cerca de Pátzcuaro, Mich.; 53 Tapalpa, Jal.; 61 km SW Toluca, Méx.; 64 Villa del Carbón, Méx.; 65 Tres Marías, Mor.; 63 Lago Almoloya, Méx.; 62 km W Toluca, Méx.; 66 Valle de Bravo, Méx.

2.2. Características generales de las especies del género putativo Rhyacosiredon

En este apartado sólo se dan las características principales de cada especie así como datos reproductivos, de hábitat y distribución.

Ambystoma altamiranoi (Dugès, 1895)

Es una especie de tamaño mediano, los transformados miden 72.2 mm (61.5-95.5) de longitud hocico cloaca, aunque pueden alcanzar hasta los 110 mm (Smith y Necker, 1947). La cola es más larga que la cabeza y el cuerpo con una proporción de 1.1 (0.8-1.4). Las extremidades son largas, al plegarse sobre el cuerpo éstas se solapan en 4.4 (1-8) pliegues intercostales. La cabeza es ancha, la longitud es sólo ligeramente mayor que la anchura la proporción es de 1.3 (1.1-1.4), el cuello es angosto. El diámetro del ojo mide 4.1 mm (3.4-5.5) y la distancia interorbital es de 5.9 mm (4.0-9.1).

El número total de dientes maxilares-premaxilares es 31.4 (19-58). La serie de dientes vomero-palatinos forman una curva sigmoide, extendiéndose en una diagonal hacia la parte posterior. Las series palatinas están dispuestas en una curva pronunciada hacia la parte anterior terminando ligeramente detrás de las coanas. El número de dientes vomero-palatinos es de 16.3 (10-25) por lado.

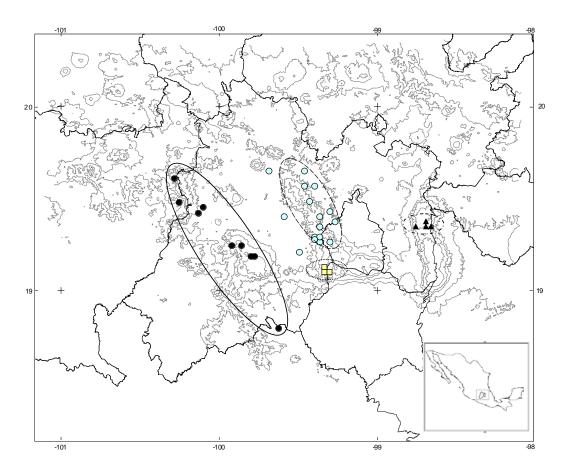
Los ejemplares branquiados presentan medidas similares a los transformados, aunque son ligeramente más pequeños, miden de longitud hocico cloaca 66.51 mm (61.8-86.9) y la cola

también es más corta, la proporción respecto al resto del cuerpo es de 1.0 (0.8-1.1). En cuanto al número de dientes maxilares-premaxilares no es mayor de 46, el de vomero-palatinos es similar al de los transformados.

La coloración del dorso está formada por dos patrones, el primero es fundamentalmente café con pequeñas manchas oscuras irregulares esparcidas sobre el dorso y partes dorsolaterales (patrón epidérmico). El segundo patrón (dérmico) se caracteriza por presentar manchas grandes oscuras, aunque más claras que las pequeñas manchas oscuras del patrón epidérmico. Lo anterior coincide con lo registrado por Smith y Necker (1943).

En los ejemplares transformados el patrón epidérmico es mucho más marcado que el dérmico así como en ejemplares que tienen muy reducidas las branquias; el patrón dérmico lo presentan principalmente las formas branquiadas. El vientre es blanquecino fuertemente manchado con puntos oscuros excepto en la región gular, la superficie ventral de la cola es moteada aunque puede ser inmaculada. Los transformados son más oscuros en la región abdominal.

Esta especie habita en la parte más alta de los bosques de coníferas en ambientes sombríos y húmedos, utilizando el fondo de cuerpos de agua como arroyos, charcos o lagunas (Uribe-Peña *et al.*, 1999), así como canales que drenan hacia cuerpos de agua de cultivo de peces en la zona de La Marquesa (Campbell y Simmons, 1962). A los transformados se les puede


encontrar debajo de troncos, rocas u hojarasca, pero siempre cerca de un cuerpo de agua (Uribe-Peña *et al.*, 1999).

Ambystoma altamiranoi, tiene una distribución amplia (Figura 3), al norte en Villa del Carbón y continúa en las partes altas de Sierra de las Cruces, Sierra del Ajusco, Cañada de Contreras (Estado de México-D. F.), Lagunas de Zempoala (Estado de México) y la parte alta de la Cuenca del Lerma (Campbell y Simmons, 1962; Reilly y Brandon, 1994). Existe un registro aislado en Zoquiapan, Estado de México (Uribe-Peña *et al.*, 1999), sin embargo la asignación de éste puede ser errónea y más bien se trate de *A. leorae*.

El ciclo reproductivo se inicia en invierno, las puestas se efectúan entre febrero y marzo con 700 a 1000 huevos que se encuentran en racimos de 4 a 25, los cuales son depositados en las rocas del sustrato o en los tallos de plantas acuáticas. Las larvas son comunes tanto en marzo como en abril (Uribe-Peña *et al.*, 1999)

Esta especie puede confundirse con *Ambystoma leorae*, pues al comparar los ejemplares no se encontraron diferencias en forma y coloración del cuerpo ni en proporciones, sin embargo Vega-López y Álvarez (1992) mencionan que la proporción de la suma de las extremidades con respecto a la longitud hocico cloaca es mucho mayor en *A. altamiranoi* (0.80 mm) que en *A. leorae* (0.67 mm). Sin embargo de un total de 63 ejemplares de *Ambystoma altamiranoi* se observó que el intervalo de variación es más amplio (0.6-0.9).

Ambystoma altamiranoi tiene la base de la cabeza más angosta que A. rivulare, también es un poco más pequeña ya que A. rivulare alcanza hasta los 113 de longitud hocico cloaca, mientras que A. altamiranoi generalmente no pasa los 95 mm. En cuanto al número de dientes, no tiene más de 50 dientes maxilares-premaxilares, mientras que A. rivulare llega a tener hasta 100 dientes.

Figura 3. Mapa de distribución geográfica. *OAmbystoma altamiranoi*; *●A. rivulare*; *▲ A. leorae*, *□ A. zempoalaense*.

Ambystoma rivulare (Taylor, 1940)

Es una salamandra grande y de cuerpo robusto, mide 77.6 mm (62.1-113.4) de longitud hocico cloaca, lo que difiere con los registrado por Taylor (1940) que la había descrito como una salamandra de cuerpo corto y delgado. La cola generalmente es más corta que el resto del cuerpo, con una proporción de 0.9 (0.8-1.5). Las extremidades aunque cortas siempre se solapan cuando se pliegan sobre el cuerpo en 3.3 (2-5). La cabeza es ligeramente más larga que ancha, la proporción es de 1.3 (1.1-1.4). El diámetro del ojo es de 4.2 mm (3.1-6.0) y la distancia interorbital es de 5.9 mm (4.4-8.9). El número de dientes maxilares-premaxilares por lado es de 55.8 (35-100) y de vomero-palatinos 21.9 (16-36) por lado.

La coloración del dorso, es muy parecida a la descrita por Smith y Necker (1943) para *A. altamiranoi*, pero ligeramente más oscura, las partes laterales la superficie ventral es girs claro con reticulaciones oscuras.

Los branquiados son ligeramente más pequeños, miden de longitud hocico cloaca 70.4 mm (61.7-89.7), y la cola generalmente es más corta que el resto del cuerpo 1.0 (0.9-1.1). El número de dientes es menor que en los transformados, el cual es de 49.5 (33-67). El patrón de coloración predominante es el dérmico, descrito para los branquiados de *A. altamiranoi* (Smith y Necker, 1943) aunque un poco más oscuros.

Ambystoma rivulare habita en cuerpos de agua lóticos en zona de bosque de oyamel, bosques de pino, pino-oyamel y de pino-encino, en altitudes superiores a los 2800 m (Taylor, 1940, Huacúz-Elias, 2001). Se distribuye en los alrededores del Nevado de Toluca hacia el oeste hasta Villa Victoria y los límites entre Michoacán y el Estado de México, particularmente en la Sierra de Mil Cumbres en lo que corresponde a la "Reserva de la Biosfera Mariposa Monarca" (Moreno-Flores y Sánchez-Núñez, 1997). Flores-Villela y Hernández-García (1989) la registran para Tetipac (Guerrero) en la Cuenca del Balsas (Figura 3).

Esta especie puede confundirse con *Ambystoma altamiranoi*, *A. leorae* y *A. zempoalaense*, sin embargo, *A. rivulare* se diferencia de las demás porque es de mayor tamaño y tiene un número mayor de dientes, ya que llega a medir más de 100 mm de longitud hocico cloaca, y tiene más de 45 dientes maxilares-premaxilares y más de 25 vomero-palatinos. La característica más distintiva es la forma de la cabeza de los transformados, en la cual la base de ésta no es tan angosta como en las demás especies.

Para el mes de mayo se registra una colecta de 19 huevos, de 9 mm (7.8-9.8) de diámetro. Los embriones con una longitud total de 12.5 y 8.5 mm, por lo que se considera que son muy parecidos a los de *Ambystoma altamiranoi* (Brandon y Altig, 1973).

Ambystoma leorae (Taylor, 1943)

Es una salamandra de cuerpo esbelto y tamaño grande, con una longitud hocico cloaca de 84.6 mm (57-95) alcanzando hasta 98 mm (Taylor, 1943). La cola, por lo general es más larga que la longitud del cuerpo y cabeza. La proporción es de 1.1 (1.0-1.2). Las extremidades son largas y robustas, al plegarse sobre el cuerpo estas se solapan en 4.2 (3-6) pliegues intercostales. La cabeza es proporcionalmente tan larga como ancha, la proporción es de 1.26 (1.16-1.30). El cuello en vista dorsal está fuertemente constreñido. El diámetro del ojo es de 4.4 mm (3.7-5.1). La distancia interorbital es de 5.8 mm (4.1-6.7).

El número de dientes maxilares-premaxilares es de 42 (19-58) y los vomeropalatinos 17.3 (15-20). La coloración, prácticamente coincide con el patrón observado en *Ambystoma altamiranoi*, tanto para transformados como para los branquiados.

Los branquiados, son ligeramente más pequeños, miden de longitud hocico cloaca 71.5 mm (65.1-81.7) y el número de dientes maxilares-premaxilares es mayor, siendo 45 (34-70) en total. En coloración predomina el patrón dérmico, como en los branquiados de *Ambystoma altamiranoi*.

Esta especie está restringida a corrientes de montaña en zonas de bosque de oyamel en la región norte de la Sierra Nevada, específicamente en los alrededores del poblado de Río Frío, en los límites de los estados de Puebla y Estado de México (Figura 3), en altitudes entre los a los 4000 m (Taylor, 1943; Vega-López y Álvarez, 1992).

Esta especie puede confundirse con *Ambystoma altamiranoi* y *A. rivulare*, sin embargo, los branquiados de *A. leorae*, tienen un mayor número de dientes que los de las especies anteriores.

Ambystoma zempoalaense (Taylor y Smith, 1945)

Es una salamandra de cuerpo alargado y delgado, aunque Taylor y Smith (1945) la describieron como de cuerpo robusto. Tiene una longitud hocico cloaca de 77.9 mm (66.8-85.2). La cola, aunque larga raramente lo es más que el cuerpo y la cabeza, la proporción es de 0.9 (0.9-1.0). Uribe-Peña *et al.* (1999) mencionan que las hembras tienen una longitud hocico cloaca mayor que los machos (71 y 62 mm respectivamente). Las extremidades son delgadas, ligeramente cortas, aunque siempre se solapan en 3.5 (3-4) pliegues intercostales.

La cabeza es igual o ligeramente más larga que ancha, la proporción es de 1.2 (1.0-1.3). El diámetro del ojo es de 3.9 (3.8-4.3) y la distancia interorbital es de 5.4 (5.2-5.5). El número total de dientes maxilares y premaxilares es de 41.5 (41-42), y el número de dientes vomero-palatinos por lado es de 21.5 (19-24) por lado.

El patrón de coloración del dorso es similar al descrito para los transformados y branquiados de *A. altamiranoi*. El vientre en ambos casos es de color crema.

Las medidas y proporciones de los branquiados son muy parecidas a la de los transformados, sólo el número de dientes es ligeramente mayor, tienen 45.5 (37-55) dientes maxilares-premaxilares y 28 (23-36) vomero-palatinos.

Taylor y Smith (1945) al encontrar a la mayor parte de los ejemplares en forma de larvas, consideran que la población se mantiene neoténica, a diferencia de las demás especies en las que han encontrado una mayor parte de transformados, por tal motivo, también consideran la posibilidad de haber asignado erróneamente esta especie como *Rhyacosiredon*, debido a que los caracteres genéricos sólo se pueden observar con certeza después de la pérdida de las branquias.

A. zempoalaense también tiene una distribución restringida, en las Lagunas de Zempoala (Estado de México-Morelos) particularmente en la quinta Laguna de Zempoala, Estado de México (Figura 3) (Taylor y Smith, 1945; Maldonado-Koerdell, 1947).

Ambystoma zempoalaense es muy parecida a *A. altamiranoi*, y las diferencias entre ambas son mínimas y los intervalos de variación de ambas especies se solapan.

3. JUSTIFICACIÓN

Después de la revisión morfológica de ejemplares de *Ambystoma altamiranoi*, *A. rivulare*, *A. leorae* y *A. zempoalaense*, se observó que los caracteres morfológicos utilizados para describir y diferenciar a cada una generalmente se solapan y no proporcionan criterios confiables para identificar a cada especie. Lo anterior pone en duda su existencia, particularmente la de *Ambystoma zempoalaense*, de la que no se tienen características que permitan diferenciarla. Por lo tanto, es posible que se trate de una sola especie y no de varias especies crípticas.

En el caso del género *Rhyacosiredon*, aunque Reilly y Brandon (1994) hicieron una revisión sobre la validez del género, ésta se basó únicamente en caracteres morfológicos de la mandíbula. Por otro lado, los resultados basados en aloenzimas (Shaffer 1984) y de mtDNA (Shaffer McKnight 1996) no contemplan todas las especies del género, por lo que estos estudios no son suficientes para demostrar la monofilia del género.

Por estas razones, resulta necesario revisar las relaciones filogenéticas entre las especies que formaban el género no sólo con caracteres moleculares sino también con caracteres morfológicos, para poder determinar si Rhyacosiredon es realmente un grupo monofilético y definir si se trata de taxones independientes o de poblaciones de un mismo linaje.

4. OBJETIVOS

- Determinar las diferencias genéticas entre las especies Ambystoma altamiranoi,
 A. leorae, A. rivulare y A. zempoalaense, a través de la secuenciación del gen D-loop del DNA mitocondrial.
- Determinar las relaciones filogenéticas de *Ambystoma altamiranoi*, *A. leorae*, *A. rivulare* y *A. zempoalaense* con respecto a las demás especies del género.
- Evaluar la monofilia de *Ambystoma altamiranoi*, *A. leorae*, *A. rivulare* y *A. zempoalaense*.
- Evaluar la validez del estado taxonómico de *Ambystoma altamiranoi*, *A. leorae*,
 A. rivulare y A. zempoalaense a partir de la filogenia obtenida y de un análisis morfológico.

5. ÁREA DE ESTUDIO

El área de estudio abarca parte de la provincia del Eje Neovolcánico Transversal, correspondiente a la subprovincia de Mil Cumbres y la parte montañosa del centro de la subprovincia Lagos y Volcanes de Anáhuac. En el sur ocupa una pequeña porción de la provincia Sierra Madre del Sur que corresponde a la subprovincia Depresión del Balsas (Secretaría de Programación y Presupuesto, 1981).

La vegetación predominante es de bosques de pino-encino, encino-pino, pino, encino, oyamel, oyamel-pino, pino-oyamel, que se alternan con áreas de pastizal inducido y chaparral, y particularmente para el área de Tetipac existen desde bosques de encino-pino, pino-encino, encino y pino e incluso mesófilos de montaña. También selva baja caducifolia en las partes más bajas así como pastizal inducido (Secretaría de Programación y Presupuesto, 1981).

Entre las serranías que destacan está la de Popo-Izta formada por los volcanes Popocatépetl e Iztaccíhuatl y la Sierra de las Cruces, que separa la cuencas de Toluca y México respectivamente. La Sierra del Ajusco-Chichinautzin que se inicia en el límite sur de la Sierra de las Cruces (Estado de México, Distrito Federal) y se extiende al este hasta las proximidades del volcán Popocatépetl, separando así la Cuenca de México del Valle de Cuernavaca. La sierra de Mil Cumbres en los límites de los estados de Michoacán y México; la Sierra de Zinantécatl (Nevado de Toluca) en el centro del Estado de México y

que limita a la cuenca de Toluca de la de México. (Secretaría de Programación y Presupuesto, 1981).

Entre las regiones hidrológicas están la Cuenca de México, el Vaso del Lerma y el afluente principal al Río Lerma, el cual tenía origen en los manantiales que alimentaban la laguna de Almoloya del Río y cuyo extremo sur llega aún hasta las poblaciones de San Pedro Techuchulco y Almoloya del Río. Ésta era la más alta de las tres lagunas que, en escalones sucesivos, descendían hacia el norte para encauzar sus aguas hacia el Lerma. Las otras lagunas principales eran las de Lerma y San Bartolo que se encontraban en avanzado proceso de senectud. Actualmente la laguna principal, cercana a Almoloya y llamada Chiconahuapan, es alimentada por manantiales que surgen al pie de las sierras volcánicas. La salida de las aguas del Valle de Toluca se ubica al norte en el Puerto de Medina (Secretaría de Programación y Presupuesto, 1981).

El clima predominante es clima semifrío en las cercanías de Toluca y en los Volcanes Popocatépetl e Iztaccíhuatl, con temperaturas medias anuales de 13° C, mientras que en el área de Taxco el clima es semicálido con una temperatura media anual de 20° C (Secretaría de Programación y Presupuesto, 1981).

6. MÉTODOS

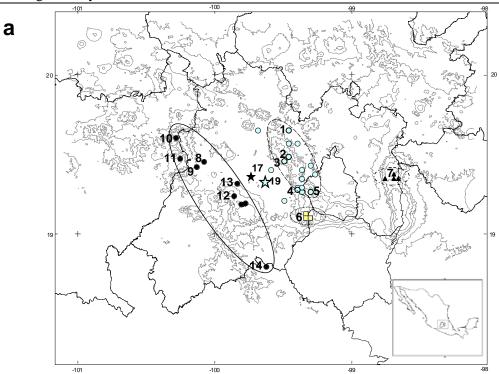
6.1. Obtención de muestras

6.1.1. Trabajo de campo

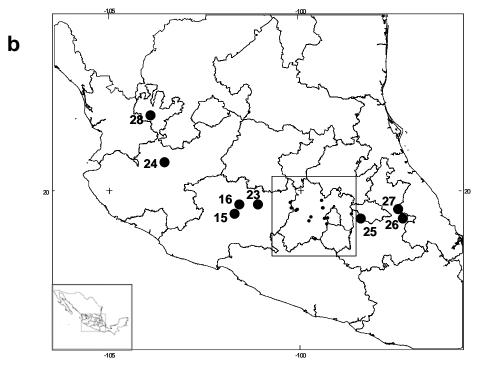
Se obtuvieron muestras de tejido fresco (hígado, cola) de ejemplares recolectados a partir de julio de 2003 hasta abril de 2005. Los tejidos de *Ambystoma altamiranoi*, *A. leorae*, *A. rivulare* y de *A. zempoalaense* proceden de nueve localidades del Estado de de México y Michoacán (Tabla 1), entre las que se incluyen las localidades tipo de cada especie excepto de *A. altamiranoi* (Figura 4A).

La captura de los ejemplares se realizó durante el día, en ríos, arroyos y riachuelos con redes de "cuchara" de diferentes tamaños. Una vez recolectados, los ejemplares se transportaron vivos al laboratorio en contenedores con agua del sitio, y se mantuvieron así hasta el momento de la obtención de los tejidos. Cuando no fue posible trasladar a los ejemplares al laboratorio, los tejidos se tomaron en campo (muestras de cola y dedos únicamente) y fueron posteriormente conservados con alcohol al 70% en viales perfectamente etiquetados. Finalmente las muestras se depositaron en ultracongelador (-73°). Cabe mencionar que sólo de las muestras 1-4, 7-14, 25-27 (Tabla 1) se tienen ejemplares de referencia.

De los sitios de recolecta se obtuvieron las coordenadas geográficas mediante un geoposicionador (GPS), se anotaron las condiciones del hábitat y tipo de vegetación. De los


ejemplares se tomó la longitud hocico cloaca (LHC) y la longitud de la cola (C) como referencia del estado de desarrollo del individuo.

Todas las muestras y los ejemplares de referencia fueron depositadas en la Colección Nacional de Anfibios y Reptiles (CNAR) Instituto de Biología (UNAM).


Tabla 1. Ejemplares, localidades y muestras utilizadas.

	Especie	Localidad	Muestra
1	A. altamiranoi	Ojo de Agua de Santa Rita, Villa del Carbón (MÉX)	NMF636
2	A. altamiranoi	Peña de Lobos, Mpio. Santa Ana Jilotzingo (MÉX)	NMF631
3	A. altamiranoi	Centro Ceremonial Otomí (MÉX)	GP771
4a	A. altamiranoi	Valle El Conejo, 7 km W San Jerónimo Acazulco (MÉX)	NMF664
4b	A. altamiranoi	Valle El Conejo, 7 km W San Jerónimo Acazulco (MÉX)	NMF672
5a	A. altamiranoi	Desierto de los Leones (DF)	AMNH291
5b	A. altamiranoi	Desierto de los Leones (DF)	AMNH291
6a	A. zempoalaense	Arroyo Quila, Zempoala (MÉX)	NMF598
6b	A. zempoalaense	Arroyo Quila, Zempoala (MÉX)	NMF599
7	A. leorae	Río Frío (MÉX)	NMF678
8	A. rivulare	Río San Diego, Municipio Villa Victoria (MÉX)	IBH 14203
9	A. rivulare	Ojo de Agua cerca de las Lagunas de Bosencheve (MÉX)	JCW181
10a	A. rivulare	Llano las Papas, 6 km N Angangueo (MICH)	NMF684
10b	A. rivulare	Llano las Papas, 6 km N Angangueo (MICH)	NMF686
11a	A. rivulare	Arroyo los Gallineros, comunidad Francisco Serrato (MICH)	NMF693
11b	A. rivulare	Arroyo los Gallineros, comunidad Francisco Serrato (MICH)	NMF694
12a	A. rivulare	Nevado de Toluca (MÉX)	GP743
12b	A. rivulare	Nevado de Toluca (MÉX)	GP744
13a	A. rivulare	Buenavista (MÉX)	JCW167
13b	A. rivulare	Buenavista (MÉX)	JCW168
14	A. rivulare	Tetipac (GRO)	MK 663C
15	A. andersoni*	Zacapu (MICH)	AY 659993
16	A. dummerilli*	Lago de Pátzcuaro (MICH)	NC 006889
17a	A. granulosum	Presa Ignacio Ramírez (MÉX)	sL2.1
17b	A. granulosum	Presa Ignacio Ramírez (MÉX)	sl2.3
17c	A. granulosum	Presa Ignacio Ramírez (MÉX)	SL3.1
17d	A. granulosum	Presa Ignacio Ramírez (MÉX)	SL3.2
17e	A. granulosum	Presa Ignacio Ramírez (MÉX)	IL3.4
18a	A. granulosum	Taborda (MÉX)	IL4.2
18b	A. granulosum	Taborda (MÉX)	IL4.1
19a	A. lermaense	Lago San Pedro Tlaltizapán (MÉX)	ALSSPT1
19b	A. lermaense	Lago San Pedro Tlaltizapán (MÉX)	ALSSPT2
20	A. lermaense	Lago San Pedro Tlaltizapán (MÉX)	7c
21a	A. mexicanum	Xochimilco (DF)	1
21b	A. mexicanum	Xochimilco (DF)	2
22	A. mexicanum*	Xochimileo (DF)	AJ 584639
23a	A. ordinarium	Atécuaro (MICH)	1
23b	A. ordinarium	Atécuaro (MICH)	2
24a	A. flavipiperatum	10 mi W Guadalajara (JAL)	HEP-2
24b	A. flavipiperatum	10 mi W Guadalajara (JAL)	HEP-3
25a	A. yelasci	San Martín Texmelucan (PUE)	IP4.2
25b	A. velasci A. velasci	San Martín Texmelucan (PUE)	IP4.1
26	A. velasci A. velasci	Quechulac (PUE)	11 4.1
27	A. taylori	Alchichica (PUE)	
28	A. rosaceum	carr. Bolaños-Tuxpan (JAL),	JAC23370
29	A. rosaceum*	cair. Doianos-ruspan (JAL),	U 36420
30	A. rosaceum* A. laterale*		AY 728218
	A. iaieraie		A1 /20210

Nota.: Los números a la izquierda de la especie corresponden a la población y muestra que se utilizó. * Muestras obtenidas del banco de genes.

Figura 4a. Distribución geográfica de la muestra. Se presentan las localidades muestreadas de acuerdo con la Tabla 1. O *Ambystoma altamiranoi*; ● *A. rivulare*; ▲ *A. leorae*, ☐ *A. zempoalaense*.

Figura 4b. Distribución geográfica de la muestra. Se presentan las localidades muestreadas de acuerdo con la Tabla 1. El recuadro corresponde a la Figura 4a.

6.1.2. Trabajo de laboratorio

Obtención de tejidos

En total se utilizaron 42 muestras de tejidos (Tabla 1), 15 de músculo de la cola o de hígado que se tomaron de los ejemplares recolectados en este estudio y 27 de muestras ya depositadas en la Colección Nacional de Anfibios y Reptiles (CNAR) (Figuras 4A y 4B).

Extracción de DNA

Se extrajo el DNA de dos muestras por localidad mediante digestión de *proteinasa K* utilizando el "kit" de extracción Dneasy de QIAGEN. El DNA obtenido se resuspendió en agua bidestilada y se cuantificó por análisis fluorométrico a una absorbancia de 260 λ . Los productos se observaron en geles de agarosa al 1% con bromuro de etidio. Se obtuvo entre 50 y 150 ng/ μ l de DNA por muestra.

Amplificación y secuenciación del DNA

Se amplificó la región control (*D-loop*) a través de la reacción en cadena de la polimerasa (PCR) utilizando los oligos *THR* y 651 (Shaffer y McKnight, 1996) utilizando el protocolo especificado en el Apéndice 1. Los productos de PCR se separaron por electroforesis en geles de agarosa al 2% con bromuro de etidio por un lapso de 30 min y se purificaron por precipitación con etanol (Apéndice 2).

Con los productos de PCR purificados se llevaron a cabo las reacciones de secuenciación (Apéndice 3) en ambas direcciones utilizando los oligos por separado y nucleótidos marcados (Big Dye, Applied Biosystems). Posteriormente se limpiaron los productos mediante columnas de *Sephadex* (Sigma) (Apéndice 4) y posteriormente se enviaron al Laboratorio de Biología Molecular del Instituto de Biología, UNAM para su secuenciación.

6.2. Análisis de datos

6.2.1. Análisis filogenético

Las secuencias se editaron por medio del programa Sequence Navigator (ver. 1.0.1 Biosystems Inc.) y se alinearon a ojo junto con cinco muestras obtenidas del banco de genes (GenBank). Las secuencias alineadas se analizaron con el programa PAUP ver. 4.0d81 (Swofford, 2002). Se obtuvo la matriz de distancias génicas mediante el algoritmo de sustitución nucleotídica de Jukes y Cantor (1969) de tal forma que pudieran compararse estos valores de distancia con los obtenidos por Shaffer y McKnight (1996). En los análisis de datos se consideraron todos los caracteres (informativos y no informativos). Para determinar la significancia de la correlación entre la distancia genica y la distancia geográfica se utilizó la Prueba de Mantel (250 permutaciones) únicamente para *Ambystoma altamiranoi*, *A. leorae*, *A. rivulare* y *A. zempoalaense*.

La inferencia filogenética se hizo bajo el criterio de Máxima Parsimonia (MP) con la opción de búsqueda heurística (100 réplicas) bajo las opciones de "TBR" (Tree-Bisection and Reconection) y "ACCTRAN" (desfavorece paralelismos). Otro de los análisis empleados fue el de máxima verosimilitud (ML). Se hizo también a través de una búsqueda heurística con el modelo GTR+G+I (seis parámetros) de acuerdo con el resultado obtenido con el criterio de Akaike con el programa Model Test ver. 3.02 (Posada y Crandall, 1998).

modelo de reconstrucción filogenética.

Los datos también se evaluaron con análisis Bayesianos (BY), utilizando el programa MrBayes ver. 3.0 win (Huelsenbeck y Ronquist, 2001) con tasas de sustitución gamma y cuatro cadenas (tres "calientes" y una "fría") para un millón de generaciones.

Posteriormente se graficaron los valores de verosimilitud contra el tiempo generacional, descartando los árboles por debajo de la asíntota. El soporte de ramas se obtuvo mediante consenso de mayoría al 50% con el programa PAUP. Cabe mencionar que se utilizaron diferentes métodos filogenéticos como un indicador de que los grupos no dependen del

Para contar con una prueba estadística que permita determinar la confianza de los resultados de los análisis realizados, se aplicó la prueba de *Bootstrap*. En el caso de parsimonia, se realizaron 100 réplicas y para ML sólo 10. En el caso de BY se consideraron los porcentajes de los valores de probabilidades posteriores.

Para probar la monofilia de *Rhyacosiredon* se utilizaron las secuencias de *Ambystoma* rosaceum y A. laterale, especies hasta ahora consideradas como cercanas de las especies mexicanas (Shaffer, 1984; Shaffer y McKnight, 1996). Para observar las relaciones con las demás especies de *Ambystoma*, se incluyeron secuencias de A. granulosum, A. dumerilii, A. lermaense, A. ordinarium y A. velasci que junto con A. altamiranoi forman el clado "Centro y oeste del altiplano mexicano" (Figura 2), así como A. andersoni, A. flavipiperatum, A. rosaceum y a A. taylori como representantes de los demás linajes mexicanos (Shaffer y McKnight, 1996).

6.2.2. Análisis morfológicos

Se revisaron y midieron 143 ejemplares de los cuales 97 corresponden a *Ambystoma altamiranoi*, 10 a *A. leorae*, 29 a *A. rivulare* y 7 *A. zempoalaense* de las colecciones de anfibios y reptiles del Instituto de Biología (CNAR, UNAM), del Museo de Zoología "Alfonso L. Herrera" (MZFC, UNAM) y de la Escuela Nacional de Ciencias Biológicas (ENCB, IPN) (Apéndice 5). Prácticamente la mitad de cada muestra corresponde a ejemplares transformados y la otra a branquiados. Para este análisis sólo se consideraron los ejemplares con una longitud hocico cloaca (LHC) mayor de 60 mm y todos los ejemplares de Zempoala se consideraron como *A. zempoalaense*.

En total se obtuvieron 27 variables para ambos casos (transformados y branquiados) y cinco más para los branquiados; 13 de las variables corresponden a la cabeza, 6 al cuerpo y 8 a las extremidades (Apéndice 6). 23 son variables continuas y ocho son discretas, no se incluyeron datos binarios. Todos los datos se transformaron a logaritmo natural para reducir la correlación del promedio y la varianza dentro y entre las muestras.

El análisis estadístico consistió en un análisis de discriminantes, para determinar cuáles son las variables que separan a los grupos; un análisis de varianza (ANOVA) para determinar si existen diferencias significativas entre los grupos y en qué variables se presentan dichas diferencias.

Para determinar la variación y el patrón de solapamiento entre los grupos se realizó un análisis de distancia morfológica por el método de UPGMA (Distancias Euclidianas) así como un análisis de componentes principales (PCA). Todos los análisis se hicieron con el programa STATISTICA ver 6.0.

7. RESULTADOS

En total se obtuvieron 1041 pares de bases del gen *D-loop* de 47 individuos (Apéndice 7). Cinco de las secuencias se obtuvieron del banco de genes. En total, están representadas 15 especies, de las cuales *Ambystoma laterale* es la única que se distribuye en Estados Unidos de Norteamérica (Tabla 1).

7.1 Análisis de distancia

Ambystoma leorae presenta distancias génicas altas con respecto a las demás especies que formaban el género *Rhyacosiredon*: con *A. altamiranoi* es de 0.036-0.040 (3.6-4.0%), *A. rivulare* es de 0.037-0.052 (3.7-5.2%) y *A. zempoalaense* es de 0.035 (3.5%) (Tabla 2).

Las divergencias génicas entre *Ambystoma altamiranoi*, *A. rivulare*, *A. zempoalaense*, *A. granulosum* y *A. lermaense* son relativamente pequeñas (Apéndice 8). La mayor divergencia entre las especies es de 0.027 (2.7%) y se observa entre *A. altamiranoi* y *A. rivulare*, específicamente entre la población 4 y 10 respectivamente. *A. zempoalaense* mantiene una distancia de 0.009-0.013 (0.9-1.3%) con respecto a las poblaciones de *A. altamiranoi* y de 0.004-0.016 (0.4-1.6%) con *A. rivulare*.

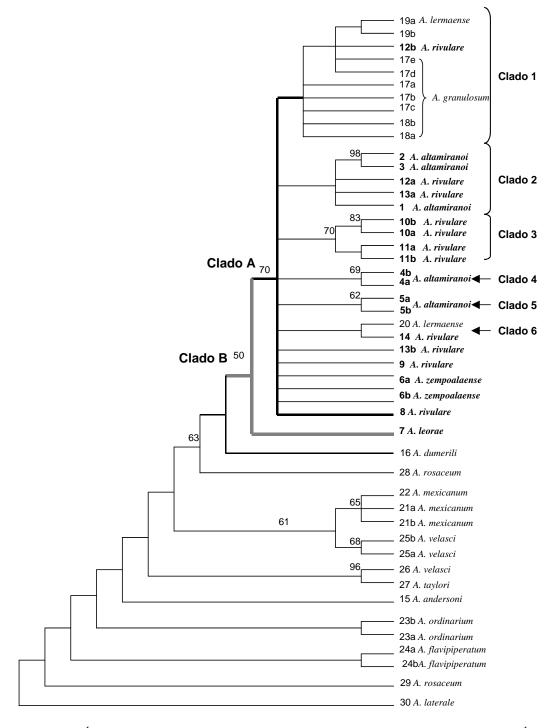
Las distancias intraespecíficas varían de 0.002-0.017 (0.2-1.7%) en *Ambystoma* altamiranoi; 0.005-0.023 (0.5-2.3%) entre las poblaciones de *A. rivulare* y es de 0.004

(0.4%) en *A. zempoalaense* (Tabla 2). Por otro lado, la correlación entre la distancia génica y la distancia geográfica no es significativa (r = 0.56654,P = 1.0000), por lo que se observa que muestras de la misma localidad, o que están cercanas geográficamente, mantienen distancias grandes. Por ejemplo, las muestras de *A. altamiranoi* de Sierra de las Cruces (1, 2 y 3) son más parecidas y tienen una distancia más pequeña con respecto a las muestras 12a y 13a de *A. rivulare* de Nevado de Toluca y Buenavista (0.004-0.012), que con la 4 y la 5 de Valle del Conejo y Desierto de los Leones de la misma especie cuya distancia genética es de 0.010-0.017 (1.0-1.7%).

Un caso similar ocurre entre las poblaciones de *Ambystoma rivulare*. A pesar de la cercanía geográfica entre las poblaciones de Sierra de Mil Cumbres (10) y Bosencheve (9), éstas tienen una distancia génica mayor 0.013-0.022 (1.3-2.2%) que la que existe entre Bosencheve (9) y Tetipac (14) la cual es de 0.012 (1.2%) (Tabla 2).

Tabla 2. Matriz de distancia de las especies del género putativo *Rhyacosiredon*, calculada con el algoritmo de Jukes y Cantor (1969). Arriba de la diagonal se muestran las distancias geográficas en kilómetros. Los números en negritas corresponden a cada población de acuerdo con la Tabla 1.

	4a	4b	12a	12b	13a	13b	9	5a	1	6a	6b	10a	10b	11a	11b	2	7	8	3	14	5b
4a	-	0.00	43.04	43.04	44.76	44.76	81.57	8.56	41.73	21.38	21.38	104.14	104.14	95.77	95.77	30.13	75.80	78.80	27.07	66.30	8.56
4b	0.003	-	43.04	43.04	44.76	44.76	81.57	8.56	41.73	21.38	21.38	104.14	104.14	95.77	95.77	30.13	75.80	78.80	27.07	66.30	8.56
12a	0.008	0.007	-	0.00	1.76	1.76	48.15	51.51	59.77	49.49	49.49	74.88	74.88	62.11	62.11	54.00	118.76	47.31	33.38	54.39	51.51
12b	0.010	0.007	0.006	-	1.76	1.76	48.15	51.51	59.77	49.49	49.49	74.88	74.88	62.11	62.11	54.00	118.76	47.31	33.38	54.39	51.51
13a	0.010	0.009	0.005	0.011	-	0.00	46.82	53.24	161.70	51.21	51.21	73.65	73.65	60.71	60.71	55.22	120.49	46.10	34.50	54.96	53.24
13b	0.009	0.006	0.009	0.007	0.009	-	46.82	53.24	161.70	51.21	51.21	73.65	73.65	60.71	60.71	55.22	120.49	46.10	34.50	54.96	53.24
9	0.009	0.006	0.009	0.007	0.011	0.008	-	89.70	71.70	94.81	94.81	27.25	27.25	14.37	14.37	74.18	153.97	4.61	57.55	98.66	89.70
5a	0.009	0.006	0.005	0.005	0.010	0.008	0.008	-	43.96	21.09	21.09	111.73	111.73	103.83	103.83	32.13	75.58	86.81	33.94	70.48	0.00
1	0.012	0.011	0.004	0.010	0.005	0.011	0.011	0.009	-	63.07	63.07	85.02	85.02	83.20	83.20	11.84	89.46	67.42	26.71	103.15	43.96
6a	0.006	0.003	0.004	0.006	0.006	0.005	0.005	0.005	0.008	-	0.00	119.53	119.53	109.17	109.17	51.39	67.27	92.78	46.26	51.65	21.09
6b	0.010	0.007	0.008	0.010	0.010	0.009	0.009	0.009	0.012	0.004	-	119.53	119.53	109.17	109.17	51.39	67.27	92.78	46.26	51.65	21.09
10a	0.022	0.020	0.016	0.016	0.021	0.022	0.022	0.015	0.020	0.016	0.017	-	0.00	16.40	16.40	90.66	172.55	27.57	78.03	125.89	111.73
10b	0.023	0.020	0.017	0.017	0.022	0.023	0.023	0.016	0.020	0.017	0.018	0.000	-	16.40	16.40	90.66	172.55	27.57	78.03	125.89	111.73
11a	0.016	0.013	0.012	0.010	0.016	0.015	0.013	0.009	0.015	0.012	0.013	0.011	0.012	-	0.000	86.80	167.47	17.07	71.22	111.05	103.83
11b	0.019	0.016	0.015	0.013	0.019	0.018	0.016	0.012	0.018	0.015	0.017	0.014	0.015	0.005	-	86.80	167.47	17.07	71.22	111.05	103.83
2	0.014	0.013	0.006	0.012	0.008	0.013	0.013	0.011	0.005	0.010	0.014	0.023	0.024	0.019	0.021	-	82.00	70.22	20.96	93.28	32.13
7	0.037	0.037	0.037	0.039	0.037	0.039	0.037	0.035	0.037	0.036	0.040	0.052	0.052	0.045	0.047	0.040	-	150.48	96.44	123.68	75.58
8	0.010	0.008	0.007	0.005	0.012	0.010	0.006	0.004	0.009	0.007	0.008	0.011	0.011	0.006	0.006	0.011	0.014	-	54.17	99.05	86.81
3	0.017	0.016	0.009	0.015	0.012	0.016	0.016	0.014	0.009	0.013	0.017	0.025	0.026	0.021	0.024	0.002	0.016	0.014	-	78.08	33.94
14	0.011	0.010	0.009	0.011	0.009	0.012	0.012	0.012	0.011	0.007	0.011	0.021	0.022	0.019	0.021	0.012	0.012	0.014	0.016	-	70.48
5b	0.009	0.006	0.005	0.005	0.010	0.008	0.008	0.000	0.009	0.005	0.009	0.015	0.016	0.009	0.012	0.011	0.035	0.004	0.014	0.012	-

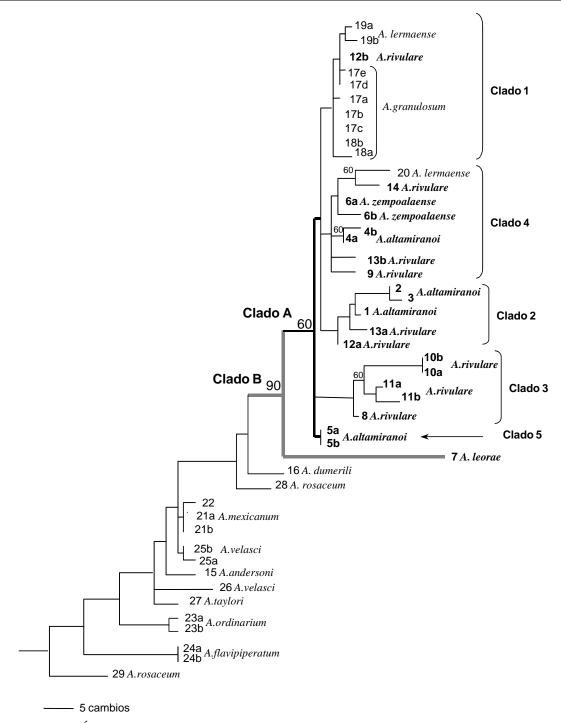

7.2. Análisis filogenético

7.2.1. Máxima parsimonia (MP)

En este análisis se obtuvieron 129 sitios variables, de los cuales sólo 86 son parsimoniosamente informativos. Después de la búsqueda heurística se obtuvieron 577 árboles igualmente parsimoniosos. (L: 345; IC: 0.693; RI: 0.782; RC: 0.542; HI: 0.307). El árbol de consenso de mayoría del 50% (Figura 5) no logró resolver parte de las relaciones entre las especies en cuestión (*Ambystoma altamiranoi*, *A. rivulare*, *A. leorae* y *A. zempoalaense*). Los valores de *bootstrap* en los diferentes clados son bajos y muchas de las ramas no tienen un valor de apoyo superior al 50%.

Dentro de los grupos que se forman se encuentra el Clado A, formado por *Ambystoma altamiranoi*, *A. rivulare*, *A. zempoalaense*, *A. granulosum y A. lermaense* con un valor de soporte de 70%. Este clado, junto con *A. leorae* forman un grupo monofilético (Clado B) con un porcentaje de apoyo de 50%. Con base en la topología obtenida el grupo hermano del Clado B es *A. dumerilii*, sin embargo no tiene valores de apoyo superiores al 50%.

La resolución del Clado A es baja y las ramas dentro de éste no tiene apoyo estadístico. Sin embargo, se forman varios subclados. El primero de éstos (clado 1), contiene todas las muestras de *Ambystoma granulosum* de Presa Ignacio Ramírez (17a-17e; 18a, 18b) y de *A. lermaense* de San Pedro Tlaltizapán (excepto la muestra 20), además de la muestra 12b de *A. rivulare* correspondiente al Nevado de Toluca.

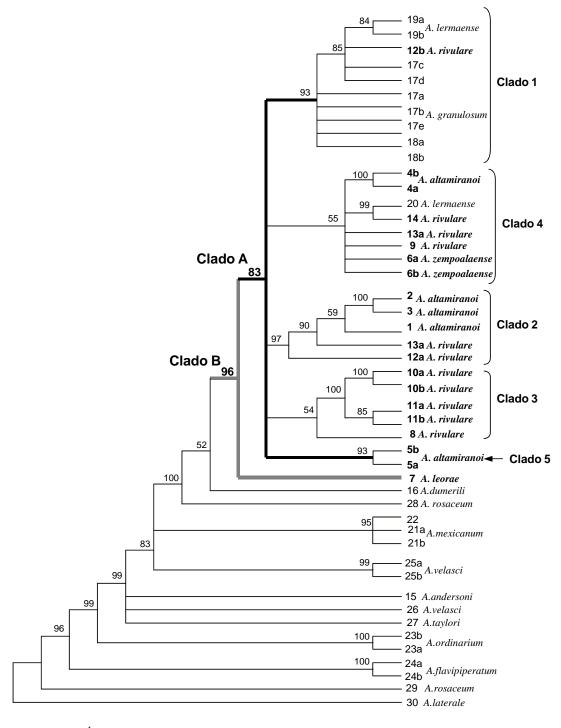

Figura. 5. Árbol de consenso de mayoría al 50% de 577 árboles igualmente parsimoniosos . Índice de consistencia (IC): 0.693; índice de homoplasia (HI): 0.307. índice de retención (RI): 0.782. Los números representan la localidad y la muestra según la Tabla 1. Los números en los nodos son los valores de *bootstrap* (>50).

En el segundo subclado (clado 2) se encuentras las muestras 1, 2 y 3 de *Ambystoma altamiranoi* y la muestra 13a y 12a de *A. rivulare*. El clado 3 está formado por las muestras de la Sierra de Mil Cumbres de *Ambystoma rivulare* (10a, 10b, 11a, 11b). Otro tres subclados están formados por las muestras de *A. altamiranoi* 4a y 4b del Valle del Conejo (clado 4), por las muestras del Desierto de los Leones (5a, 5b) (clado 5) y el clado 6 por la muestra 20 de *A. lermaense* de San Pedro Tlaltizapán y por la muestra 14 de *A. rivulare* de Tetipac (Figura 5).

El Clado B agrupa a las especies de ajolotes del oeste de la Cuenca de México, particularmente las que habitan las partes montañosas circundantes al Alto Lerma junto con *A. leorae* de Río Frío (7), el cual se mantiene basal y separado de las demás especies por la Cuenca de México.

7.2.2. Máxima verosimilitud (ML)

El modelo GTR (General time reversible) con sitios variables (+I) y estructura gamma (+G) fue el modelo de sustitución que se adecuó mejor a los datos. Las secuencias presentaron la siguiente estructura: frecuencia nucleotídica A= 0.31380, C= 0.23580, G= 0.14780, T= 0.30260; tasas de sustitución A-C= 1.0, A-G= 6.966500, AT= 1.664800, C-G= 1.664800, C-T= 6.966500, G-T= 1.0, proporción de sitios variables (I) = 0.5528 con una aproximación discreta *gamma*.


Figura. 6. Árbol más verosímil obtenido bajo el modelo de seis parámetros GTR+G+I con sitios invariantes y porcentajes de heterogeneidad entre sitios (-lnL=3354.72151). Para observar mejor las longitudes de las ramas se eliminó de la figura a *Ambystoma laterale*. Las longitudes de las ramas son proporcionales al número de sustituciones por sitio. Los números representan la localidad y la muestra según la Tabla 1. Los números en los nodos son los valores de *bootstrap* (>50).

En el árbol de ML (–*ln*L= 3427.90702) se observa que *Ambystoma leorae* es basal al Clado A (Figura 6), como se había mostrado en el análisis de MP, pero en este caso tiene un valor de *bootstrap* de 90% (Clado B) mientras que en el Clado A es de 60% (Figura 6).

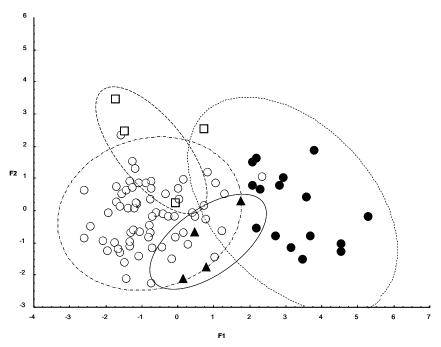
La estructura interna del Clado A, difiere del análisis de MP en lo siguiente: el clado 3 incluye la muestra de Villa Victoria (8) de *A. rivulare* y el clado 4 incluye a las muestras de Valle del Conejo de *Ambystoma altamiranoi* (4a, 4b), a las muestras 9, 13a y 14 de *A. rivulare* así como a las muestras de *A. zempoalaense* (6a, 6b). Los clados 1, 2 y 5 se mantienen constantes (Figura 6).

7.2.3 Análisis Bayesianos (BY)

El árbol de análisis bayesiano se obtuvo del consenso (mayoría 50%) de 9348 árboles. En general la topología que se obtuvo por este método es la misma que la obtenida con ML (Figura 7). Los valores de probabilidades posteriores son bajos para aquellos clados que no tuvieron soporte con MP y fueron consistentes particularmente en el Clado A que es de 83% mientras que, para el Clado B es de 96%.

Figura. 7. Árbol obtenido del análisis bayesiano a partir del consenso de mayoría al 50% de 9348 árboles. El modelo utilizado fue el mismo que en el análisis de verosimilitud con un valor de: -lnL = 3354.72151. Los números representan la localidad y muestra según la Tabla 1. Los números de los nodos son los valores en porcentaje de las probabilidades posteriores (>50).

7.3. Análisis morfológico


El número de unidades taxonómicas operativas (OTU's) empleados en los diferentes análisis fue de 90 transformados y 53 branquiados, que corresponden al número de los ejemplares examinados.

7.3.1. Análisis de discriminantes

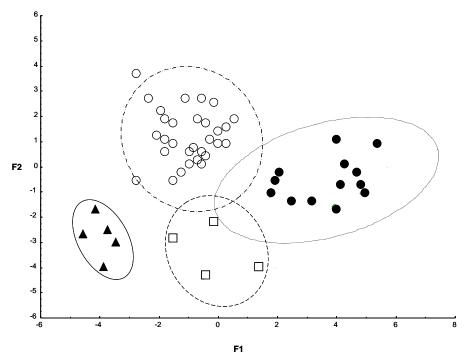

A partir de este análisis se determinó que sólo 15 y 17 variables para los transformados y branquiados respectivamente, son informativas para la formación de grupos (Tabla 3). En cuanto a la clasificación de los grupos, para los transformados sólo se obtuvo un 95% de éxito, mientras que para los branquiados fue del 100%. Lo anterior se reflejó en la formación de grupos y sólo en el caso de los branquiados existe una separación evidente entre las cuatros especies (Figuras 8a y 8b). Los valores de significancia de los análisis se dan en la Tabla 3.

Tabla 3. Valores de significancia del análisis de discriminantes de los ejemplares transformados y branquiados y variables consideradas en el modelo. Para definición de variables ver Apéndice 6.

	Wilks' Lambda	F	p<	Variables en el modelo
Transformados	0.19903	(42, 217) = 3.7420	0.0000	DM, M, PI, OCULAR, D/P, HO, P, DV, DEDO_4, C, DI, HC, DIA, LC_PAR, UPJAW.
Branquiados	0.02091	(51,99) = 5.1781	0.0000	DM, HC, LC_PAR, DO, AB1, S_UPJAW, LP, DIA, DV, M, AB2, PAR, OCULAR, AB3, DEDO_3, DEDO_4, LM.

Figura 8a. Análisis de discriminantes de los transformados. No. de variables en el modelo =15. Lambda de Wilk= 0.19903. F (42, 217) = 3.742 P< 0.0000. ○ *Ambystoma altamiranoi*; • *A. rivulare*; ▲ *A. leorae*, □ *A. zempoalaense*.

Figura 8b. Análisis de discriminantes de los branquiados. No. de variables en el modelo =17. Lambda de Wilk= 0.02091. F (51, 99) = 5.1781 P< 0.0000. \bigcirc *Ambystoma altamiranoi*; \bullet *A. rivulare*; \triangle *A. leorae*, \Box *A. zempoalaense*.

7.3.2. Análisis de Varianza (ANOVA)

Con las variables que resultaron del análisis de discriminantes (Tabla 3), se llevó a cabo el ANOVA encontrándose diferencias significativas entre las cuatro especies para ambos grupos (transformados y branquiados) (Tabla 4). Se aplicó la prueba de Tukey (HSD) para encontrar entre qué grupos (grupos homogéneos) y variables se presentan dichas diferencias (Apéndice 9).

Tabla 4. Valores de significancia de la prueba de Tukey (HSD)

	p	Lambda de Wilks
Transformados	0.000001	0.049281
Branquiados	0.002139	0.007995

Las variables que marcan las diferencias entre los transformados son: el número de dientes maxilares-premaxilaes (DM), la longitud de la extremidad posterior (P) y la longitud de la mandíbula (UPJAW). Estas diferencias son mucho más marcadas entre *Ambystoma altamiranoi y A. rivulare. A. altamiranoi*, presenta los valores más pequeños de DM y UPJAW mientras que *A. rivulare* los más grandes. La única variable que diferencia a *A. leorae* de las tres restantes fue P, en donde dicha especie tiene el valor promedio mayor (Apéndice 9). Los valores promedio de *A. zempoalaense*, en general no varían mucho respecto a los promedios de las demás especies.

En los branquiados se encontró que las únicas variables que marcan diferencias entre las cuatro especies son la altura de la cola (HC) y el ancho de la cabeza a nivel de los ojos (OCULAR). Una vez más las diferencias son mucho más marcadas entre los valores

promedio de *Ambystoma rivulare* y *A. altamiranoi*. La altura de la cola (HC) es la variable que marca la diferencia entre *A. leorae* con las tres restantes, debido a que tiene el valor promedio mayor, mientras *A. rivulare* tiene el valor promedio más pequeño. *A. leorae*, tiene la cabeza más ancha (OCULAR) de las cuatro especies, y *A. rivulare* es quién presenta el promedio más pequeño en esta variable. (Apéndice 9).

7.3.3. Análisis de distancia morfológica (UPGMA)

En los fenogramas obtenidos, se encontró que los transformados se forman dos grupos. El grupo 1 (Figura 9a) está formado por la mayoría de los ejemplares de *Ambystoma altamiranoi*, en el que quedan incluidos tres ejemplares de *A. zempoalaense* (ejemplares 88, 89 y 90) y tres de *A. leorae* (69, 70 y 67) sin observarse un patrón de agrupamiento por especie. Dentro del grupo 1 también quedó incluido el ejemplar 77 de *A. rivulare*. En el segundo grupo (Figura 9a) se encuentra la mayoría de los ejemplares de *A. rivulare*, excepto las muestras 75, 77 y 82 sin embargo, dentro de este grupo se encuentran ejemplares de las demás especies.

En el caso de los branquiados, de acuerdo con el fenograna obtenido (Figura 9b) todos los ejemplares examinados de cada especie son muy parecidos morfológicamente, a pesar de que el análisis de discriminantes se pueden separar las cuatro especie. Por otro lado a diferencia de los transformados sólo se observa un grupo (1) que incluye los ejemplares de *Ambystoma rivulare* de Guerrero excepto los ejemplares 37, 39 y 40. Aunque se observan algunos subgrupos, éstos no presentan un patrón geográfico o por especie

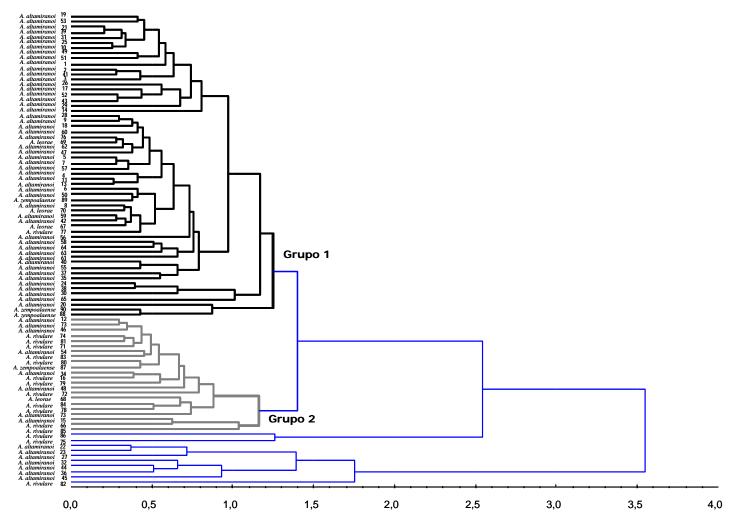


Figura 9a. Distancias Euclidianas de los transformados. Los números a la derecha de la especie corresponden a cada ejemplar según el apéndice 5

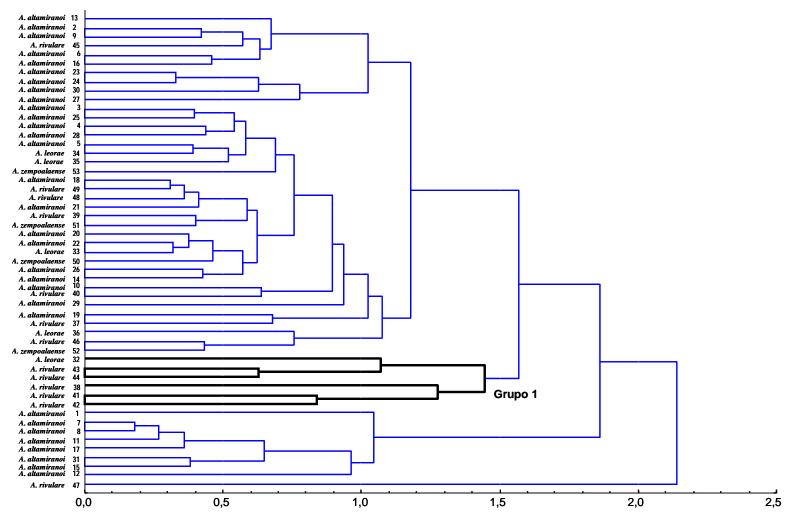
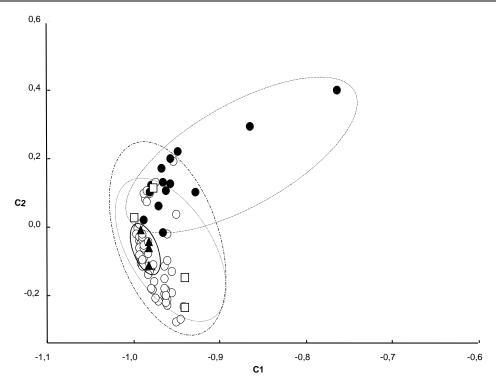
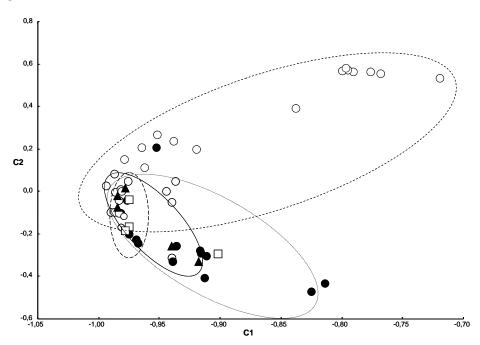



Figura 9b. Distancias Euclidianas de los branquiados. Los números a la derecha de la especie corresponden a cada ejemplar según el apéndice 5


7.3.4. Análisis de componentes principales (PCA)

El número total de variables utilizadas fue de 15 y 17 para los transformados y branquiados respectivamente, que son los caracteres obtenidos del análisis de discriminantes.

Tanto en los transformados como en los branquiados la varianza explicada se concentra en el primer componente, con valores de 88.5 y 87.0% respectivamente (Figuras 10a, 10b). En la Figura 10a se observan tres grupos, por un lado los ejemplares de Ambystoma rivulare y por otro los que corresponden a A. altamiranoi. El patrón de variación de A. leorae queda dentro de la variación de A. altamiranoi, mientras que A. zempoalaense presenta un patrón de variación muy amplio, pero que queda en un punto intermedio entre la variación de A. altamiranoi y A. rivulare. Las variables C (longitud de la cola), DIA (distancia entre la axila y la ingle) y DM (número de dientes maxilares-premaxilares) son los que definieron estos agrupamientos. A diferencia de lo que se observó en el análisis de distancia morfológica, en el caso de los branquiados se observaron los mismos grupos que en los transformados(Figura 10b). Las variables informativas en el agrupamiento son el número de dientes maxilares-premaxilares (DM), el diámetro del ojo (DO), la longitud de la extremidad posterior (LP) y la distancia entre la ingle y la axila (DIA). Los branquiados de Ambystoma leorae, presentan un patrón de variación más grande respecto a los transformados, quedando en un punto intermedio entre A. altamiranoi y A. rivulare. El patrón de variación de A. zempoalaense es el mismo que el de los transformados.

Figura 10a. Análisis de componentes principales de los transformados. El porcentaje de variación explicada en el primer componente es de 88.5%. O *Ambystoma altamiranoi*; ● *A. rivulare*; ▲ *A. leorae*, □ *A. zempoalaense*.

Figura 10b. Análisis de componentes principales de los branquiados.. El porcentaje de variación explicada en el primer componente es de 87.0%. O *Ambystoma altamiranoi*; \bullet *A. rivulare*; \blacktriangle *A. leorae*, \Box *A. zempoalaense*.

8. DISCUSIÓN

8.1. Diferenciación genética

En general, las diferencias genéticas que se encontraron entre las especies que forma el género putativo *Rhyacosiredon* son bajas (excepto *Ambystoma leorae*). Estos niveles bajos de divergencia indican que se trata de un grupo derivado recientemente (Shaffer y McKnight, 1996), o bien que el gen *D-loop* no es lo suficientemente variable para resolver las preguntas planteadas en este estudio.

El Clado A, que contiene las especies *Ambystoma altamiranoi*, *A. rivulare*, *A. zempoalense*, *A. lermaense* y *A. granulosum*, mantiene una distancia relativamente alta respecto a *Ambystoma leorae* (3.47-5.21%). Dicha divergencia puede ser producto del efecto de barreras geográficas fragmentaron lo que en un principio era una población continua (Avise, 1994). En este caso particular, la Cuenca de México pudo ser dicha barrera, separando las poblaciones de Río Frío y las del oeste del Estado de México. Aunque la correlación entre la distancia génica y geográfica no fue significativa (r = 0.56654,P = 1.0000), el aislamiento entre el Clado A y *Ambystoma leorae* pudo ocurrir en el Mioceno Superior (5.5-millones de años) con la aparición de la falla Chapala-Tula (Doadrio y Domínguez, 2002). Lo anterior coincide con lo encontrado entre las poblaciones de Sierra del Ajusco y Río Frío de la salamandra terrestre *Pseudoeurycea leprosa*, entre las que también encuentran niveles altos de divergencia (Lynch *et al.*, 1983).

Shaffer y McKnight (1996) proponen que se reconozca como un linaje lo que ellos denominan el clado del "Centro y Oeste del Altiplano Mexicano", el cual está formado por *Ambystoma altamiranoi*, *A. dumerilii*, *A. granulosum*, *A. lermaense*, *A. ordinarium* y *A. velasci*. Sin embargo, en el presente análisis se observa que existe una clara diferencia genética, además de la morfológica, entre las poblaciones del Alto Lerma, (Clado A) y *A. dumerilii* del oeste de Michoacán (Apéndice 8). En los análisis de MP, ML y BY (Figura 5-7), *A. dumerilii* es basal al Clado B (aunque sin soporte) y presenta distancias relativamente grandes respecto a éste (1.9-3.3). De la misma forma, *A. ordinarium* no está cercanamente relacionada con el Clado A ni con *A. dumerilii*.

La población de *Ambystoma rivulare* de Tetipac (Guerrero) resultó muy parecida a las muestras de *Ambystoma lermaense* y *A. rivulare* del Alto Lerma a pesar de encontrarse en cuencas diferentes. Una explicación alternativa a estos bajos niveles de diferenciación génica puede explicarse por la presencia de polimorfismos ancestrales.

8.2. Análisis filogenético

Los análisis filogenéticos empleados (MP, ML y BY) apoyan el Clado A el cual tiene un valor alto de *bootstrap* (MP=70% y ML=96%). La monofilia de éste clado sugiere que los taxones que lo conforman se encuentran estrechamente relacionados, por lo que puede tratarse de una sola especie, además de que ninguno de los taxa incluidos se mantiene como unidad cohesiva.

De las especies de *Rhyacosiredon*, *Ambystoma. leorae* se mantuvo basal al Clado A (Figuras 5-7) con un valor de soporte de ramas relativamente alto (MP=50%, ML=90%, BY=96%), por lo que es probable que ésta se trater de una especie distinta. Sin embargo es necesario que se incluya un número mayor de muestras, con el fin de esclarecer las relaciones filogenéticas de *A. leorae*.

Nuestros resultados no coinciden del todo con la propuesta del clado del "Centro y Oeste del altiplano Mexicano" planteado por Shaffer y McKnight (1996). En primer lugar, no cuenta con valores de soporte y en segundo *Ambystoma ordinarium* quedó completamente separada de este clado. Lo anterior puede deberse, por una parte, a que en este estudio se utilizó sólo una muestra de *A. ordinarium* localizada al sur de la empleada por Shaffer y McKnight (1996). Además, en este estudio tampoco se incluyó la muestra de *A. velasci* de Jalisco (muestra 53) que forma parte del clado del "Centro y Oeste".

En el Clado del "Centro y Oeste" *Ambystoma dumerilii* es basal junto con *A. ordinarium* y *A. velasci*, (bootstrap= 65%) al subclado formado por *A. altamiranoi*, *A. granulosum*, *A. lermaense* y *A. velasci*, con un *bootstrap* alto de 93%. En este estudio, *A. dumerilii* es basal al Clado B en el que quedan incluidas *A. zempoalaense*, *A. rivulare*, *A. altamiranoi*, *A. granulosum* y *A. lermaense* (Clado A) y *A. leorae*. Por lo anterior, no se apoya la propuesta de Shaffer y McKnight (1996) que este Clado sea un solo linaje y al menos el Clado A debe considerarse como un grupo independiente.

Aunque con el uso del *D-loop* pudo resolverse parte de la relaciones entre las especies en cuestión, es importante y necesario incluir otros marcadores como los genes ND1 y ND2 que den mayor soporte a los resultados obtenidos. Estos genes se recomiendan por proporcionar buena resolución en colibríes de reciente aparición (Bleiweiss, 1998). Además, se ha comprobado que estos dos genes junto con el *D-loop* son los de mayor variación dentro de la mitocondria (Samuels *et al.*, 2005) al menos para *Ambystoma* andersoni, A. ordinarium y A. mexicanum.

Se considera particularmente necesario el empleo de los marcadores mencionados, principalmente para esclarecer las relaciones entre los ajolotes de río y *Ambystoma lermaese* y *A. granulosum*, ya que éstas presentan características morfológicas y ecológicas que en principio las hacen diferentes de las demás especies que se distribuyen en el Estado de México. Así como para esclarecer con exactitud validez de *Ambystoma leorae*.

Aunque en este estudio no se incluyó a *Ambystoma velasci* de Valle de Bravo, Estado de México (Muestra 66, Shaffer y McKnight, 1996), es probable que quede incluida dentro del Clado A, si consideramos que la diversificación del género *Ambystoma* en el Estado de México es reciente por lo que aún no hay una diferenciación molecular suficientemente grande, como para considerarla distinta.

8.3. Morfología y clados filogenéticos

Los caracteres morfológicos resultaron ser muy conservados, característica común en los anfibios en donde los intervalos de variación son tan grandes que generalmente se solapan, por tal motivo es difícil encontrar variables o características diagnósticas que se puedan evaluar. Lo anterior, se reflejó en un gran solapamiento de la variación entre las cuatro especies, y por lo tanto en una baja diferenciación morfológica. A pesar que se encontraron diferencias significativas en algunos de los caracteres, éstas se dan en los valores promedio, además de que son muy pocos caracteres con respecto al número total de las variables analizadas y no fueron consistentes en los diferentes métodos empleados.

A pesar de observar dos patrones de variación morfológica entre *Ambystoma altamiranoi* y *A. rivulare* de acuerdo con los análisis de UPGMA y PCA y que aparentemente estaría determinado por el área geográfica (Sierra de las Cruces y Sierra de Mil Cumbres-Nevado de Toluca), no muestran una diferenciación significativa entre ambos grupos por el solapamiento que prtesentan. Además, no hay caracteres morfológicos que diagnostiquen a ninguna de las dos especies y los datos moleculares no sustentas estas estas diferencias ya que no se encontró una congruencia entre entre los patrones de variación morfológica con las relaciones genealógicas.

Las únicas variables que diferencian a *Ambystoma leorae*, es la longitud de las extremidades posteriores (P), la cual fue significativamente diferente en los transformados respecto a las demás especies, mientras que para los branquiados fue la altura de la cola

(HC). Estos resultados coinciden con lo registrado por Vega-López y Álvarez (1992).

Aunque podrían emplearse como caracteres para diferenciarlas del resto de las especies, estas diferencias sólo se dan en los valores promedio.

Los resultados de la filogenia y el análisis morfológico no resuelven por completo el estado taxonómico de *Ambystoma leorae*. Pero considerando que la distancia geográfica existente entre la zona de ocurrencia de *A. leorae* (Estado de México, Puebla) y la del Clado A (oeste del Estado de México) pudo haber influido en la divergencia de este taxón y por lo tanto permitido la fijación de diferencias moleculares en el mismo, cabe la posibilidad de que se trate de un grupo natural. Sin embargo se requiere de una muestra mayor que permita confirmar lo anterior.

La baja diferenciación morfológica de *Ambystoma altamiranoi*, *A. rivulare* y *A. zempoalaense* refleja la baja diferenciación genética así como las relaciones filogenéticas entre éstas. Sin embargo, al considerar completo el Clado A, existen discrepancias de tipo morfológico, ya que *A. lermaense* y *A. granulosum* que habitan en cuerpos de aguas lénticas, presentan caracteres muy particulares que los diferencian de los ajolotes de río, como es que son de cuerpos más robustos, más grandes (LHC mayor de 90 mm) el número de dientes maxilares-premaxilares y vomeropalatinos es mucho mayor (67.4 y 35 respectivamente) y las extremidades son más cortas ya que rara vez se solapan al plegarse sobre el cuerpo.

8.4. *Implicaciones taxonómicas*

El análisis de datos moleculares no sustenta la existencia del género *Rhyacosiredon* como unidad evolutiva, por lo que se corrobora la propuesta de Reilly y Brandon (1994) de sinonimizarla con *Ambystoma*.

Los resultados moleculares indican que *Ambystoma leorae* es distinta de las especies del Clado A (*A. altamiranoi*, *A. rivulare*, y*A.zempoalaense*, *A. lermaense* y *A. granulosum*) debido a su posición basal (con valores de apoyo relativamente altos) y a la gran distancia genética con respecto a este Clado, además de que *A. leorae* se encuentra aislada geográficamente del Clado A por la Cuenca de México, lo que podría traducirse en una diferenciación al menos molecular. Por lo anterior, se debería considerar válida, pero con la limitación de que sólo consideramos un solo ejemplar. De lo anterior surge la necesidad de hacer un muestreo mayor, no sólo para complementar el análisis molecular sino el morfológico, de tal manera que sea posible verificar el estado taxonómico de esta especie así como sus relaciones filogenéticas.

Las diferencias morfológicas entre los ajolotes de río son muy pequeñas la gran variación entre las tres especies refleja en parte los resultados de los datos moleculares de las especies que formaban a *Rhyacosiredon*. Por lo anterior, consideramos que las diferencias encontradas entre *Ambystoma altamiranoi*, *A. rivulare* y *A. zempoalaense* podrían deberse al aislamiento geográfico.

Considerando que el solapamiento de la variación geográfica es muy grande, que las diferencias morfológicas (en parte) y genéticas son pequeñas dentro del Clado A, y que el mtDNA da soporte al mismo, se considera que se trata de un solo linaje por lo que *Ambystoma rivulare*, *A. zempoalaense*, *A. lermaense* y *A. granulosum* deben sinonimizarse con *Ambystoma altamiranoi* que fue la primer especie descrita de las cinco, bajo la consideración que dentro de esta existen dos morfos, uno que caracteriza a los ajolotes de agua lóticas y el segundo que habita las lénticas.

8.5. Estado de Conservación

Sólo la población de la Reserva de la Biósfera "Mariposa Monarca" (Michoacán) ha sido evaluada, encontrándose que las condiciones del hábitat son óptimas y se mantiene estable con poco riesgo de desaparición, al menos por factores locales (Huacúz-Elías, 2003).

En el caso de la población de Laguna Quila en Zempoala (Estado de México), a pesar de que la laguna está prácticamente seca y que se extrae agua para consumo humano, se puede decir que se mantiene estable. En esta, se encontraron 35 individuos tanto branquiados y transformados entre los que había juveniles. De acuerdo con la supervisión del parque, en años anteriores no se habían registrado más de 10 individuos, a diferencia de lo que sucede en la laguna principal (Zempoala), en la que se hicieron arrastres en cuatro ocasiones y no se obtuvo ningún ejemplar, incluso en el arroyo que drena a la laguna no se encontraron ajolotes.

El caso más crítico de conservación es el que presenta *Ambystoma leorae*. Desde su descripción a la fecha, son contados los registros. Casas-Andreu (1989) menciona que no se registra en colecciones desde 1973. Vega-López y Álvarez (1992) dan los registros más recientes de esta especie (nueve ejemplares) y consideran dudoso el futuro de las poblaciones encontradas, ya que los principales manantiales que drenan a los arroyos están siendo entubados para consumo humano. Con el presente estudio se confirmaron los resultados antes mencionados, ya que sólo se encontró un ejemplar muerto para la localidad tipo Río Frío (Estado de México) de un total de ocho salidas que se realizaron entre 2004-2005. Por lo anterior, es necesario implementar estrategias de conservación urgentes no sólo por tratarse de una especie endémica, sino porque ésta representa una unidad evolutiva que en la actualidad es una de las principales metas de la conservación.

No se puede aseverar con seguridad si las poblaciones de ajolotes de río desaparecerán sin un estudio más sistemático (excepto *Ambystoma leorae* y las poblaciones de sierra de las Cruces), pero al menos en las zonas donde fue difícil o no se encontraron, los factores que se pueden considerar como los causantes de la pérdida de las poblaciones y que coinciden en los diferentes sitios es la presencia de especies introducidas, una actividad turística alta, el aumento de la mancha urbana y la pérdida de los manantiales.

9. CONCLUSIONES

Los análisis de distancia y filogenéticos obtenidos con el gen *D-loop*, indican que *Ambystoma altamiranoi*, *A. lemaense*, *A. granulosum*, *A. rivulare* y *A. zempoalaense* (Clado A) representan un solo linaje aislado geográficamente por la Sierra de las Cruces en el este y la Sierra de Mil Cumbres en el oeste.

El Clado A está formado por al menos dos morfos que corresponden al tipo de hábitat (aguas lénticas y aguas lóticas).

De acuerdo con las filogenias obtenidas, *Ambystoma leorae* se mantiene como una unidad evolutiva independiente, y especie hermana del Clado A, que agrupa a las poblaciones que se distribuyen principalmente en el oeste del Estado de México.

Los diferentes métodos filogenéticos empleados indican que el género Rhyacosiredon es un grupo polifilético, por lo que se corrobora la propuesta de sinonimizarla con Ambystoma.

No se encontraron grandes diferencias respecto a la filogenia propuesta por Shaffer y McKnight (1996), pero se debe reconsiderar el clado del "Centro y Oeste" como un solo linaje, ya que al menos el Clado A y *Ambystoma leorae* presentan características tanto morfológicas como genéticas que las diferencian de las demás especies que conforman dicho clado.

De acuerdo con el análisis morfológico, existen dos patrones de variación que que aparentemente correspondena una determianda área geográfica, uno representado por la

Sierra de las Cruces y el segundo por las poblaciones de Sierra de Mil Cumbres y Nevedo de Toluca.

Se sugiere el empleo de otros marcadores mitocondriales y un mayor muestreo que permitan esclarecer de una manera más consistente las relaciones filogenéticas y la variación morfológica entre los morfos encontrados dentro del Clado A, así como para definir el estado taxonómico de *A. leorae*.

10. LITERATURA CITADA

- Avise, J. C. 1994. Molecular markers, natural history and evolution. Chapman and Hall, New York. 511 p.
- Avise, J. C. 2000. Phylogeography: The history and formation of species. Harvard University Press, Cambridge. 447 p.
- Beneski, J. T. y J. H. Larsen Jr. 1989. Interspecific, ontogenetic, and life history variation in the tooth morphology of mole salamanders (Amphibia, Urodela, Ambystomatidae).

 Journal of Morphology, 199: 53-69.
- Bleiweiss, R. 1998. Slow rate of molecular evolution in high-elevation hummingbirds.

 Proceedings of the National Academy of Sciences, 95: 612-616.
- Brandon R. A. y R. G. Altig. 1973. Eggs and small larvae of two species of *Rhyacosiredon*. Herpetologica, 29: 349-351.
- Campbell, H. W. and R. S. Simmons. 1962. Notes on the eggs and larvae of *Rhycosiredon altamirani* (Dugès). Herpetologica, 18: 131-133.
- Casas-Andreu, G. 1989. Los anfibios y reptiles y su estado de conservación en el valle de México. Pp. 117-123. *En*: Ecologia Urbana. Vol. Esp. Departamento del Distrito Federal.
- Casas-Andreu, G.; X. Aguilar-Miguel y E. O. Pineda-Arredondo. 1997. Capítulo 1. Anfibios y Reptiles. Pp: 9-52. *En*: Lista Taxonómica de los Vertebrados Terrestres del Estado de México (Aguilera, U. y O. Monroy eds.). Universidad Autónoma del Estado de México Ciencias y Técnicas/32.

- Clements, K. M., B. M. Wiegman, C. E. Sorenson, C. F. Smith, P. A. Neese y R. M. Roe. 2000. Genetic variation in the *Myzus persicae* complex (Homoptera: Aphididae): Evidence for a single species. Annals of Entomological Society of America, 93: 31-46.
- Dunn, E. R. 1928. A new genus of salamander from Mexico. Proceedings New England Zoology Club, 10: 85-86.
- Dawood, A., A. Channing y J. P. Bogart. 2002. A molecular phylogeny of the frogs genus Tomopterrna in Southern Africa: examining Species Boundaries with mitocondrial 12s, *r*RNA sequence data. Molecular Phylogenetics and Evolution, 22: 407-413.
- Doadrio, I y O. Domínguez. 2002. Phylogenetic relationships within the fish family Goodeidae based on cytocrome *b* sequence data. Molecular Phylogenetics and Evolution, 31: 416-430.
- Dugès, A. 1896. Description dún axolotl des Montangues de las Cruces (*Amblystoma* [sic] *altamirani*). La Naturaleza, Ser. 2, 2: 459-461.
- Flores-Villela, O. 1993. Herpetofauna Mexicana. Carnegie Museum of Natural History Pittsburg Special Publication, 17: 1-73.
- Flores-Villela, O. y E. Hernández-García. 1989. New State records from Northern Guerrero, México. Herpetological Review, 20:15-16.
- Hoelzel, A. R., J. M. Hancock y G. A. Dover. 1991. Evolution of the cetacean mitocondrial *D-loop* región. Molecular Biology and Evolution, 8: 475-493.
- Huelsenbeck, J. P. y F. y Ronquist. 2001. Mr. Bayes: Bayesian inference of phylogeny. Bioinformatics, 17: 754-755.

- Huacúz-Elias, D. C. 2001. Estado de Conservación del Género Ambystoma en Michoacán,
 México. Universidad Michoacana de San Nicolás de Hidalgo, Universidad Nacional
 Autónoma de México, SEMARNAT, México. 70 pp.
- Huacúz-Elías, D. 2003. Estado de conservación de *Ambystoma rivulare* Taylor, (1940) en el Santuario Sierra Chincua de la Reserva de la Biosfera "Mariposa Monarca". Biológicas. Revista de la Facultad de Biología de la Universidad Michoacana de San Nicolás de Hidalgo, 5: 51-63.
- Jukes T. H. y C. R. Cantor. 1969. Evolution of protein molecules. Pp. 21-132. *In*: Munro H.N., (Eds). Mammalian protein metabolism. Academic Press, New York.
- Lynch, J. F., D. B. Wake y S. Y. Yang. 1983. Genic and morphological differentiation in Mexican *Pseudoeurycea* (Caudata: Plethodontidae), with description of a new species. Copeia, 1983: 884-894.
- Maldonado-Koerdell, M. 1947. Notas anfibiológicas I. Observaciones sobre algunos anfibios de la cuenca de México. Revista de la Sociedad Mexicana de Historia Natural, 8: 229-242.
- Moreno-Flores, S. y E. Sánchez-Núñez. 1997. Primer registro de *Ambystoma* (*Rhyacosiredon*) *rivulariz* [sic] Taylor, 1940 (Amphibia: Ambystomatidae) para el estado de Michoacán, México. Vertebrata Mexicana. 1997: 9-12.
- Moritz, C., T. E. Dowling, y W. M. Brown. 1987. Evolution of animal mitocondrial DNA: relevance for population biology and systematics. Annual Review of Ecology and Systematics, 18: 269-292.

- Nieto M. O. A. y J. E. Llorente B. 1994. Caracteres moleculares en los métodos de la sistemática moderna. Pp. 157-205. En: Taxonomía Biológica. Llorente y Luna (comps.) Ediciones Científicas Universitarias, Universidad Nacional Autónoma de México, Fondo de Cultura Económica. México.
- Posada, D. y K. A. Crandall. 1998. Modeltest: Testing the model of DNA substitution. Bioinformatics, 14: 817-818.
- Reilly, S. M. y R. A. Brandon. 1994. Partial paedomorphism in the mexican stream Ambystomatids and the taxonomic status of the genus *Rhyacosiredon* Dunn. Copeia, 1994: 656-662.
- Samuels, A. K., D. W. Weisrock, J. J. Smith, K. J. France, J. A. Walker, S. Putta y S. R. Voss. 2005. Transcripcional and phylogenetic analysis of five complete ambystomatid salamander mitochondrial genomes. Gene, 349: 43-53.
- Shaffer, H. B. 1984. Evolution in a paedomorphic lineage. I An electrophoretic analysis of the Mexican Ambystomatid salamanders. Evolution, 38: 1194-1206.
- Shaffer, H. B. y M. L. McKnight. 1996. The polytypic species revisted: Genetic differentiation and molecular phylogenetics of the tiger salamander *Ambystoma tigrinum* (Amphibia: Caudata). Evolution, 50: 417-433.
- Secretaría de Programación y Presupuesto. 1981. Síntesis Geográfica del Estado de México, con anexo cartográfico. Dirección General de Cartografía del Territorio Nacional.
- Smith, H. M. y L. Necker. 1943. Alfredo Dugès types of Mexican reptiles and amphibians.

 Anales de la Escuela Nacional de Ciencias Biológicas, 3: 179-219.

- Swofford, D. 2002. PAUP: Phylogenetic analysis using parsimony and other methods, version 4. Sunderland, MA: Sinauer Associates.
- Taylor. E. H. 1938. Concerning mexican slamanders. University Kansas Science Bulletin, 24: 259-313.
- Taylor E. H. 1940. A new *Rhyacosiredon* (Caudata) from western Mexico. Herpetologica, 1: 171-176.
- Taylor E. H. 1943. Herpetological novelties from Mexico. University Kansas Science Bulletin, 29: 343-361.
- Taylor E. H. y H. M. Smith 1945. Summary of the collections of Amphibians made in Mexico under the Walter Rathbone Bacon traveling scholarship. Proceedings. U.S. National Museum, 95: 521-613.
- Uribe-Peña, Z.; A. Ramírez-Bautista y G. Casas-Andreu. 1999. Anfibios y reptiles de las Serranías del Distrito Federal, México. Instituto de Biología, Universidad Nacional Autónoma de México, Cuadernos 32. 119 p.
- Vega-López, A. A. y T. Álvarez 1992. La herpetofauna de los volcanes Popocatépetl e Iztaccihuatl. Acta Zoológica Mexicana, *nov. Ser.*, 1992: 1-128.

11. APÉNDICES

APÉNDICE 1

Condiciones de amplificación (PCR) y oligos empleados.

 H_2O destilada =18.77 µl

 $10xBuffer= 2.5 \mu l$

 $MgCl_2 = 2.0 \mu l$

DNTP= 0.2 μl

Oligo THR $(10\mu\text{M})=0.2~\mu\text{l}$

Oligo 651 (10 μ M)= 0.2 μ l

Taq: 0.125 μl

DNA 1 μ l (50 ng/ μ l):

Vol. Total= $25 \mu l$

	Temperatura:	Tiempo:
Desnaturalización inicial:	90°	3 min
Desnaturalización:	92°	1 min
Alineamiento	48°	1 min
Extensión	72°	1 min
Ciclos:	38	
Extensión final:	72°	4 min

THR = 5' AAACATCGATCTTGTSSGTC 3' **651** = 5'GTAAGATTAGGACCAAATCT 3'

Purificación de los productos de PCR, por Precipitación con Etanol

TOTAL	290.0 µl
Etanol 100% (Frío)	200.0 μΙ
Acetato de Sodio 3M, pH 6.8	10.0 μΙ
Agua destilada	80.0 μl
Mezcla de limpieza	

- 1. Agregar a cada muestra de PCR 290µl de la mezcla anterior.
- 2. Centrifugar por 25 min a temperatura ambiente a 13 2000 rpm.
- 3. Decantar el sobrenadante cuidadosamente
- 4. Agregar 200µl de la etanol frío al 70%.
- 5. Centrifugar por 20 min a temperatura ambiente a 13 2000 rpm.
- 6. Decantar el sobrenadante cuidadosamente
- 7. Secar la muestra con centrifugado en la vacofuga por 10 min o hasta que se seque.
- 8. Diluir en 15 µl de agua destilada.
- 9. Guarda a 4° C.

Reacción de Secuenciación

 H_2O destilada =3.5 μl

V3 2.5xBuffer= 2.0 μl

DNA (producto de PCR)= 2.0 µl

Primer $(10\mu M) = 0.5 \mu l$

Big Dye = $2.0 \mu l$

Vol. Total= 10 μl

	Temperatura:	Tiempo:
Desnaturalización inicial:	96°	3 seg
Alineamiento	48°	5 seg
Extensión	60°	4 min
Ciclos:	25	

Purificación de los productos de la Reacción de Secuenciación

Purificación de la reacción de secuenciación

- 1 Armar la columna.
- 2.- Agregar 750 µl de Sephadex bien mezclado a la columna
- 3. Verificar que el Sephadex dentro de la columna no tenga burbujas.
- 4.- Esperar que el *Sephadex* se separe en dos fases
- 5.- Prepar los tubos colectores
- 6.- Quitarle la tapa a la columna y ponerla en el tubo colector (comenzará a gotear)
- 7.- Ya que se secó la columna, centrifugarla a 2, 800 rpm durante 2 min.
- 8.- Quitar el tubo colector y poner en un tubo de 1.5 ml previamente marcado.
- 9.- Agregar 10 µl de agua al producto de reacción de secuencia
- 10.- Pasar el producto (aprox. $20~\mu l$) por la columna en el centro y con mucho cuidado de no tocarla.
- 11.- Centrifugar a 2 800 rpm durante 3.5 min.
- 12.- Poner el tubo en la vacofuga durante 25 min o hasta que se seque el producto

Sephadex

40 ml de agua destilada

2.6 g de Sephadex

Mezclar, dejar mínimo dos horas a temperatura ambiente

Guardar a 4° C.

APÉNDICE 5Ejemplares examinados en el análisis morfológico. Transformados

Número	Museo	Número de Catálogo	Estado	Localidad
			Ambystoma altamii	ranoi
1	1 ENCB 2582		DISTRITO FEDERAL	5 Km SE Convento del Desierto de lo Leones
2	ENCB	2583	DISTRITO FEDERAL	5 Km SE Convento del Desierto de lo Leones
3	ENCB	2584	DISTRITO FEDERAL	5 Km SE Convento del Desierto de la Leones
4	ENCB	2585	DISTRITO FEDERAL	5 Km SE Convento del Desierto de la Leones
5	ENCB	6847	DISTRITO FEDERAL	7 Km NW El Ajusco, 3260 m
6	ENCB	6848	DISTRITO FEDERAL	7 Km NW El Ajusco, 3260 m
7	ENCB	6850	DISTRITO FEDERAL	7 Km NW El Ajusco, 3260 m
8	ENCB	6852	DISTRITO FEDERAL	7 Km NW El Ajusco, 3260 m
9	ENCB	6853	DISTRITO FEDERAL	7 Km NW El Ajusco, 3260 m
10	ENCB	6856	DISTRITO FEDERAL	7 Km NW El Ajusco, 3260 m
11	ENCB	6858	DISTRITO FEDERAL	7 Km NW El Ajusco, 3260 m
12	ENCB	6859	DISTRITO FEDERAL	7 Km NW El Ajusco, 3260 m
13	ENCB	6860	DISTRITO FEDERAL	7 Km NW El Ajusco, 3260 m
14	ENCB	6862	DISTRITO FEDERAL	7 Km NW El Ajusco, 3260 m
15	ENCB	6863	DISTRITO FEDERAL	7 Km NW El Ajusco, 3260 m
16	ENCB	6865	DISTRITO FEDERAL	7 Km NW El Ajusco, 3260 m
17	ENCB	6866	DISTRITO FEDERAL	7 Km NW El Ajusco, 3260 m
18	MZFC	2334	DISTRITO FEDERAL	Cañada del Desierto de los Leones, Contreras
19	ENCB	2567	DISTRITO FEDERAL	Desierto de los Leones
20	ENCB	2568	DISTRITO FEDERAL	Desierto de los Leones
21	ENCB	2569	DISTRITO FEDERAL	Desierto de los Leones
22	ENCB	2570	DISTRITO FEDERAL	Desierto de los Leones
23	ENCB	2571	DISTRITO FEDERAL	Desierto de los Leones
24	ENCB	2573	DISTRITO FEDERAL	Desierto de los Leones
25	ENCB	2574	DISTRITO FEDERAL	Desierto de los Leones
26	ENCB	2577	DISTRITO FEDERAL	Desierto de los Leones
27	ENCB	2579	DISTRITO FEDERAL	Desierto de los Leones
28	ENCB	2580	DISTRITO FEDERAL	Desierto de los Leones
29	ENCB	2581	DISTRITO FEDERAL	Desierto de los Leones
30	ENCB	3540	DISTRITO FEDERAL	Desierto de los Leones
31	IBH	458	DISTRITO FEDERAL	Desierto de los Leones
	MZFC	AMH294	DISTRITO FEDERAL	Desierto de los Leones
	MZFC	1458	DISTRITO FEDERAL	Desierto de los Leones
	MZFC	1458-2ser	DISTRITO FEDERAL	Desierto de los Leones
	MZFC	1459	DISTRITO FEDERAL	Desierto de los Leones
36	MZFC	1459-3ser	DISTRITO FEDERAL	Desierto de los Leones
37	MZFC	2387	DISTRITO FEDERAL	Desierto de los Leones
38	ENCB	5070	DISTRITO FEDERAL	Llanos Copilco, Cuarto Dinamo Contreras

Número	Museo	Número de Catálogo	Estado	Localidad
39	IBH	6146	DISTRITO FEDERAL	Monte Alegre, Tlalpan
40	IBH	6146-02	DISTRITO FEDERAL	Monte Alegre, Tlalpan
41	IBH	6146-03	DISTRITO FEDERAL	Monte Alegre, Tlalpan
42	ENCB	4924	ESTADO DE MÉXICO	3 Km W San Francisco Chimalpa
43	ENCB	4926	ESTADO DE MÉXICO	3 Km W San Francisco Chimalpa
44	ENCB	6838	ESTADO DE MÉXICO	9 Km SE Chimalpa, 3050 m
45	ENCB	6839	ESTADO DE MÉXICO	9 Km SE Chimalpa, 3050 m
46	ENCB	3224	ESTADO DE MÉXICO	9 Km SW Chimalapa, 3050 m
47	ENCB	3225	ESTADO DE MÉXICO	9 Km SW Chimalapa, 3050 m
48	ENCB	3227	ESTADO DE MÉXICO	9 Km SW Chimalapa, 3050 m
49	ENCB	3229	ESTADO DE MÉXICO	9 Km SW Chimalapa, 3050 m
50	ENCB	3230	ESTADO DE MÉXICO	9 Km SW Chimalapa, 3050 m
51	ENCB	3795	ESTADO DE MÉXICO	9 Km SW Chimalpa, 3050 m
52	ENCB	3797	ESTADO DE MÉXICO	9 Km SW Chimalpa, 3050 m
53	ENCB	6373	ESTADO DE MÉXICO	Atlapulco
54	ENCB	1373	ESTADO DE MÉXICO	Cahuacán
55	IBH	11321	ESTADO DE MÉXICO	Salazar
56	ENCB	938	ESTADO DE MÉXICO	Riachuelo Salazar, La Marquesa
57	ENCB	190	ESTADO DE MÉXICO	Salazar
58	ENCB	2563	ESTADO DE MÉXICO	Salazar
59	ENCB	2564	ESTADO DE MÉXICO	Salazar
60	ENCB	2565	ESTADO DE MÉXICO	Salazar
61	ENCB	2551	ESTADO DE MÉXICO	San Pedro Atlapulco
62	ENCB	2553	ESTADO DE MÉXICO	San Pedro Atlapulco
63	ENCB	2555	ESTADO DE MÉXICO	San Pedro Atlapulco
64	ENCB	2556	ESTADO DE MÉXICO	San Pedro Atlapulco
65	ENCB	2561	ESTADO DE MÉXICO	San Pedro Atlapulco

Número	Número Museo Número de Estado Catálogo Estado		Localidad					
66	IBH	NMF-634	ESTADO DE MÉXICO	Villa del Carbón				
Ambystoma leorae								
67	ENCB	3462	ESTADO DE MÉXICO	2 Km NW Rio Frio, 3100 m				
68	ENCB	2547	ESTADO DE MÉXICO	Rio Frio				
69	MZFC	7885	ESTADO DE MÉXICO	Río Frío, 3000 m				
70	ENCB	13875	PUEBLA	4 Km NE Rio Frio, 3200 m				
			Ambystoma rivula	ure				
71	MZFC	3583	GUERRERO	Los Llanos, km 10 carretrera Taxco- Tetipac				
72	IBH	MK 665-D	GUERRERO	Taxco				
73	IBH	3995	ESTADO DE MÉXICO	2.7 km al este de la carretera de Toluca- Atlacomulco en el km 46				
74	IBH	11333	ESTADO DE MÉXICO	La Comunidad, Temascaltepec				
75	IBH	11341	ESTADO DE MÉXICO	La Comunidad, Temascaltepec				
76	IBH	4488-03	MICHOACÁN	6 km N de Angangueo, Llano las Papas				
77	IBH	4488-05	MICHOACÁN	6 km N de Angangueo, Llano las Papas				
78	IBH	4488-06	MICHOACÁN	6 km N de Angangueo, Llano las Papas				
79	IBH	4488-07	MICHOACÁN	6 km N de Angangueo, Llano las Papas				
80	IBH	4488-08	MICHOACÁN	6 km N de Angangueo, Llano las Papas				
81	IBH	4488-09	MICHOACÁN	6 km N de Angangueo, Llano las Papas				
~-	IBH	4488-11	MICHOACÁN	6 km N de Angangueo, Llano las Papas				
	IBH	4488-12	MICHOACÁN	6 km N de Angangueo, Llano las Papas				
84 85	IBH MZFC	9941	MICHOACÁN MICHOACÁN	6 km N de Angangueo, Llano las Papas Comunidad Fco. Serrato, Arroyo Los Gallineros, Reserva de la Biosfera " Mariposa Monarca", 2800 m				
86	MZFC	9943	MICHOACÁN	Comunidad Fco. Serrato, Arroyo Los Gallineros, Reserva de la Biosfera " Mariposa Monarca", 2740 m				
			Ambystoma zempoal	aense				
87	MZFC	4172	ESTADO DE MÉXICO	Lagunas de Cempoala, frente a Quila				
88	IBH	5605-02	MORELOS	Al norte de las Lagunas de Zempoala				
89	ENCB	2773	MORELOS	Cuarta Laguna de Zempoala				
90		2774	MORELOS	Cuarta Laguna de Zempoala				

APÉNDICE 5 (Continuación)

Ejemplares examinados en el análisis morfológico. Branquiados

Número	mero Museo N_Catálogo Estado		Estado	Localidad				
Ambystoma altamiranoi								
1	ENCB	7280	DISTRITO FEDERAL	1 Km NW Cuajimalpa				
2	ENCB 6849 DISTRITO FEDERAL			7 Km NW El Ajusco, 3260 m				
3	ENCB	6857	DISTRITO FEDERAL	7 Km NW El Ajusco, 3260 m				
4	ENCB	6864	DISTRITO FEDERAL	7 Km NW El Ajusco, 3260 m				
5	ENCB	6869	DISTRITO FEDERAL	7 Km NW El Ajusco, 3260 m				
6	ENCB	6871	DISTRITO FEDERAL	7 Km NW El Ajusco, 3260 m				
7	IBH	424	DISTRITO FEDERAL	Cañada de Contreras				
8	IBH	425	DISTRITO FEDERAL	Cañada de Contreras				
9	IBH	426	DISTRITO FEDERAL	Cañada de Contreras				
10	IBH	427	DISTRITO FEDERAL	Cañada de Contreras				
11	IBH	428	DISTRITO FEDERAL	Cañada de Contreras				
12	IBH	429	DISTRITO FEDERAL	Cañada de Contreras				
13	ENCB	2594	DISTRITO FEDERAL	Desierto de los Leones				
14	MZFC	4255	DISTRITO FEDERAL	Desierto de los Leones				
15	MZFC	4255-3ser	DISTRITO FEDERAL	Desierto de los Leones				
16	ENCB	2552	ESTADO DE MÉXICO	San Pedro Atlapulco				
17	ENCB	3226	ESTADO DE MÉXICO	9 Km SW Chimalapa, 3050 m				
18	ENCB	3228	ESTADO DE MÉXICO	9 Km SW Chimalapa, 3050 m				
19	ENCB	3796	ESTADO DE MÉXICO	9 Km SW Chimalpa, 3050 m				
20	ENCB	3798	ESTADO DE MÉXICO	9 Km SW Chimalpa, 3050 m				
21	ENCB	3799	ESTADO DE MÉXICO	9 Km SW Chimalpa, 3050 m				
22	ENCB	3801	ESTADO DE MÉXICO	9 Km SW Chimalpa, 3050 m				
23	ENCB	3804	ESTADO DE MÉXICO	9 Km SW Chimalpa, 3050 m				
24	ENCB	3805	ESTADO DE MÉXICO	9 Km SW Chimalpa, 3050 m				
25	ENCB	3806	ESTADO DE MÉXICO	9 Km SW Chimalpa, 3050 m				
26	ENCB	3807	ESTADO DE MÉXICO	9 Km SW Chimalpa, 3050 m				
27	ENCB	3809	ESTADO DE MÉXICO	9 Km SW Chimalpa, 3050 m				
28	IBH	11320	ESTADO DE MÉXICO	Salazar				
29	ENCB	5794	ESTADO DE MÉXICO	Salazar				
30	ENCB	5795	ESTADO DE MÉXICO	Salazar				

Número	Museo N_Catálo		Estado	Localidad		
31 FNCB 8674		ESTADO DE MÉXICO	Salazar			
			Ambystom	na leorae		
32	ENCB	10547	PUEBLA	24 Km W San Martin Texmelucan		
33	ENCB	10548	PUEBLA	24 Km W San Martin Texmelucan		
34	ENCB	10549	PUEBLA	24 Km W San Martin Texmelucan		
35	ENCB	10550	PUEBLA	24 Km W San Martin Texmelucan		
36	ENCB	10551	PUEBLA	24 Km W San Martin Texmelucan		
			Ambystomo	a rivulare		
37	MZFC	3580	GUERRERO	Los Llanos, km 10 carretrera Taxco-Tetipac		
38	MZFC	3581	GUERRERO	Los Llanos, km 10 carretrera Taxco-Tetipac		
39	MZFC	3584	GUERRERO	Los Llanos, km 10 carretrera Taxco-Tetipac		
40	MZFC	3585	GUERRERO	Los Llanos, km 10 carretrera Taxco-Tetipac		
41	MZFC	3586	GUERRERO	Los Llanos, km 10 carretrera Taxco-Tetipac		
42	MZFC	3588	GUERRERO	Los Llanos, km 10 carretrera Taxco-Tetipac		
43	IBH	MK 665-B	GUERRERO	Tetipac		
44	IBH	MK 665-C	GUERRERO	Tetipac		
45	IBH	14202	ESTADO DE MÉXICO	Rio San Diego, Mpio. Villa Victoria		
46	IBH	14203	ESTADO DE MÉXICO	Rio San Diego, Mpio. Villa Victoria		
47	IBH	14204	ESTADO DE MÉXICO	Rio San Diego, Mpio. Villa Victoria		
48	IBH	4488-02	MICHOACÁN	6 km N de Angangueo, Llano las Papas		
49	IBH	4488-14	MICHOACÁN	6 km N de Angangueo, Llano las Papas		
			Ambystoma ze	empoalaense		
50	IBH	3289	ESTADO DE MÉXICO	km 7 carr. Santa Martha Zempoala		
51	IBH	5605	MORELOS	Al norte de las Lagunas de Zempoala		
52	IBH	5605-03	MORELOS	Al norte de las Lagunas de Zempoala		
53	IBH	9594	MORELOS	Zempoala		

Caracteres obtenidos para el análisis morfológico. * Medida sólo considerada para los branquiados

	Variable	Descripción
1	DV	Número de dientes vomeropalatinos por lado
2	DM	Número de dientes maxilares y premaxilares de ambos lados
3	\mathbf{AC}	Ancho de la cabeza
4	LC	Longitud de la cabeza
5	DI	Distancia interorbital
6	DN	Distancia entre las narinas
7	DO	Diámetro del ojo
8	НО	Distancia entre las narinas y el ángulo interno del ojo
9	JAW	Ancho de la cabeza a nivel del ángulo de la mandíbula
10	PAR	Ancho de la cabeza al nivel de las parietales
11	OCULAR	Ancho de la cabeza a nivel de los ojos
12	LC_PAR	Longitud de la cabeza de los parietales a la punta del hocico
13	UPJAW	Longitud de la punta de la mandíbula a el escote del pliegue gular
		Número de pliegues intercostales entre las extremidades cuando son plegadas
14	D/P	sobre el cuerpo.
15	PI	Número de pliegues intercostales
16	LHC	Longitud de la punta del hocico hasta la parte distal de la cloaca
17	C	Longitud de la parte distal de la cloaca a la punta de la cola
18	HC	Altura de la cola al nivel de la base de la cloaca
19	DIA	Distancia entre la ingle y la axila
20	LM	Longitud total de las extremidades anteriores
21	LM-M	Longitud del brazo
22	M	Longitud de la mano
23	LP	Longitud total de las extremidades posteriores
24	MP-P	Longitud de la pierna
25	P	Longitud de la pata
26	DEDO_3	Longitud del dedo 3 de la extremidad posterior
27	DEDO_4	Longitud del dedo 4 de la extremidad posterior
28		Longitud de la punta de la mandíbula al extremo distal de las branquias
29	AB1*	Número de espinas del primer arco branquial
30	AB2*	Número de espinas del segundo arco branquial
31	AB3*	Número de espinas del tercer arco branquial
32	AB4*	Número de espinas del cuarto arco branquial

APÉNDICE 7

SECUENCIAS de mtDNA, GEN *D-loop* (Región Control). Las localidades de cada secuencia se muestran en la Tabla 1

No.	10	20	30	40	50	60	70	80
1	ACCGGGCTAT	GCCTACGATC	CCAGGCATAC	CCACTCCTAA	CCAAGTACTA	CTTAAAATCA	GTAAACTGCC	ACTCCCTCCC
2	??????????	?????????	?????????	????????AA	CCAAGTACTA	CTTAAAATCA	GTAAACTGCC	ACTCCCTCCC
3	ACCGAGCTAT	GCCTACGATT	CCaGGCATAC	CCACTCCTAA	CCAAGTACTA	CTTAAAATCA	GTAAACTGCC	ACTCCCTCCC
4a	acCGGGCTAT	GCctaCGATT	CCAGGCATAC	CCACTCCTAA	CCAAGTACTA	CTTAAAATCA	GTAAACTGCC	ACTCCCTCCC
4b	aCCGGGCTAT	GCcTACGATT	CCAGGCATAC	CCACTCCTAA	CCAAGTACTA	CTTAAAATCA	GTAAACTGCC	ACTCCCTCCC
5a	ACCGGGCTAT	GCCTACGATT	CCAGGCATAC	CCACTCCTAA	CCAAGTACTA	CTTAAAATCA	GTAAACTGCC	ACTCCCTCCC
5b	ACCGGGCTAT	GCCTACGATT	CCAGGCATAC	CCACTCCTAA	CCAAGTACTA	CTTAAAATCA	GTAAACTGCC	ACTCCCTCCC
6a	ACCGGGCTAT	GCCTACGATT	CCAGGCATAC	CCACTCCTAA	CCAAGTACTA	CTTAAAATCA	GTAAACTGCC	ACTCCCTCCC
6b	ACCGGGCTAT	GCCTACGATT	CCAGGCATAC	CCACTCCTAA	CCAAGTACTA	CTTAAAATCA	GTAAACTGCC	ACTCCCTCCC
7	ACCGGGCTAT	GCCTACGATC	CCAGGCATAC	CCACTCCTGA	CCAAGTACTA	CTTAAAATCA	GTAAACTGCC	ACTCCCTCCC
8	ACCGGGCTAT	GCCTACGATT	CCaGGCATAC	CCATTCCTAA	CCaAGTACTA	CTTAAAATCA	GTAAACTGCC	ACTCCCTCCC
9	aCCGGGCTaT	GCCTACGATT	CCAGGCATAC	CCACTCCTAA	CCAAGTACTA	CTTAAAATCA	GTAAACTGCC	ACTCCCTCCC
10a	?????????	?????????	?????????	??????????	?????????	??????????	?????????C	ACACCCTCCC
10b	?????????	?????????	?????????	??????????	???????CTA	CTTAAAA???	????????CC	ACACCCTCCC
11a	?????????	?????????	?????????	??????????	?????????	??????????	?????????	??TCCCTCCC
11b	?????????	?????????	?????????	??????????	?????????	??????????	?????????C	ACTCCCTCCC
12a	acCGGGCTAT	GCCTACGATT	CCAGGCATAC	CCACTCCTAA	CCAAGTACTA	CTTAAAATCA	GTAAACTGCC	ACTCCCTCCC
12b	accGGGcTAT	GCCTaCGATT	CCAGGCATAC	CCACTCCTAA	CCAAGTACTA	CTTAAAATCA	GTAAACTGCC	ACTCCCTCCC
13a	aCCGGGCTat	GCCTACGATC	CCAGGCATAC	CCACTCCTAA	CCAAGTACTA	CTTAAAATCA	GTAAACTGCC	ACTCCCTCCC
13b	accGGGCTAT	GCCTACGATT	CCAGGCATAC	CCACTCCTAA	CCAAGTACTA	CTTAAAATCA	GTAAACTGCC	ACTCCCTCCC
14	ACCGGGCTAT	GCCTACGATC	CCAGGCATAC	CCACTCCTAA	CCAAGTACTA	CTTAAAATCA	GTAAACTGCC	ACTCCCTCCC
15	ACCGGGCTAT	GCCTACGATT	CCAGGCATAC	CCACTCCTAA	CCAAGTACTA	CTTAAAATCA	GTAAACTGCC	ACTCCCCCC
16	ACCGGGCTAT	GCCTACGATC	CCAGGCATAC	CCACTCCTAA	CCAAGTACTA	CTTAAAATCA	GTAAACTGCC	ACTCCCTCCC
17a	?????????	?????????	???????CAC	CCACTCCTAA	CCaAGTAcTA	CTTAAAATCA	GTAAACtGCC	ACTCCCTCCC
17b	accgggctat	gcctacgatt	ccaggcatac	ccactcctaa	ccaAGTACtA	CTTAAAATCA	GTAAActGCC	acTcCCTCCC
17c	ACCGGGCtAT	GCctACGATT	CCaGGCaTAC	CCaCtCctAA	CCaAGTACtA	CTTAAAATca	GTAAACtGCC	aCtcCCTCCC
17d	accgggctat	GCctACGATT	CCaGGCaTAC	CcaCtcCtAA	CCaAGTACtA	CtTAAAATcA	GTAAACtGCC	acTCCcTCCC
17e	??????????	?????????	?????????	????????A	CCAAGTACTA	CTTAAAATCA	GTAAACTGCC	ACTCCCTCCC
18a	????????T	GCctACGATT	CCaGGCaTAC	CCACtcCTAA	CCaAGTACtA	CTTAAAATcA	GTAAActGCC	ACTCCCTCCC
18b	?????????	????????A	CCaGGCaTAC	CCACTCCTAA	CCaAGTACTA	CTTAAAATcA	GTAAACtGCC	ACTCCCTCCC
19a	aCCGGGCTAT	GCcTACGATT	CCAGGCATAC	CCACTCCTAA	CCAAGTACTA	CTTAAAATCA	GTAAACTGCC	ACTCCCTCCC
19b	aCCGGGCTAT	GcCtACGATT	CCAGGCATAC	CCACTCCTAA	CCAAGTACTA	CTTAAAATCA	GTAAACTGCC	ACTCCCTCCC
20	ACCGAGCTAT	GCCTACGATT	CCAGGCATAC	CCACTCCTAA	CCAAGTACTA	CTTAAAATCA	GTAAACTGCC	ACTCCCTCCC
21a	ACCGGGCTaT	GCcTaCGATT	CCAGGCATAC	CCACTCCTAA	CCAAGTACTA	CTTAAAATCA	GTAAACTGCC	ACTCCCCCC
21b	acCGGGCTAT	GCcTACGATT	CCAGGCATAC	CCACTCCTAA	CCAAGTACTA	CTTAAAATCA	GTAAACTGCC	ACTCCCCCC
22	ACCGGGCTAT	GC-TACGATT	CCAGGCATAC	CCACTCCTAA	CCAAGTACTA	CTTAAAATCA	GTAAACTGCC	ACTCCCCCC
23a	ACCGGGCTAT	GCCTACGATT	CCAGGCATAC	CCACTCCTAA	CCAAGTACTA	CTTAAAATCA	GTAAACTGCC	ACTCCCTCCC
			CCAGGCATAC			CTTAAAATCA		
24a	acCGGGCTaT	GCCTACGATT	CCAGGCATAC	CCACTCCTAA	CCAAGTACTA	CCTAAAGTCA	GTAAACTGCC	ACTCCCCCC
24b	accGGGCTAT	GCCTACGATT	CCAGGCATAC	CCACTCCTAA	CCAAGTACTA	CCTAAAGTCA	GTAAACTGCC	ACTCCCCCC
25a	ACCGGGCTAT	GCctACGATT	CCaGGCaTAC	CCaCTcCTAA	CCaAGTACtA	CtTAAAATcA	GTAAACtGCC	aCTCCCCCC
25b	?????????	??????????	?????????	?????????	?????????	??????????	??????????	????????CC
26	?????????	?????????	??????????	????TCCTAA	CCA-GTAA	CTTAAAAT?A	GTAAAC?GCC	-CTCCCCCC
27	ACCGGGCTAT	GCCTACGATT	CCAGGCATAC	CCACTCCTAA	CCAAGTACTA	CTTAAAATCA	GTAAACTGCC	ACTCCCCCC
28	???????AT	gCctACGATT	CCAGGCATAC	CCACTCCTAA	CCAAGTACTA	CTTAAAATCA	GTAAACTGCC	ACTCCCTCCC
29	ACCGGGCTAT	GCCTACGATC	CCAGGCGTAG	CCACTCCTGA	CCAAGTACTA	CTTAAAATCA	GTAAACTGCC	ACTCCCTCCC
30	CCAGGTACTG	CCCGCAAATC	CAAGTACCAC	CACACTTATC	CAACTACTAC	CTGAACCCGG	TAACCTACCA	CTCCCCCCC

No.	90	100	110	120	130	140	150	160
1	TACTACCCTA	TATGAG-AAA	TATTAAAAAA	GCTCCTACGC	TTATTTTTTT	GACCGCCCTC	TACCTCTTTT	CACAAAGGCC
2	TACTACCCTA	TATGAGGAAA	TATTAAAAAA	GCTCCTACGC	TTATTTTTT	GACCGCCCTC	TACCTCTTTT	CACAAAGGCC
3	TACTACCCTA	TATGAGGAAA	TATTAAAAAA	GCTCCTACGC	TTATTTTTT	GACCGCCCTC	TACCTCTTTT	CACAAAGGCC
4a	CACTACCCTA	TATGAG-AAA	САТТААААА	GCTCCTACGC	TTATTTTTT	GACCGCCCTC	TACCTCTTTT	CACAAAGGCC
4b	CACTACCCTA	TATGAG-AAA	TATTAAAAAA	GCTCCTACGC	TTATTTTTT	GACCGCCCTC	TACCTCTTTT	CACAAAGGCC
5a	CACTACCCTA	TATGAG-AAA	TATTAAAAAA	GCTCCTACGC	TTATTTTTT	GACCGCCCTC	TACCTCTTTT	CACAAAGGCC
5b	CACTACCCTA	TATGAG-AAA	TATTAAAAAA	GCTCCTACGC	TTATTTTTT	GACCGCCCTC	TACCTCTTTT	CACAAAGGCC
6a	CACTACCCTA	TATGAG-AAA	TATTAAAAAA	GCTCCTACGC	TTATTTTTT	GACCGCCCTC	TACCTCTTTT	CACAAAGGCC
6b	CACTACCCTA	TATGAG-AAA	TATTAAAAAA	GCTCCTACGC	TTATTTTTT	GACCGCCCTC	TACCTCTTTT	CACAAAGGCC
7	TACTACCCTA	TATGAA-AAA	TATTAAAAAA	GCTCCTACGC	TTATTTTTTT	GACCGCCCTC	TACCTCTTTT	CATAAAGGCT
8	CACTACCCTA	TATGAG-AAA	TATTAAAAAA	GCTCCTACGC	TTATTTTTT	GACCGCCCTC	TACCTCTTTT	CACAAAGGCC
9	CACTACCCTA	TATCAG-AAA	TATTAAAAAA	GCTCCTACGC	TTATTTTTT	GACCGCCCTC	TACCTCTTTT	CACAAAGGCC
10a	CACTACC-TA	TATGAG-AAA	TATTAAAAAA	GCTCCTACGC	TTATTTTTT	GACCGCCCTC	TACCTCTTTT	CACAAAGGCC
10b	CACTACC-TA	TATGAG-AAA	TATTAAAAAA	GCTCCTACGC	TTATTTTTTT	GACCGCCCTC	TACCTCTTTT	CACAAAGGCC
11a	CACTACC-TA	TATGAG-AAA	TATTAAAAAA	GCTCCTACGC	TTATTTTTTT	GACCGCCCTC	TACCTCTTTT	CACAAAGGCC
	CACTACC-TA							
12a	TACTACCCTA	TATGAG-AAA	TATTAAAAAA	GCTCCTACGC	TTATTTTTT	GACCGCCCTC	TACCTCTTTT	CACAAAGGCC
12b	CACTACCCTA	TATGAG-AAA	TATTAAAAAA	GCTCCTACGC	TTATTTTTT	GACCACCCTC	TACCTCTTTT	CACAAAGGCC
13a	TACTACCCTA	TATGAG-AAA	TATTAAAAAA	GCTCCTACGC	TTATTTTTTT	GACCGCCCTC	TACCTCTTTT	CACAAAGGCC
	CACTACCCTA							
	CACTACCCTA							
15	TACTACCCTA	TATCAA-AAT	AATTAAAAAA	GCTCCTACGC	TTGTTTTTT	GACCGCCCTC	TACCTCTTTT	CACAAAGGCT
	TACTACCCCC							
	CACTACCCTA							
	CACTACCCTA							
	CacTACCcTA							
	CACTACCCTA							
	CACTACCCTA							
	CACTACCCTA							
	CACTACCCTA							
	CACTACCCTA							
	CACTACCCTA CACTACCCTA							
	TACTACCCTA							
	TACTACCCTA							
	TACTACCCTA							
	TACTACCCTA						TACCTCTTTT	
	TACTACCCTA							
	TACTACCCTA							
	TACTACCCTA							
	TACTACCCTA							
	TACTACCCTA							
	C-CTACC-TA							
27	TACTACCCCG	TATGAA-AAT	AATTAAAAAA	GCTCCTACGC	TTGTTTTTT	GACCGCCCTC	TGCCTCTTTT	CACAAAGGCT
	TACTACCCTA							
29	TACTACCCCA	TACGAA-AAT	AATTAAAAAA	GCTCCTACGC	TTGTTTTTT	GTCCACCCTC	TACCCCTTTT	CACAAAGGCT
30	ACTACCCCAA	TAAAA-AATG	GTTGAAAAAG	CTCCTACGCT	TATTTTTTTG	CCCGCCCTCT	ACCCCTTTTC	TTAAAGGCCG

1 ATCARCTEGA ATTITCTATI GCTITATITI ATCARARARA ACATARARAT TITUTATIA ARRABATRICA TICARGAGA ATTICCATI GCTITATITI ATCARARARARA ACATRARARAT TITUTATITA ARRABATRICA TICARGAGA ATTICCATI GCTITATITI ATCARARARARA ACATRARARAT TITUTATITA ARRABATRICA TICARGAGA ATTICCATI GCTITATITI ATCARARARARA ACATRARARAT TITUTATITA ARRABATRICA TICARGAGA ATTICCATAT GCTITATITI ATCARARARARA ACATRARARAT TITUTATITA ARRABATRICA TICARGAGA ATTICCATAT GCTITATITI ATCARARARARA ACATRARARAT TITUTATITA ARRABATRICA TICARGAGA ATTICCATAT GCTITATITI ATCARARA	No	170	100	100	(Continua		220	220	240
ATCARCTICGA ATTITICTATE GCTTIATITE ATCARAMANA ACATAMANAT TITTGGATTA ARAAATATCA TICAAGAGA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA	_								
4a ACAACTGGA ATTITCTATT GCTTTATTT ATCAAAAAAA ACATAAAAAT TITTGTATTA AAAAATATCA TICAAGAG 5b ATCAACTGGA ATTITCTATT GCTTTATTTT ATCAAAAAAA ACATAAAAAT TITTGTATTA AAAAATATCA TICAAGAG 5c ATCAACTGGA ATTITCTATT GCTTTATTTT ATCAAAAAAAA ACATAAAAAT TITTGTATTA AAAAATATCA TICAAGAG 5d ATCAACTGGA ATTITCTATT GCTTTATTTT ATCAAAAAAAA ACATAAAAAT TITTGTATTA AAAAATATCA TICAAGAG 6d ATCAACTGGA ATTITCTATT GCTTTATTTT ATCAAAAAAAA ACATAAAAAT TITTGTATTA AAAAAATATCA TICAAGAG 6d ATCAACTGGA ATTITCTATT GCTTTATTTT ATCAAAAAAAA ACATAAAAAT TITTGTATTA AAAAAATATCA TICAAGAG 7 7 ATCAACTGGA ATTITCTATT GCTTTATTTT ATCAAAAAAAA ACATAAAAAT TITTGTATTA AAAAAATATCA TICAAGAG 8 ATCAACTGGA ATTITCTATT GCTTTATTTT ATCAAAAAAAA ACATAAAAAT TITTGTATTA AAAAAATATCA TICAAGAG 10d ATCAACTGGA ATTITCTATT GCTTTATTTT ATCAAAAAAAA ACATAAAAAT TITTGTATTA AAAAAATATCA TICAAGAG 10d ATCAACTGGA ATTITCTATT GCTTTATTTT ATCAAAAAAAA ACATAAAAAT TITTGTATTA AAAAAATATCA TICAAGAG 10d ATCAACTGGA ATTITCTATT GCTTTATTTT ATCAAAAAAAA ACATAAAAAT TITTGTATTA AAAAAATATCA TICAAGAG 10d ATCAACTGGA ATTITCTATT GCTTTATTTT ATCAAAAAAAA ACATAAAAAT TITTGTATTA AAAAAATATCA TICAAGAG 11d ATCAACTGGA ATTITCTATT GCTTTATTTT ATCAAAAAAAA ACATAAAAAT TITTGTATTA AAAAAATATCA TICAAGAG 11d ATCAACTGGA ATTITCTATT GCTTTATTTT ATCAAAAAAAA ACATAAAAAT TITTGTATTA AAAAAATATCA TICAAGAG 11d ATCAACTGGA ATTITCTATT GCTTTATTTT ATCAAAAAAAA ACATAAAAAT TITTGTATTA AAAAAATATCA TICAAGAG 11d ATCAACTGGA ATTITCTATT GCTTTATTTT ATCAAAAAAAA ACATAAAAAT TITTGTATTA AAAAAATATCA TICAAGAG 11d ATCAACTGGA ATTITCTATT GCTTTATTTT ATCAAAAAAAA ACATAAAAAT TITTGTATTA AAAAAATATCA TICAAGAG 11d ATCAACTGGA ATTITCTATT GCTTTATTTT ATCAAAAAAAA ACATAAAAAT TITTGTATTA AAAAAATATCA TICAAGAG 11d ATCAACTGGA ATTITCTATT GCTTTATTTT ATCAAAAAAAA ACATAAAAAT TITTGTATTA AAAAAATATCA TICAAGAG 11d ATCAACTGGA ATTITCTATT GCTTTATTTT ATCAAAAAAAA ACATAAAAAT TITTGTATTA AAAAAATATCA TICAAGAG 11d ATCAACTGGA ATTITCTATT GCTTTATTTT ATCAAAAAAAA ACATAAAAAT TITTGTATTA AAAAAATATCA TICAAGAG 11d ATCAACTGGA ATTITCTATT GCTTTATTTT ATCAAAAAAAA ACATAAAAAT TITTGTATTA AAAAAATATCA TICAAGAG 11d ATCAACTGGA ATTITCTATT GCTTTATTTT A									
40 ATCAACTCGA ATTITCTATT GCTTTATTT ATCAAAAAAA ACATAAAAAT TITTGTATTA AAAAATATCA TICAAGAG 50 ATCAACTCGA ATTITCTATT GCTTTATTTT ATCAAAAAAA ACATAAAAAT TITTGTATTA AAAAATATCA TICAAGAG 60 ATCAACTCGA ATTITCTATT GCTTTATTTT ATCAAAAAAA ACATAAAAAT TITTGTATTA AAAAATATCA TICAAGAG 60 ATCAACTCGA ATTITCTATT GCTTTATTTT ATCAAAAAAAA ACATAAAAAT TITTGTATTA AAAAATATCA TICAAGAG 60 ATCAACTCGA ATTITCTATT GCTTTATTTT ATCAAAAAAAA ACATAAAAAT TITTGTATTA AAAAAATATCA TICAAGAG 61 ATCAACTCGA ATTITCTATT GCTTTATTTT ATCAAAAAAAA ACATAAAAAT TITTGTATTA AAAAAATATCA TICAAGAG 62 ATCAACTCGA ATTITCTATT GCTTTATTTT ATCAAAAAAAA ACATAAAAAT TITTGTATTA AAAAAATATCA TICAAGAG 63 ATCAACTCGA ATTITCTATT GCTTTATTTT ATCAAAAAAAA ACATAAAAAT TITTGTATTA AAAAAATATCA TICAAGAG 64 ATCAACTCGA ATTITCTATT GCTTTATTTT ATCAAAAAAAA ACATAAAAAT TITTGTATTA AAAAAATATCA TICAAGAG 75 ATCAACTCGA ATTITCTATT GCTTTATTTT ATCAAAAAAAA ACATAAAAAT TITTGTATTA AAAAAATATCA TICAAGAGA 110 ATCAACTCGA ATTITCTATT GCTTTATTTT ATCAAAAAAAA ACATAAAAAT TITTGTATTA AAAAAATATCA TICAAGAG 111 ATCAACTCGA ATTITCTATT GCTTTATTTT ATCAAAAAAAA ACATAAAAAT TITTGTATTA AAAAAATATCA TICAAGAG 112 ATCAACTCGA ATTITCTATT GCTTTATTTT ATCAAAAAAAA ACATAAAAAT TITTGTATTA AAAAAATATCA TICAAGAG 113 ATCAACTCGA ATTITCTATT GCTTTATTTT ATCAAAAAAAA ACATAAAAAT TITTGTATTA AAAAAATATCA TICAAGAG 114 ATCAACTCGA ATTITCTATT GCTTTATTTT ATCAAAAAAAA ACATAAAAAT TITTGTATTA AAAAATATCA TICAAGAG 115 ATCAACTCGA ATTITCTATT GCTTTATTTT ATCAAAAAAAA ACATAAAAAT TITTGTATTA AAAAAATATCA TICAAGAG 116 ATCAACTCGA ATTITCTATT GCTTTATTTT ATCAAAAAAAA ACATAAAAAT TITTGTATTA AAAAAATATCA TICAAGAG 117 ATTITCTATT GCTTTATTTT ATCAAAAAAAA ACATAAAAAT TITTGTATTA AAAAAATATCA TICAAGAG 118 ATCAACTCGA ATTITCTATT GCTTTATTTT ATCAAAAAAAA ACATAAAAAT TITTGTATTA AAAAAATATCA TICAAGAG 118 ATCAACTCGA ATTITCTATT GCTTTATTTT ATCAAAAAAAA ACATAAAAAT TITTGTATTA AAAAAATATCA TICAAGAG 118 ATCAACTCGA ATTITCTATT GCTTTATTTT ATCAAAAAAAA ACATAAAAAT TITTGTATTA AAAAAATATCA TICAAGAG 118 ATCAACTCGA ATTITCTATT GCTTTATTTT ATCAAAAAAAA ACATAAAAAT TITTGTATTA AAAAAATATCA TICAAGAG 118 ATCAACTCGA ATTITCTATT GCTTTATTTT ATCAAAAAAAA AC									
ATCARCTCGA ATTITCTATT GCTTTATTTT ATCARARARA ACATARARAT TITTGTATTA ARARATACA TCARAGAG III ATCARCTCGA ATTITCTATT GCTTTATTTT ATCARARARA ACATARARAT TITTGTATTA ARARATACA TCARAGAG III ATCARCTCGA ATTITCTATT GCTTTATTTT ATCARARARA ACATARARAT TITTGTATTA ARARATACA TCARAGAG III ATCARCTCGA ATTITCTATT GCTTTATTTT ATCARARARAR ACATARARAT TITTGTATTA ARARATACA TCARAGAG III ATCARCTCGA ATTITCTATT GCTTTATTTT ATCARARARAR ACATARARAT TITTGTATTA ARARATACA TCARAGAG III ATCARCTCGA ATTITCTATT GCTTTATTTT ATCARARARAR ACATARARAT TITTGTATTA ARARATACA TCARAGAG III ATCARCTCGA ATTITCTATT GCTTTATTTT ATCARARARAR ACATARARAT TITTGTATTA ARARATACA TCARAGAG III ATCARCTCGA ATTITCTATT GCTTTATTTT ATCARARARAR ACATARARAT TITTGTATTA ARARATACA TCARAGAG III ATCARCTCGA ATTITCTATT GCTTTATTTT ATCARARARAR ACATARARAT TITTGTATTA ARARATACA TCARAGAG III ATCARCTCGA ATTITCTATT GCTTTATTTT ATCARARARAR ACATARARAT TITTGTATTA ARARATACA TCARAGAG III ATCARCTCGA ATTITCTATT GCTTTATTTT ATCARARARAR ACATARARAT TITTGTATTA ARARATACA TCARAGAG III ATCARCTCGA ATTITCTATT GCTTTATTTT ATCARARARAR ACATARARAT TITTGTATTA ARARATACA TCARAGAG III ATCARCTCGA ATTITCTATT GCTTTATTTT ATCARARARAR ACATARARAT TITTGTATTA ARARATACA TCARAGAG III ATCARCTCGA ATTITCTATT GCTTTATTTT ATCARARARAR ACATARARAT TITTGTATTA ARARATACA TCARAGAG III A									
TO ACCACTCGA ATTITCTATT GCTTTATTT ATCAAAAAAA ACATAAAAAT TITTGTATTA AAAAATATCA TICAAGAGAAAAA ACATAAAAAT TITTGTATTA AAAAAATATCA TICAAGAGAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA									
SD ATCAACTCGA ATTICCATT GCTTATTIT ATCAAAAAAA ACATAAAAAT TITTGTATTA AAAAATATCA TICAAGAG IDA ATCAACTCGA ATTICCATT GCTTATTIT ATCAAAAAAA ACATAAAAAT TITTGTATTA AAAAATATCA TICAAGAG IDA ATCAACTCGA ATTICCATT GCTTTATTIT ATCAAAAAAA ACATAAAAAT TITTGTATTA AAAAATATCA TICAAGAG IDA ATCAACTCGA ATTICCATT GCTTTATTIT ATCAAAAAAA ACATAAAAAT TITTGTATTA AAAAATATCA TICAAGAG IDA ATCAACTCGA ATTICCATT GCTTTATTIT ATCAAAAAAA ACATAAAAAT TITTGTATTA AAAAATATCA TICAAGAG IDA ATCAACTCGA ATTICCATT GCTTTATTIT ATCAAAAAAA ACATAAAAAT TITTGTATTA AAAAATATCA TICAAGAG IDA ATCAACTCGA ATTICCATT GCTTTATTIT ATCAAAAAAAA ACATAAAAAT TITTGTATTA AAAAATATCA TICAAGAG IDA ATCAACTCGA ATTICCATT GCTTTATTIT ATCAAAAAAAA ACATAAAAAT TITTGTATTA AAAAATATCA TICAAGAG IDA ATCAACTCGA ATTICCATT GCTTTATTIT ATCAAAAAAAA ACATAAAAAT TITTGTATTA AAAAATATCA TICAAGAG IDA ATCAACTCGA ATTICCATT GCTTTATTIT ATCAAAAAAAA ACATAAAAAT TITTGTATTA AAAAATATCA TICAAGAG IDA ATCAACTCGA ATTITCTATT GCTTTATTIT ATCAAAAAAAA ACATAAAAAT TITTGTATTA AAAAATATCA TICAAGAG IDA ATCAACTCGA ATTITCTATT GCTTTATTIT ATCAAAAAAAA ACATAAAAAT TITTGTATTA AAAAATATCA TICAAGAG ITA ACCACTCGA ATTITCTATT GCTTTATTIT ATCAAAAAAAA ACATAAAAAT TITTGTATTA AAAAATATCA TICAAGAG ITA ACCACTCGA ATTITCTATT GCTTTATTIT ATCAAAAAAAA ACATAAAAAT TITTGTATTA AAAAATATCA TICAAGAG ITA ACCACTCGA ATTITCTATT GCTTTATTIT ATCAAAAAAAA ACATAAAAAT TITTGTATTA AAAAATATCA TICAAGAG ITA ACCACTCGA ATTITCTATT GCTTTATTIT ATCAAAAAAAA ACATAAAAAT TITTGTATTA AAAAATATCA TICAAGAG IBA ACCAACTCGA ATTITCTATT GCTTTATTIT ATCAAAAAAAA ACATAAAAAT TITTGTATTA AAAAATATCA TICAA	_								
60 ATCAACTCGA ATTITCTATT GCTTTATTTT ATCAAAAAAA ACATAAAAAT TTITGTATTA AAAAATATCA TICAAGAG 60 ATCAACTCGA ATTITCTATT GCTTTATTTT ATCAAAAAAAA ACATAAAAAT TTITGTATTA AAAAATATCA TICAAGAG 7 ATCAACTCGA ATTITCTATT GCTTTATTTT ATCAAAAAAAA ACATAAAAAT TTITGTATTA AAAAATATCA TICAAGAG 8 ATCAACTCGA ATTITCTATT GCTTTATTTT ATCAAAAAAAA ACATAAAAAAT TTITGTATTA AAAAATATCA TICAAGAG 9 ATCAACTCGA ATTITCTATT GCTTTATTTT ATCAAAAAAAA ACATAAAAAAT TTITGTATTA AAAAAATATCA TICAAGAG 100 ATCAACTCGA ATTITCTATT GCTTTATTTT ATCAAAAAAAA ACATAAAAAAT TTITGTATTA AAAAAATATCA TICAAGAG 110 ATCAACTCGA ATTITCTATT GCTTTATTTT ATCAAAAAAAA ACATAAAAAAT TTITGTATTA AAAAAATATCA TICAAGAG 111 ATCAACTCGA ATTITCTATT GCTTTATTTT ATCAAAAAAAA ACATAAAAAAT TTITGTATTA AAAAAATATCA TICAAGAG 112 ATCAACTCGA ATTITCTATT GCTTTATTTT ATCAAAAAAAA ACATAAAAAAT TTITGTATTA AAAAAATATCA TICAAGAG 113 ATCAACTCGA ATTITCTATT GCTTTATTTT ATCAAAAAAAA ACATAAAAAAT TTITGTATTA AAAAAATATCA TICAAGAG 114 ATCAACTCGA ATTITCTATT GCTTTATTTT ATCAAAAAAAA ACATAAAAAAT TTITGTATTA AAAAAATATCA TICAAGAG 115 ATCAACTCGA ATTITCTATT GCTTTATTTT ATCAAAAAAAA ACATAAAAAAT TTTTGTATTA AAAAAATATCA TICAAGAG 116 ATCAACTCGA ATTITCTATT GCTTTATTTT ATCAAAAAAAA ACATAAAAAAT TTTTGTATTA AAAAAATATCA TICAAGAG 117 ATCAACTCGA ATTITCTATT GCTTTATTTT ATCAAAAAAAA ACATAAAAAAT TTTTGTATTA AAAAAATATCA TICAAGAG 118 ATCAACTCGA ATTITCTATT GCTTTATTTT ATCAAAAAAAA ACATAAAAAAT TTTTGTATTA AAAAAATATCA TICAAGAG 119 ATCAACTCGA ATTITCTATT GCTTTATTTT ATCAAAAAAAA ACATAAAAAAT TTTTGTATTA AAAAATATCA TICAAGAG 110 ATCAACTCGA ATTITCTATT GCTTTATTTTT ATCAAAAAAAA ACATAAAAAAT TTTTGTATTA AAAAATATCA TICAAGAG 117 ATCAACTCGA ATTITCTATT GCTTTATTTTT ATCAAAAAAAA ACATAAAAAAT TTTTGTATTA AAAAAATATCA TICAAGAG 118 ATCAACTCGA ATTITCTATT GCTTTATTTTT ATCAAAAAAAA ACATAAAAAAT TTTTGTATTA AAAAAATATCA TICAAGAG 119 ATCAACTCGA ATTITCTATT GCTTTATTTTT ATCAAAAAAAA ACATAAAAAAT TTTTGTATTA AAAAAATATCA TICAAGAG 119 ATCAACTCGA ATTITCTATT GCTTTATTTTT ATCAAAAAAAA ACATAAAAAAT TTTTGTATTA AAAAAATATCA TTCAAGAG 120 ATCAACTCGA ATTITCTATT GCTTTATTTTT ATCAAAAAAAA ACATAAAAAAT TTTTGTATTA AAAAAATATCA TTCAAGAG 121 ATCAACTC									
ATCAACTCGA ATTITCTATT GCTTTATTTT ATCAAAAAAA ACATAAAAAT TITTGTATTA AAAAATATCA TICAAGAG ATCAACTCGA ATTITCTATT GCTTTATTTT ATCAAAAAAA ACATAAAAAAT TITTGTATTA AAAAATATCA TICAAGAG ATCAACTCGA ATTITCTATT GCTTTATTTT ATCAAAAAAAA ACATAAAAAAT TITTGTATTA AAAAATATCA TICAAGAG ATCAACTCGA ATTITCTATT GCTTTATTTT ATCAAAAAAAA ACATAAAAAAT TITTGTATTA AAAAATATCA TICAAGAG ATCAACTCGA ATTITCTATT GCTTTATTTT ATCAAAAAAAA ACATAAAAAAT TITTGTATTA AAAAATATCA TICAAGAG BA ATCAACTCGA ATTITCTATT GCTTTATTTT ATCAAAAAAAA ACATAAAAAAT TITTGTATTA AAAAATATCA TICAAGAG ACATAACACTCGA ATTITCTATT GCTTTATTTT ATCAAAAAAAA ACATAAAAAAT TITTGTATTA AAAAATATCA TICAAGAG ACATAACTCGA ATTITCTATT GCTTTATTTT ATCAAAAAAAA ACATAAAAAAT TITTGTATTA AAAAATATCA TICAAGAG ACATAACTCGA ATTITCTATT GCTTTATTTT ATCAAAAAAAA ACATAAAAAAT TITTGTATTA AAAAATATCA TICAAGAG ACATAACTCGA ATTITCTATT GCTTTATTTT ATCAAAAAAAA ACATAAAAAAT TITTGTATTA AAAAATATCA TICAAGAG ACATAACCTCGA ATTITCTATT GCTTTATTTT ATCAAAAAAAA ACATAAAAAAT TITTGTATTA AAAAATATCA TICAAGAG ACATAACCTCGA ATTITCTATT GCTTTATTTT ATCAAAAAAAA ACATAAAAAAT TITTGTATTA AAAAATATCA TICAAGAGA TOAACCTCGA ATTITCTATT GCTTTATTTT ATCAAAAAAAA ACATAAAAAAT TITTGTATTA AAAAATATCA TICAAGAGA ACATAACCTCGA ATTITCTATT GCTTTATTTT TACAAAAAAAA ACATAAAAAAT TITTGTATTA AAAAATATCA TICAAGAGA ACATAACCCTGA ATTITCTATT GCTTTATTTT TACAAAAAAAA ACATAAAAAAT TITTGTATTA	_								
8 ATCAACTCGA ATTITCTATT GCTTTATTTT ATCAAAAAAA ACATAAAAAT TTITGTATTA AAAAATATCA TTCAAGAG 8 ATCAACTCGA ATTITCTATT GCTTTATTTT ATCAAAAAAA ACATAAAAAT TTITGTATTA AAAAATATCA TTCAAGAG 10a ATCAACTCGA ATTITCTATT GCTTTATTTT ATCAAAAAAA ACATAAAAAT TTITGTATTA AAAAATATCA TTCAAGAG 10b ATCAACTCGA ATTITCTATT GCTTTATTTT ATCAAAAAAA ACATAAAAAT TTITGTATTA AAAAATATCA TTCAAGAG 11a ATCAACTCGA ATTITCTATT GCTTTATTTT ATCAAAAAAA ACATAAAAAT TTITGTATTA AAAAATATCA TTCAAGAG 11b ATCAACTCGA ATTITCTATT GCTTTATTTT ATCAAAAAAA ACATAAAAAT TTITGTATTA AAAAATATCA TTCAAGAG 11b ATCAACTCGA ATTITCTATT GCTTTATTTT ATCAAAAAAA ACATAAAAAT TTITGTATTA AAAAATATCA TTCAAGAG 11b ATCAACTCGA ATTITCTATT GCTTTATTTT ATCAAAAAAAA ACATAAAAAT TTITGTATTA AAAAATATCA TTCAAGAG 11b ATCAACTCGA ATTITCTATT GCTTTATTTT ATCAAAAAAAA ACATAAAAAT TTITGTATTA AAAAATATCA TTCAAGAG 11b ATCAACTCGA ATTITCTATT GCTTTATTTT ATCAAAAAAAA ACATAAAAAT TTITGTATTA AAAAATATCA TTCAAGAG 11d ATCAACTCGA ATTITCTATT GCTTTATTTT ATCAAAAAAAA ACATAAAAAAT TTITGTATTA AAAAATATCA TTCAAGAG 11d ATCAACTCGA ATTITCTATT GCTTTATTTT ATCAAAAAAAA ACATAAAAAAT TTITGTATTA AAAAATATCA TTCAAGAG 11d ATCAACTCGA ATTITCTATT GCTTTATTTT ATCAAAAAAAA ACATAAAAAAT TTITGTATTA AAAAATATCA TTCAAGAG 11d ATCAACTCGA ATTITCTATT GCTTTATTTT ATCAAAAAAAA ACATAAAAAAT TTTTGTATTA AAAAATATCA TTCAAGAG 11d ATCAACTCGA ATTITCTATT GCTTTATTTT ATCAAAAAAAA ACATAAAAAAT TTTTGTATTA AAAAATATCA TTCAAGAG 11d ATCAACTCGA ATTITCTATT GCTTTATTTT ATCAAAAAAAA ACATAAAAAAT TTTTGTATTA AAAAATATCA TTCAAGAG 11d ATCAACTCGA ATTITCTATT GCTTTATTTT ATCAAAAAAAA ACATAAAAAAT TTTTGTATTA AAAAATATCA TTCAAGAG 11d ATCAACTCGA ATTITCTATT GCTTTATTTT ATCAAAAAAAA ACATAAAAAT TTTTGTATTA AAAAATATCA TTCAAGAG 11d ATCAACTCGA ATTITCTATT GCTTTATTTT ATCAAAAAAAA ACATAAAAAT TTTTGTATTA AAAAATATCA TTCAAGAG 11d ATCAACTCGA ATTITCTATT GCTTTATTTT ATCAAAAAAAA ACATAAAAAT TTTTGTATTA AAAAATATCA TTCAAGAG 11d ATCAACTCGA ATTITCTATT GCTTTATTTT ATCAAAAAAAA ACATAAAAAT TTTTGTATTA AAAAATATCA TTCAAGAG 12d ATCAACTCGA ATTITCTATT GCTTTATTTT ATCAAAAAAAA ACATAAAAAT TTTTGTATTA AAAAATATCA TTCAAGAG 12d ATCAACTCGA ATTITCTATT GCTTTATTTT ATCAAAAAAAA									
8 ATCAACTCGA ATTITCTATT GCTTTATTTT ATCAAAAAAA ACATAAAAAT TTTTGTATTA AAAAATATCA TTCAAGAG 9 ATCAACTCGA ATTITCTATT GCTTTATTTT ATCAAAAAAA ACATAAAAAT TTTTGTATTA AAAAATATCA TTCAAGAG 10b ATCAACTCGA ATTITCTATT GCTTTATTTT ATCAAAAAAA ACATAAAAAT TTTTGTATTA AAAAATATCA TTCAAGAG 11a ATCAACTCGA ATTTTCTATT GCTTTATTTT ATCAAAAAAA ACATAAAAAT TTTTGTATTA AAAAATATCA TTCAAGAG 11b ATCAACTCGA ATTTTCTATT GCTTTATTTT ATCAAAAAAA ACATAAAAAT TTTTGTATTA AAAAATATCA TTCAAGAG 11c ATCAACTCGA ATTTTCTATT GCTTTATTTT ATCAAAAAAA ACATAAAAAT TTTTGTATTA AAAAATATCA TTCAAGAG 12a ATCAACTCGA ATTTTCTATT GCTTTATTTT ATCAAAAAAA ACATAAAAAT TTTTGTATTA AAAAATATCA TTCAAGAG 13b ATCAACTCGA ATTTTCTATT GCTTTATTTT ATCAAAAAAA ACATAAAAAT TTTTGTATTA AAAAATATCA TTCAAGAG 13c ATCAACTCGA ATTTTCTATT GCTTTATTTT ATCAAAAAAA ACATAAAAAT TTTTGTATTA AAAAATATCA TTCAAGAG 13d ATCAACTCGA ATTTTCTATT GCTTTATTTT ATCAAAAAAA ACATAAAAAT TTTTGTATTA AAAAATATCA TTCAAGAG 14 ATCAACTCGA ATTTTCTATT GCTTTATTTT ATCAAAAAAA ACATAAAAAT TTTTGTATTA AAAAATATCA TTCAAGAG 15 ATCAACTCGA ATTTTCTATT GCTTTATTTT ATCAAAAAAA ACATAAAAAT TTTTGTATTA AAAAATATCA TTCAAGAG 16 ATCAACTCGA ATTTTCTATT GCTTTATTTT ATCAAAAAAA ACATAAAAAT TTTTGTATTA AAAAATATCA TTCAAGAG 17a ATCAACTCGA ATTTTCTATT GCTTTATTTT ATCAAAAAAA ACATAAAAAT TTTTGTATTA AAAAATATCA TTCAAGAG 17c ATCAACTCGA ATTTTCTATT GCTTTATTTT ATCAAAAAAA ACATAAAAAT TTTTGTATTA AAAAATATCA TTCAAGAG 17d ATCAACTCGA ATTTTCTATT GCTTTATTTT ATCAAAAAAA ACATAAAAAT TTTTGTATTA AAAAATATCA TTCAAGAG 17d ATCAACTCGA ATTTTCTATT GCTTTATTTT ATCAAAAAAA ACATAAAAAT TTTTGTATTA AAAAATATCA TTCAAGAG 17d ATCAACTCGA ATTTTCTATT GCTTTATTTT ATCAAAAAAA ACATAAAAAT TTTTGTATTA AAAAATATCA TTCAAGAG 17d ATCAACTCGA ATTTTCTATT GCTTTATTTT ATCAAAAAAAA ACATAAAAAT TTTTGTATTA AAAAATATCA TTCAAGAG 18a ATCAACTCGA ATTTTCTATT GCTTTATTTT ATCAAAAAAAA ACATAAAAAT TTTTGTATTA AAAAATATCA TTCAAGAG 18a ATCAACTCGA ATTTTCTATT GCTTTATTTT ATCAAAAAAAA ACATAAAAAT TTTTGTATTA AAAAATATCA TTCAAGAG 19d ATCAACTCGA ATTTTCTATT GCTTTATTTT ATCAAAAAAAA ACATAAAAAT TTTTGTATTA AAAAATATCA TTCAAGAG 21a ATCAACTCGA ATTTTCTATT GCTTTATTTT ATCAAAAAAAA ACATAAAAAT TTTTGTATT									
9 ATCAACTCGA ATTTCTATT GCTTTATTT ATCAAAAAAA ACATAAAAAT TTTTGTATTA AAAAATATCA TTCAAGAG 10b ATCAACTCGA ATTTCTATT GCTTTATTTT ATCAAAAAAA ACATAAAAAT TTTTGTATTA AAAAATATCA TTCAAGAG 11b ATCAACTCGA ATTTTCTATT GCTTTATTTT ATCAAAAAAA ACATAAAAAT TTTTGTATTA AAAAATATCA TTCAAGAG 11b ATCAACTCGA ATTTTCTATT GCTTTATTTT ATCAAAAAAA ACATAAAAAT TTTTGTATTA AAAAATATCA TTCAAGAG 11c ATCAACTCGA ATTTTCTATT GCTTTATTTT ATCAAAAAAA ACATAAAAAT TTTTGTATTA AAAAATATCA TTCAAGAG 11c ATCAACTCGA ATTTTCTATT GCTTTATTTT ATCAAAAAAA ACATAAAAAT TTTTGTATTA AAAAATATCA TTCAAGAG 11c ATCAACTCGA ATTTTCTATT GCTTTATTTT ATCAAAAAAA ACATAAAAAT TTTTGTATTA AAAAATATCA TTCAAGAG 11c ATCAACTCGA ATTTTCTATT GCTTTATTTT ATCAAAAAAA ACATAAAAAT TTTTGTATTA AAAAATATCA TTCAAGAG 11c ATCAACTCGA ATTTTCTATT GCTTTATTTT ATCAAAAAAA ACATAAAAAT TTTTGTATTA AAAAATATCA TTCAAGAG 11c ATCAACTCGA ATTTTCTATT GCTTTATTTT ATCAAAAAAA ACATAAAAAT TTTTGTATTA AAAAATATCA TTCAAGAG 11c ATCAACTCGA ATTTTCTATT GCTTTATTTT ATCAAAAAAA ACATAAAAAT TTTTGTATTA AAAAATATCA TTCAAGAG 11c ATCAACTCGA ATTTTCTATT GCTTTATTTT ATCAAAAAAA ACATAAAAAT TTTTGTATTA AAAAATATCA TTCAAGAG 11c ATCAACTCGA ATTTTCTATT GCTTTATTTT ATCAAAAAAA ACATAAAAAT TTTTGTATTA AAAAATATCA TTCAAGAG 11c ATCAACTCGA ATTTTCTATT GCTTTATTTT ATCAAAAAAA ACATAAAAAT TTTTGTATTA AAAAATATCA TTCAAGAG 11c ATCAACTCGA ATTTTCTATT GCTTTATTTT ATCAAAAAAA ACATAAAAAT TTTTGTATTA AAAAATATCA TTCAAGAG 11c ATCAACTCGA ATTTTCTATT GCTTTATTTT ATCAAAAAAA ACATAAAAAT TTTTGTATTA AAAAATATCA TTCAAGAG 11c ATCAACTCGA ATTTTCTATT GCTTTATTTT ATCAAAAAAA ACATAAAAAT TTTTGTATTA AAAAATATCA TTCAAGAG 11c ATCAACTCGA ATTTTCTATT GCTTTATTTT ATCAAAAAAA ACATAAAAAT TTTTGTATTA AAAAATATCA TTCAAGAG 11c ATCAACTCGA ATTTTCTATT GCTTTATTTT ATCAAAAAAA ACATAAAAAT TTTTGTATTA AAAAATATCA TTCAAGAG 11c ATCAACTCGA ATTTTCTATT GCTTTATTTT ATCAAAAAAA ACATAAAAAT TTTTGTATTA AAAAATATCA TTCAAGAG 11c ATCAACTCGA ATTTTCTATT GCTTTATTTT ATCAAAAAAA ACATAAAAAT TTTTGTATTA AAAAATATCA TTCAAGAG 11c ATCAACTCGA ATTTTCTATT GCTTTATTTT ATCAAAAAAA ACATAAAAAT TTTTGTATTA AAAAATATCA TTCAAGAG 11c ATCAACTCGA ATTTTCTATT GCTTTATTTT ATCAAAAAAAA ACATAAAAAT TTTTGTATTA	_								
10a ATCAACTCGA ATTTCTATT GCTTTATTT ATCAAAAAAA ACATAAAAAT TTTTGTATTA AAAAATATCA TTCAAGAGA 11a ATCAACTCGA ATTTCTATT GCTTTATTTT ATCAAAAAAA ACATAAAAAT TTTTGTATTA AAAAATATCA TTCAAGAGA 11b ATCAACTCGA ATTTCTATT GCTTTATTTT ATCAAAAAAA ACATAAAAAT TTTTGTATTA AAAAATATCA TTCAAGAGA 11b ATCAACTCGA ATTTCTATT GCTTTATTTT ATCAAAAAAA ACATAAAAAT TTTTGTATTA AAAAATATCA TTCAAGAGA 12b ATCAACTCGA ATTTCTATT GCTTTATTTT ATCAAAAAAA ACATAAAAAT TTTTGTATTA AAAAATATCA TTCAAGAGA 13a ATCAACTCGA ATTTCTATT GCTTTATTTT ATCAAAAAAA ACATAAAAAT TTTTGTATTA AAAAATATCA TTCAAGAGA 13b ATCAACTCGA ATTTCTATT GCTTTATTTT ATCAAAAAAA ACATAAAAAT TTTTGTATTA AAAAATATCA TTCAAGAGA 14d ATCAACTCGA ATTTCTATT GCTTTATTTT ATCAAAAAAA ACATAAAAAT TTTTGTATTA AAAAATATCA TTCAAGAGA 15d ATCAACTCGA ATTTCTATT GCTTTATTTT ATCAAAAAAAA ACATAAAAAT TTTTGTATTA AAAAATATCA TTCAAGAGA 17d ATCAACTCGA ATTTCTATT GCTTTATTTT ATCAAAAAAAA ACATAAAAAT TTTTGTATTA AAAAATATCA TTCAAGAGA 17d ATCAACTCGA ATTTTCTATT GCTTTATTTT ATCAAAAAAAA ACATAAAAAT TTTTGTATTA AAAAATATCA TTCAAGAGA 17d ATCAACTCGA ATTTTCTATT GCTTTATTTT ATCAAAAAAAA ACATAAAAAT TTTTGTATTA AAAAATATCA TTCAAGAGA 17d ATCAACTCGA ATTTTCTATT GCTTTATTTT ATCAAAAAAAA ACATAAAAAT TTTTGTATTA AAAAATATCA TTCAAGAGA 17d ATCAACTCGA ATTTTCTATT GCTTTATTTT ATCAAAAAAAA ACATAAAAAT TTTTGTATTA AAAAATATCA TTCAAGAGA 17d ATCAACTCGA ATTTTCTATT GCTTTATTTT ATCAAAAAAAA ACATAAAAAT TTTTGTATTA AAAAATATCA TTCAAGAGA 17d ATCAACTCGA ATTTTCTATT GCTTTATTTT ATCAAAAAAAA ACATAAAAAT TTTTGTATTA AAAAATATCA TTCAAGAGA 17d ATCAACTCGA ATTTTCTATT GCTTTATTTT ATCAAAAAAAA ACATAAAAAT TTTTGTATTA AAAAATATCA TTCAAGAGA 18b ATCAACTCGA ATTTTCTATT GCTTTATTTT ATCAAAAAAAA ACATAAAAAT TTTTGTATTA AAAAATATCA TTCAAGAGA 18b ATCAACTCGA ATTTTCTATT GCTTTATTTT ATCAAAAAAAA ACATAAAAAT TTTTGTATTA AAAAATATCA TTCAAGAGA 18b ATCAACTCGA ATTTTCTATT GCTTTATTTT ATCAAAAAAAA ACATAAAAAT TTTTGTATTA AAAAATATCA TTCAAGAGA 18b ATCAACTCGA ATTTTCTATT GCTTTATTTT ATCAAAAAAAA ACATAAAAAT TTTTGTATTA AAAAATATCA TTCAAGAGA 19b ATCAACTCGA ATTTTCTATT GCTTTATTTT ATCAAAAAAAA ACATAAAAAT TTTTGTATTA AAAAATATCA TTCAAGAGA 12b ATCAACTCGA ATTTTCTATT GCTTTATTTT ATCA									
10b ATCAACTCGA ATTTCTATT GCTTTATTTT ATCAAAAAA ACATAAAAAT TTTTGTATTA AAAAATATCA TTCAAGAG 11b ATCAACTCGA ATTTCTATT GCTTTATTTT ATCAAAAAAA ACATAAAAAT TTTTGTATTA AAAAATATCA TTCAAGAG 12b ATCAACTCGA ATTTCTATT GCTTTATTTT ATCAAAAAAA ACATAAAAAT TTTTGTATTA AAAAATATCA TTCAAGAG 12b ATCAACTCGA ATTTCTATT GCTTTATTTT ATCAAAAAAA ACATAAAAAT TTTTGTATTA AAAAATATCA TTCAAGAG 13b ATCAACTCGA ATTTCTATT GCTTTATTTT ATCAAAAAAA ACATAAAAAT TTTTGTATTA AAAAATATCA TTCAAGAG 13b ATCAACTCGA ATTTCTATT GCTTTATTTT ATCAAAAAAA ACATAAAAAT TTTTGTATTA AAAAATATCA TTCAAGAG 15b ATCAACTCGA ATTTCTATT GCTTTATTTT ATCAAAAAAA ACATAAAAAT TTTTGTATTA AAAAATATCA TTCAAGAG 15b ATCAACTCGA ATTTTCTATT GCTTTATTTT ATCAAAAAAA ACATAAAAAT TTTTGTATTA AAAAATATCA TTCAAGAG 15b ATCAACTCGA ATTTTCTATT GCTTTATTTT ATCAAAAAAA ACATAAAAAT TTTTGTATTA AAAAATATCA TTCAAGAG 17b ATCAACTCGA ATTTTCTATT GCTTTATTTT ATCAAAAAAA ACATAAAAAT TTTTGTATTA AAAAATATCA TTCAAGAG 17b ATCAACTCGA ATTTTCTATT GCTTTATTTT ATCAAAAAAA ACATAAAAAT TTTTGTATTA AAAAATATCA TTCAAGAG 17b ATCAACTCGA ATTTTCTATT GCTTTATTTT ATCAAAAAAA ACATAAAAAT TTTTGTATTA AAAAATATCA TTCAAGAG 17b ATCAACTCGA ATTTTCTATT GCTTTATTTT ATCAAAAAAA ACATAAAAAT TTTTGTATTA AAAAATATCA TTCAAGAG 17b ATCAACTCGA ATTTTCTATT GCTTTATTTT ATCAAAAAAA ACATAAAAAT TTTTGTATTA AAAAATATCA TTCAAGAG 17b ATCAACTCGA ATTTTCTATT GCTTTATTTT ATCAAAAAAAA ACATAAAAAT TTTTGTATTA AAAAATATCA TTCAAGAG 17b ATCAACTCGA ATTTTCTATT GCTTTATTTT ATCAAAAAAAA ACATAAAAAT TTTTGTATTA AAAAATATCA TTCAAGAG 18b ATCAACTCGA ATTTTCTATT GCTTTATTTT ATCAAAAAAAA ACATAAAAAT TTTTGTATTA AAAAATATCA TTCAAGAG 18b ATCAACTCGA ATTTTCTATT GCTTTATTTT ATCAAAAAAAA ACATAAAAAT TTTTTGTATTA AAAAATATCA TTCAAGAG 17b ATCAACTCGA ATTTTCTATT GCTTTATTTT ATCAAAAAAAA ACATAAAAAT TTTTTGTATTA AAAAATATCA TTCAAGAG 17b ATCAACTCGA ATTTTCTATT GCTTTATTTT ATCAAAAAAAA ACATAAAAAT TTTTTGTATTA AAAAATATCA TTCAAGAG 20b ATCAACTCGA ATTTTCTATT GCTTTATTTT ATCAAAAAAAA ACATAAAAAT TTTTTGTATTA AAAAATATCA TTCAAGAG 21b ATCAACTCGA ATTTTCTATT GCTTTATTTT ATCAAAAAAAA ACATAAAAAT TTTTTGTATTA AAAAATATCA TTCAAGAG 22b ATCAACTCGA ATTTTCTATT GCTTTATTTT ATCAAAAAAAA ACATAAAAAT T									
11a ATCAACTCGA ATTTTCTATT GCTTTATTTT ATCAAAAAA ACATAAAAAT TTTTGTATTA AAAAATATCA TTCAAGAG 12a ATCAACTCGA ATTTTCTATT GCTTTATTTT ATCAAAAAAA ACATAAAAAT TTTTGTATTA AAAAATATCA TTCAAGAG 12b ATCAACTCGA ATTTTCTATT GCTTTATTTT ATCAAAAAAA ACATAAAAAT TTTTGTATTA AAAAATATCA TTCAAGAG 13b ATCAACTCGA ATTTTCTATT GCTTTATTTT ATCAAAAAAA ACATAAAAAT TTTTGTATTA AAAAATATCA TTCAAGAG 13b ATCAACTCGA ATTTTCTATT GCTTTATTTT ATCAAAAAAA ACATAAAAAT TTTTGTATTA AAAAATATCA TTCAAGAG 14 ATCAACTCGA ATTTTCTATT GCTTTATTTT ATCAAAAAAA ACATAAAAAT TTTTGTATTA AAAAATATCA TTCAAGAG 15 ATCAACTCGA ATTTTCTATT GCTTTATTTT ATCAAAAAAA ACATAAAAAT TTTTGTATTA AAAAATATCA TTCAAGAG 16 ATCAACTCGA ATTTTCTATT GCTTTATTTT ATCAAAAAAA ACATAAAAAT TTTTGTATTA AAAAATATCA TTCAAGAG 17a ATCAACTCGA ATTTTCTATT GCTTTATTTT ATCAAAAAAA ACATAAAAAT TTTTGTATTA AAAAATATCA TTCAAGAG 17b ATCAACTCGA ATTTTCTATT GCTTTATTTT ATCAAAAAAAA ACATAAAAAAT TTTTGTATTA AAAAATATCA TTCAAGAG 17c ATCAACTCGA ATTTTCTATT GCTTTATTTT ATCAAAAAAAA ACATAAAAAAT TTTTGTATTA AAAAATATCA TTCAAGAG 17d ATCAACTCGA ATTTTCTATT GCTTTATTTT ATCAAAAAAAA ACATAAAAAAT TTTTGTATTA AAAAATATCA TTCAAGAG 17d ATCAACTCGA ATTTTCTATT GCTTTATTTT ATCAAAAAAAA ACATAAAAAAT TTTTGTATTA AAAAATATCA TTCAAGAG 17d ATCAACTCGA ATTTTCTATT GCTTTATTTT ATCAAAAAAAA ACATAAAAAAT TTTTGTATTA AAAAATATCA TTCAAGAG 18a ATCAACTCGA ATTTTCTATT GCTTTATTTT ATCAAAAAAAA ACATAAAAAAT TTTTGTATTA AAAAATATCA TTCAAGAG 18b ATCAACTCGA ATTTTCTATT GCTTTATTTT ATCAAAAAAAA ACATAAAAAT TTTTGTATTA AAAAATATCA TTCAAGAG 18b ATCAACTCGA ATTTTCTATT GCTTTATTTT ATCAAAAAAAA ACATAAAAAT TTTTGTATTA AAAAATATCA TTCAAGAG 19b ATCAACTCGA ATTTTCTATT GCTTTATTTT ATCAAAAAAAA ACATAAAAAT TTTTGTATTA AAAAATATCA TTCAAGAG 19d ATCAACTCGA ATTTTCTATT GCTTTATTTT ATCAAAAAAAA ACATAAAAAT TTTTTGTATTA AAAAATATCA TTCAAGAG 20 ATCAACTCGA ATTTTCTATT GCTTTATTTT ATCAAAAAAAA ACATAAAAAT TTTTTGTATTA AAAAATATCA TTCAAGAG 21a ATCAACTCGA ATTTTCTATT GCTTTATTTT ATCAAAAAAAA ACATAAAAAT TTTTTGTATTA AAAAATATCA TTCAAGAG 21b ATCAACTCGA ATTTTCTATT GCTTTATTTT ATCAAAAAAAA ACATAAAAAT TTTTTGTATCA AAAAATATCA TTCAAGAG 21b ATCAACTCGA ATTTTCTATT GCTTTATTTT ATCAAAAAAAA									
11b ATCAACTCGA ATTITCTATT GCTTTATTIT ATCAAAAAA ACATAAAAAT TITTGTATTA AAAAATATCA TICAAGAG 12b ATCAACTCGA ATTITCTATT GCTTTATTIT ATCAAAAAAA ACATAAAAAT TITTGTATTA AAAAATATCA TICAAGAG 13a ATCAACTCGA ATTITCTATT GCTTTATTIT ATCAAAAAAA ACATAAAAAT TITTGTATTA AAAAATATCA TICAAGAG 13b ATCAACTCGA ATTITCTATT GCTTTATTIT ATCAAAAAAA ACATAAAAAT TITTGTATTA AAAAATATCA TICAAGAG 15b ATCAACTCGA ATTITCTATT GCTTTATTIT ATCAAAAAAA ACATAAAAAT TITTGTATTA AAAAATATCA TICAAGAG 15b ATCAACTCGA ATTITCTATT GCTTTATTIT ATCAAAAAAA ACATAAAAAT TITTGTATTA AAAAATATCA TICAAGAG 15b ATCAACTCGA ATTITCTATT GCTTTATTIT ATCAAAAAAA ACATAAAAAT TITTGTATTA AAAAATATCA TICAAGAG 17a ATCAACTCGA ATTITCTATT GCTTTATTIT ATCAAAAAAA ACATAAAAAT TITTGTATTA AAAAATATCA TICAAGAG 17b ATCAACTCGA ATTITCTATT GCTTTATTIT ATCAAAAAAA ACATAAAAAT TITTGTATTA AAAAATATCA TICAAGAG 17c ATCAACCCGA ATTITCTATT GCTTTATTIT ATCAAAAAAA ACATAAAAAT TITTGTATTA AAAAATATCA TICAAGAG 17c ATCAACCCGA ATTITCTATT GCTTTATTIT ATCAAAAAAA ACATAAAAAT TITTGTATTA AAAAATATCA TICAAGAG 17c ATCAACCCGA ATTITCTATT GCTTTATTTT ATCAAAAAAA ACATAAAAAT TITTGTATTA AAAAATATCA TICAAGAG 18a ATCAACTCGA ATTITCTATT GCTTTATTTT ATCAAAAAAA ACATAAAAAT TITTGTATTA AAAAATATCA TICAAGAG 18a ATCAACTCGA ATTITCTATT GCTTTATTTT ATCAAAAAAA ACATAAAAAT TITTGTATTA AAAAATATCA TICAAGAG 18a ATCAACTCGA ATTITCTATT GCTTTATTTT ATCAAAAAAA ACATAAAAAT TITTGTATTA AAAAATATCA TICAAGAG 18b ATCAACTCGA ATTITCTATT GCTTTATTTT ATCAAAAAAA ACATAAAAAT TITTGTATTA AAAAATATCA TICAAGAG 19a ATCAACTCGA ATTITCTATT GCTTTATTTT ATCAAAAAAA ACATAAAAAT TITTGTATTA AAAAATATCA TICAAGAG 19b ATCAACTCGA ATTITCTATT GCTTTATTTT ATCAAAAAAA ACATAAAAAT TITTGTATTA AAAAATATCA TICAAGAG 19b ATCAACTCGA ATTITCTATT GCTTTATTTT ATCAAAAAAA ACATAAAAAT TITTGTATTA AAAAATATCA TICAAGAG 20 ATCAACTCGA ATTITCTATT GCTTTATTTT ATCAAAAAAA ACATAAAAAT TITTGTATTA AAAAATATCA TICAAGAG 21b ATCAACTCGA ATTITCTATT GCTTTATTTT ATCAAAAAAA ACATAAAAAT TITTGTATTA AAAAATATCA TICAAGAG 22b ATCAACTCGA ATTITCTATT GCTTTATTTT ATCAAAAAAA ACATAAAAAT TITTGTATCA AAAAATATCA TICAAGAG 22b ATCAACTCGA ATTITCTATT GCTTTATTTT ATCAAAAAAA ACATAAAAAT TITTGTATC									
12a ATCAACTCGA ATTITCTATT GCTTTATTIT ATCAAAAAA ACATAAAAAT TTITGTATTA AAAATATCA TTCAAGAG 13b ATCAACTCGA ATTITCTATT GCTTTATTIT ATCAAAAAAA ACATAAAAAT TTITGTATTA AAAATATCA TTCAAGAG 13b ATCAACTCGA ATTITCTATT GCTTTATTIT ATCAAAAAAA ACATAAAAAT TTITGTATTA AAAATATCA TTCAAGAG 13b ATCAACTCGA ATTITCTATT GCTTTATTIT ATCAAAAAAA ACATAAAAAT TTITGTATTA AAAAATATCA TTCAAGAG 15 ATCAACTCGA ATTITCTATT GCTTTATTIT ATCAAAAAAA ACATAAAAAT TTITGTATTA AAAAATATCA TTCAAGAG 16 ATCAACTCGA ATTITCTATT GCTTTATTIT ATCAAAAAAA ACATAAAAAT TTITGTATTA AAAAATATCA TTCAAGAG 17a ATCAACTCGA ATTITCTATT GCTTTATTIT ATCAAAAAAA ACATAAAAAT TTITGTATTA AAAAATATCA TTCAAGAG 17b ATCAACTCGA ATTITCTATT GCTTTATTIT ATCAAAAAAA ACATAAAAAT TTITGTATTA AAAAATATCA TTCAAGAG 17c ATCAACTCGA ATTITCTATT GCTTTATTIT ATCAAAAAAA ACATAAAAAT TTTTGTATTA AAAAATATCA TTCAAGAG 17c ATCAACTCGA ATTITCTATT GCTTTATTIT ATCAAAAAAA ACATAAAAAT TTTTGTATTA AAAAATATCA TTCAAGAG 17d ATCAACTCGA ATTITCTATT GCTTTATTIT ATCAAAAAAA ACATAAAAAT TTTTGTATTA AAAAATATCA TTCAAGAG 17e ATCAACTCGA ATTITCTATT GCTTTATTTT ATCAAAAAAA ACATAAAAAT TTTTGTATTA AAAAATATCA TTCAAGAG 18b ATCAACTCGA ATTITCTATT GCTTTATTTT ATCAAAAAAA ACATAAAAAT TTTTGTATTA AAAAATATCA TTCAAGAG 18b ATCAACTCGA ATTTTCTATT GCTTTATTTT ATCAAAAAAA ACATAAAAAT TTTTGTATTA AAAAATATCA TTCAAGAG 18b ATCAACTCGA ATTTTCTATT GCTTTATTTT ATCAAAAAAAA ACATAAAAAT TTTTGTATTA AAAAATATCA TTCAAGAG 19a ATCAACTCGA ATTTTCTATT GCTTTATTTT ATCAAAAAAA ACATAAAAAT TTTTGTATTA AAAAATATCA TTCAAGAG 20 ATCAACTCGA ATTTTCTATT GCTTTATTTT ATCAAAAAAA ACATAAAAAT TTTTGTATTA AAAAATATCA TTCAAGAG 21b ATCAACTCGA ATTTTCTATT GCTTTATTTT ATCAAAAAAA ACATAAAAAT TTTTGTATTA AAAAATATCA TTCAAGAG 22b ATCAACTCGA ATTTTCTATT GCTTTATTTT ATCAAAAAAA ACATAAAAAT TTTTGTATTA AAAAATATCA TTCAAGAG 22b ATCAACTCGA ATTTTCTATT GCTTTATTTT ATCAAAAAAA ACATAAAAAT TTTTGTATTA AAAAATATCA TTCAAGAG 22b ATCAACTCGA ATTTTCTATT GCTTTATTTT ATCAAAAAAA ACATAAAAAT TTTTGTATCA AAAAATATCA TTCAAGAG 22b ATCAACTCGA ATTTTCTATT GCTTTATTTTT ATCAAAAAAA ACATAAAAAT TTTTGTATCA AAAAATATCA TTCAAGAG 22b ATCAACTCGA ATTTTCTATT GCTTTATTTTT ATCAAAAAAAA ACATAAAAAT TTTTGTATCA									
12b ATCAACTCGA ATTTCTATT GCTTTATTT ATCAAAAAA ACATAAAAAT TTTTGTATTA AAAAATATCA TTCAAGAG 13b ATCAACTCGA ATTTCTATT GCTTTATTT ATCAAAAAAA ACATAAAAAT TTTTGTATTA AAAAATATCA TTCAAGAG 14 ATCAACTCGA ATTTCTATT GCTTTATTT ATCAAAAAAA ACATAAAAAT TTTTGTATTA AAAAATATCA TTCAAGAG 15 ATCAACTCGA ATTTCTATT GCTTTATTTT ATCAAAAAAA ACATAAAAAT TTTTGTATTA AAAAATATCA TTCAAGAG 16 ATCAACTCGA ATTTCTATT GCTTTATTTT ATCAAAAAAA ACATAAAAAT TTTTGTATTA AAAAATATCA TTCAAGAG 17a ATCAACTCGA ATTTCTATT GCTTTATTTT ATCAAAAAAA ACATAAAAAT TTTTGTATTA AAAAATATCA TTCAAGAG 17b ATCAACTCGA ATTTTCTATT GCTTTATTTT ATCAAAAAAA ACATAAAAAT TTTTGTATTA AAAAATATCA TTCAAGAG 17c ATCAACTCGA ATTTTCTATT GCTTTATTTT ATCAAAAAAA ACATAAAAAT TTTTGTATTA AAAAATATCA TTCAAGAG 17c ATCAACTCGA ATTTTCTATT GCTTTATTTT ATCAAAAAAA ACATAAAAAT TTTTGTATTA AAAAATATCA TTCAAGAG 17c ATCAACTCGA ATTTTCTATT GCTTTATTTT ATCAAAAAAA ACATAAAAAT TTTTGTATTA AAAAATATCA TTCAAGAG 17e ATCAACTCGA ATTTTCTATT GCTTTATTTT ATCAAAAAAA ACATAAAAAT TTTTGTATTA AAAAATATCA TTCAAGAG 18a ATCAACTCGA ATTTTCTATT GCTTTATTTT ATCAAAAAAA ACATAAAAAT TTTTGTATTA AAAAATATCA TTCAAGAG 18b ATCAACTCGA ATTTTCTATT GCTTTATTTT ATCAAAAAAA ACATAAAAAT TTTTGTATTA AAAAATATCA TTCAAGAG 19a ATCAACTCGA ATTTTCTATT GCTTTATTTT ATCAAAAAAA ACATAAAAAT TTTTGTATTA AAAAATATCA TTCAAGAG 19b ATCAACTCGA ATTTTCTATT GCTTTATTTT ATCAAAAAAA ACATAAAAAT TTTTGTATTA AAAAATATCA TTCAAGAG 20 ATCAACTCGA ATTTTCTATT GCTTTATTTT ATCAAAAAAA ACATAAAAAT TTTTGTATTA AAAAATATCA TTCAAGAG 21a ATCAACTCGA ATTTTCTATT GCTTTATTTT ATCAAAAAAA ACATAAAAAT TTTTGTATTA AAAAATATCA TTCAAGAG 21b ATCAACTCGA ATTTTCTATT GCTTTATTTT ATCAAAAAAA ACATAAAAAT TTTTGTATTA AAAAATATCA TTCAAGAG 21b ATCAACTCGA ATTTTCTATT GCTTTATTTT ATCAAAAAAA ACATAAAAAT TTTTGTATTA AAAAATATCA TTCAAGAG 22b ATCAACTCGA ATTTTCTATT GCTTTATTTT ATCAAAAAAA ACATAAAAAT TTTTGTATTA AAAAATATCA TTCAAGAG 22b ATCAACTCGA ATTTTCTATT GCTTTATTTT ATCAAAAAAA ACATAAAAAT TTTTGTATCA AAAAATATCA TTCAAGAG 22b ATCAACTCGA ATTTTCTATT GCTTTATTTT ATCAAAAAAA ACATAAAAAT TTTTGTATCA AAAAAATATCA TTCAAGAG 23b ATCAACTCGA ATTTTCTATT GCTTTATTTT ATCAAAAAAAA ACATAAAAAT TTTTGTATCA AAAAAATA									
13a ATCAACTCGA ATTTCTATT GCTTTATTT ATCAAAAAA ACATAAAAAT TTTTGTATTA AAAAATATCA TTCAAGAG 13b ATCAACTCGA ATTTCTATT GCTTTATTT ATCAAAAAAA ACATAAAAAT TTTTGTATTA AAAAATATCA TTCAAGAG 15 ATCAACTCGA ATTTCTATT GCTTTATTT ATCAAAAAAA ACATAAAAAT TTTTGTATTA AAAAATATCA TTCAAGAG 16 ATCAACTCGA ATTTCTATT GCTTTATTT ATCAAAAAAA ACATAAAAAT TTTTGTATTA AAAAATATCA TTCAAGAG 17a ATCAACTCGA ATTTCTATT GCTTTATTT ATCAAAAAAA ACATAAAAAT TTTTGTATTA AAAAATATCA TTCAAGAG 17b ATCAACTCGA ATTTCTATT GCTTTATTTT ATCAAAAAAA ACATAAAAAT TTTTGTATTA AAAAAATATCA TTCAAGAGG 17c ATCAACTCGA ATTTCTATT GCTTTATTTT ATCAAAAAAA ACATAAAAAT TTTTGTATTA AAAAAATATCA TTCAAGAGG 17d ATCAACTCGA ATTTCTATT GCTTTATTTT ATCAAAAAAA ACATAAAAAT TTTTGTATTA AAAAATATCA TTCAAGAGG 18a ATCAACTCGA ATTTCTATT GCTTTATTTT ATCAAAAAAA ACATAAAAAT TTTTGTATTA AAAAATATCA TTCAAGAGG 18b ATCAACTCGA ATTTCTATT GCTTTATTTT ATCAAAAAAA ACATAAAAAT TTTTGTATTA AAAAATATCA TTCAAGAGG 18b ATCAACTCGA ATTTCTATT GCTTTATTTT ATCAAAAAAA ACATAAAAAT TTTTGTATTA AAAAATATCA TTCAAGAGG 18b ATCAACTCGA ATTTCTATT GCTTTATTTT ATCAAAAAAA ACATAAAAAT TTTTGTATTA AAAAATATCA TTCAAGAGG 18d ATCAACTCGA ATTTCTATT GCTTTATTTT ATCAAAAAAA ACATAAAAAT TTTTGTATTA AAAAATATCA TTCAAGAGG 18d ATCAACTCGA ATTTCTATT GCTTTATTTT ATCAAAAAAA ACATAAAAAT TTTTGTATTA AAAAATATCA TTCAAGAGG 19d ATCAACTCGA ATTTCTATT GCTTTATTTT ATCAAAAAAA ACATAAAAAT TTTTGTATTA AAAAATATCA TTCAAGAGG 20 ATCAACTCGA ATTTCTATT GCTTTATTTT ATCAAAAAAA ACATAAAAAT TTTTGTATTA AAAAATATCA TTCAAGAGG 21a ATCAACTCGA ATTTCTATT GCTTTATTTT ATCAAAAAAA ACATAAAAAT TTTTGTATTA AAAAATATCA TTCAAGAGG 21b ATCAACTCGA ATTTTCTATT GCTTTATTTT ATCAAAAAAA ACATAAAAAT TTTTGTATTA AAAAATATCA TTCAAGAGG 21d ATCAACTCGA ATTTTCTATT GCTTTATTTT ATCAAAAAAA ACATAAAAAT TTTTGTATTA AAAAATATCA TTCAAGAGG 22d ATCAACTCGA ATTTTCTATT GCTTTATTTT ATCAAAAAAA ACATAAAAAT TTTTGTATCA AAAAAATATCA TTCAAGAGG 22d ATCAACTCGA ATTTTCTATT GCTTTATTTT ATCAAAAAAA ACATAAAAAT TTTTGTATCA AAAAAATATCA TTCAAGAGG 22d ATCAACTCGA ATTTTCTATT GCTTTATTTT ATCAAAAAAA ACATAAAAAT TTTTGTATCA AAAAATATCA TTCAAGAGG 22d ATCAACTCGA ATTTTCTATT GCTTTATTTT ATCAAAAAAA ACATAAAAAT TTTTTGTATCA									
ATCAACTCGA ATTTCTATT GCTTTATTTT ATCAAAAAAA ACATAAAAAT TTTTGTATTT AAAAATATCA TTCAAGAG ATCAACTCGA ATTTCTATT GCTTTATTTT ATCAAAAAAA ACATAAAAAT TTTTGTATTA AAAAATATCA TTCAAGAG ATCAACTCGA ATTTTCTATT GCTTTATTTT ATCAAAAAAA ACATAAAAAT TTTTGTATTA AAAAAATATCA TTCAAGAG ATCAACTCGA ATTTTCTATT GCTTTATTTT ATCAAAAAAA ACATAAAAAT TTTTGTATTA AAAAAATATCA TTCAAGAG AACAACTCGA ATTTTCTATT GCTTTATTTT ATCAAAAAAA ACATAAAAAT TTTTGTATTA AAAAAATATCA TTCAAGAGA AACAACTCGA ATTTTCTATT GCTTTATTTT ATCAAAAAAA ACATAAAAAT TTTTGTATTA AAAAAATATCA TTCAAGAGA AACAACTCGA ATTTTCTATT GCTTTATTTT ATCAAAAAAA ACATAAAAAAT TTTTGTATTA AAAAAATATCA TTCAAGAGA AACAACTCGA ATTTTCTATT GCTTTATTTT ATCAAAAAAA ACATAAAAAAT TTTTGTATTA AAAAAATATCA TTCAAGAGA AACAACTCGA ATTTTCTATT GCTTTATTTT ATCAAAAAAAA ACATAAAAAAT TTTTGTATTA AAAAAATATCA TTCAAGAGA AACAACTCGA ATTTTCTATT GCTTTATTTT ATCAAAAAAAA ACATAAAAAAT TTTTTGTATTA AAAAAATATCA TTCAAGAGA ATCAACTCGA ATTTTCTATT GCTTTATTTTT ATCAAAAAAAA ACATAAAAAAT TTTTTGTATTA AAAAAATATCA TTCAAGAGA ATCAACTCGA ATTTTCTATT GCTTTATTTTT ATCAAAAAAAA ACATAAAAAAT TTTTTGTATTA AAAAAATATCA TTCAAGAGA ATCAACTCGA ATTTTCTATT GCTTTATTTTT ATCAAAAAAAA ACATAAAAAAT TTTTTTTT									
14 ATCAACTCGA ATTTCTATT GCTTTATTTT ATCAAAAAAA ACATAAAAAAT TTTTGTATTA AAAAAATATCA TTCAAGAGAATAAAAATATCA TTCAAGAGAAAAAAAAAA									
ATCAACTCGA ATTTTCTATT GCTTTATTT ATCAAAAAAA ACATAAAAAT TTTTGTATCA AAAAATATCA TTCAAGAG 17a 17b 17c 17c 17c 17c 17c 17c 17c									
17a atcaactcga attitctatt gctttattit atcaaaaaa acataaaaat tittgtatta aaaaatatca ticaagag 17b atcaactcga attitctatt gctttattit atcaaaaaaa acataaaaat tittgtatta aaaaatatca ticaagag 17c atcaactcga attitctatt gctttattit atcaaaaaaa acataaaaat tittgtatta aaaaatatca ticaagag 17c atcaactcga attitctatt gctttattit atcaaaaaaa acataaaaat tittgtatta aaaaatatca ticaagag 17c atcaactcga attitctatt gctttattit atcaaaaaaa acataaaaat tittgtatta aaaaatatca ticaagag 18a atcaactcga attitctatt gctttattit atcaaaaaaa acataaaaat tittgtatta aaaaatatca ticaagag 18b atcaactcga attitctatt gctttattit atcaaaaaaa acataaaaat tittgtatta aaaaatatca ticaagag 19b atcaactcga attitctatt gctttattit atcaaaaaaa acataaaaat tittgtatta aaaaatatca ticaagag 20 atcaactcga attitctatt gctttattit atcaaaaaaa acataaaaat tittgtatta aaaaatatca ticaagag 21a atcaactcga attitctatt gctttattit atcaaaaaaa acataaaaat tittgtatta aaaaatatca ticaagag 22a atcaactcga attitctatt gctttattit atcaaaaaaa acataaaaat tittgtatca aaaaatatca ticaagag 22a atcaactcga attitctatt gctttattit atcaaaaaaa acataaaaat tittgtatca aaaaatatca ticaagag 22a atcaactcga attitctatt gctttattit atcaaaaaaa acataaaaat tittgtatca aaaaatatca ticaagag 23a atcaactcga attitctatt gctttattit atcaaaaaaa acataaaaat tittgtatca aaaaatatca ticaagag 24a atcaactcga attitctatt gctttattit atcaaaaaaa acataaaaat tittgtatca aaaaatatca ticaagag 24a atcaactcga attitctatt gctttattit atcaaaaaaa acataaaaat tittgtatca aaaaatatca ticaagag 24a atcaactcga attitctatt gctttattit atcaaaaaaa acataaaaat tittgtataa aaaaatatca ticaagag 25b atcaactcga attitctatt gctttattit atcaaaaaaa acataaaaat tittgtataa aaaaatatca ticaagag 25b atcaactcga attitctatt gctttattit atcaaaaaaa acataaaaat tittgtataa aaaaatatca ticaagag 26 atcaacccga attitctatt gctttattit atcaaaaaaa acataaaaat tittgtataa aaaaatatca ticaagag 27 atcaactcga attitctatt gctttatttt atcaaaaaaa acataaaaat tittgtataa aaaaatatca ticaagag 27 atcaactcga attitctatt gctttattit atcaaaaaaa acataaaaat tittgtataa aaaaatatca ticaagag 27 atcaactcga attitctatt gctttatttt atcaaaaaaa acataaaaat tittgtataa aa									
17a atcaactcga attitchatt gctttattit atcaaaaaa acataaaaat tittgtatta aaaaatatca ticaagag 17b atcaactcga attitchatt gctttattit atcaaaaaaa acataaaaat tittgtatta aaaaatatca ticaagag 17c atcaactcga attitchatt gctttattit atcaaaaaaa acataaaaat tittgtatta aaaaatatca ticaagag 18a atcaactcga attitchatt gctttattit atcaaaaaaa acataaaaat tittgtatta aaaaatatca ticaagag 18b atcaactcga attitchatt gctttattit atcaaaaaaa acataaaaat tittgtatta aaaaatatca ticaagag 19a atcaactcga attitchatt gctttattit atcaaaaaaa acataaaaat tittgtatta aaaaatatca ticaagag 19b atcaactcga attitchatt gctttattit atcaaaaaaa acataaaaat tittgtatta aaaaatatca ticaagag 20 atcaactcga attitchatt gctttattit atcaaaaaaa acataaaaat tittgtatta aaaaatatca ticaagag 21a atcaactcga attitchatt gctttattit atcaaaaaaa acataaaaat tittgtatta aaaaatatca ticaagag 22 atcaactcga attitchatt gctttattit atcaaaaaaa acataaaaat tittgtatca aaaaatatca ticaagag 22 atcaactcga attitchatt gctttattit atcaaaaaaa acataaaaat tittgtatca aaaaatatca ticaagag 23a atcaactcga attitchatt gctttattit atcaaaaaaa acataaaaat tittgtatca aaaaatatca ticaagag 23a atcaactcga attitchatt gctttattit atcaaaaaaa acataaaaat tittgtatca aaaaataca ticaagag 24a atcaactcga attitchatt gctttattit atcaaaaaaa acataaaaat tittgtatca aaaaatatca ticaagag 24a atcaactcga attitchatt gctttattit atcaaaaaaa acataaaaat tittgtataa aaaaataca ticaagag 25b atcaactcga attitchatt gctttattit atcaaaaaaa acataaaaat tittgtataa aaaaataca ticaagag 25b atcaactcga attitchatt gctttattit atcaaaaaaa acataaaaat tittgtataa aaaaataca ticaagag 25b atcaactcga attitchatt gctttattit atcaaaaaaa acataaaaat tittgtataa aaaaataca ticaagag 25b atcaactcga attitchatt gctttattit atcaaaaaaa acataaaaat tittgtataa aaaaataca ticaagag 25b atcaactcga attitchatt gctttattit atcaaaaaaa acataaaaat tittgtataa aaaaataca ticaagag 25c atcaacccga attitchatt gctttattit atcaaaaaaa acataaaaat tittgtataa aaaaataca ticaagag 25c atcaacccga attitchatt gctttattit atcaaaaaaa acataaaaat tittgtataa aaaaataca ticaagag 25c atcaacccga attitchatt gctttatttt atcaaaaaaa acataaaaat tittgtataa aaaaataca									
17b atcaactcga attitctatt gctttatttt atcaaaaaaa acataaaaat tittgtatta aaaaatatca ticaagag 17c atcaactcga attitctatt gctttatttt atcaaaaaaa acataaaaat tittgtatta aaaaatatca ticaagag 17d atcaactcga attitctatt gctttatttt atcaaaaaaa acataaaaat tittgtatta aaaaatatca ticaagag 18a atcaactcga attitctatt gctttatttt atcaaaaaaa acataaaaat tittgtatta aaaaatatca ticaagag 18b atcaactcga attitctatt gctttatttt atcaaaaaaa acataaaaat tittgtatta aaaaatatca ticaagag 19b atcaactcga attitctatt gctttatttt atcaaaaaaa acataaaaat tittgtatta aaaaatatca ticaagag 19b atcaactcga attitctatt gctttattit atcaaaaaaa acataaaaat tittgtatta aaaaatatca ticaagag 20 atcaactcga attitctatt gctttattit atcaaaaaaa acataaaaat tittgtatta aaaaatatca ticaagag 21a atcaactcga attitctatt gctttattit atcaaaaaaa acataaaaat tittgtatta aaaaatatca ticaagag 21a atcaactcga attitctatt gctttattit atcaaaaaaa acataaaaat tittgtatta aaaaatatca ticaagag 22 atcaactcga attitctatt gctttattit atcaaaaaaa acataaaaat tittgtatca aaaaatatca ticaagag 22 atcaactcga attitctatt gctttattit atcaaaaaaa acataaaaat tittgtatca aaaaatatca ticaagag 22 atcaactcga attitctatt gctttattit atcaaaaaaa acataaaaat tittgtatca aaaaatatca ticaagag 23a atcaactcga attitctatt gctttattit atcaaaaaaa acataaaaat tittgtatca aaaaatatca ticaagag 24a atcaactcga attitctatt gctttattit atcaaaaaaa acataaaaat tittgtatca aaaaatatca ticaagag 24a atcaactcga attitctatt gctttattit atcaaaaaaa acataaaaat tittgtatca aaaaatatca ticaagag 25b atcaactcga attitctatt gctttattit atcaaaaaaa acataaaaat tittgtatca aaaaatatca ticaagag 25a atcaactcga attitctatt gctttattit atcaaaaaaa acataaaaat tittgtatca aaaaatatca ticaagag 25a atcaactcga attitctatt gctttattit atcaaaaaaa acataaaaat tittgtatca aaaaatatca ticaagag 25a atcaactcga attitctatt gctttattit atcaaaaaaa acataaaaat tittgtatca aaaaatatca ticaagag 25a atcaactcga attitctatt gctttattit atcaaaaaaa acataaaaat tittgtatca aaaaatatca ticaagag 25a atcaactcga attitctatt gctttattit atcaaaaaaa acataaaaat tittgtatca aaaaatatca ticaagag 25a acaacccga attitcatt gctttattit atcaaaaaaa acataaaaat tittgtatca aa									
17c atcaacega attitctatt gcttattit alcaaaaaa acataaaat tittgtatta aaaaataca ticaagag 17d atcaacega attitctatt gcttattit atcaaaaaa acataaaaat tittgtatta aaaaataca ticaagag 18a atcaacega attitctatt gcttattit atcaaaaaa acataaaaat tittgtatta aaaaataca ticaagag 18b atcaacega attitctatt gcttattit atcaaaaaa acataaaaat tittgtatta aaaaataca ticaagag 19b atcaacega attitctatt gcttattit atcaaaaaa acataaaaat tittgtatta aaaaataca ticaagag 20 atcaacega attitctatt gcttattit atcaaaaaa acataaaaat tittgtatta aaaaataca ticaagag 21a atcaacega attitctatt gcttattit atcaaaaaa acataaaaat tittgtatta aaaaataca ticaagag 21b atcaacega attitctatt gcttattit atcaaaaaa acataaaaat tittgtatta aaaaataca ticaagag 22 atcaacega attitctatt gcttattit atcaaaaaa acataaaaat tittgtatca aaaaataca ticaagag 22 atcaacega attitctatt gcttatitt atcaaaaaa acataaaaat tittgtatca aaaaataca ticaagag 22 atcaacega attitctatt gcttatitt atcaaaaaaa acataaaaat tittgtatca aaaaatatca ticaagag 22 atcaacega attitctatt gcttatitt atcaaaaaaa acataaaaat tittgataca aaaaatatca ticaagag 23a atcaacega attitctatt gctttatitt atcaaaaaaa acataaaaat tittgataca aaaaatatca ticaagag 24a atcaacega attitctatt gctttatitt atcaaaaaaa acataaaaat tittgataca aaaaatatca ticaagag 24a atcaacega attitctatt gctttatitt atcaaaaaaa acataaaaat tittgataca aaaaatatca ticaagag 24a atcaacega attitctatt gctttatitt atcaaaaaaa acataaaaat tittgataca aaaaatatca ticaagag 25a atcaacega attitctatt gctttatitt atcaaaaaaa acataaaaat tittgataca aaaaatatca ticaagag 25a atcaacega attitctatt gctttatitt atcaaaaaaa acataaaaat tittgataca aaaaatatca ticaagag 25a atcaacega attitctatt gctttatitt atcaaaaaaa acataaaaat tittgataca aaaaatatca ticaagag 26a atcaacega attitctatt gctttatitt atcaaaaaaa acataaaaat tittgataca aaaaatatca ticaagag 27a atcaacega attitctatt gctttatitt atcaaaaaaa acataaaaat tittgataca aaaaatatca ticaagag 27a atcaacega attitctatt gctttatitt atcaaaaaaa acataaaaat tittgataca aaaaatatca ticaagag 27a atcaacega attitctatt gcttatitt atcaaaaaaa acataaaaat tittgataca aaaaatatca ticaagag 27a atcaacega attitctatt gcttatitt atc									
17d atcaactcga attitctatt gctttattit atcaaaaaaa acataaaaat tittgtatta aaaaatatca ticaagag 18a atcaactcga attitctatt gctttattit atcaaaaaaa acataaaaat tittgtatta aaaaatatca ticaagag 18b atcaactcga attitctatt gctttattit atcaaaaaaa acataaaaat tittgtatta aaaaatatca ticaagag 19a atcaactcga attitctatt gctttattit atcaaaaaaa acataaaaat tittgtatta aaaaatatca ticaagag 19b atcaactcga attitctatt gctttattit atcaaaaaaa acataaaaat tittgtatta aaaaatatca ticaagag 20 atcaactcga attitctatt gctttattit atcaaaaaaa acataaaaat tittgtatta aaaaatatca ticaagag 21a atcaactcga attitctatt gctttattit atcaaaaaaa acataaaaat tittgtatta aaaaatatca ticaagag 21b atcaactcga attitctatt gctttattit atcaaaaaaa acataaaaat tittgtatca aaaaatatca ticaagag 22 atcaactcga attitctatt gctttattit atcaaaaaaa acataaaaat tittgtatca aaaaatatca ticaagag 23a atcaactcga attitctatt gctttattit atcaaaaaaa acataaaaat tittgtatca aaaaatatca ticaagag 23b atcaactcga attitctatt gctttattit atcaaaaaaa acataaaaat tittgtatca aaaaatatca ticaagag 24b atcaactcga attitctatt gctttattit atcaaaaaaa acataaaaat tittgtatca aaaaatatca ticaagag 24b atcaactcga attitctatt gctttattit atcaaaaaaa acataaaaat tittgtataa aaaaatatca ticaagag 25b atcaactcga attitctatt gctttattit atcaaaaaaa acataaaaat tittgtataa aaaaatatca ticaagag 25a atcaactcga attitctatt gctttattit atcaaaaaaa acataaaaat tittgtataa aaaaatatca ticaagag 25a atcaactcga attitctatt gctttattit atcaaaaaaa acataaaaat tittgtataa aaaaatatca ticaagag 25b atcaactcga attitctatt gctttattit atcaaaaaaa acataaaaat tittgtataa aaaaatatca ticaagag 25a atcaactcga attitctatt gctttattit atcaaaaaaa acataaaaat tittgtataa aaaaatatca ticaagag 25a atcaactcga attitctatt gctttattit atcaaaaaaa acataaaaat tittgtataca aaaaatatca ticaagag 25a atcaactcga attitctatt gctttattit atcaaaaaaa acataaaaat tittgtataca aaaaatatca ticaagag 25a atcaactcga attitctatt gctttattit atcaaaaaaa acataaaaa tittgtataca aaaaatatca ticaagag 25a atcaactcga attitctatt gctttattit atcaaaaaaa acataaaaat tittgtataca aaaaatatca ticaagag 25a atcaactcga attitctatt gctttatttt atcaaaaaaa acataaaaat tittgt									
17e ATCAACTCGA ATTITCTATT GCTTTATTT ATCAAAAAAA ACATAAAAAT TITTGTATTA AAAAATATCA TICAAGAGA 18b ATCAACTCGA ATTITCTATT GCTTTATTT ATCAAAAAAA ACATAAAAAT TITTGTATTA AAAAATATCA TICAAGAGAGAATAAAAAA ACATAAAAAAT TITTGTATTA AAAAAATATCA TICAAGAGAGAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA									
18a atcaactcga attitctatt gctttatttt atcaaaaaa acataaaat tittgtatta aaaaatatca ticaagag atcaactcga attitctatt gctttatttt atcaaaaaa acataaaaat tittgtatta aaaaatatca ticaagag atcaactcga attitctatt gctttatttt atcaaaaaaa acataaaaat tittgtatca aaaaatatca ticaagag atcaactcga attitctatt gctttatttt atcaaaaaaa acataaaaat tittgtatca aaaaatatca ticaagag atcaactcga attitctatt gctttattit atcaaaaaaa acataaaaat tittgtatca aaaaatatca ticaagag atcaacccga attitctatt gctttatttt atcaaaaaaa acataaaaat tittgtatca aaaaatatca ticaagag atcaacccga atcaacccga attitctatt gctttatttt atcaaaaaaa acataaaaat tittgtatca aaaaatatca ticaagag atcaacccga atcaacccga attitctatt gctttatttt atcaaaaaaa a									
18b atcaactcga attitctatt gctttatttt atcaaaaaaa acataaaaat tittgtatta aaaaatatca ticaagag atcaactcga attitctatt gctttatttt atcaaaaaaa acataaaaat tittgtatca aaaaatatca ticaagag atcaactcga attitctatt gctttattit atcaaaaaaa acataaaaat tittgtatca aaaaatatca ticaagag atcaactcga attitctatt gctttatttt atcaaaaaaa acataaaaat tittgtatca aaaaatatca ticaagag atcaactcga attitctatt gctttatttt atcaaaaaaa acataaaaat tittgtatca aaaaatatca ticaagag atcaactcga attitctatt gctttatttt atcaaaaaaa acataaaaat tittgtatc									
19a ATCAACTCGA ATTTCTATT GCTTTATTT ATCAAAAAAA ACATAAAAAT TTTTGTATTA AAAAATATCA TTCAAGAG ATCAACTCGA ATTTCTATT GCTTTATTTT ATCAAAAAAA ACATAAAAAT TTTTGTATTA AAAAATATCA TTCAAGAG ATCAACTCGA ATTTCTATT GCTTTATTTT ATCAAAAAAA ACATAAAAAT TTTTGTATTA AAAAATATCA TTCAAGAG ATCAACTCGA ATTTCTATT GCTTTATTTT ATCAAAAAAA ACATAAAAAT TTTTGTATCA AAAAATATCA TTCAAGAG ATCAACTCGA ATTTCTATT GCTTTATTTT ATCAAAAAAA ACATAAAAAT TTTTGTATCA AAAAATATCA TTCAAGAG ATCAACTCGA ATTTCTATT GCTTTATTTT ATCAAAAAAA ACATAAAAAT TTTTGTATCA AAAAATATCA TTCAAGAG ATCAACTCGA ATTTTCTATT GCTTTATTTT ATCAAAAAAAA ACATAAAAAT TTTTGTATCA AAAAATATCA TTCAAGAG ATCAACTCGA ATTTTCTATT GCTTTATTTT ATCAAAAAAA ACATAAAAAT TTTTGTATCA AAAAATATCA TTCAAGAG ATCAACTCGA ATTTTCTATT GCTTTATTTT ATCAAAAAAAA ACATAAAAAT TTTTGTATCA AAAAATATCA TTCAAGAG ATCAACCTCGA ATTTTCTATT GCTTTATTTT ATCAAAAAAAA ACATAAAAAT TTTTGTATCA AAAAATATCA TTCAAGAG ATCAACCTCGA ATTTTCTATT GCTTTATTTT ATCAAAAAAAA ACATAAAAAT TTTTGTATCA AAAAATATCA TTCAAGAG ATCAACCTCGA ATTTTCTATT GCTTTATTTT ATCAAAAAAAA ACATAAAAAT TTTTTGTATCA AAAAATATCA TTCAAGAG ATCAACCCGA ATTTTCTATT GCTTTATTTT ATCAAAAAAAA ACATAAAAAT TTTTTGTATCA AAAAATATCA TTCAAGAGA ACATAAAAAAT TTTTTGTATCA AAAAATATCA TTCAAGAGA ATCAACCCGA ATTTTCTATT GCTTTATTTT ATCAAAAAAAAA ACATAAAAAAT TTTTTGTATCA AAAAAATATCA TTCAAGAGA ACATAAAAAAT TTTTTGTATCA AAAAATATCA TTCAAGAGA ACATAAAAAAT TTTTTGTATCA AAAAAATATCA TTCAAGAGA ACATAAAAAAT TTTTTGTATCA AAAAATATCA TTCAAGAGA ACATAAAAAAT TTTTTGTATCA AAAAATATCA TTCAAGAGA ACATAAAAAAT TTTTTTTTTT									
19b ATCAACTCGA ATTTCTATT GCTTTATTT ATCAAAAAAA ACATAAAAAT TTTTGTATTA AAAAATATCA TTCAAGAG 20 ATCAACTCGA ATTTCTATT GCTTTATTTT ATCAAAAAAA ACATAAAAAT TTTTGTATTA AAAAATATCA TTCAAGAG 21a ATCAACTCGA ATTTCTATT GCTTTATTTT ATCAAAAAAA ACATAAAAAT TTTTGTATCA AAAAATATCA TTCAAGAG 21b ATCAACTCGA ATTTCTATT GCTTTATTTT ATCAAAAAAA ACATAAAAAT TTTTGTATCA AAAAATATCA TTCAAGAG 22c ATCAACTCGA ATTTCTATT GCTTTATTTT ATCAAAAAAA ACATAAAAAT TTTTGTATCA AAAAATATCA TTCAAGAG 23a ATCAACTCGA ATTTCTATT GCTTTATTTT ATCAAAAAAA ACATAAAAAT TTTTGTATCA AAAAATATCA TTCAAGAG 24b ATCAACTCGA ATTTCTATT GCTTTATTTT ATCAAAAAAA ACATAAAAAT TTTTGTATCA AAAAATATCA TTCAAGAG 24b ATCAACTCGA ATTTCTATT GCTTTATTTT ATCAAAAAAAA ACATAAAAAT TTTTGTATCA AAAAATATCA TTCAAGAG 25a ATCAACTCGA ATTTTCTATT GCTTTATTTT ATCAAAAAAAA ACATAAAAAT TTTTGTATCA AAAAATATCA TTCAAGAG 25b ATCAACTCGA ATTTTCTATT GCTTTATTTT ATCAAAAAAAA ACATAAAAAT TTTTGTATCA AAAAATATCA TTCAAGAG 25c ATCAACTCGA ATTTTCTATT GCTTTATTTT ATCAAAAAAAA ACATAAAAAT TTTTGTATCA AAAAATATCA TTCAAGAG 26c ATCAACTCGA ATTTTCTATT GCTTTATTTT ATCAAAAAAAA ACATAAAAAT TTTTGTATCA AAAAATATCA TTCAAGAG 27c ATCAACTCGA ATTTTCTATT GCTTTATTTT ATCAAAAAAAA ACATAAAAAT TTTTGTATCA AAAAATATCA TTCAAGAG 27c ATCAACTCGA ATTTTCTATT GCTTTATTTT ATCAAAAAAAA ACATAAAAAT TTTTGTATCA AAAAATATCA TTCAAGAG 27c ATCAACTCGA ATTTTCTATT GCTTTATTTT ATCAAAAAAAA ACATAAAAAT TTTTGTATCA AAAAATATCA TTCAAGAG 27c ATCAACTCGA ATTTTCTATT GCTTTATTTT ATCAAAAAAAA ACATAAAAAT TTTTGTATCA AAAAATATCA TTCAAGAGA 27c ATCAACTCGA ATTTTCTATT GCTTTATTTT ATCAAAAAAAA ACATAAAAAT TTTTTGTATCA AAAAATATCA TTCAAGAGA 27c ATCAACTCGA ATTTTCTATT GCTTTATTTT ATCAAAAAAAA ACATAAAAAT TTTTTGTATCA AAAAATATCA TTCAAGAGA 27c ATCAACTCGA ATTTTCTATT GCTTTATTTT ATCAAAAAAAA ACATAAAAAT TTTTTGTATCA AAAAATATCA TTCAAGAGA 27c ATCAACTCGA ATTTTCTATT GCTTTATTTT ATCAAAAAAAA ACATAAAAAT TTTTTTTT									
20 ATCAACTCGA ATTTCTATT GCTTTATTT ATCAAAAAAA ACATAAAAAT TTTTGTATTA AAAAATATCA TTCAAGAG 21a ATCAACTCGA ATTTCTATT GCTTTATTTT ATCAAAAAAA ACATAAAAAT TTTTGTATCA AAAAATATCA TTCAAGAG 21b ATCAACTCGA ATTTCTATT GCTTTATTTT ATCAAAAAAA ACATAAAAAT TTTTGTATCA AAAAATATCA TTCAAGAG 22 ATCAACTCGA ATTTCTATT GCTTTATTTT ATCAAAAAAA ACATAAAAAT TTTTGTATCA AAAAATATCA TTCAAGAG 23a ATCAACTCGA ATTTCTATT GCTTTATTTT ATCAAAAAAA ACATAAAAAT TTTTGTATCA AAAAATATCA TTCAAGAG 24b ATCAACTCGA ATTTCTATT GCTTTATTTT ATCAAAAAAA ACATAAAAAT TTTTGTATCA AAAAATATCA TTCAAGAG 24b ATCAACTCGA ATTTCTATT GCTTTATTTT ATCAAAAAAA ACATAAAAAT TTTTGTATAA AAAAATATCA TTCAAGAG 25a ATCAACTCGA ATTTTCTATT GCTTTATTTT ATCAAAAAAAA ACATAAAAAT TTTTGTATCA AAAAATATCA TTCAAGAG 25b ATCAACTCGA ATTTTCTATT GCTTTATTTT ATCAAAAAAAA ACATAAAAAT TTTTGTATCA AAAAATATCA TTCAAGAG 26 ATCAACTCGA ATTTTCTATT GCTTTATTTT ATCAAAAAAAA ACATAAAAAT TTTTGTATCA AAAAATATCA TTCAAGAG 27 ATCAACTCGA ATTTTCTATT GCTTTATTTT ATCAAAAAAAA ACATAAAAAT TTTTGTATCA AAAAATATCA TTCAAGAG 27 ATCAACTCGA ATTTTCTATT GCTTTATTTT ATCAAAAAAAA ACATAAAAAT TTTTGTATCA AAAAATATCA TTCAAGAG 27 ATCAACTCGA ATTTTCTATT GCTTTATTTT ATCAAAAAAAA ACATAAAAAT TTTTGTATCA AAAAATATCA TTCAAGAG 27 ATCAACTCGA ATTTTCTATT GCTTTATTTT ATCAAAAAAAA ACATAAAAAT TTTTGTATCA AAAAATATCA TTCAAGAG 27 ATCAACTCGA ATTTTCTATT GCTTTATTTT ATCAAAAAAAA ACATAAAAAT TTTTTGTATCA AAAAATATCA TTCAAGAG									
21a ATCAACTCGA ATTTCTATT GCTTTATTT ATCAAAAAAA ACATAAAAAT TTTTGTATCA AAAAATATCA TTCAAGAG 21b ATCAACTCGA ATTTCTATT GCTTTATTTT ATCAAAAAAA ACATAAAAAT TTTTGTATCA AAAAATATCA TTCAAGAG 22 ATCAACTCGA ATTTCTATT GCTTTATTTT ATCAAAAAAA ACATAAAAAT TTTTGTATCA AAAAATATCA TTCAAGAG 23b ATCAACTCGA ATTTCTATT GCTTTATTTT ATCAAAAAAA ACATAAAAAT TTTTGTATCA AAAAATATCA TTCAAGAG 24a ATCAACTCGA ATTTCTATT GCTTTATTTT ATCAAAAAAA ACATAAAAAT TTTTGTATCA AAAAATATCA TTCAAGAG 24b ATCAACTCGA ATTTTCTATT GCTTTATTTT ATCAAAAAAA ACATAAAAAT TTTTGTATAA AAAAATATCA TTCAAGAG 25a ATCAACTCGA ATTTTCTATT GCTTTATTTT ATCAAAAAAA ACATAAAAAT TTTTGTATCA AAAAATATCA TTCAAGAG 25b ATCAACTCGA ATTTTCTATT GCTTTATTTT ATCAAAAAAAA ACATAAAAAT TTTTGTATCA AAAAATATCA TTCAAGAG 26 ATCAACTCGA ATTTTCTATT GCTTTATTTT ATCAAAAAAAA ACATAAAAAT TTTTGTATCA AAAAATATCA TTCAAGAG 27 ATCAACTCGA ATTTTCTATT GCTTTATTTT ATCAAAAAAAA ACATAAAAAT TTTTGTATCA AAAAATATCA TTCAAGAGG 27 ATCAACTCGA ATTTTCTATT GCTTTATTTT ATCAAAAAAAA ACATAAAAAT TTTTGTATCA AAAAATATCA TTCAAGAGG 27 ATCAACTCGA ATTTTCTATT GCTTTATTTT ATCAAAAAAAA ACATAAAAAT TTTTGTATCA AAAAATATCA TTCAAGAGG 27 ATCAACTCGA ATTTTCTATT GCTTTATTTT ATCAAAAAAAA ACATAAAAAT TTTTGTATCA AAAAATATCA TTCAAGAGG 27 ATCAACTCGA ATTTTCTATT GCTTTATTTT ATCAAAAAAAA ACATAAAAAT TTTTGTATCA AAAAATATCA TTCAAGAGG									
21b ATCAACTCGA ATTTCTATT GCTTTATTT ATCAAAAAAA ACATAAAAAT TTTTGTATCA AAAAATATCA TTCAAGAG 22 ATCAACTCGA ATTTCTATT GCTTTATTTT ATCAAAAAAA ACATAAAAAT TTTTGTATCA AAAAATATCA TTCAAGAG 23a ATCAACTCGA ATTTCTATT GCTTTATTTT ATCAAAAAAA ACATAAAAAT TTTTGTATCA AAAAATATCA TTCAAGAG 23b ATCAACTCGA ATTTCTATT GCTTTATTTT ATCAAAAAAA ACATAAAAAT TTTTGTATCA AAAAATATCA TTCAAGAG 24a ATCAACTCGA ATTTCTATT GCTTTATTTT ATCAAAAAAA ACATAAAAAT TTTTGTATAA AAAAATATCA TTCAAGAG 25b ATCAACTCGA ATTTTCTATT GCTTTATTTT ATCAAAAAAA ACATAAAAAT TTTTGTATCA AAAAATATCA TTCAAGAG 25b ATCAACTCGA ATTTTCTATT GCTTTATTTT ATCAAAAAAA ACATAAAAAT TTTTGTATCA AAAAATATCA TTCAAGAG 26 ATCAACTCGA ATTTTCTATT GCTTTATTTT ATCAAAAAAAA ACATAAAAAT TTTTGTATCA AAAAATATCA TTCAAGAG 27 ATCAACTCGA ATTTTCTATT GCTTTATTTT ATCAAAAAAAA ACATAAAAAT TTTTGTATCA AAAAATATCA TTCAAGAGG 27 ATCAACTCGA ATTTTCTATT GCTTTATTTT ATCAAAAAAAA ACATAAAAAT TTTTGTATCA AAAAAATATCA TTCAAGAGG 27 ATCAACTCGA ATTTTCTATT GCTTTATTTT ATCAAAAAAAA ACATAAAAAT TTTTGTATCA AAAAAATATCA TTCAAGAGG									
23a ATCAACTCGA ATTTCTATT GCTTTATTTT ATCAAAAAAA ACATAAAAAT TTTTGTATCA AAAAATATCA TTCAAGAG 23b ATCAACTCGA ATTTCTATT GCTTTATTTT ATCAAAAAAA ACATAAAAAT TTTTGTATCA AAAAATATCA TTCAAGAG 24a ATCAACTCGA ATTTCTATT GCTTTATTTT ATCAAAAAAA ACATAAAAAT TTTTGTATAA AAAAATATCA TTCAAGAG 24b ATCAACTCGA ATTTCTATT GCTTTATTTT ATCAAAAAAA ACATAAAAAT TTTTGTATAA AAAAATATCA TTCAAGAG 25a ATCAACTCGA ATTTCTATT GCTTTATTTT ATCAAAAAAA ACATAAAAAT TTTTGTATCA AAAAATATCA TTCAAGAG 25b ATCAACTCGA ATTTTCTATT GCTTTATTTT ATCAAAAAAA ACATAAAAAT TTTTGTATCA AAAAATATCA TTCAAGAG 26 ATCAACCGA ATTTTCTATT GCTTTATTTT ATCAAAAAAA ACATAAAAAT TTTTGTATCA AAAAATATCA TTCAAGAG 27 ATCAACTCGA ATTTTCTATT GCTTTATTTT ATCAAAAAAAA ACATAAAAAT TTTTGTATCA AAAAATATCA TTCAAGAG									
23b ATCAACTCGA ATTTCTATT GCTTTATTT ATCAAAAAAA ACATAAAAAT TTTTGTATCA AAAAATATCA TTCAAGAG 24a ATCAACTCGA ATTTCTATT GCTTTATTTT ATCAAAAAAA ACATAAAAAT TTTTGTATAA AAAAATATCA TTCAAGAG 24b ATCAACTCGA ATTTCTATT GCTTTATTTT ATCAAAAAAA ACATAAAAAT TTTTGTATAA AAAAATATCA TTCAAGAG 25a ATCAACTCGA ATTTCTATT GCTTTATTTT ATCAAAAAAA ACATAAAAAT TTTTGTATCA AAAAATATCA TTCAAGAG 25b ATCAACTCGA ATTTTCTATT GCTTTATTTT ATCAAAAAAA ACATAAAAAT TTTTGTATCA AAAAATATCA TTCAAGAG 27 ATCAACTCGA ATTTTCTATT GCTTTATTTT ATCAAAAAAAA ACATAAAAAT TTTTGTATCA AAAAATATCA TTCAAGAG	22	ATCAACTCGA	ATTTTCTATT	GCTTTATTTT	ATCAAAAAAA	ACATAAAAAT	TTTTGTATCA	AAAAATATCA	TTCAAGAGGG
23b ATCAACTCGA ATTTCTATT GCTTTATTT ATCAAAAAAA ACATAAAAAT TTTTGTATCA AAAAATATCA TTCAAGAG 24a ATCAACTCGA ATTTCTATT GCTTTATTTT ATCAAAAAAA ACATAAAAAT TTTTGTATAA AAAAATATCA TTCAAGAG 24b ATCAACTCGA ATTTCTATT GCTTTATTTT ATCAAAAAAA ACATAAAAAT TTTTGTATAA AAAAATATCA TTCAAGAG 25a ATCAACTCGA ATTTCTATT GCTTTATTTT ATCAAAAAAA ACATAAAAAT TTTTGTATCA AAAAATATCA TTCAAGAG 25b ATCAACTCGA ATTTTCTATT GCTTTATTTT ATCAAAAAAA ACATAAAAAT TTTTGTATCA AAAAATATCA TTCAAGAG 27 ATCAACTCGA ATTTTCTATT GCTTTATTTT ATCAAAAAAAA ACATAAAAAT TTTTGTATCA AAAAATATCA TTCAAGAG	23a	ATCAACTCGA	ATTTTCTATT	GCTTTATTTT	ATCAAAAAAA	ACATAAAAAT	TTTTGTATCA	AAAAATATCA	TTCAAGAGGG
24b ATCAACTCGA ATTTCTATT GCTTTATTTT ATCAAAAAAA ACATAAAAAT TTTTGTATAA AAAAATATCA TTCAAGAG 25a ATCAACTCGA ATTTTCTATT GCTTTATTTT ATCAAAAAAA ACATAAAAAT TTTTGTATCA AAAAATATCA TTCAAGAG 25b ATCAACTCGA ATTTTCTATT GCTTTATTTT ALCAAAAAAA ACATAAAAAT TTTTGTATCA AAAAATATCA TTCAAGAG 26 ATCAACTCGA ATTTT-TATT GCTTTATTTT ATCAAAAAAAA ACATAAAAAT TTTTGTATCA AAAAATATCA TTCAAGAG 27 ATCAACTCGA ATTTTCTATT GCTTTATTTT ATCAAAAAAAA ACATAAAAAT TTTTGTATCA AAAAATATCA TTCAAGAG									
25a ATCAACTCGA ATTTCTATT GCTTTATTT ATCAAAAAAA ACATAAAAAT TTTTGTATCA AAAAATATCA TTCAAGAG 25b ATCAACTCGA ATTTTCTATT GCTTTATTTT ATCAAAAAAA ACATAAAAAT TTTTGTATCA AAAAATATCA TTCAAGAG 26 ATCAAC-CGA ATTTT-TATT GCTTTATTTT ATCAAAAAAAA ACATAAAAAT TTTTGTATCA AAAAAATATCA TTCAAGAG 27 ATCAACTCGA ATTTTCTATT GCTTTATTTT ATCAAAAAAAA ACATAAAAAT TTTTGTATCA AAAAATATCA TTCAAGAG	24a	ATCAACTCGA	ATTTTCTATT	GCTTTATTTT	ATCAAAAAAA	ACATAAAAAT	TTTTGTATAA	AAAAATATCA	TTCAAGAGGG
25b ATCAACTCGA ATTTTCTATT GCTTTATTTT ALCAAAAAAA ACATAAAAAT TTTTGTATCA AAAAATATCA TTCAAGAG 26 ATCAAC-CGA ATTTT-TATT GCTTTATTTT ATCAAAAAAAA ACATAAAAAT TTTTGTATCA AAAAATATCA TTCAAGAG 27 ATCAACTCGA ATTTTCTATT GCTTTATTTT ATCAAAAAAAA ACATAAAAAT TTTTGTATCA AAAAATATCA TTCAAGAG	24b	ATCAACTCGA	ATTTTCTATT	GCTTTATTTT	АТСАААААА	ACATAAAAAT	TTTTGTATAA	AAAAATATCA	TTCAAGAGGG
25b ATCAACTCGA ATTTTCTATT GCTTTATTTT ALCAAAAAAA ACATAAAAAT TTTTGTATCA AAAAATATCA TTCAAGAG 26 ATCAAC-CGA ATTTT-TATT GCTTTATTTT ATCAAAAAAAA ACATAAAAAT TTTTGTATCA AAAAATATCA TTCAAGAG 27 ATCAACTCGA ATTTTCTATT GCTTTATTTT ATCAAAAAAAA ACATAAAAAT TTTTGTATCA AAAAATATCA TTCAAGAG									
27 ATCAACTCGA ATTTTCTATT GCTTTATTTT ATCAAAAAAA ACATAAAAAT TTTTGTATCA AAAAATATCA TTCAAGAG	25b	ATCAACTCGA	ATTTTCTATT	GCTTTATTTT	AtCAAAAAAA	ACATAAAAAT	TTTTGTATCA	AAAAATATCA	TTCAAGAGGG
27 ATCAACTCGA ATTTTCTATT GCTTTATTTT ATCAAAAAAA ACATAAAAAT TTTTGTATCA AAAAATATCA TTCAAGAG									
28 GTCAACTCGA ATCTTCTATT GCCTTATTTT ATCAAAAAAA ACATAAAAAT TTTTGTATCA AAAAATATCG TTCAAGAG	27	ATCAACTCGA	ATTTTCTATT	GCTTTATTTT	ATCAAAAAAA	ACATAAAAAT	TTTTGTATCA	AAAAATATCA	TTCAAGAGGG
	28	GTCAACTCGA	ATCTTCTATT	GCCTTATTTT	ATCAAAAAAA	ACATAAAAAT	TTTTGTATCA	AAAAATATCG	TTCAAGAGGG
29 ATCAACTCGA ATTTTCTATT GCTTTATTTT ATCAAAAAAA ACATAAAAAT TTTTGTATTA AAAAATATCA TTCAAGAG	29	ATCAACTCGA	ATTTTCTATT	GCTTTATTTT	ATCAAAAAAA	ACATAAAAAT	TTTTGTATTA	AAAAATATCA	TTCAAGAGGG
30 TCAGCCTGAA TATTCCATTG CCTTATTTTA TCAAGGAAAA TATAAAAATT TTTGTATCAA AAAATATCGT TCAAGAGG									

No.	250	260	270	280	290	300	310	320
1	GGGGATTTTC	ACCCCCACCG	CCGGCACCCA	AAGCCAAAAT	TCTTGGAATC	AAACTTCCTC	TTGTCCTGGT	TTTCCTAATG
2	GGGGATTTTC	ACCCCCACCG	CCGGCACCCA	AAGCCAAAAT	TCTTGGAATC	AAACTACCTC	TTGTCCTGGT	TTTCCTAATG
3	GGGGATTTTC	ACCCCCACCG	CCGGCACCCA	AAGCCAAAAT	TCTTGGAATC	AAACTACCTC	TTGTCCTGGT	TTTCCTAATG
4a	GAGGATTTTC	ACCCCCACCG	CCGGCACCCA	AAGCCAAAAT	TCTTGGAATC	AAACTACCTC	TTGTCCTGGT	TTTCCTAATG
4b	GAGGATTTTC	ACCCCCACCG	CTGGCACCCA	AAGCCAAAAT	TCTTGGAATC	AAACTACCTC	TTGTCCTGGT	TTTCCTAATG
5a	GAGGATTTTC	ACCCCCACCG	CTGGCACCCA	AAGCCAAAAT	TCTTGGAATC	AAACTACCTC	TTGTCCTGGT	TTTCCTAATG
5b	GAGGATTTTC	ACCCCCACCG	CTGGCACCCA	AAGCCAAAAT	TCTTGGAATC	AAACTACCTC	TTGTCCTGGT	TTTCCTAATG
6a	GAGGATTTTC	ACCCCCACCG	CTGGCACCCA	AAGCCAAAAT	TCTTGGAATC	AAACTACCTC	TTGTCCTGGT	TTTCCTAATG
6b	GAGGATTTTC	ACCCCCACCG	CTGGCACCCA	AAGCCAAAAT	TCTTGGAATC	AAACTACCTC	TTGTCCTGGT	TTTCCTAATG
7	GGAGATTTTC	ACCCCCACCG	CTGGCACCCA	AAGCCAAAAT	TCTTGGAATC	AAACTACCTC	TTGTCCTGGT	TTTCCTAATG
8	GGGGATTTTC	ACCCCCACCG	CTGGCACCCA	AAGCCAAAAT	TCTTGGAATC	AAACTACCTC	TTGTCCTGGT	TTTCCTAATG
9	GGGGATTTTC	ACCCCCACCG	CTGGCACCCA	AAGCCAAAAT	TCTTGGAATC	AAACTACCTC	TTGTCCTGGT	TTTCCTAATG
10a	GAGGATTTTC	ACCTCCACCA	CTGGCACCCA	AAGCCAAAAT	TCTTGGAATC	AAACTACCTC	TTGTCCTGGT	TTTCCTAATG
10b	GAGGATTTTC	ACCTCCACCA	CTGGCACCCA	AAGCCAAAAT	TCTTGGAATC	AAACTACCTC	TTGTCCTGGT	TTTCCTAATG
11a	GAGGATTTTC	ACCCCCACCG	CTGGCACCCA	AAGCCAAAAT	TCTTGGAATC	AAACTACCTC	TTGTCCTGGT	TTTCCTAATG
11b	GAGGATTTTC	ACCCCCACCG	CTGGCACCCA	AAGCCAAAAT	TCTTGGAATC	AAACTACCTC	TTGTCCTGGT	TTTCCTAATG
12a	GAGGATTTTC	ACCCCCACCG	CCGGCACCCA	AAGCCAAAAT	TCTTGGAATC	AAACTACCTC	TTGTCCTGGT	TTTCCTAATG
12b	GAGGATTTTC	ACCTCCACCG	CTGGCACCCA	AAGCCAAAAT	TCTTGGAATC	AAACTACCTC	TTGTCCTGGT	TTTCCTAATG
13a	GAGGATTTTC	ACCCCCACCG	CCGGCACCCA	AAGCCAAAAT	TCTTGGAATC	AAACTACCTC	TTGTCCTGGT	TTTCCTAATG
13b	GAGGATTTTC	ACCCCCACCG	CTGGCACCCA	AAGCCAAAAT	TCTTGGAATC	AAACTACCTC	TTGTCCTGGT	TTTCCTAATG
14	GAGGATTTTC	ACCTCCACCG	CCGGCACCCA	AAGCCAAAAT	TCTTGGAATC	AAACTACCTC	TTGTCCTGGT	TTTCCTAATG
15	GAGGATTTTC	ACCCCCACCG	CTGGCACCCA	AAGCCAAAAT	TCTTGGAATC	AAACTACCTC	TTGTCCTGGT	TTTCCTAATG
16	GAGGATTTTC	ACCCCCACCG	CTGGCACCCA	AAGCCAAAAT	TCTTGGAATC	AAACTACCTC	TTGTCCTGGT	TTTCCTAATG
17a	GAGGATTTTC	ACCCCCACCG	CTGGCACCCA	AAGCCAAAAT	TCTTGGAATC	AAACTACCTC	TTGTCCTGGT	TTTCCTAATG
17b	GAGGATTTTC	ACCCCCACCG	CTGGCACCCA	AAGCCAAAAT	TCTTGGAATC	AAACTACCTc	TTGTCCTGGT	TTTCCTAATG
17c	GAGGATTTTC	ACCCCCACCG	CTGGCACCCA	AAGCCAAAAT	TCTTGGAATC	AAACTACCTC	TTGTCCTGGT	TTTCCTAATG
17d	GAGGATTTTC	ACCTCCACCG	CTGGCACCCA	AAGCCAAAAT	TCTTGGAATC	AAACTACCTC	TTGTCCTGGT	TTTCCTAATG
17e	GAGGATTTTC	ACCTCCACCG	CTGGCACCCA	AAGCCAAAAT	TCTTGGAATC	AAACTACCTC	TTGTCCTGGT	TTTCCTAATG
18a	GAGGATTTTC	ACCCCCACCG	CTGGCACCCA	AAGCCAAAAT	TcTTGGAATC	AAACTACCTC	TTGTCCTGGT	TTTCCTAATG
18b	GAGGATTTTC	ACCCCCACCG	CTGGCACCCA	AAGCCAAAAT	TCTTGGAATC	AAACTACCTC	TTGTCCTGGT	TTTCCTAATG
19a	GAGGATTTTC	ACCTCCACCA	CTGGCACCCA	AAGCCAAAAT	TCTTGGAATC	AAACTACCTC	TTGTCCTGGT	TTTCCTAATG
19b	GAGGATTTTC	ACCTCCACCG	CTGGCACCCA	AAGCCAAAAT	TCTTGGAATC	AAACTACCTC	TTGTCCTGGT	TTTCCTAATG
20	GAGGATTTTC	ACCCCCACCG	CCGGCACCCA	AAGCCAAAAT	TCTTGGAATC	AAACTACCTC	TTGTCCTGGT	TTTCCTAATG
21a	GAGGATTTTC	ACCCCCACCG	CTGGCACCCA	AAGCCAAAAT	TCTTGGAATC	AAACTACCTC	TTGTCCTGGT	TTTCCTAATG
21b	GAGGATTTTC	ACCCCCACCG	CTGGCACCCA	AAGCCAAAAT	TCTTGGAATC	AAACTACCTC	TTGTCCTGGT	TTTCCTAATG
						AAACTACCTC		
23a	GAGGATTTTC	ACCTCCACCG	CTGGCATCCA	AAGCCAAAAT	TCTTGGAATC	AAACTACCTC	TTGTCCTGGT	TTTCCTAATG
23b	GAGGATTTTC	ACCTCCACCG	CTGGCATCCA	AAGCCAAAAT	TCTTGGAATC	AAACTACCTC	TTGTCCTGGT	TTTCCTAATG
24a	GAAGATTTTC	ACCTCCACCG	CTGGCACCCA	AAGCCAAAAT	TCTTGGAATC	AAACTACCTC	TTGTCCTGGT	TTTCCTAATG
24b	GAAGATTTTC	ACCTCCACCG	CTGGCACCCA	AAGCCAAAAT	TCTTGGAATC	AAACTACCTC	TTGTCCTGGT	TTTCCTAATG
25a	GAGGATTTTC	ACCCCCACCG	CTGGCACCCA	AAGCCAAAAT	TCTTGGAATC	AAACTACCTC	TTGTCCTGGT	TTTCCTAATG
25b	GAGGATTTTC	ACCCCCACCG	CTGGCACCCA	AAGCCAAAAT	TCTTGGAATC	AAACTACCTC	TTGTCCTGGT	TTTCCTAATG
26	GAGGATTTTC	ACCCCCACCG	CTGGCACCCA	AAGCCAAAAT	TCTTGGAATC	AAACTACCTC	TTGTCCTGGT	TTTCCTAATG
27	GAGGATTTTC	ACCCCCACCG	CTGGCACCCA	AAGCCAAAAT	TCTTGGAATC	AAACTACCTC	TTGTCCTGGT	TTTCCTAATG
28	GAGGATTTTC	ACCCCCACCG	CCGGCaCCCA	AAGCCAAAAT	TCTTGGAATC	AAACTACCTC	TTGTCCTGGT	TTTCCTAATG
29	GAGGATTTTC	ACCTCCACCG	CCGGCACCCA	AAGCCAAAAT	TCTTGGAATC	AAACTACCTC	TTGTCCTGGT	TTTCCTAATG
30	AGGATTTTCA	CCTCCTCCAC	TGGCATCCAA	AGCCAAAATT	CTTGGAATCA	AACTACCTCT	TGTCCTGGTT	TTCCTAATGT

No.	330	340	350	360	370	380	390	400
1	TACGAGTGAC	GTGGCAACAT	ATTATGCCTA	TCGTGCATCC	AACTATCTGC	CACACGACTA	TTATTTAGTA	CTCTTCGGAG
2	TACGAGTGAC	GTGGCAACAT	ATTATGCCTA	TCGTACATCC	AACTATCTGC	CACACGACTA	TTATTTAGTA	CTCTTCGGAG
3	TACGAGTGAC	GTGGCAACAT	ATTATGCCTA	TCGTACATCC	AACTATCTGC	CACACGACTA	TTATTTAGTA	CTCTTCGGAG
4a	TACGAGTGAC	GTGGCAACAT	ATTATGCCTA	TCGTGCATCC	AACTATCTGC	CACACGACTA	TTATTTAGTA	CTCTTCGGAG
4b	TACGAGTGAC	GTGGCAACAT	ATTATGCCTA	TCGTGCATCC	AACTATCTGC	CACACGACTA	TTATTTAGTA	CTCTTCGGAG
5a	TACGAGTGAC	GTGGCAACAT	ATTATGCCTA	TCGTGCATCC	AACTATCTGC	CACACGACTA	TTATTTAGTA	CTCTTCGGAG
5b	TACGAGTGAC	GTGGCAACAT	ATTATGCCTA	TCGTGCATCC	AACTATCTGC	CACACGACTA	TTATTTAGTA	CTCTTCGGAG
6a	TACGAGTGAC	GTGGCAACAT	ATTATGCCTA	TCGTGCATCC	AACTATCTGC	CACACGACTA	TTATTTAGTA	CTCTTCGGAG
6b	TACGAGTGAC	GTGGCAACAT	ATTATGCCTA	TCGTGCATCC	AACTATCTGC	CACACGACTA	TTATTTAGTA	CTCTTCGGAG
7	TACGAGTAAC	GTGGCAACAT	ATTATGCCTA	TCGTGCATCC	AACTATCTGC	CACACGACTA	TTATTTAGTA	CTCTTCGGAG
8	TACGAGTGAC	GTGGCAACAT	ATTATGCCTA	TCGTGCATCC	AACTATCTGC	CACACGACTA	TTATTTAGTA	CTCTTCGGAG
9	TACGAGTGAC	GTGGCAACAT	ATTATGCCTA	TCGTGCATCC	AACTATCTGC	CACACGACTA	TTATTTAGTA	CTCTTCGGAG
10a	TACGAGTGAC	GTGGCAACAT	ATTATGCCTA	TCGTGCATCC	AACTACCTGC	CACACGACTA	TTATTTAGTA	CTCTTCGGAG
10b	TACGAGTGAC	GTGGCAACAT	ATTATGCCTA	TCGTGCATCC	AACTACCTGC	CACACGACTA	TTATTTAGTA	CTCTTCGGAG
11a	TACGAGTGAC	GTGGCAACAT	ATTATGCCTA	TCGTGCATCC	AACTATCTGC	CCCACGACTA	TTATTTAGTA	CTCTTCGGAG
11b	TACGAGTGAC	GTGGCAACAT	ATTATGCCTA	TCGTGCATCC	AACTATCTGC	CCCACGACTA	TTATTTAGTA	CTCTTCGGAG
12a	TACGAGTGAC	GTGGCAACAT	ATTATGCCTA	TCGTGCATCC	AACTATCTGC	CACACGACTA	TTATTTAGTA	CTCTTCGGAG
12b	TACGAGTGAC	GTGGCAACAT	ATTATGCCTA	TCGTGCATCC	AACTATCTGC	CACACGACTA	TTATTTAGTA	CTCTTCGGAG
13a	TACGAGTGAC	GTGGCAACAT	ATTATGCCTA	TCGTGCATCC	AACTATCTGC	CACACGACTA	TTATTTAGTA	CTCTTCGGAG
13b	TACGAGTGAC	GTGGCAACAT	ATTATGCCTA	TCGTGCATCC	AACTATCTGC	CACACGACTA	TTATTTAGTA	CTCTTCGGAG
14	TACGAGTGAC	GTGGCAACAT	ATTATGCCTA	TCGTACATCC	AACTATCTGC	CACACGACTA	TTATTTAGTA	CTCTTCGGAG
15	TACGAGTAGC	GTGGCAACAT	ATTATGCCTA	TCGTACATCC	AACTATCTGC	CACACGACTA	TTTTTTAGTA	CTCTTCGGAG
16	TACGAGTAAC	GTGGCAACAT	ATTATGCCTA	TCGTACATCC	AACTATCTGC	CCCACGACTA	TTATTTAGTA	CTCTTCGGAG
17a	TACGAGTGAC	GTGGCAACAT	ATTATGCCTA	TCGTGCATCC	AACTATCTGC	CACACGACTA	TTATTTAGTA	CTCTTCGGAG
17b	TACGAGTGAC	GTGGCAACAT	ATTATGCCTA	TCGTGCATCC	AACTATCTGC	CACACGACTA	TTATTTAGTA	CTCTTCGGAG
17c	TACGAGTGAC	GTGGCAACAT	ATTATGCCTA	TCGTGCATCC	AACTATCTGC	CACACGACTA	TTATTTAGTA	CTCTTCGGAG
17d	TACGAGTGAC	GTGGCAACAT	ATTATGCCTA	TCGTGCATCC	AACTATCTGC	CACACGACTA	TTATTTAGTA	CTCTTCGGAG
17e	TACGAGTGAC	GTGGCAACAT	ATTATGCCTA	TCGTGCATCC	AACTATCTGC	CACACGACTA	TTATTTAGTA	CTCTTCGGAG
18a	TACGAGTGAC	GTGGCAACAT	ATTATGCCTA	TCGTGCATCC	AACTATCTGC	CACACGACTA	TTATTTAGTA	CTCTTCGGAG
18b	TACGAGTGAC	GTGGCAACAT	ATTATGCCTA	TCGTGCATCC	AACTATCTGC	CACACGACTA	TTATTTAGTA	CTCTTCGGAG
19a	TACGAGTGAC	GTGGCAACAT	ATTATGCCTA	TCGTGCATCC	AACTATCTGC	CACACGACTA	TTATTTAGTA	CTCTTCGGAG
19b	TACGAGTGAC	GTGGCAACAT	ATTATGCCTA	TCGTGCATCC	AACTATCTGC	CACACGACTA	TTATTTAGtA	CTCTTCGGAG
20	TACGAGTGAC	GCGGCAACAT	ATTATGCCTA	TCGTACATCC	AACTATCTGC	CACACGACTA	TTATTTAGTA	CTCTTCGGAG
21a	TACGAGTAAC	GTGGCAACAT	ATTATGCCTA	TCGTACATCC	AACTATCTGC	CACACGACTA	TTTTTTAGTA	CTCTTCGGAG
21b	TACGAGTAAC	GTGGCAACAT	ATTATGCCTA	TCGTACATCC	AACTATCTGC	CACACGACTA	TTTTTTAGTA	CTCTTCGGAG
22	TACGAGTAAC	GTGGCAACAT	ATTATGCCTA	TCGTACATCC	AACTATCTGC	CACACGACTA	TTTTTTAGTA	CTCTTCGGAG
23a	TACGAGTAAC	GTGGCAACAT	ATTATGCCTA	TCGTGCATCC	AACTATCTGC	CACACGACTA	TTTTTTAGTA	CTCTTCGGAG
23b	TACGAGTAAC	GTGGCAACAT	ATTATGCCTA	TCGTGCATCC	AACTATCTGC	CACACGACTA	TTTTTTAGTA	CTCTTCGGAG
24a	TACGAGTGAC	GTGGCAACAT	ATTATGCCTA	TCGTGCATCC	AACTATCTGC	CACACGACTA	TTATTTAGTA	CTCTTCGGAG
24b	TACGAGTGAC	GTGGCAACAT	ATTATGCCTA	TCGTGCATCC	AACTATCTGC	CACACGACTA	TTATTTAGTA	CTCTTCGGAG
25a	TACGAGTAAC	GTGGCAACAT	ATTATGCCTA	TCGTACATCC	AACTATCTGC	CACACGACTA	TTTTTTAGTA	CTCTTCGGAG
25b	TACGAGTAAC	GTGGCAACAT	ATTATGCCTA	TCGTACATCC	AACTATCTGC	CACACGACTA	TTTTTTAGTA	CTCTTCGGAG
26	TACGAGTAAC	GTGGCAACAT	ATTATGCCTA	TCGTGCATCC	AACTATCTGC	CACACGACTA	TTTTTTAGTA	CTCTTCGGAG
27	TACGAGTAAC	GTGGCAACAT	ATTATGCCTA	TCGTGCATCC	AACTATCTGC	CACACGACTA	TTTTTTAGTA	CTCTTCGGAG
28	TACGAGTAAC	GtGGCAACAT	ATTATGCCTA	TCGTACATCC	AACTATCTGC	CACACGACTA	TTATTTAGTA	CTCTTCGGAG
			ATTATGCCTA					
				CGTACATCCA				

No.	410	420	430	440	450	460	470	480
1	TGTCAGTCAA	ACACCTAGGG	CGGGAAACCA	CCAACCCGCT	CCTGACGATA	CGATGACCAG	ATCTGAGGAC	TTTTATTGTA
2	TGTCAGTCAA	ACACCTAGGG	CGGGAAACCA	CCAACCCGCT	CCTGACGATA	CGATGACCAG	ATCTAAGGAC	TTTTATTGTA
3	TGTCAGTCAA	ACACCTAGGG	CGGGAAACCA	CCAACCCGCT	CCTGACGATA	CGATGACCAG	ATCTAAGGAC	TTTTATTGTA
4a	TGTCAGTCAA	ACACTTAGGG	CGAGAAACCA	CCAACCCGCT	CCTGACGATA	CGATGACCAG	ATCTGAGGAC	TTTTATTGTA
4b	TGTCAGTCAA	ACACTTAGGG	CGAGAAACCA	CCAACCCGCT	CCTGACGATa	CGATGACCAG	ATCTGAGGAC	TTTTATTGTA
5a	TGTAAGTCAA	ACACTTAGGG	CGAGAAACCA	CCAACCCGCT	CCTGACGATA	CGATGACCAG	ATCTGAGGAC	TTTTATTGTA
5b	TGTAAGTCAA	ACACTTAGGG	CGAGAAACCA	CCAACCCGCT	CCTGACGATA	CGATGACCAG	ATCTGAGGAC	TTTTATTGTA
6a	TGTCAGTCAA	ACACTTAGGG	CGGGAAACCA	CCAACCCGCT	CCTGACGATA	CGATGACCAG	ATCTGAGGAC	TTTTATTGTA
6b	TGTCAGTCAA	ACACTTAGGG	CGGGAAACCA	CCAACCCGCT	CCTGACGATA	CGATGACCAG	ATCTGAGGAC	TTTTATTGTA
7	TGTGAGCCAA	ACACTTAGTA	CGAGAAACCA	CCAACCCGCT	CCTGATGATA	CGATGACCAG	ATCTGAGGAC	TTTTATTGTA
8	TGTCAGTCAA	ACACTTAGGG	CGAGAAACCA	CCAACCCGCT	CCTGACGATA	CGATGACCAG	ATCTGAGGAC	TTTTATTGTA
					CCTGACGATA			
10a	TGTCAGTCAA	ACACTTAGGG	CGGGAAACCA	CCAACCCGCT	CCTGACGATA	CGATGACCAG	ATCTGAGGAC	TTTTATTGTA
10b	TGTCAGTCAA	ACACTTAGGG	CGGGAAACCA	CCAACCCGCT	CCTGACGATA	CGATGACCAG	ATCTGAGGAC	TTTTATTGTA
11a	TGTCAGTCAA	ACACTTAGGG	CGAGAAACCA	CCAACCCGCT	CCTGACGATA	CGATGACCAG	ATCTGAGGAC	TTTTATTGTA
11b	TGTCAGTCAA	ACACTTAGGG	CGAGAAACCA	CCAACCCGCT	CCTGACGATA	CGATGACCAG	ATCTGAGGAC	TTTTATTGTA
12a	TGTCAGTCAA	ACACTTAGGG	CGGGAAACCA	CCAACCCGCT	CCTGACGATA	CGATGACCAG	ATCTGAGGAC	TTTTATTGTA
					CCTGACGATA			
					CCTGACGATA			
					CCTGACGATA			
					CCTGACGATA			
					CCTGACGATA			
					CCTGACGATA			
					CCTGACGATA			
					CCTGACGATA			
					CCTGACGATA			
					CCTGACGATA			
					CCTGACGATA			
					CCTGACGATA			
					CCTGACGATA			
					CCTGACGATA			
					CCTGACGATA			
					CCTGACGATA			
					CCTGACGATA			
					CCTGACGATA			
					CCTGACGATA			
					CCTGACGATA			
					CCTGACGATA			
					CCTGACGACa			
					CCTGACGACA			
					CCTGACGATA			
					CCTGACGATA			
					CCTGACGATA			
					CCTGACGATA			
					CCTGACGATA			
					CCTGACGATA			
29								

No.	490	500	510	520	530	540	550	560
1	GAGTGCCTTA	CTTCCCTTGA	GGCGCCACTG	GTTAAAATCT	ATGGGCACGA	CTCGAAGATT	CATTCATCAA	TTGGATCGAA
2	GAGTGCCTTA	CTTCCCTTGA	GGCGCCACTG	GTTAAAATCT	ATGGGCACGA	TTCGAAGATT	CATTCATCAA	TTGGATCGAA
3	GAGTGCCTTA	CTTCCCTTGA	GGCGCCACTG	GTTAAAATCT	ATGGGCACGA	TTCGAAGATT	CATTCATCAA	TTGGATCGAA
4a	GAGTGCCTTA	CTTCCCTTGA	GGCGCCACTG	GTTAAAATCT	ATGGGCACGA	CTCGAAGATT	CATTCATCAA	TTGGATCGAa
4b	GAGTGCCTTa	CTTCCCTTGA	GGCGCCACTG	GTTAAAATCT	ATGGGCACGA	CTCGAAGATT	CATTCATCAA	TTGGATCGAA
5a	GAGTGCCTTA	CTTCCCTTGA	GGCGCCACTG	GTTAAAATCT	ATGGGCACGA	CTCGAAGATT	CATTCATCAA	TTGGATCGAA
5b	GAGTGCCTTA	CTTCCCTTGA	GGCGCCACTG	GTTAAAATCT	ATGGGCACGA	CTCGAAGATT	CATTCATCAA	TTGGATCGAA
6a	GAGTGCCTTA	CTTCCCTTGA	GGCGCCACTG	GTTAAAATCT	ATGGGCACGA	CTCGAAGATT	CATTCATCAA	TTGGATCGAA
6b	GAGTGCCTTA	CTTCCCTTGA	GGCGCCACTG	GTTAAAATCT	ATGGGCACGA	CTCGAAGATT	CATTCATCAA	TTGGATCGAA
7	GAGTGC-TTA	CTTCCCTTGA	GGCGCCACTG	GTTAAAATCT	ATGGGCACGA	TTCGAAGATT	CATTCATCAA	TTGGGATCGA
8	GAGTGCCTTA	CTTCCCTTGA	GGCGCCACTG	GTTAAAATCT	ATGGGCACGA	CTCGAAGATT	CATTCATCAA	TTGGATCGAA
9	GAGTGCCTTA	CTTCCCTTGA	GGCGCCACTG	GTTaAAATCT	ATGGGCACGA	CTCGAAGATT	CATTCATCAA	TTGGATCGAA
10a	GAGTGCCTTA	CTTCCCTTGA	GGCGCCACTG	GTTAAAATCT	ATGGGCACGA	CTCGAAGATT	CATTCATCAA	TTGGATCGAA
10b	GAGTGCCTTA	CTTCCCTTGA	GGCGCCACTG	GTTAAAATCT	ATGGGCACGA	CTCGAAGATT	CATTCATCAA	TTGGATCGAA
11a	GAGTGCCTTA	CTTCCCTTGA	GGCGCCACTG	GTTAAAATCT	ATGGACACGA	CTCGAAGATT	CATTCATCAA	TTGGATCGAA
11b	GAGTGCCTTA	CTTCCCTTGA	GGCGCCACTG	GTTAAAATCT	ATGGACACGA	CTCGAAGATT	CATTCATCAA	TTGGATCGAA
12a	GAGTGCCTTA	CTTCCCTTGA	GGCGCCACTG	GTTAAAATCT	ATGGGCACGA	CTCGAAGATT	CATTCATCAA	TTGGATCGAA
12b	GAGTGCCTTA	CTTCCCTTGA	GGCGCCACTG	GTTAAAATCT	ATGGGCACGA	CTCGAAGATT	CATTCATCAA	TTGGATCGAA
13a	GAGTGCCTTA	CTTCCCTTGA	GGCGCCACTG	GTTaAAATCT	ATGGGCACGA	CTCGAAGATT	CATTCATCAA	TTGGATCGAA
13b	GAGTGCCTTA	CTTCCCTTGA	GGCGCCACTG	GTTAAAATCT	ATGGGCACGA	CTCGAAGATT	CATTCATCAA	TTGGATCGAA
14	GAGTGCCTTA	CTTCCCTTGA	GGCGCCACTG	GTTAAAATCT	ATGGGCACGA	CTCGAAGATT	CATTCATCAA	TTGGATCGAA
15	GAGTGCCTTA	CTTCCCTTGA	GGCGCCACTG	GTTAAAATCT	ATGGACACGA	CTCGAAGATT	CATTCATCAA	TTGGATCGAA
16	GAGTGCCTTA	CTTCCCTTGA	GGCGCCACTG	GTTAAAATCT	ATGGGCACGA	CTCGAAGATT	CATTCATCAA	TTGGATCGAA
17a	GAGTGCCTTA	CTTCCCTTGA	GGCGCCACTG	GTTAAAATCT	ATGGGCACGA	CTCGAAGATT	CATTCATCAA	TTGGATCGAA
17b	GAGTGCCTTA	CTTCCCTTGA	GGCGCCACTG	GTTAAAATCT	ATGGGCACGA	CTCGAAGATT	CATTCATCAa	TTGGATCGAA
17c	GAGTGCCTTA	CTTCCCTTGA	GGCGCCACTG	GTTAAAATCT	ATGGGCACGA	CTCGAAGATT	CATTCATCAA	TTGGATCGAA
17d	GAGTGCCTTA	CTTCCCTTGA	GGCGCCACTG	GTTAAAATCT	ATGGGCACGA	CTCGAAGATT	CATTCATCAA	TTGGATCGAA
17e	GAGTGCCTTA	CTTCCCTTGA	GGCGCCACTG	GTTAAAATCT	ATGGGCACGA	CTCGAAGATT	CATTCATCAA	TTGGATCGAA
18a	GAGTGCCTTA	CTTCCCTTGA	GGCGCCACTG	GTTAAAATCT	ATGGGCACGA	CTCGAAGATT	CATTCATCAA	TTGGATCGAA
18b	GAGTGCCTTA	CTTCCCTTGA	GGCGCCACTG	GTTAAAATCT	ATGGGCACGA	CTCGAAGATT	CATTCATCAA	TTGGATCGAA
19a						CTCGAAGATT		
						CTCGAAGATT		
						TTCGAAGATT		
		CTTCCCTTGA	GGCGCCACTG	GTTAAAATCT	ATGGACACGA	CTCGAAGATT	CATTCATCAA	TTGGATCGaA
21b						CTCGAAGATT		
22						CTCGAAGATT		
						CT-GAAGATT		
								TTGGACCGAA
								TTGGATCGAT
								TTGGATCGAT
								TTGGATCGAA
								TTGGATCGAA
								TTGGATCGAA
								TTGGATCGAA
								?????????
								TTGGATCGAA
30	AGTGTCTTAC	TTCCCTTTTG	GCGCCACTGG	TTAAAATCTA	TGGACACGGC	TTGAAGACTC	ATGGATCAAT	TGGATCGAAC

No.	570	580	590	600	610	620	630	640
1	CGGGTACCTG	GCGGCTGCCT	AATAACTAAT	CAGCCCATGA	TCCCTCAGCC	TCCTCAAAaC	ACATCTGGTA	ATTTTTTATT
2	CGGGTACCTG	GCGGCTGCCT	AATAACTAAT	CAGCCCATGA	TCCCTCAGCC	TCCTCAAAAC	ACATCTGGTA	ATTTTTTATT
3	CGGGTACCTG	GCGGCTGCCT	AATAACTAAT	CAGCCCATGA	TCCCTCAGCC	TCCTCAAA-C	ACATCtGGtA	ATTTTTTATT
4a	CGGGTACCTG	GCGGCTGCCT	AATAaCTAAT	CAGCCCATGA	TCCCTCAACT	TcCTCAAAAc	ACATCTGGTA	ATTTTTTATT
4 b	CGGGTaCCTG	GCGGCTGCCT	AaTaaCTAAT	CAGCCCATGA	TCCCTCAACT	TCCTCAAAAC	ACATCTGGtA	ATTTTTTATT
5a	CGGGTACCTG	GCGGCTGCTT	AATAACTAAT	CAGCCCATGA	TCCCTCAgCC	TCCTCAAAAC	ACATCTGGTA	ATTTTTTATT
5b	CGGGTACCTG	GCGGCTGCTT	AATAACTAAT	CAGCCCATGA	TCCCTCAGCC	TCCTCAAAaC	ACATCTGGtA	ATTTTTTATT
6a	CGGGTACCTG	GCGGCTGCCT	AATAACTAAT	CAGcCCATGA	TCCCTCAACT	TCCTCAAAAC	ACATCTGGtA	ATTTTTTATT
6b	CGGGTACCTG	GCGGCTGCCT	AATAACTAAT	CAGCCCATGA	TCCCTCAACT	TCCTCAAAAC	ACATCTGGTA	ATTTTTTATT
7	ACGGGTACCT	GGGGCTGCTT	AATA-CTAAT	CAGCC-ATGA	TCCGTCA-CT	TCCTCAAACA	ACACATGGTA	G-TTTTTATT
8	CGGGTACCTG	GCGGCTGCTT	AATAaCTAAT	CAGCCCATGA	TCCCTCAGCC	TCCTCAAAAC	ACATCTGGtA	ATTTTTTAtT
9	CGGGTACCTG	GCGGCTGCCT	AATAACTAaT	CAGCCCATGA	TCCCTCAaCT	TCCTCAAAAC	ACATCTGGtA	ATTTTTTATT
10a	CGGGTACCTG	GCGGCTGCTT	AATAACTAAT	CAGCCCATGA	TCCCTCAGCC	TCCTCAAAAC	ACATCTGGTA	ATTTTTTATT
10b	CGGGTACCTG	GCGGCTGCTT	AATAACTAAT	CAGCCCATGA	TCCCTCAGCC	TCCTCAAAAC	ACATCTGGTA	ATTTTTTATT
11a	CGGGTACCTG	GCGGCTGCTT	AATAACTAAT	CAGCCCATGA	TCCCTCAGCC	TCCTCAAAAC	ACATCTGGTA	ATTTTTTATT
11b	CGGGTACCTG	GCGGCTGCTT	AATAACTAAT	CAGCCCATGA	TCCCTCAGCC	TCCTCAAAAC	ACATCTGGTA	ATTTTTTATT
12a	CGGGTACCTG	GCGGCTGCCT	AATAaCTAAT	CAGCCCATGA	TCCCTCAGCC	TCCTCAAAAC	ACATCTGGTA	ATTTTTTATT
12b	CGGGTaCCTG	GcGGCTGCcT	AAtAACTAAT	CAGCCCAtGA	TCCCTCAGCC	TCCtCAAAAC	ACATCTGGtA	ATTTTTTATT
13a	CGGGTACCTG	GCGGCTGCCT	AaTAaCTAAT	CAGCCCATGA	TCCCTCACcT	TCcTCAAAaC	aCATCtGGtA	ATTTTTTATT
13b	CGGGTACCTG	GCGGCTGCCT	AATAACTAAT	CAGCCCATGA	TCCCTCAACT	TCCTCAAAAC	ACATCTGGTA	ATTTTTTATT
14	CGGGTACCTG	GCGGCTGCCT	AATAACTAAT	CAGCCCATGA	TCCCTCAACT	TCCTCAAAAC	aCATCTGGtA	ATTTTTTATT
15	CGGGTACCTG	GCGGCTGCTT	AATAACTAAT	CAGCCCATGA	TCCCTCAGCC	TCCTCTAAGC	ACATCTGGTA	ATTTTTTATT
16	CGGGTACCTG	GCGGCTGCTT	AATAACTAAT	CAGCCCATGA	TCCCTCAGCC	TCCTCTAAGC	ACATCTGGTA	GTTTTTTATT
17a	CGGGTACCTG	GCGGCTGCCT	AATAACTAAT	CAGCCCATGA	TCCCTCAGCC	TCCTCAAAAC	ACATCTGGtA	ATTTTTTATT
17b	CGGGTACCTG	GCGGCTGcCT	AATAACTAAT	CAGCCCATGA	TCCCTCAGCC	TCCTCAAAAC	ACATCTGGta	ATTTTTTATT
17c	CGGGTACCTG	GCGGCTGCCT	AATAACTAAT	CAGCCCATGA	TCCCTCAGCC	TCCTCAAAAC	ACATCTGGTA	ATTTTTTATT
17d	CGGGTACCTG	GCGGCTGCCT	AATAACTAAT	CAGCCCATGA	TCCCTCAGCC	TCCTCAAAAC	ACATCTGGTA	ATTTTTTATT
17e	CGGGTACCTG	GCGGCTGCTT	AATAACTAAT	CAGCCCATGA	TCCCTCAGCC	TCCTCAAAAC	ACATCTGGTA	ATTTTTTATT
18a	CGGGTACCTG	GCGGCTGCCT	AATAACTAAT	CAGCCCATGA	TCCCTCAGCC	TCCTCAAAAC	ACATCTGGTA	ATTTTTTATT
18b	CGGGTACCTG	GCGGCTGCCT	AATAACTAAT	CAGCCCATGA	TCCCTCAGCC	TCCTCAAAAC	ACATCTGGtA	aTTTTTTATT
19a	CGGGTACCTG	GCGGCTGCCT	AATAaCTAAT	CAGCCCATGA	TCCCTCAaCC	TCCTCAAAAC	ACATCTGGtA	ATTTTTTTTTT
19b	CGGGTaCCTG	GCGGCTGCCT	AaTA-CTAAT	CAGCCCATGA	TCCCTCAaCC	TCCTcAAAAc	AcATcTGGtA	ATTTTTTATT
20	CGGGTACCTG	GCGGCTGCCT	AATAACTAAT	CAGCC-ATGA	TCCCTCAACT	TCCTCAAAAC	ACATCTGGTA	ATTTTTTATT
21a	CGGGTACCTG	GCGGCTGCTT	aaTAACTAAT	CAGCCCATGA	TCCCTCAGCC	TCCTCTAAGC	ACATCTGGTA	GTTTTTTATT
21b	CGGGTACCTG	GCGGCTGCTT	AATAACTAAT	CAGCCCATGA	TCCCTCAGCC	TCCTCTAAGC	ACATCTGGtA	GTTTTTTATT
22	CGGGTACCTG	GCGGCTGCTT	AATAACTAAT	CAGCCCATGA	TCCCTCAGCC	TCCTCTAAGC	ACATCTGGTA	GTTTTTTATT
23a	CGGGTACCTG	GCGGCTGCTT	AATA-CTAAT	CAGCCCATGA	TCC-TCAGCC	TCCTCAAAAC	ACATCTGGTA	ATTTTT-ATT
23b	CGGGTACCTG	GCGGCTGCTT	aAtAaCTAAT	CAGCCCATGA	TCCCTCAGCC	TCCtCAAAAC	ACATCTGGTa	AtttTTTATT
24a	CGGaTACCTG	GCGGTTGCTT	GATAACTAAT	CAGCCCATGA	TCCCTCAGCC	TCCTCTAAGC	ACATCTGGtA	ATTTTTTATT
24b	CGGATACCTG	GCGGTTGCTT	GATAACTAAT	CAGCCCATGA	TCCCTCAGCC	TCCTCTAAGC	ACATCTGGtA	ATTTTTTATT
25a	CGGGTACCTG	GCGGCTGCTT	AaTAACTAAT	CAGcCCATGA	TCCCTCAGCC	TCCTCTAAGC	ACATCTGGTA	GTTTTTTTTT
25b	CGGGTACCTG	GCGGCTGCTT	AATAACTAAT	CAGCCcaTGA	TCCCTCAGCC	TCCTCTAaGC	ACATCTGGtA	GTTTTTTATT
26	CGGGTACCTG	GCGGCTGCTT	AATAACTAAT	CAGCCCATGA	TCC-TCAGCC	TCCTCTAAAC	ACATCTGGTA	ATTTTTTATT
27	CGGGTACCTG	GCGGCTGCTT	AATAACTAAT	CAGCCCATGA	TCCCTCAGCC	TCCTCTAAGC	ACATCTGGtA	ATTTTTTATT
28	?????????	?????????	?????????	?????????	?????????	?????????	?????????	?????????
29	CGGGTACCTG	GCGGCTGCTT	GATAACTAAT	CAGCCCATGA	TCCCTCAGCC	TCCTCTAAGC	ACATCTGGTA	ATTTTTTATT
30	GGGTACCTGG	CGGCTGCTTG	ATAACTAAAT	GGCCCATGAT	CCCTCAACTT	CCTCCAAACA	CATCTGGTAG	-TTTTTATTT

No.	650	660	670	680	690	700	710	720
1	TTTCTGTGTG	GTCAACCAAC	ATTACGGTAA	TATGTCTGGT	ACTACACGAT	CTAAAGCTGA	ACATAaCATG	CAATTGTTTT
2	TT-CTGTGTG	GTCAACCAAC	ATTACGGTAA	TATGTCTGGT	ACTACACGAT	CTAAAGCTGA	ACATAACATG	CAATTGTTTT
3	TTTcTGtGtG	GtCCACCCAC	ATTACGGTAA	TATGTCTGGT	ACTACaCGAT	cTAAAGcTGA	ACATAAcaTG	CAATTGTTTT
4a	TTtCtGtGTG	GTCAACCAAC	ATTACGGTAA	tATGTCTGGT	ACTACACGAT	CTAAAGCTGA	ACATAACATG	CAATTGTTTT
4 b	TTtCTGTGTG	GTCAACCAAC	ATTACGGTAA	TATGTCTGGT	ACTACACGAT	CTAAAGCTGA	ACATAACATG	CAATTGTTTT
5a	TTTCTGTGTG	GTCAACCAAC	ATTACGGTAA	TATGTCTGGT	ACTACACGAT	CTaAAGCTGA	ACATAACATG	CAATtGTTTT
5b	TTTCTGtGtG	GtCAACCAAC	ATTACGGTAA	TATGTCTGGt	ACTACaCGAT	CTAAaGcTGA	aCATAACATG	cAATTGtTTT
6a	tT-CTGtGtG	GtCAACCAaC	ATTACGGTAA	TATGTCTGGt	aCTACACGAT	CTAAaGCTGA	ACATAACATG	CAATTGtTTT
6b	TT-CTGTGTG	GTCAACCAAC	ATTACGGTAA	TATGTCTGGT	ACTACACGAT	CTAAAGCTGA	ACATAACATG	CAATTGTTTT
7	TT-CTGTG-G	GTCAACCAAC	ATTACGGTAA	TATGTCTGGT	ACTACACGAT	CTAAAGCTGA	ACATAACATG	CAATTGTTTT
8	TTTCtGtGtG	GtCAACCAAC	ATTACGGtAA	TaTGTcTGGt	ACtaCaCGAT	cTAAaGcTGA	aCaTAACAtG	CAATTGTTTT
9	TTtCTGTGTG	GTCAACCAAC	ATTACGGTAA	TATGTCTGGT	ACTACACGAT	CTAAAGCTGA	ACATAACATG	CAATTGTTTT
10a	TTTCTGTGTG	GTCAACCACA	-TTACGGTAA	TATGTCTGGT	ACTACACGAT	CTAAAGCTGA	ACATAACATG	CAATTGTTTT
10b	TTTCTGTGTG	GTCAACCACA	-TTACGGTAA	TATGTCTGGT	ACTACACGAT	CTAAAGCTGA	ACATAACATG	CAATTGTTTT
11a	TTTCTGTGTG	GTCAACCACA	-TTACGGTAA	TATGTCTGGT	ACTACACGAT	CTAAAGCTGA	ACATAACATG	CAATTGTTTT
11b	TTTCTGTGTG	GTCAACCACA	-TTACGGTAA	TATGTCTGGT	ACTACACGAT	CTAAAGCTGA	ACATAACATG	CAATTGTTTT
12a	TTTCTGTGTG	GTCAACCAAC	ATTACGGTAA	TATGTCTGGT	ACTACACGAT	CTAAAGCTGA	ACATAACATG	CAATTGTTTT
12b	TTTCTGTGTG	GTCAACCAAC	ATTACGGtAA	TATGTCTGGT	ACTACACGAT	CTAAAGCTGA	ACATAACATG	CAATTGTTTT
13a	TTtCTGTGTG	GTCAACCAAC	ATTACGGTAA	TATGTCTGGT	ACTACACGAT	CTAAAGCTGA	ACATAACATG	CAATTGTTTT
13b	TTTCTGTGTG	GTCAACCAAC	ATTACGGTAA	TATGTCTGGT	ACTACACGAT	CTAAAGCTGA	ACATAACATG	CAATTGTTTT
14	TTTCtGtGtG	GtCAACCAAC	ATTACGGtAA	TATGTCTGGT	ACTACaCGAT	CTAAAGcTGA	ACATAAcATG	caATTGTTTT
15	TTTCTGTGTG	GTCAACCAAC	ATTACGGTAA	TATGTCTGGT	ACTACACGAT	CTAAAGCTGA	ACATAACATG	CAATTGTTTT
16	TTTCTGTGTG	GTCAACCAAC	ATTACGGTAA	TATGTCTGGT	ACTACACGAT	CTAAAGCTGA	ACATAACATG	CAATTGTTTT
17a	tTTcTGtGtG	gtCAaCCAAC	ATTACGGtAA	TATGTctGGT	ACTACaCGAT	cTAAaGCTGa	ACaTAACAtG	CAATTGtTTT
17b	TTTCTGtGTG	GtCaACCAAC	ATTACGGtAA	TaTGtcTGGt	ACTACACGAT	CTAAAGCTGA	ACATAAcAtG	CaATTGTTTT
17c	TTtCTGTGtG	GtCaACCAAC	ATTACGGtAA	TATGtCTGGT	ACTACACGAT	cTAAaGCTGA	ACaTAACATG	CAaTTGtTTT
17d	TTTCTGtGtG	GtCAACCAAC	ATTACGGtAA	TATGTctGGT	ACTACACGAT	CTAAAGCTGA	ACatAACATG	CAaTTGtTTT
17e	TTtCTGtGTG	GTCAacCAAC	ATTACGGTAA	TATGTCTGGT	ACTACaCGAT	CTAAaGCTGA	ACATAACATG	CAaTTGtTTT
18a	TTTcTGtGtG	GtCAACCAAC	ATTACGGtAA	TATGTctGGT	ACTACACGAT	CTAAAGCTGa	ACaTAACATG	CAaTTGTTTT
18b	TTTCTGtGtG	GtCAaCCAAC	ATTACGGtAA	TATGTctGGt	ACTACaCGAT	CTAAAGcTGA	ACatAACATG	CAaTTGtTTT
19a	TTtCTGtGtG	gtCAACCAAC	AT???????	??-gtctggt	actaCACGAT	ctAAAGCtGa	ACATAACATG	CAATTGTTTT
19b	TTtCtGtGtG	gtCAACCAAC	ATTACGGTAA	TATGTCTGGt	aCTACACGAT	CTAAAGCTGA	ACATAACATG	CAATTGTTTT
20	TT-CTGTGTG	GTCAACCAAC	ATTACGGTAA	TATGTCTGGT	ACTACACGAT	CTAAAGCTGA	ACATAACATG	CAATTGTTTT
21a	TTtCTGtGtG	GtcAACCAAC	ATTaCGGTAA	TATGTCtGGt	aCTACACGAT	CTAAAGCTGA	ACATAACATG	CAAtTGTTTT
21b	TTTCTGtGtG	GtCAACCAAC	ATTACGGTAA	TATGtCTGGT	ACTACACGAT	cTAAAGCTGA	ACATAACATG	CaATTGtTTT
22	TTTCTGTGTG	GTCAACCAAC	ATTACGGTAA	TATGTCTGGT	ACTACACGAT	CTAAAGCTGA	ACATAACATG	CAATTGTTTT
23a	TTTCTGTGTG	GTCAACCAAC	ATTACGGTAA	TATGACTGGT	ACTACACGAT	CTAAAGCTGA	ACATAACATG	CAATTGTTTT
	tTTCTGTGTG							
24a	TTtCTGTGTG	GTCAACCAAC	ATTACGGTAA	TATGACTGGT	ACTACACGAT	CTAAAGCTGA	ACATAACATG	CAATTGTTTT
24b	TTtcTGTGtG	GTCAACCAAC	ATTaCGGTAA	TATGACTGGT	aCtACACGAT	CTAAAGCTGa	ACATAACATG	CAATTGTTTT
25a	TTTCTGtGTG	GTCAACCAAC	ATtACGGTAa	TATGTCTGGT	ACTACACGAT	cTAAaGCTGA	ACaTAACaTG	CAaTTGTTtT
25b	TTTcTGtGtG	GtCAaCCAAC	ATTACGGtAA	TATGtCtGGT	ACTACaCGAT	cTAAAGCtGA	aCatAACaTG	CAaTTGTTTT
26	TTTCTGTGTG	GTCAACCAAC	ATTACGGTAA	TATGTCTGGT	ACTACACGAT	CTAAAGCTGA	ACATAACATG	CAATTGTTTT
27	TTTCTGtGtG	GTCaACCaAC	ATTACGGTAA	TATGTCTGGt	ACTACaCGAT	CTaAAGCTGA	ACATAaCATG	CAATTGTTTT
28	??????????	?????????	?????????	?????????	?????????	?????????	?????????	?????????
29	TTTCTGTGTG	GTCAACCAAC	ATTACGGTAA	TATGACTGGT	ACTACACGAT	CTAAAGCTGA	ACATAACATG	CAATTGTTTT
								AATTGCTTTA

No.	730	740	750	760	770	780	790	800
1	ATTTGGACCA	AATAGAATGa	GTAAATTaTa	tGAATGATtA	AAAGACATAT	tCAATAaTTt	CTAAGAGTTT	tATtGAtAaC
2	ATTTGGACCA	AATAGAATGA	GTAAATTATA	TGAATGATTA	AAAGACATAT	TCAATAATTT	CTAAGAGTTT	TATTGATAAC
3	aTTTGGaCCA	AATAGAAtGa	GtaAATTaTa	TGAAtGaTTa	AAAGACATat	TCAAtaaTTT	ctAAGaGtTT	TaTTGatAAC
4a	ATTTGGACCA	AATAGAATGA	GTAAATTATA	TGAATGATTA	AAAGACATAT	TCAATAATTT	CTAAGAGTTT	TACTGATAAC
4 b	ATTTGGACCA	AATAGAATGA	GTAAATTATA	TGAATGATTA	AAAGACATAT	TCAATAATTT	CTAAGAGTTT	TACTGATAAC
5a	ATTTGGACCA	AATAGAATGa	GTAAATTATa	TGAATGATTA	AAaGACATAT	TCAATAATTT	CTAAGAGTTT	tAtTGAtAaC
5b	aTTtGGaCCA	AaTaGAAtGa	GTAAATTATA	TGAATGATTA	AAAGACATAT	TCAATAATTT	CTAAGAGTTT	TATTGATAAC
6a	aTtTGGaCCa	AATAGAAtGa	GTAAATTaTa	TGAATGaTTA	AAaGACaTat	TCAATAaTTt	CTAAGaGTTT	TaTtGAtAaC
6b	ATTTGGACCA	AATAGAATGA	GTAAATTATA	TGAATGATTA	AAAGACATAT	TCAATAATTT	CTAAGAGTTT	TATTGATAAC
7	ATTTGGACCA	AATAGAATGA	GTAAATTATA	TGAATGATTA	AAAGACATAT	TCAATAATTT	CTAAGAGTTT	TATTGATAAC
8	aTTTGGaCCA	AaTAGaATGa	GtAaATTaTa	tGAAtGaTTA	AAAgACaTaT	TCAAtAATTT	ctAAgaGTTT	taTTGaTAAC
9	ATCTGGACCA	AATAGAATGA	GTAAATTATA	TGAATGATTA	AAAGACATAT	TCAATAATTT	CTAAGAGTTT	TATTGATAAC
10a	ATTTGGACCA	AATAGAATGA	GTAAATTATA	TGAATGATTA	AAAGACATAT	TCAATAATTT	CTAAGAGTTT	TATTGATAAC
10b	ATTTGGACCA	AATAGAATGA	GTAAATTATA	TGAATGATTA	AAAGACATAT	TCAATAATTT	CTAAGAGTTT	TATTGATAAC
		AATAGAATGA						
		AATAGAATGA						
		AATAGAATGA						
		AATAGAATGA						
		AATAGAATGA						
		AATAGAATGA						
		AATaGAAtGa						
		AATAGAATGA						
		AATAGAATGA						
		AATaGAatGa						
		AATAGAATGA						
		AaTAGAatga						
		AaTaGAATGa						
		AaTaGaATGa						
		AaTAGAATGa						
		AATAGAATGa						
		AATAGAATGA						
		AATAGAATGA AATAGAATGA						
		AATAGAATGA						
		AATAGAATGA						
		AATAGAATGA						
		AATAGAATGA						
		AATAGAATGA						
		AATAGAATGA						
		AATAGAATGA						
		aatagaatga						
		AATAGAATGA						
		AATAGAATGA						
		AaTAGaATGa						
		??????????						
		AATAGAATGA						
		ATAGAATGAG						

No.	810	820	830	840	850	860	870	880
1	GTATTTTTAt	ATTTTTCCcC	CGGAgCTTGA	ATTATCAATA	TTTAAGATTT	TGAACACGAA	CTAATTTTTC	ATCCTTTAGG
2	GTATTTTTAT	ATTTTTCCCC	CGGAGCTTGA	ATTATCAATA	TTTAAGATTT	TGAACACGAA	CTAATTTTTC	ATCCTTTAGG
3	GTATTTTTAT	ATTTTTCCCC	CGGAGCTTGA	ATTATCAATA	TTTAAGATTT	TGAACACGAA	CTAATTTTTC	ATCCTTTAGG
4a	GTATTTTTAT	ATTTTTCCCC	CGGAGCTTGA	ATTATCAATA	TTTATGATTT	TGAACACGAA	CTAATTTTTC	ATCCTTTAGG
4b	GTATTTTTAT	ATTTTTCCCC	CGGAGCTTGA	ATTATCAATA	TTTATGATTT	TGAACACGAA	CTAATTTTTC	ATCCTTTAGG
5a	GtATTTTTat	AtTTTTCCCC	cGGaGCTTGA	ATTATCAATA	TTTAAGATTT	TGAACACGAA	CTAATTTTTC	ATCCTTTAGG
5b	GTATTTTTAT	ATTTTTCCCC	CGGAGCTTGA	ATTATCAATA	TTTAAGATTT	TGAACACGAA	CTAATTTTTC	ATCCTTTAGG
6a	GTaTTTTTaT	ATTTTTCCCC	CGGAGCTTGA	ATTATCAATA	TTTAAGATTT	TGAACACGAA	CTAATTTTTC	ATCCTTTAGG
6b	GTATTTTTAT	ATTTTTCCCC	CGGAGCTTGA	ATTATCAATA	TTTAAGATTT	TGAACACGAA	CTAATTTTTC	ATCCTTTAGG
7	GTATTTTTAT	ATTTTTCCCC	CGGAGCTTGA	ATTATCAATA	TTTAAGATTT	TGAACACGAA	CTAATTTTTC	ATCCTTTAGG
8	GTATTTTTAT	ATTTTTCCCC	TGGAGCTTGA	ATTATCAATA	TTTAAGATTT	TGAACACGAA	${\tt CTAATTTTC}$	ATCCTTTAGG
9	GTATTTTTAt	ATTTTTCCCC	TGGAGCTTGA	ATTATCAATA	TTTAAGATTT	TGAACACGAA	CtAATTTTTC	ATCCTTTAGG
10a	GTATTTTTAT	ATTTTTCCCC	CGGAGCTTGA	ATTATCAATA	TTTAAGATTT	TGAACACGAA	${\tt CTAATTTTC}$	ATCCTTTAGG
10b	GTATTTTTAT	ATTTTTCCCC	CGGAGCTTGA	ATTATCAATA	TTTAAGATTT	TGAACACGAA	CTAATTTTTC	ATCCTTTAGG
11a	GTATTTTTAT	ATTTTTCCCC	TGGAGCTTGA	ATTATCAATA	TTTAAGATTT	TGAACACGAA	CTAATTTTTC	ATCCTTTAGG
11b	GTATTTTTAT	ATTTTTCCCC	TGGAGCTTGA	ATTATCAATA	TTTAAGATTT	TGAACACGAA	${\tt CTAATTTTC}$	ATCCTTTAGG
12a	GTATTTTTAT	ATTTTTCCCC	CGGAGCTTGA	ATTATCAATA	TTTAAGATTT	TGAACACGAA	${\tt CTAATTTTC}$	ATCCTTTAGG
12b	GTATTTTTAT	ATTTTTCCCC	TGGAGCTTGA	ATTATCAATA	TTTAAGATTT	TGAACACGAA	${\tt CTAATTTTC}$	ATCCTTTAGG
13a	GTATTTTTAT	ATTTTTCCCC	CGGAGCTTGA	ATTATCAATA	TTTAAGATTT	TGAACACGAA	CTACTTTTTC	ATCCTTTAGG
13b	GTATTTTTAT	ATTTTTCCCC	CGGAGCTTGA	ATTATCAATA	TTTAAGATTT	TGAACACGAA	CTAATTTTTC	ATCCTTTAGG
14	GTATTTTTAT	ATTTTTCCCC	CGGAGCTTGA	ATTATCAATA	TTTAAGATTT	TGAACACGAA	${\tt CTAATTTTC}$	ATCCTTTAGG
15	GTATTTTTAT	ATTCTTCCCC	CGGAGCTTGA	ATTATCAATA	TTTAAGATTT	TGAACACGAA	${\tt CTAATTTTC}$	ATCCTTTAGG
16	GTATTTTTAT	ATTTTTCCCC	CGGAGCTTGA	ATTATCAATA	TTTAAGATTT	TGAACACGAA	${\tt CTAATTTTC}$	ATCCTTTAGG
17a	GTATTTTTAT	ATTTTTCCCC	TGGAGCTTGA	ATTATCAATA	TTTAAGATTT	TGAACaCGAA	${\tt CTAATTTTC}$	ATCCTTTAGG
17b	GTATTTTTAT	ATTTTTCCCC	TGGAGCTTGA	ATTATCAATA	TTTAAGATTT	TGAACACGAA	CTAATTTTTC	ATCCTTTAGG
17c	GtATTTTTAT	ATTTTTCCCC	TGGAGCTTGA	ATTATCAATA	TTTAAGATTT	TGAACACGAA	${\tt CTAATTTTC}$	ATCCTTTAGG
17d	GTATTTTTAT	ATTTTTCCCC	TGGAGCTTGA	ATTATCAATA	TTTAAGATTT	TGAACACGAA	${\tt CTAATTTTC}$	ATCCTTTAGG
17e	GTaTTTTTAT	ATTTTTCCCC	TGGAGCTTGA	ATTATCAATA	TTTAAGATTT	TGAACACGAA	CTAATTTTTC	ATCCTTTAGG
18a	GTATTTTTAT	ATTTTTCCCC	TGGAGCTTGA	ATTATCAATA	TTTAAGATTT	TGAACACGAA	CTAATTTTTC	ATCCTTTAGG
18b	GTATTTTTAT	ATTTTTCCCC	TGGAGCTTGA	ATTATCAATA	TTTAAGATTT	TGAACaCGAA	CTAATTTTTC	ATCCTTTAGG
19a	GTATTTTTAT	ATTTTTCCCC	TGGAGCTTGA	ATTATCaATA	TtTAAGATTT	TGAACACGAA	CTAATTTTTC	ATCCTTTAGG
19b	GTATTTTTAT	ATTTTTCCCC	TGGAGCTTGA	ATTATCAATA	TTTAAGATTT	TGAACACGAA	CTAATTTTC	ATCCTTTAGG
		ATTTTTCCCC						
		ATTTTTCCCC						
		ATTTTTCCCC						
		ATTTTTCCCC						
		ATTTTTCCCC						
		ATTTTTCCCC						
		ATATTTCCCC						
		ATATTTCCCC						
		ATTTTTCCCC						
		ATTTTTCCCC						
		ATTTTTCCCC						
		aTaTttCCcC						
		??????????	?????????	?????????	?????????	?????????	?????????	??????????
29	-	ATTTTTCCCC						
30	AATTTTTATA	TTTTCCCCCC	GGAGCTTGAA	TTATCAATAT	TTTTAGTTTT	GAACACGAAC	TAATTTTCCA	TCCTTTAAGT

No.	890	900	910	920	930	940	950	960
1	TTAACCCCCC	TACCCCCTTA	ACAAATCTTA	TCAACACGTT	TTTTACCTTG	GCCAACCCCC	AAAActTAGG	taAAATATTT
2	TTAACCCCCC	TACCCCCTTA	ACAAATCTTA	TCAACACGTT	TTTTACCTTG	GCCAACCCCC	AAAACTTAGG	TAAAATATTT
3	TTAACCCCCC	TACCCCCTTA	ACAAATCTTA	TCAACACGTT	TTTTACCTTG	GCCAACCCCC	AAAACTTAGG	TAAAATATTT
4a	TTAACCCCCC	TACCCCCTTA	ACAAATCTTA	TCAACACGTT	TTTTACCTTG	GCCAACCCCC	AAAACTTAGG	TAAAATATTT
4b	TTAACCCCCC	TACCCCCTTA	ACAAATCTTA	TCAACACGTT	TTTTACCTTG	GCCAACCCCC	AAAACTTAGG	TAAAATATTT
5a	TTAACCCCCC	TACCCCCTTA	ACAAATCTTA	TCAACACGTT	TTTTACCTTG	GCCAACCCCC	AAAACTTAGG	taAAATATTT
5b	TTAACCCCCC	TACCCCCTTA	ACAAATCTTA	TCAACACGTT	TTTTACCTTG	GCCAACCCCC	AAAACTTAGG	TAAAATATTT
6a	TTAACCCCCC	TACCCCCTTA	ACAAATCTTA	TCAACACGTT	TTTTACCTTG	GCCAACCCCC	AAAACTTAGG	TAAAATATTT
6b	TTAACCCCCC	TACCCCCTTA	ACAAATCTAA	TCAACACGTT	TTTTACCTTG	GCCAACCCCC	AAAACTTAGG	TAAAATATTT
7	TTAACCCCCC	TACCCCCTTA	ACAAATCTTA	TCAACACGTT	TTTTACCTTG	GCCAACCCCC	AAAACTTAGG	TAAAATATTT
8	TTAACCCCCC	TACCCCCTTA	ACAAATCTTA	TCAACACGTT	TTTTACCTTG	GCCAACCCCC	AAAACTTAGG	TAAAATATTT
9	TTAACCCCCC	TACCCCCTTA	ACAAATCTTA	TCAACACGTT	TTTTACCTTG	GCCAACCCCC	AAAACTTAGG	TAAAATATTT
10a	TTAACCCCCC	TACCCCCTTA	ACAAATCTTA	TCAACACGTT	TTTTACCTTG	GCCAACCCCC	AAAACTTAGG	TAAAATATTT
10b	TTAACCCCCC	TACCCCCTTA	ACAAATCTTA	TCAACACGTT	TTTTACCTTG	GCCAACCCCC	AAAACTTAGG	TAAAATATTT
11a	TTAACCCCCC	TACCCCCTTA	ACAAATCTTA	TCAACACGTT	TTTTACCTTG	GCCAACCCCC	AAAACTTAGG	TAAAATATTT
11b	TTAACCCCCC	TACCCCCTTA	ACAAATCTTA	TCAACACGTT	TTTTACCTTG	GCCAACCCCC	AAAACTTAGG	TAAAATATTT
12a	TTAACCCCCC	TACCCCCTTA	ACAAATCTTA	TCAACACGTT	TTTTACCTTG	GCCAACCCCC	AAAACTTAGG	TAAAATATTT
12b	TTAACCCCCC	TACCCCCTTA	ACAAATCTTA	TCAACACGTT	TTTTACCTTG	GCCAACCCCC	AAAACTTAGG	TAAAATATTT
13a	TTAACCCCCC	TACCCCCTTA	ACAAATCTTA	TCAACACGTT	TTTTACCTTG	GCCAACCCCC	AAAACTTAGG	TAAAATATTT
13b	TTAACCCCCC	TACCCCCTTA	ACAAATCTTA	TCAACACGTT	TTTTACCTTG	GCCAACCCCC	AAAACTTAGG	TAAAATATTT
14	TTAACCCCCC	TACCCCCTTA	ACAAATCTTA	TCAACACGTC	TTTTACCTTG	GCCAACCCCC	AAAACTGAGG	TAAAATATTT
15	TTAACCCCCC	TACCCCCTTA	ACAAATCTAA	TCAACACGTT	TTTTACCTTG	GCCAACCCCC	AAAACTGAGG	TAAAATATTT
16	TTAACCCCCC	TACCCCCTTA	ACAAATCTAA	TCAACACGTT	TTTTACCTTG	GCCAACCCCC	AAAACTGAGG	TAAAATATTT
17a	TTAACCCCCC	TACCCCCTTA	acAAATCTTA	TCaaCaCGTT	TTTTACCTtG	GCCAACCCCC	AAAACTTAGG	TAAAATATTT
17b	TTAACCCCCC	TACCCCCTTA	Acaaatctta	TCaaCaCGTT	TTTTACCTTG	GCCaaCCCCC	AAAACTTaGG	TAAAATATTT
17c	TTAACCCCCC	TACCCCCTTA	Acaaatctta	TCaaCaCGTT	TTTTACCTTG	GCCAACCCCC	AAAACTTAGG	TAAAATATTt
17d	TTAACCCCCC	TACCCCCTTA	Acaaatctta	TCaaCaCGTT	TTTTACCTTG	GCCaaCCCCC	AAAACTTAGG	TAAAATATTt
17e	TTAACCCCCC	TACCCCCTTA	ACAAATCTTA	TCAACACGTT	TTTTACCTTG	GCCAACCCCC	AAAACTTAGG	TAAAATATTT
					TTTTACCTtG			
					TTTTACCTTG			
					TTTTACCTTG			
					TTTTACCTTG			
					TTTTACCTTG			
					TTTTACCTTG			
					TTTTACCtTG			
					TTTTACCTTG			
					TTTTACCTTG			
					TTTTACCTTG			
					TTTTACCTTG			
					TTTtACCTTG			
					TTTTACCTTG			
					TTTTACCTTG			
					TTTTACCTTG			
					TTTTACCTTG			
28					??????????			
29					TTTTACCTTG			
30	TAACCCCCCT	ACCCCCTTAA	CAAATCTAAT	CAACACGTTT	TTTACCTTGG	CCAACCCCCG	AAACTAAGGT	AAAATTTTTG

No.	970	980	990	1000	1010	1020	1030	1040	
1	GTCTACGACA	CTGGAATAAT	CAATAAAGTT	TTTTTGAGTA	AAATTAAAAA	ATTTGCGCAA	TATATAGTAT	TACATACTAT	A
2	GTCTACGACA	CTGGAATAAT	CAATAAAGTT	TTTTTGAGTA	AAATTAAAAA	ATTTGCGCAA	TATATAGTAT	T????????	?
3	GTCTACGACA	CTGGAATAAT	CAATAAAGTT	TTTTTGAGTA	AAATTAAAAA	ATTTGCGCAA	TATATAGTAT	TACATACTAT	A
4a	GTCTACGACA	CTGGAATAAT	Ctataaagtt	TTTTTGAGTA	AAATTaAAAA	ATTTGCGCAA	TATATAGTAT	TACATACTAT	Α
4b	GTCTACGACA	CTGGAATAAT	CAATAAAGTT	TTTTTGAGTA	AAATTAAAAA	ATTTGCGCAA	TATATAGTAT	TACATACTAT	A
5a	GTCTACGACA	CTGGAATAAT	CAATAAAGTT	TTTTTGAGTA	AAATTAAAAA	ATTTGCGCAA	TATATAGTAT	TACATACTAT	A
5b	GTCTACGACA	CTGGAATAAT	CAATAAAGTT	TTTTTGAGTA	AAATTAAAAA	ATTTGCGCAA	TATATAGTAT	TACATACTAT	A
6a	GTCTACGACA	CTGGAATAAT	CAATAAAGTT	TTTTTGAGTA	AAATTAAAAA	ATTTGCGCAA	TATATAGTAT	TACATACTAT	A
6b	GTCTACGACA	CTGGAATAAT	CAATAAAGTT	TTTTTGAGTA	AAATTAAAAA	ATTTGCGCAG	TATACAGTGT	TACATACTAT	A
7	GTCTACGACA	CTGGAATAAT	CAATAAAGTT	TTTTTGAGTA	AAATTAAAAA	ATTTGCGCAA	TATATAGTAT	TACATACTAT	A
8	GTCTACGACA	CTGGAA????	?????????	?????????	?????????	?????????	?????????	?????????	?
9	GTCTACGACA	CTGGAATAAT	CAATAAAGTT	TTTTTGAGTA	AAATTaaAAA	ATTTGCGCAA	TATATAGTAT	TACATACTAT	A
10a	GTCTACGACG	CTGGAATA-T	CGGT-ATGTT	TTTCTGA-AA	AAAT??????	?????????	?????????	?????????	?
10b	GTCTACGACG	CTGGAATA-T	CGGTCATGTT	TTTCTGA-AA	AAATT?????	?????????	?????????	?????????	?
11a	GTCTACGAC-	CTGGAATAAT	CAATAGTT	TT????AAAA	AAATTAAAAA	?????????	?????????	?????????	?
11b	GTCTACGACA	CTGGAATAAT	CAATAA-GTT	TTTC?GCGTA	AAATTAAATG	ATGTGCG???	TATAGTAT	TAC???????	?
12a	GTCTACGACA	CTGGAATAAT	CAATAAAGTT	TTTTTGAGTA	AAATTAAAAA	ATTTGCGCAA	TATATAGTAT	TACATACTAT	A
12b	GTCTACGACA	CTGGAATAAT	CAATAAAGTT	TTTTTGAGTA	AAATTaAAAA	ATTTGCGCAA	TATATAGTAT	TACATACTAT	A
13a	GTCTACGACA	CTGGAATAAT	CAATAAAGTT	TTTTTGAGTA	AAATTAAAAA	ATTTGCGCAA	TATATAGTAT	TACATACTAT	A
13b	GTCTACGACA	CTGGAATAAT	CAATAAAGTT	TTTTTGAGTA	AAATTAAAAA	ATTTGCGCAA	TATATAGTAT	TACATACTAT	A
14	GTCTACGACA	CTGGAATAAT	CAATAAAGTT	TTTTTGAGTA	AAATTAAAAA	ATTTGCGCAA	TATATAGTAT	TACATACTAT	A
15	GTCTACGACA	CTGGAATAAT	CAATAAAGTT	TTTTTGAGTG	AAATTAAAAA	ATTTGCGCAA	TATATAGTAT	TACATACTAT	A
16	GTCTACGACA	CTGGAATAAT	CAATAAAGTT	TTTTTGAGTA	AAATTAAAAA	ATTTGCGCAA	TATATAGTAT	TACATACTAT	A
17a	GTCTaCGaCA	CTGGAATAAt	CAATAAaGTT	TTTTtGaGTA	AAATTAAAAA	ATTtGCGCAA	TATATAGTAT	TaCATaCTAT	a
17b	GTCTaCGACA	CTGGAATAAT	CAATAAaGTT	TTTTtGaGTA	AAATTAAAAA	ATTtGCGCAA	TATATAGTAT	TaCATACTAT	a
17c	GTCTaCGaCA	CTGGAATAAT	CAATAAaGTT	TTTTtGaGTA	AAATTAAAAA	ATTtGCGCAA	TATATAGTAT	Tacatactat	a
17d	GTCTaCGaCA	CTGGAATAAT	CAATAAaGTT	TTTTtGaGTA	AAATTAAAAA	ATTtGCGCAA	TATATAGTAT	TaCATaCTAT	a
17e	GTCTACGACA	CTGGAATAAT	CAATAAAGTT	TTTTTGAGTA	AAATTAAAAA	ATTTGCGCAA	TATA??????	?????????	?
18a	GTCTACGaCA	CTGGAATAAT	CAATAAaGTT	TTTTtGaGTA	AAATTAAAAA	ATTtGCGCAA	TATATAGTAT	TaCATACTAT	a
18b	GTCTaCGaCA	CTGGAATAAT	CAATAAaGTT	TTTTtgaGTA	AAATTAAAAA	ATTtGCGCAA	TATATAGTAT	TaCATaCTAT	a
19a	GTCTACGACA	CTGGAATAAT	CAATAAAGTT	TTTTTGAGTA	AAATTAAAAA	ATTTGCGCAA	TATATAGTAT	TACATACTAT	A
19b	GTCTACGACA	CTGGAATAAT	CAATAAAGTT	TTTTTGAGTA	AAATtccAAA	ATTTGCGCAA	TATATAGTAT	TACATACTAT	Α
20	GTCTACGACA	CTGGAATAAT	CAATAAAGTT	TTTTTGAGTA	AAATTAAAAA	ATTTGCGCAA	TATATAGTAT	TACATACTAT	Α
21a	GTCTACGACA	CTGGAATAAT	CAATAAAGTT	TTTTTGAGTG	AAATTAAAAA	ATTTGCGCAA	TATATAGTAT	TACATACTAT	A
21b	GTCTACGACA	CTGGAATAAT	CAaTAAAGTT	TTTTTGAGTG	AAATtaAAAA	ATTtGCGCAA	TATATAGTat	tACAtACTAT	A
22		CTGGAATAAT	CAATAAAGTT	TTTTTGAGTG	AAATTAAAAA	ATTTGCGCAA	TATATAGTAT	TACATACTAT	A
23a		CTGGAATAAT							
23b	GTCTACGACA	CTGGAATAAT	CAATAAAGTT	tTtTTGAGTG	AAATTAAAAA	ATTTGCGCAA	TATATAGTAT	TACACaCTAT	A
24a	GTCTACGACA	CTGGAATAAT	CAATAAAGTT	TTTTTGAGTG	AAATTAAAAA	ATTTGCGCAA	TATATAGTAT	TACATACTAT	A
	GTCTACGACA								
25a	GTCTACGACA	CTGGAATAAT	CAATAAAGTT	TTTTtGAGtG	AAATTAAAAA	ATTTGCGCAA	TATATAGTAT	TACATACTAT	Α
	GTCTaCGaCA			_					
	GTCTACGACA								
	GTCTACGACA								
	??????????								
	GTCTACGACA								
30	TCTACGACAC	TGGAATTACT	ATAAAAGTTT	TTTTAAATAA	AATTAAAAA-	TTTGCGCAAT	ATATAGTATT	ACATACTGTA	. A

APÉNDICE 8

Matriz de distancia calculada con el algoritmo de Jukes y Cantor (1969). Los números corresponden a la población de acuerdo con la Tabla 1.

	30	29	16	15	22	21	211	40	4h	10-	19b	24-	241	120	121	20	12.
20		29	16	15	22	21a	21b	4a	4b	19a	190	24a	24b	12a	12b	28	13a
30	0,000	0.000															
29	0,120	0,000	0.000														
16	0,126 0,122	0,030	0,000	0.000													
15 22	0,122	0,029	0,020 0,021	0,000	0,000												
21a	0,124	0,029	0,021	0,010 0,008	0,000	0,000											
21a 21b	0,121	0,027	0,018	0,008	0,002	0,000	0,000										
4a	0,121	0,042	0,018	0,008	0,002	0,000	0,000	0.000									
4a 4b	0,121	0,042	0,023	0,031	0,031	0,029	0,029	0,000	0,000								
19a	0,119	0,042	0,022	0,029	0,029	0,027	0,027	0,003	0,007	0,000							
19b	0,124	0,039	0,024	0,031	0,031	0,029	0,029	0,010	0,007	0,003	0,000						
24a	0,125	0,030	0,024	0,031	0,031	0,029	0,029	0,043	0,040	0,040	0,041	0,000					
24b	0,125	0,030	0,037	0,029	0,031	0,029	0,029	0,043	0,040	0,040	0,041	0,000	0,000				
12a	0,127	0,036	0,019	0,026	0,026	0,024	0,024	0,008	0,007	0,008	0,009	0,037	0,037	0,000			
12b	0,125	0,035	0,021	0,028	0,028	0,026	0,026	0,010	0,007	0,002	0,003	0,037	0,037	0,006	0,000		
28	0,119	0,046	0,027	0,030	0,027	0,026	0,026	0,024	0,024	0,030	0,028	0,046	0,046	0,022	0,028	0,000	
13a	0,129	0,040	0,022	0,031	0,031	0,029	0,029	0,010	0,009	0,012	0,013	0,040	0,040	0,005	0,011	0,025	0,000
13b	0,125	0,040	0,022	0,031	0,031	0,029	0,029	0,009	0,006	0,007	0,008	0,040	0,040	0,009	0,007	0,032	0,009
9	0,125	0,041	0,020	0,027	0,029	0,027	0,027	0,009	0,006	0,007	0,008	0,040	0,040	0,009	0,007	0,028	0,011
5a	0,123	0,037	0,018	0,025	0,025	0,023	0,023	0,009	0,006	0,007	0,008	0,038	0,038	0,005	0,005	0,026	0,010
1	0,131	0,038	0,021	0,030	0,030	0,028	0,028	0,012	0,011	0,012	0,013	0,039	0,039	0,004	0,010	0,030	0,005
6a	0,122	0,041	0,021	0,028	0,028	0,026	0,026	0,006	0,003	0,006	0,007	0,040	0,040	0,004	0,006	0,026	0,006
6b	0,125	0,043	0,023	0,030	0,030	0,028	0,028	0,010	0,007	0,010	0,011	0,042	0,042	0,008	0,010	0,026	0,010
10a	0,114	0,049	0,033	0,042	0,042	0,040	0,040	0,022	0,020	0,017	0,017	0,050	0,050	0,016	0,016	0,039	0,021
10b	0,118	0,050	0,034	0,043	0,043	0,040	0,040	0,023	0,020	0,017	0,018	0,053	0,053	0,017	0,017	0,038	0,022
11a	0,108	0,041	0,024	0,033	0,033	0,031	0,031	0,016	0,013	0,012	0,013	0,045	0,045	0,012	0,010	0,029	0,016
11b	0,113	0,043	0,027	0,035	0,035	0,033	0,033	0,019	0,016	0,015	0,016	0,048	0,048	0,015	0,013	0,029	0,019
26	0,116	0,032	0,029	0,016	0,016	0,014	0,014	0,032	0,030	0,031	0,032	0,039	0,039	0,029	0,029	0,037	0,033
27	0,123	0,025	0,021	0,010	0,010	0,008	0,008	0,031	0,029	0,031	0,031	0,029	0,029	0,026	0,028	0,034	0,031
20	0,129	0,045	0,027	0,033	0,033	0,031	0,031	0,011	0,012	0,015	0,016	0,046	0,046	0,011	0,015	0,028	0,013
23a	0,122	0,027	0,027	0,018	0,018	0,016	0,016	0,026	0,024	0,021	0,022	0,029	0,029	0,021	0,019	0,031	0,026
2	0,119	0,042	0,024	0,032	0,032	0,030	0,030	0,014	0,013	0,014	0,015	0,044	0,044	0,006	0,012	0,030	0,008
7	0,150	0,057	0,040	0,049	0,047	0,045	0,045	0,040	0,037	0,040	0,041	0,065	0,065	0,037	0,039	0,037	0,037
8	0,125	0,040	0,022	0,028	0,028	0,026	0,026	0,010	0,008	0,007	0,006	0,042	0,042	0,007	0,005	0,028	0,012
3	0,135	0,045	0,025	0,032	0,033	0,030	0,030	0,017	0,016	0,017	0,018	0,044	0,044	0,009	0,015	0,028	0,012
23b	0,120	0,029	0,028	0,019	0,019	0,018	0,018	0,027	0,025	0,023	0,023	0,031	0,031	0,022	0,020	0,031	0,027
14	0,125	0,040	0,022	0,031	0,031	0,029	0,029	0,011	0,010	0,011	0,012	0,043	0,043	0,009	0,011	0,028	0,009
5b	0,123	0,037	0,018	0,025	0,025	0,023	0,023	0,009	0,006	0,007	0,008	0,038	0,038	0,005	0,005	0,026	0,010
17e	0,112	0,032	0,021	0,029	0,029	0,027	0,027	0,011	0,008	0,003	0,004	0,039	0,039	0,007	0,001	0,030	0,011
25a	0,103	0,026	0,018	0,009	0,004	0,002	0,002	0,031	0,029	0,030	0,029	0,031	0,031	0,025	0,028	0,028	0,030
17a	0,116	0,037	0,021	0,029	0,029	0,027	0,027	0,010	0,007	0,004	0,005	0,041	0,041	0,006	0,002	0,029	0,010
17b	0,126	0,036	0,020	0,027	0,027	0,025	0,025	0,009	0,006	0,003	0,004	0,038	0,038	0,005	0,001	0,026	0,010
17c	0,126	0,036	0,020	0,027	0,027	0,025	0,025	0,009	0,006	0,003	0,004	0,038	0,038	0,005	0,001	0,026	0,010
17d	0,125	0,035	0,021	0,028	0,028	0,026	0,026	0,010	0,007	0,002	0,003	0,037	0,037	0,006	0,000	0,028	0,011
18a	0,122	0,037	0,021	0,028	0,028	0,026	0,026	0,009	0,006	0,003	0,004	0,039	0,039	0,005	0,001	0,026	0,010
18b	0,121	0,039	0,019	0,029	0,031	0,029	0,029	0,012	0,009	0,006	0,007	0,040	0,040	0,008	0,004	0,033	0,012
25b	0,120	0,029	0,018	0,008	0,006	0,004	0,004	0,031	0,029	0,031	0,031	0,029	0,029	0,026	0,028	0,028	0,031

	13b	9	5a	1	6a	6b	10a	10b	11a	11b	26	27	20	23a	2	7	8
30																	
29																	
16 15																	
22																	
21a																	
21b																	
4a																	
4b																	
19a																	
19b																	
24a																	
24b 12a																	
12a 12b																	
28																	
13a																	
13b	0,000																
9	0,008	0,000															
5a	0,008	0,008	0,000	0.000													
1	0,011	0,011	0,009	0,000	0.000												
6a 6b	0,005 0,009	0,005 0,009	0,005 0,009	0,008 0,012	0,000 0,004	0.000											
10a	0,009	0,009	0,009	0,012	0,004	0,000	0,000										
10b	0,023	0,023	0,016	0,020	0,017	0,018	0,000	0,000									
11a	0,015	0,013	0,009	0,015	0,012	0,013	0,011	0,012	0,000								
11b	0,018	0,016	0,012	0,018	0,015	0,017	0,014	0,015	0,005	0,000							
26	0,032	0,030	0,026	0,032	0,029	0,031	0,039	0,040	0,033	0,037	0,000						
27	0,031	0,029	0,025	0,030	0,028	0,030	0,042	0,043	0,033	0,035	0,014	0,000					
20	0,014	0,014	0,014	0,015	0,009	0,013	0,025	0,026	0,021	0,024	0,034	0,035	0,000	0.000			
23a 2	0,024 0,013	0,024 0,013	0,020 0,011	0,025 0,005	0,023 0,010	0,023 0,014	0,033 0,023	0,034 0,024	0,026 0,019	0,029 0,021	0,022	0,018 0,034	0,031 0,012	0,000 0,028	0,000		
7	0,013	0,013	0,011	0,003	0,016	0,014	0,052	0,052	0,019	0,021	0,057	0,034	0,012	0,045	0,040	0,000	
8	0,010	0,006	0,004	0,009	0,007	0,008	0,011	0,011	0,006	0,006	0,026	0,028	0,017	0,022	0,011	0,038	0,000
3	0,016	0,016	0,014	0,009	0,013	0,017	0,025	0,026	0,021	0,024	0,038	0,034	0,014	0,030	0,002	0,041	0,014
23b	0,025	0,025	0,021	0,026	0,024	0,026	0,034	0,035	0,027	0,030	0,024	0,019	0,033	0,002	0,029	0,047	0,023
14	0,012	0,012	0,012	0,011	0,007	0,011	0,021	0,022	0,019	0,021	0,033	0,033	0,010	0,028	0,012	0,041	0,014
5b	0,008	0,008	0,000	0,009	0,005	0,009	0,015	0,016	0,009	0,012	0,026	0,025	0,014	0,020	0,011	0,035	0,004
17e	0,008	0,008	0,004	0,010	0,007	0,009	0,015	0,016	0,009	0,012	0,028	0,029	0,016	0,019	0,013	0,038	0,003
25a 17a	0,031	0,029	0,022 0,005	0,029	0,028	0,027 0,010	0,036 0,018	0,037 0,018	0,027 0,009	0,028 0,012	0,014 0,028	0,009	0,031 0,014	0,017 0,021	0,030 0,011	0,045	0,026
17a 17b	0,007	0,007	0,003	0,009	0,005	0,010	0,018	0,018	0,009	0,012	0,028	0,029	0,014	0,021	0,011	0,039	0,003
17c	0,006	0,006	0,004	0,009	0,005	0,009	0,018	0,018	0,009	0,012	0,028	0,027	0,014	0,020	0,011	0,038	0,004
17d	0,007	0,007	0,005	0,010	0,006	0,010	0,016	0,017	0,010	0,013	0,029	0,028	0,015	0,019	0,012	0,039	0,005
18a	0,006	0,006	0,004	0,009	0,005	0,009	0,018	0,018	0,009	0,012	0,028	0,028	0,013	0,020	0,011	0,038	0,004
18b	0,009	0,007	0,007	0,011	0,008	0,012	0,020	0,021	0,011	0,014	0,030	0,031	0,016	0,023	0,013	0,041	0,007
25b	0,031	0,027	0,023	0,030	0,028	0,030	0,042	0,043	0,033	0,035	0,016	0,010	0,033	0,018	0,032	0,046	0,028

$\overline{}$	3	23b	14	5b	17e	25a	17a	17b	17c	17d	18a	18b	25b
30									·				
29													
16 15													
22													
21a													
21b													
4a 4b													
19a													
19b													
24a													
24b													
12a													
12b 28													
13a													
13b													
9													
5a													
1 6a													
6b													
10a													
10b													
11a 11b													
26													
27													
20													
23a													
2 7													
8													
3	0,000												
23b	0,031	0,000											
14	0,016	0,029	0,000	0.000									
5b 17e	0,014 0,016	0,021 0,020	0,012 0,011	0,000 0,004	0,000								
25a	0,031	0,018	0,030	0,022	0,027	0,000							
17a	0,014	0,023	0,012	0,005	0,002	0,027	0,000						
17b	0,014	0,021	0,012	0,004	0,002	0,027	0,001	0,000					
17c 17d	0,014 0,015	0,021 0,020	0,012 0,011	0,004 0,005	0,002 0,001	0,027 0,028	0,001 0,002	0,000 0,001	0,000 0,001	0,000			
17a 18a	0,013	0,020	0,011	0,003	0,001	0,028	0,002	0,001	0,001	0,000	0,000		
18b	0,015	0,025	0,012	0,007	0,002	0,027	0,003	0,003	0,003	0,004	0,003	0,000	
25b	0,032	0,019	0,031	0,023	0,029	0,002	0,029	0,027	0,027	0,028	0,028	0,029	0,000

APÉNDICE 9ANOVA. Grupos homogéneos. Transformados

D/P	sp	Promedio	1	2	PI	sp	Promedio	1	
4	z	-0.890552	****	****	2	1	-0.446760	****	
3	r	-0.884829	****		4	Z	-0.431587	****	
1	a	-0.796568		****	3	r	-0.398432	****	
2	1	-0.790560	****	****	1	a	-0.356919	****	
DV	sp	Promedio	1		\mathbf{DM}	sp	Promedio	1	2
2	1	-0.142169	****		1	a	0.798539	****	
1	a	-0.110532	****		4	Z	1.156368	****	****
3	r	0.023141	****		2	1	1.168898	****	****
4	z	0.196632	****		3	r	1.734335		****
C	sp	Promedio	1	2	HC	sp	Promedio	1	
3	r	2.808672	****		1	a	-0.569963	****	
4	Z	2.942734	****	****	3	r	-0.561783	****	
1	a	3.164977		****	4	Z	-0.547899	****	
2	1	3.193588	****	****	2	1	-0.502301	****	
DI	sp	Promedio	1		НО	sp	Promedio	1	
4	Z	-0.785755	****		4	Z	-0.819465	****	
2	1	-0.763602	****		1	a	-0.794248	****	
3	r	-0.743142	****		3	r	-0.778593	****	
1	a	-0.730587	****		2	1	-0.776106	****	
M	sp	Promedio	1	2	P	sp	Promedio	1	2
3	r	-0.721694	****		3	r	-0.569832	****	
2	1	-0.622540	****	****	4	Z	-0.551961	****	****
1	a	-0.618236		****	1	a	-0.518892	****	****
4	Z	-0.597023	****	****	2	1	-0.401541		****
DIA	sp	Promedio	1		OCULAI	R sp	Promedio	1	
2	1	0.817988	****		4	Z	-0.403094	****	
1	a	0.875900	****		3	r	-0.344476	****	
3	r	0.902184	****		2	1	-0.302287	****	
4	Z	1.006876	****		1	a	-0.293527	****	
UPJAW	sp	Promedio	1	2	LC_PAR	sp	Promedio	1	
3	r	-0.243114		****	2	1	-0.282122	****	
4	z	-0.199716	****	****	1	a	-0.235352	****	
1	a	-0.136201	****		4	Z	-0.224984	****	
2	1	-0.118832	****		3	r	-0.214522	****	

(continuación)

ANOVA. Grupos homogéneos. Branquiados

Prueba de Tukey (HSD). Branquiados. Grupos Homogéneos, α=0.05										
DV					DM	•	,			
2 .	sp	Promedio	1		Divi	sp	Promedio	1		
1	a	0.171803	****		1	a	1,243247	****		
2	1	0.325079	****		2	1	1.414876	****		
3	r	0.637001	****		4	z	1.553012	****		
4	Z	0.689521	****		3	r	1.902896	****		
HC	_	***************************************			DO	_				
	sp	Promedio	1	2		sp	Promedio	1		
3	r	-0.482782	****		3	r	-0.894342	****		
4	Z	-0.465695	****		1	a	-0.883573	****		
1	a	-0.457830	****		2	1	-0.851776	****		
2	1	-0.254195		****	4	Z	-0.825990	****		
LM					M					
	sp	Promedio	1			sp	Promedio	1		
4	Z	0.229762	****		4	Z	-0.769526	****		
2	1	0.300040	****		1	a	-0.654893	****		
3	r	0.306322	****		3	r	-0.650329	****		
1	a	0.410152	****		2	1	-0.635108	****		
LP					DIA					
	sp	Promedio	1			sp	Promedio	1		
3	r	0.330961	****		2	1	0.862691	****		
2	1	0.348500	****		4	Z	0.950178	****		
4	Z	0.372690	****		1	a	0.952930	****		
1	a	0.506057	****		3	r	0.969832	****		
PAR					OCU	LAR				
	sp	Promedio	1			sp	Promedio	1	2	
3	r	-0.112746	****		3	r	-0.345616		****	
4	Z	-0.084030	****		4	Z	-0.317615	****	****	
1	a	-0.049466	****		1	a	-0.237316	****		
2	1	-0.024206	****		2	1	-0.210798	****		
S_UPJ	AW				LC_PAR					
	sp	Promedio	1			sp	Promedio	1		
3	r	-0.070106	****		1	a	-0.155779	****		
4	Z	-0.024717	****		4	Z	-0.134542	****		
1	a	0.000168	****		2	1	-0.128613	****		
2	1	0.029451	****		3	r	-0.079783	****		
AB1					AB2					
	sp	Promedio	1			sp	Promedio	1		
4	Z	-0.658288	****		2	1	-0.569216	****		
2	1	-0.649732	****		4	Z	-0.558481	****		
3	r	-0.611973	****		3	r	-0.554059	****		
1	a	-0.564897	****		1	a	-0.476282	****		